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Summary

New method to solve simmetric matrix games by differential equations is described. It allows us to find out optimal
mixed strategy in finite time, whilst the old ODE-based method, belonging to Brown and von Neumann, in general

case gives only the value of game and its trajectory must be found on [0, 0) .
3oLo@gdo Lodyggdo

LodgB®oygmo Js@@oEgmo msdsdo, ©0g. asb@megds, d3M9b-gmb bgodsbols dgmmeoa, m3@Godsgrydo
gt gm0 LEOSAJY00, Moibgomo sgoamdomdo, FHRogo 3GMa@sdomgds, boddagdl-segpamdomdo.

0B gO oGO
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Allocation, Koopmans, T. C. (ed.), 374{376. Wiley.

2. von Neumann, J. A numerical method to determine optimum strategy, Naval Research Logistic Qart., 1,
109-115, 1954.

3. Brown, G.W., von Neumann, J. (1950): Solutions of games by differential equations. Annals of
Mathematical Studies 24, 73-79.
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QUANTUM PROCESSOR BASED ON A THREE LEVEL QUANTUM SYSTEM
G.Giorgadze, Z.Melikishvili

Institute of Cybernitics

In the work [1] we have explicitly constructed the evolution operator of a three-level atom in a two-mode field and
indicated possibility of applying atom-photon interactions to the construction of a quantum register and processor in
spirit of [2].

More than quarter century ago an attempt was made to explicate fundamental limits bounding possibilities of a
computer resulting from laws of physics. As a result of the conducted research it was found that minimal energy per
one bit that is lost in the computation process is of order k7, where k& is the Boltzmann constant and T is the absolute
temperature of the computing device [4-7].

This fundamental limit is a consequence of irreversibility of processes taking place in an elementary computing
device which plays the role of a logical gate.

At the same time it was shown that one can transcend this limit if in a computing device one uses reversible logical
gates, 1. e. logical gates with the property that the physical processes taking place in them are reversible. As a result
of this, entropy does not change in the course of computation, consequently, such logical gates will be conservative
logical gates realizing an invertible Boolean function and conserving the total number of bits of information [6-7].

Physical realization of a classical logical gate remained technically unsolved for many years. Progress has been
achieved only in the nineties in the works [3], [8].

The constructed model of computation is in certain sense optimal, since the three-valued gate is optimal from the
point of view of efficiency of information recording, whereas the logical gates are reversible.

References
[1] Giorgadze, G., Melikishvili, Z. Journal of Mathematical Sciences, pp. 1-19, vol.153, N 2, 2008, see also LANL
preprint, arXiv:quant-ph/0604003, 2006.
[2] Suzko, A.A., Giorgadze, G. Physics of Particles and Nuclei 39 (4), pp. 578-596, 2008
[3] Antipov, A.L., Bykovsky, A.Yu., Vasiliev, N.A., Egorov, A.A. Journal of Russian Laser Research, 27 (5), pp.
492-505, 2006
[4] Landauer R. IBM J.Res.Devel. 5, 183, 1961
5] Bennett C.H. IBM J.Res.Devel 17, 525, 1973
6] Fredkin E, Toffoli T. Int.J. Theor.Phys. 21,219, 1982
7] Feynmann R.P. Found.Phys. 16, 507, 1986
8] Konishi T. et.al. Appl.Opt. v.34, N 17, p.3097
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&. Ipp@gmoBgogo, 8. Fgawody,

3odm g ggaos 30800 bgadm§gdol sgragm@omdgdol mGo  goMosb@o. @mam@iG  Lbgs
3bmdogmo  LiJgdgdo, Im@gdygmo  sanam@omndgdoz  FoMdmewygbl  gargsdoamols  saoym@omndols
30033990  dmEogogoEoslt. dmsgs®o os@lo Jpamdsmgmol dolido, @M3 bmaogOmo 3oM53gBM0ls

300339900 B9bJcog®o mgolgdol asdmygbgdom doowgds Lokodm LEMYIH YO Yo sen@g@bs@ogs.

ABOUT THE CONSTRUCTION OF DIGITAL SIGNATURES ALGORITHMS

R. Megrelishvili, M. Chelidze, T. Gnolidze

There are discussed the available variants of construction the algorithms of digital signatures. The
algorithms, as many other algorithms, are obtained from the simplification of the algorithm of ElGamal. The main
objective is to change the functionality of some parameters, in a result we obtain the necessary structural alternation.

@o@IO>G IS
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3. Rivest R. L., Shamir A. and Adleman L.M. A method for obtaining digital signature and public-key
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ON ONE ALGORITHM OF BEHAVIOUR OF FINITE AUTOMATA
T. Khvedelidze

We propose the automation on one algorithm of finite automata behaviour design which is a finitely

automated realization of a well-known statistical rule from the theory of recurrent events: “either a series of gains of
length m or a series of failures of length /”. Since the behavior quality of a finite automation is defined by a degree
of its operation purposefulness, the problem of existence of asymptotically optimal sequences of finite automations
is solved by studying the behavior of the respective infinite automata. In this context, we have obtained conditions,
the fulfillment of which makes the behavior of a finite automation of the proposed design purposeful and show that
a sequence of finite automations of the considered design reduces to an infinite automation of the same design.

0B JH3B 9H5:
L. da.3gdmobo  “3gangggdo  53@™MIsBgool  mgm@osdo s dommmaogdo  Lolidgdgdols
dmpgao®gds”. dnlgmgo. ” dg3bogdgds”. 1969 (dql).
2. gggmgdo  “glogogmo  sgmdsmmbol  mgm@osdo s  dobo  aodmygbgds.”@.1.dmb mgo,
ddgomds, 1967(agb).
3. 3b.goameoyjo. >.0.3e 986930 ..900ga0dsbo. ”58E ™35 900.bgBooa gdo.msdsdgdo”

domgdo@ogy® dgabogdgdoms JomFgggdo B43.23.1(259) 1986. (H4ls.)
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SOME FACETS OF THE LINEAR ORDERING POLYTOPE
Bolotashvili G.

Let consider K, =(V,, A) a complete directed graph V" = {1,2,...,n} and weights c; for each edge

(i, j) € A. The set of acyclic tournaments is denoted by T, . The linear ordering problem can by formulated in the
following way: For any complete, directed graph find acyclic tournament with maximal weight.

27 . . .
Incidence points x"eR"" correspond to each acyclic tournament 7' € T, in the following way:

.XT_ la(iaj)ETa
7 10,G,))eT.

Let consider now the problem:

n n
max Z Z CijXys

i=l iz}, j=1
Ole.j <1,
x; tx, =1,

0<x, +x, —x; <,

li]alikaj¢k,l,],k :1,2,...,n.

We have denoted the relaxational polytope of the linear ordering problem by B, . Polytope B, has
integral vertices corresponding one-to-one to the admissible solutions of the linear ordering problem as well as the

non-integral vertices. We denote the polytope of integer vertices as P, .

In the paper [1] for the k - fence inequalities

m m m
lezjz Z zxizfq Sl’

I=1 1=1,l%q, q=1

where I ={i,,...,i },J ={}Ji,...,J,} are arbitrary disjoint subsets of {l,...,n},m =3, in[2], [3], are

constructed facets of the linear ordering polytope P, , ¢ - reinforced k - fence inequalities

n’

0y X, - f:zm: SH(t+1)/2, I<t<m-2.

I=1 J#q, g=1

Analogously previous in this paper for the (72, k) - fence inequalities

=

-1

m m
zxizjz o z (xiz/1+q lz// g ) S t _1

=1 =1 1

B
Il

where I ={i,,...,i },J ={}Ji,..., ], } are arbitrary disjoint subsets of {l,...,n},m >3,
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m=tk-1¢t>2k> 2,jm+p = JpsJip = Jmpr> P = Lem in[4], are constructed new facets of

the linear ordering polytope P, , 2- reinforced (m, k) - fence inequalities ¢ >2,¢>2,

n’

m=2(k-1) k=2

m m —
oo+ E R E E o+ X -
2 z xl//z xlz]/ (xlzjm, xlz/m,)
1=1 I=m-2k+3 =1

q=1

m=2(k-1) m=2(k-1)

— o + x. ) = E . + x. )< 4:
Z (xlzjzaf/cfl x11+/c71/1 ) (xl/hfm xll—k+l/l ) - 4’
=1 1=1

Resume
For the linear ordering polytope are constructed nev facets.

A9bogdy
T095030 go@oseaomgdoli sdmEsobol ddsgom{obbopolismgol sygdgmos sbogmo goligdgdo.
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f@)=x;0x;0...0x;0x; (I1<i<nm).

5bsbodbogos, GmI garoo x; bgdoldogmo RoJbodgdyao n aobbmdogngdosbo Logdzol ggJdmdo
‘dgoden gds ogml.

2.1 99360950L 5dm3560L 3o qaanoboz00

53900 9bgm m@o Goigbgol Jg9d 0§ gdom 30ds@Ggdols smEsbsl.
3005037 s© dJobo xokgol mommggaro gangdgb@o dgdwgabsods dgodamgds Fomdmgomaobmo:

L a b *u

049 ©53993980m, G u; =a; by @> v =a; + by mod2 (1<i<k=2") 5 hogmgmom, Gmd gl
(33805 gd0 9339 3odMmg@omos (dom asdmmgmsls Igedogo @AM olikodgds), dogomgdm:

¢k =vi OR v OR (v oo vy ) 1t OR LCOR (Vo vy ) u g
5] OR d9a0ls sgnggddols @woboybjiools m3g@s@m@on.
0y hogmgaom, @M ¢ = filltp Vi ..., Uz Va,uy), d0g0@gom:

Sl Vi ..., Ug Vo uy) =
Ji2(Wi2 Vi, oo Wipe 1,V i2e) OR (Vi oo Vo) foo(Uio-p, .. s ).

7 o0 0dgisaogmo doxol dgdogy gomgdm:
Selup Vi oo upvauy) = fi(ug, ..., ugger) OR (Voo Vi) fi (g, .., Ug2+1) OR ..
OR (vg... vy fi(uy ..., uy),
Logoi 1=2".
dobo doxgdol Gompgbmds 0bgds
T(fi) =max{T(f;), Tvi...v) } +n—r+ L
sbans 25b63Lob@gA™mm Jodwggdmmds
m;=0, m=i(@-1)/2
> 60xgo0ls AomEgbmbols Bm@dyansdo hoglgom n=m;, r=m;[2].
0609d300L 2534969300 Ygodmgds ©g5dBJ0GOM YOS  T(f,) < mu;, Lowsa p = 2"

o>Jgeb ao8m8pobamy, bgdoldog@mo bs@y@ogydo m Gogbgobmgol, Lowss my, <m < my,, d9dds@oB0s
d9dwg80 GBS

T(fa) =T(f) +(m-m )+ 1<m+m-m +1=@0C-0D+m+1=t+m.
mo<m HmEmdosh gomgdm:
(t—-1)(t-2)/2<m, <15+ (2m+025)".
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0y 53 dgegal boxgdoll Gosmwgbmbol asdmmgmols gm@dyasdo hoglgsdm, dogomgdm:
T(fi) <15+ (2m+ 025)" + m.
o>dgsb godmdwobstdy,
T(fi) < 1,5+ (2 log (k) + 0,25 )" + log (k).

©sliggbols Loboo dgodargds gmdgom, @md dgbsdangdganos 30dsGgdol sgpam@omdols aodo@og gem gds
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Og390boygmoe  ©sdydogogl s dgegagdo  dgxedwgl  gmbogbjaoolbs s  woboybiool
Lodygoegdbomn bgdmm dmygsbomo gm@Igaols mobobdow. 5dols Logydgganbyg go LF@sgo 9936930
sgoam@omdols dgdydoggds dgodangds [1].
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0 gm0y mgombsb@olom ogo yebmdoa sgam@omdmns dm@ol yggamsbyg LF@sgos, Gowash O
logn) loglog(n)) doxl 04gbgdl, dog@msd 3ModBogodo b gmosm asdmygogas®os O  swbodbgsdo
dognosh oo dydoggdols asdm.

3.1 dmbdoggls ©s dBGsbgbol 0wy
dm9dgos Mm@ m@mdomn LobRgdsdo hsfgdomo @oibgo

A=(a.;, ..,a;,a)), B=(by,y,.., 6 b1 by)
‘dgrogaom ggdgdm Goibgl C =A4B.

nonmggeo Lofgolbo Goibgo ogymm k gog Fmen danmgow, Mmdgmms Loa®dgs [:

A:Ak,],...,Ao, B:Bk,],...,Bo
A0=(a1,1,...,a0) Boz(bl,j,...,bg)
A;=(axy, ..., a;) B;=(by, .., b)
Ak—] = (an-ly e an-l) Bl = (bn-ly e bn—l)

gbowos, @M sligmo woymaxzol dgogysw

A=f(2), B=g(2), C=h(2)
bowoi

Flx)=x" Ay + X a5+ o+ x4+ A,
g(x)= xk'lBk,, + xk'ZBk,z +.. +x'B, + By,
h(x)=f&) gk
o0fgeb  ao8mdpobaty, M@0  @ogbgol  asdBogamgool  sdmzobs  sggsbogos  mGo  3meobmdols

20dMogemgools  sdmoboby. FoMmognos, mMo 3meobmdoli gsd@Msgegdol sdImebs  bmpswe ™™o
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00305300390 sIm3560T0 Hggb gg30bmmws C =4 B mod (2" + 1) 3o50mmgms. @Gopysh 2" + 1 ©owo
@oibgos, Z + 1 G3m@To  godmmgmosi  Omg@os.  3dMao  0fbgdmes, oy 53 m3g@Msei3ogdols
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a=a; (1<i<n)
5J3l gomliobs sdmboblibo

a=arris;tays;t..+ayr,s, mod m,
-1
booi ri=m/m;, s;=a; mod m;.

o>dgeb godmdobs®yg, dglodangdgemos godmmgas 3s@o®s Gymagddo Z,,, ®ol dgdogass
‘dg3degdm Lodmemm 3sbgbol 2o8mobas®odgdsls Z,, 1 Gymado hoby® mgm@gdsby @oy@obmdom.
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DECISION MAKING PROBLEM IN GENERAL UNCERTAIN ENVIRONMENT
G.Sirbiladze

Firstly, the lower and upper expected values provide limits to the expected utility value for each decision
[1,3,4,6,7]. The function of the second step reflects the decision-maker's subjectivity and lets us model it
between these two boundaries by means of a convex combination [4]. The relationships between a body of
evidence [1,4,6] and fuzzy measures [2,3-5,8] are shown in [4] and some relevant properties of lower and
upper expected values [1,6] are proved in [4]. The main result of this discussion is presented in section 3
where a definition of inclusion relation on the set of evidences is used to study existing relations among results
which can be obtained from different basic probability assignments. Finally, we show the way in which our
model includes the most classical criteria, such as min-max or mathematical expectation criteria in
uncertainty or risk environments etc.

1. Some classical decision problems can be considered as given by the information system [4]:
(Q,D,I,u,K)

where €2 is the non-empty set of the states (factors, situations) of nature; D is non-empty set of the feasible
decisions; I is the available information about €2; K is the decision-maker's criterion, which represents some

optimal principle; and u: D X — R, is a valuation of the consequences, coherent with the decision-maker's
preferences.

According to the kind and amount of available information, the following cases have been distinguished:
- General Decision Problem in a Certain Environment: when the state of nature which will occur is known "a

priori".

- General Decision Problem in a Risk Environment: if the true state is unknown but a probability distribution is

available on Q) .

- General Decision Problem in an Uncertain Environment: when no information about the states of nature can be
used.

Our aim in this paper is to study a more general model including the previous three; such a model will consider

the information about {2 as defined by a body of evidence [1,4,6].
To obtain a solution for a decision problem as defined above, an order relation should be found on the set of
decisions D; we will construct this order taking into account the utility u and the information I. We suppose D and

Q) to be finite, in order to avoid measurability or convergence problems. If we denote
Q={w,,0,,.,0 }, D={,.d,,..d_}.
The consequences of a decision di are given in terms of a utility vector U, :
d &u =(u,,u,,.,u, )eR", (i=1,2,.,m),

which represents the decision-maker's preferences.

2. The problem is now to find an order on R" . Classically the solution is obtained by mapping each vector u, on

a value of R; to build this map @ : R"™ — R, we will use the decision-maker's opinions and the information
available about (2 .

Thus, we will say that a decision d, is preferred or indifferent to another d, (and express it as):
d, <d; © (u,u0,,50,) S (U,ug,.,u5,) < () <o(u;).

Numerous examples of this procedure exist in the relevant literature, as the criteria K of the expected value (risk
environment), Laplace, Wald (uncertain environment), etc.
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In this paper we will suppose the information I is given by a body of evidence represented by a basic probability
assignment (B.P.A.)-m [1,4,6]

Definition 1[1,4]: AB.P.A.On () is a map

m:2% —[0:1],
fulfilling the conditions:
) m(J)=0,
(i) Y. m(A)=I
AcQ

In 1967, Demster [1] introduced the concepts of lower and upper expected values of a function, with respect to a
measure as a generalization of the expected mathematical value (The main properties of lower and upper expected
values of a function are used in [4] ):

Definition 2[1]: let h : Q2 — R be any function and let m be a B.P.A. on Q2 . Lower and upper expected values of
h with respect to m are defined as

E.(h/m)= > m(A) -inf h(e),

AcQ
E"(h/m)= > m(A)-suph(w).
AcQ oA

In these conditions, we can map the vector U, € R" (represented as function QQ — R) on another vector of

R? by means oft : R — R?,
Uty yentty,)) = (EL (i, /m), E (i, | m)).

If we consider the compositionh ot =, the determination of (p means merely to determine the map:

h:R* = R. From this composition, one can see t contains the available information while h must reflect the
decision maker's attitude.

3. Finally, we may note: On one hand, if a body of evidence considered about €2 is probabilistic (m = m, ), then

E.(W,/m,)=E'(@, /m,) =E, (§,).
where the most outstanding ways to define h are as follows:

(a) Optimistic criterion. Based on the map h':
h=h"(E.,E")=E’
(b) Pessimistic criterion. Based on the map h.,:

h=h.(E.,E")=E.

The decision rules consisting of the maximization of the value of h (the construction of criterion K), coincides
with the classical expected value criterion for risk environment [3].
On the other hand, if we confront a problem in the absence of information, the only possible body of

evidences to be considered is the so called total ignorance (M =m,, ), and in this case

*

E, =maxu, =maxu,, E,. =minu; =minu,
- . ij i — i : ij
®;=Q ] ®;=Q ]

are verified. If the decision maximizing h is chosen (criterion K), we find:

. . *
(A) The max-max criterion, fromh :
* L p—
max E; =maxE (u;/m,) = maxmaxu,
i i i j
as a particular case of our optimistic criterion.
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(B) Wald's criterion, or max-min criterion, from h, :

max B, =maxE.(u; /m,) = maxminu,
i 1 1 ]

as a particular case of our pessimistic criterion.

Conclusion

Demster-Shafer's Mathematical theory of Body of Evidence [1,4,6] is a powerful tool to build models in
risk or uncertain environments. By expressing the available information about states or factors of nature in a
decision problem by means of a body of evidence and by using the lower and upper expected values to obtain
decision rules, one may generalize classical criteria to intermediate situations between null and probabilistic
sets of information.
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DECISION MAKING PROBLEM IN GENERAL UNCERTAIN

ENVIRONMENT

G.Sirbiladze
Abstract

A general model for decision problems is presented, represented by a basic probability assignment of
a body of evidence, which gives the information on distribution of states, situations or factors. The rule for
decision making is constructed from two steps by means of a composition of two functions - lower and upper
expected utility values.
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ON THE WEAKLY STRUCTURABLE DYNAMIC SYSTEMS MODELLING
G. Sirbiladze, A. Sikharulidze, M. Kapanadze

In this paper the new approach to the study of weakly structurable fuzzy dynamic systems (WSDS) is presented
(weakly structurable controllable dynamic system) [4-6]. Different from other approaches where the source of fuzzy
uncertainty in dynamic systems is expert, this approach considers time as long as an expert to be the source of fuzzy
uncertainty. This notably widens the area of studied problems. All these is connected to the incomplete, imprecise,
anomal and extremal processes in nature and society, where connections between the system’s objects are of
subjective (expert) nature, which is caused by lack of objective information about the evolution of studied system,
for example in 1) economy of developing countries, business, conflictology, sociology, medical diagnosis etc; 2)
management of evacuation processes in catastrophe areas, estimation of disease spreading in epidemical regions; 3)
research of complex systems of applied physics, etc. One of our purposes is to create scenarios describing possible
evolution of WSDS using methods developed in this paper in the framework of expert-possibilistic theory. This
includes construction of algorithms of logical-possibilistic simulations of anomal and extremal process analysis.

By the participants of the paper new mathematical apparatus[1-3] was created in 2002-2005, where main
attention is paid to rapidly developing theory of fuzzy measures (some class of capacities) and integrals. Using the
theory of fuzzy measures and integrals for construction of decision support systems is not a new idea. But we have
chosen one part of this theory — extremal fuzzy measures [1-3], which is not much well researched. In the
framework of this theory a new apparatus of extended fuzzy measures was constructed on the basis of Sujeno’s
upper and lower integrals. Using this apparatus new fuzzy extremal models of weakly structurable dynamic system
control were created [4-6], where fuzziness is represented in time. Here the structure of time is represented by
monotone extremal classes of measurable sets [1-3]. On such structures uncertainty is described by extremal fuzzy
measures and problems of fuzzy-statistics of extremal fuzzy processes: identification, filtration, optimal control.
Results of research are published in articles [4-6].

Short description of weakly structurably dynamic systems (WSDS):

Following the system approach of modeling of weakly structurable dynamic systems, we propose that the time
structure in fuzzy dynamic system is represented in following way [3-6]:

<{T,F?(T),§T},5,@>, T=R;, (1)

~

were FI (T ) =([0,?)) >0 18 O -monotonic space of monotonically increasing measurable fuzzy time intervals;
§T is the extended fuzzy measure on F/ (T ); < is the partial ordering relation in F/ (T ) and @ is the algebraic

sum operation in F/ (T )

Suppose X (X * @) is the set of states of some WSDS to be investigated with initial (X ,ﬁ,g) -
fuzzy measure space restriction; U (U z @) is the set of all admissible controls acting on the system with
(U ) E U> gU ) — fuzzy measure space restriction; Y (Y * @) is the set of output states of the system with

(Y ,B v §Y) — fuzzy measure space restriction (Y is some transformation of X ); IN) c 'g ® ﬁ T (T) ® E is

expert reflection process, which represents fuzzy relation describing expert fuzzy activities (estimations) of fuzzy

states of the system in the output values of the system in monotonically increasing fuzzy time intervals {7';} 1>0°

pe(BOFI (T )) ®B, ®FI (T )) ® B is an fuzzy transition relation describing system state evolution in fuzzy
time intervals {7‘;} >0 with control taken into account; U € ZN?U ® FI (T ) is some binary relation describing the

action of fuzzy control on the system in fuzzy time intervals {ﬁ}, t>0 (fuzzy control process);

Q eB®F/ (T ) is binary fuzzy relation (fuzzy process) describing the evolution of system in time; (S)J‘ is

Sugeno extended fuzzy integral (the aggregation operator of the system objects).
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Definition 1. The train

{x.v.ry.5.08. 0.0 ) o

is called Weakly Structurable Controllable Dynamic System (WSCDS), describing the evolution of system’s
states in fuzzy time intervals {’I’\;} t>0, using following integral equation: (Y = X), ‘v’(x, T)e X XT:

A
Hylet)=) [ | © ] ) [uplexui)ogl)ogrl)|ogul) .
Ez(o)|  H 4
(3

with system’s initial state AO =E Q ( ,O)

Suppose that relation between fuzzy measure spaces (X ,B R g) and (T,FI (T ), §T) can be defined using

some conditional extended fuzzy measure in the following way: V7, € FNI(T ) :
A
(%)=&, /x)- (). @
X

Definition 2: The process P performing in fuzzy time intervals {7,[},[>0 and defined by formula

,uEf,(-,‘r)(x):gt(rr/x) )
is called the fuzzy process describing expert reflections of evolutions of WSCDS states.

Now we will consider important theorem concerning the relation between Q and P processes.

Theorem: Suppose {fr} >0 and U processes are ergodic; Let ﬁ be the fuzzy process describing expert
mappings of evolutions of system states in fuzzy time intervals regarding the fuzzy measure gt ( / X ) Then:

a) The process Q described by (3) is ergodic;

b) in the conditions of control process U on WSCDS with initial fuzzy state ‘ZO’ the evolution of

system’s fuzzy states is described by fuzzy process Q integral representation of which is the following:

V(x,r)eXxT

H5 (x, T) =(s) j{ﬂEu(.,r) (u) N He (x. (”s t)}o gy ® gEﬁ(-,r)(u)(.)’ (6)

UXT

where ,5 " is transition fuzzy relation
A
He (x.-) (”, f) = (S)J He (x,.0) (x') ° 5(),
Ay

gU ® g Eﬁ (-,7) is the composition of fuzzy measure gU and P -extended fuzzy measure gEf) (,7)
[3-5].
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Using the results obtained in [3-6] we shortly described the issues of controllable extremal process
modeling. The following problems have been already researched and solved:

a) We have introduced the notion of the weakly structurable controllable dynamic system (WSCDS) in case of

fuzzy control action (U ,BU ’gU ), where the source of uncertainty is expert reflections (expert

measurements) of the system states in monotonically increasing fuzzy time intervals [3-6];

b) The notions of reflection and description processes describing WSCDS states evolution have been
introduced [3-6];

¢) The issues of point wise ergodicity have been studied [3];

d) The compositional representation of continuous controllable fuzzy process have been constructed
correspondingly using Sugeno composition integral. Analogical model is constructed for cases of discrete
time [1-3].

e) The problems of fuzzy time structure dualization have been studed [1-3];

f) (1)-(6) WSDS identification problems have been studed [4];

g) The problem of restoring of the fuzzy input-output relation of (1)-(6) WSDS have been studed [4];

h) The problems of (1)-(6) WSDS optimal control have been studed [5]

1) The problems of estimation (filtration) of (1)-(6) WSDS states have been studed [6];

The following problems need further research:

1) The problem of estimation of pessimistic-optimistic indices of ergodicity for each problem of extremal
fuzzy processes fuzzy-modeling (identification, fuzzy-optimal control, fuzzy-filtration);

2) The quantitative-basic analysis of adaptation as object of WSDS control in the environment of anomal and
extremal processes;

3) construction of possibilistic-objective simulation algorithms for anomal and extremal processes based on
constructed models;

4) Creation of adaptation scenarios in the environment of anomal and extremal processes using expert-
possibilistic theory;

5) Development of software for universal library implementing the WSDS structure and decision support
methods; Creation of decision-support systems for real applications.
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THE WEAKLY STRUCTURABLE DYNAMIC SYSTEMS MODELLING
G. Sirbiladze, A. Sikharulidze, M. Kapanadze

Abstract

The new approach to the study of weakly structurable dynamic systems (WSDS) is presented. Different from
other approaches where the source of fuzzy uncertainty in dynamic systems is expert, this approach considers time
as long as an expert to be the source of fuzzy uncertainty. This notably widens the area of studied problems. All
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these is connected to the incomplete, imprecise, anomal and extremal processes in nature and society, where
connections between the system’s objects are of subjective (expert) nature, which is caused by lack of objective
information about the evolution of studied system. One of our purposes is to create scenarios describing possible
evolution of WSDS using methods developed in this paper in the framework of expert-possibilistic theory. This
includes construction of algorithms of logical-possibilistic simulations of anomal and extremal process analysis.
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ON THE MINIMAL FUZZY COVERING PROBLEM
G.Sirbiladze, B.Ghvaberidze

1. Introduction

Optimization and decision-making problems are traditionally handled by either the deterministic or the
probabilistic approach. The former provides an approximate solution completely ignoring uncertainty, while
the latter assumes that any uncertainty can be represented in terms of probability distribution. Obviously both
approaches only partly capture the uncertainty that actually exists but not in the form of known probability
distributions.  In this paper we consider a discrete fuzzy optimization problem, i.e. a minimal covering
problem where the data has expert-objective nature. The obtained bicriterial optimization problem is a
specific compromised approach between the expert and objective methods of optimization.

2. The Minimal Fuzzy Covering Problem

Partitioning, covering and packing problems serve as mathematical models for many theoretical and applied
problems such as coloring of graphs, construction of perfect codes and minimal disjunctive normal forms,
drawing up of blockdiagrams, information search, traffic scheduling, administrative division into zones and so

on [1,3]. Let us introduce some basic notions [1], [3]. Suppose that we are given the finite set R={r, ... ,
r .} and the family of its subsets - S={S] ,...,Sn}. Let S'={Sj] oS }, 1 <p <n, be some subfamily of

the family S. If each element r ; is contained in at most (at least) one of the sets S Ir belonging to S', then S'is
called a pacing (covering) of the set R. A covering which is simultaneously a packing is called a partitioning

of the set R. Let A = || aij be the incidence matrix of elements R and subsets S ihoa, =1 if r. €

|| mxn l J 1

S, and a; =0 if r, €S Iz Each subfamily S' of the family S is represented by the characteristic vector

which has a component x ;=1 if the subset S ; is contained in S’, and x ;=0 otherwise. If to each S ; €S

we assign a positive price ¢ Ir then the partitioning, covering and packing problems take the form
D min(c.x): 2)min (¢.X ) 3) max (¢.x)
Ax=/ Ax>1 Ax<t
Respectively. Here ¢ =(c,,... ¢, ) is the price vector, X = ( X,... X, ) is the vector with components 0 and
1, and { is the vector consisting of 1's. Note that in many interesting problems ¢ j =1, j=1,..., n (such is, for

instance, the problem of finding a minimal dominating set in the graph), but this does not simplify the solution
process of these problems.
Our further consideration concerns the minimal fuzzy covering problem. Other problems can be considered

~

analogously. Let S={S |,§ ,....,§ , } be some family of fuzzy subsets on R. Denote the compatibility

level by /.151 (r;)= bl.j for r; €R, j=1,2...n. This compatibility level represents some subjective expert

estimation. We assume that L/ (7;)>0 means that an element r; is covered by a fuzzy set S ; even if this
J

level is small.

Definition. Any subfamily S':{SJK} c S, k=1,....p, 1< p<n, of fuzzy subset is called a fuzzy

covering of the set R if for each r, there exists a fuzzy subset S 7 C S’ such that Mz (1,)>0.
Tk

~

Ifto each S ; € § we assign a positive price ¢ I then the fuzzy covering problem is formulated as follows:

find a fuzzy covering S’ of the set R having the least price with the least misbelief in subjection data. Thus,
under an optimal fuzzy covering we understand a covering defined by two criteria: 1) minimization of a
covering price; 2) ) minimization of misbelief in fuzzy uncertainty. We obtain the bicriterial discrete

optimization problem. Note that if under § we understand the classical covering, then this problem can be
reduced to the well known covering problem [1].

Suppose we are given some fuzzy set on ngith definition: “a large Ratio” := (L-R) with a nondecreasing

compatibility function L, »: Rg —[0,1].
Like in [5] we introduce the notation
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1 b; 1 ¢ b,, i =1, m
= 2, n, — = |
Pi n—l%“'uLR[bi,J ! n_ll/izl His b, J=le,n o
#j #j

where the heuristic explanation of the positive (p i) and the negative (n ;) discrimination measure is that p i

represents the accumulated belief that an element S ; covers an element 1, better than any of the

~

remaining elements 1 ,, f=1,....m, 1# i, while n, represents the belief that an element S ; covers an

element r, poorer than any of other elementsr, ( f=1,....m, £ #1).
Let two fuzzy sets be given on [0,1]. One defined as “large” with some nondecreasing compatibility
functions Higge: [0,1] —[0,1],and the other defined as “small” with some nonincreasing compatibility

functions 4/, ., : [0,1] —>[0,1]. We introduce the following values:
I & I &
T.=—)> P., v.=—)>n,, =1,...,n, )

Where 7 f and U ; are the average values of the positive and the negative discrimination measure of the

covering for elements Sj ,J3=1,...n.

Now, on the set {S ,, S, ...,§ ,} we construct the misbelief distribution of the covering where the
positive and negative discrimination measures (77 »U; ) are taken into account:

1
8= 5 (Hupar (7)) Hayo(0;)). - JL..on ®

The information content of & ; expresses a level of misbelief in that an element S j should be included in
optimal covering.

Let §' ={ §J1< b, k=1,2,...,p; 1< p<n,besome fuzzy covering. It can be characterized by the binary

vector X ¢ =(X ,...., X, ), where

1 - ~
X, = { 0 if the fuzzy subset S’ ,is contained S’

. ~ otherwise
Let us consider the misbe

PN Lxl,...,an
50,
Since the values x ;are chosen without any a priori information, we can consider the following uniform
probability distribution on X  :
Xisees X,
Pa=l1 1
' n

geee

n
Thus, for each fuzzy covering § " we have constructed the fuzzy misbelief distribution (0, ,....5n )onx and

the uniform probability distribution P . Applying the method of fuzzy statistics [6],[7],[8], the fuzzy

~

average value of S'is defined as monotone expectation [6] (which here coincides with mathematical
expectation)

E. =

© t— —

P, (U Za)da:%ZxJé'J . (4)
Jj=1

Note that value Eg, is an average measure of misbelief in fuzzy covering. Minimizing the average misbelief

in the fuzzy covering S, we obtain the criterion
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z . o 0
Z X_é‘} — min, where O'=|-L,..,—%| . Q)
= n n

Finally , the minimal fuzzy covering problem is reduced to a bicriterial problem of the type (minsum-
minsum) [3] for an ordinary covering with the target functions

n n
f, =ZC ;X, —>min, f,= 25;)6 ;™ min (minimization of price and average misbelief). (6)
J= =

If X is the set of all boolean vectors satisfying the conditions of the fuzzy covering problem, then
considering the scalar optimization problem

Af, +(1-4)f, - min, (X seeeen x, )X, A4e€(0]), (7)
where  X= {xg, € {0,1}" ‘5' c S'— S'is the COVCI’ing} = {)? € {O,l}n ‘A)_C > Z} And Ais a weighted

parameter, we can find, in the general case, some Pareto optima [3].

Conclusion. We apply the methods of extended possibility analysis to the considered discrete optimization
problems with fuzzy data. In an appropriate manner we introduce the definitions of positive and negative
discrimination measures of expert knowledge of the optimization problem parameters, i.e. the parameters of
possible solutions and alternatives (candidates).We thereby determine the fuzzy distribution of misbelief on
the set of alternatives. As a result we obtain the bicriterial discrete optimization problem which is solved by
the method of linear convolution of the criteria. The scalar problem is solved by the algorithm of tree type
search from [3].
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ON THE MINIMAL FUZZY COVERING PROBLEM
G.Sirbiladze, B.Ghvaberidze

Abstract
A new criterion is introduced for a minimal fuzzy covering problem which is a minimal value of the average
misbelief contained in possible alternatives. The data has expert-objective nature. A bicriterial problem is
obtained using this new criterion and the criterion of covering price minimization.
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ON THE COMBINED EXPERTON AND FUZZY DISCRIMINATION METHOD
IN INVESTMENT RISK MANAGEMENT

G.Sirbiladze, I. Khutsishvili

Introduction

The authors propose the combined method of evaluating risks of investment decisions. The method is based on
the expert (subjective) data received from the members of the tender commission of the investment fund. The
method consists of two stages, of which the first stage is the selection from many projects of those which have
minimal credit risks. These risks are revealed by means of the experton method [2, 3] which in its turn uses the
expert data mentioned above. Such an approach is justified because in the case of substantial credit sums the number
of competing projects is as a rule large In the second stage the selected projects are compared with one another by
the possibilistic discrimination method and are arranged from the standpoint of their quality. Therefore it became
necessary to modify the fuzzy discrimination method [5] since in that case only expert data are used, while the

classical variant of the method is only effective when working only objective data.
So, we have developed a method that enables us to identify with a great deal of certainty the investment projects with minimal risks
and to formulate their crediting possibility levels in the form of recommendations.

§ 1. Fuzzy decision-making methods for the evaluation of investment projects.

When some legal person submits a business plan to the investment fund or the bank with the aim of receiving a credit, the experts of
the fund are have the task to check certain factors that are essential for granting a credit. As a rule, the set of factors is determined by the group of
experts of the investment fund who are members of the tender commission of the fund. When studying the activities of an applicant for a credit,
the chosen factors can be identified or it may happen so that they are absent. Let the set of all possible factors be

Q:{w,,wz,...,wn}, (1)
and the set of those factors that were identified for the applicant be
Q’:{wjl,wjz,...,wjk}. (2)

Assume that the investment fund makes decisions on granting a credit and these decisions differ not only in a
credit sum, but also in the conditions on which the credit is to be granted. The set of decisions is denoted by

D={d,.d,,...d,}. 3)

One of possible ways of making decisions for the assessment of investment projects can be fuzzy discrimination
analysis if we construct a tabular-numerical knowledge base [5, 6] (for a new possibilistic variant of this method see
§ 3) in the form of a matrix with elements f; .

In the case of evaluation of investment projects, the information bases of statistical data on the already fulfilled
successful investment projects either do not exists at all or they exists but the number of successful projects

contained in them is small. Hence the values f, are estimated through psychometric interviews with the known

experts in this concrete area. Then f,; will denote the number of experts who think the solution ¢, to be true if the

)
investment project possesses the factor w; .

The initial selection of tender participants is carried out by the experton method [2, 3], while the final decision
is obtained using the possibilistic variant of discrimination analysis constructed in this paper (see § 3).

§ 2. Experton method

As is well known, if the number of considered factors and alternative solutions is large, i.e. if the size of a
tabular-numerical knowledge base is large, then the reliability of the results obtained by discrimination analysis is
low [6]. Therefore there arises a need to use some method of preliminary selection which from the number of credit
applicants will leave only those whose prognosis corresponds to the crediting with a minimal risk. We use the
experton method as a method of preliminary selection.

The experton theory was first formulated in the 90s of the last century by A. Kaufmann [2]. An experton is the
generalized notion of a probability of a random fuzzy event when the probability of a random event of every o -
level is replaced by confidence intervals. These intervals, in turn, are statistically defined by a group of experts. The
expert technology makes it possible to accumulate the subjective estimates obtained by the members of the expert
commission of the investment fund and to derive an optimal joint estimate of all members of the commission,
relying on their knowledge and intellectual activity.
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§ 3. Possibilistic discrimination analysis

The results presented in this paper are based on refs.[5, 6]. In problems of making decisions on investment

projects the values f; can be obtained only by psychometric interviews with the experts since for each project the
set of factors Q' (see (2)) is different and one can hardly rely on the availability of information bases of statistical

data. Thus, instead of a frequency tabular-numerical knowledge base it is expedient to construct the so-called

possibilistic tabular-numerical knowledge base in the form of a matrix with elements n’j n} is a conditional

possibility that the expert will make a decision d; in the presence of the factor w; (the possibility is defined by
formula (10) below); D :{dl, dy,..., dm} are all candidates with minimal risks selected by the experton method;
Q ={w, s Wy e wn} are all possible factors which, as shown by analysis, the legal persons or the candidates

selected for crediting may have.
Several methods are available for constructing a table of possibilistic distribution [1, 3, 6, 7, 9]. For example, one

of them is as follows: if the values f;

j are known, then each row of the matrix fij is normalized and we obtain

o= Ji_ o

After constructing the table of possibilistic distribution, the algorithm of a possibilistic variant of the

discrimination analysis method can be formulated as follows:

1) using the well-known principle of transformation [1], the table of possibilistic distribution can be converted

to the table of probabilistic distribution. For example, let us assume that for all d; (i=1,2, ..., m) we have

i i
n/12n12>...2nm, )

then the conditional probability f J’ corresponding to the possibility TEI/ is expressed by the formula

fjs Z ( o J(’+1) where s =1,2,...,n, ch./'n+] =0; (©)

2) we return to the discrimination analysis problem when instead of objective frequencies, for each d; we

have the probabilistic scale obtained from the possibilistic distribution.;

3) on DxQ we construct the positive and negative discriminations and calculate their concrete compatibility
levels which define in generality, how much the given factor influences (positive discrimination) and how much it
does not influence (negative discrimination) the decision as compared with other factors:

P =n+1 I+ Z(f fk)a @
kefis<rt 1+ Z(/ 1 )ﬂ
k: f >/
1
, >0,s =1,2. 8
11+ Z(/ f)a - (f" ,-)az o, >0,s ®)
kif > Z _j—fk

kifhsrt

4) if some set of factors Q'= {w o Wi s jk} was defined before making a concrete decision, then in

order to diminish the information entropy on the set of solutions D we construct the following positive and
negative possibilistic discriminations:

1 & 1<
i_;; ijr > Vi ;Z:: it > ©)

5) on D we construct the possibilistic distribution, Vi =1,2,...,m :

5 =5 +0-v)). >0, (10)
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6) the solution &, which has a maximal value on the possibilistic distribution {61.} will be considered to

be the most reliable (certain) one among possible solutions

d;, =max3,. 11

§4. An example of the application of the combined decision-making method for the evaluation of investment
projects
Let us consider an example in which the tender commission of the investment fund consists, say, of ten

members (i :1,_10 ), and assume that the number of possible estimates (possible decisions) of crediting risks for
each applicant is equal to four (P}, j = 1,_4 ). Where P, is the crediting with an insignificant risk, P, is the crediting

with a low risk, P is the crediting with an average risk, and P, is the crediting with a high risk.

Let us assume that the members of the tender commission have made a conjecture about four possible solutions,
the levels of credit granting risks for a certain applicant, PA,P,,P;,P,. Instead of expressing their opinion by a

number o € [0,1] , they prescribe estimates in terms of confidence intervals which are included an interval [0,1]:
[al ,a2] c [0,1] , where a, is a pessimistic risk level and a, is an optimistic risk level.

We construct the summary table of experts’ estimates expressed by confidence intervals. We consider eleven o -
levels from 0 up to 1, and for each of the possible decisions P;,i = 1,_4 we calculate two statistics of each level: one

for the lower bound of the interval and the other for the upper bound. If now we carry these statistics onto the set of
levels {0, 0.1,0.2, ... ,009,1 }, we obtain a table which is an experton. The experton is transformed by the well

known algorithm [2]. As a result, on {P, , B, P, P4} we obtain a possibilistic distribution of risk identification for a
certain applicant: each P will be associated with the definite number established with the experts’ common

opinion taken into account. To obtain a unique solution we use the principle of the maximum: 3(%; ) = max(£,) .
i
This means that in conformity with the experts” common opinion the experton gives preference to the solution 7, |

— the level of crediting risk for the chosen applicant is defined as 7, .

After processing the information by the experton method, from the group of applicants we leave only those
whose prognosis matches the crediting with an insignificant and, possibly, the crediting with a low risk.

The second stage of making a decision on investment projects is concerned with a more thorough analysis of
external and internal factors which define the current state and future prospects for the activities of each applicant.
That is, if the selection by the experton method was carried out by the crediting risk classes, the next selection
among the selected candidates will be carried out using the estimates of their factors. We will evaluate the
candidates by the method of possibilistic discrimination analysis.

Let us formulate the main factors w;,k = 1,_9, by which a legal person taking part in the competition for credit
granting will be evaluated by all members of the expert commission. For example, we may have the following
factors [3, 6, 7]: w;: the profitability of the participant’s business; w, : the purpose of credit receiption; w,: the
pledge securing the reimbursement for the credit received; w,: the credit sum (money amount); w;s: the paid
percentage extra charge; w,: the date of granting the loan (credit); w,: the date of debt (credit) reimbursement;
wy : a monthly debt and accrued interest reimbursement (repayment scheme); w,: a percentage ratio of the pledge

to the monetary value of the credit.
Each member of the expert commission may evaluate this or another factor by numbers 1 or 0. The members of
the expert commission fill in the patterns tables where d; stands for the participants and w, denotes the list of

evaluated factors. Then on DxQ (see § 3 ) we construct the summary table of f; .
Let, as before, the tender commission consist of 10 members, the evaluated factors be w,, k :1,_9, and the

quantity of candidates after the preliminary selection be d;, i = 1,_4 .

Suppose that the summary table of values of f;; has the following form:
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b ° Wil oWy | Wy | owy | ws | we | oWy | owg | Wy
d, 01,03(04]03|02]01]02])02]0.
d, 03,04]04]03|03(02]01]|04]|03
ds 02102(01]0102]03]05]|03]02
dy 041011]01]03|03]04]02)0.1]04

All further calculations are performed according to the algorithm of possibilistic discrimination analysis (see
formulas (4) — (10)). As the coefficients o, s =1,2 we take the values o, =0.3, a, =0.95 chosen empirically for

the “spectral decomposition” of the values p; and n; . The value of the coefficient B =0.85 is defined empirically

for the “spectral decomposition” of §,. As a result we obtain the following possibilistic distribution on
D={d1,d2,d3,d4}:

D d, d, d, d,

& | 0.60709 | 0.612043 | 0.606352 | 0.608552

The final decision is 8, = max3J, i.e. the investment project of the candidate d, receives the credit.
J

Conclusion

We have developed the method of processing and synthesis of the expert information, which is a
combination of Kaufmann’s experton method and the method of possibilistic discrimination analysis. The proposed
method enables us to identify with a high degree of certainty the investment projects with minimal risks and to
formulate the levels of their crediting in the form of recommendations.

A practical example is considered, where using a special software package a decision is proposed
in the form of a recommendation on the selection of a project with a minimal risk of granting a credit.
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ON THE COMBINED EXPERTON AND FUZZY DISCRIMINATION METHOD

IN INVESTMENT RISK MANAGEMENT

G.Sirbiladze, I. Khutsishvili

Abstract
The risk minimization method is proposed for the selection of investment projects. This is a novel

technology combining fuzzy discrimination and the experton method. To minimize credit risks, the proposed
technology of decision making offers two stages of the evaluation of investment projects. The fist stage is the
selection by the experton method [2, 3] of projects with insignificant and low risks among the total (possibly large)
number of projects. The second stage is the application of the possibilistic discrimination method (constructed in
this paper) to a relatively small number of projects selected in the first stage in order to compare them and identify
top-quality projects for which a conclusion is made in the form of a recommendation on the credit granting. The
realization of the method is illustrated by a practical example.
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ON THE STATISTICAL METHOD OF FUZZY GRADES' ANALYSIS WITH THE
GREAT NUMBER OF FORECASTING FACTORS

1. Khutsishvili

1. Given work describes one of fuzzy statistical methods of decision-making and, presents its generalization for a
case when the object of decision-making is characterized by a great number of forecasting factors . The object of the
forecast considered in the work is an earthquake. It contains a fuzziness in the definition. Classes of classification
into which it is possible to divide the object of forecast are fuzzy sets. For example, the forecasting object such as an
earthquake can be divided into forecasting classes such as: "strong earthquake", "moderate earthquake" and "weak
earthquake" [6]. It becomes obvious, that in this case, it is impossible to draw strict boundaries between classes of
classification. Classes of factors of the object of forecast are also fuzzy sets. The above mentioned has provided the
ground for applying a statistical method of fuzzy grades' analysis as the bases of forecast drawing up.

In a known "classical" variant of the method [1, 3, 7] the considered number of forecasting factors (activity) is
not more than 3. However, for a specific forecast it can be much greater (in a considered concrete example of the
forecast such factors are 9). Therefore, the "classical" variant of a method became a subject to modification in order
to satisfy the condition of a great number of activity. With this purpose, the author introduced a concept of a
measure of possibility (see (3) ) which is used to build a generalized decision.

For the forecast, belonging to a certain class of classification is determined through application of a so-called
membership functions. One of the most important problems of a statistical method of fuzzy grades' analysis is that
the building of membership functions is based on intellectual activity of experts. Since membership functions are
defined with the allowance for subjective preferences of experts, they can vary in kind. "Right" definition of
membership functions is the basic guarantee of the method’s success. The present work offers a model of
membership function developed for a concrete case of the forecast. It represent a new modification of Zadeh’s
model (see (5) ).

2. According to a statistical method of fuzzy grades' analysis (hereinafter referred to as the method of fuzzy
grade statistics) the forecasting object is described by the corresponding forecast value. Codomain for the forecast
value is divided into forecasting grades (classes). For each class the numerical interval is put in conformity.
Corresponding membership functions are defined. Definition of the membership functions enclose a human factor,
since an expert has a subjective viewpoint on a degree of belonging of the given forecasting object to the forecasting
classes. The mentioned classes are fuzzy, therefore supports of membership functions are intersected.

The forecasting value depends on the certain parameters, or of forecasting factors (activity). Each of factors, in
turn, is divided into classes (subfactors). The numbers of forecasting factors, their classes and range of their
numerical intervals can be selected arbitrarily.

Let's introduce some designations:

Forecasting grades : M|, M,,...,M,;
Corresponding membership functions: 4, t, ... , H;
Forecasting factors: X, X5, ..., X, ;

- r
Classes of forecasting factors: Xy, X40,..., X4p5 k=1Lm; X, = Uij .
j=1

Further, let us define selective frequencies l’lfrc j» which represent the frequencies of j -th class of X -th factor
occurring in i -th forecasting grade. The values of l’lfrc ;j constitute initial data received as a result of observations

and measurements. (see [1]). i’l;(j and 4, numbers are used to define fuzzy selective frequencies, fuzzy relative
frequencies and the weight of each interval of the forecasting factor in accordance to the known formulas [2]:
o 2.7k,
Ny
~ e ey

—_ i
T T
J i

where (" — average value of membership function when the forecasting value from i forecasting interval belongs

DYED WAL TN
i

i

to m forecasting grade.
After that, it becomes possible to draw a decision for the certain sample of forecasting factors. For this purpose we
need to define fuzzy weights of each activity according to its interval, and then to carry out multifactorial linear
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synthesis of fuzzy weights and fuzzy relative frequencies. As a result of multifactorial linear synthesis we receive
the generalized decision (vector of the possible weighed decisions) [1]

Da = ‘_'{}a : 705 .
)
Considering the great number of forecasting factors, to draw the generalized decision we need to define
concept of a measure of possibility:
b, , )
Poss , =———————, where D,(j) is j component of a vector D, . 3)
max (D, ()
J

At last, in order to receive the classical unique decision it is necessary to use an additional principle. For
example, it is possible to use a principle of a maximum of possibilities. Then the final decision will be [5]:

Dg;gss =max (Poss,(i)), where Poss, (i) is i component of a vector Possq . 4)

3. Let's consider a concrete example of an application of a fuzzy grade statistics.

For a specific example of earthquake forecasting we consider the following geophysical atmosphere data to be
factors-precursors: 1. Value of intensity of the electric fields (volt/m); 2. Temperature of air (in degrees of Celsius);
3. Temperature of ground (in degrees of Celsius); 4. Atmospheric pressure (in mb); 5. Absolute humidity (elasticity
water pair in mb); 6. Relative humidity (in %); 7. The general overcast (in points);

8. The bottom overcast (in points); 9. Speed of a wind (in m/s.).

Initial data comprises the earthquakes’ statistics in the Caucasus Region. Values of factors were measured during
the day in three hour interval: 0% 3% 6% 9% 12% 15% 18% 21%

The object of forecasting, earthquake, is described by means of a linguistic variable with following values:
"noise", "moderate earthquake", "strong earthquake" [5] and is characterized by numerical value of magnitude (M).
At 0< M <3 "noise" is observed; at 3<M <5 "moderate earthquake" is observed; at 5< M <8 — "strong
earthquake" is observed. Let us designate the defined forecast classes as M, , M; and M, and introduce the
corresponding membership functions. The model of membership function, applied in the given method, is
modification of Zadeh’s model:

| 0, M < 4.4,
o) =) TG =M o = 1 M <5
— + X = ’ . —_ —_ )
0 0 (o, M) M3 » 1+ (a,(M —4.9))*
, 0, M >54
0, M <44,
1
: 1+ (a3 (M —8))* ¥
1, M >8

Coefficients «;, a, and a5 are chosen empirically in accordance with the available data and experts’

recommendations. In our case a; =0.15, o, =4.99 and a; =0.5.

Since forecasting classes are presented in the form of intervals, it is necessary to average membership functions

on these intervals. Let ,ulj be an average value of f; considering the intersection of a support of i forecasting

fuzzy class and supp 4; . Then:

3
ygzlJ‘LzzO.93968; Ui=0;
391+(0.15M)
5,0 5.4
pl=0; pl=—2 [ am _~0,55192; M:LJ aM _~0.3641;
5-4.4 1+ (4.99(M - 4.9)) 0.4 51+(4.99(M -4.9))
5 8

pi= L] M oneses;  wi=l[ M Loess2,

0.6, 1+(0.5(M —8)) 331+ (0.5(M —8))

Each of the factors-precursors is divided into three classes (subfactors). Intervals of the classes are fuzzy sets.
Their boundaries are chosen empirically in accordance with the available data and estimations by the experts. In our
case the following intervals are chosen for each activity and each of its classes :
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X, — Intensity of an electric field: Xo0 £5, X091 €(5,9], x5 >9;

X, — Temperature of air: X9 <43, x,€[43,9), x,29;
X, — Temperature of ground: Xo0 22, Xy €(2,11), Xy 211;

X; — Atmospheric pressure: X390 £911.0, x5, €(911,916.4), x5, 29164 ;
X, —Humidity absolute: X40 £5, x4 €(5,9], x4 >9;
X 5 — Humidity relative: Xs50 <60, x5, €[60,81], x5, >81;
X — Overcast the general: Xeo <6, X5 €[6,8], x5 >8;

X7 — Overcast bottom: X70 <3, x7;€(3,9), x50 29;

Xg —Speed of a wind: Xgo <1, x5 €(L,2], x5 >2.

Selective frequencies l’l;{_ ; for each interval of intensity and each class of each activity are calculated. The ﬁ,ﬁ j

fuzzy selective frequencies, f ,‘i i fuzzy relative frequencies and W, j fuzzy weights of the forecasting factors are

built on the basis of formulae (1). Now all the data necessary for decision-making exist.
Assume, we need to study a new case and values describing its factors are following:

7.25 13.0875 10.75 914.8125 11.0125 75375 4.5 4.25 0.875
The following set of the classes of activities corresponds to the above given set of activities:
Xo1> X125 X215 X315 X425 X515 X605 X715 X80 -
Then a vector of fuzzy weights is
w=(0.6619, 0.3762, 0.3381, 0.5130, 0.2435, 0.5816, 0.4346, 0.5714, 0.4266),

and a matrix of fuzzy relative frequencies is
0.3647 0.3272 0.3081
0.3850 0.3256 0.289%4
0.2856 0.3337 0.3807
0.2823 0.3858 0.3319
0.3965 0.2701 0.3334 |
0.3320 0.3071 0.3609
0.4443 0.2596 0.2961
0.3379 0.3294 0.3326
0.1132 0.4413 0.4455

1
Il

Applying a linear multifactorial synthesis, we receive the weighed vector of possible decisions (the generalized
decision)

D=4 f=(1.35178, 1.38351, 1.41166) ,

with the corresponding measure of possibility

D
Poss =————=(0.95758, 0.98006, 1), where D; is j component of a vector D .
max D ;

J

Using the principle of a maximum of possibilities and, finally, we receive the forecast:
DClass =1 (:> MZ = Sl"’Ong earthquake).

The drawn result conforms with the statistical data: values of forecasting factors in the given sample correspond
to a real data for October, 30-th, 1983 when in 4% there was an earthquake with magnitude 6.8 (according to our
classification — "strong earthquake").

4. The method was tested on 80 cases of "noise" (days when earthquake was not observed) and 20 cases of
arbitrarily taken earthquakes qualified as "moderate" and '"strong". The initial data is represented by the
measurements taken by meteorological station in Dusheti region of Georgia and Hydrometeorological Centre of
Georgia for the period 1967-1992.

Test of the given method, performed by means of the developed software package, proved approximately
70 % [4] historical accuracy. It could be considered as a quite satisfactory result taking into account the fact that the
geophysical activities of an atmosphere are not the main factors-precursors of earthquake.
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While using the offered method it is necessary to remember, that there should be a remarkable correlation
between forecasting factors and object of the forecast. Besides, it is necessary to make sure, that the sample of
primary classical frequencies does not contain much of zero values. Otherwise, it will have statistical effect.

The fact of getting satisfactory results based on relatively small amount of initial data speaks in favour of the
offered method [2].
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ON THE STATISTICAL METHOD OF FUZZY GRADES' ANALYSIS WITH THE GREAT NUMBER OF
FORECASTING FACTORS

I. Khutsishvili

Abstract

The present article considers the problem of a forecast when the object of forecast is described by a great
number of forecasting factors. In the article we build the mathematical model of forecasting and introduce the
concept of a measure of possibility of a generalized decision. The work also offers a new model of membership
function, which represents a modification of Zadeh’s model.

The article focuses on the specific example of earthquakes’ forecasting and takes geophysical forecasting factors
(activity) of an atmosphere as the factors-precursors. Initial data comprises the earthquakes’ statistics in the
Caucasus Region.

The efficiency of the method was tested on eighty cases without earthquake and twenty arbitrarily taken
earthquakes. The method proved approximately 70% accuracy, which is the satisfactory result taking into account
the fact that the geophysical activities of an atmosphere are not the principal factors-precursors.
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ALGEBRAIC ANALYSIS OF MANY VALUED LOGIC
R.Grigolia

Many-valued logic (MVL) as a separate subject was developed by the Polish logician and philosopher Lukasiewicz
in [L]. His first intention was to use a third, additional truth value for "possible", and to model in this way the
modalities "it is necessary that" and "it is possible that".

Essentially parallel to the Lukasiewicz approach, the American mathematician Post in [P]  introduced the
basic idea of additional truth degrees, and applied it to problems of the represent-tability of functions.

Later on, Gddel in [G] tried to understand intuitionistic logic in terms of many truth degrees. The outcome
was the family of Godel systems, and a result, namely, that intuitionistic logic does not have a characteristic logical
matrix with only finitely many truth degrees.

One of the main types of logical calculi are Hilbert type calculi. These calculi are formed in the same way
as the corresponding calculi for classical logic:

SINTAX
Some set of axioms is used together with a set of inference rules. The notion of derivation is the usual one. A
language L for a propositional many-valued logic is given by:

* afinite or denumerable set p, g, 1, . . . of propositional symbols;

* afinite set of connectives cy, . . . , ¢,, With ¢i having arity u; > 0.

The set FORM(L) of formulas in the language L is defined as usual: any propositional symbol is a formula
and, if ¢ is a connective of arity # and ¢, . . . ,q, are formulas, then cey; . . . ¢, is a formula. In specific examples, we
always have connectives of arity at most 2, and we write binary connectives using infix notation. We also use left
and right parentheses according to the standard conventions; so, e.g., — p — qp is written p — (q — p)-
SEMANTICS

There are many types of semantics: 1) Logical matrices, 2) Algebraic semantics. Particular case of algebraic
semantics are logical matrices. The most suitable way of defining a system L of many-valued logic is to fix the
characteristic logical matrix for its language, i.e. to fix:
e the set of truth degrees,
* the truth degree functions which interpret the propositional connectives,
* the meaning of the truth degree constants
» the designated truth degrees, which form a subset of the set of truth degrees and act as substitutes for the
traditional truth value.
A formula « of a propositional language counts as valid under some valuation v (which maps the set of
propositional variables into the set of truth degrees) iff it has a designated truth degree under v. And « is logically
valid or a tautology iff it is valid under all valuations.

SYSTEMS OF MANY-VALUED LOGIC

Basic Logic (BL)
The language of the propositional logic BL consists of countably many propositional variables and the following
primitive logical connectives: Strong conjunction & (binary); Bottom 0 (nulary — a propositional constant);

Implication — (binary); Weak conjunction A (binary), also called lattice conjunction oA f=a& (a— f);
Negation -~ (unary), defined as - a= a— 0; Equivalence <> (binary), defined as a <> f=(a—>p)A(f—>a);
(Weak) disjunction v (binary), also called lattice disjunction, defined as av f=((a—=> ) > p)A (> a) —>
a ); Top 1(nullary), defined as 1=0 — 0.

Axioms

(BLI) (p—=>y) = (y—2)—(p—2)

(BL2) (p& y)— ¢

(BL3) (p&y)— (v & @)

(BLY) (p&(p— W) = (y & (y— @)

(BL5a) (p— (v =) = (9 & v) = )

(BL5b) (9 & y) = 2) = (9= (v —= X))

(BLO) (p— W= —>((y—=>9—2)—>2

(BL7) 00— ¢

Inference rule: modus ponens ¢, ¢ > ¥ =

This logic is #-Norm based logic. Truth degree setis W =[0,1]={x € R | 0 <x < 1}. These system are
determined by a strong conjunction connective &T which has as corresponding truth degree function a t-norm T, i.e.
a binary operation T in the unit interval which is associative, commutative, non-decreasing, and has the degree 1 as
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a neutral element: T(u,T(v,w)) = T(T(u,v),w), T(u,v) = T(vu), u <v = T(uw) < T(v,w), T(u,1) = u. There is a
standard way to introduce a related implication connective —1 with the truth degree function u —1 v =sup {z |
T(u,z) < v}. This implication connective is connected with the t-norm T by the crucial adjointness condition:
Tuy)<wuzs(v->Tw).

Lukasiewicz logics L, L,
L — BLplus —p—9¢

The systems L,, and L are defined by the logical matrix which has either some finite set W, = {k/m—1 | 0
<k <m—1} of rationals within the real unit interval, or the whole unit Interval W=[0,1]= {xe€R | 0<x<1} as
the truth degree set. The degree 1 is the only designated truth degree. The main connectives of these systems are a
strong and a weak conjunction, & and A, respectively, given by the truth degree functions u & v = max {0, u +
v—1}, uAv=min {u, v}, where max {0, u + v—1} is a t-Norm; a negation connective — determined by —u=1—
u, and an implication connective — with truth degree function # — v=min {1, 1-u + v}.

Gaodel logics G, G,
G — BL plus ¢ —(p &o)

The systems G, and G are defined by the logical matrix which has either some finite set W,, = {k/m—1 | 0
<k <m—1} of rationals within the real unit interval, or the whole unit interval W =[0,1]= {xeR | 0<x<1}as
the truth degree set. The degree 1 is the only designated truth degree. The main connectives of these systems are a
conjunction and a disjunction determined by the truth degree functions u A v =min {u, v}, u v v=max {u, v},
where min {u, v} is a ~Norm; an implication connective — with truth degree function v —»v =1, if u<vandu —v
=v, ifu > v, and a negation connective ~ with truth degree function ~u=1,if u=0and ~u=0,ifu#0.

Product logic 77
II— BL plus ——¢— ((p— (p & y) = (v & ~~y)).
This logic is -Norm based logic, where #-Norm is natural multiplication between real numbers.
ALGEBRAIC SEMANTICS
Residuated structures appears in many areas of mathematics, the main origin of which are monoidal operation
multiplication ® that respects a partial order < and a binary (left-) residuation operation — characterized by x ® y
<z ifand only if x £y — z Such kind of structures are associated with logical systems. If the partial order is a
semilattice order, and multiplication the semilattice operation, we get Browerian semilattices which are models of
the conjuction-implication fragment of the intuitionistic propositional calculus. The well-known algebraic models
of the conjucttion-implication fragment of Lukasiewicz many-valued logic are another example of special class of
residuated structures. We are interested mainly with those monoidal structures which have in common the following
basic properties: Integrality, Commutativity of the monoidal operation ® and the existence of a binary operation —
which is adjoint to the given operation. Every continuous t-norm is locally isomorphic to one of the following:
Lukasiewicz t-norm , defined by a ® b = max{a + b — 1, 0}; Godel t-norm A, defined by a A b = min{a, b};
product -norm -, i. e. , ordinary product of real numbers.
BL-algebras is introduced by P. Hajek [H] as an algebraic counterpart of one of the extensions of fuzzy logic. BL-
algebra (B,v, A,—,®, 0, 1) is a universal algebra of type (2, 2, 2, 1, 0, 0) such that:
1) (B, v, A 0, 1) is a bounded lattice;
2) (B, ®, 1) is a commutative monoid with identity: x ® g =¢ ® p, p ® (¢ ® r) = (p ® q),
p®1=1®p
HM pAlg=@®9)=p
@ (p—=9®p)vg=gq
A p=@ve =1L
@D—=n—-0r—=@Eveo)=1
G @rg@r=pr(g®n),
©) prg=p®@(@—q)
Npvg=—=>9 =9 A(g—p)—p)
®@P—=9vig—p=1

An algebra 4 = (4; ®,®, = 0, 1) is said to be an MV-algebra iff it satisfies the following equations:
.x@y)Dz=xD(y Dz);2.xDy=yDx;
3.x00=x;4.x®1=1;
5.20=1;6.-1=0;

Tx@y==(xDy);
8. (x®y)Dy=-(ny®x)Dx.

Every MV -algebra has an underlying ordered structure defined by x <y iff - x @y =1. (4,5 0, 1) isa
bounded distributive lattice. Moreover, the following property holds in any MV -algebra : x ® y < x Ay <x vy
<x®y.

Product logic algebras, or PL-algebras, for short, were introduced by Hajek, Godo and Esteva [HGE]. The
fundamental work on PL-algebras belong to R. Cignoli and A. Torrens [CT]. A PL-algebra is an algebra (4, ®,—,
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0) of type (2, 2, 0) such that, upon derived operations: 1=0—0, ~x=x — 0, XAYy=x®(x—>y), xvy=
((x = ¥) = ») A ((y — x) — x), satisfies the following identities :

(PL1) (4, ®, 1) is a commutative monoid with identity,

(PL2) (4,v,A, 0, 1) is a lattice with 0 and 1,

PL)Hx®(yv)=x®y)v(x®z), x®¥Az)=(x®y) Alx®z),

PLY) (x®y)oz=x—> (¥ —2),

(PL5) (x > y) v (v > 2) = |,

(PL6) x > x=1,

PLY) (~7z2®@(x®2) > (y®2) > (x—=p) =1,

(PL8) x A 7x=0.

A Heyting algebra (H,v, A,—, 0, 1) is a bounded distributive lattice (H, v, A,0, 1) with an additional binary
operation —: H x H — H such that for any a,b € Hx <a — b iff a A x <b. A Heyting algebra is named Gdadel
algebra if in addition the one satisfies x - y) v (x = y) = 1.

MV-algebras are algebraic models of Lukasiewicz logic. MV-algebras form variety, i.e. the class of algebras closed
under homomrphic images, subalgebras and direct product.

A description of structure of non-equivalent formulas of n variables is equivalent to the description of n-
generated free algebras. An algebra 4 € K is said to be a free algebra in a variety K, if there exists a set 4y < 4
such that 4, generates 4 and every mapping f from A4, to any algebra B € K is extended to a homomorphism /4 from
A to B. In this case A is said to be the set of free generators of A. If the set of free generators is finite then A4 is said
to be a finitely generated free algebra. Let MV, be subvariety of MYV generated by algebras S= (W, ©,®, = 0,
1), Wi={k/i| 0<k<i},i=1,...,n. The subvariety MYV, < MV is axiomatized by the extra axiom: x"+1
=Xx" (or (n + 1)x = nx). We define the function vm(x) as follows: v,,(1) = 2", v,,(2) =3" - 2", ... v,(n) = (n + 1)" -
(Vu(ny) + ... + v, (np1)), where ny =1, np=n and n,,..., n; are all the strict divisors of n.

Theorem 1. (A. Di Nola, R. Grigolia, Panti G. [DGP]). Fuy,(m) = S;™(1) x ... x §,""(n) , Fxy(m) is
isomorphic to the subalgebra of the inverse itmit 1im {Fyv,(m)},cw- 0y generated by g; = (g ) g @ g @ .. ),
i=1,...,m

An algebra 4 € K is called projective, if for any B,CeK, any epimorphism (that is an onto homomorphism ) £:
B — C and any homomorphism y: A4 — C, there exists a homomorphism a: 4 — B suchthat fa=y. A
subalgebra A of F(m) is said to be projective if there exists an endomorphism 4 : Fg(m) — Fyg(m) such that
h(Fx(m)) = A and h(x) = x for every xeA. McNaughton has proved that a function f: [0,1]m — [0,1] has an
MYV polynomial representation ¢q(x;, ... x,) suchthat f=g¢q ifff satisfies the following conditions: (i) f'is
continuous, (ii) there exists a finite number of affine linear distinct polynomials A, . . ., 4, each having the form
A=btnyxi+ ... +n,x,, where all b’s and n'’s are integers such that for every (x,...,x,)€[0, 1]" thereisj, 1 <j
<s such that f(x,...,x,)= Aj (x1,...,x,). We recall that to any 1-variable McNaughton function f* is
associated a partition of the unit interval [0, 1] {0 =aq, a1, ..., a,= 1}in such a way that ag<a;<...<a, and the
points {(ao, flay)), (a1, Aay)), ..., (a,, fla,))} are the knots of f'and the function f'is linear over each
interval [a;.1, a; ], withi=1, ..., n. We assume that all considered functions are 1-
variable McNaughton functions.

Theorem 2. (A. Di Nola, R. Grigolia). Let A be a one-generated subalgebra of Fyy(1) generated by f.
Then the following are equivalent: (1) A is projective; (2) one of the following holds: (2.1) Max{fix): x €
[0,1]} =fla,) and for f non- zero function, f{x) =x for every x € [0,a,].

(2.2) Min{f(x): x € [0,1]} = fla, —1) and for f non-unit function, f(x) = x for everyx € [a,_;, an].

PROJECTIVE FORMULAS

Let us denote by P, a set of fixed pl, ..., pm propositional variables and by @, all of Basic logic formulas
with variables in Pm . Notice that the m-generated free BL -algebra FBL(m) is isomorphic to D,
/=, where a =p iff-(a < f) and (a < f) =(a = p) A (a— ). Subsequently we do not distinguish
between the formulas and their equivalence classes. Hence we simply write @, for Fyy(m), and P, plays the role of
free generators. Since @,, is a lattice, we have an order < on @,, . It follows from the denition of — that forall «
, e @,, asp iff |- a — F. Let abe a formula of Basic logic and consider a substitution o : P, - @, and
extend it to all of @, by o(a(pl, ... , pm)) = oAo(pl), ... , o(pm)). We can consider the substitution as an
endomorphism of the free algebra @,

Definition 3. 4 formula a € @, is called projective if there exists a substitution o : P,, > @,

such that |- o(a) and a|- <> o(f), forall fc D, .
Definition 4. An algebra A is called finitely presented if A is finitely generated, with the generators aj, ...

, a, €A, and there exist a finite number of equations Pi(x1, ... , X)) = Q1(x1, «o s Xp) 5 oeny Pulx1, oo, X)) = Oulxy, ...
, Xn) holding in A on the generators ay, ... , a, € A such that if there exists an m-generated algebra B, with
generators by, ..., b, € B, such that the equations  Pi(xq, ... , X)) = Q1(x1, ... , X)) 5 ovv s Pu(X1, ooy X)) = Oulxy, ...
, X,) hold in B on the generators by, ... , b,, € B, then there exists a homomorphism h : A —B sending a; to b;.
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Theorem 5. [DG]. 4 BL-algebra B is finitely presented iff B = @, /[u), where [u) is a principal filter
generated by some element u € @,, .

Theorem 6.(Di Nola A., Grigolia R). Let A be an m-generated projective BL-algebra. Then there exists a
projective formula o of m variables, such that A is isomorphic to @,, /[ &), where [ @) is the principal filter generated
by a €@, .

Corollary 10. If A is a projective MV -algebra, then A is finitely presented.

Theorem 11. If ais a projective formula of m variables, then @, /[ @) is a projective algebra.

Theorem 12. There exists a one-to-one correspondence between projective formulas with m variables and
m-generated projective subalgebras of @,, .

33535260365 RMBN3IdOL SRBTdA IR0 56500
.20 M0
9b0odg
aobbognyanos  =bm®Mdoby  onydbgd o BL-gompaogzol, @ggobggobols  @maogol,  amgogaaols
eaoldol s  boddsgmols  @maogols > 9dG o  sbogmobo.  dmg-dgmos  megobyggemo
o2 980 9ol s@{gds s 3Omglcogmo  MV-senag66gd0ls @obslosmgds.

ALGEBRAIC ANALYSIS OF MANY VALUED LOGIC
R.Grigolia

ABSTRACT

Algebraic analysis of -norm based logics is given. Namely, BL-logic, Lukasiewicz logic, Godel logic and product
logic. Description of free and characterization of projective MV-algebras is given.
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EXPERTONS FOR EXPERT EVALUATIONS

G.Gachechiladze, T. Gachechiladze, T.Davitashvili, H,Meladze, G.Tsertsvadze

1. This work is devoted to adopt experton theory [1] to decision making.
1. An experton is an extension of the concept of probabilistic sets (random fuzzy subsets) where the
probability of each a—out is replaced by an interval of probabilities collected from expert opinion by a
statistic. We show, that expertous have the same algebraic rules as probabilistic [2].
We start with a numerical example. Suppose, we must estimate six theme and each theme by points presented
by experts. We consider our method on the basis of one them which is estimated by five attributes. Expert gives his
own valuation which is a points given by experts.

Table 1. Experts estimations (primary table)

Expert P 1 P 2 P 3 P 4 P 5

1 517131512

2 318141513

3 317131413

4 4 16 3|54

5 714151315

6 41414144

7 9181666

8 314131313

9 31513134

10 4 1415|516
_ 5

After  normalization P =P, / P, and calculation Corrado Jinni’s intrinsic  dispersion
i=1
1 & .- . . . .
c,2 = 722 (Bk -P, )2 it is possible to calculate the confidence intervals, which are presented in table 2.

10055

Table 2. Confidence intervals

Expert P/ P, Py P, Ps'
1 [0.3, 0.4] | [0.6, 0.8] | [0.2, 0.4] | [0.3, 0.5] | [0.1, 0.2]
2 [0.2, 0.4] | [0.7, 0.9] | [0.3, 0.5] | [0.3, 0.5] | [0.2, 0.3]
3 [0.2, 0.4] | [0.6, 0.8] | [0.2, 0.4] | [0.3, 0.4] | [0.2, 0.3]
4 [0.6, 0.8] | [0.5, 0.7] | [0.2, 0.4] | [0.3, 0.5] | [0.4, 0.5]
5 [0.4, 0.5] | [0.3, 0.4] | [0.4, 0.5] | [0.2, 0.4] | [0.4, 0.7]
6 [0.6, 0.8] | [0.3, 0.4] | [0.3, 0.5] | [0.4, 0.6] | [0.4, 0.6]
7 [0.8, 1.0] | [0.7, 0.9] | [0.5, 0.7] | [0.5, 0.6] | [0.5, 0.7]
8 [0.2, 0.4] | [0.3, 0.4] | [0.2, 0.4] | [0.2, 0.4] | [0.2, 0.3]
9 [0.2, 0.4] | [0.3, 0.5] | [0.2, 0.4] | [0.2, 0.4] | [0.4, 0.6]
10 [0.5, 0.8] | [0.3, 0.4] | [0.4, 0.5] | [0.3, 0.5] | [0.5, 0.7]

For each property P; , i=1, 2, 3, 4, 5, we shall compute two statistics, one for the lower bounds of intervals, the
other for the upper bounds. If we accept these statistics like probability lows on the level set (0, 0.1, 0.2, ... ,0.9, 1.0)
and take for each law the cumulative complementary law, we obtain the following table, which represent what we
call “experton” (see table 3).

This experton at first must be reduced to a probabilistic set taking the mean of bounds, second, probabilistic set
must be reduced to a fuzzy subset and, third, it is necessary to look for maximum value of possibility distribution or
for nearest ordinary set.
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Table 3. Experton

level P/ Py Py P, Ps'
0 1 1 1 1 1
0.1 1 1 1 1 1
0.2 1 1 1 1 [0.9, 1]
0.3 [0.6, 1] 1 [0.5, 1] [0.7, 1] | [0.6, 0.9]
0.4 [0.5, 1] [0.5, 1] | [0.4, 0.6] | [0.2, 1] | [0.4, 0.6]
0.5 |[0.4, 0.5] | [0.4, 0.6] | [0.4, 0.5] | [0.1, 0.5] | [0.2, 0.6]
0.6 0.4 [0.4, 0.5] | [0.2, 0.5] | [0, 0.2] [0, 0.6]
0.7 | [0.1, 0.4] | [0.2, 0.5] | [0, 0.4] 0 0
0.8 | [0.1, 0.4] | [0, 0.4] 0 0 0
0.9 [0, 0.1 [0, 0.2] 0 0 0
1.0 0 0 0 0 0
The corresponding probabilistic set by mean of bounds is given by following table:
Table 4.
P]' Pz’ P3’ P4’ Ps’
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0.95
0.80 | 1 0.75 | 0.85 | 0.75
0.75 1 0.75 | 0.50 | 0.50 | 0.50
0.45 ] 0.50 | 0.45 | 0.30 | 0.40
0.40 | 0.45 | 0.35| 0.10 | 0.30
0.70 | 0.35 020 |0 0
0.70 | 0.20 | O 0 0
0.05]0.10 |0 0 0
0 0 0 0 0

Taking the mathematical expectation for each Py, we find the fuzzy set

Maximum of possibility distribution is P;’ and the nearest ordinary set will be

Analogously we consider the remained five themes.
Taking the maximal values of possibility distributions, corresponding to each experton as P;’, one can construct a

Py

P

P3! P4!

Py’

0.623

0.577

0.477

0.441

0.445

new experton, giving the final decision.

2. Denote by A4, B,C c Q (referential set) some expertons with the product (-) and algebraic sum (+) (a+b-

ab), which concern each w and each a (operations on intervals of confidence). The following algebraic properties

are available:

A()B =B()A, A(+)B=B(+)4

(4)8)) € = 40 (B()C)
(2(+)1§)(+)@ = A(+) (1§(+)@)

A=4

AOD =D, A(H)D = 4,

A()B=A(+)B, A(+)B=A()B

PP

py | Py

Py

1 1

0 0

0

Now with (A)(min) and (V )(max) we have:

A(N)B =B(A)A, A(V)B=B(v)A

commutativity

associativity

involution

AOQ =4, AHQ=Q

De Morgans theorem

commutativity
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AN(B(C)=(A(nB) v C associativity
AW (BC)= (Al e

A (B)C)= A B [acaC) distributivity
A (BenE)= (A0 B) () (Aev)E)

AN)A=A, AN)A=A idempotency
a=4 involution

AND =D, AT =4, ANQ=A4, AV)Q=Q

A(N)B = A(V)B, A(V)B = A(~)B De Morgans theorem

With operations (-) and (+) expertons have a monoidal structure and with () and (v) the structure of a
distributive lattice.

31336036350 155IFL3IGBHM FIBSLIBOLAIZOL
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EXPERTONS FOR EXPERT EVALUATIONS

G.Gachechiladze, T. Gachechiladze, T.Davitashvili, H,Meladze, G.Tsertsvadze

Resume. The experton theory is presented in a such form that permits to use it directly for decision making. The
new form of experton theory is applied to scientific themes presented on the concurs. Each them is characterized by
some attributes in 10 point system. The algorithm of decision making is presented by some rules of matrix
transformations. Shortly the expertons algebraic properties are considered.
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EVALUATION OF BANKRUPTCY RISKS BY THE METHOD OF FUZZY
STATISTICS

T. Manjafarashvili

Introduction

With the progress of computer facilities, the creation of high technologies that could facilitate decision making
by the management of an enterprise has become of topical importance in the economy.

Today we are faced with an urgent task to create such expert-information technologies that, along with the use
of an objective data base, could use the subjective knowledge of experienced experts, managers and other persons
concerned in order to make trustworthy decisions. All these reasons have led to the development of formal
technologies of constructing expert-analytic systems of decision making support.

In the present paper we consider one concrete technology of constructing the expert-analytic system of decision
making support. As the initial information for making a decision the above-mentioned technology uses the expert
(subjective) information [5,6] received from the experienced managers of the enterprise and the objective financial-
and-economic data collected from respective subdivisions. For their processing and consolidation the most uo-to-
date methods are used.

In this context, the problem of evaluating a bankruptcy risk extent is topical for all persons concerned about the
state of the enterprise — owners, managers, investors, creditors, auditors and so on. A suitable mathematical tool for
such studies is the fuzzy set theory and fuzzy logic.

Bankruptcy Risk Analysis

Suppose we are given three periods of time 1, 2, 3 for which a comparative financial analysis is carried out.
Let the enterprise be characterized by the set (vector) of N financial indexes constructed on the basis of
financial accounts for each period. The vector of financial indexes is (X; 1',X21, o ,XN') for period 1, (X; 12, Xzz, .

XN2) for period 2 and (X; ,3,X23, XN3) for period 3. Each of the indexes X! can be divided into subfactors X i (k=
1,2, ...,p; j=1,2,3). It is assumed that the system of indexes (X) is sufficient for a reliable analysis of the state of
the enterprise.

The exhaustive set of states (otherwise bankruptcy risks) 4 of the enterprise is divided into five (overlapping
in the general case) fuzzy subsets of the form:

A a fuzzy subset of “extremely unfavourable” states,

A a fuzzy subset of “unfavourable” states,

As a fuzzy subset of “average quality” states,

Ay a fuzzy subset of “relatively favourable” states,

As a fuzzy subset of “extremely favourable” states.

We say that the term-set of the linguistic variable “state of enterprise” consists of five elements 4, , 4s.
These elements are respectively associated with the membership functions £4(v), . . ., t5(v), where V' = V(X) is the

complex index of the enterprise state. The higher ¥, the more prosperous the enterprise. The qualitative form of the
functions £4(v), ..., ts5(v) is shown in Fig. 1.

In order that an enterprise bankruptcy risk could be predicted by the methods of mathematical statistics, we need
a certain classification procedure, but, as we see, between the above-described five classes there are no clear
boundaries. That is why any notions concerning the enterprise state contain uncertainty (fuzziness). Since we deal
with fuzzy subsets V, to describe the membership functions 44, 45 in a compact way we associate them with the
fuzzy T-numbers (ca1, B, fri ar), . . ., (aus, Bis, Prs, ars), where op and or are the abscissas of the left and right
points of the lower base, and £ and fr the abscissas of the left and right points of the upper base of a trapezoid
which prescribes the respective function in the region where the membership function of the respective fuzzy
subset is nontrivial [2,3,4,8].

The problem of bankruptcy risk analysis can be formulated as follows: define a procedure that relates the set of
indexes (X) to the complex index V. Then using the “historical experience” and functions {u) and defining the value
¥V, we construct the following assertion “current state of the enterprise”:

extremely favourable with plausibility level u(V),

relatively favourable with plausibility level uy(V),
of mediun quality with plausibility level us(V),
unfavourable with plausibility level u4(V),

extremely unfavourable with plausibility level us(V)
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Fig.1. The qualitative form of a compatibility function

This assertion imparts a certain weight to each of the variants of the belonging of the current state of the
enterprise to one of the subsets {4}. The person who makes a decision as to the enterprise may satisfy himself with a
hypothesis that the value u(V) is maximal and evaluate qualitatively the state of the enterprise. Whether the state of
the enterprise has become better or worse from one period to another can be described in the following manner:

if V>V, then the state has become better,
if V<V, then the state has become worse.

Let us consider the mathematical model of enterprise risk prediction based on the theory of fuzzy class statistics
[16]. The object of prediction is the enterprise bankruptcy risk. Since the result of prediction will be a fuzzy subset
of the set of states 4 of the enetrprise, we need an additional principle to obtain a unique (classical) answer. We use
the following dephasification principle:

K Ao)=max 5(4;) (1)
1
Let us introduce the notation for the initial frequencies nlq,ﬁ , where j is the observation period number (j =1, 2,
3), i is the number of a factor (the number of a component of the vector X ), (i=1,2,....,N), kisthe number of
a respective subfactor (k= 1, 2,...., 5), ¢ is the number of a state of the enterprise (¢ =1, 2, 3, 4, 5). Frequencies

n,qk] are the classical frequencies corresponding to the nonfuzzy partitioning of the region of variation of the
complex index of the financial state of the eneterprise into nonoverlapping classes. The partititioning is done by an
expert. We regard these frequencies as initial data, i.e. assume them to be given (see Table 1).

Thanks to the fuzzy definition of the notions 4,, we impose on the nonfuzzy partitioning of the region V' the
fuzzy partitioning into nonoverlapping fuzzy classes (see Fig. 1). An analogous fuzzy partitioning is also done for
every factor (into s subfactors). Because of the fuzziness and overlapping of the intervals it becomes necessity to
calculate fuzzy frequencies [1,2,3,8] by means of which the analysis will be carried out. These fuzzy frequencies are
calculated by the following formulas (they are given for the case for g =5 and s = 5):

~l _ ==l 1 —1 2 ~2 _ =2 1 —2 2 2 3 3 _ =3 2+—3 3+—34
nik_/'llnik+/'lznik’ nik_ﬂlnik+ﬂ2nik+ﬂ3nik’ nik_/'lznik /‘13nik /‘14nik’

~d —4 34 4 4 s 5 =5 4 =25 5

nik:/'l3nik+/'14nik+ﬂ5nik ’ nik_/’{4nik+/’(5nik’ @)
(in the general case i=1,2, ... ,N; k=1,2,...,5)
Since the formulas are identical for any analyzed time period j, the upper second index in them is omitted. [

denotes an average value of the membership function in the respective interval. First we give the formulas for the
membership functions having the form of fuzzy T-numbers:
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_ 1 adp) -
lL,ve [0, ﬂrl] @, — B, vt - B, vV [a12,ﬁ12]
Hv) = ! V- In ,VE[ﬂrl,arl]’ H,(v) = Lv:[ﬂ/z,ﬁrz] ’
ﬂrl_arl ﬁrl_arl 1 o a,, v—[ﬂ o
sV T r2>%r2

IBVZ _arZ ﬁrZ _ar2

1 3
- v+ - ,v=[a13,ﬁ13]
;=P ;=P 3)
B
1) =Ly =[8,, 8]
1 a,,
V= - 5v:[ﬂr35ar3
ﬁr3 _ar3 ﬁri& _ar3
1 a
14 _
- v+ ,V—[O!,4,ﬂ14] 1
a,—-pf a,—pf s
14 14 14 14 — v+ ’ve[alﬁ’ﬂIS]
H,(v)=4Lv= [ﬂm,ﬂM] UM =9 as =B s = Bis
1 a,., _ 1,ve[ﬂ,5,A5]
V= ’v_[ﬁr4’ar4
IBr4 _ar4 lBr4 _ar4
Table 1
Factors Subfactors 1) 2j 3j 4j 5j
N N ni. N ni
J 1j 2j 3j 4 57
X Ny nny n nn, N
; j 1j 2 3 4j 5j
X1 X2 n n ni N ni
J 1j 2j 3j 4j 5j
XIS n]s nls n]s nls n]s
J 1j 2j 3j 4j 5j
X 1453 1453 1453 1453 Ny
j J 1j 2j 3j 4j 57
X, X N Mo N N N
J 1j 2j 3j 4j 5j
x2s n2s nZs n2s nZs n2s
J 1j 2j 3j 4j 5]
le an an an an an
J J 1j 2j 3j 4j 5]
XN X2 N> N> P N> P
J 1j 2j 3j 4j 57
x Ns an an nNs an nNs

Next we define the average values of [/, (v) which for the respective interval [a,b] are calculated by the formula

P
H, —E!ﬂn(")d"’

where m is the membership function number (1, 2, 3,4, 5) and # is the classification region of V.
By formulas (2) and (4) we calculate the fuzzy frequencies presented in Table 2. We introduce the notation

~i i
~ij — N wi = g=1 xi “
P =73 > ik s 5 N
7R 21
i i
=y k=1 g=1
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Table 2
Factors Subfactors ~1J ~2j ~3] ~4J ~5j
i N Ny Ny n i
; ~l) ~2) ~3) Y ~5)
Xii ny nu nu nu nu
; j ~lj ~2j ~3j ~dj ~5)
X, X2 N ni n ni ni
j ~lj ~2) ~3) ~dhj ~5)
XIS nlx nls nlx nls nlx
j ~lj ~2] ~3j ~4 ] ~5]
X1 1153 N 1153 N N
j j ~lj ~2] ~3j ~4j ~5]
X, X2 N N N N Ny
j ~lj ~2) ~3j ~dh ] ~5 )
x2s nZs n2s nZs n2s nZs
; ~lj ~2] ~3j ~4] ~5 )
X N nw N nw N
; j ~lj ~2) ~3) ~h) ~5 ]
X X2 x> 2 x> Ny x>
j ~lj ~2] ~3j ~h] ~5 )
xNS n Ns n Ns n Ns n Ns n Ns

The application of this notation gives Table 3 containing, in addition to relative fuzzy frequencies, also factors,
subfactor change intervals and the weights of these intervals calculated by formulas (5).

Table 3
Factors Subfactors 1 2J 37 4 57 J
p ik p ik p ik p ik p ik Wik
J Lj 2j 3j 4 57 J
Xu pll pn pn pn pn Wi
J Lj 2j 3j 4 5j J

X Xi2 plz p]z p]z p]z p]z Wi,

j 1j 2j 37 4] 5 j
xls pls p]s p]s p]s p]s Wls
j 1j 2j 3 4 5; j
X2 p21 p21 p21 p21 p21 Wa

J 1j 2j 3 4j 5 J

X; X2 pzz pzz pzz pzz pzz W

; 1 2j 3J 4J 5J j

xzs pr p25 p25 p25 p25 WZS

J 1j 2j 3 4j 5j J
X le le le le le Wi
g j 1j 2j 3j 4j 57 J

XN :XNZ pNZ pNZ pNZ pNZ pNz WNZ

Jj 1j j

2j 3j 4j 5]
st p Ns p Ns p Ns p Ns p Ns WNS

Note that calculations are performed for each period (j = 1, 2, 3) separately. This makes it possible to trace up
the change dynamics of the enterprise bankruptcy risk. Table 3 contains the information obtained by the initial data
processing (cf. the table of classical frequencies). We think that using Table 3 and applying the method of linear
statistical synthesis [7], a decision can be made for the current moment of time. The decision is made in two steps.
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Step 1: let the results of measurement of the current financial indexes (factors) (for simplicity, further formulas
will be given for the case of the example to be considered below for N = 6 and s = 5) be

X3, X5, X5, X4, X5, X, and  the weights of six subfactor change intervals be respectively

Wigs Was s Wy, Way , Ws, Wy, . The matrix of respective fuzzy intervals has the form

2

1 3 4 5
Pz Pz Pz Piz P
1 2 3 4 5
Prs Py P Pas  Pos 5)
Pél p321 p331 p?l p;
Pz]s4 p§4 pizx p:zs p:zs
1 2 3 4 5
Psi Psi Psi Psi Psi
péz pszz p:z p:z pgz

Step 2: the vector of weights (W13 Wys Wy Way Wy, W62) is multiplied by the frequency matrix

4

1 2 3 5
Pz P P P Pi
1 2 3 4 5
Prs Pas P P Pas |=
1 2 3 4 5
Py Psi Psi P Pa
1 2 3 4 5
Ps Py Pa Pus Pu
1 2 3 4 5
Psi Psi Psi Psi Ps
1 2 3 4 5
Pss Pa Po Ps Pa

—

6= (W13 Wys Wi Wy Wy W62)

=(6, 5, &, 5, &)
where (6)

_ | | | I I I
Oy =W Pis ¥ WysPos F Wy Py F Wy Pyt Ws sy W Doy s
_ 2 2 2 2 2 2
Oy SWi Py T Wys Dos Wy Py T Wy Pyt W D5 W, Dy s
5. = 3y 3oy 34 34 34 3
3 = Wiz P13z TWosPos T Wi Dyg TWyuPyy T Ws1 P51 T W Peas
_ 4 4 4 4 4 4
Oy S WPy T Was Dos ¥ Wy D3y T Wy Py t W5 Dsi Wi, Do s

_ 5 5 5 5 5 5
Os =W Piy ¥ WosPos + Wy D3y + Wy Pay + Ws P35 + Wy Doy -

To obtain a unique “classical” solution it is necessary to use some principle from outside. We aplly the principle
of the maximum and the final solution looks like

S, =max (5, &, &, &, &)

Conclusion

We have fully realized the proposed method in the form of a software package based on C#. After entering the
initial expert (subjective) and objective data, it enables the financial manager of an enterprise to evaluate
automatically the financial-and-economic results of the work of his enterprise in the definite periods of time and to
make, on their basis, the required decisions. Our system of decision-making support can also be used for the
monitoring of changes in the financial-and-economic state of an enterprise.

Furthermore, this software package is helpful in solving an important management problem of business
effectiveness evaluation, which cannot be solved without applying the up-to-date computer technology of
simultaneous processing of the expert and objective information.
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NEW CHROMOTHEORY OF CANONICALY CONJUGATE FUZZY SUBSETS
T.Gachechiladze, H.Meladze, G.Tsertsvadze, N.Archvadze, T.Davitashvili

Resume. The new chromotheory of canonicaly conjugate fuzzy subsets is presented. The Heizenberg’s principle’s
analog principle is established. In Hilbert space the informational functions and joint membership functions are
defined. In the work Zadeh operators, colour operators and corresponding commutativity relations are presented.

Keywords. Fuzzy sets, membership function, colour operator, Zadeh operator.

1. In the work a new chromotheory of canonicaly conjugate fuzzy subsets is presented [1].

In many cases there exist unlimited number of ways of interaction of subject with the object. As a result the
controlled interaction is almost always is incomplect. It is based on the limited (generally small) number of
attributes (colour) of the object corresponding to the subject, which can be recognized. When the set of colours are
defined as a result of our interaction with the object we say, that there is defined the system on the object with the
given structure of uncertainty.

Data in informatics are the set of so-called informational units [2]. Each of informational units is the four:
(object, sing, value, plausibility). It is important to differ the notion of inaccuracy and uncertainty. Inaccuracy is
connected with the information content (corresponding to the component “value”) and uncertainty to its verity,
understandable in terms of compatibility with reality (component “plausibility”). For the given information there
exist contradiction between inaccuracy of expression content and its uncertainty expressed in the fact that with the
increase of expressions accuracy its uncertainty rise and vise versa, uncertain character of information leads to some
inaccuracy of the final conclusions received from this information. We see that from one side these notions are in
certain contradiction and from another side — complete each other.

We offer to model such situation by means of a new concept of optimal pare of canonicaly conjugate fuzzy
subsets. We offer the method of construction of the informational unit membership functions taking into account the
both canonicaly conjugate components simultaneously and have discribing this unit in the most complete and
optimal way.

In the frame of optimal model the generalized probability theory and information theory, color operators,
canonicaly conjugate numbers and appropriate arithmetic, Zadeh operators are constructed.

2. Let ¢ denotes some colour, &, - his numerical value is random variable. In the referential system (2 (universal
set) it is latent parameter.
Let probability distribution of &, is characterized by density pg(x,):

[P, (x,)dx, =1 M)
R

Quantity
x, =ME, = [x,p,(x,)dx, @
R

will be called calculated value of the colour ¢ in point @ of universal set £2. Note that formula (2) establish one to
one corresponds under (2 and real numbers R.
Except M¢&, the colour of @ characterized by dispersion

o (0) = J(x -x, )2 p,(x,)dx, . 3)

In our model 0'2 (w) is connected with definition of presence of colour ¢ for @. If o'; (a)) — 0, we will say,
that ¢ has sertain value in @. The more is G; (@), the more ¢ is uncertain in w. If a; (a)) — o0, we say that o

has no colour ¢. Thus if U, (a)) =1 we say that ® possess colour ¢, if M, (a)) — 0, than ® does not possess
colour ¢.
3.For Vwe( introduce some interval of ¢ values [ v (a)) C R by relation
(@)= | p,(@dx, =[1,(@)p,(x,Mx, ()
1, (o) R
where [ 0 (a)) is defined in a such way, that (4) will be true when M, (a)) is a membership function established by

expert. In the theory of information representation main role plays the notion of informational function of defined by

X, 0) =P, (@) e, )
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where +/--- is the arithmetic root and « - random phase (real number). It is evident, that
+
P, (@) =|x,; 0) |x; @).

Here

X; go>+ = <x; go| and |x; a)> are bra- and ket- vectors [3] correspondingly.

Let consider the Fourier transform of the ket -vector:

|'xca); ¢c>_F|xa)’ ¢>_E}[|xa)’ ¢>e dxa) (6)

where ¢ is a constant. Integral (6) converges in mean-quadratic sense to the function from L*(R) (Hilbert space) .
Correspondence under |x,; @) and F|x ;) is reciprocal: JF . F |x,; 0)=|x,; @) If in L*(R) the scalar

([ 00)- X1 95)) )

From formula (7) we can conclude that in parallel with colour ¢ exist other colour ¢ © with informational
function ‘ X (p6> and density P, (@w,) which determines corresponding membership function:

X,.; ¢ >da)(p(. = J‘I(p(. (,)
R

product is defined, than

%01 02 ))= (5 00,

2
do, ®

2, @)= [|x,:0) Yot 9°)

1 (o)
4
where [ o (w,) is the interval corresponding to membership function of canonicaly conjugate fuzzy subset.

4. Usually fuzzy subset is constructed on the basis of expect estimation of one of the noncommuting
component. Fuzzy subset constructed in this way characterize the information unit incompletely. We offer the
method of constructions the informational unit membership function taking into account the both canonicaly
conjugate components simultaneously and hence describing this unit in most complete and optimal way.

The joint distribution of two canonically conjugate colours is given by following formula:

Poran, ForXe) =5 [ [ Ma, ) exp(-iteyx, + v, dadar, ©
T RR
and corresponding joint membership function is:
/J(xwaxcw;¢’¢c> = j jp(pwxgg”” (xa)’xca))dx(udxcfu > (10)

Lot [w“ (o)

where (9) is the Weil transformation [4] of the operator M (a] , az):

lm (al’aZ) 1 3 . a'[a)a'(cwﬁ(p XQ, ('(a)"[ca))A('(aﬂ'[cw) : (11)
(27[0) o
Operator A(xm,xm) has the form:

&(xw,xm) = J.dvexp(—ixmvj x, + %v><xw —%v .

5. From formulas (9) and (10) follows very important relation between dispersions of canonicaly conjugate
colours:

(12)

(aj,(a))+a;D (a)))(a;f (@,)* 02, (wc))z 2

where ¢” and ¢ denotes dual colours.

This relation is analogue of Heisenberg’s uncertainty principle [S]. Generalized information theory leaves to
interpret the constant ¢ in terms of the Shanonn measure of uncertainty.

When in formula (13) one have equality this means that corresponding membership function is optimal. In
presented work the form of optimal informational and membership functions are established:

Informational function

c
— 13
5 (13)

X, >0pt = exp| — (x—x*)z +ix*x
5@ \/27[0(2 p 40; c c ’

corresponding density is
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opt

Py

A1 (x—x*)2
)= p[ = ]

and membership function have following form:

+
x+tao, % \2

Iu;pf(w):; J. exp| — X -
\’272.0_(/27 x*—aaq, 4G¢

Analogously quantities for canonicaly conjugate colour ¢ are determined.
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A METHOD FOR AGGREGATION OF TRAPEZOIDAL FUZZY ESTIMATES
UNDER GROUP DECISION-MAKING

Teimuraz Tsabadze

1. Introduction. An uncertainty assists at practically any situations in our life [7]. One of the most effective ways to
take account of this phenomenon is a using of group decision strategy. These processes by their nature represent a
transformation from individual opinions of experts into the resulting one.

In the present paper we suppose that each expert expresses his subjective estimate by a positive trapezoidal fuzzy
number that represents the rating to an alternative under a given criterion. As a result a finite collection of
trapezoidal fuzzy numbers is obtained. Almost all the theoretical results in section 2 represent, to one extent or the
other, the modification of the results obtained by Tsabadze [5,6] for finite collection of fuzzy sets including
terminology, which have been adapted for trapezoidal fuzzy numbers.

On the set of positive trapezoidal fuzzy numbers in the universe X we introduce specific operations for inclusion,
union and intersection of trapezoidal fuzzy numbers. Then by the offered isotone valuation we determine a metric
that defines a distance between trapezoidal fuzzy numbers. Further, concepts of regulation and representative of a
finite collection of trapezoidal fuzzy numbers is introduced and motivated. Basic idea is that weight of an expert’s
opinion is larger if his opinion is closer to the representative.

2. Essential notions and theoretical background. A membership function of a trapezoidal fuzzy number
R= (a,b,c,d), 0<a<b<c<d inauniverse X is determined as follows:

xX—a .
— if xe[a,b[,
1, if b,c|, .
1, (x) = dix"e[ I ew @.1)
—, if xe]ed],
-c
0, otherwise

Y(X)= {Ii. =(a;,b,,c;,d,), iell } - set of all trapezoidal fuzzy numbers in X.

R, =1§2 <a =a,,b =b,c =c,,d =d,, Rl,lé2 e‘I’(X).
R ®R, =(a, +a,, b +b, c +c,,d +d,), R.,R, e ‘I’(X).
all R :(aa,ab,ac,ad) a>0, Re ‘I’(X) .

Definition 2.1. Trapezoidal fuzzy number R =(q,) is included in trapezoidal fuzzy number R, =(b,), i =14, i.e.

R &R, ifand only if
a,<a,,b<b,c <c,d <d,. 2.2)
The operations for union and intersection of trapezoidal fuzzy numbers play an important role in our research.
Definition 2.2. Union and intersection of trapezoidal fuzzy numbers R, = (a[),ﬁ2 = (b[.), i =1,4 are determined as

follows:
RUR, :p@[@{ﬁl,ﬁ’z} = (max{a,,5}, max{a,,b,}, max{a,,b,}, max{a,.b,}),
Rlﬁkz :mi@{kl,ﬁz} = (min{al,bl} , min{az,bz} , min{a3,b3} , min{a4,b4}).
Theorem 2.1. Consider the trapezoidal fuzzy numbers INQI = (al.),}é2 = (bl.), i=1,4. Results of operations for union

and intersection, where intersection is included in union by (2.2), represent trapezoidal fuzzy numbers with vertexes
belonging to set of given trapezoids’ vertexes if and only if union is INQI @Iéz and intersection is Iél ﬁﬁz.
We also introduce the operation of crisp subtraction of nested trapezoidal fuzzy numbers as follows:
RER = R“R, =(a,~ay, b,~b,, ¢, —¢,, d,—d,), R,R, e¥(X). 2.3)
It is obvious that the result of crisp subtraction of nested trapezoidal fuzzy numbers is also a trapezoidal fuzzy
number. It is not hard to be convinced that the distributivity of union and intersection holds in ¥ (X):

&A(ROr,)=(R AR, )O(RAR). RU(RAR)=(% Uk )A(ROR,). (2.4)
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Now we are going to introduce a metric on Y (X), i.e. define a distance between trapezoidal fuzzy numbers. We
say that the function v: ¥ (X) = R is isotone valuation on W(X) if v(f?l @Rz) +v(1§1 ﬁf?z) = v(f?l)+v(1~€2) and
ﬁl@ﬁ’z = v(lz’l) < v(ﬁz) .

The isotone valuation v determines the metric on ¥ (X):

p(&.R.)=v(ROR,)-v(RFR,). 2.5)
W(X) with isotone valuation v and metric (2.5) is called a metric space of trapezoidal fuzzy numbers.
Definition 2.3. In the metric space the trapezoidal fuzzy number R is the representative of the finite collection of
trapezoidal fuzzy numbers {f?j}, j= ﬁ m=273,... if
>rp(R.R)<S" p(S.R,) vSew(x). (2.6)

J
For an accommodation of posterior theoretical constructions we need to introduce a concept of regulation of
finite collection of trapezoidal fuzzy numbers

Definition 2.4. The finite collection of trapezoidal fuzzy numbers {I?/} is a regulation of the finite collection of

trapezoidal fuzzy numbers {13/} if the finite sets {a;} and {aj'}, {b;} and {ij}, {c¢;} and {cj'}, {d;} and {dj} are
pairwise equal and a, <ay < ...<ay, b <by < ..<b,, ¢ <cs <..<¢n, d <dy <...<d,,
j=Lmm=2,3,..
Due to this definition and (2.5) it is obvious that the equality
> p(SR)=X" p(S.R) @.7)
holds in the metric space for any S'e‘P(X ) and the finite collection of trapezoidal fuzzy numbers

{1?}, j :L_m, m=2,3,.... From (2.7) it follows that representatives of finite collection of trapezoidal fuzzy

J

numbers and its regulation coincide.
Definition 2.3 and (2.2) justify the validity of the following proposition.
Proposition 2.3. The regulation represents a finite collection of nested trapezoidal fuzzy numbers:

RERE LR m=23,..

It is easy to see that

RER, = p(R.R,)=v(R,)-v(R). (2.8)
Theorem 2.2. In the metric space of trapezoidal fuzzy numbers the representative R’ of the finite collection of

trapezoidal fuzzy numbers,{f?j} , J= ﬁ m =2,3,... is determined as follows:

iérln/Z @R*@R;ﬂZH if m is even;
R = Ié(lmﬂ)/z if mis odd.
Now we introduce the uniqge specific aggregation operator (here and further on symbol [] denotes an integer part
of a number):

_ _ [(m+h/2] m o
0.500 (R[Im/z] @R‘['(m-*:;)/z]) if Z p(R_;»R[Im/z]) = j_[;/z]+1p(R}ale£(m+3)/z])a
- (a2
R = > p(RR,.) . 2.9)
ié[‘m/Z] ® D)/ 2] - ~j=1 - — 0 (Ii[l(mﬂ)/z][—ﬁ{m/z]i) otherwise
v p(R}aR['m/z])+F[;/2]+1p(R_;aR[I(m+3)/2])

3. The method for fuzzy aggregation and its algorithm. Let m experts estimate of the rating to an alternatives
under different given criterions and Iéj, j e{1,2,...,m}, m =2,3,...be the opinion of expert number j under a given

criterion. As a result we obtain a finite collection of m trapezoidal fuzzy numbers. First of all we determine the
regulation of this finite collection and its representative. When constructing any aggregation method under group
decision-making, the main task is to provide well-founded degrees of importance for each estimate.
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The main idea of the proposed method is that aggregation weights (degrees of importance) of each expert
represent functions, which are inversely proportional to distances between their estimates and the representative.
Definition 3.1. Aggregation weights of experts represent functions inversely proportional to distances between their
estimates and the representative; at the same time the result of aggregation for m fuzzy trapezoidal estimates of the
rating to an alternatives under different given criterions determined by

R=3" (0,0 R) 3.1
is always continuous.
Here [] is the fuzzy multiplication operator [3] and the aggregation weight of expert number j is

o, :(p(ﬁ*,ﬁj))il/Z:;](p(lé*,ﬁj))il, m=23,. . (32)

m
It is obvious that ijla)/. =1. This definition looks plausible, but in case when at least one estimate coincides

with the representative, a function discontinuity takes place.
Proposition 3.1. Consider the finite collection of m trapezoidal fuzzy numbers in the metric space. If there exists at

least onej € {1,2,..., m} such that p(ﬁ*,lz’j) =0 thenR=R".

Corollary 3.1. If forall t, j € {12,....m} R, =R, = R=R'

Corollary 3.2. If the all estimates are identical then we can conclude that &= 1/m.

Algorithm

Step 0: [nitialization: the finite collection of trapezoidal fuzzy numbers {Rj}, its regulation

{Iél} , j= I,_m, m =2,3,.... Denote the aggregation weight of expert number j as w; and the final result as R.

Step 1: Compute the representative R of {15/} i =1,_m, m=2,3,... by (2.9).
Step 2: Do Step 3 for j :L_m.
Step 3: Compute A, = p(l?,]?/.):

* Ifatleast one A;= 0 then R=R;
* If A;>O0forallj then compute @ by (3.2) and obtain the final result is by (3.1).

4. Properties of the proposed method:
4.1. (Agreement preservation [1]). If Rt = Iéj for all t,j then R = Iéj. In other words, if all estimates of m experts

are identical then the combined result should be the common estimate.
4.2. (Order independence [1]). If {(1), (2),..., (m)} is a permutation of {1,2,..., m} then

R= (BB R) = £ (Riys Rigor R

s Riays e ) . The result is also a consistency requirement.

(m)

4.3. Let the uncertainty measure H (I?/.) of individual estimate R

s =1,_m, m=2,3,... be defined as the area

under its membership function [1]: H (Iéj) = J:w H; (x)dx .The uncertainty measure H fulfills the following
equation: H(Iz’) = z;la}j XH(I%}.) .

4.4. The common intersection of supports of all experts’ estimates is included in the aggregation result. It means
that ﬂ;":lﬁj cR[5]

Property 4.5 [4]. If an expert’s estimate is far from the consensus then his estimate is less important.

Property 4.6 [4]. If ﬂ'::] ,u(lz’j) =0, aconsensus R also can be derived.

5. Illustrations. For the motivated comparing of the proposed method with others we will use the metric based on

the following isotone valuation for trapezoidal fuzzy number R = (al.) : v(ﬁ) = Z; a, . Thus, by (2.5) we introduce
. = = 4
the metric as follows: p(Rl,Rz) = zi:]|a[. —b[.| .
We follow with the examples presented by H.-M. Hsu, C.-T. Chen [2] and utilized by Lee [4]:

R =(1,2,3,4), R, =(1.5,2.5,3.5,5), R, =(2,2.5,4,6) .
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Ne Method R

1 | Hsu (1.519, 2.356, 3.519, 5.038)

2 | Lee (1.5005964, 2.3370414, 3,5005965, 5.0011930)
3 | Tsabadze (1.516, 2.4365, 3.516, 5.032)

It easy to see that the difference between the results obtained by our method and Hsu and Lee’s results is very small
(here we do not discuss who’s result is more adequate), whereas our algorithm is a lot simpler.

A METHOD FOR AGGREGATION OF TRAPEZOIDAL FUZZY ESTIMATES
UNDER GROUP DECISION-MAKING
T.Tsabadze

Resume

This paper introduces the simple method for group decision-making, where experts’ opinions are expressed by
trapezoidal fuzzy numbers. The method determines aggregations weights of each expert as a function of closeness of
their estimates to the representative. The method is correct under extensive class of distances between trapezoidal
fuzzy numbers. It is demonstrated that the algorithm of this method is a lot simpler then the algorithms of analogous
methods, it can be realized with usual calculator. It is shown that the proposed method preserves important
properties of other aggregation methods. The introduced method can be also used under situations, where experts’
estimates are given as triangular (b = ¢) or interval (a = b, ¢ = d) fuzzy numbers.
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INFOLOGICAL PRECENTATION OF ENVIROMEN MONITORING
INTELLECTUAL SYSTEM
M. Khachidze

In our understanding the environmental monitoring intellectual system belongs to knowledge representation
systems. Out of three components of intellectual systems of this type — human component, technology and
organization — we are considering the technological component which itself consists of two main modules: data
collector module and assessment module.

Collecting environmental monitoring data is difficult and requires comprehensive approach as there is a
great variety of potential sources of data and different levels of competence. Thus the forms of data representation
are not uniform. In such situations the data collector module acquires the function of syntactic analyzer.

For dynamic functioning of the environmental monitoring information model it is important that assessment
module can provide an answer to any legitimate customer even if insufficiently precise data is provided.

Very often while describing an ecosystem we find out that the information is incomplete or not sufficiently
precise; i.e. the values of some characteristic attributes of a given object may be completely unknown or known
incompletely, when, for example, only a subset of the domain of an attribute is known, or indefinite. Besides,
sometimes the chosen attribute is unusable for some ecosystem under consideration. A question may arise whether
the given values of the attributes do not exist in reality or they are simply unknown. In these cases great importance
is attached to the representation of information and its initial standardization with a view of putting it into a database
and further processing.

In order to consider the real structure of data collector module it is important to determine the sources of
data. Results of assessments of physical and chemical composition of air, water, soil received from different
measuring devices can be considered as sources of data, as well as information collected by visual inspection. If we
determine and classify these sources we can then differentiate the data to be later incorporated into the intellectual
system data base by types. Of great importance during dynamic monitoring can be changes visually determined by
an experienced ranger, changes that can not always be registered by a measuring device. So special attention should
be given to semantic description of natural environment. At the initial stage we can present the following diagram of
data classification [1].

Data received as a result of
measuring

Meta data .| Data received as a result of
textual (verbal) description

Data received as a result of
visual assessment

Figure.1 Data Classification scheme.

Data received as a result of measuring occupies a big part in inetelectual systems of describing
environment. There are specific descriptive parameters for air, water and soil and they are regularly collected and
systematized according to the specificity of each data base (e.g. in the data base of European Environment Agency
(EEA).

Textual-descriptive information is not very precise but nevertheless such method is very important in the
process of dynamic monitoring. In such cases the Fuzzy Sets Theory and Fuzzy Logic is used to introduce data into
the data base [2].

Images received as a result of digital fixation at some local site can be considered as information received
by visual fixation. To systematize such data methods of image processing are used.

Data collection module is processed independently of inetelectual system and it can be used as fully valid
program package. The customer can at the initial stage determine what type of information he introduces into the
data base for a concrete geographical location, or change information type while introduction. So it can be said that
for some definite time and some definite place there can be values of different parameters presented in analytical,
textual or descriptive and visual form. These values can be presented at the same time or differentially. At this stage
data base is filled with initial “raw” data which is available in the same form it was introduced into the data base.

Semantic data converter converts each and every value into single format preserving relevant value syntax.
While introducing analytical values of data everything is clear: parameter dimensions are determined for each
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parameter, as well as high and low limits of possible value. The data is introduced in digital form. In verbal
description first of all we single out those parameters that can be evaluated by careful observation without any
devices. Each of these parameters is logically described (linguistic variable is described) [2]. Actually each verbal
description implies some unity of values of analytical parameters, the so-called “semantic converter” processes these
data and transfers them to the data base that works out knowledge base.

As to visual information, generalized use of such data to assess status of environment is almost impossible.
For each “visual” parameter digital images must be collected in each particular locality.

To elaborate this model analytical as well as logical descriptive data is used. Its main component is
knowledge base which consists of the so-called knowledge concepts. Such knowledge concepts are elaborated by
data collector module by way of processing collected observational data.

The knowledge concept is the unity of “notions” calculated by the method of artificial conceptual intellect
[3]. At the initial stage of elaborating these concepts status of environment is assessed by expert questioning or in
some cases the assessment is based on calculating the pollution index of environment. Data base of concepts
reflecting specific situation (based on the quality of pollution of environment) is set up separately for water,
atmosphere, soil. Depending on the type of data prevalent in data collector module we can have analytical concepts
[3], binary concepts [4] and fuzzy concepts. Besides this when these three types of concepts are joined together we
get generalized fuzzy concepts.

It should be underlined that information on current status of environment is generally not sufficient to make
adequate decision. As a rule apart from information on environmental violations it is also necessary to have
information on causes of such situation, and also information on the future status of environment. Such information
can be gathered as a result of forecasting the status of environment. Information on current status after
environmental violation allows us to pinpoint the source of pollution against which management resources must be
used. Forecasting allows us to calculate new conditions which logically develop from current situations or may be
results of possible decisions on impacting environment. Ability to forecast consequences of decisions made gives us
the possibility to practically implement only the decisions that will not cause undesirable consequences.

Information on current status of environment, information on the causes of such conditions, as well as
information on forecasted status add up and form information on the situation based on which the decision should be
made.

Figure 2 presents a model of intellectual system. The system functions as follows:

¢ Subsystem 1 gets information based on monitoring data (irrespective of the type). These data are used
to study and evaluate the current state which is implemented in subsystem 2;

¢ These same data are used to carry out logical-causative analysis of the condition observed (subsystem
3) based on expert knowledge formed as concepts (subsystem 4), and also to forecast and evaluate
forecasted state (subsystem 5). Subsystem 6 makes the final decision on management and control.

A 4

E 1 2 5
» N »| Monitoring »| Environment »| Forecasting
v data current state and
I & recognition evaluation of
R Data environment
0] interpretation state
N
M
E
N
T 4 4
4 3 6
Knowledge »  Logical- »  Decision-
Base causative making
»|  analysis >
(Concepts)

Figure 2. Environmental monitoring intellectual system model.
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Figure 2 presents a model of intellectual system. The system functions as follows:

¢ Subsystem 1 gets information based on monitoring data (irrespective of the type). These data are used
to study and evaluate the current state which is implemented in subsystem 2;

¢ These same data are used to carry out logical-causative analysis of the condition observed (subsystem
3) based on expert knowledge formed as concepts (subsystem 4), and also to forecast and evaluate
forecasted state (subsystem 5). Subsystem 6 makes the final decision on management and control.

Knowledge base (subsystem 4) is used to carry out logical-causative analysis. The base is represented as
semantic net, peaks being concepts. Arcs denoting logical-causative relations connect characteristics with possible
pollution sources.

When forecasting it is important to determine the scale of the system in which forecasting is done. If the
ecological system as a whole is taken, then based on assessing one part of the system the state of other components
of the whole system must be forecasted. Based on the analysis of the states of these components the current state of
ecological system is evaluated. But if we confine ourselves with one component of the ecological system
considering it as isolated system, then we forecast the future state of this component only.

The Great advantage of general theoretical method is that in case of necessity, environmental monitoring
several systems can be united in form of sub-systems, in spite of that the parameters of these systems are absolutely
identical, how and with what tools are they measured.

INFOLOGICAL PRECENTATION OF ENVIROMEN MONITORING INTELLECTUAL SYSTEM
M. Khachidze

ABSTRACT

The model of environmental monitoring intellectual system is proposed. The basic part of intellectual system is
presented in the form of two basic modules: data collector module and environmental assessment module. The data
collector module helps solve data presentation problem by the method presented below. The method is based on the
fuzzy sets theory which allows reducing data to the homogeneous form of representation in databases of intellectual
system. Environmental assessment module is based on theoretical model using artificial conceptual intellect method,
where environment possible large amount of state characteristic parameters will be united and we have possibility of
treatment.
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Summary

In Inventory control models the concrete number characteristics defined using with demand function, such as
probability density function of random variable. In an article considered case, where density function f(x) has

symmetrical "triangle" distribution:

A S

»
| o

a-b a atb X

For the given case it is built optimal strategy of inventory reserve, particularly calculated optimal inventory values
and mean minimal expenses.

o gOmoP Yo

1. X. Taxa. BBenenue B uccienoBanue onepamumii, T 1, Mocksa "mup" 1985.
Jx. bykan, 3. Kenurcoepr. Hayunoe ynpasnenue 3anacamu, U3a. "Hayka", rmaBHas penakius Gpusuko-
MaTeMaTH4ecKoH aureparypsl, Mocksa 1967.

3. Jx. Xemmu, T. Yaiitun. AHanu3 cucteM yrpasienus 3anacamu. Mza. "Hayka". Mocksa 1969.
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A COMPARISON OF THE CONNECTIVITY ANALYSIS AND THE CLUSTERING
METHOD BASED UPON FUZZY EQUIVALENCE RELATIONS
FOR THE PROBLEMS OF MEDICAL DIAGNOSES

Tatiana Kiseliova
Abstract

Formalisation of a physician's intuition can be splited into different tasks. One is the ability of an
experienced doctor to establish a diagnosis using the small amount of observations on a patient. The doctor pays
attention on the symptoms that represent a disease the best way. To get these representative symptoms is not an easy
task, because very often a physician uses his knowledge intuitively. To model such task approaches processed vague
information as connectivity analysis [1,2] and clustering methods based upon fuzzy equivalence relations [3] are
suitable.

In the paper these two methods are compared. Similar from the first glance (the connectivity analysis

calculates the level of connections of the representative symptoms whereas the clustering method uses -cuts to
build them) the methods reveal best and worst characteristics, that allow to use them more efficiently.

43IRMBOL S6ORNBOLO RS BdHBN-Ad3035RI6GBGMdOL 30350(NIdIdDI
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ABOUT OF CRYPTOGRAPHY PROTOCOLS OF ELECTRONIC VOTING
M.Razmadze, Z.Kochladze, A.Jikia
Abstracts

The topic of electronic voting is discussed in the research. The problem of creation of e—government is

actual present day.

In the article “About of Cryptography Protocols of Electronic voting “ is discussed the problem

of formation of two types of protocols: one is without Centralized Election Commission and another with
Centralized Election Commission. First protocol can be implemented for election with small number of voters
and second, when the number of voters is large.
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THE COMPUTER MODEL OF GEORGIAN AND ENGLISH SCIENTIFIC TEXTS
T.Tsilosani

It is such necessary to create the mathematical models of text formation for automatic text remake. For
example, it is very interesting to reveal the empyreal distributions of linguistic units for different types of texts.

The major task is to compare the distributions of linguistic units with theoretical distributions lows. This
problem is not solved to day.[1]

We mast conclude which theoretical lows of distribution, will be necessari to pick out the terminology words in
texts, to discuss for which parts of speech can we belong the linguistic units. This problem is the problem of text
automatic translate.[2]

he task of this problem is to construct the probability- statistical * filter”, which helps us to recognize the
terminology words and which part of speech belongs the pick out words. It will be used some theoretical lows of
distributions to solve this problem. It will be used Georgian and English scientific texts. [3]

In first we must create the frequency dictionary of Georgian and English scientific texts. In second, we
must pick out the word forms and put them into our probability  filter”. In third, we must discuss about linguistic
results. This everything may be possibility, if we construct some computer program, which gives us opportunity to
compare the empirical distributions of word forms with theoretical distributions.

This computer program may be used for ever texts in ever languages, therefore, this research may be
belong application task of science. Investigation in this direction are actual not only in respect of construction of
methods of statistic estimates of linguistic phenomena, but more over, also in respect of analysis of statistic
regularities of language as a whole.

Present work is realized in channel of modern searches of inherent statistic parameters of Georgian and
English scientific texts. It was used program language “Basic”.

This searches were realized to exposing the modal and diagnostic forse of five theoretical laws of
distributions (namely: Gaussian, Poisson, Chebanov- Fuks, Binomial and Lognormal distributions), being relative to
Georgian synthetic and English analytic art texts, their styles and under languages. The principles of using this
model of distributions for formal establishing the lexsico-gramatic natur of saparate wordusage in the text were
determined.

Complex of this distributions were presented as diagnostic filter, which could show us, with definite
probability, to which of lexico- grammatic class were belong given wordusage.

The algoritm of text processing is shown in[5]. In first step was nessesary to create the frequency list of
Georgian and English scientific texts. All the words of frequency list “active”zone were investigated, and then the
selective analysis was used with constant increase of interval between selected groups of word-forms. In all 400
Georgian and 300English word-forms were selected for comparison.

The fololwing characteristics were investigated:

N ,f’ - the number of series of a certain lenth £, to which the text set with capasity ¢ is represented.
Fi' - absolute frequency, which the investigated unit wasfound certain numberof series.

m . - the number of intraserialselections, in which the investigated unit was found with frequency £ . Here

N,f:gm,.
, E
1

The m, -quantity of series in which the word-form appeared the given frequency. Fi' was determained

for each investigated word-form aqnd by all options of N ,fl according to the scheme of formation text. These
frequencies were sorted ascending from Fr:ﬁn to Fn'm . Thus, the construction of regulated empirical variation

rows of frequencies for text with N ,f length of intra- serial samples was maintained.

These rows were as follows:

F' ...F . .F

min >** max

My M M
1

max

For constructing continuous variations rows the division of empirial rows on certain number of enlarged

classes was achieved by with the establishmentof a division step(interva) AFi" , which was considered constant for

F —F.
each analysed unit and calculated according Sterger’s formula. AF,"= —"*—™% where r =1+1log, N/

r
Thus, distributions, used for comparison will be written down by the following way:
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1. Normal distribution

n
, > Fin,
P,=———e % where @ = ———— is the mathematical expactation.

NG N;
z (Fi”_ a)2 mF,."

is the standard deflexion.

O =

Ny
2. Log- normal distribution
m,.InF"
b AF —(nFl-a) _Z G
P = 'F'f\/2_ 2( ,)2 where a’ = N
(o2 ; T o k
> (InF'-a')’m,.
O_r: i -
Ny

3. Poisson distribution

A
F 2 Fimy,
a i

P. = —e * when a=
F

i Nka
4. Cebanov- Fucks distribution
]
(Ll _ 1) Fi-1 z F;sz
PF, = ,—ef(afl) where g = —
i Na
(F —1)! :
1
5. Binomial distribution
My N —mpy
p = N{ mp g
F/
" omp (NP —mp )\ Ne, N}

For X? distribution
2
< (mF; _NZPE')

2=

a
- NZP.

Thus, complex of this distributions are presented as diagnostic filter, which could show us, with definite
probability, how to recognize the terminology words and which part of speech belongs the pick out words.

The following conclusions for Georgian and English scientific texts was made:

1. With the increase of the ordinal number in the frequency list, the number of nouns subordinate to Normal,Log-
normal and Chebanov-Fucks lows, but then there is a step rise in the number of nouns, which distributions
subordinates to Poisson and Binomial lows.

2. Verbs, adjectives, pronouns, numerals and adverbs with high frequency subordinate to almost all of analyzed
lows.

3. Adjective, numerals, adverbs and conjunctions with high frequency subordinate toall five laws of distribution.
With increase to ordinal number they subordinate to normal and log-normal and then 6to Chebanov-Foocks
law.The spheres of activity of Poisson and binomial laws remain invariable.

4. With the increase of ordinal number in frequency lists of Georgian and English scientific technical texts the
general tendency narrowing spheres of activity of Gaussian, Chebanov- Fucks and log-normal lows is
observed.

5. The spheres of activity of binomial and Poisson laws are stable or extend with the encrease of ordinal number of
word- formsin frequency list of Georgian and English scientific- technical texts. Accordingly, these laws can be
used for word-forms, taken from different zones of the frequency list.

71



3M3309@9®ols Jgmmeemamyos

Subordination of Georgian and English parts of speech to selected five theoretical distribution laws is of same
character, in spite of the fact that English is an analytical (elective- isolating) and Georgian is a synthetically (elective-
agglutinative) language. Apparently, the influence of general rules of statistic texts structuring, operating in condition of
the ‘genre’, more exactly in condition of the sub- language is revealed here. It is important to mention that in Georgian as
well as in English scientific- technical texts the word- forms, which have no subordinate to any of the above mentioned
distribution laws, were terminological for the given them.

THE COMPUTER MODEL OF GEORGIAN AND ENGLISH SCIENTIFIC TEXTS
T.Tsilosani

A scheme of computer comparing the empyreal distributions of lexical units with five theoretical lows of
distribution (normal, log- normal, Poisson, Chebanov — Fucks, binomial) for Georgian and English scientific texts is
considered. The results are obtained.
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o3 dobboo web jmblm@iEoydol Bogd Ygdgdsdggyeros Semantic Web Activity 3@my@sds. od
30my@sdols bogyydgganby d90Jdbs Godmegbody gm@ds@o s gbe:
RDF gm®ds@o. Resource Description Framework (RDF) Jlgardo mbgm®dsiools goblsbmg@obsmgol
3odmoygbgds.  dmbsgdms  mommggme  danmygl s ymggeo m@o  deomgol  3ogdo@l  dogbokgds
gbogogog@o  Lobgao, ga®gnfmpgdgmo @glygdlol 9gbogg@lsgmado opgbdogogsdm@o (Universal
Resource Identifier, URI), yggenslbomgol bmdogro g9d-8olsdsdmgdo (Universal Resource Locators, URL)
Omdgemoi hggh  bdodop  glodygdmmdmn  s@osh URI-L  3g@dm  gom@dgdo. RDF - 1Jgdgddo
066m®Is300L MA0 demmgo s Jom G0l omdbodgbgano bgdoldog@o gogdodo  asg@mosbwgds

Lodgyendo. Bogoeomswo:

n(H,t+1)=n(H,t)-K - =(1+C)-K-n(H,t)

<Uri for Flipper> <Uri for ISA> <Uri for Dolphin>
http://en.wikipedia.org/wiki/dolphin
0b@menmaool gbgdo. Web Ontology Language (OWL) gl o@ol g@o-ghomo ol LHobpsg®do, Gmdamols
Lodygo@mgoomsi bbgoslbgs Hgddobgoo ©s 2oblob@g@mgdgdo Omogho moglgdopo s aslioggdos
RDF gm@ds@obsmgols.
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@0203700 35dmygobol 3obdobs. bgswsbbgs Fyodmmgdl dmmols jogdomgdol s3mEbmds (3o8mEbmds)
—  36093bgenmsbo  gHo305  0bgm@Iozool  “sbOMIM0g0”  Aodmgangbols  gbsbg. RDF  Lodgyenols
dgb{ogenol dgdpgy @myogg®o  asdmyggebols 8obobs s539mgdl olggbsl. RDF s mb@menmgools
d980g30 ©mbg sGol @maoigdo asdmygebols dsbjsbs.

Lbgs  Rgdbmenmaogdo. ggo  gmblm@Eoygdo  dgodydsggdl  mgogg®o  asdmygebols  ©sliggbgdols
356456901 s Lbgoplbgs Fgdbmamaogol. dom dm@ol. SPARQL — dg30mbggdols gbs — gdgdmls RDF
dmbs3gdgddo  gmbidgd o 0bgdmdszos s  GRDDL-ggdbmanmgos,  Gmdgmoi  bsdygomgdsls
0dgnggs, O™ Jmdbdodgdgards 08 Gm@Is@do aodmsdgzgybml dmbsigdgdo AmImomsiz ol dydomdls,
dop. HTML ob XML @s goblob@g@ogh gobsbm@dzogmml 53 dmbogdgdol  gopsygsbs RDF
dmbs39396do.

LoPygolo 3m3gasiools 0boosgmobsios

\ 4

Loty gdmosbmdols 9bdiEool godmmgens
3obLoggmagdagmo 3m3gamazoolongols

»
L

A 4

dodwobsty 3m3gmsiooesb 0bpogowgdols
sdm@hgge

A 4
dgnoagdols ©s IgRsEool
M3905@™mMgdols godmygbgds
‘Joodmdsganmdol dJolbomgdoe

y

Lo®a goeosbmbol g9bjiooli godmmgans
43980 0bpogowolismgols

y

sbogno 3m3ygasioobasmgols obpogowgdols
s>dm@bgge

NON

306mdgdols
mnobbggods

sdmboblibols 3mgbs

3969803960 seam@omdol dgom -bJgds
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©mdgeo 296980 0739396 2990l 05535090900,
Lbgolbgs Bodol dmbo3gdgdms 6obgdols s Lodgibogdim damdgdol dgbfegamol ©s sbogobols
Jgogaoe bgdsb@ogudo  Jlgemol dgdggmdom  godmgangboamo odbs o3 osgowgdol  bgendgdFymdo
obodwyg Lagdgm ggbo:

*  Gene Ontology (3969%0 ©o g9b9M0 3OMEYJHYd0);

*  MeSH (poogowgdgdo s domo Lodd@mbgdo);

*  Entrez Gene (39b9%0);

*  OMIM (spsdosbols 96900 s ©o 2969303930 ©oO®Eg3900).

o0 dmbszgdms  dobgdowsb dmwgdygeo  dmbszgdgdo  gowsoygebgl RDF  gm@ds@do o
dgoBobgl  Lgdob@yggdo  Jlgeol dmboigdms  dobsdo.  Fgdrogy  godmoygbgls  Protege s Jena
LgdobBoggdo Jugaol 9gxslbeo 3Bmy@msdgdo dJomgdygmo Jgegaol 0bga®siEoobsmgols.

sbggg SAPPHIRE (Situational Awareness and Preparedness for Public Health Incidences using Reasoning
Engines) g@®030ls g3ogdools aogd 390 gdol 3Gmybmbod@gdols Lobdgds 0ggbgdl Lgdsb@ogzy®d web-ols

Bgdbeor@maosls.

@0RgASBYOS
Holand J.H. Adaptation in Nalural and Artificial Systems, Ann Arbor. University of Michigan . 1975.

Davis L. Handbook of genetic Algorithms. HY. 1991.
Michalewicz Z. Genetik Algorithms+Data Structures-Evolution Programs. Springer — Verlag, 1992.
www.w3.org/tipic/semantic web toobs/sw books

D=

3363803300 SRIM@GOMAIBOL 353MII6IdS 1IFS6BHN3IG web-T()
3-09bodgogo, d.bohody
A9boydy

aobboanygaros 0bBg®mbgddo LgdebBoggdo Jlgamgdols (Semantic Web) gangdgb@goo, xm@ds@o
s gbo, ogMgmgg 96980l mbAmEmyos, myolzgdo godmygsbol dsbjsbs ws Lbgs @gdbmenmyogdo
dmbszgdms sbsgnobolomgol, g9@dme Jmbszgdgdols dobodobsioobsmgol (b dodlodobsioolsmgols).
smfgdoamos  g9b9@oggdo  saram@omdgbol  dybgds o IPdomdols  3GMbodo.  dmygsboanos
Lbgoalibgs 3Gmy@sdgdo Gmdgngdoi 0bGgmbgddo o3 @gdbmenmyogdl 0gygbgdagb.

USING SEMANTICAL GENETICAL ALGORITHM FOR SEMANTICAL WEB
G.Besishvili, M.Khachidze

Summary

Elements, formats and languages of semantic networks on the Internet are considered. Also, ontology, machine
logical conclusions, and other technologies for data analysis, in particular the minimization (maximization) of data.
described the nature and principles of genetic algorithms and the different programs that are used on the Internet.
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1J6-336560L (3d@MPLO VIROL) MAHdS6DMINRISNS60 ROBVIGIEGNSRIG0
0565 (MRIBISNLSM30L 3SVAHB03ISIRN LB3SMBNS60 LdIFISOL
3@3055RMBOL ‘dILOLIS

3. gemody, o. ESbGyMos

3oUo@gdo Lodyggdo: @oRgMgbios@ymo gobBmengds, Lbgomdosbo bgds, domgdsdogygdo
dopgao, bJgdol 3O gdsmds.

dodhbo Fyaroli (bgb-ggbsbol) mgm@ools Logydggm by, spgdgeos godbaroli bay®ggolbsl,

293013930 Bomols Bm®do@Mgools ©s yogMiEgargdol Fgdwgao m®sbbmdogn gdosbo

dopgaoo[1]:
a_Q _a i = *
Py +axF1(Q)+a F,(0)=m(0). *)

J] =Hu, J2 =Hv, Q:(Jl, Jz’ H)T,

F@=bu+er /2 s, )@= syvegnfa, g )

>

W(Q):(fl(xay’t’Hau’V)’ fz(x’y’taH’u’V)’ f;(x’y’taH’u’V))T’
H(x,y,0) = H,(x, y)’ u(x, y,0) =uy(x,y)  v(x,,0) =v,(x, ),

boog X o ¥ gogmg@oli joo@oobs®gdos, - ©o6m, Z- msgolynsmo godebols
ohogds, V(X, y,1) wo u(x,y,t) LobJotol 59Jdm@dol 3m33mbgbEgdo gbodsdoboe X ©o
Y ©y6dgool dods@m, J, (x,y,t) ©5 Jz(x,y,t)-BodoQob 0339 lols jmd3mbgb@gdos (X o
Y ©g@dgdol dododmagmadom), H(X,y,t)-bsgoeol  Low®dy, bowe H(x,y), u,(x,»)
> Vo(x,1)-3gb0050low, bogowol Low®dols s bobds@ggdol gobsfomgdols ¢ubiz0gd0

Omol  Lofgobo dmdgb@olomgals, fl(x,y,t,H,u,v), f2 (x,y,t,H,u,v), f3 (x,y,t,H,u,v)-
dobobs @o 033gabol Fyo@mgdol >mdfgdo g9biogdo.

390dm§omdmgdym gdosbo ©008gH b0 Y@ 0 3ob@m@gdgools ‘Ygb{ogenolisls
VomdmJdbogoo Lodbganggdo doMomoEs© 3ob30MMdgdyemos Mm@ Vgbo,  domo
s@s{@g03mb0m. 659 ™3T0 ‘dgdmgogsmy gdbom Lgb-ggbobols m®56bmdogn gdosbo
©0xgAgbGosmYdo  yobdmmgdgdol (*) Yoxogo Josbarmgdol aobbogngom. asdmggangygemos
Vo030  dosbarmgdobomgols  spgdgamo  s@s{OR0g  Ggygas@obs@m@osbo  aofdx039d 9o
Lbbgomdosbo igdol 3@ gdo@mde.

goemg@ols  3gmoegddo  hofgdomo  aofdxoggdygmo  Lgb-ggbobol  mmysbbmdoangdosbo

256¢mmgdgdobsmgols 2= {(x, ¥, t), —o<x<+w, —wo<y<+oo, (<< T} s>tgdo aobgobogrmm
3ol sdmizsbs, LoFyobo 3oMmmdgdom:

ou ou oH ou
Ty 4o 4y L= .t H, u,v), 1
ot "o Ox & Ox Yo oy f,(x Y ! V) )

ov ov ov OH
—tuy—+vyg—+gog—=f\x, v, t, H,v,u), 2
o Mo T o g o fz( y ) (2)
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oH oH 5_u+vO5_H+H0@=f3(x,y,t,H,u,v,), 3)
ot Ox ox Oy %

H(x,y,0)=Hy(x,»).  ulx,0.0)=ug(x, ) vx,y,0)=v,(x,y). Q)

Looz H-{yeols Low@dgs, u @s v dolo Lobjsmols dpgygbgengdo, fi, i=1,_3—80b0bo ©s 0339 lols

Fgommgdol  sedfgmo  g9bjaogdo, bowme  H, (x,y), uo(x,y), Vo(x,y) Lo gdodobo@  genygo,
3gBomeyao g9bJ30900, L; 3gHomeon x 3gmseol 30ds@m, Lr—om y 33msewols dodosdo.
‘dgdamddo goageolibdgdm, GmI:
(A1) gabdgogvo  Hlxy,t) uley,6), vixy,t)e C***{(-oo4o0)x(—oo4a)x[0,T]},  spmgogy
30dgd6gds obgmo  dgedogo 0 >0, Gmd H(x,y,t)z 0, OIUTER (x,y,t)e Q. 5bgag wogadgom,
A3 gbOrgagdagmos  (1)-(4) sImiEebol 3gBomeyeo sdmblbol (X ©s ¥ @gespgool dodsdm)
sOlgdmdols s gOMoE Hm®dols 3oMmdgdo.
(A2) g96Ji0gdo fl(x,y,t,H,u,v), fz(x,y,t,H,u,v) > f3(x,y,t,H,u,v,) 5300gmgoangdgb
g0 dool JoOmdsl H(x,y,t), u(x,y,t), v(x,y,t) (G8o©0950L Jododm, K >0 dywpdogon.
(D-(3)  s3m@obols  Lbgomdosbo  s3@mJbodsizoolbomgol  aobgoboammm  s@osf{dR0g Mgy oes-
@0bo@dm®0sbo  Lbgomdosbo  Jgdol[2]  §ogogo  sbogwmgo,  Gmdgmbsg  uf/c>1, v/e>1
‘dgdmnbgggobomgols oJgl dgdegao Lobyg:

Upy "'uouho "'tho "‘Vouho =, (v, 1)ttt pe +thx)?)+(P2(T’h)v0uhy)7 + s &)
X X y
Vit +“0Vh0 +V0Vho +tho =0, (t. Mgy +(P2(T’h)(vovhy)7 +thyy)+f2ha (6
x y y
H, +Hu ,+uH  +Hy , +v,H =
hx hx hy hy
=0 (T’h)(HOthE +”0Hhx;)+(P2(Tah)(Hthy; +v0th)7)+f3h’ (7)
bome —1<ufc<1, —1<v/c<1-Logols:
Up, +”0”ho +tho +Vo“ho =1.5¢, (Tah)[couhxf +0-5(CO“0/H0 )Hhx)?]+(P2 (Tah)couhyy +funs (8)
x x y
Viy +”0Vh0 +V0Vh0 +th0 =(p1(r’h)covhx¥ +1.50, (T’h)l_covhyj/ +0-5(COV0 /Ho )thyj"'fzh , 9
x y y
Hy, +Hou o +uH o +Hyv o +vH o =1.50; (th)e,H e +1.5(p2(r,h)cloy; + fan- (10)
hx hx hy hy

Logo@ c=\/g_H 33940l Lobdomdygs, ¢, =\/a, H,=H, (ih,jh,kr), uy =uy (ih,jh,kr),

vy = vy (ih, jhoke), fo, = £k, jhke), i=13 gubdgogbo §oBosnyabgb D=, X @, sty
aobbobogdne,  H,ou,v, £, i=13 -0l Bos3dmbododgdgm,  dewgd  abdGogdl,
o, ={(xi,yj): x; =ih, Y, =jh, i=0, Ny, j=O,N2}, 0, ={nr:Nr=T, n=0, N}.

(5)-(10) Lbgomdosbo sdmisbobomgols Lofgolo 3o@mdgdo dgdpgyo Lobolse:
H,(ih, jh,0)= H, (ih, jh), u,(ih, jh,0)=uy(ih, jh), v, (ik, jh, 0)=v,(ih, jh).i =0,N;, j =0, N, (11).

3obgobognmo 3pmdomgdsms gybiogdo:
H=H,-H, u=u,-u, v=v,-v, (**)
wo swbotghs 1. = filih, jh, H+H u+ii,v+7)- f,(ih, jh, H,u,v).

(**) HOEmdgdoesh gobglobwgdmmn H,, u,, v, w> dggodsbom (5)-(7) aobdmengdgddo.

35dob u/ch, v/CZl ‘dgdmnbgggobomgols dogomgdm  (3Ogdomdols 33mggol dgmmeogs yggers
sbs®hgbo dgdmbggggdbolomgols sbognmyoy@os):
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u, +ug, + gﬁo +v, =@ (Ta h)(”‘oﬁxf + gﬁﬁ)"’ ?, (T’ h)voﬁyy + J71 -V, (12)
x x y
Vv, FugV vV, +g["~[o :(Pl(rah)”o‘7x§ +(P2(Tah)(vo‘7yy +gﬁy)7)+72 —Va, (13)
x ¥ ¥

[‘7: +H i, +“0[‘70 +H v, +Vol"~[o :(Pl(rah)(Hoﬁxf +”0ﬁxf)+(P2(Tah)(Ho‘7yy +Vol"~[yy)+73 -3, (14)

x y y

H,(ih, jh,0)=0, @, (ih, jh,0)=0, %,(ih, jh,0)=0,i=0,N,, j=0,N,, (15)
bogag

v, =u, +“0”; +gH; +Vo“; -fi—o (T’h)(uoux)? +ng2)_(02 (Tah)vouyy=

v, =v, tuyw, tvyv, +gl, — f, — ¢, (T,h)uovxg -, (r,h)(vovy; + gHy;),
x x y
vy =H, +Hgu, tuyH, +viH, +Hyv, - f; _(Pl(f,h)(Houxi +“0Hx;)_(Pz (Tah)(Hovyy +V0Hyy)=
x x ¥ y
‘dgnbodedmdgdo Fomdmswagbgb 0(2""]’12) @030l 530 Jbodsool Mo gogdl, Gmegbsa (1)-
(3) sdmEobols sdmblibs doga9mgbgds Cc332 (ﬁ) oo,
(5)-(7), (11) sdmisbolomgols LadosGmenosbos dgdpgyo
mgds 1 godzom Legmegds (A1), (A2) 3oGmdgdo. slggy T =h*"e, (8 >0), (pl(T,h)ZO(hz),
Qy(t,h) = O(hz) o (5)-(7),(11) sImobols sdmboblbolosmgol n-9@ dAgdy, 0<n< N -1, swpyomo
53l 9dwygy Fgnolgdst;

max{”l—NI C}S h (16)

.. [
d5d0b, dmodgobgds olgmo hl >0, & OIOTEN h< /’ll , Lodsmenosbos d9degao 0goue gdgoo:
L. (n +1) ‘dhgbg (5)-(7),(11) Lbgomdosh sdmiEsbsl o3l gomsgdimo sdmblibo.

2. gemdoggdolbsngols (n+1) dh9bg swyogo oJgl dgdwgy dgRoligdsl:

max{

bopoiz M s@Gss @sdmjo@gdaemo h-‘?)(y.

A

H

A

u

5 \4
c

b
c

c

}s Mh (17)

5)-(7) sdmEobolomgols dgzbodbmm, @®I  my yt+Ay:¢ 3ob@M@gdsl  gogmomyea

303530530 gdm ay(o‘s)—%g, y(O.S) :y+0.52yt 030390501 gomgsamolifobgdom dogowgdm
alo, [?])= (0. @)~ (4. ap)+0.5cler, (p-4y)). (18)

(12) aob@mengds  Lgogmastrgmem  aogodMegenmm g_lHoﬁ(O'S)Jb;], (13) o (14) gobBmegdgdo
‘dgLododolbow gilHO;(O'S)Qo I‘NI(O'S)J’OU. domgoeo aob@mergdgdols dgi0gd0ls dgogys dogomgom:

0.5”1?

t2 :gGi +(f3 _\V3a["~1)+(f1 _\Vlag_lHoLN‘)"'(fz _\Vzag_lHo‘j)» (19)

booi Gy = _O-S(g_]Hoa I,I’N‘ZL)’ G, = —O.S(g_]HO, I.‘N)ZJz)'
G, :( ](T’h)(HngE +u0ﬁx)?l I—N]) G, :( 2(T>h)(Ho‘7y; +VOI_~[y)7)’ I_N[)
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G, :_[Hoﬁo, I‘NIJ, G, :_(uoﬁm I_NI)! G, Z_(HOVO’ [—7)’ G8:_(VOI_~I°’ F[j’
X X y y

Gy = 0.51H(p1 (‘C, h)(Hoﬁxf + uOI-N[x)—C)+ 0, (‘C, h)(Hovy)—} + noﬁyy )_
2

b

—fo=v3 —Hgiio —ugHo —Hgvo —voH,
X X y y

Gy, = (¢’1 (T, h)(uoﬁxx + gﬁﬁl gilHoﬁ)! G, = ((02 (Tah)voljyy ) gilHoﬁ)!

G, :_(”07’7)0(1 g_lHo”N‘)’ G, :_(gﬁgs g_lHoﬁ), G, :_(Vog;a g_]Ho”N‘)v

2
Gis =0.5r(g_1H0 a{(P1(T=h)(“017xz "'gﬁxz)"‘(Pz(T,h)Voﬁyy_E ! —”0172 —gﬁi —Voﬁg} )

G = _((01 (T’h)”ovxf’ gilHov)’ G, = _((02 (Tﬁh)(vovy} + gﬁy} )’ gilHOV)’

Gy = —[MOV;, ngov), G, =—(v017;, ngovj, G,, =_(gﬁ;, ngov),

2
Gy =0.51(g_1H0 ,{@1(T,h)”07x; +(Pz(f,h)(vo‘7y§ +gﬁy)7)_72 —V; —”072 +V0‘7; "'gI‘NI;} :

(19) Bmemdsdo Jgbsg@mgogdol ggslgdobomgol my gobodggomgdm @gds 24-000 [3]-@sb, o
[2], [3], [4]-F0 gobbogyao Jgmnmwozom, Slggg (pl(T,h)ZO(hz), ®, (T,h)ZO(hz)
aomgomolifobgdom, dogo@gdm do@Momsw gbgMygdogaer YEMEMmIsb:

(Q—Q)c_l SM{Q+Q}+ M||\V||2, 0“9 =0, (20)
Loz Q=g_1 (H0,52)+g_1 (H0,52)+HI-NIH, ||\|/||2 =max“|\|/1 2 2, \|J3||2}=O(h4).

(20) @bowo gbgdagBogaeo PAHM@mdol sdImbsblbgeme godmoygbgds @gds 2.3 [5]-sb.

@gds 1 o @gds 2.3-0l ([5]-©sb) aodmygbgdom 3 03090 gdwgan 3O gdsembols
0g0@9ds godpor (D-(4) s8m;obols s8mbsblbbobomgol biganwgds (A1), (A2) so@mmdgdo o

o, (t,h) = O(hz), o, (t,h) = O(hz) , T= 2t (e =const>0). dsdob Jmodygdbyds obgmo hy >0,
@08 Gergo h< hy bods@oenosbos dgdogso ©ydamemydgdo:

L (3)(11) bbgsmdosbo sdmgsbol s3mbbbs [O,T] dysage do sGbgdmdl s gHmsEIHm0s

2. (311 sImobols sdmblbs yG935005 (D-(4) @03909b¢00@aG0 5dm060b sdrmblboboygb Ly

&)

oo beacss Fo O(hz) bolifscoo.

sda oMo, gogmg@ols (g ogddo hof g@ogmo Lgb-3gbobols MGa56bmdogn gdosbo
2obdm@gdgoobomgols  sldyamo  gmdol  sdmEobols  Logdo@mols  aagg  sdmblboms  jenslido
©o9E30gogEos 2o MxR0ggdgmo Lbgomdosbo ULgdol gdgdomods Ly, dspyd bom®bsdo O(hz)
LobJoom.

3odbanols  ba@ggolsl  goddmgggo  Gommol  gm@dodgdols o gog3@(398gools
G256bmdogn gdosbo sdmzobgdols ®oizbgomo sdmblbolsmgols 20dmygbgog@o

s@57M3030 9890 0M0bsBm@0sbo  m@TBosbo  Lbgomdosbo  Ujgdgdomn  Jowgdyao  ysdmmgengdol
‘9098900 dnyggsbognos Lodysbbmdogr gdosbo a®sx03950L Labom[1].
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136-336560L (8oMALO VIROL) MMBS6HMINRISN560 ROBIMIEBNSRIG()
05063 (MRI3ISOLOMB0L dSVMB033dIR0 1H3S5MBNS60 1dIFISNL
3@Jd35RMBOL dILobId

3. 3gemadg, o. E5bGy@dos
Mgb0ydg

9o g@ols gamspgddo hofg@omo Lgb-ggbsbol m@asbbmdognrgdosbo gob@Gmagdgdolsmgols
sbdyao  gmdol  sdm@Eobols  Logdo@obs  aargg  odmblboms  gansldo  ©sd@d 3039090

357 ™9503909a0 Lbgomdosbo bgdoli g@gdomdbs Ly dsyd bo@bsdo 0(h2 LohJotom.

CONVERGENCE OF LINEARED DIFFERENCE SCHEMES TWO-DIMENSIONAL
SAINT-VENANT EQUATIONS (SHALLOW WATER)
G.V. Meladze, A.Z.Chanturia

The convergence of lineared difference scheme in Eulerian variables with non-linear regularization to the
smooth solutions for linear analog of two-dimensional Saint-Venant equations are considered for Cauchy
problem with periodic (in spatial variables) solutions. The proof of difference scheme convergence is conducted
with help of energetic method. It’s proved that in the class of sufficiently smooth solutions of the difference
scheme solution of the difference scheme converges in mesh norm L, with speed O(h?).

@oBgOoG YO

1. F. Criado, A. Chanturia, N. Jgamadze,H. Meladze, N. Skhirtladze. ~Mathematikal Modelling of Wreck
Events Originated by Dam Collapse // International Journal of Computer Mathematics. Vol. 80, NO.8,
August 2003. pp. 999 — 1018.
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39AORINIAN RdO3GH(MdMS3IbS BI6IBN(MEORIM()
R336M3H53N®MISOL 3JF3IMSN0)

6. s@hgodg, eo. gFodH o

d9bgdMog0  AgbgMgo, @oms dmbpgl  Jmd3oyBg@gdol  Foddmgdopmdols asbdws, oMol
oMo gey@o  30m@iglgdol  Fotmgs.  dobo  m@asbobgds  ombmgl  @momo  3ogdo@gdols
2omgomolifobgdsls s dmJdgegdgdols do@mgol s@s0d3g@s@oye LRoel.

3oma@sdodgdols gbs LISP [6,8,9] mogolo s@dligdmdols bobggs®lsggybmgsbo  ob@mmools
dobdoarby > EEgI)  gamegeg  @hgos  3Godhogumar  Fggbegeege  Iglsdmgoambols
Loddmagdo 3Gmy@sdomgdol LolbEgdse. LISP s dobo wosgrg]@gdo gobrbgh  Logyydgangdo
dogaro  Goao  aodmygbgdomo  bobosmols ggangggdols, Gmdggdds oo @mao  dgoleygagls
boobggm@dsiom B gdbmemyogdols gogd3gem gdsdo.

LISP 5&0l 30ma@sdomgdomo 30madsdodgdol aybjiaombogyg@o gbs, sdo@mdsi hggbl dog@
‘dgbfogemoeno ogm LISP-oli dobobg gboggdlogny@o @oddma®sdo®mgdols bsgombgdo [4] gbens
2390 gohggbmm, Gmam@ dgodengds 0go  aobpgl ds@ogmydo  3Gma@msdomgdols gbs, oby
CIRPYOI) ‘dgodgngds LISP-%y dmbogls 3o 5@ gen @0 3odmmgan gdols G25b0bgds
dOogom3Mm3ghmmosbo  39@bmbsgado  3md3oy@g@obogol s 83 Ygloden gdermdgdols
0obodgdmgg 9bgddo (Bogomomsw, C/C++-Fo) Ggoemobgdo.

3otomgeyg®o  godmmgemgdol  dgbodemgoemmds — gl obos, @o3  LISP-l mogomsbgg
howgdeo oJalb 9.¥. g9bJaombsggdols Lobom. gybjiombsggdol dgldgengds LISP-ol 30mggan
396Logdloi Iggdemm. sbg, @M 3Omy@Msdomgdol gybiombsmy@o LEomoEsb 3s@omgeneyd
30maAH5d0Mgdobyg  aoslgas, doagohbos  d9bgddogs.  s5Folmsb, ggobps  sgmbodbmm, @™
8390350, Gm@Es  godmmgmomo  Hgdbogol  aobgomedgds dMsgom3mmEglm@osbo  3g@lmbogny@o
3M3309F 9980l dgJdbols dods@mmyagdbom bgds, dognby >JBysgdos o, G®mI mobodgommgy
30maGsdodgdols  gbgddo  Bopgdyamo  ogml  godmmgmgdol  3o@oggey@o gy gdols
‘dgbod@ngdenmds.

q9bJaombogna@  9bgddo  aoblsbwgdygmos  Jomowo  @ogol  @ybiogdo,  GmIgmmss
39bJaombsagdo gfmegosm [8,6]. 9bjEombommagdo — gl gubjiogdos, GmImadoi G gdgbBow©
04969096 b gubJ3ool  gwgasm  aoblobrg@eggh  ULbgs  19bJ30gol.  gybjiombogols
3obLobg@gdolsll  garogdol  @me@l  ob@dyargdgb  gyubjiogdol  Lobgargdo, @mIgmms
2obLobg@Mgdgdoi dmgdymos oty Bm@IYgdom, Gmdgmnsz Byblaombomgdo 0ggbgdgb.

Lokodms  s@obodbml, @md  Jmbozgdgdo  w©s  3Omydsdgdo  LISP-Jo  Fomdmepgdosh
900mbsoGo, 5do@md goblbgsggds (369090l dm@ol “dmbs(3930” o “Bybd0s” aobolsbwgdgds
s domo LEOYJBgOHom, s@sdgn dosmo ysdmygbgdom. 0y sGaydgbdo Bybdiosdo aodmoygbgds
OmamO3  ®md0gddo, Gmdgmoi  Jbmeme  asdmmgegddo  dmbofogmgmdl, 3d5Pob  ogo  s@ols
hggaergddogo oy ndgbBo-dmbozgdo, boeem g o0go  asdmoygbgds  Gmam®E  Lodyemgds,
Omdgaroi 2obbobmgdogh godmmgagdl, dspsmomsm, asdmeols lambda yodmbsbymgdols Gmendo,
35d0b 0o s®0l gybios.

dogogomsw:
(car ‘(lambda (x)(list x))) = lambda ; dJmbsgdo
((lambda (x)(list x)) car)=>(car) ; 39bdos

LISP-do gobbabmgdgemos s3bsbggamo g39bombogngdo by map-g4bJiombogngdo @myma3
296J30900, AmImgdoi Losl (msbdodpggdimdsl) @omoi Lodysmgdom slsbsggh (map) sbogn
Losdo, ob dgm@spo dmdgogdom  Foddm]dbosh o3 mobdodpgzdmdsl. map-g4biombsggdols
Lobgamgdo ofygds Lodygs map-om, dom godmdabgosl ol Lobg:

(MAPx £, I; I, ... Iy). bows 1y ... InLogdos, bowe fi-g9bios N odagdgb@ol.
amamaa Fgbo, map-g9gbjcogdo asdmoygbgds gom oM 3dgbdbg-bosby, ob9 fi-g9bjaos gom
sty 9dgbBosbos: (MAPX  fn Loo).

sdlobggemo gybjaombosggdo ogmegs MG Xy YBo. 30Mggero, GmImgdoi YbOYbggamymezgh
dmzgdgeo Lool mommgymo gengdgbBol sdydeggdsls (mapcar, mapcan) s dgm@g, GMIggdos
9bOYbggeygmygh Lofyolbo Lools @s dobo gmggmo gyools @odydoggoslt (maplist, mapcon). Lools
daeo Looss, ls.sbgg.\E‘S(g 30Mggeo g gdgb@os sdmygdyao.

%9bJEombsgno mapcar ¢b&¢bggaymnls gubjiombsgygdo s®a9dgbBol GgoobsoiEosls Lool
ygges g gdgbBbg o Jgogals g mosbgdl Losdo. dsgomomsw, (mapcar ‘list ‘(a b ¢)) ggodanggls
Jagogal ‘( (@) (b) (¢) ). gybJEombogro mapcan sbognmaoy@os mapcar 0d asblbgoggdom, @mI
F90930L 3odmbs@gobo godmoygbgds ybJos ncons. dopswomsw, (mapecan ‘list ‘(a b ¢)) ggodanggl

Fgegab ‘(abe).
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AqbJaombogno  maplist b Ybggaygmal  gubjaombogydo sy ndgbBol  Agogobsiosl
Loobg o doli yggars gyby. dspomomosw, (maplist ‘list “(a b ¢)) gygodanggli dgegalb ‘(((a b c))((b
c))((c)). BygbJiombogno  mapcon sbosgrmyoy®os maplist-oll 03 goblbgoggdom, @md Ygwgaols
2030 bs@obo® godmoygbgds 5ybios ncons. dopseromsw, (mapeon ‘list ‘(a b ¢)) ygodengal Igogal ‘((a
b ¢)(b c)(c)).

dogogomo:

(mapc 'list'(a b ¢)) pgoden gl dgogals '(abc).
(mapl ist'(abc)) agodangsl dgogal '(abc).

96> Clisp-do [3] #39bJaombogrgdls doggnmgbgds dgdwgao gybdogdo: Mape, Mapcan, Mapcar,
Mapcon, Mapl, Maplist. LISP-oli g@m-g00  mobsdgodmgg  ggdlosdo  Objective  CAML [2]
Jgdm@gdgeos bogopgool (36gds s oMol Jo@smgmydo senam@omdol hsFg@mol  Lodyoegde.
Objective CAML-l o3l dodemommggs  “dlgdygdo”  3OmEglbgdol  bsgsgdolngol, @mdagdoi
mG2560bgdgmos  mgom  3GmEglol s s@s m3gdsgoygmo  LolGgdol dogd. sbigmo bogopgdo
04969896 domo  {o®3dmIJdbgero 30miEglol olsdoBmgdol sGgl s odo@dmd o0mbmggb bsjengd
Aglby@Lgdl. 3Gobzodyamo goblbgoggds bsjolbs s 3GMEgLl dm@ol s@ol ol, gHmEOmEs©
04969896 09 os®o dgblogMgdsl 8mbsigdgdolmgols gOmo s 0039 3GmaMadol  dgoenmdogno
30m3glgdologol.  bogopgdol  asdmygbgds oMol Lodygoengds  dmbegl  3s@eggeny@o
senam@omdgdol dgldgangds gbols oty gddo.

. 93”353(3)02)50@32)01} aodmygbgds 30 @>doMgdols 969390 0dgn 93 dorgeo M09
130053 gbmdgdl:

> domo dgd3gmdom  Fgbadangdganos sogml 3Gmydsdgdo gu®m dlbgogro dmJdgogdgdologsb
(3006 F9bJ3ogool dgdggmdom);

> gbeygbgganygmagh sbsbgol dmdbogrmdsls;

> g9bJaool  asblsbw@gds  Ygodangds oG ogml  @sdmigowgdgmo  gybdaool  Lobgmmsb
(396J300L 2oblobrg@mgds lambda godmlsbygen gdom);

> g9bJaombsagdols Ladgogmgdom dgodengds Lsdgogym gm®dgdols do®mmgs;

> gybdaombsaoli 3s®sdgBo dgodangds ogml bgdoldogdo gubjiEos, GmIgmoi astsddbols
B9bJGoob g gdghdgols

> gubdaombs@gdo Lodgomgdsls odgnggosh dmbogl gybjaosms bg@ool gm®docmgds LogHme
dmbozgdgdowasb;

> 900090 nes sgdo®gogmo  g9bj3ogool bgdoldogmo Lolgds dgodmrgds go®esnddbsls g@Om
39bJ3ose, Ylobgarm gubj09d0L aodmdsbgdgdom.

Omam@3  gbsbgom, map-gybjaombsgmgdo  olyg  obpgbgh  Aodmmgemgdl, @m3  3oMggero
s9d9b@om  Imigdymo  gygbjaos  godmomgamgds  dgmdg oy ydgbdom  dmEgdygen  Lool

nommgygee F930bg (3o0ggmo xa9a0L gybdaombommgdolsl), ob dgmeyg staydgbGomn Imsgdye
Losbs o dob g9egdby (Jgmdg xa9a0l gbdiombogngdolsl), sdo@dmd dgagodemos gmdgsm, @GmI

map-396Jombogrgdo mogolo dmbgdom >M05b “3o@ o gen @ gdo”. Loko®ms
dDogom3Mm3glimdosbo 3M3309@g@dobmgols gbols 30330 s@Gem@o ‘dgoJabsls obg, ®md
Jgbsdangdgemo  ogml  g9bjEool  asdmmgms  gmgga  sGadgbdbg  hododmmgl  Lbgopslibgs
30m3gbmebdy.  mommgymo  godmmgas  Jnbegl  sdmggoegdme  3GmEgbmtby, GmIgaos
©o95MYbgol  ggal map-gybjcomboels 03 @ogol  domomgdom, @MIgomsiz dJnbps  dolo
aodmdabgds.  gaam  bybRse, Jodggmo  xa9gol  Bybjgombogmgdol @AM 3BmE Lm@L
30593995 g9bJizool Lobgaro s oli bos, @mIgebgi dmddgogdsl sLGgagdl, bomam dgm@g

X3980b  ggbjaomboggdol  wA™ML - gybjiool  Lobgmrgdo o aodmmgmogmo  3yogdo.
30mE oG asdmmgmgdol Jgogals o8 aodmmgmols bmddol domomgdom  ©sEdGYbgols map-

396J30mbo@ls, ©s gobmsgolynmgds my oMo, FgobHymgdl dgdwgy godmmgmmgol. gbowos, gl
30m3gbo 5@ 0dbgds sdmowgdgemo 3md30g@gmdo 3MmEglmmgool omEybmdsby.

doggohbos  dobobdglmboense,  @m3 mobsdgodmgg  3OmEgEYGg@o s ®mdogdd by
m©0gbBodgdygmo  9bgdo  gbps  yoxs®mmgebgb  map-gybjaombsamgdomn s Lfmégo gl
39bJaombsagdo  9bps gobebgb 53 gbgdol “godsMomgangdols” Lsdygoemgdgdo. s3sbmsb, ¢bws
dobogl monmgyamo  Godols map-gybjiombogmol ass@godmgs olig, Gmd dgmag >Gyydgbdowe
‘dgodgngds  godmygbgdgmo ogml Los, dsbogo (Bmgemo s bsdpgoeo @oibggdol), LE®ojmbo,
googo s dmdbdo®gomol dog®d goblabmgdygmmo GodoE. map-gbJEombogngdol s3mygbgdom
bgdolidogdo oMo gey@o sarym@omdols hofgdses dglisdan gdgano.

BN NGRSO 3odmmngagdols ‘gl gen gds ddogoe3mm3gbm@osb 3M3309E 990Dy
3033996 dmge  @oy  Y30@s@glmdsls  0bgm@MIszools  dogdol  sdm3ebgddo.  0bgm®@Iszos,
Vomdmpagboeno  Jlgargdom, swgomop Fomdmpagds LISP-ol Logdol Lodgoggdom [1]. 8smby
bEoboot@mo dogdol seam®omdgdol bogems®, Mmam®MgdoEss 30MmEsdo®o ybom yogems, 3%
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d0do@mygagdom gogms o aogms dmem @oaom [7] bsigmsw, dgodamgds Ggomobgdygemo oymls
dogds  Bogey®o  3Mobiodom. Fommydo dogdols dgmmeon  dgbsdagrgdgeros  dogds  Imbogls
V390m©sb 30g39em ©mbgbg. 09 8modgdbs dggao, 30mEglo @sdmog@mgds, My oG s, dogds

3°3@dg@Egos  ggagms  Goeob  Jgodg  ©mbyby.  moomggmo  Goeobogol  go - o gggeo
30m3gLm@ ool godmygmgomo.  sbg, @md  gobsowsb oMo gamado  LEGYIHYHgdo 33543,

9ONEAMYESE, oMo g gds© bogds dogds.
sbgmo  Godol sdm@Esbss, dsgsmomsw, dbgdMogo  gbol  egdlogmbdo  Lodyggdol dgobs,
am@ao  gbol LgdsbBogy®o  Jugaro dgodangds Fomdmpagbomo ogml omggnen bggdswe. dgdbs

‘dgodengds Imbogl 3o 3ggeo 3GmEgbmgdol dogd Goggggee bggddo, Gomsi dgbodegdgenos
33390050 9330009l dgdbol 3GmEgbolmgol Lako®m @M.

39@IRINIM() R3HMAAHd3TJdS BI6GIGN(M6ORIG(
R33@(M3@H530&HJdOL 3J33IMdOO)

b. o®hgody, eo. dgFodyano
A9bogdy

bohggbgdos, Gmam@d  dgodengds LISP-bg, @mdgmoi 39bjaombogmygdo  3Gmadsdo®gdols  gbso,
dobogls 3o o g @0 3odmmgargdols Gaob0bgdos. 35> g @0 3odmmgagbdols
‘Jgbsdangdbenmds  gob3oMmdgdgmos dswomo  @ogol B9bJ30gdol-g9blcombsmgbol s@ligdmdom.
Lododms  s@lLgdygmo  bobdsdbols  ©o  bgdob@ogol  godgangddo  dgoigogomlb  map-
396 Jombogngdols 0b@g@Mm3@g@oEos oby, @md glsdangdgano ogml godmmgagdol mommgymo
bofoaols (3O 39 3003 oG by dgbeargengds  (ogymolibdgds, “cd 303309 9ko
3053530 3gLmM0560s). MSbsdg®mgy 3GME R YO Yo s mdogddby MmBogbGomgdygmmo gbgdols
map-g9bJiombsangdol  Godol  gubJEombogngdomn  gogo@mmmgds  LaPygoagdsl  dolizgdl
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CONSTRUCTIONS OF UNKNOWN EQUI-STRONG CONTOURS OF
MIXED PROBLEM OF THE PLANE THEORY OF ELASTICITY WITH
PARTIALLY UNKNOWN BOUNDARIES.
N. Odishelidze

Introduction.In the plate with a hole it is important to investigate the concentration of stresses near the hole
contour. The tangential-normal stresses can reach at some point such values that cause destruction of plates or
the formation of plastic zones near the hole. Proceeding from the above-said, the following problem was posed:
Given load applied to the plate’s boundary, it is required to choose such hole shape at which boundary the
maximum value of tangential normal stress would be minimal in comparison with the all other holes.It is proved
that such condition is valid provided that tangential normal stress is constant at that hole. As is known, such
holes are called equi-strong ones.

In the plane theory of elasticity for solving the problems of finding full-strength contours, the most
effective turned out the methods of boundary value problems of the theory of analytic functions (the problems of
linear conjugation, Riemann-Hilbert, Dirichlet, etc.).

Problems of finding equi-strong holes for an infinite plane were considered by N. B. Banichuk, Cherepanov
G.P, Vigdergauz S B, Neuber N and other, for the case where tensile or compressive stress act at infinity
[1,2,7,10,13].

Cherepanov G.P proved that the stress consentration of plate weakened by hole with equistable contour is
less than 40% of stress consentration of a plate weakened by circular hole with the same strength.

The problems of equistable contours for finite doubly-connected domains bounded by broken lines and a
sought smooth contour were considered by R. Bantsuri and Isaxanov and others. [3, 4,5,6, 11,12]

In our report we consider the axially symmetric problem for finite doubly-connected domains which reduce

to the simple-connected domains to the same type problem. To solve these problems it is used the function
theory of complex variable. It is carried out numerical analysis of solutions and corresponding graphs are
constructed.
Problem Formulation and Solution Technique . Let an isotropic elastic body on the plane z=x+iy occupies a
double connected domain S , whose external boundary is a square boundary whose diagonals lie at the
coordinate axes OX and OY, the internal boundary is required equistable contour, whose symmetric axes are the
quadrate diagonals. In addition the quadrate vertices are cut by equal unknown full-strength arcs.

The length of quadrate sides of the broken line is assumed to be equal 2a . It is supposed that

absolutely smooth rigid stamps with rectilinear bases, enclosed with a force P, are attached to each link of the
external boundary of broken line.
Under these assumptions the normal displacements of each link of external boundary of broken line

Vv, =V =const . Unknown parts of the boundary are free from outer actions. Tangential stresses 7, = 0

along the entire boundary of the domain S
Consider the problem: Find the shape of the unknown parts of boundary and the state of stress of the

given body such that the tangential normal stress O, arising at it would take the constant

valueo, = K = const .
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Since the problem is axially symmetric, then to investigate the state problem, it is sufficient to consider
the curvilinear hexagon A, 4, A;A, A A which be denoted by D.The A, A, are the midle points of square
sides. The normal displacements and the tangential stresses are equal to zero V, =7, =0 at each
segment [A1 ) A2 ], [A3 D A4] .

Let introduce the following notations /', =44, I, =AA, ;=445 I,=44 7, = 44;,

4
Yy = A5 A6 , F:LJIFI . Since the plate is in the equilibrium state and 4, A2||A4A5 , /13144”/16/11 , then the
J=

main bending moments satisfy the condition .[o-nds = .[o-nds = J o,ds = J o,ds = £
r r r r. 2
1 2 3 4
The bondary conditions are
0, tellUI,,
vV =

n

v tel,ul,,

(M
7,=0,tel"Uy,
@)
_P _
o, —E,tenun,as =K,tey
®3)

On the basis of the well-known Kolosov-Muskelishvili’s formulas [9], the problem reduces to finding
the functions i, @ which are holomophic in the domain D with the following conditions

Ree™ ) zp(t)-t9' (1) -y (c)) =207, (¢), teT,

“)

Ree’i“(’)(gp(z)+z¢'(z)+z//(t)):c(t), tel,
(5) -
p(t)+tg'(t)+y(t)=B @), tey,

(6)

Rego’(t)=o-”;:o-s =§, tey,

(7

where X> H- are elasticity constants, C([), B(t) are piecewise - constant functions, & (t )— is the

angle formed between the external normal » to contour and the abscissa axis Ox .

a(t) =a,, tel',, k=12,3456 o =a, =%,a3 =a, =%,a5 =57ﬁ,a6 =%.
®)
= —ia(r) _ 1 0 ia(t P
C(t) Re(e B(t))’ B(t)_l)(l—v)[;[o-"(t(])e ( )dso—ze4 J
Under the following assumptions ‘(p'(z)‘ < M‘z -4, ‘7@ , z//(z)‘ < M‘z -4, ‘76* , where

1 . .. . . .
0< é‘k <—, k=56. M >0 and after some transformations it is proved that (/)(Z) is a linear function:
2

(p(z):5 z .Substituting the values go(t), C(t), B(t) into the boundary conditions (5)- (6), one gets the
4

following problem

0, telUr
) k ’ 1 2

Rel e X450 | = ©)
e|:e (2 v ji| {2’ t€F3UF4
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Z; 03 tey,
e4[§t+(7(;)j={_(l \P ' (10)

i) ter

where f = M, - M

=) T p(-v)

Let the functionz = @(¢g), ¢ = & +in maps conformally the upper half plane Im¢ > 0. onto the domain
s . It is assumed, ,a, = o (Ak), k=1,2,...,6.1t is assumed, that g, =1, a, =—1, the midle point of

arc A21?13 maps at ¢ =oo, ‘7/0‘:1, Im¢ >0. Since the domain is summetric with respect to OY , then
-a, =a,,—a, =a, -Denote
k -Zi T z
()= e “old) et ylolt)) Pg)=Te !
an

Taking into account (11),after some transformations of problem (9)-(10) it is reduced to the following
problem:

®(§)+a(a={_0’ (_ _a2)U)(a1 OO) @(5)—&5)_{( 0, Eel-ay-a,)

P, ( 1 ’ B P—2ak)i, &e(la) (12)
[0 gelaa) _[ 0 &elroma)U(a,) (13)
T(§)+%_{P—2ak, Ee(-a,-1) W(g)_ﬂa_{—Pi, ée(-La)

Solutions of boundary problems (12), (13) are given by Keldysh-Sedov’s formula

o=l T RE ] )c],

2|5 X (6-¢) X () (e¢
(14) )
R S1Col I B N
=% v -0 v (-0 C}’ im¢>0
where
Xl(é,): (§+a4)(§—1)’ Im§>0»X2(é’): (é’+l)(§—a4) Im¢ >0-

(§+a1)(§_a1) (§+a1)(§_a1)’
X, (é’ ), X, (é’ ) are holomorphic function in the upper half plane and X (oo) =X, (oo) =1.

Since functions X, (é’ ) X (é’ ) have singularity 0,5 order at points & = +al, then the functon <I)(;’ ), ‘I’(g“ )

I Pd f J‘ _
will be restricted near points a,, —a,, if and only if ‘X e; +a,) ‘X e; +al
¢ Pd 5 +C =0
( ": al J ‘X ‘): al
After solved this system with respect to unknown parameters k u C,we get
L) ez 45
"2 de 1 I|X "1+§ J "1*5)
1 ‘Xl (65)‘(52 -4 )
Equation of arc Vi presented as
= Cl)(égo) = D, (_é:og];q)o (é:o) \/5 +i D, (‘fo) '2":)0 (_9&0) \/5’ &€ (—OO,—a4)U(a4,OO),
Equation of arc 72 presented as
co(e)= 2B R8) 5 REIHR)P 5
2k 2k
where
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2|5, X(8)(£-4) X () (e-2)

Calculations and graph’s costructions for }, and y, are carried out by system Mathcad.As problem is cycle-

®,(&)=

X,(&)T Pd¢ [ e

symmetry the other parts of unknown equi-strong contours are constructed by rotation of graph a)(§0) by

T
angle >
Graphs of equi-strong conours for concrete cases
P=-10, a=1, al=3, a4=124, K=-10.914 , P=-10, a=1, al=79, a4=104, K=-12.754 ,
C=4.007 C=29.642
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CONSTRUCTIONS OF UNKNOWN EQUI-STRONG CONTOURS OF
MIXED PROBLEM OF THE PLANE THEORY OF ELASTICITY WITH
PARTIALLY UNKNOWN BOUNDARIES
N. Odishelidze

Abstract

The article considers the plane elasticity theory problem for the double- connected body, which is
presented a square, weakened by unknown equi- strong hole including the origin of coordinates and it is
symmetric with respect to coordinate axis. Assume the vertices of square are stated at the coordinate axis and
their vicinities are cut out with the identical smooth unknown full-strength arches. It is supposed that absolutely
smooth rigid stamps with rectilinear bases, enclosed with a force P, are attached to each link of the external
boundary of broken line. Unknown parts of the boundary are free from outer actions. Applying apparatus of the
complex variable function theory one can define the unknown full-strength contours and the body stressed state.
Numerical analysis are performed and the corresponding graphs are constructed.
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ABOUT SOME ALGORITHMS FOR SOLUTION OF SYSTEMS OF THE
NONLINEAR EQUATIONS ON COMPUTING SYSTEMS WITH PARALLEL
PROCESSORS

T.Davitashvili, H.Meladze

Keywords: parallel algorithms, multiprocessor systems, nonlinear equations

1°. Let’s denote through the R" real n-dimensional linear space and consider the equation

F(X)=0, (1
where X =(x,,...,x,)€R", a F:R" — R" -is the given operator: F(X)=(f,(X),..., f,(X))".

In these notations the problem, being a subject of our consideration, is a problem of finding the solution of
nonlinear system of equations (1).

Let's enter the following notation ¥/ = F(X’). Function F(X) we will replace by affine mapping
L(X)=C+ AX, where C =(cy,...,c,) € R" and the matrix 4 is:

The vector C and the matrix A are chooses such, that the following conditions were satisfied:
L(X')=F(X’), j=0,n. ©)
Let's demand that det(H , ) # 0, where

0 0
I x x X
— J = (] J n -
Xy, T[T b and X _(xl,___,xn)eR , J_O,n.
n n n
1 xl x2 xn

This condition is equivalent to the following condition: for each j, 0< j<mn, the vectors
X' -X', i=0,_n, i # j, are linearly independent [1].

Theorem 1. Let X°,...,.X"e€R", Y°,...,Y" € R". Then there exists the unique affine function
L(X)=C+AX, where CeR", AeL(R",R"), such, that the equalities L(X’')=Y’, j= 0,n,
take place if and only if, when det(H Xy, )# 0. Thus the matrix A is non-degenerate if and only if,
when det(H Y, )#0.

Note, that during construction of affine functions one can consider the following cases: A is diagonal, A -

two-diagonal matrix, A - three-diagonal matrix and etc. A is a full matrix. Depending on a choice of a matrix
we receive different iterative methods. First two cases are attractive that it is possible to write obvious formulas
for calculation the new approximations.

2°. Let’s consider the case, when A is the diagonal matrix. We will consider an iterative method for which

realization it is required 3n parallel processors. Let are known X IO,X 3 , X 30 initial approximations to a root of

the equation (1). On j -th processor the vector X ;‘H (j= 1,_3, k - iteration number) by the following

formula is calculated:

X=X - F(X5 X5 F(XD), k=01,2,3,... 3)
F(X f , X fﬂ) is the diagonal matrix:
S (X)) = fi(X50)
k k
(xi)j _(‘xi)j+1

F(X%,X*%,)) = diag

i=l,n
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Jj=12,3, sums j+1, j+2 (inindexes) are taken by module 3, and (xi )]; , 1 =1,n are the components

of the vector X f .

Note, that by formula (3) it’s possible to calculate in parallel the components (xl.)l;+1 , 1= l,_n, of each

vector X fﬂ (j=1,2,3) on n processor, so as a whole the iterative process (3) can be realized on 3n
processors.
Theorem 2. Let there exists constants B, K, 77;), J =1,2,3, such that the following conditions are
satisfied:
1. the operators F(X;.),X?H), J =123, where X?, J =1,3, are initial approximations,
have the inverse and ||F(X;) , X](.)H ) || <B,:
L 1 0 0 1 0 0 . _
2. the estimations ||X/ -X; || <n;, ||X/ = Xal|<nms J= 1,2,3 are known;
3. |[F(XO-F(X,2)|<ky-Z|, X,Y,ZeS,

where S = {X : ||X_X10|| < 2770}’ Mo = max‘?]?‘
J

4. for constants B, K, 77?, J =123, the inequality is hold
_ 0,0, 0
hy = B,K (17 +1, +115) <1/4.
Then the equation (1) has the unique solution X", X', to which converges the sequences X f

(j=L2,3) and

-

k
< > Nap P, k=12, j=123. @)
4h,
3°. Let’s consider the case, when A - twodiagonal matrix (contains the main and below its diagonals). For

realization of this algorithm it is required 4n parallel processors. Let are known X ?, j=14, initial

approximations to a root of the equation (1). On j -th processor the vector X ?H (j =L4, k- iteration

number) by the following formula is calculated:

-1
X=Xt - F(Xf,Xj.‘H,X;:z) F(XY), k=0,12,.. 5)
Sums in indexes are taken by module 4.
k+1 1.,

For parallel calculation of x; °, 1= 1,n, we have

i k i (g K
x'k+1:xik+z fl(X)H (01,1—1) ©

1 k k b
= (@) =z (ajj)

i
where (al-j)k are the elements if matrix F(Xf,XJIFH,Xﬁ_Z). In (6) when j>1i, HE 1.
Jj=1+1
It is possible to prove the correctness of this method and existence of the unique solution of the initial
problem under certain conditions. The following theorem is valid.

Theorem 3. Let there exists constants B, K ,77;), J =14, such that the following conditions are
satisfied:
1. the operators F (X ?,X ;-)H,X ;-)Jrz)> where X ;-), Jj =1,4, are initial approximations, have the

-1
inverse and HF(X?,X;)H,X?”) <B,;

2. the estimations

1 0

< 77_?"'1’ l = 051525 J = 1,_4 are known;

3.|F(z,,2,,2,)-F(2,,2,,2,)| < K|z, - 2,

| Z,eS,j=14,
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(J

where S :{X:HX—Xl()H < 2770}, o Zmax{n?}.
o

4. for constants B,,K ,77?, j 21,_4, the inequality is hold
— 0 0 0 0
hy = BoK(my +m, +15 +175) <1/6.
Then the equation (1) has the unique solution X *, to which converges the sequences X

=1,2,3,4) and

kx| <270 (Y gk =12, = 14

The method (5) can be realized on 47 parallel processors.
The order of convergence of this parallel methods is equal to 2 (the order of corresponding sequential

methods is 1.618...), and the area of convergence is increases in dependence of choice of matrix A, that in turn
defines the number of initial data.

These methods can be applied at calculation of problems of gas dynamics, hydrodynamics, and also many

other applied problems.

Note, that some parallel iterative methods for the nonlinear equations are considered in articles [2-10].

ABOUT SOME ALGORITHMS FOR SOLUTION OF SYSTEMS OF THE NONLINEAR
EQUATIONS ON COMPUTING SYSTEMS WITH PARALLEL PROCESSORS
T.Davitashvili, H. Meladze
Resume. For numerical modeling of difficult applied problems now is perspective to use the
computing systems with parallel data processing. In the given work some parallel iterative
methods for the solution of nonlinear systems of the equations for cluster systems are considered.
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OBJECT-ORIENTED PROGRAMMING ON LISP BASIS
N. Archvadze, M. Pkhovelishvili

Functional languages [7, 6] for the present stage of their development have reached the results, which
allow considering them as an alternative to the traditional programming languages.

As it is known, in the imperative programming execution is driven by explicit sequencing of operators. In
functional programming, the sequence of operations is defined by the required computations. Unlike these
programs, object-oriented programming can be thought of as a data driven. Application of objects leads to the
new organization of programs into classes and objects connected with them. Class comprises data and
operators — methods, which describe possible activities of the class.

LISP [8, 5] is a programmable programming language and therefore we have shown [1] how the LISP-
nucleus - on which the universal language is possible to build - could be singled out. In [2], in the LISP
database, we have considered the presentations facilities.

Now let’s see how realization of the Object Oriented programming (OOP) schemes could be executed so
that we could stay in the frame of the functional programming: to this effect we shall take model of OO
language, which should be put into LISP and by means of which we represent the typical notions of OO
programming in fundamental abstractions of functional programming.

For organization of heredity, it is necessary to define the discrepancies between the models of generalized
functions and exchange of messages. Objects have the properties, objects send the messages, and they can inherit
properties and methods.

Generally, OO programming is organization of the programs in the terms of methods, classes, exemplars
and heredity. The advantage of such organization is that changing the program is very easy. For example, if we
want to change the means of manipulation on any object of any class, we have to change only the method of this
class. In case we need to create the object, which bears the resemblance to the given one, but differs from it by
some properties, we can create the sub-class of that class and make some changes in its properties. Such changes
do not cause the changes in code.

There are different means for OO program presentation in LISP. One of them is presentation of objects by
HASH-tables [4]. During such realization objects are not divided into classes and instances. Instance can be
considered only as the class with the single parent.

In [6] the OO program vector realization is used. At that moment division into classes and instances
becomes real, though the instances can not be changed into class by the simple change of its properties.

If we use the list of LISP properties, it would be possible to create the following model of OO
programming, which indicates relationship between functional programming and object-oriented programming;:

(defun classes (cl) (cond

; (cl (cons (cdar cl) (classes (cdr cl))))))

; development of formula of argument classes from definition of
; method parameters

; Nil — arbitrary class

(defun argum (cl) cond
(cl (cons (caar cl) (argum (cdr cl)))) ))

; Development of list of the argument names from definition of
; method parameters

(defun defmet (Fmn c-as expr)
(setsf (get FMN ‘category) METHOD )
(setq ML (cons (cons (cons FMN (classes c-as))
(list ‘lambda (argum c-asO expr) ) ML))
FMN )
; statement method and exfoliation of its definition
; for convenient apposition with argument classes

; (defun defcl (NCL SCL FCL )

; name, superclass and fields/slots of the class
(setq ALLCL (cons NCL ALLCL))
(set NCL (append FCL SCL)) )
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; value of the class is the list of its fields,
; possibly, with the values

(defun ev-cl (vargs) (cond

; development of format of the actual arguments for searching
; of the method of their processing

(vargs (cons (cond
( (member (caar vargs) ALLCL) (caar vargs)) )

(ev-cl (cdr vargs)))) ))
; Nil if not a class

(defun m-assoc (pm meli) (cond (( equal
(caar meli) pm (cdr meli)))))))

; Search of the suitable method, appropriate to the
; format of data classes

(defun method (MN args & optiona; c)
(apply m-assoc (cons mn (ev cl args) ) ML)
args c) )

; If the method has not been found, in the program should be
; executed reduction
: of parameters to the required class

(defun instance (class &optional cp) (cond

; like Let unnamed copy of the context
(class (cond ((atom (car class)) (instance
(cdr class) cp))
((assoc (caar class) cp) (instance
(cdr class) cp))
(T (instance (cdr class) (cons (car class)

cp)))
)) ) cp)

(defun slot (obj fld) assoc fld obj))
; value of the object field

It becomes necessary to add new branches to the Lisp interpreter.

In such case object instances could be described as follows:

(defclass ob () (fl f2...))

which shows that each object would have the field-slot f1 2 ... (slot is the field of the record or the list of
properties). For the class presentation the general function should be called:

(setf ¢ (make-instance ‘ob))

For definition of the field value it is necessary to use the special function:

(setf (slot-value ¢) 1223).

For description of slot, it is necessary to provide it with the name and with the field of properties. The
properties of the field are specified as the key parameters of the function. That allows defining initial values.
Change of such slot should be available for every instance.

As we can see, conceptually OO programming is nothing else but paraphrasing the Lisp ideas. OO
programming is just what the Lisp was able to do from the very beginning. There is nothing unexpected in
transition from functional style to the one of OO programming. Only the slight concretization of selective
mechanisms of functional objects’ branches takes place.

Generally, impossibility of effective realization of implementation of the first generation functional
languages is considered to be the main counter-argument against their usage, as they are based on the
interpretation and dynamic type control. Such arguments are unacceptable for contemporary functional
languages.

The language of the last generation functional programming is Objective Calm [3] which has been
processed at INRIA (Institute of Informatics and Automation, France). Objective Calm has a wide range of the
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well known properties of traditional imperative languages and constructions of language C. As evident from the
name, it supports object oriented programming; particularly it is characterized by parameterized polymorphism.
Let us consider it closer:

Existence of functionals allows calculation of a number of constructions. For example, function:

letofg=funx->f(gx)

returned the function, which is the composition of the parameters. What type has in that case the
parameters and the result of function — 0? The notion of Objective calm polymorphism will help us with making
the situation clear.

Thus, it is impossible to pin-point the types of o-parameters and results, although coming out of syntax it
is possible to make the following conclusions:

* Yielding value resulted from using function o is the function (as in is construction fun in its
body);

* Arguments of function o are the functions (as they are invoked in the body).

* The result of the function g is the type of argument f (it is not defined in the language operation
of bringing down to types);

* Result of function o function result type is the same as f result type;

* Result of function o function argument type is the same as g argument type.

In this example description of function has been compared to its type, which was defined by the given
typical expression. Typical images are the syntax constructions of Objective CAML. If there is even one variable
in the typical image, this type should be called polymorphism. Just this type of polymorphism is called
Parametric. Value type can be parameterized by its sub-value, while polymorphism is the main property of the
object-oriented programming.

Polymorphism and comparing to instances allows increasing sharply the language facilities through data
structures and processing procedures.

Generally it is difficult to contend that functional languages are the best choice at any situation. For
instant, they could not be recommended for writing the drivers. It is accepted that functional languages are less
effective than C and FORTRAN, but at the same time it is not taken into account, that functional languages are
more expressive than objective-oriented languages, and polymorphism has the same degree of generalization as
C++ patterns. As the difference between the imperative and functional languages remains non-existence of
variables, although it should be noted that Objective CAML is not the pure functional language. Imperative
properties (such as assignment and variables) do not do much for completeness of the language, but often
facilitates writing the program.

Finally, it should be noted, that organization of polymorphism by means of inheritance causes heavy
expenses: first, it is necessary to write large volume program code: describe classes, virtual function-members,
hereditary classes and virtual function-members. Secondly, the result could be reached only by the virtual
functions. In the other words, modeling of polymorphism should be done while functional is already put in and
therefore is more elegant and effective.

Coming out of the reasons above we consider that contemporary functional languages are not able to
provide sufficient quantity of libraries and ready functions, as imperative and object oriented do. Therefore,
unfortunately, functional languages failed to become the main instrument for creation commercial software.

OBJECT-ORIENTED PROGRAMMING ON LISP BASIS
N. Archvadze, M. Pkhovelishvili

Resume

The model of Object-oriented programming through the list of the LISP properties and the parameterized
polymorphism of the last generation functional programming language - Objective CAML is considered. It is
shown, that conceptually object —oriented programming — is nothing else than paraphrase of the ideas of the
functional programming language - LISP. OO programming is just what the Lisp was able to do from the very
beginning. There is nothing unexpected in transition from the functional style to the one of OO programming.
Only the slight concretization of selective mechanisms of functional objects’ branches takes place.
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A NUMERICAL ALGORITHM FOR A ONE-DIMENSIONAL NONLINEAR
TIMOSHENKO SYSTEM

V. Odisharia, J. Peradze

Key words: Nonlinear Timoshenko system, numerical algorithm, Jacobi iteration method, convergence
of process.

From the system of Timoshenko equations given in [1], p. 24, we can obtain a one-dimensional variant
of a nonlinear system which in the case of axially symmetric static deformation of a plate has the form

u"+ %[(w’)2 ]' =0,

Eh ' " Eh "o l r\2 -
2(1—+v)(l// +w)+1_vz{w(u +2(w)j:| +71=0, (1)

ks

2
6(1—+v)%”"—k§(w+W')=0,

where k,,E, h and v are some positive constants, 0 <v <0,5, f = f(x) is the given function,

u=u(x), w=w(x) and ¥ = (x) are the functions we want to define, 0 < x <1.
Let us assume that the fllowing boundary conditions are fulfilled

u(0) =u()=0, w0)=w1)=0, w'(0)=y'(1)=0. @)
From (1) and (2) follows the formula
1 X
X 2 1 2
u==\|Ww dé—=| dé. 3
2| (@Y s (W)Y ae ®
Applying (3), from (1) we obtain a system of equations with respect to the functions W and | of the
form
Eh Eh ([ h’
ki —— '+ W)+ ——w"|(W)dx+ =0, ——w"—k (yw+w)=0, 4
0 2(1+V)(l// ) 21—v7) .([( ) A 6(1+V)W 0(‘// ) “)
which we complement with the corresponding boundary conditions
w(0)=w(1)=0, w'(0)=y'(l)=0. )
Let us write an approximate solution of problem (4), (5) in the form
w, = ZW,”. sinim, v, = Zl//nj COS j 71X, (6)
i=l j=0

where the coefficients W, and v, are found by the Galerkin method from the system of nonlinear equations

2 Eh . . 2 Eh . 2 . 2 2 _ —
kO 1+V (lﬂ.l//ni + (lﬂ.) Wni)+ 2(1 —Vz) (lﬂ.) Wni;(pﬂ’.) Wnp f; Oa
L(jﬂ')zW"'kz(W"']ﬂW):O w. =0 (7)
6(1+V) nj 0 nj nj H n0 )

1
i=12,..,n, j=0l..n, f :J.f(x)sinmxdx.
0

The convergence of the Galerkin method for both the static and the dynamic one-dimensional
Timoshenko system is studied in [2], [4].

Let us consider the question of solution of system (7). Since (7) implies ¥/, = 0, it can be assumed

that in this system the index j takes the values 1,2, ..., n. From the second equality in (7) we obtain the relation
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_ klim
Vi =~ hz Wi 3
ko + o (ir)
6(1+v)

after substituting this relation in the first equality, we have

n 4,2
imw. M+Z(‘j7z)2w2. —Mf =0, i=12,...,n. 9)

"L e(+y) 4 Y Ehiz ™'

72 2. _\2
ke n(ix)
(9) is a system of nonlinear equations with respect to I W, 51 =12,...,n. For its solution we use the

Jacobi iteration method [3]

. 2(1-v) . < 20-v?) . _
L7W,i 1 W+ (’77)2 Wji,kﬂ +;(J7T)2 Wjj,k _Tm’fl =0, (10)
@)

k=0l.. i=12,..,n
Here w,; ,, isthe (k + 1) -th iteration approximation of w

/=01, £=0,,...

For fixed i, (10) is a cubic equation with respect to i7zw,, ,,, . Using the Cardano formula, we write

ni
IW,; 101 =0, — 05, k=0l.., i=12,..,n, (11)

where

S. s2 P 2
o =|(=1PZE+| 2+ , :1,2,
P ( ) 2 (4 27 P

_ 2d-v) (. >
; —W‘*Z(Iﬂwnj,k) ) (12)

— =l
ke h(iz) "
_20-v?) 7
: Ehiz "
Let us represent system (11) as follows
W, = @ (AW, 2700, e RTW,, L) (13)
o,
o(jw,, ;) -
By virtue of (11)-(13) the diagonal terms of the matrix J are equal to zero, while for the nondiagonal
terms we have

and consider the Jacobi matrix J =

oo _gjﬂw at (14)
o(jmw,,) 37" U .
ot | tOis
s 3 >
By (14) and (12), for i # j, after some transformations, we write the estimate
6 : 4 1—V2 jﬂwn',k
| ‘% |s( .)|ﬁ| ‘,‘ - (15)
\a(];zwnj,k)\ Ehir
2(1-v) . 2
= 1 4 A
L+46(1+V) (ﬂan,k)
k(f hrn?
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Let us use the vector and matrix norms equal respectively to z |v | and max z |m i | for

I<j<n %
V= (Vi)?ZI and M = ( y)n

i=1 i=1
i,j=1"

It is required that for an arbitrary set of values Wik J =L2,...,n, the elements of the matrix J

n 8(0
satisfy the condition max z

< g <. For this it is sufficient that
1<j<n 4 8(Jzzwn] )

f|

+ +1) |2
3 31 v( , 6 v)] <<l j=12.

SERz V2 1—v F oh | &
i#j

Then, as follows from the principle of compressed mappings, system (9) has a unique solution w, .,
i =1,2,...,n, the iteration process (13) converges, ll(im w,, =w,, I =1L2,..,n, with the rate defined by
—>®0 ?

ni?®

the inequality
Z ‘W m 0 k = O,l,....

Z\W 2

Applying iteration approximations for w,., i = 1,2,...,n, and using formulas (8) and also (6) and (3),

we construct approximations for the coefficients ¥/, , i = 1,2,...,n, and the function u(x).

A NUMERICAL ALGORITHM FOR A ONE-DIMENSIONAL NONLINEAR TIMOSHENKO SYSTEM

Resume. We consider the boundary value problem for a system of nonlinear ordinary differential
equations that describes the static behavior of a plate. An approximate solution is obtained using the algorithm
including the Galerkin method, the convergence of which was proved by the authors previously, and the
nonlinear Jacobi iteration process, the accuracy of which is discussed in this work.

A0GH3000 SR¥IMBOM30 B03(MIIE3ML IMHBS6HMBNRIBNS60 SAHSVAHBN30 LOLBIBOLSOB30L

9%099g. aobobogngds Lobsbwgdm sdmEebs godxgodol LEsRogydo ©gnm®dsaools s@dfgo
h3ge@d®og  ©oggMgbEos@y®  asbGmmgdoms  LobFgdobomgol.  s3m@Esbols  dosbenmgdomo
Sdmboblboli  Lodmgbgmop  ao8mygbgdymos  seym@omdo, Gmdgmoi  dmogegl  aomom jobols
dgomel, Gmdamols 3OgdsEmds  SEMY 04m  ©SIGI0GEIOY0  530™Mgd0l dogd s  osgmdols
s@s{M03 0 9By  3Om3gll, @mdmol  LobybEol  Lsgombo  Jgbfogaromos  dmzgdyen
659G ™3I Jo.
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083305C0IR0 3dMGILOL 3@ISSRMdS @BIZOL IMO() 1O3dS6BMINRISNS60)
03(MB560LSM30L

X-B9M5dg, g ME0T>M0

aobowgdo  Logyggdo: Jodbimgol  asb@mmgds, 05300l  s@sf@R0g0 0@ gHs30YE0
30m3gLo, grmdoggdol dgaoligds, stsgbowo Lbgosmdosbo gds.

3obgoboenmo dgdgyo LoFyol-Lobsbmgmm sdmizabs

w(x,0) = w'(x), w,(x,0)=w'(x), xeQ,
@
w(x,t)=0, xe0Q, 0<¢t<T,
Lowo X =(X,X,,%;), Q={(x,x,,x;)|0<x, <7, 0<x,<7m, 0<x;<7z}, 0Q o560l

stols Lobmgamo, Wo(x) > Wl(x) 3039990 g96J0goos, bogmem A >0 ws T bmdogo

30bLFbBgo0.
(D) gob@mangds Fo@mdmowagbls godbdmegols [1] Lodol @bggols

w, —[/1 +£Iwidx}w” =0
71-0

3obBMagdols bodasbbmdoggdosh sbognmyl, @mIgmoi 3oMggmaw godmoggemos . dg@mbd@gobds.
30Ob3mxgols Bodols aobBmegdgdls dogdmgbs s@ogtmo 33gamggzotol dOmIgdo (dodemomymsgos ob.

dog. [21,[3]).
hodmgogsgodmm (1), (2) odm@Esbol  sdmblbol  gowo  @oibgomo  sanam@ondo.
dosbanmgdomo sdmbsblibo ggdgomm dgdogao LolGygamo xsdol Labom

w,(x,0) = D w,.. (1)sin ix sin i,x, sin i;x,,
i iy iy =1
1
ﬁ"_"m]izi} (t) 309803096390l g3mgeEmdm Asmom®obols dgmmwols
A P

bo@ois Wi, (t) =
3°dmygbgoom asb@megdoms dgdwgao Lob@gdowsb s Lofyolo 30Gmdgdowsb

"_V:zilizi3 (1) + (ﬂ +

n

z (n}"jljzh (t)) ZJ(ZIZ + 122 + 132 )n}nilizl} (t) = 05 (3)

JisJ25J37]

+2 2 -2 0 s .. .
i +i;, +1i, .[w (x)sini,x, sini,x, sini,x,dx,

Woiiniy

i iP i+l j w'(x)sin i x, sini,x, sin i;x,dx, (4)

ij,i,,i; =L2,...,n.

domgdaao (3), (4) sdm@Esboli s8mbablbgmsw yodmgoygbmm stsiaboswo Lbgomdosbo 1sggds,
58 30bboom  [0,T]06@g0gomby  dgdmgowmmn  dowyg  doxom  T=T/M @5 335605800

t,=mr, m=0L..,M. 3356d00 ¢, (gd@omdo dosbemgdomo Lvni]izi3 (tm) d60dgbgarmds

m

>m3b0dbmn WTMZ%— om, Iy,1y,15 =L2,..n, m=0,,..,M.
aobgobognmo dgdgao LJgds
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m—1
wmﬂz@ - 21/_‘}'11]1213 +_nllt2l3 L ) m—u
2 + A + 5 Z Z W1 j2J3 (ll + 12 + l3 ) Z—'”l’zlz - (5)

T jl ands=l 102 u=0,2

ij,iy,iy =L2,..,n, m=23,...,M.

o _ T
Wiy, = Wi, 0), Wiy, = Waiii, 0)+

+ 0+4T2 ,2+,2+.2 /1+8 V 0 2d A 0 . . .. . . d
TV_V,”l,z,;( ) ?w/z] iy +ij py w(x)| dx || Aw" (x)sinix, sini,x, sini;x;dx |, (6)
Q Q

i],iz,i3 =12,...n

bogmgsgmmm,  @md  (5), (6) LolbEgdol sdmlboblbgmow  asdmmgmgdls  goFo®ddmgdm
0%9M530900L  Lodgomgdom  d@osb JHgbg aoslbgmom. 0sgmdols s@sf@xogo  0dgdsEoymo
dgmmwols godmygbgdbom 39690

4 m [ 2 m-2 |2
- 24+ +\w. .~ ] +

_11111213 k+1 n111213 k+1 niyiyiy
T+ +E)

% 2 IRV 2
W”hjzj}’k W”Jl!z/3 W”lllzl}»k’“l 1/—V’”llzls (7)

o Juis=l
Ji#s J2Fl,)3%13
4 m
= i,i,,i; =1,2,...,n, k=0,,...
z_z(l,lz +l22 +i32)—’7i1i2i3 9 1942943 94y sty sl 9
oo V_V:z‘lizzg,kﬂ Fomdmowa gbls 1/_1/::11.11.2i3 ol (k+1) -6 0dgOsEogee Josbamgdsls [=0,1, bogom

m _ m—1 m—2

Wiy, ~ Waiii, -

3o0©sbml gm@dyamol as3mygbgdom (7) LolBgdowsb gwgdgemdm

L niiyi,

" =y i, 0 =12,....n, k=0,,... (8)

Wiy k1 = Wniiyin o> Liol2s 13

(8) Hommdols Jo@xggbs dbsdg (k+1) ofg@sgogm Josbenmgdgdl o6 dgoiogl.

0 l//n111213 k

‘dgzox5Lmm gy . hggb wopggkodegds dgdwgao mobowmdgdo min‘(/)m(x)‘:r 05

—=nj1j2Jj3 .k

mxinlgo(z)(x)l =3r2, glododolow oV (x)=—r+ Z[x +(=1) (x* + r3)”2] e ©o

s=1,2

2/3
go(z)(x) =rt+ Z[x +(-1)° (x2 + r3)1/2] g96JGogdolbmgol, —oo <x<oo, r=const>0.

s=1,2

Jmgombegmmn 9gdpgao 30Gmdgdol Ygltrgmgds Gmdgmomsg ¢ € (0,1) -bomgols

n
al//n]lzl;k
' < L.
max z 9> JiJrJs =L2..n, ©)
J1sJ2sd3 ;o 717/1/2/3 k
1-°2-43
n 1 n
m m < m m
Wiy k — Whiiiy 0] = Wiy 1 ~ Whiiiy 0] - (10)

ip iy 13 =1 q URPRER
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>0b0dbygemo 30MmMdgdol woblisjdoymyomgdmsw hggh ©opgdodwgds dgdgao @o@Iymols
20dmygbgos

n 103 (0 + + 202, 1)
Z(if+i§+i§)l<3n(n 1)(2n 1)(3;1 3n 1} =12,

a 5
33303, @md (9) s (10) Lods@menosbos, my dowols T doxo 0degbs dzomgs, G®I
39ogmgoawgds  +ar? —ﬂ <0 YHO@mds,  Lopsn & o ﬂ ©sEgdomo  Loowggdos,

iyl i3 =1

OmIagooi yodmolisbgoosh ¢, n, V_VZ;; S Loowggdol Lodygsmgdom, i,i,,i; =1,2,...,n.

—niyiyiy

m

0®gOs3ogmo  30magbo (8) JMmgdowos, llcimW =w" sdolmob  30miglols  (3mdogn gds
—n

Noniinis o~ Wiini, »
Qolgds dgdgao Y mdomn
n k n
m m q
Z Woiiiok ~ Whiii, | S Z

i iy i3 =1 1 9 i iy =1

who = k=0,1,.....

K nijigiy, 1 — Moniinis 0

08336%5G0IR(O 36(MGILOL 3MIBSRMdS HBIZOL IH0)
153356HM3NRIBNS60 S3MBS60LSMB0L
X-BJM5dg, 3. ME0TSM0S
0903y

dobbognaaos LoFgol-Lobobmgmm sdmzobs oG bdmazols 063 gaMm-0xgM 9bos Y@
3obBma@gdolomgol  Lodyobbmdoangbosbo  o@ol  dgdmbgggsdo.  dosbenmgdomo  s3mbsblibols
bodmgbgams@  aobbm®Eogmgdygmos  gHo3modmogo  wolig@gdobgds Logdgmo @Ggeswgdols  ©s
oMol s®adgbdoli dododm. dowgdymo  Fadgdo  LoliGgdol sdmboblbgmom  godmygbgdyaos
053060b 0@ gMozogmo dgmnmeo. dgxsligdygmmos o3 dgmmeols pmdogngds.

THE COVERGENCE OF AN ITERATION METHOD FOR ONE THREE-
DIMENSIONAL OSCILLATION PROBLEM

V. Odisharia, J. Peradze
Abstracts

The initial boundary value problem for an integro-differential Kirchhoff equation is considered in the case of a
three dimensional domain. To find an approximate solution, step-by-step discretization is performed with respect
to spatial variables and a time argument. The obtained cubic system is solved by the iteration method. The
method error is estimated.
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gobBgdmol Jlgeol bjgds dgdpgabsodow ysdmoyndgds:

Gateway

e

Internet

ddodmggan Lgmggdbg wobgygdo dsboggdol 3mbgoay@dscos dmbes La®gymo 3@obiodom
(RAID-1). g&hmo dgodo woligolb @9dbogy®o obosbgdols dgdmbgggsdo 0bgm@dszos dgbsbyeno
sGhgds dgm@gby.

gob@g@mol  dgdowygbgeno  jmd3mbgb@gdols s Jlgeol  gododmgol  dgdwgy, oI
3M33mbgbRgdosob gobbmdEogmes ghHmosbo 0b@ga®odgdymo  yodmmgemomo Lolgbol ofymde.
dgoddbs o gondodms gHmosbo NFS gsomydg Lol@gds. GoiE Lodgemgdsl odanggs Lg@gg@ds
s godmdngagends 33obdgdds doMm@ogom aogemmb ghmdsbygmdo 0bgm@mdsios.

9000560 gooay®o LobBgdol YgJdbol dgdwgy dmbos 5dm3sbgdols dodmgol LolFgdol
060 gdo-3mbgoag@omgds. dmasbgool  ddodmggen  LobFgdo dg@hgyen  obs  “Torque”,
Gm3gemoi Foddmowagbl “Open PBS” — ol gogdxmdgbgdye ggdlosb.

gob@gdo  ogmbgogydots  oly, @md  dodmggands  bgHgg®ds  o@  doopml
dmbofomgmds  sdmEobgdol  gb@dygagdsdo.  ddodmggemo  LgHggdo  obbm@Gogmgdl  Fbmerme
sdm3obgdol  do@mgol, bmem  godmdmgmgaro  33obdgdo  osldymgdgb  ImIbds@gogmols  dog
3033909 5dm(30bg0L o 5dMbgdgh 3slybgol.

9omosbo gsoaado LobEgdol godmygbgdom Imbos LolbEgdsdo 3GMa@Msdgdols asdsdmgols
(396OOs@moboios.  ogomoms,  ddoGmgger  bgdggmby  goodsdms  ATLAS  gJb3g@odgb@ols
30053 o gbdybggmmymes ATHENA, boaem gsdmdmgmgen 330bdgobg odol go3gmgds s@o®
s@ob  bododm.  gbsdsdolo  3Oma®sdygamo  gbdybggeygmagol  dodmommgygdl  3gobdgdo
g gg@oEsb as8moygbgdygb.

dobps  godmmgmomo  Lgydgbdol  jmddegdbydo  dgdm§agds:  s8m@Esbgdols  ao@bggs,
gooy@o LolGgdols ©s Jugmol. asbolobrg@s Lgadgbdby Imdbdo®gdemgdol @gaol@@sEoobs
s dotimgols sdmobols godggdols Faligdo.

AmamO 3 bgdmn  ogm  swbodbyao, dgdpamdo bsdoxo 0dbgds gmslBgdols dogHmgds
930m3gem GRID Jlganmsb. o3 badgdomgdols hs@odgdolbmgol gom-gohmo o@omy@o sdmiEobss
Lbgoslbgs Jlgegdol o@Jodgdd ol dmbo@mmobaols Lyg@mgobo. o3 sdm@Eebol aowask@olmgols
‘dgddbogmos 0bBga®odmgdygemo 3Mma®sdygmo bebggeymas PerfSonar.

PerfSonar gt s®ol  dmbodm@obyol  Lgdgolbyao Lodgoegdgdo  Jlgerms  Jmaols
06g3m@do300L  goigemobmgol, @mdgaoi sogomgdl  Lbgowslbbgs  Jlganol 2 3oLl dm@ols
35330G0lols 30mdagdgdols godmgengbsl. PerfSonar Lsdys@mgdom bmdogamegds GEANT2 ©o
DEISA globalur gselur infrastrugturebs Soris informaciis gadacemis
monitoringi.

PerfSonar —ols  g@m-g@mo  dgdowygbgemo  boFomos 3Omy@sdymo 3s3g®o PingER.  dobo
Lodygoegdomn dglodengdgemos MySQL o SLite doboms bMogngddo dmadmgogl gggersbsoto
0bgm®dozos  Jlgangdol  gybjiaombodmgdol dgbsbgd. PingER 3@mydsdygmo  3s39Bol  beygasw
539 doggoobmgols gomyggymo boggby®gdo ©s Jdgogdgdos aologgmgdgero. PingER 3@my@sdygeo
353930 doGomswo 95393980 d@Mdsbgdos :

Ps — pinger-0.09 start

bogem  dob glegagdsdeg dboe  gbos ogml mgommb o3 3Gmydsdygmo  3s39@0b
Logmbgoagdsaom gsomo LabgmFmogdom : pinger.conf.

od  0bgm@dszool  dgz@gools s Ygbodedol SQL gb@oagddo  asbmoglgdol  dgdwgy
boko®ms  domo  bom@dogny@o  godbysmydo  omgomogdgds.  sdobmgol  o@lgdmdls Perl —by
‘dgddbogmo  3GOma@sdygmo  Ybaybggagmes PingER GUI, @mdganlio  aoshbos  dgdwgao  Lobols

0b@geggobo:
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*  http://tukki.fnal.gov/pinger/pingerUl.pl

PingER GUI
*  Enter MA URL as it configured in pinger.conf

*  Use wildcard to get hostname or packetsize of interest. Move the mouse's pointer on End-to-End
Links area. List of links will be updated automatically.
Source Hostname:

. Destination Hostname:
. Packetsize:
*  End-to-End Links

Graph parameters Start Time  End Time GMT offset Type of metric:
Upper RTT(or IPD) Limit:  Graph type:

o 0 Jds 9bws, od 3O @00 9bOYbggangmegols 3M©gdo >®ols
0530bR@oEysgM g gdo®o s dgddbognos Linux m3g@dsigoygmo Lol@gdol gyomgdmlbmgol.

0B gHo@Mo:

[1] Portable Batch System OpenPBS Release 2.3 Administrators Guide
[2] http://www.ganglia.info

[3] http://wiki.perfsonar.net
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ON CANONICALLY CONJUGATE FUZZY SUBSET
M. Tsintsadze

In the space of incomplete and uncertain information the ability of correct decision-making is the most
incredible feature of human intellect, the modeling of the human mind principle and using it in the new
generation computer systems, is the one of the main task of scientists. The significant step ahead in this
direction was made 30 years ago by the California University Professor, L. Zadeh. His work “Fuzzy Subsets”

was the base of the intellectual system modeling and became the initial point of new mathematical theory.

Zadeh made the generalization of set, as the classical Cantor notion, accepting that the characteristic
function (membership function) can have any meaning in the internal [0,1] and named such sets “fuzzy”. He
also explained the set of operations on fuzzy sets and generalized the famous logical methods such as “modus

ponens” and “modus tollens”.

Introducing the linguistic variable notion and accepting the existence of fuzzy subsets as its meaning
Zadeh created the powerful system of the intellectual processes, fuzzyness and uncertainties description. The
further works of the Professor Zadeh and his followers have created the important base for the fuzzy control

methods in engineering, industrial practice.

The compilation of fuzzy information as well as the effective and fast realizable algorithm development -
is very actual in modern world. The works of the famous scientist - L. Zadeh, D. Dubois, H. Prade, A. Kandel,

A. Kauffman and others are dedicated to this issue.

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather than
precisely deduced from classical predicate logic. It can be thought of as the application side of fuzzy set theory
dealing with well thought out real world expert values for a complex problem.
Degrees of truth are often confused with probabilities. However, they are conceptually distinct; fuzzy truth

represents membership in vaguely defined sets, not likelihood of some event or condition.

In many cases of intellectual activity of human there exists virtually unlimited number of ways of inter-
action of a subject with the object. As a result of this, the controlled inter-action is almost always incomplete. It
is based on limited (generally small) number of attributes (color) of the object which corresponds to the
interests of the subjects and which he/she can recognize. Sometimes these colors are not available for the direct
observation but are available only in terms of their abstract modes (or quantity models), being the results of the
direct perception or some specific measuring procedures. In this case the information loses the definition,

univocacy and there appears the uncertainty.

By Dubuis and Prade : data in informatics — it is the set of so-called informational units. Each of
informational units is the four: (object, sign, value, plausibility) [2]. It’s important to differ the notion of
inaccuracy and uncertainty. Inaccuracy belongs to information content (corresponding to the component
“value”), and uncertainty — to its verity, understandable in terms of compatibility with reality (component
“plausibility”). For the given various information there exists the opposition between inaccuracy of expression
content and its uncertainty, expressed in that with the increase of expression accuracy, its uncertainty rises as
well and vice versa, uncertain character of information leads to some inaccuracy of the final conclusions,
received from this information. We see that from one side these notions in a certain way in contradiction, and

from another side — complete each other upon the data presentation.
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We offer to model this situation by means of new concept of optimal pare of fuzzy subset and its
canonically conjugated one [1]. Generally, fuzzy subset is constructed on the basis of expert estimation of one
of the commutate component. From this point of view, fuzzy subset, constructed in this way, characterizes
informational unit incompletely. We offer the method of construction of the informational unit membership
function taking into account the both canonically conjugated components simultaneously and hence describing
this unit in the most complete and optimal way. In the frames of optimal model the fuzzy logics and generalized
information theory [3] is constructed, corresponding to the canonically conjugated subsets.

Now we shall shortly consider those general reasons which are laying in the basis of our model

construction.
Significant that every “color” characterized by numerical parameter or parameters is the random

quantity. Lets denote its distribution density by p(X), its nonnegative number and we may present it in

2
following way: |l//(X)| . (note that (X) is the element of L Hilbert’s space), in this case we’ll put the

AN AN

object in correspondence with linear operator p, by : p(y/) =Xy (X), where x is the value of “color”

AN
numerical characteristic, so we may call p the “color operator”. Consider 1 function’s Fourier

transformation: (p(y) feicxy!//(x)dx , it’s known that if f|l//(y)|2 dx =1 ,than ﬂ(/)(y)rdy =1, so we may

consider |(p(y)|2 as density function p(y) for some y, random quantity.

So every numerical value of “color” would be in correspondence with random parameter’s math.

expectation value.

As 12 j p(X)dX >0 we consider it as the value of the membership function, analogically

L

j V4 (y)dy is the value of other membership function.

Ipc

Describe the uncertainties on x and y axis with appropriate dispersions: it’s known that between & f

and O'j exists the connection: O'f O'j 2> C so, we see that, reduction of x uncertainty value brings y uncertainty
increasing and vice versa, so if we want to take into consideration both uncertainty commonly, we offer the
. 2 2 _
following way: lets find such p(X)( properly such (X)) and ¥ (y) (properly such go(y) ) that: 0,0 =¢C
. Using the analogic method of quantum-mechanical model [3] solution, we have:
Y
X—X

Yo, (X,x*):;exp —3+——"land y (y,y*): : exp| —
? 270, 207 o \/2710';C

(y—{‘)z

20

Pe

The caracteristic intervals will be selected in the following way:

— * 2, % 2 — * 2 L * 2
Ip(a)) - I_Xa) -,0 KJﬂxw + awo-gJJ and Ipl(a)) - I_X(u -,0 KJﬂxi(u +a(uo-igaj
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« and o, in general cases depend on X" and y* appropriately. In dispersion terms uncertainty is

optimal if o, -0, = const, in accordance of this, the membership function is

x;+aaf, *
( )_ 1 X—X, d
ﬂg) w ——2 J. exXp —T X
27z.o-gg Xp—ac) o

H (@)=—— [ exp| -
‘ 2 20
270, x,-act, Pe

Thus we have the membership functions appropriate to the uncertainty and plausibility, which are

optimal according to above-mentioned sceme. There is possibility [4] to describe both uncertainty commonly:
the algorithm is such: we calculate the ”color pair” (f),f)c) appropriate numerical parameter (random quantity)

membership functions density with the following formula:
f(x.y)= [M(a. )" dadps

where in the integrated functions x and y represent correspondingly 15 and f) . operators proper values,

and

M(a, B) = [ (x). e Py (x)) = (0" (y) P A0 (y))

the results of calculations are:

1 . cT ) cT
f(X3Y):_jW(u X——F ”wa X+-— dT
27y, 2 2
and the membership function is the following:

fo 7= . )[j 1 (x, y)xdy

LWy’

ON CANONICALLY CONJUGATE FUZZY SUBSET
M. Tsintsadze

ABSTRACT: The aim of the work is construction of informational unit membership function with the
help of new concept - canonically conjugated fuzzy subsets where both complimentary and simultaneously
concurrent components uncertainties are taken into consideration. The above-mentioned notion allows modeling
of fuzzy information more completely and optimally.
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