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Abstract 
 

Study of the dynamics of flowing multi-fluid plasmas embedded in the ambient 

magnetic fields is one of the fundamental problems of modern physics. The interest has been 

dramatically increased since the appearance of: latest observational evidence of fine structuring 

of Stellar Atmospheres; novel findings in Extra-Galactic Medium; as well as systematic 

investigations of the Astrophysical Jets and Radiation coming from various astrophysical 

objects.  

Plasma ''flow'' could be assigned at least two connotations: 1) The flow is a primary 

object whose dynamics bears critically on the phenomena under investigation. The problems of 

the formation and the original heating of the astrophysical structures, the creation of channels 

for particle escape, for instance, fall in this category, 2) The flow is a secondary feature of the 

system, possibly created as a by-product and/or used to drive or suppress an instability. Since 

the generation of flows, which will eventually create the structures, is the theme of this effort, 

the flows here are fundamental.  

In this view, it is extremely important to develop the self-consistent unified approach to 

the magneto-fluid coupling to study the creation of ordered structures in plasmas. An essential 

component of this global theory is the emphasis on including the plasma flows as a crucial 

component (along with the magnetic field) that dictates the dynamics of the ordered structure 

formation. Plasma confinement experiments, collimation of relativistic jets, large scale 

magnetic field openings in stellar atmospheres as well as the escape of particles from various 

systems are good examples of the crucial role of magnetic fields in creation of steady structures 

and their heating processes. 

Self-organization of an ordered structure occurs in plasma under rather restrictive 

conditions. A new framework invokes a coercive form that results in a criterion for self--

organizing relaxation of the two-fluid plasma. The constraints (constants of motion of the ideal 

model) are adjusted, through a weakly dissipative process, so that the relaxed state, under well-

defined conditions, is a stable equilibrium independent of the direct effects of dissipation. A 

general solenoidal vector field, such as a magnetic field or an incompressible flow, can be 

decomposed into an orthogonal sum of Beltrami fields. Nonlinear dynamics of plasma induces 

complex couplings among these Beltrami fields. In a single-fluid magnetohydrodynamic 

(MHD) plasma, however, the energy condensates into a single Beltrami magnetic field 
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resulting in the self-organization of a force-free equilibrium, that is, the Taylor relaxed state. 

By relating the velocity and the magnetic fields, the Hall term in the two-fluid model leads to a 

singular perturbation that enables the formation of an equilibrium given by a pair of two 

different Beltrami fields. This new set of relaxed states, despite the simple mathematical 

structure, includes a variety of plasma states that could explain a host of interesting 

phenomena. The H-mode (high-confinement) boundary layer, where a diamagnetic structure is 

self-organized under the coupling of the magnetic field, flow, electric field, and pressure; high 

beta equilibrium are the examples.  

The mechanisms for energy transport and channeling of particles are deeply connected 

with the challenging and exciting problems of the solar coronal heating and of the origin of the 

solar wind (SW). A number of recent investigations have made a strong and convincing case 

that neither the solar wind ''acceleration'' nor the numerous eruptive events (and flares of 

different kind and coronal mass ejections [CMEs ]) in the solar atmosphere can be treated as 

isolated and independent problems; they must be solved simultaneously along with other 

phenomena, in particular, the plasma heating that, by itself, may take place in several different 

stages. Several reasons (mainly the low observational resolution, and problems of resolving 

extremely short spatial and temporal scales in computer simulations), however, have prevented 

the emergence of a unified and realistic quantitative model dealing with the dynamics of energy 

dissipation and evolution in the solar atmosphere. Realistic transport processes are generally 

not included in the models that are often lower dimensional or steady state.  

When the heating power exceeds a critical value, the tokamak plasmas undergo a 

spontaneous self-organizing transition from a low (L-mode) to a high confinement state (H-

mode). The improved confinement is believed to be caused by the generation of a shear (zonal) 

flow, which is responsible for suppressing fluctuations and thus inhibiting transport. After this 

transition, a very steep pressure gradient develops at the edge. The height of the pressure 

pedestal is a natural figure of merit for energy confinement. Elucidation of the physics of 

pedestal formation, and predicting its maximum achievable height are issues crucial for 

magnetic fusion. To understand the physics of the formation and the properties (including the 

maximum sustainable pressured) of the pedestal, therefore, a two-pronged attack is strongly 

indicated: a systematic buildup of the database as well as the development of pertinent theories. 

Prediction of the height and width of the pressure profile has been actively pursued so as to 

provide a reliable extrapolation to future burning plasma devices.  

Among the various nonlinear effects which may occur in a plasma interacting with 

strong laser pulses, the generation of quasistatic magnetic fields (QSMs) is found to be one of 
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the most interesting and significant, particularly because the presence of these fields could have 

considerable influence on the overall nonlinear plasma dynamics.  In relativistic laboratory 

plasmas such immense magnetic fields can play important role in developing of the fast-

ignition concept, particle acceleration schemes, etc., while in astrophysical plasmas generation 

of strong magnetic fields can explain many fundamental phenomena typical of extreme cosmic 

conditions. On the other hand, strong magnetic fields play crucial role in energy release 

phenomena in plasmas and plasma-like media providing effective energy sources for explosive 

and eruptive events as well as heating.  

The relativistically hot e–p pairs constitute a major component of many of the 

astrophysical and cosmic plasmas, though a minority of cold electrons and heavy ions may also 

be present. For instance, outflows of e – p plasma from pulsars entering low density ambient e 

– i plasma in the inter-stellar regions form two-electron-temperature electron–positron–ion (e – 

p – i ) plasmas. The three-component plasmas, namely, the majority hot e – p component with a 

small fraction of heavy ions, have been studied in the context of pulsar magnetospheres. On the 

other hand, it was demonstrated recently that the presence of minority ion species in hot e – p 

plasma can lead to the creation of stable, localized, nondispersive and nondiffracting pulses 

that carry a large density excess within the region of field localization, leading to the formation 

of the so-called “light bullets”. Localized intense radiation pulses may be used to understand 

the character of AGN and pulsar radiation, as well as for particle acceleration in astrophysical 

situations. 

The aim of the work is:  

1) To develop the unified theory for the description of equilibrium structure creation and 

heat transfer phenomena in two-fluid plasmas due to magneto-fluid coupling. 

2) To explore the Energy Transformation Mechanisms for the description of Explosive 

and Eruptive Events in the two-fluid plasmas. 

3) To investigate the problem of magnetic field generation in underdense plasmas by 

super-strong short EM pulses. 

4) To develop the unified analytical and numerical methods for the acceleration of plasma 

flows and the creation of their escape channels through the area nested with closed field 

structures. 
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The work is organized as follows: in the chapter-1, the systematic model for the 

interaction of two-species plasmas with the arcade-like magnetic fields has been developed; 

the possibility of the dynamical creation of hot quasi-equilibrium loops - of typical solar 

coronal structures is shown; the formation conditions for typical coronal equilibria is 

studied in detail; the problem of equilibrium structure creation in relativistically hot two-

temperature e-p plasmas with small fraction of cold ions is investigated.   In the chapter-2 

we develop a basic model for coupled vortex dynamics in two-fluid MHD; study 

systematically the equilibrium states in incompressible Hall MHD; investigate the 

conditions for eruptive events in the Solar Atmosphere due to magneto-fluid coupling; 

suggest the novel approach for the generation of QSM fields in two-fluid plasmas 

embedded in super-strong EM fields for various conditions. In the chapter-3, we develop a 

model for the dynamical acceleration of plasma flows interacting with arcade-like ambient 

magnetic fields; show the applications for the Solar Atmosphere; present equilibrium 

analysis for the acceleration of plasma flows in the compressible two-fluid plasmas due to 

magneto-fluid coupling; explore the Reverse Dynamo Mechanism for the acceleration of 

Plasma Flows; study the process of dynamical creation of channels for the particle escape 

in the Solar Atmosphere; give the 1D analysis for Solar Wind origin.  

 

At the end I emphasize the major results of the work. 
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Chapter 1

Structure creation and heat-transfer

phenomena in two-species plasmas

due to Magneto-Fluid Coupling

1.1 Background

The TRACE observations [1, 2, 3] reveal that the solar corona is comprised of lots of

thin loops that are intrinsically dynamic, and that continually evolve. These very thin

strings, the observations indicate, are heated for a few to tens of minutes, after which

the heating ceases, or at least changes signiÞcantly in magnitude [1]. In this study we

examine a class of mechanisms, which, through the viscous�dissipation of the plasma

kinetic energy, provide the primary and basic heating of the coronal structures during

their very formation. The basic input of the theory is the reasonable assumption that

the coronal structures are created from the evolution and re�organization of a relatively

cold plasma ßow [1�21] emerging from the sub�coronal region (between the solar surface

and the visible corona) and interacting with the ambient magnetic Þeld anchored inside

the solar surface. During the process of trapping and accumulation, a part of the kinetic

energy of the ßow is converted to heat by viscous dissipation and the coronal structure is
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born hot and bright. For this to happen, we must Þnd alternative fast and efficient heating

mechanisms because, for the conditions prevalent in the coronal structures, the standard

viscous dissipation is neither efficient nor fast. The rates of viscous dissipation can be

considerably increased by processes which either enhance the local viscosity coefficient,

or induce short scale structures in the velocity Þeld. At present we do not know of any

convincing mechanism for the former possibility. This study, therefore, is limited to an

examination of processes of the latter kind. We Þnd that as long as the ßow�velocity Þeld

is treated as an essential and integral part of the plasma dynamics, fast and desirable

viscous dissipation does, indeed, result. Consequently, during its very formation, the

coronal structure can become hot and bright.

Of the several possible mechanisms by which the ßow kinetic energy may be converted

into heat we emphasize the following two: The Þrst is the ability of supersonic ßows to

create nonlinear perturbations which steepen to produce short scale structures which can

dissipate by ordinary viscosity. The second stems from the recently established prop-

erty of the magnetoßuid equilibria for extreme sub�Alfvénic ßows (most of the observed

coronal ßows fall in this category) � such ßows can have a substantial, fastly varying (spa-

tially) velocity Þeld component even when the magnetic Þeld is mostly smooth. Viscous

damping associated with this varying component could be a major part of the primary

heating needed to create and maintain the bright Corona. From a general framework

describing a plasma with ßows, we have been able to "derive" several of the essential

characteristics of the coronal structures. Theoretical basis for both these mechanisms

will be discussed. Our simulation (for which we developed a dissipative two�ßuid code),

however, concentrates only on the Þrst mechanism, and preliminary results reproduce

many of the salient observational features. There is clear cut evidence of nonlinearly

steepened velocity Þelds which effectively dissipate and heat the coronal structure right

through the process of formation. The numerical investigation of the second mechanism,

which will require a much higher spatial resolution, will be undertaken soon.

Naturally all these processes require the existence of particle ßows with reasonable
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amounts of kinetic energy. There are several recent publications [1�14] cataloguing

enough observational evidence for such ßows in the regions between the sun and the

corona to warrant a serious investigation in this direction. It must be admitted that we

still have little understanding of the nature of the processes by which the relatively cool

material (no hotter than about 20000K) moves upward from low altitudes (as low as a

few thousand kilometers) to the outer atmosphere. For this study, we shall simply exploit

the observation that the ßows exist, and work out their consequences. We believe that

the ßows might prove to be a crucial element in solving the riddle of coronal heating.

The model for the solar atmosphere that we propose and investigate is obtained by

injecting an essential new feature into several extant notions � the plasma ßows are

allowed to play their appropriate role in determining the evolution and the equilibrium

properties of the structures under investigation. We reiterate that the distinguishing

ingredient of our model is the assumption (observationally suggested) that relatively

cold particles spanning an entire range of velocity spectrum � slow as well as fast,

continually ßow from the sub�coronal to the coronal regions. It is the interaction of

these cold primary ßows with the solar magnetic Þelds, and the strong coupling between

the ßuid and the magnetic aspects of the plasma that will deÞne the characteristics of

a typical coronal structure (including Coronal Holes). In this study we limit ourselves

to the formation and primary heating aspects; we do not deal with instabilities, their

nonlinear effects, ßaring etc. These are the problems that we will confront at the next

stage of the development of the model.

Below we describe in relative detail our basic model for the upper solar atmosphere,

a time�dependent, two�ßuid system of currents and ßows. The ßows are treated at par

with other determining dynamical quantities, the currents and the solar magnetic Þelds.

Next subsection is devoted to the derivation of the characteristics of typical coronal

structures from the basic model. Following a general discussion, we numerically simulate

the evolution of a cold plasma ßow as it interacts with the solar magnetic Þeld and gravity.

We follow the fate of an initial cold supersonic ßow as the particles get trapped by the

10



magnetic Þeld. By the time a sizeable density is built up we also Þnd a considerable rise in

temperature. In a very short time the velocity Þeld develops a shock�like structure which

dissipates with ordinary viscosity to convert the ßow kinetic energy to heat. Next we take

a different approach, and describe elements of the recently investigated magneto�ßuid

theory (see Mahajan and Yoshida, 1998, 2000) which allows the existence of equilibrium

solutions missing in the ßowless MHD. We Þnd that a short�scale velocity component is

predicted to be an essential aspect of a class of magnetoßuid states in terms of which a

typical coronal structure could be modelled. The magnetoßuid states are the equilibrium

states created by the strong interaction of the magnetic and the ßuid character of a

plasma, and are derived from the normal two�ßuid equations when the velocity Þeld is

treated at par with the magnetic Þeld. In a somewhat detailed discussion, we argue for

the relevance of these states for the solar corona. These states could be seen as a set of

quasi�equilibria evolving to an eventual hot coronal structure; the dissipation of the small

scale velocity component provides the necessary source of heating. Since the numerical

simulation of these states requires a much Þner resolution than we have in our code, their

time dependent simulation is deferred to a future work.

The main results of this chapter are published in Refs.[70]-[73],[102-103],[111].
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1.2 The basic model: general equations for the inter-

action of 2-species plasmas with the arcade-like

magnetic fields

In this section we will develop a general theoretical framework from which the typical

solar coronal structure will be �derived." In our model, the plasma ßows from the Sun�s

surface provide the basic source of matter and energy for the myriad of coronal structures

(including Coronal Holes). Although the magnetic Þeld is, naturally, the primary culprit

behind the structural diversity of the corona, the ßows (and their interactions with the

magnetic Þeld) are expected to add substantially to that richness.

The primary objective of this study is to investigate how these ßows are trapped and

heated in the closed magnetic Þeld regions, and create one of the typical shining coronal

elements. We shall, however, make a small digression to suggest a possible fate of the

fast ßows making their way through the regions where the magnetic Þeld is weak, or

has open Þeld lines. The faster particles could readily escape the solar atmosphere in

the open Þeld-line regions. They could also do so by punching temporary channels in

the neighboring closed Þeld�line structures. The ßows escaping through these existing

or �created" coronal holes (the coronal holes (CH) are highly dynamical structures with

open and �nearly open" magnetic Þeld regions, see e.g. [22]) may eventually appear as

the fast solar wind.

In the closed Þeld�line, the magnetic Þelds will trap the ßows, and the trapping will

lead to an accumulation of particles and energy creating the coronal elements with high

temperature and density. We shall not consider the solar activity processes, since the

activity regions (AR) and ßares, though an additional source of particles and energy,

cannot account for the continuous supply needed to maintain the corona. Moreover,

in the theory we suggest, the ßare is understood to be a secondary event and not the

primary source for the creation of the hot corona.

To describe the entire atmosphere of the quiescent, non�ßaring Sun we use the two�
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ßuid equations where we keep the ßow vorticity and viscosity effects (Hall MHD). The

general equations will apply in both the open and the closed Þeld regions. The difference

between various sub�units of the atmosphere will come from the initial, and the boundary

conditions.

LetV denotes the ßow velocity Þeld of the plasma in a region where the primary solar

magnetic Þeld is Bs . It is, of course, understood that the processes which generate the

primary ßows and the primary solar magnetic Þelds are independent (say at t = 0 time).

The total current j = jf + js (here jf is the self�current that generates the magnetic Þeld

Bf and js is the source of the solar Þeld Bs) is related to the total (that can be observed)

magnetic Þeld B = Bs +Bf by Ampére�s law:

j =
c

4π
∇×B. (1.1)

Notice that in the framework we are developing (assumption of the existence of primary

ßows), the boundaries between the photosphere, the chromosphere and the corona become

rather artiÞcial; the different regions of each coronal structure are distinguished by just

the parameters like the temperature and the density. In fact, these parameters should

not show any discontinuities; they must change smoothly along the structure. At some

distance from the Sun�s surface, the plasma may become so hot and dense that it becomes

visible (the bright, visible corona), and this altitude could be viewed as the base of the

corona. But to study the creation and dynamics of bright coronal structures (loops,

arches, arcades etc.) we must begin from the photosphere, and determine the plasma

behavior in the closed Þeld regions.

Assuming that the primary ßows provide, on a continuous basis, the entire material

for coronal structures, the solar ßow with density n will obey the Continuity equation:

∂

∂t
n+∇ · (nV) = 0. (1.2)
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We must add a word of caution: in the closed Þeld regions, the trapped particle density

may become too high for the conÞning Þeld, resulting in instabilities of all kinds. In this

study we shall not deal with instabilities and their consequences; it will constitute the

next stage of development of the model.

Since the corona as well as the SW are known to be mostly hydrogen plasmas (with

a small fraction of Helium, and neutrons, and an insigniÞcant amount of highly ionized

metallic atoms) with nearly equal electron and proton densities: ne ' ni = n , we expect
the quasineutrality condition ∇ · j = 0 to hold.
In what follows, we shall assume that the electron and the proton ßow velocities

are different (two�ßuid approximation was used e.g. in Sturrock and Hartly, (1966).

Neglecting electron inertia, these are Vi = V, and Ve = (V − j/en), respectively.
We assign equal temperatures to the electron and the protons for processes associated

with the quiescent Sun. For the creation processes of a typical coronal structure, this

assumption is quite good. For the fast SW, however, we know from recent observations

(Banaszkiewicz et al. 1997 and references therein), that the species temperatures are

found to be different: Ti ∼ 2 · 105K and Te ∼ 1 · 105K. Since the fast SW is not the

principal interest of this study, we shall persist with the equal temperatures assumption;

the kinetic pressure p is given by:

p = pi + pe ' 2nT, T = Ti ' Te. (1.3)

With this expression for p, and by neglecting electron inertia, the two�ßuid equations

are obtained by combining the proton and the electron equations of motion:

∂

∂t
Vk + (V ·∇)Vk =

=
1

en
(j× b)k − 2

nmi
∇k(nT ) +∇k

µ
M¯G
r

¶
− 1

nmi
∇lΠi,kl, (1.4)
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and
∂

∂t
b−∇×

·µ
V− j

en

¶
× b

¸
=
2

mi
∇
µ
1

n

¶
×∇(nT ), (1.5)

where b = eB/mic, mi is the proton mass, G is the gravitational constant, M¯ is

the solar mass, r is the radial distance, and Πi,lk is the ion viscosity tensor. For ßows

with large spatial variation, the viscous term will end up playing an important part. To

obtain an equation for the evolution of the ßow temperature T , we begin with the energy

balance equations for a magnetized, neutral, isothermal electron�proton plasma:

∂

∂t
εα +∇k(εαVα,k + α,klVα,l) +∇qα = nαfα ·Vα, ) (1.6)

where α is the species index. The ßuid energy εα (thermal energy + kinetic energy) and

the total pressure tensor α,kl are given by

εα = nα

µ
3

2
Tα +

mαV
2
α

2

¶
, α,kl = nαTαδkl +Πα,kl, (1.7)

and

fα = eαE+
eα
c
Vα ×B+mα∇GM¯

r
, (1.8)

is the volume force experienced by the ßuids (E is the electric Þeld). In Eq. (1.6), qα is

the heat ßux density for the species α. After standard manipulations we arrive at the

temperature evolution equation

3

2
n
d

dt
(2T ) +∇(qi + qe) = −2nT∇ ·V +minνi

"
1

2

µ
∂Vk
∂xl

+
∂Vl
∂xk

¶2

− 2
3
(∇ ·V)2

#
+

+
5

2
n

µ
j

en
·∇T

¶
− j

en
∇(nT ) + EH + ER (1.9)

where ER is the total radiative loss, EH is the local mechanical heating function, and νi is

the ion kinematic viscosity. Note that we have retained viscous dissipation in this system.

If primary ßows are ignored in the theory, various anomalous heating mechanisms need

15



to be invoked, and a corresponding term EH has to be added. The full viscosity tensor

relevant to a magnetized plasma is rather cumbersome, and we do not display it here.

However just to have a feel for the importance of spatial variation in viscous dissipation,

we display its relatively simple symmetric form. It is to be clearly understood that this

version is meant only for theoretical elucidation and not for detailed simulation. We

notice that even for incompressible and currentless ßows, heat can be generated from the

viscous dissipation of the ßow vorticity. For such a simple system, the rate of kinetic

energy dissipation turns out to be

·
d

dt

µ
miV

2

2

¶¸
visc

= −minνi

µ
1

2
(∇×V)2 + 2

3
(∇ ·V)2

¶
. (1.10)

revealing that for an incompressible plasma, the greater the vorticity of the ßow, the

greater the rate of dissipation.

Let us now introduce the following dimensionless variables:

r→ r R¯; t→ t
R¯
VA
; b→ b b¯; T → T T¯; n→ n n¯;

V→ V VA; j→ j VAen¯; qα → qαn¯T¯VA; νi → νi R¯VA, (1.11)

and parameters:

b¯ =
eB(R¯)
mic

; λi¯ =
c

ωi¯
; c2s =

2T¯
mi

; ω2
i¯ =

4πe2n¯
mi

; VA = b¯λi¯;

rA =
GM¯
V 2
AR¯

= 2β rc; rc =
GM¯
2c2sR¯

; α =
λi¯
R¯
; β =

c2s
V 2
A

, (1.12)

where R¯ is the solar radius. Note that in general νi is a function of density and tem-

perature: νi = (Vi,thT 2/12πne4).

In terms of these variables, our equations read:

∂

∂t
V + (V ·∇)V =

16



=
1

n
∇× b× b− β 1

n
∇(nT ) +∇

³rA
r

´
+ νi

µ
∇2V +

1

3
∇(∇ ·V)

¶
, (1.13)

∂

∂t
b−∇×

³
V− α

n
∇× b

´
× b = αβ ∇

µ
1

n

¶
×∇(nT ), (1.14)

∇ · b = 0, (1.15)

∂

∂t
n+∇ · nV = 0, (1.16)

3

2
n
d

dt
(2T ) +∇(qi + qe) = −2nT∇ ·V + 2β−1νin

"
1

2

µ
∂Vk
∂xl

+
∂Vl
∂xk

¶2

− 2
3
(∇ ·V)2

#
+

+
5

2
α(∇× b) ·∇T − α

n
(∇× b)∇(nT ) + EH + ER. (1.17)

This set of equations will now be studied for different types of magnetic Þeld regions, in

particular the regions with closed Þeld lines.

Before we embark on a detailed theory of the formation and heating of the corona, we

would like to give a short list of heating mechanisms which have been invoked to deal with

this rather fundamental and still unresolved problem of Solar physics : Alfvén waves [25�

32], Magnetic reconnection in Current sheets [33�46], and MHD Turbulence [47�49]. For

all these schemes, the predicted temperature proÞles in the coronal structures come out to

be highly sensitive to the form of the heating mechanism [50,51]. Parker (1988) suggested

that the solar corona could be heated by dissipation of many tangential discontinuities

arising spontaneously in the coronal magnetic Þeld that is stirred by random photospheric

footpoint motions. This theory stimulated numerous searches for observational signatures

of nanoßares. Unfortunately, all of these attempts fall short of providing a continuous

(both in space and time) energy supply that is required to Þrst create in a few minutes,

and then support for longer periods the observed bright coronal structures (see e.g. [1, 2]).

Our attempt to solve this problem makes a clean break with the conventional ap-

proach. We do not look for the energy source within the corona but place it squarely

in the primary ßows emerging from the Sun (see the results of [1�3]). We propose (and

will test) the hypothesis that the energy and particles associated with the primary ßows,
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in interaction with the magnetic Þeld, do not only create the variety of conÞgurations

which constitute the corona, but also provide the primary heating. The ßows can give

energy and particle supply to these regions on a continuous basis � we will show that

the primary heating takes place simultaneously with the accumulation of the corona and

a major aspect of the ßow�magnetic Þeld interaction, for our system, is to provide a

pathway for this to happen.

A mathematical modeling of the coronal structure (for its creation and primary heat-

ing) will require the solution of Eqs. (1.13)�(1.17) with appropriate initial and boundary

conditions. We will use a mixture of analytical and numerical methods to extract, what

we believe, is a reasonable picture of the salient aspects of a typical coronal structure.
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1.3 Dynamical creation of hot quasi-equilibrium loops

— Formation of a typical coronal structure

Though the solar atmosphere is highly structured, it seems that most of the constituent

elements have something common in their creation and heating. In order to construct

a uniÞed theory for the entire corona, one would have to confront large variations in

plasma density and temperature. It seems, however, that beyond the coronal base, the

equilibrium temperature tends to be nearly constant on each one of these structures; the

temperature of a speciÞc structure increases insigniÞcantly (about 20 p.c.) from its value

at the base to its maximum reached at the top of the structure. This change is much

less than the temperature change (about 2 orders of magnitude) that occurs between the

solar surface and the coronal base. This observation is an outcome of the investigation

of several authors (see, for example, [1,2,51�55]). Their results show that the bright

elements of the corona are composed of quasi�isothermic and ultra�thin arcs (loops) of

different temperature and density, situated (located) close to one other. This state is,

perhaps, brought about by the isolating inßuence of magnetic Þelds which prevent the

particle and energy transfer between neighboring structures.

It is safe to assume, then, that in the quasi�equilibrium state, each coronal structure

has a nearly constant temperature, but different structures have different characteristic

temperatures, i.e., the bright corona seen as a single entity will have considerable tem-

perature variation. Observations tell us that the coronal temperatures are much higher

than those of the primary ßows (which we are proposing as the mother of the corona).

For the consistency of the model, therefore, it is essential that the primary "heating"

must take place during the process of accumulation of a given coronal entity.

This apparent problem, in fact, can be converted to a theoretical advantage. We

distinguish two important eras in the life of a coronal structure; a hectic period when

it acquires particles and energy (accumulation and heating), and the relatively calmer

period when it "shines" as a bright, high temperature object.
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In the Þrst era, the most important issue is that of heating while particle accumulation

(trapping) takes place in a curved magnetic Þeld. This is, in fact, the essential new

ingredient of the current approach. We plan to show:

1) that the kinetic energy contained in the primary ßows can be dissipated by viscosity

to heat the plasma, and 2) that this dissipation can be large enough to produce the

observed temperatures.

Naturally, a time dependent treatment will be needed to describe this era.

Any additional heating mechanisms, operative after the emergence of the coronal

structure, will not be discussed in this study. For an essential energy inventory of the

quasi-equilibrium coronal structure, we also ignore the contributions of ßares and other

�activities" on the solar surface because they do not provide a continuous and sufficient

energy supply [2].

The second era is that of the quasi-equilibrium of a coronal structure of given density

and temperature - neither of which has to be strictly constant. The primary heating

has already been performed, and in the equilibrium state, we can neglect viscosity, re-

sistivity and other collisional effects in addition to neglecting the time dependence. The

calculations in this regime will be limited to the determination of the magnetic Þeld and

the velocity�Þeld structures that the collisionless magnetoßuids can generate and we will

also examine if these structures can conÞne plasma pressure.

1.3.1 Creation and heating of coronal structure

In this subsection we will concentrate on numerical methods to test our basic conjecture

that the primary solar ßows are responsible for the creation and heating of a typical

bright coronal structure. The numerical results (obtained by modeling Eqs. (1.13)�(1.17)

with viscosity tensor relevant to magnetized plasma) are extremely preliminary, but they

clearly indicate that the proposed mechanism has considerable promise.

Let us Þrst make order of magnitude estimates on the requirements that must be

met for this scheme to be meaningful. It is well known that (see e.g. [56]) the rate of
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energy losses F from the solar corona by radiation, thermal conduction, and advection

is approximately 5 · 105 erg/cm2 s. For the brightest loops the rate loss could even reach

5 · 106 erg/cm2 s. If the conversion of the kinetic energy in the primary ßows were to

compensate for these losses, we would require a radial energy ßux

1

2
min0V

2
0 V0 ≥ F, (1.18)

where V0 is the initial ßow speed. For V0 ∼ 300 km/s this implies an initial density in

the range: (3 · 107 − 4 · 108 )cm−3.

For slower (∼ 100 km/s) velocity primary ßows the starting density has to be higher
(≥ 109 cm−3). These values seem reasonable according to the latest observational data

[1, 2, 3].

The normal viscous dissipation of the ßow takes place on a time (using Eq. (1.10)):

tvisc ∼ L2

νi
, (1.19)

where L is the length of the coronal structure. For a primary ßow with T0 = 3 eV =

3.5 · 104K and n0 = 4 · 108 cm−3 creating a quiet coronal structure of size L = (2 · 109 −
7 · 1010) cm, the dissipation time can be estimated to be of the order of (2 · 108 − 1010) s.

The shorter the structure and hotter the ßow, the faster is the rate of dissipation. This

estimated time is much longer than what is actually found by the latest observations by

TRACE [1]. Mechanisms much faster than the one embodied in (1.19), therefore, will

be needed for the model to work. In the absence of "anomalous viscosity", the only way

to enhance the dissipation rates (to the observed values) is to create spatial gradients

of the velocity Þeld that are on a scale much much shorter than that of the structure

length (deÞned by the smooth part of the magnetic Þeld). Thus, the viability of the

model depends wholly on the existence of mechanisms that induce short�scale velocity

Þelds. Numerical simulations show that the short�scale velocity Þelds are, indeed, self�

consistently generated in the two�ßuid system.
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For numerical work (to illustrate the bright coronal structure formation), we model

the initial solar magnetic Þeld as a 2D arcade with circular Þeld lines in the x�z plane

(see Fig.1.1 for the contours of the vector potential, or the ßux function). The Þeld

attains its maximum value Bmax(xo, z = 0) at x0 at the center of the arcade, and is a

decreasing function of the height z (radial direction). The set of model equations (12-16)

was solved in 2D ßat geometry (x,z) using the 2D version of Lax�Wendroff numerical

scheme (Richtmyer and Morton 1967) alongwith applying the Flux�Corrected�Transport

procedure [58]. Equation (1.14) was replaced with its equivalent for the y�component

of the vector potential which automatically ensures the divergence-free property of the

magnetic Þeld. The equation of heat conduction was treated separately by Alternate

Direction Implicit method with iterations [58]. Transport coefficients for heat conduc-

tion and viscosity were taken from Braginski, 1965. The observations revealed that the

radiation losses (n2 and, hence, different for the different regions and strongly varying

in time dynamical parameter) are the dominant part of energy losses from the solar at-

mosphere that is optically very thin. The detailed calculation of radiation losses gives a

strong dependence on gas composition and the accuracy of the atomic physics parame-

ters as well as the values of the relative elemental abundances used in the calculations.

In series of papers [60, 61, 62, 63, 52] [60-63,52] it was found that, �in general, the ef-

fect of including the process of dielectronic recombination and using more accurate cross

sections is not very large�, in the estimations of radiative losses. The most signiÞcant

feature of these detailed calculations for steady state solar atmosphere �is the large peak

in the cooling around 2 · 105K, which is due primarily to 2s − 2p transitions in oxygen
ions�. As it was mentioned in the paper by Cox and Tucker (1969), for example, this fact

must be taken into account when suggesting the theories of the production of very hot

plasmas � a strong heating mechanism is required to overcome the powerful losses there.

We believe that mechanism we suggest can provide such a strong and continuous heating

(along with the formation) of the coronal structure. The position of the above mentioned

peak is a strong function of the composition of the plasma (see, e.g., [60, 61, 62, 63, 52]
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[60-63,52]). In the code bremsstrahlung radiation accounts for ER, though due to the

facts we discussed above we used a bit modiÞed formula for this radiation assuming it 2

times greater,

ER = 2 · EBr = 2 · 1.69 · 10−25 · n2 · T 1/2Z3 erg/cm3 s, Z = 1.

Since we were exploring a particular heating mechanism, no external heating source E H

was needed. A numerical mesh of 200× 150 points was used for computation.
A numerical mesh of 200× 150 points was used for computation.

Fig.1.1 Contour plots for the vector potential A (ßux function) in the x− z plane for a typical
arcade�like solar magnetic Þeld (initial distribution). The Þeld has a maximum Bmax(x0 =

0, z0 = 0) = 7G .

To illustrate the formation and heating of a general coronal structure, we have mod-

elled several cases with different initial and boundary conditions for cold primary ßows.

The dynamical picture is strongly dependent on the relation of the initial ßow pressure

and the magnetic Þeld strength. Two limiting cases are interesting: 1) the initial mag-

netic Þeld is weak, and the ßow signiÞcantly deforms (and in speciÞc cases, drags) the

magnetic Þeld lines, 2) the initial magnetic Þeld is strong, and the ßow leaves the Þeld

lines practically unchanged.

For sub�Alfvénic ßows, we present in Figs. 2-5 the salient features of our preliminary
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results. We have plotted (as functions of x and z) four relevant physical quantities: the

ßux function A, the density n, the temperature T , and the magnitude of the velocity

Þeld |V| (for speciÞc cases, when needed, we give the radial component of velocity Þeld
Vz also).

The plots correspond to two (in some cases to three) different time frames. The results

are described under three separate headings, covering respectively, the fully uniform, the

spatially non�uniform, and the time�dependent as well as spatially non�uniform initial

ßows.

Initially uniform primary flow and an Arcade-like magnetic field structure

This case is highly idealized but illustrates the main aspects of the creation of the hot

coronal structures, and of the basic heating process.

When discussing the temporally uniform initial ßows, we choose the parameters to

satisfy the observational constraint that, over a period of some tens of minutes, the

location of the heating must have a relatively smooth evolution [1]. The Þnal shape and

location of the coronal structure (of the associated B(r, t), for example) will be naturally

deÞned by its material source, by the heating dynamics, and by the initial Þeld B0(r, t).

For these studies, the initial ßow velocity Þeld is taken to be uniform at the surface

and has only a radial component, Vz = 300 km/s. Other parameters are: Maximum

value of the magnetic Þeld Bmax(xo, z = 0) = 7G, initial density of the ßow 4 · 108 cm−3

and the initial temperature 3 eV . Simulations yield the following results:
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Fig.1.2 Hot coronal structure formation by the interaction of the spatially homogeneous

primary ßows with 2D arcade�like structure given in Fig. 1 . The initial parameters are:

Vz0 = 300 km/s, the temperature and density of the ßow, T0 = 3 eV and

n0 = 4 · 108 cm−3 respectively, and the background density = 108 cm−3. The vector

potential A, the ßow density n (normalized to n0), the ßow temperature T (in eV ) and

the magnitude of the ßow velocity |V | (in cm/s ) are plotted for t = 750s and t = 1400s
. The base of the hot structure is created at a radial distance ∼ 14000 km. The

distance scale on the plots is 1 = 4 · 1010cm . The primary heating (and brightening) of

the structure is practically stopped in about 23 minutes.
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1) The ßow particles begin to accumulate at the footpoints near the solar surface

(Fig. 1.2, see density at t = 750 s). The accumulation goes on with time, and gradually

the entire volume under the arcade (starting from the central short loops) is Þlled with

particles (Fig. 1.2, density at t = 1400 s). First the shorter loops are Þlled, and then the

larger ones.

2) The heating of the particles goes hand in hand with the accumulation (Fig. 1.2,

plots for density and temperature).

3) The regions of stronger magnetic Þelds are denser in population (Fig. 1.2, plots for

A and n). In earlier stages of the formation of a coronal structure, the regions near the

base (where the Þeld is stronger) are denser and hotter than the distant regions (Fig. 2,

t = 750 s plots for n and T ); for shorter loops, the density increases (as a function

of height z) from the bottom of the structure, and then falls � Þrst rapidly and later

insigniÞcantly; the maximum density is much greater than the initial density of the ßows.

4) The dissipation of the ßow kinetic energy is faster in the Þrst stage of formation

(Fig. 1.2, t = 750 s plot for |V | ). The plot |V | versus z shows steep (shock�like) gradients
near the base. Thus the bright base is created in the very Þrst stage in the stronger

magnetic Þeld regions (shorter loops). For given parameters, the initial ßow is strongly

supersonic. Thus the shocks are generated with efficient transfer of kinetic energy into

heat. As the mean free path of ions in the plasma is of the order of (106 − 107 )cm (in

the direction parallel to the magnetic Þeld) and the dimension of the structure is much

greater � of the order of 1010 cm � efficient conditions for the kinetic energy dissipation

exist. The plots for the velocity, temperature and density reveal that with increasing z,

and in the regions away from the arcade center, we Þrst Þnd an undisturbed ßow with low

temperature, then see a transient area with high density and temperature, and Þnally a

shock consistent with Hugoniot conditions. The short scale represented by the width of

the shock-layer (determined by viscosity) is the main enhancer of viscous dissipation.

5) For later times, the brightening process spreads over wide regions (Fig.1. 2, t =

1400 s plot for temperature).
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6) In the very Þrst stage, the shorter loops are a bit overheated, but they cool down

somewhat at later times when the longer loops begin to get heated (Fig. 2, plots for

temperature).

7) The base (T ≥ 100 eV) of the bright region is at about 1.4 · 109 cm ∼ 0.02R¯

(Fig. 1.2, t = 1400 s plots for n and T ) from the solar surface. This number is in a

very good agreement with the latest TRACE results [1]. Outwards from the base, the

accumulated layer has somewhat lower, but more or less uniform, insigniÞcantly decreas-

ing density. In the accumulated layer the kinetic energy of the ßow is essentially uni-

form (again, decreases insigniÞcantly); the dissipation has practically stopped (Fig. 1.2,

t = 1400 s = 23min , plot for |V | versus z). The temperature is practically uniform in

the longer loops and increases insigniÞcantly in shorter loops (for some special conditions

these conclusions may be somewhat modiÞed in speciÞc regions of the arcade; see point

8) ). Outwards from the hottest region of the arcade, the temperature decreases gradu-

ally and at some radial distance the outer boundary of the bright part is reached (Fig. 2,

t = 1400 s plot for temperature). Thus, in a very short time a dense and bright �coronal

structure� is created � this object survives for a time much longer than was needed for

its creation. The simulations show that the heating process may continue during this

so�called equilibrium stage, but at a rate much slower than the earlier primary heating.

This heating seems just additional and supporting to the heat content of the nascent hot

structure. At this time, however, the velocity Þeld is already much smaller in magnitude

as compared to the initial values; the ßows in the hot coronal structure are already sub-

sonic. This is a possible explanation why supersonic ßows may not be seen in the hot

observable coronal structures.

8) When relatively dense primary ßows interact with weak arcade-like magnetic Þelds

(Bmax(x0, z0 = 0) ≤ 10G for our initial ßow with given above parameters), the Þeld

lines begin to deform (soon after the creation of the solar base) in the central region of

the arcade but far from the base (see t = 1400 s plots for density and temperature in

Fig. 1.2). The particle accumulation is still strong, and the dissipation, though quite fast,
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stops rather rapidly. Consequently, the temperature Þrst reaches a maximum (up to the

deformed Þeld�line region this maximum is reached at the summit for each short loop)

and later falls rapidly. Gradually one can see signs for the creation of a local gravitational

potential well behind the shortest loops (see t = 1400 s plot for A in Fig. 1.2). This well

supports a relatively dense and cold plasma in the central area of the arcade (t = 1400 s

for n and T of Fig. 1.2). The density of this structure is considerably greater than that

of the surrounding areas, and the temperature is considerably less than that of the rest

of the accumulated regions at the same height of the arcade.

Our preliminary simulations show that for the same parameters of the primary out-

ßow, such cold and dense plasma objects (conÞned in the so�called potential well) will

not form in the regions where the initial magnetic Þelds are stronger (Bmax(x0, z0 = 0) ≥
20G).

Spatially non—uniform primary flow interacting with an arcade—like magnetic

field structure

The latest observations support the idea that the coronal material is injected disconti-

nously (in pulses or bunches, for example) from lower altitudes into the regions of interest

(e.g. spicules, jet�like structures [6, 7, 15, 16, 1, 2]. A realistic simulation, then, requires

a study of the interaction of spatially non�uniform initial ßows with arcade�like magnetic

Þeld structures. These "close to the actual" cases represent more vividly the dynamics

of the hot coronal formation.

1) When the spatially symmetric initial ßow (plot for Vz at t = 0 in Fig.1.3a)

interacts with the arcade (plots in Fig.1.3), and the initial magnetic Þeld is rather strong

(Bmax(x0, z0 = 0) = 20G), the primary heating is completed in a very short time (∼
(2 − 3)min) on distances (∼ 10000 km) shorter than the uniform�ßow case when the

initial magnetic Þeld was weaker. This is also consistent with observations. The heating

is very symmetric and the resulting hot structure is uniformly heated to 1.6 · 106K.

2) Observations reveal the existence of cool material and downßows, right within the
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hot coronal structures; they also show an imbalance in the primary heating on the two

sides of the loops (see [15, 1]). To reproduce these characteristics, we have modelled the

coronal structure formation process using an asymmetric, spatially non�uniform initial

ßow interacting with a strong magnetic Þeld (see Fig.1.4).

For both of the discussed cases, the downßows can be clearly seen for the velocity Þeld

component Vz. In Fig. 4, the downßow is created simply by changing the initial character

of the ßow (initially we had only the right pulse from the velocity Þeld distribution given

in Fig.1.3a), while in Fig. 3a (plot at t = 297 s), the downßows are the result of more

complicated events (see explanation below, in the next paragraph). The Þnal parameters

of the downßows are strongly dependent on the initial and boundary conditions. In the

pictures, the imbalance in the primary heating process is also revealed.

Fig.1.3a The distribution of the radial component Vz (with a maximum of 300 km/s at

t = 0 ) for the symmetric, spatially non�uniform velocity Þeld . The plot scale is

1 = 5 · 109 cm. The process of interaction of such primary ßows with the arcade�like

magnetic Þelds (given in Fig. 1 with Bmax = 20G) is accompanied by downßows much

slower than the primary ßows (plot for Vz at t = 297 s). The Þnal parameters of

downßows are strongly dependent on the initial and boundary conditions.

When two identical pulses (Fig.1.3a, plot at t = 0 s) enter in succession into our
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standard, arcade�like initial magnetic Þeld, we simulate the equivalent of two colliding

ßows on the top of a structure. Shocks, though not very strong, are generated in a very

short time (t = 30 s). Such shocks, on both sides of the arcade�center, have hot fronts and

cold tails. Soon (t = 42 s) these shocks become �visible�, a hot and dense area is created

on top of the structure where these shocks (at this moment they have become stronger)

collide. After the collision (and �reßection�), the entire area within the arcade becomes

gradually hot. At some moment, a practically uniformly heated structure is created, and

the primary heating stops. This process is accompanied by downßows much slower than

the primary ßows; much of the primary ßow kinetic energy has been converted to heat

via shock generation (the shock and downßow velocities differ signiÞcantly). It is clear

that in the case of spatially assymetric initial ßows, the downßows on different sides of

the arcade�center will have different characteristics. Due to the high pressure prevalent

in the nascent hot structure (loop), there is no more inßow of the plasma and the ßow

deposits its energy at the base; the base becomes overheated. Later this energy can

be again transferred upwards via thermal conduction (this mechanism can work in all

the discussed cases), but at that moment the ßow could be also changed (see initially

time�dependent ßow cases below).
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Fig.1.3b Hot coronal structure formation by the interaction of the initially symmetric

spatially non�uniform primary ßows (see plot for Vz(x, z) in Fig. 3a ) with the 2D

arcade�like structure given in Fig. 1 . Initial parameters are: the temperature and

density of the ßow, T0 = 3 eV and n0 = 4 · 108 cm−3 respectively, the initial background

density = 2 · 108 cm−3, and the Þeld maximum Bmax(x0, z0 = 0) = 20G. The plot scale

is 1 = 5 · 109 cm. The primary heating is completed in a very short time ∼ (2− 3 )min
on distances (∼ 10000 km) shorter than the uniform�ßow case when magnetic Þeld was
weaker. The heating is symmetric and the resulting hot structure is uniformly heated

to 1.6 · 106K . Much of the primary ßow kinetic energy has been converted to heat via

shock generation.

Plots for the temperature and velocity Þeld in Figs.1.3b,1. 4 also indicate that some
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cold particles still remain in the body of the newly created hot structure. These particles

are perhaps from the slower aggregates (our initial ßow was not uniform) which did not

have sufficient energy to be converted to heat.

Fig.1.4 The interaction of an initially asymmetric, spatially non-uniform primary ßow

(just the right pulse from the distribution given in Fig. 3a ) with a strong arcade�like

magnetic Þeld (Bmax(x0, z0 = 0) = 20G). Downßows, and the imbalance in primary

heating are revealed.
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Time dependent non—uniform initial flows interacting with arcade—like mag-

netic field structures.

To simulate reality further we introduce time dependence in the initial primary ßow

velocity Þeld. We discuss two distinct cases:

1) Initially, the velocity Þeld has a pulse�like distribution with a time�period nearly

half of the �formation time� of the quasi-equilibrium structure corresponding to the case

with time�independent initial conditions. The results displayed in Fig.1.5 show that the

emerging coronal structure has a rather uniform distribution of temperature along the

magnetic Þeld, and the latter is practically un�deformed during formation and heating.

We see that when the basic heating ceases, the hot structure survives for the time of

computation which happens to be shorter than the time necessary for losses that destroy

the structure.

2) The velocity Þeld has a fast amplitude modulation near its maximum value (for

these simulations the maximum radial velocity was taken to be 300 km/s). We Þnd

that the dynamics of the hot coronal structure creation is quite similar to the initially

time�independent, spatially symmetric case. Because of this, we don�t give here the

corresponding plots. We only note that for this case, the structure tends to become

even hotter (by a factor 1.2 for the same parameters) and when quasi�equilibrium is

established (time for this to happen is longer than for the time�independent initial ßows)

the base of the structure is hotter than the top although at an earlier time the top was

hotter, i.e, there is a temperature oscillation with a time�period longer compared to the

creation time of the hot structure.
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Fig.1.5 The interaction of the time�dependent non�uniform initial ßow (see plot for the

time�distribution of Vz in this Figure; the spatial distribution of the pulse is the same

as in Fig. 3a ) with the arcade�like magnetic Þeld structure (plot in Fig.1 with

Bmax = 20G). The emerging coronal structure has uniform distribution of temperature

along the magnetic Þeld (plot for T at t = 371 s ) and the latter is practically

undeformed during the formation and heating.
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The main message of numerical simulation is that the dynamical interaction of an

initial ßow with the ambient solar magnetic Þeld leads to a re�organization of the plasma

such that the regions in the close vicinity of the solar surface are characterized by strongly

varying (in space and time) density and temperature, and even faster varying velocity

Þeld, while the regions farther out from the bright base are nearly uniform in these

physical parameters. This phenomenon pertains generally, and not for just a set of speciÞc

structures. The creation and primary heating of the coronal structures are simultaneous,

accompanied by strong shocks. These are fast processes (few tens of minutes) taking

place at very short radial distances from the Sun (∼ 10000 km) in the strong magnetic
Þeld regions with signiÞcant curvature. The Þnal characteristics of the created coronal

structures are deÞned by the boundary conditions for the coupled primary ßow�solar

magnetic Þeld system. The stronger the magnetic Þeld, the faster is the process of creation

of the hot coronal structure with its base nearer the solar surface. To investigate the near

surface region one must use general time�dependent 3D equations. Quasi�stationary

(equilibrium) equations, on the other hand, will suffice to describe the hot and bright

layers � the already existing visible coronal structures.
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1.4 Typical Coronal Equilibria

The familiar MHD theory (single�ßuid) is a reduced case of the more general two�ßuid

theory discussed in this study. Constrained minimization of the magnetic energy in

MHD leads to force�free static equilibrium conÞgurations [64, 65]. The range of two�

ßuid relaxed states, however, is considerably larger because the velocity Þeld, now, begins

to play an independent fundamental role. The presence of the velocity Þeld not only leads

to new pressure conÞning states [66, 67, 68, 69], but also to the possibility of heating the

equilibrium structures by the dissipation of kinetic energy. The latter feature is highly

desirable if these equilibria were to be somehow related to the bright coronal structures.

We begin investigating the two�ßuid states by Þrst studying the simplest, almost

analytically tractable, equilibria. This happens when the pressure term in the equation

of motion (1.12) becomes a full gradient, i.e, whenever an equation of state relating the

pressure and density can be invoked. For our present purpose, we limit ourselves to the

constant temperature states allowing n−1∇p→ 2T∇ ln n .

Normalizing n to some constant coronal base density n0 (reminding the reader that

n0 is different for different structures!), and using our other standard normalizations

(λi0 = c/ωi0 is deÞned with n0), our system of equations reduces to:

1

n
∇× b× b+∇

µ
rA0

r
− β0 ln n−

V 2

2

¶
+V × (∇×V) = 0, (1.20)

∇×
³
V − α0

n
∇× b

´
× b = 0, (1.21)

∇ · (nV) = 0, (1.22)

where rA0, α0, β0 are deÞned with n0, T0, B0. This is a complete system of seven

equations in seven variables.

Following Mahajan and Yoshida (1998) and [70, 71, 72, 73], we seek equilibrium

solutions of the simplest kind. Straightforward algebra leads us to the following system
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of linear equations:

b+ α0∇×V = d n V (1.23)

and

b = a n
h
V− α0

n
∇× b

i
, (1.24)

where a and d are dimensionless constants related to the two invariants: the magnetic

helicity
R
(A · B) d3x and the generalized helicity

R
(A + V) · (B + ∇ × V)d3x (orR

(V ·B+A ·∇×V +V ·∇×V) d3x ) of the system. We will discuss a and d later.

The equilibrium solutions (1.23), (1.24) encapsulate the simple physics: 1) the electrons

follow the Þeld lines, 2) while the ions, due to their inertia, follow the Þeld lines modiÞed

by the ßuid vorticity. These equations, when substituted in (1.20), (1.21), lead to

∇
µ
rA0

r
− β0 ln n−

V 2

2

¶
= 0, (1.25)

giving the Bernoulli condition which will determine the density of the structure in terms

of the ßow kinetic energy, and solar gravity. Equations (1.23) and (1.24) are readily

manipulated to yield

α2
0

n
∇×∇×V + α0 ∇×

µ
1

a
− d n

¶
V +

µ
1− d

a

¶
V = 0. (1.26)

which must be solved with (1.25) for n andV; the magnetic Þeld can, then, be determined

from (1.23).

Equation (1.25) is solved to obtain

n = exp

µ
−
·
2g0 − V 2

0

2β0

− 2g + V 2

2β0

¸¶
, (1.27)

where g(r) = rc0/r. This relation is rather interesting; it tells us that the variation in

density can be quite large for a low β0 plasma (coronal plasmas tend to be low β0; the

latter is in the range 0.004−0.05) if the gravity and the ßow kinetic energy vary on length
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scales comparable to the extent of the coronal structure. In this system of equations,

as we mentioned above, the temperature (which deÞnes β0) has to be Þxed by initial

and boundary conditions at the base of the structure. Substituting (1.27) into (1.26)

will yield a single equation for velocity which is quite nontrivially nonlinear. Numerical

solutions of the equations are tedious but straightforward.

For analytical progress, essential to revealing the nature of the self�consistent Þelds

and ßows, we will now make the additional simplifying assumption of constant density.

This is a rather drastic step (in numerical work, we take the density to be a proper

dynamical variable) but it can help us a great deal in unrevealing the underlying physics.

There are two entirely different situations where this assumption may be justiÞed:

1) the primary heating of corona has already been performed, i.e., a substantial part of

ßow initial kinetic energy has been converted to heat. The rest of the kinetic energy, i.e.,

the kinetic energy of the equilibrium coronal structure is not expected to change much

within the span of a given structure. Note that the ratio of velocity components will have

a large spatial variation, but the variation in V 2 is expected to be small. It is also easy

to estimate that within a typical structure, gravity varies quite insigniÞcantly. There

will be exceptional cases like the neighborhood of the Coronal holes and the streamer

belts, where signiÞcant heating could still be going on, and the temperature and density

variations could not be ignored. Such regions are extremely hard to model;

2) if the rates of kinetic energy dissipation are not very large, we can imagine the

plasma to be going through a series of quasi�equilibria before it settles into a particular

coronal structure. At each stage we need the velocity Þelds in order to know if an

appropriate amount of heating can take place. The density variation, though a factor, is

not crucial in an approximate estimation of the desired quantities.

The constant density assumption n = 1 will be used only in Eq. (1.26) to solve for the

velocity Þeld (or the b Þeld which will now obey the same equation). These solutions,

when substituted in Eq. (1.27), would determine the density proÞle (slowly varying) of a

given structure.
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In the rest of this sub�section we will present several classes of the solutions of the

following linear equation:

α2
0 ∇×∇×Q+ α0

µ
1

a
− d

¶
∇×Q+

µ
1− d

a

¶
Q = 0, (1.28)

where Q is either V or b. To make contact with existing literature, we would use b

as our basic Þeld to be determined by Eq. (1.26); the velocity Þeld V will follow from

Eqs. (1.23) and (1.24), which for n = 1, become

b+ α0∇×V = dV (1.29)

and

b = a [V− α0∇× b] . (1.30)

It is worth remarking that in order to derive the preceding set of equations, all we

need is the constant density assumption; the temperature can have gradients and, these

are determined from the Bernoulli condition (1.25) with β0(T ) replacing β0 ln n.

1.4.1 Analysis of the Curl Curl Equation

The Double Curl equation (27) was derived only recently [53] (Mahajan and Yoshida

1998); its potential, is still, largely unexplored(see [67, 68, 69, 72, 73]). The extra double

curl (the very Þrst) term distinguishes it from the standard force-free equation [74, 64, 75]

(Woltjer 1958; Taylor 1974, 1986; Priest 1994 and references therein) used in the solar

context. Since a and d are constants, Eq. (1.26), without the double curl term, reproduces

what has been called the �relaxed state" [64, 75]. We will see that this term contains

quantitative as well as qualitative new physics.

In an ideal magnetoßuid, the parameters a and d are Þxed by the initial conditions;

these are the measures of the constants of motion, the magnetic helicity, and the ßuid

plus cross helicity or some linear combination thereof [48, 66, 67, 68, 69, 76]. In our
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calculations, a and d will be considered as given quantities. The existence of two, rather

than one (as in the standard relaxed equilibria) parameter in this theory is an indication

that we may have, already, found an extra clue to answer the extremely important

question: why do the coronal structures have a variety of length scales, and what are the

determinants of these scales?

We also have the parameter α0, the ratio of the ion skin depth to the solar radius. For

typical densities of interest (∼ (107 − 109 )cm−3), its value ranges from (∼ 10−7 − 10−8);

a very small number, indeed. Let us also remind ourselves that the |∇| is normalized to
the inverse solar radius. Thus |∇| of order unity will imply a structure whose extension
is of the order of a solar radius. To make further discussion a little more concrete, let us

suppose that we are interested in investigating a structure that has a span ²R¯, where ²

is a number much less than unity. For a structure of order 1000 km, ² ∼ 10−3. The ratio

of the orders of various terms in Eq. (1.26) are (|∇| ∼ L−1)

α2
0

²2
: α0

²

¡
1
a
− d¢ : ¡1− d

a

¢
(1) (2) (3)

. (1.31)

Of the possible principal balances, the following two are representative:

(a) The last two terms are of the same order, and the Þrst ¿ them. Then

² ∼ α0
1/a− d
1− d/a. (1.32)

For our desired structure to exist (α0 ∼ 10−8 for n0 ∼ 109 cm−3), we must have

1/a− d
1− d/a ∼ 10

5, (1.33)

which is possible if d/a tends to be extremely close to unity. For the Þrst term to be

negligible, we would further need

α0

²
¿ 1

a
− d⇒ ²À 10−8

1/a− d, (1.34)
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which is easy to satisfy as long as neither of a ' d is close to unity. This is, in fact,

the standard relaxed state, where the ßows are not supposed to play an important part

for the basic structure. For extreme sub�Alfvénic ßows, both a and d are large and very

close to one another. Is the new term, then, just as unimportant as it appears to be?

The answer is no; the new term, in fact, introduces a qualitatively new phenomenon:

Since ∇ × (∇ × b) is second order in |∇|, it constitutes a singular perturbation of the
system; its effect on the standard root (2) ∼ (3)À (1) will be small, but it introduces a

new root for which the |∇| must be large corresponding to a much shorter length scale
(large |∇|). For a and d so chosen to generate a 1000 km structure for the normal root,

a possible solution would be d/a ∼ 1 + 10−4, d ' a = −10 , then the value for |∇| for
the new root will be (the balance will be from the Þrst two terms)

|∇|−1 ∼ 102 cm,

that is, an equilibrium root with variation on the scale of 100 cm will be automatically

introduced by the ßows. The crucial lesson is that even if the ßows are relatively weak

(a ' d ' 10), the departure from ∇∇∇×B = αB, brought about by the double curl term
can be essential because it introduces a totally different and small scale solution. The

small scale solution could be of fundamental importance in understanding the effects

of viscosity on the dynamics of these structures; the dissipation of these short scale

structures may be the source of primary plasma heating.

We do understand that to properly explain the parallel (to the Þeld�line) motion one

must use kinetic theory since the mean free path along B lines can become of the order

of (106 − 107 )cm for the hot plasma (100 eV ). But since the dissipation acts on the

perpendicular energy of the ßow, we expect the two�ßuid theory to give qualitatively

(and even quantitatively) correct results.

We would like to remind the reader that by manipulating the force free state ∇×B =
α(x)B, Parker has built a mechanism for creating discontinuities (short scales) (Parker

1972, 1988, 1994). It is important to note that short length scales are automatically there
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if plasma ßows are properly treated.

(b) The other representative balance arises when we have a complete departure from

the one�parameter, conventional relaxed state. In this case, all three terms are of the

same order. In the language of the previous section, this balance would demand

² ∼ α0
1

1/a− d ∼ α0
1/a− d
1− d/a (1.35)

which translates as: µ
1

a
− d
¶2

∼ 1− d
a

(1.36)

and
1

a
− d ∼ α0

1

²
. (1.37)

For our example of a 1000 km structure, α0 · 1/² ∼ 10−5, both a and d not only have to

be awfully close to one another, they have to be awfully close to unity. To enact such a

scenario, we would need the ßows to be almost perfectly Alfvénic. However, let us think

of structures which are on the km or 10 km size. In that case α0 ·1/² ∼ 10−2 or 10−3, and

then the requirements will become less stringent, although the ßows needed are again

Alfvénic. At a density of (1 − 4) · 108 cm−3, and a speed ∼ (200 − 300) km/s, the ßow
becomes Alfvénic for B0 ∼ (1− 3)G. It is possible that the conditions required for such
ßows may pertain only in the weak magnetic Þeld regions.

Following are the obvious characteristics of this class of ßows:

(1) Alfvénic ßows are capable of creating entirely new kinds of structures, which are

quite different from the ones that we normally deal with. Notice that here we use the

term ßow to denote not the primary emanations but the plasmas that constitute the

existing coronal structures, or the structures in the making.

(2) Though they also have two length scales, these length scales are quite comparable

to one another: This is very different from the extreme sub�Alfvénic ßows where the

spatial length�scales are very disparate.

(3) In the Alfvénic ßows, the two length scales can become complex conjugate, i.e.,
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which will give rise to fundamentally different structures in b and V.

DeÞning p = (1/a− d) and q = (1− d/a), Eq. (1.28) can be factorized as

(α0∇×−λ)(α0∇×−µ)b = 0 (1.38)

where λ(λ+) and µ(λ−) are the solutions of the quadratic equation

α0λ± = −p
2
±
r
p2

4
− q. (1.39)

If Gλ is the solution of the equation

∇×G(λ) = λG(λ), (1.40)

then it is straightforward to see that

b = aλG(λ) + aµG(µ), (1.41)

where aλ and aµ are constants, is the general solution of the double curl equation. Using

Eqs. (1.30), (1.40), and (1.41), we Þnd for the velocity Þeld

V =
b

a
+ α0∇∇∇× b =

µ
1

a
+ α0λ

¶
aλG(λ) +

µ
1

a
+ α0µ

¶
aµG(µ). (1.42)

Thus a complete solution of the double curl equation is known if we know the solution of

Eq. (1.40). This equation, also known as the �relaxed�state�, or the constant λ Beltrami

equation, has been thoroughly investigated in literature (in the context of solar astro-

physics see for example Parker (1994); Priest (1994)). We shall, however, go ahead and

construct a class of solutions for our current interest. The most important issue is to be

able to apply boundary conditions in a meaningful manner.

We shall limit ourselves to constructing only two�dimensional solutions. For the
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Cartesian two�dimensional case (z representing the radial coordinate and x representing

the direction tangential to the surface, ∂/∂y = 0) we shall deal with sub�Alfvénic so-

lutions only. This is being done for two reasons: 1) The ßows in a majority of coronal

structures are likely to be sub�Alfvénic, and 2) this will mark a kind of continuity with

the literature. The treatment of Alfvénic ßows will be left for a future publication.

We recall from earlier discussion that extreme sub�Alfvénic ßows are characterized by

a ∼ dÀ 1. In this limit, the slow scale λ ∼ (d− a)/α0 d a, and the fast scale µ = d/α0,

and the velocity Þeld becomes

V =
1

a
aλGλ + daµG(µ) (1.43)

revealing that, while, the slowly varying component of velocity is smaller by a factor

(a−1 ' d−1) as compared to the similar part of the magnetic Þeld, the fast varying

component is a factor of d larger than the fast varying component of the magnetic Þeld!

In a magnetoßuid equilibrium, the magnetic Þeld may be rather smooth with a small

jittery (in space) component, but the concomitant velocity Þeld ends up having a greatly

enhanced jittery component for extreme sub�Alfvénic ßows (Alfvén speed is deÞned w.r.

to the magnitude of the magnetic Þeld, which is primarily smooth, and for consistency

we will insure that even the jittery part of the velocity Þeld remains quite sub�Alfvénic).

We shall come back to elaborate this point after deriving expressions for the magnetic

Þelds.

Equation (1.40) can also be written as

∇2G(λ) + λ2G(λ) = 0, (1.44)

and solving for one component of G(λ) determines all other components up to an inte-

gration. For the boundary value problem, we will be interested in explicitly solving for

the z (radial) component.

The simplest illustrative problem we solve is the boundary value problem in which
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we specify the radial magnetic Þeld bz(x, z = 0) = f(x), and the radial component of the

velocity Þeld Vz(x, z = 0) = v0 g(x), where v0 (' d−1 ¿ 1) is explicitly introduced to

show that the ßow is quite sub�Alfvénic. A formal solution of (Gz(λ) = Qλ)

∂2Qλ
∂x2

+
∂2Qλ
∂z2

+
λ2

α2
0

Qλ = 0 (1.45)

may be written as

Qλ =

Z ∞

λ/α0

dk e−κλz Ck eikx +
Z λ/α0

0

dk cos qλz Ak e
ikx + c.c. (1.46)

where κλ = (k2 − λ2/α2
0)

1/2, qλ = (λ2/α2
0 − k2)1/2, and Ck and Ak are the expansion

coefficients. The equivalent quantities for Qµ are κµ, qµ, Dk, and Ek. The boundary

conditions at z = 0 yield (we absorb an overall constant in the magnitude of bz, and

aµ/aλ is absorbed in Dk and Ek):

f(x) = Qλ(z = 0) +Qµ(z = 0), (1.47)

v0 g(x) =
1

a
Qλ(z = 0) + d Qµ(z = 0). (1.48)

Taking Fourier transform (in x) of Eq. (1.47,1.48), we Þnd, after some manipulation, that

(v0 ∼ d−1, | ef(k)| ' |eg(k)|)
Ck ' ef(k), (1.49)

Dk ' −
ef(k)
d2

+
v0

d
eg(k) ' d−2 ef(k), (1.50)

and functionally (in their own domain of validity) Ck = Ak and Dk = Ek. With the

expansion coefficients evaluated in terms of the known functions (their Fourier transforms,

in fact), we have completed the solution for bz, Vz and hence of all other Þeld components.

The most remarkable result of this calculation can be arrived at even without a

numerical evaluation of the integrals. Although ef(k) and eg(k) are functions, we would
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assume that they are of the same order | ef(k)| = |eg(k)|. Then for an extreme sub�Alfvénic
ßow (|V| ∼ d−1 ∼ 0.1, for example), the fastly varying part of bz(Qµ) is negligible

(∼ d−2 = 0.01) compared to the smooth part (Qλ). However, for these very parameters,

the ratio ¯̄̄̄
Vz(µ)

Vz(λ)

¯̄̄̄
' |Ck/a|
|dDk| '

|Ck/a|
|Ck/d| ' 1; (1.51)

the velocity Þeld is equally divided between the slow and the fast scales. We believe

that this realization may prove to be of extreme importance to Coronal physics. Viscous

damping of this substantially large as well as fastly varying ßow component may provide

the bulk of primary heating needed to create and maintain the bright, visible Corona.

The preceding analysis warns us that neglecting viscous terms in the equation of

motion may not be a good approximation until a large part of the kinetic energy has

been dissipated. It also appears that the solution of the basic heating problem may

have to be sought in the pre�formation rather than the post�formation era. Our time

dependent numerical simulation to study the formation of coronal structures was strongly

guided by these considerations.

It is evident that for extreme sub�Alfvénic ßows, the magnetic Þeld, unlike the velocity

Þeld, is primarily smooth. But for strong ßows, the magnetic Þelds may also develop a

substantial fastly varying component. In that case the resistive dissipation can also

become a factor to deal with. We shall not deal with this problem in this study.

Depending upon the choice of f(x) (from which ef(k) follows) we can construct loops,
arcades and other structures seen in the corona.

1.4.2 Spherical Solutions to the Curl Curl Equation

In this subsection we construct a 2D spherically symmetric solution of the double curl

system. To accomplish this we must solve [G(λ) = P ]

∇× P = λP . (1.52)
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With (∂/∂ϕ = 0), Eq. (1.52) is equivalent to:

1

r sinθ

∂

∂θ
(sinθPϕ) = λPr , (1.53)

1

r

∂

∂r
(r Pϕ) = −λPθ , (1.54)

1

r

∂

∂r
(r Pθ)− 1

r

∂Pr
∂θ

= λPϕ . (1.55)

The separable solutions can be constructed by using the ansatz

Pr = Qr(r) f(θ) , (1.56)

Pθ = Qθ(r)h(θ) , (1.57)

Pϕ = Qϕ(r)h(θ) . (1.58)

Since all Q�s are functions of r alone, we will suppress the r dependence. Substituting

(1.56)-(1.58) into (1.52) and (1.55), we Þnd

Qϕ
r sinθ

∂

∂θ
(sinθ h(θ)) = λQr fθ , (1.59)

−1
r

∂

∂r
(r Qϕ) = λQθ , (1.60)

h(θ)
1

r

∂

∂r
(r Qθ)− λh(θ)Qϕ = Qr

r

d f

d θ
. (1.61)

Equations (1.59)-(1.60) will be consistent if f(θ) and h(θ) satisfy

∂f

∂h
= −a h(θ) , (1.62)

f(θ) =
1

sinθ

∂

∂θ
(sinθ h(θ)) , (1.63)

−a h(θ) = d

d θ

1

sinθ

∂

∂θ
(sinθ h(θ)) . (1.64)
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which can be solved to Þnd a class of functions g and f parameterized by a.

Notice that h(θ) = sin θ, f(θ) = 2 cos θ solve (13)-(15) if a = 2. For this case, the

radial equations become
Qϕ
r
= λQr , (1.65)

−1
r

d

d r
r Qϕ = λQθ , (1.66)

Qr
r
=
1

2
λQϕ − 1

2

1

r

d

d r
r Qθ . (1.67)

For the general solution, we must Þrst solve the angular equation

1

sinθ

d

d θ

1

sin θ

d

d θ
sinθ h(θ) = − a

sin θ
h(θ) , (1.68)

which, with cos θ = y, becomes

(1− y2)h00 − 2 y h0 +
·
a− 1

(1− y2)1/2

¸
h = 0 . (1.69)

For a = ν (ν + 1), the solution of Eq.(1.69) is

h = P 1
ν , (1.70)

where P 1
ν is the associated Legendre function. Naturally for a = 2, ν = 1 , and h =

P 1
1 = −(1− y2)1/2 = −sin θ. For standard reasons, a = n for good behavior at y = ±1.
Then the general solution (acceptable) is

h = P 2
n(cos θ) . (1.71)

The simplest nontrivial solution is with n = 1,=⇒ h = sin θ. Substituting a = n(n+ 1),

the radial equations become
Qϕ
r
= λQr , (1.72)
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−1
r

d

d r
r Qϕ = λQθ , (1.73)

n (n+ 1)
Qr
r
=
1

r

d

d r
r Qθ − λQϕ . (1.74)

From these, we derive

d2

dr2
rQϕ +

·
λ2 − n(n+ 1)

r2

¸
r Qϕ = 0 (1.75)

which is solved as

rQϕ = Ar
1/2 Zn+1/2(λr) . (1.76)

where Z is any Bessel function (A is a constant). Thus the complete set is

Qϕ =
A

r1/2
Zn+1/2(λr) , (1.77)

Qr =
1

λ

A

r3/2
Zn+1/2(λr) , (1.78)

Qθ =
A

λ

µ
−A
r

¶
d

dr
r1/2Zn+1/2(λr) . (1.79)

From these basic units, then we can try to construct our complete solution. In the

Cartesian case we had considered only the real λ and µ solutions. We had noticed that

for typical coronal plasmas (extreme sub�Alfvénic), this is the relevant case. In the low

magnetic Þeld regions, however, structures with Alfvénic ßows are possible and we can

run into a situation where µ and λ may be complex (µ = λ). We take this opportunity

to work out an example (n = 1) of this fascinating class of solutions.

Putting all the pieces together, we Þnd

G(λ) = 2Qr(λ) cos θ �r +Qθ(λ)sin θ �θ +Qϕ sin θ �ϕ . (1.80)
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Since the Q�s already have an arbitrary multiplying constant, the magnetic Þeld will be

b = G(λ) +G(µ) = G(λ) +G∗(λ) . (1.81)

Using Eqs. (1.77)-(1.79), all components of b can be calculated. We evaluate the radial

component explicitly (br = �br cos θ, �A = A/λ)

�br =
1

r3/2
[ �AH3/2(rλ) + �A∗H∗

3/2(rλ
∗)] . (1.82)

Making use of the properties of the Hankel functions and after a bit of algebra, we Þnd

( �A = | �A| eiϕ̂ , λ = k + iκ)

�br = 2 | �A| e−κr
µ
cos(kr + ϕ)

r2

·
1− κ

r(k2 + κ2)

¸
+
sin(kr + ϕ)

r3

k

k2 + κ2

¶
. (1.83)

Other components can be readily derived.

These solutions have several interesting features:

1. They decay exponentially for large r.

2. In addition these solutions have 1/rm dependence, and would not have been allowed

if the problem was done in the entire sphere. For our system (r > 1), however, these

solutions are perfectly acceptable.

3. The exponentially decaying (in r) solutions will not be available in the standard force

free or relaxed cases, because then there is only one parameter λ (or µ), and it must

necessarily be real.

4. The decaying solutions will tend to be localized nearer the solar surface (as opposed

to the other kind) and may contribute to the near corona in the weak�Þeld regions.

1.4.3 Summary

In this study we have investigated the conjecture that the structures which comprise the

solar corona (for the quiescent Sun) owe their origin to particle (plasma) ßows which
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enter the �coronal regions� from lower altitudes. These primary transient ßows provide,

on a continuous basis, much of the required material and energy which constitutes the

corona. From a general framework describing a plasma with ßows, we have been able to

�derive� several of the essential characteristics of the typical coronal structures.

The principal distinguishing component of the investigated model is the full treatment

accorded to the velocity Þelds associated with the directed plasma motion. It is the

interaction of the ßuid and the magnetic aspects of the plasma that ends up creating so

much diversity in the solar atmosphere.

This study has led to the following preliminary results:

(1) By using different sets of boundary conditions, it is possible to construct various

kind of 2D loop and arcade conÞgurations.

(2) In the closed magnetic Þeld regions of the solar atmosphere, the primary ßows can

accumulate, in periods of a few minutes, sufficient material to build a coronal structure.

The ability of the supersonic ßows to generate shocks, and the viscous dissipation of

these shocks can provide an efficient and sufficient source for the primary plasma heating

which may take place simultaneously with the accumulation. The stronger the spatial

gradients of the ßow, the greater is the rate of dissipation of the kinetic energy into heat.

The hot base of the structures is reached at typical distances of a ∼ 10000 km from the

origin of simulation.

(3) A theoretical study of the magnetoßuid equilibria reveal that for extreme sub�

Alfvénic ßows (most of the created corona ßows) the velocity Þeld can have a substantial,

fastly varying (spatially) component even when the magnetic Þeld may be mostly smooth.

Viscous damping associated with this fast component could be a major part of the pri-

mary heating needed to create and maintain the bright, visible coronal structure. The

far�reaching message of the equilibrium analysis is that neglecting viscous terms in the

equation of motion may not be a good approximation until a large part of the kinetic

energy in the primary ßow has been dissipated.

(4) The qualitative statements on plasma heating, made in points 1 and 2, were
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tested by a numerical solution of the time�dependent two-ßuid system. For sub�Alfvénic

primary ßows we Þnd that the particle-accumulation begins in the strong magnetic Þeld

regions (near the solar surface), and soon spans the entire volume of the closed magnetic

Þeld region. It is also shown that, along with accumulation, the viscous dissipation of

the kinetic energy contained in the primary ßows heats up the accumulated material

to the observed temperatures, i.e., in the very Þrst (and fast, ∼ (2 − 10)min) stage
of accumulation, much of the ßow kinetic energy is converted to heat. This happens

within a very short distance (transition region) of the solar surface ∼ 0.03R¯. In the

transition region, the ßow velocity has very steep gradients. Outside the transition

layer the dissipation is insigniÞcant, and in a very short time a nearly uniform (with

insigniÞcantly decreasing density and temperature on the radial distance), hot and bright

quasi-equilibrium coronal structure is created. In this newborn structure, one Þnds rather

weak ßows. One also Þnds downßows with their parameters determined by the initial

and boundary conditions.

The transition region from the solar surface to this equilibrium coronal structure is

also characterized by strongly varying (both radial and across) temperature and density.

Depending on the initial magnetic Þeld , the base of the hot region (of the bright part)

of a given structure acquires its appropriate density and temperature.

(5) The details of the ensuing dynamics are strongly dependent on the relative val-

ues of the pressure of the initial ßow, and of the ambient solar magnetic Þeld in the

region. Two limiting cases were studied with the expected results: 1) The ßow entering

a relatively weak initial magnetic Þeld strongly deforms (and in speciÞc cases drags) the

magnetic Þeld lines, and 2) the ßow interacting with a relatively strong magnetic Þeld

leaves it virtually unchanged.

We end this study with several qualifying remarks:

1) This study, in particular the numerical work, is preliminary. We hope to be able

to extend the numerical work to make it considerably more quantitative, and to cover

a much greater variety of the initial and boundary conditions to simulate the immense
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coronal diversity. Then a thorough comparison with observations can be undertaken.

To show the dissipation of small scale velocity component just like the dissipation of

shock�like structures is postponed for future since it requires much higher resolution.

2) This study is limited to the problem of the origin, the creation and the primary

heating of the coronal structures. The processes which may go on in the already existing

bright equilibrium corona (secondary or supporting heating, instabilities, reconnection)

etc., for example, are not considered. Because of this lack of overlap between our model

and the conventional coronal heating models, we do not Þnd it meaningful to compare

our work with any in the vast literature on this subject. Led by observations alone, we

have constructed and investigated the present model.

3) We do not know much about the primary solar outßows on which this entire study

is based. The merit of this study, however, is that as long as they are present (see e.g.

[1, 2, 3]), the details about their origin are not crucial.

4) We are just beginning to derive the consequences of according a co�primacy (with

the magnetic Þeld) to the ßows in determining overall plasma dynamics. The addition

of the velocity Þelds (even when they are small) brings in essential new physics, and will

surely help us greatly in understanding the richness of the plasma behavior found in the

solar atmosphere.
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1.5 Equilibrium structure creation in relativistically

hot two-temperature e-p plasmas with small frac-

tion of cold ions

During the past few years considerable amount of papers have been devoted to the

analysis of electromagnetic (EM) wave propagation in hot, pure electron-positron (e-p)

plasmas since e-p pairs are thought to be a major constituent of the plasma emanating

both from the pulsars and from the inner region of the accretion disks surrounding the

central black holes in active galactic nuclei (AGN) [85, 77] (Michel, 1982; Begelman et

al., 1984). Such a plasma is formed also in the early universe [86, 87] (Rees, 1983; Tajima

and Taniuti, 1980). Although the relativistically hot e-p pairs form most of astrophysical

and cosmic plasmas, a minority of cold electrons and heavy ions is likely to be present

[79] (Berezhiani and Mahajan, 1995). For instance, outßows of e-p plamsa from pulsars

entering an interstellar cold, low density electron-ion (e-i) plamsa forms two temperature

electron-positron-ion (e-p-i) plasma. The three-component plasmas - hot e-p plasma with

small fraction of heavy ions - have been studied in the context of pulsar magnetospheres

by Lakhina and Buti (1981) [83] and by Lominadze et al (1986) [84]. The creation of

stable localized structures of relativistically strong EM radiation in hot e-p-i plasma have

been shown by Berezhiani and Mahajan (1994,1995).

In two temperature e-p-i plasma the interesting phenomena differing from that of one

temperature can exist. It is now believed that strong monochromatic waves emitted by

pulsars are subject to parametric instabilities even in quite under�dence plasmas. In this

context in present study we consider the propagation of strong EM radiation in a hot

e-p un�magnetized plasma with small fraction of cold e-i plasma. We show, that the

presence of a minority of cold electrons and ions can lead to the scattering of the pump

EM wave into the electron-sound and EM wave; to the instability of hot e-p plasma

against the low frequency (LF) perturbations. Hence, in contrast to the case of the pure

e-p plasma, in two temperature e-p-i plasma the three wave decay instability may occur.
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The possibility of the soliton formation due to the modulational instability of EM wave

is also investigated.

1.5.1 Nonlinear Wave Dynamics In Two—Temperature Electron—

Positron—Ion Plasma

Let us assume that the velocity distribution of particles is locally a relativistic Maxwellian.

Then the dynamics of the ßuid of species α (α = e, p, i) is contained in the equation [80]

(Javakhishvili and Tsintsadze, 1973):

∂

∂xk
(U iαUαkWα)− ∂

∂xi
Pα =

1

c
F ikJαk, (1.84)

where U iα ≡ [γα, γαuα/c] is the hydrodynamic four velocity, uα is the hydrodynamic

three-velocity of the hot e-p ßuid, γα = (1 − u2
α/c

2)−1/2 is the relativistic factor, Jαk

is the four current, F ik is the electromagnetic Þeld tensor and Wα is the enthalphy per

unit volume: Wα = (nα/γα)mαc
2Gα[mαc

2/Tα]. Here mα and Tα are the particle

rest mass and temperature of species α, respectively, nα is the density in the laboratory

frame of the e-p-i ßuid and Gα(zα) = K3(zα)/K2(zα), (zα = mαc
2/Tα), where Kν are the

modiÞed Bessel functions. For the nonrelativistic temperatures (Tα << mαc
2) Gα = 1+

5Tα/2mαc
2 and for the ultrarelativistic temperatures (Tα >> mαc

2)Gα = 4Tα/mαc
2 >>

1. The relativistic pressure in the rest frame is Pα = (nα/γα)Tα.

We assume that hot electron and positron temperatures are equal and constant while

the process of EM wave interaction with given ßuid (Gαh = const). Note that here and

below the subscript "c" is used for cold electrons and "h" - for hot particles respectively.

From the set of equations (1.84) the equation of motion can be written as follows:

dα
dt
(PαGα) +

1

nα
∇Pα = eαE+

eα
c
(uα ×B), (1.85)

where Pα = γαmαuα is the hydrodynamic momentum, E and B are the electric and
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magnetic Þelds and dα/dt = ∂/∂t+uα ·∇ is the co�moving derivative. For cold electrons
in the eq. (1.85) Gc = 1 and Tec ≡ Tc = const should be assumed.
And for all kinds of species we have the continuity equation:

∂nα
∂t

+∇(nαuα) = 0. (1.86)

To study the nonlinear propagation of intense EM wave in a relativistically hot e-p

plasma with small fraction of cold e�i plasma we must couple the eq.-s of motion with

the Maxwell equations. In the terms of the potentials deÞned by:

E = −1
c

∂A

∂t
−∇φ; B = ∇×A, (1.87)

they take the form (Coulomb gauge ∇ ·A = 0):

∂2A

∂t2
− c24A+ c ∂

∂t
(∇φ)− 4πcJ = 0, (1.88)

and

4φ = −4πρ, (1.89)

where for the charge and current densities we have respectively:

ρ =
X
α

eαnα; J =
X
α

eαnαuα. (1.90)

The equilibrium state for hot e-p plasma is characterized with charge neutrality (with

unperturbed number densities of the hot electrons and positrons equal to noh). For small

fraction of cold e-i plasma the equilibrium state is characterized also by charge neutrality

(with background ion density noc) and

noc << noh. (1.91)
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Also we assume that: ions are immobile; in equilibrium state hot electrons and

positrons have the same temperatures equal to Toh and

Toh >> Tc; Toi = 0. (1.92)

Let us analyze the one-dimensional propagation ( ∂
∂z
6= 0, ∂

∂x
= 0, ∂

∂y
= 0) of circularly

polarized EM wave with a mean frequency ωo and a mean wave number ko along the z

axis. Thus

A⊥ =
1

2
(x+ iy)A(z, t)exp(ikoz − iωot) + c.c., (1.93)

where A(z, t) is a slowly varying function of z and t and x and y are the standard unit

vectors. The gauge condition gives us Az = 0. Then the transverse component of eq.-s

of motion (1.85) are integrated yielding:

P⊥αGα = −eα
c
A⊥, (1.94)

where the constant of integration is set equal to zero since particle hydrodynamic mo-

ments are assumed to be zero at the inÞnity where the Þeld vanishes.

Now it is necessary to write the equations for longitudinal motion. This motion is

driven by the ponderomotive pressure (∼ P 2
α⊥) of high frequency (HF) EM Þelds and

latter doesn�t depend on the particle charge sign. In purely e-p plasma since the effective

mass of the electrons and positrons are equal (Ge = Gp = G) the radiation pressure gives

equal longitudinal moments to both the electrons and positrons and effects concentration

without producing the charge separation (ne = np and φ = 0) [78, 81]. But as it was

shown by Berezhiani and Mahajan, (1995) the introduction of small fraction of heavy

ions leads to "symmetry breaking" between hot electrons and positrons and it becomes

possible to have Þnite φ. As we will see below, due to the presence of small fraction of

cold e-i plasma in hot e-p plasma the electrostatic potential will be surely created.
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Let us redeÞne the electron rest mass in equations for hot e-p plasma as:

m→ mGh(Th) ≡M. (1.95)

Then the eq.(1.88) for transverse motion can be written as:

∂2

∂t2
A⊥ − c2 ∂

2

∂z2
A⊥ + ω2

h(neh + nph)
A⊥
nohγh

+ ω2
e

nc
noc

A⊥
γc

= 0, (1.96)

where ω2
h = 4πe

2noh/M , ω2
e = 4πe

2noc/me and γh and γc are the relativistic factors for

hot and cold electrons respectively, γα = (1 + P
2
α/m

2
αc

2)1/2; nc, neh and nph are the

cold and hot electron and positron densities respectively.

The equations for longitudinal motion have the form:

∂nα
∂t

+
∂

∂z

µ
nαPzα
mαγα

¶
= 0, (1.97)

µ
∂

∂t
+

Pzα
mαγα

∂

∂z

¶
Pzα +

Tα
nα

∂

∂z

µ
nα
γα

¶
= −eα∂φ

∂z
− e2

α

2mαγαc
2

∂|A|2
∂z

, (1.98)

where for hot particles mαh = M is assumed and in Pzαh the mass redeÞnition is per-

formed (see the relation (1.95)).

In what follows we consider only the weak relativistic case assuming P2
α/m

2
αc

2 << 1.

In the presence of two different temperature electron plasma for LF motion it is possible

to satisfy the condition [82]: KVTc << Ω << KVTh, where VTc and VTh are the cold

and hot electron thermal velocities respectively and Ω−1 and K−1 are the characteristic

time and spacial spreads of the pulse (Ω << ωo; K << ko).

First let�s Þnd the equation for LF motion. Under the above mentioned conditions

for hot particles we have:

−eα∂φ
∂z
=
Th
nαh

∂

∂z

µ
nαh
γh

¶
+

e2

2Mγhc
2

∂|A|2
∂z

. (1.99)

From eq.-s (1.99), introducing δnc = nc − noc and δnαh = nαh − noh (δnc <<
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noc; δnαh << noh), we obtain:

δnh = δnph + δneh = −noh e
2|A|2
MThc2

+ noh
e2|A|2
M2c4

. (1.100)

Using equations (1.89), (1.90) and (1.100) we Þnd the relation between δneh and δnc

written as:

δneh = −1
2
δnc − noh e

2|A|2
2MThc2

+ noh
e2|A|2
2M2c4

. (1.101)

Using the eq.(1.101) in the eq.(1.99) written for electrons Þnally we obtain:

∂φ

∂z
= − Th

2enoh

∂

∂z
δnc. (1.102)

Thus, as we already mentioned above, the presence of small fraction of cold e-i plasma

in hot e-p plasma gives rise to electrostatic potential.

Substituting the eq.(1.102) in the eq.(1.98) written for cold electrons, after simple

algebra, assuming that:
Tc
Th
<<

1

2

noc
noh
, (1.103)

one can get the equation for δnc:

∂2

∂t2
δnc − c2s

∂2

∂z2
δnc = noc

e2

2m2c2
∂2

∂z2
|A|2, (1.104)

where

c2s =

µ
1

2

noc
noh

Th
m

¶1/2

is the so-called "electron-sound" velocity. Thus, due to the fact that the most part

of electrons are relativistically hot, and consequently heavy (Gh 6= 1) than the small

part of cold electrons, it is possible to induce the "electron-sound" wave; the exciting

ponderomotive force is deÞned by the HF pressure on cold electrons.

The eq.(1.104) is coupled with the following equation for A (for HF wave frequency
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satisfying the dispersion relation: ω2
o = k

2
oc

2 + 2ω2
h + ω

2
e):

2iωo

µ
∂

∂t
+ vg

∂

∂z

¶
A+ ωov

0
g

∂2

∂z2
A

+ω2
h

µ
e2|A|2
M2c4

− δnh
noh

¶
· A+ ω2

e

µ
e2|A|2
2m2c4

− δnc
noc

¶
·A = 0, (1.105)

where vg is the group velocity of HF wave.

The system of equations (1.104),(1.105) together with the relation (1.100) describes

the nonlinear wave dynamics in a relativistically hot e-p plasma with small fraction of cold

e-i plasma. As we see we have the scattering of EM pump wave into the electron-sound

and EM wave. Note that in the purely e-p plasma the three wave scattering processes

do not exist. The presence of small fraction of cold e-i plasma here is a reason to have

the LF longitudinal waves together with the HF EM waves. Using this result we can

conclude that the radiation emanating both from the pulsars and AGN entering the cold

low density e-i plasma undergoes the modiÞcation due to the scattering processes.

It is possible to Þnd the stationary solution of the system of eq.-s (1.100), (1.104),(1.105).

We look for the solutions as:

A = A(ξ, τ); δnc = δnc(ξ, τ); ξ = z − vgt; t = τ ;
∂

∂τ
<< vg

∂

∂z
. (1.106)

In the subsonic regime: vg << cs, i.e.

koc
2

r
m

M
<< ωo

r
1

2

noc
noh
VTh (1.107)

from the eq.(1.104) we obtain:

δnc = −noc c
2

c2s

e2|A|2
2m2c4

< 0 (1.108)

and substituting the eq.(1.108) in the eq.(1.105), if we have the relativistically hot e-p
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plasma (Gh >> 1), we get the Nonlinear Shrodinger Equation (NLSE):

2i
∂

∂τ
A+ v0g

∂2

∂ξ2A+
ω2
e

ωo

c2

c2s

e2|A|2
2m2c4

· A = 0. (1.109)

As it is well�known the eq.(1.109) has the stationary solution representing the sub-

sonic soliton of rariÞcation (the total density variation δn ≡ δnh + δnc < 0).
In the case of the nonrelativistically hot e-p plasma (Gh ∼= 1) and ko → 0 we also get

the soliton solution of obtained NLSE. Under deÞnite conditions it is possible to have

the supersonic solitons too. It should be noted that for the EM waves with vg = 0 in

pure, hot e-p plasma the possibility to have the stable soliton�like structures was found

by Kartal et al, 1995 [81].

Let�s investigate the stability of two-temperature e-p-i plasma. For this reason we

look for A and δnc as:

A(z, t) = a(z, t)eiθ(z,t); δnc = δncexp[ikz − iωt] + c.c.

a = ao + δaexp[ikz − iωt] + c.c.; θ = θo + δθexp[ikz − iωt] + c.c., (1.110)

where a(z, t) and θ(z, t) are the slowly varying in time and space real functions and

δa << ao, δθ << θo.

Linearizing the system of equations (1.104), (1.105) using the relation (1.100) we

easily obtain the dispersion relation:

(ω2 − c2sk2)[(w − vgk)2 −
v02g
4
k4] = ω2

ev
02
g k

4 e
2a2
o

m2c4

+v0gk
2(ω2 − c2sk2)

ω2
h

2ωo

c2

V 2
Th

µ
m2

M2
+
c2s
c2

¶
e2a2

o

m2c4
, (1.111)

which in the limit M >> m (i.e. Gh >> 1, the relativistically hot e-p plasma) for the

coinciding roots:

ω ' csk + iΓ ' vgk +
v0gk

2

2
+ iΓ (1.112)
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gives the relation for increment:

Γ2 = csk
v0gω

2
h

V 2
Th

e2a2
o

m2c4
. (1.113)

Thus, the addition of even very small amount of cold e-i plasma (noc 6= 0, i.e. cs 6= 0)
leads to the instability of hot e-p plasma against the LF perturbations. Such three wave

decay instability doesn�t exist in pure e-p plasma. The present result shoud be useful to

understand the character of the pulsar and AGN radiation.

In conclusion, we have shown that in the hot e-p plasma with small fraction of cold

e-i plasma, it is possible to have the scattering of EM wave with relativistically strong

amplitude into the longitudinal so-called "electron�sound" and EM wave. Under the

deÞnite conditions the possibility of soliton solution creation for EM wave is found.

1.5.2 Localized nonlinear structures of intense electromagnetic

waves in two—electron—temperature electron—positron—ion

plasmas

Nonlinear propagation of intense electromagnetic (EM) waves in electron�positron (e�p)

plasmas has received a large amount of theoretical interest mainly because such plasmas

are naturally produced under certain astrophysical conditions. Since e�p plasmas are

thought to have been present in the early Universe [86], plasma processes are expected to

have played an important role in the early history, as well as the evolution of the Universe.

On the other hand, in the present epoch, electron�positron pairs are the main constituents

of the plasma emanating both from pulsars and from the inner regions of the accretion

disks surrounding the central black holes in active galactic nuclei (AGN)[89, 90, 85, 77].

Recent progress in the production of pure positron plasmas now makes it possible to

consider performing laboratory experiments on e�p plasmas [91, 92, 93].

During the past few years, a considerable amount of theoretical work has been de-
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voted to the analysis of nonlinear EM wave processes in pure e�p plasmas [87, 94, 88,

96, 97, 98, 99]. In such plasmas, wherein both the constituent species possess the same

magnitude of charge to mass ratio, important symmetries manifest themselves and one

cannot distinguish the high�frequency (hf) and low-frequency (lf) motions, unlike in

conventional electron�ion (e�i) plasmas. On the other hand, when a small amount of

electron�ion component is present, e�p plasmas admit lf density ßuctuations associated

with longitudinal modes, such as the electron�acoustic mode. The self�consistent cou-

pling between the pump EM wave and the electron�acoustic mode can cause the onset

of the modulational instability of the pump wave. On the application side, modulational

instability may be a potential mechanism for the phenomena of pulsar radiation in terms

of nonlinear effects. For example, nonlinear structure formation in e�p plasmas has been

extensively investigated by Tajima and Taniuti [87]. Their results show that e�p plasmas

are more "plastic" than the usual e�i plasmas. This has been ascribed to the fact that e�p

plasmas do not lead to charge separation electric Þelds, which provide the self�consistent

restoring force. It is known [100] that the interaction of a large amplitude EM wave with

strongly magnetized e�p plasmas can lead to the formation of nonlinear localized wave

structures, such as the envelope solitons, which could be associated with the observed

pulsar and AGN radiation.

The relativistically hot e�p pairs constitute a major component of many of the as-

trophysical and cosmic plasmas, though a minority of cold electrons and heavy ions may

also be present. For instance, outßows of e�p plasma from pulsars entering low density

ambient e�i plasma in the inter�stellar regions form two�electron�temperature electron�

positron�ion (e�p�i) plasmas. The three�component plasmas, namely, the majority hot

e�p component with a small fraction of heavy ions, have been studied in the context of

pulsar magnetospheres [83, 84]. On the other hand, it was demonstrated recently [79]

that the presence of minority ion species in hot e�p plasma can lead to the creation of

stable, localized, non�dispersive and non�diffracting pulses that carry a large density

excess within the region of Þeld localization, leading to the formation of the so-called
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"light bullets".

It should be pointed out that in un�magnetized, cold pure e�p plasmas there is no am-

plitude modulation of the high-frequency electromagnetic Þeld [98]. On the other hand,

when Þnite thermal effects are included, e�p plasmas are known to be modulationally

unstable [99, 100, 83, 84, 79, 101]. Moreover, two-electron-temperature e�p�i plasmas

exhibit many interesting phenomena, which are signiÞcantly different from those found

in the usual plasmas with single electron species. It is now believed that strong mono-

chromatic waves emitted by pulsars are subject to parametric instabilities even in quite

under�dense plasmas. In this context, it has been shown [102, 103] recently that, in

contrast to the case of pure e�p plasmas, two�electron�temperature e�p�i plasmas are

susceptible to three-wave decay instabilities. The addition of even a very small amount

of cold e�i component leads to the scattering of the pump EM wave into the electron�

acoustic and EM wave, which leads to the instability of hot e�p plasma against the lf

perturbations. However, in this analysis, the lf response of the plasma was described

by means of a driven linear wave equation, which is valid for near�static propagations

and when the amplitude of the density ßuctuation is small. On the other hand, coupled

mode propagations in the near�sonic regime typically lead to large amplitude density

ßuctuations [100]. In such cases, the latter are to be described by means of a suitable

nonlinear (driven) wave equation, such as the Korteweg�de Vries or, more generally, the

Boussinesq equation.

In the present study, we investigate the problem of soliton formation due to the

modulational instability of EM waves in e�p�i plasmas by including leading order nonlin-

earities in the low-frequency response of the plasma. This is the main motivation for the

present work. SpeciÞcally, we discuss the coupled propagation of electromagnetic and

electron�acoustic waves in a two�lectron�temperature e�p�i plasma by deriving a gener-

alized system of coupled Schrödinger�Boussinesq system. For slow modulations, the EM

wave amplitude is governed by a Schrödinger�type equation which includes self�nonlinear

terms. For Þnite amplitudes, the lf cold electron density perturbation is governed by a
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nonlinear evolution equation of the Boussinesq type for the so�called "electron�sound"

wave driven by the time�averaged, low�frequency nonlinear ponderomotive force on the

cold electrons. We explicitly obtain exact solutions for the coupled waves for the case of

stationary propagation and show that for Þnite amplitudes only the supersonic compres-

sional solitons can exist in such plasmas, while in the quasi�neutral, linear lf response

case, both the sub� and super�sonic solitons may occur.

Below we formulate the problem and derive the governing equations leading to gen-

eralized Schrödinger�Boussinesq equations for weakly relativistic amplitudes. Then we

consider the stationary propagation of coupled waves and obtain exact analytical solu-

tions in different parameter regimes.

To study the nonlinear propagation of intense EM wave in a relativistically hot e�p

plasma with a small fraction of cold e�i plasma, we start from the Maxwell equations,

which are coupled to the relativistic ßuid equations for the various species. In the terms

of the vector and scalar potentials deÞned by parameter regimes.

E = −1
c

∂A

∂t
−∇φ; B = ∇×A , (1.114)

the wave equation takes the form (after using the Coulomb gauge ∇ ·A = 0),

∂2A

∂t2
− c2∆A+ c ∂

∂t
(∇φ)− 4πeJ = 0 , (1.115)

and

∆φ = 4πρ , (1.116)

where the charge and the current densities are given, respectively, by

ρ =
X
α

eαnα; J =
X
α

eαnαuα . (1.117)
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Here, α(= e, p, i for electrons, positrons, ions, respectively) indicates particle species;

eα is the charge and nα is the density (in the laboratory frame) of species α; uα is the

hydrodynamic three�velocity of the particles.

The equilibrium state of the hot e�p plasma is characterized by charge neutrality

(with unperturbed number densities of the hot electrons and positrons equal to noh).

We assume also that ions are immobile; for a small fraction of cold e�i plasma, the

equilibrium state is characterized by charge neutrality (with background ion density noc)

and

noc ¿ noh. (1.118)

In the equilibrium state, hot electrons and positrons have the same temperatures equal

to Toh, and

Toh À Toc ; Toi = 0 . (1.119)

Note that here and in the following, the subscript c is used for cold electrons and h for

the hot particles, respectively.

Equations (1.115) and (1.116) are coupled to the relativistic hydrodynamic equations.

The continuity equation for all the species has the form

∂nα
∂t

+∇ · (nαuα) = 0 . (1.120)

Before considering the equations of motion, we may point out here that there are two

types of relativistic regimes in e�p�i plasma that are important. In space and astrophys-

ical situations, the electromagnetic radiation of luminous objects serves as a source of

intense EM Þelds because of which the plasma particles may attain relativistic quiver ve-

locities. Hence, the particle masses become functions of the respective speeds, while the

relativistic mass variation leads to a host of important physical effects even in ordinary

e�i plasmas [100]. On the other hand, at very high temperatures, the thermal energy

of the plasma particles is of the order of, or larger than the energy at rest and this is

another type of relativistic regime that may be speciÞcally relevant in the early epochs
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of the Universe. These two relativistic effects contribute important nonlinear terms to

the relevant dynamical equations we include in the present work. We shall assume in the

following that the velocity distribution of particles is locally a relativistic Maxwellian.

Then, from the set of relativistic hydrodynamic equations [80, 104] the equation of

motion can be written as follows:

dα
dt
(pαGα) +

1

nα
∇P = eαE+ eα

c
(uα ×B) , (1.121)

where pα = γαmαuα is the hydrodynamic momentum, γα = (1 − u2
α/c

s)−1/2 is the

relativistic factor, P = (nα/γα)Tα is the relativistic pressure in the rest frame and

dα/dt = ∂/∂t+ uα ·∇ is the comoving derivative. Here, mα and Tα are the particle

rest mass and temperature of species α, respectively, and Gα(zα) = K3(zα)/K2(zα) and

zα = mαc
2/Tα , where Kν is the modiÞed Bessel function of order ν. It may be noted

that for nonrelativistic temperatures (Tα ¿ mαc
2) one has Gα = 1+5Tα/2mαc

2 , while

for ultrarelativistic temperatures (Tα À mαc
2) we Þnd Gα = 4Tα/2mαc

2 À 1 .

To keep the analysis tractable, as well as amenable for analytical investigations, we

assume that the hot electron and positron temperatures are equal and constant, while

the process of EM wave interaction with the cold electron component takes place at

nonrelativistic temperatures. Thus, for the cold electrons in (1.121), we have Gc = 1

and, hence, Tec ≡ Tc = const should be assumed.
We are interested in localized solutions of the above system of equations for a circularly

polarized EM wave with a mean frequency ω0 and a mean wave number k0 along the

z�axis. Accordingly, the hf pump Þeld is represented by

A⊥ =
1

2
(x+ iy)A(z, t)exp (ik0z − iωt) + c.c. , (1.122)

where A(z, t) is a slowly varying function of z and t, and x and y are the standard unit

vectors. The gauge condition gives us Az = 0. Then the transverse component of the
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equations of motion (1.121) are integrated to yield

p⊥αGα = −eα
c
A⊥ , (1.123)

where the constant of integration is set equal to zero, since particle hydrodynamic mo-

menta are assumed to be zero at inÞnity where the Þeld vanishes.

The role of hot particle mass is now played by the quantity mhGh(Th). Thus, the

effective mass of hot electrons and positrons depends on the temperature. We now

redeÞne the electron rest mass (me ≡ m) in the equations for the hot e-p component as
µ = mGh(Th) . The wave equation (1.115) for the transverse motion can then be written

as
∂2

∂t2
A⊥ − c2 ∂

2

∂z2
A⊥ + ω2

h (neh + nph)
A⊥
n0hγh

+ ω2
e

nc
n0c

A⊥
γc

= 0 , (1.124)

where ω2
h = 4πe

2n0h/µ ; ω2
e = 4πe

2n0c/m and γh and γc are the relativistic factors for

the hot and the cold electrons, respectively, and γ2
α = (1 + p

2
α/m

2
αc

2)1/2 ; the quantities

nc , neh , and nph denote the cold electron, the hot electron and the positron number

densities, respectively.

One can easily derive the equations for longitudinal motion from Eqs. (1.120) and

(1.121) using the relation (1.123) after performing the mass redeÞnition in the hot com-

ponent momenta parallel to the magnetic Þeld, namely, pzeh and pzph . This motion

is driven by the ponderomotive pressure (∼ p2
α⊥) of hf EM Þelds, which does not de-

pend on the sign of the particle charges. One of the manifestations of the pure e�p

plasma symmetry is that the effective mass of the electrons and positrons are equal and,

hence, the radiation pressure gives equal longitudinal momenta to both the electrons and

positrons, and affects the particle concentration density with- out producing the charge

separation (ne = np and φ = 0). But, as shown earlier [79], the introduction of a small

fraction of heavy ions leads to "symmetry breaking" between hot electrons and positrons,

and hence it becomes possible to have Þnite space charge potential φ. The electrostatic

potential is also known to be created in a two�electron�temperature e�p�i plasma due to

68



the presence of small fraction of cold e�i plasma in hot e�p plasmas [102, 103].

In the presence of two different electron temperatures in the plasma, for lf motion

it becomes possible to satisfy the condition (for comparison to the two-temperature e�i

plasma see the [82]) KVTc ¿ Ω ¿ KVTh , where VTc and VTh are the cold and hot

electron thermal velocities, respectively, and Ω−1 and K−1 are the characteristic time

and spatial spreads of the pulse ( Ω¿ ω0 ; K ¿ k0 ). We shall consider in the following

the weakly relativistic case by assuming p2
α/m

2
αc

2 ¿ 1 . We Þrst deÞne the number

density perturbations, δnc = nc − n0c and δnαh = nαh − n0h and, to the lowest order

in the Þeld amplitudes, obtain following relations:

δnh = nph + neh = −n0h
e2|A|2
µThc2

+ n0h
e2|A|2
µ2c4

=

=
1

2
δnc − n0h

e2|A|2
2µThc2

+ n0h
e2|A|2
2µ2c4

+
1

8πe

∂2φ

∂z2
(1.125)

and
∂φ

∂z
= −Th

2e

∂

∂z

µ
δnc
n0h

¶
− Th
2e

µ
δnc
n0h

¶
∂

∂z

µ
δnc
n0h

¶

−Th
4e

Th
µω2

h

∂3

∂z3

µ
δnc
n0h

¶
(1.126)

Using these relations and the assumptions (1.118) and (1.119) together with

Tc
Th
¿ 1

2

n0c

n0h
, (1.127)

we get the driven Boussinesq equation for lf cold electron density perturbation ( δnc )

∂2

∂t2
δnc − C2

s

∂2

∂z2
δnc − 1

2
C2
s r

2
dh

∂4

∂z4
δnc

−1
2

C2
s

n0c

∂2

∂z2
(δnc)

2 − 1
6

C2
s

n0cn0h

∂2

∂z2
(δnc)

3

= n0c
e2

2m2c2
∂2

∂z2
|A|2 , (1.128)
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where r2
dh = (Th/µω

2
h) = Th/4πe

2noh , and

Cs =

µ
1

2

n0c

n0h

Th
m

¶1/2

denotes the so-called �electron�acoustic� speed. Equation (1.128) describes the bidi-

rectional propagation of the driven electron�acoustic waves. On the other hand, for

unidirectional propagation in the near�sonic regime, it can be reduced to a generalized

driven Korteweg�de Vries equation. The reduction procedure is similar to that in the

case of the usual e�i plasmas with two�electron�temperatures [105], and hence we omit

the details here.

Equation (1.128) is coupled to the equation for the EM Þeld amplitude (A) given by

2iω0

µ
∂

∂t
+ vg

∂

∂z

¶
A+ ω0 v

0
g

∂2

∂z2
A

+ω2
e

·µ
1 +

m2

µ2

c2

C2
s

¶
e2|A|2
2m2c4

− δnc
n0c

¸
· A = 0 , (1.129)

where vg is the group velocity of the hf wave, v
0
g = ∂vg/∂k is the group dispersion, and

hf wave frequency ω0 satisÞes the linear dispersion relation, ω2
0 = k

2
0c

2 + 2ω2
h + ω

2
e .

The system of equations 1.118) and (1.129) describes the nonlinear wave dynamics

in two�electron�temperature un�magnetized e�p�i plasma. Since most of the electrons

are relativistically hot, and consequently heavy ( Gh 6= 1 ), it is possible to induce the
electron.acoustic waves. Thus, we have here the three-wave scattering process, which does

not exist in pure e�p plasmas. Hence, the radiation emanating both from the pulsars

and AGN entering the cold low density e�i plasma may undergo modiÞcations due to

such scattering processes and the observed radiation could be deÞned by these nonlinear

processes. It is useful to recall here that the nonlinear coupling between the electrons,

the positrons and the photons arises when a relativistic e�p plasma is immersed in a

photon gas, while the acoustic modes can be driven by the ponderomotive force due to

the photon gas [87].
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1.5.3 Stationary Coupled Waves

Equations similar to (1.128) and (1.129) were obtained in [105] for the two-electron-

temperature e�i plasmas, where the addition of second electron species gave us the pos-

sibility to have the quadratic nonlinear term in the Boussinesq equation with changing

sign. This leads, as shown in [105], to certain new classes of localized stationary solutions.

In our case, the presence of second electron species leads to wave coupling itself. Further-

more, because of the relativistic effects, (1.129) has a new type of nonlinear term, which

is cubic in the Þeld amplitude and which arises from the self interaction of the waves

[100]. On the other hand, the quadratic term in (1.128) is with a Þxed sign. We shall

obtain below exact analytical solutions of the derived system of equations for stationary

propagation of the form

A = A(ξ) exp [i {X(z) + T (t)}] ; δnc = δnc(ξ) , (1.130)

where ξz − V t is the stationary coordinate, A(ξ) is a real function and propagation

velocity V < VTh . Using (1.130) in (1.128) and (1.129), we get the coupled set of

stationary governing equations,

η
d2A

dξ2 = λA−
Λ

2
A3 + θN A , (1.131)

d2N

dξ2 = 2(M
2 − 1)N −N2 − β

3
N3 − αA2 , (1.132)

where

λ =
2δ

ω0
+
(M2C2

s − v2
g)

ω2
0r

2
dhη

. (1.133)

Note that δ = dT/dt denotes the nonlinear frequency shift and is treated as a free

parameter of the problem, and M = V/Cs denotes the Mach number normalized with

respect to the electron.acoustic speed (Cs). In (1.131) and (1.132), we have introduced
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the following dimensionless variables:

N → δnc
δn0c

, ξ → ξ

rdh
, A→ eA

mc2
, Tα → Tα

mc2
.

Other quantities are deÞned as,

α =
c2

C2
s

À 1 , β =
n0c

n0h

, Λ =
ω2
e

ω2
0

, η =
v

0
g

ω0r2
dh

, θ =
ω2
e

ω2
0

< 1 . (1.134)

Note that all these quantities are positive deÞnite. From (1.134) it follows that for

nonrelativistically hot ( Gh > 1 ) e�p plasmas, Λ À 1 and, hence the relativistic

nonlinearity (the ∼ A3 term), can not be neglected in (1.131). On the other hand, for

ultrarelativistic temperatures, Gh À 1 , and it is possible that Λ ∼ θ , so that once

again we cannot ignore the A3 term in (1.131), while the cubic nonlinear term βN3/3

may be neglected in (1.132). This is consistent with the fact that, in the lowest order,

relativistic nonlinear effects lead to cubic nonlinearity in the governing equation for the

modulated Þeld amplitude [100].

Exact localized solutions

We now look for the localized solutions of Eqs. (1.131) and (1.132). Since β ¿ 1, we

drop the cubic nonlinear term in (1.132). To this end, we follow the method of solution

discussed in [105]. Omitting the details, which are cumbersome but straightforward, we

note that for Mach numbers given by

M2 = 1 +
2λ

η
+
α

3Λ
(3θ + η) , M <

r
2

Ghβ
. (1.135)

Eqs. (1.131) and (1.132) (without the N3 term) admit exact analytical solutions given

by,

N(ξ) =
6λ

η
sech2(κξ) , (1.136)

A(ξ) = ±sech(κξ) , (1.137)
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where the amplitude A0 is given by

A2
0 =

4λ

ηΛ
(η + 3θ) (1.138)

and κ =
p
λ/η . Since η is positive, λ > 0 is required and, hence, only supersonic (M >

1) solutions are admissible. The total number density perturbation δn ≡ δnh+n0cN is

then obtained as

δn = n0h

·
−mαβ
2µ

+
m2

µ2
+

3βΛ

2(η + 3θ)

¸
A2 . (1.139)

For ultrarelativistic temperatures (Gh À 1), we Þnd δnh → 0 and, therefore, δn ∼
n0cN > 0 . Thus, the localized solutions are accompanied by compressional number

density perturbations. On the other hand, for weakly relativistic temperatures, we have

the soliton solutions consisting of rarefaction density proÞles ( δn ∼ δnh < 0 ).
The wave amplitudes A0 and N0 satisfy the relation

A2
0 =

2

α

·
(M2 − 1)− 2λ

η

¸
N0 . (1.140)

For the above solutions,M and λ are not free but are related by the �parametric relation�

(1.135). Using the well�known stability criterion of Vakhitov and Kolokolov [106], it can

be shown that the soliton solutions obtained above are stable against small perturbations.

Note that localized structures were found in one-temperature unmagnetized e�p plasma

in [81] for the near static regime (M ¿ 1) . Soliton structures were also reported in

[87] for the nonresonant, as well as resonant interactions of photons and phonons in e�

p plasmas. Stable localized solutions, as discussed in [107, 108, 109], could provide a

potential mechanism for the production of micro�pulses in pulsars and in AGNs.

Quasineutral, linear low—frequency response case

We shall now discuss brießy the quasineutral, linear low-frequency case by neglecting in

(1.132) the nonlinear terms (in N), as well as the dispersive term (the left�hand side),
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while retaining the self�nonlinear cubic term in (1.131). This is valid when the coupled

mode propagation is not in the near�sonic regime, and hence the low�frequency density

perturbation is small. Equation (1.132) thus yields,

N =
αA2

2(M2 − 1) . (1.141)

Using (1.141) in (1.131), we obtain the localized solution,

A(ξ) = ±A0 sech(κξ) , (1.142)

N(ξ) = N0 sech(κξ) , (1.143)

where

A2
0 =

4λ(M2 − 1)
Λ(M2 − 1)− αθ , (1.144)

N0 =
α

2(M2 − 1) . (1.145)

From (1.144), it follows that the near-sonic regime 1 ≤ M2 ≤ 1 + αθ/Λ is forbidden.

Subject to this restriction, both sub� as well as super�sonic solutions are permissible. In

the present case, both λ and M are free parameters, while in the previous case they are

related by (1.135) and only the supersonic values for Mach numbers are admissible to

lead to localized solutions.

Note that the amplitude relation (1.140) exactly reduces to (1.145) in the limit λ→ 0

. This is consistent with the fact that the solutions (1.142) and (1.143) follow from the

exact stationary solutions when both the amplitudes A0 and N0 are much smaller than

in the previous case.

It should be pointed out that in the above discussions we have ignored wave�particle

interactions. Using the results obtained for conventional e�i plasmas, one can expect

that the induced electron�acoustic wave undergoes Landau damping on electrons, which

is strong in near�sonic regime. The propagating nonlinear wave structures obtained above
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can interact with electrons and thus decelerate, transferring part of the energy to hot

electrons (see [111] for e�i plasma). The heat transfer mechanism to plasma particles is an

interesting process in the astrophysical context, and needs to be investigated separately

in detail.

Summary

To conclude, we have investigated the nonlinear propagation of intense electromagnetic

waves in hot relativistic e�p plasmas containing a small component of cold e�i plasma

with the aim of Þnding possible mechanisms for structure formation. SpeciÞcally, we

have discussed the possibility of the existence of stable localized wave structures by

deriving a nonlinear system of governing equations consisting of Schrödinger�Boussinesq

equations, which describes the hf and lf wave coupling. This system takes into account

the effects that result from the relativistic electron velocity distribution [111]. In the

lowest order, the relativistic effects lead to a cubic nonlinear term in the Schrödinger

equation arising from the self�interaction of the hf waves. Explicit analytical solutions

of the coupled system of equations have been obtained. These solutions can survive in

a plasma, since their propagation velocity is not near the thermal velocities of electrons,

and hence they may be associated with the observed pulsar radiation. For the stationary

propagation of Þnite amplitude electromagnetic wave only supersonic solitons exist, while

in quasineutral linear lf response case both the sub�, as well as supersonic, solitons occur

giving rise either to total electron density humps (solitons) or to density holes (cavitons).

These structures represent the localization of intense electromagnetic radiation arising

due to the selÞnteraction of the waves, as well as relativistic nonlinearities. Such localized

intense radiation pulses may be used to understand the character of AGN and pulsar

radiation, as well as for particle acceleration in astrophysical situations.
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Chapter 2

Energy Transformation Mechanisms

in the two—fluid plasmas associated

with the Magnetofluid Coupling;

Explosive and Eruptive Events

2.1 Background

The mechanisms for energy transport and channeling of particles are deeply connected

with the challenging and exciting problems of the solar coronal heating, and of the origin

of the solar wind (SW). A number of recent investigations have made a strong and

convincing case that neither the solar wind "acceleration" nor the numerous eruptive

events (and ßares of different kind and Coronal Mass Ejections (CMEs)) in the solar

atmosphere can be treated as isolated and independent problems; they must be solved

simultaneously along with other phenomena, in particular, the plasma heating that,

by itself, may take place in several different stages. Several reasons (mainly the low

observational resolution, and problems of resolving extremely short spatial and time

scales in computer simulations), however, have prevented the emergence of a uniÞed and
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realistic quantitative model dealing with the dynamics of energy dissipation and evolution

in the solar atmosphere. Realistic transport processes are generally not included in the

models that are often lower dimensional or steady state. Recently, in [120] the necessity

to account for transport processes was emphasized; It was also shown (based on estimates

of energy ßuxes required to heat the chromosphere and the corona) that the mechanism

which transports mechanical energy from the convection zone to the chromosphere (to

sustain its heating rate) could also supply the energy to heat the corona, and accelerate

the SW. Amodel for the general global dynamics that may operate in a given atmospheric

region was proposed in [70, 72].

An essential component of this global theory is the emphasis on including the plasma

ßows as a crucial component (along with the magnetic Þeld) dictating the dynamics of

the solar atmosphere. A systematic treatment of loop models that include ßows was

developed by Orlando, Peres and Serio (1995a, 1005b) and Mahajan et.al. (1999, 2001)

even though, at that time, there did not exist abundant evidence for a widespread occur-

rence of ßows in the inner corona. More recently a variety of investigators have begun

to argue for the existence of ßows in the solar atmosphere, and have begun to speculate

about the mechanisms of their creation. There has appeared convincing evidence that

particle ßows are common features of both the coronal structures and the chromosphere

(see e.g. [1, 140, 139] and references therein). Different mechanisms for the origin of

ßows as well as of the sudden explosive and eruptive events in the atmosphere, have been

suggested. Wilhelm (2001) proposed that the spicule generation is related to an explo-

sive event occurring during the magnetic reconnection phase of a network loop system,

with another such system or with a unipolar�Þeld region of appropriate polarity. The

results of [119] supported the belief that magnetic Þeld or other forces play important

role in the generation of spicules and the source functions and the velocity Þelds play a

fundamental role in the appearance of mottles and spicules. On the other hand, though

the reconnection processes that can happen both in the corona and the chromospheric

network (ßares, microßares, nanoßares) are studied very thoroughly, it is still not proved
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that the energy thrown out by these processes is sufficient either to create small scale

spicules of different kind, and/or to heat the corona (see e.g. [114, 139, 140]).

Along with the evidence for ßows there are several other recent observations that

provide some guidance for constructing theories of energy transfer mechanisms in the

solar atmosphere. The latest Transition Region and Coronal Explorer (TRACE) and

Solar and Heliospheric Observatory (SOHO)/EUV Imaging Telescope high resolution

observations reveal : 1) that the structures that form the solar corona are in constant

motion, extremely dynamical and full of fast�moving gas, heated primarily at the foot-

points of visible structures (base of the hot structure). The heating does not happen

throughout the loops, or preferentially near the top as some theories predict; it rather

takes place very close to the solar surface. In addition, most of this heating occurs in

few minutes in the Þrst ten to twenty thousand kilometers above the surface, that is, in

a fairly small fraction of the bright part of the anchored structure. "Moreover, not only

heat is deposited low down, but the gas is often actually thrust upward very rapidly. It

does not merely �evaporate� into the coronal structures, it is often actually thrown up

there. Exactly how that happens is still a puzzle" [1], 2) that the loops are composed of

clusters of Þlamentary structures and they are not (as believed before) static structures

supported by interior gas pressure and heated along their lengths (the model given in

[134]) but they Þll and drain so quickly that the gas in them must be moving nearly

ballistically (see latest TRACE observational data and e.g. [1] along the substructures,

rather than being "quiescently heated". From a detailed study of the loops with different

characteristic parameters the authors of [113] conclude that the heating process is quite

non-uniform with a high degree of spatio�temporal variability. Loops evolve rapidly in

temperature with associated changes in density. This variability requires that heating

can turn on and off (for a speciÞc structure) on a time scale of minutes or less along the

Þeld�line bundles with cross sections at or below the instrumental resolution. Due to

diverse initial conditions for the ßow�magnetic Þeld system, the dynamical evolution of

different structures will be different and so will be the eventual parameters they acquire
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in the "quasi�equilibrium" state. The observations also indicate two important eras in

the life of a coronal structure: a hectic period when it acquires particles and energy, and

the relatively calmer period when it shines as a bright, high temperature object (note

that mottles belong to that class of quiescent structures that are considerably darker

compared to the shiny coronal structures).

Transient brightenings, with their associated ßows of cool and hot material, are also a

very common phenomenon in the TRACE movies. These relatively fast (violent) happen-

ings vary from small events in the quiet Sun to major ßares in active regions; brightenings

which are more than 105 km apart often occur within the same exposure that typically

lasts for 10 to 30 s [1]. This kind of a coincidence in the events at distant locations is

suggestive of fast particle beams propagation along separate magnetic loops which come

together at the ßaring site. The ßaring sites are generally assumed to be reconnection

sites although observations have not establish a causal connection: "Direct evidence for

reconnection in ßares is difficult to Þnd, despite the fact that it is thought to be the pri-

mary process behind ßares" [1]. It is remarkable that often the post�ßare loop systems

begin to glow at the TRACE EUV wavelengths without substantial distortion: reconnec-

tion that probably took place appears to be (largely) completed by the time the loops

are detected by TRACE.

Based on the recent TRACE observations, the existence of outßows in coronal loops

(above the active regions) was reported in [140]. It was found that events are observ-

able for several minutes as they move outward; the projected velocities lie in the range

(5 − 17)km/s. The authors show that the events are characterized by both temporal
brightenings and apparent motions, and are similar in spatial scales and lifetimes to mi-

croßares and explosive events. They conclude that these events are mass outßows driven

by localized events in the footpoint region of the loops (suggesting reconnection as a

possible mechanism). However, they also report that by examining the simultaneous

TRACE 1600Ao images and Michelson Doppler Imager observations, they could not see

signs of jets or ßux cancellation within the resolution of the instruments; they recommend
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better studies of these ßows. Whether the transient brightenings occur in addition to

steady ßows, or are the causes of the observed ßows, is still unclear.

The observations and their natural interpretations seem to suggest the need for a

uniÞed magneto�ßuid model of the kind mentioned earlier [72]; a model in which the

plasma ßows play an essential role in determining the structure and dynamics of the

solar atmosphere. Once the importance of ßows is recognized, one could further enquire

whether the mechanisms underlying the formation and primary heating of the coronal

structures could also explain the more violent events (possibly ßares, erupting promi-

nences and coronal mass ejections (CMEs)). In the context of the solar corona, a Þrst

step in this enquiry was taken recently [218]. We would like to suggest now that the

same very dynamics could be readily exploited to understand the explosive events and

mass outßows in the chromosphere of the Sun.

We take this opportunity to remind the reader that the general uniÞed model of

[72] is based on the stipulation that the coronal structures are created from the evolu-

tion and re�organization of a relatively cold plasma ßow emerging from the sub�coronal

regions and interacting with the ambient solar magnetic Þeld. It is likely that this in-

teraction may be the cause of the immense diversity of the observed coronal structures

[72, 67, 128]. Preliminary results from this magneto�ßuid approach reproduce several of

the salient observational features of the typical loops: the structure creation and primary

heating are simultaneous � the heating takes place (by the viscous dissipation of the ßow

kinetic energy) in a few minutes, is quite non�uniform, and the base of the hot structure

is hotter than the rest. What we call primary heating is, perhaps, the Þrst stage of the

two�stage heating process strongly indicated by observations. As opposed to the fast ini-

tial heating, the second stage of additional, supporting heating may last for much longer

time, at least for quasi�equilibrium structures. It needs to be emphasized that, in the

approach of [72, 67, 128] and this study, the ßows are not extraneous to the structure but

are an integral part of it � it is not the thermalization of an external ßow which heats a

preformed structure; the same ßow provides the matter as well as the energy (eventually
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seen as heat) contained in the structure. This distinction is important.

Having stressed the fundamental importance of ßows in the dynamics and diversity

of the solar atmosphere, we must examine the question of their origin. Although we

have mentioned a few mechanisms like the reconnection processes in the chromospheric

network, there is as yet no satisfactory theory of the genesis of the ßows; much work

needs to be done for a desirable understanding of their existence and nature. In this

study we explore some possible processes for the ßow-origin. And if the mechanisms that

create these ßows (of different initial parameters) are independent of the mechanisms

which produce the ambient magnetic Þeld, and are random in time and space (one can

expect that, for separate structures, the up�ßows can last for speciÞc periods of time but

such events can happen randomly all over the solar surface) we will have a recipe for a

very diverse and dynamic corona.

Following Ohsaki et. al. (2001) we wish to further extend the scope of the magneto�

ßuid theory beyond the creation of the semi-quiescent coronal structures by seeking

answers to the following: a) can the basic framework of this model predict the pos-

sibility of, and the pathways for the occurrence of sudden, explosive, eruptive, and

catastrophic events (such as ßares, eruptive prominences, CMEs, chromospheric mass

outßows, spicules) in the solar atmosphere, b) does the eventual fate, possibly catastrophic

reorganization, of a given structure lie in the very conditions of its birth, c) is it possible

to identify the range and relative values of identiÞable physical quantities that make a

given structure prone to bulk motion, eruption (ßaring), d) will a fast outßow/eruption be

the result of the conversion of excess magnetic energy into heat and bulk plasma motion

as is generally believed to happen in the solar atmosphere [135, 132, 115, 116, 118, 133]

? It is hoped that this quest will also provide us with some clues to the origin of the

ßows.

Below we begin by identifying the quasi�equilibrium state of a typical chromospheric/coronal

structure with a slowly changing Double�Beltrami (DB) state (one of the simplest, non�

trivial magnetoßuid equilibrium). The slow changes may be due to changes in the sun
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which affect the local magnetic Þelds, the interaction of various nearby structures, or dis-

turbances in the solar atmosphere. The parameter change is assumed to be sufficiently

slow that, at each stage, the system can Þnd its local DB equilibrium (adiabatic evolu-

tion). The slow evolution must conserve the dynamical invariants: the helicity h1, the

generalized helicity h2, and the total (magnetic plus the ßuid) energy E. The problem

of predicting sudden events (e.g. catastrophic eruptive/explosive events) then reduces

to Þnding the range, if any, in which the slowly evolving structure may suffer a loss of

equilibrium. The signature of the loss of equilibrium is quite easy to identify for the DB

states. The transition may occur in one of the following two ways: 1) when the roots

of the quadratic equation, determining the length scales for the Þeld variation, go from

being real to complex (implying change in the topology of the magnetic and the velocity

Þelds � boundary separating the paramagnetic from the diamagnetic), or 2) the ampli-

tude of either of the two states ceases to be real. For our current problem, the sudden

change is likely to follow the second route.

By analyzing a simple analytically tractable model, we Þnd affirmative answers to all

the four questions we posed. We show that the invariants h1, h2 , and E , which label

and (along with the initial and boundary conditions) determine the original state, hold

the key to the eventual fate of a structure. If for a given equilibrium sequence, the total

energy E is larger than some critical value (given in terms of h1, and h2), the catastrophic

loss of equilibrium could certainly occur. The trigger for the equilibrium loss could come,

for instance, from nearby structures getting close to each other with an increase in their

interaction energy. The catastrophe pushes a DB state to relax to a minimum energy

single Beltrami Þeld. For coronal structures, the transition transfers almost all the short�

scale magnetic energy to the ßow energy. Then we give our conclusions and summary.

The main results of this chapter are published in Refs.[70-72],[141],[191-192],[218-219].
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2.2 Basic Model and Equations for Coupled Vortex

Dynamics in Two—Fluid MHD

Any model of the heliosphere must attempt to answer the following fundamental issues

of the storage�release paradigm, the dominant framework for models of solar eruptions

for over four decades [117]: (1) How does sufficient energy gets stored in the 3D corona

to power eruptions, (2) Does a realistic solar magnetic structure undergoing quasi�static

motion of the footpoints possess a critical point beyond which no equilibrium or stability

exists, (3) Can a speciÞc footpoint motion be directly and causally related to observed

eruptions. There is, as yet, no model based on the storage�release paradigm that can

correctly describe the observed dynamics of both CMEs and their heliospheric conse-

quences. To answer some of these questions, a new paradigm, where the eruptions are

the end products of dynamic Alfénic relaxation (time scale is neither quasi�static nor im-

pulsive) of magnetic energy propagating outward from the solar dynamo, was proposed

by Chen (2001).

The principal new element in our approach is the co-primacy (along with the mag-

netic Þeld) accorded to the plasma ßows [72]. The ßows inßuence the occurence of the

explosive/eruptive events rather directly: it happens due to their ability to deform (and

in speciÞc cases, distort) the ambient magnetic Þeld � to temporarily stretch (shrink,

destroy) the closed Þeld lines so that the ßow can escape the local region acquiring a

considerable kinetic energy converted either to heat or to bulk motion.

Within the framework of our approach, there are two distinct scenarios for explo-

sive/eruptive events : a) when a �slowly� evolving structure Þnds itself in a state of no

equilibrium, and b) when the process of creating a long�lived structure is prematurely

aborted; the ßow shrinks/distorts the structure which suddenly shines and/or releases

energy or ejects particles. The latter mechanism requires a detailed time�dependent

treatment and is not the subject matter of this study. The following semi�equilibrium,

collisionless magneto�ßuid treatment pertains only to the former case [218] .
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In our analysis we keep the temperature varying, but we assume the density to be

constant for a given structure. This is a rather drastic step but it can help us in unveiling

the underlying physics. There are two entirely different quasi�equilibrium situations

where this assumption may be justiÞed: (i) the primary heating of the structure has

already been performed, i.e. a substantial part of initial kinetic energy of the primary

ßow has been converted to heat, (ii) if the rates of kinetic energy dissipation are not very

large, we can imagine the plasma to be going through a series of quasi�equilibria before

it settles into a state which can be identiÞed with a typical closed structure. The density

variation, though a factor, is not crucial in an appropriate estimation of the desired

quantities. The constant density assumption is being used only for simplicity - extension

to varying density is straightforward [72].

2.2.1 Double Beltrami Fields

A given structure is supposed to correspond to the equilibrium solutions of the two�ßuid

system (neglecting electron inertia and transport processes) written in dimensionless

variables:

∂

∂t
A = (V −∇×B)×B −∇ (φ− pe) , (2.1)

∂

∂t
(V +A) = V × (B +∇× V )

−∇ ¡V 2/2 + pi + φ
¢
. (2.2)

where the magnetic ÞeldB is normalized to an appropriate measure B0, the ßuid velocity

V to the corresponding Alfvén speed, distances to the collisionless ion skin depth li(=

c/ωpi), where c is the speed of light and ω2
pi = 4πn0e

2/mi, mi is the ion mass), the

intrinsic length for two�ßuid or Hall MHD; A and φ are the vector and scalar potentials

and pe, pi are the normalized electron and ion pressures. This set of equations can be
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cast in the Vortex dynamics form ([67] and references therein)

∂

∂t
ωj −∇× (U j × ωj) = 0 (j = 1, 2) (2.3)

written in terms of a pair of generalized vorticities:

ω1 = B, ω2 = B +∇× V ,

and effective ßows

U 1 = V −∇×B, U 2 = V .

Notice, that the system allows general steady state solutions

U j × ωj = ∇ϕj (j = 1, 2),

where the scalar Þelds ϕj correspond to the ßuid energy densities:

ϕ1 = φ− pe , ϕ2 = V
2/2 + φ+ pe .

The simplest and perhaps the most fundamental equilibrium solution to (2.3) is given

by the "Beltrami condition", i.e, by alignment of the vorticities along the corresponding

ßows (ωj//U j). A well�known example of a single Beltrami Þeld is the so called Taylor

relaxed state ∇×B = λB [112, 137]. Notice, that the Double Beltrami (DB) conditions

are statements of the simple physics: the electrons follow the Þeld line, while the massive

ions follow the Þeld�lines modiÞed by their vorticity. For constant a and b, the Beltrami

conditions yield a system of simultaneous linear equations in B and V

B = a(V −∇×B), (2.4)

B +∇× V = bV . (2.5)
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Combining (2.4) and (2.5) yields a second order partial differential equation

∇× (∇×B)− (b− �a)∇×B + (1− �ab)B = 0, (2.6)

where �a = 1/a. Denoting the curl derivative ∇× by �curl�, (2.6) is written as

(curl− λ+)(curl− λ−)B = 0, (2.7)

where

λ± =
1

2

·
(b− �a)±

q
(b+ �a)2 − 4

¸
. (2.8)

For sub�Alfvénic ßows (the ßows we generally encounter in the solar atmosphere), the

length scales (λ−1
± ) are quite disparate. Depending on the values of �a and b, one of these

will signify the macro while the other will signify the micro scale. The general solution

to the "double Beltrami equations" (2.6) is a linear combination of the single Beltrami

Þelds G± satisfying (curl− λ)G = 0. Thus, for arbitrary constants C±, the sum

B = C+G+ + C−G−, (2.9)

solves (2.7). The corresponding velocity Þeld is given by

V = (λ+ + �a)C+G+ + (λ− + �a)C−G−. (2.10)

The double Beltrami Þeld encompasses a wide class of steady states of mathematical

physics � from the force�free paramagnetic to the fully diamagnetic Þeld expressed by

the London equation of superconductivity.

It may be signiÞcant to note that the Beltrami conditions demand "generalized

Bernoulli condition" (ϕj = const) signifying the homogeneity of the energy density.

Substituting (2.4) and (2.5) into the original two�ßuid equations, and combining them
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we Þnd get

β + V 2 = const, (2.11)

where β = 2(pe + pi) is the ratio of the total pressure to the magnetic pressure. This

relation shows that the double Beltrami equilibrium is no longer zero�beta (force�free; for

statistical mechanical treatments see [129, 124, 121]), but it can conÞne an appreciable

pressure when an appropriately sheared ßow, measured in the Alfvén units, is driven [67].

In order to place the DB conÞguration in perspective, we show in FIG.2.1 a possible

hierarchy of the relaxed states accessible to a magneto�ßuid system. We may distinguish

three distinct stages: 1) the harmonic (zero Beltrami) state associated with the vacuum

magnetic Þeld, 2) the single Beltrami state brought about by the interaction of plasma

currents with the external Þeld, and 3) the Double Beltrami states in which the plasma

ßows become co�determinants (with the currents and the external Þeld) of the overall

dynamics. Each stage corresponds to a different �energy level� with energy increasing as

we advance in the hierarchy. The vacuum magnetic Þeld is the absolute minimum energy

state. A plasma immersed in a static magnetic Þeld will eventually disappear leaving

only the harmonic magnetic Þeld. When a plasma current is added to sustain magnetic

helicity, the plasma may relax into the Taylor or the single Beltrami Þeld conÞguration.

If, in addition, a ßow is induced (or charge injected) to sustain what will be called the

generalized helicity (see below), the relaxed state will correspond to the double Beltrami

Þeld. These generalized states, which contain the Taylor (force�free) states [137] as a

sub�class, have a very rich structure and can be qualitatively different from the widely

used Taylor states.
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Fig. 2.1 Hierarchy of relaxed states. The upper relaxed state has more complicated

structure and higher energy. The absolute minimum energy state is the vacuum. In

supplying a magnetic Þeld, current, and ßow to the plasma, the energy of the system

rises successively with the harmonic, the Þrst, and the second Beltrami Þelds.

2.2.2 Conservation laws and algebraic structure

The general DB Þeld is characterized by four parameters, two eigenvalues and two am-

plitudes,  λ+, λ−,

C+, C−.
(2.12)
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The three invariants ([136]): the helicity h1, the generalized helicity h2,

h1 =
1

2

Z
(A ·B) dr, (2.13)

h2 =
1

2

Z
(A+ V ) · (B +∇× V ) dr, (2.14)

(A is the vector potential), and the total energy

E =
1

2

Z
(B2 + V 2) dr (2.15)

will provide three algebraic relations between them ([141]). It is worthwhile to remark

here that Steinhauer and Ishida (1997) proposed a variational principle using the total

energy E and two helicities and derived the equations (2.4), (2.5) as an Euler�Lagrange

equation describing the relaxed state in two�ßuid MHD 1. We remind the reader that E

, the magnetic helicity h1 , and the generalized helicity h2 are the three rugged bilin-

ear invariants of the collisionless two�ßuid dynamics and their conservation will provide

three algebraic relations between the four parameters λ+, λ− (eigenvalues), and C+, C−

(amplitudes) characterizing the DB Þeld [141]. To predict the possibility of an eruptive

event, interpreted as the termination of an equilibrium sequence (for solar ßares, this

kind of an approach, albeit in different contexts, has been followed in numerous investi-

gations, (see e.g. [122, 123, 126, 127] and references therein), we analytically investigate

this system using the macro�scale of the closed structure as a control parameter. This

choice is physically sensible and is motivated by observations because in the process

of structure�structure interactions, �initial� shapes do undergo deformations/distortions

1For the two�ßuid MHD, the setting up of a satisfactory variational which is both physically sound
and mathematically well�posed is a rather demanding problem both conceptually and technically. The
minimum energy principles (as distinct from minimum potential energy principles) with or without
compression, have, in general, very little conceptual justiÞcation. One has, thus, to Þnd a physically
meaningful and mathematically justiÞable target functional (the functional whose constrained minimiza-
tion leads to a relaxed state). This can be and has been done and is the subject of [128]. The Þnal result,
fortunately is the same: we obtain the set of Double Beltrami�Bernoulli states (used in this study) as
the expression of self�organization. The system is amenable to the same treatment even for varying
density as long as a polytropic equation of state is allowed (see [72])
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with rates strongly dependent on the initial and boundary conditions.

For simplicity we explicitly work out the system in a Cartesian cube of length L. We

take G± to be the simple 2-D ABC Þeld (a solution of the beltrami equation) [112],

G± = gx±


0

sinλ±x

cosλ±x

+ gy±

cosλ±y

0

sinλ±y

 , (2.16)

with the normalization

(gx±)2 + (gy±)2 = 1. (2.17)

the ratio of gx± and gy± deÞnes the shape of an arcade�magnetic Þeld structure. In

FIG.2.2 we show the Þeld line structure of a 2-D ABC vector Þeld that resembles inter-

acting loops. If λ± are complex in (2.16), the equilibrium solution will have the spatially

decaying (or growing) component initially. Such regions are extremely hard to model

and it is beyond the scope of the present study. In this study we restrict ourselves to

real λ±.

Fig. 2.2 Magnetic Þeld line structure of a 2-D ABC map resembling a coronal arcade.

Assuming periodic boundary conditions,

L = n+
2π

λ+
= n−

2π

λ−
, (2.18)

(n± are integers)
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we evaluate G± of (2.16) to be,Z
G2
±dr = L

2
£
(gx±)2 + (gy±)2

¤
= L2,Z

G+ ·G−dr = 0,

where
R
dr =

R L
0

R L
0
dxdy.

As a result, the constants of motion h1, �h2(= h2 − h1) and E read

h1 =
L2

2

·
C2

+

λ+
+
C2
−
λ−

¸
, (2.19)

�h2 =
L2

2

©
[2 + λ+ (λ+ + �a)] (λ+ + �a)C

2
+

+ [2 + λ− (λ− + �a)] (λ− + �a)C2
−
ª
, (2.20)

E =
L2

2

©£
1 + (λ+ + �a)

2¤C2
+

+
£
1 + (λ− + �a)

2¤C2
−
ª
. (2.21)

Reminding the reader that the parameter set (�a, b) is entirely equivalent to λ± we

write down here a variety of relations connecting them,

(λ+ + �a)
−1 = (λ− + �a) , (2.22)

λ+ + λ− = b− �a, (2.23)

λ+λ− = 1− b�a, (2.24)

�a =
1

2

·
− (λ+ + λ−)±

q
(λ+ − λ−)2 + 4

¸
, (2.25)

b =
1

2

·
(λ+ + λ−)±

q
(λ+ − λ−)2 + 4

¸
. (2.26)

Using these relations, we may express �h2 of (2.20) in terms of h1, E, λ+, λ− (h1, E, �a,

b),

�h2 =
L2

2

©
[2 (λ− + �a) + λ+] (λ+ + �a)

2C2
+
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+ [2 (λ+ + �a) + λ−] (λ− + �a)
2 C2

−
ª

= b
L2

2

©£
1 + (λ+ + �a)

2¤C2
+ +

£
1 + (λ− + �a)

2¤C2
−
ª

−λ+λ−
L2

2

·
C2

+

λ+
+
C2
−
λ−

¸
= bE − λ+λ−h1, (2.27)

which can be cast in several equivalent forms

h2 = h1 + �h2 = b (E + h1�a) , (2.28)

�h2 =
E

2

·
(λ+ + λ−)±

q
(λ+ − λ−)2 + 4

¸
−λ+λ−h1. (2.29)

For given h1, E, �h2 (h2) and one of the λ± (control parameter), we can solve (2.29) to Þnd

variations of other λ∓. Here we assume that L is sufficiently large, so that λ± (= n±/L)

can take continuous real values. From (2.28), we can derive that the equilibrium we

consider corresponds to zero free energy [68, 136];

E + �ah1 − 1
b
h2 = 0. (2.30)

From (2.19) and (2.21), we Þnd C+ and C− to be

L2

2
C2

+ = D−1
©
E − £1 + (λ− + �a)2¤λ−h1

ª
λ+, (2.31)

L2

2
C2
− = −D−1

©
E − £1 + (λ+ + �a)

2¤λ+h1

ª
λ−, (2.32)

where

D =
£
1 + (λ+ + �a)

2¤λ+ −
£
1 + (λ− + �a)

2¤λ−
= (λ+ − λ−) b (b+ �a) (2.33)
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Naturally, D−1 diverges at the coalescence of the roots (when λ+ = λ−).

For an acceptable equilibrium the amplitudes C± and the micro�length (corresponding

to one of the λ±) must remain real as the other λ± goes over real values. Therefore C2
±

must remain positive. There are, then, two possible scenarios for losing equilibrium: (1)

Either of C2
± becomes zero (starting from positive values) for real λ±, (2) The roots λ±

coalesce (λ− ↔ λ+) for real λ± and C±. For the Solar atmosphere problem, where we

deal with equilibria with vastly separated scales (sub�Alfvénic ßows [72]), the second

possibility is not of much relevance; there are no slow adiabatic changes which will make

such vastly different λ± to coalesce. Thus, it is the loss of equilibrium through the

Þrst mechanism that will be primarily investigated for the present problem. The second

mechanism can be operative andmay be of serious importance for other special structures;

we shall brießy deal with it in the sections below.
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2.3 Equilibrium States in Incompressible Hall MHD

The Beltrami Þelds, eigenfunctions of the curl operator, may be used to represent the

essential characteristics of sheared, spiral, chiral, or helical structures in various vector

Þelds. Since the magnetic Þeld is the key player in labelling and determining the state of

a typical plasma, it stands to reason that one could describe and understand the possible

self�organized states of a plasma in terms of Beltrami Þelds.

A general solenoidal (divergence�free) vector Þeld, such as a magnetic Þeld or the

velocity Þeld of an incompressible ßow, can be decomposed into an orthogonal sum of

Beltrami Þelds [138]. In the dynamical evolution of a general plasma, the nonlineari-

ties in the equations of motion will necessarily induce couplings among the constituent

Beltrami Þelds (into which the initial Þeld may be composed), making the resultant

dynamics rather complicated [124]. It is remarkable, however, that in the single�ßuid

magnetohydrodynamics (MHD, a simple but a very important plasma model), the en-

ergy of the system tends to condensate into a single Beltrami magnetic Þeld, leading to

a self-organized, force�free equilibrium � the well-known Taylor relaxed state satisfying

∇×B = λB [137]. It is equally remarkable that a more general equilibrium, a relaxed

state described by a pair of different Beltrami Þelds, is available even in a two�ßuid

description of a plasma. The relevant double Beltrami (DB) Þelds are a well�deÞned

combination of the magnetic and ßow-velocity Þelds [67, 128]. The essential new physics

is due to the Hall term that relates the kinematic and the magnetic aspects of a mag-

netoßuid. The resulting relaxed states, with a tight coupling between the velocity and

the magnetic Þelds, span a far richer set of plasma conditions than the conventional sin-

gle Beltrami states. For instance, the DB states can exhibit diamagnetism and pressure

conÞnement that is not allowed in a single Beltrami state. In this study, among other

applications, we show that the strongly sheared boundary layer associated with the high

conÞnement mode (H-mode) of a plasma could be viewed as a self�organized double Bel-

trami diamagnetic structure, where the magnetic Þeld, ßow velocity, electric Þeld, and

pressure are self�consistently related. We will also discuss the potential of DB states as
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high-beta equilibria.

2.3.1 Generalized Bernoulli condition

In the vortex dynamics equation (2.3), the general steady states are given by

U j × ωj = ∇ϕj (j = 1, 2),

where the ϕj is a certain scalar Þeld. Going back from (2.3) to the original (decurled)

equations (2.1) and (2.2), we Þnd that ϕj corresponds to the energy density of each ßuid;

ϕ1 = φ− pe , (2.34)

ϕ2 = V
2/2 + φ+ pe . (2.35)

The Beltrami condition U j = µjωj, thus, gives a special class of solution such that

U j × ωj = ∇ϕj (j = 1, 2),

The former equality is the Beltrami condition, while the latter, demanding that the energy

density is homogeneous, is a "generalized Bernoulli condition". Subtracting (2.34) from

(2.35) under the Bernoulli condition, we obtain [in the normalized unit, the beta ratio is

given by β = 2(pe + pi)]

V 2 + β = const. (2.36)

This relation shows that the double Beltrami equilibrium is no longer zero beta, but it

can conÞne an appreciable pres- sure when an appreciable ßow (in the Alfvén unit) is

driven [67]. It is perhaps more pertinent to state that the double Beltrami equilibria

are instruments for maintaining pressure gradients (plasma conÞnement) through the

Bernoulli condition, i.e., by creating sheared velocity Þelds.
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2.3.2 High-beta Toroidal equilibrium

Due to the simple mathematical structure of the double Beltrami Þelds, it is rather easy to

Þnd analytical solutions of various equilibria in slab or cylindrical geometry. By choosing

an appropriate set of parameters, we can construct very high�beta solutions concomitant

with highly sheared ßow velocity Þelds. In this section, we present a numerical solution

of a high�beta toroidal equilibrium. By the representations (r, θ, z are the standard

cylindrical coordinates)

B = ∇Ψ(r, z)×∇θ + rBθ(r, z)∇θ (2.37)

V = ∇Φ(r, z)×∇θ + rVθ(r, z)∇θ (2.38)

the double curl Beltrami equations translate to coupled Grad-Shafranov equations;

L
 Ψ

Φ

 =

 1− �a2 (�a− b)
(b− �a) 1− b2

 Ψ

Φ

−
 �aC1 + C2

C1 + bC2

 , (2.39)

where

−L = r ∂
∂r

µ
1

r

∂

∂r

¶
+
∂2

∂z2
(2.40)

and C1 and C2 are constants to be determined by boundary (or ßux) conditions. We note

that the �vacuum Þelds� satisfying Lφv = 0 can be included both in Ψ (magnetic ßux

function) and Φ (approximately, the electrostatic potential) as inhomogeneous terms.

Choosing appropriate vacuum Þelds, we can control the radial position and the shape of

the toroidal equilibrium. Fig.2.3 shows a typical solution with a high�beta value.

96



Fig.2.3 Toroidal equilibrium of the high-beta double Beltrami Þeld.

2.3.3 H—mode Boundary Layer

In this section, we apply the theory to analyze the boundary layer in a H-mode tokamak

plasma [68]. Since the H�mode is so extensively studied and analyzed, it is important

that we clarify the scope of this effort for a proper perspective. The theory we present is a

purely equilibrium theory, that is, we will try to examine if a double Beltrami diamagnetic

state can capture and predict the essential character of the strongly sheared edge layer

associated with the H�mode. No attempts will be made to suggest a pathway or a

mechanism that leads to the transition to a H-mode. Nor will we describe the process of
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transition. The reader may Þnd representative literature. Our goals are rather modest

?� to understand the distribution of Þelds and pressure in the transition layer once it has

been created. It is hoped that the Þnal characteristics of the layer, which are viewed as

an expression of plasma self�organization, are independent of the processes that led to

the self�organization.

For a proper analysis of a tokamak plasma (embedded in a strong external magnetic

Þeld), it is appropriate to decompose the magnetic Þeld B into the self�Þeld component

Bs, and the externally rooted component Bh with |Bh| = B0(À |Bs|). Only Bs is

produced by the plasma current j in the region of our interest (a thin boundary layer

of the core plasma), while Bh is current�free (harmonic) in that region. From now on,

the dynamical part of the Þeld, Bs , will be normalized by its representative value B∗

. The velocities are, then, normalized by the corresponding Alfvén velocity V A∗. The

pressure gradient across the boundary layer is maintained by the diamagnetic pressure of

the magnetic Þeld, and hence, we have an estimate for the variation of the pressure and

the magnetic Þeld across the layer; δp = δ(|B|2)/2µ0 ' (B0B∗)/µ0 (in physical units),

which reads as
B∗
B0

=
β

2
(¿ 1), (2.41)

where β is the conventional beta ratio evaluated for the pressure maintained at the inner

edge of the boundary layer. Formally, we deÞne

��Bs =

µ
B0

B∗

¶
�Bs,

��V =

µ
B0

B∗

¶
�V ,

��∇ = �∇,

��p =

µ
1

β2

¶
�p,
��Φ =

µ
1

β2

¶
�Φ,

with the idea that all the normalized dynamical variables are of order unity.In what fol-

lows, we shall drop �� to simplify the notation. We consider a one�dimensional system

where the Þelds vary only in the "radial" direction, perpendicular to the magnetic sur-

faces, i.e., Bh ·∇ = 0 . We also assume that V is incompressible (∇ ·V = 0). Then, we
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Þnd ∇× V ×Bh = 0 , which allows us to write

V ×Bh =

µ
β

2

¶−1

∇Pi , (2.42)

where Pi is a potential Þeld. Similarly,

V e ×Bh = (V −∇×B)×Bh = −
µ
β

2

¶−1

∇Pe , (2.43)

with

Pe = −Pi −
µ
β

2

¶
Bh ·Bs. (2.44)

Equations (2.42) and (2.43) represent the zeroth�order diamagnetism. We may, now,

rewrite the system (2.1) and (2.2) as

∂

∂t
As = (V −∇×Bs)×Bs +

µ
β

2

¶−1

∇(pe − Pe − Φ), (2.45)

∂

∂t
(V +As) = V × (Bs +∇× V )

−
µ
β

2

¶−1

∇
·
pi − Pi + φ+

µ
β

2

¶
V 2

2

¸
. (2.46)

where∇×As = Bs. For the self�Þeld components, the Beltrami and Bernoulli conditions,

respectively, read as

Bs = a(V −∇×Bs), (2.47)

Bs +∇× V = bV (2.48)

and (ci, ce : constants)

pi − Pi + φ+
µ
β

2

¶
V 2

2
= ci, (2.49)

pe − Pe − Φ = pe + Pi +
µ
β

2

¶
Bh ·Bs − Φ = ce (2.50)

relating the plasma pressure and the electrostatic Þeld with the self� and the externally
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applied Þelds.

The general features of the structure represented by (2.47-2.48), and (2.49-2.50) can

be illustrated by an analysis in slab geometry (the coordinate x is radial, y is poloidal, and

z is toroidal). The double Beltrami Þelds are explicitly expressed by sinusoidal functions

(2.17). We consider a boundary layer 0 < x < ∆ in contact with a �core plasma� (x < 0).

The exterior region (x > 0) is scraped off by a physical boundary. The layer thickness

∆ is to be determined by the theory. The Þelds Bs and V in the boundary layer are

determined by solving (2.47-2.48) with appropriate boundary conditions on Bs and V ,

as well as assuming values for a, b and the width ∆.

We note that these equations can be solved without ref-erence to the Bernoulli con-

ditions (2.49-2.50). Then, the Bernoulli conditions relate the Þeld Bs and V to the

pressures pe, pi and the electrostatic potential Φ. When we prescribe the �jumps� of

these quantities across the layer, Bs and V must be set to yield the given jumps, and

these conditions will demand a consistent set a, b, and ∆, resulting in a totally self�

consistent model of the boundary layer [68]. The solution gives a poloidal shear ßow and

layer width of order

|Vy| = O(
p
β VT ) = O(

q
βp
Bp
B0
VT ), (2.51)

∆ = O(λi) = O(ρi/
p
β) = O(ρip/

q
βp), (2.52)

where VT is the ion thermal speed, Bp (βp) is the poloidal Þeld (β), ρi (ρip) is the

ion gyroradius (poloidal gyroradius). In standard nomenclature, (2.51) implies that the

magnitude of the velocity corresponds to the �poloidal Mach number� (V/[VT (Bp/B0))

of order
p
βp = O(1). Since, typically, A bp 5O(1), the layer width is also of the order

of the poloidal gyroradius. The given potential yields a negative electric Þeld (Ex < 0),

as well as dEx/dx < 0. These predictions are in good agreement with experimental

observations.
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2.3.4 Summary

Thus, the two�ßuid model of a plasma describes the strong coupling between the magnetic

and the ßuid aspects of a plasma. The resulting system can be cast in the form of

a pair of vortex dynamics equations. The simplest equilibrium solution of this system

consists of two simultaneous Beltrami conditions signifying the alignment of generalized

vorticities with ßows that transport them. Combining these equations yields the double

curl Beltrami equation. The set of solutions contains Þeld conÞgurations that can be

qualitatively different from the conventional single Beltrami Þelds (Taylor relaxed states).

The larger new set may help us understand a variety of structures generated in plasmas.

A double Beltrami Þeld is characterized by four parameters (two eigenvalues and two

amplitudes). By relating these parameters with conserved physical quantities, we obtain

a set of algebraic relations that can be investigated to predict the characteristics of

the equilibrium state as a control parameter is slowly changed. One such ex-ample is

worked out in detail, evaluating the Beltrami Þeld parameters in terms of the macroscopic

constants of motion helicities and energy. It is found that under certain conditions the

ambient equilibrium can be catastrophically lost. The double Beltrami equilibria are

shown to be capable of conÞning pressure � the diamagnetic and high-beta structures,

thus, lie within the scope of the current theory. The generalized Bernoulli condition,

implying that the energy density of the Þeld is fully relaxed, gives a simple relation

among the ßow velocity, potential, and the static pressure. When we drive a strong ßow

(of order unity in the Alfvénic units), very high�beta equilibrium may be obtained. On

the other hand, when diamagnetism is imposed (as a jump condition at the boundary),

a ßow and electric Þeld naturally emerge to sustain the pressure. The self�consistency of

the Þelds and pressure is the deÞning attribute of the DB self-organized states. Finally,

we make a small catalog of the known relaxed state equilibria and also point out how

one may arrive at them. In Fig.2.1, we may see a hierarchy determined by the increasing

complexity of the Þnal state. In supplying a magnetic Þeld, current, and ßow to the

plasma, the energy of the system rises successively with the harmonic, the Þrst, and the
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second Beltrami Þelds. These �energy levels� are explained as follows. Suppose that a

plasma is produced in an external magnetic Þeld (harmonic Þeld). In the absence of a

drive, such a plasma will disappear and the system will relax into the pure harmonic

magnetic Þeld (∇×B = 0). When a drive in the form of a plasma current is added, it

sustains the total helicity, and the plasma relaxes into the Taylor state corresponding to

the single Beltrami magnetic Þeld. When a strong ßow exists in addition to the current

in a two�component plasma, the system must conserve two distinct helicities and the

self�organized state becomes qualitatively different from the Taylor relaxed state. The

new states represent a �singular perturbation� to the MHD accessible states because the

two�ßuid effect induces a coupling among the ßow, magnetic Þeld, electric Þeld, and the

pressure. To access these states one must also maintain the second helicity invariant by

driving and sustaining an appropriate ßow. It is equivalent to giving an internal electric

Þeld or applying a steep gradient in pressure, because these Þelds are tightly coupled. As

the Þnal state becomes more and more complex, greater and greater care is needed for its

creation and maintenance. However, if all the requirements are met, the more complex

states can display a tremendously variegated and rich structure in Þeld variations.
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2.4 Magnetofluid Coupling: Eruptive Events in the

Solar Atmosphere

Let�s examine the solutions expressed by (2.29), (2.31) and (2.32). We Þrst show that

either of the λ± can correspond to the macroscopic length. Vastly separated roots of (6)

require (b+ �a)2 À 4. Then

λ+ ' b− 1

�a+ b
, λ− ' −�a+ 1

�a+ b
.

There are two distinct cases (more complicated cases can also be constructed): (i) Both

a and b are small and very near (�a = a−1 À 1). Then λ+ ∼ b− a, λ− = �a implying that
λ+ corresponds to long�scale and λ− to short one. (ii) both a and b are large and very

close to one another, then λ+ ∼ b− (1/b) ∼ b, λ− ∼ (1/b)− �a. Thus, here the long scale
is λ− and the short one is λ+.

From now onwards, λ will denote the long or the macro scale, and µ , the short or

the micro scale.

We are now ready to study the behavior of Cλ,µ and µ as the control parameter λ is

varied for a given equilibrium characterized by speciÞed values of the invariants. For two

sets h1 = 1, h2 = 1.5, E = 0.4 and h1 = 1, h2 = 1.5, E = 1.3, the results are plotted

in FIG.2.4(a) and FIG.2.4(b), respectively (λ corresponds to λ− in Fig.2.4(a) and λ+ in

Fig.2.4(b)). Here L2/2 has been normalized out and we set Cλ,µ > 0. Notice that the

dashed lines in the µ and Cλ plots in Fig.2.3(b) correspond to the region of imaginary

Cµ, where the �solution� can not be deÞned.
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Fig.2.4 Plots of µ and Cλ,µ versus λ for: (a) E = 0.4 < Ec ' 0.45, the critical energy;
no catastrophe. (b) E = 1.3 > Ec . There is a critical point at λ ' 0.041.

From these Þgures we conclude that the nature of the system changes drastically

as E is changed. For the parameters of FIG.2.4(a), µ and Cλ,µ remain real and change

continuously with varying λ implying that as the macroscopic scale of the structure (1/λ)

changes continuously the equilibrium expressed by (2.16) persists; there is no qualitative
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change in the state of the system. The plots in FIG.2.4(b) reveal a totally different

situation. With E changing from 0.4 to 1.3 (for the same h1, h2), the system displays a

qualitatively different behavior; when λ exceeds a critical value λcrit, i.e, the macro�scale

becomes smaller than a critical size, the physical determinants of the equilibrium cease

to be real; the sequence of equilibria is terminated.

Note that in [125], where the "generating function" approach was applied to model

catastrophes ("loss of equilibria"), it was argued that in the solar context, one often

arrives at unphysical results. They conclude that the physical parameters deÞning the

solution may become unphysical at the catastrophe points when one simply varies the

amplitude while keeping a Þxed functional form for the force�free Þeld. Our model,

due to its deeper physical content, does not suffer from this problem. Since in the

DB equilibria, there exists an additional length-scale that changes with the adiabatic

evolution, the parameters of the system like the temperature, density and velocity Þeld

are clearly deÞned at the critical point (see e.g. [72] for the dynamical evolution).

2.4.1 Catastrophe - Reduction to a single Beltrami state

The Þrst route to a catastrophic transformation of DB is through the disappearance of

one of the constituent single�Beltrami states. This is the path followed by the catastrophe

illustrated in Fig.2.4(b). It is remarkable that , for this model problem, we can derive the

conditions for the catastrophe as well as the critical value of the control parameter. We

shall now show that if the curve λ(µ) implied by (2.29) has an extremum, i.e. dλ/dµ = 0

for real λ and µ, then it implies the disappearance of the micro�scale constituent of the

DB Þeld.

For analysis, it is more convenient to use the equivalent equation (2.28)

b =
h2

E + h1�a
(2.53)

with b expressed in terms of λ and µ. Since λ and µ are fully determined in terms of
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b and �a, and b is fully known (the invariants are given) in terms of �a through (2.53),

the extremum condition dλ/dµ = 0 may be easily replaced by having dλ/d�a = 0. From

(2.8), we Þnd

dλ

d�a
=

1

2

−1 + b+ �aq
(b+ �a)2 − 4


+
db

d�a

1 + b+ �aq
(b+ �a)2 − 4

 = 0, (2.54)

leading to

db

d�a
=

−
·
−1 + (b+ �a) /

q
(b+ �a)2 − 4

¸
·
1 + (b+ �a) /

q
(b+ �a)2 − 4

¸
= −1

4

·
(b+ �a)−

q
(b+ �a)2 − 4

¸2

= − (µ+ �a)2 . (2.55)

Combining it with
db

d�a
=

−h1h2

(E + h1�a)
2 , (2.56)

a simple corollary of (2.53), we Þnd that the product

h1h2 = [(µ+ �a) (E + h1�a)]
2 ≥ 0, (2.57)

is positive implying that when the two helicities h1 and h2 have opposite signs, there is

no extremum and, therefore, no loss of equilibrium.

Our next task is to extract a relationship or a condition which insures that all the

parameters are real at the extremum, i.e, the extremum is physically allowed. We Þrst

eliminate µ(λ−) in favor of �a and b, and then rearrange the equation as a quadratic in

�a with the coefficients written entirely in terms of the invariants. The two steps are
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explicitly spelled out:

∓2
p
h1h2 =

·
(b+ �a)−

q
(b+ �a)2 − 4

¸
(E + h1�a)

= h2 + �a (E + h1�a)

−
q
[h2 + �a (E + h1�a)]

2 − 4 (E + h1�a)
2, (2.58)³

h2
1 ± h1

p
h1h2

´
�a2 +

³
2h1 ±

p
h1h2

´
E�a

+E2 + h1h2 ± h2

p
h1h2 = 0 . (2.59)

Then �a is real at dλ+/d�a = 0, if

h³
2h1 ±

p
h1h2

´
E
i2

−4
³
h2

1 ± h1

p
h1h2

´³
E2 + h1h2 ± h2

p
h1h2

´
= h1h2E

2 − 4h1h2

³
h1 ±

p
h1h2

´2

≥ 0 . (2.60)

Simplifying (2.60), we may conclude that the extremum is physical when

E2 ≥ E2
c = 4

³
h1 ±

p
h1h2

´2

, (2.61)

that is, when the energy of the system exceeds a critical energy Ec deÞned by the helicities

h1 and h2. We shall soon relate the existence of this physical extremum to the possibility

of a catastrophic rearrangement of the original state.

The system behavior at the critical point λ = λcrit is better studied by resorting to

(2.29) (λ+ = λ,λ− = µ) ; the extremum condition dλ/dµ = 0 implies

1∓ (λ− µ)q
(λ− µ)2 + 4

E − 2λh1 = 0. (2.62)
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which, when coupled with equations (22�26), yields

E = λh1

£
1 + (�a+ λ)2

¤
. (2.63)

This is precisely the condition for C2
µ = 0 (see (2.32)). Thus, the existence of a physically

allowed extremum in the λ(µ) curve is a necessary and sufficient condition for the micro-

scale component of the DB Þeld to vanish, C2
µ → 0 . Since C2

µ is positive to begin

with, the extremum does represent a critical transition point; if the system is pushed

beyond this point, C2
µ will become negative (Cµ becomes imaginary) resulting in a loss

of equilibrium.

The critical λ = λcrit at which the transition happens can be determined from a

simultaneous solution of (2.53) and (2.63). The process is straightforward but a bit

tedious. The following relations derived from (22)-(26),

(�a+ λ)2 =
E − λh1

λh1

and

(�a+ λ)[�h2 − λ(E − λh1)] = 2(E − λh1).

are combined to give

(�h2 −Q)2 = 4h1Q, where Q = λ(E − λh1), (2.64)

from which we Þrst derive Q =
£√
h1 ±

√
h2

¤2
, and then Þnd:

λcrit =
1

2h1

³
E ±

p
E2 −E2

c

´
. (2.65)

where Ec has been deÞned earlier by (2.61).
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Fig.2.5 Plots for µ, the magnetic and the ßow energies versus λ for the (a)

catastrophe�free set, (b) catastrophe�prone set; the parameters are the same as in

Fig.2.3.

Using this value of λcrit, we may conÞrm that, at the critical point, the coefficient

Cµwhich measures the strength of the short scale Þelds, identically vanishes, and the

equilibrium changes from Double Beltrami to a single Beltrami state labelled by λ = λcrit,

i.e.,B = CλGλ or∇×B = λB with V parallel toB. The amplitude of the macro�scale

component (the only one remaining) turns out to be C2
λ = λ

crith1. The transition leads

to a magnetically more relaxed state with the magnetic energy reaching its minimum

with an appropriate gain in the ßow kinetic energy. At the transition, the kinetic energy

is far in excess of the magnetic energy with the ratio (B2/V 2) ∼ 1/(�a + λ)2 ¿ 1 (see

Fig. 2.5(b)). In Fig.2.6, we clearly see the redistribution of the magnetic energy as

the system responds to changes in the control parameter. In (Fig.2.6(b)) we show the

history of a catastrophe�prone sequence; starting from vastly separated scales, the initial

magnetic energy is transferred mainly to ßow energy in the macroscopic scale, i.e., to the

bulk plasma motion. In the opposite case where the initial conditions are not favorable
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to a catastrophic change (Fig.2.6(a)), one can see that even though the large scale ßow�

energy can increase for some part of the sequence of adiabatic changes (slow �breathing�

of the structure), eventually it is the magnetic energy that increases feeding on the ßow�

energy (Fig.2.5(a)).

From these Þgures it is clear that physical parameters of the system are precisely

deÞned at the critical point. Note, that since we assume that changes are slow and trans-

port processes can be ignored in our model, the representation of a changing structure

by a local DB Þeld persists. It is remarkable, however, that even as the system is pushed

to the catastrophe stage, the length scales do remain vastly separated (see Fig.2.5(b)).

Notice that there are several other auxiliary conditions that have to be satisÞed in

order that these mechanisms may operate. It is straightforward to approximate−D−1µ ∼
1/b�a and D−1λ ' (1/b�a) · (b − a)/�a . The condition for well�separated length�scales
requires that b and a must have the same sign =⇒ b�a > 0. The amplitudes may be

conveniently written as

C2
µ '

1

b�a

£
E − (b− a)h1[1 + (�a+ λ)

2]
¤
,

C2
λ '

b− a
�a

1

b�a

£
E + �ah1[1 + (�a+ µ)

2]
¤

revealing that if C2
µ has to go to zero, one must demand (b − a)h1 > 0. The condition

is naturally satisÞed if h1 > 0, (b − a) > 0, and for this case, C2
µ is guaranteed to be

positive if a and b are both positive. Appropriate conditions for a physical equilibrium

state for various domains of a and b can be readily calculated. Note that the system is

invariant to b→ −�a and �a→ −b.
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Fig.2.6 Plots of the velocity amplitudes Vµ and Vλ versus λ for (a) the catastrophe free

set of parameters (Fig.2.3(a)), and (b) the catastrophe�prone set (Fig.2.3(b)). It is

clearly seen that at the catastrophe point the large scale velocity component acquires

most of the transferred magnetic energy.

In order to apply the present model to explore the conditions for the occurrence

of explosive/eruptive events in the solar atmosphere, we may proceed as follows. The

macroscopic scale of a structure (measured by |λ−1|) will dictate the value of λ ; this
must be quite small with |λ| ¿ |µ|. The structure is then viewed as a DB state in

which a macro�scale Þeld is superposed by a small scale (|µ−1|) one. Using (2.31) and
(2.32) we may estimate Cλ ∼ O (λλ/λµ) ¿ 1 and Cµ ∼ O (λµ/λµ) ∼ 1 from. If any

interaction increases λ (the size of the structure shrinks) the critical point (λ = λcrit) will
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be reached at which Cµ is zero. The magnetic Þeld energy (∝ C2
λ + C

2
µ) decreases to a

very small value since C2
λ ¿ 1. Since the total energy is conserved, almost all the initial

magnetic energy is transferred to the ßow causing an eruption (see Fig.2.7). Notice that

for coronal plasma, the skin depth li , for a typical density ∼ 109 cm−3, is small ∼ 100cm
(li/λ ∼ 103km) .

Fig.2.7 Plots for µ, the magnetic and the ßow energies versus λ for the

catastrophe�prone set h1 = 1, h2 = 1.007 and E = 1.3 > Ec = 7 · 10−3 (these conditions

can be used to model the explosive/eruptive events in solar atmosphere). The scale

lengths are highly separated λ+ << λ−. The initial choice makes Cλ ∼ O (λ/µ)¿ 1

and Cµ ∼ O (µ/λ) ∼ 1 from (2.31) and (2.32). If any interaction increases λ (the size of

the structure shrinks) the critical point (λ = λcrit) will be reached at which Cµ is zero.

Magnetic Þeld energy (∝ C2
λ + C

2
µ) decreases to a very small value since C

2
λ ¿ 1. Total

energy is conserved, almost all the initial magnetic energy is transferred to the ßow.
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2.4.2 Catastrophe through coalescence

The slowly evolving DB states may suffer a catastrophe in which the two constituent

states become degenerate on their way to changing the basic topological structure of

the Þelds. Although at the critical point we are still left with only one of the original

independent Þelds, the pathway to this catastrophe (as well as the parameter range where

it happens) is fundamentally different. In the previous example the DB state relaxed to

a single Beltrami state when the amplitude of one of original states went to zero (Root

Disappearance Mode (RDM)). An equally striking change may occur when the original

states coalesce to a single independent state (Root Coalescence Mode (RCM)), that is, the

two real characteristic length�scales degenerate to one. The critical point will deÞne the

boundary between the real and a pair of complex conjugate roots of the Double Beltrami

equation which translates into a boundary between what may be called paramagnetic

and diamagnetic structures of the magnetic Þeld. We remind the reader that a single

Beltrami Þeld with real λ deÞnes the conventional paramagnetic structure, while a purely

imaginary λ, leading to the London Equation, signiÞes complete diamagnetism.

The conditions for an RCM catastrophe are satisÞed when the parameters of the

system are such that the λ(µ) curve intersects the λ = µ line for real λ. By deÞnition,

the root coalescence means that at the critical point, there is no scale�separation implying

that the parameter space for RCM to occur will be quite different from the space in which

RDM occurs. This will also imply different astrophysical or solar structures where RCM

may pertain. Naturally at and near the critical point, parameter changes are not slow,

and the system is pushed to the dynamical evolution stage exactly like the situation

discussed in the previous section.

At the root coalescence critical point (λ = µ = λo), following relations hold

b = λo ± 1, �h2 = E (λo ± 1)− λ2
oh1;
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the latter is solved for critical λo ,

λo =
1

2

·
E ±

q
E2 − 4h1( �h2 ± E)

¸
,

which must be real for the catastrophe to occur. The necessary condition for the root

coalescence catastrophe is

E2 > E2
o , E2

o = 4
³
h1 ±

p
h1h2

´2

, (2.66)

an inequality which the invariant determinants of the system must obey. From the

critical energy Eo and critical λo , it is easy to Þnd that at the transition, the amplitudes

C2
µ ↔ C2

λ . When λ→ µ , both the numerator and the denominator vanish in (2.32) and

(2.31); the amplitudes are obtained by a limiting process

C2
λ = D

−1λ
£
E − µ[1 + (�a+ µ)2]h1

¤→
→ D−1λh1

£
λ[1 + (�a+ λ)2 − µ[1 + (�a+ µ)2¤ −→ λh1

C2
µ = −D−1µh1

£
µ[1 + �a+ µ)2 − λ[1 + (�a+ λ)2¤ −→ λh1

and are found to be equal, C2
µ = C

2
λ, as it must be because there is no way to distinguish

between the two states. The ratio of the magnetic to the kinetic energy b2/V 2 = (�a +

λ)−2 =∼ O(1) because in this case there is no separation between the roots! The structure
relaxes to a Single Beltrami state with a well�deÞned relationship between the magnetic

and the velocity Þeld.

In Fig.2.8, we display the contents of (2.53) in �a-b plane for different values of E:

(a) E = 0.4, (b) E = 1.3, where h1 = 1 and h2 = 1.5. From this Þgure and (2.53),

we Þnd that, with E increasing (or h1 increasing, h2 decreasing), the solutions enter the

region where λ and µ are complex, i.e., (b+ �a)2 < 4. Since the ABC map is not valid for

complex λ and µ, the critical point λ = µ deÞnes the end of the domain of applicability
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of the current theory.

Fig.2.8 Plots for the catastrophe conditions trough coalescence of the roots. (a)

E = 0.4, (b) E = 1.3 and h1 = 1, h2 = 1.5 in both cases. We see that there exist

regions where λ and µ are complex.

The sudden transformation of a DB state to a single Beltrami state (the standard one

parameter, one scale�length relaxed state) with qualitatively different physical proper-

ties from the original state (kinetic and magnetic energies, the relative orientation of the

magnetic and the velocity Þelds etc.) signiÞes a genuine catastrophe � a sudden change
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in the deÞning physical attributes of the system. This is quite different from the thought

experiment discussed in [125] where it was argued that the speciÞcation of appropri-

ate photospheric boundary conditions for the magnetic Þeld governed by the force�free

equation, could lead to a well�behaved evolutionary sequence without exhibiting any

catastrophic behavior.

In our model, even at the critical point of the catastrophe we can deÞne physical

parameters like the ßow kinetic energy and the magnetic energy. The assumptions of

the model like the vastly separated scales hold throughout and up to the critical point.

It should also be stressed that energy transformations do take place during the slow

evolution era (Figures 3a,b) for both the catastrophe�free and the catastrophe�prone

cases. Only the rates and direction of the transformations are dictated by the initial

conditions of the system. An appropriate choice of initial values of the invariants can

lead to a desired transformation.

Needless to say that as the system approaches the critical point, the quasi�equilibrium

considerations are just an indicator of what is happening and they must be replaced by

a dynamical description including the transport processes to capture the changes which

are no longer slow.

2.4.3 Conclusions and Summary

The theoretical foundation of this subsection rests on the Double Beltrami magneto�ßuid

states which represent plasma self�organization (relaxation) under the combined action

of interacting magnetic and velocity Þelds. The DB states contains Þeld conÞgurations

which can be qualitatively different from the conventional single Beltrami Þelds (Taylor

relaxed states, for instance) and are likely to help us understand the diversity of structures

generated in a variety of plasmas.

The crucial step we take in the solar physics context is to model the quasi�equilibrium,

slowly evolving solar atmosphere structures as a sequence of Double�Beltrami mag-

netoßuid states. As a consequence of this identiÞcation, we have been able to show
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the possibility of, and derived the conditions for catastrophic changes leading to a fun-

damental transformation of the initial state which is a superposition of two states � one

with a microscopic and the other with a macroscopic length�scale. The critical condition

comes out as an inequality involving the three invariants of the collisionless magnetoßuid

dynamics. When the total energy exceeds a critical energy, the DB equilibrium may

suddenly relax to a single Beltrami state corresponding to the large macroscopic size.

All of the short�scale magnetic energy is lost having been transformed to the ßow energy

and partly to heat via the viscous dissipation of the ßow energy.

We have also discussed another route to catastrophe within the broad theoretical

framework when the characteristic length scale are not separable into micro and macro

lengths. Physical situations where this mechanism may pertain will be discussed in future

work.

This general mechanism in which the ßows (and their interactions with the magnetic

Þeld) play an essential role could certainly help in advancing our understanding of a

variety of sudden (violent) events in the solar atmosphere like the ßares, the erupting

prominences, and the coronal mass ejections, particle outßows in chromosphere. The

connection of ßows with explosive/eruptive events is rather direct: it depends on their

ability to deform (in speciÞc cases distort) the ambient magnetic Þeld lines to temporarily

stretch (shrink, destroy) the closed Þeld lines so that the ßow can escape the local region

with a considerable increase in kinetic energy in the form of heat/bulk motion.

It is certainly tempting to speculate that though diverse phenomena like the chro-

mospheric mass outßows, spicules, explosive events in chromosphere, micro� and nano�

ßares, large coronal ßares, erupting prominences and CMEs do appear to be disconnected,

they could all be the manifestations of different aspects of a more global dynamics perti-

nent to a speciÞc coronal region. The mechanism for energy transformation presented in

this work and other mechanisms inherent in the basic model can work in various regions

of the Solar atmosphere dictating different patterns of dynamical evolution depending on

the intial and boundary conditions for a speciÞc region.
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We end this section with a word of caution: this quasi�equlibrium model is incapable

of handling processes that are not slow. Events in the neighbourhood of the catastrophe,

the creation and primary heating of the hot coronal structures, and the magnetic energy

release from the emerging ßux or the dynamics of the magnetic ßux emergence are a few

examples of a vast number of processes that require a careful and proper time dependent

treatment.
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2.5 Generation of QSM Fields in Two-Fluid Plasmas

Embedded in Super-Strong EM Fields

Recently considerable progress has been achieved in the development of compact ter-

awatt laser sources [142]. Such laser sources generate sub-picosecond pulses of electro-

magnetic (EM) radiation with focal intensities I > 1018W/cm2. One of the most powerful

Neodymium-glass laser system, "Vulcan" at Rutherford Appleton Laboratory, delivers

35TW to target at an intensity of I = 1019W/cm2 [143] in the short pulse mode. Pre-

liminary reports from several other centers seem quite promising and in very near future,

it will be possible to design petawatt laser facilities which will produce even higher in-

tensity (∼ 1021−23W/cm2) pulses of EM radiation [144, 145]. In the Þeld of such strong

sub-picosecond pulses, it is expected that the character of the nonlinear response of the

medium would radically change [146, 147].

In the wake of these far-reaching developments, it is natural that the interaction of

ultrashort, relativistically strong pulses has become a subject of intense theoretical and

experimental investigation. In the Þeld of such strong radiation, the electron oscillation

energy could be comparable or even larger than its rest energy. The relativistic nonlinear

effect, which is basically associated with the dependence of the electron mass on the EM

Þeld amplitude, determines the dynamics of EM pulses. At intensities 1018W/cm2 and

higher, a whole set of new phenomena were predicted and some of them have already been

conÞrmed by experiments [148, 149, 150]. Bulk of the investigations have been connected

with: 1) electrostatic wake-Þeld generation due to the displacement of plasma electrons

from the region occupied by the laser pulse under the action of the ponderomotive force

[151, 152, 153, 154, 155], and 2) the relativistic self-focusing of the laser beam itself

[156, 157, 158, 159, 160, 161, 162, 163].

Among the various nonlinear effects which may occur in a plasma interacting with

strong laser pulses, the generation of quasistatic magnetic Þelds (QSM) is found to be

one of the most interesting and signiÞcant, particularly because the presence of these
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Þelds could have considerable inßuence on the overall nonlinear plasma dynamics. In

the past, although much effort has been devoted to studying the mechanisms leading to

magnetic Þeld generation in laser plasmas (for a review see [164]), there does not exist

a well-established and satisfactory theory. Indeed, numerical simulations carried out by

Wilks et al. [165], carried out for the interaction of an ultra-intense laser pulse with an

overdense plasma target, predict extremely high self-generated magnetic Þelds ∼ 250MG;
these immense Þelds can not be properly explained on the basis of existing theories.

Sudan [166] suggested that the spatial gradients, and the nonstationary character of

the ponderomotive force, may lie at the origin of the strong magnetic Þelds discovered

in numerical simulations [165]. Several other analytical attempts have been made to

understand the results of the simulation [167, 168]. All these theoretical attempts use

a hydrodynamical formulation. It must, however, be pointed out that the conditions

prevalent in the simulation experiments (for example, the thermal speed vth > vp, where

vp is a characteristic low-frequency phase speed) may not yield to a hydrodynamical

description. The heat generated during the interaction further strengthens the inequality

as time goes on, and the transverse Þelds are pushed to the anomalous skin region making

it necessary to employ a kinetic treatment [169].

The hydrodynamic treatment (which we will follow in this section) can be quite ad-

equate provided vp >> vth. In the problem of magnetic Þeld generation in underdense

plasmas, this condition is likely to prevail. We would like to point out, here, that rela-

tively strong magnetic Þelds can also be generated in underdense plasmas; this has been

deÞnitively demonstrated in the numerical simulations of Askar�yan et al. [170, 171]

who were studying the relativistic self-focusing of the laser beam in such plasmas. In

[172, 173], it was shown that due to the resonant excitation of plasma waves the gen-

eration of QSM Þeld occurs both in the body of the linearly polarized EM pulse, and

also in its wake (region of the wakeÞeld). The simulation as well as experimental results

strongly indicate, that the problem of the generation of QSM Þelds by EM pulses is ripe

for a serious and careful theoretical investigation.
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In the present work we deal with the generation of QSM Þelds by relativistically

strong EM pulses propagating in an underdense plasma. Laser pulses are assumed to

be short, with time duration (Tl) less than the characteristic time for the ion response

ω−1
i (ωi is the ion Langmuir frequency) so that the ion motion can be neglected. At

the same time we assume that the pulse is sufficiently long, i.e. Tl >> ω−1
e (ωe is the

electron Langmuir frequency) that the complications due to the excitation of Langmuir

waves are absent. For simplicity, the analysis is restricted to beams with a narrow

crossection i.e. Lk(∼ cTl) >> L⊥, where L⊥ and Lk are respectively the characteristic

transverse and longitudinal spacial dimensions of the beam. This assumption is not

particularly restrictive and holds for the parameters pertinent to the experiment, for

example, by Borisov et. al. [148], where the propagation of relativistic high-intensity,

linearly polarized pulses is explored. In fact, [148, 149, 150] reports the observation of

self-channeled propagation of EM pulses from a sub�picosecond KrF ∗ (λ = 0.248µm,

Tl ∼ 500fs) excimer laser over a distance up to 2mm which is two orders longer than the

corresponding diffraction (Rayleigh) length (∼ πr2
o/λ, where ro ∼ 3.5µ is a initial focal

radius of the EM beam). The diameter of the channel (∼ L⊥) was ∼ 1µm, and the peak
intensity of the channeled radiation reached I ∼ 1019W/cm2. Note that the generation

of QSM Þelds was not reported in [148, 149, 150].

2.5.1 QSM Field Generation in Initially Uniform Plasma

Although it is not deÞnite that linearly polarized pulses do not generate a magnetic Þeld,

it is likely that the effect may be small. In this study, therefore we concentrate on the

circularly polarized pulses for which QSM Þelds should appear due to the inverse Faraday

effect. The mechanism (originally found in [174] using a phenomenological approach) of

excitation is the rotation of the polarization vector of the external radiation. In several

later papers, the evolution of QSM Þelds had been studied using the hydrodynamic

approach for both the weak and as well as the relativistically strong EM radiation. The

basic approach consists in using a relation which describes the conservation (at each
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instant) of the generalized vorticity, and then calculating a low frequency (LF) drag

current excited by the EM radiation [175, 176, 177, 178]. However, there are several

inconsistencies, and contradictions in the Þnal expressions of the drag current obtained

in these publications. We believe that these contradictions stem from the following fact:

in the cold plasma limit (i.e. when the characteristic phase velocities of LF perturbations

are much bigger than the electron thermal velocity) the expression for the LF drag

current is derived by taking the time average (over the fast scale associated with the

laser frequency) of the product of two high frequency quantities, one of which is ∼ ∇ · �E,
where �E is the HF part of the EM Þeld. It is well known that the laser Þeld in a plasma

is predominantly transverse (�E⊥), i.e., the longitudinal Þeld �Ek << �E⊥ for k >> L−1,

where k is the wave number and L is the characteristic spatial spread of the pulse. Since

∇ · �E ∼ ∇⊥ · �E⊥ + ik �Ek is nearly zero (is proportional to the high frequency density
perturbation), its replacement by ∇ · �E⊥ (which most of these references do) can lead
to a gross overestimate of the drag current. We shall correct this serious error in this

study, and evaluate ∇ · �E much more accurately and derive a correct expression for the
drag current for arbitrary amplitude laser pulses. We show that QSM Þeld generation

takes place due to the strong plasma inhomogeneity caused by the intense laser beam

itself, and that the amplitude of QSM Þeld increases in the ultrarelativistic case. We also

discuss the possibility of electron cavitation, and its inßuence on the effect of magnetic

Þeld generation.

We use the Maxwell equations which, under the above-mentioned assumptions, can

be written as:

∇×B = 1

c

∂E

∂t
− 4πe

c
n
p

mγ
, (2.67)

∇×E = −1
c

∂B

∂t
, (2.68)

∇ · E = 4πe(no − n), (2.69)

where - e , m , n , p are the electron charge, mass, density and momentum respectively,

c is the speed of light, no is the ion background density, and γ = (1+p2/m2c2)1/2 is the
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relativistic factor.

The motion of the cold unmagnetized electron ßuid is described by the standard

special�relativistic hydrodynamical equations. These consist of the equation of motion

∂p

∂t
+mc2∇γ = −eE, (2.70)

and the continuity equation

∂n

∂t
+∇ ·

µ
n
p

mγ

¶
= 0. (2.71)

The absence of the magnetic part of the Lorenz force in Eq.(2.70) is due to the assumption

that generalized vorticity is zero in the body of the electron ßuid; this assumption relates

the magnetic Þeld with the electron momentum (London equation of super conductivity),

B =
c

e
∇× p. (2.72)

For laser plasma interactions, the hydrodynamic equations in this form were displayed,

for the Þrst time, in [179, 180]; more complete discussion can be found in [181]. Equations

(2.70�2.72) are in an extremely convenient form for further manipulation. Substituting

E from Eq. (2.70) in Eqs.(2.67) and (2.69), and using (2.72), we obtain our Þrst equation

relating p (γ is just a function of p2) and the density n,

c2∇×∇× p+ ∂
2p

∂t2
+mc2

∂

∂t
∇γ + ω2

e

n

no

p

γ
= 0. (2.73)

The second equation relating n and p is derived by a combination of Eqs.(2.69) and

(2.70),
n

no
= 1 +

1

mω2
e

µ
∂

∂t
∇ · p+mc2∆γ

¶
. (2.74)

Equations (2.73) and (2.74) are a closed set to which the system of Maxwell and hy-

drodynamical equations has been reduced [182]. Note that this very set of equations was
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derived in our recent publication [78] dealing with the problem of wake Þeld generation

in semiconductor plasmas. Before proceeding further, it is worthwhile to remark that

the continuity equation (2.71) was totally ignored in the derivation of (2.73) and (2.74).

It is evident, however, that Eq.(2.71) is not really independent, and is readily derived by

taking the divergence of (2.73) and using (2.70). In fact, any two of the set (2.71), (2.73)

and (2.74) can be used as independent equations for n and p. Our goal in this study is

to calculate the relatively slow-varying (quasistatic) magnetic Þeld induced by a speciÞed

high frequency laser pulse. In response to the laser Þeld, all the Þelds in the plasma will

contain both the slow and the fast time dependence (with characteristic time τ ∼ ω−1 ).

Therefore, we may decompose each of the variables A ≡ (E,B,p,n, γ) into an averaged
and a varying part,

A =< A > + �A, (2.75)

where the brackets < ... > denote averaging over the time interval τ . With this prescrip-

tion, the averaged equation for < n > and < p > become

< n >

no
= 1 +

1

mω2
e

µ
∂

∂t
∇· < p >+mc2∆ < γ >

¶
(2.76)

and

c2∇×∇× < p >+ ∂2

∂t2
< p > +mc2

∂

∂t
∇ < γ > +ω2

e

< n >

no

< p >

< γ >
=

− ω2
e

no < γ >
< �n�p >, (2.77)

where it is assumed (to be justiÞed later) that < γ >= γ. The averaged Eq.(2.72),

< B >=
c

e
∇× < p > (2.78)

allows us to relate the generated magnetic Þeld with the averaged momentum. Electric
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Þeld of the HF radiation can be written in the form:

�E = [(x+ iy)E⊥(r, t) + zEk(r, t)] exp(−iωt+ ikz) + c.c. , (2.79)

where the transverse (E⊥) and the longitudinal (Ek) amplitudes are slowly varying.

Since we are using �p, rather than �E as our dynamical variable, let us Þnd the corre-

sponding expression for �p. It can be shown that if rE/λ << 1, where rE is a characteris-

tic displacement of the oscillating electrons due to HF Þeld, and λ is the EM Þeld wave

length, the relation between �p and �E has the form:

∂�p

∂t
= −e�E, (2.80)

which, coupled with (2.79), yields

�p = [(x+ iy)p⊥(r, t) + zpk(r, t)]exp(−iωt+ ikz) + c.c. (2.81)

after a simple integration over the fast time (ω−1). The slowly varying amplitudes (kept

constant during the integration), p⊥ and pk, are given by

p⊥ = − ie
ω
E⊥, pk = − ie

ω
Ez. (2.82)

Our next order of business is to evaluate the driving term proportional to < �n�p >

in Eq. (2.77). For this we must begin by deriving an expression for �n in terms of �p⊥,

which we are assuming is a �given� quantity. We could use the high frequency version of

either Eq.(2.71) or (2.74) to accomplish this. We choose to use Eq.(2.74) primarily to

show, in a very perspicuous manner, how our treatment differs from, and corrects earlier

treatments. From (2.74), we Þnd (γ has only an averaged part)

�n

no
=

1

mω2
e

∂

∂t
(∇ · �p) (2.83)
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Since ∇ · �p for a basically transverse wave is very small, extreme care must be taken in its
evaluation. It is conventional to replace ∇ · �p by ∇ · �p⊥ because |pk| is much smaller than
|p⊥|. This, in our opinion, is a serious mistake. Although |pk| << |p⊥|, |∇ · �p⊥| ∼ |p⊥|/R
may be (and is) of the same order as |∇ · �pk| ∼ k|pk| because kR >> 1, where R is the
transverse scale length associated with the laser pulse. Replacing∇ · �p with ∇ · �p⊥ results
in a gross overestimate of �n and hence of the driving term. There is a general lesson to

be learnt here: whenever the end results depend on ∇ · �E (∼ ∇ · �p), as they do in the
magnetic Þeld generation problem, one must not neglect the contributions from pk and

one must Þnd an appropriate (generally indirect) way of evaluating this small quantity.

We now calculate ∇ · �p by taking the divergence of the high frequency version of
Eq.(2.73), and obtain for a transparent plasma (ω > ωe), 2:

∇ · �p = ω2
e

ω2
�p⊥ ·∇⊥

µ
< n >

noγ

¶
(2.84)

where we have used the fact that, for circular polarized radiation, the particle energy

does not depend on the "fast" time, and there is no generation of high harmonics of

the EM Þeld (Note that effects of high harmonic generation, which take place due to

longitudinal part of HF Þeld, are negligibly small). This indeed is the reason for the

equality γ =< γ >, which is approximately given by

γ =

µ
1 +

|p⊥|2
m2c2

¶1/2

(2.85)

The LF drag current, which appears in the right hand side of Eq. (2.77), can now be

computed using Eqs. (2.83) and (2.84). One can already see that for circularly polarized

radiation, it is non vanishing provided the quantity < n > γ−1 depends on the radial vari-

able r⊥. If the radially inhomogeneous beam propagates in an initially uniform plasma,

2It should be mentioned that the relation (2.84) is the relativistic version of well-known
equation from the courses of the continuous media electrodynamics: ²∇ ·E = −(E ·∇)²
where ² is the dielectric permitivity of a medium.
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the ponderomotive force of the EM radiation (∼ ∇γ) pushes out the plasma electrons
from the region of its localization, and creates an effective plasma density inhomogeneity.

Notice that < n > and γ have the same characteristic radial scales length, and their

contributions in the creation of the drag current are equally important. At this junction

it is worthwhile to mention that if the EM beam has a spatially constant amplitude, an

initial inhomogeneity of plasma density will be required. Thus in a homogeneous plasma,

contrary to a statement made in [175], the constant amplitude EM beam can not gener-

ate the QSM Þeld by "magnetization currents". It was shown in [183] that the physical

reason, for the absence of the QSM Þeld generating source in the homogeneous case, is

the mutual compensation of the circular electron currents.

Now, for simplicity we consider an axisymetric electromagnetic pulse propagating

along the z axis: p⊥ = p⊥(r, z − vgt, t) , where vg = c(1 − ω2
e/ω

2)1/2 is the group

velocity of the laser radiation. Using Eqs.(2.83)-(2.85), the φ component of Eq.(2.77)

can be written as

2

c

∂2 < pφ >

∂ξ∂τ
+
1

r

∂

∂r
r
∂ < pφ >

∂r
−
µ
< n >

no

k2
e

γ
+
1

r2

¶
< pφ >=

= −2 ω
mc2

ω2
e

ω2

|p⊥|2
γ2

·
∂

∂r

µ
< n >

no

¶
−
µ
< n >

no

¶
∂

∂r
lnγ

¸
(2.86)

where ξ = z− vgt and ke = ωe/c. Notice that exactly the same expression for the driving
term (right hand side of Eq.(2.86)) could be derived by using the high frequency version

of Eq.(2.71) to evaluate �n. In this case one could avoid the possibility of going wrong

since �n can be calculated without having to evaluate ∇ · �p. We followed this path for
historical reasons.

For a narrow laser beam, within the approximations used in this study, Eq.(2.74) can

be approximated by
< n >

no
= 1 +

1

k2
e

µ
1

r

∂

∂r
r
∂γ

∂r

¶
(2.87)

It is now clear that using Eqs. (2.85) and (2.87), Eq.(2.86) can be viewed as an inho-
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mogeneous differential equation (the driving term is fully known because p⊥ is supposed

to be speciÞed) for < pφ >. If we can solve Eq.(2.86) for < pφ >, then the required

components of the QSM Þeld are readily determined by

e

c
Bz =

1

r

∂

∂r
r < pφ >, (2.88)

e

c
Br = − ∂

∂z
< pφ > . (2.89)

The explicit form for the driving term (drag current) in Eq.(2.86) allows us to substantiate

the discussion following Eq.(2.83) in clearer terms: For the nonrelativistic case (p2 <<

m2c2), an equation similar to Eq.(20) was derived in Ref. [19]. However they used the

relation ∇ · �p ∼∇ · �p⊥ and consequently, the source term came out to be proportional

to |p⊥|2. This is in marked contrast to our result; the nonrelativistic limit of our source
term is, in fact, proportional to |p⊥|4, because both the terms in the square brackets of
the right hand side of Eq.(2.86) are also proportional to |p⊥|2. Since |p⊥|4 << 1, the

magnetic Þeld strength will be considerably smaller than what was found in [178]. In

[176, 177] the spatial structure of the magnetic Þeld was analyzed for the case in which the

pump wave intensity and the plasma density have axisymetric distributions and it was

shown that the growth of the strength of these Þelds reaches saturation with increasing

pump intensity in the ultrarelativistic limit. But the expression for the drag current is

not correct.

As we will see below the problem is self consistent - If the pulse amplitude p⊥, and

therefore γ, has strong space dependence, then the inhomogeneity of < n > γ−1 will

always lead to the generation of QSM Þeld. Thus the system of Eqs. (2.86)-(2.89) with

(2.85) is an acceptable model for describing the magnetic Þeld generation process by nar-

row relativistic short laser beams. In what follows we assume that during the interaction

time of interest, the laser beam proÞle remains unchanged, and can be presumed to be
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Gaussian 3:

|p⊥|2 = p2
o exp

·
− r

2

R2
− ξ2

L2

¸
(2.90)

where R and L are the transverse and longitudinal dimensions of the pulse (R << L).

For the pulse shape represented by (2.90) we Þnd

N =
< n >

no
= 1− 1

k2
eR

2

(γ2 − 1)
γ

µ
2− r2

R2

(γ2 + 1)

γ2

¶
. (2.91)

From Eq. (2.91) one can see that the plasma electrons are expelled from the central

part of the pulse (r ≈ 0), creating a density hump away from the beam axis (r ∼ R); with
a Þnal (r →∞) exponential decay to the equilibrium value no. However, as it was shown
in [159, 160, 161, 162, 163], under certain condition, the electrons can be fully expelled

from the central part of EM beam (electron cavitation). To derive this condition, let us

Þrst deÞne a critical radius

R2
c =

1

k2
e

2(γ2
o − 1)
γo

, (2.92)

where γo = γ(r = 0) = (1 + p
2
o/m

2c2)1/2. For R > Rc, Eq.(2.91) reveals that N > 0 for

all r, and consequently, the electron cavitation does not occur. However if R = Rc, the

density does vanish at r = 0. ThusRc deÞnes the minimum beam radius for the beginning

of cavitation. Notice that within the framework of current model equations (which are

being widely exploited for the problem of relativistic self-focusing of EM beams), one can

not prevent the occurrence of unphysical, negative values for the electron density when

R < Rc. This failure of hydrodynamical model of a plasma is generally corrected by

putting N = 0 in the entire spacial region where N < 0 [159, 160, 161, 162, 163]. For

the current study, we will follow this arbitrary, though, workable ansatz. In future, more

detailed work, we will examine if this unphysical feature is basic to the hydrodynamical

description or is a consequence of the approximations made. (It has also been argued

([184] that in the case of cavitation, an alternative to the ßuid models, the particle in

3This assumption can be justiÞed until the pulse passes the self-focusing length or the
Rayleigh length in the case of diffraction spreading.
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cell (PIC) technique should be used).

Algebraic complications prohibit a general analytical solution of Eq. (2.86). In the

non relativistic case (p2
o << m

2c2) Eq. (2.86) reduces to an equation which can be solved

by taking a Fourier-Bessel transform. However the Þelds produced are uninterestingly

small, and are not presented here. The interested reader can consult [178], remembering

that they have overestimated the Þelds by a factor m2c2/p2
⊥ >> 1.

Concentrating on the relativistic case, we Þrst neglect the Þrst term on the l.h.s

(because c−1∂2/∂τ∂ξ << ∂2/∂r2), of Eq. (2.86) arriving at an ordinary differential

equation in r. For this ordinary differential equation, we can get an analytical solutions

in two different limits, for arbitrary amplitudes. Indeed, in the limit of a smoothly

inhomogeneous laser beam, k2
eR

2 >> γo, for which the electron cavitation does not

occurs, Eq.(2.86) yields (derivative terms are neglected)

< pφ >= 2
mc2

ω

(γ2 − 1)
γ

∂

∂r
ln

µ
N

γ

¶
(2.93)

The proÞle for the magnetic Þeld Bz(r) can be calculated using Eqs. (2.88) and (2.93).

Bz(r) has a maximum on the beam axis, then it decreases with increasing r, changing

polarity near the beam edge (∼ R), and decaying rapidly to zero when r → ∞. The
central maximum can be conveniently expressed as

Ωc(0) = 4
ω2
e

ω

γo
k2
eR

2

µ
1− 1

γ2
o

¶2

, (2.94)

whereΩc(r) = eBz(r)/mc is an effective cyclotron frequency. Remembering that Eq.(2.94)

is valid only for γo << k
2
eR

2, we conclude that Ωc < ωe even in the relativistic case.

Note that the Þnal value of Ωc (Eq.(2.94)) does not depend on the equilibrium plasma

density no. However, for this calculation to be valid, certain (ω > ωe, γo << k2
eR

2)

constraints on the density have to be imposed. Let us now estimate the strength of

the magnetic Þeld for a relativistically strong pulse. For this purpose we choose the

wavelength and intensity in the experimentally range (see Borisov et al. in [161]), λ =
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0.248µm, I = 1.3× 1020W/cm2 (γo = 2). For representative values of R = 1µm− 3µm,
the maximal value of the magnetic Þeld is found to be 3MG − 0.4MG. Corresponding
plasma densities needed to satisfy the aforementioned constraint must lie in the range

no = 5× 1019 − 1021cm−3 for R = 3µm, and no = 5× 1020 − 1021cm−3, for R = 1µm.

In the opposite case of a narrow pulse, k2
eR

2 << 1, the differential term dominates,

and Eq.(2.86) can be readily integrated to give

Ωz(r) = 2
ω2
e

ω

Z ∞

r

dr
0
µ
γ2 − 1
γ

¶
∂

∂r0

µ
N

γ

¶
, (2.95)

from which, with the aid of Eq.(2.91), one can obtain the radial structure of Bz(r) for

given R and γo. However, in the relativistic case when R
2
ck

2
e > 1, electron cavitation

occurs (R < Rc). In order to incorporate this phenomena, we must put N = 0 for

0 < r < rc where rc is the solution of N(rc) = 0, and use Eq.(2.91) for N for r > rc.

Thus for r < rc, we obtain a constant magnetic Þeld (the source is zero). For this case it

is straightforward to see that the strength of the magnetic Þeld has a maximum on the

beam axis r = 0, remains unchanged up to r = rc, then drops down, changes polarity and

rapidly tends to zero as r →∞. This behavior closely resembles the Þeld produced by a
solenoid! Indeed, the induced current is located on the "wall" of the cavitating plasma

cylinder with radius r ≈ rc(<
√
2R); there is no current in the body of the cylinder

(r < rc). The magnetic Þeld, created by this current formation, remains uniform inside

the "cylinder". The maximum value of Bz = Bz(0) can be found from Eq.(2.95) by

replacing the lower limit r by rc. Let us estimate the strength of the magnetic Þeld. For

λ = 0.248µm, γo = 2, R = 3µm and plasma density no = 1017cm−3 (k2
eR

2 = 0.03). For

the magnetic Þeld we get Bz(0) ≈ 0.1MG. We would like to emphasize, that if we were
to neglect the effects of cavitation, and try to obtain Bz(0) by integrating from r = 0,

we may badly overestimate the strength of the generated magnetic Þeld.

A caveat is in order here. For the narrow beam (with cavitation and γo > 1) case,

the term proportional to N/γ (Eq.(2.86)) is not smaller than the differential term for all

r. Equation (2.95), therefore, should be just viewed as a very approximate indicator of
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the Þeld strength and structure. For a proper and accurate evaluation, Eq.(2.86) should

be solved numerically.

The above Eqs.(2.94-2.95) provide us with estimations at the focal spot area. The

radiation pulse, after it has passed the focal area, either diffract (in the case of narrow

beam R2k2
e << 1) or enters the self-focusing regime (for R

2k2
e >> 1) provided that the

laser radiation power exceeds of critical value (∼ 1.6×1010(ω/ωe)
2W ). In the latter case

the beam intensity is concentrated in a narrow channel of the radius R ∼ 2k−1
e . Note

that Eqs.(2.94-2.95) are invalid for evaluation the magnetic Þeld in channel since all the

terms in the left-hand side of Eq.(2.86) are of the same order. In order to evaluate the

magnetic Þeld in the channel we have solved Eq.(2.86) numerically. In Fig.2.9, typical

behavior of Bz(r) is displayed for po/mc = 3. One can see that in the region of electron

cavitation the magnetic Þeld is constant. Outside of the cavitating channel it changes

polarity.

Fig.2.9 The magnetic Þeld B(r)[= Ωc(r)ω/ω2
e] (solid line), and the density N(r)

(dashed line) proÞles as functions of the dimensionless radius r[= r/R].
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For arbitrary strong laser radiation it is convinient to present the maximal strength

of the magnetic Þeld (Bm = Bz(0)), which is generated in the self-guiding channal, as

Bm
B1

=
ω2
e

ω2
b(p2

o) (2.96)

where B1 is the high frequency magnetic Þeld�s strength of the laser pulse, and b(p2
o) is

the dimensionless function. In Fig.2.10 we plot b versus p2
o/m

2c2. We can see that b is

fast growing function and whenever p2
o reaches the value when electron cavitation occurs,

further grow of b becomes considerably weaker. If we neglect the effect of electron cavi-

tation we may overestimate the strength of the generated magnetic Þelds. The maximal

value of magnetic Þeld Bm, as it follows from Eq.(2.96) and Fig.2.10, can not be as high

as the magnetic Þeld of laser radiation (at least for the EM Þelds intensities which can be

created in the channel nowadays). However it can be quite strong in a dense plasma for

high intensities of the laser radiation. Indeed, for λ = 0.248µm and I = 4× 1020W/cm2

(i.e. po = 3mc) and for the plasma density no = 1020 − 1021cm−3 ((ωe/ω) = 0.07− 0.24)
for the maximal value of the magnetic Þeld we get Bm = 13− 130MG.

In this study, we have attempted to develop a systematic treatment of the phenom-

enon of the generation of quasistatic magnetic Þelds by relativistically strong circu-larly

polarized laser pulses propagating in an initially uniform underdense cold electron plasma.

We show that because of the strong plasma inhomogeneity caused by the intense laser

beam, a low-frequency drag current is induced, which, due to the inverse Faraday effect,

produces a quasis tatic magnetic Þeld in the beam propagation area. We derive an ex-

pression for the drag current valid for arbitrary amplitude laser pulses, and show that

for the weakly relativistic (or nonrelativistic) laser radiation, the QSM Þeld is smaller

than what was found in previous publications. In the case of ultrarelativistic pulses,

however, the generated QSM Þelds can reach considerable magnitudes. In all of these

cases, the Þelds peak on the beam axis. We have also calculated the QSM Þeld gener-

ation in the self-channeling regimes of intense laser pulses, and found that the electron
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cavitation makes the QSM Þeld resemble closely the Þeld produced by a solenoid. The

maximum value of the generated magnetic Þeld in the channel increases rapidly with the

beam intensity, and when cavitation occurs the rate of growth of Bm with the intensity

becomes slower. Finally, we show that for high-density plasma, the strength of the QSM

Þeld, which can be generated in the channel, can be ∼ 100 MG and greater for currently
available laser pulses.

Fig.10 The dimensionless measure b, indicating the excess of the calculated over the

simply estimated Þeld, vs p2
0/m

2c2.

2.5.2 QSM Field Generation in Initially Non—Uniform Plasma

In this subsection we concentrate on the circularly polarized pulses for which QSM Þelds

should appear due to the inverse Faraday effect. The mechanism (originally found in

134



[174] using a phenomenological approach) of excitation is the rotation of the polarization

vector of the external radiation. The plasma in a very strong circularly polarized Þeld of

laser radiation exhibits some of features of magnetized (gyrotropic) plasma which lead to

the creation of avarage current. The sum of circular electron currents in inhomogeneous

(given initially or created due to the ponderomotive effects) inÞnite underdense plasma

generating the summary "magnetization current" gives rise to the low frequency (LF)

drag current appearance, which is the source of the QSM Þeld.

The evolution of QSM Þelds has been studied using the hydrodynamic approach for

both the weak as well as the relativistically strong pulses of circularly polarized Þeld.

The basic approach consists in using a relation which describes the conservation (at each

instant) of the generalized vorticity, and then calculating a LF drag current excited by

the EM radiation [187, 188, 175, 189, 176, 177, 178, 190, 191]. However, in most of the

publications several inconsistencies and contradictions in the understanding of the QSM

Þeld generating source and the Þnal calculation of drag current are presented. Just re-

cently the magnetic Þeld generation through inverse Faraday effect and its effects on the

propagation of a circularly polarized light wave were studied by Sheng et al. [190] in a

self�consistent way for relativistic intensities introducing, however, again two generating

sources: plasma magnetization and the inhomogeneity of both the electron density and

light intensity, which produces the nonzero current in the azimuthal direction. In our pa-

per [191] we derived a correct expression for the drag current for arbitrary amplitude laser

pulses. It was shown that QSM Þeld generation in intially uniform underdense plasma

takes place due to the strong plasma inhomogeneity caused by the intense inhomogeeous

laser beam itself, and that the amplitude of QSM Þeld increases in the ultrarelativistic

case. In both papers [190, 191]] the possibility of electron cavitation and its inßuence

on the effect of magnetic Þeld generation was discussed. In self�channeling regime the

magnitude of generated QSM Þelds can reach 100MG and greater values.

In initially strongly nonuniform plasma having the inhomogeneous distribution of

circular electron magnetization currents which can not compansate each other it becomes

135



possible to generate the QSM Þelds of ruther high values even with arbitrarily strong

circularly polarized laser radiation of constant amplitude (we will present below), while

with linearly polariazed laser radiation of constant amplitude the generation of QSM

Þelds is doubtful [186]. The initial inhomogeneity of plasma was not considered in above

subsection [191], here we show that the formalism given there is applicable for the general

case, when the density and the laser radiation have spacial gradients initially. We Þnd

below that the wrong formalism used in many earlier publications sometimes could lead to

the right results obtained for inverse Faraday effect. The advantage of the initial convex

density proÞle (rather than concave one) to get the high value generated magnetic Þelds

is found.

Let us assume that laser beam with the electric Þeld amplidude of the high frequency

(HF) radiation: �E = [(x+iy)E⊥(r, t)+zEk(r, t)]exp(−iωt+ikz)+c.c. (here the transverse
(E⊥) and the longitudinal (Ek) amplitudes are slowly varying in time τ ∼ ω−1 values)

propagates in the initially inhomogeneous underdense plasma.

Following the derivation procedure similar to that made in the paper [191], within the

approximations given there, considering the axisymmetric circularly polarized EM pulse

propagating along the z axis: p⊥ = p⊥(r, z − vgt, t) , where vg = c(1− ω2
e/ω

2)1/2 is

the group velocity of the laser radiation, we Þnd for the LF electron density:

< n >

noo
=
no(r)

noo
+
1

k2
e

µ
1

r

∂

∂r
r
∂γ

∂r

¶
, (2.97)

where the brackets < ... > denote the averaging over the time τ ; no(r) is the plasma

electron density in equilibrium state and noo ≡ no(r = 0) (here k2
e = ω

2
e/c

2 and ω2
e =

4πe2noo/me); And for the φ component of the LF electron momentum (ions are assumed

immobile) we get:

2

c

∂2 < pφ >

∂ξ∂τ
+
1

r

∂

∂r
r
∂ < pφ >

∂r
−
µ
< n >

noo

k2
e

γ
+
1

r2

¶
< pφ >=
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= −2 ω
mc2

ω2
e

ω2

|p⊥|2
γ

·
∂

∂r

µ
< n >

nooγ

¶¸
, (2.98)

where ξ = z − vgt and < n > is given by the eq.(2.97), γ = (1 + |p⊥|2/m2c2)1/2 =< γ >

. We have used the fact that for circularly polarized radiation the particle energy does

not depend on the "fast" time and there is no generation of high harmonics of EM Þeld.

We have to note here that calculating the driving term in the eq.(2.98) we used the

relativistic version of well�known equation from the courses of the continuous media

electrodynamics: ²∇ ·E = −(E ·∇)² (where ² is the dielectric permitivity of a medium)
since replacing ∇ · �E (∼ ∇ · �p) with ∇ · �E⊥ (∼ ∇ · �p⊥) results in a gross overestimate
of �n and hence of the driving term ∼< �n · �p > /γ (as most of the references do in the
magnetic Þeld generation problem neglecting the contributions from Ek).

If the pulse amplitude p⊥ , and therefore γ , has strong space dependence, then

the inhomogeneity of < n > /γ will always lead to the generation of QSM Þelds in

the uniform inÞnite underdense plasma. Now, in initially inhomogeneous plasma, in the

limit of weak laser pulse inhomogeneity ( ∇N0(r) >> ∇γ(r), < n(r) > ' no(r) ),

one can Þnd the spatial structure of the magnetic Þeld Bz = (c/e)(1/r)(∂/∂r)r < pφ >

from the following equation (provided that no(r) 6= 0 in the pulse propagation area):

Bz − 1
r

∂

∂r

·
γ

N(r)k2
e

µ
r
∂

∂r
Bz

¶¸
=
2mc3

eω

1

r

∂

∂r

·
(γ2 − 1)
γ

r
∂

∂r
ln

µ
N(r)

γ

¶¸
, (2.99)

where N(r) ≡< n(r) > /noo.
From the eq.(2.99) it is clear, that even in case of nonrelativistic laser radiation (γ ' 1)

or spatially constant amplitude laser pulse for initially inhomogeneous plasma the drag

current is signiÞcant if the electron density inhomogeneity (given initially!) is large and,

consequently, the quasistatic magnetic Þeld generation becomes possible. While in the

limit of initially homogeneous plasma (no(r) = noo) the inhomogeneity of laser pulse is

required to generate the QSM Þelds.

(i). In the limit when the initial density inhomogeneity scale length L is much larger

than the skin depth ∼ γ1/2/ke the maximal value (reached on the beam axis) is com-
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pletely deÞned by L. Calculating the QSM Þeld for radially concave (convex) density

proÞle No(r) = 1 ∓ r2/L2 we Þnd that Bz(r) has maximum on the beam axis and

then decreases to zero when r →∞ , having different polarity depending on the initial

proÞle type. The central maximum, introducing the expression for the effective cyclotron

frequency Ωz(r) = eBz/mc , can be expressed as:

| Ωmax(0) |= 8ω
2
e

ω

γo
k2
eL

2

µ
1− 1

γ2
o

¶
, (2.100)

where γo = γ(r = 0). Simple estimations give us | Ωmax |< ωe.
(ii). In the opposite case of k2

eL
2 << 1 from the eq.(2.100), in the case of strongly

nonuniform plasma, when the EM amplitude spatial gradients are completely negligible,

taking into account that Þelds vanish in the inÞnity, we Þnd the folowing expression for

the effective cyclotron frequency Ωz(r) :

Ωz(r) = −2ω
2
e

ω

µ
1− 1

γ2

¶
No(r). (2.101)

which for the nonrelativistic laser radiation coincides with that of obtained by Pitaevskii

in 1960 for the magnetic induction generated by the inverse Faraday effect [174] using

the phenomenological approach. Later this effect was found experimentally [193], it was

shown that in the low intensity limit the produced magnetic Þeld is proportional to the

intensity of the incident wave.

We have to mention here, that the expression for Ωz(r) given by the eq.(2.101), found

under the proper conditions using the only source for magnetic Þled induction � the LF

drag current, is valid for the strongly inhomogeneous plamsa only (for nearly constant

amplitude laser pulse). In this case the maximal value of magnetic Þeld doesn�t depend on

inhomogeneity scale length, is the same for all type initial inhomogeneity, and is deÞned

just by the laser beam intensity. For ultra�relativistic laser radiation it reaches saturation

giving Ωmax,u ∼ −ω2
e/ω < ωe . Such result was obtained by Abdulaev et al. (1986) in

[177], although they used the incorrect expression for drag current again neglecting the
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contributions from pk. Thus, taking the limit of constant amplitude ultrarelativistic laser

radiation using the wrong formalism one can get the correct result. However, using the

formalism of several other publications, even in this case, it is impossible to obtain the

above correct result and understanding for the inverse Faraday effect [187, 188, 178].

(iii). In case of k2
eL

2 ∼ γ it is necessary to solve the Eq.(2.100). For both (concave

and convex) shapes of initial density distribution it is possible to perform by the numerical

simulations. The generated magnetic Þeld proÞles are similar to those found in the (i)

case, only the maximal values are increased signiÞcantly.

Generally, in laser-produced plasmas the density gradient scale length is typically

of the order of that of for the beam amplitude, L ≥ R (R is the laser beam radius),

i.e. ∇no(r) ≤ ∇γ(r) and we have to take into acoount the spatial gradients of EM

apmlitude. Thus, it is necessary to solve the system of equations (2),(3) with (1) keeping

in mind that < n > changes additionally because of ponderomotive effects. Now the

characteristic radial scale lengths of < n > and γ can be of same order and, consequently,

their contributions in the creation of the drag current are equally important. For the

relativistically strong laser radiation, when the electron cavitation occurs, to prevent the

unphysical, negative electron density existance, we have to put instead of N the following

(using the accepted in previous papers ansatz):

N(r) = θ[< n(r) >]· < n(r) >, (2.102)

where θ(x) is the Heaviside function and (θ(x) = 0 for x < 0 ; θ(x) = 1 for x ≥ 0).
The system of equations (2.97),(2.98),(2.99) with (2.102) is the acceptable self�consistent

model to describe the QSM Þeld generation process in the initially inhomogeneous plasma

by the narrow relativistic laser beams. Estimating the generated magnetic Þeld value for

the Gaussian proÞle laser pulse propagation at the focal spot area we Þnd (in both con-

cave and convex cases) that the maximal value is reached on the beam axis. The proÞles

are similar to those found in case of the initially homogeneous plasma (see the results

of paper [191]), only the maximal values are changed a little corresponding to the Þnal
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density distribution. In the self�focusing regime the structure of the generated QSM Þeld

closely resembles that of the Þeld produced by a solenoid : the Þeld is maximum and uni-

form in the cavitation region, then it falls, changes polarity and vanishes (see Fig.2.11).

The cavitation region is either wider (concave initial density) or narrower (convex) than

in initially homogeneous plasma and, hence, the maximal strength of the magnetic Þeld

is greater in case of initial convex density proÞle, although in the latter case we get a less

steep density gradient but, what is essential, a more narrow channel empty of electrons

and a wide �wall� of electron cylinder (the spatial gradients of the initial density distrib-

ution and the density variation caused by the ponderomotive effects have the same signs

yielding an increased maximal strength of the magnetic Þeld).

Fig.11 The magnetic Þeld proÞles as functions of the B(r)[Ωz(r)ω/ω2
e] dimensionless

radius r[= r/R] for different initial densities N0(r) = 1 + ar
2[a = R2/L2]. Pulse

intensity in the channel: I = 4 · 1020W/cm2, n00 = 10
20 − 1021cm−3

(ωe/ω = 0.07− 0.24).

Thus, a strong electron density inhomogeneity is proÞtable to generate immense mag-

netic Þeld strengths but at the same time it would be better to provide this inhomogeneity
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in a wide region of the beam propagation area. Remembering that for an initially convex

density distribution plasma less energy is required to drive the self-focusing (and the

more energy of the incident pulse is trapped in the channel) than in the homogeneous

plasma (see the results obtained by Bonnaud et al. [194], we conclude that such plasma

have advantages also in obtaining higher values of generated QSM Þelds in the channel.

In the present study, applying the correct formalism found in our previous paper [191],

we have shown the possibility of quasistationary magnetic Þeld generation by spatially

uniform circularly polarized laser radiation in initially strongly inhomogeneous under-

dense plasma. We conclude that the only source of magnetic Þeld generation is the low

frequency drag current induced due to the plasma inhomogeneity (given initially or pro-

duced by the ponderomotive force of the incident wave). The advantage of a convex

initial density proÞle compared to a concave one (or to a homogeneous plasma) to gen-

erate huge magnetic Þelds (∼ 200MG and greater) in the self-focusing regime by the

currently available intense laser pulses is found.

2.5.3 On the Generation of Generalized Vorticity and Quasi—

static Magnetic Fields In Dissipative Plasmas

As discussed above, the self�generated magnetic Þelds in laser�produced plasmas are

induced by a variety of mechanisms depending on both the laser and plasma character-

istics (see e.g. [177, 191, 192, 195, 196, 197] and references therein). Recently, ultrahigh

self�generated magnetic Þelds have been revealed in experiments [198] and in numerical

simulation [190]. Also the work on QSM Þeld generation due to Inverse Faraday (IF)

effect was performed in dissipative isotropic plasma by a hydrodynamic approach. There

are several reasons why dissipative processes and the relativistic increase in electron mass

caused by an intense EM Þeld should be taken into account when studying the QSM Þeld

generation problem. Most of them are based on the observational evidence of the de-

pendence of plasma heating and particle acceleration processes on the self�consistent
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processes of QSM Þeld generation in both the plasma conÞnement experiments and as-

trophysical environments. In this study we concentrate on the circularly polarized pulses

for which QSM Þelds should appear due to the inverse Faraday effect. The mechanism

(see [174]) of excitation is the rotation of the polarization vector of the external radiation.

Then plasma in a very strong circularly polarized Þeld of laser radiation exhibits some

features of a magnetized plasma which lead to the creation of average magnetization cur-

rent � the sum of circular electron currents in inhomogeneous (given initially or created

due to the ponderomotive effects) inÞnite under�dense plasma; this low frequency (LF)

drag current itself represents the source of the QSM Þeld. We now develop further the

QSM Þeld generation theory [191] with account of dissipation.

We start with the equations for the collissional un�magnetized relativistic plasma

embedded in the strong electromagnetic Þeld [199] (where p is the electron momentum,

n � electron density and ions are assumed immobile with density n0):

∂p

∂t
+mc2∇γ = eE+ p

γ
×Ω+ f , (2.103)

∂n

∂t
+∇

µ
p

mγ
· n
¶
= 0, (2.104)

where (ν = ν(r) is the collision frequency):

f = −νp, γ =

µ
1 +

p2

m2c2

¶1/2

(2.105)

and for generalized vorticity Ω = eB
mc
+ 1

m
∇× p we have the relation:

∂Ω

∂t
= ∇×

·
p

mγ
×Ω

¸
+
1

m
∇× f (2.106)

that describes the nonlinear interaction of vortices (and generation of magnetic Þelds).

In non�dissipative plasma generalized vorticity is conserved (Ω(t) = 0 everywhere) .
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We take f(t = 0) 6= 0 . From Maxwell equations and the equations of motion we get:

∇×∇×p+ 1

c2
∂2

∂t2
p+m

∂

∂t
∇γ+ ωp

2

c2
n

n0

p

γ
= m∇×Ω+ 1

c

∂

∂t

·
p

γ
×Ω

¸
+
1

c

∂

∂t
f , (2.107)

n

n0

= 1+
1

mω2
p

div(eE) = 1+
1

mω2
p

·µ
∂

∂t
+ ν

¶
∇ · p+mc2∆γ −∇ ·

µ
p

γ
×Ω

¶¸
(2.108)

and representing all A(E,B,Ω,p, n) as A =< A > + �A in the presence of transverse

Þeld: �E = 1
2
�E⊥(r, t)e−iωt + c.c. (�E|| ¿ �E⊥; k0 ∼ ∇|| À ∇⊥ ∼ L−1 and < γ >' γ for

c.p. radiation; FE ≡ γ−1 < �p× �Ω >) we arrive to following relations:

∂ < Ω >

∂t
= ∇×

·
< p >

mγ
× < Ω >

¸
+
1

m
∇× < f > + 1

m
∇× FE . (2.109)

Note that for c.p. radiation the last term in Eq.(2.108) has LF part only (there is no

generation of harmonics). For the fast components we have:

∂ �Ω

∂t
=
1

m
∇× �f , ∂�p

∂t
= e�E+ �f . (2.110)

In general theory there are the fastly and slowly varying collision frequencies and νh 6= νs.
We will ignore this effect since for our case γ À 1. Then < f >= −ν < p >, �f = −ν�p.
From Eq.-s (2.107),(2.108) one gets the following relations (to the lowest order):

µ
∂2

∂t2
− ν2

¶
�p = e

µ
∂

∂t
− ν

¶
�E ,

�n

n0

=
1

mω2
p

µ
∂

∂t
+ ν

¶
∇ · �p. (2.111)

Now we have to Þnd correctly the expression for �n. Following [191], taking div of

the Eq.(2.107) we get: ∇ · �p ∼ (Re ²)−1�p · ∇(Re ²) , where Re ² = 1 − ω2
p < n >

/[n0γ (ω
2 + ν2)]. Then the drag current: jE =< �n �p > e/mγ can be found as:

jE =
e

mγ
< �n�p >=

e

mγ (ω2 + ν2)
< �p

·µ
∂

∂t
+ ν

¶
�p⊥ ·∇⊥

µ
< n >

γ

¶¸
> (2.112)

with �p calculated for collisional plasma. It is clear, that j|| ¿ j⊥ and drag current can
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be responsible mainly for axial QSM Þeld generation. As shown in [191, 192], without

initial inhomogeneity external Þeld has to be strong to create drag current via induced

inhomogeneity. This is the manifestation of both ponderomotive and Faraday effects.

To Þnd the inßuence of dissipation (FE is absent in collisionless limit)we use Eq.(2.110):

�Ω = − i

mω
[(∇ν(r)× �p) + ν∇× �p] , (2.113)

FE =<
�p

γ
× �Ω >= − i

mωγ
[< �p× (∇ν(r)× �p) > +ν < �p×∇× �p >]. (2.114)

Thus, when ν → 0, �Ω→ 0 and FE → 0, jE → jcollisionless. From the equations (2.109),

(2.112) and (2.113) to the lowest order we derive, that �Ω|| À �Ω⊥ and FE|| À FE⊥, while

< Ω|| >¿< Ω⊥ > (∂z ¿ ∂x; ∂y). After straightforward algebra, using < Ω|| > → 0 and

equations (2.107), (2.112) in stationary limit for the cylindrical geometry, the equations

for the components of generated QSM Þeld are derived (there is no φ dependence):

e

c
< Bz >= −1

r

∂

∂r
r < pφ >; (2.115)

1

r

∂

∂r
(r < Bφ >) =

ω2
p

c2
c

e

< n >

n0

< pz >

γ
+
4π

c
jEz . (jEz → 0) (2.116)

The equations for < pφ > and < n > can be easily derived from the Eq.-s (2.107),(2.108)

for steady state (to the lowest order):

1

r

∂

∂r
r
∂

∂r
< pφ > −

µ
ωp

2

c2
< n >

n0γ
+
1

r2

¶
< pφ >=

ω2
p

c2
jEφ , (2.117)

< n >

n0
= 1 +

1

mω2
p

£
mc2∆γ −∇ · FE

¤
, (2.118)

where jEφ ∼ e

mω

|�p⊥|2
γ
∇⊥

µ
< n >

γ

¶
.

We need now to derive the equation for < pz >. The φ�component of Eq.(2.109) in
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stationary case gives:
∂

∂r
(< fz > +FEz >) = 0. (2.119)

Then, assuming that all Þelds vanish at r →∞, we have:

< pz >=
1

ν
< FEz > . ( ν = const ⇒ FEz ∼ νk0

2mω

|�p⊥|2
γ

) (2.120)

And since �p ∼ �p⊥ (�pz = k−1
0 ∂r�p⊥) and jEz → 0 , the axial component of QSM Þeld

< Bz > is deÞned by < jEφ > only (exactly as it is in non�dissipative plasma) while

azimuthal component of QSM Þeld is completely deÞned by dissipation (note, that for

ν = const the latter is absorbed in Þnal relation for < Bφ >). Due to the existence of

this φ�component the QSM Þeld is helice�type.

In conclusion, we have shown that since the generalized vorticity is not conserved

in dissipative plasma there exists the rotational part of the LF force in addition to drag

current. It is determined by the interaction of HF oscillations of plasma electrons and HF

vorticity (present is such plasma). There exists also the axial component of this LF force

that generates the quasi�static axial current. This current later becomes the source for

azimuthal component of QSM Þeld. Due to the existence of this component the structure

of magnetic Þeld represents the helices. This component is completely deÞned by the

friction effect and exists even in weakly relativistic case. Hence, in such plasmas, for

the generation of QSM Þelds there is no need in strong inhomogeneity (initially given or

created by the strong relativistic laser pulse). The establishment of the helical structure

of QSM Þeld is fully determined by collision frequency and less sensitive to the scale of

plasma inhomogeneity. The generated vortices of magnetic Þeld may strongly inßuence

the dynamics of both the laser Þeld and electrons (e.g. leading to efficient acceleration

of electrons) in the self�focusing regime.
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Chapter 3

Acceleration of Plasma Flows and

Their Escape Due to Magneto—Fluid

Coupling

3.1 Background

In astrophysics (particularly in the physics of the solar atmosphere), plasma "ßow" could

be assigned at least two connotations: 1) The ßow is a primary object whose dynamics

bears critically on the phenomena under investigation. The problems of the formation

and the original heating of the coronal structures, the creation of channels for particle

escape, for instance, fall in this category, 2) The ßow is a secondary feature of the system,

possibly created as a by�product and/or used to drive or suppress an instability. Since

the generation of ßows which will eventually create the coronal structures [70, 72] is the

theme of this effort, the ßows here are fundamental.

By exploiting a simple two�ßuid model in the solar context, several recent studies

[67, 236] have revealed the breadth of phenomena made possible by the combined action

of the ßow�velocity and the magnetic Þelds. The ßow�based approach will prove, per-

haps, crucial in the study of solar corona, observationally found to be a highly dynamic
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arena replete with multiple�scale spatiotemporal structures (Aschwanden et al. 2001a);

the approach gains immense credibility with the discovery that strong ßows are found

everywhere � in the subcoronal (chromosphere) as well as in the coronal regions (see e.g.

[1, 140, 200, 201, 247, 232, 207, 202] and references therein). Recent phenomenology

strongly emphasizes that the solar atmosphere is an extremely inhomogeneous (in all

parameters) area in which small� and large�scale closed magnetic Þeld structures with

different temperatures co�exist in nearby regions. For example, two-temperature coronal

models constructed from SOHO/EIT observations indicate complicated magnetic topol-

ogy and Þne�scale structuring of corona (including Coronal Holes) [234, 203]. It is also

clear that the mechanisms for energy transport and channeling of particles in Solar at-

mosphere are deeply connected with the challenging and exciting problems of the solar

coronal heating and of the origin of the solar wind (SW) [233].

Exploring the mechanisms for ßow�generation is the main theme of this study. We

begin, however, by presenting illustrative examples for the evidence/speculation on the

existence of ßows, as well as their possible role in the processes taking place in the solar

vicinity:

1) Goodman (2001) has shown that the mechanism which transports mechanical en-

ergy from the convection zone to the chromosphere (to sustain its heating rate) could

also supply the energy needed to heat the corona, and accelerate the SW. The coronal

heating problem, hence, is shifted to the problem of the dynamic energization of the

chromosphere. In the latter process the role of ßows is found to be critical as warranted

by the following observations made in soft X�rays and extreme ultraviolet (EUV) wave-

lengths, and recent Þndings from the Transition Region and Coronal Explorer (TRACE):

the over�density of coronal loops, the chromospheric up�ßows of heated plasma, and the

localization of the heating function in the lower corona (Schrijver, et al. 1999; Aschwan-

den et al. 2001a; Aschwanden 2001b).

2) The connection/coupling of transient events like up�ßows and different types of

jet�like structures to the photosphere dynamics was reported in numerous studies (see e.g.

147



[246] and references in). In [210] it was demonstrated that the eruption of a coronal mass

ejection is triggered from the low solar atmosphere (photosphere/chromosphere) as seen

in TRACE 1600Ao images and with SOHO Michelson Doppler Imager. The data of this

latest research favor the idea that the rapid ejection may be attributed to a catastrophic

loss of MHD equilibrium. The process takes place in 3 important stages - a relatively

stable equilibrium, a loss (fast, impulsive) stage, and the Þnal rapid eruption (associated

with substantive changes in the photospheric magnetic ßux and white�light morphology).

The results of [226] suggest a strong coupling between magnetic Þelds and the convective

processes that pervade the solar photosphere. The correlation between photospheric

shear ßows and ßares is also reported in [235]; several current models suggest that the

former can be responsible for the energy build up in the ßares.

3) In [217], the authors report on the low coronal signatures of major solar energetic

particle (SEP) events focusing on ßare�associated motions (observed in soft X�rays). It

was underlined that these motions may provide an important link between small�scale

energy release and large�scale explosive events; the existence of a continuum of accelera-

tion timescales was also pointed out. In [211] the detailed investigation of the dynamical

behavior of the emerging magnetic ßux was carried out ( using three�dimensional MHD

numerical simulation) to show that the ßux-emergence generates not only vertical but

also horizontal ßows in the photosphere; both of these components contribute to the

injection of the magnetic energy and helicity. The contributions of vertical ßows are

dominant in the early phase while horizontal ßows become a dominant in later stages.

In [206] it was shown that solar corona is mainly heated by the magnetic activity in

the edges of the network ßux clumps that are observed to be riddled with the Þne-scale

explosive events. They present that: (1) at the edges of the network ßow clumps there

are many transient sheared-core bipoles of the size and lifetime of granules and having

transverse Þeld strengths greater than ∼ 100G, (2) ∼ 30 of these bipoles are present per
supergranule, and (3) most spicules are produced by explosions of these bipoles.

Recent observations also suggest that the energy for coronal heating is very likely
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a by�product of the outßow of heat from Sun�s interior through the convection zone.

The convection zone acts as a heat engine, converting some of the thermal energy into

mechanical and magnetic energy; some of this energy (mechanical and magnetic ) enters

the corona, and Þnally dissipates into heat. There are only two obvious energy sources

that could power signiÞcant ßow generation in the chromosphere: the magnetic Þeld

(both large scale and short�scale including turbulence), and the thermal pressure of the

plasma. The main message then, is that in order to solve the coronal heating problem,

the inclusion of processes taking place in the chromosphere and the transition region may

be essential. One must carefully study the march of the primary ßow as it passes through

speciÞc regions of the solar atmosphere populated by ambient magnetic Þeld structures of

varying scale lengths. In short, the dynamics of the ßow must be thoroughly understood.

Finding sources and mechanisms for the creation of ßows has been an active industry

for some time. Catastrophic models of ßow production in which the magnetic energy

is suddenly converted into bulk kinetic energy (and thermal energy) are rather well�

known; various forms of magnetic reconnection (ßares, micro and nano�ßares) schemes

permeate the literature (E.g. (Wilhelm 2001; Christopoilou, Georgakilas and Koutchmy

2001) for chromosphere up�ßow generations). A few other mechanisms of this genre

also exist: Uchida et al. (2001) proposed that the major part of the supply of energy

and mass to the active regions of the corona may come from a dynamical leakage of

magnetic twists produced in the sub-photospheric convection layer; Ohsaki et al. (2001,

2002) have shown how a slowly evolving closed structure (modelled as a double�Beltrami

two�ßuid equilibrium) may experience, under appropriate conditions, a sudden loss of

equilibrium with the initial magnetic energy appearing as the mass ßow energy. Another

mechanism, based on loop interactions and fragmentations and explaining the formation

of loop threads, was given in Sakai and Furusawa (2002); the suggestion based on cascade

of shock wave interactions was made in [246]. A more quasi�static mechanism for ßow

generation in sub�coronal regions taking into account the density in�homogeneity of the

structures was given in [240]. Mahajan et al. (2005) have recently proposed and explored
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the "Reverse-Dynamo" mechanism� the ampliÞcation/generation of plasma ßows by mi-

cro scale (turbulent) magnetic Þelds via the magneto-ßuid coupling enhanced by the Hall

effect [214]. The basic result is that macroscopic magnetic Þelds and ßows are generated

simultaneously and proportionately from microscopic turbulence (magnetic and kinetic).

The mechanisms based on the wave�energy transformation and instabilities can be op-

erative at later stages of the ßow evolution; these mechanisms could have additional

importance for acceleration [220].

Our investigations on ßow acceleration/generation in the Solar atmosphere are based

on the dynamical two�ßuid model suggested in [72]. We Þnd that the acceleration process

unfolds in two distinct stages: an extremely fast stage (right at the lower chromosphere

heights) giving rise to a signiÞcant ßow acceleration followed by a quasi�static stage in

which the newly created fast ßows are further accelerated via the magnetoßuid coupling

(by the Reverse Dynamo mechanism, perhaps). The detailed nature of the accelerated

ßows is found to depend on the initial and boundary conditions.

The main results of this chapter are published in Refs.[70]-[71],[212-214],[240-241].
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3.2 Dynamical Acceleration of Plasma Flows inter-

acting with arcade-like ambient magnetic fields

- applications for the Solar Atmosphere

In the simpliÞed two�ßuid model used here, the plasma is quasi�neutral � electron and

proton number densities are nearly equal: ne ' ni = n (∇ · j = 0), but the electron

and the proton ßow velocities are allowed to be different. Neglecting electron inertia the

ion ( electron) velocity is approximately Vi = V ( Ve = (V − j/en)). We assign equal
temperatures to the two specie so that the kinetic pressure p is given by: p = pi + pe '
2nT, T = Ti ' Te. The analysis can be readily extended to the more realistic case

of unequal temperatures [215, 229, 230]. We understand that, when solving the solar

wind problem, one should use the multi�ßuid, multi�dimensional descriptions (see e.g.

[229, 230, 209] and references therein). We believe, however, that the essential physics of

acceleration of the primary ßow can be captured within the relatively simple basic two-

ßuid model. Very near the photospheric surface, the inßuence of neutrals and ionization

(and processes of ßux emergence etc.) would be out side the scope of the two�ßuid

approach. A little farther distance down stream (∆r ≥ 500 km), however, we expect

that there exist fully ionized and magnetized plasma structures such that the dynamical

two�ßuid model will constitute an adequate description.

The dimensionless two�ßuid equations describing the ßow�Þeld interaction processes

can be read off from (Mahajan et al. 1999, 2001):

∂

∂t
V+(V ·∇)V =

1

n
∇×b×b−β0

1

n
∇(nT )+∇

³rA0

r

´
+νi(n, T )

µ
∇2V +

1

3
∇(∇ ·V)

¶
,

(3.1)
∂

∂t
b−∇×

³
V− α0

n
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´
× b = α0 β0 ∇

µ
1

n

¶
×∇(nT ), (3.2)

∇ · b = 0, (3.3)

∂

∂t
n+∇ · nV = 0, (3.4)
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α0 (∇× b) ·∇T − α0

n
(∇× b)∇(nT ) + EH − ER. (3.5)

where the notation is standard with the following normalizations: the density n to n0 at

some appropriate distance from the solar surface, the magnetic Þeld to the ambient Þeld

strength at the same distance, and velocities to the Alfvén velocity VA0. The parameters

rA0 = GM¯/V 2
A0R¯ = 2β0/rc0, α0 = λi0/R¯, β0 = c

2
s0/V

2
A0 are deÞned with n0, T0, B0.

Here cs0 =
p
2T0/mi is the sound speed, R¯ is the solar radius, rc0 = GM¯/2c2s0R¯,

λi0 = c/ωi0 is the collisionless ion�skin depth, νi(n, T ) is the ion kinematic viscosity, qe

( qi) is the dimensionless electron ( ion) heat ßux densities, EH is the local mechanical

heating function and ER is the total radiative loss. We note that the full viscosity tensor

relevant to a magnetized plasma is rather cumbersome, and we do not display it here.

Just to have a feel for the importance of spatial variation in viscous dissipation, we display

its relatively simple symmetric form. It is to be clearly understood that this version is

meant only for theoretical elucidation and not for detailed simulation. We also note

that in general, the Hall current contributions are expected to become signiÞcant when

the dimensionless Hall coefficient α0 satisÞes α0 > η, where η is the inverse Lundquist

number for the plasma. For a typical coronal plasma as well as for plasmas in the low

chromosphere and transition region (TR) this condition is easily satisÞed (α0 is in the

range 10−10−10−7 for densities within (1014−108) cm−3 and η = c2/(4πVA0R¯σ) ∼ 10−14,

where σ is the plasma conductivity).

To establish the relevant parameter regime for simulation, we resort to recent ob-

servational data (e.g. [120, 200, 224] and references therein). At ∼ (500 − 5000) km,
the observations yield the average plasma density and temperature to be respectively

n ∼ (1014−1011)cm−3 , and T ∼ (1−6) eV. For simplicity, we have assumed Te = Ti = T .
The information about the magnetic Þeld is hard to extract due to the low sensitivity

and lack of high spatial resolution of the measurements. The inhomogeneity and co�
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existence of small� and large�scale structures with different temperatures, (observational

evidence of small scale mixtures of weak and strong Þelds [228]) in nearby regions makes

the task even harder. The observation of pixel�to�pixel variations in the magnetic Þeld

indicates that small�scale (sub�pixel) distribution of Þelds changes considerably at larger

spatial scales [225, 227]. At these distances we have different values for the network and

for the internetwork Þelds: (i) The network plasmas have typically short-scale Þelds in

the range B0 ∼ (700− 1500)G, and have more or less n ∼ const . (ii) The internetwork
Þelds are generally weaker (with some exceptions [224]) �Bo ≤ 500G, and are embedded
in larger�scale plasma structures with n 6= const . For different classes of magnetic Þeld
structures, different physical processes may be dominant.

In our investigation we shall assume that the processes that generate the primary

ßows and the primary solar magnetic Þelds are independent. The plasma ßows begin

to interact with the ambient Þeld at time t=0. The choice of initial conditions for our

numerical work is guided by the observational evidence presented in the introduction. Our

approach is consistent with that of Woo, Habbal and Feldman (2004) who have argued

that the ßow of the solar wind is inßuenced by the closed Þeld structures stressing the

self�consistent process of acceleration and trapping/heating of plasma particles in the

Þnely structured atmosphere. We will dwell, in this study, on the representative problem

of the trapping and acceleration of the primary ßow impinging on a single closed-line

structure. The simulation was performed for a variety of initial and boundary conditions

and essential aspects of the typical results will be presented below.

The general set of Eqs. (3.1�3.5) was solved numerically in Cartesian Geometry for

2.5 Dimensions (∂y = 0). Note that the 2.5D Cartesian nature of our code does not allow

us to explore large distances from the surface due to interference with the boundaries.

153



Fortunately that does not translate into a serious shortcoming because much of the action

is found to be limited to regions very close to the surface; the simulation results, therefore,

are quite trustworthy in the revelation of the basic processes of interest. In carrying out

the simulations an important assumption was made: the diffusion time of magnetic Þeld

is longer than the duration of the interaction process (the Hall term is important in the

parameter range relevant to this study).

A short summary of our numerical methods is in order:

We use the 2.5D version of Lax�Wendroff Þnite difference numerical scheme along with

applying the Flux�Corrected�Transport procedure [222, 58]. The predictor�corrector

type of approximation was used. Equation (3.3) was replaced by its equivalent for the y�

component of the vector potential to ensure the divergence�free property of the magnetic

Þeld. The equation of heat conduction was treated separately by the alternate direction

implicit method with iterations. Transport coefficients for heat conduction and viscosity

are taken from Braginski, 1965. Our estimates show that the magnetic Þeld doesn�t

develop components with sufficient microscopic ßuctuations to make the diffusion term

important. Also, the force term in Eq.(3.2) is very small and there was no need to use

numerical resistivity in the code. The numerical viscosity was still included as an aid for

smoothing. For the main goal of the present study, (to show the fast acceleration low in

the atmosphere) these assumptions seem to be satisfactory. Resistivity will be included

in a later more comprehensive work.

Observations reveal that the radiation losses (∼ n2 and, hence, different for the differ-

ent regions and strongly varying in time dynamical parameter) form the dominant part

of energy loss from the solar atmosphere that is optically very thin. Radiation losses

are strongly dependent on gas composition, and the accuracy of the atomic physics pa-

rameters as well as the values of the relative elemental abundances. "In general, the

effect of including the process of dielectronic recombination and using more accurate

cross sections is not very large" on radiative loss estimates [60]. In [204] for a collision-

ally ionized plasma at equilibrium it is found that "for T < 2.5 · 104K and low densities
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(< 104cm−3), forbidden and semi-forbidden coefficients dominate the cooling. At higher

densities (> 108 cm−3), much of the forbidden-line radiation is suppressed". In [221]

it is emphasized that "below 3 · 104K temperature plasma (due to hydrogen collisional

excitation peak) the forbidden-line cooling coefficient is strongly density and model de-

pendent". Drawing from this wealth of information, we believe that for the parameters

of interest, the ER term in the code could be simply approximated by Bremsstrahlung

radiation [72]. We use a somewhat modiÞed formula assuming it to be 2 times greater,

ER = 2 ·EBr = 2 ·1.69 ·10−25 ·n2 ·T 1/2 ·Z3 erg/cm3 s, (Z = 1). Since we were exploring a

particular and inherent heating mechanism , no external heating source EH was needed.

A numerical mesh of 280 × 220 points was used for computation. The corresponding
scheme is characterized by second order accuracy with respect to the chosen grid.

Latest observations support the idea that the coronal material is injected discontinu-

ously (in pulses or bunches, for example) from lower altitudes into the regions of interest

(e.g., spicules, jet�like structures). We now follow the dynamical trajectory of such a

ßow (spatially and temporally localized, initially a Gaussian, Fig.-s 3.1; 3.3) as it enters

a region nested with arcade�like closed Þeld line structures with varying scales.

For better visualization of the results we take the symmetric case. The ßow is assumed

to be initially weak (|V|0max ¿ Cs0). The initial ambient magnetic Þeld was modelled

as a single 2D arcade with circular Þeld lines in the x�z plane (Fig.3.2 for the vector

potential/ßux function). The arcade Þeld attains its maximum value Bmax(xo, z =

0) ≡ B0z at x0 at its center, and is a decreasing function of the height z (radial

direction). This Þeld was assumed to be initially uniform in time. When doing so, we

choose the parameters to satisfy the observational constraint that, over a period of some

tens of minutes, the location of the trapping/acceleration must have a relatively smooth

evolution. The Þnal shape and location of the structure of the associated B(r, t), for

example will be naturally deÞned by its material source, by the process dynamics, and

by the initial Þeld B0(r, t). We use the following representation for the magnetic Þeld:
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Figure 3-1: Initial symmetric proÞles of the radial velocity Vz, and density n. The
respective maxima (at x=0) are ∼ 2 km/s and 1012 cm−3 .

156



Figure 3-2: Contour plots for the y� component of vector potential A (ßux function) in
the x−z plane for a typical ambient arcade�like solar magnetic Þeld (initial distribution).
The Þeld has a maximum Bmax(x0 = 0, z0 = 0) = 100G .

B = ∇×A + Bz �z and for the given geometry A(0;Ay; 0); b = B/B0z; bx(t, x, z 6=
0) 6= 0. From numerous runs on the ßow�Þeld evolution, we have chosen to display

pictorially the results corresponding to the following initial and boundary conditions:

B0z = 100G, the ßow parameters: are Vmax(xo, z = 0) = V0z = 2.18 · 105 cm/s; n0max =

1012 cm−3; T (x, z = 0) = const = T0 = 3 eV . The background plasma density is

nbg = 0.2n0max. In simulations, the initial density ratio n(x, z, t = 0) = n/n0max is an

exponentially decreasing function of z. Experienced gained from numerous runs taught

us that the processes under study are localized within a small area of interaction. As a

result we are able to settle on the following boundary condition, ∂x(x = ±∞, z, t) = 0
which was used with sufficiently high accuracy for all parameters (A, T,V,B, n) .
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Figure 3-3: The original pulse is limited in time. A time plot of Vz,max(t, z = 0) corre-
sponding to the shape Vz(t, z = 0) = V0z sin(πt/t0); Vz(t > t0) = 0. The parameter t0
(1000 s for this pulse) can be interpreted as the �life�time� of the pulse.

Observations further guided us to assume that the initial velocity Þeld has a pulse�like

distribution (Fig.3.3) with a time duration (life�time) t0 & 50 s.

To illustrate the acceleration of initial ßows (extremely weak), we have modelled

several cases with different initial and boundary conditions. The dynamical picture is

strongly dependent on the relative strengths of the initial ßow pressure and the magnetic

Þeld strength.

Our typical representative example is the evolution of a symmetric weak up�ßow

with its peak located in the central region of a single closed magnetic Þeld structure

(location of Þeld maximum B0z = 100G) (Figs.3.1-3.3). Figs. (3.4-3.8), in which we

give the x − z contour plots of all the relevant Þelds (Ay; |b|; n; |V|; T ), contain the
essence of the simulation. We Þnd that the acceleration is signiÞcant in the vicinity of the

Þeld�maximum with strong deformation of Þeld lines and energy re�distribution. In this
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very region, the simulations show cooling of the ßow with serious density redistribution:

part of the ßow is trapped in the maximum Þeld localization area, accumulated, cooled

and accelerated. The accelerated ßow reaches & 100 km/s value in less than 100 s (in

agreement with recent observations [246, 247, 1] and references therein). The accelerated

ßow is decoupled from the mother ßow, and is localized in a distinguishable region with

dimensions . 0.05Rs starting at a distance ∼ 0.01Rs from the interaction surface.

The time for reaching the quasi�equilibrium parameters is determined by the initial and

boundary conditions (this conclusion holds in general).

In a stationary analysis to be presented in the next sub�section, we will attempt to

derive the characteristic steady state parameters (like the distance from the surface) of

the simulated system.

Extensive simulation experiments show that, when viscosity and heat ßux effects

are included, the ßow acceleration evolution parameters depend strongly on α0, the

parameter measuring the strength of the Hall term in the two-ßuid equations. A very

interesting and far�reaching result is that the Þnal parameters of the accelerated ßow are

practically independent of the initial ßow�characteristics (Fig.-s 3.4-3.8); only the initial

fast stage of acceleration up to ∼ 200 km/s is slightly different for different life�time

primary ßows. Simulation results for 2 different initial life�times of the ßow (t0 = 1000 s

� left panel and t0 = 100 s � right panel in Fig.-s 3.4-3.8) illustrate this feature.

We also found that at some critical time, the solutions split into two parts; all

Þelds, the magnetic (Fig.-s 3.4,3.5), the density (Fig.3.6), the velocity (Fig.3.7) and

temperature (Fig.3.8) exhibit bifurcation. This process persists as initial conditions

vary. In Fig.3.9, we give time evolution plots of the maximum values of all Þelds

(Ay, |b|, bp, bz, n, |V|, Vp, Vz, T ) for a pulse�like ßow interacting with a single

arcade�structure for different initial life�times (t0) of the ßow (t0 = 100 s(black); t0 =
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Figure 3-4: x − z contour plots at various time�frames: t =
200 s; 500 s; 1000 s; 1500 s; 2000 s; 2500 s for the dynamical evolution of Ay for
ßows with two different initial life�times. The spatially and temporally inhomogeneous
(type displayed in Fig.3.1, Fig.3.3) primary ßows are accelerated as they make their
way through the magnetic Þeld with an arcade�like structure (Fig.3.2). The realistic
viscosity and heat�ßux effects as well as the Hall term (α0 = 3.3 · 10−10 realistic) are
included in the simulation. Left panel corresponds to the case of initial ßow life�time:
t0 = 1000 s, right panel � for t0 = 100 s. There is a critical time (. 1000 s) when the
accelerated ßow bifurcates in 2; the original arcade Þeld is deformed correspondingly.
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Figure 3-5: x− z contour plots for the dynamical evolution of |b| exactly following the
pattern of Fig.4. After the bifurcation (read caption of Fig.3.4), strong magnetic Þeld
localization areas, carrying currents, are created symmetrically about x = 0.
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Figure 3-6: x − z contour plots for dynamical evolution of density n exactly following
the pattern of Fig.3.4. Post�bifurcation daughter ßows are localized in the newly created
magnetic Þeld localization areas. The maximum density of each daughter ßow is of the
order of the density of the mother�ßow. Daughter�ßows have distinguishable dimensions
∼ 0.05Rs
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Figure 3-7: x − z contour plots for the dynamical evolution of |V| exactly following
the pattern of Fig.3.4. The initial ßow, locally sub�Alfvénic, is accelerated reaching
signiÞcant speeds (& 100 km/s) in a very short time (& 100 s). The effect is strong in the
strong Þeld region (center of the arcade). At t & 1000 s, the velocities reach ∼ 500 km/s
or even greater (. 800 km/s) values. The distance from surface where it happens is
& 0.01Rs .
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Figure 3-8: x−z contour plots for dynamical evolution of temperature T exactly following
the pattern of Fig.3.4. In the regions of localization of the daughter ßow the cooling is
more signiÞcant compared to the nearby regions � the latter areas are heated.
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1000 s(red); t0 = 2000 s(blue); t0 →∞ (green)). In Fig.3.10, the same maximum values

of all Þelds are plotted versus the initial life�time (t0) of the ßow for different time�frames

(t = 200 s(black); 500 s(red); 1000 s(blue); 1500 s(green); 2000 s(lightgreen); 2500 s

(rose)).

These pictures clearly demonstrate that the accelerated mother ßow bifurcates into

two separate, fast daughter�ßows (after an initial acceleration stage) modifying signif-

icantly the original arcade structure. The characteristic Þelds undergo rather similar

dynamics for ßow pulses with different initial life�times. It should be emphasized that

now the maxima of these parameters are localized not around the initial B�maximum

but on both sides of it, and are shifted along height (in the localization areas of each

accelerated daughter ßow with newly created B�maxima and currents (the reason could

be explained by RD mechanism [214]).

After the initial acceleration stage, the magnetic energy maxima remain practically

unchanged up to some �blow�up� time (& 2000 s) at which the gradients become too

steep and the simulation results cease to be meaningful. The same result holds for the

maxima of the transverse and parallel magnetic Þeld energies (with . 10% accuracy). For

a given ambient Þeld b0(r, t) and Þxed T0(β0) the spatial maximum of each parameter

exhibits practically similar dynamics (independent of the initial ßow life�time) reaching

similar values as the critical time is approached. This picture persists for different initial

T0(β0) indicating the controlling effect of magnetic Þelds, and the robustness of the results

(see Fig.3.11). Testing the conservation of total energy of the system as it evolves in time

also shows that the simulation results can be trusted only up to the blow�up time; in

its vicinity the energy conservation no longer holds. To study longer time dynamics, the

code will need improvement.

At this stage of our work, we are not in a position to pinpoint the dominant mecha-

nisms which restructure the magnetic Þeld and impart energy to the ßow; the standard
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Figure 3-9: Dynamical evolution of the characteristic Þelds (their maximum values),
|b|; bx; by;n; |V|; Vx; Vy; T , deÞning the interacting ßow�magnetic Þeld system (their
x− z contour plots are shown in Fig.-s 3.4�3.8) for different initial ßow life�times (t0 =
100 s (black); 1000 s (red); 2000 s (blue);∞ (green)). The code ceases to be dependable
for times at which very steep gradients emerge; the blow�up time for this simulation is
(. 2500 s)
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Figure 3-10: Maximum values of |b|; bx; by;n; |V|;Vx;Vy;T (their x −
z contour plots are shown in Figs.3.4�3.8) versus the initial life�
time (t0) of the primary outßow for different time�frames (t =
200 s (black); 500 s (red); 1000 s(blue); 1500 s (green); 2000 s(lightgreen); 2500 s (rose)).
The code ceases to be dependable for times at which very steep gradients emerge; the
blow�up time for this simulation is (. 2500 s).
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Figure 3-11: Time evolution of the maximum of |V| for a given magnetic Þeld structure
(Fig.3.2) but for different initial temperatures (T0 = 1 eV (black); T0 = 2 eV (red); T0 =
3 eV (green); T0 = 10 eV (blue)) of ßow (Fig.3.1). Several distinct phases of the accelera-
tion process can be discerned.
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MHD reconnection may or may not be the key player. It would appear that different

aspects of the magneto�ßuid coupling control the dynamics at different stages/phases of

development. In particular the role of Hall term which provides a singular perturbation

to the conventional MHD (and introduces a characteristic intrinsic small length scale (the

ion skin depth) breaking the scale�invariance of the ideal nonlinear system) may turn out

to be crucial. The macroscopic structures could still be accessible within MHD but their

coupling to the microscopic structures (dominated by the Hall term) will be an essential

part of the controlling dynamics. Since the Hall term is nonlinear, the coupling of the

macroscopic and microscopic scale hierarchies is rather complicated (in comparison with

the well�known viscosity effect perturbing the ideal ßuid�dynamics equations).

We will soon (in the next section) offer a possible explanation of simulation results

through an equilibrium analysis similar to the one invoked in [214] to account for the

speciÞc phases of the acceleration process; the analysis is limited to an ideal Hall MHd

system.

The two�ßuid system model used for simulation does have dissipation. The presence

of viscosity destroys the ideal invariance of the generalized ion vorticity making it into

a dynamical parameter [177] ; the modiÞcation of magnetic Þelds and even the creation

of micro scales (shocks or fast ßuctuations) could, thus, result from viscosity. Then, the

magneto�ßuid coupling 1 (with frozen in condition for electrons) causes redistribution of

accelerated particles to the regions of the maximum magnetic Þeld localization in a 2D

compressible plasma [214].

In the simulation, the magnetic and the generalized helicity densities are dynamical

parameters. Even if they are not (initially) in the required range for efficient ßow genera-

tion, their evolution could, subsequently, bring them in the appropriate range where they

could satisfy conditions needed for efficient acceleration. In fact, the favorable conditions

1 What we call magneto�ßuid coupling in this study is a direct consequence of the fact that Ve =
(V− j/en) and not just V as in standard MHD; it is the j part that separates the electron from the ion
ßuid. In the non�dissipative limit the magnetic Þeld is frozen in the electron ßuid and the ion ßuid (due
to its Þnite inertia) moves distinctly.
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could occur at several stages in the evolution. This could, perhaps, explain the existence

of several phases of acceleration. If it is true, then the dissipation would have played a

fundamental role in setting up these distinct stages.

The most interesting and distinguishable new results found in the 2.5D simulation of

the two�ßuid equations (containing various dissipative and short�scale effects) solved for

different initial and boundary conditions are listed below:

1. A primary ßow, even with a very slow initial speed (V0z ∼ 1 km/s locally sub�

Alfvénic) is accelerated when it interacts with an arcade�like closed magnetic Þeld

structure. The effect is strong in the strong Þeld region (initially the arcade center).

This is a common feature independent of the arcade�characteristics, and the shape

of the initial ßow.

2. For realistic α0 (measuring the strength of the Hall term), when the heat ßux and

viscosity effects are not ignored, there is a re�distribution of magnetic, ßow kinetic

and thermal energies in the arcade region in reasonable times ∼ 100 s .

3. When viscosity and heat�ßux are ignored, the time needed for the ßow to acquire a

reasonable amount of energy is signiÞcantly longer. This is probably due to the fact

that without dissipation, the energy transfer through the short�scales introduced

by the two�ßuid effects is not highly effective. Unless the initial conditions are

close to the ones necessary for the onset of a catastrophic process [218, 219], the

acceleration will be relatively slow.

4. During the redistribution, the arcade Þeld is modiÞed; the thermal and magnetic

Þeld energies are converted locally to the ßow energy. The time�scale for generating

a reasonably fast ßow (V0z & 100 km/s) is dictated by α0. For a given initial

T0(β0), the larger the α0 , the faster the ßow generation (for a given ambient Þeld).

The density is non�uniformly redistributed within the arcade span.
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5. At some speciÞc �critical time� . 1000 s the accelerated ßow bifurcates into

two separate fast ßows. At this moment the arcade is also split in two, each with

its share of the accumulated particles. Two fast spicule�like structures, carrying

vorticity and current, are decoupled from the mother ßow. Their densities are

similar to the initial density of the mother�ßow.

6. Initially the ampliÞcation of the ßow depends on the ßow β0 , the ratio of the

thermal and the magnetic Þeld energy.

7. The distance from the interaction surface where the bifurcation occurs is ∼ 0.01Rs
. It is interesting to mention that this height is lower than the heights of the base

of a typical hot coronal structure ([1, 72] and references therein) and it seems to

be comparable to the latest observational Þndings [202, 233]. Initially the fast ßow

localizes in the center of the original arcade. After the bifurcation several ßows

appear with distinguishable dimensions (. 0.05Rs) practically on similar heights.

8. For Þxed initial T0, n0, the Þnal speed of the accelerated ßow and the picture

of the modiÞed Þeld structure are independent of the initial ßow life�time. This

result seems extremely important in connection with the observed ßows in the

lower atmosphere. At t & 1000 s the ßow acquires ∼ 500 km/s or even greater

(. 800 km/s) velocities. Such results persist for different T0(β0) for a given

ambient Þeld (and n0) suggesting the controlling effect of magnetic Þelds.

We note here that at any quasi�equilibrium stage of the acceleration process, the

nascent intermittent ßows will blend and interact with pre�existing varying scale closed

Þeld structures (recall the Þne structure of the solar atmosphere); the �new� ßows could

be trapped by other structures with strong/weak magnetic Þelds and participate in cre-

ating different dynamical scenarios: heating of the new structure [72] could result, or an

escape channel could be created [212, 233]. Instabilities, generation of waves could also

be triggered.
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3.3 Equilibrium Analysis for the Acceleration of Plasma

Flows in the Compressible Two—Fluid Plasmas

– Magneto—Fluid Coupling

Both the observational evidence and the results of dynamical simulation point out that

a typical solar structure passes through a quasi�equilibrium stage (possibly even a series

of quasi�equilibria) before it reaches the Þnal explosive or distortion/deformation stage

leading to particle escape. Let us try to understand the physics of these quasi�equilibrium

structures in terms of equilibrium two�ßuid equations. We analyze the simplest two�

ßuid equilibria with T = const −→ n−1∇p→ T∇ ln n (generalization to a homentropic
ßuid: p = const · nγ is straightforward and was performed in numerical work [240]).

The dimensionless equations describing the model equilibrium can be written as:

1

n
∇× b× b+∇

µ
rA0

r
− β0 ln n−

V 2

2

¶
+V × (∇×V) = 0, (3.6)

∇×
h³
V − α0

n
∇× b

´
× b

i
= 0, (3.7)

∇ · (nV) = 0, (3.8)

∇ · b = 0, (3.9)

where b = B/B0 and the following normalizations were used: n → n0 � the density at

some appropriate distance from the solar surface (≥ 2000 km), B → B0 � the ambient

Þeld strength at the same distance, |V | → VA0 and the dimensionless parameters are

deÞned with n0, T0, B0 taken at the same distance. In the non�dissipative limit, the

system allows the well�known double Beltrami solutions :

b+ α0∇×V = d n V, b = a n
h
V− α0

n
∇× b

i
, (3.10)
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where a and d are the dimensionless constants related to ideal invariants: the magnetic

h1 =
R
(A ·b) d3x and the generalized h2 =

R
(A+V) ·∇× (A+V)d3x helicities [67, 72].

Substituting (3.10) into (3.6)�(3.8) one obtains the Bernoulli Condition

∇
µ
2β0rc0
r

− β0 ln n−
V 2

2

¶
= 0, (3.11)

relating the density with the ßow kinetic energy, and solar gravity.

Equations (3.6), (3.10),(3.11) represent a close system. They may be easily manipu-

lated to yield an alternative form (g(r) = rc0/r)

α2
0

n
∇×∇×V + α0 ∇×

·µ
1

a n
− d
¶
nV

¸
+

µ
1− d

a

¶
V = 0, (3.12)

α2
0∇×

µ
1

n
∇× b

¶
+ α0 ∇×

·µ
1

a n
− d

¶
b

¸
+

µ
1− d

a

¶
b = 0. (3.13)

n = exp

µ
−
·
2g0 − V 2

0

2β0

− 2g + V 2

2β0

¸¶
. (3.14)

Equations (3.12), and (3.14) can be solved for the density and the velocity Þeld V

and then b could be determined from (3.10).

3.3.1 Simulation for 1-Dimensional case

In the Solar atmosphere one observes quasi�equilibrium magnetic structures with both

homogeneous (practically anywhere) and inhomogeneous (especially in the Chromosphere

and TR) densities. By invoking appropriate variational principles (see subsection below)

, one can show that the generic double Beltrami class of equilibria are accessible in all

cases of interest: constant density, constant temperature, or when the plasma obeys an

equation of state. Maximum analytical headway, however, is possible for constant density.

In that case the Beltrami�Bernoulli system consists of a set of linear equations and has

two well�deÞned scales of variation. Non�constant density does not lead to a linear chain

(see (3.12), and (3.14)), but allows phenomena peculiar to nonlinear systems. It is the
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latter class of systems that we will deal with now.

We have to resort to numerical methods to obtain detailed solutions for the coupled

non�linear system (3.12), (3.13), and (3.14). We have carried out a 1D simulation (the

relevant dimension being the height "Z" from the center of Sun; Z0 = R¯ + ∆r is

the surface at which the boundary conditions are applied) for a variety of boundary

conditions. The boundary surface is so chosen that at this height Z0 the inßuecne of

ionization can be neglected. For observational estimates of ∆r given earlier, the relevant

heights lie higher than (1 + 2.8 · 10−3)R¯.

The simulation results are presented in Figs.1-2. These are the plots of various physi-

cal quantities as functions of the height. The Þrst Þgure consists of three frames (a-b, c-d,

and e-f) each consisting of two pictures � one for the density and the magnetic Þeld and

the other for the velocity Þeld. The parameters deÞning different frames are (we will give

them in the order (n0; B0; T0; VA0)): 1) a-b frame: (1012 cm−3; 200G; 2 eV ; 440 km/s)

implying β0 ∼ 0.002¿ 1 and rc0 = 225; 2) c-d frame: (1011 cm−3; 100G; 5 eV ; 600 km/s)

implying β0 ∼ 0.007¿ 1 and rc0 = 40; 3) e-f frame: (1011 cm−3; 50G; 6 eV ; 330 km/s)

implying β0 ∼ 0.04 < 1 and rc0 = 30. In each frame there are three sets of curves labelled
by α0 (1-2-3 corresponding respectively to α0 = 0.000013; 0.005; 0.1), the measure of

the strength of the two�ßuid Hall currents.

For all our runs the boundary conditions, |b0| = 1, V0 = 0.01VA0 (with Vx0 =

Vy0 = Vz0) were imposed; we begin with just a small residual ßow speed. The choice,

d ∼ a ∼ 100 and (a − d)/a2 ∼ 10−6 for the parameters characterizing the double

Beltrami state, reßects the physical constraint that we are dealing with a sub�Alfvenic

ßow with a very small α0 ([70]). We must admit that the values of α0 chosen for the

simulation are much larger than their actual values (∼ 10−8 for corona and smaller

for sub�coronal regions); our present code cannot resolve the equivalent short lengths,

though, we hope to do better in future. We believe, however, that the nature of the Þnal

results is properly captured by these artiÞcial values of α0.

The most remarkable result of the simulation is that for small and realistic values of α0

174



(curves labelled 1), there exists some height where the density begins to drop precipitously

with a corresponding sharp rise in the ßow speed. The effect is even stronger for the low

beta (a-b are the lowest beta frames) plasmas. It is also obvious that at very short

distances, the stratiÞcation is practically due to gravity but as we approach the velocity

�blow�up� height, the self�consistent Magneto�Bernoulli processes take over and control

the density (and hence the velocity) stratiÞcation.

An examination of the Bernoulli condition (3.14) readily yields an indirect estimate

for the height at which the observed shock�formation may take place. For a low beta

plasma, the sharp fall in density is expected to occur when (this is true for all α0), i.e,

|V|2 − V 2
0 > 2β0. (3.15)

For the current simulation, at β0 = 0.04, it occurs approximately at |V|2 > 0.08 or at
|V | ∼ 0.28; This analytically predicted value is very close to the simulation result (see

Fig.2(b)). Simulation results also conÞrm that the velocity blow�up distance depends

mainly on β0, and that the Þnal velocity is greater for greater β0 (Fig.2). The data

presented in Fig.1 and Fig.2 corresponds to a uniform temperature plasma. For this case,

the variations in plasma pressure are entirely due to the variations in density. Since the

magnetic energy remains practically uniform over the distance, sharp decrease in density

with a corresponding sharp rise in the ßow�speed (of the order of n−1/2) is nothing but

the expression of the commonly understood Bernoulli effect. We must emphasize that the

general results remain unchanged in our extensive simulations in which the temperature

is allowed to vary (but we have to use a homentropic equation of state to analytically

derive the beltrami states. The Þnal parameters, naturally, depend upon the adiabaticity

index γ).

To check whether the generated ßows are predominantly radial or somewhat more

isotropic (to explain the observational constraints) we studied in detail the different β0

and α0 cases (Þxing β0 is quite difficult due to complications like ionization) and found

that the ßows tend to be mostly radial only for large α0 (see, for example, plots labeled
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2 and 3 in Fig.1(b,d,f)). The situation could change considerably when we deal with a

more inclusive time�dependent dynamical model with dissipation. Plasma heating, then,

could result from the dissipation of the perpendicular energy so that at larger distances,

the ßows would have larger radial components. Heating would also keep β(r, t) large at

upper heights shifting the velocity blow�up distance further or eliminating it all together;

we know from Fig.1 that as β0 goes up, the density fall (velocity ampliÞcation) becomes

smoother. These issues will be dealt with later in a more detailed work. Notice, that

Þnal velocities go up with V0 ∼ d−1. An initial ßow with speed 3.3 km/s (e-f frame of

Fig.1) ends up acquiring a high speed ∼ 100 km/s at the height (Z −Z0) ∼ 0.09R¯ but
at a lower density ∼ 109.5 cm−3.

If one were to ignore the ßow term in (3.11) (a totally wrong assumption commonly

used in many studies), we will end up Þnding essentially radial ßows. The magnitude

of these ßows, however, remains small; there is no region of sharp rise (3.15), and the

generated ßows achieve reasonable energies at heights typically 10 times greater than the

heights at which the correct Bernoulli condition would do the trick.

We have shown a possible pathway for a steady generation of ßows in the quasi�

equilibrium structures established in the sub-coronal regions. These structures consist of

fully ionized two�species plasma trapped in magnetic Þelds. The suggested mechanism

is a straightforward application of the recently developed magneto�ßuid model [67, 70,

72]; a generalized Bernoulli mechanism (a necessary condition for the double�beltrami

magneto�ßuid equilibrium) allows the conversion of thermal energy into kinetic energy

and/ or a readjustment of the kinetic energy from a high density�low velocity to a low

density�high velocity plasma. Numerical results show, for realistic plasma parameters,

a signiÞcant density fall with a sharp ampliÞcation of the ßow speed. In the presence

of dissipation, these ßows are likely to play a fundamental role in the heating of the

upper chromosphere and TR, although our explicit purpose in this study was to create a

steady source of matter and energy for the formation and primary heating of the corona.

Our preliminary results agree with the observational data, and lend promise to attempts,
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based on the existence of sub�coronal ßows, to tackle unresolved problems like the coronal

heating and origin of the Solar wind.

3.3.2 Variational Principle

Let�s introduce target functional:

W =
1

2

Z
(B +∇× V )2d3x. (3.16)

To the constants of motion h1, h2 one should add the total energy (for simplicity we

ignore the gravity)

E =

Z
d3x

·
1

2
nV 2 +B2 +

p

γ − 1
¸
, (3.17)

and the normalized total ßuid mass

cM =
M

min0

=

Z
nd3x. (3.18)

In order to derive some of these equations we have assumed that the pressure follows

the adiabatic law

p = nγp0, (3.19)

which also implies that T = p/n = p0n
γ−1. The last equation allows the pressure term

∇p/n in the force equation to become a perfect gradient. The variations principle is

δ
h
W − µ0E − µ1H1 − µ2H2 − µcMi = 0 (3.20)

where the variation is to be done on the three�dynamical variables A(B), V and n.

δW = h(B +∇× V )) · (δB +∇× δV )i = h[∇× (B +∇× V )] · [δA+ δV ]i (3.21)

δE =

¿
(∇×B) · δA+ nV · δV +

1

2
V 2δn+

γ

γ − 1T δn
À

(3.22)
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δH1 = hB · δAi δH2 = h(δA+ δV ) · (B +∇× V )i (3.23)

δcM = hδni . (3.24)

Using Eq.-s (3.21)-(3.24) in (3.20) and demanding δn, δA and δV to be independent and

arbitrary, we must have: the standard two (with n a variable)

∇× [B +∇× V ]− µ0(∇×B)− µ1B − µ2(B +∇× V ) = 0 (3.25)

∇× [B +∇× V ]− µ0nV − µ2(B +∇× V ) = 0 (3.26)

and the new equation

−µ0

·
1

2
V 2 +

γ

γ − 1T
¸
− µ = 0. (3.27)

Concentrating on eq. (3.27) Þrst [T = p0n
γ−1]

1

2
V 2 +

γ

γ − 1T = −
µ

µ0

= Const.

or

∇
·
1

2
V 2 +

γ

γ − 1T
¸
= ∇1

2
V 2 +

∇p
n
= 0 (3.28)

which is precisely the Bernoulli condition that came from the uncurled equation as a

subsidiary condition to the Beltrami conditions. Eq.-s (3.25) and (3.26) may be combined

as usual to
−µ0nV + µ0∇×B + µ1B = 0

B =
µ0

µ1

[nV −∇×B] . (3.29)

We could, of course, now deal with any case: constant density, constant temperature, or

a given equation of state.
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3.3.3 Analysis for 1D case

We will now calculate the ampliÞcation conditions for inhomogeneous density ßows in

the chromosphere. We restrict to one�D variation (along the height Z) and choose the

constants a ∼ d = 100 so that (a − d)/a d ∼ 10−6. This choice insures that two

homogeneous Beltrami scales will be vastly different. Detailed algebraic derivation of the

approximate formulas used below can be found in Sub�subsection 3.3.4.

The principal results of Sub�subsection 3.3.4 are that if nÀ (a d)−1 (density fall in

the region of interest is not more than 3 orders of magnitude), then

1) the transverse components of magnetic Þeld vary keeping b2x + b
2
y = b

2
0⊥ = const.

2) The density and the velocity Þelds are related approximately by |V |2 = 1/d2n2

so that the magnetic energy does not change much, |b|2 = const to leading order.
3) The Bernoulli condition transforms to the deÞning equation for density:

µ
−2β0 n

2 +
1

d2

¶
∂n

∂z
= n3 g. (3.30)

We notice that for the density to drop with height, it has to be larger than nmin =

(2β0)
−1/2d−1. The existence of nmin also implies via V 2 = 1/d2n2 that the maximum

allowed velocity is

|Vmax| = 1

dnmin
= (2β0)

1/2. (3.31)

As one approaches the singularity at n = nmin, the spatial variation of density (and

in particular of the velocity) becomes very large. In such a region of the steep density fall

(and velocity rise), the time�independent dissipationless approach will not be valid. The

Bernoulli equation (3.30), however, clearly reveals the origin of the very fast Þrst stage

of dynamical acceleration found in the simulations. From Eq.(3.30) we also see that the

distance over which the catastrophe appears is determined by the strength of gravity, g(z)

. Eventual ampliÞcation of the ßow (for a given ambient magnetic Þeld) is determined

by the local value of β0. These simple consequences of the Bernoulli equation explain

one of the most important Þndings of the simulation: for a Þxed initial temperature, the
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Þnal characteristic parameters of the accelerated ßow (quasi�equilibrium after the fast

stage of acceleration) do not depend on its initial state. For these gross features of the

system, the value of α0 as long as it is Þnite, is also quite irrelevant, it just determines

how fast the transverse components of magnetic and velocity Þelds oscillate. However

when dissipation is present, α0 , through the mediation of short-scale physics, plays a

crucial role in the acceleration/heating processes.

In connection with this result it is interesting to mention that according to latest

observations on the quasi�equilibrium coronal loops, the so called quasi�periodic inten-

sity oscillations are found to propagate upwards with speeds of the order of the (adia-

batic/isothermal) coronal sound speed ([205] and the references therein).

For structures with (n = const), there are two distinct scenarios for eruptive events in

the current framework : (1) when a "slowly" evolving structure Þnds itself in a state of no

equilibrium and (2) when the process of creating a long�lived hot structure is prematurely

aborted; the ßow shrinks/distorts the structure that suddenly shines and/or releases en-

ergy or ejects particles. The latter mechanism requires a detailed time�dependent treat-

ment. The semi�equilibrium, collisionless magnetoßuid treatment pertains only to the

former case [218, 219]. In the references cited, the conditions for catastrophic transfor-

mations of an original DB (double Beltrami state) were investigated. It was shown that

when the total energy of the original state exceeds a critical value, the DB equilibrium

suddenly relaxes to a single Beltrami state corresponding to the larger macroscopic scale;

at the transition, much of the magnetic energy |b|2 of the original state is converted to
heat/ßow kinetic energy.
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3.3.4 Detailed equilibrium analysis of particle acceleration for

non—uniform density case due to Magneto—fluid coupling

Let�s rewrite DB equations (3.10) in following way:

α0∇× b = −1
a
b+ nV , α0∇× V = −b+ dnV , (3.32)

Let�s deÞne a vector:

Q =

 b

V

 , (3.33)

then (3.32) may be written as:

α0∇×Q =M Q, (3.34)

where

M =

 −a−1 , n

−1 , d n

 . (3.35)

M can be diagonalized by a similarity transformation:

S M S−1 ==

 λ+ , 0

0 , λ−

 , (3.36)

where [λ2−(dn−a−1)λ+n (1−d a−1) = 0] λ± = 1
2
[(dn−a−1)±p(dn+ a−1)2 − 4n ]

are standard roots. S is found to be (n is a slowly varying parameter, see the Bernoulli

condition � V 2 and g are slowly varying):

S =

 1 , −(λ+ + a
−1)

1 , −(λ− + a−1)

 . (3.37)
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Then, if density fall is at a much slower rate than the slow scale of the Beltrami system

( λ−/α0, ), rewriting (3.34) as:

α0∇× SQ = (SM S−1)S Q =

 λ+ , 0

0 , λ−

 SQ , (3.38)

one Þnds:

S Q =

 Q+

Q−

 =

 b− (λ+ + a
−1) V

b− (λ− + a−1) V

 (3.39)

each obeying its own independent (fully de�coupled) equation:

∇×Q± =
λ±
α0

Q±. (3.40)

Let�s Þnd the ampliÞcation conditions for ßows (say in the chromosphere, where a ∼ d =
100 so that (a−d)/a d ∼ 10−6). Assuming (this is found to be a restriction) nÀ (a d)−1

� density fall is not more than 3 orders of magnitude, then

λ+ ∼ d n , λ− ∼ a− d
a d

. (3.41)

Notice, that for realistic solar atmosphere parameters (chromosphere, TR, corona) α0 ∼
10−9−10−11 and the fast Beltrami scale λ+/α0 ∼ 1011−1013 is very oscillatory and its

amplitude must go to zero. This gives a relation between the velocity and the magnetic

Þeld;

Q+ = b− (dn− a−1)V ' b− dnV = 0, (3.42)

and the approximate equation for the pertinent solution takes the form

∇×Q− =
a− d
a dα0

Q− with Q− = b− V
d
' b. (3.43)
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Let�s consider a 1D problem (Z along height, b0 = 1 when normalized). Eq.(3.43) leads

to:
∂

∂z

¡
b2x + b

2
y

¢
= 0 =⇒ b2x + b

2
y = b

2
0⊥. (3.44)

Then, using eq.(3.42), one has: V 2
x + V

2
y = b

2
0⊥/d

2 n2 . From Continuity Equation and

DB condition: Vz = V0z/n ∼ b0z/d n . Thus,

V 2 =
1

d2 n2
. (3.45)

Eq.(3.45) converts the Bernoulli condition (T0 = const) to:µ
−2β0 n

2 +
1

d2

¶
∂n

∂z
= n3 g. (3.46)

Notice, that maximum allowed velocity for this mechanism is (compare with the condition

(10) of [240]):

|Vmax| = 1

dnmin
= (2β0)

1/2. (3.47)

Analysis gives similar results for varying temperature (T = n−µ, 0 < µ < 1).

3.3.5 Summary for Dynamical and Steady Generation of Flows

We have developed a 2.5 Dimensional dynamical code for two-ßuid equations. The two

ßuid equations contain the Hall term (α0 6= 0), the ion vorticity, heatßux and viscosity
effects. We have used the code for a systematic study of particle acceleration and energy

re�distribution phenomena associated with the interaction of a primary plasma ßow with

closed Þeld�line magnetic structures. We also developed simple analytical arguments to

explain and understand essential features of the simulation results. The simulation and

analytical effort have led us to several far�reaching results for the understanding of the

solar atmosphere. Even at the cost of some repetition, we list the most important ones:

(1) A primary plasma ßow (locally sub-Alfvénic) is accelerated when it impinges on an

emerging/ambient arcade�like closed magnetic Þeld structure. The effect is strong in the
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strong Þeld region. It is found that the Þnal state of the ßow is quite insensitive to the

details of initial and boundary conditions; the latter simply dictate the time�scale at

which signiÞcant ßow�energy is generated.

(2) It is shown that there is a redistribution of magnetic, ßow- kinetic and thermal ener-

gies in the arcade region so that the original arcade Þeld is modiÞed. The time�scale of

the fast (& 100 km/s) ßow generation is dictated by α0, the measure of the Hall term.

(3) It is found that at some speciÞc time the accelerated ßow bifurcates into 2 separate

fast ßows with an accompanying split of the arcade; each component has its share of the

accumulated particles.

(4) Initially the ampliÞcation of the ßow depends on β0 as proven by the 1D analysis.

To the best of our knowledge, this is Þrst demonstration that major part of the acceler-

ation takes place within a distance ∼ 0.01Rs (independent of α0) from the interaction

surface. Later the fast ßow localizes (with dimensions . 0.05RS) in the upper center of

the original arcade.

(5) It is shown that for a given ambient magnetic Þeld and Þxed initial T0, n0 , the

Þnal speed (& 500 km/s) of the accelerated ßow, and the shape of the modiÞed Þeld

structure are independent of the initial ßow life�time. Many of these parameters can be

approximately calculated by analysis.

We have shown possible pathways for both dynamical and steady generation of fast

ßows. The cold ßows originating, for example, in the lower chromosphere acquire energy

as they meet and interact with emerging/ ambient magnetic ßuxes; the trapping of an

ionized (& 3 eV ) plasma by network/ inter�network structures takes place at the same

time. In the presence of dissipation, these ßows are likely to play a fundamental role in

the heating of the Þnely structured solar atmosphere. The explicit purpose of this study,

however, was to demonstrate the generation of ßows in the lower atmosphere feeding on

the ambient magnetic energy. The ßows, in turn, provide a steady and assured source of

matter and energy for the formation and primary heating of the corona as well as for the
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creation of the solar wind. The agreement of our preliminary results with the observation

data lends credence and promise to attempts, based on the exploitation of sub�coronal

ßows, to tackle unresolved problems like the coronal heating and origin of the solar wind.

We believe that although the chromospheric mass outßows, spicules, explosive events in

chromosphere, micro� and nano�ßares, large coronal ßares, erupting prominences and

CMEs appear to be disconnected and independent, they, in all probability are simply the

manifestations of region-speciÞc responses to similar dynamical causes.
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3.4 Acceleration of Plasma Flows Due to Reverse

Dynamo Mechanism

The generation of macroscopic magnetic Þelds (primarily frommicroscopic velocity Þelds)

deÞnes the standard "dynamo" mechanism. The dynamo action seems to be a very per-

vasive phenomenon; in fusion devices as well as in astrophysics (stellar atmosphere, MHD

jets) one sees the emergence of macro�scale magnetic Þelds from an initially turbulent

system. The relaxation observed in the Reverse Field pinches is a vivid illustration of the

dynamo in action. Search for interactions that may result in efficient dynamo action is

one of the most ßourishing Þelds in plasma astrophysics. The myriad phenomena taking

place in the stellar atmospheres (heating of the corona, the stellar wind etc.) could hardly

be understood without knowing the origin and nature of the magnetic Þeld structures

weaving the corona.

The conventional dynamo theories concentrate on the generation of macroscopic mag-

netic Þelds in charged ßuids. With time the dynamo theories have invoked more and more

sophisticated physics models � from the kinematic to the magneto hydrodynamic (MHD)

to, more recently, the Hall MHD (HMHD) dynamo. In the latter theories the velocity

Þeld is not speciÞed externally (as it is in the kinematic case) but evolves in interaction

with the magnetic Þeld. Naturally both MHD and HMHD "dynamo" theories encom-

pass, in reality, the simultaneous evolution of the magnetic and the velocity Þelds. If the

short�scale turbulence can generate long�scale magnetic Þelds, then under appropriate

conditions the turbulence could also generate macroscopic plasma ßows. In this context,

a quotation from a recent study is rather pertinent: the structures/magnetic elements

produced by the turbulent ampliÞcation are destroyed/dissipated even before they are

formed completely [237, 248, 239] creating signiÞcant ßows or leading to the heating.

If the process of conversion of micro�scale kinetic energy to macro�scale magnetic

energy is termed "dynamo" (D) then the mirror image process of the conversion of micro�

scale magnetic energy to macro�scale kinetic energy could be called "reverse dynamo"
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(RD). It is convenient to somewhat extend the deÞnitions � the D (RD) process connotes

the generation of the macroscopic magnetic Þeld (ßow) independent of the mix of the

microscopic energy (magnetic and kinetic).

Within the framework of a simple HMHD system, we demonstrate in this study that

the Dynamo and the Reverse Dynamo processes operate simultaneously � whenever a

macroscopic magnetic Þeld is generated there is a concomitant generation of a macro-

scopic plasma ßow. Whether the macroscopic ßow is weak (sub�Alfvénic) or strong

(super�Alfvénic) with respect to the macroscopic Þeld will depend on the composition of

the turbulent energy. We shall derive the relationships between the generated Þelds and

the ßows and discuss the conditions under which one or the other process is dominant.

In Sec.1 we display an analytical calculation based on the conversion of micro scale mag-

netic and kinetic energy into macroscopic Þelds and ßows. In particular, we dwell on the

reverse dynamo mechanism: the permanent dynamical feeding of the ßow kinetic energy

through an interaction of the microscopic magnetic Þeld structures with weak ßows (seed

kinetic energy). In Sec.2 we illustrate that the theoretically derived processes do indeed

take place by presenting simulation results from a general two ßuid code that includes

dissipation.

3.4.1 Theoretical Model Analysis

The physical model exploited for ßow generation/acceleration is simpliÞed HMHD � a

minimal model that entertains two interacting scales that can be quite disparate; the

macroscopic scale of the system is generally much larger than the ion skin depth, the

intrinsic micro scale of HMHD at which ion kinetic inertia effects become important

[67, 72, 219, 236]. In HMHD the ion (v) and electron (ve = (v − j/en)) ßow velocities
are different even in the limit of zero electron inertia. In its dimensionless form, HMHD

comprises of

∂b

∂t
= ∇×

h
[v − α0∇× b]× b

i
, (3.48)
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∂v

∂t
= v × (∇× v) + (∇× b)× b−∇

µ
p+

v2

2

¶
. (3.49)

with the standard normalizations: the density n to n0 , the magnetic Þeld to the some

measure of the ambient Þeld B0 and velocities to the Alfvén velocity VA0. We assign equal

temperatures to the electron and the protons so that the kinetic pressure p is given by:

p = pi + pe ' 2nT, T = Ti ' Te. We note that the Hall current contributions become
signiÞcant when the dimensionless Hall coefficient α0 = λi0/R0 (R0 � the characteristic

scale length of a system and λi0 = c/ωi0 is the collisionless skin depth) satisÞes the

condition: α0 > η, where η is the inverse Lundquist number for the plasma. For a

typical solar plasma, in the corona, the chromosphere and the transition region (TR),

this condition is easily satisÞed (α0 is in the range 10−10 − 10−7 for densities within

(1014 − 108) cm−3 and η = c2/(4πVA0R¯σ) ∼ 10−14, where R¯ is solar radius, σ is the

plasma conductivity). In such circumstances, the Hall currents modifying the dynamics

of the microscopic ßows and Þelds could have a profound impact on the generation of

macroscopic magnetic Þelds [244] and fast ßows [240, 241].

In the following analysis α0 will be absorbed by choosing the normalizing length

scale to be λi0. Let us now assume that our total Þelds are composed of some ambient

seed Þelds and ßuctuations about them,

b =H + b0 + �b, v = U + v0 + �v (3.50)

where b0, v0 are the equilibrium Þelds andH, U and �b, �v are, respectively, the macro-

scopic and microscopic ßuctuations.

Notice that our ambient Þelds are allowed to have a component at a microscopic

scale. For analytical work, we choose for the ambient Þelds a special class of equilibrium

solutions to Eqs. (1-2). These solutions, also known as the Double Beltrami (DB) pair

[67], come into existence because of the interaction of ßows and Þelds; the Hall term is

essential for their formation. The DB conÞgurations are known to be robust and accessi-
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ble, through a variational principle, for a variety of conditions including inhomogeneous

densities. Non constant density cases do display many interesting phenomena [240, 241],

but the dynamo and reverse dynamo actions can be very adequately described by the

analytically tractable constant density system. We shall, therefore, choose the following

DB pair (obeying the concomitant Bernoulli condition∇(p0+v0
2/2) = const [218, 219])

b0

a
+∇× b0 = v0, b0 +∇× v0 = dv0, (3.51)

as a representative ambient state. The general solution is expressible in terms of the

single Beltrami Þelds G± that satisÞes ∇×G(λ) = λG(λ):

b0 = C+G+(λ+) + C−G−(λ−), (3.52)

v0 = (a−1 + λ+)C+G+(λ+) + (a
−1 + λ−)C−G−(λ−). (3.53)

Here C± are the arbitrary constants and the parameters a and d are set by the

invariants of the equilibrium system; the magnetic helicity h10 =
R
(A0 ·b0) d

3x and the

generalized helicity h20 =
R
(A0+ v0) ·∇× (A0+ v0)d

3x [67, 72]; here A0 is the vector

potential of the ambient Þeld. The inverse scale lengths λ+ and λ− are fully determined

in terms of a and d: λ± = 1
2
[(d− a−1)±p(d+ a−1)2 − 4 ]. As the DB parameters a and

d vary, λ± can range from real to complex values of arbitrary magnitude2.

Our primary interest is the creation of macro Þelds from the ambient micro Þelds.

Some what later we will assume, for simplicity, that our zeroth order Þelds are wholly at

the microscopic scale. This allows us to create a hierarchy in the micro Þelds, the ambient

Þelds are much greater than the ßuctuations at the same scale (|�b| ¿ |b0|, |�v| ¿ |v0|).
Following [244], we may derive the following evolution equations:

∂tU = U × (∇×U) +∇×H ×H

2 In the analysis below we will use λ for the micro�scale and µ for the macro�scale structures.
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+
D
v0 × (∇× �v) + �v × (∇× v0) + (∇× b0)× �b+ (∇× �b)× b0

E
− h∇(v0 · �v)i−∇

µ
p+

U 2

2

¶
, (3.54)

∂�v

∂t
= −(U ·∇)v0 + (H ·∇)b0, (3.55)

∂�b

∂t
= (H ·∇)ve0 − (U ·∇)b0, (3.56)

∂H

∂t
=∇×

D
[�ve × b0] + ve0 × �b

E
+∇× [(U −∇×H)×H], (3.57)

where the brackets < .. > denote the spatial averages and ve0 = v0−∇×b0. This set of

equations can be regarded as a closure model of the Hall�MHD equations, which are now

general in two respects: 1) it is a closure of the full set of equations, since the feedback

of the micro�scale is consistently included in the evolution of both H and U ; 2) the

role of the Hall current (especially in the dynamics of the micro�scale) is also properly

accounted for (see [244, 245] for details).

We now choose the constants a and d so that the two Beltrami scales become vastly

separated (since these constants reßect the values of the invariant helicities, it is through a

and d that the helicities control the Þnal results). In the astrophysically relevant regime of

disparate scales (the size of the structure is much greater than the ion skin depth), we shall

deal with two extreme cases : (i) a ∼ dÀ 1 , (a− d)/a d¿ 1 (λ ∼ d, µ ∼ (a− d)/a d
), and (ii) a ∼ d¿ 1 , (a− d)/a dÀ 1 (λ ∼ (a−a−1), µ ∼ (d− a) ). At this time, we
would like to draw the reader�s attention to the origin of scale separation in the original

equilibrium system � it is the Hall term that imposes the micro scale (ion skin�depth)

on the macroscopic MHD equilibrium.

Consistent with the main objectives of this study, we will now assume that the original

equilibrium is predominantly micro�scale (condition applicable for many astrophysical

systems), i.e, the basic reservoir from which we will generate macro scale Þelds is, indeed,

at a totally different scale. Neglecting the macro scale component altogether, the assumed
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equilibria becomes simpler with the velocity and magnetic Þelds linearly related as

v0 = b0

¡
λ+ a−1

¢
(3.58)

leading to

ve0 = v0 −∇× b0 = b0 a
−1 (3.59)

ú�b =
¡
a−1H −U¢ ·∇b0 (3.60)

ú�v =
¡
H − ¡λ+ a−1

¢
U
¢ ·∇b0. (3.61)

Notice the preponderance of nonlinear terms in the evolution equations for U and H

. One would expect that these terms will certainly play a very important part in the

eventual saturation of the macroscopic Þelds, but in the early acceleration stage when

the ambient short scale energy is much greater than the newly created macroscopic

energy, these terms will not be signiÞcant. Deferring the fully nonlinear to a later stage,

we shall limit ourselves to a "linear� treatment here. Neglecting the nonlinear terms

and manipulating the system of equations, we readily derive (after "solving" for and

eliminating the short scale ßuctuating Þelds)

Ḧ '
µ
1− λ

a
− 1

a2

¶
h∇× (H ·∇)b0 × b0i , (3.62)

Ü ' ­ ¡λ+ a−1
¢
(λ ú�v −∇× ú�v)− ¡λ+ a−1

¢∇(b0 · ú�v)× b0

®
−
D
(λ ú�b−∇× ú�b)× b0

E
. (3.63)

where the spatial averages are yet to be performed. We use the standard isotropic ABC

solution of the single Beltrami system,

b0x =
b0√
3
[sinλy + cosλz] ,

b0y =
b0√
3
[sinλz + cosλx] ,

b0z =
b0√
3
[sinλx+ cosλy] . (3.64)
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to compute the spatial averages. After some tedious but straightforward algebra, we

arrive at the Þnal acceleration equations

Ü =
λ

2

b20
3
∇×

"Ãµ
λ+

1

a

¶2

− 1
!
U − λH

#
(3.65)

Ḧ = −λ b
2
0

3

µ
1− λ

a
− 1

a2

¶
∇×H. (3.66)

where b20 measures the ambient micro scale magnetic energy (also the kinetic energy

because of (11)). The coefficients in these equations are determined by a and d (λ =

λ(a, d)).

We see that, to leading order, H evolves independently of U but the reverse is not

true: the evolution of U does require knowledge of H.

In the dynamo context, the Hall�currents in the micro�scale are known to modify

the α coefficient so that it survives the standard cancellation of the kinetic and magnetic

contributions for Alfvénic perturbations [243]. It is also known that, depending on the

state of the system, the Hall effect (by replacing the bulk kinetic helicity by the elec-

tron ßow helicity) can cause large enhancement or suppression of the dynamo action as

compared to the standard MHD [245].

Writing (18) and (19) as

Ḧ = −r (∇×H) , Ü =∇× [sU − qH], (3.67)

where

r = λ
b20
3
(1− λ a−1 − a−2) , s = λ

b20
6
[(λ+ a−1)2 − 1] , q = λ2 b

2
0

6
, (3.68)
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and fourier analyzing, one obtains

−ω2H = −i r (k ×H) , −ω2U = ik × (sU − qH). (3.69)

yielding the growth rate,

ω4 = r2k2 , ω2 = −|r| (k) , (3.70)

at which H and U increase. The growing macro Þelds are related to one another by

U =
q

s+ r
H. (3.71)

We shall now show how a choice of a and d Þxes the relative amounts of microscopic

energy in the ambient Þelds and consequently in the nascent macroscopic Þelds U orH.

We persist with our two extreme cases:

(i) For a ∼ dÀ 1 , the inverse micro scale λ ∼ aÀ 1 implying v0 ∼ a b0 À b0, i.e,

the ambient micro�scales Þelds are primarily kinetic. These type of conditions may be met

in stellar photospheres, where the turbulent velocity Þeld at some stage can be dominant

although some b0 is present as well. For these parameters, it can be easily seen that the

generated macro�Þelds have precisely the opposite ordering, U ∼ a−1H ¿H. This is

an example of the straight dynamo mechanism. Micro scale Þelds with kinetic dominance

create, preferentially, macro scale Þelds that are magnetically dominant � super�Alfvénic

"turbulent ßows" lead to steady ßows that are equally sub�Alfvénic (remember we are

using Alfvénic units). It is extremely important, however, to emphasize that the dynamo

effect (dominant in this regime) must always be accompanied by the generation of macro�

scale plasma ßows. This realization can have serious consequences for deÞning the initial

setup for the later dynamics in the stellar atmosphere. The presence of an initial macro�

scale velocity Þeld during the ßux emergence processes is, for instance, always guaranteed

by the mechanism exposed above. The implication is that all models of chromosphere
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heating / particle acceleration should take into account the existence of macro�scale

primary plasma ßows (even weak) and their self�consistent coupling (see [72, 219, 241]

and references therein).

(ii) For a ∼ d ¿ 1 the inverse micro scale λ ∼ a − a−1 À 1. Consequently v0 ∼
a b0 ¿ b0, and the ambient energy is mostly magnetic. These conditions might pertain in

certain domains in the photospheres or chromospheres, where the turbulent velocity Þeld

may exist, but the turbulent magnetic Þeld is the dominant component. This micro�scale

magnetically dominant initial system creates macro�scale Þelds U ∼ a−1H À H that

are kinetically abundant. The situation has fully reversed from the one discussed in the

previous example � starting from a strongly sub�Alfvénic turbulent ßow, the system

generates a strongly super�Alfvénic macro�scale ßow; this mode of conversion could be

called the "reverse dynamo" mechanism. In the region of a given astrophysical system

where the ßuctuating/turbulent magnetic Þeld is initially dominant, the magneto�ßuid

coupling induces efficient/signiÞcant acceleration and part of the magnetic energy will

be transferred to steady plasma ßows. The eventual product of the "reverse dynamo"

mechanism is a steady super�Alfvénic ßow � a macro ßow accompanied by a weak

magnetic Þeld (compare with [238] for a magnetically driven dynamo. In this study

magnetic Þeld growth on much larger scales, and signiÞcant velocity ßuctuations with

Þnite volume averaged kinetic helicity are found). It is tempting to stipulate that "reverse

dynamo" may be the explanation for the observations that fast ßows are generally found

in weak Þeld regions of the solar atmosphere [233].

This simple analysis has led to, what we believe, are several far-reaching results:

(1) the dynamo and "reverse dynamo" mechanisms have the same origin � they are

manifestation of the magneto�ßuid coupling; (2) The proportionality of U andH implies

that they must be present simultaneously, and the greater the macro�scale magnetic

Þeld (generated locally), the greater the macro�scale velocity Þeld (generated locally);

(3) the growth rate of the macro�scale Þelds is deÞned by DB parameters (hence, by

the ambient magnetic and generalized helicities) and scales directly with the ambient
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turbulent energy ∼ b20 (v2
0). Thus, the larger the initial turbulent (microscopic) magnetic

energy, the stronger the acceleration of the ßow. We believe that these novel results will

surely help in advancing our understanding of the evolution of large�scale magnetic Þelds

and their opening up with respect to the fast particle escape from the stellar coronae.

This effect may also have important impact on the dynamical and continuous kinetic

energy supply of plasma ßows observed in various astrophysical systems. We would add

here that in this study both the initial and Þnal states have Þnite heliciies (magnetic and

kinetic). The helicity densities are dynamical parameters that evolve self�consistently

during the process of ßow generation. It is also important to notice that the end product

of the reverse dynamo action is a macroscopic ßow (produced from a microscopic helical

magnetic Þeld) while for "inverse dynamo" [238] it is still the macroscopic magnetic Þeld

but produced from a velocity Þeld with helicity.

We end the analytical section by a remark on the nonlinear terms in Eqs. (7,10)

that do not appear later. It is amazing that the linear solution given in Eqs. (22-24)

makes the nonlinear terms strictly zero. Thus the solution discussed in the last section

is an exact (a special class) solution of the nonlinear system and thus remains valid even

as U and H grow to larger amplitudes. This interesting but peculiar property that a

basically linear solution solves the nonlinear problem pertains to both MHD and HMHD.

In MHD, for example, it manifests itself as Walen�s nonlinear Alfven wave [249, 250]

while in HMHD it is revealed through the recently discovered solution of [242].

3.4.2 A Simulation Example

In order to strengthen and support the conclusions of the simple analytical model, we

now present some representative results from our 2.5 D numerical simulation of the

general two-ßuid equations in Cartesian Geometry [72]. For a description of the code,

the reference [241] should also be consulted. The simulation system is somewhat different

because of the existence of an ambient embedding macroscopic Þeld. We Þnd that, when

such a Þeld is present, the basic qualitatively features of the dynamo and reverse dynamo
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Figure 3-12: Upper plot: contour plot for the y� component of vector potential Ay (ßux
function) in the x − z plane for an initial distribution of ambient arcade�like magnetic
Þeld. The Þeld has a maximum Bmax(x0 = 0, z0 = 0) = 100G . Middle plot: initial
symmetric proÞles of the radial velocity Vz, and density n. The respective maxima (at
x=0) are ∼ 2 km/s and 1012 cm−3 . Lower plot corresponds to time evolution of initial
ßow: Vz(t, z = 0) = V0z sin(πt/t0); Vz(t > t0) = 0; t0 = 100 s .

mechanisms do not change much but the algebra is considerably more complicated and

will be presented in a longer study later.

The simulation system contains several effects not included in the analysis; it has, for

instance, dissipation and heat ßux in addition to the vorticity and the Hall terms.The

plasma is taken to be compressible and embedded in a gravitational Þeld; this provides

an extra possibility for micro�scale structure creation. Transport coefficients for heat

conduction and viscosity are taken from [59].
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The simulation presented here deals with the trapping and ampliÞcation of a primary

ßow impinging on a single closed�line structure. The choice of initial conditions is guided

by the observational evidence [200, 233] of the self�consistent process of acceleration and

trapping/heating of plasma particles in the Þnely structured solar atmosphere. The

simulation begins with a weak symmetric up�ßow (initially Gaussian, |V|0max ¿ Cs0,

where Cs0 is an initial sound velocity) with its peak located in the central region of a

single closed magnetic Þeld structure (location of Þeld maximum B0z = 100G � upper

plot of Fig.3.12 for the vector potential (ßux function) deÞning the 2D arcade). This

Þeld was assumed to be initially uniform in time. The magnetic Þeld is represented as :

B = ∇×A + Bz �z with A(0;Ay; 0); b = B/B0z; bx(t, x, z 6= 0) 6= 0. From numerous

runs on the ßow�Þeld evolution, we have chosen to display the results corresponding to

the following initial and boundary ßow parameters: V0max(xo, z = 0) = V0z = 2.18 ·
105 cm/s; n0max = 1012 cm−3; T (x, z = 0) = const = T0 = 10 eV . The background

plasma density is nbg = 0.2n0max. In simulations n(x, z, t = 0) = n/n0max is an

exponentially decreasing function of z. Experience was a guide to for imposing the

following boundary condition, ∂x(x = ±∞, z, t) = 0 which was used with sufficiently

high accuracy for all parameters (A, T,V,B, n) . The initial velocity Þeld has a pulse�

like distribution (middle and lower plots of Fig.3.13) with a time duration t0 = 100 s.

It is found that:

(1) the acceleration is signiÞcant in the vicinity of the magnetic Þeld�maximum (orig-

inally present or newly created during the evolution) with strong deformation of Þeld

lines and energy re�distribution due to magneto�ßuid coupling and dissipative effects.

(2) Initially, a part of the ßow is trapped in the maximum Þeld localization area, ac-

cumulated, cooled and accelerated (plots corresponding to t = 100 s in Fig.3.13). The

accelerated ßow reaches speeds greater than 100 km/s in less than 100 s (in agreement

with recent observations [1, 247, 246] and references therein).

(3) After this stage the ßow passes through a series of quasi�equilibria. In this relatively

extended era (∼ 1000 s) of stochastic/oscilating acceleration, the intermittent ßows con-
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tinuously acquire energy (see Fig.3.14 for the ßow kinetic and magnetic energy maxima

and also Fig.3.13 results at t = 1000 s).

(4) The ßow starts to accelerate again (Fig.3.14(a-c) for the velocity Þeld evolution). This

process is completely consistent with the analytical prediction; the acceleration is highest

in the strong Þeld regions (newly generated, Fig.3.13). At this moment the accelerated

daughter ßows (macro�scale) are decoupled from the mother ßow carrying currents and

modifying the initial arcade Þeld creating new bmax localization areas that span the region

between . 0.05Rs and ∼ 0.01Rs from the interaction surface.

The extensive simulation runs also show that when dissipation is present, the hall term

(proportion to α0), through the mediation of micro�scale physics, plays a crucial role in

the acceleration/heating processes. The existence of initial fast acceleration in the region

of maximum localization of the original magnetic Þeld, and the creation of new areas of

macro�scale magnetic Þeld localization (Fig.3.13, panel forAy) with simultaneous transfer

of the magnetic energy (oscillatory, micro�scale) to ßow kinetic energy (Fig.3.13, panel

for |V | and Fig.3.14 results) are manifestations of the combined effects of the dynamo and
reverse dynamo phenomena. The maintenance of quasi�steady ßows for rather signiÞcant

period is also an effect of the continuous energy supply from ßuctuations (due to the

dissipative, Hall and vorticity effects). These ßows are likely to provide a very important

input element for understanding the Þnely structured atmospheres with their richness of

dynamical structures as well as for the mechanisms of heating, and possible escape of

plasmas.

Notice, that in the simulation the actual magnetic and generalized helicity densities

are dynamical parameters. Thus even if they are not in the required range initially, their

evolution could bring them in the range where they could satisfy conditions needed to

efficiently generate ßows. The required conditions could be met at several stages. This

could, perhaps, explain the existence of several phases of acceleration. Dissipation effects
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Figure 3-13: x − z contour plots at 3 time�frames: t = 100 s; 1000 s; 2500 s for the
dynamical evolution of Ay (Þrst panel from the left), n (second panel), |V | (third panel)
and T (last panel) for ßow � arcade Þeld interaction. The realistic viscosity and heat�
ßux effects as well as the Hall term (α0 = 3.3 · 10−10) are included in the simulation.
Primary ßow (type displayed in Fig.3.12) is accelerated as it makes a way through the
magnetic Þeld with an arcade�like structure (Fig.1). The primary ßow, locally sub�
Alfvénic, is accelerated reaching signiÞcant speeds (& 100 km/s) in a very short time
(. 100 s). Initially the effect is strong in the strong Þeld region (center of the arcade).
There is a critical time (. 1000 s) when the accelerated ßow bifurcates in 2; the original
arcade Þeld is deformed correspondingly. After the bifurcation, strong magnetic Þeld
localization areas, carrying currents, are created symmetrically about x = 0. Post�
bifurcation daughter ßows are localized in the newly created magnetic Þeld localization
areas. The maximum density of each daughter ßow is of the order of the density of the
mother�ßow. Daughter�ßows have distinguishable dimensions ∼ 0.05Rs. At t & 1000 s,
the velocities reach ∼ 500 km/s or even greater (. 800 km/s) values. The distance from
surface where it happens is & 0.01Rs . In the regions of daughter ßows localization
there is a signiÞcant cooling while the nearby regions are heated.
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Figure 3-14: Evolution of maximum values of |V|, |V p| = (V 2
x + V

2
y )

1/2, Vz ((a�c)) and
|b|, |bp| = (b2x+ b2y)1/2, bz ((d�f)) in time. (a),(d) � It is shown that much of the transfer
from magnetic Þeld energy happens while the Þrst and very fast (∼ 100 s) acceleration
stage; (e),(b) � later, the dissipation of perpendicular (towards height) magnetic Þeld
ßuctuations lead to the maintenance of the quasi�equilibrium fast perpendicular ßows
for a period of ∼ 1000 s and then the effective acceleration of ßow follows; (c),(f) �
maximum value of magnetic Þeld component along height is not changed and radial
component of velocity Þeld dissipates effectively. It should be emphasized that these
maximum values of both Þeld parameters change the localization dynamically and follow
the relationship found analytically � fast ßows (see Fig.3.13) are observed in the regions
of macro scale magnetic Þeld maximum localization (initially given or later generated).
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could play a fundamental role in setting up these distinct stages; it could, for example,

modify the generalized vorticity that will Þnally lead to a modiÞcation of Þeld lines and

even to the creation of micro scales (shocks or fast ßuctuations).

From an analysis of the two�ßuid equations, we have extracted, in this study, the

�reverse�dynamo� mechanism � the ampliÞcation/generation of fast plasma ßows in

astrophysical systems with initial turbulent (micro scale) magnetic Þelds. This process

is simultaneous with, and complimentary to the highly explored dynamo mechanism. It

is found (both analytically and numerically) that the generation of macro�scale ßows is

an essential consequence of the magneto�ßuid coupling, and is independent of the initial

and boundary conditions. The generation of macro scale magnetic Þelds and ßows goes

hand in hand; the greater the macro�scale magnetic Þeld (generated locally) the greater

the macro�scale velocity Þeld (generated locally). The acceleration due to the reverse

dynamo is directly proportional to the initial turbulent magnetic energy. When the

microscopic magnetic Þeld is initially dominant, a major part of its energy transforms to

macro�scale ßow energy; a weak macro�scale magnetic Þeld is generated along with.

The reverse dynamo mechanism, providing an unfailing source for macro�scale plasma

ßows, is likely to be an important mechanism for understanding a host of phenomena in

astrophysical systems.
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3.5 Dynamical Creation of Channels for the Particle

Escape in the Solar Atmosphere

In this section we investigate the conditions under which a stream of high speed charged

particles may create temporary escape channels in a region nested with closed magnetic

Þelds of varying scales. This active mode of particle escape (as opposed to the escape from

open Þeld regions) may become a critical ingredient in building a theory of stellar winds.

Temporary channel creation, for example, could be the crucial mechanism needed to

explain the recent suggestions that the fast solar wind seems to emerge from all latitudes

[251] inspite of the observational consensus that, barring the polar regions, the solar

surface (on the average) is studded with magnetic structures with closed Þelds (even the

so called Coronal Holes) [252, 1, 200, 203, 234].

If a given stream of particles were to punch out its own channels of escape in a short�

lived, dynamic process, we could certainly explain the emergence of fast outßows from

regions of the solar atmosphere with no observable long�lived (quasi�static) open�Þelds;

the ßow enters an area, quickly distorts the Þeld topology, creates a channel, escapes and

leaves the Þeld lines to mend themselves. This kind of phenomenon will happen with

statistical uniformity over the entire low atmosphere and the fast outßows would appear

to come from regions permeated by primarily closed Þeld line structures.

Before delineating the physical model we would like to state that there is convincing

observational evidence for the presence of ßows everywhere in the solar atmosphere (see

e.g. [1, 253, 246, 120]). In addition, various theoretical models for up�ßow/jet produc-

tion permeate the literature (the catastrophe models, magnetic reconnections, [231] on

dynamical leakage of magnetic twists produced in the sub-photosphere, cascade of shock

wave interactions [246], magneto�ßuid coupling [218, 240] and etc.). Extra details about

ßow creation are beyond the scope of this study.

The current model harnesses the ability of ßows to complement the magnetic Þeld in

the creation of the amazing richness observed in astrophysical plasma systems like the
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solar corona. A minimum two�ßuid model with arbitrary ßows seems to be sufficient

to reveal the breadth of phenomena made possible by the combined actions of the ßow�

velocity and the magnetic Þelds (see e.g, [72] in which the trapping and primary heating of

relatively weak (extremely sub�Alfv/�enic) ßows in strong magnetic Þelds is emphasized).

For channel creation, the ßows must be relatively strong (Alfv/�enic ßows) pushing their

way through regions of relatively weaker Þelds. Under certain conditions, the Þelds are

deformed enough to create escape channels; the detailed nature of a channel depends on

initial, and boundary conditions.

The 2 dimensional (2D) simulation code reported in [72] and based on the physics

model presented there, is our basic tool for investigation. Though the current calculation

is carried out in the solar context, the explored physics is quite general. We use quasi�

neutrality : ne ' ni = n (∇ · j = 0) but allow the proton (Vi) and the electron (Ve =

(V − j/en) ßow velocities to be different. The electron and the proton temperatures
are taken to be equal such that the pressure p = pi + pe ' 2nT, T = Ti ' Te. The

analysis can be readily extended to allow different temperatures for different species

[215, 229, 230, 209]. The dimensionless two-ßuid equations describing the ßow�Þeld

interaction can be read off from [72]. The ßow requirements were found to be quite

consistent with the latest observational data. It was, however, shown that in the absence

of "anomalous viscosity", the only way to enhance the dissipation rates (to the observed

values) through viscosity is to create spatial gradients of the velocity Þeld that are on

a scale much shorter than that of the structure length. Thus, the viability of this two�

ßuid approach depends wholly on the existence of mechanisms that induce short�scale

velocity Þelds. Theoretical foundations showed that the short�scale velocity Þelds are

self�consistently generated in the two�ßuid system.

A high�speed ßow must overcome both gravity and the magnetic Þeld to emerge

from the solar atmosphere. Overcoming gravity, imposes a stiff lower bound on the ßow

velocity. Negotiating the magnetic Þeld is even harder; preliminary studies show that

ßows with reasonable densities and velocities ≤ 400 km/sec can not destroy or deform
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closed magnetic Þelds structures sufficiently to meet escape conditions. Estimates based

on the observed magnetic Þeld strengths show that even in weak Þeld regions (∼ (1−5)G)
ßows must be rather strong to punch holes. If the up�ßow creation and acceleration

mechanisms were operative at low heights from the solar surface the ßow�magnetic Þeld

interaction could lead to conditions more favorable to particle�escape.

The assumed high speed ßows, interacting with the co�existing closed Þelds provide

initial conditions for our numerical work. The creation of ßows is a major subject beyond

the scope of this study. Some recent observational Þndings for CH and the "quiet Sun"

are highly revealing [256, 258, 257].

The results of two distinct representative simulations will be presented: i) the ßow

interacting with a single structure providing an example of Þeld�deformation, and ii) the

ßow passing through a region nested with varying scale closed Þelds creating escape�

channels. The initial solar magnetic Þeld [72] was modelled as a 2D arcade with circular

Þeld lines in the x�z plane (see e.g. Fig.3.15 for the vector potential/ßux function). The

Þeld attains its maximum value Bmax(xo, z = 0) at x0 at the center of the arcade, and is

a decreasing function of the height z (radial direction).

Note that the 2D Cartesian nature of our code does not allow us to Explore large

distances from the surface due to interference with the boundaries. Although we present

here only the symmetric cases, the simulation of asymmetric situations is straightforward.

In carrying out the simulations an important assumption was made: the diffusion time

of magnetic Þeld is longer than the duration of the interaction process (it would require

T to be at least a few eV �s.)

We Þrst study the dynamics of a spatially localized ßow (initially a Gaussian moti-

vated by observations - e.g. jets, spicules) entering an arcade�like single closed Þeld line

structure. Two scenerios emerge:

1) Flow is strong (|V0|max ∼ 600 km/sec, n0 ∼ 108 cm−3 � Þrst picture of Fig.3.15)

and its peak is located in the central region of the arcade magnetic Þeld structure, the
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Figure 3-15: Magnetic Þeld deformation: Initial distribution of the ßow kinetic energy
(|V0|max(x = 0) = 600 km/sec, n0 ∼ 108 cm−3,) and the evolution of the arcade�like
magnetic structure for 3 time�frames: t = 0; 768; 1749 sec; the structure had initially
B0max(0, Z = 0) = 5G. Strong shear is created in the central region of the structure
resulting in the plasmoid�type conÞguration not leading to the particle escape. The
heights are measured from the Sun�s surface.

original Þeld (B0max = 5G) shown in second picture of Fig.3.15. is seriously deformed,

and its central region is transformed to one with more or less parallel Þeld lines. The

local channel, however, does not go all the way but may extend to a respectable height.

The resulting plasmoid�type conÞguration, though, may not lead to particle escape. In

all such cases one Þnds that narrower the ßow pulse, the sharper the created shear and

stronger the ßow, the faster the deformation process.

2) Several ßow pulses arrive simultaneously towards a single arcade structure, they

may create sheared narrow sub-regions with opposite polarity. The magnetic �well�

displayed in Fig.3.16 (which shows the deformation process for three time�frames: t =

0; 768, 1749 sec) was formed by two identical pulses (Fig.3.16, |V0|max ∼ 600 km/sec, n0 ∼
108 cm−3) located symmetrically on the opposite sides of the arcade-center (B0max = 5G).

In both cases, the ßows were not able to punch channels through a single closed Þeld

structure although the ambient Þeld was quite thoroughly deformed. This is true even

when we put somewhat larger but realistic amount of energy in the ßows; the ßow cannot
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Figure 3-16: Magnetic Þeld (with parameters of Fig.3.15) deformation by two�pulse ßow
(|V0|max = 600 km/sec, n0 ∼ 108 cm−3). Strong shear is created in the central region of
the structure resulting in the well�type conÞguration. No particle escape.

overcome the magnetic Þeld in a direct �collision�.

The direct attempt by a relatively strong ßow to force its way through a moderate�

strength single magnetic Þeld structure seems to result in complete failure (everywhere

the ßow is sub�Alfénic!); the Þeld is highly distorted but does not quite yield. What

structure (prevalent in the atmosphere), then, may prove more cooperative for our goal?

Recent literature is extremely helpful in this quest. It has been suggested in [253] that the

coexistence of strong� and weak�Þeld components observed in the quiet�Sun photospheric

Þeld [259] has a counterpart in the corona. It was shown that the observed predominance

of the radial component of the quiet coronal magnetic Þeld is deÞned, again, by the weak�

Þeld component. Coupling these observations with the models of high�speed up�ßow

generation, it seems rather reasonable to study the passage of this strong ßow through

an area nested with several arcade-magnetic Þeld structures. Although it is only the

3D simulations that can reproduce most of the observational features of the channel

escape process, we believe that the current 2D code is sufficient to determine whether an

escape�channel can be created.

From our extensive simulation runs we choose two representative case studies: 1) the

ßows interacting with two neighboring arcade�structures, and 2) the ßows interacting
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Figure 3-17: Initial ßow and 2 identical arcade�magnetic structures of: B0max = 3G,
ßow |V0|max = 920 km/sec, n0 = 2 ·107 cm−3; background plasma density = 5 · 106 cm−3

at the height where strong ßows can be found.

with four neighboring arcades. For optimum effect we locate the maxima of the ßow

pulses in the weak�Þeld region in between the neighboring arcades (where the ßows are

locally Alfvenic). We present the results of spatially symmetric initial conditions; the

inhomogeneous initial conditions do lead to different evolutions, but channel creation

remains a common feature.

The fate of the system of Fig.3.17 the two neighboring arcade�structures invaded in

the middle (weak Þeld regions (B0max = 3G)) by a fast ßow |V0|max ∼ 900 km/sec, n0 =

2 · 107 cm−3), is shown in Fig.3.18 The ßow is able to stretch and drastically deform the

structures and, in a reasonably short time (∼ 50min), creates a 3D channel (the last

time�frame of Fig.3.18). The channel itself is practically cold for distances of a few R¯.

The neighboring regions are comparably hotter: at the structure �coronal base� (created

in this dynamical process), one can distinguish rather hot (T ∼ 106K) areas where a

part of the ßow was trapped and thermalized [72]. Note, that if the simulation were done

in cylindrical (r,φ) geometry, we could see the widening of the channel with increasing r.

We should also add here that if the short scales created in the velocity Þelds due to Hall

term and vorticity effects, and secondary processes like wave generation in the channel
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were also taken into account, one could get hotter channels of escape (the subject of a

future submission).

One of the more interesting consequences of the channel�creation dynamics is dis-

played in the two pictures of Fig.3.19 �there is a sharp decrease in density along the

channel (after the usual shock front area due to the interaction of ßow with background

plasma) with a clearly distinguishable ballistic deceleration of the initial ßow. At heights

≥ 2R¯ from the Sun�s surface the ßow speed (∼ 800 km/sec) has only marginally de-

creased; the fast ßow expends a negligible fraction of its energy in creating a channel for

its escape.

The response of 4 arcade�structures (Fig.3.20) to the onslaught of the ßow is rather

inhomogeneous and complicated; several channels are created in the region of the initial

ßow (Fig.3.21). The central channel seems a bit pressed due to combined interactions �

but this could be just an artifact of the Cartesian geometry used here. In the dynamical

evolution of this system, there is a ballistic deceleration of the ßow in each one of the

channels; the deceleration is faster in the central channel (Fig.3.21). One can also see that,

at longer times, the 4 arcade�structures will be permeated by intermittent ßows. This

picture could be seen as a possible depiction of the complex and very diverse dynamical

structure of the recently observed Coronal Holes.

Note that for all our runs the ßows were, initially, constant in time. We understand

that up�ßows from the chromosphere/TR have Þnite life times; the temporary channel

creation process, therefore, will last only for the time dictated by the duration and other

characteristics of the impinging ßow�pulse. We now list several other omissions of this

preliminary study: anisotropies of velocities and temperature (source of wave genera-

tion and instabilities), ionization, multi�species dynamics, ßux emergence etc. are not
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Figure 3-18: Dynamical Creation of Flow channels in the system of Fig.3.18 Plots for
the vector potential A; the density n, the temperature T , and the speed |V| for 3 time
frames t = 973; 1988; 3048 sec. The channel for particle escape may be clearly seen. Note:
The shock seen at the leading edge is an artifact due to the interaction of the ßow with
the background plasma (necessary for the smooth working of simulation code).
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Figure 3-19: Evolution of: density n(x = 0, z), radial velocity Vz(x = 0, z) in the center
of the escape channel of Fig.3 along the radial distance z. A sharp decrease in density
and the accompanying ballistic deceleration of the initial ßow is revealed. z�projection
of the shock explained in Fig.3.18 is seen.

Figure 3-20: The 4�arcade + 3�pulse system. Boundary conditions for the initial ßow
(spatially non�uniform): |V0|max = 920 km/sec , n0 = 2 · 107 cm−3; background density
= 5 · 106 cm−3; and initial condition for A ( (B0max = 4G).
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Figure 3-21: Inhomogeneous temporary channel creation in a structure of four identi-
cal arcades. The plots of the vector potential, temperature, velocity at t = 2335 sec.
Deceleration is ballistic; the ßow occupies practically the entire region.

included. Either of these could inßuence the channel�creation dynamics. We, however,

believe that our simple model has adequately shown that sufficiently strong ßows are

capable of engineering their escape (self�induced transparency) from an area nested with

a variety of co-existing closed Þeld structures of different scales prevalent in the solar

atmosphere.
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3.6 1D analysis for Solar Wind Origin

Given a high speed solar emanation with sufficient radial speed that it can overcome

Sun�s gravity, the only barrier it must cross to reach us as the fast solar wind, is the

magnetic Þeld. Since the magnetic forces are �strong" in general, the only way for these

particles to escape the solar atmosphere is to be either born, or to be kicked into the

regions where the Þelds are essentially radial.

Thus the existence of the so called �coronal holes� (suggested by Parker and others),

which are precisely such regions of nearly radial or open Þelds, is a necessary condition

for particle escape, and therefore, for the solar wind formation. The polar regions auto-

matically satisfy this requirement. It would appear that we are running headlong into a

conßict with the very experimental fact that had motivated us to seek a new origin of the

SW, i.e., the fast solar wind seems to come from all over the surface and not just from

some speciÞc regions (like the poles). And the coronal holes, even if they were to exist,

could not occupy the entire solar surface, much of which is known to harbor closed Þeld

line structures (loops, arcades and etc.). In fact, it is believed that the �coronal holes�

(CH) are limited to about 20 p.c. of the solar surface.

We believe that there is a very reasonable resolution of this difficulty. Although the

CH�s cover only a small fraction of the solar surface, their locations on the solar surface

is very much a function of time (excepting that of the polar regions, of course). Since the

interior processes which lead to the creation of magnetic Þelds (open and closed), must

be, in general, statistically random, the CH regions will also be randomly distributed.

Averaged over some sufficiently long time interval, the CH will, then, uniformally cover

(in a statistical sense) the entire surface of the Sun. Coupling it with the very plausible

assumption that the primary emanations are emitted with equal probability over the

surface, we may be able to understand why the fast solar wind seems to originate from

the entire solar surface.

In this study, we do not intend to tie ourselves to any particular mechanism for

the primary emanations. We are concerned, here, much more with an investigation

212



of the phenomena that magnetoßuids can display. Below we give an extremely simple

extrapolation from the general equations for the already created radial particle escape

channels.

The bulk of the fast wind will consist of particles that escape through the open Þeld

regions. Since there is no accumulation of particles in these regions, we can safely neglect

the the self�Þeld bf of the ßow. In principle, even for small initial ßow�currents jf (a

measure of the differential electron�proton motion), the magnetic force jf × bs is not
negligible, and must be appropriately modeled. From the preceding discussion, we had

concluded that in the regions from which the particles can escape (to eventually form the

solar wind), this force also has to be negligibly small. The vanishing of this force can be

used, perhaps, as the best operational deÞnition of a coronal hole (CH). With the effect

of the magnetic Þeld gone, a pure radial dependence of the physical quantities may be

enough to capture the essence of the plasma dynamics in these regions.

However there is a class of coronal holes where the Þeld lines are nearly open. Such

small�scale conÞgurations are met in the background corona in the streamer belt areas.

In these areas, the loops are very stretched (the distances between the footpoints are

much less than the loop�heights), and the j× b force may not be negligible in the upper
reaches of the region. In these regions, the conditions for particle escape may still exist

but due to stronger dissipation effects the velocity of the particles may be less than they

had initially.

A few remarks on the possibility of plasma heating in the regions of open Þeld lines,

are in order. The observations and models discussed in Hundhausen (1977) and Bravo

& Stewart (1997) showed the dependence of the SW temperature and density (as well

as the velocity) on the coronal hole sizes, their divergence, and also on the solar activity

period. From Eq. (1.9), we can see that even for a purely radial dependence of the ßow

variables (V, jf ), it is possible to have some temperature enhancement (over and above

the intrinsic temperature that the ßow may be born with) by the dissipation of a part of

the ßow energy. But this effect can not be strong. The observations also bear this out;
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the coronal holes and the polar gaps are found to be relatively dark.

In purely open�Þeld regions, the magnetic Þeld curvature effects are weak near the

solar surface and may become signiÞcant only far from the surface by virtue of the Solar

rotation effects. Therefore, for an enquiry into the origin of the fast SW, the details of

heating are not a major issue. We shall, however, come back to the heating problem

when we investigate general coronal structures in the next section.

Let us also mention that, using Eq. (1.6), we could obtain different Þnal temperatures

for the species even if they had equal temperatures initially, because the heating mech-

anism proposed here (the conversion of the ßow kinetic energy to heat) favors protons

over electrons. This difference could remain signiÞcant for the escaping particles (SW

particles, for example) because their densities are too low for an inter�species energy

equiliberation. For the trapped particles, on the other hand, this difference can not be

essential because the high plasma density will shorten the relaxation times, and both

species will acquire the same Þnal temperature.

To describe the solar wind, we now proceed to extract an extremely simple model

from our general equations. In the wake of the preceding discussion, we assume

T = const, bf → 0 (3.23)

in the regions of the open magnetic Þelds.

Let us study the ßow�magnetic Þeld interaction in the equatorial plane (Weber &

Davis 1967) where we have only radial dependence (in spherical coordinates). Let the

solar Þeld bs, and the normalized ßow velocity u = V/
√
β, be represented as:

u = (ur(r), 0, uφ(r)), bs = (bsr(r), 0, bsφ(r)), (3.24)

where [from Eq. (1.15)]

bsr =
b¯
r2
. (3.25)
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Other relevant equations follow from Eqs. (1.13) and (1.16), after neglecting dissipa-

tion,
∂ur
∂t

+ ur
∂ur
∂r

− u
2
φ

2
+

+
∂

∂r
ln N − (αβ)−1 r

2

N
jfθ bsφ − 2 ∂

∂r

hrc
r
+ ln r

i
= 0, (3.26)

∂

∂t
uφ +

ur
r

∂

∂r
(r uφ) = −(αβ)−1 r

2

N
jfθ bsr, (3.27)

∂N

∂t
+
∂

∂r
(N ur) = 0. (3.28)

where N = n · r2, and t→ t ·√β, where rc is the distance at which the gravitational and
the pressure gradient force are numerically equal. These equations have to be solved in

conjunction with the following boundary conditions:

ur(1AU) ≡ ur∞ = (750 km/s)
cs

; uφ(R¯) = ΩsR¯;

bsφ(R¯) = 0; jfθ(R¯) =?, (3.29)

where the Þrst boundary condition is dictated by the observed solar wind speed. In (3.29),

the subscript �¯� (r = 1) denotes the solar surface, Ωs is the solar rotation frequency.
For completeness, the quantities bsφ, and jfθ have to be modeled. It is now necessary

to stipulate that the intrinsic ßow currents (which, in fact, depend on the solar particle

emanation mechanisms) are insigniÞcant(or are parallel to the magnetic Þeld) so that the

magnetic force inßuence on the particle propagation is weak. Otherwise particles won�t

be able to escape to create fast SW with the required characteristics.

Let us further ignore the rotation of the Sun (Ωs → 0) so that the solar magnetic Þeld

lines are purely straight, and bsφ(r) → 0. Consequently uφ(r) → 0 , and we are left to

solve Eqs. (3.26) and (3.28) without the terms containing bsφ(r) and uφ(r). We remind

the reader that all this truncation is being done just to show, in a very simple scenario,

the origin of the solar wind.

If time�dependence were neglected, these equations are precisely the ones that Parker
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(1958) had in his original calculation. We shall soon show where and how do we differ

from his conclusions.

A closed form solution for the radial speed and density can be readily written down for

the time�independent case. The analytic form (can be seen in Parker (1958)), however, is

not particularly useful in visualizing the radial variation. Therefore we present here the

results of numerical simulation of the time�dependent system. For this purpose we have

taken r∞ = 200. We use two different temperatures T = 2 · 105K, and T = 106K; the

Þrst choice corresponds to the current observational value, while the second reßects the

temperatures used in earlier times (essentially the temperature of the coronal particles

which were supposed to be accelerated to create the fast wind).

For the lower temperature case, the time asymptotic solution (starting from a variety

of initial conditions) leads to the upper curve (rc = 24, u∞ = 12, Vr∞ = 750 km/s,

cs = 63 km/s) of Fig. 3.22. Notice that the ßow velocity is maximum (950 km/s) at

the solar surface, decelerates due to gravity, and soon reaches a plateau value. What is

interesting is that there is just the expected region of deceleration but none of acceleration

at these lower temperatures.

This is, of course, in some contrast to what pertains for the higher temperature

(T = 106K, rc = 4.8, u∞ = 5.4, cs = 140 km/s) case shown as the lower curve in

Fig.3.22. Starting from a velocity maximum at the solar surface (Vr¯ = 720 km/s <

Vr∞ = 750 km/s), the ßow experiences a rapid deceleration up to rc = 4.8 to the velocity

Vr(rc) = 590 km/s < Vr∞ and then a slow but signiÞcant acceleration to the SW velocity

= Vr∞.

Note that a similar class of solutions for the solar wind were very much there in the

general solution given by Parker (1958). But because of the poor observational data

available at that time, these solutions were ignored; it was hard, then, to believe that

such high speed particles can exist at the solar surface. Lack of evidence of high speed

particles near the Sun was, perhaps, the determining factor which biased the leaders in

this Þeld towards the �acceleration" dominated theories of the solar wind. An essential
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Figure 3-22: Radial plots of the solar wind speed for temperature T = 2 · 105K [Cs =
63 km/s] and T = 106K [Cs = 140 km/s]. The asymptotic speed V∞ = 750 km is the
boundary condition at 1AU . These are the time asymptotic plots.
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part of these theories was to look for mechanisms of plasma acceleration to arrive at the

fast SW velocity observed at 1 AU (see Parker 1992; Axford & McKenzie 1992; Tu &

Marsch 1997; Mckenzie, Banaszkiewicz & Axford 1995).

And if the fast solar emanations exist, the solar wind follows naturally, in fact, rather

trivially. Our only addition to the earlier system is a different set of boundary conditions

at the solar surface. And these boundary conditions follow from the basic program that

we had proposed in the beginning of this study, i.e., to accord a kind of a primacy to

the ßows. It is of utmost importance that observations seem to support the existence of

these ßows.

We have carried out extensive numerical experiments to show the stability as well as

the accessibility of our solar wind solutions. Starting from a diverse set of initial condi-

tions (some differing quite a bit from the eventual steady state solution) we were able to

demonstrate that, indeed, the stationery solutions are the time asymptotic solutions of

the initial value problem. The time history of a typical solution (for the lower tempera-

ture) is illustrated in Fig.3.23. We start from a spatially constant initial condition and

see the system evolve to the asymptotic state in a fairly short time. In Fig.3.24, we show

an example where the stability of this solution is tested by imposing a sinusoidal per-

turbation at time t = 0. Notice that the perturbations dies away leaving the stationary

solution as the Þnal state. This happens even when the perturbations are �large.�

The continuity equation allows us to estimate (for a given solution) the ßow density at

the solar surface from a knowledge of the SW density at IAU (inÞnity in our calculations).

Using the relation, n¯Vr¯R2
¯ = n∞Vr∞(1 AU)2, we Þnd n¯ = 1.5 · 105 cm−3 for T =

1.5 · 105K and the pertaining ßow velocity value at the solar surface, Vr¯ = 930 km/s.

The upper limit on the electron density in the CH bottom can be estimated using the

empirical models relating the brightness and the electron density distribution in the

corona, averaged for an activity cycle (Nikolskaya & Val�chuk 1997a). This method

provides the value ne ' 5·105 cm−3 at the bottom of the coronal holes . Thus, the plasma
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Figure 3-23: Fig.3.23 Radial plot of the normalized solar wind speed at different times in
the evolution for T = 2 ·105K. The initial proÞle is Vr = const for all r. As time becomes
larger, the proÞle tends to become more and more like the upper curve in Fig.3.22.
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Figure 3-24: Radial plots of the normalized solar wind speed for different times. A
sinusoidal perturbation is imposed on the upper solution displayed in Fig.3.22. Note
that the perturbation decreases as the time goes on proving the stability of the solution

density of the primary emanations may be expected to lie in the range (1.5÷5)·105 cm−3.

In our model for the origin of the solar wind we have not worried much either about

the acceleration or the heating of the solar wind particles. We have also �neglected" the

magnetic Þeld effects. Naturally all these processes do take place and must Þnd their way

in any complete modeling of the solar wind. Our aim, in this section, was a bit limited;

we wanted to present a possible zeroth order theory of the SW origin. Our choice to

attempt to establish an unencumbered, primitive, origin theory was, partially dictated by

historical reasons. We do know that Parker�s original solution was subsequently extended
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and modiÞed in many ways�the energy balance equation (even two energy equations for

the two species) was incorporated to give temperature effects, and the effects of magnetic

Þeld were also added. The CH�s were modeled for which a 2D MHD model was set up by

Pneuman and Kopp (1971). But despite these modiÞcations, the origin of the fast SW

remained an enigma. The indications were that a different element (primary ßows) may

be necessary to resolve the issue. All the other effects may be necessary to understand

the details of the characteristics of the solar wind but may not be crucial to lead us to

its origin.

On a more technical side, it appears from Figs.3.22�3.23, that there exists the pos-

sibility of dissipative heating of the SW because of the variation of the radial velocity.

However for the lower temperature (currently accepted) case, the gradients are quite

weak (on the scale of rc), and the classical dissipation turns out to be negligible.

We must, however, remark that the observations do show some temperature variation

in the distant reaches of the coronal holes (Bravo & Stewart 1997). It is, in fact, expected

that both heating and magnetic Þeld effects may become important in such regions

because of the relatively strong radial divergence of the Þeld lines and the concomitant

self�consistent ßow vorticity. These effects require a multidimensional treatment and will

be discussed in the context of the general corona.
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3.7 Conclusions for Structure Creation in Solar At-

mosphere

In this study we have investigated the conjecture that both the SW and the structures

which comprise the solar corona (for the quiescent Sun) owe their origin to particle

(plasma) ßows emanating from the Sun�s surface. These primary emanations are the

sources which are expected to provide, on a continuous basis, much of the required

material and energy. From a general framework describing a plasma with ßows, we have

been able to �derive" several of the essential characteristics of the solar wind, and of the

coronal structures.

The principal distinguishing component of our model is the full treatment accorded

to the velocity Þelds associated with the directed plasma motion (originally present or

generated dynamically as shown in our model). It is the interaction of the ßuid and

the magnetic aspects of plasma that ends up creating so much diversity in the solar

atmosphere.

This study has led to the following preliminary results:

1. The possibility of transient fast ßow generation/acceleration of primary ßows due

to magneto-ßuid coupling is explored. It is shown for the Þrst time, that transient fast

ßows can generated low in the atsmosphere with observed parameters (ate the distances

∼ 0.01Rs.
2. The dynamical creation of particle escape channels for speciÞc boundary conditions

for the ßow-closed magnetic Þeld interactions is demonstrated.

3. In the created channels for particle escape � open magnetic Þeld regions (ne-

glecting curvature and heating effects), we obtain stable time asymptotic solutions with

characteristics of the recently observed Fast Solar Wind. For the Primary emana-

tions escaping through these regions to eventually appear as FSW, the maximum ve-

locity was found at the solar surface. For example, for the observed FSW parameters:

V (1AU) ∼ 750 ÷ 800 km/s; T = 2 · 105K, the surface velocity and density turn out to
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be respectively ∼ 1000 km/s, and ∼ (2 ÷ 5) · 105 cm−3. The transient fast ßow velocity

Þrst decelerates due to gravity but soon reaches the asymptotic (spatially) plateau value;

there is no evidence of an acceleration region at this (and lower) temperature.

4. By using different sets of boundary conditions, it is possible to construct various

kind of 2D loop and arcade conÞgurations.

5. In the closed magnetic Þeld regions of the solar atmosphere, the transient ßows

can accumulate to give sufficient material supply to the corona. Simultaneously with

the accumulation, the ßows, through viscous dissipation, can provide an efficient and

sufficient source for the primary heating of the plasma. The stronger the spatial gradients

of the ßow, the greater is the rate of the dissipation of the kinetic energy into heat.

6. The magnetoßuid equilibria reveal that for extreme sub�Alfvénic ßows (most of the

created corona ßows) the velocity Þeld can have a substantial, fastly varying (spatially)

component even when the magnetic Þeld may be mostly smooth. Viscous damping

associated with this fast component could be a major part of the primary heating needed

to create and maintain the bright, visible Corona. The far�reaching message of the

equilibrium analysis is that neglecting viscous terms in the equation of motion may not

be a good approximation until a large part of the primary ßow kinetic energy has been

dissipated.

7. The qualitative statements on plasma heating, made in points 4 and 5, were tested

by a numerical solution of the time�dependent system. In case of sub�Alfvénic primary

ßows we Þnd that the particle�accumulation begins in the strong magnetic Þeld regions

(near the solar surface), and soon spans the entire volume of the closed magnetic Þeld

regions. It is also shown that, along with accumulation, the viscous dissipation of the

kinetic energy contained in the primary ßows heats up the coronal structures to the

observed temperatures, i.e., in the very Þrst (and fast) stage of the coronal creation,

much of the ßow kinetic energy is converted to heat. This happens on a very short

distance from the solar surface (transition region)�0.03Rs. The end of this transition

region deÞnes the base of the corona. In the transition region, the ßow velocity has very
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steep gradients. After the transition, the dissipation is insigniÞcant, and in a very short

time a nearly uniform (with insigniÞcantly decreasing density and temperature on the

radial distance) hot layer is created around the Sun�this is the equilibrium corona. The

transition region from the solar surface to the equilibrium corona is also characterized by

strongly varying (along both radial and transverse directions) temperature and density.

Depending on the magnetic Þeld conÞguration, the base of the hot region (of the bright

corona) of a given structure acquires its appropriate density and temperature.
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Basic Results

1. An integrated Magneto�Fluid model, that accords full treatment to the Velocity Þelds

associated with the directed plasma motion, is developed to investigate the dynamics of

stellar coronal structures.

2. It is established that the interaction of the ßuid and the magnetic aspects of plasma

may be a crucial element in creating the diversity in the solar atmosphere.

3. It is shown that the structures which comprise the solar corona can be created by

particle (plasma) ßows observed near the Sun�s surface � the primary heating of these

structures is caused by the viscous dissipation of the ßow kinetic energy.

4. A generalized Schrödinger�Boussinesq system of coupled equations is derived

that describes the coupling between the high-frequency electromagnetic wave and low�

frequency electron�acoustic wave arising from the cold plasma component.

5. The possibility of soliton formation in hot electron�positron un�magnetized plasma

with small fraction of cold electron�ion plasma is investigated. The relevance of these

results to astrophysical situations is pointed out.

6. It is shown, that by relating the velocity and the magnetic Þelds, the Hall term

in the two�ßuid model leads to a singular perturbation that enables the formation of an

equilibrium given by a pair of two different Beltrami Þelds. This new set of relaxed states
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includes a variety of plasma states that could explain a host of interesting phenomena.

The H-mode (high-conÞnement) boundary layer, where a diamagnetic structure is self-

organized under the coupling of the magnetic Þeld, ßow, electric Þeld, and pressure, is

an example. The theory also predicts the possibility of producing high beta equilibrium.

7. By modeling the closed Þeld structures by �slowly� evolving Double�Beltrami

two-ßuid equilibria (created by the interaction of the magnetic and velocity Þelds), the

conditions for catastrophic transformations of the original state are derived. It is shown

that a catastrophic loss of equilibrium occurs when the macro�scale of a closed structure,

interacting with its local surroundings, decreases below a critical value; the catastrophe

is possible only if the total energy of the structure (for given helicities) also exceeds a

well�deÞned threshold. It is shown that at the transition much of the magnetic energy

of the original state is converted to the ßow kinetic energy.

8. The differnt route to catastrophe within the developed theoretical framework

when the characteristic length scales are not separable into micro and macro lengths is

demonstrated.

9. The new approach to the quasistatic magnetic (QSM) Þeld generation in the

underdense cold unmagnetized electron plasma by subpicosecond relativistically strong

c.p short EM pulses is developed. It is shown that due to the possibility of electron

cavitation for narrow and intense beams, the increase in the generated magnetic Þeld

slows down as the beam intensity is increased. The structure of the magnetic Þeld closely

resembles that of the Þeld produced by a solenoid. In extremely dense plasmas, highly

intense EM pulses in the self-channeling regime can generate magnetic Þelds ∼ 100MG
and greater.

10. Investigating the different initial density proÞles for laser-produced plasmas,

where the density scale length is typically of the order of that of the laser beam am-

plitude and taking into account the electron cavitation by relativistically strong short

EM pulses, it is shown the advantage of the convex initial density proÞle compared to

the concave one (or to the initially homogeneous plasma) to generate immense magnetic
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Þelds (∼ 200MG and greater) in the self-channeling regime by the currently available

intense EM pulses.

11. The generation of generalized vorticity and quasi�static magnetic Þeld by short

relativistically strong EM pulse propagating in dissipative under�dense cold unmagne-

tized plasma is shown. It is demonstrated that due to dissipation the generated quasi�

static axial current becomes the source for azimuthal quasi�static magnetic (QSM) Þeld

leading to the helical structure of magnetic Þeld (exists even in weakly relativistic case).

12. For the Þrst time, it is shown that a plasma ßow (locally sub�Alfvénic) is accel-

erated while interacting with emerging/ambient arcade�like closed Þeld structures. The

time�scale for creating reasonably fast ßows (& 100 km/s) is dictated by the initial ion

skin depth while the ampliÞcation of the ßow depends on local plasma β.

13. For the Þrst time, it is shown that distances over which the ßows become �fast� are

∼ 0.01Rs from the interaction surface; the fast ßow localizes (with dimensions. 0.05RS)

in the upper central region of the original arcade. For Þxed initial temperature, the Þnal

speed of the accelerated ßow & 500 km/s, and the modiÞcation of the Þeld structure are

independent of the time-duration of the initial ßow. In the presence of dissipation, these

ßows are likely to play a fundamental role in the heating of the Þnely structured Solar

atmosphere.

14. It is shown that a generalized magneto-Bernoulli mechanism (which converts

thermal energy into kinetic energy, or to the general magnetoßuid rearrangement of a

relatively constant kinetic energy, i.e., going from an initial high-density low-velocity

state to a low-density high-velocity state) can effectively generate high-velocity ßows in

the solar subcoronal regions; sharp ampliÞcation of the ßow speed is accompanied by a

signiÞcant fall in density.

15. For the Þrst time, the �reverse�dynamo�mechanism� the ampliÞcation/generation

of fast plasma ßows by micro scale (turbulent) magnetic Þelds via magneto�ßuid cou-

pling is recognized and explored/developed. It is shown that macroscopic magnetic Þelds

and ßows are generated simultaneously and proportionately from microscopic Þelds and
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ßows. The stronger the micro�scale driver, the stronger are the macro�scale products.

Stellar and astrophysical applications are suggested.

16. Using a dissipative two�ßuid code in which the ßows are treated at par with

the currents, the theory for dynamical temporary channel creation in a region nested

with a variety of co�existing closed�Þeld line structures is developed. It is shown, that

this self-induced transparency may provide an attractive mechanism for the creation of

transient (local) fast solar outßows.

17. Based on the conjectured and recently observed existence of plasma ßows low in

the atmosphere, a model for the Origin of the Solar Wind, and the creation and heating

of the coronal structures is developed. Preliminary results reproduce many of the salient

observational features.

228



Acknowledgements

At the end I would like to express my enormous gratitude to all my collaborators and

co-authors for Þnding the adequate interest to our joint ideas and work. SpeciÞcally I

am grateful to my teacher Nodar Tsintsade for the inspirations, supervision and guiding

my early studies. Especially I would thank my collaborator Vazha Berezhiani from An-

dronikashvili Institute of Physics for his fruitful joint work, the investigations we carried

together and readiness to support the new initiatives. I would also thank my colleague

Tamar Pataraia for her support; Jimsher Javakhishvili from I. Javakhishvili Tbilisi State

University and seniors from Plasma physics department of the Andronikashvili Institute

of Physics that greatly contributed in establishing me as a scientist: Davy Tskhakaya,

Givi Suramlishvili, Vladimir Paverman, Tsiala Loladze, Ekaterina Khirseli, Ivane Mu-

rusidze and David Garuchava. I would like to thank all other members of this department

that helped me to learn a lot of physics on the Laser-plasma interactions and plasma ig-

nition problems: Gela Gelashvili, Eduard Barkhudarov, Tariel Chelidze, Sulkhan Nanon-

bashvili, George Rostomashvili, Nikoloz Kervalishvili and Vladimir Kortkhonjia. I highly

appreciate my collaborators from otehr departments of Andronikashvili Instiute of Physics

Solomon Mikeladze, Ketevan Sigua and Zaza Rostomashvili for the cooperation and

sucessful joint work.

I express my gratitude to the scientists from other centers of Georgia for their co-

229



operation. Especially I am thankful to my colleagues from Abastumani Astrophysical

Observatory Tbilisi laboratory where I always felt great interest to my personal achive-

ments and work from: Jumber Lominadze, Elguja Tsikarishvili, Gia Machabeli, Avtandil

Pataraya, George Chagelishvili, George Melikidze, Andria Rogava, Bidzina Chargeishvili

and Revaz Chanishvili.

I am extremely grateful to my western, Japanese and Russian co-authors that ex-

tensively collaborated with me in carrying out the investigations presented in the thesis:

S. M. Mahajan (Univ. Texas, US), Z. Yoshida (Univ. Tokyo, Japan), R. Miklaszewski

(Warsaw,Poland), K.I. Nikol�skaya (IZMIRAN), S. Ohsaki (Univ. Tokyo, Japan), M.

Iqbal (Pakistan), H. Kaya (TUBITAK, Turkey).

Finally I would like to stress my speciÞc thanks to my parents, my daughter, brother

and entire family for the spirit and conditions that I had when growing; the encourage-

ment and personal examples, love and support I feel permanently.

230



Bibliography

[1] Schrijver, C.J., Title, A.M., Berger, T.E., Fletcher,L., Hurlburt, N.E., Nightingale,

R.W., Shine, R.A., Tarbell, T.D., Wolfson, J., Golub, L., Bookbinder, J.A., Deluca,

E.E., McMullen, R.A., Warren, H.P., Kankelborg, C.C., Handy B.N. and DePon-

tieu, B. �A new view of the solar outer atmosphere by the Transition Region and

Coronal Explorer�. 1999, Solar Phys., 187, 261-302.

[2] Aschwanden, M.J., Tarbell, T.D., Nightingale, R.W., Schrijver, C.J., Title, A.,

Kankelborg, C.C., Martens, P. and Warren, H. P. �Time Variability of the �Quiet�

Sun Observed with TRACE. II. Physical Parameters, Temperature Evolution, and

Energetics of Extreme-Ultraviolet Nanoßares�. 2000, Astrophys. J., 535, 1047-1065.

[3] Golub, L., Bookbinder, J., DeLuca, E., Karovska, M., Warren,H., Schrijver, C.J.,

Shine, R., Tarbell, T., Title, A., Wolfson, J., Handy, B. and Kankelborg, C. �A new

view of the solar corona from the transition region and coronal explorer (TRACE)�.

1999, Phys. Plasmas, 6, 2205-2216.

[4] Beckers, J.M. �Solar Spicules�. 1972, Ann. Rev. A& A 10, 73; 1979, Astrophys. J.,

203, 739.

[5] Bohlin, J.D. In Coronal Holes and High Speed Solar Wind Streams, edited by J.B.

Zirker (Colorado Assoc. Univ. Press, Boulder, CO 1977), p.27.

231



[6] Withbroe, G.L., Jaffe, D.T., Foukal, P.V., Huber, M.C.E., Noyes, R.W., Reeves,

E.M., Schmahl, E.J., Timothy, J.G. and Vernazza, J.E. �Extreme-ultraviolet tran-

sients observed at the solar pole�. 1976, Astrophys. J., 203, 528-532.

[7] Withbroe, G.L. �The role of spicules in heating the solar atmosphere Implications

of EUV observations�. 1983, Astrophys. J., 267, 825-836.

[8] Wilhelm, K., Marsch, E., Dwivedi, B.N., Hassler, D.M., Lemaire,P., Gabriel, A.H.

and Huber, M.C.E. �The Solar Corona above Polar Coronal Holes as Seen by

SUMER on SOHO�. 1998, Astrophys. J., 500, 1023.

[9] Pneuman, G.W. and Orrall, F.Q. In Physics of the Sun, edited by P.A. Sturrock

(Dordrecht: Reidel, 1986), Vol. II, p.71.

[10] Shibata, K. In Solar and Astrophysical Magnetohydrodynamic Flows, edited by

K.C. Tsinganos (Dordrecht: Kluwer, 1996), p.217.

[11] Thomas, J.H. In Solar and Astrophysical Magnetohydrodynamic Flows, edited by

K.C. Tsinganos (Dordrecht: Kluwer, 1996), p.39.

[12] Southwell, K. �Slow and Fast Solar Wind�. 1997, Nature, 390, 235.

[13] Oluseyi, H.M., Walker II, A.B.C., Santiago, D.I., Hoover, R.B. and Barbee Jr.,

T.W. �Observation and Modeling of the Solar Transition Region. II. IdentiÞcation

of New Classes of Solutions of Coronal Loop Models�. 1999, Astrophys. J., 527,

992-999.

[14] Feldman, U., Widing, K.G. and Warren, H.P. �Morphology of the Quiet Solar

Upper Atmosphere in the 4×104<Te<1.4×106K Temperature Regime�. 1999, As-

trophys. J., 522, 1133-1147.

[15] Peter, H. and Judge, P.G. �On the Doppler Shifts of Solar Ultraviolet Emission

Lines�. 1999, Astrophys. J., 522, 1148-1166.

232



[16] Woo, R. and Habbal, S.R. �Imprint of the Sun on the SolarWind�. 1999, Astrophys.

J., 510, L69-L72.

[17] Scudder, J. D. �On the causes of temperature change in inhomogeneous low-density

astrophysical plasmas�. 1992, Astrophys. J., 398, 299-318.

[18] Feldman, W.C., Gosling, J.T., McComas, D.J. and Philips, J.L. �Evidence for ion

jets in the high-speed solar wind�. 1993, J. Geophys. Res. 98, 5593-5605.

[19] Feldman, W.C., Habbal, S.R., Hoogeveen, G. and Wang, Y.-M. �Experimental

constraints on pulsed and steady state models of the solar wind near the Sun�.

1997, J. Geophys. Res., 102, 26905-26918.

[20] Li, X., Habbal, S.R. and Hollweg, J.V. �Heating and cooling of protons by

turbulence-driven ion cyclotron waves in the fast solar wind�. 1999, J. Geophys.

Res. 104, 2521-2536.

[21] Hu, Y.Q. and Habbal, S. R. �Resonant acceleration and heating of solar wind ions

by dispersive ion cyclotron wav�. 1999, J. Geophys. Res. 104, 17,045.

[22] Bravo, S. and Stewart, G.A. �Fast and SlowWind from Solar Coronal Holes�. 1997,

Astrophys. J., 489, 992.

[23] Sturrock, P.A. and Hartle, R.E. �Two-Fluid Model of the Solar Wind�. 1966, Phys.

Rev. Lett. 16, 628-631.

[24] Banaszkiewicz, M., Czechowski, A., Axford, W.I., McKenzie, J.F. and Sukho-

rukova, G.V. 1997, 31st ESLAB Symposium. (Noordwijk, Netherlands) ESTEC

SP-415, 17.

[25] Browning, P. and Priest, E.R. �Kelvin-Helmholtz instability of a phased-mixed

Alfven wave�. 1984, A&A, 131, 283-290.

233



[26] Cally, P.S. �A Sufficient Condition for Instability in a Sheared Incompressible Mag-

netoßuid�. 2000, Solar Phys. 194, 189-196.

[27] Davila, J.M. �Heating of the solar corona by the resonant absorption of Alfven

waves�. 1987, Astrophys. J., 317, 514-521.

[28] Goedbloed, J.P. �Spectrum of ideal magnetohydrodynamics of axisymmetric

toroidal systems�. 1975, Phys. Fluids, 18, 1258-1268.

[29] Goossens, M. In Advances in Solar System MHD, ed. E.R. Priest and A.W. Hood

(Cambridge), 137 (1991).

[30] Heyvaerts, J. and Priest, E.R. �Coronal heating by phase-mixed shear Alfven

waves�. 1983, A&A, 117, 220-234.

[31] Hollweg, J.V. �Resonances of coronal loops�. 1984, Astrophys. J., 277, 392-403.

[32] Litwin, C. and Rosner, R. �AlfvenWave Transmission and Heating of Solar Coronal

Loops�. 1998, Astrophys. J., 499, 945.

[33] Parker, E.N. �Dynamics of the Interplanetary Gas and Magnetic Fields�. 1958,

Astrophys. J., 128, 664.

[34] Parker, E.N. Interplanetary Dynamical Processes (New York/London: Interscience

Publishers 1963).

[35] Parker, E.N. �Topological Dissipation and the Small-Scale Fields in Turbulent

Gase�. 1972, Astrophys. J., 174, 499.

[36] Parker, E.N. �Nanoßares and the solar X-ray corona�. 1988, Astrophys. J. 330,

474-479.

[37] Parker, E.N. �The X ray corona, the coronal hole, and the heliosphe�. 1992, J.

Geophys. Res., 97, 4311-4316.

234



[38] Parker., E.N.. Spontaneous Current Sheets in Magnetic Fields (Oxford University

Press 1994).

[39] Parnell, PC.E., Smith, J., Neukirch, T. and Priest, E.R. �The structure of three-

dimensional magnetic neutral points�. 1996, Phys. Plasmas, 3, 759-770.

[40] Priest, E.R. and Demoulin, P. �Three-dimensional magnetic reconnection without

null points. 1. Basic theory of magnetic ßipping�. 1995, J. Geophys. Res., 100,

23443-23464.

[41] Priest, E.R. and Titov, V.S. �Linear theory of steady X-point magnetic reconnec-

tion�. 1996, Phil. Trans. R. Soc. Lond. A., 354, 2951.

[42] Craig, I.J.D. and Fabling, R.B. �Exact Solutions for Steady State, Spine, and Fan

Magnetic Reconnection�. 1996, Astrophys. J., 462, 969.

[43] Galsgaard, K. and Nordlund, A. �Heating and activity of the solar corona 1. Bound-

ary shearing of an initially homogeneous magnetic Þeld�. 1996, J. Geophys. Res.,

101, 13445-13460 .

[44] Mikic, Z., Schnack, D. and Van Hoven, G. �Dynamical evolution of twisted mag-

netic ßux tubes. I - Equilibrium and linear stability�. 1990, Astrophys. J., 361,

690-700.

[45] Schindler, K., Hesse, M. and Birn, J. �General magnetic reconnection, parallel

electric Þelds, and helicity�. 1988, J. Geophys. Res., 93, 5547-5557.

[46] Van Ballegooijen, A.A. �Cascade of magnetic energy as a mechanism of coronal

heating�. 1986, Astrophys. J., 311, 1001-1014.

[47] Heyvaerts, J. and Priest, E.R. �Coronal heating by reconnection in DC current

systems - A theory based on Taylor�s hypothesis�. 1984, A& A, 137, 63-78; �A

self-consistent turbulent model for solar coronal heating�. 1993, Astrophys. J., 390,

297-308.

235



[48] Sudan, R.N. �Stability of Þeld-reversed, force-free, plasma equilibria with mass

ßow�. 1979, Phys. Rev. Lett., 79, 1277-1281; Sudan, R.N. and Spicer, D.C. �Con-

ventional solar ßare theory re-examined�. 1997, Phys. Plasmas, 4(5), 1929-1935.

[49] PÞrsch, D. and Sudan, R.N. �Small scale magnetic ßux-averaged magnetohydro-

dynamics�. 1994, Phys. Plasmas, 1(8), 2488-2514; �Stability of force-free Taylor

states in a new version of magnetic ßux-averaged magnetohydrodynamics�. 1996,

Phys. Plasmas, 3(1), 29-34.

[50] Tsuneta, S. �Interacting Active Regions in the Solar Corona�. 1996, Astrophys. J.,

456, L63.

[51] Priest, E.R. �How is the Solar Corona Heated ?� 1997, Fifth SOHO Workshop

(Oslo) (ESA SP�404), 93.

[52] Rosner, R., Tucker, W.H. and Vaiana, G.S. �Dynamics of the quiescent solar coro-

na�. 1978, Astrophys. J., 220, 643-665.

[53] Neupert, W.M., Nakagawa, Y. and Rust, D.M. �Energy balance in a magnetically

conÞned coronal structure observed by OSO-7�. 1975, Solar. Phys., 43, 359-376.

[54] Nikol�skaya, K.I. 1985, Astron. Zh., 62, 562; In Mechanisms of Chromospheric and

Coronal Heating, ed. P. Ulmschneider, E. R. Priest and R. Rosner (Heidelberg:

Springer, 1991), 113.

[55] Habbal, S.R. �Small scale structures in the solar corona�. 1994, Space Sci. Rev. 70,

37.

[56] Foukal, P. Solar Astrophysics (New York Chichester Brisbane Toronto Singapore:

A Wiley�Interscience Publication, 1990).

[57] Richtmyer, R.D. and Morton, K.W. Difference Methods for Initial�Value Problems

(Interscience Publishers a division of John Wiley and Sons, New York, London,

Sydney, 1967).

236



[58] Zalesak, S.T. �Fully multidimensional ßux-corrected transport algorithms for ßu-

ids�. 1979, J.Comp.Phys. 31, 335-362.

[59] Braginski, S.I. Transport Processes in a Plasma, in Reviews of Plasma Physics,

edited by M.A. Leontovich (Consultants Bureau, New York, 1965), Vol.1, p. 205.

50

[60] Cox, D. P. and Tucker, W. H. �Ionization Equilibrium and Radiative Cooling of a

Low-Density Plasma�. 1969, Astrophys. J. 157, 1157.

[61] Potasch, S.R. �Radiative Cooling�. 1965, Bull. Astron. Inst. Netherlands 18,8.

[62] Tucker, W. H. and Koren, M. �Radiation from a High-Temperature Low-Density

Plasma: the X-Ray Spectrum of the Solar Corona�. 1971, Astrophys. J. 168,283.

[63] McWhirter, R. W. P., Thonemann, P. C. and Wilson, R. �The heating of the solar

corona. II - A model based on energy balance�. 1975, Astron. Astrophys. 40,63-73.

[64] Taylor, J. B. �Relaxation of Toroidal Plasma and Generation of Reverse Magnetic

Fields�. 1974, Phys. Rev. Lett., 33, 1139; �Relaxation and magnetic reconnection

in plasmas�. 1986, Rev. Mod. Phys., 58, 741-763 .

[65] Faddeev, L. and Niemi, Antti J. �Magnetic Geometry and the ConÞnement of

Electrically Conducting Plasma�. 2000, Phys. Rev.Lett. 85, 3416-3419.

[66] Steinhauer, L. C. and Ishida, A. �Relaxation of a Two-Specie Magnetoßuid�. 1997,

Phys. Rev. Lett. 79, 3423-3426 .

[67] Mahajan, S.M. and Yoshida, Z. �Double Curl Beltrami Flow: Diamagnetic Struc-

tures�. 1998, Phys. Rev. Lett. 81, 4863-4866 .

[68] Mahajan, S.M. and Yoshida, Z. �A collisionless self-organizing model for the high-

conÞnement (H-mode) boundary layer�. 2000, Phys. Plasmas, 7(2), 635-640.

237



[69] Yoshida, Z. and Mahajan, S.M. �Simultaneous Beltrami conditions in coupled vor-

tex dynamics�. 1999, Journal Of Mathematical Physics, 40 (10), 5080-5091.

[70] Mahajan, S.M., Miklaszewsky, R., Nikol�skaya, K.I. and Shatashvili, N.L. 1999,

Primary Flows, the Solar Corona and the Solar Wind. Preprint IFSR ] 857,Univ.of

Texas, Austin, February 1999.

[71] Mahajan, S.M., Miklaszewsky, R., Nikol�skaya, K.I. and Shatashvili, N.L. 2000,

�Primary Plasma Outßow and the Formation and Heating of the Solar Corona;

The High Speed Solar Wind Formation�. In Structure and Dynamics of the Solar

Corona, eds. B.P.Philipov, V.V. Fomichev, G.N., Kulikova, (Troitsk of Moscow

Reg.), p.117.

[72] Mahajan, S.M., Miklaszewski, R., Nikol�skaya, K.I. and Shatashvili, N.L. �Forma-

tion and primary heating of the solar corona: Theory and simulation�. 2001, Phys.

Plasmas, 8, 1340-1357.

[73] Mahajan, S.M., Miklaszewski, R., Nikol�skaya, K.I. and Shatashvili, N.L. �Forma-

tion and heating of the solar corona - theory and simulation�. 2002, Adv. Space

Res. 30(3) 571-576.

[74] Woltjer, L. �A theorem on force-free magnetic Þelds�. 1958, In Proc. Nat. Acad.

Sci. U.S.A. 44, 489.

[75] Priest, E.R. �Magnetohydrodynamics� in Plasma Astrophysics by J. G. Kirk, D.

B. Melrose, E. R. Priest, ed. A.O. Benz and T. J.�L. Courvoisier (Springer-Verlag,

1994), p. 1.

[76] Finn, J.M. and Antonsen, �Turbulent relaxation of compressible plasmas with

ßow�. T.M. 1983, Phys. Fluids, 26, 3540-3552.

[77] Begelman, M.C., Blandford, R.D. and Rees, M.D. �Theory of extragalactic radio

sources�. 1984, Rev. Mod. Phys. 56, 255-351 .

238



[78] Berezhiani, V.I. and Mahajan, S.M. �Large amplitude localized structures in a

relativistic electron-positron ion plasma�. 1994, Phys. Rev. Lett. 73, 1110-1113.

[79] Berezhiani, V.I. and Mahajan, S.M. �Large relativistic density pulses in electron-

positron-ion plasmas�. 1995, Phys. Rev. E, 52, 1968-1979.

[80] Javakhishvili, D.I. and Tsintsadze, N.L. 1973, Zh. Eksp. Teor. Fiz. 64, 1314, [1973,

Sov. Phys. JETP, 37, 666].

[81] Kartal, S, Tsintsadze, L.N. and Berezhiani, V.I. �Localized structures of electro-

magnetic waves in hot electron-positron plasmas�. 1995, Phys. Rev. E , 53, 4225-

4228.

[82] Khirseli, E.M. and Tsintsadze, N.L. �Nonlinear waves in a two-temperature electron

plasma�. 1980-1084, Fizika Plazmy, 6, 1081 [1980, Sov. J. Plasma Phys. 6, 595].

[83] Lakhina, G.S. and Buti, B. �Generation of a d.c. Þeld by nonlinear electromagnetic

waves in relativistic plasmas�. 1981, Astrophys. Space Sci. 79, 25-36.

[84] Lominadze, D.C., Machabeli, G.Z., Melikidze, G.I. and Pataraya, A.D. �Pulsar-

magnetosphere plasma�. 1986, Sov. J. Plasma Phys. 12, 712-1249.

[85] Michel, F.C. �Theory of pulsar magnetospheres�. 1982, Rev. Mod. Phys. 54, 1-66.

[86] Rees, M.J. 1983, in G.W. Gibbons, S.W. Hawking and S.Siklos (eds.), The Very

Early Universe, Cambridge University Press, Cambridge.

[87] Tajima, T. and Taniuti, T. �Nonlinear interaction of photons and phonons in

electron-positron plasmas�. 1990, Phys. Rev. A. 42, 3587-3602.

[88] Holcomb, K. A. and Tajima, T. �General-relativistic plasma physics in the early

Universe�. 1989, Phys. Rev. D 40, 3809-3818.

[89] Goldreich, P. and Julian, W. H. �Pulsar Electrodynamics�. 1969, Astrophys. J.

157, 869.

239



[90] Miller, H. R. and Wiita, P. J. 1987, �Active Galactic Nuclei� (Springer, Berlin).

[91] Surko, C. M., Leventhal, M. and Passner, A. �Positron plasma in the laboratory�.

1989, Phys. Rev. Lett. 62, 901-904.

[92] Surko, C. M. and Murphy, T. J. �Use of the positron as a plasma particle�. 1990,

Phys. Fluids B 2, 1372-1375.

[93] Greeves, R. G., Tinkle, M. D. and Surko, C. M. �Creation and uses of positron

plasmas�. 1994, Phys. Plasmas, 1439-1446.

[94] Kennel, C. F. and Pellat, R. �Relativistic nonlinear plasma waves in a magnetic

Þeld�. 1976, J. Plasma Phys. 15, 335-355.

[95] Leboeuf, J. N., Ashour-Abdalla, M., Tajima, T., C. Kennel, F. Coroniti, F.

and Dawson, J. M. �Ultrarelativistic waves in overdense electron-positron plas-

mas�.1982, Phys. Rev. A 25, 1023-1039.

[96] Gedalin, M. E., Lominadze, J. G., Stenßo, L. and Tsitovich, V. N. �Nonlinear wave

conversion in electron-positron plasmas�. 1985, Astrophys. Space Sci. 108, 393-400.

[97] Berezhiani, V.I., Skarka, V. and Mahajan, S. M. �Relativistic solitary wave in an

electron-positron plasma�. 1993, Phys. Rev. E 48, R3252-R3255.

[98] Kates, R. E. and Kaup, D. J. �Nonlinear modulational stability and propagation

of an electromagnetic pulse in a two-component neutral plasma�. 1989, J. Plasma

Phys. 42, 507-519.

[99] Gomberoff, L. and Galv�ao, R. M. O. �Modulational instability of a circularly po-

larized wave in a magnetized electron-positron plasma with relativistic thermal

energies�. 1997, Phys. Rev. E 56, 4574-4580.

[100] Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. �Relativistic nonlinear

effects in plasmas�. 1986, Phys. Rep. 138, 1-149.

240



[101] Kates, R. E. and Kaup, D. J. �Inßuence of an ambient magnetic Þeld on the

nonlinear modulational stability of circularly polarized electromagnetic pulses in a

two-component neutral plasma�. 1989, J. Plasma Phys. 42, 521-530.

[102] Shatashvili, N. L., Javakhishvili, J. I. and Kaya, H. �Nonlinear Wave Dynamics

in Two-Temperature Electron-Positron-Ion Plasma�. 1997, Astrophys. Space Sci.

250, 109-115.

[103] Shatashvili, N. L., Javakhishvili, J. I. and Kaya, H. �Nonlinear Wave Dynamics in

Two-Temperature Electron-Positron-Ion Plasma�. 1996, In Proc. ICPP, Nagoya,

Japan. p.946 (1996). ArXiv: astro-ph/9810180.

[104] Kuznetsov, S. V. �Theory of envelope solitons of electromagnetic waves�. 1982, Fiz.

Plasmy 8, 352-356. [1982, Sov. Phys. JETP 8, 199].

[105] Rao, N. N. and Shukla, P. K. �Coupled Langmuir and ion-acoustic waves in two-

electron temperature plasmas�. 1997, Phys. Plasmas 4, 636-645.

[106] Rasmussen, J. Juul and Rypdal, K. �Blow-up in nonlinear Schrödinger equations-I.

A general review�. 1986, Phys. Scr. 33, 481.

[107] Chian, A. C. L. and Kennel, C. F. �Self-modulational formation of pulsar mi-

crostructures�. 1983, Astrophys. Space Sci. 97, 9-18.

[108] Mikhailovskii, A. B., Onishchenko, O. G. and Tatarinov, E. G. �Alfven solitons

in a relativistic electron-positron plasma. II. Kinetic theory �. 1985, Plasma Phys.

Controlled Fusion 27, 539-556.

[109] Gangadhara, R. T., Krishnan, V. and Shukla, P. K. �The modulation of radiation

in an electron-positron plasma�. 1993, Mon. Not. R. Astron. Soc. 262, 151-163.

[110] Shatashvili, N. L. and Tsintsadze, N. L. �Nonlinear Landau damping phenomenon

in a strongly turbulent plasma�. 1982, Phys. Scr. T2/2, 511-516.

241



[111] Shatashvili, N.L.and Rao, N.N. �Localized nonlinear structures of intense electro-

magnetic waves in two-electron-temperature electron-positron-ion plasmas�. 1999,

Phys. Plasmas, 6, 66-71.

[112] Arnold, V.I. and Khesin, B.A. 1998, �Topological Methods in Hydrodynamics�,

Springer�Verlag: New York Berlin Heidelberg 1998, 72.

[113] Aschwanden, M.J., Nightingale, R.W. and Alexander, R.W. �Evidence for Nonuni-

form Heating of Coronal Loops Inferred from Multithread Modeling of TRACE

Data�. 2000a, Astophys. J., 541, 1059-1077.

[114] Aschwanden, M.J., Tarbell, T.D., Nightingale, R.W. et al., �Time Variability of

the �Quiet� Sun Observed with TRACE. II. Physical Parameters, Temperature

Evolution, and Energetics of Extreme-Ultraviolet Nanoßares�. 2000b, Astrophys.

J. 535, 1047-1065.

[115] Birn, J., Gosling, J.T., Hesse, M., Forbes, T.G. and Priest, E.R. �Simulations of

Three-Dimensional Reconnection in the Solar Corona�. 2000, Astrophys. J. 541,

1078-1095.

[116] Chen, P.F. and Shibata, K. �An Emerging Flux Trigger Mechanism for Coronal

Mass Ejections�. 2000, Astrophys. J., 545, 524-531.

[117] Chen, J. �Physics of Coronal Mass Ejections: A New Paradigm of Solar Eruptions�.

2001, Space Sci. Rev., 95, 165-190 .

[118] Choe, G.S. and Cheng, C.Z. �A Model of Solar Flares and Their Homologous

Behavior�. 2000, Astrophys. J., 541, 449-467.

[119] Christopoulou, E.B., Georgakilas, A.A. and Koutchmy, S. �Fine Structure of the

Magnetic Chromosphere: Near-Limb Imaging, Data Processing and Analysis of

Spicules and Mottles�. 2001, Solar Phys., 199, 61-80 .

242



[120] Goodman, M.L. �The Necessity of Using Realistic Descriptions of Transport

Processes in Modeling the Solar Atmosphere, and the Importance of Understanding

Chromospheric Heating�. 2001, Space Sci. Rev., 95, 79-93 .

[121] Jordan, R., Yoshida, Z. and Ito, N. �Statistical mechanics of three-dimensional

magnetohydrodynamics in a multiply connected domain�. 1998, Physica D, 114,

251-272.

[122] Forbes, T.G. and Isenberg, P.A. �A catastrophe mechanism for coronal mass ejec-

tions�. 1991, Astrophys. J., 373, 294-307.

[123] Forbes, T.G. and Priest, E.R. �Photospheric Magnetic Field Evolution and Erup-

tive Flares�. 1995, Astrophys. J., 446, 377.

[124] Ito, N. and Yoshida, Z. �Statistical mechanics of magnetohydrodynamics�. 1996,

Phys. Rev. E, 53, 5200-5206.

[125] Klimchuk, J.A. and Sturrock, P.A. �Force-free magnetic Þelds - Is there a �loss of

equilibrium�?�. 1989, Astrophys. J. , 345, 1034-1041.

[126] Kusano, K., Suzuki, Y. and Nishikawa, K. �A solar ßare triggering mechanism

based on the Woltjer-Taylor minimum energy principle�. 1995, Astrophys. J., 441,

942-951.

[127] Kusano, K. and Nishikawa, K. �Bifurcation and Stability of Coronal Magnetic

Arcades in a Linear Force-free Field�. 1996, Astrophys. J., 461, 415.

[128] Yoshida, Z. and Mahajan, S.M. �Variational Principles and Self-Organization in

Two-Fluid Plasmas�. 2002, Phys. Rev. Lett. 88, 095001.

[129] Montgomery, D., Turner, L. and Vahala, G. �Three-dimensional magnetohydrody-

namic turbulence in cylindrical geometry�. 1978, Phys. Fluids, 21, 757-764.

243



[130] Orlando, S., Peres, G. and Serio, S. �Models of stationary siphon ßows in stratiÞed,

thermally conducting coronal loops. 1: Regular solutions�. 1995a, Astrophys. and

Astronomy, 294, 861-873 .

[131] Orlando, S., Peres, G. and Serio, S. 1995b, Astrophys. and Astronomy, 300, 549.

[132] Parker, E.N. �InferringMean Electric Currents in Unresolved Fibril Magnetic Field-

s�. 1996, Astrophys. J., 471, 489.

[133] Roald, C.B., Sturrock, P.A. and Wolfson, R. �Coronal Heating: Energy Release

Associated with Chromospheric Magnetic Reconnection�. 2000, Astrophys. J., 538,

960-967.

[134] Rosner, R., Tucker, W.H. and Vaiana, G.S. �Dynamics of the quiescent solar coro-

na�. 1978, Astrophys. J., 220, 643-665.

[135] Sakurai, T. �Magnetic equilibria and instabilities�. 1989, Solar Phys., 121, 347-360.

[136] Steinhauer, L.C. and Ishida, A. �Relaxation of a Two-Specie Magnetoßuid�. 1997,

Phys. Rev. Lett.,79, 3423-3426 .

[137] Taylor, J.B. �Relaxation of Toroidal Plasma and Generation of Reverse Magnetic

Fields�. 1974, Phys. Rev. Lett. , 33, 1139-1141.

[138] Yoshida, Z. and Giga, Z. 1990, Math. Z. 204, 235.

[139] Wilhelm, K. �Solar spicules and macrospicules observed by SUMER�. 2000, Asro-

phys. and Astronomy, 360, 351-362 .

[140] Winebarger, A.M., DeLuca, E.E. and Golub, L. �Apparent Flows above an Ac-

tive Region Observed with the Transition Region and Coronal Explorer�. 2001,

Astrophys. J., 553, L81-L84.

244



[141] Yoshida, Z., Mahajan, S.M., Ohsaki, S., Iqbal, M. and Shatashvili, N. �Beltrami

Þelds in plasmas: High-conÞnement mode boundary layers and high beta equilib-

ria�. 2001, Phys. Plasmas, 8, 1559-2131.

[142] Mourou, G. and Umstadter, D. �Development and applications of compact high-

intensity lasers�. 1992, Phys. Fluids B, 4, 2315-2325.

[143] http://www.rl.ac.uk/lasers

[144] Perry, M. and Mourou, G. �Terawatt to petawatt subpicosecond lasers�. 1994,

Science, 264, 917-924 .

[145] Tabak, M. et al., �Ignition and high gain with ultrapowerful lasers�. 1994, Phys.

Plasma, 1, 1626-1634.

[146] Borovskii, A.V., Korobkin, V.V. and Prokhorov, A.M. �On possible applications

of the self-channeling in matter of high-power ultrashort laser pulses�. 1994, Zh.

Eksp. Teor. Fiz. 106, 148 [ 1994, JETP, 79, 81-87].

[147] Berezhiani, V.I., Tskhakaya, D.D. and Shukla, P.K. �Pair production in a strong

wake Þeld driven by an intense short laser pulse�. 1992, Phys. Rev. A 46, 6608-6612.

[148] Borisov, A.B. et al., �Observation of relativistic and charge-displacement self-

channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas�.

1992, Phys. Rev. Lett. 68, 2309-2312.

[149] Chiron, A. et al., �Experimental observations and simulations on relativistic self-

guiding of an ultra-intense laser pulse in underdense plasmas�. 1996, Phys. Plasma,

3, 1373-1401.

[150] Nakajima, K. et al., �Observation of Ultrahigh Gradient Electron Acceleration by

a Self-Modulated Intense Short Laser Pulse�. 1995, Phys. Rev. Lett. 74, 4428-4431.

245



[151] Tajima, T. and Dawson, J.M. �Laser electron accelerator�. 1979, Phys. Rev. Lett.

43, 267-270.

[152] Gorbunov, L.M. and Kirsanov, V.I. �The excitation of plasma waves by an electro-

magnetic wave packet�. 1987, Zh. Eksp. Teor. Fiz. 93, 509-518 [1987, Sov. Phys.

JETP, 66, 290].

[153] Bulanov, S.V., Kirsanov, V.I. and Sakharov, A.S. �Excitation of ultrarelativistic

Langmuir waves by an electromagnetic radiation pulse�. 1989, Pis�ma Zh. Eksp.

Teor. Fiz. 50, 176-178 [1989, Sov. JETP Letters 50, 198].

[154] Berezhiani, V.I. and Murusidze, I.G. �Relativistic wake-Þeld generation by an in-

tense laser pulse in a plasma�. 1990, Phys. Lett. A 148, 338-340.

[155] Sprangle, P., Esarey, E. and Ting, A. �Nonlinear theory of intense laser-plasma

interactions�. 1990, Phys. Rev. Lett. 64, 2011-2014.

[156] Litvak, A.G. 1969, Zh. Eksp. Teor. Fiz. 57, 629 [1970, Sov. Phys. JETP 30, 344].

[157] Max, C., Arons, J. and Langdon, A. �Self-Modulation and Self-Focusing of Elec-

tromagnetic Waves in Plasmas�. 1974, Phys. Rev. Lett. 33, 209-212 .

[158] Garuchava, D.P., Rostomashvili, Z.I. and Tsintsadze, N.L. �Self-focusing of strong

electromagnetic beams in an inhomogeneous plasma�. 1986, Fiz. Plazmy 12, 1341-

1347 [1986, Sov. J. Plasma Phys. 12, 776].

[159] Barnes, D.C., Kurki-Suonio, T. and Tajima, T. 1987, IEEE Trans. Plasma Sci.

PS-15, 154.

[160] Sun, G.Z., Ott, E., Lee, Y.C. and Guzdar, P. �Self-focusing of short intense pulses

in plasmas�. 1987, Phys. Fluids, 30, 526-532.

[161] Borisov, A.B. et al., �Relativistic and charge-displacement self-channeling of intense

ultrashort laser pulses in plasmas�. 1992, Phys. Rev. A, 45, 5830-5845.

246



[162] Brandi, H.S. et al., �Relativistic and ponderomotive self-focusing of a laser beam in

a radially inhomogeneous plasma. I. Paraxial approximation�. 1993, Phys. Fluids

B, 5, 3539-3550.

[163] Komashko, A. et al., �Relativistic self-focusing in a plasma�. 1995, Pis�ma Zh.

Eksp. Teor. Fiz., 62, 849 [1995, JETP Lett., 62, 860-865].

[164] Shukla, P.K., Rao, N.N., Yu, M.Y. and Tsintsadze, N.L.. �Relativistic nonlinear

effects in plasmas�. 1986, Phys. Rep., 138, 1-149.

[165] Wilks, S.C. , Kruer, W.L., Tabak, M. and Langdon, A.B. �Absorption of ultra-

intense laser pulses�. 1992, Phys. Rev. Lett., 69, 1383-1386.

[166] Sudan, R.N. �Mechanism for the generation of 109 G magnetic Þelds in the interac-

tion of ultraintense short laser pulse with an overdense plasma target�. 1993, Phys.

Rev. Lett., 70, 3075-3078.

[167] Tsintsadze, L.N. and Shukla, P.K. �A novel mechanism for strong magnetic Þeld

generation by ultra-intense laser pulses�. 1994, Phys. Lett. A, 187, 67-70.

[168] Lehner, T. �Intense magnetic Þeld generation by relativistic ponderomotive force

in an underdense plasma�. 1994, Physica Scripta, 49, 704.

[169] Berezhiani, V.I., Tskhakaya, D.D. and Auer, G. �Some remarks on spontaneous

magnetic Þeld generation and the nonlinear dynamics of a Langmuir plasma�. 1987,

J. Plasma Phys., 38, 139-153.

[170] Askar�yan, G.A., Bulanov, S.V., Pegoraro, F. and Pukhov,A.M. 1995, Comments

Plasma Phys. Controlled Fusion, 17, 35.

[171] Askar�yan, G.A., Bulanov, S.V., Pegoraro, F. and Pukhov,A.M., �Nonlinear evolu-

tion of ultrastrong laser pulses in a plasma. New phenomena of magnetic interaction

between strong electromagnetic beams�. 1995, Fizika Plazmy, 21, 884 [1995, Plasma

Phys. Rep. 21, 835-846].

247



[172] Gorbunov, L., Mora, P. and Antonsen,Jr., T.M. �Magnetic Field of a Plasma Wake

Driven by a Laser Pulse�. 1996, Phys. Rev. Lett., 76, 2495-2498.

[173] Bulanov, S.V. et al., �Electron Vortices Produced by Ultraintense Laser Pulses�.

1996, Phys. Rev. Lett., 76, 3562-3565.

[174] Pitaevskii, L.P. 1960, Zh. Eksp. Teor. Fiz., 39, 1450 [1961, Sov. Phys. JETP, 39,

1008].

[175] Steiger, A.D. and Woods, C.H. �Intensity-Dependent Propagation Characteristics

of Circularly Polarized High-Power Laser Radiation in a Dense Electron Plasma�.

1972, Phys. Rev. A, 45, 1467-1474.

[176] Abdullaev, A.Sh. and Frolov, A.A. �The inverse Faraday effect in a relativistic

electron plasma�. 1981, Zh. Eksp. Teor. Fiz., 81, 927-932 [1981, Sov. Phys. JETP,

54, 493].

[177] Abdullaev, A.Sh., Aliev, Yu.M. and Frolov, A.A. �Generation of quasi-static mag-

netic Þelds by strong circularly polarized electromagnetic radiation in a relativistic

magnetoactive plasma�. 1986, Fiz. Plasmy, 12, 827-835 [1986, Sov. J. Plasma Phys.,

12, 476].

[178] Bychenkov, V.Yu., Demin, V.I. and Tikhonchuk, V.T. �Electromagnetic Þeld gen-

eration by an ultrashort laser pulse in a rareÞed plasma�. 1994, Zh. Eksp. Teor.

Fiz. 105, 118 [1994, JETP, 78, 62-67].

[179] Gorbunov, L.M. 1976, Sov. Phys. Usp., 16, 217.

[180] Tsintsadze, N.L. and Tskhakaya, D.D. �On the theory of electrosound waves in a

plasma�. 1977, Sov. Phys. JETP, 45, 252-255.

[181] Bourdier, A. and Fortin, X. �Nonlinear linearly polarized standing waves in a cold-

electron overdense plasma�. 1979, Phys. Rev. A, 20, 2154-2161.

248



[182] Berezhiani, V.I. and Murusidze, I.G. �Relativistic wake-Þeld generation by an in-

tense laser pulse in a plasma�. 1990, Phys. Lett.148, 338-340.

[183] Abdullaev, A.Sh. and Frolov, A.A. �Theory of inverse Faraday effect in an inho-

mogeneous plasma�. 1981, Pis�ma Zh. Eksp. Teor. Fiz., 33, 107 [1081, JETP Lett.,

33, 101-102].

[184] Mora, P. and Antonsen, Jr., T.M. �Electron cavitation and acceleration in the wake

of an ultraintense, self-focused laser pulse�. 1996, Phys. Rev. E, 53, R2068-R2071.

[185] Gorbunov, L., Mora, P. and Antonsen, Jr., T.M. �Magnetic Field of a PlasmaWake

Driven by a Laser Pulse�. 1996, Phys. Rev. Lett. 76, 2495-2498.

[186] Tripathi, V.K. and Liu, C.S. �Self-generated magnetic Þeld in an amplitude mod-

ulated laser Þlament in a plasma�. 1994, Phys.Plasmas, 1(4), 990-992.

[187] Tsintsadze, L.N. and Shukla, P.K. �A novel mechanism for strong magnetic Þeld

generation by ultra-intense laser pulses�. 1994, Phys. Lett. A 187, 67-70.

[188] Lehner, T. �Intense magnetic Þeld generation by relativistic ponderomotive force

in an underdense plasma�. 1994, Physica Scripta, 49, 704.

[189] Rizzato, F.B. �Weak nonlinear electromagnetic waves and low-frequency magnetic-

Þeld generation in electron-positron-ion plasmas�. 1988, J.Plasma Phys. 40(2), 289-

298.

[190] Sheng, Z.M. and Meyer-ter-Vehn, J. �Inverse Faraday effect and propagation of

circularly polarized intense laser beams in plasmas�. 1996, Phys. Rev. E. 4, 1833-

1842.

[191] Berezhiani, V.I., Mahajan, S.M. and Shatashvili, N.L. �Theory of magnetic Þeld

generation by relativistically strong laser radiation�. 1997, Phys. Rev. E, 55(1),

995-1001.

249



[192] Berezhiani, V. I., Mahajan, S. M. and Shatashvili, N.L. �Quasistatic Magnetic

Field Generation in Initially Inhomogeneous Plasma�. 1998, Physica Scripta, T75,

280-282.

[193] Deschamps, J., Fitaire, M. and Lagoutte, M. �Inverse Faraday Effect in a Plasma�.

1970, Phys. Rev. Lett. 25, 1330-1332.

[194] Bonnaud, G., Brandi, H.S., Manus, C., Mainfray, G. and Lehner,T. �Relativis-

tic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous

plasma. II. Beyond the paraxial approximation�. 1994, Phys.Plasmas, 1, 968-989.

[195] Kostyukov, I., Shvets, G., Fisch, N.J. and Rax, J.M. �Inverse Faraday effect in a

relativistic laser channel�. 2001, Laser and Particle Beams, 19, 133-136.

[196] Haines, M.G. �Generation of an Axial Magnetic Field from Photon Spin�. 2001,

Phys. Rev. Letters, 87, 135005-135008.

[197] Tsintsadze, N.L., Mima, K., Tsintsadze, L.N., et al. �Generation of magnetic Þeld,

vortices and relativistic particles by the nonpotential ponderomotive force�. 2002,

Phys. of Plasmas, 9 (10), 4270.

[198] Najmudin, Z. et al. �Investigating the Inverse Faraday Effect with an intense short

pulse laser�. 2000, Bulletin of APS, 5, 129.

[199] Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, Pergamon, New

York (1976).

[200] Aschwanden, M.J., Poland A.I., and Rabin D.M. �The New Solar Corona�. 2001a,

Ann. Rev. Astron. Astrophys., 39, 175-210.

[201] Aschwanden, M.J. �An Evaluation of Coronal Heating Models for Active Regions

Based on Yohkoh, SOHO, and TRACE Observations�. 2001b, Astrophys. J, 560,

1035-1044.

250



[202] Brynildsen, N., Maltby, P., Kjeldseth-Moe, O. & Wilhelm, K. �Dual Flows with

Supersonic Velocities in the Sunspot Transition Region�. 2004, Astrophys. J., 612,

1193-1195.

[203] Chertok, I.M., Mogilevsky, E.I, Obridko, V. N., Shilova, N. S. and Hudson, H. S.

�Solar Disappearing Filament Inside a Coronal Hole�. 2002, Astrophys. J., 567,

1225-1233.

[204] Cox, D.P. and Daltabutt, E. �Radiative Cooling of a Low-Density Plasma�. 1971,

Astrophys. J., 167, 113.

[205] De Moortel, I., Parnell, C.E. and Hood, A.W. �Determination of coronal loop

properties from trace observations�. 2003, Solar Phys. 215, 69-86.

[206] Falconer, D.A., Moore, R.L., Porter, J.G. and Hathaway, D.H. �Solar Coronal

Heating and the Magnetic Flux Content of the Network�. 2003, Astrophys. J., 593,

549-563.

[207] Feldman, U., Landi, E. and Curdt, W. �Nonthermal Mass Motions within the High-

Temperature Plasmas above a Complex Solar Active Region�. 2003, Astrophys. J.,

585, 1087-1094.

[208] Goodman, M.L. �On the Mechanism of Chromospheric Network Heating and the

Condition for Its Onset in the Sun and Other Solar-Type Stars�. 2000, Astrophys.

J., 533, 501-522.

[209] Hollweg, J.V., �Potential wells, the cyclotron resonance, and ion heating in coronal

holes�. 1999, J. Geophys. Res., 104, 505-520.

[210] Liu, Y., Jiang, Y., Ji, H., Zhang, H. and Wang, H. �Observational Evidence of a

Magnetic Flux Rope Eruption Associated with the X3 Flare on 2002 July 15 �.

2003, Astrophys. J., 593, L137-L140.

251



[211] Magara,T. and Longcope, D.W. �Injection of Magnetic Energy and Magnetic He-

licity into the Solar Atmosphere by an Emerging Magnetic Flux Tube�. 2003, As-

trophys. J., 586, 630-649.

[212] Mahajan, S.M., Miklaszewski, R., Nikol�skaya, K.I. and Shatashvili, N.L. �Dynam-

ical Creation of Channels for Particle Escape in the Solar Corona�. 2003, ArXive:

astro-ph/0308012, 35 pages.

[213] Mahajan, S.M., Miklaszewski, R., Nikol�skaya, K.I. and Shatashvili, N.L. �The

coronal hole creation: theory and simulation�. 2002, Adv. Space Res. Vol. 30(3),

pp. 545-550.

[214] Mahajan, S.M., Shatashvili, N.L., Mikeladze, S.V. and Sigua, K.I. �Acceleration

of Plasma Flows Due to Reverse Dynamo Mechanism�. 2005, Astrophys. J., 632,

No.1.

[215] McKenzie, J.F., Sukhorukova, G.V. and Axword,W.I.. �The source region of the

fast solar wind�. 1998, Astronomy and Astrophys. 330, 1145-1148.

[216] Nikol�skaya, K.I., and Valchuk, T.E. 1998, Geomagnetizm and Aeronomy, 38, No. 2,

14.

[217] Nitta, N.V., Cliver, E. W. and Tylka, A.J. �Low Coronal Signatures of Large Solar

Energetic Particle Events�. 2003, Astrophys. J. , 586, L103-L106.

[218] Ohsaki, S., Shatashvili, N.L., Yoshida, Z., and Mahajan, S.M. �Magnetoßuid Cou-

pling: Eruptive Events in the Solar Corona�. 2001, Astrophys. J., 559, L61-L65.

[219] Ohsaki, S., Shatashvili, N.L., Yoshida, Z., and Mahajan, S.M. �Energy Transforma-

tion Mechanism in the Solar Atmosphere Associated with Magnetoßuid Coupling:

Explosive and Eruptive Events�. 2002, Astrophys. J., 570-407.

[220] Poedts, S., Rogava, A.D. and Mahajan, S. M. �Shear-ßow-induced Wave Couplings

In The Solar Wind�. 1998, Astrophys. J. , 505, 369-375.

252



[221] Raymond, J.C., Cox, D.P. and Smith, B.W. �Radiative cooling of a low-density

plasma�. 1976, Astrophys. J., 204, 290-292.

[222] Richtmyer, R.D. and Morton, K.W. �Difference Methods for Initial�Value Prob-

lems�. Interscience, New York, 1967.

[223] Sakai, J.I. and Furusawa, K. �Nonuniform Heating of Coronal Loop Footpoints

and Formation of Loop Threads Associated with Up- and Downßows in the Solar

Chromosphere�. 2002, Astrophys. J., 564, 1048-1053.

[224] Socas�Navarro, H., and Sanchez Almeida, J. �Magnetic Fields in the Quiet Sun:

Observational Discrepancies and Unresolved Structure�. 2003, Astrophys. J. , 593,

581-586.

[225] Socas�Navarro, H., and Sanchez Almeida, J. �Magnetic Properties of Photospheric

Regions with Very Low Magnetic Flux�. 2002, Astrophys. J. , 565, 1323-1334.

[226] Socas�Navarro, H., Martinez Pillet, V. and Lites, B.W. �Magnetic Properties of

the Solar Internetwork�. 2004, Astrophys. J., 611, 1139-1148.

[227] Socas�Navarro, H. �Multiline Stokes Analysis for the Study of Small-Scale Solar

Magnetic Fields�. 2004, Astrophys. J., 613, 610-614.

[228] Socas�Navarro, H. and Lites, B.W. �Observational Evidence for Small-Scale Mix-

ture ofWeak and Strong Fields in the Quiet Sun�. 2004, Astrophys. J., 616, 587-593.

[229] Tu, C.-Y. and Marsch, E.. �Two-Fluid Model for Heating of the Solar Corona

and Acceleration of the Solar Wind by High-Frequency Alfven Waves�. 1997, Solar

Phys., 171, 363-391.

[230] Tu, C.-Y. and Marsch, E. �On cyclotron wave heating and acceleration of solar

wind ions in the outer corona�. 2001, J. Geophys. Res., 106, 8233-8252 .

253



[231] Uchida Y., Miyagoshi, T., Yabiku T., Cable S., and Hirose S. 2001, Publ. Astron.

Soc. Japan, 53, 331.

[232] Winebarger, A.R., Warren, H., Van Ballagooijen, A., DeLuca E.E., and Golub, L.

�Steady Flows Detected in Extreme-Ultraviolet Loops�. 2002, Astrophys. J., 567,

L89-L92.

[233] Woo, R., Habbal, S.R. & Feldman, U. �Role of Closed Magnetic Fields in Solar

Wind Flow�. 2004, Astrophys. J., 612, 1171-1174.

[234] Zhang, J., White, S.M. and Kundu, M.K. �Two-Temperature Coronal Models from

SOHO/EIT Observations�. 1999, Astrophys. J., 527, 977-991.

[235] Yang, G., Xu, Y., Cao, W., Wang, H., Denker, C. and Rimmele, T.R. �Photospheric

Shear Flows along the Magnetic Neutral Line of Active Region 10486 prior to an

X10 Flare�. 2004, Astrophys. J., 617, L151-L154.

[236] Yoshida, Z., Ohsaki, S. and Mahajan, S.M. �Scale hierarchy created in plasma

ßow�. 2004, Phys. Plasmas, 11, 3660.

[237] Bellot Rubio, L.R., Rodriguez Hidalgo, I., Collados, M., Khomenko, E. and Ruiz

Cobo, B. �Observation of Convective Collapse and Upward-moving Shocks in the

Quiet Sun�. 2001, Astrophys. J., 560, 1010-1019.

[238] Blackman, E.G. and Field, G.B. �Dynamical magnetic relaxation: A nonlinear

magnetically driven dynamo�. 2004, Phys. of Plasmas, 11, 3264.

[239] Blackman, E.G. �Bihelical magnetic relaxation and large scale magnetic Þeld

growth�. 2005, Phys. Plasmas, 12, 012304.

[240] Mahajan, S.M., Nikol�skaya, K.I., Shatashvili, N.L. & Yoshida, Y. �Generation of

Flows in the Solar Atmosphere Due to Magnetoßuid Coupling�. 2002, Astrophys.

J., 576, L161-L164.

254



[241] Mahajan, S.M., Shatashvili, N.L., Mikeladze, S.M. and Sigua, K.I. �Acceleration

of Plasma Flows in the Solar Atmosphere Due to Magnetoßuid Coupling - Simula-

tion and Analysis�. 2005, Astrophys. J. (submitted). ArXiv: astro�ph/0502345, 33

pages.

[242] Mahajan, S.M. and Krishan, V. �Exact solution of the incompressible Hall magne-

tohydrodynamics�. 2005, Mon. Not. R. Astron. Soc., 359, L27-L29.

[243] Mininni, P. D., Gomez, D. O. and Mahajan, S.M. �Dynamo Action in Hall Mag-

netohydrodynamics�. 2002, Astrophys. J., 567, L81-L83.

[244] Mininni, P. D., Gomez, D.O. and Mahajan, S.M. �Role of the Hall Current in

Magnetohydrodynamic Dynamos�. 2003, Astrophys. J., 584, 1120-1126.

[245] Mininni, P. D., Gomez, D.O. and Mahajan, S.M. �Waves, Coriolis Force, and the

Dynamo Effect�. 2005, Astrophys. J., 619, 1019-1018.

[246] Ryutova, M. and Tarbell, T. �MHD Shocks and the Origin of the Solar Transition

Region�. 2003, Phys. Rev. Lett., 90, 191101.

[247] Seaton D.B., Winebarger, A.R., DeLuca, E.E., Golub, L., and Reeves, K.K. 2001,

Astrophys. J., �Active Region Transient Events Observed with TRACE�. 563,

L173-L177.

[248] Socas�Navarro, H. and Sainz, M. �Shocks in the Quiet Solar Photosphere: A Rather

Common Occurrence�. 2005, Astrophys. J., 620, L71-L74.

[249] Wallen, C. 1944. Ark. Mat. Astron. Fys., 30A, No.15.

[250] Wallen, C. 1945. Ark. Mat. Astron. Fys., 31B, No.3.

[251] Habbal, S.H. and Woo, R., �Connecting the Sun and the Solar Wind: Comparison

of the Latitudinal ProÞles of Coronal and Ulysses Measurements of the Fast Wind�.

2001, Astrophys. J., 549, L253-L256.

255



[252] Lin, H., Penn,M.J. and Tomczyk, S. �A New Precise Measurement of the Coronal

Magnetic Field Strength�. 2000, Astrophys. J., 541, L83-L86.

[253] Habbal, S.H., Woo, R. and Arnaud, J., �On the Predominance of the Radial Com-

ponent of the Magnetic Field in the Solar Corona�. 2001, Astrophys. J., 558, 852-

858.

[254] Ofman, L. and Davila, J.M., �Three-Fluid 2.5-dimensional Magnetohydrodynamic

Model of the Effective Temperature in Coronal Holes�. 2001, Astrophys.J., 553,

935-940.

[255] Granmer, S., Field, G.B. and Kohl, J.L., �Spectroscopic Constraints on Models of

Ion Cyclotron Resonance Heating in the Polar Solar Corona and High-Speed Solar

Wind�. 1999, Astrophys. J., 518, 937-947.

[256] Doschek, G.A., et al., �Properties of Solar Polar Coronal Hole Plasmas Observed

above the Limb�. 2001, Atrophys. J., 546, 559-568.

[257] Grall, R.R., et al., �Rapid acceleration of the polar solar wind�. 1996, Nature, 379,

429.

[258] Ofman, L., et al., �IPS Observations of the Solar Wind Velocity and the Accel-

eration Mechanism�, in The 31st ESLAB Symposium on Correlated Phenomena

at the Sun, Heliosphere and in Geospace, ed. A. Wilson. ESTEC, Noordwijk, The

Netherlands, 22-25 September 1997, 361, (1997).

[259] Lin, H. �On the Distribution of the Solar Magnetic Fields�. 1995, Astrophys. J.,

446, 421-429.

256


	Abstract
	Contents
	Chapter 1
	1.1 Background
	1.2 The basic model: general equations for the interactionof 2-species plasmas with the arcade-likemagnetic fields
	1.3 Dynamical creation of hot quasi-equilibriumloops— Formation of a typical coronal structure
	1.4 Typical Coronal Equilibria
	1.5 Equilibrium structure creation in relativisticallyhot two-temperature e-p plasmas with small fractionof cold ions
	Summary

	Chapter 2
	2.1 Background
	2.2 Basic Model and Equations for Coupled VortexDynamics in Two—Fluid MHD
	2.3 Equilibrium States in Incompressible Hall MHD
	2.4 Magnetofluid Coupling: Eruptive Events in theSolar Atmosphere
	2.5 Generation of QSM Fields in Two-Fluid PlasmasEmbedded in Super-Strong EM Fields

	Chapter 3
	3.1 Background
	3.2 Dynamical Acceleration of Plasma Flows interactingwith arcade-like ambient magnetic fields- applications for the Solar Atmosphere
	3.3 EquilibriumAnalysis for the Acceleration of PlasmaFlows in the Compressible Two—Fluid Plasmas– Magneto—Fluid Coupling
	3.4 Acceleration of Plasma Flows Due to ReverseDynamo Mechanism
	3.5 Dynamical Creation of Channels for the ParticleEscape in the Solar Atmosphere
	3.6 1D analysis for Solar Wind Origin
	3.7 Conclusions for Structure Creation in Solar Atmosphere

	Basic Results
	Acknowledgements
	Bibliography

