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Dedicated to the 125th birthday anniversary of

Professor Andrea Razmadze

12.08.1889 – 02.10.1929

The well-known Georgian mathematician, one of the founders of Tbilisi State University, A. Raz-
madze was born on August 12, 1889 in the village of Chkhenishi (Samtredia region, Georgia). In
1906 he finished the real school in Kutaisi, and in 1910 he graduated from the Moscow State
University. The first A. Razmadze’s scientific work dealing with the basic problem of variational
calculus with free ends was published in 1914 in the journal “Matematische Annalen”. The lemma
belonging to A. Razmadze allows one to get easily Euler’s differential equation; the same lemma
results, as particular cases, in lemmas due to Dubois–Reymond and Lagrange. The work “Sur les
exstremales discontinues dans le calcul des variations” published in 1925 won him wide recognition
and popularity. Later A. Razmadze used this work for his Doctoral Thesis which he defended in
Sorbonne University (France). A. Razmadze’s theory of discontinuous extremals has found reflec-
tion and further development in the works of many scientists. In 1924, A. Razmadze participated
in the work of the International Congress of Mathematicians (Toronto, Canada). Up to his dying
day, A. Razmadze kept close scientific contacts with C. Carathéodory and L. Tonelli. The last
A. Razmadze’s work “Sur les solutions périodiques et les extrémales fermées du calcul de varia-
tions” was estimated by C. Carathéodory as follows: “The theory of closed extremals on a plane is
brought by A. Razmadze to perfection”. Later, the results obtained by A. Razmadze in the above-
mentioned work, C. Carathéodory included in one of the sections of his book “Variationrechnung
und partielle differentialgleichungen, Lpz.-B., 1935” under the title “The Hadamard and Razmadze
Theory”. Text-books in mathematics in Georgian language for the first time were published under
A. Razmadze’s authorship.

A. Razmadze passed away in 1929 in the age of 40. The Georgian Mathematical Society
announced with deep regret the untimely death of professor A. Razmadze, founder and president
of the Society, first Georgian mathematician, founder of higher mathematical education in Georgia.
Italian mathematician L. Tonelli wrote: “Mathematics in the person of A. Razmadze has lost one
of its outstanding scientists, researcher with lucid mentality and keen intellect”.
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1 Introduction

The main aim of this presentation is to study the dynamics of integro-differential Cellular Neural
Network model from both theoretical and numerical points of view.

Let us first consider the following integro-differential problem:

∂u

∂t
= D

∂2u

∂x2
− β

t∫
0

e−γ(t−s)u(s) ds+ f(u), t ∈ (0, T ], (1)

where γ and β are positive constants, f is a nonlinear function depending on u. If we take it in
the form f(u) = u(1 − u)(u − α), α being positive constant 0 < α < 1, this model describes the
nerve impulse transmission and is known as FitzHugh–Nagumo equation [1]. For the equation (1)
stability results are established in [1]. Finite difference method is proposed in order to solve (1)
numerically. The application of this method to the above integro-differential problem needs a great
storage of information in each time level. For this reason in this paper we shall propose Cellular
Neural Networks (CNN) appraoch in order to study such kind of problems in real time due to the
parallelism of the proposed architecture.

The model we shall consider is a more general form of the famous Hodgkin–Huxley model for
propagation of the voltage pulse trough a nerve axon [3]:

ut −D∇2u = σu(u− α)(1− u)− β

t∫
g(u(s, x)) ds, (2)

where 0 < x, t < 1, 0 < α < 1, σ, β > 0, D-the diffusion coefficients, g is a nonlinear function
depending on u. The proposed equation (2) is a nonlinear parabolic integro-differential equation,
u(x, t) is a membrane in a nerve axon, the steady state u = 0 represents the resting state of the
nerve. For (2) travelling wave solutions have been constructed in [5]. In this paper we shall study
the dynamics of (2). We shall construct CNN architecture for integro-differential equation (2) in
the nex section.
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2 Integro-Differential CNN Model and its Dynamics

Cellular Neural Networks (CNNs) [2] are complex nonlinear dynamical systems, and therefore one
can expect interesting phenomena like bifurcations and chaos to occur in such nets. It was shown
that as the cell self-feedback coefficients are changed to a critical value, a CNN with opposite-sign
template may change from stable to unstable. Namely speaking, this phenomenon arises as the
loss of stability and the birth of a limit cycles.

It is known that some autonomous CNNs represent an excellent approximation to nonlinear
partial differential equations (PDEs) [2]. The intrinsic space distributed topology makes the CNN
able to produce real-time solutions of nonlinear PDEs. Consider the following well-known PDE,
generally referred to us in the literature as a reaction-diffusion equation:

∂u

∂t
= f(u) +D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with the diffusion coefficients, and ∇2u is the Laplacian
operator in R2. There are several ways to approximate the Laplacian operator in discrete space by
a CNN synaptic law with an appropriate A-template. An one-dimensional discretized Laplacian
template will be in the following form:

A1 = (1,−2, 1).

This is the two-dimensional discretized Laplacian A2 template:

A2 =

0 1 0
1 −4 1
0 1 0

 .

For the integro-differential equation (2), CNN model will be the following:

duij
dt

−DA2 ∗ uij = σuij(1− uij)(uij − α)− β

t∫
0

g(uij(s)) ds, 1 ≤ i, j ≤ M. (3)

We shall use an approximative method for studying the dynamics of integro-differential CNN
(ID-CNN) model (3), based on a special Fourier transform. The idea of using Fourier expansion
for finding the solutions of PDEs is well known in physics [4]. This special spectral technique is
related to Harmonic Balance Method [4] well known in control theory and in the study of electronic
oscillators as describing function method. The method is based on the fact that all cells in CNN
are identical [2]. It is usually applied for discovering the existence and characteristics of periodic
solutions.

In our case we apply the following double Fourier transform:

F (s, z1, z2) =
∞∑

i=−∞
z−i
1

∞∑
j=−∞

z−j
2

∞∫
−∞

fij(t) exp(−st) dt. (4)

We apply this transform to ID-CNN model (3) and we obtain the following transfer function [4]:

H(s, z1, z2) =
s

s2 − s(z−1
2 + z2 − 4 + z−1

1 + z1) + β
. (5)

In the above transfer function s = iω0, z1 exp(iΩ1), z2 = exp(iΩ2, where ω0, Ω1, Ω2 are temporal
and two spatial frequencies, respectively, i =

√
−1.

We are looking for the periodic solutions of (3) of the form:

uij(t) = Um0 sin(ω0t+ iΩ1 + jΩ2), (6)
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where the temporal frequency is ω0 = 2π
T0

, T0 > 0 is the minimal period. If we take boundary

conditions for ID-CNN model (3) which will make the array circular, we obtain:

Ω1 +Ω2 =
2Kπ

n
, 0 ≤ K ≤ n− 1, n = M.M. (7)

Applying describing function technique we obtain the following system for unknowns Um0 , ω0, Ω1

and Ω2:

Ω1 +Ω2 =
2Kπ

n
, 0 ≤ K ≤ n− 1, (8)

1 +
(
σα+

3

4
σU2

m0

) ω0A

(β − ω2
0)

2 +Aω2
0

= 0,

1 +
(
σα+

3

4
σU2

m0

) ω0(β − ω2
0)

(β − ω2
0)

2 +Aω2
0

= 0,

where A = 4− 2 cosΩ1 − 2Ω2.
Then the following proposition holds.

Proposition 1. ID-CNN model (3) with circular array of M cells has periodic solutions with period
T0 =

2π
ω0

and amplitude Um0 for all Ω1 +Ω2 =
2Kπ
n , 0 ≤ K ≤ n− 1.

We obtain the following computer simulations of the solutions of ID-CNN model (3):
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Figure 1. Computer simulations of the periodic solutions of ID-CNN model (3).
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We consider the well-possed question for the ω-antiperiodic problem for linear generalized or-
dinary differential equations of the form

dx(t) = dA(t) · x(t) + df(t) for t ∈ R (1)

under the ω-antiperiodic condition

x(t+ ω) = −x(t) for t ∈ R, (2)

where A : R → Rn×n and f : R → Rn are, respectively, matrix- and vector-functions with bounded
variation components on every closed interval from R, and ω is a fixed positive number.

Let the system (1) have the unique ω-antiperiodic solution x0.
Along with the system (1) consider the sequence of the systems

dx(t) = dAk(t) · x(t) + dfk(t) (k = 1, 2, . . . ), (1k)

where Ak : R → Rn×n and fk : R → Rn are, respectively, matrix- and vector-functions with
bounded variation components on every closed interval from R.

We give the necessary and sufficient condition for a sequence of ω-antiperiodic problems (1k), (2)
(k = 1, 2, . . . ) to have a unique solution xk for sufficiently large k and

lim
k→+∞

xk(t) = x0(t) uniformly on R. (3)

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see, [1], [2], [4], [5] and references
therein).

The theory of generalized ordinary differential equations has been introduced by J. Kurzweil
in connection with investigation the well-possed problem for the Cauchy problem for ordinary
differential equations.

The use will be made of the following notation and definitions.
R is the real axis. Rn×m is the space of all real n×m matrices. On×m is the zero n×m matrix.

In is the identity n× n-matrix. Rn = Rn×1 is the space of all real column n-vectors.

If X : [a, b] → Rn×m is a matrix-function, then
b
∨
a
(X) is the sum of total variations on [a, b] of

its components xij (i = 1, . . . , n; j = 1, . . . ,m); V (X)(t) = (V (xij)(t))
n,m
i,j=1, where V (xij)(a) = 0,

V (xij)(t) =
t
∨
a
(xij) for a < t ≤ b; X(t−) and X(t+) are, respectively, the left and the right limits

of X at the point t.
BV([a, b],Rn×m) is the normed space of all bounded variation matrix-functions X : [a, b] →

Rn×m (i.e.
b
∨
a
(X) < ∞) with the norm ∥X∥s = sup{∥X(t)∥ : t ∈ [a, b]}.
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BVloc(R,Rn×m) is the space of all matrix-functions X : [a, b] → Rn×m whose restrictions on
every closed interval [a, b] from R belong to BV([a, b],Rn×n).

BV+
ω (R,Rn×m) and BV−

ω (R,Rn×m) are the sets of all matrix-functions G : R → Rn×m whose
restrictions on [0, ω] belong to BV([0, ω],Rn×m) and there exists a constant matrix C ∈ Rn×m such
that, respectively, G(t+ ω) ≡ G(t) + C and G(t+ ω) ≡ G(t) + C.

sj : BV([a, b],R) → BV([a, b],R) (j = 0, 1, 2) are the operators defined, respectively, by
s1(x)(a) = s2(x)(a) = 0, s1(x)(t) =

∑
a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t
d2x(τ) for a < t ≤ b,

and s0(x)(t) ≡ x(t)− s1(x)(t)− s2(x)(t).

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and s < t, then
t∫
s
x(τ) dg(τ) =∫

]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t
x(τ)d1g(τ) +

∑
s≤τ<t

x(τ)d2g(τ), where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–

Stieltjes integral over the open interval ]s, t[ with respect to the measure µ0(sc(g)) corresponding

to the function sc(g). So that
b∫
a
x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see, [3]–[5]).

We use the operators. If X ∈ BVloc(R;Rn×n) and Y ∈ BVloc(R;Rn×m), then B(X,Y )(t) =

X(t)Y (t)−X(0)Y (0)−
t∫
0

dX(τ) · Y (τ); if, in addition, det(X(t)) ̸= 0 for t ∈ R, then I(X,Y )(t) =

t∫
0

d(X(τ) + B(X,Y )(τ)) ·X−1(τ).

A vector-function BVloc(R,Rn×m) is said to be solution of the system (1) if x(t) − x(s) =
t∫
s
dA(τ) · x(τ) + f(t)− f(s) for s < t; s, t ∈ R.

We will assume that A,Ak ∈ BV+
ω (R,Rn×n) and f, fk ∈ BV−

ω (R,Rn) (k = 1, 2, . . . ), i.e. A(t+
ω) = A(t)+C, Ak(t+ω) ≡ Ak(t)+Ck and f(t+ω) ≡ −f(t)+c, fk(t+ω) = −fk(t)+ck (k = 1, 2, . . . )
where C,Ck∈Rn×n (k=1, 2, . . . ) and c, ck∈Rn (k=1, 2, . . . ) are, respectively, some constant mat-
rices and vectors. In addition, without loss of generality we assume that A(0)=Ak(0)=On×n and
f(0)=fk(0)=0 (k=1, 2, . . . ). Moreover, we assume det(In + (−1)jdjA(t)) ̸=0 for t∈R (j=1, 2).

Definition 1. We say that a sequence (Ak, fk) (k = 1, 2, . . . ) belongs to the set S(A, f) if
the ω-antiperiodic problem (1k), (2) has a unique solution xk for any sufficiently large k and the
condition (3) holds.

Statement 1. The following statements are valid:

(a) if x is a solution of the system (1), then the function y(t) = −x(t+ ω) (t ∈ R) is a solution
of the system (1), as well;

(b) the problem (1), (2) is solvable if and only if the system (1) on the closed interval [0, ω] has
a solution satisfying the boundary condition

x(0) = −x(ω). (4)

More than, the set of restrictions of the solutions of the problem (1), (2) on [0, ω] coincides with
the set of solutions of the problem (1), (4).

Theorem 1. The inclusion (
(Ak, fk)

)+∞
k=1

∈ S(A, f) (5)

is valid if and only if there exists a sequence of matrix-functions H,Hk ∈ BV([0, ω],Rn×n) (k =
1, 2, . . . ) such that

lim
k→+∞

sup
ω
∨
0

(
Hk + B(Hk, Ak)

)
< +∞, (6)
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inf
{∣∣ det(H(t))

∣∣ : t ∈ [0, ω]
}
> 0, (7)

and the conditions

lim
k→+∞

Hk(t) = H(t), (8)

lim
k→+∞

B(Hk, Ak)(t) = B(H,A)(t), (9)

lim
k→+∞

B(Hk, fk)(t) = B(H, f)(t)

are fulfilled uniformly on [0, ω].

Theorem 2. Let A∗ ∈ BV([0, ω],Rn×n), f∗ ∈ BV([0, ω],Rn) be such that

det
(
In + (−1)jdjA∗(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2)

and the system
dx(t) = dA∗(t) · x(t) + df∗(t)

has a unique ω-antiperiodic solution x∗. Let, moreover, there exist sequences of matrix-and vector-
functions Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) and hk ∈ BV([0, ω],Rn) (k = 1, 2 . . . ), respectively,
such that hk(0) = −hk(ω) (k = 1, 2, . . . ), inf

{∣∣det(Hk(t))
∣∣ : t ∈ [0, ω]

}
> 0 (k = 1, 2, . . . ),

lim
k→+∞

sup
b
∨
a
A∗k < +∞, and the conditions lim

k→+∞
A∗k(t) = A∗(t) and lim

k→+∞
f∗k(t) = f∗(t) are

fulfilled uniformly on [0, ω], where A∗k(t) ≡ Ik(Hk, Ak)(t) (k = 1, 2, . . . ) and

f∗k(t) ≡ hk(t)− hk(0) + Bk(Hk, fk)(t)−
t∫

0

dA∗k(τ) · hk(t) (k = 1, 2, . . . ).

Then the system (1k) has the unique ω-antiperiodic solution xk for any sufficiently large k and

lim
k→+∞

∥Hkxk + hk − x∗∥s = 0.

Corollary 1. Let the conditions (6) and (7) hold, and let the conditions (8), (9) and

lim
k→+∞

(
B(Hk, fk − φk(t) +

t∫
0

dB(Hk, Ak)(s) · φk(s)

)
= B(H, f)(t)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Then the system (1k)
has a unique ω-antiperiodic solution xk for any sufficiently large k and lim

k→+∞
∥xk −φk − x∗∥s = 0.

Corollary 2. Let the conditions (6) and (7) hold, and let the conditions (8),

lim
k→+∞

t∫
0

Hk(s) dAk(s) =

t∫
0

H(s) dA(s), lim
k→+∞

t∫
0

Hk(s) dfk(s) =

t∫
0

H(s) df(s),

lim
k→+∞

djAk(t) = djA(t) (j = 1, 2) and lim
k→+∞

djfk(t) = djf(t) (j = 1, 2)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Let, moreover, either

lim
k→+∞

sup
∑

a≤t≤b

(
∥djAk(t)∥+ ∥djfk(t)∥

)
< +∞ (j = 1, 2),

or

lim
k→+∞

sup
∑

a≤t≤b

∥djHk(t)∥ < +∞ (j = 1, 2).

Then the inclusion (5) holds.
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Corollary 3. Let the conditions (6) and (7) hold, and let the conditions (8),

lim
k→+∞

Ak(t) = A(t), (10)

lim
k→+∞

fk(t) = f(t)), (11)

lim
k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
·Ak(s) = A∗(t), lim

k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
· fk(s) = f∗(t)

be fulfilled uniformly on [0, ω], where H,Hk, A∗ ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and f∗ ∈
BV([0, ω],Rn). Let, moreover, the system

dx(t) = d
(
A(t)−A∗(t)

)
· x(t) + d

(
f(t)− f∗(t)

)
has the unique ω-antiperiodic solution. Then ((Ak, fk))

+∞
k=1 ∈ S(A−A∗, f − f∗).

Corollary 4. Let there exist a natural number m and matrix-functions Bj ∈ BV([0, ω],Rn×n)

(j = 0, . . . ,m−1) such that lim
k→+∞

sup
ω
∨
0
(Akm) < +∞, and the conditions lim

k→+∞
(Akm(t)−Akm(0) =

A(t) and lim
k→+∞

(fkm(t)− fkm(0)) = f(t), be fulfilled uniformly on [0, ω], where

Hk0(t) ≡ In, Hk j+10(t) ≡
1∏

j+1

(
In −Akl(t) +Akl(0) +Bl(t)−Bl(0)

)
,

Ak j+1 ≡ Hkj(t) + B(Hkj , Ak)(t), fk j+1 ≡ B(Hkj , fk)(t).

Then the inclusion (5) holds.

If m = 1, then Corollary 4 has the following form.

Corollary 5. Let lim
k→+∞

sup
ω
∨
0
(Ak) < +∞, and the conditions (10) and (11) be fulfilled uni-

formly on [0, ω]. Then the inclusion (5) holds.
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1 Introduction

The paper is devoted to the existence of oscillatory quasi-periodic, in some sense, solutions to the
higher-order singular Emden–Fowler type differential equation

y(n) + p0 |y|k sgn y = 0, n > 2, k ∈ R, 0 < k < 1, p0 ̸= 0, (1)

and to the asymptotic classification of solutions to this equation with n = 4.
A lot of results about the asymptotic behavior of solutions to (1) are described in detail in [1]

and [4]. Results on the existence of solutions with special asymptotic behavior are contained
in [2, 3, 5–8]. Results on asymptotic classification of solutions to (1) with n = 3, k > 0, k ̸= 1, and
n = 4, k > 1, are given in [4] and [9].

2 On Existence of Quasi-Periodic Oscillatory Solutions

Put
α =

n

k − 1
.

Theorem 2.1. For any integer n > 2 and real positive k < 1 there exists a non-constant oscillatory
periodic function h such that for any p0 with (−1)np0 > 0 and any real x∗ the function

y(x) = |p0|−
1

k−1 (x∗ − x)−αh(log(x∗ − x)), −∞ < x < x∗, (2)

is a solution to equation (1).

Remark. Note that the same result for equation (1) with n ≥ 2 and k > 1 was obtained earlier
in [6–8]. A result on the existence of a positive solution similar to (2) with positive periodic function
h for n = 12, 13, 14 and k > 1 is proved in [5].

3 On Asymptotic Classification of Solutions to Emden–Fowler Singular Equa-
tions of the Forth Order

The asymptotic classification of all possible solutions to the forth-order Emden–Fowler type differ-
ential equations

yIV(x) + p0|y|k sgn y = 0, 0 < k < 1, p0 > 0, (3)

and
yIV(x)− p0|y|k sgn y = 0, 0 < k < 1, p0 > 0, (4)

is given.



12 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

3.1 Definitions and Preliminary Results

In the case of regular nonlinearity k > 1, only maximally extended solutions are considered because
solutions can behave in a special way only near the boundaries of their domains. If k < 1, then
special behavior can occur also near internal points of the domains. This is why a notion of
maximally uniquely extended (MUE) solutions is introduced.

Definition. A solution u : (a, b) → R with −∞ ≤ a < b ≤ +∞ to any ordinary differential
equation is called a MUE-solution if the following conditions hold:

(i) the equation has no solution equal to u on some subinterval of (a, b) and not equal to u at
some point of (a, b);

(ii) either there is no solution defined on another interval containing (a, b) and equal to u on (a, b)
or there exist at least two such solutions not equal to each other at points arbitrary close to
the boundary of (a, b).

In this article all MUE-solutions to equation (3) and (4) are classified according to their behavior
near the boundaries of their domains. All maximally extended solution can be classified through
investigation of possible ways to join several MUE-solutions.

Consider the equation

y(n) + p(x, y, y′, . . . , y(n−1)) |y|k sgn y = 0, n ≥ 2, k ∈ R, 0 < k < 1,

with positive p(x, y0, . . . , yn−1).
Note that, because of the condition 0 < k < 1, the classical theorem on the uniqueness of

solutions cannot be applied to Cauchy problems with y(x0) = 0. Nevertheless, the following
assertion holds (see [4, 7.3]).

Theorem 3.1. Let the function p(x, y0, . . . , yn−1) be continuous in x and Lipschitz continuous
in y0, . . . , yn−1. Then for any tuple of numbers x0, y

0
0, . . . , y

0
n−1 with not all y0i equal to zero, the

corresponding Cauchy problem y(x0) = y00, . . . , y
(n−1)(x0) = y0n−1 has a unique solution.

Remark. While the uniqueness conditions hold, the property of continuous dependence of solution
on initial data fulfils (see [10, V, Theorem 2.1]).

3.2 Main Results. Asymptotic classification of solutions to equations (3) and (4)

Theorem 3.2. Suppose 0 < k < 1 and p0 > 0. Then all MUE-solutions to equation (3) are divided
into the following three types according to their asymptotic behavior (see Figure 1).

1. Oscillatory solutions defined on semi-axes (−∞, b). The distance between their neighboring
zeros infinitely increases near −∞ and tends to zero near b. The solutions and their deriva-
tives satisfy the relations lim

x→b
y(j)(x) = 0 and lim

x→−∞
|y(j)(x)| = ∞ for j = 0, 1, 2, 3. At the

points of local extremum the following estimates hold:

C1|x− b|−
4

k−1 ≤ |y(x)| ≤ C2|x− b|−
4

k−1 (5)

with positive constants C1 and C2 depending only on k and p0.

2. Oscillatory solutions defined on semi-axes (b,+∞). The distance between their neighboring
zeros tends to zero near b and infinitely increases near +∞. The solutions and their deriva-
tives satisfy the relations lim

x→b
y(j)(x) = 0 and lim

x→+∞
|y(j)(x)| = ∞ for j = 0, 1, 2, 3. At the

points of local extremum estimates (5) hold with positive constants C1 and C2 depending only
on k and p0.
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3. Oscillatory solutions defined on (−∞,+∞). All their derivatives y(j) with j = 0, 1, 2, 3, 4
satisfy

lim
x→−∞

|y(j)(x)| = lim
x→+∞

|y(j)(x)| = ∞.

At the points of local extremum the estimates

C1|x|−
4

k−1 ≤ |y(x)| ≤ C2|x|−
4

k−1 (6)

hold near −∞ or +∞ with positive constants C1 and C2 depending only on k and p0.

y

x

y   + |y|    sgn y = 0IV 1/2
1

2

3

Figure 1.

Theorem 3.3. Suppose 0 < k < 1 and p0 > 0. Then all MUE-solutions to equation (4) are divided
into the following thirteen types according to their asymptotic behavior (see Figure 2).

1–2. Defined on semi-axes (b,+∞) solutions with the power asymptotic behavior near the bound-
aries of the domain (with the relative signs ±):

y(x) ∼ ±C4k(x− b)−
4

k−1 , x → b+ 0,

y(x) ∼ ±C4kx
− 4

k−1 , x → +∞,

where

C4k =
(4(k + 3)(2k + 2)(3k + 1)

p0 (k − 1)4

) 1
k−1

.

3–4. Defined on semi-axes (−∞, b) solutions with the power asymptotic behavior near the bound-
aries of the domain (with the relative signs ±):

y(x) ∼ ±C4k|x|−
4

k−1 , x → −∞,

y(x) ∼ ±C4k(b− x)−
4

k−1 , x → b− 0.
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5. Defined on the whole axis periodic oscillatory solutions. All of them can be received from one,
say z(x), by the relation

y(x) = λ4z(λk−1x+ x0)

with arbitrary λ > 0 and x0. So, there exists such a solution with any maximum h > 0 and
with any period T > 0, but not with any pair (h, T ).

6–7. Defined on (−∞,+∞) solutions that are oscillatory as x → −∞ and have the power asymp-
totic behavior near +∞ (with the relative signs ±):

y(x) ∼ ±C4kx
− 4

k−1 , x → +∞.

For each solution a finite limit of the absolute values of its local extrema exists as x → −∞.

8–9. Defined on (−∞,+∞) solutions that are oscillatory as x → +∞ and have the power asymp-
totic behavior near −∞ (with the relative signs ±):

y(x) ∼ ±C4k|x|−
4

k−1 , x → −∞.

For each solution a finite limit of the absolute values of its local extrema exists as x → +∞.

10–13. Defined on (−∞,+∞) solutions having the power asymptotic behavior both near −∞ and
+∞ (with the relative pairs of signs ±):

y(x) ∼ ±C4k(p(b))|x|−
4

k−1 , x → ±∞.

y

x

y   = |y|    sgn yIV 1/21

2

3

4

5

6

7

8 910

11

12

13

Figure 2.
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As we know, periodic differential systems under certain conditions can have periodic solutions
whose period incommensurable with the period of the system [1]–[6]. These periodic solutions
are inherent in a fairly wide class of differential systems, and called strongly irregular. We also
note that oscillatory processes forms at the natural frequency of oscillations of systems, generally
incommensurate with the frequency of external force in a number of applied problems [7].

In the monograph [3] N. P. Erugin considered the linear system of the form

ẋ = (AP (t) +B)x, t ∈ R, x ∈ Rn, n > 2, (1)

where A, B – constants (n×n)-matrix, P (t) – continuous ω-periodic (n×n)-matrix. In the system
(1) the matrix A and P (t) will be called the stationary and periodic coefficients, respectively. For
the system (1) with diagonal periodic coefficient P (t) Erugin studied the problems of existence of
periodic strongly irregular solutions. In particular, it was proved that if the matrix A is nonsingular,
the desired solutions of the system (1) do not exist. The case of nondiagonal matrix P (t) remained
unexplored.

It should be noted that the system of type (1) is considered in solving control problems: control
of asymptotic invariants, including Lyapunov exponents of stationary control systems by means
of periodic controls [8], [9], problems of stabilization of linear control systems periodic feedback,
including Brockett problem [10], [11].

In this paper, we consider the existence problem of strongly irregular periodic solutions of the
system (1) with an upper triangular periodic coefficient

pij(t) ≡ 0, i > j (i, j = 1, . . . , n), (2)

where pij(t) – the elements of the matrix P (t).
First we consider the case where the stationary coefficient is nonsingular, that is

detA ̸= 0. (3)

Let x(t) be a Ω-periodic solution to (1), it is considered that at least one of its components
is different from the constant and the ratio ω/Ω is an irrational number. By [5], the vector x(t)
satisfies the system

ẋ = (AP̂ +B)x, (AP (t)−AP̂ )x = 0,
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where P̂ = 1
ω

ω∫
0

P (τ) dτ is an average ω-periodic coefficient. By condition (3) last system takes the

form
ẋ = (AP̂ +B)x, P̃ (t)x = 0, P̃ (t) = P (t)− P̂ , (4)

with
rankcol P̃ = r < n. (5)

By (5) there is a constant nonsingular (r× r)-matrix Q such that the first d = n− r columns of the

matrix P̃ (t)Q will be zero, but the remaining columns are linearly independent. Next, we replace
x = Qy, which brings the system (4) to the system

ẏ = Fy, P̃1(t)y = 0
(
F = Q−1(AP̂ +B)Q, P̃1(t) = P̃ (t)Q

)
. (6)

The system (6) has the following structure

ẏ[d] = Fd,dy
[d], Fr,dy

[d] = 0, y[r] = 0,

where Fd,d, Fr,d – the left upper and lower blocks of the matrix F (subscript indicates the dimen-
sion). Among eigenvalues of the coefficient matrix Fd,d will be the numbers

±iλj

(
j = 1, . . . , d′; d′ 6 [d/2]

)
, (7)

where λj = 2kjπ/Ω, kj ∈ N . Let lj – the number of groups of elementary divisors corresponding

to the eigenvalues ±iλj (j = 1, . . . , d′; l1 + · · · + ld′ = l). This means that y[d](t) presented by

trigonometric polynomial of the form y[d](t) =
d′∑
j=1

aj cosλjt + bj sinλjt, where the coefficients aj ,

bj depend on 2l arbitrary real constants, for which we have the identity

Fr,d

d′∑
j=1

aj cosλjt+ bj sinλjt ≡ 0. (8)

Then the system (1) has a strongly irregular periodic solution

x(t) = Q col
(
y[d](t), 0, . . . , 0

)
. (9)

Theorem 1. Let for the system (1) conditions (2) and (3) be satisfied.
If the system (1) has a strongly irregular periodic solution, then this solution will be a trigono-

metric polynomial of the form (9). The conditions (5), (7) and (8) are necessary and sufficient for
the function (9) to be the solution of the system (1).

Corollary 1. If all diagonal elements of the upper triangular periodic coefficients are nonstationary,
then the system (1) does not have strongly irregular periodic solutions.

Now consider the case of stationary singular coefficient

rankA = r < n. (10)

Let x(t) be a Ω-periodic solution to (1), it is considered that at least one of its components is
nonconstant and the ratio ω/Ω is an irrational number. According [5], the vector x(t) satisfies the
system

AP̃ (t)x = 0. (11)

By (10) there is a constant nonsingular (n× n)-matrix S such that the system (11) takes the form

CP̃ (t)x = 0, C = SA. (12)
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We denote the trapezoidal (r × n)-matrix formed by the first r rows of the matrix C, through C1,
where rankC1 = r. Thus system (12) takes the form

C1P̃ (t)x = P̃1(t)x = 0. (13)

Then there exist constants k, linearly independent vectors α(1), . . . , α(k) such that (α(j), P̃
(j)
1 (t)) ≡ 0

(j = 1, . . . , k). The system (13) has k linearly independent irregular periodic solutions of the form

x(j)(t) = α(j)φj(t), where φ1(t), . . . , φk(t) are some Ω-periodic functions. Denote by Λ and X(t)

– (n× k)-matrix whose columns are vectors α(1), . . . , α(k) and x(1)(t), . . . , x(k)(t), respectively. We
write the last equation in the matrix form X(t) = ΛΦ, where Φ is a diagonal matrix with functions

φ1(t), . . . , φk(t) on the main diagonal. In view of the linear independence of the vectors α(1), . . . , α(k)

the matrix Λ has a nonzero minor of order k. Let this minor is located in the rows with numbers
i1, . . . , ik, Λ1 – the corresponding matrix and Λ2 – (n− k)× k-matrix composed of the remaining
rows of Λ. Then the resulting matrix equality splits into X ′(t) = Λ1Φ, X

′′(t) = Λ2Φ, where matrix
X ′(t) formed by the rows with numbers i1, . . . , ik, and X ′′(t) formed by remaining rows.

Take in account the notation from [5], the vector x(t) satisfies the system(
ẋ′

ẋ′′

)
=

(
A′P̂ ′ +B′

1 A′P̂ ′′ +B′′
1

A′′P̂ ′ +B′
2 A′′P̂ ′′ +B′′

2

)(
x′

x′′

)
,

where the blocks B′
1 and B′′

1 formed by the first k rows of the matrix B′ and B′′, and blocks B′
2,

B′′
2 formed by remaining n− k rows of these matrices. Then the matrix H = A′P̂ ′ +B′

1 + (A′P̂ ′′ +

B′′
1 )Λ2Λ

−1
1 has purely imaginary eigenvalues

±iλs

(
s = 1, . . . , k′; 1 6 k′ 6 [k/2]

)
, (14)

where λs = 2ksπ/Ω, ks ∈ N . Let ps – the number of groups of elementary divisors corresponding
to the eigenvalues ±iλs (s = 1, . . . , k′; p1 + · · · + pk′ = p). This means that x′(t) presented by
trigonometric polynomial of the form

x′(t) =

k′∑
s=1

αs cosλst+ βs sinλst, (15)

where the coefficients αs, βs depend on 2l arbitrary real constants. We have the identity(
Λ2Λ

−1
1

(
A′P ′ +B′

1 + (A′P ′′ +B′′
1 )Λ2Λ

−1
1

)
−A′′P ′ −B′

2 − (A′′P ′′ +B′′
2 )Λ2Λ

−1
1

)
x′(t) ≡ 0. (16)

Then the system (1) has a strongly irregular periodic solution

x(t) = ord
{
xi1(t), . . . , xik(t), xik+1

(t), . . . , xin(t)
}
= ord

{
col (x′(t), x′′(t))

}
, (17)

where ord { · } means ordering vector components { · } in ascending order of their indices.

Theorem 2. Let for the system (1) conditions (2) and (10) be satisfied.
If the system (1) has a strongly irregular periodic solution, then this solution will be a trigono-

metric polynomial of the form (15), (17).
The vector (17) is the solution of the system (1) if the system (13) has 0 < k < n linearly

independent stationary solutions and conditions (14), (16) are satisfied.

Remark. A similar result holds in the case of lower triangular periodic coefficient.
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Let Ω = {x ∈ Rn : 0 < xk < 1} be the open unit cube in Rn with boundary Γ, and Γ0 = Γ\Γ∗,
Γ∗ = {(0, x2, . . . , xn) : 0 < xk < 1, k = 2, . . . , n}.

Consider the nonlocal boundary-value problem

n∑
k=1

∂

∂xk

(
ak

∂u

∂xk

)
= −f(x), x ∈ Ω, (1)

u(x) = 0, x ∈ Γ0, (2)

ℓu :=

1∫
0

β(x1)u(x) dx1 = 0, 0 ≤ xk ≤ 1, k = 2, . . . , n, (3)

where β(t) = εtε−1, ε ∈ (0; 1).
Define the operator

Gv = v −Hv,

where H is the weighted Hardy operator associated to conditions (3):

Hv =
1

ρ(x1)

x1∫
0

β(t)v(t, x2, . . . , xn) dt, ρ(x1) =

x1∫
0

β(t) dt = xε1.

By L2(Ω, ρ) we denote the weighted Lebesgue space of all real-valued functions u(x) on Ω with
the inner product and the norm

(u, v)ρ =

∫
Ω

ρ(x1)u(x)v(x) dx, ∥u∥ρ = (u, u)1/2ρ .

The weighted Sobolev space W 1
2 (Ω, ρ) is usually defined as a linear set of all functions u(x) ∈

L2(Ω, ρ), whose distributional derivatives ∂u/∂xk, k = 1, 2, . . . , n are in L2(Ω, ρ). It is a normed
linear space if equipped with the norm

∥u∥W 1
2 (Ω,ρ) =

(
∥u∥2ρ + |u|2W 1

2 (Ω,ρ)

)1/2
, |u|2W 1

2 (Ω,ρ) =

n∑
k=1

∥∥∥ ∂u

∂xk

∥∥∥2
ρ
.
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Define the subspace of space W 1
2 (Ω, ρ) which can be obtained by closing the set

◦
C∞(Ω) =

{
u ∈ C∞(Ω) : suppu ∩ Γ0 = ∅, ℓu = 0, 0 < xk < 1, k = 2, . . . , n

}
with the norm ∥ · ∥W 1

2 (Ω,ρ). Denote it by
◦
W 1

2(Ω, ρ).

Let the right-hand side f(x) in equation (1) be a linear continuous functional on
◦
W 1

2(Ω, ρ) which
can be represented as

f = f0 +

n∑
k=1

∂fk
∂xk

, fk(x) ∈ L2(Ω, ρ), k = 0, 1, 2, . . . , n. (4)

Assume
ν ≤ ak(x) ≤ µ (k = 1, . . . , n),

ν, µ = const > 0, 0 ≤ ∂

∂x1
(akx

1−ε
1 ) ∈ L∞(Ω), (k = 2, . . . , n).

(5)

Definition. We say that the function u ∈
◦
W 1

2(Ω, ρ) is a weak solution of problem (1)–(5) if the
relation

a(u, v) = ⟨f, v⟩, ∀ v ∈
◦
W 1

2(Ω, ρ) (6)

holds, where

a(u, v) =
(
a1

∂u

∂x1
,
∂v

∂x1

)
ρ
+

n∑
k=2

(
ak

∂u

∂xk
, G

∂v

∂xk

)
ρ
,

⟨f, v⟩ = (f0, Gv)ρ −
n∑

k=1

(
fk,

∂

∂xk
Gv

)
ρ
.

Equality (6) formally is obtained from (∆u + f,Gv)ρ = 0 by integration by parts, taking into
account that ( ∂v

∂x1
, Gu

)
ρ
= −

(
v,

∂u

∂x1

)
ρ
,( ∂v

∂xk
, Gu

)
ρ
= −

(
v,G

∂u

∂xk

)
ρ
, k = 2, . . . , n.

Theorem. The problem (1)–(5) has a unique weak solution from
◦
W 1

2(Ω, ρ).
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Consider the periodic boundary value problem{
ẍ(t) = λ(Tx)(t) + f(t) for almost all t ∈ [a, b],

x(a) = x(b), ẋ(a) = ẋ(b),
(1)

where λ is a real number, T : C[a, b] → L[a, b] is a linear bounded operator, f ∈ L[a, b], a solution
x : [a, b] → R has an absolutely continuous derivative, C[a, b] is the space of continuous functions
x : [a, b] → R with the norm ∥x∥C = max

t∈[a,b]
|x(t)|, L[a, b] is the space of integrable functions

z : [a, b] → R with the norm ∥x∥L =
b∫
a
|z(t)| dt.

Suppose we investigate this problem under some uncertainty: we know only some sign properties
of the operator T and a result of the action of T on some function, for example, we know T1.
For such family of operators, we will find necessary and sufficient conditions for problems (1)
to have solutions for all functional differential equations with such functional operators. Thus,
unimprovable sufficient conditions for the unique solvability of the periodic boundary value problem
will be obtained. Conditions for the solvability with integral restrictions on functional operators
can be found in works by I. Kiguradze, R. Hakl, A. Lomtatidze, S. Mukhigulashvili, A. Ronto,
J. Sremr and others [1, 2, 3, 4].

Here we determine the best constants in the solvability conditions for a kind of point-wise
restrictions.

Let a function p ∈ L[a, b] be given. Define the piecewise linear functions

qt1,t2(t) ≡



(t− a)(t2 − t1)

b− a
, t ∈ [a, t1),

t2 − t− (b− t)(t2 − t1)

b− a
, t ∈ [t1, t2),

−(b− t)(t2 − t1)

b− a
, t ∈ [t2, b],

qt1,t2,p(t) ≡ qt1,t2(t)−
b∫

a

p(s)qt1,t2(s) ds, t ∈ [a, b].

For every z : [a, b] → R, denote z+(t) ≡ z(t)+|z(t)|
2 , z−(t) ≡ z(t)−|z(t)|

2 .

Theorem 1. Let T1 = p,
b∫
a
p(t) dt = 1, the functionals x 7→ (Tx)(t) be monotone for almost all

t ∈ [a, b], and

λ ̸= 0, |λ| < 1

max
a≤t1<t2≤b

b∫
a
(p+(t)q+t1,t2,p(t) + p−(t)q−t1,t2,p(t)) dt

. (2)
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Then periodic problem (1) has a unique solution.

Note that the function p may change its sign and the constant in the right-hand side of (2) is
exact.

Corollary 1. Let p ∈ L[a, b] be given, P ≡ |
b∫
a
p(t) dt| ̸= 0, f ∈ L[a, b]. The periodic boundary

value problem

ẍ(t) = p(t)x(h(t)) + f(t) for a.a. t ∈ [a, b],

x(a) = x(b), ẋ(a) = ẋ(b),

has a unique solution for all measurable functions h : [a, b] → [a, b] if

max
a≤t1<t2≤b

b∫
a

(
p+(t)q+t1,t2,p/P(t) + p−(t)q−t1,t2,p/P(t)

)
dt < 1. (4)

Theorem 2. Let non-negative q, r ∈ L[a, b] be given,
b∫
a
(q(t) − r(t)) dt = 1, λ is a real number.

The periodic boundary value problem

ẍ(t) = λ
(
(T+x)(t)− (T−x)(t)

)
+ f(t) for a.a. t ∈ [0, 1],

x(a) = x(b), ẋ(a) = ẋ(b),

has a unique solution for all linear positive operators T+, T− : C[a, b] → L[a, b] such that T+1 = q,
T−1 = r if

λ ̸= 0, |λ| < 1

max
a≤t1<t2≤b

b∫
a
(q(t)g+t1,t2,q−r(t) + r(t)g−t1,t2,q−r(t)) dt

. (3)

Hypothesis 1. Let p ∈ L[0, 1], p(t) ≥ 0, t ∈ [0, 1], be given, p(t) = p(1 − t) for all t ∈ [0, 1], and
p(t) = p(1/2− t) for all t ∈ [0, 1/2], f ∈ L[0, 1]. Then the periodic boundary value problem

ẍ(t) = λ p(t)x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable functions h : [0, 1] → [0, 1] if

0 < |λ| < 1

max
{ 1/4∫

0

t p(t) dt,
1/4∫
0

(1/4− t) p(t) dt
} . (5)

The best constants in the solvability conditions (2)–(5) for some functions p, q, r can be calcu-
lated in the explicit form.

First consider the problem

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(6)

where T : C[a, b] → L[0, 1] is a linear bounded operator such that

(T1)(t) =


p, t ∈

[
0,

1

2

]
,

q, t ∈
(1
2
, 1
]
,

and the functionals x 7→ (Tx)(t) are monotone for almost all t ∈ [0, 1]. Let

P ≡ max
{
|p|, |q|

}
, Q ≡ sign (pq)min

{
|p|, |q|

}
.
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Theorem 3. Problem (6) has a unique solution if

P ∈ (0, 32],
−16P

16 + P
< Q (7)

or

P ∈ (32, 64),
P

128− P

(√
512P − P − 128

)
< Q <

√
512P − 3P. (8)

Let

r(t) =


p, t ∈

[
0,

1

2

]
,

q, t ∈
(1
2
, 1
]
,

Corollary 2. The periodic problem

ẍ(t) = r(t)x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for every measurable function h : [0, 1] → [0, 1] if one of conditions (7), (8)
holds.

Theorem 4. The periodic boundary value problem

ẍ(t) = λ 2tx(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable functions h : [0, 1] → [0, 1] if and only if

0 ̸= |λ| < 1

max
k∈[0,1/2], s∈[k,1−k]

g1(k, s)g2(k, s)
≡ λ∗ ∈ (29.328, 29.329),

where

g1(k, s) ≡
(−1 + 3k + k2 − 3s+ 3s2

9(1− 2k)

)2
,

g2(k, s) ≡ −2k
(
1 + 2k − 7k2 + 4k3 − 6s+ 6sk − 3s2 + 12s2k

)
.

Theorem 5. The periodic boundary value problem

ẍ(t) = λ (Tx)(t) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all linear positive (or negative) operators T : C → L[0, 1] with (T1)(t) ≡
6 t (1− t) (or (T1)(t) ≡ −6 t (1− t)) if and only if

0 ̸= |λ| < 16

max
t∈[0,1/2]

t(1− 2t)(−4t2 + 6t+ 3)
∈ (29.737, 29.738).

Theorem 6. Let n∈ N. The periodic boundary value problem

ẍ(t) = λ
(
1− cos3(4nπt)

)
x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable functions h : [0, 1] → [0, 1] if and only if

0 ̸= |λ| <


288n2 π2

28 + 9n2π2
for odd n,

32 for even n.
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Theorem 7. Let n∈ N. The periodic boundary value problem

ẍ(t) = λ
(
1− cos(4nπt)

)
x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable h : [0, 1] → [0, 1] if and only if

0 ̸= |λ| <


32n2π2

4 + n2π2
for odd n,

32 for even n.

Theorem 8. The periodic boundary value problem

ẍ(t) = λ
(
p(t) = 1− cos4(2nπt)

)
x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable functons h : [0, 1] → [0, 1] if and only if

0 ̸= |λ| <


160n2π2

16 + 5n2π2
if n is odd,

32 if n is even.

Let n ∈ N and

p(t) =


tn if t ∈

[
0,

1

4

]
,∣∣∣1

2
− t

∣∣∣n if t ∈
(1
4
,
3

4

]
,

(1− t)n if t ∈
(3
4
, 1
]
.

Theorem 9. The periodic boundary value problem

ẍ(t) = λ p(t)x(h(t)) + f(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),

has a unique solution for all measurable functions h : [0, 1] → [0, 1] if and only if

0 ̸= |λ| < (n+ 2) 4n+2.
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Neural activity models which incorporate brain electrical stimulation effects have recently been
used in the study of different type of neural disorders like epilepsy and Parkinson’s disease [1–4].
The starting point for the analysis in these papers is a discretized version of the nonlocal neural field
model known as the Amari model [5–8], extended with a term describing the stimulation effects.
The latter term is considered as a control variable and corresponding optimization problems are
discussed. There is a need for investigating the well-posedness of such models as well as justifying
the numerical optimization procedure used in [9].

This serves as a motivation for the present research: We consider the model

w(t, x) =

t∫
a

∫
Rm

f
(
t, s, x, y, w(s, y), u(s, y)

)
dy ds, t ∈ [a,∞), x ∈ Rm, (1)

involving the control variable u : [a,∞)×Rm → Rk which is assumed to be Lebesgue measurable.
This model generalizes a number of nonlocal models which have extensively been used in neural
field theory [5–8]. Our aim is to study well-posedness of this model.

To this end, let us introduce the following notations:

• Rm is the m-dimensional real vector space with the norm | · |;

• Λ is some metric space;

• for any S ⊂ Λ, r > 0, we denote BΛ(S, r) =
∪
s∈S

{λ ∈ Λ | ρΛ(λ, s) < r};

• µ is the Lebesgue measure;

• M([a,∞)×Rm, µ,Rk) is a metric space of measurable functions m : [a,∞)×Rm → Rk with
the distance

ρM (m1,m2) = vrai sup
(t,x)∈[a,∞)×Rm

∣∣m1(t, x)−m2(t, x)
∣∣;

• L(Ω, µ,Rn) is the space of all measurable integrable functions χ : Ω → Rn with the norm

∥χ∥L(Ω,µ,Rn) =

∫
Ω

|χ(s)| ds, 1 ≤ p < ∞;

• C0(Ω, R
n) is the space of all continuous functions ϑ : Ω → Rn satisfying the additional

condition lim
|x|→∞

|ϑ(x)| = 0 in the case if Ω is unbounded, with the norm

∥ϑ∥C0(Ω,Rn) = max
x∈Ω

|ϑ(x)|;
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• C([a, b], C0(Ω, R
n)) is the space of all continuous functions ν : [a, b] → C0(Ω, R

n), with the
norm

∥ν∥C([a,b],C0(Ω,Rn)) = max
t∈[a,b]

∥ν(t)∥C0(Ω,Rn).

We assume that for some r0 > 0, the following conditions on the model (1) are fulfilled:

(i) For any t ∈ [a,∞), w ∈ Rn, x ∈ Rm and any ball u ∈ Rk, the function f(t, · , x, · , w, u) :
[a,∞)×Rm → Rn is measurable.

(ii) For almost all (s, y) ∈ [a,∞)×Rm and any u ∈ Rk, the function f( · , s, · , y, · , u) is continuous.

(iii) For any b ∈ (a,∞) and any r > 0, it holds true that

lim
r→∞

sup
t∈[a,b], x∈Rm\BRm (0,r)

∣∣∣∣
t∫

a

∫
Rm

f(t, s, x, y, w, u) dy ds

∣∣∣∣ = 0

uniformly for all w ∈ BRn(0, r), u ∈ BRk(u0(s, y), r0) ((s, y) ∈ [a,∞)×Rm).

(iv) For any b ∈ (a,∞) and any r > 0, there exists such g(b,r) ∈ L([a, b] × Rm, µ,R) that
|f(t, s, x, y, w, u)| ≤ g(b,r)(s, y) for all x ∈ Rm, w ∈ BRn(0, r), t ∈ [a, b], u ∈ BRk({u0(t, x)}, r0).

Definition. Choose an arbitrary u ∈ BM (u0, r0). We define a local solution to eq. (1), defined
on [a, a+γ] × Rm, γ ∈ (0,∞), to be a function wγ ∈ C([a, a+γ], C0(R

m, Rn)), that satisfies the
equation (1) on [a, a+γ] × Rm. We define a maximally extended solution to eq. (1), defined on
[a, a+η) × Rm, η ∈ (0,∞), to be a function wη : [a, a+η) × Rm → Rn, whose restriction wγ on
[a, a+γ] × Rm with any γ < η is its local solution and lim

γ→η−0
∥wγ∥C([a,a+γ],C0(Rm,Rn)) = ∞. We

define a global solution to eq. (1) to be a function w : [a,∞)×Rm → Rn, whose restriction wγ on
[a, a+γ]×Rm with any γ ∈ (0,∞) is its local solution.

We are now in position to formulate the main result in the present study:

Theorem. Let the assumptions (i)–(iv) hold true. Assume that the following conditions are satis-
fied:

1) For the given r0 > 0 and any r > 0 there exists f̃r(s, y) ∈ L([a,∞)×Rm, µ,R) (independent

of u) such that |f(t, s, x, y, w1, u) − f(t, s, x, y, w2, u)| ≤ f̃r(s, y)|w1 − w2| for all w1, w2 ∈
BRn(0, r), u ∈ BRk(u0(s, y), r0), t ∈ [a,∞), x ∈ BRm(0, r).

2) For any w ∈ Rn, t ∈ [a,∞), x ∈ Rm, ∆ → 0 it holds true that:∣∣∣f(t, · , x, · , w, u0( · , · ) + ∆)− f(t, · , x, · , w, u0)
∣∣∣ → 0

in measure on [a,∞)×Rm.

Then for each u ∈ BM (u0, r0), eq. (1) has a unique global or maximally extended solution, and each
local solution is a restriction of this solution. Moreover, if at u = u0 eq. (1) has a local solution w0γ

defined on [a, a+γ]×Rm, then for any {ui} ⊂ M([a,∞)×Rm, µ,Rk), ρM (ui, u0) → 0 one can find
number I such that for all i > I eq. (1) has a local solution wγ = wγ(ui) defined on [a, a+γ] × Ω
and ∥wγ(ui)− w0γ∥C([a,a+γ],C0(Rm,Rn)) → 0.

Proof. We are going to use Theorem 2.1 in [10] on well-posedness of parameterized operator Volterra
equations, so we represent (1) in terms of operator equation in the following way:

w = F (w, u), (F (w, u))(t, x) =

t∫
a

∫
Rm

f
(
t, s, x, y, w(s, y), u(s, y)

)
dy ds.
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Here, for each u ∈ BM (u0, r0), F : C([a, b], C0(R
m, Rn)) → C([a, b], C0(R

m, Rn)) provided that
the conditions (i)–(iv) are fulfilled.

According to Theorem 2.1 in [10], we need to check the following two conditions:

1. There exists q < 1 such that for any r > 0 one can find δ > 0 such that the following two
conditions are satisfied for all w1, w2 ∈ C([a, b], C0(R

m, Rn)), such that ∥w1∥C([a,b],C0(Rm,Rn)) ≤ r,
∥w2∥C([a,b],C0(Rm,Rn)) ≤ r:

q1) sup
t∈[a,a+δ], x∈Rm

∣∣∣∣
t∫

a

∫
Rm

f
(
t, s, x, y, w1(s, y), u(s, y)

)
dy ds−

t∫
a

∫
Rm

f
(
t, s, x, y, w2(s, y), u(s, y)

)
dy ds

∣∣∣∣ ≤
≤ q sup

t∈[a,a+δ], x∈Rm

∣∣w1(s, y)− w2(s, y)
∣∣,

q2) for any γ ∈ (0, b−a−δ], the condition w1(t, · ) = w2(t, · ) implies that

sup
t∈[a,a+γ+δ], x∈Rm

∣∣∣∣
t∫

a

∫
Rm

f
(
t, s, x, y,w1(s, y),u(s, y)

)
dy ds−

t∫
a

∫
Rm

f
(
t, s, x, y,w2(s, y),u(s, y)

)
dy ds

∣∣∣∣ ≤
≤ q sup

t∈[a,a+γ+δ], x∈Rm

∣∣w1(s, y)− w2(s, y)
∣∣.

2. For an arbitrary w ∈ C([a, b], C0(R
m, Rn)), the operator F : C([a, b], C0(R

m, Rn)) →
C([a, b], C0(R

m, Rn)) is continuous at (w, u0).
We now check the validity of q2). Choose an arbitrary b ∈ (a,∞), q0<1, r > 0. Let γ ∈ (0, b−a)

and w1(t, · ) = w2(t, · ), t ∈ [a, a+γ], where w1, w2 ∈ BC([a,b],C0(Rm,Rn))(0, r). Using assumptions
(i)–(iv) and condition 1) of Theorem 1, we get the following estimates

sup
t∈[a,a+γ+δ], x∈Rm

∣∣∣∣
t∫

a

∫
Rm

f
(
t, s, x, y, w1(s, y), u(s, y)

)
dy ds−

−
t∫

a

∫
Rm

f
(
t, s, x, y, w2(s, y), u(s, y)

)
dy ds

∣∣∣∣ ≤
≤ ε

2
+ sup

t∈[a,a+γ+δ], x∈BRm (0,rε)
−

a+γ+δ∫
a+γ

∫
Rm

∣∣∣f(t, s, x, y, w1(s, y), u(s, y)
)
dy ds−

− f
(
t, s, x, y, w2(s, y), u(s, y)

)∣∣∣ dy ds ≤
≤ ε

2
+ sup

t∈[a,a+γ+δ], x∈BRm (0,rε)

∣∣∣∣
a+γ+δ∫
a+γ

∫
Rm

f̃r(s, y)∥w1 − w2∥C([a,b],BC(Rm,Rn)) dy ds

∣∣∣∣ ≤ ε.

Here, rε > 0, δ > 0 can be chosen in such a way that ε < q0. Thus, we checked that condition q2
is satisfied. The verification of condition q1 is analogous.

In order to prove validity of 2, we take arbitrary ε > 0, ŵ ∈ C([a, b], C0(R
m, Rn)), wi ⊂

C([a, b], C0(R
m, Rn)), ui ⊂ M([a,∞) × Rm, µ,Rk), ∥ŵ − wi∥C([a,b],C0(Rm,Rn)), ρM (ui, u0) → 0
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(i→ ∞), and the estimate∥∥F (ŵ, u0)− F (wi, ui)
∥∥
C([a,b],C0(Rm,Rn))

=

= sup
t∈[a,b], x∈Rm

∣∣∣∣
t∫

a

∫
Rm

f
(
t, s, x, y, ŵ(s, y), u0(s, y)

)
dy ds−

t∫
a

∫
Rm

f
(
t, s, x, y, wi(s, y), ui(s, y)

)
dy ds

∣∣∣∣ ≤
≤ ε

3
+ sup

t∈[a,b], x∈BRm (0,rε)

∣∣∣∣
t∫

a

∫
Rm

f
(
t, s, x, y, ŵ(s, y), u0(s, y)

)
dy ds−

−
t∫

a

∫
Rm

f
(
t, s, x, y, wi(s, y), ui(s, y)

)
dy ds

∣∣∣∣ =
=

ε

3
+ sup

t∈[a,b], x∈BRm (0,rε)

t∫
a

∫
Rm

(∣∣∣f(t, s, x, y, ŵ(s, y), u0(s, y))− f
(
t, s, x, y, ŵ(s, y), ui(s, y)

)∣∣∣+
+

∣∣∣f(t, s, x, y, ŵ(s, y), ui(s, y))− f
(
t, s, x, y, wi(s, y), ui(s, y)

)∣∣∣) dy ds.

Estimating the first summand of the integrand, we get∣∣∣f(t, s, x, y, ŵ(s, y), u0(s, y))− f
(
t, s, x, y, ŵ(s, y), ui(s, y)

)∣∣∣ ≤
≤

∣∣∣f(t, s, x, y, ŵ(s, y), u0(s, y))− f
(
t
ε
, s, x ε, y, ŵε, u0(s, y)

)∣∣∣+
+

∣∣∣f(t ε, s, t ε, y, ŵε, u0(s, y)
)
− f

(
t
ε
, s, x ε, y, ŵε, ui(s, y)

)∣∣∣+
+

∣∣∣f(t ε, s, x ε, y, ŵε, ui(s, y)
)
− f

(
t, s, x, y, ŵ(s, y), ui(s, y)

)∣∣∣.
Here t

ε
, x ε, ŵε are approximations of t, x, ŵ(s, y), taking finite number of values (on their compact

ranges of definition). Thus, using the condition 2) of Theorem 1 and the assumptions (i)–(iv), the
first and third summands on the right-hand side of the inequality go to 0 uniformly with respect
to (s, y) ∈ [a, b]×Rm and the second summand go to 0 in measure on [a, b]×Rm.

Next, estimation of |f(t, s, x, y, ŵ(s, y), ui(s, y))− f(t, s, x, y, wi(s, y), ui(s, y))| using the condi-
tion 1) of Theorem 1, gives uniform convergence of this expression to 0 on [a, b]×Rm.

Thus, we can find such I that for any i > I, we get

sup
t∈[a,b], x∈BRm (0,rε)

t∫
a

∫
Rm

(∣∣∣f(t, s, x, y, ŵ(s, y), u0(s, y))− f
(
t, s, x, y, ŵ(s, y), ui(s, y)

)∣∣∣+
+
∣∣∣f(t, s, x, y, ŵ(s, y), ui(s, y))− f

(
t, s, x, y, wi(s, y), ui(s, y)

)∣∣∣) dy ds ≤ 2
ε

3
,

which concludes the verification of conditions of Theorem 2.1 in [10] and completes the proof.
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We study the connection between the existence of bounded (on real axis) solutions of differential
equations and the corresponding difference equations. We obtain the conditions under which the
existence of bounded solutions of differential equations implies the existence of bounded solution
of difference equation, and vice versa.

Throughout this work, R denotes the set of real numbers, Rd is the Euclidian space of d –
dimensional vectors, N is the set of natural numbers, Z is the set of integers. The euclidian norm
in Rd is denoted through | · |, and ∥ · ∥ is the matrix norm in the same space.

Consider the following system of differential equations

dx

dt
= X(t, x), (1)

t ∈ R, x ∈ D for D ⊂ Rd, and the corresponding system of difference equations

xh(t+ h) = xh(t) + hX
(
t, xh(t)

)
, (2)

where h > 0 is the step of difference equation. We assume that the function X(t, x) is continuously
differentiable and bounded together with its partial derivatives, i.e. ∃C > 0 such that

|X(t, x)|+
∣∣∣∂X(t, x)

∂t

∣∣∣+ ∥∥∥∂X(t, x)

∂x

∥∥∥ ≤ C (3)

for t ∈ R, x ∈ D, where ∂X
∂x is the corresponding Jacobi matrix.

In this paper we study the connection between the existence of globally bounded solutions of
(1) and of the corresponding system (2).

Here are some necessary statements and definition used later.
Consider the system (2) for t = t0 + kh, where t0 is fixed. We have

xhk+1 = xhk + hX(t0 + kh, xhk), (4)

where k ∈ Z, h > 0, xhk = xh(t0 + kh), xh(t0) = x0. The following results are used throughout the
work.
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Lemma 1. Let x(t) and xhk be the solutions of (1) and (4) on the interval [t0, t0 + T ] such that

x(t0) = xh0 = x0, x ∈ D. Then, if the inequality (3) holds, we have the estimate∣∣x(t0 + kh)− xhk
∣∣ < heCT [1 +KT ], (5)

for kh < T , where K = C + C2.

Lemma 2. If the inequality (3) holds, any solution of (4) xhk continuously depends on the initial
data x0, until it reaches the boundary of D.

Definition 1. We say that a solution xh(t) of system (2), defined for t ∈ R, is exponentially stable
uniformly in t0 if there exist δ > 0, N > 0 and α > 0 such that for any solution yh(t) of the system
(2) such that |yh(t0)− xh(t0)| < δ for t ≥ t0 we have the inequality∣∣xh(t)− yh(t)

∣∣ ≤ Ne−α(t−t0)
∣∣xh(t0)− yh(t0)

∣∣, (6)

where constants δ, N and α do not depend on t0.

Consider the system (4) for t0 = 0:

xhk+1 = xhk + hX(kh, xhk), (7)

Definition 2. A solution xhk of (7) is called exponentially stable uniformly in k0 if it satisfies the
conditions in 1 with t0 replaced with k0 and t replaced with kh.

Our main results are the following theorems.

Theorem 1. Assume the following conditions hold:

1) The function X(t, x) satisfies (3).

2) There exists h0 > 0 such that the system (2) has a bounded on R, exponentially stable (in

the sense of Definition 1) solution xh0
k , which lies in the domain D together with its ρ –

neighborhood for some ρ > 0.

3) Additionally,

h0e
C( ln 4N

α
+1)

[
1 + (C + C2)

( ln 4N
α

+ 1
)]

≤ δ

8
, (8)

3Nδ

2
< ρ, (9)

h0 ≤
ρ

4C
, (10)

where N , δ and α are defined in (6) and C is given by (3).

Then for all h, 0 < h < h0, the system (2) has a bounded solution on R.

We proceed with studying the conditions for the existence of a bounded solution of (1), given
that (2) has such a solution for t = kh0.

The following theorem holds.

Theorem 2. Let the following conditions hold:

1) the function X(t, x) satisfies the condition 1) of Theorem 1;

2) ∃h0 > 0 such that the system (7) has a bounded on Z, uniformly in k0 exponentially stable
solution which belongs to the domain D together with its ρ neighborhood.
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Then, if the inequalities (9)–(10) hold, the system (1) has a bounded solution defined on R.

We now proceed with the study the conditions on the existence of a bounded on R solution of
the system (2) under the assumption that the system (1) has such a solution.

Theorem 3. Let the following conditions hold:

1) The function X(t, x) satisfies the condition 1) of 1;

2) The system (1) has a bounded on R, asymptotically stable uniformly in t0 ∈ R solution x(t),
which lies in the domain D with some ρ – neighborhood.

Then there exists h0 such that for all 0 < h ≤ h0 the system (2) has a bounded on R solution xh(t),
and

sup
t∈R

∣∣xh(t)− x(t)
∣∣ → 0, h → 0 (11)

The next example shows that the asymptotic stability of a bounded solution x(t) is essential,
and without this assumption we can get a qualitatively different behavior of solutions of differential
and difference equations.

Example 1. Consider the differential equation

ẍ+ x = 0 (12)

with the general solution

x(t) = C1 cos t+ C2 sin t.

Its solutions are bounded, stable, but not asymptotically stable. The corresponding differential
equation has the form

x((k + 2)h)− 2x((k + 1)h) + 2x(kh) = 0, (13)

with the general solution

xhk = C12
hk
2 cos

hkπ

4
+ C22

hk
2 sin

hkπ

4
.

We see that for all steps h > 0, all solutions of this equation (except the trivial one) are unbounded.
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On the half-line [0,+∞[ , we consider the system

u′ = g(t)|v|1/α sgn v,
v′ = −p(t)|u|α sgnu,

(1)

where α > 0 and p, g : [0,+∞[→ R are locally Lebesgue integrable functions.
A pair (u, v) is said to be a solution to system (1) on the interval I ⊆ [0,+∞[ if the functions

u, v : I → R are absolutely continuous on every compact interval contained in I and satisfy equalities
(1) almost everywhere in I. In the paper [5], Mirzov proved that all non-extendable solutions to
system (1) are defined on the whole interval [0,+∞[. Therefore, speaking about a solution to
system (1), we assume without loss of generality that it is defined on the whole interval [0,+∞[ .
Mirzov also proved (see, e.g., [4, Theorem 9.3]) that all non-zero solutions (u, v) to system (1) are
proper, i.e., the inequality sup{|u(τ)|+ |v(τ)| : t ≤ τ < +∞} > 0 holds for every t ≥ 0.

Definition 1. A solution (u, v) to system (1) is called non-trivial if u ̸≡ 0 on any neighbourhood
of +∞. We say that a non-trivial solution (u, v) to system (1) is oscillatory if the function u has
a sequence of zeros tending to infinity, and non-oscillatory otherwise.

It is well known (see [5, Theorem 1.1]) that a certain analog of Sturm’s theorem holds for system
(1) under the additional assumption

g(t) ≥ 0 for a.e. t ≥ 0. (2)

In particular, if inequality (2) holds and system (1) has an oscillatory solution, then any other
non-trivial solution is also oscillatory. Moreover, under assumption (2), if (u, v) is an oscillatory
solution to system (1), then, together with u, the function v also oscillates. On the other hand, it
is clear that if g ≡ 0 on some neighbourhood of +∞, then all non-trivial solutions to system (1)
are non-oscillatory.

Therefore, we assume throughout the paper that inequality (2) holds and

meas
{
τ ≥ t : g(τ) > 0

}
> 0 for every t ≥ 0. (3)
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Definition 2. We say that system (1) is oscillatory if all its non-trivial solutions are oscillatory.

We first assume that the coefficient g is non-integrable on [0,+∞[ , i.e.,

∞∫
0

g(s) ds = +∞. (4)

Let

f1(t) :=

t∫
0

g(s) ds for t ≥ 0.

In view of assumptions (2), (3), and (4), we have limt→+∞ f1(t) = +∞ and there exists a number
tg ≥ 0 such that f1(t) > 0 for t > tg and f1(tg) = 0. Since we are interested in behaviour of
solutions in the neighbourhood of +∞, we can assume without loss of generality that tg = 0, i.e.,
f1(t) > 0 for t > 0.

For any κ > α, β > 0, and λ < α, we put

k1(t;κ, β, λ) :=
1

fκβ
1 (t)

t∫
0

[
fβ
1 (t)− fβ

1 (s)
]κ
fλ
1 (s)p(s) ds for t > 0, (5)

c1(t;λ) :=
α− λ

fα−λ
1 (t)

t∫
0

g(s)

fλ+1−α
1 (s)

( s∫
0

fλ
1 (ξ)p(ξ) dξ

)
ds for t > 0. (6)

Theorem 1. Let conditions (2), (3), and (4) hold, κ > α, β > 0, λ < α, and either

lim sup
t→+∞

k1(t;κ, β, λ) = +∞ (7)

or { −∞ < lim sup
t→+∞

k1(t;κ, β, λ) < +∞,

the function c1( · ;λ) does not possess a finite limit as t → +∞.
(8)

Then system (1) is oscillatory.

Observe that condition (7) with β = 1, λ = 0 and g ≡ 1 reduces to the condition

lim sup
t→+∞

1

tκ

t∫
0

(t− s)κp(s) ds = +∞ for some κ > α (9)

which is the half-linear extension of the classical Kamenev linear oscillation criterion (see [2]).
Conditions (8) then give a possible counterpart of the oscillation criterion (9).

It is well known that system (1) is oscillatory provided that the function

M : t 7−→ 1

f1(t)

t∫
0

g(s)

( s∫
0

p(ξ) dξ

)
ds (10)

is bounded from below in some neighbourhood of +∞ and does not have a finite limit as t → +∞
(see, e.g., [4, Theorem 12.3]). However, Theorem 1 can be applied also in the case, where the lower
limit of the function M given by (10) is −∞.
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Now we formulate a Hartman–Wintner type result which follows from Theorem 1. For any
λ < α and ν < 1, we put

c̃1(t;λ, ν) :=
1− ν

f1−ν
1 (t)

t∫
0

g(s)

fν
1 (s)

( s∫
0

fλ
1 (ξ)p(ξ) dξ

)
ds for t > 0. (11)

Corollary 1. Let conditions (2), (3), and (4) hold, λ < α, ν < 1, and either

lim
t→+∞

c̃1(t;λ, ν) = +∞

or
−∞ < lim inf

t→+∞
c̃1(t;λ, ν) < lim sup

t→+∞
c̃1(t;λ, ν).

Then system (1) is oscillatory.

Observe that Corollary 1 with λ = 0 and ν = 0 coincide with the above-mentioned Mirzov’s
result, namely Theorem 12.3 from [4]. On the other hand, it is worth mentioning that Corollary 1
with g ≡ 1, λ = 0 and ν = 1− α is in compliance with Theorem 1.1 stated in [3].

Unlike the above part, we assume in what follows that g is integrable on [0,+∞[ , i.e.,

+∞∫
0

g(s) ds < +∞. (12)

Let

f2(t) :=

+∞∫
t

g(s) ds for t ≥ 0.

In view of assumptions (2), (3), and (12), we have limt→+∞ f2(t) = 0 and f2(t) > 0 for t ≥ 0.
For any κ > α, β > 0, and λ > α, we put

k2(t;κ, β, λ) := fκβ
2 (t)

t∫
0

[
f−β
2 (t)− f−β

2 (s)
]κ
fλ
2 (s)p(s) ds for t ≥ 0, (13)

c2(t;λ) := (λ− α)fλ−α
2 (t)

t∫
0

g(s)

fλ+1−α
2 (s)

( s∫
0

fλ
2 (ξ)p(ξ) dξ

)
ds for t ≥ 0. (14)

Theorem 2. Let conditions (2), (3), and (12) hold, κ > α, β > 0, λ > α, and either

lim sup
t→+∞

k2(t;κ, β, λ) = +∞ (15)

or { −∞ < lim sup
t→+∞

k2(t;κ, β, λ) < +∞,

the function c2( · ;λ) does not possess a finite limit as t → +∞.
(16)

Then system (1) is oscillatory.

Analogously to the “non-integrable” case, the following Hartman–Wintner type result can be
derived from Theorem 2. For any λ > α and ν > 1, we put

c̃2(t;λ, ν) := (ν − 1)fν−1
2 (t)

t∫
0

g(s)

fν
2 (s)

( s∫
0

fλ
2 (ξ)p(ξ) dξ

)
ds for t ≥ 0. (17)
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Corollary 2. Let conditions (2), (3), and (12) hold, λ > α, ν > 1, and either

lim
t→+∞

c̃2(t;λ, ν) = +∞

or
−∞ < lim inf

t→+∞
c̃2(t;λ, ν) < lim sup

t→+∞
c̃2(t;λ, ν).

Then system (1) is oscillatory.

As far as we know, a Hartman–Wintner type result for the half-linear equation(
r(t)|u′|q−1 sgnu′

)′
+ p(t)|u|q−1 sgnu = 0 (18)

in the case, where
+∞∫
0

r
1

1−q (s) ds < +∞ (19)

is satisfied, is known only under the additional assumption that p(t) ≥ 0 for a. e. t ≥ 0 (see survey
given in [1, Section 2.2]). We can exclude this additional assumption and derive from Corollary 2
the following statement.

Corollary 3. Let λ > q − 1 and relation (19) hold. Then each of following two conditions is
sufficient for oscillation of (18):

lim
t→+∞

R(t)

t∫
0

1

r
1

q−1 (s)R2(s)

( s∫
0

Rλ(ξ)p(ξ) dξ

)
ds = +∞,

−∞ < lim inf
t→+∞

R(t)

t∫
0

1

r
1

q−1 (s)R2(s)

( s∫
0

Rλ(ξ)p(ξ) dξ

)
ds <

< lim sup
t→+∞

R(t)

t∫
0

1

r
1

q−1 (s)R2(s)

( s∫
0

Rλ(ξ)p(ξ) dξ

)
ds,

where R(t) :=
+∞∫
t

r
1

1−q (s) ds for t ≥ 0.
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Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T is the sign of

transposition. Suppose that O ⊂ Rn
x, V ⊂ Rr

u are open sets and X0 ⊂ O, P ⊂ Rl
p are compact sets.

Let the (1+n)-dimensional function F (t, x, u, p) = (f0, f)T be continuous on the set I×O×V ×P
and continuously differentiable with respect to x ∈ O, where I = [t0, t1]. By ∆(V ) we denote
collection of compact sets U ⊂ V . Let 0 ≤ σ1 < σ2 be a given number and let Φ be the set
of initial functions φ(t) ∈ O, t ∈ [t0 − σ2, t0]. Next, let Ω(U) be the set of measurable control
functions u(t) ∈ U , t ∈ I, where U ∈ ∆(V ) and let Q be the set of continuous scaler functions
q(t, x), (t, x) ∈ I ×O.

To each µ = (σ, x0, φ, p) ∈ Λ = [σ1, σ2]×X0×Φ×P we put into correspondence the controlled
differential equation with distributed delay

ẋ(t) =

0∫
−σ

f
(
t, x(t+ s), u(t), p

)
ds, t ∈ I, u ∈ Ω(U) (1)

with the initial condition

x(t) = φ0(t), t ∈ [t0 − σ, t0), x(t0) = x0, (2).

Definition 1. Let w = (µ, u) = (σ, x0, φ, p, u) ∈ W = Λ × Ω(U) be a given element. A function
x(t) = x(t;w), t ∈ [t0 − σ2, t1], is called a solution of equation (1) with initial condition (2), or a
solution corresponding to element w defined on [t0 − σ, t1], if it satisfies condition (2), is absolutely
continuous on the interval [t0, t1] and satisfies equation (1) everywhere on [t0, t1].

Definition 2. Let µ ∈ Λ be a fixed element. A control u ∈ Ω(U) is said to be admissible if for the
element w = (µ, u) there exists the corresponding solution x(t) = x(t;w) defined on the interval
[t0 − σ2, t1].

The set of admissible control u(t) is denoted by Ω(µ;U).

Definition 3. Let an element µ = (σ, x0, φ0, p) ∈ Λ and a function q ∈ Q be given. A control
u0(t;µ,U, q) ∈ Ω(µ;U) is called optimal if

J(u0( · ;µ,U, q), σ, p, q) = inf
{
J(u( · ), σ, p, q) : u ∈ Ω(µ;U)

}
,

where

J(u( · ), σ, p, q) = q(t1, x(t1)) +

t1∫
t0

0∫
−σ

f0(t, x(t+ s), u(t), p) ds dt (3)

and x(t) = x(t;w), w = (µ, u).
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The problem (1)–(3) is called an optimal control problem with the distributed delay. The
control u0(t;µ,U, q) is called a solution of the problem (1)–(3).

To formulate the main result we introduce the following notations: by M we denote the set of
continuous functions x(t) ∈ O, t ∈ I1 = [t0 − σ2, t0) ∪ (t0, t1] with cl(x(I1)) ⊂ O,

F
(
t, x( · ), u, σ, p

)
=

0∫
−σ

F (t, x(t+ s), u, p) ds, G
(
t, x( · ), U, σ, p

)
=

{
F (t, x( · ), u, σ, p) : u ∈ U

}
,

t ∈ I, x( · ) ∈ M, U ∈ ∆(V ), σ ∈ [σ1, σ2], p ∈ P.

Theorem. Let µ0 = (σ0, x00, φ0, p0) ∈ Λ be a fixed element and let U0 ∈ ∆(V ) be a given set. Let
the following conditions hold:

1. Ω(µ0;U0) is not empty;

2. there exists a compact set K ⊂ O such that for every u ∈ Ω(µ0;U0) we have

x(t;w0) ∈ K, t ∈ [t00 − σ2, t1],

where w0 = (µ0, u);

Then for any ε > 0 there exists a number δ = δ(ε) such that for every

µ = (σ, x0, φ, p) ∈ Λ, q ∈ Q, U ∈ ∆(V )

the conditions
|σ − σ0|+ |x0 − x00|+ ∥φ− φ0∥+ ∥q − q0∥+D(U,U0) ≤ δ

are satisfied and the set G(t, x( · ), U, σ, p) is convex for each (t, x( · )) ∈ I ×M .
Then the optimal control problem (1)–(3) has a solution u0(t;µ,U, q) ∈ Ω(U) and the following

inequality ∣∣∣J(u0( · ;µ0, U0, q0), σ0, p0, q0
)
− J

(
u0( · ;µ,U, q), σ, p, q

)∣∣∣ ≤ ε

is fulfilled. Here

∥φ− φ0∥ = sup
{
|φ(t)− φ0(t)| : t ∈ [t0 − σ2, t0]

}
,

∥q − q0∥ = sup
{
|q(t, x)− q0(t, x)| : (t, x) ∈ I ×K

}
,

D(U,U0) = sup
{
|u′ − u′′| : u′ ∈ U, u′′ ∈ U0

}
.

Theorem is proved by scheme given in [1–3].

References

[1] T. A. Tadumadze, Some problems in the qualitative theory of optimal control. (Russian) Tbilis.
Gos. Univ., Tbilisi, 1983.

[2] P. A. Dvalishvili, Some problems in the qualitative theory of optimal control with distributed
delay. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 41 (1991), 83–113, 158.

[3] P. Dvalishvili and I. Ramishvili, A theorem on the continuity of the minimum of an inte-
gral functional for one class of optimal problems with distributed delay in controls. Proc. A.
Razmadze Math. Inst. 163 (2013), 29–38.



40 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

Asymptotic Representation of Solutions of

Second-Order Differential Equations with

Regularly and Rapidly Varying Nonlinearities

V. M. Evtukhov

Odessa National University, Odessa, Ukraine
E-mail: evmod@i.ua

E. S. Vladova

Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine
E-mail: lena@gavrilovka.com.ua

We consider the differential equation

y′′ = α0p(t)φ1(y)φ2(y
′), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, the φi : ∆(Y 0
i ) → ]0,+∞[

(i = 1, 2) are some twice continuously differentiable functions, where ∆(Y 0
i ) is some one-sided

neighborhood of the point Y 0
i , Y

0
i is equal to either 0 or ±∞.

This equation has been considered in the works of Evtukhov V. M. [6]–[9] in case, when φi(z)
were power-law functions, and in the works of Belozerova M. A. [1]–[4] in cases, when φi(z) were
slowly or regularly varying functions when z → Y 0

i , i = 1, 2 (see Seneta [10]).
In the equation (1), we suppose that the function φ1(z) satisfies the conditions:

lim
z→Y 0

1
z∈∆(Y 0

1 )

zφ′
1(z)

φ1(z)
= λ (λ ∈ R), (2)

and the function φ2(z) is following:

φ′
2(z) ̸= 0 when z ∈ ∆(Y 0

2 ), lim
z→Y 0

2
z∈∆(Y 0

2 )

φ2(z) = Φ0
2, Φ0

2 ∈ {0,+∞},

lim
z→Y 0

2
z∈∆(Y 0

2 )

φ′′
2(z)φ2(z)

[φ′
2(z)]

2
= 1.

(3)

The fulfilment of requirements (2), (3) means that the function φ1(z) is regularly or slowly
varying when z → Y 0

1 , and the function φ2(z) is rapidly varying when z → Y 0
2 . With such

assumptions for the functions φi(z), i = 1, 2, we are unaware of any results about the asymptotic
behavior of solutions neither for the equation (1), not for any of its specific cases.

A solution y of the equation (1) is called a Pω(Λ0)-solution, where −∞ ≤ Λ0 ≤ +∞, if it is
defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions:

lim
t↑ω

y(t) = Y 0
1 , lim

t↑ω
φ2(y

′(t)) = Φ0
2,

lim
t↑ω

φ′
2(y

′(t))

φ2(y′(t))

y′′(t)y(t)

y′(t)
= Λ0. (4)
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The aim of the paper is to derive necessary and sufficient conditions for the existence of Pω(Λ0)-
solutions of the equation (1) when Λ0 ∈ R \ {0}, and also to establish asymptotic formulas for such
solutions and their derivatives of the first order.

Let us introduce notation needed in forthcoming considerations.
First, we set:

µ0i =

{
1, if Y 0

i = +∞, orY 0
i = 0 and ∆(Y 0

i ) is a right neighborhood of the point 0,

−1, if Y 0
i = −∞, orY 0

i = 0 and ∆(Y 0
i ) is a left neighborhood of the point 0.

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

J(t) =



t∫
A

p(τ) dτ, if λ ̸= −Λ0,

t∫
A

πω(τ)p(τ) dτ, if λ = −Λ0,

β =

{
1 + λΛ−1

0 , if λ ̸= −Λ0,

−Λ−1
0 , if λ = −Λ0,

where the integration limit A ∈ {ω, a} is chosen so as to ensure that the corresponding integral J
tends either to zero or to infinity when t ↑ ω.

Next, we set numbers A∗
i (i = 1, 2):

A∗
1 =

{
1, if ω = ∞,

−1, if ω <∞,
A∗

2 =

{
1, if A = a,

−1, if A = ω.

Theorem 1. Let Λ0 ∈ R \ {0}. Then, for the existence of Pω(Λ0)-solutions of the equation (1), it
is necessary and sufficient that

lim
t↑ω

πω(t)J
′(t)

J(t)
= −Λ0β (5)

and sign conditions be satisfied

A∗
1 > 0 if Y 0

1 = ±∞, A∗
1 < 0 if Y 0

1 = 0,

A∗
2β > 0 if Φ0

2 = 0, A∗
2β < 0 if Φ0

2 = ±∞,
(6)

µ01µ
0
2A

∗
1 > 0 and α0µ

0
2A

∗
2β > 0. (7)

Moreover, each solution of this kind admits the following asymptotic representation when t ↑ ω

y(t)

y′(t)
= πω(t)[1 + o(1)], (8)

1

φ1(y(t))φ′
2(y

′(t))
= α0

πω(t)p(t)

Λ0
[1 + o(1)], (9)

moreover, for ω = +∞, there exists a one-parameter family of such solutions, if Λ0 > 0, and
there exists a two-parameter family of such solutions, if Λ0 < 0; for ω < +∞, there exists a
one-parameter family of such solutions, if Λ0 > 0.

We will introduce auxiliary notation and conditions that will enable us to rewrite the asymptotic
formulas (8), (9) more conveniently.

Definition (see [4]). We say that a function θ : ∆(U0) → ]0,+∞[, U0 ∈ {0,±∞} satisfies condition
S if for any continuously differentiable function l : ∆(U0) → ]0,+∞[ such that

lim
z→U0

z∈∆(U0)

z l′(z)

l(z)
= 0,
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the following asymptotic formula is fulfilled:

θ(zl(z)) = θ(z)[1 + o(1)] if z → U0
(
z ∈ ∆(U0) ).

Since the φ1(z) is a regularly varying function of the λ-order when z → Y 0
1 , then for this

function the following representation is executed:

φ1(z) = |z|λθ1(z), (10)

where the function θ1(z) is slowly varying when z → Y 0
1 .

Let us introduce notation for the rapidly varying function φ2(z):

ψ(z) =

z∫
B

ds

φ2(s)
, where B =


Y 0
2 , if

Y 0
2∫

b

ds

φ2(s)
converges,

b, if

Y 0
2∫

b

ds

φ2(s)
diverges,

(11)

where b is any number from the interval ∆(Y 0
2 ) and Ψ0 = lim

z→Y 0
2

ψ(z).

It is evident that the function ψ(z) is also rapidly varying when z → Y 0
2 , consequently, |ψ−1(z)|

is a slowly varying function when z → Ψ0.

Theorem 2. Let Λ0 ∈ R \ {0} and functions θ1(z), |ψ−1(z)| satisfy the condition S. Then each
Pω(Λ0)-solution (if any) of the equation (1) admits the asymptotic representations when t ↑ ω

y(t) = µ01

∣∣∣πω(t)ψ−1
(
µ02|J(t)|

1
β
)∣∣∣[1 + o(1)],

1

φ′
2(y

′(t))
= −µ02

∣∣∣πω(t)ψ−1(µ02|J(t)|
1
β
)∣∣∣λ∣∣∣Λ−1

0 πω(t)p(t)θ1
(
µ01|πω(t)|

)∣∣∣[1 + o(1)].

Theorems 1 and 2 were proved using the results for cyclic systems of differential equations with
regularly varying nonlinearities established in [5].

As an example illustrating our results, consider the differential equation:

y′′ = α0p(t)|y|λ
∣∣ ln |y|∣∣γe−σ|y′|δ |y′|1−δsign y′, (12)

where α0 ∈ {1,−1}, δ, σ ∈ R \ {0}, λ, γ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function.
Equation (12) belongs to the type of equations (1), where φ1(z) = |z|λ| ln |z||γ , φ2(z) =

e−σ|z|δ |z|1−δsign z. The function φ1(z) is properly varying of the λ-order, when z → Y 0
2 , and

the function φ2(z), in case δ > 0, is rapidly varying when z → ±∞, and in case δ < 0, it is rapidly
varying when z → 0.

For the φ2(z), the function ψ(z) which was defined in (11) has the following form:

ψ(z) =
1

σδ
eσ|z|

δ
.

In their turn, the function θ1(z), which was defined in (10), and the function ψ−1(z) have the
following form:

θ1(z) =
∣∣ ln |z|∣∣γ , ψ−1(z) = ln

1
δ |σδz|

1
σ

and satisfy the condition S.
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For the equation (12), the condition (4) from the definition of Pω(Λ0)-solution has the following
form:

lim
t↑ω

σδ|y′|δ yy
′′(t)

[y′(t)]2
= −Λ0.

Therefore, for the equation (12), Theorems 1 and 2 readily imply the following assertion.

Corollary. Let Λ0 ∈ R \ {0}. Then for the existence of Pω(Λ0)-solution of the equation (12), it
is necessary and sufficient that the conditions (5)–(7) be satisfied. Moreover, each solution of this
kind admits the following asymptotic representation when t ↑ ω:

y(t) = µ01

∣∣∣πω(t) ln 1
δ

∣∣µ02σδ|J(t)| 1β ∣∣ 1δ ∣∣∣[1 + o(1)],

|y′(t)|δ = 1

σ

[
λ ln

∣∣∣πω(t) ln 1
δ

∣∣µ02σδ|J(t)| 1β ∣∣ 1δ ∣∣∣+ ln
∣∣∣Λ−1

0 πω(t)p(t)
∣∣ ln |µ01πω(t)|∣∣γ∣∣∣]+ o(1),

moreover, for ω = +∞, there exists one-parameter family of solutions, if Λ0 > 0, and there exists
two-parameter family of solutions, if Λ0 < 0; for ω < +∞, there exists one-parameter family, if
Λ0 > 0.
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We have established sufficient conditions for the existence of invariant toroidal manifolds of a
certain class of linear extensions of dynamical system on torus. A similar problem for a sufficiently
wide class of impulsive differential equations with non-fixed impulses also have been investigated.

We consider a system of differential equations, defined in the direct product of a torus Tm and
an Euclidean space Rn

dφ

dt
= a(φ),

dx

dt
= A(φ)x+ f(φ), (1)

where φ = coll (φ1, . . . , φm), x = coll (x1, . . . , xn), A(φ) and f(φ) are continuous 2π-periodic with
respect to each of the variable φj , j = 1, . . . ,m matrix and vector functions, respectively, defined
on the torus Tm.

We assume that the vector function a(φ) satisfies the Lipschitz’s condition∥∥a(φ)− a(ψ)
∥∥ ≤ L∥φ− ψ∥, (2)

for each φ,ψ ∈ Tm and some constant α > 0.
Let φt(φ), φ0(φ) = φ be the solution of the first of equations (1).
Consider the system of equations

dx

dt
= A(φt(φ))x+ f(φt(φ)) (3)

that depends on φ as a parameter.
By invariant toroidal manifold of system (1) we will understand the set x = u(φ), u(φ) ∈ C(Tm),

where u(φ) is such function that x(t, φ) = u(φt(φ)) is a solution of system of equations (3) for each
φ ∈ Tm.

Deep research regarding the existence of invariant toroidal manifolds of differential equations
were made by A. M. Samoilenko and the results of these studies are summarized in the classical
monograph [1]. The main approach to the study of toroidal manifolds of system of equations (1) is
based on the concept of Green–Samoilenko function of the invariant tori problem introduced in [1].

Let Ωt
τ (φ),Ω

τ
τ (φ) = E be a fundamental matrix of system (3) and C(φ) be a matrix function

from the space C(Tm).
Let

G0(τ, φ) =

{
Ω0
τ (φ)C(φτ (φ)), τ ≤ 0,

−Ω0
τ (φ)E − C(φτ (φ)), τ > 0.

(4)

Function G0(τ, φ) is called Green–Samoilenko function of the invariant tori problem (1) if the
following estimate holds

∞∫
−∞

∥G0(τ, φ)∥ dτ ≤ K <∞, φ ∈ Tm. (5)

If system of equations (1) has a Green–Samoilenko function, it’s invariant toroidal manifold
may be represented as

x = u(φ) =

∞∫
−∞

G0(τ, φ)f(φτ (φ)) dτ, φ ∈ Tm.
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Consider two classes of differential equations for which a Green–Samoilenko functions exist, so
the invariant toroidal sets exist as well.

Let the matrix A(φτ (φ)) from the system (1) commutes with its integral (Lappo–Danilevsky
case, see [2, Part 2, § 13] for details).

A(φt(φ))

t∫
τ

A(φs(φ)) ds =

t∫
τ

A(φs(φ)) ds ·A(φt(φ)) (6)

for t ≥ τ .
Then

Ωt
τ (φ) = e

t∫
τ
A(φs(φ)) ds

is a fundamental matrix of homogeneous system (3) and the following theorem holds.

Theorem 1. Suppose that for any t ≥ τ ≥ 0 a matrix A(φt(φ)) commutes with its integral. If all
the eigenvalues of matrix

A0 = lim
t→∞

1

t

t∫
τ

A(φs(φ)) ds (7)

are on the left half of the complex plane λ, then system (1) has an asymptotically stable invariant
toroidal manifold x = u(φ), φ ∈ Tm, for any f(φ) ∈ C(Tm).

Consider the case where the matrix A(φ) in system (1) is such that the largest eigenvalue of
the matrix

Â(φ) =
1

2

(
A(φ) +AT (φ)

)
,

where AT (φ) is a matrix transposed to A(φ), Λ(φ) is negative in ω-limit points of any solution
φt(φ) of the first equation from (1).

Using the Vazhevsky inequality [2], we see that in this case the function

G0(τ, φ) =

{
Ω0
τ (φ), τ ≤ 0,

0, τ > 0
(8)

satisfies the estimate
∥G0(τ, φ)∥ ≤ Ke−γ|τ |, τ ∈ R,

and it is a Green–Samoilenko function of the invariant tori problem. Thus, the system of equations
(1) has an asymptotically stable invariant toroidal manifold

x = u(φ) =

0∫
−∞

Ω0
τ (φ)f(φτ (φ)) dτ, φ ∈ T .

Finally, we will develop the conditions for the existence of invariant toroidal sets of impulsive
system of differential equations that undergo impulsive perturbation at the moments when the
phase point meets a given set in the phase space

dφ

dt
= a(φ),

dx

dt
= A(φ)x+ f(φ), φ ̸∈ Γ, (9)

∆x
∣∣
φ∈Γ = B(φ)x+ g(φ).

Suppose the set Γ is a smooth (m− 1)-dimensional submanifold of the torus Tm dimension and
is determined by the equation Φ(φ) = 0, where ϕ(φ) is a continuous scalar 2π-periodic with respect
to each of the components φv, v = 1, . . . ,m function.
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Let ti(φ), i ∈ Z, be solutions of the equation Φ(φt(φ)) = 0, which are the moments of impulsive
perturbations in system (9), and assume that uniformly with respect to t ∈ R there exists a limit

lim
T→∞

i(t, t+ T )

T
= ρ, (10)

where i(a, b) is a number of points ti(φ) in the interval (a, b).

Theorem 2. Let a matrix A(φ) satisfy the Lappo–Danilevsky condition for any t ≥ τ ≥ 0 and
uniformly with respect to t ∈ R the finite limit (10) exist.

Then, if

γ + ρ lnα < 0, (11)

γ = max
j

Reλj(A0), α2 = max
φ∈Tm

max
j
λj(E +B(φ))T (E +B(φ)),

then system of equations (9) has an asymptotically stable invariant toroidal set

x = u(φ) =

0∫
−∞

G0(τ, φ)f(φτ (φ)) dτ+

+
∑

ti(φ)<0

G0(ti(φ) + 0, φ)g(φti(φ)(φ)), φ ∈ Tm.

Note that the conditions of Theorem 2 can be weakened by requiring the inequality (11) to be
fulfilled not on the whole surface of a torus, but only in ω-limit sets of all solutions of the first
equation from (9).
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1 Statement of the Problem and the Main Result

Our results deal with the following family of equations

u′′ +
g(t)

uλ
= h(t)uδ, (1)

where λ > 0, δ ∈ [0, 1), g, h ∈ Lω, and g is a non-negative function not necessarily essentially
bounded from below by some positive constant. We establish a relation between the order of the
singularity λ, the order of the nonlinearity δ, and the regularity p of the function [h]+ guaranteeing
the existence of an ω-periodic solution to (1). Furthermore, one can easily check that the obtained
results establish a link between the results obtained both in [2] and [3].

In the paper [1], the authors studied the equation (1) with δ = 0 and proved that if h > 0,
g(t) ≥ 0 for a.e. t ∈ R, and

(
ω

4

ω∫
0

[h]+(s) ds

)λ
ω∫

0

h(s) ds ≤
ω∫

0

g(s) ds (2)

holds, then (1) (with δ = 0) has at least one ω-periodic solution. In spite of the fact that the
condition (2) is unimprovable, in general, as shown in [1, Counter-example 4.1], for some particular
cases it can be weakened (see Corollary 4 below). However, the main importance of the present
paper lies in the answer to the cases when the function g is positive almost everywhere in R but it
is not uniformly essentially bounded from below by some positive constant. In particular, to that
cases when g can be estimated by some polynomial with isolated zeroes (see Corollary 5).

For convenience, we are going to introduce a list of notation which is used throughout:
N, Z, and R are the sets of all natural, integer, and real numbers, respectively;
Cω is the Banach space of ω-periodic continuous functions u : R → R, endowed with the norm

∥u∥C = max{|u(t)| : t ∈ [0, ω]};
Lp
ω, where 1 ≤ p < +∞, is the Banach space of ω-periodic functions h : R → R which are

Lebesgue integrable on [0, ω] in the p-th power, endowed with the norm ∥h∥p =
( ω∫
0

|h(t)|p dt
)1/p

;

Lω = L1
ω;

L∞
ω is the Banach space of ω-periodic essentially bounded functions h : R → R, endowed with

the norm ∥h∥∞ = ess sup
{
|h(t)| : t ∈ [0, ω]

}
;

if h ∈ Lω then

h =
1

ω

ω∫
0

h(s) ds, [h]+(t) =
|h(t)|+ h(t)

2
, [h]−(t) =

|h(t)| − h(t)

2
for a.e. t ∈ R.
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By an ω-periodic solution to the equation (1) we understand a positive function u ∈ Cω which is
absolutely continuous together with its first derivative on every compact interval of R and satisfies
(1) almost everywhere on R. To formulate our main result we need the following notation

Notation 1. Let g, h ∈ Lω, g(t) ≥ 0 for a.e. t ∈ R, σ ≥ 0. Then, for every t ∈ R, we define

G(t, σ) = lim
x→t+

t+ω
2∫

x

g(s)

(s− t)σ
ds+ lim

x→t−

x+ω∫
t+ω

2

g(s)

(t+ ω − s)σ
ds,

H−(t, σ) = lim
x→t+

t+ω
2∫

x

[h]−(s)

(s− t)σ
ds+ lim

x→t−

x+ω∫
t+ω

2

[h]−(s)

(t+ ω − s)σ
ds.

Note that, for every fixed t ∈ R, the limits in Notation 1 exist and each of them is either finite
or equal to +∞.

Theorem 1. Let [h]+ ∈ Lp
ω, p ∈ [1,+∞),

g(t) ≥ 0 for a.e. t ∈ R, g > 0, (3)

and let there exist a function φ ∈ Lq
ω, q ∈ [1,+∞), such that [h]+(t) ≤ φ(t)g

q−1
q (t) for a.e. t ∈ R1.

Let, moreover,

G
(
t,
(2p− 1)(λ+ δ)q

(1− δ)p

)
+H+H−

(
t,
(2p− 1)(λ+ δ)(q − 1)

(1− δ)p

)
> Hq

+∥φ∥qq for t ∈ R, (4)

where

H+ =

[
z(p)

((1− δ)p

2p− 1

) p−1
p
(1− δ)∥[h]+∥p

]λ+δ
1−δ

, z(p) =


( p− 1

(1 + δ)p− 1

) p−1
p

if p > 1,

1 if p = 1.

(5)

Then there exists a unique ω-periodic solution to (1) if and only if h > 0.

It can be easily verified that there is no ω-periodic solution to (1) provided (3) is fulfilled and
h ≤ 0.

Further, we would like to emphasize that the equation (1) has at most one ω-periodic solution
provided g, h ∈ Lω are such that (3) is satisfied, δ ∈ [0, 1), and λ > 0. As far as we know such a
result is new for this type of equations.

In conclusion, our results can be represented as a genuine relation between the order of the
singularity, the order of the nonlinear term, and the regularity of the input functions involved,
existing in the class of differential equations with attractive singularity.

2 Corollaries and Examples

Below we discuss some particular cases illustrating the result obtained. The first assertion shows
that Theorem 1, being applied when the function g is uniformly bounded from below by a positive
constant, yields as a corollary the results proven in [2, 3].

Corollary 1. Let [h]+ ∈ Lp
ω, p ∈ [1,+∞), g(t) ≥ g0 > 0 for a.e. t ∈ R, and let λ+δ

1−δ ≥ 1
2p−1 . Then

there exists a unique ω-periodic solution to (1) if and only if h > 0.

1If q = 1 then we put g
q−1
q (t) = 1 for t ∈ R.
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In the case when [h]+ ∈ L∞
ω then [h]+ ∈ Lp

ω for every p ∈ [1,+∞). Therefore, from Corollary 1
we obtain the following assertion:

Corollary 2. Let [h]+ ∈ L∞
ω and let g(t) ≥ g0 > 0 for a.e. t ∈ R. Then there exists a unique

ω-periodic solution to (1) if and only if h > 0.

Example 1. In [3], there was proven that the equation

u′′ +
1

uλ
= h(t) (6)

with [h]+ ∈ Lp
ω and h > 0, has a unique ω-periodic solution if λ ≥ 1/(2p − 1). Moreover, there is

also established an example showing that for every λ ∈ (0, 1/(2p − 1)), there exists h ∈ Lp
ω with

h > 0 such that (6) has no ω-periodic solution.
Corollary 1 says that if a sub-linear term is added to (6), the condition λ ≥ 1/(2p− 1) can be

weakened. In particular,

u′′ +
1

uλ
= h(t)uδ (7)

has a unique ω-periodic solution for any λ > 0 if δ ∈ [1/(2p), 1), provided [h]+ ∈ Lp
ω, h > 0. On

the other hand, a relation of this type was proven in [2] by using the method of lower and upper
functions in the case when p = 1. Note here that Corollary 1 joins both results of [2] and [3] and
establishes a relation between the orders of the singularity and nonlinearity, and the regularity of
the input function, guaranteeing the existence of a unique ω-periodic solution to (7).

As it was mentioned in Example 1, in the case when λ < 1/(2p − 1), an additional condition
on h is required in order to guarantee the existence of an ω-periodic solution to (6). One of such a
condition can be obtained from Theorem 1 immediately by putting φ ≡ [h]+ and q = p. Then we
have the following assertion:

Corollary 3. Let [h]+ ∈ Lp
ω, p ∈ [1,+∞), and let λ+δ

1−δ < 1
2p−1 . Let, moreover,

2(1− δ)

1 + λ− 2p(λ+ δ)

(ω
2

) 1+λ−2p(λ+δ)
1−δ

+H+

( 2

ω

) (2p−1)(λ+δ)(p−1)
(1−δ)p

ω∫
0

[h]−(s) ds > Hp
+∥[h]+∥pp,

where H+ is given by (5). Then there exists a unique ω-periodic solution to (7) if and only if h > 0.

If p = 1 and δ = 0, then Corollary 3 results in the following consequence.

Corollary 4. Let [h]+ ∈ Lω and let λ < 1. Let, moreover,

(
ω

4

ω∫
0

[h]+(s) ds

)λ
ω∫

0

h(s) ds <
ω

2λ(1− λ)
. (8)

Then there exists a unique ω-periodic solution to (6) if and only if h > 0.

It is worth mentioning here that the condition (8) improves the condition (2), which was ob-
tained in [1], for the equation (6).

However, as it was mentioned in the introduction, the main importance of Theorem 1 can be
distinguished for the cases when g has zeroes at isolated points. Thus, the essence of the condition
(4) is different to the one established in [1, Corollary 4.2]. That gives also an answer to the open
problem [1, Open problem 4.2].
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Corollary 5. Let h ∈ Lp
ω, p ∈ [1,+∞), and let there exist c > 0, αi, βi ≥ 0, ti ∈ R (i = 1, . . . , n)

such that t1 < t2 < · · · < tn < t1 + ω and

g(t) ≥ c(ti+1 − t)αi+1(t− ti)
βi for a.e. t ∈ (ti, ti+1), i = 1, . . . , n− 1,

g(t) ≥ c(t1 + ω − t)α1(t− tn)
βn for a.e. t ∈ (tn, t1 + ω).

Let, moreover,

λ+ δ

1− δ
>

(1 + γ0)(1 + γp)

(1 + γ)(2p− 1)
if p > 1,

λ+ δ

1− δ
≥ 1 + γ0 if p = 1,

where γ0 = max
{
min{αi, βi} : i = 1, . . . , n

}
, γ = max

{
αi, βi : i = 1, . . . , n

}
. Then there exists a

unique ω-periodic solution to (1) if and only if h > 0.

Now, we are going to present an example of a differential equation to which our result can be
efficiently applied. To illustrate the result, we have selected a particular case of a physical model
studied in [4, Section 5]. The dynamic of a trapless 3D Bose–Einstein condensate with variable
scattering length can be ruled by the equation (1), where g models the S-wave scattering length,
which is assumed to vary ω-periodically in time. In our case, a non-negative g corresponds to
attractive interactions between the elementary particles and h is an external force (usually δ = 0).
Then the existence of an ω-periodic solution to (1) is interpreted as a bound state of the condensate
with external trap. To simplify the model, the function g can be considered as a polynomial
function, which may have several zeroes. However, we also can investigate the problem in the case
when g is trigonometric. Obviously, the latter case seems to be more useful in applications but
also more complicated to study analytically. Nevertheless, according to Corollary 5, it is sufficient
to check the condition (4) in a neighborhood of each zero of g. Thus, having approximated g by
a Taylor polynomial, the problem is reduced to the much simpler one - the polynomial case. This
makes our result efficiently applicable in several cases.

Example 2. Consider the equation

u′′ +
g(t)

uλ
= h(t), (9)

where

g(t) = ctα(ω − t)α for t ∈ [0, ω),

g(t) = g(t− kω) for t ∈ [kω, (k + 1)ω), k ∈ Z \ {0},

c, α, and λ are positive numbers, h > 0. According to Corollary 5 one can conclude that (9) has a
unique ω-periodic solution if one of the following conditions is fulfilled:

• [h]+ ∈ L∞
ω and λ > α/2;

• [h]+ ∈ Lp
ω, p ∈ (1,+∞), and λ > 1+αp

2p−1 ;

• [h]+ ∈ Lω and λ ≥ 1 + α.
Note that the result for the case when [h]+ ∈ L∞

ω is obtained by applying Corollary 5 for p ∈ (1,+∞)
sufficiently large.
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We consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ t0, (1)

with bounded, for example, infinitely differentiable on the semi-axis [t0,+∞) coefficients and char-
acteristic exponents λ1(A) ≤ · · · ≤ λn(A) < 0. The above system is a linear approximation for the
nonlinear system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0, (2)

with an infinitely differentiable in time t and variable y1, . . . , yn perturbation f : [t0,+∞)×Rn =⇒
Rn of order m > 1 smallness in the neighborhood of the origin y = 0 and admissible growth outside
of the origin, satisfying the condition

∥f(t, y)∥ ≤ Cf∥y∥m, Cf = const > 0, y ∈ Rn, t ≥ t0. (3)

The goal of the known (partial) Perron’s effects of sign and value change [1], [2, pp. 50, 51]
of characteristic exponents is to construct both a two-dimensional linear system (1) with concrete
negative characteristic exponents and the perturbations f(t, y) of second order m = 2 such that a
part of nontrivial solutions of system (2) have already the positive as well as concrete exponents.
Thus, this effect is partial one. In our previous works [3], [4] which were preceded by the works [5]–
[9] written jointly with S. K. Korovin, we have obtained a general and a complete finite-dimensional
Perron’s effect which has been realized for arbitrarily given:

1) negative characteristic exponents λ1 ≤ · · · ≤ λn < 0 of the system of linear approximation (1);

2) positive characteristic exponents 0 < β1 ≤ · · · ≤ βn of all nontrivial solutions of system (2);

3) order m > 1. There naturally arises the question on the existence of different infinite ana-
logues of that effect.

The first such an infinite version is contained in the following

Theorem 1 ([10], [11]). For any parameters m > 1 and λ1 ≤ λ2 < 0 and for arbitrary nonempty
finite or bounded countable sets βi ⊂ [λi,+∞), i = 1, 2, satisfying the condition of separation
supβ1 ≤ inβ2, there exist:

1) the two-dimensional system of linear approximation (1) with bounded infinitely differentiable
on the semi-axis [1,+∞) coefficients and characteristic exponents λ1(A) = λ1 ≤ λ2(A) = λ2;
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2) the infinitely differentiable in its arguments t, y1, y2 and satisfying the condition (3) per-
turbation f : [1,+∞) × R2 → R2 of order m > 1, such that all nontrivial solutions y(t, c),
y(1, c) = c of the nonlinear two-dimensional perturbed system (2) are infinitely extendable to
the right, and their characteristic exponents λ[y( · , c)] form the sets{

λ[y( · , c)] : c2 = 0, c1 ̸= 0
}
= β1,

{
λ[y( · , c)] : c2 ̸= 0

}
= β2, c = (c1, c2) ∈ R2

Nevertheless, for systems (1) and (2) constructed in the proof of that theorem, the limiting set

Λ0(A, f) ≡ Lim
ρ→+∞

{
λ[y( · , c)] : 0 < ∥c∥ < ρ

}
consists of no more than two different positive numbers.

The second, more important version of Perron’s infinite effect is connected with its realization
for nontrivial solutions of perturbed systems (2) starting in the arbitrarily small neighborhood of
the origin y = 0, that is, connected with the construction of an infinite set Λ0(A, f) on the positive
semi-axis (0,+∞). Indeed, investigations (see, for e.g., [12, pp. 232–242], [13], [14, pp. 277–326])
dealt with the linear approximation (1) of exponential and conditional stability and also instability
of a zero solution y ≡ 0 of system (2) are reduced to the construction of accessible boundaries of
characteristic exponents of infinitely extendable solutions of that system starting at the moment
t = t0 in the above-mentioned neighborhood of the origin. Such estimates allow one, in particular,
to define signs of characteristic exponents of these solutions. Therefore, there arises the need to
realize Perron’s infinite effect in any arbitrarily small neighborhood of the origin.

It should be noted here that the effect of values replacement of negative characteristic exponents
of system (1) by an infinite set Λ0(A, f) = β of characteristic exponents of nontrivial solutions
from an arbitrarily small neighborhood of the origin of the exponentially stable (with an e.s. zero
solution) nonlinear system (2) and perturbation (3) was realized in [15]–[17]. But it turned out that
the set β belonged to the negative semi-axis (−∞, 0) (instead of the necessary positive (0,+∞)),
whereas the set of characteristic exponents of solutions of system (2) starting outside of the origin
remained unexplored. As for the Perron’s effect of values change and its various analogues, it
suggests, firstly, an infinite extension of all solutions of the nonlinear system (2) with perturbation
(3) which for m > 1 is not, as a rule, realized and, secondly, the positiveness of all characteristic
exponents of these solutions.

Thus, the infinite (countable) version of Perron’s effect of values change in any neighborhood
of the origin realizes the following

Theorem 2. For any parameters m > 1, λ1 ≤ λ2 < 0 and an arbitrary countable closed from the
above set β ⊂ [λ1,+∞) with the properties λ2 ≤ b ≡ supβ ∈ β there exist:

1) the two-dimensional linear system (1) with bounded infinitely differentiable on the semi-axis
[1,+∞) coefficients and characteristic exponents λ1(A) = λ1 ≤ λ2(A) = λ2;

2) satisfying the condition (3), the infinitely differentiable in time t and variables y1, y2 pertur-
bation f : [1,+∞)×R2 → R2, such that all nontrivial solutions

y(t, c), y(1, c) = c ∈ R2 \ {0},

of the nonlinear system (2) with perturbation (3) are infinitely extendable to the right, and
their characteristic exponents form the set Λ(A, f) = Λ0(A, f) = β and take the values

λ[y(·, c)] = b, ∀ c ̸∈ I ≡
{
x ∈ R2 : |x| ≤ 1, x2 = 0

}
.
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In mathematical modeling of many natural processes nonlinear nonstationary differential models
are received very often. One such model is obtained at mathematical modeling of processes of
electromagnetic field penetration in the substance. In the quasistationary case the corresponding
system of Maxwell’s equations has the form [1]:

∂H

∂t
= − rot(νm rotH),

∂θ

∂t
= νm(rotH)2, (1)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, νm characterizes the
electro-conductivity of the substance. The first vector equation of system (1) describes the process
of diffusion of the magnetic field and the second equation describes the change of the temperature
at the expense of Joule’s heating.

For a more thorough description of electromagnetic field propagation in the medium, it is
desirable to take into consideration different physical effects, first of all heat conductivity of the
medium has to be taken into consideration. In this case the same process is described by the
following system:

∂H

∂t
= − rot(νm rotH),

∂θ

∂t
= νm(rotH)2 + div(κ grad θ), (2)

where κ is a coefficient of heat conductivity. As a rule this coefficient is a function of argument θ
as well.

Many other processes are described by system of the type (1) and (2) and many works are
dedicated on investigation and numerical resolution of the initial-boundary value problems for
these type models (see, for example, [2]–[14] and references therein).

In the domain (0, 1)× (0,∞) let us consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= V α

(∂U
∂x

)2
,

U(0, t) = 0, U(1, t) = ψ > 0,

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ v0 > 0,

(3)

where U0 and V0 are known functions defined on [0, 1] and ψ and v0 are constants.
It is not difficult to verify that if α ̸= 1 and V0(x) = v0, then the following functions

U(x, t) = ψx, V (x, t) =
[
v1−α
0 + (1− α)ψ2t

] 1
1−α (4)

are solutions of the problem (3). But if α > 1 in the finite time t0 = δ1−α
0 /ψ2(α − 1) the function

becomes infinity. This example shows that solution of problem (3) with smooth initial and boundary
conditions can be blown up in the finite time.
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In the domain Ω× (0, T ), where Ω = (0, 1), let us consider the following system:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= V α

(∂U
∂x

)2
+
∂2V

∂x2
. (5)

Many facts that obtained for (3) problem are valid for (5) too. In particular, functions U(x, t)
and V (x, t) defined by (4) satisfy system (5). From this one can deduce that for system (5),
analogical to (3) problem, adding the following boundary conditions, if α > 1, the theorem of
global solvability does not take place:

∂V (x, t)

∂x

∣∣∣∣
x=0

=
∂V (x, t)

∂x

∣∣∣∣
x=1

= 0.

It is well-known that the general method for construction of economic algorithms for multi-
dimensional problems of mathematical physics is a decomposition method (see, for example, [15]
and references therein). Complex nonlinearity dictates also to split along the physical process and
investigate basic model by them. In particular, it is logical to split system (2) in two models. In
first Joule’s rule, while in second process of thermal conductivity are considered. Investigation of
splitting along the physical processes in one-dimensional case is the natural beginning of studding
this issue. In this direction the first step was made in the work [3].

Let us consider initial-boundary value problem for system (5), where −1/2 ≤ α ≤ 1/2, α ̸= 0,
with usual initial and following boundary conditions:

U(x, t) =
∂V (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× [0, T ].

If we denote V
1
2 = W , 2α = γ, then problem (5) can be rewritten in the following equivalent

form [3]:
∂U

∂t
=

∂

∂x

(
W γ ∂U

∂x

)
,

∂W

∂t
=

1

2
W γ−1

(∂U
∂x

)2
+
∂2W

∂x2
+

1

W

(∂W
∂x

)2
,

U(x, t) =
∂W (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× [0, T ],

U(x, 0) = U0(x), W (x, 0) =W0(x) = V
1/2
0 (x).

(6)

Let us introduce the notations:

ωτ =
{
tj = jτ, j = 0, 1, . . . , N, τ = T/N

}
,

yt =
yj+1 − yj

τ
, y1t =

yj+1
1 − yj

τ
, y2t =

yj+1
2 − yj

τ
,

y = η1y1 + η2y2, η1 + η2 = 1, η1 > 0, η2 > 0.

Correspond to the problem (6) following additive averaged semi-discrete schemes:

u1t =
d

dx

(
wγ
1

du1
dx

)
, η1w1t =

1

2
wγ−1
1

(du1
dx

)2
,

u2t =
d

dx

(
wγ
2

du2
dx

)
, η2w2t =

d2w2

dx2
+

1

w2

(dw2

dx

)2
(7)

and

ut =
d

dx

[
(η1w

γ
1 + η2w

γ
2 )
du

dx

]
,

η1w1t =
1

2
wγ−1
1

(du
dx

)2
, η2w2t =

d2w2

dx2
+

1

w2

(dw2

dx

)2
,

(8)

with suitable initial and boundary conditions.
The following statement takes place.
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Theorem 1. If problem (6) has a sufficiently smooth solution and −1 ≤ γ ≤ 1, then the solutions
of the schemes (7) and (8) converge in the norm of the space L2(0, 1) to the solution of problem (6)
as τ → 0 and the following estimate is true

∥uj − U(tj)∥+ ∥wj −W (tj)∥ = O(τ
1
2 ).

Let us consider first type initial-boundary value problem for the following model system:

∂U

∂t
=

∂

∂x

(
V
∂U

∂x

)
,

∂V

∂t
=

(∂U
∂x

)2
.

The semi-discrete and finite difference second order accuracy schemes with respect of space step
is constructed and studied in [6] for this case of nonlinearity. In [4] more general finite difference
schemes including second order accuracy two-level scheme and three-level type scheme are also
studied.

Let us introduce the grids:

ωhτ = ωh × ωτ , ω∗
hτ = ω∗

h × ωτ ,

where

ωh =
{
xi = ih, i = 0, 1, . . . ,M, h = 1/M

}
, ωh = ωh \ {x0, xM},

ω∗
h =

{
x∗i = (i− 1/2)h, i = 1, 2, . . . ,M

}
.

Let us introduce also scalar-products, norms and well-known notations:

(y, z) =
M−1∑
i=1

yizih, (y, z] =
M∑
i=1

yizih, ∥y∥ = (y, y)1/2, ∥y]| = (y, y]1/2,

yx =
yi+1 − yi

h
, yx =

yi − yi−1

h
, yt =

yj+1 − yj

τ
, ytt =

yj+1 − 2yj + yj−1

τ2
,

y(σ) = σyj+1 + (1− σ)yj

and consider the following finite-difference scheme:

ut + µτutt =
(
v(σ)u

(σ)
x

)
x
, vt + µτvtt =

(
u
(σ)
x

)2
,

u(0, t) = u(1, t) = 0,

u(x, 0) = U0(x), v(x, 0) = V0(x),

u(x, τ) = U0(x) + τ(V Ux)x

∣∣∣
t=0

, v(x, τ) = V0(x) + τ(Ux)
2
∣∣∣
t=0

.

(9)

In the (9) discrete function u is defined on ωhτ and v is defined on ω∗
hτ .

The following statement takes place.

Theorem 2. If σ−0.5 ≥ µ ≥ 0 and problem has sufficiently smooth solution, then finite difference
scheme (9) converges as τ → 0, h→ 0, and the following estimate is true

∥U j − uj∥+ ∥V j − vj ]| = O
(
τ2 + h2 + (σ − 0.5− µ)τ

)
.

It is clear that from Theorem 2 we get the following result: If σ = 0.5, µ = 0 or σ = 1, µ = 0.5
then convergence is the second order O(τ2 + h2).

Various numerical experiments using above mentioned discrete models are carried out. These
experiments agree with theoretical investigations.
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We consider second order singly singular differential equations of the types(
p(t)|x′|α

)′
+ q(t)x−β = 0, (E)

and (
p(t)|x′|−α

)′
+ q(t)xβ = 0, (F)

under the assumption that

(a) α and β are positive constants;

(b) p, q : [0,∞) → (0,∞) are continuous functions.

By a solution on an interval J of (E) or (F) we mean a function x : J → (0,∞) which is
continuously differentiable on J together with p(t)|x′(t)|α or p(t)|x′(t)|−α and satisfies (E) or (F)
there. If J is an unbounded interval of the form [t0,∞), then x(t) is said to be a proper solution. If
J is a bounded interval of the form [t0, T ) and x(t) cannot be extended to the right beyond T , then
x(t) is called a singular solution at T . In this paper our attention is focused on singular solutions
of (E) and (F) which are decreasing in their intervals of existence.

As is easily seen any singular solution x(t) at T of (E) or (F) on [t0, T ) has one of the following
asymptotic behaviors

lim
t→T−0

x(t) = A, lim
t→T−0

x′(t) = 0, for some A > 0; (I)

lim
t→T−0

x(t) = A, lim
t→T−0

x′(t) = −∞, for some A > 0; (II)

lim
t→T−0

x(t) = 0, lim
t→T−0

x′(t) = 0; (III)

lim
t→T−0

x(t) = 0, lim
t→T−0

x′(t) = −B, for some B > 0; (IV)

lim
t→T−0

x(t) = 0, lim
t→T−0

x′(t) = −∞. (V)

A singular solution satisfying (I) or (II) is termed a white hole solution or a black hole solution,
respectively, while a singular solution satisfying (III), (IV) or (V) is termed an extinct solution at
T of the first kind, of the second kind or of the third kind, respectively. Notice that the notion of
black hole and white hole solutions was introduced by the present authors in [2] and [3].

It can be shown that equation (E) has white hole solutions but not black hole ones, whereas
equation (F) may have black hole solutions but not white hole ones.
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Theorem 1. Equation (E) always has white hole solutions. More precisely, for any given T > 0
and A > 0 there exists a decreasing solution x(t) of (E) satisfying (I).

Theorem 2. Equation (F) has black hole solutions if and only if α > 1, in which case, for any
given T > 0 and A > 0 there exists a decreasing solution x(t) of (F) satisfying (II).

The situations in which (E) and (F) possess extinct solutions of the second kind can be com-
pletely characterized as follows.

Theorem 3. Equation (E) has extinct solutions of the second kind if and only if β < 1, in which
case, for any given T > 0 and B > 0 there exists a decreasing solution x(t) of (E) satisfying (IV).

Theorem 4. Equation (F) always has extinct solutions of the second kind. More precisely, for any
given T > 0 and B > 0 there exists a decreasing solution x(t) of (F) satisfying (IV).

All of the above four theorems are verified by solving the appropriate integral equations with
the help of the Schauder fixed point therems in Banach spaces. For example, the integral equations
to be solved in Theorem 1 and Theorem 4 are

x(t) = A+

T∫
t

(
1

p(s)

T∫
s

q(r)x(r)β dr

)− 1
α

ds,

and

x(t) =

T∫
t

[
1

p(s)

(
p(T )B−α +

T∫
s

q(r)x(r)−β dr

)] 1
α

ds,

respectively.
It remains to ask whether (E) and (F) possess extinct solutions of the first and/or the third

kinds. One easily sees that (E) (or (F)) cannot admit extinct solutions of the third kind (or the
first kind). Information about the existence of such extinct solutions is provided by the following
theorems in which the concept of regularly varying functions at finite points, defined below, plays
a crucial role

Definition.

(i) A measurable function f : [0,∞) → (0,∞) is said to be regularly varying at infinity of index
ρ (in the sense of Karamata) if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for all λ > 0

(ii) Let T > 0 be a finite constant. A measurable function f : [0, T ) → (0,∞) is said to be
regularly varying of index ρ at T if f(T − τ−1), as a function of τ , is regularly varying of
index −ρ at infinity in the sense of Karamata.

The definition and some basic properties of regularly varying functions in the sense of Karamata
can be found in [1, 6]. See also [5]. The concept of regularly varying functions at finite points has
recently been introduced by the present authors [4].

The totality of regularly varying functions of index ρ at T is denoted by RVT (ρ).The symbol
SVT is often used for RVT (0), in which case its members are called slowly varying functions at T .
By definition a function f(t) ∈ RVT (ρ) is expressed in the form

f(t) = (T − t)ρL(t), t ∈ [t0, T ), for some L ∈ SVT .

Note that any positive continuous function on [a,∞) is slowly varying at any point T ∈ (a,∞),
that is, a member of SVT for any T > 0.
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It is an easy task to show that most of the basic properties of regularly varying functions
at infinity can be carried over to regularly varying functions at finite points. For instance, the
Karamata integration theorem is translated into the following propositon, which is also referred to
as the Karamata integration theorem for regularly varying functions at finite points.

Proposition. Let L ∈ SVT .

(i) If ρ < −1, then

t∫
a

(T − s)ρL(s) ds ∼ − 1

ρ+ 1
(T − t)ρ+1L(t), t → T − 0.

(ii) If ρ > −1, then

T∫
t

(T − s)ρL(s) ds ∼ 1

ρ+ 1
(T − t)ρ+1L(t), t → T − 0.

(iii) If ρ = −1, then

l(t) =

t∫
a

L(s)

T − s
ds ∈ SVT and lim

t→T−0

L(t)

l(t)
= 0,

and if L(t)/(T − t) is integrable in a left neighborhood of T , then

m(t) =

T∫
t

L(s)

T − s
ds ∈ SVT and lim

t→T−0

L(t)

m(t)
= 0.

Applying the Schauder–Tychonoff fixed point theorem in combination with the above proposi-
tion to solve the integral equations

x(t) =

T∫
t

(
1

p(s)

T∫
s

q(r)x(r)β dr

)− 1
α

ds, (IE)

x(t) =

T∫
t

(
1

p(s)

T∫
s

q(r)x(r)−β dr

) 1
α

ds, (IF)

we are able to find criteria for the existence of extinct solutions of the first and the third kinds for
(E) and (F) belonging to RVT (ρ) with positive ρ.

Theorem 5. Assume that β < min{α, 1}. Then, for any given T > 0, equation (E) has an extinct
solution x(t) at T of the first kind which belongs to the class RVT (ρ) with

ρ =
α+ 1

α+ β

and enjoys the exact asymptotic behavior

x(t) ∼
[(T − t)α+1p(t)−1q(t)

α(ρ− 1)ρα

] 1
α+β

, t → T − 0.
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Theorem 6. Assume that α > max{β, 1}. Then, for any given T > 0, equation (F) has an extinct
solution x(t) at T of the third kind which belongs to the class RVT (ρ) with

ρ =
α− 1

α+ β

and enjoys the exact asymptotic behavior

x(t) ∼
[(T − t)α−1p(t)q(t)−1

(α(1− ρ))−1ρα

] 1
α+β

, t → T − 0.
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[2] J. Jaroš and T. Kusano, On black hole solutions of second order differential equations with a
singular nonlinearity in the differential operator. Funkcial. Ekvac. 43 (2000), No. 3, 491–509.
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In a plane of independent variables x and t in the strip Ω := {(x, t) ∈ R2 : 0 < x < l, t ∈ R}
consider the problem of finding a solution U(x, t) of the telegraph equation with power nonlinearity
of the form

LλU := Utt − Uxx + 2aUt + cU + λ|U |αU = F (x, t), (x, t) ∈ Ω, (1)

satisfying the Poincare homogeneous boundary condition

γ1Ux(0, t) + γ2Ut(0, t) + γ3U(0, t) = 0, t ∈ R, (2)

and the Dirichlet condition
U(l, t) = 0, t ∈ R, (3)

respectively, for x = 0 and x = l, and also the periodicity condition with respect to variable t

U(x, t+ T ) = U(x, t), x ∈ [0, l], t ∈ R, (4)

with constant real coefficients a, c, γi, i = 1, 2, 3, and parameter λ ̸= 0, where γ1γ2 ̸= 0. Here
T := const > 0, α := const > 0; F is a given, while U is an unknown real T -periodic with respect
to time functions.

Remark 1. Let ΩT := Ω ∩ {0 < t < T}, f := F
∣∣
ΩT

. Easy to see that if U ∈ C2(Ω) is a classical

solution of the problem (1)–(4), then function u := U
∣∣
ΩT

represents a classical solution of the

following nonlocal problem

Lλu = f(x, t), (x, t) ∈ ΩT , (5)

γ1ux(0, t) + γ2ut(0, t) + γ3u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T, (6)

(B0u)(x) = 0, (B0ut)(x) = 0, x ∈ [0, l], (7)

where (Bβw)(x) := w(x, 0) − exp(−βT )w(x, T ), β ∈ R, x ∈ [0, l], and, vice versa, if f ∈ C(ΩT )

and u ∈ C2(ΩT ) is a classical solution of the problem (5)–(7), then function U ∈ C2(Ω), being
T -periodic with respect to time continuation of function u from the domain ΩT into the strip Ω,
will be a classical solution of the problem (1)–(4), if f(x, 0) = f(x, T ), x ∈ [0, l].

Definition 1. Let f ∈ C(ΩT ) be a given function. Let Γ1 : x = 0, 0 ≤ t ≤ T , Γ2 : x = l,
0 ≤ t ≤ T . Function u is called a strong generalized solution of the problem (5)–(7) of the class

C, if u ∈ C(ΩT ) and there exists the sequence of functions un ∈
◦
C2(ΩT ,Γ1,Γ2) :=

{
w ∈ C2(ΩT ) :

(γ1wx+γ2wt+γ3w)
∣∣
Γ1

= 0, w
∣∣
Γ2

= 0
}
such that un → u and Lλun → f in the space C(ΩT ), while

B0un → 0 and B0unt → 0 as n → ∞, respectively, in the spaces C1([0, l]) and C([0, l]).

Remark 2. It is obvious that classical solution of the problem (5)–(7) from the space C2(ΩT ) is a
strong generalized solution of this problem of the class C.
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To the periodic problem for nonlinear hyperbolic equations with boundary conditions of Dirich-
let or Roben there is devoted comprehensive literature (see, e.g., [1–11] and the bibliography
therein). In the present work it is investigated the periodic with respect to time problem (5)–
(7), when the direction of derivative in the boundary condition does not coincide with the direction
of the normal. The periodic problem is reduced to the one nonlocal with respect to time problem
for solution of which it is proved a priori estimate. For the theorem of existence it is used represen-
tations of solutions of problems of Cauchy, Goursat and Darboux in different parts of the domain
under consideration. The question of uniqueness is also considered.

When the following conditions are fulfilled

λ > 0, a > 0, c > 0; γ1γ2 < 0, γ3γ2 > 0, (8)

then for the strong generalized solution u of the problem (5)–(7) of the class C it is proved the
following a priori estimate

∥u∥C(ΩT ) ≤ c∥f∥C(ΩT ) (9)

with positive constant c = c(a, c, γi, l, T ), not depending on functions u and f .

Remark 3. Note that the question of solvability of the problem (5)–(7) is reduced to the question
of obtaining uniform with respect to parameter τ ∈ [0, 1] a priori estimate of the strong generalized
solution of the following equation

vtt − vxx + τ(c− a2)v + τλ exp(−αat)|v|αv = τ exp(at)f(x, t), (x, t) ∈ ΩT , (10)

satisfying the boundary

γ1vx(0, t) + γ2vt(0, t) + (γ3 − aγ2)v(0, t) = 0, v(l, t) = 0, 0 ≤ t ≤ T, (11)

and nonlocal conditions
(Bav)(x) = 0, (Bavt)(x) = 0, x ∈ [0, l]. (12)

For obtaining uniform with respect to τ priori estimate for the solution of the problem (10)–(12)
it is sufficient instead of (8) to require fulfilment of the following more restrictive conditions

λ > 0, a > 0, c ≥ a2, γ1γ2 < 0, γ3γ
−1
2 ≥ a. (13)

The following theorem is valid.

Theorem. Let conditions (13) be fulfilled and f ∈ C(Ωl). Then the problem (5)–(7) has at least
one strong generalized solution u of the class C in the sense of Definition 1 which belongs to the
space C1(Ωl), and when f ∈ C1(Ωl), this solution is classical.

Note that the problem (5)–(7) can not have more than one strong generalized solution of the
class C in the domain Ωl, if there hold conditions (13) and

|a2 − c| < 1

c0
, 0 < λ < λ0,

where λ0 := (1− c0|a2 − c|)(c0M0)
−1, M0 := (1 + α)(2c1∥f∥C(Ωl)

)α, and c0, c1 are definite positive

constants, depending on a, γi, l.
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Stability analysis of Itô equations with aftereffect attracts attention of many researchers (see
e.g. [2, 3, 8, 10, 11]). On the other hand, stability of impulsive functional differential equations is
popular in the literature as well (see e.g. [1,4]). In [7] we considered these two classes of equations
together using the framework based on Azbelev’s W-method (see e.g. [2, 3, 5, 6]).

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space. The scalar stochastic processes Bi, i = 1, 2, . . . ,m
form the standard m-dimensional Brownian motion on (Ft)t≥0 (see e.g. [9]).

Below we use the following spaces:

• L∞ consists of all scalar, essentially bounded functions on [0,∞) with the usual norm;

• L
n
q consists of all n-dimensional progressively measurable (with respect to the above stochastic

basis) stochastic processes on [0,∞), whose trajectories are almost surely (a.s.) locally q-
integrable if 1 ≤ q < ∞ and a.s. locally bounded if q = ∞;

• kn contains all F0-measurable n-dimensional random variables, and we will put k1 = k in the
sequel;

• Dn contains all n-dimensional stochastic processes on [0,∞), which could be represented

as x(t) = x(0) +
t∫
0

f0(s) ds +
m∑
i=1

t∫
0

fi(s) dBi(s), where x(0) ∈ kn, f0 ∈ L
n
1 , fi ∈ L

n
2 (i =

1, 2, . . . ,m).

Consider the following scalar Itô equation with impulses

dx(t) =
[
− a(t)x(t) +

m0∑
k=1

bk(t)x(hk(t))
]
dt+

m∑
i=1

[ mi∑
k=1

cik(t)x(gik(t))
]
dBi(t) (t ≥ 0),

x(s) = φ(s) (s < 0),

(1)

x(µj) = Ajx(µj − 0), j = 1, 2, 3, . . . , a.s., (2)

where x(t, ω) ∈ R1; µj , Aj , j = 1, 2, 3, . . ., are real numbers such that 0 = µ0 < µ1 < µ2 < · · · ,
lim
j→∞

µj = ∞; a, bk ∈ L
1
1 for k = 1, 2, . . . ,m0, cij ∈ L

1
2 for i = 1, 2, . . . ,m, j = 1, 2, . . . ,mi; hk, gij

are Borel measurable functions on [0,∞) such that hk(t) ≤ t, gij(t) ≤ t (t ∈ [0,∞)) a.s. for
k = 1, 2, . . . ,m0, i = 1, 2, . . . ,m, j = 1, 2, . . . ,mi; φ is a scalar F0-measurable stochastic process
with a.s. essentially bounded trajectories.

We remark that under these assumptions Eq. (1)–(2) is a special case of the general stochastic
functional differential equation considered in [5,6]. In particular, any x(0) ∈ k gives rise to a unique
(up to the P-equivalence) solution of this equation. We denote this solution by xφ(t, x0).
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Definition 1. The trivial solution of Eq. (1)–(2) is called exponentially p-stable with respect to
the initial conditions if E|xφ(t, x0)|p ≤ c(E|x0|p+ vrai sup

ν<0
E|φ(ν)|p) exp{−βt} (t ≥ 0) for some

positive constants c, β and all x0 and φ described above.

Theorem 1. Suppose that there exist positive numbers A, ρ, σ, δ, α such that |Aj | ≤ A, ρ ≤
µj+1 − µj ≤ σ for j = 1, 2, . . ., a(t) ≥ α (t ∈ [0,∞)) a.s., |bk(t)| ≤ bk(t) (t ∈ [0,∞)) a.s., where

bk ∈ L∞ a.s. k = 1, 2, . . . ,m0, |cij(t)| ≤ cij(t) (t ∈ [0,∞)) a.s., where cij ∈ L∞ for i = 1, 2, . . . ,m,
j = 1, 2, . . . ,mi, t − hk(t) < δ, t − gij(t) < δ (t ∈ [0,∞)) almost everywhere for k = 1, 2, . . . ,m0,
i = 1, 2, . . . ,m, j = 1, 2, . . . ,mi and

max{1, A}(1− exp{−ασ})
α(1− exp{−αρ}A)

vrai sup
t≥0

{ m0∑
k=1

bk(t)

}
+

+
[max{1, A2}(1− exp{−2ασ})

2α(1− exp{−2αρ}A)

]1/2
cp vrai sup

t≥0

{ m∑
i=1

mi∑
k=1

cik(t)

}
< 1, (3)

where cp is the positive constant from the Burkholder–Davis–Gandy inequalities (see e.g. [9]). Then
the trivial solution of Eq. (1)–(2) is exponentially 2p-stable with respect to the initial conditions.

Sketch of the Proof

The proof of the theorem is based on Azbelev’s W -transform of Eq. (1)-(2) (see e. g. [2], [3], [5]),
which uses the so-called ’reference equation’. Normally, it is an equation which already possesses
the desired asymptotic properties, but which is simpler than the given equation. The W-method
works if an integral operator, which results from the substitution of the solutions of the reference
equations into the given equation, is invertible.

Following this idea, we observe first of all that in our case it is sufficient to show that under the
assumptions of the theorem the following inequality holds(

E|xφ(t, x0)|2p
)1/2p ≤ N exp{−βt}

[
∥x0∥k2p +

(
vrai sup

s<0
E|φ(s)|2p

)1/2p
]
, (4)

where N and β are positive numbers.
Eq. (1) can be rewritten as follows:

dx(t)=
[
−a(t)x(t)+

m0∑
k=1

bk(t)(Shk
x)(t)+f0(t)

]
dt+

m∑
i=1

[ mi∑
k=1

cik(t)(Sgikx)(t)+fi(t)
]
dBi(t) (t≥0), (5)

where

f0(t) =

m0∑
k=1

bk(t)φhk
(t), fi(t) =

mi∑
k=1

cik(t)φgik(t) for i = 1, 2, . . . ,m,

(Shx)(t) =

{
x(h(t)), if h(t) ≥ 0,

0, if h(t) < 0,
φh(t) =

{
0, if h(t) ≥ 0,

φ(h(t)), if h(t) < 0.

The operator Sh is a stochastic analogue of the inner superposition operator [2]. In the stochastic
case, if h(t) is progressively measurable with respect to the given stochastic basis and h(t) ≤ t

(t ∈ [0,+∞)) a.s., then the operator Sh maps the space Dn into the space L
n
∞, and it is also

Volterra [6].
Note that the solution xφ(t, x0) of Eq. (2), (5) satisfies (4) if the solution y(t) of the equation

dy(t) =

[(
− a(t) + β

)
y(t) +

m0∑
k=1

bk(t) exp
{
β(t− hk(t))

}
(Shk

y)(t) + f0(t) exp{βt}
]
dt+
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+
m∑
i=1

[ mi∑
k=1

cik(t) exp
{
β(t− gik(t))

}
(Sgiky)(t) + fi(t) exp{βt}

]
dBi(t) (t ≥ 0), (6)

y(µj) = Ajy(µj − 0), j = 1, 2, 3, . . . , a.s., (7)

where β is some positive number, satisfies the inequality

sup
t≥0

(
E|y(t)|p

)1/p ≤ N
[
∥y(0)∥k2p +

(
vrai sup

s<0
E|φ(s)|2p

)1/2p]
,

for some positive N .
To see this, we observe that there is the one-to-one correspondence xφ(t, x0) = exp{−βt}y(t)

with x0 = y(0) between the solutions of Eq. (2), (5) and Eq. (6)–(7).
Consider the following reference equation

dy(t) =
[
− a(t) + f0(t)

]
dt+

m∑
i=1

f i(t)dBi(t) (t ≥ 0),

y(µj) = Ajy(µj − 0), j = 1, 2, 3, . . . , a.s.,

(8)

coupled with Eq. (7), under the assumptions that f0 ∈ L1, f i ∈ L2 for i = 1, 2, . . . ,m.
It can be shown (see e.g. [6]) that any y(0) ∈ k gives rise to a unique solution (up to the

P -equivalence) of Eq. (8). A direct calculation yields the explicit representation of this solution:

y(t) = exp

{
−

t∫
0

a(s) ds

}
y(0) +

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajf0(s) ds+

+
m∑
i=1

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajf i(s) dBi(s) (t ≥ 0).

Using this representation we can rewrite Eq. (6), (7) as follows:

y(t) = exp

{
−

t∫
0

a(s) ds

}
y(0) + β

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajy(s) ds+

+

m0∑
k=1

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajbk(s) exp
{
β(s− hk(s))

}
(Shk

y)(s) ds+

+

m∑
i=1

mi∑
k=1

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Aj exp
{
s− gik(s)

}
dBi(s)+

+

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajf0(s) ds+

m∑
i=1

t∫
0

exp

{
−

t∫
s

a(τ) dτ

} ∏
s<µj≤t

Ajfi(s) dBi(s) (t≥0).

A direct estimation procedure (see [7] for the details) ends up with the following inequality:

sup
t≥0

(
E|y(t)|p

)1/p ≤ ∥y(0)∥k2p +K sup
t≥0

(
E|y(t)|p

)1/p
+ d

(
vrai sup

s<0
E|φ(s)|2p

)1/2p
,

where

K =
max{1, A}(1− exp{−ασ})

α(1− exp{−αρ}A)

[
β + exp{βδ} vrai sup

t≥0

{ m0∑
k=1

|bk(t)|
}]

+
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+
[max{1, A2}(1− exp{−2ασ})

2α(1− exp{−2αρ}A)

]1/2
cp exp{βδ} vrai sup

t≥0

{ m∑
i=1

mi∑
k=1

|cik(t)|
}
,

d =
max{1, A}(1− exp{−ασ})

α(1− exp{−αρ}A)
d0 + cp

[max{1, A2}(1− exp{−2ασ})
2α(1− exp{−2αρ}A)

]1/2 m∑
i=1

di.

By the assumptions of the theorem, there exists β > 0 such that K < 1. This completes the proof.

Consider now a vector version of Eq. (1)–(2), where we assume that x(ω, t) ∈ Rn, a(t) is an

n × n-matrix, the entries of which belong to the space L
1
1 ; bk(t) ia an n × n-matrix, the entries

of which belong to the space L
1
1 for k = 1, 2, . . . ,m0; cij(t) is an n × n-matrix, the entries of

which belong to the space L
2
2 for i = 1, 2, . . . ,m, j = 1, . . . ,mi; Aj is an n × n-matrix with real

entries. In addition, we assume that for some functions b̂k, k = 1, 2, . . . ,m0, ĉij , i = 1, 2, . . . ,m,

j = 1, 2, . . . ,mi, belonging to L∞, the following estimates hold true: ∥bk(t)∥ ≤ b̂k(t) (t ∈ [0,+∞))
a.s. for k = 1, 2, . . . ,m0, ∥cij(t)∥ ≤ ĉij (t ∈ [0,+∞)) a.s. for i = 1, 2, . . . ,m, j = 1, 2, . . . ,mi.

Theorem 2. Suppose that there exist positive numbers A, ρ, σ, δ, α such that ∥Aj∥ ≤ A, ρ ≤

µj+1 − µj ≤ σ for j = 1, 2, . . .,
∥∥ exp{ −

t∫
s
a(τ) dτ

}∥∥ ≤ exp{−α(t − s)} (0 ≤ s ≤ t < ∞) a.s.,

t − hk(t) < δ, t − gij(t) < δ (t ∈ [0,∞)) almost everywhere for k = 1, 2, . . . ,m0, i = 1, 2, . . . ,m,

j = 1, 2, . . . ,mi, and in addition, the estimate (3) is valid where bk(t) and cik(t) are replaced by

b̂k(t) and ĉik(t), respectively. Then the trivial solution of the vector version of Eq. (1)–(2) is
exponentially 2p-stable w.r.t. the initial function.

The proof of this result essentially coincides with the proof of Theorem 1 if one replaces absolute
values with vector norms and n× n-matrix norms, respectively.
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[4] L. Berezansǩı and L. Idels, Exponential stability of some scalar impulsive delay differential equations. Commun.
Appl. Anal. 2 (1998), No. 3, 301–308.

[5] R. I. Kadiev and A. V. Ponosov, Stability of linear stochastic functional-differential equations with constantly
acting perturbations. (Russian) Differentsial’nye Uravneniya 28 (1992), No. 2, 198–207, 364; translation in
Differential Equations 28 (1992), No. 2, 173–179.

[6] R. I. Kadiev, Stability of solutions of stochastic functional differential equations. (Russian) Habilitation thesis.
Jekaterinburg State Univ., 2000.

[7] R. I. Kadiev and A. V. Ponosov, Stability of solutions of linear impulsive systems of Itô differential equations
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Consider the n-dimensional (n ≥ 2) linear system of differential equations

dx

dt
= A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous on the half-line t ≥ 0 coefficient matrix A( · ) : [0,+∞) → Rn. Denote
the class of all such systems by M∗

n. We identify the system (1) and it’s coefficient matrix and
therefore write A ∈ M∗

n. Along with (1) we consider the one-parameter family

dx

dt
= µA(t)x, x ∈ Rn, t ≥ 0, (2)

of linear differential systems with a scalar parameter-multiplier µ ∈ R. Denote by K∗
n class of

families (2) generated by systems A ∈ M∗
n. Fixing in the family (2) the value of parameter µ we

obtain the linear differential system which we denote by ⟨µ⟩A. Denote by λ1(µA) ≤ · · · ≤ λn(µA)
the Lyapunov exponents [1, p. 34], [2, p. 63] of the system ⟨µ⟩A.

V. I. Zubov in [3, p. 408, Problem 1] set the following problem: find out how the Lyapunov
exponents of the systems (1) and (2) are related. Emphasize that in [3] in the formulation of the
problem it is not necessary that the coefficient matrix of (1) to be bounded. Therefore exponent
λi(µA), i = 1, . . . , n, can take improper values −∞ and +∞. Hence the function λi(µA) of a
variable µ ∈ R is a mapping R → R where R = R⊔ {−∞,+∞}. We call λi(µA) the i-th Lyapunov
exponent of the family (2).

In other words the problem of Zubov can be formulated as: for every i = 1, . . . , n give a

complete description of the set Ln
i

def
= {λi(µA) : R → R | A ∈ M∗

n} of i-th Lyapunov exponents of
the families from K∗

n.
In this article the problem of Zubov is solved for the largest Lyapunov exponent λn(µA) on the

assumption that λn(µA) is not identically equal to +∞ on any of the half-lines.
Note that for families of linear differential systems

dx/dt = A(t, µ)x, x ∈ Rn, t ≥ 0, (3)

with continuous in the variables t, µ and bounded on the half-line t ≥ 0 for every fixed µ ∈ R
coefficient matrix A(t, µ) : [0,+∞) × R → EndRn, a similar problem is solved in [4]. It is proved
that for every i = 1, . . . , n function λ( · ) : R → R is the i-th Lyapunov exponent (considered as
a function of µ ∈ R) of some family (3) if and only if λ( · ) belongs to the Baire class ( ∗, Gδ) and
have an upper semicontinuous minorant. In the paper [4] it is proved that this result holds in a
more general situation – for the Lyapunov exponents of families of morphisms of Millionshchikov
bundles.

Despite the fact that the dependence on the parameter in the families (2) is linear, the de-
scription of the largest Lyapunov exponents of families from K∗

n is similar to the description of the
largest Lyapunov exponents in the general case of families (3).



70 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

We consider R with a natural (order) topology, so that R is homeomorphic to the interval
[−1, 1]. Choose such a homeomorphism ℓ : R → [−1, 1] in a standard way:

ℓ(x) =


x

|x|+ 1
, if x ∈ R,

sgn(x), x = ±∞.

Since the mapping ℓ performs an order-preserving homeomorphism between R and [−1, 1], we say
that function f : R → R belongs to the Baire class K if composition ℓ ◦ f belongs to the class K.

Recall that a real-valued function is referred to as a function of the class ( ∗, Gδ) [5, p. 223–224]
if, for each r ∈ R, the preimage of the interval [r,+∞) under the mapping f is a Gδ-set.

The following theorem describes the largest Lyapunov exponents of the families from K∗
n from

the viewpoint of the Baire clasification.

Theorem 1. Function λn(µA) : R → R of a variable µ belongs to the class ( ∗, Gδ) for any system
A ∈ M∗

n.

Using an inequality similar to the Lyapunov inequality we get

Lemma 1. Suppose that for some µ0 ̸= 0 the largest Lyapunov exponent of the system ⟨µ0⟩A of a
family (2) is non-positive (can be −∞). Then the largest Lyapunov exponent of the system ⟨µ⟩A is
non-negative for any µ ∈ R such that µµ0 ≤ 0.

The following theorem shows that assertions of Theorem 1 and Lemma 1 give us a sharp
description of the restriction on some half-line of the largest Lyapunov exponents of the families
from K∗

n.

Theorem 2. For any non-negative on some half-line function f( · ) : R → R of the class ( ∗, Gδ),
there exist a system A ∈ M∗

n such that the largest Lyapunov exponent (as a function of µ ∈ R) of
the system ⟨µ⟩A, coincides with f( · ) on this half-line and is identically zero on the other half-line.

Using the Lemma 1 we get further description of the properties of the largest Lyapunov expo-
nents of the families from K∗

n.

Lemma 2. Suppose that for some µ0 ̸= 0 the largest Lyapunov exponent of the system ⟨µ0⟩A of
a family (2) is finite and equals λ ∈ R. Then the largest Lyapunov exponent of the system ⟨µ⟩A
satisfies the inequality λn(µA) ≥ λµ/µ0 for any µ ∈ R such that µµ0 ≤ 0.

Using Lemma 1, Theorem 1 and Lemma 2 with some additional considerations we obtain

Theorem 3. Function λn(µA) : R → R of the variable µ is non-negative on some half-line,
vanishes at zero and belongs to a class ( ∗, Gδ) for any system A ∈ M∗

n. Moreover, suppose that
λn(µA) takes at least one finite value on that half-line. Then there exist such a real number b ∈ R
that the inequality λn(µA) ≥ bµ holds for all µ ∈ R.

Theorem 3 shows that the largest Lyapunov exponent of each family from K∗
n is non-negative

on some half-line, vanishes at zero, belongs to a class ( ∗, Gδ) and satisfies alternative: 1) it exceeds
some linear function bµ, or 2) it identically equals +∞ on some half-line. In the first case these
conditions are sufficient as shows the following theorem.

Theorem 4. For each non-negative on some half-line function f( · ) : R → R which vanishes at
zero, belongs to the class ( ∗, Gδ) and satisfies the inequality f(µ) ≥ bµ for any µ ∈ R and some
fixed b ∈ R, there exist such a system A ∈ M∗

n that the largest Lyapunov exponent (as a function
of µ) of the system ⟨µ⟩A coincides with f( · ).
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In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical domain DT = Ω×(0, T ),
where Ω is a Lipshitz domain in Rn, consider a nonlocal problem on finding solution u(x, t) of the
following equation

Lu := utt −
n∑

i=1

uxixi + 2aut + cu+ λ|u|αu = F (x, t), (x, t) ∈ DT , (1)

satisfying the homogeneous boundary condition for the side boundary Γ := ∂Ω × (0, T ) of the
cylinder DT (∂u

∂ν
+ σu

)∣∣∣∣
Γ

= 0, (2)

and the homogeneous nonlocal conditions

Kµu := u(x, 0)− µu(x, T ) = 0, x ∈ Ω, (3)

Kµut := ut(x, 0)− µut(x, T ) = 0, x ∈ Ω, (4)

where F is a given function; α, λ, µ, a, c, σ are given constants and α > 0, λµ ̸= 0; ∂
∂ν is the

derivative with respect to the outer normal to ∂DT , n ≥ 2.
Let

◦
C2

µ(DT ) :=

{
v ∈ C2(DT ) :

(∂v
∂ν

+ σv
)∣∣∣

Γ
= 0, Kµv = 0, Kµvt = 0

}
,

◦
W 1

2,µ(DT ) :=
{
v ∈ W 1

2 (DT ) : Kµv = 0
}
,

where W 1
2 is the well-known Sobolev space and the equality Kµv = 0 is understood in the sense of

the trace theory.

Definition. Let F ∈ L2(DT ). We call function u a strong generalized solution of the problem

(1)–(4) of the class W 1
2 if u ∈

◦
W 1

2,µ(DT ) and there exists a sequence of functions um ∈
◦
C2

µ(DT )

such that um → u in the space
◦
W 1

2,µ(DT ) and Lum → F in the space L2(DT ).

It is obvious that a classical solution of the problem (1)-(4) of the space C2(DT ) represents a
strong generalized solution of this problem of the class W 1

2 .

Theorem. Let λ > 0, |µ| < 1 and a ≥ 0, c ≥ a2, σ > 0. Then for any F ∈ L2(DT ), if the exponent
of nonlinearity α < 2

n−1 , then the problem (1)–(4) has at least one strong generalized solution of

the class W 1
2 .

Note that under the conditions of the Theorem there exists a positive number λ0 =
λ0(F, a, c, σ, µ, T ) such that for 0 < λ < λ0 the problem (1)–(4) can not have more than one
strong generalized solution of the class W 1

2 .
We also note that even in the linear case, i.e. for λ = 0, the problem (1)–(4) is not always

well-posed. For example, when λ = 0 and |µ| = 1, the corresponding to (1)–(4) homogeneous
problem may have infinite number of linearly independent solutions.
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Let ω > 0,

R0+ = ]0,+∞[ , Rn
0+ =

{
(xi)

n
i=1 ∈ Rn : x1 > 0, . . . , xn > 0

}
,

and fi : R × Rn
0+ → R (i = 1, . . . , n) be ω-periodic in the first argument continuous functions.

Consider the differential system

dui
dt

= fi(t, u1, . . . , un) (i = 1, . . . , n). (1)

A solution (ui)
n
i=1 of the system (1) with ω-periodic components ui : R → R0+ (i = 1, . . . , n) is

called a positive ω-periodic solution of the system (1).
The problem on the existence of a positive ω-periodic solution has been investigated earlier

mainly only for regular differential systems, i.e., for the systems whose right sides are continuous,
or satisfy the local Carathéodory conditions on the set R× Rn

+, where

R+ = [0,+∞[ , Rn
+ =

{
(xi)

n
i=1 ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0

}
(see [1, 2] and the references therein).

Theorems below on the existence of a positive ω-periodic solution of the system (1) cover the
cases in which the system under consideration has singularities in phase variables, in particular,
the case where for arbitrary i and k ∈ {1, . . . , n} the equality

lim
xk→0

∣∣fi(t, x1, . . . , xn)∣∣ = +∞ for xj > 0 (j = 1, . . . , n; j ̸= k)

is fulfilled.
In Theorems 1 and 2 it is assumed, respectively, that the functions fi (i = 1, . . . , n) on the set

R× Rn
0+ satisfy the inequalities

σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≥ qi(t, xi) (i = 1, . . . , n) (2)

and

qi(t, xi) ≤ σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≤

≤
n∑

k=1

pik(t, x1 + · · ·+ xn)xk + q0(t, x1, . . . , xn) (i = 1, . . . , n). (3)

Here,
σi ∈ {−1, 1} (i = 1, . . . , n),

pi : R → R (i = 1, . . . , n) are ω-periodic continuous functions, pik : R × R0+ → R+ and
qi : R × R0+ → R+ (i, k = 1, . . . , n) are ω-periodic in the first and nonincreasing in the sec-
ond argument continuous functions, and q0 : R×Rn

0+ → R+ is an ω-periodic in the first argument
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and nonincreasing in the last n arguments continuous function. Moreover, pi and qi (i = 1, . . . , n)
satisfy the conditions

σi

ω∫
0

pi(s) ds < 0 (i = 1, . . . , n), (4)

max
{
qi(t, x) : 0 ≤ t ≤ ω

}
> 0 for x > 0. (5)

Along with (1) we consider the auxiliary differential system

dui
dt

= (1− λ)
(
pi(t)ui + σiqi(t, ui)

)
+ λfi(t, u1, . . . , un) + σiε (i = 1, . . . , n), (6)

depending on the parameters λ > 0 and ε > 0.

Theorem 1 (Principle of a priori boundedness). Let the inequalities (2) be fulfilled and let
there exist positive constants ε0 and ρ such that for arbitrary λ ∈ [0, 1] and ε ∈ ]0, ε0] every positive
ω-periodic solution (ui)

n
i=1 of the system (6) admits the estimates

ui(t) < ρ (i = 1, . . . , n).

Then the system (1) has at least one positive ω-periodic solution.

By X = (xik)
n
i,k=1 we denote the n× n matrix with components xik ∈ R (i, k = 1, . . . , n), and

by r(X) we denote the spectral radius of the matrix X. For any continuous ω-periodic function
p : R → R, satisfying the condition

ω∫
0

p(s) ds ̸= 0,

we put

gω(p)(t, s) =

(
exp

(
−

ω∫
0

p(τ) dτ

)
− 1

)−1

exp

( t∫
s

p(τ) dτ

)
for t and s ∈ R.

Theorem 2. Let the inequalities (3) and

lim
x→+∞

r(H(x)) < 1 (7)

be fulfilled, where H(x) = (hik(x))
n
i,k=1 and

hik(x) = max

{ t+ω∫
t

∣∣gω(pi)(t, s)∣∣pik(s, x) ds : 0 ≤ t ≤ ω

}
(i, k = 1, . . . , n).

Then the system (1) has at least one positive ω-periodic solution.

This theorem can be proved on the basis of Theorem 1 and Theorem 3.1 of [3].
Now we pass to the case, where

σipi(t) ≤ 0 for t ∈ R, pi(t) ̸≡ 0 (i = 1, . . . , n) (8)

and the inequalities (3) have the form

qi(t, xi) ≤ σi
(
fi(t, x1, . . . , xn)− pi(t)xi

)
≤

≤ |pi(t)|
n∑

k=1

hik(x)xk + q0(t, x1, . . . , xn) (i = 1, . . . , n), (9)

where hik : R0+ → R0+ (i, k = 1, . . . , n) are continuous nonincreasing functions, and σi, qi (i =
1, . . . , n) and q0 are the numbers and functions satisfying the above conditions.

From Theorem 2 it follows the following corollary.
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Corollary 1. If along with (8) and (9) the inequality (7) is fulfilled, where H(x) = (hik(x))
n
i,k=1,

then the system (1) has at least one positive ω-periodic solution.

As an example, we consider the differential systems

dui
dt

= σi

( n∑
k=1

pikuk + f0i(t, u1, . . . , un)
)

(i = 1, . . . , n) (10)

and
dui
dt

= σi

n∑
k=1

(
pikuk + qik(t)u

−αk
k

)
, (11)

where σi ∈ {−1, 1} (i = 1, . . . , n), pik (i, k = 1, . . . , n) are the constants satisfying the inequalities

pii < 0, pik ≥ 0 (i ̸= k; i, k = 1, . . . , n), (12)

f0i : R × Rn
0+ → R+ (i = 1, . . . , n) are ω-periodic in the first argument continuous functions, and

qik : R → R+ (i, k = 1, . . . , n) are ω-periodic continuous functions.

Corollary 2. Let on the set R× Rn
0+ the inequalities

qi(t, xi) ≤ f0i(t, x1, . . . , xn) ≤ q0(t, x1, . . . , xn) (i = 1, . . . , n)

be fulfilled, where q0 : R × Rn
0+ → R+ is an ω-periodic in the first and nonincreasing in the last n

arguments continuous function, and qi : R × R0+ → R+ (i = 1, . . . , n) are ω-periodic in the first
and nonincreasing in the second argument continuous functions satisfying the conditions (5). Then
for the existence of at leat one positive ω-periodic solution of the system (10) it is necessary and
sufficient that the real parts of eigenvalues of the matrix

(pik)
n
i,k=1 (13)

be negative.

Corollary 3. If
max

{
qii(t) : 0 ≤ t ≤ ω

}
> 0 (i = 1, . . . , n),

then for the existence of at least one positive ω-periodic solution of the system (11) it is necessary
and sufficient that the real parts of eigenvalues of the matrix (13) be negative.

The uniqueness of a positive ω-periodic solution of the system (1) can be proved only in the
case where each function fi has the singularity in the i-th phase variable only. More precisely, we
consider the case when the system (1) has one of the following two forms:

dui
dt

= pi(t)xi + σi
(
f0i(t, u1, . . . , un) + qi(t, ui)

)
(i = 1, . . . , n) (14)

and
dui
dt

= σi

( n∑
k=1

pikxk + qi(t, ui)
)

(i = 1, . . . , n). (15)

Here σi ∈ {−1, 1} (i = 1, . . . , n), pik (i, k = 1, . . . , n) are the constants satisfying the inequalities
(12), pi : R → R (i = 1, . . . , n) are ω-periodic continuous functions, qi : R×R0+ → R+ (i = 1, . . . , n)
are ω-periodic in the first and nonincreasing in the second argument functions, and f0i : R×Rn

+ →
R+ are ω-periodic in the first argument continuous functions. Moreover, pi and qi (i = 1, . . . , n)
satisfy the conditions (4) and (5).
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Theorem 3. Let on the set R× Rn
+ the conditions

σi

(
f0i(t, x1, . . . , xn)− f0i(t, y1, . . . , yn)

)
sgn(xi − yi) ≤

n∑
k=1

pik(t)|xk − yk| (i = 1, . . . , n)

be fulfilled, where pik : R → R+ (i, k = 1, . . . , n) are ω-periodic continuous functions. If, moreover,

r(H) < 1, (16)

where H = (hik)
n
i,k=1 and

hik = max

{ t+ω∫
t

∣∣gω(pi)(t, s)∣∣pik(s) ds : 0 ≤ t ≤ ω

}
(i, k = 1, . . . , n),

then the system (14) has a unique positive ω-periodic solution.

Corollary 4. Let the functions pi (i = 1, . . . , n) satisfy the inequalities (8) and on the set R×Rn
+

the conditions

σi

(
f0i(t, x1, . . . , xn)− f0i(t, y1, . . . , yn)

)
sgn(xi − yi) ≤ |pi(t)|

n∑
k=1

hik|xk − yk| (i = 1, . . . , n)

be fulfilled, where hik (i, k = 1, . . . , n) are nonnegative constants. If, moreover, the matrix H =
(hik)

n
i,k=1 satisfies the condition (16), then the system (14) has a unique positive ω-periodic solution.

Corollary 5. For the existence of a unique positive ω-periodic solution of the system (15) it is
necessary and sufficient that the real parts of eigenvalues of the matrix (13) be negative.

Note that in the conditions of Theorem 3 and its corollaries, the functions qi (i = 1, . . . , n) may
have singularities of arbitrary order in the second argument. For example, in (14) and (15) we may
assume that

qi(t, x) = qi1(t)x
−µi1 + qi2(t) exp(x

−µi2) (i = 1, . . . , n),

where µi1 > 0, µi2 > 0 (i = 1, . . . , n), and qik : R → R+ (i = 1, . . . , n; k = 1, 2) are ω-periodic
continuous functions such that

max
{
qi1(t) + qi2(t) : 0 ≤ t ≤ ω

}
> 0 (i = 1, . . . , n).
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Let a > 0, b > 0,
Dab = [0, a]× [0, b], Db = R× [0, b].

In the rectangle Dab and the strip Db, respectively, consider the boundary value problems

uxy = f(x, y, u), (1)

u(0, y) = λ1u(a, y), u(x, 0) = λ2u(x, b) (2)

and

uxy = p(x)uy + q(x, y, u), (3)

u(x+ a, y) = u(x, y), u(x, 0) = λu(x, b). (4)

Here
0 < λi < 1 (i = 1, 2), 0 < λ < 1,

and f : Dab × (0,+∞) → [0,+∞), p : R → R and q : Db → [0,+∞) are continuous functions.
Furthermore,

p(x+ a) = p(x), q(x+ a, y, z) = q(x, y, z) for (x, y) ∈ Db, z > 0.

A function u : Dab → (0,+∞) (u : Db → (0,+∞) is called a positive solution of equation (1)
(equation (3)) if it has continuous partial derivatives ux, uy, uxy and satisfies equation (1) (equation
(3)) in the rectangle Dab (in the strip Db).

A positive solution of equation (1) (equation (3)) satisfying the boundary conditions (2) (bound-
ary conditions (4)) is called a positive solution of problem (1), (2) (problem (3), (4)).

The existence theorems formulated below cover the case where

lim
z→0

f(x, y, z) = +∞, lim
z→0

q(x, y, z) = +∞,

i.e. the case, where equations (1) and (3) are singular with respect to the phase variable.
Similar results for ordinary differential equations are established in [1].
Introduce the functions

g1(x, s) =


1

1− λ1
for 0 ≤ s ≤ x ≤ a

λ1

1− λ1
for 0 ≤ x < s ≤ a

,

g2(y, t) =


1

1− λ2
for 0 ≤ t ≤ y ≤ b

λ2

1− λ2
for 0 ≤ y < t ≤ ba

.



78 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

Theorem 1. Let the inequality

h0(x, y, z) ≤ f(x, y, z) ≤ h1(x, y, z)
(
1 +

z

v(x, y)

)
hold on the set Dab × (0,+∞), where hi : Dab × (0,+∞) → [0,+∞) (i = 0, 1) are continuous
functions nonincreasing with respect to the third variable, and v : Dab → (0,+∞) is a continuous
function. Moreover, let

max
{
h0(x, y, z) : (x, y) ∈ Dab

}
> 0 for z > 0, (5)

lim
z→+∞

h∗(z) < 1, (6)

where

h∗(z) = max

{ a∫
0

b∫
0

g1(x, s)g2(y, t)

v(x, y)
h1(s, t, z) ds dt : (x, t) ∈ Dab

}
.

Then problem (1), (2) has at least one positive solution.

Corollary 1. Let the inequality

h0(x, y, z) ≤ f(x, y, z) ≤ h1(x, y, z)(1 + z)

hold on the set Dab × (0,+∞), where hi : Dab × (0,+∞) → [0,+∞) (i = 0, 1) are continuous
functions nonincreasing with respect to the third variable. Moreover, if h0 satisfies condition (5)
and h1 satisfies the condition

lim
z→+∞

a∫
0

b∫
0

h1(x, y, z) dx dy < (1− λ1)(1− λ2),

then problem (1), (2) has at least one positive solution.

Corollary 2. Let the inequality

h0(x, y, z) ≤ f(x, y, z) ≤ h1(z)
(
1 +

z

v0(x, y)

)
hold on the set Dab × (0,+∞), where

v0(x, y) =
(
(1− λ1)x+ λ1a

)(
(1− λ2)y + λ2b

)
, (7)

h0 : Dab × (0,+∞) → [0,+∞) is a continuous function nonincreasing with respect to the third
variable and satisfying condition (5), and h1 : (0,+∞) → (0,+∞) is a nonincreasing continuous
function such that

lim
z→+∞

h1(z) < (1− λ1)(1− λ2). (8)

Then problem (1), (2) has at least one positive solution.

Corollary 3. Let the inequality

h0(x, y, z) ≤ f(x, y, z)− l0z

v0(x, y)
≤ h1(x, y, z)(1 + z)

hold on the set Dab× (0,+∞), where l0 is a nonnegative constant, v0 is a function given by equality
(7), and hi : Dab×(0,+∞) → [0,+∞) (i = 0, 1) are continuous functions nonincreasing with respect
to the third variable. Furthermore, let h0 satisfy condition (5) and let h1 satisfy the condition

lim
z→+∞

a∫
0

b∫
0

h1(x, y, z) dx dy = 0. (9)
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Then problem (1), (2) has at least one positive solution if and only if

l0 < (1− λ1)(1− λ2). (10)

Example 1. Consider the equation

uxy =
l0

v0(x, y)
u+

m∑
k=1

lk(x, y)u
−µk , (11)

where l0 is a nonnegative constant, µk > 0 (k = 1, . . . ,m), and lk : Dab → (0,+∞) (k = 1, . . . ,m)
are continuous functions. According to Corollary 3, problem (11), (2) has at least one positive
solution if and only if inequality (10) holds.

This example demonstrates that condition (6) (condition (8)) in Theorem 1 (in Corollary 2) is
unimprovable and it cannot be replaced by a the nonstrict inequality

lim
z→+∞

h∗(z) ≤ 1
(

lim
z→+∞

h1(z) ≤ (1− λ1)(1− λ2)
)
.

Set

P0(x) = exp

( x∫
0

p(s) ds

)
, λ0 = P0(a). (12)

On the basis of Corollaries 1–3 one can prove the following assertions on existence of a positive
solution of problem (3), (4).

Corollary 4. Let the inequality

h0(x, y, z) ≤ q(x, y, z) ≤ h1(x, y, z)(P0(x) + z),

hold on the set Dab × (0,+∞), where hi : Dab × (0,+∞) → [0,+∞) (i = 0, 1) are continuous
functions nonincreasing with respect to the third variable. Furthermore, if

λ0 < 1,

h0 satisfies condition (5) and h1 satisfies the condition

lim
z→+∞

a∫
0

b∫
0

h1(x, y, z) dx dy < (1− λ0)(1− λ),

then problem (3), (4) has at least one positive solution.

Corollary 5. Let λ0 < 1 and let the inequality

h0(x, y, z) ≤ q(x, y, z) ≤ h1(z)
(
P0(x) +

z

w0(x, y)

)
hold on the set Dab × (0,+∞), where

w0(x, y) =
(
(1− λ0)x+ λ1a

)(
(1− λ)y + λb

)
, (13)

h0 : Dab × (0,+∞) → [0,+∞) is a continuous function nonincreasing with respect to the third
variable and satisfying condition (5), and h1 : (0,+∞) → (0,+∞) is a nonincreasing continuous
function such that

lim
z→+∞

h1(z) < (1− λ0)(1− λ).

Then problem (3), (4) has at least one positive solution.
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Corollary 6. Let λ0 < 1 and let the inequality

h0(x, y, z) ≤ q(x, y, z)− l0z

w0(x, y)
≤ h1(x, y, z)(1 + z)

hold on the set Dab × (0,+∞), where l0 is a nonnegative constant, w0 is a function given by
equality (13), and hi : Dab × (0,+∞) → [0,+∞) (i = 0, 1) are continuous functions nonincreasing
with respect to the third variable and satisfying conditions (5) and (9). Then problem (3), (4) has
at least one positive solution if and only if

l0 < (1− λ0)(1− λ). (14)

Example 2. Let p : R → R be an a-periodic continuous function, and let λ0, P0 and w0 be the
number and functions given by (12) and (13). Furthermore, λ0 < 1. Consider the equation

uxy = p(x)uy +
l0

w0(x, y)
u+

m∑
k=1

lk(x, y)u
−µk , (15)

where l0 is a nonnegative constant, µk > 0 (k = 1, . . . ,m), and lk : Db → (0,+∞) (k = 1, . . . ,m)
are continuous functions a-periodic with respect to the first variable. According to Corollary 6,
problem (15), (4) has at least one positive solution if and only if inequality (14) holds.
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Mathematical simulation, analysis, and numerical solution of diffusion problems describing
various processes and phenomena are very important. To such problems belongs, for instance,
mathematical modeling of diffusion of a magnetic field into a substance whose electric conductivity
depends essentially on temperature. In a quasistationary case the corresponding system of Maxwell
equations has the following form [1]:

∂H

∂t
= − rot(νm rotH),

∂θ

∂t
= νm(rotH)2, (1)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, νm characterizes the
thermal heat capacity of the substance.

Numerous publications in the 20th century deal with the study of integro-differential equations
of various kinds (see, for example, [2]–[13] and references therein). The system (1) can be reduced
to the following integro-differential form [2]

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
, (2)

where function a = a(S) is defined for S ∈ [0,∞).
Note that the system of the integro-differential equations (2) is complex. Equations and systems

of type (2) still yield to the investigation for special cases (see, for example, [2]–[13] and references
therein).

If the magnetic field has the form H = (0, U, V ) and U = U(x, t), V = V (x, t), then we get the
following system of nonlinear integro-differential equations:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
, (3)

where

S(x, t) =

t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2
]
dτ. (4)

In [10] some generalization of the system of type (2) is proposed. In particular, assuming the
temperature of the considered body to be constant throughout the material, i.e., depending on
time, but independent of the space coordinates, the process of penetration of the magnetic field
into the material is modeled by, so-called, averaged integro-differential model, the (3), (4) type
analog of which have the following form:

∂U

∂t
= a(S)

∂2U

∂x2
,

∂V

∂t
= a(S)

∂2V

∂x2
, (5)
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where

S(t) =

t∫
0

1∫
0

[(∂U
∂x

)2
+

(∂V
∂x

)2
]
dx dτ. (6)

The existence and uniqueness of the solutions of the initial-boundary value problems for the
models of type (3), (4) and (5), (6) are studied in many works (see, for example, [2]–[5], [10]–[13]
and reference therein).

Our aim is to study the asymptotic behavior of solutions as t → ∞ and semi-discrete schemes
for the initial-boundary value problem for systems (3), (4) and (5), (6).

In the domain [0, 1]× [0,∞) for the systems (3), (4) and (5), (6) we consider the following two
kind of boundary conditions:

U(0, t) = V (0, t) = U(1, t) = V (1, t) = 0, t ≥ 0, (7)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2, t ≥ 0, (8)

and usual initial conditions:

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (9)

where ψ1 = const ≥ 0, ψ2 = const ≥ 0, ψ2
1 + ψ2

2 ̸= 0 and U0 and V0 are given functions.
The following statement takes place.

Theorem 1. If a(S) = (1 + S)p, 0 < p ≤ 1, U0, V0 ∈ H3(0, 1) ∩ H1
0 (0, 1) and they satisfy

the coincident conditions, then for the solution of problems (3), (4), (7), (9) and (5)–(7), (9) the
following asymptotic relation holds as t→ ∞∣∣∣∂U(x, t)

∂x

∣∣∣+ ∣∣∣∂V (x, t)

∂x

∣∣∣+ ∣∣∣∂U(x, t)

∂t

∣∣∣+ ∣∣∣∂V (x, t)

∂t

∣∣∣ ≤ C exp
(
− t

2

)
.

Here and below C denotes positive constants.

Theorem 2. If a(S) = (1 + S)p, 0 < p ≤ 1, U0, V0 ∈ H3(0, 1) ∩ H1
0 (0, 1) and they satisfy the

coincident conditions, then for the solution of problems (3), (4), (8), (9) and (5), (6), (8), (9) the
following asymptotic relations hold as t→ ∞:∣∣∣∂U(x, t)

∂x
− ψ1

∣∣∣+ ∣∣∣∂V (x, t)

∂x
− ψ2

∣∣∣ ≤ Ct−1−p,
∣∣∣∂U(x, t)

∂t

∣∣∣+ ∣∣∣∂V (x, t)

∂t

∣∣∣ ≤ Ct−1.

Now let us consider the semi-discrete scheme for problems (3), (4), (7), (9) and (5)–(7), (9). On
[0, 1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M , with h = 1/M .
The boundaries are specified by i = 0 and i = M . The semi-discrete approximation at (xi, t) are
designed by ui = ui(t) and vi = vi(t). The exact solution to the problem at (xi, t) is denoted by
Ui = Ui(t) and Vi = Vi(t). At points i = 1, 2, . . . ,M − 1, the integro-differential equation will be
replaced by approximation of the space derivatives by a forward and backward differences.

Using usual notations let us correspond to those problems the following semi-discrete schemes:

dui
dt

=
[
a(s)ux, i

]
x
,

dvi
dt

=
[
a(s)vx, i

]
x
, i = 1, 2, . . . ,M − 1,

u0(t) = uM (t) = v0(t) = vM (t) = 0,

ui(0) = U0,i, vi(0) = V0,i, i = 0, 1, . . . ,M,

(10)

where

si(t) =

t∫
0

[
(ux,i)

2 + (vx,i)
2
]
dτ,
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or

s(t) = h

t∫
0

M∑
k=1

[
(ux,k)

2 + (vx,k)
2
]
dτ.

So, we obtained Cauchy problem (10) for nonlinear system of ordinary integro-differential equa-
tions.

It is not difficult to obtain the following estimates:

∥u(t)∥2 +
t∫

0

∥∥ux]∣∣2 dτ ≤ C, ∥v(t)∥2 +
t∫

0

∥∥vx]∣∣2dτ ≤ C, (11)

where

∥w(t)∥2 =
M−1∑
i=1

w2
i (t)h,

∥∥wx]
∣∣2 = M∑

i=1

w2
x, i(t)h.

The a priori estimates (11) guarantee the global solvability of the problem (10).
The following statement is true.

Theorem 3. If a(S) ≥ a0 = const > 0, a′(S) ≥ 0, a′′(S) ≤ 0 and problems (3), (4), (7), (9) and
(5)–(7), (9) have a sufficiently smooth solution U(x, t), V (x, t), then the solution of problems (10),
u = u(t) = (u1(t), u2(t), . . . , uM−1(t)), v = v(t) = (v1(t), v2(t), . . . , vM−1(t)) tends to U = U(t) =
(U1(t), U2(t), . . . , UM−1(t)), V = V (t) = (V1(t), V2(t), . . . , VM−1(t)) as h → 0 and the following
estimates are true:

∥u(t)− U(t)∥ ≤ Ch, ∥v(t)− V (t)∥ ≤ Ch.

Now consider the two-dimensional case. Assume that the magnetic field has the following form
H = (U, V, 0) and U = U(x, y, t), V = V (x, y, t). System (2) takes the following form:

∂U

∂t
=

∂

∂y

[
a(S)

(∂U
∂y

− ∂V

∂x

)]
,

∂V

∂t
=

∂

∂x

[
a(S)

(∂V
∂x

− ∂U

∂y

)]
, (12)

where

S(x, y, t) =

t∫
0

(∂V
∂x

− ∂U

∂y

)2
dτ.

IsoValue
0.00413991
0.0291356
0.0541312
0.0791269
0.104123
0.129118
0.154114
0.179109
0.204105
0.229101
0.254096
0.279092
0.304088
0.329083
0.354079
0.379075
0.40407
0.429066
0.454062
0.479057

t=0.04
IsoValue
0.00485275
0.045126
0.0853992
0.125672
0.165946
0.206219
0.246492
0.286765
0.327039
0.367312
0.407585
0.447858
0.488132
0.528405
0.568678
0.608951
0.649224
0.689498
0.729771
0.770044

t=0.04

Figure 1. The numerical solution u (left) and v (right) at t = 0.
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IsoValue
-0.0168195
-0.015544
-0.0142685
-0.012993
-0.0117175
-0.010442
-0.00916645
-0.00789093
-0.00661542
-0.00533991
-0.0040644
-0.00278888
-0.00151337
-0.000237858
0.00103765
0.00231317
0.00358868
0.00486419
0.00613971
0.00741522

t=1
IsoValue
-0.0436677
-0.040185
-0.0367023
-0.0332196
-0.0297369
-0.0262541
-0.0227714
-0.0192887
-0.015806
-0.0123233
-0.00884055
-0.00535783
-0.00187511
0.00160761
0.00509032
0.00857304
0.0120558
0.0155385
0.0190212
0.0225039

t=1

Figure 2. The numerical solution u (left) and v (right) at t = 1.

IsoValue
-0.00651174
-0.00593242
-0.00535311
-0.00477379
-0.00419447
-0.00361516
-0.00303584
-0.00245652
-0.00187721
-0.00129789
-0.000718574
-0.000139257
0.00044006
0.00101938
0.00159869
0.00217801
0.00275733
0.00333664
0.00391596
0.00449528

t=2
IsoValue
-0.0229284
-0.0213717
-0.019815
-0.0182583
-0.0167016
-0.0151449
-0.0135882
-0.0120316
-0.0104749
-0.00891816
-0.00736147
-0.00580478
-0.00424808
-0.00269139
-0.0011347
0.000421999
0.00197869
0.00353539
0.00509208
0.00664877

t=2

Figure 3. The numerical solution u (left) and v (right) at t = 2.

We have carried out numerous numerical experiments for systems (3), (4); (5), (6) and (12)
with different kind of initial-boundary value problems. In pictures (Figures 1–3) below there are
numerical solutions for two-dimensional system (12) with homogeneous Dirichlet boundary condi-
tions.

From these figures can be deduced that when time is increasing solution is dying in two-
dimensional case too like one-dimensional case, that we proved theoretically (Theorem 1).
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On One Formula of Computation of Uniform Means

of Piecewise Continuous Functions on the Semiaxis
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We denote by CP a class of piecewise continuous functions a( · ) : [0,+∞) → R, and by
m(a; s, t) we denote an integral mean of a function a( · ) ∈ CP on a segment [s, t], i.e. a quantity

m(a; s, t)
def
= (t− s)−1

∫ t
s a(ξ)dξ. We also denote by CPB a subclass of CP , consisting of bounded

on the semiaxis functions.
In paper [1], in particular, some formulae for computation of lower a and upper a integral means

of a function a( · ) ∈ CP , i.e. of quantities

a
def
= lim

t−s→+∞
m(a; s, t) and a

def
= lim

t−s→+∞
m(a; s, t) (1)

are obtained. As well as a function a( · ) belongs to CP , the values of a and a may be infinite (−∞
or +∞). All these values are obviously finite for functions a( · ) ∈ CPB. The general result of the
paper [1] concerning computation of the quantities (1) for a function a( · ) ∈ CP is that in case of
their finiteness the same formulae, known for functions a( · ) ∈ CPB ([2, p. 117] and [3, p. 66]), are
valid. The assumption of a finite value of the quantities (1) is significant [1].

In this paper, in addition to the formulae of [1], one more formula for computation of the
quantities (1) for functions of the class CP , the validity of which for functions of the class CPB
was established earlier in [4] and [5], is obtained.

The properties of the quantities (1) are important in connection with the study of the lower β[x]

and upper β[x] Bohl exponents [6, . 171–172; 7] of nonzero solutions x( · ) of the linear differential
system

ẋ = A(t)x, x ∈ Rn, t > 0, (2)

which are defined by formulae:

β[x] = lim
t−s→+∞

1

t− s
ln

∥x(t)∥
∥x(s)∥

and β[x] = lim
t−s→+∞

1

t− s
ln

∥x(t)∥
∥x(s)∥

, (3)

and used in the Lyapunov exponent theory. In particular, choosing the function in (1) as a(τ) ≡
(ln ∥x(τ)∥)′, we obtain the quantities (3).

Following [1], for the fuction a( · ) ∈ CP we denote by T (a) a set of all two-dimensional sequences
((sk, tk))k∈N such that tk − sk → +∞ when k → +∞ and there exists lim

k→+∞
m(a; sk, tk), and we

denote by S(a) a subset of all sequences ((sk, tk))k∈N of T (a), for which the additional condition
sk → +∞ holds. By the definitions of the lower and the upper limits, the definitions (1) of the
uniform integral means a( · ) may be written as follows

a = inf
((sk,tk))∈T (a)

lim
k→+∞

m(a; sk, tk) and a = sup
((sk,tk))∈T (a)

lim
k→+∞

m(a; sk, tk). (4)

It is, in particular, shown in [1], that the following equalities are valid

a = inf
((sk,tk))∈S(a)

lim
k→+∞

m(a; sk, tk) and a = sup
((sk,tk))∈S(a)

lim
k→+∞

m(a; sk, tk). (5)
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Definitions (5), in comparison with definitions (4), constrict the class of two-dimensional se-
quences, which could be taken for evaluation of the limit of integral averages. The class of such
sequences may be even more essentially constricted [4, 5], as it is shown below.

We fix a sequence δ = (δk)k∈N such that δk+1 − δk → +∞ when k → +∞ (every such sequence
δ we will hereinafter call the rapidly increasing). We denote ∆i = [δi, δi+1], i ∈ N, and will write
s ≈ t (mod δ), or shorter s ≈ t, if s and t belong for some i to the same segment ∆i. It is shown
in [4, 5], that for the function a( · ) ∈ CPB (and this condition is essentially used in the proof) its
lower and upper uniform integral means may be evaluated under the conditions t − s → +∞ and
s ≈ t (mod δ). This statement in the theorem stated below, is transferred to the class of functions
CP. We denote by S(a; δ) for fixed rapidly increasing sequence δ and a function a( · ) ∈ CP a subset
of those sequences ((sk, tk))k∈N of S(a), for which the condition sk ≈ tk (mod delta) holds.

Theorem. For every function a( · ) ∈ CP and every fixed rapidly increasing sequence δ the follow-
ing equalities hold: if a > −∞, then

a = lim
t−s→+∞

s≈t (mod δ)

m(a; s, t) = inf
((sk,tk))∈S(a;δ)

lim
k→+∞

m(a; sk, tk), (6)

and if a < +∞, then

a = lim
t−s→+∞

s≈t (mod δ)

m(a; s, t) = sup
((sk,tk))∈S(a;δ)

lim
k→+∞

m(a; sk, tk). (7)

Let us emphasize the importance of restrictions a > −∞ and a < +∞ for the validity of the
formulae (6) and (7), respectively. Indeed, for example, the equality (7) does not hold for the
sequence δ = (δk)k∈N, where δk = k2, k ∈ N, and the function a( · ), given by the equalities:
a(t) = −k2 when t ∈ [(2k− 1)2, (2k)2 − 1), a(t) = k2 when t ∈ [(2k)2 − 1, (2k)2) and a(t) = 1 when
t ∈ [(2k)2, (2k + 1)2), k ∈ N.

In fact, for the so-defined function a( · ) we have: a = +∞, since, as is easily seen,

m(a; (2k)2 − 1, (2k + 1)2) = (k2 + 4k + 1)/(4k + 2) → +∞ for k → +∞.

On the other hand, the integral mean m(a; si, ti) = 1, if si, ti ∈ [δ2k, δ2k+1], k ∈ N, and m(a; si, ti) 6
k2 − k2(ti − si − 1) = −k2(ti − si − 2), if si, ti ∈ [δ2k−1, δ2k], k ∈ N, and, therefore, in this case
m(a; si, ti) 6 0 when ti − si > 2. That is why for the sequence δ and the function a( · ) holds the
equality

lim
t−s→+∞

s≈t (mod δ)

m(a; s, t) = sup
(sk,tk)∈S(a;δ)

lim
k→+∞

m(a; sk, tk) = 1,

i.e. the first equality in (7) does not holds.
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Consider the differential equation

y′′ = f(t, y, y′), (1)

where f : [a, ω[×∆Y0 ×∆Y1 → R is a continuous function, −∞ < a < ω ≤ +∞, ∆Yi (i ∈ {0, 1}) is
a one-side neighborhood of Yi and Yi (i ∈ {0, 1}) is either 0 or ±∞. We assume that the numbers
µi (i = 0, 1) given by the formula

µi =

{
1, if eigher Yi = +∞, or Yi = 0 and ∆Yi is right neighborhood of the point 0,

−1, if eigher Yi = −∞, or Yi = 0 and ∆Yi is left neighborhood of the point 0,

satisfy the relations

µ0µ1 > 0 for Y0 = ±∞ and µ0µ1 < 0 for Y0 = 0. (2)

Conditions (2) are necessary for the existence of solutions of Eq. (1) defined in a left neighbor-
hood of ω and satisfying the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1). (3)

We study Eq. (1) on class Pω(Y0, Y1, λ0)-solutions, that are defined as follows.

Definition 1. A solution y of Eq. (1) on interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-solution,
where −∞ ≤ λ0 ≤ +∞, if, in addition to (3), it satisfies the condition

lim
t↑ω

[y′(t)]2

y(t)y′′(t)
= λ0.

We put

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞

and impose a restriction on the function f .

Definition 2. We say that a function f satisfies condition (RN)λ0 as λ0 ∈ R \ {0, 1} if there
exist a number α0 ∈ {−1, 1}, a continuous function p : [a, ω[→ ]0,+∞[ and continuous functions
φi : ∆Yi → ]0,+∞[ (i = 0, 1) of orders σi (i = 0, 1) regular varying as z → Yi (i = 0, 1) such that for
arbitrary continuously differentiable functions zi : [a, ω[→ ∆Yi (i = 0, 1) satisfying the conditions

lim
t↑ω

zi(t) = Yi (i = 0, 1),

lim
t↑ω

πω(t)z
′
0(t)

z0(t)
=

λ0

λ0 − 1
, lim

t↑ω

πω(t)z
′
1(t)

z1(t)
=

1

λ0 − 1
,

one has representation

f
(
t, z0(t), z1(t)

)
= α0p(t)φ0(z0(t))φ1(z1(t))[1 + o(1)] as t ↑ ω. (4)
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Note that the choice of α0 and the functions p and φi(i = 0, 1) in Definition 2 depends on the
choice of λ0 ∈ R \ {0, 1}.

Assuming λ0 ∈ R\{0, 1} and the function satisfies the condition (RN)λ0 , we introduce auxiliary
functions I0, I1, Q and a nonzero real number γ by the formulas

I0(t) =

t∫
A0

p(τ) dτ, I1(t) =

t∫
A1

πω(τ)p(τ) dτ,

Q(t) =

{
I0(t) for 1− σ0λ0 − σ1 ̸= 0,

π−1
ω (t)I1(t) for 1− σ0λ0 − σ1 = 0,

γ =

{
1− σ0λ0 − σ1 if 1− σ0λ0 − σ1 ̸= 0,

λ0 − 1 if 1− σ0λ0 − σ1 = 0,

where the integration limits Ai ∈ {a;ω} (i = 0, 1) are chosen so as to ensure that the integrals Ii
(i = 0, 1) tend either to zero or to ±∞ as t ↑ ω.

In paper [1] the following theorem was formulated and proved.

Theorem 1. Let λ0 ∈ R \ {0, 1} and let the function f satisfy condition (RN)λ0, moreover, let the

orders σi (i = 0, 1) of the functions φi (i = 0, 1) regularly varying as y(i) → Yi (i = 0, 1) satisfy
the condition σ0 + σ1 ̸= 1. Then, for the existence of Pω(Y0, Y1, λ0)-solutions of the differential
equation (1), it is necessary and, if one of the conditions

eigher λ0 ̸= σ1 − 1, or λ0 = σ1 − 1 and (1− σ1)(1− σ0 − σ1) > 0,

is satisfied, sufficient that

lim
t↑ω

πω(t)p(t)

Q(t)
=

γ

λ0 − 1
, (5)

µ0 lim
t↑ω

|πω(t)|
λ0

λ0−1 = Y0, µ1 lim
t↑ω

|πω(t)|
1

λ0−1 = Y1

and the sign conditions

α0µ1γQ(t) > 0, µ0µ1λ0(λ0 − 1)πω(t) > 0 for t ∈ [a, ω[

hold. Moreover, each solution of this kind admits the asymptotic representations

y′(t)

φ0(y(t))φ1(y′(t))
= α0γQ(t)[1 + o(1)],

y′(t)

y(t)
=

λ0(1 + o(1))

(λ0 − 1)πω(t)
as t ↑ ω,

and such solutions form a one-parameter family if λ0(1−σ0−σ1) < 0 and two-parameter family if

λ0(1− σ0 − σ1) > 0 and µ0µ1(λ0 + 1− σ1)λ0 > 0.

Since ω ≤ +∞ this theorem describes the asymptotic behavior as regular and singular
Pω(Y0, Y1, λ0)-solutions of Eq. (1) (about definitions of regular and singular solutions see [2]).
We specify the conditions of existence and asymptotic behavior of some singular Pω(Y0, Y1, λ0)-
solutions of Eq. (1) in the neighborhood of a singular point. Assuming that λ0 ∈ R \ {0, 1} and
the function f satisfies condition (RN)λ0 , in which ω exchange to t∗ ∈ [a, ω[ , lim

t↑t∗
p(t) = const ̸= 0,

set a question about the occurence of Pt∗(Y0, Y1, λ0)-solutions of Eq. (1). In this case

πω(t) = t− t∗, πω(t) < 0 as t ∈ [a, t∗[ ,

I0(t) ∼ p(t∗)(t− t∗), I1(t) ∼
p(t∗)(t− t∗)

2

2
as t ↑ t∗,

Q(t) ∼

p(t∗)(t− t∗), if 1− σ0λ0 − σ1 ̸= 0
p(t∗)(t− t∗)

2
, if 1− σ0λ0 − σ1 = 0,

as t ↑ t∗.

Moreover, from limiting relation (5) it follows that Eq. (1) has no Pt∗(Y0, Y1, λ0)-solution if 1 −
σ0λ0 − σ1 = 0.
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Theorem 2. Let λ0 ∈ R \ {0, 1} and let the function f satisfy condition (RN)λ0, moreover, let

the orders σi (i = 0, 1) of the functions φi (i = 0, 1) regularly varying as y(i) → Yi (i = 0, 1)
satisfy the condition σ0 + σ1 ̸= 1 and in representation (4) lim

t↑t∗
p(t) = const ̸= 0. Then, for the

existence of Pt∗(Y0, Y1, λ0)-solutions of the differential equation (1) it is necessary together with (2)
that conditions

µ0 lim
t↑t∗

(t∗ − t)
2−σ1

1−σ0−σ1 = Y0, µ1 lim
t↑t∗

(t∗ − t)
1+σ0
2−σ1 = Y1, (7)

α0µ1(1− σ0 − σ1)(1 + σ0) < 0, µ0µ1(1− σ0 − σ1)(2− σ1) < 0 (8)

hold. Each solution of this kind admits the asymptotic representations

y′(t)

φ0(y(t))φ1(y′(t))
=

α0p(t∗)(1− σ0 − σ1)

1 + σ0
(t− t∗)[1 + o(1)],

y′(t)

y(t)
=

(2− σ1)(1 + o(1))

(1− σ0 − σ1)(t− t∗)
as t ↑ t∗.

(9)

If together with (2), (6)–(8) one of the conditions

eigher
2− σ1
1 + σ0

̸= σ1 − 1, or
2− σ1
1 + σ0

= σ1 − 1 and (1− σ1)(1− σ0 − σ1) > 0

hold, then differential equation (1) has Pt∗(Y0, Y1,
2−σ1
1+σ0

)-solutions, that admits the asymptotic rep-

resentations (9) as t ↑ t∗, and such solutions form a one-parameter family if (2 − σ1)(1 + σ0)(1 −
σ0 − σ1) < 0 and two-parameter family if

(2− σ1)(1 + σ0)(1− σ0 − σ1) > 0 and µ0µ1(2− σ1)(3− 2σ1 + σ0 − σ0σ1) > 0.
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Let us fix a probability space (Ω,F , P ) with a filtration (Ft), let a random variable ξ : Ω →
Rd, r-dimensional standard Brownian motion W (t, ω), m-dimensional fractional Brownian motion
BH(t, ω) with the Hurst index H ∈ (12 , 1), random functions f : R+×Rd×Ω → Rd, g : R+×Rd×
Ω → Rd×r, σ : R+ ×Rd × Ω → Rd×m satisfy the following conditions:

1) the standard Brownian motion W (t, ω) is Ft-Brownian motion, the fractional Brownian mo-
tion BH(t, ω) and random variable ξ(ω) are F0-measurable;

2) the processes W (t, ω), BH(t, ω) and random variable ξ(ω) are independent;

3) the processes f(t,X, ω), g(t,X, ω), σ(t,X, ω) are measurable and Ft-adapted for any fixed
X ∈ Rd.

We consider a stochastic differential equation

dX(t, ω) = f
(
t,X(t, ω), ω

)
dt+ g

(
t,X(t, ω), ω

)
dW (t, ω) + σ

(
t,X(t, ω), ω

)
dBH(t, ω), (1)

with an initial condition
X(0, ω) = ξ(ω). (2)

A mapping h : R+ × Rd × Ω → Rd×l has linear growth if for any T ∈ R+ there exists an
F0-measurable random variable MT (ω) such that for almost all ω ∈ Ω for all (t,X) ∈ [0, T ] × Rd

there holds the inequality ∣∣h(t,X, ω)
∣∣ ≤ MT (ω)(1 + |X|).

A mapping h : R+ × Rd × Ω → Rd×l is called bounded if for any T ∈ R+ there exists an
essentially bounded F0-measurable random variable QT (ω) such that for almost all ω ∈ Ω for all
(t,X) ∈ [0, T ]×Rd there holds the inequality∣∣h(t,X, ω)

∣∣ ≤ QT (ω).

Let α, β ∈ (0, 1]. We say that a mapping h : R+ × Rd × Ω → Rd×l satisfies (α, β)-Holder
condition if for any T ∈ R+ there exists an F0-measurable random variable KT (ω) such that for
almost all ω ∈ Ω for any t, s ∈ [0, T ], X,Y ∈ Rd there holds the inequality |h(t,X, ω)−h(s, Y, ω)| ≤
KT (ω)(|t− s|α + |X − Y |β).

A mapping h : R+×Rd×Ω → Rd×l satisfies local Lipschitz condition if for any a, T ∈ R+ there
exists an F0-measurable random variable La,T (ω) such that for almost all ω ∈ Ω for any t ∈ [0, T ],

X,Y ∈ Rd, |X| ≤ a, |Y | ≤ a there holds the inequality∣∣h(t,X, ω)− h(t, Y, ω)
∣∣ ≤ La,T (ω)|X − Y |.
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A random process η(t, ω), t ∈ R+, ω ∈ Ω, has Holder-continuous trajectories of order α ∈ (0, 1]
if for almost all ω ∈ Ω and for all T ∈ R+ there exists a constant C(T, ω) such that for any
t, s ∈ [0, T ] there holds the inequality∣∣η(t, ω)− η(s, ω)

∣∣ ≤ C(T, ω)|t− s|α.

Condition A. We say that Condition A holds if the functions f , g satisfy local Lipschitz condition
and have linear growth, the mapping σ satisfies (δ, 1)-Holder condition with δ > 1−H.

For any α ∈ (0, 1/2), t ∈ R+ and mapping h : R+ → Rd denote

|h(t)|α = |h(t)|+
t∫

0

|h(t)− h(s)|
(t− s)α+1

ds.

Denote by E0(ζ) the conditional expectation E(ζ|F0) of a random variable ζ with respect to
the σ-algebra F0.

Definition 1. Solution of Eq. (1) with initial condition (2) is an Ft-adapted process X(t, ω),
t ∈ R+, ω ∈ Ω, which has Holder continuous trajectories of any order α ∈ (1−H,min{δ, 12}) almost

surely, and such that for any T > 0, α ∈ (1 −H,min{δ, 12}), p ≥ 2 with probability 1 there holds
the inequality

T∫
0

E0

(
|X(t, ω)|pα

)
dt < ∞,

and for any t ∈ R+ there holds almost surely the equality

X(t, ω) = ξ(ω) +

t∫
0

f
(
s,X(s, ω), ω

)
ds+

+

t∫
0

g
(
s,X(s, ω), ω

)
dW (s, ω) +

t∫
0

σ
(
s,X(s, ω), ω

)
dBH(s, ω),

where integral with respect to standard Brownian motion is the Ito integral, integral with respect
fractional Brownian motion is the pathwise Riemann–Stieltjes integral [1].

Definition 2. We say that a solution X(t, ω) of Eq. (1) with initial condition (2) is unique if for
any solution Y (t, ω) of Eq. (1) with initial condition (2) there holds the equality

P
(
X(t, ω) = Y (t, ω) ∀ t ∈ R+

)
= 1.

Theorem. If Condition A holds, then Eq. (1) with initial condition (2) has a unique solution.
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We are interested in the question on the existence and uniqueness of a positive solution to the
periodic boundary value problem

u′′ = p(t)u+ (−1)iq(t, u)u; u(0) = u(ω), u′(0) = u′(ω). (1i)

Here, p ∈ L([0, ω]), q : [0, ω]× R → R is a Carathéodory function, and i ∈ {1, 2}. Under a solution
to problem (1), as usually, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies given equation almost everywhere and verifies periodic
conditions.

Definition 1. We say that the function p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if for
any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality
u(t) ≥ 0 for t ∈ [0, ω]

(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 2. We say that the function p ∈ L([0, ω]) belongs to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω)

has a nontrivial sign-constant solution.

Let us introduce the following hypothesis:

q(t, x) ≥ q0(t, x) for a.e. t ∈ [0, ω] and all x ≥ 0,

q0 : [0, ω]× [0,+∞[→ R is a Carathéodory function,

q0(t, · ) : [0,+∞[→ R is non-decreasing for a.e. t ∈ [0, ω].

 (H1)

Theorem 11. Let p ∈ V−(ω), q( · , 0) ≡ 0, and hypothesis (H1) be fulfilled. Let, moreover, there
exist a function α ∈ AC 1([0, ω]) satisfying

α(t) > 0 for t ∈ [0, ω],

α′′(t) ≥ p(t)α(t)− q(t, α(t))α(t) for a.e. t ∈ [0, ω],

α(0) = α(ω), α′(0) ≥ α′(ω).

Then problem (11) has at least one positive solution u such that

u(tu) ≤ α(tu) for some tu ∈ [0, ω].
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Theorem 12. Let p ̸∈ V−(ω) ∪ V0(ω), q( · , 0) ≡ 0, and there exists a function β ∈ AC 1([0, ω])
satisfying

β(t) > 0 for t ∈ [0, ω],

β′′(t) ≤ p(t)β(t) + q(t, β(t))β(t) for a.e. t ∈ [0, ω],

β(0) = β(ω), β′(0) ≤ β′(ω).

Then problem (12) has at least one positive solution u such that

u(t) ≤ β(t) for t ∈ [0, ω].

Corollary 11. Let p ∈ V−(ω), q( · , 0) ≡ 0, hypothesis (H1) be satisfied, and

lim
x→+∞

ω∫
0

q0(s, x) ds = +∞. (2)

Then problem (11) has at least one positive solution.

Corollary 12. Let p ̸∈ V−(ω) ∪ V0(ω), q( · , 0) ≡ 0, hypothesis (H1) be satisfied, and

lim
x→+∞

∫
E

q0(s, x) ds = +∞ for every E ⊆ [0, ω], measE > 0. (3)

Then problem (12) has at least one positive solution.

Assumption (3) in Corollary 12 is optimal and cannot be weakened to assumption (2). However,
assuming (2) instead of (3), problem (12) may still have a positive solution under a more restrictive
assumption on p than p ̸∈ V−(ω) ∪ V0(ω). More precisely, the following statement holds.

Corollary 2. Let p ∈ IntV+(ω), q( · , 0) ≡ 0, and hypothesis (H1) be satisfied. Let, moreover,
condition (2) hold and there exist x0 ≥ 0 such that

q0(t, x0) ≥ 0 for a.e. t ∈ [0, ω].

Then problem (12) has at least one positive solution.

The next statements show that, under a stronger assumption on q than (H1), the assumptions
p ∈ V−(ω) and p ̸∈ V−(ω) ∪ V0(ω) in the above results are necessary. Introduce the hypothesis:

For every b > a > 0 there exists hcd ∈ L([0, ω]) such that

hab(t) ≥ 0 for a.e. t ∈ [0, ω], hab ̸≡ 0,

q(t, x) ≥ hab(t) for a.e. t ∈ [0, ω] and all x ∈ [a, b].

 (H2)

Proposition 11. Let hypothesis (H2) hold. If problem (11) has a positive solution then the inclusion
p ∈ V−(ω) is satisfied.

Proposition 12. Let hypothesis (H2) hold. If problem (12) has a positive solution then the condition
p ̸∈ V−(ω) ∪ V0(ω) is satisfied.

Now we give two uniqueness type results for problem (1). Introduce the following hypothesis:

For every b > a > 0 and c > 0, there exists habc ∈ L([0, ω]) such that

habc(t) > 0 for a.e. t ∈ [0, ω],

q(t, x+ c)− q(t, x) ≥ habc(t) for a.e. t ∈ [0, ω] and all x ∈ [a, b].

 (H3)
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Theorem 2. Let p ̸∈ V−(ω)∪V0(ω), q( · , 0) ≡ 0, and hypothesis (H3) hold. Then problem (1) has
at most one positive solution.

A quite stronger assertion can be proved under the assumption that p ∈ IntV+(ω). On the
other hand, hypothesis (H3) can be weakened to the following one:

For every b > a > 0 and c > 0, there exists habc ∈ L([0, ω]) such that

habc(t) ≥ 0 for a.e. t ∈ [0, ω], habc ̸≡ 0,

q(t, x+ c)− q(t, x) ≥ habc(t) for a.e. t ∈ [0, ω] and all x ∈ [a, b].

 (H4)

Theorem 3. Let p ∈ IntV+(ω), hypothesis (H4) hold, and

q(t, 0) ≥ 0 for a.e. t ∈ [0, ω].

Then problem (12) has at most one positive solution. Moreover, any non-trivial solution to this
problem is either positive or negative.

If q in (1) is a function with separated variables, we arrive at the problem

u′′ = p(t)u+ (−1)ih(t)φ(u)u; u(0) = u(ω), u′(0) = u′(ω), (4i)

where p, h ∈ L([0, ω]), φ ∈ C(R), and i ∈ {1, 2}. This problem covers a rather wide class of
equations and serves us as a model problem to illustrate the results.

Theorem 41. Let p ∈ V−(ω), φ(0) = 0, and

h(t) ≥ 0 for a.e. t ∈ [0, ω], h ̸≡ 0. (5)

Let, moreover, at least one of the following conditions be fulfilled:

(a) The inequality
lim inf
x→+∞

φ(x) > −∞

holds and there exists c > 0 such that p(t) ≤ h(t)φ(c) for a.e. t ∈ [0, ω].

(b) The equality
lim

x→+∞
φ(x) = +∞ (6)

holds.

Then problem (41) has at least one positive solution.

Theorem 42. Let p ̸∈ V−(ω) ∪ V0(ω), φ(0) = 0, and at least one of the following conditions be
fulfilled:

(a) There exists c > 0 such that p(t) + h(t)φ(c) ≥ 0 for a.e. t ∈ [0, ω].

(b) Condition (6) holds and
h(t) > 0 for a.e. t ∈ [0, ω]. (7)

Then problem (42) has at least one positive solution.

Theorem 5. Let p ̸∈ V−(ω) ∪ V0(ω), φ(0) = 0, φ is increasing on [0,+∞[ , and relations (6) and
(7) be satisfied. Then the problem (4) has a unique positive solution.

If we assume that the function φ in (42) is even and u is a solution to problem (42) the the
function −u is its solution, as well. Therefore, we get the following multiplicity type result.
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Theorem 6. Let p ∈ IntV+(ω), φ(0) = 0, φ is increasing on [0,+∞[ , and relations (5) and (6)
be satisfied. Then the problem

u′′ = p(t)u+ h(t)φ(|u|)u; u(0) = u(ω), u′(0) = u′(ω)

has exactly three solutions (positive, negative, and trivial).

Finally, we consider the problem with two “super-linear” terms

u′′ = p(t)u+ (−1)ih(t)|u|λ sgnu+ f(t)|u|µ sgnu; u(0) = u(ω), u′(0) = u′(ω), (8i)

where p, h, f ∈ L([0, ω]), λ, µ > 1, and i ∈ {1, 2}. The next statements follow from Theorems 11
and 12.

Theorem 71. Let p ∈ V−(ω), λ > µ > 1, relation (5) hold, and there exists a number c > 0 such
that

[f(t)]+ ≤ ch(t) for a.e. t ∈ [0, ω]. (9)

Then problem (81) has at least three solutions (positive, negative, and trivial).

Theorem 72. Let p ∈ IntV+(ω), λ > µ > 1, relation (5) hold, and there exists a number c > 0
such that

[f(t)]− ≤ ch(t) for a.e. t ∈ [0, ω]. (10)

Then problem (82) has at least three solutions (positive, negative, and trivial).

Remark 1. If
f(t) ≥ 0 for a.e. t ∈ [0, ω]

then inequality (10) is trivially satisfied and we can claim in Theorem 72 that problem (8) has
exactly three solutions.

Theorem 81. Let p ∈ V−(ω), λ > µ > 1, condition (7) hold, and

[f ]
λ−1
λ−µ

+ h
− µ−1

λ−µ ∈ L([0, ω]). (11)

Then problem (81) has at least three solutions (positive, negative, and trivial).

Theorem 82. Let p ̸∈ V−(ω) ∪ V0(ω), λ > µ > 1, condition (7) hold, and

[f ]
λ−1
λ−µ

− h
− µ−1

λ−µ ∈ L([0, ω]). (12)

Then problem (82) has at least three solutions (positive, negative, and trivial).

Remark 2. Observe that if there exists c > 0 such that inequality (9) (respectively, (10)) holds then
inclusion (11) (respectively, (12)) is trivially satisfied.
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with a piecewise continuous bounded coefficient matrix A and with the Cauchy matrix XA. To-
gether with system (1), consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with a piecewise continuous bounded perturbation matrix Q. We use the notation λn(A +Q) for
the higher exponent of system (2). Let M be an arbitrary class of perturbations. The number
Λ(M) := sup{λn(A+Q) : Q ∈ M} is the attainable upper bound of exponents of system (2) with
perturbations in the class M. The problem of finding Λ(M) for various M specified by a given
smallness condition is an important problem in the theory of Lyapunov characteristic exponents
[1, p. 157], [2], [3, p. 46]. It was studied, e.g., in [4]–[15]. In numerous cases, an algorithm similar
to the algorithm for the computation of the sigma-exponent [4] can be constructed for Λ(M). In
some other cases [5], [6], [13]–[15], formulas similar to those for the computation of the central
[1, p. 99], [12], [13] and exponential [15] exponents hold. For the set M0[θ] of all perturbations

satisfying the estimate ∥Q(t)∥ ≤ NQe
−σθ(t), where NQ ≥ 0, σ > 0, are numbers depending on Q

and θ : [0,+∞[→ ]0,+∞[ is a fixed piecewise continuous function monotone increasing to +∞ such
that lim

t→+∞
t−1θ(t) < +∞, it was proved in [5], [6] that

Λ(M0[θ]) = lim
δ→+0

lim
k→∞

1

tk(δ)

k∑
j=0

ln
∥∥XA(tj+1(δ), tj(δ))

∥∥, (3)

where, for each δ > 0, the sequence tj(δ), j ∈ N, referred to as the δ-characteristic sequence for the
perturbation class M0[θ]], is defined by the recursion formula tj+1(δ) = tj(δ) + δθ(tj(δ)), and any
nonnegative number can be taken for t0(δ) ≥ 0.

The perturbation classes M for which Λ(M) admits a representation of the form (3) were called
limit classes in [5], [6]. In the report we present sufficient conditions for the considered class of
piecewise continuous bounded perturbations to have similar properties.

For an arbitrary set S and for any n ∈ N, by Sn×n we denote the set of all n× n-matrices with
entries in S. In Rn×n, we fix the spectral norm ∥ · ∥, and by KCn(R+) we denote the linear space
of all bounded piecewise continuous matrix functions defined everywhere on the positive half-line
R+ := [0,+∞[ and ranging in Rn×n.

A function γ ∈ KC1(R+) is said to be strictly positive iff the condition inf
t∈J

γ(t) > 0 holds for

every finite interval J ⊂ R+.
Following the approach suggested in [16], we interpret a one-dimensional smallness class as

an arbitrary linear subspace s ⊂ KC1(R+) that contains at least one strictly positive function
and satisfies the following fullness condition: together with any element β, the set s contains all
functions φ ∈ KC1(R+) such that |φ(t)| ≤ |β(t)| for all t ≥ 0. For each n ∈ N, the smallness class
of dimension n × n corresponding to the one-dimensional class s is defined as the set of matrices
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sn×n. By [16], the smallness class sn×n can be equivalently defined as the set of Q ∈ KCn(R+) such
that ∥Q∥ ≤ β for some β ∈ s.

A system of generators for a one-dimensional class s is defined as a subset K ⊂ s that consists
of strictly positive functions and has the property that, for each β ∈ s, there exists φ ∈ K such
that |β| ≤ Cφ for some C > 0 depending on φ and β.

Example 1. For the one-dimensional class M0[θ], a system of generators is given by the one-
parameter family of functions {exp(−σθ(t)) : σ > 0}, which can be restricted to the countable
family exp(−θ(t)/k), k ∈ N.

Let T be the set of all sequences of times tk ≥ 1, k ∈ N∪{0}, monotone increasing to +∞. By T0

we denote the subset of T that consists of subsequences satisfying the condition lim
k→+∞

t−1
k tk+1 = 1

of slow growth [17] and the condition lim
k→+∞

(tk+1− tk) = +∞. For arbitrary β ∈ KC1(R+), N ≥ 0,

and τ ∈ T, let

Ω(A, τ) = lim
k→∞

1

tk+1

k∑
i=0

ln ∥XA(ti+1, ti)∥,

∆N (β, τ) = lim
k→∞

1

tk

tk∫
t0

Kτ
N (s)β(s) ds,

where the tk ≥ 1, k ∈ N ∪ {0}, are elements of the sequence τ , Kτ
N (s) = eN(s−tk) for s ∈]tk, tk+1],

k ∈ N, and Kτ
N (s) = 0 for s ≤ t0. If β ∈ KC1(R+) is a strictly positive function, then we introduce

the additional notation

γ(β, τ) = lim
k→∞

1

tk+1

k∑
i=0

ln
2

sinφi
, φi = min

{
π

2
, e−2NA

ti∫
ti−1

β(s) ds

}
;

Theorem 1. Let M = sn×n be some smallness class of perturbations, and let K be a system of
generators of the corresponding one-dimensional class s. If there exists a set Γ ⊂ T0 such that the
inequality inf

β∈K
γ(β, τ) = 0 holds for each sequence τ ∈ Γ, and for any β ∈ K and M > 0, there

exists a sequence τ ∈ Γ satisfying the condition ∆M (β, τ) = 0, then

Λ(M) = sup
β∈K

sup
M>0

inf
τ∈Rβ

M

Ω(A, τ) = sup
τ∈Γ

Ω(A, τ),

where Rβ
M = {τ ∈ Γ : ∆M (β, τ) = 0}.

Example 2. For the limit class M0[θ] with a system of generators K consisting of the functions
βσ(t) = exp(−σθ(t)), σ > 0, t ≥ 0, for the set Γ, one can take the set of all δ-characteristic
sequences for δ ∈]0, δ0] with an arbitrary δ0 > 0.

Definition 1. An arbitrary smallness class M is called a Γ-ultimate (or Γ-limit) class if there exists
a set Γ ⊂ T such that the relation

Λ(M) = sup
τ∈Γ

Ω(A, τ)

holds for every system (1).

Definition 2. A one-dimensional smallness class s is said to be radical if, together with each
element β, the set s contains all of its powers βε, ε ∈]0, 1].
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Example 3. The condition to be radical holds for classes of exponential and infinitesimal per-
turbations as well as for the classes M0[θ]. The classes of sigma-perturbations and perturbations
integrable on the half-line do not satisfy that condition.

Remark. In Definition 2, instead of the requirement of all positive powers of elements with exponents
less than unity to belong to the class s, it suffices to require that only the roots (radicals) of them
with any positive integer power belong to s; i.e., it suffices to consider the values ε = 1/k for k ∈ N.

Theorem 2. If a one-dimensional smallness class s is radical, consists of functions tending to zero
at infinity, and has a system of generators K where each element β is a continuous function with
exact zero Lyapunov exponent and satisfies the condition

t∫
t−1

lnβ(s) ds ≥ Cβ lnβ(t), (4)

for some Cβ > 0 and for all sufficiently large t; then for each n ∈ N the smallness class M = sn×n

is Γ-limit.

Example 4. One can readily see that the assumptions of Theorem 2 are satisfied for all limit
classes M considered in [5], [6]. In that case, condition (4) can be reduced to the inequality

t∫
t−1

θ(s) ds ≤ Cβθ(t), (5)

whose validity for Cβ = 1 is provided by the monotone growth of the function θ. Condition (5)
with Cβ > 0 is valid for some nonmonotone functions as well satisfying the condition θ(t)/t → 0 as
t → +∞, for example, for θ1(t) = (1+ sin2 t) ln t. This permits one to use Theorem 2 for the proof
of the Γ-limit property of the classes M0[θ] with such functions.
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and its application to problems of stability. (Russian) Izdat. “Nauka”, Moscow, 1966.

[2] N. A. Izobov, Linear systems of ordinary differential equations. (Russian) Mathematical anal-
ysis, Vol. 12 (Russian), pp. 71–146, 468. (loose errata) Akad. Nauk SSSR Vsesojuz. Inst.
Nauchn. i Tehn. Informacii, Moscow, 1974.

[3] N. A. Izobov, Introduction to the theory of Lyapunov exponents. (Russian) Minsk, 2006.

[4] N. A. Izobov, The highest exponent of a linear system with exponential perturbations. (Rus-
sian) Differencial’nye Uravnenija 5 (1969), 1186–1192.

[5] E. A. Barabanov, On extreme Lyapunov exponents of linear systems under exponential and
power perturbations. (Russian) Differencial’nye Uravnenija 20 (1984), No. 2, p. 357.

[6] E. A. Barabanov, Exact bounds of Lyapunov extreme exponents of linear differential systems
under exponential and power perturbations. Cand. Sci. Phys. Math. Dissertation, Minsk,
1984.

[7] E. A. Barabanov and O. G. Vishnevskaya, Sharp bounds for Lyapunov exponents of a linear
differential system with perturbations integrally bounded on the half-line. (Russian) Dokl.
Akad. Nauk Belarusi 41 (1997), No. 5, 29–34, 123.



International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia 101

[8] E. K. Makarov, I. V. Marchenko, and N. V. Semerikova, On an upper bound for the higher
exponent of a linear differential system with perturbations integrable on the half-axis. (Rus-
sian) Differ. Uravn. 41 (2005), No. 2, 215–224, 286–287; translation in Differ. Equ. 41 (2005),
No. 2, 227–237.

[9] I. V. Marchenko, A sharp upper bound on the mobility of the highest exponent of a linear
system under perturbations that are small in weighted mean. (Russian) Differ. Uravn. 41
(2005), No. 10, 1416–1418, 1439; translation in Differ. Equ. 41 (2005), No. 10, 1493–1495.

[10] E. K. Makarov and I. V. Marchenko, An algorithm for constructing attainable upper bounds
for the highest exponent of perturbed systems. (Russian) Differ. Uravn. 41 (2005), No. 12,
1621–1634, 1726; translation in Differ. Equ. 41 (2005), No. 12, 1694–1709.

[11] N. V. Kozhurenko and E. K. Makarov, On sufficient conditions for the applicability of an
algorithm for computing the sigma-exponent for integrally bounded perturbations. (Russian)
Differ. Uravn. 43 (2007), No. 2, 203–211, 286; translation in Differ. Equ. 43 (2007), No. 2,
208–217.

[12] V. M. Millionshchikov, A criterion for small change in the directions of solutions of a linear
system of differential equations under small perturbations of the coefficients of the system.
(Russian) Mat. Zametki 4 (1968), 173–180.

[13] V. M. Millionshchikov, A proof of accessibility of the central exponents of linear systems.
(Russian) Sibirsk. Mat. Zh. 10 (1969), 99–104.

[14] I. N. Sergeev, Sharp upper bounds of mobility of the Ljapunov exponents of a system of
differential equations and the behavior of the exponents under perturbations approaching.
(Russian) Differentsial’nye Uravneniya 16 (1980), No. 3, 438–448, 572.

[15] N. A. Izobov, Exponential indices of a linear system and their calculation. (Russian) Dokl.
Akad. Nauk BSSR 26 (1982), No. 1, 5–8, 92.

[16] E. K. Makarov, Axiomatic representation of smallness classes of perturbations of coefficients
of linear differential systems. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, No. 1,
46-57.

[17] N. A. Izobov, On a set of lower indices of a linear differential system. (Russian) Differen-
cial’nye Uravnenija 1 (1965), 469–477.



102 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

On the Green Operator of the

General Linear Boundary Value Problem for a

Class of Functional Differential Equations

with Continuous and Discrete Times

V. P. Maksimov

Perm State University, Perm, Russia
E-mail: maksimov@econ.psu.ru

1 Introduction

We consider here a system of functional differential equations (FDE, FDS) that is a typical one
met with in mathematical modeling various dynamic processes and covers many kinds of dynamic
models with aftereffect (integrodifferential, delayed differential, differential difference, difference)
and impulsive disturbances [2, 4, 5, 8]. The equations of the system contain simultaneously terms
depending on continuous time, t ∈ [0, T ], and discrete, t ∈ {0, t1, . . . , tN , T}. The interest of
researchers in such “continuous-discrete systems” (CDS) is growing constantly (see, for instance,
[1, 9, 6] and references therein).

First we descript in detail a class of continuous-discrete functional differential equations
(CDFDE) with linear Volterra operators and appropriate spaces where those are considered. We
concerned with the representation of general solution to the system using the Cauchy operator and
the fundamental matrix. Next the setting of the general linear boundary value problem (BVP)
for CDFDE is given, and conditions for the unique solvability of BVP are formulated. Finally we
propose a representation to solutions of the uniquely solvable BVP and discuss some properties of
the corresponding Green operator.

2 A class of Continuous-Discrete Functional Differential Systems

Fix a segment [0, T ] ⊂ R. By Ln = Ln[0, T ] we denote the space of summable functions v : [0, T ] →

Rn under the norm ∥v∥Ln =
T∫
0

|v(s)|n ds, where | · |n stands for the norm of Rn.

Given set {τ1, . . . , τm}, 0 < τ1 < · · · < τm < T , the space DSn(m) = DSn[0, τ1, . . . , τm, T ]
is defined (see [3, 5]) as the space of piecewise absolutely continuous functions y : [0, T ] → Rn

representable in the form

y(t) =

t∫
0

v(s) ds+ y(0) +
m∑
k=1

χ
[τk,T ]

(t)∆y(τk),

where v ∈ Ln, ∆y(τk) = y(τk) − y(τk − 0), χ
[τk,T ]

(t) is the characteristic function of the segment

[τk, T ]: χ
[τk,T ]

(t) = 1 if t ∈ [τk, T ] and χ
[τk,T ]

(t) = 0, t /∈ [τk, T ]. Thus the elements of DSn(m) are

the functions being absolutely continuous on each [0, τ1), [τ1, τ2), . . . , [τm, T ] and continuous from
the right at the points τ1, . . . , τm. Under the norm

∥y∥DSn(m) = ∥ẏ∥Ln + |y(0)|n +

m∑
k=1

|∆y(τk)|n
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the space DSn(m) is Banach.
Let us fix a set J = {t0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T .
FDν(µ) = FDν{t0, t1, . . . , tµ} denotes the space of functions z : J → Rν under the norm

∥z∥FDν(µ) =

µ∑
i=0

|z(ti)|ν .

We consider the system
ẏ = T11y + T12z + f,

z = T21y + T22z + g,
(1)

where the linear operators Tij , i, j = 1, 2, are defined as follows:

T11 : DSn(m) → Ln; (T11)

(T11y)(t) =
t∫

0

K1(t, s)ẏ(s) ds+A1
0(t)y(0) +

∑
{k: τk<t}

A1
k(t)∆y(τk), t ∈ [0, T ].

Here the elements k1ij(t, s) of the kernel K(t, s) are measurable on the set 0 ≤ s ≤ t ≤ T and such

that |k1ij(t, s)| ≤ κ(t), i, j = 1, . . . , n, κ( · ) is summable on [0, T ], (n× n)-matrices A1
0, . . . , A

1
m have

elements summable on [0, T ],

T12 : DSn(m) → Ln; (T12z)(t) =
∑

{j: tj≤t−∆1}

B1
j (t)z(tj), t ∈ [0, T ], (T12)

where elements of matrices B1
j , j = 0, 1, . . . , µ,, are summable on [0, T ], ∆1 ≥ 0.

T21 : DSn(m) → Ln; (T21)

(T21y)(ti) =
max{ti−∆2}∫

0

K2
i (s)ẏ(s)ds+A2

i0y(0) +
∑

{k: τk<ti}

A2
ik∆y(τk), i = 0, 1, . . . , µ,

with measurable and essentially bounded on [0, T ] elements of matrices K2
i and constant (ν × n)-

matrices A2
ik, i = 0, 1, . . . , µ, k = 0, 1, . . . ,m; ∆2 ≥ 0,

T22 : DSn(m) → Ln; (T22z)(t) =
i−1∑
j=0

B2
ijz(tj) i = 1, . . . , µ, (T22)

with constant (ν × ν)-matrices B2
ij .

In what follows we will use some results from [4, 5] concerning the equation

ẏ = T11y + f (2)

and the results of [2] concerning the equation

z = T22z + g. (3)

The general solution of (2) has the form

y(t) = Y (t)α+

t∫
0

C1(t, s)f(s) ds, (4)
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with arbitrary α ∈ Rn+mn, where Y ( · ) is the fundamental matrix, C1( · , · ) is the Cauchy matrix.
As for equation (3), it has the immediate analogs of the above terms. Thus, the general solution

of (3) has the representation

z(ti) = Z(ti)β + (C2g)(ti), i = 0, 1, . . . , µ, (5)

with arbitrary β ∈ Rν , where Z( · ) is the fundamental matrix, C2( · , · ) is the Cauchy matrix.

As is shown in [7], under the assumption that ∆1 + ∆2 ̸= 0, the general solution x =

(
y
z

)
∈

DSn(m)× FDν(µ) of (1) has the form

x = X
(
α
β

)
+ C

(
f
g

)
, (6)

where the fundamental matrix X is expressed in terms of the fundamental matrices Y and Z by
the equality

X =

(
X11 X12

X21 X22

)
=

(
H11Y H12Z
H21Y H22Z

)
, (7)

the Cauchy operator C is expressed in terms of the Cauchy operators C1 and C2:

C =

(
C11 C12
C21 C22

)
=

(
H11C1 H12C2

H21C1 H22C2

)
, (8)

H11 = (I − C1T12C2T21)−1, H12 = −(I − C1T12C2T21)−1C1T12,
H21 = C2T21(I − C1T12C2T21)−1, H22 = I + C2T21(I − C1T12C2T21)−1C1T12.

(9)

3 General Boundary Value Problem

The general linear BVP is the system (1) supplemented by linear boundary conditions

ℓx = ℓ

(
y
z

)
= γ, γ ∈ RN , (10)

where ℓ : DSn(m) × FDν(µ) → RN is the linear bounded vector functional. Let us give the
representation of ℓ:

ℓ

(
y
z

)
=

T∫
0

Φ(s)ẏ(s) ds+Ψ0y(0) +

m∑
k=1

Ψk∆y(τk) +

µ∑
j=0

Γjz(tj). (11)

Here Ψk, k = 0, 1, . . . ,m, are constant (N × n)-matrices, Γj , j = 0, 1, . . . , µ are constant (N × ν)-
matrices, Φ is (N × n)-matrix with measurable and essentially bounded on [0, T ] elements. We
assume that the components ℓi : DSn(m)× FDν(µ) → R, i = 1, . . . , N are linearly independent.

BVP (1), (10) is well-defined if N = n+mn+ ν. In such a situation, BVP (1), (10) is uniquely
solvable for any f , g if and only if the matrix

ℓX = (ℓX 1, . . . , ℓX n+mn+ν), (12)

where X j is the j-th column of X , is nonsingular, i.e.

det ℓX ̸= 0. (13)

Theorem. Suppose that N = n+mn+ ν. Then BVP (1), (10) is uniquely solvable for any f , g if
and only if (13) holds where N × N -matrix ℓX is defined by (12), (11), (7), (9). In the case that
(13) takes place, a solution to (1), (10) has the representation

x =

(
y
z

)
= X (ℓX )−1γ + G

(
f
g

)
, (14)
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where the Green operator G : Ln × FDν(µ) → DSn(m)× FDν(µ) is defined by the equality

G = C − X (ℓX )−1ℓC. (15)

The representation (15) allows one to study properties of the components G11, . . . ,G22 to

G =

(
G11 G12

G21 G22

)
.

Denote by Λij , i, j = 1, 2, the components of the operator Λ = (ℓX )−1ℓ : DSn(m) × FDν(µ) →
Rn+mn ×Rν and introduce operators XΛ

ij , i, j = 1, 2, by the equalities

XΛ
ij =

2∑
k=1

XikΛkj , i, j = 1, 2.

Thus, for Gij , we have

Gij = Cij −
2∑

k=1

XΛ
ikCkj , i, j = 1, 2.

With this equality it can be established, in particular, that G11 is an integral operator, and some
useful relationships for its kernel can be derived.
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Different notions of variation appear when we deal with problems in infinite dimension. Among
them, the semivariation is commonly found in the study of convolution, integral equations and
measure differential equations. In the setting of Stieltjes-type integral, the functions of bounded
semivariation play an important role and are usually connected with results on the existence of
the corresponding integral. In this notes we are particularly interested in its connection with the
integral due to Kurzweil (see [4]).

To introduce the definition of a semivariation, we need to recall that, given an interval [a, b], a
division of [a, b] is a finite set of the form

D = {α0, α1, . . . , αν(D)}, a = α0 < α1 < · · · < αν(D) = b,

where ν(D) ∈ N corresponds to the number of subintervals in which [a, b] is divided. The set of all
finite divisions of [a, b] is denoted by D[a, b].

In what follows, X and Y are Banach spaces and L(X,Y ) stands for the Banach space of
bounded linear operators from X to Y . By ∥ · ∥X and ∥ · ∥L(X,Y ) we denote the norm in X and
the usual operator norm in L(X,Y ), respectively.

The semivariation of a function F : [a, b] → L(X,Y ) on [a, b] is defined by

SVb
a(F ) = sup

{
V (F,D, [a, b]) : D ∈ D[a, b]

}
,

where,

V (F,D, [a, b]) = sup

{∥∥∥ ν(D)∑
j=1

[
F (αj)− F (αj−1)

]
xj

∥∥∥
Y
: xj ∈ X, ∥xj∥X ≤ 1

}
,

for D ∈ D[a, b]. If SVb
a(F ) < ∞, we say that the function F is of bounded semivariation on [a, b].

The set of all functions F : [a, b] → L(X,Y ) of bounded semivariation on [a, b] is denoted by
SV ([a, b], L(X,Y )).

It is not hard to see that
SVb

a(F ) ≤ varba(F )

holds for F : [a, b] → L(X,Y ), where varba(F ) stands for the total variation of F on [a, b], i.e.

varba(F ) = sup

{ ν(D)∑
j=1

∥∥F (αj)−F (αj−1)
∥∥
L(X,Y )

: D ∈ D[a, b]

}
.

Denoting by BV ([a, b], L(X,Y )) the set of all functions F : [a, b] → L(X,Y ) such that varba(F ) <
∞, we have

BV ([a, b], L(X,Y )) ⊆ SV ([a, b], L(X,Y )).

One can show that semivariation and total variation are equivalent provided the space Y has a
finite dimension (see [7]).

The following proposition summarizes some basic properties of functions of bounded semivari-
ation.
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Proposition 1. Let F, G ∈ SV ([a, b], L(X,Y )) and λ ∈ R. Then:

• F is bounded on [a, b];

• SVb
a(F +G) ≤ SVb

a(F ) + SVb
a(G) and SVb

a(λF ) = |λ| SVb
a(F );

• SVb
a(F ) ≤ SVc

a(F ) + SVb
c(F ) for c ∈ [a, b].

• The function t ∈ [a, b] 7−→ SVt
a(F ) is nondecreasing.

As a consequence, it follows that, SV ([a, b], L(X,Y )) is a linear space. Moreover, it is a Banach
space with respect to the norm given by

∥F∥SV = ∥F (a)∥L(X,Y ) + SVb
a(F ) for F ∈ SV ([a, b], L(X,Y )).

In literature we can usually find the semivariation characterized as follows (see, for instance, [1]
and [3, 3.6, Chapter I]).

Proposition 2. The semivariation of a function F : [a, b] → L(X,Y ) is given by

SVb
a(F ) = sup

{
varba (y

∗ ◦ F ) : y∗ ∈ Y ∗, ∥y∗∥Y ∗ ≤ 1
}
.

where, for y∗ ∈ Y ∗, the function (y∗ ◦ F ) : [a, b] → X∗ is given by

(y∗ ◦ F )(t)(x) = y∗(F (t)x) for t ∈ [a, b], x ∈ X.

Our aim is to present a new characterization of the semivariation by the means of the abstract
Kurzweil-Stieltjes integral introduced by Š. Schwabik in [6]. For the reader’s convenience, we will
recall its definition.

As usual, a partition of [a, b] is a tagged division P = (ξ,D) where D ∈ D[a, b] with D =
{α0, α1, . . . , αν(D)} and ξj ∈ [αj−1, αj ] for j = 1, . . . , ν(D). Furthermore, given a positive function

δ : [a, b] → R+ (called a gauge on [a, b]), a partition P = (ξ,D) is said to be δ-fine if

[αj−1, αj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, . . . , ν(D).

Let F : [a, b] → L(X), g : [a, b] → X be given. The abstract Kurzweil-Steltjes integral
b∫
a
F d[g]

exists if there is I ∈ X such that for every ε > 0 there is a gauge δ on [a, b] such that∥∥Σ(F,∆g, P )− I
∥∥
X

< ε for all δ-fine partitions P of [a, b],

where Σ(F,∆g, P ) =
ν(D)∑
j=1

F (ξj)[g(αj)− g(αj−1)]. In such case we write I =
b∫
a
F d[g].

Basic properties of the Kurzweil–Stieltjes integral in abstract spaces can be found, for example,
in [5] and [6].

We are now ready to state our main result.

Main Theorem. If F ∈ SV ([a, b], L(X)), then

SVb
a(F ) = sup

{∥∥∥∥F (b)g(b)−
b∫

a

F d[g]

∥∥∥∥
X

; g ∈ SL([a, b], X), ∥g∥∞ ≤ 1

}
,

where SL([a, b], X) denotes the set of all finite step functions g : [a, b] → X which are left-continuous
on (a, b] and such that g(a) = 0.

The proof follows closely the ideas presented in [2] where, using the Young integral in Hilbert
spaces, an analogous characterization of variation is presented.
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In theory of Riemann integral, the impact of the Bounded Convergence Theorem, also called
Arzelà or Arzelà–Osgood or Osgood Theorem, is comparable to the importance of the Lebesgue
Dominated Convergence Theorem in the theory of the Lebesgue integration. In this work we
are concerned with the abstract Kurzweil–Stieltjes integral, that is, the Stieltjes type integral for
functions with values in a Banach space introduced by Š. Schwabik in [6]. Our aim is to present
the Bounded Convergence Theorem in this abstract setting.

To make our statement more precise we need to fix some notations.
In what follows, X is the Banach space and L(X) is the Banach space of all bounded linear

operators on X. By ∥ · ∥X we denote the norm in X, while ∥ · ∥∞ stands for the supremum norm.
Furthermore, BV ([a, b], X) denotes the set of functions valued in X of bounded variation on [a, b]
and G([a, b], X) denotes the set of regulated functions.

Throughout the paper by
b∫
a
d[F ] g we understand the abstract Kurzweil–Stieltjes integral of

g : [a, b] → X with respect to F : [a, b] → L(X) in the sense of [6].

Main Theorem (Bounded Convergence Theorem). Let g ∈ G([a, b], X), a sequence {gn} ⊂
G([a, b], X) and K ∈ [0,∞) be such that

lim
n→∞

gn(t) = g(t) for t ∈ [a, b]

and
∥gn∥∞ ≤ K < ∞ for n ∈ N.

Then for any F ∈ BV ([a, b], L(X)) and n ∈ N the integrals
b∫
a
d[F ] g,

b∫
a
d[F ] gn exist and

lim
n→∞

b∫
a

d[F ] gn =

b∫
a

d[F ] g.

In the case of real valued functions, the proof of such convergence result is based either on
Arzelà’s Lemma or on other sophisticated tools (cf. e.g. [2, Theorem II.19.3.14]) that cannot be
extended to the case of Banach space-valued functions. Nevertheless, a paper by J. W. Lewin [3],
in which an elementary proof of Bounded Convergence Theorem is given for the Riemann integral,
offered some enlightenment to this topic.

Our approach is inspired by some of the ideas presented in [3] encompassing some new concepts
that we will present below.

Let J be a bounded interval in R. We say that a finite set D = {α0, α1, . . . , αν(D)} ⊂ J is
a generalized division of J if α0 < α1 < · · · < αν(D). The set of all generalized divisions of the
interval J is denoted by D∗(J).
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Let f :[a, b]→X and let J be an arbitrary subinterval of [a, b]. Then we define the variation of
f on J by

varJ f = sup
D∈D∗(J)

{ ν(D)∑
j=1

∥∥f(αj)− f(αj−1)
∥∥
X

}
.

If varJ f < ∞, we say that f is of bounded variation on J and we write f ∈ BV (J,X). Let us
note that for intervals this definition coincides with that used by Gordon in [1]. Furthermore, it is
easy to see that it coincides also with the usual (Jordan’s) notion of the variation if J is a compact
interval.

Making use of the variation on arbitrary intervals we introduce the variation over elementary
sets. Recall that a bounded set E ⊂ R is an elementary set if it is a finite union of intervals.
Moreover, given an elementary set E we can determine a collection of intervals {Jk: k = 1, . . . ,m}
such that E =

∪m
k=1 Jk and the union Jk ∪ Jℓ is not an interval whenever k ̸= ℓ. Such collection,

called minimal decomposition, is uniquely determined and the intervals forming this collection are
pairwise disjoint.

Definition. Given a function f : [a, b]→X and an elementary subset E of [a, b], the variation of f
over E is

var(f,E) =

m∑
k=1

varJk f,

where {Jk: k = 1, . . . ,m} is the minimal decomposition of E.

Now, we present an analogue to Lewin’s lemma from [3]. In comparison with Lewin’s original
version, we replace the Lebesgue measure by the variation of a given function over elementary sets.
For the proof, we needed to extend the Jordan’s decomposition of functions of bounded variation
(for the classical setting, see [2, Theorem I.7.1]) to the abstract setting.

Lemma. Let {An} be a sequence of subsets of [a, b] such that An+1 ⊆ An, n ∈ N, and
∩

nAn = ∅.
Given f ∈ BV ([a, b], X), for n ∈ N put

vn = sup
{
var(f,E): E is an elementary subset of An

}
.

Then lim
n→∞

vn = 0.

In order to apply the previous lemma in the proof of our main result we need to introduce the
notion of the Kurzweil–Stieltjes integral over elementary sets.

Definition. Let F :[a, b]→L(X), g:[a, b]→X and an elementary subset E of [a, b] be given. The
Kurzweil–Stieltjes integral of g with respect to F over E is given by

∫
E

d[F ]g =

b∫
a

d[F ](g χE)

provided the integral on the right-hand side exists in the sense of [6].

Many basic properties of the integral defined above are immediate consequences of what is
known for the abstract Kurzweil–Stieltjes integral, see [4] and [6]. Moreover, the integral over
elementary sets in terms of its minimal decomposition can be calculated as follows.

Proposition. Let F ∈ BV ([a, b], L(X)), g:[a, b]→X and an elementary subset E of [a, b] be such
that the integral

∫
E

d[F ] g exists. Then

∫
E

d[F ] g =

m∑
k=1

∫
Jk

d[F ] g,
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where {Jk: k = 1 . . . ,m} is the minimal decomposition of E.
If we assume in addition that F is continuous on [a, b], then∥∥∥∥ ∫

E

d[F ] g

∥∥∥∥
X

≤ var(F,E)
(
sup
t∈E

∥g(t)∥X
)
.

This proposition together with the analogue of Lewin’s lemma mentioned above were the main
tools that enabled us to prove the main result of this communication.
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Consider the functional differential equation

u(n)(t) = F (u)(t) (1)

with the two-point boundary conditions

u(i−1)(a) = 0 (i = 1, . . . ,m), u(j−1)(b) = 0 (j = m+ 1, . . . , n). (2)

Here n ≥ 2, m is the integer part of n/2, −∞ < a < b < +∞, and the operator F acting from
the set of (m − 1)-th time continuously differentiable on ]a, b] functions, to the set Lloc(]a, b]). By

u(i−1)(a) we denote the right limit of the function u(i−1) at the point a.
In the paper [2] the Agarwal–Kiguradze type theorems (see [1]) are proved for the focal two-point

boundary problem for the linear differential equation with deviating arguments, which guarantee
Fredholm’s property for such problems. Here, on the basis of previous papers we prove a priori
boundedness principle for the problem (1), (2) from which follow several sufficient conditions of
solvability of this problem.

We use the following notations.
R+ = [0,+∞[ ;

[x]+ is the positive part of number x, that is [x]+ = x+|x|
2 ;

Lloc(]a, b]) is the space of functions y : ]a, b] → R, which are integrable on [a+ ε, b] for arbitrary
small ε > 0;

Lα(]a, b]) (L2
α(]a, b])) is the space of integrable (square integrable) with the weight (t − a)α

functions y : ]a, b] → R, with the norm

∥y∥Lα =

b∫
a

(s− a)α|y(s)| ds
(
∥y∥L2

α
=

( b∫
a

(s− a)αy2(s) ds

)1/2)
;

M(]a, b]) is the set of the measurable functions τ : ]a, b] → ]a, b];

L̃2
α(]a, b]) is the Banach space of y ∈ Lloc(]a, b]) functions, with the norm

∥y∥
L̃2
α
≡ max

{[ t∫
a

(s− a)α
( t∫

s

y(ξ) dξ

)2

ds

]1/2
: a ≤ t ≤ b

}
;

Ln(]a, b]) is the Banach space of y ∈ Lloc(]a, b]) functions, with the norm

∥y∥Ln = sup

{
(s− a)m−1/2

t∫
s

(ξ − a)n−2m|y(ξ)| dξ : a < s ≤ t ≤ b

}
< +∞;
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C̃n−1
loc (]a, b]) is the space of the functions y : ]a, b] → R, which are continuous (absolutely con-

tinuous) together with y′, y′′, . . . , y(n−1) on [a+ ε, b] for arbitrarily small ε > 0;

C̃n−1,m(]a, b]) is the space of the functions y ∈ C̃n−1
loc (]a, b]) such that

b∫
a

|x(m)(s)|2 ds < +∞;

Cm−1
1 (]a, b]) is the Banach space of the functions y ∈ Cm−1

loc (]a, b]) such that

lim sup
t→a

|x(i−1)(t)|
(t− a)m−i+1/2

< +∞ (i = 1, . . . ,m),

with the norm:

∥x∥Cm−1
1

=

m∑
i=1

sup

{
|x(i−1)(t)|

(t− a)m−i+1/2
: a < t ≤ b

}
;

C̃m−1
1 (]a, b]) is the Banach space of the functions y ∈ C̃m−1

loc (]a, b]) such that:

∥x∥
C̃m−1

1
= ∥x∥Cm−1

1
+

( b∫
a

|x(m)(s)|2 ds
)1/2

;

Dn(]a, b] × R+) is the set of such functions δ : ]a, b] × R+ → Ln(]a, b]) that δ(t, · ) : R+ → R+

is nondecreasing for every t ∈ ]a, b], and δ( · , ρ) ∈ Ln(]a, b]) for any ρ ∈ R+. A solution of problem

(1), (2) is sought in the space C̃n−1,m(]a, b]).
Define the operator P : Cm−1

1 (]a, b])× Cm−1
1 (]a, b]) → Lloc(]a, b]), by the equality

P (x, y)(t) =

m∑
j=1

pj(x)(t)y
(j−1)(τj(t)) for a < t ≤ b,

where pj : Cm−1
1 (]a, b]) → Lloc(]a, b]), and τj ∈ M(]a, b]). Also for any γ > 0 define the set Aγ by

the relation Aγ =
{
x ∈ C̃m−1

1 (]a, b]) : ∥x∥
C̃m−1

1
≤ γ

}
.

Following the article [2] of Kiguradze and Půza, we introduce the following definitions.

Definition 1. Let γ0 and γ be the positive numbers. We say that the continuous operator P :
Cm−1
1 (]a, b])× Cm−1

1 (]a, b]) → Ln(]a, b]) is γ0, γ consistent with boundary condition (2) if:

(i) for any x ∈ Aγ0 and almost all t ∈ ]a, b] the inequality

m∑
j=1

∣∣pj(x)(t)x(j−1)(τj(t))
∣∣ ≤ δ

(
t, ∥x∥

C̃m−1
1

)
∥x∥

C̃m−1
1

(3)

holds, where δ ∈ Dn(]a, b]×R+).

(ii) for any x ∈ Aγ0 and q ∈ L̃2
2n−2m−2(]a, b]) the equation

y(n)(t) =

m∑
j=1

pj(x)(t)y
(j−1)(τj(t)) + q(t)

under boundary conditions (2), has the unique solution y in the space C̃n−1,m(]a, b]) and
∥y∥

C̃m−1
1

≤ γ∥q∥
L̃2
2n−2m−2

.
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Definition 2. We say that the operator P is γ consistent with boundary condition (2), if the
operator P is γ0, γ consistent with boundary condition (2) for any γ0 > 0.

In the sequel, it is assumed that the operator Fp is defined by the equality

Fp(x)(t) =
∣∣∣F (x)(t)−

m∑
j=1

pj(x)(t)x
(j−1)(τj(t))(t)

∣∣∣,
continuously acting from Cm−1

1 (]a, b]) to L
L̃2
2n−2m−2

(]a, b]), and F̃p(t, ρ) ≡ sup{Fp(x)(t) : ∥x∥Cm−1
1

≤

ρ} ∈ L̃2
2n−2m−2(]a, b]) for each ρ ∈ [0,+∞[ . Then the following theorem is valid.

Theorem 1. Let the operator P be γ0, γ consistent with boundary condition (2), and there exist a
positive number ρ0 ≤ γ0 such that∥∥F̃p

(
· ,min{2ρ0, γ0}

)∥∥
L̃2
2n−2m−2

≤ γ0/γ.

Let moreover, for any λ ∈ ]0, 1[ , an arbitrary solution x ∈ Aγ0 of the equation

x(n)(t) = (1− λ)P (x, x)(t) + λF (x)(t)

under the conditions (2), admit the estimate ∥x∥
C̃m−1

1
≤ ρ0. Then problem (1), (2) is solvable in

the space C̃n−1,m(]a, b]).

From this theorem it follow different theorems with efficient sufficient conditions for the solvabil-
ity of problem (1), (2). Here we give one of them. Define the operators hj : C

m−1
1 (]a, b])× ]a, b]× ]a, b]

→ Lloc(]a, b]× ]a, b]), fj : C
m−1
1 (]a, b])× [a, b]×M(]a, b]) → Cloc(]a, b]×]a, b]) (j = 1, . . . ,m) by the

equalities

h1(x, t, s) =

∣∣∣∣
t∫

s

(ξ − a)n−2m

[
(−1)n−mp1(x)(ξ)

]
+

dξ

∣∣∣∣,
hj(x, t, s) =

∣∣∣∣
t∫

s

(ξ − a)n−2mpj(x)(ξ) dξ

∣∣∣∣, j = 2,m,

fj(x, c, τj)(t, s) =

∣∣∣∣
t∫

s

(ξ − a)n−2m|pj(x)(ξ)|
∣∣∣∣
τj(ξ)∫
ξ

(ξ1 − c)2(m−j) dξ1

∣∣∣∣1/2 dξ∣∣∣∣.
Then the following theorem is true.

Theorem 2. Let the continuous operator P : Cm−1
1 (]a, b]) × Cm−1

1 (]a, b]) → Ln(]a, b]) admit the

condition (3) where δ ∈ Dn(]a, b]× R+), τj ∈ M(]a, b]) and the numbers γ0 ∈ ]a, b], lj > 0, lj > 0,
γj > 0 (j = 1, . . . ,m) be such that the inequalities

(t− a)2m−jhj(x, t, s) ≤ lj , lim sup
t→a

(t− a)m− 1
2
−γjfj(x, a, τj)(t, s) ≤ lj

for a < t ≤ s ≤ b, ∥x∥
C̃m−1

1
≤ γ0

hold. Let, moreover, the operator F and function η ∈ D2n−2m−2(]a, b]×R+) be such that condition∣∣∣F (x)(t)−
m∑
j=1

pj(x)(t)x
(j−1)(τj(t))(t)

∣∣∣ ≤ η
(
t, ∥x∥

C̃m−1
1

)
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and inequality

∥η( · , γ0)
∥∥
L̃2
2n−2m−2

<
γ0
rn

are fulfilled, where

rn =
(
1 +

m∑
j=1

(2m− 2j + 1)−1/2

(m− j)!

) 2m−1(2n− 2m− 1)

(νn −B)(2m− 1)!!
.

Then problem (1), (2) is solvable in the space C̃n−1,m(]a, b]).
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Let a > 0, R− = ]−∞, 0], R+ = [0,+∞[ , R0+ = ]0,+∞[ , and fi : [0, a]× R2
0+ → R− (i = 1, 2)

be measurable in the first and continuous in the last two arguments functions.
Consider the two-dimensional differential system

dui
dt

= fi(t, u1, u2) (i = 1, 2) (1)

with the nonlinear boundary conditions

a∫
0

φ(s, u1(s)) dσ(s) = c, u2(a) = ψ(u1(a)), (2)

where c ≥ 0, φ : [0, a] × R+ → R+ is a continuous and nondecreasing in the second argument
function, ψ : R+ → R+ is a continuous function, and σ : [0, a] → R is a nondecreasing function
such that

σ(a)− σ(0) = 1.

An absolutely continuous vector function (u1, u2) : [0, a] → R2
+ is said to be a positive solution

of the differential system (1) if it satisfies the inequalities

ui(t) > 0 for 0 < t < a (i = 1, 2),

and almost everywhere on ]0, a[ the equalities (1) are fulfileed.
A positive solution of the system (1) satisfying the conditions (2) is said to be a positive

solution of the problem (1), (2).
We investigate the problem (1), (2) in the case where the functions fi (i = 1, 2) on the set

]0, a[×R2
0+ admit the estimates

g10(t) ≤ −xλ1y−µ1f1(t, x, y) ≤ g1(t),

g20(t) ≤ −xλ2yµ2f2(t, x, y) ≤ g2(t),
(3)

where λi and µi (i = 1, 2) are non-negative constants, and gi0 : ]0, a[→ R0+ (i = 1, 2), gi : ]0, a[→
R0+ (i = 1, 2) are integrable functions.

If λi > 0 for some i ∈ {1, 2}, then in view of (3) we have

lim
x→0

fi(t, x, y) = +∞ for 0 < t < a, y > 0.
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And if µ2 > 0, then

lim
y→0

f2(t, x, y) = +∞ for 0 < t < a, x > 0.

Consequently, in both cases the system (1) has the singularity in at least one phase variable.
Boundary value problems for singular in phase variables second order nonlinear differential

equations arise in different fields of natural science and are the subject of numerous studies (see
e.g. [1], [3]–[7] and the references therein). In the recent paper by I. Kiguradze [2], optimal
conditions are obtained for the solvability of the Cauchy–Nicoletti type nonlinear problems for
singular in phase variables differential systems. As for the problems of the type (1), (2), they still
remain unstudied in the above-mentioned singular cases.

Let

ν0 =
µ1

1 + µ2
, ν = 1 + λ1 + λ2ν0.

On the set
{
(t, x, y) : 0 ≤ t ≤ a, x > 0, y ≥ 0

}
we introduce the functions

w0(t, x, y) =

[
xν+ν

a∫
t

g10(s)

(
xλ2y1+µ2+(1+µ2)

a∫
s

g20(τ) dτ

)ν0

ds

] 1
ν

,

w(t, x, y) =

[
y1+µ2 + (1 + µ2)

a∫
t

w−λ2
0 (s, x, y)g2(s) ds

] 1
1+µ2

,

w1(t, x, y) =

[
x1+λ1 + (1 + λ1)

a∫
t

wµ1(s, x, y)g1(s) ds

] 1
1+λ1

,

Theorem 1. Let

lim
x→+∞

φ(t, x) = +∞ uniformly with respect to t ∈ [0, a],

and let for some δ > 0 the inequality

c ≥
a∫

0

φ
(
s, w1(s, δ, ψ(δ)

)
dσ(s)

hold. Then the problem (1), (2) has at least one positive solution.

Theorem 2. If

c <

a∫
0

φ
(
s, w0(s, 0, 0)

)
dσ(s),

then the problem (1), (2) has no positive solution.

The particular cases of (2) are the nonlocal boundary conditions

m∑
k=1

ℓku
µk(ak) = c, u2(a) = ψ(u1(a)), (4)

where ℓk > 0, µk > 0, 0 ≤ ak ≤ a (k = 1, . . . ,m).
Theorems 1 and 2 imply the following corollary.
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Corollary 1. If for some δ > 0 the inequality

c ≥
m∑
k=1

ℓkw1

(
ak, δ, ψ(δ)

)
holds, then the problem (1), (4) has at least one positive solution. And if

c <

m∑
k=1

ℓkw0(ak, 0, 0),

then the problem (1), (4) has no positive solution.

Corollary 2. For an arbitrary c > 0, the differential system (1) has at least one positive solution
satisfying the conditions

u1(a) = c, u2(a) = 0.
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One of the most important problems of the optimal control theory of distributed parameter
systems is to obtain synthesis, i.e. optimal control in the feedback form. Wide class of both
distributed and lumped control systems without constraints was studied in the earliest works. In
this paper, optimal control function which has been expressed in the feedback form is found for
the parabolic equations with quickly-oscillating coefficients and controlled impulsive perturbation
at a fixed time. The exact formula for the synthesis was found and its approximate form that lies
in substitution of quickly-oscillating parameters with homogenized and infinite sum with finite was
justified.

Let Ω ⊂ Rn be a bounded domain, ε ∈ (0, 1) be a small parameter, Q = (0, T )× Ω, θ ∈ (0, T ),
be a fixed time of impulsive perturbation, a ̸= −1, b ∈ R, c > 0, d > 0, be fixed.

We consider the parabolic equations with quickly-oscillating coefficients and controlled impulse
at a fixed time 

∂y

∂t
= Aεy + u(t, x), (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= yε0,

(1)

y(θ + 0, x)− y(θ, x) = ay(θ, x) + bw(x) for almost all x ∈ Ω, (2)

J(y, u, w) =

∫
Ω

y2(T, x) dx+ c

∫
Q

u2(t, x) dt dx+ d

∫
Ω

w2(x) dx → inf, (3)

where Aε = div (aε∇), aε(x) = a(xε ), a is measurable, periodic matrix which satisfies the conditions
of uniform ellipticity and boundedness: ∃ v1 > 0, v2 > 0, ∀ η ∈ Rn,

v1

n∑
i=1

η2i ≤
n∑

i,j=1

aij(x)ηiηj ≤ v2

n∑
i=1

η2i . (4)

Let {Xε
i }, {λε

i} be solutions of the spectral problem{
AεXε

i = −λε
iX

ε
i ,

Xε
i

∣∣
∂Ω

= 0,
(5)

{Xε
i } ⊂ H1

0 (Ω) is a orthonormalized basis in L2(Ω), 0 < λε
1 ≤ λε

2 ≤ · · · , λε
i → ∞, i → ∞.

A norm and a scalar product in L2(Ω) are denoted by ∥ · ∥ i ( · , · ) respectively.
We are looking for a solution of (1)–(3) in the following form

yε(t, x) =

∞∑
i=1

yεi (t)X
ε
i (x), uε(t, x) =

∞∑
i=1

uεi (t)X
ε
i (x), wε(x) =

∞∑
i=1

wε
iX

ε
i (x).
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Then we obtain a countable system of one-dimensional impulse optimal control problems:

d

dt
yεi (t) = −λε

iy
ε
i + uεi (t),

yεi (0) = y0εi ,

yεi (θ + 0)− yεi (θ) = ayεi (θ) + bwε
i ,

(yεi (T ))
2 + c

T∫
0

(uεi (t))
2 dt+ d(wε

i )
2 → inf,

(6)

where y0εi = (yε0, X
ε
i ). By using method of Pontryagin’s Maximum Principle [2] we obtain that

problem (6) has the unique solution

∀ t ∈ [0, T ], uεi (t) = − (a+ 1)dy0εi e−λε
iTKε

i (t)

cd+ cb2e−2λε
i (T−θ) + d

T∫
0

(Kε
i (t))

2 dt

, (7)

∀ t ∈ [0, T ], wε
i =

bce−λε
i (T−θ)

dKε
i (t)

uεi (t), (8)

where

Kε
i (t) =

{
(a+ 1)e−λε

iT eλ
ε
i t, t ∈ [0, θ],

e−λε
iT eλ

ε
i t, t ∈ (θ, T ].

Denote

αε
i (t) = − (a+ 1)de−λε

iTKε
i (t)

cd+ cb2e−2λε
i (T−θ) + d

T∫
0

(Kε
i (t))

2 dt

.

Thus we obtain a control in the feedback form

uεi [t, y
ε
i (t)] = βε

i (t)y
ε
i (t), (9)

wε
i [y

ε
i (θ)] =

bc

d(a+ 1)
βε
i (θ)y

ε
i (θ), (10)

where

βε
i (t) = eλ

ε
i tαε

i (t)

(
1 +

t∫
0

eλ
ε
i sαε

i (s) ds

)−1

, when t ∈ [0, θ],

βε
i (t) = eλ

ε
i tαε

i (t)

(
a+ 1 + (a+ 1)

θ∫
0

eλ
ε
i sαε

i (s) ds+
b2cαε

i (θ)

(a+ 1)d
eλ

ε
i θ +

t∫
θ

eλ
ε
i sαε

i (s) ds

)−1

, (11)

when t ∈ (θ, T ].

Note that βε
i is uniformly bounded on [0, T ]

∃β > 0 ∀ i ≥ 1, ∀ ε ∈ (0, 1), sup
t∈[0,T ]

|βε
i (t)| ≤ β. (12)
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Thus, the synthesis of a problem (1)–(3) is determinate by

uε
[
t, x, yε(t, x)

]
=

∞∑
i=1

βε
i (t)

(
yε(t), Xε

i

)
Xε

i (x), (13)

wε
[
x, yε(θ, x)

]
=

∞∑
i=1

γεi
(
yε(θ), Xε

i

)
Xε

i (x), (14)

where βε
i is defined by (11), and

γεi =
bc

d(a+ 1)
βε
i (θ).

Let us construct approximate homogenized synthesis. Let constant matrix a0 be homogenized
for a(xε ), A

0 = div (a0∇), {λ0
i }, {X0

i } be solutions of the appropriate spectral problem{
A0X0

i = −λ0
iX

0
i ,

X0
i

∣∣
∂Ω

= 0,

where spectrum of A0 is simple

0 < λ0
1 < λ0

2 < · · · < λ0
k < · · · , λ0

i → ∞, i → ∞. (15)

Then for all i ≥ 1 limits hold [3]

λε
i → λ0

i , Xε
i → X0

i in L2(Ω) when ε → 0. (16)

We assume that
yε0 → y0 weekly in L2(Ω) when ε → 0. (17)

From (11) we obtain that for all t ∈ [0, T ] and all i ≥ 1,

βε
i (t) → β0

i (t), γεi → γ0i =
bc

d(a+ 1)
β0
i (θ) for ε → 0, (18)

where β0
i (t) is defined by (11) and substitute λε

i with λ0
i .

Let us consider the problem
∂y

∂t
= Aεy + u0N [t, x, y], (t, x) ∈ Q,

y
∣∣
∂Ω

= 0,

y
∣∣
t=0

= yε0,

(19)

y(θ + 0, x)− y(θ, x) = ay(θ, x) + bw0
N [x, y(θ)] for almost all x ∈ Ω, (20)

where for y ∈ L2(Q), z ∈ L2(Ω),

u0N [t, x, y] =

N∑
i=1

β0
i (t)(y(t), X

0
i )X

0
i (x),

w0
N [x, z] =

N∑
i=1

γ0i (z,X
0
i )X

0
i (x).

From (12)
∀ t ∈ [0, T ], ∥u0N [t, x, y]∥ ≤ β∥y∥, (21)
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the problem (19) has a unique solution in W (0, θ) [4]. Whereas W (0, θ) ⊂ C([0, θ];L2(Ω)) and the
inequality holds ∥∥w0

N [x, z]
∥∥ ≤ bc

d(a+ 1)
β∥z∥, (22)

then there exist a unique solution y = yεN (t, x) ∈ Wθ(0, T ) of the impulse problem (19), (20).
The main result of this paper is the following theorem.

Theorem. Let the above assumptions be satisfied. Then for all η > 0, ∃N ≥ 1, ε ∈ (0, 1) such
that ∀N ≥ N , ∀ ε ∈ (0, ε),∣∣∣J(yε, uε, wε)− J

(
yεN , u0N

[
t, x, yεN (t, x)

]
, w0

N

[
x, yεN (θ, x)

])∣∣∣ < η, (23)

where {yε, uε, wε} is an optimal process for the problem (1)–(3), yεN is a solution of the problem
(19), (20).
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Faculty of Science, Palacký University, Olomouc, Czech Republic
E-mail: irena.rachunkova@upol.cz; jan.tomecek@upol.cz

1 Formulation of Problem

In the literature most of impulsive boundary value problems deals with impulses at fixed times.
This is the case that moments, where impulses act in state variables, are known. The theory
of these impulsive problems is widely developed and presents direct analogies with methods and
results for problems without impulses. A different situation arises, when impulse moments satisfy a
predetermined relation between state and time variables. This case, which is represented by state-
dependent impulses, is studied here, where we are interested in a system of n (n ∈ N) nonlinear
ordinary differential equations of the first order with state-dependent impulses and general linear
boundary conditions on the interval [a, b] ⊂ R. The main reason that boundary value problems
with state-dependent impulses are developed significantly less than those with impulses at fixed
moments is that new difficulties with an operator representation of the problem appear when
examining state-dependent impulses. Therefore almost all existence results for boundary value
problems with state-dependent impulses have been reached for periodic problems which can be
transformed to fixed point problems of corresponding Poincaré maps in Rn. Hence, the difficulties
with a construction of a functional space and an operator have been cleared in the periodic case.
Other types of boundary value problems with state-dependent impulses have been studied very
rarely.

We construct and investigate a fixed point problem in some subset Ω of the Sobolev space
(W1,∞([a, b];Rn))p+1 and we provide conditions for its solvability. The existence of such fixed point
allows us to construct a solution of the system of differential equations

z′(t) = f(t, z(t)), a.e. t ∈ [a, b] ⊂ R, (1)

subject to the state-dependent impulse conditions

z(t+)− z(t−) = Ji(t, z(t−)), where t = γi(z(t−)), i = 1, . . . , p, (2)

and the general linear boundary condition

ℓ(z) = c0. (3)

Problem (1)–(3) is studied under the assumptions

n ≥ 2, f ∈ Car([a, b]× Rn;Rn),

c0 ∈ Rn, Ji ∈ C([a, b]× Rn;Rn), γi ∈ C(Rn;R), i = 1, . . . , p,

ℓ : GL([a, b];Rn) → Rn is a linear bounded operator, i.e.

ℓ(z) = Kz(a) +

b∫
a

V (t) d[z(t)], z ∈ GL([a, b];Rn),

where K ∈ Rn×n, V ∈ BV([a, b];Rn×n), k = 1, . . . , n, n, p ∈ N.


(4)
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GL([a, b];Rn) is a Banach space (equipped with the sup-norm) of left-continuous regulated (i.e.
having finite one-sided limits at each point) on [a, b] vector valued functions.

A mapping z : [a, b] → Rn is a solution of problem (1)–(3) if for each i ∈ {1, . . . , p} there exists
a unique τi ∈ (a, b) such that

τi = γi(z(τi)),

a < τ1 < τ2 < · · · < τp < b, the restrictions z
∣∣
[a,τ1]

, z
∣∣
(τ1,τ2]

, . . . , z
∣∣
(τp,b]

are absolutely continuous, z

satisfies (1) for a.e. t ∈ [a, b] and fulfils conditions (2) and (3).

2 Transversality Conditions

First, let us formulate conditions which guarantee that each possible solution of problem (1)–(3)
in some region crosses each barrier γi at the unique impulse point τi, i = 1, . . . , p. To this end
consider positive real numbers µj , j = 1, . . . , n, and denote

A =
{
(x1, . . . , xn)

T ∈ Rn : |xj | ≤ µj , j = 1, . . . , n
}
. (5)

We assume that

there exist disjoint subintervals [ai, bi] of the interval (a, b) such that

a1 < · · · < ap, ai ≤ γi(x) ≤ bi, i = 1, . . . , p, x ∈ A,

}
(6)

for each i ∈ {1, . . . , p}, j ∈ {1, . . . , n} there exists λij ∈ [0,∞) such that

for each x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T ∈ A∣∣γi(x)− γi(y)
∣∣ ≤ n∑

j=1

λij |xj − yj |.

 (7)

Further we choose positive real numbers ρj , j = 1, . . . , n, such that

n∑
j=1

λijρj < 1, i = 1, . . . , p. (8)

Under conditions (5)–(8), which we call transversality conditions, we can define the set

B =
{
u = (u1, . . . , un)

T ∈ W1,∞([a, b];Rn) : ∥uj∥∞ ≤ µj , ∥u′j∥∞ ≤ ρj , j = 1, . . . , n
}

(9)

and prove that for each i ∈ {1, . . . , p}, the functional

Pi : B → (a, b), Piu = τi, (10)

is continuous. Here, for given u ∈ B, τi ∈ (0, T ) is a unique root of the function γi(u(t))− t.

3 Fixed Point Problem and Existence Results

One of the basic results in our approach is a connection between a (discontinuous) solution z of
problem (1)–(3) and a fixed point (u1, . . . , up+1) of an operator G which operates on the set

Ω = Bp+1 ⊂ X =
(
W1,∞([a, b];Rn)

)p+1
.

The space X, equipped with the norm ∥(u1, . . . , up+1)∥X =
p+1∑
k=1

∥uk∥1,∞ for (u1, . . . , up+1) ∈ X, is

a Banach space. Under the assumptions

detK ̸= 0, (11)

∃ f̃ ∈ R : |f(t, x)| ≤ f̃ for a.e. t ∈ [a, b], all x ∈ Rn, (12)
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we define the operator F∗ : Ω → X,

(F∗u)k(t) =

b∫
a

G(t, s)

p+1∑
i=1

χ
(τi−1,τi)

(s)f(s, ui(s)) ds+

p∑
i=k

G1(t, τi)Ji(τi, ui(τi))+

+

k−1∑
i=1

G2(t, τi)Ji(τi, ui(τi)) +K−1c0, k = 1, . . . , p+ 1, (13)

where

τi = Piui, i = 1, . . . , p, τ0 = a, τp+1 = b, (14)

G1(t, τ) = −K−1V (τ), G2(t, τ) = −K−1V (τ) + I, t, τ ∈ [a, b],

G(t, τ) =

{
G1(t, τ), a ≤ t ≤ τ ≤ b,

G2(t, τ), a ≤ τ < t ≤ b,

and K and V are from (4), I is the identity matrix. Unfortunatelly, F∗ is not compact on Ω. We
can overcome this obstacle by redefining the operator F∗ by means of the operator G : Ω → X,

(Gu)k(t) =



(F∗u)k(τk−1) +

t∫
τk−1

f(s, uk(s)) ds, t < τk−1,

(F∗u)k(t), τk−1 ≤ t ≤ τk,

(F∗u)k(τk) +

t∫
τk

f(s, uk(s)) ds, t > τk, k = 1, . . . , p+ 1.

(15)

Now we are ready to prove the following theorem.

Theorem 1. Let µj ∈ R, A be given by (5), and let γi, λij and ρj, i = 1, . . . , p, j = 1, . . . , n,
satisfy (6), (7) and (8). Further, assume that conditions (11), (12) and

γi(x+ Ji(t, x)) ≤ γi(x), (t, x) ∈ [a, b]×A, i = 1, . . . , p, (16)

hold. If u = (u1, . . . , up+1) is a fixed point of the operator G, then a function z defined by

z(t) =


u1(t), t ∈ [a,P1u1],

u2(t), t ∈ (P1u1,P2u2],

. . . . . . . . . . . . . . . . . . . . . . . .

up+1(t), t ∈ (Ppup, b].

(17)

is a solution of problem (1)–(3).

In order to get the existence result we assume in addition that

∃ J̃i ∈ (0,∞) : |Ji(t, x)| ≤ J̃i, (t, x) ∈ [a, b]× Rn, i = 1, . . . , p, (18)

∀ ε > 0 ∃ δ > 0 ∀x, y ∈ A : |x− y| < δ =⇒
∥∥f( · , x)− f( · , y)

∥∥
∞ < ε, (19)

V ∈ C([ai, bi];Rn×n), i = 1, . . . , p. (20)

Here A is from (5) and [ai, bi], i = 1, . . . , p, are from (6).
The main result is contained in the following theorem.
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Theorem 2. Assume that (11), (12) and (18) hold and that numbers µj, ρj, j = 1, . . . , n, satisfy

µj ≥ |K−1| sup
s∈[a,b]

|V (s)|f̃(b− a) + 2f̃(b− a)+

+ |K−1| sup
s∈[a,b]

|V (s)|
p∑

k=1

J̃k +

p∑
k=1

J̃k + |K−1c0|,

ρj ≥ f̃ , j = 1, . . . , n.


(21)

Further assume that conditions (6), (7), (8), (16), (19) and (20) hold. Then the operator G has a
fixed point in Ω and problem (1)–(3) has at least one solution u such that

∥u∥∞ ≤ max{µ1, . . . , µn}.

These results are based on the papers [1]–[6]. Proofs of Theorems 1 and 2 can be found in [6].
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1. Buffer phenomenon is an important example of mutually enriching interaction of theoretical
research of a mathematical model for a real event and deep penetration into the essence of
this event. Detailed investigation of such a phenomenon allowed introduction of new elements
into the interpretation of “nonlinear world” notion.

Oscillatory objects with distributed parameters are found in different fields of science, new
hardware and modern technologies. Dynamics of such objects is simulated by systems of
partial differential equations with boundary conditions. Stable cycle corresponding to a self-
oscillatory regime is a periodic in time solution.

Such a boundary-value problem contains also the parameters and it is essential to determine
the number of coexisting self-oscillatory process for different values of parameters. Hence, it
is a purely mathematical problem: studying the dependence of a number of stable cycles on
parameters in a boundary-value problem.

2. Buffer phenomenon in a mathematical model of a distributed oscillatory system is observed
when the considered boundary-value problem under proper choice of the values of parameters
can contain any finite preliminarily fixed number of different stable cycles. In general case,
buffer phenomenon of a parameter-dependent dynamic system has the following property:
any a priori chosen finite number of single-type attractors exist in the system’s phase space
when the parameters are chosen properly.

Obviously, the problem on investigation of time-periodic regimes in oscillatory objects with
distributed parameters first was stated by A. A. Vitt [1].

3. Detailed statement of strict mathematical theory of buffer phenomenon can be found in papers
and monographs [2–6]. The considered mathematical models are nonlinear boundary-value
problems for the systems of partial differential equations of hyperbolic or parabolic type. It
is essential that buffer phenomenon itself is specific to bifurcation process, in the course of
which unlimited increase of the number of coexisting stable attractors takes place.

The conducted research showed that buffer phenomenon is “typical” of rather broad class of
mathematical models that adequately describe many nonlinear oscillatory processes in natural
science (radiophysics [7, 8], mechanics [9], optics [10], combustion theory [11], ecology [12],
neurodynamics [13]). Besides, relation of buffer phenomenon to such nontrivial phenomena
as turbulence and dynamic chaos has been traced [14–16].

The study of typical scenarios of accumulation of attractors in different dynamic systems is
quite topical. Four scenarios of this kind have been discovered so far: Vitt, Turing, Hamilton,
and homoclinic mechanisms of accumulation of attractors.

4. The situation in which Vitt mechanism is implemented is typical of a large class of physical
processes described by hyperbolic equations. It consists in the following.

Assume that in the problem of stability of equilibrium zero-state of some hyperbolic system
there is a critical case of denumerable number of eigenvalues, and when parameters of the
system change, a part of spectrum points is successively displaced to the right complex half-
plane. Then in case of no certain resonant correlations between the system’s eigenfrequencies,
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is observed unlimited accumulation of quasiharmonic stable cycles, and each cycle originates
from zero-state of equilibrium as an unstable one, and then it acquires stability, rising its
amplitude [3, 5, 7, 8].

5. Turing mechanism: when parameters change, each individual cycle first gains stability and
then loses it once again. Thus, though the total number of attractors grows, their set is
constantly renovated. As it is shown in [6], such situation is implemented in reaction-diffusion-
type systems under proportional decrease of diffusion coefficients, but it can also show up in
the systems with delay under unlimited increase of delay time.

6. As to finite-dimensional systems, the elementary mechanism of buffer onset is Hamilton sce-
nario illustrated in [17, 18] by 2D-mappings from mechanics and systems of ordinary differ-
ential equations that are close to 2D-Hamiltonian ones. It should be noted that Hamilton
mechanism has been the less studied one, though it is illustrated by many examples like
pendulum-type equations with time-periodic small additional components [19].

7. In the case of systems of ordinary differential equations there are other, much more complex,
mechanisms of accumulation of stable cycles that result from so-called homoclinic contacts
existing in such systems; such mechanisms can also be conventionally called homoclinic.
Among many results obtained for the systems with homoclinic structures, let us comment on
three of them [20–22].

8. Note that buffer phenomenon in self-excited oscillators with a section of long two-wire line in
a feedback circuit has been experimentally shown to be feasible [2, 8].
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Let G(ε0) =
{
t, ε : 0 < ε < ε0, −Lε−1 ≤ t ≤ Lε−1, 0 < L < +∞

}
.

Definition 1. We say that a function f(t, ε) belongs to the class S(m, ε0), m ∈ N ∪ {0} if

1) f : G(ε0) → C;

2) f(t, ε) ∈ Cm(G(ε0)) with respect to t;

3) dkf(t, ε)/dtk = εkf∗k (t, ε) (0 ≤ k ≤ m),

∥f∥S(m,ε0)
def
=

m∑
k=0

sup
G(ε0)

|f∗k (t, ε)| < +∞.

By a slowly varying function we mean a function from S(m, ε0).

Definition 2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F (m, l, ε0, θ) (m, l ∈
N ∪ {0}) if this function can be represented as

f
(
t, ε, θ(t, ε)

)
=

∞∑
n=−∞

fn(t, ε) exp
(
inθ(t, ε)

)
,

and

1) fn(t, ε) ∈ S(m, ε0);

2) ∥f∥F (m,l,ε0,θ)
def
= ∥f0∥S(m,ε0) +

∞∑
n=−∞

|n|l∥fn∥S(m,ε0) < +∞, particular

∥f∥F (m,0,ε0,θ) =

∞∑
n=−∞

∥fn∥S(m,ε0);

3) θ(t, ε) =
t∫
0

φ(τ, ε) dτ , φ(t, ε) ∈ R+, φ(t, ε) ∈ S(m, ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

We denote by (A)jk the element ajk of the matrix A = (ajk)j,k=1,n.

We say that (n × n)-matrix A(t, ε, θ) belongs to the class F (m, l, ε, θ) if all elements of this
matrix are the functions of the class F (m, l, ε, θ). Then we define

∥A∥∗F (m,l,ε0,θ)

def
= max

1≤j≤n

n∑
k=1

∥(A)jk∥F (m,l,ε0,θ).
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Let f(t, ε, θ) ∈ F (m, l, ε0, θ). We denote ∀n ∈ Z:

Γn[f ] =
1

2π

2π∫
0

f(t, ε, θ) exp(−inθ) dθ,

particular

Γ0[f ] =
1

2π

2π∫
0

f(t, ε, θ) dθ.

Consider the following differential system

dx

dt
=

(
Λ(t, ε) + εA(t, ε) + µP (t, ε, θ)

)
x, (1)

where x = colon (x1, . . . , xn), Λ(t, ε) = diag (λ1(t, ε), . . . , λn(t, ε)), λj − λk = iωjk(t, ε), ωjk ∈ R,
ωjk ∈ S(m, ε0), A(t, ε) = (ajk(t, ε))j,k=1,n, ajk ∈ S(m − 1, ε0), P (t, ε, θ) = (pjk(t, ε, θ))j,k=1,n,

pjk ∈ F (m, l, ε0, θ), µ ∈ (0, µ0) ⊂ R+.
We study the problem of the existence of the transformation of the kind

x =
(
E +Φ(t, ε, θ, µ)

)
z, (2)

where Φ ∈ F (m∗, l, ε∗, θ) (m∗ ≤ m, ε∗ ≤ ε0), reducing the system (1) to

dz

dt
=

(
Λ̃(t, ε, µ) + ε2H(t, ε) + µεB(t, ε, µ)

)
z, (3)

where Λ̃ = diag (λ̃1, . . . , λ̃n), H = (hjk)j,k=1,n, B = (bjk)j,k=1,n, λ̃j , hjk, bjk ∈ S(m∗, ε∗). Means

coefficients of the system (3) are slowly-varying, while the coefficients of the system (1) are oscil-
lating.

Lemma 1. Suppose that the system (1) satisfies the following condition

∀ ν ∈ Z, j, k = 1, n (j ̸= k) : inf
G(ε0)

∣∣ωjk(t, ε)− νφ(t, ε)
∣∣ ≥ γ > 0.

Then ∃µ1 ∈ (0, µ0), ∃ ε1 ∈ (0, ε0) such that ∀µ ∈ (0, µ1), ∀ ε ∈ (0, ε1) exists the transformation of
kind

x =
(
E + Ψ̃(t, ε, θ, µ)

)
y,

where Ψ̃ = (ψ̃jk(t, ε, θ, µ))j,k=1,n, ψ̃jk ∈ F (m− 1, l, ε1, θ), reducing the system (1) to

dy

dt
=

(
Λ(t, ε) + εΛ1(t, ε) + µU(t, ε, µ) + ε2H(t, ε) + µεV (t, ε, θ, µ)

)
y,

where Λ1 = diag (a11, . . . , ann), H = (hjk)j,k=1,n, hjk ∈ S(m − 2, ε1), U = diag (u1, . . . , un),

uj ∈ S(m, ε1), V = (vjk)j,k=1,n, vjk ∈ F (m− 1, l, ε1, θ).

Lemma 2. Let we have the scalar linear non-homogeneous first-order differential equation

dx

dt
=

(
iω(t, ε) + εα(t, ε) + µu(t, ε)

)
x+ εv(t, ε, θ),

where ω(t, ε) ∈ S(m, ε1), ω(t, ε) ∈ R+, u(t, ε) ∈ S(m, ε1), α(t, ε) ∈ S(m − 1, ε1), v(t, ε, θ) ∈
F (m− 1, l, ε1, θ) and the following conditions
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1) inf
G(ε1)

|ω(t, ε)− νφ(t, ε)| ≥ γ > 0 ∀ ν ∈ Z;

2) alternative holds: or Reu(t, ε) ≡ 0, or inf
G(ε1)

|Reu(t, ε)| = γ1 > 0.

Then ∃ ε2 ∈ (0, ε1), µ2 ∈ (0, µ1) such that ∀µ ∈ (0, µ2), ε ∈ (0, ε2) the equation (7) has a particular
solution x(t, ε, θ, µ) ∈ F (m− 1, l, ε2, θ), and ∃K2 ∈ (0,+∞) such that∥∥x(t, ε, θ, µ)∥∥

F (m−1,l,ε2,θ)
≤ K2

∥∥v(t, ε, θ, µ)∥∥
F (m−1,l,ε2,θ)

.

Lemma 3. Let the function

f
(
t, ε, θ(t, ε)

)
=

∞∑
ν=−∞
(ν ̸=0)

fn(t, ε) exp
(
inθ(t, ε)

)

belong to the class F (m− 1, l, ε1, θ). Then the function

x
(
t, ε, θ(t, ε)

)
= ε

t∫
0

f
(
τ, ε, θ(τ, ε)

)
dτ

belongs to the class F (m− 1, l, ε1, θ) also, and ∃K3 ∈ (0,+∞) such that

∥x∥F (m−1,l,ε1,θ) ≤ K3∥f∥F (m−1,l,ε1,θ).

Theorem. Suppose the system (1) is such that

1) ∀ ν ∈ Z, j, k = 1, n (j ̸= k): inf
G(ε0)

∣∣ωjk(t, ε)− νφ(t, ε)
∣∣ ≥ γ > 0;

2) the elements uj(t, ε, µ) (j = 1, n) of the diagonal matrix U(t, ε, µ), which are defined in
Lemma 1, have the alternative:

or Re (uj(t, ε, µ)− uk(t, ε, µ)) ≡ 0 (j, k = 1, n, j ̸= k);

or inf
G(ε1)

|Re (uj(t, ε, µ)− uk(t, ε, µ))| ≥ γ0 > 0, where ε1 are defined in Lemma 1.

Then ∃3 ∈ (0, ε0), µ3 ∈ (0, µ0) such that ∀ ε ∈ (0, ε3), ∀µ ∈ (0, µ3) exists the transformation of
kind (2), where Φ(t, ε, θ, µ) ∈ F (m− 1, l, ε3, θ), which reduces the system (1) to the form (3), where
H ∈ S(m− 2, ε3), B ∈ S(m− 1, ε3).



International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia 133

Asymptotic Representations of Solutions for One Class of

Non-Linear Differential Equations of the Second Order

O. R. Shlyepakov

Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mail: oleg@gavrilovka.com.ua

We consider the differential equation

y′′ = α0p(t)φ1(y)φ2(y
′), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, φi : ∆(Y 0
i ) → ]0,+∞[ (i = 1, 2)

are twice continuously differentiable functions which satisfy the conditions:

φ′
1(z) ̸= 0 when z ∈ ∆(Y 0

1 ), lim
z→Y 0

1
z∈∆(Y 0

1 )

φ1(z) = Φ0
1, Φ0

1 ∈ {0,+∞},

lim
z→Y 0

1
z∈∆(Y 0

1 )

φ′′
1(z)φ1(z)

[φ′
1(z)]

2
= 1,

(2)

lim
z→Y 0

2
z∈∆(Y 0

2 )

zφ′
2(z)

φ2(z)
= λ (λ ∈ R), (3)

where ∆(Y 0
i ) is some one-sided neighborhood of the point Y 0

i , Y
0
i is equal to either 0 or ±∞.

From (2), (3) it follows that the function φ1(z) is rapidly varying when z → Y 0
1 , and the function

φ2(z) is regularly or slowly varying when z → Y 0
2 (see Seneta [14]).

This equation was considered in the works of Evtukhov V. M. and Belozerova M. A. [1, 2, 3, 4, 10]
for the cases when the functions φi(z) were power-law or regularly or slowly varying when z → Y 0

i ,
i = 1, 2.

In the work of Kharkov V. M. [7], the following equation was considered

y′′ = α0p(t)φ1(y), (4)

where the function φ1(z) was rapidly or regularly varying when z → Y 0
1 . Equation (4) is a particular

case of the equation (1), when φ2(z) ≡ 1. In [7], the class of solutions was established. For that
class, the necessary and sufficient conditions as well as the asymptotic formulas for solutions were
derived.

In the works of Evtukhov V. M. and Drik N. G. [5, 6, 10], the particular case for the equation
(1) was considered:

y′′ = α0p(t)e
σy|y′|λ. (5)

Equation (1), if the function φ1(z) is rapidly varying when z → Y 0
1 , and the function φ2(z)

is slowly or regularly varying when z → Y 0
2 , in particular, the equation (5), has wide application

for describing different processes in physics. For example, differential equations appearing in the
Linan’s problem from combustion theory could be reduced to the equation (1), as well as Poisson
nonlinear differential equations for cylindric symmetrical plasma of combustion products could be
reduced to the equation (1) by means of several notations (see [15, 11, 12]).

If the function φ1(z) is rapidly varying when z → Y 0
1 , and the function φ2(z) is slowly or

regularly varying when z → Y 0
2 , equation (1) is a generalization for both equations (4) and (5).
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A solution y of the equation (1) is called a Pω(Λ0)-solution, where −∞ ≤ Λ0 ≤ +∞, if it is
defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions:

lim
t↑ω

φ1(y(t)) = Φ0
1, lim

t↑ω
y′(t) = Y 0

2 ,

lim
t↑ω

φ1(y(t))

φ′
1(y(t))

y′′(t)

[y′(t)]2
= Λ0, (6)

Note that the class of Pω(Λ0)-solutions corresponds to the class of P̃ω(Λ̃0)-solutions that was

introduced by Kharkov V. M. in the work [8] for the equation (4) in case when Λ0 = Λ̃0 − 1.
In the paper, for the equation (1), in case Λ0 ∈ R \ {0}, the asymptotic formulas for Pω(Λ0)-

solutions were established and the necessary and sufficient conditions for their existence were de-
rived.

Let us introduce functions and notation:

ψ(z) =

z∫
B

ds

φ2(s)
, where B =


Y 0
2 , if

Y 0
2∫

b

ds

φ2(s)
converges,

b, if

Y 0
2∫

b

ds

φ2(s)
diverges,

and b is any number from the interval ∆(Y 0
2 ).

Since ψ′(z) > 0 when z ∈ ∆(Y 0
2 ), then ψ : ∆(Y 0

2 ) → ∆(Φ0
2) is an increasing function where

Φ0
2 = lim

z→Y 0
2

ψ(z), consequently, Φ0
2 equals either to zero or to ±∞, ∆(Φ0

2) is one-sided neighborhood

of Φ0
2.
Next we set:

µ =

{
1, if Y 0

2 = +∞, or Y 0
2 = 0 and ∆(Y 0

2 ) is a right neighborhood of 0,

−1, if Y 0
2 = −∞, or Y 0

2 = 0 and ∆(Y 0
2 ) is a left neighborhood of 0.

From the definition of φ1(z) it follows that φ
′
1(z) preserves the sign. Consequently, it is possible

to introduce notation:
ρ = signφ′

1(z).

Also we set:

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

J(t) =



t∫
A

p(τ) dτ, if (1− λ)Λ0 ̸= 1,

t∫
A

πω(τ)p(τ) dτ, if (1− λ)Λ0 = 1,

β =

{
1− λ− Λ−1

0 , if (1− λ)Λ0 ̸= 1,

−1, if (1− λ)Λ0 = 1,

where the integration limit A ∈ {ω, a} is chosen so as to ensure that the corresponding integral J
tends either to zero or to infinity when t ↑ ω.
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Moreover, we set

A∗
1 =

{
1, if ω = ∞,

−1, if ω <∞,
A∗

2 =

{
1, if A = a,

−1, if A = ω.

By means of notations described above, we establish the necessary and sufficient conditions for
the existence of Λ0 ∈ R \ {0}-solutions of the equation (1).

Theorem 1. Let Λ0 ∈ R \ {0}. Then for the existence of Pω(Λ0)-solutions of the equation (1), it
is necessary and, if

λ ̸= 1, or λ = 1 and Λ0 > 0

it is also sufficient that

lim
t↑ω

πω(t)J
′(t)

J(t)
= −β

and the following sign conditions be satisfied

−A∗
1Λ0 > 0 when Φ0

1 = +∞, −A∗
1Λ0 < 0 when Φ0

1 = 0,

A∗
2β > 0 when Φ0

2 = +∞, A∗
2β < 0 when Φ0

2 = 0,

sign
[
µA∗

1Λ0

]
= −ρ and sign

[
α0A

∗
2β

]
= 1.

Moreover, each solution of this kind admits the asymptotic representation when t ↑ ω
φ1(y(t))

φ′
1(y(t))y

′(t)
= −Λ0πω(t)[1 + o(1)], (7)

y′(t)

φ1(y(t))φ2(y′(t))
= −απω(t)p(t)[1 + o(1)], (8)

moreover, when Λ0 > 0, there exists one-parameter family of such solutions, and when Λ0 < 0,
there exists two-parameter family of such solutions, if ω = +∞ and λ > 1, or if ω < +∞ and
λ < 1.

We will introduce auxiliary conditions that will enable us to simplify the asymptotic formulas
(7), (8).

Definition (see [4]). We say that a function θ : ∆(U0) → ]0,+∞[ , U0 ∈ {0,±∞} satisfies condition
S, if for any continuously differentiable function l : ∆(U0) → ]0,+∞[ such that

lim
z→U0

z∈∆(U0)

z l′(z)

l(z)
= 0,

the following asymptotic formula is fulfilled

θ(zl(z)) = θ(z)[1 + o(1)] when z → U0 (z ∈ ∆(U0)).

From the properties of regularly varying functions, the following representations are obtained:

φ′
1(φ

−1
1 (z)) = |z|θ1(z),
φ2(z) = |z|λθ2(z),

where the functions θi(z) (i = 1, 2) are slowly varying.

Theorem 2. Let Λ0 ∈ R \ {0} and functions θi(z) (i ∈ {1, 2}) satisfy the condition S. Then each
Pω(Λ0)-solution (if any) of the differential equation (1) admits the following asymptotic formulas
when t ↑ ω

φ1(y(t)) =
∣∣∣Λ0πω(t)θ1

(
|πω(t)|

−1
Λ0

)∣∣∣λ−1∣∣∣πω(t)p(t)θ2(|J(t)| 1β )∣∣∣−1
[1 + o(1)],

y′(t) = µ
∣∣∣Λ0πω(t)θ1

(
|πω(t)|

−1
Λ0

)∣∣∣−1
[1 + o(1)].

To obtain the above results, the results for cyclic systems from the work [9] were used.



136 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

References

[1] M. A. Belozerova, Asymptotic properties of a class of solutions of essentially nonlinear second-
order differential equations. (Russian) Mat. Stud. 29 (2008), No. 1, 52–62.

[2] M. A. Belozerova, Asymptotic representations for solutions of second-order differential equa-
tions with nonlinearities close to power type. Nauk. Visn. Cherniv. Univ., Chernivtsi 374
(2008), 34–43.

[3] M. A. Belozerova, Asymptotic representations of solutions of second-order nonautonomous
differential equations with nonlinearities close to power type. (Russian) Nel̄ın̄ı̌ın̄ı Koliv. 12
(2009), No. 1, 3–15; translation in Nonlinear Oscil. (N. Y.) 12 (2009), No. 1, 1–14

[4] V. M. Evtukhov and M. A. Belozerova, Asymptotic representations of solutions of second-
order essentially nonlinear nonautonomous differential equations. (Russian) Ukräın. Mat. Zh.
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We consider the functional differential equation

u′′(t) = f
(
t, u(τ(t))

)
(1)

with the nonlinear boundary conditions

u(a) = φ1(u), u′(b) = φ2(u), (2)

where f : ]a, b]× ]0,+∞[→ R+ and τ : ]a, b] → [a, b] are continuous functions, and φi : C([a, b];R+) →
R+ (i = 0, 1) are continuous functionals.

We are, especially, interested in the case, where equation (1) is singular in a phase variable, i.e.
the case, where

lim
x→0

f(t, x) = +∞ for t ∈ ]a, b].

Theorem. Let on the set ]a, b]× ]0,+∞[ the inequality

p0(t, x) ≤ −f(t, x) ≤ p1(t, x)(1 + x)

hold, and let on the set C([a, b];R+) the inequality

φ1(u) + (b− a)φ2(u) ≤ ℓ∥u∥+ r

be fulfilled, where pi : ]a, b]× ]0,+∞[→ ]0,+∞[ (i = 0, 1) are continuous and nonincreasing in the
second argument functions. If, moreover, τ(t) ≥ t for a < t ≤ b, ℓ < 1 and

lim
x→+∞

∫ b

a
(s− a)p1(s, x) ds < 1− ℓ,

then problem (1), (2) has at least one positive on ]a, b[ solution.

As an example, we consider the problem

u′′(t) = − p(t)

uλ(τ(t))
, (3)

u(a) =

∫ b

a
ψ1(u(s)) dσ1(s), u(b) =

∫ b

a
ψ2(u(s)) dσ2(s), (4)

where λ is a positive constant, p : ]a, b] → ]0,+∞[ , τ : ]a, b] → ]a, b] and ψi : R+ → R+ (i = 1, 2)
are continuous functions, and σi : [a, b] → R (i = 1, 2) are nondecreasing functions such that

σi(b)− σi(a) = 1 (i = 1, 2).

From the above-formulated theorem we have the following result.

Corollary. If

lim sup
x→+∞

ψi(x)

x
< 1 (i = 1, 2),

then problem (3), (4) has at least one positive on ]a, b[ solution.
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Let T > 0, J = [0, T ] and ∥x∥ = max{|x(t)| : t ∈ J} for x ∈ C(J).
We are interested in the singular boundary value problem

u′′(t) + p(t)u′(t) = a(t)p(t)f
(
t, u(t), u′(t)

)
, t ∈ (0, T ], (1)

u(0) = u(T ), u′(0) = 0, (2)

where p, a and f satisfy the conditions

(H1) p ∈ C(0, T ], p > 0 on (0, T ] and
T∫
0

p(t) dt = ∞,

(H2) a ∈ C(J), a(0) = 0 and a > 0 on (0, T ],

(H3) there exists A > 0 such that f ∈ C(J × [−A,A]× R) and

f(t,−A, 0) ≤ 0, f(t, A, 0) ≥ 0 for t ∈ J,

(H4) there exists W > 0 such that for t ∈ J , |x| ≤ A and |y| ≤ W , the estimate |f(t, x, y)| < W
∥a∥

holds.

We say that u : J → R is a solution of problem (1), (2) if u ∈ C1(J) ∩ C2(0, T ], u satisfies the
boundary conditions (2) and (1) holds for t ∈ (0, T ].

The special case of (1) is the differential equation u′′ + u′

tγ = tµf(t, u, u′), where γ ≥ 1 and
µ > −γ.

We note that due to condition (H1) equation (1) has a strong time singularity at t = 0, and
since any constant function u on J satisfies (2) and u′′ + p(t)u′ = 0 on (0, T ], problem (1), (2) is at
resonance.

Remark 1. If f satisfies the condition

(H5) for (t, x, y) ∈ J × [−A,A] × R the estimate |f(t, x, y)| ≤ φ(|y|) holds, where φ ∈ C[0,∞), φ

is nondecreasing and lim
v→∞

φ(v)
v = 0,

then f also satisfies (H4) for some W > 0.

Remark 2. Let condition (H3) be replaced by

(H∗
3 ) there exist B,C ∈ R such that B < C, f ∈ C(J × [B,C]× R) and

f(t, B, 0) ≤ 0, f(t, C, 0) ≥ 0 for t ∈ J.
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Put A = C−B
2 and introduce g ∈ C(J × [−A,A]× R) as

g(t, x, y) = f
(
t, x+

B + C

2
, y
)
. (3)

Then
g(t,−A, 0) ≤ 0, g(t, A, 0) ≥ 0 for t ∈ J.

Hence g satisfies condition (H3). Moreover, v is a solution of problem

v′′ + p(t)v′ = a(t)p(t)g(t, v, v′),

v(0) = v(T ), v′(0) = 0,

}
(4)

if and only if u = v− B+C
2 is a solution of (1), (2). Consequently, without loss of generality we can

work with condition (H3) which due to its symmetry is more convenient for our consideration.

Our proof of the solvability to problem (1), (2) is based on a combination of the sequential
method and the Leray–Schauder degree method [3] with the diaginalization method [1, 2]. To this
end we introduce a function f∗ ∈ C(J × R2) as

f∗(t, x, y) =


f(t, A, y) +

(x−A)κ

x−A+ 1
if x > A,

f(t, x, y) if −A ≤ x ≤ A,

f(t,−A, y)− (A+ x)κ

A+ x− 1
if x < −A,

where κ = 1
2

(
W
∥a∥ −M

)
, M = max

{
|f(t, x, y)| : t ∈ J, |x| ≤ A, |y| ≤ W

}
. By (H4), κ > 0.

Choose t0 ∈ (0, T ) and let J0 = [t0, T ]. Consider the auxiliary regular boundary value problem

u′′(t) + p(t)u′(t) = a(t)p(t)f∗
(
t, u(t), u′(t)

)
, t ∈ J0, (5)

u(t0) = u(T ), u′(t0) = 0. (6)

We say that u is a solution of problem (5), (6) if u ∈ C2(J0), u satisfies (6) and (5) holds for t ∈ J0.
In order to proof the solvability of problem (5), (6) we introduce an operator L0 : C

1(J0)×R →
C2(J0)× R by the formula

L0(x, c) =

(
c+

t∫
t0

(F0x)(s) ds, c+

T∫
t0

(F0x)(s) ds

)
,

where

(F0x)(t) = ev(t)
t∫

t0

e−v(s)a(s)p(s)f∗
(
s, x(s), x′(s)

)
ds, v(t) =

T∫
t

p(s) ds.

Lemma 1. Let (H1)–(H4) hold. If (x, c) is a fixed point of L0, then x is a solution of problem
(5), (6) and c = x(t0).

Now, in order to prove the existence of a fixed point of L0, we introduce completely continuous
operators K0 : C

1(J0)× R× [0, 1] → C1(J0)× R and H0 : C
1(J0)× R× [0, 1] → C1(J0)× R,

K0(x, c, λ) =

(
c, c+ (1− λ)x(t0) + λ

T∫
t0

(F0x)(s) ds

)
,

H0(x, c, λ) =

(
c+ λ

t∫
t0

(F0x)(s) ds, c+

T∫
t0

(F0x)(s) ds

)
,
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and the set

Ω =
{
(x, c) ∈ C1(J0)× R : |x(t)| < A+ 1, |x′(t)| < W for t ∈ J0, |c| < A+ 1

}
.

Lemma 2. Let (H1)–(H4) hold. Then

deg
(
I0 −K0( · , · , 1),Ω, 0

)
̸= 0,

deg
(
I0 −H0( · , · , 0),Ω, 0

)
= deg

(
I0 −H0( · , · , 1),Ω, 0

)
,

where “deg” stands for the Leray–Schauder degree and I0 is the identical operator on C1(J0)×R.
Theorem 1. Let (H1)–(H4) hold and let t0 ∈ (0, T ). Then the equation

u′′(t) + p(t)u′(t) = a(t)p(t)f
(
t, u(t), u′(t)

)
, t ∈ J0 = [t0, T ], (7)

has a solution u satisfying (6) and |u| ≤ A, |u′| < W on J0.

Sketch of the proof. Since K0( · , · , 1) = H0( · , · , 0) and H0( · , · , 1) = L0( · , · ), it follows from
Lemma 2 that deg (I0 − L0( · , · ),Ω, 0) ̸= 0. Hence there exists a fixed point (u, c) of L0, and
therefore u is a solution of problem (5), (6) and c = u(t0) by Lemma 1. We use (H3) and have
|u| ≤ A, |u′| < W on J0. Hence f∗(t, u(t), u

′(t)) = f(t, u(t), u′(t)) on J0. Consequently, u is a
solution of (7), (6).

Theorem 2. Let (H1)–(H4) hold. Then problem (1), (2) has at least one solution u and |u(t)| ≤ A,
|u′(t)| ≤ W for t ∈ J .

Sketch of the proof. Let {tn} ⊂ (0, T ) be a decreasing sequence such that lim
n→∞

tn = 0 and let

Jn = [tn, T ]. By Theorem 1 (for t0 = tn), for each n ∈ N the problem

u′′(t) + p(t)u′(t) = a(t)p(t)f
(
t, u(t), u′(t)

)
, t ∈ Jn

u(tn) = u(T ), u′(tn) = 0,

}
has a solution un and |un| ≤ A, |u′n| < W on Jn. Let

yn(t) =

{
un(t) if t ∈ Jn,

un(tn) if t ∈ [0, tn).

Then yn ∈ C1(J)∩C2(Jn), |yn| ≤ A, |y′n| < W on J and |y′′n| ≤ 2W max{p(t) : t ∈ Jn} on Jn. Since
{yn(T )} is a bounded sequence, we may assume without loss of generality that it is convergent and
let lim

n→∞
yn(T ) = γ. We now apply the diagonalization method to the sequence {yn} and obtain

a function u ∈ C2(0, T ] such that |u| ≤ A, |u′| ≤ W on (0, T ], u(T ) = γ and u satisfies (1) for
t ∈ (0, T ].

Next we prove that lim
t→0

u(t) = γ and setting u(0) = γ, u ∈ C(J) and u(0) = u(T ). Finally, it

can be proved that lim
t→0

u′(t) = 0. Setting u′(0) = 0, u ∈ C1(J). Consequently, u is a solution of

(1), (2) and |u| ≤ A, |u′| ≤ W on J .
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The object of our investigation is establishing the conditions for oscillations of solutions of
linear second order differential equations, provided the solutions of the corresponding difference
equations oscillate. We also establish the converse result, namely, when the oscillation of the solu-
tions of difference equations implies the oscillation of the solutions of the corresponding differential
equations.

Consider the linear second order differential equation

ẍ+ p(t)ẋ+ q(t)x = 0. (1)

The following equations are called the functional difference equation and the difference equation,
corresponding to (1), respectively:

△2x(t) + hp(t)△x(t) + h2q(t)x(t) = 0, (2)

△2
kx(t0) + hp(t0 + kh)△kx(t0) + h2q(t0 + kh)x(t0 + kh) = 0. (3)

Here

△x(t) = x(t+ h)− x(t),

△2x(t) = △(△x(t)) = x(t+ 2h)− 2x(t+ h) + x(t),

△kx(t0) = x(t0 + (k + 1)h)− x(t0 + kh),

△2
kx(t0) = △k(△kx(t0)).

Denote xhk = x(t0 + kh) to be the solution of the equation (3), with tk = t0 + kh.

Definition 1. We say that the solution xhk of the equation (3) changes sign at tk, if either of the
following conditions hold:

1) xhkx
h
k+1 < 0;

2) xhk = 0, xhk−1x
h
k+1 < 0.
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Definition 2. A solution xhk of (3) is called oscillatory on some interval if it has at least two
changes of signs on this interval.

We study the equation (2) under the conditions that ensure the continuity of its solutions.
Thus, we have the usual concept of a zero for the solutions of (2), and the notion of oscillations of
its solutions is essentially the same as for the solutions of (1).

Now we present the main results about the relation between the oscillation of solutions of the
equations (1), (2), (3). These equations are equivalent to the following systems

dx

dt
= y,

dy

dt
= −p(t)y − q(t)x,

(4)

{
x(t+ h) = x(t) + hy(t),

y(t+ h) = y(t)− h(p(t)y(t) + q(t)x(t)),
(5){

xhk+1 = xhk + hyhk ,

yhk+1 = yhk − h(p(t0 + kh)yhk + q(t0 + kh)yhk ).
(6)

Therefore, the solutions of the system (5) are uniquely determined by the initial functions x =
φ(t), y = ψ(t), t ∈ [0, h] which satisfy the coherence condition{

φ(h) = φ(0) + hψ(0),

ψ(h) = ψ(0)− h(p(0)ψ(0) + q(0)φ(0)).
(7)

In what follows we assume that φ,ψ ∈ C([0, h]). The solutions of the system (6) are uniquely
determined by the initial data

xh0(t0) = x0, yh0 (t0) = y0.

Theorem 1. Let p and q in (1) be Lipschitz on [0, a]. Then there exists h0 > 0 such that for all
0 < h ≤ h0 the assertion holds:

If x(t) is a solution of (1), which starts at t0 ∈ [0, h] and has at least three zeros on the interval
[t0, a), then the corresponding solution of the difference equation (3) oscillates on [t0, a].

Consider now the equation (2), or the equivalent system (5). The following result follows from
Theorem 1 and Lemma 1.

Theorem 2. Assume that p and q in (2) are Lipschitz on [0, a]. Then there exists h0 > 0 such
that for all 0 < h ≤ h0 the following statement holds:

Every solution of the system (5) with the initial functions φ,ψ ∈ C([0, h]), which satisfy the
condition (7), has oscillatory first component on the (0, a), provided that there exists t0 ∈ [0, h]
such that the solution of the equation (1) with the initial data

x(t0) = φ(t0), ẋ(t0) = ψ(t0)

has at least three zeros on (t0, a).

Consider the equation
ẍ+ p(t)x = 0 (8)

and the corresponding functional difference equation

△2x(t) + h2p(t)x(t) = 0, (9)
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and the difference equation

△2
kx(t0) + h2p(t0 + kh)x(t0 + kh) = 0 (10)

with p satisfying the Lipschitz condition on [0, a]. Let

m = min
t∈[0,a]

p(t), M = max
t∈[0,a]

p(t).

Assume

m > 0 and a >
3π√
m
. (11)

Then if

a− h >
3π√
m
, (12)

all solutions of (8) with the initial data t0 ∈ [0, h̄] have at least three zeros on the interval [t0, a).

Corollary 1. Let p be Lipschitz on [0, a], and the conditions (11) and (12) hold. Then there exists
h0 > 0 such that for all 0 < h ≤ h0 all solutions of equation (10) with the initial data given at
t0 ∈ [0, h], oscillate on the [t0, a).

Corollary 2. Let p be Lipschitz on [0, a], and the conditions (11) and (12) hold. Then there exists
h0 > 0 such that for all 0 < h ≤ h0 every solution of the system{

x(t+ h) = x(t) + hy(t),

y(t+ h) = y(t)− hp(t)x(t)

with the initial functions φ,ψ ∈ C([0, h]) satisfying the coherence condition{
φ(h) = φ(0) + hψ(0),

ψ(h) = ψ(0)− hp(0)φ(0)),

has an oscillatory first component on the interval (0, a).

Assume the following conditions hold:

p(t) ≥ 0, t ∈ [0, a], (13)

p(t) is Lipschitz on [0, a]. (14)

The difference equation, corresponding to (8), is

△2
kx+ h2p(kh)x(kh) = 0. (15)

The following theorem describes the relation between the oscillations of solutions of (8) and
(15).

Theorem 3. Let p(t) satisfy the conditions (13) and (14). Then there exists h0 such that for all
0 < h ≤ h0 the assertion holds:

If xhk is a solution of (15) which has at least three changes of sign on the interval [0, a], then
the corresponding solution of differential equation (8) oscillates on [0, a].
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Sensitivity analysis of the differential equation consists in finding an analytic relation between
solutions of the original and perturbed equations. It is an important tool for assessing properties of
the mathematical models. For example, in an immune model [1], it allows one to determine depen-
dence of viruses concentrations on the model parameters. In the present work linear representation
of the first order sensitivity coefficient is obtained with respect to perturbations of the initial data.

Let I = [a, b] be a finite interval and let Rn
x be the n-dimensional vector space of points

x = (x1, . . . , xn)T , where T is the sign of transposition. Suppose that O ⊂ Rn
x and U0 ⊂ Rr

u
are open sets. Let the n-dimensional function f(t, x, y, u, v) satisfies the following conditions: for
almost all t ∈ I, the function f(t, · ) : O2 × U2

0 → Rn
x is continuously differentiable; for any

(x, y, u, v) ∈ O2 × U2
0 , the functions f(t, x, y, u, v), fx( · ), fy( · ), fu( · ), fv( · ) are measurable on I;

for arbitrary compacts K ⊂ O, U ⊂ U0 there exists a function mK,U ( · ) ∈ L(I, [0,∞)), such that
for any (x, y, u, v) ∈ K2 × U2 and for almost all t ∈ I the following inequality is fulfilled

|f(t, x, y, u)|+ |fx( · )|+ |fy( · )|+ |fu( · )|+ |fv( · )| ≤ mK,U (t).

Further, let D be the set of continuously differentiable scalar functions (delay functions) τ(t), t ∈ I,
satisfying the conditions:

τ(t) < t, τ̇(t) > 0, inf
{
τ(a) : τ ∈ D

}
:= τ̂ > −∞, sup{τ−1(b) : τ ∈ D} < ∞,

where τ−1(t) is the inverse function of τ(t).
Let Φ be the set of continuous initial functions φ(t) ∈ O, t ∈ I1 = [τ̂ , b] and let Ω be the set of

measurable bounded control functions u(t) ∈ U0, t ∈ I1, with u(I1) ⊂ U0.
To each element (initial date) µ = (t0, τ, φ, u) ∈ Λ = [a, b)×D×Φ×Ω we assign the controlled

delay functional differential equation

ẋ(t) = f
(
t, x(t), x(τ(t)), u(t), u(θ(t))

)
(1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0], (2)

where θ ∈ D is a fixed delay function. The condition (2) is said to be continuous initial condition
since always x(t0) = φ(t0).

Definition 1.Let µ = (t0, τ, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b],
is called a solution of equation (1) with the initial condition (2) or a solution corresponding to
the element µ and defined on the interval [τ̂ , t1], if x(t) satisfies condition (2) and is absolutely
continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].



International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia 145

Let µ0 = (t00, τ0, φ0, u0) ∈ Λ be a given element and x0(t) be the solution corresponding to µ0

and defined on [τ̂ , t10], with a < t00 < t10 < b. Let us introduce the set of variations

V =

{
δµ=(δt0, δτ, δφ, δu) : |δt0|≤α, ∥δτ∥≤α, δφ=

k∑
i=1

λiδφi, |λi|≤α, i=1, k, ∥δu∥≤α

}
.

Here δt0 ∈ I − t00, δτ ∈ D − τ0, ∥δτ∥ = sup{|δτ(t)| : t ∈ I}, δu ∈ Ω− u0, δφi ∈ Φ− φ0, i = 1, k,
are fixed functions, α > 0 is a fixed number.

There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × V the
element µ0 + εδµ ∈ Λ and there corresponds the solution x(t;µ0 + εδµ) defined on the interval
[τ̂ , t10 + δ1] ⊂ I1.

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t) on the interval
[τ̂ , t10 + δ1]. Therefore, the solution x0(t) is assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0) :

δx(t; εδµ) = x(t;µ0 + εδµ)− x0(t), ∀ (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1]× V.

Theorem 1. Let the following conditions hold:

1) the function φ0(t), t ∈ I1, is absolutely continuous and the function φ̇0(t) is bounded;

2) the function f0(z), z = (t, x, y) ∈ I×O2, is bounded, where f0(t, x, y) = f(t, x, y, u0(t), u0(θ(t));

3) there exist the finite limits

φ̇−
0 = φ̇0(t00−), lim

z→z0
f0(z) = f−

0 , z ∈ (a, t00]×O2,

where z0 = (t00, φ0(t00), φ0(τ0(t00))).

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that

δx(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3)

for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2]× (0, ε2]× V −, where V − = {δµ ∈ V : δt0 ≤ 0}, and

δx(t; δµ) = Y (t00; t)[φ̇
−
0 − f−

0 ]δt0 + β(t; δµ), (4)

β(t; δµ) = Y (t00; t)δφ(t00) +

t00∫
τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s) ds+

+

t∫
t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s) ds+

t∫
t00

Y (s; t)
[
f0u[s]δu(s) + f0v[s]δu(θ(s))

]
ds, (5)

lim
ε→0

o(t; εδµ)

ε
= 0 uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V −, (6)

Y (s; t) is n× n-matrix function satisfying the system

Ys(s; t) = −Y (s; t)f0x[s]− Y (γ0(s); t)f0y[γ0(s)]γ̇0(s), s ∈ [t00, t],

and the condition

Y (s; t) =

{
H, s = t,

Θ, s > t,

f0x[s] = f0x(s, x0(s), x0(τ0(s))), γ0(s) is the inverse function of τ0(s); H is the identity matrix and
Θ is the zero matrix.



146 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

Some comments

The function δx(t; δµ) is called the first order sensitivity coefficient and the expression (4) is linear
representation of sensitivity coefficient. On the other hand, the function δx(t; δµ) is called the first
variation of solution x0(t), t ∈ [t00, t10 + δ2], and the expression (4) is called the variation formula.
The variation formulas play an important role in proving the necessary optimality conditions [2–4].
The questions connected with the variation formulas and the sensitivity analysis for the various
classes of differential equations are considered in [2–5].

The addend
t∫

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s) ds

in formula (5) is the effect of perturbation of the delay function τ0(t).
The expression

Y (t00; t)[φ̇
−
0 − f−

0 ]δt0

is the effect of continuous initial condition (2) and perturbation of the initial moment t00.
The expression

Y (t00; t)δφ(t00) +

t00∫
τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s) ds

in formula (5) is the effect of perturbation of the initial function φ0(t).
The expression

t∫
t00

Y (s; t)
[
f0u[s]δu(s) + f0v[s]δu(θ(s))

]
ds

in formula (5) is the effect of perturbation of the control function u0(t).

Theorem 2. Let the function φ0(t), t ∈ I1, be absolutely continuous and let the functions φ̇0(t)
and f0(z), z ∈ I ×O2, be bounded. Moreover, there exist the finite limits

φ̇+
0 = φ̇0(t00+), lim

z→z0
f0(z) = f+

0 , z ∈ [t00, b)×O2.

Then for each t̂0 ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t̂0, t10 + δ2]× (0, ε2)× V +, where V + = {δµ ∈ V : δt0 ≥ 0}, formula (3) holds, where

δx(t; δµ) = Y (t00; t)(φ̇
+
0 − f+

0 )δt0 + β(t; δµ).

Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. Moreover,

φ̇−
0 = φ̇+

0 := φ̂0, f−
0 = f+

0 := f̂0.

Then for each t̂0 ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t̂0, t10 + δ2]× (0, ε2]× V formula (3) holds, where

δx(t; δµ) = Y (t00; t)(φ̂0 − f̂0)δt0 + β(t; δµ).

All assumptions of Theorem 3 are satisfied if: the functions φ̇0(t), u0(t), u0(θ(t)) are continuous
at the point t00 and the function f(t, x, y, u, v) is continuous and bounded. Clearly, in this case

φ̂0 = φ̇0(t00) and f̂0 = f(t00, φ0(t00), φ0(τ0(t00)), u0(t00), u0(θ(t00))).
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In the paper we investigate existence, uniqueness and continuous dependence of solutions on
the initial data and right-hand sides of a stochastic differential functional equation

dX(t) = AX(t)dt+ f(t,Xt)dt+ g(t,Xt)dW (t), t ∈ R+, (1)

with an initial condition

X(t) = ξ(t), t ∈ [−h, 0], (2)

on a certain filtered probability space (Ω,F ,Ft, P ), t ≥ 0. Here A is a generator of a C0-semigroup
S(t), t ≥ 0, on a separable Hilbert space H, W is a Wiener process with values in a separable
Hilbert space U and with a covariance nuclear nonnegative operator Q, f : R+ × Ω × Ch → H,
g : R+ ×Ω×Ch → L2(U,H) are measurable functions, Xt(ω) = {X(t+ τ, ω) | −h ≤ τ ≤ 0} ∈ Ch,
h ≥ 0, is a time of delay, ξ : [−h, 0] × Ω → H is a continuous F0-measurable process, where
R+ = [0,∞), Ch = C([−h, 0],H) for h > 0, Ch = H for h = 0, C([−h, 0],H) is the Banach space of
continuous functions z : [−h, 0] → H equipped with the topology of uniform convergence, L2(U,H)
is the space of Hilbert-Schmidt operators from U into H.

Let p and q be fixed real numbers, p > q > 2.
Define the set Φp,q(E) of all mappings (t, ω, φ) → z(t, ω, φ), t ∈ R+, ω ∈ Ω, φ ∈ Ch, with values

in a certain separable Hilbert space E, such that for any fixed φ ∈ Ch the process z(t, ω, φ) is
measurable and Ft-adapted, for any fixed (t, ω) ∈ R+×Ω the function φ→ z(t, ω, φ) is continuous
at φ ∈ Ch, and there hold:

local Lipschitz condition at φ ∈ Ch, i.e., for any a ∈ R+ there exists a constant qz(a) such
that for all t ∈ [0, a], r ∈ {p, q} and (F , β(Ch))-measurable random variables ζ, ψ : Ω → Ch with
ess sup ∥ζ∥ ≤ a, ess sup ∥ψ∥ ≤ a, the inequality

E
(
∥z(t, ζ)− z(t, ψ)∥r

)
≤ qz(a)E

(
∥ζ − ψ∥r

)
is valid, where β(Ch) is the Borel σ-algebra on the space Ch;

linear growth condition at φ ∈ Ch, i.e., there exists a continuous function kz : R+ → R+ such
that for all t ∈ R+, r ∈ {p, q} and (F , β(Ch))-measurable random variable η : Ω → Ch with
E(∥η(ω)∥p) <∞, the inequality

E
(
∥z(t, η)∥r

)
≤ kz(t)

(
1 + E(∥η∥r)

)
holds.

Denote by A the set of all linear operators A : D(A) → H with dense domain D(A) in H such
that A generates a C0-semigroup of linear operators S(t), t ≥ 0, on H.

Let J0 and J be the set of all continuous F0-measurable processes ζ : [−h, 0]× Ω → H, with

E
(

sup
t∈[−h,0]

∥ζ(t)∥p
)
<∞,
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and the set of all continuous Ft-adapted processes Y : [−h,∞)× Ω → H, with

E
(

sup
t∈[−h,T ]

∥Y (t)∥q
)
<∞ ∀T ≥ 0,

respectively.
In further we shall assume that the right-hand sides f and g of Eq. (1) belong to Φp,q(H),

Φp,q(L2(U,H)) respectively and the initial data ξ belongs to J0.

Definition 1. A mild solution of the Cauchy problem (1), (2) is a continuous Ft-adapted process
X(t), t ≥ −h, such that for any t ≥ 0

P

( t∫
0

(
∥f(s,Xs)∥+ ∥g(s,Xs)∥2

)
ds <∞

)
= 1

and almost surely for all t ≥ −h there holds: X(t) = ξ(t) for t ∈ [−h, 0] and

X(t) = S(t)ξ(0) +

t∫
0

S(t− s)f(s,Xs) ds+

t∫
0

S(t− s)g(s,Xs) dW (s)

for t ≥ 0.

Definition 2. A mild solution X(t) of the Cauchy problem (1), (2) is called unique, if for any mild
solution Y (t) of (1), (2) there holds

P (X(t) = Y (t) ∀ t ≥ −h) = 1.

Consider a perturbed Cauchy problem

dX(t) = ÃX(t)dt+ f̃(t,Xt)dt+ g̃(t,Xt)dW (t), t ∈ R+, (3)

X(t) = ξ̃(t), t ∈ [−h, 0], (4)

where (Ã, f̃ , g̃, ξ̃) ∈ A× Φp,q(H)× Φp,q(L2(U,H))× J0.

Definition 3. A mild solution X(t) of the Cauchy problem (1), (2) depends continuously on the
initial data and right-hand sides, if for any ε > 0, T ∈ R+ exists δ = δ(ε, T ) such that for any

(Ã, f̃ , g̃, ξ̃) ∈ A× Φp,q(H)× Φp,q(L2(U,H))× J0, with

E
(
∥f̃(t, φ)− f(t, φ)∥p + ∥g̃(t, φ)− g(t, φ)∥p

)
+

+ ∥S̃(t)− S(t)∥p + E
(

sup
s∈[−h,0]

∥ξ̃(s)− ξ(s)∥p
)
≤ δ ∀ (t, φ) ∈ [0, T ]× Ch,

there holds the inequality

E
(

sup
t∈[−h,T ]

∥X̃(t)−X(t)∥q
)
≤ ε,

where S̃(t) is the semigroup, generated by Ã, and X̃(t) is a mild solution of the Cauchy problem
(3), (4).

Definition 4. We say that the Cauchy problem (1), (2) is well-posed if there exists a unique mild
solution X(t) and this mild solution depends continuously on the initial data and right-hand sides.

The main result of this paper is the following theorem on the well-posedness of the Cauchy
problem (1), (2).

Theorem. Let (A, f, g, ξ) ∈ A×Φp,q(H)×Φp,q(L2(U,H))×J0, then the Cauchy problem (1), (2)
is well-posed and the mild solution X(t) of (1), (2) belongs to J .
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Stability of Linear Impulsive Itô Equations with Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

M. V. Karpuk

On the Largest Lyapunov Exponent of the Linear Differential System with

Parameter-Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

S. Kharibegashvili

On the Solvability of One Nonlocal in Time Problem for

Multidimensional Wave Equations with Power Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

I. Kiguradze

Positive Periodic Solutions of Singular in Phase Variables Differential Systems . . . . . . . . . . 73



152 International Workshop QUALITDE – 2014, December 18 – 20, 2014, Tbilisi, Georgia

T. Kiguradze

Positive Solutions of Periodic Type Boundary Value Problems for

Nonlinear Hyperbolic Equations with Singularities in the Phase Variable . . . . . . . . . . . . . . . 77

Z. Kiguradze

Investigation and Numerical Solution of Some Systems of

Partial Integro-Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A. V. Konyukh

On One Formula of Computation of Uniform Means of

Piecewise Continuous Functions on the Semiaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

L. I. Kusik

Asymptotic Representations of One Class of Singular Solutions of

Second-Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A. Levakov, M. Vaskouski

Existence and Uniqueness of Solutions of Stochastic Differential Equations

Driven by Standard and Fractional Brownian Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A. Lomtatidze, J. Šremr
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