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In many cases of intellectual activity of human there exists virtually unlimited 

number of ways of inter-action of a subject with the object. As a result of this, the 

controlled inter-action is almost always incomplete. It is based on limited (generally 

small) number of attributes (color) of the object which corresponds to the interests of 

the subjects and which he/she can recognize. Sometimes these colors are not available 

for the direct observation but are available only in terms of their abstract modes (or 

quantity models), being the results of the direct perception or some specific 

measuring procedures. In this case the information loses the definition, univocacy and 

there appears the uncertainty. 

Sometimes these abstract color modes, identifiable on the set of objects, are called 

variables. When the set of variables are defined as a result of our inter-action with the 

interesting object, we say that there is defined the system on the object with the given 

structure of uncertainty. Term “system” is observed as abstract or as a mode of set of 

some colors of the object not as a real thing. In other words, the system is the way to 

look at the object. 

Today two sciences systematically study uncertainty [10]:  

1. Fundamental science physics is the leading in study of the material (physical) 

world. There are two types of uncertainties connected with this science: 

probabilistic (objective) connected with deficiency in empiric information, 

received by the observation and virtual (intrinsic), quantum, placed in object 

directly by nature or is the result of the deficiency in means of description 

language. 

2. Fundamental science of informatics [11] is the leading in study of the non-

material (informational) world, one of the demonstrations of which is the 

uncertainty connected with the ambiguity and fuzziness. Uncertainty is 

intrinsic to the expert estimation and to natural language, as the means of 

description informational model. 

 3



Data in informatics – it is the set of so-called informational units. Each of 

informational units is the four: (object, sign, value, plausibility) [1][15][16]. It’s 

important to differ the notion of inaccuracy and uncertainty. Inaccuracy belongs to 

information content (corresponding to the component “value”), and uncertainty – to 

its verity, understandable in terms of compatibility with reality (component 

“plausibility”). For the given various information there exists the opposition between 

inaccuracy of expression content and its uncertainty[24]-[28], expressed in that with 

the increase of expression accuracy, its uncertainty rises as well and vice versa, 

uncertain character of information leads to some inaccuracy of the final conclusions, 

received from this information. We see that from one side these notions in a certain 

way in contradiction, and from another side – complete each other upon the data 

presence.  

We offer to model this situation by means of new concept of optimal pare of fuzzy 

subset and its canonically conjugated one [2]. Generally, fuzzy subset is constructed 

on the basis of expert estimation of one of the commutate component. From this point 

of view, fuzzy subset, constructed in this way, characterizes informational unit 

incompletely. We offer the method of construction of the informational unit 

membership function taking into account the both canonically conjugated 

components simultaneously and hence describing this unit in the most complete and 

optimal way. In the frames of optimal model the fuzzy logics and generalized 

information theory is constructed, corresponding to the canonically conjugated 

subsets. Theory of fuzzy canonically conjugated number and appropriate arithmetic, 

color operators theory, Zadeh operators [3] and so on.  

Model of canonically complementary (canonically conjugated) subsets will be used in 

such method of decision-making as discrimination analysis, method of fuzzy 

probabilities, method of experts, fuzzy differential equations. New approach to this 

analysis method of fuzzy information allows us control uncertainty, organically 

inherent to informational units.  
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Now we shall shortly consider those general reasons which are laying in the basis of 

our model construction. In most cases there is uncountable (it is possible to tell 

unlimited) amount of assets of interaction of the expert with object [29][30][31]. 

Mostly this interaction is not full and is connected with small enough number of 

attributes (colors), identification of which expert can and which corresponds to his 

interests. Other colors are unattainable for direct supervision and thus make 

“uncontrollable" influences on object [17][18]. 

One of our main assumptions is that these uncontrollable influences are quantitatively 

characterized by random parameters [19][20], values which are not measured directly, 

occur estimations of these values on the basis of subjective decision.  

On the basis of direct measurement and estimations is created an abstract image of 

objects, which we call variables [21]. The expert will establish corresponding values 

of variables on the basis of interaction with objects [22], after this we say that the 

system is determined on object, so the system is an abstract image of the real object 

and it is characterized by the pair of canonically conjugate fuzzy subsets. 

From the above mentioned it’s clear that there is possibility to describe object using 

two approaches: if object is described in the basis of value uncertainty, expert is 

giving directly the membership function [15], but if we’ll base on plausibility's 

uncertainty - first is constructed focal distribution, that gives us possibility to 

construct fuzzy measure [10][23], thus the membership function. 

We have to mention here that these two possibilities are “complementary” of each 

other:  

We are offering such description of appropriate uncertainty of the object, where some 

characteristic of first and second type joint uncertainties would be minimal; 

preciously we are offering to construct such membership function of fuzzy subset, 

which will provide minimization of above mentioned joint uncertainty [4]. 

Notion of color is the base of dissertation, thus without the preliminary consideration 

of color theory, presentation of it is impossible. Below we offer exactly such 

consideration. 
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In the chapter I, there is presented the total and detailed consideration of color theory.  

Let’s given set (universal set) and defined property Ω ℘ in it. Lets note 

by ( ) (Ω℘Ω )℘ 21 and  [7] subset of Ω , defined by elements Ω∈ω  for which the 

expression [ ]ω℘  (ω possesses color ℘) is true or false appropriately. Further let’s 

( ) ( )Ω℘⊆Ω℘ ≠10 . We can consider color ¬℘  defined in Ω : 

                             [ ] ( )Ω∈℘⇔¬℘ 0ωω                              (1) 

 if  ℘  defines color complementary to ℘ then in Ω  following relation has place:  

                                  [ ] [ ]ωω ℘⇒¬℘                                  (2) 

 

Opposite implication is fair only on set: ( ) ( ) (Ω℘∪ )Ω℘=Ω 01A . With the help of 

0℘ , it’s possible to define such various ¬℘  that if ¬℘  is true, then ℘ is false. But 

opposite implication has place only on set  ( ) Ω⊆ΩA .  

 

Let’s check how it’s possible to construct set ( ) (Ω)℘⊆Ω℘ ≠10 . With this aim, let’s 

assume that each elements of Ω  can possess color ℘ in different amount. Further 

let’s consider that we are able to attach its compatibility measure with color ℘ to 

each element Ω∈ω . Formally there is given such a reflection:  

                                      [ ]1,0: →Ω℘μ                                   (3) 

that: 

                                    [ ] ( )( )1=⇔℘ ℘ ωμω                             (4) 
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, ( )ωμ℘For each Ω∈ω  is called the value of membership function of ω  with ℘ or 

membersh as  ip me ure of ω  to ( )Ω℘1  . If ( ) 1=℘ ωμ  we will say that ω  possesses 

color ℘. If ( ) 0=℘ ωμ  then ω  d t possoes no ess color℘. Further ( )Ω℘0  i entify with 

the subset of

d

 ( )Ω℘≠1  elements, not possessing color ℘. Color ℘ in satisfying the 

described ab ” in 

Ω

le

 

ove-mentioned conditions we will call “measurab Ω . If 

additionally assume that ( )Ω℘1  is not empty, ℘ we will call “comp tely 

measurable”. 

Let’s assume tha

le

 is characterized by numerical parameter ξt color ℘ . (analogue 

notion “red apple”, ℘ is defined on physical scale of frequency where to the given 

color corresponds the defined frequency interval). 

Main Assumption. ξ  numerical characteristic of color is the random quantity. In the 

n lues 

referent system Ω  is hidden parameter. 

Let’s distributio  of probabilistic va ( )ωξ x℘  ( ℜ∈ ) is characterized by 

density ( )ωρ x .( ( ) 1=∫ dxxρ ). Quantity   ℘
ℜ

℘ ω

( )∫
ℜ

℘℘ == dxxxMx ωω ρξ*                                               (5) 

call calculated value of color ℘ in Ω∈ω . 

ie lation between set of calculated values Note, that formula (5) satisf s re *X and 

universal setΩ , that is why the following definitions are clear: 

               ( set ,*
ωx  where  

** Xx ∈ω  and ( )Ω∈℘ω ) ≡  ( )ℜ℘ , 

            ( set  where   and,ω
*x x ** X∈ω  ( )Ω∈℘1  ( )ℜω ℘) ≡ ,        (6) 1
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            ( set  where   and ,*
ωx ** Xx ∈ω ( )Ω∈℘0ω ) ≡  ( )ℜ℘0 . 

We transferred uncertainty structure (system) Ω  in ℜ . 

If ( )Ω℘1  is non-empty  set, exist such ω , that ( )
( )

1
1

=∫
ℜ℘

℘ dxxωρ . 

Except of ξM , presence of color to ω  is characterized by dispersion also: 

 

                                              ( ) ( ) ( )∫
ℜ

℘
∗−=℘ dxxxx ωρωωσ ;

22              (7) 

In our model exactly  is connected with definition of presence ( )ωσ 2
℘

℘ color to  

ω . If , we’ll say ( ) 02 →℘ωσ ℘ has quite define value ω . The more ( )σ ω2
℘  is, the 

uncertain ℘ in ω . If ( )→℘ ωσ 2 ∞  it means ω  has no ℘ color. Thus, if 
( ) 1=℘ωμ

, 

we will say that  possesses color 
*
ωx ℘, if ( ) 0=℘ωμ  , than does not possess 

color 

*
ωx

℘[5]. 

( )ℜ℘0  is identify with whole “colorless”(not painted in color ℘) elements . 

Elements of  , which do not belong to 

*
ωx

ℜ ( ) ( )ℜ℘ℜ℘ 01 U , possessing color ℘ in some 

amount are characterized by number ( )ωμ℘  from (0,1). Thus model of color might be 

transferred in ℜ . Below we will consider universal set as numerical set 

( ) ( )2
℘= σω * ,ωx: ℘ℜ μ ℘μ . 

Notion computability in ℜ  corresponds to notion “measurable” in  and notion 

“completely computability” in

Ω

ℜ  - to the notion of “complete measurable” in  Ω . 

 

Assumption 2. 

 8



In  are defined only ( )Ωℜ ℘  and ¬℘ . Which means along with ( )ℜ℘1  there exists 

the only ( )ℜ℘0  but elements of ( )Ωℜ , not belonging to these two subsets possess 

color “intervening” between ℘ and ¬℘ . This accusation is expressed with the help 

of the following relation:  

                                     ( ) ( )**** ,1, ℘℘℘¬℘ −= σμσμ ωω xx                      (8) 

 

Colors℘ and are not complementary in common meaning [8], they are such only 

in appropriate  which means the conditions 

¬℘

A( )ℜ [ ]*
ωx℘ ∨ [ ] Tx =¬℘ *

ω and 

[ ]*
ωx℘ [ ] ∅=*

ωx¬℘

∨

∧  generally speaking are not fulfilled. Here T is always true 

expression,  is sign of disjunction and ∧  is sign of conjunction. These conditions 

are substituted with the conditions (8).  

Definition 1. For Ω∈∀ω  let’s introduce some interval of ℘ values with the help of 

relation : 

( ) ( )
( )

( ) ( )
( )
∫
℘

∫
ℜ ℘

−=−=℘
ω

ωρωχωρωμ
C C

dxxxdxx ;1;1  

where 
( )ωμ℘  is defined by expert, χ  common characteristic function of interval 

( )ω℘C . Let’s call interval defined by (9) as the characteristic interval of color ℘.  

We have to mention also important paragraph 2: “Theory of informational function 

representation”. 

In theory of presents the main role plays the notion of informational function.  

Definition 2. informational function of color ℘ let’s call the following expression:              

( ) ℘∗≡℘ ;, ω
ϕ

ωρ xxiex                (10) 

where ϕ  is random phase and is a real quantity. We took the advantage of Dirac 

[6][9] nomenclature. We will use this function for the presentation of the information 
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(uncertainty) contained in color ℘. Informational function module square defines 

membership function (precisely the appropriate density): 

+
( ) ℘∗℘∗=℘ ;,;, ωωωρ xxxx ,x      (11) 

Any fuzzy subsets of ℘~ ( ℘~  is ℘color appropriate fuzzy subset) can be described 

independently from hidden parameters (ξ ) type by some quantity which we will call 

ket-vector [7] (by Dirac nomenclature) and will note by ℘ . Let’s )(2 ℜ∈℘ L  

(Hilbert space). Let’s consider the Fourier transformation of this ket-vector:  

    dxcxxc
i

exx
c

xxF
−

∫
ℜ

℘∗=℘∗ ;;
2
1;;ˆ

ωπω     (12) 

 

Where C is constant.  

 

Expression (12) is identified with informational function in  presence:  cx

            ccxcxxxF ℘∗=℘∗ ;;;;ˆ
ωω                  (13) 

 

Where c℘  is canonically conjugated in relation to ℘ color. 

 c℘~ fuzzy subset – canonically conjugated in relation to℘~  is appropriate to this 

color[13], membership function of which is defined by formula (9):  

 

( ) =℘∗
∫

℘

+
℘∗=℘

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
cdxccxcx

ccI
ccxcxcc ;;;; ω

ω
ωωχ                                   

                                                                                       (14) 
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    cdxccxcxccxcx
c

x
ccI

I ℘∗+
℘∗

∫
ℜ ℘

= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ;;;; ωωω
 

In space of information function ℘∗ ;; ωxx , operator of color ℘̂ is appropriate to 

color ℘. If information about color is precious, then  

                            ℘∗=℘∗℘ ;;;;ˆ
ωω xxxxx                  

(15) 

Analogically  

                  ccxcxcxccxcxc ℘∗=℘∗℘ ;;;;ˆ
ωω                (16) 

Operators ℘̂ and c℘̂  are connected with the following commutation:  

                                 Eiccc ˆˆˆˆˆ =℘℘−℘℘                         (17) 

Where Ê  is operator of identity presence. This relation should define the quantity 

connection between canonically conjugated colors. This connection is studied in 

details. Hence the meaning of this study is necessary to control the uncertainty 

decision-making systems. Formula (17) bounds the simultaneous calculation of 

canonically conjugated colors. The uncertainty principle, analogical to the 

Heizenberg’s principle, which allows introduction of definitely optimal fuzzy subset 

℘~ , for ℘ and c℘  is studied. By using our theory with the set of real numbers we 

constructed arithmetic of optimal real numbers.  

Theory of its common form is connected with the vector properties and to appropriate 

operators in Hilbert space: each informational state corresponds to definite estimation 

of membership function, and the color – to operator. Though the various formulations 

are possible in frames of which the informational functions in the phase space 

(Cartesian product of universal set on canonically conjugated) can be connected as 

with the informational state, so with the observable (estimated by expert) colors. As 
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the sample of such formalism is theory of phase functions of Vigner and 

transformation of Veill. The dissertation presents construction of analogical 

formalism: colors proper vectors ℘  and c℘ or appropriate operators ℘̂ and c℘̂   

are satisfying equation for proper values (15) and (16). The complete system of 

proper vectors satisfies the completeness condition:  

                          ∫ =℘℘ Idx ˆ
ω  ,   ∫ =℘℘ Idx ccc

ˆ
ω                        (18) 

Where Î  is unique operator in Hilbert’s space. 

In conclusion the consideration of conjugated colors theory application is given.   

 

 

Chapter I 

Color Representation in Fuzzy Probabilistic Model 

 

§ 1.1 Notion and Properties of Color 

 

Suppose, A~  fuzzy subset of  Ω  Universal set corresponds to  concept and 

suppose this concept is characterized by numerical parameter 

Α

ξ . 

Consider ξ  is quantitatively characterizing some property of A~ - let’s call it “color” 

℘. 

Main definition:  The numerical characteristic of color  ξ [ ]ω
A~

℘  is a random 

quantity.  Define appropriate distribution density of probabilities by ( )ωρ ;x℘ . 

Denote 

                            [ ] ( )∫
ℜ

℘=℘=∗ ⎟
⎠
⎞

⎜
⎝
⎛ dxxx

A
Mx ωρωξω ;~                 (1) 
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 as  Calculated value of  A~  fuzzy subset membership function’s modal value. 

Note, that formula (1) satisfies relation between set of calculated values *X and 

universal setΩ , that is why the following definitions are clear: 

( set  where  ,*
ωx ( )Ω∈℘∈ ωω andXx **

) ≡  ( )ℜ℘ , 

                        ( set  where  ) and ,*
ωx ** Xx ∈ω ( )Ω∈℘1ω ≡  ( )ℜ℘1 ,        (*) 

                        ( set  where  ) and ,*
ωx ** Xx ∈ω ( )Ω∈℘0ω ≡  ( )ℜ℘0 . 

We transferred uncertainty structure (system) Ω  in ℜ . 

Except of ξM , presence of color to ω  is characterized by dispersion also: 

                                             ( ) ( ) ( )∫
ℜ

℘
∗−=℘ dxxxx ωρωωσ ;

22              (2) 

In our model exactly  is connected with definition of presence ( )ωσ 2
℘

℘ color to  

ω . If , we’ll say ( ) 02 →℘ωσ ℘ has quite define value ω . The more ( )σ ω2
℘  is, the 

uncertain ℘ in ω . If ( )→℘ ωσ 2 ∞  it means ω  has no ℘ color. Thus, if ( ) 1=℘ωμ , 

we will say that  possesses color 
*
ωx ℘, if ( ) 0=℘ωμ  , than does not possess 

color 

*
ωx

℘. 

( )ℜ℘0  is identify with whole “colorless”(not painted in color ℘) elements . 

Elements of  , which do not belong to 

*
ωx

ℜ ( ) ( )ℜ℘ℜ℘ 01 U , possessing color ℘ in some 

amount are characterized by number ( )ωμ℘  from (0,1). Thus model of color might be 

transferred in ℜ . Below we will consider universal set as numerical set 

( ) ( )2
℘= σω * ,ωx: ℘ℜ μ ℘μ . 

Notion computability in ℜ  corresponds to notion “measurable” in  and notion 

“completely computability” in

Ω

ℜ  - to the notion of “complete measurable” in  Ω . 
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suppose: 

 

 ( ) ( ) ( )Ω℘∈∀=℘Ω⊆Ω℘ 1,02:1 ωωσ                           1)   

                           2) ( ) ( ) ( )Ω≠℘∈∀≠℘Ω⊆Ω≠℘ 1,02:1 ωωσ                (3) 

                           3) ( ) ( ) ( )Ω℘∈∀+∞=℘Ω⊆Ω℘ 0,2:0 ωωσ  

It means that: 

 

 color" , [ ]ω℘1) for ℘∈∀ ( )Ω1ω  , expression " ω  has ℘  - is true; 

) for2  ( )Ω≠℘∈∀ 1ω  , we say  [ ]ω℘   is true if [ ]ω℘  is false. 

3) if for ( )Ω℘∈∀ 0ω , expression [ ]ω℘  is false, we say that in this case [ ]ω¬℘  - 

lowing is valid: 

                                           

is true. 

   

 The fol

 [ ] [ ]ωω ℘⇒¬℘                                              (4) 

on is valid only on the following subset: But the reverse implicati

( ) ( ) ( )Ω℘Ω℘≡Ω 1 UA 0  

if ( )Ω℘  is proper subset of ( )Ω ,  than in Ω  exist ω  , that0 ≠℘ 1  : 

                                                  

 

 to separate  

( ) +∞<℘< ωσ 20  

 Now we may indicate easy way  ( )Ω℘0  subset from ( )Ω℘≠1 . Assume Ω  

universal subset’s every element is characterized ℘ color specified quantity. 

Formally it means that expert may give the reflection directly: 
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                                                   [ ]1,0: →Ω℘μ                                    (5) 

Which has the property: 

 

                                                 [ ] ( )( )0>                              (6) ℘ ωμ⇔ω
℘

 

( )ωμ℘  is considered as measure (membership function)  of  ℘ color presence to ω . 

If ( ) 1= ( ) 0=, it’s said: ω  has , then ω has no ℘ωμ ℘ωμ℘ ℘ color, but if  colo  r.

( )Ω℘0  is the set of such ω , which “are not colored in ℘ color":  

( ) ( ){ }Ω∈=℘=Ω℘ ωωμω ,0:0 .  

( ) ( )Ω℘Ω℘∉ΩThe elements of 01 U , which have ℘ color in some amount, are 

characterized by numbers from (0,1). 

 

Proposition 1.  There are defined just ℘ and ¬℘  in Ω , so we have  just one 

( )Ω℘0   with ( )Ω℘1 , as for other ele ents fromm  Ω , which are  not belonging this 

et , w ing they have color “passing through” two subs e are say ℘ and                                 ¬℘:

                                        ( ) ( ) Ω∈∀℘−=¬℘ ωμ ωωμ ,1                            (7)    

 

℘ and ¬℘ colors are not really complementary of each other ( ℘≠¬℘ ), they are 

[ ]*such just on appropriate ( )ΩA ωx, so conditions ℘ ∨ [ ] Tx =¬℘ *
ω and 

[ ]*
ωx [ ] ∅=*

ωx¬℘∧

pres

℘  generally speaking are not fulfilled. Here T is always 

true ex sion, ∨  is sign of disjunction and ∧  is sign of conjunction. 

These conditions are substituted with the conditions (7). 
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 Let’s consider uΩ  niversal set, some ℘ color and it’s compatibility with points of 

Ω  . It is clear that we can use normal indicator ( )ω
⎟
⎠
⎞

⎜
⎝
⎛Ω℘Ι 1

 with values in { }1,0  as 

characteristic of ℘ color compatibility with points ( ) (Ω℘ )Ω℘ 01
( ) ( )Ω℘Ω≠

U , as f ints or po

℘ 0\1  , for them we’ll use generali r ( )zed indicato ωμ℘  with values 

 

( )

from (0,1).  

Proposition 2 .  ω  is equal of fuzzy subset of Ω~ , where μ℘

( ) ( )( ) ( )Ω℘Ω℘Ω≠℘=Ω 10\1
~

Up  sup

 

Note 1.  ( )ωμ℘  and ( ) ( )( ) ( )Ω℘Ω℘Ω≠℘ 10\1 U  are defining A~  fuzzy subset, 

where  ( ) ( )( ) ( )Ω℘Ω℘Ω 10\≠℘ 1=
~sup Ap U . 

 

Ω∈∀ω  interval on scale of  ℘ introduce some ℜ⊆℘CDefinition 3.  color 

values  (i.e. on ℜ ) by 

 

               ( ) ( )
( )

( ) ( )∫
( )℘

∫
ℜ ℘

−=−=
ω

℘ ωρωχωρωμ
C

C
dxxxdxx ;;                 11

(8) 

( )ωμ℘  is defined by expert, χwhere  common characteristic f f 

interval 

unction o

( )ω℘C . 

 

Main  Definition: (1), (2), (7), (8) equations define the following set:  
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( ) ⎫⎧ ⎟⎞⎜⎛ Ω≡=Ω ωωμωω :;~
⎭⎬⎩⎨ ⎠⎝

∈℘
~

                           (9) 

Call  universal set the probabilistic model of Ω Ω~  fuzzy subset.  

§ 1.2 Information Functions R

 

Suppose, 

 

 

epresentation [13] 

( )  denotes A~Ω∈ωωχ ,~A
 fuzzy subset’s appropriate membership 

function.  

Assumption 2.  L

   

                     

ets call expression  

                ( ) Axx
A

x ~,;~ ∗≡ ωωρ                                    (10)  

Information function. 

on. We need this function to represent the 

ormation in 

Here we are using Dirac’s notati

A~inf  concept. Information function’s magnitude square determines 

ecisely the appropriate d

 

membership function (pr ensity)[12][13][14]:  

                                 ( ) AxxAxxx
A

~~ ∗;;;~
+∗

Any 

= ωωωρ                             (11) 

  

A~  fuzzy subset might be defined separate from some value’s hidden parameters. 

Call such values ( by Dicar nomenclature) ket-vector and denote as A~ . 

We may sum ket-vectors, also product ket-vectors as on scalar also on complex 

alues –and receive ket-vectors again. v
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 Suppose, ( )ℜ∈∗ 2~; LAxx ω  (Hilbert space), consider Fourier transformation of 

this function: 

 

dxcxxc
i

eAxx                             
c

AxxF
−

∫
ℜ

∗=
~;; ωω                         (12) 

here  is const.  (12 ) expression is equal of information function at 

∗ 1~
2π

 

c cx  w

presentation: 

                                  

 

 cAcxcxAxxF ~,~,ˆ ∗=∗
ωω                                (13)   

 

where cA~  is canonically conjugate fuzzy subset:  

                            

 

( )
( )

=
+ ∗∫

℘

∗=℘ ccc
cI

cAcxcxc ;~; ω
ω

ωω  

                            (14) 

                        

dxcAxx ~χ

                                                                             

 ( )( ) cdxcAcxcxcAcxcxxx
cII ~;~; ∗+∗∫

ℜ ℘
= ωωω    

 

Axx ~; ∗
ω  , ℘̂ operator is appropriate  ℘ ofAt information function space  color. If 

t color is precise, than 

                                          

information abou

AxxxAxx ~;~;ˆ ∗=∗℘ ωω                             (15) 

analogically 
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cAcxcxcxcxc Acxc
~;~;ˆ ∗=                                        ∗℘ ω                  (16) 

 

ω

ose Axx ~; ∗
ω ( )ℜ∈∗ 2~; Axxd

ω L
dx

,   and Theorem 1. Supp

AxxFcAxx cc ;ˆ~; ~∗= ωω , than the following expression is valid for ∗ ℘̂ and c℘̂  

operators: 

 

AxxAxxc dx
dic ~;~;ˆ ∗∗                                    −=℘ ωω      

                  

                      (17) 

And analogically 

                 cAcxcx
cdx

diccAcxcx ~;~;ˆ ∗=∗℘ ωω                    (18) 

         

Note that by  (15),(16)  and  (11),(1): 

 

 dxAxxcAxxx ~;ˆ~; ∗℘∫
ℜ

+∗=∗
ωωω                                                 (19) 

 

cdxcAcxcx
c

Acxc                                       xx ∫c
~;ˆ~; ∗℘

+

ℜ
∗

ωωω       (20) 

 

Consider (20) , let us show that the equality is true: 

=∗

 

=∗∫
ℜ

−
+∗=cx ω

∗ ⎟
⎠

⎞
⎜
⎝

⎛
cdxAxx

dx
dicAxx ~;~; ωω  
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cdxAxxcAxx ~;ˆ~; ∗℘∫
ℜ

∗=                                 ωω                  

(21) 

We have:  

=℘∫ ∫ ∗= ⎥⎥⎢ cxxcceAxxdxcdx ~;1
ω

 

∫
ℜ

−∗
ℜ ℜ

∗
⎥⎦

⎤

⎢
⎢

⎣

⎡

⎥⎦

⎤

⎢⎣

⎡ c
i

eAxxdx
cc

xxi

ccx ~;''
2
1ˆ

2 ωππω

 

∫
ℜ

=
−∗∗∫

ℜ
= cxxc

i
eAxxdx

ccxcAcxcxcdx ~;''
2
1~; ωπω  

=
−∗∫

ℜ
∫
ℜ

∫
ℜ

+∗= ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ '
'

~;'
'~;

2
1 xcxc

i
e

dx
dic

xcxc
i

eAxxAxxdxdxcdx
c ωωπ

 

 

=
−∗∫

ℜ
∫
ℜ

∫
ℜ

+∗=
)'(

'
~;'~;

2
1 xxcxc

i
e

dx
dicAxxAxxdxdxcdx

c ωωπ
 

 

⎢
⎢
⎢
⎢

⎣

⎡

−∞−
∞+

−
∗+∗∫

ℜ
= |

)'(~;'~;
2

xxcx
c
i

eAxxAxxcdxi
ωωπ

 

=
⎥
⎥
⎦

⎤
∫
ℜ

−∗−
)'(~;''

/ xxcxc
i

eAxx
dx
ddx ω  

 

=∫
ℜ

∫
ℜ

−+∗∫
ℜ

−=
)'(~;'

2
xxcxc

i
ecdxAxxdxdxi

ωπ
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∫
ℜ

∗−
+∗= ⎟

⎠

⎞
⎜
⎝

⎛ Axx
dx
dicAxxdx ~;~; ωω  

 

Note 2. The followings are valid: 

 

=∗℘∗=∗ ⎟
⎠
⎞

⎜
⎝
⎛ AxxAxxx ~,ˆ,~, ωωω  

                ⎟
⎠
⎞

⎜
⎝
⎛ ∗℘∗= x cAcxcx

cAcxc
~ ~,ˆ,, ωω           (22) 

 

=∗℘∗=∗ ⎟
⎠
⎞

⎜
⎝
⎛ Acxcxc

cAcxcxcx ~ ~c,ˆ,, ωωω  

                       ⎟
⎠
⎞

⎜
⎝
⎛ ∗℘∗= AxxcAxx ~,ˆ,~, ωω             (23) 

 

 

The proves of these equalities can be done by the same way, so we aren’t considering 

them h

heorem 2. Operators 

ere.  

℘̂ and c℘̂T  are satisfying the following condition:  

                                  Eiccc ˆˆˆˆˆ =℘℘−℘℘                                (24) 

where  Ê  -  identity operator.  

 

Proof. :  Suppose ),()(ˆ xxfxf =℘  ),(xf  )(xxf  and , then 

 

)(' xf  ( )ℜ∈ 2L

( ) ( ) ( )=℘℘−℘℘=℘℘−℘℘ ˆˆˆˆ )(ˆˆ)(ˆˆ)( xfcxfcxfcc  
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( ) )(ˆ)) i(( xfEcxxf
dx
dic

dx
xdficx +−=  

 

Here we have used the following facts: 

=

     and     ( ) ( )f
dx
dicfc ℘−=℘℘ ˆˆˆ( ) ( )fcxfc ℘=℘℘ ˆˆˆ ,  ℜ∈x  

( ) ( ) ( ) ( )fcxffcxffcffcf ℘=℘=℘℘=℘℘ ˆ,ˆ,ˆ,ˆˆˆ,   according to:  

 

§ 1.3 Connection anonically conjugated lors 

 

onnection between canonically conjugated colors is given with the following 

theorem: 

heorem 3 [13]. if 

 between c  co

 

C

℘  and  c℘T   are canonically conjugated colors, then 

                                            ( ) ( )
4
222 c

cx
c

x ≥∗
℘

∗
℘ ωσωσ                                 (25) 

 

Proof.  Let's enter designations 

                                   

 

Ex ˆˆˆ ∗−℘≡ ωα      ,     Ecxc ˆˆˆ ωβ ∗−℘≡                     (26) 

                                    

appropriately 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗==∗

℘ AxxAxxx ~,2ˆ,~,2ˆ2
ωαωαωσ                    

                                                                                                                    (27) 

                                       ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗==∗

℘ AxxAxxcx
c

~,2ˆ,~,2ˆ2
ωβωβωσ  
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We have 

 

       ( ) ( )=∗
℘

∗
℘ ωσωσ cx

c
x 22  

=∫
ℜ

∗+∗∫
ℜ

∗+∗ dxAxxAxxdxAxxAxx ~,2ˆ~,~,2ˆ~, ωβωωαω  

               

=

dxAxxAxxdxAxxAxx ~,ˆ~,~ ˆ~,ˆ,ˆ ∗+∗∫
+ +∗

ℜ
∗∫

ℜ
+= ωβωβωαωα      

(28) 

 

Using Cauchy-Buniakovski inequality: 

 

∫ ∫ ∫≥ 2)()(2)(2)( dxxgxfdxxgdxxf                     (29)                                      

And suppose that:  

)(~,ˆ xfAxx ≡∗
ωα      and       )(~,ˆ xgAxx ≡∗

ωβ     , 

We will have:  

( ) ( ) =∗+∗∫
ℜ

+≥∗
℘

∗
℘

2
~,ˆ~,ˆ22 dxAxxAxxcx

c
x ωβωαωσωσ  

=∗∫
ℜ

∗=
2

~,ˆˆ~, dxAxxAxx ωβαω  

( ) ( ) =∗∫
ℜ

−++
+∗= ⎥⎦

⎤
⎢⎣

⎡
2

~,ˆˆˆˆ
2
1ˆˆˆˆ

2
1~, dxAxxAxx ωαββααββαω                               

(30) 
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( ) ( )
2

ˆˆˆˆ~,
4
1

2
~,ˆˆˆˆ~,

4
1

∫
ℜ

−
+∗+∫

ℜ
∗+

+∗= AxxdxAxxAxx αββαωωαββαω

 

Missed member is equal to 0, because 

~, ∗ dxAxx ω

αα ˆˆ =+  and  . 

So using (26):  

Eic ˆˆˆˆˆ =− αββα

 

( ) AxxicdxdxicAxx Axx
dx

Ax
dx

~,~,ˆˆˆˆ −−=∗− ⎢
⎡

ωαββα ~ ~, , ∗=∗∗
⎥
⎦

⎤

⎣
⎟
⎠
⎞

⎜
⎝
⎛

ωωω           

(31) 

so, if at right side of equality (30) we’ll ignore second summary (which ) finally 

receive  (25) . 

 

 

Chapter II 

Joint Representation of Characteristic Functions 

§ 2.1 Characteristic functions of canonically conjugated colors [13] 

Let us consider the op

0≥

 

erators: 

                  ( ) ( )℘= ˆexpˆ αα iM                            (32) 

( ) ( )cicM = ˆexpˆ ββ ℘                                         (33) 

   

Scalar product: 

( ) ⎟
⎠
⎞⎛

⎜
⎝

∗( ) ∗= AxxMAxxM ~~ ,ˆ,, ωαωα              (34) 

 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗= AxxcMAxxcM ~,ˆ,~, ωβωβ             (35) 
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call appropriately characteristic functions of canonically conjugated colors ℘̂ and 

c℘̂  . 

Theorem1. Characteristic functions  and (cM )β( )αM  are caliber-invariant. 

Proof.  It is clear that (22) and (23) might be generalized:  

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∗℘∗=∗℘∗ cAcxcxncAcxcxAxxnAxx ~, ~ ~ ~,ˆ, ,ˆ,, ωωωω                 (36) 

 

⎟
⎠
⎞

⎜
⎝
⎛⎞⎛

⎟
⎠

⎜
⎝

∗℘∗=∗℘∗ Axxn
cAxxAcxcxcAcxcx cnc ,ˆ,~ ,~ ,ˆ,~ ~, ωωωω            (37) 

because of : 

( ) ( ) k
k k

kii ℘∑
∞

=
=℘ ˆ

0 !
ˆexp αα   

and 

( ) ( ) k
c

k k

ki
ci ℘∑

∞

=
=℘ ˆ

0 !
ˆexp ββ  

so, according  to (36) and (37), the  invariance of  ( )αM  and ( )βcM  is clear: 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎛

⎟
⎞

⎝⎠
⎜
⎝
⎛ ∗∗=∗∗= cAcxcxMcAcxcxAxxMAxxM ~ ~ ~ ~,ˆ, ,ˆ,,, ωαωωαωα         

(38) 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝

⎟
⎠

⎜
⎝

⎛⎞⎛ ∗∗=∗∗= cAxxcMcAcxxAxxcMAxxcM ccc
~ ~ ~ ~,ˆ, ,ˆ,,, ωβωββ

    (39) 

note: Operators 

ωω

 and n
c℘̂n℘̂  might be confront with some colors , denoted as n℘  

and n
c℘   by us. 
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According to (15)-(18) we have: 

( ) AxxcieA~ ~xxM ,,ˆ ∗= ω
α∗

ωα  

                         ( ) cAxcxcAxxM cccc
~,~,ˆ ∗−=∗

ωω αα             

(40) 

( ) AxcxAxxcM ~,~,ˆ ∗+=∗
ωβωβ         

( ) cAcxcxxiecAcxcxcM ~,~,ˆ ∗=∗
ω

β
ωβ  

First and last equality of (40) directly comes from (15) and (16), as for third and 

fourth equalities – according to (17)-(18), we have: 

( ) ( ) ( ) =∗∑
∞

=
=∗℘∑

∞

=
cAcxcx

k kdx

kdki
k

kicAcxcxk
k k

ki ~,
0 !

~,ˆ
0 ! ωαα

ω
α

 

( ) ( ) =∗∑
=

−= cAcxcx
k kdxk
∞ kdkck ~α ,

0 !
1 ω  

cAcxccx ~, ∗−= ωα       

( ) ( ) ( ) =∗∑
∞

=
−=∗℘∑

∞

=
Axx

k kdx

kdkic
k

kiAxxk
c

k k

ki ~,
0 !

~,ˆ
0 ! ω

β
ω

β
 

( ) =∗∑
∞

=
= Axx

k kdx

kd
k

kc ~,
0 ! ω
β

 

Axcx ~, ∗+= ωβ       

Theorem 2. If   and ( )αM̂ ( )βcM̂  are defined by formulas (32)-(33), 

Axx ~; ∗
ω ( )ℜ2L∈  and AxxFcAcxcx ~; ~

=∗ ∗;ˆ ω  then ω
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( ) αα
ωαωπ

ρ dxieAxxMAxxxx ∫
ℜ

−∗∗= ⎟
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜⎛

~,ˆ,~,1*,        (41) ℘ ⎠⎝ 2

( ) ββ
ωβωπ

χ dxixxcMAxxcxxc ∫ eA
ℜ

−
⎟
⎞∗∗=℘ ⎠

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ~~ ,ˆ,,

2
*,    (42) 

 

note. According to the fact of caliber-invariance (see theorem 1. ) prob

distribution densities of canonically conjugated colors 

1

abilities 

 and c℘̂℘̂  allowing following 

presentations: 

( ) αα
ωαωπ

ρ dxiecAcxcxMcAcxcxxx ∫
ℜ

−∗∗=℘ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ~ ~;ˆ,;

2
1*,         (41 ) '

( ) ββ
ω

cxcc βωπ
χ dxieAcxcMAcxcxcxxc ∫

ℜ
−=℘ ⎟

⎠
⎜
⎝

⎟
⎠

⎜
⎝

~;ˆ,~;
2
1,     ∗∗ ⎞⎛⎞⎛ *  

(42 ) 

 

§ 2. 2 Canonically conjugated colors joint distribution 

 

Suppose  

'

℘̂ and c℘̂  are canonically conjugated operators. Denote  x  and cx  their 

 [5],[12],[34],[35]  define phase 

distribution (  denoted as 

embership function 

                                   

possible values. It is clear to count 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ℘℘ ci
e

ˆˆ θτ +
 to

joint distribution), the average value of which will be

m

( ) Aci ˆˆ ⎟
⎞

⎜
⎛ ℘+℘ θτ

Using well known opposite formula of Fourier transaction for discrete proper values 

we have:  

eAM ~~, ⎟
⎠

⎜
⎝=θτ                                     (43) 
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( ) τθ
θτ xxiθτ

dd
T

T

T

T
ckieAci

eA
TTckxixF ∫

+

−
∫
+

−

℘+℘

∞→
= ⎠⎝

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ~ˆˆ~
24

1lim,          

 

And for continuous proper values 

 

       

+− ⎟⎟
⎞

⎜⎜
⎛

(44) 

 ( ) τθ
θτθτ

ddckxixi
eAci

eA
T

cxixF ∫
∞+

∞−
∫
∞+

∞−

+−℘+℘
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
~ˆˆ~

24
1,            

(45) 

 

 are canonically conjugated: ( ) Eiccc ˆˆˆˆ −=℘℘−℘℘ ℘̂ and c℘̂When , so the view 

ple: 

                           

of characteristic function would be very sim

          ( ) ci
eieci

eM
℘+℘℘−

=
ˆ

2
1ˆˆ

2
1

,ˆ τθτ
τθ                            (46) 

If we consider expert functions as ℘̂ operator proper value, then 

              ( ) ( ) ∫
+∞

∞−
−==

π
τθτθ xAMM

2
,ˆ, +∗∗ ττθτ dAcxxiec ~

2
1

2
1~1     

(47) 

So, 

( ) ∫
∞+

∞−
=+∗−−∗= ττττ

π
dAcxcecxAcxxF ix

22
11~ ~

2
,  1

cicxxecx
cAxAcxxic

e
c

∗∗∂∂
∂−

=
~~

2
2
1

1                 

(48) 
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Let’s consider average value of complementary variable common function ( )cxxG ,  

to the phase distribution Function ( )cxxF ,  

 

( )                          ( )∫
+∞

∫
+∞

∞− ∞−
== cdxdxFcxxGG ,                                    (49) cxx,

Hereinafter we’ll consider Ĝ  as “energetic function”  

 

( ) ( )∫
∞+

∞−
∫
∞+

∞−
∫
∞+

∞−
∫
∞+

∞−
=

+−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θτ
θτ

θτ ddcdxdxcxxi
eMcxxG ,,  

( ) Addci
eA ~ˆˆ

,~
⎟
⎟
⎟

⎠

⎞
                        

⎜
⎜
⎝
∫
∞−

∫
∞−

⎜
⎛ ∞+ ∞+ ℘+℘

=
⎟
⎟
⎠

⎜
⎜
⎝ θτ

θτ
θτγ          

⎞⎛

  

(50) 

 

where 

                          ( ) ∫ ( )
∞+

∞− ∫
∞+

∞−

+− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cdxdxcxxi
ecxxG

θτ
θτγ , ,=                     (51) 

 

or of canonically conjugated variables common function 

might be presented by the following way:  

 

Thus, the appropriate operat

( ) ( )cGcxxic
eddci

eG ℘℘∂∂
∂−

=∫
∞+

∞−
∫
∞+

                    
∞−

℘+℘
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ˆ,ˆ0
ˆ2

1ˆˆ
,ˆ θτ

θτ
θτγ   

2

(52) 
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where  is received by ( )cG ℘℘ ˆ,ˆ0
ˆ ( )qpG ,  function in case of changing x  and 

cx with beforehand right order of appropriate operators  ℘̂ and c℘̂ . We should save 

r   dering in case of cxx∂∂
∂2

this o
ic

e
−2

1
 operator’s operating on . W ’ll use 

of color in time derivation consideration. 

ns on t

item

0G e

“Energetic functions” 

If connection of information functio ime is presented by exponential phase 

s (
tcxxi

e ⎟
⎠
⎞⎜

⎝
⎛ ,α

), what means that information abo t Au
~

 fuzzy subset is not 

                                  

depending on time, then 

( )−=℘ ˆˆ
℘−℘ ˆˆˆ GG

c
i

dt
d                                                  (53) 

 

 

We will consider case, when 

                               (54) 

ow is easy to calculate following: 

  2ˆ2ˆˆ cG ℘+℘= βα

 

N

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎞⎛ +∞
⎟
⎠

⎜
⎝

∫∞− ∫
+∞

∞−
∗℘∗−∗℘∗−= dxAxGxAdxAxGxAic

dt
~ˆˆ~~ˆˆ  

Using (11) and  (12)  we receive: 

∗d ~ξ

=℘℘+℘−℘+℘℘−=℘
⎟
⎠
⎞

⎜
⎝ ⎝cdt
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎛ ˆ2ˆ2ˆ2ˆ2ˆˆˆ

cc
id βαβα  

   cccc
i ℘=℘℘−℘℘−= ⎟

⎠
⎞

⎜
⎝
⎛ ˆ2ˆ2ˆ2ˆˆ ββ               (55) 

Thus, 
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                                          ( )cdt
d ℘=℘

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ˆ2
ˆ

βσσ                      (56) 

 

( ) ( ) cdxdx
cxcIxI

cxxFcxx
c

∫∫
∗×∗

−=∗∗
℘×℘

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

,1,ˆˆμ  and                               

 

 

 
Chapter III 

Optimal F Real numbers 
 

§ 3.1 Main Definitions 

efinition: Numbers, corresponding to the minimal value of    product, 

call Optimal. 

It’s not hard to establish view of vector 

 

 

22
c℘⋅℘ σσD

*; ωω xx , which is minimizing 

nctiona , i.e. providing equality in the following ratio:  l 22
c℘⋅℘ σσfu

2
4

22 c
c
≥℘⋅℘ σσ  

It’s known that in Cauchy-Buniakovsky []  inequation equality has place 

 

when f g=γ , where γ  is some (commonly complex) number. It follows that 

minimal value of dispersion product is reach only in case of following conditions 

fulfillment: 

 

        ** ;; ˆˆ ωωωω βγα xxxx =                      (57) 
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( ) 0ˆˆˆˆ* *;; =+ dxx xxx αββα             (58) ∫
ℜ

ωωω ω

 

Expression (30) and condition (57) leads us to th ntial equation: 

 

e following differe

*

*

;
; **

ωω

ωω

γ
xx

xx

c
cixxx

c
i

dx
d

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +−=        (59) 

ctually in accordance of (30), we have: 

 

 

A

** ;; ˆ*ˆˆ*ˆ
ωωωω γ xxxx EcxcEx ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ −℘=−℘ , 

*

*

** ;; *
ωωωω xxxx xx −=− ;

; *
ωω

ωω γγ xx
xx

cx
dx

d
ic − , 

 

From here (59) is true. This equation could be directly integrated: 

 

dxcx
xx

c
id

xx

xx

⎥⎦⎢⎣
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎟
⎠
⎞⎜

⎝
⎛

+
−

= *
*

*

*

;

;

γ
ωω

ωω
 ; 

 random constant define by lnN, we’ll receive: 

 

If

⎥
⎥

⎦

⎤

⎢
⎢
⎡

⎟⎞⎜⎛ −⋅= xxiNxx *exp*; ωω

⎣
⎠⎝

⎟
⎠
⎞⎜

⎝
⎛

+

++−=

xcx
c
i

c

Nxcx
c
ixx

c
ixx

*2
2

ln*2*
2

ln *;

γ

γωω

        (60) 

 

N is defined from normality condition. 
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Condition (58) with (57) is giving: 

                      02ˆ*;*
11 *; =∫

ℜ
+ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
dxxx xx ωωαωωγγ

                (61) 

 is clear that from above mentioned γIt  should be imaginary. Further because of 

( )ℜ∈ 2*, Lxωω , x γ  should has the view     γγ i−=  

So, 

⎥

                   
⎥

cc2

ion d, N is defined from nor

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

Δ+
−

−⋅= xc
ixx

Nxx *

2*
exp*,

γωω                     (62) 

As we already ment e mality condition, and |γ | from 

                             ∫
ℜ

℘=− ⎟
⎠
⎞⎜

⎝
⎛ )*(2

2
*,

2* xdxxxxx σωω                    (63) 

Let’s lity condition:  write norma

                              dx
c

N ∫
ℜ

−=
⎥
⎥

⎢
⎢ γ

exp1  ;     
xx−

⎥

⎥
⎥

⎦

⎤

⎢

⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

2*
2 cN γπ21=     (64) 

Condition (63) is giving the following: 

 

∫
ℜ

℘ ⎟
⎠

⎜
⎝

−
−−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎞⎛

γ
σ

c

xx
xxNx

2*
exp

2*2*2  ;   
( ) πγγσ ccNx 2*2

2
1

=℘
    

(65) 
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From last two correlations we have: 

 ;  
γπ

πγγσ
c

ccx 1
2
1*2 ⋅=℘ ⎟

⎠
⎞⎜

⎝
⎛

4
1
γπc

N =  ;  ⎟
⎠
⎞⎜

⎝
⎛

℘= *22 xc σγ               (66) 

 

portant feature: in optimal case  is not depended on ⎟
⎠
⎞⎜

⎝
⎛

℘
*2 xσ *x . Note the im

 

 *, xxSo, for normalized vector ωω  we have received the following expression, 

which provides equality in (29): 

⎥
⎥
⎥
⎥⎠ += xcx

c
ixx *

2e
2

1*, ωω    (6                               
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎞⎜

⎝
⎛

℘

−
−

℘

xx

4

2*
xp

4 2 σπσ
    7) 

Because of it, the membership function of optimal fuzzy real number will have a 

 

view: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘

−
−

℘

=℘ 22

2*
exp

22

1*;
σπσ

ρ
xx

xx             (68)                                 

 

We see that measure of  ℘ calibration in optimal case is Gaussian. 

Absolutely analogical argumentation could be given in case of canonically conjugated 

calibration. 
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Theorem1. If calibration ℘ scale is optimal, than the canonically conjugated 

ould be als optimal, with parameter: calibration w o 24

2c

℘
=℘ σ

σ c  

 

Proof: we have: 

=∫
ℜ

−
= dy

xyc
i

exycxcx
*,

2
1*, ωπωω  

=∫
ℜ

−+
℘

−
−

℘

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

dyyxcxc
ixy

*
24

2*
exp

4 23)2(

1
σσπ

 

=∫
ℜ

−+
℘

−−

℘

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ dttxcx

c
itxxcx

c
i *

24

2
exp**exp

4 23)2(

1
σσπ

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ −+−℘−℘= xcxx

c
ixcx

cc
**2*

2

2
exp4

2

22 σ

π

σ
               

        (69) 

  

If here suppose that  24

22

c

c

℘
=℘ σ

σ  then: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

−+
℘

−
−

℘

= xcx
c
i

c

xcx

c
cc 44 2 σωω xx *

2

2*
exp

2
1*,
πσ

                      (70) 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

℘

−
−

℘

=℘ 22

2*
exp

22

1)*;(

c

cyy

c
cyy

c σπσ
χ               

Note:  The optimal case should be considered as such model of R, when closest 

calculations are realizable at given values of canonically conjugated co

dispersions. 

For Intervals  and  pick up the special view: 

                        

      (72) 

Where  

               (71) 

 

lor 

Ι cΙ

 

[ ] ⎥⎦
⎤

⎢⎣
⎡

℘+℘−=Ι σωαωσωαωω *;* xx  

[ ] ⎥⎦
⎤⎡

℘+℘−=Ι cccxcccxc σωαωσωαωω *;*
⎢⎣

 depends appropriately from *x  and , the value of*
cx  ασ  α  and cα

defines width of interval on scale of “hidden” parameters.  

By experienced way, with help of inquiry, expert can define the inte

same inquiry will help to estimate frequencies of individual values i.e. let to estimate 

 and 

rval (72). The 

2
℘σ , which , for its part will help to estimate distribution . ⎟

⎠
⎞⎜⎛ *; xxρ*xc ⎝℘

 It’s clear that for any  )(ωμ℘  ⎟
⎠
⎞⎜

⎝
⎛
℘ )(ωμ c , selection of such α  ( )cα  to satisfy 

can lly c

 

terms (8) and (18) is always possible. 

For the considered optimal model, the membership functions appropriate to 

onica onjugated calibrations would be presented by the following view: 
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( ) =∫
℘+

−
−=℘ ⎥

⎥
⎤

⎢
⎢
⎡

dx
x

xx
ασω

ωωμ
*

2
*

exp1  

℘− ℘℘ ⎥⎦⎢⎣x ασω σπσ * 222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ=−Φ−Φ=
2222

1 αωαα  

 (73) 

 

Analogically ,  

                              ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Φ=℘ 2
ωαωμ c

c
            (74) 

In such expressi

 

ons  ( )zΦ  is Probability Integral . 

 

or  x>0,  ( )xΦF  is increasing :   

( ) 1lim =Φ x∞→x  

 

abilistic inWhere prob tegral :   

( ) ∫ −=≡Φ
x

dtteerfxx
0

22
π

 

*x  and 2σIf physical notion of color is characterizing by objective data , then for 

all Ω∈ω  they are the same. Membership function is def e hin asing 

mapping. 

al 

Model 

 

 Because of  (72), (73) and (74): 

in d wit incre

 

§ 3.2 Interpretation of the Basic fuzzy Set Theoretic Operations for Optim
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                            ( ) ( ) ( ) ( )( )ωωωμωμ 212 Ι⊃Ι⇔℘> ⎟
⎠
⎞

⎜
⎛

1℘⎝
                            (75) 

 

We have to mention that interval width occurs depended only on α  : 

 

( ) ( )( )ωωαα 221 1 Ι⊇Ι⇒>  

So: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ℜ∈Ι⊃Ι⇔ℜ⊃ℜ *);*(2)*(12

~
1

~ xxx                         1)  

( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛ ℜ∈ΙΙ⇔℘℘⇔ℜℜ *);*(2)*(12,1max2

~
1

~ xxx UU μμ  2)  

3)  ( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛ ℜ∈ΙΙ⇔℘℘⇔ℜℜ *);*(2)*(12,1min2

~
1

~ xxx II μμ  

( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ℜ∈Ιℜ⇔℘−=¬℘⇔ℜ¬ *);*(\1~ xxμμ                          4)  

 

n results The same correlatio cℜ~ . 

 

e see that common operations performed on appropriate intervals are appropriate of 

. 

perations, but in case of fourth ratio situation is more 

omplicated. 

 operation of common supplement taking: 

 

W

fuzzy set-theoretic operations

 

First three ratios show that in optimal model, a fuzzy set-theoretic operation finally 

reduce to appropriate common o

c

As in the previous cases )*(x¬℘μ  Membership function value calculation is 

reduced to the
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∫
℘+

=℘∫

−
+=−= ⎟

⎠
⎞⎜

⎝
⎛⎟

ασ
ρ

α
ρμμ

*
*,

*
*,)*(1)*(

x
dxxx

x
dxxxxx  

+∞℘

∞− ℘℘¬℘ ⎠
⎞⎜

⎝
⎛

σ

∫
Ιℜ

℘=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

*\

*,
x

dxxxρ          (76) 

 

Hence, to  color is appropriate its interval 

 which is not a supplement of 

¬℘

⎥⎦
⎤

⎢⎣
⎡⎟

⎠
⎞⎜

⎝
⎛

¬℘¬+¬℘¬−=¬Ι 2*;2** σασα xxx  

( )*xΙ

ent. For 

 till R, but  as we’ve already mentioned before, is 

fully defined by this supplem ¬α  definition we have equation: 

 

                                              ⎟⎟
⎞

⎜⎜
⎛

⎟⎟
⎞ Φ−=Φ 1 α                            (77) 

⎠⎝⎠
⎜⎜
⎝

⎛ ¬
22

α

 

¬℘All above mentioned for color , is true also for canonically conjugated color 

The following operations are pertinent only to F sets with only and same

c¬℘ . 

 ℘ color and 

 

thus might be reduced to operations on intervals: 

5)  ( )
⎟
⎟
⎟
⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎞

⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ℘Φ⋅℘Φ=℘Φ⇔⋅⇔ℜ⋅ℜ 211

2
~~ ασ

μμ  
⎠
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝

⎟
⎠

⎜℘℘ 2
2

22121
σασα

6)  
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ℘Φ=Φ⇔℘⇔ℜ≡ℜ⋅ℜ=ℜ

2

22
22~~~~ ασα

μ CONCON  
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7)   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
℘Φ=℘Φ⇔℘⇔ℜ≡ℜ

2
1

22
2
1

2
1~~ ασσα

μ DILDIL  

 

In much the same way we’ll act for canonically conjugated cσ  color. 

It is important to underline that considered operations would not take us outside of 

ptimal model. 

 

Construction of probabilistic model for F sets Cartesian product provokes interest as 

here given definition is di h and the main interest 

represents the fact that special(complementary) character of connection between 

o

 

§3.3 Cartesian product of Colors 

fferent from the one offered by Zade

canonically conjugated ℘̂ and c℘̂ colors  is most fully reflected in this model. 

During calculation of membership function of two canonically conjugated F sets, we 

will be based on appropriate characteristic function. 

Let be given two fuzzy sets 1
~ℜ d 2

~ℜ , 1℘  and 2℘  are colors to  define diff an erent 

elements of two sets. Let’s 1℘̂  and 2℘̂ be the appropriate operators. First we will 

consider case when this oper rs commute. Denote as ato *
2,*

1;2,1 ωωωω xxxx  

vector which ( )ℜ×ℜ∈ 2L  defi membership function of Cartesian 

product 2

 and nes 
~

1
~~ ℜ×ℜ=ℜ  : 

     
2

*,*;,*,*ρ xxxxxx =×℘ ⎟⎞   ,              212121;2,121 ωωωωxx℘ ⎠
⎜
⎝
⎛    (78) 
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21dx℘μ              (79)
*
2,*

1

2
*
2,*

1;2,1
*
2,*

121
dx

xxI
xxxxxx ∫∫=℘×

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

ωωωω  

Where 

                                                 (80) 

 

Definition. Two F numbers  and  called “non-inte

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ×= *

22
*
11

*
2,*

1 xIxIxxI

*
1

~x *
2

~x racting”, if 

*,*,1
*,*;, ω xxxxxxxx ×= , otherwise they called 

interacting. 

Let’s consider operator  

 

2212121 ωωωωωωω

( ) ( )[ ]2ˆ21ˆ1exp2,1
ˆ ℘+℘= αααα iM                                                           (81) 

 

If 01ˆ2ˆ2ˆ1ˆ =℘℘−℘℘  , it has quite unique mining. 

Definition. Call characteristic function of  21 ℘×℘  color, the following scalar 

duct:   

              

pro

) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛= *
2,*

1;2,12,1
ˆ,*

2,*
1;2,12,( 1αM ωωωωααωωωωα xxxxMxxxx              

(82) 

 

Theorem 1. Density  
21 ℘×℘ρ is calculated by formula:  
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( ) 21
2211

2,124
1*

2,*
1;2,121

αα
αα

αα
π

ρ dd
xxi

eMxxxx ∫∫
ℜ×ℜ

+−
=℘×℘

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛   

(83)  

Proof. Put (82) in (83):       =℘×℘ ⎟
⎠
⎞⎜

⎝
⎛ *

2,*
1;2,121

xxxxρ

( )

( )[ ] *
2,*

1;2,1

*
2,*

1;2,1

2211

'
2

'
1212

ˆˆexp

4
1

2211

ωωωω

ωωωω

αα

αα
π

αα

xxxx

xxxx

i

dxdxedd xxi

℘+℘

= ∫∫∫∫
ℜ×ℜℜ×ℜ

+−

 

When  and  are non-interacting F-numbers, it is clear that: *
1x

*
2x

              *
2,*

1;2,1
*
2,*

1;2,1
ˆ

ωωωωωωωω xxxxixxxxxi =℘   i=1, 2          (84) 

It is natural to suppose that the same relation has place in case of interacting F-

numbers, so it is possible to write: 

=℘×℘ ⎟
⎠
⎞⎜

⎝
⎛ *

2,*
1;2,121

xxxxρ  

⎢⎣
⎡
⎜
⎝
⎛ +∫∫

ℜ×ℜ
∫∫
ℜ×ℜ

+−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

'
11exp'

2
'
1

2211
2124

1 xidxdx
xxi

edd α
αα

αα
π

 

=+ ⎥⎦
⎤
⎟
⎠
⎞

2
*
2,*

1;2,1
'
22 ωωωωα xxxxx  

∫∫
ℜ×ℜ

=∫
ℜ

−
∫
ℜ

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

2
2

'
22

2
1

1
1

'
11

2
12

*
2,*

1;2,1
'
2

'
1 α

α

π
α

α

πωωωω d
xxi

ed
xxi

exxxxdxdx

 

=−−∫∫
ℜ×ℜ

= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

2
'
21

'
1

2
*
2,*

1;2,1
'
2

'
1 xxxxxxxxdxdx δδωωωω  
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2
*
2,*

1;2,1 ωωωω xxxx=  

With help of density
21 ℘×℘ρ , it is possible to restore its components densities: 

                '*
2,*

1;',
21

*
1;

1
dxxxxxxx ∫

ℜ
℘×℘=℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ρρ                    (85) 

               '*
2,*

1;,'
21

*
2;

2
dxxxxxxx ∫

ℜ
℘×℘=℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ρρ                      (86) 

Relations (81)-(86) are easily generalized on case of Cartesian product of  ∀  finite 

number of efficient with “commute” colors: 

                                  ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
℘∑

=
= kn

k kinM ˆ
1

exp,...,1
ˆ ααα                               (87) 

  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛= *...*
1;...1,...,1

ˆ,*...*
1;...1,...,1 ωωωωααωωωωαα nxxnxxnMnxxnxxnM

     (88) 

=℘××℘ ⎟
⎠
⎞⎜

⎝
⎛ *,...,*

1;,...,1...1 nxxnxx
n

ρ    

                                
( )

( )∫
ℜ

∏
=

∑
=

−
=

n k
n

k
d

kxn

k ki
enMn α

α
αα

π 1
1,...,12

1                  

(89) 

 It is possible to receive densities appropriate to the smaller number of efficient by 

integration on defined variables with help of this density. 

Now we are proceeding to consideration of Cartesian product of two F-sets with 

“non-interacting” colors. 

At considered case the view of characteristic function depends on appropriate 

commutation between 1℘̂  and 2℘̂ . 
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Especially simple view assumes the (81) for canonically conjugated colors 

( Eiccc ˆˆˆˆˆ −=℘℘−℘℘ ): 

                ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ℘℘℘−= cc

iicc
i

cM ˆ
2

expˆexpˆ
2

exp,ˆ ααααα                (90) 

Characteristic function of c℘×℘ color is the following:  

( ) ( ) == ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ *,,ˆ,*,, ωωααωωαα xxcMxxcM  

dxxxcci
eiecci

exx *,
ˆ

2ˆˆ
2*, ωω

ααα
ωω∫

ℜ

℘℘℘−
=  

 

According to (27),(33) and (40) we receive: 
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ω
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ω
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(91) 

 

The view of density appropriate of this characteristic function is: 
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⎢
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*;
2
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'
2
1

ω
α

ωω
α

ω
αα

π
xcc

xxcc
xxciecd +∫

ℜ
−−=  

So, for Cartesian product of canonically conjugated fuzzy sets  we have: cℜ×ℜ ~~

 

Density is expressing by Vigner Formula: 

cdxciexcc
xxcc

xcxxxx
c

αα
ω

α
ωω

α
ωπ

ρ
'*;

2
*;

22
1*,*;', −+∫
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⎞⎜
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(92) 

And the membership function is: 

 

                                  

(93) 
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⎝
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dxdxcxxxx
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c

ρμ

Note: Instead of (92) and (93) receipt of other expressions are possible by replacing 

Veil formula with some other expression. 

 

Note: Using caliber-invariance of scalar product, instead of (92) (based on the same 

Veil formula (90)) it is possible to receive:  

 

αα
ω

α
ωω

α
ωπ

ρ dxiecxcc
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cxcxxxx
c

−+∫
ℜ
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⎠
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⎝
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2
*;

22
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     (94) 

 

§3.4 Color Value Calculation Condition 
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Color value calculation condition is conditional moment, calculated with help of 

density (92). For example n
c℘ color (appropriate operator n

c℘̂ ) value condition is 

defined by formula: 

xdcxxxx
c

nxxx
x

M
cx ′∫

ℜ
′℘×℘′=℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
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⎝
⎛ *,*;,*,

*
ρρ       (95) 

Insert in consideration conditional characteristic function: 
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∫
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′
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′
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℘
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⎞
⎜⎜
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⎛

⎟
⎠
⎞⎜
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xx
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ω

α
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α
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ρ
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2
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               *;
2
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1
ω

α
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α
ωρ
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xxcc

x
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′
+

′
−

℘
=

⎟
⎠
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⎝
⎛

          (96) 

Supposing that: 

                          
( )xSc

i
exxxx ⎟
⎠
⎞⎜

⎝
⎛

℘= *,2
1*; ρωω                   (97) 

We may write logarithm ( )xcM α , or conjugated function, in the following view: 

( ) ( ) ++℘== ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ xccxxcMxcK ;
2

ln
2
1ln αραα  

+℘−−℘+ ⎟
⎠
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⎝
⎛
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⎠

⎞
⎜⎜
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2
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2
1 xxxccx ραρ  
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                     ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−++
22
ccxSccxS

c
i αα

     ,       (98) 

 

and so, for cumulants ( )xnℵ  of  given distribution ( coefficients under ( ) !nn
ciα  in 

Taylor expansion K), the simple expressions are received: 

              ( ) ( )xSndx

ndn

i
cxn 12

122

212 +
+

=+ℵ ⎟
⎠
⎞

⎜
⎝
⎛               (99) 

               ( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

℘=ℵ *;ln2
22

22 xxndx

ndn

i
cxn ρ         .   (91) 

Quantities nℵ  simply connected with ( )*xcx′  counted values. Particularly for n=1 we 

have: 

                                ( ) ( )
dx
dS

xcxx =′=ℵ *
1                     (92) 

It gives possibility of ( )x
x*ψ  comulate function argument interpretation as ( )xS  

potential conditional calculated (conditional average) values ( )*xcx′ .  

Conditional dispersion of c℘ color is: 

 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞
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⎛

⎟
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⎝
⎛
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2

4
22**2*2

2 xx
dx
dc

xcx
xcxxcx

c
x ρσ           (93) 

 

Note: Distribution skewness purely defined by its odd cumulants, hence canonically 

conjugated color numerical value conditional distribution skewness depends only on 

( )xS . 

Now we will show that from two F-sets Cartesian product probabilistic model relation 

(25) is flowing. This fact surely counts in favor of offered Cartesian product model. 
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Let us denote by α̂ and  operators with average zero values: β̂

0*;ˆ,*;*;ˆ,*; == ⎟⎟
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⎝
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Well known Schwarz theorem read as follows: 

2
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It is also known that it is possible to put appropriate ( )xα  and ( )xβ random 

quantities to α̂ and operators for fulfillment of the following relations: β̂
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then 
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Further, consider the random quantity: 
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it is clear that 
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Suppose ( ) ( )ℜ∈′ 2
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ψ , in this case: 
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By taking into account formula (92), we receive: 
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While comparing (92) and (101) and defining ( )xα , we see that it is possible to put 

( ) ( )xx αα =′ , according to it formula (98) gives: 
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Since integral in this inequality is , we are immediately receiving (25). 2
c℘σ

 

§3.5 Conditional Color Fuzzy Subsets 
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Let us consider conditional density: 
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Definition:  
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fuzzy subset of ℜ ,where ( )*xx′ is defined by formula (95), when , and 1=n
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also according to (82): 
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call conditional 1℘ color fuzzy subset. 

 

Color definitions of theoretical-linguistic operations are valid also for conditional 

color fuzzy subset. 

 

Note: It is clear that for non-interacting fuzzy numbers conditioned color fuzzy 

subsets comes to the common “unconditional” (absolute?). 

Bellow we will consider two important examples: 

Example1: Let appropriate density of c℘×℘ has the view: 
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This density corresponds to the optimal model of considering Cartesian product 

as
4
222 c

c
=℘⋅℘ σσ , besides it is obvious that it describes non-interacting optimal 

fuzzy numbers: 
cc ℘⋅℘=℘×℘ ρρρ . 

Therefore in this example conditional and non-conditional fuzzy subsets coincide. 

Example2. Consider the density: 
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It is clear that , further :  0** == cxx
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Since (109) symmetry by x  and x′ , it is possible to write        

 

( ) ( )0;0; xxc ℘=℘ ρρ        and     ( ) ( ) c
c 2

30202 =℘=℘ σσ     (111) 

 

We see that density (109) is appropriate of interacting fuzzy numbers: 

cc ℘⋅℘≠℘×℘ ρρρ  and also the model is not optimal while  

4
2

4
2922 cc

c
>=℘⋅℘ σσ  

Conditional density is:  
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c℘  color conditional value ( ) 0* =′ xx  and 
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Formulas (106), (107), (112) and (113) are defining reflection ℜ in set of fuzzy 

subsets { }c
xℜ~  : c

xx ℜ→ ~
. 

 

 

Chapter IV 

Arithmetic Operations on Fuzzy Numbers in Probabilistic Model 

 

In consideration of arithmetic operations, we won’t go beyond optimal F numbers 

[12][13]. 

Definition.  

                         *xxx −=Δ                                                  (114) 

 

Math. Expectation of this quantity call “error”  of counted value: 
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=∫
ℜ

∫
∞ ℘

−

℘

=
℘

−
−−

℘

=Δ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

dy

y

yedx
xx

xxx
0

22
2

22

2
22

2*
exp*

22

1* σ

πσσπσ
 

 53



  ℘=℘

∞

℘
−

∫
∞

℘

−=℘
−

℘

= σ
π

σ
σ

πσ

σ

πσ

222

0

22

0 22

122

22

1
t

edt

t

e         (116) 

                                                         

As known arithmetic operations result error is defined by formulas: 

 

 

*
2

*
1

*
2

*
1 xxxx Δ+Δ=+Δ ⎟

⎠
⎞⎜

⎝
⎛  

                          *
1

*
2

*
2

*
1

*
2

*
1 xxxxxx Δ+Δ=•Δ ⎟

⎠
⎞⎜

⎝
⎛                      (117) 

 

2*
2

*
2

*
1

*
1

*
2

*
2

*
1

x

xxxx

x

x Δ−Δ
=Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 

Because of (116) for arithmetic operations on optimal F numbers we have following 

regulations (1 * ) (see p. 101): 

 

                                                     (118) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

℘+℘=+℘
*
2

*
1

*
2

*
1 xxxx σσσ

 

                                        ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

℘+℘=•℘
*
1

*
2

*
2

*
1

*
2

*
1 xxxxxx σσσ      (119)  

 

                                         2*
2

*
2

*
1

*
1

*
2

*
2

*
1

x

xxxx

x

x ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ℘−℘
=℘

σσ
σ           (120) 
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Connection between canonically conjugated colors appears in case of arithmetic 

operations. Because of (29),  operation for canonically conjugated 

numbers, characterizing by dispersion:                                           

*
2

~*
1

~
cxcx ⊕

 

                                      
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘+℘

℘℘
=⊕℘ *

2
*
1

*
2

*
1*

2
*
1

cxccxc

cxccxc
cxcxc σσ

σσ
σ          (121) 

 is appropriate of addition operation for two fuzzy numbers  . *
2

~*
1

~
cxx +

 

For multiplication    and  *
2

~*
1

~*
2

~*
1

~
cxcxxx ⊗→×

                               
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘+℘

℘℘
=⊗℘ *

1
*
2

*
2

*
1

*
2

*
1*

2
*
1

cxcxcxcx
cxccxc

cxcxc σσ

σσ
σ         (122) 

 

For division  *
2

~*
1

~
*
2

~

*
1

~

cxcx
x

x
÷→  and 

                          
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘−℘

℘℘
=÷℘ *

1
*
1

*
2

*
2

*
2

*
1

2*
2*

2
*
1

cxcxcxcx
cxccxcx

cxcxc σσ

σσ
σ             (123) 

 

Note: Rules (118-120) and (121-123) are pertinent only to F numbers of one color. 

It is possible to say that these rules are appropriate to calculations in ℘ calibration. In 

case of c℘  calibration, we have to change ℘σ  by c℘σ , also *x  by . *
cx
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Arithmetic operations for two F numbers, appropriate to  canonically conjugated 

colors are defined. 

 

Generally speaking, rules (121-123) are establishing equivalence connection in F 

numbers set of  cℜ~ , because , by (61) density ( )*; cc
xx℘ρ  depend not only on 

dispersion, but also on calculated value of . Calibration invariance of this value 

allows to switch from equivalence classes consideration in 

*
cx

cℜ~  to equivalence classes 

consideration in ℜ~ , this procedure simplifies consideration of this issue. True, 

because of (27) we can write: 

 

                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ℘= *
2

*
1;21

ˆ,*
2

*
1;21

*
2

*
1 ωωωωωωωω xxxxcxxxxcxcx oooo
o
o                

(124) 

 

Where “o” indicates common operations: “+”,” ⋅ ””:” ,and  “ ” is  appropriately 

,⊗ ,÷ . As we see from (67), in ratio for  

o
o

⊕ *
2

*
1;21 ωω oω xxxx oω , figures number 

cx - appropriate to number  , so it’s clear that *
2

*
1 xx o

 

                                                                (125) cxcxcx =*
2

*
1
o
o

 

Because of above mentioned, cx  type numbers in ℜ~  , which is corresponded to the 

same number  are equivalent. ⎟
⎠
⎞*

2⎜
⎝
⎛

℘
*
1 cxcxc
o
oσ
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However, referring to linearity of F̂ , we can suppose that appropriate  

**
ˆ

* xx
F

x
ϕψψ =→  is isomorphism in case of  “o” and  “ ” operations identity 

assumption. All these considerations need more strict basis. 

o
o

If we’ll nevertheless assume this point of view we’ll come to a conclusion  that along 

with the arithmetic operations on F numbers, defined by (118-120) rules, exist 

operations on canonically conjugated F-numbers – expressed by the following rules: 

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘+℘

℘℘
=⊕℘ *

2
*
1

*
2

*
1*

2
*
1

cxccxc

cxccxc
cxcxc σσ

σσ
σ                             (121’) 

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘+℘

℘℘
=⊗℘ *

1
*
2

*
2

*
1

*
2

*
1*

2
*
1

cxcxcxcx

cxccxc
cxcxc σσ

σσ
σ                          (122’) 

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘−℘

℘℘
=℘ *

1
*
2

*
2

*
1

*
2

*
1

2*
2*

2
*
1

cxcxcxcx

cxccxcx
cxcxc σσ

σσ
σ o                            (123’) 

 

Call these rules arithmetic operations in ℘ calibration. It’s clear that also exist 

another pair of rules, which we’ll call arithmetic rules in c℘  calibration. These rules 

are received by substitution: ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘←℘
*,*, cxcx σσ  . All statements on 

operations in ℘ are valid also in c℘  calibration. 

Let’s consider properties of introduced arithmetic operations: 

1. Operation  “+”  
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i. Commutation:      

*
1

~*
2

~*
2

~*
1

~ xxxx +=+  

Proof: 

 

*
1

~*
2

~*
2

~*
1

~ xxxx +=+  

and 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ +℘=℘+℘=℘+℘=+℘

*
1

~*
2

~*
1

~*
2

~*
2

~*
1

~*
2

~*
1

~ xxxxxxxx σσσσσσ  

 

 

 

ii. Associative property:  

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ++=++ *

3
~*

2
~*

1
~*

3
~*

2
~*

1
~ xxxxxx  

Proof: 

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ++=++ *

3
*
2

*
1

*
3

*
2

*
1 xxxxxx    

 

and 

 

=℘++℘=℘++℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
3

*
2

*
1 xxxxxx σσσσ  

=℘+℘+℘= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1 xxx σσσ  

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ++℘=+℘+℘= *

3
*
2

*
1

*
3

*
2

*
1 xxxxxx σσσ  
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2. Operation  “•   “ 

     

i. Commutation:     

*
1

~*
2

~*
2

~*
1

~ xxxx •=•  

Proof: 

*
1

*
2

*
2

*
1 xxxx •=•  

and 

 

=℘+℘=•℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

2
*
1

*
1

*
2

*
2

*
1 xxxxxx σσσ  

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ •℘=℘+℘= *

1
*
2

*
1

*
2

*
2

*
1 xxxxxx σσσ  

 

ii.  Associative property:  

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ••=•• *

3
~*

2
~*

1
~*

3
~*

2
~*

1
~ xxxxxx  

Proof: 

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ••=•• *

3
*
2

*
1

*
3

*
2

*
1 xxxxxx  

 

and 

 

=℘+•℘=℘••℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
2

*
1

*
3

*
3

*
2

*
1 xxxxxxxxx σσσσ  
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=℘+℘+℘= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
2

*
1

*
1

*
2

*
3 xxxxxxxx σσσ  

 

=℘+℘+℘= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
2

*
3

*
1

*
1

*
3

*
2 xxxxxxxxx σσσ  

 

=℘+℘+℘= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
2

*
3

*
1

*
1

*
3

*
2 xxxxxxxx σσσ  

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ••℘=•℘+℘= *

3
*
2

*
1

*
3

*
2

*
1

*
1

*
3

*
2 xxxxxxxxx σσσ  

 

3. Distributive rule: 

 

*
3

~*
1

~*
2

~*
1

~*
3

~*
2

~*
1

~ xxxxxxx •+•=+• ⎟
⎠
⎞⎜

⎝
⎛  

 

Proof:                           *
3

*
1

*
2

*
1

*
3

*
2

*
1 xxxxxxx •+•=+• ⎟

⎠
⎞⎜

⎝
⎛

 

and 

 

=+℘+℘+=+•℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
1

*
3

*
2

*
3

*
2

*
1 xxxxxxxxx σσσ  

 

+℘+℘+℘= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

2
*
1

*
1

*
3

*
1

*
2 xxxxxx σσσ  
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=℘+℘+℘+℘=℘+ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
1

*
1

*
3

*
2

*
1

*
1

*
2

*
3

*
1 xxxxxxxxxx σσσσσ  

=•℘+•℘= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
1

*
2

*
1 xxxx σσ  

 

⎟
⎠
⎞⎜

⎝
⎛ •+•℘= *

3
*
1

*
2

*
1 xxxxσ  

 

 

 

c1 . Operation “⊕ ”: 

i. Commutation: 

*
1

~*
2

~*
2

~*
1

~
cxcxcxcx ⊕=⊕  

 

Proof:                      *
1

*
2

*
1

*
2

*
2

*
1

*
2

*
1 cxcxcxcxcxcxcxcx ⊕=+=+=⊕

 

and 

 

=
℘+℘

℘℘
=⊕℘

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

*
2

*
1

*
2

*
1*

2
*
1

cxccxc

cxccxc
cxcxc

σσ

σσ
σ  

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⊕℘=
℘+℘

℘℘
= *

1
*
2*

1
*
2

*
1

*
2

cxcxc
cxccxc

cxccxc
σ

σσ

σσ
 

 

 

ii. Associative property: 
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⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⊕⊕=⊕⊕ *

3
~*

2
~*

1
~*

3
~*

2
~*

1
~

cxcxcxcxcxcx  

 

Proof:      

 

        =++=⊕⊕ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1

*
3

*
2

*
1 cxcxcxcxcxcx

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⊕⊕=++= *

3
*
2

*
1

*
3

*
2

*
1 cxcxcxcxcxcx  

 

and 

=⊕⊕℘ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ *

3
*
2

*
1 cxcxcxcσ  

 

=
℘+⊕℘

℘⊕℘
=

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

*
3

*
2

*
1

*
3

*
2

*
1

cxccxcxc

cxccxcxc

σσ

σσ
 

 

=
℘℘+℘℘+℘℘

℘℘℘
=

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

*
3

*
2

*
3

*
1

*
2

*
1

*
3

*
2

*
1

cxccxccxccxccxccxc

cxccxccxc

σσσσσσ

σσσ

 

 

=

℘+
℘+℘

℘℘

℘
℘+℘

℘℘

=

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

*
3*

2
*
1

*
2

*
1

*
3*

2
*
1

*
2

*
1

cxc
cxccxc

cxccxc

cxc
cxccxc

cxccxc

σ
σσ

σσ

σ
σσ

σσ
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=
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c2 . Operation “⊗ ”: 

 

i. Commutation: 
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Proof:                     =  *
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ii. Associative property: 
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c3 . Distributive rule: 
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Note: Assumption on identity of “o” and “ ” operations is not fundamental, but this 

assumption is simplifying consideration. 

o

o

 

 

§4.2 Opposite F Number 

 

Consideration will be held in ℘ calibration. Change for c℘  calibration takes place 

on the basis of obvious replacements. 

Let’s consider ratio: 

 

                           *1~*~*~ =⋅ ya     ( 1*1~ ≡ )                                  (126) 

 

Here  *~y  is an unknown F number. According to (119) we have: 

 

    ( )1****
℘=℘+℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ σσσ yaay   ,                         (127) 1** =ya

 

It is clear that  and   have like signs. *a *y

If   ,  then from (127) follows: *a 0* >y

 

( )
*

**1
*

a

ay
y

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ℘−℘

=℘
σσ

σ  

 

put *
1*
a

y = , finally we’ll receive: 
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( )

2*

*1*
*

a

aa
y

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ℘−℘

=℘
σσ

σ                      (128) 

 

So, if    ,  ( ) 0*1* ≥℘−℘ ⎟
⎠
⎞⎜

⎝
⎛aa σσ ( )

*
1

*
a

a
≤

℘

℘ ⎟
⎠
⎞⎜

⎝
⎛

σ

σ
 -  then solution of (126) exists, 

however while comparing (128) and (120) we find that this solution might be 

presented in the following view: 

                               *~
*1~*~

a
y =                                                      (129) 

 Call this number opposite F number regarding to the . *~a
 

Depending on *1~  there exist infinite number of opposites. 

If , , then     , or *a 0* <y ( )1****
℘=℘−℘− ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ σσσ yaay
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⎟
⎠
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⎝
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*

1

*
a

a
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℘

℘ ⎟
⎠
⎞⎜

⎝
⎛

σ

σ
              (128’) 

 

According to (120) solution would be written in the form of (129). 

For canonically conjugated color we have: 

  

                        *1~*~*~
ccyca =⊗     ( 1*1~ ≡c )                                 (126’) 

According to (121’), we have: 
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as *
1*

ca
cy = , this ratio might be rewritten 
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c
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solution of (126’) is presented by: 

 

*~

*1~*~
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ccy =     i.e.   

( )

( )1**

1*2*
*

ccacca
ccacca

cyc
℘−℘

℘℘
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⎟
⎠
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⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

σσ

σσ
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1*

ca
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(130) 

 

Solvability condition for the color c℘  is following: 

                                         
( ) *
*

1
ca

cac

c <
℘

℘

⎟
⎠
⎞⎜

⎝
⎛σ

σ
                                  (130’) 

While comparing this condition with appropriate condition for ℘ color, we’ll 

ascertain that those conditions are “complementary” of each other in determined 

sense. 

 

§4.3 Mixed Fuzzy Real Numbers 
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Above considered Fuzzy real numbers appropriate of  ( )x
x*ψ  functions call Pure F-

numbers. 

We will show below that there exist F-numbers to which it is impossible to confront 

any defined ( )x
x*ψ  function. Call such numbers mixed F-numbers. 

Let us consider connection between probabilities distribution density of Cartesian 

product c℘×℘  and statistic operator of von Neumann. 

According to Neumann introduce Cartesian ensemble of F-numbers (each of them is 

pure). Suppose every Pure F-number is characterized by some kw   ensemble 

appearance frequency, then it is possible to write: 

    ∑ ℘×℘=℘×℘ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

k
cxxxxck

kwcxxxxc
*,*;',*,*;', ρρ         (131) 

Consider full, orthogonal system  of functions from . According 

formula (92) for every density from (131), there exist appropriate real F-

number 

( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
x

jx*ψ

k
c℘×℘

( )ℜ2L

ρ

~
*

kx (
~

*
ckx ) or function ( )xk

x*ψ  ( ( )xk

cx
′*ϕ ), which might be expanded: 

                                 ( ) ( )xk

jxj

k
jaxk

x ** ψψ ∑=                              (132) 

Hence,       

                       (133) (∑∑∑ ′=℘×℘ ⎟
⎠
⎞

⎜
⎝
⎛

k i j
xxijfk

jak
iakwcxxxxc ,**,*;',ρ )

where 
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xci

eccx
jx
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x
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xxijf α

ααψ
α

ψ
π

′−
+∫

ℜ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=′ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2*2

*
*2

1,      (134) 
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Note that if  is full, orthogonal system of functions in , then 

 is also full, orthogonal system of functions in  too. 

Functions  makes basis not only for densities, but covers all 

space . 

( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
x

jx*ψ

( )
⎭
⎬
⎫′xx,

( )xxijf ′,

( )ℜ×

( )ℜ2L

( )ℜ2L( )
⎩
⎨
⎧

ijfc2π

ℜ2L

Via calculation of matrix ( )∫∫
ℜ×ℜ

′′℘×℘ ⎟
⎠
⎞

⎜
⎝
⎛ xdxdxxijfcxxxxcc ,**,*;',2 ρπ  we 

have: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
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⎝
⎛

℘×℘⇒=∑ xxijf
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k
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,

*,*;',* ρρρ  ,  (135) 

which represents the statistical operator of Von Neumann. 

Consider the random quantity ( )xxg ′. . Define appropriate matrix of this quantity by: 

                    ( )∫∫
ℜ×ℜ

′′⎟
⎠
⎞⎜

⎝
⎛= xdxdxxijfxxgijg ,*',               (136) 

Mathematical expectation of ( )xxg ′.  is defining by rule of Neumann: 

( ) =∑∑==
i j jiijggpSg ρρ̂ˆˆ  

( )∑∑ ∫∫
ℜ×ℜ

′∑′= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

i j
xdxd

k
k
jak

iakwxxijfxxg *,*',  

It is not difficult to show that ( ) ( )xxjifxxijf ′=′ ,,* , so by this relation we will 

have: 

( )== ρ̂ˆˆ gpSg  
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( ) =∫∫
ℜ×ℜ

′∑∑∑ ′=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ xdxd

k i j
xxijfk

jak
iakwxxg ,

*',  

                ⎟
⎠
⎞⎜

⎝
⎛=∫∫

ℜ×ℜ
′℘×℘= ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ',*,*;',', xxgxdxdcxxxxcxxg ρ        (137) 

Received result shows that c℘×℘ρ density at informational-statistical relation is 

equivalent Von Neumann’s statistical operator ρ̂ . 

Let us introduce often-used properties of system: 
⎭
⎬
⎫

⎩
⎨
⎧

ijf

1. ( ) ( ) kkllc
xdxdxx

kl
fxxlkf ′′=∫∫

ℜ×ℜ
′′

′′
′ δδ

π2
1,*,                

(1381 ) 

2.  ( ) ( ) ( ) ( )yxyx
ck l

yy
lk

fxxlkf ′−′−=∑∑ ′′ δδ
π2
1,*,          

(138 2 ) 

3. ( ) lkxdxdxxlkf δ=∫∫
ℜ×ℜ

′′,                                                   

(138 3 ) 

4.  ( )
cl

xxllf
π2
1, =∑ ′                                                                

(138 4 ) 

It is clear that pure F-numbers appropriate density matrix is projection 

operator k
jak

iak
ij

*=ρ . So the mixture density matrix might be presented in view: 

                                           ∑=
k

kPkw ˆρ̂                                           (139) 

The following formula has place: 
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    ( ) k
k

gkw
k

gkPpSkw
k

gkPkwpSgpSg ∑=∑=∑== ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ˆˆˆˆˆˆˆˆ ρ     (140) 

Let us give formula for Cartesian product membership function. 21 II ×  set’s 

indicator define via ( )xxII ′× ,
21

χ . According of formula (136) define the 

appropriate matrix: 

( ) =×=′×
ij

IIxxII 21
,

21
ˆ χχ  

                            ( ) ( )∫∫
ℜ×ℜ

′′′×= xdxdxxijfxxII ,*,
21

χ                     (141) 

The following has place: 

Theorem1. If 1I and 2I  are indicators on canonically conjugated scales ℘ and c℘  

appropriately and the indicator operator is defined by (141), then the 

Cartesian product membership function formula is the following: cℜ×ℜ ~~

           (142) ∑ ×⋅=⋅×=℘×℘ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

k cII
kPpSkw

cIIpScxx
c

χρχμ ˆˆˆˆ*,*

Proof: According definition we may write: 

=∑ ×∑=∑ ×⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

k
ji

cII
ji

k
ijPkw

k cII
kPpSkw χχ

,
ˆˆ

 

( ) ( ) =∑ ∑ ∫∫
ℜ×ℜ

′′×=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ji k
xdxdxxjifxx

cIIjak
iakw

,
,*',

*
χ  

( ) =∫∫
ℜ×ℜ

′∑ ∑ ′×= ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ xdxd

ji k
xxijfk

jak
iakwxx

cII
,

,
*',χ  
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=∫∫
ℜ×ℜ

′℘×℘×= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ xdxdcxxxxcxx

cII
*,*;',', ρχ  

∫∫
×

′℘×℘= ⎟
⎠
⎞

⎜
⎝
⎛

cII
xdxdcxxxxc

*,*;',ρ  

Which adjust with formula (93). 

Note: At above introduced formulas kw depended on and  (in generalized case 

on ,…) thus, in (154) upon integration by one of variable 

*
1x

*
2x

*
1x x  or x′ , the received 

density will be depended on and .Thus there would exist no function *
1x

*
2x *x

ψ  

appropriate to it. 

 

 

A p p l i c a t i o n s  

 

Fuzzy Linear Equation Solution 

 

℘ presentation: 

                                         *0~*~*~*~
=+bxk   ,   ⎟

⎠
⎞⎜

⎝
⎛ ≡ 0*0~                         (143) 

solution:   

                                                     *0~*~
*~

*~ +−=
k
bx                                 (144) 

note that sign “-“ we put not in front of  fraction, but in front of *~b - underlining that 

opposite F number “- *~b ” correspondent to the given fuzzy zero. 
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If solution of equation (143) really might be presented in form (144) , then counted 

(by 118-120 formulas ) values of  *x  and   from (143) and (144) should 

coincide. 

⎟
⎠
⎞⎜

⎝
⎛

℘
*xσ

For equation (143) we have: 

 

*0*** =+bxk   

 

and  

=℘+℘+℘=℘+℘=+℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *********** bkxxkbxkbxk σσσσσσ

 

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

℘+℘−℘⋅= ****2*
*
1 bkbxk
k

σσσ  

 

It’s clear that conditions of solvability have view: 

 

                                                                                    (145) ( ) ⎟
⎠
⎞⎜

⎝
⎛

℘≥℘
*0 bσσ

it this case: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

℘−℘=℘−℘
*0****2* bkkbxk σσσσ  

 

1)     0***2* ≥℘−℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ kbxk σσ

( )
2*

****0*
*

k

kbbkk
x

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ℘+℘−℘

=℘
σσσ

σ  
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2)      0***2* <℘−℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ kbxk σσ

                          
( )

2*

**0***
*

k

bkkkb
x

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ℘+℘−℘

=℘
σσσ

σ                 

(146) 

    

Which coincides with expression received from (144) on the basis of  rule (120). 

 

Let’s consider linear equation in c℘  presentation (but in the same ℘ calibration). 

We have: 

                   ,                   (143’) *0~*~*~*~
ccbcxck =⊕⊗ ⎟

⎠
⎞

⎜
⎝
⎛ ≡ 0*0~c

According to the rules (121’) and (122’) we have: 

 

*

**~

ck
cb

cx −=  

and 

=
℘+⊗℘

℘⊗℘
=⊕⊗℘

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

***

***
***

cbccxckc

cbccxckc
cbcxckc

σσ

σσ
σ  

 

=

℘+℘⋅℘+℘℘

℘℘℘
=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

*******

***

cxccxckcckcbccxcckc

cbccxcckc

σσσσσ

σσσ
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=

℘+

℘+℘

℘℘

℘+℘

℘℘℘

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

*
****

**

****

***

cbc
cxccxckcck

cxcckc

cxccxckcck

cbccxcckc

σ
σσ

σσ

σσ

σσσ

 

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘⋅℘+℘℘

℘℘℘
=

***2*****

****

cxccbckcckcbccxcckcck

cbccxcckcck

σσσσσ

σσσ

     

 

so: 

 

=

℘−℘⋅℘+℘℘

℘℘℘

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

***2*****

****

cxccbckcckcbccxcckcck

cbccxcckcck

σσσσσ

σσσ

 

( )0c℘=σ  

and 

 

( ) ( ) ( )****
ccccccc bxkk ℘℘℘ σσσ = ( ) +℘℘℘= ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ **0*

cxcckccck σσσ   

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘⋅℘℘+ ***2**0 cxccbckcckcbcc σσσσ ’ 
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( ) =℘℘−℘℘ ⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ *0***

cxcccbcckcck σσσσ  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘℘℘= ***2**0 cxccbckcckcbcc σσσσ  

Solvability condition is:  

( )0*
ccbc ℘≥℘ ⎟

⎠
⎞

⎜
⎝
⎛ σσ  

 

this condition is complementary of  (145) 

Consider two cases: 

1)  0***2* ≥℘−℘ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

cxccbckcck σσ

=℘ ⎟
⎠
⎞

⎜
⎝
⎛ *

cxcσ  

( )

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘℘+℘℘

℘℘℘
=

0****0*

*0*2*

ccbcckcckcbcccb

cbccckcck

σσσσσ

σσσ
 

 

2)  

 

0 ***2* <℘−℘ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

cxccbckcck σσ

=℘ ⎟
⎠
⎞

⎜
⎝
⎛ *

cxcσ  

( )

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘℘−℘℘

℘℘℘
=

0****0*

*0*2*

ccbcckcckcbcccb

cbccckcck

σσσσσ

σσσ
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Present them in united formula by: 

=℘ ⎟
⎠
⎞

⎜
⎝
⎛ *

cxcσ     

( )

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

℘−℘℘+℘℘

℘℘℘
=

0****0*

*0*2*

ccbcckcckcbcccb

cbccckcck

σσσσσ

σσσ
         (146’) 

Let us show that founded solution (146’) is appropriate of (143’) equation solution in 

view: 

                            *~*~*~
ckcbcx ÷−= ⎟

⎠
⎞⎜

⎝
⎛                            (144’) 

where F-number *~
cb−  is defined by relation : calculated value = *~

cb−  and 

according to (128’) 
( ) ( )

( ) ( )0*~

0*~

*~

ccb
c

ccb
c

cb
c ℘−℘

℘⋅℘
=−℘σ ⎟

⎠
⎞⎜

⎝
⎛

σσ

σσ
. 

By (123’) we may write the following: 

=

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛−℘

⎟
⎠
⎞⎜

⎝
⎛

℘⎟
⎠
⎞⎜

⎝
⎛−℘

=÷−℘ ⎟
⎠
⎞

⎜
⎝
⎛

****

**2*
**

ck
cckcb

ccb

ck
ccb

cck

ckcb
c σσ

σσ
σ  

 

( )

( )

( )

( )
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

℘+

℘−℘

℘℘
⋅

℘−℘

℘℘℘
⋅

=

**
0*

0*
*

0*

*0*
2*

ck
cck

ccb
c

ccb
c

cb

ccb
c

ck
cccb

c
ck

σ
σσ

σσ

σσ

σσσ

  , 
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which coincides with  formula (146’). 

 

Fuzzy Quadratic Equations in Optimal Probabilistic Model 

 

Suppose all calculations are made at  ℘ calibration. Fuzzy quadratic equation has the 

following view: 

~
*0

~
*

~
*

~
*

2~
*

~
* =++ cxbxa          ( )00* ≡              (147) 

*x  is the solution of ordinary quadratic equation: 0***2** =++ cxbxa . The 

solvability condition: 

                                              (148) ( ) ⎟
⎠
⎞⎜

⎝
⎛

℘≥℘
*0 cσσ

 

Let us use rules (118)-(120) for dispersion calculation: ⎟
⎠
⎞⎜

⎝
⎛

℘
*2 xσ

( )0***2**
℘=℘+℘+℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
σσσσ cxbxa     (149) 

where 

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘=⎟
⎠
⎞⎜

⎝
⎛

℘+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
℘=℘ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ *2****2*2*2**2** axxxaaxxaxa σσσσσ

 (150) 

  ⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘=℘ ⎟
⎠
⎞⎜

⎝
⎛ ****** bxxbxb σσσ       (151) 

 

Via putting (150) and (151) in (149), received: 
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( )0******2****2 ℘=℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘ ⎟
⎠
⎞⎜

⎝
⎛ σσσσσσ cbxxbaxxxa

  (152) 

It is clear that solvability conditions must be satisfied: 

( )0*2****2 ℘≤⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘ σσσ axxxa  ,   

( )0****
℘≤⎟

⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘ σσσ bxxb ,       (153) ( )0*
℘≤℘ ⎟

⎠
⎞⎜

⎝
⎛ σσ c

Let us consider four cases according of sings of quantities, the modules of which 

figures in (152) and (153): 

 

1)   and     0*2****2 ≥℘+℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ axxxa σσ 0**** ≥℘+℘ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ bxxb σσ

 

Inequality (152) would be rewrite in the following view: 

 

( )0******2****2 ℘=℘+℘+℘+℘+℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ σσσσσσ cbxxbaxxxa  

(152’) 

thus, 

( )

***2

***2**0
*

bxa

cxbxa
x

+

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
=℘

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

σσσσ
σ          (154’) 

For the considered case generalized Vietta theorem is valid: 

=℘+℘=+℘ ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ *

2
*
1

*
2

*
1 xxxx σσσ  
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( )
+

+

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

**
1

*2

**
1

*2*
1

*0

bxa

cxbxa σσσσ
 

 

( )
=

+

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

**
2

*2

**
2

*2*
2

*0

bxa

cxbxa σσσσ
 

 

=

−

−⎟
⎠
⎞⎜

⎝
⎛

℘+−⎟
⎠
⎞⎜

⎝
⎛

℘
=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

**4
2*

*
1

*
2

*2*
1

2*
2

*

cab

xxbxxa σσ
 

 

2*

****

a

baab ⎟
⎠
⎞⎜

⎝
⎛

℘−⎟
⎠
⎞⎜

⎝
⎛

℘=
σσ

 

On received relation note the following: as it is supposed that  and 

, so , further, appropriate dispersions of numbers 

0*
1 ≥⎟
⎠
⎞⎜

⎝
⎛ xσ

0*
2 ≥⎟
⎠
⎞⎜

⎝
⎛ xσ 0*

2
*
1 ≥+ ⎟

⎠
⎞⎜

⎝
⎛ xxσ ~

*

~
*

a

b
 

and ( ) ~
*

~
*

1

a

b−  are equal, thus: 

    ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −=+ *

*
1*

2
*
1 a

bxx σσ    , 
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i.e 

( ) ~
*

~
*

1
~
*

2

~
*

1
a

bxx −=+  

Let us consider 
~
*

2

~
*

1 xx roots product. The appropriate dispersion is calculating via 

formula (119), we have: 

=⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘=℘ ⎟
⎠
⎞⎜

⎝
⎛ *

1
*
2

*
2

*
1

*
2

*
1 xxxxxx σσσ  

 

( )
+

+

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

**
2

*2

**
2

*2*
2

**
10*

1

bxa

cxbxaxx σσσσ
 

( )
=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
+ **

1
*2

**
1

*2*
1

**
20*

2

bxa

cxbxaxx σσσσ
 

( )
=

⎟
⎠
⎞⎜

⎝
⎛

℘+⎟
⎠
⎞⎜

⎝
⎛

℘−℘
=

⎟
⎠

⎞
⎜
⎝

⎛

2*

***0*

a

acca σσσ
 

2*

**0*0*

a

acca ⎟
⎠
⎞⎜

⎝
⎛

℘⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −℘=

σσ
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By (132) dispersion is appropriate of opposite F-number , so it is 

possible to write: 

⎟
⎠
⎞⎜

⎝
⎛ −℘

*0 cσ *c−

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ −

℘=−℘=℘ *
*0*

2
*
11*

2
*
1 a

cxxxx σσσ  

i.e. 

                                    ( )
~
*

2

~
*

11~
*

~
*0~ xxc −=−

α

                                      (156’) 

2)   

In this case equation (152) will have the view: 

−℘−℘−℘− ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ***2****2 xbaxxxa σσσ          

( )0***
℘=℘+℘− ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ σσσ cbx        (146’’) 

further, 

( )

***2

***2**0
*

bxa

cbxxa
x

−−

℘+℘−℘−−℘
=℘

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

σσσσ
σ          (154’’) 

As in the previous case, it is easy to show that: 

( ) ~
*

~
*

1
~
*

2

~
*

1
a

bxx −=+  

for roots product we will receive: 
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( )
2*

****0
*
2

*
1

a

acac
xx

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ ℘−℘−℘

=℘
σσσ

σ             (157) 

It is easy to see that this standard deflection is appropriate of the following: 

 

                                     

( )
~

*
2

~
*

1~
*

~
*0~1

xx

c

=

−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

α

                                    (156’’) 

Individual cases consideration shows, that they are not correspond to Vieta’s fuzzy 

theorem and so were not considered as solutions of equation (147). 

It is interesting to consider solution of (147) in c℘  representation.  

Apparently it is possible to receive analogous solutions for equations of high level 

and also for linear equations systems. 

 

 

Solution of Fuzzy differential equations 

 

At modeling of the real systems (which do not contain possibilistic or stochastic 

uncertainty) frequently we come to differential equations. Theory of differential 

equations is deeply and widely advanced. If at each concrete problem we use 

powerful numerical method then the model development does not represent with 

principle complexity itself. 

Let’s consider the example:                         

0~~~~ =+
•

xax  
The equation for the calculated values appropriate to this one is: 

0=+ ∗∗
•
∗ xax        ( ) taAetx

∗−∗ =  
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Using the ”energetic function”  we’ll have: 

( )0~~~~ σσ =⎟
⎠
⎞

⎜
⎝
⎛ +

•

xax

( ) ( )

 

( )0~~~~ σσσσ =++⎟
⎠
⎞

⎜
⎝
⎛ ∗∗

•

axxax

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) (+−−

++
∗∗∗∗

∗∗∗∗

~~,~~ )
( )

⎩
⎨
⎧

=
<
≥

+ 0~
0

0~~,~~
~2 σβσ xc σσσσ

σσσσ
axxaaxxa

axxaaxxa
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( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧
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=+

+
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0~~~
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~ σσσ
σσσ

σ
β

axxa
axxa

x
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎩

⎨
⎧

=−−
=++
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∗∗

xxaxxac
xxaxxac
~0~~~~
~0~~~~

2

2

σσσσσβ
σσσσσβ

 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )⎩

⎨
⎧

=−++
=+−+
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0~0~~~
0~0~~~

2

2

cxaxxa
cxaxxa
βσσσσ
βσσσσ

 

( ) ( )( )
( ) ( )( )⎪⎩

⎪
⎨
⎧

++=

−+=
∗∗

∗∗

caaxD
caaxD
βσσ
βσσ

40~~
40~~

2
2

2
1

 
 

( ) ( ) ( )( )
∗

∗ ±−−
=

a
Dax

x
2

0~~
~ 1σσ

σ
      

( ) ( ) ( )( )
∗

∗ ±+−
=

a
Dax

x
2

0~~
~ 2σσ

σ
 

 

As the determination of the uncertainty nature is the main task of the initial 

information processing,  here is an opportunity to expand an area of use for 

differential equations even in those cases when parameters determining differential 

equations contain new types uncertainty via modeling of these situations with the help 

of new concept - canonically conjugated fuzzy subsets.  
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1 * ) The given formulas (118-120) allow representation of mean standard errors of 

sum, product and division by mean standard errors of composing components 

linearly.  

Let’s consider arithmetic operations separately: 

We have:       ( ) ( ) ( ) ( ) ( )*
22

*
11

*
22

*
1121 xxxxxxxxxx −+−≤−+−=+Δ        (*1) 

 

It’s possible to rewrite (*) in the following way: 

                      ( ) ( )( )21
*

2
*

12121 ,;, xxxxxxaxx Δ+Δ=+Δ                              (*2) 

Where the function:  

                 ( ) ( ) ( )
*

22
*

11

*
22

*
11*

2
*

121 ,;,
xxxx

xxxx
xxxxa

−+−

−+−
=                                   (*3) 

 

Thus if  is the function of  ( 21 xxxf += ) 21 xxx += random quantity distribution, 

then  

( )( ) ( ) ( ) ( )( =Δ+ΔΔΔ−=Δ=+=Δ ∫ ∫∫ ∫
+∞

∞−

+∞

∞−
211

*
2

*
1112212

*
21 ,,;, xxxxfxxxxxadxdxxxxfdxdxxxx

( ) ( )( )

)

( ) ( ) 2
*

2
*

1211
*

2
*

121212
*

2
*

122 ,;,,;,,,;, xxxxxaxxxxxaxxxxfxxxxadxdx Δ+Δ=Δ+Δ= ∫ ∫
+∞

∞−
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(*4) 

Upon receiving the last formula, we used mean value generalized theorem [36]. 

Analogically we can act in case of product and division operations. Thus to be more 

accurate, the rules should be written in the following way:  

( )( ) 221
*

21 1 σσ aaxx +=+Δ      ;   '
2

'
1221121

σσσασασ +=+=+ xx

( )( ) 221
*

21 1 σσ bbxx +=•Δ      ;  
′′

+=+= '
2

'
1221121

σσσβσβσ xx  

221

*

2

1
1 σσ cc

x

x
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
     ;  

′′
′+′=+= '
2

'
122111

σσσγσγσ

x

x

2

 

 

In case of canonically conjugated subsets, we will have 

( )
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2121
1

2

2

1

1*
21

cc

cc

cc
cxcx

σασα

σσαα

σ

α

σ

α
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=

−

+=+Δ
⎟
⎟
⎟

⎠
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⎜
⎜
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⎝
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⎟
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⎝
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σβσβ

σσββ

+
=⊗Δ ⎟

⎠
⎞⎜

⎝
⎛  

2
*
121

*
21

2121
*

2

1

cxcx
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σγσγ

σσγγ

+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 

Let’s note that 021 ≥αα  ( appropriately 021 ≥ββ , 021 ≥γγ ). If we will bring 

appropriate notations, we will receive the given formulas (118-120). 
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