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Introduction



In many cases of intellectual activity of human there exists virtually unlimited
number of ways of inter-action of a subject with the object. As a result of this, the
controlled inter-action is almost always incomplete. It is based on limited (generally
small) number of attributes (color) of the object which corresponds to the interests of
the subjects and which he/she can recognize. Sometimes these colors are not available
for the direct observation but are available only in terms of their abstract modes (or
quantity models), being the results of the direct perception or some specific
measuring procedures. In this case the information |oses the definition, univocacy and

there appears the uncertainty.

Sometimes these abstract color modes, identifiable on the set of objects, are called
variables. When the set of variables are defined as a result of our inter-action with the
interesting object, we say that there is defined the system on the object with the given
structure of uncertainty. Term “system” is observed as abstract or as a mode of set of
some colors of the object not as areal thing. In other words, the system is the way to
look at the object.

Today two sciences systematically study uncertainty [10]:
1. Fundamental science physicsis the leading in study of the material (physical)

world. There are two types of uncertainties connected with this science:
probabilistic (objective) connected with deficiency in empiric information,
received by the observation and virtual (intrinsic), quantum, placed in object
directly by nature or is the result of the deficiency in means of description
language.

2. Fundamental science of informatics [11] is the leading in study of the non-
material (informational) world, one of the demonstrations of which is the
uncertainty connected with the ambiguity and fuzziness. Uncertainty is
intrinsic to the expert estimation and to natural language, as the means of
description informational model.



Data in informatics — it is the set of so-called informational units. Each of
informational units is the four: (object, sign, value, plausibility) [1][15][16]. It's
important to differ the notion of inaccuracy and uncertainty. Inaccuracy belongs to
information content (corresponding to the component “value”), and uncertainty — to
its verity, understandable in terms of compatibility with reality (component
“plausibility”). For the given various information there exists the opposition between
inaccuracy of expression content and its uncertainty[24]-[28], expressed in that with
the increase of expression accuracy, its uncertainty rises as well and vice versa,
uncertain character of information leads to some inaccuracy of the final conclusions,
received from this information. We see that from one side these notions in a certain
way in contradiction, and from another side — complete each other upon the data
presence.

We offer to model this situation by means of new concept of optimal pare of fuzzy
subset and its canonically conjugated one [2]. Generdly, fuzzy subset is constructed
on the basis of expert estimation of one of the commutate component. From this point
of view, fuzzy subset, constructed in this way, characterizes informational unit
incompletely. We offer the method of construction of the informational unit
membership function taking into account the both canonically conjugated
components simultaneously and hence describing this unit in the most complete and
optimal way. In the frames of optimal model the fuzzy logics and generalized
information theory is constructed, corresponding to the canonically conjugated
subsets. Theory of fuzzy canonically conjugated number and appropriate arithmetic,
color operators theory, Zadeh operators [3] and so on.

Model of canonically complementary (canonically conjugated) subsets will be used in
such method of decision-making as discrimination analysis, method of fuzzy
probabilities, method of experts, fuzzy differential equations. New approach to this
analysis method of fuzzy information alows us control uncertainty, organically

inherent to informational units.



Now we shall shortly consider those general reasons which are laying in the basis of
our model construction. In most cases there is uncountable (it is possible to tell
unlimited) amount of assets of interaction of the expert with object [29][30][31].

Mostly this interaction is not full and is connected with small enough number of
attributes (colors), identification of which expert can and which corresponds to his
interests. Other colors are unattainable for direct supervision and thus make
“uncontrollable" influences on object [17][18].

One of our main assumptions is that these uncontrollable influences are quantitatively
characterized by random parameters [19][20], values which are not measured directly,

occur estimations of these values on the basis of subjective decision.

On the basis of direct measurement and estimations is created an abstract image of
objects, which we call variables [21]. The expert will establish corresponding values
of variables on the basis of interaction with objects [22], after this we say that the
system is determined on object, so the system is an abstract image of the real object
and it is characterized by the pair of canonically conjugate fuzzy subsets.

From the above mentioned it’s clear that there is possibility to describe object using
two approaches: if object is described in the basis of value uncertainty, expert is
giving directly the membership function [15], but if we'll base on plausibility's
uncertainty - first is constructed focal distribution, that gives us possibility to

construct fuzzy measure [10][23], thus the membership function.

We have to mention here that these two possibilities are “complementary” of each

other:

We are offering such description of appropriate uncertainty of the object, where some
characteristic of first and second type joint uncertainties would be minimal;
preciously we are offering to construct such membership function of fuzzy subset,
which will provide minimization of above mentioned joint uncertainty [4].

Notion of color isthe base of dissertation, thus without the preliminary consideration
of color theory, presentation of it is impossible. Below we offer exactly such
consideration.



In the chapter |, there is presented the total and detailed consideration of color theory.
Let's given set Q(universal set) and defined property & in it. Lets note
by #1(2)and©,(Q) 7] subset of @, defined by dements @< for which the
expression 50["’] (@ possesses color &) is true or false appropriately. Further let's
©0(2) = ©.4(2) \e can consider color ' defined in O

—plo] o o e p(Q) 1)

if & defines color complementary to & thenin  following relation has place:

- plo]= plo] @)

Opposite implication is fair only on set: AQ)=p1(Q)V0sQ) with the help of
¥0 it's possible to define such various 7 ¥ that if 7% istrue, then & isfase. But

opposite implication has place only on set ANQ)cQ

Let’s check how it's possible to construct set pO(Q)g pﬂ(g). With this aim, let’s
assume that each elements of © can possess color § in different amount. Further
let’s consider that we are able to attach its compatibility measure with color & to
each element @ € Q2. Formally there is given such areflection:

w, 1 Q —[0]] 3

that:

p[a)] = (ﬂp (w) = 1) (4



For each @ €2, Hol@) is called the value of membership function of @ with & or
membership measure of @ to 2:(Q) Holw)=1 we will say that @ possesses
color # . 1f #¢ (0)=0 then @ does not possess color & . Further ¥ (@) identify with

the subset of #() elements, not possessing color & . Color & in Q satisfying the

described above-mentioned conditions we will cal “measurable’ in Q. If

additionally assume that #:(Q) is not empty, ¥ we will call “completely

measurable’.

Let's assume that color § is characterized by numerical parameter <, (analogue

notion “red apple”’, & is defined on physical scale of frequency where to the given
color corresponds the defined frequency interval).

Main Assumption. ¢ numerical characteristic of color is the random guantity. In the

referent system €2 is hidden parameter.
Let's distribution of probabilistic values &,(x,) (e®R) is characterized by

density p, (X, ).( j p,(x, Jdx =1). Quantity
®
X, =M&, = [xp,(x, ) (5)
R

call calculated value of color & in @ € Q|

Note, that formula (5) satisfies relation between set of calculated values X" and

universal set€2, that is why the following definitions are clear:
(set Xor where o € X and wep(Q)) = @(m)

(Set X:M Where X:o < X* and a)egol(Q)) = Sol(iR)’ (6)



(Set X;’ where X; € X* and WESOO(Q)) = ((OO(S‘R)
We transferred uncertainty structure (system) € in 1.

if 21 i non-empty set, exist such @, that '[pp(xw)dx:l.

5471(‘R )

Except of Mg , presence of color to @ is characterized by dispersion also:

o-é(a)): SIJR (X—Xz))zp(@(x; w)dx ©

In our model exactly 0'2((()) is connected with definition of presence & color to

§

2
@ |f aé(m)—)O, we'll say  has quite define value @ . The more o;(@) is, the

,ugg(a)):]-

= it means @ hasno & color. Thus, if ,

uncertain & in @ |f o, (@)
we will say that X, possesses color §, if ,up(a)):o . than %o does ot pOSsess
color §2[5].

©,(R) is identify with whole “colorless’(not painted in color §”) elements X,
Elementsof R, which do not belong to g, (R)U g,(R), possessing color & in some

amount are characterized by number Ho (a)) from (0,1). Thus model of color might be

transferred in . Bedow we will consider universal set as numerical set
R, (0)= 1, (X, 02).

Notion computability in ! corresponds to notion “measurable’ in® and notion

“completely computability” in® - to the notion of “complete measurable” in €.

Assumption 2.



in %) e defined only & and & . Which means aong with #1(%) there exists

the only © O(ER) but elements of SR(Q) not belonging to these two subsets possess
color “intervening” between & and & . This accusation is expressed with the help

of the following relation:

1, (%,.0))=1-1,(x,.07) ®)

Colors® and ' are not complementary in common meaning [8], they are such only

in appropriate A%) which means the conditions @[X;]Vﬁ@[x;]:-rand

@[Xfu]/\ﬁ@[xw]:@ generaly speaking are not fulfilled. Here T is aways true
expression, V is sign of digunction and A is sign of conjunction. These conditions
are substituted with the conditions (8).

Definition 1. For Y@ € Q |et's introduce some interval of & values with the help of

relation :

Ho@)=1- [ p(xe)x=1- 9% zup(w)(X)p(x; w)dx

HH\O) . : - . .
where © § is defined by expert, £ common characteristic function of interval

I So(co)

.Let'scall interval defined by (9) as the characteristic interval of color & .

We have to mention also important paragraph 2: “Theory of informational function
representation”.

In theory of presents the main role plays the notion of informational function.

Definition 2. informational function of color & let's call the followi ng expression:

/—(—)ei¢=
Py -

where ¢ is random phase and is a real quantity. We took the advantage of Dirac

* .
X, Xa) ; g<)> (20)

[6][9] nomenclature. We will use this function for the presentation of the information



(uncertainty) contained in color § . Informational function module square defines

membership function (precisely the appropriate density):
+
p@(x,w)=‘x,xz,;go> ‘X,xz,;so> (12)
Any fuzzy subsets of o ( ¢ is ¢ color appropriate fuzzy subset) can be described
independently from hidden parameters (&) type by some quantity which we will call
ket-vector [7] (by Dirac nomenclature) and will note by |p). Let's |p)e L*(R)
(Hilbert space). Let’s consider the Fourier transformation of this ket-vector:

o\ e
‘x,xa),p>e C%dx (12

~

%k
FIX;X 10)=

) o

Where C is constant.

Expression (12) isidentified with informational functionin x, presence:

~

F

VL N U IR
x,xw,go>_‘xc,ch,goc> (13)

Where . iscanonically conjugated in relation to ¢ color.

¢.fuzzy subset — canonically conjugated in relation tog is appropriate to this

color[13], membership function of which is defined by formula (9):

(o) VT L
Xpclog)= | ‘Xc’xa)c’@c> ‘xc,ch,pc>dxcz
Igocwc]
(14)

10



) i)I% | 'pc(“’cJ(Xc)‘XC; XZ}C;@C>+‘XC; XZc;pc>ch

In space of information function

%k A L .
X; Xa);p>, operator of color ¢ is appropriate to
color g . If information about color is precious, then

1 a)sp _X4 1 a)’p

~

§

(1)
Analogically

~

Pc

X X =X XX (16)
¢ Xac'¥c) = Y| X ¥ e

Operators ¢ and ¢, are connected with the following commutation:

9 Pc—Pcp =icE (17)

Where é is operator of identity presence. This relation should define the quantity
connection between canonically conjugated colors. This connection is studied in
details. Hence the meaning of this study is necessary to control the uncertainty
decision-making systems. Formula (17) bounds the simultaneous calculation of
canonically conjugated colors. The uncertainty principle, analogical to the

Heizenberg's principle, which alows introduction of definitely optimal fuzzy subset
¢, for p and g is studied. By using our theory with the set of real numbers we

constructed arithmetic of optimal real numbers.

Theory of its common form is connected with the vector properties and to appropriate
operators in Hilbert space: each informational state corresponds to definite estimation
of membership function, and the color — to operator. Though the various formulations
are possible in frames of which the informational functions in the phase space
(Cartesian product of universal set on canonically conjugated) can be connected as
with the informational state, so with the observable (estimated by expert) colors. As

11



the sample of such formalism is theory of phase functions of Vigner and

transformation of Veill. The dissertation presents construction of analogical
formalism: colors proper vectors |go> and |goc>or appropriate operators o and @,

are satisfying equation for proper values (15) and (16). The complete system of

proper vectors satisfies the compl eteness condition:

Jax Jo)o =T [dxdefod=T (18)

Where | isuni gue operator in Hilbert’s space.

In conclusion the consideration of conjugated colors theory application is given.

Chapter 1

Color Representation in Fuzzy Probabilistic Model

§ 1.1 Notion and Properties of Color

Suppose, A fuzzy subset of €2 Universal set corresponds to A concept and
suppose this concept is characterized by numerical parameter S .

Consider & is quantitatively characterizing some property of ;& - let’s call it “color”
0.

Main definition: The numerical characteristic of color & p;[a)] is a random
quantity. Define appropriate distribution density of probabilities by p SO(X; o).

Denote

Ko =Meplol) = [ lcokx o

12



as Calculated value of /& fuzzy subset membership function’s modal value.

Note, that formula (1) satisfies relation between set of calculated values X" and

universal set€2, that is why the following definitions are clear:
(set Xos where Xo € X @ndw e go(Q)) _ 50(93)
(set X, ) where X, € X*) and @ € 0,(Q) = 801(9{) *)
(set X, where X, € X*) and © € ©0(Q) 800(9{)_

We transferred uncertainty structure (system) € in R

Except of M&, presence of color to @ is characterized by dispersion also:

aé(a)): 9]% (x—xz))ngo(x;a))dx )

In our model exactly aé(a)) is connected with definition of presence & color to

2

@ |f JS%((O)—)O, we'll say  has quite define value @ . The more o3 (@) is, the

uncertain & in @ If o2(w)—> o it means @ hasno & color. Thus, if ,ugo(a))zl,
we will say that X possesses color §, if ,ugo(a)):O , than % does not possess
color &,

©,(R) is identify with whole “colorless’(not painted in color §) elements %o,

Elementsof R, which do not belong to g, (R)U g,(R), possessing color & in some

amount are characterized by number Ho (a)) from (0,1). Thus model of color might be
transferred in M. Below we will consider universal set as numerical set
R, (@)=, (X, 07).

Notion computability in " corresponds to notion “measurable’ in® and notion

“completely computability” in®® - to the notion of “complete measurable” in 2.

13



SUppOsE:

1) gol(Q) cQ: O'S% (w)=0,Vwe gol(Q)

2) goil(Q)g Q: aé (@)£0,Vwe 507&1(9) ?3)

3 o) Q:08(0)=+0,Ywe pyQ)

It means that:

1) for Vo e gol(Q) , expression” @ has g color" , p[w] - istrue;
2) for ‘v’a)egoil(Q) ,wesay @ |w] istrueif plw] isfase.
3)if for Vwe goo(Q), expression g|w] is false, we say that in this case— p[w] -

istrue.

Thefollowing isvalid:
—plo]= plo] ©)

But the reverse implication is valid only on the following subset:
AQ)= (@)U ()
if goO(Q) is proper subset of So;tl(Q)’ thanin Q exist @ |, that :

2

80((0)< 00

O<o

Now we may indicate easy way to separate  (,(Q2) subset from g_,(Q). Assume Q
universal subset's every element is characterized g color specified quantity.

Formally it means that expert may give the reflection directly:

14



Hep Q2 [01] (5)

Which has the property:
plo]< (1, (0)>0) ©)

,uso(a) is considered as measure (membership function) of ¢ color presenceto @ .
If ,uSO(a)):l, it'ssaid: @ has g color, but if ,ugg(a)):O, then @hasno g color.

is the set of such @, which “are not colored in g color":
:ia):yp(a)):o,a)eﬂf.

The elements of Q ¢ gol(Q)U goo(Q), which have ¢ color in some amount, are

)
@O(Q)

characterized by numbers from (0,1).

Proposition 1. There are defined just o and — g in (2, so we have just one

goO(Q) with gol(Q), as for other elements from €, which are not belonging this
two subset , we are saying they have color “passing through” ¢ and —

1, (@) =1-p, (@) Vo e (7)

¢ and — @ colors are not really complementary of each other (— o # ¢ ), they are

such just on appropriate  A(Q), so conditions ¢|x|v —p[x |=Tand

*

go[x ]/\—u(o[x;]= & generally speaking are not fulfilled. Here T is always

12}
true expression, Vv is sign of disjunction and A is sign of conjunction.

These conditions are substituted with the conditions (7).

15



Let's consider €2 universal set, some ¢ color and it's compatibility with points of

Q . Itis clear that we can use normal indicator IS/J (Qj(a)) with valuesin {01} as
1

characteristic of ¢ color compatibility with points gol(Q)U goo(Q), as for points
% il(Q)\goo(Q) , for them we'll use generalized indicator ygo(a)) with values

from (0,1).

Proposition 2.. yp(a)) is equal of fuzzy subset of Q, where

sup pQ3 = {p_y @\ 9o [@)U 94 (©)

Note 1. ﬂgo(a)) and (goil(Q)\goo(Q))U g)l(Q) are defining A fuzzy subset,

where sup pA= (@ il(Q)\gOO(Q))U Q).

Definition 3. V@ € () introduce some HSO C R interval on scale of ¢ color
values (i.e.on R) by

Hol@)=1- [ pxw)dx=1-[x (X)o(x; w)alx
(8)

where ,u(@(a)) is defined by expert, y common characteristic function of

interval [] o ().

Main Definition: (1), (2), (7), (8) equations define the following set:

16



~

Q:{@E(w;y@(m)j:weQ} (9)

Call € universal set the probabilistic model of £~2 fuzzy subset.

§ 1.2 Information Functions Representation [13]

Suppose, ;(Z(a)),a)eQ denotes /& fuzzy subset's appropriate membership

function.

Assumption 2. Lets call expression

p;\(x; w)= <x, xz)‘ ,&> (10)

Information function.

Here we are using Dirac’s notation. We need this function to represent the

information in ;& concept. Information function’s magnitude square determines
membership function (precisely the appropriate density)[12][13][14]:

o=l LAY (e
p;&(x,a))—<x,xw‘ > <x,xa,

Z\> (11)

Any /& fuzzy subset might be defined separate from some value’ s hidden parameters.

Call such values ( by Dicar nomenclature) ket-vector and denote as ‘,& > :

We may sum ket-vectors, also product ket-vectors as on scalar also on complex

values —and receive ket-vectors again.

17



Suppose, <X; XZ;‘:Z\>€ Lz(ﬂ%) (Hilbert space), consider Fourier transformation of

this function:

F<x; xz)‘,&> :%E}I%GC xz)‘,&>e_ic)o<cdx (12)

where C is const. (12 ) expression is equal of information function at Xg

presentation:

- k
F<x,xa,

Aol
where ZC is canonically conjugate fuzzy subset:

Tpelo)= |g/,){:(a))<xc; Xéw\’xc>+<xc; ol =

(14)

=111 ool A (rconf A

At information function space<x; Xz)‘;&> , g% operator is appropriate of o color. If
information about color is precise, than

~ N Y LR A

p<x, xw‘A> = x<x, xa)‘A> (15)

analogically

18



Po{ x| )= o X1 x| A) (19
Theorem 1.  Suppose <X; X ;&> and %<X; Xz)‘,&> S LZ(SR),

<XC;X&)‘;\C>: If<x; Xz)‘,&> than the following expression is valid for (& and ngC

operators:

g%c<x; X Z\> =i c%<x; X Z\> (17)
And analogically
{0<Xc; xéa,‘ﬂc> - ic&<xc; xéa,‘ﬂc> (18)
Note that by (15),(16) and (11),(1):
X7 = 9{{ <x; Xz ;5\>+g5c<x; X% ;&>dx (19)

19



dxCdxdx<x; xz)‘,z\>+ <x'; xz)‘ ,&>eicxcx[i ci,e_‘i:XCX'J -
dx

:Zjdxc<x;xz)‘,&> <x X ‘A> ¢ [2-

- gj% o/ i<x xw‘A>eCXC(X_XI)}

=— 2ﬂgj%dxjdx <x xw‘A> jdxCeCXC(X_X)

20



zgj%dx<x; XZ‘AY[—iC&XX; xz,‘:&>

Note 2. The followings are valid:

X = (<x Xl A2 %5 /3>) -

(e ol %) x| 22

Xeo = (<XC’ Xéa)‘z‘c>'52’C<XC’ Xéa)"&C» =

~((xo[A)pe(x R @

The proves of these equalities can be done by the same way, so we aren’t considering

them here.

Theorem 2. Operators g% and g%c are satisfying the following condition:
@ Pc—Pcp=IicE (24)

where E - identity operator.
Proof. : Suppose o f (X) =X (X), f(X), xf(x) and f (X) € LZ(ER) , then

(O Hc - Pch)f (%) = Hloc f ()~ Heldf ()=

21



vicd (xF (30)=icEf (%)

dx dx

Here we have used the following facts:

~

Plpct)=xpct) and {oc({of):—ic%(g%f), xeR

according to: (f,{o @Cf)z({of ,g%cf):(xf,gz)cf)z(f,xgch)

§ 1.3 Connection between canonically conjugated colors

Connection between canonically conjugated colors is given with the following

theorem:

Theorem 3[13]. if ¢o and (@ arecanonically conjugated colors, then

2

2(,*%\) 2 * C
o2 k2 o2 (25)
Proof. Let's enter designations
OAJE{O—XZZE , ,bA’EgAOC—X*Ca)é (26)

appropriately

Gg% (Xt )= <0?2> = (<x XZ)‘;\>,0?2<X, X

A)
(27)
GS%C (xéa))z <,§Z> = (<x XZ)‘,Z\>,,§2<X, xz)‘,&»

22



We have
GS% (Xz) )Jgg)c (Xéa) ):
:J{<X, XZ‘,&>+0}2<x, xz)‘ﬂ>dx€£{<x, XZ)\/K>+,§2<X, XZ‘A>dx:

= i]j%of“<x, Xz)‘5\>+&<x, Xz)‘ﬂ>dngf’+<x, xz,‘,3\>+ ﬁA’<x XZ)‘E\>dX
(28)

Using Cauchy-Buniakovski inequality:

11 (0% axf]g (|2 dx | £ ()g(x)aX > (29

And suppose that:

0?<x, xz)‘;&>z f(x) and ,3<x x;")‘,&>z g(x)

;\>d><42 _

We will have:

~ + A
i{{0?+<X,X2)‘A> ﬂ<x,x’ak)

o2 (X b2 (X )2

9{1 <x, XZ‘)‘,&>&,§<X, XZ)‘A>d><4

2
g)I:{<X,Xz)"z\>+{%(&,é+3&)+%(&B—,@OA{)}<X,x;)‘;&>dx4 i

(30)

2

23



2

S|A) 6+ Bax, o3 1 (s |A) 63— B x

* ,&>dx

Missed member is equal to 0, because &+ =& and G — B& =icE.

4

. ~>dxr

1
_9%<,

So using (26):

o)~ )| i x /)

so, if at right side of equality (30) we'll ignore second summary (which= 0) finally

(0?,5 —ﬁ&Xx, XZ)‘,Z\> . —ic{ o(Ij <

(31)

receive (25) .
Chapter 11
Joint Representation of Characteristic Functions

§ 2.1 Characteristic functions of canonically conjugated colors [13]

L et us consider the operators:

M (@)= explia ) (32)
M C(8)=expliBérc) (33)
Scalar product:
M (a)= (<x xz,‘,&>, M (a)<x, xz,‘,&» (34)
M C(ﬂ):(<x, xz,‘,&>, M C(ﬂ)<x, xz,‘,&» (35)

24



call appropriately characteristic functions of canonically conjugated colors ng and
o -
Theorem1. Characteristic functions M () and M C(,B) are caliber-invariant.

Proof. Itisclear that (22) and (23) might be generalized:

(&

~

M) (ilB) e i) o

O R (A R ) B
beceuss of -
ohap)- £ (4F @) ok
-
explifpc)= > =0 5 0 .)

s0, according to (36) and (37), the invarianceof M (a) and M ©(8) isclear:

M(a):(<x,x2)‘,&>,h7l(a)<x,x2)‘,&>j (<xC xCa)‘AC> )<xC xCa,‘AC>)
(38)
A (e (A L )
(39)
note: Operators g%n and ngCn might be confront with some colors, denoted as pn

and gocn by us.

25



According to (15)-(18) we have:

M (a)<x, xz)‘;\> _¢ O‘C<x, xz)‘;&>

M (@) X X | A°) = o —a, G A°)

(40)
M C(p’)<x, xz)‘,&> =<x+ £e, X, ,Z\>

M C(ﬂ)<xc’ Xew ’Z‘C> = eiﬁx<xc’ Xew

First and last equality of (40) directly comes from (15) and (16), as for third and

AC)

fourth equalities — according to (17)-(18), we have:

K _ K gk _
éo—('i!) ‘2’k<XC’Xéa"AC>:é0—(Ii!) ek e ofA%) =
- K gk _

- S e oA -

e

005 Kol f) - § 088 ik 9% L) -

K=0 k=0 K dxX
k
k=0 K qxK
= <x+ e, Xz, ;5\>

Theorem 2. If M (c) and M () are defined by formulas (32)-(33),

<x; xz)‘;\> e L2(®) and <xC;xéw‘;5\C> = If<x; xz)‘;\> then
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pgo(x, x*) = %%Kx xz)‘5\>, M (a)<x, XZ)‘,&»e_i AKda  (42)

;(SOC(X, XC*j:%E}I{«X’ xz)‘;&>,l\7l C(,B)<x, xz)‘,&»e_iﬂxdﬂ (42)

note. According to the fact of caliber-invariance (see theorem 1. ) probabilities
distribution densities of canonically conjugated colors ¢ and ¢, alowing following
presentations:

*

pp(x,x ):%gj%«xc;xéw‘,&ﬂ,l\?l(a)<xc;xéw‘ﬂc>)e_i Xda (41

Zpo %% |7 g [Xei K0l A% B i o A°) Pl

(42)
§ 2. 2 Canonically conjugated colors joint distribution

Suppose g% and g%c are canonically conjugated operators. Denote X and X their

_ _ i[r{o+655cj _

possible values. It is clear to count € [5],[12],[34],[35] to define phase

distribution (joint distribution), the average value of which will be denoted as

membership function

| iltp+0pc || ~
e[ c A

M(z,0)= (43)

Using well known opposite formula of Fourier transaction for discrete proper values
we have:
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o, 3y T (A0

T—)OO4T2_T T

> —i[Z‘Xi +@(Ck]d6dz_
(44)

And for continuous proper values

ol 1 TR

4T 2 ~o0—20

A> (260 .

(45)

When ¢ and (. are canonically conjugated: (g% fc —52)050): —icE, so the view

of characteristic function would be very simple:

- —lirng L 02 +lirg:)
e 2 COpe 2

M(0,7)= (46)
If we consider expert functions as g% operator proper value, then
1+ o 1 |@(
M(6.7)=(Ni(6,7) = L ] H _ch> <x 41 CT\A>
(47)
3o,
_1+OO"‘>1<_1 —iXer /o« 1% _
F(x,xc)—z_!)o<A4x ECT>e <x +§CT‘A>dT—
_lic 02
_ 1. 2 axaxc C |c><><C
=e A A )
(48)
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Let's consider average value of complementary variable common function G(X, X )

to the phase distribution Function F (x, XC)

400400

(G)="] [G(xxc)F(x xc Jxdxc = (49)

—00 —00

Hereinafter we'll consider G as “energetic function”

- +fo TO +fo J?OG(X, xc M (z, Q)e_i(o(+@(cjdxdxcdzd9 =

—00 —00 —00 —00

~[ 400400 i Tg%+9550
I ] 7(1,9)9[ |
—00—00

ddo |A
(50)

where

He0)=1 1 G(X,Xc)e_i(zx%b(Cj

dxdxc (51)

Thus, the appropriate operator of canonically conjugated variables common function

might be presented by the following way:

(52)
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where éo(@,@c) is received by G(p,q) function in case of changing X and

X with beforehand right order of appropriate operators g% and XAOC- We should save

i 02
2 OXOXo

this ordering in case of € operator’s operating onGO. We'll use

“Energetic functions” of color in time derivation consideration.

If connection of information functions on time is presented by exponentia phase
a(x,xcj

depending on time, then

~

t
items (€ ), what means that information about A fuzzy subset is not

dﬁ:—'—(“ é—é{o) (53)
We will consider case, when

G=ap®+ e (54)

Now is easy to calculate following:

S5 = TR S R T (R Gp{x R
Using (11) and (12) wereceive:

G = p?+ 0?00+ B0 o |-

=25 p2-p8p)=2ppc
Thus,
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0[%J = Zﬂa(@c) (56)

an A X XS )=1- F(x, d
d oo ) | [X*]XJIJC[X*TCHXXC

Chapter 111
Optimal F Real numbers

§ 3.1 Main Definitions

Definition: Numbers, corresponding to the minimal value of O'é -Jéc product,

call Optimal.

X, X, ), which is minimizing

It's not hard to establish view of vector

functional O-S% 'O'S%C, i.e. providing equality in the following ratio:

It's known that in Cauchy-Buniakovsky [] inequation equality has place

when f =g, where 7 issome (commonly complex) number. It follows that

minimal value of dispersion product is reach only in case of following conditions

fulfillment:

%, ) = 1B

(24

X, ;X > (57)
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~ ~

i%x”’;x;‘(&ﬁ + ,B&]xw;x;>dx =0 (58)

Expression (30) and condition (57) leads us to the following differential equation:

d

xw;xw>

dx

_ i%(x—x*}%] X,iX,)  (59)

Actualy in accordance of (30), we have:

Xa);X{u>’

[p-x¢)

xw;x;> = y[{oc - XC* éj

dxw;xw> *

xw;x;>=—iCy/T—7XC

><‘xw;x;>—x*

Xw; X:u> 1
From here (59) is true. This equation could be directly integrated:

d

Xw;X;> Y 4

*
) [05)

= Xc [dX ;

If random constant define by InN, we'll receive:

2

i *
In +Excx+InN

xw;x;> :ﬁ(x_ X*j

_ (60)
xw;x;> =N -exp{ﬁ(x— X*)

2

i *
+EXCX}

N is defined from normality condition.
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Condition (58) with (57) isgiving:

£+i* j<xw;x;‘o?
Y ¥ ‘R

Itisclear that from above mentioned » should be imaginary. Further because of

2

X,; x;>dx =0 (61)

* 2 _ ]
Xa)’xa)>€ L=(R), y should hastheview  y =—i|y|

So,

N2
* (X_Xj i *
“N-exp—~— 2 +LATx (62)
Yo %o 2y ¢ C

Aswe already mentioned, N is defined from normality condition, and |y | from

)

Let’swrite normality condition:

xw,x:o>‘ dx:ag%(x*) (63)

N
el P e
1=|N]| %exp——dx, 1=|N|"y/7lylc (64

Condition (63) is giving the following:

~ 02(¢)= SNl

aé(x*):|N|29£(x—x*)2exp —ﬂ

(65)
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From last two correl ations we have:

1 2( . * 1 1 2( *
N=g—==: 02X )=~ drl=203(x] @
4/7zc|7/| § 2 /,,C|7| §
Note the important feature: in optimal case O'é[x*) is not depended on X* .

So, for normalized vector

*
Xa) , Xa)> we have received the following expression,

which provides equality in (29):

=—— _exp _—+IEX:;X (67)

Because of it, the membership function of optimal fuzzy real number will have a

view:

ot )]

We see that measure of o calibration in optimal case is Gaussian.

Absolutely analogical argumentation could be given in case of canonically conjugated
calibration.
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Theoreml. If calibration g scaleis optimal, than the canonically conjugated
C2
calibration would be also optimal, with parameter: o = =
PCT 42

Proof: we have:

= L p{i(xc xjx*}jexp t2 '(x’é xjtdt—
= 2 X~ — ———+| X~ =
(27[)3652 ¢ R 4050 ¢
B 20_8% 6802 * 2 | %/ *
=1—5 & ——(xc—x) +—X (xc—x)
c C c
(69)
2_ ¢
If here supposethat o, =——~— then:
40_2
$c
_ . 5 ;
* > 1 (XC_X) |/ * (70)
X, X, )=———e&Xp —~—F57—+—| Xc — X
Co’"Cw 2 2 c( j
27[0_80 40'(@(:
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£\ 2
1 [y_yC)

2o, (Vi¥o)=———exp —~—— (71)
e 2r02 205

Note: The optimal case should be considered as such model of R, when closest
calculations are realizable at given values of canonically conjugated color
dispersions.

For Intervals I and I pick up the special view:

I[[w]= [XZO —0yO,; XZ) + awap}

* *
Ig[o]= [XCa) ~AcpOpc e T %% C}
(72)
Where o and o depends appropriately from X* and X:; , thevalue of ao

defines width of interval on scale of “hidden” parameters.
By experienced way, with help of inquiry, expert can define the interval (72). The

same inquiry will help to estimate frequencies of individual valuesi.e. let to estimate

2

Xz and ago,which , for its part will help to estimate distribution pgo(X; X*j.

It's clear that for any ,ugo(a)) (,ugoc(a))j,selection of such @ (o) to satisfy

terms (8) and (18) is always possible.
For the considered optimal model, the membership functions appropriate to

canonically conjugated calibrations would be presented by the following view:
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Xa)+0!GSO B *
o)== | e T -
27[0_@ Xa)—ao'gg 26(@
1 a a aw
== Q| — |-D| —— o
2o ol -5l %
(73)

Anaogicaly ,

e (w):cp[ﬂj 74)

In such expressions ®(2) is Probability Integral .

For x>0, ®(X) isincreasing :

Where probabilistic integral :

O(x)=erfx= e_'[2

=l

If physical notion of color is characterizing by objective data x* and 0'2

, then for
al w e (2 they are the same. Membership function is defined within increasing

mapping.

§ 3.2 Interpretation of the Basic fuzzy Set Theoretic Operations for Optimal
Model

Because of (72), (73) and (74):
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(190> 1,5(0)| S (@)= 1) @

We have to mention that interval width occurs depended only on « :

>0y = (Il(a)) ol 2((0))

1) (9}135—)7{2)@ (Il(x*)zlz(x*);x* eER)
2) (931U9§2)<:> max[ypl,ypzj@(Il(x*)UIZ(x*);x* eiﬁj
3 [7,N%, ) min(y o1 Sozja(ll(x*)ﬂlz(x*);x* esnj

4) (—|il~i)<:> (ﬂﬁgo :1—y80)<:>(fﬁ\l(x*);x* eSR)

The same corréel ation results %C )

We see that common operations performed on appropriate intervals are appropriate of

fuzzy set-theoretic operations.

First three ratios show that in optimal model, afuzzy set-theoretic operation finally
reduce to appropriate common operations, but in case of fourth ratio situation is more

complicated.
Asin the previous cases 1__ o (X* ) Membership function value calculation is

reduced to the operation of common supplement taking:
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X —ao
o0

/‘ﬁgo(x ):1—y80(x )= _j psg(x,x )dx+ . | pgg(x,x )dxz
X +ao

£

:iR\Ij[x*]p SO(X’ X*)dx (76)

Hence, to — ¢ color is appropriate its interval

*\ *_ 2 . .x 2
(X )= o2 ix vamoZ, |

which is not a supplement of I(x*) till R, but aswe've already mentioned before, is

fully defined by this supplement. For a—, definition we have equation:

(s o

All above mentioned for color — ¢, istrue also for canonically conjugated color

—1§2¢c-

The following operations are pertinent only to F sets with only and same ¢ color and

thus might be reduced to operations on intervals:

S o a.c OO
2 6o rmale{of 3 o o7
2
o (cowi-55-3) = 12 o024 |-o 2|
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In much the same way we'll act for canonically conjugated o, color.

It isimportant to underline that considered operations would not take us outside of
optimal model.

§3.3 Cartesian product of Colors

Construction of probabilistic model for F sets Cartesian product provokes interest as
here given definition is different from the one offered by Zadeh and the main interest

represents the fact that special (complementary) character of connection between
canonically conjugated g% and g%ccolors ismost fully reflected in this model.

During calculation of membership function of two canonically conjugated F sets, we

will be based on appropriate characteristic function.

Let be given two fuzzy sets fﬁl and iﬁz, 1 and o ae colorsto define different

elements of two sets. Let's @l and 552 be the appropriate operators. First we will
. h h . * *
consider case when this operators commute. Denote as Xla) : X2a) ; Xla) : X2a)>

vector which € L2(9t x 9R) and defines membership function of Cartesian

xR, :

product R = ‘Rl )

2
‘ , (78)

psolxsoz("l’ %1 Xz) B HX]w %o 10y X;a)>
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2
‘ dxldx2 (79)

R L AL N RN

P45

* * * *
I(xl,xzj = Il(xljx I Z(ij (80)
Definition. Two F numbers ')?I and ')Z; called “non-interacting”, if

*
XZa) ' X2a)

> , otherwise they called

X_Iw’XZa);)gw’X;a)>:‘X]w’X;w>x
interacting.

Let’s consider operator

~

M (al, az): exp[i (051{01+ a255 Z)J (81)

If 91695 — 2561 = 0, it has quite unique mining.
Definition. Call characteristic function of £1% 8> color, the following scalar

product:

SR (P T M )

(82)

Theorem 1. Density ,0801>< is calculated by formula:

¥2
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. . —ilax+a
psolxgoz(xrxz;xl’xzj i Zﬂ%ﬂﬂ%M(l’ 2 ke 2X2]d“ da,

(83)

Proof. Put (82) in (83): 'DSOJ_XSOZ(XI’ x2; xI , x;j =

da,e e [[ dxdx ‘

T3, X,
o A *

exp[l (0!1801 + 0‘2802)1)(1@ ' Xza); X]_g_) ' X2(0>

* *
When Xl and X2 are non-interacting F-numbers, it is clear that:

9,

;X;;),X;a)>=xl ;X:Tw,X;a)> =1, 2 (84)

It is natural to suppose that the same relation has place in case of interacting F-

numbers, so it is possible to write:

Popog 127172 )=

4; I degdage lepyraro) A dxldx exp“ ax+

. . . 12
+a2X2ﬂHX]ﬂ)'X20);X]ﬂ)’X2a)>‘ =
SRR S N L O W N %
o * * 2 ' .
= il T2 X]Lo’XZa);X]m’XZa)>‘ o %)%, )=
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* * 2
B HXZIm’XZa);X]m’XZa)>‘
With help of density p‘@lx 802 , itispossible to restore its components densities:
* % % 1
pgol(x; le = J{pplxg’z(x’ X; xl,xzjdx (85)

* 1 * * 1
yo, (X;X ): 0 (x,x; , X )dx (86)
0o\ X172 )= [ P, XXX %
Relations (81)-(86) are easily generalized on case of Cartesian product of V finite

number of efficient with “commute’ colors:

il n)-o] "
al,...,an =eX Ikélakgo (87)

Wlganl={ [t S

(89)
It is possible to receive densities appropriate to the smaller number of efficient by
integration on defined variables with help of this density.
Now we are proceeding to consideration of Cartesian product of two F-sets with
“non-interacting” colors.

At considered case the view of characteristic function depends on appropriate

commutation between 5%1 and 552.

| (al,_,_,an1><3m...xnw:><L,---X:m)>J
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Especialy ssmple view assumes the (81) for canonically conjugated colors
(9 c—Pcp=-icE):

Vi rc)=exef ~ yacive Jexpliarplexs{ et
Characteristic function of (% ¢ color isthe following:

* *

M (e, 0c )= (<xa),xw M (a,ac*xw,xw» _

A A~

*

<x,xe
o

According to (27),(33) and (40) we receive:

M (a,ac):i]j%<xw —C%

(91)

Cac *
x +—= X >dx
2 (0]

The view of density appropriate of this characteristic functionis:

XXX, ) Mla,a adoe =
p@’x@c{ %) a2 gy e ¢

|[ax+acx'] ca,,
[[dadace [{Yy——7
" ar2wom R 2

Cx
o e, -

— aCX'

1 “U. xS 2\ 1 daly-x
5 Jdece E{{dy<y—79><a,y+7c’><a)>[—Je“(y lder | =



1 _ia X' Cox * Cox *
=—[dace ¢ (x ——Ex |x +—L;x
27[9? [0 2 |l @ 2 [0}

So, for Cartesian product of canonically conjugated fuzzy sets ‘J~% X Sﬁc we have:

Density is expressing by Vigner Formula:

|. * % _ 1 CO!C * CO!C * _IaCX'
ppxgoc(x,x,x ,xcj_zgj{<xw7,xw X F—=iX, )8 dag
(92)
And the membership function is:
ﬂWSOc(X ’XC): x J x 'OSOXWC(X’X;X ’XdeXdX
I(x ]ch[xc
(93)

Note: Instead of (92) and (93) receipt of other expressions are possible by replacing

Veil formulawith some other expression.

Note: Using caliber-invariance of scalar product, instead of (92) (based on the same

Vel formula (90)) it is possible to receive:

%

. Ca. « Ca. « :
. _ _““c. C. —iax
Popoc ¥ X X C =5 ] <Xca) — Xeoffcot 5 ’XCa)>e da

§3.4 Color Value Calculation Condition
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Color value calculation condition is conditional moment, calculated with help of

density (92). For example ¢ " color (appropriate operator ") value condition is

defined by formula:

*
M * _ N S Ux '
(Xc )ngo(x,x )_gjqx pggxgoc(x,x,x ,xcjdx (95)
Insert in consideration conditional characteristic function:

M(a|x)_@ [ P (x Vo Xf:j X g

! !

Ca

1 * \ —JanX
X +—C:x e “Cdal ap =
2 o

p@(xx)‘ﬁ g0 2

! ! H [}

1 Ca Ca * —| o~—C,

=—— [ dag( x ——C;x X +—Cx [e o
* w 2 @w 2

X e
p@(x,x )ER

S
=

Supposing that:
i
* *\ ~X)
. — C
‘xw,xw>_ppy2(x,x je (97)
We may write logarithm M (ac|x), or conjugated function, in the following view:

K (ag|x)=InM (aC|X)=%|np@[X+%;X]+

ca
Inp@(x— 5 J Inpgo(xx)+
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L) 7] oo

and so, for cumulants Np(X) of given distribution ( coefficients under (i ac)n / nin

Taylor expansion K), the simple expressions are received:

_ 2n d2n+l
a5 SamaSd @

o 2n d2n
NZn(x):[zlj dXZnInp@(xx ) . (91)

J— *
Quantities N, simply connected with (X{;)X counted values. Particularly for n=1 we

have:

0=y = % (92)

It gives possibility of i , (X) comulate function argument interpretation as S(X)
X

*
potential conditional calculated (conditional average) val u%(xé)x.

Conditional dispersion of g color is:

*

=02 ()= (%2), [l =S g )

Note: Distribution skewness purely defined by its odd cumulants, hence canonically
conjugated color numerical value conditional distribution skewness depends only on
S(x).

Now we will show that from two F-sets Cartesian product probabilistic model relation

(25) isflowing. Thisfact surely countsin favor of offered Cartesian product model.

a7



Let us denote by ¢ and /3 operators with average zero values:

et

Well known Schwarz theorem read as follows:

(i) (i) * (s
X ;X l,af X x ,a ‘ (X X
' @'

Bx X >j
'
(94)

It isalso known that it is possible to put appropriate a(X) and 3(X)random

* A
,xw,ﬂxa) X

quantitiesto ¢ and ,5 operators for fulfillment of the following relations:

(<xw;x;‘,&,é xw,x;>j :%a(x),b’(x)pgo(x; X )de@
(<xa);x ‘ Z‘X ;X >j:9{{“2(x)pgo(x;X*jdXE;:0025
(e

Therefore if put o(X)= (X&); —{(X&)X} and B(X)=X—X ,where

A~

B2

X x’;)}) (8200, e o= 52 -

*

{(Xé);} =) (g6 Jox (97)
then

(95)

(96)

I ((X&)’; {(XE:);} J(x— X jpg@(x; X jdxs PN

Further, consider the random quantity:

a'(x):&lnpgo(x; x*):pggl(x; x*)%pgo(x; x*) (99)
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itisclear that
a'= J[d |npgo(x X ﬂ/’go(x X jdx .[IOSO(XX )dx pgo(x X j

«? s{z[ dnpp (<X HZ"@(X;X*)"X:

oy Lol Tl o

(100)

Suppose w;(* (X)e L2(R), in this case:

400

—Q0

=0
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*
o)
=— | L Yo (x,x )dx
R p (X'X*j N
(@ 1
thus,
2
2_ | d
a gja dlenpgo(x X jp@(x X jdx

By taking into account formula (92), we receive:

a’zzcizg{aéc(xax)p@(x; x*)dx (101)

i) (x_x*)[%mp@(x; Yoo e
) 0 Jox-

— | 'OSO(X; x*jdx:—l (102)

X—=

While comparing (92) and (101) and defininga(X), we see that it is possible to put

a'(X)=a(X), according to it formula (98) gives:

O'g%% o2 (xdxj,op(x X )d % (103)

Sinceintegral in thisinequality isaéc , we areimmediately receiving (25).

§3.5 Conditional Color Fuzzy Subsets
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Let us consider conditional density:

. P XXX X
Pm(x x <X’)X)= 801%( : ) (1049
o)
Definition:
R oy = {(x’)x; Ao, [(x’)xj {(X)x € R;0< ”802(()(’))(] Sl} , (105)

*
fuzzy subset of R ,where (X')x is defined by formula (95), when n=1, and

ypz((x');j: [ ) ppz[x'|x;(x’)’;(]dx' (106)
IZ[XIJX

also according to (82):
I2((X')§(j:{(x')§(—azaggz((x');j;(x');+a20'802((x')’;(ﬂ (107)

call conditional ¢, color fuzzy subset.

Color definitions of theoretical-linguistic operations are valid also for conditional
color fuzzy subset.

Note: It isclear that for non-interacting fuzzy numbers conditioned color fuzzy
subsets comes to the common “unconditional” (absolute?).
Bellow we will consider two important examples:

Examplel: Let appropriate density of (X o hasthe view:
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_(x_x*f_zggg(xf_ng
1 20'2 C2

ok * _1 ©
psolxgoz(x,x,x ,Xc j—ﬂe (108)

This density corresponds to the optimal model of considering Cartesian product

2
asaé -O'éc = CT , besidesiit is obvious that it describes non-interacting optimal

fuzzy numbers: Poxpe =Pp Ppe:

Therefore in this example conditional and non-conditional fuzzy subsets coincide.

Example2. Consider the density:

_1- X2+X'2
1ok * 112 2 2 C
pgolxgoz(x,x,x, j:E{E(X + X )—1}e [ ] (109)
It isclearthatx* = XC* =0, further :

_1,2

1 * * , 2 2 =X
P, (x0)= ] p (x,x;x Xe jdx = x<e C (110)

2 R % C /ﬂcg

Since (109) symmetry by x and X', it is possible to write
3
Pe¥0)=p,(x0)  and Gé(o):ag,c(o):_c (111)

2

We see that density (109) is appropriate of interacting fuzzy numbers:
pgoxgoc * Pp -ppc and also the mode! is not optimal while

Conditional density is:
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1,72

pgoC(XIP(; (x’);j = %X%E(xz + x’zj —1}e_cx (112)

*
§¢ color conditional value (X')x =0 and

1 |2 1
2 _ . _Al7mC 3c-2
%c(o)_ﬂj%ppc(xmo)x dx = > [1+ 2 } (113)

Formulas (106), (107), (112) and (113) are defining reflection Rin set of fuzzy

subsets {iﬁ%} X—)fﬁ%.

Chapter 1V

Arithmetic Operations on Fuzzy Numbers in Probabilistic Model

In consideration of arithmetic operations, we won't go beyond optimal F numbers

[12][13].
Definition.
AX= ‘x— x* (114)
Math. Expectation of this quantity call “error” of counted value:
AX = ) Ax,ogo(x; X jdx (115)
R
For optimal model we have:
_ 2 2
AX = 1 j‘x—x* exp —(X_ij dx= 2 ofye Zaédy—
27[0-8% R 20 % 27[0-8% 0
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ot N O
o 202 202
=1 (ge Pgt——— L 79 ZO-S% :\/%GSO (116)
0

| 2 2
2o o 2no o

As known arithmetic operations result error is defined by formulas:

A(XI +x;j:Ax; +Ax;

A(XI ° x;j = ‘XIAXZ + x;Ax;‘ (117)

A{ ! J e e e’
* W2
*2 X

Because of (116) for arithmetic operations on optima F numbers we have following

regulations (1") (see p. 101):

O'SO(){+X§):O'SO(){)+O'@(X§) (118)




Connection between canonically conjugated colors appears in case of arithmetic
operations. Because of (29), Xcl(-B XC2 operation for canonically conjugated

numbers, characterizing by dispersion:

* j 800( *) SOC( : ) (121)

o X* @ X
@c( cl™ c2 * *
G@C(Xcl)Jro-@c(ch)

~* ~*
is appropriate of addition operation for two fuzzy numbers Xl + XCZ

~*  _* ~* %
For multiplication X) X X5 =X ®XC2 and

cl
o) oo o
T e e e el
X 0d %2 [ 5% p0e X
For division i*_)xcl XCZ and
X
2
X* X* X*
x X 2 ( j (cz
0-800()(01+X02j: ” XOC* 5 (123)
oo %oa X pd Yl

Note: Rules (118-120) and (121-123) are pertinent only to F numbers of one color.
It ispossible to say that these rules are appropriate to calculationsin g calibration. In

*
case of ¢ calibration, we have to change JSO by O'goc, aso x* by X .
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Arithmetic operations for two F numbers, appropriate to canonically conjugated

colors are defined.

Generally speaking, rules (121-123) are establishing equivalence connection in F
numbers set of R°, because, by (61) density p«,c(x; xc) depend not only on
dispersion, but also on calculated value of x_. Calibration invariance of this value

allows to switch from equivalence classes consideration in R° to equivalence classes

consideration in %, this procedure simplifies consideration of thisissue. True,

because of (27) we can write:

* © %

_ o ¥ laC o *
Xe1°%c2 = (<X]w * %20 ™10 ° 20" M0 ° *200 10 ° X2a)>]
(124)
Where “0” indicates common operations. “+”,”-”":" ;and “o” is appropriately

®,®,+. Aswe seefrom (67), inratio for

X110 ° %90 X;m o X;a)> , figures number

* *
Xc - appropriate to number Xl o X2, soit’sclear that

* © %

Xo1°Xoo = Xc (125)

Because of above mentioned, X type numbersin iﬁ , which is corresponded to the

* © %

same number G@C(Xclo XCZ) are equivalent.
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However, referring to linearity of If , We can suppose that appropriate
V o« = Ifl// x =@ 4 isisomorphismincaseof “0” and “o” operationsidentity
X

assumption. All these considerations need more strict basis.
If we'll nevertheless assume this point of view we'll come to a conclusion that along
with the arithmetic operations on F numbers, defined by (118-120) rules, exist

operations on canonically conjugated F-numbers — expressed by the following rules:

o . .
e X ® %)= ;ifg‘*cﬁjjfi (z 2)) (121)
N o X* o X*
apc(x ® XCZ) _ xig;:E(*lejJr fzcgpzz(szlj (122)
2 x
GsOc(X::l" i j_ k SE ( )Clj (X[j*)) (123)

Call these rules arithmetic operationsin ¢ calibration. It’'s clear that also exist

another pair of rules, which we'll call arithmetic rulesin g calibration. These rules
* \— *
are received by substitution: (O'SO,X j(—(agoc,xc j . All statements on

operationsin g arevalidasoin g calibration.
Let’ s consider properties of introduced arithmetic operations:
1 Operation “+”
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Commutation:

Proof:

Proof:

(o) oy

and

76l (44520052 + 5 e
:%(XD“%(X;)*%(X;) =

“op ey 8) e (%5
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2. Operation “e “

I. Commutation:

Proof:

ii. Associative property:

Proof:

(g o5 = +(505)

and

G@((XI ’ X;)'%(X;D: XE%[XI -x;j+xix;%(x;):



=5 X% |+ o (%) |50 )=
= X;X;%(XD * XIX;%(X;)+ XIX;%(X;) =
=Xl 44 K7 )+ o )=

=504 )05 )= op 422055

3. Distributive rule:

~* ~%*

ii‘.(i;+i§j:x1 oi;+~x1* Xy

Proof: XIO(XE+X§)2XIOX§+XIOX§

and
%(XI '(X; + X;D :(X; + X;)%(XD* XI%(X; + X3) =

= XZ%("D*%%M)*%%(X;)*
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1 . Operation“ @ ":

i. Commutation:

. * * _ * * _ * * _ * *
Proof: xcl@ xC2 = Xc1+ xC2 = xC2 + Xcl = xC2 @ XCl

and

o X* o X*
o1 Todalred )
G@C(Xcl@)(czj_ 5 5 =
%C( c1)+%6( cz)
_ %C(Xcsz%C(Xcl) .

*
x * :G@C(XCZ cl)
%C(Xczj”m()(cl)

I. Associative property:
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~%* ~%* ~%* . ~%* ~%* ~%*
(Xcl@ xcz)@ X3 = Xcl@ (XCZ S Xc3j
Proof:

*

* * *
( cl@XCZJ@XCBZ(XclJFXchJFXcB:
_ * *
=Xq* (XCZJ’XCBJ Xcl@( cz@xcs)

and

GWC((Xcl@ Xczj @ Xc3j =

500( ®x; ) SOC( 03) _

500( ® X02j+0800( caj

T C(Xcl)GSO C(Xczj% C(Xcs) _
cl

ooc[ X o d X2 oo d X P K )t e %z Jrp o %)

"SOC(Xclj"sOC(Xczj . (X* )
- (x* j+a (xj pees
P C #C "c2
G@C(Xclj(j@c( ch *

* +0<§OC( c3j
X jmpc( ch

ood|
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%C(Xcl)“soC( CZ@X03) B
* j - o-gOC(

GSOC(XC].) + USOC(XCZ @ XC3

2. . Operation*“ ®”:

Commutation:

® _ ~% ®~*
X2 Xc2 ¥ Xa

Proof: C1®X02 Cl.XZ_XCZ cl_X2®Xc1

63



ii. Associative property:

*

~%* ®~* ®~ . ~% ® ~% ®~~k
(Xcl XCZ) X ~A=X (X X )
Proof:

* * * _ * * * _
(X ®X c2)®xc?>_(x ‘Xcz)'xces—
_ * * _ * * *

=X (02 c3j‘x ®(xc2®x03j

and

* * * .
G@C((Xcl ® Xczj ® XCS) =

90( ®ch) @C[X&)

*

*
XdXCZGsOC( c1®xc2) 03%0(Xc3)

O-(oc (Xcl )Jgoc (XCZ )Jgoc (XC3 )

X Xczo_ (X*l)apc (X )"‘ X Xcsa (X 1)6pc (X§3)+ Xzz X:SO-g/,;c (Xzz )%c(xés) -

pellapdt)
leﬁggc(x*} Xe2 @f( ) SOC( j -
XX polX j () +X o0 (23)

W AN c39¢pcC
010800( j *c2 500( )
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@C( a)7od X2 )7 )

* *
_ Xcz% C(Xc2j+ X3%0 C(Xcsj _

x* x* (x* )0 x*

* * o C C( )

X (x j+ *02 c3 SO* 02* £ ci%
XCZGSO C(XCZJ + XCSGSO C(XC3J

cl”oC

*

X

o X A ®X
@C( cl) @C( c2 c3j * *
cl®(xc2®xc3j)

sOC(X j XepXe3” @C[X 2®Xg

ool

3. . Distributive rule:

~* ~% ~% ~%
x1®( 2@xc3j cl®xcz@xcl®xc3

Proof:
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Note: Assumption on identity of “0” and * 0" operations is not fundamental, but this

assumption is simplifying consideration.

§4.2 Opposite F Number

Consideration will be held in o cdibration. Change for ¢ calibration takes place

on the basis of obvious replacements.

Let’s consider ratio:

Vou(a J+a'o,(y)

Itisclear that a* and y* have like signs.

It a : y* > 0 then from (127) follows:

put y* :i*,finally we'll receive:
a

(126)

(127)
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%(y*) - 80(1)_%(&*) (128)

* * Gp(a*j *
: B S RN : :
So,if a 680(1) USO(a j_O : 0'50(1) <a - thensolution of (126) exists,

however while comparing (128) and (120) we find that this solution might be
presented in the following view:

*

y = (129)

mz*‘l—\l

Call this number opposite F number regarding to the 5* :

~%
Dependingon 1 there exist infinite number of opposites.

* * * * * *
Ifa ,y <O,then -y Jp(a )—a ap(y )zap(l),or

= < - * ’
*2 ,W_ a (128)

According to (120) solution would be written in the form of (129).

For canonically conjugated color we have:

~ % ~ %

a ®Yc =% (% =1 (126')
According to (121’), we have:
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*

%C(acj%c(yf:)

=o,, (1)
* * * * £c
aco'goc(ac)"' yCUSOC(ij
* 1 .
as Yo = —, thisratio might be rewritten
ac
aCGSOC(aCJ%C(yC)
=c,, (1)
*2 * * SOC
% G@C(a‘:}r%C(y‘:)
solution of (126') is presented by:
~ % *2 *
~*x_ 1 = % a@c(acjapc(l)
c =—% & Gpc(yc j= : - :
aclo ol 8 )=

(130)

Solvability condition for the color ¢ isfollowing:

*

GSOC(l) o

%C(a’é)

<

* 1
Yo =—~
ac

(130')

While comparing this condition with appropriate condition for ¢ color, we'll

ascertain that those conditions are “ complementary” of each other in determined

sense.

§4.3 Mixed Fuzzy Real Numbers

69



Above considered Fuzzy real numbers appropriate of t , (X) functions call Pure F-
X

numbers.
We will show below that there exist F-numbersto which it isimpossible to confront

any defined i , (X) function. Call such numbers mixed F-numbers.
X

Let us consider connection between probabilities distribution density of Cartesian

product g x g and statistic operator of von Neumann.

According to Neumann introduce Cartesian ensemble of F-numbers (each of themis

pure). Suppose every Pure F-number is characterized by some Wk ensemble

appearance frequency, then it is possible to write:
k

*

,o@<80(:(x,x';x*,xC )=%Wkp goxgoc(x,x';x*,xc*j (131)

Consider full, orthogonal system {1 , (X)! of functionsfrom L2(%R). According
X
J

formula (92) for every density pk from (131), there exist appropriate real F-
%8¢
number Xk* (X * or function l//k* () ((ok* (x')), which might be expanded:
C X XC
K (=5 ak K (x) (132
X ¢
J |
Hence,
Lt K" :
pggxpc(x,x,x ,Xe j:%|z§wkai aj fij (%,X) (133)
where
* ca —ia X
fi (x,x)=—= [w *(x——c}z/ . (x+m%]e Cda, (139
27Z'ER X| 2 Xj
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Note that if 19// . (X)} isfull, orthogonal system of functionsin L2(3R), then
X
|
{(Zm)fi j (x, X')} isalso full, orthogonal system of functionsin LZ(‘.R) too.

Functions f;; (x,X') makes basis not only for densities, but covers all

J
space L2(ER xR).

Viacalculation of matrix we

27C P (x,x';x*, *jf*i' X, X' Jaxdx’
ERLI‘R (X C Xc J( )d

have:

| Al ) gy )

K* .k
H%Wk% al

which represents the statistical operator of Von Neumann.

Consider the random quantity g(x.x’). Define appropriate matrix of this quantity by:

([ g(x,x)f ij (x, X" )dxdx’ (136)
RxR

Mathematical expectation of g(x.x’) is defining by rule of Neumann:

<@>: Sp(@fA’):,z%gij/’ji =

Hgij H -

= IZ%ERQSR g(x, x'j £ j(x, x’{lz(;wkaik* aﬂdxdx’

It is not difficult to show that f*ij (x,x)= 1:ji (x,X'), o by this relation we will

have:
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(138,)

(138,)

(138,)

(138,)

- ox)

RxR

K .k N
TIEW A aj fij (x,x)]dxdx =
Kij
1 1 * * !
= g(x,x )p (x,x X, jdxdx':<g(x,x J> (137)
. ot e
Received result shows that pgoxgocdensity at informational -statistical relation is

equivalent Von Neumann'’s statistical operator /3 :

L et us introduce often-used properties of { fi j }system:

N * N
1. ERQER flk(x,x )f e (x, X' )dxalx _%5” e

N S
> Ik(y,y)—ﬁé(x y)s(x' -y

3. I f X )dxax' =6y,

It isclear that pure F-numbers appropriate density matrix is projection

operator

K ok
g aj

K[
4

k

@:%wkﬁ (139)

The following formula has place:

. S0 the mixture density matrix might be presented in view:
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<@>:Sp(pg) Sp[ZW pK ] W, Sp(Pk j zw< > (140)

Let us give formulafor Cartesian product membership function. | 1% I 2 set's

indicator define via Z| « (X, X'). According of formula (136) define the
12

appropriate matrix:

I 2 4 (X,X')f*ij(X,X')dXdX’ (141)
RxR 1 2

The following has place:

TheoremL. If Iland I2 are indicators on canonically conjugated scales ¢ and e

appropriately and the indicator operator is defined by (141), then the

?T? X 97{(: Cartesian product membership function formulais the following:

*ooxN ~ Al ~k -
“soxsoc(x ’XC)‘Sp(llxlc‘p]‘%WkSp[P 'lelcj (142)

Proof: According definition we may write:
,\k ~
%Wksp('a A x| J 2 W Z lel
C

=2 Zwa] aj If X\« (X,X')f;(x,x’)dxdx’ -
] R xR C

SRJ;{%ZIXIC( jl J[ZW a] a] IJ( ,X')}dxdx':
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= X XX xg Jdxax =
ERLISRZIXIC(X ijgoxgoc[x XX, Xe j Xdx

% *
= Yo, (x,x;x : jdxdx'
|>{I|C Pt e

Which adjust with formula (93).

Note: At above introduced formulas Wk depended on XI and X; (in generalized case
on XI ,...) thus, in (154) upon integration by one of variable X or X', the received

density will be depended on X;_and X; .Thus there would exist no function
X

appropriate to it.

Applications

Fuzzy Linear Equation Solution

0 presentation:
K'X +b =0, (6* = Oj (143)
solution:
R — E* ~%
X = % + O (144)
Kk

~%
note that sign “-* we put not in front of fraction, but in front of b - underlining that

o~

opposite F number “-b " correspondent to the given fuzzy zero.
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If solution of equation (143) really might be presented in form (144) , then counted

(by 118-120 formulas) values of x* and G@(X*) from (143) and (144) should

coincide.

For equation (143) we have:

*2 * * *
K %(x )—b %(k j

It's clear that conditions of solvability have view:

+%(b*j

1
k*

o,(0)= ap(b*j (145)

it this case:
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)k Z%(X )—b %[k*jw
%[X*) ) b*aso[k*j—‘k*‘isoz(OH K" %(b*j

K

(146)
Which coincides with expression received from (144) on the basis of rule (120).

Let's consider linear equationin (@ presentation (but in the same ¢ calibration).
We have:

~ % _* ~ % ~ % ~ %

ke ®% @b =0 . (oc on (143)

According to therules (121') and (122’) we have:

_x b
ke
and
* * * G@C(kc ®Xc jo-(@C(bC )
O-({OC(kC ®XC ®bC j: * * *N\
rod ke O Jropeltc

Tod ke Jrod e Jrodte )

G@C(kc* jGSOC(XC* ] ’ G@C(bc* j ' ‘kc*ago C(kc* ) +Xg 0, C(Xc*j _
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Zpolke Jrod e oot )
Kok e ope x|
oK el )

ok i |

_ ‘kc*‘ﬁpc(kc* j"goc[xc* jagoc(bc*j

* * * * 2 . . .
‘kc ‘Ugoc(kc jo'sgc(xc j+0@c(bc ) ke G@C(kc )_bc Ggoc(xc j‘

SO:

e el Jopel
* * * * *2 * * *
elopelte el Jropel o i e

=00 c(o)

and

Ko b o o= o Ok )

+ GSOC(O)GSOC(bC* j

%2 . . .
ke Gsoc(kc )—bc Ggoc(xc ]‘
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G LU

=0,c0b e |

Solvability conditionis:

*2 * * *
ke Upc(kc j—bc Ugoc(xc j‘

O'ggc(bc*) > O'goc(o)

this condition is complementary of (145)

Consider two cases:

*2 * * *
1) ke %C(kc j—bc %C(xc jzo

TpdXc |-

_ kC* 20_80 c(kc* jo'p C(O)O'p c(bc*j
R opcOpd te ook ol )-2ipcl0)

*2 * * *

N e R Y Ry )
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Present them in united formula by:
O C(xc* j =
_ 0l o0l
i ol )

L et us show that founded solution (146’) is appropriate of (143’) equation solution in

(146')

view:
% =(-b, )+ke (144)

~

where F-number — bC* iss defined by relation : calculated value = — BC* and

o b ) (0
according to (128’) GSO (— 5 *) = SOC {i ) SOC .
c o goc(bc o 0 ©

By (123') we may write the following:
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which coincideswith formula (146').
Fuzzy Quadratic Equations in Optimal Probabilistic Model

Suppose all calculationsare made at ¢ calibration. Fuzzy quadratic equation has the

following view:

~~2 - - - -
* %

* % * *
ax +bx+c =0 (0 =0) (147)

* ) ) . ) * %2 * % *
X isthe solution of ordinary quadratic equation: @ X +b X +c =0.The

solvability condition:

c,(0)2 ap(c*j (148)

Let us use rules (118)-(120) for o (X*j dispersion calculation:

SN

Ggg[a* X*ZJ + a@(b* X j + J@(C*j = 080(0) (149)

* *2 *2 *
o [x %ok %o (&)

2 * * * *2 *
o, (X ok o &)
(150)

b** _b* * * b*
"SO( XH Gso(x )”%( j

Viaputting (150) and (151) in (149), received:

(151)
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+

2 * * * *2 * b* * * b*
ax%[xju %(aj a@(xj+x<y§0( j
(152)

It isclear that solvability conditions must be satisfied:
* % * *2 *
2a X a@(x j+x a@(a )
b*ap[x*)+x*ago(b*j

Let us consider four cases according of sings of quantities, the modules of which
figuresin (152) and (153):

< O'p(O) ,

<o,(0), ap(c* j <o,(0) 15y

2 * * * *2 * >O b* * * b* >O
1) 2a X Gp(x )+X Gp(a )_ and O'SO(X )+X GSO( j_

Inequality (152) would be rewrite in the following view:

* * * *2 * * * * * *
2a X o-@(x )+x o-p(a )+b o-p(x j+x o-gg(b j+o-p(c j:o-SO(O)

(152)
thus,
7O 4 e 5 [

For the considered case generalized Vietta theoremisvalid:

7ol 4 772 )= o )=
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On received relation note the following: asit is supposed that G(XI) >0 and

~

*

O'(X;) >0, s0 O'[XI + X;) > 0, further, appropriate dispersions of numbers bT

*

a

~

*
and (—1)bT are equal, thus:

*
a

0()<I+x;j:a[(l)i] ,



*

: -k b
X X =(-1)—

a

~ o~

Let us consider Xl* X2* roots product. The appropriate dispersion is calculating via

formula (119), we have:
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By (132) dispersion O'(@(O— C* ) is appropriate of opposite F-number — C* ,Soitis

possible to write:

—=(- 1))(l X, (156')

2)
In this case equation (152) will have the view:

* * * *2 * * *
—-2a X ag{)(x j—x agg(a j—b GSO(X j—

_X*O_go(b*j"'o_go(c*jzago(o) (146"’)

* *2 * * *

(0 -g[a = o (B oy €

O'SO(X j: " (154’)
—-2ax -b

Asin the previous casg, it is easy to show that:

*

~* ~* b
o,
a*

for roots product we will receive:



=X, X, (156'")

Individual cases consideration shows, that they are not correspond to Vieta s fuzzy
theorem and so were not considered as solutions of equation (147).

It isinteresting to consider solution of (147) in o representation.

Apparently it is possible to receive analogous solutions for equations of high level

and also for linear equations systems.

Solution of Fuzzy differential equations

At modeling of the real systems (which do not contain possibilistic or stochastic
uncertainty) frequently we come to differential equations. Theory of differential
equations is deeply and widely advanced. If at each concrete problem we use
powerful numerical method then the model development does not represent with
principle complexity itself.
Let’s consider the example:

X+3X = 0
The equation for the calculated values appropriate to thisoneis:

X+rax =0 X(t)=Ae?
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Using the " energetic function” we'll have:

o*().7+ 'éij _5(0)

As the determination of the uncertainty nature is the main task of the initia
information processing, here is an opportunity to expand an area of use for
differentia equations even in those cases when parameters determining differentia
eguations contain new types uncertainty viamodeling of these situations with the help

of new concept - canonically conjugated fuzzy subsets.
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17) The given formulas (118-120) allow representation of mean standard errors of
sum, product and division by mean standard errors of composing components
linearly.

Let’s consider arithmetic operations separately:
Wehave:  A(x +X,)= ‘(x1 -x )+ (x2 - xz*] < ‘(x1 -x ] +‘(x2 - xz*] (*1)

It's possible to rewrite (*) in the following way:
A()(1 + Xz) = a(xv or X1* ) Xz* XAxl + sz) (*2)

Where the function:

‘(Xl - Xl* )"’ (Xz - Xz* l

x|+ pe |

(*3)

alx, %% %, )

Thus if f(x=x,+Xx,) is the function of x= x, + X,random quantity distribution,

then

+00

(A(x=x,+X,)) = “.dxdx2 f (%%, )AX = TJ. dxdxza(xl, X=X % 2 X, )f (AX, AX, N AX, + AX, ) =

—o —0

) TJ‘ ddeza(X’ % Xl* , Xz* )f (X’ X2 )(AX1 +AX, ) - a(il, X5 Xl* , Xz* )Axl + a(il Ko Xl* ; Xz* )sz

—0
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(*4)
Upon receiving the last formula, we used mean value generalized theorem [36].
Analogically we can act in case of product and division operations. Thus to be more
accurate, the rules should be written in the following way:

(A( + XZ)T =0, ta,0, O'Xl+ X, =001 +a50, = O';L+ 0"2

! !

(A( o XZ)T = b1(71 + b20'2 ; GX]_XZ = ,Blo'l - ﬂ20'2 = G;L +0,

! !

] . _ _
A[X_Z =C0,tC0, O X =)0 V05 =01 +0,

)

In case of canonically conjugated subsets, we will have

-1
{“1 0‘2} _ %1%2%¢1%¢2

*
(A(XClHCZD ) %%z 19c2 T %%

* Pify0 40
(haonal| 52

*
A{X_clJ __ %%
X
c2)) X 2 c1+72x1‘7c2
Let's note that 005 >0 ( appropriately ,81,82 >0, ;/17/220) If we will bring

appropriate notations, we will receive the given formulas (118-120).
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