

#   

<br>дмиьзм

## 



















 2/6).





## 

## 









 bsjs































## 









## 






## 


 \%әд

 3м




## 

Us@obymǵs










## 







## 


































 s3smso̊\% (ELI 250C), 0,05Hz @s 300 Hz bobzongons @os3s\%mboon.






























 (4 : TC, $<5 \mathrm{mmol} / \mathrm{L} ; 5$ : TC, 5 -@sб <6; 6: TC, 6 -@sб <7; 7 : TC, 7 -@sб <8; $8:$ TC, 8 @s









































## 




























## 

##  

## 




















|  |  <br>  | 3500 | dsemo |
| :---: | :---: | :---: | :---: |
|  | ［ $\mathrm{n}=900$ ］ | ［ $\mathrm{n}=273$ ］ | ［ $\mathrm{n}=627$ ］ |
|  | 40－70 | 40－70 | 40－70 |
|  | $53.6 \pm 8.82$ | $54.9 \pm 8.97$ | $53.0 \pm 8.70$ |
| ¢¢¢6s（38） | $87.07 \pm 0.54$ | $89.65 \pm 0.98$ | $81.64 \pm 0.63$ |
|  | $103.2 \pm 0.49$ | $106.2 \pm 0.85$ | $101.9 \pm 0.59$ |
|  bobర゙ммறy๓o | $138.6 \pm 0.83$ | $141.1 \pm 1.57$ | $137.6 \pm 0.97$ |
|  | $85.7 \pm 0.46$ | $88.32 \pm 0.89$ | $84.6 \pm 0.54$ |
|  |  |  |  |
| ว¢ึว3อญ๐（\％） | 11．9\％（107） | 37．4\％（102） | 0．8\％（5） |
|  | 88．1\％（793） | 62．6\％（171） | 99．2\％（622） |
|  | $5.39 \pm 0.06$ | $5.52 \pm 0.11$ | $5.33 \pm 0.07$ |
|  | 77／8．6\％ | 33／12．1\％） | 44／7．0\％ |
|  <br>  |  |  |  |
|  | 147 （16．1\％） | 36 （13．1\％） | 111 （17，7\％） |
| Бмณдง 120－129 80－84 | 145 （14．2\％） | 40 （14，6\％） | 105 （16，7\％） |
|  | 128 （27．3\％） | 42 （15，4\％） | 86 （13，7\％） |
| 303ృ凹రీ96\％\％s（bots＠os I）140－159 90－99 | 246 （27．3\％） | 79 （28，9\％） | 167 （26，6\％） |
| 3๐3ృ凸రీ96\％\％s（bరీธ＠os II）160－179 100－109 | 150 （16．7\％） | 39 （14，3\％） | 111 （17，7\％） |
| 3ెం3ู๗రీృ6\％os（bరీs＠os III）＞180＞110 | 84 （9．3\％） | 37 （13，5\％） | 47 （7，5\％） |
|  | $5.29 \pm 0.04$ | $5.10 \pm 0.07$ | $5.37 \pm 0.05$ |
|  |  |  |  |
| ＜ $160 \mathrm{mg} / \mathrm{dL}$（＜ $4.13 \mathrm{mmol} / \mathrm{L}$ ） | 17．8\％（160） | 20．9\％（57） | 16．4\％（103） |
| $160-199 \mathrm{mg} / \mathrm{dL}(4.13-5.14 \mathrm{mmol} / \mathrm{L})$ | 32．0\％（288） | 36．3\％（99） | 30．1\％（189） |
| 200－239 mg／dL（ $5.17-6.18 \mathrm{mmol} / \mathrm{L}$ ） | 28．9\％（260） | 26．7\％（73） | 29．8\％（187） |
| 240－279 mg／dL（ $6.20-7.21 \mathrm{mmol} / \mathrm{L}$ ） | 14．8\％（ 133） | 13．2\％（36） | 15．5\％（ 97） |
| $\geq 280 \mathrm{mg} / \mathrm{dL}(\geq 7.23 \mathrm{mmol} / \mathrm{L})$ | 6．5\％（59） | 2．9\％（8） | 8．1\％（51） |









 (3ヵゥомп 2).



































## 













| \％ | ＜10\％ | 10\％－20\％ | 20\％－30\％ | 30\％－40\％ | 240\％ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| しょう๓のм <br>  | 773 | 57 | 47 | 4 | 19 |
| дऽaşıso | 216 | 26 | 20 | 4 | 7 |
| dumo | 557 | 31 | 27 | － | 12 |







| \% | <10\% | 10\%-20\% | >20\% |
| :---: | :---: | :---: | :---: |
|  ゥ | 773 (86\%) | 57 (7.4\%) | 70 (9.1\%) |
|  | 216 (79\%) | 26 (12\%) | 31 (14.4\%) |
| dueso | 557 (88\%) | 31 (5.6\%) | 39 (7.1\%) |













 @s дьдьзь


| \% | 10\%-20\% | >20\% |
| :---: | :---: | :---: |
|  | 57 (45\%) | 70 (55,6\%) |
|  | 26 (45,6\%) | 31 (54.4\%) |
| dsemo | 31 (44,3\%) | 39 (55,8\%) |










|  | bऽgলのм <br>  |  | dıeso |
| :---: | :---: | :---: | :---: |
|  | [ $\mathrm{n}=44$ ] | [ $\mathrm{n}=20]$ | [ $\mathrm{n}=24$ ] |
|  | 42-70 | 42-70 | 45-70 |
| bsoussme stszo (6) | $57.27 \pm 1.20$ | $56.60 \pm 1.80$ | $57.00 \pm 1.63$ |
|  | $166.11 \pm 1.79$ | $174.15 \pm 1.88$ | 159.42 $\pm 2.05$ |
| Gmbs (38) | $86.25 \pm 2.37$ | $86.35 \pm 3.59$ | $86.17 \pm 3.23$ |
|  | $106.9 \pm 1.95$ | $104.0 \pm 3.05$ | $109.4 \pm 2.47$ |
|  | $168.86 \pm 3.10$ | $164.63 \pm 3.86$ | 172.40 4.65 |
|  | $99.55 \pm 2.17$ | 97.38 $\pm 3.14$ | 101.35 ${ }^{\text {a }}$.01 |
|  | $5.27 \pm 0.12$ | $5.28 \pm 0.17$ | $5.28 \pm 0.16$ |
|  | $6.22 \pm 0.27$ | $5.72 \pm 0.45$ | $6.64 \pm 030$ |

 ＠osరె〇రింの

|  | bऽgলのм <br>  |  | dsemo |
| :---: | :---: | :---: | :---: |
|  | ［ $\mathrm{n}=13$ ］ | ［ $\mathrm{n}=6$ ］ | ［ $\mathrm{n}=7$ ］ |
|  | 42－70 | 45－70 | 42－70 |
| bsच̈ysme stszo（6） | $60.31 \pm 1.92$ | $59.17 \pm 3.07$ | $62.29 \pm 2.57$ |
|  | $166.77 \pm 2.91$ | 173．50 $\pm 3.24$ | $161.00 \pm 3.46$ |
| 6m6s（38） | $86.13 \pm 7.43$ | $79.95 \pm 15.06$ | $91.43 \pm 5.78$ |
|  | $113.0 \pm 5.22$ | $112.2 \pm 10.9$ | $111.7 \pm 3.98$ |
|  |  |  |  |
| bobర゙m¢9ymo | $145.6 \pm 4.94$ | $142.08 \pm 8.52$ | $148.57 \pm 5.94$ |
|  | $91.15 \pm 3.76$ | $90.83 \pm 6.54$ | $90.00 \pm 5.64$ |
|  | $9.50 \pm 0.68$ | $9.94 \pm 1.40$ | $9.12 \pm 0.49$ |
|  | $5.77 \pm 0.43$ | $5.73 \pm 0.87$ | $5.80 \pm 0.40$ |



 Әs










##  














 @sbsbosmods

| 2sbstosojb̊ymo |  |
| :---: | :---: |
| sbsjo (TJ¢\%) | 54,9 $\pm 8,97$ |
| bjobo | $\mathrm{m}_{0} \mathrm{~B}^{\mathrm{b}} 3 \mathrm{O}$ (\%) |
| дıassuso | 407 (34.1) |
| dsemo | 788 (65,9\%) |
|  |  |
| $\leq 2$ | 280 (23,4) |
| 3 | $786(65,8)$ |
| $>3$ | $129(10,8)$ |
| 8s6smexjobs | $\mathrm{roO}_{3} \mathbf{b}_{3} \mathbf{( \% )}$ |
|  | $139(11,6)$ |
|  | 588 (49.2) |
|  | 468(39,2) |
| @sbsjajobs |  |
|  | 227(19) |
|  | 323(27\%) |
|  | $368(30,8)$ |
|  | 125(10,5) |
|  | $152(12,7)$ |
| ๆŋวmbs3smo | $\mathrm{nO}_{3} \mathrm{~b}_{3} \mathrm{O}$ (\%) |
| <30 USD | 163 (13,6) |
| 30 USD | 274 (22,9) |
| 60 USD | $259(21,7)$ |
| 120 USD | $280(23,4)$ |
| $>120$ USD | 219 (18,3) |
|  <br>  |  |
| 30 | $188(15,7)$ |
| smb | 1007 (84,3) |











 118 (9,9\%) дмбьணீомэд.



| 2sbsuosmoby@ | $\mathrm{ro}_{3} \mathrm{~b}_{3} \mathrm{O}$ (\%) |
| :---: | :---: |
| BMI* |  |
| 5мпдว | 165 (13,8\%) |
|  | 361 (30,2\%) |
|  | 669 (56,0\%) |
| WHR ** 13,16,20-22,24 |  |
| Бмпдs | $229(19,2)$ |
|  | 966 (80,8) |
|  | $\mathrm{ros}_{3} \mathrm{~b}_{3} \mathrm{O}$ (\%) |
| $3^{0}$ | 118 (9,9) |
| s(n) | 1077 (90,1) |
|  | $\mathrm{mo}_{3}{ }^{\text {b }} 30$ (\%) |
| $\leq 6.1 \mathrm{mmol} / \mathrm{l}$ | 970 (81,2) |
| $\geq 6.1 \mathrm{mmol} / \mathrm{l}$ | 225 (18,8) |
|  |  |


| < $5.2 \mathrm{mmol} / \mathrm{l}$ | 574 (48) |
| :---: | :---: |
| $\geq 5.2 \mathrm{mmol} / \mathrm{l}$ | 621 (52) |
|  | ¢о®b3\% (\%) |
| Бмณฎง | 157 (13,1\%) |
|  | 308 (25,8\%) |
|  | 331 (27,7\%) |
|  | 399 (33,4\%) |

 ons6sogsm@m8s





 300 (28.8\%).



| 2sbsuosmjobeco |  |
| :---: | :---: |
| <10\% | 773 (58,7) |
| 10\% to <20\% | $57(5,4)$ |
| $\geq 20 \%$ | $70(7,1)$ |
|  <br>  | $300(28,8)$ |
|  | $194(16,2)$ |
|  | $90(7,5)$ |
|  | $115(9,6)$ |
















| asbstosomb̊yco |  <br>  |
| :---: | :---: |
|  |  |
| 2-\%ృ дృช์๐ | 1 |
|  | 0.94 (0.65, 1.45) |
|  |  |
| эдıмmjbo | 1 |
|  | 2.85 (1.57, 5.17) |
|  | 1.51 (0.98, 2.32) |
|  |  |
|  | 1 |
| 60 USD | 0.84 (0.52, 1.35) |
| 120 USD sб дjơo | 0.69 (0.45, 1.08) |


|  |  |
| :---: | :---: |
| stos | 1 |
| 30 | 0.77 (0.44, 1.38) |
| BMI |  |
| 6ппдs | 1 |
|  | 1.32 (0.67, 2.60) |
| วuøすゝ6๐ | 2.13 (1.16, 3.92) |
| 6ొ¢ |  |
| бппдs | 1 |
|  | 2.21 (1.26, 3.87) |


 11-ð๐.



| 2sbsbosogotoce |  (95\%CI) |
| :---: | :---: |
|  |  |
|  | 1 |
| 2 sб бьззмл ${ }^{\text {¢ }}$ ¢ | 1.05 (0.78, 1.42) |
|  |  |
|  | 1 |
|  | 2.21 (1.44, 3.38) |
|  | 1.52 (1.12, 2.05) |
|  |  |
|  | 1 |
| 60 USD | 0.98 (0.70, 1.37) |
| 120 USD s6 বృช์ం | 0.73 (0.54, 1.00) |


|  |  |
| :---: | :---: |
| s凸口 | 1 |
| 30 | 1.01 （0．69，1．48） |
| BMI |  |
| бмณдง | 1 |
| Эゝが○ ¢¢\％бs | 1.68 （1．07，2．63） |
| しoabugto | 1.58 （1．04，2．41） |
|  |  |
| бмณдง | 1 |
|  | 1.43 （1．01，2．03） |








## 














 œsbismo.

























## 


























 з з

 2,21-хว(ল).





















 эз



































## @ob 3359 о

 8s@sбsfocmうठs;
















## 




〔ొmbs/b










@obgณภ゚s

1) Toidze M, Tabagari S, Talakvadze T, Tvildiani L, Pkhakadze G, Tabagari-Bregvadze N. „IMPACT OF SOCIOECONOMIC STATUS ON CARDIOVASCULAR RISK IN GEORGIAN POPULATION". Georgian Medical News. 2018 Jul-Aug; (280-281):68-75.
2) M.Toidze, S. Tabagari, S. Mendis, P. Nordet, N. Bregvade-Tabagari, G Pkhakadze, T. Talakvade, L. Tvildiani „RISK FACTORS OF CARDIOVASCULAR DISEASE AND CARDIOVASCULAR RISK ASSESMENT OF THE GEORGIAN POPULATION BY WHO/ISH RISK ASSESMENT SCORES". J. Innovative Medicine and Biology. 2012 N1-2 (145-149);
3) M.Toidze, Nino Bregvadze-Tabagari. „RISK FACTORS OF CARDIOVASCULAR DISEASE AND CARDIOVASCULAR RISK ASSESMENT OF THE GEORGIAN POPULATION". $6^{\text {th }}$ International Postgraduate Medical Students Conference. Hradec Kralove. 2009. 19-21 Nov. p. 128

# DAVID TVILDIANI MEDICAL UNIVERSITY 

Marine Toidze

# DISTRIBUTION OF CARDIOVASCULAR DISEASES AND <br> CARDIOVASCULAR RISK FACTORS IN GERGIAN POPULATION 

THESIS
Of Dissertation for the Academic Degree of
PhD in Medicine

Tbilisi 2019

The PhD research was performed at JSC „ Union of Sachkhere Regional Hospital and Policlinic " and David Tvildiani Medical University.

Research Directors:

Nino Tabagari-MD, PhD, Professor, David Tvildiani Medical University
George Pkhakadze - MD, PhD, Professor, David Tvildiani Medical University
Official experts/opponents:
Zurab Pagava - MD, PhD, Professor. Head of Cardiac Department of N. Bokhua Cardiovascular Center.

Ketevan Janashia - MD, PhD, Chief Scientist, Head of Scientific-Research Laboratory of David Tvildiani Medical University

Ekaterine Sanikidze-MD, PhD, Professor, David Tvildiani Medical University.
The dissertation defense will be held on $\qquad$ at--PM------of 2019, at the David Tvildiani Medical University Conference Hall (2/6 Lubliana st. Tbilisi 0159). The dissertation could be obtained from the Daphne Hare Medical Library, David Tvildiani Medical University.

The Thesis will be distributed on--2019.

Scientific Secretary of the Dissertation Council $\mathrm{MD}, \mathrm{PhD}$

## GENERAL DESCRIPTION OF THE STUDY

## Relevance of the problem

Cardiovascular diseases (CVD) continue to be the leading cause of death and disability worldwide, representing $31 \%$ of all death. $37 \%$ of CVD death caused by coronary diseases. In numbers, it means $7,4 \mathrm{mln}$. death from Myocardial Infarction (MI) and $6,7 \mathrm{mln}$. Death from stroke. Barden of CVD morbidity and mortality varies widely in different countries. It is relatively low in developed, industrialized countries, and high in low and middle- income countries.

As in other low- and middle-income countries, cardio-vascular diseases are highly prevalent in Georgia. According WHO statistics, in Georgia, 36\% of all death caused by ischemic heart disease, and $23 \%$ caused by stroke (chart 1).-
chart 1. Distribution of cardiovascular diseases worldwide


Several years ago, WHO conducted study in several low and middle- income countries, to asses cardiovascular risks of local population. Study was conducted in Nigeria, Iran, China, Pakistan, Georgia, Nepal, Cuba and Sri-Lanka. These countries do not have any local CVD risk-assessment system and one of the goals of the study was validation of existing WHO/ISH

CVD risk-assessment system for these countries. Risk of Cardiovascular disease was estimated according DALY-s (disability-adjusted life years), which was highly variable among participant countries. For example, coronary DALY was less than 9 for China and Sri-Lanka and 20-29 in Georgia; Stroke Daly was less than 9 in Cuba and 15-19 in Georgia.

CVD risks of Georgian population was one of the highest among participant countries fasting glycemia $\geq 7 \mathrm{mmol} / \mathrm{L}$ had $11,2 \%$ of participants, which was highest after Pakistan and Iran; High cholesterol level ( $26 \mathrm{mmol} / \mathrm{L}$ ) had 29,9\%, almost one third of participants, which is alarming, because it is highest among all participant countries; Arterial blood pressure was alarming also, because systolic BP $\geq 140 \mathrm{~mm} . \mathrm{Hg}$ and diastolic BP $\geq 90 \mathrm{~mm} . \mathrm{Hg}$ had $52,5 \%$ and $46,2 \%$ of participants respectively, which is, like cholesterol numbers, are highest among participant countries. Even more alarming was prevalence of obesity, because BMI $\geq 30$ had 56,6\% of Georgian participants.

According these data, assessment of distribution and prevalence of cardiovascular diseases and cardiovascular risk factors in Georgian population is very important. To the best of our knowledge, this is the first study assessing associations between distribution of cardiovascular diseases and risk factors in a cohort of adult Georgians.

## Objectives and Goals of the study

1. Assessments distribution of CVD risk factors according WHO/ISH risk assessment system in primary risk Georgian population;
2. Assessment prevalence of Cardiovascular risk factors in Georgian population;
3. Assessment Georgian population according WHO/ISH risk predicting charts;
4. Study distribution of additional CVD risk-factors;
5. Distribution of additional risk factors in $\mathrm{WHO} / \mathrm{ISH}$ risk groups.

## Scientific novelty of the study

To the best of our knowledge, this is the first study assessing CVD risk factor distribution in Georgian population, also this is the first study assessing distribution of additional CVD risk factors and this is the first study to establish relationship between CVD risks and socioeconomic status in a cohort of Georgian adults.

## Practical significance of the study

Results of this study may significantly influence quality and quantity of primary care, provided by primary healthcare providers. It will decrease significantly prevalence and incidence of cardiovascular morbidity and mortality in Georgia. Results are important for primary care physicians in their everyday practice, also for medical specialists, who are taking care of cardiovascular patients in Hospitals.

Also, proper primary healthcare expenditures will save means in hospital sector and in the same time, outcomes will be much favorable. Public health authorities, as well as clinicians should consider this finding in primary and secondary prevention of cardiovascular diseases and organize multidisciplinary teams to address risk factors.

## Approbation of the study

The approbation took place at the Davit Tvildiani Medical University on October 16, 2018 (Protocol N 16.10.18.).

The basic theses of the study were reported at:

- $6^{\text {th }}$ international Postgraduate Medical Students Conference. Hradec Kralove. Check Republic 2009.
- I Internationl Primary Healthcare Conference - Tbilisi 2016;
- II Internationl Primary Healthcare Conference - Tbilisi 2017;

On the research topic of the dissertation 3 scientific articles were published, reflecting all the main results of the study. The dissertation corresponds with the requirements of the statement about awarding academic degree.

## The volume and structure of the dissertation

The dissertation consists of following parts: introduction, literature review, materials and methods, study results, discussion, conclusions, practical recommendations, bibliography (list of references). The study contains 99 printed pages, illustrated with 4 diagrams, 3 charts, 15 tables. Dissertation has 3 appendixes. List of references contains 145 articles.

## MATERIALS AND METHODS OF THE STUDY

## Methods

A cross-sectional study was conducted on sample of 1196 individuals aged $40-70$ years in the regions of western Georgia with population of 60.000 . The health services in the region consisted of 150 bed regional hospital with associated multi-profile outpatient clinic, and eight small rural primary health care units. A sample of individuals were drawn from the general population using a household survey. Cluster random sampling of households was used. We trained 25 health care workers: 17general practitioners, five cardiologists, and three nurses. Physicians were trained in patient consent obtainment and patient interviewing techniques. Nurses were responsible for blood collection, blood pressure measurement and ECG taking.

Information was collected in a specifically designed data collection form. The form covered demographic (age, gender) socioeconomic (education, number of household members, employment for the last 12 months, income level in US dollars, ownership of private transport), and anthropometric data (height, weight, waist and hip circumferences), Information was also obtained on cigarette smoking.

Participants were fasted (no food, nor drink, other than water in the 12 preceding hours). Invited participants were screened in health clinics and seen by a physician who checked for a history of symptoms suggestive of stable angina, unstable angina, myocardial infarction, transient ischemic attacks, strokes, and peripheral vascular disease. Data on cigarette smoking and family history of premature CVD were collected using a standard data entry form. BP was measured using a standard mercury sphygmomanometer on the left arm after five minutes rest with the subject in the sitting position. The first and fifth phase of Korotkoff sounds were used for systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively. Two independent measurements were obtained with an interval of at least 10 minutes; the second measurement was taken for data analysis.

An electrocardiogram (ECG) was taken in 12 lead Mortara electrocardiograph (ELI 250C) with frequency response $0,05 \mathrm{~Hz}$ to 300 Hz .

Body mass index (BMI) was calculated as weight ( kg ) divided by height ( m ) squared. BMI was categorized as underweight ( $<18.5$ ), normal (18.5-22.9), overweight (23.0-24.9) and obese ( $>25$ ). Waist and hip circumference was measured and abdominal obesity was defined as WHR (waist to hip ratio) greater than 0,8 for women and 0,9 for men. WHR is considered a stronger predictor of CVD than waist circumference alone.

Having verified the fasting state, 5 ml blood samples were taken through phlebotomy procedure. Blood glucose level and lipid profile were measured using "COBAS INTEGRA® 400 plus" chemistry analyzer (Roche Diagnostics, Germany, 2007). Following methods were used: $a$. In vitro test for the quantitative determination of total cholesterol in serum and plasma by enzymatic, colorimetric method. Measuring range 0.1-20.7 mmol/L (3.87-800 $\mathrm{mg} / \mathrm{dl})$. According recommendations of the NCEP Adult Treatment Panel for the following risk-cutoff thresholds: Desirable cholesterol level defined < $5.2 \mathrm{mmol} / \mathrm{L}(<201 \mathrm{mg} / \mathrm{dl}$ ); Borderline high cholesterol 5.2-6.2 mmol/L ( $200-240 \mathrm{mg} / \mathrm{dl}$ ); High cholesterol $\geq 6.2 \mathrm{mmol} / \mathrm{L}$ ( $\geq 240 \mathrm{mg} / \mathrm{dl}$ ) and $b$. In vitro test for the quantitative determination of glucose in serum and plasma on COBAS INTEGRA systems. Enzymatic reference method with hexokinase. Measuring range Regular applications $0.24-40 \mathrm{mmol} / \mathrm{L}(4.32-720 \mathrm{mg} / \mathrm{dl})$ STAT applications $0.24-30 \mathrm{mmol} / \mathrm{L}(4.32-541 \mathrm{mg} / \mathrm{dl})$. Diabetes was defined as a fasting blood glucose $\geq 7 \mathrm{mmol} / \mathrm{l}$.

The WHO/ISH risk prediction charts were used to grade cardiovascular risk. These charts use age (1: 40-49; 2: 50-59; 3: 60-69;4: 70 years and older), sex ( 0 : male; 1 : female), smoking ( 0 : no; 1: smoker or ex-smoker <12 months), SBP (1: <140 mm Hg; 2: 140 to <160; 3: 160to <180; 4: $\geq 180$ ), blood cholesterol (4: TC, $<5 \mathrm{mmol} / \mathrm{L} ; 5$ : TC, 5 to $<6$; 6: TC, 6 to $<7 ; 7$ : TC, 7 to $<8$; 8:TC, 8 and more), and presence or absence of diabetes ( 0 : Yes, fasting blood glucose $\geq 7$ $\mathrm{mmol} / \mathrm{L}, 126 \mathrm{mg} \% ; 1: \mathrm{No}$, fasting blood glucose $<7$ to grade cardiovascular risk). There are
two sets, one for settings where blood cholesterol can be measured and the other for settings in which blood cholesterol cannot be measured. In this study, we have used the charts for settings where blood cholesterol can be measured. The charts provide evidence-based recommendations on specific preventive actions to initiate and with what degree of intensity. The risk categories for 10-year combined acute myocardial infarction and stroke (fatal and nonfatal) are as follows: less than $10 \%, 10$ to $<20 \%, 20$ to $<30 \%, 30$ to $<40 \%$, and $\geq 40 \%$.

For the purpose of this study, three self-reported socioeconomic factors were assessed: level of education, employment status and income. Education variables were recorded as one of three categories: low middle (from no schooling to primary school 1-8 years), middle level (from secondary school and post-secondary school) and high (graduated and postgraduate). Income group was graded according to total amount earned/accruing to an individual's household in a month into no income (0-30\$), minimal income (30\$), low (60\$), medium(120\$) and high-income groups (>120\$). Groups according employment were as follow: unemployed, retired, farmer, federal worker, employed in private sector. Five major CVD risk factors were the focus of the study, namely obesity, tobacco use, hypertension, diabetes mellitus and total cholesterol.

During the visit at the health facility study subjects were evaluated using specially designed standardized questions for symptoms suggestive of coronary artery disease (CAD) (six question), transient ischemic attack (TIA) (one question), peripheral arterial diseases (PAD) (three questions). We also collected information about history of interventional cardiology procedures (three questions): percutaneous trans-luminal coronary angioplasty (PTCA), coronary arterial bypass grafting (CABG), carotid endarterectomy (CEA); Furthermore, we requested from the study subject medical documentation as a proof for the history of CAD, cerebrovascular diseases (CBVD), and peripheral artery disease (PAD);

## Statistical analysis

Analysis of CVD risk factors we focused on 5 major risk factors: age, BP, smoking, diabetes and TC. Descriptive statistics (means, standard deviations and proportions) were calculated for the risk factors of interest. The data was analyzed using SPSS version 13. The WHO/ISH risk prediction chart for EUR B was used for assessment of cardiovascular risks among people with risk factors who have not yet developed clinically manifest cardiovascular disease (primary risk population).

Next step was analyzing distribution of socioeconomic risk factor and their outcomes in whole study population. All analysis was performed using IBM SPSS version 24 . We analyzed frequency distribution of variables as a first step. Logistic regression was used to asses across potential SES risk factors and their outcomes. We assessed 10 years cardiovascular risk more than $10 \%$ and presence of CV-disease using WHO/ISH risk prediction charts. This association was assessed using odds ratio, confidence interval (CI) 95\%. Variables for the logistic regression were chosen based on the significance of association during univariable analysis. Final logistic regression analysis model did not include variables that by definition were included in the cardiovascular risk calculations (diabetes, smoking, high cholesterol level etc.) and after this step were determined risk factors associated with social-economic status in study population.

## Study Results and analysis

### 1.1.Assesment of cardiovascular risks and risk factor distribution in Goergian population according WHO/ISH risk assessment charts

### 1.1.1. CVD risk factors distribution in Georgian population WHO/ISH

1196 Individuals of 40-70 years age adults were invited to participate in the study. The final sample size was 900 , because of the exclusion of persons with coronary heart disease, cerebrovascular disease, heart failure or peripheral vascular disease, as diagnosed by a
physician after an overall assessment. The risk factors characteristic of the total study group, men and women subgroups are shown in Table 1. The mean level of total Cholesterol (TC) and systolic blood pressure (BP) were similar in men and women. The prevalence of diabetes mellitus (DM) was higher in men than in women ( $12 \%$ in men against $7.0 \%$ in women) as was the prevalence of cigarette smoking. - half of participants for each sex had BP levels in grade 1-3 hyper tension range, as well as raised TC levels. The prevalence of hypertension and DM increased with age for each sex. $86 \%$ of study participants were in low risk group ( $88.9 \%$ of women and $79.0 \%$ of men); $14.4 \%$ of men and $7.1 \%$ of women were distributed in high and very high risk category of 10 years fatal or non-fatal vascular events; $12.0 \%$ of men and $5.6 \%$ of women from all study participants were in intermediate risk category.

Total Cholesterol (TC) $>200 \mathrm{mg} \%$ had more than $50,2 \%$ of primary risk population (Table 1, diagram 2). $53.4 \%$ in women and $\operatorname{sbog}_{3} 42.8 \%$ in men. More, than $240 \partial_{8} \%$ had $21 \%$ of study population $15.4 \%$ in men and $23.6 \%$ in men.

Table 1. Distribution of CVD risk factors in primary risk Georgian population

|  |  | Total nimber | men | women |
| :---: | :---: | :---: | :---: | :---: |
|  |  | [ $\mathrm{n}=900$ ] | [ $\mathrm{n}=273$ ] | [ $\mathrm{n}=627$ ] |
| Age range, y |  | 40-70 | 40-70 | 40-70 |
| Mean age, $\mathrm{y} \pm \mathrm{SD}$ |  | $53.6 \pm 8.82$ | $54.9 \pm 8.97$ | $53.0 \pm 8.70$ |
| Weight (kg) |  | $87.07 \pm 0.54$ | $89.65 \pm 0.98$ | $81.64 \pm 0.63$ |
| Waist circumference (sm) |  | $103.2 \pm 0.49$ | $106.2 \pm 0.85$ | $101.9 \pm 0.59$ |
| Systolic blood pressure (mm.Hg) |  | $138.6 \pm 0.83$ | $141.1 \pm 1.57$ | $137.6 \pm 0.97$ |
| Diastolic blood pressure (mm.Hg)) |  | $85.7 \pm 0.46$ | $88.32 \pm 0.89$ | $84.6 \pm 0.54$ |
| Smoking status (\%) |  |  |  |  |
| smoker (\%) |  | 11.9\% (107) | 37.4\% (102) | 0.8\% (5) |
| nonsmoker(\%) |  | 88.1\% (793) | 62.6\% (171) | 99.2\% (622) |
| Fasting glucose mmol/L |  | $5.39 \pm 0.06$ | $5.52 \pm 0.11$ | $5.33 \pm 0.07$ |
| DM (number/\%) |  | 77/8.6\% | 33/12.1\%) | 44/7.0\% |
| BP (nimber) |  |  |  |  |
| Systolic | diastolic |  |  |  |
| optimal $<120$ | <80 | 147 (16.1\%) | 36 (13.1\%) | 111 (17,7\%) |
| normal 120-129 | 80-84 | 145 (14.2\%) | 40 (14,6\%) | 105 (16,7\%) |
| High normal 130-139 | 85-89 | 128 (27.3\%) | 42 (15,4\%) | 86 (13,7\%) |


| hypertension (stage I) $140-159$ | $246(27.3 \%)$ | $79(28,9 \%)$ | $167(26,6 \%)$ |
| :--- | :--- | :--- | :--- | :--- |
| hypertension (stage II) $160-179100-109$ | $150(16.7 \%)$ | $39(14,3 \%)$ | $111(17,7 \%)$ |
| Hypertension (stage III) >180 >110 | $84(9.3 \%)$ | $37(13,5 \%)$ | $47(7,5 \%)$ |
| Total Cholesterol (mmol/L) | $5.29 \pm 0.04$ | $5.10 \pm 0.07$ | $5.37 \pm 0.05$ |
| Total Cholesterol (\%/ number) | $17.8 \%(160)$ | $20.9 \%(57)$ | $16.4 \%(103)$ |
| $<160 \mathrm{mg} / \mathrm{dL}(<4.13 \mathrm{mmol} / \mathrm{L})$ | $32.0 \%(288)$ | $36.3 \%(99)$ | $30.1 \%(189)$ |
| $160-199 \mathrm{mg} / \mathrm{dL}(4.13-5.14 \mathrm{mmol} / \mathrm{L})$ | $28.9 \%(260)$ | $26.7 \%(73)$ | $29.8 \%(187)$ |
| $200-239 \mathrm{mg} / \mathrm{dL}(5.17-6.18 \mathrm{mmol} / \mathrm{L})$ | $14.8 \%(133)$ | $13.2 \%(36)$ | $15.5 \%(97)$ |
| $240-279 \mathrm{mg} / \mathrm{dL}(6.20-7.21 \mathrm{mmol} / \mathrm{L})$ | $6.5 \%(59)$ | $2.9 \%(8)$ | $8.1 \%(51)$ |
| $2280 \mathrm{mg} / \mathrm{dL}(\geq 7.23 \mathrm{mmol} / \mathrm{L})$ |  |  |  |

According Table 1. prevalence of abdominal obesity and high BMI were high as in primary risk, as in total study population (Diagram 3).Abdominal obesity was highly prevalent in Georgian population - 59,3\% in men and $81,8 \%$ in women (Table 1, diagram 4). This fact is especially important, as $86 \%$ of study population was defined as low CVD risk population. (Table 2).

According data, half of representatives of both gender had hypertension stage I-III and elevated cholesterol concentration. Prevalence of hyertgension and diabetes was increasing according age. In women this relationship was linear, but in men has bimodal distribution (Table 1, chart 2).

Prevalence of hypertension according age and gender in primary CVD risk Georgian population is shown in chart 3 .
diagram 1. Distribution of systolic blood pressure in study population


Diagram 2. Distribution of total cholesterol in study population

diagram 3. Distribution of population according BMI


Diagram 4. Prevalence of abdominal obesity in study population


Chart 2. Prevalence of DM in men and women according age in study population of primary CVD risk


Chart 3. Prevalence of Hypertension in men and women according age in study population of primary CVD risk


The present investigation presents data of population based survey in Georgia to determine the percentage of the population in cardiovascular risk category based on WHO/ISH risk
prediction charts. In the paper we also analyze the prevalence of the major cardiovascular risk factors in both men and women. The risk factors is relatively high concerning hypertension, raised blood cholesterol and DM. high prevalence of abdominal obesity (as added risk) in the Georgian population is also defined.

### 1.1.2. Assessment of 10 years CVD risk in Georgian population according WHO/ISH risk assessment charts

The next step of investigation was assessment of 10 years CVD risk of study population according WHO/ISH risk assessment charts. In this system there are low $<10 \%$, intermediate from $10 \%$ to<20\%, high from 20\%-to <30\% and very high from 30\% to $40 \%$ and higher ( $\geq 40 \%$ ) 10 year risk of developing fatal or nonfatal cardiovascular events, according age, gender, systolic BP, Total Cholesterol, smoking status and DM. Distribution of CVD risks of study population shown in Table 2.

Table 2. distribution of primary risk study population in WHO/ISH risk assessment charts

| $\%$ | $<10 \%$ | $10 \%-20 \%$ | $20 \%-30 \%$ | $30 \%-40 \%$ | $\geq 40 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| total | 773 | 57 | 47 | 4 | 19 |
| men | 216 | 26 | 20 | 4 | 7 |
| women | 557 | 31 | 27 | - | 12 |

Grouping of study population according low ( $<10 \%$ ), intermediate ( $10 \%$ to $20 \%$ ) and high ( $>20 \%$ ) risk categories are shown in Table 3.

Table 3. Distribution of primary CVD risk men and women in low ( $<10 \%$ ), intermediate ( $10 \%-20 \%$ ) and high (>20\%) risk categories

| $\%$ | $<10 \%$ | $10 \%-20 \%$ | $>20 \%$ |
| :--- | :--- | :--- | :--- |
| Total number | $773(86 \%)$ | $57(7.4 \%)$ | $70(9.1 \%)$ |
| men | $216(79 \%)$ | $26(12 \%)$ | $31(14.4 \%)$ |
| women | $557(88 \%)$ | $31(5.6 \%)$ | $39(7.1 \%)$ |

As we see from the Table 3, 14,4\% of men and $7,1 \%$ of women distributed in high and very high risk of developing 10 year fatal or nonfatal cardiovascular risk. $12 \%$ of men and $5,6 \%$ of women were in intermediate risk category. (Table 3).

We show distribution of intermediate and high risk population in Table 4 to demonstrate, that "intermediate" risk category contains $45 \%$ of participants, and this group needs more attention, because they will reclassify in other groups later and in limited recourse settings (In low and middle income countries) medical attention for this category from healthcare system is less, because they classified as having intermediate CVD risk.

Table 4. distribution of $\mathbf{> 1 0 \%}$ primary CVD risk men and women in intermediate ( $10 \%$ 20\%) and high (>20) risk categories

| $\%$ | $10 \%-20 \%$ | $>20 \%$ |
| :--- | :--- | :--- |
| Total number | $\mathbf{5 7}(\mathbf{4 5 \%})$ | $70(55,6 \%)$ |
| men | $26(45,6 \%)$ | $31(54.4 \%)$ |
| women | $31(44,3 \%)$ | $39(55,8 \%)$ |

Distribution of WHO/ISH chart risk factors and some additional risk factors (weight, abdominal circumference) in intermediate risk group are shown in Tables 5 and 6; where Table 5 Shows Distribution of CVD risk factors in intermediate risk category without DM and Table 6 characterizes subgroup with DM.

Table 5. Distribution of CVD risk factors in intermediate risk category without DM

|  | Total number | men | women |
| :--- | :---: | :---: | :---: |
|  |  | $[\mathrm{n}=44]$ | $[\mathrm{n}=20]$ |
| Age group (y) | $42-70$ | $42-70$ | $45-70$ |
| Median age (y) | $57.27 \pm 1.20$ | $56.60 \pm 1.80$ | $57.00 \pm 1.63$ |
| height (cm) | $166.11 \pm 1.79$ | $174.15 \pm 1.88$ | $159.42 \pm 2.05$ |
| weight (kg) | $86.25 \pm 2.37$ | $86.35 \pm 3.59$ | $86.17 \pm 3.23$ |
| Waist circumference (cm) | $106.9 \pm 1.95$ | $104.0 \pm 3.05$ | $109.4 \pm 2.47$ |
| Systolic BP (mm.Hg.) | $168.86 \pm 3.10$ | $164.63 \pm 3.86$ | $172.40 \pm 4.65$ |
| Diastolic BP (mm.Hg) | $99.55 \pm 2.17$ | $97.38 \pm 3.14$ | $101.35 \pm 3.01$ |
| Glucose (fasting) mmol/L | $5.27 \pm 0.12$ | $5.28 \pm 0.17$ | $5.28 \pm 0.16$ |
| Total Cholesterol mmol/L | $6.22 \pm 0.27$ | $5.72 \pm 0.45$ | $\mathbf{6 . 6 4} \pm 030$ |

Table 6. Distribution of CVD risk factors in intermediate risk category with DM

|  | Total number | men | women |
| :--- | :---: | :---: | :---: |
|  |  | $[\mathrm{n}=13]$ | $[\mathrm{n}=6]$ |
|  | $42-70$ | $45-70$ | $42-70$ |
| Age group (y) | $60.31 \pm 1.92$ | $59.17 \pm 3.07$ | $62.29 \pm 2.57$ |
| Median age (y) | $166.77 \pm 2.91$ | $173.50 \pm 3.24$ | $161.00 \pm 3.46$ |
| height (cm) | $86.13 \pm 7.43$ | $79.95 \pm 15.06$ | $91.43 \pm 5.78$ |
| weight (kg) | $113.0 \pm 5.22$ | $112.2 \pm 10.9$ | $111.7 \pm 3.98$ |
| Waist circumference (cm) |  |  |  |


| Arterial pressure (mmHg) |  |  |  |
| :--- | :---: | :---: | :---: |
| Systolic BP (mm.Hg.) | $145.6 \pm 4.94$ | $142.08 \pm 8.52$ | $148.57 \pm 5.94$ |
| Diastolic BP (mm.Hg) | $\mathbf{9 1 . 1 5} \pm 3.76$ | $\mathbf{9 0 . 8 3} \pm 6.54$ | $\mathbf{9 0 . 0 0} \pm 5.64$ |
| Glucose (fasting) mmol/L | $9.50 \pm 0.68$ | $9.94 \pm 1.40$ | $\mathbf{9 . 1 2} \pm 0.49$ |
| Total Cholesterol mmol/L | $5.77 \pm 0.43$ | $5.73 \pm 0.87$ | $5.80 \pm 0.40$ |

According these data, important CVD risk factors as arterial BP, abdominal obesity and total cholesterol are not well controlled in intermediate risk category without DM (Table 5.). In the same risk category with DM , glycemia, obesity and arterial blood pressure are not well controlled either (Table 6).

Results show that $\approx 86 \%$ of study population have low 10 years risk of developing fatal or nonfatal cardiovascular events according WHO/ISH charts. In remaining part (intermediate and high risk) $\approx 45 \%$ of cases, cardinal CVD risk factors are not controlled properly.

### 1.3. Impact of socioeconomic status on cardiovascular risk in gerogian population

We analyzed data for 1196 individuals to establish relationship between socioeconomic factors and cardiovascular risks. Demographic and socioeconomic characteristic of population is shown in Table 7. The mean age was 55 years (range $40-70$ years) and 788 ( $65,9 \%$ ) were females; 468 ( $39.2 \%$ ) had a graduate education; 227 (19\%) were officially unemployed; income less than 30 US dollars was reported in 163 (13.6\%) participants.

| Table 7. Demographic and Socioeconomic Characteristic of study population |  |
| :--- | :--- |
| Characteristic | Mean (Range) |
| Age (Years) | 54,9 (40-70) SD8,97 |
|  | Number (\%) |
| Gender |  |


| - Male | 407 (34.1) |
| :---: | :---: |
| Household members | Number (\%) |
| - $\leq 2$ | $280(23,4)$ |
| - 3 | $786(65,8)$ |
| - >3 | $129(10,8)$ |
| Education | Number (\%) |
| - Secondary and Less than secondary | $139(11,6)$ |
| - Undergraduate | 588 (49.2) |
| - Graduate | 468(39,2) |
| Employment | Number (\%) |
| - Unemployed | 227(19) |
| - Retired | 323(27\%) |
| - Farmer | 368 (30,8) |
| - Federal Worker | 125(10,5) |
| - Privet Sector worker | $152(12,7)$ |
| Income | Number (\%) |
| - <30 USD | 163 (13,6) |
| - 30 SD | 274 (22,9) |
| - 60 USD | $259(21,7)$ |
| - 120 USD | $280(23,4)$ |
| - >120 USD | 219 (18,3) |
| Ownership of transportation means | Number (\%) |
| - Yes | $188(15,7)$ |
| - No | 1007 (84,3) |

Distribution of the CVD risk is presented in Table 8. Three-hundred-sixty-one (30,2\%) participants were overweight and $669(56,0 \%)$ were obese, abdominal obesity was observed 966 ( $80,8 \%$ ) participants. Hypercholesterolemia was reported in 625 ( $52.0 \%$ ) participants. Fasting hyperglycemia was observed in 225 (18,8\%) individuals. As per the JNC classification the prevalence of stage 1 and stage 2 hypertension was $331(27,7 \%)$ and $399(33,4 \%)$, respectively. We reported tobacco smoking only in 118 (9,9 \%) participants. As per the WHO/ISH cardiovascular risk classification 945 (79,1\%) had <10\% 10-year cardiovascular risk (Table 9); 107 ( $9 \%$ ) had cardiovascular risk $<20 \%$; The percentage of the population with cardiovascular risk $\geq 20 \%$ was 143 ( $11,9 \%$ ). Distribution of diagnosed CVD in our study population is shown in Table 9. Ischemic heart disease was diagnosed among 194 (16,2\%) participant; 90 (7,5\%) had confirmed cerebrovascular disease and 115 ( $9,6 \%$ ) had already diagnosed peripheral vascular disease. Low education level (adjusted odds ratio (aOR) 2.85; 95\% confidence interval (CI), 1.57-5.17), obesity (aOR 2.13, 95\% CI 1.16-3.92) and abdominal obesity (aOR 2.21, 95\% CI $1.26-3.87$ ) were statically significantly associated with more than $10 \% 10$ year risk of a fatal or non-fatal cardiovascular event.

Table 8. prevalence of Cardiovascular Risk Factors in study population

|  | Number (\%) |
| :--- | :--- |
| BMI |  |
| Normal range | $165(13,8 \%)$ |
| Overweight | $361(30,2 \%)$ |
| Obese | $669(56,0 \%)$ |
| WHR * 19-24 Normal range | $229(19,2)$ |
|  | Abdominal Obesity |
|  | $966(80,8)$ |
| Smoking |  |
| yes | $118(9,9)$ |
| No | $1077(90,1)$ |
| Fasting Glucose |  |


| $\mathbf{~ m m o l} / \mathrm{l}$ |  |  |  | $970(81,2)$ |
| :---: | :--- | :---: | :---: | :---: |
| $\geq 6.1 \mathrm{mmol} / \mathrm{l}$ | $225(18,8)$ |  |  |  |
| Total Cholesterol |  |  |  |  |
| $><5.2 \mathrm{mmol} / \mathrm{l}$ | $574(48)$ |  |  |  |
| $>\geq 5.2 \mathrm{mmol} / \mathrm{l}$ | $621(52)$ |  |  |  |
| Arterial blood pressure | Normal blood pressure |  |  |  |
|  | $157(13,1 \%)$ |  |  |  |
|  | Prehypertension |  |  |  |
| Stage 1 hypertension | $308(25,8 \%)$ |  |  |  |
| Stage 2 hypertension | $331(27,7 \%)$ |  |  |  |

*BMI -Body Mass Index **WHR = waist to hip ratio

Distribution of study population in manifested and primary risk category shown in Table 9. According WHO/ISH charts, 773 (58.7\%) participants had <10\% 10-years CVD risk; 57 (5.4\%) had $<20 \%$ risk; 70 ( $7.1 \%$ ) had risk $\geq 20 \%$. Confirmed CVD had 300 (28.8\%) participants. (Table 9).

Table 9. Distribution of study population in manifested and primary risk category

| characteristic | number (\%) |
| :--- | :--- |
| $<10 \%$ | $773(58,7)$ |
| $10 \%$ to $<20 \%$ | $57(5,4)$ |
| $\geq 20 \%$ | $70(7,1)$ |
| Diagnosed CVD | $300(28,8)$ |
| Ischemic heart disease | $194(16,2)$ |
| cerebrovascular disease | $90(7,5)$ |
| Peripheral vascular disease | $115(9,6)$ |

Lower education level (not finished high school -aOR 2.21 95\% CI 1.44-3.38, undergraduate aOR 1.52, $95 \%$ CI 1.12 - 2,05), income 120 USD or more (aOR 0.73 , $95 \%$ CI $0.54-1.00$ ), overweight (aOR 1.68, 95\% CI 1.07-2.63), obesity (aOR 1.58, 95\% CI $1.04-2.41$ ), and
abdominal obesity (aOR 1.43 , $95 \%$ CI $1.01-2.03$ ) were found to be statistically significant predictors of CVD in our study population. (Table 10).

| Table 10. Binary multiple logistic regression analysis of risk factors for more than 10\% 10year risk of a fatal or non-fatal cardiovascular event (WHO/ISH cardiovascular risk groups) |  |
| :---: | :---: |
| Characteristics | Adjusted Odds Ratio (95\%CI) |
| Number of household members |  |
| More than 2 persons | 1 |
| 2 persons or less | 0.94 (0.65, 1.45) |
| Education level completed |  |
| Graduate | 1 |
| Not finished high school | 2.85 (1.57, 5.17) |
| Undergraduate | 1.51 (0.98, 2.32) |
| Monthly Income |  |
| 30 USD or less | 1 |
| 60 USD | 0.84 (0.52, 1.35) |
| 120 USD or more | 0.69 (0.45, 1.08) |
| Ownership of transportation means |  |
| No | 1 |
| Yes | 0.77 (0.44, 1.38) |
| BMI |  |
| Normal | 1 |
| Overweight | 1.32 (0.67, 2.60) |
| Obese | 2.13 (1.16, 3.92) |
| Waist Hip Ratio |  |
| Normal Range | 1 |
| Abdominal Obesity | 2.21 (1.26, 3.87) |

This data were also proven with multiple binary logystic regression analysis. Table 11.
Table 11. Binary multiple logistic regression analysis of risk factors for cardiovascular disease

| Characteristics | Adjusted Odds Ratio (95\%CI) |
| :---: | :---: |
| Number of household members |  |
| More than 2 persons | 1 |
| 2 persons or less | 1.05 (0.78, 1.42) |
| Education level completed |  |
| Graduate | 1 |
| Not finished high school | 2.21 (1.44, 3.38) |
| Undergraduate | 1.52 (1.12, 2.05) |
| Monthly Income |  |
| 30 USD or less | 1 |
| 60 USD | 0.98 (0.70, 1.37) |
| 120 USD or more | 0.73 (0.54, 1.00) |
| Ownership of transportation means |  |
| No | 1 |
| Yes | 1.01 (0.69, 1.48) |
| BMI |  |
| Normal | 1 |
| Overweight | 1.68 (1.07, 2.63) |
| Obese | 1.58 (1.04, 2.41) |
| Waist Hip Ratio |  |
| Normal Range | 1 |
| Abdominal Obesity | 1.43 (1.01, 2.03) |

According data of this study, low educational level, (8 years or less aOR 2,21, 95\% CI 1,443,38 ), middle and middle professional education (aOR 1,52, 95\% CI 1,12-2,05), overweight
(aOR 1.68, 95\% CI 1.07 - 2.63), obesity (aOR 1.58, 95\% CI 1.04-2.41) and abdominal obesity (aOR 1.58, 95\% CI $1.04-2.41$ ), are statistically significant cardiovascular risk predictors in primary and secondary CVD risk population. Table 11.

## conclusions

1. Clarified characteristic features of Georgian population according WHO/ISH CVD risk prediction charts;
2. Revealed, that prevalence of CVD risk factors as hypertension, hypercholesterolemia and DM in age group 40-70yy, in both men and women, are high in Georgia;
3. Our investigation revealed, that prevalence of additional CVD risk factors, as obesity and abdominal obesity are high;
4. Revealed that in both, men and women, prevalence of hypertension and DM are directly proportional to age, and meantime, prevalence of DM in men has bimodal distribution with peaks in 45-49yy and 60-64yy.
5. Established relationship between high prevalence of major and additional CVD risk factors and low level of education.
6. Revealed, that education is the most important socioeconomic factor, which influences CVD risk level and risk distribution in adult population in Georgia, like in developed western countries.

## Practical recommendations

$>$ On basis of results of our investigation, we recommend assessment of adults over 40y/o with WHO/ISH CVD risk prediction charts in primary healthcare settings;
> Healthcare workers should consider additional CVD risk factors - overweight, obesity, abdominal obesity and level of patient's education, while planning medical care of intermediate risk population;
> Primary healthcare providers should include different kind of patient educational activities in everyday practice and Healthcare Authorities should establish legal basis of such obligations;
> We recomend to Healthcare Authorities planning of educational campaign regarding popularization of healthy lifestyle and disease prevention;
> We recomend include information about healthy lifestyle, disease prevention and selfcare activities in curriculum of all levels of educational system.

## The list of the dissertation related publications

1) Toidze M, Tabagari S, Talakvadze T, Tvildiani L, Pkhakadze G, Tabagari-Bregvadze N. „IMPACT OF SOCIOECONOMIC STATUS ON CARDIOVASCULAR RISK IN GEORGIAN POPULATION". Georgian Medical News. 2018 Jul-Aug; (280-281):68-75.
2) M.Toidze, S. Tabagari, S. Mendis, P. Nordet, N. Bregvade-Tabagari, G Pkhakadze, T. Talakvade, L. Tvildiani „RISK FACTORS OF CARDIOVASCULAR DISEASE AND CARDIOVASCULAR RISK ASSESMENT OF THE GEORGIAN POPULATION BY WHO/ISH RISK ASSESMENT SCORES". J. Innovative Medicine and Biology. 2012 N1-2 (145-149);
3) M.Toidze, Nino Bregvadze-Tabagari. „RISK FACTORS OF CARDIOVASCULAR DISEASE AND CARDIOVASCULAR RISK ASSESMENT OF THE GEORGIAN POPULATION". $6^{\text {th }}$ International Postgraduate Medical Students Conference. Hradec Kralove. 2009. 19-21 Nov. p. 128
