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In the presentation, we consider the well-posed question for the general linear boundary value
problem for the impulsive differential systems

dx

dt
= P0(t)x+ q0(t) for a.a. t ∈ I \ T, (1)

x(τl+)− x(τl−) = G0(τl)x(τl) + u0(τl) (l = 1, 2, . . . ); (2)
ℓ0(x) = c0, (3)

where I = [a, b] ⊂ R, P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), T =
{τ1, τ2, . . . }, τl ∈ I (l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ), ℓ0 : BV(I;Rn) → Rn is a linear
vector-functional, bounded with respect to the norm ∥.∥∞, and c0 ∈ Rn.

Along with the impulsive general boundary (1)–(3), consider the sequence of problems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I \ T, (1m)

x(τl+)− x(τl−) = Gm(τl)x(τl) + um(τl) (l = 1, 2, . . . ); (2m)
ℓm(x) = cm (3m)

(m = 1, 2, . . . ), where Pm ∈ L(I;Rn×n), qm ∈ L(I;Rn), Gm ∈ B(T ;Rn×n), um ∈ B(T ;Rn),
ℓm : BV(I;Rn) → Rn is a linear vector-functional, bounded with respect to the norm ∥ · ∥∞, and
cm ∈ Rn (m = 1, 2, . . . ).

We give the necessary and sufficient conditions (as well, some effective sufficient conditions)
for the existence of a unique solution for problem (1m)–(3m) for every sufficiently large m and the
nearness these solutions to the solution of problem (1)–(3). The problem quite fully is already
investigated in [3] (see also the references therein). Such problem was studied in [3–5] for linear
ordinary differential systems.

Similar problem is investigated in [2] (see also the references therein) for the initial problems
for linear impulsive systems.

A number of issues of the theory of linear systems of differential equations with impulsive effect
have been studied sufficiently well [1–3,6] (see also the references therein).

The use will be made of the following notation and definitions.
R = ] −∞,+∞[ . Rn×m is the space of all real n ×m matrices X = (xi,j)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |. In is the identity n× n-matrix.
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Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :
[a, b] → Rn×m at the point t.

b∨
a
(X) is the sum of total variations on [a, b] of the components of the matrix-function X.

BV([a, b];Rn×m) is the space of all bounded variation matrix-functions X : [a, b] → Rn×m, with
the norm ∥X∥∞ = sup{∥X(t)∥ : t ∈ [a, b]}.

AC([a, b];Rn×m) is the set of all absolutely continuous matrix-functions.
ACloc(J ;Rn×m), where J ⊂ R, is the set of all matrix-functions whose restrictions to an arbitrary

closed interval [a, b] from J belong to AC([a, b];D).
BVACloc(I, T ;Rn×m) = BV (I;Rn×m) ∩ACloc(I \ T ;Rn×m).

B(T ;Rn×m) is the set of all matrix-functions G : T → Rn×m such that
+∞∑
l=1

∥G(τl)∥ < +∞;

|||ℓ||| is the norm of a linear bounded vector-functional ℓ.
For the corresponding matrix-functions X, Y and Z, we set

Bι(X;Y, Z)(t) ≡
t∫

a

X(τ)Y (τ) dτ +
∑

τl∈[a,t[

X(τl+)Z(τl).

Everywhere, we assume that

lim
m→+∞

ℓm(x) = ℓ0(x) for x ∈ BV(I;Rn), lim sup
m→+∞

|||ℓm||| < +∞

and det(In +G(τl)) ̸= 0 (l = 1, 2, . . . ).
The last inequalities guarantee the unique solvability of the Cauchy problem for the impulsive

system (1), (2) (see [2, 6]).

Definition 1. A vector-function x ∈ ACloc(I \ T ;Rn) is said to be a solution of system (1), (2)
if x′(t) = P (t)x(t) + q(t) for a.a. t ∈ I \ T and there exist onesided limits x(τl−) and x(τl+)
(l = 1, 2, . . . ) satisfying equalities (2).

Without loss of generality, we can assume that the solution x of the impulsive differential
system (1), (2) is continuous from the left at the points of the impulses actions τl (l = 1, 2, . . . ),
i.e., x(τl) = x(τl−) (l = 1, 2, . . . ).

Let x0 be a unique solution of problem (1)–(3) (about existence conditions see, for example,
[1, 3, 6]).

We give the necessary and sufficient and effective sufficient conditions for the boundary value
problem (1m)–(3m) to have a unique solution xm for any sufficiently large m and

lim
m→+∞

∥xm − x0∥∞ = 0. (4)

Remark 1. If we consider the case where for every natural m, the impulses points depend on m
in the impulsive systems (1m), (2m) (m = 1, 2, . . . ), in particular, the linear algebraic system (2m)
has the form

x(τlm+)− x(τlm−) = Gm(τlm)x(τlm) + um(τlm) (l = 1, 2, . . . ),

where τlm ∈ I (l = 1, 2, . . . ), then the last general case will be reduced to case (2m) using the
following conception given in [2, 3].
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Along with systems (1), (2) and (1m), (2m) (m = 1, 2, . . . ), we consider the corresponding ho-
mogeneous systems

dx

dt
= Pm(t)x for a.a. t ∈ I \ T, (1m0)

x(τl+)− x(τl−) = Gm(τl)x(τl) (l = 1, 2, . . . ). (2m0)

Definition 2. We say that the sequence (Pm, qm;Gm, um; ℓm) (m = 1, 2, . . . ) belongs to the set
S(P0, q0;G0, u0; ℓ0) if for every c0 ∈ Rn and cm ∈ Rn (m = 1, 2, . . . ), satisfying condition lim

k→+∞
cm =

c0, problem (1m)–(3m) has a unique solution xm for any sufficiently large m and condition (4) holds.

Theorem 1. The inclusion(
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0, q0;G0, u0; ℓ0) (5)

holds if and only if there exists a sequence Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ) such that
condition

lim sup
m→+∞

b∨
a

(
Hm + Bι(Hm;Pm, Gm)

)
< +∞ (6)

holds, and conditions

lim
m→+∞

Hm(t) = In, (7)

lim
m→+∞

Bι(Hm;Pm, Gm)(t) = Bι(In;P0, G0)(t),

lim
m→+∞

Bι(Hm; qm, um)(t) = Bι(In; q0, u0)(t)

hold uniformly on I.

Theorem 2. Let det(In + Gm(τl)) ̸= 0 (l = 1, 2, . . . ; m = 0, 1, . . . ). Then inclusion (5) holds if
and only if the conditions

lim
m→+∞

X−1
m (t) = In,

lim
m→+∞

( t∫
a

X−1
m (τ)qm(τ) dτ+

∑
τl∈[a,t[

X−1
m (τl+)um(τl)

)
=

t∫
a

q0(τ) dτ+
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where Xm is the fundamental matrix of the homogeneous system (1m0), (2m0)
(m = 1, 2, . . . ).

Remark 2. Note that condition (6) holds if

lim sup
m→+∞

( b∫
a

∥∥H ′
m(t) +Hm(t)Pm(t)

∥∥ dt+ +∞∑
l=1

∥d2Hm(τl) +Hm(τl+)Gm(τl)∥
)

< +∞.

Now we give some effective sufficient conditions guaranteeing inclusion (5).
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Theorem 3. Let the condition

lim sup
m→+∞

( b∫
a

∥Pm(t)∥ dt+
∞∑
l=1

∥Gm(τl)∥
)

< +∞

hold and let the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
=

t∫
a

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl),

lim
m→+∞

( t∫
a

qm(τ) dτ +
∑

τl∈[a,t[

um(τl)

)
=

t∫
m

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I. Then inclusion (5) holds.

Corollary 1. Let (6) hold and let conditions (7),

lim
m→+∞

t∫
a

Hm(τ)Pm(τ)dτ =

t∫
a

P0(τ)dτ, lim
m→+∞

t∫
a

Hm(τ)qm(τ)dτ =

t∫
a

q0(τ) dτ

hold uniformly on I, and the conditions

lim
m→+∞

Gm(τl) = G0(τl) and lim
m→+∞

um(τl) = u0(τl)

hold uniformly on T, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ). Let, moreover, either

lim sup
m→+∞

∞∑
l=1

(
∥Gm(τl)∥+ ∥um(τl)∥

)
< +∞ or lim sup

m→+∞

∞∑
l=1

∥Hm(τl+)−Hm(τl)∥ < +∞.

Then inclusion (5) holds.

Corollary 2. Let condition (6) hold and let the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
= B(t)−B(a),

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ+
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))Gm(τl)

)
=

t∫
a

P0(τ) dτ+
∑

τl∈[a,t[

G0(τl),

lim
m→+∞

( t∫
a

Hm(τ) qm(τ) dτ+
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))um(τl)

)
=

t∫
t0

q0(τ) dτ+
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where B ∈ BVACloc(I, T ;Rn×n) and

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ −
∑

τl∈[a,t[

Gm(τl) +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (5) holds.
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We consider the question on the well-posedness of the boundary value problem

u(n) =

n∑
l=1

pl(t)u
(l−1) + p0(t) for a.a. t ∈ I, (1)

ℓi(u, u
′, . . . , u(n−1)) = ci0 (i = 1, . . . , n), (2)

where I = [a, b] is an arbitrary closed interval from R, pl ∈ L(I;R) (l = 0, . . . , n), cio ∈ R
(i = 1, . . . , n), and ℓi : AC(n−1)(I;R) → R (i = 1, . . . , n) are linear bounded functionals with
respect to the norm

∥u∥AC =

n∑
j=1

∥u(j−1)∥c.

Here AC(n−1)(I;R) is the set of all functions u : I → R such that the derivatives u(j) (j =
0, . . . , n−1) are absolutely continuous functions on I, i.e., such that u(j) ∈ AC(I;R) (j = 0, . . . , n−
1), and ∥v∥c = max{|v(t)| : t ∈ I} for every continuous function v : I → R.

By |||ℓ||| we denote the usual norm of the linear operator ℓ.
Under a solution of the differential equation (1) we understand a function u ∈ AC(n−1)(I;R)

such that

u(n)(t) =
n∑

l=1

pl(t)u
(l−1)(t) + p0(t) for a.a. t ∈ I.

Let u0 be the unique solution of the Cauchy problem (1), (2).
Along with problem (1), (2) consider the sequence of problems

u(n) =
n∑

l=1

plk(t)u
(l−1) + p0k(t) for a.a. t ∈ I, (1k)

ℓik(u, u
′, . . . , u(n−1)) = cik (i = 1, . . . , n), (2k)

(k = 1, 2, . . . ), where plk ∈ L(I;R) (l = 0, . . . , n), cik ∈ R (i = 1, . . . , n; k = 1, 2, . . . ), and
ℓik : AC(n−1)(I;R) → R (i = 1, . . . , n; k = 1, 2, . . . ) are linear bounded functionals.
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Definition. We say that the sequence (p1k, . . . , pnk, p0k; ℓ1k, . . . , ℓnk) (k = 1, 2, . . . ) belongs to
the set S(p1, . . . , pn, p0; ℓ1, . . . , ℓn) if for every ci0 ∈ R (i = 1, . . . , n) and a sequence cik ∈ R
(i = 1, . . . , n; k = 1, 2, . . . ), satisfying the condition

lim
k→+∞

cik = ci0 (i = 1, . . . , n), (3)

the boundary value problem (1k), (2k) has the unique solution uk for any natural k and

lim
k→+∞

u
(i−1)
k (t) = u

(i−1)
0 (t) (i = 1, . . . , n) (4)

uniformly on I.

Along with equations (1) and (1k) (k = 1, 2, . . . ) we consider the corresponding homogeneous
equations

u(n) =
n∑

l=1

pl(t)u
(i−1) for a.a t ∈ I (10)

and

u(n) =

n∑
l=1

plk(t)u
(i−1) for a.a t ∈ I (10k)

(k = 1, 2, . . . ).
If the functions vi ∈ AC(n−1)(I;R) (i = 1, . . . , n), then by

w0(v1, . . . , vn)(t) = det
(
(v

(l−1)
i (t))ni,l=1

)
we denote the so called Wronskiĭ’s determinant, and by wil(v1, . . . , vn)(t) (i, l = 1, . . . , n) we denote
the cofactor of the il-element of w0(v1, . . . , vn).

Let ul (l = 1, . . . , n) and ulk (l = 1, . . . , n; k = 1, 2, . . . ) be the fundamental systems of solutions
of the homogeneous systems (10) and (20k) (k = 1, 2, . . . ), respectively.

Below we give necessary and sufficient conditions, as well some sufficient conditions, guarantee-
ing the inclusion(

(p1k, . . . , pnk, p0k; ℓ1k, . . . , ℓnk)
)+∞
k=1

∈ S(p1, . . . , pn, p0; ℓ1, . . . , ℓn). (5)

Theorem 1. Let the functions pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . )
and let the linear functionals ℓi, ℓik (i = 1, . . . , n; k = 1, 2, . . . ) be such that the conditions

lim
k→+∞

ℓik(u, u
′, . . . , u(n−1)) = ℓi(u, u

′, . . . , u(n−1)) for u ∈ AC(n−1)(I;R) (i = 1, . . . , n), (6)

lim sup
k→+∞

|||ℓik||| < +∞ (i = 1, . . . , n) (7)

hold. Then inclusion (5) holds if and only if there exists a sequence of functions hil, hilk ∈ AC(I;R)
(i, l = 1, . . . , n; k = 1, 2, . . . ) such that the conditions

inf
{∣∣ det((hil(t))ni,l=1)

∣∣ : t ∈ I
}
> 0 (8)

and

lim sup
k→+∞

n∑
i,l=1

b∫
a

∣∣∣h′ilk(t) + hi l−1 k(t) sgn(l − 1) + hink(t) pl(t)
∣∣∣ dt < +∞ (9)
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hold, and the conditions
lim

k→+∞
hilk(t) = hil(t) (i, l = 1, . . . , n) (10)

and

lim
k→+∞

t∫
a

hink(τ)plk(τ) dτ =

t∫
a

hin(τ)pl(τ) dτ (i = 1, . . . , n; l = 0, . . . , n)

hold uniformly on I.

Theorem 2. Let the functions pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . )
and let the linear functionals ℓi, ℓik (i = 1, . . . , n; k = 1, 2, . . . ) be such that conditions (6) and (7)
hold. Then inclusion (5) holds if and only if the conditions

lim
k→+∞

u
(i−1)
lk (t) = u

(i−1)
l (t) (i, l = 1, . . . , n)

and

lim
k→+∞

t∫
a

win(u1k, . . . , unk)(τ)

w0(u1k, . . . , unk)(τ)
p0k(τ) dτ =

t∫
a

win(u1, . . . , un)(τ)

w0(u1, . . . , un)(τ)
p0(τ) dτ (i = 1, . . . , n) (11)

hold uniformly on I.

Theorem 3. Let the functions pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . )
and let the linear functionals ℓi, ℓik (i = 1, . . . , n; k = 1, 2, . . . ) be such that conditions (6), (7) and

lim sup
k→+∞

b∫
a

∥plk(t)∥ dt < +∞ (l = 1, . . . , n)

hold, and the condition

lim
k→+∞

t∫
a

plk(τ) dτ =

t∫
a

pl(τ) dτ (l = 0, . . . , n)

hold uniformly on I. Then the boundary value problem (1k), (2k) has the unique solution uk for
any natural k and condition (4) holds uniformly on I.

Corollary 1. Let the functions pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . )
and let the linear functionals ℓi, ℓik (i = 1, . . . , n; k = 1, 2, . . . ) be such that conditions (3), (6), (7)
and (9) hold, and conditions (10) and

lim
k→+∞

t∫
a

hink(τ)plk(τ) dτ =

t∫
a

p∗l (τ) dτ (i = 1, . . . , n; l = 0, . . . , n)

hold uniformly on I, where p∗l ∈ L(I;R) (l = 0, . . . , n); hil, hilk ∈ AC(I;R) (i, l = 1, . . . , n;
k = 1, 2, . . . ). Then the inclusion(

(p1k, . . . , pnk, p0k; ℓ1k, . . . , ℓnk)
)+∞
k=1

∈ S(p1 − p∗1, . . . , pn − p∗n, p0 − p∗0; ℓ1, . . . , ℓn)

holds.
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Remark. In Theorem 2 and Corollary 1, without loss of generality we can assume that hii(t) ≡ 1
and hil(t) ≡ 0 (i ̸= l; i, l = 1, . . . , n). So condition (8) is valid evidently.

Remark. If n = 2 in Theorem 3, then condition (11) has the form

lim
k→+∞

t∫
a

u′1k(τ)p0k(τ)

u1k(τ)u
′
2k(τ)− u2k(τ)u

′
1k(τ)

dτ =

t∫
a

u′1(τ)p0(τ)

u1(τ)u′2(τ)− u2(τ)u′1(τ)
dτ,

lim
k→+∞

t∫
a

u1k(τ)p0k(τ)

u1k(τ)u
′
2k(τ)− u2k(τ)u

′
1k(τ)

dτ =

t∫
a

u1(τ)p0(τ)

u1(τ)u′2(τ)− u2(τ)u′1(τ)
dτ.

In the equalities we can take u2k instead of u1k (k = 1, 2, . . . ) and u2 instead of u1.

For the proof we use the well-know concept. It is well known that if the function u is a solution
of problem (1), (2), then the vector-function x = (xi)

n
i=1, xi = u(i−1) (i = 1, . . . , n) is a solution of

the following general linear boundary value problem for system of ordinary differential equations

dx

dt
= P (t)x+ q(t),

ℓ(x) = c0,

where the matrix- and vector-functions P (t) = (pil(t))
n
i,l=1 and q(t) = (qi(t))

n
i=1 are defined, re-

spectively, by

pil(t) ≡ 0, pi i+1 ≡ 1 (l ̸= i+ 1; i = 1, . . . , n− 1; l = 1, . . . , n),

pnl(t) ≡ pl(t) (l = 1, . . . , n);

qi(t) ≡ 0 (i = 1, . . . , n− 1), qn(t) ≡ p0(t);

ℓ(x) =
(
ℓl(u, u

′, . . . , u(n−1))
)n
l=1

(x = (u(l−1))nl=1); c0 = (cl0)
n
l=1.

Analogously, problem (1k), (2k) can be rewritten in the form of the last type problem for every
natural k. So, using the results contained in [1–3] we get the results given above.
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In [0, T ] we consider the multi-point problem for the second order differential equation with
piecewise-constant argument of generalized type

ẍ = a1(t)ẋ(t) + a2(t)x(t) + a3(t)ẋ(γ(t)) + a4(t)x(γ(t)) + f(t), (1)
N∑
j=0

{
b1j ẋ(θj) + c1jx(θj)

}
= d1, (2)

N∑
j=0

{
b2j ẋ(θj) + c2jx(θj)

}
= d2, (3)

where x(t) is unknown function, the functions ai(t), i = 1, 4 and f(t) are continuous on [0, T ];
0 = θ0 < θ1 < · · · < θN−1 < θN = T , θj ≤ ζj ≤ θj+1 for all j = 0, 1, · · · , N − 1: γ(t) = ζj if
t ∈ [θj , θj+1), j = 0, N − 1; bsj , csj and ds are constants, where s = 1, 2; j = 0, N .

A solution to problem (1)–(3) is a function x(t), twice continuously differentiable on [0, T ], it
satisfies equation (1) and the multi-point conditions (2), (3).

The study of differential equations with piecewise-constant argument began with the works by
Cook, Busenberg, Wiener, and Shah [11–13,27,28]. Many researchers have extensively studied the
questions of the existence and uniqueness of solutions, oscillations and stability, integral manifolds
and periodic solutions, etc. Differential equations with piecewise-constant argument have been used
to develop various models in biology, mechanics, and electronics.

When models are described by differential equations with piecewise-constant argument, the
deviation of the argument values is always constant and equal to one, since the greatest integer
function is taken as the deviation of the argument. But this approach can contradict real phenom-
ena. In the works by Akhmet [2–4], the greatest integer function as deviating argument was replaced
by an arbitrary piecewise constant function. Thus, differential equations with piecewise-constant
argument of generalized type are more suitable for modeling and solving various application prob-
lems, including areas of neural networks, discontinuous dynamical systems, hybrid systems, etc. To
date, the theory of differential equations with piecewise-constant argument of generalized type on
the entire axis has been developed and their applications have been implemented. The results were
extended to periodic impulse systems of differential equations with piecewise-constant argument
of generalized type [5–10]. Along with the study of various properties of differential equations
with piecewise-constant argument, a number of authors investigated the questions of solvability
and construction of solutions to boundary value problems for these equations on a finite inter-
val [14,19–23,25,26,29–31]. Particular attention was paid to periodic and multi-point problems for
second order differential equations with piecewise-constant argument due to their wide application
to natural sciences and engineering [1, 18,24].

Although the theory of boundary value problems for differential equations with piecewise-
constant argument has been developed by a number of researchers, the question of solvability
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of boundary value problems for systems of differential equations with piecewise-constant argument
of generalized type on a finite interval still remains open.

Therefore, the questions of solvability of boundary value problems for such equations are of
great importance and relevance. The construction of new general solutions to second order differ-
ential equations with piecewise-constant argument of generalized type and investigation into their
properties provides an opportunity to solve new classes of problems.

In the present paper, the ideas and results of [15–17] are extended to second order differential
equations with piecewise-constant argument of generalized type. We study conditions for unique
solvability of multi-point problem for second order differential equation with piecewise-constant
argument of generalized type (1)–(3) and construct the algorithms for finding its solution. For this
we use the Dzhumabaev parameterization method [15]. The results can be used in the numerical
solving of application problems [16].

At first, we introduce new functions z(1)(t) = x(t), z(2)(t) = ẋ(t) and rewrite problem (1)–(3)
in the following form

ż = A(t)z(t) +A0(t)z(γ(t)) + g(t), (4)
N∑
j=0

Cjz(θj) = d, (5)

where z(t) = col(z(1)(t), z(2)(t)) is unknown vector function,

A(t) =

(
0 1

a2(t) a1(t)

)
, A0(t) =

(
0 0

a4(t) a3(t)

)
, g(t) =

(
0

f(t)

)
,

Cj =

(
c1j b1j
c2j b2j

)
, j = 0, N, d =

(
d1
d2

)
.

A solution to problem (4), (5) is a two-dimensional vector function z(t) which is continuously
differentiable on [0, T ], it satisfies system (4) and the multi-point condition (5).

Denote by ∆N a partition of the interval [0, T ): [0, T ) =
N∪
r=1

[θr−1, θr) by lines t = θj , j =

1, N − 1. Let zr(t) be a restriction of function z(t) on rth interval [θr−1, θr), i.e. zr(t) = z(t) for
t ∈ [θr−1, θr), r = 1, N . Then problem (4), (5) reduce to the following equivalent problem

żr = A(t)zr(t) +A0(t)zr(ζr−1) + g(t), t ∈ [θr−1, θr), r = 1, N, (6)
N−1∑
j=0

Cjzj+1(θj) + CN lim
t→T−0

zN (t) = d, (7)

lim
t→θp−0

zp(t) = zp+1(θp), p = 1, N − 1. (8)

In (4) we take into account that γ(t) = ζj if t ∈ [θj , θj+1), j = 0, N − 1. Condition (8) is the
continuity condition of function z(t) on the interior lines t = tp, p = 0, 1, 2, . . . , N − 1.

Introduce additional parameters λr = zr(ζr−1) for all r = 1, N . On every rth interval we change
function zr(t) by ur(t) = zr(t)− λr r = 1, N .

Then, from (6)–(8), we obtain the following problem with parameters
u̇r = A(t)ur(t) + [A(t) +A0(t)]λr + g(t), t ∈ [θr−1, θr), ur(ζr−1) = 0, r = 1, N, (9)

N−1∑
j=0

Cjλj+1 +
N−1∑
j=0

Cjuj+1(θj) + CNλN + CN lim
t→T−0

uN (t) = d, (10)

λp + lim
t→θp−0

zp(t) = λp+1 + zp+1(θp), p = 1, N − 1. (11)
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Problems (9) are the Cauchy problems for a system of ordinary differential equations with param-
eters. Conditions (10), (11) are the relations for determining unknown parameters λr, r = 1, N .

Let Xr(t) be a fundamental matrix of differential equation u̇r = A(t)ur(t) for t ∈ [θr−1, θr),
r = 1, N . Then, solutions of the Cauchy problems (9) have the following form

ur(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)[A(τ) +A0(τ)] dτλr

+Xr(t)

t∫
ζr−1

X−1
r (τ)g(τ) dτ, t ∈ [θr−1, θr), r = 1, N. (12)

Substituting right-hand side of (12) for t = θj , j = 0, N − 1, t = T to (10), (11), we have

N−1∑
j=0

Cj [I +Dj+1(θj)]λj+1 + CN [I +DN (T )]λN = d−
N−1∑
j=0

CjFj+1(θj)− CNFN (T ), (13)

[I +Dp(θp)]λp − [I +Dp+1(θp)]λp+1 = Fp+1(θp)− Fp(θp), p = 1, N − 1, (14)

where I is a unit matrix,

Dr(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)[A(τ) +A0(τ)] dτ,

Fr(t) = Xr(t)

t∫
ζr−1

X−1
r (τ)g(τ) dτ, t ∈ [θr−1, θr), r = 1, N.

We rewrite equations (13), (14) in the following form

Q(∆N )λ = F (∆N ), λ ∈ R2N . (15)

Definition 1. Problem (1)–(3) is called uniquely solvable if, for any triple (f(t), d1, d2), where
f(t) ∈ C([0, T ], R) and d1, d2 ∈ R, it has a unique solution.

Theorem 1. Problem (1)–(3) is solvable if and only if the vector F (∆N ) is orthogonal to the kernel
of the transposed matrix (Q(∆N ))′, i.e., for any ξ ∈ Ker(Q(∆N ))′, the following equality is true:
(F (∆N ), ξ) = 0, where (·, ·) is the scalar product in R2N .

Theorem 2. Problem (1)–(3) is uniquely solvable if and only if the (2N × 2N) matrix Q(∆N ) is
invertible.

Acknowledgment

This research has been funded by the Science Committee of the Ministry of Education and Science
of the Republic of Kazakhstan (Grant # AP08855726).



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 15

References
[1] R. P. Agarwal and I. Kiguradze, On multi-point boundary value problems for linear ordinary

differential equations with singularities. J. Math. Anal. Appl. 297 (2004), no. 1, 131–151.
[2] M. U. Akhmet, Integral manifolds of differential equations with piecewise constant argument

of generalized type. Nonlinear Anal. 66 (2007), no. 2, 367–383.
[3] M. U. Akhmet, On the reduction principle for differential equations with piecewise constant

argument of generalized type. J. Math. Anal. Appl. 336 (2007), no. 1, 646–663.
[4] M. U. Akhmet, Almost periodic solutions of differential equations with piecewise constant

argument of generalized type. Nonlinear Anal. Hybrid Syst. 2 (2008), no. 2, 456–467.
[5] M. Akhmet, Principles of Discontinuous Dynamical Systems. Springer, New York, 2010.
[6] M. Akhmet, Nonlinear Hybrid Continuous/Discrete-Time Models. Atlantis Studies in Mathe-

matics for Engineering and Science, 8. Atlantis Press, Paris, 2011.
[7] M. Akhmet, Almost Periodicity, Chaos, and Asymptotic Equivalence. Nonlinear Systems and

Complexity, 27. Springer, Cham, 2020.
[8] M. Akhmet and M. O. Fen, Replication of Chaos in Neural Networks, Economics and Physics.

Nonlinear Physical Science. Higher Education Press, Beijing; Springer, Heidelberg, 2016.
[9] M. Akhmet and A. Kashkynbayev, Bifurcation in Autonomous and Nonautonomous Differ-

ential Equations with Discontinuities. Nonlinear Physical Science. Higher Education Press,
Beijing; Springer, Singapore, 2017.

[10] M. Akhmet and E. Yılmaz, Neural Networks with Discontinuous/Impact Activations. Nonlinear
Systems and Complexity, 9. Springer, New York, 2014.

[11] S. Busenberg and K. L. Cooke, Models of vertically transmitted diseases with sequential-
continuous dynamics. In: Proceedings of an International Conference on Nonlinear Phenomena
in Mathematical Sciences, Held at the University of Texas at Arlington (Arlington, Texas, June
16-20, 1980), pp. 179–187, Nonlinear Phenomena in Mathematical Sciences, 1982.

[12] S. Busenberg and K. Cooke, Vertically Transmitted Diseases. Models and Dynamics. Biomath-
ematics, 23. Springer-Verlag, Berlin, 1993.

[13] K. L. Cooke and J. Wiener, Retarded differential equations with piecewise constant delays. J.
Math. Anal. Appl. 99 (1984), no. 1, 265–297.

[14] M. A. Domínguez-Pérez and R. Rodríguez-López, Multipoint boundary value problems of
Neumann type for functional differential equations. Nonlinear Anal. Real World Appl. 13
(2012), no. 4, 1662–1675.

[15] D. S. Dzhumabayev, Criteria for the unique solvability of a linear boundary-value problem
for an ordinary differential equation. USSR Computational Mathematics and Mathematical
Physics 29 (1989), no. 1, 34–46.

[16] D. S. Dzhumabaev, New general solutions to linear Fredholm integro-differential equations
and their applications on solving the boundary value problems. J. Comput. Appl. Math. 327
(2018), no. 1, 79–108.

[17] D. S. Dzhumabaev, New general solutions of ordinary differential equations and methods
for solving boundary value problems. (Russian) Ukraïn. Mat. Zh. 71 (2019), no. 7, 884–905;
translation in Ukrainian Math. J. 71 (2019), no. 7, 1006–1031.

[18] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Rus-
sian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Itogi Nauki i Tekhniki, Current
problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR,
Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.



16 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

[19] J. J. Nieto and R. Rodríguez-López, Existence and approximation of solutions for nonlinear
functional differential equations with periodic boundary value conditions. Comput. Math. Appl.
40 (2000), no. 4-5, 433–442.

[20] J. J. Nieto and R. Rodríguez-López, Remarks on periodic boundary value problems for func-
tional differential equations. J. Comput. Appl. Math. 158 (2003), no. 2, 339–353.

[21] J. J. Nieto and R. Rodríguez-López, Green’s function for second-order periodic boundary value
problems with piecewise constant arguments. J. Math. Anal. Appl. 304 (2005), no. 1, 33–57.

[22] J. J. Nieto and R. Rodríguez-López, Some considerations on functional differential equations
of advanced type. Math. Nachr. 283 (2010), no. 10, 1439–1455.

[23] R. Rodríguez-López, Nonlocal boundary value problems for second-order functional differential
equations. Nonlinear Anal. 74 (2011), no. 18, 7226–7239.

[24] M. Rontó and A. M. Samoilenko, Numerical-Analytic Methods in the Theory of Boundary-
Value Problems. With a preface by Yu. A. Mitropolsky and an appendix by the authors and
S. I. Trofimchuk. World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[25] G. Seifert, Second order scalar functional differential equations with piecewise constant argu-
ments. J. Difference Equ. Appl. 8 (2002), no. 5, 427–445.

[26] G. Seifert, Second-order neutral delay-differential equations with piecewise constant time de-
pendence. J. Math. Anal. Appl. 281 (2003), no. 1, 1–9.

[27] S. M. Shah and J. Wiener, Advanced differential equations with piecewise constant argument
deviations. Internat. J. Math. Math. Sci. 6 (1983), no. 4, 671–703.

[28] J. Wiener, Generalized Solutions of Functional-Differential Equations. World Scientific Pub-
lishing Co., Inc., River Edge, NJ, 1993.

[29] P. Yang, Y. Liu and W. Ge, Green’s function for second order differential equations with
piecewise constant arguments. Nonlinear Anal. 64 (2006), no. 8, 1812–1830.

[30] R. Yuan, On the second-order differential equation with piecewise constant argument and
almost periodic coefficients. Nonlinear Anal. 52 (2003), no. 5, 1411–1440.

[31] F. Q. Zhang, Boundary value problems for second order differential equations with piecewise
constant arguments. Ann. Differential Equations 9 (1993), no. 3, 369–374.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 17

Existence and Uniqueness Theorems
to Generalized Emden–Fowler Type Equations

I. V. Astashova1,2
1Lomonosov Moscow State University, Moscow, Russia;

2Plekhanov Russian University of Economics, Moscow, Russia
E-mail: ast.diffiety@gmail.com

Abstract. For generalized Emden–Fowler type equations we obtain conditions on initial values
providing uniqueness or non-uniqueness of solutions.

1 Introduction and Basic Notation
Consider the equation

y′′ = p(x, y, y′)|y|k0± |y′|k1± , (1.1)

where |a|b± denotes |a|b sgn a and a positive continuous function p is locally Lipschitz continuous in
the last two arguments. The real constants k0 and k1 are positive.

Given any x0, y0, y1 ∈ R, equation (1.1) has a solution defined in a neighborhood of x0 ∈ R
and satisfying the initial conditions

y(x0) = y0, y′(x0) = y1. (1.2)

Our purpose is to know whether or not the above solution is unique. To obtain results, we use
some methods of [1]. In some simple cases the results coincide with those of [2] and [3].

Without loss of generality, suppose x0 = 0. Put

p0 = p(0, 0, 0) > 0,

pm(X) = inf
{
p(x, u, v) : |x| ≤ X, |u| ≤ X, |v| ≤ X

}
,

pM (X) = sup
{
p(x, u, v) : |x| ≤ X, |u| ≤ X, |v| ≤ X

}
,

and note that pm(X) → p0 and pM (X) → p0 as X → +0.
Since p is locally Lipschitz continuous in the last two arguments, we may assume it to satisfy

the inequalities

|p(x, u, v)− p(x,w, v)| ≤ p0λX |u− w| and |p(x, u, v)− p(x, u, w)| ≤ p0λX |v − w|

for some λX > 0 and for all real x, u, v, w ∈ [−X;X].

2 Main Results
Theorem 2.1. If k0 ∈ (0; 1), y0 = 0, y1 ̸= 0, then in a neighborhood of 0 equation (1.1) has a
unique solution satisfying (1.2).
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Theorem 2.2. If k1 ∈ (0; 1), y0 ̸= 0, y1 = 0, then equation (1.1) has at least two solutions
satisfying (1.2) and differing at points arbitrarily close to 0.

Theorem 2.3. If k0 > 0, k1 > 0, k0 + k1 ≥ 1, y0 = y1 = 0, then in a neighborhood of 0 equation
(1.1) has a unique solution satisfying (1.2).

Theorem 2.4. If k0, k1, k0 + k1 ∈ (0; 1) and y0 = y1 = 0, then in a neighborhood of 0 equation
(1.1) has at least two solutions satisfying (1.2) and differing at points arbitrarily close to 0.

3 Proofs

Proof of Theorem 2.1. According to the equation and initial conditions, we have

y(x) =

x∫
0

y′(ξ) dξ and y′(x) = y1 +

x∫
0

p

(
η,

η∫
0

y′(ξ) dξ, y′(η)

)∣∣∣∣
η∫

0

y′(ξ) dξ

∣∣∣∣k0
±
|y′(η)|k1± dη.

The last expression can be written as F (y′, y′, y′, y′)(x), where

F (u1, u2, u3, u4)(x) = y1 +

x∫
0

p

(
η,

η∫
0

u1(ξ) dξ, u2(η)

)∣∣∣∣
η∫

0

u3(ξ) dξ

∣∣∣∣k0
±
|u4(η)|k1± dη

for any continuous functions u1, u2, u3, u4.
Suppose y and z are different solutions to (1.1), (1.2). There exists a segment [−X;X] with

0 < X < 1 such that both y′(x)/y1 and z′(x)/y1 are contained in [12 ; 2] for any x ∈ [−X;X].
Put δ = sup{|y′(x)− z′(x)| : x ∈ [−X;X]}. We have

|y′(x)− z′(x)| =
∣∣F (y′, y′, y′, y′)(x)− F (z′, z′, z′, z′)(x)

∣∣
≤

∣∣F (y′, y′, y′, y′)(x)− F (y′, y′, y′, z′)(x)
∣∣+ ∣∣F (y′, y′, y′, z′)(x)− F (y′, y′, z′, z′)(x)

∣∣
+
∣∣F (y′, y′, z′, z′)(x)− F (y′, z′, z′, z′)(x)

∣∣+ ∣∣F (y′, z′, z′, z′)(x)− F (z′, z′, z′, z′)(x)
∣∣.

Now we estimate, on [−X;X], each summand of the last sum. For the second one, we use the
inequality

∣∣|a|k± − |b|k±
∣∣ ≤ k|a− b|

min{|a|, |b|}1−k
whenever 0 < k < 1 and sgn a = sgn b ̸= 0.

So, ∣∣F (y′, y′, y′, y′)(x)− F (y′, y′, y′, z′)(x)
∣∣ ≤ X · pM (X) · |2y1X|k0 · k1|y1|k1−12|k1−1|δ,∣∣F (y′, y′, y′, z′)(x)− F (y′, y′, z′, z′)(x)
∣∣ ≤ pM (X) · k0

k0 + 1
Xk0+1

∣∣∣ 2
y1

∣∣∣1−k0
δ · |2y1|k1 ,∣∣F (y′, y′, z′, z′)(x)− F (y′, z′, z′, z′)(x)

∣∣ ≤ X · p0λXδ · |2y1X|k0 · |2y1|k1 ,∣∣F (y′, z′, z′, z′)(x)− F (z′, z′, z′, z′)(x)
∣∣ ≤ X ·Xp0λXδ · |2y1X|k0 · |2y1|k1 .

Now we choose X > 0 small enough to make each right-hand side of the four inequalities less than
δ/8. This yields |y′(x)− z′(x)| < δ/2 on [−X;X], contradicting to the definition of δ.
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Proof of Theorem 2.2. Without loss of generality we assume y0 > 0.
The first solution to (1.1), (1.2) is evident: y ≡ y0. To find another one, put α = 1

1−k1
> 1 and

consider the first-order 2-dimensional system
y′(x) = |v(x)|α,

v′(x) =
|y(x)|k0±

α
p
(
x, y(x), |v(x)|α

)
with the initial conditions y(0) = y0, v(0) = 0.

Since y0 ̸= 0, this initial value problem is regular in a neighborhood of the point (0, y0, 0)
regardless of whether or not k0 is less than 1. Hence the problem has a solution defined in a
neighborhood of 0. It follows from the second equation of the system that v′(0) ̸= 0 and therefore
y′(x), which equals |v(x)|α, vanishes at 0 but cannot be identically zero in any neighborhood of 0.
So, y cannot be constant.

Further, y(x), v(x), and y′(x) are positive for x > 0 and

y′′(x) = αv(x)α−1 y(x)
k0

α
p(x, y(x), v(x)α) = y′(x)(α−1)/α y(x)k0p(x, y(x), y′(x)).

Since (α−1)/α = k1, the function y(x) is a solution to (1.1), (1.2) other than the constant one.

Proof of Theorem 2.3. The existence of a solution is evident even without the Peano existence
theorem since y ≡ 0 surely satisfies both (1.1) and (1.2). So, we have to prove that no other solution
exists in a sufficiently small neighborhood of 0.

First, consider constant-sign solutions to (1.1), (1.2) with constant-sign derivative in a half-
neighborhood of 0. Here we have the following equivalences for such solutions (as x → 0):

y′′(x)|y′(x)|1−k1 ∼ p0 |y(x)|k0± y′(x),
(
log |y′| sgn y′

)′
(x) ∼ p0

k0 + 1

(
|y|k0+1

)′
(x) if k1 = 2,

(
|y′|2−k1

±
)′
(x) ∼ (2− k1)p0

k0 + 1

(
|y|k0+1

)′
(x) if k1 ̸= 2.

The right-hand sides of the two last equivalences are the derivatives of bounded functions. The
same must be true for equivalent functions. But in the case k1 ≥ 2, the left-hand sides are the
derivatives of unbounded functions. Because of this contradiction, we go on with the case k1 < 2
only. By L’Hôpital’s rule, the last equivalence invokes

|y′(x)|2−k1
± ∼ (2− k1)p0

k0 + 1
|y(x)|k0+1,

y′(x) ∼
((2− k1)p0

k0 + 1

)1/(2−k1)
|y(x)|(k0+1)/(2−k1),

(
log |y| sgn y

)′
(x) ∼

((2− k1)p0
k0 + 1

)1/(2−k1)
if k0 + 1 = 2− k1,

(
|y|1−(k0+1)/(2−k1)

±
)′
(x) ∼

((2− k1)p0
k0 + 1

)1/(2−k1)(
1− k0 + 1

2− k1

)
if k0 + 1 ̸= 2− k1.

By the conditions of the theorem, the exponent of |y|± in the last equivalence, which equals

1− k0 + 1

2− k1
=

1− k0 − k1
2− k1

,
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is negative. Hence, the left-hand sides of the last two equivalences are the derivatives of un-
bounded functions but are equivalent to finite constants. This contradiction shows that in any
half-neighborhood of 0 there is no constant-sign solution to (1.1), (1.2) with constant-sign deriva-
tive, besides the trivial solution y ≡ 0.

Now, what about non-constant-sign solutions? If such a solution pretends to disprove the
statement of the theorem, its domain must include a monotonic sequence of disjoint intervals
(aj ; bj) such that

(i) y(x)y′(x) ̸= 0 on (aj ; bj),

(ii) y(aj)y
′(aj) = 0,

(iii) y(bj)y
′(bj) = 0,

(iv) aj → 0 and bj → 0 as j → ∞.
Note that neither y(aj) = y′(aj) = 0 nor y(bj) = y′(bj) = 0 can hold because of the first part

of our proof. Neither y(aj) = y(bj) = 0 nor y′(aj) = y′(bj) = 0 can hold because of condition (i),
Rolle’s lemma, and equation (1.1). If y(aj) = 0 and y′(aj) > 0, then, according to (1.1), we have
y(x) > 0, y′(x) > 0, and y′′(x) > 0 on (aj ; bj), which makes (iii) impossible. Similarly, if y(bj) = 0
and y′(bj) > 0, then we have y(x) < 0, y′(x) > 0, and y′′(x) < 0 on (aj ; bj), which also makes (iii)
impossible. So, only the cases y(aj) = 0, y′(aj) < 0, y(bj) < 0, y′(bj) = 0 and y(aj) > 0, y′(aj) = 0,
y(bj) = 0, y′(bj) < 0 are possible. A pair of such segments can match at a common end-point with
y(x) = 0. But outside their union the solution can only stay constant or move away from zero.
Thus, it cannot satisfy (1.2).

Proof of Theorem 2.4. The first solution to (1.1), (1.2) is y ≡ 0. To find another one, put
β = k0+1

1−k0−k1
> 1 and consider the operators acting on the space of positive continuous functions

by the following formulae with u ∈ C[0;X], X > 0, and x ∈ [0;X]:

Y (u)(x) =

x∫
0

sβu(s) ds,

P (u)(x) = p
(
x, Y (u)(x), xβu(x)

)
,

Q(u)(x) = Y (u)(x)k0 · (xβu(x))k1 · P (u)(x),

F (u)(x) = x−β

x∫
0

Q(u)(s) ds.

The last one can be well defined also for x = 0 and can be shown to be a contraction. Thus, F has
a unique fixed point, i.e. a positive continuous function u on [0;X] such that F (u) = u.

Consider the function y = Y (u). According to the definition of the operator Y , we have
y(0) = y′(0) = 0. Further,

y′(x) = xβu(x) = xβF (u)(x) =

x∫
0

Q(u)(s) ds,

whence

y′′(x) = Q(y)(x) = Y (u)(x)k0 · (xβu(x))k1 · P (u)(x)

= y(x)k0y′(x)k1p
(
x, Y (u)(x), xβu(x)

)
= y(x)k0y′(x)k1p(x, y(x), y′(x)).

So, y is a solution to (1.1), (1.2). It is positive on (0;X] and therefore is just another solution from
the statement of the theorem.
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4 Summary

n = 2 0, 0 Y0, 0 0, Y1 Y0, Y1

k0 ≥ 1, k1 ≥ 1 U U U U

k0 < 1, k1 ≥ 1 U : Th2.3 U U : Th2.1 U

k0 ≥ 1, k1 < 1 U : Th2.3 N : Th2.2 U U

k0 + k1 ≥ 1, k0 < 1, k1 < 1 U : Th2.3 N : Th2.2 U : Th2.1 U

k0 + k1 < 1 N : Th2.4 N : Th2.2 U : Th2.1 U

The first column of the above table contains conditions on the positive coefficients kj . The
first row describes initial data, y(0) and y′(0), with Y0 and Y1 denoting any non-zero value. In the
main part of the table, “U” denotes the uniqueness of solutions to (1.1), (1.2) under the related
conditions. “N” denotes non-uniqueness. These labels are followed by references to the related
theorems. If not, then the classical existence and uniqueness theorem is implied.

Remark. Asymptotic behavior of unbounded solutions to equation (1.1) with additional conditions

0 < p∗ ≤ p(x, u, v) ≤ p∗ < ∞, for some p∗, p
∗ ∈ R and all (x, u, v) ∈ R3,

is obtained in [4]. Asymptotic behavior of the first derivatives of bounded solutions is described
in [5].
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Let a finite interval [a, b] ⊂ R and parameters {m,n, r, l} ⊂ N, 1 ≤ p ≤ ∞, be given. By
Wn+r

p = Wn+r
p ([a, b];C) := {y ∈ Cn+r−1[a, b] : y(n+r−1) ∈ AC[a, b], y(n+r) ∈ Lp[a, b]} we denote a

complex Sobolev space and set W 0
p := Lp. This space is a Banach one with respect to the norm

∥y∥n+r,p =
n+r−1∑
k=0

∥y(k)∥p + ∥y(n+r)∥p,

where ∥ · ∥p is the norm in space Lp([a, b];C). Similarly, by (Wn+r
p )m := Wn+r

p ([a, b];Cm)
and (Wn+r

p )m×m := Wn+r
p ([a, b];Cm×m) we denote Sobolev spaces of vector-valued functions and

matrix-valued functions, respectively, whose elements belong to the function space Wn+r
p .

We consider the following linear boundary-value problem

(Ly)(t) := y(r)(t) +
r∑

j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (1)

By = c, (2)

where the matrix-valued functions Ar−j( · ) ∈ (Wn
p )

m×m, the vector-valued function f( · ) ∈ (Wn
p )

m,
the vector c ∈ Cl, the linear continuous operator

B : (Wn+r
p )m → Cl (3)

are arbitrarily chosen; and the vector-valued function y( · ) ∈ (Wn+r
p )m is unknown.

We represent vectors and vector-valued functions in the form of columns. A solution to the
boundary-value problem (1), (2) is understood as a vector-valued function y( · ) ∈ (Wn+r

p )m satis-
fying equation (1) almost everywhere on (a, b) (everywhere for n ≥ 2) and equality (2) specifying l
scalar boundary conditions. The solutions of equation (1) fill the space (Wn+r

p )m if its right-hand
side f( · ) runs through the space (Wn

p )
m. Hence, the boundary condition (2) with continuous

operator (3) is the most general condition for this equation.
It includes all known types of classical boundary conditions, namely, the Cauchy problem, two-

and multi-point problems, integral and mixed problems, and numerous nonclassical problems. The
last class of problems may contain derivatives (generally fractional) y(k)( · ) with 0 < k ≤ n+ r.

For 1 ≤ p < ∞, every operator B in (3) admits a unique analytic representation

By =
n+r−1∑
k=0

αky
(k)(a) +

b∫
a

Φ(t)y(n+r)(t) dt, y( · ) ∈ (Wn+r
p )m,

where the matrices αk ∈ Crm×m and the matrix-valued function Φ( · ) ∈ Lp′ ([a, b];C
rm×m), 1/p +

1/p′ = 1.
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For p = ∞ this formula also defines an operator B : (Wn+r
∞ )m → Crm. However, there exist

other operators from this class generated by the integrals over finitely additive measures.
With the generic inhomogeneous boundary-value problem (1), (2), we associate a linear contin-

uous operator in pair of Banach spaces

(L,B) : (Wn+r
p )m → (Wn

p )
m × Cl. (4)

Recall that a linear continuous operator T : X → Y , where X and Y are Banach spaces, is called
a Fredholm operator if its kernel kerT and cokernel Y/T (X) are finite-dimensional. If operator T
is Fredholm, then its range T (X) is closed in Y and the index

indT := dimkerT − dim(Y/T (X)) ∈ Z

is finite.

Theorem 1. The linear operator (4) is a bounded Fredholm operator with index mr − l.

Theorem 1 allows the next specification.
For each number k ∈ {1, . . . , r}, we consider the family of the matrix Cauchy problems:

Y
(r)
k (t) +

r∑
j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a, b),

with the initial conditions
Y

(j−1)
k (a) = δk,jIm, j ∈ {1, . . . , r}.

Here, Yk( · ) is an unknown m×m matrix-valued function, and δk,j is the Kronecker symbol.
By [BYk] we denote the numerical m× l matrix, in which j-th column is the result of action of

the operator B on the j-th column of the matrix-valued function Yk( · ).

Definition 1. A block rectangular numerical matrix M(L,B) := ([BY0], . . . , [BYr−1]) ∈ Cmr×l is
characteristic to the inhomogeneous boundary-value problem (1), (2). It consists of r rectangular
block columns [BYk( · )] ∈ Cm×l.

Here mr is the number of scalar differential equations of system (1), and l is the number of
scalar boundary conditions.

Theorem 2. The dimensions of the kernel and cokernel of operator (4) are equal to the dimensions
of the kernel and cokernel of the characteristic matrix M(L,B), respectively.

Theorem 2 implies a criterion for the invertibility of the operator (4).

Corollary 1. The operator (L,B) is invertible if and only if l = mr and the matrix M(L,B) is
nondegenerate.

With problem (1), (2), we consider the sequence of boundary-value problems

L(k)y(t, k) := y(r)(t, k) +
r∑

j=1

Ar−j(t, k)y
(r−j)(t, k) = f(t, k), t ∈ (a, b), (5)

B(k)y( · , k) = c(k), k ∈ N, (6)

where the matrix-valued functions Ar−j( · , k), the vector-valued function f( · , k), the vector c(k),
and a linear continuous operator B(k) satisfy the above conditions to problem (1), (2).
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With the boundary-value problem (5), (6), we associate a sequence of linear continuous operators

(L(k), B(k)) : (Wn+r
p )m → (Wn

p )
m × Cl

and a sequence of characteristic matrices depending on the parameter k ∈ N

M(L(k), B(k)) :=
([

B(k)Y0( · , (k))
]
, . . . ,

[
B(k)Yr−1( · , (k))

])
⊂ Cmr×l.

We now formulate a sufficient condition for the convergence of the characteristic matrices
M(L(k), B(k)) to the matrix M(L,B).

Theorem 3. If the sequence of operators (L(k), B(k)) converges strongly to the operator (L,B)
for k → ∞, then the sequence of characteristic matrices M(L(k), B(k)) converges to the matrix
M(L,B).

Theorem 3 implies the next result.

Corollary 2. Under the assumptions from Theorem 3, the following inequalities hold for sufficiently
large k:

dimker(L(k), B(k)) ≤ dimker(L,B),

dim coker(L(k), B(k)) ≤ dim coker(L,B).

In particular:

1. If l = mr and the operator (L,B) is reversible, then the operators (L(k), B(k)) are also
reversible for large k.

2. If the boundary-value problem (1), (2) has a solution for any values of the right-hand sides,
then the boundary-value problems (5), (6) also have a solution for large k.

3. If the boundary-value problem (1), (2) has a unique solution, then the problems (5), (6) also
have a unique solution for each sufficiently large k.

Let us consider parameterized by number ε ∈ [0, ε0), ε0 > 0, linear boundary-value problem

L(ε)y(t, ε) := y(r)(t, ε) +
r∑

j=1

Ar−j(t, ε)y
(r−j)(t, ε) = f(t, ε), t ∈ (a, b), (7)

B(ε)y( · ; ε) = c(ε), (8)

where for every fixed ε the matrix-valued functions Ar−j( · ; ε) ∈ (Wn
p )

m×m, the vector-valued
function f( · ; ε) ∈ (Wn

p )
m, the vector c(ε) ∈ Crm, B(ε) is the linear continuous operator B(ε) :

(Wn+r
p )m → Crm, and the solution (the unknown vector-valued function) y( · ; ε) ∈ (Wn+r

p )m.
It follows from Theorem 1 that the boundary-value problem (7), (8) is a Fredholm one with

index zero.

Definition 2. A solution to the boundary-value problem (7), (8) depends continuously on the
parameter ε at ε = 0 if the following two conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that for any ε ∈ [0, ε1) and arbitrary chosen
right-hand sides f( · ; ε) ∈ (Wn

p )
m and c(ε) ∈ Crm this problem has a unique solution y( · ; ε)

that belongs to the space (Wn+r
p )m;
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(∗∗) the convergence of the right-hand sides f( · ; ε) → f( · ; 0) in (Wn
p )

m and c(ε) → c(0) in Crm

as ε → 0+ implies the convergence of the solutions y( · ; ε) → y( · ; 0) in (Wn+r
p )m.

Consider the following conditions as ε → 0+:

(0) the limiting homogeneous boundary-value problem

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y( · , 0) = 0

has only the trivial solution;

(I) Ar−j( · ; ε) → Ar−j( · ; 0) in the space (Wn
p )

m×m for each number j ∈ {1, . . . , r};

(II) B(ε)y → B(0)y in the space Crm for every y ∈ (Wn+r
p )m.

Theorem 4. A solution to the boundary-value problem (7), (8) depends continuously on the pa-
rameter ε at ε = 0 if and only if this problem satisfies condition (0) and the conditions (I) and
(II).

We supplement our result with a two-sided estimate of the error ∥y( · ; 0)− y( · ; ε)∥n+r,p of the
solution y( · ; ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y( · ; 0)− f( · ; ε)

∥∥
n,p

+
∥∥B(ε)y( · ; 0)− c(ε)

∥∥
Crm .

Here, we interpret y( · ; 0) as an approximate solution to problem (7), (8).

Theorem 5. Suppose that the boundary-value problem (7), (8) satisfies conditions (0), (I) and (II).
Then there exist positive numbers ε2 < ε1 and γ1, γ2 such that, for any ε ∈ (0, ε2), the following
two-sided estimate is true:

γ1 d̃n,p(ε) ≤
∥∥y( · ; 0)− y( · ; ε)

∥∥
n+r,p

≤ γ2 d̃n,p(ε),

where the quantities ε2, γ1, and γ2 do not depend of y( · ; ε) and y( · ; 0).

Thus, the error and discrepancy of the solution y( · ; ε) to the boundary-value problem (7), (8)
are of the same degree of smallness.

The results are published in [1, 3–7]. The most general class of multi-point boundary-value
problems for systems of linear ordinary differential equations of an arbitrary order is considered
in [2].

References
[1] O. M. Atlasiuk, Limit theorems for the solutions of multipoint boundary-value problems in

Sobolev spaces. (Ukrainian) Neliniǐni Kolyvannya 22 (2019), no. 1, 18–26; translation in J.
Math. Sci., New York 247 (2020), no. 2, 238–247.

[2] O. M. Atlasiuk, Limit theorems for solutions of multipoint boundary-value problems with
parameter in Sobolev spaces. Ukrain. Math. Zh. 72 (2020), no. 8, 1015–1023.

[3] O. M. Atlasiuk and V. A. Mikhailets, Fredholm one-dimensional boundary-value problems in
Sobolev spaces. (Ukrainian) Ukr. Mat. Zh. 70 (2018), no. 10, 1324–1333; translation in Ukr.
Math. J. 70 (2019), no. 10, 1526–1537.

[4] O. M. Atlasiuk and V. A. Mikhailets, Fredholm one-dimensional boundary-value problems
with parameters in Sobolev spaces. (Ukrainian) Ukr. Mat. Zh. 70 (2018), no. 11, 1457–1465;
translation in Ukr. Math. J. 70 (2019), no. 11, 1677–1687.



26 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

[5] O. M. Atlasiuk and V. A. Mikhailets, On the solvability of inhomogeneous boundary-value
problems in sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2019,
no. 11, 3-7.

[6] O. M. Atlasiuk and V. A. Mikhailets, On Fredholm parameter-dependent boundary-value
problems in Sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki
2020, no. 6, 3–6.

[7] Y. Hnyp, V. Mikhailets and A. Murach, Parameter-dependent one-dimensional boundary-value
problems in Sobolev spaces. Electron. J. Differential Equations 2017, Paper No. 81, 13 pp.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 27

Description of the Linear Perron Effect
Under Parametric Perturbations Exponentially Decaying at Infinity

E. A. Barabanov
Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Belarus

E-mail: bar@im.bas-net.by

V. V. Bykov
Lomonosov Moscow State University, Moscow, Russia

E-mail: vvbykov@gmail.com

1 Introduction
For a given integer n ≥ 2 let Mn denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

with continuous bounded coefficients defined on R+. Let us denote by λ1(A) 6 · · · 6 λn(A) the
Lyapunov exponents [7, p. 561], [1, p. 38] of system (1.1), by Λ(A) = (λ1(A), . . . , λn(A)) their
spectrum, and by es(A) its exponential stability index (i.e. the dimension of the linear subspace of
solutions to this system that have negative characteristic exponents). In what follows, we identify
system (1.1) with its defining function A( · ) and therefore write A ∈ Mn.

In his seminal paper [10] O. Perron constructed an example of a system A ∈ M2 for which there
exists an exponentially decaying perturbation Q : R+ → R2×2 such that the perturbed system

ẋ = (A(t) +Q(t))x, x ∈ R2, t ∈ R+,

has the Lyapunov exponents

λ2(A+Q) > λ2(A) and λ1(A+Q) = λ1(A). (1.2)

The largest Lyapunov exponent λ2(A) of the unperturbed system A in Perron’s example is positive,
and hence this system is unstable and so is the perturbed one. In fact, the same example can be
slightly modified to demonstrate the phenomenon of loss of stability in a linear system under
exponentially decaying perturbation of its coefficients. Let σ ∈ (λ2(A), λ2(A + Q)). Then for the
modified system Ã ≡ A− σI2, where I2 is the (2× 2) identity matrix, we have

es(Ã) = 2 and es(Ã+Q) = 1.

Thus, the system Ã is exponentially stable, whereas the perturbed system Ã+Q is only conditionally
exponentially stable.

O. Perron also constructed [9] an example of a system A ∈ M2 with negative Laypunov ex-
ponents and its quadratic perturbation f(x) such that the perturbed system ẋ = A(t)x + f(x)
possesses the following property: the characteristic exponent of any nontrivial solution starting at
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the line x1 = 0 is the same as for the unperturbed system, while the characteristic exponent of any
solution starting outside the line x1 = 0 is greater than a certain positive number.

These examples by Perron served as a starting point for numerous studies of the effect of
various classes of linear and nonliner perturbations on the Lyapunov exponents of systems in Mn.
The results obtained in this direction constitute an essential part of the modern theory of Lyapunov
exponents. The effect of change of Lyapunov exponents of a system in Mn under one or another
“small” perturbation was called in the monograph [6, Ch. 4] the Perron effect. Starting with
the paper [5], the term is being used only for situations when perturbations do not decrease the
Lyapunov exponents of the original system (in what follows, we will adhere to this terminology).
Unlike the papers [5,6], which study the Perron effect under higher-order perturbations, and along
the lines of the paper [10] we investigate linear vanishing at infinity perturbations of the coefficient
matrix of a system in Mn and call this effect “linear Perron”.

It is worth noting that the perturbation matrix constructed in paper [10] is of the form Q(t) =
µQ0(t), where µ is a real parameter; it is established there that for each µ ̸= 0 relations(1.2) hold.
With this in mind, given a metric space M we consider families of linear systems of the form

ẋ = (A(t) +Q(t, µ))x, x ∈ Rn, t ∈ R+, (1.3)

where A ∈ Mn and Q( · , · ) : R+ ×M → Rn×n is jointly continuous matrix-valued function. For
each fixed value of the parameter µ ∈ M we get a linear differential system with continuous bounded
coefficients whose Lyapunov exponents will be denoted by λ1(µ;A + Q) 6 · · · 6 λn(µ;A + Q).
Therefore, the Lyapunov exponents of family (1.3) are functions of the parameter µ ∈ M . In
particular, the spectrum of family(1.3) is defined to be the vector function Λ( · ;A+Q) ≡ (λ1( · ;A+
Q), . . . , λn( · ;A+Q)) : M → Rn.

2 Statement of the problem. Main result
We will denote by En(M) the class of jointly continuous matrix-valued functions Q : R+ × M →
Rn×n satisfying the estimate

∥Q(t, µ)∥ 6 CQ exp(−σQt), (t, µ) ∈ R+ ×M,

with CQ and σQ being positive constants (different for each function Q).
For a system A ∈ Mn we will denote by En[A](M) the class of those Q ∈ En(M) that do not

descrease its Lyapunov exponents, i.e. for any A ∈ Mn and its perturbation Q ∈ En[A](M) the
inequalities

inf
µ∈M

λi(µ;A+Q) > λi(A), i = 1, . . . , n,

hold. Clearly, for any A ∈ Mn the class En[A](M) is nonempty since identically zero matrix belongs
to it.

The problem to be solved is to obtain for each n ≥ 2 and each metric space M a complete
description of the class of pairs (Λ(A),Λ( · ;A + Q)) composed of the spectrum Λ(A) ∈ Rn of a
system A ∈ Mn and the spectrum Λ( · ;A+Q) : M → Rn of a family A+Q, where A ranges over
Mn and matrix-valued function Q ranges over the class En[A](M) for each A, i.e. of the class

ΠEn(M) =
{
(Λ(A),Λ( · ;A+Q)) | A ∈ Mn, Q ∈ En[A](M)

}
.

Note that a complete description of the class

ΛEn(M) =
{
Λ( · ;A+Q) | A ∈ Mn, Q ∈ En[A](M)

}
,



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 29

composed of the second elements of the pairs in the class ΠEn(M) immediately follows from the
result of [3].

Obviously, the solution of the stated problem would contain as a special case Perron’s example
and describe from a descriptive set theoretic standpoint all possible situations in which an exponen-
tially stable linear system gets unstable under parametric exponentially vanishing perturbations.
For instance, it follows from the theorem presented below that there exists a system A ∈ M2 with
the largest Laypunov exponent λ2(A) = −1 and its perturbation Q ∈ E2[A](R) such that the largest
Laypunov exponent λ2(A + Q) of the perturbed system equals −1 for a rational µ and 1 for an
irrational µ.

The direction in the theory of Lyapunov exponents dealing with the dependence of asymp-
totic properties and characteristics of parametric differential systems on the parameter is due to
V. M. Millionshchikov, who initiated systematic research in this direction with a series of papers, of
which we only mention the paper [8]. We are also indebted to him for understanding that the lan-
guage of the Baire theory of discontinuous functions is adequate for describing such a dependence.
We emphasize that here one speaks of a complete description of all possible types of behavior of
some properties or characteristics of a system under changes in the system parameters as opposed
to establishing sufficient conditions for one or another type of their behavior. Since then, quite a
few results have been obtained in this vein.

Let us recall that a function f : M → R is said [4, pp. 266–267] to be of the class ( ∗ , Gδ) if for
each r ∈ R the preimage f−1([r,+∞)) of the half-interval [r,+∞) is a Gδ-set of the metric space
M . In particular, the class ( ∗ , Gδ) is a subclass of the second Baire class [4, p. 294].

A complete description of the class ΠEn(M) for any n ≥ 2 and metric space M is given by the
following statement [2].

Theorem. Let n > 2 be an integer and M a metric space. A pair (l, F ( · )), with l = (l1, . . . , ln) ∈ Rn

and F ( · ) = (f1( · ), . . . , fn( · )) : M → Rn, belongs to the class ΠEn(M) if and only if the following
conditions are met:

(1) l1 6 · · · 6 ln;

(2) f1(µ) 6 · · · 6 fn(µ) for all µ ∈ M ;

(3) fi(µ) > li for all µ ∈ M and i = 1, . . . , n;

(4) for each i = 1, . . . , n the function fi( · ) : M → R is bounded and is of the class ( ∗ , Gδ).

Corollary 2.1. Let n > 2 be an integer and M an interval in the real line. Then for each pair
(l, F ( · )) ∈ ΠEn(M) there exists a system A ∈ Mn and its perturbation Q ∈ En[A](R) analytical in
parameter such that Λ(A) = l and Λ( · ;A+Q) = F .

Let Zn ≡ {0, . . . , n}. We define the function es( · ;A) : M → Zn assigning to each µ ∈ M
the exponential stability index of system (1.3). There naturally arises the problem of describing
the class of pairs composed of the exponential stability index es(A) ∈ Zn of a system A and the
exponential stability index es( · ;A+Q) : M → Zn of a family A+Q, i.e. of the class

IEn(M) =
{
(es(A), es( · ;A+Q)) | A ∈ Mn, Q ∈ En[A](M)

}
.

The solution is provided by the following statement.

Corollary 2.2. Let n > 2 be an integer and M a metric space. A pair (d, f( · )), where d ∈ Zn and
f : M → Zn, belongs to the class IEn(M) if and only if f(µ) 6 d for all µ ∈ M and the function
(−f) is of the class ( ∗ , Gδ).
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Abstract. In this paper we study a problem for Poisson’s equation when on opposite sides of
rectangular domain are given the Dirichlet conditions, while on the rest two sides are given integral
type nonlocal constraints. We prove the existence and uniqueness of a solution in the weighted
Sobolev space.

Let Ω = {x = (x1, x2) : 0 < xk < l, k = 1, 2} be a square with boundary Γ.
We seek in Ω a solution to Poisson’s equation

∆u = −f(x), x ∈ Ω, (1)

which satisfies the following Dirichlet homogeneous conditions

u(x1, 0) = u(x1, l) = 0, 0 ≤ x1 ≤ l1, (2)

and the integral type nonlocal conditions

ξ∫
0

u(x) dx1 = 0,

l∫
l−ξ

u(x) dx1 = 0, ≤ x2 ≤ l, 0 < ξ ≤ l

2
. (3)

By L2(Ω, ρ) we denote a weighted Lebesgue space of all real-valued functions u(x) on Ω with the
inner product and the norm

(u, v)ρ =

∫
Ω

ρuv dx, ∥u∥ρ = (u, u)1/2ρ .
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Denote by
∗
W 1

2(Ω, ρ) a linear set of all functions L2(Ω, ρ) whose first order derivatives (in general
sense) belong to L2(Ω, ρ). It is a normalized space with the norm

∥u∥1,ρ =
(
∥u∥2ρ + |u|21,ρ

)1/2
, |u|21,ρ =

∥∥∥ ∂u

∂x1

∥∥∥2
ρ
+
∥∥∥ ∂u

∂x2

∥∥∥2
ρ
.

Let us choose a weight function ρ(x) in the following form

ρ(x) :=



x1
ξ

, 0 ≤ x1 ≤ ξ,

1, ξ < x1 < l − ξ, 0 < ξ ≤ l

2
,

l − x1
ξ

, l − ξ ≤ x1 ≤ l,

and define an operator in the form

Gv(x) :=



x1
ξ

v(x)− 1

ξ

x1∫
0

v(t, x2) dt, 0 ≤ x1 ≤ ξ,

v(x), ξ < x1 < l − ξ, 0 < ξ ≤ l

2
,

l − x1
ξ

v(x)− 1

ξ

l∫
x1

v(t, x2) dt, l − ξ ≤ x1 ≤ l.

We say that function u ∈
∗
W 1

2(Ω, ρ) is a weak solution of problem (1)–(3) if the relation

a(u, v) = (f,Gv) ∀ v ∈
∗
W 1

2(Ω, ρ) (4)

holds, where
a(u, v) :=

( ∂u

∂x1
,
∂v

∂x1

)
ρ
+
( ∂u

∂x2
, G

∂v

∂x2

)
. (5)

Equation (4) can be formally obtained from (1) by taking into account conditions (2), (3).
In the case u = v for estimate of the second addend of (5) we use the following proposition.

Lemma 1. If the function v defined on the segment [0;1] satisfies the nonlocal conditions (3), then
the following identity

l∫
0

v(x)Gv(x) dx1 =

l∫
0

ρ(x)v2(x) dx1

holds.

Indeed, v = ∂u
∂x2

satisfies the nonlocal conditions. Besides, we take into account the equalities
implied from the definition of the operator G

ξ∫
0

v(x1, x2)

x1∫
0

v(t, x2) dt dx1 =
1

2

( x1∫
0

v(t, x2) dt

)2
∣∣∣∣∣
ξ

x1=0

= 0,

l∫
l−ξ

v(x1, x2)

l∫
x1

v(t, x2) dt dx1 = −1

2

( l∫
x1

v(t, x2) dt

)2
∣∣∣∣∣
l

x1=l−ξ

= 0.
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In view of the following equalities

∂

∂x1
(Gv) = ρ

∂v

∂x1
,

∫
Ω

∂2u

∂x21
Gv dx1 dx2 = −

∫
Ω

ρ
∂u

∂x1

∂v

∂x1
dx1 dx2,

one can prove that the bilinear form a(u, v) is both continuous and coercive on u ∈
∗
W 1

2(Ω, ρ), while
the linear form (f,Gv) is continuous on the same space.

Lemma 2. For any function u ∈
∗
W 1

2(Ω, ρ), the estimate

l∫
0

u2 dx1 ≤
5l2

4

l∫
0

ρ
( ∂u

∂x1

)2
dx1

is valid.

Proof. For simplicity let us write u′ instead of ∂u/∂x1. Let

J := −
ξ∫

0

x1 du
2 +

l−ξ∫
ξ

( l

2
− x1

)
du2 +

l∫
l−ξ

(l − x1) du
2. (6)

It is easy to verify that
l∫

0

u2 dx1 = J +
l

2

[
u2(ξ) + u2(l − ξ)

]
. (7)

Rewrite (6) as follows

J = −2

ξ∫
0

x1u
′u dx1 + 2

l−ξ∫
ξ

( l

2
− x1

)
u′u dx1 + 2

l∫
l−ξ

(l − x1)u
′u dx1.

Whence, by use of ε-inequality, we obtain

|J | ≤
[
1

2

ξ∫
0

u2 dx1 + 2

ξ∫
0

x21(u
′)2 dx1

]
+

[
1

2

l−ξ∫
ξ

u2 dx1 + 2

l−ξ∫
ξ

( l

2
− x1

)2
(u′)2 dx1

]

+

[
1

2

l∫
l−ξ

u2 dx1 + 2

l∫
l−ξ

(l − x1)
2(u′)2 dx1

]
.

Now let us estimate the values u(ξ), u(l − ξ),

|ξu(l − ξ)|2 =
( l∫
l−ξ

(l − x1)u
′ dx1

)2

≤ ξ2

2

l∫
l−ξ

(l − x1)(u
′)2 dx1,

u2(l − ξ) ≤ 1

2

l∫
l−ξ

(l − x1)(u
′)2 dx1; u2(ξ) ≤ 1

2

ξ∫
0

x1(u
′)2 dx1.
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Finally, from (7) it follows

1

2

l∫
0

u2 dx1 ≤ 2

ξ∫
0

x21(u
′)2 dx1 + 2

l−ξ∫
ξ

( l

2
− x1

)2
(u′)2 dx1 + 2

l∫
l−ξ

(l − x1)
2(u′)2 dx1

+
l

4

ξ∫
0

x1(u
′)2 dx1 +

l

4

l∫
l−ξ

(l − x1)(u
′)2 dx1,

which confirms Lemma 2.
Thus, all the conditions of the Lax–Milgram lemma are fulfilled. Therefore, problem (1)–(3)

has a unique weak solution from
∗
W 1

2(Ω, ρ).
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The differential equation

y′′ = α0p(t)φ0(y)φ1(y
′) exp

(
R(| ln |yy′||)

)
, (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ are continuous
functions, Yi ∈ {0,±∞} (i = 0, 1), ∆Yi is a one-sided neighborhood of Yi, every function φi(z)
(i = 0, 1) is a regularly varying function as z → Yi (z ∈ ∆Yi) of order σi, σ0 + σ1 ̸= 1, σ1 ̸= 0,
the function R : ]0,+∞[→ ]0,+∞[ is continuously differentiable and regularly varying on infinity
of the order µ, 0 < µ < 1, the derivative function of the function R is monotone, is considered in
the work.

Definition. A solution y of equation (1) is called Pω(Y0, Y1, λ0) if it is defined on [t0, ω[⊂ [a, ω[
and

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

A lot of works (see, for example, [3, 4]) have been devoted to the establishing asymptotic
representations of Pω(Y0, Y1, λ0)-solutions of equations of the form (1), in which R ≡ 0. The
Pω(Y0, Y1, λ0)-solutions of equation (1) are regularly varying functions as t ↑ ω of index λ0

λ0−1 if
λ0 ∈ R \ {0, 1}. The asymptotic properties and necessary and sufficient conditions of existence of
such solutions of equation (1) have been obtained in [1].

The case λ0 = ∞ is one of the most difficult cases because in this case such solutions or their
derivatives are slowly varying functions as t ↑ ω. Some results about asymptotic properties and
existence of Pω(Y0, Y1, λ0)-solutions of equation (1) in the special case are presented in the work.

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the
condition S if for any continuous differentiable function L : ∆Yi → ]0;+∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,

the next equality

Θ(zL(z)) = Θ(z)(1 + o(1)) is true as z → Y (z ∈ ∆Y )

holds.
Let us introduce the following notations

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
Θi(z) = φi(z)|z|−σi (i = 0, 1),
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I(t) = α0

t∫
Aω

p(τ) dτ, Aω =


a if

ω∫
a

p(τ) dτ = +∞,

ω if
ω∫

a

p(τ) dτ < +∞.

In case lim
t↑ω

|πω(τ)| sign y00 = Y0 we put

I0(t) = α0

t∫
A0

ω

p(τ)|πω(τ)|σ0Θ0

(
|πω(τ)| sign y00

)
dτ,

A0
ω =


b2 if

ω∫
b2

p(t)|πω(t)|σ0Θ0

(
|πω(t)| sign y00

)
dt = +∞,

ω if
ω∫

b2

p(t)|πω(t)|σ0Θ0

(
|πω(t)|y00

)
dt < +∞,

N(t) = α0p(t)|πω(t)|σ0+1Θ0

(
|πω(t)| sign y00

)
.

Here b1, b2 ∈ [a;ω[ are chosen in such a way that sign y10
∥πω(t)| ∈ ∆Y1 as t ∈ [b1;ω] and |πω(τ)| sign y00 ∈ ∆Y0

as t ∈ [b2;ω].
The next three theorems are devoted to establishing Pω(Y0, Y1,±∞)-solutions of equation (1).

First two cases are obtained in [2]. The first derivatives of such solutions are slowly varying functions
as t ↑ ω, the fact creates difficulties in investigation of such solutions.

Theorem 1. For the existence of Pω(Y0, Y1,±∞)-solutions of equation (1) the following conditions
are necessary

Y0 =

{
±∞ if ω = +∞,

0 if ω < +∞,
πω(t)y

0
0y

0
1 > 0 as t ∈ [a, ω[ . (2)

If the function φ0 satisfies the condition S and

lim
t↑ω

R′(| ln |πω(t)||)I0(t)
πω(t)I ′0(t)

= 0, (3)

then (2) together with the next conditions are necessary and sufficient for the existence of
Pω(Y0, Y1,±∞)-solutions of equation (1):

lim
t↑ω

y01|I0(t)|
1

1−σ0−σ1 = Y1, lim
t↑ω

πω(t)I
′
0(t)

I0(t)
= 0, y01(1− σ0 − σ1)I0(t) > 0 as t ∈ [b2, ω[ .

For such solutions the next asymptotic representations take place as t ↑ ω

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
= (1− σ0 − σ1)I0(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].

Theorem 2. If in (1) the function p is a continuously differentiable function, the function φ0

satisfies the condition S and
lim
t↑ω

πω(t)N
′(t)

R′(| ln |πω(t)||)N(t)
= 0, (4)
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then together with (2) the following conditions are necessary and sufficient for the existence of
Pω(Y0, Y1,±∞)-solutions of equation (1):

lim
t↑ω

y01 exp
( 1

1− σ0 − σ1
R
(
| ln |πω(t)||

))
= Y1, α0y

0
1(1− σ0 − σ1) ln |πω(t)| > 0 as t ∈ [a, ω[ .

For such solutions the next asymptotic representations take place as t ↑ ω

|y′(t)|1−σ0

φ1(y′(t)) exp(R(| ln |y(t)y′(t)||))
=

|1− σ0 − σ1|N(t)

R′(| ln |πω(t)||)
[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].

Theorem 3. If in (1) the function p is a continuously differentiable function, the function φ0

satisfies the condition S and

lim
t↑ω

πω(t)N
′(t)

R′(| ln |πω(t)||)N(t)
= M ̸= 0, (5)

then together with (2) the following conditions are necessary and sufficient for the existence of
Pω(Y0, Y1,±∞)-solutions of equation (1):

lim
t↑ω

y01 exp
( 1

1− σ0 − σ1
R(| ln |πω(t)||)

)
=Y1, α0y

0
1(M+1)(1−σ0−σ1) ln |πω(t)|>0 as t∈ [a, ω[ .

For such solutions the next asymptotic representations take place as t ↑ ω

|y′(t)|1−σ0

φ1(y′(t)) exp(R(| ln |y(t)y′(t)||))
=

|1− σ0 − σ1|N(t)(M + 1)

R′(| ln |πω(t)||)
[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].
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In the space L2[a, b], we consider a perturbed linear boundary-value problem for a weakly
singular integral equation

x(t)−
b∫

a

K(t, s)x(s) ds = f(t) + ε

b∫
a

K(t, s)x(s) ds, (1)

lx( · ) = α+ εJx( · ). (2)

We establish conditions for the bifurcation of solutions of the boundary-value problem (1), (2)
and determine the structure of these solutions under the condition that the generating boundary-
value problem

x(t)−
b∫

a

K(t, s)x(s) ds = f(t), lx( · ) = α (3)

is unsolvable.
Here, K(t, s) = H(t,s)

|t−s|γ and K(t, s) = H(t,s)
|t−s|β , where H(t, s), H(t, s) are functions bounded in the

domain [a, b] × [a, b], 0 < γ < 1, 0 < β < 1, f ∈ L2[a, b], l = col(l1, l2, . . . , lp) : L2[a, b] → Rp,
J = col(J1, J2, . . . , Jp) : L2[a, b] → Rp are bounded linear functionals, lν , Jν : L2[a, b] → R, ν = 1, p,
α = col(α1, α2, . . . , αp) ∈ Rp and ε ≪ 1 is a small parameter.

By using the results obtained in [2], we show that the study of the problem of appearance of
solutions of the boundary-value problem (1), (2) reduces to the corresponding task for the perturbed
boundary-value problem for the Fredholm integral equation

x(t) = fn(t) +
n∑

k=0

εk
b∫

a

Rk
n(t, s)x(s) ds, (4)

fn(t) = f(t) +

n−1∑
k=1

b∫
a

R0
k(t, s)f(s) ds+

n−1∑
k=1

εk
n−1∑
m=k

b∫
a

Rk
m(t, s)f(s) ds,

where Rk
n(t, s), k = 0, n, are the sums of Ck

n kernels of all possible products of n − k integral
operators K and k integral operators K

(Kw)(t) =

b∫
a

H(t, s)

|t− s|γ
w(s) ds and (Kw)(t) =

b∫
a

H(t, s)

|t− s|β
w(s) ds.

We apply the approach described in [3] to the study of the boundary-value problem (4), (2) and
show that it can be reduced to the operator equation. Let {φi(t)}∞i=1 be a complete orthonormal
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system of functions in L2[a, b]. We introduce the notation

xi =

b∫
a

x(t)φi(t) dt, aij =

b∫
a

b∫
a

Kn(t, s)φi(t)φj(s) dt ds,

akij =

b∫
a

b∫
a

Rk
n(t, s)φi(t)φj(s) dt ds, k = 1, n,

fi =

b∫
a

f(t)φi(t) dt+
n−1∑
k=1

b∫
a

b∫
a

R0
k(t, s)f(s)φi(t) dt ds,

fk
i =

n−1∑
m=k

b∫
a

b∫
a

Rk
m(t, s)f(s)φi(t) ds dt, k = 1, n− 1.

By using this notation in the boundary-value problem (4), (2), we obtain the operator equation:

Uz = q +
n−1∑
k=1

εkqk +
n∑

k=1

εkUkz, (5)

where

U =

[
Λ
W

]
, U1 =

[
Λ1

W1

]
, Uk =

[
Λk

0

]
, k = 2, n,

q =

[
g
α

]
, qk =

[
gk
0

]
, k = 1, n− 1,

where the vectors z, g, gk, k = 1, n− 1 and the matrices W , W1, Λ, Λk, k = 1, n have the form

z = col
(
x1, x2, . . . , xi, . . .

)
, g = col

(
f1, f2, . . . , fi, . . .

)
,

gk = col
(
fk
1 , fk

2 , . . . , fk
i , . . .

)
, W = lΦ( · ), W1 = JΦ( · ),

Λ =


1− a11 −a12 . . . −a1i . . .
−a21 1− a22 . . . −a2i . . .
. . . . . . . . . . . . . . .
−ai1 −ai2 . . . 1− aii . . .
. . . . . . . . . . . . . . .

 , Λk =


ak11 ak12 . . . ak1i . . .
ak21 ak22 . . . ak2i . . .
. . . . . . . . . . . . . . .
aki1 aki2 . . . akii . . .
. . . . . . . . . . . . . . .

 ,

Φ(t) =
(
φ1(t), φ2(t), . . . , φi(t), . . .

)
.

The generating equation for the operator equation (5) has the form

Uz = q. (6)

The operator Λ : ℓ2 → ℓ2 appearing on the left-hand side of the operator equation (6) has the
form Λ = I − A, where I : ℓ2 → ℓ2 is the identity operator and A : ℓ2 → ℓ2 is a compact operator.
Hence, according to S. Krein’s classification, the operator Λ : ℓ2 → ℓ2 is a Fredholm operator of
index zero (dimkerΛ = dimkerΛ∗ < ∞) and the operator U : ℓ2 → ℓ2×Rp is a Fredholm operator
of nonzero index (dimkerU < ∞, dimkerU∗ < ∞).

The following statement is true for equation (6) (see [4]).
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Theorem 1. The homogeneous equation (6) (q = 0) possesses a d2-parameter family of solutions
z ∈ ℓ2,

z = PΛrPQd2
cd2 ∀ cd2 ∈ Rd2 .

The inhomogeneous equation (6) is solvable if and only if the following r+d1 linearly independent
conditions are satisfied:

PΛ∗
r
g = 0, PQ∗

d1
(α−WΛ+g) = 0,

and the equation possesses a d2-parameter family of solutions z ∈ ℓ2 of the form

z = PΛrPQd2
cd2 + PΛrQ

+(α−WΛ+g) + Λ+g ∀cd2 ∈ Rd2 .

Here, Q = WPΛr is a (p×r)-matrix, PΛr(PΛ∗
r
) is a matrix formed by a complete system of r linearly

independent columns (rows) of the matrix projector PΛ (PΛ∗), where PΛ (PΛ∗) is the projector onto
the kernel (cokernel) of the matrix Λ, and PQd2

(PQ∗
d1

) is a matrix formed by the complete system
of d2 (d1) linearly independent columns (rows) of the matrix projector PQ (PQ∗), where PQ (PQ∗)
is the projector onto the kernel (cokernel) of the matrix Q and Λ+ (Q+) is the pseudoinverse
Moore–Penrose matrix for the matrix Λ (Q).

We now determine the conditions required for the bifurcation of solutions of the perturbed
inhomogeneous boundary-value problem (1), (2) and study the structure of these solutions under
the conditions that the solution of the homogeneous generating the boundary-value problem (3)
(f(t) = 0, α = 0) is not unique, i.e. (see [2]), PΛrPQd2

̸= 0, and that the inhomogeneous generating
boundary-value problem (3) is unsolvable.

It is known (see [9]) that small perturbations preserve the Fredholm property of the operator,
i.e., the operator

(
U −

n∑
k=1

εkUk

)
is a Fredholm operator with nonzero index. This enables one

to investigate equation (5) by the methods of the theory of perturbed operator boundary-value
problems with Fredholm linear part (see, e.g., [1,4,11]) obtained as a generalization of the classical
methods of the perturbation theory of periodic boundary-value problems in the theory of oscillations
(see [5, 7, 8, 10]).

The analysis of the appearance of solutions of equation (5) is closely connected with the ((r +
d1)× d2)-matrix

B0 =

[
PΛ∗

r
Λ1PΛrPQd2

PQ∗
d1
(W1 −WΛ+Λ1)PΛrPQd2

]
,

constructed by using the coefficients of equation (5).
We introduce an ((r+ d1)× (r+ d1))-matrix PB∗

0
, which is a projector onto the cokernel of the

matrix B0 and a matrix

G =

[
−PΛ∗

r
0

PQ∗
d1
WΛ+ −PQ∗

d1

]
,

formed by r + d1 rows and infinitely many columns. Moreover, as the matrix B0, it is completely
determined by the coefficients of equation (5).

By the Vishik–Lyusternik method (see [12]), we find efficient conditions for the coefficients
guaranteeing the appearance of a family of solutions of the perturbed linear boundary-value problem
(5) in the form of a Laurent series in powers of the small parameter ε with singularity at the point
ε = 0.

The results obtained for the perturbed equations (5) enable us to establish the conditions
for the existence of a d2-parameter family of solutions of the original perturbed boundary-value
problem (1), (2). Indeed, if the boundary-value problem (1), (2) possesses at least one solution,
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then, according to the Riesz–Fischer theorem, one can find an element x ∈ L2[a, b] such that the
quantities xi, i = 1,∞, determined from equation (5) are the Fourier coefficients of this elements,
i.e., the following representation is true:

x(t) = Φ(t)z. (7)

As in [6], we conclude that the element x(t) given by relations (7) is the required d2-parameter
family of solutions of the original boundary-value problem (1), (2). Therefore, the following state-
ment is true.

Theorem 2. Suppose that the generating boundary-value problem (3) is unsolvable. If conditions

PΛrPQd2
̸= 0, PB∗

0
G = 0,

are satisfied, then the boundary-value problem (1), (2) has a d2-parameter family of solutions in the
form of series with singularity at the point ε = 0 convergent for sufficiently small fixed ε ∈ (0, ε∗].
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We consider two-point boundary value problems for higher order linear ordinary differential
equations 

x(n)(t) + p+(t)x(t)− p−(t)x(t) = f(t), t ∈ [a, b],

x(i)(0) = 0, i = 0, . . . ,m− 1,

x(j)(1) = 0, j = 0, . . . , n−m− 1,

(1)

where n, m are positive integer, n > m; f ∈ L[a, b], p = p+ − p− ∈ [a, b],

p+(t) =

{
p(t) if p(t) ≥ 0,

0 if p(t) < 0,
p−(t) =

{
−p(t) if p(t) < 0,

0 if p(t) ≥ 0,

L[a, b] is the space of Lebesgue integrable functions with the standard norm. Together with (1),
we will consider some more general problems.

It is a rather common case, when problem (1) has a unique solution for all functions p+ (or for
all functions p−) with a fixed another function p− (or p+). So, our aim is to find some conditions to
our boundary value problem (1) to be uniquely solvable for all integrable non-negative coefficients
p+ (or for all nonnegative coefficients p−).

In this report, we would like to remind about some classical results by F. R. Gantmacher,
M. G. Krein, S. Karlin, A. Yu. Levin [1–5]. These results allow us to find required conditions in a
very simple way. For higher-order equations, we don’t know another proof of these conditions, for
example, by means of mathematical analysis only.

A continuous function G( · , · ) : [a, b] × [a, b] → R is called a totally positive kernel [3] if all
determinants ∣∣∣∣∣∣∣

G(t1, t1) . . . G(t1, tk)
... . . . ...

G(tk, t1) . . . G(tk, tk)

∣∣∣∣∣∣∣
are positive for all ordered sets of points a < t1 < · · · < tk < b for all integer positive numbers k.

It is very hard to check this property directly. Fortunately, Green functions of many boundary
value problems for ordinary differential equations possess this property. Now we can formulate a
well-known statement on the spectrum of integral operators with totally positive kernels.

Let G(t, s) be a totally positive kernel, C[a, b] be the space of real continuous functions with
the standard norm.
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Consider the integral operator G : C[a, b] → C[a, b]

(Gx)(t) =

b∫
a

G(t, s)x(s) ds, t ∈ [a, b]. (2)

Theorem 1 (Sturm, Kellogg, Gantmacher, Krein, Karlin, Levin, Stepanov). The spectrum of the
operators G is a subset of the set [0,∞).

In the symmetric case, oscillating properties of the spectrum were known to Kellogg and Sturm.
F. R. Gantmacher and M. G. Krein [1] showed that kernels could be non-symmetric and proved
oscillation properties of the spectrum of many boundary value problems. Here we need only the
positivity of the spectrum and we do not mention all remarkable oscillation properties. So, if the
kernel G(t, s) is totally positive, then the non-zero spectrum of operator (2) is positive. The next
obvious step is only a more general formulation.

Let G(t, s) be a totally positive kernel, r ∈ L[a, b], r(t) ≥ 0, t ∈ [a, b].
Consider the integral operator Gr : C[a, b] → C[a, b]

(Grx)(t) =

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b].

Theorem 2 (Sturm–Kellogg–Gantmacher–Krein). The spectrum of the operators Gr is a subset
of the set [0,∞).

Therefore, in this case all characteristic values λ of the equation

x(t) = λ

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b],

are positive.
Now consider two-point boundary value problems for linear higher order ordinary differential

equations 

(Lx)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · ·+ pn(t)x(t) = f(t),

ℓix ≡
ki−1∑
k=0

γikx
(k)(a) + x(ki)(a), i = 1, . . . ,m,

ℓix ≡
ki−1∑
k=0

γikx
(k)(b) + x(ki)(b), i = m+ 1, . . . , n,

(3)

where pi ∈ L[a, b]; f ∈ L[a, b]; n, m, n > m, are positive integers; ki ∈ {0, 1, . . . , n−1}, i = 1, . . . , n.
Denote ℓ = {ℓ1, . . . , ℓn}.

Theorem 3. If r ∈ L[a, b], r(t) ≥ 0, t ∈ [a, b], and the Green function G(t, s) of this problem (3)
is a totally positive kernel, then problem{

(Lx)(t) + r(t)x(t) = f(t), t ∈ [a, b],

ℓx = 0,
(4)

is uniquely solvable.
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Proof. For f ≡ 0, (4) is equivalent to the integral equation

x(t) = λ

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b], (5)

where λ = −1. All eigenvalues of (5) are positive, therefore, problem (4) is uniquely solvable.

Together with the differential operator L, we consider operators L+ and L−:

(L+x)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · ·+ p+n (t)x(t), t ∈ [a, b],

(L−x)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · · − p−n (t)x(t), t ∈ [a, b].

Theorem 4. Let G+(t, s) be the Green function of the problem L+x = f , ℓx = 0. If −G+(t, s) is
a totally positive kernel, then the problem{

(Lx)(t) = f(t),

ℓix = 0, i = 1, . . . , n,
(6)

is uniquely solvable for all non-negative functions p−n ∈ L[a, b].

Theorem 5. Let G−(t, s) be the Green function of the problem L−x = f , ℓx = 0. If G−(t, s)
is a totally positive kernel, then problem (6) is uniquely solvable for all non-negative functions
p+n ∈ L[a, b].

We say that the differential operator L (or the equation Lx = 0) is non-oscillating on the
interval [a, b] if every non-trivial solution has no more than n− 1 zeros in the interval [a, b] taking
into account the multiplicity of the zeros. Hartman-Levin’s criterion for non-oscillation can be
found, for example, in [4].

Theorem 6 (Gantmacher–Krein, see [4, 5]). Let Lx = 0 be non-oscillating, G(t, s) the Green
function of the problem 

(Lx)(t) = f(t),

x(i−1)(a) = 0, i = 1, . . . ,m,

x(i−1)(b) = 0, i = 1, . . . , n−m.

Then (−1)n−mG(t, s) is a totally positive kernel.

Let the operator L be non-oscillating. Then L has the Polia–Mammana decomposition

Lx = r0
d

dt
r1

d

dt
· · · rn−1

d

dt
rn,

where ri, i = 0, . . . , n, are sufficiently smooth positive functions. Let G(t, s) be the Green function
of the uniquely solvable problem

(Lx)(t) = f, t ∈ [a, b],
n∑

k=1

αik(Dk−1)(a) = 0, i = 1, . . . ,m,

n∑
k=1

βik(Dk−1)(b) = 0, i = 1, . . . , n−m,

where f ∈ L[a, b]; D0x = x, Dkx = d
dt (rn−k+1Dk−1x), k = 1, . . . , n; n, m, n > m, positive integers.
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Theorem 7 (Kalafaty–Gantmacher–Krein, see [4, 5]). If all m-th order minors of the matrix
||(−1)kαik||k=1,...,n

i=1,...,m and all (n − m)-th order minors of ||βik||k=1,...,n
i=1,...,n−m have the same sign, then

(−1)n−mG(t, s) is a totally positive kernel.

Theorem 8 (Levin–Stepanov, see [4,5]). Let G(t, s) be the Green function of the uniquely solvable
problem 

(Lx)(t) = f(t), t ∈ [a, b],
ki−1∑
k=0

γikx
(k)(a) + x(ki)(a), i = 1, . . . ,m,

ki−1∑
k=0

γikx
(k)(b) + x(ki)(b), i = 1, . . . , n−m,

nk = |{i : ki ≤ k, i = 1, . . . , n}|, h = 2(b− a).
If nk > k, k = 0, 1, . . . , n− 2, and

n∑
k=1

hk−1

b∫
a

|pk(t)| dt <
1

2
,

ki−1∑
k=0

|γik|hki−k <
1

2
, i = 1, . . . n,

then (−1)n−mG(t, s) is a totally positive kernel.

Example 1. The focal boundary value problem
x(n)(t) + (−1)n−mp(t)x(t) = f(t),

x(i)(a) = 0, i = 0, . . . ,m− 1,

x(i)(b) = 0, i = m, . . . , n− 1,

is uniquely solvable if p(t) ≥ 0, t ∈ [a, b], p ∈ L[a, b].

Example 2. Let p+ ∈ L[a, b], p+ ≥ 0, t ∈ [a, b], and

0 ≤ p−(t) ≤ 24 · 256
27(b− a)4

, p−(t) ̸≡ 24 · 256
27(b− a)4

. (7)

Then the problem 
x(4)(t) + p+(t)x(t)− p−(t)x(t) = f(t),

x(a) = 0, ẋ(a) = 0,

x(b) = 0, ẋ(b) = 0,

is uniquely solvable.
The constant in conditions (7) are better than the constant π4

(b−a)4
, which follows from Wirtinger’s

inequality.

The conclusion: the classical results on totally positive kernels could be very useful for boundary
value problems for ordinary differential equations.
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We consider the following differential equation

y′′ = α0p(t)φ0(y)φ1(y
′). (1)

In this equation α0 ∈ {−1; 1}, functions p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) and φi : ∆Yi →
]0,+∞[ (i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi is either the interval [y0i , Yi[ or the interval
]Yi, y

0
i ]. If Yi = +∞ (Yi = −∞), we put y0i > 0 (y0i < 0).

We also suppose that function φ1 is a regularly varying as y → Y1 function of index σ1 [10, p. 10-
15], function φ0 is twice continuously differentiable on ∆Y0 and satisfies the next conditions

φ′
0(y) ̸= 0 as y ∈ ∆Y0 , lim

y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (2)

It follows from the above conditions (2) that the function φ0 and its derivative of the first order are
rapidly varying functions as the argument tends to Y0 [10, p. 15]. Thus, the investigated differential
equation contains the product of regularly and rapidly varying nonlinearities in its right-hand side.

The equations of the form (1) often appear in practice, for example, in the theory of burning,
when we consider the electrostatic potential in a spherical volume of plasma of products of burning.
First important results in this direction have been obtained in the works by V. M. Evtukhov for
the equation of the investigated type in the case when φ0(y) = |y|σ and φ1(y

′) = |y′|λ.
For the equation of the form (1), both functions φ0 and φ1 of which are regularly varying

functions of orders σ0 and σ1 correspondingly (σ0 + σ1 ̸= 1) as their arguments tend to zero or to
infinity, the asymptotic behavior of some class of solutions have been investigated in the works by
M. O. Belozerova [5].

During investigations of distribution of electrostatic potential in a cylindrical plasma volume of
combustion products, differential equation of the investigated type arises, in which φ0(y) = exp(σy),
φ1(y

′) = |y′|λ, α0 ∈ {−1, 1}, σ, λ ∈ R, σ ̸= 0, function p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) is
a continuously differentiable function. Under some restrictions on the function p(t) certain results
for the asymptotic behavior of all regular solutions of this equation have been obtained in works
by V. M. Evtukhov and N. G. Dric (see [7], for example).

Equations, that contain in their right-hand side the product of functions φ0(y) and φ1(y
′), the

first one of which is a rapidly varying function as y → Y0 (y ∈ ∆Y0), and the second one is a
regularly varying function as y′ → Y1 (y′ ∈ ∆Y1), in general case have not been investigated before.
Thus, equation (1) plays an important role in the development of a qualitative theory of differential
equations.

The main aim of the article is the investigation of conditions for the existence of following class
of solutions of equation (1).
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Definition 1. A solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called
Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞) if the following conditions take place

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

This class of solutions was defined in the work of V. M. Evtukhov [3] for the n-th order dif-
ferential equations of Emden–Fowler type and was concretized for the second-order equation. Due
to the asymptotic properties of functions in the class of Pω(Y0, Y1, λ0)-solutions [4], every such
solution belongs to one of four non-intersecting sets according to the value of λ0 : λ0 ∈ R \ {0, 1},
λ0 = 0, λ0 = 1, λ0 = ±∞. In this article we consider the case λ0 = ±∞ of such solutions, every
Pω(Y0, Y1,±∞)-solution and its derivative satisfy the following limit relations

lim
t↑ω

πω(t)y
′(t)

y(t)
= 1, lim

t↑ω

πω(t)y
′′(t)

y′(t)
= 0. (3)

This class of Pω(Y0, Y1,±∞)-solutions for equations of the form (1) is one of the most difficult
to study due to the fact that the second-order derivative is not explicitly expressed through the
first-order derivative. From (3) it means that the derivative of the first order of each such solution
is a slowly varying function as t ↑ ω.

From conditions (2) it also follows that the function φ0 and its first-order derivative belong to
the class ΓY0(Z0), that was introduced in the works of V. M. Evtukhov and A. G. Chernikova [6]
as a generalization of the class Γ (L. Khan, see, for example, [1, p. 75]). The properties of the class
ΓY0(Z0) were used to get our results.

To formulate the main results, we introduce the following definitions.

Definition 2. Let Y ∈ {0,∞}, ∆Y is some one-sided neighborhood of Y . Continuous-differentiable
function L : ∆Y → ]0,+∞[ is called [9, p. 2-3] a normalized slowly varying function as z → Y
(z ∈ ∆Y ) if the next statement is valid

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0.

Definition 3. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0,+∞[ satisfies
the condition S as z → Y , if for any continuous differentiable normalized slowly varying as z → Y
(z ∈ ∆Y ) function L : ∆Yi → ]0,+∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

Condition S is satisfied, for example, for such functions as ln |y|, | ln |y||µ (µ ∈ R), ln ln |y|.
The following theorem is obtained in our previous work [2] and contains a necessary conditions

for the existence of the Pω(Y0, Y1,±∞)-solution of equation (1).

Theorem 1 ([2]). Let for equation (1) σ1 ̸= 1, the function φ1(y
′)|y′|−σ1 satisfy the condition S

as y′ → Y1 (y′ ∈ ∆Y1). Then each Pω(Y0, Y1,±∞)-solution of the differential equation (1) can be
represented as

y(t) = πω(t)L(t),

where L : [t0, ω[→ R is twice continuously differentiable on ∆Y0 and satisfies the next conditions

y00πω(t)L(t) > 0, L′(t) ̸= 0 as t ∈ [t1, ω[ (t0 ≤ t1 < ω),

lim
t↑ω

L(t) ∈ {0;±∞}, lim
t↑ω

πω(t)L(t) = Y0, lim
t↑ω

πω(t)L
′(t)

L(t)
= 0. (4)
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Thus, in the case of the existence of a finite or infinite limit

lim
t↑ω

πω(t)L
′′(t)

L′(t)
, (5)

the following relations take place

lim
t↑ω

πω(t)L
′′(t)

L′(t)
= −1, α0L

′(t) > 0 as t ∈ [t1, ω[ (t0 ≤ t1 < ω), (6)

p(t) =
α0L

′(t)

φ1(L(t))φ0(πω(t)L(t))
[1 + o(1)] as t ↑ ω.

Let us introduce the following definition.

Definition 4. We say that the condition N is satisfied for equation (1) if for some continuously
differentiable function L(t) : [t0, ω[→ R (t0 ∈ [a, ω[), which satisfies conditions (4)–(6), the following
representation takes place

p(t) =
α0L

′(t)

φ1(L(t))φ0(πω(t)L(t))
[1 + r(t)],

where r(t) : [t0, ω[→ ]− 1,+∞[ is a continuous function that tends to zero as t ↑ ω.

For equation (1), in previous works [2] the necessary and sufficient conditions for the existence of
the investigated class of Pω(Y0, Y1,±∞)-solutions were established in case of the existence of some
infinite limit. In this work we establish sufficient conditions for the existence of Pω(Y0, Y1,±∞)-
solutions of equation (1) in case this limit equals nonzero real number. We also have found the
asymptotic representations of such solutions and its first order derivatives as t ↑ ω and indicated
the number of such solutions.

To formulate the sufficient conditions for the existence of the Pω(Y0, Y1,±∞)-solution of equa-
tion (1), let us introduce some notations:

µ0 = signφ′
0(y), θ1(y

′) = φ1(y
′)|y′|−σ1 ,

H(t) =
L2(t)φ′

0(πω(t)L(t))

L′(t)φ0(πω(t)L(t))
, q1(t) =

(φ′
0(y)

φ0(y)

)′(φ′
0(y)

φ0(y)

)2
∣∣∣∣∣
y=πω(t)L(t)

,

e1(t) = 1 +
πω(t)L

′(t)

L(t)
, e2(t) = 2 +

πω(t)L
′′(t)

L′(t)
.

For these functions the following statements are fulfilled:

1)
lim
t↑ω

e1(t) = lim
t↑ω

e2(t) = 1, lim
t↑ω

H(t) = ±∞, lim
t↑ω

q1(t) = 0,

2) If the limit

lim
t↑ω

L(t)

L′(t)
· H ′(t)

|H(t)|
3
2

exists, then

lim
t↑ω

L(t)

L′(t)
· H ′(t)

|H(t)|
3
2

= 0. (7)
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The sufficient conditions for the existence of Pω(Y0, Y1,±∞)-solutions of equation (1) in case

lim
t↑ω

πω(t)L
′(t)

L(t)
|H(t)|

1
2 = ±∞,

were found in [2].
In this work we suppose that

lim
t↑ω

πω(t)L
′(t)

L(t)
|H(t)|

1
2 = γ, 0 < |γ| < +∞. (8)

The sufficient conditions for this case are formulated in the following theorem.

Theorem 2. Let for equation (1) σ1 ̸= 1, the function φ1(y
′)|y′|−σ1 satisfy the condition S as

y′ → Y1 (y′ ∈ ∆Y1), the conditions N , (7) and (8) hold. Then

- in case α0µ0 > 0, the differential equation (1) has a one-parametric family of Pω(Y0, Y1,±∞)-
solutions;

- in case α0µ0 < 0 and y00α0γπω(t) < 0, the differential equation (1) has a two-parametric
family of Pω(Y0, Y1,±∞)-solutions;

- in case α0µ0 < 0 and y00α0γπω(t) > 0, the differential equation (1) has at least one of
Pω(Y0, Y1,±∞)-solutions.

For each of such solutions the following asymptotic representations take place as t ↑ ω,

y(t) = πω(t) · L(t) +
φ0(πω(t)L(t))

φ′
0(πω(t)L(t))

· o(1),

y′(t) =
[
L(t) + πω(t) · L′(t)

]
·
[
1 + |H(t)|−

1
2 · o(1)

]
.

For the equation under the investigation the question of the active existence of Pω(Y0, Y1,±∞)-
solutions, that have the obtained asymptotic representations, has been reduced to the question of
the existence of infinitely small as arguments tend to ω solutions of the corresponding, equivalent to
the investigated equation, systems of non-autonomous quasi-linear differential equations that admit
applications of the known results from the works of V. M. Evtukhov and A. M. Samoilenko [8].
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We investigate the problem of finding solutions [1]

y(t) ∈ D2[a; b], y′(t) ∈ L2[a; b]

of the linear Noetherian (n ̸= υ) boundary value problem for a system of linear integral-differential
equations of Fredholm type with degenerate kernel

A(t)y′(t) = B(t)y(t) + Φ(t)

b∫
a

F (y(s), y′(s), s) ds+ f(t), ℓy( · ) = α, α ∈ Rp. (1)

We seek a solution of the Noetherian boundary value problem (1) in a small neighborhood of the
solution

y0(t) ∈ D2[a; b], y′0(t) ∈ L2[a; b]

of the generating problem

A(t)y′0(t) = B(t)y0(t) + f(t), ℓy0( · ) = α. (2)

Here
A(t), B(t) ∈ L2

m×n[a; b] := L2[a; b]⊗ Rm×n, Φ(t) ∈ L2
m×q[a; b], f(t) ∈ L2[a; b].

We assume that the matrix A(t) is, generally speaking, rectangular: m ̸= n. It can be square,
but singular. Assume that the function F (y(t), y′(t), t) is linear with respect to unknown y(t) in a
small neighborhood of the generating solutions and with respect to the derivative y′(t) in a small
neighborhood of the function y′0(t). In addition, we assume that the function F (y(t), y′(t), t) is
continuous in the independent variable t on the segment [a, b];

ℓy( · ) : D2[a; b] → Rp

is a linear bounded vector functional defined on a space D2[a; b]. The problem of finding solu-
tions of the boundary value problem (1) in case A(t) = In was solved by A. M. Samoilenko and
A. A. Boichuk [7]. Thus, the boundary value problem (1) is a generalization of the problem solved
by A. M. Samoilenko and A. A. Boichuk.

We investigate the problem of finding solutions of the linear Noetherian boundary value problem
(2) in the paper [9]. Under the condition

PA∗(t) = 0, rankA(t) := σ0 = m ≤ n (3)
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we arrive at the problem of construction of solutions of the linear differential-algebraic system [9]

z′ = A+(t)B(t)z + F0(t, ν0(t)); (4)

here,
F0(t, ν0(t)) := A+(t)f(t) + PAρ0

(t)ν0(t),

A+(t) is a pseudoinverse (by Moore–Penrose) matrix [1], ν0(t) ∈ L2[a; b] is an arbitrary vector
function. In addition, PA∗(t) is a matrix-orthoprojector [1]:

PA∗(t) : Rm → N(A∗(t)),

PAρ0
(t) is an (n× ρ0)-matrix composed of ρ0 linearly independent columns of the (n× n)-matrix-

orthoprojector:
PA(t) : Rn → N(A(t)).

By analogy with the classification of pulse boundary-value problems [1–3,8] we say in the (3), that,
system of linear integral-differential equations is nonsingular. Denote by X(t) normal fundamental
matrix

X ′(t) = A+(t)B(t)X(t), X(a) = In.

Substituting the general solution of the system of linear integral-differential equations (3) into the
boundary condition (1), we arrive at the linear algebraic equation

Qc = ℓK[f(s)]( · ). (5)

In the critical case
PQ∗ ̸= 0, Q := ℓX( · ) ∈ Rp×n,

equation (5) is solvable iff
PQ∗

d

{
α− ℓK[f(s)]( · )

}
= 0. (6)

Here, PQ∗
d

is an (d × p)-matrix composed of d linearly independent rows of the (p × p)-matrix-
orthoprojector:

PQ∗ : Rp → N(Q∗).

Thus, the following lemma is proved [9].

Lemma 1. In the critical case PQ∗ ̸= 0, the nonsingular differential-algebraic boundary value
problem (2) is solvable iff (6) holds. In the critical case, the nonsingular differential-algebraic
boundary value problem (2) has a solution of the form

y0(t, cr) = Xr(t)cr +G[f(s);α](t), Xr(t) := X(t)PQr , cr ∈ Rr,

which depends on the arbitrary vector-function ν0(t) ∈ L2[a; b]. Here, PQr is an (p × r)-matrix
composed of r linearly independent columns of the (p× p)-matrix-orthoprojector: PQ : Rp → N(Q);

G[f(s);α](t) := X(t)Q+
{
α− ℓK[f(s)]( · )

}
+K[f(s)](t)

is the generalized Green operator of the linear integral-differential problem (1);

K
[
f(s)

]
(t) := X(t)

t∫
a

X−1(s)F0(s, ν0(s)) ds

is the generalized Green operator of the Cauchy problem for the integral-differential system (3).
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In problem (1) we perform the substitution y(t) = y0(t, cr) + x(t). For

x(t) ∈ D2[a; b], x′(t) ∈ L2[a; b], x(t, u, v) = X0(t)u+Ψ(t)v

we obtain the problem

A(t)x′(t) = B(t)x(t) + Φ(t)

b∫
a

F (y(s), y′(s), s) ds, ℓx( · ) = 0.

Here,

v :=

b∫
a

F (y(s), y′(s), s) ds ∈ Rq, u ∈ Rn, Ψ(t) := K[Φ(s)](t) ∈ D2
n×q[a; b].

Denote the matrix
Q̌ := [Q;R] ∈ Rp×(q+n), R := ℓΨ( · ) ∈ Rp×q

and Pρ ∈ R(q+n)×ρ composed of ρ linearly independent columns of the matrix-orthoprojector PQ̌:

PQ̌ : Rq+n → N(Q̌).

Substituting the general solution of the system of the linear integral-differential system (1) into the
boundary condition (1), we arrive at the linear algebraic equation

Qv +Ru = 0, R := ℓΨ( · ) ∈ Rp×q.

Using the continuous differentiability of the function F (y(t), y′(t), t) with respect to unknown y(t)
in a small neighborhood of the generating solutions and with respect to the derivative y′(t) in a
small neighborhood of the function y′0(t), we expand this function

F (y(t), y′(t), t) = A1(t)y(t) +A2(t)y
′(t), A1(t) := F ′

y(y(t), y
′(t), t), A2(t) := F ′

y′(y(t), y
′(t), t).

Applying Lemma 1 to the boundary value problem (1), we obtain equation

B0 cρ + ψ(cr) = 0, ψ(cr) := −
b∫

a

[
A1(t)y0(t, cr) +A2(t)y

′
0(t, cr)

]
dt, (7)

where

B0 :=

b∫
a

{
A1(t)[X(t)P1 +Ψ(t)P2] +A2(t)

[
X ′(t)P1 +Ψ′(t)P2

]}
dt− P2,

In the critical case PB∗
0
̸= 0, equation (6) is solvable iff

PB∗
0
ψ(cr) = 0. (8)

Here,
PB∗

0
: Rq → N(B∗

0), PB0 : Rρ → N(B0)

is matrices-orthoprojectors. Under condition (8) and only under it nonsingular system of linear
integral-differential equations (1) has a solution of the form

y(t, cµ) = Yµ(t)cµ +G[Φ(s); ν0(s)](t), cµ ∈ Rµ,
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which depends on the arbitrary vector-function ν0(t) ∈ L2[a; b]. Here,

G[Φ(s); ν0(s)](t) := G[f(s);α](t)− B+
0

b∫
a

[
A1(t)G[f(s);α](t) +A2(t)G

′[f(s);α](t)
]
dt

is the generalized Green operator of the linear integral-differential problem (1), where Yµ(t) is an
(n× µ)-matrix composed of µ linearly independent columns of the matrix:[

X0(t)−
[
X0(t)P1 +Ψ(t)P2

]
B+
0

[
A1(t)Xr(t);A2(t)X

′
r(t)

]
dt;

[
X(t)P1 +Ψ(t)P2

]
PB0

]
.

Thus, the following theorem is proved.

Theorem 1. In the critical case, under condition (6) the nonsingular integral-differential boundary
value problem (3) has a solution of the form

y0(t, cr) = Xr(t)cr +G[f(s);α](t), Xr(t) := X(t)PQr , cr ∈ Rr,

which depends on the arbitrary vector-function ν0(t) ∈ L2[a; b]. Under condition (8) and only under
it the general solution of the nonsingular integral-differential boundary value problem (1)

y(t, cµ) = Yµ(t)cµ +G[Φ(s); ν0(s)](t), cµ ∈ Rµ

is determined by the generalized Green operator of the nonsingular integral-differential boundary
value problem (1).

The proposed scheme of studies of the nonsingular integral-differential boundary value prob-
lem (1) can be transferred analogously to [1, 5, 6] onto nonlinear nonsingular integral-differential
boundary value problem. On the other hand, in the case of nonsolvability, the nonsingular integral-
differential boundary value problems can be regularized analogously [4, 10].
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A large number of works are devoted to the study of various questions of control theory for
ordinary periodic differential systems (see, for example, [6,11,12] and others). For almost periodic
control systems, such studies are significantly complicated. In this direction, we can note the results
of [5,9,10], a characteristic feature of which is the consideration of the so-called regular case, when
a priori it is assumed that the frequencies of the system itself and its solutions coincide.

At the same time, as shown by J. Kurzweil and O. Vejvoda [7], the system of ordinary differential
almost periodic equations can admit such solutions that the intersection of the frequency modules
of the solution and the system is trivial. This result allows us to assume that there exist systems
with a very difference spectrum of frequencies, including asynchronous.

In [1], the control problem of the asynchronous spectrum for periodic systems was first formu-
lated. A series of conditions for its solvability are given in the monograph [2, Ch. III]. Similar
questions for quasiperiodic systems were studied in [3]. The control problem of the asynchronous
spectrum of linear almost periodic systems was formulated in [4] and the case of trivial mean value
of the coefficient matrix is considered.

Now we study the solvability of the control problem of the asynchronous spectrum of linear
almost periodic systems for which the mean value of the coefficient matrix is diagonal.

Let f(t) be a real almost periodic (Borh) function [2]. The mean value of an almost periodic
function f(t) is determined by the equality

f̂ = lim
T→∞

1

T

T∫
0

f(t) dt.

The modulus (frequency modulus) Mod(f) of an almost periodic function f(t) is the smallest
additive group of real numbers that contains all the Fourier exponents (frequencies) of this function.
Let be g(t, x) a vector-function that is almost periodic in uniformly relative to some compact set.
J. Kurzweil and O Vejvoda proved that the system of ordinary differential equations

ẋ = g(t, x)

can have an almost periodic solution x(t) such that the intersection of the frequency modules of
the solution and the right-hand side is trivial, i.e.

Mod(x) ∩Mod(g) = {0}.

In what follows, such almost periodic solutions will be called strongly irregular.
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Consider the linear non-stationary control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where x is the phase vector of the system, u is the input, B is the constant n × n-matrix under
control, A(t) is a continuous almost periodic matrix with a modulus of frequencies Mod(A). Suppose
that the control is specified in the form of a feedback linear in the phase variables

u = U(t)x

with a continuous almost periodic n×n-matrix U(t) (feedback coefficient), the frequency modulus
of which is contained in the frequency modulus of the coefficient matrix, i.e.,

Mod(U) ⊆ Mod(A).

It is required to obtain conditions on the right-hand side of system (1) such that for any choice
of the feedback coefficient from the indicated admissible set, the closed-loop system

ẋ = (A(t) +BU(t))x,

does not have a strongly irregular almost periodic solution, the frequency spectrum of which con-
tains a given subset (target set). In other words, for system (1) it is necessary to find the conditions
for the unsolvability of the problem of control of the asynchronous spectrum.

We suppose that the coefficient matrix has a diagonal average value, i.e.,

Â = diag(â11, . . . , ânn), â211 + · · · â2nn ̸= 0. (2)

Consider the case when the matrix under control is singular, i.e.

rankB = r (1 ≤ r < n), (3)

moreover, its first rows are zero. Let us denote by Br,n the matrix composed of the remaining
rows of the matrix B. The rank of the matrix Br,n is also equal to r. Taking into account the
representation (3) of the matrix B, the matrix of coefficients A(t) is divided into four blocks of the
corresponding dimensions (indicated by the subscripts):

A(t) =

A
(11)
d,d (t) A

(12)
d,r (t)

A
(21)
r,d (t) A

(22)
r,r (t)

 .

Taking into account condition (2), we write the average value of the coefficient matrix in the form

Â =

Â
(11)
d,d 0

0 Â
(22)
r,r

 ,

where Â
(11)
d,d = diag(â11, . . . , âdd), Â(22)

r,r = diag(âd+1 d+1, . . . , ânn). Then the oscillating part of the
coefficient matrix is also represented in the following block form:

Ã(t) = A(t)− Â =

Ã
(11)
d,d (t) A

(12)
d,r (t)

A
(21)
r,d (t) Ã

(22)
r,r

 .

Denote by q the column rank of a rectangular d× n-matrix (Ã
(11)
d,d A

(12)
d,r ).

The following theorem holds.

Theorem. Let conditions (3) and the equality q = n hold. Then the problem of control of the
asynchronous spectrum of system (1) has no solution.
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1 Introduction
We present a complete overview on the qualitative behavior of solutions of the half-linear equation

(a(t)|x′|α sgnx′)′ − b(t)|x|α sgnx = 0, (1.1)

where α is a positive constant and the functions a, b are continuous and positive for t ≥ t0 ≥ 0.
Equation (1.1) comes out in studying radial solutions of equations with p-Laplacian operator

and have been widely investigated in the literature.
The study on the qualitative behavior of solutions of (1.1), especially as concerns the classi-

fication of solutions, the existence of monotone bounded or unbounded solutions, the growth at
infinity or the decay at zero of solutions, has a long history. Many of the results obtained in these
fields have been obtained for more general equations and it would be impossible to mention all of
them. As regards in particular the half-linear case, we recall the pioneering works of Elbert and
Mirzov [13, 25] and we refer the reader for more details to the monographs [12, 26] and references
therein.

Interesting contributions are due to the Georgian and Russian mathematical school. Almost
all of these papers concern very general differential equations, which include, in particular, the
Emden–Fowler equation or the Thomas-Fermi equation, see [4, 6, 7, 16, 18, 22, 28]. Recently, other
developments are given by the Japanese mathematical school, see [14,15,19,20,27,30] under different
point of view.

Our aim here is to present a complete overview, quadro completo, to the asymptotic behavior
of solutions of (1.1). This result is a generalization of the one corresponding for the linear equation
with Sturm–Liouville differential operator, see, e.g. [5]. In particular, we show that when the
functions a, b have, roughly speaking, a power behavior near infinity, then the complete overview is
the same as for the linear equation. Our approach follows that one in [1–3], even if here the results
are more complete and the method is slightly different.

2 Basic properties
Following the linear case, we introduce a classification of solutions of (1.1), which is based on the
one in [1–3], with minor modifications. We note that a slightly different classification of solutions of
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an equation, which includes (1.1), has been used in [27] under the additional assumption a−1/α ̸∈
L1[t0,∞) and in [30] in the opposite situation a−1/α ∈ L1[t0,∞). Passing from the linear case
to the half-linear one, it is well-known that several basic differences arise, see, e.g., [12, Section
1.3]. In particular, the set of solutions of (1.1), α ̸= 1, is not a linear space, the Jacobi–Liouville
identity for the Wronskian and the variation of constant principle fail to hold for (1.1) with α ̸= 1.
Independently of this fact, there are also a lot of similarities in asymptotic behavior of solutions.

Recall that any nontrivial solution x of (1.1) is defined on the whole interval [t0,∞) and satisfies
sup

t∈[τ,∞)
|x(t)| > 0 for any τ ≥ t0. Moreover, the Cauchy problem for (1.1) is uniquely solvable for

any couple of initial data. In other words, given T ≥ t0 and x0, x1 ∈ R, there exists a unique
solution x of (1.1) satisfying x(T ) = x0, x′(T ) = x1 and x is defined on the whole interval [t0,∞).
Consequently, x ≡ 0 if and only if x0 = x1 = 0. Further, equation (1.1) is disconjugate on [t0,∞),
that is any nontrivial solution of (1.1) has at most one zero on [t0,∞). Hence, (1.1) is nonoscillatory.
The following holds.

Theorem 2.1. The set of nontrivial solutions of (1.1) may be divided into two classes

M+ =
{
x solution of (1.1) : ∃ tx ≥ t0 : x(t)x′(t) > 0 for t > tx

}
,

M− =
{
x solution of (1.1) : x(t)x′(t) < 0 for t > t0

}
,

and both classes are nonempty. In particular, solutions x of (1.1), satisfying either x(T ) = 0,
x′(T ) > 0 or x(T ) > 0, x′(T ) = 0 at some T ≥ t0, are positive increasing on (T,∞) and belong to
the class M+. Further, if a solution of (1.1) in the class M+ is bounded, then every solution in the
class M+ is bounded, too.

The proof of Theorem 2.1 follows an idea used by Mambriani to solve the well-known Thomas-
Fermi problem, see [29, Chapter XII, Section 5.]. An alternative proof can be found in [7].

The asymptotic behavior of solutions of (1.1) depends on the four integrals

J1 =

∞∫
t0

a−1/α(t)

( t∫
t0

b(r) dr

)1/α

dt, J2 =

∞∫
t0

a−1/α(t)

( ∞∫
t

b(r) dr

)1/α

dt,

Y1 =

∞∫
t0

b(t)

( ∞∫
t

a−1/α(r) dr

)α

dt, Y2 =

∞∫
t0

b(t)

( t∫
t0

a−1/α(r) dr

)α

dt.

A complete classification of solutions (1.1) require a preliminary analysis of mutual behavior of
these integrals. Using some integral inequalities, we get the following.

Lemma 2.1 ( [11]). If α ≥ 1, then

Y2 = ∞ =⇒ J2 = ∞, Y1 = ∞ =⇒ J1 = ∞.

If 0 < α ≤ 1, then
J2 = ∞ =⇒ Y2 = ∞, J1 = ∞ =⇒ Y1 = ∞.

Lemma 2.1 can be viewed as an extension of the Fubini theorem. Indeed, when α = 1, we have

J1 = Y1, J2 = Y2. (2.1)

By virtue of Lemma 2.1, the possible cases concerning the convergence of integrals Ji, Yi, i = 1, 2,
are the following eight:
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(C1): J1 = ∞, J2 = ∞, Y1 = ∞, Y2 = ∞, α > 0;

(C2): J1 = ∞, J2 < ∞, Y1 = ∞, Y2 < ∞, α > 0;

(C3): J1 < ∞, J2 = ∞, Y1 < ∞, Y2 = ∞, α > 0;

(C4): J1 < ∞, J2 < ∞, Y1 < ∞, Y2 < ∞, α > 0.

(C5): J1 = ∞, J2 = ∞, Y1 = ∞, Y2 < ∞, α > 1;

(C6): J1 = ∞, J2 = ∞, Y1 < ∞, Y2 = ∞, α > 1;

(C7): J1 = ∞, J2 < ∞, Y1 = ∞, Y2 = ∞, 0 < α < 1;

(C8): J1 < ∞, J2 = ∞, Y1 = ∞, Y2 = ∞, 0 < α < 1.

All cases (Cn), n = 1, . . . , 8, may occur, as examples below. Cases (C1)–(C4), may occur for
any α > 0. Cases (C5) and (C6) may occur only when α > 1, and cases (C7), (C8) only when
0 < α < 1. Thus, cases (C5)–(C8), do not occur in the linear case and so, roughly speaking, they
are typical for the half-linear case. When α = 1, that is for the linear equation, the possible cases
are only the four cases (C1)–(C4). Moreover, in view of (2.1), for the linear equation the integrals
Y1 and Y2 do not play any role.

3 A complete overview
A precise and complete classification of solutions x of (1.1) may be done by considering also the
asymptotic behavior of the quasiderivative x[1], that is the function x[1](t) = a(t)|x′(t)|α sgnx′(t).

Any solution of (1.1) in the class M+ belongs to one of the following four subclasses:

M+
∞,∞ =

{
x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|x[1](t)| = ∞

}
,

M+
∞,ℓ =

{
x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|x[1](t)| < ∞

}
,

M+
ℓ,∞ =

{
x ∈ M+ : lim

t→∞
|x(t)| < ∞, lim

t→∞
|x[1](t)| = ∞

}
,

M+
ℓ,ℓ =

{
x ∈ M+ : lim

t→∞
|x(t)| < ∞, lim

t→∞
|x[1](t)| < ∞

}
.

Similarly, any solution of (1.1) in the class M− belongs to one of the following four subclasses:

M−
ℓ,ℓ =

{
x ∈ M− : lim

t→∞
x(t) ̸= 0, lim

t→∞
x[1](t) ̸= 0

}
,

M−
ℓ,0 =

{
x ∈ M− : lim

t→∞
x(t) ̸= 0, lim

t→∞
x[1](t) = 0

}
,

M−
0,ℓ =

{
x ∈ M− : lim

t→∞
x(t) = 0, lim

t→∞
x[1](t) ̸= 0

}
,

M−
0,0 =

{
x ∈ M− : lim

t→∞
x(t) = 0, lim

t→∞
x[1](t) = 0

}
.

Unbounded solutions x of (1.1) are also called either strongly increasing (as t → ∞) or regular
increasing (as t → ∞), according to x ∈ M+

∞,∞ or x ∈ M+
∞,ℓ, respectively. Such a terminology

originates from the Georgian mathematical school, see [18, 22]. Indeed, when a(t) ≡ 1, for any
unbounded eventually positive solutions x, we have either

lim
t→∞

x(t)

t
= ∞ or lim

t→∞

x(t)

t
= ℓx, 0 < ℓx < ∞,
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according to x is strongly increasing or regular increasing, respectively. Analogously, solutions x of
(1.1) such that limt→∞ x(t) = 0 are called either strongly decaying or regular decaying (as t → ∞),
according to x ∈ M−

0,0, or x ∈ M−
0,ℓ, respectively. Sometimes, solutions in the subclasses M+

∞,∞ and
M−

0,0 are called extremal solutions.
The following result gives a complete overview of the asymptotic behavior of solutions of (1.1).

Theorem 3.1. For the half-linear equation (1.1) we have M+ ̸= ∅, M− ̸= ∅. Further,

(1) If (C1) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

0,0 ̸= ∅.

(2) If (C2) holds, then M+ = M+
∞,ℓ ̸= ∅ and M− = M−

ℓ,0 ̸= ∅.

(3) If (C3) holds, then M+ = M+
ℓ,∞ ̸= ∅ and M− = M−

0,ℓ ̸= ∅.

(4) If (C4) holds, then M+ = M+
ℓ,ℓ ̸= ∅, M−

ℓ,ℓ ̸= ∅, M−
ℓ,0 ̸= ∅, M−

0,ℓ ̸= ∅ and M−
0,0 = ∅.

(5) If (C5) holds, then M+ = M+
∞,ℓ ̸= ∅ and M− = M−

0,0 ̸= ∅.

(6) If (C6) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

0,ℓ ̸= ∅.

(7) If (C7) holds, then M+ = M+
∞,∞ ̸= ∅ and M− = M−

ℓ,0 ̸= ∅.

(8) If (C8) holds, then M+ = M+
ℓ,∞ ̸= ∅ and M− = M−

0,0 ̸= ∅.

A complete proof of Theorem 3.1 can be found in a forthcoming monograph [8, Chapter V]. It is
based on several tools. In particular, we use the Tychonoff fixed point theorem, certain functional
integral inequalities jointly with a comparison between (1.1) and the equation( 1

b1/α(t)
|z′|1/α sgn z′

)′
− 1

a1/α(t)
|z|1/α sgn z = 0, (3.1)

which comes from (1.1) replacing a by b−1/α , b by a−1/α and α with α−1. Equation (3.1) is called
reciprocal equation to (1.1) and its role in studying the qualitative behavior of solutions of (1.1)
is described by the Reciprocity Principle, see, e.g., [2, 12]. In particular, observe that the integrals
J1 and J2 read for (3.1) as Y2 and Y1, respectively. Further, also some interesting properties of
solutions of (1.1) are also used in the proof, like the property that two solutions of (1.1) can cross at
most at one point T ≥ t0, whereby the case T = ∞ is included, when these solutions are bounded.

Theorem 3.1 extends [3, Theorem 1] by giving the complete classification of solutions. Alterna-
tive proofs of some claims of Theorem 3.1 can be found in [3, Theorem 1], too.

4 Examples
Example 4.1. Consider the half-linear equation (1.1) and let there exist µ, ν ∈ R such that

lim
t→∞

a(t)

tµ
= a∞, lim

t→∞

b(t)

tν
= b∞, a∞, b∞ ∈ (0,∞). (4.1)

Using a standard calculation and Lemma 2.1 we have

J1 = ∞ ⇐⇒ Y1 = ∞ and J2 = ∞ ⇐⇒ Y2 = ∞.

Consequently, when (4.1) holds, the possible cases concerning the convergence of integrals Ji, Yi,
i = 1, 2, are the four cases (C1)–(C4). In other words, in this case the integrals Y1, Y2 do not play
any role. Hence, the situation is exactly the one which happens in the linear case.
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Example 4.2. Consider the half-linear equation for t ≥ t0 > 0,(
e−3t(x′)3

)′ − t−2e−3tx3 = 0. (4.2)

For equation (4.2) we have

Y1 = lim
T→∞

T∫
t0

t−2e−3t

( T∫
t

er dr

)3

dt = ∞.

Hence, by virtue of Lemma 2.1 we get J1 = ∞. Moreover, we have

J2 =

∞∫
t0

et
( ∞∫

t

r−2e−3r dr

)1/3

dt ≥
∞∫

t0

( ∞∫
t

r−2 dr

)1/3

dt = ∞, (4.3)

and

Y2 =

∞∫
t0

t−2e−3t

( t∫
t0

er dr

)3

dt ≤
∞∫

t0

t−2 dt < ∞. (4.4)

Thus, for equation (4.2) the case (C5) holds and so, in view of Theorem 3.1, we obtain M+ =
M+

∞,ℓ ̸= ∅ and M− = M−
0,0 ̸= ∅.

Example 4.3. Consider the half-linear equation for t ≥ t0 > 0,(
t2/3et|x′|1/3 sgnx′

)′ − et|x|1/3 sgnx = 0. (4.5)

For equation (4.5) we have J2 = ∞. Hence, by virtue of Lemma 2.1 we get Y2 = ∞. Using (4.3)
and (4.4) we get J1 < ∞ and Y1 = ∞. Then, for equation (4.5) the case (C8) holds and so, in view
of Theorem 3.1 we obtain M+ = M+

ℓ,∞ ̸= ∅ and M− = M−
0,0 ̸= ∅. Observe that equation (4.5) is

the reciprocal equation to (4.2). Hence, the classification of its solutions can be obtained also using
the results in Example 4.2 and the Reciprocity principle.

Example 4.4. Consider the half-linear equations for t ≥ t0 > 1,(
|x′|1/2 sgnx′

)′ − t−3/2(log t)−2/3|x|1/2 sgnx = 0 (4.6)

and (
t3(log t)4/3(x′)2 sgnx′

)′ − x2 sgnx = 0. (4.7)

A standard calculation gives for equation (4.6) that J2 < ∞, Y2 = ∞ and Y1 = ∞. Thus,
Lemma 2.1 yields J1 = ∞ and the case (C7) holds. Applying Theorem 3.1 we obtain for equation
(4.6) M+ = M+

∞,∞ ̸= ∅ and M− = M−
ℓ,0 ̸= ∅.

Now, consider equation (4.7). Since this equation is the reciprocal equation to (4.6), for equation
(4.7) we have J1 = J2 = Y2 = ∞ and Y1 < ∞. Thus, for equation (4.7) the case (C6) holds and by
Theorem 3.1 we get M+ = M+

∞,∞ ̸= ∅ and M− = M−
0,ℓ ̸= ∅.

Some applications of Theorem 3.1 to the nonlinear differential equation(
a(t)|x′|α sgnx′

)′ − b̃(t)F (x) = 0,

where the weight b̃ has indefinite sign and F is a continuous function on R such that uF (u) > 0
for u ̸= 0, can be found in [9, 10].
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Consider the differential equation

y′′′ = α0p(t)φ(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, y < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a continuously differentiable function such that

φ′(y) ̸= 0 for y ∈ ∆Y0 , lim
y→0

y∈∆Y0

φ(y) =

{
or 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (2)

Y0 equals either zero or ±∞, ∆Y0 is some one-sided neighborhood of Y0.
From the identity

φ′′(y)φ(y)

φ′2(y)
=

(φ′(y)
φ(y)

)′(φ′(y)
φ(y)

)2 + 1 for y ∈ ∆Y0

and conditions (2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
for y → Y0

(
y ∈ ∆Y0) and lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

This means that in the considered equation the continuous function φ and its first order derivatives
are (see [8, Ch. 3, § 3.4, Lemmas 3.2, 3.3, pp. 91–92]) rapidly changing as y → Y0.

For two-term differential equations of the form (1) with nonlinearities satisfying condition (2),
the asymptotic properties of solutions were studied in the works of M. Maric [8], V. M. Evtukhov
and his students N. G. Drik, V. M. Kharkov, A. G. Chernikova [3–5].

In the works of V. M. Evtukhov, A. G. Chernikova [3] for the differential equation (1) of the
second order in the case, when φ is a rapidly changing function as t → +∞, the asymptotic prop-
erties of the so-called Pω(Y0, λ0)-solutions were studied. In this work, we propose the distribution
of these results to third-order differential equations.

Definition 1. Solution y of equation (1) is called Pω(Y0, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if
it is specified on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(t) ∈ ∆Y0 , where t ∈ [t0, ω[ ,

lim
t↑ω

y(t) = Y0, lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
k = 1, 2, lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.
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The goal of this work is to establish the necessary and sufficient conditions for the existence
for equation (1) of (Y0, λ0)-solutions in the non-singular case, when λ0 ∈ R \ {0, 1, 12}, and in the
singular case, when λ0 = 1, as well as asymptotic for t ↑ ω representations for such solutions and
their derivatives up to the second order.

Without loss of generality, we will further assume that

∆Y0 =

{
[y0, Y0[ if ∆Y0 is a left neighborhood of Y0,
]Y0, y0] if ∆Y0 is a right neighborhood of Y0,

where y0 ∈ R is such that |y0| < 1 when Y0 = 0, and y0 > 1 (y0 < −1), when Y0 = +∞ (when
Y0 = −∞).

The function f : ∆Y0 → R\{0}, satisfying condition (2), when Y0 = ±∞, and lim
y→+∞

f(y) = +∞,
belongs to the class ΓY0(Z0) of the functions φ : ∆Y0 → ]0,+∞[ , where Y0 equals either zero or
±∞, and ∆Y0 is a one-sided neighborhood of Y0, for which

lim
y→Y0
y∈∆Y0

φ(y) = Z0 =

{
0,

or +∞,
(3)

which extends the class of function Γ, introduced by L. Khan (see, for example, [6, Ch. 3, p. 3.10,
p. 175]).

If f ∈ ΓY0(Z0) with the complementary function g, and, moreover, is continuous and strictly
monotone, then there exists a continuous strictly monotone inverse function f−1 : ∆Z0 −→ ∆Y0 ,
where

∆Z0 =

{
[z0, Z0[ ,

or ]Z0, z0],
z0 = f(y0), Z0 = lim

y→Y0
y∈∆Y0

f(y).

We introduce the necessary auxiliary notation. We assume that the domain of the function φ
in equation (1) is determined by formula (3). Next, we set

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1 if ∆Y0 = [y0, Y0[ ,

−1 if ∆Y0 = ]Y0, y0],

and introduce the functions

J(t) =

t∫
A

π2
ω(τ)p(τ) dτ, Φ(y) =

y∫
B

ds

φ(s)
,

where

πω =

{
t if ω = +∞,

t− ω if ω < +∞,

A =


ω if

ω∫
a

π2
ω(τ)p(τ) dτ = const,

a if
ω∫

a

π2
ω(τ)p(τ) dτ = ∞,

B =


Y0 if

Y0∫
y0

ds

φ(s)
= const,

y0 if
Y0∫
y0

ds
φ(s) = const.
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Considering the definition of Pω(Y0, λ0)-solutions of the differential equation (1), we note that
the numbers ν0, ν1, ν2 and α0 determine the signs of any Pω(Y0, λ0)-solutions of its first, second
and third derivatives (respectively) in some left neighborhood of ω. It is clear that the condition

ν0ν1 < 0, if Y0 = 0, ν0ν1 > 0, if Y0 = ±∞,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function Φ. It retains a sign on the

interval ∆Y0 , tends either to zero or ±∞ when y → Y0 and increasing by ∆Y0 , because on this
interval Φ′(y) = 1

φ(y) > 0. Therefore, for it there is an inverse function Φ−1 : ∆Z0 → ∆Y0 , where
due to the second of conditions (2) and the monotone increase of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
0,

or +∞,
∆Z0 =

{
[z0, Z0[ for ∆Y0 = [y0, Y0[ ,

]Z0, z0] for ∆Y0 = ]Y0, y0],
z0 = φ(y0).

For λ0 ∈ R \ {0; 1; 12} we also introduce auxiliary functions:

q(t) =
α0(λ0 − 1)2π3

ω(t)p(t)φ
(
Φ−1(α0

(λ0−1)2

λ0
(λ0 − 1)J(t))

)
λ0Φ−1

(
α0

(λ0−1)2

λ0
J(t)

) ,

H(t) =
Φ−1(α0

(λ0−1)2

λ0
J(t))φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ,

For equation (1) the following assertions take place.

Theorem 1. Let λ0 ∈ R \ {0; 1; 12}. Then for the existence for the differential equation (1) of
Pω(Y0, λ0)-solutions, it is necessary to comply with the conditions

α0ν1λ0 > 0, ν0ν1(2λ0 − 1)(λ0)πω(t) > 0 and α0µ0λ0J(t) < 0 for t ∈ (a, ω), (4)
α0

λ0
lim
t↑ω

J(t) = Z0, lim
t↑ω

πω(t)J
′(t)

J(t)
= ±∞, lim

t↑ω
q(t) =

2λ0 − 1

λ0 − 1
. (5)

Moreover, for each such solution, the following asymptotic representations take place:

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
for t ↑ ω, (6)

y′(t) =
(2λ0 − 1)

(λ0 − 1)

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
πω(t)

[1 + o(1)] for t ↑ ω, (7)

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
π2
ω(t)

[1 + o(1)] for t ↑ ω.

Theorem 2. Let λ0 ∈ R \ {0; 1; 12}, conditions (4), (5) met, there exist a finite or equal to ±∞
limit

lim
y→Y0
y∈∆Y0

(φ′(y)
φ(y)

)′(φ′(y)
φ(y)

)2 3

√(yφ′(y)

φ(y)

)2
,

and there exist the limit
lim
t↑ω

[2λ0 − 1

λ0 − 1
− q(t)

]
|H(t)|

2
3 = 0,
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Then, the differential equation (1) has at least one Pω(Y0, λ0)-solution, which allows for t ↑ ω
the asymptotic representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
,

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 2

3 ],

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 1

3 ],

(8)

and in the case when
µ0λ0(2λ0 − 1)(λ0 − 1) < 0 for t ∈ (a, ω),

the differential equation (1) has a one-parameter family of Pω(Y0, λ0)-solutions, but in the case
when

µ0λ0(2λ0 − 1)(λ0 − 1) > 0 for t ∈ (a, ω),

the differential equation (1) has a two-parameter family of Pω(Y0, λ0)-solutions with representations
(6), (7), and such that the first and second order derivatives allow the asymptotic representations (8).

Introduce the functions

J1(t) =

t∫
A1

p
1
3 (τ) dτ, Φ1(y) =

y∫
B1

ds

|s|
2
3φ

1
3 (s)

,

where

A1 =


ω if

ω∫
a

p
1
3 (τ) dτ < +∞,

a if
ω∫

a

p
1
3 (τ) dτ = +∞,

B1 =



Y0 if
Y0∫

y0

ds

|s|
2
3φ

1
3 (s)

= const,

y0 if
Y0∫

y0

ds

|s|
2
3φ

1
3 (s)

= ±∞.

Consider the definition of Pω(Y0, 1)-solutions of the differential equation (1). It is clear that the
conditions

ν0ν1 < 0, if Y0 = 0, ν0ν1 > 0, if Y0 = ±∞,

and
ν1α0 < 0, for lim

t↑ω
y′(t) = 0, ν1α0 > 0, for lim

t↑ω
y′(t) = ±∞,

are necessary for the existence of such solutions. For λ0 = 1, we also introduce the auxiliary
functions

q1(t) =
α0ν1J3(t)

p
1
3 (t)Φ−1

1 (ν1J1(t))
2
3φ

1
3 (Φ−1

1 (ν1J1(t)))
,

H1(t) =
Φ−1
1 (ν1J1(t))φ

′(Φ−1
1 (ν1J1(t)))

φ(Φ−1
1 (ν1J1(t)))

,

J2(t) =

t∫
A2

p(τ)φ(Φ−1
1 (ν1J1(τ))) dτ, J3(t) =

t∫
A3

J2(τ) dτ,
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where

A2 =


t0 if

ω∫
t2

p(τ)φ(Φ−1
1 (ν1J1(τ))) dτ = +∞,

ω if
ω∫

t2

p(τ)φ(Φ−1
1 (ν1J1(τ))) dτ < +∞,

A3 =


t0 if

ω∫
t3

J2(τ) dτ = +∞,

ω if
ω∫

t3

J2(τ) dτ < +∞,

t2, t3 ∈ [a, ω].

For equation (1) the following assertions take place.
Theorem 3. For the existence for the differential equation (1) of Pω(Y0, 1)-solutions it is necessary
to comply with the conditions

α0ν0 > 0, µ0ν1J1(t) < 0 for t ∈ ]a, ω[ ,

ν1 lim
t↑ω

J1(t) = Z0, lim
t↑ω

πω(t)J
′
1(t)

J1(t)
= ±∞, lim

t↑ω
q1(t) = 1, lim

t↑ω

p(t)φ(Φ−1
1 (ν1J1(t)))J3(t)

(J2(t))2
= 1.

Moreover, for each solution, there take place the asymptotic representations for t ↑ ω

y(t) = Φ−1
1

(
α0(λ0 − 1)J1(t)

)[
1 +

o(1)

H1(t)

]
,

y′(t) = ν1p
1
3 (t)φ

1
3
(
Φ−1
1 (ν1J1(t))

)(
Φ−1
1 (ν1J1(t))

) 2
3 [1 + o(1)],

y′′(t) = α0J2(t)[1 + o(1)].

Similarly to Theorem 2, we prove a sufficient condition for the existence of Pω(Y0, 1)-solutions.
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1 Introduction
Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1.1)
y(0) = y(1) = 0, (1.2)

where Q belongs to the set Tα,β,γ of all measurable locally integrable on (0, 1) functions with
non-negative values such that the following integral conditions hold

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0, (1.3)

1∫
0

x(1− x)Q(x) dx < ∞.

A function y is a solution to problem (1.1), (1.2) if it is absolutely continuous on the segment
[0, 1], satisfies (1.2), its derivative y′ is absolutely continuous on any segment [ρ, 1 − ρ], where
0 < ρ < 1

2 , and equality (1.1) holds almost everywhere in the interval (0, 1).
This work is a continuation of studies of estimates for the first eigenvalue of the Sturm–Liouville

problem with the equation y′′ + λQ(x)y = 0, Dirichlet boundary conditions, and a non-negative
summable on [0, 1] potential Q satisfying the condition ∥Q∥Lγ(0,1) = 1, γ ̸= 0, initiated by
Y. V. Egorov and V. A. Kondratiev in [1]. We study a problem of that kind provided the in-
tegral conditions contain weight functions.

For γ < 0, α ≤ 2γ − 1, −∞ < β < +∞ or γ < 0, β ≤ 2γ − 1, −∞ < α < +∞, the set
Tα,β,γ is empty and the first eigenvalue of problem (1.1), (1.2) does not exist. For other values of
α, β, γ, γ ̸= 0, denote

Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q).

2 Main results
It [2], the following theorem was proved.

Theorem 2.1. If 0 < γ < 1, α, β > 2γ − 1, then Mα,β,γ < π2.
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In the proof of this theorem it was supposed that for any 0 < γ < 1, α, β > 2γ − 1 we have
Mα,β,γ = π2, that is, for any sufficiently small ε > 0 there exists a function Q ∈ Tα,β,γ such that
λ1(Q) > (π − ε)2. Under this assumption we got a contradiction with condition (1.3), namely, it
was proved that in this case there exists a positive constant C, depending on α, β, γ, such that

1∫
0

xα(1− x)βQγ(x)dx ≤ CεM ,

where
M = min

{(α− 2γ + 1)γ

1− γ + α
,
(β − 2γ + 1)γ

1− γ + β

}
> 0.

Let us prove the following

Theorem 2.2. If α, β > 1, then Mα,β,1 < π2.

Proof. Suppose that Mα,β,1 = π2, α, β > 1.
Let 0 < γ < 1. By the Hölder inequality, we have

1∫
0

xαγ(1− x)βγQγ(x) dx 6
( 1∫

0

xα(1− x)βQ(x) dx

)γ

.

Then ( 1∫
0

xαγ(1− x)βγQγ(x) dx

) 1
γ

6
1∫

0

xα(1− x)βQ(x) dx = 1. (2.1)

Note that, for 0 < γ < 1, the inequality αγ > 2γ − 1 holds if and only if α > 1. Similarly,
βγ > 2γ − 1 if and only if β > 1.

Denote by T̃αγ,βγ,γ a set of measurable non-negative locally integrable on (0, 1) functions Q
such that ( 1∫

0

xαγ(1− x)βγQγ(x) dx

) 1
γ

6 1.

By virtue of (2.1),
Tα,β,1 ⊂ T̃αγ,βγ,γ .

If we suppose that
Mα,β,1 = sup

Q∈Tα,β,1

λ1(Q) = π2,

then for 0 < γ < 1, we also have

Mαγ,βγ,γ = sup
Q∈T̃αγ,βγ,γ

λ1(Q) = π2.

If Mα,β,1 = sup
Q∈Tα,β,1

λ1(Q) = π2, then for any ε > 0 there exists a function Q∗ ∈ Tα,β,1 such that

λ1(Q∗) > (π − ε)2.
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This function Q∗ belongs to T̃αγ,βγ,γ either and following the proof of Theorem 2.1, we can find a
positive constant C, depending on α, β, γ, such that

1∫
0

xαγ(1− x)βγQ∗
γ(x) dx 6 CεM ,

where
M = min

{
(αγ − 2γ + 1)γ

1− γ + αγ
,
(βγ − 2γ + 1)γ

1− γ + βγ

}
.

Suppose that M = (αγ−2γ+1)γ
1−γ+αγ (in case M = (βγ−2γ+1)γ

1−γ+βγ the proof is similar). For any 0 < γ < 1,
α > 1, we have αγ > 2γ − 1 and M is positive.

Note that for a fixed α > 1, if γ approaches 1, the exponent of ε
(αγ−2γ+1)γ

1−γ+αγ approaches a concrete
positive number α−1

α .
As soon as γ tends to 1, the factor C, depending on α, β, γ, tends to some constant C̃. Let us

choose ε in such a way that the following inequality

C̃ε
α−1
α <

1

2

holds.
Then we get a contradiction

1 =

1∫
0

xα(1− x)βQ(x) dx = lim
γ→1

( 1∫
0

xαγ(1− x)βγQγ(x) dx

) 1
γ

6 C̃ε
α−1
α <

1

2
.

Note that, while γ increases from 0 to 1, the integral
( 1∫
0

xαγ(1−x)βγQγ(x) dx
) 1

γ also increases.

Indeed, if γ1 < γ2, then by virtue of the Hölder inequality, since γ2
γ1

> 1, we have

1∫
0

xαγ1(1− x)βγ1Qγ1(x) dx 6
( 1∫

0

xαγ2(1− x)βγ2Qγ2(x) dx

) γ1
γ2

and ( 1∫
0

xαγ1(1− x)βγ1Qγ1(x) dx

) 1
γ1 6

( 1∫
0

xαγ2(1− x)βγ2Qγ2(x) dx

) 1
γ2

.
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Let us consider the Robin eigenvalue problem

∆u+ λu = 0, x ∈ Ω, (1)(∂u
∂ν

+ αu
)∣∣∣∣

x∈Γ
= 0, α ∈ R. (2)

Here Ω ⊂ Rn, n ≥ 2, is a bounded domain with the sufficiently smooth boundary Γ. We denote by
λR
1 (α) the first eigenvalue of problem (1), (2). Consider also the Dirichlet eigenvalue problem

∆u+ λu = 0, x ∈ Ω, (3)
u
∣∣
x∈Γ = 0. (4)

Let λD
1 be the first eigenvalue of problem (3), (4), and uD1 (x) be the first Dirichlet eigenfunction,

satisfying ∥uD1 ∥L2(Ω) = 1.
In the papers [1–5] we get the following statement.

Theorem 1. The eigenvalue λR
1 (α) satisfies the asymptotic representation

λR
1 (α) = λD

1 − a1α
−1 − a2α

−2 + o(α−2), α → +∞, (5)

a1 =

∫
Γ

(∂uD1
∂ν

)2
ds, a2 =

∫
Γ

∂uD1
∂ν

∂v

∂ν
ds. (6)

The function v ∈ H1(Ω) is a solution of the boundary value problem

∆v + λD
1 v =

∫
Γ

(∂uD1
∂ν

)2
ds uD1 , x ∈ Ω, (7)

v
∣∣
x∈Γ = −∂uD1

∂ν

∣∣∣∣
x∈Γ

, (8)

satisfying the condition ∫
Ω

vuD1 dx = 0. (9)

Problem (7)–(9) has a unique solution.

In this paper we establish two-sided estimates for the coefficient a1 in formula (5).
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Theorem 2. Let Ω ⊂ BR0(0) = {x ∈ Rn : |x| < R0} and b(x) = (b1(x), . . . , bn(x)) ∈ C1(Ω) be a
vector function. Then the following estimates hold:

2λD
1

R0
≤ a1 ≤ 4n inf

b∈C1(Ω)
b|Γ=ν

max
i,j=1,...,n

∥(bi)xj∥C(Ω)λ
D
1 , ∥f(x)∥C(Ω) = sup

x∈Ω
|f(x)|. (10)

Definition. We call Γ a strictly star-shaped surface if the inequality (ν, x) > 0 holds for all x ∈ Γ.

Theorem 3. Let Γ be a strictly star-shaped surface. Then the following estimate holds:

a1 ≤
2λD

1

inf
x∈Γ

(ν, x)
. (11)

Let us note that for Ω = BR0(0) it follows from (10), (11) that a1 =
2λD

1
R0

.

Proof. By direct computation we have the following equality for solutions of problem (3), (4):∫
Γ

(b, ν)u2ν ds =
∫
Ω

(
2

n∑
i,j=1

(bi)xjuxiuxj + divb
(
λu2 − |∇u|2

))
dx. (12)

Using (12) for b|Γ = ν, we get∫
Γ

u2ν ds =

∫
Γ

(b, ν)u2ν ds ≤ 2

∫
Ω

n∑
i,j=1

(bi)xjuxiuxj dx+

∫
Ω

|divb|
(
|∇u|2 + λu2

)
dx. (13)

We have

n∑
i,j=1

(bi)xj
uxiuxj ≤ max

i,j=1,...,n
∥(bi)xj∥C(Ω)

n∑
i,j=1

|uxi | |uxj |

= max
i,j=1,...,n

∥(bi)xj∥C(Ω)

( n∑
i=1

|uxi |
)2

≤ n max
i,j=1,...,n

∥(bi)xj∥C(Ω)|∇u|2, x ∈ Ω. (14)

Now, combine (13), (14) and the inequality

|divb| ≤ n max
i,j=1,...,n

∥(bi)xj∥C(Ω), x ∈ Ω,

we get ∫
Γ

u2ν ds ≤ max
i,j=1,...,n

∥(bi)xj∥C(Ω)

(
3n

∫
Ω

|∇u|2 dx+ λ

∫
Ω

u2 dx
)
. (15)

It follows from (3), (4) that ∫
Ω

|∇u|2 dx = λ

∫
Ω

u2 dx. (16)

Therefore, by (15) and (16),∫
Γ

u2ν ds ≤ 4n max
i,j=1,...,n

∥(bi)xj∥C(Ω)λ

∫
Ω

u2 dx. (17)
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Taking u = uD1 with ∥uD1 ∥L2(Ω) = 1, we get from (6) and (17) the upper estimate (10).
Let us prove now the lower estimate (10). We have the Rellich equality for normalized in L2(Ω)

eigenfunctions of problem (3), (4) (see [6, 7]):

λ =
1

2

∫
Γ

(x, ν)u2ν ds. (18)

Therefore,
2λ =

∫
Γ

(x, ν)u2ν ds ≤
∫
Γ

|x|u2ν ds ≤ sup
x∈Γ

∫
Γ

u2ν ds ≤ R0

∫
Γ

u2ν ds.

Now, for u = uD1 we obtain

a1 ≥
2λD

1

R0
.

The proof of Theorem 3 is based on the Rellich equality (18) for uD1 in a strictly star-shaped
domain Ω.
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1 Introduction and setting of the problem
It is known that the local characteristics of processes in micro-inhomogeneous medium contain
functions of the form a(xε ), where ε > 0 is a small parameter. Passing to averaged parameters is
an effective tool for studying such processes [10]. Such a procedure for parabolic operators was
justified in [7]. Optimal control problems for parabolic equations with fast oscillating functions in
the coefficients were investigated in [1,6,12,14]. General questions of the solvability of systems of the
reaction-diffusion type were investigated in [4,9,13]. In this paper, we consider the optimal control
problem on semi-axis for the reaction - diffusion equation with a coercive objective functional,
whose coefficients contain fast oscillating functions.

More precisely, let Ω ⊂ Rn be a bounded domain, ε ∈ (0, 1) be a small parameter. In the
cylinder Q = (0,∞)× Ω, the controlled process is described by the evolutionary system

∂y

∂t
= div

[
a
(x
ε

)
∇y

]
− b

(x
ε

)
f(y) + u(t, x),

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= yε0(x),

(1.1)

u ∈ U ⊆ L2(Q), (1.2)

J(y, u) =

∫
Q

qε(t, x, y(t, x))y(t, x) dt dx+ γ

∫
Q

u2(t, x) dt dx −→ inf, γ > 0. (1.3)

Under natural assumptions on parameters we prove the following limit equality

J(y ε, u ε) −→ J(y, u), ε → 0,

where {y ε, u ε} and {y, u} are optimal processes of the perturbed problem (1.1)–(1.3) and the
corresponding averaged problem.

2 Main results
We will consider the optimal control problem (1.1)–(1.3) under following assumptions:

a is a measurable, periodic, symmetric matrix satisfying the condition of uniform ellipticity and
boundedness

∀x ∈ Rn, ∀ η ∈ Rn ν1

n∑
i=1

η2i ≤
n∑

i,j=1

aij(x)ηiηj ≤ ν2

n∑
i=1

η2i , (2.1)
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b ∈ L∞(Rn) is non-negative, bounded, periodic function,

∃ b1 > 0, ∃ b0 > 0, ∀ s ∈ R b0 ≤ b(s) ≤ b1, (2.2)

nonlinearity f ∈ C(R) satisfies the standard conditions of sign and growth:

∃α > 0, C ≥ 0, p ≥ 2 : ∀ s ∈ R, f(s) · s ≥ α|s|p, |f(s)| ≤ C
(
1 + |s|p−1

)
, (2.3)

U is convex, closed set in L2(Q), 0 ∈ U.

The function qε : Q × R 7−→ R is a Carathéodory function, and there exist a constant K > 0
independent of ε ∈ (0, 1) and non-negative functions K1 ∈ L1(Q), K2 ∈ L2(Q) such that

qε(t, x, ξ)ξ ≥ −K1(t, x), |qε(t, x, ξ)| ≤ K|ξ|+K2(t, x). (2.4)

Under conditions (2.1)–(2.3), it is known [13] that for any ε > 0, ∀u ∈ L2(Q), ∀ yε0 ∈ L2(Ω),
problem (1.1) has at least one solution y = y(t, x) in the class

W :=
{
y ∈ L2(0,∞;H1

0 (Ω)) :
dy

dt
∈ L2(0,∞;H−1(Ω))

}
.

Moreover, each solution (1.1) from W belongs to C([0,∞);L2(Ω)).

Theorem 2.1. Under conditions (2.1)–(2.4) the optimal control problem (1.1)–(1.3) has a solution
{y ε, u ε}.

Now let us discuss averaged problem (ε = 0).
We assume that a constant, positive defined matrix â is averaged for a(xε ) [10], the number b̂ is

the mean value of a periodic function b(x), and there exists a Carathéodory function qε : Q×R 7−→ R
such that

∀ r > 0 qε(t, x, ξ) → q(t, x, ξ) weakly in L2(Q) uniformly with respect to |ξ| ≤ r. (2.5)

Consider problem (1.1)–(1.3) with averaged coefficients
∂y

∂t
= div[â∇y]− b̂f(y) + u(t, x),

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= y0(x),

(2.6)

u ∈ U ⊆ L2(QT ), (2.7)

J(y, u) =

∫
Q

q(t, x, (t, x))y(t, x) dx+ γ

∫
Q

u2(t, x) dt dx −→ inf . (2.8)

Using convergence (2.5), it is easy to show that the function qε : Q×R 7→ R satisfies inequalities
(2.4). Then, by Theorem 2.1, we can assert that problem (2.6)–(2.8) has a solution {y, u}.

We will assume the following additional condition:

for any u ∈ U problem (2.6) has a unique solution. (2.9)

Condition (2.9) will take place if f ∈ C1(R) and f ′(s) ≥ −C3 [13], or b̂ · f(s) ≡ 0.
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Theorem 2.2. Let conditions (2.1)–(2.4), (2.5), (2.9) be satisfied, and in (2.3) we have

p =


2, if n ≥ 3,

3, if n = 2,

4, if n = 1.

(2.10)

Let also for some number l > 0 the following condition be fulfilled∣∣qε(t, x, ξ1)− qε(t, x, ξ2)
∣∣ ≤ l|ξ1 − ξ2|. (2.11)

Then the limit relation is true

J(y ε, u ε) −→ J(y, u), ε → 0,

where {y ε, u ε} and {y, u} are optimal processes in problems (1.1)–(1.3) and (2.6)–(2.8).
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The differential equation
d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (1)

depending on the real parameter µ has been introduced by the Dutch engineer and physicist
Balthasar van der Pol [4] in 1926 to describe self-oscillations in a triod circuit. If we replace t
by −t and µ by −µ, then equation (1) remains invariant. Thus, to study the phase portrait of
equation (1) we can restrict ourselves to the case µ ≥ 0. It is well-known (see, e.g., [3]) that (1)
has for µ > 0 a unique limit cycle Γ(µ) which is orbitally stable and hyperbolic. For small µ,
the periodic solutions x = p(t, µ) describing the limit cycle Γ(µ) behave like the solution of the
harmonic oscillator, for large µ, p(t, µ) represents a relaxation oscillation. In what follows we derive
differential systems which distinguish in their structure but whose phase portraits are topologically
equivalent to that of the van der Pol equation (1). The reason to do this consists in the intension
to find the most suitable form for studying the localization and the shape of the limit cycle for
arbitrary values of the parameter.

The main tool for our investigation is the method of Dulac–Cherkas functions which was intro-
duced by L. A. Cherkas in 1997 [1] as a generalization of Dulac method [2]. We recall the definition
of Dulac–Cherkas function for the planar autonomous differential system

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (2)

in some open region G ⊂ R2, where P,Q ∈ C1(G,R) and X is the vector field defined by (2).

Definition 1. A function Ψ ∈ C1(G,R) is called the Dulac–Cherkas function of system (2) in G if
there exists a real number κ ̸= 0 such that

Φ(x, y, κ) := (gradΨ, X) + κΨdivX > 0 (< 0) in G. (3)

In case κ = 1, Ψ is a Dulac function.

Remark 1. Condition (3) can be relaxed by assuming that Φ may vanish in G on a set of measure
zero, and that no oval of this set is a limit cycle of (2).

For the sequel we introduce the subset W of G defined by W := {(x, y) ∈ G : Ψ(x, y) = 0}.
The following theorem can be found in [1, 2].
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Theorem 1. Let Ψ be a Dulac–Cherkas function of (2) in G. Then any limit cycle Γ of (2) located
entirely in G has the following properties:

(i) Γ does not intersect W;

(ii) Γ is hyperbolic;

(iii) the stability of Γ is determined by the sign of the expression κΦΨ on Γ.

Property (ii) has the strong consequence that the existence of a Dulac–Cherkas function implies
that system (2) has no multiple limit cycle.

Theorem 2. Let Ψ be a Dulac–Cherkas function of (2) in G such that the set W contains some
oval W0 with the property that the open region G0 bounded by W0 belongs to G and that G0 ∩W is
empty. Then there is no limit cycle in G0.

Corollary 1. Under the assumptions of Theorem 2, W0 can be used as interior boundary of a
possible Poincaré–Bendixson annulus.

The following result is also known [2].

Theorem 3. Let G be a simply connected region where Ψ is a Dulac–Cherkas function of (2) such
that W consists of one oval in G. Then system (2) has at most one limit cycle in G.

Now we note that (1) can be rewritten as the system

dx

dt
= −y,

dy

dt
= x− µ(x2 − 1)y

(4)

of Liénard type. The goal of our investigation is to construct Dulac–Cherkas functions for systems
equivalent to the van der Pol system (4) such that the zero-set of these functions consists of
a unique oval which can be used by Corollary 1 as interior boundary of a Poincaré–Bendixson
annulus containing the unique limit cycle of the corresponding system. At the same time we
study the problem whether a Dulac–Cherkas function for an equivalent system can be obtained by
applying the equivalence relation to the known Dulac–Cherkas function. We start with the original
van der Pol system.

Lemma 1. The functions
Ψa(x, y) := x2 − 1 + y2 (5)

and
Ψb(x, y, µ) := x2 − 8

3
+ µ

(
x− x3

3

)
y + y2 (6)

are Dulac–Cherkas functions for system (4) in R2 for µ > 0.

The corresponding expressions (3) read

Φa(x,−2, µ) = 2µ(x2 − 1)2 ≥ 0,

Φb(x,−1, µ) =
2

3
µ(x2 − 2)2 ≥ 0

for κ = −2 and κ = −1, accordingly.
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Remark 2. The zero-sets Wa and Wb(µ) of the functions Ψa(x, y) and Ψb(x, y, µ) consist of a
unique oval for µ > 0. Thus, these ovals can be used as interior boundaries for a Poincaré-
Bendixson annulus. We note that the parameter dependent oval Wb(µ) represent for small µ a
better approximation of the van der Pol limit cycle Γ(µ).

For the first time the function Ψa(x, y) was constructed by L. A. Cherkas in the paper [1]. Next
we consider the system

dx

dt
= −y,

dy

dt
= x+ (µ− x2)y,

(7)

which we obtain from system (4) by the scaling x =
√
µx, y =

√
µ y. The representations (4) and

(7) are especially useful for small µ: if µ crosses the value 0, the unique limit cycle Γ(µ) in system
(4) bifurcates from the family of circles with center at the origin, while in system (7) the limit
cycle Γ(µ) bifurcates from the origin (Hopf bifurcation). We note that in the case µ = 0 the phase
portraits of these systems are not topologically equivalent.

Lemma 2. The functions
Ψa(x, y, µ) := x2 + y2 − µ (8)

and
Ψb(x, y, µ) := x2 + y2 − 8

3
µ+

(
µx− x3

3

)
y (9)

are Dulac–Cherkas functions for system (7) in R2 for µ > 0.

Both ovals corresponding to the functions (8) and (9) can be used as interior boundaries for a
Poincaré-Bendixson annulus. Now we study the singularly perturbed system

dx

dτ
= −y,

ε
dy

dτ
= x− (x2 − 1)y,

(10)

which we get from system (4) by the scaling t = µτ and using the notation ε = 1/µ2. In the
case µ = 1 both system coincide such that the functions Ψa and Ψb defined in (5) and (6) are also
Dulac–Cherkas functions of system (7). For µ ̸= 1, this scaling changes not only the velocity running
along the trajectories but also the vector field such that Ψa and Ψb are not longer Dulac–Cherkas
functions of system (7).

Lemma 3. The functions
Ψa(x, y, ε) := x2 − 1 + εy2

and
Ψb(x, y, ε) := x2 − 8

3
+
(
x− x3

3

)
y + εy2

are Dulac–Cherkas functions for system (10) in R2 for ε > 0.

In the similar way we derive the following results for three other van der Pol equivalent systems.

Lemma 4. The function

Ψ(ξ, η, µ) := ξ2 − 8

3
+ µ

(
η − η3

3

)
ξ + η2
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is a Dulac–Cherkas function for system

dξ

dt
= −η,

dη

dt
= µ

(
η +

η3

3

)
+ ξ

in R2 for µ > 0.

Lemma 5. The function

Ψ(ξ, η, µ) := ξ
2 − 8

3
µ+

(
µη − η3

3

)
ξ

is a Dulac–Cherkas function for system

dξ

dt
= −η,

dη

dt
= ξ + µη − η3

3

in R2 for µ > 0.

Lemma 6. The function

Ψ(ξ, η, ε) := ξ2 + εη2 − 8

3
ε+

(
η − η3

3

)
ξ

is a Dulac–Cherkas function for system

dξ

dτ
= −η,

ε
dη

dτ
= ξ + η − η3

3

in R2 for ε > 0.

Finally for the van der Pol system we present an approach for the construction of an outer
boundary for the Poincaré-Bendixson annulus which does not require an approximation of any
orbit.

Theorem 4. The algebraic ovales
x2 + y2 = 1

and

y2 + µyx
(
2− x2

3

)
+ (1 + µ2)x2 − 7µ2

12
x4 +

µ2

18
x6 − C(µ) = 0

form a global algebraic Poincaré-Bendixson annulus for system (4).

In the proof of this theorem we describe a way how the function C(µ) depending on the pa-
rameter µ can be selected. Our approach implies the uniqueness of a limit cycle in the constructed
Poincaré-Bendixson annulus.
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The deterministic McKendrick-von Foerster model
∂u

∂t
+

∂u

∂a
= −m(t, a)u (t, a ≥ 0) (1)

is widely used to examine age-structured populations [2,4,6]. It is usually equipped with the initial
condition

u(0, a) = χ(a) ≥ 0

and the non-local boundary condition

u(t, 0) = b(t) =

∞∫
0

β(t, a)u(t, a) da ≥ 0.

Here u(t, a) is the size (density) of a certain population of a given age a ≥ 0 at time t ≥ 0,
m(t, a) ≥ 0 is the per capita mortality rate and b(t) is the birth function that depends on the
age-structured size of the population and the per capita birth rate β(t, a).

Eq. (1) is a balance equation that can be derived from the basic biophysical principles by letting
the increments in time and age be infinitely small and under the assumption that the population
is isolated. This explains why the McKendrik-von Foester equation is a source of many specific
population models. However, this equation does not take into account stochastic effects, like
demographic and environmental fluctuations, which are of importance in any realistic description
of population dynamics.

In this presentation, the following stochastic version of this model
∂u

∂t
+

∂u

∂a
= −(m(t, a) + ν̇(t))u (t, a ≥ 0) (2)

is considered. Here ν̇(t) is a stochastic noise which is represented by the formal (generalized)
derivative of a continuous scalar stochastic process ν(t) defined on the given filtered probability
space (

Ω,F , (Ft)t≥0,P
)
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with the probability measure P on the σ-algebra F of subsets of Ω and an increasing sequence
of σ-subalgebras Ft of F , where all the introduced σ-algebras are complete with respect to the
measure P.

The aim of the presentation is to deduce the equations for the total size of the juveniles J(t)
and the adults A(t)

J(t) =

τ∫
0

u(t, a) da and A(t) =

∞∫
τ

u(t, a) da, (3)

where τ ≥ 0 is the maturation time [6].
In the assumptions below, the following definition is used.

Definition. A real-valued (deterministic) function α(t, x, y), t ≥ 0, x, y ∈ (−∞,∞) belongs class
L if it is measurable (as a function of three variables) and satisfies the uniform Lipschitz condition
with respect to x and y:∣∣α(t, x1, y1)− α(t, x2, y2)

∣∣ ≤ L
(
|x1 − y1|+ |x2 − y2|

)
for all t ≥ 0, x, y ∈ (−∞,∞).

The restrictions on the coefficients in (2) can be summarized as follows:

(A1) The mortality rate m(t, a) is defined as

m(t, a) =

{
mJ(t) := µJ(t, J(t), A(t)), 0 ≤ a < τ,

mA(t) := µA(t, J(t), A(t)), a ≥ τ,
(4)

where µJ and µA are class L functions (that is, they are independent of the age a) and τ ≥ 0
is the maturation time.

(A2) The function χ(a) ≥ 0 (the initial age distribution at time t = 0) is càdlàg and satisfies the
condition

∞∫
0

sup
s≥a

χ(s) da < ∞.

In practical applications, the function χ has a compact support, so that this assumption will
be trivially satisfied.

(A3) At any time t, the birth rate function β is defined as

β(t, a) =

{
0, 0 ≤ a < τ,

βA(t) := βA(t, J(t), A(t)), a ≥ τ,

where βA is a class L function independent of the age a, and by definition, the birth rate of
the juvenile population (i.e. βJ) is equal to 0.

(A4) The stochastic process ν is defined as

ν(t) =

t∫
0

γ(s, J(s), A(s)) dB(s),

where B is the scalar Brownian motion and γ is a class L function.
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Below is the main result of the presentation.

Theorem 1. If assumptions (A1)–(A4) are fulfilled, then the aggregated age variables (3), together
with the auxiliary variable X(t), satisfy the system

dJ(t) = βA(t, J(t), A(t))A(t) dt− µJ(t, J(t), A(t))J(t) dt

−D
{
t, J( · ), A( · ), X( · )

}
βA

(
t− τ, J(t− τ), A(t− τ)

)
A(t− τ) dt

+ γ(t, A(t), J(t))J(t)dB(t) (t ≥ τ),

dA(t) = −µA(t, J(t), A(t))A(t) dt

+D
{
t, J( · ), A( · ), X(t)

}
βA

(
t, J(t− τ), A(t− τ)

)
A(t− τ) dt

+ γ(t, J(t), A(t))A(t)dB(t) (t ≥ τ), (5)
dX(t) = γ(t, J(t), A(t))X(t) dB(t),

where

D
{
t, J( · ), A( · ), X( · )

}
= exp

{
−

t∫
t−τ

µJ(s, J(s), A(s)) ds

}
X(t)X−1(t− τ)

is an integral operator standing for the distributed delay in the equation.
This system satisfies the initial conditions

J(t) = J0(t), A(t) = A0(t), X(t) = X0(t) (t ∈ [0, τ ]),

where J0( · ), A0( · ) and X0(t) are Fτ -measurable, continuous stochastic processes satisfying the
following system of stochastic integro-differential equations on the interval [0, τ ]:

dJ0(t) = −D
{
t, J0( · ), A0( · )

}
dt+ βA(t, J0(t), A0(t))A0(t) dt− µJ(t, J0(t), A0(t))J0(t) dt

+ γ(t, A0(t), J0(t))J0(t) dB(t),

dA0(t) = D
{
t, J0( · ), A0( · )

}
dt− µA(t, J0(t), A0(t))A0(t) dt

+ γ(t, J0(t), A0(t))A0(t) dB(t),

dX0(t) = γ(t, J0(t), A0(t))X0(t) dB(t),

and

D0

{
t, J0( · ), A0( · ), X0( · )

}
= χ(τ − t) exp

{
−

t∫
0

µJ(s, J0(s), A0(s)) ds

}
X0(t).

The initial conditions for the latter system are given by

J(0) =

τ∫
0

u(0, s) ds =

τ∫
0

χ(s) ds,

A(0) =

∞∫
τ

u(0, s) ds =

∞∫
τ

χ(s) ds,

X(0) = 1.

The proof of this result can be found in [5].
Consider some biologically important stochastic models which can be obtained from Theorem 1.
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Example 1: the stochastic counterpart of the recruitment-delayed model.
The following equation is widely used in population dynamics (see, e.g., the monograph [3] or the
review paper [1]):

A′(t) = B(A(t− τ))−D(A(t)),

where A(t) is the size of the adult population and B and D are the birth and death functions,
respectively.

Let us deduce a stochastic counterpart of this model starting from the McKendrik-von Foerster
equation (2). Assume that

m(t, a) =

{
µJ(t), 0 ≤ a < τ,

µA(A(t)), a ≥ τ,

and the birth rate is given by

β(t, a) =

{
0, 0 ≤ a < τ,

βA(A(t)), a ≥ τ,
(6)

where βA(A), A ∈ (−∞,∞), is a continuously differentiable function, which satisfies the assumption
β′
A(A) < 0 for A ≥ 0.

The coefficient γ in (A4) is a function of t, so that ν(t) =
t∫
0

γ(s) dB(s), and satisfies the condition

γ(t) ≥ m > 0. Then we get
dA(t) = −µA(A(t))A(t) dt+ α(t, τ)βA(A(t− τ))A(t− τ) dt+ γ(t)A(t) dB(t),

for t ≥ τ , where

α(t, τ) = exp

{
−

t∫
t−τ

µJ(s) ds+ ν(t)− ν(t− τ)− 1

2

t∫
t−τ

γ2(s) ds

}
. (7)

Example 2: the stochastic counterpart of Nicholson’s blowflies model.
The most celebrated model of the deterministic population dynamics is Nicholson’s blowflies model
and its generalizations (see, e.g., the review paper [1] and the references therein)

A′(t) = −mAA(t) + p0A(t− τ) exp
{
− θA(t)

}
.

Consider Eq. (5) for the adult population with the mortality rate m(t, a) and the birth rate
β(t, a) given by (4) and (6), respectively. Assume also that γ = γ(t) ≥ m > 0. Then we get the
following stochastic version of the generalized Nicholson’s blowflies delay equation:

dA(t) = −mAA(t) dt+ α(t, τ)βA(A(t− τ))A(t− τ) dt+ γA(t)A(t) dB(t), (8)
where α(t, τ) is given by (7). Notice that this equation differs from that studied in [7], where an
additive stochastic noise was appended to the deterministic blowflies model:

dA(t) = −mAA(t) dt+ p0A(t− τ) exp
{
− θA(t− τ)

}
dt+ δA(t) dB(t). (9)

The main difference between Eq. (9), obtained by automatically adding a stochastic noise,
and Eq. (8) obtained from the stochastic McKendrik-von Foester model (2) is the presence of the
stochastic process α(t, τ), which represents an intrinsic multiplicative stochastic noise. This ran-
dom coefficient depends explicitly on the noise γḂ, which we added to the mortality rate in (2),
and explains how random fluctuations in the population’s mortality influence fluctuations in the
birth function. This dependence is disregarded in Eq. (9). Note that as long as the noise γḂ is
non-zero, we will always get a nontrivial random α in front of the deterministic birth function βA.

In addition, starting with (2) will always produce a random initial condition A(t) = φA(t),
0 ≤ t ≤ τ , as it was shown in the previous section.
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Consider the linear differential systems

ẋ = A(t)x, x ∈ R2, t ≥ t0, (1)

with bounded infinitely differentiable coefficients and characteristic exponents λ1(A) ≤ λ2(A) < 0,
being linear approximations for the nonlinear systems

ẏ = A(t)y + f(t, y), y ∈ R2, t ≥ t0, (2)

likewise with infinitely differentiable so-called m-perturbations f(t, y) of order m > 1 of smallness
in the neighbourhood of the origin and possible growth outside of it:

∥f(t, y)∥ ≤ Cf∥y∥m, y ∈ R2, t ≥ t0. (3)

The known Perron’s effect [7], [6, p. 50-51] of value change of characteristic exponents states the
existence of systems (1) and (2) with 2-perturbation (3) such that all nontrivial solutions of system
(2) turn out to be infinitely continuable and their characteristic exponents take only two values: one
is negative, coinciding with the higher exponent λ2(A) < 0 of the system of linear approximation
(1) and the other one is positive (calculated incidentally in [3, p. 13-15]). Considering this effect as
not full (not all nontrivial solutions of the perturbed system (2) take positive exponents), a great
number of works were devoted to the investigation of its full version (all nontrivial solutions of
system (2) are infinitely continuable to the right and have finite positive exponents (see our last
works [4, 5]).

In particular, in these works we have obtained the above-mentioned full Perron’s effect corre-
sponding to various types of the collection Λ(A, f) ⊂ (0,+∞) of Lyapunov’s characteristic expo-
nents of all nontrivial solutions of the nonlinear system (2) with m-perturbation (3) for any fixed
m > 1. In our last works, these bounded collections Λ(A, f) ⊂ (0,+∞) are completely described
by Suslin’s sets.

Noteworthy are the results, not connected with Perron’s effect: for the exponentially stable
systems (2) with perturbations (3) the collections Λ0(A, f) ⊂ (−∞, 0) of characteristic exponents
of all their nontrivial solutions, emanating from a sufficiently small neighbourhood of the origin, of
positive measure are realized in [2], whereas in [1] they are completely described by Suslin’s sets.

In investigating the above (not full) Perron’s effect, when all nontrivial solutions y(t, c), y(t0, c) =
c ∈ R2 \ {0} are infinitely continuable and have finite positive as well as negative Lyapunov’s
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exponents λ[y( · , c)], forming respectively non-empty (one-element) sets Λ+(A, f) and Λ−(A, f)
and all their collection Λ(A, f) = Λ+(A, f) ∪ Λ−(A, f), there arises, in particular, the question
to what extent they may be common simultaneously (for one system (2)). The answer, as a
consequence of a more general result, is obtained in the present report.

Here, for a countable number of uniformly bounded arbitrary Suslin’s sets Sk, k ∈ N and a
partitioning of a plane of initial values of solutions into the same number of domains and segments
Πk we have constructed systems (1) and (2) with m-perturbation (3) such that the characteristic
exponents λ[y( · , c)] of nontrivial solutions of system (2) with the initial values c ∈ Πk make up the
sets Sk, and the whole collection of exponents Λ(A, f) of nontrivial solutions of that system is the
union

∪
k∈N

Sk. The consequence of that common result is the realization of the cases for: a finite

number of arbitrary bounded Suslin’s sets; two arbitrary, likewise bounded, Suslin’s sets

S+ ⊂ (0,+∞), S− ⊂ (−∞, 0),

forming the collection Λ(A, f) = S+ ∪ S− of characteristic exponents of some system (2).
The following theorem is valid.

Theorem 1. For any parameters m > 1, λ1 ≤ λ2 < 0 and any two sequences Sin, n ∈ N, i = 1, 2,
uniformly bounded by Suslin’s sets

S1n ⊂
[
λ1 + ε, b1

]
, S2n ⊂

[
max{λ2 + ε, b1}, b2

]
, n ∈ N,

with number ε > 0, which are the sets of values respectively of the functions β1n( · ) and β2n( · ) of
the 1st Baire class on every of the half-intervals (n− 1, n] and [−n,−n+ 1), there exist:

1) a system of linear approximation (1) with bounded infinitely differentiable coefficients and
characteristic exponents λi(A) = λi, i = 1, 2;

2) an infinitely differentiable m-perturbation f(t, y) such that all nontrivial solutions y(t, c) with
the initial conditions

y(t0, c) = (c1, c2) ∈ R2 \ {0}

of the perturbed system (2) are infinitely continuable to the right, and their characteristic
exponents λ[y( · , c)] form for every n ∈ N the collections{

λ
[
y( · , (c1, 0))

]
: |c1| ∈ (n− 1, n]

}
= S1n,{

λ
[
y( · , c)

]
: |c2| ∈ (n− 1, n]

}
= S2n, Λ(A, f) =

∪
i,n

Sin,

on every of the above-mentioned intervals separately.

The theorem below gives us the answer to the question posed at the beginning of our report.

Theorem 2. For any parameters m > 1, λ1 ≤ λ2 < 0 and arbitrary bounded Suslin’s sets S− ⊂
(−∞, 0) and S+ ⊂ (0,+∞) there exist the nonlinear system (2) with the linear approximation (1),
having characteristic exponents λi(A) = λi, i = 1, 2, and m-perturbation (3) such that all nontrivial
solutions y(t, c) are infinitely continuable and their Lyapunov’s exponents λ[y( · , c)] form the sets{

λ[y( · , c)] : c = (c1, 0) ̸= 0
}
= S−,

{
λ[y( · , c)] : c2 ̸= 0

}
= S+.

This theorem is a direct consequence of Theorem 1 and its proof.
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A lot of scientific works are dedicated to the investigation and numerical resolution of integro-
differential models (see, for example, [2, 7, 9, 11,16] and the references therein).

One type of nonlinear integro-differential parabolic model is obtained at the mathematical
simulation of processes of electromagnetic field penetration into a substance. Based on Maxwell
system [12], the mentioned model at first appeared in [3]. The integro-differential system obtained
in [3] describes many other processes as well (see, for example, [7, 9] and the references therein).
Equations and systems of such types still yield to the investigation for special cases. In this direction
the latest and rather complete bibliography can be found in the following monographs [7, 9].

The purpose of this note is to analyze degenerate one-dimensional case of such type equations.
Unique solvability and convergence of the constructed semi-discrete scheme with respect to the
spatial derivative and fully discrete finite difference scheme are studied.

The investigated problem has the following form. In the rectangle Q = (0, 1)× (0, T ], where T
is a fixed positive constant, we consider the following initial-boundary value problem:

∂U

∂t
− ∂

∂x

{[ t∫
0

(∂U
∂x

)2
dτ +

(∂U
∂x

)2
]
∂U

∂x

}
= f(x, t), (1)

U(0, t) = U(1, t) = 0, t ∈ [0, T ], (2)
U(x, 0) = U0(x), x ∈ [0, 1]. (3)

Here f = f(x, t), U0 = U0(x) are given functions of their arguments and U = U(x, t) is an
unknown function. It is necessary to mention that (1) is a degenerate type parabolic equation with
integro-differential and p-Laplacian (p = 4) terms. Let us note that for non-degenerate variants of
(1)–(3) type problem for more general nonlinearities are studied in [4]. Many works are devoted
to the investigation of multi-dimensional cases of such type equations and systems as well (see,
for example, [1, 5, 7–10, 13] and the references therein). We would also like to note that in recent
years special attention has been paid to the construction and investigation of splitting models for
this type and their generalized variants of multi-dimensional integro-differential equations (see, for
example, [7, 8] and the references therein).

As it was already mentioned, (1) type models arise, on the one hand, when solving real applied
problems, and on the other hand, as a natural generalization of some nonlinear parabolic equations
and systems studied, for example, in [14,15] and in many other works as well.

Problems of (1)–(3) type at first were studied in [10], where the monotonicity of the considered
operator is proved and the unique solvability is obtained.

Applying one modification of compactness method developed in [15] (see also [14]) the following
uniqueness and existence statement takes place [5].
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Theorem 1. If f ∈ W 1
2 (Q), f(x, 0) = 0, U0 ∈

◦
W 1

2(0, 1), then there exists the unique solution U of
problem (1)–(3) satisfying the following properties:

U ∈ L4

(
0, T ;

◦
W 1

4(0, 1) ∩W 2
2 (0, 1)

)
, ∂U/∂t ∈ L2(Q),

√
T − t ∂2U/∂t∂x ∈ L2(Q).

Here usual well-known spaces are used.
In order to describe the space-discretization for problem (1)–(3), let us introduce nets: ωh =

{xi = ih, i = 1, 2, . . . ,M − 1}, ωh = {xi = ih, i = 0, 1, . . . ,M} with h = 1/M . The boundaries are
specified by i = 0 and i = M . The semi-discrete approximation at (xi, t) is designed by ui = ui(t).
The exact solution of problem (1)–(3) at point (xi, t) is denoted by Ui = Ui(t).

Approximating the space derivatives by a forward and backward differences

ux,i =
ui+1 − ui

h
, ux,i =

ui − ui−1

h
,

let us correspond the following semi-discrete scheme to problem (1)–(3):

dui
dt

−
{[ t∫

0

(ux,i)
2 dτ + (ux,i)

2

]
ux,i

}
x,i

= f(xi, t), i = 1, . . . ,M − 1, (4)

u0(t) = uM (t) = 0, t ∈ [0, T ], (5)
ui(0) = U0,i, i = 0, 1, . . . ,M, (6)

which approximates problem (1)–(3) on smooth solutions with the first order of accuracy with
respect to spatial step h.

The semi-discrete scheme (4)–(6) represent a Cauchy problem for nonlinear system of ordi-
nary integro-differential equations. It is stable with respect to initial data and right-hand side of
equation (4) in the norm

∥u∥h = (u, u)
1/2
h , (u, v)h =

M−1∑
i=1

uivih.

It is not difficult to obtain following estimate for (4)–(6):

∥u∥2h +
t∫

0

||ux]|2h dτ < C,

where the norm under integral is

||u]|2h = (u, u]h =
M∑
i=1

uiuih.

Here C denotes the positive constant independent of the mesh parameter h. This estimate gives
the above-mentioned stability as well as the global existence of a solution to problem (4)–(6).

Here in Theorem 2 and below in Theorem 3, using an approach of the work [6] for investigation
of finite-difference scheme, the convergence of the approximate solutions are proved.

The following statement takes place.

Theorem 2. The solution u(t) = (u1(t), u2(t), . . . , uM−1(t)) of the semi-discrete scheme (4)–(6)
converges to the solution U(t) = (U1(t), U2(t), . . . , UM−1(t)) of problem (1)–(3) in the norm ∥ · ∥h
as h → 0.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 97

In order to describe the fully discrete analog of problem (1)–(3), let us construct grid on the
rectangle Q. For using the time-discretization in equation (1), the net is introduced as follows
ωτ = {tj = jτ, j = 0, 1, . . . , J}, with τ = T/J and ωhτ = ωh × ωτ , uji = u(xi, tj).

Let us correspond the following implicit finite difference scheme to problem (1)–(3)), where the
term with time derivative in (4) is approximated using the forward finite difference formula:

uj+1
i −uji

τ
−
{[

τ

j+1∑
k=1

(uki )
2+(uj+1

x,i )2
]
uj+1
x,i

}
x,i

=f j+1
i , i=1, 2, . . . ,M−1, j=0, 1, . . . , J−1; (7)

uj0 = ujM = 0, j = 0, 1, . . . , J, (8)
u0i = U0,i, i = 0, 1, . . . ,M. (9)

Thus, the system of nonlinear algebraic equations (7)–(9) is obtained, which approximates
problem (1)–(3) on sufficiently smooth solution with the first order of accuracy with respect to
time and spatial steps τ and h.

The following estimate can be obtained easily for the finite difference scheme (7)–(9):

max
0≤jτ≤T

∥uj∥2h +
J∑

k=1

||ukx]|2hτ < C,

which guarantees the stability and solvability of the scheme (7)–(9). It is proved also that system
(7)–(9) has a unique solution.

Here C represents positive constant independent from time and spatial steps τ and h.
The following main conclusion is valid for scheme (7)–(9).

Theorem 3. The solution uj = (uj1, u
j
2, . . . , u

j
M−1), j = 1, 2, . . . , J of the difference scheme (7)–(9)

converges to the solution U j = (U j
1 , U

j
2 , . . . , U

j
M−1), j = 1, 2, . . . , J of problem (1)–(3) in the norm

∥ · ∥h as τ → 0 and h → 0.

Note that for solving the difference scheme (7)–(9) the Newton iterative process is used. Various
numerical experiments are done. These experiments agree with theoretical research.

It is very interesting to look for assumptions on the data of the considered problem (1)–(3) that
provide the regularity for the solution U(x, t), which is required for obtaining rates of convergence
in Theorems 2 and 3 as well as the optimal rates of convergence. It is important also to study more
general nonlinearities for such kind degenerate and non-degenerate models.
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We consider second order half-linear differential equations of the form

(p(t)φα(x
′))′ + q(t)φα(x) = 0, (A)

where α > 0 is a constant, p(t) and q(t) are positive continuous functions on [a,∞), a = 0, and
φα(u) is an odd function on R defined by

φα(u) = |u|α−1u = |u|α sgnu, u ∈ R.

It is known that all proper solutions of (A) are oscillatory, or else nonoscillatory. Equation (A)
itself is said to be oscillatory (or nonoscillatory) if all of its proper solutions are oscillatory (or
nonoscillatory). We are concerned exclusively with the nonoscillatory equation (A) with p(t) and
q(t) satisfying the conditions

∞∫
a

p(t)−
1
α dt = ∞ and

∞∫
a

q(t) dt < ∞. (1)

Extensive use is made of the functions Pα(t) and ρ(t) defined by

Pα(t) =

t∫
a

p(s)−
1
α ds, ρ(t) =

∞∫
t

q(s) ds.

The purpose of this paper is to report to the QUALITDE – 2020 a result that has recently
been obtained in our efforts to gain precise information about the overall structure of solutions of
nonoscillatory equations of the form (A).

We begin by noting that a simple criterion for nonoscillation of (A) is given by

Pα(t)ρ(t)
1
α 5 α

1 + α
for all large t.
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Putting Dαx(t) = p(t)φα(x
′(t)), we call it the quasi-derivative of x(t). Let x(t) be a nonocillatory

solution of (A). Because of (1) both x(t) and Dαx(t) are of the same sign and have the limits
x(∞) = lim

t→∞
x(t) and Dαx(∞) = lim

t→∞
Dαx(t) in the extended real number system. There are three

patterns of the pair {x(∞), Dαx(∞)}, namely,
(i) |x(∞)| = ∞, 0 < |Dαx(∞)| < ∞;

(ii) |x(∞)| = ∞, Dαx(∞) = 0;

(iii) 0 < |x(∞)| < ∞, Dαx(∞) = 0.
A solution of (A) satisfying (i), (ii) or (iii) are named, respectively, a maximal, minimal, or inter-
mediate solution. If x(t) is a nonoscillatory solution of (A), then the functions u(t), v(t) defined by

u(t) =
Dαx(t)

φα(x(t))
, v(t) = − x(t)

φ 1
α
(Dαx(t))

satisfy the first order differential equations

u′ = −q(t)− αp(t)−
1
α |u|1+

1
α , (R1)

v′ = −p(t)−
1
α − 1

α
q(t)|v|1+α. (R2)

Conversely, it is shown that if (R1) or (R2) has a global solution, then (A) possesses a nonoscillatory
solution. Our study was motivated by the ambitious conjecture that all nonoscillatory solutions
can be reproduced from appropriate global solutions of (R1) or (R2). Equations (R1) and (R2) are
referred to as the generalized Riccati differential equations (Riccati equations for short) associated
with equation (A).

It turns out that the existence of these three types of solutions of (A) essentially depends on
the convergence or divergence of the integrals

I =

∞∫
a

p(t)−
1
α ρ(t)

1
α dt and J =

∞∫
a

q(t)Pα(t)
α dt. (2)

Let us distinguish the following four cases:

(i) I < ∞ ∧ J < ∞; (ii) I = ∞ ∧ J < ∞; (iii) I < ∞ ∧ J = ∞; (iv) I = ∞ ∧ J = ∞. (3)

Notice that (ii) holds only if α > 1 and that (iii) holds only if α < 1.
Analysis of the first three cases in (3) can be made without difficulty and leads to the following

expected result.
Theorem 1. If (3)-(i) holds, then (A) possesses a maximal solution and a minimal solution.
Theorem 2. If (3)-(ii) holds, then (A) possesses a maximal solution and an intermediate solution.
Theorem 3. If (3)-(iii) holds, then (A) possesses a minimal solution and an intermediate solution.

What is anticipated for the case (3)-(iv) is the existence of at least one intermediate solution of
(A). This, however, seems to be difficult to prove, and for now we have to be content with giving
a less general result on the basis of the inequality

∞∫
a

p(t)−
1
α ρ(t)1+

1
α dt < ∞,

which is a necessary condition for nonoscillation of (A).
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Theorem 4. Let (3)-(iv) hold. (A) possesses an intermediate solution if
∞∫
a

p(t)−
1
α ρ(t)1+

1
α ds 5 (1 + α)−1− 1

α ρ(t) for all large t. (4)

Taking into account the duality between the integrals I and J in (2), one can formulate the
following theorem which is also true.

Theorem 5. Let (3)-(iv) hold. (A) possesses an intermediate solution if

t∫
a

q(s)Pα(s)
1+α ds 5

( α

1 + α

)1+α
Pα(t) for all large t.

Example. Let (A0) denote a special case of (A) with q(t) given by

q(t) =
( α

1 + α

)1+α
p(t)−

1
αPα(t)

−1−α.

It is clear that p(t) and q(t) satisfy (3)-(iv) and both Theorems 4 and 5 are applicable to (A0).
Notice that (A0) has an exact intermediate solution x0(t) = Pα(t)

α
1+α .

The feature of our work is that all the solutions of (A) mentioned in the above theorems are re-
produced from appropriate global solutions of the Riccati equations (R1) and (R2) whose existence
is established by means of fixed point techniques. Such a systematic attempt at reproduction of
nonoscillatory solutions of (A) from global solutions of the associated Riccati equations was under-
taken for the first time by the present authors [2]. The merit of our approach is that the solutions
sought can be represented as explicit exponential–integral formulas in terms of global solutions of
(R1) or (R2).

It should be emphasized that some of the results presented here are already known (see, e.g., [1]),
but our purpose is to show that an entirely different approach can be used to develop a systematic
existence theory of nonoscillatory solutions for second order half-linear differential equations.

Remark. Needless to say, entirely parallel results can also be obtained for the nonoscillatory
equation (A) with p(t) and q(t) satisfying

∞∫
a

p(t)−
1
α dt < ∞ and

∞∫
a

q(t) dt = ∞. (5)

Our article devoted to the study of two types of nonoscillation for equation (A) satisfying (1) and
(5) combined will be published in the near future.
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In the plane of independent variables x and y consider quasilinear Karman’s equation, arising
in a variety of physical problems such as nonlinear vibrations, and irrotational transonic flows of
baritropic gas [1–4,6, 12],

(ux)
αuxx − uyy = 0. (1)

Equation (1) is considered in the class of hyperbolic solutions which in this case is determined
by the condition

ux > 0. (2)

Let
m :=

α

2(α+ 2)
, −2 ̸= α ∈ R := (−∞,+∞). (3)

Theorem. If the condition m ∈ N := {1, 2, 3, . . . } is fulfilled, then the general classical solution
u ∈ C2 of equation (1) is given by the formulas

x = (X − Y )2m+1 ∂2m

∂Xm∂Y m

F (X)−G(Y )

X − Y
,

y = m[2(1− 2m)]2m
∂2m−2

∂Xm−1∂Y m−1

F ′(X)−G′(Y )

X − Y
,

u = m[2(1− 2m)]2m
[( m− 1

2m− 1
X +

m

2m− 1
Y
) ∂2m−2

∂Xm−1∂Y m−1

F ′(X)−G′(Y )

X − Y

− m− 1

2m− 1

∂2m−3

∂Xm−2∂Y m−1

F ′(X)−G′(Y )

X − Y

]
for m = 2, 3, . . .

(4)

and 

x = −2[F (X)−G(Y )] + [F ′(X) +G′(Y )](X − Y ),

y =
4[F ′(X)−G′(Y )]

X − Y
,

u =
4[Y F ′(X)−XG′(Y )]

X − Y
for m = 1.

(5)

Here F,G ∈ Cm+1 are arbitrary functions with respect to the variables X and Y , respectively.

Proof. Let us introduce the Riemann invariants of equation (1) as independent variables
X = q +

2

α+ 2
p

α+2
2 ,

Y = q − 2

α+ 2
p

α+2
2 ,

(6)
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in terms of which equation (1) can be rewritten in the form of a system of equations of the first
order [7, 8] Xy − p

α
2 Xx = 0,

Yy + p
α
2 Yx = 0.

(7)

Here p := ux, q := uy.
In system (7), we choose X and Y as the independent variables, while x(X,Y ) and y(X,Y ) as

the desired functions. Applying the formulas of differentiation of implicit functions of two variables

xX = DYy, xY = −DXy, yX = −DYx, yY = DXx,

where D := D(x,y)
D(X,Y ) is the Jacobian of transformation, from system (7) we obtainxX − p

α
2 yX = 0,

xY + p
α
2 yY = 0.

(8)

Here p
α
2 =

{
1

2(1−2m)(X − Y )
}2m due (2), (3) and (6).

Eliminating the function y(X,Y ) from system (8) we obtain that the function x(X,Y ) satisfies
the Euler–Poisson–Darboux–Riemann equation [4, 10]

xXY +
m

X − Y
xX − m

X − Y
xY = 0. (9)

By a similar way for the function y(X,Y ) we get

yXY − m

X − Y
yX +

m

X − Y
yY = 0. (10)

General solutions of equations (9) and (10) under the conditions of the theorem have the
following form [9,11] 

x = (X − Y )2m+1 ∂2m

∂Xm∂Y m

F1(X)−G1(Y )

X − Y
,

y =
∂2m−2

∂Xm−1∂Y m−1

F2(X)−G2(Y )

X − Y
,

(11)

respectively. Here F1, G1 ∈ Cm+2 and F2, G2 ∈ Cm+1 are arbitrary functions.
Taking into account (11), satisfying system (8), we get

F2(X) = m[2(1− 2m)]2mF ′
1(X), G2(Y ) = m[2(1− 2m)]2mG′

1(Y ). (12)

Further, to obtain the final form of the function u, due (3), (6) and (8) we have

du = p dx+ q dy

= p(xX dX + xY dY ) + q(yX dX + yY dY ) = (q + p
α+2
2 )yX dX + (q − p

α+2
2 )yY dY

=
( m− 1

2m− 1
X +

m

2m− 1
Y
)
yX dX +

( m

2m− 1
X +

m− 1

2m− 1
Y
)
yY dY,

whence

UX =
( m− 1

2m− 1
X +

m

2m− 1
Y
)
yX , UY =

( m

2m− 1
X +

m− 1

2m− 1
Y
)
yY . (13)
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By virtue of the first equality in (13), we obtain

U(X,Y ) =
m− 1

2m− 1

∫
XyX dX +

m

2m− 1
Y y + φ(Y )

=
m− 1

2m− 1

(
Xy −

∫
y dX

)
+

m

2m− 1
Y y + φ(Y ), (14)

where φ is an arbitrary function.
According to the second equality from (13), for definition of the function φ, we get

m− 1

2m− 1

(
XyY −

∫
yY dX

)
+

m

2m− 1
(y + Y yY ) + φ′(Y ) =

( m

2m− 1
X +

m− 1

2m− 1
Y
)
yY . (15)

By virtue of (10), we obtain∫
yY dX =

∫ (Y −X

m
yXY + yX

)
dX =

Y −X

m
yY +

1

m

∫
yY dX + y.

Thus, we have ∫
yY dX =

Y −X

m− 1
yY +

m

m− 1
y for m ̸= 1.

Taking into account the latter equality, from (15) we obtain

φ′(Y ) ≡ 0 =⇒ φ = const for m = 2, 3, . . . . (16)

Analogously, from (14) for m = 1, we get

U(X,Y ) = Y y + φ(Y ). (17)

According to the second equality from (13) for m = 1, for definition of the function φ, we get

φ′(Y ) = (X − Y )yY − y = −G′
2(Y ) =⇒ φ(Y ) = −G2(Y ). (18)

Now, introducing the notation F := F1, G := G1 and taking into account (11), (12), (14), (16)–(18),
we obtain (4) and (5), respectively.

Remark. In the case m = 1, i.e. for α = −4, the solution (5) of equation (1) by the method of
Lee’s group has been obtained in [5].
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In the domain DT : 0 < x < l, 0 < t < T , of the plane Oxt of independent variables x, t
consider a hyperbolic system of the following form

utt −Auxx = F (x, t), (x, t) ∈ DT , (1)

where A is a symmetric positively defined constant square matrix of order n, F =
(F1(x, t), . . . , Fn(x, t)) is given and u = (u1(x, t), . . . , un(x, t)) – unknown vector-functions, n ≥ 2.

For system (1) consider an initial-boundary problem with the following statement: in the domain
DT find a solution u = u(x, t) to system (1) that satisfies the following initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 < x < l, (2)

and the boundary conditions

u(0, t) = µ1(t), u(l, t) = µ2(t), 0 < t < T, (3)

where

φ = (φ1(x), . . . , φn(x)), ψ = (ψ1(x), . . . , ψn(x)), µi(t) = (µi1(t), . . . , µin(t)), i = 1, 2,

are given vector-functions.
As is known, problem (1), (2), (3) is posed correctly. We consider generalized solutions u of this

problem in the space C0(DT ) in the sense of the theory of distribution. Here the space C0(DT ) is
obtained by completion of the space C1(DT ) with respect to the norm

∥u∥C0(DT ) = ∥u∥C(DT ) + ∥ut(x, 0)∥C([0,l]),

and consists of continuous vector-functions u from DT having continuous classical derivative ut for
t = 0, x ∈ [0, l]. In this case, from the data of problem (1), (2), (3), i.e. from φ, ψ, µ1, µ2 and F ,
we require that

φ ∈ C([0, l]), ψ ∈ C([0, l]), µi ∈ C0([0, T ]), i = 1, 2; F ∈ C(DT ), (4)

and at the points O(0, 0) and O1(0, 0) there are valid the following necessary conditions of agreement

µ1(0) = ψ(0), µ2(0) = φ(l), µ′1(0) = ψ(0), µ′2(0) = ψ(l), (5)

where the space C0([0, T ]) is obtained by completion of the space C1([0, T ]) with respect to the
norm

∥µ∥C0([0,T ]) = ∥µ∥C([0,T ]) + ∥µ′(0)∥



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 107

and consists of the traces of vector-functions from the space C0(DT ) on the side {x = 0, 0 ≤ t ≤ T}
of the rectangle DT . At fulfillment of conditions (4), (5), problem (1), (2), (3) has a unique solution
u in the space C0(DT ). This solution will be a classical solution in the space C2(DT ) if instead of
(4) we require that

φ ∈ C2([0, l]), ψ ∈ C1([0, l]), µi ∈ C2([0, T ]), i = 1, 2; F ∈ C1(DT ),

besides, in this case, at the points O(0, 0) and O1(0, 0), together with (5) should be additionally
fulfilled the following conditions of agreement

µ′′1(0)−Aφ′′(0) = F (0, 0), µ′′2(0)−Aφ′′(l) = F (l, 0).

Problem (1), (2), (3) is said to be controllable, if for “arbitrary” initial data φ, ψ and the right-
hand side F of system (1), there exist appropriate “control” vector-functions µ1 and µ2 such that
the solution of problem (1), (2), (3) satisfies the conditions

u(x, T ) = ut(x, T ) = 0, x ∈ [0, l]. (6)

Denote by ki the characteristic numbers of the matrix A, and by vi – the corresponding eigen-
vectors, i.e. Avi = kivi. i = 1, . . . , n. According to our requirements imposed on the matrix A we
have

ki = λ2i , λi = const > 0, i = 1, . . . , n. (7)
Due to (7) the hyperbolic system (1) has the following families of characteristic lines

x+ λit = const and x− λit = const, i = 1, . . . , n.

Denote by K a square matrix of order n whose columns are vectors v1, . . . , vn. It is obvious
that detK ̸= 0 and denote by w1, . . . , wn the components of the vector K−1u where u is a solution
of system (1).

Denote by P i
0P

i
1P

i
2P

i
3 the characteristic parallelogram whose sides P i

0P
i
1 and P i

2P
i
3 belong to the

family of characteristic lines x−λit = const, while sides P i
0P

i
2 and P i

1P
i
3 belong to the characteristic

lines x+ λit = const, besides, the coordinate of point P i
0 with respect to the variable t exceeds the

coordinates of the rest points P i
1, P

i
2 and P i

3 with respect to the same variable, i = 1, . . . , n.
Generalized Asgeirsson principle: for the components w1, . . . , wn of the vector K−1u, where
u ∈ C0(DT ) is a generalized solution of system (1), the following equalities

wi(P
i
0) = wi(P

i
1) + wi(P

i
2)− wi(P

i
3) +

1

2λi

∫
P i
0P

i
1P

i
2P

i
3

K−1F (x, t) dx dt, i = 1, . . . , n,

are valid, where P i
0P

i
1P

i
2P

i
3 is an arbitrary characteristic parallelogram lying in DT .

Below, for simplicity of presentation we will assume that F = 0.

Remark 1. If T = l
λi

, 1 ≤ i ≤ n, then for existence of the solution u = u(x, t) ∈ C0(DT ) of
problem (1), (2), (3), satisfying condition (6) it is necessary that the data of this problem φ and ψ
satisfy the following condition

φ̃i(0) + φ̃i(l) +
1

λi

l∫
0

ψ̃i(ξ) dξ = 0, (8)

where
φ̃ = (φ̃1, . . . , φ̃n) = K−1φ, ψ̃ = (ψ̃1, . . . , ψ̃n) = K−1ψ.
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The proof of the following theorem is based on the generalized Asgeirsson principle.
Theorem. Let T ≥ T0 = max

1≤i≤n

l
λi

and the vector-functions φ ∈ C([0, l]), ψ ∈ C([0, l]) be given
which satisfy conditions (8) for i = 1, . . . , n. Then there exist vector-functions µ1, µ2 ∈ C0([0, T ])
satisfying the condition of agreement (5) such that the solution u ∈ C0(DT ) of problem (1), (2), (3)
satisfies condition (6).

Remark 2. If T < T0 = max
1≤i≤n

l
λi

, then not for all φ ∈ C([0, l]), ψ ∈ C([0, l]) problem (1), (2), (3)
is exactly controllable.

Remark 3. At fulfillment of the conditions of the above theorem, uniqueness of the vector-functions
µ1 and µ2 will hold when λ0 := λ1 = λ2 = · · · = λn for T = T0 =

l
λ0

and violated when T > λ0.
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On a finite interval [a, b], we consider the differential equation

u′′ = p(t)u+ q(t) (1)

with one of the following two types boundary conditions:

u(a) = ℓ1u
′(a) + c1, u(b) = ℓ2u

′(b) + c2; (2)
u′(a) = ℓ1u(a) + c1, u′(b) = ℓ2u(b) + c2, (3)

where p, q : [a, b] → R are Lebesgue integrable functions, and ℓi and ci (i = 1, 2) are real numbers.
If ℓ1 = ℓ2 = 0, then problems (1), (2) and (1), (3) are the Dirichlet and the Neumann problems,

respectively, to the investigation of which a wide literature is devoted (see, e.g. [1–3, 6, 7] and the
references therein). If |ℓ1| + |ℓ2| is a sufficiently small positive number, then the above mentioned
problems we naturally call Dirichlet and Neumann type problems.

In case, where ℓ1 ≥ 0, ℓ2 ≤ 0, the optimal in a certain sense sufficient conditions for the unique
solvability of problem (1), (3) are established in [4].

In the general case both problem (1), (2) and problem (1), (3) still remain little studied. The
results given in this report fill to some extent the existing gap.

Below we use the following notation.

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
, ∥p∥ =

b∫
a

|p(t)| dt.

Theorem 1. If ℓ1 ≥ 0, ℓ2 ≤ 0, and

b∫
a

(t− a+ ℓ1)(b− t− ℓ2)[p(t)]− dt ≤ b− a+ ℓ1 − ℓ2, (4)

then problem (1), (2) has one and only one solution.

Example 1. Introduce depending on a positive parameter γ functions

kγ(x) = (γ + 3)xγ − x2γ+2 for 0 ≤ x ≤ 1, kγ(x) = kγ(2− x) for 1 < x ≤ 2,

vγ(x) = x exp
(
− xγ+2

γ + 2

)
for 0 ≤ x ≤ 1, vγ(x) = vγ(2− x) for 1 < x ≤ 2.
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For an arbitrarily fixed ε ∈ ]0, 1[ , set

γ =
2

ε
, ℓ1 = (b− a)/(2− 2−γ−1) for ℓ2 = −ℓ1,

p(t) = −(b− a)−2kγ

(2(t− a) + b− a

2(b− a)

)
for a ≤ t ≤ b.

Then
b∫

a

(t− a+ ℓ1)(b− t− ℓ2)[p(t)]− dt < (1 + ε)(b− a+ ℓ1 − ℓ2). (5)

On the other hand, the homogeneous problem

u′′ = p(t)u, (10)
u(a) = ℓ1u

′(a), u(b) = ℓ2u
′(b) (20)

has a nontrivial solution
u(t) ≡ vγ

(2(t− a) + b− a

2(b− a)

)
.

Consequently, condition (4) is unimprovable in the sense that it cannot be replaced by condition
(5) no matter how small ε > 0 is.

Theorem 2. If the inequalities

ℓ1 ≥ 0, 0 < ℓ2 ≤ b− a+ ℓ1, b− a+ ℓ1 − ℓ2 + ∥p∥ > 0, (6)
b∫

a

(t− a+ ℓ1)[p(t)]− dt ≤ 1, ℓ2

b∫
a

(t− a+ ℓ1)[p(t)]+ dt ≤ b− a+ ℓ1 − ℓ2 (7)

hold, then problem (1), (2) has one and only one solution.

Remark 1. Condition (6) cannot be replaced by the condition

ℓ1 ≥ 0, 0 < ℓ2 ≤ b− a+ ℓ1,

since if ℓ2 = b− a+ ℓ1 and ∥p∥ = 0, then problem (10), (20) has a nontrivial solution

u(t) ≡ ℓ1 + t− a.

Example 2. Let
ε ∈ ]0, 1[ , ℓ1 = ℓ2 =

b− a

ε
, p(t) ≡

( ε

b− a

)2
.

Then along with (6) the condition

b∫
a

(t− a+ ℓ1)[p(t)]− dt < 1, ℓ2

b∫
a

(t− a+ ℓ1)[p(t)]+ dt < (1 + ε)(b− a+ ℓ1 − ℓ2) (8)

is satisfied. Nevertheless, problem (10), (20) has a nontrivial solution

u(t) ≡ exp
(ε(t− a)

b− a

)
.

Therefore, condition (7) cannot be replaced by condition (8) no matter how small ε > 0 is.
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Theorem 3. If the conditions

ℓ2 ≥ ℓ1 ≥ 0, ℓ2 + ∥p∥ > 0, (9)
b∫

a

(1 + ℓ1(t− a))(b− t)[p(t)]− dt ≤ 1 + ℓ1(b− a), (10)

ℓ1 +

b∫
a

(1 + ℓ2(t− a))[p(t)]+ dt ≤ ℓ2 (11)

are satisfied, then problem (1), (3) has one and only one solution.

Remark 2. The inequality ℓ2 + ∥p∥ > 0 cannot be omitted from condition (9). Indeed, if ∥p∥ = 0
and ℓ2 = ℓ1 = 0, then conditions (10), (11) hold but nevertheless equation (10) has a nontrivial
solution

u(t) ≡ 1,

satisfying the homogeneous boundary conditions

u′(a) = ℓ1u(a), u′(b) = ℓ2u(b). (30)

Example 3. Introduce the function

r(x) =
exp(x)− exp(−x)

x(exp(x) + exp(−x))
for x ≥ 0.

For an arbitrarily given ε ∈ ]0, 1[ , we choose δ > 0 such that

1 + δ2r(δ) < (1 + ε)r(δ).

Let
p(t) ≡

( δ

b− a

)2
, ℓ1 = 0, ℓ2 =

r(δ)

b− a
δ2.

Then conditions (9), (10) hold, and instead of (11) the inequality

ℓ1 +

b∫
a

(1 + ℓ2(t− a))[p(t)]+ dt < (1 + ε)ℓ2 (12)

is satisfied. On the other hand, the homogeneous problem (10), (30) has a nontrivial solution

u(t) ≡ exp
(δ(t− a)

b− a

)
+ exp

(
− δ(t− a)

b− a

)
.

Consequently, condition (10) is unimprovable in the sense that it cannot be replaced by condition
(12) no matter how small ε > 0 is.
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On a finite interval ]a, b[ , we consider the linear differential equation

u′′ = p(t)u, (1)

where p : ]a, b[→ R is a measurable function, satisfying the condition

b∫
a

(t− a)(b− t)|p(t)| dt < +∞. (2)

We are mainly interested in the case where the function p has nonintegrable singularity at least
at one of the boundary points of the interval ]a, b[ , i.e. the case, where

b∫
a

|p(t)| dt = +∞.

A continuous function u : [a, b] → R is said to be a solution to equation (1) if it is absolutely
continuous together with u′ on every closed interval contained in ]a, b[ and satisfies equation (1)
almost everywhere on ]a, b[ .

Following A. Wintner [5], we call equation (1) to be disconjugate on [a, b] if its every nontrivial
solution has no more than one zero on this interval.

In this report, we give unimprovable in a certain sense conditions under which equation (1) is
disconjugate on [a, b], or every its nontrivial solution has no more than two zeros on [a, b]. They
are generalizations of the classical results by Lyapunov [4] and Hartman-Wintner [2] (see also [1],
Ch. XI, § 5).

We use the following notations.

[x]− =
|x| − x

2
;

C([a, b]) and L([a, b]) are the spaces of continuous on [a, b] and Lebesgue integrable on [a, b] real
functions, respectively;

Lloc(]a, b[) is the space of real functions which are Lebesgue integrable on every closed interval
contained in ]a, b[ ;

I1(p) =

t1∫
a

(t− a)[p(t)]− dt, I2(p) =

t2∫
a

(t− a)(t2 − t)

t2 − a
[p(t)]− dt,
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where the numbers t1 ∈ ]a, b[ and t2 ∈ ]a, b[ are chosen so that
t1∫
a

(t− a)[p(t)]− dt =

b∫
t1

(b− t)[p(t)]− dt,

t2∫
a

(t− a)(t2 − t)

t2 − a
[p(t)]− dt =

b∫
t2

(t− t2)(b− t)

b− t2
[p(t)]− dt. (3)

If for some t0 ̸= t1 the equality
t0∫
a

(t− a)[p(t)]− dt =

b∫
t0

(b− t)[p(t)]− dt

is satisfied, then
t1∫

t0

(t− a)[p(t)]− dt = 0.

Consequently, for every function p ∈ Lloc(]a, b[), satisfying condition (2), the number I1(p) is defined
uniquely.

If [p(t)]− ̸≡ 0, then the number t2 is defined uniquely from equality (3), and thus the number
I2(p) is defined uniquely as well.

Moreover, if [p(t)]− ̸≡ 0 and (2) holds, then

I1(p) <

b∫
a

(t− a)(b− t)

b− a
[p(t)]− dt. (4)

If [p(t)]− ̸≡ 0 and p ∈ L([a, b]), then

I1(p) <
b− a

4

b∫
a

[p(t)]− dt, I2(p) <
b− a

16

b∫
a

[p(t)]− dt. (5)

It has been proved by A. M. Lyapunov [4] that if p ∈ C([a, b]) and
b∫

a

[p(t)]− dt ≤ 4

b− a
, (6)

then equation (1) is disconjugate. Hence it easily follows that if
b∫

a

[p(t)]− dt ≤ 16

b− a
,

then every nontrivial solution to equation (1) has no more than two zeros.
It has been shown by P. Hartman and A. Wintner [2] that equation (1) is disconjugate if

p ∈ C([a, b]) and instead of (6) the more general condition
b∫

a

(t− a)(b− t)[p(t)]− dt ≤ b− a
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is satisfied. This result is valid also for a singular case, when the function p ∈ Lloc(]a, b[) satisfies
condition (2) (see [3], Lemma 2.5).

We prove the following theorems.

Theorem 1. If along with (2) the condition

I1(p) ≤ 1 (7)

holds, then equation (1) is disconjugate.

Theorem 2. If along with (2) the condition

I2(p) ≤ 1 (8)

holds, then every nontrivial solution to equation (1) has no more than two zeros on [a, b].

According to inequalities (4) and (5), Theorems 1 and 2 are generalizations of the above men-
tioned results by Lyapunov and Hartman-Wintner.

Remark 1. Inequality (7) in Theorem 1 (inequality (8) in Theorem 2) is unimprovable in the sense
that it cannot be replaced by the inequality I1(p) < 1 + ε (by the inequality I2(p) < 1 + ε) no
matter how small ε > 0 would be.

Remark 2. For inequality (7) to be satisfied, it is sufficient that for some t0 ∈ ]a, b[ the inequalities

t0∫
a

(t− a)[p(t)]− dt ≤ 1,

b∫
t0

(b− t)[p(t)]− dt ≤ 1

hold. And if for some t0 ∈ ]a, b[ the inequalities

t0∫
a

(t− a)(t0 − t)[p(t)]− dt ≤ t0 − a,

t0∫
a

(t− t0)(b− t)[p(t)]− dt ≤ b− t0

are satisfied, then inequality (8) is also satisfied.

Theorems 1 and 2 yield new and optimal in a certain sense conditions guaranteeing the unique
solvability of the Dirichlet singular boundary value problem

u′′ = p(t)u+ q(t), (9)
u(a) = c1, u(b) = c2, (10)

where p, q ∈ Lloc(]a, b[), and ci ∈ R (i = 1, 2).

Theorem 3. If along with (2) and (7) the condition

b∫
a

(t− a)(b− t)|q(t)| dt < +∞ (11)

is satisfied, then problem (9), (10) has one and only one solution.
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Example 1. Let α < 2,

δ = (2− α)
( 2

b− a

)2−α
, p(t) = −δ

(
b− a− |b+ a− 2t|

2

)−α

for a < t < b,

and let q be the function satisfying condition (11). Then

b∫
a

(t− a)(b− t)[p(t)]− dt =
4− α

3− α
(b− a) > b− a,

i.e. the Lyapunov–Hartman–Wintner condition is violated. On the other hand,

I1(p) = 1,

and by Theorem 3 problem (9), (10) is uniquely solvable.

Theorem 4. Let conditions (2), (8), and (11) hold and there exist a function p0 ∈ Lloc(]a, b[) such
that

p(t) ≤ p0(t) ≤ 0 for a < t < b, mes
{
t ∈ ]a, b[ : p(t) < p0(t)

}
> 0,

and the boundary value problem

u′′ = p0(t)u; u(a) = 0, u(b) = 0

has a positive on the open interval ]a, b[ solution. Then problem (9), (10) has one and only one
solution.

Corollary 1. Let
p(t) < −

( π

b− a

)2
for a < t < b,

and let conditions (2), (8), and (11) be satisfied. Then problem (9), (10) has one and only one
solution.

Example 2. Let α < −2,

0 < δ ≤
(
1− π2

24

)
(2− α)

( 2

b− a

)2−α
,

p(t) = −
( π

b− a

)2
− δ

(
b− a− |b+ a− 2t|

2

)−α

for a < t < b,

and let q be the function satisfying condition (11). Then I2(p) ≤ 1, and according to the above
corollary problem (9), (10) has one and only one solution.
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Let Ω = (0, ω1) × (0, ω2) × (0, ω3) be an open rectangular box, and let E be an orthogonally
convex piecewise smooth domain inscribed in Ω.

A set G ∈ Rn is defined to be orthogonally convex if, for every line L that is parallel to one
of standard basis vectors, the intersection of G with L is empty, a point, or a single segment.

In the domain E consider the boundary value problem

u(2,2,2) =
∑
α<2

pα(x)u
(α) + q(x), (1)

u ν1
∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2
∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3
∣∣
∂E

= ν3(x)ψ3(x). (2)

Here x = (x1, x2, x3), 2 = (2, 2, 2), α = (α1, α2, α3) is a multi-index,

u(α)(x) =
∂α1+α2+α3u(x)

∂xα1
1 ∂xα2

2 ∂xα3
3

,

∂E is the boundary of E, and ν(x) = (ν1(x), ν2(x), ν2(x)) is the outward unit normal vector at
point x ∈ ∂E, pα ∈ C(E) (α < 2), q ∈ C(E), ψi ∈ C2,2,2(E) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈
C2,2,2(E) ∩ C2,2,0(E) satisfying equation (1) and the boundary conditions (2) everywhere in E
and ∂E, respectively.

C2,2,2(E) is the space of continuous functions u : E → R having continuous partial derivatives
u(α) (α ≤ 2).

Throughout the paper the following notations will be used.
0 = (0, 0, 0), 1 = (1, 1, 1).
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Υ2 =

{
α < 2 : αi = 2 for some i ∈ {1, 2, 3}

}
.

O2 =
{
α < 2 : ∥α∥ is odd

}
.

suppα = {i | αi > 0}.
xα = (χ(α1)x1, χ(α2)x2, χ(α3)x3), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0.
xα will be identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα.
x̂α = x− xα.

f+(z) =
f(z) + |f(z)|

2
, f−(z) =

|f(z)| − f(z)

2
.

H(f)(x) is the Hessian matrix of function f at point x.
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Along with problem (1), (2) consider the corresponding homogeneous problem

u(2,2,2) =
∑
α<2

pα(x)u
(α), (10)

u ν1
∣∣
∂E

= 0, u(2,0,0) ν2
∣∣
∂E

= 0, u(2,2,0) ν3
∣∣
∂E

= 0. (20)

Two-dimensional versions of problem (1), (2) were studied in [1–4]. The case of a characteristic
rectangle was considered [1] and [2]. In [3] and [4] two-dimensional problems were considered in a
orthogonally convex smooth domains.

Orthogonal convexity and smoothness of a domain are essential requirements and cannot be
relaxed. Examples attesting the paramount importance of orthogonal convexity and smoothness of
a domain were introduced in Remarks 1 and 2 of [4]. Similar examples can be easily constructed
for the three-dimensional case.

Characteristic rectangles were the only admissible piecewise smooth domains for two-dimensional
problems. In the three-dimensional case admissible piecewise smooth domains consist of character-
istic rectangular boxes and right cylinders with an orthogonally convex smooth base.

We study problem (1), (2) in the following three cases: characteristic rectangular box; a right
cylinder with an orthogonally convex smooth base; an orthogonally convex smooth domain.

It is not difficult to show that the problem

u(2,2,2) = 0,

u ν1
∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2
∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3
∣∣
∂E

= ν3(x)ψ3(x)

is uniquely solvable in all three aforementioned cases. Consequently, without loss of generality,
problem (1), (2) can always be reduced to the problem with the zero boundary conditions.

Due to this fact, for the sake of technical simplicity, all results will be formulated for problem
(1), (20).
Case I: Characteristic Rectangular Box. Let E = Ω. For the rectangular box Ω the boundary
conditions (20) receive the form

u(σ ω1, x1, x2) = 0, u(2,0,0)(x1, σ ω2, x2) = 0, u(2,2,0)(x1, x2, σ ω3) = 0 (σ = 0, 1).

It is easy to see that the latter conditions are equivalent to the following ones

u(σ ω1, x1, x2) = 0, u(x1, σ ω2, x2) = 0, u(x1, x2, σ ω3) = 0 (σ = 0, 1). (3)

Theorem 1. Let
pα(x) ≡ pα(x̂α) if α ∈ Υ2 ∩O2,

and let the following inequalities hold:

p220(x) ≡ p220(x3) > −π
2

ω2
3

, p202(x) ≡ p202(x2) > −π
2

ω2
2

, p022(x) ≡ p022(x1) > −π
2

ω2
1

, (4)

p−220(x3)
ω2
3

π2
+ p−202(x2)

ω2
2

π2
+ p+200(x)

ω2
2ω

2
3

π4
+
∣∣p211(x)∣∣ ω2ω3

π2
< 1, (5)

p−220(x3)
ω2
3

π2
+ p−022(x1)

ω2
1

π2
+ p+020(x)

ω2
1ω

2
3

π4
+
∣∣p121(x)∣∣ ω1ω3

π2
< 1, (6)

p−202(x2)
ω2
2

π2
+ p−022(x1)

ω2
1

π2
+ p+002(x)

ω2
1ω

2
2

π4
+
∣∣p112(x)∣∣ ω1ω2

π2
< 1. (7)

Then problem (1), (3) has the Fredholm property, i.e.:
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(i) problem (10), (3) has a finite dimensional space of solutions;

(ii) problem (1), (3) is uniquely solvable if and only if problem (10), (3) has only the trivial solution.

Furthermore, every solution of problem (1), (3) belongs to C2,2,2(Ω).

Remark 1. The strict inequalities (4)–(7) are sharp and cannot be replaced by nonstrict ones.
Violation of at least one of the above inequalities can lead to the loss of the Fredholm property of
problem (1), (2). To verify this, consider the problem

u(2,2,2) = (−1)∥α∥u(2α) + u− sinx1 sinx2 sinx3 q(x̂α), (8)
u(σ π, x1, x2) = 0, u(x1, σ π, x2) = 0, u(x1, x2, σ π) = 0 (σ = 0, 1) (9)

in the domain E = (0, π)×(0, π)×(0, π). Here 0 < α < 1, and q is an arbitrary non-differentiable
continuous function. The problem satisfies all of the inequalities (4)–(7) except the one for the
coefficient p2α: instead of (−1)∥α∥p2α > 1 we have (−1)∥α∥p2α = 1. As a result, problem (8), (9)
does not have the Fredholm property. Indeed, despite the fact that the homogeneous problem

u(2,2,2) = (−1)∥α∥u(2α) + u,

u(σ π, x1, x2) = 0, u(x1, σ π, x2) = 0, u(x1, x2, σ π) = 0 (σ = 0, 1)

has only the trivial solution, problem (8), (9) has the unique weak solution

u(x) = sinx1 sinx2 sinx3 q(x̂α),

which is not a classical solution due to non-differentiability of the function q.

Consider the equation

u(2,2,2) =
∑
α<1

p2α(x̂α)u
(2α) +

∑
α∈O2

pα(x̂α)u
(α) + q(x). (10)

Corollary 1. Let

(−1)∥α∥p2α(x̂α) ≥ 0 for α < 1. (11)

Then problem (10), (3) is uniquely solvable.

Case II: Right Cylinder. Let E = {(x1, x2, x3) ∈ Ω : (x1, x2) ∈ G, x3 ∈ (0, ω3)}, where G is
an orthogonally convex open domain with C2 boundary inscribed in the rectangle (0, ω1)× (0, ω2),
i.e.,

G =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
, (12)

and γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2).
In the right cylinder E consider the following equations

u(2,2,2) = p220(x3)u
(2,2,0)+p202(x2)u

(2,0,2)+p200(x)u
(2,0,0)+p020(x)u

(0,2,0)+p002(x2, x3)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x), (13)

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2) + p022(x1)u
(0,2,2)

+ p200(x)u
(2,0,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2) + p000(x2, x3)u+ q(x) (14)
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and

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2) + p022(x1)u
(0,2,2)

+ p200(x)u
(2,2,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x). (15)

In view of (12), conditions (20) receive the form

u(ζi(x2, x3), x2, x3) = 0, u(2,0,0)(x1, ηi(x1, x3), x3) = 0,

u(2,2,0)(x1, x2, γi(x1, x2)) = 0 (i = 1, 2). (16)

Theorem 2. Let the following inequalities hold:

p220(x3) ≥ 0, p202(x2) ≥ 0, p200(x) ≤ 0, p020(x) ≤ 0, p002(x2, x3) ≤ 0.

Then problem (13), (16) has the Fredholm property.

Theorem 3. Let G be a convex domain, i.e.,

(−1)i−1γ′′i (x1) ≥ 0 for x1 ∈ (0, ω1) (i = 1, 2) (17)

and
(−1)i−1η′′i (x2) ≥ 0 for x2 ∈ (0, ω2) (i = 1, 2), (18)

and let

p220(x3) ≥ 0, p202(x2) ≥ 0, p202(x1) ≥ 0, (19)
p200(x) ≤ 0, p020(x3) ≤ 0, p002(x2) ≤ 0, (20)

p000(x2, x3) ≥ 0.

Then problem (14), (16) is uniquely solvable.
Furthermore, if G is strongly convex, i.e.,

(−1)i−1γ′′i (x1) > 0 for x1 ∈ (0, ω1) (i = 1, 2) (21)

and
(−1)i−1η′′i (x2) > 0 for x2 ∈ (0, ω2) (i = 1, 2), (22)

then the solution of problem (14), (16) belongs to C2,2,2(E).

Corollary 2. Let inequalities (17)–(20) hold. Then problem (15), (16) has the Fredholm property.
Furthermore, if inequalities (21) and (22) hold, then every solution of problem (15), (16) belongs to
C2,2,2(E).

Case III: Smooth Domain. Let E be an orthogonally convex open domain with C2,2 boundary
inscribed in the characteristic box Ω, i.e.,

E =
{
(x1, x2, x3) ∈ Ω : (x1, x2) ∈ G12, x3 ∈ (γ1(x1, x2), γ2(x1, x2))

}
=

{
(x1, x2, x3) ∈ Ω : (x1, x3) ∈ G13, x2 ∈ (η1(x1, x3), η2(x1, x3))

}
=

{
(x1, x2, x3) ∈ Ω : (x2, x3) ∈ G13, x1 ∈ (ζ1(x2, x3), ζ2(x2, x3))

}
, (23)
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where γi ∈ C(G12) ∩ C2,2(G12), ηi ∈ C(G13) ∩ C2,2(G13), ζi ∈ C(G23) ∩ C2,2(G23) (i = 1, 2), and
G12, G13 and G23 are orthogonally convex smooth open domains inscribed in (0, ω1) × (0, ω2),
(0, ω1)× (0, ω3) and (0, ω2)× (0, ω3), respectively.

In the domain E consider the following equations:

u(2,2,2) = p220(x)u
(2,2,0) + p200(x1, x3)u

(2,0,0) +
∑
α≤1

pα(x)u
(α) + q(x), (24)

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2)

+ p200(x)u
(2,0,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2) + p000(x2, x3)u+ q(x) (25)

and

u(2,2,2) = p220(x3)u
(2,2,0)+p202(x2)u

(2,0,2)+p200(x)u
(2,2,0)+p020(x3)u

(0,2,0)+p002(x2)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x). (26)

In view of (23), conditions (20) receive the form

u(ζi(x2, x3), x2, x3) = 0, u(2,0,0)(x1, ηi(x1, x3), x3) = 0,

u(2,2,0)(x1, x2, γi(x1, x2)) = 0 (i = 1, 2). (27)

Theorem 4. Let the following inequalities hold:

p220(x) ≥ 0,

p200(x1, x3) ≤ 0.

Then problem (24), (27) has the Fredholm property.

Theorem 5. Let E be a convex domain, i.e., let

(−1)i−1H[γi](x1, x2) be positive semi-definite for (x1, x2) ∈ G12 (i = 1, 2), (28)
(−1)i−1H[ηi](x1, x3) be positive semi-definite for (x1, x3) ∈ G13 (i = 1, 2), (29)
(−1)i−1H[ζi](x2, x3) be positive semi-definite for (x2, x3) ∈ G23 (i = 1, 2), (30)

and let

p220(x3) ≥ 0, p202(x2) ≥ 0, (31)
p200(x) ≤ 0, p020(x3) ≤ 0, p002(x2) ≤ 0, (32)

p000(x2, x3) ≥ 0.

Then problem (25), (27) is uniquely solvable.
Furthermore, if E is strongly convex, i.e.,

(−1)i−1H[γi](x1, x2) is positive definite for (x1, x2) ∈ G12 (i = 1, 2), (33)
(−1)i−1H[ηi](x1, x3) is positive definite for (x1, x3) ∈ G13 (i = 1, 2), (34)
(−1)i−1H[ζi](x2, x3) is positive definite for (x2, x3) ∈ G23 (i = 1, 2), (35)

then the solution of problem (25), (27) belongs to C2,2,2(E).
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Corollary 3. Let conditions (28)–(32) hold. Then problem (26), (27) has the Fredholm property.
Furthermore, if conditions (33)–(35) hold, then every solution of problem (26), (27) belongs to
C2,2,2(E).

Remark 2. In a strongly convex domain the boundary conditions (2) are equivalent to the bound-
ary conditions

u
∣∣
∂E

= ψ1(x), u(2,0,0)
∣∣
∂E

= ψ2(x), u(2,2,0)
∣∣
∂E

= ψ3(x).

Remark 3. Without the requirement that the domain E be strongly convex the solution of problem
(1), (2) may not belong to C2,2,2(E).

As an example, in the domain E = {(x1, x2, x3) : x41 + x42 + x43 < 1} consider the problem

u(2,2,2) = 0, (36)
u
∣∣
∂E

= 0, u(2,0,0)
∣∣
∂E

= 2, u(2,2,0)
∣∣
∂E

= 0. (37)

E is a convex domain. However, E is not strongly convex, since the Hessian matrices mentioned in
Theorem 5 are positive semi-definite rather than positive definite along the three ”main meridians”{

x41 + x42 = 1

x3 = 0
,

{
x41 + x43 = 1

x2 = 0
, and

{
x42 + x43 = 1

x1 = 0
.

As a result, the unique solution of problem (36), (37) u(x) = x21 −
√

1− x42 − x43 does not belong
to C2,2,2(E) since u(0,1,0) and u(0,0,1) are discontinuous along the third “main meridian”.

It is worth noticing that problem (36), (37) considered in the unit ball E = {(x1, x2, x3) :
x21 + x22 + x23 < 1} has a unique solution u(x) = x21 + x22 + x23 − 1 which belongs to C2,2,2(E). Such
contrast is explained by the fact that the unit ball is a strongly convex domain.
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The process of electromagnetic field propagation into a substance, its mathematical modeling,
investigation, and numerical solution belong to one of the most important tasks in applied math-
ematics. As a rule, this process is accompanied by the release of thermal energy, which causes
changes in the permeability of the medium and affects the diffusion process since the coefficient
of conductivity of the medium significantly depends on temperature. Mathematical simulation of
the mentioned process, like many other applied problems, results in nonlinear partial differential
and integro-differential equations and systems of those equations. In a quasistationary case the
corresponding system of the Maxwell equations has the following form [12]:

∂H

∂t
= − rot(νm rotH), (1)

cν
∂θ

∂t
= νm(rotH)2, (2)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, cν and νm characterize
the heat capacity and electrical conductivity of the medium. Equation (1) describes the propagation
of the magnetic field in the medium whereas equation (2) expresses a change of the temperature due
to the Joule heating. Assume that coefficients of thermal heat capacity and electrical conductivity
of the substance depending on temperature. In this case, as it is shown in [3], system (1), (2) can
be reduced to the following nonlinear parabolic type integro-differential model

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
. (3)

Let us note that the above-mentioned integro-differential model (3) is complex and only par-
ticular classes are investigated (see, for example, [1–11, 13–15, 17, 18] and the references therein).
Consider the case when all three components of the magnetic field vector are functions of time and
one spatial variable Hi = Hi(x, t), i = 1, 2, 3. Thus, in this case we have:

rotH =
(
0,−∂H3

∂x
,
∂H2

∂x

)
,

rot(a(S) rotH) =

(
0,− ∂

∂x

(
a(S)

∂H2

∂x

)
,− ∂

∂x

(
a(S)

∂H3

∂x

))
,

where

S(x, t) =

t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ,
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and system (3) takes the following form:

∂H1

∂t
= 0,

∂H2

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+

(∂H3

∂x

)2
]
dτ

)
∂H2

∂x

]
= 0,

∂H3

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+

(∂H3

∂x

)2
]
dτ

)
∂H3

∂x

]
= 0.

(4)

Our goal is to study the convergence of the finite difference scheme for the following initial-
boundary value problem posed for the nonlinear integro-differential system (4) with source terms
and known right-hand sides:

∂H1

∂t
+ g1(H1) = f1,

∂H2

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ

)
∂H2

∂x

]
+ g2(H2) = f2,

∂H3

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ

)
∂H3

∂x

]
+ g3(H3) = f3,

(5)

H2(0, t) = H2(1, t) = H3(0, t) = H3(1, t) = 0, t ≥ 0, (6)
H1(x, 0) = H10(x), H2(x, 0) = H20(x), H3(x, 0) = H30(x), x ∈ [0, 1], (7)

where Hi0, gi, fi, i = 1, 2, 3 are given functions and gi are monotonically increased and positively
defined functions.

Due to the fact that the last two equations of system (5) are strongly connected to each other,
we will consider these equation jointly, whereas the first equation will be considered independently.

Let us correspond the finite difference scheme for problem (5)–(7). On [0, 1]× [0, T ] let us intro-
duce a net with mesh points denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N
with h = 1/M , τ = T/N . The initial line is denoted by j = 0. The discrete approximation at
(xi, tj) is designed by (uji , v

j
i , w

j
i ) and the exact solution to problem (5)–(7)) by (Hj

1i,H
j
2i,H

j
3i). We

will use the following known notations [16] of forward and backward derivatives:

rjx,i =
rji+1 − rji

h
, rjx,i =

rji − rji−1

h
, rjt,i =

rj+1
i − rji

τ
,

and inner products and corresponding norms:

(rj , yj) = h
M−1∑
i=1

rji y
j
i , (rj , yj ] = h

M∑
i=1

rji y
j
i ,

∥rj∥ = (rj , rj)1/2, ∥rj ]| = (rj , rj ]1/2.
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For problem (5)–(7) let us consider the following finite difference scheme:

uj+1
i − uji

τ
+ g1(u

j+1
i ) = f j

1,i,

vj+1
i − vji

τ
−
{
a

(
τ

j+1∑
k=1

[
(vkx,i)

2 + (wk
x,i)

2
])

vj+1
x,i

}
x,i

+ g2

(
vj+1
i

)
= f j

2,i,

wj+1
i − wj

i

τ
−
{
a

(
τ

j+1∑
k=1

[
(vkx,i)

2 + (wk
x,i)

2
])

wj+1
x,i

}
x,i

+ g3

(
wj+1
i

)
= f j

3,i,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

vj0 = vjM = wj
0 = wj

M = 0, j = 0, 1, . . . , N,

u0i = H10,i, v0i = H20,i, v0i = H30,i, i = 0, 1, . . . ,M.

(8)

Multiplying equations in (8) scalarly by uj+1, vj+1 and wj+1, respectively, it is not difficult to
get the inequalities:

∥un∥ < C, ∥vn∥2 +
n∑

j=1

∥vjx]|
2τ < C, ∥wn∥2 +

n∑
j=1

∥wj
x]|

2τ < C, n = 1, 2, . . . , N, (9)

where here and below C is a positive constant independent from τ and h.
The a priori estimates (9) guarantee the stability of scheme (8). The main statement of this

note can be stated as follows.

Theorem. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0 and gi, i = 1, 2, 3 are
positively defined and monotonically increased functions, and problem (5)–(7) has a sufficiently
smooth solution, then the solution of the difference scheme (8) tends to the solution of the continuous
problem (5)–(7) as τ → 0, h → 0 and the following estimates are true:

∥uj −Hj
1∥ ≤ C(τ), ∥vj −Hj

2∥ ≤ C(τ + h), ∥wj −Hj
3∥ ≤ C(τ + h).

We have carried out numerous numerical experiments for problem (5)–(7) with different kind
of right hand sides and initial-boundary conditions. Results of numerical experiments confirmed
findings in the above-stated theorem.
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On Some Positive Solutions to Differential Equations
with General Power-Law Nonlinearities
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1 Introduction
Consider solutions with positive initial data to differential equation with general power-law non-
linearity

y(n) = p(x, y, y′, . . . , y(n−1))|y|k0 |y′|k1 · · · |y(n−1)|kn−1 sgn(y y′ · · · y(n−1)), (1.1)

with n ≥ 2, positive real nonlinearity exponents k0, k1, . . . , kn−1 and positive continuous in x and
Lipschitz continuous in u0, u1, . . . , un−1 bounded function p(u0, u1, . . . , un−1).

The results on qualitative behavior and asymptotic estimates of positive increasing solutions for
higher order nonlinear differential equations were obtained by I. T. Kiguradze and T. A. Chanturia
in [9]. Questions on qualitative and asymptotic behavior of solutions to higher order Emden–Fowler
differential equations (k1 = · · · = kn−1 = 0) were studied by I. V. Astashova in [1, 4–6].

In the case n = 2 the results on qualitative behavior of solutions can be found in [10], and
asymptotic behavior was studied in [11].

Equation (1.1) in the case n = 3, k0 > 0, k0 ̸= 1, k1 = k2 = 0, was studied by I. Astashova
in [1, Chapters 6–8]. In particular, asymptotic classification of solutions to such equations was
given in [3, 6], and proved in [2]. Qualitative properties of solutions in the case n = 3, k0 > 0,
k1 > 0, k2 > 0 were studied in [12]. In this paper several results are generalized for higher order
differential equations with general power-law nonlinearity.

For higher order differential equations, nonlinear with respect to derivatives of solutions, the
asymptotic behavior of certain types of solutions was studied by V. M. Evtukhov, A. M. Klopot
in [7, 8].

2 On the behavior of solutions
For equations of second- and third-order the following results on qualitative behavior of solutions
with positive initial data were obtained.

Theorem 2.1 ([10]). Suppose n = 2 and k0 + k1 > 1. Let the function p(x, u, v) be continuous
in x, Lipschitz continuous in u, v and satisfy the inequality p(x, u, v) ≥ m > 0. Then there exists
a constant ζ = ζ(m, k0, k1) such that any maximally extended solution y(x) to equation (1.1),
satisfying at some point x0 the conditions y(x0) ≥ 0, y′(x0) = y1 > 0, has a finite right domain
boundary x∗ satisfying the estimate

x∗ − x0 < ζ y
− k0+k1−1

k0+1

1 .
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Theorem 2.2 ( [12]). Suppose n = 3 and k0 + k1 + k2 > 1. Let the function p(x, u, v, w) be
continuous, Lipschitz continuous in u, v, w and satisfy the inequality p(x, u, v, w) ≥ m > 0. Then
there exists a constant ψ = ψ(m, k0, k1, k2) such that any maximally extended solution y(x) to
equation (1.1), satisfying at some point x0 the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) = y2 > 0,
has a finite right domain boundary x∗ satisfying the estimate

x∗ − x0 < ψ y
− k0+k1+k2−1

2k0+k1+1

2 .

Consider now the asymptotic behavior of solutions with positive initial data to second- and
third order equations. For second order equation the result is also obtained for general form of
p(x, u, v) in [11].

Theorem 2.3 ([11]). Suppose n = 2 and k0 + k1 > 1, k1 < 2. Let p(x, u, v) ≡ p0 > 0, and let x∗
be a right boundary of the domain of an inextensible solution y(x) to (1.1) satisfying at some point
x0 the conditions y(x0) > 0, y′(x0) > 0. Then

y = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0,

where
α =

2− k1
k0 + k1 − 1

> 0, C =
( |α|1−k1 |α+ 1|

p0

) 1
k0+k1−1

.

Theorem 2.4. Suppose n = 3 and k0+k1+k2 > 1, k2 < 1, k1+2k2 < 3. Let p(x, u, v, w) ≡ p0 > 0,
and let x∗ be a right boundary of the domain of an inextensible solution y(x) to (1.1) satisfying at
some point x0 the conditions y(x0) > 0, y′(x0) > 0, y′′(x0) > 0. Then

y = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0,

where
α =

3− k1 − 2k2
k0 + k1 + k2 − 1

> 0, C =
( |α|1−k1−k2 |α+ 1|1−k2 |α+ 2|

p0

) 1
k0+k1+k2−1

.

It turns out that it is possible to generalize the above results for the higher order equation (1.1).
Denote

K =
n−1∑
i=0

ki, κ =
n−1∑
i=1

i kn−1−i.

Theorem 2.5. Suppose n ≥ 2, K > 1. Let the function p(u0, u1, . . . , un−1) be continuous in x,
Lipschitz continuous in u0, . . . , un−1 and satisfy the inequality

p(x, y, y′, . . . , y(n−1)) ≥ m > 0.

Then there exists a constant ξ = ξ(n,m, k0, . . . , kn−1) such that any maximally extended solution
y(x) to (1.1), satisfying at some point x0 the conditions y(x0) > 0, y′(x0) > 0, . . . , y(n−2)(x0) > 0,
y(n−1)(x0) = yn−1 > 0, has a finite right domain boundary x∗ satisfying the estimate

x∗ − x0 < ξ y
−K−1

κ+1

n−1 .

The following theorem states the existence of a solution in the form y = C(x∗ − x)−α to
equation (1.1) with constant potential p(x, y, y′, . . . , y(n−1)) ≡ (−1)n−1p0.

Denote κ =
n−1∑
i=1

i ki.
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Theorem 2.6. Let n ≥ 2, p0 > 0 and K > 1. Then equation

y(n) = (−1)n−1p0|y|k0 |y′|k1 · · · |y(n−1)|kn−1 sgn(y y′ · · · y(n−1)) (2.1)

has a solution y = C(x∗ − x)−α, where x∗ <∞ is the right domain boundary,

C =

(n−1∏
i=0

|α+ i|
1−

n−1∑
i+1

ki

p0

) 1
K−1

, α =
n− κ
K − 1

.

Note that the higher order Emden–Fowler equation

y(n) = p0|y|k sgn y, n ≥ 2, k > 1, p0 > 0

for any x∗ ∈ R has the solution y = C(x∗ − x)−α with

α =
n

k − 1
, C =

(α(α+ 1) · · · (α+ n− 2)(α+ n− 1)

p0

) 1
k−1

,

which corresponds to the result obtained in Theorem 2.6 with k1 = · · · = kn−1 = 0 (see [1, 5.1]).
The existence of solutions to equation (1.1) which is equivalent to C(x∗ − x)−α as x → x∗ − 0
in general case is an open problem. For n = 2 this problem was solved in [11], and for n ≥ 3,
k1 = · · · = kn−1 = 0 it was solved in [1, Chapter 5] and [4, 6].
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The problem of optimal control at a finite time interval for a system of differential equations
with impulse action at fixed moments times and also the corresponding averaged system of ordi-
nary differential equations are considered. The existence of optimal control of exact problem and
averaged problem is proved, and also it is established that optimal control of averaged task carries
out the approximate optimal synthesis of exact problem.

1 Introduction
In this paper, for the system of differential equations with impulse action at fixed moments of time,
the problem of optimal control is considered:

ẋ = ε
[
A(t, x) +B(t, x)u

]
, t ̸= ti, i = 1, 2, . . . , i

(T
ε

)
, t ∈

[
0,
T

ε

)
,

△x
∣∣
t=ti

= εIi(x(ti), vi), i = 1, 2, . . . , i
(T
ε

)
, (1.1)

x(0, u(0), vi) = x0, ti < ti+1,

where ε > 0 is a small parameter, t ≥ 0, T > 0 is some constant value, x ∈ D is a phase n-
dimensional vector, D is a region in Rn, u ∈ U is a vector of control, U is convex and closed set
in Rm, 0 ∈ U , i(t) is the number of pulses on [0, t): t1, t2, . . . , tn, . . . , ti(T

ε
), and tn → ∞, n → ∞;

vi ∈ V , i = 1, 2, . . . , i(Tε ), are impulse control vectors, V is a closed set in Rr. With respect to the
moments of impulsive action, we assume that there exists a constant C̃ > 0 such that for t ≥ 0,

i(t) ≤ C̃t.

A is an n-dimensional vector-function, B is an n × m-dimensional matrix, Ii(x, v) is an n-
dimensional vector function.

Control u = u(t) = (u1(t), u2(t), . . . , um(t)) and v = vi = (vi1, vi2, . . . , vir) will be considered
admissible for problem (1.1), if



132 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

(a1) u(t) ∈ Lp(0,
T
ε ) for some p > 1;

(a2) u(t) ∈ U at t ∈ [0, Tε ], almost everywhere;

a3) there exists ε0 > 0 such that for 0 < ε < ε0 the solution x(t, u, v) of the Cauchy problem
(1.1) has defined by t ∈ [0, Tε ], where ε0 is independent of u(t) and vi;

(a4) vi ∈ V ;

(a5) for each sequence of control vectors vi ∈ V there exists the vector v0 ∈ V such that vi → v0,
i → ∞, uniformly for all controls, that is, for arbitrary δ > 0 there is a constant N0,
independent of vi, v0 and such that for all i ≥ N0 the inequality |vi − v0| < δ is satisfied.

It should be noted that condition a5) is obviously satisfied if there exists a sequence {ai}
independent of vi: ai → 0, i→ ∞, such that |vi − v0| < ai.

We denote the set of valid controls by Ω.
By | · | we denote the norm of vector in Euclidean space, and through ∥ · ∥ we denote the norm

of the matrix consistent with the norm of the vector. In this paper, the averaging method is applied
to optimal control problems. The main role here is to justify the closeness of the solutions of the
exact and average problems. This type of results for impulse systems was first obtained in [5] and
further developed in the works of many scientists and applied to optimal control problems (see, for
example, [4], where is comprehensive bibliography).

In works [3, 7, 8], another approach was developed to apply the averaging method to optimal
control problems, where the control function was considered a fixed parameter when averaging.
This approach had applied to the problems of optimal control of functional-differential equations
in [2].

2 Formulation of the problem and the main result
The problem of optimal control to be solved in the work is to find such allowable controls u(t) and
vi that minimize the functional

Jε(u, v) = ε

T
ε∫

0

[C(t, x) + F (t, u)] dt+ ε
∑

0≤ti<
T
ε

Ψi(x(ti), vi),

here C, F , ψi are continuous in the set of variables of function, with C ≥ 0, F and ψi satisfy the
conditions:

F (t, u) is defined for t ≥ 0, u ∈ U , convex on u, and for some a > 0:

F (t, u) ≥ a|u|p, ψi(t, v) ≥ a|v|p,

where p > 1 from condition a1) and for some K > 0 there exists ε0 > 0 such that ε < ε0 the
inequality

ε

T
ε∫

0

F (t, 0) dt ≤ K

holds.
With respect to system (1.1), we assume that the following conditions are fulfilled:
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1.1) there are such A0(x), B0(x) and C0(x), for which uniformly over x ∈ D the boundaries exist
(averaging conditions):

lim
T→∞

∣∣∣∣ 1T
T∫
0

A(t, x) dt−A0(x)

∣∣∣∣ = 0,

lim
T→∞

∣∣∣∣ 1T
T∫
0

C(t, x) dt− C0(x)

∣∣∣∣ = 0,

lim
T→∞

1

T

T∫
0

∥B(t, x)−B0(x)∥q dt = 0,

where q is determined from the condition 1
p + 1

q = 1;

1.2) the vector function A(t, x) and the matrix function B(t, x) are defined, measurable by t for
each x, the function C(t, x) is defined and is continuous at t ≥ 0, x ∈ D;

1.3) the functions A(t, x), B(t, x) and C(t, x) are Lipschitz’s functions on x with constant L in
domain D;

1.4) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are continuous on the set of variables;

1.5) the functions ψi(x, v), i = 1, 2, . . . , i(t), are bounded by the constant M at t ≥ 0, x ∈ D,
v ∈ V ;

1.6) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are Lipschitz’s functions on x with constant
L in the domain D and uniformly continuous on v in the domain of definition;

1.7) for the functions A(t, x), B(t, x), C(t, x) and Ii(x, v), i = 1, 2, . . . , i(Tε ), the conditions of
linear growth are fulfilled, i.e., there is a constant K > 0 such that for t ≥ 0 and x ∈ D the
followings inequalities are fulfilled:

|A(t, x)| ≤ K(1 + |x|), ∥B(t, x)∥ ≤ K(1 + |x|), |Ii| ≤ K(1 + |x|), |C(t, x)| ≤ K(1 + |x|).

Let the averaging conditions also be satisfied:

1.8) uniformly for x ∈ D, u ∈ U , v ∈ V there are boundaries:

lim
s→∞

1

s

∑
0<ti<s

Ii(x, v) = I0(x, v),

lim
s→∞

1

s

∑
0<ti<s

ψi(x, v) = ψ0(x, v).

Problem (1.1) on the interval [0, Tε ] will correspond to the following averaged problem:

ẏ = ε
[
A0(y) +B0(y)u+ I0(y, v0)

]
, t ∈

[
0,
T

ε

)
, (2.1)

y
(
0, u(0), vi(0)

)
= x0,

where u is the allowable control of the averaging problem (2.1), that satisfies the same conditions
as the allowable control of the exact problem (1.1), and v0 for each vi is selected from condition a5).



134 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

The set of admissible controls (u(t), v0) of problem (2.1) is denoted by Ω. The quality criterion
of the problem of averaging is as follows:

Jε(u, v) = ε

T
ε∫

0

[
C0(y(t)) + F (t, u) + ψ0(y(t), v0)

]
dt.

Let’s denote

J∗
ε = inf

(u(t),vi)∈Ω
Jε(u, v),

J
∗
ε = inf

(u(t),v0)∈Ω
Jε(u, v).

The purpose of this work is to prove for the problem of optimal control the following statement:
for an arbitrary η > 0 there is ε0 = ε0(η) such that for ε < ε0 the inequality∣∣J∗

ε − Jε(u
∗, v∗0)

∣∣ ≤ η

holds; u ∗, v∗0 is the optimal control pair for the problem of averaging, i.e., the optimal control of
the problem of averaging is almost optimal for the exact one.

For the averaged system (2.1) we assume that the following condition is fulfilled:

(A) If the control u satisfies the estimate

ε

T
ε∫

0

|u(t)| dt ≤ R,

where R > 0 does not depend on ε, u, then there is ε0 = ε0(R) such that for 0 < ε < ε0 the
solution of the averaged Cauchy problem y(t, u, v0) for t ∈ [0, Tε ] lies in the region D together
with some ρ-neighborhood, and ρ does not depend on ε, u, v0.

The following theorem holds.

Theorem. Under conditions 1.1)–1.7) and condition (A) there exists ε0 > 0 such that for 0 < ε < ε0
the exact and averaged control problems have solutions, and for an arbitrary η > 0 there exists
ε1 = ε1(η) ≤ ε0 such that for 0 < ε < ε1 the inequality∣∣J∗

ε − Jε(u
∗, v∗0)

∣∣ ≤ η

is fulfilled, where (u ∗, v∗0) is the optimal control of the averaging system.
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Consider the differential equation

y′′ = f(t, y, y′), (1)

where f : [a, ω[×∆Y0 ×∆Y1 → R is a continuous function, −∞ < a < ω ≤ +∞, ∆Yi (i ∈ {0, 1}) is
a one-side neighborhood of Yi and Yi (i ∈ {0, 1}) is either 0 or ±∞. We assume that the numbers
µi (i = 0, 1) given by the formula

µi =

{
1 if either Yi = +∞, or Yi = 0 and ∆Yi is a right neighborhood of the point 0,

−1 if either Yi = −∞, or Yi = 0 and ∆Yi is a left neighborhood of the point 0

satisfy the relations

µ0µ1 > 0 for Y0 = ±∞ and µ0µ1 < 0 for Y0 = 0. (2)

Conditions (2) are necessary for the existence of solutions of equation (1) defined in the left neigh-
borhood of ω and satisfying the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1). (3)

Among the strictly monotonic, together with the derivatives of the first order, in some left
neighborhood of ω of solutions of equation (1) we can single out only solutions admitting either
representations of the form

y(t) = c0 + o(1), y(t) = πω(t)[c1 + o(1)] as t ↑ ω, (4)

where c0, c1 are nonzero real constants, or satisfying conditions (3).
The question of whether equation (1) has solutions with representations (4) can be, in general,

solved using either for ω = +∞ a theorem from monograph [3, Ch. II, § 8, p. 207] or for ω ≤ +∞
ideas laid down in the work [1].

One of the classes of equation (1) solutions with properties (3) that admits asymptotic repre-
sentations is the class of Pω(Y0, Y1, λ0)-solutions.

Definition 1. A solution y of equation (1) on the interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-
solution, where −∞ ≤ λ0 ≤ +∞, if, in addition to (3), it satisfies the condition

lim
t↑ω

[y′(t)]2

y(t)y′′(t)
= λ0.
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Depending on λ0 these solutions have different asymptotic properties. For λ0 ∈ R \ {0, 1} in [2]
such ratios

lim
t↑ω

πω(t)y
′(t)

y(t)
=

λ0

λ0 − 1
, lim

t↑ω

πω(t)y
′′(t)

y′(t)
=

1

λ0 − 1
,

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,

are established.

Definition 2. We say that a function f satisfies condition (FN)λ0 for λ0 ∈ R \ {0, 1} if there
exist a number α0 ∈ {−1, 1}, a continuous function p : [a, ω[→ ]0,+∞[ and twice continuously
differentiable function φ0 : ∆Y0 → ]0,+∞[ , satisfying the conditions

φ′
0(y) ̸= 0, lim

y→Yo
y∈∆Y0

φ0(y) = φ0 ∈ {0,+∞}, lim
y→Yo
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1, (5)

such that, for arbitrary continuously differentiable functions zi : [a, ω[→ ∆Yi (i = 0, 1) satisfying
the conditions

lim
t↑ω

zi(t) = Yi (i = 0, 1),

lim
t↑ω

πω(t)z
′
0(t)

z0(t)
=

λ0

λ0 − 1
, lim

t↑ω

πω(t)z
′
1(t)

z1(t)
=

1

λ0 − 1
,

one has representation

f(t, z0(t), z1(t)) = α0p(t)φ0(z0(t))[1 + o(1)] as t ↑ ω. (6)

Note that the choice of α0 and the functions p and φ0 in Definition 2 depends on the choice of
λ0 ∈ R\{0, 1}. It is also obvious that the numbers µ0, µ1 determine the signs of any Pω(Y0, Y1, λ0)-
solution of equation (1) and its derivative in a left neighborhood of ω. Moreover, under condition
(FN)λ0 sign of second derivative of any Pω(Y0, Y1, λ0)-solution of equation (1) in a left neighborhood
of ω coincides with the value α0. Then taking into account (2), we have

α0µ1 > 0 for Y1 = ±∞ and α0µ1 < 0 for Y1 = 0. (7)

We choose a number b ∈ ∆Y0 such that the inequality

|b| < 1 for Y0 = 0, b > 1 (b < −1) for Y0 = +∞ (Y0 = −∞)

is respected and put {
∆Y0(b) = [b, Y0[ if ∆Y0 is a left neighborhood of Y0,
∆Y0(b) = ]Y0, b] if ∆Y0 is a right neighborhood of Y0.

Now we introduce auxiliary functions and notation as follows:

Φ : ∆Y0(b) → R, Φ(y) =

y∫
B

ds

φ0(s)
, B =


b if

Y0∫
b

ds

φ0(s)
= ±∞,

Y0 if
Y0∫
b

ds

φ0(s)
= const,
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Z = lim
y→Y0

Φ(y) =


0 if B = Y0,

+∞ if B = b and µ0µ1 > 0,

−∞ if B = b and µ0µ1 < 0,

µ2 =

{
1 if B = b,

−1 if B = Y0,

I(t) =

t∫
A

πω(τ)p(τ) dτ, A =


a if

ω∫
a

πω(τ)p(τ) dτ = ±∞,

ω if
ω∫

a

πω(τ)p(τ) dτ = const.

Theorem 1. Let λ0 ∈ R \ {0, 1} and let the function f satisfy condition (FN)λ0. Then, for the
existence of Pω(Y0, Y1, λ0)-solutions of the differential equation (1), it is necessary that the sign
conditions (2), (7),

α0µ0λ0 > 0, µ0µ1λ0(λ0 − 1)πω(t) > 0, α0µ2(λ0 − 1)I(t) < 0 for t ∈ [a, ω[

and

α0(λ0 − 1) lim
t↑ω

I(t) = Z, lim
t↑ω

πω(t)I
′(t)

I(t)
= ±∞, lim

t↑ω

α0(λ0 − 1)π2
ω(t)p(t)φ0(Y (t))

Y (t)
=

λ0

λ0 − 1

hold, where
Y (t) = Φ−1

(
α0(λ0 − 1)I(t)

)
.

Moreover, each solution of this kind admits the asymptotic representations

y′(t)

φ0(y(t))
= α0(λ0 − 1)πω(t)p(t)[1 + o(1)], φ′

0(y(t)) = −λ0(1 + o(1))

(λ0 − 1)I(t)
as t ↑ ω.

Remark 1. Asymptotic representations of Pω(Y0, Y1, λ0)-solutions of equation (1) can be written
explicitly

y(t) = Y (t)
(
1 +

o(1)

H(t)

)
, y′(t) =

λ0

λ0 − 1

Y (t)

πω(t)
(1 + o(1)),

where
H(t) =

Y (t)φ′(Y (t))

φ(Y (t))
.

References
[1] V. M. Evtukhov, Asymptotic properties of the solutions of a certain class of second-order

differential equations. (Russian) Math. Nachr. 115 (1984), 215–236.
[2] V. M. Evtukhov, The asymptotic behavior of the solutions of one nonlinear second-order

differential equation of the Emden–Fowler type. (Russian) Dissertation Cand. Fiz.-Mat. Nauk:
01.01.02, Odessa, Ukraine, 1998.

[3] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous
Ordinary Differential Equations. (Russian) Nauka, Moscow, 1990.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 139

On the Existence of Some Solutions of Systems of
Ordinary Differential Equations that are Partially Resolved Relatively

to the Derivatives with Square Matrix

D. E. Limanska, G. E. Samkova
Odessa I. I. Mechnikov National University, Odessa, Ukraine

E-mails: liman.diana@gmail.com; samkovagalina@i.ua

Let us consider the system of ordinary differential equations

A(z)Y ′ = B(z)Y + f(z, Y, Y ′), (1)

where the matrices A : D1 → Cp×p, B : D10 → Cp×p, D1 = {z : |z| < R1, R1 > 0} ⊂ C, D10 =
D1 \ {0}, matrix A = A(z) is analytical in the domain D1, matrix B = B(z) is analytical in the
domain D10, rangA(z) = p in the domain z ∈ D1, A(−1)(z)B(z) is analytical matrix in the domain
D10 and has pole of order d ∈ N in the point z = 0, the vector-function f : D1×G1×G2 → Cp, where
domains Gk ⊂ Cp, 0 ∈ Gk, k = 1, 2, the vector-function f = f(z, Y, Y ′) is analytical in the domain
D10×G10×G20, Gk0 = Gk \{0}, k = 1, 2, the decomposition of the vector function f = f(z, Y, Y ′)
to a convergent power series around the point (0, 0, 0) has no free and linear members.

Let us study question on the existence of analytic solutions of the Cauchy problem for system
(1) with the initial condition

Y → 0, z → 0, z ∈ D10,

and the additional condition
Y ′ → 0, z → 0, z ∈ D10.

According to these assumptions, system (1) takes the form

zdY ′ = P̌ (2)(z)Y + zdH(2)(z, Y, Y ′), (2)

where P̌ (2)(z) is an analytical matrix in the domain D1, H(2) = H(2)(z, Y, Y ′) is an analytical
vector-function in the domain D1 ×G1 ×G2.
Definition 1. Let’s define that the vector-function zdH(2)(z, Y, Y ′) has the property V1 near the
point (0, 0, 0) if this neighborhood component vector function zdH(2)(z, Y, Y ′) may be decomposed
into convergent series form

zdH
(2)
j (z, Y, Y ′) =

∞∑
s+|l|+|q|=2

C
(2.j)
slq zsY l(zdY ′)

q
, j = 1, p,

where C(2.j)
slq ∈ C, j = 1, p.

Lemma. If in system (2) vector-function zdH(2)(z, Y, Y ′) has the property V1 near the point (0, 0, 0),
then system (2) can be uniquely reduced to the system of the type

zdY ′ = P (2)(z)Y + F (2)(z, Y ), (3)

where P (2)(z) is an analytical matrix in the domain D̃1 ⊆ D1, 0 ∈ D̃1, F (2) = F (2)(z, Y ) is an
analytical vector-function in the domain D̃1 × G̃1 ⊆ D1 ×G1, (0, 0) ∈ D̃1 × G̃1, F (2)(0, 0) = 0. For
convenience, we assume that the matrix P (2) is analytical in the domain D1, and the vector-function
F (2) is analytical in the domain D1 ×G1.
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For arbitrarily fixed t1 ∈ (0, R1], v1, v2 ∈ R, v1 < v2, introduce a set Ǐ(t1) = {(t, v) ∈ R2 : t ∈
(0, t1), v ∈ (v1, v2)}. For z = z(t, v) = teiv, the set Ǐ(t1) ⊂ R2 refers to the set I(t1) ⊂ C : I(t1) =
{z = teiv ∈ C : t ∈ (0, t1), v ∈ (v1, v2)}.

Definition 2. Let p, g : Ǐ(t1) → [0,+∞). Let’s define that the function p has the property Q1

regarding the function g on the condition v = v0 ∈ (v1, v2), if the function p = p(t, v0) is a function
of higher order of smallness relative to the function g = g(t, v0) on the condition t→ +0.

Definition 3. Let p, g : Ǐ(t1) → [0,+∞). Let’s define that the function p has the property Q2

regarding the function g on the set Ǐ(t1), if there exist C1 ≥ 0, C2 ≥ 0 such that on the set Ǐ(t1)
the inequality

C1g(t, v) ≤ p(t, v) ≤ C2g(t, v)

is satisfied.

Introduce the auxiliary vector function φ(z) = col(φ1(z), . . . , φp(z)), φ : I(t1) → Cp, and
ψ(t, v) = col(ψ1(t, v), . . . , ψp(t, v)), ψj : Ǐ(t1) → [0;+∞), j = 1, p, on the condition z = z(t, v) =
teiv, ψj(t, v) = |φj(z(t, v))|, j = 1, p, functions ψj , j = 1, p are really values functions of real
variables t, v.

For a fixed v = v0 we introduce

Y (z(t, v0)) = Ỹ (t), Ỹ (t) = Ỹ1(t) + iỸ2(t),

P (2)(z(t, v0)) = ∥p̃ (2)
jk (t)∥pj,k=1 = P̃

(2)
1 (t) + iP̃

(2)
2 (t), P̃ (2)

s (t) = ∥p̃ (2)
jks(t)∥

p
j,k=1, s = 1, 2,

F (2)
(
z(t, v0), Y (z(t, v0))

)
= F̃ (2)(t, Ỹ1, Ỹ2),

F̃ (2)(t, Ỹ1, Ỹ2) = col
(
F̃

(2)
1 (t, Ỹ1, Ỹ2), . . . , F̃

(2)
p (t, Ỹ1, Ỹ2)

)
,

F̃
(2)
j (t, Ỹ1, Ỹ2) = F̃

(2)
1j (t, Ỹ1, Ỹ2) + iF̃

(2)
2j (t, Ỹ1, Ỹ2), j = 1, p,

functions p̃ (2)
jks(t), j, k = 1, p, s = 1, 2, and vector-functions Ỹ1(t), Ỹ2(t), F̃ (2)

1j , F̃ (2)
2j , j = 1, p are

really values functions of real variable t.
For a fixed t = t0 we introduce

Y (z(t0, v)) = Ŷ (v) = Ŷ1(v) + iŶ2(v),

P (2)(z(t0, v)) = ∥p̂(2)jk (v)∥
p
j,k=1 = P̂

(2)
1 (v) + iP̂

(2)
2 (v), P̂ (2)

s (v) = ∥p̂(2)jks(v)∥
p
j,k=1, s = 1, 2,

F (2)
(
z(t0, v), Y (z(t0, v))

)
= F̂ (2)(v, Ŷ1, Ŷ2),

F̂ (2)(v, Ŷ1, Ŷ2) = col
(
F̂

(2)
1 (v, Ŷ1, Ŷ2), . . . , F̂

(2)
p (v, Ŷ1, Ŷ2)

)
,

F̂
(2)
j (v, Ŷ1, Ŷ2) = F̂

(2)
1j (v, Ŷ1, Ŷ2) + iF̂

(2)
2j (v, Ŷ1, Ŷ2), j = 1, p,

functions p̂(2)jks(v), j, k = 1, p, s = 1, 2, and vector-functions Ŷ1, Ŷ2, F̂ (2)
1j , F̂ (2)

2j , j = 1, p are really
values functions of real variable v.

Definition 4. Let’s define that the matrix P (2)(z) has the property S2 regarding the vector-function
φ = φ(z) if the conditions are met:

1) for each v0 ∈ (v1, v2) functions td(ψj(z(t, v)))
′
t have the property Q1 regarding the functions

|p̃ (2)
jj (t)|ψj(z(t, v)), j = 1, p, on the condition v = v0;

2) functions td−1(ψj(t, v))
′
v have the property Q2 regarding the functions |p̂(2)jj (v)|ψj(t, v), j =

1, p, on the set Ǐ(t2) for some t2 ∈ (0, t1);
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3) for each v0 ∈ (v1, v2) functions |p̃ (2)
jk (t)|ψk(t, v) have the property Q1 regarding the functions

td(ψj(t, v))
′
t, j, k = 1, p, j ̸= k, on the condition v = v0;

4) functions |p̂(2)jk (v)|ψk(t, v) have the property Q2 regarding the functions td−1(ψj(t, v))
′
v, j, k =

1, p, j ̸= k, on the set Ǐ(t2) for some t2 ∈ (0, t1).

Let’s introduce the sets

Ω̃
(
δ, φ(z(t, v0))

)
=

{
(t, Ỹ1, Ỹ2) : t ∈ (0, t1), Ỹ

2
1j + Ỹ 2

2j < δ2j (ψj(t, v0))
2, j = 1, p

}
,

v0 is fixed on the interval (v1, v2),

Ω̂
(
τ, φ(z(t0, v))

)
=

{
(v, Ŷ1, Ŷ2) : v ∈ (v1, v2), Ŷ

2
1j + Ŷ 2

2j < τ2j (ψj(t0, v))
2, j = 1, p

}
,

t0 is fixed on the interval (0, t1), where δ = (δ1, . . . , δp), τ = (τ1, . . . , τp), δj , τj ∈ R \ {0}, j = (1, p).

Definition 5. Let’s define that the vector-function F (2) = F (2)(z, Y ) has the propertyM2 regarding
the vector-function φ = φ(z) if the conditions are met:

1) for each v0 ∈ (v1, v2) on the condition (t, Ỹ1, Ỹ2) ∈ Ω̃(δ, φ(z(t, v0))) functions F̃
(2)
kj =

F̃
(2)
kj (t, Ỹ1, Ỹ2) have the property Q1 regarding the functions |p̃ (2)

jj (t)|ψj(t, v), j = 1, p, k = 1, 2,
on the condition v = v0;

2) for each (v, Ŷ1, Ŷ2) ∈ Ω̂(τ, φ(z(t0, v))) functions F̂ (2)
kj = F̂

(2)
kj (v, Ŷ1, Ŷ2) have the property Q2

regarding the function |p̂(2)jj (v)|ψj(t, v)), j = 1, p, k = 1, 2, on the set Ǐ(t2) for some t2 ∈ (0, t1).

Let’s introduce domains Λ
(2)
+.k(t2), k ∈ {+,−}, which are defined as

Λ
(2)
+.+(t2) =

{
(t, v) : cos

(
(d− 1)v − α̃

(2)
jj (t)

)
> 0, sin

(
(d− 1)v − α̂

(2)
jj (v)

)
> 0,

j = 1, p, t ∈ (0, t2), v ∈ (v1, v2)
}
,

Λ
(2)
+.−(t2) =

{
(t, v) : cos

(
(d− 1)v − α̃

(2)
jj (t)

)
> 0, sin

(
(d− 1)v − α̂

(2)
jj (v)

)
< 0,

j = 1, p, t ∈ (0, t2), v ∈ (v1, v2)
}
,

where functions α̃(2)
jj (t), α̂

(2)
jj (v), j = 1, p, are defined through the corresponding diagonal elements

of the matrices P̃ (2)
q , P̂ (2)

q , q = 1, 2.

Definition 6. Let’s define that system (3) belongs to the class C
(2)
+.k, k ∈ {+,−} if matrices

P (2)(z) = P (2)(teiv) are such that (t, v) ∈ Λ
(2)
+.k(t2), k ∈ {+,−}.

Let’s introduce domains G(2)
+.k(t2) = {z = z(t, v) : 0 < |z| < t2, (t, v) ∈ Λ

(2)
+.k(t2)}, k ∈ {+,−}.

Theorem. Let A(z) be an analytical matrix in the domain D1 and rangA(z) = p on the condition
z ∈ D1. Let system (1) may lead to the appearance (2). The vector-function zdH(2)(z, Y, Y ′) has
the property V1 near the point (0, 0, 0). Moreover, the following conditions are met for system (3):

1) the matrix P (2)(z) is analytical in the domain D1 and has the property S2 regarding the
vector-function φ = φ(z);
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2) the vector-function F (2) = F (2)(z, Y ) is analytical in the domain D1 ×G1, F (2)(0, 0) = 0 and
has the property M2 regarding the vector-function φ = φ(z);

3) system (3) belongs to one of the classes C(2)
+.k, k ∈ {+,−}.

Then for each k ∈ {+,−} and for some t∗ ∈ (0, t2) there are solutions of system (1) Y = Y (z), which
satisfy the initial conditions Y (z0) = Y0 for z0 ∈ G

(2)
+.k(t

∗), Y0 ∈ {Y : |Yj(z0)| < δj |φj(z0)|, δj >
0, j = 1, p}, that are analytical in the domain G

(2)
+.k(t

∗) and for these solutions in this particular
domain the estimates are fair:

|Yj(z)|2 < δ2j |φj(z)|2, j = 1, p.
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We are interested in the existence and non-existence of a positive solution to the periodic
boundary value problem

u′′ = p(t)u− h(t)

uλ
+ µf(t); u(0) = u(ω), u′(0) = u′(ω). (0.1)

Here, p, h, f ∈ L([0, ω]),
h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) ̸≡ 0,

λ > 0, and a parameter µ ∈ R. By a solution to problem (0.1), as usual, we understand a function
u : [0, ω] → ]0,∞[ which is absolutely continuous together with its first derivative, satisfies the given
equation almost everywhere, and meets periodic conditions.

Definition 0.1. We say that the function p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if
for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality
u(t) ≥ 0 for t ∈ [0, ω]

(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 0.2. We say that the function p ∈ L([0, ω]) belongs to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (0.2)

has a positive solution.

For the cases p ∈ V−(ω), p ∈ V0(ω), and p ∈ V+(ω), we provide some results concerning the
existence or non-existence of solutions to problem (0.1) depending on the choice of a parameter µ.
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1 The case p ∈ V−(ω)

Theorem 1.1. Let p ∈ V−(ω). Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ ≤ +∞ such that

• for any µ ∈ ]µ∗, µ
∗[ , problem (0.1) has a unique solution,

• if µ∗ > −∞, then, for any µ ≤ µ∗, problem (0.1) has no solution,

• if µ∗ < +∞, then, for any µ ≥ µ∗, problem (0.1) has no solution.

2 The case p ∈ V0(ω)

Theorem 2.1. Let p ∈ V0(ω) and
ω∫

0

f(t)u0(t) dt > 0,

where u0 is a solution to problem (0.2). Then, there exists 0 < µ∗ ≤ +∞ such that

• for any µ ≤ 0, problem (0.1) has no positive solution,

• for any µ ∈ ]0, µ∗[ , problem (0.1) has a unique solution,

• if µ∗ < +∞, then, for any µ ≥ µ∗, problem (0.1) has no solution.

From Theorem 2.1, we derive immediately the following result.

Theorem 2.2. Let p ∈ V0(ω) and
ω∫

0

f(t)u0(t) dt < 0,

where u0 is a solution to problem (0.2). Then, there exists −∞ ≤ µ∗ < 0 such that

• if µ∗ > −∞, then, for any µ ≤ µ∗, problem (0.1) has no solution,

• for any µ ∈ ]µ∗, 0[ , problem (0.1) has a unique solution,

• for any µ ≥ 0, problem (0.1) has no positive solution.

3 The case p ∈ V+(ω)

Remark 3.1. In [1, Theorem 16.4], it is shown that, if p ∈ IntV+(ω) and
ω∫

0

[f(t)]+ dt > ν∗(p)

(
ω

4

ω∫
0

[p(s)]+ ds

) ω∫
0

[f(t)]− dt, (3.1)

where the number ν∗(p) depends only on p (see [1, formula (6.22)]), then the linear periodic problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω)

possesses a unique solution u which is positive.

Theorem 3.1. Let p ∈ IntV+(ω) and (3.1) hold. Then, there exists 0 ≤ µ∗ < ∞ such that
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• for any µ > µ∗, problem (0.1) has a solution,

• if µ∗ > 0, then, for any µ < µ∗, problem (0.1) has no solution,

• if µ∗ = 0, then, for any µ ≤ 0, problem (0.1) has no solution.

From Theorem 3.1, we derive immediately the following result.

Theorem 3.2. Let p ∈ IntV+(ω) and
ω∫

0

[f(t)]− dt > ν∗(p)

(
ω

4

ω∫
0

[p(s)]+ ds

) ω∫
0

[f(t)]+ dt,

Then, there exists −∞ < µ∗ ≤ 0 such that

• for any µ < µ∗, problem (0.1) has a solution,

• if µ∗ < 0, then, for any µ > µ∗, problem (0.1) has no solution,

• if µ∗ = 0, then, for any µ ≥ 0, problem (0.1) has no solution.
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Consider a linear controllable differential system

ẋ = A(t)x+B(t)u, x ∈ Rn, u ∈ Rm, t ≥ 0, (1)

with piecewise continuous and bounded coefficient matrices A and B. We denote the Cauchy matrix
of the corresponding free system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (2)

by X(t, s), where t, s ≥ 0, and the Lyapunov exponents of (2) by λk(A), k = 1, . . . , n.
Suppose that the control u is formed as a linear feedback u = U(t)x, where the matrix U is also

piecewise continuous and bounded. Then the closed-loop system

ẏ =
(
A(t) +B(t)U(t)

)
y, y ∈ Rn, t ≥ 0, (3)

should be treated as a linear differential system with bounded piecewise continuous coefficients.
So, all Lyapunov invariants (i.e. invariants of Lyapunov transformations) including Lyapunov
exponents λk(A + BU), k = 1, . . . , n, are defined for system (3). Further we assume that the
Lyapunov exponents of each system (both (1) and (3)) are arrayed in increasing order as follows

λ1(A) ≤ · · · ≤ λn(A)

and, respectively,
λ1(A+BU) ≤ · · · ≤ λn(A+BU).

According to classical definition due to Kalman [1] system (1) is said to be uniformly completely
controllable if there exist positive real numbers ϑ and αi, i = 1, . . . , 4, such that for all τ ∈ R the
inequalities

α1I 6 W (τ, τ + ϑ) 6 α2I, (4)
α3I 6 Ŵ (τ, τ + ϑ) 6 α4I (5)

hold. Here the controllability matrix W (Kalman matrix) is given by

W (t0, t1) =

t1∫
t0

X(t0, s)B(s)BT (s)XT (t0, s) ds,
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Ŵ (t0, t1) = X(t1, t0)W (t0, t1)X
T (t1, t0), and I ∈ Rn×n is the identity matrix.

System (1) is said to be ϑ-uniformly completely controllable for some given ϑ > 0 if the condi-
tions of the above definition are satisfied for this value of ϑ.

The matrix inequalities (4) and (5) should be understood as a conditional notation of inequalities
between corresponding quadratic forms. Namely, conditions (4) and (5) mean that the inequalities

α1∥h∥2 6 hTW (τ, τ + ϑ)h =

τ+ϑ∫
τ

∥∥hTX(τ, s)B(s)
∥∥2 ds 6 α2∥h∥2,

α3∥h∥2 6 hT Ŵ (τ, τ + ϑ)h =

τ+ϑ∫
τ

∥∥hTX(τ + ϑ, s)B(s)
∥∥2 ds 6 α4∥h∥2

are valid for all h ∈ Rn.
Since coefficients of system (1) are piecewise continuous and bounded, we can equivalently

reformulate Kalman’s definition in a somewhat simpler way as follows. System (1) is uniformly
completely controllable if there exist positive real numbers ϑ and α such that for all τ ∈ R the
inequalities

W (τ, τ + ϑ) > αI

hold. In this case an alternative form for definition of uniform complete controllability was given by
E. L. Tonkov in [3]. We say that system (1) is ϑ-uniformly completely controllable if there exists a
number l > 0 such that for any state x0 and each segment [τ, τ +ϑ] there exist a control u ensuring
the transfer of system (1) from x0 to 0 on this segment and satisfying the condition ∥u(t)∥ 6 l∥x0∥
for all t ∈ [τ, τ + ϑ]. For systems with piecewise continuous and bounded coefficients both of the
definitions are equivalent.

The following result is well known in the theory of control of asymptotic invariants [2, p. 337].

Theorem 1. If system (1) is uniformly completely controllable and the matrix B is piecewise
uniformly continuous (i.e. B can be represented as a sum of uniformly continuous and piecewise
constant matrices), then the Lyapunov exponents of system (3) are globally controllable.

Recall that the Lyapunov exponents of system (3) are said to be globally controllable if for any
given µk ∈ R, k = 1, . . . , n, such that µ1 ≤ · · · ≤ µn there exists a bounded piecewise continuous
feedback matrix U such that the equalities λk(A+ BU) = µk are valid for all k = 1, . . . , n. These
facts motivate us to refer to the matrix U as a matrix control.

If system (1) is completely controllable, but is not uniformly completely controllable, then for
any initial time t0 ≥ 0 there exists a t1(t0) > t0 such that for any state x0 of system (1) one can
find a control u steering the system from x0 to zero state on the interval [t0, t1(t0)]. Note that in
this case no condition is posed on the norm of the control function u and the length of the segment
[t0, t1(t0)] is allowed to grow indefinitely when the starting point t0 moves away from zero.

Proving Theorem 1 we evaluate the Lyapunov exponents of system (3) along the sequence
kϑ, k ∈ N, and ensure boundedness of matrix control using the property provided by definition of
uniform complete controllability in the form due to Tonkov. So we have to conclude that approaches
used to prove Theorem 1 are not suitable to solve the Lyapunov spectra assignment problem when
the original system (1) is not uniformly completely controllable.

The most natural way to overcome this problem is to use more rapidly growing sequences. In
this case, as before, we retain the ability to construct the required control by the aid of the matrix
system

Ẋ = A(t)X +B(t)V, X ∈ Rn×n, V ∈ Rm×n, t ≥ 0,
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corresponding to system (1).
To implement this idea we introduce two functions describing some controllability properties of

system (1). For each t ∈ R, t > 0, by T (t) we denote the exact lower bound of the set of all τ ∈ R,
τ > t, such that system (1) is completely controllable on [t, τ ].

For each t, s ∈ R, where t > T (s) > s, by Γ(t, s) we denote the exact lower bound of the set of
all numbers γ such that for any state x0 of system (1) there exists a control u steering the system
from x0 to 0 on the segment [s, t] and satisfying the estimate ∥u(τ)∥ 6 γ∥x0∥ for all τ ∈ [s, t].
Additionally, we assume Γ(t, s) = +∞ when t 6 T (s).

We say that the sequence tk, k ∈ N, satisfies the slow growth condition if lim
k→∞

tk+1

tk
= 1.

Example. Consider a scalar system

ẋ = b(t)u, x ∈ R, u ∈ R, t ≥ 0, (6)

having the form (1) with zero 1× 1-matrix A. Let tk > 0, k ∈ N be a monotonically increasing to
+∞ sequence and sk, k ∈ N be a sequence satisfying the condition tk−1 < sk < tk for all k > 2.

Let us define a scalar function b as follows: b(t) = 1, t ∈ ]sk, tk], and b(t) = 0 for all other t ≥ 0.
It can be easily proved that system (6) is completely controllable and is not uniformly completely
controllable if the sequence sk − tk−1 is unbounded. By direct calculation we assert that T (t) = sk
for t ∈ [tk−1, sk] and T (t) = t for t ∈ [sk, tk]. Moreover, for s ∈ [tk−1, sk], t ∈ ]sk, tk] we have
Γ(t, s) = (t− sk)

−1.
The following statements are valid.

(i) If k/tk → 0 as k → ∞ and the sequence tk − sk is bounded, then the Lyapunov exponent of
system (6) equals to zero whatever control we choose.

(ii) If k/tk → 0 as k → ∞ and the sequence sk satisfies the condition sk = µtk−1 + (1 − µ)tk
with some µ ∈ ]0, 1[, then choosing an appropriate control u we can prescribe any value for
the exponent of system (6). Note that we can choose u to be a constant.

Theorem 2. Suppose that system (1) is completely controllable and the matrix B is piecewise
uniformly continuous. If there exists a monotonically increasing to +∞ sequence tk, k ∈ N,
of positive real numbers satisfying the slow growth condition and such that for some α > 0 the
inequalities

Γ(tk+1, tk) 6 α(tk+1 − tk)
−1,

are valid for all k ∈ N, then the Lyapunov exponents of system (3) are globally controllable.

Remark. If the sequence tk does not satisfy the slow growth condition, then our ability to assign
the Lyapunov spectrum of system (3) depends on finer asymptotic properties of free system (2).

Corollary 1. Suppose that system (1) is completely controllable and the matrix B is piecewise
uniformly continuous. If there exists a monotonically increasing to +∞ sequence tk, k ∈ N, of
positive real numbers satisfying the slow growth condition such that for some γ > 0 the inequalities

W (tk, tk+1) > γ(tk+1 − tk)I,

are valid for all k ∈ N, then the Lyapunov exponents of system (3) are globally controllable.

To prove Corollary 1 we use the standard Kalman controls [1] existing on each segment where
some controllable system is completely controllable. These control functions are useless for imme-
diate constructing of necessary matrix controls, but their norms satisfy an appropriate estimate to
apply Theorem 2.
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1 Introduction
In this communication we are concerned with the question on estimates of solutions to the general
linear boundary value problem

Lx = f, ℓx = 0, (1.1)

in the case of an uncertainty with respect to the right-hand side of the functional differential system
Lx = f . The linear operator L : AC n → Ln is assumed to be bounded and to have a Fredholm
principal part [1, pp. 7, 42]; ℓ : AC n → Rn is linear bounded vector-functional with linearly
independent components, f ∈ Ln. Here Ln is the space of summable functions f : [0, T ] → Rn,
AC n is the space of absolutely continuous functions x : [0, T ] → Rn. The spaces Ln , AC n are
assumed to be equipped with natural norms.

The right-hand side f is assumed to be known with an uncertainty, namely, it is given only that
its values are constrained by the inequalities

Λ · f(t) ≤ γ, t ∈ [0, T ], (1.2)

with a constant (N ×n)-matrix Λ and γ ∈ RN . We assume that the solutions set, V , to the system
Λv ≤ γ is nonempty and bounded.

The question we discuss here is one of the two-sided estimates of any solution to (1.1) at a fixed
point, say, τ ∈ [0, T ]:

q1 ≤ x(τ) ≤ q2. (1.3)

The consideration is based on the Green operator

G : Ln → AC n, (Gf)(t) =

T∫
0

G(t, s)f(s) ds (1.4)

of (1.1). For the existence of G and the integral representation of it we refer to [1, pp. 46–49].
Recall that the matrix kernel G(t, s) is called the Green matrix to (1.1). We can understand the
estimate (1.3) as an external estimate of the range to G over all f ’s such that f(t) ∈ V for almost
all t ∈ [0, T ].
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2 The two-sided estimation of solutions
We will use the following notation.

Fix a τ from the segment [0, T ]. Let (e1, . . . , en) be the canonical basis in Rn, thus ei has 1 as
the i-th component and zero as the rest ones. Introduce the vector eki = (−1)k−1ei, i = 1, . . . , n,
k = 1, 2. Define Gk

i (s) = (eki )
′ ·G(τ, s), where ( · )′ stands for transposition.

Denote by wk
i (s) the solution of the problem Gk

i (s) · v → max, v ∈ V . Fix a collection of sj ,

j = 0, . . . , µ, 0 = s0 < s1 < · · · < sµ = T , and define w̃k
i (s) =

µ∑
j=1

χ
[sj−1,sj)

(s)wk
i (sj), where χA(s) is

the characteristic function of a set A ⊂ R.

Theorem. Let G(τ, s) be piecewise continuous in s on [0, T ] and nonnegative δki , i = 1, 2, . . . , n,
k = 1, 2 be such that the inequalities

T∫
0

Gk
i (τ, s)w

k
i (s) ds ≤

T∫
0

Gk
i (τ, s)w̃

k
i (s) ds+ δki = qki , i = 1, 2, . . . , n, k = 1, 2,

hold. Then, for any f constrained by (1.2), there take place the estimates of x(τ):

(eki )
′x(τ) ≤ qki , i = 1, 2, . . . , n, k = 1, 2.

Example. Let us consider the system (see [3])

ẋ1(t) = x2(t− 1) + f1(t),

ẋ2(t) = −x2(t) + f2(t),
t ∈ [0, 3], (2.1)

where x2(s) = 0 if s < 0. Set up the boundary conditions by the equality

ℓx ≡ x(3)− x(0) = 0. (2.2)

As for the right-hand side f , the information about it is confined only to the inequalities

−0.25 ≤ f1(t) ≤ −0.15, 0.1 ≤ f2(t) ≤ 0.5,

0.4f1(t)− 0.1f2(t) ≥ −0.11, 0.4f1(t) + 0.1f2(t) ≤ −0.05.
(2.3)

The boundary value problem (2.1), (2.2) is iniquely solvable since (2.1) has the fundamental
matrix

X(t) =

(
1 χ

[1,3]
(t)(1− e1−t)

0 e−t

)
,

and
ℓX =

(
−1 1− e−2

0 e−3 − 2

)
,

with det ℓX = 2− e−3.
Put τ = 2 and obtain the estimate of x(2) that holds for any f constrained by (2.3).
Having in mind the Cauchy matrix to the system (2.1) constructed in [3], we can construct the

Green matrix G(t, s) to (2.1), (2.2). For purpose of estimating x(2), it suffices to use the section



152 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

G(2, s). Let us give its description component by component:

G11(2, s) =

{
2, s ∈ [0, 2],

1, s ∈ (2, 3];

G12(2, s) =


−e−3 − 2 + 2es−2 − 2es−3 + es−4

2− e−3
+ 1− es−1, s ∈ [0, 2],

−e−3 − 2 + 2es−2 − 2es−3 + es−4

2− e−3
, s ∈ (2, 3];

G22(2, s) = 0; G11(2, s) =


es−5

2− e−3
+ es−2, s ∈ [0, 2],

es−5

2− e−3
, s ∈ (2, 3].

In this case Theorem gives the following estimates:

−1.19 ≤ x1(2) ≤ −0.52; 0.1 ≤ x2(2) ≤ 0.28.

To illustrate the interrelation between the rigidity of constraints and the size of the values
set to x(2), we note that in the case of −0.01 ≤ f1(t) ≤ 0.01, −0.01 ≤ f2(t) ≤ 0.01, we obtain
−0.07 ≤ x1(2) ≤ 0.07, −0.01 ≤ x2(2) ≤ 0.01. Clear, it depends on the Green operator property, but
the approach we discuss opens a way to take into account specific properties of solution components
in contrary to the estimates in terms of the norms introduced into the corresponding functional
spaces.

In conclusion we refer to the papers [2–7] where different aspects of the problem on enclosing
solutions to various classes of dynamic systems are presented and useful references can be found.
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In the paper, we study the question of the disconjugacy on the interval I := [a, b] ⊂ [0,+∞[ of
the fourth order linear ordinary differential equation

u(4)(t) = p(t)u(t), (0.1)

where p : I → R is Lebesgue integrable function.
Throughout the paper we use the following notations.
R = ]−∞,+∞[ , R+ = ]0,+∞[ , R+

0 = [0,+∞[ , R−
0 = R \ R+, R− = R \ R+

0 .
C(I;R) is the Banach space of continuous functions u : I → R with the norm ∥u∥C =

max{|u(t)| : t ∈ I}.
C̃3(I;R) is the set of functions u : I → R which are absolutely continuous together with their

third derivatives.
L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm ∥p∥L =

b∫
a
|p(s)| ds.

For arbitrary x, y ∈ L(I;R), the notation

x(t) 4 y(t)
(
x(t) < y(t)

)
for t ∈ I,

means that x ≤ y (x ≥ y) and x ̸= y. Also we use the notations [x]± = (|x| ± x)/2.
By a solution of equation (0.1) we understand a function u ∈ C̃3(I;R), which satisfies equation

(0.1) a.e. on I.

Definition 0.1. Equation (0.1) is said to be disconjugate (non oscillatory) on I, if every nontriv-
ial solution u has less then four zeros on I, the multiple zeros being counted according to their
multiplicity. Otherwise, we say that equation (0.1) is oscillatory on I.

Definition 0.2. We say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and equation (0.1), under the boundary

conditions
u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (0.12)

has a solution u such that
u(t) > 0 for t ∈ ]a, b[ . (0.2)

Definition 0.3. We say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and equation (0.1) under the boundary

conditions
u(i)(a) = 0 (i = 0, 1, 2), u(b) = 0 (0.23)

has a solution u such that inequality (0.2) holds.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 155

1 Main results
1.1 Disconjugacy of equation (0.1) with non-negative coefficient
First we consider equation (0.1) when the coefficient p is non-negative. In this case the following
propositions are valid.

Theorem 1.1. Let p ∈ L(I;R+
0 ). Then equation (0.1) is disconjugate on I iff there exists p∗ ∈

D+(I) such that
p(t) 4 p∗(t) for t ∈ I. (1.1)

Remark 1.1. From Theorem 1.1 it is clear that the structure of the set D+(I) is such that if
x, y ∈ D+(I), then none of the inequalities x 4 y and y 4 x holds.

The following corollary shows us that for an arbitrary p∗ ∈ D+(I), inequality (1.1) is optimal
in some sense.

Corollary 1.1. Let p∗ ∈ D+(I) and

p(t) ≥ p∗(t) for t ∈ I. (1.2)

Then equation (0.1) is oscillatory on I.

Let λ1 > 0 be the first eigenvalue of the problem

u(4)(t) = λ4u(t), u(i)(0) = 0, u(i)(1) = 0 (i = 0, 1). (1.3)

Then from Theorem 1.1 and Corollary 1.1 we obtain

Corollary 1.2. Equation (0.1) is disconjugate on I if

0 ≤ p(t) 4 λ4
1

(b− a)4
for t ∈ I,

and is oscillatory on I if

p(t) ≥ λ4
1

(b− a)4
for t ∈ I.

Remark 1.2. It is well known that the first eigenvalue λ1 of problem (1.3), is the first positive root
of the equation cosλ · coshλ = 1, and λ1 ≈ 4.73004 (see [2, 5]). Also, in Theorem 3.1 of paper [5]
it was proved that the equation u(4) = λ4u is disconjugate on [0, 1] if 0 ≤ λ < λ1.

1.2 Disconjugacy of equation (0.1) with non-positive coefficient
Now we consider equation (0.1) with the non-positive coefficient p, for which the following propo-
sitions are valid.

Theorem 1.2. Let p ∈ L(I;R−
0 ). Then equation (0.1) is disconjugate on I iff there exists p∗ ∈

D−(I) such that
p(t) < p∗(t) for t ∈ I. (1.4)

Remark 1.3. From Theorem 1.2 it is clear that the structure of the set D−(I) is such that if
x, y ∈ D−(I), then none of the inequalities x 4 y and y 4 x holds.

The following corollary shows us that for an arbitrary p∗ ∈ D−(I), inequality (1.4) is optimal
in some sense.
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Corollary 1.3. Let p∗ ∈ D−(I), and

p(t) ≤ p∗(t) for t ∈ I. (1.5)

Then equation (0.1) is oscillatory on I.

Let λ2 > 0 be the first eigenvalue of the problem

u(4)(t) = −λ4u(t), u(i)(0) = 0 (i = 0, 1, 2), u(1) = 0. (1.6)

Then from Theorem 1.2 and Corollary 1.3 we obtain

Corollary 1.4. Equation (0.1) is disconjugate on I if

− λ4
2

(b− a)4
4 p(t) ≤ 0 for t ∈ I,

and is oscillatory on I if

p(t) ≤ − λ4
2

(b− a)4
for t ∈ I.

Remark 1.4. In Theorem 4.1 of paper [5] (see also [2, Theorems 3.5 and 3.6], [1, Subsection 4.1])
following is proved: let λ2 be the first positive root of the equation tanh λ√

2
= tan λ√

2
(λ2 ≈ 5.553).

Then the equation u(4) = −λ4u is disconjugate on [0, 1] if 0 ≤ λ < λ2.

1.3 Disconjugacy of equation (0.1) with not necessarily constant sign coefficient
On the basis of Theorems 1.1 and 1.2, we can get the non-improvable results which guarantee the
diconjugacy of equation (0.1) on I, when p is not necessarily constant sign function.

Theorem 1.3. Let p∗ ∈ D−(I) and p∗ ∈ D+(I). Then for an arbitrary function p ∈ L(I;R), such
that

p∗(t) 4 −[p(t)]−, [p(t)]+ 4 p∗(t) for t ∈ I, (1.7)
equation (0.1) is disconjugate on I.

The theorem is optimal in the sense that inequalities (1.7) can not be replaced by the condition
p∗ ≤ p ≤ p∗.

Corollary 1.5. Let the functions p1 ∈ L(I;R−
0 ), p2 ∈ L(I;R+

0 ), be such that the equations

u(4)(t) = p1(t)u(t), u(4)(t) = p2(t)u(t) (1.8)

are disconjugate on I, and
p1(t) ≤ p(t) ≤ p2(t) for t ∈ I. (1.9)

Then equation (0.1) is disconjugate on I.

Remark 1.5. We can see that in Kondrat’ev’s comparison second theorem:

Theorem 1.4 ( [4, Theorem 2]). Let the continuous functions p1, p2 : [a, b] → R be such that
equations (1.8) are disconjugate on I, and p1 ≤ p ≤ p2. Then equation (0.1) is disconjugate too.

The permissible coefficients p1 and p2 should not necessarily be constant sign functions, while
in Theorem 1.3 for the permissible coefficients p1 and p2 equations (1.8) should not necessarily be
disconjugate. For this reason, for example, if p(t) = λ4

1[cos(2πt/n)]+ − λ4
2[cos(2πt/n)]−, then from

Theorem 1.3 it follows the disconjugacy of equation (0.1) on [0, 1] for all n ∈ N (see Corollary 1.6),
while this fact does not follows from Kondrat’ev’s theorem.
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From Theorem 1.3 with p∗ := − λ4
2

(b−a)4
and p∗ :=

λ4
1

(b−a)4
we obtain

Corollary 1.6. Let λ1 > 0 and λ2 > 0 be the first eigenvalues of problems (1.3) and (1.6),
respectively, and the function p ∈ L(I;R) admits the inequalities

− λ4
2

(b− a)4
4 p(t) 4 λ4

1

(b− a)4
for t ∈ I.

Then equation (0.1) is disconjugate on I.

Remark 1.6. If we take into account that λ4
1 ≈ 501 and λ4

2 ≈ 951, then it is clear that Corollary
1.6 significantly improves W. Coppel’s well-known condition

max
t∈[a,b]

|p(t)| ≤ 128

(b− a)4
,

proved in [3, Theorem 1, p. 86], which for p ∈ C(I;R) guarantees the disconjugacy of equation
(0.1) on I.
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The Ambrosetti–Prodi problem for an equation of the form

F (x) = s (1)

consists of determining how varying the parameter s affects the number of solutions x. Usually,
an Ambrosetti–Prodi type result yields the existence of a number s0 such that (1) has zero, at
least one or at least two solutions according to s < s0, s = s0 or s > s0. This terminology has
become current after the founding work by A. Ambrosetti and G. Prodi [1] in 1972. Since then
Ambrosetti–Prodi type results have been proved for several classes of boundary value problems: a
thorough bibliography would include nearly two hundred titles.

In this contribution, based on the very recent paper [7], we analize the simplest case of the
scalar periodic ODE

x′ = f(t, x) (2)

and the associated periodic Ambrosetti–Prodi problem

x′ = f(t, x)− s. (3)

Throughout we assume that s ∈ R is a parameter and

(h1) f : R×R → R is T -periodic with respect to the first variable and satisfies the L1-Carathéodory
conditions.

Hereafter, by a T -periodic solution of (2) or (3) it is meant a T -periodic function x : R → R which
is locally absolutely continuous and satisfies the equation for a.e. t ∈ R.

Under the coercivity condition

f(t, x) → +∞, as |x| → +∞ uniformly a.e. in t, (4)

the periodic Ambrosetti–Prodi problem for (3) has been investigated by several authors, since the
early eighties until very recent years: we refer to the bibliographies in [5,6,8] for a rather complete
list of references. Thanks to its simplicity, (3) is in fact a quite good sample problem: manifold
techniques can be effectively tested on it and the obtained results can suggest possible extensions
to more general and complicated contexts.

In the case where f is a Bernoulli-type nonlinearity, i.e.,

(h2) there exist a, b ∈ L1(0, T ) and p > 0 such that f(t, x) = a(t)|x|p + b(t) for a.e. t ∈ [0, T ] and
all x ∈ R,
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the coercivity assumption (4) amounts to requiring that

ess inf
[0,T ]

a > 0.

However, when modeling, for instance, population dynamics, it is interesting to include cases
where the function a vanishes on sets of positive measure or changes sign, in order to describe the
occurrence of seasonal periods which inhibit or adversely affect the growth rate of the population
under consideration. A real outbreak of papers devoted to the study of nonlinear problems which
are indefinite in sign dates back to the eighties of the last century both in the PDEs and the
ODEs settings, together with a parallel renewed interest towards ecological models (see, e.g., the
monograph [2]).

First relevant progresses in relaxing the uniform coercivity assumption (4) were achieved in the
recent papers [3, 8, 9]; precisely, the following result for equation (3) was obtained in [8].

Theorem 1 ( [8, Theorem 3.3]). Assume (h1),

(h3) there exist a, b ∈ L1(0, T ) such that f(t, x) ≥ a(t)|x|+ b(t) for a.e. t ∈ [0, T ] and all x ∈ R,

(h4) there exists x ∈ R such that ess sup
t∈[0,T ]

f(t, x) < +∞,

(h5) for every K1,K2, σ ∈ ]0,+∞[, there exists d > 0 such that, for every x ∈ C0([0, T ]) with
x(0) = x(T ), if

max
[0,T ]

|x| ≤ K1min
[0,T ]

|x|+K2 (5)

and either min
[0,T ]

x ≥ d or max
[0,T ]

x ≤ −d, then
T∫
0

f(t, x) dt > σ.

Then, there exists s0 ∈ R such that equation (3) has zero, at least one or at least two T -periodic
solutions according to s < s0, s = s0 or s > s0.

It is easy to check (see, e.g., [8, Corollary 4.1]) that (h5) holds whenever the function a which
appears in (h3) satisfies both

(h6) a(t) ≥ 0 for a.e. t ∈ [0, T ]

and

(h7)
T∫
0

a(t) dt > 0.

Accordingly, condition (h5) permits to consider nonlinearities which are just locally coercive, al-
though bounded from below by a L1-function.

In [7] we pushed further into the direction of relaxing the coercivity assumption on f , by showing
that the non-negativity condition (h6) can be dropped at all, while still achieving all the conclusions
of Theorem 1. Namely, we proved the following result.

Theorem 2. Assume (h1), (h4),

(h8) there exist a, b ∈ L1(0, T ) and p ∈ ]0, 1] with f(t, x) ≥ a(t)|x|p + b(t) for a.e. t ∈ [0, T ] and
all x ∈ R,

and (h7). Then, there exists s0 ∈ R such that equation (3) has zero, at least one or at least two
T -periodic solutions according to s < s0, s = s0 or s > s0.
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Assumptions (h8) and (h7) basically require f being coercive on the average and allow that

both lim
|x|→+∞

f(t, x) = +∞ and lim
|x|→+∞

f(t, x) = −∞ on sets of positive measure.

It is worth stressing on the other hand that condition (h5) prevents f from exhibiting this behavior,
at least if f has the Bernoulli-type structure (h2), as expressed by the following statement.

Proposition 3. Assume (h2). Then, condition (h5) is equivalent to conditions (h6) and (h7).

The proof of Theorem 2 is based on the direct construction of lower and upper solutions. Thus,
from the results in [5], it is possible to infer various information on the qualitative properties of
the obtained solutions. Indeed, for each s > s0, equation (3) has at least one T -periodic solution
which is weakly asymptotically stable from below, at least one T -periodic solution which is weakly
asymptotically stable from above and at least one weakly stable T -periodic solution (all these
solutions may possibly coincide), as well as, in addition, at least one unstable T -periodic solution,
while for s = s0 it has at least one unstable solution.

A question that may arise looking at Theorem (2) is whether or not one can assume p > 1 in
condition (h8). The answer is in general negative as shown by the following statement obtained
in [7].

Proposition 4. Assume (h1) and

(h10) there exist p > 1, I = [t1, t2] ⊆ [0, T ] and δ > 0 such that f(t, x) ≤ −δ|x|p for a.e. t ∈ I and
all x ∈ R.

Then, there exists σ ∈ R such that, for all s ≥ σ, equation (3) has no T -periodic solutions.

In spite of the negative result of Proposition 4, we proved in [7] a positive result provided that
f(·, 0) = 0 and s is sufficiently small.

Proposition 5. Assume (h1),

(h11) f(·, 0) = 0 and there exist a ∈ L1(0, T ) and p > 1 such that f(t, x) ≥ a(t)|x|p for a.e. t ∈ [0, T ]
and all x ∈ R,

and (h7). Then, there exists σ > 0 such that, for all s ∈ ]0, σ[ , problem (3) has at least one positive
T -periodic solution and at least one negative T -periodic solution.

Open problem. It remains open the question of knowing if conclusions similar to the above can
be proven for boundary value problems associated with second order ODEs or PDEs: a preliminary
step in this direction is given by the perturbative result established in [3, Proposition 5.1].
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1 Introduction
Beginning from the pioneering works of A. M. Samoilenko the theory of differential equations with
impulses [1,6,9] provides a mathematical tools for describing the behavior of many evolutionary pro-
cesses with instant changes. The important subclass of the systems with discontinuous trajectories
are impulsive (discontinuous) dynamical systems, whose trajectories have jumps after intersection
with a given surface M in the phase space [5]. In infinite-dimensional phase spaces the theory of
global attractors is a basis for qualitative analysis of solutions [10]. The lack of continuous depen-
dence on initial data in impulsive dynamical systems do not allow us to apply directly the methods
of the theory of global attractors. Nevertheless, one can use more general concept of uniform at-
tractor [8] in this case. By definition, uniform attractor is a compact uniformly attracting (w.r.t.
bounded initial data) set which is minimal among all such sets. Existence of such a set in impulsive
infinite dimensional case firstly was proved in [3] for weakly nonlinear parabolic equation. It turned
out that in the case of infinitely many impulsive points along trajectories the uniform attractor
Θ has non-empty intersection with impulsive set M . As a consequence, it is neither invariant no
stable set w.r.t. the impulsive semi-flow. In the paper [4] a new stability concept was introduced
basing on the properties of the set Θ \M . In the present paper we investigate stability of uniform
attractor for the weakly nonlinear second order evolutionary problem with impulses.

2 Uniform attractors of impulsive semi-flows
Impulsive dynamical system on normed space E consists of continuous semigroup V : R+×E → E,
impulsive set M ⊂ E and impulsive map I : M → E. The phase point moves along trajectories
of V until the moment τ when the phase point x(t) reaches the set M . At that moment the point
instantaneously moves into a new position Ix(τ).

We need the following assumptions [5]:

M is closed, M ∩ IM = ∅,
∀x ∈M, ∃ τ = τ(x) > 0, ∀ t ∈ (0, τ) V (t, x) 6∈M,

every impulsive trajectory is defined on [0,+∞).

(2.1)

Let us introduce notations:

∀x ∈M Ix = x+, ∀x ∈ E M+(x) =
(⋃

t>0

V (t, x)
)
∩M.
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If M+(x) 6= ∅, then from the continuity of V we deduce that there exists a moment s > 0 such
that

∀ t ∈ (0, s) V (t, x) 6∈M, V (s, x) ∈M.

Then the impulsive semiflow G is described by the following construction:
if for x ∈ E and for every t > 0 V (t, x) 6∈M , then

G(t, x) = V (t, x).

Otherwise,

G(t, x) =

{
V (t− tn, x

+
n ), t ∈ [tn, tn+1),

x+n+1, t = tn+1,
(2.2)

where t0 = 0, tn+1 =
n∑

k=0

sk, x+n+1 = IV (sn, x
+
n ), x+0 = x, sn is a moment of impulsive perturbation,

which is characterized by inclusion V (sn, x
+
n ) ∈M .

Formula (2.2) defines (not necessary continuous) semigroup G : R+ × E → E, which is called
impulsive semiflow.

We will use the following notations:

b(E) is a set of all bounded subsets of E;

dist(A,B) = sup
x∈A

inf
y∈B

‖x− y‖E ;

Oδ(A) =
{
x ∈ E : dist(x,A) < δ

}
.

Definition 2.1 ([3]). A compact set Θ ⊂ E is called a uniform attractor of the impulsive semiflow
G if

(1) Θ is uniformly attracting set, i.e.

∀B ∈ b(E) dist(G(t, B),Θ) → 0, t→ ∞;

(2) Θ is the minimal among all sets satisfying (1).
Theorem 2.1 ([3]). Assume that the impulsive semiflow G is dissipative, i.e.,

∃B0 ∈ b(E), ∀B ∈ b(E), ∃T = T (B), ∀ t ≥ T G(t, B) ⊂ B0. (2.3)

Then G has uniform attractor Θ if and only if G is asymptotically compact, i.e.,

∀ {tn ↗ ∞} ∀{xn} ∈ b(E), ∀ {tn ↗ ∞}, ∀ {xn} ∈ b(E) {G(tn, xn)} is precompact in E. (2.4)

Moreover, the following equality takes place

Θ = ω(B0) :=
⋂
τ>0

⋃
t≥τ

G(t, B0). (2.5)

Definition 2.2 ([2]). A set A ⊂ E is called stable with respect to semiflow G if

A = D+(A) :=
⋃
x∈A

{
y : y = limG(tn, xn), xn → x, tn ≥ 0

}
. (2.6)

Remark. As A ⊂ D+(A), so (2.6) is equivalent to D+(A) ⊂ A.
It is known that for continuous semiflows a uniform attractor is invariant and stable in the sense

(2.6). Our main goal is to prove that for impulsive semiflow generated by impulsive perturbed wave
equation the uniform attractor Θ satisfies the property

D+(Θ \M) ⊂ Θ \M. (2.7)
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3 Impulsive wave equation
We consider the triplet of Hilbert spaces V ⊂ H ⊂ V ∗ with compact and dense embedding. Let
‖ · ‖ and ( · , · ) be the norm and scalar product in H, A : V → V ∗ be a linear continuous self-adjoint
coercive operator. The function 〈Au, u〉

1
2 defines a norm in the space V , which is denoted by ‖u‖V .

We consider the following evolutionary problem (β > 0):
∂2y

∂t2
+ 2β

∂y

∂t
+Ay = εF (y),

y
∣∣
t=0

= y0 ∈ V,

yt
∣∣
t=0

= y1 ∈ H,

(3.1)

where ε > 0 is a small parameter, F : H 7→ H is a given Lipschitz continuous map. It is known [10]
that in the phase space E = V ×H this problem generates continuous semigroup V : R+×E → E,
where

for z0 =

(
y0
y1

)
∈ E, V (t, z0) = z(t) =

(
y(t)
yt(t)

)
.

The norm in E is given by the equality:

for z =

(
y
w

)
∈ E, ‖z‖E = ‖y‖V + ‖w‖.

Qualitative behavior of linear impulsive wave equation firstly was considered in [7]. It was
shown that it is natural to consider an impulsive set as a level set of some seminorm lp, where

∀ z ∈ E lp(z) → ‖z‖E , p→ ∞.

Let {λi}, {ψi} be solutions of spectral problem:

∀ i ≥ 1 Aψi = λiψi, 0 < λ1 ≤ λ2 ≤ · · · , λi → ∞, i→ ∞.

For p ≥ 1 let us consider lp : E → R:

for z =

(
y
w

)
∈ E, lp(z) =

( p∑
i=1

{
λi(y, ψi)

2 + (w,ψi)
2
}) 1

2
.

For fixed p ≥ 1, a > 0, µ > 0 let us put

M =
{
z ∈ E : lp(z) = a

}
, (3.2)

M ′ =
{
z ∈ E : lp(z) = a(1 + µ)

}
,

I :M →M
′ such that

for z =

∞∑
i=1

(
ci
di

)
ψi ∈M,

I(z) ∈
{ p∑

i=1

(
c′i
d′i

)
ψi +

∞∑
i=p+1

(
ci
di

)
ψi :

p∑
i=1

{
λi(c

′
i)
2 + (d′i)

2
}
= a2(1 + µ)2

}
. (3.3)

The main result is the following theorem.

Theorem 3.1. For every impulsive map I : M 7→ M ′ satisfying (3.3) and for sufficiently small
ε > 0 the impulsive problem (3.1)–(3.3) generates impulsive semiflow G : R+ × E → E, which has
uniform attractor Θ and (2.7) takes place.
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For a given n ∈ N let us consider the set Mn of linear systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1)

with continuous and bounded matrix-valued functions A : R+ → Rn×n, which we identify with the
corresponding linear systems.

In the contemporary theory of Lyapunov exponents the set Mn is usually equipped with the
uniform and compact-open topologies defined respectively by the metrics

ρU (A,B) = sup
t∈R+

∥A(t)−B(t)∥ and ρC(A,B) = sup
t∈R+

min
{
∥A(t)−B(t)∥, 2−t

}
,

with ∥ · ∥ being a matrix norm (e.g., the spectral one). The resulting topological spaces will be
denoted by Mn

U and Mn
C . V. M. Millionshchikov [5, 6] proposed using the Baire classification

of discontinuous functions [2] to describe the dependence of various characteristics of asymptotic
behavior of solutions to linear differential systems on their coefficients.

To recall what the Baire classification is, it is convenient to introduce the following notation.
Let M be a metric space and F a collection of functions f : M → R. For each k ∈ N0 ≡ N ⊔ {0}
we define the function class [F ]k by induction as follows:

1. The class [F ]0 coincides with the class F .

2. The class [F ]k consists of functions f : M → R that can be represented in the form

f(x) = lim
j→∞

fj(x), x ∈ M,

where functions fj : M → R, j ∈ N , belong to the class [F ]k−1.

Definition 1. Let M be a metric space. For each number k ∈ N we define the k-th Baire class
Fk(M) by the equality Fk(M) = [C(M)]k, where C(M) is the set of all continuous functions
f : M → R. Besides, for each k ∈ N we define the exact k-th Baire class F̌k(M) by the equality
F̌k(M) = Fk(M) \ Fk−1(M).

Put simply, Definition 1 tells that a function f belongs to the k-th Baire class if there exists
a k-indexed sequence of continuous functions such that f can be obtained by taking pointwise
limits of this sequence for k times (as each of its indices successively tends to infinity). Thus, when
considering functionals on the space of linear differential systems, it is natural from the viewpoint of
applications to require that the values of the prelimit functionals can be calculated from information
about the system on finite intervals of the time semiaxis. This argument leads to the following [7]
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Definition 2. We say that a functional φ : Mn → R has a compact support if there exists a
T > 0 such that φ(A) = φ(B) whenever A,B ∈ Mn coincide on the interval [0, T ]. The set of all
functionals with compact support will be denoted by Cn.

Definition 3. The k-th class of formulas Cn
k is defined by

Cn
k =

[
F0(Mn

C) ∩ Cn
]
k
, k ∈ N0.

It was established in the paper [5] that the classes Cn
k and Fk(Mn

C) coincide with each other
for all k ≥ 1. This fact emphasizes the importance of studying the compact-open topology on the
space Mn.

For a more detailed classification let us give the following

Definition 4. The (k,m)-th class of formulas Cn
k,m is defined by

Cn
k,m =

[
Fk(Mn

C) ∩ Cn
]
m
, k,m ∈ N0.

It is of interest to consider inclusions between different classes of formulas just introduced. The
inclusion criterion is provided by the following

Theorem 1. Let i, j, k,m ∈ N0. The inclusion Cn
i,j ⊂ Cn

k,m holds if and only if j ≤ k and
i+ j ≤ k +m.

The main subject of study in the theory of Lyapunov exponents is not arbitrary functionals on
the space of linear systems but rather the invariants of action of various transformation groups,
particularly, Lyapunov transformations [1, Ch. III, § 1]. Hence, we give the following

Definition 5. A continuously differentiable matrix-valued function L : R+ → Rn×n is called a
Lyapunov transformation if L(t) is invertible for all t ∈ R+ and the condition

sup
t≥0

(
∥L(t)∥+ ∥L−1(t)∥+ ∥L̇(t)∥

)
< ∞

is satisfied. Systems A,B ∈ Mn are said to be Lyapunov equivalent if there exists a Lyapunov
transformation that reduces the system A into the system B. A functional φ : Mn → R is called
a Lyapunov invariant if φ(A) = φ(B) whenever A and B are Lyapunov equivalent. The set of all
Lyapunov invariants will be denoted by Ln.

It was shown in the paper [4] that the set [Cn]1 ∩ Ln contains only constants and that [Cn]k ̸⊃
Fk+1(Mn

C) ∩ Ln. These statements are supplemented by the following

Theorem 2. Let i, j, k, m be nonnegative integers and j ≥ 2. In order for the inclusion
Cn
i,j ∩ Ln ⊂ Cn

k,m ∩ Ln to hold it is necessary that m ≥ j and sufficient that m ≥ j + 1.

Remark. In the case j ≥ 2 it is unknown to the author whether the classes Cn
i,j ∩Ln and Cn

k,j ∩Ln

coincide for different i and k.

Since continuity (or discontinuity) of a function varies from point to point in its domain, a local
Baire classification of functions makes sense [8].

Definition 6. Let M be a metric space and k ∈ N0. We say that a function f belongs to the
k-th Baire class at a point x0 ∈ M and write f ∈ Fk(Mn

C , x0) if there exists a neighborhood U
of the point x0 such that the restriction of f to U belongs to the k-th Baire class. If, in addition,
f ̸∈ Fk−1(Mn

C , x0), then we say that a function f belongs to the exact k-th Baire class at the point
x0 ∈ M and write f ∈ F̌k(Mn

C , x0). If f ∈ F̌k(Mn
C , x0) for all x0 ∈ M , the function f is said to be

uniform of the k-th Baire class.
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It is well known [8] that each Lyapunov exponent considered as a function on Mn
C is uniform

(of the second Baire class).
It turns out that this property is shared by all Lyapunov invariants as shown by the following

Theorem 3. Each Lyapunov invariant Mn
C → R that belongs to a certain exact Baire class is

uniform of that class.
By contrast, each Lyapunov exponent considered as a function on Mn

U belongs to the zeroth
Baire class at some points and to the second Baire class at others. It is known that for the two lowest
exponents there are no points at which either of them belongs to the exact first Baire class [3, 8].
For the rest exponents it is conjectured but not proved to date.

The question naturally arises which local Baire classes can a general Lyapunov invariant Mn
U →

R belong to at different points?
Theorem 4. For every n ∈ N there exist a Lyapunov invariant φ : Mn

U → [0, 1] and a set of
points {Ai ∈ Mn : i ∈ N} such that

φ ∈
∩
i∈N

F̌i(Mn
U , Ai).

Theorem 5. For any integers n ≥ 1 and N ≥ 2 there exist a Lyapunov invariant φ : Mn → [0, 1]
and a set of points {Ai ∈ Mn : i = 1, . . . , N} such that

φ ∈
N∩
i=1

F̌i(Mn
U , Ai) ∩ F̌N (Mn

C).

The author expresses a deep gratitude to V. V. Bykov for posing the problem and for attention
to the research.
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1 Introduction
In this paper we consider the nonlinear equation of higher (n > 2) order:

y(n) + p(t, y, y′, . . . , yn−1)|y|k sgn y = 0, k ∈ (0, 1) ∪ (1,∞), (1.1)

where, for some m,M ∈ R, the inequalities 0 < m ≤ |p(t, ξ1, ξ2, . . . , ξn)| ≤ M < ∞ hold, the
function p(t, ξ1, ξ2, . . . , ξn) is continuous and Lipschitz continuous in (ξ1, ξ2, . . . , ξn).

We study some oscillatory properties of (1.1) and compare them, for different n, with oscillatory
properties of the linear equation

y(n) + p(t)y = 0. (1.2)

We obtain Sturm-type theorems.

2 Sturm’s and Kondratiev’s theorems
We know the classical result on properties of zeros of solutions to a second order linear equation,
called Sturm’s theorem.

Theorem 2.1 (Sturm J. Ch. F.). Consider two linearly independent solutions to the equation

y′′ +Q(t)y = 0

with a continuous function Q(t), and let one of the solutions have two consecutive zeros. Then
there is exactly one zero of another solution between those consecutive zeros.

This result was generalized by V. A. Kondratiev for linear equations of higher order.

Theorem 2.2 (V. A. Kondratiev, 1959). Suppose that solution to equation

y′′′ + p(t)y = 0,

where p(t) is continuous and p(t) > 0 for every t (or p(t) < 0 for every t), has consecutive zeros
x1 and x2. Then every other solution to the equation has no more than two zeros on [x1, x2].

Theorem 2.3 (V. A. Kondratiev, 1959). Suppose that solution to equation

yIV + q(t)y = 0,

where p(t) is continuous and p(t) > 0 for every t, has consecutive zeros x1 and x2. Then every
other solution to the equation has no more than four zeros on [x1, x2].
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Theorem 2.4 (V. A. Kondratiev, 1959). Suppose that solution to equation

yIV + q(t)y = 0,

where p(t) is continuous and p(t) < 0 for every t, has consecutive zeros x1 and x2. Then every
other solution to the equation has no more than three zeros on [x1, x2].

And for linear equations of fifth and higher order V. A. Kondratiev proved (1961) that for n ≥ 5
and p(t) ≥ 0 there exists a solution to

y(n) + p(t)y = 0

with arbitrary number of zeros between two consecutive zeros of another solution (see [5, 6]).

3 Theorem for the nonlinear equation
We consider equation (1.1) to be a generalisation of equation (1.2). Equation (1.1), which is, in
turn, a generalisation to Emden equation, was studied in the [1–4,7–13], and from variety of results
obtained, we derive a theorem that serves as an analogue of Sturm’s and Kondratiev’s theorems,
but for the nonlinear equation.

Theorem 3.1. Suppose that a solution to equation (1.1), where p(t, ξ1, ξ2, . . . , ξn) > 0 (or n is odd
and p(t, ξ1, ξ2, . . . , ξn) < 0), has consecutive zeros x1 and x2. If k ∈ (0, 1) ∪ (1,+∞), then there
exists a solution to (1.1) with arbitrary finite number of zeros on [x1, x2]. If k ∈ (0, 1), then there
exists a solution to (1.1) with countable set of zeros on [x1, x2], and a solution with a set of zeros
on [x1, x2] with the cardinality of the continuum.

For the nonlinear equation results are the same for every n > 2, unlike results for linear equa-
tions. Any number of zeros is possible, irregardless of n.

Remark 1. Equation with even order n and negative p(t, ξ1, ξ2, . . . , ξn) require more research,
although we already know that we can’t expect same results. As [1, Chapter 7] shows, solutions
even to y(4) − y3 = 0 and y(4) + y3 = 0 differ greatly in their behaviour.

Remark 2. When k = 1, equation (1.1), in general, is not linear, but as we get a linear equation
as special case when p(t, ξ1, ξ2, . . . , ξn) depends only on t, in general case we can expect properties,
similar to Sturm’s and Kondratiev’s results, where possible number of zeros depends on n. Further
research is required.
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We study a control problem for the hybrid non-linear functional differential boundary value
problem which is, in some sense, inverse to problems investigated in [1,3]. The problem consists of
two systems of differential equations

x′(t) = f
(
t, x(t), x(β1(t)), x(β2(t))

)
, t ∈ [a, τ ], (1)

y′(t) = ϕ(t, y(t)), t ∈ [τ, b] (2)

on the intervals [a, τ ] and [τ, b] respectively, where the switching time τ is such that

g(t, x(τ−)) = 0, (3)

of the non-linear two-point boundary condition

V (x(a), y(b)) = 0, (4)

the jump condition at the time instant τ

y(τ+)− x(τ−) = γ, (5)

and the additional two-point conditions

xi(a) = zi, i = 1, . . . , j,

yk(b) = ηk, k = j + 1, . . . , n,
(6)

where 1 ≤ j ≤ n is fixed.
The values of the time instant τ and the size of the jump γ are not specified beforehand and

remain unknown. Thus, problem (1)–(6) is to determine the unknown values of τ and γ so that
the solutions of (1), (2) satisfy the non-linear boundary conditions (4), the jump condition (3), (5)
and the two-point conditions (6).
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We consider the single-jump case [1, 2], i.e., it is assumed that the switching time τ is unique,
which means that there is only one intersection of the integral curve of system (1) with the barrier set

G =
{
(t, x) ∈ [a, b]× Rn : g(t, x) = 0

}
. (7)

The impulse action in this problem is state-dependent since the time instant τ is determined
by the intersection of the curve with the barrier. In contrast to [1,2], the jump magnitude γ here is
unknown and plays the role of a control parameter. By a solution of (1)–(6), we mean the triplet
(u, τ, γ), where

u(t) =

{
x(t) if t ∈ [a, τ ],

y(t) if t ∈ (τ, b]
(8)

is left-continuous. The pre-jump evolution of the solution is described by the functional differential
equation (1) and its after-jump behaviour is characterized by the ordinary differential equation
(2). Equation (1), generally speaking, may contain other types of functional terms, which can be
treated in a similar way [4].

In (1), (2), f : [a, b]× R3n → Rn and ϕ : [a, b]× Rn → Rn satisfy the Carathéodory conditions,
βi : [a, τ ] → [a, τ ], i = 0, 1, are measurable, g is continuous.

We will use an approach similar to [1] and approximate a solution u of form (8) of problem
(1)–(6) by suitable sequences of functions separately on the intervals before and after the time when
the jump occurs. The jump time τ itself remains unknown and is treated as parameter the value
of which is to be determined.

Let us fix an arbitrary point τ ∈ (a, b) and choose certain compact convex sets Da, Dτ−, Dτ+,
Db, Γ and define the sets

Da,τ :=
{
(1− θ)z + θλ : z ∈ Da, λ ∈ Dτ−, θ ∈ [0, 1]

}
,

Dτ+,b :=
{
(1− θ)(λ+ γ) + θη : λ ∈ Dτ−, γ ∈ Γ, η ∈ Db, θ ∈ [0, 1]

}
.

Our technique is based on the parametrization

z = col
(
x1(a), x2(a), . . . , xj(a), zj+1, . . . , zn

)
,

η = col
(
η1, η2, . . . , ηj , yj+1(b), . . . , yn(b)

)
,

x(τ−) = col(λ1, λ2, . . . , λn) = λ,

which, together with γ = col(γ1, γ2, . . . , γn) and τ ∈ (a, b), constitutes the set of parameters
(z, λ, η, γ, τ) with

z ∈ Da, λ ∈ Dτ−, η ∈ Db, γ ∈ Γ. (9)
Let us fix non-negative vectors ϱ(i), i = 0, 1, and put

Ω0(ϱ
(0)) = Oϱ(0)(Da,τ ), Ω1(ϱ

(1)) = Oϱ(1)(Dτ+,b), (10)

where Oϱ(D) :=
⋃

z∈D
Oϱ(z) for D ⊂ Rn and Oϱ(z) := {ξ ∈ Rn : |ξ − z| ≤ ϱ} stand for the

corresponding componentwise neighbourhoods of a set and a vector.
Introduce the following two auxiliary parametrized two-point boundary value problems for the

investigation of the pre-jump and after-jump equations

x′(t) = f
(
t, x(t), x(β1(t)), x(β2(t))

)
, t ∈ [a, τ ]; x(a) = z, x(τ) = λ,

y′(t) = ϕ(t, y(t)), t ∈ (τ, b]; y(τ) = λ+ γ, y(b) = η,
(11)

where the time instant τ and the vectors z, λ, γ, and η are treated as free parameters. We suppose
that the functions x and y in (11) should take values in the sets Ω0 and Ω1, respectively.
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To study problems (11), by analogy to [1, 5], we introduce two sequences of functions
{xm( · , τ, z, λ) : m ≥ 0} and {ym( · , τ, λ, γ, η) : m ≥ 0} by putting

x0(t, τ, z, λ) =
(
1− t− a

τ − a

)
z +

t− a

τ − a
λ, t ∈ [a, τ ],

y0(t, τ, λ, γ, η) =
(
1− t− τ

b− τ

)
(λ+ γ) +

t− τ

b− τ
η, t ∈ (τ, b]

and

xm+1(t, τ, z, λ) = x0(t, τ, z, λ)

+

t∫
a

(Fxm( · , τ, z, λ))(s) ds− t− a

τ − a

τ∫
a

(Fxm( · , τ, z, λ))(s) ds, t ∈ [a, τ ], m ≥ 0, (12)

and

ym+1(t, τ, λ, γ, η) = y0(t, τ, λ, γ, η)

+

t∫
τ

(Φym( · , τ, z, λ))(s) ds− t− τ

b− τ

b∫
t

(Φym( · , τ, z, λ))(s) ds, t ∈ (τ, b], m ≥ 0, (13)

where

(Fx)(t) := f
(
t, x(t), x(β1(t)), x(β2(t))

)
, t ∈ [a, τ ],

(Φy)(t) := ϕ(t, y(t)), t ∈ (τ, b].

Assume that ϱ(0), ϱ(1) involved in (10) can be chosen so that

ϱ(0) ≥ τ − a

2
δ[a,b],(Ω0(ϱ(0)))3

(f), ϱ(1) ≥ b− τ

2
δ[a,b],Ω1(ϱ(1))

(ϕ), (14)

where δ[a,b],Ω1(ϱ(1))
(ϕ) is 1/2 of the oscillation of ϕ over [a, b]× Ω1(ϱ

(1)),

δ[a,b],Ω1(ϱ(1))
(ϕ) :=

1

2

(
ess sup

(t,x)∈[a,b]×Ω1(ϱ(1))

ϕ(t, x)− ess inf
(t,x)∈[a,b]×Ω1(ϱ(1))

ϕ(t, x)
)

and the value δ[a,b],(Ω0(ϱ(0)))3
(f) is defined by analogy. Assume that f and ϕ satisfy the Lipschitz

conditions with respect to the space variables∣∣f(t, x1, y1, z1)− f(t, x2, y2, z2)
∣∣ ≤ K0|x1 − x2|+K1|y1 − y2|+K2|z1 − z2|,

|ϕ(t, ξ1)− ϕ(t, ξ2)| ≤ L|ξ1 − ξ2|,
(15)

respectively, on the sets [a, b]× (Ω0(ϱ
(0)))3 and [a, b]× Ω1(ϱ

(1)), and put

Q0 =
τ − a

2
(K0 +K1 +K2), Q1 =

b− τ

2
L.

Theorem 1. Let there exist non-negative vectors ϱ(0), ϱ(1) with properties (14) such that (15) holds
on the sets [a, b]× (Ω0(ϱ

(0)))3 and [a, b]× Ω1(ϱ
(1)) and

r(Q0) < 1, r(Q1) < 1.

Then, for all fixed τ ∈ (a, b) , z ∈ Da, λ ∈ Dτ−, γ ∈ Γ, η ∈ Db:
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1. Functions (12), (13) are absolutely continuous on [a, τ ] and (τ, b] for m ≥ 0.

2. {xm(t, τ, z, λ) : t ∈ [a, τ ], m ≥ 0} ⊂ Ω0(ϱ
(0)), {ym(t, τ, λ, γ, η) : t ∈ [τ, b], m ≥ 0} ⊂ Ω1(ϱ

(1)).

3. {xm( · , τ, z, λ) : m ≥ 0} and {ym(t, τ, λ, γ, η) : m ≥ 0} converge to the limit functions
x∞( · , τ, z, λ), y∞( · , τ, λ, γ, η) uniformly on [a, τ ] and [τ, b].

4. x∞( · , τ, z, λ) and y∞( · , τ, λ, γ, η) are the solutions of the boundary value problems

x′(t) = (Fx)(t) +
1

τ − a

(
λ− z −

τ∫
a

(Fx)(s) ds

)
,

x(a) = z, x(τ) = λ,

(16)

y′(t) = ϕ(t, y(t)) +
1

b− τ

(
η − λ− z −

b∫
τ

ϕ(s, y(s))) ds

)
,

y(τ) = λ+ γ, y(b) = η,

(17)

and problems (16), (17) have no other solutions with values in Ω0(ϱ
(0)) and Ω1(ϱ

(1)).

5. The following estimates hold:∣∣x∞(t, τ, z, λ)− xm(t, τ, z, λ)
∣∣ ≤ τ − a

2
Qm

0 (1n −Q0)
−1δ[a,b],(Ω0(ϱ(0)))3

(f),∣∣y∞(t, τ, λ, γ, η)− ym(t, τ, λ, γ, η)
∣∣ ≤ b− τ

2
Qm

1 (1n −Q1)
−1δ[a,b],Ω1(ϱ(1))

(ϕ).

Theorem 2. If, under the above conditions, some values (τ, z, λ, γ, η) ∈ (a, b)×Da×Dτ−×Γ×Db

satisfy the system of 3n+ 1 scalar determining equations
τ∫

a

(Fx∞( · , τ, z, λ))(s) ds = λ− z, g(τ, λ) = 0,

b∫
τ

ϕ
(
s, y∞(s, τ, λ, γ, η)

)
ds = η − λ− γ, V (z, η) = 0

(18)

and, in addition, g(t, y∞(t, τ, λ, γ, η)) ̸= 0 for any t ∈ (τ, b], then the function

u∞(t, τ, z, λ, γ, η) :=

{
x∞(t, τ, z, λ) if t ≤ τ

y∞(t, τ, λγ, η) if t > τ

is a solution of the original problem (1)–(6) with a single jump γ at the time τ .
The solvability of (1)–(6) can be checked by studying the approximate determining system

obtained from (18) after replacing ∞ by a certain m.
Let us apply the approach described above to the systems

x′1(t) = −4

3
(x2(t

2))2,

x′2(t) = (1− t)2
(
1.8x1

( t

3

)
+

2

9
t
)
, t ∈ [0, τ ];

y′1(t) = y2(t)−
1

4
,

y′2(t) =
1

2

(
y2(t)−

1

4

)2
− y1(t) + 1, t ∈ [τ, 1],
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under the boundary conditions

x21(a) + y2(b) = 0.6, x22(a) + x1(a)y2(b) = 0.25, (19)
x1(a) = 0.43, y2(b) = 0.42 (20)

and the jump condition (3), (5) with the barrier set (7) of the form {(t, x1, x2) : (x1+
1
2)

2−t2 = 0.1}.
Clearly, (19) is a particular case of (4) and (20) has form (6) with j = 1, z1 = 0.43, η2 = 0.42.

The admissible sets for the parameter values were choosen as

Da = Dτ− = Da,τ− =
{
(x1, x2) : 0.27 ≤ x1 ≤ 0.45, 0.2 ≤ x2 ≤ 0.56

}
,

Γ =
{
(x1, x2) : 0.15 ≤ x1 ≤ 0.25, −0.3 ≤ x2 ≤ −0.2

}
,

Dτ+ = Db = Dτ+,b =
{
(x1, x2) : 0.495 ≤ x1 ≤ 0.58, −0.2 ≤ x2 ≤ −0.45

}
.

Putting in (14) ϱ(0) = col(0.8, 0.9), ϱ(1) = col(0.4, 0.5), for the pre-jump and after-jump curves we
obtain the domains of form (10)

Ω0(ϱ
(0)) =

{
(x1, x2) : −0.53 ≤ x1 ≤ 1.25, −0.7 ≤ x2 ≤ 1.46

}
,

Ω1(ϱ
(1)) =

{
(x1, x2) : 0.095 ≤ x1 ≤ 0.98, −0.3 ≤ x2 ≤ 0.95

}
.

Applying Maple 14, we carried out computations according to (12), (13) and, for several values of
m, obtained from the corresponding approximate determining systems the numerical values for the
parameters which are presented in the table below. Note that the third and the fourth columns
contain the numerical values of the jump magnitude γ = col(γ1, γ2) and the seventh one shows
approximate values of the jump time τ .

m η1 γ1 γ2 λ1 λ2 τ z2

0 0.54721759 0.2025730 −0.2247659 0.31711742 0.52806054 0.75344599 0.26343879

1 0.54721759 0.2238353 −0.2364152 0.29470392 0.52737158 0.72907772 0.26343879

2 0.54721759 0.2240919 −0.2382983 0.29444608 0.52911668 0.72879666 0.26343879

3 0.54721759 0.2240736 −0.2383145 0.29446539 0.52914210 0.72881771 0.26343879

4 0.54721759 0.2240731 −0.2383131 0.29446596 0.52914096 0.72881833 0.26343879

5 0.54721759 0.2240731 −0.2383131 0.29446598 0.52914093 0.72881835 0.26343879

The residual obtained by substituting the approximate solution of the fifth approximation into
the pre-jump and after-jump equations is of order 10−7.
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This report is a logical continuation of the previous report [15] by the same author.
For a given zero neighborhood G in the Euclidean space Rn, we consider the system

ẋ = f(t, x), x ∈ G, f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), (1)

where the right-hand side satisfies the condition f, f ′
x ∈ C(R+×G) and the zero solution is allowed.

Let S∗(f) and Sδ(f) denote the set of all non-continuable solutions x of system (1), given by the
initial conditions |x(0)| ̸= 0 and 0 < |x(0)| < δ, respectively.

Definition 1. We say that system (1) (more precisely, its zero solution) possesses the following
upper-limit property:

1) stability if for any ε > 0 there exists δ > 0 such that any solution x ∈ Sδ(f) satisfies the
condition

lim
t→+∞

|x(t)| < ε; (2)

2) partial stability if for any ε, δ > 0 at least one solution x ∈ Sδ(f) satisfies condition (2);

3) asymptotic stability if there exists δ > 0 such that any solution x ∈ Sδ(f) satisfies the
condition

lim
t→+∞

|x(t)| = 0
(

⇐⇒ lim
t→+∞

|x(t)| = 0
)
; (3)

4) global stability if all solutions x ∈ S∗(f) satisfy condition (3);

5) instability if there is no upper-limit stability, that is there is an ε > 0 such that for any δ > 0
at least one solution x ∈ Sδ(f) does not satisfy condition (2) (in particular, it is not defined
on the whole semi-axis R+);

6) complete instability if there is no upper-limit partial stability, that is there are ε, δ > 0 such
that no solution x ∈ Sδ(f) satisfies condition (2);

7) asymptotic instability if there is no upper-limit asymptotic stability, that is for any δ > 0 at
least one solution x ∈ Sδ(f) does not satisfy condition (3);

8) total instability if for some ε > 0 no solution x ∈ S∗(f) satisfies condition (2).

Definition 2. Analogously to Definition 1, we say that system (1) possesses the corresponding
Perron property (stability, partial stability, asymptotic stability, global stability, instability, com-
plete instability, asymptotic instability, total instability) if it has property 1)–8) (respectively) from
Definition 1, in which the upper limits under conditions (2) and (3) are replaced by the lower
limits everywhere. Similarly, system (1) possesses the corresponding Lyapunov property if it has
respectively property 1)–8) from Definition 1, in which:
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(a) the upper limit at t → +∞ in condition (2) is replaced everywhere by an exact upper bound
over all t ∈ R+;

(b) the requirement of Lyapunov stability is added to asymptotic and global stabilities in prop-
erties 3 and 4, respectively;

(c) property (7) is replaced by negation of the resulting property (3), that is either for any δ > 0
at least one solution x ∈ Sδ(f) does not satisfy condition (3) or there is no Lyapunov stability.

We will be especially interested in particular cases of n-dimensional system (1): one-dimensional
(n = 1) and two-dimensional (n = 2) systems, autonomous system

ẋ = f(x), f(0) = 0, x ∈ G ⊂ Rn, t ∈ R+, (4)

with right-hand side f ∈ C1(G), and linear system

ẋ = A(t)x, x ∈ G ≡ Rn, t ∈ R+, (5)

defined by its continuous operator function A : R+ → EndRn.
According to the next two theorems, the Lyapunov complete and total instabilities are equiva-

lent, but this statement does not carry over the Perron instabilities and the upper-limit ones.

Theorem 1. If system (1) is Lyapunov completely unstable, then it is Lyapunov totally unstable
too.

Theorem 2. There exists a two-dimensional system (1), which is Perron and upper-limit completely
unstable, but neither Perron nor upper-limit totally unstable; moreover, it has at least one solution
x ∈ S∗(f) satisfying condition (3).

It can be seen from the following two theorems that, in the linear case, the assertion of Theorem 1
extends also to the complete and total instability of both Perron and upper-limit types, as well as
to asymptotic and global stability of any type at all.

Theorem 3. If the linear system (5) is Lyapunov, or Perron, or upper-limit completely unstable,
then it is respectively Lyapunov, or Perron, or upper-limit totally unstable too.

Theorem 4. If the linear system (5) is Lyapunov, or Perron, or upper-limit asymptotically stable,
then it is respectively Lyapunov, or Perron, or upper-limit globally stable too.

In the autonomous case, Theorem 1 can be significantly reinforced, which is what the following
two theorems do.

Theorem 5. If for the autonomous system (4) at least one of the following six properties is satisfied:
the Perron, Lyapunov, or upper-limit complete or total instability, then the other five of them are
also satisfied.

Theorem 6. If the autonomous system (4) is not, at least, Lyapunov, or Perron, or upper-limit
totally unstable, then it is both Lyapunov, and Perron, and upper-limit partially stable.

Each of the upper-limit properties occupies a logically intermediate position between its Lya-
punov and Perron analogs.

According to the following two theorems, in the one-dimensional and in the linear cases, all
the upper-limit properties are indistinguishable from the corresponding Lyapunov properties, and
under the additional condition of autonomy, also from the Perron ones.
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Theorem 7. For any one-dimensional system (1), each of its upper-limit properties is equivalent
to the analogous Lyapunov property, and in the case of an autonomous one-dimensional system, it
is equivalent to the Perron property too.

Theorem 8. For any linear system (5), each of its upper-limit properties is equivalent to the
analogous Lyapunov property, and in the case of autonomic linear system, it is equivalent to the
Perron property too.

Already in the linear case, the upper-limit properties, although they coincide with the Lyapunov
ones, can be directly opposite to the Perron ones.

Theorem 9. For each n ∈ N, there exists a linear n-dimensional system (1), which is globally
Perron stable, but both Lyapunov and upper-limit totally unstable.

If the system is not linear and not one-dimensional, then even in the autonomous case, the
upper-limit properties can also sharply contrast with both the Lyapunov and Perron ones.

Theorem 10. There exists a two-dimensional autonomous system (4), which is Lyapunov unstable,
but both Perron and upper-limit globally stable.

Theorem 11. There exists a two-dimensional autonomous system (4), which is globally Perron
stable, but both Lyapunov and upper-limit unstable.

Theorems 10 and 11 cannot be strengthened by replacing instability in them with complete
instability (and even more so with total instability, this would contradict Theorem 5). The next
theorem serves as a certain modification of Theorem 11.

Theorem 12. There exists a two-dimensional autonomous system (4), which is Perron stable, but
both Lyapunov and upper-limit unstable; moreover, all its fixed points fill some ray C ⊂ G with
origin at zero, and any of its solutions x ∈ S∗(f) with initial values x(0) ̸∈ C satisfies the relations

0 = lim
t→+∞

|x(t)| < lim
t→∞

|x(t)| = +∞.

The system from Theorem 10 is described in [2, p. 6.3], and its simplified version is in [3, § 18].
For more information on these issues, see the reports [1,4–6,9–12,14,17–19]. The proofs of the

above Theorems 1–12 are mainly contained in the papers [7, 8, 13,16,20].
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Let
G(ε0) =

{
t, ε : t ∈ R, ε ∈ (0, ε0), ε0 ∈ R+

}
.

Definition 1. We say that a function f(t, ε) belongs to the class S(m; ε0), m ∈ N ∪ {0}, if:

1) f : G(ε0) → C,

2) f(t, ε) ∈ Cm(G(ε0)) at t,

3) dkf(t, ε)/dtk = εkfk(t, ε) (0 ≤ k ≤ m),

∥f∥S(m;ε0)
def
=

m∑
k=0

sup
G(ε0)

|fk(t, ε)| < +∞.

Definition 2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F (m; ε0; θ) (m ∈ N∪{0}), if

f(t, ε, θ(t, ε)) =

∞∑
n=−∞

fn(t, ε) exp(inθ(t, ε)),

and

1) fn(t, ε) ∈ S(m, ε0) (n ∈ Z),

2)

∥f∥F (m;ε0;θ)
def
=

∞∑
n=−∞

∥fn∥S(m;ε0) < +∞,

3) θ(t, ε) =
t∫
0

φ(τ, ε) dτ , φ ∈ R+, φ ∈ S(m, ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

Definition 3. We say that a matrix A(t, ε) = (ajk(t, ε))j,k=1,N belongs to the class S2(m; ε0)

(m ∈ N ∪ {0}), if ajk ∈ S(m; ε0) (j, k = 1, N).

We define the norm

∥A(t, ε)∥S2(m;ε0) = max
1≤j≤N

N∑
k=1

∥ajk(t, ε)∥S(m;ε0).

Definition 4. We say that a matrix B(t, ε, θ) = (bjk(t, ε, θ))j,k=1,N belongs to the class F2(m; ε0; θ)

(m ∈ N ∪ {0}), if bjk(t, ε, θ) ∈ F (m; ε0; θ) (j, k = 1, N).
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We define the norm

∥B(t, ε, θ)∥F2(m;ε0;θ) = max
1≤j≤N

N∑
k=1

∥bjk(t, ε, θ)∥F (m;ε0;θ). (1)

Consider the linear non-homogeneous matrix equation

dX

dt
= A(t, ε)X −XB(t, ε) + F (t, ε, θ), (2)

A(t, ε), B(t, ε) ∈ S2(m; ε0), F (t, ε, θ) ∈ F (m; ε0; θ).
We study the existence of particular solutions of equation (2) in the class F (m1; ε1; θ) (m1 ≤ m,

ε1 ≤ ε0).

Lemma. Let
dx

dt
= λ(t, ε)x+ u(t, ε, θ(t, ε)) (3)

be a given scalar linear non-homogeneous first-order differential equation, where λ(t, ε) ∈ S(m; ε),
inf

G(ε0)
|Reλ(t, ε)| = γ > 0, and u(t, ε, θ) ∈ F (m; ε0; θ). Then equation (3) has a unique particular

solution x(t, ε, θ) ∈ F (m; ε0; θ). This solution is given by the formula

x(t, ε, θ(t, ε)) =

t∫
T

u(τ, ε, θ(τ, ε)) exp

( t∫
τ

λ(s, ε)ds

)
dτ,

where

T =

{
−∞ if Reλ(t, ε) ≤ −γ < 0,

+∞ if Reλ(t, ε) ≥ γ > 0.

Moreover, there exists K0 ∈ (0,+∞) such that

∥x(t, ε, θ)∥F (m;ε0;θ) ≤ K0∥u(t, ε, θ)∥F (m;ε0;θ).

Theorem 1. Let equation (2) satisfy the next conditions:

1) there exist matrices L1(t, ε), L2(t, ε) ∈ S2(m; ε0) such that

(a) detL1(t, ε) ≥ a0 > 0, detL2(t, ε) ≥ a0 > 0;
(b) L−1

1 (t, ε)A(t, ε)L1(t, ε) = D1(t, ε) = (d1jk(t, ε))j,k=1,N ,

(c) L2(t, ε)B(t, ε)L−1
2 (t, ε) = D2(t, ε) = (d2jk(t, ε))j,k=1,N ,

where D1, D2 are lower triangular matrices belonging to the class S2(m; ε0);

2) inf
G(ε0)

|Re(d1jj(t, ε)− d2kk(t, ε))| ≥ b0 > 0 (j, k = 1, N).

Then there exists ε1 ∈ (0, ε0) such that for all ε ∈ (0, ε1) there exists unique particular solution
X(t, ε, θ) ∈ F2(m− 1; ε1; θ) of the matrix equation (2).

Proof. We make in equation (2) the substitution

X = L1(t, ε)Y (t, ε)L2(t, ε), (4)
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where Y – the new unknown matrix. We obtain

dY

dt
=

(
D1(t, ε)− L−1

1 (t, ε)
dL1(t, ε)

dt

)
Y

− Y
(
D2(t, ε) +

dL2(t, ε)

dt
L−1
2 (t, ε)

)
+ L−1

1 (t, ε)F (t, ε, θ)L−1
2 (t, ε). (5)

We denote

L−1
1 (t, ε)

dL1(t, ε)

dt
= εH1

dL1(t, ε)

dt
,

dL2(t, ε)

dt
L−1
2 (t, ε) = εH2

dL2(t, ε)

dt
L−1
2 (t, ε),

L−1
1 (t, ε)F (t, ε, θ)L−1

2 (t, ε) = F1(t, ε, θ).

Then equation (5) may be written as

dY

dt
= D1(t, ε)Y − Y D2(t, ε)− εH1(t, ε)Y − εY H2(t, ε) + F1(t, ε, θ).

By virtue Lemma and condition 2) of the theorem, the equation

dY0
dt

= D1(t, ε)Y0 − Y0D2(t, ε) + F1(t, ε, θ)

has a unique solution Y0(t, ε, θ) of the class F (m; ε0; θ), and there exists K1 ∈ (0,+∞) such that

∥Y0(t, ε, θ)∥F (m;ε0;θ) ≤ K1∥F1(t, ε, θ)∥F (m;ε0;θ).

We construct the process of successive approximations, defining the initial approximation
Y0(t, ε, θ) and subsequent approximations defining as the solutions of the class F (m − 1; ε0; θ)
of the equations

dYk
dt

= D1(t, ε)Yk − YkD2(t, ε)− εH1(t, ε)Yk−1 − εYk−1H2(t, ε) + F1(t, ε, θ). (6)

Using the ordinary technique of the contraction mapping principle it is easy to show that there
exists ε1 ∈ (0, ε0) such that for all ε ∈ (0, ε1) process (6) convergence by the norm (1) to the
solution of the class F (m− 1; ε1; θ) of equation (2).
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1 Introduction
Let T > 0 be given, J = [0, T ], X = C(J)×R and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

Let ϕ be an increasing and odd homeomorphism with ϕ(R) = R. The special case of ϕ is
p-Laplacian ϕp(x) = |x|p−2x, p > 1.

We discuss the fractional boundary value problem

cDαϕ
(
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t)

)
= f(t, x(t)), (1.1)

x(0) = x(T ), cDβx(t)
∣∣
t=0

= 0, (1.2)

where α ∈ (0, 1], 0 < γ2 < γ1 < β ≤ 1, a, b ∈ C(J), f ∈ C(J × R) and cD denotes the Caputo
fractional derivative.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x, cDβx ∈ C(J) and (1.1)
holds for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of
problem (1.1), (1.2).

We recall the definitions of the Riemann-Liouville fractional integral and the Caputo fractional
derivative [2, 3].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is defined
as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
The Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)

ds,

where n = [γ] + 1, [γ] means the integral part of the fractional number γ. If γ ∈ N, then cDγx(t) =
x(γ)(t). In particular,

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds = d

dt
I1−γ(x(t)− x(0)), γ ∈ (0, 1).
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It is well known that Iγ : C(J) → C(J) for γ ∈ (0, 1); IγIµx(t) = Iγ+µx(t) for x ∈ C(J) and
γ, µ ∈ (0,∞); cDγIγx(t) = x(t) for x ∈ C(J) and γ > 0; if x, cDγx ∈ C(J) and γ ∈ (0, 1), then
IγcDγx(t) = x(t)− x(0); if 0 < β < α < 1 and x, cDαx ∈ C(J), then cDβx = Iα−βcDαx.

Problem (1.1), (1.2) is at resonance, because every constant function x on J is a solution of
problem cDαϕ(cDβx− a(t)cDγ1x− b(t)cDγ2x) = 0, (1.2).

The aim of this paper is to study the existence of solutions to problem (1.1), (1.2). To this end
we first introduce an operator Q : C(J) → C(J). Then, by Q an operator L : X → X is defined
and it is proved that if (x, c) ∈ X is a fixed point of L, then x is a solution of problem (1.1), (1.2).
The existence of a fixed point of L is proved by the Schaefer fixed point theorem [1,4].

We work with the following conditions for a, b and f in (1.1):

(H1) a(t) ≥ 0, b(t) ≥ 0 for t ∈ J .

(H2) There exist D,H ∈ R, D < 0 < H, such that

f(t, x) < 0 for t ∈ J, x ≤ D,

f(t, x) > 0 for t ∈ J, x ≥ H.

(H3) There exists a nondecreasing function w : [0,∞) → (0,∞) such that

lim
v→∞

1

v
ϕ−1

( Tαw(v)

Γ(α+ 1)

)
= 0

and
|f(t, x)| ≤ w(|x|) for (t, x) ∈ J × R,

where ϕ−1 is the inverse function of ϕ.

2 Operator Q and its properties
The following result is the generalization of the Gronwall–Bellman lemma for singular kernels.

Lemma 2.1. Let 0 < ζ < ρ ≤ 1, z ∈ C(J) be nonnegative and c1, c2 ∈ [0,∞). Suppose that
v ∈ C(J) is nonnegative and

v(t) ≤ z(t) + c1I
ζv(t) + c2I

ρv(t), t ∈ J.

Then
v(t) ≤ z(t) + d

(
c1 +

c2Γ(ζ)T
ρ−ζ

Γ(ρ)

)
Iζz(t), t ∈ J,

where d = d(ζ, ρ) is a positive constant.

Let F : C(J) → C(J) be the Nemytskii operator associated to f ,

Fx(t) = f(t, x(t)).

For x ∈ C(J), we discuss the auxiliary equation

u(t) = a(t)Iβ−γ1u(t) + b(t)Iβ−γ2u(t) + ϕ−1IαFx(t) (2.1)

with the unknown function u.
The following result is established by using Lemma 2.1 and the Schaefer fixed point theorem

in C(J).
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Lemma 2.2. Let x ∈ C(J). Then equation (2.1) has a unique solution u in the set C(J).
Keeping in mind Lemma 2.2, for every x ∈ C(J) there exists a unique solution u ∈ C(J) of

equation (2.1). We put Qx = u and have an operator Q : C(J) → C(J) satisfying

Qx(t) = a(t)Iβ−γ1Qx(t) + b(t)Iβ−γ2Qx(t) + ϕ−1IαFx(t), x ∈ C(J). (2.2)

The properties of Q are given in the following two lemmas.
Lemma 2.3. Let (H1) and (H2) hold. Then

x ∈ C(J), x(t) ≤ D on J =⇒ Qx(t) < 0 on (0, T ],

x ∈ C(J), x(t) ≥ H on J =⇒ Qx(t) > 0 on (0, T ],

Lemma 2.4. Let (H3) hold. Then Q : C(J) → C(J) is continuous and

∥Qx∥ ≤ Eϕ−1
(Tαw(∥x∥)

Γ(α+ 1)

)
, x ∈ C(J), (2.3)

where
E = 1 +

T β−γ1

Γ(β − γ1 + 1)

(
∥b∥+ ∥a∥Γ(β − γ1)T

γ1−γ2

Γ(β − γ2)

)
.

3 Operator L and its properties
Let an operator L : X → X be defined by

L(x, c) =
(
c+ IβQx(t), c− IβQx(t)

∣∣
t=T

)
.

The following two lemmas give the properties of L.
Lemma 3.1. If (x, c) is a fixed point of L, then x is a solution to problem (1.1), (1.2).
Proof. Let (x, c) = L(x, c) for some (x, c) ∈ X. Then

x(t) = c+ IβQx(t), t ∈ J,

IβQx(t)
∣∣
t=T

= 0,

and therefore x(0) = c, x(T ) = c and cDβx(t) = Qx(t) for t ∈ J . Hence cDβx ∈ C(J) and since
Qx(t)|t=0 = 0, we have cDβx(t)|t=0 = 0. Thus x satisfies the boundary condition (1.2) and

cDγ1x(t) = Iβ−γ1cDβx(t), cDγ2x(t) = Iβ−γ2cDβx(t), t ∈ J.

Combining these equalities with (2.2) and cDβx(t) = Qx(t) we obtain
cDβx(t) = Qx(t) = a(t)Iβ−γ1Qx(t) + b(t)Iβ−γ2Qx(t) + ϕ−1IαFx(t)

= a(t)Iβ−γ1cDβx(t) + b(t)Iβ−γ2cDβx(t) + ϕ−1IαFx(t)

= a(t)cDγ1x(t) + b(t)cDγ2x(t) + ϕ−1IαFx(t), t ∈ J.

In particular,
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t) = ϕ−1IαFx(t), t ∈ J.

Applying ϕ and then cDα on both its sides, it follows
cDαϕ

(
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t)

)
= Fx(t), t ∈ J.

Hence x is a solution of equation (1.1). As a result, x is a solution to problem (1.1), (1.2).

Lemma 3.2. Let (H3) hold. Then L is a completely continuous operator.
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4 Problem (1.1), (1.2)
Theorem 4.1. Let (H1)–(H3) hold. Then problem (1.1), (1.2) has at least one solution.

Proof. By Lemma 3.1, we need to prove that L has a fixed point. Since L is completely continuous
by Lemma 3.2, the Schaefer fixed point theorem guarantees the existence of a fixed point of L if
the set U = {(x, c) ∈ X : (x, c) = λL(x, c) for some λ ∈ (0, 1)} is bounded. We show that U is
bounded.

Example 4.2. Let ϕ = ϕp, p > 1, µ ∈ (0, p− 1), r,m, k ∈ C(J) and f(t, x) = k(t) + |x|µ arctanx.
Then conditions (H1) and (H2) are satisfied for a = |r|, b = |m|, H = max{π/4, µ

√
∥k∥} and

D = −H. Since ϕ−1 = ϕq, q = p/(p − 1), condition (H3) is fulfilled for w(v) = ∥k∥ + πvµ/2.
Theorem 4.1 guarantees that the problem

cDαϕp

(
cDβx− |r(t)|cDγ1x− |m(t)|cDγ2x

)
= k(t) + |x|µ arctanx,

x(0) = x(T ), cDβx(t)
∣∣
t=0

= 0,

has a solution.
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We study the long time behavior of nonlinear stochastic functional-differential equations in
Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild
solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the
appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure
based on the Krylov–Bogoliubov theorem on the tightness of the family of measures.

1 Introduction
In this work we study the asymptotic behaviour of solutions of stochastic functional-differential
equations. In a bounded domain, the equation reads as

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in D, t > 0; (1.1)
u(t, x) = ϕ(t, x), t ∈ [−h, 0), u(0, x) = φ0(x) in D;

u(t, x) = 0, x ∈ ∂D, t ≥ 0.

The corresponding problem in the entire space has the form

du = [Au+ f(ut)] dt+ σ(ut) dW (t) in Rd, t > 0; (1.2)
u(t, x) = ϕ(t, x), t ∈ [−h, 0), u(0, x) = φ0(x) in Rd.

Here A is an elliptic operator

A = A(x) =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
+ c(x), (1.3)

the interval [−h, 0] is the interval of delay, and ut = u(t+ θ) with θ ∈ [−h, 0).
Functional differential equations of types (1.1) and (1.2) are mathematical models of processes,

the evolution of which depends on the previous states. The classical results for deterministic
functional-differential equations in finite dimensional spaces can be found in [6] and the references
therein. Stochastic functional differential equations in finite dimensions have been studied exten-
sively as well. In particular, the existence of invariant measures for stochastic ordinary differential
equations was established in [1] and [5].

The results on functional differential equations in infinite dimensions are significantly more
sparse.

The main goal of the present work is to establish the existence and uniqueness of invariant
measures for equations (1.1) and (1.2) based on the Krylov–Bogoliubov theorem on the tightness
of the family of measures [7]. More precisely, we will use the compactness approach of Da Parto
and Zabczyk [3], which involves the following key steps:
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(i) Establishing the existence of a Markovian solution of (1.1) or (1.2) in a certain functional
space, in which the corresponding transition semigroup is Feller;

(ii) Showing that the semigroup S(t) generated by A is compact;

(iii) Showing that the corresponding equation with a suitable initial condition has a solution,
which is bounded in probability.

This approach was used in establishing the existence of invariant measure for a large class of
stochastic nonlinear partial differential equations without delay, e.g. [4] and references therein.
For functional differential equations in finite dimensions, the approach above was used in [2]. In
this work, the author established the existence of an invariant measure in Rd × L2(−h, 0;Rd). In
contrast, for stochastic partial differential equations, the natural phase space for the mild solutions
of (1.2) is L2

ρ(Rd) × L2(−h, 0, L2
ρ(Rd)), where L2

ρ(Rd) is a weighted space. The equations of type
(1.1) and (1.2) were studied in the space C(−1, 0, L2

ρ(Rd)), which is a significantly easier problem.
In these spaces the authors studied the conditions for the existence and uniqueness of a solution, as
well as their Markov’s and Feller properties. However, in order to apply the compactness approach
one needs to work in L2

ρ(Rd)× L2(−h, 0, L2
ρ(Rd)), which is done in this work.

2 Formulation of the problem and the main result
Throughout the paper, the domain D is either a bounded domain with ∂D satisfying the Lyapunov
condition, or D = Rd. Denote

ρ(x) :=
1

1 + |x|r
,

where r > d if D = Rd and r = 0 (i.e. no weight) for bounded D. We introduce the following
spaces:

Bρ
0 := L2

ρ(D), Bρ
1 := L2(−h, 0, L2

ρ(D)), Bρ := Bρ
0 ×Bρ

1 , H := L2(D).

The coefficients aij of the operator A defined in (1.3) are Holder continuous with the exponent
β ∈ (0, 1), symmetric, bounded and satisfying the elipticity condition

d∑
i,j=1

ai,jηiηj ≥ C0|η|, η ∈ Rd

for some C0 > 0. The coefficients bi and c are also bounded and Holder continuous with some
positive Holder exponent.

If D is bounded, we impose homogeneous Dirichlet boundary conditions on ∂D. In this case,

D(A) = H2(D) ∩H1
0 (D).

If D = Rd, then D(A) = H2(Rd). Denote G(t, x, y) to be the fundamental solution (or the Green’s
function in the case of bounded D) for ∂

∂t − A. It is well known, that there are positive constants
C1(T ), C2(T ) > 0 such that

0 ≤ G(t, x, y) ≤ C1(T )t
−d/2e−C2(T )

|x−y|2
t (2.1)

for t ∈ [0, T ] and x, y ∈ D. Note that in (2.1), C1 and C2 depend not only on T , but on the
constants C0, d, T , maximum values of the coefficients of A, and the Holder constants. If the
operator is in the divergence form Au = div(a∇u), the estimates are of a different type, namely,

g1(t, x− y) ≤ G(t, x, y) ≤ g2(t, x− y),
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where
gi(t, x) = K(C0, d)t

−d/2e−K(C0,d)
|x|2
t , i = 1, 2, t ≥ 0, x, y ∈ Rd.

In this case, in contrast with (2.1), the constant K(C0, d) is independent of t.

Let
∞∑
i=1

ai <∞, and en be orthonormal basis in H, such that en ∈ L∞(D) and sup
n

∥en∥L∞(D) <

∞. Introduce the operator Q ∈ L(H) such that Q is non-negative, Tr(Q) < ∞, Qen = anen. Let
(Ω,F , P ) be a complete probability space. Introduce

W (t) :=

∞∑
i=1

√
aiβi(t)ei(x), t ≥ 0,

which is a Q-Wiener process on t ≥ 0 with values in L2(Q). Here βi(t) are standard, one dimen-
sional, independent Wiener processes. Also let {Ft, t ≥ 0} be a normal filtration satisfying

- W (t) is Ft-measurable;

- W (t+ h)−W (t) is independent of Ft ∀h ≥ 0, t ≥ 0.

Denote U = Q
1
2 (H). It is well known U ∈ L∞(D). Introduce the multiplication operator Φ : U →

Bρ
0 as follows: for fixed φ ∈ Bρ

0 , let Φ(ψ) := φψ, ψ ∈ U . Since φ ∈ Bρ
0 and φ ∈ L∞(D), the

operator is well defined and hence Φ◦Q1/2 : L2(D) → Bρ
0 defines a Hilbert–Schmidt operator. The

operator Φ is also a Hilbert–Schmidt operator satisfying

∥Φ ◦Q1/2∥2L2
=

∞∑
n=1

∥Φ ◦Q1/2en∥2Bρ
0
=

∞∑
n=1

an

∫
D

φ2(x)e2n(x)ρ(x) dx ≤ Tr(Q) sup
n

∥en∥2∞∥φ∥2ρ,

where Tr(Q) =
∑∞

n=1 an = a. Hence if Φ : Ω× [0, T ] → L(U,Bρ
0) is a predictable process satisfying

E
T∫
0

∥Φ ◦Q1/2∥2L2
ds <∞,

following [3] we can define
t∫

0

Ψ(s) dW (s) ∈ Bρ
0

with the following expansion

t∫
0

Ψ(s) dW (s) =

∞∑
i=1

√
ai

t∫
0

Φ(s, · )ei( · ) dβi(s).

Furthermore,

E
∥∥∥∥

t∫
0

Ψ(s) dW (s)

∥∥∥∥2
ρ

≤ a sup
n

∥en∥2∞

t∫
0

E∥Ψ(s, · )∥2Bρ
0
ds.
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Assumptions on nonlinearities
Assume f and σ satisfy the following conditions:

(i) The functionals f and σ map Bρ
1 to Bρ

0 ;

(ii) There exists a constant L > 0 such that

∥f(φ1)− f(φ2)∥Bρ
0
+ ∥σ(φ1)− σ(φ2)∥Bρ

0
≤ L∥φ1 − φ2∥Bρ

1

for any φ1, φ2 ∈ Bρ
1 .

Definition. An Ft measurable random process u(t, · ) ∈ Bρ
0 is a mild solution of (1.1) or (1.2) if

u(t, · ) = S(t)φ(0, · ) +
t∫

0

S(t− s)f(us) ds+

t∫
0

S(t− s)σ(us) dW (s), (2.2)

where
u(0, · ) = φ(0, · ) ∈ Bρ

0 , u(t, · ) = φ(t, · ) ∈ Bρ
1 , t ∈ [−h, 0].

Theorem 1 (Existence and uniqueness). Suppose f and σ satisfy conditions (i) and (ii), and
φ(t, · ) is an F0 measurable random process for t ∈ [−h, 0], which is independent of W and such
that

E∥φ(0, · )∥p
Bρ

0
<∞ and E∥φ( · , · )∥p

Bρ
1
<∞, p ≥ 2.

Then there exists a unique mild solution of (1.1) (or (1.2)) on [0, T ], and

E∥y(t)∥pBρ ≤ K(T )
(
1 + E∥y(0)∥pBρ

)
, t ∈ [0, T ].

Define ρ(x) = (1 + |x|r)−1. The main result of the paper is the following theorem.

Theorem 2. Let the assumptions of Theorem 1 hold. Assume equation (2.2) has a solution in Bρ

which is bounded in probability for t ≥ 0 with r > d+ r. Then there exists an invariant measure µ
on Bρ, i.e. ∫

Bρ

Ptφ(x) dµ(x) =

∫
Bρ

φ(x) dµ for any t ≥ 0 and φ ∈ Cb(B
ρ).
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The averaging method is applied to study the existence of solutions of boundary value problems
for systems with impulse action at non-fixed moments of time. It is shown that if an averaged
boundary value problem has a solution, then the original problem is solvable as well. Here the
averaged system is a system of autonomous ordinary differential equations.

1 Introduction
The present paper deals with the following boundary value problem for a system of differential
equations with impulse action at non-fixed moments of time:

ẋ = εX(t, x), t ̸= ti(x),

∆x
∣∣
t=ti(x)

= εIi(x), (1.1)

F
(
x(0), x

(T
ε

))
= 0.

Here ε > 0 is a small parameter, ti(x) < ti+1(x), i = 1, 2, . . . , are the moments of impulse, X and
Ii are d-dimensional vector functions.

Assuming that there exist the limits

X0(x) = lim
T→∞

1

T

T∫
0

X(t, x) dt (1.2)

and
I0(x) = lim

T→∞

1

T

∑
0<ti(x)<T

Ii(x), (1.3)
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we put problem (1.1) in correspondence with the averaged boundary value problem

ẏ = ε
[
X0(y) + I0(y)

]
, F

(
y(0), y

(T
ε

))
= 0, (1.4)

or, on the slow time scale τ = εt,

dy

dτ
= X0(y), F (y(0), y(T )) = 0.

The main result of this paper is a proof of the following statement: if the averaged boundary
value problem has a solution, then, for small values of parameter ε, the original boundary value
problem (1.1) also has a solution, and there is a proximity between their solutions.

Boundary value problems for systems with impulse action have been considered by many au-
thors. To our knowledge, these problems were first studied in [3] when investigating periodical so-
lutions by using the Samoilenko numerical-analytic method. Boundary value problems for systems
with non-fixed moments of impulse were studied in [1] for the case of linear boundary conditions,
and in [2] for the nonlinear case.

In the theory of ordinary differential equations, the method of averaging was first applied to
boundary value problems in [4]. This method made it possible to reduce a boundary value problem
for a non-autonomous system to an analogous problem for an autonomous averaged system. In the
present paper, we apply this idea to solving the boundary value problem (1.1).

2 Formulation of the problem and the main result
We consider problem (1.1) under the assumption that the following conditions are satisfied:

(1) The functions X(t, x) and Ii(x) are uniformly continuous in a domain Q={t≥0, x∈D⊂Rd};

(2) The functions X(t, x) and Ii(x) are bounded by a constant M > 0 and, with respect to x,
satisfy the Lipschitz condition with a constant L > 0;

(3) There exist uniform in x ∈ D limits (1.2) and (1.3), as well as the limits

lim
T→∞

1

T

T∫
0

∂X(t, x)

∂x
dt =

∂X0(x)

∂x

and
lim
T→∞

1

T

∑
0<ti<T

∂Ii(x)

∂x
=

∂I0(x)

∂x
;

(4) There exists a constant C > 0 such that, for t ≥ 0 and x ∈ D,

i(t, x) ≤ Ct,

where i(t, x) is the number of impulses on (0, t), and

inf
x∈D

τk+1(x) > sup
x∈D

τk(x);

(5) The averaged problem (1.4) has a solution y = y(τ) = y(ε, τ) that belongs to D together with
some ρ-neighborhood, in which F (x, y) has uniformly continuous partial derivatives ∂F

∂x and
∂F
∂y , and det ∂F0(x0)

∂x0
̸= 0, here x0 = y(0), F0(x0) = F (x0, y(T, x0)).
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Theorem 1. Let conditions (1)–(5) be satisfied. Then there exists ε0 > 0 such that for ε ∈ (0, ε0)
one can specify a function ξ = ξ(ε), ε → 0, such that the boundary value problem (1.1) has a unique
solution x(t, ε) in ξ(ε)-neighborhood of y(εt), i.e.,∣∣x(t, ε)− y(εt)

∣∣ < ξ(ε), t ∈
[
0,

T

ε

]
, ε ∈ (0, ε0).

The outline of the proof is as follows.

I. We first consider the system with impulse effect at fixed moments ti on [0, Tε ]:

ẋ = εX(t, x), t ̸= ti,

∆x
∣∣
t=ti

= εIi(x(ti)).
(2.1)

For this system, we derive a variational equation linearized along its solution x(t, x0)
(x(0, x0) = 0), i.e.,

ż = ε
∂X(t, x(t, x0))

∂x
, t ̸= ti,

∆z
∣∣
t=ti

= ε
∂Ii(x(ti, x0))

∂x
z(ti),

(2.2)

where z(t) = ∂X(t,x0)
∂x0

. We then establish the proximity between the solution of (2.2) and the
solution ∂y(εt,x0)

∂x0
of the variational equation for the averaged system (under respective initial

conditions).

II. By using the implicit function theorem, we prove the existence and uniqueness of a solution
of the boundary value problem for system (2.1).

III. Let us fix p points y1, y2, . . . , yp in some neighborhood of a solution of the averaged problem
and consider the following boundary value problem:

ẋ = εX(t, x), t ̸= ti(y
i),

∆x
∣∣
t=ti(yi)

= εIi(y
i),

F
(
x(0), x

(T
ε

))
= 0.

From what has been proved above, we conclude that this boundary value problem, for ε small
enough, has a unique solution x(t, y1, . . . , yp). If we choose y1, . . . , yp so that

yi = x(ti(y
i), y1, . . . , yp), i = 1, p, (2.3)

then the function x(t, y1, . . . , yp) is the desired solution of problem (1.1). Using a fixed-point
theorem, we show that system (2.3) has a solution. This completes the proof.
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By Ω(Rd) we denote the set of all nonempty bounded subsets of Rd. For the set of all nonempty
compact subset of Rd we use the notation K(Rd). By Kc(Rd) we denote the subset of K(Rd) that
consists of convex sets.

Definition 1. A set C = A + B
def
= {a + b : a ∈ A, b ∈ B} is called the Minkowski sum of two

subsets A,B ⊂ Rd.

Definition 2 ([1]). A set C ∈ Kc(Rd) is called the Hukuhara difference of A,B ∈ Kc(Rd), and
denoted by C = A−B, if A = B + C.

Note that the Hukuhara difference A − B is not defined for any pair of sets A,B ∈ Kc(Rd).
Moreover, if there exists a set C ∈ Kc(Rd) such that A = B + C, then, generally speaking,
C ̸= A+ (−B). Indeed, let’s take, for example, A = [0, 2] and B = [0, 1]. For the set C = [0, 1] we
have A = B + C. At the same time, A+ (−B) = [−1, 2]. The following theorem gives a necessary
and sufficient condition for the existence of Hukuhara difference between sets A,B ∈ Kc(Rd).

Theorem 1 ([2, p. 8]). Let A,B ∈ Kc(Rd) be convex compact sets. The Hukuhara difference A−B
exists if and only if for any boundary point a ∈ ∂A there exists at least one point c ∈ Rd such that

a ∈ B + {c} ⊂ A.

If the Hukuhara difference A−B exists, then it is unique. This statement can be derived from
the following lemma.

Lemma 1 ( [2, p. 10]). Let C ⊂ Rd, D ∈ Kc(Rd), B ∈ Ω(Rd), and C +B ⊂ D+B. Then C ⊂ D.

By B d def
= {x ∈ Rd : ∥x∥ ≤ 1} we denote the closed ball of unit radius centered at the origin.

Definition 3. Hausdorff distance h(A,B) between sets A and B ∈ Ω(Rd) is defined as

h(A,B)
def
= inf

r≥0

{
r : A ⊂ B + rB d

, B ⊂ A+ rB d}
.

It follows directly from the definition that h(A,B) = 0 iff A = B. According to Hahn’s theorem
the pair (K(Rd), h) is a complete separable metric space, and Kc(Rd) is its closed subset.

By I ⊂ R we denote an arbitrary open interval that may be unbounded.

Definition 4. A map X : I → Kc(Rd) is called differentiable by Hukuhara at t0 ∈ I if the limits

lim
∆t→+0

X(t0 +∆t)−X(t0)

∆t
and lim

∆t→+0

X(t0)−X(t0 −∆t)

∆t

both exist and are equal to the same convex compact set DHX(t0), that is called Hukuhara deriva-
tive of X at t0.



International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia 199

It is easy to see that if the map X : I → Kc(Rd) is differentiable at every point of I, then for any
a < b ∈ I the difference X(b)−X(a) is defined. Therefore, according to Theorem 1, non-decreasing
of diamX( · ) is a necessary condition for the existence of Hukuhara derivative DHX(t), t ∈ I.

For a given positive integer d ∈ N, let us consider the linear differential equation

DHX(t) = A(t)X(t), X(t) ∈ Kc(Rd), t ≥ 0, (1)

with a semi-continuous coefficient d × d matrix. By a polytope we mean a convex hull of finite
number of points in Rd.

Definition 5. We say that equation (1) preserves polytopes if for any its solution X( · ) such that
X(0) is a polytope, it follows that X(t) is a polytope for all t ≥ 0.

Let us consider the problem of obtaining a necessary and sufficient condition for equation (1) to
preserve polytopes. This problem is partially solved, namely, we obtained the complete description
of the autonomous differential equations (1) that posses this property.

Theorem 2. Equation (1) with a constant coefficient matrix A( · ) ≡ A preserves polytopes if and
only if there exists a real number λ and non-negative integers a < b such that Ab = λAa.
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,∞), (1)

with a piecewise continuous operator function A : R+ → EndRn. Let us endow the space Rn with
the norm ‖x‖ = max

16k6n
|xk| and with the set of metrics

dAt (x0, y0) = max
τ∈[0,t]

‖x(τ, x0)− x(τ, y0)‖, x0, y0 ∈ Rn, t ∈ R+,

where x( · , a) is the solution to system (1) satisfying the condition x(0, a) = a. By S∥ · ∥(A,K, ε, t)

we denote the ε-entropy of a compact metric space K ⊂ Rn with the metric dAt [2] (that is, the
minimum number of open balls of radius ε > 0 covering K). Then the topological entropy [1] of
system (1) is defined by the formula

htop(A) = sup
K⊂Rn

lim
ε→0

lim
t→∞

1

t
lnS∥ · ∥(A,K, ε, t)

(its right-hand side does not depend on the choice of a norm ‖ · ‖, therefore the definition is correct).
In what follows we will use one more formula to calculate the topological entropy. For any ε > 0

and n ∈ N we denote by N∥ · ∥(A,K, ε, t) the ε-capacity of a compact metric space K ⊂ Rn with
the metric dAt [2] (i.e., the maximum number of points such that all their pairwise dAt -distances are
greater than ε), then the topological entropy can be calculated by the formula

htop(A) = sup
K⊂Rn

lim
ε→0

lim
t→∞

1

t
lnN∥ · ∥(A,K, ε, t).

In [3], it is asserted that for the Lyapunov exponents λ1(A) 6 · · · 6 λn(A) of any system (1)
with a bounded operator function A, the equality

htop(A) =
∑

λi(A)>0

λi(A) (2)

holds. In fact, it may not hold, as shown by

Theorem 1. For system (1) with the operator function

A(t) = diag(a(t), b(t)), where (a(t), b(t)) =


(1, 0), t ∈ [0, 1];

(1, 0), t ∈ [(2n− 1)!, (2n)!];

(0, 1), t ∈ [(2n)!, (2n+ 1)!],

n = 1, 2, . . . , (3)

relation (2) becomes the inequality 1 < 2.
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Proof. Let us calculate the Lyapunov exponents of system (3). On the one hand, from the inequal-
ities a(t) 6 1, b(t) 6 1, t ≥ 0, we see that the Lyapunov exponents do not exceed 1.

On the other hand, from the inequalities

lim
t→+∞

1

t

t∫
0

a(τ) dτ > lim
n→+∞

(2n)!− (2n− 1)!

(2n)!
= 1,

lim
t→+∞

1

t

t∫
0

b(τ) dτ > lim
n→+∞

(2n+ 1)!− (2n)!

(2n+ 1)!
= 1,

it follows that the Lyapunov exponents of system (3) satisfy the equalities

λ1(A) = λ2(A) = 1 and λ1(A) + λ2(A) = 2.

Let us calculate the topological entropy of system (3). For given m,n ∈ N, consider the set of

points of the form
(
x
(k)
1

0

)
, where

x
(k)
1 =

k

e(2n)!−(2n−1)!m
, k = 0, . . . , [e(2n)!−(2n−1)!m]

([ · ] is an integer part of the number). Since the distance dA(2n)!

((
x
(k)
1

0

)
,

(
x
(l)
1

0

))
, k 6= l, satisfies

the inequality

dA(2n)!

((
x
(k)
1

0

)
,

(
x
(l)
1

0

))
=

|k − l|
e(2n)!−(2n−1)!m

e(2n)!−(2n−1)!+(2n−2)!−(2n−3)!+··· >
1

m
,

then
N
(
A, [0, 1]× {0}, 1

m
, (2n)!

)
> e(2n)!−(2n−1)!m,

and hence
htop(A) > lim

n→∞

((2n)!− (2n− 1)!

(2n)!
+

lnm

(2n)!

)
= 1.

Let us prove the opposite inequality htop(A) 6 1. For an arbitrary compact set K ⊂ R2 we
denote by γK a positive number such that K ⊂ [−γK , γK ]× [−γK , γK ].

For any t > 0 and m ∈ N, the set of points Vt,m of the form
(
x
(k)
1

x
(l)
2

)
, where

x
(k)
1 =

kγK
m

e
−

t∫
0

a(τ) dτ
, k = −

[
e

t∫
0

a(τ) dτ
m
]
, . . . ,

[
e

t∫
0

a(τ) dτ
m
]
,

x
(l)
2 =

lγK
m

e
−

t∫
0

b(τ) dτ
, l = −

[
e

t∫
0

b(τ) dτ
m
]
, . . . ,

[
e

t∫
0

b(τ) dτ
m
]
,

is a γK
m -covering of the square [−γK , γK ] × [−γK , γK ]. Indeed, let an arbitrary point (x1, x2) ∈

[−γK , γK ] × [−γK , γK ] be given. Then by the definition of the set Vt,m there exists a point
(x

(k0)
1 , x

(l0)
2 ) such that

|x(k0)1 − x1| 6
γK
m

e
−

t∫
0

a(τ) dτ
, |x(l0)2 − x2| 6

γK
m

e
−

t∫
0

b(τ) dτ
.
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It follows that

|x(k0)1 − x1|e
t∫
0

a(τ) dτ
6 γK

m
, |x(l0)2 − x2|e

t∫
0

b(τ) dτ
6 γK

m
.

Thus S∥ · ∥(A,K, ε, t) does not exceed the cardinality of the set Vt,m, which equals

(
2
[
e

t∫
0

a(τ) dτ
m
]
+ 1
)(

2
[
e

t∫
0

b(τ) dτ
m
]
+ 1
)
6 9m2e

t∫
0

(a(τ)+b(τ)) dτ
= 9m2et,

whence we get htop(A) 6 1.

For an arbitrary piecewise continuous function a( · ) : R+ → R, let

a+(t) = max
s∈[0;t]

s∫
0

a(τ) dτ.

Theorem 2. If system (1) can be reduced to a diagonal form

ẏ = diag(b1(t), . . . , bn(t))y,

by means of a transformation x = Q(t)y such that

lim
t→+∞

1

t
ln ‖Q(t)‖ = lim

t→+∞

1

t
ln ‖Q−1(t)‖ = 0,

then
htop(A) = lim

t→+∞

1

t

n∑
k=1

b+(t).

Given a metric space M and a continuous map

A : M× R+ → EndRn (4)

we form the function
µ 7−→ htop(A(µ, · )). (5)

Results of [4, 5] imply

Theorem 3. For any mapping (4), function (5) belongs to the third Baire class. If M = [0, 1],
then for some mapping (4) function (5) does not belong to the first Baire class.
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Abstract

Recently, the concept of a coupled-jumping timescale space (short for CJTS) T1 − T2 was
initiated. Based on it, the theory of calculus and fundamental functions were established. By
using this theory, an initial value problem of time-hybrid dynamic equations whose initial value
is given in T2 and the unique solution is located in T1 can be considered. It is worth noting
that the Hilger’s theory can be derived through removing the coupled-jumping state by letting
T1 = T2 and the Hilger theory is essentially based on a single timescale space. The coupled-
jumping timescale theory largely deepens and includes the Hilger theory and brings a completely
new significance of dynamic equations on time scales.

1 Vertical evolution of time scales
The time scale theory was introduced by Hilger in 1988 to unify the continuous and discrete analysis
(see [1, 2]). This theory plays a very significant role in both pure and applied mathematics, for
example, time-hybrid dynamic equations (see [11]), quaternion dynamic equations (see [3,4]), fuzzy
dynamic equations (see [5]), the closedness of time scales and related function theory (see [6–9]),
stochastic dynamic equations (see [10]) and hybrid measurability theory (see [12]), etc. To further
reveal the changing essence of time scales, we first introduced two basic types of the evolution of
time scales under which some corresponding dynamic equation were presented (see [11]).

In Figure 1, let {T1,T2,T3,T4} be a timescale group. By Hilger theory, this time scale group
will induce a continuous dynamic equation, a piecewise continuous dynamic equation, a discrete
dynamic equation and a quantum dynamic equation in sequence. Starting with the evolution
process of these time scales, T varies from the form T1 to the form T4 in the timescale group, such
a vertical evolution in the timescale group acts as a direct factor which leads to the four different
types of dynamic equation during the changing process of the time scale T. Only when T is fixed in
this timescale group, the concrete dynamic equation can be determined. From the viewpoint of the
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evolution process of time scales, the essence of Hilger’s theory depends on the vertical evolution of
time scales, accordingly the unification of various types of dynamic equation can be achieved when
the form of T is fixed in a timescale group. In other words, the related analysis and applications
on Hilger theory are purely based on a single time scale during this evolution.

Figure 1. The vertical evolution diagram of dynamical behavior from T1 to T4 under
Hilger theory

2 Hybrid-timescale problems-a horizontal evolution of time scales
The other natural and significant evolution of time scales that must be referred to is horizontal
evolution of time scales. The related problems caused by horizontal evolution of time scales
cannot be solved by Hilger theory and they still belong to the problems of timescale category. In
Figure 2, let

T1 =
{
qn : q > 1, n ∈ Z− ∪ {0}

}
, T2 = [1.1, 3.7], T3 =

5⋃
k=2

[2k, 2k + 1],

T4 = {12.1, 13.1, 14.1, 15.1, 16.1}, T5 = {(1.5)n : n ≥ 7}, . . . .

For convenience, let a timescale group be formed by {T1,T2,T3,T4,T5, . . .}. It is easy to observe
that the dynamical behavior described by Figure 2 exists on the time scale T formed by five districts
and each district is a time scale, i.e., T = T1 ∪T2 ∪T3 ∪T4 ∪T5 ∪ . . .. Therefore, the switch of the
dynamical behavior in four timescale districts is directly caused by a horizontal evolution of all
the time scales in this timescale group.

Usually, all the similar problems described by Figures 2 are called the hybrid-timescale prob-
lems. Essentially, the hybrid-timescale problems are formed by the problems on multiple time
scales and this class of problems can be precisely depicted by a horizontal evolution of time
scales in a timescale group.

By comparison, the related hybrid-timescale problems are more comprehensive and will strictly
include the problems on a single time scale as their particular cases (see Figure 3 for their detailed
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Figure 2. The horizontal evolution diagram of dynamical behavior from T1 to T4 under
coupled-jumping timescale theory

relations). Moreover, the dynamical behavior on hybrid time scales cannot be effectively studied
purely on a single time scale through Hilger theory. Therefore, it is very necessary to establish a
theory (we call it coupled-jumping timescale theory) to solve the hybrid-timescale problems.
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Hybrid-time problems 

Coupled-jumping timescale 

theory 

corresponds  

to 

corresponds  

to 

derive 

derive 

derive 

cannot 

derive 

cannot 

derive 

cannot 

derive 

corresponds  

to 

corresponds  

to 

Figure 3. The relation among hybrid-timescale problems, single-timescale problems,
Hilger theory and Coupled-jumping timescale theory

3 The description of the hybrid-timescale initial-value problems
For understanding the idea to solve the hybrid-timescale problems, we will adopt Figure 2 to illus-
trate our methods and the framework of the solving steps. Let a timescale group be
{T1,T2,T3,T4,T5, . . .}. To break through the limitation of the Hilger theory and to establish
a coupled-jumping timescale theory, demonstrating a distinct dynamical behavior on time scales,
firstly, we must consider the formation process of the dynamical behavior in Figure 2. Assume that
the dynamical behavior in Figure 2 corresponds to a solution x(t) of a dynamic equation on the
hybrid time scales with the initial point (t0, x(t0)), where t0 = 0 ∈ T1. According to the continuous
dependence on initial values of solutions and the continuation theorem, there is a solution on the
district T1 such that (t1, x(t1)) is the right boundary point on the district T1, where t1 = 1 ̸∈ T2.
Now taking (t1, x(t1)) as the initial point, there is a solution on the district T2 such that (t2, x(t2))
is the right boundary point on the district T2, where t2 = 3.7 ̸∈ T3. Next, by taking (t2, x(t2)) as
the initial point, there is a solution on the district T3 such that (t3, x(t3)) is the right boundary
point on the district T3, where t3 = 11 ̸∈ T4. Repeating the process, by taking (t3, x(t3)) as the
initial point, there is a solution on the district T4 such that (t4, x(t4)) is the right boundary point
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on the district T4, where t4 = 16.1 ̸∈ T5. Finally, the solution on the district T5 is determined
by the initial point (t4, x(t4)). If there are more time scales after T5, for instance, T6,T7, . . ., the

process above can be continued until the solution exists on T1 ∪ T2 ∪ T3 · · · :=
+∞⋃
i=1

Ti.

In the above process, a key problem appears. Note that t1 ̸∈ T2 but the solution on district
T2 is continuously dependent on (t1, x(t1)), similarly, t2 ̸∈ T3 but the solution on district T3 is
continuously dependent on (t2, x(t2)),…, t4 ̸∈ T5 but the solution on district T5 is continuously
dependent on (t4, x(t4)), . . .. Therefore, the first problem we must solve is that we should introduce
an initial value problem of a dynamic equations whose initial value is given in one time scale and
the unique solution is located in another. In the literature [11], the coupled-jumping timescale
theory (or hybrid-timescale theory) was proposed.

4 The coupled-jumping timescale space (CJTS) and calculus

We present a notion of coupled-jumping timescale space and a concept of the hybrid-composition
integral.

Definition 4.1 ([2]). For t̂ ∈ Tk, we define the forward jump operator σk : Tk → Tk by σk(t̂) =
inf{s ∈ Tk : s > t̂}; the backward jump operator ρk : Tk → Tk by ρk(t̂) = sup{s ∈ Tk : s < t̂};
and the graininess function µk : Tk → [0,+∞) by µk(t̂) = σk(t̂)− t̂, where k = 1, 2.

Now, we will introduce the jumping construction of the coupled-jumping timescale space T1−T2.

Definition 4.2 ([11]). Let T1 and T2 be a pair of time scales. For t ∈ T1 ∪ T2, we define the
coupled-forward jump operator between T1 and T2 by σT2(t) = inf{s ∈ T2 : s ≥ t}, and define
the coupled-backward jump operator between T1 and T2 by ρT2(t) = sup{s ∈ T2 : s ≤ t}. We say
t is a coupled right-dense point iff σT2(t) = t; t is a coupled right-scattered point iff σT2(t) > t; t
is a coupled left-dense point iff ρT2(t) = t; t is a coupled left-scattered point iff ρT2(t) < t; t is a
coupled isolated point iff ρT2(t) < t < σT2(t) (see Figure 4).

Figure 4. Schematic diagram of all types of coupled-jumping points

Definition 4.3 ([11]). Let f : T1 ∪T2 → R. We define a hybrid-composition integral (or short for
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HC-integral) of f(t) on CJTS as follows:

b∫
a

f(τ)∆mτ =


α

∫
[σT1(a), ρT1(b)]T1f(τ)∆1τ + (1− α)

∫
[σT2 (a),ρT2 (b)]T2

f(τ)∆2τ, a < b,

−α

∫
[σT1 (b),ρT1 (a)]T1

f(τ)∆1τ − (1− α)

∫
[σT2(b), ρT2(a)]T2f(τ)∆2τ, a > b,

where a, b ∈ T1 ∪ T2, 0 ≤ α ≤ 1 and α is called the hybrid-composition proportion coefficient.

5 Time-hybrid dynamic equations on CJTS

In this section, we will introduce the exponential function on coupled-jumping time scales and
introduce the basic theorem of time-hybrid dynamic equations. For more details, one may consult
the literature [11].

Definition 5.1 ([11]). Let ẗ, s ∈ T1 ∪ T2. We introduce the HC-exponential function by

ef (ẗ, s) :=



exp

{
α

∫
[σT1 (s),ρT1 (ẗ)]T1

Log(1 + µ1(τ)f(τ))

µ1(τ)
∆1τ

+(1− α)

∫
[σT2 (s),ρT2 (ẗ)]T2

Log(1 + µ2(τ)f(τ))

µ2(τ)
∆2τ

}
, s < ẗ,

exp

{
− α

∫
[σT1 (ẗ),ρT1 (s)]T1

Log(1 + µ1(τ)f(τ))

µ1(τ)
∆1τ

−(1− α)

∫
[σT2 (ẗ),ρT2 (s)]T2

Log(1 + µ2(τ)f(τ))

µ2(τ)
∆2τ

}
, s > ẗ.

In the following theorem, we will demonstrate the HC-exponential solution of the homogeneous
time-hybrid dynamic equation.

Theorem 5.1 ([11]). Let t ∈ Tκ
1 , s ∈ Tκ

2 , t ≥ s. Then ef (t, s) is the solution of the initial value
problem

µ1(t)x
∆t(t) =

{(
1 + µ1(t)f(t)

)α
exp

{
(1− α)

ρT2 (σ1(t))∫
ρT2 (t)

Log(1 + µ2(τ)f(τ))

µ2(τ)
∆2τ

}
− 1

}
x(t), (5.1)

with the initial value x(s) = 1, where x∆t(t) denotes the ∆-derivative at t on T1.

Remark 5.1. Notice that the initial value problem of the homogeneous time-hybrid dynamic
equation (5.1) has the characteristic that the initial value is given in T2 and the unique solution
is located in T1, where T1 may not be equal to T2. There has been no theory to support the
study of such a type of time-hybrid dynamic equation before now.
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