სერგო ვალერიანის-ძე გოთოშია

ლაზერული რამან-სპექტროსკოპიით A³B⁵ და A²B⁶ ტიპის ზოგიერთი ნახევარგამტარის ფუნდამენტური ოპტიკური თვისებების გამოკვლევა და იონური იმპლანტაციის ზეგავლენა მათ რამან-სპექტრებზე

წარდგენილია დოქტორის აკადემიური ხარისხის მოსაპოვებლად

საქართველოს ტექნიკური უნივერსიტეტი

თბილისი, 0175, საქართველო

2008

საავტორო უფლება სერგო გოთოშია, 2008

საქართველოს ტექნოკური უნივერსიტეტი ინფორმატიკისა და მართვის სისტემების ფაკულტეტი

ჩვენ, ქვემორე ხელისმომწერნი ვადასტურებთ, რომ გავეცანით სერგო ვალერიანის-მე გოთოშიას მიერ შესრულებულ სამეცნიერო ნაშრომს "ლაზერული რამან-სპექტროსკოპიით $\mathrm{A}^3\mathrm{B}^5$ და $\mathrm{A}^2\mathrm{B}^6$ ტიპის დასახელებით: ფუნდამენტური ოპტიკური ზოგიერთი ნახევარგამტარის თვისეზეზის გამოკვლევა და იონური იმპლანტაციის ზეგავლენა მათ რამან-სპექტრებზე" და ვაძლევთ რეკომენდაციას საქართველოს ტექნიკური უნივერსიტეტის "ინფორმატიკისა და მართვის სისტემების ფაკულტეტის" სადისერტაციო საბჭოში მის განხილვას დოქტორის აკადემიური ხარისხის მოსაპოვებლად.

ხელმძღვანელი: რეცენზეტი: პროფ. ვიქტორ ვავილოვი

აკადემიკოსი თენგიზ სანამე

რეცენზეტი:

რეცენზეტი:

პროფ. ნოდარ კეკელიძე

საქართველოს ტექნიკური უნივერსიტეტი 2008

ii

ავტორი: სერგო ვალერიანის-ძე გოთოშია

დასახელება: ლაზერული რამან-სპექტროსკოპიით A³B⁵ და A²B⁶ ტიპის ზოგიერთი ნახევარგამტარის ფუნდამენტური ოპტიკური თვისებების გამოკვლევა და იონური იმპლანტაციის ზეგავლენა მათ რამანსპექტრებზე ფაკულტეტი: ინფორმატიკისა და მართვის სისტემების ფაკულტეტი ხარისხი: დოქტორი სხდომა ჩატარდა:

ინდივიდუალური პიროვნებების ან ინსტიტუტების მიერ ზემოთმოყვანილ; I დასახელების დისერტაციის გაცნობის მიზნით მოთხოვნის შემთხვევაში მისი არაკომერციული მიზნებით კოპირებისა და გავრცელების უფლება მინიჭებული აქვს საქართველოს ტექნიკურ უნივერსიტეტს. დისერტაცია, რომელიც რამდენიმე ათეული წლის წინ უნდა დამეცვა, ეძღვნება ჩემი მშობლების ვალერიან სერგოს-ძე გოთოშიასა და იულია ნესტორის-ასულ მეიშვილი-გოთოშიას ნათელ ხსოვნას.

რეზიუმე

<u>პირველ თავში</u> ლიტერატურული მიმოხილვის ფორმით მოცემულია ნახევარგამტარების ლაზერული რამან-სპექტროსკოპიით შესწავლის თანამედროვე მდგომარეობა მსოფლიოში. ციტირებული ლიტერატურა მირითადად დაფუმნებულია დისერტაციაში მოყვანილ ექსპერიმენტულ ანალიზის მიზნით მონაცემთა და თეორიული გამოყენებულ და აუცილებელ მასალებზე.

<u>მეორე თავში</u> ძალიან ზოგადად და მოკლედაა გადმოცემული რამანის გაბნევის არსი, თეორია, უმეტესად პრაქტიკული კუთხით.

<u>მესამე თავში</u> დეტალურადაა გადმოცემული რამან-სპექტროსკოპიის პროგრესის დინამიკა მსოფლიოში აღმოჩენიდან დღემდე.

<u>მეოთხე თავი</u> ეხება საქართველოში პირველად ჩემს მიერ კონსტრუირებული ლაზერული რამან-სისტემების დეტალურ აღწერას; საქართველოში ლაზერული რამან-სპექტროსკოპიის მიმართულებით პირველად წამოწყებულ სამუშაოებს ხელსაწყოთმშენებლობის განვითარების მიზნით.

<u>მეხუთე თავში</u> თეორიულ-ჯგუფური განხილვისა და ექსპერიმენტულ მონაცემთა შეჯერების საფუძველზე, ნახევარგამტარებში გამოვიკვლიეთ ფონონთა ტიპების იდენტიფიკაცია-კლასიფიკაციის საკითხები. ეს პროცესი α -HgS შემთხვევაში. ჩავატარეთ ბუნებრივი მინერალის კინოვარის, განვსაზღვრეთ პირველი ფონონების სიხშირეეზი რიგის და პოლარიზაციული გაზომვების საფუძველზე მოვახდინეთ ამ ფონონების კლასიფიკაცია. გამოსაკვლევი მინერალები აღებული იყო საქართველოსა და სხვადასხვა გეოლოგიური საბადოდან. სხვა ქვეყნების ზოგიერთი საბადოდან მოპოვებული მინერალები შეიცავდა სხვადასხვა კონცენტრაციის იზომორფულ მინარევ სელენს. რამან-სპექტროსკოპიით პირველად აღმოვაჩინეთ ამ მინარევის შესაბამისი ხვრელისმიერი რხევა. განვსაზღვრეთ სელენის მინარევის ხვრელისმიერი რხევის სიხშირე. ამ გამოკვლევათა საფუძველზე შემოთავაზებულია კინოვარის გეოლოგიურ საბადოთა იდენტიფიკაციის მეთოდი ლაზერული რამან-სპექტროსკოპიის საშუალებით; მონაცემეზის გამოყენება მიზანშეწონილია მინერალურ ამ პიგმენტურ საღებავთა წარმომავლობის დასადგენად, რასაც დიდი მნიშვნელობა და გამოყენება გააჩნია უძველესი და შუა საუკუნეების ხელოვნების ნიმუშების როგორც შესწავლის, ასევე კონსერვაციის მიზნით.

რამანის სპექტრების საშუალებით აღმოვაჩინეთ აგრეთვე დარიშხანის ხვრელისმიერი რხევა GaP-ში, როდესაც GaP-ში გარკვეული რაოდენობით იზომორფულადაა ჩანაცვლებული დარიშხანი.

მესამე სისტემა, რომელშიც რამანის სპექტრებით აღმოვაჩინეთ ალუმინის მინარევის ლოკალური რხევები, ესაა GaP:Al.

<u>მეექვსე თავი</u> დისერტაციაში მიძღვნილია ნახევარგამტარული სამმაგი შერეული კრისტალების ანალიზისადმი. შერეული კრისტალები ზოგადად ორი ინდივიდუალური ქვემესერის იზომორფული ჩანაცვლებით წარმოქმნილი მყარი ხსნარია. თეორიულად დადგენილია, რომ ასეთ კრისტალებში LO და TO ფონონების ყოფაქცევა მირითადად ექვემდებარება ორი ტიპის, ერთმოდიანი ან ორმოდიანი ქცევის კანონზომიერებას, რის მიხედვითაც აღნიშნულ კრისტალებს ერთმოდიანი ან ორმოდიანი ქცევის კრისტალებს უწოდებენ.

ჩვენ გამოვიკვლიეთ სამი ხხვადასვა სისტემა: $GaAs_{1-x}P_x$, $Ga_{1-x}Al_xP$ და $ZnTe_{1-x}Se_x$. პირველი ორი A^3B^5 ტიპისაა, ხოლო მესამე A^2B^6 ჯგუფის სისტემას განეკუთვნება.

GaAs_{1-x}P_x სისტემა წარმოადგენდა GaAs და GaP საფენებზე ეპიტაქსიალურად დაზრდილ ფირებს. მათი ორიენტაცია იყო (001) და ამიტომ რამანის არეკლვის კონფიგურაციით მხოლოდ გასწვრივ LO ფონონებს ვაფიქსირებდით. ეს სისტემა მივაკუთვნეთ ორმოდიანი ქცევის კრისტალებს. ამის ერთერთი დამადასტურებელი ფაქტია GaP ქვემესერში მძიმე იზომორფული მინარევის, დარიშხანის, შეყვანით ხვრელისმიერი რხევის წარმოქმნა, რომელიც რამანის სპექტრში დაიმზირება. ამის შესახებ ზემოთ იყო ლაპარაკი. ეს სისტემა პირველად შევისწავლეთ რამანის გაბნევის არეკლვის კონფიგურაციით, როდესაც ლაზერის ამგზნები ტალღა ეპიტაქსიალური ფირის ფენაში მხოლოდ რამდენიმე ასეული ნანომეტრის სიღრმეზე აღწევდა. ეს გაცილებით უფრო მნიშვნელოვანია პრაქტიკული გამოყენებისთვის, მაგალითად, იონური იმპლანტაციით სინთეზირებული ამავე ნაერთის რაოდენობრივი ანალიზისათვის.

მეორე სისტემა, $ZnTe_{1-x}Se_x$ წარმოადგენდა მოცულობით კრისტალებს ოპტიკურად პოლირებული კუბების სახით. ჩვენი კვლევის თავისებურება მდგომარეობს იმაში, რომ ეს სისტემა მოცულობითი აგზნების გარდა რეზონანსულ პირველი შევისწავლეთ პიროზეზშიც. შედეგად, რიგის ფონონების გარდა დავაფიქსირეთ მაღალი რიგის ფონონებიც. ფონონთა განმეორებები დაიმზირება მზარდი ფოტოლუმინესცენციის ფონზე. სისტემა ერთმოდიანი $ZnTe_{1-x}Se_x$ მივაკუთვნეთ ქცევის კრისტალებს. ავაგეთ შესაბამისი კონცენტრაციული დამოკიდებულების გრაფიკები.

მესამე სისტემა, $Ga_{1-x}Al_xP$, რომელიც ჩვენ პირველებმა შევისწავლეთ ტალღის სიგრძეების აგზნებით, წარმოადგენდა ლაზერის სხვადასხვა ეპიტაქსიალურ ფირებს, რომლებიც დაფენილი იყო GaP-ს საფენზე. საფენის ორიენტაცია ძირითადად იყო (001). ამ შემთხვევაშიც რამანის გაზნევა არეკლვის მიმდინარეობდა კონფიგურაციით და (001) ზედაპირიდან შერჩევის კანონის თანახმად დაიმზირება მხოლოდ გასწვრივი LO ფონონები. თუმცა, ზოგიერთი შემადგენლობისათვის მოხერხდა განივი TO ფონონების დაფიქსირებაც.

სისტემა $Ga_{1-x}Al_xP$ მივაკუთვნეთ ორმოდიანი ქცევის კრისტალებს.

ფირების რამან-სპექტრების სხვადასხვა ლაზერის სხვადასხვა ტალღის სიგრძის აგზნების მეთოდიკით, Ga_{1-x}Al_xP ფირებისათვის თეორიული და ექსპერიმენტული მონაცემების საფუძველზე განვსაზღვრეთ მათი სისქეები. რამანით შეფასებული ფირების სისქეები კარგ თანხვედრაში აღმოჩნდა მიკროსკოპითა და ელქტრონული ზონდით შეფასებულ სისქეებთან.

Ga_{1-x}Al_xP ზოგიერთი ფირისათვის ამგზნები ლაზერის სხვადსხვა დისკრეტული ტალღის სიგრძის გამოყენებით პირველად აღმოვაჩინეთ რეზონანსი პირველი პირდაპირი E₀ ზონის მონაწილეობით.

ამ სისტემაზე განხორციელებული გამოკვლევები გამოვიყენეთ იონური იმპლანტაციით სინთეზირებული ამავე სისტემის რაოდენობრივი ანალიზისათვის.

<u>მეშვიდე თავში</u> შევისწავლთ რამანის გაზნევის ერთერთი აქტუალური ფუნდამენტური პროცესი, რეზონანსული რამანის გაბნევა (რრგ). რრგ იძლევა რამდენიმე საშუალებას რიგით გავაძლიეროთ ჩვეულებრივი რამანის გაბნევის ინტენსიობა შესაბამისი ამგზნები ლაზერის ტალღის სიგრძის შერჩევით. ეს ხდება მაშინ, როდესაც ამგზნები ლაზერის ტალღის სიგრმის ენერგია უახლოვდება გამოსაკვლევი ოზიექტის რომელიმე ელექტრონული გადასვლის ენერგიას. ნახევარგამტარებში ასეთ შუალედურ დონეებს წარმოადგენენ: არაპირდაპირი, პირდაპირი ზონები, ექსიტონური და სხვა ელექტონული დონეები. თითოეული მათგანის მონაწილეობით მიმდინარე რეზონანს აქვს თავისი თეორიული საფუძველი და ექსპერიმენტული გამოვლინება. რრგ იძლევა ფუნდამენტურ ე.ი ინფორმაციას რეზონანსში მონაწილე შუალედური ენერგეტიკული დონეების შესახებ. გარდა ამისა, მისი როლი ანალიზის სფეროში მისი გამოყენებით შეგვიძლია რამდენიმე განუზომელია: რიგით გავზარდოთ ნივთიერების აღმოჩენისუნარიანობა. გარდა ამისა, არსებობს რრგ სხვადასხვა ნაირსახეობა, რომლებიც კიდევ უფრო მეტად ზრდის აღმოჩენისუნარიანობას და ამჟამად რეალურია ლაზერული **M330** რამან-სპექტროსკოპიის რეზონანსული ნაირსახეობათა საშუალებით ერთეული მოლეკულების აღმოჩენა.

βვენშევისწავლეთორიტიპისრეზონანსი:არაპირდაპირიზონისმექანიზმითმიმდინარერეზონანსიარაპირდაპირზონიანნახევარგამტარებში, GaP და α-HgS, და პირდაპირიექსიტონურიმექანიზმითმიმდინარერეზონანსულირამანისგაბნევაპირდაპირზონიანნახევარგამტარულშერეულკრისტალებშიZnTe_{1-x}Se_x.ამსისტემებიდანრრგშევისწავლეთორიშემადგენლობისათვის,ZnTe_{0.7}Se_{0.3}დაZnTe_{0.6}Se_{0.4}.

არაპირდაპირზონიანი ნახევარგამტარების, GaP რრგ და α–HgS შევისწავლეთ სხვადასხვა ლაზერის დისკრეტული ტალღის სიგრძეებისა და ტალღის სიგრძეების უწყვეტი ცვლილებით მომუშავე საღებავის ლაზერების გამოყენებით. აღმოჩნდა, რომ თუ GaP-ში სუსტი რეზონანსი მიმდინარეობს არაპირდაპირი ზონის მონაწილეობით, მეორე არაპირდაპირზონიან ნახევარგამტარ კინოვარში, α–HgS, რეზონანსი უფრო ძლიერია. ეს დისპერსიული ექსპერიმენტული მრუდებიდანაც ჩანს. ასეთი ექსპერიმენტული ფაქტის გამოვლინება ჩვენ ავხსენით კინოვარის ზონური თავისებურებით. ეს სტრუქტურის თავისებურება, რომელიც რრგ-შიც მჟღავნდება, მდგომარეობს კინოვარში პირდაპირი ზონის სუსტი არსებობაში. ამრიგად, შეიძლება ვივარაუდოთ, რომ α–HgS-do რრგ მიმდინარეობს შუალედური მექანიზით, რომელშიც წვლილი არაპირდაპირი ზონის გარდა სუსტ, არამკვეთრ პირდაპირ ზონასაც შეაქვს.

კლასიკური პირდაპირზონიანი ნახევარგამტარების, ZnTe_{0.7}Se_{0.3} და ZnTe_{0.6}Se_{0.4}, რრგ შევისწავლეთ უწყვეტი მოქმედების საღებავის ლაზერის გამოყენებით. ლაზერში სამუშაო სითხედ გამოყენებული იყო საღებავი Rodamin 6G., რომლის აგზნებასაც არგონის ლაზერის ინტეგრალური გამოსხივებით ვაწარმოებდით.

 $ZnTe_{0.7}Se_{0.3}$ მყარი ხსნარების რგ სპექტრები საღებავის ლაზერის სხვადსხვა ტალღის სიგრძის აგზნებისას აჩვენებენ, რომ ამგზნები ტალღის სიგრძის გარკვეული სიდიდის გამოყენების შემდეგ (E =1.983 ევ) რგ სპექტრში წარმოიშვება 2LO ფონონი, რომლის ინტენსიობა მკვეთრად იზრდება, როდესაც ამგზნები კვანტის ენერგია უახლოვდება $ZnTe_{0.7}Se_{0.3}$ -ს აკრძალული ზონის სიგანეს, E=2.135. ერთდროულად, მკვეთრად იზრდება LO და TO ფონონების ინტენსიობებიც. ფონონების ინტენსიობა მატულობს თითქმის ხუთი რიგით. ანალოგიური სპექტრები ჩაწერილ იქნა $ZnTe_{0.6}Se_{0.4}$ შერეული ნახევარგამტარისთვისაც.

ექსპერიმენტული მონაცემებითა და თეორიული გამოთვლებით მიღებული დისპერსიული მრუდების შედარება ნათლად გვიჩვენებს, რომ ისევე, როგორც A^2B^6 ტიპის ნახევარგამტარებში ZnTe, ZnSe, CdZnT, ჩვენს მიერ შესწავლილ შერეულ კრისტალებშიც, ZnTe_{0.7}Se_{0.3} და ZnTe_{0.6}Se_{0.4}, რრგ მიმდინარეობს ექსიტონური მექანიზმით.

მ<u>ერვე თავში</u> ლაზერული რამან-სპექტროსკოპიით შევისწავლეთ ექსტრემალური ტექნოლოგიით, იონური იმპლანტაციით მოდიფიცირებული ნახევარგამტარული ზედაპირეზი. იმპლანტაციისას კრისტალის სტრუქტურა ირღვევა – წარმოიქმნება დეფექტები. დეფექტების წარმოქმნა შესაძლებელია გაიზარდოს, რომ იმპლანტაციის იმდენად გარკვეული კრიტიკული შემდეგ ზღვარის კრისტალი ძლიერ მოუწესრიგებელ გადავიდეს სტრუქტურაში. კრისტალური სტრუქტურის გადასვლა მოუწესრიგებელ მდგომარეობაში დამოკიდებულია იმპლანტირებული იონების ტიპსა და იმპლანტაციის პირობებზე. საბოლოოდ, კრისტალი შეიძლება გადავიდეს უწყვეტ ამორფულ ფაზაში.

რამანის გაბნევა მნიშვნელოვანი ფიზიკური მეთოდია ასეთი ფაზური გარდაქმნების გამოკვლევის მიზნით. მთავარი კი ისაა, რომ რამანის გაბნევის შესწავლისას არ ხდება გამოსაკვლევი ობიექტის დაზიანება.

ლაზერული რამან-სპექტროსკოპიით შევისწავლეთ GaP და GaAs-ის (111) ზედაპირების მახლობლად არგონისა და ბორის იონების იმპლანტაციის შედეგად გამოწვეული სტრუქტურული ცვლილებები.

GaP და GaAs-ის სხვადასხვა იონის სხვადასხვა დოზით იმპლანტაციის პროცესების ამსახველი რამან-სპექტრების ანალიზის საშუალებით მივედით რომ იონური დასკვნამდე, ლეგირეზის სხვადასხვა ეტაპზე ეს ნახევარგამტარები განიცდიან ფაზურ გარდაქმნებს. იმპლანტაციის დოზების სხვადასხვა ინტერვალში რამან-სპექტრებით დავაფიქსირეთ კრისტალური, წვრილკრისტალური, ნანოკრისტალური, ამორფული და დიდად მოუწესრიგებელი სტრუქტურები ნაწილობრივ გაწყვეტილი კავშირებით. გასათვალისწინებელია აგრეთვე შინაგანი მექანიკური დაძაბულობები, რომლებიც ინდუცირდება იმპლანტაციის შედეგად ელემენტარული უჯრედის მოცულობის გაზრდის გამო. ეს კი ექვივალენტურია კრისტალზე ერთმხრივ მიმართული დაძაბულობის გავლენისა. თავის მხრივ, ეს იწვევს ფონონურ სიხშირეთა მცირე წანაცვლებას. შემოთავაზებულია ამ ფაზურ გარდაქმნათა კლასტერული მექანიზმი. განვსაზღვრეთ GaP და GaAs-ის ამორფიზაციის კრიტიკული დოზები.

თავში შევისწავლეთ ფოსფორისა ალუმინის იონების ამავე და იმპლანტაციით GaAs-ob ზედაპირთან სინთეზირებული სამმაგი რამანნახევარგამტარების, $GaAs_{x}P_{1-x}$ და $Ga_xAl_{1-x}As$, ლაზერული სპექტროსკოპიით იდენტიფიკაციისა და ანალიზის საკითხები.

გამოვიკვლიეთ იონური იმპლანტაციით სინთეზირების ტექნოლოგიური იმპლანტაციის პიროზეზი; შევისწავლეთ შედეგად კრისტალური სტრუქტურის, მისი მახასიათებელი შორეული წესრიგის დარღვევის შემდგომი თერმული დამუშავების დინამიკური პროცესები; შედეგად კრისტალური შორეული წესრიგის აღდგენის დინამიკა. იონური სინთეზისას განვსაზღვრეთ საფენის ტემპერატურის როლი.

Resume

In the first chapter the current state of laser Raman spectroscopy study of semiconductors in the world is given in the form of literary review. The cited literature generally relies both on the experimental data given in Dissertation and necessary materials used with the purpose of theoretical analysis.

In the second chapter the Raman scattering essence, the theory very generally and briefly is given mainly from the practical point of view.

In the third chapter the dynamics of Raman spectroscopy progress in the world is given in details from its discovery up to day.

The fourth chapter includes the detailed description of laser Raman systems I have constructed first in Georgia, principles of instrument-making I started first in laser Raman spectroscopy direction, bases of the Dissertation and other investigations.

In the fifth chapter on the ground of theoretical-group consideration and experimental data comparison, problems of identification-classification of phonon types in semiconductors are investigated. This process was carried out in case of natural mineral, α -HgS. The first order phonon frequencies have been determined and on the basis of polarization measurements these phonons' classification has been made. The minerals under investigation were from various geological mines of Georgia and other countries. Minerals from certain mines contained isomorphic impurity, selenium, in various concentrations. The gap vibration corresponding to this impurity was found first by Raman spectroscopy, gap vibration frequency of selenium impurity was determined. On the basis of these investigations a method of identification of geological mines of cinnabar with the aid of Raman spectroscopy is suggested, as well as the utilization of these data to state the origin of mineral pigment dyes, which is very important for studying as well as for conservation of ancient and medieval art pieces.

With the aid of Raman spectra we also found the gap vibration of arsenic in GaP when in GaP there is a big amount of arsenic substituted izomorphically.

The third system, in which we found local vibrations of aluminum impurity with the aid of Raman spectra, is GaP:Al.

The sixth chapter in the Dissertation is dedicated to the analysis of semiconducting ternary mixed crystals. Generally the mixed crystals are solid solution formed by isomorphic substitution of two individual sub-lattices. It is stated theoretically that in such crystals behavior of LO and TO phonons mainly is subjected to the rules of two types, one-mode and two-mode behavior. Accordingly the mentioned crystals are called as crystals of one-mode and two-mode behavior.

We investigated three various systems: $GaAs_{1-x}P_x$, $Ga_{1-x}Al_xP$ and $ZnTe_{1-x}Se_x$. The first two are of A^3B^5 type, the third belongs to the A^2B^6 system.

The system $GaAs_{1-x}P_x$ represented films growing epitaxially on substrates GaAs and GaP. Their orientation was (001) and therefore we fixed only longitudinal LO phonons with Raman reflection configuration. We ascribed the mentioned system to the crystals of two-mode behavior. One of the facts proving this is the formation of gap vibration by doping heavy isomorphic impurity As in sublattice GaP observed in Raman spectrum. We spoke about this fact above. We were the first to study this system by Raman scattering reflecting configuration, when laser exciting wave penetrated only some hundreds nanometer depth in the epitaxial film layer. This fact is very important from the practical point of view, for instance, for quantitative analysis of the same compound synthesized by ion implantation.

The second system $ZnTe_{1-x}Se_x$ was bulk crystals as cubes polished optically. The peculiarity of our investigation is that this system has been studied besides volume excitation in resonance conditions too. As a result besides the first order phonons high

order phonons have been also fixed. The phonons' repetition is observed against a background of extensible photoluminescence. The system $ZnTe_{1-x}Se_x$ was ascribed to one-mode crystals. The corresponding concentration graphs have been plotted.

The third system, $Ga_{1-x}Al_xP$ we first studied by various wavelengths excitation of laser, represented epitaxial films, growing on substrate GaP. The substrate orientation was (001) generally. In this case too Raman scattering occurred with reflection configuration and only longitudinal phonons LO are observed from the surface (001) according to selection rule. Though for some compositions the transverse phonons TO also were fixed.

The system $Ga_{1-x}Al_xP$ was ascribed to two-mode crystals.

With the method of exciting the films' Raman spectra with various wavelengths of various lasers have been determined thicknesses of films $Ga_{1-x}Al_xP$ on the basis of theoretical and experimental data. The thicknesses of films estimated by Raman scattering turned out to be in good agreement with estimations of thicknesses by microscope and electron probe.

Using various discrete wavelength of exciting laser we have first found the resonance with the participation of the first direct zone E_0 for some films of $Ga_{1-x}Al_xP$.

The investigation carried out for this system is employed successfully for quantitative analysis of the same system synthesized by ion implantation.

In the seventh chapter one of the actual fundamental processes of Raman scattering, resonance Raman scattering (RRS) is studied. RRS enables one to enhance the intensity of common Raman scattering by some order by means of selecting the corresponding exciting laser wavelength. This occurs when the wavelength energy of the exciting laser approaches to some electron transition energy of the object under investigation. In semiconductors such intermediate levels are indirect, direct zones, exciton and other electronic levels. The resonance occurring with participation each of the mentioned intermediate levels has its own theoretical ground and experimental manifestation. Thus RRS gives fundamental information about intermediate energy levels participating in resonance. Besides, its role in the field of analysis is great: it is possible to increase matter's detectivity with its aid by some order. More over, there is variety of RRS increasing detectivity even greater; it is now real to find single molecules by laser resonance Raman spectroscopy variety.

We studied two types of resonance: the resonance in indirect zone semiconductors, GaP and α -HgS, occurring with indirect zone mechanism, and resonance Raman scattering occurring with direct exciton mechanism in direct-zone semiconductor mixed crystals ZnTe_{1-x}Se_x. We studied RRS for two compositions of these systems: ZnTe_{0.6}Se_{0.4} and ZnTe_{0.7}Se_{0.3}.

The RRS of indirect zone semiconductors GaP and α -HgS has been studied by various discrete wavelength lasers and dye lasers. It turned out that if weak resonance in GaP is going with indirect zone participation, the resonance in the second indirect zone semiconductor cinnabar, α -HgS, is stronger. This fact is seen from the experimental dispersion curves too. Such experimental fact we explain with the peculiarity of zone structure of cinnabar. This peculiarity becoming apparent in RRS is the fact of existing weak direct zone in cinnabar. Thus, we can suppose that in α -HgS RRS occurs with intermediate mechanism to which besides indirect zone contibutes weak indistinct direct zone too.

RRS of classic direct zone semiconductors, ZnTe_{0.7}Se_{0.3} and ZnTe_{0.6}Se_{0.4}, we studied with continuously working dye laser. The excitation of dye laser on dye Rodamin 6G occurred with integral radiation of argon laser.

RS spectra of solid solutions $ZnTe_{0.7}Se_{0.3}$ at various wavelength excitation of dye laser show that after using a certain magnitude of exciting wavelength (E=1.983 eV) in RS spectrum appears phonon 2LO, the intensity of which rises sharply when the exciting quantum energy approaches to forbidden gap width E=2.135 eV of $ZnTe_{0.7}Se_{0.3}$. Simultaneously the intensities of LO and TO phonons increase sharply. The phonon intensity increases by almost five orders. The analogous spectra were recorded in case of mixed semiconductor $ZnTe_{0.6}Se_{0.4}$.

The comparison of dispersion curves obtained by experimental data and theoretical calculations show clearly that just as in semiconductors of A^2B^6 type, ZnTe, ZnSe, CdZnTe, in mixed crystals we have studied, in ZnTe_{0.7}Se_{0.3} and ZnTe_{0.6}Se_{0.4}, also RRS occurs with exciton mechanism.

In Eighth chapter semiconductor surfaces modified by ion implantation are studied by laser Raman spectroscopy. During implantation the crystal structure is destructing- the defects are formed. Defect formation may be so increased that after a certain critical limit the crystal changes into very disordered structure. The crystal structure transformation into disordered state depends on types of implanted ions and implantation conditions. Finally, the crystal may change into entirely amorphous phase.

Raman scattering is an important physical method with the aim for investigation of such phase transformations. But the main thing is that during Raman scattering study the object under investigation is not harmed.

By laser Raman spectroscopy we studied structure changes caused by argon and boron ions implantation near surfaces (111) of GaP and GaAs.

Analyzing the Raman spectra showing processes of GaP and GaAs implantation with various doses of various ions we arrived at a conclusion that at various stages of ion implantation the above semiconductors undergo phase transformations. In various intervals of implantation doses we fixed with Raman spectra crystalline, microcrystalline, nanocrystalline, amorohous and very disordered structures with partially broken bonds. Internal mechanical stresses, induced due to increase of volume of elementary cell because of implantation, are also to be taken into consideration. But this is equivalent to uniaxial stress effect on the crystal. From one's part this fact causes a little shift of phonon frequencies. A cluster mechanism of the mentioned phase transformation is suggested. Critical doses of amorphization of GaP and GaAs have been determined.

In the same chapter the questions of laser Raman spectroscopy identification and analysis of ternary semiconductors, $GaAs_xP_{1-x}$ and $Ga_xAl_{1-x}As$, synthesized near surface GaAs by phosphorous and aluminum ions implantation are discussed.

The technological conditions of synthesizing by ion implantation have been investigated; dynamical processes of distortion of long range ordering characterizing crystalline structure due to implantation and the dynamics of crystalline long range ordering recovering as a result of post thermal treatment have been studied; The substrate temperature role during ion synthesizing has been determined.

სარჩევი

შესავალი.

- თავი 1. ლიტერატურული მიმოხილვა.
- თავი 2. ლაზერული რამან-სპექტროსკოპიისა და გამოსხივების მყარ სხეულებთან ურთიერთმოქმედების მოკლე თეორიული საფუძვლები.
- თავი 3. ლაზერული სისტემების ხელსაწყოთმშენებლობის განვითარების ეტაპები და თანამედროვე ასპექტები.
- თავი 4. ლაზერული რამან-სისტემების კონსტრუქციები, მათი პრაქტიკული გამოყენების შესამლებლობები და პერსპექტივები.
 - 4.1 ლაბორატორიული ტიპის ლაზერული რამან-სისტემის კონსტრუქცია სპექტრის ხილულ არეში ამგზნები ლაზერების გამოყენებით.
 - 4.2 რამანის გაბნევისა და ფოტოლუმინესცენციის ასაგზნებად ჩვენს მიერ გამოყენებული ლაბორატორიული ტიპის ლაზერების კონსტრუქციების გამოყენების ზოგადი კრიტერიუმები.
 - 4.3 ლაბორატორიული ტიპის არგონისა და კრიპტონის გაზის ლაზერების ჩვენეული კონსტრუქციები.
 - 4.4 ინფრაწითელი ლაზერული რამან-სპექტრომეტრის რამანის სპექტრების ამგზნები იწ-ლაზერი ძოწის კრისტალზე, YAG:Nd⁺.
 - 4.5 ლაბორატორიული ტიპის ინფრაწითელი ლაზერული რამან-სისტემა, შექმნილი საქართველოში პირველად.
- თავი 5. ნახევარგამტარული მასალებისათვის ფონონების იდენტიფიკაციაკლ;ასიფიკაცია, ლოკალური და ხვრელისმიერი რხევების კონცეფცია და მათი შესწავლა ზოგიერთ ნახევარგამტარში.
 - 5.1 ნახევარგამტარებში ფონონების კლასიფიკაციისა და მინარევების ლოკალური და ხვრელისმიერი რხევების პრინციპები.
 - 5.2 კინოვარის, α-HgS პირველი რიგის ფონონების იდენტიფიკაცია-კლასიფიკაცია.
 - 5.3 სელენის იზომორფული მინარევის ხვრელისმიერი რხევის იდენტიფიკაცია კინოვარში, α-HgS.
 - 5.4 GaP-ში დარიშხანის ხვრელისმიერი და ალუმინის ლოკალური რხევების რამან-სპექტრები.
 - 5.5 ბუნებრივი მინერალების რეალგარისა და აურიპიგმენტის ლაზერული რამან-სპექტრები.
- თავი 6. ნახევარგამტარული შერეული კრისტალების ტიპები, თეორიული მოდელები და მათი ექსპერიმენტული გამოკვლევა ლაზერული რამან-სპექტროსკოპიით.
 - 6.1 ფონონების ყოფა-ქცევის მიხედვით შერეული კრისტალების ტიპებად დაყოფის თეორიული მოდელები.

- 6.2 შერეული ეპიტაქსიალური ფირების, GaAsP, ლაზერული რამან-სპექტროსკოპია.
- 6.3 შერეული კრისტალების, ZnTe_xSe_{1-x} ლაზერული რამან-სპექტროსკოპია.
- 6.4 შერეული ეპიტაქსიალური ფირების, Ga_xAl_{1-x}P ლაზერული რამან -ს პექტროს კოპია ·
- თავი 7. რეზონანსული რამანის გაბნევის შესწავლა განსხვავებული სტრუქტურის, ზონური აღნაგობისა და შემადგენლობის ნახევარგამტარებში.
 - 7.1 ნახევარგამტარების რეზონანსული რამანის გაბნევის მოკლე თეორია.
 - 7.2 არაპირდაპირზონიანი ნახევარგამტარების, α-HgS და GaP რეზონანსული რამან-სპექტროსკოპია.
 - 7.3. პირდაპირზონიანი შერეული ნახევარგამტარული კრისტალების, $Zn Te_{1-x}Se_x$ რეზონანსული რამან-სპექტროსკოპია.
- თავი 8. ლაზერული რამან-სპექტროსკოპიის გამოყენება იონური იმპლანტაციით მოდიფიცირებული ნახევარგამტარული ზედაპირების მონიტორინგის მიზნით.
 - 8.1 ბორისა და არგონის იონების იმპლანტაციით მოდიფიცირებული GaP-ს კრისტალური მესერის რხევითი დინამიკის შესწავლა ლაზერული რამან-სპექტროსკოპიით.
 - 8.2 ბორითა და არგონით იმპლანტირებული GaAs ლაზერული რამან-სპექტროსკოპია.
 - 8.3 იონური იმპლანტაციით სინთეზირებული სამმაგი შერეული კრისტალების, GaAs_xP_{1-x} და Ga_xAl_{1-x}As, ლაზერული რამან-სპექტროსკოპია.

<u>ძირითადი</u> დასკვნები.

ლიტერატურა.

ცხრილების ნუსხა

ცხრილი	1	რამან-სპექტრების ასაგზნებად ჩვენს მიერ
		გამოყენებული ლაზერების ტალღის სიგრძეები.

- ცხრილი 2 წერტილოვანი სიმეტრიის ჯგუფის D₃ მახასიათებელთა ტიპები.
- ცხრილი 3 კინოვარის ფონონების სიხშირეები ოთახისა და აზოტის ტემპერატურებზე.
- ცხრილი 4 კინოვარში სელენის ხვრელისმიერი რხევის ინტენსიობათა ფარდობა ამგზნები ტალღის სიგრძის ორი სხვადასხვა მნიშვნელობისათვის.
- ცხრილი 5 ჩვენს მიერ რამანის სპექტრით დაფიქსირებული რეალგარის ფონონების სიხშირეები.
- ცხრილი 6 ჩვენს მიერ აურიპიგმენტის რამან-სპექტრში დამზერილი ფონონების სიხშირეები.
- ცხრილი 7 შერეულ ნახევარგამტარებში $GaAs_{1-x}P_x$ ჩვენს მიერ დამზერილი ფონონების სიხშირეები.
- ცხრილი 8 $ZnTe_xSe_{1-x}$ ჩვენს მიერ დაფიქსირებული ფონონები.

ნახაზების ნუსხა

- ნახ. 2.1 რელეისა და რამანის გაბნევის ამსახველი სქემა.
- ნახ. 2.2 იწ, რ, რგ, წინარეზონანსული რგ, რრგ, და ფლ ელექტრონული და რხევითი თერმების სქემა.
- ნახ. 2.3 CCl₄ რამან-სპექტრი.
- ნახ. 4.1 ჩვენს მიერ საქართველოში პირველად კონსტრუირებული ლაზერული რამან-სისტემის ზოგადი სქემა.
- ნახ. 4.2 ლაბორატორიული ტიპის არგონისა და კრიპტონის იონური გაზური ლაზერების ჩვენეული კონსტრუქციის ზოგადი სქემა.
- ნახ. 4.3 ლაბორატორიული ტიპის მყარსხეულოვანი იწ-ლაზერის YAG:Nd ჩვენეული კონსტრუქციის ზოგადი სქემა.
- ნახ. 5.1 კინოვარის სტრუქტურის სქემატური ხედი c ღერძის გასწვრივ.
- ნახ. 5.2 წითელი სინგურის ჰექსაგონალური ელემენტარული უჯრედი.
- ნახ. 5.3 α -HgS რგ სპექტრი. აგზნება λ_L =632.8 ნმ.
- ნახ. 5.4 სუფთა (a) და სელენის მინარევიანი α–HgS (b) რგ სპექტრი. აგზნება λ_L=632.8 ნმ
- ნახ. 5.5 ეპიტაქსიალური ფირის GaP:12%As. რგ სპექტრი, რომელიც ასახავს იზომორფული მინარევის As ხვრელისმიერ რხევას. ორიენტაცია (001). აგზნება 488.0 ნმ.
- ნახ. 5.6 ეპიტაქსიალური ფირის GaP:Al რგ სპექტრი, რომელიც ასახავს იზომორფული მინარევის Al ლოკალურ რხევას. ორიენტაცია (001). აგზნება λ_L=441.6 ნმ.
- ნახ. 5.7 ბუნებრივი მინერალის As_2S_3 (საქართველოს საბადოდან) რგ სპექტრი. პოლიკრისტალური. აგზნება 632.8 ნმ.

- ნახ, 6.1 რგ-ის სპექტრები GaP, GaAs_{0.15}P_{0.85} GaAs_{0.35}P_{0.65} GaAs_{0.6}P_{0.4}, და GaAs-ის თანმიმდევრობით. ფირების ორიენტაცია (001). აგზნება λ_L=488.0 ნმ.
- ნახ. 6.2 შერეული ნახევარგამტარების $GaAs_{1-x}P_x$ LO ფონონების სიხშირეების დამოკიდებულება შემადგენლობაზე, x .
- ნახ. 6.3 ZnTe_xSe_{1-x} სისტემის შემადგენლობის, x დამოკიდებულება აკრძალული ზონის სიდიდეზე, E_{0}
- ნახ. 6.4 ZnTe-ის ორი რამან-სპექტრი. ერთი, 632.8ნმ და მეორე, 589.8ნმ ტალღის სიგრმეების აგზნებით.
- ნახ. 6.5 შერეული ნახევარგამტარების $ZnTe_xSe_{1-x}$ რამან-სპექტრები სხვადასხვა შემადგენლობისათვის. აგზნება 589.8 ნმ.
- ნახ. 6.6 LO, TO და 2LO ფონონების კონცენტრაციული დამოკიდებულება სისტემისათვის $ZnTe_xSe_{1-x}$.
- ნახ. 6.7 სხვადასხვა შემადგენლობის შერეული კრისტალების $Ga_{1-x}Al_xP$ რამან-სპექტრები: აგზნება 488.0 ნმ.
- ნახ. 6.8 LO ფონონის სიხშირის დამოკიდებულება შერეული კრისტალის Ga $_xAl_{1-x}P$ კონცენტრაციაზე, x.
- ნახ. 6.9 რამან-სპექტრები $Ga_{0.3}Al_{0.7}P$ შემადგენლობისათვის ლაზერის სხვადასხვა ტალღის სიგრძეებით აგზნებისას.
- ნახ. 6.10 I_{487}/I_{402} ფარდობის დამოკიდებულება ამგზნები ფოტონების ენერგიაზე.
- ნახ. 7.1 პირველი რიგის რამანის გაბნევის დომინირებული პროცესის ფეიმანის ერთერი დიაგრამა.
- ნახ. 7.2 კინოვარის რამანის სპექტრი ჰელიუმ-ნეონის ლაზერის ტალღის სიგრძის 632.8 ნმ (1.96 ევ) აგზნებით.
- ნახ. 7.3 რეზონანსული რამანის გაბნევის ინტენსიობის დისპერსიული მრუდის სახე α-HgS-ის A₁ ტიპის ფონონებისათვის 44 სმ⁻¹ და 256 სმ⁻¹ სიხშირეებზე.
- ნახ. 7.4 რეზონანსული რამანის გაბნევის დისპერსიული მრუდები GaP-ს LO და TO ფონონებისათვის.
- ნახ. 7.5 კინოვარის ბრილიუენის ზონისა (ბზ) და ზონური სტრუქტურის სქემატური სახე Α და Γ წერტილების შემაერთებელი ხაზის გასწვრივ.

- ნახ. 7.6 $ZnTe_{0.7}Se_{0.3}$ მყარი ხსნარების რგ სპექტრები საღებავის ლაზერის სხვადსხვა ტალღის სიგრძეებით აგზნებისას.
- ნახ. 7.7 ZnTe_{0.7}Se_{0.3}-ში TO ფონონისთვის ფარდობითი ინტენსიობის დამოკიდებულება ამგზნები კვანტის ენერგიის სიდიდეებზე. თეორიული მრუდი (პუნქტირით), გაანგარიშებული (7.3)-ის მიხედვით.
- ნახ. 7.8 LO -სათვის ფარდობითი ინტენსიობის დამოკიდებულება ამგზნები კვანტების ენერგიის სიდიდესთან.
- ნახ. 7.9 2LO -სათვის ფარდობითი ინტენსიობის დამოკიდებულება ამგზნები კვანტების ენერგიის სიდიდესთან.
- ნახ. 8.1 რამანის გაბნევის სპექტრები, 110 კევ ენერგიის არგონის იონებით იმპლანტირებული GaP-სი დოზებით: 9x10¹² (a), 3x10¹³ (b), 2x10¹⁴ (c) და 6x10¹⁴ (d) იონი/სმ².
- ნახ. 8.2 LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანის დამოკიდებულება არგონის იონებით იმპლანტაციის დოზებზე.
- ნახ. 8.3 LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანის დამოკიდებულება ბორის იონებით იმპლანტაციის დოზებზე.
- ნახ. 8.4 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობასთან GaP:Ar შემთხვევაში.
- ნახ. 8.5 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობასთან GaP:B შემთხვევაში.
- ნახ. 8.6 ბორის იონით იმპლანტირებული GaP-ს საფენის იზოქრონული გამოწვის სურათი.
- ნახ. 8.7 რამანის სპექტრები GaAs-ის ბორის იონების სხვადასხვა დოზით ლეგირების შემდეგ.
- ნახ. 8.8 LO ფონონის შესაბამისი სპექტრალური ზოლის ნახევარსიგანის დამოკიდებულებები იმპლანტირებული ბორისა (a) და არგონის (b) იონების დოზებზე.
- ნახ. 8.9 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობასთან GaAs:Ar შემთხვევაში.

- ნახ. 8.10 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობასთან GaAs:B შემთხვევაში.
- ნახ. 8.11 (111) ორიენტაციის ეტალონური GaAs და ფოსფორის ლეგირებით წარმოქმნილი α-GaAsP რამან-სპექტრები.
- ნახ. 8.12 α -GaAs_xP_{1-x}-ის 500 (b), 700 (c) და 850⁰ C (d) ტემპერატურებზე ერთი საათის განმავლობაში გამოწვის შემდეგ ჩაწერილი რამან-სპექტრები. (a) – ეტალონური GaAs.
- ნახ. 8.13 (001) ორიენტაციის ეტალონური GaAs და ალუმინის ლეგირებით წარმოქმნილი α-GaAlAs რამან-სპექტრები.
- ნახ. 8.14 α-Ga_xAl_{1-x}As-ის 500 (b), 700 (c) და 850⁰ C (d) ტემპერატურებზე ერთი საათის განმავლობაში გამოწვის შემდეგ ჩაწერილი რამან-სპექტრები. (a) – ეტალონური GaAs.

გამოყენებული აბრევიატურების ნუსხა

- 1. ლრს-----ლაზერული რამან-სპექტროსკოპია.
- 2. რგ-----რამანის გაბნევა.
- 3. რს-----რამანის სპექტრი.
- 4. რრგ-----რეზონანსული რამანის გაბნევა.
- 5. რრს-----რეზონანსული რამანის სპექტრი.
- ზევირგ-----ზედაპირული ელექტრული ველით ინდუცირებული რამანის გაბნევა.
- 7. ზგრგ-----ზედაპირით გაძლიერებული რამანის გაბნევა.
- ზგრრგ-----ზედაპირით გამლიერებული რეზონანსული რამანის გაბნევა.
- 9. LO-ფონონი----გასწვრივი ოპტიკური ფონონი.
- 10. TO-ფონონი----განივი ოპტიკური ფონონი.
- 11. ფლ-----ფოტოლუმინესცენცია.
- 12. სშთ------სივრცითი შემოსაზღვრის თეორია.
- 13. ბზ-----ბრილიუენის ზონა.
- 14. იწ-სპექტროსკოპი----ინფრაწითელი სპექტროსკოპია.
- 15. უი-ხ-იწ-სპექტროსკოპია----ულტრაიისფერი, ხილული, ინფრაწითელი სპექტროსკოპია.
- 16. ფეგ-----ფოტოელექტრონული გამაძლიერებელი.

მადლიერება

მადლობას ვუხდი ჩემს დას, ლამარა ვალერიანის-ასულ გოთოშიას იმ მორალური, მატერიალური და მეცნიერული დახმარებისათვის, რომლის გარეშეც ამ დისერტაცის დაცვა კიდევ დიდი ხნით გადაიდებოდა.

შესავალი

მინდა მალიან თანამედროვე მოკლედ წარმოგიდგინოთ თვალსაზრისით მეტად ფუნდამენტური და პრაქტიკული გამოყენების აქტუალური საბუნებისმეტყველო მეცნიერეზის ერთერთი ახალგაზრდა მიმართულების ლაზერული რამან სპექტროსკოპიის საქართველოში განვითარების მოკლე ისტორია.

1965 წელს, როდესაც შექმნილი იყო მუდმივი მოქმედების გაზური ლაზერი ჰელიუმ-ნეონის ნარევ გაზზე, ამერიკელმა მეცნიერმა პორტომ ლაზერი კერძოდ, პირველად გამოიყენა ეს ნივთიერებათა, მყარი სხეულების რამან სპექტრების მისაღებად. ამ პერიოდიდან იწყება, შეიძლება ითქვას, "დავიწყებული" მძლავრი ფიზიკა-ქიმიური კვლევის მეთოდის რენესანსი. ნახევარგამტარების მსოფლიოში ცნობილი სპეციალისტები ერთბაშად გადავიდნენ ამ მეთოდის გამოყენებაზე ნახევარგამტარების კვლევისათვის. ასეთებია, მაგალითად, გერმანელი მანუელ კარდონა, ამერიკელი ელიას ბურშტეინი და მრავალი სხვა.

დაახლოებით 1968 წელს რუსეთში, მოსკოვის ლებედევის სახელობის ფიზიკის ინსტიტუტის ლანდსბერგის სახელობის ოპტიკის ლაბორატორიაში პროფესორ მ. მ. სუშჩინსკისა და დოქტორ ვ. ს. გორელიკის ხელმძღვანელობით ჩამოყალიბდა ყოფილ სბჭოთა კავშირში ერთერთი პირველი ჯგუფი, რომელმაც დაიწყო ლაზერული რამან სპექტროსკოპიის მიმართულების განვითარება. ანალოგიური ჯგუფი ცოტა მოგვიანებით, ალბათ, 1970 წელს, შეიქმნა ამავე ინსტიტუტის აკადემიკოს ბ. მ. ვულის ნახევარგამტარების ლაბორატორიის ვ. ს. ვავილოვის რადიაციულ სექტორში დოქტორ ლ. კ. ვოდოპიანოვის ხელმძღვანელობით.

ამ პერიოდში ვიყავი ზემოთაღნიშნული სექტორის ბოლო კურსის ასპირანტი და ჩავერთე ამ ჯგუფში ლაზერული რამან სპექტროსკოპიის მიმართულებით სამუშაოდ. აქ შევქმენი ორი სხვადასხვა ტიპის ლაზერული რამან სპექტრომეტრი. ამათგან ერთერთი – ინფრაწითელი ლაზერული რამან სპექტრომეტრი პირველი იყო ყოფილ საბჭოთა კავშირში და ამ

სპექტრომეტრებზე შევასრულე სხვადასხვა ნახევარგამტარული მასალის ოპტიკური თვისებების ფუნდამენტური სამეცნიერო კვლევები.

1976 წელს დავბრუნდი საქართველოში და თბილისის არაორგანული ქიმიისა ელექტროქიმიის ინსტიტუტში, საქართველოში და პირველად შევქმენი სამი სხვადასხვა ტიპის ლაზერული რამან სპექტრომეტრი, მათ შორის ინფრაწითელიც. ჩემს კონსტრუირებული რამან მიერ სპექტრომეტრების საშუალებით შევბელი საქართველოში პირველად წამომეწყო ნახევარგამტარების, დიელექტრიკების, მაღალტემპერატურული ამორფული ზეგამტარების, ბუნებრივი მინერალების, ფსვნილების, ზედაპირების, სხეულების, ბიოლოგიური ნაერთების, ორგანული და ფიზიკა-ქიმიური შენაერთების არაორგანული თვისებების როგორც შესრულება, ამ ფუნდამენტური კვლევების ასევე ნივთიერებათა ხარისხობრივი და რაოდენობრივი ანალაზების ჩატარება ლაზერული რამან სპექტროსკოპიის საშუალებით.

ამგვარად, ლაზერული რამან-სპექტროსკოპია მსოფლიოს მოწინავე ქვეყნებში განვითარდა დაახლოებით 1965 წლიდან, რუსეთში 1968 წლიდან, ხოლო საქართველოში 1976 წლიდან.

წარმოდგენილი სადისერტაციო ნაშრომი პირველი დისერტაციაა, რომელიც შესრულდა საქართველოში ახალი სამეცნიერო მიმართულების, "ლაზერული რამან-სპექტროსკოპიის" თემატიკით.

1928 წელს აღმოჩენილი ფიზიკური ეფექტი, რომელსაც შემდეგ ინდოელი მეცნიერის, რამანის, სახელი ეწოდა, ეხება სინათლისა და მატერიის ურთიერთქმედებას. როდესაც გამოსხივება ეცემა ნივთიერებას (ნებისმიერ აგრეგატულ მდგომარეობაში), სინათლის გაბნეულ ნაწილში დაიმზირება დაცემული სინათლის (ამგზნები) უცვლელი ტალღის სიგრმის სპექტრალური ზოლი და მცირე სიხშირეებით წანაცვლებული სპექტრალური ზოლები (სატელიტები). ეს სატელიტები განლაგებულია სინათლის სიხშირის ამგზნები პიკის მარჯვნივ და მარცხნივ სიმეტრიულად. გრძელი ტალღის სიგრძეებისაკენ წანაცვლებულ სტოქსის სატელიტებს ეწოდებათ გაბნევა, ხოლო მოკლე ტალღის

სიგრძეებისაკენ წანაცვლებული პიკები გამოხატავენ ანტისტოქსურ გაბნევას. აღმოჩნდა, რომ წანაცვლებული სიხშირეები ზუსტად შეესაბამება აღებული ნაერთის შემადგენელი მოლეკულების რხევათა ინფრაწითელ სიხშირეებს.

აღნიშნული ეფექტის აღმოჩენისათვის რამანს 1930 წელს ნობელის პრემია მიანიჭეს. სამართლიანობა მოითხოვს, აღინიშნოს, რომ იგივე ეფექტი თითქმის ერთდროულად დააფიქსირეს რუსმა მეცნიერებმა ლ. ი. მანდელშტამმა და გ. ს. ლანდსბერგმა, მაგრამ მათი შრომა ოდნავ გვიან გამოქვეყნდა. რუსები რამანის ეფექტს სინათლის კომბინაციურ გაბნევას უწოდებენ.

დისერტაციის ძირითადი მიზანია საქართველოში პირველად დაფუმნებული ახალი მეთოდის, ლაზერული რამან-სპექტროსკოპიის, პოპულარიზაცია; ამ მეთოდით ნახევარგამტარებისა და ბევრი სხვა მასალის ფუნდამენტური თვისებების შესწავლისა და ანალიზის უპირატესობის, აქტუალობის ჩვენება; მიკროელექტრონიკისათვის ნიშვნელოვანი ნახევარგამტარების ფუნდამენტური თვისებების შესწავლა მათი ფონონური სპექტრეზის გამოკვლევის საფუძველზე. განსაკუთრებული ყურადღებაა გამახვილებული ნახევარგამტარებზე, რომლებიც ლეგირებულია სხვადასხვა მინარევებით; შესწავლილია სხვადასხვა ტიპის შერეული ნახევარგამტარები. სხვადასხვა ზონური აღნაგობისა და სტრუქტურის ნახევარგამტარებში გამოკვლეულია რეზონანსული რამანის გაზნევის თავისებურებანი. დისერტაციაში დიდი ადგილი აქვს დათმობილი იონური იმპლანტაციის შედეგად მოდიფიცირებული ნახევარგამტარული ზედაპირების რამანსპექტროსკოპიით შესწავლის აქტუალურ საკითხებს; ამორფული, მიკრო და ნანოსტრუქტურული ფაზების იონური იმპლანტაციით სინთეზირებასა და შესწავლას; სამმაგი შერეული ნახევარგამტარების იონური იმპლანტაციით სინთეზირებასა და მათ გამოკვლევას. დისერტაციაში ერთერთი მთავარი და მწიშვნელოვანი ადგილი აქვს დათმობილი ხელსაწყოთმშენებლობის საკითხებს ლაზერული სპექტროსკოპიის მიმართულებით.

დისერტაციის შედეგები მრავალჯერ იყო მოხსენებული არაორგანული ქიმიისა და ელექტროქიმიის ინსტიტუტის სამეცნიერო საბჭოებსა და

გაფართოებულ სემინარებზე; მოსკოვის ლებედევის სახელობის ფიზიკის ინსტიტუტის (ФИАН) რადიაციული ფიზიკის სექტორისა და ნახევარგამტარების ლაბორატორიის სამეცნიერო სემინარებზე. ეგვიპტის ქაიროს გიზას უნივერსიტეტის ლაზერული ინსტიტუტის სამეცნიერო სემინარზე; ამავე ინსტიტუტის ლაზერული სპექტროსკოპიის რამდენიმე ლაბორატორიის მაგისტრანტებისა დოქტორანტების და შეკრებაზე ლექციების სახით.

სადისერტაციო ნაშრომის ძირითადი შინაარსი ასახულია 21 შრომაში. აქედან 10 სამეცნიერო პუბლიკაციაა, 3 საერთაშორისო კონფერენციების შრომების კრებულშია გამოქვეყნებული, ხოლო დანარჩენი 8 საერთაშორისო კონფერენციების გაფართოებული აბსტრაქტია.

თავი 1. ლიტერატურის მიმოხილვა

ლაზერულ რამან-სპექტროსკოპიაში პირველი სამუშაოები მიძღვნილი იყო მარტივი ნახევარგამტარების ფონონების სიხშირეთა განსაზღვრისა და მათი ტიპებად დაყოფისადმი. დასაწყისში გამოკვლეული იყო ისეთი ნახევარგამტარები, რომლებიც გამჭვირვალე იყო ამგზნები ლაზერის ტალღის სიგრმისათვის. ამ შემთხვევაში შესამლებელი იყო ამ ობიექტის გამოკვლევა მოცულობითი აგზნებით, გაბნევის 90⁰-იანი კონფიგურაციით. პორტომ და მისმა თანამშრომლებმა შეისწავლეს პირველი რიგის ფონონები ZnO [6] და CdS [7]. პირველი რიგის LO და TO ფონონების გარდა მათ აღმოაჩინეს LO ფონონების ობერტონები. მათ გამოთქვეს ვარაუდი, რომ ეს დაკავშირებულია რეზონანსულ რამანის გაბნევასთან, რადგანაც სპექტრების ასაგზნებად გამოყენებული იყო ლაზერის ორი სხვადასხვა ტალღის სიგრძე. $A^{3}B^{5}$ ტიპის ნახევარგამტარების გამოკვლევის მიზნით, რომელთა უმეტესობა გაუმჭვირვალეა სპექტრის ხილული დიაპაზონისათვის, მურადიანმა და რაიტმა გამოიყენეს იტრიუმ-ალუმინის მოწის ლაზერის, YAG:Nd, ინფრაწითელი გამოსხივება 1.06 მკმ [8]. მათ შეისწავლეს ნახევარგამტარების GaAs, InP, AlSb, GaP პირველი რიგის ფონონური რამანსპექტრები. აღსანიშნავია. რომ მას შემდეგ, რაც ლაზერული ტექნიკა გაუმჯობესდა, შესაძლებელი გახდა გაუმჭვირვალე ნახევარგამტარების ფონონების გამოკვლევაც და ასეთი სახის პირველი სამუშაო ჰელიუმნეონის ლაზერის გამოყენებით შესრულდა სილიციუმზე რასელის მიერ [9]. რადგანაც სილიციუმი He-Ne ლაზერის გამოსხივების, 632.8 ნმ მიმართ გაუმჭვირვალეა, ამიტომ ასეთი ნახევარგამტარები შეისწავლება რამანის გაზნევის არეკვლის, უკუარეკვლის კონფიგურაციით. გაუმჭვირვალე ნახევარგამტარების რამან-სპექტრების გამოკვლევის თვალსაზრისით დიდი მიღწევა იყო პარკერის მიერ სილიციუმის პირველი და მეორე რიგის რამანის გაბნევის გამოკვლევა არგონის ლაზერის 488.0 ნმ აგზნებით, აგრეთვე გერმანიუმის პირველი რიგის ფონონური რამან-სპექტრების შესწავლა [10].

ტემპერატურული რამან-სპექტროსკოპიული პოლარიზაციული და გაზომვების, თეორიულ-ჯგუფური ანალიზისა და ექსპერიმენტისა და შეჯერების საფუძველზე წარმოებდა თეორიის როგორც ფონონების მიხედვით, ნახევარგამტარების კლასიფიკაცია ტიპების ასევე სტრუქტურული ანალიზიც. ასე იქნა განსაზღვრული პირველი რიგის ფონონების სიხშირეეზი სხვადასხვა ტიპისა და სტრუქტურის ნახევარგამტარებში; მოხდა მათი კლასიფიკაციაც [8-14].

კრისტალებში მეორე რიგის ფონონებზე რამანის გაბნევის ძალიან სუსტი ინტენსიობის გამო მათი რამან-სპექტრები შესწავლილი იქნა მხოლოდ ლაზერების გამოყენების შემდეგ. ნახევარგამტარებში გაბნევის ინტენსიობათა ტემპერატურულ დამოკიდებულებათა გაზომვებისა და ტენზორის კომპონენტების თანდათანობითი გაზნევის დაუყვანელი განცალკევების საფუძველზე შესწავლილი იქნა მეორე რიგის ფონონების კლასიფიკაცია [15-18]. ამ გამოკვლევებზე დაყრდნობით დადგინდა, რომ სპექტრის მთლიანად სიმეტრიული კომპონენტი Γ_1 ძირითადად განპირობებულია ორფონონიანი ობერტონებით და საკმაოდ ზუსტად მდგომარეობათა სიმკვრივეებს, ასახავს ერთფონონიან გაორმაგებულს ენერგეტიკული შკალის მიმართ. ამასთანავე, პრაქტიკულად შესაძლებელია უარვყოთ სპექტრის კომპონენტი სიმეტრიით Γ_{12} . ორფონონიანი რამანსპექტრების ასეთი წარმატებული სიმარტივე არ ახასიათებთ სხვა მყარ სხეულებს, მაგალითად, ტუტე-ჰალოიდურ კრისტალებს. ასევე არ ეხება ეს ინფრაწითელ შედეგი ორფონონიან შთანთქმას ნახევარგამტარებში, გერმანიუმსა და სილიციუმში.

ნახევარგამტარების კრისტალური პირველი რიგის რამან-გაზნევის პროცესში მონაწილეობას იღებენ ფონონები, რომელთა ტალღური ვექტორი აკმაყოფილებს შერჩევის წესს \mathbf{K} pprox0. ფონონები, რომელთაც გააჩნიათ დიდი K, დაიმზირებიან მხოლოდ გაბნევის მეორე რიგის რამან-სპექტრებში. მრავალი ნახევარგამტარი ატომეზის ტეტრაედრული კოორდინაციით მესერში, ფაზაში, რომელთათვისაც შესაძლებელია მივიღოთ ამორფულ ტალღური ვექტორის შენახვის კანონი უკვე აღარ მოქმედებს (ეს კანონი

სამართლიანია მხოლოდ კრისტალური მდგომარეობისათვის). ამის გამო ამორფულ ნახევარგამტარებში პირველი რიგის რამანის გაბნევის სპექტრები ფართო სპექტრალური ზოლებისაგან შედგება და ისინი შეესაბამება ერთფონონიან მდგომარეობათა სიმკვრივეებს [19-23]. გარდა ამისა, მდგომარე-

ობათა ეს სიმკვრივეები ხშირად ასახავენ შესაბამისი კრისტალის გაფართოებულ ფონონურ მდგომარეობათა სიმკვრივეებს [19]. ეს კი მიუთითებს, რომ ამორფულ ფაზაში შენარჩუნებულია ახლო წესრიგის მნიშვნელოვანი ნაწილი.

ტრიგონალური ვერცხლისწყლის სულფიდის, კინოვარის, წითელი სინგურის, α-HgS კრისტალური მესერის რხევითი სპექტრი შესწავლილი იყო სხვადასხვა ავტორთა მიერ [24-28] როგორც იწ-სპექტროსკოპიით, ასევე ლაზერული რამან-სპექტროსკოპიით. აღნიშნულ სამუშაოებში არსებობს შეუსაბამობა ფონონების იდენტიფიკაციის საკითხში. მაგალითად, [26]-ში ფონონის პიკი, რომელიც მდებარეობს 202 სმ $^{-1}$ სიხშირეზე, მიაკუთვნეს E_1 ტიპის რხევას, ხოლო [25]-ში ამ სიხშირეზე ფონონური პიკი საერთოდ ვერ აღმოაჩინეს. ე. ი. ამ ნახევარგამტარის ფონონური სპექტრი მოითხოვს დაზუსტებას, რაც ჩვენ გავაკეთეთ [29]. ამ სამუშაოებამდე კინოვარში საერთოდ არ იყო შესწავლილი ძირითად ფონონურ სპექტრებზე მინარევების გავლენა. [29]-ში პირველად შევისწავლეთ სელენის იზომორფული მინარევის გავლენა წითელი სინგურის პირველი რიგის ფონონურ რამან-სპექტრზე და აღმოვაჩინეთ, რომ სელენის მინარევის იზომორფული ჩანაცვლება კინოვარის ტრიგონალურ მესერში წარმოქმნის ხვრელისმიერ ლოკალურ რხევას.

მინარევების იზომორფული ჩანაცვლების ზეგავლენა ნახევარგამტარების რამან-სპექტრებზე გამოკვლეული იყო GaP-ში [30]. დადგენილი იქნა, რომ მინარევის ხასიათისა და მატრიცის თვისებების გათვალისწინებით, GaP-ში შეიძლება წარმოიშვას ლოკალური ან ხვრელისმიერი რხევები. ზოგადად, ლოკალური რხევების შესაბამისი პიკები განლაგებულია კრისტალის ოპტიკური გასწვრივი რხევების, LO ფონონების მაქსიმალური სიხშირის

ზევით და მათი ინტენსიობები უტოლდება მეორე რიგის ფონონური გადასვლების ხაზების ინტენსიობებს. რამანის სპექტრის ორი სპექტრალური ხაზი 593.8 და 569.7 სმ $^{-1}$ სიხშირეებზე მიაკუთვნეს ბორის ორი იზოტოპის, $^{10}\mathrm{B}_\mathrm{Ga}$ და $^{11}\mathrm{B}_\mathrm{Ga}$ ლოკალურ რხევებს შესაბამისად, რომლებიც იზომორფულად გალიუმს. ამ პიკების ინტენსიობათა ჩაანაცვლებენ ფარდობა 1:4 ბორის ასახავს იზოტოპების ბუნებრივი დაახლოებით გავრცელების შეფარდებას. სხვა ხაზები ალბათურად მიაკუთვნეს ლოკალურ მოდებს $\operatorname{Al}_{\operatorname{Ga}}$, Si_{Ga} cos N_P so O_P .

GaAs-do ფოსფორის იზომორფული მინარევის ლღკალური რხევა შეისწავლეს [31]. ფოსფორის მინარევი GaAs-ში ჩაენაცვლება და იკავებს Asის ადგილს, წერტილოვანი სიმეტრიით T_d . ეს შრომა მნიშვნელოვანია იმით, რომ ლოკალური რხევა ამ შემთხვევაში აღმოჩენილია არგონის ლაზერის 488.0 ნმ გამოსხივების აგზნებით, რომლისთვისაც GaAs გაუმჭვირვალეა. სიხშირეზე. ამ ავტორეზმა ლოკალური რხევა დააფიქსირეს 357 სმ⁻¹ სამუშაოში იგივე ნიმუშების ინფრაწითელი 1.06 მკმ ლაზერის აგზნებით შესწავლისას ავტორებმა ვერ აღმოაჩინეს ვერც LO ფონონი და ვერც რხევა. სპექტრში ჩანს მხოლოდ ლოკალური TO ფონონი. რადგანაც მინარევეზით ნახევარგამტარების ლეგირებისას ადგილი აქვს დენის მატარებლების დიდი რაოდენობით წარმოქმნას, ამიტომ მოცულობითი შემთხვევაში თავისუფალი ელექტრონების მიერ აგზნების მთლიანად ეკრანირებულია LO ფონონი და ლოკალური რხევა. შედეგად, ისინი არ დაიმზირება. 488.0 ნმ აგზნებისას გამოსხივება ნახევარგამტარის ზედაპირის მხოლოდ თხელ ფენაში (რამდენიმე ასეული ანგსტრემის სისქეში) აღწევს. როგორც ცნობილია, ასეთი ფენა გაღარიბებულია დენის თავისუფალი მატარებლებით და ამიტომ ექსპერიმენტის ასეთ პირობებში შესაძლებელი ხდება არაეკრანირებული LO ფონონისა და ლოკალური რხევის დამზერა, რაც ამ სამუშაოშია განხორციელებული.

როდესაც მინარევების კონცენტრაცია კრისტალში შედარებით მცირეა, ისინი იწვევენ მხოლოდ მცირე შეშფოთებას და ძირითადი კრისტალის რხევითი მახასიათებლების გარდა წარმოიქმნება სამი ტიპის რხევა:

ლოკალური, ხვრელისმიერი და რეზონანსული რხევები [32]. მინარევების ლოკალური რხევების სიხშირეეზი კრისტალში ყველაზე მაღალი სიხშირეებია და ისინი ყოველთვის ოპტიკური შტოს ყველაზე მაღალი სიხშირის ზევითაა. ლოკალური რხევების ნაირსახეობაა ხვრელისმიერი მათი სიხშირეები; ისინი, როგორც თავად სახელწოდება რხევები და მიუთითებს, მოთავსებულია აკუსტიკურ და ოპტიკურ შტოებს შორის ხვრელში. ამ უბანში ფონონების მდგომარეობათა სიმკვრივეები ნოლის იყოს. ტოლი უნდა თუ მინარევის, დეფექტის რხევის სიხშირე მოთავსებულია ფონონურ მდგომარეობათა სიმკვრივის არანულოვან, მაგრამ მცირე სიდიდის უბანში, მაშინ ვამბობთ, რომ ადგილი აქვს რეზონანსული ანუ კვაზილოკალური რხევების გამოვლინებას. ამ შემთხვევაში ლოკალური რხევები სპექტრებში არ დაიმზირება, მაგრამ ადგილი აქვს ძირითადი კრისტალის რხევითი ზოლების ცვლილებებს.

მინარევებით შეშფოთებული კრისტალური მესერის რხევების თავისებურებანი შეისწავლება მასური დეფექტის მიახლოებაში,

$\epsilon = 1 - m'/m$

სადაც, m – ძირითადი კრისტალის ატომის მასაა, ხოლო m'- ჩამნაცვლებელი მინარევის ატომის მასაა. კრისტალის რხევებს ასეთ შემთხვევაში განსაზღვრავს პარამეტრი მასური დეფექტის .3 როდესაც მსუზუქი მინარევის ატომით ჩავანაცვლებთ ძირითადი კრისტალის მძიმე ატომს, მაშინ ε>ε_{cr} (ε_{cr} რაღაც კრიტიკული სიდიდეა ε პარამეტრისა) და ამ შემთხვევაში წარმოიქმნება მინარევის ლოკალური რხევა. ასეთი რხევის ამპლიტუდა ძალიან დიდია მინარევის ახლოს და მისი სიდიდე მკვეთრად ეცემა მინარევიდან დაშორებით. ე. ი. ამ რხევის გავრცელება კრისტალში პერიოდული ტალღის სახით არ ხდება და იგი ლოკალიზებულია მხოლოდ მინარევის ახლოს. ხვრელისმიერი რხევა წარმოიქმნება, როდესაც მსუბუქ ატომს ჩავანაცვლებთ მძიმე ატომით. კვაზილოკალური, რეზონანსული რხევების გამოვლინებას უნდა ველოდეთ, როდესაც 30 ჩანაცვლებას ვაწარმოებთ ერთიდაიგივე მასის ატომით. ნახევარგამტარებში მინარევებით

წარმოქმნილი ლოკალური რხევები რამანის გაბნევით შესწავლილი იყო შრომებში [33-34].

როდესაც კრისტალში მინარევების რაოდენობა ისე იზრდება, რომ თავს იჩენს მათ შორის ურთიერთმოქმედება, უკვე არ შეიძლება ვილაპარაკოთ კრისტალზე, რომელიც მცირედაა შეშფოთებული მინარევებით, არამედ საქმე მოუწესრიგებელ სტრუქტურასთან. გვაქვს მოუწესრიგებელი სტრუქტურები ძირითადად ორ ტიპად იყოფიან: მოუწესრიგებელი მყარი ხსნარები იზოტოპური ნარევისა, ანუ შერეული კრისტალები და მინისებური მასალები, რომელთა მოუწესრიგებელი სტრუქტურა უფრო სივრცითია, ვიდრე კონფიგურაციული.

შერეული კრისტალების სისტემების ზოგადი ფორმულაა $\mathrm{A_xB_{1-x}C}$ ან $A_{1-x}B_xC_x$ ისინი ხასიათდება ნორმალური რხევების ორი ტიპით: პირველს "ერთმოდიანი ტიპის", ხოლო მეორეს-"ორმოდიანი ეწოდება ტიპის". ერთმოდიანი ქცევის შერეული კრისტალების რამან ან იწ-სპექტრებში მხოლოდ ერთი მესერის რხევითი ზოლები (LO, TO დაიმზირება ფონონები), რომელთა სიხშირეები უწყვეტად იცვლება სისტემის ერთი ბოლო კომპონენტის მახასიათებელი სიხშირიდან მეორე ბოლო წევრის სიხშირემდე, შემადგენლობის ცვლილების შესაბამისად. ორმოდიანი ქცევის შერეული კრისტალების შემთხვევაში კი სპექტრებში დაიმზირება ორი დამოუკიდებელი სპექტრალური ჯგუფი, რომელთა სიხშირეები ახლოსაა სისტემის შემადგენელი კომპონენტის ორი ბოლო მახასიათებელ სიხშირეებთან და ისინი დამოუკიდებლად იცვლებიან გარკვეული კანონზომიერებით, შემადგენლობის ტიპის შესაბამისად. ამ შერეული კრისტალების ერთერთ მთავარი მახასიათებელია ლოკალური და ხვრელისმიერი რხევების წარმოქმნა [35-36].

შეიქმნა შერეული კრისტალების რხევითი დინამიკის ამსახველი თეორიული მოდელები [32, 37-40]. ამ მოდელების მიხედვით შესაძლებელია თეორიულად გამოვთვალოთ შერეული კრისტალების სიხშირული შტოების დისპერსიული მრუდები, დადგენილი კრიტერიუმების საფუძველზე ვიწინასწარმეტყველოთ, რომელი ტიპის შერეულ კრისტალებს თუ

შეიძლება მივაკუთვნოთ ესა თუ ის შერეული სისტემა. თეორიული მრუდების ექსპერიმენტულთან შედარებით უფრო ზუსტად დავადგენთ შერეული კრისტალების ქცევის ტიპებს.

ექსპერიმენტულად შერეული კრისტალები შეისწავლება რამანის გაბნევით, იწ-სპექტროსკოპიით (შთანთქმა, არეკვლა, გამოსხივება), ზონური კიდის ოპტიკური შთანთქმის, ლუმინესცენციისა და ელექტრონების ტუნელირების სპექტროსკოპიით. ამ მეთოდებიდან ყველას გააჩნია თავისი უპირატესობა კონკრეტულ საკითხებში, მაგრამ რამანის სპექტროსკოპია მაინც გაცილებით მოხერხებული, ინფორმატული და ზუსტი მეთოდია.

 $A^{3}B^{5}$. ადრეულ ეტაპზე ექსპერიმენტალურად უფრო შეისწავლებოდა A^2B^6 ტიპის ორმაგი ნახევარგამტარების GaAs, GaP, InP, InAs, AlAs, AlP, GaSb, CdS, CdSe, CdTe, ZnS, ZnTe, ZnSe, HgSe ბაზაზე სინთეზირებული შერეული ნახევარგამტარების მრავალფეროვანი კომბინაციები [41-52]. ამ შრომებში გამოკვლეულია როგორც მოცულობითი კრისტალები, ასევე სხვადასხვა მეთოდებით სინთეზირებული ეპიტაქსიალური ფირები. დადგენილია ამ შერეული კრისტალების ფონონების ყოფა-ქცევის კანონზომიერებანი (ერთმოდიან თუ ორმოდიან ნახევარგამტარებს მიეკუთვნებიან ისინი); კანონზომიერების აგებულია ამ გამომხატველი კონცენტრაციული დისპერსიული მრუდები ექსპერიმენტული მონაცემების საფუძველზე; ბევრ მათგანში ეს დამოკიდებულებანი გამოთვლილია სხვადასხვა თეორიულ მოდელებზე დაყრდნობით, რაც აზუსტებს ექსპერიმენტიდან გამომდინარე დასკვნებს; გამოთვლილია ორმაგი და სამმაგი შერეული კრისტალების მწიშვნელოვანი ოპტიკური პარამეტრები.

შემდეგ ეტაპზე ექსპერიმენტატორების განსაკუთრებული ყურადღება მიიქცია A³B⁵ ტიპის ნახევარგამტარულმა ნიტრიდებმა, GaN, InN, AlN,

 $Ga_{1-x}In_xN$, $Ga_{1-x}Al_xN$, $In_{1-x}Al_xN$, $GaAs_{1-x}N_x$, $GaP_{1-x}N_x$, რომელთა ბაზაზეც დაიწყეს მნიშვნელოვანი ოპტოელექტრონული ხელსაწყოების (სინათლის დიოდები, ბაზაზე ლაზერები) დამზადება. ამ ნახევარგამტარებისა და მათ სინთეზირებული შერეული ეპიტაქსიალური კრისტალების ფირეზის შეისწავლეს სამუშაოებში ფონონური რამან-სპექტრები [53-65], სადაც

დეტალურად იქნა შესწავლილი ამ ნაერთების კრისტალური მესერის რხევითი დინამიკა. გაირკვა, თუ რომელი ტიპის, ერთმოდიან, თუ ორმოდიან კრისტალებს მიეკუთვნება ესა თუ ის სისტემა.

ამ ბოლო ხანს ზემოთჩამოთვლილი სისტემების გარდა, ითით A^2B^6 ტიპის ინტენსიობით შეისწავლება შერეული ნახევარგამტარები, რომლებიც სინთეზირებულია ცინკის, ბერილიუმის, მაგნიუმის, მარგანეცის ჟანგეულებისა და ხალკოგენიდების საფუძველზე. კერძოდ, სამუშაოებში [66-69] რამან-სპექტროსკოპიით შეისწავლეს შერეული კრისტალების $ZnBe_{1-x}O_x$, Zn Be_{1-x}Se_x, Zn Mg_{1-x}O_x, Zn Mg_{1-x}Se_x, Zn Mn_{1-x}O_s, ZnMn_{1-x}Se_s, მოდური სტრუქტურა და ოპტიკური მახასიათებლები.

შერეული კრისტალების ჩვენს მიერ ზემოთ ჩამოთვლილ მრავალ შრომებს შორის განსაკუთრებით აღსანიშნავია ის სამუშაოები, რომლებშიც გარდა კრისტალური შერეული ნახევარგამტარებისა შესწავლილია ამ ნაერთების ნანოგანზომილებიანი და ამორფული სისტემებიც. ეს სისტემები სინთეზირებულია როგორც ჩვეულებრივი, ქიმიური მეთოდებით, ასევე ექსტრემალური იონური იმპლანტაციის, ელექტრონული და ლაზერული ტექნოლოგიებით. ასეთი არაწონასწორული ტექნოლოგიების საშუალებით შესაძლებელი გახდა ისეთი შერეული სისტემების სინთეზირება, რომელთა სინთეზი წონასწორული ქიმიური ტექნოლოგიური მეთოდებით აქამდე შეუძლებელი იყო.

წარმოდგენილ დისერტაციაში შერეული კრისტალებიდან შევისწავლე სამი სისტემა: $ZnTe_{1-x}Se_s$, $GaAs_{1-x}P_x$, $Ga_{1-x}Al_xP_z$, ამ სისტემებიდან ყველაზე მეტად შესწავლილია $GaAs_{1-x}P_x$ [70], მაგრამ იგი შესწავლილია მოცულობითი YAG:Nd-ob აგზნებით, ლაზერის გამოყენეზით. ეს სისტემა ჩვენ შევისწავლეთ არგონის ლაზერის გამოყენებით, არეკლვის კონფიგურაციით მეთოდით გაგვენეიტრალებინა პლაზმონ-ფონონური ურთიერთმოქმედების ხელისშემშლელი ფაქტორი, რომელიც იწვევს LO ფონონის ინტენსიობის რაოდენობის შემცირებას. ეს ხდება ითით დენის თავისუფალი მატარებლებით გასწვრივი LO ფონონის ეკრანირების გამო. შემდგომ, ეს

მონაცემები გამოგვეყენებინა იონური იმპლანტაციით სინთეზირებული ამავე შერეული კრისტალების ხარისხობრივი რაოდენობრივი და ანალიზისთვის. დანარჩენი ორი სისტემიდან პირველი, $ZnTe_{1-x}Se_s$ ნაკლებადაა შესწავლილი [72]. ამ სისტემაში პირველად შევისწავლე რეზონანსული რამანის გაზნევა და მოდური სტრუქტურა რეზონანსულ პირობებში [73-74]. მესამე სისტემის $Ga_{1-x}Al_xP$ რამან-გაბნევა [75-76] ერთერთმა პირველმა შევისწავლე, ხოლო ლაზერის მოკლეტალღოვანი აგზნებით კი პიველმა. ასევე პირველად აღმოვაჩინე ამ სისტემაში რეზონანსული რამანის გაზნევა და ამავე მეთოდით შევაფასე ეპიტაქსიალური თხელი ფირების სისქეეზი. მიღებული შედეგები ფართოდ გამოვიყენე იონური იმპლანტაციით სინთეზირებული შერეული სისტემების $Ga_{1-x}Al_xP$ ხარისხობრივი და რაოდენობრივი ანალიზისთვის [77-78].

მყარ სხეულებში ფონონებზე გაბნევა წარმოებს შუალედური, ვირტუალური ელექტრონული დონეების მეშვეობით. ამის გამო, რამანის განივკვეთის სიხშირულ დამოკიდებულებას გაზნევის დაცემული და გაბნეული ფოტონებისათვის უნდა გააჩნდეს განსაკუთრებულობა, როდესაც ამ ენერგიეზი იმყოფებიან ზონებს შორის ფოტონების გადასვლის ენერგიებთან ახლოს. ამ დროს ადგილი აქვს რამანის რეზონანსულ გაბნევას. ეს სიტუაცია შეიძლება გამოვიყენოთ ელექტრონული გაგებით გადასვლების შესწავლის მიზნით. გარკვეული ასეთი გამოკვლევები ანალოგიურია მოდულაციური სპექტროსკოპიით კვლევებისა [79]. რეზონანსული რამანის გაზნევისას სისტემას მოდულიაციური აგზნება გარედან არ მოედება, როგორც მოდულიაციური სპექტროსკოპიის შემთხვევაში, არამედ ამ როლს ფონონები ასრულებენ. რეზონანსული რამანის გაზნევის (რრგ) შემთხვევაში რამანის გაბნევის ინტენსიობა, ეფექტურობა მკვეთრად იზრდება, როდესაც ამგზნები ლაზერის სიხშირე გამოსაკვლევი ოზიექტის დაშვებული ელექტრონული უახლოვდება გადასვლის სიხშირეს.

ჩვეულებრივი რამანის გაბნევით ვიღებთ ინფორმაციას მოლეკულების, სითხეების, მყარი სხეულების დაბალენერგეტიკული აგზნებული დონეების

შესახებ. ეს ინფორმაცია ჩადებულია სიხშირულ წანაცვლებებში, ტალღურ ვექტორსა **k** და გაბნეული ფონონის პოლარიზაციაში. აღნიშნული დონეები ძირითადად მიეკუთვნება დონეებს, რომელთა ენერგიები ნაკლებია 5x!0⁻² eV. ეს ენერგიები აითვლება სისტემის ძირითადი დონიდან. დაცემული და გაბნეული გამოსხივების სიხშირეებს არავითარი ძირითადი დატვირთვა, ინფორმაცია არ გააჩნიათ. მთავარი ინფორმაცია მხოლოდ მათ სხვაობებშია ჩადებული.

რრგ-ით შესაძლებელია შევისწავლოთ გაბნევის მექანიზმი, რომელსაც თითქმის ყოველთვის გააჩნია ელექტრონ-ფონონური ურთიერთმოქმედების რაღაც გარკვეული ფორმა; განვსაზღვროთ ელექტრონ-ფონონური ურთიერთმოქმედებისა და დეფორმაციული პოტენციალების მუდმივები; მივიღოთ ინფორმაცია ვირტუალური ელექტრონული დონეების შესახებ.

რრგ შესწავლის მთავარი პრობლემაა ვიპოვოთ ამგზნები ლაზერების ისეთი წყარო, რომელთა ენერგია შეიძლება ვცვალოთ გამოსაკვლევი წერტილის ენერგიის მახლობლად. ოზიექტის კრიტიკული ასეთეზია არგონისა და კრიპტონის მრავალხაზიანი ლაზერები. მათი სპექტრალური ხაზები დისკრეტულადაა განლაგებული და ამიტომ მათი გამოყენებით რეზონანსის შესწავლისას ალბათური და მოსალოდნელია, რომ რაიმე დეტალი გამოგვრჩეს. ეს ხარვეზი დაძლეული იქნება, თუ შევძლებთ ამ მიზნით საღებავის ლაზერის გამოყენებას. საღებავის ლაზერი ორი ტიპისაა: იმპულსური და მუდმივი მოქმედების. ორივე ტიპის ლაზერი აქტიურად რრგ გამოიყენეზა შესასწავლად ნახევარგამტარებში [80-85]. საღებავის იმპულსურ ლაზერებს გააჩნიათ ტალღის სიგრძის გადაწყობის დიდი ინტერვალი, ვიდრე მუდმივი მოქმედების ლაზერებს. თუმცა, მუდმივი რრგ მოქმედეზის ლაზერი გაცილებით პროგრესულია შესასწავლად, რადგანაც ამ შემთხვევაში უფრო დეტალური ანალიზი ხორციელდება და რეგისტრაციისათვის შესაძლებელია გამოვიყენოთ ფოტონების დათვლის სისტემა.

რრგ პირველი გაზომვები ნახევარგამტარებზე შესრულდა კრისტალ CdSზე არგონის ლაზერის დისკრეტული ხაზების გამოყენებით, რომლებიც

გადაფარავენ დიაპაზონს 2.38 - 2.73 ევ [86]. CdS-ზე შემდგომმა გაზომვებმა [87] დაადასტურა ადრე აღმოჩენილი რეზონანსული მოვლენები და შთანთქმის კიდის E_0 სიახლოვეს დააფიქსირა გაზნევის პირდაპირი ანტირეზონანსის (ნულოვანი გაზნევის) არსებობა TO განივკვეთის ფონონებისათვის (მაგრამ არა LO ფონონებისათვის). დადგენილია, რომ გაზნევის ასეთი თავისებურება განპირობებულია ფუნდამენტური შთანთქმის კიდის გადასვლისა და უფრო მაღალი ენერგეტიკული გადასვლების წვლილების ურთიერთ კომპენსაციის ხარჯით. შესაბამისად, ამ გადასვლების წვლილები უნდა იყვნენ საწინააღმდეგო ნიშნისანი. კრისტალებისათვის, რომელთაც გააჩნიათ თუთიის კრიალას სტრუქტურა რამანის გაბნევის განივკვეთში ასეთი კომპენსაციები არ დაიმზირება. თუთიის კრიალას სტრუქტურის GaP-do მაგალითად, ანტირეზონანს ადგილი არა აქვს, როდესაც იგი შეისწავლეს ლაზერების დისკრეტული [88]. ხაზებით ანტირეზონანსი შეიძლება არსებობდეს ვიურტციტის სტრუქტურის ნახევარგამტარებში (CdS).

როგორც ზემოთ აღვნიშნეთ, დისკრეტული ხაზებით რრგ შესწავლისას შეიძლება გამოგვრჩეს დისკრეტულ წერტილებს შორის არსებული ფაქიზი სტრუქტურა. ამ ნაკლოვანების აღმოსაფხვრელად რრგ შესწავლისათვის ლაზერის დისკრეტული ხაზის გამოყენებისას შეიძლება უწყვეტად ვცვალოთ გამოსაკვლევი ობიექტის ენერგეტიკული ხვრელის სიდიდე გარეგანი ზემოქმედებით. გარეგან ზემოქმედებად შეგვიძლია გამოვიყენოთ: ტემპერატურა, ერთმხრივ მიმართული დამაზულობა, ელექტრული ველი, შერეული კრისტალების ეფექტი. ასეთი ტიპის ექსპერიმენტები შესრულდა შრომებში [89-91].

რრგ დიდი მიღწევები მაინც დაკავშირებულია საღებავის ლაზერების გამოყენებასთან [92]. საწყის ეტაპზე მუდმივი მოქმედების საღებავის ლაზერების გადაწყობის სპექტრალური დიაპაზონი მირითადად განისაზღვრებოდა საღებავის როდამინ 6G გადაწყობის დიაპაზონით: 1.85– 2.20 ევ. მას შემდეგ, რაც იარბორომ გადაწყობის ეს დიაპაზონი გააფართოვა
ახალი ეფექტური საღებავების გამოყენებით [93], იგი გახდა გაცილებით ფართო: 1.55–2.90 ევ.

მუდმივი მოქმედების საღებავის უწყვეტი გადაწყობის ლაზერით შესწავლილი იქნა ორი ტიპის რეზონანსი E_0 და $E_0+\Delta_0$ GaP-ში [94] და ZnTe-[95]. იქნა შესწავლილი ეწ ასევე ორი ტიპის რეზონანსი ამავე ნახევარგამტარებში E_1 და $E_1+\Delta_1$ ზონების მონაწილეობით.

[96] მიმოხილვით შრომაში განხილული იყო რრგ LO ფონონზე, პოლარიზაციული კონფიგურაციის შემთხვევისათვის, გაზნევის ისეთი როდესაც რგ LO ფონონზე შერჩევის წესის თანახმად აკრძალულია. ამ მოვლენამ, რომელიც განპირობებულია LO ფონონის ელექტრული ველით (ფრელიხის ტიპის ურთიერთმოქმედება), მკვლევართა-თეორეტიკოსთა და ექსპერიმენტატორთა ყურადღება მიიპყრო. ამ დიდი შემთხვევაში აკრძალულ LO ფონონზე გაბნევა დაიმზირება მხოლოდ დაცემული და გაზნეული სინათლის პარალელური პოლარიზაციის დროს. ეს აკრძალული რეზონანსი გაცილებით ძლიერია, ვიდრე შერჩევის წესით დაშვებული რრგ LO და TO ფონონებზე [97-100].

რრგ ძირითადად ტარდებოდა ნახევარგამტარებზე, რომელთა ატომები კრისტალურ მესერში ტეტრაედრული კოორდიინაციით არიან ერთმანეთთან დაკავშირებულნი. შემდგომში უდიდესი ყურადღება მიიქცია რრგ ნახევარგამტარ შესწავლამ Cu₂O-до, რომელიც განსხვავებული სტრუქტურისაა. რამ გამოიწვია ასეთი ინტერესი ამ მასალისადმი? Cu₂O-ს ჰელიუმის ტემპერატურის პირობებში 2.11 ევ-ზე გააჩნია ყველაზე დაბალი დონის ექსიტონი. ეს ის სიდიდეა, რომლისთვისაც არსებული უწყვეტი მოქმედების საღებავის ლაზერები იდეალური ამგზნები საშუალებაა რრგ-ის შესასწავლად. გარდა ამისა, ამ ნახევარგამტარის ექსიტონი მკვეთრადაა გამიჯნული აკრძალული ზონის კიდისაგან, იგი მკვეთრია და ამიტომ იქმნება მეტად ხელსაყრელი მომენტი, რათა კარგი გარჩევისუნარიანობით შევისწავლოთ რრგ, როდესაც ამგზნები და გაბნეული კვანტების ენერგიები გაივლიან ექსიტონის ენერგეტიკულ პიკს. ასეთ შემთხვევაში შესაძლებელია სურათი. დაფიქსირდეს ტიპის რეზონანსების სხვადასხვა მკვეთრი

შესაბამისად თეორიული მოსაზრებებიც უფრო დამაჯერებელი იქნება. ეს ექსიტონი არაა აქტიური სინათლის შთანთქმის დიპოლურ მიახლოებაში, ექსპერიმენტალურად შეიძლება დავაფიქსიროთ თოლოძნ ამიტომ ის რეზონანსი, რომლის დროსაც მონაწილე ფოტონებიდან ერთერთი, ვთქვათ, დაცემული, იწვევს კვადრუპოლურ გადასვლას. ამ შემთხვევაში რამანის გაბნევაში მონაწილეობენ არალუწი (ჩვეულებრივ, აკრძალული) ფონონები. Cu₂O შესანიშნავი ოზიექტია რრგ შესასწავლად ამ ამგვარად, და მიმართულებით ბევრი საინტერესო სამუშაო შესრულდა [101-115].

როგორც ცნობილია, ნახევარგამტარების ენერგეტიკული სტრუქტურა შედგება სხვადასხვა, მკვეთრად განსხვავებული სიდიდეეზის რრგ-ით ენერგეტიკული ზონებისაგან,. ჯერჯერობით შესწავლილია მხოლოდ იმ აკრძალუ;ლი ზონების წვლილი რეზონანსში, რომელთა ენერგეტიკული ინტერვალი გადაიფარება ამჟამად არსებული საღებავის ლაზერებისა და პარამეტრული გენერატორების ენერგეტიკული გადაწყობის დიაპაზონით. ამ დიაპაზონის გაფართოებით შესაძლებელი იქნება რრგ შევისწავლოთ ფართოზონიანი ნახევარგამტარების ფართო კლასი და მათი სხვადასხვა ენერგეტიკული ზონები.

მოწინავე 60-იან წლებში მსოფლიოს სამეცნიერო ცენტრებში ინტენსიურად დაიწყეს ნახევარგამტარული მიკროელექტრონული მნიშვნელოვანი ხელსაწყოთმშენებლობის ერთერთი ფიზიკური ექსტრემალური ტექნოლოგიური მეთოდის, იონური ლეგირების (იონური იმპლანტაციის) განვითარება. ამ მეთოდმა ასეთი დიდი ყურადღება იმ გააჩნია უპირატესობათა გამო მიიქცია, რაც მას ტრადიციულ ტექნოლოგიებთან – დიფუზია, შედნობა და მდნარიდან ლეგირება, შედარებით: იონური იმპლანტაციისას ნახევარგამტარული საფენი შემდეგ იმყოფება დაბალი ტემპერატურის პირობებში; ამ პროცესის შესაძლებელია ზუსტად განვსაზღვროთ როგორც ლეგირებული მინარევის კონცენტრაცია, ასევე მისი შეღწევის სიღრმე და განაწილების პროფილი; იონური იმპლანტაციის ტექნოლოგია უნივერსალურია და შესაძლებელია მისი მთლიანი ავტომატიზაცია.

ასეთი პროგრესი შეუძლებელი იქნებოდა იმ ფიზიკური მოვლენებისა და თვისებების კვლევების გარეშე, რომლებითაც ხასიათდება იონური იმპლანტაციის პროცესი ნახევარგამტარებში. ამ კვლევათა ძირითადი შემდეგი ამოცანების გადასაწყვეტად: აქცენტები გაკეთებულია იმპლანტირებული იონების განაწილების პროფილებისა და შეღწევის ზუსტად განსაზღვრა და წინასწარმეტყველება, იონების სიღრმეების კანალირებისა და მისი არარსებობის გათვალისწინებით; კრისტალურ მესერში იმპლანტირებული იონებისა და იმპლანტაციის შედეგად ინდუცირებული დეფექტეზის ადგილმდებარეობის განსაზღვრა; ამ დეფექტების როლი სტრუქტურულ გარდაქმნათა პროცესში; დეფექტების გამოწვის პროცესების მონიტორინგი; სხვადასხვა იონებით საფენის ფაზების წარმოქმნილი იმპლანტაციისას ახალი იდენტიფიკაციამონიტორინგი; იმპლანტირებული იონების ელექტრული მახასიათებლების შეფასება; იონური იმპლანტაციის გამოყენება ნახევარგამტარული ხელსაწყოების დასამზადებლად [116-125].

მეცნიერული კვლევების ახალი მეთოდების ჩართვა იმპლანტაციის შესასწავლად პროცესეზის მისასალმებელია როგორც ფუნდამენტური გასაღრმავებლად, მიზნის, ცოდნის ასევე ერთერთი მირითადი ნახევარგამტარული ხელსაწყოების დამზადების სრულყოფილი განსახორციელებლადაც.

ფუნდამენტური და პრაქტიკული გამოკვლევების ერთერთი ასეთი ახალი სფეროა იონური იმპლანტაციით მოდიფიცირებული ნახევარგამტარების შესწავლა ლაზერული რამან-სპექტროსკოპიით.

წარმოიქმნება იმპლანტაციისას ნახევარგამტარებში იონური რადიაციული დეფექტები, მოუწესრიგებელი უბნები, წვრილკრისტალური კლასტერები, ამორფული ფაზები. იმპლანტირებული საფენის თერმიული დამუშავების შემდგომ შესაძლებელია კრისტალური მესერის სტრუქტურის ნაწილობრივ ან მთლიანად აღდგენა, იმპლანტირებული მინარევების ელექტრულად ნაერთების სინთეზირება. ამ აქტივაცია, ახალი სტრუქტურული გარდაქმნების თუ სხვა მრავალი საინტერესო მოვლენების

მონიტირონგისთვის ლაზერული რამან-სპექტროსკოპია აქტიურად გამოიყენება. მაგალითად, შრომებში [126-135] რამან-სპექტროსკოპიით შეისწავლეს სილიციუმსა და ალმასში სხვადასხვა იონების იმპლანტაციით გამოწვეული გარდაქმნები. იმპლანტაცია მიმდინარეობდა იონეზის ენერგიებითა და დოზებით. რამან-სპექტრების ჩაწერა სხვადასხვა 30 წარმოებდა ამგზნები ლ;აზერების სხვადასხვა ტალღის სიგრძეებით. ეს საშუალებას აძლევდა ავტორებს ინფორმაცია გარდაქმნების შესახებ მიეღოთ ნახევარგამტარების სხვადასხვა სისქის ფენებიდან. ამ გამოკვლევების საფუძველზე დაადგინეს, რომ დოზების გაზრდით ამ ნახევარგამტარების კრისტალური სტრუქტურა თანდათან გადადის ამორფულ ფაზაში. რამანის გაბნევით შეაფასეს ამორფიზაციის კრიტიკული დოზები და აღმოჩნდა, რომ იმპლანტირებული იონის მასის ან იონის ენერგის გაზრდით ამორფიზაციის კრიტიკული დოზები მცირდება. ამავე სამუშაოებში რამანის გაზნევით იქნა შეფასებული იმპლანტაციის შედეგად დარღვეული კრისტალური სტრუქტურის, შორეული აღდგენის სარისხი წესრიგის იმპლანტირებული საფენის თერმული დამუშავების შემდეგ.

[136-149] შრომებში ავტორებმა რამანის გაბნევით შეისწავლეს Si, GaP, InP, GaAs-ში იონური იმპლანტაციით ჩანერგილი სხვადასხვა მინარევების მიერ ლოკალური რხევების წარმოქმნის კანონზომიერებანი, ელექტრული აქტივაციის პროცესები. ლეგირების შემდეგ მინარევების ასეთი გააქტიურება შესაძლებელია ჩვეულებრივი თერმული გამოწვის, ჩქარი გამოწვის, იმპულსური თუ მუდმივი მოქმედების ლაზერული გამოწვებით. ამ შრომებში განსაზღვრულია ინდუცირებული ლოკალური რხევების ელექტრონების სიხშირეები, ხვრელების მიერ აქტივირებული თუ წარმოქმნილი პლაზმონ-ფონონური ბმების სიხშირეები და შედარებულია სხვადასხვა ტიპის გამოწვების ეფექტიანობა მინარევების აქტივაციის ხარისხის გაზრდის კუთხით.

[150-162] შრომები მიძღვნილია იონური იმპლანტაციის ერთერთი საინტერესო სფეროსადმი: სხვადასხვა ნახევარგამტარულ საფენში სხვადასხვა იონების იმპლანტაციით ახალი ნაერთების სინთეზირებისადმი.

იმპლანტაციას ამ შემთხვევაში აწარმოებდნენ როგორც ოთახის, ასევე მაღალ ტემპერატურებზე (ცხელი იმპლანტაცია). ორივე შემთხვევაში პირველ ეტაპზე ყოველთვის სინთეზირდება ახალი ნაერთის მთლიანად ან ნაწილობრივ ამორფული ფაზა. კრისტალური ნახევარგამტარის მისაღებად, რაც ექვივალენტურია იმპლანტაციის შედეგად დარღვეული კრისტალური მესერის პერიოდულობის აღდგენისა, გამოყენებულია თერმული ან ლაზერული გამოწვა. ფაზურ გარდაქმნათა ამ პროცესების მონიტორინგის მიზნით რამან-სპექტროსკოპიის გამოყენება მეტად ეფექტური აღმოჩნდა.

თავი 2. ლაზერული რამან-სპექტროსკოპიისა და მყარ სხეულებთან გამოსხივების ურთიერთმოქმედების მოკლე თეორიული საფუძვლები;

როდესაც გამოსხივება გადის გამჭვირვალე ნივთიერებაში, სხივის რაღაც ნაწილი ამ ნივთიერებაში ყველა მიმართულებით განიბნევა. 1928 წელს ინდოელმა ფიზიკოსმა რამანმა აღმოაჩინა, რომ სინათლის ეს გაბნეული ნაწილი განსხვავდება დაცემული სხივისაგან. აღნიშნული ნაწილი შეიცავს გამოსხივებას, რომლის ტალღის სიგრძეები განსხვავდება დაცემული სიგრძისაგან. ამგზნები გამოსხივების ტალღის ტალღის სიგრძეების ეს წანაცვლება დამოკიდებულია გამბნევი მოლეკულის სტრუქტურაზე.

ამჟამად რამანის გაბნევის (რგ) თეორია სრულადაა ჩამოყალიბებული და დადგენილია, რომ რგ-ის დროს წანაცვლებული ტალღის სიგრძეების გამომწვევი მექანიზმი იგივე კვანტური ენერგეტიკული დონეებია, რაც ინფრაწითელი (იწ) შთანთქმის დროს. ე.ი. სხვაობა ამგზნებ ტალღის სიგრძესა და გაბნეული სინათლის ტალღის სიგრძეებს შორის შეესაბამება შუა-იწ უბანს. მართლაც, რომ შევადაროთ ერთიდაიგივე ნივთიერების რგის და იწ-სპექტრები, დავინახავთ დიდ მსგავსებას ან იდენტურობას. მოკლედ, რომელთა იწ-სპექტროსკოპიაში ის რხევებია აქტიური, მოლეკულური დიპოლური მომენტები იცვლება რხევების მიხედვით; რგისას კი ის რხევებია აქტიური (მჟღავნდება სპექტრებში), რომელთა მოლეკულური პოლარიზება იცვლება რხევების მიხედვით. ამრიგად, რგ და იწ-სპექტროსკოპია ერთმანეთის კონკურენტები არა, 30 არამედ ინფორმაციის თვალსაზრისით ერთმანეთის დამატებებია.

გამოყენების თვალსაზრისით ზოგიერთ შემთხვევაში, ექსპერიმენტისას იწ-სპექტროსკოპიას უნდა მივანიჭოთ უპირატესობა, ზოგჯერ კი რგ შეუცვლელია. ასეა, მაგალითად, როდესაც ვიკვლევთ წყალხსნარებს. რგ-ის ექსპერიმენტებისათვის ვიყენებთ მინის ან კვარცის კიუვეტებს; იწსპექტროსკოპიაში კი, როგორც ცნობილია, გამოიყენება ჰიგროსკოპული

ტუტეჰალოიდური ნაერთებისაგან დამზადებული კიუვეტები, რომლებიც წყლისა და აგრესიული ხსნარების მიმართ არამდგრადია. აქედან ჩანს, რომ რგ დიდ მნიშვნელობას იძენს ბიოლოგიური და არაორგანული ნაერთებისა წყლის დამაზინძურებელი ოზიექტეზის და გამოკვლევის სფეროში. რგ-ის სხვა უფრო სპეციფიკურ უპირატესობებზე აქ მეტს აღარ ვილაპარაკებთ. ავღნიშნავთ მხოლოდ ერთ გარემოებას, რომელიც ზოგჯერ მინარევებით აფერხებს რგ-ის გამოყენებას. ესაა გამოწვეული ფოტოლუმინესცენცია (ფლ); თუმცა, ზოგჯერ სათანადო ექსპერიმენტული გამოყენებით შესაძლებელია ლუმინესცენციიდან მეთოდიკის თავის დაღწევა.

რამანის სპექტრის (რს) მისაღებად გამოსაკვლევი ნივთიერება უნდა მძლავრი, მონოქრომატული გავასხივოთ ლაზერის ტალღის სიგრძით სპექტრის ან ინფრაწითელ ულტრაიისფერ, ხილულ, ახლო უბანში. გასხივების განმავლობაში უნდა გამოვიკვლიოთ გაბნეული გამოსხივება სპექტრომეტრით. დაცემული (ამგზნები) ლაზერის შესაბამისი სხივის მიმართ გაზნეული სინათლის მიმართულება, რომელიც სპექტრომეტრის შესასვლელ ხვრელს ეცემა, ექსპერიმენტთა უმრავლეს შემთხვევაში ქმნის ოთხმოცდაათგრადუსიან კუთხეს. ეს კუთხე ანუ რამანის ექსპერიმენტთა კონფიგურაცია მრავალნაირია და იგი დამოკიდებულია ამოცანის მიზანზე, გამოსაკვლევი ობიექტის აგრეგატულ მდგომარებასა და მის ფიზიკა-ქიმიურ ოთხმოცდაათგრადუსიან გაზნევას თვისებებზე. მირითადად იყენებენ გამჭვირვალე ობიექტების შესასწავლად ყველა აგრეგატულ მდგომარეობაში. 180 - გრადუსიანი გაბნევა გამოყენებულია უფრო მეტად მყარ სხეულებში პოლიარიტონების შესასწავლად, ხოლო უკუ ანუ ნულოვანი კუთხით გაზნევის კონფიგურაცია გამოიყენება გაუმჭვირვალე მყარი სხეულების რამან-გაბნევით გამოკვლევის დროს. ასეთი კუთხეებით გამოკვლევისას გაზნეული ყველაზე ზუსტადაა დაცული დაცემული და სხიეების პოლიარიზაციული ვექტორეზის კომბინაციათა შესაბამისობა სპექტროსკოპიული შერჩევის წესებთან. რასაკვირველია, არსებობს გაბნევის კონფიგურაციები შუალედური კუთხეებითაც.

მირითადად, რამანის ხაზები (სპექტრი) შეადგენს ამგზნები ლაზერის სპექტრალური ხაზის ინტენსიობის 0,001%; შედეგად, რამანის სპექტრის აღმოჩენა და გაზომვა წარმოადგენს რთულ პრობლემას. ეს არ ეხება რეზონანსულ რამანის გაბნევას (რრგ), ზედაპირით გაძლიერებულ რამანის გაბნევას (ზგრგ), ზედაპირით გაძლიერებულ რეზონანსულ რამანის გაბნევის სხვა <u>გაბნევას (ზგრრგ)</u> რამანის ეფექტებს, რომლებიც და გაცილებით ძლიერი ინტენსიობებით ხასიათდება. საჭიროა ხაზი გაესვას, ამჟამად ერთერთი უმძლავრესი ანალიზური რომ ზგრრგ მეთოდია ბიოლოგებისთვის, ელექტროქიმიკოსებისათვის და ეკოლოგებისათვის.

გაბნეული გამოსხივება შედგება სამი ტიპისაგან, სახელდობრ, სტოქსის, ანტისტოქსისა და რელეის გაზნევისაგან. ამ უკანასკნელის ტალღის სიგრმე ზუსტად იგივეა, რაც ამგზნები ლაზერის ტალღის სიგრძე და მისი ინტენსიობა ბევრად დიდია ორ დანარჩენზე. რამანის სპექტრი წარმოადგენს ამგზნები ლაზერის სპექტრალური ხაზის მარჯვნივ და მარცხნივ სიმეტრიულად განლაგებული სპექტრალური ხაზების ერთობლიობას. ამგზნები ხაზის ტალღურ რიცხვზე უფრო დიდი ტალღური რიცხვით ხასიათდება ანტისტოქსის გამოსხივება, ხოლო სტოქსის გამოსხივებას შეესაბამება პიკები, რომელთა ტალღური რიცხვებიც ამგზნები ლაზერის ტალღურ რიცხვზე მცირეა. საჭიროა აღინიშნოს, რომ რამანის წანაცვლება იდენტურია სტოქსისა და ანტისტოქსის გამოსხივებისათვის. ეს წანაცვლება ასევე ერთიდაიგივე სიდიდისაა მიუხედავად იმისა, თუ რომელი ლაზერის ტალღის სიგრძით ვაწარმოებთ მოცემული ნაერთის რგ-ის სპექტრის აგზნებას.

ანტისტოქსური გამოსხივება ინტენსიობით ნაკლებია სტოქსის გაბნევასთან შედარებით და პრაქტიკაში რგ-ს სპექტრების ჩაწერისას ძირითადად გამოიყენება მხოლოდ სტოქსის გაბნევა. სპექტრის აბსცისაზე კი, რომელზედაც გადაზომილია რამანის წანაცვლებები, ტალღური რიცხვის მაგიერ იწერება უბრალოდ სმ⁻¹-ები. ასევე არ იწერება ნიშანი მინუსი სტოქსის გაბნევის შემთხვევაში.

ჩვეულებრივი ანუ ნორმალური რამანის სპექტროსკოპიაში გამოსაკვლევი ნივთიერების სპექტრალურად აგზნება წარმოებს ლაზერის გამოსხივების ისეთი ტალღის სიგრძით, რომელიც შორსაა ამ ნივთიერების ნებისმიერი ელექტრონული შთანთქმის პიკისაგან.

ნახ. 2.1-ზე წარმოდგენილია რელეისა და რამანის (სტოქსის, ანტისტოქსის) გაბნევის მექანიზმის ამსახველი სურათი:

ნახ. 2.1 რელეისა და რამანის გაბნევის ამსახველი სქემა

პირველი სქელი ისარი ასახავს ენერგიის ცვლილებას მოლეკულაში, დაცემული ლაზერის სხივის ფოტონებთან მისი ურთიერთმოქმედებისას. მოლეკულის ენერგიის ზრდა ტოლია ფოტონების ენერგიისა hv.

მეორე ვიწრო ისარი ასახავს იმ ცვლილებას, რომელსაც ადგილი ექნებოდა იმ შემთხვევაში, თუ მოლეკულა შეხვდებოდა გამოსხივებას მაშინ, როდესაც იქნებოდა მოლეკულა მთავარი ელექტრონული მდგომარეობის რხევით პირველ დონეზე (როგორც წესი, ასეთ მდგომარეობაში მოლეკულების მხოლოდ მცირე ნაწილი იმყოფება).

სქემის შუა ნაწილის ორი ისარი ასახავს ცვლილებებს, რომლებიც იწვევს რელეის გაბნევას. ამ შემთხვევაში არავითარ ენერგიის კარგვას არა

აქვს ადგილი, რადგანაც რელეის გაბნევისას მოლეკულასა და ფოტონს შორის მიმდინარეობს დრეკადი დაჯახება.

ენერგიის ცვლილება, რომელიც იწვევს სტოქსისა და ანტისტოქსის გამოსხივებას არადრეკადი გაბნევის შედეგად, სქემაზე წარმოდგენილია მარჯვნივ. ორი უკანასკნელი რელეის გაზნევისაგან ეს განსხვავდება რომლებიც სიხშირეებით, რომლეზიც შეესაზამეზა $+\Delta E$, ენერგიეზს, წარმოადგენს ძირითადი ელექტრონული მდგომარეობის პირველ რხევით დონეს (თუ მოლეკულის კავშირები აქტიურია იწ-უბანში, მაშინ მათ მიერ შთანთქმული ენერგიაც იქნება $+\Delta E$. ამგვარად, რამანის წანაცვლება და იწშთანთქმის პიკის სიხშირეები ერთიდაიგივე იქნება).

შეფარდებითი დასახლება ამ ორი ენერგეტიკული მდგომარეობისა ისეთია, რომ სტოქსის გაბნევა ჭარბობს ანტისტოქსს. გარდა ამისა, რელეის გაბნევა უფრო ალბათურია, ვიდრე რგ, რადგანაც უფრო ალბათური პროცესია მოლეკულისათვის ენერგიის გადაცემა ძირითად მდგომარეობაში და რეემისია იმავე მოლეკულის ძირითად მდგომარეობაში დაბრუნებით. უნდა აღინიშნოს, რომ ოთახის ტემპერატურაზე ანტისტოქსის სპექტრალური ხაზების ინტენსიობა უფრო სუსტია, ვიდრე სტოქსისა. ამის მიზეზია ის, რომ ამ პირობებში მოლეკულების მხოლოდ მცირე ნაწილი იმყოფება პირველ აგზნებულ რხევით მდგომარეობაში. სტოქსისა და ანტისტოქსის სპექტრალური ხაზების ინტენსიობათა ფარდობა ნაერთის ტემპერატურის ფუნქციაა და იზრდება ტემპერატურასთან ერთად.

როგორც ზემოთ აღვნიშნეთ, ჩვეულებრივი რამანის ეფექტი მეტად სუსტი ეფექტია და მისი ანალიტიკური თვალსაზრისით გამოყენება დიდ ხელოვნებას მოითხოვს. ეს ეფექტი შეიძლება გავაძლიეროთ 10⁵ ფაქტორით, თუ გამოვიყენებთ რრგ. ასეთი გაძლიერება მიიღწევა იმ შემთხვევაში, აღვაგზნებთ ლაზერის როდესაც გამოსაკვლევ ნივთიერებას სხივით, რომლის ტალღის სიგრძე თანხვდება ამ ნაერთის რომელიმე ელექტრონულ გადასვლას. ნორმალური რგ და რრგ ძალიან ხშირად გადაიფარება ფოტოლუმინესცენციით, რომელიც 10⁷-ჯერ ინტენსიურია, ვიდრე რგ.

მაგალითად, ამას ადგილი აქვს, როდესაც არომატულ ნაერთებს აღვაგზნებთ ხილული ან ულტრაიისფერი ლაზერებით.

ნახ. 2.2 იწ, რ, რგ, წინარეზონანსული რგ, რრგ, და ფლ ელექტრონული და რხევითი თერმების სქემა

ნახ. 2.2-ზე წარმოდგენილია იწ (ინფრაწითელი), რ (რელეის), რგ (რამანის გაბნევის), წინარეზონანსული რგ, რრგ (რეზონანსული რამანის გაბნევის) და ფლ (ფოტოლუმინესცენციის) ელექტრონული და რხევითი თერმების სქემა.

რამანის სპექტროსკოპიაში რამანის სპექტრის ექსპერიმენტალურად ჩაწერის შემდეგ საჭიროა ჩავატაროთ გარკვეული გამოთვლები, რათა ექსპერიმენტალურად მიღეზული ტალღის სიგრძეეზიდან გადავიდეთ რამანის წანაცვლებებზე, რომლებიც გამოხატულია სმ⁻¹-ებში. მაგალითად, რამანის სპექტრის მისაღებად ასაგზნებად როდესაც ვიყენეზთ პოპულარული არგონის მწვანე სპექტრალურ ხაზს 514.5სმ⁻¹ (უფრო ზუსტად, 514.308ს ∂^{-1}), ტალღური რიცხვი შემდეგნაირად გამოიანგარიშება:

 $v = 1/\lambda_0 [63] \times 10^7 [63] / [03] = 1/514.308 \times 10^7 = 19$ 44403-1

ამ კონკრეტულ შემთხვევაში რელეის გაბნევას ადგილი ექნება იგივე სიხშირეზე, როგორიც გააჩნია ამგზნებ არგონის მწვანე ხაზს და ეს სიხშირე ამის შემდეგ გამოაკლდება ყველა იმ გაბნეულ სიხშირეს, რომელიც ექსპერიმენტულად დაფიქსირდება სტოქსისა თუ ანტისტოქსის მხარეს. მივიღებთ რამანის სპექტრს, რომლის აბსცისაც იქნება გამოხატული სმ⁻¹ ერთეულებში, ხოლო ორდინატაზე გადაზომილი იქნება გაბნეული სინათლის ინტენსიობები. ნახ. 2.3 მოყვანილია ორგანული ნაერთის CCl₄ რამან-სპექტრი.

ნახ. 2.3 CCl₄ რამან-სპექტრი

შესაძლოა დაგვჭირდეს უკუგადასვლაც. მაგალითად, თუ რამანის პიკი დაიმზირება 3000სმ⁻¹ სიხშირეზე, მის შესაბამის ტალღის სიგრძეს გამოვიანგარიშებთ შემდეგნაირად:

 $\lambda_{\text{fb}} = 1/v_0 - v_{\text{fb}} [b_0^{-1}] \times E^7 [b_0^{-1}] / [b_0^{-1}] = 1/19 \ 000 - 3000 \times E^{10^7} = 608.1260$

ამგვარად, მწვანე სპექტრალური ხაზით აგზნება ამ შემთხვევაში იწვევს სტოქსის გაბნევის შედეგად რეემისიას ყვითელ სპექტრალურ ხაზად.

უნდა აღინიშნოს, რომ ეს გადაანგარიშებები განსაკუთრებით საჭიროა თვითნაკეთი, ლაბორატორიული ტიპის ლაზერული რამანსისტემებისათვის, როგორსაც ჩემი ლაზერული სისტემები წარმოადგენს. რამან-სპექტრომეტრებს, თანამედროვე, ძვირადღირებულ რომლებსაც ფირმეზი აწარმოებენ, ავტომატიზაციისა უცხოური სრული და კომპიუტერიზაციის გამო მსგავსი მანიპულიაციები არ ჭირდება: ამ სპექტრომეტრებში ათვლა წარმოებს როგორც ტალღის სიგრძეების, ასევე რამანის წანაცვლების სიხშირეების ერთეულებში.

თავი 3. ლაზერული სისტემების ხელსაწყოთმშენებლობის განვითარების ეტაპები და თანამედროვე ასპექტები;

რამან-სპექტრომეტრებში პირველ დისპერსიულ ელემენტად გამოიყენებოდა მაღალი დისპერსიის მქონე პრიზმები. შემდეგში იგი შეცვალა მექანიკური წესით დამზადებულმა დიფრაქციულმა მესერმა. სულ ბოლოს კი ფართოდ გამოიყენება ჰოლოგრაფიული დიფრაქციული მესერი. ეს უკანასკნელი იძლევა კარგი ხარისხის სპექტრებს, როლებიც თავისუფალია პარაზიტულად გაბნეული სინათლისაგან, ე.წ. "სულებისაგან". სულების მოშორება ჩვეულებრივი, მექანიკურად დაჭრილი დიფრაქციული მესრეზისაგან შეუძლებელია, ამიტომ ისინი ხშირად უშლიან ხელს ექსპერიმენტატორს. სპექტრომეტრეზის პროგრესი ასეთი სახით წარიმართებოდა: პირველად გამოიყენებოდა პრიზმული სპექტრომეტრები; შემდეგ იგი შეცვალა ორმაგმა დიფრაქციულმა სპექტრომეტრებმა; მომდევნო რამანის ჩასაწერად პერიოდში სპექტრების გამოიყენებოდა ორმაგი სპექტრომეტრეზი პოლოგრაფიული დიფრაქციული მესრეზით. ასეთ სპექტრომეტრებში პარაზიტულად გაზნეული სინათლე მონიმუმამდეა დაყვანილი. მცირე პერიოდის შენდეგ შეიქმნა სამმაგი რამან-30 სპექტრომეტრები, რომლებიც იძლევა იდეალურ სპექტრებს.

აღსანიშნავია რომ რამან-სპექტრომეტრების პროგრესი ამით არ დამთავრებულა და ამჟამადაც გრმელდება: ამუშავებენ რამანსპექტრომეტრებს ადამარის გარდაქმნით და ზოგიერთმა ფირმებმა უკვე გამოუშვეს რამან-სპექტრომეტრები ფურიეს გარდაქმნით.

ბოლო პერიოდში რამან-სპექტრომეტრების ტექნიკაში გაჩნდა მიმართულება უფრო მარტივი და იაფი სპექტრომეტრების სამმაგი კონსტრუირებისა, ვიდრე ძვირფასი და რთული ორმაგი და სპექტრომეტრებია. ეს არის დიდი სინათლის ძალის მქონე ერთმაგი ŋ.წ. სპექტრომეტრისა დიფრაქციული ჰოლოგრაფიული ნოტჩდა ფილტრების ერთობლიობა. აქ იდეა მდგომარეობს იმაში, რომ ერთმაგი სპექტრომეტრის ხარჯზე გაიზარდოს სპექტრომეტრში შესული სასარგებლო

გაბნეული სინათლის რაოდენობა და ნოტჩ-ფილტრმა შეასრულოს მეორე მონოქრომატორის მისია – გაასუფთაოს სპექტრი პარაზიტულად გაბნეული სინათლისაგან. ასეთი სისტემის გამოყენება მიზანშეწონილია მაშინ, როდესაც ფუნდამენტური მეცნიერული ამოცანისათვის ან ანალიტიკური სამუშაოსთვის არაა აუცილებელი ლაზერულ ამგზნებ ტალღის სიგრძესთან ძალიან ახლოს მისვლა, ე.ი. რამანის მცირე სიხშირეების მიღება, ან არ არის ძალიან მაღალი გარჩევისუნარიანობის მიღების მოთხოვნილება.

ასე რომ, ამჟამად რამან სპექტროსკოპია ტექნიკის თვალსაზრისით შეგვიძლია ორ ძირითად ნაწილად: ჩვეულებრივ, ანუ დავყოთ დისპერსიულ რამან სპექტროსკოპიად ფურიეს გარდაქმნით და სპექტროსკოპიად. დისპერსიული სპექტროსკოპია კი იყოფა სამ ნაწილად: ერთმაგი სპექტრომეტრი და ჰოლოგრაფიული ნოტჩ-ფილტრების სისტემა, ორმაგი მონოქრომატორიანი სპექტრომეტრი და სამმაგი მონოქრომატორიანი რამან სპექტრომეტრი. უნდა აღვნიშნო, რომ ჰოლოგრაფიული დისპერსიულ დიფრაქციული მესერის გამოყენება ნეზისმიერი ტიპის სისტემაშია შესაძლებელი, რაც გარანტიაა უფრო ხარისხიანი რამან სპექტრების მიღებისა. გარდა ამისა, სპექტრომეტრების ამ გრადაციას უნდა დაემატოს და ცალკე გამოიყოს ე.წ. მიკრო რამან-სპექტროსკოპია, რომელშიც რამან-სპექტრომეტრთან შეუღლებულია დიდი გარჩევისუნარიანობის მქონე ოპტიკური მიკროსკოპი (უკანასკნელ პერიოდში ელექტრონულიც), რაც რამან საშუალებას იძლევა მივიღოთ სპექტრები მყარი სხეულის ზედაპირზე ლაზერის სხივის სკანირებით, რამდენიმე მიკრონის სივრცითი გარჩევისუნარიანობით. თითოეული ზემოთმოყვანილი სპექტრომეტრის გამოყენების არეალს განსაზღვრავს დასმული ამოცანა ფინანსური და შესაძლებლობა.

უდიდესი პროგრესი განიცადა რამანის სიგნალის მიმღებებმა და სპექტრების რეგისტრაციის სისტემებმა. რამანის ეფექტის აღმოჩენის პირველ ეტაპზე სიგნალის დეტექტორად გამოიყენებოდა ფოტოფირფიტა და სუსტი ინტენსიობის გაბნეული სინათლის რეგისტრაციისათვის საჭირო იყო ექსპოზიცია, რომელიც საათებით განისაზღვრებოდა. გარდა ამისა,

ფირის ხარისხი არ იძლეოდა მეტად სუსტი ხაზების დაფიქსირების საშუალებას, მათ ინტენსიობებს გადაფარავდა ფირის შავი ფონი. პირველი პროგრესი მდგომარეოზდა ფოტორეგისტრაციის ფოტოელექტრულით შეცვლაში. ამ შემთხვევაში სიგნალის მიმღებად გამოყენებული იქნა ფოტოელექტრონული გამამამრავლებელი შეიქმნა მრავალი ფეგ-ი. სხვადასხვა ტიპის რომელთა ფეგ-ი. ფოტოკათოდები მგრძნობიარეა უბანში. რამან სპექტროსკოპიაში სპექტრის სხვადასხვა მირითადად დამკვიდრდა ორი ტიპის ფოტოკათოდი: მრავალტუტემეტალიანი და ჟანგბად-ცეზიუმიანი ფოტოკათოდები. აქედან პირველი შეუცვლელია რამანის სიგნალის დასაფიქსირებლად სპექტრის ახლო ულტრაიისფერსა და ხილულ არეში, ხოლო მეორე, ცეზიუმიანი ფოტოკათოდით ვაფიქსირებთ რამანის სიგნალს ღრმა წითელიდან ახლო ინფრაწითელ უბანში. როდესაც ვლაპარაკოზთ, რომ ვაფიქსირეზთ სიგნალს სპექტრის გარკვეულ ინტერვალში, რამან სპექტროსკოპიაში ეს ნიშნავს, რომ რამანის სპექტრების წარმოებს ლაზერებით, რომელთა გამოსხივეზის აგზნება ტალღის სიგრძეები ამ უბნებშია მოთავსებული. ამჟამად მსოფლიოში არსებული ფეგ-ები სპექტრალურად მგრძნობიარენი არიან 300-12000 ნმ ინტერვალში. 1,2 მმკ-ის ზევით უფრო დიდი, ინფრაწითელი ტალღებისაკენ არც ერთ მეტალს ან მათ შენადნობებს არ გააჩნია ელექტრონებისათვის ისეთი დაბალი გამოსვლის მუშაობის სიდიდე, რომ მათ იგრძნონ უფრო გრძელტალღიანი გამოსხივება. 1,2 მმკ-ის ზევით უკვე გამოიყენება დაბალ ტემპერატურებზე მომუშავე ნახევარგამტარული ფოტოწინააღმდეგობები, მაგრამ მათი პარამეტრები ვერ შეედრება ფეგ-ებისას. დიდად ნახევარგამტარული პერსპექტიულია ზვავისმაგვარი ფოტოელემენტები, რომლებიც ფაქტიურად წარმოადგენს მყარსხეულოვან ფეგ-ებს. სამწუხაროდ, მათმა ტექნოლოგიამ ჯერჯერობით ვერ მიაღწია ისეთ დონეს, რომ ისინი მასიურად გამოვიყენოთ. ამჟამად ყველაზე პერსპექტიული და საუკეთესოა დინოდებიც დამზადებულია ფეგ-ები, რომელთა კათოდები და ნახევარგამტარული მასალებისაგან. ეს მასალებია ძირითადად A^3B^5 ტიპის ნახევარგამტარები GaAs, GaP, InP და მათ საფუძველზე სინთეზირებული

შერეული კრისტალები: GaAsP, GaInP და სხვა. ასეთი ფეგ-ების უპირატესობა მდგომარეობს იმაში, რომ ჯერ ერთი, მათი ფოტოკათოდების კვანტური ეფექტურობა, ე.ი. ელექტრონების გამოსავალი, ათეულობით აღემატება ჩვეულებრივ მეტალკათოდიანებისას; მეორე, არანაკლები უპირატესობა იმაშია, რომ ნახევარგამტარული კათოდებიანი და დინოდებიანი ფეგ-ების მგრძნობიარობა თანაბარია სპექტრალური სპექტრის საკმაოდ ത്രത ხასიათდება ე.წ. ინტერვალში, ე.ი. ეს მრუდი ფართო პლატოთი. პოტენციალურად შესაძლებელია ასეთი ფეგ-ების დამზადება უფრო გრძელტალღოვანი ინფრაწითელი გამოსხივების რეგისტრაციისათვისაც (უკვე ამზადებენ), მაგრამ ასეთი ფეგ-ები მსოფლიო ბაზარზე ძალიან ძვირია ჩვეულებრივთან შედარებით. თანამედროვე ფეგ-ებს შეუძლიათ იგრძნონ ფოტონები მოახდინონ მათი ცალკეული და რეგისტრაცია ფოტოელექტრონების დათვლის მეთოდით.

რამან სპექტრომეტრი, რომელიც აღჭურვილია მგრძნობიარე, სპეციალურად შერჩეული ფეგ-ით, ითვლება ერთარხიან ხელსაწყოდ და მის მიერ რეგისტრირებული მინიმალური სიგნალი შემოსაზღვრულია ფეგ-ის მგრძნობიარობით. გარდა ამისა, ასეთ რამან-სისტემებში სპექტრების ჩაწერა წარმოებს დიფრაქციული მესერის სკანირებით დროში. თუ ექსპერიმენტის ამოცანა მოითხოვს სპექტრის დიდი მონაკვეთის ჩაწერას, ბუნებრივია, სკანირების დრო იზრდება და ექსპერიმენტს დიდი დრო ჭირდება.

ამჟამად რამან სპექტრების რეგისტრაციისათვის გამოიყენება უკვე ახალი ტიპის, მრავალარხიანი მიმღებები, რომელთაგან ყველაზე საუკეთესო და პოპულარულია CCD დეტექტორები.

აღნიშნული დეტექტორი აწარმოებს სპექტრის დიდი ინტერვალის ითით მგრმნობიარობით ერთდროულ რეგისტრაციას დროის მცირე მონაკვეთში. CCD წარმოადგენს ნახევარგამტარულ ხელსაწყოს, სადაც ზედაპირის ფართზე მიკროელექტრონიკული განლაგებულია დამზადებული ტექნოლოგიით სილიციუმის პატარა დეტექტორები, რომელთა რიცხვი სხვადასხვაა და მაღალი კლასის CCD-ეებში იგი ტოლია 1026x256, ზოგიერთში კი უფრო მეტიცაა. ესაა ამ დეტექტორის ძალიან

წარმოდგენა. ფაქტიურად, წარმოადგენს სიგნალის ზოგადი იგი წარმოდგენა იქმნება, თითქოს ერთის დამგროვებელს; ისეთი მაგიერ მრავალი აფიქსირებს ერთდროულად სიგნალს ექსპოზიციის ფეგ-ი პერიოდში. ამიტომ, ბუნებრივია, მისი მგრძნობიარობა დიდადაა გაზრდილი. გარდა ამისა, შესაძლებელია რამან-სპექტრის დიდი უბნის ერთდროული რეგისტრაცია წამებისა და წუთების განმავლობაში.

როდესაც რამან-სისტემეზი აგებულია CCD დეტექტორების გამოყენებით, უკვე საჭიროა არა სპექტრომეტრები, საჭიროა სპექტროგრაფი. ყოველ შემთხვევაში, სისტემის ბოლო საფეხური უნდა იყოს სპექტროგრაფი, რათა CCD-ს მგრძნობიარე ზედაპირს გამოსხივება დაეცეს არა ხვრელიდან, სპექტრომეტრის ვიწრო გამოსასვლელი არამედ სპექტროგრაფის ფართო პორტიდან. ამჟამად რამან-სისტემები, რომლებიც შედგება სხვადასხვა ტალღის სიგრძის გამოსხივეზის ამგზნეზი ლაზერებისაგან, ერთმაგი, ორმაგი, ან სამმაგი სპექტროგრაფის, ძლიერი ოპტიკური მიკროსკოპის, კრიოგენული ტექნიკის, CCD დეტექტორისა და კომპიუტერისაგან, რომლითაც მთელი სისტემა პროგრამულად იმართება, შესაძლებლობების ყველაზე თანამედროვე და იდიდ მქონე რამანსისტემებია. ასეთ სპექტრომეტრებს აწარმოებენ აშშ, საფრანგეთი, ინგლისი, იაპონია და ეს სისტემები ასეულ ათასობით დოლარი ღირს.

რაც შეეხება ამგზნებ ლაზერებს, მათ მიმართ მოთხოვნები, ვფიქრობ, შეიცვალა. ადრე, ლაზერული რამან-სპექტროსკოპიის განვითარების პირველ ეტაპზე, ყველა ექსპერიმენტატორი ცდილობდა ჰქონოდა რაც შეიძლება მაღალი სიმძლავრის ლაზერები, რათა მის ხარჯზე გაეზარდა სისტემის დამაკმაყოფილებელი მგრძნობიარობა, მიეღო რამან-სპექტრეზი და აღმოეჩინა ნივთიერებათა მინიმალური კონცენტრაცია ხსნარებში ან მცირე რაოდენობის მინარევები კრისტალებში. თანამედროვე ეტაპზე, თუ შენი რამან-სისტემა CCD-ഗറ შეიარაღებულია და ოპტომიზირებული სპექტრომეტრით, სრულიად არაა საჭირო ერთი ვატის ან მეტი სიმძლავრის მონოქრომატული ლაზერით ააგზნო სპექტრი. ამ შემთხვევაში უკვე

რამდენიმე მილივატის სიმძლავრის გამოსხივებაც კი საკმარისია დაბალი კონცენტრაციის ხსნარების კარგი ხარისხის რამან-სპექტრების მისაღებად.

თავი 4. ლაზერული რამან-სისტემების კონსტრუქციები, მათი პრაქტიკული გამოყენების შესაძლებლობები და პერსპექტივები

რამანნეზისმიერი ლაზერული რამან-სისტემა, ლაზერული სპექტრომეტრი ძირითადად შემდეგი მთავარი ნაწილისაგან შედგება: ამგზნები ლაზერი; ერთმაგი, ორმაგი ან სამმაგი სპექტრომეტრი; სიგნალის მგრმნობიარე მიმღები; გამაძლიერებელი და რეგისტრაციის სისტემა. ამ კომპლექსს უნდა დავუმატოთ გამოსაკვლევი ნიმუშის მოსათავსებელი რომელიც მოწყობილობა, საშუალებას მოგვცემს შევისწავლოთ გამოსაკვლევი ნიმუში რამანის გაზნევის სხვადასხვა კონფიგურაციული სქემებით. რამანის სპექტრომეტრი გარდა ამ ძირითადი ბლოკებისა, შეიცავს კიდევ მრავალ სხვა აქსესუარს: ოპტიკურ, მექანიკურ, კრიოგენულ და სხვა ბლოკებსა თუ დეტალებს.

4.1 ლაბორატორიული ტიპის ლაზერული რამან-სისტემის კონსტრუქცია სპექტრის ხილულ არეში ამგზნები ლაზერების გამოყენებით

ახლა წარმოგიდგენთ იმ ერთერთი ლაზერული რამან-სისტემის მაკეტს და მოკლე აღწერას, რომელიც ავაწყე საქართველოში პირველად და მასზე შევასრულე ზოგიერთი ნახევარგამტარული მასალის გამოკვლევა.

ნახ. 4.1-ზე წარმოდგენილია ჩვენს მიერ კონსტრუირებული ლაზერული რამან სისტემის სქემა. ამგზნებ წყაროდ გამოიყენება არგონის, კრიპტონის, ჰელიუმ-ნეონის, ჰელიუმ-კადმიუმის, სპილენმის ლაზერები. ის ტალღის სიგრძეები, რომლებითაც ხასიათდება ზემოთჩამოთვლილი ლაზერების გამოსხივებები და რომელთაც ვიყენებ რამან-სპექტრების ასაგზნებად, მოყვანილია ცხრილში 1. ეს ლაზერები ძირითადად სტანდარტული, ქარხნული წარმოებისაა. ამასთან ერთად, გაგვაჩნია აგრეთვე თვითნაკეთი, ლაბორატორიული ტიპის ლაზერებიც. ესენია კრიპტონისა და არგონის ლაზერები. ჩვენს მიერ კონსტრუირებულ არგონისა და კრიპტონის ლაზერებს შემდეგი პარამეტრები

აქვს: კრიპტონის ლაზერის გამოსხივება არის ერთმოდიანი, ტალღის სიგრძეებით 530.9, 568.2, 647.1ნმ, ინტეგრალური სიმძლავრე დაახლოებით ერთი ვატი, ვერტიკალური პოლარიზაციის გამოსხივებით. არგონის ლაზერი ხასიათდება შემდეგი პარამეტრებით: ერთმოდიანი, გამოსხივების ტალღის სიგრძეებით 457.9, 476.5, 488.0, 496.5, 501.7, 514.5 ნმ, ინტეგრალური

ნახ. 4.1 ჩვენს მიერ საქართველოში პირველად კონსტრუირებული ლაზერული რამან-სისტემის ზოგადი სქემა

სიმძლავრე დაახლოებით სამი ვატი, ვერტიკალურად პოლარიზებული გამოსხივება. კონსტრუირებული ლაბორატორიული ტიპის არგონისა და კრიპტონის იონური ლაზერები ექსპერიმენტული პირობების უფრო ფართო ვარირების საშუალებას გვაძლევს. ამ გარემოებას ისიც უწყობს ხელს, რომ კონსტრუირებულია ლარიონოვის სქემის მაღალდენიანი ორი გამმართველ. ისინი კვებავენ ლაზერების აქტიურ ელემეტსა და მაგნიტურ სოლენოიდს და ავტონომიურად მუშაობენ დენის ცვლილების რეჟიმში.

სპექტრების მისაღებად ვიყენებთ ორმაგ დიფრაქციულ სპექტრომეტრს DFS-24, დიფრაქციული რეპლიკებით 1200შტ/მმ. ამ მესრებისთვის სინათლის მაქსიმალური კონცენტრაცია დაახლოებით სპექტრის ყვითელ უბანზე მოდის; ამიტომ ჩვენს მიერ გამოყენებული ლაზერების ამგზნები ტალღის სიგრმეებიდან ზოგი მათგანისთვის რამან-სპექტრების მისაღებად ოპტი-

Lasers	Laser Type	Wavelenght	Energy (eV)
		(nm)	
He-Ne	gas	632.8	1.958
Argon ion	gas	514.5	2.408
		501.7	2.469
		496.5	2.495
		488.0	2.539
		476.5	2.600
		457.9	2.705
Cripton ion	gas	647.1	1.914
		568.2	2.180
		530.9	2.33
		520.8	2.379
		476.2	2.601
He-Cd	gas	441.7	2.805
Copper	metal	510.6	2.428
	vapour	578.2	2.144
YAG:Nd	solid	1064.0	1.17
Die	solution	540.0-690.0	2.296-1.797

ცხრილი 1 რამან-სპექტრების ასაგზნებად ჩვენს მიერ გამოყენებული ლაზერების ტალღის სიგრძეები

მალური პირობებია, ზოგისთვის კი კომპრომისული სიტუაციაა. ყველა ამგზნები ლაზერის ტალღის სიგრძისათვის ოპტიმალური პირობების ტიპის შექმნის მიზნით კონსტრუირებულია სამი სხვადასხვა რამან განსხვავდება სპექტრომეტრი. სპექტრომეტრები ერთმანეთისაგან სპექტრალური დიაპაზონებით და სხვა ოპტიკური პარამეტრებით. ეს

საშუალებას გვაძლევს შევქმნათ რამან-სპექტრების აგზნებისა და რეგისტრაციის ოპტიმალური რეჟიმები.

ლაზერიდან გამოსული გამოსხივება დიაფრაგმების (d), პრიზმის (pr), ინტერფერენციული ფილტრის (if), სარკეების (s) და ობიექტივის (ob)საშუალებებით იწმინდება ლაზერის გამოსხივების ფონისაგან, პლაზმური გამოსხივების ვიწრო სპექტრალური ზოლებისაგან; ფორმირდება მკაცრად კოლიმირებული მონოქრომატული გამოსხივება სასურველი მიმართულებით, გაბნევის დაგეგმილი კონფიგურაციის შესაბამისად, და გამოსაკვლევ ნახევარგამტარზე ფოკუსირდება (n). ნახევარგამტარში გაბნეული გამოსხივება შეიკრიბება კონდენსორის (k) საშუალებით და ორმაგი პოლარიზაციის ანალიზატორის (p) ეცემა გავლით მონოქრომატორის შესასვლელ ხვრელს (ხვ.1). ფოტოლუმინესცენციის ან რამანის გაზნევის სიგნალი გამოსასვლელი ხვრელიდან ეცემა ფოტოგამამრავლებლის (ფგ) კათოდს და სიგნალის გაძლიერებისა და დახარისხების შემდეგ წარმოებს ფლ-ის ან რგ-ის სპექტრების რეგისტრაცია თვითჩამწერით LKS-004. რგ-ის სუსტი ინტენსიობის სიგნალების აღმოჩენა და გაძლიერება წარმოებს ორი მეთოდით: სინქრონული დეტექტირების მეთოდით, მოდულატორის (მ) და ვიწროზოლიანი გამაძლიერებლის (Lockin-amplifier Uniphan 232B)-ის საშუალებით; ანდა ცალკეული ფოტონის დათვლის მეთოდით, რომლისთვისაც ვიყენებთ გერმანული წარმოების რადიომეტრს 20046. სპექტრის ხილულ უბანში ვმუშაობთ ზედმიწევნით კარგად შერჩეული პარამეტრებიანი ფეგ-ით FEU-79 ან FEU-136. საჭიროების შემთხვევაში FEU-79 კათოდს ვაცივებთ დაახლოებით –100⁰ Cზე, რისთვისაც ავაგეთ სამი სხვადასხვა ტიპის, განსხვავებულ პრინციპებზე მოქმედი დაბალტემპერატურული კრიოსტატი. ასეთ კრიოსტატებში FEU-79 კათოდის გაცივებით მივაღწიეთ სიგნალთან ხმაურის შეფარდების გაზრდას დაახლოებით რვამდე, რასაც დიდი მნიშვნელობა აქვს რამან-სპექტრების რეგისტრაციის დროს.

გარდა ზემოთაღწერილი ლაზერული რამან-სპექტრომეტრისა, ავაგეთ სხვადასხვა ტიპისა და კონსტრუქციის დაბალტემპერატურული

კრიოსტატები, რომლებიც საშუალებას გვაძლევს ნახევარგამტარების ფლ-ის რამან-სპექტრები გამოვიკვლიოთ აზოტისა ჰელიუმის და და ტეპერატურებზე, როგორც ფიქსირებულ, ასევე ტემპერატურის ცვლილების რეჟიმში. ოპტიკური, კომპაქტური კრიოსტატები სპეციალურად ეს შევქმენით რამან-სპექტროსკოპული გამოკვლევებისათვის იმ მომენტის გათვალისწინებით, რომ რგ-ის გაზომვების დროს ამგზნები ლაზერის გამოსაკვლევი ნიმუშის სხივის მიმართულება, ნახევარგამტარის კრისტალოგრაფიული ღერძები და გაბნეული გამოსხივების შეკრების ქმნიან გაზომვის სხვადასხვა კონფიგურაციულ სქემეზში კუთხე განსხვავებულ კონფიგურაციებს.

ნახევარგამტარების რამან-სპექტრებსა და ფლ-ზე ერთმხრივ მიმართული წნევის გავლენის შესწავლის მიზნით ჩვენი რამან-სისტემებისათვის შევქმენით სპეციალური კრიოსტატი, რომელიც მუშაობს აზოტის ტემპერატურაზე.

გარდა დაბალტემპერატურული კრიოსტატებისა, ავაგეთ აგრეთვე მაღალტემპერატურული კრიოსტატიც, რომელიც საშუალებას გვაძლევს შევისწავლოთ ნახევარგამტარები 18⁰ C-იდან 600⁰ C-მდე.

ამგვარად, ჩვენს მიერ შექმნილი ლაზერული რამან-სისტემა საშუალებას იძლევა ჩავატაროთ მყარი სხეულების (კრისტალური, შერეული მყარი წვრილკრისტალური, ხსნარები, ამორფული, მინისებური, ფხვნილები, ნანოკრისტალური) ფართომასშტაბიანი ფუნდამენტური კვლევები და ანალიზური სამუშაოები სპექტრალური აგზნების უაღრესად ფართო დიაპაზონში, ერთმხრივმიმართული დამაბულობის გავლენითა და ტემპერატურულ ინტერვალში 10^{0} K-იდან 300^{0} K-მდე. ეს გამოკვლევები შესაძლებელია ჩატარდეს როგორც მოცულობით გამჭვირვალე კრისტალებზე, ასევე თხელ ფირებზეც.

აღწერილი სისტემა საშუალებას იძლევა შევასრულოთ კვლევები და ანალიზური სამუშაოები რამან-სპექტროსკოპიაში სითხეებზეც, რომლითაც უმეტესად დაინტერესებულნი არიან ქიმიკოსები, ბიოლოგები,

ფარმაცევტები, მედიკოსები, სოფლის მეურნობის მუშაკები, ეკოლოგები და ა.შ.

ზემოთ აღწერილი ერთერთი ლაზერული რამან-სისტემა, რომელიც მუშაობს სპექტრის ხილულ არეში ლაზერის აგზნებით, წარმოვადგინეთ ზოგადად, ერთობლიობაში ყველა აქსესუართან. ეს გავაკეთეთ იმ მიზნით, რომ შეიქმნას სრულყოფილი ლაზერული რამან-სისტემის მუშაობის საერთო შესაძლებელი მისი სურათი, რათა იყოს გამოყენებით გამოვიკვლიოთ თითქმის ნებისმიერი ნივთიერეზის ფუნდამენტური ფიზიკა-ქიმიური თვისეზეზი ვაწარმოოთ ანალიზური სამუშაოები და ლაზერული რამან-სპექტროსკოპიისა და ლაზერული ფოტოლუმინესცენციის მეთოდეზით.

რამან-სისტემების 60 ახლა ცალკ-ცალკე მოკლედ განვიხილავთ ტიპებისა და მათი შემადგენელი მნიშვნელოვანი ბლოკების სხვადასვა კონსტრუქციებს, რომლებიც შევქმენით. გარდა ამისა, შეძლებისდაგვარად თანმიმდევრულად განვმარტავთ, ავხსნით და მიმოვიხილავთ თითოეული ბლოკის დანიშნულებას, მნიშვნელობას, კონსტრუქციების ერთობლივ ფუნქციას და მათ თანამედროვე ანალოგებს საერთაშორისო ბაზრის მიხედვით.

4.2 რამანის გაბნევისა და ფოტოლუმინესცენციის ასაგზნებად ჩვენს მიერ გამოყენებული ლაბორატორიული ტიპის ლაზერების კონსტრუქციების გამოყენების ზოგადი კრიტერიუმები

რამანის გაზნევის მეთოდოლოგიის ძირითადი კანონია რამანის ხარისხთან ინტენსიობის ამგზნები ტალღის სიგრძის მეოთხე რამანის უკუპროპორციულობა. ინტენსიობის გაზნევის Ŋ. 0. ഗുറത ექსპერიმენტატორი უნდა ცდილობდეს გამოიყენოს, რაც მისაღებად შეიძლება მოკლეტალღოვანი აგზნება. ამ ძირითადი კანონის პრაქტიკაში განხორციელება მხოლოდ სურვილზე ১পি১১ დამყარებული. სურვილი

შემოსაზღვრულია გამოსაკვლევი ობიექტის ფიზიკა-ქიმიური თვისებებით, დასმული ამოცანითა და მატერიალური რესურსებით (განსაკუთრებით ლაზერული ტექნიკის მომხმარებლებისათვის მატერიალური რესურსები ყოველთვის გასათვალისწინებელია).

როდესაც გამოსაკვლევი ობიექტი სუფთაა, მინარევების გარეშე, რომლებიც არ იწვევს ლუმინესცენციას, აკრძალული ზონის სიგანე ძალიან დიდია ან კრისტალი ძალიან გამჭვირვალეა სტრუქტურული დეფექტების ნაკლებობის გამო, მაშინ უნდა ვეცადოთ, რომ ლაზერის გამოსხივების ამგზნები კვანტები რაც შეიძლება დიდი ენერგიის იყოს და მათი ენერგია აკრძალული ზონის ნახევარზე მეტს უახლოვდებოდეს. იმ შემთხვევაში, თუ ან გამო მინარევების დეფექტების მოკლე იწვევს ტალღები ლუმინესცენციას, მაშინ იძულებულნი ვართ მოკლეტალღოვანი აღგზნება შევცვალოთ უფრო გრძელი ტალღების აგზნებით. ამ შემთხვევაში რამანის გაბნევის ინტენსიობა ტალღის სიგრძის მეოთხე ხარისხის კანონით ეცემა, მაგრამ სამაგიეროდ მეტნაკლებად ან აბსოლუტურად ვთავისუფლდებით ხელისშემშლელი ლუმინესცენციის ფონისაგან და ვიღებთ სუფთა რამანის სპექტრს. ასეთი იყო აქამდე რამანის სპექტრების ჩაწერის კლასიკური მეთოდოლოგიური მიდგომა. ამჟამად უკანასკნელ ოცწლეულში მკაფიოდ ჩამოყალიბდა შემდეგი მეთოდოლოგია, რომელიც მყარადაა დაკავშირებული ლაზერული რამან-სპექტრომეტრების თანამედროვე რამანის სპექტრეზის დაყოფასთან: პირველი, ესაა მიღება ხილული სპექტრის უბანში მოთავსებული ტალღის სიგრძეების აგზნებით; მეორე, ახლო იწ-ტალღის სიგრძეებით; ბოლო ჟამს დიდი ყურადღება მიიპყრო ულტრაიისფერი უბნის ტალღის სიგრძეებით რამანის გაბნევის სპექტრების აგზნებამ. აქაც იდეა მდგომარეობს ლუმინესცენციის უბნიდან თავის დაღწევაში. ნათქვამიდან გამომდინარეობს შედეგი, რომ რამანსა და ლუმინესცენციაში მომუშავე ექსპერიმენტატორმა გონივრულად უნდა დაგეგმოს თავისი ამოცანის შესატყვისი ექსპერიმენტი და გამოიყენოს ექსერიმენტული საშუალებების ის არსენალი, რომელიც მოცემულ მომენტში ველაზე მეტადაა მომგებიანი.

პრინციპეზის მიზნით ზემოთმოყვანილი პრაქტიკაში გატარების აღგვეჭურვა ჩვენი ლაზერული ლაბორატორია სხვადასხვა ვეცადეთ ნაწილი ტალღის სიგრძეების ლაზერებით. იმათგან, რისი შეძენის მატერიალური საშუალებაც გაგვაჩნდა, ქარხნულია, ხოლო ნაწილი ჩვენს მიერაა კონსტრუირებული. დავიწყოთ ლაზერული რამან-სპექტროსკოპიის ერთერთი მთავარი ლაზერებით, გაზური არგონისა და გაზური კრიპტონის ლაზერების ჩვენი კონსტრუქციების აღწერით.

4.3 ლაბორატორიული ტიპის არგონისა და კრიპტონის გაზის ლაზერების ჩვენეული კონსტრუქციები

კეთილშობილი იონური გაზების, არგონისა და კრიპტონის საფუძველზე მოქმედ ლაზერებს კონსტრუქციულად მსგავსი სახე აქვთ. ან სხვადასხვა კონსტრუქციის კვარცის, ბერილიუმის გრაფიტის კაპილარული, დაახლოებით, ერთმეტრიანი სიგრძის მილი, ჰერმეტულად გამდინარე ჩამაგრებულია წყლით გაცივებულ გარსაცმში. აქვეა ჩამონტაჟებული მაღალი დენის (50 ამპერი) კათოდი და ანოდი. კათოდი უნდა იყოს დიდი კონცენტრაციის ელექტრონების წყარო. ამის გამო თანამედროვე კათოდები სპეციალური ტექნოლოგიებით დამუშავებული სპირალებია და მათ ეწოდებათ პირდაპირი ვარვარების კათოდები. ისინი იკვებება ავტონომიურად, დაახლოებით 6 ვოლტისა და 30 ამპერის დენის წყაროს საშუალებით. ბუნებრივია, ასეთი კათოდი ცივდება გამდინარე წყლით. ანოდი წარმოადგენს სპირალურად დახვეულ სპილენძის მილს, რომელიც დიდი დენების გავლის გამო აგრეთვე ინტენსიურად ცივდება გამდინარე წყლით. ანოდსა და კათოდს შორის მოდებულია ძაბვა მუდმივი სპეციალური გამმართველიდან. გამმართველის საშუალებით დენის ლაზერის შეგვიძლია ვცვალოთ აქტიური ელემენტის, მილის დენი. ლაზერის მილი კოაქსიალურად მოთავსებულია გასწვრივი მაგნიტური ველის სოლენოიდში. ეს სოლენოიდი იკვებება თავისი კვების წყაროთი,

იმის როგორი მუდმივი დენის გამმართველით. მიხედვით თუ კონსტრუქციისაა ლაზერის მილი, შესაბამისად იცვლება სოლენოიდის კონსტრუქცია და დენით კვების წყაროს პარამეტრები. ჩვენ გაგვაჩნია ორი ტიპის კონსტრუქციის აქტიური ელემენტი: ერთი, სოლენოიდით, რომელიც ავტონომიურია მილისაგან და მეორე, სოლენოიდით, რომელიც პირდაპირ კაპილარზეა მილის დახვეული. პირველ შემთხვევაში სოლენოიდი შედარებით წვრილი მავთულით დახვეული კოჭაა დიდი რაოდენობის ამპერ-ხვიებით, ხოლო მეორე შემთხვევაში ერთმილიმეტრიანი სპილენმის მავთულით დახვეული ერთი რიგის კოჭაა. ამიტომ პირველ შემთხვევაში კვება მოითხოვს დაახლოებით 4-10 ვოლტ მაბვას და შესაბამისად მცირე მეორე დენებს, შემთხვევაში სოლენოიდის წინააღმდეგობა ხოლო დაახლოებით ერთი ომია და სასურველი მაგნიტური ველის მისაღწევად საჭიროა 40-70 ამპერი და დაახლოებით 50-60 ვოლტი მუდმივი ძაბვა. ბუნებრივია, რომ მეორე ტიპის სოლენოიდი მოითხოვს უფრო ინტენსიურ გაცივებას გამდინარე წყლით, ვიდრე პირველი ტიპისა. ეკონომიური თვალსაზრისითაც განსხვავდება ეს სოლენოიდები ერთმანეთისაგან, მაგრამ სოლენოიდის ტიპს კარნახობს მხოლოდ და მხოლოდ ლაზერის აქტიური შემადგენელი ლაზერის ელემენტის კონსტრუქცია. და ერთერთი პრინციპული ბლოკია ოპტიკური რეზონატორი. იგი წარმოადგენს ორი დიელექტრიკული სარკის ერთობლიობას, რომელთგან ერთი 100% არეკლვის კოეფიციენტით ხასიათდება და იგი ლაზერის გამოსხივებას გარეთ არ უშვებს; მეორეს გააჩნია ნაკლები არეკლვის კოეფიციენტი და ეს კოეფიციენტი განისაზღვრება სიგრძეზე გამოსხივეზის 60 ტალღის ოპტიმალური მნიშვნელობით, სიმძლავრის რომელიც გვინდა, რომ მივიღოთ. ამ სარკეს გამოსხივების გამოსასვლელი დიელექტრიკული სარკე საერთოდ, ეწოდება. რაც უფრო დიდია ლაზერული გადასვლის მით გაძლიერების კოეფიციენტი, უფრო ნაკლები არეკლვის კოეფიციენტიანი სარკის გამოყენება შეგვიძლია რეზონატორში, რათა ნაწილი რეზონატორის გარეთ ინდუცირებული გამოსხივების დიდი გამოვიყვანოთ. რეზონატორები უამრავი ტიპისაა მათზეა და

დამოკიდებული ლაზერის სხივის პარამეტრები და ხარისხი. ცნობილია, რომ ლაზერული რამან-სპექტროსკოპიისათვის ლაზერის სხივის პარამეტრებს და ხარისხს გადამწყვეტი თუ არა, უდიდესი მნიშვნელობა მაინც აქვს. კარგი სპექტრების მისაღებად საჭიროა ლაზერის სხივი იყოს ერთმოდიანი, ადგილი არ ჰქონდეს ტალღის სიგრძის ხტუნაობას და მისი სიმძლავრე იყოს დროში სტაბილური.

ნახ. 4.2 ნაჩვენებია ჩვენს მიერ აგებული იონიზირებულ არგონსა და კრიპტონზე მომუშავე გაზური ლაზერების სქემა.

ნახ. 4.2 ლაბორატორიული ტიპის არგონისა და კრიპტონის იონური გაზური ლაზერების ჩვენეული კონსტრუქციის ზოგადი სქემა

(I) და (II) აღნიშნავს ლაზერის აქტიურ ელემენტებს, კრიპტონისა (Laser Kr) და არგონის (Laser Ar) გაზებით, შესაბამისად. ერთ მასიურ რკინის მაგიდაზე დამონტაჟებული გვაქვს ამ ორი ლაზერის აქტიური ელემენტები. ორივე აქტიური ელემენტი შეერთებულია ჩვენს მიერ კონსტრუირებულ მაღალი ვაკუუმის სისტემასთან (III). სისტემას აქვს შესამლებლობა ორივე ლაზერის მილიდან ერთდროულად ან ცალკ-ცალკე გამოტუმბოს ჰაერი და

დაამყაროს ამ მილებში ვაკუუმი 10⁻⁶ მმ ვერცხლის წყლის სვეტისა, როდესაც ვიყენებთ თხევადი აზოტის ჩამჭერს. დიდი ხნის განმავლობაში მუშაობის შედეგად მილებში ვაკუუმური დანადგარის სტაბილურად მყარდება ზემოთაღნიშნული ვაკუუმი, რის შემდეგაც ვიწყებთ ლაზერის კათოდის აქტივაციას: კათოდს თანდათანობით ვუმატებთ მაბვას კვების წყაროდან და პარალელურად ვტუმბავთ მილიდან ჰაერს და კათოდიდან ვაწარმოებთ გამოყოფილ სიბინძურეს. ამ პროცედურას მანამ, სანამ კათოდის მაქსიმალური მაბვისას არ მივაღწევთ იმ მაქსიმალურ ვაკუუმს, რომელიც გვქონდა კათოდის გახურებამდე. ამის შემდეგ ცოტა ხნით ამ რეჟიმს შევინარჩუნებთ და შემდეგ, ლაზერის არგონის ან კრიპტონის ნაკადით, გარკვეული დოზით შევუშვებთ არგონის ან მილში მცირე კრიპტონის გაზს, შესაბამისად. ვაკუუმს და შეშვებული კეთილშობილი გაზების დოზებს ვაკონტროლებთ ვაკუუმმეტრებით. გაზების შეშვების სისტემა ორივე გაზისთვის ვაკუუმურ სისტემაში გვაქვს ჩამონტაჟებული. გაზების შეშვების შემდეგ აქტიური ელემენტების ვაკუუმურ ონკანებს (Valve) გადავკეტავთ და ისინი მზადაა სათანადო ძაბვის მიწოდების შემდეგ დაიწყონ ფუნქციონირება.

იონური ლაზერები კეთილშობილ გაზებზე დიდ ენერგოდანახარჯებს მოითხოვს. ეს განპირობებულია აქტიური ელემენტის დენების დიდი სიმკვრივით: 👘 ერთი მეტრი სიგრძის ლაზერის მილში, კაპილარის დიამეტრით 4 მმ, დაახლოებით ოთხი ვატის სიმძლავრის გამოსხივების მისაღებად გვჭირდება კაპილარში გავატაროთ 50 ამპერი მუდმივი დენი. ასეთ რეჟიმში მილზე ეცემა დაახლოებით 300 ვოლტი მაბვა, ხოლო მუდმივი დენის გამმართველი ამ დროს მთლიანად გამოიმუშავებს 520 ბალასტურ ვოლტ უქმი სვლის მაზვას. დანარჩენი მაზვა ეცემა წინააღმდეგობებზე, რომლითაც მილის ვაწარმოებთ ლაზერის დენის რეგულირებას.

ნახ. 4.2-ზე ჩვენს მიერ კონსტრუირებული მუდმივი დენის გამმართველი, რომელიც კვებავს ლაზერის მილს, აღნიშნულია (IV)-ით. ეს გამმართველი აგებულია ლარიონოვის სქემის საფუძველზე, ექვსი მძლავრი

სილიციუმის დიოდის გამოყენებით. ასეთი სქემა დენის ნაკლებ პულსაციას იძლევა ამიტომ ლაზერის გამოსხივების სიმძლავრე შედარეზით და სტაბილურია. მეტი სტაბილურობისათვის, როდესაც უფრო საჭიროა, ვიყენებთ მძლავრ (LC) ფილტრს. მილის დენის რეგულაციისათვის ავაგეთ მძლავრი ბალასტური წინააღმდეგობათა ბლოკი (V) და მათ გაციებას გამდინარე ვაწარმოებთ წყლით. მაგნიტური სოლენოიდის (Solenoid) კვებისათვის ავაგეთ მეორე მძლავრი გამმართველი (VI). იგი იკვებება სამფაზა ცვლადი ძაბვის დამადაბლებელი ტრანსფორმატორიდან (VIII) და სოლენოიდის მაგნიტური ველის რეგულაციას ვაწარმოებთ გამმართველის დენის ვარირებით. ვარირებას ვაწარმოებთ ან ბალასტური წინააღმდეგობების ან სამფაზა რეგულირებადი ავტოტრანსფორმატორით (VII). სოლენოიდის მაგნიტური ველი კუმშავს კაპილარის იონურ დენს, ზრდის მის სიმკვრივეს და შესაბამისად იზრდება გამოსული გამოსხივების სიმძლავრე. გარდა ამისა, სოლენოიდის მაგნიტური ველი კაპილარის იონური სვეტის შეკუმშვისას აშორებს ამ სვეტს კაპილარის კედლებიდან და ამით საგრძნობლად უშლის ხელს ჩქარი ელექტრონების მიერ კაპილარის კედლის ბომბარდირებას. ამით ვიცავთ ლაზერის მილს სწრაფი დეგრადაციისაგან. ასე რომ, ლაზერის მილის რეგულირება შეგვიძლია როგორც მთავარი გამმართველის ბალასტური წინააღმდეგობების, ასევე სოლენოიდის მაგნიტური ველის ცვლილებებით.

ნახ. 4.2-ზე მოყვანილია ლაზერის კათოდის (K) ავტონომიური კვების ბლოკი, რომელიც შედგება ცვალებადი ძაბვის დამადაბლებელი ტრანსფორმატორისა (X) და რეგულირებადი ავტოტრანსფორმატორისაგან (IX). ლაზერების ანოდი აღნიშნულია (An)-ით.

ლაზერის მილის კაპილარს იმპულსური ტრანსფორმატორის ბლოკის საშუალებით მიეწოდება მაღალი ძაბვის პირველადი იმპულსი აქტიური არგონის ან კრიპტონის გაზის სვეტის თავდაპირველი მაღალი წინააღმდეგობის გასარღვევად და პლაზმის წარმოსაქმნელად. ეს ბლოკი ნახ. 4.2-ზე არაა მოყვანილი.

ნახ. 4.2-ზე აღნიშნულია ქარსის (rc)-ഗറ კერამიკული და კონდენსატორების ორი იდენტური ბლოკი, რომლებიც მიერთებულია მაგნიტური სოლენოიდის ბოლოებსა და მიწას შორის. ეს ბლოკები განკუთვნილია სოლენოიდის მუდმივი წყაროს დენით კვეზის გამმართველის დასაცავად, რათა იგი არ დააზიანოს მაღალი მაზვის გარღვევის იმპულსმა.

ჩვენს მიერ კონსტრუირებული მაღალი ვაკუუმის სისტემის დანადგარი, არგონისა და კრიპტონის გაზის დოზირებული შეშვების ბლოკით ნახ. 4.2ზე აღნიშნულია (III)-ით. გარდა ზემოთაღწერილი ბლოკებისა, ჩვენს მიერ კონსტრუირებული არგონისა და კრიპტონის ლაზერები შედგება აგრეთვე დანიშნულებისა ფუნქციის სხვადასხვა და რელეების, მაგნიტური გამშვებებისა (P) და ავტომატებისაგან (A). მათი დანიშნულებაა დიდი გამაცივებელი აგენტის, წყლის შეწყვეტის ან შემცირების წარმადობის შემთხვევაში მაღალი ძაბვის ავტომატური გამორთვა, ავარიის ან სხვა განსაკუთრებულ შემთხვევებში მაღალი ძაბვის ავტომატური გამორთვა. დენის გამზომი ამპერმეტრები სქემაზე აღნიშნულია (a)-თი.

ნახ. 4.2–ზე (M)-ით აღნიშნულია ლაზერის ორი რეზონატორული დიელექტრიკული სარკე. ერთმეტრიანი ლაზერის მილის შემთხვევაში ერთმოდიანი გამოსხივეზის მისაღებად ჩვენ ვიყენებთ კონფოკალურ რეზონატორს. რეზონატორის ერთი სარკე, 100% არეკლვის კოეფიციენტით, არის 5 მეტრის სიმრუდის რადიუსით, ხოლო მეორე, გამოსხივების გამომშვები სარკე რადიუსის გარეშეა, ბრტყელია. ამ სარკის არეკლვის კოეფიციენტი არგონის ლაზერისათვის, რომელიც ხილული სპექტრის ლურჯ-მწვანე უბანში ასხივებს, ამ სპექტრის შუა ნაწილში დაახლოებით 92-96%-ია. კრიპტონის ლაზერისათვის კი გამომშვები სარკის არეკლვის 96-97.5%, რადგანაც კოეფიციენტია კრიპტონის ლაზერის გამოსხივება კონცენტრირებულია სპექტრის მირითადად წითელ უბანში, სადაც სპექტრალური გადასვლების გაძლიერების კოეფიციენტი დაბალია. ამიტომ რეზონატორის ვარგისიანობის ასამაღლებლად საჭიროა გამოსასვლელი სარკე იყოს დასაშვები ნორმების ფარგლებში რაც შეიძლება მაღალი

არეკლვის კოეფიციენტით. კრიპტონის ლაზერის გამოსხივების სხვა ტალღებისათვის, მაგალითად, ყვითელი სპექტრალური ხაზისათვის, 586.2 ნმ, ლაზერული ეფექტის გამლიერების კოეფიციენტი იმდენად მლიერია, რომ რეზონატორის ვარგისიანობა საკმაოდ მაღალია გამოსასვლელი სარკის არეკლვის კოეფიციენტის დიდ ინტერვალში, დაახლოებით 88-95%.

თვითნაკეთი ლაზერების კონსტრუქციები პრაქტიკულად, ჩვენი ექსპერიმენტული შესაძლებლობების დიდ არჩევანს გვაძლევს: შეგვიძლია სურვილის, დასახული ამოცანისა და მიზნის მიაღწევად შევარჩიოთ და ოპტიმალური რაც განვახორციელოთ არჩევანი, ყველაზე ის უკეთ შეესაბამება გადასაჭრელ პრობლემას. რეზონატორის კონსტრუქციული არჩევანი კი თითქმის ყველანაირი გაგვაჩნია: შეგვიძლია ავაგოთ ლაზერები შიგა რაც სიმძლავრისა სარკეეებით, ഗുറത და სარკეების დიდი სიცოცხლისუნარიანობის გარანტიაა, მაგრამ სამაგიეროდ გამოსხივება არ იქნება მკაცრად პოლარიზებული; შეგვიძლია ერთერთი სარკე, როგორც წესი, 100%-იანი, შევცვალოთ ლიტროვის პრიზმა-დიელექტიკული სარკით. ამ შემთხვევაში უკვე გამოსული გამოსხივება პოლარიზებული იქნება ერთ სიბრტყეში. რამდენადაც შიგა სარკეები კარგია დიდი სიმძლავრეების მიღების თვალსაზრისით (ამ შემთხვევაში ბრიუსტერის ფანჯრები ლაზერის მილზე არ არსებობს და მათზე ოპტიკური დანაკარგებიც აღარაა), ამდენად ისინი ძალიან მოუხერხებელია სპექტრალური დიაპაზონის შეცვლის ან სხვა მიზნით ოპერატიულად შესაცვლელად: საჭირო ხდება ლაზერის მილის ჰერმეტულობის დარღვევა და შემდგომ დიდი სირთულის ტექნოლოგიური ოპერაციების ჩატარება.

ჩვენ უფრო ხშირად ვიყენებთ გარე რეზონატორებს ისინი ლაზერების შესაძლებლობების ვარირების უფრო ოპერატიულ საშუალებებს გვაძლევს, რაც დასახული ექსპერიმენტების უფრო სწრაფად განხორციელების მექანიკურად გარანტიაა. გარე რეზონატორის სარკეები მაგრდება სამაგრში. სპეციალურ სამკოორდინატულ ოპტიკურ ამ სამაგრების საშუალებით შეგვიძლია ძალიან ფაქიზად და ზუსტად განვახორციელოთ რეზონატორული სარკეების იუსტირება; ასევე, სურვილისამებრ,

ნებისმიერ ექსპერიმენტის სტადიაზე ლაზერის სხვა ბლოკებთან ფუნქციის გარეშე კონტაქტისა და მათი დარღვევის შეგვიძლია რეზონატორის სარკეების შეცვლა. რეზონატორის სარკეების შეცვლას გვკარნახობს დასმული ექსპერიმენტული პრობლემა. მაგალითად, მიყენია რეზონატორის ისეთი სარკეები, რომლებიც არგონის ლაზერისათვის ისე მაქვს შერჩეული ოპტიკური სპექტროფოტომეტრის გამოყენებით, რომ გამოსხივებაში იყოს არგონის ლაზერისათვის დამახასიათებელი ყველა ტალღა: 456.5. 476.9, 497.9, 488.0. 496.5, 501.7, 514.5 6ð. რადგანაც რეზონატორის ორივე სარკე დიელექტრიკულია, ამიტომ ამ ტალღებზე გამოსხივებული ლაზერის სიმძლავრეეზი არ იქნება ოპტიმალური ყველასათვის. როგორც ცნობილია, არგონის ლაზერის ძირითადი ტალღებია 488.0 514.5 6ð, რომლებზედაც ნაწილდება და ლაზერის მთელი 80%. ეს გამოწვეულია ამ გამოსხივებული სიმძლავრის დაახლოებით ტალღის სიგრძეებზე არგონის იონის სპექტრალურ გადასვლებზე ინდუცირებული გამოსხივების დიდი გამლიერების კოეფიციენტით. ამიტომ ოპტიმიზაცია ამ უბანში სარკეების არაა იმდენად მნიშვნელოვანი, განსაკუთრებით 488.0 ნმ-ისათვის, რომლის ლაზერული ეფექტი ლაზერის მცირე დენებისას 514.5 ნმ გადასვლაზე უფრო დიდია. ამ მსჯელობიდან გამომდინარეობს, რომ თუ რამანის გაბნევის ან ფოტოლუმინესცენციის ჩვენი ექსპერიმენტი ითხოვს, ვთქვათ, 457.9 69 ტალღის სიგრძის რომელიც გამოსხივდება იონების გამოყენებას, იმ სპექტროსკოპული გადასვლიდან, რომელზედაც გამლიერება მიზერულია, უკვე საჭირო ხდება რეზონატორის ვარგისიანობა მაქსიმუმამდე ავიყვანოთ. ამ მიზნით ოპტიკური სპექტროსკოპიით ტესტირებული სარკეები მზადა გვაქვს და ამოცანის მოთხოვნის მიხედვით შევცვლით. ასეთი მიდგომა საერთოა ჩვენს მიერ კონსტრუირებული ყველა ლაბორატორიული ტიპის ლაზერისადმი.

ამ თავის ბოლოს დეტალურად შევაფასებ ჩემს მიერ კონსტრუირებული ლაზერული სისტემების ყველა დადებით და უარყოფით მხარეს, მაგრამ აქ მოკლედ დავძენ, რომ ექსპერიმენტის მიმართულებათა ცვლის ასეთი ოპერატიულობა უდაოდ დიდი უპირატესობაა ჩემი კონსტრუქციებისა,

რასაც ვერც ერთი ფირმის მიერ წარმოებული ლაზერული სისტემა ვერ დაიჩემებს უზომოდ დიდი ფასების მიუხედავად.

ჩემი ლაზერული სისტემების არსენალში საკმაოდ დიდი ადგილი უჭირავს ქარხნული ტიპის ლაზერებს და ჩემი გემოვნებით გადაკეთებულ, მოდერნიზირებულ და აღდგენილ ქარხნული ტიპის ლაზერებს. ეს უკანასკნელნი განახლებულნი და სიცოცხლისუნარინობადაბრუნებულნი არიან ზემოთაღწერილი ჩემი კონსტრუქციების პრინციპთა წყალობით. ალბათ, მსოფლიოს ვერც ერთ ლაბორატორიაში ვერ ნახავთ 30 წლის წინათ ნაყიდ გაზური არგონის ან კრიპტონის ლაზერს მუშა მდგომარეობაში (თანაც საბჭოთა წარმოებისას), მითუმეტეს, აღდგენილს და მოდერნიზებულს. იმ პერიოდის იონიზირებული კეთილშობილი გაზების სიცოცხლისუნარიანობის 500 ლაზერების ხანგრძლიობა საათს არ აღემატებოდა და პრაქტიკულად ამ რესურსსაც ვერ აღწევდნენ.

4.4 ინფრაწითელი ლაზერული რამან-სპექტრომეტრის რამანის სპექტრების ამგზნები იწ-ლაზერი ძოწის კრისტალზე, YAG:Nd⁺

როგორც შესავალში მოგახსენეთ, ყოფილ საბჭოთა კავშირში პირველი იწ-ლაზერული რამან სპექტრომეტრი იწ-ლაზერით ძოწის კრისტალზე YAG:Nd⁺, მე ავაგე მოსკოვის ФИАН-ში აკადემიკოს ა. მ. პროხოროვის ლაბორატორიასთან თანამშრომლობით.

იწ-რამან სპექტრომეტრზე მოგვიანებით ვილაპარაკებთ, ამჯერად კი შევეხები მხოლოდ მის ერთერთ მთავარ ბლოკს, იწ-ლაზერს YAG:Nd⁺,

პირველი ლაზერული კრისტალები $YAG:Nd^+$, რომლებიც ყოფილ კავშირში გაზარდეს 1965-70 66. აკადემიკოს პროხოროვის საბჭოთა აკადემიკოს ოსიკოს ხელმძღვანელობით ლაბორატორიაში და კრისტალოგრაფიის ინსტიტუტში პროფესორ ზაგდასაროვის მისი წარმოადგენდნენ მცირე ლაბორატორიაში ხელმძღვანელობით, გაბარიტებისა და არასრულყოფილ ლაზერულ კრისტალებს. მე მომიწია

ასეთი კრისტალების საფუძველზე ФИАН-ში შემექმნა ყოფილ საბჭოთა კავშირში პირველი იწ-ლაზერული რამან-სისტემა (იწ-ლაზერული რამანსპექტრომეტრი) ამ სპექტრომეტრის ჩამეწერა და გამოყენეზით ვიწროზოლიანი ნახევარგამტარების GaAs, InP, CdTe რამანის გაზნევის პირველი სპექტრები YAG:Nd⁺-ის აგზნებით. ეს პრობლემა მაშინ უდიდეს სირთულეებთან იყო დაკავშირებული: არ იყო მგრძნობიარე სიგნალის დეტექტორები, ძალიან ძნელი იყო სათანადო ოპტიმიზირებული ოპტიკური სისტემის აწყობა. რაც მთავარია, ლაზერული კრისტალები იყო ძალიან დაბალი ხარისხის. იმ პერიოდში ძალიან ბევრი სხვადსხვა წარმოშობის ლაზერული კრისტალი გამოვცადე და თითქმის ყველას, უმეტესობას მაინც, გააჩნდა დაახლოებით 50% ტალღის სიგრძის ხტუნაობის კოეფიციენტი. ეს გაზნევის რამანის მიღებაში 30 სპექტრების ერთერთი მთავარი დამაბრკოლებელი ფაქტორია.

70-იანი წლების შემდეგ სიტუაცია შეიცვალა: დახურულ ინსტიტუტებში გაზარდეს უმაღლესი ხარისხის YAG:Nd⁺-ის ლაზერული კრისტალები და მათ საფუძველზე უკვე თბილისში, არაორგანული ქიმიისა და ელექტროქიმიის ინსტიტუტში საქართველოში პირველად შევქმენი პირველი ლაზერული იწ-რამან-სისტემა იწ-ლაზერის YAG:Nd⁺-ის აგზნებით.

ლაზერის ზოგადი სქემა თითქმის ერთნაირია: აქტიური ყველა ელემენტი, რომელიც შეიძლება იყოს სხვადასხვა ფიზიკა-ქიმიური თვისებების მატარებელი ნივთიერებით ავსებული (გაზი, მეტალი, ა. შ.) მინის კაპილარული ან არაკაპილარული მილი, სხვადასხვა ტიპის ნახევარგამტარული მასალები, იონურ კრისტალებში ჩანერგილი F ცენტრები, საღებავები, მყარსხეულოვანი ლაზერული კრისტალები. შემდეგი ბლოკია აქტიური ელემენტის ამგზნები სისტემა, კვების წყარო, რომელიც სხვადასხვა ტიპის ლაზერისათვის, რასაკვირველია, სხვადასხვაა და განსხვავებულია. მესამე ბლოკი, პირველი ამგზნები იმპულსის მომცემი ბლოკია და ბოლო, მეოთხე ბლოკი ოპტიკური რეზონატორია. 51 56 ვასახელებ ავტომატიკასა და სხვადასხვა აქსესუარებს.

აქ არ ვეხები იმპულსურ ლაზერებს, რადგანაც აქ გამოყენებული

ლაზერები თითქმის ყველა უწყვეტი მოქმედებისაა, ორი გამონაკლისის გარდა: აზოტისა და სპილენმის ლაზერის გარდა. ეს ორი კვაზიიმპულსურია. ამათგან სპილენმის ლაზერის იმპულსების განმეორების სიხშირე იმდენად დიდია, 10-12 კჰც, რომ ამ ლაზერის გამოყენების შემთხვევაში, სიგნალების რეგისტრაციას ვაწარმოებთ იმავე ელექტრონიკით, რომლებსაც ვიყენებთ სხვა უწყვეტი მოქმედების ლაზერებისათვის. ამ შემთხვევაში მგრმნობიარობის დანაკარგები დიდი არ არის., სპექტრალური ზოლის ფორმის ანალიზს კი ამ შემთხვევაში არ ვაწარმოებთ.

YAG:Nd⁺-ດປ ჩვენი კონსტრუქცია მოყვანილია ნახ. 4.3–ზე. ડને **(I)** აღნიშნავს ლაზერული კრისტალის ბლოკს, ხოლო (M)-ოპტიკური რეზონატორის დიელექტრიკულ სარკეებს. ლაზერული კრისტალის YAG:Nd⁺-ის ბლოკი ჩვენ რამდენიმე ტიპისა და კონსტრუქციის გვაქვს, მაგრამ აქ განვიხილავთ ერთს, რომელსაც ახლა ვიყენებთ. მეტალის ბლოკი წარმოადგენს მეტალისაგან დამზადებულ გარსს, რომელიც ცივდება დიდი წარმადობის გამდინარე წყლით. გარსის ელიფსური ფოკუსის ერთ ცენტრში მოთავსებულია აქტიური ლაზერული კრისტალი (YAG:Nd⁺), რომლის ზომაა 12x5 მმ. მეორე ფოკუსში მოთავსებულია ლაზერული კრისტალის ამგზნები, კრიპტონის გაზის კაპილარული ნათურა (Dkrtv 5000), რომლის აქტიური ზონის სიგრძე ლაზერული კრისტალის ზომას ემთხვევა. ორივე, კრისტალი

და ნათურა, მოთავსებულია სპეციალური მინის ოპტიკურ ბლოკში, რომელიც ოპტიკური ფილტრის როლს ასრულებს და ჭრის პარაზიტულ ულტრაიისფერ გამოსხივებას, რათა ზედმეტად არ გაახუროს ლაზერული კრისტალი და სპექტრის მხოლოდ იმ უბნით აღაგზნოს Nd-ის იონები, რომლებიც მაქსიმალურად ეფექტურად იწვევს ინვერსიულ ეფექტს 1.06 მკმ გამოსხივების მისაღებად.

ნახ. 4.3 ლაბორატორიული ტიპის მყარსხეულოვანი იწ-ლაზერის YAG:Nd ჩვენეული კონსტრუქციის ზოგადი სქემა

ლაზერულ კრისტალში ინვერსიული მდგომარეობის შესაქმნელად, როგორც ზემოთ აღვნიშნეთ, ვიყენებთ კაპილარულ კრიპტონის გაზის ნათურას Дкртв-5000, რომლის სიმძლავრე 5 კვტ.-ია. ასეთი მაღალი სიმძლავრის გამოყოფისას მეტად მნიშვნელოვანია გაცივების პრობლემა, რათა არ დაიწვას ლაზერული კრისტალი და ნათურა. ამ მიზნით ავაგეთ ლოკალური, ჩაკეტილი კონტურის გაცივების სისტემა, რომლის ბლოკიც ნახ. 4.3-ზე აღნიშნულია (II)-ით. ეს სისტემა შედგება უჟანგავი ფოლადის 15 ლიტრიანი ბაკისაგან, წყლის საქაჩი პომპისაგან, ავტომატიკისაგან, რომელიც ნათურაზე მიწოდებულ კვებას მომენტალურად თიშავს თუ წყალი შეწყდა ან საჭირო წნევაზე ბაკში ჩასხმული დაბლა გვაქვს დაეცა. დისტილირებული სუფთა წყალი, რომელიც ტუმბოთი მიეწოდება და აცივებს ლაზერულ კრისტალს და ნათურას. დისტილირებული წყლის გამოყენება ძლიერ ამცირებს კრისტალსა და ნათურაზე ნალექის გამოყოფას, რაც თავის მხრივ, ამცირებს სიმძლავრის სტაბილურობას. მაშინ, როდესაც ნათურა მოთავსებულია მინის კრისტალი და ფილტრის ბლოკში, დისტილირებული წყალი სუფთაა. როდესაც ჩვენ გადავდივართ მეორე ტიპის ლაზერული ბლოკის გამოყენებაზე, სადაც მინის ოპტიკური ბლოკი არაა კონსტრუქციულად გათვალისწინებული, მაშინ გაცივების აგენტში, პროპორციით დისტილირეზულ წყალში, გარკვეული ვხსნით ქრომის მარილს, რომელიც ოპტიკური ფილტრის როლს ასრულებს. გვაქვს მესამე ტიპის ბლოკიც, სადაც ოპტიკური ფილტრის როლს ასრულებს ბლოკისა და აქტიური ლაზერული კრისტალის შესაბამისი დიამეტრისა და კედლის სისქის კვარცის მილი, რომელიც შეიცავს Er-ის მინარევს.

ჩაკეტილი კონტურის სისტემის დისტილირებული წყალი თავის მხრივ ინტენსიურად ცივდება მაგისტრალური გამდინარე წყლით.

კრიპტონის ნათურის კვებისათვის ლარიონოვის სქემით 6 მძლავრ სილიციუმის დიოდზე ავაგეთ მუდმივი დენის გამმართველი (V), რომლის უქმი სვლის ძაბვაა 200 ვოლტი. ნათურის მუდმივ დენს ვარეგულირებთ სამფაზა ავტო ტრანსფორმატორით (IV) ან ბალასტური წინააღმდეგობების სპეციალურად კონსტრუირებული არაა ბლოკით (ბლოკი სქემაზე ნაჩვენები). ეს ბლოკი ინტენსიურად ცივდება მაგისტრალური გამდინარე წყლით. მუდმივი დენის კვების ბლოკი აღნიშნულია V-ით. სამფაზა 380 ვოლტიან ქსელსა და ავტოტრანსფორმატორს შორის მოთავსებულია ძაბვის დამა- დაბლებელი მძლავრი სამფაზა ტრანსფორმატორი (380V : 160V), აღნიშნული სქემაზე (III)-റ**ന**. გამართული მუდმივი დენის მიზნით არასტაბილურობისა შემცირების სქემაში და პულსაციის ჩართულია მძლავრი რეაქტიული ფილტრი (LC).

(Imp)-ით ნახ. 4.3-ზე აღნიშნულია მაღალი ძაბვის იმპულსური ტრანსფორმატორის ბლოკი, რომლითაც ნათურის ანოდს მიეწოდება მისი

წინააღმდეგობის გამრღვევი საწყისი იმპულსი 2000-5000 კვტ-ის ფარგლებში. იმპულსური ტრანსფორმატორი დავახვიეთ დიდი დიამეტრის, 200 მმ-ის ფერიტულ რგოლზე, ხვიების შეფარდებით 1:10. ამ ტრანსფორმატორის კვებისათვის ძაბის გამრავლების სქემით დავამონტაჟეთ ძაბვის გამამრავლებელი ბლოკი (IX).

გაზური ლაზერის კვების სისტემისაგან მყარ სხეულზე მომუშავე ლაზერის კვების წყაროს კონსტრუქცია განსხვავდება იმით, რომ მას სჭირდება ე. წ. მორიგე რკალის კვების ბლოკი. ამ ბლოკის დანიშნულებაა, რომ, როდესაც კრიპტონის ნათურის წინააღმდეგობა იმპულსური აგზნებით გავარღვიეთ და იგი აინთო, მისი ნათება შევინარჩუნოთ დაახლოებით ერთი წუთით, სანამ ნათურას ძირითად კვების წყაროს მივუერთებდეთ. ამ პერიოდში ავტომატური ორპოლარული გადამრთველით ნათურის კვებას გადავაერთებთ მუდმივი დენის გამმართველზე V, ხოლო მორიგე რკალის კვება კი ავტომატურად გამოირთვება. ამის შემდეგ ლაზერი იწყებს სტაბილურ მუშაობას. მორიგე რკალის სისტემა რამდენიმე ბლოკისაგან შედგება და ნახ. 4.3–ზე აღნიშნულია: ორფაზა ავტოტრანსფორმატორი (VI), ამამაღლებელი ტრანსფორმატორი (220V : 1000V) (VII), ბოგირული სქემით აწყობილი მუდმივი დენის გამმართველი (VIII) და საინდიკაციო და ფილტრაციის ბლოკი (a, V, rc).

ლაზერის კრიპტონის ნათურის დენს ვცვლით 8 ამპერიდან 32 ამპერამდე. 8 ამპერი ის ზღვრული დენია, როდესაც კრიპტონის ნათურა სიმძლავრეს სტაბილურად ანთია და გენერირებული გამოსხივეზის ზღვრული მნიშვნელობა გააჩნია. 32 ამპერი კი ის მაქსიმალური დენია, უძლებს და სტაბილურად მუშაობს. რომელსაც ნათურა ამ დროს გამომუშავებული

ლაზერის გენერაციის სიმძლავრე მაქსიმალურია და იგი უდრის დაახლოებით 12 ვატს თუ ოპტიკური რეზონატორი ისეთი სარკეებით გვაქვს დაკომპლექტებული, რომ მივიღოთ ერთმოდიანი გამოსხივება. როდესაც რეზონატორს ავაწყობთ ისეთი დიელექტრიკული სარკეებით, რომ მივიღოთ მრავალმოდიანი გამოსხივება 1.06 მკმ-ზე, მაშინ შესაბამისად

გამოსხივებული სიმძლავრეც იზრდება. მოდური სტრუქტურის არჩევანი, კერძოდ, ერთმოდიანის მიღება წინასწარ შეზღუდულია აქტიური კრისტალის დიამეტრით. ეს კრისტალი, რომელზედაც აგებული გვაქვს სპექტროსკოპული $YAG:Nd^+$ ლაზერი, ერთმოდიანი სპეციალურად კრისტალია, რაც განპირობებულია მისი მცირე დიამეტრით და დიდი სიგრძით. რეზონატორის საშუალებით კი შეგვიძლია დამატებით მივიღოთ გამოსხივების მრავალმოდიანი სტრუქტურა. თუ პირიქით გვინდა, დიდი დიამეტრის, იგივე სიგრძის კრისტალისაგან, რომელიც უკვე მრავალმოდიან კრისტალად ითვლება, მხოლოდ რეზონატორის შერჩევით ერთმოდიან გამოსხივებას ვერ მივიღებთ, თუ არ დავაყენეთ რეზონატორის შიგნით კრისტალის დიამეტრის შემამცირებელი დიაფრაგმა. ეს კი თავის მხრივ, გამოიწვევს გამოსხივებული სიმძლავრის შემცირებას.

დასასრულს, მინდა აღვნიშნო, რომ რეზონატორის სტაბილურობისათვის რეზონატორის ორივე სარკე განმხოლოებულია კრისტალისა და კრიპტონის ნათურის ლაზერის ბლოკისაგან, რათა რეზონატორს შეძლებისდაგვარად შევუმციროთ სხვადასხვა მიზეზებით წარმოშობილი ვიბრაციები გამოსხივების სტრუქტურა შეძლების და ფარგლებში იყოს სუფთა ერთმოდიანი. კიდევ ერთხელ მინდა ხაზი გავუსვა, რომ რამან-სპექტროსკოპიაში ხარისხიანი რამან-სპექტრების მიღებისათვის და კიდევ სხვა პრობლემების გადსაწყვეტად, პრინციპულია ერთმოდიანი სტრუქტურა გამოსხივეზის ტალღის სიგრძის და სტაბილურობა. ეს ორი ძირითადი პრინციპი აქ აღწერილ ლაზერულ კონსტრუქციებში არსებული საშუალებების ფარგლებში მაქსიმალურადაა დაცული.

> 4.5 ლაზორატორიული ტიპის ინფრაწითელი ლაზერული რამან-სისტემა შექმნილი საქართველოში პირველად

რითი განსხვავდება ჩვენს მიერ კონსტრუირებული იწ-ლაზერული ადრე რამან-სისტემა აღწერილი ხილული რამან-სისტემისაგან. სწორი წარმოდგენისათვის მინდა განვმარტო, რომ ჩვენს მიერ კონსტრუირებულია სამი რამან-სისტემა: ორი ხილული და ერთი ინფრაწითელი. ხილული ორი სისტემა ერთმანეთისაგან მონოქრომატორებზე დაყენებული დიფრაქციული მესრებით განსხვავდება: თითოეულ მონოქრომატორზე ისეთი ოპტიკური პარამეტრების დიფრაქციული მესრებია დაყენებული, რომლებიც თავიანთი სპექტრალური დიაპაზონითა და სინათლის მაქსიმალური კონცენტრაციით ოპტიმალურია ამგზნეზი ლაზერების სიგრძეეზის მიმართ. ტალღის განვმარტოთ ეს ფორმულირება. მაგალითად, როდესაც გვაქვს რომელიმე ორმაგი სპექტრომეტრი, მას გააჩნია ტალღის სიგრძეთა ცვლის გარკვეული რომელსაც განაპირობებს მასზე ინტერვალი, დაყენებული ორი მესერის ერთობლიობა. გარდა ამ დიფრაქციული პარამეტრისა, დიფრაქციული მესერის შტრიხის პროფილი განსაზღვრავს სპექტრალური უბნის იმ ინტერვალს, სადაც მაქსიმალურია დიფრაგირებული სინათლის ინტენსიობა. რამანის სპექტრი წარმოადგენს ამგზნები ლაზერის სიხშირისა და სტოქსის ან ანტისტოქსის სატელიტების სხვაობათა ერთობლიობებს. ეს სხვაობები ინფრაწითელი სიხშირეებია, რომლებიც ქიმიური ნივთიერების შემადგენელი მოლეკულების რხევათა დინამიკას ახასითებს. ყველაზე დიდი სიხშირე, დაახლოებით, 3800 სმ⁻¹ გააჩნია O-H ფუნქციონალურ ძირითადი სხვა ფუნქციონალური ჯგუფების სიხშირეები, ჯგუფს. მაგალითად, C-H, N-H,, C=S, S-H, C-O, C-C და ა. შ., უფრო დაბალ ფიქსირდება. ამიტომ ყველა ქიმიური ფუნქციონალური სიხშირეებზე რეგისტრაციისათვის ისეთი დიფრაქციული მესერი ჯგუფის უნდა დავაყენოთ ორმაგ სპექტრომეტრზე, რომ სპექტრალურმა უბანმა გადაფაროს სმ⁻¹-იდან დიაპაზონი -5000+5000სმ⁻¹-მდე. ასეთ შემთხვევაში დავაფიქსირეზთ ფუნქციონალური სტოქსის ყველა ჯგუფის როგორც რამანის ანტისტოქსისასაც. სატელიტებს, ასევე პრაქტიკაში წერენ მირითადად მხოლოდ სტოქსის სპექტრებს. ე. ი. გვჭირდება დიაპაზონი 0სმ⁻¹-მდე. იდან 5000 დასაწყისში, თეორიულ ნაწილში, დეტალურად

განვიხილეთ რამანის სიხშირეთა ანგარიშის დეტალები. მათ საფუძველზე დავრწმუნდებით, რომ 5000 სმ⁻¹ საკმაოდ დიდი ინტერვალია და თუ გვინდა რამდენიმე სხვადასხვა ტალღის სიგრმის ლაზერის გამოყენება ამგზნებ წყაროდ, ერთი მესერით ამ დიაპაზონის გადაფარვა მნელია, რადგანაც შტრიხის პროფილი ამის საშუალებას არ იძლევა: გაბნეული კონცენტრაცია შტრიხით მაქსიმალური ერთი სინათლის პროფილის საკმაოდ ვიწრო სპექტრალურ უბანში ხდება. სპექტროსკოპიაში მიღებულია, რომ არეკლვითი დიფრაქციული მესერის არეკლვის კოეფიციენტის მაქსიმუმი 80%-ზე მეტი ვერ იქნება (ალუმინის დანაფარის შემთხვევაში), თუგინდ მისი ზედაპირი სპეციალური ტექნოლოგიით იყოს დამუშავებული; ამ მაქსიმუმის არეკლვის კოეფიციენტი სპექტრის ორივე მხარეს არ უნდა იყოს 30%-ზე ნაკლები მაინც, რათა ასეთი სპექტრომეტრი გამოვიყენოთ ლაზერულ რამან-სპექტროსკოპიაში ნორმალური ინტენსიობის რამან-სპექტრების ჩასაწერად.

ზემოთ თეორიულ მოყვანილ სპექტროსკოპულ დებულებათა საფუძველზე, იმისათვის, რომ ეფექტურად გამოვიყენოთ ჩვენს მიერ რამანსპექტრეზის ასაგზნებად გამიზნული ლაზერის ყველა გამოსხივების სხვადასხვა ტალღის სიგრძეები, (ცხრილი 1), ავაგეთ სამი სხვადასხვა ოპტიკური მახასიათებლის მქონე ლაზერული რამან-სისტემა. თითოეული ეს სისტემა გამიზნულია გარკვეული ჯგუფის ლაზერებთან ერთობლიობაში სამუშაოდ ისე, რომ არ შევცვალოთ ორმაგი მონოქრომატორების დიფრაქციულ მესერთა ბლოკები. ასეთი მეთოდი, რასაკვირველია, უფრო ძვირი სიამოვნებაა და შრომატევადია, მაგრამ სამაგიეროდ ლაზერული სისტემის პარამეტრები უფრო სტაბილურია და თავად სისტემა უფრო ფართო დიაპაზონის ექსპერიმენტულ საშუალებებს გვაძლევს. სპექტრალური დიაპაზონის ეფექტურად ვარირება სხვა მეთოდითაცაა შესაძლებელი, მაგალითად, ერთ სპექტრომეტრში დიფრაქციული მესრების ბლოკების ცვლილებით. ეს გაცილებით იაფია, განსაკუთრებით, ძვირად ღირებული საღვარგარეთის ფირმების მიერ წარმოებული სტანდარტული რამან-სისტემებისათვის, მაგრამ არაა ისეთი რადიკალური, როგორიც

შესაძლებელია ჩვენი ლაბორატორიული ტიპის რამან-სისტემების გამოყენებით.

მოთხოვნები განსაკუთრებით მკაცრია ინფრაწითელი რამანეს სპექტრომეტრებისათვის. (ამაზე გვქონდა როგორც ვიცით ადრეც ყურადღება გამახვილებული), რამანის გაბნევა ინტენსიობით მეტად სუსტი მისი რეგისტრირებისათვის, განსაკუთრებით, ეფექტია. ამიტომ, 06 აღგზნებით, აუცილებელია სისტემის ყველა ბლოკის ოპტიმიზაცია.

იწ-სპექტრომეტრი ავაგეთ შემდეგი ბლოკებით: ზემოთაღწერილი იწსპექტროსკოპიული ლაზერით YAG:Nd⁺, გამოსხივებით 1.06 მკმ; ორმაგი სპექტრომეტრით DFS-12, დიფრაქციული მესერით 300 შტ/მმ. ამ მესერის შტრიხების პროფილი ისეა მოჭრილი, რომ მათ მიერ კონცენტრირებული გაბნეული სინათლის ინტენსიობის მაქსიმუმი მოთავსებულია დაახლოებით 2 მკმ-ის მახლობლობაში. ეს შესანიშნავი პირობაა YAG:Nd⁺ ლაზერის გამოსხივებით სტოქსის რამან-გაბნევის სპექტრების ჩასაწერად. მხოლოდ მესერის ოპტიმიზაცია არაა საკმარისი იწ-რამანის დიფრაქციული სპექტრომეტრის ფუნქციონირებისათვის. ადრე ჩვენ რამდენიმეჯერ ხაზი რამანის გაზნევის მთავარ პრინციპს გავუსვით გაზნევის ინტენსიობის ამგზნები სიხშირის მე-4 ხარისხთან პროპორციულობას. ეს პრინციპი გვავალდებულებს გამოვიყენოთ ამგზნები იწ-ლაზერის დიდი სიმძლავრეები (რასაც ჩვენს მიერ კონსტრუირებული იწ-ლაზერი მთლიანად უზრუნველყოფს); სუსტი სიგნალის დასაფიქსირებლად გამოვიყენეთ ახლო ინფრაწითელი უბნის, 1.06 მკმ მახლობლობაში მაქსიმალურად მგრძნობიარე დეტექტორი. დეტექტორის პრობლემა იწ-რამან-სპექტრომეტრისათვის ყველაზე მთავარი და გადამწყვეტია. განვისილოთ ამიტომ ეს საკითხი უფრო დაწვრილებით.

ახლო იწ-უბანი 1-2.5 მკმ სუსტი სიგნალების დაფიქსირების თვალსაზრისით რთულია. ეს განპირობებულია იმ მიზეზით, რომ 1.2 მკმის შემდეგ ყველაზე მგრმნობიარე დეტექტორების, ფოტოგამამრავლებლების მგრმნობიარობა მკვეთრად ეცემა და მათი კლასიკური, მეტალის კათოდები ვეღარ სპექტრალურ უბანში ოთახის ტემპერატურაზე ამ თითქმის

აფიქსირებენ სუსტ ოპტიკურ სიგნალებს. რაც შეეხება სხვა ტიპის, ნახევარგამტარულ (ფოტოწინააღმდეგობები, ფოტოდიოდები) დეტექტორებს, ისინი ნაკლებეფექტურია. ამ პრობლემის გადაჭრა რაღაც დონეზე შეიძლება მხოლოდ ფეგ-ს კათოდის გაციებით. ოპტიმალური გაციებისას მკვეთრად მცირდება ფეგ-ს ხმაურის მთავარი კომპონენტი, სიბნელის დენი, და ამიტომ ამ რეჟიმში ფეგ-ს შეუძლია იმ რამან-სიგნალების დაფიქსირება, რომლებსაც ოთახის ტემპერატურაზე ვერ გრძნობს. ამ მიზნით ავაგეთ სამი კრიოგენული, სპეციალური კონსტრუქციის კრიოსტატი, რომლებიც ერთმანეთისაგან განსხვავდება ფეგ-ს კათოდის გაციების სხვადასხვა პრინციპით.

მოქმედების პრინციპია პირველი კრიოსტატის ფეგ-ის კათოდის მჭიდრო კონტაქტი კრიოსტატის სიცივის გამტარ სპილენძის ბლოკთან. გადატანის გასაძლიერებლად ვიყენებთ სიცივის ვაკუუმურ საცხს სპილენძის ბლოკსა და ფეგ-ის კათოდის მინის კოლბის ნაწილს შორის. კრიოსტატის მოცულობაში მაღალი ვაკუუმის 10⁻⁵ მმ ვ. წ. ს. დამყარების შემდეგ, აზოტის პერანგში ვასხამთ თხევად აზოტს და გარკვეული დროის შემდეგ სპეციალური კონსტრუქციის სპილენძის გაცივების გამტარი ბლოკი იძენს სტაბილურ დაბალ ტემპერატურას. ეს ტემპერატურა ვაკუუმური საცხის წყალობით სწრაფად გადაეცემა ფეგ-ის კათოდს. ის გარემოება, რომ ფეგ მუშაობს მაღალი ძაბვის გამყოფი ბლოკის მეშვეობით და ძაბვის გამყოფი ბლოკის წინააღმდეგობები ფეგ-ის კოლბასთან ახლოსაა, ქმნის ჩვენი ერთერთი გარკვეულ სირთულეებს. კონსტრუქციით, ფეგ-ი მთლიანად, ძაზვის გამყოფი ბლოკიანად მოთავსებულია კრიოსტატის მოცულობაში იმყოფება მაღალი ვაკუუმის პირობებში. და ასეთი კონსტრუქციის კრიოსტატის გამოყენებისას საჭიროა მაღალი ვაკუუმის მუდმივად კრიტიკულ საზღვრებში შენარჩუნება. თუ ვაკუუმი ნებისმიერი მიზეზის გამო ოდნავ მაინც ამ კრიტიკულ ზღვარს დაბლა დაეცა, მოქმედებას იწყებს მაღალი ძაბვის განმუხტვისას მომქმედი გაზური იონიზაციის კანონები და ფეგ-ის მუშაობა მკვეთრად არასტაბილური ხდება. ამ შემთხვევაში სწრაფად უნდა გავაუმჯობესოთ მაღალი ვაკუუმი. ამ

სიმწელეებისა და კაპრიზების მოსახსნელად ჩვენ შევქმენით კათოდის აზოტით გაცივების იგივე პრინციპზე მომუშავე, მაგრამ კონსტრუქციულად განსხვავებული კრიოსტატი, რომელშიც მაღალ ვაკუუმში იმყოფება ფეგ-ის კოლბის მხოლოდ კათოდური და დინოდური მცირე ნაწილი. კოლბის ის გამყოფი ნაწილი, სადაც მაღალი მაზვის ბლოკის შემადგენელი დატვირთვის წინააღმდეგობები, კონდენსატორები და ანოდური წინააღმდეგობაა დამონტაჟებული, ვაკუუმის გარეთაა, ატმოსფერულ წნევის პირობებში. კონსტრუქციულად ეს ორკამერიანი გაყოფა გადაწყვეტილია ვაკუუმური კოაქსიალური, მძლავრი, ერთიანი, სპეციალური რეზინის მანჟეტით. პრაქტიკამ გვაჩვენა, რომ ასეთი კონსტრუქციისას დიდი მნიშვნელობა აქვს ფეგ-ის კოლბის კათოდური ნაწილის მჭიდრო, მაგრამ მოზომილ კონტაქტს სპილენძის მეტალის გაცივების გადამტან ბლოკთან. ეს პრობლემა გადავწყვიტეთ სპეციალური ზამბარული ფიქსატორების საშუალებებით. ფეგ-ის გაციების ეს სისტემა, ალბათ, უფრო პროგრესულია. ამასთან, ჩვენ შევქმენით ისეთი კონსტრუქცია, რომ კათოდი რაც შეიძლება ახლოს იყოს კრიოსტატის ოპტიკური კვარცის ფანჯარასთან, საიდანაც ფეგის კათოდს სპექტრომეტრის გამოსასვლელი ხვრელიდან გამოსხივების სიგნალი ეცემა. ასეთი კონსტრუქცია არ ქმნის გამოსასვლელი ხვრელიდან დიდ მანძილზე მყოფ ფეგ-ის კათოდზე სუსტი სიგნალის დამატებითი ლინზით ფოკუსირების საჭიროებას, რაც სიგნალის დანაკარგების კიდევ ერთი წყაროა. რადგანაც ცივი კათოდი კრიოსტატის კვარცის ფანჯარასთან (საიდანაც სიგნალი კათოდს ეცემა) ძალიან ახლოსაა, მაღალი ვაკუუმის შემთხვევაშიც 30, რადიაციულ თბოგადაცემის ხარჯზე კრიოსტატის კვარცის ფანჯარაზე კონდენსირდება ატმოსფეროს თბილი ჰაერი, რაც სიგნალის ინტენსიობას მკვეთრად ამცირებს. ამის გამო გარედან კრიოსტატის კვარცის ამ ფანჯარას სპეციალური მოწყობილობიდან ვუბერავთ თბილ ჰაერს და ფანჯარა მუდმივად სუფთა და გამჭვირვალეა. მინდა აღვნიშნო, რომ, როდესაც მე ეს კონსტრუქცია შევქმენი, ანალოგიურ პრინციპებზე მომუშავე ფეგ-ის გამაცივებელი კრიოსტატები მსოფლიო ლიტერატურაში არ შემხვედრია. მაშინაც და ახლაც უფრო გავრცელებულია

შედარებით უფრო მარტივი კრიოსტატები, რომლებიც მუშაობენ თხევადი აზოტის ორთქლის შებერვის ციკლით.

ჩვენ ავაგეთ თხევადი აზოტის ორთქლის შებერვის ციკლზე მომუშავე ფეგ-ის გაციების კრიოსტატიც. ამ კონსტრუქციის კრიოსტატის ზოგადი პრინციპები ცნობილია, ჩვენ მხოლოდ ერთი სიახლე შემოვიტანეთ. ესაა ატმოსფეროდან ფეგ-ის ცივი კათოდის ისეთი კონსტრუქციით იზოლაცია, რომელიც კათოდს დიდი მანძილით არ დააშორებდა სპექტრომეტრის გამოსასვლელ ხვრელს. ესაა კვარცის მინისაგან დამზადებული ორმაგი კედლებიანი სპეციალური ჭიქა, თერმოსტატი. ამ ჭიქის ძირი შექმნილია ორი ოპტიკური კვარცის 80 მმ დიამეტრისა და 2.5 მმ სისქის ფანჯრისგან. ეს ორი ფანჯარა მკაცრად პარალელურად, ერთმანეთისაგან მცირე მანძილის დაშორებით, დაახლოებით 5-8 მმ, შედუღებულია კვარცის მილებთან ისე, რომ მთლიანობაში ქმნის ორმაგ კედლიან ჭიქას. სანამ საბოლოოდ შედუღდება, ჭიქის კედლებს შორის სივრცე ევაკუირებულია ჰაერისაგან და მასში დამყარებულია მაღალი. 10⁻⁵ მმ ვ. წ. ს. ვაკუუმი. ეს თერმოსტატი-ჭიქა ძალიან მჭიდროდ ჩაპრესილია პენოპლასტის სექციონირებულ გარსში, რომელსაც თავის მხრივ მჭიდროდ ეკვრის გარეთა მეტალის გარსი, ფეგ-ის ეკრანი. ფეგ-ი თავისი მაღალი ძაბვის გამყოფი ბლოკით მოთავსებულია ამ ჰერმეტულ გარსთა ერთობლიობაში. გარსის შიგნითა სივრცეში მილით, გარკვეული დოზირებით, მიეწოდება თხევადი აზოტის ორთქლი აზოტის დიუარიდან. მეორე მილის საშუალებით კრიოსტატიდან ჰაერი პირველად და შემდეგ აზოტის ნახმარი ორთქლი გამოიდევნება ატმოსფეროში. ასეთი ციკლით ცივდება როგორც ფეგ-ის კათოდი, ასევე მისი მაბვის გამყოფი. თერმოსტატი-ჭიქის ჩვენეული კონსტრუქციის წყალობით კათოდი ახლოსაა სპექტრომეტრის გამოსასვლელ ხვრელთან და ამიტომ დამატებითი ლინზის დაყენება არაა საჭირო. ერთადერთი, რასაც კონსტრუქცია საჭიროებს, ესაა შესასვლელი კვარცის ფანჯრების შებერვა თბილი ჰაერით, კონდენსაციის თავიდან ასაცილებლად. პრობლემას მსგავს კონდენსაციის გავრცელებულ კონსტრუქციეზში აგვარებენ ფანჯარასთან დამონტაჟებული მინი-ღუმელებით, მაგრამ ჩვენი

აზრით თბილი ჰაერით შებერვა უფრო მოხერხებულია, კონსტრუქციაც არაა გადატვირთული.

ჩვენს იწ-რამან-სპექტრომეტრზე სიგნალის ჩასაწერად ვიყენებთ იწ-ფეგს FEU-83. მისი გაციებით ჩვენი კრიოსტატების საშუალებით მივაღწიეთ სიბნელის დენის შემცირებას სამი რიგით. პარალელურად, ღრმა დაახლოებით სამჯერ გაციებისას, ეცემა სასარგებლო სიგნალის კონსტრუირებული კრიოსტატების ინტენსიობაც. Ĵ٠ 0. ჩვენს მიერ გავაუმჯობესეთ FEU-83 წყალობით სიგნალთან ხმაურის შეფარდება დააზლოებით 300-ჯერ. ასეთი კონსტრუქციის იწ-რამან სპექტრომეტრზე დამონტაჟებამ რამანის გაბნევის სპექტრების დაფიქსირების საშუალება გაცივების სხვა შემთხვევაში, ფეგ-ის კათოდის გარეშე ეს მოგვცა. შეუძლებელია.

მესამე ბლოკი, რომელიც ჩვენს მიერ კონსტრუირებულ იწ-რამანსპექტრომეტრს ხილულისაგან განასხვავებს, გაბნეული სინათლის შემკრები ოპტიკაა. ამ კონსტრუქციის სპექტრომეტრში იგი მხოლოდ კვარცისაა, მაშინ, როდესაც ხილულ სპექტრომეტრში მინის ოპტიკაც შეგვიძლია გამოვიყენოთ. შემკრები ოპტიკის გარდა კვარცისაა აგრეთვე ყველა სახის კრიოგენული კრიოსტატის ფანჯარაც.

აქ მინდა დავუმატო, რომ ჯერ კიდევ სამოცდაათიან წლებში ვეცადე, რამან-სპექტრები ჩამეწერა GaAs-ob ნახევარგამტარული ინჟექციური გამოყენებით, რომლებიც დამზადებული დიოდური ლაზერების იყო აკადემიკოს ბასოვის კვანტური ფიზიკის ლაბორატორიაში, პროფესორ მ. ა. ნახევარგამტარული ლაზერების სექტორის, დოქტორ З. д. პოპოვის ელისეევის ჯგუფში. მათთან თანამშრომლობით ჩვენ შევქმენით მეორე იწლაზერული რამან-სპექტრომეტრი GaAs-ის ინჟექციური ლაზერის აგზნებით. ნახევარგამტარული ამ პერიოდის ინჟექციური ლაზერები ხასიათდდებოდნენ გამოსხივების ზოლის დიდი სიდიდით (დაახლოებით 1 ნმ), ლუმინესცენციის უზარმაზარი ფონით და რაც მთავარია, გამოსხივების ტალღის სიგრძის ხტუნაობის დიდი კოეფიციენტით. სხვადასხვა მეთოდების გამოყენებით ვეცადეთ მიგვეღო სტაბილური კარგი ხარისხის

რამან-სპექტრები, მაგრამ იმდროინდელი ლაზერის ტექნიკური მახასიათებლები ამის საშუალებას არ იძლეოდა. ამის გამო ამ სასარგებლო მიმართულების განვითარება დროებით გადაიდო. იმედი გვქონდა, რომ GaAs-ის ლაზერის გამოსხივების უბანში (დაახლოებით 835.0-865.0 ნმ ინტერვალი), ფეგ-ის გაცილებით მეტი მგრძნობიარობის ხარჯზე, ვიდრე ესაა $YAG:Nd^+$ -ის გამოსხივების უბნისათვის, გადავფარავდით GaAs-ob ლაზერის ტექნიკური პარამეტრების ხარვეზებს. ამჟამად მსოფლიოში ლაზერულ რამან-სპექტროსკოპიაში რამან-სპექტრების ასაგზნებად ინჟექციური ნახევარგამტარული დიოდური ლაზერების გამოყენების ეს მიმართულება ერთერთი ყველაზე საჭირო გავრცელებული და მიმართულებაა. მხოლოდ ასეთი ლაზერული ტექნოლოგიებით იკვლევენ სამედიცინო, ფარმაცევტული, ამჟამად ბიოლოგიური, ეკოლოგიური ობიექტების, კვების პროდუქტებისა თუ ხელოვნების ნიმუშების რამანსპექტრებს ეფექტურად. ჩვენ ამ სამუშაოების საწყის ეტაპზე ვიდექით, მაგრამ მაშინდელი საბჭოთა ტექნოლოგიები იმ მიზნის მისაღწევად, რაც ჩაფიქრებული გვქონდა, საკმარისი არ აღმოჩნდა.

ჩვენი რამან-სისტემები აგებულია 1976-78 წწ. მას შემდეგ ბევრი რამ შეიცვალა: სულ სხვა სახე მიიღო მეთოდოლოგიურმა აზროვნებამ და განიცადა არნახული პროგრესი ლაზერულმა ოპტიკურდა ტექნიკამ: განავითარეს დაინერგა სპექტროსკოპულმა და მაღალი მგრძნობიარობის მრავალარხიანი დეტექტორები, CCD; მაღალი მგრძნობიარობის ერთარხიანი ფეგ-ბი, ნახევარგამტარული შერეული კრისტალების საფუძველზე დამზადებული ფართოსპექტრალური მათ შორის იწ-უბნისთვისაც. დიაპაზონის კათოდებით, მაღალი მგრმნობიარობის ნახევარგამტარული დეტექტორი GaInAs ახლო oწუბნისათვის, 1-5 მკმ. იწ-უბანში სუსტი ეფექტურობის მქონე დისპერსიული სპექტრომეტრი შეცვალეს მიხელსონის ინტერფერომეტრით და წარმოიშვა რამან-სისტემა, რამანთვისოზრივად ახალი ფურიე-გარდაქმნითი FT-RS. რამან-სისტემებთან სპექტრომეტრი, შეაუღლეს ოპტიკური და მოკროსკოპები ელექტრონული ა.შ. და მოხდა მთლიანად მთელი

ლაზერული სისტემის ავტომატიზაცია კომპიუტერისა და ნაირნაირი პროგრამებით.

შესაძლებლობათა ფარგლებში მაქსიმალურად ვცდილობ პროგრესს არ დავშორდე და რაც შესაძლებელია, ვანხორციელებ ლაზერული სისტემების განახლება-მოდერნიზაციას. უფრო რადიკალურს დიდი ფინანსები სჭირდება.

P.S.

მინდა საბოლოოდ შევაჯამო და რეზიუმეს სახით წარმოვადგინო ჩემს მიერ საქართველოში პირველად, 1976 წელს კონსტრუირებული სამი სხვადასხვა ტიპის ლაზერული რამან-სისტემის მხოლოდ ძირითადი განმასხვავებელი ბაზური ბლოკების ოპტიკური პარამეტრები:

ორმაგი პირველი ლაზერული რამან-სისტემა აგებულია მონოქრომატორის DFS-12 ბაზაზე. ამ მონოქრომატორში დამონტაჟებულია ორი დიფრაქციული მესერი შემდეგი პარამეტრებით: 600 შტ/მმ; შტრიხების პროფილი განაპიროზებს სინათლის მაქსიმალურ კონცენტრაციას სპექტრის ყვითელ-წითელ უბანში; მესერი მუშაობს დიფრაქციის პირველ რიგში და სპექტრალური დიაპაზონი განისაზღვრება ინტერვალით, დაახლოებით 350 – 1200 ნმ, დისპერსია ტოლია 1 ნმ/მმ. სიგნალის მიმღებად ვიყენებთ ფეგ-ს მრავალტუტემეტალიანი FEU-79. ამგზნეზი ლაზერების კათოდით გამოსხივება ხილულ არეშია განლაგებული.

მეორე ლაზერული რამან-სისტემა აგებულია ორმაგი მონოქრომატორის DFS-24 მონოქრომატორის ბაზაზე. ამ დიფრაქციული მესრეზის პარამეტრებია: 1200 შტ/მმ, სინათლის მაქსიმალური კონცენტრაცია სპექტრის იისფერ-ლურჯ უბანში, მუშაობს სპექტრის პირველ რიგში, სპექტრალური დიაპაზონია 300 - 850 ნმ, დისპერსია 0.45 ნმ/მმ. სიგნალის მიმღებად მრავალტუტემეტალიანი FEU-79. ვიყენეზთ ფეგ-ს კათოდით ამგზნეზი ლაზერების გამოსხივება ხილულ არეშია განლაგებული.

მესამე, ინფრაწითელი ლაზერული რამან-სისტემა აგებულია ორმაგი მონოქრომატორის DFS-12 ბაზაზე მესრების შემდეგი პარამეტრებით: 300

შტ/მმ, სინათლის მაქსიმალური კონცენტრაცია სპექტრის ახლო ინფრაწითელ 2 993 უბანში, მუშაობს სპექტრის პირველ რიგში, სპექტრალური დიაპაზონია 1 – 3 მმკ და დისპერსია დაახლოებით 1.5 ნმ/მმ ტოლია. სიგნალის მიმღებად ვიყენებთ ფეგ-ს ცეზიუმ-ჟანგადის კათოდით FEU-83. ამგზნები ლაზერის გამოსხივება ინფრაწითელ არეშია 1.06 მმკ და ვიყენებთ ზემოთაღწერილ YAG:Nd⁺ ძოწის ჩვენი კონსტრუქციის ლაზერს

დისერტაციაში განხილული ზოგიერთი ექსპერიმენტი შესრულებულია აგრეთვე საზღვარგარეთული ფირმების მიერ წარმოებულ სტანდარტულ ლაზერულ რამან-სპექტრომეტრებზეც: ფრანგული ფირმის, Coderg PH-800 და ამერიკული ფირმის Brucker იწ-რამან-სპექტრომეტრზე FT-RS FRA106. პირველი დისპერსიული ტიპისაა ხილული ლაზერების აგზნებით, ხოლო მეორე აგებულია ფურიე-გარდაქმნის პრინციპზე ინფრაწითელი აგზნებით.

თავი 5. ნახევარგამტარული მასალებისათვის ფონონების იდენტიფიკაცია-კლასიფიკაცია, ლოკალური და ხვრელისმიერი რხევების კონცეფცია და მათი შესწავლა ზოგიერთ ნახევარგამტარში

5.1 ნახევარგამტარებში ფონონების კლასიფიკაციისა და მინარევების ლოკალური და ხვრელისმიერი რხევების პრინციპები

გაზნევა რამანის ინფრაწითელი სპექტროსკოპია და შესანიშნევი მეთოდებია ნახევარგამტარებისა და საერთოდ უამრავი სახეობის ქიმიური ნაერთების სტრუქტურათა და მოლეკულური ბმების დასახასიათებლად. სტრუქტურათა ნახევარგამტარებში იდენტიფიკაციის მიზნით ഗരാ მნიშვნელობა გააჩნია ფონონების იდენტიფიკაცია-კლასიფიკაციას. ე. ი. ჩვენ უნდა დავახარისხოთ ფონონები - როგორი სიმეტრიის, ტიპის და რა რაოდენობის არიან თეორიულად. ამას თეორიულ-ჯგუფური ანალიზის საშუალებით ვაწარმოებთ. ამის შემდეგ ექსპერიმენტალურად, ინფრაწითელი და რამანის სპექტრების ჩაწერის შედეგად მიღებულ სპექტრებს ვუდარებთ თეორიულ-ჯგუფური ანალიზის საფუძველზე ნაწინასწარმეტყველებ ფონონების რაოდენობას. რამან-სპექტროსკოპიის პიკეზის საშუალებით ექსპერიმენტალურად ვაწარმოებთ ორიენტირებული მონოკრისტალების პოლარიზაციულ გაზომვებს და ვახარისხებთ ფონონებს მათი სიმეტრიისა და ტიპების მიხედვით. პოლარიზაციული რამან-სპექტრების ანალიზისას რომელი სიმეტრიის გაზნევის ტენზორისა და მხედველობაში ვიღებთ, შესატყვისი პოლარიზაციული ექსპერიმენტების კონფიგურაციებისას არიან გამოვლენილნი ესა თუ ის ფონონების ჯგუფები. თეორიულ-ჯგუფური ანალიზის საფუძველზე ვიკვლევთ, რომელი ფონონია აქტიური ინფრაწითელ სპექტრებში რომელი რამანის გაზნევაში. ასეთი და პროცედურების გონივრულად შეჯერების შემდეგ შედგება საზოლოო ცხრილი, სადაც ყველა ფონონი კლასიფიცირებული და

იდენტიფიცირებულია. იმისათვის, რომ დავიწყოთ თეორიულ-ჯგუფური ანალიზი, თავდაპირველად გვჭირდება, რენტგენის მონაცემებით ან თეორიული გამოთვლებით ვიცოდეთ, რომელ კრისტალურ სიმეტრიას მიეკუთვნება გამოსაკვლევი ნახევარგამტარი, კრისტალი. ეს საჭიროა იმიტომ, რომ სწორედ კრისტალური სიმეტრიის მიხედვითაა შედგენილი ყველა ის ფონონების საიდენტიფიკაციო ცხრილი, რომლებსაც ვიყენებთ თეორიულ-ჯგუფური ანალიზის პროცესში.

სრულდება საწინააღმდეგო სპექტროსკოპული ამოცანაც. როდესაც არა გვაქვს კრისტალის სიმეტრიის მონაცემები, პოლარიზაციული რამანსპექტრებისა და ინფრაწითელი სპექტრების საშუალებით ვადგენთ გამოსაკვლევი ნახევარგამტარის ალბათურ სტრუქტურას.

შერჩევის წესის თანახმად, ზოგიერთი მოლეკულის რხევების ნაწილი აქტიურია ინფრაწითელ სპექტროსკოპიაში, ნაწილი კი რამანსპექტროსკოპიაში. ასე რომ, ეს ორი მეთოდი ერთმანეთს ავსებს და ორივე სპექტრული მეთოდით მიღებული ინფორმაცია ნივთიერების შიგამოლეკულური რხევების შესახებ სრულია.

რამან-სპექტროსკოპიის გამოყენეზისას ქიმიკოსეზი და ბიოლოგები, ერთის მხრივ, და ფიზიკოსები, მეორეს მხრივ, ორი სხვადასხვა მიდგომით სარგებლობენ: ქიმიკოსები, განსაკუთრებით ორგანიკოსები ნივთიერებათა ანალიზისას იყენებენ მოლეკულის ე.წ. წერტილოვანი ჯგუფის სიმეტრიის ცნებაზე დაფუძნებულ თეორიულ აპარატს. ფიზიკოსები კი უპირატესობას ე.წ. ფაქტორ-ჯგუფურ ანალიზს ანიჭებენ. თუმცა ქიმიკოსთა ის ნაწილი, რომელსაც უხდება მოლეკულური კრისტალების, პოლიმერეზის ან არაორგანული კრისტალების შესწავლა, იძულებულია ფაქტორ-ჯგუფური ანალიზიც გამოიყენოს. გარდა ამისა, ფიზიკოსისათვის კრისტალებში რხევების გავრცელება ფონონებია, ქიმიკოსი 30 ძირითადად ეხება მოლეკულის შემადგენელი ატომების რხევებს და მათი დამაკავშირებელი ქიმიური ბმების ცვლილებებს ამ რხევების დროს.

ასეთი მეთოდებით შევისწავლეთ ნახევარგამტარულ სუფთა ბუნებრივ მინერალ წითელ სინგურში, α-HgS (კინოვარი), პირველი რიგის ფონონები.

მოვახდინეთ განვსაზღვრეთ ფონონების მათი კლასიფიკაცია და სიხშირეები. ამის შემდეგ გამოვიკვლიეთ "ჭუჭყიანი", სელენის იზომორფული მინარევით ლეგირებული პირველად კინოვარი და აღმოვაჩინეთ სელენის ხვრელისმიერი რხევა.

ინფრაწითელი სპექტროსკოპია რამანის გაზნევა მშვენიერი და მეთოდებია მყარ სხეულებში მინარევების აღმოსაჩენად. განსაკუთრებით მარტივია იწ-სპექტრებით წვრილი მინარევების განსაზღვრა, რომელთა თეორიული აღწერაც თავსდება წყალბადურ მოდელში. ასეთ შემთხვევაში მინარევის რადიუსი მოიცავს მატრიცული კრისტალის მესერის მხოლოდ რამდენიმე მუდმივას. მინარევის პოტენციალი თითქმის იგივეა, რაც ერთი პროტონის საზოლოო მუხტის კულონური პოტენციალი. სურათი ეს ელექტრონი წყალბადის ატომისა, რომელსაც გააჩნია ანალოგიურია ეფექტური მასით m^{*} და ეს წყალბადის ატომი ჩაძირულია გარემოში დიელექტრიკული მუდმივათი ε. ეს ორი ფაქტორი ადვილად აკმაყოფილებს ბორის წყალბადის მოდელს შედეგად მივიღეზთ და კრისტალურ მატრიცაში წვრილი მინარევის იონიზაციის ენერგიას

$$E_d = \frac{13.6m^*}{\varepsilon_0 \varepsilon^2 m_0} (eV) \tag{5.1}$$

და რადიუსს მინარევის მირითადი დონისათვის

$$a_d = 0.053 \frac{\varepsilon_0 \varepsilon m_0}{m^*} (nm).$$
(5.2)

მაგალითისათვის, GaAs-ის შემთხვვაში $a_d = 17$ ნმ. ამიტომ დონორი ვრცელდება GaAs-ის მესერის მუდმივას რამდენიმე მანძილზე და ამტკიცებს თეორიის კანონიერებას. GaAs-ისათვის $E_d = 5.3 \text{ meV} = 43 \text{ cm}^{-1}$. ეს ნიშნავს, რომ მხოლოდ ინფრაწითელ ფოტონებს შეუძლიათ მინარევების იონიზაცია ან ელექტრონების გადაყვანა ერთერთ აღგზნებულ წყალბადურ დონეზე, რაც ექსპერიმენტებისას წარმოქმნის მახასიათებელი შთანთქმის ერთ სპექტრალურ ზოლს ან ამ ზოლების სერიას.

ზემოთგანხილული მარტივი თეორია არ სრულდება მლიერადბმული მინარევებისათვის, რომელთა რადიუსი ლოკალიზებულია კრისტალური მესერის პარამეტრის სიდიდეზე. ასეთ შემთხვევაში უკვე ელექტროსტატიკური პოტენციალი განსხვავდება კულონური ფორმისაგან. ამ შემთხვევაში შემოდის ე.წ. ცენტრალური უჯრედის შესწორება, რომელიც იწვევს იონიზაციის ენერგიის წანაცვლებას. ეს შესწორება ახასიათებს ცალკეულ მინარევებს და ის თავად შეიცავს მინარევის მახასიათებელ ინფორმაციას. მარტივ წყალბადურ თეორიას სხვა პრობლემებიც გააჩნია, მაგრამ იგი მეტად სასარგებლო სასტარტო წერტილია წვრილი მინარევების ინფრაწითელი ფოტოაგზნებით ანალიზისათვის.

მეორე გზა მინარევების აღმოჩენისა მყარ სხეულებში მდგომარეობს მინარევების რხევითი მოდების ანალიზში. როგორც ცნობილია, მყარ სხეულებში მესერის პერიოდული სტრუქტურის გამო მასში ვრცელდება ფონონური რხევები. როდესაც მყარ სხეულში შეგვყავს სხვადასხვა სახის მინარევი, მასში მესერის პერიოდულობა მცირედ ირღვევა და მყარ რხევა. სხეულში შეიძლება წარმოიშვას ახალი, ლოკალური წრფივი ჯაჭვური მოდელის თანახმად $\mathbf{K} = 0$ მახლობლად TO ოპტიკური სიხშირე მაქსიმალური დაშვებული სიხშირეა. თუ ჯაჭვში ატომს ჩავანაცვლებთ უფრო მსუზუქი მინარევის ატომით M_{imp}, ხოლო ძალის მუდმივას ცვლილება უმნიშვნელო იქნება, მაშინ მინარევის მახასიათებელი სიხშირე გამოისახება ფორმულით:

$$\omega_{imp} = \sqrt{2C \left(\frac{1}{M_{imp}} + \frac{1}{\chi M_{nn}}\right)}$$
(5.3)

სადაც M_{nn} კრისტალის ატომის მასაა, განთავსებული მინარევის ახლო მეზობლად, რომელიც ურთიერთმოქმედებს მინარევის ატომთან, ხოლო χ პარამეტრია, რომელიც ასახავს კავშირების ურთიერთმოქმედების

მთავარი, რომელიც (5.3) ფორმულიდან გეომეტრიულ დეტალებს. გამომდინარეობს ისაა, რომ $\omega_{imp} > \omega_{MAX} = \omega_{TO}$. ეს ნიშნავს, რომ მინარევთან დაკავშირებული რხევები მთელ კრისტალში ფონონების მსგავსად ვერ გავრცელდება. შესაბამისად, იგი არის ლოკალური რხევითი მოდა (LVM). ლოკალური რხევის ამპლიტუდა პროპორციულია მინარევების კონცენტრაციისა, რაც მინარევების რაოდენობრივი ანალიზის ჩატარების შესაძლებლობას იძლევა. საერთოდ, რაოდენობრივი ანალიზით თუ მის კარგი გარეშე, ლოკალური რხევები მეთოდია ნახევარგამტარებში მინარევების აღმოჩენისა.

იწ-სპექტროსკოპიით იდეალური ნახევარგამტარული მესერის რხევების სიხშირეების საკმაოდ თანაც, განსაზღვრა შრომატევადია, გასწვრივი ფონონის სიხშირის მისაღებად უნდა გვქონდეს მაღალომიანი ნახევარგამტარი, რომ დენის თავისუფალი გადამტანების კონცენტრაცია მინიმალური იყოს. დეფექტეზის ლოკალური და ხვრელისმიერი სიხშირეების განსაზღვრისთვისაც იგივე პრობლემებია გადასალახი. სულ სხვა სიტუაციაა რამანის გაბნევისას. ეს არის ყველაზე პირდაპირი და ზუსტი ოპტიკური მეთოდი, როგორც იდეალური მესერის რხევათა ასევე სიხშირეების, მინარევების დეფექტების, ლოკალური და ხვრელისმიერი რხევების შესასწავლად.

იდეალური კრისტალების ფიზიკური თვისებები ხშირ შემთხვევებში განპირობებულია ამ კრისტალებში დეფექტების არსებობით. ეს დეფექტები შეიძლება სხვადასხვა ტიპის იყოს: დაწყებული ელემენტარული, წერტილოვანი დეფექტიდან, რომელიც წარმოადგენს მესერის ძირითადი იზოტოპურ ჩანაცვლებას ერთერთი ატომის სხვა ატომით, დამთავრებული კრისტალური მესერის სრული მოუწესრიგებლობით – კლასტერების სხვადასხვა კომბინაციებით. დეფექტების ასეთი ნაირსახეობა მკვეთრად მოქმედებს კრისტალების მექანიკურ, თერმულ, ელექტრულ, მაგნიტურ, ოპტიკურ თვისებებზე.

კრიტალური მესერის დეფექტების ფიზიკური ბუნების გამოკვლევის სირთულე მირითადად მათ ნაირსახეობასა და არასტაბილურობაშია

(დროთა განმავლობაში მათ შეიძლება წარმოქმნან კომპლექსეზი, ასოციაციები და ა. შ.). ამ სირთულეების თავიდან ასაცილებლად მათი შეწავლა უნდა დავიწყოთ მარტივი დეფექტებიდან. ასეთია იზოტოპურად ჩანაცვლებადი დეფექტი, როდესაც ჩასანაცვლებელი და ჩამნაცვლებული ატომები მიეკუთვნებიან ელემენტების მენდელეევის პერიოდული სისტემის ერთიდაიგივე ჯგუფს. ამ მიახლოებაში კრისტალური მესერის დეფექტად მოიაზრება მასური ატომეზის მხოლოდ დეფექტი, გამოწვეული ჩანაცვლებით, ხოლო ატომებს შორის მოქმედი დრეკადობის ძალის კონსტანტები პრაქტიკულად უცვლელი რჩება.

კრისტალების ელექტრული, ფოტოელექტრული, თერმოელექტრული, ოპტიკური (ელექტრონული პროცესები) თვისებების შესწავლა იძლევა მხოლოდ დეფექტების ბუნების შესწავლის ირიბ საშუალება. მეორეს მხრივ, კრისტალების ოპტიკური თვისეზეზის შესწავლა, რომლებიც დაკავშირებულია კრისტალური მესერის რხევის დინამიკის დეფექტების გამოკვლევებთან, წარმოადგენს ფიზიკური ბუნებისა და სიმეტრიის შესწავლის პირდაპირ მეთოდს. ასეთი ოპტიკური მეთოდებია შორეული ინფრაწითელი სპექტროსკოპია (იწ-სპექტროსკოპია) და ლაზერებით აგზნებული რამანის გაბნევა (ლრგ), ლაზერული – რამან სპექტროსკოპია (ლრს).

უმარტივესი მასური დეფექტის შემთხვევაში, კრისტალური მესერის რხევების თვისებებს განსაზღვრავს მასური დეფექტის პარამეტრი $\varepsilon=1-m$ '/m, სადაც m – კრისტალური მესერის ძირითადი ატომის მასაა, ხოლო m`ჩანაცვლებული მინარევული ატომის მასაა. ამ მასური პარამეტრის ნიშანზე და სიდიდეზეა დამოკიდებული კრისტალური მესერის რხევათა თვისებები, კერძოდ, როგორი ტიპის დეფექტური რხევითი მოდა გამომჟღავნდება ექსპერიმენტსა და თეორიულ გამოთვლებში. യിപ്പിറ്റ ამჟღავნებს ლოკალურ რხევას, როდესაც მძიმე მესერის ატომი ჩანაცვლდება მინარევის მსუბუქი ატომით, ე. ი. ε>εარ (εარ რაღაც კრიტიკული სიდიდეა ε პარამეტრისა). ლოკალური რხევის სიხშირე ყოველთვის წარმოიქმნება ოპტიკური შტოს მაქსიმუმის ზევით. ლოკალური რხევის სპეციალური

გამოვლიწებაა ხვრელისმიერი რხევა. იგი წარმოიქმწება მესერის რხევებში იმ შემთხვევაში, თუ მესერის მსუბუქი ატომი ჩანაცვლდება უფრო მძიმე მიწარევული ატომით. მისი სიხშირე აღიძვრება ოპტიკური შტოს მინიმუმის ქვევით და გარდა ამისა, მისი წარმოქმნის აუცილებელი პირობაა ხვრელის აკუსტიკურ შტოებს შორის (მდგომარეობათა არსებობა ოპტიკურ და სიმკვრივის ნულოვანი მნიშვნელობით). თუ დეფექტის რხევათა სიხშირე მოთავსებულია მცირე სიდიდის მდგომარეობათა სიმკვრივის, მაგრამ არა ნულოვანი სიმკვრივის ინტერვალში, მაშინ ვამბობთ, რომ კრისტალურ მესერში დეფექტები წარმოქმნიან რეზონანსულ, ანუ კვაზილოკალურ რხევებს. ამ შემთხვევაში ლოკალური რხევები არ წარმოიქმნება, მაგრამ ადგილი აქვს მირითადი კრისტალური მესერის რხევათა სპექტრალური ზოლების სიხშირეთა ცვლილებებს. ასეთი სიტუაცია წარმოიქმნება, როდესაც კრისტალური მესერის ატომი ჩანაცვლდება თითქმის მისი ტოლი მინარევული ატომის მასით.

ატომების ლოკალური რხევების ექსპერიმენტულად დასაფიქსირებლად სასურველია მათი შესწავლა ორფონონიან მდგომარეობათა სიმკვრივეთა ინტერვალის ზევით; ე. ი. როდესაც ლოკალური რხევა აასისავით (აა კრისტალური მესერის განივი ოპტიკური ფონონის რხევის სიხშირეა). ხვრელისმიერი რხევების ექსპერიმენტულად აღმოჩენა საკმაოდ მნელი და იშვიათია მისი წინაპირობების საკმაო სიმკაცრის გამო.

კრისტალური მესერის რხევის თეორია, როდესაც მესერი შეიცავს დეფექტებს, მარტივია თუ განვიხილავთ "მასური დეფექტის" მიახლოებაში. ამ შემთხვევაში გრინის ფუნქციის ტექნიკის გამოყენებით შესაძლებელია გამოვთვალოთ დეფექტების რხევების სიხშირეები შემდეგი სეკულარული განტოლებიდან:

$$det|E-G(\omega)C(\omega)|=0$$
(5.4)

სადაც G(ω) – იდეალური კრისტალის გრინის ფუნქციის მატრიცაა, C(ω) – დეფექტებით ინდუცირებული შეშფოთების მატრიცაა და Ε–ერთეულოვანი მატრიცაა.

გრინის ფუნქცია იდეალური მესერისათვის შეგვიძლია მივიღოთ კრისტალის ფონონური მდგომარეობების სიმკვრივიდან ρ(ω):

$$G(\omega) = \int_{0}^{\omega_{M}} \frac{\nu(\omega')d\omega'}{\omega^{2} - {\omega'}^{2}} + i\frac{\pi}{2\omega}\nu(\omega)$$
(5.5)

ამრიგად, თუ გვეცოდინება მდგომარეობათა სიმკვრივეები (და შესაბამისად, გრინის ფუნქცია), ჩვენ შეგვემლება განვსაზღვროთ ლოკალური რხევების სიხშირეები მარტივი განტოლებიდან:

$$\varepsilon \omega^2 G_1(\omega) = 1 \tag{5.6}$$

სადაც $G_1(\omega)$ – გრინის ფუნქციის $G(\omega)$ რეალური ნაწილია.

ფონონების მდგომარეობათა სიმკვრივეეზი შეიძლება $\rho(\omega)$ გაზნევით განვსაზღვროთ ნეიტრონების 6030 და რენტგენის ექსპერიმენტებიდან. მეორეს მხრივ, მათი გამოთვლა თეორიულადაცაა პრობლემა გადაწყვეტილი იქნა შესაძლებელი. ეს თუთიის კრიალას ტექნიკის სტრუქტურის ნახევარგამტარებისათვის გრინის ფუნქციის გამოყენებით [32]. ამ შრომაში დაადგინეს პარამეტრ ε დამოკიდებულება ლოკალური და ხვრელისმიერი რხევევების სიხშირეებთან. გამოთვლები შესრულდა მოდიფიცირებული ხუსტი იონის მოდელის გამოყენებით. ეს მოდელი ითვალისწინებს, რომ ზიგეტის მიერ შემოღებულ იონის ეფექტურ მუხტში მხედველობაშია მიღეზული მოკლე რადიუსის ყველა არაცენტრალური ძალები, ისევე როგორც მეორე მეზობლისა და ყველა გრძელი ძალები. რადიუსის გარდა ამისა, გათვალისწინებულია დრეკადობის სამი მუდმივა.

5.2 კინოვარის, α-HgS პირველი რიგის ფონონების იდენტიფიკაცია-კლასიფიკაცია

ტრიგონალური ვერცხლისწლის სულფიდის კრისტალური მესერის რხევითი სპექტრი შესწავლილი იყო სხვადასხვა ავტორთა მიერ [24-28] როგორც იწ-სპექტროსკოპიით, ასევე ლაზერული რამან-სპექტროსკოპიით. აღნიშნულ სამუშაოებში არსებობს შეუსაბამობა ფონონების იდენტიფიკაციის საკითხში. მაგალითად, [26]-ში ფონონის პიკი, რომელიც მდებარეობს 202 სმ⁻¹ სიხშირეზე, მიაკუთვნეს E ტიპის რხევას, ხოლო [25]-ში ამ სიხშირეზე ფონონური პიკი საერთოდ ვერ აღმოაჩინეს.

საერთაშორისო ლიტერატურის მონაცემების შედარებამ გვაჩვენა, რომ კინოვარის რამან-სპექტრების იდენტიფიკაციისას არსებობდა ფონონების მიკუთვნების განსხვავებული ვერსიები. ყველა ეს მონაცემი ეყრდნობოდა მათგანში არ ბუნებრივი მინერალების გამოკვლევას და არცერთ റ്റന მათი სისუფთავის ხარისხი. სწორედ ამ აღნიშნული მიზნით, ჩვენ შევისწავლეთ სხვადასხვა საბადოდან მოპოვებული კინოვარები და მათი შემოწმებული სისუფთავე წინასწარ გვქონდა ელექტრონული პარამაგნიტული რეზონანსისა და რენტგენის საშუალებით. ამავე დროს გაგვაჩნდა ლაბორატორიული წესით მიღებული კინოვარიც, რომელიც სპეციალურად არ იყო ლეგირებული რაიმე მინარევით. მისი რამანსპექტრების შესწავლით დავრწმუნდით ბუნებრივი სუფთა მინერალის რამან-სპექტრებთან მის აბსოლუტურ თანხვედრაში.

სხვა სამუშაოებისაგან განსხვავებით, ჩვენი გამოკვლევის თავისებურება იმაში მდგომარეობს, რომ შევისწავლეთ დიდი რაოდენობის ბუნებრივი მანძილით დაშორებული მინერალეზი ტერიტორიულად დიდი და სხვადსხვა ბუნებრივი კლიმატური პიროზეზის მქონე სხვადასხვა გეოლოგიური საბადოებიდან. ასეთი მიდგომის მიზანია დავადგინოთ სუფთა კინოვარის ზუსტი მახასიათებელი რამან-სპექტრი ავხსნათ და ზედმეტი პიკების წარმოქმნის მიზეზები.

ბოლო დროს რამან-სპექტროსკოპიის ტექნიკის განვითარებამ შესაძლებელი გახადა მისი გამოყენება ანტიკური და შუასაუკუნოვანი ეპოქების ხელოვნების ნიმუშების შესწავლის მიზნით. მაგალითად სამუშაოებში [163-165] რგ შესწავლილი იქნა ეგვიპტური, იტალიური,

ესპანური, ჩინური ფაიფურის, ფერწერული, და სასულიერო ხელოვნების რამან-ტექნიკით ნიმუშები. ამ შრომებში იდენტიფიცირებულ იქნა იმდროინდელი საღებავების პიგმენტები. გაშიფრულ იქნა ფერთა გამების შექმნის ტექნიკის ზოგიერთი საიდუმლოებანი. აღმოჩნდა, რომ ამ ფერების უმეტესი ნაწილი მიღებულია ბუნებრივი მინერალების საფუძველზე წარმოებული პიგმენტების საშუალებებით. ამ პიგმენტებიდან კინოვარი გამოყენებულია როგორც ერთერთი მთავარი საშუალება წითელი ფერების ხშირადაა მისაღებად. ოქროსფერი შეფერილობისათვის ძალიან 30 გამოყენებული მინერალი რეალგარი AsS. დროთა განმავლობაში წითელი კინოვარის პიგმენტმა შეიძლება განიცადოს დეგრადაცია, გადავიდეს მეტაცინაბარიტის ფაზურ მდგომარეობაში და ადრე არსებული ნათელი წითელი ფერები გამუქდეს, გადავიდეს შავ ფერებში. ჩვენ აქ წინასწარ დავმენთ, რომ წითელი კინოვარის ფერი მკვეთრად იცვლება სელენის მინარევის დამატებითაც და მისი კონცენტრაციის გაზრდით სულ უფრო და უფრო მუქდება. როდესაც კონცენტრაცია 1% და მეტია, კინოვარი ხდება გაუმჭვირვალე. 0.36%-მდე სელენის მინარევის შემცველობა არ იწვევს კინოვარის წითელი ფერის დაკარგვას. ამ თვალსაზრისით მნიშვნელოვანია HgS-ის ყველა ალოტროპიული მდგომარეობისა და დაბინძურების რამანსპექტრებით იდენტიფიკაცია. ეს მნიშვნელოვანია ხელოვნების ნიმუშების რამან-სპექტრებით ანალიზის დროსაც პიგმენტების კლასიფიკაციის მიზნით.

მეორე მიზანი მდგომარეობს დავადგინოთ, შესაძლებელია თუ არა ზუნეზრივი მინერალის კინოვარის რამან-სპექტრტები გამოყენებული იქნას საზადოეზის ალბათური იდენტიფიკაციის ერთერთ საშუალებად. მაგალითად, შრომაში [164] შესწავლილი იყო ხელოვნების ნიმუშის, მეფე ჰეროდეს სასახლის კედლების მოხატულობათა ფერები. ანალიზი შესრულდა SEM მიკროსკოპისა და რამან-სპექტროსკოპიის საშუალებებით იდენტიფიცირებული იქნა პიგმენტი. სპექტრების და კინოვარის არ ინფორმაციაზე დაყრდნობით გაირკვა, რომ პიგმენტი იყო ხანის ალმადინის დამზადებული ანტიკური კინოვარის ესპანეთის მინერალის ბაზაზე. საბადოდან მოპოვებული ალბათურ წყაროებად

განისაზღვრა ესპანეთის საბადო ტარნა, ჩინეთის ჰუნანის პროვინცია და იტალიის ტოსკანის მონტე ამიატას კინოვარის საბადოები. სწორედ ამ საბადოებიდან მოპოვებული კინოვარის მინერალების რამან-სპექტრები შეადარეს მეფე ჰეროდეს სასახლის კედლების მოხატულობათა სინჯებიდან მიღებულ რამან-სპექტრებს.

 A^2B^6 ჯგუფის თითოეული ორმაგი ნახევარგამტარი, რომელიც ნორმალურ პირობებში (ოთახის ტემპერატურა, ატმოსფერული წნევა) კრისტალდება Zn, Cd, Hg ურთირთმოქმედებით S, Se, Te-თან, ერთი გამონაკლისის გარდა წარმოქმნის თუთიის (T_d^2) ან ვიურციტის (C_{6V}^4) სტრუქტურას. ეს

ნახ. 5.1 კინოვარის სტრუქტურის სქემატური ხედი c ღერძის გასწვრივ ერთადერთი გამონაკლისია წითელი კინოვარი, მინერალი სინგური, α -HgS. იგი ნორმალურ პირობებში სტაბილურ ფორმას წარმოქმნის D₃⁴ სიმეტრიის სტრუქტურის სახით, რომელიც ორატომიანი ანალოგია ტრიგონალური ელემენტარული ნახევარგამტარებისა Se და Te. ტრიგონალური α -HgS შედგება ჰელიკონური Hg –S – Hg – S სპირალებისაგან, რომლებიც პარალელურადაა განთავსებული მესამე რიგის c-ღერძის მიმართ. ატომებს შორის მანძილი სპირალში Hg-S=2,36 Å, ხოლო სპირალებს შორის უმოკლესი მანძილია 3.2 Å [24]. ამ სტრუქტურის სქემატური ხედი c ღერძის გასწვრივ მოცემულია ნახ. 5.1-ზე.

წითელი სინგური მიეკუთვნება D₃⁴ სივრცით ჯგუფს და მისი ექვივალენტური წერტილოვანი სიმეტრიის ჯგუფის D₃ მახასიათებელთა ტიპები მოყვანილია ცსრილში 2.

D ₃	E	2C ₃	3C ₂	Basis functions	N ₀	Raman active	Infrared active
$\begin{array}{c} A_1 \\ A_2 \end{array}$	1 1	1 1	1 -1	$Z^2; X^2 + Y^2$ Z	2 3	Yes No	No Yes
Е	2	-1	0	$(X,Y); (X^2-Y^2, -2XY);$ (YZ, -ZX)	5	Yes	Yes

ცხრილი 2 წერტილოვანი სიმეტრიის ჯგუფის D₃ მახასიათებელთა ტიპები

α-HgS სტრუქტურა შეგვიძლია წარმოვიდგინოთ როგორც NaCl-ის დეფორმირებული სტრუქტურა. წითელი სინგურის ჰექსაგონალური ელემენტარული უგრედი, რომელიც შეიცავს HgS-ის სამ მოლეკულას, ნაჩვენებია ნახ. 5.2-ზე.

ნახ. 5.2 წითელი სინგურის ჰექსაგონალური ელემენტარული უჯრედი

ვერცხლისწყლის სულფიდი ბუნებაში გვხვდება ორი მოდიფიკაციით: მაღალტემპერატურული β-ფაზა-მეტაცინაბარიტი თუთიის კრიალას α-ფაზა-წითელი სინგური სტრუქტურით და დაბალტემპერატურული 280-340⁰C ტრიგონალური ელემენტარული უჯრედით. ინტერვალში მდებარეობს ფაზური გადასვლის წერტილი [24], ამიტომ ერთობ მნელია ლაბორატორიულ პირობებში ამ კრისტალების გაზრდა და იძულებული ვიყავით ძირითადად გვემუშავა ბუნებრივ მინერალებზე.

ფაქტორ-ჯგუფური ანალიზი α-HgS ფონონებისათვის ბრილიუენის ზონის ცენტრში K=0, გვაძლევს ფონონების შემდეგ კლასიფიკაციას რხევის ტიპების მიხედვით:

$$U=2A + 3A_1 + 5E$$
 (5.7)

ამ ფორმულაში ორი A ტიპის სრულიად სიმეტრიული რხევა აქტიურია მხოლოდ რგ-სპექტრებში, სამი ტიპის A₁ ანტისიმეტრიული რხევა არააქტიურია რგ, მაგრამ აქტიურია იწ-სპექტრებში, ხოლო ორჯერადად გადაგვარებული ხუთი ტიპის E რხევა ერთდროულად აქტიურია როგორც რგ, ასევე იწ-სპექტრებში.

მიზნით მოვაგროვეთ სამი გამოკვლევის კატეგორიის ბუნებრივი კრისტალები α -HgS: პირველი კატეგორია კრისტალებისა ნიკიტოვკის წარმოადგენდნენ ორეულებს, საბადოდან რომლებიც არ შეიცავდნენ სელენის მინარევებს და ამიტომ ისინი მივაკუთვნეთ სუფთა, უმინარევო კრისტალებს. კრისტალების მეორე კატეგორია, მიღებული ხაიდარკანის საბადოდან, შეიცავდნენ სელენის მინარევს სხვადასხვა კონცენტრაციით -0.1%, 0.26%, 0.56% და 1%. ამ კრისტალებში სელენის კონცენტრაციები განსაზღვრული იყო ელექტრონული პარამაგნიტური რეზონანსით (ეპრ) და რენტგენოფაზური ანალიზით. ეს კრისტალები პოლიკრისტალური იყო.

მესამე კატეგორია α-HgS კრისტალებისა საქართველოს აფხაზეთისა და რაჭის საბადოებიდან იყო.

რგ სპექტრებს ვწერდით ორმაგი მონოქრომატორის DFS-24 ბაზაზე აგებული ლაბორატორიული ტიპის რამან-სპექტრომეტრზე. ინფრაწითელი ლაზერის აგზნებით რამან-სპექტრების ჩაწერას კი ვაწარმოებდით როგორც ჩვენი კონსტრუქციის ინფრაწითელ ლაზერულ რამან-სპექტრომეტრზე, ასევე "ბრუკერის" ფირმის სტანდარტულ, ფურიე გარდაქმნით რამანსპექტრომეტრზე FRA106. აგზნების წყაროებად გამოიყენებოდა ჰელიუმლაზერის $\lambda_L = 632.8$ 60, ნეონის გამოსხივეზა კრიპტონის ლაზერის გამოსხივება $\lambda_{\rm L}$ =568.2 ნმ და ინფრაწითელი ლაზერის YAG:Nd⁺ გამოსხივება 1.06 მკმ. სიგნალის მიმღებად ვიყენებდით FEU-79, აზოტის ტემპერატურაზე გაციებულ FEU-83 და GaInAs ნახევარგამტარულ დეტექტორს, რომელიც ტემპერატურაზე. ცივდეზოდა აზოტის რეგისტრაციას ვაწარმოებდით ფოტონების დათვლის სისტემით. რგ სპექტრების ჩაწერა ხდებოდა 298⁰ და $80^0 \mathrm{K}$ ტემპერატურებზე.

უმინარევო α -HgS-ის აკრძალული ზონის სიგანე 298⁰K-ზე 2.1 ევ-ია [166]. ამიტომ ამ კრისტალში რგ-ის ასაგზნებად λ =632.8 ნმ (კვანტის ენერგია 1.96 ევ) გამოყენება მეტად მომგებიანია სიგნალის გაძლიერების მიზნით - ადგილი აქვს წინარეზონანსულ გაძლიერებას. ასეთივე, უფრო კარგი სიტუაციაა, როდესაც α -HgS რგ სპექტრს ვწერთ λ_L =568.2 ნმ (კვანტის ენერგია 2.18 ევ) აგზნებით 80⁰K-ზე. აზოტის ტემპერატურაზე α -HgS აკრძალული ზონის სიგანე ტოლია 2.23 ევ. რეზონანსული და წინარეზონანსული ეფექტებისაგან თავის დაღწევის მიზნით (თუ რამანის სპექტრების ჩაწერისას არსებობდა მათი ზეგავლენა) კი კინოვარის რამანსპექტრებს ვწერდით ინფრაწითელი ლაზერის აგზნებით, 1.06 მკმ.

ნახ. 5.3 α -HgS რგ სპექტრი. აგზნება λ_L =632.8 ნმ

ნახ. 5.3-ზე მოყვანილია რგ სპექტრი სუფთა α-HgS-სთვის, ჩაწერილი $\lambda_{
m L}$ =632.8 ნმ აგზნებით ოთახის ტემპერატურაზე. აზოტის ტემპერატურაზე ჩაწერილმა რამან-სპექტრებმა გვიჩვენა, რომ სპექტრალურ უბანში 50-200 სმ-1 არსებული სუსტი ინტენსიობის სპექტრალური ზოლები მეორე რიგის ფონონებს მიეკუთვნება. გარდა ამისა, აზოტის ტემპერატურაზე ჩაწერილი სპექტრალური რამან-სპექტრების ხაზები წანაცვლებულია მაღალი სიხშირეებისაკენ ოთახის ტემპერატურაზე ჩაწერილი სპექტრებისაგან განსხვავებით ამ ზოლების ნახევარსიგანეები და მკვეთრად დავიწროებულია.

ცხრილში 3 მოვანილია კინოვარის ფონონების სიხშირეები, რომლებიც განვსაზღვრეთ ექსპერიმენტულად ოთახისა და აზოტის ტემპერატურებზე.

Symmetry of phonons	Phonon frequency according RS (cm ⁻¹) $T=298^{0}$ K	Phonon frequency according RS (cm ⁻¹) $T=80^{0}$ K
A ₁	44	49
A ₁	256	262
ТО		
Е	88	92
LO		
ТО	105	112
Е		
LO	147	150
ТО	284	291
Е		
LO	292	301
ТО	346	351
Е		
LO	353	361

ცხრილი 3 კინოვარის ფონონების სიხშირეები ოთახისა და აზოტის ტემპერატურებზე

5.3 სელენის იზომორფული მინარევის ხვრელისმიერი რხევის იდენტიფიკაცია კინივარში, α-HgS

ნახ. 5.4b-ზე წარმოდგენილია ოთახის ტემპერატურაზე ჩაწერილი α-HgSის რგ სპექტრი, რომელიც ლეგირებულია 0.56% სელენით. ეს სპექტრი იმით განსხვავდება 5.4a-ზე მოყვანილი სუფთა კრისტალის რგ სპექტრისაგან, რომ ნახ. 5.4b-ზე მკაფიოდ ჩანს საშუალო ინტენსიობის პიკი

ნახ. 5.4 სუფთა (a) და სელენის მინარევიანი α-HgS (b) რგ სპექტრი. აგზნება λ_L=632.8 ნმ

203 სმ⁻¹ და მცირე ინტენსიობის სუსტად გამოკვეთილი საფეხური 226 სმ⁻¹, რომელიც არ დაიმზირება სუფთა მინერალში.

აზოტის ტემპერატურაზე ჩაწერილ რგ სპექტრში ეს ორი ზოლი განირჩევა უფრო მკვეთრად, მათი ინტენსიობა არ მცირდება, არამედ იზრდება და ოთახის ტემპერატურაზე მცირე, თითქმის შეუმჩნეველი სტრუქტურა 226 სმ⁻¹ აზოტის ტემპერატურაზე იღებს მცირე ინტენსიობის, სახეს. მაგრამ გამოკვეთილი სპექტრალური ზოლის მისი სიხშირე წანაცვლებულია მაღალი სიხშირეებისაკენ და ტოლია 232 სმ⁻¹. სელენის მინარევის მახასიათებელი მეორე უფრო ინტენსიური პიკი 203 სმ⁻¹ აზოტის ტემპერატურაზე წანაცვლდება მაღალი სიხშირეებისაკენ და მისი სიხშირე ხდება 209 სმ⁻¹. ამ პიკის ინტენსიობაც იზრდება. ორივე პიკის ინტენსიობები, რომლებიც ახასიათებს სელენის იზომორფული მინარევის ხვრელისმიერ რხევას, იზრდება სელენის კონცენტრაციის ზრდით.

როდესაც სელენის კონცენტრაცია 1%-ია, α-HgS თითქმის გაუმჭვირვალე ხდება λ_L =632.8 ნმ-ის მიმართ, რაც იმაზე მიანიშნებს, რომ სელენის დიდი კონცენტრაციები იწვევს α-HgS-ის აკრჟალული ზონის წანაცვლებას გრძელი ტალღებისაკენ. სელენის შემცველობის გაზრდით α-HgS გადადის შერეულ კრისტალში $HgS_{1-x}Se_x$. შერეული კრისტალის წარმოქმნისას სამმაგ 30 კინოვარის ფაზა გადადის მეტაცინაბარიტის, β-HgS ფაზაში, რომლის აკრძალული ზონის სიგანე 1.4 eV ტოლია. ასეთი შერეული კრისტალის ზონის სიგანე მცირდება სელენის აკრძალული 30 კონცენტრაციის გაზრდით. ჩვენ აქ არ ვამტკიცებთ, რომ 1% სელენის დამატებით უკვე ადგილი აქვს ფაზურ გარდაქმნას, მაგრამ ცხადია წითელი მოდიფიკაციის კინოვარის აკრძალული ზონის სიგანის შემცირება. ყოველ შემთხვევაში კინოვარის ნათელი წითელი ფერი გადადის თითქმის შავ ფერში.

შრომაში [32] გამოთვლილი იყო ლოკალური და ხვრელური რხევები, როდესაც ორატომიან წრფივ ჯაჭვში ერთერთი ატომი ჩანაცვლდება მისი იზოტოპური ატომით. ასეთ შემთხვევაში ითვლება, რომ ატომებს შორის მოქმედი ძალები ნაკლებად იცვლება და სპექტრების ცვლილების მთავარი ფაქტორია ძირითადი მესერის ატომისა და მისი იზოტოპის მასებს შორის სხვაობა. მასის გავლენა გათვალისწინებულია პარამეტრით "მასის დეფექტი" e=1-M'/M, სადაც M არის ძირითადი მესერის ატომის მასა, ხოლო M'ჩანაცვლებული იზოტოპისა. თანახმად [32]-ისა, როდესაც მესერის მსუბუქი ატომი ჩანაცვლდება უფრო მძიმე იზოტოპით და e უარყოფითი რიცხვია, მაშინ აკუსტიკურ ოპტიკურ შტოებს შორის წარმოიქმნება და ხვრელისმიერი რხევა. α -HgS-ში (M=32) (M=79), e=-1.47; ამის გამო შეიძლება დავასკვნათ, რომ ჩვენს მიერ რამან-სპექტრებში დამზერილი ორი პიკი 203 და 226 სმ⁻¹ სიხშირეებზე მიოეკუთვნება α -HgS-ში სელენის ხვრელისმიერ რხევებს და არა E ტიპის ორჯერადად გადაგვარებულ რხევებს.

საინტერესოა აღვნიშნოთ, რომ შევისწავლეთ დიდი რაოდენობის α-HgS მინერალების რამან-სპექტრები საქართველოს აბხაზეთისა და რაჭის რეგიონებიდან, რუსეთის ნიკიტოვკის რეგიონიდან. მინერალები ეს სხვადასხვა დროს და სხვადასხვა პირების მიერ იყო მოპოვებული. ამ რეგიონების ვერც ერთი მინერალის რამან-სპექტრში ვერ აღმოვაჩინეთ სელენის მინარევის ხვრელისმიერი რხევა. ეს რხევები ვერ დავაფიქსირეთ ვერც ინფრაწითელი, 1.06 მკმ და ვერც ხილული, 632.8 ნმ აგზნებებით; ე.ი. სელენის ხვრელისმიერი რხევები არ დაფიქსირდა არც რეზონანსული აგზნებიდან ძალიან შორს მყოფი ტალღის სიგრძისათვის და ১পি სიგრძისათვის შესაბამისად. ამ რეზონანსთან ახლოს მყოფი ტალღის რამან-სპექტრებით რეგიონებიდან მოპოვეზული ყველა მინერალის განსაზღვრული ოპტიკური ფონონების კლასიფიკაცია შეესაბამება ცხრილში 3 წარმოდგენილ სუფთა კინოვარის ჩვენეულ კლასიფიკაციას. რაც შეეხება შუა აზიის რესპუბლიკის ყირგიზეთის ხაიდარკანის საბადოდან მიღებულ მინერალს, მცირე რაოდენობით გვქონდა, მაგრამ უკლებლივ ყველა α -HgS რამან-სპექტრეზმა დააფიქსირეს სელენის ხვერილსმიერი რხევის მახასიათებელი ორი სპექტრალური ზოლი. ასეთი სტატისტიკის გამო გვინდა შემოგთავაზოთ კინოვარის მინერალების საბადოების ძალიან ზოგადი ალბათური იდენტიფიკაციის მეთოდი რამან-სპექტროსკოპიის გამოყენებით. იგი მდგომარეობს რამან-სპექტრებით სელენის მინარევის ხვრელისმიერი რხევის დაფიქსირებასა ან მისი არარსებობის დადასტურებაში. ამის შედეგ შეგვიძლია ვიმსჯელოთ რომელი ალბათური საბადოდან არის ეს კინოვარი, რადგანაც ჩვენი გაზომვების სტატისტიკის თანახმად α -HgS-ში მინარევ სელენის არსებობა ან არარსებობა საბადოს მახასიათებელი თვისებაა.

ამგვარად, საქართველოს აბხაზეთისა და რაჭის რეგიონები, რუსეთის ნიკიტოვკის საბადო, საიდანაც მოპოვებულ კინოვარის მინერალებში რამანაღმოაჩინეს სპექტრეზმა ვერ სელენის იზომორფული მინარევის ხვრელისმიერი რხევა, მივაკუთვნეთ საბადოებს, საიდანაც მოპოვებული სინგურის მინერალეზი მინარევს. წითელი არ შეიცავენ სელენის

ყირგიზეთის ხაიდარკანიდან მიღებული α–HgS მინერალები კი, რომლებშიც ჩვენ აღმოვაჩინეთ სელენის მინარევის ხვრელისმიერი რხევა, მივაკუთვნეთ საბადოს, სადაც ბუნებრივი გეოლოგიური პირობები ალბათ ისეთია, რომ ამ ნატურალურ ლაბორატორიაში სინთეზირებული კინოვარი შეიცავს სელენის მინარევს.

ნახ. 5.3-ზე წარმოდგენილია კინოვარის რამანის სპექტრი ჰელიუმნეონის ლაზერის ტალღის სიგრძის 632.8 ნმ (1.96 ევ) აგზნებით. ფონონების კლასიფიკაცია მოცემულია ცხრილში 3 ექსპერიმენტის იმ პირობებში, ამგზნები კვანტის ენერგია კინოვარის აკრძალული ზონის როდესაც სიდიდეზე ნაკლებია 0.14 ევ-ით. ამ შემთხვევაში ადგილი აქვს ე.წ. წინარეზონანსულ პროცესს ამიტომ მახასიათებელი ფონონების და ინტენსიობები მაინც გაზრდილია ისეთი ტალღის სიგრძის აგზნებით მიღებული ფონონების ინტენსიობებთან შედარებით, როდესაც არავითარ რეზონანს არა აქვს ადგილი. ასეთი სიტუაცია იქმნება მაშინ, როდესაც კინოვარის რამანის სპექტრი ჩავწერეთ YAG:Nd⁺ ლაზერის ტალღის სიგრმის 1.06 მმკ აგზნებით. 1.06 მკმ (1.17 eV) აგზნებით ჩაწერილი რამან-სპექტრები თავისუფალია რეზონანსული ეფექტებისაგან, რადგანაც YAG:Nd⁺ ლაზერის ამგზნები კვანტის ენერგია ოთახის ტემპერატურაზე თითქმის ორჯერ ნაკლებია α–HgS აკრძალული ზონის სიგანეზე. რამან-სპექტრი პრინციპულ განსხვავებას არ გვიჩვენებს.

ორი სხვადასხვა ტალღის სიგრძეების (632.8 ნმ და 1.06 მკმ) აგზნებით რამან-სპექტრების სელენით ლეგირებული კინოვარის ოთახის ტემპერატურაზე ჩაწერისას დავაფიქსირეთ ხვრელისმიერი რხევების მცირე გაძლიერება 632.8 69 აგზნებისას. ინტენსიობათა რადგანაც ხვრელისმიერი რხევის ზოლი 226 სმ⁻¹ მცირე ინტენსიობისაა, ამიტომ დიდი ცდომილების გამო მისთვის მიახლოებით რაოდენობრივ ანალიზს არ მოვიყვანთ. ამ პროცედურას ჩავატარებთ მხოლოდ უფრო ინტენსიური 203 სმ⁻¹ სპექტრალური ზოლისათვის. სელენით ლეგირებული კინოვარის მინერალები ყველა ან ფხვნილები ან პოლიკრისტალურები იყო. ამიტომ პოლარიზაციული და სხვა სპექტრალური ცდომილებების გამორიცხვის

მიზნით, სელენის ხვრელისმიერი რხევის ზოლის ინტენსიობა 203 სმ⁻¹ განვსაზღვრეთ კინოვარის ძირითადი ფონონების 256 სმ⁻¹, 290 სმ⁻¹ და 346 სმ⁻¹ ფარდობებთან. შედეგი წარმოდგენილია ცხრილში 4. შედეგების თანახმად, როდესაც

ცხრილი 4 კინოვარში სელენის ხვრელისმიერი რხევის ინტენსიობათა ფარდობა ამგზნები ტალღის სიგრძის ორი სხვადასხვა მნიშვნელობისათვის

Wavelengths	of	Ratio of	Ratio of intensities	Ratio of intensities
exciting laser	λ_{L}	intensities	I_{203}/I_{290} (a.u.)	I_{203}/I_{346} (a.u.)
(nm)		I_{203}/I_{256} (a.u.)		
632.8		0.067	1.17	0.32
1064		0.038	0.5	0.16

რამან-სპექტრების აგზნებას ვაწარმოებთ 632.8 ნმ-ით, რომლის ფოტონის კვანტის ენერგია ახლოსაა კინოვარის არაპირდაპირი ზონის ენერგიასთან და შექმნილია წინარეზონანსული პირობა, ადგილი აქვს ხვრელისმიერი რხევის თითქმის ორჯერ გამლიერებას 203 სმ⁻¹ სიხშირეზე.

5.4 GaP-ში დარიშხანის ხვრელისმიერი და ალუმინის ლოკალური რხევების რამან-სპექტრები

ნახ. 5.5 ნაჩვენებია GaP-ს რამან-სპექტრი, როდესაც მასში თხევადი ეპიტაქსიის პროცესში შეყვანილია დაახლოებით 12% დარიშხანის მინარევი. სპექტრების აგზნებას ვაწარმოებდით არგონის ლაზერის ტალღის სიგრმით, 488.0 ნმ. ორიენტაცია საფენისა და ფირისა არის (001). ამიტომ სპექტრში დაომზირება მხოლოდ ფირის დამახასიათებელი LO ფონონი 397 სმ⁻¹. გარდა LO ფონონისა, რომლის ინტენსიობა დიდია, დაიმზირება

ნახ. 5.5 ეპიტაქსიალური ფირის GaP:12%As. რგ სპექტრი, რომელიც ასახავს იზომორფული მინარევის As ხვრელისმიერ რხევას. ორიენტაცია (001). აგზნება 488.0 ნმ

შედარებით მცირე ინტენსიობის სპექტრალური ზოლი 274 სმ⁻¹ სიხშირეზე. ზემოთ განხილული თეორიისა და იმის გამო, რომ სუფთა GaP-ში ეს პიკი არ დაიმზირება, იგი მივაკუთვნეთ დარიშანის იზომორფული ჩანაცვლების გამო წარმოქმნილ ხვრელისმიერ რხევას. LO ფონონის მცირე სიხშირული წანაცვლება სუფთა GaP-ს LO ფონონისაგან (ჩვენი გაზომვებით იგი მდებარეობს 402 სმ⁻¹ სიხშირეზე), გამოწვეულია მინარევის დიდი კონცენტრაციით, რის გამოც ფაქტიურად უკვე გვაქვს შერეული კრისტალი და მოქმედებას იწყებს შერეული კრისტალების ფონონების ყოფაქცევის პრინციპი.

5.6-ზე მოყვანილია რამან-სპექტრი. რომელიც ასახავს GaP-ს მატრიცაში ეპიტაქსიით ლეგირებული მსუბუქი ალუმინის მინარევის ეფექტს. სპექტრის ასაგზნებად გამოყენებულია ჰელიუმ-კადმიუმის ლაზერის გამოსხივება
441.6 ნმ ტალღის სიგრძით. სპექტრზე დაიმზირება საშუალო ინტენსიობის პიკი 398 სმ⁻¹ სიხშირეზე. იგი შეესაბამება ფირის LO ფონონის რხევას.

ნახ. 5.6 ეპიტაქსიალური ფირის GaP:Al რგ სპექტრი, რომელიც ასახავს იზომორფული მინარევის Al ლოკალურ რხევას. ორიენტაცია (001). აგზნება λ_L=441.6 ნმ

მცირე ინტენსიობის პიკი 442 სმ⁻¹-ზე, რომელიც სპექტრში ნათლად ჩანხ, ექსპერიმენტისა და თეორიის საფუძველზე (მატრიცის მძიმე ატომი გალიუმი ჩანაცვლდება უფრო მსუბუქი ალუმინის ატომით) მივაკუთვნეთ იზომორფული ალუმინის მინარევის ლოკალურ რხევას. იგი დაიმზირება ოპტიკური LO ფონონური შტოს მაქსიმალური სიხშირის ზევით. სპექტრში ჩანს TO ფონონის შესაბამისი მცირე ინტენსიობის პიკიც.

5.5 ბუნებრივი მინერალების რეალგარისა და აურიპიგმენტის ლაზერული რამან-სპექტრები

კინოვარის შემდეგ ვაგრძელებთ საქართველოს მინერალების შესწავლას ლაზერული რამან სპექტროსკოპიით და ახლა მოკლედ განვიხილოთ აურიპიგმენტი, ორპიმენტი As₂S₃ და რეალგარი As₄S₄.

ამჟამად მსოფლიოს წამყვან მუზეუმებში ჩამოყალიბდა ლაზერული რამან-სპექტროსკოპიის ლაბორატორიები, რომელთა საშუალებითაც დეტალურად იკვლევენ მსოფლიოს ხელოვნების ნიმუშებს: ფრესკებს, ნახატებს, ძველთაძველ ხელნაწერებს, მუმიებს, ფერად მინებს, ფაიფურს და მიმართულების ერთერთი ლიდერია ლონდონის ხელოვნების ა.შ. ამ მუზეუმი, რომლის ლაზერულ ლაბორატორიაში შეისწავლეს ხელოვნების მრავალი სხვადასხვა ნიმუში. ამ კვლევათა მიზანია დაადგინონ ძვირფასი ხელოვნების ნიმუშების შექმნაში გამოყენებულ ფერთა საიდუმლოებანი – საღებავების, მელნის შემადგენლობა; რა ნივთიერებების ბაზაზე არიან ისინი დამზადებულნი. აღმოჩნდა, რომ ეს ნივთიერებები ძირითადად მინერალური პიგმენტეზი ბუნებრივი და მათი კომბინაციებია. აურიპიგმენტი ერთერთი მთავარი და გავრცელებული პიგმენტია შუასაუკუნეების ხელოვნების ნიმუშებში ოქროსფერი ფერების შესაქმნელად, კინოვარი და რეალგარი კი ძირითადია წითელი ფერების შესაქმნელად. ასევეა ძველთაძველ ეგვიპტურ მუმიებში. ეს დაადგინეს ლაზერული რამან-სპექტროსკოპიით. ბუნებრივი მინერალების პიგმენტების ნიმუშების იდენტიფიკაცია მნიშვნელოვანია აგრეთვე ხელოვნების რესტავრაციისა და კონსერვაციის სფეროში.

ნახ. 5.7-ზე მოყვანილია ჩვენს მიერ ჩაწერილი მინერალის, აურიპიგმენტის რამან-სპექტრი. კინოვარის სპექტრის შესახებ მსჯელობა ზემოთ იყო. ყველა სპექტრი ჩავწერეთ ჰელიუმ-ნეონის ლაზერის ტალღის სიგრძის 632,8 ნმ აგზნებით.

ბუნებრივი მინერალი რეალგარი წითელი ფერის კრისტალია მეტად სტრუქტურით. მონოკლინურია, ტეტრამოლეკულური რთული იგი ელემენტარული უჯრედით. წერტილოვანი სიმეტრიის ჯგუფია C_{2h} . კრისტალი აგებულია As₄S₄ მოლეკულებით, რომლებიც ერთმანეთთან შეკავშირებულნი არიან ვან-დერ-ვაალსის ძალებით. ოთხი გოგირდის ატომი და ოთხი დარიშხანის ატომი რეალგარის მოლეკულაში ერთმანეთთან დაკავშირებულია

ნახ. 5.7 ბუნებრივი მინერალის As₂S₃ (საქართველოს საბადოდან) რგ სპექტრი. პოლიკრისტალური. აგზნება 632.8 ნმ

ტეტრაედრებს კოვალენტური ბმებით ქმნიან კვადრატებს და და შესაბამისად. რადგანაც რეალგარის ელემენტარული უჯრედი შედგება ოთხი As_4S_4 მოლეკულისაგან, რომლებიც ერთმანეთთან დაკავშირებულნი არიან ვან-დერ-ვაალსის ძალებით, იგი არაა პასუხისმგებელი რამანის სპექტრის წარმოქმნაზე. ამიტომ უნდა განვიხილოთ მხოლოდ As₄S₄-ის ერთი მოლეკულის სიმეტრია, რომელიც მიეკუთვნება C_{2v} წერტილოვანი სიმეტრიის ჯგუფურ-თეორიული ჯგუფს. ანალიზის საფუძველზე მივდივართ ფონონების შემდეგ წარმოდგენამდე:

$$\Gamma = 6A_1(R + IR) + 4A_2(R) + 4B_1(R + IR) + 4B_2(R + IR)$$
(5.8)

როგორც (5.8)-იდან ჩანს, რეალგარის რამან-სპექტრში სიმეტრიის კანონის თანახმად აქტიურია 18 ფონონი. ამ ფონონების კლასიფიკაცია საკმაოდ რთულია, თუნდაც იყოს საშუალება, გაზომვები ჩავატაროთ კარგ, ორიენტირებულ კრისტალებზე. ცხრილში 5 მოყვანილია რეალგარის იმ ფონონების სიხშირეები, რომლებიც აქტიურნი არიან რამანის სპექტრში.

ნიმოში	ფონონების	
000000	სიხშირე (სმ ⁻¹)	
რეალგარი As ₄ S ₄	116	
	148	
	160	
	177	
	184	
	194	
	221	
	234	
	246	
რეალგარი As ₄ S ₄	263	
	276	
	290	
	304	
	322	
	341	
	353	
	368	
	403	

ცხრილი 5 ჩვენს მიერ რამანის სპექტრით დაფიქსირებული რეალგარის ფონონების სიხშირეები

ბუნებრივი მინერალი აურიპიგმენტი As_2S_3 წარმოადგენს ოქროსფერ კრისტალს მონოკლინური სტრუქტურით. ტეტრამოლეკულური ელემენტარული უჯრედი მიეკუთვნება C_{2h} წერტილოვანი სიმეტრიის ჯგუფს. სტრუქტურა შედგება As_2S_3 მოლეკულების ფენებისაგან, სადაც AsS სპირალური ჯაჭვი განლაგებულია c ღერძის გარშემო. ეს ფენები პარალელურია (010) სიბრტყისა და ერთმანეთთან დაკავშირებულია ვანდერ-ვაალსიის ძალებით, ხოლო თვით ფენებში ატომები დაკავშირებულნი არიან ერთმანეთთან კოვალენტური ბმებით.

რამანის სპექტრის განსასაზღვრად უნდა გამოვიყენოთ ერთ ფენაში მოთავსებული ერთი მოლეკულის As₂S₃ ელემენტარული უჯრედი, რომელიც მიეკუთვნება C₈ წერტილოვანი სიმეტრიის ჯგუფს. ჯგუფურთეორიული ანალიზის საფუძველზე აურიპიგმენტის რამანის სპექტრი შეიძლება წარმოვადგინოთ შემდეგი სახით:

$$\Gamma = 5A'(R+IR) + 4A''(R+IR)$$
(5.9)

როგორც ვხედავთ, (5.9)-ის თანახმად აურიპიგმენტის რამან სპექტრში უნდა დაიმზირებოდეს 9 ფონონი. ექსპერიმენტულად ჩვენს მიერ ჩაწერილ რამან-სპექტრში კი დაიმზირება უფრო მეტი რაოდენობის ფონონი. ეს ზედმეტი ფონონები ალბათ უნდა მივაკუთვნოთ კომბინაციურ ფონონებს. ცხრილში 6 წარმოდგენილია ჩვენს მიერ რამანის სპექტრში დამზერილი ფონონების სიხშირეები. ეს ფონონები ცხრილში მოყვანილია კლასიფიკაციის გარეშე, რადგანაც ჯერჯერობით შეუძლებელია აურიპიგმენტის კრისტალებზე პოლარიზაციული გაზომვების ჩატარება.

	ფონონების	
ნიმუში	სიხშირე სმ ⁻¹	
	27	
	37	
აურიპიგმენტი AsS₃	64	
	72	
	106	
	138	
	156	
	205	
	294	
	314	
	358	
	385	

ცხრილი 6 ჩვენს მიერ აურიპიგმენტის რამან-სპექტრში დამზერილი ფონონების სიხშირეები

თავი 6. ნახევარგამტარული შერეული კრისტალების ტიპები, თეორიული მოდელები და მათი ექსპერიმენტული გამოკვლევა ლაზერული რამან-სპექტროსკოპიით;

6.1 ფონონების ყოფა-ქცევის მიხედვით შერეული კრისტალების ტიპებად დაყოფის თეორიული მოდელები

შერეული კრისტალები ნახევარგამტარული მიკროელექტრონული სელსაწყოების ერთერთი საბაზისო მასალებია. მაგალითად, მათ ბაზაზე მზადდება სინათლის გამომსხივებელი დიოდები და ლაზერული დიოდები. თანახმად შერეული კრისტალები თეორიის მიეკუთვნებიან ან ერთმოდიანი ან ორმოდიანი ყოფაქცევის კრისტალებს. არსებობენ შემთხვევაში შუალედური ხასიათისაც. ერთმოდიანი კრისტალების კრისტალების მესერის რხევათა მახასიათებელი LO და TO ფონონების სიხშირეები იცვლება უწყვეტად შემადგენლობის ცვლილებასთან ერთად. მაგალითად, ერთმოდიანი შერეული კრისტალის, Cd_sZn_{1-x}S-ის შემთხვევაში, როდესაც ვცვლით შემადგენლობას, CdS-ის მახასიათებელი LO და TO ფონონების სიხშირეები იცვლებიან უწყვეტად და საბოლოოდ მიაღწევენ შერეული კრისტალის მეორე კიდურა წევრის ZnS-ის მახასიათებელ LO და TO ფონონების სიხშირეებს. ორმოდიანი კრისტალების შემთხვევაში, გარდა იმისა, რომ გარკვეული კანონით იცვლებიან LO და TO ფონონების ადგილი აქვს აგრეთვე ზემოთნახსენები სიხშირეები, ლოკალური და ხვრელისმიერი რხევების წარმოქმნას, რომელთა მახასიათებელი ფონონების სიხშირეებიც აგრეთვე იცვლებიან გარკვეული კანონით შემადგენლობის ცვლილებასთან ერთად.

შერეული კრისტალები შეიძლება იყოს კუბური, ჰექსაგონალური, ა.შ. სტრუქტურის, როგორც შემადგენლობის მთელ ინტერვალში, ასევე შემადგენლობის გარკვეულ მცირე ინტერვალში. მიუხედავად

სტრუქტურათა ასეთი მრავალსახეობისა, ფონონურ სიხშირეთა დამოკიდებულება კონცენტრაციაზე მახასიათებელია კრისტალის ან ერთმოდიანი ან ორმოდიანი ქცევისა.

არსებობს ოთსი მთავარი თეორიული მოდელი, რომელთა საფუძველზეც ხდება ფონონურ სიხშირეთა კონცენტრაციაზე დამოკიდებულების გრაფიკების თეორიული გაანგარიშება-აგება. ექსპერიმენტული მონაცემებით აგებული ასეთი გრაფიკების თანხვედრა თეორიულთან კარგი კრიტერიუმია სხვადასხვა ტიპის შერეული კრისტალების ერთმოდიან ან ორმოდიან კრისტალებად დასაყოფად. ეს თეორიული მოდელებია: წრფივი ჯაჭვური მოდელი, ვირტუალური კრისტალის მოდელი, კლასტერული მოდელი, ქაოტურად განაწილებული ელემენტების იზოწანაცვლების მოდელი მის სხვადასხვა მოდიფიკაციებთან ერთად.

6.2 შერეული ეპიტაქსიალური ფირების GaAsP ლაზერული რამან-სპექტროსკოპია

შერეული პირველი კრისტალების კომპლექტი, რომელიც ჩვენ არის გამოვიკვლიეთ, ოპტოელექტრონული ხელსაწყოთმშენებლობაში ცნობილი $A^{3}B^{3}$ ჯგუფის მასალა GaAsP. როგორც ყველასთვის ცნობილია, ამ მასალაზე მზადდება კარგი ხარისხის სინათლის გამომსხივებელი დიოდები სპექტრის წითელ, ნარინჯისფერ და ყვითელ სპექტრალურ დიაპაზონებში. ასევე მზადდება ლაზერული დიოდებიც. ეს მასალები ლაზერული რამანსპექტროსკოპიით ადრე იყო შესწავლილი [70]. აღნიშნულ შრომაში ეს მასალები გამოკვლეული იყო მოცულობითი აგზნებით, ჰელიუმ-ნეონის ლაზერის 632.86მ და ძოწის ლაზერის 106.06მ გამოსხივებებით. უნდა აღინიშნოს ერთი მეტად მნიშვნელოვანი მეთოდური გარემოება რამანსეპექტროსკოპიაში: როდესაც ისეთი ნახევარგამტარი, როგორიცაა GaAs (იგი გამოსაკვლევი კრისტალების ერთერთი კომპონენტია), შეისწავლება რგ-ით, სპექტრს ფონონურ ხშირად ედება პლაზმონ-ფონონური

ურთიერთმოქმედების სპექტრი. ფონონურ სპექტრზე პლაზმონების ზეგავლენა მეტია, როდესაც აგზნება მოცულობითია და ნახევარგამტარებში დიდი რაოდენობითაა ელექტროაქტიური მინარევები (დიდია თავისუფალი ელექტრონების რაოდენობა). ჩვენ შევისწავლეთ სამი სხვადასხვა შემადგენლობის ზუსტად ისეთი ეპიტაქსიალური ფირები, რომელთა საფუძველზეც აწარმოებენ გამომსხივებელ სინათლის დიოდებს სპექტრალურ დიაპაზონში. ზემოთმოხსენებულ სამ ე,ი. ამ ფირებში ელექტრონების კონცენტრაცია დიდია, დაახლოებით 10¹⁹სმ⁻³ რიგის. ამიტომ, ასეთი ფირები შევისწავლეთ ზედაპირული არეკვლის მეთოდით არგონის ლაზერის 488.0 бд გამოსხივეზით. ასეთ ექსპერიმენტულ პირობებში ხელისშემშლელი ფოტოლუმინესცენციიდან შედარებით დაშორებულნი ვართ. გარდა ამისა, რადგანაც გამოსაკვლევ შერეულ კრისტალებში 488.0 ნმის გამოსხივების შეღწევის სკინ-ფენა მცირეა, დაახლოებით 100.0 ნმ, ამიტომ პლაზმონების ზეგავლენა ფონონურ სპექტრზე ნაკლებია. ეს გამოწვეულია ზედაპირთან ელექტრონებით გაღარიბებული ფენის არსებობასთან, რომლის წარმოქმნაც განპირობებულია ზედაპირული სივრცითი მუხტის, ზედაპირული ველის არსებობით. ამგვარად, საშუალება გვეძლევა ეს კრისტალები დიაგნოსტირების თვალსაზრისით შერეული ბუნებრივ პირობებში შევისწავლოთ და ამასთან ერთად საგრძნობლად შევამციროთ ან მოვსპოთ ის ხელისშემშლელი ფაქტორები, რაც დამახასიათებელია მოცულობითი აგზნებისას.

 $GaAs_{1-x}P_x$, შერეული კრისტალები რომლებიც შევისწავლეთ, წარმოადგენს ეპიტაქსიალურ ფირებს. ეს ფირები დაფენილია (001)ორიენტაციის GaP-ს საფენზე. ნახ. 6.1-ზე მოყვანილია GaP, GaAs_{0.15}P_{0.85} GaAs_{0.35}P_{0.65} $GaAs_{0.6}P_{0.4}$, და GaAs-റം რგ-ის სპექტრები შესაზამისი თანმიმდევრობით. ამ სპექტრების ასაგზნებად გამოვიყენეთ არგონის ლაზერის გამოსხივება 488.0 ნმ ტალღის სიგრძით.

ყველა გამოკვლეული კრისტალი კუბური სიმეტრიისაა და მიეკუთვნება T_d წერტილოვან სიმეტრიას. ამიტომ, თანახმად შერჩევის კანონისა, ჩვენს მიერ შესწავლილი ზედაპირის (001) რამან-სპექტრებში აქტიური უნდა იყოს

მხოლოდ LO ფონონები. გაბნევის ამ კონფიგურაციის თანახმად შერეული კრისტალების TO ფონონები არ დაიმზირება.

ნახ. 6.1-ზე წარმოდგენილი სპექტრებიც ამას ადასტურებს. ნახაზიდან ჩანს, რომ შერეული ფირების რამან-სპექტრებში GaP და GaAs-საგან განსხვავებით დაიმზირება ორი კატეგორიის LO ფონონი – LO₁ და LO₂. აქედან პირველი, LO₁ ასახავს GaP-მსგავსი ქვემესერის ატომების გასწვრივ რხევას, ხოლო მეორე, LO₂ კი GaAs-ს მსგავსი ქვემესერის ატომების გასწვრივ რხევას. ამ ორი ქვემესერის მახასიათებელი გასწვრივი ფონონების რხევები იცვლება შემადგენლობის ცვლილებასთან ერთად გარკვეული კანონზომიერებით.

ნახ, 6.1 რგ-ის სპექტრები GaP, GaAs_{0.15}P_{0.85} GaAs_{0.35}P_{0.65} GaAs_{0.6}P_{0.4}, და GaAs-ის თანმიმდევრობით. ფირების ორიენტაცია (001). აგზნება λ_L=488.0 ნმ

ცხრილში 7 მოყვანილია ჩვენს მიერ დამზერილი ფონონების სიხშირეები. ამ მონაცემებით ავაგეთ ნახ. 6.2-ზე წარმოდგენილი გრაფიკები, რომლებიც

ასახავს ამ შერეული ნახევარგამტარის შემადგენლობის დამოკიდებულებას გასწვრივი LO ფონონების სიხშირეებზე. როგორც გრაფიკიდან. ასევე რამანსპექტრებიდანაც ჩანს, რომ გარდა სიხშირეთა ცვლილეზისა, ამ სისტემისათვის დამახასიათებელია ფოსფორის ლოკალური რხევის წარმოქმნა, როდესაც GaAs-ის ქვემესერში ჩანაცვლებულია უფრო მსუბუქი იზომორფული მინარევი ფოსფორი. ეს კი დამახასიათებელია ორმოდიანი ქცევის ნახევარგამტარებისათვის.

Semiconductors	$LO_2 (cm^{-1})$	$LO_1 (cm^{-1})$
GaP		402
GaP _{0.85} As _{0.15}	274	397
GaP _{0.65} As _{0.35}	276	393
GaP _{0.39} As _{0.61}	280	375
GaAs	292	

ცხრილი 7 შერეულ ნახევარგამტარებში $GaAs_{1-x}P_x$ ჩვენს მიერ დამზერილი ფონონების სიხშირეები

ნახ. 6.2 შერეული ნახევარგამტარების GaAs_{1-x}P_x LO ფონონების სიხშირეების დამოკიდებულება შემადგენლობაზე, x

რომ კრისტალები ცნობილია, შერეული თავიანთი ყოფაქცევის კანონზომიერებით იყოფა ორ მირითად კლასად [40], ერთმოდიანი ქცევისა და ორმოდიანი. ნახ. 6.2-ზე წარმოდგენილი დამოკიდებულებები გვიჩვენებს, რომ შერეული კრისტალი GaAs_{1-x}P_x მიეკუთვნება ორმოდიანი ქცევის კრისტალებს. ეს გრაფიკები გამოდგება უცნობი კონცენტრაციების შესაფასებლად, მაგალითად, იონური ლეგირებით სინთეზირებული სამმაგი შერეული ნახევარგამტარების შემადგენლობათა შესაფასებლად.

6.3 შერეული კრისტალების ZnTe_xSe_{1-x} ლაზერული რამან-სპექტროსკოპია

ამ სისტემის რამან-სპექტრების მისაღებად გამოვიყენეთ კრიპტონის ლაზერის გამოსხივების აგზნება 568.2ნმ ტალღის სიგრძით (2.18 ევ). პარალელურად, სპექტრები ჩავწერეთ აგრეთვე ჰელიუმ-ნეონის ლაზერის გამოსხივების 632.8ნმ ტალღის სიგრძით (1.98 ევ), რომელიც შორსაა გამოსაკვლევი ნახევარგამტარების აკრძალული ზონის სიდიდისაგან. ამ შემთხვევაში რრგ გამორიცხულია ყველა შემადგენლობისათვის. კრიპტონის ლაზერით აღგზნებისას კი უკვე სუფთა ZnTe-ისთვის ვქმნით სპექტრის

ჩაწერის წინარეზონანსულ პირობებს. ასეთ პირობებში ეს სისტემა არასდროს გამოუკვლევიათ.

ნახ. 6.3 ZnTe_xSe_{1-x} სისტემის შემადგენლობის, x დამოკიდებულება აკრძალული ზონის სიდიდეზე, E_0

იმისათვის, რომ ნათელი იყოს ჩვენი არგუმენტაცია, ნახ. 6.3-ზე მოყვანილია ამ სისტემის შემადგენლობის, x დამოკიდებულება აკრმალული ზონის სიდიდეზე E_0 [178]. როგორც ვხედავთ, ამ დამოკიდებულებას გააჩნია მინიმუმი. ამიტომ ამ შემადგენლობებისათვის უკვე კრიპტონის ლაზერის კვანტის ენერგია 2.18ევ მეტია მინიმუმის მახლობელი შესაბამისი შემადგენლობების აკრძალული ზონის სიგანეზე, მაშინ, როდესაც ZnTe და რამდენიმე შემადგენლობა მთლიანად გამჭვირვალეა ამ გამოსხივებისათვის. უფრო თანაბარი პირობების შექმნის მიზნით, სპექტრების ასაგზნებად გამოვიყენეთ კიდევ საღებავის ლაზერის გამოსხივების ტალღის სიგრძე 589.860 (2.102 ევ). ნახ. 6.4-ზე წარმოდგენილია ZnTe-ის ორი რამან-სპექტრი. ერთი, 632.85მ და მეორე, 589.85მ ტალღის სიგრძეების აგზნებით. სპექტრები რეზონანსულ პირობებში ნათლად გვიჩვენებენ სხვაობას: ჩაწერილ სპექტრებში შევბელით ჯერადი 2LO ფონონის დაფიქსირება. რა სიდიდითაც არ უნდა გავზარდოთ ჰელიუმ-ნეონის ლაზერის გამოსხივების ინტენსიობა, ან გავადიდოთ სპექტრომეტრის მგრმნობიარობა, ამას ვერ მივაღწევთ, რადგანაც ჯერადი ფონონების გამოვლინება ამ შემთხვევაში

ნახ. 6.4 ZnTe-ის ორი რამან-სპექტრი. ერთი, 632.8ნმ და მეორე, 589.8ნმ ტალღის სიგრმეების აგზნებით

ფიზიკურ მექანიზმშია ჩადებული. ეს მექანიზმია ფონონების კასკადური მექანიზმი და მისი განხორციელება ხდება მაშინ, როდესაც ამგზნები ლაზერის კვანტის ენერგია და ნახევარგამტარის აკრძალული ზონის სიგანე თანაფარდობას მიაღწევს. ამ დროს წარმოიქმნება ან გარკვეულ წინარეზონანსული ან რეზონანსული სიტუაცია, მაგრამ ამ ეფექტის აღმოჩენა ყველა ტიპის ნახევარგამტარში არაა შესაძლებელი. ნახ. 6.5-ზე მოყვანილია ჩვენს მიერ შესწავლილი შერეული კრისტალების რამანის სპექტრები, როდესაც აგზნება წარმოებდა საღებავის ლაზერის გამოსხივების 589.8 бд ტალღის სიგრძით. ცხრილში 8 მოყვანილია დამზერილი ფონონების სიხშირეები.

Semiconductor	LO (cm ⁻¹)	TO (cm ⁻¹)	2LO (cm ⁻¹)
composition x			
ZnTe	203	170.7	409.5
$ZnTe_{0.9}Se_{0.1}$	207.3	173.5	415
$ZnTe_{0.8}Se_{0.2}$	210	176	423.2
$ZnTe_{0.7}Se_{0.3}$	215.7	177	436.9
ZnTe _{0.6} Se _{0.4}	221.3	179.7	450.5
ZnSe	250	205	

ცხრილი 8 $ZnTe_xSe_{1-x}$ ჩვენს მიერ დაფიქსირებული ფონონები

ნახ. 6.5 შერეული ნახევარგამტარების $ZnTe_xSe_{1-x}$ რამან-სპექტრები სხვადასხვა შემადგენლობისათვის. აგზნება 589.8 ნმ

ამ მონაცემების საფუძველზე ავაგეთ LO, TO და 2LO ფონონების კონცენტრაციული დამოკიდებულება (ნახ. 6.6). ამ გრაფიკების სახე დიამეტრალურად განსხვავდება პირველად განხილული და შესწავლილი სისტემის გრაფიკებისაგან. მეორე სისტემის გრაფიკების სახე გვიჩვენებს, რომ სისტემა $ZnTe_xSe_{1-x}$ მიეკუთვნება ერთმოდიანი ქცევის კრისტალებს.

ნახ. 6.6 LO, TO და 2LO ფონონების კონცენტრაციული დამოკიდებულება სისტემისათვის $ZnTe_xSe_{1-x}$

ამ განხილულ კონკრეტულ შემთხვევაში, ერთმოდიანი ყოფაქცევისას, შერეული ნახევარგამტარების $ZnTe_xSe_{1-x}$ მახასიათებელი ფონონები LO, TO და 2LO მონოტონურად იცვლებიან შემადგენლობის მიხედვით; ორმოდიანი კრისტალების მახასიათებელი თვისება კი გამოიხატება ლოკალური, ან ხვრელისმიერი რხევების წარმოქმნასა და ამიტომ, სხვა ტიპის გრაფიკულ სახეში, რაც ილუსტრირებული იყო პირველი სისტემის, $GaAs_{1-x}P_x$ შესწავლის პროცესში.

6.4 შერეული ეპიტაქსიალური ფირების Ga_{1-x}Al_xP ლაზერული რამან-სპექტროსკოპია

 $Ga_{1-x}Al_xP$ წარმოადგენს შერეული კრისტალი საინტერესო, მაგრამ შედარებით ნაკლებად შესწავლილ მასალას ნახევარგამტარული მასალის მიკროელექტრონიკისთვის. განსაკუთრებული ყურადღება ამ მიმართ გამოწვეულია იმით, რომ რადგანაც მას ახასიათებს ფართო აკრძალული ზონა, შესაძლებელია მისი გამოყენება სინათლის გამომსხივებელი ხელსაწყოების დასამზადებლად ხილულ უბანში. მაგალითად, მის საფუძველზე დამზადებული იქნა ნახევარგამტარული ჰეტეროსტრუქტურული რამან-ლაზერები [167]. ამ შენაერთის ოპტიკური ხოლო ნაკლებადაა შესწავლილი, კრისტალური მესერის თვისეზეზი რხევითი დინამიკა განხილულია მხოლოდ რამდენიმე სამუშაოში [75-76, 168].

რამან-სპექტროსკოპიის მეთოდით რეგულარულად ვსწავლობთ იონური ლეგირებით მოდიფიცირებულ ნახევარგამტარებს, განსაკუთრებით, ლეგირეზით სინთეზირებულ რთულ იონური ნახევარგამტარებს. ერთდროულად, ჩვეულებრივი ქიმიური მეთოდეზით, მაგალითად, თხევადფაზური ეპიტაქსიით სინთეზირებული ამავე ნახევარგამტარების გვექნება სტანდარტები - იონური სინთეზირებით შესწავლის შედეგად წარმოქმნილი ფირების ხარისხობრივი იდენტიფიკაციისა მათი და რაოდენობრივი შეფასებისათვის. აღნიშნული სამუშაო სწორედ ამ მიზანს ემსახურება. მეორეს მხრივ კი, $Ga_xAl_{1-x}P$ -ში ფონონების იდენტიფიკაცია და ამ შენაერთის მოდური სტრუქტურის შესწავლა საჭიროა ამჟამად მეტად საჭირო ოთხმაგი ნახევარგამტარის $(Al_xGa_{1-x})_{0.5}In_{0.5}P$ რამან-სპექტრების ინტერპრეტაციისთვის. ეს დაკავშირებულია იმასთან, რომ ამ შენაერთის შემადგენელი კომპონენტებია Ga_xAl_{1-x}P და Ga_xIn_{1-x}P. GaAs-ის საფენზე აღნიშნული ეპიტაქსიალურად დაზრდილი ოთხმაგი ნახევარგამტარი ამჟამად ფართოდ გამოიყენება სპექტრის ხილულ არეში სინათლის გამომსხივებელი მიკროელექტრონული ხელსაწყოების დასამზადებლად, რადგანაც მას გააჩნია ფართო აკრძალული ზონა.

შევისწავლეთ დიდი რაოდენობის n- და p-ტიპის შერეული ნახევარგამტარების Ga_{1-x}Al_xP ეპიტაქსიალური ფირები რამანის გაბევით. გამოვიკვლიეთ აგრეთვე არალეგირებული ფირებიც. აღნიშნული ფირები გაზრდილი იყო თხევადფაზური ეპიტაქსიით (001) ორიენტაციის GaP საფენებზე. ფირების სისქე იცვლებოდა 5-იდან 18 მმკ ინტერვალში.

რამან-სპექტრებს ვიღებდით ორმაგი მონოქრომატორის Д Φ C-24 ბაზაზე ლაზერულ რამან კონსტრუირებულ ლაბორატორიული ტიპის ვიყენებდით სპექტრომეტრზე. აგზნების წყაროდ არგონის ლაზერის გამოსხივეზას 514.5, 488.0, 457.960 ჰელიუმ-კადმიუმის ლაზერის და გამოსხივებას 441,66მ ტალღის სიგრძეებზე.

ნახ. 6.7-ზე წარმოდგენილია სხვადასხვა შემადგენლობის შერეული კრისტალების Ga_{1-x}Al_xP რამან-სპექტრები, ჩაწერილი 488.0ნმ ტალღის სიგრძის აგზნებით. როგორც სურათიდან ჩანს, სამივე შემადგენლობის რამანსპექტრში მუდმივად დაიმზირება GaP საფენის მახასიათებელი LO და TO ფონონების შესაბამისი პიკები 402 და 366სმ⁻¹ სიხშირეებზე შესაბამისად.

ნახ. 6.7 სხვადასხვა შემადგენლობის შერეული კრისტალების

ეს პიკები დაიმზირება ყოველთვის, როდესაც ამგზნები ტალღის სიგრძე მთლიანად არ შთაინთქმება $Ga_{1-x}Al_xP$ ფირის მიერ; ამიტომ ხდება საფენიდან სიგნალის აგზნება. გარდა ამისა, შერჩევის წესის თანახმად GaP (001) ორიენტაციის ზედაპირიდან არ უნდა დაიმზირებოდეს TO ფონონის შესაბამისი პიკი. ე.ი. უნდა ვიფიქროთ, რომ საფენზე ფირის დაზრდისას ადგილი აქვს საფენის ზედაპირის ორიენტაციის ცვლილებას, რაც შესაძლოა, გამოწვეულია დაძაბულობებით. მრავალი ფირის შესწავლისას აღმოჩნდა, რომ ზოგიერთი (001) ორიენტაციის $Ga_xAl_{1-x}P$ ფირის რამან-სპექტრებიც გვიჩვენებენ TO ფონონის შესაბამის პიკს, რაც ასევე ალბათ მიუთითებს (001) ორიენტაციიდან. ფირის ზედაპირის გადახრას ამრიგად, რამანვაკონტროლოთ სპექტრების საშუალებით შესაძლებელია, ზრდის ტექნოლოგიური პროცესები და ვიმსჯელოთ როგორც ფირის, ასევე საფენის ხარისხზე. ამავე ნახაზიდან ჩანს, რომ შერეული $Ga_{1-x}Al_xP$ ნახევარგამტარის რამან-სპექტრში დაიმზირება სპექტრალური პიკები, რომელთა სიხშირეები განსხვავდებიან GaP საფენის დამახასიათებელი LO ფონონის შესაბამისი პიკის სოხშირისაგან. განსხვავებულ სიხშირეზე რამან-სპექტრში წარმოიქმნება ორი ახალი პიკი. აქედან ერთი შეესაზამება AIP ქვემესერის LO ფონონის რხევას, ხოლო მეორე GaP ქვემესერის LO ფონონის რხევას. ორივე პიკის შესაბამისი სიხშირეები იცვლება გარკვეული კანონით, შერეული კრისტალის შემადგენლობებზე დამოკიდებულების მიხედვით. ეს სურათი ასახულია ნახ. 6.8-ზე, რომელზედაც მოყვანილია $Ga_xAl_{1-x}P$ ფირების LO ფონონის სიხშირის დამოკიდებულება შერეული კრისტალის x კონცენტრაციაზე. ეს დამოკიდებულება მიუთითებს, რომ სისტემა $Ga_xAl_{1-x}P$ მიეკუთვნება

ნახ. 6.8 LO ფონონის სიხშირის დამოკიდებულება შერეული კრისტალის $Ga_xAl_{1-x}P$ კონცენტრაციაზე, x.

ორმოდიანი ქცევის კრისტალებს, რაც შეესაბამება ინფრაწითელი სპექტროსკოპიით მიღებულ შედეგებს.

ნახ. 6.9 რამან-სპექტრები $Ga_{0.3}Al_{0.7}P$ შემადგენლობისათვის ლაზერის სხვადასხვა ტალღის სიგრძეებით აგზნებისას.

ნახ. 6.9-ზე წარმოდგენილია რამან-სპექტრები Ga_{0.3}Al_{0.7}P შემადგენლობისათვის ლაზერის სხვადასხვა ტალღის სიგრძეებით აგზნებისას. სურათიდან ჩანს, რომ როდესაც სპექტრის მისაღებად ვიყენებთ მოკლე ტალღებს, GaP საფენის LO ფონონის ინტენსიობა 402სმ⁻¹ სიხშირეზე თანდათანობით მცირდება და როდესაც აგზნებას ვაწარმოებთ ჰელიუმკადმიუმის ლაზერის გამოსხივების ტალღის სიგრძით 441.6ნმ, GaP საფენის LO ფონონის მახასი-

ათებელი პიკი საერთოდ ქრება. პარალელურად, იზრდება LO ფონონის ინტენსიობა 487სმ⁻¹, რომელიც ახასიათებს AIP მსგავსი ქვემესერის რხევას Ga_{0,3}Al_{0,7}P სისტემაში.

ნახ. 6.10-ზე წარმოდგენილია 487სმ⁻¹ სიხშირეზე LO ფონონისა და 402სმ⁻¹ სიხშირეზე LO ფონონის ინტენსიობების ფარდობის დამოკიდებულება ამგზნები ფოტონების ენერგიაზე.

ნახ. 6.10 I_{487}/I_{402} ფარდობის დამოკიდებულება ამგზნები ფოტონების ენერგიაზე.

 $Ga_{0.3}Al_{0.7}P$ სისტემის პირდაპირი აკრძალული ზონის სიგანე E_0 უდრის 3.5ევ [169]. ნახ. 6.10 გვიჩვენებს, რომ როდესაც ამგზნები კვანტის ენერგია სიდიდით უახლოვდება $Ga_{0.3}Al_{0.7}P$ პირდაპირ ზონას, დაიმზირება სუსტი რეზონანსი. მოყვანილი სურათი სრულად ვერ გადმოსცემს რეზონანსული რამანის გაბნევის სურათს, რადგანაც ამგზნები კვანტების ენერგიები სიდიდით საკმაოდ შორსაა პირდაპირი ზონის სიგანისაგან. დასრულებული სურათი გვექნება იმ შემთხვევაში, თუ საშუალება მოგვეცემა აგზნებისათვის გამოვიყენოთ ლაზერის უფრო მოკლე ტალღის სიგრძეები. გარდა ამისა, უფრო კორექტული იქნება, თუ LO_{487} ფონონის ინტენსიობას შევუფარდებთ ეტალონური კრისტალის CaF_2 ფონონის რხევის ინტენსიობას.

ის გარემოება, რომ სისტემას, GaP საფენი + Ga_xAl_{1-x}P ფირი, ვიკვლევთ ლაზერის გამოსხივების სხვადასხვა ტალღის სიგრძეებით, შესაძლებლობას გვაძლევს რამან-სპექტროსკოპიის საშუალებით შევაფასოთ ეპიტაქსიალური ფირების დაახლოებითი სისქეები.

თანახმად [170] სამუშაოსი, რამანის გაბნევის ინტენსიობა

$$I = (I_0 R/2\alpha)(1 - \exp 2\alpha d)$$
(6.1)

სადაც I_0 – დაცემული გამოსხივების ინტენსიობაა, R_0 – გაბნევის განივკვეთია, lpha—შთანთქმის კოეფიციენტია, d – ფირის სისქეა.

თუ ვივარაუდებთ, რომ ფირი Ga_xAl_{1-x}P ეზრდება GaP საფენს ციცაბო ფრონტით, მაშინ შესაძლოა დავუშვათ, რომ გაბნევის ინტენსიობა წარმოადგენს საფენისა და ფირის რამანის გაბნევის ინტენსიობების ჯამს

$$I_{\text{lsghom}} = I_{\text{g}} + I_{\text{lsg}} \exp(-2\alpha_{\text{g}} d)$$
(6.2)

$$I_{3} = (I_0 R_{3} / 2\alpha_{3}) [1 - \exp(-2\alpha_{3} d)]$$
(6.3)

$$I_{\text{Usg}} = (I_0 R_{\text{Usg}} / 2\alpha_{\text{Usg}}) \exp(-2\alpha_{\text{g}} d)$$
(6.4)

თუ ავიღებთ ინტენსიობების შეფარდებას, შესაძლებელი იქნება გამოვიანგარიშოთ ფირების სისქეები

$$I_{\text{lbg}}/I_{\text{B}} = (R_{\text{lbg}}\alpha_{\text{B}}/R_{\text{B}}\alpha_{\text{lbg}})x[exp(-2\alpha_{\text{B}},d)]/[1-exp(-2\alpha_{\text{B}},d)] \qquad (6.5)$$

ზემოთაღწერილი მეთოდით შევაფასეთ Ga_{0,3}Al_{0,7}P შემადგენლობის ფირის სისქე და მივიღეთ d=12,5მმკ. იგივე ფირის სისქე, გაზომილი ჩვეულებრივი მიკროსკოპული მეთოდით, გვამლევს სიდიდეს d=12მმკ.

ამრიგად, რამანის სპექტროსკოპიით შევისწავლეთ დიდი რაოდენობის ეპიტაქსიალური ფირები Ga_{1-x}Al_xP ლაზერის სხვადასხვა ტალღის სიგრძეების აგზნებით. დავადგინეთ, რომ ეს შერეული ნახევარგამტარი მიეკუთვნება ორმოდიანი ქცევის კრისტალებს. აღმოვაჩინეთ ამ სისტემაში რეზონანსული რამანის გაბნევა პირდაპირი ზონის მახლობლობაში და რამანის სპექტრებით შევაფასეთ ეპიტაქსიალური ფირების სისქეები.

თავი 7. რეზონანსული რამანის გაბნევის შესწავლა განსხვავებული სტრუქტურის, ზონური აღნაგობისა და შემადგენლობის ნახევარგამტარებში

7.1 ნახევარგამტარების რეზონანსული რამანის გაბნევის მოკლე თეორია

როგორც ცნობილია, კრისტალებში ფონონების ტალღურმა ვექტორმა K შეიძლება მიიღოს წებისმიერი მწიშვწელობა ბრილუენის ზონის ფარგლებში, რომლის მაქსიმალური მნიშვნელობაა π/d , სადაც d მესერის მუდმივაა. ეს მაქსიმუმი ტოლია 3 x 10^8 სმ $^{-1}$. ამგზნები ლაზერის ტალღის სიგრძეს, რომლის ტალღური რიცხვია 20 000 სმ⁻¹, კრისტალის შიგნით გააჩნია ტალღური ვექტორი დაახლოებით 2 x 10⁵ რიგისა (ტალღური ვექტორი = 2π x გარდატეხის კოეფიციენტი x ტალღური რიცხვი) და სინათლის 90⁰-იანი გაბნევისას ტალღური რიცხვის შენახვის კანონის მოთხოვნის თანახმად ანიჰილირებული ან წარმოქმნილი ფონონების ტალღური რიცხვი იქნება დაახლოებით $2 \ge 2 \ge 10^5$. როგორც ჩანს, ეს სიდიდე ნაკლებია π/d -ზე და ფონონებს, რომლებიც მნიშვნელოვანია პირველი რიგის რამანის გაზნევაში, გააჩნიათ საკმაოდ დიდი ტალღის სიგრძეები მესერის მუდმივასთან შედარებით. ამას ადასტურებს ისიც, რომ კრისტალების უმრავლესობაში მესერის რხევებს გააჩნიათ ტალღური რიცხვის მაქსიმუმი, რომელიც ძირითადად მოთავსებულია ინტერვალში 50 სმ $^{-1}$ – 1000 სმ $^{-1}$. რამანის გაბნევაში აქტიური პირველი რიგის ფონონების ${f K}$ ვექტორის სიმცირეს მივყავართ თეორიულ გამარტივებებთან.

რეზონანსული რამანის გაბნევისას (რრგ) ამგზნები კვანტის ენერგია უახლოვდება ნახევარგამტარის აკრძალული ზონის სიგანეს და ამ დროს რამდენიმე რიგით იზრდება რამანის გაბნევის ეფექტურობა. ეს მეტად მნიშვნელოვანი ეფექტია პრაქტიკული თვალსაზრისით, რადგანაც ამ ეფექტის პირობების შექმნისას ანალიტიკური თვალსაზრისით

შესაძლებელია რამდენიმე რიგით გავზარდოთ მეთოდის აღმოჩენისუნარიანობა.

მიკროსკოპული თვალსაზრისით ნახევარგამტარებში რრგ შეიძლება გამოვხატოთ ფეიმანის დიაგრამით. რამანის ეფექტის წარმოდგენისათვის ფეიმანის დიაგრამის ექვსი ნაირსახეობა არსებობს. აქ მოვიყვანთ ერთს, რომელიც იძლევა შედარებით უფრო ზოგად წარმოდგენას ამ ეფექტის შესახებ და აღწერს რრგ-ის შედარებით დომინირებულ პროცესს (ნახ. 71).

ნახ. 7.1 პირველი რიგის რამანის გაზნევის დომინირებული პროცესის ფეიმანის ერთერი დიაგრამა

როდესაც ამგზნები ლაზერის სინათლის კვანტი ეცემა კრისტალს, თავდაპირველად ნახევარგამტარში წარმოიქმნება ელექტრონ-ხვრელის (e - h)წყვილი; შემდეგ ხდება ელექტრონის გაბნევა ერთ ფონონზე, რომელსაც გადაეცემა გაზნევის შედეგად ელექტრონის მიერ დაკარგული ენერგია. საბოლოოდ ელექტრონი რეკომბინირებს ხვრელთან და რეკომბინაციის პროცესში გამოსხივდება ფოტონი, რომლის სიხშირე ნაკლებია დაცემული, ამგზნები კვანტის სიხშირესთან 7.1-ზე ლაზერის შედარებით. ნახ. მოყვანილ ფეიმანის დიაგრამაზე $\mathbf{H}_{\mathbf{ER}}$ და $\mathbf{H}_{\mathbf{EP}}$ წარმოადგენენ გამოსხივებისა (ფოტონებისა) ელექტრონების, ელექტრონებისა ფონონების და და ურთიერთმოქმედების ჰამილტონიანებს შესაბამისად.

ზემოთმოყვანილი ფეიმანისეული დიაგრამული მეთოდის ექვივალენტურად, რომლითაც წარმოდგენილია რამანის გაზნევის ალბათობა, ფერმის ოქროს წესის თანახმად, აქ მოვიყვანთ რამანის გაბნევის ალზათოზის გამოსახულებას მესამე რიგის შეშფოთების თეორიის შესაბამისად [93].

$$R_{j_{i}} = \frac{2\pi}{\hbar} \left| \sum_{\alpha,\beta} \frac{\langle f | H_{ER} | \beta \rangle \langle \beta | H_{EP} | \alpha \rangle \langle \alpha | H_{ER} | i \rangle}{(\hbar \omega_{l} - E_{\beta} + i\Gamma_{\beta})(\hbar \omega_{s} - E_{\alpha} + i\Gamma_{\alpha})} + C \right|^{2} \times \delta(\hbar \omega_{l} - \hbar \omega_{s} - \hbar \omega_{o})$$
(7.1)

საწყის მდგომარეობას, f სადაც i აღნიშნავს აღნიშნავს საბოლოო მდგომარეობას, ხოლო α და β შუალედური მდგომარეობებია; ω₀ ფონონის სიხშირეა. (6) განტოლების მარჯვენა მხარეს გვაქვს ნაკლებად რეზონანსული წევრები, რომლებიც წარმოადგენენ ფეიმანის მიკროსკოპული პროცესების დანარჩენ ხუთ წევრს, რომლებიც ზემოთ ვახსენეთ და ისინი გაერთიანებულნი არიან C მუდმივაში. (6) განტოლების მნიშვნელი შეიცავს ნამრავლს ($E_{\beta} - \hbar\omega_{l}$) და ($E_{\alpha} - \hbar\omega_{s}$). ასე რომ, რამანის გაბნევის რეზონანსული გაბნევა თავს იჩენს მაშინ, როდესაც ω_l ახლოა ან E_β – სთან ან $(E_\alpha + \hbar \omega_0)$ ეწოდება შემომავალი რეზონანსი, ხოლო (E_{α} – $\hbar\omega_s$) სთან. $(E_{\beta} - \hbar\omega_{l})$ გამომავალი რეზონანსი. Γ_{α} და Γ_{β} ჩაქრობის კოეფიციენტებია.

ლაზერის როდესაც ამგზნები კვანტის ენერგია უახლოვდება ნახევარგამტარის ელექტრონული გადასვლების ენერგიებს, მაშინ ადგილი აქვს რამანის გაბნევის (რგ) ინტენსიობის მკვეთრ ზრდას და ამ მოვლენას ეწოდება რეზონანსული რამანის გაბნევა (რრგ). ცნობილია, რომ რამანის ინტენსიობის გაზნევის სპექტრალური დამოკიდებულება იძლევა მნიშვნელოვან ინფორმაციას იმ შუალედური ელექტრონული დონეების შესახებ, რომლებიც მონაწილეობას ღებულობენ რეზონანსში. იმის მიხედვით, თუ როგორი ტიპისაა ის ელექტრონული ენერგეტიკული დონეები (პირდაპირი ზონა, არაპირდაპირი, ექსიტონური და ა. შ.), რომლის საშუალებითაც მიმდინარეობს რრგ-ის პროცესი, შესაბამისად იცვლება რგის ინტენსიობებიც. რრგ-ის მახასიათებელია დისპერსიული მრუდი, რომელიც გამოხატავს ამგზნები ლაზერის გამოსხივეზის კვანტის ენერგიების დამოკიდებულებას LO, TO, 2LO, ან სხვა ტიპის ფონონებზე რამანის გაბნევის ინტენსიობასთან. რეზონანსი შეიძლება იყოს დაშვებული შერჩევის კანონის თანახმად ან აკრძალული. შესაბამისი სახე ექნება დისპერსიულ მრუდსაც.

ექსპერიმენტალურად რრგ-ის დამზერისათვის საჭიროა ლაზერული რამან-სპექტრომეტრი, რომელიც აღჭურვილი იქნება სხვადასხვა ლაზერით, რათა დიდ ენერგეტიკულ ინტერვალში შეგვეძლოს ამგზნები კვანტების ენერგიების ცვლილება. ბუნებრივია, ამგზნები კვანტების ენერგიების ინტერვალი უნდა ემთხვეოდეს შესასწავლი ნახევარგამტარების რომელიმე ელექტრონული გადასვლის ენერგიებს. რრგ-ის დეტალურად შესწავლის მიზნით გამოიყენება საღებავის ლაზერი, რომლის აგზნებაც წარმოებს არგონის ან კრიპტონის ლაზერებით. ასეთი ექსპერიმენტალური ტექნიკა კვანტის რეზონანსის უწყვეტადცვალებადი ენერგიეზით შესწავლის საშუალებას იძლევა. მხოლოდ არგონისა და კრიპტონის ლაზერების შემთხვევაში უნდა დავკმაყოფილდეთ დოლოძნ დისკრეტული 30 ენერგიებით აგზნებით. ამ შემთხვევაში შესაძლებელია რეზონანსის რაღაც დეტალი დისპერსიულ მრუდში გამოგვრჩეს. რრგ-ის შესწავლა შესაძლებელია აგრეთვე, თუ დავაფიქსირებთ ამგზნები კვანტის ენერგიას და ვცვლით აკრძალული ზონის სიდიდეს ტემპერატურით ან ერთმხრივ მიმართული დამაბულობით, ან ვარიზონული (შერეული) კრისტალების რასაკვირველია, საშუალებებით. ყველაზე კარგია, როდესაც გვაქვს შესაძლებლობა რრგ-ის შესწავლისას გამოვიყენოთ საღებავის ლაზერი.

7.2 არაპირდაპირზონიანი ნახევარგამტარების α-HgSდა GaP რეზონანსული რამან-სპექტროსკოპია

 α -HgS აკრძალული ზონის სიგანე ოთახის ტემპერატურაზე 2.1 ევ ტოლია და იგი მიეკუთვნება არაპირდაპირზონიან ნახევარგამტარებს [166]. შთანთქმის კოეფიციენტი იმ ენერგეტიკულ ინტერვალში, რომელშიც რეზონანსული რამანის გაბნევა შევისწავლეთ (2.0 – 2.142 ევ), იცვლება α =3 – 500 სმ⁻¹ დიაპაზონში. ამრიგად, რეზონანსული გამოკვლევა ჩავატარეთ α -HgS-ის აკრძალული ზონიდან ქვევით 0.1 და ზევით 0.042 ევ-ის დაშორებით.

ნიმუშები წარმოადგენდნენ მუზეუმიდან გამოსაკვლევი აღებულ ბუნებრივ მინერალებს, რომლებიც ჩვენი გრადაციით მიეკუთვნებიან კინოვარი სუფთა, უმინარევო კრისტალებს. ძლიერ დიქროიდული და შესაბამისად ლაზერის სხივის ელექტრული ვექტორის კრისტალია ღერმთან პერპენდიკულარული, კრისტალის с თუ პარალელური განლაგების მიხედვით შთანთქმის კოეფიციენტი იღებს განსხვავებულ სიდიდეებს. ამის გამო ყველა ექსპერიმენტში ვცდილობდით, E ვექტორი ყოფილიყო с ღერმის პერპენდიკულარულად.

ლაბორატორიული ლაზერული რამან-სპექტრომეტრი, რომელზეც ვაწარმოებდით სპექტრების ჩაწერას, კონსტრუირებული იყო ჩვენს მიერ. დისპერსიულ ელემენტად გამოიყენებოდა რეპლიკა 600 შტ/მმ, რომლის შტრიხების პროფილი ისეთი იყო, რომ მოეხდინა სინათლის კონცენტრაცია სპექტრის წითელ-ყვითელ უბანში. სპექტრომეტრის დისპერსია റ്റപ്ര 68/88. დაახლოებით 1 სიგნალის მიმღებად გამოიყენებოდა ფოტოგამამრავლებელი FEU-79. რეგისტრაცია წარმოებდა სინქრონული დეტექტირებისა და თვითჩამწერის საშუალებით.. სპექტრების ასაგზნებად ვიყენებდით Spectra Physics-ის საღებავის ლაზერს 340, რომლის აგზნებასაც ვაწარმოებდით Spectra Physics-ის არგონის ლაზერის 165 ინტეგრალური

გამოსხივებით. კრიპტონისა და YAG:Nd⁺-ის ლაბორატორიული ტიპის ლაზერები კი ჩვენს მიერ იყო კონსტრუირებული.

ნახ. 7.2 კინოვარის რამანის სპექტრი ჰელიუმ-ნეონის ლაზერის ტალღის სიგრძის 632.8 ნმ (1.96 ევ) აგზნებით

ნახ. 7.2-ზე წარმოდგენილია კინოვარის რამანის სპექტრი ჰელიუმნეონის ლაზერის ტალღის სიგრძის 632.8 ნმ (1.96 აგზნებით. ექსპერიმენტის ამ პირობებში, როდესაც ამგზნები კვანტის ენერგია კინოვარის აკრძალული ზონის სიდიდეზე ნაკლებია 0.14 ევ-ით, ადგილი აქვს ე.წ. წინარეზონანსულ პროცესს და ამიტომ მახასიათებელი ფონონების გაზრდილია. ინტენსიობები როდესაც კინოვარის რამანის სპექტრი ჩავწერეთ YAG:Nd⁺ ლაზერის გამოსხივების ტალღის სიგრძის 1.06 მმკ აგზნებით, რეზონანსი არ დაიმზირება. ამ სპექტრებს ვწერდით ჩვენს მიერ კონსტრუირებულ ინფრაწითელ $\mathrm{YAG:Nd}^+$ ლაზერულ რამან-სისტემაზე, ასევე Bruker-ის ფირმის სტანდარტულ ფურიე-გარდაქმნით ლაზერულ რამანსპექტრომეტრზე FRA106.

რეზონანსული რამანის გაბნევა ზემოთმოყვანილ სპექტრალურ ინტერვალში შევისწავლეთ ნახ. 7.2-ზე ნაჩვენები რამანის სპექტრის ორი, 44 და 256 სმ⁻¹ A₁ ტიპის ფონონებისათვის. ამ ფონონების ინტენსიობების

გაზომვების პარალელურად გავზომეთ აგრეთვე ფართო აკრმალული ზონის (10 ევ) კრისტალის CaF_2 -ის რამანის ინტენსიობები 322 la^{-1} სიხშირეზე. გავზომეთ საღებავის ლაზერის გამოსხივების თითოეული ტალღის სიგრმის რამანის გაზნევის ინტენსიობა. აგზნებით დამოწვეულ რადგანაც ფლუორიტის, CaF_2 აკრძალული ზონა 10 ევ-ია, ამიტომ 322 სმ $^{-1}$ სიხშირის ფონონის ინტენსიობა არ განიცდის დისპერსიას ჩვენი ექსპერიმენტის ფარგლებში მოთავსებული საღებავის ლაზერის ენერგიების ამგზნები მიმართ. შედეგად, ეს ინტენსიობა გამოდგება ეტალონად და კინოვარის 256 სმ⁻¹ სიხშირეებზე გავზომეთ ამ რამანის ინტენსიობები 44 და ეტალონური ინტენსიობის მიმართ. შესწავლილი ე.ი. ფონონების ინტენსიობები ნორმირებულია ფლუორიტის ფონონის ინტენსიობით. ამ პროცედურამ საშუალება მოგვცა გამოგვერიცხა ცდომილებები, როდესაც ექსპერიმენტში არ ვითვალისწინებთ ლაზერის ინტენსიობის ცვლილებას, მგრძნობიარობის სპექტრალურ დამოკიდებულებას, ფეგ-ის ოპტიკური სისტემის სპექტრალური გადაცემის კოეფიციენტის მნიშვნელობას და რამანის გაბნევის მთავარ კანონს, v⁴-ის რამანის გაბნევის ინტენსიობასთან α-HgS-შo ამგზნები პროპორციულ დამოკიდებულებას. ლაზერის განსხვავებული ტალღის სიგრძეების შეღწევის სკინ-ფენის სხვადასხვა მნიშვნელობების გასათვალისწინებლად კი გამოვიყენეთ ზალენის მიერ [171] შრომაში მოცემული კინოვარის შთანთქმის კოეფიციენტების გრაფიკები, რომლებიც ასახავენ კინოვარის აკრძალული ზონის დამიკიდებულებას შთანთქმის კოეფიციენტზე.

ასეთი პროცედურების ჩატარების შემდეგ კინოვარის ორი ფონონისათვის 41 და 256 სმ⁻¹ სიხშირეებზე მივიღეთ დისპერსიული მრუდები, რომლებიც ასახავენ α-HgS-ში რეზონანსული რამანის გაბნევის სურათს.

ნახ. 7.3-ზე ასახულია რეზონანსული რამანის გაბნევის ინტენსიობის დისპერსიული მრუდის სახე α-HgS-ის A₁ ტიპის ფონონებისათვის 44 სმ⁻¹ და 256 სმ⁻¹ სიხშირეებზე. ორივე დისპერსიული მრუდი გვიჩვენებს რამანის გაბნევის ინტენსიობის გაძლიერებას, მაგრამ ხასიათი სხვადასხვანაირია:

256 სმ⁻¹ სიხშირის ფონონის ინტენსიობა რეზონანსის ეფექტით იზრდება რვაჯერ, მაშინ როდესაც, ფონონის ინტენსიობა 44 სმ⁻¹ სიხშირეზე იზრდება ხუთჯერ.

ნახ. 7.3 რეზონანსული რამანის გაბნევის ინტენსიობის დისპერსიული მრუდის სახე α-HgS-ის A₁ ტიპის ფონონებისათვის 44 სმ⁻¹ და 256 სმ⁻¹ სიხშირეებზე

რეზონანსული დისპერსიული მრუდის ისეთი სურათი, როგორიც წარმოდგენილია ნახ. 7.3-ზე, როდესაც რეზონანსის საშუალებით ინტენსიობა ძლიერდება დაახლოებით მხილოდ ერთი რიგით, მიუთითებს იმაზე, რომ რეზონანსი მიმდინარეობს არაპირდაპირი აკრძალული ზონის მეშვეობით.

გამოვიკვლიეთ რეზონანსული რამანის გაბნევა GaP-ში, რომელიც აღიარებულია, როგორც არაპირდაპირზონიანი ნახევარგამტარი. როგორც ცნობილია, GaP-ს არაპირდაპირი ზონა ოთახის ტემპერატურაზე E_g=2.26 eV, ხოლო მისი პირველი მინიმალური პირდაპირი აკრმალული ზონა ოთახის ტემპერატურაზე მოთავსებულია E₀= 2.78 eV-ზე. GaP-ში რეზონანსის შესწავლისას, როგორც დასაწყისში მოგახსენეთ, ამგზნები ლაზერების დისკრეტული კვანტების ენერგიებით გადავფარეთ არაპირდაპირი და პირდაპირი ზონების ენერგეტიკული დიაპაზონი. რეზონანსის შესწავლას GaP-ს (111)ვაწარმოებდით ზედაპირიდან; ამიტომ რეზონანსი დაიმზირებოდა ორივე, LO და TO ფონონზე. ექსპერიმენტის შედეგები მოცემულია ნახ. 7.4-ზე; აქ წარმოდგენილია რეზონანსული რამანის გაბნევის დისპერსიული მრუდები GaP-ს LO და TO ფონონებისათვის. ამ შემთხვევაშიც გამოთვლის ტექნოლოგია ისეთივეა, როგორც კინოვარის შემთხვევაში. როგორც ნახ. 7.4-იდან ჩანს, რეზონანსი არაპირდაპირი ზონის ფარგლებში ძალიან სუსტია, თითქმის შეუმჩნეველიც, ხოლო პირდაპირი ზონის მონაწილებით კი გაცილებით ძლიერი. താദാധ മാത്രദ, GaP-U პირდაპირზონიანი რეზონანსი რამდენიმე რიგით სუსტია, ვიდრე ZnSeTe პირდაპირზონიანი რეზონანსი. ამ შერეული ნასევარგამტარების რეზონანსი მიმდინარეობს (განხილულია ქვემოთ) პირდაპირი ექსიტონის მონაწილეობით და ამ მექანიზმით ინტენსიობის გამლიერება ხდება ექვსიშვიდი რიგით.

რაც შეეხება α -HgS-ს, აქ რეზონანსი გაცილებით უფრო ძლიერია, ვიდრე კლასიკური არაპირდაპირზონიან GaP-ს რეზონანსი არაპირდაპირი ზონის მონაწილეობით, მაგრამ სუსტია, ვიდრე რეზონანსული რამანის GaP-do პირდაპირი ზონის მექანიზმით. გაზნევა ეს გვაიმულებს ვივარაუდოთ, რომ α-HgS-do, რომელიც ოთახის ტემპერატურაზე არაპირდაპირი ზონით ხასიათდება, რრგ მიმდინარეობს რომელიღაც შუალედური მექანიზმით მისი ხასიათი უფრო ახლოსაა და პირდაპირზონიანი ნახევარგამტარების რრგ-ის ხასიათთან.

ნახ. 7.4 რეზონანსული რამანის გაბნევის დისპერსიული მრუდები GaP-ს LO და TO ფონონებისათვის.

ამ ექსპერიმენტული ფაქტების ინტერპრეტაციისათვის საჭიროა კინოვარის ზონური სტრუქტურის თავისებურებების გათვალისწინება. იმ მცირე რაოდენობის შრომებში, სადაც ექსპერიმენტულად და თეორიულად კინოვარის ზონის შესწავლილია აკრძალული სიდიდე ფორმა, და გამოთქმულია მოსაზრება, რომ α-HgS-ს ოთახის ტემპერატურაზე გააჩნია არაპირდაპირი დიქროიდული აკრძალული ზონა; მაგრამ ერთ შრომაში, ზონის სტრუქტურა შეისწავლეს სადაც აკრძალული ჰელიუმის ტემპერატურაზე, აღმოაჩინეს მცირე ინტენსიობის პირდაპირი გადასვლა [171].

ნახ 7.5-ზე წარმოდგენილია კინოვარის ბრილიუენის ზონისა (ბზ) და ენერგეტიკული ზონური სტრუქტურის სქემატური სახე A და Γ წერტილების შემაერთებელი ხაზის გასწვრივ. აქვეა ნაჩვენები თუ რომელი გადასვლებია დაშვებული, როდესაც დაცემული სხივის ელექტრული ველის ვექტორი კრისტალის c ღერძის პერპენდიკულარული ან პარალელურია [172].

ნახ. 7.5 კინოვარის ბრილიუენის ზონისა (ბზ) და ზონური სტრუქტურის სქემატური სახე Αდა Γ წერტილების შემაერთებელი ხაზის გასწვრივ.

ნახ. 7.5-იდან ნათლად ჩანს, რომ კინოვარის სავალენტო ზონის მაქსიმუმი მდებარეობს (ბზ)-ის A წერტილში და იგი A₁ სიმეტრიისაა. გამტარებლობის ზონის მინიმუმი კი მოთავსებულია Γ წერტილში Γ₁ სიმეტრიით. ამრიგად, კინოვარს გააჩნია არაპირდაპირი ზონა A₁ - Γ₁ გადასვლით.

კინოვარში პირდაპირი გადასვლა მიმდინარეობს სავალენტო ზონის Γ_3 მდგომარეობიდან გამტარებლობის ზონის Γ_1 მდგომარეობაში. გადასვლა Γ_3 - Γ_1 დაშვებულია მხოლოდ მაშინ, როდესაც სინათლის ელექტრული ვექტორი კრისტალის c ღერმის პერპენდიკულარულია.

თეორიულ გამოთვლებზე დაყრდნობით სავალენტო ზონის მაქსიმუმი ძალიან მდორედ ეცემა A - Γ ხაზის გასწვრივ. გამოთვლილი სხვაობის სიდიდე A₁ და Γ₃ დონეებს შორის ტოლია 0.05 eV. ეს გამოთვლილი სიდიდე თანხვდება ზალენის [171] ექსპერიმენტულ მონაცემებს, კერძოდ, მის მიერ კინოვარისთვის გაზომილ არაპირდაპირი და პირდაპირი ზონის სიდიდეებს შორის სხვაობას.

ამრიგად, ზემოთმოყვანილი თეორიული განხილვის საფუძველზე და კინოვარის სტრუქტურის თავისებურებიდან გამომდინარე (იგი ძალიან წაგრძელებულია c ღერძის გასწვრივ), შეიძლება დავასკვნათ: კინოვარის არაპირდაპირი და პირდაპირი ზონები ძალიან მცირედ განსხვავდება ერთმანეთისაგან; სავალენტო ზონის მაქსიმუმი ძალიან მდორედ ეცემა; ამიტომ კინოვარისთვის რრგ-ის ჩვენს მიერ მიღებული ექსპერიმენტული შედეგები ასახავს არაპირდაპირი და პირდაპირი ზონების ერთობლივ წვლილს რეზონანსში.

7.3 შერეული ნახევარგამტარული კრისტალების Zn Te_{1-x}Se_x რეზონანსული რამან-სპექტროსკოპია.

გაბნეული გამოსხივების ინტენსიობის დამოკიდებულება ამგზნები კვანტის ენერგიაზე გამოკვლეულია სხვადასხვა კრისტალში. ZnTe_{1-x}Se_x-ში პირველად შევისწავლეთ გაბნეული გამოსხივების ინტენსიობის რეზონანსული გაძლიერება, როგორც პირველი რიგის ფონონებზე ბრილიუენის ზონის ცენტრში, ასევე რრგ მეორე რიგის ფონონებზე და მრავალფონონურ პროცესებზე.

რრგ თეორია პირველი და მეორე რიგის გაბნევისათვის კრისტალებში, რომელთაც გააჩნიათ თუთიის კრიალას სტრუქტურა, შესწავლილი იყო [97] სამუშაოში, ე. წ. კვაზისტატიკურ მიახლოებაში, ექსიტონური ეფექტის გაუთვალისწინებლად. კვაზისტატიკური მიახლოება გულისხმობს, რომ რრგ პროცესში მონაწილე ფონონის სიხშირე ω_p გაცილებით ნაკლებია, ვიდრე გამოსახულება | ω-ω₀+iг|,

$$\omega_{p} << |\omega - \omega_{0} + i\Gamma| \tag{7.2}$$

სადაც ω-ლაზერის გამოსხივების სიხშირეა, ω₀-სიხშირე, რომელიც შეესაბამება რეზონანსში მონაწილე აკრძალული ზონის სიგანეს და Γ-ამ ზონის სიგანეა. თანახმად [97] სამუშაოსი, რამან-გაბნევის (რგ) ტენზორი გამოისა-

ხება შემდეგი ფორმულით:

$$P_{ij}^{(1)} = \frac{a_0^2 d\chi_{ij}}{du} = \frac{C_0^* a_0^2 \delta^{(1)} \omega_0}{32\pi\omega_0} \{-g(x) + 4\frac{\omega_0}{\Delta_0} [f(x) - (\frac{\omega_0}{\omega_{0s}})^{3/4} f(x_s)]\}$$
(7.3)

$$x = \frac{\omega}{\omega_0}, \qquad x_s = \frac{\omega}{\omega_0 + \Delta_0}, \qquad \omega_{0s} = \omega_0 + \Delta_0,$$
$$g(x) = x^{-2} [2 - (1 + x)^{-1/2} - (1 - x)^{-1/2}]$$
$$f(x) = x^{-2} [2 - (1 + x)^{1/2} - (1 - x)^{1/2}]$$

სადაც ω_0 -ენერგიაა იმ აკრძალული E_0 ზონის, რომლის ახლოსაც ადგილი აქვს რეზონანსს; C"≈2 უგანზომილებო მუდმივაა; a_0 -მესერის მუდმივაა, ხოლო ξ=u(1,1,1)1/8x a_0 ქვემესერის წანაცვლებაა ფონონების გავრცელების (111) მიმართულებით. $\delta^{(1)}\omega_0$ -ვალენტური ზონის გახლეჩის სიდიდეა, რომელიც გამოწვეულია ქვემესერის წანაცვლებით ξ=1. შესაძლებელია, აგრეთვე, იგი აღიწეროს შემდეგნაირად დეფორმაციული პოტენციალის d₀ საშუალებით:

$$\delta^{(1)}\omega_0 = (\frac{2}{a_0})d_0 . (7.4)$$

განტოლება (7.3) დამაკმაყოფილებლად აღწერს რრგ ექსპერიმენტულ მონაცემებს მეოთხე და A³B⁵ ტიპის ნახევარგამტარებისათვის,

მაგრამ იძლევა შესამჩნევ განსხვავებას, განსაკუთრებით E₀ ზონის მახლობლობაში, A²B⁶ გგუფის ნახევარგამტარებისათვის. ეს განსხვავება თეორიასა და ექსპერიმენტს შორის გამოწვეულია იმ მძლავრი ექსიტონური ეფექტით, რომელიც არსებობს ამ ნახევარგამტარებში არაა და გათვალისწინებული (7.3) ფორმულაში.

რრგ ექსიტონური ეფექტი გათვალისწინებული იქნა [95] სამუშაოში, რომელშიც შეისწავლებოდა რრგ ZnTe-ში. ამ სამუშაოს თანახმად რგ-ის ტენზორი TO ფონონებისათვის, რომელთათვისაც გათვალისწინებულია ექსიტონური წვლილი, გამოისახება შემდეგი ფორმულით:

$$P_{ij}^{(1)} = \frac{C_0^{"} a_0^2 \delta^{(1)} \omega_0}{32\pi\omega_0} \left\{ -g(x) + \frac{4\omega_0}{\Delta_0} \left[f(x) - \left(\frac{\omega_0}{\omega_{0+\Delta_0}}\right)^{3/2} f(x)_s \right] \right\} + C_{ex} \left\{ \frac{3-X^2}{2\left(1-X_{ex}^2\right)^2} + \frac{E_{ex}}{\Delta_0} \left[\frac{1}{1-X_{ex}^2} - \left(\frac{E_{ex}}{E_{ex}+\Delta_0}\right)^3 \frac{1}{1-X_{ex}^2} \right] \right\} =$$
(7.5)
$$\frac{C_0^{"} a_0^2 \delta^{(1)} \omega_0}{32\pi\omega_0} t(x) + u(x)$$
სადაც $X_{ex} = \frac{\omega}{E_{ex}}$, C_{ex} -პროპორციულია ექსიტონის ოსცილატორული ძალისა და $E_{ex} = E_0 - E_f$ (E_{ex} -ექსიტონის კავშირის ენერგიაა).

რამან-გაბნევის ტნზორში LO ფონონებისათის გათვალისწნებულ უნდა იქნას წრმოქმნილი მაკროსკოპული ელექტული ველი და [95]-ის თნახმად მივიღებთ, რომ

$$P_{ij}^{(LO)}(\omega) = \left\{ \frac{\left[P_{ij}(0) + (1/\sqrt{3})(4\pi\rho/\varepsilon_{\infty})^{1/2}(\omega_{LO}^2 - \omega_{TO}^2)^{1/2}\chi^e(0) \right]}{P_{ij}(0)} \right\} P_{ij}^{TO}(\omega)$$
(7.6)

სადაც ρ-დაყვანილი მასის სიმკვრივეა; ε∞-ინფრაწითელი დიელექტრიკული მუდმივა; ω_{LO} და ω_{TO} კი LO და TO ფონონების სიხშირეებია K=0-ის დროს და χ[°] -პირველი რიგის ელექტრო-ოპტიკური ტენზორის ელექტრონული ნაწილია. უნდა აღვნიშნოთ, რომ განტოლება (7.6) სამართლიანია კრისტალის გამჭვირვალობის შემთხვევაში.

რრგ შევისწავლეთ A^2B^6 ტიპის ნახევარგამტარების შერეულ კრისტალებში, ZnTe_{0.7}Se_{0.3} და ZnTe_{0.6} Se_{0.4}. ისინი წარმოადგენდნენ კუბური ფორმის კრისტალებს ზომით 4x4x4 მმ, რომელთა ყველა წახნაგი ოპტიკურად იყო პოლირებული. კრისტალები პოლიკრისტალური იყო, ამიტომ წახნაგები არ იყო ორიენტირებული და ამდენად ამ სამუშაოში ვერ შევმელით აკრძალული და დასაშვები რეზონანსების გამიჯვნა.

 $ZnTe_{1-x} Se_x$ აკრძალული ზონის სიგანის E_0 დამოკიდებულება შემადგენლობაზე, x, გამოკვლეული იყო [173]-ში, სადაც ნაჩვენებია, რომ ამ დამოკიდებულებას გააჩნია მინიმუმი. აღნიშნული სამუშაოდან შევაფასეთ E_0 გამოსაკვლევი კრისტალებისა და მივიღეთ: როდესაც x=0.3 მაშინ E_0 =2.135, ხოლო x=0.4 დროს E_0 =2.145eV.

ექსპერიმენტს რრგ ვანხორციელებდით ოთახის ტემპერატურაზე ვიყენებდით უკუგაბნევის სქემით. რგ სპექტრის ასაგზნებად 375-ის მოდელის საღებავის ლაზერს. საღებავის ლაზერის აგზნებას "Spectra Physics" 165 ვანხორციელებდით მოდელის ფირმა არგონის ლაზერით. რგ სპექტრების რეგისტრაციას ვაწარმოებდით თვითნაკეთი ლაბორატორიული ტიპის რამან-სპექტრომეტრზე ორმაგი მონოქრომატორით

DFS-12. მოდერნიზებული მონოქრომატორი აღჭურვილი იყო დიფრაქციული შტ/მმ, 600 მესერით რომელიც ახდენდა არეკლილი სინათლის კონცენტრაციას 600.0 ნმ უბანში და მუშაობდა დიფრაქციის პირველ რიგში. საღებავის ლაზერში სამუშაო სითხედ ვიყენებდით საღებავს 6G ამიტომ გამოსივეზის როდამინ და ტალღის სიგრმე უწვეტად იცვლებოდა 625.0-575.0 ნმ (1.939-2.15eV) ინტერვალში.

როდესაც კრისტალის აგზნებას ვაწარმოებთ სპექტრალური უბნის ასეთი ფართო დიაპაზონით, ნახევარგამტარის შთანთქმის კოეფიციენტი ინტენსიობის იცვლება თითქმის სამი-ოთხი რიგით. ამიტომ რგ გამოთვლის დროს შემოგვაქვს შესწორება სკინ-ფენის სიდიდეზე დაცემული და გაზნეული სინათლის ტალღის სიგრძეებისათვის. ამ მიზნით ვიღებდით ZnTe-ის შთანთქმის კოეფიციენტის სპექტრს [174]-დან. აქედან აღებულ დამოკიდებულებას ვამთხვევდით $ZnTe_{0.7}Se_{0.3}$ $\cos ZnTe_{0.6}Se_{0.4}$ აკრძალული ზონის სიგანეებს - 2.135, 2.145 eV შესაბამისად და ამრიგად დამთხვეული შთანთქმის კოეფიციენტის სპექტრებიდან მიღებული, ვიღეზდით შესწორებებს. რგ ინტენსიობის თითოეულ გაზომვას ვაწარმოებდით ორიენტირებული მონოკრისტალის CaF₂ პირველი რიგის ფონონის 322 სმ⁻¹ რგ ინტენსიობასთან ფარდობაში. რადგანაც CaF_2 გააჩნია აკრძალული ზონის დიდი სიგანე (10eV), ამიტომ მისი რგ ინტენსიობა არაა დამოკიდებული ამგზნები კვანტის ენერგიის სიდიდეზე. რგ სპექტრის ავტომატურად მეთოდით ჩაწერა და ინტენსიობის გამოთვლა ასეთი გამორიცხავს მონოქრომატორის გადაცემის კოეფიციენტისა და გაზნევის v^4 -ob მოქმედებას., მგრძნობიარობის კანონის ფოტოგამამრავლებლის დამოკიდებულებას ტალღის სიგრძეზე.

ნახ. 7.6-ზე მოყვანილია $ZnTe_{0.7}Se_{0.3}$ მყარი ხსნარების რგ სპექტრები საღებავის ლაზერის სხვადსხვა ტალღის სიგრძეების აგზნებისას. მოყვანილი სპექტრებიდან ჩანს, რომ ამგზნები ტალღის სიგრძის გარკვეული სიდიდის გამოყენების შემდეგ (E =1.983 eV) რგ სპექტრში წარმოიშვება 2LO ფონონი, რომლის ინტენსიობა მკვეთრად იზრდება, როდესაც ამგზნები კვანტის ენერგია უახლოვდება $ZnTe_{0.7}Se_{0.3}$ აკრძალული ზონის სიგანეს

E=2.135. ერთდროულად, მკვეთრად იზრდება LO და TO ფონონების ინტენსიობაც. ფონონების ინტენსიობა მატულობს თითქმის ხუთი რიგით. ანალოგიური სპექტრები იქნა ჩაწერილი ZnTe_{0.6}Se_{0.4} შერეული ნახევარგამტარისთვისაც.

ნახ. 7.6 $ZnTe_{0.7}Se_{0.3}$ მყარი ხსნარების რგ სპექტრები საღებავის ლაზერის სხვადსხვა ტალღის სიგრძეების აგზნებისას.

ნახ. 7.7 ZnTe_{0.7}Se_{0.3}-ში TO ფონონისთვის ფარდობითი ინტენსიობის დამოკიდებულება ამგზნები კვანტის ენერგიის სიდიდეებზე. თეორიული მრუდი (პუნქტირით), გაანგარიშებული (7.3)-ის მიხედვით.

ნახ. 7.7-ზე მოყვანილია $ZnTe_{0.7}Se_{0.3}$ -სათვის ექსპერიმენტული წერტილები, რომლებიც გამოსახავენ ТО ფონონისთვის ფარდობითი ინტენსიობის დამოკიდებულებას ამგზნები კვანტის ენერგიის სიდიდეებზე. ამავე ნახაზზეა მოყვანილი(7.3)-ის მიხედვით გაანგარიშებული თეორიული ჩანს, მრუდი (პუნქტირით). როგორც შეუსაბამობაშია ეს მრუდი

ექსპერიმენტულ წერტილებთან. ფორმულა (7.5)-ით გამოთვლილი თეორიული მრუდი, რომელიც იმავე ნახ. 7.7-ზეა წარმოდგენილი უწყვეტი ხაზით, შესანიშნავად აღწერს ექსპერიმენტს ენერგიების იმ უბანში, სადაც 2.135 კრისტალი გამჭვირვალეა, eV ქვევით. როგორც ზემოთ იყო აღნიშნული, (7.5)გამოყვანილია ექსიტონური მექანიზმის გათვალისწინებით.

ფარდობითი ნახ. 7.8 და 7.9-ზე მოყვანილია შესაბამისად LO და ინტენსიობის დამოკიდებულება ამგზნები ენერგიის კვანტების სიდიდეებზე. ექსპერიმენტული წერტილების 2LO-სათვის გარდა, მოყვანილია (7.6)-ის მიხედვით გამოთვლილი თეორიული მრუდიც. ანალოგიური სურათები.

სიდიდეზე.

გვაქვს შერეული ხსნარის $ZnTe_{0.6}Se_{0.4}$ -ის შემთხვევაშიც.

ამრიგად, ექსპერიმენტული მონაცემების თეორიულ მრუდებთან შედარება ნათლად გვიჩვენებს, რომ ისევე, როგორც A^2B^6 ტიპის ნახევარგამტარებში, ZnTe, ZnSe, CdZnTe, ჩვენს მიერ შესწავლილ შერეულ კრისტალებშიც ZnTeSe რრგ მიმდინარეობს ექსიტონური მექანიზმით.

თავი 8. ლაზერული რამან-სპექტროსკოპიის გამოყენება იონური იმპლანტაციით მოდიფიცირებული ნახევარგამტარული ზედაპირების მონიტორინგის მიზნით

8.1 ბორისა და არგონის იონების იმპლანტაციით მოდიფიცირებული GaP-ს კრისტალური მესერის რხევითი დინამიკის შესწავლა ლაზერული რამან-სპექტროსკოპიით

იონური იმპლანტაცია ერთერთი მთავარი ტექნოლოგიური მეთოდია ნახევარგამტარების სელექტიური ლეგირებისა. ამ მეთოდის უპირატესობა მდგომარეობს იმაში, რომ იონური იმპლანტაციისას შესაძლებელია ზუსტად განვსაზღვროთ როგორც ლეგირებული იონების კონცენტრაციები, ასევე მათი განაწილების პროფილი. მეორეს მხრივ, იმპლანტაციისას კრისტალის სტრუქტურა ირღვევა – წარმოიქმნება დეფექტები. დეფექტების წარმოქმნა გაიზარდოს, რომ იმპლანტაციის გარკვეული შესაძლებელია იმდენად კრიტიკული ზღვარის შემდეგ კრისტალი გადავიდეს ძლიერ მოუწესრიგებელ სტრუქტურაში. კრისტალური სტრუქტურის გადასვლა მოუწესრიგებელ მდგომარეობაში დამოკიდებულია იმპლანტირებული იონების ტიპსა და იმპლანტაციის პირობებზე. საბოლოოდ, კრისტალი შეიძლება გადავიდეს უწყვეტ ამორფულ ფაზაში.

რამანის გაბნევა მნიშვნელოვანი ფიზიკური მეთოდია ასეთი ფაზური გარდაქმნების გამოკვლევის მიზნით. განსაკუთრებული კი ისაა, რომ რამანის გაბნევის შესწავლისას არ ხდება გამოსაკვლევი ობიექტის დაზიანება

იონური იმპლანტაციის პროცესში კრისტალურ მესერში წარმოიქმნება რადიაციული დეფექტები, რომელთა კონცენტრაცია იზრდება დასხივების დოზასთან ერთად. გარკვეული კრიტიკული დოზის შემდეგ კრისტალი გადადის ამორფულ მდგომარეობაში. ამორფიზაციას უფრო ადვილად

განიცდიან ისეთი ნახევარგამტარები, რომელთაც მეტად აქვთ გამოხატული კავშირების კოვალენტური ხასიათი.

ცნობილია, კრისტალებში არსებობს როგორც როგორც ახლო, ისე შორეული წესრიგი და პირველი რიგის რამანის გაბნევაში მონაწილეობს ბრილუენის ზონის ცენტრის ფონონები K=0. კრისტალის რგ სპექტრი წარმოადგენს ვიწროზოლებიანი სპექტრალური ხაზების ერთობლიობას. ამორფულ ნახევარგამტარებში შორეული წესრიგის არარსებობის გამო დარღვეულია შერჩევის წესი; ამიტომ დასაშვებია გამოსხივების ურთიერთმოქმედება კრისტალის არააქტიურ მოდეზთანაც. ასე რომ, ამორფულ ფაზაში ყველა რხევა აქტიური ხდება. ამას კი მივყავართ რგ სპექტრის სტრუქტურის წაშლასთან. სპექტრი იღებს ფართოზოლიან სახეს.

გამოკვლევის მიზნით ავიღეთ GaP მონოკრისტალური ფირფიტები ერთი $n=5x10^{16}$ სმ⁻³. მილიმეტრის ഗറ്റിറത. ელექტრონების კონცენტრაცია ფირფიტების ორივე ზედაპირი იყო ოპტიკურად პოლირებული და ორიენტირებული [111] მიმართულებით. პოლირების ხარისხს ვამოწმებდით რგ სპექტრის ჩაწერით და ვარჩევდით ისეთ ნიმუშებს, რომელთა LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანე ინტენსიობის მაქსიმუმზე არ აღემატებოდა $\Delta_{\rm LO}$ =5 სმ $^{-1}$ და $\Delta_{\rm TO}$ =6.5 სმ $^{-1}$ შესაბამისად. ყველა პოლირებული ნიმუშის ზედაპირის ნახევარს ვფარავდით ფოლგით. დისკეზზე ალუმინის დამაგრებულ ასეთ ფირფიტებს ვათავსეზდით იმპლანტატორის High Voltage Europa კამერაში, ვაკუუმურ სადაც მიმდინარეობდა მათი იმპლანტაცია 110 კევ ენერგიის იონებით, დოზების შემდეგი სიდიდეებით: არგონის იონის შემთხვევაში D= 10^{12} , $3x10^{12}$, $9x10^{12}$, $3x10^{13}$, $8x10^{13}$, $2x10^{14}$, $6x10^{14}$, $2x10^{15}$ იონი/სმ²; ბორის იონის შემთხვევაში კი $D=1x10^{13}$, $3x10^{13}$, $1x10^{14}$, $2x10^{14}$, $6x10^{14}$, $1x10^{15}$, $2x10^{15}$, $1x10^{16}$ ombo/b θ^2 . gappes რომ ამაჩქარებლის შემთხვევაში ვცდილობდით, დენი ყოფილიყო მინიმალური, რათა არ მომხდარიყო ნიმუშების რეკრისტალიზაცია გამოწვით. დენი არ აღემატებოდა 0.05 მკა/სმ². იმპლანტაციის შემდეგ ფიფრფიტის ნახევარს ვაშორებდით ფოლგას და ეს ზედაპირი წარმოადგენდა რამან-სპექტრების ჩაწერისას. რს ჩაწერას ეტალონს

ვაწარმოებდით ლაბორატორიული ტიპის რამან-სპექტრომეტრზე. ნიმუშების აგზნება რს ჩასაწერად ხდებოდა არგონის ლაზერის გამოსხივების ტალღის სიგრძეებით 514,5 ნმ, 457.9 ნმ და ჰელიუმ-კადმიუმის ლაზერის გამოსხივების ტალღის სიგრძით 441.6 ნმ. ამგზნები სინათლის დაცემის კუთხეს მკაცრად ვაფიქსირებდით და მისი სიდიდე თითქმის ყოველთვის შეესაბამებოდა ბრიუსტერის კუთხეს.

GaP მიეკუთვნება კუბური სიმეტრიის კრისტალებს. შერჩევის წესის თანახმად (111) ორიენტაციის ზედაპირის ლაზერის გამოსხივებით აგზნებისას რგ-ში გამოჩნდება როგორც LO, ასევე TO ფონონები. ჩვენს მიერ რეგისტრირებულ რგ-სპექტრში GaP-სთვის LO=402 სმ⁼¹, TO=366 სმ⁻¹.

ნახ. 8.1 რამანის გაბნევის სპექტრები, 110 კევ ენერგიის არგონის იონებით იმპლანტირებული GaP-სი დოზებით: 9x10¹² (a), 3x10¹³ (b), 2x10¹⁴ (c) და 6x10¹⁴ (d) იონი/სმ².

ნახ. 8.1-ზე წარმოდგენილია 110 კევ ენერგიის არგონის იონებით და დოზებით: 9x10¹², 3x10¹³, 2x10¹⁴ და 6x10¹⁴ იონი/სმ² იმპლანტირებული GaP-ს რამანის გაბნევის სპექტრები. როგორც სპექტრები გვიჩვენებს, შედარებით მცირე დოზებით იმპლანტირების შემდეგ კრისტალური GaP-ს მკვეთრი LO და TO სპექტრალური ზოლების ინტენსიობა მცირდება, ხოლო მათი ნახევარსიგანე დოზის ზრდასთან ერთად ფართოვდება. გარდა ამისა, ადგილი აქვს სპექტრალური პიკების წანაცვლებას დაბალი სიხშირეებისაკენ დაახლოებით 2.5 სმ⁻¹ ფარგლებში. დოზის შემდგომი გადიდება იწვევს LO და TO ფონონების ნახევარსიგანეების იმდენად გაფართოებას, რომ ისინი ერთიანდებიან და წარმოქმნიან ფართო, უსტრუქტურო ზოლს. აქ აღწერილი სპექტრები ჩაწერილია არგონის ლაზერის გამოსხივებით λ_L =514.5 ნმ.

ნახ. 8.2-ზე ნაჩვენებია LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანის დამოკიდებულება არგონის იონებით იმპლანტაციის დოზებზე. სპექტრალური წანაცვლება, ინტენსიობის ზოლის მცირე ნახევარსიგანის გაფართოება ნახევარგამტარში შემცირება და შეიძლება გამოწვეული იყოს თავისუფალი ელექტრონების რიცხვის გაზრდით, როდესაც ამ ელექტრონების პლაზმური რხევით გამოწვეული გასწვრივი ელექტრული ველი

ნახ. 8.2 LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანის დამოკიდებულება არგონის იონებით იმპლანტაციის დოზებზე.

ურთიერთმოქმედებს LO ფონონთან (სხვათა შორის, ამ ეფექტის

საშუალებით რამან-სპექტროსკოპია საშუალებას იძლევა უკონტაქტო თავისუფალი ელექტრონების მეთოდით განვსაზღვროთ კონცენტრაცია ნახევარგამტარში) და LO ფონონის პიკის მაგიერ გვაქვს პლაზმონ-LO ფონონის ურთიეთთმოქმედების სპექტრალური ზოლი თავისი პარამეტრებით; გარდა ამისა, ნახევარგამტარში შექმნილი მოუწესრიგებლობა და მექანიკური დაძაბულობებიც იწვევს სპექტრული ზოლის ფორმის, ენერგიის ცვლილებებს. რადგანაც არგონის იონებით სიდიდის და იმპლანტაცია არ იწვევს GaP-ს ელექტრონებით გამდიდრებას, ამიტომ ნახ. 8.1-ზე მოყვანილი რს და ნახ. 8.2-ზე მოყვანილი დამოკიდებულება არგონის გვიჩვენებს, რომ იმპლანტაციის დოზის იონეზისათვის გადიდებით GaP მესერი თანდათან კრისტალური გადადის მოუწესრიგებელ მდგომარეობაში და იზრდება შინაგანი დამაზულობა. ანალოგიური დამოკიდებულებაა მოყვანილი ნახ. 8.3-ზე GaP-ს (111) ზედაპირის ბორის იონებით იმპლანტირების შემთხვევაში.

ნახ. 8.3 LO და TO ფონონების სპექტრალური ზოლების ნახევარსიგანის დამოკიდებულება ბორის იონებით იმპლანტაციის დოზებზე.

როდესაც იმპლანტაციის დოზა კიდევ უფრო იზრდება, კრისტალური მესერის მოუწესრიგებლობა აღწევს კრიტიკულ ზღვარს და GaP -ს კრისტალი მთლიანად გადადის ამორფულ მდგომარეობაში. ამორფიზაციის კრიტიკული დოზის განსაზღვრის მიზნით ავაგეთ დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობაზე

$$\mathbf{I}_{n} = \mathbf{1} - \mathbf{I}/\mathbf{I}_{0} \tag{8.1}$$

სადაც I₀ არის ეტალონური GaP-ს რგ-ის ინტენსიობა, ხოლო I არის სხვადასხვა დოზით ლეგირებული GaP-ს რგ-ის ინტენსიობა.

ნახაზებზე 8.4 და 8.5-ზე მოყვანილია ეს დამოკიდებულებანი GaP:Ar და GaP:B-ის შემთხვევაში შესაბამისად.

ნახ. 8.4 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობაზე GaP:Ar შემთხვევაში.

როდესაც მრუდი გადადის გაჯერების მდგომარეობაში, იმ დოზას ამორფიზაციის კრიტიკულ დოზად [128-129]. ამ მეთოდით ვთვლით განსაზღვრული ამორფიზაციის კრიტიკული დოზა არგონის იონისათვის ტოლია $8x10^{14}$ იონი/ს d^2 , ხოლო ბორის იონის შემთხვევაში - $2x10^{15}$ იონი/ს d^2 . ორივე შემთხვევაში იონების ენერგია ტოლია 110 კევ-ისა. როგორც ჩანს, მძიმე იონებით (Ar) იმპლანტაციის დროს GaP კრისტალური მესერის გადაყვანა ამორფულ მდგომარეობაში ხდება უფრო დაბალი დოზების დროს, ვიდრე მსუბუქი იონებით (B) იმპლანტაციისას. აქვე მინდა აღვნიშნო, რომ ამორფიზაციის კრიტიკული დოზა რამანის გაბნევით პირველად განსაზღვრული იქნა სილიციუმსა [128] და ალმასში [129], ხოლო $A^{3}B^{5}$ ნახევარგამტარებში, კერძოდ GaP და GaAs იონური ჯგუფის იმპლანტაციით გამოწვეული ამორფიზაციის კრიტიკული დოზის შეფასება რამან-სპექტროსკოპიის გამოყენებით შევასრულეთ ჩვენ [175].

ნახ. 8.5 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობაზე GaP:B შემთხვევაში.

ბორის იონებით იმპლანტაციის შემთხვევაში მოვახდინეთ იმპლანტირებული ნიმუშების იზოქრონული გამოწვა 400.500. 600, 700, 800 და 900⁰ C-ზე ერთი საათის ხანგრძლიობით. გამოწვის წინ ყველა ნიმუში SiO_2 -ის 100 ნმ სისქის ფენით და გამოწვა დაფარული იყო დამცავი წარმოებდა არგონის გაზის ნაკადში. გამოწვის ყოველი სტადიის შემდეგ ნიმუშს ვათავსებდით რამან-სპექტრომეტრში და ვწერდით რს-ს ჰელიუმკადმიუმის ლაზერის აგზნებით, λ_L =441.6 ნმ. რს-მა გვიჩვენა, რომ D=1x10¹⁶ იონი/სმ 2 , 110 კევ ენერგიის ბორის იონით ლეგირებული GaP, 700 0 C-ზე გამოწვის შემდეგ მოუწესრიგებელი მდგომარეობიდან ერთი საათით კრისტალურში გადადის. აღსანიშნავია, რომ ბორის იონებით ლეგირებისას GaP-ში ელექტრონების რიცხვი არ გაიზარდა, რადგანაც გამომწვარი ნიმუშის რს ხასიათდება სპექტრალური ზოლის ისეთივე ნახევარსიგანით, როგორც ეტალონური GaP-სი. ე.ი. ბორის იონებით ლეგირებისას ადგილი LO ფონონ-პლაზმონის ურთიერთქმედებას. ამგვარად, ისევე, არა აქვს როგორც არგონის იონის იმპლანტაციის შემთხვევაში, ბორის იონის იმპლანტირებისასაც სპექტრალური ზოლის ნახევარსიგანის გაფართოებას იწვევს არა

ნახ. 8.6 ბორის იონით იმპლანტირებული GaP-ს საფენის იზოქრონული გამოწვის სურათი

ბორის, როგორც მინარევის აქტივაცია, არამედ იმპლანტაციის დროს წარმოქმნილი დეფექტები, კრისტალური მესერის მოუწესრიგებლობა და მექანიკური დაძაბულობანი. ბორის იონით იმპლანტირებული GaP-ს საფენის იზოქრონული გამოწვის სურათი მოცემულია ნახ. 8.6-ზე.

სურათი გვიჩვენებს, თუ როგორ თანდათანობით აღსდგება კრისტალური სტრუქტურა თერმული დამუშავების შემდეგ. 700⁰C-ზე აღდგენილია შორეული წესრიგის თითქმის 90%.

ამრიგად, ლაზერული რამან-სპექტროსკოპია მეტად მოხერხებული და ინფორმატული მეთოდია იონური ლეგირებით მოდიფიცირებული ნახევარგამტარების ზედაპირების ფიზიკა-ქიმიური თვისებების დიაგნოსტირებისათვის.

8.2 ბორითა და არგონით იმპლანტირებული GaAs ლაზერული რამან-სპექტროსკოპია

ლაზერული რამან-სპექტროსკოპიით შევისწავლეთ GaAs-ის კრისტალური სტრუქტურის ამორფულში გადასვლის დინამიკა, როდესაც ამ ნახევარგამტარის ბომბარდირებას ვაწარმოებთ ბორისა და არგონის იონების სხვადასხვა დოზებით.

მონოკრისტალური მაღალომიანი GaAs-ის ზოდიდან გამოჭრილი იქნა ფირფიტები, რომელთა ზედაპირები ორიენტირებული (111)იყო მიმართულეზით. ფირფიტების ორივე ზედაპირი ოპტიკურად იყო პოლირებული. ოპტიკურად პოლირებული ზედაპირის ერთ ნახევარს ვფარავდით ალუმინის ფოლგით, მეორე ნახევრის იმპლანტაციას კი ვაწარმოებდით არგონისა, ან ბორის იონებით. იმპლანტირებული იონების ენერგია ტოილი იყო 110 კევ-ისა; დოზები კი იცვლებოდა ფართო ინტერვალში. იმპლანტაციის დროს დენი მინიმალურად მცირე იყო, რათა იმპლანტაციის პროცესში გამოწვის შედეგად არ მომხდარიყო დარღვეული კრისტალური სტრუქტურის აღდგენა. ეს დენი არ აღემატებოდა 0.4 მკ.ამპ./ს ∂^2 . არგონის იონებით იმპლანტირებას ვაწარმოებდით შემდეგი დოზებით: D= 10^{12} ; $3x10^{12}$; $9x10^{12}$; $3x10^{13}$; $8x10^{13}$; $2x10^{14}$; $6x10^{14}$; $2x10^{15}$ იონი/სმ². ბორის იონებით იმპლანტირებას კი ვაწარმოებდით შემდეგი დოზებით: 1x10¹³; 3x10¹³; 1x10¹⁴; 2x10¹⁴; 6x10¹⁴; 1x10¹⁵; 2x10¹⁵; 1x10¹⁶ იონი/სმ². ფოლგით დაფარული ფირფიტის ერთ ნახევარს, რომელშიც ჩქარი იონები ვერ აღწევდა, რამანის სპექტრების რეგისტრაციისას ვიყენებდით ეტალონად.

რამანის სპექტრების ჩაწერას ვაწარმოებდით ლაბორატორიული ტიპის ლაზერულ რამან-სპექტრომეტრზე, რომელიც ჩვენს მიერ იყო DFS-12-ob ბაზაზე. კონსტრუირებული ორმაგი მონოქრომატორის დისპერსიულ ელემენტად გამოიყენებოდა დიფრაქციული მესერი 600 შტ./მმ, სინათლის კონცენტრაციას რომელიც არეკვლილი ახდენდა სპექტრის წითელ-ყვითელ უბანში და მუშაობდა სპექტრის პირველ რიგში. სპექტრომეტრის ფოკუსური მანძილი იყო 800 მმ. სიგნალის მიმღებად ვიყენებდით FEU-79 ფოტოგამამრავლებელს. რამან-სპექტრების აგზნებას

ვაწარმოებდით არგონის ლაზერის გამოსხივების ტალღის სიგრძით 514.5 ნმ. ყველა გაზომვა ტარდებოდა ოთახის ტემპერატურაზე.

როდესაც GaAs-ის იმპლანტირებას ვაწარმოებთ 110 კევ ენერგიის მსუბუქი ბორის იონებით, მაშინ ამ იონების საფენში შეღწევის სიღრმე დაახლოებით 460 ნმ-ია; იმავე ენერგიის უფრო მძიმე იონის, არგონის იმპლანტირებისას დაახლოებით 110 б∂. შეღწევის სიღრმე არგონის ლაზერის 30 გამოსხივების ტალღის სიგრძისათვის 514.5 ნმ GaAs-ში შეღწევის სკინ-ფენა ტოლია დაახლოებით 100.0 წმ. ამრიგად, ჩვენი ექსპერიმენტული პირობების თანახმად ორივე იონით იმპლანტირების შემთხვევაში რამანის გაბნევით ვაწარმოებთ მხოლოდ იმპლანტირებული თხელი ფენების მონიტორინგს.

ნახ. 8.7 რამანის სპექტრები GaAs-ის ბორის იონების სხვადასხვა დოზით ლეგირების შემდეგ.

GaAs მიეკუთვნება კუბური სიმეტრიის კისტალებს T_d სიმეტრიით. ასეთი სტრუქტურისათვის (111) ზედაპირიდან მიღებული რამანის გაბნევის (რგ) სპექტრი შედგება ორი ვიწრო სპექტრალური ზოლისაგან. ერთი შეესაბამება LO გასწვრივ ფონონს 292 სმ⁻¹ სიხშირეზე და მეორე განივ TO ფონონს 268 სმ⁻¹-ზე.

ნახ. 8.7 მოყვანილია ჩვენს მიერ ჩაწერილი რამანის სპექტრები GaAs-ის ბორის იონების სხვადასხვა დოზით ლეგირების შემდეგ. აქვეა ნაჩვენები GaAs-ის რამანის სპექტრიც (ნახ. 8.7a). სპექტრები მკაფიოდ ეტალონური გვიჩვენებს, რომ იმპლანტირებული იონების ნაკადის გაზრდით საფენის LO და TO ფონონების სიხშირეები ინაცვლებენ დაბალი სიხშირეებისკენ, მცირდება ინტენსიობები და ასიმეტრიულად ფართოვდება სპექტრალური ზოლების ნახევარსიგანეები. თითქმის ანალოგიური ექსპერიმენტული სურათი მივიღეთ GaAs-ის საფენის არგონის იონების სხვადასხვა დოზებით ამ არგონის იპლანტირებისას. შემთხვევაში უფრო მქიმე იონის იმპლანტაციისას სიხშირის წანაცვლება, ინტენსიობის შემცირება და ნახევარსიგანის გაფართოება ხდება უფრო დაბალი დოზებისათვის, ვიდრე ეს იყო მუბუქი ბორის შემთხვევაში.

ზემოთმოყვანილი ექსპერიმენტული მონაცემების საფუძველზე ავაგეთ LO ფონონის შესაბამისი სპექტრალური ზოლის ნახევარსიგანის დამოკიდებულებები იმპლანტირებული ბორისა და არგონის იონების დოზებზე, როდესაც იმპლანტირებას ვაწარმოებდით 110 კევ ენერგიებით. ეს დამოკიდებულებები მოყვანილია ნახ. 8.8-ზე. გრაფიკები გვიჩვენებს, რომ დოზის მომატებით არაწრფივი კანონით ფართოვდება LO ფონონების

ნახევარსიგანეები. ამავე დროს ჩანს, რომ უფრო მძიმე იონეზით (მაგალითად, არგონი) იმპლანტირებისას საჭიროა უფრო ნაკლები დოზით ნახევარსიგანის გაფართოებას იმპლანტირება, რათა იმავე სიდიდით მივაღწიოთ, როგორც მსუბუქი იონების (მაგალითად, ბორი) შემთხვევაში.

დავაფიქსირეთ სიხშირის მაქსიმალური წანაცვლება 3.5 სმ⁻¹ -ით.

როგორც აღვნიშნეთ, მესამე პარამეტრი, რომელიც იცვლება იონებით იმპლანტირებისას, არის LO და TO ფონონების ინტენსიობები. ნახ. 8.7-იდან ჩანს, რომ ეს ინტენსიობები თანდათანობით მცირდება, როდესაც იზრდება იმპლანტირების დოზა. გარკვეული დოზის შემდეგ კი, რომელსაც კრიტიკული დოზა ეწოდება, LO და TO ფონონების ვიწრო პიკები თითქმის ქრება და მათ მაგიერ სპექტრი იღებს უსტრუქურო, ფართო ზოლის ხასიათს. სპექტრის ასეთი ხასიათი მიგვითითებს, რომ აღნიშნული დოზით იმპლანტირებისას კრისტალური GaAs გადავიდა ამორფულ ფაზაში.

კრისტალური GaAs-ის ამორფულ ფაზაში გადასვლის დინამიკის რაოდენობრივი ანალიზის მიზნით ავაგეთ ნორმალიზებული ინტენსიობის I_n დამოკიდებულების გრაფიკი იმპლანტირებული იონების დოზასთან (8.1).

$$I_n = 1 - \frac{I}{I_0}$$

აქ I₀ არის კრისტალური (სტანდარტული) GaAs-ის რგ-ის ინტენსიობა, ხოლო I – სხვადასხვა დოზებით იმპლანტირებული GaAs-ის რგ-ის ინტენსიობებია. ნორმალიზებული ინტენსიობა ნულის ტოლია, როდესაც საფენში დეფექტები არ არსებობს, ხოლო ის ერთის ტოლია, როდესაც კრისტალი მთლიანად გადასულია ამორფულ ფაზაში.

ეს დამოკიდებულება არგონის იონებით იმპლანტირების შემთხვევაში მოყვანილია ნახ. 8.9-ზე, ხოლო ბორით იმპლანტირებისას ნახ. 8.10-ზე. გრაფიკები მიგვითითებს, რომ ინპლანტაციის დოზის ზრდით კრისტალურ მესერში იზრდება დეფექტების კონცენტრაცია, რომლებიც თანახმად ნახ, 8.7ისა იწვევს კრისტალური სტრუქტურის მოუწესრიგებელ მდგომარეობაში გადასვლას, ხოლო კრიტიკული დოზის მიღწევისას უკვე იმდენად დიდი კონცენტრაციაა დეფექტების კლასტერებისა, რომ მათი გადაფარვის შედეგად კრისტალური სტრუქტურა გადადის ამორფულ მდგომარეობაში.

ნახ. 8.9 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობაზე GaAs:Ar შემთხვევაში.

ნახ. 8.10 იმპლანტაციის დოზის დამოკიდებულება რგ ნორმირებულ ინტენსიობაზე GaAs:B შემთხვევაში.

სამგანზომილებიან კრისტალში უბანი, რომლის იდეალურ საზღვრებშიც ფონონების სივრცითი კორელაციური ფუნქცია ვრცელდება, უსასრულოდ დიდია. ამის შედეგია, რომ ფონონების გავრცელება ბრტყელი ტალღებით გამოიხატება და პირველი რიგის რამანის გაბნევისას ადგილი აქვს q=0 შერჩევის წესის დაცვას. როდესაც კრისტალის აჩქარებული იონებით ბომბარდირებისას წარმოიქმნება დიდი რაოდენობით დეფექტები, კორელაციური ფუნქცია ხდება სასრულო სიდიდის. ამ შემთხვევაში შერჩევის კანონი q=0 განიცდის რელაქსაციას. ამ რელაქსაციის შესაბამისად კორელაციური ფუნქციაც მცირდება და იღებს სასრულო მნიშვნელობას. ექსპერიმენტულად ასეთ შემთხვევებში რამანის გაბნევაში ადგილი აქვს სიხშირეთა ფონონების წანაცვლებას დაბალი სიხშირეებისაკენ, ინტენსიობების შემცირებას და ფონონების მახასიათებელი სპექტრალური

ზოლების ნახევარსიგანეების ასიმეტრიულ გაფართოებას. ანალოგიურ ექსპერიმენტულ გამოვლინებასთან გვაქვს საქმე, როდესაც ვაფიქსირებთ წვრილკრისტალური ნაერთების რამან-სპექტრებს. სწორედ წვრილკრისტალური ნახევარგამტარ Si შესწავლისას შემოიღო მეცნიერმა რიჩტერმა ე. წ. "ფონონთა შემოსაზღვრის" კონცეფცია [176], რომლის თანახმადაც წვრილკრისტალურ მასალებში ადგილი აქვს ფონონთა სიხშირეების წანაცვლებას ნახევარსიგანეების ასიმეტრიულ და ის, გაფართოებას. ამის მიზეზია რომ პირდაპირ სივრცეში წვრილკრისტალური მასალების ფონონონები შემოსაზღვრულია სფეროებში დიამეტრით L. ასეთი ფონონების აღწერა კი წარმოებს შებრუნებულ სივრცეში რომლის k ტალღური პაკეტით, ტალღური ვექტორი მოთავსებული ინტერვალში **∆k≈L**⁻¹.

ამრიგად, ფონონების სიხშირეთა დაბალი სიხშირეებისაკენ წანაცვლება, ნახევარსიგანეების ასიმეტრიული გაფართოება და ინტენსიობათა არა ცვლილეზეზი მახასიათებელია მარტო წვრილკრისტალური არამეტალური მასალებისათვის, არამედ ამ ეფექტების გამომწვევი მიზეზია აგრეთვე კრისტალებში ინდუცირებული დეფექტები. საბოლოო ჯამში ამ პარამეტრეზით შესაძლებელია ხარისხობრივად რაოდენობრივად და შეფასდეს კრისტალის ხარისხი.

ნახ. 8.7-ზე მოყვანილი რამან-სპექტრები გვიჩვენებს, რომ ეტალონური GaAs, არის მონოკრისტალური საფენი ორიენტირებული (111) ზედაპირით, რადგანაც შერჩევის წესის თანახმად დაიმზირება ვიწრო სპექტრალური ზოლები LO და TO ფონონების შესაბამის სიხშირეებზე (ნახ. 8.7a); შემდეგი სპექტრები ნახ. 8.7b და 8.7c ასახავს საფენის კრისტალური სტრუქტურის დარღვევის სურათს და მიგვითითებს, რომ ამ დოზებითა და ენერგიით ოთახის ტემპერატურაზე ბორის იმპლანტირებისას GaAs-ის კრისტალური მოუწესრიგებელი მესერი გადასულია სტრუქტურის ფაზაში. ამ სპექტრებიდან ჩანს, რომ რამანის სპექტრი შედგება ორი ადიტიური კომპონენტისაგან: შემცირებული ინტენსიობის LO ΤO და ფონონების პიკებისაგან, რომელთა მაქსიმუმები მცირე სიდიდითაა წანაცვლებული

დაბალი სიხშირეებისაკენ ეტალონური საფენის სიხშირეებისაგან და მათი ნახევარსიგანეები ასიმეტრიულადაა გაფართოებული; მეორე კომპონენტი, როგორც სპექტრებიდან ჩანს, არის ფართო უსტრუქტურო ზოლი. სპექტრის პირველი ნაწილი მივაკუთვნეთ წვრილკრისტალურ GaAs, ხოლო მეორე კომპონენტი-ამორფულ α-GaAs. ნახ. 8.7c-ზე მოყვანილი რამანის სპექტრი კი მთლიანად შეესაბამება α-GaAs-ის მახასიათებელ რამანის სპექტრს. იონური ბომბარდირებით გამოწვეული სტრუქტურული გარდაქმნის აქ აღწერილი ხარისხობრივი სურათი განმტკიცებულია ნახ. 8.8, 8.9 და 8.10 მოყვანილი ნახევრადრაოდენობრივი გრაფიკებით.

ანალოგიური მსჯელობა შეგვიძლია ჩავატაროთ არგონის იონებით ლეგირების შედეგი შემთხვევაშიც, მხოლოდ რაოდენობრივი იქნება განსხვავებული ბორის იონებით ლეგირების შემთხვევისაგან. კერძოდ, 110 ბორის იონებით GaAs-ob ოთახის ტემპერატურაზე ენერგიის 303 ლეგირებისას ამორფიზაციის კრიტიკული დოზა ტოლია $8x10^{15}$ იონი/სმ 2 . იგივე ენერგიის არგონის იონებით ოთახის ტემპერატურაზე ლეგირებისას $2x10^{14}$ დოზა ამორფიზაციის კრიტიკული ტოლია იონი/სმ². ეს 30 სიდიდეები მიღებულია ნახ. 8.8 და 8.9-ზე წარმოდგენილი გრაფიკებიდან და დაზუსტებულია ნახ. 8.7-ზე მოყვანილი რამანის სპექტრებით.

ჩვენი ექსპერიმენტული შედეგების საფუძველზე და ლიტერატურულ მონაცემებზე დაყრდნობით გთავაზობთ GaAs-ob კრისტალური სტრუქტურის იონური ლეგირებით დარღვევის შემდეგ მექანიზმს: მცირე დოზებით იმპლანტირებისას კრისტალურ სტრუქტურაში წარმოიქმნებიან მცირე ზომის დეფექტების კლასტერები, სადაც ადგილობრივი წერტილოვანი სიმეტრია შენარჩუნებულია. ეს კლასტერები, მარცვლები მცირე ზომისაა. კლასტერებს შორის სივრცეებში გაცილებით დიდი მოცულობით შენარჩუნებულია კრისტალური სტრუქტურა. თავად მცირე წვრილკრისტალური კლასტერები შენარჩუნებული რაოდენობის კრისტალური სტრუქტურისაგან გამოყოფილია უბნებით სადაც დეფექტები კვანმთაშორისაა ჩამჯდარი და შენარჩუნებული კრისტალური სტრუქტურაც შეიცავს მცირე რაოდენობის დეფექტებს, რომლებიც რამანის სპექტრებზე

დიდ გავლენას ვერ ახდენს. შედეგად, რამანის სპექტრები გვიჩვენებს LO და TO სიდიდით ფონონების ინტენსიობათა მცირე შემცირებას, ნახევარსიგანეების ოდნავ გაფართოებას და პიკეზის დაბალი სიხშირეებისაკენ მცირე წანაცვლებას. რამან-სპექტრების თანახმად იმპლანტაციის ამ ეტაპზე GaAs-ში თანაარსებობენ მცირე კონცენტრაციით წვრილკრისტალური კლასტერები ნანოგანზომილების მარცვლებით, ზომით 100-500 Å და დიდი მოცულობით კრისტალური პერიოდულობის მქონე სივრცე მცირე რაოდენობის დეფექტებით. საშუალო დოზებით ლეგირებისას დეფექტური უბნების რაოდენობა იზრდება, ერთდროულად იზრდება წვრილკრისტალური კლასტერების რაოდენობაც. იმპლანტაციის ამ ეტაპზე კრისტალური დაურღვეველი სტრუქტურის წილი საერთო სტრუქტურაში მცირე ხდება; ერთდროულად მატულობს ძალიან აგრეთვე ნანოგანზომილების წვრილკრისტალური, მარცვლების წილიც. ამაზე მიგვითითებს LO და TO ფონონების ინტენსიობათა დიდი სიდიდით შემცირება, პიკების მაქსიმუმების დაბალი სიხშირეებისაკენ წანაცვლების უფრო დიდი სიდიდე და ნახევარსიგანეების ძალიან დიდი სიდიდით გაფართოება; თანაც ეს გაფართოება ძლიერ ასიმეტრიულია. იმპლანტაციის კვლავ თანაარსებობენ ნანოკრისტალური და ამ ეტაპზე კრისტალში მოუწესრიგებელი სტრუქტურის GaAs; მათ რაოდენობრივ თანაფარდობას განსაზღვრავს რამანის მახასიათებელი ზოლების ინტენსიობათა შემდგომ ეტაპზე დოზების ფარდობები. კიდევ უფრო გაზრდით დეფექტური უბნები ისე ფართოვდება, რომ ისინი არღვევენ **J330** ნანოკრისტალური მარცვლების ლოკალურ სიმეტრიასაც, შედეგად, და სახეზეა უწყვეტი ამორფული GaAs-ის სინთეზი. ამაზე მიუთითებს რამანსპექტრის უსტრუქტურო ფართო ზოლად გარდაქმნა. სხვადასხვა კომბინირებით, რეჟიმესაფენებისა და იონების იმპლანტაციის ზის პარამეტრების ვარირეზით დავრწმუნდით, რომ ჩვენს მიერ ჩამოყალიბებული მექანიზმის რიცხვითი პარამეტრები იცვლება യറയ ინტერვალში.

ნახევარგამტარული რამანის იმპლანტირებული ზედაპირეპის სპექტრებით შესწავლისას ჯერ კიდევ ადრეულ შრომებში შევამჩნიეთ, რომ იმპლანტაციის გარკვეული რეჟიმებისას რამანის სპექტრებში უწყვეტი ამორფული ფაზის მახასიათებელი სპექტრი ზოგჯერ არ ფიქსირდება. ეს გამოხატულია მმიმე იონებით განსაკუთრებით დიდი დოზებით ლეგირებისას. ასეთ შემთხვევებში დაიმზირება მხოლოდ LO და TO ფონონების პიკების გაქრობა; α-GaAs-ის მახასიათებელი უსრუქტურო ფართო ზოლი კი არ ვლინდება. ჩვენ ვფიქრობთ, რომ α-GaAs-ის მძიმე იონებით დიდი დოზებით იმპლანტირებისას მაღალი კონცენტრაციით წარმოიქმნებიან გაწყვეტილი კავშირები, რომელთა ბოლოები თავისუფლადაა დაკიდებული. ეს კი ბუნებრივია, გამოიწვევს Ga -As კავშირების რხევების ინტენსიობათა შემცირებას. რადგანაც ამორფულ ნახევარგამტარებში რამანის გაზნევის ეფექტურობა ისედაც მცირეა, შესაძლოა, რომ გაწყვეტილი კავშირების დიდი კონცენტრაციისას რამანსპექტრომეტრმა α-GaAs-ის მახასიათებელი სპექტრი ვერც დააფიქსიროს.

ამგვარად, ჩვენი აზრით, ნახევარგამტარების იონური იმპლანტაციისას კრისტალური მესერის რღვევის დინამიკა სამ თანმიმდევრულ ეტაპს გაივლის.

8.3 იონური იმპლანტაციით სინთეზირებული სამმაგი შერეული კრისტალების GaAs_xP_{1-x} და Ga_xAl_{1-x}As ლაზერული რამან სპექტროსკოპია

იონური იმპლანტაცია როგორც ცნობილია, ამჟამად ფართოდ გამოიყენება ნახევარგამტარული მასალების თვისებების მოდიფიცირების მიზნით. ამ მიმართულებით მნიშვნელოვანია ახალი ორმაგი და სინთეზირება. სამმაგი ნახევარგამტარული შენაერთების იონური იმპლანტაცით სინთეზირებული ორმაგი და სამმაგი ნახევარგამტარები შესწავლილი იყო

[150-153] სამუშაოებში.

იონური იმპლანტაციით ნაერთების სინთეზირებისას ადგილი აქვს როგორც დიდი რაოდენობით რადიაციული დეფექტების, ასევე ამორფული ფაზის წარმოქმნას. ამიტომ კრისტალური ფაზის მისაღებად შემდგომ საჭიროა მაღალტემპერატურული გამოწვა მაღალ ვაკუუმში ან ინერტული აირის არეში. ლაზერული რამან სპექტროსკოპიით იონური ინპლანტაციით სინთეზირებული სამმაგი ნახევარგამტარი $GaAs_xP_{1-x}$ პირველად შესწავლილი იყო ჩვენს მიერ [177]. თითქმის ერთდროულად წარმოდგენილი იყო ანალოგიური სამუშაო [154]. აღნიშნული სამუშაოს ავტორების მტკიცებით სამმაგი ნაერთის კრისტალური ფაზა მიიღება ე.წ. ცხელი იმპლანტაციის დროს და ამ შემთხვევისთვის პირდაპირ, არავითარი შემდგომი თერმული დამუშავება არაა საჭირო.

ლაზერული რამან სპექტროსკოპიით ჩვენ გამოვიკვლიეთ კრისტალური შერეული სამმაგი ნახევარგამტარების GaAs_xP_{1-x} და Ga_xAl_{1-x}As იონური იმპლანტაციით სინთეზირების ტექნოლოგიური პირობები.

იმპლანტაციას GaAs პოლირებული ზედაპირების იონურ ვაწარმოებდით 70 კევ. ფოსფორისა და 100 კევ. ალუმინის იონებით, 1,8x 10^{17} იონი/სმ² და $2,8x10^{16}$ იონი/სმ² დოზებით. შესაბამისად ზედაპირების ორიენტაცია იყო (111) პირველ შემთხვევაში და (001) მეორე შემთხვევაში. ფოსფორით იმპლანტაციის დროს GaAs საფენი იმყოფებოდა ოთახის იონით $400^{\circ}C$ ტემპერატურაზე, ხოლო ალუმინის იმპლანტაციისას ტემპერატურაზე.

როგორც [178] შრომაში ვაჩვენეთ, GaAs ფოსფორით იმპლანტაციისას წარმოიქმნება ერთფაზიანი ამორფული სამმაგი შერეული ნახევარგამტარი lpha-GaAs_xP_{1-x}. ამორფული ფაზა წარმოიქმნება აგრეთვე ცხელი იმპლანტაციის დროსაც, როდესაც იმპლანტაცია წარმოებდა 450⁰C ტემპერატურაზე. ნახ. 8.11**-**�า წარმოდგენილია (111)ორიენტაციის ეტალონური GaAs და რამან-სპექტრები. ფოსფორის ლეგირებით წარმოქმნილი α -GaAsP-ის შერჩევის წესის თანახმად, კრისტალური GaAs-ის რამან სპექტრში ჩანს LO ფონონის მახასიათებელი პიკი 290სმ⁻¹ სიხშირეზე და TO ფონონის

მახასიათებელი პიკი 268სმ⁻¹. ამორფული ნაერთის რამან-სპექტრი კი ხასიათდება ორი ფართო ზოლით: ერთი მათგანი შეესაბამება Ga-As კავშირის რხევას, ხოლო მეორე Ga-P კავშირის რხევას.

ნახ. 8.11 (111) ორიენტაციის ეტალონური GaAs და ფოსფორის ლეგირებით წარმოქმნილი α-GaAsP რამან-სპექტრები.

კრისტალური სტრუქტურის აღსადგენად გამოვიყენეთ თერმული გამოწვა მაღალ ვაკუუმში. გამოწვამდე იმპლანტირებულ GaAs ზედაპირს ვფარავდით დაახლოებით 100 ნმ სისქის SiO₂ დამცავი ფენით, რათა ხელი შეგვეშალა კრისტალიდან ფოსფორისა და დარიშხანის აორთქლებისათვის. გამოწვას ვაწარმოებდით 500, 700 და 850⁰ C ტემპერატურებზე ერთი საათის განმავლობაში. აღნიშნულ ტემპერატურებზე გამოწვის შემდეგ ჩაწერილი რამან-სპექტრების საერთო სურათი წარმოდგენილია ნახ. 8.12. სპექტრებიდან ნათლად ჩანს, რომ გამოწვის შედეგად lpha-GaAs $_xP_{1-x}$ თანდათან გადადის მდგომარეობაში 8500 С ტემპერატურაზე კრისტალურ და თითქმის მთლიანად ხდება კრისტალური ფაზის აღდგენა. ამას ადასტურებს ამორფული ფაზისთვის დამახასიათებელი ფართო ზოლების დავიწროება გამოწვის ტემპერატურის ზრდასთან ერთად და ახალი პიკების წარმოქმნა 370სმ⁻¹ და 345სმ⁻¹ სიხშირეებზე. ეს პიკები ჩვენ მივაკუთვნეთ კრისტალური სამმაგი ნაერთის GaAsP LO და TO ფონონების რხევას. ისინი ასახავენ სინთეზირებულ სამმაგ ნახევარგამტარში GaP-ს მაგვარი ქვემესერის რხევებს.

ნახ. 8.12 α -GaAs_xP_{1-x}-ის 500 (b), 700 (c) და 850⁰ C (d) ტემპერატურებზე ერთი საათის განმავლობაში გამოწვის შემდეგ ჩაწერილი რამან-სპექტრები. (a) – ეტალონური GaAs

აღნიშნული სამმაგი ნაერთის სინთეზირებას ადასტურებს აგრეთვე ეტალონური GaAs LO ფონონისაგან 12 სმ⁻¹ სიხშირით წანაცვლებული პიკის წარმოქმნა 278სმ⁻¹ სიხშირეზე. ეს პიკი მიეკუთვნება სინთეზირებული კრისტალური GaAsP-ის LO ფონონის რხევას, რომელიც ასახავს GaAs-ის მაგვარი ქვემესერის რხევებს.

ნახ. 8.13 წარმოდგენილია (001) ორიენტაციის GaAs რამანის სპექტრი იმპლანტაციამდე და ალუმინის ცხელი იმპლანტაციის შემდეგ. შერჩევის წესის თანახმად (001) ორიენტაციის GaAs ზედაპირის რამან-სპექტრში დაიმზირება მხოლოდ LO ფონონის შესაბამისი პიკი 290 სმ⁻¹ სიხშირეზე. ალუმინის იმპლანტაციის შემდეგ კი, როგორც სურათიდან ჩანს, LO

ფონონის შესაბამისი მკვეთრი პიკი ქრება და წარმოიქმნება ფართო სპექტრალური ზოლი, რომელიც ასახავს Ga-As კავშირის რხევას; ამავე დროს 360 სმ⁻¹ უბანში წარმოიქმნება მცირე ინტენსიობის ფართო ზოლი, რომელიც ასახავს Al-As კავშირის რხევას. ეს ორი ექსპერიმენტული ფაქტი მიუთითებს, რომ ცხელი იმპლანტაციის დროსაც წარმოიქმნება ამორფული გარდა ამისა, რამან-სპექტრებიდან ჩანს, რომ 284 სმ⁻¹ α -Ga_xAl_{1-x}As. სიხშირეზე წარმოიქმნება მცირე ინტენსიობის მკვეთრი პიკი, რომელიც 6 სმ⁻¹ სიდიდითაა წანაცვლებული კრისტალური GaAs-ს LO ფონონიდან. ამიტომ ეს პიკი შეესაბამება ცხელი იმპლანტაციის შედეგად წარმოქმნილ მცირე რაოდენობის კრისტალურ GaAlAs-ს. ამრიგად, ალუმინის იონით GaAs ცხელი იმპლანტაციის დროს წარმოიქმნება α -GaAlAs, რომელშიც სამმაგი მცირე რაოდენობით შეტივტივებულია ნახევარგამტარის კრისტალური ფაზა.

ნახ. 8.13 (001) ორიენტაციის ეტალონური GaAs და ალუმინის ლეგირებით წარმოქმნილი α-GaAlAs რამან-სპექტრები.

როგორც ფოსფორით ლეგირებისას, ამ შემთხვევაშიც კრისტალური მაღალტემპერატურული ვაკუუმში მესერის აღსადგენად გამოვიყენეთ 700 და 850⁰C ტემპერატურებზე. 500, გამოწვა მიღებული შედეგების ამსახველი რამან-სპექტრები წარმოდგენილია ნახ. 8.14-ზე. რამანსპექტრებიდან ჩანს, რომ 500 $^{0}\mathrm{C}$ ტემპერატურაზე გამოწვისას lpha-Ga $_{\mathrm{x}}\mathrm{Al}_{1-\mathrm{x}}\mathrm{As}$ მახასიათებელი ფართო ზოლი მკვეთრად იხლიჩება ორ ვიწრო პიკად სიხშირეებით 281 სმ $^{-1}$ და 263 სმ $^{-1}$. ეს სიხშირეები 6 სმ $^{-1}$ -ით და 5სმ $^{-1}$ -ითაა წანაცვლებული ეტალონური GaAs LO და TO ფონონების მახასიათებელი სიხშირეებისაგან. ეს ორი პიკი ახასიათებენ კრისტალურ GaAlAs-ში GaAs ქვემესერის რხევას და მიეკუთვნებიან LO_1 და TO_1 ფონონებს, შესაბამისად. ერთდროულად, 360 სმ⁻¹ სიხშირეზე ადგილი აქვს ახალი პიკის წარმოქმნას, იგი ჩვენ მივაკუთვნეთ კრისტალურ GaAlAs-ში AlAs ქვემესერის რხევას, რომელიც გამოისახება LO_2 ფონონით. 700 და 850 $^0\mathrm{C}$ ტემპერატურებზე გამოწვისას GaAlAs კრისტალური ფაზა სულ უფროდაუფრო სრულყოფილი ხდება რადიაციული დეფექტების გაქრობის გამო. ამას მკაფიოდ ასახავს LO_1 , TO_1 და LO_2 ფონონების მახასიათებელი პიკების ინტენსიობის მკვეთრი ზრდა და მათი ნახევარსიგანეების დავიწროება გამოწვის ტემპერატურის ზრდასთან ერთად.

ნახ. 8.14 α -Ga_xAl_{1-x}As-ის 500 (b), 700 (c) და 850⁰ C (d) ტემპერატურებზე ერთი საათის განმავლობაში გამოწვის შემდეგ ჩაწერილი რამან-სპექტრები. (a) – ეტალონური GaAs

როგორც ექსპერიმენტის პირობებიდანაა ცნობილი, GaAs-ის საფენის იყო (001) და ორიენტაცია ამიტომ რამანის სპექტრში დაიმზირებოდა LO მხოლოდ ფონონი. იმპლანტაციისა და გამოწვის შემდეგ სინთეზირებულ სამმაგ ნაერთ GaAlAs-ის რამან-სპექტრში კი ჩანს როგორც LO_1 , LO_2 ფონონები, ასევე TO ფონონიც. ამასთანავე სპექტრებიდან ჩანს, რომ TO ფონონის ინტენსიობა გაცილებით ნაკლებია LO1 ფონონის ინტენსიობასთან შედარებით. ამიტომ შეგვიძლია დავასკვნათ, რომ გამოწვის აღდგენილი სამმაგი ნაერთის კრისტალური მესერი შედეგად პოლიკრისტალურია. შემთხვევაში, ის არ იმეორებს საფენის ყოველ ორიენტაციას (001).

ამრიგად, GaAs-ის ფოსფორითა და ალუმინით იმპლანტაციისას და შემდგომ ვაკუუმში მაღალტემპერატურული გამოწვის შედეგად სინთეზირებულია კრისტალური სამმაგი შენაერთები GaAsP და GaAlAs. დავადგინეთ, რომ აღნიშნული შენაერთების სრულყოფილი კრისტალური

ფაზები მიიღება მხოლოდ შემდგომი თერმული დამუშავების შედეგად, მიუხედავად იმისა, იონების იმპლანტაცია ტარდებოდა ოთახისა თუ მაღალ ტემპერატურებზე.

დასასრულს, მინდა აღვნიშნო, რომ კატეგორიული მტკიცება, იონური იმპლანტაციის შედეგად სრულყოფილი კრისტალური ფაზა სინთეზირდება პირდაპირ ცხელი იმპლანტაციისას, შემდგომი გამოწვის გარეშე, თუ ფაზა კრისტალური ყალიბდება შემდგომი თერმული დამუშავების შედეგად, ალბათ არაა მიზანშეწონილი. ასეთი დასკვნის გაკეთებისას აუცილებლად უნდა გავითვალისწინოთ ის მრავალი ცვალებადი პარამეტრი ექსპერიმენტისას., რომელიც კონკრეტული დიდ გავლენას ახდენს შედეგებზე.

ძირითადი დასკვნები

წარმოდგენილი სამუშაოს ძირითადი შედეგები შეიძლება შემდეგნაირად ჩამოვაყალიბოთ:

1976 წლიდან საქართველოში ჩემს მიერ პირველადაა დაფუძნებული და 1. განვითარებული ახალი, ულტრათანამედროვე ფუნდამენტური სამეცნიერო მიმართულება "ლაზერული რამან-სპექტროსკოპია". წარმოდგენილი დისერტაცია პირველი ექსპერიმენტული ნაშრომია ამ მიმართულებით და შესრულებულია საქართველოში დაფუძნებულ და განვითარებულ იგი ლაზერული სპექტროსკოპიის ექსპერიმენტულ ბაზაზე. აღნიშნული ახალი მიმართულება მნიშვნელოვანია როგორც ფუნდამენტური მეცნიერების, ასევე ანალიზური ინდუსტრიული მიმართულებების და ერთნაირად სპეციალისტეზისათვის. იგი საინტერესო, საჭირო და ფიზიკოსებისათვის, მიკროელექტრონიკისა შედეგიანია და ნახევარგამტარების სპეციალისტებისათვის, ქიმიკოსეზის, ბიოლოგების, მედიკოსების, ფარმაცევტების, გეოლოგების, ეკოლოგების, კვების და სოფლის მეურნეობის მუშაკებისათვის.

2. საქართველოში პირველმა შევქმენი და განვავითარე თვითნაკეთი ლაბორატორიული ტიპის სამი სხვადასხვა სახეობის ლაზერული რამანსისტემა განსხვავებული პარამეტრებითა და დანიშნულებით. მათ შორის გამორჩეულია ინფრაწითელი ლაზერული რამან-სპექტრომეტრი თავისი აქსესუარებით. ასეთი ტიპის ლაზერული რამან-სისტემა ყოფილ საბჭოთა კავშირში პირველმა მე შევქმენი 1970 წელს. აღნიშნულ სისტემებზე შევასრულე სახვადასხვა ტიპის ნახევარგამტარების, დიელექტრიკების, ამორფული და ნანომასალების, ეპიტაქსიალური ფირების, არაორგანული ქიმიური ნაერთების, ორგანული ბუნებრივი მინერალების, და მაღალტემპერატურული ზეგამტარების ფუნდამენტური და ანალიზური სამუშაოები.

პირველად შევისწავლე საქართველოს აბხაზეთისა და რაჭის საბადოების
ნახევარგამტარული ბუნებრივი მინერალის, კინოვარის, α-HgS ფონონური

სპექტრი ლაზერული რამან-სპექტროსკოპიით. პირველი რიგის ძირითადი ფონონების იდენტიფიკაციის გარდა კინოვარში პირველად აღმოვაჩინე სელენის იზომორფული მინარევის ხვრელისმიერი რხევის დამადასტურებელი ლოკალური ფონონური რხევა. ამ სტატისტიკურ გამოკვლევათა საფუძველზე პირველადაა შემოთავაზებული კინოვარის ალბათური მეთოდი რამანის საბადოების იდენტიფიკაციის გაზნევის სპექტრების საშუალებით. ასეთი დასკვნა მნიშვნელოვანია ანტიკური და შუასუკუნოვანი ეპოქის ხელოვნების ნიმუშების პიგმენტური საღებავების იდენტიფიკაციის თვალსაზრისით.

4. საქართველოს მინერალებიდან რამან-სპექტროსკოპიით შევისწავლეთ აგრეთვე რაჭის მინერალები რეალგარი და აურიპიგმენტი. კინოვარის მინერალებთან ერთად ეს მინერალები, მათ საფუძველზე დამზადებული პიგმენტური საღებავები გამოიყენება ანტიკური შუასაუკუნოვანი და ხელოვნების ნიმუშების მოსახატად. ამ ძველი, უნიკალური სიმდიდრის ფერთა იდენტიფიკაციისა და კონსერვაციის მიზნით დღეს საზღვარგარეთ ინტენსიურად გამოიყენება ბუნებრივი მინერალების ლაზერული რამანსპექტროსკოპია. თუ ჩვენ რამანით მოვახდენთ პიგმენტის იდენტიფიკაციას, დავადგენთ, რომელი საბადოდან შეიძლება ეს მინერალი, იყოს შესაძლებლობა იქმნება ფარდა ავხადოთ ფერწერული ნიმუშების ბევრ საიდუმლოს. ამ მიმართულებით საქართველოს ხელოვნების ნიმუშები ელიან ჩვენს გამოკვლევებს.

5. შევისწავლეთ შერეული კრისტალების სხავადასხვა ტიპები. აღმოჩნდა, რომ შერეული კრისტალი GaAs_{1-s}P_x ფონონების ყოფა-ქცევით მიეკუთვნება ორმოდიან შერეულ კრისტალებს; ეს შერეული სისტემა ჩვენ პირველად შევისწავლეთ არგონის ლაზერის 514,5 ნმ ტალღის სიგრძის აგზნებით, რომლისთვისაც ეს შერეული ნახევარგამტარების სისტემა გაუმჭვირვალეა. შერეული ნახევარგამტარების სისტემა ZnTe_{1-x}Se_x შევისწავლეთ ჰელიუმნეონის 632.8 ნმ და კრიპტონის ლაზერის 568.2 ნმ ტალღის სიგრძეების აგზნებით. მეორე შემთხვევაში ადგილი აქვს წინარეზონანსულ აგზნებას და ამიტომ პირველი რიგის LO და TO ფონონების გარდა შევმელით მეორე

რიგის 2LO ფონონების ყოფა-ქცევისთვისაც მიგვედევნებინა თვალი. აღმოჩნდა, რომ ეს სისტემა მიეკუთვნება ერთმოდიანი ქცევის შერეულ კრისტალებს. მესამე სისტემა $GaAl_{1-x}P_x$ ჩვენ ერთერთმა პირველეზმა შევისწავლეთ, ლაზერების სხვადასხვა ტალღის სიგრძეების გამოყენებით კი ჩვენი ორიგინალური მეთოდიკის საშუალებით პირველებმა. ზუსტად განვსაზღვრეთ GaP-ს მაგვარი ქვემესერის შესაზამისი LO ოპტიკური შტოს ფონონების რხევის სიხშირეები და ამიტომ მკაცრად დავადგინეთ, რომ $GaAl_{1-x}P_x$ ნახევარგამტარების ეპიტაქსიალური შერეული სისტემა მიეკუთვნება ორმოდიანი ყოფა-ქცევის შერეულ კრისტალებს.

6. GaAl_{1-x}P_x ნახევარგამტარების სისტემის შესწავლამ ამგზნები ლაზერების სხვადასხვა ტალღის სიგრძეებით საშუალება მოგვცა ამ შერეულ სისტემაში პირველად დაგვეფიქსირებინა რეზონანსული რამანის გაბნევა პირდაპირი E₀ ზონის მონაწილეობით. ამ ეფექტის გარდა, ჩვენ პირველად შევძელით ლაზერული რამან-სპექტროსკოპიით ამ სისტემაში შეგვეფასებინა ეპიტაქსიალური ფირების სისქეები. ამ მეთოდით განსაზღვრული სისქეები კარგ თანხვედრაში აღმოჩნდნენ მიკროსკოპით შეფასებულ სისქეებთან.

7. არაპირდაპირზონიან ნახევარგამტარებში GaP და α-HgS, პრდაპირზონიან ნახევარგამტარებში ZnTe, ZnTe_{1-x}Se_x შევისწავლეთ რეზონანსული რამანის გაბნევა და დავადგინეთ ის ოპტიმალური ტალღის სიგრძეები, რომელთა გამოყენებაც რამანის სპექტრების ასაგზნებად ოპტიმალურია დასმული ამოცანის გადაწყვეტის მიზნით. ZnTe_{1-x}Se_x-ის შერეულ კრისტალებში რრგ პირველმა შევისწავლე.

8. რეზონანსული რამან-სპექტრების შესწავლით დავადგინეთ, რომ, თუ GaP-ს კრისტალში რამანის გაზნევა ერთმნიშვნელოვნად მიმდინარეობს არაპირდაპირი ზონის რეზონანსის მექანიზმით, ამას ვერ ვიტყვით არაპირდაპირზონიანი კინოვარის, α -HgS შემთხვევაში: ამ კრისტალის ზონური სტრუქტურის თავისებურებების გათვალისწინებით რეზონანსული რამანის გაბნევისას უნდა გავითვალისწინოთ სუსტი პირდაპირი ზონის წვლილიც.

9. პირველად იქნა შესწავლილი რეზონანსული რამანის გაბნევა შერეულ კრისტალებში $ZnTe_{1-x}Se_x$. რეზონანსული რამანის გაბნევა TO, LO, 2LO ფონონებზე ორი სხვადასხვა შემადგენლობის კრისტალებისათვის შევისწავლეთ უწყვეტი მოქმედების საღებავის ლაზერის გამოყენებით. ექსპერიმენტის თეორიულ მოდელებთან შედარებით დავადგინეთ, რომ შერეულ ნახევარგამტარტებში $ZnTe_{1-x}Se_x$ პირველი პირდაპირი E_0 ზონის მახლობლად რეზონანსი, ისევე, როგორც ZnTe-до მიმდინარეობს ექსიტონური მექანიზმით.

10. ლაზერული რამან-სპექტროსკოპია ერთერთმა პირველებმა გამოვიყენეთ იონური იმპლანტაციით მოდიფიცირებული A³B⁵ ტიპის ნახევარგამტარების ზედაპირების მონიტორინგის მიზნით. ამ მიმართულებით ერთერთმა პირველებმა შევისწავლეთ ზოგიერთ ნახევარგამტარებში იონური იმპლანტაციის შედეგად კრისტალური შორეული წესრიგის დარღვევისა და შემდგომი თერმული გამოწვით მისი აღდგენის დინამიკა.

11. ლაზერული რამან-სპექტროსკოპიით GaP და GaAs ბორისა და არგონის იმპლანტაციისას იონების სხვადასხვა დოზებითა და ენერგიეზით შევისწავლეთ კრისტალური სტრუქტურის თანდათანობითი რღვევის პროცესი. ამ დესტრუქციულ პროცესში დავაფიქსირეთ კრისტალური, წვრილკრისტალური, ნანოკრისტალური და მთლიანად ამორფული სტრუქტურული ფაზების არსებობა. ლაზერული რამან-სპექტროსკოპიით ამ ნახევარგამტარებში ერთერთმა პირველებმა რაოდენობრივად შევაფასეთ ამორფიზაციის კრიტიკული დოზები. აღმოჩნდა, რომ კრიტიკული დამოკიდებულია დოზების სიდიდეები საფენის თვისებებზე, იმპლანტირებული იონების მასაზე, იმპლანტაციის ენერგიასა და ტემპერატურაზე.

12. დავადგინეთ, რომ GaAs-ის საფენში ალუმინისა და ფოსფორის იონების დიდი დოზებით იმლანტირებისას ოთახისა და 400⁰C ტემპერატურაზე, წარმოიქმნა სამმაგი შერეული ერთფაზიანი ამორფული სისტემები
α-GaAsAl და α–GaAsP, შესაბამისად. რამანის სპექტრების საშუალებით განვახორციელეთ სინთეზირებული ფაზების იდენტიფიკაცია და გამოვიკვლიეთ სინთეზირებულ სტრუქტურათა დამოკიდებულება იონური ტექნოლოგიის პირობებზე.

13. იონური იმპლანტაციით სინთეზირებული სამმაგი ამორფული სისტემების თერმული გამოწვების შედეგად სინთეზირებული იქნა ამ ამორფული ფაზების შესაბამისი კრისტალური სამმაგი ერთფაზიანი ნახევარგამტარული ფირები GaAs_{1-x}P_x, GaAs_{1-x}Al_x. ლაზერული რამან სპექტროსკოპიით იდენტიფიცირებულია ამ სამმაგი ამორფული ფაზების კრისტალური სტრუქტურის აღდგენის დინამიკური სურათი.

14. მრავალი სხვადასხვა ტიპისა და ბუნების ნივთიერებათა გამოკვლევის საფუძველზე დავადგინეთ ის ზღვრული აპარატურული შესაძლებლობები, რომლებიც გააჩნია ჩემს მიერ კონსტრუირებულ ლაზერულ რამანსისტემებს; შესაბამისად იმ ამოცანათა დაახლოებითი ნუსხაც, რომელთა გადაჭრაც ამ ლაზერული სისტემებითაა შესაძლებელი.

ლიტერატურა

- 1. Brillouin L., Ann. Phys. (Paris), (1922) 17, 88,
- 2. Smekal A., Naturwiss. (1923) 11, 873,
- Raman C. V., Krishnan K. S., A New Type of Secondary Radiation, (1928) Nature, **121**, 501-502,
- Мандельштам Л. И.б Ландсберг Г. С., Новое явление при рассеянии света, ЖРФХО, (1928) 60. 335-336,
- Porto S. P.S., Wood D. L., Ruby Optical Maser as a Raman Source, J. Opt. Soc. Amer. (1962) 52, 251-252,
- C.A.Argurllo, D.L.Rousseau, and S.P.S.Porto, First-Order Raman Effect in Wurtzite-Tipe Crystals, Physical Review, (1966) 181, 3, 1351-1363,
- Tell. B., Damen T. C., Porto S. P. S., Raman Effect in Cadmium Sulfide, (1966) Phys. Rev. 144, 771,
- 8. Mooradian A., Wraght G. B. Solid State Commun. (1966) 4, 431,
- 9. Russell J. P. Appl. Phys. Lett. (1965) 6, 223,
- D.W.Feldman, M.Ashkin and J.H.Parker, Raman Scattering by Local Modes in Germanium-Rich Silicon-Germanium Alloys, Phys. Rev. Letters, (1966) 17, (24), 1209-1212,
- Brafman O., Mitra S. S Raman Rffect in Wurtzite- and Zinc-Blend-Type ZnS Single Crystals, Phys. Rev. (1968) 171, 931,
- Arguello C. A., Rousseau D. L., Porto S. P. S. First-Order Raman Effect in Wiurtzite-Type Crystals, Phys. Rev. (1969)181, 1351,
- 13. Nilsen W. G. Raman Spectrum of Cubic ZnS, Phys. Rev. (1969) 182, 838,
- 14. Wieting T. J., Verble J. L. Interlayer Bonding and the Lattice Vibrations of β-GaSe, Phys Rev. (1972) B5, 1473,
- Temple P. A., Hathaway C. E., Multiphonon Raman Spectrum of Silicon, Phys. Rev. (1973) **B7**, (8), 3685-3697,
- Weinshtein B. A., Cardona M., Second-Order Raman Spectrum of Germanium, Phys. Rev. (1973) **B7**, (6), 2545-2551,
- Klein P. B., Chang R. K. Comparison of second-order Raman-Scattering measurements with a phonon density-of-states calculation in GaSb, Phys. Rev. (1976) **B14**, 2498,

- Nilsen W. G. Second-Ordes Raman Spectra of Some Zinc Blend and Wurtzite Crystals, Proceed. Int. Conference on Light Scattering Spectra of Solids, New York (1968) 3-6 september, p.129 ,
- Smith J. E. Jr., Brodsky M. H., Crowder B. L., Nathan M. I., Pinczuk A Phys. Rev. Latters (1971)26, 642,
- Bottger H. Vibrational Properties of Non-Crystalline Solids Phys. Stat. Sol (b) (1974) 62, 9-42,
- Dean P. The Vibrational Properties of Disordered Systems: Numerical Studies Rev. Mod. Phys. (1972) 44, 127-168,
- 22. Shuker R., Gammon R. W. Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials, Phys. Rev. Lett. (1970), **25**, 222-225
- Brodsky M. H., Cardona M. Local Order as Determined by Electronic and Vibrational Spectroscopy: Amorphous Semiconductors, J. Non-Crystal. Solids (1978) 31, 81-108
- 24. W.Scheuermann and G.J.Ritter, Raman Spectra of Cinnabar (HgS), Realgar (As₄S₄) and Orpiment (As₂S₃) Z.Naturforsch (1969) 24a, 408-411
- R.Zallen, G.Lucovsky, W.Taylor, A.Pinczuk, and E.Burstein, Lattice Vibrations in Trigonal HgS Phys.Rev. (1970) 113058-4070,
- Peter Dawson, The Vibrational Spectrum of α-mercuric sulfide Spectrochimica Acta, (1972) 28A, 2305-2310
- 27. Nusimovici M. A., Meskaoui A., Raman Scattering by α–HgS (Cinnabar)
 Phys. Stat. Sol. (b) (1973) 58, 121-125
- Nusimovici M. A., Gorre G., Phonons in Cinnabar Phys. Rev. (1973) B 8, 1648-1656
- S.V.Gotoshia, Laser Raman-Spectroscopy Study of Selen Impurity Effect on the Vibrational Properties of A³B⁵ Semiconducting Red Cinnabar Bulletin of the Georgian Academy of Sciences, (1998) 158, 406-409
- D. T. Hon, W. L. Faust, W. G. Spitzer, and P. F. Williams, Raman Scattering from Localized Vibrational Modes in GaP, Phys. Rev. Letters, (1970) Vol.25, N 17, 1184-1186
- S. Ushioda, Surface Raman Scattering by the Localized Mode of Phosphorus Impurities in GaAs, Physics Letters, (1970) Vol.33A, N3, 159-160
- A.S. Barker, Jr. and A. J. Sievers, Optical studies of the vibrational properties of disordered solids, Rev. Mod Phys., (1975) Vol.47, Supplement No.2

- A.Krol, A. Hoffmann, and J. Gutowski, Raman studies of hexagonal ZnS:Al, Physical Review B, (1988) Vol.38, No 15, 10 946-10 948
- J.Wagner and M. Ramsteiner, W. Stoiz, M.Hauser, and K. Ploog, Incorporation of Si in δ-doped GaAs studied by local vibrational mode spectroscopy, Appl. Phys. Lett. (1969) 55 (10), 978-980
- S.P. Gaur and J.F.Vetelino, and S.S. Mitra, Localized Mode Frequency for Substitutional Impurities in Zinc Blende Type Crystals, J.Phys. Chem. Solids, (1971) 32, 2737-27-47
- R.S. Singh and S.S. Mitra, Defect-Induced Lattice Vibrations in Zinc Blende Type Crystals. A Modified Molecular-Model Calculation, Physical Review (1972) B5, No 2, 733-738
- H.W.Verleur and A.S. Barker, Jr., Infrared Lattice Vibrations in GaAs_yP_{1-y} Alloys, Physical Review, (1966) 149, 2, 715-729
- 38. I.F. Chang and S.S. Mitra, Application of a Modified Random-Element
 Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals, Physical Review, (1968) Vol.172, No3, 924-933
- G.Lucovsky, M.H.Brodsky and E.Burstein, Extension of a Linear Diatomic-Chain Model for the Calculation of Local-Mode Frequencies in Real Crystals, Physical Review (1970) B2, No8, 3295-3302
- I.F. Chang and S.S. Mitra, Long Wavelength Optical Phonons in Mixed Crystals, Adv.Phys (1971), 20, 359-404
- G.Lucovsky, M.H.Brodsky, M.F. Chen, R.J.Chicotka, and A.T. Ward, Long-Wavelength Optical Phonons in Ga_{1-x}In_xP, Physical Review B, (1971) Vol. 4, No6,1945-1949
- R. Beserman, C.Hirlimann and M.Balkanski, and J.Chevallier, Raman Detection of Phonon-Phonon Coupling in Ga_xIn_{1-x}P, Solid State Communication, (1976) Vol. 20, 485-488
- Jeffrey S. Lannin, Vibrational and Raman-Scattering Properties of Crystalline Ge_{1-x}Si_x Alloys, Physical Review B, (1977) Vol. 16, No4, 1510-1518
- R.Carles, N.Saint-Cricq, J.B..Renucci and R.J.Nicholas, Raman Scattering in InP_{1-x}As_x Alloys, J.Phys. C: Solid St.Phys. (1980) 13, 899-910
- D.N.Talwar, M.Vandevyver and M.Zigone, Raman Scattering Spectra in Mixed Ga_{1-x}As(Sb) Crystals, Physical Review B, (1981) Vol. 23, No4, 1743-1752

- K.Kakimoto and T.Katoda, Raman Spectra from Ga_{1-x}In_xAs Epitaxial Layers Grown on GaAs and InP Substrates, Appl. Phys. Lett., (1982) Vol.40, No9, 826-828
- 47. P.M.Amirtharaj, Kwong-kau Tiong, and H. Pollak, Raman Scattering in Hg _{0.8}Cd _{0.2}Te, J. Vac. Sci. Technol. A, (1983) Vol.1, No3, 1744-1748
- T.P. Pearsall, R.Caries and J.C. Portal, Single Longitudinal-Mode Optical Phonon Scattering in Ga_{0.47}In_{0.53}As, Appl. Phys. Lett. (1983) Vol. 42 No5, 436-438
- M.Teicher, R.Beserman, M.V.Klein, and H. Morkoc, Crystalline Structure of Mixed Ga_{1-x}Al_xAs and GaP_{1-x}As_x Crystals, Physical Review B, (1984) Vol. 29, No8, 4652-4658
- Wang Xiao-Jun and Zhang Xin-yi, Disorder Effects in Ga_{1-x}Al_xAs, Solid State Communications, (1986) Vol. 59, No 12, 869-872
- Takamasa Kato, Takashi Matsumoto and Tetsuro Ishida, Raman Spectral Behavior of In_{1-x}Ga_xP (0<x<1), Japanese journal of Applied Physics, (1988) Vol.27, No6, 983-986
- Y.T.Cherng, K.Y. Ma, and G.B.Stringfellow, Raman Scattering in InAs_{1-x}Sb_x Grown by Organometallic Vapor Phase Epitaxy, Appl. Phys. Lett. (1988) Vol.53, No10, 886-887
- G. Popovici, G.Y.Xu, A.Botchkarev, R. Strange, J.O. White and others, Raman Scattering and Photoluminescence of Mg-Doped GaN films Grown by Molecular Beam Epitaxy, J. Appl. Phys. (1997) Vol.82, No 8, 4020-4023
- L.Eckey, B.Schineller, M. Heuken, and others, Photoluminescence and Raman Study of Compensation Effects in Mg-Doped GaN Epilayers, Journal of Applied Physics, (1998) Vol.84, No 10, 5828-5830
- 55. In-Hvan Lee, In-Hoon Choi, Cheul-Ro Lee, Sung-Jion Son and others, Stress Relaxation in Si-Doped GaN Studied by Raman Spectroscopy, Journal of Applied Physics, (1998) Vol.83, No 11, 5787-5791
- 56. H. Harima, T. Inoue, S. Nakashima, K. Furukawa, and M. Taneya, Electronic Properties in P-Type GaN Studied by Raman Scattering, Applied Physics Letters, (1998) Vol. 73, No 14, 2000-2002
- F. Demangeot, J.Frandon, M.A. Renucci, and others, Raman Study of Resonance Effects in Ga_{1-x}Al_xN Solid Solutions, MRS Internet J. Nitride Semicond. Res. (1998) Vol.3, No 52, 1
- G. Pozina, I.G.Ivanov, B. Monemar, and others, Optical Properties of GaNAs Grown by MBE, MRS Internet J.Nitride Semicond. Res. (1998), .3, No 29, 1

- B.K. Meyer, G.Steude, A.Goldner, and others, Photoluminescence Investigations of AlGaN on GaN Epitaxial Films, Phys. Stat. Sol.(b), (1999) Vol.216, 187
- D. Alexson, Leah Bergman, Mitra Dutta and others, Confined Phonons and Phonon-Mode Properties of III-V Nitrides with Wurtzite Crystal Structure, Physica B, (1999,) 263-264, 510-513
- 61. Claudia Bungaro and Stefano de Gironcoli, Ab initio study of phonons in wurtzite Al_xGa_{1-x}N alloys, Applied Physics Letters, (2000) Vol.76, No 15, 2101
- M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control, Surf.Interface Anal., Vol.31, 987-999 (2001)
- A.Kaschner, A.Hoffmann, and C.Thomsen, Raman Scattering in Resonance with Acceptor-Bound Excitons in GaN, Phys.Stat.Sol. (b), (2001) Vol.223, No 3, R11-R13
- 64. Z.G.Qian, W.Z.Shen, H.Ogawa, and Q.X.Guo, Raman Investigations of Disorder in InN Thin Films Grown by Reactive Sputtering on GaAs, Journal of Applied Physics, (2003) Vol.93, No5, 2643
- 65. M.Izadifard, I.A. Buyanova, J.P. Bergman and others, Effects of Rapid Thermal Annealing on Optical Properties of GaN_xP_{1-x} Alloys Grown by Solid Source Molecular Beam Epitaxy, Semicond.Sci.Technol., (2005) Vol.20, 353-356
- F.Firszt, S.Legowski, H. Meczynska and others, Growth and Characterisation of Cd_{1-x}Mg_xSe Mixed Crystals, Journal of Crystal Growth, (1998) 184/185, 1053-1056
- M.Kozielski, M.Szybowicz, F.Firszt and others, Study of the A_{1-x}B_xC Mixed Crystals by Raman Scattering, Cryst.Res.Technol., (1999) Vol.34, No5-6, 699-702,
- M.Szybowicz, M.Kozielski, F.Firszt, and others, Raman Scattering Study of ZnBeSe Semiconducting Mixed Crystals, Cryst.Res.Technol., (2003) Vol.38, No3-5, 359-365
- Sanjeev Kumar, Vinay Gupte and K.Sreenivas, Structural and Optical Properties of Magnetron Sputtered Mg_xZn_{1-x}O Thin Films, J. Phys.: Condens.Matter, (2006) Vol.18, 3343-3354

- N.D.Strahm and A.L. McWhorter, Raman Scattering from Lattice Vibration of GaAs_xP_{1-x}, Proceedings of the International Conference on Light Scattering Spectra of Solids, New York, 3-6 September, 1968, p.455-465
- S. V. Gotoshia The Use of Laser Raman Spectroscopy for Study Semiconductor Fundamental Properties and Diagnostic analytical method Proceedings of I. Javakhishvili Tbilisi State University (PHSIKS) (2004) 357, 39, 236-243,
- Shin-ichi Nakashima, Takaaki Fukumoto, and Akiyoshi Mitsuishi, Raman Spectra of ZnSe-ZnTe Mixed Crystals, J.Phys. Soc. Japan, (1971)Vol.30,1508,
- Готошия С. В., Готошия Л. В., РКРС в смешанных кристаллах ZnTe_xSe_{1-x}, XIX Всесоюзный съезд по спектроскопии, Томск, 1983, 142-143
- 74. S. Gotoshia, L. Gotoshia Resonance Raman Spectroscopy of Mixed Semiconducting ZnTe_xSe_{1-x} Crystals, Bulletin of the Georgian Academy of Sciences, (1999), 160, 56-59,
- G.Armelles, J.M.Galleja, and E. Munoz, Raman Scattering iin AlGaP Alloys, Solid State Communications, (1988) Vol.65, No. 8, 779-782,
- 76. D.P.Bour, J.R.Shealy, A.Ksendzov and Fred Pollak, Optiical Investigation of Organometallic Vapor Phase Epitaxially Grown Al_xGa_{1-x}P, J. Appl. Phys. (1988) Vol.64, No 11, 6456-6459
- 77. S. V. Gotoshia Laser Raman-Spectroscopy of Ga_xAl_{1-x}P epitaxial films, Bulletin of the Georgian Academy of Sciences, (2003)168, 41-44,
- 78. С. В. Готошия, Лазерная Раман спектроскопия эпитаксиальных плёнок Ga_xAl_{1-x}P, V Международная конференция «Прикладная Оптика-2002», Санкт-Петербург, 2002, 126-129, (15-17)
- 79. М. Кардона, Модуляционная Спектроскопия, Москваб "Мир", 1972
- P.Y.Yu, Resonant Raman Study of LO+Acoustic Phonon Modes in CdSe, Solid State Communications, (1976) Vol.19, 1087-1090
- R. Trommer and M. Cardona, Resonant Raman Scattering by 2TO Phonons and the Ordering of Conduction Band Minima in GaAs, Solid State Communications, (1977) Vol. 21, 153-155
- R. Trommer and M. Cardona, Resonant Raman Scattering in GaAs, Physical Review B, (1978) Vol. 17, No 4, 1865-1876
- J.Wagner and M. Cardona, First-Order Raman Scattering in Germanium Resonant with the E₀ Gap, Solid State Communications, (1985) Vol.53, No10, 845-847

- A.K. Sood, W.Kauschke, J.Menendez, and M. Cardona, Resonance Raman Scattering by Optical Phononsin GaAs near the E₀ Band Gap, Physical Review B, (1987), Vol. 35, No 6, 2886-2891
- M. I. Alonso and M. Cardona, Resonance Raman Scattering in Pure and Ultraheavily Doped p-Type Germanium, Physical Review B, (1988) Vol. 37, No 17, 10107-10110
- R.C.C.Leite, T.C.Damen and J.F.Scott, Resonant Raman Scatering in CdS and ZnSe, Proceedings of the International Conference on Light Scattering Spectra of Solids, New York, 3-6 September, 1968, p.359-368
- J.M.Ralston, R.L.Wadsack, and R.K. Chang, Resonant Cancelation of Raman Scattering from CdS and Si, Physical Review Letters, (1970) Vol.25, No12, 814-818
- J.F. Scott, T.C. Damen, R.C.C. Leite, and W. T. Silfvast, Resonant Raman Effect in the Indirect Gap Semiconductor Gallium Phosphide, Solid State Communications, (1969) Vol.7, 953-955
- R.Carles, N.Caint-Cricq, J.B.Renucci at al., Resonance Raman Scattering in InAs near the E₁ Edge, Physical Review, (1980) B22, 12, 6120-6126,
- C. Trallero-Giner, A.Alexandrou and M.Cardona, Exciton Effects in Stress-Induced Doubly Resonant Raman Scattering: GaAs, Physical Review, (1988), **B38**, 15, 10 744- 10 748,
- K.P.Jain, R.K.Soni and S.C.Abbi, Resonant Raman Scattering in mixed GaAs_{1-s}P_x Crystals, Physical Review, (1985), **B31**, 10, 6820-6823,
- R.M.Hoff and J.C.Irwin, Resonant Raman Scattering in GaSe, Physical Review, (1974), **B10**, 8, 3464-3470,
- Рассеяние света в твердых телах, под редакцией М, Кардона, Москва, "Мир", 1979, ст,17
- 94. M.I. Bell, R.N. Tyte, and M. Cardona, Resonant Raman Scattering in GaP in the E₀-E₀+Δ₀ Region,
 Solid State Communications, (1973), Vol.13, 1833-1837
- R.L. Schmidt, B.D. McCombe, and M. Cardona, Resonant First- and Second-Order Raman Scattering in ZnTe, Physical Review B, (1975), Vol. 11, No 2, 746-753
- M.Cardona, in Light Scattering in Solids II, edited by M. Cardona (Springer, Heidelberg, 1982), p.19

- B.A. Weinstein and M. Cardona, Resonant First- and Second-Order Raman Scattering in GaP, Physical Review B, (1973) Vol. 8, No 6, 2795-2809
- 98. R.H. Callender, S.S. Sussman, M. Selders, and R.K. Chang, Dispersion of Raman Cross Section in CdS and ZnO over a Wide Energy Range, Physical Review B, (1973) Vol. 7, No 8, 3788-3798
- 99. Wolfgang Kauschke and Manuel Cardona, Resonant Raman Scattering and Interference Effects of LO Phonons at the E₀+Δ₀ Gap of InP, Physical Review B, (1986), Vol. 33, No 8, 5473-5481
- 100. W. Kauschke, V. Vorlicek, and M. Cardona, Resonant Raman Scattering in GaP: Excitonic and Interference Effects Near the E₀ and E₀+Δ₀ Gaps, Physical Review B, (1987), Vol. 36, No 17, 9129-9133
- P. Y. Yu, Y. R. Shen and Y. Petroff, "Resonance Raman-Scattering in Cu₂O at Blue and Indigo Excitons", Solid State Communications, (1973), 12, 973-975,
- 102. P. Y. Yu, Y. R. Shen and Y. Petroff, "Resonance Raman-Scattering (RRS) in Cu₂O at Blue and Indigo Excitons",
 Bulletin of the American Physical Society, (1973). 18, 411-411
- 103. P. Y. Yu, Y. R. Shen, Y. Petroff and L. M. Falicov, "Resonance Raman-Scattering at Forbidden Yellow Exciton in Cu₂O", Physical Review Letters, (1973), **30**, 283-286
- 104. P. Y. Yu and Y. R. Shen, "Phonon Dispersion Curves of Cu₂O from Resonant Raman-Scattering", Bulletin of the American Physical Society, (1974), 19, 225-225
- 105. P. Y. Yu and Y. R. Shen, "Study of Dispersive Raman Modes in Cu₂O by Resonant Raman-Scattering", Physical Review Letters, (1974). 32, 939-942,
- 106. P. Y. Yu and Y. R. Shen, "Multiple Resonance Effects on Raman-Scattering at Yellow-Exciton Series of Cu₂O", Physical Review Letters, (1974). 32, 373-376,
- 107. P. Y. Yu and Y. R. Shen, "Resonance Raman Studies in Cu₂O . Phonon-Assisted
 1 S Yellow Excitonic Absorption-Edge", Physical Review B,
 (1975), 12, 1377-1394

- 108. A. Compaan and H. Z. Cummins, "Resonant Quadrupole-Dipole Raman Scattering at the 1S Yellow Exciton in Cu₂O." Phys. Rev. Ltrs. (1973) <u>31</u>, 41
- 109. Z. Genack, H. Z. Cummins, M. A. Washington, R. A. Forman and A. Compaan,
 "Quadrupole-Dipole Raman Scattering at the 1S Yellow Exciton in Cu₂O."
 Phys. Rev. (1975) **B12**, 2478
- 110. M. A. Washington, A. Z. Genack, H. Z. Cummins and A. Compaan, "First Order Resonant Raman Scattering in the Yellow Exciton Series of Cu₂O." in <u>Proceedings</u> <u>of the Third International Conference on Light Scattering in Solids</u>, edited by M. Balkanski, R. C. C. Leite, and S. P. S. Porto, Flammarion Sciences, Paris, (1976), p. 29
- 111. A. Z. Genack, H. Z. Cummins, M. A. Washington and A. Compaan "Symmetry -Forbidden Resonant Raman Scattering from Polar Phonons in Cu₂O." in <u>Proceedings of the Third International Conference on Light Scattering in Solids</u>, edited by M. Balkanski, R. C. C. Leite, and S. P. S. Porto, Flammarion Sciences, Paris, (1976), p. 34
- 112. A. Compaan, A. Z. Genack, H. Z. Cummins and M. Washington "Experimental Tests of the Quadrupole - Dipole Raman Scattering Tensor in Cu₂O." in <u>Proceedings of the Third International Conference on Light Scattering in Solids</u>, edited by M. Balkanski, R. C. C. Leite, and S. P. S. Porto, Flammarion Sciences, Paris, (1976), p. 39
- M. A. Washington, A. Z. Genack, H. Z. Cummins, R. H. Bruce, A. Compaan and R.
 A. Forman, "Spectroscopy of Excited Yellow Exciton States in Cu₂O by Resonant Raman Scattering." Phys. Rev. (1977) B15, 2145
- R. M. Habiger and A. Compaan, "Lineshape Studies of the 1S Yellow Exciton in Cu₂O by Resonance Raman Scattering." Solid State Commun. (1977) <u>26</u>, 533
- 115. R. M. Habiger and A. Compaan, "Width of Resonance Raman Enhancement Profiles in Cu₂O: The Phonon- Lifetime Contribution." Phys. Rev. (1978) **B18**, 2907
- 116. Дж. Мейер, Л. Эриксон, Дж. Дэвис Ионное легирование полупроводников, Пер. с английского, Москва, Изд. Мир, 1973 г.
- 117. Технология ионного легирования, под ред. С. Намбы, Пер. с японского, Москва, Изд. Радио, 1974 г.
- 118. Е. И. Зорин, П. В. Павлов, Д. И. Тетельбаум Ионное легирование полупроводников, Москва, Изд. Энергия, 1975 г

- Физические процессы в облученных полупроводниках, Ответ. ред.
 Л. С. Смирнов, Новосибирск, Изд. Наука Сибирское отделение, 1977 г.
- Риссел. Х. Руге И. Ионная имплантация, Пер. с нем. Москва, Изд. Наука. 1983 г.
- 121. З. Е. Примаченко, О. В. Снитко Физика легирования металлами поверхности полупроводников, Киев, Изд. Наукова думка, 1988 г.
- 122. А. В. Черняев Метод ионной имплантации в технологии приборов и интегральных схем на арсениде галлия, Москва, Изд. Радио и связь, 1990 г.
- 123. Мукашев Б. Н. Чокин К. Ш. Кусаинов Ж.А. и др. Исследование профилей распределения ионов низкой энергии, имплантированных в кремнии, Поверхность. Физика, химия, механика (1983), N 11, 131-147
- 124. Auston D. H. Golovchenko J. A. Smith P. R. Argon Laser Annealing of Ion-Implanted Si, Appl. Phys. Lett. (1978), 33, N 6, 539-541
- 125. Barnoski M. K. Hunsperger R.G. Lee A. Ion-Implanted GaAs Injection Laser Appl. Phys. Lett. (1984), 24, N 12, 627-629
- 126. Reuben Shuker and Robert W. Gammon, Raman-Scattering Selection-Rule Breaking and the Density of States in amorphous Materials, Physical Review Letters, (1970) Vol.25, No4, 222-225
- 127. J.E. Smith, Jr., M.H.Brodsky, B.L.Crowder, M.I. Nathan and A.Pinczuk, Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors, Physical Review Letters, (1971), Vol.26, No11, 642-646
- 128. J.F.Mohrange, R.Beserman, and M..Balkanski, Raman Study of the Vibrational Properties of Implanted Silicon, Phys. Stat. Sol. (a) (1974), Vol.23, 383-391
- 129. Jean-Francois Mohrange, Robert Beserman and Jacques C. Bourgoin, Study of Defects Introduced by Ion Implantation in Diamond, Japanese Journal of Applied Physics, (1975), Vol.14, No 4, 544- 548
- A.C.deWilton and M. Simard-Normandin, P. T.T. Wong, Raman Spectroscopy for Nondestructive Depth Profile Studies of Ion Implantation in Silicon, J. Electrochem. Soc., (1986) Vol. 133, No5, 988-993
- J. Wagner and C. R. Fitzsche, Raman study of Si⁺ -implanted GaAs,
 J.Appl.Phys. (1988), 67, 808,
- 132. J. Macia, E.Martin, A. Perez-Rodriguez et al., Raman microstructural analysis of silicon-on-insulator formed by high dose oxygen ion implantation: As-implanted structures, J. Appl. Phys. (1997), 82, 3730

- 133. L. Artus, R. Cusco, J. Ibanez et al., Raman-scattering criteria for characterization of anneal-restored zinc blende single crystals Application to : Si⁺ -implanted InP, J. Appl. Phys. (1997), 82, 3736
- 134. PingHeng Tan, yuanMing Deng, Qian Zhao, WenChao Cheng, The intrinsic temperature effect of the Raman spectra of graphite, plied Physics Letters, (1999), 74, 1818
- 135. J.O. Orwa, K.W. Nugent, D.N. Jamieson, S. Prawer, Raman investigation of damage caused by deep ion implantation in diamond, Physical Review (2000), **B62**, 5461
- 136. A.H. Kachare, J.M. Cherlow, T.T.Yang et al., Infrared reflection and Raman scattering of ion-implanted nitrogen in gallium phosphide,
 . Appl.Phys., (1976), 47, 161-173
- Raphael Tsu, John E. Baglin, Gordon J.Lasher, James C. Tsang, Laser-induced recrystallization and damage in GaAs, Appl. Phys. Lett. (1979), 34, 153-155
- G. Conteras, M. Cardona and A.Axmann, Raman scattering studies in phosphorous implanted and laser annealed boron doped Si, Solid State Communications, (1985), 53, 861-865
- D. Kirillov, R.A.Powell, D.T. Hodul, Raman scattering study of rapid thermal annealing of As⁺-implanted Si, J. Appl. Phys. (1985) 58, 2174-2179
- 140. R. Ashokan, K.P Jain, H.S.Mavi, M. Balkanski, Raman study of phosphorousimplanted and pulsed laser-annealed GaAs, J.Appl.Phys. (1986), **60**, 1985-1993,
- 141. T. Nakamura and T. Katoda, Electrical activation and local vibrational mode from Si-implanted GaAs, J.Appl.Phys. (1985), **57**, 1084,
- M. Holtz, R. Zallen, Art E. Geissberger and R.A. Sadler, Raman-scattering studies of silicon-implanted gallium arsenide: The role of amorphicity, J.Appl.Phys. (1986), **59**, 1946
- 143. R. Ashokan and K.P Jain, Raman scattering study of carrier activation in zinc- and silicon-implanted and pulse-laser-annealed GaAs, J.Appl.Phys. (1989), 65, 2209-2213
- 144. J. Wagner, M. Ramsteiner, W. Stolz et al., Incorporation of Si in δ-doped GaAs studied by local vibrational mode spectroscopy,
 Applied Physics Letters, (1989), 55, 978

- 145. Hiroshi Yoshida, Takashi Katoda, Characterization of ion-implanted and rapidly thermal annealed GaAs by Raman scattering and van der Pauw measurement, J.Appl.Phys. (1990), 67, 7281-7286,
- 146. Kohji Mizoguchi, Hiroshi Harima, Shin-ichi Nakashima, Tohru Hara, Raman image study of flash-lamp annealing of ion-implanted silicon, J. Appl. Phys. (1995, 77, 3388-3392
- 147. W. Limmer, W. Ritter, R. Sauer, Raman scattering in ion-implanted GaN, Applied Physics Letters, (1998), 72, 2589-2591
- 148. G. Vitali, C. Pizzuto, G.Zollo, Structural reordering and electrical activation of ion-implanted GaAs and InP due to laser annealing in a controlled atmosphere, Physical Review (1999), **B59**, 2986-2994
- S. Hernandez, R. Cusco, N. Blanco, G. Gonzalez-Diaz, L. Artus, Study of the electrical activation of Si⁺-implanted InGaAs by menas of Raman scattering, J.Appl.Phys. (2003), 93, 2659,
- R.G. Humsperger, O.J. Marsh, Ga_{1-x}Al_xAs produced by Al⁺ ion implantation of GaAs, Applied Physics Letters, (1971), **19**, 327-329
- 151. И.П.Акимченко, В.С.Вавилов, В.В.Краснопевцев и др. Фотолюминесценция β–SiC, синтезированного методом ионного внедрения, ФТП, (1973), 7, 972-974,
- 152. И.М.Белый, Г.А.Гуманский, В.И.Карась и др. Синтез соединений Al_xGa_{1-x}As и GaAs_{1-x}P_x, при внедрении ионов Al⁺ и P⁺ в GaAs, ФТП, (1975), **9**, 2027-2029,
- 153. О.Н.Кузнецов, Л.В.Лежейко, Е.В.Любопитова, Л.Н.Сафронов, Синтез твердых растворов при внедрении ионов Al⁺ и P⁺ в GaAs, ФТП, (1977), **11,** 1449-1452,
- 154. И.И.Новак, В.В.Баптизманский, И.С.Смирнова, А.В.Суворов Исследование синтезированных ионным внедрением твердых растворов GaAs_{1-x}P_x и Ga_{1-x}Al_xAs методом комбинационного рассеяния света, ФТТ, (1978), **20**, 2134-2138,
- 155 O. Aina and K.P Panda, Formation of GaAsP by ion implantation and annealing, Applied Physics Letters, (1984), 44, 544-546
- 156. X.W. Lin, M.Behar, R.Maltez, Synthesis of GaN by N ion implantation in GaAs (001), Applied Physics Letters, (1995), 67, 2699-2701

- 157. K.J. Reeson, P.L.F. Hemment, J.Stoemenos, Formation of buried layers of β-SiC using ion beam synthesis and incoherent lamp annealing, Applied Physics Letters, (1987), 51, 2242-2244
- 158. Masahiro Deguchi, Makoto Kitabatake, Takashi Hirao, Synthesis of β-SiC layer in Silicon by Carbon ion " hot" implantation, Jpn. J. Appl. Phys. (1992), **31**, 343-347
- 159. Jie Yang, Xiaowei Su, Qijin Chen, Zhangda Lin, Si⁺ implantation: A pretreatment method for diamond nucleation on a Si wafer,
 Applied Physics Letters, (1995), 66, 3284
- 160. Y.V. Gomeniuk, V.S.Lysenko, I.N. Osiyuk, Properties of SiGe/Si heterostructures fabricated by ion implantation technique, Semiconductor Physics, Quantum Electronics & Optoelectronics, (1999), 2, 74-80
- 161. Z.J. Zhang, K.Narumi, H.Naramoto, X-ray and Fourier transformed infrared infrared infrared investigation of β-SiC growth by ion implantation,
 J. Phys. D: Appl. Phys. (1999), 32, 2236-2240
- 162. V. Heera, F. Fontaine, W. Scorupa, B. Pecz and A.Barna, Ion-beam synthesis of epitaxial silicon carbide in nitrogen-implanted diamond, Applied Physics Letters, (2000), 77, 226,
- 163. Jian Zuo, Xichen Zhao, Ruo Wu, Guangfen Du at all, Analysis of the pigments on painted pottery figurines from the Dynasty's Yangling Tombs by Raman microscopy, Journal of Raman Spectroscopy, (2003), 34, 121-125
- 164. Ray L.Frost, Howell G.M.Edwards, Lee Duong, J. Theo Kloprogge at all, Raman spectroscopic and SEM study of Cinnabar from Herod's palace and its likely origin, Analist (Cambridge, United Kingdom), (2002), 127, (2), 293-296
- 165. Danilo Bersani, Gianni Antonioli, Pier Paolo Lottici, Antonella Casoli, Raman microspectrometric investigation of wall paintings in S.Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century, Spectrochimica Acta, part A, (2003), **59**, 2409-2417
- 166. G.G.Roberts and R.Zallen, Quenching of Photoconductivity and Luminescence in Natural Crystals of Mercury Sulphide, J.Phys.C: Solid St. Phys., (1987), 4, 1890-1897
- K.Suto. T. Kimura, and J.Nishizawa, Lateral Optical Confinement of The Heterostructure Semiconductor Raman Laser, Appl. Phys. lett. (1987), 51, (18), 1457-1458,

- 168. Б.Х.Байрамов, В.Н.Бессолов, Э.Яне, Ю.П.Яковлев, В.В.Топоров,
 Ш.В.Убайдуллаев, Комбинационное рассеяние света в твердых растворах Al_{1-х}Ga_xP Письма в ЖТФ, (1980), 6, (23), 1432-1436
- 169. J.M.Rodriguez, G.Armelles and P.Salvador, Observation of E₀ and E₁ transition in AlGaP alloys by electrolyte electroreflectance,
 J. Appl. Phys. (1989), 66, (8), 3929-3931
- 170. R.Loudon, Theory of The Resonance Raman Effect in Crystals J. Physique (1965), 26,677-683
- Richard Zallen, Fundamental Absorption Edge of Trigonal HgS, International Conf. on II-VI Semiconductor Compounds, Kyoto, (1967), 877-887d
- E.Doni, L.Resca, S.Rodriguez and W.M.Becker, Electronic Energy Levels of Cinnabar (α–HgS), Physical Review, 1979), **B20**, 4, 1663-1668
- 173. Atsuko Ebina, Mitsuo Yamamoto and Tadashi Takahashi, Reflectivity of ZnSe_xTe_{1-x} Single Crystals, Physical Review, (1972), **B6**, 10, 3786-3791
- 174. E.Loh, R. Newman, The Absorption Edge of Zinc Telluride,
 J. Phys. Chem. Sol. (1961), 20, ³/₄, 324-327
- 175. S. V. Gotoshia, V. S. Vavilov, L. К. Vodopianov, Исследование методом КР разуп орядочения кристаллической решётки полупроводниковых соединений А³B⁵ при ионной имплантации, International Conf. on Ion Implantation in Semiconductors, Reinhardsbrum (DDR), (1977), 37-41
- H.Richter, Z.P.Wang and L.Ley, The One Phonon Raman Scattering in Microcrystalline Silicon, Solid State Communication, (1981), 39, 625-629,
- 177. Готошия С. В., Водопьянов Л. К., Вавилов В.С. Применение метода КР для исслдования смешанного кристалла GaAs_{1-x}P_x синтезированного ионным внелрением, Материалы II Всесоюзной конференции по спектроскопии КРС, Москва, (1978), 103-104
- S. Gotoshia, L. Gotoshia Laser Raman Spectroscopy of A₃B₅ Amorphous Binary and Ternary Semiconductors Synthesized by Ion Implantation Bulletin of the Georgian Academy of Sciences, (1999), 160, 234-237