
 oman VI, № 4

СООБЩЕНИЯ

АКАДЕМИЯ НАУК ГРУЗИНСКОЙ ССР TOM VI, № 4

BULLETIN

OF THE ACADEMY OF SCIENCES OF THE GEORGIAN SSR Vol, VI, № 4

2JOOaゝOODJ১-MATEMATUKA-MATHEMATICS

ragubbob.
*Н. П. В ек уа. Об одной смепанной граничной задаче теории аналитических функ- ций 253

 255
*А. И. Элиа ппвилі. Применение матичного способа интегрирования систем ли- нейных диференциальных уравнений к исследованию переходных прощессов в связанных электрических цепях 259

 263
*В. Л. Менабде. Явления обратимости стадийных изменений 268
 271
*H. Т. К ахидзе. Цитофизиологическое исследование эпидермиса листа миндаля 275
 dsmn (Diospyros Lotus L.). 281
*Т. А. Кезели, Л. И. Джапаридзе иК. М. Тарасашвили. Динамика витамина С в хурме (Diospyros Lotus L.) 284
 DEVELOPMENT
 287
*H. А. Мануилова. Образование глаза из головного мозга при пересадке осе- вой мезодермы в область глаза средней нейрулы у Anura. 292

 295

* I. И. Джапаридзе. О половом диференциале водосодержания у пчелы (Apis Mellifera L.) 296

 299
*М акар Х убуа. Персидские заднеязычные звуки в грузинском 307
 zontsongals 309
 \| Apsaata («Птица)). 311

[^0] Јam.ЗЈ6пи əolงbอる

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{a b} \frac{\psi(t) d t}{t-z},
$$

 of3l:
\[

$$
\begin{equation*}
\psi(t)=\frac{\psi^{*}(t)}{(t-c)^{\alpha}}, O \leqq \alpha<1, \tag{1,1}
\end{equation*}
$$

\]

$$
\Phi(z)= \pm \frac{\psi^{*}(c) e^{ \pm i \alpha} \pi}{2 i \sin \alpha \pi \cdot(z-c)^{\alpha}}+0\left(\frac{1}{|z-c|^{\alpha-\beta}}\right)
$$

 - зo b 万mmm formonemolongol.

$$
I\left(t_{0}\right)=\frac{1}{2 \pi i} \int_{a b} \frac{\psi(t) d t}{t-t_{0}},
$$

 oflub lob_{5}

$$
\begin{equation*}
I\left(t_{0}\right)= \pm \frac{\psi^{*}(c) \operatorname{ctg} \alpha \pi}{2 i\left(t_{0}-c\right)^{\alpha}}+O\left(\frac{1}{\left|t_{0}--c\right|^{\alpha-\beta}}\right) \tag{1,2}
\end{equation*}
$$

 60.25mos

$$
L=\sum_{k=1}^{n} L_{k} .
$$

$$
\begin{equation*}
\frac{1}{\pi i} \int_{L} \frac{\varphi(t) d t}{t-t_{0}}=f\left(t_{0}\right) \tag{1,3}
\end{equation*}
$$

$$
\varphi\left(t_{0}\right)=\frac{1}{\pi i} \frac{1}{\sqrt{R\left(t_{0}\right)}} \int_{L} \frac{\sqrt{R(t)} f(t) d t}{t-t_{0}}+\frac{P_{n-1}\left(t_{0}\right)}{\sqrt{R\left(t_{0}\right)}}
$$

$$
k=1
$$

$$
\begin{equation*}
\varphi\left(t_{0}\right)=\frac{1}{\pi i} \sqrt{\frac{R_{a}\left(t_{0}\right)}{R_{b}\left(t_{0}\right)}} \int \sqrt{L} \sqrt{\frac{R_{b}(t)}{R_{a}(t)}} \frac{f(t) d t}{t-t_{0}}, \tag{1,4}
\end{equation*}
$$

[^1]
uocoor
$$
R_{a}\left(t_{0}\right)=\prod_{k=1}^{n}\left(t_{0}-a_{k}\right), R_{b}\left(t_{0}\right)=\prod_{k=1}^{n}\left(b_{k}-t_{0}\right)
$$

 mion.

\[

$$
\begin{equation*}
|\phi(z)| \leqq \frac{C}{|z-c|^{\alpha}} \tag{1,5}
\end{equation*}
$$

\]

$$
\begin{aligned}
& L=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}, \\
& L^{\prime}=b_{1} a_{2}+b_{2} a_{3}+\ldots+b_{n} a_{1} .
\end{aligned}
$$

 ง2m(z)б0 إ

$$
\begin{align*}
& u=f_{1}\left(t_{0}\right) L-q_{j}, \tag{2,1}\\
& u=f_{2}\left(t_{n}\right) L-\sigma_{0}
\end{align*}
$$

 madegl

$$
\begin{aligned}
& R \psi(z)=0 \quad L^{\prime}-q_{0} \\
& I \psi(z)=0 \quad L-q_{0}
\end{aligned}
$$

$$
\frac{\psi(z)}{\sqrt{z\left(z-a_{2}^{\prime}\right) \ldots\left(z-a_{n}^{\prime}\right)\left(\tau-b_{1}^{\prime}\right) \ldots\left(z-b_{n}^{\prime}\right)}}
$$

 toma

$$
\frac{\psi(z)}{\sqrt{z\left(z-a_{2}^{\prime}\right) \cdots\left(z-a_{n}^{\prime}\right)\left(z-b_{1}^{\prime}\right) \cdots\left(z-b_{n}^{\prime}\right)}}=\frac{A}{\left(z-\dot{b}_{1}^{\prime}\right) \ldots\left(z-b_{n}^{\prime}\right)}
$$

$$
\psi(z)=\left(A^{\prime}+i A^{\prime \prime}\right) \frac{\sqrt{ } z\left(z-a_{2}^{\prime}\right) \ldots\left(z-\overline{a_{n}^{\prime}}\right)}{\left.\sqrt{\left(z-b_{1}^{\prime}\right)\left(z-b_{2}^{\prime}\right.}{ }_{2}\right) \cdots\left(z-\overline{\left.b_{n}^{\prime}\right)}\right.}
$$

$$
\psi(z)=i A^{\prime \prime} \frac{\sqrt{z\left(z-a_{2}^{\prime \prime}\right) \cdots\left(z-a_{n}^{\prime}\right)}}{\sqrt{\left(z-b_{1}^{\prime}\right)\left(z-b_{2}^{\prime}\right) \ldots\left(z-b_{n}^{\prime}\right)}}
$$

 $=\nu=0 \quad a_{k}^{\prime} b^{\prime}{ }_{k}{ }^{-}{ }^{-b_{\rho}}(k=1,2, \ldots, n)$.

$$
\begin{equation*}
\phi(z)=\frac{1}{\pi i} \int_{L} \frac{v(t) d t}{t-\tau}+\frac{1}{\pi} \int_{L} \frac{\mu(t) d t}{t-z}-\frac{1}{\pi i} \int_{L} \frac{v(t) d t}{t}-\frac{1}{\pi} \int_{L} \frac{\mu(t) d t}{t} \tag{2,2}
\end{equation*}
$$

 lugezorm 3 ntrmbo dig honforigio

$$
\begin{align*}
& \left.\frac{1}{\pi} \int_{L^{\prime}} \frac{\mu d r}{r}+\frac{1^{*}}{\pi} \int_{L} v d \vartheta-\frac{1}{\pi} \int_{L^{\prime}} \frac{\mu d \rho}{\rho}-\frac{1}{\pi} \int_{L} v d \varphi=f_{1}\left(t_{0}\right) L^{\prime}\right\}-\partial \\
& -\frac{1}{\pi} \int_{L} \frac{v d r}{r}+\frac{1}{\pi} \int_{L^{\prime}} \mu d \vartheta+\frac{1}{\pi} \int_{L} \frac{v d \rho}{\rho}-\frac{1}{\pi} \int_{L^{\prime}} \mu d \varphi=f_{2}\left(t_{0}\right) L-q^{\prime} \tag{2,3}
\end{align*}
$$

 zuono unbogadu oly gjozandmao zurouffommon

$$
\begin{align*}
& \frac{1}{\pi} \int_{L^{\prime}} \frac{\mu(t) d t}{t-t_{0}}+\frac{1}{\pi i} \int_{L^{\prime}} \frac{\mu(t) \sin \alpha e^{-i \alpha}}{t-t_{0}} d t+\frac{1}{\pi} \int_{L} v \frac{d \vartheta}{d s} e^{-i(\vartheta+\alpha)} d t- \\
& \quad-\frac{1}{\pi} \int_{L} v \frac{d \varphi}{d t} d t-\frac{1}{\pi} \int_{L^{\prime}} \mu \frac{d \rho}{d t} \frac{1}{\rho} d t=f_{2}\left(t_{0}\right) L^{\prime}-\sigma_{g} \\
& -\frac{1}{\pi} \int_{L} \frac{v(t) d t}{t-t_{0}}-\frac{1}{\pi i} \int_{L} \frac{v(t) \sin \alpha e^{-i \alpha}}{t-t_{0}} d t+\frac{1}{\pi} \int_{L^{\prime}} \mu \frac{d \vartheta^{\prime}}{d s} e^{-i(\vartheta+\alpha) d t+} \\
& \quad+\frac{1}{\pi} \int_{L} v \frac{d \rho}{d t} \frac{1}{\rho} d t-\frac{1}{\pi} \int_{L^{\prime}} \mu \frac{d \varphi}{d t} d t=f_{2}\left(t_{0}\right) L-\varepsilon_{\rho}
\end{align*}
$$

$$
\begin{align*}
& \mu\left(t_{0}\right)-\frac{1}{\pi^{2}} \sqrt{\frac{R_{a}\left(t_{0}\right)}{R_{b}\left(t_{0}\right)}}\left[\int_{l} k_{11}\left(t_{0}, t_{1}\right) \mu\left(t_{1}\right) d t_{1}+\int_{l} k_{12}\left(t_{0}, t_{1}\right) v\left(t_{1}\right) d t_{1}\right]=f_{1}^{*}\left(t_{0}\right) \\
& v\left(t_{0}\right)+\frac{1}{\pi^{2}} \sqrt{\frac{R_{a}\left(t_{0}\right)}{R_{b}\left(t_{0}\right)}}\left[\int_{l} k_{21}\left(t_{0}, t_{1}\right) \mu\left(t_{1}\right) d t_{1}+\int_{l} k_{22}\left(t_{0}, t_{1}\right) v\left(t_{1}\right) d t_{1}\right]=f_{2}^{*}\left(t_{0}\right) \tag{2,4}
\end{align*}
$$

60×00

$$
K_{21}\left(t_{0}, t_{1}\right)=\left\{- \pi \frac { d \varphi } { d t _ { 1 } } (i) ^ { n - 1 } + \int _ { L } \frac { \frac { d \vartheta } { d s } e ^ { - i (\gamma + \alpha) } \sqrt { R _ { b } (t) } } { \sqrt { R _ { a } (t) } (t - t _ { 0 }) } d t \text { , киm } \left(\mathcal{J}^{\circ} t_{0} \in L \text { œ๐ } t_{1} \in L^{\prime}\right.\right.
$$

$$
K_{22}\left(t_{0}, t_{1}\right)=\left\{\frac{\pi}{\rho} \frac{d \rho}{d t_{1}}(i)^{n-1}-\frac{1}{i} \int_{L} \frac{\sin \alpha e^{-i \alpha} \sqrt{\overline{R_{b}}(t)}}{\sqrt{\overline{R_{a}(t)}\left(t_{1}-t\right)\left(t-t_{0}\right)}} d t \text {, बnल }(3) t_{0}, t_{1} \in L\right.
$$

$$
f_{1}^{*}\left(t_{0}\right)=\left\{-\frac{1}{\pi} \sqrt{\frac{R_{a}\left(t_{0}\right)}{R_{b}\left(t_{0}\right)}} \int \frac{f_{1}(t) V \overline{R_{b}(t)}}{\sqrt{R_{a}(t)}\left(t-t_{0}\right)} d t \text {, 九лm } 30 t_{0} \in L^{\prime}\right.
$$

$$
0 \text {, } \operatorname{knm}(3) t_{0} \in L \text {, }
$$

$$
f_{2}^{*}\left(t_{0}\right)=\frac{1}{\pi} \sqrt{\frac{\overline{R_{a}\left(t_{0}\right)}}{R_{b}\left(t_{0}\right)}} \int_{L} \frac{f_{2}(t) \sqrt{R_{b}(t)}}{\sqrt{R_{a}(t)}\left(t-t_{0}\right)} d t \text {, लिm(乃) } t_{0} \in L,
$$

$$
R_{a}\left(t_{0}\right)=\prod_{k=1}^{n}\left(t_{0}-a_{k}\right), R_{b}\left(t_{0}\right)=\prod_{k=1}^{n}\left(b_{k}-t_{0}\right)
$$

$$
\begin{align*}
& \frac{1}{\pi} \int_{L^{\prime}} \frac{\mu^{\prime} d r}{r}+\frac{1}{\pi} \int_{L} v^{\prime} d v^{\prime}-\frac{1}{\pi} \int_{L^{\prime}} \frac{\mu^{\prime} d \rho}{\rho}-\frac{1}{\pi} \int_{L} v^{\prime} d \varphi=0 \quad L^{\prime}-\psi_{\rho} \\
& -\frac{1}{\pi} \int_{L} \frac{v^{\prime} d r}{r}+\frac{1}{\pi} \int_{L^{\prime}} \mu^{\prime} d q+\frac{1}{\pi} \int_{L} \frac{v^{\prime} d \rho}{\rho}-\frac{1}{\pi} \int_{L^{\prime}} \mu^{\prime} d \varphi=0 \quad L-q_{\rho} \tag{2,5}
\end{align*}
$$

56

$$
\begin{aligned}
& u^{\prime}=R \phi^{\prime}(z)=0 \quad L^{\prime}-q_{0} \\
& v^{\prime}=I \Phi^{\prime}(z)=0 \quad L-\sigma_{\rho},
\end{aligned}
$$

bogor

$$
\Phi^{\prime}(z)=\frac{1}{\pi i} \int_{L} \frac{\nu^{\prime}(t) d t}{t-z}+\frac{1}{\pi} \int_{L^{\prime}} \frac{\mu^{\prime}(t) d t}{t-z}-\frac{1}{\pi i} \int_{L} \frac{\nu^{\prime} d t}{t}-\frac{1}{\pi} \int_{L} \frac{\mu^{\prime}(t) d t}{t}
$$

匕nる $v^{\prime}(t)=0$ @ $\mu^{\prime}(t)=0$.

$$
\mu^{\prime \prime}=v^{\prime \prime}=0
$$

 fomo otro ofzan:

$$
-\infty<a_{1}<b_{1}<\cdots<a_{n}<b_{n}=b_{0}<+\infty
$$

$$
L=\sum_{k=1}^{n} L_{k}, \quad L^{\prime}=\sum_{k=1}^{n} L_{k}^{\prime}
$$

$$
\begin{equation*}
\phi(z)=\frac{1}{\pi i} \int_{L} \frac{\nu(x) d x}{x-z}+\frac{1}{\pi} \int_{L^{\prime}} \frac{\mu(x) d x}{x-z} \tag{3,1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{\pi} \int_{L} \frac{v(x) d x}{x-x_{0}}=v_{0}(x) L-q_{0} \\
& \frac{1}{\pi} \int_{L^{\prime}} \frac{\mu(x) d x}{x-x_{0}}=u_{0}(x) L^{\prime}-q_{0} \tag{3,2}
\end{align*}
$$

$$
\begin{aligned}
& v\left(x_{0}\right)=-\frac{1}{\pi} \sqrt{\frac{R_{a}\left(x_{0}\right)}{R_{b}\left(x_{0}\right)}} \int_{L} \sqrt{\frac{R_{b}(x)}{R_{a}(x)}} \frac{v_{0}(x) d x}{x-x_{0}} \\
& \mu\left(x_{0}\right)=-\frac{1}{\pi} \sqrt{\frac{R_{a}\left(x_{0}\right)}{R_{b}\left(x_{0}\right)} \int_{L^{\prime}} \sqrt{\frac{R_{b}(x)}{R_{a}(x)}} \frac{u_{0}(x) d x}{x-x_{0}}}
\end{aligned}
$$

ง. musasonu lubammon

MATEMATИKA
Н. П. ВЕКУА

ОБ ОДНОЙ СМЕШАННОЙ ГРАНИЧНОЙ ЗАДАЧЕ ТЕОРИИ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Резюме

Пусть S-конечная односвязная область на плоскости комплексной переменной \approx, ограниченная простым замкнутым гладким контуром l. Будем предполагать, что начало координат помещается в области S. Пусть далее контур l разделен на $2 n(n \geqq I)$ неперекрывающихся частей $a_{k} b_{k}$, $b_{k-1} a_{k}(k=1,2, \ldots, n)\left(b_{0}=b_{n}\right)$. Введем обозначения:

$$
\begin{aligned}
& L=a_{1} b_{2}+a_{2} b_{2}+\ldots+a_{n} b_{n}, \\
& L^{\prime}=b_{1} a_{2}+b_{2} a_{3}+\ldots+b_{n} a_{1} .
\end{aligned}
$$

В настояшем сообщении мы решаем следующую смешанную краевую задачу.

Найти голоморфную в области S функцию $\phi(z)=u+i v$, нормированную условием $\phi(0)=0$, непрерывную вплоть до контура l, за исключением, быть может, точек $b_{k}(k=\mathrm{I}, 2, \ldots, n)$, в окрестности которых имеет место оценка $|\phi(z)|<C\left|z-b_{k}\right|^{\alpha}$, где α и C-постоянные, $0 \leqq \alpha<1$, по граничному условию:

$$
\begin{aligned}
& u=f_{1}\left(t_{0}\right) \text { на } L^{\prime}, \\
& v=b_{2}\left(t_{0}\right) \text { на } L,
\end{aligned}
$$

где f_{1} и f_{2}-заданные функции, удовлетворяющие соответственно на L^{\prime} и L условию Höldet-а, кроме, быть может, окрестностей точек b_{k} ($k=\mathrm{I}$, $2, \ldots, n$), где они удовлетворяют условию вида (r, I), причем $\psi^{*}(t)$ удовлетворяет условию Hölder-а.

Эта задача представляет некоторое обобщение задачи М. Келдыша и Л. Седова [2].

Академия Наук Грузинской ССР
Тбилисский Математический Институт имени А. Размадзе

1. Н. И. Мусхелипाв или. Приложение интегралов типа Коши к одному классу сингулярных интегральных уравнении. Труды Тбилисского Математического Иеститута, т. X, 1941.
2. М. Келды ІІ и Л. Селов. Эффективное решение некоторых краевых задач гармонических функций. Доклады АН СССР, т. XVI, 1937.

ง. อmnjચznmn

 - 0000 Lologjoul

$$
\begin{equation*}
\sum_{B}^{1 \ldots n} f_{k s}(D) x_{s}=\underset{k}{\mathscr{E}}(t), \quad(k=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

 œ๐ ам

$$
f_{k s}^{(D)} \equiv L_{k s} D^{2}+R_{k s} D+C_{k s}^{-1},
$$

$$
f(D) \equiv\left[f_{k s}(D)\right]
$$

$$
x(t) \equiv\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \mathscr{E}(t) \equiv\left[\begin{array}{c}
\mathscr{E}_{1}(t) \\
\mathscr{E}_{2}(t) \\
\vdots \\
\mathscr{E}_{n}(t)
\end{array}\right]
$$

dumo6 Unuggas (1) @unfongodo

$$
\begin{equation*}
f(D) x(t)=\mathscr{E}(t) . \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& F(D) \equiv\left[F_{11}(D) F_{21}(D) \ldots F_{n 1}(D)\right] \equiv\left[F_{s k}(D)\right] \\
& F_{12}(D) F_{22}(D) \ldots F_{n_{2}}(D) \\
& F_{1 n}(\dot{D}) F_{2 n}(\dot{D}) \ldots F_{n n}(\dot{D})
\end{aligned}
$$

$$
x_{1}(0)=x_{2}(0)=\ldots=x_{n}(0)=0,
$$

$$
\begin{equation*}
x(t)=\frac{F(\infty)}{\Delta(\infty)} \mathscr{E}(t)+\sum_{k}^{1 \ldots N} \frac{F\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)} e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k} t} \mathscr{E}(t) d t \tag{3}
\end{equation*}
$$

$$
\Delta(\lambda)=0
$$

Ogbug

$$
\Delta^{\prime}\left(\lambda_{k}\right)=\left.\frac{d \Delta(\lambda)}{d \Delta}\right|_{\lambda=\lambda_{k}}
$$

$$
\begin{equation*}
x(t)=\sum_{k}^{1 \ldots N} \frac{F\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)} e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k} t} \mathscr{E}(t) d t . \tag{4}
\end{equation*}
$$

งд оुм

$$
\frac{B_{1}}{\lambda-\lambda_{s}}+\frac{B_{2}}{\left(\lambda-\lambda_{s}\right)^{2}}+\cdots+\frac{B_{s}}{\left(\lambda-\lambda_{s}\right)^{s}} .
$$

$$
\begin{equation*}
F(D) B_{r} e^{\lambda_{s} t} \int_{0}^{t} d t \int_{0}^{t} d t \cdots \int_{0}^{t} d t \int_{0}^{t} e^{-\lambda_{s} t} \mathscr{E}(t) d t . \tag{5}
\end{equation*}
$$

$$
f(D) x(t)=\mathscr{E}^{\circ}(t)
$$

$$
\left[\begin{array}{ccc}
\mathscr{E}_{1}(t) & 0 & \cdots \\
0 & \mathscr{E}_{2}(t) & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & \mathscr{E}_{n}(t)
\end{array}\right]
$$

$$
\left.x(t)=\sum_{k}^{1 \ldots N} \frac{E_{0}}{\Delta^{\prime}\left(\lambda_{k}\right)} F \lambda_{\lambda_{k}}\right)\left[\begin{array}{c}
1 \tag{6}\\
0 \\
\vdots \\
0
\end{array}\right] e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k} t} \cos \omega t d t
$$

 $\lambda_{1}, \lambda_{2} \ldots \lambda_{N}$, (6) 子3ंग्लоз ${ }^{l}$

$$
x(t)=\sum_{k}^{1 \cdots, N} \frac{E_{0}}{\Delta^{\prime}\left(\lambda_{k}\right)}\left[\begin{array}{c}
F_{11}\left(\lambda_{k}\right) \tag{7}\\
F_{12}\left(\lambda_{k}\right) \\
\vdots \\
F_{1 n}\left(\lambda_{k}\right)
\end{array}\right] \frac{\cos \left(\omega t-\psi_{k}\right)-e^{\lambda_{k} t} \cos \psi_{k} .}{\sqrt{\lambda_{k}^{2}+\omega^{2}}}
$$

$$
\lambda_{k}=a_{k}+j b_{k}, \quad(j=\sqrt{-1})
$$

$$
\begin{gather*}
\operatorname{tg} \chi_{k 1}=\frac{b_{k}+\omega}{-a_{k}}, \operatorname{tg} \chi_{k 2}=\frac{b_{k}-\omega}{-a_{k}}, \tag{8}\\
\frac{F_{1^{m}}\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)}=A_{m k}+j B_{m k}, \quad \operatorname{tg} \vartheta_{m k}=\frac{B_{m k}}{A_{m k}} . \tag{9}
\end{gather*}
$$

$$
\begin{align*}
& E_{0} \sqrt{A_{m k}^{2}+B_{m k}^{2}}\left\{\frac{\cos \left(\omega t-\chi_{k 1}-\vartheta_{m k}\right)}{\sqrt{a_{k}^{2}+\left(b_{k}+\omega\right)^{2}}}+\frac{\cos \left(\omega t+\chi_{k 2}+\vartheta_{m k}\right)}{\sqrt{a_{k}^{2}+\left(b_{k}-\omega\right)^{2}}}\right\} \\
& -E_{0} \sqrt{A_{m k}^{2}+B_{m k}^{2}} e^{a_{k} t}\left\{\frac{\cos \left(b_{k} t+\chi_{k_{1}}+\vartheta_{m k}\right)}{\left.\sqrt{a_{k}^{2}+\left(b_{k}+\omega\right)^{2}}+\frac{\cos \left(b_{k} t+\chi_{k_{2}}+\vartheta_{m k}\right)}{\sqrt{ } a_{k}^{2}+\left(b_{k}-\omega\right)^{2}}\right\}, ~(1) ~}\right. \tag{10}
\end{align*}
$$

$$
x(t)=\sum_{k}^{1 \ldots N^{\prime}} \frac{E_{0}}{\Delta^{\prime}\left(\lambda_{k}\right)}\left[\begin{array}{c}
F_{11}\left(\lambda_{k}\right) \tag{11}\\
F_{12}\left(\lambda_{k}\right) \\
\vdots \\
F_{1 n}\left(\lambda_{k}\right)
\end{array}\right] \frac{e^{\lambda_{k} t}-1}{\lambda_{k}}
$$

$\frac{2 E_{0}}{\sqrt{a_{k}^{2}+b_{k}^{2}}}\left\{A_{m k} \cos \chi_{k}-B_{m k} \sin \chi_{k}\right\}-\frac{2 E_{0} e^{a k t}}{V a_{k}^{2}+b_{k}^{2}}\left\{A_{m k} \cos \left(b_{k} t+\chi_{k}\right)-B_{m k} \sin \left(b_{k} t+\chi_{k}\right)\right\} .(12)$
bopor $\operatorname{tg} \chi_{k}=\frac{b_{k}}{-a_{k}}$.

$$
\left[\begin{array}{lc}
L D^{2}+R D+C^{-1} & M D^{2} \tag{1}\\
M D^{2} & L D^{2}+R D+C^{-1}
\end{array}\right]\left[\begin{array}{l}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]=E_{0} \cos \omega t\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

$$
\frac{R}{2 L}=a, \frac{1}{L C}=b^{2}, \quad L^{2}-M^{2}=\sigma \alpha^{2} . \quad(0<\sigma<1)
$$

$$
\begin{equation*}
\Delta(\lambda) \equiv \sigma L^{2}\left\{\lambda^{4}+4 a \lambda^{3}+\left(4 a^{2}+2 b^{2}\right) \lambda^{2}+4 a b^{2} \lambda+b^{2}\right\} . \tag{14}
\end{equation*}
$$

$$
\lambda_{1}, \lambda_{2}=-\alpha_{1} \pm j \beta_{1}, \quad \lambda_{3}, \lambda_{4}=-\alpha_{2} \pm j \beta_{2} . \quad\left(\alpha_{1}>0, \alpha_{3}>0\right)
$$

$$
\alpha_{1}, \quad \alpha_{2}=\frac{a}{\sigma}(1 \pm \sqrt{1-\sigma}) ; \beta_{1}{ }^{2}, \beta_{2}{ }^{2}=\frac{b^{2}}{\sigma}(1 \pm \sqrt{1-\sigma)}
$$

$33^{\circ} \mathrm{f} 3^{\mathrm{L}}$ agengon 30

$$
\begin{aligned}
& F_{11}(\lambda) \equiv L \lambda^{2}+R \lambda+C^{-1} \\
& F_{12}(\lambda) \equiv-M \lambda^{2}
\end{aligned}
$$

co

$$
\begin{aligned}
& \frac{F_{11}\left(\lambda_{1}\right)}{\Delta^{\prime}\left(\lambda_{1}\right)}=-j+\sqrt{1-\sigma} ; \frac{F_{11}\left(\lambda_{3}\right)}{\Delta^{\prime}\left(\lambda_{3}\right)}=-j \frac{1-\sqrt{1-\sigma} \beta_{1}}{4 \sigma \beta_{2} L} \\
& \frac{F_{12}\left(\lambda_{1}\right)}{\Delta^{\prime}\left(\lambda_{1}\right)}=j \frac{M \beta_{1}}{4 L^{2} \sqrt{1-\sigma}} ; \frac{F_{12}\left(\lambda_{3}\right)}{\Delta^{\prime}\left(\lambda_{3}\right)}=-j \frac{M \beta_{2}}{4 L^{2} \sqrt{1-\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\cdots \frac{\sin \left(\omega t+\chi_{22}\right)}{\sqrt{\alpha_{2}^{2}+\left(\beta_{2}-\omega\right)^{2}}}+e^{-\alpha_{2} t}\left(\frac{\sin \left(\beta_{2} t+\chi_{21}\right)}{\sqrt{\alpha_{2}{ }^{2}+\left(\beta_{2}+\omega\right)^{2}}}-\frac{\sin \left(\omega t+\chi_{2_{2}}\right)}{\sqrt{\alpha_{2}{ }^{2}+\left(\beta_{2}-\omega\right)^{2}}}\right)\right\} .
\end{aligned}
$$

adonmoun

ЭЛЕКТРОТЕХНИКА
А. И. ЭЛИАШВИЛИ

ПРИМЕНЕНИЕ МАТРИЧНОГО СПОСОБА ИНТЕГРИРОВАНИЯ СИСТЕМ ЛИНЕЙНЫХ ДИФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ К ИССЛЕДОВАНИЮ ПЕРЕХОДНЫХ ПРОЦЕССОВ В СВЯЗАННЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Резюме

Колебательные процессы в связанннх электрических цепях с линейными характеристиками подчиняются следующей системе диференциальных уравнений

$$
\begin{equation*}
\sum_{s}^{1 \ldots n} f_{k s}(D) x_{s}=\mathscr{E}_{k}(t), \quad(k=\mathrm{I}, 2, \ldots, n), \tag{1}
\end{equation*}
$$

тде $x_{1}, x_{2}, \ldots, x_{n}$ обычно представляют либо токи, либо падения напряжения в отдельных контурах цепи, либо соответствующие количества электричества, $\mathscr{E}_{1}(t), \ldots \mathscr{D}_{n}(t)$-электродвижущие] силы приложенные к контурам, а

$$
f_{k s}(D) \equiv L_{k s} D^{2}+R_{k s} D+C_{k s}^{-1}, \quad\left(D \equiv \frac{d}{d t}\right)
$$

Уравнения (r) запишем в матричной форме. Положив

$$
f(D) \equiv\left[\begin{array}{ll}
f_{k s}(D)
\end{array}\right], \quad x(t) \equiv\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \mathscr{E}(t) \equiv\left[\begin{array}{c}
\mathscr{E}_{1}(t) \\
\mathscr{E}_{2}(t) \\
\vdots \\
\mathscr{E}_{n}(t)
\end{array}\right],
$$

запишем систему (г) в виде:

$$
\begin{equation*}
f(D) x(t)=\mathscr{E}(t) . \tag{2}
\end{equation*}
$$

Задача, которая обычно ставится, может быть сформулирована следующим образом:

К сети находящейея в равновесии в момент $t=0$ (заряды и токи равны нулю) прикладываются известные напряжения. Необходимо вычислить: распределение токов и зарядов в системе для любого момента $t>0$.

Обозначим через $\Delta(D)$ детерминант матрицы $f(D)$, а через $F(D)$ мат-рицу присоединенную к $f(D)$

$$
F(D)=\left[F_{s k}(D)\right],
$$

где $F_{s k}(D)$ обозначает алгебраическое дополнение элемента $F_{s k}$ в разложении $\Delta(D)$.

Общий интеграл системы (2) при начальных условиях

$$
x_{1}(\mathrm{o})=x_{2}(\mathrm{o})=\ldots=x_{n}(\mathrm{o})=0
$$

имеет вид (см. [I)

$$
\begin{equation*}
x(t)=\frac{F(\infty)}{\Delta(\infty)} \mathscr{E}(t)+\sum_{k}^{1 \ldots N} \frac{F\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)} e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k^{2}} t} \mathscr{E}(t) d t \tag{3}
\end{equation*}
$$

здесь $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ корни определяющего уравнения-

$$
\Delta(\lambda)=0
$$

и

$$
\Delta^{\prime}\left(\lambda_{k}\right)=\left.\frac{d \Delta(\lambda)}{d \lambda}\right|_{\lambda=\lambda_{k}} .
$$

Обычно степень $\Delta(\lambda)$ относительно λ выше таковой $F(\lambda)$, почему интеграл принимает вид

$$
\begin{equation*}
x(t)=\sum_{k}^{1 \ldots N} \frac{F\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)} e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k} t} \mathscr{E}(t) d t . \tag{4}
\end{equation*}
$$

Эта формула предполагает отсутствие кратных корней у определяющего уравнения.

В случае корня кратности s, в разложении дроби $\frac{\mathrm{I}}{\Delta(\lambda)}$ будем иметь. слагаемые

$$
\frac{B_{1}}{\lambda-\lambda_{s}}+\frac{B_{2}}{\left(\lambda-\lambda_{s}\right)^{2}}+\cdots+\frac{B_{s}}{\left(\lambda-\lambda_{s}\right)^{s}} .
$$

Каждому элементу

$$
\frac{B_{k}}{\left(\lambda-\lambda_{k}\right)^{k}}
$$

в интеграле системы будет соответствовать слагаемое

$$
\begin{equation*}
F(D) B_{R} e^{-\lambda_{\Delta} t} \overbrace{\int_{0}^{t} d t \int_{0}^{t} d t \ldots \int_{0}^{t} d t \int_{0}^{t} e^{-\lambda_{s} t}}^{\mathscr{C}(t) d t} \tag{5}
\end{equation*}
$$

Обычно в задачах өлектротехники функции \mathscr{E} ((t) имеют вид

$$
\mathscr{E}_{k}(t)=E_{0}, \text { илии } \mathscr{E}_{k}=E_{0} \cos \omega t .
$$

В силу принципа суперпозиции, интегрирование системы (2) может быть сведено к интегрированию систем вида $F(D) x(t)=\mathscr{E}(t)$, где $\mathscr{E}(t)$ последовательно принимает значение всех колонн матриц

$$
\left[\begin{array}{cccc}
\mathscr{E}_{1}(t) & 0 & \ldots & 0 \\
0 & \mathscr{E}_{3}(t) & & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \mathscr{E}_{n}(t)
\end{array}\right]
$$

Таким образом, нас интересует интеграл системы

$$
f(D) x(t)=\left[\begin{array}{c}
\mathrm{I} \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

жоторый на основании формулы (4) равен, в предположении отсутствня кратных корней,

$$
x(t)=\sum_{k}^{1 \ldots N} \frac{E_{0}}{\Delta^{\prime}\left(\lambda_{k}\right)} F\left(\lambda_{k}\right)\left[\begin{array}{c}
\mathrm{I} \tag{6}\\
0 \\
\vdots \\
0
\end{array}\right] e^{\lambda_{k} t} \int_{0}^{t} e^{-\lambda_{k} t} \cos \omega t d t
$$

тде суммирование распространено на все здачения корней определюшего уравнения.
т. В случае вещественных корней определяющего уравнения, положив

$$
\operatorname{tg} \psi_{k}=\frac{\omega}{-\lambda_{k}},
$$

sяол учим

$$
x(t)=\sum_{k}^{1 \ldots N} \frac{E_{0}}{\Delta^{\prime} \lambda_{k}}\left[\begin{array}{c}
F_{1_{1}}\left(\lambda_{k}\right) \tag{7}\\
F_{1_{2}}\left(\lambda_{k}\right) \\
\vdots \\
F_{1 n}\left(\lambda_{k}\right)
\end{array}\right] \frac{\cos \left(\omega t-\psi_{k}\right)-e^{\lambda_{k} t} \cos \psi_{k} .}{\sqrt{\lambda_{k}^{2}+\omega^{2}}}-
$$

2. В случае наличия комплексного корня

$$
\lambda_{k}=a_{k}+j b_{k}
$$

घположим:

$$
\begin{equation*}
\operatorname{tg} \chi_{k_{1}}=\frac{\bar{b}_{k}+\omega}{-a_{k}}, \quad \operatorname{tg} \psi_{k 2} \frac{b_{k}-\omega}{-a_{k}}, \tag{8}
\end{equation*}
$$

а также

$$
\begin{equation*}
\frac{F_{1 m}\left(\lambda_{k}\right)}{\Delta^{\prime}\left(\lambda_{k}\right)}=A_{m k}+j B_{m k}, \operatorname{tg} \vartheta_{m k}=\frac{B_{m k}}{A_{m k}} \tag{9}
\end{equation*}
$$

Тогда два члена суммы (6), происходящие от пары сопряженных корней λ_{k} и $\overline{\lambda_{k}}$, дадут в сумме элемент m-ой горизонтали матрицы интеграла. системы:

$$
\begin{align*}
& E_{0} \sqrt[V]{ } A_{m k}^{2}+B_{m k}^{2}\left\{\frac{\cos \left(\omega t-\chi_{k_{1}}-\vartheta_{m k}\right)}{\left.\sqrt{a_{k}^{2}+\left(b_{k}+\omega\right)^{2}}+\frac{\cos \left(\omega t+\chi_{k 2}+\vartheta_{m k}\right)}{\sqrt{a_{k}^{2}+\left(b_{k}-\omega\right)^{2}}}\right\}} \begin{array}{l}
-E_{0} \sqrt{A_{m k}^{2}+B_{m k}^{2}} e^{\alpha_{k} t}\left\{\begin{array}{c}
\cos \left(b_{k} t+\chi_{k_{1}}+\vartheta_{m k}\right) \\
\sqrt{a_{k}^{2}+\left(b_{k}+\omega\right)^{2}}
\end{array}+\frac{\cos \left(b_{k} t+\chi_{k 2}+\vartheta_{m k}\right)}{\sqrt{ } a_{k}^{2}+\left(b_{k}-\omega\right)^{2}} .\right.
\end{array}\right.
\end{align*}
$$

Иногда удобнее записывать этот результат в развернутой форме, подставляя вместо тригонометрических функций аргументов χ и \downarrow их значения из (8) и (9).
3. При включении постоянной э. д. с. $\mathscr{E}(t)=E_{0}$, формула (7) упрощается

$$
x(t)=\sum_{k}^{1 \ldots N} \frac{E_{0}}{\Delta^{\prime}\left(\lambda_{k}\right)}\left[\begin{array}{c}
F_{11}\left(\lambda_{k}\right) \tag{II}\\
F_{12}\left(\lambda_{k}\right) \\
\vdots \\
F_{1 k}\left(\lambda_{k}\right)
\end{array}\right] e^{\frac{\lambda_{k} t}{}-1}
$$

4. В том же предположении $\mathscr{E}(t)=E_{0}$ и при наличии мнимых корней вместо (то) будем иметь элементы вида

$$
\frac{2 E_{0}}{\sqrt{a_{k}^{2}+b_{k}^{2}}}\left\{A_{m_{k}} \cos \chi_{k}-B_{m_{k} s} \sin \chi_{k}\right\}-\frac{2 E_{0} e^{a \hbar t}}{\sqrt{ } a_{k}^{2}+b_{k}^{2}}\left\{A_{m_{k}} \cos \left(b_{k} t+\chi_{k}\right)-B_{m_{k}} \sin \left(b_{k} t+\chi_{k}\right)\right\}(12)
$$ где

$$
\operatorname{tg} \chi_{k}=\frac{b_{k}}{-a_{k}}
$$

Далее дается применение указанного метода к исследованию переходных процессов в двух одинаковых связанных колебательных контурах с постоянными L, R, C и взаимоиндукцией M.
Академия Наук Грузивской ССР
Энергетический Сектор
Тбилиси

x. Frazer R. A., Duncan W. J., Collar A. R. Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambrige, at the University Press 1938.

BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, V. VI, No 4, 1945

3. 2.6$\lrcorner \partial \wp \rho$

 yglubgo [2,4].

грушна мшениц

			ІІродолжительность
III	$8-\mathrm{III}$ 8－IV	$\lim 0-3^{\circ}, \mathrm{M}=1.8^{\circ} \mathrm{C}$	$\begin{aligned} & 20 \text { @ฏд-дней } \\ & 40 \text { ৎмд-дней } \\ & 40 \text { @мд-дней } \end{aligned}$
IV	＂＂	＂＂	Блшलд． 40 дней и пост． свет
V	11－IV	＂＂	 70 дней，север．скдон
VI	\＃n	＂＂	 70 дней，южн．сқлон
VII	8－III		змбの㐫ммの－Контроль
VIII	11－IV	＂＊	＂＂

òmoubnuymo po
Triticum vulgare v．erythrospermum 18－46
 дыномо Картли

 пщениц

		notmmorsozonl	мппд－－Норма яровизации
		のукдпјл Термика	 Продолжительность
I	8－III	lim． $0-3, \mathrm{M}=1.8^{\circ} \mathrm{C}$	20 ¢мд－дней
II		－	40 ＠लд－дней
III	8－IV	\＃n	40 ¢¢д－дней
IV	＂＂	＂＂	бงロед 40 дней и пост． свет
V	II－IV	＂	70 एलд，htonemagon fo－ ＠п 70 дней，сев．сқлон
VI	＂＂	＂	70 ＠ल刁；しょabm．Лృ＠п 70 дней южн．сқлон
VII	8－III		
VIII	11－IV	＂n	＂\quad

Triticum vulgare v．erythrospermum 39－194
пซुすмп 39－194
млҺбудิн Лечхуми

गn

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Triticum vulgare \\
v．erythrospermum
\[
39-232
\] \\
jubymo＠memo 39－232 \\
зЈbgon Кахети
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Triticum vulgare v．erythrospermum 35－4 pemol 3 ynn 35－4 \\

\end{tabular}} \& \multicolumn{2}{|l|}{Triticum macha v．letschchumicum 40－3I วง๖ง 40－31 mghbyan Лечхуми} \\
\hline \begin{tabular}{l}
एuOnsenciobs \\
Колопение
\end{tabular} \& ЈЈдля．злк．
Период．ве－
гет． \& ＠onszonszads
Колотение \& 6озоз．Зя㐌．
Период ве－
гет． \& \& \begin{tabular}{l}
 \\
Период ве－ гет．
\end{tabular} \\
\hline 2－VI－9
I－VI－5
I4VII－かれ），нет \& \(105-112\)
\(124-128\)
\(132-\) \& I－VI－7
\(30 \mathrm{O}-4 \mathrm{VI}\)

$27 \mathrm{VI}-$＜ms，нeт \& $105-111$
$123-128$

$120-$ \& $$
\begin{gathered}
\text { 2-VI-9 } \\
\text { x-VI-7 } \\
\text { دسл, нет }
\end{gathered}
$$ \& $105-112$

$124-130$

\hline I－VI－4 \& 89－93． \& 11－VI－15 \& 99－103 \& 5－VI－6 \& 93－94

\hline 20－VI－24 \& 150－154 \& $15 \mathrm{VI}-23 \mathrm{VII}$＊ \& 135－173 \& $2 \mathrm{VVI-17} \mathrm{VII}^{\text {e }}$ \& 133－159

\hline 26－VI－30 \& 156－160 \& 19VI－8VII＊ \& 139－158 \& $29 \mathrm{VI}-15 \mathrm{VII} *$ \& 141－157＊

\hline 20－VII－งms，нет \& 134－ \& 19VII－smo，нет \& 133 \& ง（n），нет \&

\hline s（n），нет \& \& v（n），нет \& \& s（n），нет \&

\hline \& \& \& \& \& 1－b таблица

\hline
\end{tabular}

Triticum vulgare v．ferrugineum 39－192
Finogmo＠memo 39－192

Колошение
wo30800．3gme． Период ве－ гет．

Triticum vulgare
v．ferrugineum 39－187
Finogmo 巨m．mの 39－187

（Quonjonszabs Колотение	 Перкод ве－ гет．

ro－VI－15 3－VI－5 ง（ゥっ，нет	$114-119$ $127-129$		$\begin{aligned} & 110-115 \\ & 127-130 \end{aligned}$
11－VI－30＊	99－120＊	10－VI－12＊	98－100＊
${ }_{25} \mathrm{VI}-18 \mathrm{VII} *$	145－168＊	20VI－23VII＊	140－173
9VII－১（ֹ），нет	159－	$29 \mathrm{VI}-26 \mathrm{VII}{ }^{*}$	149－176
$9 \mathrm{VII}-\Delta$（n），нет	123－		133－

Triticum vulgare v．erythrospermum 39－32

กдิдŋgosก Имерети

＠uのszonsjocis Колошение	 Период ве－ гет．
$\begin{aligned} & 2-\mathrm{VI}-9 \\ & 4-\mathrm{VI}-7 \end{aligned}$ s（n）－нет	$\begin{aligned} & 105-112 \\ & 127-130 \end{aligned}$
5－VII－17＊	123－135＊
28VI－8VII＊	148－158＊
3VII－ง（n），нет ১カл，вет	153－

Примечание：В столбце «колошение» первая дата указывает на начало колоще－ ния，вторая－на полное колошение．Знаком＊отмечены случаи неполного и чрезмерно ра－ стянутого колошения．

 ḿmeglo (

 30 m douenfogl.

ФИЗИОЛОГИЯ РАСТЕНИЙ

В. Л. МЕНАБДЕ

ЯВЛЕНИЯ ОБРАТИМОСТИ СТАДИИُНЫХ ИЗМЕНЕНИИ

Резоме

Одно из основных положений теории развития гласит, чго стадия развития, в частности, стадия яровизации имеет характер необратимых качественных изменений. «Клетки растения, обладающие качествами стадии яровизации, нельзя возвратить к начальному (до яровизации) состоянию... Нам неизвестен ни один случай возможности разъяровизирования яровизированных растений» [3].

В процессе изучения стадийности и условий среды нами было замечено, что формы грузинских озимых пшениц, прошедшие стадию яровизации в состоянии проростков и потом культивируемые в условиях тбилисской поздне-весенной температуры, испытывали определенную депрессию в развитии, что внешне выражалось в чрезмерном растягивании фазы колошения или же в чрезмерном запаздывании колошения, в ненормальном колошении отдельных растений (выбрасывание единичных колосоносных стеблей при наличии массового колошения) или же в полном прекращении развития. В последнем случае (при полном прекращении развития) растения вели себя так, как это бывает с растевниями, не прошедшими стадию яровизации. В общем, в таких случаях развитие растений, происшедших от яровизированных проростков, шло по типу неяровизированных озимых, высеянных весной.

Как нам удалось заметить, в условиях нашего опыта (Тбилиси)

все формы озимых грузинских пшениц, прошедшие в период проростков стадию яровизации, проходят нормальный путь развития в том случае, если они будут высеяны в ранний весенннй период-календарно не позже середины марта. Посев их в более поздние сроки (во второй половине марта) вызывает некоторое торможение в развитии растений. Яровизированные проростки пшениц, высеянные в первой декаде апреля, еще более испытывают депрессию в стадийном изменении. С передвижением срока посева во вторую декаду апреля количество «разъяровизированных» форм постепенно увеличивается и степень "разъяровизирования» в зависимости от стадийной природы сорта көлеблется в пределах $10-60 \%$. Торможение процессов яровизации не снимается удлинением периода яровизации до 70 дней при температуре среды в $о-3^{\circ} \mathrm{C}$ (в среднем $\mathrm{I}, 8^{\circ}$). Тормозящее действие высокой температуры частично может быть снято үдлинением дня. Так, нам јдалось в условиях круглосуточного дня (электрический свет в $1200-980$ lx.) вызвать пилное или же частичное колошение (см. III и IV варианты опыта), тогда как в условиях обычного дня эти же формы или вовсе не колосились, или же колосились частично.

На приведенной таблице показаны нормы яровизации в днях, температурные условия в период прохождения яровизации, дата посева каждого варианта и реакции сортов на нормы яровизации в зависимости от срока посева и характера стадии.

Как видно из таблицы, (см. 1-b) торможение процессов яровизации особенно резко выражено у длинно-стадийной группы грузинских пшениц. Данная группа пшениц, яровизированная в продолжении 40 дней и посеянная 8 марта, завершила цикл развития вполне нормально, но, когда она была высеяна 8 апреля, эта норма яровизации оказалась явно недостаточной. При данной норме яровизации наблюдался или вегетативный рост, или же частичный выход в трубку (Triticum vulgare v. ferrugineum 39-187). Только в условиях круглосуточного освещения некоторые пшеницы данной группы (Triticum vulgare v. erythrosp. 39-194) вышли в трубку (7.VII) и в состоянии трубки пребывали до конца июля, после чего стали засыхать, не развив ни одного колосоносного стебля. Только удлинение нормы яровизации до 70 дней дало возможность частично перейти в генеративное развитие. При этом, в условиях более "прохладного климата» (северный склон Тбилисского ботанического сада, вариант V) абсолютное большинство растений данной группы пшениц ($95-95,5 \%$) колосилось, но колошение было чрезмерно растянуто (20.V1 23,VII) и число колосоносных стеблей в растениях было незначительно. В условиях же более жаркого климата (южный, сильно-обогреваемый склон Тбилисского ботанического сада, где t° достигала до $40-47^{\circ} \mathrm{C}$, см. вариант VI) развитие шло весьма депрессивно: обильное кущение, сравнительно массовый выход в труб-

ку, но весьма вялое, единичное колошение, в результате: щебольшое количество колосившихся растений ($48-57,3 \%$). Таким об́разом, количество «разъяровизированных» растений в этом варианте (VI вариант) варьировало в пределах $42,7-52 \%$, тогда как в условиях V -го варианта было всего $3,5-5 \%$.

Торможение процессов яровизации наблюдается и среди форм ко-ротко-стадийной группы пшениц (см. вариант V и VI на таб. I-а).
Академия Наук Грузинской ССР
Тбилисский Ботанический институт

 งзงツa
2. А. Ефейкин. Действие повышенной температуры на яровизированную озихую пшенищу. Доклады АН СССР, т. ХХУ, ле 4, 1939.
3. А. Ефейкин. О разъяровизации яровизированной озимой пшеницы. Доқлады AF CCCP, т. XXX, „夭 7 , 194 r.
4. Т. Лысенко. Теоретические основы яровизации, т936.
5. В. Скрипчинский. Индивидуальное развитие и стадийность однолетных и многолетных растений. «Успехи современной биологии», 긍 3, 1940.

6. 3 Jb 0 d 0

 a jnontl [5, 11].

 eougronn ago unzmubogl ampamal.

 @する

 -fं

 mo cizoligagzolios.

$$
\text { cob } 33^{5} 0^{3} 0
$$

 bumnt eububolnougzimue.

 oulroumolos.

ФИЗИОЛОГИЯ РАСТЕНИЙ

Н. Т. КАХИДЗЕ

ЦИТОФИЗИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭПИДЕРМИСА ЛИСТА МИНДАЛЯ

С целью использования эпидермиса листа для сравнительного анализа клеточных реакций у различных растений, проведено предварительное исследование эпидермальных клеток листа миндаля. В отношении возможности применения клеточных реакций для характеристики растений мы располагаем богатыми литературными данными, главным образом по определению pH и rH у различных растений и в различных тканях $[5$, ІІ $]$.

Рассматривая клетки эпидермиса с нижней поверхности листа, прежде всего можно обнаружить тот факт, что содранный эпидермис не представляет собок собрания одинаковых клеток. Не только функционально специфичные клетки устьиц [15,16], но и межустьичные клетки эпидермиса обнаруживают отличия между собою в отношении коллоидных и тинкториальных свойств. Параллельное исследование поперечного среза листа позволило связать это разнохарактерное состояние эпидермальных клеток с жизнедеятельностью листовой паренхимы.

Для установления коллоидно-химического и физиологического состояния клеток проводились исследования на темном поле для определения дисперсности и применялось окрашивание нейтральротом (концентрацией I: 10000) и толуидинблау ($\mathrm{I}:$ го000). По оттенку окраски, полученной при

пейтральроте, определялось рН клеток, по интенсивности ожраски—прони цаемость их. По окраске толуидинблау устанавливалея окислительно-востановительный режим клеток.

При окраске клеток эпидермиса нейтральротом наблюдалось следующее распределение клеток в отношении рН. Устьица окрашены в розовый цвет, клетки, расположенные непосредственно около устьиц-розово-фиолетовые. Среди основной массы эпидермальных клеток (будем обозначать их как межустьичные) встречаются клетки главным образом мясокрасные и помидорно-красные и изредка бурые. Рассматривая полученные оттенки нейтральрота, как индикатор клеточного pH , можно установить определенную закономерность в отношении кислотного режима клеток эпидермиса. Наиболее кислыми являются розово-фиолетовые околоустьичные клетки, несколько уступают им, но также достаточно кислые, кле̊тки устьиц и клетки над жилкой, а среди межустьичных клеток можно наблюдать как щелочные (бурые), так и кислые и близкие к нейтральной реакции (помидор-но-красные). Исследование поперечного среза листа позволяет связать различные клетки эпидермиса с тем или иным участком листа. Кислые клетки локально связаны главным образом с пустотами в листовой паренхиме. Отдельные, наиболее кислые из межустьичных клеток, как правило, располагаются над клетками паренхимы, лишенной хлорофилла и также кислой реакции.

Используя интенсивность окраски нейтральротом для определения проницаемости, можно установить, что наименьшей проницаемостью обладают устьичные клетки, несколько болльшую по сравнению с ними имеют бурые межустьичные клетки, т. е. резко щелочныє, затем клетки розовые и мясокрасные, т. е. кислые и, наконец, помидорно-красные. Таким образом, в межустьичных клетках проницаемость возрастает по мере снижения кислотности.

При окраске нейтральротом в кислых клетках обычно можно наблюдать накопление гранул.

При помещении окрашенного нейтральротом участка эпидермиса в одномолярный раствор KNO_{3}, обнаруживаются резкие различия в поведении плазмолизируемых клеток. Хотя большинство из них имеют колпачковый плазмолиз, обусловленный действием ионов калия [4, 3], однако, форма колпачков у них несколько различная. Щелочные клетки, плазмолизирующиеся наиболее быстро (через I5 минут уже полный плазмолиз), имеют колпачки правильной округлой формы. Гранул около них нет, а видны вағуоли. При полном плазмолизе щелочных клеток обращает на себя внимание структуризация плазмы. Кроме того, в этих клетках в условиях гипертонии довольно быстро выпадают кристаллы нейтральрота. Характер плазмолиза и отсутствие гранул указывают на низкую вязкость плазмы этих

пклеток, возникающая структуризация п выпадение кристаллов нейтральро-та--па несколько подавленное состояние их.

Медленнее плазмолизируются клетки помидорно-красные, причем колпачки у них также округлые, дифузно окрашенные, но гранул еще нет.

В мясокрасных клетках форма колпачков неокруглая и имеются резжие гранулы-оба факта, свидетельствующие иб относительно бо́льщей вяз кости плазмы.

Наконец, в розовых (кислых) клетках,-резкое гранулообразование и медленно появляюццийся уголковый плазмолиз являются показателями высокой вязкости плазмы [I4, I3]. Резкое гранулообразование наблюдается и в шткрытых устьичных клетках.

Изучение дисперсности на темном поле дает картину аналогкчного разнообразия. Наиболее низкая дисперсность наблюдается у клеток устьиц: Юъа значительно ниже дисперсности других́ клеток и низкая вообще: сияние клеток интенсивно белое. Самые кислые клетки эпидермиса-околоустьичные тоже имеют низкую дисперсность, но все же выше таковой клеток устьиц: они сияют беловатым светом, но о́тнюдь не так интенсивно. Сияние большинства межустьичных клеток уже значительно меньше: в них можно наблюдать как голубоватое сияние (более высокая дисперсность, чем при белом сиянии), так и отсутствие сияния (высокая дисперсность). Темные, несияющие клетки являются щелочными клетками эпидермиса. Таким образом, в данном случае можно констатировать наличие определенной корреляции между дисперсностью, проницаемостью, вязкостью и клеточным рН. Как извєстно, понижение дисперсности при сдвиге реакции в кислую сторону находит себе объяснение в данных, по которым коллоиды плазмы и ядра заряжены отрицательно [7]. В нашем случае повышение кислотности и сопровождается падением дисперсности. Установленная относительная вязкость плазмы у миндаля находится в обратной зависимости от дисперсности: со снижением дисперсности вязкость возрастает.

Рассматривая распределение нейтральрота в клетках, можно јстановить, что только щелочные (бурые) межустьичные клетки и клетки устьиц имеют окрашенные оболочки, в остальных же қлетках оболочки не окрашены. Процесс десорбции из оболочки внутрь клетки связан с ее метаболитической активностью, с ее pH , и в особенности с дыханием [10, г2]. В наших наблюдениях все клетки эпидермиса миндаля, за исключением резко щелочных и устьичных, имели неокрашенные оболочки, что, повидимому, является индикатором их высокой жизнедеятельности: они соптветствуют работающей листовой паренхиме и более энергетически активны, в то время, как бурые межустьичные клетки с окрашенными оболочками являются пассивными. Подобная трактовка подкрепляется уже указанными данными о несколько угнетенном состоянии бурых клеток. Что касается устьичкных клеток, являющихся менее кислыми, чем окружающие их клетки, и

более кислыми, чем основная масса эпидермиса, то окраска их оболочек возможно имеет несколько иное обоснование: она может быть обусловлена наличием веществ, химически связывающих основные краски, подобно дубильным веществам, находящимся в толще оболочек [2].

Для определения оксиредукционного потенциала клеток применялось реактивное окрашивание краской толуидинблау. Богатство красочных реакций толуидинблау от фиолетового (восстановительного) до яркозеленного (окислительного) дает ясную картину жизнедеятельности клеток. Вокруг устьиц группируются синезеленые, окислительного режима клетки. Среди межустьичных клеток большинство также окислительного режима, однако будучи окислительными, они имеют различную окраску: от цвета лазури до яркой зелени, т. е. окислительный потенциал у них различный.

По мнению ряда авторов, на основании полученных ими данных, величина rH зависит от функционального состояния клеток и от химизма их $[6,8,9]$. Сравнение данных о величине rH у зоологических и ботанических объектов обнаруживает более восстановленное состояние протоплазмы и клеточного сока в растительных қлетках, что стоит в связи с тем, что вещества, синтезируюпиеся при участии хлорофилла, обладают большими восстановительными свойствами. В наших исследованиях также приходилось наблюдать тот факт, что встречающиеся в мезофиле листа клетки без хлорофилла имеют окислительный режим, а клетки эпддермиса, расположенные над ними, также окислительные-

Таким образом, исследование эпидермиса листа миндаля прежде всего столкнуло с фактом резко выраженной разнохарактерности реакций єгоклеток. Основой этих отличий являются как морфологические, так и функциональные их особенности. Обнаруженная коллоидно-ххмическая и физиологическая разнокачественность клетож ставит вопрос о том, что при физиологической характеристике ткани, в данном случае эпидермиса, нельзя гиворить о клеточных реакциях ткани вообще. Каждая из клеток ткани в соответствии со своей функциональной ролью, имеет специфические, хотя и несколько варьирующие, но вполне определенные тишовые характеристики. С другой стороны, так как различия в поведении отдельных клеток эпидермиса в основе функционального характера, оиисание их дает представление об общей жизнедеятельности листа.

Академия Наук Грузинской ССР
 Тбилисский Ботанический институт

CYTOPHYSIOLOGICAL STUDIES OF LEAF EPIDFRMIS IN ALMOND

By N. KACHIDZE

Summary

r. In this paper the cell reactions of leaf epidermis of almond are investigated in order to apply the specificity of reactions for the characteristics of plants.
2. The analysis of cell reactions shows, that the epidermal cells of one leaf are clearly different in respect of their physiological and colloid-chemical properties: dispersity, permeability, viscosity, pH, rH and process of granula formation. The difference may be observed between the stomata cells, the cells adjoining to them, the cells, situated over the fibres and so on.
3. The reactions of epidermal cells are due to their metabolism and are closely connected with physiological peculiarities of underlying mesophyll cells.
4. The reactions varie to some extent, but are typical enough.

Academy of Sciences of the Georgian SSR
Botanical Institute Tbilissi

1. Адександров, В. Я. О защитном значении для клетки гранулярного связывания витальных красителей. Архив анат. гист. и эмбриол., 1939, в. 222, стр. 67.
2. Brauner, L. Zur Frage der postmortalen Farbstoffaufnahme von Pflanzenzellwänden, 1933. Flora 127, S. 190.
3. Cholodny, N und Sankewitsch, E. Plasmolyseform und Ionenwirkung. Protoplasma, 1934, B. 20, S 57.
4. Höfler, K. Kappenplasmolyse und Salzpermeabilität. Ztschrift f. wiss. Mikroskopie, 1934, B. 51.
5. Joyet-Lavergne, Ph. La physico-chimie de la sexualité, I931.
6. Красинский, Н, Окислительно-востановительный потенциал қлеток выстих растений. Ботанический журнал СССР, 1936, т. 21, № 5.
7. Насонов, Д. и Александров, В. Реакция живого вещества на внешние воздействия, Ј940.
8. Rapkine, L. Le potentiel reduction et les oxydations. Comptes Rendus de la Suc. de Biologie, 1927, v. 96.
9. Rapkine, L. et Wurmser, R. Sur le potentiel de reduction des cellules vertes. C. R. de la Soc. de Biologie, 1926, v. 94.
10. Сабинин, Д. Минеральное питание растений, 1940.
11. Small, J. Hydrogen Ion Concentration in Plant Cells and Tissues. Protoplasma. Monographien, I 929 , v. II.
12. Strugger, S. Beiträge zur Analyse der Vitalfärbung pflanzlicher Zellen mit Neutralrot. Protoplasma, 1936, B. 26.
13. Штруггер, 3. Практикум по физиологии растительныs клеток и тканей, 1930.
14. We ber, F. Plasmolyseform und Protoplasmaviskosität. Osterreich. Bot. Zeitschr. B. 73, № IO-I2, 1924.
15. Weber, F. Protoplasmatische Ungleichheit morphologisch gleicher Zellen. Protoplasma, 1932, B. 15. S. 293.
16. Weber, F. Zur Permeabilität der Schliesszeilen, Protoplasma, 1933, B. 19, S. 452.

 œ๐б.

збппмп-Таблица I

олณ์のмп-дата	σ^{7}				9			
	ymmeno Побег		 Лист		ymmion Побег		कुलоммп Лист	
д๖пип-май . пзмпоь - июлд. 	$\begin{aligned} & 119 \\ & 300 \\ & 270 \\ & 326 \end{aligned}$	209 703 639 682	-744 663 1189	- 4103 2802 3215	119 318 292 331	231 788 640 736	- 1147 899 1299	- 5496 3488 5512

（36ヵпмпー－Таблица 2

			9				gub Фаза развития листьев и плодов
	 Листья						
16／X	1269	1645	1277	1869	93	184	 Листья зеденые，плоды слегка пожел－ тели．
21／X	1041	1466	1101	1551	137	194	 Листья зеленые，плоды сильнее по－ желтели． øुм gaozn дnmnibico zuynnemmo es
26／X	318	1077	958	1277	120	169	 Листья начинают желтеть．Плоды со－ вершенно пожелтели и стали прозрачными．
1／XI	731	962	822	1082	120	189	ซgỏn＠úmon m＠u． Листья совершенно пожелтели．Пло－ ды стали мягкими．
5／XI	516	774	646	910	142	199	 Листья желтые．Плоды созрели．
10／XI	425	709	516	920	${ }^{1} 33$	${ }^{171}$	ojinnozs． Листопад－плоды сняты．

mosnmatn

ФИЗИОЛОГИЯ РАСТЕНИЙ
Т. А. КЕЗЕЛИ, Л. И. ДЖАПАРИДЗЕ и К. М. ТАРАСАШІВИЛИ

ДИНАМИКА ВИТАМИНА С В XУPME (DIOSPYROS LOTIJS L.)

Резюме
В настоящем сообщении приводятся данные по динамике витамина С в хурме-Diospyros lotus L.

Определение витамина С велось методом Тильманса (согласно прописи Лаврова и Ярусовой) в однолетних побегах и листьях с одновозрастных и одинаково развитых мужских и женских деревьев, произрастающих в Тбилисском Ботаническом саду.

Анализы проводились в феврале, мае, июле и сентябре 1944 года. В таблице I даны средние из трех определений для каждого месяца, отдельно для листьев и побегов. Эти данные показывают, что у хурмы витамин С встречается в максимальном количестве весной и осенью, причем листья значительно богаче побегов, что особенно характерно для женских деревьев.

С октября, когда плоды начали созревать, определение витамина С в листьях и илодах велось каждые пять дней. Результаты анализов приведены в таблице 2 .

С 25 ноября определение витамина продолжалось в опавших листьях.
Оказалось, что после листопада витамин C начинает уменьшаться в количестве, причем появляется его дегидроформа.
В ы в о д ы

Хурма (Diospyros lotus L.) содержит витамин С в значительных количествах, причем особенно много его в листьях (свыше $1,000 \mathrm{mg} \%$). Как листья, так и однолетние побеги наиболее богаты витамином весной и осенью. Летом содержание в них витамина несколько снижается.

В листьях витамин остается в значительных количествах даже после их опадения осенью. В созревающих плодах содержание витамина C колеблется, показывая тенденцию к увеличению.

Использование листьев хурмы, с целью извлечения витамина С, может осуществляться в течение всей вегетации. Однако, в связи с обеспечением созревания плодов, листья с женских деревьев желательно брать. не ранее октября.
Академия Наук Грузинской ССР
Тб́илисский Ботанический Институт
Отдел Анатомии и Физиологии

6. วЈธทกmm3s

 Бп 25 mb , íma, minn fobu ly

 œ口ogang

 zodEgmgдचmmo.

 ot́n uñ

 œ๐6.

 しす。＠ou\％る．

 mgmól da 3 mmaglio．

 abomgio dymogn zudo．

 mosnmoun

МЕХАНИКА РАЗВИТИЯ

Н．А．МАНУИЛОВА

ОБРАЗОВАНИЕ ГЛАЗА ИЗ ГОЛОВНОГО МОЗГА ПРИ ПЕРЕСАДКЕ ОСЕВОЙ МЕЗОДЕРМЫ В ОБЛАСТЬ ГЛАЗА СРЕДНЕЙ НЕЙРУ ЛЫ У

ANURA．

Резюме

Тема о глазе включает две независимые темы：д）формообразованич собственно глаза－ретины и 2）формообразование светопреломляющей ча－ сти－линзы．Последняя тема разработана значительно полнее первой，что объясняется отчетливой ограниченностью источника，побуждающего лин－ зовый эпителий к образованию закладки．Напротив того，при формообра－ зовании глаза известен только материал из которого развивается этот ор－ ган，а под влиянием каких факторов это осушествляется，остается неиз－ вестным и приходится ограничиваться установлением факта формативного действия．Поэтому работу с глазом следует вести в направлении изучения его формативных источников，топографическая отграниченность которых сов－ сем неизвестна．Случайное наблюдение，показавшее，что востановление глаза из головного мозга наблюдается чаще тогда，когда，после удаления глазно－

то материала на нейруле, на его место пересаживался спинной мозг с осевой мезодермой, дало основание к постановқе опытов по испытанию формативного значения для развития глаза, отдельно хорды и мезодермы. Кроме того, бнли произведены пересадки на место глаза разных отделов головного мозга, для выяснения его глазообразовательной способности.

Во всех трех сериях операция состояла в удалении закладки глаза на нейруле и пересадке на это место испытуемого материала.

Изучение подопытного материала всех трех серий показало, что после Јдаления глазного материала на нейруле глаз из мозга развивается только в той серии, в которой на место удаленного глаза была пересажена осевая мезодерма.

Результаты опытов с хордой и головным мозгом одинаковы в том отношении, что в обоих случаях трансплантат развился согласно своему происхождению: участок будущей хорды диференцировался в хорду, а трансплантат головного мозга или сливался с мозгом хозяина, или развивался самостоятельно как отдел мозга.

Обнаруженные у четырех зародышей из двадцати глазные чаши развились из остатков глазного материала, неполностью удаленного при операции. При пересадке материала сомитов у большинства зародыщей развился глаз, но, по степени диференцировки глаза и его топографическому положению, материал может быть разделен на две групшы: к одной относятся те случаи, в которых образовавшийся после операции глаз соединен с мозгом и находится на более ранней стадии развития, чем отнесенные ко второй группе со свободно лежашими, хорошо диференцированными чашами и линзами, отличающимися от типичных на левой неоперированной стороне только меньшими размерами. У всех зародышей с глазом, соединенным с мозгом на уровне развившагося глаза, есть трансплантат мезодермального происхождения. У зародышей с хорошо диференциро ванным глазом трансплантат или не обнаружен совсем, или находится много каудальнее уровня глаз.

Неодинаковое развитие глаза в обеих группах не случайно п обусловливается их различным происхождением; в одном случае чаши вторично развились из мозга не без влияния пересаженной мезодермы, во втором свободно лежащие чаши образовались из остатков глаза, неполностью удаленного на нейруле, независимо от трансплантата. Следовательно, мезодермальный материал способствует развитию глаза из головного мозга, в пользу чего говорят также результаты опытов пересадок материала хорды и головного мозга, в которых ни в одном случае не отмечено образование глазной чаши из мозга. Таким образом, передний отдел головного мозга способен развиться в глаз и после выделения из него типично развивающегося глаза, причем развитие глаза осуществляется при наличии материала сомитов. Влияние последних в данном случае следует рассматривать как

такое влияние, которое способствует образованию глаза из мозга, без этиго осуществляющееся как редкое исключение. Материал хорды таким свойством не обладает. Следовательно, по своей значимости для развития глаза, во всяком случае в опыте, крыша первичной кишки разделяется нә компоненты, один из которых способствует развитию глаза, а дрүгой остается безучастным.

Академия Наук Грузинской ССР
Зоологический Институт
Лаборатория механики развития
Тбилиси

さ. Mangold. Roux' Archiv, Bd. 47, 1929.
2. Umanski. Zoolog. Anzeig., Bd. 110, H. $1 / 2$, I935.
3. Holtfreter. Arch. f. exper. Zellforschung. Bd. XXIII, H. 2, 1939.

90\%nm. mmzos

Lugab	n	$\frac{\mathrm{Lim}}{\mathrm{M} \pm \mathrm{m}}$	V\%	P \%	$\frac{M_{1}-M_{2}}{\sqrt{m_{1}{ }^{2}+\mathrm{m}_{2}{ }^{2}}}=\mathrm{t}$
(O)	15	$\frac{459-544}{506.27 \pm 6.92}$	5.1	1. 4	$\underline{101.34}=11.98$
	15	$\frac{365-437}{404 \cdot 93 \pm 4.84}$	4.6	1. 2	

 обмен веществ у пчел, 1937).

ugato	 	zuy3nob 3 m - 	Unைyma
	330	650	500
	240	400	370
ubzumós . .	90	250	130

ФИЗИОЛОГИЯ

Л. И. ДЖАПАРИДЗЕ

О ПОЛОВОМ ДИФЕРЕНЦИАЛЕ ВОДОСОДЕРЖАНИЯ У ПЧЕЛЫ (APIS MELLIFERA L.)

При изучении вопроса-является ли половой диференциал водосодержания зависимым или же независимым признаком - весьма удобным объектом представляется пчела (Apis mellifera L). Как известно, рабочая пчела представляет собой физиологически неполноценную самку, так как при ее оптогенезе половая система не получает своего развития. В связи с этим, рабочая пчела лишена и тех зависимых вторичных половых признаков, которыми отличается пчелиная матка-
 пуляция пчелы с пасеки Ветеринарной Опытной станции НКЗема Грузинской ССР (Тбилиси). Во избежание влияния различий в образе жизни, а также воздействия внешных условий, трутни и рабочие пчелы, принадлежащие одной семье, брались в момент их выхода из ячеек. Насекомые рассаживались по бюксам и подвергались сушке до постоянного веса при $60^{\circ} \mathrm{C}$. Результаты анализа ($\mathrm{abs} \% \%$) приведены в таблице x .

Таблица І
Водосодержание у взрослой пчелы

Пол	n	$\frac{\operatorname{Lim}}{\mathrm{M} \pm \mathrm{m}}$	$\mathrm{V} \%$	$\mathrm{P} \%$	$\frac{\mathrm{M}_{1}-\mathrm{M}_{2}-=\mathrm{t}}{\mathrm{Vm}_{1}{ }^{2}+\mathrm{m}_{2}{ }^{2}}$

Эти данные указывают на весьма большое различие в водосодержании у imago ($D>100 \%$ abs), однако, остается неясным, в какой степени здесь причастно влияние возрастного падения водосодержания, которое у разных полов надо полагать различным. В связи с этим обращаемся к исследованиям Штрауса (уяг), проследившего химический состав пчел в их отдельных стадиях развития; абсолютная влажность, высчитанная нами на основе тех графиков Штрауса, которые приводятся Амбрустером (Питание, пищевар. и обмен вещ. у пчел, 1937), даны в табл. 2.

Таблица 2
Водосодержание у пчелы (по Штраусу)

Пол	Первые дни куколки	Последние дни куколки	Соверпен- ная пчела
Рабочие пчелы (q) Трутни σ^{*}	330	650	500
Разница	240	400	370

Как видно, у рабочей пчелы содержание воды намного выше s $^{\text {чем }}$ у трутня, не только во взрослом состоянии, но и в стадии „куколки" (Учитывая предостережение автора, мы не касаемся водосодержания открытой червы).

Таким образом, на примере рабочей пчелы удается показать, что половой диференциал водосодержания следует отнести к категории „независимых" признаков.

Вместе с тем, поскольку для Bombyx mori L. нами"было показано налионтогенетического усовершенствования этого признака, по мере полового развития насекомого (см. Сообщения АН Гр. ССР, V, 5, 1944), можно предполагать, что у полноценной в половом отношении пчелиной матки половой диференциал водосодержания будет выражен еше более отчетливо, чем у рабочей пчелы.
Академия Наук Грузинской ССР
Тбилисский Ботанический Институт
Отдел Анатомии и Физиологии

อธงตววษธกวณอรง

 लっठ๐ [1]; проповедник, глашатай, бирюч; прорицатель, -льница; fоœоzо œо-
 boo: phlv. katak drabstätte; Haus'; katak (xutā, katak [bānūkīh. (A. V.) [3]; ov (fucos) locus, qua Signif. mutis vociaus postponitur [4]; A habitation. A tavern. A vauit, cavernor cellar. A villag [5]; ... zu erwas bestimmter Ort, stä-

 vulgo Kiösk, Belvedere [4]. дача, вилла; верхний этаж, башня, галлерея. балкон, стенные зубцы [9]; здание, строение (дворец, замок, башня) [ro]
 and the first heaven or region of the moon [5].

[^2]

 ${ }^{\circ} 0$ (z)

 госпожа, дама, принцесса [9].

 كساد [子狞œ] застой в торговле, непродажность, дешевизна товара [9].
 agmís of

 zirus [4]; Intelligent, skilful, expert, versed. A prim-vminister [5].

 plateam [4].

 kishmar [5], agano bménolub\%n @o fomofoo aminfologobyn.

 trimonii constituunt [4].

471), શֻ. ([11], 335) (Эృеठмпn) большая стрела или кощье, употребляемые на охоте 19]; стрела с широким острием [Іо].

 [4].
 Caaba, nomen templi Meccani [4].

 tat [4].

 gius [4].

 .اشته كا
 œos.

 castra [4].

 （［8］，165），كنده كار（弓ّ

 фессия．．．Јбœо（зокп）суффикс，посредством которого образуются суще－ ствительные，означающие ремесленника，производителя，деятеля［то］．

 кладовая，угол［9］．

 （\％п的孔）ловкий，проворный，расторопный；способный；понятливый；догад－

 миндалевидных желез [9]:
 (A 843).

 кщий редкие волосы на лице, реденькую бородку [Іо]; с неболь-

II. otr. $\mathrm{g}(\mathrm{a})>$:

 gahwāra, A cradle. liفْ \dot{c}_{\circ} jg The cradle of mortality, i. e. the present transitory world [5]; gāhwāra coll. gāxvāra, gāvāra, gahvāra cu-

 богадельня, сиротский дом [2]:
 coenobium religiosorum [4]; монастырь, пустынь, обитель дервишей

 ๆœ. ($\left[11 \mid, 35_{3}\right.$): גق̈lح кольцо, перстень, круг, окружность, обод, ободок, обруч; звено (цепъ); колечко, петля, петлица; ошейник, хомут;

 company; troop. Ex. گروه ,جمعيت ,دسته •Syn گروهى از سیهاهان در آنجاديدم In crowds, in large numbers [I_{3}]; ($\mathrm{am}^{2} \boldsymbol{m}^{3}$) эскадрон, рота, банда, войско, толпа, класс, разряд; компания путешественников [9].

 شترنi shatrang, chess. This game is most probably of Indian ori-

 phlv. と̌ark; ai čarkà; oss. c̣alx (314); L. W. kurd. とarx; bel. čark

 [18], ob. ৎotnozeszo [17].
III. 43.

 вкусный; $\boldsymbol{\jmath}^{\circ} \mathrm{m} ø-$ доп удушливый; душный; пиша, застрявшая в горле [то].

 उчәә) остроумный [Іо].

 nöncmon

М．ХУБУА

ПЕРСИДСКИЕ ЗАДНЕЯЗЫЧНЫЕ ЗВУКИ В ГРУЗИНСКОМ

Резюме

Анализируя соответствующие факты（впервые им установленные），ав－ тор приходит к следующему заключению：

I．Ир．к＞k（kadag－тпроповедник’，‘прорицатель’；kox－‘изба＂；kilik－ сдеревянная палочка для скрепления досок’ пр．kelik，kelek камыш；камы－ шевое перо；клыки［9］；beka ппрозв．жен эриставов’ пр．begam，bekam；ke－ sat－i собанкротившийся пр kesad застой в торговле［9］；kučaband тлухой переулок’，keibur－i ‘широкая стрела＇；kura сгорнило＇；kondakar єпалач’；kul－ bak，kulbag＝kolba，kulbak сторожка，шалаш，амбар［9］；keйао сносилки＝ ke弓̃āva），g（gava симя знам．кузнеца из Исфагана’；goza сконцы лука［с те－ тивой］）．

II．Иp．$g>g$（ašpašag－i сстрелять из лука в мишень（на скаку）asp＋xšag ＇стреляющий’；çarmag－i ппятнистый（конь，животное）＇пехлв．と̌armag，пр．čar－ ma серая или гнедая лошадь［9］；c̣armag－i здоровый，степенный［2］пехл． čarbag，пр．と̌arba жирный，тучный，сливки［9］；хапаga богадельня，сиротский дом［2］，пр．хапаgah монастырь，пустынь，обитель дервишей［оо］．
Академия Наук Грузинской СССР
Институт Язнка
имени акад．Н．Д．Марра
Тбилиси

3．Paul Horn．Grundriss der Neupers．Etymologie， 1893.
4．Ioannis Augusti Vullers．Lexicon Persico－Latinum Etimologicum， 1855 ．
5．Francis Jonson．Dictionary Persian，Arabic and English， 1852.
6．Iules Théodore Zenker．Dictıonnaire Turc－Arabe－Persan， 1866.
7．Abou＇l Kasim Eirdousi．Le Livre des Rois，publié，traduit et commenté pdI M．Jules Mohl，Paris， 1838 ．
 fymbnal ngeudzonon．ơqnamolon， 1886.
9．Ягелло．Нолный персидско－арабско－русский словарь．
10．Гафф а ров．Персидско－русский словарь．

13．S．Haim．New Persian－English Dictionary， 1936.

18. И. Киппидзе. Грам. мингр. языка, 1914.

4. mmaonjonodo

 \{

[^3]

 bze:p' ${ }^{([2] ~ 33.234) .}$

[^4]
 rozmáo dogảol lofago.

 mònmpun

ЯЗЫКОВЕДЕНИЕ

Ћ. ЛОМТАТИДЗЕ

APSAA $\|$ APSAA ${ }^{0}$ («ПТИЦА»)

Резюме

1. Для обозначения понятия «птици» в абхазском языке имеется сло-
 apsuat ${ }^{0}$). Наличие аффикса -оо $-t^{0}$ в последней форме указывает на то, что это слово является отглагольным именем. В подобных случаях $\boldsymbol{\circ}^{\circ}$, \underline{t}^{0} образует имена со значением: "предназначенные к какому-то действию" т. е. совпадающие с именами класса вещей. Напр., оф о оुо а фа toпредназначенное к еде т. е. пища (ср. груз. ৮о孔るŋмо sačmeliпища).
2. Соответствующую глагольную основу для слово Јoुbooठо apsaat ${ }^{0}$ в южных диалектах абхазского языка не находим. Было бы естественно если бы и здесь имели основу глагола-«летать». Но в южных диалектах в зна-
 мому, из грузинского языка (ср. груз. оुю-јб-ь pr-en-а «летать»).

В тапанском же диалекте абхазского языка oogenz(๓o aprəra не встре-

3. В адыгейских языках соответственно слову эogloo || ogbloơo apsaa || apsaat ${ }^{0}$ имеется $3 q_{\text {ду }} \mathrm{bz}$ ди ((птица»).
4. Можно полагать, что ईэту же основу выявляет занское слово
 хевсурском говорах грузинского языка слово b 3 з swe («крыло») и назва-
 sw-awi («беркут, грифф).
5. Корень упомянутого слова, по всей вероятности, существовал в: своем основном значении ("крыло") и в абхазско-адыгейских языках: в этом отношении заслуживает внимания убыхское слово $\partial \%$ д̆ бुо̆ (по Mészáros-y bze: p’ध), «крылья» ([2], стр. 234).

Тот же самый корень, повидимому, выявляется в абхазском слове: - ớlı a psia «штык, копье».

Академия Наук Грузинской ССР
Ивститут Языка имеви акад. Н. Я. Марра
Тбилиси

2. I. Mészaros. Die Päkhy-Sprache. Studies in Ancient Oriental Civilization, No 9 , Chicagop Illinois., 1934.
 -20 07514

गु33. 239
Onnoyn 400
 mozncminan

УТВЕР ЖДЕНО Президиумом Академии Наук Грузинской ССР 15.7.1943

ПОЛОЖЕНИЕ О «СООБПЕНИЯХ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР»

1. В «Сообщениях» помешаютяя статьи научных работников Академии Наук Грувинской ССР и других ученых, содержащие сжатое изложение наиболее существенных результатов их исследований.
2. "Сообщениями» руководит Редакционная коллегия, избираемая Обшим Собранием Академии Наук Грузинской ССР.
3. «Сообщения» выводят ежемесячно (в конце каждого месяца), за исключением июля и августа, выпусками около 6 печ. листов каждый. Совокупность выпусков за год (всего 10 вынусков) составляет один том.
4. Статьи нечатаются на грузинском языке. Все статьи обязатетьно снабжаются додробным резюме на русском языке, которое может быть заменено полным переводом. Статьи могут быть также снабжены резюме на английском, французскои или немецком языке, по желанию автора.
5. Размер статьи, включая резюме и иллюстрации, не должен превыпать то страниц, а размер основного грузинского текста-8 страниц.
6. Разделение статей на части для напечатания в различных выпусках не допускается.
7. Статьи, предназначаемые к напечатанию в "Сообщениях», направляотся в Pe дакцию, которая для авторов, являюшихся действительными членами Академии Наук, лишь устанавливает очередность публикации. Статьи же остальных авторов, как правило, передаются Редколлегией для отзыва одному из действительных членов Академии Наук или же жакому-либо другому специалисту по данной области, после чего вопрос о напечатании статьи-решается Редколлегией.
8. Статьи должны представляться автором в соверпенно готовом ддя печати виде, вместе с резюом и иллострациями. Формулы должны быть четко вписаны от руки. Ни. какие исправлелия и добавления после принятия статьи к печати не допускаются.
9. Данные о цитируемой литературе должны быть возможно полными: необходимо указывать название журнала, номер серии, тома, выпуска, год издания, полное заглавие статьи; если цитируется книга, то необходимо указать полное заглавие, год и место издания.
10. Цитируемая литература должна приводиться в конце статьи в виде списка. При ссылке на литературу в тексте статьи или в подстрочных примечаниях, следует указывать номер по списку, заключая его в квадратные скобки.
II. В ғоние статьи и резюме авторы должны указывать, на соответствуюших языках, местонахождение и название учреждения, в котором проведена работа. Статья датируется днем поступления в редакцию.
11. Автору предоставляется одна корректура в сверстанном виде на строго ограниченный срок (обычно не более суток). В случае невозвращения корректуры к сроку, редакция вправе печатать статью без авторской визы.
12. Авторы получают бесплатно 50 оттисков своей статьи и выпуск "Сообщений», содержащий эту статыю.

Адрес редакции: Тбилиси, ул. Дзержинсного, 8.

[^0]: *Заглавие, ожмеченное звездочкой, относитсд к резюме или к переводу предшествующей статьи.
 *A title marked with an asterisk applies to a summary or translation of the preceding article.

[^1]: $b_{k}-$ U $_{3 g} 6$.

[^2]:

[^3]:

[^4]:

 уคว

