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For the system of linear generalized ordinary differential equations with singularities

dx(t) = dA(t) · x(t) + df(t) for t ∈ ]a, b[ , (1)

the two point boundary value problem

xi(a+) = 0 (i = 1, . . . , n0), xi(b−) = 0 (i = n0 + 1, . . . , n), (2)

is considered, where −∞ < a < b < +∞, x(t) = (xi(t))
n
i=1, n0 ∈ {1, . . . , n}, f = (fl)

n
l=1 :

[a, b] → Rn is a vector-function whose components have bounded variations, and A = (ail)
n
i,l=1 :

[a, b] → Rn×n is a matrix-function such that the functions ai1, . . . , ail have bounded variations
on every closed interval from ]a, b] for i ∈ {1, . . . , n0} and on every closed interval from [a, b[ for
i ∈ {n0 + 1, . . . , n}.

There are established sufficient conditions for the unique solvability of this problem in the case
when considered system is singular, i. e., the components of the matrix-function A may have
unbounded variation on the interval [a, b].

By BVloc(]a, b[ ,Rn×m) we denote the set of all matrix-functions X : ]a, b[→ Rn×m with bounded
variation on every closed interval from ]a, b[ .

By a solution of the problem (1), (2) we mean a vector-function x = (xi)
n
i=1 ∈ BVloc(]a, b[ ,Rn)

satisfying the condition (2) and the system (1), i.e., such that x(t) = x(s)+
t∫
s
dA(τ)·(τ)+f(t)−f(s)

for a < s ≤ t < b, where integral is considered in the Lebesgue–Stieltjes sense.
Let det(In+(−1)jdjA(t)) ̸= 0 for t ∈ ]a, b[ (j = 1, 2) and let γα(· , s) be a unique solution of the

Cauchy problem dγ(t) = γ(t) dα(t), γ(s) = 1.

Definition. Let n0∈{1, . . . , n}. We say that a matrix-function C=(cil)
n
i,l=1∈BV([a, b],Rn×n)

belongs to the set U(a+, b−;n0) if the functions cil (i ̸= l; i, l = 1, . . . , n) are nondecreasing on [a, b]
and the system

sgn
(
n0 +

1

2
− i

)
· dxi(t) ≤

n∑
l=1

xl(t) dcil(t) for t ∈ ]a, b[ (i = 1, . . . , n)

has no nontrivial, nonnegative solution satisfying the condition (2).

Theorem. Let the vector-function f have bounded variation, and let the matrix-function A =
(ail)

n
i,l=1 ∈ BVloc(]a, b[ ,Rn×n) be such that the conditions(

s0(aii)(t)− s0(aii)(s)
)
sgn

(
n0 +

1

2
− i

)
≤ s0(cii − αi)(t)− s0(cii − αi)(s),

(−1)j
(∣∣1 + (−1)jdjaii(t)

∣∣− 1
)
sgn

(
n0 +

1

2
− i

)
≤ dj

(
cii(t)− αi(t)

)
;∣∣s0(ail)(t)− s0(ail)(s)

∣∣ ≤ s0(cil)(t)− s0(cil)(s) (i ̸= l),

|djail(t)| ≤ djcil(t) (i ̸= l)
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hold for a < s < t < b (i, l = 1, . . . , n), where C = (cil)
n
i,l=1 ∈ U(a+, b−;n0), αi : ]a, b[→ R

(i = 1, . . . , n) are nondecreasing functions and

lim
t→a+

d1αi(t) < 1 (i = 1, . . . , n0), lim
t→b−

d2αi(t) < 1 (i = n0 + 1, . . . , n0); (3)

lim
t→a+

sup
{
γαi(t, a+ 1/k) : k = 1, 2, . . .

}
= 0 (i = 1, . . . , n0),

lim
t→b−

sup
{
γαi(t, b− 1/k) : k = 1, 2, . . .

}
= 0 (i = n0 + 1, . . . , n0).

(4)

Then the problem (1), (2) has one and only one solution.

Corollary. Let the vector-function f have bounded variation, and let the matrix-function A =
(ail)

n
i,l=1 ∈ BVloc(]a, b[,Rn×n) be such that the conditions

(
s0(aii)(t)− s0(aii)(s)

)
sgn

(
n0 +

1

2
− i

)
≤ hii

(
s0(β)(t)− s0(β)(s)

)
−
(
s0(α)(t)− s0(α)(s)

)
,

(−1)j
(∣∣1 + (−1)jdjaii(t)

∣∣− 1
)
sgn

(
n0 +

1

2
− i

)
≤ hiidjβ(t)− djα(t)

)
,∣∣s0(ail)(t)− s0(ail)(s)

∣∣ ≤ hil
(
s0(β)(t)− s0(β)(s) (i ̸= l),

|djail(t)| ≤ hildjβ(t) (i ̸= l)

hold for a < s < t < b (i, l = 1, . . . , n), where α is a nondecreasing on ]a, b[ function satisfying the
conditions (3) and (4); β is a nondecreasing on [a, b] function having no more than a finite number
of discontinuity points, hii ∈ R, hil ∈ R+ (i ̸= l; i, l = 1, . . . , n). Let, moreover, ρ0 r(H) < 1, where
H = (hik)

n
i,k=1,

ρ0 = max

{ 2∑
j=0

λmj : m = 0, 1, 2

}
, λ00 =

2

π

(
s0(β)(b)− s0(β)(a)

)
,

λ0j = λj0 =
(
s0(β)(b)− s0(α)(a)

) 1
2
(
sj(β)(b)− sj(β)(a)

) 1
2 (j = 1, 2),

λmj =
1

2

(
µαmµαj

) 1
2 sin−1 π

4nαm + 2
(m, j = 1, 2),

µαm = max
{
dmα(t) : t ∈ [a, b]

}
(m = 1, 2),

and nαm is a number of points from [a, b] for which dmα(t) ̸= 0 for every m ∈ {1, 2}. Then the
problem (1), (2) has one and only one solution.
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Uniform Estimates and Existence of Solution with

Prescribed Domain to a Nonlinear Third-Order
Differential Equation

I. Astashova

Lomonosov Moscow State University, Moscow State University of Economics, Statistics and
Informatics, Moscow, Russia
E-mail: ast@diffiety.ac.ru

1 Introduction

In 1990, after my lecture at Enlarged Sessions of the Seminar of I.Vekua Institute of Applied
Mathematics, professor T. A. Chanturia posed me a question about existence for any finite x∗, x

∗,
x∗ < x∗ of a non-extensible solution y(x) with domain (x∗, x

∗) to the equation y′′′+p(x)|y|k−1y = 0.
For such equation of the second order some related result was obtained in [1]. I’ve got an answer
for the third-order equation in 1992 ([3]), but unfortunately T. A. Chanturia could not see it. . .
The proof of this result was very complicated, but with the help of uniform estimates of solutions
([8]) it became much better.

2 Uniform Estimates of Solutions

Consider the differential equation

y′′′ + p(x, y, y′, y′′)|y|k−1y = 0, k > 1, (1)

the function p(x, y0, y1, y2) is continuous in x and Lipschitz continuous in y0, y1, y2 with

0 < p∗ ≤ p(x, y0, y1, y2) ≤ p∗, (2)

where p∗, p
∗ are positive constants.

Put β = k−1
3 > 0.

Theorem 1. For any k > 1, p∗ > 0, p∗ > p∗, h > 0 there exists a constant C > 0 such that for
any p(x, y, y′, y′′) satisfying (2), any solution y(x) to (1) satisfying the condition |y(x0)| = h > 0
in some point x0 ∈ R cannot be extended to the interval (x0 − C h−β , x0 + C h−β).

Theorem 2. For any k > 1, p∗ > 0, p∗ > p∗ there exists a constant C > 0 such that for any
p(x, y, y′, y′′) satisfying (2) and any solution y(x) to (1) defined on [−a, a] it holds |y(0)| ≤

(
C
a i¯
g)1/β.

Theorem 3. For any k > 1, p∗ > 0, p∗ > p∗ there exists a constant C > 0 such that for any
p(x, y, y′, y′′) satisfying (2) and any solution y(x) to (1) defined on [a, b] it holds

|y(x)| ≤ Cmin(x− a, b− x)−1/β . (3)

Remark 1. In [5] uniform estimates for positive solutions with the same domain to the equation

y(n) +

n−1∑
j=0

aj(x)y
(i) + p(x)|y|k−1y = 0

with continuous functions p(x) and aj(x), n ≥ 1, k > 1 were obtained. In [6] similar uniform
estimates for absolute values of all solutions to the equation

y(n) +

n−1∑
j=0

aj(x)y
(i) + p(x)|y|k = 0

were proved.
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3 Existence of Solution with Prescribed Domain

Consider the differential equation (1) with the same propositions about the function p(x, y0, y1, y2).

Definition. A solution y(x) has a resonance asymptote x = x∗ if

lim
x→x∗

y(x) = +∞, lim
x→x∗

y(x) = −∞.

Theorem 4. Suppose that condition (2) holds. Let y(x) be a solution to (1) defined on [x0, x
∗)

with the resonance asymptote x = x∗. Then the position of the asymptote x = x∗ depends continu-
ously on y(x0), y

′(x0), y
′′(x0).

Theorem 5. Suppose that condition (2) holds. Then for any finite x∗ < x∗ there exists a
non-extensible solution y(x) to (1) defined on (x∗, x

∗) with the vertical asymptote x = x∗ and the
resonance asymptote x = x∗.

Corollary 1. Suppose that condition (2) holds. Then for any x∗ ∈ R there exists a Kneser
solution of (1) with the vertical asymptote x = x∗ defined on the interval (x∗,+∞) and tending to
0 as x → +∞.

Corollary 2. Suppose that condition (2) holds. Then for any x∗ ∈ R there exists a non-
extensible solution y(x) of (1) with the resonance asymptote x = x∗ defined on the interval (−∞, x∗)
and tending to 0 as x → −∞.

Theorem 6. Suppose that condition (2) holds. Then for any finite or infinite x∗ < x∗ there
exists a non-extensible solution y(x) of (1) with domain (x∗, x

∗).

Remark 2. In [4], [7] asymptotic behavior of all possible solutions to (1) is described.
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We consider the initial boundary value problem for generalized Benjamin–Bona–Mahony (BBM)
equation

∂u

∂t
+

∂u

∂x
+ γ

∂(u)m

∂x
− µ

∂3u

∂x2∂t
= 0, (x, t) ∈ QT , (1)

u(a, t) = u(b, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [a, b], (2)

where γ and µ are positive constants, m ≥ 2 is a positive integer, and QT := (a, b) × (0, T ). In
the cases m=2,3 (1) represents the BBM (or regularized long-wave) and modified BBM equations,
respectively.

For convenience we introduce the notation

xi = a+ ih, tj = jτ, i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , J,

where h = (b− a)/n and τ = T/J denote the spatial and the temporal mesh size, respectively. Let

uji := u(xi, tj), U
j
i ∼ u(xi, tj),

(U j
i )x :=

U j
i+1 − U j

i

h
, (U j

i )x̄ :=
U j
i − U j

i−1

h
, (U j

i ) ◦
x
:=

1

2
((U j

i )x + (U j
i )x̄),

(U j
i )t :=

U j+1
i − U j

i

τ
, (U j

i )t̄ :=
U j
i − U j−1

i

τ
, (U j

i ) ◦
t
:=

1

2
((U j

i )t + (U j
i )t̄),

(U j , V j) :=

n−1∑
i=1

hU j
i V

j
i , (U j , V j ] :=

n∑
i=1

hU j
i V

j
i ,

∥U j∥2 := (U j , U j), ∥U j ]|2 := (U j , U j ], ∥U j∥2W 1
2
:= ∥U j

x̄]|2 + ∥U j∥2.

We approximate the problem (1), (2) with the help of the difference scheme:

LU j
i = 0, i = 1, 2, . . . , n− 1, j = 0, 1, . . . , J − 1, (3)

U j
0 = U j

n = 0, j = 0, 1, . . . , J, U0
i = φ(xi), i = 0, 1, . . . , n, (4)

where

LU j
i := (U j

i ) ◦
t
+

1

2
(U j+1

i + U j−1
i ) ◦

x
+

+
γm

2(m+ 1)
ΛU j

i − µ(U j
i )x̄x

◦
t
, i = 1, n− 1, j = 1, 2, . . . , J − 1,

LU0
i := (U0

i )t +
1

2
(U1

i + U0
i ) ◦

x
+

+
γm

2(m+ 1)
ΛU0

i − µ(U0
i )x̄xt, i = 1, n− 1, j = 0,

ΛU j
i := (U j

i )
m−1(U j+1

i + U j−1
i ) ◦

x
+
(
(U j

i )
m−1(U j+1

i + U j−1
i )

)
◦
x
, j = 1, 2, . . . , J − 1,

ΛU0
i := (U0

i )
m−1(U1

i + U0
i ) ◦

x
+

(
(U0

i )
m−1(U1

i + U0
i )
)

◦
x
.
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The obtained algebraic equations are linear with respect to the values of desired function for each
new level.

Theorem 1. The finite difference scheme (3), (4) is uniquely solvable and possesses the follow-
ing invariant

Ej := ∥U j∥2 + µ∥U j
x̄]|2 = ∥φ∥2 + µ∥φx̄]|2 := E0, j = 1, 2, . . . .

Definition. Let U , V are solutions of a difference scheme respectively with any initial date
U0, V 0. If there exists a constant c(T ) > 0, independent of mesh sizes τ and h, such that

∥U j − V j∥1h ≤ c(T )∥U0 − V 0∥2h , j ≥ 1,

where ∥ · ∥1h and ∥ · ∥2h are suitable norms on the set of qrid functions, then we say that difference
scheme is stable with respect to initial data. A difference scheme is said to be absolutely stable if
it is stable for any τ and h.

Theorem 2. Difference scheme (3), (4) is absolutely stable with respect to initial data.

Using procedure proposed by R. D. Lazarov, V. L. Makarov and A. A. Samarskii [1] and
developed in [2], we obtain convergence rate estimates that are compatible with the smoothness of
the desired solution.

Theorem 3. Let the exact solution of the initial-boundary value problem (1), (2) belong to
W k

2 (QT ), k > 1. Then the convergence rate of the finite difference scheme (3), (4) is determined by
the estimate

∥U j − uj∥W 1
2
≤ c(τk−1 + hk−1)∥u∥Wk

2 (QT ), 1 < k ≤ 3,

where c = c(u) denotes positive constant, independent of h and τ .
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Asymptotic Behavior of Solutions of Differential Equations of the

Type y(n) = α0p(t)
n−1∏
i=0

φi(y
(i))

M. O. Bilozerova

I. I. Mechnikov Odessa National University, Odessa, Ukraine
E-mail: Marbel@ukr.net

The differential equation

y(n) = α0p(t)
n−1∏
i=0

φi(y
(i)), (1)

where α0 ∈ {−1, 1}, p : [a, ω[ 1 → ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ (i = 0, . . . , n)
are the continuous functions, Yi ∈ {0,±∞},∆Yi is either the interval [y

0
i , Yi[

2 or the interval ]Yi, y
0
i ],

is considered. We suppose also that every φi(z) is regularly varying as z → Yi (z ∈ ∆Yi) of index

σi and
n−1∑
i=0

σi ̸= 1.

According to the type of the functions φ0, . . . , φn−1 it is clear that the equation (1) is in some
sense similar to the well known differential equation

y(n) = α0p(t)
n−1∏
i=0

|y(i)|σi . (2)

We call the solution y of the equation (1) the Pω(λ
0
n−1)-solution, where −∞ ≤ λ0

n−1 ≤ +∞, if
the following conditions take place

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, . . . , n− 1), lim
t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0

n−1.

All Pω(λ
0
n−1)-solutions of the equation (2) were investigated in [2], [3]. In case n = 2 for all

Pω(λ
0
n−1)-solutions of the equation (1) the necessary and sufficient conditions of existence and

asymptotic representations as t ↑ ω were found later [4]–[7]. The methods of this investigations are
used in this work for the equation (1), where n ≥ 2.

The cases λ0 ∈
{
0, 12 ,

2
3 , . . . ,

n−2
n−1

}
are singular by the studying of Pω(λ

0
n−1)-solutions of the

equation (1). Pω(λ
0
n−1)-solutions, where λ0 ∈

{
0, 12 ,

2
3 , . . . ,

n−2
n−1

}
are regularly varying functions as

t ↑ ω of indexes {0, 1, . . . , n−1}. To investigate such solutions we have to put additional conditions
on the functions φ0, . . . , φn−1 and the function p. The necessary and sufficient conditions of the
existence of Pω(λ

0
n−1)-solutions of the equation (1) for λ0

n−1 ∈
{
0, 12 ,

2
3 , . . . ,

n−2
n−1

}
are found in this

work. The asymptotic representations as t ↑ ω for such solutions and their derivatives from the
first to (n − 1)-th order are found too. We will illustrate this results for the case λ0 = 0, that is
one of the most difficult for investigation.

We call the slowly varying as z → Y (z ∈ ∆) function θ satisfies the condition S if for every con-

tinuously differentiable function L : ∆ → ]0; +∞[ such that lim
z→Y
z∈∆

zL′(z)
L(z) = 0, the next representation

takes place
θ(zL(z)) = θ(z)[1 + o(1)] as z → Y (z ∈ ∆).

1If ω > 0 we will take a > 0.
2If Yi = +∞ (Yi = −∞) we take y0

i > 0 (y0
i < 0) correspondingly.
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Let us introduce subsidiary notations.

C =
1

1− σn−1
, µ =

n−3∑
i=0

(i+ 2− n)σi,

πω(t) =

{
t for ω = +∞,

t− ω for ω < +∞,
θn−1(z) = φn−1(z)|z|−σn−1 ,

I0(t) =

t∫
A0

ω

p(τ) dτ, I1(t) =

t∫
A1

ω

∣∣∣∣ I0(τ)

C|πω(τ)|µ
θn−1

( |I0(τ)|C
y0n−1

)∣∣∣∣C dτ,

A0
ω =


a, if

ω∫
a

p(τ) dτ = +∞,

ω, if

ω∫
a

p(τ) dτ < +∞,

A1
ω =


a, if

ω∫
a

∣∣∣∣ I0(τ)

|πω(τ)|µ
θn−1

( |I0(τ)|C
y0n−1

)∣∣∣∣C dτ = +∞,

ω, if

∫ ω

a

∣∣∣∣ I0(τ)

|πω(τ)|µ
θn−1

( |I0(τ)|C
y0n−1

)∣∣∣∣C dτ < +∞.

The following conclusion takes place for the equation (1).

Theorem. Let the function θn−1 satisfy the condition S and σn−1 ̸= 1. Then the following
conditions are necessary for the existence of Pω(0)-solutions of the equation (1):

lim
t↑ω

I ′1(t)I0(t)

p(t)I1(t)
= 0, lim

t↑ω
y0n−1|I0(t)|C = Yn−1, (3)

lim
t↑ω

y0n−2|I1(t)|
(1−σn−1)/

(
1−

n−1∑
j=0

σj

)
= Yn−2, lim

t↑ω
y0i |πω(t)|n−i−2 = Yi, (4)

α0y
0
n−1CI0(t) > 0, y0n−2y

0
n−1I1(t) > 0, y0i y

0
i+1(n− i− 1)(n− i− 2) > 0 if t ∈ [a, ω[ , (5)

where i = 0, . . . , n− 3. If there exists a finite or an infinite limit lim
t↑ω

πω(t)p(t)
I0(t)

, then the conditions

(3)–(5) are sufficient for the existence of such solutions of the equation (1). Moreover, for any
Pω(0)-solution of (1) the following asymptotic representations

y(n−1)(t)
n−1∏
j=0

φj(y(j)(t))

= α0(1− σn−1)I0(t)[1 + o(1)],

y(n−1)(t)

y(n−2)(t)
=

I ′1(t)

I1(t)
[1 + o(1)],

y(i)(t)

y(n−2)(t)
=

[πω(t)]
n−i−2

(n− i− 2)!
[1 + o(1)]

hold as t ↑ ω, where i = 0, . . . , n− 3.
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On Stability of Delay Systems

Alexander Domoshnitsky
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Consider the system

x′i(t) +

n∑
j=1

pij(t)xj(t− τij(t)) = fi(t), i = 1, . . . , n, t ∈ [0,+∞),

xi(θ) = 0 for θ < 0.

(1)

Its general solution has the following representation

x(t) =

t∫
0

C(t, s)f(s) ds+X(t)α,

where the n × n matrix C(t, s) is called the Cauchy matrix of equation (1), X(t) is a n × n
fundamental matrix of the system

(Mix)(t) ≡ x′i(t) +
n∑

j=1

pij(t)xj(t− τij(t)) = 0, i = 1, . . . , n, t ∈ [0,+∞),

xi(θ) = 0 for θ < 0,

(10)

such that X(0) = I (I is the unit n× n matrix), f = col(f1, . . . , fn), α = col(α1, . . . , αn)

Definition 1. Let us say that system (1) is exponentially stable if the Cauchy and funda-
mental matrices X(t) = {Xij(t, s)}i,j=1,...,n and C(t, s) = {Cij(t, s)}i,j=1,...,n satisfy the exponential
estimate, i.e. there exist N and γ such that

|Cij(t, s)| ≤ Ne−γ(t−s), |Xij(t)| ≤ Ne−γt,

for 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n.

Theorem 1. Let the following conditions be fulfilled:

1) pij ≤ 0 for i ̸= j, i, j = 1, . . . , n− 1;

2)
t∫

t−τii(t)

pii(s)ds ≤ 1
e for i = 1, . . . , n− 1;

3) pjn ≥ 0, pnj ≤ 0 for j = 1, . . . , n− 1, pnn ≥ 0;

4) there exist positive α and βi such that

pnn(t)e
ατnn(t) −

n−1∑
j=1

pnj(t)βje
ατnj(t) ≤ α ≤

≤ min
1≤i≤n−1

{
− pin(t)

1

βi
eατin(t) +

n−1∑
j=1

pij(t)
βj
βi

eατjn(t)
}
, t ∈ [0,+∞).
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Then the elements of the n-th row of the Cauchy matrix of system (1) satisfy the inequalities:
Cnn(t, s) > 0, Cnj(t, s) ≥ 0 for j = 1, . . . , n−1, 0 ≤ s ≤ t < +∞. If in addition there exist positive
ε and z1, . . . , zn−1 such that

n−1∑
j=1

pij(t) ≥ ε > 0, pin(t)−
n−1∑
j=1

pij(t)zj ≥ ε > 0, i = 1, . . . , n− 1,

pnn(t) +

n−1∑
j=1

|pnj(t)|zj ≥ ε > 0,

t ∈ [0,+∞), (2)

then system (1) is exponentially stable.

Remark 1. It was assumed in condition 3) that pjn ≥ 0, for j = 1, . . . , n − 1, and Wazewskii’s
condition, generally speaking, is not fulfilled.

Remark 2. A possible case is pnn = 0 and the principle of main diagonal dominance (even
in its generalized form, assuming, for example, that the matrix {pij}i,j=1,...,n is M -matrix), is not
fulfilled.

Remark 3. The inequality

pnn(t) +
n−1∑
j=1

|pnj(t)|βj > 0, t ∈ [0,+∞)

cannot be set instead of the inequality

pnn(t)−
n−1∑
j=1

pnj(t)βj ≥ ε > 0, t ∈ [0,+∞)

in the condition (2) of Theorem 1. Actually in the case pnj(t) ≡ 0 for j = 1, . . . , n − 1 and
pnn(t) =

1
t2
, the component xn(t) of the solution vector of the homogeneous system (10) does not

tend to zero when t → +∞.

Remark 4. Conditions 1) and 2) imply that all elements of the Cauchy matrix K(t, s) =
{Kij(t, s)}i,j=1,...,n−1 of auxiliary system

x′i(t) +

n−1∑
j=1

pij(t)xj(t− τij(t)) = fi(t), i = 1, . . . , n− 1, t ∈ [0,+∞), (3)

are nonnegative.

Remark 5. The inequality

n−1∑
j=1

pij(t) ≥ ε > 0, t ∈ [0,+∞)

implies that the Cauchy matrix of the auxiliary system (3) satisfies the exponential estimate and
this is essential in the case of separated n-th equation, i.e. when pnj(t) ≡ 0, pjn(t) ≡ 0 for
j = 1, . . . , n− 1.

14



On Well-Posedness with Respect to Functional for an
Optimal Control Problem with Distributed Delays

Phridon Dvalishvili

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: pridon.dvalishvili@tsu.ge

Let Rn
x be an n-dimensional vector space of points x = (x1, . . . , xn)T , where T means transpose;

O ⊂ Rn
x and V ⊂ Rr

u be open sets; the (n + 1)-dimensional function F (t, x, u) = (f0, f)T be
continuous on the set I × O × V and continuously differentiable with respect to x, where I =
[t0, t1]; next, τ > 0, θ > 0 given numbers, let Φ and Ω be sets of continuous initial functions
φ(t) ∈ O, t ∈ [t0 − τ, t0] and measurable control functions u(t) ∈ U, t ∈ [t0 − θ, t1], respectively,
where U ⊂ V is a compact set.

Let x0 ∈ O and φ ∈ Φ be fixed initial vector and function. To each control function u ∈ Ω we
assign the differential equation with distributed delays

ẋ(t) =

0∫
−τ

0∫
−θ

f(t, x(t+ s), u(t+ ξ)) ds dξ, t ∈ I (1)

with the initial condition

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x0. (2)

Definition 1. Let u ∈ Ω be a given control. A function x(t) = x(t;u) ∈ O, t ∈ [t0 − τ, t1],
is called a solution of Eq. (1) with the initial condition (2) or a solution corresponding to u and
defined on [t0− τ, t1], if it satisfies condition (2) and is absolutely continuous on the interval [t0, t1]
and satisfies Eq. (1) almost everywhere on [t0, t1].

Definition 2. A control u ∈ Ω is said to be admissible if the corresponding solution x(t) =
x(t;u) is defined on the interval [t0 − τ, t1].

We denote the set of admissible controls by Ω0.

Definition 3. A control u0 ∈ Ω0 is said to be optimal if for any u ∈ Ω0 we have

J(u0) ≤ J(u),

where

J(u) =

t1∫
t0

{ 0∫
−τ

0∫
−θ

f0(t, x(t+ s), u(t+ ξ)) ds dξ

}
dt. (3)

The optimal control u0 is called solution of the problem (1)–(3).

Introduce the following notations: By Y we denote the set of continuous functions y(t) ∈ O,
t ∈ I1 = [t0 − τ, t0) ∪ (t0, t1], with cly(I1) ⊂ O is the compact set;

F (t, y(·), u) =
0∫

−τ

F (t, y(t+ s), u) ds, y ∈ Y, P (t, y(·)) =
{
F (t, y(·), u) : u ∈ U

}
.

Theorem 1. Let the following conditions hold: Ω0 ̸= Ø; there exists a compact set K0 ⊂ O
such that x(t;u) ∈ K0, t ∈ [t0 − τ, t1], ∀u ∈ Ω0; for any (t, y) ∈ I × Y the set P (t, y(·)) is convex.
Then the problem (1)–(3) has a solution u0.
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Let K1 ⊂ O be a compact set containing a certain neighborhood of the set K0. By E we denote
the set of functions G(t, x, y) = (g0, g)T ∈ Rn+1

x continuous on the set I × O and continuously
differentiable with respect to x and satisfying the condition∫

I

|Gδ(t, x)| dt ≤ const, ∀x ∈ K1.

Theorem 2. Let the conditions of Theorem 1 hold. Then for any ε > 0 there exists a number
δ > 0 such that for an arbitrary vector x0δ ∈ O and functions φδ ∈ Φ, Gδ ∈ E satisfying the
conditions

|x0 − x0δ|+ ∥φ− φδ∥+ ∥Gδ∥ ≤ δ,

the perturbed optimal problem

ẋ(t) =

0∫
−τ

0∫
−θ

{
f(t, x(t+ s), u(t+ ξ)) + g(t, x(t+ s))

}
ds dξ, t ∈ I1,

x(t) = φδ(t), t ∈ [t0 − τ, t0), x(t0) = x0δ,

J(u, δ) =

t1∫
t0

{ 0∫
−τ

0∫
−θ

[
f0(t, x(t+ s), u(t+ ξ)) + g0(t, x(t+ s))

]
ds dξ

}
dt

has a solution u0δ and the following inequality

|J(u0)− J(u0δ)| ≤ ε

is fulfilled. Here

∥ φ− φδ ∥= sup
{
|φ(t)− φδ(t)| : t ∈ I1

}
,

∥Gδ∥ = sup

{∣∣∣ t′′∫
t′

g(t, x) dt
∣∣∣ : t′, t′′ ∈ I, x ∈ K1

}
.

Theorems 1 and 2 are proved by scheme given in [1], [2].
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Asymptotic Representations of Solutions of Ordinary Differential
Equations of N-th Order with Regularly Varying Nonlinears

V. M. Evtukhov and A. M. Klopot

I. I. Mechnikov Odessa National University, Odessa, Ukraine
E-mail: emden@farlep.net, mrtark@gmail.com

We consider the differential equation

y(n) =
m∑
k=1

αkpk(t)
n−1∏
j=0

φkj(y
(j)), (1)

where αk ∈ {−1; 1} (k = 1,m), pk : [a, ω[→ ]0,+∞[ (k = 1,m) are continuous functions, φkj :

△Yj → ]0,+∞[ (k = 1,m; j = 0, n− 1) are continuous and regularly varying at y(j) −→ Yj
functions of orders σkj , −∞ < a < ω ≤ +∞, △Yj one-sided neighbourhood Yj , Yj is either 0, or
±∞.

Continuous function φ : ∆Y → ]0,+∞[ , where Y is either 0, or ±∞ and ∆Y one-sided
neighbourhood Y , is regularly variyng at y → Y , if there exists a number σ ∈ R such that

lim y→Y
y∈∆Y

φ(λy)
φ(y) = λσ for any λ > 0. In this case the number σ is called the order of regularly varying

function. Regularly varying at y → Y zero-order function is called slowly changing function.
Since each regularly varying at y → Y function φ of σ order is represented as φ(y) = |y|σL(y),

where L- slowly changing function at y → Y , then the differential equation (1) is asymptotically

close at y(j) → Yj (j = 0, n− 1) to the equation

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

|y(j)|σkj .

Asymptotic behavior of certain classes of solutions of those equation is investigated in works [1], [2].
A solution y of the equation (1) is called Pω(Y1, . . . , Yn−1, λ0)- solution, where −∞ ≤ λ0 ≤ +∞,

if it is defined on an interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(j)(t) ∈ ∆Yj at t ∈ [t0, ω[ , lim
t↑ω

y(j)(t) = Yj (j = 0, n− 1), lim
t↑ω

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
= λ0.

Choose the numbers bj ∈ ∆Yj (j = 0, n− 1) such that |bj | < 1 at Yj = 0, bj > 1 (bj < −1) at
Yj = +∞ (Yj = −∞), and introduce the numbers

ν0j = sign bj , ν1j =

{
1, if ∆Yj − left neighborhood Yj ,

−1, if ∆Yj − right neighborhood Yj ,
(j = 0, n− 1).

Note that Pω(Y0, . . . , Yn−1, λ0) solution of equation (1) satisfies the following conditions

ν0jν1j < 0, if Yj = 0, ν0jν1j > 0, if Yj = ±∞ (j = 0, n− 1). (2)

Next, let

a0i = (n− i)λ0 − (n− i− 1) (i = 1, . . . , n) at λ0 ∈ R,

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
, β =

{
1, if ω = +∞,

−1, if ω < +∞,
,
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γk = 1−
n−1∑
j=0

σkj , µkn =

n−2∑
j=0

σkj(n− j − 1), Ck =

n−2∏
j=0

∣∣∣∣(λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σkj

(k = 1,m),

Jkn(t) =

t∫
Akn

pk(τ)
∣∣πω(τ)∣∣µkn dτ, Akn =


a, if

ω∫
a

pk(t)
∣∣πω(t)∣∣µkn dt = +∞,

ω, if

ω∫
a

pk(t)
∣∣πω(t)∣∣µkn dt < +∞

(k = 1,m).

Theorem. Let λ0 ∈ R \
{
0, 12 , . . . ,

n−2
n−1 , 1

}
and for some s ∈ {1, . . . ,m} the inequality γs ̸= 0

and the conditions

lim sup
t↑ω

ln pk(t)− ln ps(t)∣∣ ln |πω(t)|∣∣ <
β

λ0 − 1

n−1∑
j=0

(σsj − σkj)a0j+1 for all k ∈ {1, . . . ,m} \ {s}

be fulfilled. Then for Pω(Y0, . . . , Yn−1, λ0) solutions of equation (1) to be exist it is necessary and
if algebraic relatively ρ equation

n−1∑
j=0

σsj

n−1∏
i=j+1

a0i

j∏
i=1

(a0i + ρ) = (1 + ρ)

n−1∏
i=1

(a0i + ρ)

does not have roots with zero real part, it is also sufficient that inequality (2), the inequalities

ν0jν0j+1a0j+1(λ0 − 1)πω(t) > 0 (j = 0, n− 2), αsνon−1γsJsn(t) > 0 at t ∈ ]a, ω[

and the condition

lim
t↑ω

πω(t)J
′
sn(t)

Jsn(t)
=

γs
λ0 − 1

are satisfied. Moreover, for each such a solution at t ↑ ω the asymptotic representations

y(j)(t) =
[(λ0 − 1)πω(t)]

n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)[1 + o(1)] (j = 0, 1, . . . , n− 2),

|y(n−1)(t)|γs
n−1∏
j=0

Lsj

(
[(λ0−1)πω(t)]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)
) = αsν0n−1γsCsJsn(t)[1 + o(1)]

hold, where Lsj(y
(j)) = |y(j)|−σsjφsj(y

(j)) (j = 0, n− 1).
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On Mixed Type Quasi-Linear Equations with General Integrals,
Represented by Superposition of Arbitrary Functions

Jondo Gvazava
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We discuss second-order quasi-linear equations with two independent variables x, t. The coeffi-
cients of the principal part of the equation are assumed to be polynomials with respect to unknown
solutions and to their derivatives of the first order, while the characteristic roots expressed by
these values are always real. Depending on the solutions, on some sets of points these roots may
coincide. Therefore the equations under consideration should be referred to a class of equations
of mixed type, in particular, to hyperbolic equations with admissible parabolic degeneration. For
every particular equation of such a type, a structure of points of parabolic degeneration depends
completely on the data of the initial, or of some other formulated problem. In the present report
we will consider equations which admit explicit representation of general integrals in the form of
superposition of arbitrary functions. A number of these arbitrary elements is equal to two, and
their arguments, except independent variables, contain an unknown solution as well. Such is, for
example, the equation

∂u

∂t

∂2u

∂t2
+

[
u

∂u

∂t
− ∂u

∂x

] ∂u2

∂x∂t
− u

∂u

∂x

∂2u

∂t2
= 0, (1)

having certain practical application. A class of its hyperbolic solutions is defined by the condition

H ≡ ∂u

∂x
+ u

∂u

∂t
6= 0. (2)

If H is identical zero for some solution, then the solution itself is parabolic. If, however, the
condition (2) is fulfilled not everywhere, then the corresponding solution is called mixed one. A
general integral of the equation has the form

uf ′(u)− f(u) + g[x− f(u)] = t, (3)

where f, g ∈ C2(R1) are arbitrary functions. Consider now the Cauchy problem with the initial
conditions

u
∣∣
t=0

= τ(x),
∂u

∂t

∣∣∣
t=0

= ν(x), (x, t) ∈ H, τ, ν ∈ C2(J) (4)

on the data support
J :=

{
(x, t) : t = 0, α ≤ x ≤ β

}
.

The functional equations

τ(x) = ζ,

x∫

α

τ(z)ν(z)
τ ′(z) + τ(z)ν(z)

dz = ξ (5)

with respect to x are assumed to be uniquely solvable and we denote their solutions by, respectively,
x = T (ζ) and x = G(ξ). In this case, subjecting the general integral (3) to the conditions (4), one
will be able to define arbitrary functions in terms of the initial perturbations

f [ζ] = f [τ(α)] + f ′[τ(α)]
[
τ(T (ζ))− τ(α)

]
+

T (ζ)∫

α

[τ(Tζ))− τ(ζ)]τ ′(z)
τ ′(z) + τ(z)ν(z)

dz,

g(ξ) = g[α− f ′(α)] +

G(ξ)∫

α

τ(z)τ ′(z)
τ ′(z) + τ(z)ν(z)

dz.
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Having defined in such a way arbitrary functions and substituting them into the representation
(3), we construct the integral of the problem (1), (4). To describe a structure of the domain
of definition of the integral of the problem, we use the properties of characteristic invariants,
represented in the given case by the right-hand sides of the functional equations (5), in particular,
the fact that along any characteristic of the corresponding family they are constant. A global
character of that property allows one to construct all characteristics emanated from the points of
the data support of the problem (1), (4) and, consequently, the domain of definition of the integral
by means of a set of points of intersection of these characteristics.
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Fredholm Type Theorem for Systems of Functional-Differential
Equations with Positively Homogeneous Operators

Robert Hakl

Institute of Mathematics, Academy of Sciences of the Czech Republic, branch in Brno, Brno,
Czech Republic

E-mail: hakl@ipm.cz

Consider the system of functional-differential equations

u′i(t) = pi(u1, . . . , un)(t) + fi(u1, . . . , un)(t) for a. e. t ∈ [a, b] (i = 1, . . . , n) (1)

together with boundary conditions

ℓi(u1, . . . , un) = hi(u1, . . . , un) (i = 1, . . . , n). (2)

Here, pi, fi : [C([a, b];R)]n → L
(
[a, b];R

)
are continuous operators satisfying Carathéodory condi-

tion, i.e., they are bounded on every ball by an integrable function, and ℓi, hi : [C([a, b];R)]n → R
are continuous functionals which are bounded on every ball by a constant. Furthermore, we assume
that pi and ℓi satisfy the following condition: there exist positive real numbers λij and µi such that
λijλjm = λim whenever i, j,m ∈ {1, . . . , n}, and for every c > 0 and uk ∈ C([a, b];R) (k = 1, . . . , n)
we have

cpi(u1, . . . , un)(t) = pi(c
λi1u1, . . . , c

λinun)(t) for a. e. t ∈ [a, b],

cµiℓi(u1, . . . , un) = ℓi(c
λi1u1, . . . , c

λinun).

By a solution to (1), (2) we understand an absolutely continuous vector-valued function (ui)
n
i=1 :

[a, b] → Rn satisfying (1) almost everywhere in [a, b] and (2).

Remark 1. From the above-stated assumptions it follows that λii = 1, λij = 1/λji for every
i, j ∈ {1, . . . , n}.

Notation 1. Define, for every i ∈ {1, . . . , n}, the following functions

qi(t, ρ)
def
= sup

{∣∣fi(u1, . . . , un)(t)∣∣ : ∥uk∥C ≤ ρλik , k = 1, . . . , n
}

for a. e. t ∈ [a, b],

ηi(ρ)
def
= sup

{∣∣hi(u1, . . . , un)∣∣ : ∥uk∥C ≤ ρ
λik
µi , k = 1, . . . , n

}
.

Theorem 1. Let

lim
ρ→+∞

b∫
a

qi(s, ρ)

ρ
ds = 0, lim

ρ→+∞

ηi(ρ)

ρ
= 0 (i = 1, . . . , n). (3)

If the problem

u′i(t) = (1− δ)pi(u1, . . . , un)(t)− δpi(−u1, . . . ,−un)(t) for a. e. t ∈ [a, b] (i = 1, . . . , n),

(1− δ)ℓi(u1, . . . , un)− δℓi(−u1, . . . ,−un) = 0 (i = 1, . . . , n)

has only the trivial solution for every δ ∈ [0, 1/2], then the problem (1), (2) has at least one solution.
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Sketch of proof. There exists r > 0 such that for any absolutely continuous vector-valued fucntion
(ui)

n
i=1 defined on [a, b] and every δ ∈ [0, 1/2], the a priori estimate

n∑
k=1

∥uk∥λk1
C ≤ r

n∑
i=1

(
∥f̃i∥λi1

L + |h̃i|
λi1
µi

)
holds, where

f̃i(t)
def
= u′i(t)− (1− δ)pi(u1, . . . , un)(t) + δpi(−u1, . . . ,−un)(t) for a. e. t ∈ [a, b] (i = 1, . . . , n),

h̃i
def
= (1− δ)ℓi(u1, . . . , un)− δℓi(−u1, . . . ,−un) (i = 1, . . . , n).

Put

x =
(
(ui)

n
i=1, (αi)

n
i=1

)
∈ X = [C([a, b];R)]n × Rn with the norm ∥x∥ =

n∑
k=1

(
∥uk∥C + |αk|

)
,

A(x)
def
=

((
ui(a) + αi +

t∫
a

pi(u1, . . . , un)(s) + fi(u1, . . . , un)(s) ds

)n

i=1

,

(
αi + ℓi(u1, . . . , un)− hi(u1, . . . , un)

)n
i=1

)
,

Ω =

{
x ∈ X :

n∑
k=1

(
∥uk∥λk1

C + |αk|
)
< ρ0

}
for sufficiently large ρ0.

Then using Krasnosel’skii theorem (see [1, Theorem 41.3, p. 325]):

A(x)− x

∥A(x)− x∥
̸= A(−x) + x

∥A(−x) + x∥
(x ∈ ∂Ω) =⇒ ∃x0 ∈ Ω such that A(x0) = x0,

we prove the assertion of this theorem. For more detailed idea of the proof one can see [2].

If the operators pi and ℓi are homogeneous, i.e., if

pi(−u1, . . . ,−un)(t)=−pi(u1, . . . , un)(t) for a. e. t ∈ [a, b], uj∈C([a, b];R) (i, j = 1, . . . , n), (4)

ℓi(−u1, . . . ,−un) = −ℓi(u1, . . . , un) uj ∈ C([a, b];R) (i, j = 1, . . . , n) (5)

hold, then from Theorem 1 we obtain the following assertion.

Corollary 1. Let (3), (4), and (5) be fulfilled. If the problem

u′i(t) = pi(u1, . . . , un)(t) for a. e. t ∈ [a, b] (i = 1, . . . , n), (6)

ℓi(u1, . . . , un) = 0 (i = 1, . . . , n) (7)

has only the trivial solution, then the problem (1), (2) has at least one solution.

For a particular case when pi are defined by

pi(u1, . . . , un)(t)
def
= p̃i(t)|ui+1(t)|λi sgnui+1(t) for a. e. t ∈ [a, b] (i = 1, . . . , n− 1), (8)

pn(u1, . . . , un)(t)
def
= p̃n(t)|u1(t)|λn sgnu1(t) for a. e. t ∈ [a, b], (9)

where p̃i ∈ L
(
[a, b];R

)
, we have the following assertion.
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Corollary 2. Let (3), (5), (8), and (9) be fulfilled. Let, moreover,

n∏
i=1

λi = 1,

and let the problem (6), (7) have only the trivial solution. Then the problem (1), (2) has at least
one solution.

In [3], the problem (1), (2) is studied with n = 2, p1, p2 defined by (8), (9), and

ℓ1(u1, . . . , un)
def
=

a0∫
a

u1(s) dα1(s), ℓ2(u1, . . . , un)
def
=

b∫
b0

u1(s) dα2(s), (10)

resp.

ℓ1(u1, . . . , un)
def
=

a0∫
a

u1(s) dα1(s), ℓ2(u1, . . . , un)
def
=

b∫
b0

u2(s) dα2(s), (11)

where a < a0 ≤ b, a ≤ b0 < b, α1 : [a, a0] → R and α2 : [b0, b] → R are functions of bounded
variation. For this particular case, Theorem 1 yields

Corollary 3. Let n = 2, (3) be fulfilled, λ1λ2 = 1, k ∈ {1, 2}, and let

u′1 = p̃1(t)|u2|λ1 sgnu2, u′2 = p̃2(t)|u1|λ2 sgnu1,

a0∫
a

u1(s) dα1(s) = 0,

b∫
b0

uk(s) dα1(s) = 0

have only the trivial solution. Then the problem (1), (2) with pi and ℓi defined by (8), (9), and
(10), resp. (11) has at least one solution.
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On the interval [0, ω] we consider the system of differential equations

u′1 = p1(t)|u2|λ1 sgnu2 + f1(t, u1, u2),

u′2 = p2(t)|u1|λ2 sgnu1 + f2(t, u1, u2),
(1)

subjected to the periodic-type boundary conditions

u1(0)− u1(ω) = h1(u1, u2), u2(0)− u2(ω) = h2(u1, u2). (2)

Here, pi ∈ L([0, ω];R), fi ∈ Car([0, ω] × R2;R), hi : C([0, ω];R) × C([0, ω];R) → R are continuous
functionals bounded on every ball, and λi > 0 such that λ1λ2 = 1.

Notation 1. Define the following functions

qi(t, ρ)
def
= sup

{∣∣fi(t, x1, x2)∣∣ : |xi| ≤ ρ, |x3−i| ≤ ρλ3−i

}
for a. e. t ∈ [0, ω] (i = 1, 2),

ηi(ρ)
def
= sup

{
|hi(u1, u2)| : ∥ui∥C ≤ ρ, ∥u3−i∥C ≤ ρλ3−i

}
(i = 1, 2).

Theorem 1. Let

lim
ρ→+∞

ω∫
0

qi(s, ρ)

ρ
ds = 0, lim

ρ→+∞

ηi(ρ)

ρ
= 0 (i = 1, 2). (3)

Let, moreover, σ ∈ {1,−1} be such that

σp1(t) ≥ 0 for a. e. t ∈ [0, ω], p1 ̸≡ 0, (4)

and let there exist αi ∈ AC([0, ω];R) (i = 1, 2) such that

α′
1(t) = p1(t)|α2(t)|λ1 sgnα2(t) for a. e. t ∈ [0, ω], α1(0) = α1(ω),

α′
2(t) ≤ p2(t)|α1(t)|λ2 sgnα1(t) for a. e. t ∈ [0, ω], α2(0) ≤ α2(ω),

σα1(t) > 0 for t ∈ [0, ω],

meas
{
t ∈ [0, ω] : α′

2(t) < p2(t)|α1(t)|λ2 sgnα1(t)
}
+ α2(ω)− α2(0) > 0.

Then the problem (1), (2) has at least one solution.

Corollary 1. Let (3) and (4) be fulfilled with σ ∈ {1,−1}. Let, moreover,

ω∫
0

σp1(s) ds

( ω∫
0

[σp2(s)]− ds

)λ1

< 21+λ1 ,

ω∫
0

[σp2(s)]− ds <

ω∫
0

[σp2(s)]+ ds

(
1− 1

21+λ1

ω∫
0

σp1(s) ds

( ω∫
0

[σp2(s)]− ds

)λ1
)λ2

.

Then the problem (1), (2) has at least one solution.
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Remark 1. Theorem 1 and Corollary 1 are applicable in the case when
ω∫
0

σp2(s) ds > 0. For the

case when
ω∫
0

σp2(s) ds < 0 one can use the following assertion.

Theorem 2. Let (3) and (4) be fulfilled with σ ∈ {1,−1}. Let, moreover,

ω∫
0

σp2(s) ds < 0,

ω∫
0

σp1(s) ds

( ω∫
0

[σp2(s)]− ds

)λ1

< 41+λ1 .

Then the problem (1), (2) has at least one solution.

Sketch of the proofs. According to the general result established in [1] one can see that the following
assertion holds:

Proposition 1. Let (3) be fulfilled. If the problem

u′1 = p1(t)|u2|λ1 sgnu2,

u′2 = p2(t)|u1|λ2 sgnu1,
(5)

u1(0)− u1(ω) = 0, u2(0)− u2(ω) = 0 (6)

has only the trivial solution, then the problem (1), (2) has at least one solution.

Then the conditions of Theorems 1 and 2 and Corollary 1 are obtained by direct analysing the
non-trivial solutions of the problem (5), (6).

Remark 2. Results obtained are unimprovable in that sense that neither of the strict inequalities
established in Corollary 1 and Theorem 2 can be weakened.

Remark 3. When λi = 1, p1 ≡ 1, hi ≡ 0, f1 ≡ 0, f2(t, x, y) = f(t) for a. e. t ∈ [0, ω], x, y ∈ R
with f ∈ L([0, ω];R), then the problem (1), (2) becomes a periodic problem for the second-order
linear equation

u′′ = p2(t)u+ f(t), u(0) = u(ω), u′(0) = u′(ω).

In this case, Theorems 1 and 2, and Corollary 1 coincide with the results obtained in [2].
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Let Rn
x be an n-dimensional vector space of points x = (x1, . . . , xn)T , where T means transpose;

P ⊂ Rk
p , Z ⊂ Re

z and V ⊂ Rr
u be open sets and O =

{
x = (p, z)T ∈ Rn

x : p ∈ Rk
p , z ∈ Re

z

}
, with

k+e = n; the n-dimensional function f(t, p1, . . . , ps, z1, . . . , zm, u1, . . . , uν) be continuous on the set
[a, b]×P s×Zm×V ν and continuously differentiable with respect to pi, i = 1, s and zj , j = 1,m; the

functions qi(t0, t1, p, z, x), i = 0, l be continuously differentiable on the set [a, b]× [a, b]×P ×Z×O.
Let us consider the optimal control problem:

ẋ(t) = f
(
t, p(τ1(t)), . . . , p(τs(t)), z(σ1(t)), . . . , z(σm(t)), u(θ1(t)), . . . , u(θν(t))

)
, u(·) ∈ Ω,

x(t) = (p(t), z(t))T = (φ(t), g(t))T , t ∈ [τ0, t0),

x(t0) = (p0, g(t0))
T , p0 ∈ P, φ(·) ∈ Φ, g(·) ∈ G,

qi
(
t0, t1, p0, g(t0), x(t1)

)
= 0, i = 1, l,

q0(t0, t1, p0, g(t0), x(t1)) −→ min,

where the functions τi(t), i = 1, s are continuously differentiable and satisfying the conditions
τi(t) ≤ t, τ̇i(t) > 0; the functions σi(t), i = 1,m, θj(t), j = 1, ν satisfy the similar conditions; Φ
and G are sets of continuous initial functions φ : [τ0, b] → P1, and g : [τ0, b] → Z1, where P1 ⊂ P
and Z1 ⊂ Z are compact convex sets, τ0 = min{τ1(a), . . . , τs(a), σ1(a), . . . , σm(a)}; Ω is the set of
piecewise continuous control functions, u : [θ, b] → U, with finite number of points of discontinuity,
θ = min{θ1(a), . . . , θν(a)}, U ⊂ V is a compact convex set.

In the paper, on the basis of variation formulas of solution [1] and by a scheme given in [2],
necessary conditions of optimality are obtained: in the form of linearized maximum principle for
control and initial function, in the form of equalities and inequalities for initial and final moments.
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1 Tests of Lyapunov’s Reducibility of Linear Systems

Consider the linear systems

ẋ = A(t)x, x ∈ Rn, t ∈ I = [0,+∞), (1)

with piecewise continuous and bounded (by the constant a ≥ ∥A(t)∥ for t ∈ I) coefficients. Along
with systems (1), we will consider the systems

ẏ = (A(t) +Q(t))y, y ∈ Rn, t ∈ I, (2)

likewise with piecewise continuous and bounded on I coefficients.
Systems (1) and (2) are asymptotically equivalent (Lyapunov-equivalent, reducible) if there

exists a linear transformation x = L(t)y, transferring one of the systems into another, where the
matrix L(t) is the Lyapunov one, i.e., satisfying the condition

sup
t∈I

{
|L(t)∥+ ∥L−1(t)∥+ ∥L̇(t)∥

}
< +∞.

One of the tests of asymptotical equivalence of systems (1) and (2) is reflected [1] in the following
assertion.

Theorem 1. If
∥∥ +∞∫

t

Q(u) du
∥∥ ≤ Ce−σt, t ∈ I, σ > 2a, where C is some constant, then the

systems (1) and (2) are asymptotically equivalent.

The following statement [1] establishes that the estimate σ > 2a is unimprovable in a whole set
of linear systems (1) with piecewise continuous matrices of coefficients.

Theorem 2. For any number a > 0 there exist system (1) with piecewise continuous matrix of
coefficients with the norm ∥A(t)∥ ≤ a for t ∈ I and the piecewise continuous matrix Q(t), satisfying

the condition
∥∥ +∞∫

t

Q(u) du
∥∥ ≤ Ce−2at, t ∈ I, such that systems (1) and (2) are not asymptotically

equivalent.

The following assertion establishes [2] the integral test of asymptotic equivalence of systems (1)
and (2).

Theorem 3. If the matrix of perturbations Q(t) of system (2) satisfies the condition

lim
t→+∞

+∞∫
t

∥∥XA(t, τ)Q(τ)XA(τ, t)
∥∥ dτ < 1, where XA(t, τ) is the Cauchy matrix of system (1), then

system (2) is equivalent to system (1).
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2 Coefficients and Exponents of Reducibility of Linear Systems

Let the perturbation Q(t) satisfy the condition

∥Q(t)∥ ≤ C(Q)e−σt, σ ≥ 0, t ≥ 0, (3)

or the more general condition

λ[Q] ≡ lim
t→+∞

t−1 ln ∥Q(t)∥ ≤ −σ ≤ 0. (4)

These perturbations for σ = 0 in both cases (3) and (4) we assume additionally to be vanishing
at infinity: Q(t) → 0 as t → +∞. To every system (1) we put into correspondence the sets R(A)
and Rλ(A) of those values of the parameter σ in (3) and (4) for which perturbed system (2) for any
perturbation Q(t) satisfying (3) or, respectively, (4), is asymptotically equivalent to non-perturbed
system (1).

Definition. An exact lower bound r(A) of the set R(A) (an exact lower bound ρ(A) of the set
Rλ(A)) will be called a coefficient of reducibility (an exponent of reducibility) of system (1).

Theorem 4 ([2]). The coefficient of reducibility r(A) and the exponent of reducibility ρ(A) of
every system (1) with piecewise continuous bounded coefficients coincide.

This fact allows one to define a new asymptotic invariant of linear systems, i.e., the coefficient
of reducibility of the system rA, as a general value of its coefficient and exponent of reducibility.
However, despite the fact that the above-mentioned values coincide for every system (1), the be-
havior of the coefficient of reducibility rA is distinct with respect to perturbations (3) and (4). The
following theorem [2] establishes this difference.

Theorem 5. For any number a > 0, there exists system (1) with the coefficient of reducibility
rA = 2a such that system (2) with any piecewise continuous perturbation Q satisfying condition (3)
with Q is reducible to the initial system (1) and non-reducible to that system for some perturbation
Q satisfying the condition (4) with σ = rA.

Thus it follows from the above results (see also [3, 4]) that both the sets R(A) and Rλ(A)
are the intervals, and (2a,+∞) ⊂ Rλ(A) ⊂ R(A). In addition, despite the fact that the values
r(A) and ρ(A) coincide for any system (1), their properties are distinct: there exist systems (1)
in which R(A) = Rλ(A) = (rA,+∞) and, at the same time, there exist systems (1) for which
R(A) = [rA,+∞) and Rλ(A) = (rA,+∞). Moreover [5], unlike the coefficient r(A) which can or
cannot belong to the set R(A), the exponent of reducibility ρ(A) of system (1) never belongs to
the set Rλ(A).

Establishment of the above-mentioned properties of the coefficient of reducibility of the linear
differential system allows one to investigate certain parametric properties of the so-called sets of
non-reducibility Nr(a, σ) and Nρ(a, σ) σ ∈ (0, 2a] of all those systems (1) for every of which there
exists a non-reducible to it system (2) with the matrix Q(t) satisfying, respectively, either condition
(3), or the more general condition (4).

These sets are non-empty for σ ∈ (0, 2a] and empty for σ > 2a. Moreover, these sets get strictly
narrow as parameter σ ∈ (0, 2a] increases and for σ ∈ (0, 2a] they do not coincide with each other.
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For one-dimensional wave equations with nonlinear damping term [1]–[4]

utt − uxx + h(ut) = f(x, t), (1)

in the half-plane Ω := {(x, t) : x ∈ R, t > 0} let us consider the Initial-Cauchy problem with the
following conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R, (2)

where f , h, ϕ, ψ are given, and u unknown real functions.
Conditions, imposed on nonlinear function h, are obtained guaranteeing the existence of a

global classical solution of (1), (2). The violation of those conditions may cause the blow-up of the
solution.

Theorem 1. Let the conditions

f ∈ C1(Ω), ϕ ∈ C2(R), ψ ∈ C1(R)

be fulfilled and
h ∈ C2(R), h′(s) ≥ −M, s ∈ R, M := const > 0. (3)

Then there exists a unique global classical solution u ∈ C2(Ω) of the problem (1), (2).

Violation of the conditions (3) may, generally speaking, cause an absence [5] or nonuniqueness
of the classical solution of the problem (1), (2).

Remark 1. Let h(s) = −|s|α, s ∈ R, 0 < α < 1. Then the problem (1), (2) together u ≡ 0 has
the solution

u =

{
0, 0 ≤ t ≤ c,

(1− α)
2−α
1−α (2− α)−1(t− c)

2−α
1−α , t ≥ c,

where c ≥ 0 arbitrary real constant.

Let h(s) = −|s|αs, s ∈ R, α > 1 and the function ψ ≥ 0 has the compact supports, for example,
the segment [x1, x2] ⊂ R; T∞ := (αcα

1 c2)−1 > 0, c2 := (x2 − x1)−α and

c1 :=
1
2

x2∫

x1

ψ(x)dx > 0. (4)

Theorem 2. If

ϕ′′(x) ≥ 0, ψ(x) ≥ 0, x ∈ R, f(x, t) ≥ 0, (x, t) ∈ Ω, (5)

then for t > T∞ the problem (1), (2) has no classical solution.

Remark 2. Naturally arise a question. What is happening, when some of the conditions (4),
(5) are violated.
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Let the condition (4) be violated i.e. the function ψ ≥ 0 has not compact support

ϕ(x) = αx + β, α, β := const, x ∈ R, ψ ≡ 0, f ≡ 0.

Then the problem (1), (2) has the global classical solution u = αx + β.
Let the first condition of (5) be violated:

ϕ = −x2, x ∈ R, ψ ≡ 1, f ≡ 1.

Then the problem (1), (2) has the global classical solution u = −x2 + t.
Let now the second condition of (5) be violated:

ϕ ≡ 0, ψ ≡ −1, f ≡ 1.

Then the problem (1), (2) has the global classical solution u = −t.
Let at last the third condition of (5) be violated:

ϕ ≡ 1, ψ ≡ 1, f ≡ −1.

Then the problem (1), (2) has the global classical solution u = 1 + t.
Similarly can be considered the characteristic (Goursat) and initial characteristic (First Darboux

and Chachy–Goursat) problems and obtained corresponding results.
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Consider the nonlinear wave equation of the type

Lu :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
+ f(u) = F, n > 1, (1)

where f and F are given real functions, f is a nonlinear function, and u is an unknown real function.
Denote by D : t > |x|, xn > 0, the half of the light cone of the future which is bounded

by the part S0 : D ∩ {xn = 0} of the hyperplane xn = 0 and by the half S : t = |x|, xn ≥ 0,
of the characteristic conoid C : t = |x| of equation (1). Assume DT := {(x, t) ∈ D : t < T},
S0
T := {(x, t) ∈ S0 : t ≤ T}, ST := {(x, t) ∈ S : t ≤ T}, T > 0. When T = ∞, it is obvious that

D∞ = D,S0
∞ = S0 and S∞ = S.

For equation (1) we consider the multidimensional version of the Darboux problem: find in the
domain DT a solution u(x, t) of that equation with the boundary conditions

u
∣∣
S0
T
= 0, u

∣∣
ST

= 0. (2)

Below we consider the following conditions imposed on the function f :

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, α = const ≥ 0, (3)∫ u

0
f(s)ds ≥ −M3 −M4u

2, (4)

where Mi = const ≥ 0, i = 1, 2, 3, 4.
Note that in case α ≤ 1 the inequality (3) results in the equality (4).

Let
0
W 1

2(DT , S
0
T ∪ ST ) :=

{
u ∈ W 1

2 (DT ) : u
∣∣
S0
T∪ST

= 0
}
, where W k

2 (DT ) is the well-known

Sobolev space consisting of the functions u ∈ L2(DT ) whose all generalized derivatives up to the

k-th order, inclusive, also belong to the space L2(DT ), while the equality u
∣∣∣
S0
T∪ST

= 0 is understood

in the sense of the trace theory.

Definition 1. Let F ∈ L2(DT ). A function u ∈
0
W 1

2(DT , S
0
T ∪ ST ) is said to be a strong

generalized solution of the problem (1), (2) of the class W 1
2 in the domain DT if there exists a

sequence of functions um ∈
0
C 2(DT , S

0
T ∪ ST ) :=

{
u ∈ C2(DT ) : u

∣∣
S0
T∪ST

= 0
}
such that um → u

in the space
0
W 1

2(DT , S
0
T ∪ ST ) and Lum → F in the space L2(DT ).

Theorem 1. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. Let 0 ≤ α < n+1
n−1 and the

function f satisfy the inequality (3). Moreover, in case α > 1, let the function f satisfy also the
condition (4). Then the problem (1), (2) is globally solvable in the class W 1

2 , i.e. for any T > 0 this
problem has at least one strong generalized solution of the class W 1

2 in the domain DT in the sense
of Definition 1.

Theorem 2. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. Let 1 < α < n+1
n−1 . For the

function f let the condition (3) be fulfilled but the condition (4) may be violated. Then the problem
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(1), (2) is locally solvable in the class W 1
2 , i.e. there exists a number T0 = T0(F ) > 0 such that for

T ≤ T0 this problem has at least one strong generalized solution of the class W 1
2 in the domain DT

in the sense of Definition 1.

Note that in case f(u) = −|u|α, 1 < α < n+1
n−1 , the condition (4) is violated.

Theorem 3. Let f(u) = −|u|α, 1 < α < n+1
n−1 . If F ∈ L2,loc(D∞), F ∈ L2(DT ) for any T > 0,

and F ≥ 0, F (x, t) ≥ ct−k for t ≥ 1, where c = const > 0, 0 < k = const ≤ n+1, then there exists
a positive number T1 = T1(F ) such that, for T > T1, the problem (1), (2) cannot have a strong
generalized solution of the class W 1

2 in the domain DT in the sense of Definition 1.
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In the open interval ]a, b[ we consider the differential equation

u(2m) = p(t)
( m∏

i=1

|u(i−1)|αi

)
sgnu+ q(t, u) (1)

with the Dirichlet or the focal boundary conditions

lim
t→a

u(i−1)(t) = 0, lim
t→b

u(i−1)(t) = 0 (i = 1, . . . ,m); (2)

lim
t→a

u(i−1)(t) = 0, lim
t→b

u(i−1)(t) = 0 (i = 1, . . . ,m). (3)

Here m is a natural number, p : ]a, b[→ R and q : ]a, b[×R → R are continuous functions and αi

(i = 1, . . . ,m) are nonnegative numbers such that

α1 > 0,
m∑
i=1

αi = 1.

We say that the equation (1) has a strong singularity at the point a (at the point b) if

t∫
a

(s− a)α−1|p(s)| ds = +∞
( b∫

t

(b− s)α−1|p(s)| ds = +∞
)

for a < t < b,

where

α = 2m−
m∑
i=1

iαi.

The obtained by us sufficient conditions of solvability of the problem (1), (2) (of the problem
(1), (3)) cover the case, where the equation (1) has strong singularities at the points a and b (has
a strong singulary at the point a).

By C2m,m(]a, b[) we denote the space of 2m-times continuously differentiable functions u :

]a, b[→ R such that
b∫
a
|u(m)(s)|2 ds < +∞. Put

γ1=
1

(2m−1)!!

m∏
i=1

( 22m−i+1

(2m−2i+1)!!

)αi

, γ2=
1

(m−1)!
√
2m−1

m∏
i=1

(
(m−i)!

√
2m−2i+1

)−αi

,

φ1(t) =
(
(t− a)−2m + (b− t)−2m

) 1
2

m∏
i=1

(
(t− a)2i−2m−2 + (b− t)2i−2m−2

)αi
2
,

φ2(t) =
(
(t− a)1−2m + (b− t)1−2m

) 1
2

m∏
i=1

(
(t− a)2i−2m−1 + (b− t)2i−2m−1

)αi
2
,

q∗(t, y) = max
{
|q(t, x)| : |x| ≤ y

}
, q∗(t, y) = inf

{
|q(t, x)| : |x| ≥ y

}
.
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Along with (1), we consider the differential equation

u(n) = λp(t)
( m∏

i=1

|u(i−1)|αi

)
sgnu, (4)

depending on the parameter λ ∈ [0, 1].

Theorem 1. Let

(−1)mp(t) ≤ ℓφ1(t) + p0(t)φ2(t) for a < t < b, (5)

where ℓ and p0 : ]a, b[→ [0,+∞[ are, respectively, a nonnegative number and a continuous function
such that

γ1ℓ < 1,

b∫
a

p0(t) dt < +∞.

If, moreover,

lim
ρ→+∞

b∫
a

[
(t− a)(b− t)

]m− 1
2
q(t, [(t− a)(b− t)

]m− 1
2 ρ)

ρ
dt = 0 (6)

and for an arbitrary λ ∈ [0, 1] the problem (4), (2) has only the trivial solution in the space
C2m,n(]a, b[), then the problem (1), (2) has at least one solution in the same space.

Theorem 2. Let the conditions (5) and (6) hold, where ℓ and p0 : ]a, b[→ [0,+∞[ are, respec-
tively, a nonnegative number and a continuous function such that

γ1ℓ+ γ2

b∫
a

p0(t) dt < 1. (7)

Then the problem (1), (2) in the space C2m,m(]a, n[) has at least one solution.

Theorem 3. Let along with (5) and (6) the conditions

(−1)mp(t) ≥ 0, (−1)mq(t, x) ≥ 0 for a < t < b, x ∈ R,

lim
ρ→0

b∫
a

(t− a)m(b− t)m
q∗(t, (t− a)m(b− t)mρ)

ρ
dt = +∞

hold, where ℓ and p0 : ]a, b[→ [0,+∞[ are, respectively, a nonnegative number and a continuous
function satisfying the inequality (7). Then the problem (1), (2) in the space C2m,m(]a, b[) along
with the trivial solution has a positive and a negative on ]a, b[ solutions.

Analogous results have been established for the problem (1), (3).

Remark. In Theorem 1 (in Theorems 2 and 3) the condition γ1ℓ < 1 (the condition (7)) is
unimprovable and it cannot be replaced by the condition

γ1ℓ ≤ 1

(
γ1ℓ+ γ2

b∫
a

p0(t) dt ≤ 1

)
.
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In the rectangle Ω = [0, a]× [0, b] consider the linear hyperbolic equation

u(2,2) =

2∑
i=1

2∑
k=1

hik(x, y)u
(i−1,k−1) + h(x, y) (1)

with the nonlocal boundary conditions

a∫
0

u(s, y) dαi(s) = 0 for 0 ≤ y ≤ b,

b∫
0

u(x, t) dβk(t) = 0 for 0 ≤ x ≤ a (i, k = 1, 2). (2)

Here

u(i,k)(x, y) =
∂i+ku(x, y)

∂xi∂yk
(i, k = 0, 1, 2),

hik : Ω → R (i, k = 1, 2) are measurable functions, h ∈ L(Ω), and αi : [0, a] → R and βi : [0, b] → R
(i = 1, 2) are functions of bounded variation. Moreover,

αi(0) = 0, βi(0) = 0, ∆i(0) = 1 (i = 1, 2), (3)

where

∆1(x) = α2(a)

a∫
x

α1(s) ds− α1(a)

a∫
x

α2(s) ds, ∆2(y) = β2(b)

b∫
y

β1(t) dt− β1(b)

b∫
y

β2(t) dt.

We employ the concepts of well-posedness and conditional well-posedness for problem (1), (2)
that were introduced in [1].

Along with the equation (1) consider the corresponding homogeneous equation

u(2,2) =

2∑
i=1

2∑
k=1

hik(x, y)u
(i−1,k−1), (10)

and introduce the functions:

χ(s, t) =

{
1 for s ≥ t,

0 for s < t,

g1(x, s) =

a∫
0

α1(τ) dτ

a∫
s

α2(τ) dτ −
a∫

s

α1(τ) dτ

a∫
0

α2(τ) dτ

+ (s− a)∆1(0) + (a− x)∆1(s) + χ(x, s)(x− s) for 0 ≤ x, s ≤ a,

g2(y, t) =

b∫
0

β1(τ) dτ

b∫
t

β2(τ) dτ −
b∫

t

β1(τ) dτ

b∫
0

β2(τ) dτ

+ (t− b)∆2(0) + (b− y)∆2(t) + χ(y, t)(y − t) for 0 ≤ y, t ≤ b,
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φ11(x) = max
{
|g1(x, s)| : 0 ≤ s ≤ a

}
, φ12(x) = sup

{∣∣∆1(s)− χ(x, s)
∣∣ : 0 ≤ s ≤ a, s ̸= x

}
,

φ21(y) = max
{
|g2(y, t)| : 0 ≤ t ≤ b

}
, φ22(y) = sup

{∣∣∆2(t)− χ(y, t)
∣∣ : 0 ≤ t ≤ b, t ̸= y

}
.

Theorem 1. If along with (3) the condition

b∫
0

a∫
0

φ1i(x)φ2k(y)|hik(x, y)| dx dy < +∞ (i, k = 1, 2)

holds, then problem (1), (2) is conditionally well-posed if and only if the corresponding homogeneous
problem (10), (2) has only the trivial solution.

Theorem 2. If along with (3) the inequality

2∑
i=1

2∑
k=1

b∫
0

a∫
0

φi(x)ψk(y)|hik(x, y)| dx dy < 1 (4)

holds, then problem (1), (2) is conditionally well-posed. Moreover, if hik ∈ L(Ω) (i, k = 1, 2), then
problem (1), (2) is well-posed.

Theorem 3. If conditions (3) and (4) hold, and

b∫
0

a∫
0

|h11(x, y)| dx dy = +∞,

then problem (1), (2) is conditionally well-posed but not well-posed.
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The surprising phenomenon of chemistry, the reaction discovered by B. P. Belousov in 1951
(frequently called also as Belousov–Zhabotinsky’s reaction), is an instructive episode in the history
of home natural science deserving separate narration. The mathematical model of the reaction
earns the attention and it should be included in the compulsory course of ordinary differential
equations, since its discussion may, on the one hand, be anticipated by a rather simply organizable
visual experiment and, on the other hand, it shows an exclusive value and might of mathematization
for penetration into the essence of natural phenomena.

We will consider modification of the mathematical model of Belousov’s reaction, namely, a
system of three ordinary differential equations

ẋ = r1
[
1 + a(1− z)− x

]
x, ẏ = r2[x− y]y, ż = r3

[
αx+ (1− α)y − z

]
z, (1)

where x, y, z are the analogues of concentration densities of chemical substances; the parameters
r1, r2, r3 and a are positive ones, and the parameter α ∈ (0, 1). The most natural from the chemical
point of view is the assumption that the parameter a is “very large” and the rest parameters are
of order 1.

Belousov’s reaction has, for the first time, shown experimentally the possibility for the chemical
reaction to run periodically, and moreover, the stages running “very fast” in the course of the reac-
tion alternate with those running “rather slowly”. Such periodical processes are called relaxational
oscillations. Therefore of interest is the study of relaxation regime in system (1) in which we pass
from the parameter a to the small parameter ε = 1/a.

We fix an arbitrary compact set Ω0 of the semi-strip {(u0, v0) : u0 > 0, 0 < v0 < 1} and denote
by

Lε(u0, v0) =
(
x(t, u0, v0, ε), y(t, u0, v0, ε), z(t, u0, v0, ε)

)
: t ≥ 0, (u0, v0) ∈ Ω0 (2)

the trajectory of the system

εẋ = r1
[
1− z + ε(1− x)

]
x, ẏ = r2[x− y]y, ż = r3

[
αx+ (1− α)y − z

]
z, (3)

emanating for t = 0 from the point (x, y, z) = (1, u0, v0). We introduce into consideration the
second positive root t = T (u0, v0, ε) (if it exists) of the equation x(t, u0, v0, ε) = 1 and on the
intersecting plane {(x, y, z) : x = 1} we define the Poincaré successor operator Πε(u0, v0):

Πε(u0, v0) =
(
y(t, u0, v0, ε), z(t, u0, v0, ε)

)∣∣∣
t=T (u0,v0,ε)

. (4)

Theorem 1. On the set Ω0, in the metric of the space C1(Ω0;R2) there exists the limiting
operator

lim
ε→0

Πε(u0, v0) = Π0(u0, v0) (5)

describing constructively.
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Theorem 2. Under the condition

α <
r2

r1 + r2 + r3
(6)

in the limiting mapping of Π0 in the semi-strip {(u0, v0) : u0 > 0, 0 < v0 < 1} there exists at
least one stable fixed point, and for all sufficiently small ε > 0 the initial operator Πε has a stable
fixed point (uε, vε) with asymptotically close to (u0, v0) components. In system (3), this point is
associated with the stable relaxational cycle Lε.

Theorem 3. The time of motion of the phase point of system (3) along the “rapid segments”
of the trajectory Lε is of order ε ln(1/ε), while the time of motion along its “slow segments” admits
as ε → 0 a finite positive limit.

The distributed model, associated with system (1), i.e., the parabolic boundary value problem

∂x

∂t
= dD0

1

∂2x

∂s2
+ r1

[
1 + a(1− z)− x

]
x,

∂x

∂s

∣∣∣
s=0

=
∂x

∂s

∣∣∣
s=1

= 0,

∂y

∂t
= dD0

2

∂2y

∂s2
+ r2[x− y]y,

∂y

∂s

∣∣∣
s=0

=
∂y

∂s

∣∣∣
s=1

= 0,

∂z

∂t
= dD0

3

∂2z

∂s2
+ r3

[
αx+ (1− α)y − z

]
z,

∂z

∂s

∣∣∣
s=0

=
∂z

∂s

∣∣∣
s=1

= 0

(7)

on the segment 0 ≤ s ≤ 1, is also considered. Here d, Dj , j = 1, 2, 3 are positive parameters. Of
interest is the investigation of attractors arising in its phase space (x, y, , z) ∈ C([0, 1];R3) as d
decreases.

For the distributed model (7), by means of numerical experiments we have managed to establish
a phenomenon of diffusion chaos, an unrestricted growth of dimensions of chaotic attractors as d →
0, i.e., for proportional decrease of coefficients of diffusion. Two types of chaotic autooscillations,
the relaxation chaos and that of the type of self-organization, are discovered.
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I. The asymptotics as t → +∞ of solutions of monotone type for a real nonlinear first order
differential equation (ODE-1)

s∑
k=1

pk(t)y
αk(y′)βk +

n∑
k=s+1

pk(t)y
αk(y′)βk = 0 (1)

is considered.
To find formal asymptotic representations for solutions of monotone type, it is assumed that

there exists at least one such a solution y(t) of equation (1), and for that solution asymptotically

basic are the summands appearing in the sum
s∑

k=1

. Under that assumption, we have obtained for

y(t) possible formal asymptotic representations (exact, or requiring more precise determination).
An asymptotic character of the obtained formal asymptotic representations is investigated. ( L.
L. Kol’tsova and A. V. Kostin, The results of the work are submitted for publication in Mem.
Differential Equations Math. Phys. (Tbilisi).

II. We investigate a classical problem dealing with asymptotic stability (AS) of the real linear
homogeneous differential equation ODE-n, n′geq2 (n is order of ODE),

y(n) + p1(t)y
(n−1) + · · ·+ pn(t)y = 0, t ∈ I = [t0,+∞[ (2)

under the condition that the roots λi(t) (i = 1, n) of the corresponding characteristic equation are

such that λi(t) ∈ C1(I), Reλi(t) < 0,
+∞∫
t0

Reλi(t)dt = −∞, ∃Reλi(+∞), −∞ ≤ Reλi(+∞) ≤ 0

(i = 1, n).
The case n = 2 is considered rather thoroughly. We have managed to prove the property of

asymptotic stability in the case of real λi(t) (i = 1, 2) in the following subcases:

(1) λ1(+∞) ∈ R− =]−∞, 0[ , λ2(+∞) = 0, λ′
1(t) = o(λ2(t));

(2) λi(+∞) = 0 (i = 1, 2), λ′
1(t) = o(λ1(t)λ2(t));

(3) λ1(+∞) = 0, λ2(+∞) = −∞, λ′
1(t) = o(λ2

1(t));

(4) λi(+∞) = −∞ (i = 1, 2), λ′
1(t) = o(λ2

1(t)), λ
′
1(t) = o(λ1(t)λ2(t)).

The subcase λi(+∞) ∈ R− (i = 1, 2) is known.
The case of complex-conjugate roots λi(t) (i = 1, 2) is considered analogously. (T. Yu. Koset-

skaya, A. V. Kostin).

III. We investigate the problem on the existence of a particular solution y(t) from some class
of real functions

K
{
f(t) : f(t) ∈ C2(R), sup

R
|f(t)| < +∞

}
in ODE-2,

y′′ + ay′ + by = f(t) + µF (t, y, y′), (3)
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where (t, y, y′) ∈ G
{
t ∈ R, |y−u(t)| ≤ h1, |y′−u′(t)| ≤ h2

}
, hi < +∞ (i = 1, 2), a, b ∈ R, f(t) ∈ K,

the roots λi (i = 1, 2) of the equation λ2 + aλ + b = 0 are such that Reλi ̸= 0 (i = 1, 2), and the
condition

t∫
Ai

f(τ) expReλi(t− τ) dτ ∈ K, Ai =

{
+∞ (Rλi > 0)

−∞ (Rλi < 0)
, f(t) ∈ K

is fulfilled, u(t) ∈ K is a unique solution of the class K of the equation

y′′ + ay′ + by = f(t),

F, F ′
y, F

′
y′ ∈ C(G), sup

G

(
|F |+ |F ′

y|+ |F ′
y′ |
)
< +∞ (F (t, f(t), f ′(t)) ∈ K, if f(t) ∈ K).

Using the Perron transformation, we have obtained the estimate for a small parameter µ which
guarantees the solvability of the problem. In the capacity of the class K one can consider a class
of almost-periodic, slowly varying and another functions. (A. V. Kostin, T. V. Kondratenko)
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The method of Lyapunov functions is one of the most effective one for the investigation of
stability of differential systems, in particular, of stochastic differential systems. The main purpose
of the report is the theorem on the stability of stochastic differential equations by using Lyapunov
functions of constant signs.

Consider the stochastic differential equation

dx(t) = f(x(t))dt+ g(x(t))dW (t), (1)

with the Borel-measurable functions f : Rd → Rd, g : Rd → Rd×d.

Definition 1. If there exists a process x(t) given on some probability space (Ω,F , P ) with a
flow of σ-algebras Ft, satisfying the following conditions:

(1) there exists a (Ft)-moment of the stop e such that the process x(t)1[0,e)(t) is (Ft)-coordinated,
has continuous trajectories for t < e a.s. and lim sup

t↑e
∥x(t)∥ = ∞ if e <∞;

(2) there exists the (Ft)-Brownian motion W (t), W (0) = 0 a.s.;

(3) the processes f(x(t)) and g(x(t)) belong, respectively, to the spaces Lloc
1 and Lloc

2 , where Lloc
i

is a set of all measurable (Ft)-coordinated processes ψ such that for every moment of the

stop σ, 0 ≤ σ < e the condition
σ∫
0

∥ψ(s, ω)∥i ds <∞ a.s. i ∈ {1, 2} is fulfilled;

(4) with probability I for all t ∈ [0, e), the equality

x(t) = x(0) +

t∫
0

f(x(τ)) dτ +

t∫
0

g(x(τ)) dW (τ)

holds, and the set (x(t),Ω,F , P,Ft,W (t), e) (or briefly, x(t)) is called a weak solution of
equation (1).

We choose rows of the matrix g with numbers β1, . . . , βl, β1 < · · · < βl, and let βl+1 < · · · < βd
be numbers of the rest rows. We construct the matrix

σβ1,...,βl
(x1, . . . , xd) =

gβ1g
⊤
β1

. . . gβ1g
⊤
βl

. . . . . . . . .
gβl
g⊤β1

. . . gβl
g⊤βl

 ,

where gβj
is the row with the number βj of the matrix g, and also we construct the sets H1, H2;

H1(β1, . . . , βl) =
{
(xβ1 , . . . , xβl

) | for any open neighborhood U(xβ1
,...,xβl

) of the point (xβ1 , . . . , xβl
)

there exists a number a > 0 such that the integral∫
U(xβ1

,...,xβl
)

sup
(xβl+1

,...,xβd
)∈D2(0,a)

(
detσβ1,...,βl

(x1, . . . , xd)
)−1

dxβ1 . . . dxβl
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is either indeterminate, or is equal to ∞}, where D2(0, a) =
{
(xβl+1

, . . . , xβd
) | (x2βl+1

+ · · · +
x2βd

)1/2 ≤ a
}
; H2(β1, . . . , βl) =

{
(xβ1 , . . . , xβl

) ∈ Hc
1(β1, . . . , βl) | for any open neighborhood

U(xβ1
,...,xβl

) of the point (xβ1 , . . . , xβl
) there exists a number a > 0 such that the function

sup
(xβl+1

,...,xβd
)∈D2(0,a)

(
detσβ1,...,βl

(x1, . . . , xd)
)−1

: U → [0,∞]

is not Borel-measurable
}
(under the complement Hc

1 of the set H1 is understood the complement
in the space of variables (xβ1 , . . . , xβl

), and under the open neighborhood is understood the neigh-
borhood which is open in the space of the same variables (xβ1 , . . . , xβl

)).

Let Ĥ(β1, . . . , βl) = H1(β1, . . . , βl) ∪H2(β1, . . . , βl).
We will say that the real function h(x) = h(x1, . . . , xd) satisfies Condition C) if there exist

indices β1, . . . , βl, β1 < · · · < βl ≤ d such that:

1) the function h for every fixed (xβ1 , . . . , xβl
) is continuous with respect to the rest components

(xβl+1
, . . . , xβd

) of the vector x;

2) in the space of variables (xβ1 , . . . , xβl
) there is a closed set H with the properties:

(2a) H ⊃ Ĥ(β1, . . . , βl);

(2b) the set {(x1, . . . , xd)| (xβ1 , . . . , xβl
) ∈ H} belongs to the set of points of continuity of the

mapping h;

(2c) the function σβ1,...,βl
(x1, . . . , xd) for every fixed (xβ1 , . . . , xβl

) ∈ Hc is continuous with
respect to the variables (xβl+1

, . . . , xβd
).

Let the functions f(x) and g(x) be Borel-measurable and locally bounded, the components of
the functions f(x), σ(x) = g(x)g⊤(x) satisfy Condition C). Then for any given probability ν on
(Rd, β(Rd)) equation (1) has a weak solution with an initial distribution ν [1].

Definition 2. A zero solution is said to be ϖ-stable, if for any ε > 0 there exists δ > 0 such
that for a weak solution x(t) of equation (1), for which ∥x(0)∥ ≤ δ a.s., we have E(∥x(t)∥ϖ) ≤ ε
∀ t ≥ 0 (E is a mathematical expectation).

Definition 3. A zero solution is said to be asymptotically ϖ-stable, if it is ϖ-stable and
there exists M > 0 such that, for any weak solution x(t) for which ∥x(0)∥ ≤ M a.s., the relation
lim

t→+∞
E(∥x(t)∥ϖ) = 0 is fulfilled.

Condition L). There exists a twice continuously differentiable function V : Rd → R+ such
that ∀x ∈ Rd,

BV (x) =
∂V (x)

∂x
f(x) +

1

2
tr
(∂2V (x)

∂x2
g(x)g⊤(x)

)
≤ 0.

Assume MV = {x ∈ Rd | BV (x) = 0}. We say that a weak solution (x(t),W (t),Ω,F , P,Ft)
belongs to the set MV if

∂V (x(t))

∂x
f(x(t)) +

1

2
tr
(∂2V (x(t))

∂x2
g(x(t))g⊤(x(t))

)
= 0

for (µ× P )- almost all (t, ω) ∈ R+ × Ω.

Condition A). There exist the constants r > 1, σ > 0, M > 0 such that for any weak solution
x(t) of the system (1), satisfying the condition ∥x(0)∥ ≤ σ, the inequality E(∥x(t)∥r) ≤M ∀ t ≥ 0
is fulfilled.

Condition B). The system (1) has no nonzero weak solutions x(t) such that x(0) = 0 a.s.

Definition 4. The process x(t), t ∈ ]−∞, 0] given on some probability space (Ω,F , P ) is said
to be a weak solution of equation (1) on the interval ]−∞, 0], if:
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1) for every t0 ∈ ] − ∞, 0[ , there exists the extension (Ω̃, F̃ , P̃ ) of the space (Ω,F , P ) and on

that extension there exists the flow (F̃t), t ∈ [t0, 0], such that on (Ω̃, F̃ , P̃ ) with (F̃t) one can

define the (F̃t)-Brownian motion W (t), W (t0) = 0 a.s.;

2) the processes f(x(t)) and g(x(t)) belong, respectively, to the spaces L1 and L2, where Li is the

set of all measurable (F̃t)-coordinated processes ψ(t), t ∈ [t0, 0] such that
0∫
t0

∥ψ(s, ω)∥i ds <∞

a.s., i ∈ {1, 2};

3) with probability 1 for all t ∈ [t0, 0] the equality x(t) = x(t0)+
t∫

t0

f(x(τ)) dτ +
t∫

t0

g(x(τ)) dW (τ)

holds.

The other necessary definitions and notation can be found in [1].

Theorem. Let the functions f(x) and g(x) be Borel-measurable and locally bounded, the com-
ponents of the functions f(x), σ(x) = g(x)g⊤(x) satisfy Condition C), the system (1) satisfy
Conditions A), B) and L), and let 0 < s < r. If there exists a constant a > 0 such that the
system (1) has no nonzero weak solutions x(t) on the interval ] −∞, 0] possessing the properties:
x(t) ∈ mV = {x ∈ Rd | V (x) =} ∀ t ∈ ] − ∞, 0] a.s.; E(∥x(t)∥s) ≤ a ∀ t ∈ ] − ∞, 0], then a
zero solution of the system (1) is s-stable. If, moreover, there exists a constant b > 0 such that
the system has no nonzero weak solutions x(t), t ∈ [0,∞[ , satisfying the conditions x(t) ∈ MV ,
E(∥x(t)∥s) ≤ b ∀ t ∈ [0,∞[ , then a zero solution is asymptotically s-stable.
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1 Introduction

Hybrid systems are those combining both discrete and continuous dynamics. Many examples of
hybrid systems can be found in manufacturing systems, intelligent vehicle highway systems, verious
chemical plants. Hybrid systems also arise when there is a necessity of combining logical decision
with the generation of continuous control laws.

An important question is how to stabilize a continuous control plant through an interaction
with a discrete time controller. Such a ”hybrid” feedback may help when the ordinary feedback
fails to stabilize the system.

An example of a linear system which cannot be stabilized by the ordinary output feedback is
the harmonic oscillator:

dξ

dt
= η,

dη

dt
= −ξ + u, u = u(y), y = ξ. (1.1)

The only measured quantity (output), which is allowed to control, is the position variable ξ. Al-
though this last system is both controllable and observable, it cannot be stabilized by (even dis-
continuous) output feedbacks.

It was however shown by Z. Artstein (1995), there exists a special hybrid feedback control, under
which system (1.1) becomes asymptotically stable. Z. Artstein conjectured also that hybrid controls
can stabilize general linear systems of ordinary differential equations.

2 The Main Result

We give here the following affirmative answer to Artstein’s conjecture on the existence of a hybrid
stabilizer.

Theorem 2.1. Under assumptions of controllability of (A,B) and observability of (A,C) the
system

ẋ = Ax+Bu,

u = u(y), y = Cx

is stabilizable by a hybrid feedback control designed with the help of a discrete automaton which has
at most countable number of locations.

Proof is based on the classical stabilization technique as well as on some recent results in the
theory of functional-differential equations in an essential way.
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3 Applications to Theorem 2.1

We give here two examples.

1. Predator-Prey Interactions

An example of a situation, where hybrid feedback controls may be of use, is given by a population
model with an arbitrary number of species, some of them being observable and the others not.
Although such a model is nonlinear, but linearization about the equilibrium state provides a linear
system with a control depending on a part of variables while the rest variables may be not observable
at all, so that these variables cannot be used for setting up a control function. A stabilization of
the unstable equilibrium state may become then problematical if we use ordinary feedback, only.
What does help is hybrid feedback controls.

2. A Contribution to the Theory of Love Affairs

Here is another example which illustrates the power of stabilization by hybrid feedback controls.
The mathematical model for the dynamics of love affairs is given by a 2×2-system of linear equations
(Strogatz, 1994). We consider the following particular case, which is called the star-crossed romance
between Romeo and Juliet.

Ṙ = aJ, J̇ = −bR, (3.1)

R(t) = Romeo’s love/hate for Juliet at time t,

J(t) = Juliet’s love/hate for Romeo at time t

(love gives positive sign to variables, while hate makes variables negative).
From the system (3.1) we obtain the following tragic picture.
The more Romeo loves Juliet, the more Juliet wants to run away and hide. But when Romeo

gets discouraged and backs off, Juliet begins to find him strangely attractive. Romeo, on the other
hand, tends to echo her; he warms up when she loves him, and grows cold when she hates him. . . The
sad outcome of their affair is, of course, a never-ending cycle of love and hate, because solutions
of the system (3.1) are ellipses with a center at (0, 0).

We observe that ordinary feedback controls do not help Romeo and Juliet in this unpleasant
situation. If, for instance, we insert a feedback control like u = αR in the first equation suddenly
turns Romeo either into an “eager beaver” (α > 0), or into a “cautious lover” (α < 0) which seems
to be quite unrealistic as soon as one particular Juliet is concerned. The same applies to Juliet.
The only possibility is therefore to try making influence on the constants a and b in the system
(3.1). But any feedback control like u = αJ or/and v = βR will never change the sad and tragic
picture of never-ending ellipses in the phase-plane, because the corresponding coefficient matrix
will always have imaginary eigenvalues!

We propose a hybrid feedback scenario, which according to Theorem 2.1 does make solutions
of the system (3.1) asymptotically stable. This scenario can be described explicitly and does lead
to a kind of “happy end”. Naturally, the relationship between Romeo and Juliet will fizzle out to
mutual indifference and the disaster will be prevented.

Unfortunately, it is impossible to use a similar procedure to help Romeo and Juliet becoming
eventually daring to each other, because hybrid feedback controls can stabilize solutions, but they
cannot exclude oscillations.
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Linear Differential Systems

Alexander Lomtatidze and Jǐŕı Šremr
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Consider the system
u′ = q(t)v,

v′ = −p(t)u,
(1)

where p, q : [0,+∞[→ R are locally Lebesgue integrable functions such that

q(t) ≥ 0 for a. e. t ≥ 0,

+∞∫
0

q(s) ds < +∞,

and q ̸≡ 0 in any neighbourhood of +∞. Under a solution of system (1) we understand a vector-
function (u, v) : [0,+∞[→ R2 with locally absolutely continuous components satisfying equalities
(1) almost everywhere in [0,+∞[ . A solution (u, v) of system (1) is said to be nontrivial if u ̸≡ 0
in any neighbourhood of +∞. A nontrivial solution (u, v) of system (1) is called oscillatory if the
function u has a sequence of zeros tending to infinity.

Definition 1. System (1) is said to be oscillatory if every nontrivial solution of this system is
oscillatory, and nonoscillatory otherwise.

For any λ > 1, we put

c(t;λ) := (λ− 1)fλ−1(t)

t∫
0

q(s)

fλ(s)

( s∫
0

fλ(ξ)p(ξ) dξ

)
ds for t ≥ 0,

where

f(t) :=

+∞∫
t

q(s)ds for t ≥ 0.

The following theorem is an analogue of the well-known Hartman–Wintner theorem.

Theorem 1. Let there exist λ > 1 such that either

lim
t→+∞

c(t;λ) = +∞

or
−∞ < lim inf

t→+∞
c(t;λ) < lim sup

t→+∞
c(t;λ).

Then system (1) is oscillatory.

If we take this theorem into account it is obvious that, for given λ > 1, the following two cases
remain uncovered. The first case, where

there exists a finite limit lim
t→+∞

c(t;λ), (2)
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and the second case, where
lim inf
t→+∞

c(t;λ) = −∞.

Below, we establish new oscillation and nonoscillation criteria assuming that (2) holds for some
λ > 1. Having such λ, we denote

Q(t;λ) :=
1

fλ−1(t)

(
c0(λ)−

t∫
0

fλ(s)p(s) ds

)
for t ≥ 0,

where
c0(λ) = lim

t→+∞
c(t;λ). (3)

Moreover, for any µ < 1, we put

H(t;µ) := f1−µ(t)

t∫
0

fµ(s)p(s) ds for t ≥ 0.

Finally, let

Q∗(λ) = lim inf
t→+∞

Q(t;λ), Q∗(λ) = lim sup
t→+∞

Q(t;λ),

H∗(µ) = lim inf
t→+∞

H(t;µ), H∗(µ) = lim sup
t→+∞

H(t;µ).

Now we formulate our main results.

Theorem 2. Let there exist λ > 1 such that condition (2) holds and

lim sup
t→+∞

−1

fλ−1(t) ln f(t)

(
c0(λ)− c(t;λ)

)
>

1

4
,

where the number c0(λ) is defined by formula (3). Then system (1) is oscillatory.

Corollary 1. Let there exist λ > 1 and µ < 1 such that condition (2) holds and

lim inf
t→+∞

(
Q(t;λ) +H(t;µ)

)
>

1

4(λ− 1)
+

1

4(1− µ)
. (4)

Then system (1) is oscillatory.

Corollary 2. Let there exist λ > 1 such that condition (2) holds and either

Q∗(λ) >
1

4(λ− 1)

or

H∗(µ) >
1

4(1− µ)
(5)

for some µ < 1. Then system (1) is nonoscillatory.

Remark 1. It might seem that if assumption (5) is satisfied in the previous corollary then
assumption (2) is redundant. However, one can show that, under assumption (5), the function
c(· ;λ) possesses a limit for every λ > 1 and lim

t→+∞
c(t;λ) > −∞. If this limit is equal to +∞,

then system (1) is oscillatory according to Theorem 1. Therefore, assumption (2) in the previous
corollary is necessary in a certain sense also in the case where inequality (5) is supposed to be
satisfied.
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The next theorem deals with the upper limit of the sum on the left-hand side of inequality (4)
and thus it complements Corollary 1 in a certain sense.

Theorem 3. Let there exist λ > 1 and µ < 1 such that condition (2) holds and

lim sup
t→+∞

(
Q(t;λ) +H(t;µ)

)
>

λ2

4(λ− 1)
+

µ2

4(1− µ)
.

Then system (1) is oscillatory.

The following statement complements Corollary 2.

Theorem 4. Let there exist λ > 1 and µ < 1 such that condition (2) holds and either

λ(2− λ)

4(λ− 1)
≤ Q∗(λ) ≤

1

4(λ− 1)
, H∗(µ) >

µ2

4(1− µ)
+

1 +
√

1− 4(λ− 1)Q∗(λ)

2

or
µ(2− µ)

4(1− µ)
≤ H∗(µ) ≤

1

4(1− µ)
, Q∗(λ) >

λ2

4(λ− 1)
−

1−
√

1− 4(1− µ)H∗(µ)

2
.

Then system (1) is oscillatory.

At last, we present two results dealing with nonoscillation of system (1).

Theorem 5. Let there exist λ > 1 such that condition (2) holds and either

−(2λ− 3)(2λ− 1)

4(λ− 1)
< Q∗(λ), Q∗(λ) <

1

4(λ− 1)

or

−(3− 2µ)(1− 2µ)

4(1− µ)
< H∗(µ), H∗(µ) <

1

4(1− µ)
(6)

for some µ < 1. Then system (1) is nonoscillatory.

Theorem 6. Let there exist λ > 1 such that condition (2) holds and either

−∞ < Q∗(λ) ≤ −(2λ− 3)(2λ− 1)

4(λ− 1)
, Q∗(λ) < Q∗(λ) + 1− λ+

√
1− 4(λ− 1)Q∗(λ)

or

−∞ < H∗(µ) ≤ −(3− 2µ)(1− 2µ)

4(1− µ)
, H∗(µ) < H∗(µ) + µ− 1 +

√
1− 4(1− µ)H∗(µ) (7)

for some µ < 1. Then system (1) is nonoscillatory.

Remark 2. It might seem that if assumptions (6) and (7) are satisfied in the previous theorems,
then assumption (2) is redundant. However, one can show that, under assumption (6) as well as
under (7), the function c(· ;λ) possesses a finite limit for every λ > 1. Therefore, assumption (2)
in Theorems 5 and 6 is necessary also in the case where inequalities (6) and (7) are supposed to
be satisfied.
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Let E and F be real Banach spaces, K ⊂ E be a closed convex cone with a bounded base.
Consider a linear completely integrable equation in total derivatives

y′h = A(x)hy, y ∈ F, h ∈ E, x ∈ E, (1)

with a bounded continuous coefficient A : E → L(E,L(F, F )) (here and in the sequel, we use
notation and notions from [1]). Let E(y) be a set of all linear continuous functionals µ ∈ E∗ such
that the inequality lim sup

x→∞, x∈K
∥x∥−1(ln y(x) + µx) ≤ 0 holds.

In [2], the interrelation is established between characteristic functionals and (weak) characteris-
tic exponents of solutions of equation (1) for a finite-dimensional E in the form E(y) = E(expψ[y]),
where ψ[y](x) := lim

t→+∞
t−1 ln y(tx) is a modified exponent of a solution y. This result is valid only

for a finite-dimensional E. Therefore it is necessary to generalize the above notions in order to
obtain some analog of the statement in [2] for the settings of infinite-dimensional E.

For this, we introduce new exponent ψ[y](φ) by means of the formula

ψ[y](φ) := lim
t→+∞

t−1 ln
∥∥y(φ(t))∥∥,

as the functional on the space Φ of continuous functions φ : [0,+∞[→ K such that ∥φ(t)∥ → ∞,
as t→ +∞ and sup ∥φ(t)∥/t < +∞.

Theorem. The inclusion λ ∈ E(y) holds if and only if for any φ ∈ Φ the inequality ψ[y](φ) +
λ(φ) ≤ 0, where λ(φ) := lim

t→∞
t−1λφ(t), holds.
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In the monographs [1]–[3], a theory of impulsive differential equations is built. Mainly, the math-
ematical models of evolutionary processes that undergo impulsive perturbations at fixed moments
of time or at the moments, when the moving point meets the given hypersurfaces in the extended
phase space are considered. However, in the monographs [1]–[3], the importance of studying of
systems with impulsive perturbations that occur at the moments, when the phase point meets the
given sets in the phase space is emphasized. In this report, we investigate a linear differential
systems in the plane that are subjected to impulsive perturbations on the given line, i.e. systems
of the form

dx

dt
= Ax, ⟨a, x⟩ ̸= 0; ∆x

∣∣
⟨a,x⟩=0

= Bx,

where x ∈ R2, A and B are constant matricies, a is a constant vector.
The motion of the phase point is defined by the differential system ẋ = Ax, when this point is

outside of the line ⟨a, x⟩ = 0 and immediately transfers to a point x+ = (E + B)x(t∗) at the time
when phase point meets with the line ⟨a, x⟩ = 0.

We have indicated the necessary and sufficient conditions for the existence of one-impulsive and
two-impulsive discontinuous cycles of this system, as well as conditions for asymptotic stability of
the zero equilibrium position.
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[1] A. M. Samǒılenko and N. A. Perestyuk, Impulsive differential equations. (Russian) Vishcha
Shkola, Kiev, 1987.
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In what follows, X is a Banach space and L(X) is the Banach space of bounded linear op-
erators on X. By ∥ · ∥X we denote the norm in a Banach space X. Further, BV ([a, b], X) is the
set of X valued functions of bounded variation on [a, b] and G([a, b], X) is the set of X valued
functions having on [a, b] all one-sided limits (i.e. X valued functions regulated on [a, b]). A couple
P=(D, ξ), where D={α0, α1, . . . , αm} and ξ=(ξ1, . . . , ξm)∈[a, b]m, is said to be a partition of [a, b]
if a=α0<α1< . . .<αm=b and αj−1≤ξj≤αj for j=1, 2, . . . ,m. For such a partition P and functions
F :[a, b]→L(X) and g:[a, b]→X we define

S(dF, g, P )=

m∑
j=1

[
F (αj)−F (αj−1)

]
g(ξj) and S(F, dg, P )=

m∑
j=1

F (ξj)
[
g(αj)−g(αj−1)

]
.

For a gauge δ:[a, b]→(0,∞), the partition P is called δ-fine if[
αj−1, αj

]
⊂
(
ξj − δ(ξj), ξj + δ(ξj)

)
for all j∈N.

The integrals are the abstract Kurzweil-Stieltjes integrals (KS-integrals) defined as follows:

Definition. For F :[a, b]→L(X), g:[a, b]→X and I∈X we say that
b∫
a
d[F ]g=I if for every ε > 0

there exists a gauge δ on [a, b] such that∥∥S(dF, g, P )− I
∥∥
X

< ε for all δ − fine partitions P of [a, b].

Similarly we define the KS-integral
b∫
a
F d[g] using sums of the form S(F, dg, P ).

It is known that the integrals
b∫
a
d[F ]g,

b∫
a
F d[g] exist if F∈G([a, b], L(X)), g∈G([a, b], X) and at

least one of the functions F , g has a bounded variation on [a, b] (cf. [2]). Further basic properties
of the abstract KS-integral, like e.g. the substitution theorem, the integration-by-parts theorem or
the convergence theorems, have been described in [6] and [2].

Let A, Ak∈BV ([a, b], L(X)), x̃, x̃k∈X and f, fk∈G([a, b], X) be given for k∈N. Consider the
generalized linear differential equations

x(t) = x̃+

t∫
a

d[A(s)]x(s)+f(t)−f(a), t ∈ [a, b], (1)

and
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xk(t) = x̃k +

t∫
a

d[Ak(s)]xk(s)+fk(t)−fk(a), t ∈ [a, b], k∈N. (1k)

The following assumptions are crucial for the existence of solutions to (1) and (1k)[
I −∆−A(t)

]−1∈L(X) for all t ∈ (a, b], (2)

and [
I −∆−Ak(t)

]−1∈L(X) for all t ∈ (a, b], k∈N. (2k)

For the basic properties of generalized linear differential equations in a Banach space, see [7].
Our first result extends that by M. Ashordia [1] valid for the case X = Rn.

Theorem 1. Let A, Ak satisfy (1) and (1k), and let

Ak ⇒ A on [a, b], (3)

α∗:= sup
k∈N

(
v arbaAk

)
<∞, (4)

fk ⇒ f on [a, b], (5)

x̃k → x̃ in X. (6)

Then (1) has a unique solution x on [a, b]. Furthermore, for each k∈N large enough there is a
unique solution xk on [a, b] to (1k) and xk ⇒ x.

The next result extends that by Z. Opial [5] to homogeneous generalized linear differential
equations in a general Banach space X.

Theorem 2. Let f(t)≡f(a), fk(t)≡fk(a) on [a, b] for k∈N and let A, Ak satisfy (1), (1k). Let
x̃, x̃k ∈ X satisfy (6) and let

lim
k→∞

(
sup
t∈[a,b]

∥Ak(t)−A(t)∥L(X)

)(
1+v arbaAk

)
= 0. (6)

Then the conclusions of Theorem 1 are true.

For the proofs of Theorems 1 and 2, see [3]. The case when (3) (and hence also (6)) is not
satisfied is treated in [4].
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Consider the boundary value problem

u(n)(t) =
m∑
j=1

pj(t)u
(j−1)(τj(t)) + q(t) for a < t < b (1)

with the two-point boundary conditions

u(i−1)(a) = 0 (j = 1, . . . ,m), u(i−1)(b) = 0 (j = 1, . . . , n−m), (2)

where n ≥ 2, m is the integer part of n/2, pj , q ∈ Llob(]a, b[) (j = 1, . . . ,m), and τj : ]a, b[→ ]a, b[

are measurable functions. By u(j−1)(a) (by u(j−1)(b)) we denote the right (the left) limit of the

function u(j−1) at the point a (at the point b).
The Agarwal–Kiguradze type theorems [1] are obtained by us, which contains unimprovable in

a certain sense conditions guaranteeing the unique solvability of problem (1), (2). The results below

cover the strongly singular case, where
m∑
j=1

b∫
a
(t− a)n−j(b− t)n−j |pj(t)| dt = +∞.

We use the following notations.
Lα,β(]a, b[) (L2

α,β(]a, b[)) is the space of integrable (square integrable) with the weight

(t − a)α(b − t)β functions y : ]a, b[→ R, with the norm ∥y∥Lα,β
=

b∫
a
(s − a)α(b − s)β |y(s)| ds

(
∥y∥L2

α,β
=

( b∫
a
(s− a)α(b− s)βy2(s) ds

)1/2 )
;

L̃2
α,β(]a, b[) is the space of functions y ∈ Lloc(]a, b[) such that ỹ ∈ L2

α,β(]a, b[), where ỹ(t) =
t∫
c
y(s) ds, c = (a+ b)/2. The norm in L̃2

α,β(]a, b[) is defined by the equality

∥y∥
L̃2
α,β

= max

{[ t∫
a

(s− a)α
( t∫

s

y(ξ) dξ
)2

ds

]1/2
: a ≤ t ≤ c

}
+

+max

{[ b∫
t

(b− s)β
( s∫

t

y(ξ) dξ
)2

ds

]1/2
: c ≤ t ≤ b

}
. (3)

C̃n−1,m(]a, b[) is the space of (n − 1)-times continuously differentiable functions y : ]a, b[→ R

such that
b∫
a
|u(m)(s)|2 ds<+∞ and yn−1 is absolutely continuous on every closed interval from ]a, b[ .

If n = 2m, we assume that pj ∈ Lloc(]a, b[) (j = 1, . . . ,m), and if n = 2m+ 1, we assume that

along with pj ∈ Lloc(]a, b[) (j = 1, . . . ,m), the condition lim sup
t→b

∣∣(b−t)2m−1
t∫
c
p1(s) ds

∣∣<+∞ holds.
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By hj and fj (j = 1, . . . ,m) we denote the functions and operator, respectively, defined by the
equalities

h1(t, s)=

∣∣∣∣
t∫

s

(ξ−a)n−2m
[
(−1)n−mp1(ξ)

]
+
dξ

∣∣∣∣, hj(t, s)=

∣∣∣∣
t∫

s

(ξ−a)n−2mpj(ξ) dξ

∣∣∣∣ (j=2, . . . ,m),

fj(c)(t, s) =

∣∣∣∣
t∫

s

(ξ − a)n−2m|pj(ξ)|
∣∣∣∣
τj(ξ)∫
ξ

(ξ1 − c)2(m−j) dξ1

∣∣∣∣1/2 dξ∣∣∣∣ (j = 1, . . . ,m).

Along with (1), we consider the corresponding homogeneous equation

u(n)(t) =

m∑
j=1

pj(t)u
(j−1)(τj(t)). (10)

Theorem 1. Let there exist a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ and positive numbers lkj and γkj (k = 0, 1,
j = 1, . . . ,m) such that

(t− a)2m−jhj(t, s) ≤ l0j for a ≤ t ≤ s < a0, lim sup
t→a

(t− a)m− 1
2
−γ0jfj(a)(t, s) < +∞,

(b− t)2m−jhj(t, s) ≤ l1j for b0 ≤ s ≤ t < b, lim sup
t→b

(b− t)m− 1
2
−γ1jfj(b)(t, s) < +∞,

m∑
j=1

(2m− j)22m−j+1

(2m− 1)!!(2m− 2j + 1)!!
lkj < 1 (k = 0, 1).

If, moreover, problem (10), (2) has only the trivial solution in the space C̃n−1,m(]a, b[), then problem

(1), (2) is uniquely solvable in this space for every q ∈ L̃2n−2m−2,2m−2(]a, b[).

Theorem 2. Let there exist numbers t∗ ∈ ]a, b[ , ℓkj > 0, lkj ≥ 0, and γkj > 0 (k = 0, 1;
j = 1, . . . ,m) such that along with inequalities

m∑
j=1

( (2m− j)22m−j+1 l0j
(2m− 1)!!(2m− 2j + 1)!!

+
22m−j−1(t∗ − a)γ0j l0j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ0j

)
<

1

2
,

m∑
j=1

( (2m− j)22m−j+1l1j
(2m− 1)!!(2m− 2j + 1)!!

+
22m−j−1(b− t∗)γ0j l1j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ1j

)
<

1

2
,

the conditions

(t− a)2m−jhj(t, s) ≤ l0j , (t− a)m−γ0j−1/2fj(a)(t, s) ≤ l0j for a < t ≤ s ≤ t∗,

(b− t)2m−jhj(t, s) ≤ l1j , (b− t)m−γ1j−1/2fj(b)(t, s) ≤ l1j for t∗ ≤ s ≤ t < b

hold. Then for every q ∈ L̃2
2n−2m−2,2m−2(]a, b[), (1), (2) is uniquely solvable in the space C̃n−1,m(]a, b[).
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Asymptotics of Solutions of a Linear Homogeneous System of
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The investigation of linear homogeneous systems (LHS) was carried out by the author by com-
bining the method of generalized shearing transformations [1] and the method of L-diagonal systems
[2]. The cases which are particular for the well-known methods are considered.

We study the 2-dimensional linear homogeneous system

ε(t)Y ′ =
(
D−1ΛD + α(t)B +Q(t)

)
Y, (1)

where t ∈ [t0,+∞[ = I, Y = (y1, y2)
T , the scalar functions ε(t) and α(t), the constant matrices D,

Λ, B and the matrix Q(t) are, in a general case, complex, and the following conditions are fulfilled:

1) 0 ̸= ε(t) ∈ C1(I),
+∞∫
t0

|ε−1(t)| dt = +∞,

2) 0 ̸= α(t) ∈ C1(I), α(+∞) = 0,

3) D =

(
d11 d12
d21 d22

)
, detD ̸= 0,

Λ =

(
λ e
0 λ

)
, λ ̸= 0, e ∈ {0, 1},

B =

(
b11 b12
b21 b22

)
, B ̸= O (O is a zero matrix),

Q(t) =

(
q11(t) q12(t)
q21(t) q22(t)

)
, Q(t) ∈ C(I), Q(t) = o(|α(t)|),

4) ∃ a finite or an infinite limit lim
t→+∞

ε(t)w
′(t)

w(t) = a, where w = w(t) = α
1
2 (t) (for a specific choice

of root).

Denote

A = D−1BD =

(
a11 a12
a21 a22

)
,

P (t) = D−1Q(t)D =

(
p11(t) p12(t)
p21(t) p22(t)

)
, P (t) = o(|α(t)|).

Theorem 1. Let e = 1, |a| < +∞, the conditions (1)–(4) be fulfilled, and

a2

4
+ a21 ̸= 0, |α′|+ |w′|+

∣∣∣(ε w′

w2

)′∣∣∣+ ∥P ′∥+
∥∥∥(P

w

)′∥∥∥+
∥∥∥(P

α

)′∥∥∥ ∈ L1(I),
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Re
(
w
ε (µ̃1 − µ̃2)

)
do not change its sign in I, where µ̃i(t) (i = 1, 2) are the roots of the equation

µ̃2 − µ̃
(
wa12 − ε

w′

w2
+

p22
w

+ wa11 +
p11
w

)
−
(
a21 +

p21
w

)(
1 + αa12 + p12

)
= 0.

Then LHS (1) has two linearly independent solutions

Yi(t) = e

t∫
t0

(
λ

ε(τ)
+

w′(τ)
ε(τ)

µ̃i(τ)
)
dτ

·
(

d1i + o(1)
d2i + o(1)

)
(i = 1, 2). (2)

If all dik ̸= 0 (i, k = 1, 2), then asymptotics (2) are exact.
The cases, where among dik (i, k = 1, 2) there are those equal to zero, and also the case e = 1,

a = ∞, are considered.
Generalization of the obtained results to the case of LHS (1) of dimension n > 2 (Λ is Jordan’s

block) is also considered.

References

[1] V. V. Nikonenko, On an asymptotic representation of solutions of quasi-linear systems of
ordinary differential equations. Dissertation for the degree of Candidate of the Phys.-Math.
Sciences, Tbilisi, 1989, 169p.

[2] M. V. Fedoryuk, Asymptotical methods in the theory of ordinary linear differential equations.
Nauka, Moscow, 1980.

58



On Oscillations of Solutions to Second-Order Linear Delay
Differential Equations
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On the half-line R+ = [0,+∞[ , we consider the second-order linear delay differential equation

u′′(t) + p(t)u(τ(t)) = 0, (1)

where p : R+ → R+ is a locally Lebesgue integrable function and τ : R+ → R+ is a measurable
function such that

τ(t) ≤ t for a. e. t ≥ 0, lim
t→+∞

ess inf{τ(s) : s ≥ t} = +∞.

Solutions to equation (1) can be defined in various ways. Since we are interested in properties
of solutions in the neighbourhood of +∞, we introduce the following commonly used definition.

Definition 1. Let t0 ∈ R+ and a0 = ess inf{τ(t) : t ≥ t0}. A continuous function u : [a0,+∞[→
R is said to be a solution to equation (1) on the interval [t0,+∞[ if it is absolutely continuous
together with its first derivative on every compact interval contained in [t0,+∞[ and satisfies
equality (1) almost everywhere in [t0,+∞[ . A solution u to equation (1) on the interval [t0,+∞[
is called proper if the inequality sup{|u(s)| : s ≥ t} > 0 holds for t ≥ t0.

Definition 2. A proper solution u to equation (1) is said to be oscillatory if it has a sequence
of zeros tending to infinity, and non-oscillatory otherwise.

It is known that if the integral
+∞∫
0

τ(s)p(s) ds is convergent, then equation (1) has proper

non-oscillatory solutions. Therefore, we will assume throughout the paper that

+∞∫
0

τ(s)p(s) ds = +∞. (2)

Let us put

G∗ = lim inf
t→+∞

1

t

t∫
0

sτ(s)p(s) ds, G∗ = lim sup
t→+∞

1

t

t∫
0

sτ(s)p(s) ds.

Proposition 1. Let condition (2) hold and G∗ > 1. Then every proper solution to equation
(1) is oscillatory.

In view of Proposition 1, it is natural to suppose in the sequel that

G∗ ≤ 1. (3)

A Wintner type oscillation criterion is presented in the next theorem.
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Theorem 1. Let conditions (2) and (3) be fulfilled and let there exist λ < 1 and ε ∈ [0, 1[ such
that

+∞∫
0

sλ
(τ(s)

s

)1−εG∗
p(s)ds = +∞. (4)

Then every proper solution to equation (1) is oscillatory.

Theorem 2. Let conditions (2) and (3) hold and let there exist ε ∈ [0, 1[ such that

lim sup
t→+∞

1

ln t

t∫
0

s
(τ(s)

s

)1−εG∗
p(s) ds >

1

4
. (5)

Then every proper solution to equation (1) is oscillatory.

In view of Theorem 1, we can assume in the sequel that

+∞∫
0

sλ
(τ(s)

s

)1−εG∗
p(s) ds < +∞ for all λ < 1, ε ∈ [0, 1[ .

It allows one to define, for any λ < 1 and ε ∈ [0, 1[, the function

Q(t;λ, ε) := t1−λ

+∞∫
t

sλ
(τ(s)

s

)1−εG∗
p(s) ds for t > 0.

Moreover, for any µ > 1 and ε ∈ [0, 1[ , we put

H(t;µ, ε) :=
1

tµ−1

t∫
0

sµ
(τ(s)

s

)1−εG∗
p(s) ds for t > 0.

By using the lower and upper limits

Q∗(λ, ε) = lim inf
t→+∞

Q(t;λ, ε), Q∗(λ, ε) = lim sup
t→+∞

Q(t;λ, ε),

H∗(µ, ε) = lim inf
t→+∞

H(t;µ, ε), H∗(µ, ε) = lim sup
t→+∞

H(t;µ, ε),

we establish new Hille and Nehari type oscillation criteria, which coincide with the well-known
results in the case of ordinary differential equations.

Theorem 3. Let conditions (2) and (3) be fulfilled and let there exist λ < 1, µ > 1, and
ε ∈ [0, 1[ such that

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
>

λ2

4(1− λ)
+

µ2

4(µ− 1)
. (6)

Then every proper solution to equation (1) is oscillatory.

As a corollary of Theorem 3 (with µ = 2 and λ = 0, respectively) we obtain

Corollary 1. Let conditions (2) and (3) be fulfilled and let there exist ε ∈ [0, 1[ such that

either Q∗(λ, ε) >
(2− λ)2

4(1− λ)
for some λ < 1, or H∗(µ, ε) >

µ2

4(µ− 1)
for some µ > 1.

Then every proper solution to equation (1) is oscillatory.
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The next theorem deals with the lower limit of the sum on the left-hand side of inequality (6)
and thus it complements Theorem 3 in a certain sense.

Theorem 4. Let conditions (2) and (3) be fulfilled and let there exist λ < 1, µ > 1, and
ε ∈ [0, 1[ such that

lim inf
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
>

1

4(1− λ)
+

1

4(µ− 1)
. (7)

Then every proper solution to equation (1) is oscillatory.

Theorem 4 yields

Corollary 2. Let conditions (2) and (3) be fulfilled and let there exist ε ∈ [0, 1[ such that

either Q∗(λ, ε) >
1

4(1− λ)
for some λ < 1, or H∗(µ, ε) >

1

4(µ− 1)
for some µ > 1.

Then every proper solution to equation (1) is oscillatory.

Now we give a statement complementing Corollary 2.

Theorem 5. Let conditions (2) and (3) be fulfilled and let there exist λ < 1, µ > 1, and
ε ∈ [0, 1[ such that either

λ(2− λ)

4(1− λ)
≤ Q∗(λ, ε) ≤

1

4(1− λ)
, (8)

H∗(µ, ε) >
µ2

4(µ− 1)
− 1

2

(
1−

√
1− 4(1− λ)Q∗(λ, ε)

)
(9)

or

µ(2− µ)

4(µ− 1)
≤ H∗(µ, ε) ≤

1

4(µ− 1)
, (10)

Q∗(λ, ε) >
λ2

4(1− λ)
+

1

2

(
1 +

√
1− 4(µ− 1)H∗(µ, ε)

)
. (11)

Then every proper solution to equation (1) is oscillatory.

If both conditions (8) and (10) are satisfied then oscillation criteria (9) and (11) can be slightly
refined as is presented in the last statement.

Theorem 6. Let conditions (2) and (3) be fulfilled and let there exist λ < 1, µ > 1, and
ε ∈ [0, 1[ such that inequalities (8) and (10) are satisfied. If

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
>

> Q∗(λ, ε) +H∗(µ, ε) +
1

2

(√
1− 4(1− λ)Q∗(λ, ε) +

√
1− 4(µ− 1)H∗(µ, ε)

)
,

then every proper solution to equation (1) is oscillatory.

Remark 1. If we assume, in addition, that there are numbers α > 0 and t0 ≥ 0 such that
τ(t)
t ≥ α for a. e. t ≥ t0, then we can put ε = 1 in all above presented statements.

61



Solvability and Well-Posedness
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In an open interval ]a, b[, we consider the second order nonlinear differential equation

u′′ = f(t, u) (1)

with two-point weighted boundary conditions of one of the following two types:

lim sup
t→a

|u(t)|
(t− a)α

< +∞, lim sup
t→b

|u(t)|
(b− t)β

< +∞ (2)

and

lim sup
t→a

|u(t)|
(t− a)α

< +∞, lim
t→b

u′(t) = 0. (3)

Here f :]a, b[×R → R is a continuous function, α ∈]0, 1[, and β ∈]0, 1[.
Following R. P. Agarwal and I. Kiguradze [1,2] we say that Eq. (1) with respect to the time

variable has a strong singularity at the point a (at the point b) if for any t0 ∈]a, b[ and x > 0

the condition
t0∫
a
(t− a)

[
|f(t, x)|−f(t, x) sgnx

]
dt = +∞

( b∫
t0

(b− t)
[
|f(t, x)|−f(t, x) sgnx

]
= +∞

)
is

satisfied.
Theorems obtained by us contain unimprovable in a certain sense sufficient conditions for the

solvability and well-posedness of the problem (1), (2) (of the problem (1), (3)), at that these the-
orems, unlike the previous well-known results, cover the case, where Eq. (1) with respect to the
time variable has strong singularities at the points a and b (has a strong singularity at the point
a).

Before passing to the formulation of the main results, we introduce some notation.

f∗(t, x) = max
{
|f(t, y)| : 0 ≤ y ≤ x

}
for a < t < b, x ≥ 0.

By G0 and G1 we denote the Green functions of the problems u′′ = 0; u(a) = u(b) = 0 and
u′′ = 0; u(a) = u′(b) = 0, respectively, i.e.,

G0(t, s) =


(s− a)(t− b)

b− a
for a ≤ s ≤ t ≤ b,

(t− a)(s− b)

b− a
for a ≤ t < s ≤ b,

and G1(t, s) =

{
a− s for a ≤ s ≤ t ≤ b,

a− t for a ≤ t < s ≤ b.

For any continuous function h :]a, b[→ R, we assume

να,β(h) = sup

{
(t− a)−α(b− t)−β

b∫
a

|G0(t, s)h(s)| ds : a < t < b

}
,

να(h) = sup

{
(t− a)−α

b∫
a

|G1(t, s)h(s)| ds : a < t < b

}
.
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Definition. The problem (1), (2) (the problem (1), (3)) is said to be well-posed if for any
continuous function h :]a, b[→ R, satisfying the condition να,β(h) < +∞

(
να(h) < +∞

)
, the

perturbed differential equation
v′′ = f(t, v) + h(t) (4)

has a unique solution, satisfying the boundary conditions (2) (the boundary conditions (3)), and
there exists a positive constant r, independent of the function h, such that in the interval ]a, b[ the
inequality |u(t)− v(t)| ≤ rνα,β(h)(t− a)α(b− t)β

(
|u(t)− v(t)| ≤ rνα(h)(t− a)α

)
is satisfied, where

u and v are the solutions of (1),(2) and (4),(2) (of (1),(3) and (4),(3)), respectively.

The following statements are valid.

Theorem 1. Let there exist a constant ℓ ∈ [0, 1[ and a continuous function q :]a, b[→ [0,+∞[
such that

f(t, x) sgnx ≥ −ℓ

(
α(1− α)

(t− a)2
+

2αβ

(t− a)(b− t)
+

β(1− β)

(b− t)2

)
|x| − q(t) for a < t < b, x ∈ R,

and να,β(q) < +∞. Then the problem (1), (2) has at least one solution.

Theorem 2. Let there exist a constant ℓ ∈ [0, 1[ such that

f(t, x)− f(t, y) ≥ −ℓ

(
α(1− α)

(t− a)2
+

2αβ

(t− a)(b− t)
+

β(1− β)

(b− t)2

)
(x− y) for a < t < b, x > y,

and να,β(f(·, 0)) < +∞. Then the problem (1), (2) is well-posed.

Theorem 3. Let there exist a constant ℓ < α(1−α) and a continuous function q :]a, b[→ [0,+∞[
such that

f(t, x) sgnx ≥ − ℓ

(t− a)2
|x| − q(t) for a < t < b, x ∈ R

and να(q) < +∞. If, moreover, the condition

b∫
t

f∗(s, x)ds < +∞ for a < t < b, x > 0 (5)

holds, then the problem (1), (3) has at least one solution.

Theorem 4. Let there exist a constant ℓ < α(1− α) such that

f(t, x)− f(t, y) ≥ − ℓ

(t− a)2
(x− y) for a < t < b, x > y.

If, moreover, να(f(·, 0)) < +∞ and the condition (5) holds, then the problem (1), (3) is well-posed.
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We consider a system of differential equations, defined in the direct product of anm-dimensional
torus Tm and an n-dimensional Euclidean space En that undergo impulsive perturbations at the
moments when the phase point φ meets a given set in the phase space

dφ

dt
= a(φ),

dx

dt
= A(φ)x+ f(φ), φ ̸∈ Γ,

∆x
∣∣
φ∈Γ = B(φ)x+ g(φ),

(1)

where φ = (φ1, . . . , φm)T ∈ Tm, x = (x1, . . . , xn)
T ∈ En, a(φ) is a continuous 2π-periodic with

respect to each of the components φv, v = 1, . . . ,m vector function that satisfies a Lipschitz
condition with respect to φ. Functions A(φ), B(φ) are continuous 2π-periodic with respect to
each of the components φv, v = 1, . . . ,m square matrices; f(φ), g(φ) are continuous (piecewise
continuous with first kind discontinuities in the set Γ) 2π-periodic with respect to each of the
components φv, v = 1, . . . ,m vector functions.

We assume that the set Γ is a subset of the torus Tm, which is a manifold of dimension m− 1
defined by the equation Φ(φ) = 0 for some continuous scalar 2π-periodic with respect to each of
the components φv, v = 1, . . . ,m function.

Denote by ti(φ), i ∈ Z the solutions of the equation Φ(φt(φ)) = 0 that are the moments of
impulsive action in system (1). Let the function Φ(φ) be such that the solutions t = ti(φ) exist
since otherwise system (1) would not be an impulsive system.

We call a point φ∗ an ω-limit point of the trajectory φt(φ) if there exists a sequence {tn}n∈N
in R so that

lim
n→+∞

tn = +∞, lim
n→+∞

φtn(φ) = φ∗.

The set of all ω-limit points for a given trajectory φt(φ) is called ω-limit set of the trajectory φt(φ)
and denoted by Ωφ. Denote

Ω =
∪

φ∈Tm

Ωφ,

and assume that the matrices A(φ) and B(φ) are constant in the domain Ω:

A(φ)
∣∣
φ∈Ω = Ã, B(φ)

∣∣
φ∈Ω = B̃.

We will obtain sufficient conditions for the existence and asymptotic stability of an invariant set of

the system (1) in terms of the eigenvalues of the matrices Ã and B̃. Denote

γ = max
j=1,...,n

Reλj(Ã), α2 = max
j=1,...,n

λj

(
(E + B̃)T (E + B̃)

)
.

Theorem 1. Let the moments of impulsive perturbations {ti(φ)} be such that uniformly with
respect to t ∈ R there exists a finite limit

lim
T̃→∞

i(t, t+ T̃ )

T̃
= p. (2)
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If the following inequality holds
γ + p lnα < 0, (3)

then system (1) has an asymptotically stable invariant set.

Such approach may be extended to the nonlinear system of the form

dφ

dt
= a(φ),

dx

dt
= A0(φ)x+A1(φ, x)x+ f(φ), φ ̸∈ Γ,

∆x
∣∣
φ∈Γ = B0(φ)x+B1(φ, x)x+ g(φ).

(4)

Theorem 2. Let the matrices A0(φ) and B0(φ) be constant in the domain Ω, uniformly with
respect to t ∈ R there exist a finite limit (2) and the inequality (3) hold. Then there exist sufficiently
small constants a1 and b1 and sufficiently small Lipschitz constants LA and LB such that for
any continuous 2π-periodic with respect to each of the components φv, v = 1, . . . ,m functions
A1(φ, x) and B1(φ, x) such that max

φ∈Tm,x∈J̄h

∥∥A1(φ, x)
∥∥ ≤ a1, max

φ∈Tm,x∈J̄h

∥∥B1(φ, x)
∥∥ ≤ b1 and for any

x
′
, x

′′ ∈ J̄h,∥∥A1(φ, x
′
)−A1(φ, x

′′
)
∥∥ ≤ LA∥x

′ − x
′′∥,

∥∥B1(φ, x
′
)−B1(φ, x

′′
)
∥∥ ≤ LB∥x

′ − x
′′∥,

system (4) has an asymptotically stable invariant set.

In summary, we have obtained sufficient conditions for the existence and asymptotic stability
of invariant sets of a linear impulsive system of differential equations defined in Tm × En that has
specific properties in the ω-limit set Ω of the trajectories φt(φ). We have proved that it is sufficient
to impose some restrictions on system (1) only in the domain Ω to guarantee the existence and
asymptotic stability of the invariant set.
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In a finite interval ]a, b[ we consider the differential equation

u(n)(t) = f
(
t, u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)

with the weighted initial conditions

lim sup
t→a

(
|u(i−1)(t)|
ρ(i−1)(t)

)
< +∞ (i = 1, . . . , n), (2)

where f : ]a, b[×Rn → R is a function, satisfying the local Carathéodory conditions, τi : ]a, b[→ ]a, b]
(i = 1, . . . , n) are measurable functions, and ρ : [a, b] → [0,+∞[ is the (n − 1)-times continuously
differentiable function such that

ρ(i−1)(a) = 0, ρ(i−1)(t) > 0 for a < t ≤ b (i = 1, . . . , n).

Let q : ]a, b] → ]0,+∞[ be some nonincreasing function. The problems (1), (2) is said to be
well-posed with the weight q, if for any integrable with the weight q function h : ]a, b[→ R,
satisfying the condition

νq,n(h; ρ)
def
= sup

{( t∫
a

q(s)h(s) ds
)
/q(t)ρ(n−1)(t) : a < t ≤ b

}
< +∞,

the differential equation

u(n)(t) = f
(
t, u(τ1(t)), . . . , u

(n−1)(τn(t))
)
+ h(t)

under the initial conditions (2) has a unique solution uh and there exists the positive not depending
on r function h, such that∣∣u(i−1)

h (t)− u
(i−1)
0 (t)

∣∣ ≤ rνq,n(h; ρ)ρ
(i−1)(t) for a ≤ t ≤ b (i = 1, . . . , n),

where u0 is a solution of the problem (1), (2).
The problem (1), (2) is said to be well-posed if it is well-posed with the weight q(t) ≡ 1.

Theorem 1. Let in the domain ]a, b[×Rn the condition

∣∣f(t, x1, . . . , xn)− f(t, y1, . . . , yn)
∣∣ ≤ n∑

i=1

hi(t)|xi − yi|, (3)
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be fulfilled, where hi ∈ Lloc(]a, b]) (i = 1, . . . , n). Let, moreover,

sup

{( t∫
a

|f(s, 0, . . . , 0)| ds
)
/ρ(n−1)(t) : a < t ≤ b

}
< +∞

and there exist a number γ ∈ ]0, 1[ such that

n∑
i=1

t∫
a

ρ(i−1)(τi(s))hi(s) ds ≤ γρ(n−1)(t) for a ≤ t ≤ b.

Then the problem (1), (2) is well-posed.

Theorem 2. Let n ≥ 2, the function f0(t)
def
= f(t, 0, . . . , 0) be integrable with the weight q, and

νn,q(f0; ρ) < +∞, where q : ]a, b] → ]0,+∞[ is some nonincreasing function, satisfying the equality

lim
t→a

(
q(t)ρ(n−1)(t)

)
= 0.

Let, moreover, in the domain ]a, b[×Rn the condition (3) be fulfilled, where hi ∈ Lloc(]a, b]) (i =
1, . . . , n), and there exist the numbers m ∈ {1, . . . , n− 1} and γ ∈ ]0, 1[ such that

exp

( m∑
i=1

t∫
s

(x− a)n−i

(n− i)!
hi(x) dx

)
≤ q(s)

q(t)
for a < s ≤ t ≤ b,

t∫
a

q(s)

[ m∑
i=1

∣∣ρ(i−1)(τi(s))− ρ(i−1)(s)
∣∣hi(s) + n∑

i=m+1

ρ(i−1)(τi(s))hi(s)

]
ds ≤

≤ γq(t)ρ(n−1)(t) for a < t ≤ b.

Then the problem (1), (2) is well-posed with the weight q.
The above-formulated theorems cover the case in which the equation (1) is strongly singular,

i.e., the case, where
b∫

a

(t− a)µf∗(t, x) dt = +∞ for µ ≥ 0, x > 0,

where f∗(t, x) = max
{∣∣f(t, x1, . . . , xn)∣∣ : n∑

i=1
|xi| ≤ x

}
. It should be also noted that the condition

γ ∈ ]0, 1[ in these theorems is unimprovable and it cannot be replaced by the condition γ = 1.
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The differential equation (
p(t)u′

)′
= p(t)f(u) (1)

is investigated on the positive half line under the assumptions (2)–(6):

f ∈ Liploc(R), ∃L ∈ (0,∞) : f(L) = 0, (2)

∃L0 ∈ [−∞, 0) : xf(x) < 0, x ∈ (L0, 0) ∪ (0, L), (3)

∃ B̄ ∈ (L0, 0) : F (B̄) = F (L), where F (x) = −
x∫

0

f(z) dz, x ∈ R, (4)

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (5)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)

p(t)
= 0. (6)

Due to p(0) = 0, equation (1) has a singularity at t = 0.
The following results are proved.

1. For each B < 0 equation (1) has a unique solution uB ∈ C1[0,∞)∩C2(0,∞) which satisfies
the initial conditions

u(0) = B, u′(0) = 0. (7)

2. A solution uB of problem (1), (7) satisfying sup{u(t) : t ∈ [0,∞)} < L is called a damped
solution. If Md is the set of all B < 0 such that uB is a damped solution, then Md is nonempty
and open in (−∞, 0).

3. A solution uB of problem (1), (7) satisfying sup{u(t) : t ∈ [0,∞)} > L is called an escape
solution. If Me is the set of all B < 0 such that uB is an escape solution, then Me is open in
(−∞, 0). In addition, Me is nonempty provided one of the following additional assumptions (A1),
(A2), (A3), or (A4) is valid:

• (A1): L0 ∈ (−∞, 0), f(L0) = 0.

• (A2): f(x) > 0 for x ∈ (−∞, 0) and

0 ≤ lim sup
x→−∞

f(x)

|x|
< ∞.

• (A3): f(x) > 0 for x ∈ (−∞, 0) and there exists k ≥ 2 such that

lim
t→0+

p′(t)

tk−2
∈ (0,∞).

Further, there exists r ∈ (1, k+2
k−2) such that f fulfils

lim
x→−∞

f(x)

|x|r
∈ (0,∞).
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• (A4): 1∫
0

ds

p(s)
< ∞.

4. If Me is nonempty, then problem (1), (7) has a solution u such that

sup
{
u(t) : t ∈ [0,∞)

}
= L.

Such solution is called homoclinic. It is increasing and limt→∞ u(t) = L.

5. Some other additional conditions for p and f which give asymptotic formulas for damped
and homoclinic solutions are discussed.
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We consider the system of linear functional differential equations

x′i(t) =

n∑
k=1

(likxk)(t) + qi(t), t ∈ [a, b), i = 1, 2, . . . , n, (1)

subjected to the initial conditions

xi(a) = λi, i = 1, 2, . . . , n, (2)

where −∞ < a < b < ∞, the functions qi, i = 1, 2, . . . , n, are locally integrable, lik : C([a, b),R) →
L1; loc([a, b),R), i, k = 1, 2, . . . , n, are linear mappings and L1; loc((a, b],R) is the set of functions
u : (a, b] → R such that u|[a+ε,b] ∈ L1([a+ ε, b],R) for any ε ∈ (0, b− a).

Our aim is to find conditions sufficient for the existence and uniqueness of a slowly growing
solution of the initial value problem (1), (2). The “slow growth” of a solution x = (xi)

n
i=1 : [a, b) →

Rn is understood in the sense that its components satisfy the conditions

sup
t∈[a,b)

hi(t)|xi(t)| < +∞, i = 1, 2, . . . , n, (3)

where hi : [a, b) → [0,+∞), i = 1, 2, . . . , n, are certain given continuous functions possessing the
properties

lim
t→b−

hi(t) = 0, i = 1, 2, . . . , n. (4)

Solutions of system (1) are sought for in the class of functions that are only locally absolutely
continuous and, in particular, may be unbounded in a neighbourhood of the point b.

Definition. By a solution of the functional differential system (1), we mean a locally absolutely
continuous vector function x = (xi)

n
i=1 : [a, b) → Rn with components possessing the properties

hix
′
i ∈ L1([a, b),R), i = 1, 2 . . . , n, and satisfying equalities (1) almost everywhere on the interval

[a, b). We say that a solution x = (xi)
n
i=1 : [a, b) → Rn of system (1) is slowly growing if it has

property (3).

The theorem formulated below concerns the case where the right-hand side terms of equations
(1) are determined by linear operators which are positive with respect to the pointwise partial
orderings of the linear manifolds C([a, b),R) and L1; loc([a, b),R).

Definition. An operator l : C([a, b),R) → L1; loc([a, b),R) is said to be positive if (lu)(t) ≥ 0
for a. e. t ∈ [a, b) whenever u is non-negative on [a, b).

Theorem ([1]). Let us assume that the linear mappings lik : C([a, b),R) → L1; loc([a, b),R),
i, k = 1, 2, . . . , n, are positive, the relations

n∑
k=1

hklik

( 1

hk

)
∈ L1([a, b),R), i = 1, 2, . . . , n, (5)
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hold, and there exists a certain δ ∈ [0, 1) such that the inequality

n∑
k=1

lik

( n∑
j=1

·∫
a

lkj

( 1

hj

)
(s) ds

)
(t) ≤ δ

n∑
k=1

lik

( 1

hk

)
(t) (6)

is satisfied for a. e. t ∈ [a, b) and every i = 1, 2, . . . , n.
Then the initial value problem (1), (2) has a unique slowly growing solution for arbitrary locally

integrable functions qi : [a, b) → R, i = 1, 2, . . . , n, possessing the property

{hiqi | i = 1, 2, . . . , n} ⊂ L1([a, b),R). (7)

Furthermore, if qi and λi, i = 1, 2, . . . , n, satisfy the condition

−
n∑

k=1

λk(lik1)(t) ≤ qi(t), t ∈ [a, b), i = 1, 2, . . . , n, (8)

then the unique solution of problem (1), (2), (3) has non-negative components.

The symbol lik1 in (8) stands for the result of application of the operator lik to the function
equal identically to 1.

By virtue of the positivity of the mappings lik, i, k = 1, 2, . . . , n, conditions (8) are satisfied, in
particular, if {λi| i = 1, 2, . . . , n} ⊂ [0,+∞) and the functions qi, i = 1, 2, . . . , n, are non-negative
almost everywhere on [a, b).

Remark. The condition δ < 1 on the constant δ appearing in assumption (6) of Theorem is
sharp and cannot be weakened.
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The system of differential equations

dzj

dt
= (j − 1)b(t, ε)z1 + (2− j)εα(t, ε)z2 + hj(t, ε, θ) + µZj(t, ε, θ, z1, z2), j = 1, 2 (1)

is considered, where α ∈ Sm−1, b ∈ Sm, h1, h2 ∈ Bm (the definitions of classes Sm and Bm are
given in [1]), inf

G
|b| > 0, z1, z2 ∈ D, the functions Z1 and Z2 belong to the class Bm with respect to

t, ε, θ and have in D continuous partial derivatives with respect to x1, x2 up to some order 2q + 3,
inclusive, and if z1, z2 ∈ Bm, then these partial derivatives are also of the class Bm. µ ∈ R+.

Denote ∀ f ∈ Bm:

Γn(f) =
1
2π

2π∫

0

f(t, ε, θ)exp(−inθ)dθ, n ∈ Z,

and introduce the functions

ξ10(t, ε, θ) =
∞∑

n=−∞
(n 6=0)

Γn(h1(t, ε, θ))
inϕ(t, ε)

exp(inθ)− Γ0(h2(t, ε, θ))
b(t, ε)

,

ξ20(t, ε, θ) =
∞∑

n=−∞
(n 6=0)

(−b(t, ε)Γn(h1(t, ε, θ))
n2ϕ2(t, ε)

+
Γn(h2(t, ε, θ))

inϕ(t, ε)

)
exp(inθ) + N0(t, ε),

where the function N0(t, ε) is defined from the equation

Q(t, ε, N0) = Γ0

(
Z1(t, ε, θ, ξ10, ξ20)

)
= 0. (2)

Denote, further, (Z)0 = Z(t, ε, θ, ξ10, ξ20),

η11(t, ε, θ) =
∞∑

n=−∞
(n 6=0)

Γn((Z1)0)
inϕ(t, ε)

exp(inθ)− Γ0((Z2)0)
b(t, ε)

,

η21(t, ε, θ) =
∞∑

n=−∞
(n 6=0)

(−b(t, ε)Γn((Z1)0)
n2ϕ2(t, ε)

+
Γn((Z2)0)
inϕ(t, ε)

)
exp(inθ),

Q1(t, ε, N0) = Γ0

((∂Z1

∂ξ1

)
0
η11(t, ε, θ) +

(∂Z1

∂ξ2

)
0
η21(t, ε, θ)

)
.

Lemma. Let the system (1) satisfy the following conditions:

(1) Γ0(h1(t, ε, θ)) ≡ 0 ∀ t, ε ∈ G;

(2) the equality (2) is fulfilled ∀ t, ε ∈ G and ∀ N0;

72



(3) the equation Q1(t, ε,N0) = 0 has a root N0(t, ε) satisfying the condition

inf
G

∣∣∣∣
dQ1(t, ε, N0)

dN0

∣∣∣∣ > 0.

Then for sufficiently small values of the parameter µ there exists transformation of the type

zj = ξ̃j(t, ε, θ, µ) +
2∑

k=1

ψjk(t, ε, µ)z̃k, j = 1, 2, (3)

where ξ̃j , ψjk ∈ Bm (j, k = 1, 2), reducing the system (2) to the form

dz̃j

dt
= (j − 1)b(t, ε)z̃j +

2∑

k=1

(
q∑

l=1

ajkl(t, ε)µl

)
z̃k + εcj(t, ε, θ, µ) + µ2q(t, ε, θ, µ)+

+ε
2∑

k=1

rjk(t, ε, θ, µ)z̃k + µq+1
2∑

k=1

wjk(t, ε, θ, µ)z̃k + µZ̃j(t, ε, θ, z̃1, z̃2, µ), j = 1, 2, (4)

where ajkl ∈ Sm, cj , dj , rjk, wjk ∈ Bm−1, Z̃j contain summands, not lower than of the 2nd order
with respect to z̃1, z̃2.

Introduce the matrices Al(t, ε) = (ajkl(t, ε))j,k=1,2, (l = 1, q) (ajkl are defined in Lemma 1),

J(t, ε) =
(

0 0
b(t, ε) 0

)
, A∗(t, ε, µ) = J(t, ε) +

q∑

l=1

Al(t, ε)µl.

Theorem. Let:

(1) eigenvalues λ∗j (t, ε, µ) (j = 1, 2) of the matrix A∗(t, ε, µ) be such that inf
G
|Reλ∗j (t, ε, µ)| ≥ γ0µ

q0

(γ0 > 0, 0 < q0 ≤ q);

(2) for the matrix A∗(t, ε, µ), there exist a matrix U(t, ε, µ) such that

(a) inf
G
|detU(t, ε, µ)| > 0;

(b) U−1A∗U = Λ(t, ε, µ) is a diagonal matrix;

(3) the conditions of the lemma be fulfilled.

Then for sufficiently small values µ, ε/µ2q0−1, the system (1) has a particular solution of the class
Bm−1.
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We consider the system of differential equations{
y′i = αipi(t)φi+1(yi+1) (i = 1, n− 1),

y′n = αnpn(t)φ1(y1),
(1)

where αi ∈ {−1, 1} (i = 1, n), pi : [a, ω[→ ]0,+∞[ (i = 1, n) are continuous functions, −∞ < a <
ω ≤ +∞, φi : ∆(Y 0

i ) → ]0;+∞[ (i = 1, n) (∆(Y 0
i ) is a one-sided neighborhood of Y 0

i , Y
0
i equals

either 0, or ±∞) are twice continuously differentiable functions that satisfy the conditions φ′
i(z) ̸= 0

when z ∈ ∆(Y 0
i ), lim

z→Yi
z∈∆(Y 0

i
)

φi(z) = Φ0
i ∈ {0,+∞}, lim

z→Yi
z∈∆(Y 0

i
)

φ′′
i (z)φi(z)

[φ′
i(z)]

2 = γi, where
n∏

i=1
(1− γi) ̸= 1.

Such system of differential equations when φi(yi) = |yi|σi (i = 1.n) is called the system of
differential equations of Emden–Fowler type. While t ↑ ω, the asymptotic representations for its
non-oscillating solutions were established in [1], [2] for n = 2. This work covers situations, when
functions φi(yi) (i = 1, n) are close to power functions, when γi ̸= 1, as well as situations when
functions φi(yi) (i = 1, n) have an exponential rate, when γi = 1, that means that these functions
are fast varying (see [3], [4]).

A solution (yi)
n
i=1 of the system (1), defined on the interval [t0, ω[⊂[a, ω[ , is called Pω(Λ1, . . . ,Λn)-

solution, if functions ui(t) = φi(yi(t)) satisfy the following conditions:

lim
t↑ω

ui(t) = Φ0
i , lim

t↑ω

ui(t)u
′
i+1(t)

u′i(t)ui+1(t)
= Λi (i = 1, n).

Note that the second condition in the definition of Pω(Λ1, . . . ,Λn)-solution implies:

n∏
i=1

Li = 1. (2)

For the system (1) in case, when Λi ̸= 0 (i = 1, n), the necessary and sufficient conditions for
the existence of Pω(Λ1, . . . ,Λn)-solutions are established, as well as the asymptotic representation
for these solutions when t ↑ ω.

In order to formulate the theorem, we introduce several auxiliary notations:

I =
{
i ∈ {1, . . . , n} : 1− Λi − γi ̸= 0

}
, I = {1, . . . , n} \ I.

Note that the set I ̸= ∅, because (2) and
n∏

i=1
(1− γi) ̸= 1. Further, let l = min I.

Ii(t) =



t∫
Ai

pi(τ) dτ for i ∈ I,

t∫
Ai

Il(τ)pi(τ) dτ for i ∈ I,
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βi =


1− Λi − γi, if i ∈ I,

βl
Λl · · ·Λi−1

, if i ∈ {l + 1, . . . , n} \ I,
βl

Λl · · ·ΛnΛ1 · · ·Λi−1
, if i ∈ {1, . . . , l − 1} \ I,

where limits of integration Ai ∈ {ω, a} are chosen in such a way that corresponding integral Ii aims
either to zero, or to ∞ when t ↑ ω.

A∗
i =

{
1, if Ai = a,

−1, if Ai = ω
(i = 1, . . . , n).

Theorem. Let Λi ∈ R\{0} (i = 1, n) and l = min I. Then for the existence of Pω(Λ1, . . . ,Λn)-
solutions of (1) it is necessary and, if algebraic equation

n∏
i=1

(
(1− γi)

i−1∏
j=1

Λj + ν
)
−

n∏
i=1

i−1∏
j=1

Λj = 0 (3)

does not have roots with zero real part, it is also sufficient that for each i ∈ {1, . . . , n}

lim
t↑ω

Ii(t)I
′
i+1(t)

I ′i(t)Ii+1(t)
= Λi

βi+1

βi

and following conditions are satisfied A∗
iβi > 0 when Φ0

i = +∞, A∗
iβi < 0 when Φ0

i = 0,
sign

[
αiA

∗
iβi

]
= signφ′

i(z). Moreover, components of each solution of that type admit following
asymptotic representation when t ↑ ω

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβiIi(t)[1 + o(1)], if i ∈ I,

φi(yi(t))

φ′
i(yi(t))φi+1(yi+1(t))

= αiβi
Ii(t)

Il(t)
[1 + o(1)], if i ∈ I,

and there exists the whole k-parametric family of these solutions if there are k positive roots
(including multiple roots) among the solutions of (3), with signs of real parts different from those
of the number A∗

l βl.
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We discuss the set of the scalar fractional boundary value problems

cDαnu(t) + f(t, u(t), u′(t), cDµnu(t)) = 0, n ∈ N, (1)

u′(0) = 0, u(1) + au′(1) = 0, (2)

where {αn} ⊂ (1, 2), {µn} ⊂ (0, 1), lim
n→∞

αn = 2, lim
n→∞

µn = 1, a ≥ 0, and f satisfies the conditions:

(H1) f ∈ C([0, 1]×D), D = R+ × R2
−, R+ = [0,∞), R− = (−∞, 0],

(H2) the estimate
0 ≤ φ(t) ≤ f(t, x, y, z) ≤ ω(x, |y|, |z|),

is fulfilled for (t, x, y, z) ∈ [0, 1] × D, where φ ∈ C[0, 1], φ(t0) > 0 for some t0 ∈ [0, 1],
ω ∈ C(R3

+), ω is nondecreasing in all its arguments, and

lim
x→∞

ω(x, x, x)

x
= 0.

Here cD is the Caputo fractional derivative. The Caputo fractional derivative cDγx of order γ > 0
of a function x : [0, 1] → R is defined as (see, e.g., [1], [2])

cDγx(t) =


1

Γ(n− γ)

dn

dtn

t∫
0

(t− s)n−γ−1
(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)
ds if γ ̸∈ N,

x(γ)(t) if γ ∈ N,

where n = [γ] + 1 and [γ] means the integral part of γ and where Γ is the Euler gamma function.
We say that a function u ∈ C1[0, 1] is a positive solution of problem (1), (2) if u > 0 on [0, 1),

cDαnu ∈ C[0, 1], u satisfies the boundary conditions (2) and equality (1) holds for t ∈ [0, 1].
Together with equation (1) we investigate the differential equation

u′′(t) + f(t, u(t), u′(t), u′(t)) = 0. (3)

A function u ∈ C2[0, 1] is called a positive solution of problem (3), (2) if u > 0 on [0, 1), u satisfies
(2) and equality (3) is fulfilled for t ∈ [0, 1].

The following result is proved by the Leray–Schauder nonlinear alternative [3].

Theorem 1. Let conditions (H1) and (H2) hold. Then for each n ∈ N problem (1), (2) has a
solution un and there exists a positive constant S independent of n such that the estimate

(1− tα∗−1)Q ≤ un(t) < (1 + a)S, 0 ≥ u′n(t) > −S, 0 ≥ cDµun(t) > − S

∆
(4)

is fulfilled for t ∈ [0, 1], where

Q =
1

Γ(α)

1∫
0

(1− s)φ(s) ds, ∆ = min{Γ(s) : 1 ≤ s ≤ 2}, α∗ = inf{αn : n ∈ N}.
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Let ∥x∥ = max{|x(t)| : t ∈ [0, 1]} be the norm in C[0, 1] and let ∥x∥C1 = max{∥x∥, ∥x′∥}. The
following theorem states the relation between positive solutions of problem (1), (2) and positive
solutions of problem (3), (2).

Theorem 2. Let (H1) and (H2) hold. Let un be a positive solution of problem (1), (2) satisfying
inequality (4). Then there exist a subsequence {ukn} of {un} and a positive solution u of problem
(3), (2) such that

lim
n→∞

∥ukn − u∥C1 = 0, lim
n→∞

∥cDµknukn − u′∥ = 0, lim
n→∞

∥cDαknun − u′′∥ = 0.
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In the present paper, for initial data, the necessary conditions of optimality are obtained. Under
initial data we imply the collection of initial moment and constant delays, initial vector and function.
Let Rn

x be an n-dimensional vector space of points x = (x1, . . . , xn)T , where T means transpose;
P ⊂ Rk

p and Z ⊂ Rm
z be open sets and O = (P,Z)T = {x = (p, z)T ∈ Rn

x : p ∈ P, z ∈ Z}, with
k +m = n; next t01 < t02 < t1, 0 < τ1 < τ2, 0 < σ1 < σ2 be given numbers, with t1 − t02 > τ2; the
n-dimensional function f(t, x, p, z) be continuous on the set [t01, t1]×O× P ×Z and continuously
differentiable with respect to x, p, z; let P0 ⊂ P be a compact convex set of initial vectors p0; Φ and
G be sets of continuous initial functions φ(t) ∈ P1, t ∈ [τ̂ , t02] and g(t) ∈ Z1, t ∈ [τ̂ , t02], respectively,
where τ̂ = t01−max{τ2, σ2}, P1 ⊂ P , Z1 ⊂ Z are convex and compact sets. Suppose that functions
qi(t0, τ, σ, p, z, x), i = 0, l are continuously differentiable with respect to all arguments t0 ∈ [t01, t02],
τ ∈ [τ1, τ2], σ ∈ [σ1, σ2], p ∈ P , z ∈ Z, x ∈ O.

To each element w = (t0, τ, σ, p0, φ, g) ∈ W = (t01, t02) × (τ1, τ2) × (σ1, σ2) × P0 × Φ × G, we
assign the delay functional-differential equation

ẋ(t) = f
(
t, x(t), p(t− τ), z(t− σ)

)
(1)

with the mixed initial condition

x(t) = (φ(t), g(t))T , t ∈ [τ̂ , t0), x(t0) = (p0, g(t0))
T . (2)

Definition 1. Let w = (t0, τ, σ, p0, φ, g) ∈W . A function x(t) = x(t;w) = (p(t;w), z(t;w))T ∈
O, t ∈ [τ̂ , t1], is called a solution of Eq. (1) with the initial condition (2) if it satisfies condition
(2) and is absolutely continuous on the interval [t0, t1] and satisfies Eq. (1) almost everywhere on
[t0, t1].

Definition 2. An element w ∈ W is said to be admissible if the solution x(t) = x(t;w) is
defined on the interval [τ̂ , t1] and satisfies the conditions

qi
(
t0, τ, σ, p0, g(t0), x(t1)

)
= 0, i = 1, l.

We denote the set of admissible elements by W0.

Definition 3. An element w0 = (t00, τ0, σ0, p00, φ0, g0) ∈ W0 is said to be optimal if for any
w = (t0, τ, σ, p0, φ, g) ∈W0 we have

q0
(
t00, τ0, σ0, p00, g0(t00), x0(t1)

)
≤ q0

(
t0, τ, σ, p0, g(t0), x(t1)

)
, x0(t) = x(t;w0).
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Theorem. Let w0 = (t00, τ0, σ0, p00, φ0, g0) be an optimal element and the following condition
hold: the functions φ0(t), g0(t) are continuously differentiable. Then there exist a non-zero vector
π = (π0, . . . , πl), where π0 ≤ 0 and the solution Ψ(t) to the equation{

Ψ̇(t) = −Ψ(t)fx[t]−
(
Ψ(t+ τ0)fp[t+ τ0],Ψ(t+ σ0)fz[t+ σ0]

)
, t ∈ [t00, t1],

Ψ(t1) = πQ0x, Ψ(t) = 0, t > t1

such that the conditions listed below hold: the conditions for the function Ψ(t) = (ψ(t), χ(t)) =
(ψ1(t), . . . , ψk(t), χ1(t), . . . , χm(t)) and vectors p00, g0(t00)

(πQ0p0 + ψ(t00))p00 = max
p0∈P1

(
πQ0p0 + ψ(t00)

)
p0, (πQ0z + χ(t00))g0(t00) = max

g∈Z1

(
πQ0z + χ(t00)

)
g,

where Q0p0 = Qp0

(
t00, τ0, σ0, p00, x0(t1)

)
, Q = (q0, . . . , ql)T ;

the integral maximum principles for the optimal initial functions φ0(t) and g0(t)

t00∫
t00−τ0

Ψ(t+ τ0)fp[t+ τ0]φ0(t) dt = max
φ(·)∈Φ

t00∫
t00−τ0

Ψ(t+ τ0)fp[t+ τ0]φ(t) dt,

t00∫
t00−σ0

Ψ(t+ σ0)fz[t+ σ0]g0(t) dt = max
g(·)∈G

t00∫
t00−σ0

Ψ(t+ σ0)fz[t+ σ0]g(t) dt;

the condition for the optimal initial moment t00

πQ0t0 +
(
πQ0z + χ(t00)

)
ġ(t00) =

= Ψ(t00)f [t00] + Ψ(t00 + τ0)
{
f [t0 + τ0; p00]− f [t0 + τ0;φ0(t00)]

}
;

the conditions for the optimal delays τ0, σ0

πQ0τ = Ψ(t00 + τ0)
{
f [t0 + τ0; p00]− f [t0 + τ0;φ0(t00)]

}
+

t1∫
t00

Ψ(t)f0p[t]ṗ0(t− τ0) dt,

πQ0σ =

t1∫
t00

Ψ(t)fz[t]ż0(t− σ0) dt.

Here

fx[t] = fx(t, x0(t), p0(t− τ0), z0(t− σ0)), f [t] = f(t, x0(t), p0(t− τ0), z0(t− σ0)),

f [t; p0] = f(t, x0(t), p0, z0(t− σ0)).
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We consider the system of differential equations{
y′i = αipi(t)φi+1(yi+1) (i = 1, n− 1),

y′n = αnpn(t)φ1(y1),
(1)

where αi ∈ {−1, 1} (i = 1, n), pi : [a, ω[→ ]0,+∞[ (i = 1, n) are continuous functions, −∞ < a <
ω ≤ +∞, φi : ∆(Y 0

i ) → ]0;+∞[ (i = 1, n) are continuous and regularly varying functions (see

[1]) when yi → Y 0
i of σi orders. Constants σi satisfy the equality:

n∏
i=1

σi ̸= 1, where ∆(Y 0
i ) is a

one-sided neighborhood of Y 0
i , Y

0
i equals either 0, or ±∞.

If φi(yi) = |yi|σi (i = 1, n), system (1) is called an Emden–Fowler system. When n = 2, the
asymptotic behavior of its nonoscillating solutions while t ↑ ω is thoroughly investigated in [3]–[7].

In T. A. Chanturia’s paper [2], for systems of differential equations that are close to (1) in a
certain sense and include (1), the signs for A and B-properties’ existence are established.

A solution (yi)
n
i=1 of the system (1), defined on the interval [t0, ω[⊂[a, ω[ , is called Pω(Λ1, . . . ,Λn)-

solution, if it satisfies following conditions:

yi(t) ∈ ∆(Y 0
i ) while t ∈ [t0, ω[ , lim

t↑ω
yi(t) = Y 0

i , lim
t↑ω

yi(t)y
′
i+1(t)

y′i(t)yi+1(t)
= Λi (i = 1, n).

It follows from the third condition in the definition of Pω(Λ1, . . . ,Λn)-solution that parameters
Λ1, . . . ,Λn are connected with such a relation:

n∏
i=1

Λi = 1. (2)

For the system (1), in case when Λi ̸= 0 (i = 1, n), the necessary and sufficient conditions for
the existence of Pω(Λ1, . . . ,Λn)-solutions are established. In order to formulate the main result, we
introduce auxiliary notations.

First, we introduce the sets of indices I =
{
i ∈ {1, . . . , n} : 1−Λiσi+1 ̸= 0

}
, I = {1, . . . , n}\I.

It is obvious that I ̸= ∅, because of (2) and the fact that
n∏

i=1
σi ̸= 1. Let l be the minimum element

of the set I.
Further, denote:

µi =

{
1, as Y 0

i = +∞, or Y 0
i = 0 and ∆(Y 0

i ) is right neighborhood of 0,

−1, as Y 0
i = −∞, or Y 0

i = 0 and ∆(Y 0
i ) is left neighborhood of 0,

Ii(t) =



t∫
Ai

pi(τ) dτ for i ∈ I,

t∫
Ai

Il(τ)pi(τ) dτ for i ∈ I,

βi =



1− Λiσi+1, if i ∈ I,
βl

i−1∏
k=l

Λk

, if i ∈ {l + 1, . . . , n} \ I,

βl

l−1∏
k=i

Λk, if i ∈ {1, . . . , l − 1} \ I,
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where limits of integration Ai ∈ {ω, a} are chosen in such a way that corresponding integral Ii aims
either to zero, or to ∞ as t ↑ ω.

A∗
i =

{
1, if Ai = a,

−1, if Ai = ω
(i = 1, . . . , n).

Theorem. Let Λi ∈ R\{0} (i = 1, n) and l = min I. Then for the existence of Pω(Λ1, . . . ,Λn)-
solutions of (1) it is necessary and, if algebraic equation

n∏
i=1

( i−1∏
j=1

Λj + ν
)
−

n∏
i=1

(
σi

i−1∏
j=1

Λj

)
= 0 (3)

does not have roots with zero real part, it is also sufficient that for each i ∈ {1, . . . , n}

lim
t↑ω

Ii(t)I
′
i+1(t)

I ′i(t)Ii+1(t)
= Λi

βi+1

βi

and following conditions are satisfied A∗
iβi > 0 if Y 0

i = ±∞, A∗
iβi < 0 if Y 0

i = 0, sign
[
αiA

∗
i βi

]
=

µi. Moreover, components of each solution of that type admit following asymptotic representation
when t ↑ ω:

yi(t)

φi+1(yi+1(t))
= αiβiIi(t)[1 + o(1)], when i ∈ I,

yi(t)

φi+1(yi+1(t))
= αiβi

Ii(t)

Il(t)
[1 + o(1)], when i ∈ I,

and there exists the whole k- parametric family of these solutions if there are k positive roots
(including multiple roots) among the solutions of (3) with signs of real parts different from those
of the number A∗

l βl.
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B. Půža and Z. Sokhadze

On the Well-Possedness of the Weighted Cauchy Problem for Nonlinear Singular
Differential Equations of Higher Orders with Deviating Arguments . . . . . . . . . . . . . . . . . . . . . 66

I. Rach̊unková
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