
 д M ১ д ১
 СООБЩЕ НИЯ
 АКААЕМИИ НАУК ТРУЗИНСКОЙ ССР

B ULLETIN OF THE ACADEMY OF SCIENCES OF THE GEORGIAN SSR

\author{

*
 XXXV:2
}
sÖßnlom 1964 ABTYCT

MATEMATИKA

Ш. С. КЕМХАДЗЕ

O HEKOTOPGX CBOЙСТВАХ ФАҒТОРИЗУЕМыХ ГРУ III

 (Представлено академиком Г.С. Чогошвнли 25.11.1963)В настояшсй заметке рассматриваются некоторые критерии о непростоте бесконечных факторизуемых трупп. Указываются некоторые свойства факторизуемых групп, представдяюшие самостоятельный интерес.
§ І. Как известно, группа G называется факторизуемой, если она представима в внде

$$
\begin{equation*}
G=A \cdot B, \tag{I}
\end{equation*}
$$

где A й B-неединичные соб̈ственнве подгрупшы группы G. Если, кроме того, пересечение подгруши $A \cap B=E$, то группа G назнвается вполне факторнзуемой.

Из определения следует, что $A B=B A$, т. е. любой элемент $g \in \mathrm{G}$ представим в виде

$$
\begin{equation*}
g=a b \tag{2}
\end{equation*}
$$

где $a \in A, b \in B$. Легко заметить, что если группа вполне факторизуема подгрупами A и B, то всякий элемент $g \in G$ однозначно представим в виде (2).

Скажем, что групиа G полуинвариантна, факторизуема, если одна пз подгрупп (A или B) инвариантна. Если подгруппы A и B инвариантны в G п имсет место равенство (1), то скажем, что группа G инвариантна, фақторизуема.

Подтрупа A группы G называется дополнпдой в G, еслй в G найдется хотя бы одна подгруппа B, такая, что имеет место равенство (I).

Если группа факторизуема подгруппами A и B, то можно сказать, что подгруппи A и B дополняют друг друга в группе G.

Нмеется много интересных работ, где при помощи свойств факторизующих множителей изучаются сами группы.

Некоторые критерии о простотности конечных факторизуемых трупп рассмотрены в работах [1, 2]. Легко заметвть, что если групта G факторизуема конечными подгруппами A и B, то сама групта G конечна и се порядок [G] равен

$$
|G|=\frac{|A| \cdot|B|}{|D|}
$$

где $D=A \cap B$. Из этого замечания слелует, что всякая групша, факторизуемая конечными p-группами, булет конечной p-группой.
§ 2. Лемма І. Всякая группа G, факторизуемая p-подгруппами, одна из которых достижима в G, будет p-группой.

Лействительно, пусть $G=A B$, тде A-достижимая p-подгруппа в G. Предварительно заметим, что если группа G полуинвариантна, факторизуема p-подгруппами, то сама труппа G будет p-трупой. На сємом деле, пусть $G=A B$, где A и B - p-подгруппы, наиример, A инвариантна в G. Возьмем любой элемеит $c \in A B$, шметиий вид $c=a b$, где $a \in A, b \in B$.

Если элемент b порядка p^{k}, то

$$
{ }_{c}^{p^{k}}=(a b)^{p^{k}}=a^{\prime} b p^{k}=a^{\prime} \in A
$$

Если, далее, a^{\prime} имеет порядок p^{s}, то $c^{p^{k+s}}=a^{\prime} p^{5}=1$, что п требовалось проверить. Теперь докажем лемму. Пусль $G=A B$, где A и B - p-подгруппы и, например, A достижимав G. По условию, через подгруппу $A_{1}=A$ прохпдит конечный нормальный ряд труппы G :

$$
\begin{equation*}
E=A_{0} \subset A_{1} \subset A_{2} \subset \cdots \subset A_{n-1} \subset A_{n}=G . \tag{3}
\end{equation*}
$$

Как известно [3], для наждого $i=\mathbf{1}, 2, \ldots, n-\mathbf{I}$ имеет место

$$
\begin{equation*}
A_{i+1}=A_{i}\left(B \cap A_{i+1}\right) \tag{4}
\end{equation*}
$$

где каждая A_{i} инвариантна в A_{i+1}. Сотласно предюдушему замечанию, так как подгруппа $A_{2}=A_{1}\left(B_{d} \cap A_{2}\right)$, где A_{1} и $B \cap A_{2}$ - p-подгруппы группы G и A_{1}-инвариантна в A_{2}, получим, что A_{2} являетел p-подгруппой в G.

По индукпии относительно индекса i подучпм, что сама группа G будет p-группой; тем самым лемма доказана.

Из леммы 2 работы [3] и вышеугазанной леммы вытекают стелующие следствия.

Следствие 1 . Всякая группа G инвариантна, факторизуема p-подтруппами A и B, одна из которых обладает нетривиальннм пентром, а другая $Z A$ - p-подгруппа, то сама группа булет p-группой, имеющей нетривчазьный центр.

Следствие 2. Всякая трупна G, факторизуеиля достијкными $Z A$-подгруппами, сама булет $Z A$-групой.

В связи с этпм следствием заметим, что Бэр [4] построил пример бесконечной p-груии, который полуинвариантен, фақторизуем элементарными абелевыми подруппми типа p, не обладиет пеитром и не удовлетворяет нормализаторному условию.

В дальнейшем используются следующие леммл.
Лемма 2. Пусть H-любая подгруппа группь G. Tогда пересечение множеств $\langle H\rangle_{G}$ всех сопряженных подгрупп с H в G и подгруппа, порожденная множеством $\langle H\rangle_{G}$, инвариантнь в G.

Для доказательства этой леммы достаточно заметить, что для любого элемента $g \in G$ имеет место $g^{-1}\langle H\rangle_{G} g=\langle H\rangle_{G}$.

Лемма 3. Если группа G факторизуема подгруппами A и B, m. e. $G=A B$, то $G=N_{G}(A) \cdot B$ и $G=A \cdot N_{G}(B)$.
, Лействительно, через $N_{G}(A)$ обозначим норяадпзатор подрруппы A в G. Для люббоо элемента $g \in G$ пмеет место

$$
g^{-1} A g=(a b)^{-1} A a b=b^{-1} A b, \quad g b^{-1} A b g^{-1}=A
$$

Следовательно, $g b^{-1} \in N_{G}(A) \quad$ п $g=c b$, тае $c \in N_{G}(A), \quad b \in B$; тем самым лемма доказана.

Јемма 4. Eсли A и B - люб́ие две подгруппи G и если $G=$ $=N_{G}(A) \cdot B$, то $\langle A\rangle_{G}=\langle A\rangle_{B}$ и обратно.

Доказательство этой теммы приведено в работе [5].
Лемма 5. Eсли периодическая группа G фвакторизуема подгруппами $А$ и $В$ и их порядки элементов взаимно простьее, то любой нормальный делитель H группь G илеет вид $H=H_{A} \cdot H_{B}$, где H_{A} и H_{B} - соответственно нормальные делители в подгруппах A u B.

Доказательство. Предварительн докажем, что если ıруиа G факторизуема, т. е. $G=A B$. п H - ее нориальный делитель, то для каждого натурального n, седи $h=a b \in H$, где $a \in A, b \in B$, имеет место $a^{n} b^{n} \in H$. В самом деле, так как H нормальный лелизель ірушыь G из $a b \in H$, получим $b \cdot a b \cdot b^{-1} \in H$, т. е. $b a \in H$.

Теперь, так как $a b \cdot b a=a b^{2} a \in H$, получим $a \cdot a b^{2} a \cdot a^{-1}=a^{2} b^{2} \in H$ и т. д. по индукпии дла лююбого n

$$
\begin{gathered}
a^{n} b^{n} \in H . \\
a^{-1} h_{A} a \in H, \quad a^{-1} h_{A} a \in A, \text { т. е. } a^{-1} h_{\mathrm{A}} a \in H_{A} .
\end{gathered}
$$

Эrо значит, что $H_{\mathrm{A}}=H \cap A$ инвариантно в A; тем самым лемма доказана.
Лемма 6. Eсли группа G факторизуем подгруппами A и B, m. е. $G=A B$, то для любого элемента $g \in G$ имеет несто

$$
G=A \cdot g^{-1} B g \text { \# } G=g^{-1} A g \cdot B
$$

Действительно, докажем первый слуワай. Пусти, $G=A B$, тогда для любого элемента имеем

$$
g=a E=b_{1} a_{1} \in G, \quad \text { где } a, a_{1} \in A, \quad b, b_{1} \in B .
$$

Произведение $A \cdot g^{-1} B_{g}$ можно прелставить следупиии образом:

$$
A \cdot g^{-1} B g=A(a b)^{-1} \cdot B a b=A a_{1}^{-1} b_{1}^{-1} B b_{1} a_{1}=A a_{1}^{-1} \cdot B a_{1}=A B a_{1}=G a_{1}=G
$$

что и требовалось доказать.
§ 3. Класс разрешимости, т. е. длину коммутлнодо ряда трурпы G обозначнм через $k(G)$. Докажем следующую теорему.

Теорема в. Всякая группа, факторизуемая разрешиньми подгруппами А и B, одна из которых достижима в G, б́удет разрешимой, и класс разрешимости не больие $s+(n-1) e$, где $k(A)=e$, $k(B)=s$, а п-наименьшая длина нормального ряда проходит через достижимую подгруппу B.

Доказатедьство. I] редваридельно заметим, что если труппа G факторизуема разрешимыми подгруппами, одна из которых инвариантна, то сама группа будет разрешимой, а класс разгешимости будет не больше суммю классов факторизуюших нодтруи. В самом деле, пусть $G=A \cdot B$, где $k(A)=e, k(B)=s$ и A - иивариантная разрешимая полтруппа группы. По теореме изоморфизма

$$
A B / A \cong B / A \cap B .
$$

Справа стоит разрешимая трупиа, и поэтому груипа $G=A B$, как расширение разрешшюой труппы A при помоши разрешимой группы $B / A \cap B$, сама разрешима. Теперь, тақ қак класе разрешимости фактор-группы $B / A \cap B$ не больне кдасса разрешимости подрруины B, легко получим, что $k(A B) \leqslant k(A)+k(B)$. Теперь, прелположкм, что полгруппа $B=B_{1}$ достижима в G и среди нормальных рядов, которые проходлт через подгруппу B, наименьшей длиной является нормальный ряд

$$
E \subset B_{1} \subset B_{2} \subset \cdots \subset B_{n-1} \subset B_{n}=G .
$$

Легко заметить, что

$$
\begin{equation*}
B_{i+1}=B_{i}\left(A \cap B_{i+1}\right), \quad i=\mathrm{I}, 2, \ldots, n-\mathrm{I} . \tag{3}
\end{equation*}
$$

Из соотношения (з) видно, что каждая групта B_{i+1} факторизуема разрешимыми подгруппамн, где полгуппа B_{i} инвариантна в $B_{i+\downarrow}$. Согласно вышеотмеченному замечанио, қалддая группа B_{i+1} разрешима п

$$
k\left(B_{i+1}\right) \leqslant k\left(B_{i+1}\right)+k\left(A \cap B_{i+1}\right)
$$

Пусть $k\left(B_{i}\right)=s_{i}, k\left(A \cap B_{i+1}\right)=c_{i+1}$. Ясно, что $k\left(A \cap B_{i+1}\right) \leqslant e$.
Поэтому поаучим

$$
\begin{aligned}
& k\left(B_{2}\right) \leqslant k\left(B_{1}\right)+k\left(A \cap B_{2}\right) \leqslant s+c, \\
& k\left(B_{3}\right) \leqslant k\left(B_{2}\right)+k\left(A \cap B_{3}\right) \leqslant s+c+c=s+z c
\end{aligned}
$$

н т. д.

$$
k\left(B_{n}\right)=k(G) \leqslant s+(n-\mathrm{r}) c,
$$

что и требовалось доказать.
В связи с этим заметим, что не всявая групиа, фақторизуемая разрешимпми подгруппами (даже цикличесқими и разрешимымн), будет разрешияой. Наиример, знакопеременнал групна A_{5} степени 5 факторизуема знакопеременной подруппй A_{4} степени 4 и пиклической подгруппой $b=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right.$) пяяого порядка, но не разрешима. Дая полвоты докажем следующую теорему.

Т еорема 1. Всякая группа, факторизуемая разрешиньми подгруппами A и B, одна из которых достижима в G, будет разрешимой, ит класс разрешимости не больие $s+(n-1) e$, дде $k(A)=e$, $k(B)=s$, а п-наименьшая длина нормального ряда проходит через достижимую подгруппу B.

Доказательство. Прелварителио заметим, что если труппа G факторизуема разрешимымп подгруппаии, одна из которых инвариантна, то сама групиа будет разрешимой, а гласс разғешимости будет не больше суммы классов факторизуюших подгрупп. В самом деле, пусть $G=A \cdot B$, тде $k(A)=e, k(B)=s$ и A - инварнантная разрешимая подтруппа группы. По теореме изоморфизма

$$
A B / A \cong B / A \cap B
$$

Справа стоит разрешимая группа, и поэтому группи $G=A B$, как расширение разрешшюйт труппы A шри помоши разрешимой группы $B / A \cap B$, сама разрешима. Теперь, так как класс разрешимости фактор-группы $B / A \cap B$ не больне класса разрешнмости подгрувпы B, легко получим, что $k(A B)<k(A)+k(B)$. Теперь предположжм, что подгруппа $B=B_{1}$ достижима в G и среди нормальня рядов, которые проходят через подгруппу B, наименшей длиной явдяется нормальный ряд.

$$
E \subset B_{1} \subset B_{2} \subset \cdots \subset B_{n-1} \subset B_{n}=G .
$$

Легко заметить, что

$$
\begin{equation*}
B_{i+1}=B_{i}\left(A \cap B_{i+1}\right), \quad i=\mathrm{I}, 2, \ldots, n-\mathrm{I} . \tag{3}
\end{equation*}
$$

Из соотнотения (3) видно, что кажддяя группа B_{i+1} факторизуема разрешимыми подгруппами, где полгрупа B_{i} инваригнтна в B_{i+1}. Согласно вышеотмеченному замечанию, калдая группа B_{i+1} разрешима и

$$
k\left(B_{i+1}\right)<k\left(B_{i+1}\right)+k\left(A \cap B_{i+1}\right)
$$

Пусть $k\left(B_{i}\right)=s_{i}, k\left(A \cap B_{i+1}\right)=c_{i+1}$. Яспо, что $k\left(A \cap B_{i+1}\right)<c$.
Поэтому получпм

$$
\begin{aligned}
& k\left(B_{2}\right) \leqslant k\left(B_{1}\right)+k\left(A \cap B_{2}\right) \leqslant s+c, \\
& k\left(B_{3}\right) \leqslant k\left(B_{2}\right)+k\left(A \cap B_{3}\right) \leqslant s+c+e=s+z c
\end{aligned}
$$

и т. д.

$$
k\left(B_{n}\right)=k(G)<s+(n-1) c,
$$

что и требовалось доназать.
В связи с этим заметим, что не всяқая групп, факторизуемая разрешимими подгрупами (даже шиклическими и разрешимыми), булет разрешимой. Например, знақопеременнал грутпа A_{5} степени 5 факторизуема знакопеременной подруппой A_{4} сгепени 4 п циклической подгруппой $b=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right.$) пятого порядка, но не разрешима. Для полпоты докажем следующую теорему.

Теорема 2. Всякая неабелевая группа, факторизуемая аб́елевьми подгруппани, не простая, причем или обладает нетривиальным центром, или является разрешимой группой класса два.

Доказатедьство. Пусть $G=A B$, где A и B - абелевы подгрупты. Если $A \cap B=D \neq E$, то очевидпо, что D лежит в пентре группы G, т. с. груипа G облалает нетривиальным пентром и нолтому она не простая.

Теперь, рассмотрия случай, когда $A \cap B=E$. Тостаточно показать, что для дюбых пар элементов $a, c \in A, b, d \in B$ коммутатори $[a, b]$ и $[c, d]$ перестановочни. В самом дете, дегко заметить, что $\left[[a, b]_{c^{-1}}=\left[a, b_{1}\right]\right.$, где $b_{1}=c b c^{-1}, b_{1} \in B, d c[a, b](d c)^{-1}=d\left[a, b_{1}\right] d^{-1}=\left[a_{1}, b_{1}\right]$, где $a_{1}=\operatorname{dad} d^{-1} \in A$. Ана.логично получим $c d[a, b] d^{-1} c^{-1}=\left[a_{1}, b_{1}\right]$. Следовательно, $[a, b][c, d]=$ $[c, d] \cdot[\tau, b]$, что и требовалось доказать.

Заметия, что не всякая группа, факторизуемая абелевыми подгруппами, будет иметь нетривиальный пентр. Наприлер, симметрическая грулпа S_{3} третьей степеии факторпзуема циклическими полгруптам третьего и второго порядка, разрешима в классе два, но не имеет нетривнального иентра. Теорему 2 для конечим групп другими методамл впервые доказал Ито [6], потом она была передоказана разными авторами.

Теорема 3. Ecли $G=N_{G}(A) \cdot B$ и $A \subset B$, mo грynna G не простая, обладает нормальньм делителем, принадлежаиим подгруиne B.

Доказательство. Но лемме 4 из $G=N_{G}(A) \cdot B$ получим $\langle A\rangle_{G}=$ $=\langle A\rangle_{B} \subseteq B$. Из этого соотношения согласпо демле 2 следует, что подгруппа $H=\left\{\langle A\rangle_{G}\right\}$, которая принадлежит подгрупие B, будет нориальным делителем в G, что п требовалось доказать.

Из теоремн 3 следует следуюпиїі важкный результат [1].
Теорем а 4. Eсли группа G факторизуема подгруппами A и B, т. е. $G=A B$, и пересечение $A \cap B=D \neq E$ содержит нормальный делитель, принадлежащий одной из подгрупп (и или B), то группа G не простая.

Чействительн, пусть подтрупиа $H \subseteq A \cap B$ - норманьный делитель подгруппы A. Для доб̈ого элемента $g \in G$ получим

$$
g^{-1} H g=(a b)^{-1} H a b=b^{-1} H b \subseteq B .
$$

Из этого соотношения в силу леммы 4 следует $G=N_{G}(H) \cdot B$. Так как $H \subset B$, соғласно теореме 3 , группа G не иростая п обладает нормальным делителем, приналлежащим подгрупие B, что и требовалось доказать.

Кақ известно [7], все силовские р-подруппы конечной групны G сопряжени между собой и число их сравяимо с единипей по модулю p.

В случае бесконечных групп дело об́стоит иначе. Счетная симметрическая группа является примером пернодпческой труппы, обладаюмеі: неизоморфными силовскшии p-нодгруппами.

С другой стороны, существуют бесконечные групиы, все спловские

р-подгруппи қоторых сопряжены между собой, хотл число их бесконечно.
Теорема 5. Пусть G - любая группа, у которой все силовские р-подгруппь сопряжены. Если H - нормальньй делитель группиє G и P-ее силовская р-nодгрупnа, то $G=N_{\mathrm{G}}(P) \cdot H$.

Доказательство. Так кақ H - пормальный делитель группы G и P - силовская p-полруппа в H, то по условию для любого элемента $g \in G$ получим $g^{-1} P g \subset g^{-1} H g=H, \quad g^{-1} P g=h^{-1} P h$, где $h \in H$.

Следовательно, $g h^{-1} \in N_{G}(P)$, т. е. $g=c h$, где $c \in N_{G}(P), h \in H$; тем самым теорема доказана.

Из этой теореми непосредствснно следует соответств!киая тсорема Ope [8] дпя юонечных трупп.

Следствие. Пусть G-люо́ая группа, у которой все силовские р подгруппь сопряжены и P - ее силовская р-подгруппа. Eсли P не является нормальным делителем группь G, то любая собственная подгруппа H, содержащая подгруnпу $\left(N_{G}(P)\right)$, в частности подгруппу P, не может быть нормальным делителем в G.

Действитсльно, в противном случае согласно теореме 5 получим $G=N_{6}(P) \cdot H=H$, что ирогиворечит условин.
Батумский педагогический институт им. ШІ. Руставели
(Поступило в редакцию 26.11 .1963)

•. djabud?

mosogaco

 Fóndma@zafgou olgane bubnon:

$$
G=A B
$$

1. J. Szep, L. Redei. On factorisable groups. Acta Sci. Math., 13, 195), 235-238
2. J. Szep. On factorisable, not simple groups. Acta Sci, Math., 13, 1950, 239—241.
3. Ш. С. Кемхадзе. О группах, порожденных нильпотентными и ZА подгруппами. СМЖ, N $4,1964$.
4. R. Baer. Nilpotent groups and their generalization, Trans. Amer. Math. Soc., 47, 1940, 393-434.
5. Ш. С. Кемхадзе. Факторизация групп достижимыми подгруппами, СМЖ № 4, 1964.
6. N. Ito. Remarks on factorizable groups. Acta Sci. Math., Szeged, v. 14, $1951 \cdot$
7. А. Г. Курош. Теория групп. М., 1953, 83-84.
8. O. Ore. Contributions to the theory of groups of finite order. Duke Math, Journ., 5, 1939, 431-460.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $x \times x V: 2,1964$

MATEMATUKA

T. А. ЭБАНОНДЗЕ

О ФУНКЩИЯХ (Т СЧЕТНОТО ЧНСЈA APГУ MEHTOB

(Представлено академиком В. Д. Купрадзе 14.12.1963)

1. В этой заметке устанавдиваются некоторые свойства функций от счетного числа артументов, имеющие ирименение 玉 бесконечным системам интегральных уравнений ${ }^{1}$.

Пусть G_{m} - дюбое ограниченное замкнугое множестьо эвклидова пространства m измерений $E_{m}(m>1)$. Расстояние мелду двумя точками множества $P^{\prime}, P^{\prime \prime}$ об́означии через $r\left(P^{\prime}, P^{\prime \prime}\right)$.

Рассмотрим функпию

$$
u=f\left(P, y_{1}, y_{2}, \ldots\right)
$$

определенную при $P \in G_{m},-\infty<y_{1}, y_{2}, \ldots<+\infty$; обозначим $y_{1}, y_{2}, \ldots \equiv y$, а множество всех таких y - через $Y=\{y\}$; таким ооразом, функция $f\left(P, y_{1}, y_{2}, \ldots\right)$ отретелена на произвелении $G_{m} \times Y$.

Введем
Определение I. Функдия $f(P, y)$ равномерно непрерывна пи (P, y) на $G_{m} \times Y$, если для любою чисда $\varepsilon>0$ наілется такое число $\delta>0$, что

$$
\left|f\left(P^{\prime}, y^{\prime}\right)-f\left(P^{\prime \prime}, y^{\prime \prime}\right)\right|<\varepsilon
$$

когла

$$
r\left(P^{\prime}, P^{\prime \prime}\right)<\delta,\left|y_{i}^{\prime}-y_{i}^{\prime \prime}\right|<\delta, i=1,2, \ldots
$$

Следует заметить, что определенный таким образом класс непрерывных функций оказывается довольно пироким п при рассмотрении ряда вопросов необходимо выделить более узкие классы непрернвяых функций. Один из таких классов был ввелен А. Н. Тихоновым [2].

Определение 2. Функция $f(P, y) T$-непрерывна по (P, y) на $G_{m} \times Y$, если для люб́го $\varepsilon>0$ можно найти такое $\delta>0$ и натуральное число n_{0}, что

$$
\left|f\left(P^{\prime}, y^{\prime}\right)-f\left(P^{\prime \prime}, y^{\prime \prime}\right)\right|<\varepsilon
$$

когда

$$
r\left(P^{\prime}, P^{\prime \prime}\right)<\delta,\left|y_{i}^{\prime}-y_{i}^{\prime \prime}\right|<\delta, i=\mathrm{I}, 2, \ldots, n_{0}
$$

2. ॥риведем пример T-пепрерывной функции.
(1 Часть результатов настоящей статьи была опубликована в заметке [1].

Пусть функция $\varphi(y)$ равномерно непрерывна и ограничена на всей действительности оси, $|\varphi(y)| \leqq C,-\infty<y<+\infty ;$ Пусть, далее, $\alpha_{1}, \alpha_{3}, \ldots$-любые положителы ные числа, такие, что $\sum_{n=1}^{\infty} \alpha_{n}<+\infty$; тогда легко видеть, что функния

$$
f_{0}\left(y_{1}, y_{2}, \ldots\right)=\sum_{n=1}^{\infty} \alpha_{n} \varphi\left(y_{n}\right),-\infty<y_{1}, y_{2}, \ldots<+\infty
$$

T-непрерывна.
В самом деле, для любого $\varepsilon>0$ найдем такое n_{0}, чтобь

$$
\sum_{n=n_{0}+1}^{\infty} \alpha_{n}<\frac{\varepsilon}{4 C}
$$

Ввиду равномерной непрерывности функиии $\varphi(y)$ можно найти таदое $\delta>0$, что при

$$
\left|y_{n}^{\prime}-y_{n}^{\prime \prime}\right|<\delta, n=\mathrm{I}, 2, \ldots, n_{0},
$$

будем иметь

$$
\left|\varphi\left(y_{n}^{\prime}\right)-\varphi\left(y_{n}^{\prime \prime}\right)\right|<\varepsilon\left(\sum_{n=1}^{n_{0}} \alpha_{n}\right)^{-1}
$$

Torda

$$
\begin{gathered}
\left.\left|f_{0}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)-f_{0}\right| y_{1}^{\prime \prime}, y_{2}^{\prime \prime}, \ldots\right) \mid=\sum_{n=1}^{n_{0}} \alpha_{n}\left[\varphi\left(y_{n}^{\prime}\right)-\varphi\left(y_{n}^{\prime \prime}\right)\right]+ \\
+\sum_{n=n_{0}+1}^{\infty} \alpha_{n}\left[\varphi\left(y_{n}^{\prime}\right)-\varphi\left(y_{n}^{\prime \prime}\right)\right]<\varepsilon\left(2 \sum_{n=1}^{n_{0}} \alpha_{n}\right)^{-1} \cdot \sum_{n=1}^{n_{0}} \alpha_{n}+\frac{\varepsilon}{4 C} \cdot 2 C=\varepsilon
\end{gathered}
$$

при

$$
\left|y_{n}^{\prime}-y_{n}^{\prime \prime}\right|<\delta, \quad n=1,2, \ldots, n_{0} .
$$

Очевндно, что функиия $f_{0}\left(y_{1}, y_{2}, \ldots\right)$ равномерно неирерывна по y на Y в смисле определения 1.

Следуюший пример показьвает, тто класс равномерно непрерывных функций шире класса T-непрерывных функций.

Положким

$$
f_{1}\left(y_{1}, y_{2}, \ldots\right)=\left\{\begin{array}{cl}
\sum_{n=\mathrm{I}}^{\infty} \frac{y_{n}}{2^{n}}, & \text { если рял, схолится, } \\
0, & \text { если рял расходится. }
\end{array}\right.
$$

Пусть $\varepsilon>0$ произвольно. Ғели ряд. сходится, при лопушении $\delta=\varepsilon$, при $\left|y_{n}^{\prime}-y_{n}^{\prime \prime}\right|<\delta, n=1,2, \ldots$ будем иметь

$$
\left|f_{1}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right) \cdots f_{1}\left(y_{1}^{\prime \prime}, y_{2}^{\prime \prime}, \ldots\right)\right| \leqq \sum_{n=1}^{\infty} \frac{\left|y_{n}^{\prime}-y_{n}^{\prime \prime}\right|}{2^{n}}<\varepsilon,
$$

что и доказывает равномерную непрерывност. функини. В случае, когда ряд расходится, равномерная непрерывность рассматриваемой фуикнии очевидна.

Покажем теперь, что она не является T-пепрерывной. Возьмел любое натуральное n_{0}, и пусть

$$
\begin{gathered}
y_{n}^{\prime \prime}=y_{n}^{\prime}, \quad n=1,2, \ldots, n_{0}, n_{0}+2, \ldots, \\
y_{n_{0}+1}^{\prime \prime}=y_{n_{0}+1}^{\prime}-2^{n_{0}+2},
\end{gathered}
$$

тогда при

$$
\begin{aligned}
& \left|y_{n}^{\prime}-y_{n}^{\prime \prime}\right|=0, \quad n=1,2, \ldots, n_{0} \\
& \left\lvert\, f_{1}\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)-f_{1}\left(y_{1}^{\prime}, y^{\prime \prime}, \ldots\left|=\left|\sum_{n=1}^{\infty} \frac{y_{n}^{\prime}-y_{n}^{\prime \prime}}{2^{n}}\right|=2 \varepsilon,\right.\right.\right.
\end{aligned}
$$

что и требовалось, показать,
3. Јегко доказывактся

Теорема I. Eсли фунииия $f(P, y)$ равномерно непрерьвна на $G_{m} \times Y$, а $\varphi_{1}(P), \varphi_{2}(P), \ldots$ - последовательность функций, равностепенно непрерывных на G_{m}, то функция Ф $(P)=f\left(P, \varphi_{1}(P)\right.$, $\left.\varphi_{2}(P), \ldots\right)$ непрерывна на G_{m}.

Теорема 2. Eсли функиия $f(P, y)$ Т-непрерьвна на $G_{m} \times Y$, а $\varphi_{1}(P), \varphi_{2}(P), \ldots$-последовательность функчий, непрерьвных на G_{m}, то функция $\Phi(P)=f\left(P, \varphi_{1}(P), \ldots\right)$ непрерьвна на G_{m}.
4. Рассмотрим босконечиую нослеловательность функиий

$$
\begin{equation*}
K_{1}\left(P, Q, y_{1}, y_{0}, \ldots\right), \quad K_{2}\left(P, Q, y_{1}, y_{2}, \ldots\right), \ldots, \tag{*}
\end{equation*}
$$

где кажлая функиия $K_{n}(P, Q, y)\left(y \equiv y_{1}, y_{2}, \ldots, n=1,2, \ldots\right)$ оиренелена при $P \in G_{m}, Q \in G_{m},-\infty<y_{1}, y_{2}, \ldots<+\infty$ (г. е. на произведении $G_{m} \times G_{m} \times Y$ и равномерно непрерывна по (P, Q, Y) в смысте определения 1. іТустs функиии эгой пислеловттельности равностепенно нещрерывны ио P на G_{m} равномерно относителио Q и y_{1}, y_{2}, \ldots.

Hneer necto
Теорема 3. Eсли последовательность (*) удовлетворяет указанным условиям и если $\varphi_{1}(Q), \varphi_{2}(Q), \ldots$ - последовательность функиии, равностепенно непрерыьных на G_{m}, то функиии $\psi_{1}(P)$, $\psi_{2}(P), \ldots$, дде

$$
\psi_{n}(P)=\int_{G_{m}} K_{n}\left(P, Q, \varphi_{1}(Q), \varphi_{2}(Q), \ldots\right) d Q, \quad n=1,2, \ldots,
$$

представлены интегралом Римана, равностепенно непрерывны на $G_{m 2}$.
5. Пусть теперь G_{m}-любое ограниченное пзмеримое множество из $E_{m}(m>$ I). Следуя М. М. Вайпбергу ([3], стр. 197), будем говорить, что функиия $f(P, y)$ обладает усилиным C-свойством, если, таково бы ни быно $\varepsilon>0$, найдется такос замкнутое множество $F_{m} \subset G_{m}$ с мерой mes $F_{m}>\operatorname{mes} G_{m}-\varepsilon$, что на пропзведенин $F_{m} \times Y$ эта фуикиия равномерно непрерывиа по (P, y).

Введем
Опредеаение 3 . Будем говорить, что последовательность измеримых и почти веюду на G_{m} конечных функций $\varphi_{1}(P), \varphi_{2}(P), \ldots$ равностепенно измернма на G_{m}, если, қаково бы ии было $\gg 0$, найдется такое замқнутое множество $F_{m}=G_{m}$ с мерої $\operatorname{mes} F_{m}>\operatorname{mes} G_{n 2}-\varepsilon$, что последовате.лность $\varphi_{1}(P), \quad \varphi_{3}(P), \ldots$ будет равностепенно непрерывна на F_{m}.

Определение 4. Фуиния $f(P, y)$ обладает $С Т$-свойством, если, каково бы ии быо $\varepsilon>0$, можно найти такое замкиутое множество $F_{m} \subset G_{m}$ с мерой mes $F_{m}>$ mes $G_{m}-\varepsilon$, чго на произведенин $F_{m} \times Y$ эта фуикивя будет T-непрерывна по (P, y).

С помощью этих определениі̆ можно установить пзеримость функций от суетного числа аргументов ${ }^{1}$.

Теорема 4. Если функиия $f(P, y)$ обладает усиленным C свойством, а $\varphi_{1}(P), \varphi_{2}(P), \ldots$ - последовательность функций, равностепенно измеримьх на G_{m}, то функция $\Phi(P)=f\left(P, \varphi_{1}(P)\right.$, $\left.\varphi_{2}(P), \ldots\right)$ измерима на G_{m}.

Доказательство. Для \& >о шайдем такое замкнутое множество $F_{m}^{(1)} \in G_{m}$, мера которого mes $F_{(1)}^{(1)}>$ mes $G_{m}-\frac{\varepsilon}{2}$, чгобы на произве. дении $\left.F^{(}\right) \times Y$ функция $f(P, y)$ быта равномерно непрерывна по (P, y). Далее, найдем такое замкнутое множесгво $F_{m}^{(2)} \subset G_{m}$, мера которого $\operatorname{mes} F^{(2)}>\operatorname{mes} G_{m}-\frac{\varepsilon}{2}$, чтобы на нем функиии $\varphi_{1}(P), \varphi_{2}(P) \ldots$ были равностепено неарерывны. Если теперь рассмотрим множество $F_{m}=$ $=F_{m}^{(1)} \cap F_{m}^{(2)}$, то найдем, что mes $F_{m}>\operatorname{mes} G_{m}-\varepsilon$ и на әтом множкестве функпия $\Phi(P)=f\left(P, \varphi_{1}(P), \varphi_{2}(P), \ldots\right)$ неирерывна в сплу теоремы г. Тогда, по пзвестной теореме .Тузина о С-свойстве функций ([3]. стр. 196), $\Phi(P)$ измерима на множестве G_{m}, что и завериает доказательство.

Теорема 5. Если функщия $f(P, y)$ обладает СТ-свойством, а $\varphi_{1}(P), \varphi_{2}(P), \ldots$ - последовательность функиий, измеримых и почти всюду конечных на G_{m}, то функџия ф $(P)=f\left(P, \varphi_{1}(P), \ldots\right)$ измерима на G_{m}.

[^0]Доказательство. Лля $\varepsilon>0$ нахолим замкнутое множество $F_{\mu}^{(1)} \subset G_{m}, \quad$ с мерой $\operatorname{mes} F_{m}^{(1)}>\operatorname{mes} G_{m}-\frac{\varepsilon}{2}$, такое, чтобы функиия $f(P, y)$ была T-непрерывна на произведенин $\quad F_{{ }_{m}^{(1)}}^{(X Y}$.

По уже упомянутой теореме Лузина, сушествует такое замкнутое мнонество $e_{1} \subset G_{m}$ с мерой mes $e_{1}<\frac{\varepsilon}{2^{2}}$, что функиия $\varphi_{1}(P)$ будет непрерывна на множестве $G_{m}-e_{1}$; аналогично функиия $\varphi_{2}(P)$ будет непрерывна на множестве $G_{m}-c_{2}$, причем mes $e_{2}<\frac{\varepsilon}{2^{3}}$ и т. д. Таким образом, фушкши $\varphi_{1}(P), \varphi_{2}(P), \ldots$ будут непрерывны на множестве $F_{m}^{(2)}=\bigcap_{n=1}^{\infty} e_{n}$, мера которого mes $F^{(2)}>\operatorname{mes} G_{m}-\frac{\varepsilon}{2}$. В силу теоремы 2 функция $\Phi(P)$ должна быть непрерывна на множестве $F_{m}=F_{m}^{(1)} \cap F_{m}^{(2)}$, п так қак mes $F_{m}>\operatorname{mes} G_{m}-\varepsilon$, то $\Phi(P)$ будет измеримой на G_{m} и теорема доказана.
6. Снова рассмотрим бесконечиую последовательность функций

$$
\begin{equation*}
K_{1}\left(P, Q, y_{1}, y_{2}, \ldots\right), \quad K_{2}\left(P, Q, y_{1}, y_{2}, \ldots\right), \ldots \tag{*}
\end{equation*}
$$

где каждая функция $K_{n}(P, Q, y)$ опрелелеша на $G_{m} \times G_{m} \times Y$, оиладает усиленным C-свойствои и при любом $P \in G_{m},-\infty<y_{n}, y_{2}, \ldots<+\infty$ удовлетворяет перавенству

$$
\begin{equation*}
\left|K_{n}(P, Q, y)\right| \leqq k_{n}(Q), n=-1,2, \ldots, \tag{}
\end{equation*}
$$

где $k_{n}(Q)(n=\mathbf{1}, 2, \ldots)$-положительные суммируемые на G_{m} функции. Далее, пусть функиии последовательности (*) равностепенно измеримы по P на G_{m} равномерно относительно Q п y_{1}, y_{2}, \ldots.

Теорема 6. Eсли последовательность (*) удовлетворяет neречисленным условиям и если $\varphi_{1}(Q), \varphi_{2}(Q), \ldots$ - последовательность функиий, равностепенно измеримьх на G_{m}, мо функиии $\psi_{1}(P), \quad \psi_{2}(P), \ldots$, гдe

$$
\psi_{n}(P)=\int_{G_{m}} K_{n}\left(P, Q, \varphi_{1}(Q), \varphi_{2}(Q), \ldots\right) d Q, n=1,2, \ldots,
$$

представлень интегралом Лебега, равностепенно измеримь на G_{m}.
Локазательство. Если виесто y_{1}, y_{2}, \ldots подставить равностепенно измерімые на G_{m} функции $\varphi_{1}(Q), \varphi_{2}(Q), \ldots$, то лобая функция последовательности будет, по тсореме 4 , пзмеримой по Q на G_{m}. Тогда, учитывая (**), можно зақлючить, что сушествует каждый пз нанисанных иитегралов.

Теперь для заданного $\varepsilon>0$ найдем такое замкнутое множество F_{m} с мерой mes $F_{m}>\operatorname{mes} G_{m}-\varepsilon$ ，чтобы на нем функции последовагельности （＊）быди равностепенно непрерывны．Тогда для любого $\bar{\delta}>0$ можно по－ добрать такое $\eta>0$ ，что ири $r\left(P^{\prime}, P^{\prime \prime}\right)<\eta$ будем иметь

$$
\left|K_{n}\left(P^{\prime}, Q^{\prime}, y\right)-K_{n}\left(P^{\prime \prime}, Q^{\prime \prime}, y\right)\right|<\delta\left(\operatorname{mes} G_{m}\right)^{-1}, n=1,2, \ldots
$$

Игак，если $P^{\prime}, P^{\prime \prime}$－любне точки множества F_{m} ，такие，что $r\left(P^{\prime}, P^{\prime \prime}\right)<\eta$, тогда

$$
\left|\psi_{n}\left(P^{\prime}\right)-\psi_{n}\left(P^{\prime \prime}\right)\right|<\delta, n=\mathrm{I}, 2, \ldots,
$$

т．е．функции $\psi_{1}(P), \psi_{2}(F), \ldots$ равностетенно непрерывнын на F_{m} ．Ot－ сюда ввиду произвольности $\varepsilon>0$ сделаем вывод，что функщии $\psi_{1}(F)$ ， $\psi_{\mathbf{a}}(P), \ldots$ равностепено измеримы на G_{m} ．

B заключение отметим，что полученные результаты нахолат приме－ нение при исслсдованип бесконениых систсм мноомерных нелинийных интегральных уравиении，как ретуаярных，так и сингулярных［4］．
Академия наук Грузинской ССР
Вычислительный центр
（Поступило в редакцию 14．12．1963）
asmoajonos
0．0855m0

mうかのォaの

1．Т．А．Әбаноидзе．О бесконечных системах некоторых нелинейных регулярных и сингулярных интегральных уравнений．Сообщения АН ГССР，т．22，ј．6， 195%
2．А．Н．Тихонов．О бесконечных системах дифференциальных уравнений．Мате－ матический сборник，т．41，No 4， 1934.
3．М．М．В айнберг．Вариационные методы исследования нелннейных операторов． M．， 1956.
4 Т．А．Эоаноидзе．О некоторых классах многомерных нелинейных интегральных и сингулярных интегральных уравнений．Автореферат，Тбнлиси， 2963.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР хxxv. 21964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $X X X V: 2,1964$

MATEMATUKA

О. И. НАПЕТВАРИДЗЕ

О ПРИБЛИЖЕННОМ РЕШЕНИИ ТРЕТЬЕЙ КРАЕВОИी ЗАДАЧИ ТЕОРИИ ТЕПЛОПРОВОЛНОСТИ (Представлено академиком В. Д. Купрадзе 5.2.1964)

Пусть B_{1} - область трехмерного пространства, ограниченная поверхностью Јяпунова S_{1}. Рассмотрим задачу:

Найти в области B_{1} функиию $и(P, i)$, удовдетворяющую стелующим усховиям:

$$
\begin{aligned}
& \mathrm{I}^{\circ} . \quad \Delta u(P, t)=\frac{\partial u(P, t)}{\partial t}+F(P, t), \quad P \in B_{1}, \quad 0<t<T, \\
& 2^{\circ} . \\
& 3^{\circ} . \\
& \frac{\partial}{\partial n} u(Q, t)+h(Q, t) u(Q, t)=f(Q, t), \quad Q \in S_{1}, \quad 0<t<T, \\
&
\end{aligned}
$$

где $F(P, t), \quad f(Q, t), \quad h(Q \cdot t)$ - заданные непрерывные функции, n направление внешней нормали в точाке $Q \in S_{1}, T$ - произвольно фиксированное положительное число.

Существование и единсгвенность, решенил постав тенной задачи вытекает из работы [[] .

В настоящей работе булет построено приближенное решение этой задачи методом, предложенным В. Д. Купрадзе и примененным нами в решении задачи Коши - Неймана для уравнения телпопроводности.

Пусть

$$
v(P, Q ; t, \tau)=\frac{\exp \left[-\frac{r^{2}(P ., Q)}{4(t-\tau)}\right]}{[4 \pi(t-\tau)]^{3 / 2}}
$$

и $u(P, t)$-достаточно гладкое решение рассматриваемой задачи.
Применяя формулу Грина, можно показать, что $u(p, t)$ удовлетворяет следуюшим соотнотениям:

$$
\begin{gather*}
u(P, t)=\int_{0}^{t} d \tau \int_{S_{1}}\left[v(P, Q ; t, \tau) \frac{\partial u(Q, \tau)}{\partial n}-\right. \\
\left.-u(Q, \tau) \frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi_{1}(P, t), \text { когда } P \in B_{1}, \tag{I}
\end{gather*}
$$

$$
\begin{gather*}
0=\int_{0}^{t} d \tau \int_{S_{1}}\left[v(P, Q ; t, \tau) \frac{\partial u(Q, \tau)}{\partial n}-\right. \\
\left.-u(Q, \tau) \frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi_{1}(P, t), \quad \text { когда } P \in B_{1}+S_{1}, \tag{2}
\end{gather*}
$$

где

$$
\Phi_{1}(P, t)=-\int_{0}^{t} d \tau \int_{B_{1}} F(Q, \tau) v(P, Q ; t, \tau) d \omega .
$$

В силу условия 2° получаем

$$
\begin{align*}
u(P, t) & =-\int_{0}^{t} d \tau \int_{S_{1}} u(Q, \tau)[h(Q, \tau) v(P, Q ; t, \tau)+ \\
& \left.+\frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi(P, t), P \in B_{1} \tag{3}\\
O & =-\int_{0}^{t} d \tau \int_{S_{1}} u(Q, \tau)[h(Q, \tau) v(P, Q ; t, \tau)+ \\
& \left.+\frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi(P, t), P \bar{\in} B_{1}+S_{1}, \tag{4}
\end{align*}
$$

где

$$
\Phi(P, t)=\Phi_{1}(P, \)-\int_{0}^{t} d \tau \int_{S_{1}} f(Q, \tau) v(P, Q ; t, \tau) d s .
$$

Принимая во внимание свойства тепловых потенцшалов, легко поқазать, что функция

$$
\begin{align*}
u(P, t) & =-\int_{0}^{t} d \tau \int_{S_{1}} \varphi(Q, \tau)[h(Q, \tau) v(P, Q ; t, \tau)+ \\
& \left.+\frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi(P, t), P \in B_{1} \tag{5}
\end{align*}
$$

является решением поставтенной задачи, если $\varphi(Q, \tau)$ удовлетворяет усновию

$$
\begin{align*}
\Phi(P, t) & -\int_{0}^{t} d \tau \int_{S_{1}} \varphi(Q, \tau)[h(Q, \tau) v(P, Q ; t, \tau)+ \\
& \left.+\frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s=0, \tag{6}
\end{align*}
$$

когда $P \bar{\in} B_{1}+S_{1}$.

Пусть S_{3} есть произвольная замжнутал поверхность типа Ляпунова, окружаюшая S_{1}. Область, внешнюю относительно S_{2}, обозначим через B_{3}, а область, ограниченную поверхностями S_{1} и S_{2}, -через B_{2}. Рассмотрим на S_{2} всюду плотное счетное множество точек $P^{(1)}, p^{(2)}, p^{(3)}, \ldots$, на интервале $(о, T)$ - всюду тлотное счетное множество чисел $T_{1}, T_{2}, T_{3}, \ldots$ и функции

$$
\alpha_{m}^{(n)}(Q, \tau)=v\left(P^{(n)}, Q, T_{m}, \tau\right), \quad Q \in S_{1}, \quad 0<\tau<T_{m}<T .
$$

Нолагая при $T_{m} \leqq \tau \leqq T$, что $\alpha_{m}^{(n)}(Q, \tau) \equiv$, получаем систему функций $\alpha_{i}(Q, \tau)(i=\mathrm{I}, 2,3, \ldots)$, определенных в области $D\left[Q \in S_{1}, 0<\tau<T\right]$.

Построим последовательность, функиий

$$
\begin{equation*}
\mu_{i}(Q, \tau)=h(Q, \tau) \alpha_{i}(Q, \tau)+\frac{\partial}{\partial n} \alpha_{i}(Q, \tau)(i=1,2,3, \ldots) \tag{7}
\end{equation*}
$$

и покажем, чго они составляют линейио независимую систему, полную в пространстве $L_{2}(D)$.

Пусть для произвольно фиксированного натурального числа n имеем

$$
\sum_{k=1}^{n} c_{k} \mu_{i_{k}}(Q, \tau) \equiv 0 \quad \text { в } \quad D .
$$

Докажем, что все $c_{\mathbf{t}}=0$. Рассмотрим функцию

$$
\gamma(P, \tau)=\sum_{k=1}^{n} c_{k} \alpha_{i_{k}}(P, \tau), 0<\tau<T
$$

Она удовлетворяет в B_{1} уравнению

$$
\Delta \gamma(P, \tau)+\frac{\partial \gamma(P, \tau)}{\partial \tau}=0
$$

и условиям

$$
\begin{gathered}
\gamma(P, T)=0 \text { в } B_{1} \\
\frac{\partial}{\partial n} \gamma(Q, \tau)+h(Q, \tau) \gamma(Q, \tau)=0, \quad Q \in S_{1}, \quad 0<\tau<T
\end{gathered}
$$

Легко показать в силу теоремы единственности, что $\gamma(P, t) \equiv \mathrm{o}$, $P \in B_{1}, \circ<\tau<T$. Отсюда, принимая во ваимание регулярность $\gamma(P, \tau)$ в $B_{2}+B_{2}$, имеем $\gamma(P, \tau) \equiv$ в открытой области B_{2}. Если функции $\alpha_{i_{k}}(Q, \tau)$ соответствует фундиия $\alpha_{m_{k}}^{\left(n_{k}\right)}(Q, \tau)$, то имеем толддество

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k} \alpha_{m_{k}}^{\left(n_{k}\right)}(Q, \tau) \equiv 0, \quad P \in B_{1}+B_{2}, 0<\tau<T \tag{8}
\end{equation*}
$$

Приближая точку (P, τ) к точке $\left(p^{\left(n_{e}\right)}, T_{m}\right)_{e}$ так, чтобы отношение $P\left(P^{\left(n_{e}\right)}, P\right) \mid \sqrt{T_{m_{c}}-\tau}$ оставалось ограниченным, из условия (8) получаем $c_{e}=0$. Этим тинейнал независпмость системы (7) доказана. 18. „Дмлддл"; X XXV: 2; 1964

Теперь докажем полноту системы (7) в L_{2}. Заметим, что достаточно доқазать полноту в пространстве непрерывных функций с метрикой иространства L_{2}. Пусть $\alpha(Q, \tau)$ - непрерывная в области D функшия и

$$
\begin{equation*}
\int_{0}^{T} d \tau \int_{S_{1}} \mu_{i}(Q, \tau) \propto(Q, \tau) d s=0 \quad(i=\mathbf{\imath}, 2,3, \ldots) \tag{9}
\end{equation*}
$$

тогда $\alpha(Q, \tau) \equiv$ в в D.
В силу определения функиии $\mu_{i}(Q, \tau)$ условие (9) равносидьно условию

$$
\begin{equation*}
\int_{0}^{T_{m}} d \tau \int_{S_{1}} \alpha_{m}^{(n)}(Q, \tau) \alpha(Q, \tau) d s=0 \quad(m, n=\mathrm{I}, 2,3, \ldots) . \tag{IO}
\end{equation*}
$$

Рассмотрим функцию

$$
R(P, t)=V(P, t)+W(P, t)
$$

где

$$
\begin{gather*}
V^{Y}(P, l)=\int_{0}^{t} d \tau \int_{S_{1}} \alpha(Q, \tau) h(Q, \tau) v(P, Q ; t, \tau) d s \tag{II}\\
W(P, t)=\int_{0}^{t} d \tau \int_{S_{1}} \alpha(Q, \tau) \frac{\partial}{\partial n} v(P, Q ; t, \tau) d s \tag{12}
\end{gather*}
$$

Согласно известным свойствам тепловых потенпиалов (і) и (I2), $R(P, t)$ является решением одноролного уравнения теплопроводности в B_{3} и $R(P, O)=$ о. Из условия (го) находим, что $R\left(P^{(n)}, T_{m}\right)=0$. Отсюда, принимая во внимание непрерывноеть $R(P, f)$, когда $P \in S_{2}, \quad 0<t<T$, полуучаем $R(Q, t)=0$ для любой тотюн $Q \in S_{2}$. По теореме единственности решения задачи Юоши - Дирихле для неограниченной области имеем

$$
\begin{equation*}
R(P, t) \equiv \mathrm{O} \quad \text { в } B_{3} \tag{13}
\end{equation*}
$$

B силу регулярности $R(P, t)$ в $B_{2}+B_{3}$ пз условия (ті) получаем

$$
\begin{equation*}
R(P, t) \equiv \text { в в } B_{2} \tag{14}
\end{equation*}
$$

Отсюда

$$
\begin{align*}
\mathrm{R}\left(Q_{0}, t\right)= & \lim _{B_{2} \ni P \rightarrow Q_{0} \in S_{1}} R(P, t)=\frac{I}{2} \alpha\left(Q_{0}, t\right)+V\left(Q_{0}, t\right)+W\left(Q_{0}, t\right)=0, \\
{\left[\frac{\partial}{\partial n} R(P, t)\right]_{e}=} & \lim _{B_{2} \ni P \rightarrow Q_{0} \in S_{1}} \frac{\partial}{\partial n} R(P, t)=-\frac{I}{2} \alpha\left(Q_{0}, t\right) h\left(Q_{0}, t\right)+(15) \tag{15}\\
& +\frac{\partial V\left(Q_{0}, t\right)}{\partial n}+\left[\frac{\partial}{\partial n} W(P, t)\right]=0 .
\end{align*}
$$

Рассмотрев пределы функиий $R(P, t)$ и $\frac{\partial}{\partial n} R(P, t)$, когда точка $P \in B_{1}$ стремится к точке $Q_{0} \in S_{1}$, получим

$$
\begin{gather*}
R_{i}\left(Q_{0}, t\right)=-\frac{I}{2} \alpha\left(Q_{0}, t\right)+W\left(Q_{0}, t\right)+V\left(Q_{0}, t\right) \\
{\left[\frac{\partial}{\partial n} R(P, t)\right]_{i}=\frac{I}{2} \alpha\left(Q_{0}, t\right) h\left(Q_{0}, t\right)+\frac{\partial V\left(Q_{0}, t\right)}{\partial n}+\left[\frac{\partial}{\partial n} W(P, t)\right]_{i} .} \tag{16}
\end{gather*}
$$

Используя свойство непрерывности нормальной производной теплового потенииала двойного слоя, из этих условий опрелеляем

$$
\frac{\partial}{\partial n} R\left(Q_{0}, t\right)+h\left(Q_{0}, t\right) R\left(Q_{0}, t\right)=0, \quad Q_{0} \in S_{1}
$$

Юроме того, $R(P, t)$ удовлетворяет однородному уравнению тендопроволности и условию $R(P, 0)=0$. Но теореме единственности

$$
R(P, t) \equiv 0 \quad \text { в } \quad B_{1}
$$

Итак, во всем простраистве

$$
R(P, t) \equiv 0
$$

Отсюда в силу условий (т 5) и (гб) получаем $\alpha(Q, t)=0$ в D. Этим полнота системы (7) в L_{2} доюазана.

Обозначим терез $\left\{v_{l}(Q, \tau)\right\}$ систему функций, попученную пз системи [7] после оргонормализации по Пиидту. Пусть

$$
\nu_{k}(Q, \tau)=\sum_{i=1}^{k} c_{i}^{(k)} \mu_{i}(Q, \tau)
$$

Из условия (6) находим

$$
\int_{0}^{T_{m}} d \tau \int_{S_{1}} \varphi(Q, \tau)\left[h(Q, \tau) \alpha_{m}^{(n)}(Q, \tau)+\frac{\partial}{\partial n} \alpha_{m}^{(n)}(Q, \tau)\right] d s=\Phi\left(P(n), T_{m}\right)
$$ нли

$$
\int_{0}^{7} d \tau \int_{S_{1}} \varphi(Q, \tau) \mu_{i}(Q, \tau) d s=\Phi_{i} \quad(i=\mathrm{r}, 2,3, \ldots)
$$

Отсюдда

$$
\int_{0}^{T} d \tau \int_{S_{1}} \varphi(Q, \tau) \nu_{k}(Q, \tau) d s=\sum_{i=1}^{l_{i}} c_{i}^{(k)} \Phi_{i}
$$

где

$$
\varphi_{k}=\sum_{i=1}^{k} c^{(k)} \Phi_{i} \quad(k=1,2,3, \ldots)
$$

лвляются коэффициентами Фурье функцши $\varphi(Q, \tau)$ относительно системы $\left\{\nu_{k}(Q, \tau)\right\}$ в области D.

Рассмотрим фунтщию

$$
\begin{aligned}
u_{m}(P, t)=- & \int_{0}^{t} d \tau \int_{S_{1}} \varphi_{m}(Q, \tau)[h(Q, \tau) v(P, Q ; t, \tau)+ \\
& \left.+\frac{\partial}{\partial n} v(P, Q ; t, \tau)\right] d s+\Phi(P, t)
\end{aligned}
$$

гле

$$
\varphi_{m}(Q, \tau)=\sum_{l i=1}^{m} \varphi_{k} \nu_{k}(Q, \tau)
$$

. Легко доказать, что для всякой точкп $P \in B_{1}$ и $0<\tau<T$

$$
\lim _{m \rightarrow \infty} u_{m}(P, t)=u(P, t)
$$

Таким образом, $u_{m}(P, t)$ является искомым приблияенным значением решения.

Аналоиично решается задача ддя внешней области.
Тбилисский государственный университет
\% (Поступило в редакцию 5.2.1964)

M. 6ЈO30030600d0

 anJtmmas

凹ugornono mozizzo.

1. M. Pogorzelski. Probléme aux limites aux dérivées tangentielles pour l'èguation parabolique. Annales scientifiques de lecole Normale Supérieure, (3), LXXX, 1958.

РЕూIEНИЕ ТРЕТЬЕЙ И ЧЕТВЕРТОЙ ГРАНИЧНЫХ ЗАДАЧ СТАТИКИ АНИЗОТРОІННОГ УПРУ ГОГО ТЕЛА
(Представлено академиком В. Д. Купрадзе 24.6.1963)
В статье [I] дается одии способ решения третьей и четвертой граничных задач анизотропного уиругого тела применением метола потенииалов п теории сингуляннх интегральных уравнений.

В настоящей статье, основываясь на результатах и соображениях, приведениых в работе [r], ми лаем решение названных задач с помощыо инжегральных уравнений Фредгольма.
$^{\circ}$. Ищем решение третьей граничнй задачи для области D_{l} в виде

$$
\begin{align*}
\vec{u}(P)= & \frac{V B C-A^{2}}{\pi} \operatorname{Re} \sum_{k=1}^{2} \int\left\{\left[\frac{I}{\Delta(Q)}\binom{m_{k} \bar{\xi}_{s}+n_{k} \eta_{s}}{l_{k} \xi_{s}+h_{k} \eta_{s}} \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}}+\right.\right. \\
& \left.+\binom{A_{k} X+B_{k} Y}{B_{k} X+C_{k} Y} \ln \left(I-\frac{z_{k}}{\zeta_{k}}\right)\right] g_{1}(Q)+ \\
& \left.+\binom{{ }_{k} B_{k} \xi_{s}-A_{k} \eta_{s}}{C_{k} \xi_{s}-B_{k} \eta_{s}} \frac{1}{\Delta(Q)} \ln \left(\mathrm{I}-\frac{z_{k}}{\zeta_{k}}\right) g_{2}(Q)\right\} d s+ \\
& +\frac{1}{\pi} \int_{S}\binom{X g_{1}-\frac{\eta_{s}}{\Delta(Q)} g_{2}}{Y g_{L}+\frac{\bar{\xi}_{s}}{\Delta(\bar{Q})} g_{2}} d s, \tag{I.I}
\end{align*}
$$

где $\vec{g}\left(g_{1}, g_{2}\right)$ - искомый непрерывный вектор, S - замкнутая кривая, ограничиваюшая область D_{i} и нмеющая в каждой точке непрерывную кривизну,

$$
\begin{align*}
& \Delta(Q)=C \eta_{s}^{2}-2 A \xi_{s} \eta_{s}+B \xi_{s}^{2} \tag{1.2}\\
& X(Q)=-\frac{\left(A \xi_{s s}+B \eta_{s s}\right) \delta}{\Delta^{2}(Q)}+\delta \eta_{s} \frac{\partial}{\partial s} \frac{1}{\Delta(Q)}, \\
& Y(Q)=\frac{\left(C \xi_{s s}+A \eta_{s s}\right) \delta}{\Delta^{2}(Q)}-\delta \xi_{s} \frac{\partial}{\partial s} \frac{1}{\Delta(Q)}
\end{align*}
$$

Остальные члены, входящие в (г.I), определены в работе [I].

Учитывая граничные условия и выполняя некоторые элементарные вычисления, для определения вектора $\vec{g}\left(g_{1}, g_{2}\right)$ получаем следуюшие интегральные уравнения Фредгольма:

$$
\begin{align*}
& g_{1}\left(Q_{0}\right)+\frac{1}{\pi} \int_{S}\left[K_{11}\left(Q_{0} \cdot Q\right) g_{1}(Q)+K_{12}\left(Q_{0}, Q\right) g_{2}(Q)\right] d s=F_{1}\left(Q_{0}\right) \tag{I.4}\\
& g_{2}\left(Q_{0}\right)+\frac{1}{\pi} \int_{S}\left[K_{21}\left(Q_{0}, Q\right) g_{1}(Q)+K_{22}\left(Q_{0}, Q\right) g_{2}(Q)\right] d s=F_{2}\left(Q_{0}\right)
\end{align*}
$$

где

$$
F_{1}\left(Q_{0}\right)=\left(u_{n}\right)_{i}, \quad F_{2}\left(Q_{0}\right)=\left(T_{s} \vec{u}-\bar{\delta} \frac{\partial u_{n}}{\partial s}\right)_{i}, \quad\left(\frac{\partial u_{n}}{\partial s_{Q_{0}}}\right)_{i}=\frac{\partial\left(u_{n}\right)_{i}}{\partial s_{Q_{0}}}=\frac{\partial F_{1}}{\partial s_{Q_{0}}}
$$

- заданнне непрерывные функщии,

$$
\begin{align*}
& K_{11}\left(Q_{0}, Q\right)=\sqrt{B C}-A^{2} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(m_{k} \eta_{0 S}-l_{k} \xi_{0 S}\right) \xi_{s}+\right.\right. \\
& +\left(n_{k} \eta_{0 s}-h_{k} \xi_{0 s}\right) \eta_{s} \left\lvert\, \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{b}}+\left[\left(A_{k} \eta_{0 s}-B_{k} \xi_{0 s}\right) \cdot X(Q)+\left(B_{k} \eta_{0 s}-\right.\right.\right. \\
& \left.\left.\left.-C_{k} \xi_{0 s}\right) Y(Q)\right] \ln \left(I-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+X(Q) \eta_{0 s}--Y(Q) \xi_{0 s}, \\
& K_{12}\left(Q_{0}, Q\right)=\sqrt{B C-A^{2}} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(B_{k} \eta_{0 s}-C_{k} \xi_{0 s}\right) \xi_{s}-\right.\right. \\
& \left.\left.-\left(A_{k} \eta_{0 s}-B_{k} \xi_{0 S}\right) \eta_{s}\right] \ln \left(\mathrm{I}-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}-\frac{\mathrm{I}}{\Delta(Q)}\left(\eta_{s} \eta_{0 s}+\xi_{s} \xi_{0 s}\right), \\
& K_{21}\left(Q_{0}, Q\right)=\sqrt[V]{B C-A^{2}} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(m_{k}^{\prime} \xi_{0 s}+n_{k}^{i} \eta_{0 s}\right) \xi_{s}+\right.\right. \tag{I.6}\\
& \left.+\left(n_{k}^{\prime} \xi_{0 s}+l_{k}^{\prime} \eta_{0 s}\right) \eta_{s}^{\prime}\right] \frac{\partial^{2} \ln \sigma_{k}}{\partial s_{Q_{0}} \partial s_{Q}}+\left[\left(m_{k} \xi_{0 s}+n_{k} \eta_{0 s}\right) X(Q)+\right. \\
& \left.+\left(l_{k} \xi_{0 S}+h_{k} \eta_{0 s}\right) Y(Q)\right] \frac{\partial}{\partial s_{Q}} \ln \sigma_{k}-\frac{\delta}{\Delta(Q)}\left[\left(m_{k} \eta_{0 S s}-l_{k} \xi_{0 S s}\right) \xi_{s}+\right. \\
& \left.+\left(n_{k} \eta_{0 s s}-h_{k} \xi_{0 s s}\right) \eta_{s}\right] \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}}-\delta\left[\left(A_{k} \eta_{0, s s}-B_{k} \xi_{0 s s}\right) X(Q)+\right. \\
& \left.\left.+\left(B_{k} \eta_{0 s s}-C_{k} \xi_{0 S s}\right) Y(Q)\right] \ln \left(\mathrm{I}-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+\delta\left[\xi_{0 s s} Y(Q)-\eta_{0 s s} X(Q)\right]_{\mu}
\end{align*}
$$

$$
\begin{aligned}
& K_{22}\left(Q_{0}, Q\right)=\sqrt{B C-A^{2}} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { \mathrm { I } } { \Delta (Q) } \left[\left(l_{k} \xi_{0 s}+h_{k} \eta_{0 s}\right) \xi_{s}-\right.\right. \\
& \left.\quad-\left(m_{k} \xi_{0 s}+n_{k} \eta_{0 s}\right) \eta_{s}\right] \frac{\partial}{\partial Q_{Q_{0}}} \ln \sigma_{k}+\frac{\hat{o}}{\Delta(Q)}\left[\left(C_{k} \xi_{0 s s}-B_{k} \eta_{0 s s}\right) \xi_{s}+\right. \\
& \left.\left.\quad+\left(A_{k} \eta_{0 s s}-B_{k} \xi_{0 s s}\right) \eta_{s}\right] \ln \left(1-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+\delta \frac{\xi_{s} \xi_{0 s s}+\eta_{s} \eta_{0 s s}}{\Delta(Q)} .
\end{aligned}
$$

Таккак $\begin{aligned} & \partial F_{1}-\text { непрерывная } \\ & \partial s_{Q_{0}}\end{aligned}$ функция, то, дифференцируя по дуге первое уравнение из (I.4) и учитывая непрерывность кривизны контура s, получаем, что $\frac{\partial g_{1}}{\partial s_{\mathbf{Q}_{0}}}$ является непрерывной функцией. В этом слугае доназывается, что илеет место равенство $\left(\frac{\partial u_{s}}{\partial s}\right)_{i}=\frac{\partial\left(u_{s}\right)_{i}}{\partial s_{Q_{\theta}}}$ и сушествуют неирерывные значения для выражений $\left(u_{s}\right)_{i}$ и $\left(T_{n} \vec{u}\right)_{i}$. Итак, три наших ограничения смешения и напряжения, соответствуюшие (I.I), являются непрерывыыми векгорами вплоть до гранишы S.

Дадим краткое исследование разрешимости системы (1.4). Допустим, что соотвегствующая однородная система

$$
\begin{align*}
& g_{1}\left(Q_{0}\right)+\frac{\mathrm{I}}{\pi} \int_{\mathrm{S}}\left[K_{11}\left(Q_{0}, Q\right) g_{1}(Q)+K_{12}\left(Q_{0}, Q\right) g_{2}(Q)\right] d s=0 \tag{1.7}\\
& g_{2}\left(Q_{0}\right)+\frac{\mathrm{I}}{\pi} \int_{\mathrm{S}}\left[K_{21}\left(Q_{0}, Q\right) g_{1}(Q)+K_{22}\left(Q_{0}, Q\right) g_{2}(Q)\right] d s=0
\end{align*}
$$

имеет нетривиальное решение $\vec{g}\left(g_{1}, g_{2}\right)$. Применяя формулу Грина [2] в области D_{i}, получаем (считая, что S не есть окружность)

$$
\begin{equation*}
\vec{u}(P)=0, \quad P \in D_{i} . \tag{I.8}
\end{equation*}
$$

Пз последней формудн и из (土.1) паходим

$$
\int_{S}\left(\begin{array}{cc}
X g_{1}-\frac{\eta_{s}}{\Delta(Q)^{2}} g_{2} \tag{1.9}\\
Y g_{1}+ & \xi_{s}-g_{2} \\
\Delta(Q)^{2}
\end{array}\right) d s=0
$$

а из (і.1) и (п.8) спедует

$$
\begin{equation*}
0=N^{*} \vec{u}(P)=\frac{\left(B C-A^{2}\right)}{a_{11}\left[I-w^{2}\left(B C-A^{2}\right)\right]} \frac{\partial \vec{v}(P)}{\partial s}, \tag{I.10}
\end{equation*}
$$

где N^{*} - известный оператор 〔3], а

$$
\begin{align*}
\vec{v}(P)= & \left.\frac{V B C-A^{2}}{\pi} \operatorname{Im} \sum_{k=1}^{2}\right|_{S}\left\{\int \frac{\mathrm{I}}{\Delta(Q)}\binom{m_{k} \xi_{s}+n_{k} \eta_{s}}{l_{k} \xi_{s}+h_{k} \eta_{s}} \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}}+\right. \\
& \left.+\binom{A_{k} X+B_{k} Y}{B_{k} X+C_{k} Y} \ln \left(1-\frac{\tilde{z}_{k}}{\zeta_{k}}\right)\right] g_{1}(Q)+ \\
& \left.+\frac{1}{\Delta(Q)}\binom{B_{k} \xi_{s}-A_{k} \eta_{s}}{C_{k} \xi_{s}-B_{k} \eta_{s}} \ln \left(1-\frac{\tau_{k}}{\zeta_{k}}\right) g_{2}(Q)\right\} d S . \tag{I.II}
\end{align*}
$$

Из (г.го) толучаем $\vec{v}(P)=\vec{c}, P \in D_{i}$. Но тақ как $\vec{v}(0)=0$, то $\vec{c}=0$ и

$$
\begin{equation*}
\vec{v}(P)=0, P \in D_{i} . \tag{I,12}
\end{equation*}
$$

Учитывая летко доказываемпс равенства $\left(v_{n}\right)_{i}=\left(v_{n}\right)_{a},\left(T_{s} \vec{v}-\delta \frac{\partial v_{n}}{\partial s}\right)_{i}=$ $=\left(T_{s} \vec{v}-\delta \frac{\partial \boldsymbol{v}_{n}}{\partial s}\right)_{a}$ н условие (土.9) и применяя формулу Грина в области $D_{a}\left(D_{a}\right.$ - бссконечная односвязная область) получаем

$$
\begin{equation*}
\vec{v}(P)=0, P \in D_{a} . \tag{1.13}
\end{equation*}
$$

Далее, применяя равенства

$$
\begin{gathered}
\left(v_{s}\right)_{i}-\left(v_{s}\right)_{a}=2 \sqrt{B C-A^{2}} \frac{g_{1}\left(Q_{0}\right)}{\Delta\left(Q_{0}\right)}, \\
\left(T_{n} \vec{v}+\delta \frac{\partial v_{s}}{\partial s}\right)_{i}-\left(T_{n} \vec{v}+\bar{\delta} \frac{\partial v_{s}}{\partial s}\right)_{a}= \\
=-2 \sqrt{ } \cdot \frac{B C-A^{2}}{B}\left[\eta_{0 s} X\left(Q_{0}\right)-\xi_{0 s} Y\left(Q_{0}\right)\right] g_{1}\left(Q_{0}\right)-2 \sqrt{B C-A^{2} \cdot \frac{g_{2}\left(Q_{0}\right)}{\Delta\left(Q_{0}\right)},}
\end{gathered}
$$

которые вытекаюл из (I.II) и (I.I3), получаем (так как $\vec{v}(P)=0$ на всей плоскости)

$$
g_{1}=g_{2}=0 .
$$

В случае окружности, так же как в работе [I], локазывается, что система (I.4) разрешима, если соблюдено условие

$$
\int_{\mathrm{S}} F_{2} d s=0
$$

которое в случае окружности обозначает равенство нулю главного момента внешних усилий.

Напишем сопряженнуо с (1.4) систему интегральных уравнений

$$
\begin{align*}
& h_{1}\left(Q_{0}\right)+\frac{1}{\pi} \int_{S}\left[K_{11}\left(Q, Q_{0}\right) h_{1}(Q)+K_{21}\left(Q, Q_{0}\right) h_{2}(Q)\right] d s=\Phi_{1}\left(Q_{0}\right) \\
& h_{2}\left(Q_{0}\right)+\frac{1}{\pi} \int_{S}\left[K_{12}\left(Q, Q_{0}\right) h_{1}(Q)+K_{22}\left(Q, Q_{0}\right) h_{2}(Q)\right] d s=\Phi_{2}\left(Q_{0}\right) \tag{1.14}
\end{align*}
$$

Доказываем, что система (г. 4) получается, если ренение третьей граничной задачи

$$
\begin{aligned}
& \frac{\mathrm{I}}{\Delta\left(Q_{0}\right)}\left(-T_{s} \vec{u}+\delta \frac{\partial u_{n}}{\partial s}\right)_{a}-\left(u_{n}\right)_{a}\left[\eta_{0 s} X\left(Q_{0}\right)-\xi_{0 s} Y\left(Q_{0}\right)\right]=\Phi_{1}\left(Q_{0}\right) \\
& \frac{\mathrm{I}}{\Delta\left(Q_{0}\right)}\left(u_{n}\right)_{a}=\Phi_{2}\left(Q_{0}\right)
\end{aligned}
$$

в области D_{a} искать, следуюпии образом:

$$
\begin{gathered}
\vec{u}(P)=\frac{V \overline{B C-} A^{2}}{\pi} R e \sum_{k=1}^{2}\left(\frac { 1 } { S } \left\{\frac{1}{\Delta(Q)}\binom{B_{k} \xi_{s}-A_{k} \eta_{s}}{C_{k} \xi_{s}-B_{k} \eta_{s}} \times\right.\right. \\
\times \ln \left(\mathrm{I}-\frac{\xi_{k}}{z_{k}}\right) h_{1}(Q)+\left[-\binom{m_{k} \xi_{s}+n_{k} \eta_{s}}{l_{k} \xi_{s}+h_{k} \eta_{s}} \frac{\partial}{\partial s_{Q}} \ln \sigma_{k}+\right. \\
\left.\left.+\delta\binom{A_{k} \eta_{s s}-B_{k} \xi_{s s}}{B_{k} \eta_{s s}-C_{k} \xi_{s s}} \ln \left(I-\frac{\zeta_{k}}{q_{k}}\right)\right] h_{2}(Q)\right\} d s+\frac{I}{\pi} \int\binom{-\eta_{s} h_{1}+\delta \eta_{s s} h_{2}}{\xi_{s} h_{1}-\delta \xi_{s s} h_{2}} d s .
\end{gathered}
$$

Сисгема (1.14) разрешима, если я не является окружностью. B слутае окружности газрешилое интегралнне уравненне строится так же, как в работе [I].
2°. Ищем решение четвертой граничиой задачи в области D_{i} в виде

$$
\begin{align*}
& \vec{u}(P)=\frac{\sqrt[V]{B C-A^{2}}}{\pi} \operatorname{Re} \sum_{k=1}^{2} \int_{S}\left[\frac{1}{\Delta(Q)}\binom{n_{k} \xi_{s}-m_{k} \eta_{s}}{h_{k} \xi_{s}-l_{k} \eta_{s}} \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}} g_{1}(Q)+\right. \\
& +\binom{A_{k} X+B_{k} Y}{B_{k} X+C_{k} Y} \ln \left(\mathrm{I}-\frac{z_{k}}{\zeta_{k}}\right) g_{1}(Q)+ \tag{2.1}\\
& \left.+\frac{I}{\Delta(Q)}\binom{A_{k} \xi_{s}+B_{k} \eta_{s}}{B_{k} \xi_{s}+C_{k} \eta_{s}} \ln \left(\mathrm{I}-\frac{z_{k}}{\zeta_{k}}\right) g_{2}(Q)\right) d s+\frac{I}{\pi} \int\binom{X g_{1}+\frac{\xi_{s}}{\Delta(Q)^{g_{2}}}}{Y g_{1}+\frac{\eta_{s}}{\Delta(Q)^{g}} g_{2}} d s .
\end{align*}
$$

где

$$
\begin{align*}
& X(Q)=\frac{\delta}{\Delta(Q)}\left[\frac{A \eta_{s s}-B \xi_{s s}}{\Delta(Q)}+\xi_{s} \frac{\partial}{\partial s} \ln \sqrt{\Delta(Q)}\right] \\
& Y(Q)=\frac{\delta}{\Delta(Q)}\left[\frac{A \xi_{s s}-C \eta_{s s}}{\Delta(Q)}+\eta_{s} \frac{\partial}{\partial s} \ln \sqrt{\Delta(Q)}\right] \tag{2.2}\\
& \Delta(Q)=C \eta_{s}^{2}+2 A \xi_{s} \eta_{s}+B \xi_{s}^{2} . \tag{2.3}
\end{align*}
$$

Другие веппчины определепы в раб́оте [1].

Учигывая устовия четвертой граничной задачи [I], после незначительных иреобразований для определения вектора $\vec{g}\left(g_{1}, g_{2}\right)$ получаем следуюшую систему интегратьных уравнений Фрелгольма:

$$
\begin{align*}
& g_{1}\left(Q_{0}\right)+\frac{\mathrm{r}}{\pi} \int_{S}\left[G_{11}\left(Q_{0}, Q\right) g_{1}(Q)+G_{12}\left(Q_{0}, Q^{\prime} g_{2}(Q)\right] d s=f_{1}\left(Q_{0}\right),\right. \tag{2.4}\\
& g_{2}\left(Q_{0}\right)+\frac{\mathrm{r}}{\pi} \int_{S}\left[G_{21}\left(Q_{0}, Q\right) g_{1}(Q)+G_{22}\left(Q_{0}, Q\right) g_{2}(Q)\right] d S=f_{2}\left(Q_{0}\right),
\end{align*}
$$

где
$f_{1}\left(Q_{0}\right)=\left(u_{s}\right)_{i}, \quad f_{2}\left(Q_{0}\right)=\left(T_{n} \vec{u}+\delta \cdot \frac{\partial u_{s}}{\partial s}\right)_{i} ; \quad\left(\frac{\partial u_{s}}{\partial s_{Q_{0}}}\right)_{i}=\frac{\partial\left(u_{s}\right)_{i}}{\partial s_{Q_{0}}}=\frac{\partial f_{1}}{\partial s_{Q_{n}}}$

- данные неирерывные функиии,

$$
\begin{align*}
& G_{11}\left(Q_{0}, Q\right)=\sqrt[V]{ } C-A^{2} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { \mathrm { I } } { \Delta (Q) } \left[\left(n_{k} \xi_{0 s}+h_{k} \eta_{0 s}\right) \xi_{s}-\right.\right. \\
& \left.-\left(m_{k} \xi_{0 s}+l_{k} \eta_{0 s}\right) \eta_{s}\right] \frac{d}{d s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}}+\left[\left(A_{k} \xi_{0}+B_{k} \eta_{0 s}\right) X(Q)+\right. \\
& \left.\left.+\left(B_{k} \xi_{0 S}+C_{k} \eta_{O S}\right) Y(Q)\right] \ln \left(\mathrm{I}-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+ \\
& +X(Q) \xi_{0 s}+Y(Q) \eta_{0 s}, \\
& G_{1 \mathbf{2}}\left(Q_{0}, C\right)=\sqrt{ } B C-A^{2} \cdot \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(A_{k} \xi_{0 s}+B_{k} \eta_{0 s}\right) \xi_{s}+\right.\right. \\
& \left.\left.+\left(B_{k} \xi_{0 s}+C_{k} \eta_{0 s}\right) \eta_{s}\right] \operatorname{In}\left(\mathrm{I}-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+\frac{1}{\Delta(Q)}\left(\xi_{s} \xi_{0 s}+\eta_{s} \eta_{0 s}\right), \\
& G_{21}\left(Q_{0}, Q\right)=\sqrt{ } \bar{B} C-A^{2} \operatorname{Re} \sum_{k=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(n_{k}^{\prime} \eta_{0 s}-l_{k}^{\prime} \xi_{0 s}\right) \xi_{s}+\right.\right. \tag{2.6}\\
& \left.+\left(n_{k}^{\prime} \xi_{0 s}-m_{s}^{\prime} \eta_{0 s}\right) \eta_{s}\right] \frac{\partial^{2}}{\partial s_{Q_{0}} \partial s Q} \ln \sigma_{k}+\left[\left(m_{k} \eta_{0 s}-n_{k} \xi_{0 s}\right) X(Q)+\right. \\
& \left.+\left(l_{k} \eta_{0 s}-h_{k} \xi_{0 s}\right) Y(Q)\right] \frac{\partial}{\partial s_{Q_{0}}} \ln \sigma_{k}+\frac{\delta}{\Delta(Q)}\left[\left(n_{k} \xi_{0 s s}+h_{k} \eta_{0 s s}\right) \xi_{s}-\right. \\
& \left.-\left(m_{k} \xi_{0 . s s}+l_{k} \eta_{0 s s}\right) \eta_{s}\right] \frac{\partial}{\partial s_{Q}} \ln \frac{\sigma_{k}}{\zeta_{k}}+\delta\left[\left(A_{k} \eta_{0 s}-B_{k} \xi_{0 s}\right) X(Q)+\right. \\
& \left.\left.+\left(B_{k} \eta_{0 s}-c_{k} \xi_{0 s}\right) Y(Q)\right] \ln \left(1-\frac{\zeta_{k 0}}{\zeta_{k}}\right)\right\}+\delta\left[X(Q) \xi_{0 s s}+Y(Q) \eta_{0 s s}\right],
\end{align*}
$$

$$
\begin{aligned}
& \quad G_{22}\left(Q_{0}, Q\right)=\sqrt{B C-A^{2}} \cdot \operatorname{Re} \sum_{l i=1}^{2}\left\{\frac { 1 } { \Delta (Q) } \left[\left(m_{k} \eta_{0 s}-n_{k} \xi_{0 s}\right) \xi_{s}+\right.\right. \\
& \left.+\left(l_{k} \eta_{0 s}-h_{k} \xi_{0 s}\right) \eta_{s}\right] \frac{\partial}{\partial s_{Q_{0}}} \ln \sigma_{k}+\frac{\delta}{\Delta(Q)}\left[\left(A_{k} \xi_{0 s s}+B_{k} \eta_{0 s s}\right) \xi_{s}+\right. \\
& \left.+\left(B_{k} \xi_{0 S s}+C_{k} \eta_{0 s s}\right) \eta_{s}\right] \ln \left(1-\frac{\zeta_{k 0}}{\zeta_{k}}\right)+\frac{\delta}{\Delta(Q)}\left(\xi_{s} \xi_{0 s s}+\eta_{s} \eta_{0 s s}\right) .
\end{aligned}
$$

Доказательство разренимости снстемь (2.4) анадоиино приведенному выше доказательству лля третией чаиичной задачи. Система (2.4) всегда разрешима. В этом смысле четвертая граничная задача имеет сходство с первой основной траничной задачей.

Напипем сопряженную $\subset(2.4)$ снстему интегранных уравнений

$$
\begin{align*}
& h_{1}\left(Q_{0}\right)+\frac{1}{\pi} \int_{\mathrm{S}}\left[G_{11}\left(Q, Q_{0}\right) h_{1}(Q)+G_{21}\left(Q, Q_{0}\right) h_{2}(Q)\right] d s=F_{1}(Q) \tag{2.7}\\
& h_{2}\left(Q_{0}\right)+\frac{1}{\pi} \int_{\mathrm{S}}\left[G_{12}\left(Q, Q_{0}\right) h_{1}(Q)+G_{22}\left(Q, Q_{0}\right) h_{2}(Q)\right] d s=F_{2}(Q)
\end{align*}
$$

Элементарныии вичислениями доказывается, что система (2.7) получается, если репение четвертоी граннчиой задачи

$$
\begin{gathered}
\frac{1}{\Delta\left(Q_{0}\right)}\left(-T_{n} \vec{u}-\delta \frac{\partial u_{s}}{\partial s}\right)_{a}-\left(u_{s}^{\prime} \mid \xi_{0 s} X\left(Q_{0}\right)+\eta_{0 s} Y\left(Q_{0}\right)\right]=F_{1}\left(Q_{0}\right), \\
\frac{1}{\Delta\left(Q_{0}\right)}-\left(u_{s}\right)_{i t}=F_{2}\left(Q_{0}\right)
\end{gathered}
$$

в области D_{a} булем искаиь следуюним сбразом:

$$
\begin{aligned}
& \vec{u}(P)=\frac{\sqrt[V]{B C-A^{2}}}{\pi} \operatorname{Re} \sum_{k=1}^{2} \int_{\mathrm{S}}\left[\binom{A_{k} \xi_{s}-B_{k} \eta_{s}}{B_{k} \xi_{s}+C_{k} \eta_{s}} \ln \left(\mathrm{I}-\frac{\zeta_{k}}{z_{k}}\right) h_{1}(Q)+\right. \\
& +\binom{m_{k} \eta_{s}-n_{k} \xi_{s}}{e_{k} \eta_{s}-h_{k} \bar{\xi}_{s}} \frac{\partial}{\partial s_{Q}} \ln \sigma_{k} h_{2}(Q)+ \\
& \left.+\delta\binom{A_{k} \xi_{s s}+B_{k} \eta_{s s}}{B_{k} \xi_{s s}+C_{k} \eta_{s s}} \ln \left(1-\frac{\zeta_{k}}{i_{k}}\right) h_{2}(Q)\right] d s+\frac{1}{\pi} \int_{S}\binom{\xi_{s} h_{1}+\delta \xi_{s s} h_{2}}{\eta_{s} h_{1}+\delta \eta_{s s} h_{2}} d s .
\end{aligned}
$$

Система (2.7), подойно (2.4), всетда разрешима.
Нтак, мы доказали теоремы сушествования решений третвей и четвертой таничннх залач лля однссвязных конечных $\left(D_{i}\right)$ и бес-

конечных областей $\left(D_{a}\right)$. Обобшение полученных результатов для многосвязных конечных и бесконечных областей не представляет труднпсти и осуществляется, қак в работе [3].

Приведениые в эгой работе рассуждения переносятся и на решение задачи изгибैа опертой анизотроиной пнастинни.
Академия наук Грузинской ССР
Вычислительный центр
(Поступило в редакцию 20.1.1964)

的 ob o n wo

1. М. О. Башелей щвили. Ој однын спогоб̃ решения третьей и четвертой граничных задач статики анизотропных упругих тел. Сообщения АН ГССР, XXXIV: 2, 1954.
2. М. О. Башелейшвили. Решение птоских граничных задач статики анизотропного упругого тела. Труды Вычислигельного ценгра АН ГССР, т. III, 1963.
3. М. О. Башелейшвили. Об одном снособе исследования некоторых плоских граничных задач анизотропного упругого тела для многосвязных областей. Труды Вычнслительного ценгра АН ГССР, т. IV, 1963.

C. В. МЕУНАРГИЯ

МОДЕЛИРОВАНИЕ ПРИТОКА ГРУНТОВbiX BOД \mathfrak{K} ОТКРЫТЫМ КАНАЛАМ ПРЯМОУГОЛЬНОГО ПРОФИЛЯ ПРИ НАЛИЧИИ ПРОМЕЖУТКА В円САФИВАННЯ

(Представлено членом-корреспондентом Академии П. Г. Шенгелия 5.2.1964)
Любой осушителыный канал пли русло можно свести к каноническому - эквивалептному прямоугольному каналу при наличии промежутка высачивания [I]. Поэтому эффективное решенне данной қанонической задачи имеет большюе принципиальюе значенпе.

Нами разработан метод молетирования на электропроводной бумате задачи притока грунтовых вод п прямоугольному каналу при наличии промежутка высачивания. Моделирование потенпиальных полей на электропроводной бумаге производим с помошью интегратора ЭГДА-9/60.

Этот метод даст возможность в дальнейшем составить таблицы для решения канонического осушительного канала.

Методика производства опытов заключается в следуюшем: предварительно изготовдяем опытную модель, вырезшвая на электропроводной бумаге, т. е. на модели грунта, в определенном масштабе левую часть поперечного сечения исстедуемого прямоуюольного ғанала (рис. I, а). Действующий напор $H=h-t$ разбиваем на 10 равных частей и через точки деления проводим вспомогательные пунктирные линии. Устанавливаем вдоль контура питания $A B$ стандартные металлические шинь, а по дну канала $D E$-специальную шину шириной, равной глубине затопления, и длиной, равной ширине канала.

Вдоль линин $A B$ прикладываем потешинат $\varphi=I 00 \%$, а по дну канала $D E-\varphi=0 \%$. На борту канала $C M$ устанавливаем сконструированную наміг шину, при полоши которой без особого труда расставляем вдоль линии $2-2^{\prime}$ (рис. г, а) при любол пнтервале между всномогательными пунктирныи тинпями контактные пластинки, присоединив их к потенциалам, соответс твуюшим пунктирным линиям.

Татпм образом, с помошью этой шнны вдоль борта капала СМ потенинал принудительно распределяется по линейному закону от $\varphi=100 \%$ до $\varphi=0 \%$.

Рис. 1. а) и б-опытные модели; T--моцность водоносного пласта; h-глубина канала; $b / 2$-подуширина канала; $L / 2$-длнна от вертикальной грани пласта до оси канала; t-глубнна затопления; в) сеченне полуканала

В начале опнта на моледи определяем кривую денрессин $1-2$ (рнс. I, a). В качестве пулевого прибллыения берем торнзонтальные пря-

мые $1-2^{\prime}$. Затем на ностроенных прямых $(\varphi=90 \%$ (от H), $\varphi=80 \%$ (от H) и т. д.) находим точкн, нмеююие потснциал $\varphi=90 \%, \varphi=80 \%$ и т. л. На рис. г, а эти точки отмечены крестикими. Носле этого, обрезав модель по некоторой тинии —— $^{\prime \prime}$ ", расположенной выше полученных точек, вновь производшя те же операции до тех пор, покс все точки $\varphi=90 \%, \varphi=80 \% \ldots \varphi=10 \%$ не разместятяя на пересечении кривой депрессии со вспомогателиными пунктирными линиями (точки, отмеченнше кружочками).

Точка пересечения кривой депрессии с бортом канала является точкой выхода 2, а расстолние $2-K$-промеяуткои высачивания. На рис. г, б и I, в промежуток высачивания обозначен через $M K$.

Лалее строим обычньм способом линии равного лотеншиала (совиадающие с линвями равного напора) через 10%, а иногда-через 5%.

Полный филтрационньใ: расхол воды, поступаюинй в канал через левую половину смоченного периметра, определяем из данной модели посредством подключения стандарта к шине $D E$ (рис. I, б) и измерения потенциала на той же шине. Стинарт изготовляется из той же бумаги, что и модеть.

После определения полного фильтрационного расхода переходим к построению линии тока, предварительно изготовив модель грунта для обраненной задачи.

B нашем случае будем иметь две граничные линии: первая булет совпадать с кривой депрессии $\mathrm{I}-2$, а вторая - с линией водоупора $3-4$ и осью симметри поперечного сечения канаща $4-5$. Но этим двум дилиям в обращенной задаче устанавливаем металлические шины и по граничным эквипотенцналам I - ; п 5 - 6 - $7-8$ ибрезаем бумагу, чем устанавливаем изоляцию (рис. \mathbf{I}, a). Так как полный фильтращионный расход воды протекает между кривой депрессии и динией водоупора, на шину $I-2$ подаем значение $\varphi=0 \%$, а на шину $3-4-5-$ значение $\varphi=100 \%$.

Эквинотенциальнье линии обращенной задачи и являются линиями тока исходной задачи.

Пример: ири заланны чндленных значевиях гидравлических элементов поперечногого сечения левой половины исследуемого канала, а также при размерах той же половины молели однородного водоносного пласта (рис. І, б) определить, какой пронент от полного фильтрационного расхода воды будет поступать в канал через поверхность высачивания $M K$, борт $D K$ и дно канала $D E$.

Изготовив опытную модель но дантым примера, ириступаем қ построению линии депрессии указанньм вьше способом. Далее переходим К определенито величины полного и частичного фильтационных расходов.

Полньй фильтрационный расход, отнесенньй к І пог. м. длины қанала, определяем двояким способом: ири помощи гидродинамической сетки движения жидкости и измерением расхода непосредственно на приборе, исходя из существующей электрогидродинамической аналогии.

Первый способ. Полный фнльтрационный расход определяем по известной формуле ([2], § 98)

$$
\begin{equation*}
Q=-\frac{\Delta h}{\Delta S} \sum_{j=1}^{n} x(x ; y) \Delta h_{j} \tag{I}
\end{equation*}
$$

где
Δh-разность истинных значений напоров для двух соселних линий $с$ постоянными напорами;
ΔL-отрезок дуги линии равного напора, заключенный между лвумя соседними линиями тона;
ΔS —отрезок дуги линии тока, заключенный между двумя соседними линиями равного напора;
n-количество линий тока, построенных на сетқе.
Для нашего случая в қачестве нсходной линий $h=$ const на модели мы берем линию равных потеншиалов- 100% шину, параллельно которой на

Таблица 1

0% шина (у канала)				100% шина (сечение а-a)			
$\begin{aligned} & \text { 芯 } \\ & \stackrel{\rightharpoonup}{4} \\ & \text { a } \end{aligned}$							
I	21,20	XII	6,00	1	99, ro	11	
II	18,75	XIII	7.50	2	99.10	12	98,80
IV	19,00	XIV	6,00	3	99,00	${ }^{1} 3$	98,80
V	${ }^{17} 7.40$	XV	5,00	4	98,90	14	89,80
VI	16,90	XVI	4,00	5	98,95	15	98,63
V1I	13,82 14,50	XV1I	3,60	6	98,90	16	98,70
VIII	14,50 7,70	XIX	3, ${ }_{2}, 100$	8	98,90	17	98,70
IX	8,00	XX	2,10 2,00	9	98,80 98,80	18	98,60 8,80
X	0,00	XXI	1,20	10	98,70	20	98,70
XI	7,00	XXII	1,00				

Разбнв сечение а-а на равные участки $\Delta L=3 \quad$ см, для определения полного фильтрационного расхода пользуемся формудой (1).

В табл. І даны результаты измерения потенциалов в точқах сечення а-а и у поперечного сечения канала (рис. I, б и I, B).

Приращение потснииата (т. е. напора $\Delta /$) в сечении а-а не постоянное и во всех точқах сечения огрицатетьное.

Например, для точки III (табл. I) находим

$$
\Delta h=99,00-1000,00=-1,00
$$

Таким образом, применяя формулу (I), для полного расхода получаем

$$
Q=-3 \sum_{j=1}^{20} \Delta h_{j}=\sim 71 \mathrm{M}^{2} / \text { cyтки. }
$$

B данном случае коэффициент фидьтрации считаем постоянным, а длл упропения расчста условно его принимаем равным I м/сутки.

Полныї фпльтрацпоннй расход, поступатоиий в левую половину прямоугодьного канада, можно представить кақ сумму расхолов, поступаюинх с промежутка высачивания н со смоченного периметра ғана.ла .

Чтобы иметь полное представление о том, какая доля расхода поctyaet в канаи с его борта (вклюпая промежутон высачивания) и дниша, рассмотрим отдельные фрагментн: $M K, K D$ н $D E$ (рис. I, в).

Пользуясь взлтыми из таб̆л. І значениями иотепциалов (фрагмент MK) в точках I-VIII (рис. 1, в), расположенных на рассгоянин I см от линин MK, молно легко определить величину 中ильтранионного расхода в промежутке высачивания, учтя разность потенииалов между горизонтально расположенными точками.

Таким юоразом, расхол, поступввний в канал через промежуток высачивания, равняется

$$
Q_{M K}=\left(\Pi_{I}-\Pi_{\mathrm{II}}\right)+\left(\Pi_{\mathrm{HI}}-\Pi_{\mathrm{IV}}\right)+\left(\Pi_{\mathrm{VII}}-\Pi_{\mathrm{VIII}}\right)=13,9 \mathrm{~m}^{2} / \text { cymки. }
$$

Здесь через ПІ обозначены нотениалы в точках (табл. I).
Глубина загопленного борта ஈанала (фрагмент $K D$) делится четырьмя точкамп (IX-XIII) на три равные участпа длиной : см наж дый (рис. I, в). Зная значения погениналов в этих точках й прияенив чнсленное интегрирование (по формуле трапепии), легко определнть величину расходов по участкам.

Просуммпровав значения элементарнпи растолов, получим полный фильтрационнылй раслод с борта канала:

$$
Q_{R D}=0.5 \Pi_{\mathrm{IX}}+\Pi_{\mathrm{XI}}+\Pi_{\mathrm{XII}}+0,5 \Pi_{\mathrm{XIII}}=20,7 \mathrm{M}^{2} / \text { cymкzt }
$$

Взив из таблл. I значення потенииадов, в точках XIV-XX (фрагмент $D E$), удаленных от нулевой пииы на \& $с м$, п применив тот же метод, находим ведйину фпльтраиионного расхода с днища полуканала:

$$
\begin{aligned}
& Q_{D E}=0,5 \Pi_{\mathrm{XIV}}-\Pi_{\mathrm{XV}}+\Pi_{\mathrm{XVI}}+\Pi_{\mathrm{XVII}}+\Pi_{\mathrm{XVIII}}+\Pi_{\mathrm{XIX}}+ \\
& +3\left(0,5 \Pi_{\mathrm{XIX}}+\Pi_{\mathrm{XX}}+\Pi_{\mathrm{XXI}}+0,5 \Pi_{\mathrm{XXII}}\right)=\sim 36,6 \mu^{2} / c y m \kappa u
\end{aligned}
$$

Полный расход:

$$
Q=Q_{M K}+Q_{K \mathrm{D}}+Q_{\mathrm{DE}}=1_{3,9}+20,7+36,6=7 \mathrm{I}, 2 \text { нй } / \text { суmкu }
$$

что полностьт согласуется с ранее найденным значением $Q=7$ г, 0 $\mu^{2} / с у т к и$.
 длины канада определяем по формуле ([2], § 98)

$$
\begin{equation*}
Q=\frac{a x_{\mathrm{cr}} H}{l} \frac{\varphi_{0}}{100-\varphi_{0}}, \tag{2}
\end{equation*}
$$

где
a и l-стороны стандарта,
$\chi_{\text {ст }}$-коэффициент фильтрацип,
H - напор,
φ_{0}-потенциал на о\% шине, выраженной в иронентах.
При $a=l$ формула упрощается.
Для уменьшения погрешности, вызванной неоднородностью самого стандарта при определснии расхода по данной формуле, мы измеряли потенциал на четырех стандартах
и в качестве окончательного значения брали среднее аржфметическое (табл. 2).

Подставляя в формуле
(2) среднее значение потенииала на о\% шине, получаем

$$
Q=\frac{\varphi_{0}}{100-\varphi_{0}}=
$$

	Таблица 2	
№ станларта	0\% шина	100\% шина
I	41,90	59,0
II	41,70	58,3
III	42,00	58,5
IV	41,75	58,4
Cреднее значение	41,83	58,55

$$
=\frac{4 \mathrm{I}, 8_{3}}{100-4 \mathrm{I}, 8_{3}}=7 \mathrm{I}, 9 \mathrm{~m}^{2} / c y m \kappa u,
$$

т. е. полный фильтращионный расход, который поступает в канал при $H=\mathrm{I}$ и $a=l$, равняется $Q=71,9 M^{2} / с у т к и$.

Полный фильтрационный расход на 100% шине определяется формулой ([2], S98)

$$
\begin{equation*}
Q=\frac{a \chi_{\mathrm{cт}} H}{l} \frac{100-\varphi_{100}}{\varphi_{100}} . \tag{3}
\end{equation*}
$$

Подставляя в эту формулу среднее значение потенциала на 100\% шине, определяем

$$
Q=\frac{100-58,5}{58,5}=70,8 \mathrm{~m}^{2} / \text { сутки. }
$$

Таким образом, на обешх шинах имеется почти равное значение расходов, что ближе к истине.

Имея величину полного филнтапионного расхода, измеренного у 0% шины, и обрашая задачу, легқо найти значения расходов по фрагментам поперечного сечения канала.

Например, в обобщенной задаче, если измерительную итлу установим в точке K, подучим определенное значение потенциала. Помножив это значение в пропентах на полный фильтрационный расход, получим секундное количество поступающей в канал воды через поверхность высачивания $M K$.

Лля нашей задачи в точке K (рис. Ј, б) функпия тока равна т $8,9 \%$, поэтому расход, поступаюший на елиницу длины канала через поверхность $M K$,

$$
Q_{u K}=71,9 \cdot 0,189=13,6 \mathrm{~m}^{2} / \text { cymки. }
$$

B точке D функция тока равна $48,5 \%$, т. е. расход на поверхности $M D$,

$$
Q_{M_{\square}}=7 \mathrm{I}, 9 \cdot 0,485=34,9 \mathrm{n}^{2} / \text { cymки. }
$$

Таким образом, на днище каната $D E$ расход воды

$$
Q_{\mathrm{DE}}=7 \mathrm{I}, 9\left(\mathrm{I}, 000-0,4\ulcorner 5)=37,0 M^{2} /\right. \text { cymкu }
$$

a на участке борта $K D$

$$
Q_{\kappa D}=71,9(0,485-0,189)=21,3 M^{2} / \text { суткй }
$$

Сравнивая значения расхолов, рассчитанные обоими способами, получаем вполне удовлетворительное совпадение.

Следует отметить, что, несмотя на более высокую точность первого способа при определении филтрапионных расходов, для наших пелей предпочтительнсе пользоваться вторым способом, так как им решается задача значительно быстрее и полученные результаты полностью удовлетворяют условиям составления таблици расходов ін других параметров: необходимых лля шрактики.

Тбилисский государственный
университет
(Поступнло в редакцию 5.2.1964)

30लmbsem0d
ᄂ. วอบธอร

 hコœก603กU ameomnteos

1. С. В. Меунаргия. Приведение методом последовательных копформных отображеннй трапецеидального канала при наличии промежутка высачивания к эквивалснтному прямоугольному. Сообщення Академии наук Грузинской ССР, XXXIV:3, 1954.
2. П. Ф. Фильчаков. Теория фильтрации под гидротехничесьими сооружениями, т. 2. Изд. АН УССР, 1960.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР，XХХV：2， 1954 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR，XXXV：2， 1964

ФизикА

M．А．МЕСТВИРИШВИЛИ，Э．Ш．ТЕПЛИЦКИЩ

TBA ЗHCTAIIHOHAPHDDE VPOBHU B HHIHH DPILECKON MATHHTHOM ПODE

（Представлено членом－корреспондентом Академии М．М．Мирианашвили 4．12．1963）
I．За последние два гола были достигнутн оирелелептне успеми в опислнии связанных н реэопапсных состояний в твантовой механпке C помошию иредложенного Реджс метода аналитического продоляления ам плитуды рассеяния в комплексную плосность угловыл моментов $[\mathrm{I}, 2,3]$ ．
 случаям，ногда потениилл обладает сферичесной симметрией．Eсли эже имеется каюой－лпбо шной тип симметрии，то система характеризустся другнми квантовыми числами，являющиыися параметрами соответствуошей груптн，но так как эті тараметрня вхолят в коэффииненты дифференин－ ального уравнения рассматриваеного сдучая примерно так же，как угло вые момеиты в радиальное уравнение Предннгера，то и в таких задачах можно исиользовать метод Ретле．

Нпже рассматривлется модельный иримеј，в потором нотенииал об． ладаег цилиндрической симметрией．

2．Пусть задано постоянное магнитное поле $\vec{H}\left(0,0, H_{z}\right)$ ，отлпчнюе от нуля в бесконечном иилиндре радиуса a ．Beктор－потенциад лого поля имеет вид

$$
\begin{array}{ll}
\vec{A}=\left(-\frac{1}{2} H_{z} y, \frac{1}{2} H_{z} x, 0\right), \text { สコ月 } \quad|x|,|y| \leq a \\
\vec{A}=0 & \text { да月 }|x|,|y|>a
\end{array}
$$

В пилинлриеских коордннатах（радиальное» уравневие I！ 1 редингера для области $p^{2}=x^{2}+y^{2} \leqq a^{2}$ есть

$$
\left(\frac{d^{2}}{d \rho^{2}}+\frac{1}{\rho} \frac{d}{d \rho}\right) R_{m}(\rho)+\left[x^{2}-\gamma^{2} \rho^{2}-2 \gamma|m|-\frac{|m|^{2}}{\rho^{2}}\right] R_{m}(\rho)=0, \quad\left(\begin{array}{ll}
1 & \text { a) }
\end{array}\right.
$$

a для $\rho^{2}>a^{2}$

$$
\left(\frac{d^{2}}{d \rho^{2}}+\frac{1}{\rho} \frac{d}{d \rho}\right) R_{m}(\rho)+\left[\chi^{2}-\frac{|m|^{2}}{\rho^{2}} \int R_{m}(\rho)=0\right.
$$

где

$$
x^{2}=\frac{2 \mu E}{h}-k_{z}^{2}=\frac{1}{\lambda^{2}}-k_{z}^{2}, \quad \gamma=\frac{e H z}{2 h c}=\frac{\mu \omega_{L}}{h}
$$

(ω_{L} - ларморовская частота, μ-- масса частиць, m - магнитное квантовое число, λ-деброй.тевская длина волны частишы).

Рассмотрим рассеяние частии на этом поле в плоскости $x y$. Соответ. ствующая матрица рассеяния имеет вид

$$
\begin{equation*}
S(x, m)=\left[\frac{F_{1}}{x} H_{m}^{(2)}(x a)-F \frac{d H_{m}^{(2)}(x a)}{d(x a)}\right]\left[\frac{F_{1}}{x} H_{m}^{(1)}(x a)-F \frac{d H_{m}^{(1)}(x \ddot{a})}{d(x a)}\right]^{-1} \tag{2}
\end{equation*}
$$

где $H_{m}^{(1 \cdot 2)}$ - функиин Ханкеля переото и второго рола соответственно, F - вырожденная гипергеометрическая функпия, взятая в точке a :

$$
\begin{equation*}
F=F\left(-\frac{x^{2}}{4 \gamma}+|m|+\frac{\mathrm{I}}{2},|m|+\mathrm{I}, \gamma a^{2}\right) \tag{3a}
\end{equation*}
$$

a

$$
\begin{align*}
& F_{1}=\gamma a\left[\left(\frac{|m|}{\gamma a^{2}}-\mathrm{I}\right) F+\right. \\
&\left.\left.+-\frac{2|m|+1-\frac{x^{2}}{2 \gamma}}{|m|+1}-\frac{x^{2}}{4 \gamma}+|m|+\frac{3}{2},|m|+2, \gamma a^{2}\right)\right] \tag{;б}
\end{align*}
$$

При

$$
\begin{equation*}
F=F_{1}=0, \tag{4}
\end{equation*}
$$

определяюшем связанные состояния (уровни Ланлау [4]), рассеянной вотны не существует. Можно считать, что в случае конечного a условие (4) не имеет места.

Решения уравнения (і) выражаются через пзвестнье спепиальные функпии и могут бить иродолжены в комилексную плоскость по x и индексу m (в дапннйшем комилексные m обозначаются через ν), ноэтому S-матрпиа в (2) опрелелена для всех у и χ, исключая возможные полюса. Эти полюса, как известно, соответствуют связанным и квазистапионарным состояниям системы и определяются нулями знаменателя в (2). Возниқающее уравнение

$$
\begin{equation*}
\frac{F_{1}}{x} H^{(1)}(x a)-E \frac{d H^{(1)}(x a)}{d(x a)}=0 \tag{5}
\end{equation*}
$$

определяет траекторию Редже $\boldsymbol{\nu}=f(x)$.
Можно построить T-матрищу, зависяпую от x и «угла рассеяния» Ф в цилинирических координатах, c помошью $S(x, \nu)$

$$
\begin{equation*}
T(\kappa, \Phi)=\sum_{m=-\infty}^{\infty} T(\kappa,|m|) e^{i m d}, \text { rse } T(x,|m|)=S(\alpha,|m|)-1, \tag{6}
\end{equation*}
$$

где $\frac{1}{\sqrt{2 \pi}} e^{i m \text { м }}$ - полный набор соб́ственных функций оператора $i \frac{\partial}{\partial \Phi}$. Эта сумма может быть преобразована в интеграл

$$
\begin{equation*}
T(x, \Phi)=\frac{\mathrm{I}}{2 i} \int_{c} T(x, \nu) \frac{e^{i(\phi-\pi)^{\nu}}}{\sin \nu \pi} d v \tag{7}
\end{equation*}
$$

гле контур C охватывает всю вещественную ось в плоскости \vee. Исюользуя свойства F, F_{1} и $H_{v}^{(12)}$, можно показать, что при $|\nu| \rightarrow \infty$ и фиксированных x

$$
S(x, v)=\frac{H_{v+1}^{(2)}(x a)}{H_{v+1}^{(1)}(x a)}
$$

Это позволяет представить интеграл (7) в виде суммы вычетов во всех возможных полюсах $T(\varkappa, \nu)$ по $у$ и интеграла по кругу бесконечного радиуса, которым можно пренебречь. Птак, $T(\varkappa, \Phi)$ выражается через полный набор возможных резонансных и связанных состояний:

$$
\begin{equation*}
T(\varkappa, \omega)=\pi \quad \sum_{n}\left[\operatorname{res} T\left(\kappa, v_{n}\right)\right] \frac{e^{l(\mathrm{\Phi}-\pi)_{n}}}{\sin v_{n} \pi} \tag{8}
\end{equation*}
$$

Нахождение полюсов Редже, т. е. решенвй уравнения (5), в обшем случае не представляется возможным, поэтому мы ограничияся рассмотрением лишь некоторых асимптотияесқих случаев.
а) Если $|\nu| \gg 1$ и $|\nu| / ү a^{2} \gg 1$, то уравнение (5) сводится к

$$
\begin{equation*}
H^{(1)}+1(x a)=0 . \tag{9}
\end{equation*}
$$

Фунқиии Ханкеля не име ог нулей при вещественнх \downarrow, поэтому в эгом случае возможны только квазисғационарные состояния [2].

При $|x| \geqslant 1 / a$ решение этого уравнения имеет вид
$\operatorname{Re} \nu_{n}=r \cos \varphi+6^{-1 / 3} q_{n} r^{1 / 3} \cos \left(\frac{\pi+\varphi}{3}\right)+\frac{\mathrm{I}}{\mathrm{I} 80} 6^{1 / 3} q_{n}^{2} r^{-1 / 3} \cos \left(\frac{2 \pi-\varphi}{3}\right)$,
$\operatorname{Im} \nu_{n}=r \sin \varphi+6^{-1 / 3} q_{n} r^{1 / 3} \sin \left(\frac{\pi++^{\prime} \varphi}{3}\right)+\frac{1}{180} 6^{1 / 3} \eta_{n}^{2} r^{-1 / 3} \sin \left(\frac{2 \pi-\varphi}{3}\right)$,
а при $|\varkappa| \ll 1 / a$ имеем ${ }^{(1}$

$$
\begin{align*}
& \operatorname{Re} v_{n}=-\mathrm{I}+\pi\left(\frac{\pi}{2}-\varphi\right)\left(n-\frac{\mathrm{I}}{4}\right)\left[\ln \frac{2 \pi\left(n-\frac{\mathrm{I}}{4}\right)}{e r}\right]^{-2} \tag{II}\\
& \operatorname{Im} v_{n}=\pi\left(n-\frac{1}{4}\right)\left[\ln \frac{2 \pi\left(n-\frac{\mathrm{I}}{4}\right)}{e r}\right]^{-1} .
\end{align*}
$$

[^1] рень функинн Эпрри
\[

$$
\begin{gathered}
A\left(q_{n}\right)=\int_{0}^{\infty} \cos \left(t^{3}-q_{n} t\right) d t \\
\left(\text { upn болынix } n q_{n}=\frac{1}{2} 6^{1 / 2}\left[3 \pi\left(n+\frac{3}{4}\right)\right]^{2 / 3}\right)
\end{gathered}
$$
\]

 ми (9), дли ноторых $n \geqslant 1$.
 при $|x| \gtrless 1 / a$ имеем ураввение

$$
\begin{equation*}
H^{(1)}+1(x a)=-\frac{\gamma a^{2}}{x a} H^{(1)}(x a) \tag{12}
\end{equation*}
$$

решение потороно ири $|\nu| \ll I \quad$ суть

$$
\begin{align*}
\operatorname{Re} \nu_{n}= & \frac{\pi n}{\left(\ln \frac{r}{2}\right)^{2}}\left\{-\left(\frac{\pi}{2}-\varphi\right)+2\left(C-\frac{I}{\gamma a^{2}}\right)\left(\frac{\pi}{2}-\varphi\right)\left(\ln \frac{r}{2}\right)^{-1}+\right. \\
& \left.+\left(\frac{\pi}{2}-\varphi\right)\left[\left(\frac{\pi}{2}-\varphi\right)^{2}-3\left(C-\frac{1}{\gamma a^{2}}\right)\right]^{2}\left(\ln \frac{\gamma}{2}\right)^{-2}\right\}, \tag{13}\\
\operatorname{Jm} v_{n} & =\frac{n \pi}{\left(\ln \frac{r}{2}\right)}\left\{i-\left(C-\frac{1}{\gamma a^{2}}\right)\left(\ln \frac{r}{2}\right)^{-1}+\left(\ln \frac{r}{2}\right)^{-2}\left[\left(C-\frac{1}{\gamma a^{2}}\right)^{2}-\right.\right. \\
& \left.-\left(\frac{\pi}{2}-\varphi\right)^{2}\right]-\left(\ln \frac{r}{2}\right)^{-3}\left[\left(C-\frac{1}{\gamma a^{2}}\right)^{3}-\right. \\
& \left.\left.-3\left(\frac{\pi}{2}-\varphi\right)^{2}\left(C-\frac{I}{\gamma a^{2}}\right)+\zeta(3) \frac{\pi^{2} n^{2}}{3}\right]\right\}
\end{align*}
$$

а при $|v| \geqslant I \quad$ и $n \geqslant I$

$$
\begin{align*}
& \operatorname{Re} v_{n}=\pi\left(\frac{\pi}{2}-\varphi\right)\left(n-\frac{\mathrm{T}}{4}\right)\left[\ln \frac{2 \pi(n-I / 4)}{r e^{1-1 / 7 a^{2}}}\right]^{-2} \\
& \operatorname{Jm} v_{n}=\pi\left(n-\frac{I}{4}\right)\left[\ln -\frac{2 \pi(n-1 / 4)}{r e^{2-1 / \gamma a^{2}}}\right]^{-1} \tag{I4}
\end{align*}
$$

В (I3) $\zeta(x)-\zeta$-фундиня Римана. а $C=0,5772 \ldots$ - постоянпая Эйлера-Маскерони.
в) Если теперь $\gamma \ll \frac{1}{a^{2}}$, то при $|\nu| \ll$ п опраипчениом $\left|\frac{x^{2}}{\gamma}\right|=$ $=\left|\frac{R}{\lambda}\right|$ из уравнения (5) следует

$$
H^{(1)}+1(\varkappa a)=\left[\frac{x a}{2}(1-\nu)-\frac{\gamma a^{2} \gamma}{\chi a}\right] H^{(1)}\left(\chi_{a}\right),
$$

которое ічри $|\lambda|>a$ свонитея K уравненио
$-2 C y=-\ln \left[1+\frac{\gamma a^{2}}{2}+\left(\frac{x a}{2}\right)^{2}\right]+\ln \frac{\gamma u^{2}}{2}-i \pi(v-2 n)+\gamma \ln \left(\frac{r a}{2}\right)^{2}$.
Репение ето, сираведдивое ири не очини. больиих n, имеет вид
$\operatorname{Re} \gamma_{n}=\left\{2\left(11 \frac{r}{2}+C\right) \ln \left(\begin{array}{c}1 \\ 2 \gamma a^{2}\end{array}\left(++2 \gamma a^{2}+i^{2} \cos 2 \psi \gamma^{2}+\gamma^{4} \sin ^{2} 2 \psi\right]^{1 / 3}\right)-\right.$ $-(\pi-2 \varphi)\left(\operatorname{Arctg} \frac{r^{2} \sin 2 \varphi}{4+2 \gamma a^{2}+r^{2} \cos 2 \varphi}-2 \pi n\right)\left[4\left(\ln \frac{r}{2}+C\right)^{2}+(2 \varphi-\pi)^{2}\right]^{-1}$. $\operatorname{Im} y_{n}=\left\{(\pi-2 \varphi) \ln \frac{1}{2 \gamma u^{2}}\left[\left(1+2 \gamma a^{2}+r^{2} \cos 2 \varphi\right)^{2}+r^{2} \sin ^{2} 2 \varphi\right]^{1 / 2}\right)+\quad\left(I_{5}\right)$ $+2\left(\operatorname{lu} \frac{r}{2}+C\right)\left[\operatorname{sectg} \frac{r^{2} \sin 2 \varphi}{4+2 \gamma \lambda^{2}+r^{2} \cos \sim \varphi}-2 \pi n\right]!\left[\left(2 \ln \frac{r}{2}-2 C\right)^{2}+(2 \varphi-\pi)^{2}\right]^{-1}$.

 тотические представлеиия вирожденной инергеонетической функиии
 Pestie as aitдe

$$
\begin{array}{r}
\left(\frac{\varkappa a}{\gamma a^{2}}\right) \frac{1}{H^{(1)}(\varkappa a)} \frac{d H^{(1)}(\varkappa a)}{d(\varkappa a)}=-\frac{v}{\gamma a^{2}}-1+ \\
+\frac{1}{Y a^{2}}\left(2 \nu+I-\frac{\varkappa^{2}}{2 \gamma}\right)\left(k \gamma a^{2}\right)^{-1 / 2}\left(\frac{k}{k^{\prime}}\right)^{-v / 2} \frac{J_{v+1}\left(2 V k \gamma a^{2}\right)}{\left.J_{v(2} \sqrt{\gamma} \gamma a^{2}\right)},
\end{array}
$$

где

$$
k=--\frac{v}{2}+\frac{x^{2}}{4 \gamma}-\frac{1}{2}, \quad k^{\prime}=k+\frac{1}{2} .
$$

$\Pi_{\text {ри }}|x| \geqslant \frac{\mathrm{I}}{a}$, т. е. $|\lambda| \ll a\left(\right.$ в этом случае $\left.\frac{\mathrm{I}}{H^{(1)}} \frac{d H^{(1)}}{d x} \approx i\right)$, нмеем

$$
\begin{aligned}
& i\left(\frac{R}{a}\right)=y\left(\frac{R}{a}\right)\left(\frac{\lambda}{a}\right)-\mathrm{I}+ \\
& +\frac{R \lambda^{2}}{a^{2}}\left(2 \nu+I-\frac{R}{2 \lambda}\right)\left[I+\frac{\lambda}{4 R}(\nu+1)\right] \operatorname{tg}\left(\frac{h}{\lambda}-\frac{\pi(2 \nu+1)}{4}\right) .
\end{aligned}
$$

Эго уравнение может быгь репено численияи методои.
3. Смысл полосов Редле обычно выяснлется сравнснием с орейтвигнеровской фориутировкой резонансной теории расесяния.

В разложенин (6) $T(x, m)$ может быть представлена в виде

$$
T(x, m)=\sum_{n} r_{n}(x) \frac{m-v_{n}^{*}(x)}{m-v_{n}(x)}=\frac{R_{n}(x)}{E_{1}-E_{r}+i \frac{\Gamma_{n}}{2}}
$$

где $\quad\left(\gamma_{n}=\alpha_{n}(E)+i \beta_{n}(E)\right)$;

$$
\begin{gathered}
\frac{\Gamma_{n}}{2}=-\frac{1}{\alpha_{n}^{\prime}}\left[\beta_{n}^{\prime}\left(E-E_{r}\right)+\beta_{n}\left(E_{r}\right)\right], \quad \alpha_{n}^{\prime}=\left.\frac{d \alpha_{n}}{d E}\right|_{E=E_{r}} \\
\beta_{n}^{\prime}=\left.\frac{d \beta_{n}}{d E}\right|_{E=E_{r}^{\prime}}
\end{gathered}
$$

а $\quad E_{T}$ - вещественная часть энергии резонанса.
Эти соотнопення позволяют найти ширину (а значит. и время жизни) получаемых резонансных уровней.

Авгоры благодарны Л. І. Буишвили, М. Е. Перельману, Н. Н. По-лиевктову-Николаляе, I. Г. Саникидзе, В. В. Чавчанидзе и участникам семинара то теоретической физике Института ғнбернегики за многочисленные об́сужднния.
Академия наук Грузинской ССР
Институт кибернетикн
(Поступило в редакцию 4.12.1963)
908030

जिठovgo

 ma mogbzn.

1. T. Regge. Introduction to complex orbital momenta Nuovo Cimento, 14, 1959.
2. T. Regge. Bound states, shadow states and Mandelstam representatiou. Nuovo Cimento, 18, 1960.
3. A. Bottino, A. Longoni, T. Regge. Potential scattering for complex energy and angular momentum. Nuovo Cimento, 23, 1962
4. Л Д. Ландау, Е М. Лифыиц. Квантовая механнка, 1948.
5. М. М Перекалин. Комллексные моменты и потенциалы с отталкивающей сердшевиной. Вестник ЛГУ, серия физ.-хим., № 10, в. 2, 1963.
6. J. B. Keller, S. I. Rubinow, M. Goldstein. Zeros of Hankel functions and poles of scattering amplitudes. 1. Math. Phys., 4, 1963.
7. A. Erdelyi, W. Magnus, f. Oberhettinger, F. Tricomi. Higher Transcendental Fanctions, v. 1, 1953.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР. XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $\times \times X V: 2,1964$

ФиЗИкА

И. А. МИРЦХУЛАВА, З. Н. ЧИГОГИДЗЕ, Н. И. КУРДИАНИ, Л. В. ХВЕДЕЛИДЗЕ, Р. Б. ДЖАНЕЛИДЗЕ

О ВОЗМОЖНОСТИ IIOォУЧЕНИЯ BЫСОКООМНЫХ
СКОМПЕНСИРОВАННЫХ КГИCTAJJOB
АНТИМОНИДА ПНТИЯ П"ТЕМ ТЕРМООБРАБОТЕІ
(Представлено членом-корреспондентом Академии М. М. Мирианашвили 16.4.1964)
Одним из основных факторов при выборе материала для создания полуироводниковых приборов, осиовзнные на модуляиии проводимости, является низкая исходная кониентрапия свободных носителей тока.

Подсчет показывает, чио собствснная конпентрания носнтелей в антимониде индия ири температуре $77^{\circ} \mathrm{K}$ не превтииет $10^{9} \mathrm{CM} \mathrm{M}^{-3}$, чему должно соответствовать улельное соиротивление в несколько килоом. Однако из-за присутствия остаточной примеси в данном материале кондентраиия свободных носителей тока при $77^{\circ} \mathrm{K}$ оо́нино составляет Io ${ }^{14} \mathrm{CM}^{-3}$, а его улельное соиротивление не превынает IO^{-2} ом. CM .

Высокая нсходаая концентрания свободиых носителей снизқает чувствительность полупроводниковых приборов, изготовляемых на основе антимонида нндия.

Возможность создаиия высокоомных (хотя бы скомиенсированных) кристаллов антимонида пндия значителино расширила бы область его практического применения.

Нзвестно, что в резулнате термообработки в антимониде индия n-типа
 [$\mathrm{I}, 2]$. Возникновение термокшеиторных уровией приволит к комненсации зоиньх электронов, происходящих от остаточной донорной примеси. Таким образом, механизм и всличина пүоводимости антимонида иидия, додверннтого термопкработке, должны зависеть от концентрации ввеленных терноаненторон. На рис. І приводятся кривне температурной
 следуемых нами оо́разиов $J n S b$ и－тина 10 н после термоооработки，
 moctin．

Рис．1．Температурная зависимость коэффици－ ента Холла и электропроводности：－до отжига， x － 10 сле отжига донорных примесей АОЖно получить aн－ тпмонид индIts n－TH－ пи с удельнкм соп－ ротивленшем в нес－
 нако оказатось，याо достнжение घолнои комиенсацин донор－
 уровнё゙ связано с болынимин трудности－ ми В Связн С тем， что коннентрапия Тер． moakmentopos Becbma 4увCIBHTEगbHA $\%$ Tem－ нературе и времени термообработки．Ha－ прнмер，при темпе－ parype от；иан $450^{\circ} \mathrm{C}$ длл улавливания мо． мента комиенсаиии время выдерјкеи дол－天но определятьニя C тоमностb： 20 necko．mb． KиX MHHYT．Hosonte－ ние усложняетея еме
 завнснт от псходноन̆ кониентрании донорной иримесн．Кривая завнси－ мости удельного сопротивления от времени выдержкн яри температуре 450 C дается на рис． 2.
 электронного антидонида нидия належно нолучить материал р－ти－

 $5 \cdot 10^{3}$ см ${ }^{2} /$ в \cdot сек．

Проведенные нами многочислеиные пройы п всестороннее изучение влияня термоойработки на элептические свойства электронного антвмонида индия с целью установлешия природы термоакщетторных пентров позволяют надеяться, что в блиякай шее времл будет разработана технолотия получения более высокоомных кристаллов антимонида индия.

Bbecokoomite кристалын антимонида пидия были опробованы в качестве быстродейству ю щих переклюнателей, основанных на явдении пробоя. Низкое зна чение пробивного по-

Рис. 2. Зависимость удельного сопротивления от времени выдержки ля (40 в/См) п весьжа мадое время девонизаиии ($\boldsymbol{\rho}^{-6}$ ceк) делают данный материал весьма перспективным.

Авторн выражапт благонарность Ј. С. Хитарнтвити, И. М. Пурделалзе, Е. К. Немсадзе, А. В. Матвеенко, В. Г. Авалиани за активное участие в работе.

Тбилисский государственный
университет
(Шоступило в редакцию 16.4.1954)
9308030
 tor. $30.60 \mathrm{~m} n \mathrm{~m}$

 2065608

$$
\operatorname{\omega } 080 \% 0
$$

1. E. H. Putley. Proc. Phys. Soc., 73, 1959, 128.
2. Лянь Чжичао и Д. Н. Наследов Электрические и гальваномагнитные свойства кристаллов JnSb р-типа при низких температурах. ФТT, 3, 1951

СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР，$x \times x \vee: 2,1964$ BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR，XXXV：2， 1964

39 mg ก\％ 030

 いようロローロー」の30し

$$
J_{2}-J_{1}=S \lg \frac{\sqrt{\Delta_{1}^{2}+h^{2}}}{\sqrt{\Delta_{2}^{2}+h^{2}}}
$$

 gुल triaymenos: $J_{0}=3,22+1,08 \mathrm{M}$ $-1,23 \lg h$.
jugzationes 23 3n-
 agmeno ginçabgingon dmosarymos $606.1 . \mathrm{g}$,

 @o h uneopogozols
会 muxne onànymo dozucmongón hizgo Jogk
 arennos, $\mathrm{gm}_{\text {madymoo }}$ Eub. 2 -80.
 ऍon hizgб ologín 80-
 dzingon jómols Loménaggön jorngace gonstb-
 Bolvonzoí Libzo azamo-
 [6]. oj30 वुodmoìo

5งธ. 2
$3^{\text {brooma }} 1$

Onfoudzionu matromn	000_{0}		O. J_{0}	M	h 3^{2}
	${ }^{\circ} \mathrm{N}$	$\lambda_{E}{ }$.			
1899 31.XII	$41^{\circ} 37^{\prime}$	$43^{\circ} 22^{\prime}$	8	5,8	16
190213.11	4041	4836	8	5,7	15
1920 20.11	4159	4405	8	5,8	16
1926 22.X	4041	4346	8	5,0	3
1934 29. X	$40 \quad 23$	4818	$6-7$	5,5	34
$193525 . \frac{1}{T}$	4103	4342	6	4,1	30
1937 7.1	4010	4422	6	4,1	25
1940 7.V	4148	4350	8	5.8	15
1947 15. VIII	4228	4157	7	5,1	30
1950 7.VIII	4136	$45 \quad 18$	6	4.4	40
19557.1	4120	4338	$6-7$	4,3	14
1951 2.XI	42 I8	$45 \quad 18$	$7-8$	5,4	19
195322.1	4148	4506	$6-7$	3,8	5
1953 12.II	4152	4356	6--7	3.9	6
1954 11. VI	4124	4408	7	4,7	11
1955 25.XII	4242	4218		4,7	12
1957 11.I	4230	4224	6-7	3,4	8
1957 12.I	4230	$42 \quad 24$	$6-7$	3,3	6
1957 26.I	4230	4224	$7-8$	4.5	7
1957 29.I.	4230	4224		5,5	9,5
1958 30.V	4116	4358	$6-7$	4,0	8
1958 31.T	4121	4352	$5-6$	4.5	18
1959 20.V	4148	4159	7 -8	5.2	13

20. „дməдるg"; XXXV: 2; 1964

जסेomoun
(ingoog oos дmyzn@ 5.2 .1964)

ГЕОФИЗИКА
И. В. АЙВАЗИШВИЛИ, В. Г. ПАПАЛАШВИЛИ

К ВОПРОСУ ОЏЕНКИ МАГНИТУ ТЫ ЗЕМЛЕТРЯСЕНИЙ ҒАВКАЗА
 $$
\text { Pe } 310 \mathrm{me}
$$

В статье рассматривается вопрос об опенке интенсивности землетрясений на территории Кавказа для 23 землетрясений и устанавливается соотношение между балльностью J_{0}, магнитулой M и глубиной залегания очагов h :

$$
J_{0}=3.22+\mathrm{I}, 08 M-1,23 \lg h
$$

Определен коэффициент S-показатель, зависяший от устовпй распространения сейсических воля; он оказался равиым 3,54 .

Найдены глубины залегания очагов по формуле [3, 5] на основе средних радиусов нзосейст, определенных из данных землетрясений прошлого.

1. Е. Ф. Саваренский, Э. А. Джибладзе. О сейсмичности Большого Кавказа. Известия АН СССР, серия геофизическая, № 5, 1956.
2. Ю. В. Ризниченко. Об изучении сейсмического режима. Известия АН СССР, серия геофизическая, № 9, 1958.
3. Е. Ф. Саваренский, Мей Ши-юн. По поводу оценки интенсивности землетрясений на территории Китая. Нзвестия АН СССР, серия геофизическая, № 1,1960 .
4. Н. В. Шебалин. О связи между энергией, балльностью и глубиной очагов землетрясений. Известия АН СССР, серия геофизическая, № 4, 1955.
5. И. В. Айв азов. Зависимость между балльностью, интенсивностью и глубиной очага для кавказских земтетрясений. Сообщения АН ГССР, т. 26, № 2, 1961.
6. Н. В. Шебалин. Определение глубины очага землетрясения по его магнитуде М и макросейсмическим данным. Труды Ин-та геофизнки АН ГССР, т. XV1U, 1960.
 СООБ ЕЕНИЯ АКАДЕМНН НАУК ГРУЗННСКОЙ ССР, ХХХV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $X \times X V: 2,1964$

Химия
Х. И. АРЕШИДЗЕ (член-корреспондент АН ГССР।, Т. Н. ЧАРКВИАНИ ИССЛЕДОВАНИЕ ИНДНВИДУАЛЬНОГО УГЛЕВОДОРОДНОГО СОСТАВА БЕНЗИНА МИРЗААНСКОП НЕФТИ

Некоторые представители ароматических, гидроароматических и парафиновых углеводородов, входящие в состав мирзаанского бензи"А, были исследованы Х. И Арешидзе с сотрудниками $\lfloor 1-5!$

В настоящей работе приводятся результаты исследования мирзаанскоюо бензина с температурой кипения $32-150^{\circ} \mathrm{C}$.

Нсслғдуемый бензнн был выделен из средней пробы (от 6 марга $1 \ni 53$ г.) нефтей I и II участков Мирзаанского месторождения. Резуль татыі исследования масляных фракций и сырой нефти этой же пробы ириведены в работах [6, 7].

Данное исследование проводилось предложенным Б. А. К аз анским І Г. С. Ландсбергом [8] комо́инированным методом исследования индивидуального углеводородного состава бензинов прямой онки, нсключая дегидрогенизационный катализ. Этим методом исследован индивидуальный углеводородный состав разных нефтей Советского Союза [9—12].

Нсследуемый бензин подвергался хроматографнческсй адсорбиии с цельо выделения ароматических углеводородов, которые анализировались спектроскопически (${ }^{\text {. }}$

Нафтено-парафиновая часть бензина подвергалась фракционированию на колонке с погоноразделительной способностью в 40 теоретических тарелок, узкие фракщии от начала кипения до $135^{\circ} \mathrm{C}$ анализироБались тем же методом.

В результате проведенного исследования нами было найдено всего 42 индивидуальных углеводорода, из них: алканов—19, пяาичленных цикланов-8, шестичленных цикланов-9 и ароматических-6.

Содержание всех индивидуальных углеводородов, обнаруженных в бензине, определено количественно и вычислено в весовых процентах ла бензин. Результаты определения приведены в табл. 1. В той же таблице приводится групповой состав мирқаанского бензина с учетом аро-

[^2]Габлииа 1
' ндивидуальньй углеводородннй состав мирзаанского бензина

1н. Парафиновые углеводородь

\begin{tabular}{|c|c|c|c|}
\hline н. Гентан \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 4.60 \\
& 4.67
\end{aligned}
$$} \& \multirow[t]{3}{*}{H. Гentan
H. ктан

veroro} \& 6,20

\hline H. Іексан \& \& \& 7,26

\hline \multicolumn{3}{|r|}{пзо-Парафиновые углеводороды Всего 22,73} \&

\hline 2-Метилбутан \& 1.83 \& 2,3-Диметилпентан \&

\hline 2,2-Диметнлоутан \& 0.05 \& 2-Метилгексан \& 1,72

\hline 2,3-Диметнлбутан \& 0,15 \& 3-Метилгексаи \& 1,38

\hline 2-Метилпентан \& 0,48 \& З-Этилпентан \& 1,38

\hline 2- и 3-Метилпентан \& 2,67 \& Диметилтексаны \& I,44

\hline 3,3-Диметилгептан \& ט,07 \& Метнлгептаны \& 6,63

\hline 2,4-Диметилпентан \& 0,26 \& 2, 3, 4-Триметилпентаны \& 0,20

\hline 2,2-Диметилпентан \& 0.33 \& Bcero \& 18,09

\hline
\end{tabular}

Циклопентановыс углеводороды

Циклопентан	0,80	Этилинклопснтан	0,73
Метилциклопентан	2.98	1.2,3.-Триметилииклопентан	0,18
т, 1 -Диметилииклопентан	0,43	1,2,3-Т риметилциклопентан	0,54
транс-1, 2-Диметилциклопентан	3,13	1,2,3, П $1,2,4$-Триметилцикло-	
транс-1,3-Диметилиикдопснтан!	2,29	пентаны	2,22
		Bсего	13,30

Циклогексановые углеводороды

Пиклогексан	3.66	транс-т,т-Лпметнлииклогексан	0. 20
Метитциклогексан	7,88	1.1-Диметилциклогексан	0,04
транс-1.4-Аиметилциклогексан	1. 23	пис-1,2-Диметилииклогексан	0,46
транс-1,3-Диметилиикдогексан	2,49	Этилциклогексан	3,18
транс-1.2-Диметилциклогексані	1,63	Bcero	20.77

Ароматнческие углеводороды

Бен е о А Толуол о. Ксилол	0.74	M. Kсnлos		1,25
	3.30	II. Kсидол		0,10
	0,42	Этилбензол		0.32
			Beelo	D, 3

Расшифровано в \% на бензин Остаток и потери

81,02
18.98 100,0

матических углеводородов, в отдельности алканов нормального и изостроения, а также цнклопентановых и шиклогексановых углеволоролов.

Как зндно из табл. 1, мпрзаанский бензин содержит $22,73 \%$ норМальных н $18,09 \%$ пзо-алкановых у1леводородов, $13,30 \%$ циклопентановых, $20,77 \%$ циклогексановых и $6,13 \%$ ароматндеских углеводородов. ILарафнно-пафтеновая часть мирзаанекого бензнна содержит 54,5\% ларафиновых и $45,5 \%$ нафтеновых углеводородов. Парафиновая часть состоит из $55,7 \%$ алканов нормального етроеняя н $44,3 \%$ алканов paz-

ветвтенного строения. Нафтеновая часть содержит 60,9\% циклогексачовых и $39,1 \%$ циклопентановых углеводородов. Кроме того, как видюо из табл. 2, среди разветвленных алканов $97,3 \%$ с третичными углеродными атомами, а $2,7 \%$ с четвертичными.

Такнм образом, мирзаанский бензия состоит преимущественно из алканов, среди которых преобладают алканы нормального строения. Ilа втором месте по количественному содержанию стоят циклогексановые углеводороды, на третьем - изо-алканы, затем циклопентановые и, наконец, ароматические углеводороды. Елли считать, что все н. алканы составляют 100%, то на н. октан приходитея 31.90; на н. гепта.27.30%, а на остальные н. алканы - $40,80 \%$.

Групповой состав мирзаанского бе	$\text { Таблица } 2$
Наименование тллводородов	Содержание на бензни, вес. \%
4. Парафнновые 22.7	
Парафины с третичным атомом углерода	17.7
Парафины с четвертичным атомом углерода	0,5
11 иклопентановые	13.3
Шиклогексановыс	20.8
Ароматические	6.1

Іиклопентан в исследованном бензине содержится в малом количестве. Среди углеводородов этого ряда в большом количестве найден транс 1,2-диметилциклопентан, которыі составляет $23,6 \%$ оощего количества циклопентановых углеводородов. Если считать, что все циклопентановые углеводороды составляют 100%, то на циклопентан приходится 6%, на метилциклопентан- $22,4 \%$, на транс-1,3-диметилциклопентан - $17,20 \%$ и на $1,2,3$, и $1,2,4$-трнметилциклопентаны $16,69 \%$. Остальные циклопентановые углеводороды в исследовағном бензине содержатся в малом количестве. Среди циклогексановых углеводородов заслуживают внимания метилциклогексан, циклогекса:t и этилциклогексан, которые (если принять, что общее количество циклогексановых углеводородов равно 100%) соответствуюот 37,9; 17,6; 15,3\%; а остальиые циклогексановые углєводороды составлянт $29,2 \%$.

Среди ароматических углеводородсв отмечается сравнительно высокое содержание толуола, количество которого на бензин составляет $\because .3 \%$, а по сравнению с другими представителями углеводородов этоло ряда- 53,9 . В данной работе выявлено, что в мирзаанском бензнне яреди изомерных ксилолов преобладает $(70.7 \%$) м. ксилол. Располагая ароматические углеводороды по уменьшению их процентного содержания в бензине, получим следуюшую последовательность: толуол, м. ксमлол, бензол, о. ксилол, этилбензол, п. ксилол.

Обгезвоженная мирзаанская нефть перегонялась из пятилитровэго железного бака до $150^{\circ} \mathrm{C}$. Полученный бензин промывался 75%-ной серной кислотой, 5%-ным раствором соды и дистиллированной водэй не нейтральной реакции. После высушивания хлористым кальцием бензин был разогнан на ректификационной колонке эффективностью в 40 теоретических тарелок. От бензина отгонялась легкая головка до появления ароматических углеводородов (появление их определялось по форколитовой реакции А. М. Н астюков а [13ј), в результате чего были получены фракции $32-42^{\circ}, 42-57^{\circ}$ и остаток. Последний освобождался от ароматических углеводородов хроматографической адсорбиией на силикагеле марки КСМ (100-200 меш). Активность силикагеля по отношению к бензолу - 14,6 мл.

Таблица 3

Прсделы темперачуры кипен:н, ${ }^{\circ} \mathrm{C}$	$\frac{\text { Bыхп }}{\text { на бенз }}$	$\begin{aligned} & \text { вес. } \\ & \text { на нефт } \end{aligned}$	d^{90}	H_{i}^{20}
$32-42$	6.16	0.74	0.6242	
42-57	1,75	0,21	0.6970	T. 3858
-7-68	0,07	0. 13	0,6687	1,3785
co-75	9.17	1.09	0.6071	1.3855
$85-88$	$\frac{3.00}{2,62}$	0,14	0.7578	1.4163
88-94	7.00	0,31 0,84	0.7320 0.6878	1. 4072
94-100	8.12	$0,0.97$	0.6878 0.6811	1.3980 + 3990
$100-103$	7,:0	0.86	0.601!	$1.399 \% 0$ 1.4175
103-109	t. 8.8	0,22	0,7477	1.4130
$100-114$	2,35	0.28	0,7357	1.4078
$114-117$ $117-110$	1.31	c,16	0,6+62	1,406́7
119-123	3.93	1). 47	0,7219	1.4038
123-126	6,53	0,79 $0,-2$	0.7352 0.7298	1.4080
126-135	\bigcirc	0,72 0,74	$\begin{aligned} & 07298 \\ & 0,750= \end{aligned}$	$\begin{aligned} & 1,4074 \\ & 14660 \end{aligned}$
А роматическне угдеводороды				
20150°	6.17	0.73	-	1,4750
Octatok и потери	18,48	2,30	-	-
Bcero	mo, 0	12.0	-	-

Деароматизация проводилась одновременно в двух адсорбционных полонках, в каждой из них деароматизировалось 150 г бензина (нужное количество силикагеля было взято по содержанию ароматических јглеводоров в бензине). К бечзину в колонках последовательно добавлялись: 20 мл изо-пентана, 20 мл этилового спирта и 300 мл дистилдированной воды.

Таблица 4
Оптическое исследование узких фракций парафино-нафтеновой части мирзаанского бензина

Углеводороды, найденные оптическим путем	Содержа- ние угле- водородов, вес. $\%$ на фрак- нан цию бин	Углеводороды, найденные оптичегким путем

Содержа-	
ние угле-	
водородов,	
вес. $\%$	
на	на
фрак-	бен-
цию	зин

Фр. $32-42^{\circ}$
н Пентан
2-Метилбутан

$$
\Phi \text { p. } 42-57^{\circ}
$$

2-Метилпентан
н. Пентан

2,3-Диметилбутан
2,2-Диметилбутан
Циклопентан

$$
\text { Фр. } 57-66^{\circ}
$$

Метилциклопентан
н. Гексан

2-Метилпентан
3-Метилпентан $\}$
Фр. 6 - 75°
н. Іексан

2-Метилпентан
3-Метилпентан
Метилциклопентан
Циклогексан

$$
\text { фр. } 75-84^{\circ}
$$

2,2-1иметилпентан
2,4-Диметилпентан
3,3-Диметилпентан
Метилииклопентан
н. Гексан

Циклогексан

$$
\Phi \mathrm{p} .84-88^{\circ}
$$

2. Ме титтексаи
3. Метилгексан

Циклогексаи
1,1-Диметилциклопентан
транс-1,2-Диметилциклопентан
транс-1,3-Диметиликлопентан Фр. 88-94
2-Метилгексан
3-Метилгексаи
3-Этилпентан
2,3-Диметилпентан
транс-1, 2 -Диметилииллпентан
транс-1з-Диметнлциклопентан Фр. 94-100
Метилциклогексан
транс-1.2-Диметилциклопентан H. Гептан

		Фp. $100-103^{\circ}$		
70.0	4.33	н. Гептан	14,5	1,04
29,8	1,83	Этилциклопентан	8, 1	0,59
		Метилциклогексан	77,4	5,57
27,5	0,48	Фр. 103-109 ${ }^{\circ}$		
15.5	0,27	1,2,3-Триметилциклопентан	10,1	0,19
8.7	0,15	1,2,4-Триметилциклопентан	29,4	0,54
2,8	0,05	Метилциклогєксан	15.5	0,28
45,5	0,80	Этилциклопентан	7,8	0.14
		Диметилгексаны	37,2	0,68
8,6	0,09	Фр. 109-114 ${ }^{\circ}$		
15,0	0,16	1,2,3-Tриметилиилопентан $\}$		
70,4	0,82	1,2,4-Триметилциклопентан $\}$	67,5	1,59
7,4		Диметилциклогексан Фр. $114-117^{\circ}$	32,5	0,76
48,1	4,41	Метилгептаны	51,5	0,68
20,2	1,85	т.2,3-Триметилииклопентан г,2,4-Триметилциклопентан	48,5	0,63
29.5	2,7	中p. 117-119 ${ }^{\circ}$		
2,2	0,2	транс-1,3-Диметилциклогексан	Ir. 8	0,46
		транс-1,4-Диметилииклогексан	5,4	0,21
8.9	0.33	1, г-Диметиликлогексан	I, I	0,04
7,2	0,26	2.3.4.- Триметилпентан	5,0	0,20
1.8	0.07	Метилгептаны	76,7	3,02
5.0	0,18	Фр. 119-123		
2,6	0,10	транс-1,3-Диметиликлогексан	26,0	t,71
74,5	2,72	транс-п,4-Диметилциклогексан	108	0.71
		транс-1,2-Диметилциклогексан	$5 \cdot 3$	0,34
20,4	0,54	транс-г,1-Диметилциклогексан	3, [0,20
17.0	0.44	н. Октан	9,9	0,65
27.7	0,73	Метилгептаны	44.9	2,94
10,5	0,43	Фр. 123-126 ${ }^{\circ}$		
5,2	0,13	Э тилииклогексан	5,4	0,32
13,2	035	транс-1,3-Диметилциклогексан	5,3	0,32
		транс-1,4-Диметилциклогексан	5.3	0,32
${ }^{17} / 0$	1,19	транс-1,2- Јиметилциклогексан	21,3	1,28
13.4	0.94	H. Октан	62,7	3,78
78	0.54	Фр. 126-135 ${ }^{\circ}$		
4.8	0.34	н. Октан	46,1	2,83
29.0	2,05	Этилциклогексан	46,4	2,86
27.8	1,94	цис-1.2-Диметилциклогексан	7,5	0,46
24.9	2.02			
11,6	094			
63.5	5,16			

В результате хроматографической адсорбции были получены смесь ароматических углеводородов и парафино-нафтеновая часть исследуемого бензина. После отгонки изо-пентана парафино-нафтеновая часть была разогнана на узкие фракции с использованием вытшеуказанной ректификационной колонки. После установления процентного содержания этих фракций в бензине были определены их физические показатели. Результаты разгонки и свойства указанных фракций приведены в табл. 3.

Следующим этапом исследования являлось определение индивидуального углеводородного состава мирзаанского бензина. Для этого смесь ароматических углеводородов и узкие фракции парафино-нафтеновой части бензина были подвергнуты оптическому анализу (табл. 4).

Таблица 5
Групповой состав узких фракций парафино-нафтеновой части мирзаанского бензина

Пределы кипения, ${ }^{\circ}$	Углеводороды на фракцию. вес. \% $^{\text {¢ }}$		
	$\begin{aligned} & \text { парафино- } \\ & \text { вые } \end{aligned}$	циклопентановые	แиклогексановые
$32-42$	100	0,0	0,0
$42-57$	54,5	45.5	c,o
$57-66$	91,4	8.6	0,0
$66-75$	68,3	29,5	2.2
$75-84$ $8-88$	20.5	5,0	74.5
$88-88$	37.4	34.9	27,7
$88-94$	43,0	57.0	0.0
94-100	63,5	I1,6	24,9
$100-103$:4,5	8.1	77,4
$15_{3}-109$	52,7	47.3	0,0
$109-114$	-o	67,5	32,5
114-117	$5{ }^{1 / 5}$	48.5	0,0
117-119	81.7	0.0	18.3
119-123	54,7	0.0	45.3
$123-126$	62.7	0.0	37,3
126-135	46,1	O,0	-53,9

На основании данных табл. 4 составлена табл. 5, в которой приводится групповой состав узких фракций парафино-нафтеногой части исследуемого бензина.

Как видно из данных табл. 5, фракция богатая парафиновыми углеводородами бедна пятичленными цикланами.

Последние четыре фракции изучаемого бензина циклопентановых углеводородов не содержат. Содержание же парафиновых углеводородов в этих фракциях высокое.

В ыводы

1. В мирзаанском бензине определно 42 углеводорода.
2. Найдено, что в исследованном бензине преобладают алканы и среди пих. алканы нормальното строения.
3. Показано, что среди циклопентановых углеводородов преоблтадает трапг-1,2-тмметилциклопентан, из шестичленных цикланов метилинкдогексан, а среди ароматических углеводородоз-толуон.
Академия наук Грузннскоғ ССР
Ннститут химии
им. П. Г. Меликишвили
То́илнси
(Постуиило в редампию -7 2. 285
doins

$$
\text { 的 } 980 \text { g } 0
$$

1. Х. И. Арешидзе. Исследование гидроароматических углеводородов мирзаансого бензниа фракции $95-122^{\circ}$ путем дегидрогенизационного катализа. ДаН СССР. новая серна, т. 50. 1945, стр. 193.
2. Х. И. Арешидзе. Исслелование ароматических углеводородов ксилолной фракции мирзаанского бензина. ДАН Аз СР, т. 4, 29-8, стр. 325.

В ы в оды

1. В мирзаанском бензине определно 42 углеводорода.
2. Найдено, что в исследованном бензине преобладают алканы! и среди пих алканы нормального строеиия.
3. Показано, что среди циклопентановых углеводородов преобладаст траге-1,2-дмметилцнклопентан, из шестичленных цикланов метилийлогексан, а среди ароматических углеводородоз-толуон. Академия наук Грузинсвой СС.

Институт химаи
пм. П. Г. Меликпшвили
соилиси
(Поступиао в редакино -7 2. -25:3
 0. hasa330さ6n


```
白9% % % a % 
```


1. Х. И. Арешидзе. Исследование гидроароматических углеводородов мирзаансого

бензина фрамции $95-122^{\circ}$ путем дегидрогензационного катализа. ДАН СССР, новая серна. т. 50. 1945, стр. 93.
3. Х. И. Арешидзе. Исследоваине ароматических углеводородов ксилолной фракции мирзаанского бензина. ДАН АЗ СР, т. 4, -978, стр. 525.

 №10，1955，83． 785.
4．Х．И．Арешидзеи А．В Киквидзе．Углеводороды ряда декалина в мирзаан－ ской нефти．ДАН СССР，т．121， 1958 ，стр． 1025.

8．Г．С．Ландсбергн Б．А．Казанский．Определение индивидуального состава бензинов прямой гонки комбинированным методом．Изв．АН СССР，ОХН，No 2. 1951，стр． 100.
9．Б А．Казаиский，А．Ф．Платэ，Е．А．Михайлова，А．Л．Либермани др．Определение индивидуального утлеводородного состава бснзинов комби－ нироваиным методом．Соооы．2．Два бензина из нефтей Казаноулакского место－ рождения．Изв．АН СССР，ОХН，№ 2，-954 ，стр． 266.
i0．D．А．Kазанский，I．C．Јандсберг．и др．Определение нндивидуального угдеводородного состава бензинов комбинированным методом．Сообщ．3．Сура－ ханские бензииы．Изв．АН СССР，ОХН，N．2，1954，стр． 278.
11．Б．А．Казанскнй，Г．С．Лаидсберги др．Определение индивидуального углеводородного состава бензинов комбинированным методом．Сообш．4．Бензин из туймазинской нефти．Изв．АА СССР，OXH，Ne 3， 1954 ，стр． 456.
12．1．А．Казанский，Г．С．Ланд二берг и др Определение индивидуалного углеводородного состава бензинов комбинированным методом．Сообт．5．Вен－ зин из эмбенской нефтн．Изв．АН СССР，ОХН，太心 5，\＆954．стр． 865.
13．А．М．Настюков．Действие формалина на нефть н ее погоны．ЖРХО，36， 1 SO4 стр． 881.

Т. С. ШАКАРАШВИЛИ, Н. Г. БЕКАУРИ

СИНТЕЗ AगhИЈАРОМАТИЧЕСКИХ УГ.ІЕВОД()РОДОВ

(Представлено членом-корреспондентом Академии Д. И. Эристави 16.4.2964)
Ранее нами были синтезированы парафиновые углеводоролы нормального строения и олновременно идентифииированы аналогичнне углеводороды состава $\mathrm{C}_{10}-\mathrm{C}_{20}$ из соответствуюшеи фракции нефти $[1,2]$.

Пелью настоящей работи явдяется синтез некоторых алюилароматических углеводрродов состава н. октил-бензол и додепидб̈ензол.

В настояшее время синтез гомодогов бензола в литературе освешен достаточно ясно, но, несмотря на это, синтезу высокомолекулярных алкнлароматических углеводородов уделено мало винмания. Эти углеводороды получались главным образом по реанини Bюриа [3], Ворца-Фиттига и Фриделя-Крафтса $[4,5,6]$.

Поскольку в ходе синтеза н. гептилвензнлиетона и н. унденилбензилқетона были внесень значительыые изменения в сушествуюшие ме. тоды [6], мы находим цетесообразным лать нодробное онисание синтеза этнх кетонов и ид физико-лпмнческих констант, которые указанным методом были полуูчены нами виервые.

> Экпериментадьная часть

Синтез Jаурофенона. Реакиня велась в четырехгоғдой крутлодонной колбе с вставленным в нее обратннм холодиднником и термометром. В колоу ле помещалась одпи весовая тасть хлорангидрида лауриновой Кислоть и две частн бензола. В тешение всей реакнни постепенно добавля-
 тельно перемешивллась. Колб̆а вначале полружалась, в сосуд со дьдол, затем дед заменялся холодной водой, которая к конщу реакиии наррева-』acb OT 20 म्न $50^{\circ} \mathrm{C}$.

После окончания реанини содержимое қолби нитенсивно переменивалось в течение трех лней, досле чего смесь переливалась в сосуд, в котором находилась подкисленная леляная вола. Lосле разложения реакщиониой смесн полученный кетон экстрагиривали әфиром, промывали

водой, содой пн вновь водой, а затем сушили сульфатом натрия. Baтем оттонялась смесь эфира с бензолом, а оставшаяся жаслообразнал жидкость перегонялась под вакуумом.

B результате перегонки получинись широкне фракиии: ог 130-170 И $170-185^{\circ}$ прн $з$ мл.

Выяснплось, что первая фракщня - науриновая кистота, полученная в резултате разтожения реациннои смеси, а вторая-лаурофенон, загрязненинй лаурінивьй кисьотой. Поэгому кетон подвергался перепристаллизации в торячем спирте, затея обрабатывался торядим раствором хлористого бария п 10%-ным раствором гидрооиси аммоння в соогношении 2:1. Осадок внпадал, а чнстый кетон застывал в верхней части раствора. Полученный кетон снималсл, промивалея нескоиько раз водой и перекристаллизовывался вновь из торлчего спирга.
 Он харавтеризовался следуюшими физнко-химнческими контактами: $T_{\text {пл }}$ $45^{\circ}\left(46^{\circ}\right) ; T_{\text {кип }} 16$ - 165° прп 2 мм; М 259,2 .

Физнко-химические константы алкилбензолов

	Экспериментальные данные										
Углеводо- роды	$\mathrm{n}_{\mathrm{D}}^{2 \mathrm{an}}$	d_{3}^{20}	$\begin{gathered} T_{\text {Sact }} \\ { }^{\circ} \mathrm{C} \end{gathered}$	$T_{\text {Eй }}{ }^{\circ} \mathrm{C}$		M		$\begin{gathered} \text { む̃ } \\ \text { ※ } \\ \text { O } \end{gathered}$	$\begin{aligned} & \text { Элемен } \\ & \text { ный со } \\ & \% \\ & \quad \% \\ & \hline \text { C } \end{aligned}$		
н. Октилбензол	1,4850	0,8576	-45	$\begin{gathered} 17 ;-176 \\ 4 N M \end{gathered}$	1,8	188	81,32	10367	888,3	11,8	88
н. Додешллбензол	48.40	0.8567	-31	$\left\|\begin{array}{c} 15-176 \\ 4 M M \end{array}\right\|$	5,1	244.9	$105,85$	10417	$87,57$	$12,43$	$79,5$

Литературные данные

Bыход сырого кетона $-8 ; \%$, а читого- 66%.
Аналогинныи иутем быд полуяен тептилиензнлцетон, но иеободимо отметить, что подобная обработка порячим раствором хлорнстого бария и Iо\%-ным раствором аммпака для гептлбензнлкетона не понадобилась, так как капрповая киолота и гепнибепзшлкетон при разгонке лепко отделялись друг от друга.

Синтезированный гептияензилкетон характсризовадся следуюшими константамп: $\mathrm{d}_{4}^{20} 0,9434 ; \mathrm{n}_{\mathrm{D}}^{20} \mathrm{I}, 5045 ; T_{\text {ааст }} 2 \mathrm{I}-23^{\circ} ; \mathrm{M} 202,9 ; T_{\text {кии }}$ 134136 при 2 м.

Выход сырого продукта- 87%, а чистого- $81,5 \%$.
Синтезированний нами гептиюбензиниетон и додешилфенон б́ли подвергнуты восстановлению по методу Вуафф-Киянера для получения нормальных додеиил- и оптилиензпла. Физико-химическпе ғонстанты этих углеводородов приведень в табтише.

> В в в д ы
I. Синтезировань алкнароматические углеволороды $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{8} \mathrm{H}_{17}$ в количестве 500 мл и $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{12} \mathrm{H}_{25}-650$ мл с пспользованием новых методов их очистки.
2. Определены физико хшмические копстанти сиитезированных утлеводородов, подтверждаюшне пх чпстоту н индивидуальность.

Грузинский политехнический
институт
им. В. И. Јенина
Тоилиси
(Поступило в редакцию 16.4 .1964)
anand
0. 200
 606030\%0

$$
\text { tro ooval } 0
$$

 3g68mmole boborgio.

 СООБ ЕЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, хххv:2. 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $x \times x y: 2,1964$
anmanand

 breminco.

 @u0bmagõon 70\%).

 ufozmoma nym 118 ozopaymozo.

3mexagun buthuan					$\begin{gathered} \text { maimitnmongego o } \\ 5-n 00 \end{gathered}$	
	- \qquad a_{1} \qquad 3				α	β
	$\begin{array}{r} 40,5 \\ \pm 2.9 \end{array}$	$\begin{array}{r} 7.2 \\ \pm 1,7 \end{array}$	$\begin{array}{r}11,5 \\ \hline 2.8 \\ \hline\end{array}$	$\begin{array}{r}16.8 \\ \pm 1.7 \\ \hline 1.7 \\ \hline\end{array}$	$\begin{gathered} 20,5 \\ \pm: 8 \end{gathered}$	$\begin{array}{r} 79,5 \\ \pm 2,4 \end{array}$
 	$\begin{array}{r} 45, \mathrm{t} \\ +2,7 \end{array}$	7,0 ± 1.8	$11+3$ -0.6	14,6 23,8 $+\quad 1,9$ 1,3 140 2,	26.4 ± 3.1	73,6 $-2,6$
	45,2 -2.3	7.0 $+\quad .8$	11,3 1.6	14,2 22,3 2,4	29,1 $-2,4$	$\begin{array}{r} 70,9 \\ \pm 3.9 \end{array}$
2350.morgm	$\begin{array}{r}5.3 \\ +1.5 \\ \hline 1.5\end{array}$	6.6 $\pm 1,1$	9.0 0.4	12,5 ± 5.3	$\begin{array}{r} 34,6 \\ -2,5 \end{array}$	$\begin{array}{r} 65,4 \\ \pm 2,7 \end{array}$

comomo 2

 açomgoson.

 एo

 21. „वmodる』"; $\mathrm{XXXV}: 2,1964$

 duzumo dmã miúsonzol．

3 3magiou bsuoson					
		α_{1}	α_{2}	β	Y
	$13,4 \pm 2,3$	$20,9 \pm 2,9$	$24,2 \pm 1,8$	$22,0 \pm 2,1$	19，5士1，5
 	12，5士 1，3	16，5士1，6	21，9 $\pm 0,8$	$21,6 \pm 1,9$	$27,5 \pm 2,1$
З3gdmeñzos	$10,9 \pm 2,2$	$16,8 \pm 1,4$	28，6土1， 8	$21,3 \pm 2,5$	22，3士2，0
	13，5 1 1，2	18，9士2，4	20，7士 1,6	$21,6 \pm 1,3$	$25,3 \pm 1,7$

$$
\text { cob } 33^{6} \text { g bo }
$$

 nosnmaun

Биохимия

Ф. Г. ВетРОГОН, Е. Г. РАТИАНИ

hPOBU IIPII PABHЫX ФOPMAX HAPYIIEHИЯ МОЗГОВОГО КРОВООБР АルЕНИЯ

Pe 3 ю m е

В данном сообщении ириводяся результаты изучеиия в крови белковых фракций, линопротенлов и тликопротендов у 118 больных разными формами нарушеиия мозгового кровообрашения. Материал рассматривался следуюшим ооразом: по харантеру расстроїствя мозговоוо крово-

обращения (размягчения, геморрания, прехоляшие расстройства мозгового кровообращения) и по локализащии патологического очага (корковопрнкорковая внутренняя капсула и ствол).
\|олучсны следуюmне данные. Nочтн у всех больных с нарупением мозтового қровообрашения отмечается пзменение протеннограмм, выражавшееся в сниженин альбумино-плобулинового коэффипиента за счет увелнчения юлавным оиразом альфа-два- и гамма-глобулнна. Повышенне аль-фа-два-глобулна характерно для острых продессов и не наблюдается при прехолящих расстройствах мозгового кровооб́рашения.

Изменснпя липидограмм, обнаруженные у большинства больных, выражаются в сниженин альфа-липопротендов.

Гликопротеидн Претерпевают значительные изменсния как в сторону увелнчсныя, так и уиеньпения отдельных фракции. В основномотмечается снижение гликопротендов, связанных \subset алибумином, и увеличение гликопротешдов, связанных с глобулином.

Эдектрофоретнческпе изменения бельов сыворотки нрови, не обладая спешифнчностью, пмеют в сопоставлении с клинической картиной заболевания опрелеленное диатностическое, дифференциально-диагностичесКое и пронносническое значение при нарушенлях мозговото кровообрашения.

1. М. В. Бавинаи М. Н. Меликова. Солержание липопротеидов в крови у больных атеросклерозом и инфарктом миокарда. Атеросклероз и коронарная недостаточность. М.. 1956, 143-153.
2. D P. Barr, H. A. Eder, E. A. Russ. Protein-Lipid Relationships in Human Plasma, in Atherosclerosis and Related Conditions. Am. J. Med. 11, 4, 1951.
3. J. W. Gofman, F. Lindgren, H. Elliot. The Role of Lipids and Lipoproteins in Atherosclerosis. Science., 111, 1950. 166-186.
4. З. А. Иваникова. Белково-липоидный обмен при нарушениях мозгового кровообращения. Врачебное дело, 9, 1961, 67-70.
5. Р. И. Борисенко. О некоторых химических нзменениях крови при тромбозах сосудов головного мозга. Журнал невропатологии и пснхнатрии, 37, I, 1957, 2-3.
6. В. Ионэшесжу, И. Шойму, С. Магда, С. Флору. Электрофоретическое изучение изменений сыворотки крови у больных с острым нарушением мозгового кровообращения. Сб. докл. совместн. сессии ин-тов неврологии Ру. мынской Акалемии наук и АМН СССР, посвяшен. острым нарушениям мозгового кровообрамения. M., 1959, 56-57.
7. В. М. Карпинская. Изменение белкового состава крови, холестеринаи его эфиров при нарушении мозгового кровообрашения. Сб. докл. совместн. сессии ин-тов неврологии Румынской Академии наук и АМН СССР, посвящен: острым нарушепиям мозгового кровообрашения. М., 1959, 57-58.
8. А. А. Миттельштедт, Л. К. Бауман, В. И. КарпинскаяиГ. С. Князева. Липопрлтенды сыворотки крови у больных с разными видами нарушения мозгового кровообрашения. Журнал невропатологии и психиатрии, 1, 2962, 59-65.
9. Т. П. Шестерикован Е. Л. Пучковская. Особенности белково-липондного обмена у больных, страдающих сосудистыми поражениями головного мозга. Врачеб́ное дело, 1960, 9, 37-44.
10. Ф. Г. Ветрогон. Т. А. Каиделаки, Е. Г. Ратиани. Некоторые биохимические сдвигн в крови при нарушении мозгового кровообрашения. Сб. трудов Ин-та певрологии АН ГССР., I1, 1961, 185-191.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, X X XV:2, 1964

30 manans

m. Jondodo

 un afgh mandmel eosbnabzbubonab.

 zomzol Эुgegzor.

 camiont.

327

 amonon- 11 gyanb 3030 ono.

 dork $29300^{\circ} \mathrm{C}$.

 dentigbol.

 ($36,0 \%$) - एoozindgmgod Lubon.

 "0moñ.

 ymozons ауm.

 donbzazadyn sou nuoz binloguce.

 230000 g 20 $6: 805$.

$$
\text { Mob } 335_{0} 30
$$

 conóndymgouno

 mobont cozondgmgos．

 $\cdots \mathrm{m}_{2} \mathrm{~B}^{2}$ ．
 junbiymo oुméndaznu sommu．

のठ்nmoun
（mppofonnt àmg3n＠s 20．3．1954）

БИОХИИИЯ
․ А．КЕРКАДЗЕ
ПІРИМЕНЕНИЕ HEKOTOPЫХ БИOХИМИЧECKИX ПРО万 В ГРУЛHOM BOЗPACTE ПPИ PAЗTHपHDX ФOPMAX ПНЕВМОНに唁

резғоме

Изменение коагуляционной пробы Вєльтмана в острой фазе пнев－ моний детей грудного возраста выражается в укорочении коагуляцион－ пой ленты，чаще при альвеолярной форме．Что касается интерстици－ альной формы пневмоний，то при ней укорочение коагуляционной лен－ ты отмечается реже，а в значительной части случаев имеет место даже өе удлинение．

Наблюдается определенная закономерность между изменениями в проб: Бельтмана и длительностью заболевания; в частнжтн, в начальном периоде заболевания - превалируемое укорочение, а в более поздней фазе - удлинение ленты. Длительное течение пневмоний ха рактеризуетсл в большинстве случаев удлинением коагуляционной ленты.

В период клннического выздоровления реакция Вельтмана норчализуется. Сравнительно поздняя нормализация отмечается в случаях с обильно выраженными местными (в легких) явлениями.

Положительная реакция Таката- Ара наблюдается чаще всего при тяжелых токсических формах пневмоний,

Дифениламиновый показатель в острой фазе тижелых форм пиен моний достигает высоких цифр. При формах средней тяжести повытение до высоких цифр отмечается сравнительно редко, а леткие формы дают лишь незначитетьное повышение в единичных случаях.

При пневмониях у детей грудного возраста параллельно активности патологического очага и тяжести заболевания изменяются реакции Зельтмана, Таката-Ара н дифениламина, поэтому применение вышеуказанных реакций имеет диагностическое п прогностнческое значение.

СООБШЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, ххХV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

3JmOMsommmsos

3. 230cem0 0

 dzegorn libom [1].

 buyingògб.

 3\%gont mglubg3.
m ঞobo Trilophodontidae Simpson, 1931
J30 m zobo Trilophodontime Vaufrey, 1922
830 ḿn Trilophodon Falconer, 1846
bobo Trilophodon angustidens Cnvier, 1806
 Б๐ว. [p. 2]).

umen．1．Trilophonoll ithgustidons Cuver， Going $\cos ^{2}$ ga M_{3}
mzobo Deinotheriidae Bonaparte， 1850
330 र́o Deinotherium Kaup．， 1829
bob o Deinotherium of．curieri Kaup．， 1831.
 p．2）．
 -

 дmgón.

 дymo. Anoummozols mudoumumo ommm gocoucons podengo po po-
 abomgitn boygmmes nónognous
 Eot vjzobo abokngig juingocou zoдmbusumen एo podomo aubzomo jৈools oुmédo ojzu.

 OOM nobbzegos Deinotherinm cuvieri Kaup. ou aglsododnbo zonmols mbóménbobrym coububnongBob, мммбк च चбоддбдммме zo-
 88ntrigzobou ungenc 60 дд-ou, Ungu5g-65 д2, unธिलmд 33 д2. M_{2} (bugko. 3) mnonfand binngmo@os

 gुmendnuso. dolio vozindy $\partial g \mathrm{~g}_{\mathrm{m}} 00$

ugni. 2. Deinotherium ef. curiari Kaup.

 gुménontuo co bgдmu@

Lym. 3. Deinotherium cf. cuvieri Kaup. asmabgro M_{3}

 Lufónozggmeno po dol amburmging on-
 nolu.

 tramga loatringos bodationzommeto eo ant


```
                nȯnmaun
```


ОСТАТКИ ХОБОТНЫХ ИЗ СРЕДНЕМИОЦЕНОВЫХ ОТЛОЖЕНИЙ ЗАПАДНОЙ
 ГРУЗИИ
 Pe3 3 м е

Остатки точно датироваишых срелнемиопеновтх млекопитающих на территории СССР встречатотся весьма редко. Естественно поэтому, что заслуживают внпмания первые находки караганских хоботных в Чиатурском и Сачхерском районах Западной Грузии.

В статье дается описаиие олного нижнекоренного зуба (M_{3}) тридофолона (Trilophodon angustidens Cavier) и двух коренных зубов ($\mathrm{M}^{2}, \mathrm{M}_{3}$) динотерия (Deinotherium ef. cuvieri Kaпр.), а также высказаны некоторые соображения о возможных путях прохореза этих нскопаемых мле. копитатоших.

Анализ данных по распространенио олиюценовых в среднемиопеновых млекопитающих Кавказа дает ираво предполагать, что на протяжении этих эох территория Грузии время от времени соединялась как с европейской сушей, так и с малоазиатской.

1. Л. К. Габуиил. О первой паходке листриодона в миоцене СССР. Сообщения АН ГССР, т. XXII, № 1, 1959.
2. Е. И. Бедяеваи Л. К. Габуния. Новые данные окавказском платибелодонте. Труды Института палеобнологии АН ГССР, т V, 1960.
3. „дmodrgu", XXXV: 2, 1964
4. Л. К. Габуния. Олигоценовая фауна наземных позвоночных Бенары (Юг Грузии). Тезисы докл. І научной сессии Института палеобнологии АН ГССР, 1955.
5. Г. А. Квалиашвили. Онкофоровый (рзегакиевый) горизонт Евразни. Изд. АН ГССР, Тбилиси, 1962, стр. 138.
6. Б. П. Жиж ченко. Средний миоцен. Стратиграфия СССР, т. XII. Heоген СССР. Изд. АН СССР, М.-Л., 1940, 60-227.
7. H. F. Osborn. Probuscidae, v. I. New-York, 1936.

ПАЛЕОБИОЛОГИЯ

Л. В. МУСХЕЛИШВИЛИ

(CBOEOFP 3 IOM IIPE ICTABU TRЛF PO IA CALLIOSTOMA 113 CPE IHE: () CAPMATA MLIPl:U1HH
(Представлено академиком Л. Ш. Давиташвили 20.1.1964)
В историн формирования среднесарматскої фауни мотиосков Заиадной Грузии немаловажная роль дриналлежала трохидам (Trocзidae). Срели них наряду с рансе шзвестными представителями существовади, как выяс. няется теперь, и некоторые своебразиые виды этих родов.

В настолџцй заметке дается праткое описаине одного из таиих видов, относимого нами к poдy Calliostoma, прнсуtctbae кoroporo в Merрепии (местность Нахулини) харақтерно, как паи кажетья, для сарматслих трохид рассматриваемой области.

Семейство Trochidae Orbigny, 1837
Подсемейство Conитінае Cossmann, 1y,6
Pos Calliostoma Swainson, : 8 fu
Calliostoma pachulanensis sp. nov.
Тайл. І, фиг. г.
Голотиі. . $5 / 2$, с. Haxyлани, Метрелия.
Диагпоз. Раковина средней величини, I7-10 конические или дисковидные. Обороты слепа выиуклые. Устьс округло-четырехуюоиное. Поверхность оборогов гладқая.

Описанпе. Раковина очень низкая, почти нисковшдная, состоид из четырех оборотов, резко возрастаюиих в величине по наиравлению ко устью и сильно уилощенных сверху. Обороть разделяе непл бокий пов. Начнная со вгорого оборота, на новерхности раковинн намечаются слабо выраженпые стиралннюе струйки, разделенные уакими промежутками. Число струек но мере роста раковины увеличиваетея: (4-5 струел на второл обороге, $6-7$ на третьем, восемь на четвертом).
 ஈую верхнюю п слабо выпукдую низнюю. Оспование раковины покрыто довольно широкими синральнюми струйками. Слабо ириметны следн нарастания.
 зующий заостренный внстуи в обтасти аидя; внутрениий утолыен и! oтогнут ह шелевилному пупқу.

Повервность оборотов гладкая.
Размеры в мм:

длина	пирина	коэффнциент уллинения
17,4	22,3	0,7
15,2	18,7	0,7
10,5	14,3	0,9

Сравнение. Но форме раковины и очертиию устья приближается к Calliostoma papilla (Eichw.) пз среднего сармата Ceверного Кавв а аз а [I, 2], разичия с когорой, однико, довольно сумественны. Они сводятся женьпей величине раковины, заметно меньпей выпуклости оборотов,

Фиг. 1,2,3. Calliostoma pachulanensis sp. nov. Грузинская ССР, с Пахулани. Средний сармат. Натуральная величина
 днем обороте и меньmему числу оборотов.

Ю сопалению, остутствпе сведений о точном стратитрафнческом положении Calliostoma papilla (Eichw.) лпшает нас возможности говорить с уверенностью об отнонении к нему пахуланското вида.

Тем не менее, мы допускаем наличие родственной связи между этнми видами: нецрудно представить себе переход оп Calliostoma papilla (Eichw.). к Calliostoma pachutanensis sp. nov. путем сгладкивания скульптуры и больнего уплошенпя оборотов раковнны.

Местонахождение. Грузитская ССР, с. Пахулаии.
Pacпространение. Срелиий сармат Западной Грузип (Мегрелпл)。
Материал. 28 эқземпляров (среди них раковины как взрослых, так и ютнд особей) найдены в окрестностях с. Ilахулани, в среднесарматских ранупннках, обнджаюнихся на праволя берегу p. Олори.
()бпие замечания. Развнтие сильно сплюшенной раковины со сглаженными оборотамн у Calliostoma pachutanensis sp. nov. Мегрелии представляется на» крайним нроявленном наблюдаемой у срелесарматских трохид и прочия молльсков Западной Грузни пзмепчивости такнх признаков, кақ высота раковин曰 пt возннкновение орнаментанин [3]. Судя по отсутствин промежуточных эғзсмдляров между сиаьио сплюшеными, с одной сторонь, и относително высокини, с другой, ракопииами неко-

торых близких, на первый взгляд, трохид срелнето сармата Мегрелии, а также по постоянству в серии экземляров отмеченного нами для пахуланского вида сочетания очень низкой приплюснутой раковины с почти подным отсутствием орнаментании оборотов, мы можем закщючить, что в данном случае интенсивная изменчивость указанных выше признаков трохид привела в коние концов к возникновению нового вида.

Примечательно, что всюлу в Мегрелии на грани раннего и среднего сармата происходит постепенная смена глинисто-песчаной фапии песчаной.

Эта смена фаций, безусловно, отражает соответствующие изменения в режиме бассейна. Привнос относительно грубозернистого материала, очевидно, связанный с обмелением бассейна, вызвал измененне характера грунта. В связи с обмелением в то же время должны были улучииться условия аэраџии, а также, возможно, освещения.

Возникновение спдюшенных, почти дисковидных раковин у Calliostoma pachulanensis sp. nov., по-видимому, связано с обмедением бассейна: трохнды с субдисковидной раковиной, по напему мнению, должны были быть дучше приспособлены к обитанию в прибрежной полосе, чем виды с высокой раковиной.

Наконец считаем нужным сделать одно замечание о родовой принадлежности рассматриваемого вида. Систематика сариатских трохид, и в частности распраделение их между разичными родами, находится в неудовлетворительном состоянии. В настоящее времл мы считаем возможным, впредь до ее радикальной ревизии, придерживагься того расчленения этой группш, которого иридерживался в последних своих работах крупнейший знаток молдосков сармата B. П. Колесниқов [3]. Следуя этому автору, отнесшему Trochus» papilla Eichw. к роду Calliostoma, мы относим более или менее условно $К$ тому же роду и близквй к упомянутому виду описанний в этой статье вид.
Академия наук Грузинской ССР
Институт палеобиологии
(Поступило в редакцию 20.1.1964)

> mobngoo

 undidugume ungol zoaghbergoublonab.

1. В. П. Колесников. Сарматские моллюски. Ilалеонтологня СССР, т. 10, ч. 2, 1935.
2. В. П. Колесииков. К систематике сарматских гастропод. ДАН СССР, т. XXV, № $8,1939$.
3. Л. В. Мусхелищвили. К вопросу об изменчивости среднесарматских моллюсков Мегрелии (Западная Грузия). Сообщения АН ГССР, XXXIV:1, 1964.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $X \times X V: 2,1964$

СТРОИТЕЛЬНАЯ МЕХАНИКА

г. в. КИЗИРИя

МЕТОДИКА ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ УСИЛИЙ В МНОГОКРАТНО СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ โОМБИНИРОВАННЫХ КОНСТРУ КЦИЯХ

(Представлено академиком К. С. Завриевым 23.3.1964)
Методика определения усилий в многократно статически неопределимых комбинированных конструкциях с учетом ползучести бетона дана в работе [t]. Методика основана на теории старения. При этом залача об определении усилий прнводится к решению системы дифференњиальных уравнений.

Как показывают полсчеты, решение системы дифференциальных уравнений уже для триждю статически неопределимых конструкций вызывает большие трудности қак в отнонении количества, так и точности видислтений. Поэтому встает вопрос о разработке приближенной методики, которая была бы свободна от әтого недостатжа и давала бы возможность с лостаточнойточностьюоценить влияние ползучести бетона в комбинироBанных системax.

Лопустим, имеем комбинированную систему, состоящую из двух несуших конструкпий (рис. 1) ,
каждая из которых загружена внешними силами: первая конструкция загружена произвольной, постолнно действующей нагрузкой $q_{1}(x)$, а вторая-также произвольной, постоянно действующей натрузкой $q_{\mathbf{a}}(x)$.

В отдельных п-точқах мелдду этими конструкциями поставлены свя зи, с помощью которых одна система взаиодействует с другой. Обозначим силы взаимодействия в начальный момент, когда деформации ползучести еше не проявились, через $X_{10}, X_{20}, \ldots, X_{\text {по }}$.

B результате ползучести и усадки бетона эти силы будут изменяться. Обозначим изменения этих сил через $X_{1 t}, X_{2 t}, \ldots, X_{n_{t}}$.

Как показывает точное решение задачп, выражение для $X_{i t}$ имеет вид

$$
\begin{equation*}
X_{i t}=A_{i}+B_{i} e^{-r_{1} \varphi_{t 1}}+C_{i} e^{r_{2} \varphi_{t 2}} . \tag{I}
\end{equation*}
$$

Из (1) видно, что $X_{i t}$ изменяется во времени по экспоненциальному закону.

Будем аппроксимировать (() выражением

$$
\begin{equation*}
X_{i t}=X_{i 0} \frac{\mathrm{I}-e^{-\varphi_{t}}}{\mathrm{I}-e^{-\varphi_{m}}}, \tag{2}
\end{equation*}
$$

которое удовлетворяет начальным условиям: в начальный момент при $t=0, \varphi_{t}=0$ и $X_{i t}=0$.

После окончания пропесса ползучести ири $t=\infty, \varphi_{t}=\varphi_{m}$ и $X_{i t}=X_{i 0}$.

Обычно при расчете конструкиий интересно знать окоачательннй результат изменения усилий от ползучести бетона, т. е. $X_{i 0}$.

Зная зақон изменения усилий во времени в результате ползучести бетона, можно вючислить перемешения, что дает возможность составить каноническое уравнение метода сил.

Известно, что если упругое перемещение каной-дибо точки бетонной однородной системы от сил P равно Δ, то, если эти силы остаются постоянными во времени, перемешения этой ле точки от ползучести бетона равны

$$
\begin{equation*}
\Delta \cdot \varphi_{t} \tag{3}
\end{equation*}
$$

а посде окончания ползучести бетона -

$$
\begin{equation*}
\Delta \cdot \varphi_{m} . \tag{4}
\end{equation*}
$$

Если действующие силы P изменяются во времени по закону (2), то перемещения можно вычислить по формуле

$$
\begin{equation*}
\Delta \cdot \varphi_{m}^{*} . \tag{5}
\end{equation*}
$$

Значения φ_{m}^{*}, когда действующее усилие изменяется по закону (2), внчислены в работе [2].

Методика приближенного определения уснапи. .
В таблице приведены значения φ_{m}^{*} лля различных φ_{m}.

| φ_{m} | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varphi_{m}^{*}=\frac{\varphi_{m}}{I-e^{-\varphi_{m}}}$ | 1,27 | 1,58 | 1,93 | 2,313 | 2,72 | 3,157 | 4,075 | 5,01 | 6,01 |

Необходимо отметить, что уравнение (5) даєт полную деформаииюсумму упругих деформаций и деформаший ползучести.

Расчет по определению усилий в комбинированных конструяшиях с учетом ползучести бетона производят в следуюшей последовательности:

1. В уиругой стадип опредедяют усилия от всех постояино действу гщих нагрузог.
2. В принятой основной системе определяют перемещения по направленю лишних неизвестных тольюо вследствие ползучестн бетона.
3. В основной системе определяют елиииныые перемешения с учетом ползучести бетона от сил

$$
X_{l}=\frac{1-e^{-\varphi_{t}}}{1-e^{-\varphi_{m}}}
$$

4. Ћонечные величины дополнительных лишних непзвестных $X_{i m}$ определяют путем решения канонических уравнений.
5. Величины лишних неизвестных посте огончания лефоряаций ползучести определяют по формуле

$$
X_{i}=X_{i 0}+X_{i m}
$$

6. Расчетные усидия по вычисленным значениям липних неизвестных опрелеляют обычным путем.

Эту методику приблияенного определения усилий можно использовать ири любом способе возведения сооружения и дюбом числе объединенных несуших конструкций. Наличие армирования можно учесть, если все перемещения определять с учетом армирования по методике, изложенной в работе [2].

Если отдельные части конструкции изготовляются разновременно, это учитывается корректировкой φ_{t} для соответствуюшей части.

Как показывают сравнительные подсчеты, результаты, полученные по тониому решению и по вышеприведенной методике, практически сов-

Рис. 2

падают.
Можно заметить, что вышеприведенная методика определения бсилий в комбннированных конструк циях аналогични методнке определения !силий в неразрезных железобетонных балках, изложеннод̆ в рабore B [2].

Пример. Определим усилия по приближенной методиғе л.я системы, рассмотренной в рабоTe [I].

Имеем бетоннук балку (рис. 2), нагруженную равномерно распределенной натруskой $q=2 \mathrm{~m} / \mathrm{m}$. После нагружения балка подпирается двумя стойками. В момент установки стойки не нагружены, однако по आере проявления деформапиiो ползутести в балке часть пагр:зкп, ранее действуюпиая на балку, передается на стойкн.

Перенешения
B балfe:

$$
\begin{array}{lll}
\delta_{11}^{(1)}=0,247 ; & \delta_{22}^{(1)}=0,135 ; & \delta_{12}^{(1)}=0,159 ; \\
\Delta_{1 p}^{(1)}=6,588 ; & \Delta_{2 p}^{(1)}=4,627 ; &
\end{array}
$$

B CTOĬKax:

$$
\begin{aligned}
& \delta_{22}^{(2)}=\delta_{11}^{(2)}=0,022 ; \quad \delta_{12}^{(\eta)}=0 ; \\
& \Delta_{1 p}^{(2)}=0 ; \quad \Delta_{2 p}^{(2)}=0 ;
\end{aligned}
$$

принимаем:

$$
\varphi_{m}^{(1)}=1,0 ; \quad \varphi_{m}^{(2)}=2,0 .
$$

Канонические уравнения будут иметь вид

$$
\begin{align*}
& X_{1}\left[\delta_{11}^{(1)} \varphi^{1 *}+\delta_{11}^{(2)} \cdot \varphi^{(2) *}\right]+X_{2}\left[\delta_{12}^{(1)} \varphi^{(1) *}\right]=\Delta_{1 p}^{(1)} \cdot \varphi^{(1)} \\
& X_{2}\left[\delta_{22}^{(1)} \cdot \varphi^{(1) *}+\delta_{22}^{(2)} \varphi_{2}^{(2) *}\right]+X_{1}\left[\delta_{21}^{(1)} \varphi^{(1) *}\right]=\Delta_{2 p}^{(2)} \cdot \varphi^{(1)} \tag{6}
\end{align*}
$$

Уравнения（6）основаны на следуюнем：если бш межлу балпой и стойами контаюта не было，в результате ползууести бетона от посто－ яино действуютий нагрузки в точқах I и 2 балкд получила б́ь смеще－ ние соответственно

$$
\begin{equation*}
\Delta_{1 p}^{(1)} \varphi^{(1)} \quad \text { п1 } \quad \Delta_{k p}^{1)} \varphi^{(1)} . \tag{7}
\end{equation*}
$$

Чтобы обеспечить совместность деформаний в точках І и 2，сле－ дует приложить силы X_{1} и X_{2}（рис．2）．Эти силы изменяются во вре－ мени．Закон изменения во времени X_{1}＂$^{\prime} X_{2}$ иринимаем сопласно рабо－ те［2］．Тогда взаинюе солижение балки и стойки в точाке I от упругих деформаций－

$$
X_{1}\left[\hat{\partial}_{11}^{(1)}+\hat{\partial}_{11}^{(2)}\right]+X_{2} \hat{\partial}_{12}^{1}
$$

Взаимное сближение Талки и стойки в той жле точке сучетом пол－ зучести－

$$
X_{1}\left[\partial_{11}^{(1)} \cdot \varphi^{(1) *}+\partial_{11}^{(2)} \psi^{(2) *}\right]+X_{2} \delta_{12}^{1} \varphi_{1}^{(1) *} ;
$$

соответственно в точке 2－

$$
X_{2}\left|\delta_{22}^{(1)} \varphi^{(1)^{*}}+\delta_{22}^{(2)} \varphi^{(2)}\right|-X_{1} \delta_{21}^{(1)} \varphi^{(1)^{*}}
$$

 печена совмеснисть дефориаиии．Эrо усдовие п дает систему ：равне－ ний（6）．
Подставив соответствунине величины в (6), подучнм уравнения

$$
\begin{aligned}
& X_{1}[0,247 \times 1,58+0,022 \times 2,31]+X_{2} 0,159 \times 1,58=6,59 \\
& X_{2}[0,135 \times 1,58+0,022 \times 2,3 i]+X_{1} 0,159 \times 1,58=4,63
\end{aligned}
$$

илा

$$
\begin{aligned}
& 0,44 X_{1}+0,252 X_{2}=6,59 \\
& 0,252 . X_{1}+0,265 X_{2}=4.63
\end{aligned}
$$

решение которых дает

$$
X_{1}=10,9 \mathrm{~m} \quad \text { "11 } \quad X_{2}=7,3 \mathrm{~m}
$$

 и $X_{2}=7,24 \mathrm{~m}$ ．

B отличие of rommoro（в пределах допушениіі теории старения）ме－ тода，в которои требуетея составление п решсние днфференииаивных уравнений，иснолзование предагаемой џнйднженний методиқи сводит вопрос к составления и ғешению снстеми алеооринеских уравнений． Это об̈столтельство не только значительно упрошиет расчеть，но и дает практицескую возмодность опрелелсния усилий в миогократно статически неопрелелимых конструкциях．

Академия наук Грузинской ССР
 Институт строительной механики
 и сейсмостойкости
 Тбилиси

3. $30 \% 0605$

 Lubnczage unugadomo.

 Lozut;

$$
X_{i}=\frac{\mathrm{I}-e^{-\varphi_{t}}}{\mathrm{I}-e^{-\varphi_{m}}}
$$

 ommogodnu oamblanm;

$$
X_{i}=X_{i 0}+X_{i m}
$$

 920063930 gnondobjos.

1. Г. В. Кизирия. Определение усилий в комбинированных конструкцилх с учетом деформаций ползучести бетона. Сообщения АН ГССР, т. XXVIIl, ふе 3, 1962.
2. М. Е. Гибшман, І. В. Һизирия. Ползучесть, усадка м местные напряжения в железобетонных предварительно напряженных конструкциях мостов. Автотрансиздат, М., 1959.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $\mathrm{XXXV} \mathrm{XV}, 1964$

СТРОИTE ВНАЯ MEXAНИKА

Н. А. ПОПОВ, Г. П. ХОМЕРИКЙ

АГЛОМЕРАЦИЯ МАТЕРИАЛОВ СПОСОБОМ ВЕРХНЕГО ОТСОСА ГАЗОВ

(Представлено академиком K. С. Завриевым 14.4.964)
Способ агломерации - процесс спекания смеси пылевидных материалов с измельченным топливом в твердые порнстые куски (агломерат, аглопорит) - давно получил широкое применение в металлургии. 3а последние десятнлетия этот способ стал также широко внедряться в область производства стронтельньх материалов.

Из всех известных методов способ спекания на колосниковой решетке с просасыванием воздуха через слой шихты (сверху вния) является самым распространенным. По этому способу спекаемая мелкая масса тщательно перемешивается с измельчетным твердым топливом при одновременном увлажнении. При перемешивании мелкие увлажненные частицы материала укрупняются в более или менее прочные комочки. B результате шихта приобретает зернистый состав, уменьшается ее насыпной вес и создается необходимая газопроницаемость, что позволяет вести процесс спекания в слое высотой 200 - 300 мм. Подготовленная шихта загружается на решетку спекательной машины и зажигается с поверхности при помощи специального горна.

Одновременно под колосниковой решеткой создается разряжение, благодаря чему воздух просасывается через весь слой шихты й обеспечивает шнтенсивное горение топлива с развитием высоких температур в зоне горенил.

Начавшееся на поверхности шихты горение в ограниченной по высоте зоне последовательно проходит через всю толщину загрузки и заканчивается у колосниковой решетки.

Ha основе этого способа созданы и распространены агломерационные машины, дающие возможность максимальной механизации и непрерывного ведения процесса спекания.

Для установок большой производительности широкое распространенне получили агломерационные машины ленточного типа.

Однако, несмотря на большую распространенность этия машин, вышеизложенный принцип, заложенный в их основу,-ведение процес-

са агломерации сверху вниз и, следовательно, отсос продуктов горепия снизу--обуславливает щелый ряд крупных недостатков, присущих этим машинам. К числу их в первую очередь относятся следуюшие:

1. При приближении зоны горения к колосниковой рєшетке маши ны температура отсасываемых через решетку газов резко увеличивается, в результате чего колосники постепенно сгорают и их срок службы резко ограничивается; в худшем же случае колосники оплавляются.
2. При ннжнем отсосе газов над слоем шихты создается значительное давление воздуха, вследствие чего слой уплотняется и сннжается яазопроницаемость шихть, а это снижает вертикальную скорость спекания и, следовательно, удельую производительность.
3. Вследствие уплотнения шихты н уменьшения газопроницамости высота спекаемого слоя шнхты сильно ограничена, что отрицательно сказываепся на удельном расходе топлива для зажигания, на увеличепии удельного выхода возврата и снижении условной производительности агломерационной машины.
4. В ленточных агломерационных машинах между неподвижными вакуум-камерами н подвижной колосниковой решеткой с целью избежания подсоса воздуха необходимо устраивать уплотнительіые системы сложной конструкции, что не только осложняет конетрукцияо и сильно затрудняет эксплуатацию машины, но н не обеспечивает полного уплотнения.

Bсе вышеперечисленные недостатки снижают эффективность работы ленточных агломерационных машин.

В Тбилисском государственном научно-исследовательском институте строительных материалов проведены экспериментальные работы, в результате которых исследован и разработан способ агломерации материалов путем ведения процесса спекания в слое шихты снизу вверх.

При таком способе агломерации слой спекаемой шихты, нахолящийся на решетке, зажигается таким образом, что после зажигания раскаленный тонкий слой гранул размещается на дне колосниковой решетки под основным слоем спекаемой шихты. Просасывание воздуха, необходимого для сгорания топлива, производится снизу вверх через колосниковую решетку и слой шихты в камеру отсоса горячих газов, расположенную над слоем шихты. Горение шихты начннается над колосниковой решеткой, постепенно перемещаетея вверх и заканчивается над слоем шихты. Получается, что весь процесе по отншшению к колосниковой решетке направлен в противоположную сторону по сравнепню с принятым в настоящее время способом агломерации.

Aгломераџия материалов способом всрхнего отсоса газов

Таблица

Основные параметры спекания при верхнем и нижнем отсосах

Начальное разряжение под или над колосник. решеткой, мМ вод. ст.	Максимальная температура отходящих газов, C°	Разряжение под или над колосник. решет. кой в конце спекания, ММ Вод. ст.	Время спекания, MHF.	Насыпной вес стандартной смеси аглопорита, $2 / \Omega$	Прочность аглопорита на сдавливание, $\kappa 2 /$ CM 2	Верти. кальная скоростb спекания, M/MuH	Условная произво- дитель- ноеть, $\mathrm{Mm}^{2} / \mathrm{Nm}^{3}$
1	2	3	4	5	6	7	8

360							
	400	$3: 0$	15/25	670	17	0,033	1,33
360	500	310	14/23	640	17.5	0.020 0,026	$\begin{aligned} & 0,79 \\ & 1,50 \end{aligned}$
370	540	320	16/25	635	16,5	0.022	0,92 1,21
360	490	315	15/23	645	18	$\begin{array}{r} 0,020 \\ 0,033 \end{array}$	$\begin{aligned} & 0,78 \\ & 1,34 \end{aligned}$
360	500	320	15/24	580	17	0,022 0,033	0,99 1,32
380	480	320	14/22	620	18	$\begin{aligned} & 0,021 \\ & 0,036 \end{aligned}$	$\begin{aligned} & 0,84 \\ & 1,56 \end{aligned}$
400	450	320	14/23	643	17.5	0,023 0,036	0.99 1,34
330	340	290	15/27	721	18	$\begin{aligned} & 0,022 \\ & 0033 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1,22 \end{aligned}$
370	360	320	13/23	635	19	0,018 0,038	$\begin{aligned} & 0,67 \\ & 1.48 \end{aligned}$
360	400	320	14/2.4	640	${ }^{7} 7$	$\begin{aligned} & 0,022 \\ & 0,0,36 \\ & 0,027 \end{aligned}$	$\begin{aligned} & 0,80 \\ & \mathrm{~T}, 48 \\ & 0.87 \end{aligned}$
Сред	ноказат	мет	$\frac{14.5}{23,9}$	643	17,5	$\frac{0,034}{0,025}$	$\begin{aligned} & 1,36 \\ & 0,84 \end{aligned}$

Спекание способом нижн. отсоса газов, высога слоя 500 MM , размер зерен $2-12 \mathrm{M} . \mathrm{M}$

340	600	320	25/45	650	10	0,020	0.67
380	630	340	22/40	635	17	$\begin{aligned} & 0.01 \mathrm{I} \\ & 0.022 \end{aligned}$	$\begin{aligned} & 0,38 \\ & 0,86 \end{aligned}$
420	6 to	240	25/43	639	19	$\begin{aligned} & 0.012 \\ & 0,020 \end{aligned}$	$\begin{aligned} & 0,47 \\ & 0,75 \end{aligned}$
410	600	240	24/40	700	16.5	$\begin{aligned} & 0.012 \\ & 0.021 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.64 \end{aligned}$
380	585	320	26/40	620	15	$\begin{aligned} & \overline{0,012} \\ & 0,019 \end{aligned}$	$\begin{aligned} & 0,36 \\ & 0,78 \end{aligned}$
400	600	340	25/45	650	15.5	$\begin{aligned} & 0,012 \\ & 0,020 \end{aligned}$	$\begin{aligned} & 0,49 \\ & 0.71 \\ & \hline \end{aligned}$
360	720	300	25/45	737	18	$\begin{aligned} & 0.011 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.62 \end{aligned}$
400	690	320	26/46	700	18	$\begin{aligned} & 0.011 \\ & 0.019 \end{aligned}$	$\begin{aligned} & \overline{0,34} \\ & 0.62 \end{aligned}$
400	680	310	25/45	735	15	$\begin{aligned} & 0.011 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0,65 \end{aligned}$
420	700	320	25/43	740	17	$\begin{aligned} & 0.071 \\ & 0,020 \end{aligned}$	$\begin{aligned} & 6.36 \\ & 0.99 \end{aligned}$
						0.012	0.39
Средние показатели параметров			25/43	681	17	$\begin{aligned} & 0,020 \\ & 0,0115 \end{aligned}$	$\frac{0.73}{0,40}$

Проведенные экспериментальные работы на лабораторной установке с ведением процесса агломерации снизу вверх и отсосом газов сверху подтвердили положительные стороны этого способа.

Лабораторные исследования были проведены на углесодержащих отходах Ткибульской центральной обогатительной фабрики треста «Ткибулуголь». Зольность отходов составляла $65-70 \%$. Температура: плавления золы $1550-1600^{\circ}$ С. Теплотворная способность отходов 1400 1600 ккал. Состав шихты: отходы углеобогащения 80%, глина ткнбульская 10%; возврат 10%, влажность шихты $10-12 \%$.

Предварительными опытами были установлены оптимальные параметры спекания шихты. При этом выяснилось положительноє влияние некоторого увеличения размера зерен.

Шообленные отходы углеобогащения просеивались через сито диаметром 12 мм; после добавления возврата и глиняного порошка перемешивались и увлажнялись.

Принятое в экспериментах некоторое укрупнение зерен шихты бы ло обусловлено нижеследующим. С целью получения сравнимых данных для способов агломерации верхннм и нижним отсосами, кроме одинакового зернового состава шихты, необходимо было сохранить одинаковую высоту слоя шихты и начальное разряжение.

Для способа с верхним отсосом была получена оптимальная высоحа слоя 500 мм при раздражении над слоем шихты 360 мм вод ст. Қак и предполагалось, при верхнем отсосе газов слой шихты значительно расширяется и увеличивается его газопроницаемость. Однако при мелкой шихте и значительном разряжении зерна шихты могут перейти «кипящее состояние» и потерять контакт между собой, что не обеспечит взанмного спекания зерен и вызовет необходимость попизить разряжение. Вмессте с тем было установлено, что при пониженном разряжени и уменьшенных размерах зерен шихты невозможно спекать слой шихты высотой 500 мм способом нижнего отсоса газов для получения сравнимых данных.

Высота слоя 500 мм и размер зерен $2-12$ мм являются оптимальными для обоих способов агломерации при начальном разряженин 360 мм вод. ст.

В таблице приводятся основные показатели процессов спекания с верхиим и нижиим отсосами газов,

Момент окончания спекания определялся достижением максимальной температуры отходящих газов и началом ее снижения.

В графах 4, 7, 8 таблицы в числителе приводятся время спекания, вертикальная скорость и условная производительность для прощесса

Проведенные экспериментальные работы на лабораторной установке с ведением процесса агломерации снизу вверх и отсосом газов сверху подтвердили положительные стороны этого способа.

Лабораторные исследования были проведены на углесодержащих отходах Ткибульской центральной обогатительной фабрики треста «Ткибулуголь». Зольность отходов составляла 65-70\%. Температура плавления золы 1550 - 1600 С. Теплотворная способность отходов 1400 1600 ккал. Состав шихты: отходы углеобогащения 80%, глина ткибульская 10%; возврат 10%, влажность шихты $10-12 \%$.

Предварительными опытами были установлены оптимальные параметры спекания шихты. При этом выяснилось положительное влияние некоторого увеличения размера зерен.

Чробленные отходы углеобогащения просеивались через сито диаметром 12 мм; носле добавления возврата и глиняного порошка перемешивались и увлажнялись.

Принятое в экспериментах некоторое укрупнение зерен шихты бьі ло обусловлено ннжеследуюшим. С целью получения сравнимых данных для способов агломерации верхним и нижним отсосами, кроме одинакового зернового состава шихты, необходимо было сохранить одинаковуюо высоту слоя шихты и начальное разряжение.

Для способа с верхним отсосом была получена оптимальная высоа слоя 500 мм при раздражении над слоем шихты 360 мм вод ст. Как и предполагалось, при верхнем отсосе газов слой шихты значительно расширяется и увеличивается его газопроницаемость. Однако при мелкой шихте и значительном разряжении зерна шихты могут перейти «кипящее состояние» и потерять контакт между собой, что не обеспечит взапмного спекания зерен и вызовет необходимость понизить разряжепие. Вместе с тем было установлено, что при пониженном разряжении и уменьшенных размерах зерен шихты невозможно спекать слой иихты высотой $500 \mathrm{mм}$ способом нижнего отсоса газов для получения сравнимых данных.

Высола слоя 500 мм и размер зерен 2-12 мм являются оптимальными для обоих способов агломерации при начальном разряжении 360 мм вод. ст.

В таблице приводятся основные показатели процессов спекания с верхним и нижним отсосами газов.

Момент окопчания спекания определллся достижением максимальной температуры отходящих газов и началом ее снижения.

В графах 4, 7, 8 таблицы в числителе приводятся время спекания, вертикальная скорость и условная проиаводительность для процесса

спекания, а в знаменителе - те же данные с учетом охлаждения полученного аглопорита до $100^{\circ} \mathrm{C}$.

Анализ полученных сравнительных данных показывает, что при получении аглопорита одинаковото насыпного веса и прочности путем применения процесса агломерации снизу вверх и отсоса газов сверху вертикальная скорость и условюая производительность по сравнению с принятым способом нижнего отсоса во всех случаях почти в два раза больше.

Полученные данные подтверждают, что в результате ведения процесса агломерации снизу вверх и прососа воздуха в слое шихты в том же направлении создаются условия, исключаюшие вышеотмеченные недостатки существующих ленточных агломејацнонных машин.

Отходящие газы, имеющие высокую температуру, отсасываются не через колосники, а через верхний слой шихты, колосники же в процессе агломерации постоянно омываются холодным воздухом. Вместо уплотнения шихты при нижнем отсосе при верхнем отсосе происходит значительное разрыхление шихты и увеличение ее газопроницаемости, создающее возможность увеличения слоя спекаемой шихты, вертикальной скорости спекания и условной производительности.

На основе применения способа агломерации с верхним отсосом газов была сконструирована ленточная агломерационная машина, не требующая уплотнитєльной системы между неподвижной камерой отсоса и подвижной колосниковой решеткой, чем полностью исключаются вредные подсосы излишнего воздуха (авторское свидетельство № 159129 Г. П. Хомерики).

Полупромышленная ленточная агломерационная машина с верхним отсосом газов в настоящее время изготовлена и устанавливается f строящемся цехе Тбилисского комбината строительных материалов УПСМ СНХ Грузии.

Государственный научно-исследовательский институт строительных материалов

Тбилиси
(Поступило в редакцию 14.4 .1964)

Б. змзm30, 3. бM206030

 @

ЭНЕРГЕТИКА

М. Г. ДжИГАУРН

ЕМКОСТИ В৩ДОХРАНИЛИЩА ЮОМП, КЕСНОГО НАЗНАЧЕНИЯ HA 「OPilOU PERE

(ГІредставлено членом-корреспондентом Академии П. Г. Шенгелия 1.2.1964)
В прелланамой работе рассматривается вопрос о регулировании острых паводков тало-ливневого происхождення энергетнческим водохранилпнем. Такие паводки на торной реке возможны как в паводочный период, так и в осеннюю межень. Задача регулирования паводка водохранинием состоит в том, чтобн расхол в ниљнем бьефе не презынал заланоी величины Q^{*} с одновременным обеспечением заданного энергетнческого графика. Pacxод Q^{*} назначается из условия неразлива и незатопления поймы в нижнем блефе. Как правило, $Q^{*}>Q_{\text {макс гәс }}$

Рассматривается водохранилище при высоких пдотинах с годовым щиклом работы и ббтьемом в пределах $20-30 \%$ от средиемноголетнего стока. Водохранилиша большего объема выполняют задачу регулирования паводков в выпеуказанном смысле автомлтически. २одохранилища мень. шего отьема могут выполнять эту задачу при ограничении энергетического графика отдачи, вплоть до потного отказа энергетического регулирования.

Задача в инженерной постановке формулируется следующим образом. Створ водохранилиша, отметки НПГ и МПГ, приток в водохранилище в виде многолетнсто ряда расходов, а также график рабооты ГЭС и расход Q^{*} являются заданными. Заданной является также календарная дата опороднения водохранилиша, которая для упрошення принимается одинаковой лля всех лет. Сказанное иллюстрируется риб. І, на котором прелставлен срелнемноголетний гидрограф в створе водохранилища. Дата сработки водохранилища обозначена точкой A, опрсделяемой отрезком времени t_{A} от начала календарного тода. Точка $B\left(t_{B}\right)$ определяет дату, после которой $Q(t)$ становится меньше Q^{*} (с заданной вероятностик). Прииимается следующий упрошенный график работы гидроэлектростанщии. После опорожнения водохранилиша (точка A) ГЭС работает с постоянным расходом $\bar{Q}_{\text {гле }}$, соответствуюыей мощностью $\frac{\overline{3}}{T}$, где $\overline{3}$ - среднемноголетняя выработка энергии 1 ЭС (напор H прелполагается постоянным).

После наполнения водохранилиша до наивысшего горизонта при условни аккумуляции паводка (точка $C\left(t_{c}\right)$) расход ГЭС может быть увеличен или Уменьшен в зависимости от водности года. Изложенные выше условия записываются следуюшим образом:

$$
\begin{equation*}
\int_{t_{A}}^{t_{C}} Q(t) d t-\left(t_{C}-t_{A}\right) \bar{Q}_{\Gamma \supset \mathrm{C}}+\int_{t_{C}}^{t_{\mathrm{B}}}\left(Q-Q^{*}\right) d t=Q \tag{I}
\end{equation*}
$$

где Ω - заданный объем водохранилиша; $Q(t)$ — расход, поступюший в водохранилище и являющийся случайной функщией времени.

Рис. 1.

Представление стока как вероятностного процесса и соответствующие теоретические основы водохозяйственных расчетов опредеденным образом разработаны в работах [1,2$]$.
$Q(t)$ является не сташионарным а гармонизуемым пронессом с периодом T, поәтому отсчеты времени должны вестись от определенного момента, за который может быть принято натало календарното года. Случайный пропесс задается посдедовательностью функций распрелеления вероятностей или соответствующих им функщий плотностей распределения. Согласно работе [I], эта последовательность имсет вид

$$
\begin{equation*}
F_{s}\left(t_{1}, x_{1}, \ldots, t_{s}, x_{s}\right)=\int_{0}^{x_{1}} d u_{1} \ldots \int_{0}^{x_{s}} d u_{s} f_{s}\left(t_{1}, u_{1}, \ldots, t_{s}, u_{s}\right) . \tag{2}
\end{equation*}
$$

Функция F_{s} есть вероятность того события, мгновенный расход которого в данном створе в различные моменты времени удовлетворяет системе неравенств

$$
\begin{equation*}
Q\left(t_{1}\right)<x_{1}, \ldots, Q\left(t_{s}\right)<x_{s}, \tag{3}
\end{equation*}
$$

где t_{1}, \ldots, t_{s} - производьные моменты времени.
Можно найти также фупкцию F_{*}^{*}, выражаюшую вероятность проти воположжных неравенств, т. е.

$$
\begin{equation*}
Q\left(t_{1}\right)>x_{1}, \ldots, Q\left(t_{s}\right)>x_{s} . \tag{4}
\end{equation*}
$$

Через эти функции или через функции F_{s}, если рассматриваемый про-несс-Марковский, могут быть найдены такие характеристики, как годовые п суточные объемы стока, распределение минималыых расходов и т. д.

Первый интеграл (1) выражает объем стока, поступаюшего в водохранилише за время $t_{C}-t_{A}$. Очевидно, что

$$
\begin{equation*}
R(t)=\frac{I}{t_{A}<t<t_{C}} \int_{t_{C}-t_{A}}^{t_{\mathrm{C}}} Q(t) d t \tag{5}
\end{equation*}
$$

тоже является вероятностны пропессом, для которого могут быть най дены функции распределения, аналогичные F_{s} и F_{s}^{*}.
) днако исследованне процесса $R(t)$ связано с большими трудностями.
В работах [r, 4] указываются пути для нахожления моментов функций распределения объемов стока через функцию F_{s}^{*}.

Весь сток на отрезке времени $t_{C}-t_{A}$ задерживается в водохранилище, надобности в учете флуктуаций мгновенных расходов здесь нет. Поэтому расчеты для получения функции расорелеления случайных величин $t_{C}-t_{\text {, и }} t_{C}$ можно производить по данным об осредненных расходах (среднелекадных или среднемесячных). В работе [3] приводятся результаты таких расчетов по рассматриваемому тидрологическому ряду за 30 лет. Расчеты велись обычным путем статистической обработки опытных диных. Одна из гисгогрмм дтя величин t_{C} представлена на рис. 2 . Резудьтаты расчетов показали, что распреледение величин $t_{B}-t_{C}$ и t_{B} тоже близко $\mathrm{\kappa}$ нормальному закону.

Сложнее вычисление второго интеграла (1), в которои уже нельзя игнорировать флуктуащиями мгновенных расхолов. Определению подлежит пло. щаль отдельных «гребеш-

Рис. 2. қов» гидрографа, выступающих выше уровня Q^{*}. Задача облегчается тем, что на достаточио корогком участке $t^{*}=t_{B}-t_{C}$ процесс может считаться стапионарным.

При решении нашей задачи и вообще всех задач, связанных с максимальными расхолами, можно испопзовать известные теоретические результаты исследованпй выобросов случайных прощессов $[5,6]$, в поторых нсслелуются вопросы числа выбросов, т. е. чњсла пересечений «снизу вверх», слупайной функцией заданного уровни, среднего времени пребывания функший выше этого уровня и законы распрелеления веро яннослей этого преб́ывания.

Из работь [5] лля стационарного прощесса среднее число выбросов $\bar{N}_{Q^{*}}$ выше уровия Q^{*} в интервале $t^{*}=t_{B}-t_{C}$ опрелеляется слелуюшим образом:

$$
\begin{equation*}
\overline{N_{\mathbf{Q}}}=i^{*} \int_{0}^{\infty} v f\left(Q^{*}, v\right) d v \tag{6}
\end{equation*}
$$

Средняя длительность (матемптическое Ожианин) вьброса выше уровня Q^{*} булет

$$
\begin{equation*}
\tau_{Q^{*}}=i^{*} \int_{i_{i}^{*}}^{\infty} f(Q) d Q \tag{7}
\end{equation*}
$$

Отсюда можно опредедить срелнюю продллжителиность кажло1о выброса:

$$
\begin{equation*}
\vec{\tau}_{Q^{*}}^{\prime}=\frac{\int_{e^{*}}^{\infty} f(Q) d Q}{\int_{0}^{\infty} v f\left(Q^{*}, v\right) d v} \tag{8}
\end{equation*}
$$

где $v=\frac{d Q}{d t}-$ скорость изленения расхода и $f\left(Q^{*}, v\right)$ - соответствуюшая двухмерная плотност расирелеления.
-ляя илотности распределения $f(Q)$ ирииимаем биночинальный закон, апроксимњруемый кривой Пирсона IlI типа, т. е.

$$
\begin{equation*}
f(Q)=K(Q-d)^{\pi} \cdot e^{-\gamma(Q-a)} \tag{9}
\end{equation*}
$$

$$
\begin{array}{lc}
m=\frac{4}{C_{s}^{2}}-\mathrm{I}, & \gamma=\frac{2}{\sigma C_{s}}, \\
d=\bar{Q}+\frac{2 \sigma}{C_{s}}, & K=\frac{\gamma^{m+1}}{\Gamma(m+\mathrm{I})},
\end{array}
$$

где, в свою очередь, C_{s} - коэффиииент асимметрии, \bar{Q}-математическое ожидание, σ-дисперсия, $\mathrm{\Gamma}$ - символ пами-функиии.

При нулевой асимметрии даиное распрелслене вырождается в нормальное.

Подставляя (v) в ($\overline{\text { () , получасм для математпческого ожидания про- }}$ должительвости выброса выне Q^{*} слелуюшее выражение:

$$
\begin{equation*}
\bar{\tau}_{Q^{*}}=t^{*} \int_{Q^{*}}^{\infty} k(Q-a)^{m} \cdot e^{-\gamma(Q-d)} d Q . \tag{IO}
\end{equation*}
$$

При пелом m решение получатся в виде знакопеременного ряда с конечным числом члечов, поскольқу

$$
\begin{equation*}
\int x^{n} e^{-a x} d x=-\frac{1}{a} x^{n} e^{-a x}+\frac{n}{a} \int x^{n-1} e^{-a x} d x \tag{II}
\end{equation*}
$$

Следующим шагом является отыскание математического ожидания площади «гребешков» выше Q^{*} (рис. 3) пли объеи паводочного стока

$$
\overline{S_{Q}}=\int_{Q^{*}}^{Q_{\text {макс }}} \bar{\tau}_{Q^{*}} d Q
$$

Ннтегрирование (т2), по которому могут быть опрелелены численные зничения $\overline{\mathrm{S}}_{\mathrm{Q}}$, возмодно только при иелом m . В иротивиом случае интег-

Рис. 3.

рирование может быть произведено тииь после разложения 〒 Q * в ряд, что будет связано с затрудненнями вследствие меллениой сходимости ряда. Результируюшие выражения при дтои оказываются громоздкими и неудоб̆ным ддя прақгических расчесов. 工ля того чтобы судить о возможных огюшеныях $\overline{\tau_{Q}}{ }^{*}$ и $\overline{S_{Q}}$ к митематичесқому ожиданию, необходимо вычислить также и дисперсии этих величин. B работе [4] получены выражения для дисперсий в виде быстри сходящихся рядов, практическое использование когопых все же связано с большой вычислительной работой.

B нанем случае по упомянутой выше причине даже такое решение оказывается затрулнтельным. Поэтому предпочтительнее идти по пути рассмотрения характеристик распределения непосрелственно величины $\bar{\tau}_{Q^{*}}$ - времени иребывания функиии $Q(t)$ - выше заланного уровня Q^{*}.

B работе [6] приводятся эжспериментальные кривые плотности вероятности, длительности выбросов (и других характеристию) для случайных прощессов в радиотехнических устройствах. Лаются таюже формулы для этих плотностеи, получаемне с различной степенью приближения. Кривые одномодальны и асимметричны и ближе всего апроксимируются

Рис. 4. 1-кривая средних продолжительностей
пребывания Q выше $Q^{*}, \mathrm{I}-$ то же для
расчетной вероятности, 111 -расчетная кривая продолжительностей формулами для бнноминальноюо распределения.

Нмея математическое ожидание $\overline{\tau_{i}}$ продолжительностей вибросов за уровень $Q_{i}>Q^{*}$, можно приблизительно определить \bar{S}_{Q} простейшим графическим построеннем. ปля этой пели от оси ординат на уровне соответствующих зпачений Q_{i} откладываются горизонтальные отрезки, иредставляюшие собой τ_{i} в определенном маситабе (рис. 4). Линия, ироведенная через кониы отрезков, явится кривой продолжительности выбросов. Юлошали выше Q^{*}, ограниченная этой кривой и осью ординат, дает математическое ожидание суммарной плошали «требешков» выбросов. Следует отметить, что эта площадь дает несколько завыненное зичение Ω^{\prime}, так как из нее доляны были бы быгь вычислены плошади ировалов ниже Q^{*} на отрезке времени t^{*}. От $\bar{\tau}_{i}$ и \bar{S}_{Q} можно перейти к определению значений этих величин, соответствующих любой заданной вероятности. Для эой нели заменяем кривую продолжительности ступенчатой ломанной (рис. 4) в соответствии с принятым лиапазоном значений Q_{i} в пределе от Q^{*} до $Q_{\text {макс }}$, т. е. до расчетного расхода паводка, п принимаем, что значения τ_{i} распрелеляются по биноминальному аакону. Для применения этого распределения предполагается разоить отрезок t^{*} на конечнос число интервалов n таким образом, что $t^{*}=n \cdot \Delta t$.

Тогда можно аринягь, что $\tau_{i}=k_{i} \Delta_{i}$. Искомая плошадь «греб̈ешков» в приближенном представлении будет

$$
\begin{equation*}
S_{Q}=\left(Q_{\text {макс }}-Q^{*}\right) \tau_{\text {макс }}+\sum_{\mathrm{t}}^{m-1}\left(Q_{i}-Q^{*}\right)\left(\tau_{i}-\tau_{i+1}\right) . \tag{3}
\end{equation*}
$$

Расчетному объему слока S_{Q} (т. е. площади "гребешков») будет соответствовать опрсделенная веролтность, вычисленная по правидам умножения вероятностей:

$$
\begin{equation*}
F\left(S_{\mathrm{Q}}\right)=P\left(t^{*}\right) P\left(Q_{\text {makc }}\right) \cdot \prod_{\mathrm{I}}^{m} P\left(\tau_{i}-\tau_{i+1}\right) \tag{I4}
\end{equation*}
$$

Вероятность того, что расход Q будет превытать Q_{i} в течение отрезка времени $\tau_{i}=K_{i} \Delta /$, определяется по биноминальной формуле

$$
\begin{equation*}
P\left(\tau_{i} \geqq K_{i} \Delta t\right)=\sum_{i}^{m} C_{n}^{K_{l}}\left(\frac{\bar{\tau}_{i}}{t^{*}}\right)^{K_{i}}\left(I-\cdots \frac{\overline{\tau_{i}}}{t^{*}}\right)^{n-K_{i}} \tag{15}
\end{equation*}
$$

где $\bar{\tau}_{i}$ - математические ожидания продолжительностей превышения, вычисленные выше.
$P\left(\tau_{i}-\tau_{i+1}\right)$ имеет смысл условной вепоятности, т. е.

$$
P\left(\frac{\tau_{i}}{\tau_{i+1}} \geqq K_{i+1} \Delta l\right)
$$

Условные вероятности также вычпсляются по биноминалыной формуле

$$
\begin{gathered}
P\left(\tau_{i /} \tau_{i+1} \geqq K_{i+1} \Delta t\right)= \\
=\sum_{\mathrm{I}}^{m} C_{n}^{K_{i}-K_{i+1}}\left(\frac{\bar{\tau}_{i} \cdot \bar{\tau}_{i+1}}{t^{*}}\right)^{K_{i}-K_{i+1}}\left(\mathrm{I}-\frac{\bar{\tau}_{i}-\bar{\tau}_{i+1}}{t^{*}}\right)^{n-\left(K_{l}-K_{i+1}\right)} \cdot(\mathrm{I} 6)
\end{gathered}
$$

Вычисления по формулаи (16) и (г7) ловольно громоздки, но могут быть произвелены в таоллчной форме и особенных затруднений не представляют.

$$
P\left(S_{Q}\right)=P\left(\Omega^{\prime}\right)
$$

должна нормироваться. По-видимому, значения ее должны находиться в численных пределах, зависящих от класса сооруления, қоторый придается существующими нормамп.

Грузинский институт энергетики
им. А. И. Дидебулидзе

069h300

a．ふ0Mコザm

1．Н．А．Картвелишвили．Некоторые вероятностные характеристики речного стока．Известия АН АрмССР，серия технических наук，XVI，№ 23，1963，
2．Н．А．Картвелишвили．Гидрологические основы вероятностной теории ре－ жимов энергосистем с гидростанциями．Труды ВНИИЭ，ХІІІ，Госэнергоиздат， M．， 196.
3．М．Г．Джигаури．О методике определения календарных границ прохождения расчетного паводка через энергетическое водохранилище．Сообщения АН ГССР，XXXI：」， 1963.
4．Д．В．Линники А．П．Хусу．Математико－статистическое описание неровностей профиля поверхности при шлифовании．Инженерный сборник，т．XX．Изд．АН СССР，отделение технических наук， 1954.
5．А．А．Свешников．Прикладные методы теории случайных функций．Супромгиз， Л．， 1961.
6．В．И．Тихонов．Выбросы случайных процессов．Успехи физических наук， т．XXVII，в．3，M．， 1962.

ГИДРОМЕХАНИКА

И. Е. ЧИЧИНАДЗЕ

HEKOTOPЫE BOIIPOCB ZOЖ TEBAHHS СКЈ○Н○В ДАЛЬНЕСТРУЙНbМП
 AIIIAPATAMU

(Представлено ч.теном-корреспонлентом Академии П. Г. Шенгелия 9.5.1964)
Согласно семитетнму плану развития сельскохозяйственного производства Грузинской ССР іредусматривается оропение чаи́ных плантаиий дождеванием на плошади 8000 г α. Мешлу тсм, фактическое расиодожение площадей чайннх птаитанй́ по рельефу в субтроиичесих районах Западной Грузии доходит до 20° и выше.

Однако пелыіі ряд вопросов, относящихся к техннке полива склонов дождеваннем, в настоянсе время не разработан в том объеме, который мог бы удовлетворить трепования ирактики. $Ћ$ числу таких вопроСов относнтся техина полива склонов датьнеструиннии дождеватьными аппаратамн.

Площадь круга ири поливе склоныв де рориируется, что вызывает нарушение равномерности распределния дожля.

А неравиомерная питенсивиость, как иравило, ухулиает качество последиего.

B настоящей стание пзаланы результаты изучения вишезатронутых вопросов на основс жксиериментальных и тсоретиуеских исследований. нровелениых в ГрузНИПГиМе.

Средняя интенсивность. дожля определяется по формуле

$$
\begin{equation*}
i_{\mathrm{cp}}=\frac{60 Q}{n_{0} \omega} \text { MM/MuH, } \tag{I}
\end{equation*}
$$

1де
Q-раслод води дождевателя:
n_{0} - чнсло пооротов дождевателя в минуту;
ω - новивная нзошадь дождевателем, которая зависит как от уклонов орошаемои территории $\left(\alpha_{0}\right)$, так и от дождевательного аппарата; так, например, для $\alpha_{0}=0$ и дальнеструиного аппарата $\omega=\pi R^{2}$, т. е. пнощади круюа, где R-дальность полета струи.
На склоне поливаешая дождевателем плошадь не имеет постоянного. радиуса (рис. 1) н, слеловательно, $\omega \neq \pi R^{2}$.

Нсследование показало, что геометрическая понфигурация политой дождевателем плошади на сюлоне и распределение на ней средней интенсивности дождя зависят: от среднего уклона орошаемой плошади (α_{0}), высоты расположения дождевателя от поверхности земли (h) и траекторин полета струи (T), которая зависит от расчетного напора и расхола воды, диаметра отверстия сопла-насалки (d) и дальности полета струи (R). Однако ввиду сложности учета влияния всех факторов на образование траектории полета струи ло настоянего временп нет аналитического выражения для ее определения.

На основании экспериментальных данных удалось получить эмпирическую формулу для опрелеления траектории полета струи в виде

$$
\begin{equation*}
y=a x-b x^{n} \tag{2}
\end{equation*}
$$

где x-абсцисса, y-ордината траектории полета струи в прямоугольных координатах, начало которого расположено у основания стояка (h) дождевателя.

Численные значения постоянных параметров для a, b, n дальнеструйных дождевателей системы ГрузНИИГиМ, полученные на основе прове-

Таблица 1

№ дож-	Параметры		
девателя	a	b	n
1	0,532	0,00076	2,6
2	0,532	0,000823	$2,7 \mathrm{t}$
4	0,532	0,00117	2,8

при вращении дождевателя траеторию стри $D B B^{\prime} B^{\prime \prime}$ пересеи зонтальной плоскистью $A B^{\prime} C B^{\prime \prime}$, то выще этой плоскости образэется параболоид вращения, а ншже нее-поверхность прямого цилиндра вғащения.

Плошадь $A B C B_{2}$ геометрически прелставляег собой асимметрическую фигуру (ось асимметрии $A C$), состоящую из верхнего сектора $F_{A B C}$ (двойная штриховка) и нн屎него сектора (одинарная штриховка).

Следовательно, фақтически дождевателем будет поливаться площадь

$$
\begin{equation*}
\omega=F_{A B C}+S_{C B_{2} A} . \tag{3}
\end{equation*}
$$

Веряний сектор оконтурен эллипсобразным полуовалом, а нилнийполуэллипсом.
|1лошаль нижнего сектора

$$
\begin{equation*}
S_{C B_{2} O}=\frac{\pi R^{2}}{2 \cos \alpha_{0}} \tag{4}
\end{equation*}
$$

Площадь верхнего сектора находим из формулы

$$
\begin{equation*}
F_{A B C}=\frac{2}{\cos \alpha_{0}} F_{A B_{1} O} \tag{5}
\end{equation*}
$$

где площадь $F_{A B_{1} о}$ является горизонтальной проекпией квадранта верхнего сектора $A B O$, определяюшейся формулой

$$
\begin{equation*}
F_{A B_{1} O}=\frac{\mathbf{I}}{k^{2}} \int_{r_{1}}^{r_{0}} \sqrt{k^{2} r^{2}-f^{2}(r)}\left(a-n b r^{n-1}\right) d r, \tag{6}
\end{equation*}
$$

где $\tau=O M_{1}$ является переменным радиусом квадранта, который меняется в прелелах

Рис. 1
Eго миниальное значение $r_{1}=O B_{1}$, определяемое путем подбора нз формулы

$$
r_{1}(k-a)+b r_{1}^{n}=h
$$

а максимадьное $r_{0}=O A=R$ (рис. I, в), где
a, b, n-постоянные параметры формулы (2);
$Z=f(r)$-уравнение плоскости;

$$
K=\operatorname{tg} \alpha_{0}
$$

Решение (6) производигся путем ириближепиого питегрирования. В результате расчетов при разных высотах стояка и уклона даются очертаиия конфигураиий птошадей, политля дождеванинм аппаратом № 1 (рис. 2).

Рис. 2
Важным при лождевании являегея вопрос о равномерности интенсивности дождм. Необходим давати, ложты тагой интенапвногти, чтобы не разрушалась структура орошаемої инчвн, ॥е опразовывались дули и стоки. Чем больше интенсивность. дождя, тем сидьнее разрушается структура и уплотнятся ночва, чем легче обризуется корка, б̈єтрее начинается сток и меньые глуоина промачивания.

Тучшая интенсивность, дожля, обеспечиваныая сохранение структуры и аэрации почвы, составляет окояо $0,10-0,15$ мм/мин; во всяком случае, ннтенсивность дожтя должна соответствоваль проницемости орошаемой почвы; ири тяжелых иочвах она долдна быть не меньне 0,I-0,2 мм/мин; ири срелиих-0,2-0,3 и на легких почвах-не более $0,5-0,8$ мм/МИН [I].

Желательно, чтоб̆н иитенсивыюсь дождя менллась по ходу пзменения интенсивности впитывания воды в почву. () днако ғонструктивно это пока труднодостигаемо.
 интепсивностью дождя. В расчетах нодзуются носледней, когорая вючисляется по формуле (1). Для разных конструкиий дождевателей она меняется в прелелах $1,5-0,3$ мм/мин. А для аппаратов ГрузНННIIи. она равна $0,2-0,25$ м м / миtн и модет отклоняться в пределах $\pm 5 \%$ [2].

Ингерес представляет оирелеление средей интенсивности дождя для разных секторов никлонной плопали. ॥о выражению (г) представляем ее в виде

$$
\begin{equation*}
i_{\mathrm{cp}}=\frac{\circ \mathrm{o} Q}{\pi R_{i}^{2}} \tag{7}
\end{equation*}
$$

где R_{i}-является переленной, от которой зависит оиределение илоиади ω.

Для квадранта верхнето сектора она определяется формулой

$$
\begin{equation*}
R_{i-F}=\sqrt{r^{2}+\left(i t+a r-b r^{n}\right)^{2}}, \tag{8}
\end{equation*}
$$

а для квалранта нижнего сектора равна

$$
\begin{equation*}
R_{i-B}=\frac{R}{\cos \alpha_{i}} \tag{9}
\end{equation*}
$$

где
α_{i}-средний уктон, который меплется от 0° до α_{0}.
lррфик изменения интенсивности дождя в зависимости от нзменения радиуса полета струи R_{i} ириволится на рис. 3 .

Рис. 3
Как показывает рис. 3 , по оси спмметрии, в верхнем секторе величина переменного радиуса достнгает мпнимума $R_{\text {мпи }}$, а средняя интенсивность дождя - максимума $i_{\text {макс }}(O B$, рис. I). А по нижпему сектору, когда переменный радиус достигает максимума, средняя интенсивность лождя доходит до минимума ($O B_{2}$ рис. I).

В табл. 2 для дождевателя ГрузНИИГиМ ஹ 1 в зависимости от h и α_{0} приводятся знагения плошадей, средней интенснвности, коэффищиентов неравномерности дождя и секторов площади, полученные на основании предложенных расчетных формул.

Коэффищиент неравномерности дождя

$$
K_{i}=\frac{i_{\mathrm{cp}}-F}{i_{\mathrm{cp}}-S},
$$

тде
$i_{\text {ср }}-S$－средняя интенсивность по нижнему сектору；
$i_{\text {ср }}-F$－средняя интенсивность по верхнему сектору．
Коэффициент неравномерности секторов площали

$$
K=\frac{S}{F}
$$

где
S и F－площади нижнего и верхнего секторов．
Как было отмечено，при дождевании склонов средняя интенсив－ ность меняется в зависимости от величин α_{0} и h（табл．2）и по верх－ нему сектору она больше，чем по нижнему．

Таблица 2

	$a C$								257							
		Kor	5	1400	ω	robe	Kw	K_{1}	－	cos．	9	15	＊	＜50	x_{L}	π_{6}
	I	？	3	4	5	6	7	8		？	3	\checkmark	5	S	2	8
$\frac{10}{50}$	5050	10233	5634	10．35	1200	2237	1		50.4	2283	5854	0293	11000	0230	10	
0°	597.5	0．055	5070	0232	1050	2290	15	IMP	5103	0， 0 W\％	3070	O．EK	0885	0.050	10	107
	4.00	10．80	5740	1020	10540	Q271	1,17	1，x24	4200	10．308	SNO	0．2\％	cre	0.080	（1）	3
$\frac{13}{30^{\circ}}$	9700	2．573	sesol	0 ． 27	3510	0，300	1，59	1670	3015	0988	3850	Q22？	5055	0.202	150	10
22°	W0．5	0，50	5005	Q223	3205	0.305	18%	229	W以	04，57	6005	9283	$8 \% 77$	Qu3	1.90	209
$2{ }^{\circ}$									2026	0×3	020	020	885	10033	$2 W$	95
	$1.0 \mathrm{n}$								1.57							
0°	5654	Q239	5654	2033	14309	0，233	10	1	005	［233	S5 54					
$\frac{3^{\circ}}{10}$	5176	वस्य	9675	0．23	120S1	0，209	108	107	5238		S625	$\frac{1083}{983}$	11308	Q233	108	，08
10^{4}	usas	0225	3×0	0220	12．25	0	1.28	18	520	4＜20	F0\％		$102 / 8$	20205	108	1.06
15°	3000	0，逐	5850	0，26？	9140	（2ax）	1,31	隹	sers	0 0， 0^{2}	$\frac{5 \times 8}{5 \times 2}$	Q，230	1047．	Q A	121	110
22°	3840	Qu47	O005	0.223	9e4	0．335	1，80	108	礉	Q4，${ }^{2} 5$	San	0，227	\＄285	Qcm	140	154
25°	2750	0,089	5230	ąt	1880	0 003 3	2．80	3.1	2800	Q4，5 000	ack	0．223	987	Q30	188	1.85
$\alpha_{0} 5$					2am				（xeo	200	SLE	0．3）	¢00	Q प28	20	2×8
													2／m			
5^{2}	565 y	0，2331	5654｜	0237	11303	0．307	10	；	Scsi	1038	5	2297				
10°	S28	oca	5020	0.37	1089	0283	107	103	5591	Or＜	क， 5			（6）		O5
$\frac{10}{15}$	（1）ス	Q308	530	0230	｜05／8｜	0，248	182	615	4835	coas	ST0	のExt	，050	lase		
20°	W1／20	0， 000	580	0237	587 V	cab	1.42	134	4887	Q， 20	545	2，3？	， 2005	0.60	1．40	
25°	2688	0， 3 ，	0，05	0，283	3405	0300	1.77	10	3600	0，3041	－000	प．23）	5007	0，29Y1	10	169
			\％rs	0，217	8198	0,970	2.10	ट． 41	3009	Q30．	22＊，	Q2\％	9238	0，300	206	＜तד

В расчетах нами принимается величина средней интенсивности по верхнему сектору．

В ы в О д ы

При орошении склона дальнеструйным дождевателем охватывается аснмметричния пдональ, которая поливается $с$ неравномерной интенсивностью. Коэффишиент неравномерности распределения дождя зависит от срелнего уклона местности, высоты стояка лоялевателя и траекторип подета струи.

Ha ассимметричной пномии нзменение величинит средией интенсивности дождя является об́ратно пропорннональным величине переменного радиуса плошали. На верхнем секторе плошали средияя интенсивность дождя больше, чем на нижнем.

При поливе склона лалннструйным дож девателем по аспмметричной плошади увеличение высоти стояка вызывает уменьшение внтенсивности дождя; в частности, она уменьшается в верхнем секторе площади, а на нижнем остается постоянной. При этом коэффициент неравномерного распределения средней пнтенсивности дождя уменьшается.

При постоянной высоте стояка дождевателя с увеличепием среднего укдона средняя интенсивность дождя в верхнем секторе плошади увеличивается, а в нижнем уменьшается. При этом коэффипиент неравномерности полива увеличивается.

Лля орошения склонов из датьнеструйного дождевателя в зависимости от топографичсских условнй местность, воднофизических свойств почвы и констругтивных элементов аппарата преллагаем следуюшие способы дождевания: на почвах со значительной водопроницаемостью полив из дождевателя по крУгу можно примепять на склоне до 15°, а выше этого уклона следует перейти на секторный полив (плошадь нижннего сектора).

На почвах со средпеी водопронипаемостью на скльнах до 10° дожндевание можно пронзводить из дождевателя по кругу с уменьшенной нормой полива за счет увеличения числа поливов, а выше этого уклона следует применять секторный полив.

На почвах со слабой волопронииаеостью следует применять орошение дождеванием с комплексными мероприятяии то смягчению крулизны склона, с устройством разных типов террас и обработкой почвы. При этом вゅбор техники дождевания-по кругу или по сектору—должен зависеть в основном от применения типа и конструкции террасированных склонов.

Грузинский ииститут энергетики
им. А. И. Дидебулидзе

Тбилиси

(Поступило в редакцию 9.5.1964)
24. „2moabg"; XXXV: 2, 1964

 しうぶへのもの

 mgous．

1．А．Н．Костяков．Основы мелиорации．Сельхозгиз，М．， 1960.
2．А．И．Дидебулидзе．Дождеватель ГрузНИИГиМ．Труды ГрузНИИГиМа，15， 1951.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, xxxv:2, 1954 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $\times \times \times v: 2,1904$

МЕТАЛЛУРГИЯ
A. C. ВАШАКИДЗЕ

РАСЧЕТ УСИТИИ ПРИ ГОРЯЧЕӤ ПРОКА ГКЕ
 TO.ICTHX 1 OJOC

(Представлено академиком Ф. Н. Тавадзе 15.2.1964)
3а последние годы советскими учеными $[\mathrm{I}-4,6]$ выполнен ряд оритинальных работ по оиределению давления металла на валки как при непрерывном скольжении металла по поверхности валков, так и при нали чии зоны прилипания по длнне контакта металла с валками.

При прокатке толстых полос (когда $\left.\frac{l}{h_{\text {ср }}}=0,5 \div 2,0\right)$ длина ду. ги захвата по отношению к высоте сечения небольшая, и зоны прилипания начинают простираться по всей дуге захвата. В этом случае эпюра распределения удельных сия трения изменяется но линейному закону (рис. 1), а удельное давление выражается кривой, имеющей внпуклость наружу по всей дуге захвата [$\mathbf{I}, 2]$.

В последнее время при горячей прокатке удельное давление определяют с учетом касательных напряжений, действующих в вертикальных сечениях зоны деформации [3].

B настоящей статье характер расиредедения удельных давлений и среднее улельное давление ири горячей прокатке толстых полос $\left(\right.$ погда $\left.\frac{l}{h_{\text {cр }}}=0,5 \div 2,0\right)$ рассматриваются $с$ учетом наличня насательных напряжений по всей высоте сечения раската в зоне деформашии, а также коэффишиенга, опрелеляющего положение нейтрального сечения в зависимости от относитетьного обжжатия.

Дифреренциальное уравнение прокатки Кармана - Целикова, вндопзмененное А. А. Королевым [3], учитываюшее наличие касательных напряжений в вертиқальных сочетаниях зоны деформации, имсет вид

$$
\begin{equation*}
\frac{d p_{x}}{d x}-\frac{k}{2} \frac{d}{d x}\left(\psi_{x}\right)-\frac{k}{2}\left(\mathrm{I}+\psi_{x}\right) \frac{d y}{y d x}-\frac{\tau_{x}}{y}=0, \tag{I}
\end{equation*}
$$

rде

$$
\begin{equation*}
\frac{d p_{x}}{d x}=\frac{d \sigma_{x c p}}{d x}+\frac{k}{2} \frac{d}{d x}\left(\psi_{x}\right) \tag{2}
\end{equation*}
$$

Коәффициент ψ_{x} учитнвает наличие касательных напряжений в вертикальннх сечения: зоны деформания (рис. I).

Известно, что пластическая деформаиия элементарного объема тела начнется тогда, погда между мақсимальным и миннмальным нормальными напряжениями σ_{y}, σ_{x} и касательным напряжкением $\tau_{x y}$ наступит равновесие.

рис. 1. Эпюры распределения удельных давлений P_{x} и контактных сил трения τ_{x} по дуге захвата: 1 -эпюра p_{x} при наличии прилипания по всей дуге захвата, $\mu=0,5 ; 2$-эпюра p_{x} при наличии скольжения по всей дуге захвата, $\Sigma_{x}=\mu p_{x}$

Уравнение пдаститносии Б. Сен-Венана [5] при плоской деформации имеет вид

$$
\begin{equation*}
\left(\frac{\sigma_{y}-\sigma_{x}}{2}\right)^{2}+\tau_{x y}^{2}=K^{2} . \tag{3}
\end{equation*}
$$

где σ_{y} и σ_{x} - соответственно макспмальное и минптальное нормадьные напряжения; $\tau_{x y}$ - касательные напряженія; K - сопротивление чистому сдвигу $\left(K=\frac{k}{2}\right.$, где k-вынужденньй иредел текучести $)$

Вゅнужденный предел текучести k равеи

$$
k=2 \frac{\sigma_{\phi}}{\sqrt{3}} \approx \mathrm{I}, \mathrm{I} S \sigma_{\phi}
$$

где σ_{\emptyset} - фактическое сопротивление деформпрованию при линейной деформащии, т. е. при простом сжатии иаи растяжении с учетом влияния температуры и скорости деформашии.

Если допустить, что максимальное нормальное напряжение равно удельному давлению, т. е. $\sigma_{y}=p_{x}$, тогда уравнение (3) примет вид [2]:

$$
p_{x}-\sigma_{x}=\psi_{x} \cdot k
$$

где

$$
\begin{equation*}
\psi_{x}=\sqrt{I-4\left(\frac{\tau_{x}}{k}\right)^{2}} \tag{4}
\end{equation*}
$$

Изменение контақтных (удельных) сил трения τ_{x} по длине зоны деформацни выражается формулой [2]

$$
\begin{equation*}
\tau_{x}=\tau_{1}\left(\mathrm{I}-\frac{x}{l_{\mathrm{H}}}\right)=\mu_{1} k\left(\mathrm{I}-\frac{x}{l_{\mathrm{H}}}\right) \tag{5}
\end{equation*}
$$

где τ_{1} - контактная сила трения в сечении выхода металла нз валков; l_{H}-длина, показывающая положение нейтрального сечения; μ_{1} - коэффищиент трения в сечении выхода валков.

Полставдяя значение τ_{x} из ураниения (5) в уравненне (4), получаем

$$
\begin{equation*}
\psi_{x}=\sqrt{/}-\left[\frac{2 \mu_{1} k\left(1-\frac{x}{l_{\mathrm{H}}}\right)}{k}\right]^{2} \approx I-\frac{2 \mu_{1}^{2}}{l_{\mathrm{H}}^{2}}\left(l_{\mathrm{H}}-x\right)^{2} \tag{6}
\end{equation*}
$$

Для небольших углов захвата ж дугу захвата можно приравнять $₹$ хорде, тогда получим

$$
\begin{align*}
& y=\frac{\alpha}{2} x+\frac{h_{1}}{2} \\
& x=\frac{2 y-h_{1}}{\alpha} \tag{7}\\
& d x=\frac{2}{\alpha} d y
\end{align*}
$$

где h_{1} - высота прокатываемой полосы после прокатки.

Тогда коәффиниент ψ_{x} будет равен

$$
\begin{align*}
\psi_{x}= & \mathrm{I}-\frac{2 \mu_{1}^{2}}{l_{\mathrm{H}}^{2}}\left(l_{\mathrm{H}}-\frac{2 y-h_{1}}{\alpha}\right)^{2}=\mathrm{I}-\frac{2 \mu_{1}^{2}}{l_{\mathrm{H}}^{2} \alpha^{2}}\left(l_{\mathrm{H}} \alpha+h_{1}\right)^{2}+ \\
& +\frac{\delta \mu_{1}^{2}}{l_{\mathrm{H}}^{2} \alpha^{2}}\left(l_{\mathrm{H}} \alpha+h_{1}\right) y-\frac{8 \mu_{1}^{2}}{l_{\mathrm{H}}^{2} \alpha^{2}} y^{2} . \tag{8}
\end{align*}
$$

Дифференииальное уравненис (1) с учетом условий (5), (7) и (8) представится в следующем виде;

$$
\begin{align*}
d p_{x}-\frac{k}{2} d\left(\psi_{x}\right) & -k \frac{d y}{y}+\frac{k \mu_{1}^{2}}{l_{\mathrm{H}}^{2} \alpha^{2}}\left[\left(l_{\mathrm{H}} \alpha+h_{1}\right)^{2} \frac{d y}{y}-4\left(l_{\mathrm{H}} \alpha+h_{1}\right) d y+4 y d y\right]- \\
& -\frac{2 k \mu_{1}}{l_{\mathrm{H}} \alpha^{2}}\left[\left(l_{\mathrm{H}} \alpha+h_{1}\right) \frac{d y}{y}-2 d y\right]=0 \tag{9}
\end{align*}
$$

После интегрирования получаем

$$
\begin{align*}
P_{x}=\frac{k}{2} \psi_{x} & +k \ln y-\frac{k \mu_{1}^{2}}{l_{H}^{2} \alpha^{2}}\left[\left(l_{\mathrm{B}} \alpha+h_{1}\right)^{2} \ln y-4\left(l_{\mathrm{H}} \alpha+h_{1}\right) y+2 y^{2}\right]+ \\
& +\frac{2 k \mu_{1}}{l_{\mathrm{H}} \alpha^{2}}\left[\left(l_{\mathrm{H}} \alpha+h_{1}\right) \ln y-2 y\right]+C_{0} \tag{IO}
\end{align*}
$$

После преобразования, учитывая значения ψ_{x} из уравнения (8), нахолим

$$
\begin{gathered}
P_{x}=\frac{k}{2}-k \mu_{1}^{2}\left(\mathrm{I}+\frac{h_{1}}{l_{\mathrm{H}} \alpha}\right)^{2}+k\left[\mathrm{I}-\mu_{1}^{2}\left(\mathrm{I}+\frac{h_{1}}{l_{\mathrm{H}} \alpha}\right)^{2}+\right. \\
\left.+\frac{2 \mu_{1}}{\alpha}\left(\mathrm{I}+\frac{h_{1}}{l_{\mathrm{H}} \alpha}\right)\right] \ln y+\frac{4 k \mu_{1}}{l_{\mathrm{H}} \alpha}\left[2 \mu_{1}\left(\mathrm{I}+\frac{h_{1}}{l_{\mathrm{H}} \alpha}\right)-\frac{\mathrm{I}}{\alpha}\right] y-\frac{6 k \mu_{1}^{2}}{l_{\mathrm{H}}^{2} \alpha^{2}} y^{2}+C_{0} \quad \text { (IOa) }
\end{gathered}
$$

Для дальнейших выводов вводим коэффициент ξ, учитываюющии уменьшение максима.тьной величины контактной силы трения в сечении выхода по сравнению c сипой трения в сечении у входа [2]. Этим же коәффнциентом определяется положение нейтрального сечения.
$У_{\text {становлено, что неитральное сечение расположено между середи- }}^{\text {- }}$ ной дуги захвата пи осьо вұтюов $[\mathrm{r}, 2]$. Следовательно, можно написать следуюшее условие:

$$
\begin{equation*}
l_{H}=l \frac{\xi}{1+\xi} \leqq \frac{l}{2} \tag{II}
\end{equation*}
$$

При $\xi=\mathrm{I}, \quad l_{\mathrm{H}}=\frac{l}{2}$, т. е. нейтральное сечение расподожено в середине дуги захвата.

Пользуясь условием (I) уравнение (гоа) перепишем в виде

$$
p_{x}=k\left\{\frac{\mathrm{I}}{2}-\mu_{1}^{2}\left(\mathrm{I}+\frac{h_{1}}{l \cdot \alpha} \frac{\mathrm{I}+\xi}{\xi}\right)^{2}+\left[\mathrm{I}-\mu_{1}^{2}\left(\mathrm{I}+\frac{h_{1}}{l \cdot \alpha} \frac{\mathrm{I}+\xi}{\xi}\right)^{2}+\right.\right.
$$

$$
\begin{gather*}
\left.+\frac{2 \mu_{1}}{\alpha}\left(\mathrm{I}+\frac{h_{1}}{l \cdot \alpha} \frac{\mathrm{I}+\xi}{\xi}\right)\right] \ln y+\frac{4 \mu_{1}}{l \cdot \alpha} \frac{\mathrm{I}+\xi}{\xi} X \\
\left.\times\left[2 \mu_{1}\left(\mathrm{I}+\frac{h_{1}}{l \alpha} \frac{\mathrm{I}+\xi}{\xi}\right)-\frac{\mathrm{I}}{\alpha}\right] y-\frac{6 \mu_{1}^{2}}{l^{2} \alpha^{2}}\left(\frac{\mathrm{I}+\xi}{\xi}\right)^{2} y^{2}\right\}+C_{0} . \tag{I2}
\end{gather*}
$$

Постоянную C_{0} находим из начальных условий. Лопускаем, что в сечении выхода

$$
y=\frac{h_{1}}{2}, \quad p_{x}=k
$$

тогда

$$
\begin{aligned}
C_{0}= & \frac{k}{2}+k \mu_{1}^{2}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)^{2}-\left[I-\mu_{1}^{2}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)^{2}+\right. \\
+ & \left.\frac{2 \mu_{1}}{\alpha}\left(1+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)\right] \ln \frac{h_{1}}{2}-2 \mu_{1} \frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi} X \\
& \times\left\lfloor 2 \mu_{1}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)-\frac{I}{\alpha}\right]+\frac{3}{2} \mu_{1}^{2}\left(\frac{1-\varepsilon}{\varepsilon}\right)^{2}\left(\frac{I+\xi}{\xi}\right)^{2} .
\end{aligned}
$$

Нодставляя значение постоянной C_{0} в уравнение (12), подучаем удедьное давление в любом сечении x зоны деформаиии:

$$
\begin{equation*}
p_{x}=k\left\{1+A \ln \frac{h_{x}}{h_{1}}+B\left(\frac{h_{x}}{h_{1}}-\mathrm{I}\right)-C\left[\left(\frac{h_{x}}{h_{1}}\right)^{2}-\mathrm{I}\right]\right\} \tag{13}
\end{equation*}
$$

где

$$
\begin{align*}
& A=I-\mu_{1}^{2}\left(I+\frac{I-\varepsilon I+\xi}{\varepsilon} \frac{1}{\xi}\right)^{2}+\frac{2 \mu_{1}}{\alpha}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right), \\
& B=2 \mu_{1} \frac{I-\varepsilon I+\xi}{\varepsilon}\left[2 \mu_{1}\left(1+\frac{I-\varepsilon}{\varepsilon} \frac{1+\xi}{\xi}\right)-\frac{I}{\alpha}\right], \tag{14}\\
& C=\frac{3}{2} \mu_{1}^{2}\left(\frac{I-\varepsilon}{\varepsilon}\right)^{2}\left(\frac{I+\xi}{\xi}\right)^{2} .
\end{align*}
$$

Коэффишиент ξ определяется из условия (ІІ):

$$
\xi=\frac{\mathrm{I}}{\frac{l}{l_{\mathrm{H}}}-\mathrm{I}}
$$

Для определения ноложения нейтрального сечения, пользуясь рис. 2 , нанишем пропориию

$$
\frac{l_{\mathrm{H}}}{l}=\frac{h_{\mathrm{H}}-h_{1}}{\Delta h},
$$

где

$$
\Delta h=\frac{\varepsilon}{\mathrm{I}-\varepsilon} h_{1},
$$

$h_{\text {н }}$ - вьсота неиिтрального сечения; є - относительное обжтатие.

Определяя высоту нейтрального сечения по формуле

$$
\begin{equation*}
h_{\mathrm{H}}=\sqrt{h_{0} h_{1}}=h_{1} \sqrt{\frac{I}{1-\varepsilon}}, \tag{15}
\end{equation*}
$$

получаем

$$
\begin{equation*}
\frac{l_{\mathrm{H}}}{l}=\frac{i-\varepsilon}{\varepsilon}\left(\frac{h_{\mathrm{H}}}{h_{1}}-\mathrm{I}\right) \tag{I6}
\end{equation*}
$$

или

$$
\begin{equation*}
\frac{l_{\mathrm{H}}}{l}=\frac{I-\varepsilon}{\varepsilon}\left(\sqrt{\frac{\mathrm{I}}{\mathrm{I}-\varepsilon}}-\mathrm{I}\right) . \tag{17}
\end{equation*}
$$

На рис. 2 дана диаграмма зависимости коәффициента $\vec{\xi}$ от относительного обжатия ε, построенная по формуле (г7).

Рис, 2. Зависимость коэффициента, определяюмего положение нейтрального сечения ξ от относительного обжатия в

Лля практических щелей необходимо знать обпее лавление и среднее удельное давление металла на валки. Обњее давление металлана валки определяем из формулы закона распределения истинного удельного давления по дуге захвата (13).

Об́иее давление выражается формулой

$$
\begin{equation*}
P=\frac{b_{0}+b_{1}}{2} \int_{0}^{l} p_{x} d x \tag{18}
\end{equation*}
$$

где b_{0} и b_{1} - соответственно начальная и конечная ширина прокатываемой полосы;

$$
\begin{equation*}
d x=\frac{l}{\Delta h} d h_{x}=\frac{I}{\alpha} d h_{x} . \tag{19}
\end{equation*}
$$

Подставляя значения p_{x} ия уравнешия (13) в уравнение (18) и учитывая выражения (19), после интегрирования и несложных преобразоваเий получаем

$$
\begin{aligned}
P & =\frac{b_{0}+b_{1}}{2} l \cdot k\left\{I+\left[I-\mu_{1}^{2}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)^{2}+\right.\right. \\
& \left.+\frac{2 \mu_{1}}{\alpha}\left(1+\frac{1-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)\right]\left[\frac{\mathrm{I}}{\varepsilon} \ln \frac{\mathrm{I}}{1-\varepsilon}-\mathrm{I}\right]+
\end{aligned}
$$

$$
\begin{equation*}
\left.+\mu_{1} \frac{I+\xi}{\xi}\left[2 \mu_{1}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)-\frac{I}{\alpha}\right]-\frac{I}{2} \mu_{1}^{2}\left(\frac{I+\xi}{\xi}\right)^{2} \frac{3-2 \varepsilon}{\varepsilon}\right\} \tag{20}
\end{equation*}
$$

Коэффициент треиия в сечении выхода валков равен

$$
\begin{equation*}
\mu_{1}=\xi_{\mu} \tag{2I}
\end{equation*}
$$

где μ-коэффициент трения в сечении у выхода валков и для горячей прокатки широких толстых листов $\mu=0,5$.
Среднее удельное давление получаем делением выраяения (20) на величину контактной площади, а коэффициенг влияния внешнсго трения на давление металла на валки с учетом условия (21) будет равен

$$
\begin{align*}
& \frac{p_{\mathrm{cp}}}{k}=\left\{I+\left[I-\frac{1}{4} \xi^{2}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)^{2}+\right.\right. \\
&\left.+\frac{\xi}{\alpha}\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)\right]\left[\frac{I}{\varepsilon} \ln \frac{1}{I-\varepsilon}-I\right]+ \\
&\left.+\frac{I}{2}(I+\xi)\left[\xi\left(I+\frac{I-\varepsilon}{\varepsilon} \frac{I+\xi}{\xi}\right)-\frac{I}{\alpha}\right]-\frac{I}{\delta}(I+\xi)^{2} \frac{3-2 \varepsilon}{\varepsilon}\right\} \tag{22}
\end{align*}
$$

Коэффициент $n_{s}^{\prime}=\frac{p_{c p}}{k}$, учитывающий влияние внешнего трения на давление металла на вали, рассиитанный по формуле (22) ири $\varepsilon=$ $=0, \mathrm{I} \div 0,5$ и $\frac{l}{h_{\mathrm{cp}}}=0,5 \div 2$ равен $n_{\sigma}^{\prime}=\mathrm{I}, 25 \div \mathrm{I}, 65$. Tочность результата подсчета коэффициента n_{s}^{\prime} в определенной мере зависит от правильного определения коэффициента ξ, учитьвающего положение нейтрального сечения.

Грузинский институт металлургии
Тбилиси

ตうかのショว

 एuдmzegorna．

1．А．И．Целиков．Теория расчета усилий в прокатных станах．Металлургиздат， 1962.

2．А．А．Королев．Определение давления металла на валки прокатного стана с учетом зоны прилипания．Труды ЦНИИТМАШ，„Прокатные станы＂，кн．73， Машгиз， 1955.
3．А．А．Королев．К определению давления металла на валки при горядей про－ катке．Известия высших учебных заведений，„Черная металлургия＂，№ 8， 1960.
4．И．Я．Тарновский，А．А．Поздеев，В．Б．Ляшков．Деформация металла при прокатке．Металлурьиздат， 1956.
5．Б．Сен－Венан．Об установлении уравнений внутренних давлений，возникаюших в твердых пластических телах за пределами упругости．Сборник статей „Тео－ рия пластичности＂，ИЛ， 1948.
6．Е．П．Унксов．Инженерная теория пластичности．Машгиз， 1959.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

МЕТАЛЛУРГИЯ

Г. Г. ГВЕЛЕСИАНИ, Ш. М. БЕЗАРАШВИЛИ, Н. П. МГАЛОБЛИШВИЛИ

ОБ А. ЮОМТЕРМИЧЕСКОМ ВОССТАНОВЛЕНИИ
 ОКИСІ ЕВРОПИЯ

(Представлено академиком ф. Н. Тавадзе 2.7.1964)
Европий, благодаря своему высокому поперечному сеченпю захвата тепловых нейтронов, широко используется в управляющих элементах ядерных реакторов и нейтронозашитных материалах. Он применяется также ири рафинировании металлов, в радиографин, при лечении раковых заболеваний и Т. д. [1].

Из способов, опробованннх для получения чистого европия, самым перспективным следует считать вагуумметалдотермическое восстановление его окисн. Этот вопрес наиболее подобно исследован Т. Кемпбеллом и Ф. Блоқом [2], однако ими лишь частично изучен процесс лантанотермического восстановления $\mathrm{Ev}_{2} \mathrm{O}_{3}$. О возможности же исиользования других металлов-восстановителей ($\mathrm{A}, \mathrm{Ce}, \mathrm{Zr}$) они судят только по данным предварительных опытов.

В настояпей статье изложены резупьтать псследовании аломогермического восстановления окиси евроиия.

> Термодинампка восстановления

Алюмотермическое восстановление окиси евроиня ложно представить в виде суммарной реақшпи

$$
\mathrm{Eu}_{2} \mathrm{O}_{3 \mathrm{\tau в}}+2 \mathrm{Al}_{\text {ж }}=2 \mathrm{Eu}_{\text {nap }}+\mathrm{Al}_{2} \mathrm{O}_{3 \text { тв }}
$$

. Занная система моновариантна и ее равновесие пднозначно определяется давтениел пара европия над реакционной смесью, так как лия исследуемых температур Раи исчезаюше мало.

Величина РЕин измерялась методом молекулярноно истечения иа высокотемпературной вакуумной установке [;] по метолике, описанной ранее [4]. Значения равновесной упругости пара евроиия над реакиионной смесью рассчитывались по формуле

$$
\mathrm{P}_{\mu M \mathrm{pr} \cdot \mathrm{cr}}=17,14 \frac{\mathrm{~g}}{\mathrm{KS} \tau} / \begin{gathered}
\mathrm{T} \\
\mathrm{M}
\end{gathered}
$$

где Т-температура опыта, ${ }^{\circ} К ; ~ М$-молекулярный вес Eu в паре, равный I;2; g-убыль веса, 2 ; S—площадь эффузионного отверстия, $с \boldsymbol{M}^{2}$;
τ —продолжительность опыта, сек; К—поправка на толщину и диаметр эффузионного отверстия, рассчитываемая по Кеннарду [II].

Рис. 1. Равновесное давление пара европия над смесьо $\mathrm{Eu}_{2} \mathrm{O}_{3}+3 \mathrm{Al}$:

а-зависимость равновесного давления от температуры;

б-зависимость логарифма равновесного давления от обратной температуры;
(3) -днаметр эффузионного отверстия 1,0 мм; О0,8 мм ; - 0,65 м

$$
\lg \mathrm{P}_{M M}=\mathrm{I}_{7}, 775-\frac{1959 \mathrm{I}, 8}{\mathrm{~T}}\left(1325-\mathrm{I}_{\left.473^{\circ} \mathrm{K}\right) .} .\right.
$$

Отсюда по нзвестному равенству

$$
\Delta Z_{\mathrm{T}}^{0}=-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{p}}=-\mathrm{PT} \ln \mathrm{P}^{\mathrm{x}},
$$

где х для рассматривлемии реакции равен 2 находим зависимость от температуры пзобарно-пзотерыного потенцнала лля реакции алюмотермического восстановления $\mathrm{Eu}_{2} \mathrm{O}_{3}$:

$$
\Delta Z_{t}^{0}=17926 ;-99,69 \mathrm{~T}\left(1325-1473^{\circ} \mathrm{K}\right) .
$$

Кинетика восстановления
Кинетика процесса пзучалась на высокотемпературной ванууной установке с автоматической записью хода восстановления [3].

Для этих опытов использовались брикеты весом I, $5-22$ и размерами $\delta=3$ и $\varnothing=1$; мм.

Предварительно быди пспытаны обе модификашии окиси ${ }^{1}$ - высокои низкотемпературная, соответственно $\mathrm{B}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ и $\mathrm{C}--\mathrm{Eu}_{2} \mathrm{O}_{3}$. На кривых (рис. 2) видно, что при 1200 и особ̆енно ири 1 поо $^{\circ} \mathrm{C}$ из $\mathrm{B}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ европий вначале возгоняется скорее, чем из $\mathrm{C}-\mathrm{Eu}_{2} \mathrm{O}_{3}$. Однако по истечении некоторого времени скорость восстановления последней опережает интенсивность восстановдения $\mathrm{B}-\mathrm{Eu}_{2} \mathrm{O}_{3}$. В конечном итоге выход европия из низкотемпературной формы окнси выше, чем из высокотемпера-
(${ }^{1} \mathrm{Eu}_{2} \mathrm{O}_{3}$ разной модификации изготовлялась по способу, изложенному в работе [5].

турной. B противоположность $\mathrm{C}-\mathrm{En}_{2} \mathrm{O}_{3}$ орикетные остатки алюмотермического восстановления $\mathrm{B}-\mathrm{En}_{2} \mathrm{O}_{3}$ получатись в виде оплавленной

Рис. 2. Влияние модификации $\mathrm{En}_{3} \mathrm{O}_{3}$ на выход европия:

$\triangle-\mathrm{IIO0}^{\circ} \mathrm{C}$	$\mathrm{C}-\mathrm{Eu}_{3} \mathrm{O}_{3}$
$-1200^{\circ} \mathrm{C}$	B
$\mathrm{A}-1100^{\circ} \mathrm{C}$	$\mathrm{B}-\mathrm{Eu}_{2} \mathrm{O}_{2}$
$-1200^{\circ} \mathrm{C}$	Al

Morspиое отношение $\frac{\mathrm{Al}}{\mathrm{EH}_{2} \mathrm{O}_{3}}=3$; давление при брикетировании 1000 кг/С. ${ }^{2}$; продолжительность2 часа; крупность алюминня $-0,25$ 0,1 ммл; крупность $\mathrm{Eu}_{2} \mathrm{O}_{3}-0,1$ м. разрежение 10^{-3} М. рт. ст. массь.

Лальнепиние опытн проволились \subset окисью европия С-формы.

Кинетические исследования восстановления $\mathrm{En}_{2} \mathrm{O}_{3}$ выполиялись для шихт с молярнвм отношением $\frac{\mathrm{Al}}{\mathrm{Eu}_{2} \mathrm{O}_{3}}: 2 ; 3$ (рис. 3), 3,5 и 4. При $1000^{\circ} \mathrm{C}$ евроиий из этих михт отоняется весьма медленно. С ростом температуры выход свротия заметно увеличивастся; олиако нагрев въме Ii $50^{\circ} \mathrm{C}$, несмотря на возрастание начальной скорости отоики, мало сказнвается на консчном выхоле металла. Реакщия при II5о п $1200^{\circ} \mathrm{C}$ особенно интенсивно протекает в первые 30 минут. Для меньutn: temmepatyp (1100 n ocorenno $1000^{\circ} \mathrm{C}$) наблидаслся обратное sвление: снерва отонка илет слабо, затем заметио повыmaetcs.
На рисунке + представлепы резулитты :обапоотки кинстических показателей алюмотермического восстаповления окиch eвponия ддля vorsphoro otномения $\frac{\mathrm{Al}}{\mathrm{En}_{2} \mathrm{O}_{3}}=3$ с помощыю уравнений А. Гинст-
 и $\mathrm{I}-(\mathrm{I}-\mathrm{G})^{2 / 3}-2 / 3 \mathrm{G}=\mathrm{E}_{\text {дифф }} \cdot \tau$.

За искпючепием начального периода иропесеа для 1 Iо0 и $1150^{\circ} \mathrm{C}$, эги уравнения на определенных участках удовлетворительно описывают ход восстановления.

У становлено (рис. 5), что для интервата температур Iooo$1200^{\circ} \mathrm{C}$ увеличение молярного отнонения $\frac{\mathrm{Al}}{\mathrm{EH}_{2} \mathrm{O}_{3}}$ от 2 203 310 .

Рис. 3. Влияние температуры и продолжительности на выход европия:
$-1000^{\circ} \mathrm{C} ; \quad \square-1100^{\circ} \mathrm{C} ; \quad \triangle-1150^{\circ} \mathrm{C} ; \times-$ $1200^{\circ} \mathrm{C}$.

Давление при брикетировании $1000 \mathrm{Kz} / \mathrm{cm}^{2}$; молярное отношение $\frac{\mathrm{Al}}{\mathrm{Eu}_{2} \mathrm{O}_{3}}-3$; крупность алюминия-0,25-0,1 м/м: крулность $\mathrm{Eu}_{2} \mathrm{O}_{3}$ $-0,1$ мм; разрежение 10^{-3} м ро рт. ст.

вышаег выхол евроиия. Лальнейший его рост на выходе не сказывается.

Рис. 4. Зависимость $\mathrm{K}_{\text {исп }}$ (лифф) • \cdot от продолжительности ₹ в уравне. ниях А. М. Гинстлинга:

для $\mathrm{K}_{\text {исп }}$
$\left.\begin{array}{l}\text { (выше } 54 \% \text { восст.)- } \\ \text { (выше } 67 \% \text { восст.) } \\ \text { (выше } 68 \% \\ \text { восст.) }\end{array}\right\}$
(выше 68% восст.) $\mathrm{K}_{\text {дифф }}$
д — $2+1$ мм) началнную скорость прощесса, но не сказывается на выходе ев-
ропия (рис. 7). ропия (рис. 7).

Как показали опыты, при алюмотермическом восстановтении $\mathrm{Eu}_{2} \mathrm{O}_{3}$ добавка плавикового шпата нецелесообразна. Например, для шихты с $5 \% \mathrm{CaF}_{2}$ or веса स $\mathrm{U}_{2} \mathrm{O}_{3}$ возогнанный при $1200^{\circ} \mathrm{C}$ металл загрязнен алюминием и кадьциея в юоличе стве 5,62 и $1,96 \%$ соответственио. Очсвидно, механизм перехода этих примесей в европий подобен аналогичному иропессу для других шелочноземельных металлов $[7,8]$.

Возогнанный европий сереористосерого щвета, на воздухе быстро тускнюет и, окисаяясь, рассыпается в порошок. Ho данным анализов, металл, полученный ири II50 C, содержит $0,32 \%$ Al. ется $с$ ростом его избытка в шихте. Для подобранного нами оптимального состава шнхты (молярное отнотение $\frac{\mathrm{Al}}{\mathrm{Eu}_{2} \mathrm{O}_{3}}=3$) ири $1200^{\circ} \mathrm{C}$ эта величина доститает 55%. Нзменение давления брикетирования шихты (рис. 6) от 1000 ло $7500 \mathrm{\kappa z} / \mathrm{cm}^{2}$ незначительно сказывается на қинетике процесса и конечном выходе европия. Некоторое замелление реакиии и пониженный выход металла наблюдаются для неорикетированной пихтн. Нсходя из полученных результатов, для исиользуемых нами брикетов максимальным следует принять давление $7500 \mathrm{\kappa z} /$ с. 2.
$\mathrm{Y}_{\text {величение крупности }}$ $-0,25+0,1$ до $-0,5+0,25$ мМ не влияет на кинетику и конечные результаты восстановления. Taлbыййее его Укрупнение заметно снижает (особенно для фракции пческом восстановленин $\mathrm{Eu}_{2} \mathrm{O}_{3}$ добавка в европий нодолен анияичному имоиессу

Рис 5. Влияние состава шихты на показатели процесса:

- выход европия при $1000^{\circ} \mathrm{C}$; $-1100^{\circ} \mathrm{C} ;-1200^{\circ} \mathrm{C}$; 四-сreneнь, использования Al при $1100^{\circ} \mathrm{C}$: $1200^{\circ} \mathrm{C}$.

Давление при брикетировании тооо кz/сАв $\mathbf{1}^{2}$; крупность алюминия $-0,25-0,1$ М.М; крупность $\mathrm{En}_{2} \mathrm{O}_{3}$ -0,1 ми; разрежение 10^{-3} м.м рт. ст.; продолжительность 2 часа

Обсу 央дение результатов

Окись европия, подобно другим шелочноземелинмм онислам [4, 7, 8], взаимодействует с жидким восстановителем. С этид нозииий и следует

Рис.'6. Влняние давления при брикетировании шихты на выход

- - давление при брикетировании о; -1000; $\times-3500 ;-7500$.

Молярное отношение $\frac{\mathrm{Al}}{\mathrm{Eu}_{2} \mathrm{O}_{3}}=3$; температура процесса $1200^{\circ} \mathrm{C}$; продолжительность 2 часа; крупность алюминия-о25 $+0,1$ ммя; крупность $\mathrm{Eu}_{3} \mathrm{O}_{3}-0,1 \quad$ мм; разрежение IO^{-3} м. М рт. ст. рассматривать особонности нсследуемого пронесса.

Юак известно, характер начального хола кинетических кривых главным обра. зом обусловлен кристаллофизическими свойствами исходных твердых қомпонентов. Изменение этих своиств приводит в одном случае к наличию максимума начала реакции (плоскостнюе потенциальные центры реакиии), а в другом - к нарастаюшему во времени хیду прошесса (точечные и линейные потенциальные пентры). Нужно предполагать, что при относительно низких температ!рах алюмотермического восстановления $\mathrm{Eu}_{2} \mathrm{C}_{2}$ взаимодействие компонентов начинается в отдельных активиых щентрах восстанавливаемой окиси. Іри этом скорость взаимодействия в значителной мере будет оиределяться смачиваемостьн алюминием окиси европня. Чем последняя лучше, тем выше начальная скорость процесса в связи с возрастанием плошади соприкосновения между восстановителем и активными нентрами окисн. Алюминий при 1 Iоо и осојенно при $1000^{\circ} \mathrm{U}$ плохо смачивает окись евроиия (рис. S). Этим и должна объяснятьея относительно низкая начальная скорость прощесса. По мере же взаимодействия, наряду с увеличением смачиваемости $\mathrm{Eu}_{2} \mathrm{O}_{3}$ (за счет образования сплава $\mathrm{Eu}_{\mathrm{x}}-\mathrm{Al}_{\mathrm{y}}$), должно происходить и большее искажение кристаллической решетки этой окиси, что, очевидно, и обуславливает увеличение скорости вогстановления во врекени. С ростом температуры иронесса реакция осуществляется на плоскостных потенпиальых щентрах кристаллической решетки $\mathrm{Eu}_{2} \mathrm{O}_{3}$; к тому же заметно улучшается его смачиваемость восстановигелем (рис. ठ). Bсе это в совокупности приводит ъ максимальному холу начала алюмотермического восстановления при $1200^{\circ} \mathrm{C}$ (рис. з).

Очевидно, разная начальная скорость восстановления двух молификаций окиси европия (рис. 2) свазана именно с их кристаллофизичсскими свойствами. Если учесть, что при 1000 и I $100^{\circ} \mathrm{C}$ смачиваемость алюминием $\mathrm{C}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ и $\mathrm{B}-\mathrm{Eu}_{2} \mathrm{O}_{3}$ примерно одного порядка (рис. 8), то второй из них доджен характеризоваться для одной и той же темпера-

туры болиним количеством точечных и линейных активных пентров геакции. При $1200^{\circ} \mathrm{C}$ смачнваемость алюминием высовотемпературной модификашии окиси евроиия больше. Отсюда п бсльшая началиная скорость восстановления $\mathrm{B}-\mathrm{Ev}_{2} \mathrm{O}_{3}$ при наличии в обонх модификаииях

Рис. 7. Влияние крупности алюминия на выход еврония:
\triangle-крупность алюминия-2+1 M.M; $\quad \times-1 \mid 0,5$ M. $; \quad \square-0,5-0,25$ м. $; ~ 0,25-0,1$ M. .

Молярное отношение $\frac{\mathrm{Al}}{\mathrm{Ev}_{2} \mathrm{O}_{3}}=3$; температура процесса $1200^{\circ} \mathrm{C}$; продолжительность 2 часа; давление при брикетировании-1оол кг/с. M^{2}; крупность $\mathrm{Eu}_{2} \mathrm{O}_{3}-0,1$ мt.м; paspeжение то ${ }^{-3}$ ми: рт. ст. окисн плоскостных потеншиальньх пентров реакпии.
С. точки зрения смачиваемости восстановитедем окиси европия нужно рассматривать и влияние крупности зерен алкминия на кинетику реакпии (рис. 7). При вакуумалюмотермическом восстановлении окислов $[4,7,8]$ заметное уменьшение крупности Al слабо сказывается на показателях пронесса. Aналогичная закономерность получена и для юкисп европия, однано начадьная скорость восстановления снияается с увелииением крупности аломиния. По-вндпмому, в начале пропесса, иопа нет заметного смачивания окнси европия аломиннем, скорость реакции обуславдивается колицеством контақтируюиих между собой точеп участнипов реании. Следователино, чем выше днсперсность восстановителя, с тем большей скоростью начнется пронесс, но эта разнпиа будет постепенно стлажнваться в силу послелуюшего интенсивного смачивания восстановителем $\mathrm{Eu}_{2} \mathrm{O}_{3}$ при $1200^{\circ} \mathrm{C}$.

При образовании газообразного продукта реакции в условиях хорошей смачивасмости восстановнтелем твердой окиси действне давления при брикетировании пихты слелует опепивать с точки зрения препят ствия удалеиив тазоооразното продуғта $[4,7,8]$. Следовательно, изменение давления до определенной велицины практически не доджно влиять на показатели пропесса, что п подтверждено напими опытами для интервата $1000-7500 \mathrm{kz} / \boldsymbol{c м}^{2}$. Снижение скорости восстановления и выхода европия в опытах с рыхдой смесьо, очевидно, обтясняется частичной тыквапией восстановителя.

В противоположность алюмотермическому восстановлению окиси -иттербия [4], в псследуемои пронессе не наблюдается образования в качестве промежуточного иродукта реакиии алюмината европия.

Одмты по выдержқе неболыших кусочков алюминия в массе окиси европия при температурал восстановлепия дали большюе увеличение микротвердости восстановитетя, что свндетельствует о сплавообразовании между Al п Eu.

Кинетические расчеты (рис. 4) исследуемої реакшии показали, что вначале лимитируюшей стадией цропесса является переход европия из сплава в парообразное состояние. На данном этапе восслановления диффузионное торможение за счет твердого продукта реакпни $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ несу-

$$
\mathrm{C}-\mathrm{Eu}_{2} \mathrm{O}_{3} \quad \mathrm{~B}-\mathrm{Ee}_{2} \mathrm{O}_{3}
$$

Рис. 8. Смачиваемость окиси европия алюминием (Изотермическая выдержка капли 10 минут)

щественно, очевидно, по той причине, что объем последнего намного меньше объема исходной окиси $\left(\mathrm{Eu}_{2} \mathrm{O}_{3}\right)$. Следовательно, твердый продукт будет подучаться рыхлым и пористым. Но по мере накопдения доводьно толстого слоя глннозема догтуи восстановнтеля К нсходной окнси европия все более затрудняется и режим восстановления переходит в диффузионный.

Авторы выражатот благодарность проф. В. А. Пазухину за внимание и интерес, проявтенные к данной работе.

Академия наук Грузинской ССР
Институт металлургии
Тбилиси

 วอ৬うbอる
लョ

 $\Delta Z_{T}^{0}=179255-99,64 . \mathrm{T}$ óngingó on 1325－1473 ${ }^{\circ} \mathrm{K}$ ．

1．Б．И．Коган，Экономические очерки по редким землям．Изд．АН СССР，М．， 1961.

2．T．T．Campbell，F．E．Block．Europium and samarium reduction．Journ． Metals，II，1959， 744.
3．Г．Г．Гвелесиани，Н．П．Мгалоблишвили，А．А．Надирадзе．Высо－ котемпературные установки для исследования вакуумтермических восстанов－ лений．Труды Грузинского институға металлургии，т．XIV， 1964.
4．Г．Г．Гвелесиани，А．А．Надирадзе．Об алюмотермическом восстановле－ нии окиси иттербия．Известия АН СССР，Металлургия и горное дело，Nе 4. 1964.

5．J．Warshaw and Rustum Roy．Polimorphism of the rare earth sesquioxi－ des．Journ．Phys．Chem．，65，Ne 11，1961， 2048.
6．П．П．Будников，А．М．Гинстлииг．Реакция в смесях твердых веществ． Госстройиздат，М．， 1961.
7．Г．Г．Гвелесиани，В．А．Пазухин．Исследование восстановления окислов строншия и бария алюминисм．„Металлургия цветных металлов＂，сб．научных трудов Минцветметзолота，№ 24，1954， 184.
8．В．А．Пазухин，А．Я．Фишер．Вакуум в металлургии．Металлургиздат， 1956.
А. А. ДЗИЦЗИГУРИ (член-корреспондент Академии наук ГССР), Ш. И. ОНИАНИ, Т. О. ЛАЦАБИДЗЕ

ИСС.ЛЕДОВАНИЕ ГЕОТЕРМИН ППАХТЫ «FOMCOMO刀ЬСКАЯ» ТРЕСТА «ТКИБУЛУГО.ЩЪ МЕТОДОМ ЭЛЕКТРИЧЕСКОГО МОДЕЛИРОВАНИЯ

Выработки шахты «Комсомольская» с самого начала эксплуатании окажутся на значительной глубине от поверхности (9 оо-1000 м), что делает необходимым определение ожидаемых атмосферных условий всех рабочих горизонтов шахты. Это, в свою очередь, требует дета.льного изучения теплового состояния пород и углей. окружаюших все выработки вентиляционной сети. Задача исследования температурного поля недр шахты нами была решена методом математического моделирования иди так называемым методом электротепловой аналогии [1].

Для моделирования были выбраны четыре разреза по направлениям I-I, II-II, III-III и IV-IV, охватывающие все основные горные выработқи, составляюшие вентиляционную сеть, а тем самым и схемы тепдовых расчетов шахты (рис. 1). Таю, нащример, стратиграфический раз-

Рис. 1. Геологическая схема месторождения

рез I-- проходит по охкаточной штольне, слепому стволу и капитальным квершлатам и служит натурой при моделировании температурного поля неохлажленного гориото массива вокруг этих вырайоток. Разрез II- П включает в себя все нарезные и очистные выработки последиих выемочных полей северо-западного крыла шахты, по которым проходят опіе основные расчетные схемь. Разрезы III-III и IV-IV проходлт через откаточные полевые штреки соответственно нулевому горизонту (третий этаж) и горизонту +175 m (первый этаж).

Имея стратиграфический разрез по каждому выбраному наиравленио и осредненные ведичины теплопроводностей пород, • составляюших эти разрезн, можно постронть нх электрические аналоги путем подбора отдельных сортов специальной электроироводвой бумати, нмеюшей электрическис сопротивления, удовлетворяющие условиям моделироваппя.

Из-за недостаточного количества разных сортов әлектропроводной бумаги электрические аналоги отдельных свит пород составлены из двух параллельно соединенных листов бумаги, дающих в сумме нужную величину электрического сопротивления на қвадрат.

На построенных электрических анацогах стратиграфических разрезов осуществлялась реализация следующих граничных условий первото рода:

1. Температура нейтрального слоя является линсйной функпией высоты располојкения местности

$$
\begin{equation*}
t_{\mathrm{ai} i}=f(H)=a+b H_{i}, \quad{ }^{\circ} \mathrm{C}, \tag{I}
\end{equation*}
$$

где
a и b-постоянные в пределах данного месторождения величины, определяющиеся по данным метеостанции Ткибули и Херга по среднегодовым температурам поверхности подвы на местах расположения этих станций;
H_{i}-превышение высоты рассматриваемой точки разреза над метеостанцией Ткибули;
$t_{\text {н }}$-искомая температура нейтрального слоя около данной точки, ${ }^{\circ} \mathrm{C}$.
2. Тепловые потоки на боковых границах разрезов являются плоскопараллельными, т. е. градиент температуры но направлению нормали тепдового потока отсутствует:

$$
\begin{equation*}
\frac{\partial t}{\partial n_{\delta \cdot k}}=0 \tag{2}
\end{equation*}
$$

3. По нижнему контуру стратит рафических разрезов, нахоляиихся нияге 3000 m от уровня моря, можно принимать темтературу постоянной
(в нашем случае ниже этой гдубины влияние рельефа поверхности и формы залегания пород, как показали исслелования [2], отсутствуют):

$$
\begin{equation*}
t_{H_{k}}=\text { const. } \tag{3}
\end{equation*}
$$

Моделирование осуществлялось на интеграторе ЭГ ДА -9/6о.
Для реализации условия (1) К характерным точкам верхнего контура электрического аналога моделируемого разреза с помощью гибкой прутковой тожозадаюшей шины подводятся отвлеченные величины потенииащов от потенциометров делителя напряжения ПДН-Іо интегратора. Эти потенциалы моделируют температуры нейтрального слоя в этих точках.

Ґеализация условня (2) осушествляется путем изоляции боковнх контуров аналога воздухом (бумага обрезается по этим контурам), а усло-
 лога с помощью спе!иальных шин-зажимов.

Рис. 2. Профиль геотемпературного поля по разрезу $1-1$

На рис. 2-5 изображены профили геотемпературных полей вьбранных разрезов, полученные методом электротепловой аналогии (латотся только веряние части профилей, представляюших интерес для тепловой характеристики порол в пределах шахтного поля). Надписи по левым боковым контурам обозначают отметки от уровня моря, а по правым - ве.иичины температур соответствуюших изотерм. На кажлом рисунке вертиқальными прямыи нанесены следы нересечения других стратиграфических разрезов с даннм разрезом. Например, на рис. 2 вертикальные прямые III-III и IV -IV являются следамп пересечения соответствуюших разрезов с разрезом I-I. Внутри қаждого рисунка цифрами отмечены начальнве и конечные точки расчетных учасгков.

Переход от потеншиального поля аналога к темиературному полю натуры осуществлен на основе величины температуры, замеренной в с.лепом стволе на гаубине 6 m о́т горизонта штольни.

Высокая точность постросния геотемпературных полей методом ЭТА хорошо видна из рис. 2 , на котором между изотермами профиля температурного подя по пройленным выработкам шахты нанесены результаты непосредственных измерений температур около точек измерения, отмеченные иифрами со штрихом. Более нагяядно о точности этого метода можно судить по данным таблины, гле во втором столбие приведены величины температур, полученные непосредственными измерениями в свежеобнаженных заболх проходческих қапитальных выработок (штолен, выработок руддвора и слепых стволов) с помощью заленивленного ртутного психрометрического термометра с точностью $\pm 0,1^{\circ}$.

Сравнение результатов моделиривания с данными непосредственных измерсний в свежеобнаженных забоях и теологоразвелочной сюважине 슬 186 приведено в таб̃лиие.

Таблица

Tемепература горных пород в масcube no фактическим измеренням, ${ }^{\circ} \mathrm{C}$	Электротепловой аналог разреза		facxoждение		Примечание
	потенциал,	$\begin{aligned} & \text { темпера- } \\ & \text { тypa, }{ }^{\circ} \mathrm{C} \end{aligned}$	градусы	\%	
14.6	6,9	14,8	+0,20	+1,37	Выработки шахты „Комсомольская" (разрез 1-1)
16,8	8.6	16,8	0,00	0,00	
17,3	9.0	17,3	-0,00	0,00	
17,55	9.36	17,6	$+0,05$	+0,28	
18,0 18,25	9,66	17.95 18,15	-0,05	-0,28	
18,25	9,88	18,15	0,10	0,55	
19,9.	11,38	19,9	-,00	0,00	
26,3	17.57	26,6	+0,30	+1,14	Сквважина
					№ 186 H- 11) (paspes

Приведенные ирофили геотемпературньх полей говорят о неностоянстве величины теплового потова с глубиной.

Ha pис. 2 и тастично 3 хорошо впден закономерный харакхерный изгиб изотерм около уголной толив, в нижних песчаниказ, и в самой угольной толще. Вид этих изотерм показывает, что, если в толиц утля тепловой поток всегда напрвллен вкрест напластованио, то в иижних песчаныках в случае сложного рел ефа поверхности и наклонного залеганпя пластов наиравление теплового потока почти полностью совнадает с напластованием этих пород. Это говорит о том, что угольная толща в данном саучае работает как теплоизоляцининй слой, который заставляет тепловой поток, идущий из глубины слоев земной горы, изменить бб́чное вертикальное направление движения и отклониться в сторону поверх-

ности. Правда, этому в значительной мере способствует и рельеф поверхности. Таним образом, получается увеличєние плотности теплового потока в нижних песчаниках и ее уменьпение в вьшележащих слоях.

Рис. 3. Профиль геотемпературного поля по разрезу ІІ-І
Такая картина неравномерного ржпределения теплового потока при экстраполяпии результатов термометри искажает действительный"вид температурного поля и служит псточником погрешности при изучении геотермии месторожления.

Рис. 4. Профиль геотемпературного поля по разрезу III-III
Если же рельеф поверхности ровный, а залепание пород горизон-

параллельность векторного поля теплового потока. B таких случаях тепловой поток является постоянной величинсй, не оказываюшей никакого влияния на последствия экстраполяиии результатов термических измерений.

Из-за мелкого геотермического масштаба при построении электрического аналога всего стратиграфического разрезл невозможно моделирование отдельных пластов и пропластков угольной толши. Но ввиду того, что угольная толща разрабатывается отдельными наклонными слолми, требуется знание характера распределения темперагур вокруг очистных забоев каждого отдельно вынимаемого слоя. Поэтому для точного прогноза наихудших атмосферных условий при разработке рассматриваемых выемочных полей необхолимо дифференцировать тепловое состояние отдельных пластов и пропластков и дажс отдельных нағлонных слоев в угодьной толще. С этой пелью из профиля геотемпратурного поля по разрезу II-II (рис. 5) нами для моделирования в более крупном масштабе были выделены участки a и б, охватываюшие напболее удаленные выемочные поля, через которье проходят раслетные схемы.

Рис. 5. Профиль геотемпературого поля по разрезу IV—IV
 на рис. 7 -участка б. Нзотермы, являющиеся верхними и нижними контурами этих аналогов, пзображены на рис. З. Лля этих аналогов условие (г) отпадает. С целью реализашин условия (2) пами придан боковым контурам плавно пзгибающийся вид с такшм расчетом, чтобы боковой контур, а тем самым и тепловой поток в киядой точке, имел направление нормали относительно изотерм.
(${ }^{1}$ На рис. 6 нижняя граничная изотсдма (30°) не нанессна с целью уменьшения размеров рисунка.

Hз рассмотрения приведенных профилей геотемпературного поля видно, что условие собдюдено с достаточной точностью. Условие (з) в данном случае является обязательным как для нижних, так и для верхних контуров п легко реализуется с помошью пибких токозадающих шин. Ввиду того что сверлу и снизу аналоги ограничиваются нзотермами, при построении модепи потенииометры делителей напряжений не учаctByIOT.

Рис. 6. Профнть геотемпературного поля выемочного учлстка № 18 | этажа

Рис. 7. Профиль геотемпературного поля выемочного участка № 14 III этажа

Ha рис. 2-7 вдоль выработок расчетыых схем џифрами $1,2,3$ ит. д. обозначены наяальнле п юонечные точки расчетных участков и на посдедних трех из них окодо этих точек панесени соответствующие

величины темтератур, служащие исходными при тепловых расчетах вентиляңии шахты.

Из всего выжесказанного видно, что метод электротепловой аналогии дает точную и ясную картину распределения температур в неохлажденном массиве нелр, в толще полезного пскопасмого и ио всей протяженности горных выработок, составляюших вентиляционную сеть шахты. Ноэтому при сложном рельефе поверхности и с.юожннх геологических условиях залегания, т. е. в условиях горной местности, тепловое состояние месторождения всегда следует изучаеь этим методом, правда, если известны породы, залегаюиие ло нужных для моделирования глубин и можно изучпть их теплофизичсскпе свсйства.
Академия наук Грузинской ССР

Институт горного дела

им. Г. А. Цулукидзе
Тбилиси
(Поступило в редакцию 7.4.196t)
buacmm Luaaj

 j6ummzonl ajonmsen

的g bovgag

 budocomgontiongat.

1. И. М. Тетельбаум. Электрическое моделирование. М., Государственное издательство физико-математической литературы, 1959.
2. А. А. Дзидзигури, Ш. И. Ониани, Т. О. Тащабидзс. Влияние рельефа на температурное поле недр Ткибули-Шаорского каменноугольного месторождения. Сообщения АН Грузинской ССР, т. XXXII, 2, 1963.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, Ххxv:2, $196 \uparrow$ BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $x \times x v: 2,1964$

РАСТЕНИЕВОДСТВО

A. Г. ГАВАКЕТАШВИЛН

1! ¿СनЕДОВАНИЕ И ИЗМЕНЕННЕ HEKOTOPDIX ПРИЗНAKOB У МЕХХВИДОВЫХ ГИБРЮДОВ ВИНОГРАДА
(Представлено академиком В. 3. Г'лисаивили 20.1.1904)
После появления в Европе грибных болезней и филлоксеры перед виноградарями-селекционерами стала задача вывеления сортов винорада, устойчивых против фнляоксеры и грибных болезней и не уступаюших по качеству европейсиим сортам.

Над выведеннем устойчивых сортов винограда работали и работаюот известные оригинаторы и селекционеры $[1$ - 9], но эта залача не решена и принимает еще большсе значение в период развернутого строительства комімунизма.
И. В. Мичурип неоднократно указывал, что в деле винедения новых сортов большое значение имеет подбор родительских пар $\lfloor 10!$.
A. М. Негруль указывает на необходимость правильного подбора родительских пар на основе вх глубокого биологического изучения, а также на основе изучения вопросов наследственности признаков в нервом поколении гибридов [3]. В скрещиваниях для получения мильдью и филлоксероустойчивых сортов винограда были нспользованы американские виды и грузинские высококачественные сорта випограда, такие, как Ркацители, Мцване и др. [4].

В настоящее время над вывсдением мипьдью и филлоксероустойчивых сортов рабстают на юге Украины [11], в Молдавской ССР [12] и в 1руад:! $[6,7,8]$.

В Украннском научно-исследовательском институте виноградарства́ и виноделия им. Тайрова в результате скрещивания высокоюачественных культурных сортов с филлоксероустойчивыми подвойными соргами РипариахРупестрис $101-14,3309$, Рипариа ГГауари др. полуены филлоксероустойчивые формы.

В 1рузинской ССР в этом направлении проведена довоньно большая работа под руководством проф. Д. И. Табидзе. Родителями взяты географически и ботанически отдаленные пары [3, 10], а именно: в качестве матери-местиые кахетинсие высококачественные сорта Ркацители, Саперави, Миване и др., а в качестве отца - американские

дикие виды и филлоксероустойчивые подвойные сорта Рипариа，Ру． пестрис，РипариахБерландиери и др．，но «лучшими среди них оказа－ ансь из местных Саперави и Мцване，а из американских－Берлан－ ＂theри \times Рипариа» 151.

तiь изучили вопрос наследования и изменения некоторых призна－ ков у межвидовых виноградных гибридов，материнскими сортами ко－ торых были грузинские высококачественные и сравнительно фнллоксе－ ！оустойчивые сорта Ркацители и Mиване［13］，а отцовскими－Рипариа I；дур и БерландиерихРипариа 420а，а именно：1）МдванекРинариа 1ヵуар－2890 сеянцев；2）Ркацители Рипариа Глуар－933；3）Мцванех （Берландиери \times Рипариа 420 а） 223 ；4）Ркањители \times（Берландиери \times Ри－ париа 420а）－303．Bсего－ 4349 селниев．

Эти гибридные сеянцы получены в 1935－1937 гг．в Институте вины－ р радарства и виноделия ГССР проф．Д．И．Таббндзе и З．Г．Сио́ашвили．

Участок гибридных сеянцев находился на территории Института виноградарства и виноделия АН ІССР（ныне территория Телавской спытной станции Института садоводетва，виноградарства и виноделия ！ССР），которая характеризуется следующими почвенно－климатически－ лн условиями．Она расподожена в восточной части правобережья р．Алазани，на северо－восточном склоне Цив－Гомборского хреб́та，на высоте 566 м н．у．м．Климат местности континентальный．Среднял лет－ ния температура́ воздуха $22,3^{\circ}$ ，абсолютныіи максимум $-37,5^{\circ}$ ．Сумма аитивных температур от распускания почек до начала листопада до－ стигает 3800 ．Среднее годовое количество оеалков равно $751,3 \mathrm{mim}$ ，мм гимум нх приходится на февраиь（ $29,6 \mathrm{mм}$ ），а максимум－на июиь 1 $122,7 \mathrm{~mm})$ ．

Участок расположен на коричневых лесиых слабокароонатных сугпнистых почвах．

B указанных почвенно－климатическид условиях были воспитаны ьышеназванные гиб́ридные селнцы．С первото же года всходы сеянцев не течили против мильдью и ойдиума，а заражение филлоксерой про－ исдюдило в естественных условиях．Уход за гибридными сеянаами был яермальныii．В таких условиях они о́ыли в течение 20 лет．На этих гноридныі сеянцах мы изучили：1）тип цветка сеянцев，2）мильдью－ устойчиюость сеянцев，3）урожайность винограда，4）окраску ягод ви－ нограда，5）качество продукции винограда，6）осеннюю овраску листь－ eв．

> Полово蒔 состав сеяниев

马ия получения урожая винограда большое значение имеет тип цвеска．Поэтому селекционеры заинтересованы его наследственностью．

Проф. А. М. Негруль приводит примеры, из которых видим, что половой состав в гибридном потомстве зависит от комбинации родительских пар и даже у одной комбинации не всегда получается одинакэвый состав $\{57$.

П К. Айвазян пишет, что наследование пола родительских пар, злвисит от гибридных комбинаций [11].
Д. И. Табидзе изучил межвидовые виноградные гибриды Мцванех Рнпариа Глуар и РкацителихРипариа Глуар. Обоеполых селицев оказалось 16%, функиионально женских $-20-26 \%$, мужских -- 24 - 46% а переходящих - $16-31 \%$ [6]. Этот вопрос изучен и нами. Данные приводятся ниже.

Как известно, Рипариа Глуар и БерландиерихРипариа 420 а характеризуются мужским типом цветка, а Ркапители и Мцване - обоеполые, но в гибридных сеянцах мы встречали следующие типы цветка: 1) мужской тип цветка с хорошо развитыми тычинками и неразвитым пестиком; 2) переходящий тип цветка с хорошо развитыми тычинками и недоразвитым пестиком; 3) оббеполый тип цветка с хорошо разчитыми тьчинками и пестиком; 4) женский тип цветка с хорошо развитым пестиком и колесообразно растянутыми тычннками; 5) функцио»ально женский тип цветка с хорошо развитым пестиком и закрученшыми под пестиком тычинками.

Распределение сеянцев по типу цветка в комбинациях (в \%) дано в табл. 1, из которой видно, что определенное количество сеянцев к моменту их изучения еще не находилось в стадиі плодоношения.

Таблица 1

Комбинации	Тип пветка, \%					
			$\begin{aligned} & \frac{1}{x} \\ & \frac{1}{c} \\ & \frac{0}{0} \\ & \frac{3}{3} \end{aligned}$			
Ркаиители \times Рип. Глуар	13,70			24.62	10,41	7,84
Мцване \ил. Глуар	6.42	38.55	:2,03	22,85	9,29	10,86
Ркаинтели \times (Бер. Рип. 420a)	$5 . .05$	24.91	25.93	22,44	4,70	16.97
Миване (Bep. Pип. 420a)	4.18	37.80	13.81	23.50	7,81	12,90,

Для комо́ннаиии Ркаиители \times Рнпариа Глуар больше всето сеяицев © мужским типом цветка ($38,01 \%$), далее идут сеянцы с обоеполым тином пветка $(24,62 \%)$, переходящим $(15,42 \%)$, женским $(10,41 \%)$ и, паконен, с функпионально женским (7.84%).

Для комо́инации Мцване \times Рипариа Глуар больше всего селицев с мужским типом цветка ($38,55 \%$), затем идут сеянцы с обоеполым тнпом $(22,85 \%)$, переходящим $(12,03 \%)$, функциональео женским $(10,86 \%)$ и женским $(9,29 \%)$.

Для комбинаиии Ркацители× (Берландиери \times Рипариа 420а) больше всего сеянцев с переходящим типом цветка ($25,93 \%$), потом идут сеянцы с мужским типом цветка $(24,91 \%)$, с обоеполым $(22,44 \%)$, фупкционально женским ($16,97 \%$) и женским $(4,70 \%)$.

Длл комбинации Мцванех (Берландиери \times Рипариа 420а) больше всего сеяніцв с мужским типом цветка ($37,80 \%$), потом идут сеянцы с обоеполым типом цветка ($23,50 \%$), переходящим $(13,81 \%$), функционально женским ($12,90 \%$) и женским $(7,81 \%)$.

Как видно из приведенных материалов, распределение седнцев по Іипу цветка в комбинациях МцванехРипариа Глуар и Мцванех (Бер. ландие, ри \times Рипариа 420а) почти одинаковое, сходна с ними и комбиғация Ркацители \times Рипариа Глуар, а Ркацители \times (Берландиери \times Рипариа 420а) резко отличается от них. Это показывает, что комбинации не подчиняются одной и той же закономерности.

Мильдьюустойчивость

A. М. Негруль на основе генетического изучения заключает, что разные комбинации и разные скрещивания одной и той же комбинации дают неодинаковый характер мильдьюустойчивости в первом поколении [5].
Д. И. Табидзе изучил мильдюустойчивость межвидовых гибридов: 60 - 65% оказались средне- или практически устойчивыми, 30% менее устойчивыми и только $5-6 \%$ приближаются к диким родителям [6].

На листьях мильдюустойчивых сортов образуются точковидные пятна, а на листьях неустойчивых сортов - быстро развивающисся пятна, которые покрывают поверхность листа, и лист высыхает.

Вышеназванные гибридные сеянцы никогда не лечились от мильдью и почти всегда были сравнительно здоровыми, но в 1952 г. для развития мильдью появились благоприятные условия. В этих условиях мы и изучили устойчивость родителей и их гибридов. Изучение проводилось по пятибалльной системе: 1 - абсолютно устойчивые, т. е. совершение здоровые, сеянцы; 2 -сравнительно устойчивые с точкообразными иятнами на листьях; 3-среднеустойчивые, у которых на листьях мелкие пятна, локализованные концентральными полосками; 4-менее устойчивые, у которых от мильдью на листьях образуются пятна, уступающие по своему развитию пятнам на европейских сортах и 5-не-

устойчивые с быстро развивающимися пятнами, характерными еврюпейским сортам.

B результате наблюдения обнаружилось, что Рипариа Глуар и Берландиери \times Рипариа 420 а были совершенно здоровыми, а Ркацители и Мцване - сильно поврежденными, даже в условиях лечения, но среди гибридных сеяншев не оказались ни совершенно здоровых, ни сильно поврежденных. Результаты наблюдений приведены в табл. 2.

Таблица 2

Комбинации	Сравнительно устойчивые	Среднеустойчивые	Менее устойчивые
Ркацители \times Рипариа Глуар			29,80
Мцване \times Рипариа Глуар	6,08	54,84	39,08
Ркаиители \times (Бер. \times Рип. 42 Ca)	8,71	51, 613	29,56
Мцване \times (Бер. \times Рип. 420 а)	5.52	50,71	43,77

Как было отмечено, по устойчивости эти гибриды дают все переходы между родителями. Распределение гибридных сеянцев одинаковое: больше всего среднеустойчивых, за ними идут менее устойчивые, а меньше всего сравнительно устойчивых.

> Урожайность винограда
Д. И. Табидзе изучил урожайность межвидовых гибридов [6]. Значительное количество сеянцев (мужских) не плодоносило.

Большинство сеянцев как у Д. И. Табидзе [6], так и у нас оказалось малоурожайным, некоторые сеянцы имеют высокий коэффициент плодоношения, но кисти мелкие. Эти гибридные сеянцы по урожайности уступают культурным родителям.

> Окраска ягод
A. М. Негруль изучил наследование окраски ягод и установил, что черная окраска доминирует над белой.

Окраска ягод у Ркацители и Мцване белая, а отцовские родите-ли-дикие виды имеют черную окраску ягод. Ягоды у плодоносящих тибридных сеянцев только черные, поэтому можно сказать, что в этом отношении целиком доминируют отцовские формы.

> Качество продукции винограда

Ркацители и Мцване характеризуются высоким качеством прсдук-廿ии, а гибридные сеянцы значительно уступают им.

щему характеру доминируют американские виды и филлоксероустойчивый подвой. Следовательно, этот путь не дает желаемых результаTOB.
3. Исходл из этого, мы должны критически ощенить результаты большой работы, проведенной в нашей стране и за границей, и наметить более надежный путь, который приведет к разрешению весьма важной проблемы виноградарства - к получению филлоксеро- и мильдыюустойчивых высококачественных сортов винограда.

Институт садоводства, виноградарства и виноделия
Телавская опытная станция
Тбилиси
(Поступило в редакцию 20.1.1964)

20aßobumomos

$3 J \%$ LS L

ตabovag

1. А. Миллярде Гибридизация виноградной лозы. Вестник виноделия, ле 3-5, 1892.
2. B. Husfeld. Ueber die Züchtung Plasmoparawiderstandsfähiger Reben. Die Gartenbauvissenschaft, 7, 1, 1932.

3. А. М. Негруль. Подбор пар при получении новых хозяйственноценных сортов винограда. Доклады Московской с.-х. академии им. К. А. Тимирязева, IV, M, 1946.
4. А. М. Негруль. Селекция винограда. В кн.: „Теоретические основы селекции растений, т. З. М.-Л., 1937.
5. А. М. Негруль. Генетические основы селекции винограда. Л., 1936.
6. Д. И. Т а 6 идзе. Наследование некоторых хозяйственных свойств винограла пои межвидовых скрешиваниях. Труды Института садоводства, виноградарства и виноделия ГССР, ХШI, 1961.
7. Д. И. Табидзе. Улучшение промышленных и выведение новых сортов винограда методами Мичурина. Труды Њнститута виноградарства и виноделия АН ГССР, т. VI. Тбилиси, 1950.
8. Д. И. Табидзе. Достижения селекции винограда в Грузинской ССР. Вкн: „Селекция винограда в СССР." М., 1955.
9. В. В. Зотов. Получение новых высококачественных сортов винограда, устойчивых против мильдью, филлоксеры и мороза, путем межвидовых скрещиваний. Отчет о работе Украинского ин-та вин. им. В. Е. Тайрова за 1934 г., Киев Харьков, 1935.
10. И. В. Мичурин. Итоги шестидесятилетних работ. М., 1949.
11. П. К. Айвазян, Е. Н. Докучаева. Селекция виноградной лозы. Киев, 1960.
12. Г. К. Енини. Работы по селекции винограда в Молдавском филиале АН СССР. В кн.: „Селекция винограда в СССР". М., 1955.
13. Н. Е. Алексидзе. Устойчивость грузинских сортов винограда против филлоксеры. Виноделие и виноградарство CCCF, № 9, 1947.

 Jommags do [3].

 molifobgonos.
ao zonmbjmungo ombogmbo

cbinomo 1

arymoino	48	3，1	I，2	1，0	0，02	0,003	1，0	0，14
asturymgabinon	48	4，2	2，0	3，0	0，013	0，002	0，43	0，06
8）वmagremzinos	48	7，6	3，2	5，2	0，039	0，006	0，76	0，10
	4^{8}	0，30	0，278	0,185	0，02	0003	10，8	1，56
	48	0.407	0，194	0，293	0，013	0.002	4，45	0，62
	48	0，738	0，3rt	0,505	0，039	0，006	7.7	1，13
amovmmonon fmbs $\left.\left(3^{2}\right) \sigma / 0^{3}\right)$	48	0，684	0，572	0，597	0，024	0，003	4，02	0,58
Lnabyrogal degaran sma－ xos（ $35 / 1 / 0^{2}$ ）	47	570	433	483	4.24	0，61	0，89	0，14
 oveminn ondrtuaymgina （ $38 / 46^{2}$ ）	22	1015	716	873	15.9	3.3	1，83	$0,3^{8}$
Bzoust omazagsol unztr－ dozn anosmomym．（38／La²）								
yobo	16	108	73	79	1，3	0,32	1，32	0，30
04089	16	112，5	59，3	84	1，7	0，4	0，15	0，30
6ovonojum untyono （ $38 / 48^{2}$ ）								
a）סल⿰⿱丶万⿱⿰㇒一也 3）no poramyino 	59 53 55	$\begin{aligned} & 445 \\ & 384 \\ & 300 \end{aligned}$	$\begin{aligned} & 299 \\ & 246 \\ & 267 \end{aligned}$	$\begin{aligned} & 347 \\ & 283 \\ & 320 \end{aligned}$	2.3 2,14 2.2	0,3 0,3 0,3	0,66 0,75 0,68	0,09 0,10 0,09

aozummzmummo ontozmos

 ＠oudoctio $15 \times 20-$

 305 formy moce ono
 meyn jocemgazg going． 2mouno oुmíngòn otmos．

 amoubo gुलéngo dm_{m} ．
 $-18 \mu . \quad$－ 0 ffymonomos ginos ob nignounoce mén rnozoe，ínoconumýno Lbozgỏn gínomingaobno， bozumemon 10－120 （ $1-15$ घgatiggon）．Ubの－
 omm＠rozoosiono oub．
 yemots 15μ ．Lbigols

 （8गめn＠．35 X ）
 Ubognt＠u8mmmgont ugzt

 boce [4].

Bnzzabont gn

1．L．

nonematal boosjo
－5ưのかりす。

ЛЕСОВОДСТВО

Э．Д．ЛОБЖАНИДЗЕ

I）ВОПРОСЈ ИЗУФЕНमЯ СТРОЕНИЯ И ФИЗИКО－ MEXAHIILECILUX CBOӤСТВ ЛРЕВЕСИНЫ ПИцУНДСКОЙ СОСНЫ

Pe3 юme
Среди реликтовых ит эндемичинх древесных пород Кавказа особен－ ное внимание привлекает реликт третичного периода сосна пидундская （Pimus pithynsa Stev．）．
 линский опмечал большое ваучное значение этой породы．

Для ияучения микроскопического строения и установления физико－ механических своїств древесины пицуидской сосиы в августе 196I т．на Пицундском мпсу нами было срублено три молельных дерева одното и
 методу，предусмотрениому OCT HFJlec 196［I］．

Для установления физико－механических свойств древесиния нз паж－ дого дерева были вырезаны по три пряжа：тервый－с торцовым срезом ма высоте $1,3 \mathrm{~m}$ ，второй－иосередине ствола и третий－на расстоянии $\mathrm{I}, 5-2,0 \mathrm{~m}$ от начала живой кроны вниз по стволу．

Распидовка кряжей，пзготовление и испитание образпов древесины на уииверсалыной испытахельной машине типа ZDM 5／91 произведены согласно ГОСТу 6336－52［4］．

B рабоге прпводится описание макроскопического и микроскопи－ ческого строения древесины пипундской сосны．

После проведения пспытаий физико－механических свойств древе－ сины цифровые данные обрабатывались методом вариацнонной статистики ［5］，длл чего определялись следующие всличины：
I) среднее ариф метическое (M),
2) среднее квадратическое отклонение (\pm б),
3) средняя ошибка (среднего арифметического ($\pm \mathrm{m}$),
4) вариационньй коэффиииент (V),
5) показатель точности (P).

Результаты определения физико-механических свойств древесины пицундской сосны таковы: коэффициент обтьеной усушки равен $0,505 \%$, объемный вес-0,597 г/см², предел прочности ири сжатии вдол, воло-жон- 48 кг/см², предел прочности при статическом изгибе в тангенталь. ной плоскости- $873 \mathrm{kг} /$ см 2, предел прочности при скалывании вдоль водокон в радпальной плоскости- $79 \mathrm{kT} / \mathrm{cm}^{2}$, в танлентальной- $84 \mathrm{Kг} / \mathrm{cm}^{2}$, торповая статнческая твердость- $347 \mathrm{FT} / \mathrm{cm}^{2}$, ралиальная- $283 \mathrm{KI} / \mathrm{cm}^{2}$, тан-гентальная- $320 \mathrm{kr} / \mathrm{cm}^{2}$.

1. ОСТ НКЛес 196. Метод выбора модельных деревьев для исследования физикимеханических свойств древесины насаждений, 1954.
2. А. А. Яденко-Хмелевский. Древесины Кавказа, 1, Изд. АН АрмССР, Ереван, 1954.
3. Е. В. Будкевич. Древесина сосновых. Изд. Академии наук СССР, М.—Л. 1961.
4. ГОСТ 6336-52. Лесоматериалы. Методы физико-механических испытаниі̆ древесины. Стандартгиз, М., 1952.
5. Ю. Л. Поморский. Вариационная статистика. Л., 1929 .
6. Н. С. Заклинский, Леса Абхазии, в. IV, М.-Л., 1931.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, XxXv:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

ЭНТОмолоГИЯ

Д. Н. КОБАХИДЗЕ

БОЛЬШОИ ЕЛОВЫИ ЛУБОЕД И БОЛЬШОЩ РИЗОФАГ В ЕЛОВЫХ ЛЕСАХ БОРЖОМСКОГО УЩЕЛЬЯ

(Представлено членом-корреспондентом Академии Л. П. Каландадзе 7.3.1964)

Большой еловый лубоед (Dendroctonus micans Kugel.), специфический ьредитель ели, имеет довольно обширный ареал в пределах Центральной и Северной Европы. В нашу республику попал из еловых насаждений центральных и северных областей СССР. Первоначально был обнаружен только в насаждениях восточной ели, на нескольких деревьях Боржомского лесхоза в 1956 г. [1].

В последующие годы численность большого елового лубоеда стала угрожающей, его ареал быстро расширился, вредитель проявил большую агрессивную способность, наносимый им вред принял большие размеры. Такая небывалая во всем первоначальном ареале большого елового лубоеда агрессия у нас была обусловлена следуюшим: а) ноєая область его ареала (Боржомское ущелье) весьма отдалена от первоначального ареала и поэтому сопутствующих естественных, специфических врагов из мира насекомых на месте не оказалось; вредитель остался без контроля со стороны тех естественных врагов, которые сильно подавляют его во всем первоначальном ареале; б) массовые рубки еловых деревьев в начале же подъема численности большого елового лубоеда, безусловно, резко нарушили целостность леса и отрицательно повлияли на способность отдельных еловых деревьев противостоять массовому нападению вредителя; рубка ухудшила условия жизяи тене- и влаголюбивых деревьев восточной ели; в) массовое применение не проверенных заранее химических препаратов-4\%-ного технического гексахлорана на дизельном топливе-также оказалось весьма отрицательным мероприятием, вызвавшим ослабление и медленное усыханяе деревьев; г) восточная ель проявляет сравнительно низкую устойчнвость к нападению большого елового лубоеда и т. д.

Мы считаем, что б́ольшой еловый лубоед в дальнейшем может занять в нашей республике еще большую площадь в пределах ареала основного пищевого растения-восточной ели-и, следовательно, еще больше расширить зону вредного действия, если не будут изысканы и срочно проведены более радикальные комплексные меры борьбы.

Характерно, что в своем первоначальном ареале большой еловый аубоед никогда не размножался в угрожающей численности, никогда

де причинял существенного вреда еловым насаждениям, ибо, как оказалось, численность вредителя сильно подавляется естественными врагами и в первую очередь благодаря полезному действию хищного жукабольшого ризофага (Rhizophagus grandis Gyll.).

Большой ризофаг впервые был описан в 1827 г. [2], в дальнейшем он фигурировал во многих специальных сводках ([3-5] и др.). Ммелись отдельные фрагмєнты биолотии ([6-7] идр.), однако до сих пор не су ццствует даже более или менее полного освещения основных вопросов биологии этого полезного насекомоядного насекомого.

Јичинки большого ризофага, проникнув в тело большого елового лубоеда, выедают все внутреннее содержимое тела вредителл (как лиぃннок и куколок, так и вновь развившихся жуков вредителя), а жуки большого ризофага поедают яйца и молодых личинок вредителя. Очень, гажно также и то, что полезная «работа» большого ризофага распроетраняется на значительную часть годового цикла развития. По мнения чехословацкого профессора А. Пфеффера, именно действие большого Ризофага является основным естественыым фактором, не позволяюшим больному еловому лубоеду массово размножаться во всем его первоначальном естсетвенном ареале, хотя хозяйственная эффективность бє:ьшого ризофага в новых условиях обнтания не везде может быть ВЫСОКОЙ.

Успех большого ризофага в подавлении численности бсльшого елового лубоеда определяется в основном следующими факторами: а) apeал большого ризофага совпадает с первоначальным ареалом большого елового лубоеда; б) большой ризофаг является специфическим одноя,дным врагом, питающимсл только за счет большого елового лубоеда н условиях всето первоначального ареала вредителя; в) большой ризофаг заселяет те ходы, которьіе проделаны большим еловым лубоедом, 1. е. он является постоянным спутником поселения вредителя и преслелователем потомства вредителя; г) большой ризофаг имеет годовую генерацию, в то время как болышой еловый лубоед нмеет двухгодовую генерацию в условиях первоначального ареала; д) большой ризофаг про:вляет активную жизнь при более низкой температуре воздуха (около 10°), чем большой еловый лубоед (около 20°); е) большой ризофаг во псем первоначальном ареале не имеет естественных врагов; 3) большой ризофаг уже оправдал свое положительное значение во всем первоначальном ареале, где почти нейтрализовал численность большого елового лубоеда.

Большой ризофаг в условиях Боржомского ущелья может проявить все те биологические н полезные хозяйственные показатели, кахими он характеризуется во всем первоначальном ареале (в Центральной a Ceверной Европе) с некоторым уснлением его агрессивных качеств

ввиду захвата новой, вполне подходящей свободной экологической ниши в Боржомском ущелье.

Благодаря предоставленным возможностям, нам удалось собрагь в Чехословакии (в еловых лесах лесхозов Лоучна и Иесеники, на высоте $700-1300$ м н. у. м.) небольшую партию жуков и личинок большого ри. зофага, завести их в Брожомское ущелье (около Цогвери) и вселить под поврежденную кору еловых деревьев, в большие поселения елового лубоеда (24 сентября 1963 г.).

После зимовки, 7 июня 1964 г., провели обследования с пелью выяснения результатов знмовки и состояния поселения большого ризофага. Выяснилось, что, несмотря на сравнительно суровую знму (1963 1964 гг.), большой ризофаг прекрасно перезимовал, начал размножаться и расселяться. Уже 10-13 июня 1964 г. было замечено окукливание личинок, д 27 - 30 июня 1964 г. вылупились первые жуки местной, боржомской, популяции большого ризофага. Можно предположить, что развитне больиого ризофага в условиях Воржомского ущельл происходит в более сжатые сроки, чем в его первоначальнсм арєале, что еше больше увеличит его численность и усплит аррессивную потениию. Bсе ธто говорит о том, что этот полезный хищник может прочпо обосноваться в фаупе Боржонского унельл и при даньнеїпей работе с ним может оказаться весьма эффективным средством в деле борьбы с большым еловым лубоедом и предупреждения его дальнейшего массового разнножения.

В ближайшсе время необходимо прнступить к углублениому пзучению бнологии большого ризофага, к нзученио его хозлйствениой зффективности в борьбе с большим еловым лубоедом. Нужно всемерио способ́ствовать расселению акклматизировавшетося поселеиия большого
 димо дальнейшее численное усиление терепешнего малонислениого поселения большого ризофага путем ввоза его новых партий в Воржомское ущелье. Для этой џели следовало бы безотлагательно организовать совместную небольшую паучную экспедицию (Институт зоологии, Мнститут затиты растениіі) для поисков больного ризофага и друтвх естественных врагов большого еловоголубосда в советской зоне ареала вредителя (в Карпатах, прибалтиӥскпх республиках и т. д.) п ввоза их в Боржомское ушелье.

Успех подавления угрожаюшей численности большого елового лубоеда на ближайшее будудее будет главным образом завнсеть от дальнейшего изыскания таких химических препаратов, которые, не повреждая словых деревьев, будут высокотоксичными для вредителя. Параллельно с этим должна быть развернута работа по нарастанию численности большого ривофага, действие которого в будущем может оказать-

ся надежным фактором в подавлении численности вредителя, фактором, исключающим возможную вспышку массового размножения вредителя. подобную происшедшей в первоначальном ареале вредителя. Разумное сочетание химических и биологических средств защиты еловых насаждений от большого елового лубоеда может спасти наши уннкальные еловые леса в Боржомском ущелье. Конечно, при этом строжайшее соблюдение лесохозяйственных мероприятий признается совершенно незыблемым условнем успеха борьбы с большим еловым лубоедом.
Академия наук Грузинской ССР
Институт зоологии
Тобилиси
(Поступило в редакцию 7.3.1964)
060 mammmans
@. 3 masubndo
 bomsons budzols oy9J8 an

1. Ш. Супаташвили. К изучению большого елового лубоеда (Dendroctonus micans Kugel.) в Грузии. Сообщения АН ГССР, т. XIX, Na S, 1957.
2. L. Gyllenhal. Insecta Svecica, IV, 1827.
3. A. Mequighnon. Revision des Rhizophagus P'alearctiques. Extract de L'Abeille, XXXI, Paris, 1909.
4. E. Reitter. Fauna Germanica. Die Käfer des Deutschen Reiches, Bd. III, Stuttgart, 191.
5. U. Saalas. Die Fichtenkäfer Finnlands. Ann. Acad. Scient. Fennicae, VII, Helsinki, 1917.
6. R. Kleine. Die earopäischen Borkenküfer und die bei ihnen lebenden Räuber, Parasiten und Commensalen. Entomol. Blatter, 40, 1944.
7. A. Pfeffer. Karovei. Fauna CSR. Praha, 1955.

л. И. ШЕЙНИНА

 ТЕЛЬНОГО АНА.НИЗАТОРА В ПРЕДСТАРЧЕСКОМ, СТАРЧЕСКОМ BОЗРАСТАХ И В ВОЗРАСТЕ ДОЛПОЛЕТНЯ
(Представлено академиком В. К. Жгенти 7.12.1963)
Морфология старческих изменений организма человека вндвигает пелый ряд интерссных проблем и в первую очередь проблему изменения состоянпя структуры коры больших полушарий головного дозга в прощессе старения.

Морфопогическпй оснвой многооб́разня пронессов 耳орковоі̆ деятельности является большое қоличество шитиархитектонических полей, которые наряду с чертами сходства иметт и четкне раллнчия. Поля коры головного мозга, впервые наблодаюшиеся у пеловека, развиваются более длително, пмея спепифические особенности развития. Морфологические исследования структуры коры эти филотенетичесли новых полей в прощессе онтогенеза говорят о большой сложности их стросния [1-7].

Резупнаты исследований тонкой структуры вєсших отделов нервной системи, а именио коры лобных долей в физогенетичесгом аспекте [8], поставили воирос об уточнении днимики структурных изменений отдельных подей.

Нзучение возрастных соотнонений между отдеаьными клеточными элементами в коре годовного мозта до настояшего времени является актуалынй задачей геронтототии.

Cтруктурнне особениости этих соотношений на многочисленных промежуточных этапах развития в разрезе отногенеза уже сами по себе представляот значителиниी интерес, ивляsся сравнительно мато асвсшенной проблелой морфолотин.

ل1зменсния же в коре roновного моза ири фнзнолонической старосги явлиюотяя одним из проявлений обшего увяданпя организма.

Функиия речи является олной нз наиболее фнлогенетически новых форм деятельност оловного мозл. В связи с этим об́стоительством, а также в силу чрезвыдайной спожности данная функиня приналлежнт к чпслу наименее локализованных, а нменно к числу функиий с преобладаюшим значением дыя нее некоторых участков корю. К чпслу таких

учаслков относится прежде всего наружная поверхность нижней лобной извилины. Клинико-анатомические исследования показали, что поражение этой области вызывает своебразные агностические и апраксические симптомы.

Исхоля из этого, иы поставнли задачу изучигь развитие полей лобной области, имеютих отнотенне к речедвнтательному анализатору (поля 45 и 44). В данной работе излагается развитие поля 45 , которое располагается на наружной новерхности в нижней лобной извилине, где оно занимает ее триангуляриую часть.

Поле 44, которое также относится к речедвигательному анализатоpy, будет предметом наших дальнейших исследований.

Помимо раннего онтогенеза (иримерно с $5-$-го лунного месяща внутриутробной жизни и в первые месяпы и юдды жизни), который хорошо изучен $[r, 4,5,6]$, большой инлерес представляет также исследование поля 45 в возрастном аспекте, қак филоненетически нового образования, обладающего особой специфичностью функиий и построений, отличающихся от всех остальных полей.

Это поле свою дефинитивную форму приобретает в более поздние сроки развития, чем остальные поля коры головного мозга, в результате чего имеет специфический иикл развития и старения.

Рис. .. Лямнноархитектоннка коры поля 45 лобной области лев ого полушария головного мозга (7 лет), х 56
Формирова ние қоры данного ноля в основном наступает к 6 - 7 -летнему возрасту [5,6$]$, что, по-видимому, связано с особснностями умственного развития ребенка в этом возрасле. Олнако развитие коры лобной

области продолжается и в более позднем возрасте. Так как 7 лет счнтается возрастом созревания поля 45 , то поэтому наши исследования начинались именно с этого возраста.

Материал для микроморфологичесих исследований брался с трупов практически здоровых лиц возраста от 7 до 105 лет (20 случаев), умерщих скоропостижно от тяжелой механической травмы (при отсутствии поражения центральнй нервной системы).

Кусочки из қоры головного мозга брались с таким расчетом, чтобы плоскость среза проходила строго перпендикулярно к оси извилины. Meста, откуда брались кусочки, были выбраны по карте Института мозга (1949 г.), при этом в каждом отдельном случае выбирались места в пентральных участках корғовых полей. Материал фиксировался в спиртах, заливался в целлоидин, затем резался на роташионном микротоме. Окраску серийных срезов толшиной $5-6 \mu$ проводили по метолу Ниссля. Измерение ширины всей коры, отдельных ее слоев, нервных клеток и ядер производили с помошыо окуляр-микрометра.

Рис. 2. Ляминюархитектоника коры поля 45 лобной области левого полушария головного мозга (86 лет), х 56

Проведенные исследования показали, что ширина коры поля 45 в возрасте 7-10 лет-I,90 мм, $10-20$ лет- $2,30 \mathrm{~mm}, 20-30$ лет- $2,64 \mathrm{~mm}$, 30-40 лет-2,63 мм, $40-50$ лет- $2,60 \mathrm{~mm}, 50-60$ лет- 2,6 г мм, $60-74$ дет- $2,47 \mathrm{~mm}, 75-89$ дет- $2,35 \mathrm{~mm}, 90-105$ дет $-2,34 \mathrm{~mm}$.

При изучении состолния структуры коры поля 45 в прелстарческом, старческом возрастах и в возрасте дололетня выясняется, что изменение

состояния структуры коры названного поля, отдичаюшееся от структуры коры взрослого человека (нри сравнении ширины слоев коры в возрастном аспекте контролем служжила возрастная труппа 20-30 лет, ибо окончательное формирование коры головного мозга по всем показателям наб̆людается y этої возрастной Группы), начннается $с$ бо-летнего возраста, T. е. स началу предстмрческоно пернода.

В частности, с этого возраста происхюдит уменьшение пирины коры поля $45(2,6 \mathrm{I}-2,56$ мм), что доволно резко внражено қ ғонцу предстарческото возраста $(70-74$ лет) $-2,77$ мм, более резко выявляется в старческом возрасте— $2,35 \mathrm{~m}$, а затем в период всего дололетил остается почти неизменным- 2,34 .

Уменьнение пирины коры лоля 45 в предстарческом, старческом возрастах и в возрасте долгодетия происходит пренмушественно за счет истончения фипогенетически стмых новых I, II, III слоев.

Рис. 3. Ляминоархитектоника коры поля 45 лобной области правого полушария головного мозга (86 лет), $x 56$

В возрасте 20-30 лет I слой очень светел, довольно узоқ-0, 18 мм , беден клеточимии элементами, количество которых песколько больше на периферии, непосредственно под мягкой мозтовой оболочтой. В предстарческом, старческом вордстих и в возрасте допопетия пирииа пазванного слоя не превытает 0, ; мл, в нем уменьиено коли чество тангенииальных нервных волокон. If слой в возрасте окончательното формирования (20-30 лет) неширок—о, 12 , характеризуется больиим количеством и,

 жлегок прнлеганыей $Ћ$ слою II поверхностной части III слоя. С возра. стом э゙от слой истончается и в вограсте долголения достигает 0.10 mm . Следующий 11 слой поля 45 в возрасте 20 - 30 дет самый широкийI,22 им, он состонт в основном из пирамилиых Елеток. Величина этих ₹леток воарастяет в паиавлнии вглуюь. Соответствснио этому Ill слой распадается на три подслоя: подспой II 1 образоваи бодншим колинест-
 fоторых обнаружизаются и бодее крупнве, подслой $1 I^{3}$ очень богат клетками бодних ризмсров (70-80 1). Этог сной особенио изменчив в возрастном асtекте, может давать сосочковые выстуыы и резко уменынаться в предстартеском, старческом возрастах и в возрасте дололетия, достигая в постсдtем 0,99 мм. В пазванном стое, нанная с предстарческого возраста, постепенно уменьшается лоличество крупных тирамидных қлеток. IV слой в период окончателного формирования шириной 0,12 мм,
 формя. С возрастом иирина назваииого слоя не меняется. V слой в возрасте 20 - 30 лет неширок- $0,50 \mathrm{~mm}$, гораздо мснее гостоклеточен, чем слой IV и неснотьо менсе густоқлеточен, чем нодлежаиий слой VI. Он делится на два подслоя. В подлое V^{1} божее цруиные клетй, чем в подслое V^{2}. Граниа с VI сдоем довольно ясная. C возрастом не пропсходит изменений ни ширины, ни плеточного состава названиооо слоя. V1 слой вместе со слосм VIf в пернод окончательного формирования шириной о,j0 мм, богат ғлетками, состонт нрепмущественно пз веретенообразных
 С возуастом не происходит пзмевений пирииы названицх слоев.
11. П. Павлов [9] указал, что анализаторнуяо фунцщпю моторной корковой зоны вынолняют ее верание стон, а нижние слои имеюот аффекториую функию. С. А. Саржисов [7] отмечает, что верхние слои кори являются филогенетически наиоолее новымн образованнями и нанболес сложннмн функционадьно и структурно.

Эиу же мисль проводят в свонх работах (. Ф. Аидреев и Н. А. Зеденова [IO]. B старческом возрасте репенториая п ассоипативная функцин, присущне верхнни слоия кори, остабевант, что, по-вндимоху, обуславливается нзменением ветвнето этада қоры в наних случаял.
. 10 meстидесятидетнето возраста наии не быди заменеиы суmeственные изменения в нервных клетках, правда, единичнне клетпи содержали глыбки липофусцина.

B старческом возрасте наблюдалось изменение нервин: Lлыетов в виде сморщивания, диффузного хроматолиза.

Во всех слоях коры поля 45 уже $с$ наступлеинем предстарческого возраста лолвляотся нервные клетки с перераспрелелинаи нисслевския

веществом, со скоплением ето в одном пз участков нервной клетки, чно в последуюшие возрастные периоды нередко сопровождается о омстенизапией названного вещества (при этом базофилия успнпвается).

Таким образом, мы разлнчаем две картины в зависимости от интснсивности окраинвания питоплазматической магсы: 1) сморшенные, инленсивно окрашенние неїроныя с уменьненными размерами; 2) прозрачные, бледние нейроны с малоокрашенной питоплазмой, в которых находятся желтоватые зерна линндо-пиғментных продуктов.

С отмеченными структурными изменениями сочетается леформирование ядер с экспентрированпем их н с появлением в Rapuonдasme базофильных вклю Фений. Bо всех слоях коры ноля 45 й е прилегаюшем к ней белом вешеслве с прелстарчсского возраста происходит резкое увсличение котичества Клеток щาкроглии.

Bo всех слоях коры ноля 45 часто уже $с$ предстарческото возрасти (а инотда и раньше) начннается нарастание количества пигмента линофусцина, которое незначительно проярессирует в старческом возрасте в возрасте долюлетия. Oп отнарукивается в препаратах, окрапенных но Hисслю, в виде отложений желтого и зеленовато-желтого пвета.

Слелует указать, что строение коры поля 45 имест некоторое отличие в двух различных полущариях одного и того жже мозта, что, вероятно, можно обьяснить расположением в левом полупарии речедвитательного пентра, разруиение которого вызывает нарушение эффекторной речи, так называемую моторную афазию.

В правом полупарии кора несколько ужке (на 20 - јо μ), в I слое уменьшено количество тангенинальньх нервных волокон, а III слой не достигает таких размеров, как в левом полушарии. Кора по.ля 45 в правом полушарии мепее ғрупноклеточна, менее богата клетками, особ́нно бедна большими пирампдами, столя характерными ддя III слол в левом полушарии этого же поля.

B $n \mathrm{BO} \quad \pi \mathrm{m}$

 риоде долготетия.

 образованнй 1, 11 п II с.ооев.

 II и III слоях ноявляютсл смориенные деформированные нервные клеткн, колםчество которыл нарастает с возрастом.

Состояние структуры центрального кюнща речедвигательного анализатора... 419
 чается нарастание количества иигмента липофусшина, которос незначително прогрессирует в старческим возрасте и в возрасте додолетия.
5. Bо всех слоях дорн поля 4 ; п предстарческоге возраст поивлются снорщенные нервине клетки, нерзнне клетки $с$ перераспределенним нисстевским веществом (со скопленнем сюо в одном из уастков клетки), что в последуюние возрастиые периоды нерепко сопровождается гомогенизацией пазваниого венества; с этого ; не возраста настуинет резкое увеличение количества клтюок перииелдюляриой плии.
6. Co стороны коры по.я 45 в двях разяпчных нолунариях отмечаются некоторые структуриые различия. В I слие левоно полушария поля 45 количество тангениалиных первних волонон гораздо болише, чем в одноименном поле иравого полушария. К,оме того, тораздо болише кодичество больших нирамид в Пll слое поля 45 левоно полушария, чем в coorsetctbyюmef fourpararepanmof cropone.

Академяя наук Грузинской ССР
Ииститут экспериментальной морфологии
(Поступило в редакиию 7.22.-963)
en. 2วง606১

mgongyo

 -bojõn.

 zoonbgmgon botrigig.

 bugaínm po एegatndgemo obozan.

1. И. И. Глезер. Количествениая характеристика некоторых этапов развития коры зобной доли мозга в постнаталь ном онтогенезе пеловека. Трулы Третьей научной конференции по возрастной морфологии, физиолопии и биохимии. М., 1959
2. А. М. Гриищтейн. Пути и пснтры первной системы. М. 946.
3. Н. С. Препбраженскап. Возрастиые особенности строения коры большого мозга человека и их фуппиональное значение. Журнол высшей первной деятельности им. Павлова, т. 9, 1959.
4. Т. И. Деканосидзе. Структуриые и нехоторые функпинальные изменения нервной системы в отногснезе у собак. Аптореферат, Тбиииси, 1955.
5. Е. П. Коионова. Лобная область большого мозга. Л., 1962.
6. Е. П. Кононова. Развитие некоторых полей лобнон области, имесющих отиошение к речедвигательному анализатору (поля 44 и 45). В кн.: „Структура и функции анализаторов чсловека в отногенезе". М., 1962.
7. С. А. Саркисов. Некоторые особенности структурных образованиі̆ выеших отделов щентральной неррной системы и их физиологическое зачение. Журнал невропатологии и психиатрии, т. 57, 1957.

8. И. П. Павлов. Полное собрание сочинений, т. III, кі. І, М.-Л., 1951.
9. С. Ф. Андреевин. А. Зеленопа. О нервноклетоиной структуре коры больших полушарнй мояга у человека ин се возрастных наменениях. Вторая студенч. научи. сессия, Ярослав. гос. мед. институг. Ярославль, 1948.
 СООБ ІЕНИЯ АКАДЕМЮИ НАУК ГРУЗИНСКОИ ССР, хХХv:2. 1984 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964
s6ذかmano

6. 2 m 3 u mod

 conbol mighoro.

 mo (33 momazabo.

 d006393).

 onjuth

 onotrigust．

 dmamo．

 bugeo ozgbeno

 u30

 806̧nonomgósu.

 maúgogo.

 grono fumzoemb zubiznonoḿgdo.

 onomed to

АНАТОМИЯ

H. A MTB \triangle PAДЗE

COCTOSHHHE CTIYKTYPか CTEHEN 4EPBEOISPABHOLO
OTPQCTKA II इГО HEPBHわX ПPUBOPOB IPH OCTPOM A HILEH ДНLПHE У ДЕТЕЙ

Pes 10 me

Обзорньми нейроморфолоническими й гистохимическими метолами исследования изучены стенки 79 тервеобразнлх отростков, улаленных у детей по поводу острого апнендиита.

В пяти случаях ($6,3 \%$) ири натичии јлшической картины аппендипита морфолонически явлсиия апиендииита не обняружены. В 74 случалх $(93,7 \%)$ выявлены различныс ¢ Фмыы анпендииита: катаралиный аппендиит--в 35 случаях, флстмнозныиі-в 25 и ангренознлйB 14 .

В подавляюнем большинствс слумаев $(69,6 \%)$ аппенлииит, квалифицированный клиически как острый, морфодотически иредставляет собой хронический фпбрсзный апиенлииит с обосттсииями. В пяти вышеуказанних стучаях "апиендицита», когла морфологически отсутствовали явления восналения в нервном апиатате червеобазных отростков, обнаружены реативнве изменения, обусловившие кдничсский синдғом заболевания.

Из вышесказанною явствует, чио в осионном аппенлиитт у летей протекает вяло, бессимптомно, хроническд и пи таком фоне возникают острые явления. Поэтому леченне :ппендиинта у детсй следует проводить
 пояной каиниче̣ской картины острого aинендипта.

В пользу этого сооб́ражения говорит то, что при отсутствии воспалительных язменений ияеют несто реактивние изменения нервных ириборов в стенке червеобразноно отростка, указываниие на возможность раз-
 приборов в ортанах.

 СООБЩЕНИЯ АКАДЕМИН НАУК ГРУЗННСКОП ССР, $\mathrm{XxXV:2}, 1964$ BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964
$33080 \mathrm{~mm} \times \mathrm{m} 300$

 ழ.

子थल.

 gotemmezay रुt

 yber honerzumemb.

ung. 1. 2atugnridg ourmo magerogont âmegen

 y.

 अ́rgmo, buyñ. 2).

8ल०zadoyno jmagno

 moo (1,35-1,60).

 mocor).

 33960-p08 mou)

$$
\text { col } 33_{5} \text { 子o }
$$

 म゙ल

 435

ФИЗИОЛО ИЯ

Г. П. ЗУБАДАЛАЦВИЛИ

CPABHUTFルbHAS OHEHKA ПPOIECCOB ПHIIEBAPFHHЯ B КЛАССИЧЕСКООМУ МЕТОДУ БНДЬРОТ-II И П○СЛЕ IACIPOEFHOH.TACTHFH

Peзюme

В виау нередки. сертеаны анатомо-физнологических расстройств после частичного пли полного удаления лелудка по сиосопу Бильот-11, творческая мысль хирургов вновь возвращается к способу резекиии желудка по Бияьрог-Т, но ввиду его ограничення: возможностей некогорые хирурни оперируіт больних способои гатроеннопластики по Куурнянову - Захарову. С пело об́еснования иреимуиеств этого спосойа операиии исследователп ироизводиди опиты ни жнвотиых, которые оглиаютея друг от друга по виду, возристу, пороле, новеденио, полу и друтим иризна-
 их достоверность ставнгся пол соинение.

ГІо предлжжеин проф. А. Н. Бакурадзе, нами создана модель операпии, ири которой на одном итом же животнон ироизводится резекиия желулка, путем трансплантаини отрезкд тонкой кишии создаютея два выхода из желуда пи пина ири ноиоии обгчраторов, по жытанию экспериментагора, проходит через трансилангат в двенадиатинерстную кишку илн из желудка прямо в тонкую қинку. Oпределнлись степень переваривания основных ингрелентов пини (белки, жиры и углеводы) копрологически и сахар в крови по способу Хагедорна и Иенсена. [Іри сопоставлении данных установлено, чио при иассаже пиии в двенадцатииерстной киике степеиь переваривания пищевых инредиентов и пликемическая кривая почти тапие же, как в норме, а при прохождении ииши прямо в тонкую кинку ипиеварение ирон ходит не до кониа ин значитедьная часть ппщевых инпредиентов вытеляется виссте с палом.

1. А. М. Бетанели. К вопросу реверсии двенашатиперстной кишки как об одном из способов реконструкции пищеварительного тракта после резекции желудка. Автореферат, Тбилиси, 1960.
2. Е. И. Захарови А. Е. Захаров. О замещении удаленной части желудиа петлей тонкой кишки. Труды Крымского гос. мед. ниститута, посвященные 75-летию со дня смерти Н. И. Пирогова, т. 17, 1957, 370-375.
3. Т. П. Макаренко. Некогорые виды операции включения двенадцатиперстной кишки в пищеварение осле гастрэктомии и резекции желудка. Еюногастропластика при гастрэктомии и резекпии желудка, Кримиздат, 1962, 177-180
4. М. И. Петрушинский. Роль двснадцатиперстной кишки в процессе пищеварения при гастрэктомиях и высоких резекциях желудка. Хирургия, № 9, 1958, 57-62.
5. А. Б. Рай з. Функциональное состояние поджелудочной железы после резекции желудка. Вестник хирургии, № 5, 1949, 31-36.
6. Е. А. Сельков. О стеаторее у лиц с резсцированным желудком в отдаленные сроки после операции. Хирургия, № 3, 1957, 20-25.
7. Ю. У. Хаимов. Сравнительные результаты внешнесекреторной функции поджелудочной железы после высокой резекции желудка с включением и выключением двенадцатиперстной кишки. Еюногастропластика при гастрэктомии и резекциях желудка. Крымиздат, 1962, 145-148.
8. T. C. Everson. Experimental comparison of protein and fat assimilation after Billroth.II and segmental types of subtotal gastrectomy. Surgery, 36, 3, 1954, 525-535.

У. С. РУСАДЗЕ

К ВОПРОСУ ОТДАЛЕННЫХ ПОСЛЕДСТВИИ ЧЕРЕПНО. MOЗГОВDХ TРАВМ В ДЕICKOM BO3PACTE

(Представлено академиком А. Д. Зурабашвили 28.12.1963)
Известно, что черепномозговые повреждения в детском возрасте характеризуются своеобразным проявлением травматической болезни 1טловноюо мозга.

Иное соотношение между черепом и его содержимым и недостаточное развитие корково-тормозных процессов влекут за собой более частое проявление реакции подкорковых и стволовых отделов головного мозга, результатом которой является своеобразное течение черєпномозговых травм.

Отличительные черты этих травм обуславливаются не только ана-томо-физнологическими особенностями детского организма, но и тем, что травмируется растущий организм, характеризующийся на различных этапах развития разной реактивностью.

Нсходное состояние нервной системы в момент травмы сказывается не только на клинической картине течения черепномозтовой травмы, :0 иі на отдалениых результатах [1].
О. Г. Юрьева, Т. А. Снмпсон $[1,2]$, сравнивая влияние экзогенных и эндогенных факторов на клиническое течение черепномозго. вых повреждений и основываясь на материале изучения отдаленных результатов, заключают, что травма головного мозга без экзогенных факторов протекает гораздо легче и последствия не чреватьі резкими изменениями, травма же, протекающая под воздействием экзогенных и эндогенных факторов, даже легкая, протекает клинически тяжело, и отдаленные последетвия ее характеризуются тяжелыми изменениями психики и общего развития ребенка.

По литературным данным, большинство черепномозговых повреждений у детей протекают по типу неосложненной коммоции. Высокие пластнческие и компенсаторные возможности центральной нервной системы ребенка обуславливают благоприятное течение повреждений у детеї, выражающееся в сравнительно быстрой нормализации нарушенных функций мозга.

На основе этого в некоторых случаях не проводятся комплексное сбследование и соответствующее лечение бсльного, урезывается пребывание больного в стационаре с целью улучшения показателей койко:ней, а P. III найдер [3] рекомендует держать детей с легкой черепномозговой травмой под домашіим наблюдением.

Такая постановка вопроса в конечном итоге отражается па ближайших и отдаленных результатах перенесенной «легкой» черепномозговой травмы.
Н. Н. Бурденко [4] и другие утверждают, чте ии одна чәрепномозговая травма, даже незначительная по своему характеру, не проходит бесследно для организма. Вместе с тем вопрос об отдаленных последствиях черепномозговых травм у детей является одним из малонзученны: вопросов медицины.

Отдельные работы не обобщены и не раскрывают подлинной картины тех последствий, с которыли нерєдко приходится сталкиваться.

В клинике детской хирургии и ортопедии Тбилисского государствнного медицинского института за 17 лет (1947-1963 гг.) проведено 6973 больыых с разными травматическими повреждениями тела, из пих-1640 (2.3.5\%) с черепномозювымм повреждениями. Мальчиков было $1171(71,7 \%)$, девочек - $464(28.3 \%)$.

Наиболее часто травме подвергались дети в возрасте 6-10 лет (44,6\%). Причиной черепномозговых повреждений в $68,32 \%$ случаев (1121 больноіі) была бытовая травма. Уличная травма имела место в $49,03 \%$ случаев (476 больных). В первые 6 часов госпитализировано $71,1 \%$ больных, но спустя 24 часа и нссколько суток - 11%. Из 1640 больных здоровыми выписаны $41,6 \%$, с улучшением- 56%, умерло $\ddot{3} 4 \%$, показатель среднеконечных дней равен 7,1 .

При лечении черепномозговых травм применялась компляксная меодина терапии, направленная: 1) на ликвидацию гипертензионного синдрома путем дегидратаиии (гипертониеские растворы магнезии, глюкозы, а в тяжелых случаях 30%-ный раствор мпчевины марки ОС); 2) профилактику инфекции (антибиотики) ; 3) вогстановление 1F нормализацию нарушенных фуикций головного мозга (строгий постельный режим, сонная терапия, новокаиновые блокады іт т. Д.).

Отдале"ные результаты лечения черепномозгової травмы сроком давности от 3 месяцев до 17 лет изучеиы нами на 583 детях.

По характеру повреждения и клинического течения обследованные дети распределялись следующим образом: 1 группа - легкая форма черепномозговой травмы с потерей сознания на несколько минут (360 летей) : ІІ группа - черепномозговая травма средней тяжести, при ко१орой потеря сознания длилась от 30 до 60 минут (147 детей); III груп-

па-тяжелая форма повреждения с потерей сознания от одного часа до пескольких часов н суток (76 детей).

Из I группы жалобы предъявили 138 лиц, что составляет 38%, из II группы - $81(55,1 \%)$, из III группы - $53(69,7 \%)$. Таким образом, нз 583 явившихся на обследование больных после лечения черепномозговой травмы жалобы остались у 272 ($46,7 \%$).

Приводим акт обследования от 13/ІІ-1962 г. № 244 больного С. Ш. Дарахвелидзе. В 1955 г. в 10-летнем возрасте получил черепномозговую травму - упал с дерева и на несколько минут потерял сознание. Госпитализирован спустя 4 часа после получения травмы, при осмотре неврологические изменения не выявлены, жалуется на головную боль и головокружение, которые исчезли на третий день. На пятый день после травмы выписан по настоятельному требованию родителей. При повторном осмотре выяснилось, что часто болит голова, быстро утомляется, легко раздражается и из-за снижения памяти оставил школу. Из органических явлений отмечены резко выраженный сливной дермо1рафизм, потливость, сухожильные рефлексы живые, особенно справа.

Отец мальчика в 1944 г. получил тяжелую контузию мозга и является пенсионером второй группы. Мать здорова. Мальчик в пятилетнем возрасте болел гриппом, который протекал на фоне менингеальных явлений.

Анализ данного случая показывает, что травма черепа, протекающая с клинически выраженным незначительным коммоциональным явлением, из-за наслоения внешних факторов вызвала тяжелейшие последствия.

Психическая сфера подростка нередко характеризуется неустойчиғостью аффекта, чрезмерной чувствительностью; повышенной раздражительностью.

Школьники, страдающие после травмы черепа повышенной возбудимостью, взрывчатостью, могут ошибочно оцениваться школой как «злостные» нарушители дисциплины и подвергаться соответствующему взысканию.

Развитие психопатических картин не стоит в прямой зависимос?и (т тяжестч первичных коммоинональных проявлений; они возникаюти іри легких внешних травмах, не сопровождающихся выраженными обпемозговыми симптомами. Ясно намечается связь с преморбидной ночвой. Особенно важным является наличие повторной травмы, которая (пустя несколько лет вызывает довольно тяжелую декомпенсашию и ряд парушениі̆, заключаюшихся в головных болях, головокружениях, дерчографизме, потливости, усилении жажды и кратковременном повышенни температуры после какого-либ́о раздражения.

Для вышесказанного характерной является история болезни ※o 1864/68. Больной К. И., 8 лет, поступил к клииику 18.2. 1963 г., спустд тринадцать дней после получения травмы черепа. Ударился головой об радиатор и на несколько минут был оглушен. При поступленин жалует. ся на головную боль, головокружение, шум в ушах, бледен, безразличен к окружающим, пассивность сменяется раздражительностью и агрессивностью. При осмотре левая носогубная складка сглажена, левосторонний нистагм, рефлексы слева живые, повышены, справа вялые. Отмечается нарушение координации и статики. При опросе родителей выяснилось, что в трех- и пятилетнем возрасте падал с высоты и по поводу тяжелого сотрясения головного мозга с длительной потерей сознания лежал в стационаре в течение 2 месяцев. На рентгенограмме черепа усиление сосудистого рисунка, пальцевые давлення, задний рог турецкого седла утолщен.

Во время измерения венозного давления мальчик побледнел, стал раздражительным, температура побысилась до $38,5^{\circ} \mathrm{C}$, измерение прекратили. Проводилась дегидратационная терапия в сочетании с новокаиновыми блокадами и сонной терапией. Еольной выписан на 18-й день с улучшением, повторно осмотрен через год. Акт обследования ㅇo 321 от 13. 1II. 1964 г.

При осмотре мальчик рассеян, невнимателен, на опрсделенные вопросы отвечает невпопад. Отмечаются сглаженность левой носогубной складки, левосторонний нистагм, резкий дермографизм, потливосгь, рефлексы повышены, жалуется на частые приступообразные головньте боли, головокружение, снижение памяти. Плохо учится, из-за поведения был поставлен вопрос об исключении нз школы.

Ранее проявление психопатизации личности после черепномозговой травмы описано Т. А. Симпсоном [2], а Е. А. Осипова [5] отмечает, что длительное снижение работоспособности и нарушение аффективности волевых механизмов в связи с травмой чрезвычайно затрудняют жизненное приспособление ребенка-травматика. Особенно затруднен ето школьный путь, отмеченный частыми срывами и вытекающими из них психогенными образовапиями.

Тяжелым осложнением после черепномозговой травмы явияется эпилепсия.
М. П. Дергачева, [6] проапализировав материалы советских п зарубежных авторов, пришла к заключению, что у больных эпилепсией травма черепа отмечается в $3-61 \%$. Особое внимание уделяетея повторной травме и своевременной правильной методике лечения.

Сравнивая методику лечения обследованных детей II и III трупп, где в 11 случаях $(8,2 \%)$ выявлена травматическая эпилепсия, убеж даемся, что при черепномозговых повреждениях, сочетаюшихся с вог-

нутыми переломами костей свода черепа консервативная тактика чрената последствиями. Так, из 11 детей только один ребенок трехлетнего возраста подвергея оперативному вмешательству, а в остальных 10 случаях выжндалось самовыправление вогнутой кости.

Исходя из этого, полагасм, что выжидательная тактика нецелезэ. образна, так как малейшее компрессионное прилегание костной ткаии или же просачивание крови вызывает раздражепие мозговой оболочки и образование рубца. А в зоне рубца развивается анемия, которая приводит к атрофии мозговой ткани. Нарастание анемии вызывает образование вторичных атрофических очагов, способствуя тем самым расшиГению зоны эпилептического поражения. Мы разлеляем мненяе A. A. Арендт а [7], K. I. Эристави [8], что раннее и своевременное оперативное вмешательство с тщательіой ббработкой поврежденного участка дает надежду на лучший псход, что подтверждается дан:ными повторного обследования тех 11 детей, которые подвертлисз оперативному вмешательству после 1958 г. (срок давности перенесенной травны черепа от 2 до 6 лет).

У 272 детей, жаловавшихся на остаточные явления после перенесенчой черепномозговой травмы, выявлены следующие соматические и вегетативные расстройства (см. табл. 1).

Как видно из табл. 1, наиболее распроетраненным снмптомом является головная боль. Возникает она нли спонтанно, или же при физичєской работе, нагибании, резком повороте головы, умственном напряжении. Иџогда головная боль и головокружение сопровождаются потемненнем в глазах, обморочным состояннем и рвотой.

Головная боль, как стойкий симптом, вылвлена нами не только в первые годы после получения травмы, но и в более поздние сроки (через 10 - 12 лет), причем равномерно во всех группах.

Характерным является тот факт, что дети, страдающие частыми юоловными болями, вялые, раздражительные, плохо учатся, а у неко торых отмечаются нарушение сна и стремление уединиться.

Головная боль н головокружение объясняются повышенисм внутричерепного давления или нарушенисм ликвороциркуляции, У обследованных нами лии внутричерепнал гипертензия טпределялась аутеи сдавления яремиых вен в течение 5-10 секунд, как при пробе Квекенщтедта, но без спинномозговой пуннии (усиление головных болей, зувство тяжести). Кроме того, наличне гипертензии подтвердилось zраниограф்ей и измеренғем венозного давления 75 лицам (в 1 грулпе 55, во II - 22, в 111 - 18 ннамі с сроном давности травмы от 3 месяцев до 15 лет), перенесиим черепномозговую травму.

Нзмерение проводитос аппаратом B. A. Вальлмана в дежанем положении (табл. 2).

Судя по анализу табл. 2, повышение венозного давления (56\%) \казывает на наличие гипертензионного синддрома, а данные повторноin обследования подтверждают, что травма головного мозга является

Таблица 1
Отдаленные последствия травмы головы у 272 детей

Остаточные явления	I группа	Il группа	III	пруппа	Bcero

Аолезнью, продолжающейся длительное время, что динамика травматического заболевания включает в себя как единое целое функциональное и структурное изменения. Эти изменения более или менее завиеят от -тепени клинического проявления травматической болезни головного мозга и от влияния преморбндного состояиия.

Талица 2

Из других жалоб, предъявленныд при повторном обследовании, вначительное место в патологии остаточных явлении занимает умственпая недостаточность ребенка, которая выражается в сниженпи памяти $(31,2 \%)$, рассеянности (29%). Детям этой группы характериы поздняя сообразнтельность, ослабление внимания и недостаточная последовательность, сказызгющизея и на учебе, и на работе.

Мы полагаем, что детей, перснесших острую закрытую черепнээозговую травму, не следует нагружать школьными заданиями наравче со здоровыми детьми, так как малейшее непроявление цуткости к

детям-травматикам вызываєет замкғутость, безразличие, раздражитєльиость, которвіе постепенно отражаютсл на формировании пснхіки и лжчности.

При неврологическом осмотре остаточные явления в внде пораже\#я черепномозговых нервов обнаружены у 19 детей (7\%). Из ния паfез лицевого нерва по центральному тину имели восемь детєй, глазо--івигательного нерва-пять, невралгию первой ветвн тройничного нер-па-двое, отводящего нерва-семь, нистагм-шесть детей. Расстройства функции вегетативной нервной системя в виде резко выраженного красного разлитого дермографизма отмечены у 70 детей $(25,7 \%)$, а !отЛівость - y 99 (36,4\%).

Следует подчеркнуть, что невроло:ическая симптотика более вырджена в первые годы (2-5) после травмы, но с течением времени постепенно сглаживается. Что касается снижения слуха ($1,1 \%$) и расстройства речи ($1,8 \%$) в виде заикания, то они отмечены у детей, перенесших тяжелую черепномозговую травму с нарушеннем вестиоулярнокохлеарной системы.

По полученным данным, картина остаточных явлений в завнсимости от тяжести травмы и возраста ребенка в остром периоде сітду!ощая: при легкой травме остаточные явления в младшем возрасте пмеют лесто в $\% \%$ случаев, а в старшем возрасте-в $37,9 \%$. При травме средней тяжести в младшем возрасте остаточные явления отмечены только в $8,4 \%$ случасв, а в старшем возрасте-в $46,7 \%$, т. е. в пять раз чаще. A прн тяжелой форме травмы остаточиые явления отмечены в 69,7\% елучаев, но одинаково часто в младшєм и старием возрасте.

Таким образом, остаточные явления выражены как при тегкої, так .. ири тяжелой травме головного мозга. 4то касается удельного веса последствий черепномозговых травм, у детей обоето пола, то онн почти одинаковы. Однако среди мальчиков превалирует раздражнтельность, А среди девочек - головокружение и головная боль.

Выводы

1. Черепномозговая травма, даже легкая, не проходит без последствнй и реакцни со стороны организма,
2. Последствия травматической болезнн головного мозга соматического порядка и расстройства вегетатнвных функций проявляются и в раннем периоде, после травмы, и в позднем периоде.
3. Психопатизация личности н изменение характера поведенпя реSенка связаны большей частью с преморбидным состоянием ш наличием повторной травмы, что свидетельствует о кумулятивном дейстпни повторных травм.
4. Наличие стойких остаточных явлений в большинстве случаев обусловлено недостаточным комплексом лечсо̄ных мероприятий и урезыванием пребывалия больного в стационаре, I детская клиническая объединенная больница
(Поступито в редакцию 28..2.1963)
망ำMmms

m. moviod

1. О. П. Юрвева. К геназу にконитллгяцскях синдромов при травмах головы в дегском вэзрасте. Н йо)-пеихиагрчческа日 сессин по травмагическим повреждениям џеигральной нервной систехы, тезисы докладов, $23-25$ апреля 939 г.
2. Т. А. симпсои. Ванине травмы черепа (закрытой) на развитие личности ребенка и подростка. В кн.: „Вопросы педиатрии". М., 95.
3. R. C. Schneider. Head iujurius in infansy and childood. Surg. chin. North Amer.,
 рургии". М. - Л.. 1940.
4. Е. А. Осипова. Јстрые травуатические пеихозы в детскоу возрастс. Нейропсихиатрнеская сессня по травматическим повреждсниям пенгратьной нервной системы. тезисы докаддв $23-25$ апреля 1939 г.
5. М. П. Дергачёва. К вопросу о тразмагическ й эпилепсии В кн: „Эпилепсия", B. -1, Омек, $195<$.
6. А. А. Арендт. Общие вопросы череиномозговоі̆ травмы. В ки: „Руководство по хирургии". 15. Iи6.
7. К. Д. Эристави. К лечеиню черепномозяовых поврежпсний. Вестник нацком-

3. $33 \pm 6(30 \mathrm{mid} 0$

 "るazonの

 majuugho kjo bytrzyme Lologazoos.

 СООБЩЕНИЯ АКАДЕМНИ НАУК ГРУЗИНСКОИ ССР, XXXV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

930\%0MMMBOS

3. 330630 mdd

 Pyomombal № 4 an

9n8nмm M M

3. $33 \pm 630 \mathrm{mjdo}$

 \%ajornos.

ajom@ozu

 (300L insinam Luonion.

Obtoomo 1

dumeno No 3
 byjógzos

$3^{6 \text { Bnのmn }} 2$

domemo Ne 3

rigu an 						 				
$\text { மupuween } \omega \omega \overline{0}$				wu-w̄p uqequü	$$				$\begin{gathered} \delta \\ c \\ 1 \\ \varepsilon \\ 0 \\ c \\ \infty \\ 0 \\ c \\ e \end{gathered}$	
1 2 3	$\begin{array}{r} 16,5 \\ 4,0 \\ 2,5 \end{array}$	$\begin{aligned} & 97,5 \\ & 88,0 \\ & 80,0 \end{aligned}$	$\begin{aligned} & 560 \\ & 320 \\ & 320 \end{aligned}$	28,0 35,0	1,9 2,0 -	$\begin{aligned} & 1,5 \\ & 2,0 \\ & 1,3 \end{aligned}$	$\begin{aligned} & 40,0 \\ & 50,0 \\ & 33,3 \end{aligned}$	$\begin{aligned} & 267 \\ & 267 \\ & 160 \end{aligned}$	-	-
9	23,0					4,8				

 $2 \mathrm{~g}-3$ (3knocmo.

 $\mathrm{maO}^{2} \mathrm{~b}_{5}$.

 zomalozángooig.

domemo te 3

 gmzagンãn6n

| | | \dot{E} | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

dлммо № 3

3abjugsunlu zotiglugzoguns 200 dm bzongi an

355 zengutiol zoingligjingoos 200 dm

	10 e E E है 简筑	$\dot{2}$ 0 0 5 0 0 0 0 0 0 0 0 0 0 2 2 है			$\begin{gathered} 6 \\ 0 \\ 1 \\ 0 \\ 0 \\ 6 \\ 0 \\ \check{c} \\ 0 \\ \varepsilon \\ 0 \end{gathered}$				womee uguņowQ	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 16,5 \\ 4,0 \\ 2,5 \end{array}$	$\begin{aligned} & 97,5 \\ & 88,0 \\ & 80,0 \end{aligned}$	$\begin{aligned} & 560 \\ & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & 28,0 \\ & 35,0 \end{aligned}$	$\begin{aligned} & 1,9 \\ & 2,0 \end{aligned}$	$\begin{array}{r} 17,5 \\ 5,5 \\ 2,2 \end{array}$	$\begin{aligned} & 87,0 \\ & 80,0 \end{aligned}$	$\begin{aligned} & 533 \\ & 426 \\ & 480 \end{aligned}$	$\begin{array}{r} 2, \mathrm{I} \\ \mathrm{I}, 8 \\ \hline \end{array}$	$\begin{aligned} & 32,0 \\ & 37,0 \end{aligned}$
U v m	23，0					24，5				

 29．„2modるの＂ $\mathrm{XXXV}: 2,1964$

36momo 5

domemo № 4

3د5zéngatial zotrglogéngen 200 dm

gols3

 buco ajnéncogo．

 mo unlooganu dmbuf n mgmonon．

фИЗИол ггя

В．И．ГВАНЦЕЛАДЗЕ

§ BOПРОСУ О МเХАНИЗМЕ ДЕЙСТВルЯ МИНЕРАЛЬНОЙ BOДЬ ЗВАРЕ НА BHEHHHECEFPETOPHУЮ ФУНだЦИЮ ПОДЖЕ ЛУ ДОЧНОЙ ЖҒЕЛЕЗЫ
 Резюме

Мы задалидь пслью изучить роль вегетативной нервь ой системы в осуществлении эффекта минеральной воды Зваре на внеш секреторную функиию поджелудочной железы．С этой целью производили выключение симпагической и парасимпатической нервных систем посредством фарма－ кологических веществ（эргогамина п атропина），а также хирургическим путем（двухсторонняя регроперитонеаььая спланхникотомия и двухсторон－ няя трансплевральная ваготомня）．

Опыты ставились на четырех собаках с хронической фистулой про－ тока поджелудочной железы по способу Павлова в модификации Баку－ радзе．

Секреция панкреатического сока изучалась натощак и шосле приме－ нения раздражителей．В қаждой часовой порции сока определяли：ами－ лазу по Bольгемуту，липазу но Бонди и триисин по Метту．

Нами установлено，тТо на фоне атропинизации（ 0,5 мг на живо－ тное）минеральная вода Зваре в количестве 200 мл уже не повышает панкреатическую секрецио у собак，как эго происходит в опытах без атропина，а на фоне эрготамшнизации（ 0.5 мг на животное）эффект ми－ неральной воды сохраняется．Сохраняется стимулирующсе действие ми－ неральной воды и после двухсторонней ретроперитонеальной спланхнико－ томин．После двухсторонней трасиневральной вагогомии возбуужлаююшее действие минератьной водь на секреторную деятельность поджелудочной железы заметно снижается．

Полученные нами даннве дают основание утвержлать, что в осуществлении возбуждаюшего эффекта минеральной воды Зваре на секреторную деятельность, поджелудочной железы участвует парасимпатическая нервная система. Возможно, что влиянис парасимпатикуса реализуется и через гуморальное звено (дуоденальный секретин).

1. А. Н. Бакурадзе. О механизме действия бальнеофакторов на организм. Сборник трудов Ин-та курортологии Грузии, т. 23, 1957, 5-21.
2. К. М. Быков. Проблемы бальнеологии (предисловие). М., 1952.
3. И. Т. Куриин, И. В. Сергеева. Г. Д. Дзидзигури. Материалы о рефлекторном механизме действия железноводских вод на организм. Проблемы бальнеологии, М., 1952, 50-56.
4. м. Ю. Нодия. Минеральная вода Набеглави и ее лечебные свойства. Тбилиси, 1957.
5. Б. М Копытин. К вопросу о сложно-рефлекторной фазе в действии минеральных вод на внешнюю секрецию поджелудочной железы. Физиологический журнал СССР, т. 42, № 8, 1956, 7.3.
6. P. М. Месхрикадзе. Влияние внутреннего применения цхалтубской минеральной воды на внешнссекреторную деятельность поджелудочной железы. Сборник трудов Ин-та курортологии, т. XX111, 1957, 279-288.
7. О. П. Штамберг. К вопросу о механизме действия ташкентской минеральной воды ча внещнесекреторную фуикцию поджелудочной железы в эксперименте. N^{N} гериалы межинститутской научной конференции при внутрсннем примененьи минеральных вод при заболевании органов пищеварения и обмен вешеств. Пятигорск, 1962, 89-90.
8. А. В. Соловьев. Секреторный эффект поджелудочной железы на кислоту-результат возбуждения симпатического нерва. Бюллетень экспериментальной биологии и медицины, т. 28, в. 2, Ne 8, 1949, 108-109.
9. З. В. Кобахидзе. Роль симпатической нервной системы в регулядии внешной секреции поджелудочной железы. Бюллетень экспериментальной биологии и медицины, 5, 1952, 12.

И. В. АНДГУЛАДЗЕ

ФУНКL НОНАЛЬНАЯ ВЗАИМОСВЯЗЬ АНАЛИЗАТОРОВ И ИХ РОЛЬ В ДИНАМИКЕ БЕЗУСЛОВНЫХ РЕФЛЕКСОВ

(Представлено членом-корреспондентом Академии А. Н. Бакурадзе 4.1.1964)
Роль коры мозга в динамике безусловного (слюнного) рефлекса исследовалась П. С. Купаловым, Б. Н. Луковым [1], Н. А. Костенешкой [2] и пр.

Нас интересовало установление взаимосвязей отдельных дистант: пмоотношения с безусловным пищевым рефлексом.

Для выполнения поставленной задачи нами использовалась методика следовых рефлексов, примененная некоторыми авторами в целях изучения их особенностей (Н. М. В авилова [3], А. Н. Счастный [4], В. В. Фанарджан [5], ЧжуЦзы-Іяо [6].

Методика

Опыты проводились на двух собаках (Рекс, Белая). Вначале были выработаны наличные условные рефлексы с отставлением 20 секунд, а затем производилась переделка этих рефлексов на следовые разной продолжительности (40,70 и 170 секунд).

Условные сигналы адресовались кэ всем экстерорецелторам и распределялись в стереотипе в следующем порядке: на первом месте-свет 75 ватт, на втором-звонок, на третьем-кололка левого плеча передней лапы, на четвертом-метроном 120 и, наконец, на пятом месте запах эфира (1 литр дистиллированной воды на 300 грамм эфираи. Подкрепление производилось пищей. Дыхание регистрировалось в течение всего времени.

Результаты опытовиихобсуждение

У собаки Рекс были выработаны наличные условные рефлексь! с отставлением 20 секунд, затем производилась переделка на следовые, продолжительностью 70 секунд. После укрепления следового условчого реф-
tекса в опытный день производилось однократное угашение каждого по－ следуюшего условного сигнала．При однократном угашении ретистриро－ валась слюнная секреция в течение всего времени，а также величина оезусловного рефлекса в течение 60 секунд．

Таблица 1

Время	$\begin{aligned} & \text { o. } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { Условный } \\ \text { раздражи- } \\ \text { тель } \end{gathered}$	$\begin{aligned} & 20 \\ & \text { сек } \end{aligned}$	$\begin{aligned} & 40 \\ & \text { ceк } \end{aligned}$	$\begin{gathered} \text { Сле } \\ \begin{array}{c} 15 \\ \text { ceк } \end{array} \end{gathered}$	${ }^{15}$		Безуслов－ ный раздра－ житель	$\frac{\mathrm{Ce}}{30 \mathrm{c}}$	$\frac{\text { еция }}{30 ~}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
10，15	72	Cbet 75 bm	34	26	25	28	89	Не подкр．	12	15	27
10,21	67	Звонок	23	40	5	2	47	Пища	325	360	685
10，27	72	Кололка	32	10		12	26	11ища	340	205	545
10，33	28	Метрон． 120	9	52	6	12	70	Пища	358	320	678
10，39	23	Запах эфира	39	79	42	：0	1\％	Пища	325	170	495
10，14	73	Cbet 75 bm	8	7	2	10	10	Гища	312		657
10，20		Звонок	92	104	16	130	130	Не подкр．	65	17	82
10，26	73	Kололка	5	－	0	0	0	Пища	287	325	612
10.32	29	Metpor． 120	10	10	0	12	12	Пища	353	280	633
10， 3^{8}	24	Запах әфира	7	14	20.	56	56	リиแ』	340	260	600
10.50	74	Cret 75 bm	${ }^{15}$	48	18	4	70	Пиша	100	410	
10，56	68	380нок	33	114	40	20	174	Пиша	350	180	530
11.02	－	Кололка	38	47	40	25	112	Не подкр．	45	45	90
11.01	30	Nerpor． 120	2	30	2	\％	32	Пиша	350	438	788
11，14	25	Запах эфнра	13	16	11	15	42	Пища	320	370	690
9.50	75	Cret 75 6m		I	1	1	6	Trima	200	400	600
9，56	09	Звонок	15	65	9	14	98	Пина	332	360	692
10，02	74	Кололка	2	40	8	12	60	Пища	323	340	663
10，08		Metpor． 120	4	4	6	15	25	Не подкр．	10	12	23
10，14	26	Banax эфира	7	5	I	0	6	ППища	369	310	679
10，15	76	Cbet 75 6m	23			23	55	Пища	265		635
10，21	70	Зbuhok	54	63	35	10	108	Пип』	300	360	660
10.27	75	Кололка	55	34	21	20	75	Пина	335	360	695
10，33	31	Metpor 120	27	47	12	19	75	He modkр．	207	400	607
10.39	－	Banax эфшра	28	97	15	23	135	Пица	38	－ 7	45

Однокрапное угащение следи 7 сокунд вызвало закономерное торможение безусловной секреции．

Из табл． 1 видно，что при однократном уташенин следоного услов－ ：иого рефлекса наблюдается закономервое выделение слюны на протя－ жении того отрезка времени，на котором раньше применялось подкреп－ ленне，причем наименьшее количество слонь！Выделялось при следовом ：словном рефлексе на свет．В данной таблице на метроном об́нее коли－ чество выделепной слюны составляет 23 делепил，но зато на зво！ок－ 82 деленн月 шкалы．В этих опытах с угашением удалось устанәвить，что наиболее тесная функциональная связь характерна зрительному снгна－ ，ту，за ним следуют звуковой，обонятельный и кожный раздражитеть．

Функцоональная взанмосвязь аналнзаторов is их роль в динамике..
Было выявлено протекание таких закономерностей, как явление следовой суммации в звуковом и других анализаторах, так как оно особенно четко проявлялось на звонок и метроном 120. Следовая суммация выявилась также при удлинении следовой паузы от 70 до 170 секунд у Уекса, ибо в опытах наблюдалось резкюе увеличение слюнной секреции

Таблица 2												
Время		условный раздражитель	$\begin{array}{r} 20 \\ c e_{K} \end{array}$	След 70 сен След 170 сек				Безусловный раздражитель	Секреция			
							30 сек		30 сек			
II, 20	77	Cber 75 вm	30	37	27	13		87	Пища	340	240	580
11,26	72	Звонок	82	90	20	27	137	"	268	315	583	
If, 32	76	Кололка	57	25	15	38	78	",	227	335	562	
${ }^{1} \mathrm{I}, 38$	32	Метрон. 120	18	49	to	11	70		102	185	387	
11.44	27	Запах эфира	3	33	35	32	100	"	290	$\begin{aligned} & 185 \\ & 393 \\ & \hline \end{aligned}$	$\begin{array}{r}38 \\ 58 \\ \hline\end{array}$	
10, 10	30	Свет 75 bm		170				Пища				
10,17	76	Звонок	56	202	42	18	262		315	170	${ }_{385}$	
10,24	79	Кололка	43	168	37	33	238		355	85	450	
20,51	35	Meтрон. 120	23	174	30	10	214		320	290	610	
10,38	31	Запах эфира	5	137	10	10	157		37.3	220	593	

Наблюдается увеличение условных рефлексов на след продолжительностью г7П секунд в сравнении со следом 70 секунд

за весь период, включая и еду мясосухарного порошка (табл. 2). Оно טобяснялось тем, что интервал времени следа в течение 70 секунд и последующал 1 минута, закрепленнье времепной связью, пришлись на регистрацию величныы слюнной безусловной секреции. Очевидно, то состояние возбудимости нервных центров мозга, которое поддерживалось ат конца 70-й до 130 -й, секунды едюй при переделке следа па 170 секупд совпало с периодом слюниой регистрации удлиненного следа.

Таблнна 3

Время		Условный раздражнтель		Cre 40 cen	70 15 eek	$\frac{\text { ceк }}{15}$		Безусловный раздра- жнтель	Besy $30 \mathrm{cl}$	вный екс зо сек	$\begin{aligned} & \text { o } \\ & \text { 0 } \\ & \text { B } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
11,46	73	Cbet 75 sm 3 BOHOK ололта Metpon 120 Запах эфира	4	2	1	0.	3	Пища	38	325	3
I1, 32	61		0	0	0	0	0	.	242	115	357
11.58	62		a	0	\%	0	0	"	53	385	438
11,04	20		5	5	0	-	5	"	1.0.	300	410
It.10	25		-	2.4	2	10	36	-	54	440	494

Уменьшение слюннои условной секреции па слел продолжительностью 70 секунд ири переделке от наличного рефлекса 20 секунт (26 опытов)
С пелью изучепия влияния корковой связи на дипамику условнобезусловного слюноотделенй к моменту окончания следа (от 170-й до 190-й гекьиды) мы стали повторно применять те же следовые сигиалы.

Такие опыты привели к изменению безусловной секреции за первые 30 секунд. Судя по данным, более всего изменялась в сторону уменьшения секреция на свет 75 ватт, затем-на метроном 120 и звонок. Следует отметить, что третье место в стереотипе являлось специально дифференцируемым, ибо кололка плеча и последующая пауза 170 секунд не подкреплялась едой, что естественно развивало тормозной процесс. Повторное применение кололки неподкрепляемого следа на третьем месте вызвало увеличение слюнной секреции на 23%, особенно за вторые 30 секунд, по сравнению с увеличением до повторного применения дифференцируемого сигнала от 170 -й до 190 -й секунды, т. е. и во время еды.

Таблица 4

Время		Условный раздражитель		След 40 сек			$\begin{gathered} \text { Безусловный } \\ \text { раздра- } \\ \text { житель } \end{gathered}$	Безусловный рефлекс		
				20				30	80 c	
11,22	76	Свет 75 в.	6		2		Пища	33	370	
11,28	64	Звонок	42	6	0	6	Пища	34	515	319
11,34	65	Кололка	22	6	I	7	Пища	73	290	363
11,40	32	Метрон. 120	2	7	10	17	Пиша	50	330	380
11,46	28	Запах эфира	-	to	,	11	Не поела	19	27	46

Уменьшение безусловной секреции за первые зо секуид при укорочении следовой паузы от 70 до $ұ о$ секунд.

Применение запаха эфира на пятом месте привело k увеличению безусловной секреции, но лишь на 8% от исходного. Нарушилась деятельность кожно-двигательного и обонятельного анализаторов.

Таблица 5

Время		Условный раздражитель	$\begin{gathered} \text { Безусловный } \\ \text { раздражи- } \\ \text { тель } \end{gathered}$		$\begin{gathered} \text { Oтстав } \\ 20 \\ \text { 10 сек } \end{gathered}$	ение к сек		Безусловный рефлекс		
10,30	98	Свет 75 вм	Поела	-		2	3	17	I80	
10,35	86	Звонок	Поела	5	2	7	9	76	155	235
10,40	87	Кололка	Поела с ои.	2	5	0	5	45	200	245
10,45	53	Метрон. 120	Не поела	5	3	2	5	10	II	21
to, 50	50	Запах эфира	Не поела	-	,	-	3	5	3	8

Переделка следового рефлекса продолжается 40 секунд на наличной. Наблюдаются низкие величины условного рефлекса и торможение безусловной секреции и движения к кормушке.

На Белой производились аналогичные опыты. При переделке наличного рефлекса на следовой 70 секунд (табл. 3) произошло уменьшение (дорможение) слюнной секреции.

Обратное укорочение следовой паузы от 70 до 40 секунд (табл. 4) привело к уменьшению безусловной секреции, особенно проявленной в первые 30 секунд, т. е. в период бывшей слеловой паузы 70 секунд. Дальнейшими опытами мы стали восстанавливать условные рефлексы и с этой целью перешли к наличным рефлексам с отставлением 20 секунд, применяя кофеин с бромом в пище.

В проведенных опытах наблюдалось отсутствие или небольшая условная секрешия на действие условных раздражителей в теченне 20 секунд и отказ или же запаздывание еды млсосухарного порошка на 30 40 секунд, т. е. на период бывшей следовой паузы продолжительностью 40 секунд, после чего собака ела пищу, выделяя соответствуюшую безусловную секрецию. B опытах характерными являлись расшепление компонеитов (секреторного, двигательного и дыхательного) пищевой реакции, вызванної переделкой наличного рефлекса на следовой, и нарушение плавности локомоини в свободных vсловиях (невроз)

Сопоставление соотношений безусловной секрешии в течении 60 секунд с секрецией при следовых условных рефлексах длительностью 70 4. 40 секуид позволило судить о значении временных связей каждого сигнала с пищевым рефлексом.
 ствие по ритму, частоте и глубине в каждый постодиций отрезок времени от начала действия пищевото сигнала, черсз пауәу и т. д.

Таким образом, опытами выявилось значенне корковых временных связей, нбо переделка паличного условного рефлекса на следовой (40, 70 и 170 секунд) и обратно произвела нарушения содружествениого взаимодействия нервных щентров на компоненты пищевого рефлекса (двигательного, секреторного, дыхательного), сформированного и скоординированного во времени в процессе развития организма.

Полученные данные указывают на роль коры мозга в динамике I! взаимодействии компонентов пищевой реакции при различных функциональных состояниях неитральной нервной системы.

Выводы

1. При переделке наличного условного рефлекса на следовой и об-ратно наблюдается увеличение или уменьшение условно-безусловной секреции, что, по-видимому, зависит от типа высшей нервной деятельности ін работоспособности подкоркового пищевового щентра.

Удлинение следовой паузы продолжительностью от 70 до 170 секунд еызывает увеличение секреции за весь период, включая и период реглстрации безусловного слюноотделения, завислщего от следовой сумманин.
2. Однократное угашение каждого ситнала следового рефлекса в зависимости от его действия на ту или иную воспринимающую поверхность вызывает закономерное изменение безусловной секреции, выявляющей функциональную взаимосвязь корковых анализаторов с без. условным пищевым центром. Наиболес тесная связь с пищевым безусловным центром характерна для зрительного сигнала, затем следуют звуковой, сбонятельный и на последнем месте кожный раздражитель.
3. Сиітстическое свойство закрепнепнои: пбпковой связи на определенный вид рефлекса и интервал времіни проявляются в увеличении или торможепии условно-безусловной секрепии, влияющей и на другне рефлекториые центры головного мозла.
4. Развитие невроза обълсняется переделкой, поскольку пищевой рефлекс, в который входит секреторный, двигательный и дыхательный компоненты, является цепным рефлексом, закреплсниым во времени и скординированиый в процессе суинесвования асщепление секреторного, двигательного н дыхательного компонентов пищевого рефлекса юбуславливается дискоординацией нервных щентров, вызванной «сшибкой» интервала времени.

Институт травматологии и ортопедин
(Поступило в редакнию 4 1.1964)

B0\%nmman

(1) sбceminmudo

ตgsovid

 agoso 330 mmon mgoscrajug 88 g .

 \&nobgogmo -. gonǵno (bigm bagono).

Функинональная взаимосвязь анализаторов и их роль в динамике..

 раздражнтеля. Архив биологич, наук, т. 33. 1938, 665.
2. Н. А. Костенеикая. Деятельность коркового пищевого щентра и безусловная секреториая рсакпия. Фнзнологический журная СССР. т. 3). в. 4. 1941, 401.
3. IF. М. Вавилова. IC вопросу образования следовых чсловных рефлексоп y животиых с различными типолопиескими особениостями. ЖВНД. т. 10, в. 5. 1960, 737.
4. А. И. Счастиый. Сдедовые условыые рефленсы на сверхсильыые раздражители. ЖВ ॥Д, т. 10, в. 2, 217.
5. В. В. фанарджан. О дыхателыных и следовых условиых рефлексах. Проблемм сравнитсльної физиологии, AH CCCP, 1956, 103.
6. Чжу Цзы-яо. Переклочение короткоотставленных условных рефлексов в запаздываюшие. ЖВНД, т. 9, в. З, 1959, 585.
 СООБ ЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, Xxxv.2, 1954 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

ЭКСПЕРРИМЕНТАЛЬНАЯ МЕДИЦИНА

Г. Д. ИОСЕЛИАНИ. В. К БУЛЖИАШВИЛИ, А. В. ХУЧУА

К МЕТОДИКЕ ИЗОЛИРОВАННОЯ! ГЕРФУЗНИ ГОЛОВНОГО МОЗГА И СЕРДЦА В ЈСЛОВИЯХ ГИПОТЕРМИИ
(Представлено академиком К. Д. Эристави 20.1.1964)
Применяемые в настоящее время методы выключения сердца из кровообращения - гипотермия и искусствениое кровообращение - не являются совершенными, чем обусловливается ограниченное использование их в клннических условиях. Перфузионная глубокая гипотермия также не лишена недостатков. Отсюда понятей интерес, проявляемый экспериментаторами и клиницистами к разработке новых, рациональных, физиологически обоснованных методов изучения «сухого сердца». Особое внимание привлекает метод изолированного искусственного кровообранения, в частности кровоснабжение головного мозга и сердца, воскольку в результате гипоксии эти жнзненно важные органы более других подвергаются повреждению и развившиеся необратимые изменения обычно являютсл пепосредственной причиной слерти.

Обязательным условием для успешного проведения изолированного нскусственюго кровообращения является сосудистая изоляция перфузируемой зоны с тем, чтобы потеря крови из этой области в общее кроеяное русло было минимальной. Целесообразно также проведение перфузии с помощью малогабаритного аппарата исскуственного кровообращения, не требующего для своего заполнения донорской крови или использующего ее лишь в малом количестве.

Метод перфузии мозга, а также сочетанная перфузия мозга и сердца в эксперимснте изучены рядом исследователей [1-7].

Однако методы регионарной перфузии, применяемые этими автоРами с щелью оперирования на «сухом сердце», в той или июой степени неудовлетворительны. Из-за отсутствия соответствующей аппаратуры не удавалıось достичь закрытой циркуляции. Рибери и его сотруднч. кн [2] не вставляли катетер в верхнюю полую вепу и с целью уравновесить количество перфузируемой крови периодически снимали зажим с сосуда. Перфузируемая кровь поступала из стеклянного баллона под контролем давления. Некоторые исследователи при перфузии головного мозга не достигали сосудистой нзоляции органа. И, кроме того, трео́озалось большое количество донорской крови [2, 3, 4].

При изолированном кровообращении мозга отдельные авторы считают применение одновременного кровоснабжения сердечной мышщы

нзлииним. В настоящее время многие исследователи отрицают щелесообразность искусственной остановки сердца на том оснозании, что безвредных методов кардиоплегии пока не существует. Химические кар. диоплегические средства токсичны и в ряде случаев вызывают некроз мышщы сердца [8]. Опасна также гипоксическая остановка сердна, в особенности длительная [9]. Местиое охлаждение сердца (до 8-12 ${ }^{\circ} \mathrm{C}$) в настоящее время признается большинством исследователей наиболее щадящим методом кардиоплегии, однако при далеко зашедших пагологическнх изменениях в миокарде она также опасна. Даже при значительной степени гипотермии сердща считается необходимым сохраневие кровоснабжения миокарда [10].

Метод изолированной перфузии головного мозга и сердца впервые Б клинике был успешно применен в Институте хирургии им. А. В. Виндевского 26 февраля 1963 г. [11].

Целью нашей работы являлось изучение регионарной перфузии сердца и головного мозга для получения «сухого сердца» в условиях чормальной температуры тела и разлияных степеней гипотермии, а также сравнительная оценка их.

Материал и методы

Опыты проводились на здоровых беспородных собаках обоего пота весом от 12 до 28 кг. Всего поставлено 40 опытов: в условиях нормотер. мии-8, гипотермии - 32 . За полчаса до начала операции животному вводили 1 мл 5\%-ного раствора промедола на каждые 6 кг веса и 0,50,8 мл $0,1 \%$-ного раствора сернокислого атропина. Наркоз эфирно-кислородный, эндотрахеальный. После введения 5 мл 5%-ного раствора ?иплацина собаку погружали в ванну с водой и колотым льдом ($\dagger 2$ $6^{\circ} \mathrm{C}$). Все тело, кроме головы, находилось в воде. Измерение температуры производилось ртутным термометром в прямой кишке на глубине 8 - 10 см. После извлечения животного из ванны к моменту вскрытия рудной клетки температура снижалась еще на 2-4. Перевязывалю пепарную вену. Под полые вены, начальную часть нисходящей аорты и дегочнуто артерио подродили лесемки, проведенные в резиновые ${ }^{\text {ррубки для последующего пережатия их в виде туриикета. Вскрывали }}$ перикард. Через ушко правоно председдия в полость сердца вводили гепарин из расчета 2 мг на 1 кг весә живогного. Артериальную мати("траль аппарата присоединлли или через отдельный разрез на шее к правой обшей сонной артерии (20 опытов), нли к левой подключичной артерии (13 опытов), шли непосрсдственто в восходящей аорте через предварительно наложенный кисетныіи шов (7 опытов). Венозный катетер вводился через ушко правого предсердия в верхнюю полую вену (рис. 1). В большинстве опытов на сосуды, не имеющие отношения к питаюшим головюой мозг, временно накладывали лигатуры. Кровь ко-

ронарного синуса и вен Тебезия отсасывалась из вскрытого правого же. اудочка в оксигенатор аппарата. Перфузию производили малогабарнтиым аппаратом искусственного кровообращения для региональной перфузии системы НИИЭХАИ—АИК РП-62. Aппарат заполиялся свеже-

Рис. 1. Схема изолированной перфузии головного мозга и сердиа
взятой гепаринизированной артериальной кровью, а в части случаев (5 опытов) - полиглюкином. В ходе эксперимента велась запись ЭКГ, ЭЭГ, измерялось перфузнонное давление в сонной артерии и определялся коронарный кровоток: Исследовались рН крови, концентрация пнровіноградной кислоты и насыщение кислородом крови в правом желудочке сердца и в яремной вене. Собак отогревалн в ванне с теплой водой ($40^{\circ} \mathrm{C}$).

Экспериментальныенаблюдеиия

1. Нормотермия. В пяти опытах артериальную канюлю вводили в правую оо́щую сонную артерию, в трех-в левую подключичную артерию по направлению к сердцу. Перфузионное давление колебалогь в пределах 40 - 70 мм рт. ст. Объемная скорость перфузии составляла $20-30$ мл $/$ кг $/$ мин. При этом $35 — 40 \%$ пердузируемой крови поступало, в сердце. Сердце выключалось из кровообращения на 13-30 минут.

Выжили три собаки, у которых время выключения сердца не превишало 20 минут, давление составляло не менее 45 мм рт. ст., объемпая скорость перфузии равнялась $20-25$ мл/кг/мин. Следует отметигь, џто при более высоком рєжиме перфузии развивались явления отека Мозга, что отражалось на записи ЭӘГ вплоть до полного прекрашения электрической активности мозга. В течение всего периода выключения сердце сохраняло нормальный ритм и хороший тонус, цвет органа не менялся. У одной собаки через δ минут после отключения аппарата развилась желудочная фибрилляция, устраненная одним разпядом дефнбриллятора ($150 \mathrm{v}, 0,3 \mathrm{cek}$).
11. Гипотермия (32 опыта). В этих опытах применяли нипотермию различной глубины-от 30,5 до $19^{\circ} \mathrm{C}$. Длительность перфузии- 30 - 90 минут. Артериальную канюлю вводили в 25 опытах через правую общую сонную или левую подключичную артерии; в семи случаях артериальная магистраль подключалась к восходящей части аорты. Отмечено, что величина коронарного кровотока при гипотермии по сравнению с нормотомией снижалась до $20-25 \%$, а при перфузии непосредственно через восходящую часть аорты составляла 15%. Достоин также внимания факт, что при гипстермии там, где объемная скорость перфузии варьировала в широких пределах - от 10 до $30 \mathrm{mл} / \mathrm{\kappa r} / \mathrm{M} \boldsymbol{\text { д }}$, вредные последствия со стороны головного мозга не отмечались, что подтверждается и электроэнцефалографическим контролем, в то время !ак в условиях нормальной температуры приходится соблюдать строго жозированный режим перфузии.

Проведенные эксперименты убедили нас и в том, что перфузию лучше производить при умеренной гиптермии ($30-27^{\circ}$), так как осуществление ее при более низкой температуре (22-19) резко отражалось на выживаемости подопытных животных, что, по-видимому, связано с нарушением функций нервной системы, кровообращения и дыхания в этих температурных условиях. Из шести собак, подвергшихся перфузии при $22-19^{\circ}$, выжила всего одна, тогда как в опытах, проволившихся при температуре $30-27^{\circ} \mathrm{C}$, из 26 жнвотных выжиля 21 .

Прнводим выписку из протокола № 36.

К методике изолированной перфуэии дяловного мозга и сердда...

Рис. 2. Кривые ЭЭГ и ЭКГ на различных этапах (опыт № 36): 1 - а) перед вскрытием грудной клетки, б) после торакотомин; 2, - а) перед началоџ перфузии,
6) 8-я минуга перфузи; 3 - а) 5 для минуга перфузии бо -5.я минуга после отключения АИИК
30. „2modbg": XXXV: 2; 1964

Собака весом 14 кг, температура в прямой кишке $28^{\circ} \mathrm{C}$. Артериальпая канюля аппарата введена в восходящую часть аорты. Длительность перфузии 1 час 06 минут. Объемная скорость перфузин 300 мл/мин. Артериальное давление в сонной артерии $45-50$ мм. рт. ст. Коронарный кровоток, измеряемый при пережатии основного ствола легочной артерии, составлял 50 мл/мин; зрачки сужены; биохимические показатели крови стабильны: насыщение перфузируемой артериальной крови -95%, венозной- 65%. Данные ЭЭГ и ЭКГ на разны» этапах экспернмента отражены на рис. 2. Қак видно из рисунка, в течение одночасозой перфузии не наступило каких-либо заметных электроэщцефалографических и электрокардиографических изменений, говорящих а сколь-ко-нибудь значительной гипоксии в ткани миокарда и толовного мозга.

После согревания животного до 35° температура тела собаки самостоятельно подиялась до $38^{\circ} \mathrm{C}$. Через 24 часа состояние ее удовлетворительное. Из плевральной полости через дренажную трубку удалено :О мл крови. Длительное выживание.

Обсуждение

Известно, что типотермии, создаюшей условия для операции на «открытом сердце», присущи два основных недостатка: сравнительно короткий период выключения мозгового кровообращения и неустойчнвость сердца, проявляющаяся в фибрилляции желудочков и слабосги миокарда. Некоторые исследователи пытались устранить эти недостатки, используя сочетание гипотермии с общим искусственным кровообращением $\lceil 12,13,14]$.

Несмотря на то что этим были устранены главные недостатки обоux методов, такое решение вопроса не может считаться удачным, поскольку остались многие характерные для искусственного кровообращения отрицательные стороны: сложность аппаратуры, необходимосгь заготовки и использования большого количества донорской крови и т. д. Как правильно указывает А. А. Вишюевский [11], общая! перфузия всего организма, применяемӓя для вмешательства на одном лишь органе - сердце, являетсл вынужденным мероприятием. Отсюда понятно, почему многие исследователи производят частичнуюо перфузию экспериментальных животных в состоянии общей гипотермии.

Проведенные нами опыты показали, что для создания условнй операции на «сухом сердце» при гипотермии вполне достаточно поддержание кровоснабжения головного мозга и сердца. Мы убедились, что в контрольной группе при перфузии в условиях нормальной температуры тела необходимо строгое соблюдение определенного уровня объемной скорости, поскольку его снижение или повышение вызывает пора-

жение головного мозга. При адекватной перфузии в этих условиях кровоток может быть прекращен на 20 минут.

После сочетания изолированной перфузии с гипотермией результаты наших опытов значительно улучшились. Основываясь на показателях выживаемости животных по данным проведенных нами экспериментов, можно счнтать оптимальной температурой при перфузни 30${ }_{2} 7^{\circ} \mathrm{C}$.

Прежде всего следует отметить, что благодаря защитному дейсгвию гипотермии стало возможным прекращение естественного гровотока на 1 час, причем об́ъемной скоростью перфузии можно варьировать в значительных пределах (10 — 30 мл/гл/мин), что объясняется устойчявостью мозга к гипоксии, а также увеличением об́ъема ликвопного про«транства и уменьшением объема мозга.

Непосредственная канюлизация восходящей аорты имеет ряд преимуществ по сравнению с соединением артериальной магистрали с дру інми ответвлениями аортальной дуги. Главнюе из них - уменьшение коронарного кровотока в условиях гипотермии до 15% объемной скорости перфузии, вследствие чего создаются лучшие условия для видимости и отпадает несбходимость нанесения дополнительного разреза в со́ластю шеи. Предварительно наложенный на аорту кисетиый шов полле извлечсния катетера позволяет быстро устранить дефект в стенке аорты, в то время как при использовании небольших сосудов требуется нли их вынужденная перевязка, или же восстановление их целостности путем ушивания, для чего необходимо дополнительное время.

Среди различных причин гибели подопытных животных в послеопепационном периоде кровотечение не имело места. Количество излизнейся в грудную полость крови, как правило, не превышало 20-30 мл. Это, по-зидимому, можно объяснить, во-первьіх, небольшим колицесгвом гепарина в перфузионной крови, так как объем крови был мал: и, зо-вторых, тем, что после отключения аппарата оставшаяся кровь в сердце и мозгу, смешиваясь с общим объемом циркулирующей в орга низме крови, еще больше разбавляла ее и конщентрация гепарина епе более уменьшалась.

АИК РП-62 дает возможность, осуществлять полноценное искусстпенное кровообращение головного мозга и сердца с объемной скоростью до $1000 \mathrm{mл} /$ мин с насыщениемі крови кислородом до 95%, стабильиым $\mu \mathrm{H}$, удовлетворительным артериальным давлением. Aппарат позволяет также управлять изменением этих показателей. Основным его достоинством является несложная конструкция, простота обслужнвания, небольшюе количество крови (0,5 л) для заполнения.
Институт экспериментальной и клинической хнрургнн и гематологни
(Поступияо в редакцию 20.1.1964)

1. V. O. B j $\ddot{\text { r rk. Brain perfusions in dogs with artificially oxygenated blood. Ac- }}$ ta chir. scand. 96, Suppl, 137, 1948.
2. A. Riberi, P. Glice a. oth. Prolongation of safe period of venous inflow ocelusion in hypothermie state by coronary and carotid artery perfusion with oxygenated blood. Journ. Thor. surg., 32, 3, 1956.
3. J. Kay R. Gaertner a. oth. Coronary and carotid artery perfusion during total bypass of the heart. Journ. Thor. surg., 33, 4, -957.
4. S. K. Brockman, E. Fonkalsind. Experimental open heart surgery employing hypothermia, mecholyl arrest and carotid perfusion. Surgery, 43, 5, 1958.
5. В. П Русанов. Патофизнологические сдвиги в организме при выключении сердша и восстановлении его деятельности в эксперименте. Труды Ин-та клин. и экспер. хир. АН КазССР, т. 5, Алма-Ата, -959.
6. А. А. Виниевский, Т. М. Дарбннянидр. Корнарнаяи каротидная перфузия при выключении сердиа из кровообращения под гипотерминї. Экспериментальная хирургия, 6, 2960.
7. Г. Д. Иоселианн, Г. Д. Пагава. Коропидная перфузия в условиях выщлючения сердиа в эксперименте. Тезисы докл пучн. сессии Ин-та эксп. и клин. хирургии и гематологии АН ГССР, 22 - 24 июня 1961 г. Тбилиси, 1961.
8. J. A. Me Farland a. oth. Miyocardial necrosis following elective cardiac arrest induced with potassium citrate. Journ. Thor. a cardiovasc. Surg., 40, 2, 1960.
9. А. А. Вишиевский, Т. М. Ларбинянидр. Изолированная гдубокая гипотермия сердиа как метод искусственной кардиоплегии (экспериментальное обоснованне и каиническе примененис). Экспериментальная хирургия, 3, 1961.
10. П. А. Куприянов. Нскусственное кровообращение в хирургин сердиа и магистральных сосудов. $Л, 1962$.
11. А. А. Вишневский, Т. М. Дарбинян. Новый метод проведения операций на открытом сердце - нзолированное искусствениое кровообращение головного мозга в сочетании с общей умеренной типотермней. Эксп. хир., 3, -963.
12. Г. Кинги др. Гипотсрмия и низкие объемные скорости перфузии. В кн:: „скусственное кровооо́ращение', перевод под ред. Б. В. Петровского М.. 1960.
13. Г. Свэн, Б. Патон Техника комбинирования гипотермии и экстракорпоральной циркуляции при операциях на сердде. Вестник хирургии, 84, 4, 1960.
14. Б. С. Ув аров и др. Умеренная н глубокая гипотермия в хирургии открытого сердца. Тезисы докл. 6 -й научн. сессии Ин-та серяечно-сосудистой хирургии АМН СССР, 19 - 21/П - 1962 г. М., 1962.
d-0.060.9m? 20co

03.30805

 ODO

 usmamjogat.

 5amolbo.

 couzurgizozot cetmb．

 ழol zubb币oŋの。 CR_{1}＠o CR_{4} ．

 （10\％）．

$$
\text { cot } 335080
$$

 $(32,5 \%)$, P joncmal ($28,8 \%$), R j30mat (26.3%) T j30mat ($63,7 \%$) उ3momд-
 mo egmóno zupaubtios (11,3\%).

 ammoul omos.

Т. Н. ГЕГИЯ

ЭЛЕКТРОКАРДИОГРАФИЧЕСКИЕ ИЗ.МЕНЕНИЯ ПРИ ЭПИДЕМНЧЕСКОМ ГЕНАТНТた

Резюме

Материал охватывает So случаев энилемического тепатита б больных от 16 до 40 лет. Легкая форма болезни имела место в 14 случаях, средней тяжести - в 56 , тяжелая - в 10.

Нз кинических иризнаков поранечия мпокарда привлекали внимание тахиғардия $(23,7 \%)$, приглушенние тоны $(61,2 \%)$, систолическиї щум на верхушке ($17,5 \%$), аритмия ($\boldsymbol{I}_{3}, 8 \%$), реже одншка, сердцебпение и коаюшие боли в сердие.

Элекрокарыиографиеские изменения заклюџалясь, в удлинении интервала $\mathrm{P}-\mathrm{Q}(20 \%)$, увеличении снстолического показателя $(32,5 \%)$, изменениях зубцов $\mathrm{P}(28,8 \%), \mathrm{R}(26,3 \%)$ и $\mathrm{T}(63,7 \%)$. Сравнительно редко атмечались отклонение элентрисской оси ($1 \mathrm{I}, 3 \%$) и смешение интервала S-T ($3,7 \%$).

Степень и продолжительность электрокардиографпческих изменений зависят от тядести болезни.

В болиинстве случаев электрожардпографические пзмененил были преходящими и перед выпиской электокардиогамма возвратилась к норме. В еаиннних слутаях отмечались стойкие изменения, чго монно обьяснить развитием виру:ного миокардита.

Нзучение әлектрокардпографическия измснений при эпидезическом гешатите имеет больное значеие, танк как позволяет следить за динамикой патологического пропесса в миокарде, помонат правллнно отобрать терапевтические мероприятия п установить момент внииски боольного.

ЯЗВЕЕННЫЕ ПОРАЖЕНИЯ ДВЕНАДИЦАТИПЕРСТНОИ КИШКИ ПРИ УЗЕ．TKOBON ПЕРИAPTEPИИTE

（Представлено академиком К．Д．Эристави 5．10．1463）
При узелковом периартериите часто поражаются органы желудоч－ ぃ－кишечџого гракта，особенно тонкий кишечник．На вскрытия пораже－ ния составляюших его органов выявляются у $30-60 \%$ всех умериих от ソзелкового периартериита［1．2］．Г．Ф．ЛІ анг 3$]$ считает，что при узелко－ бом периартеринте желудочно－кишечыый тракт поражается в 50% слу－ яаев．Однако прижизненно установить пораженный орган в больпинстве जлучаев очень трудно．

Узелковый периартериит представляет собой разновидность колла－ геноза，являясь системным заболеванием артериальных сосудов мелко－ то и среднего калио́ра，реактивным васкулитом аллергической природы， 1：о без определенного этиологического начала［4］．

Заболевание возникает вследствие воздействия разнообразных при－ чин：ннфекции（микробов，токсинов），введения сыворотки，химиотера－ певтических средств，в том чнсле некоторых антибнотиков，переохлаж－ дения и других факторов．

Характерными признаками узелкового периартериита являются пе－ ［иваскулярные узелковые утолщения（грануломы）и аневризмы по ходу дэтериальныі сосудов．В кишечной стенке они располагаются под сли－ нстой сболочкой и серозным покровом．Гри нем развивается очаговый некроз сосулистой стенки с послндющей пролиферацией，что нереткп приводит к закрытию просвета сосудов и вожликновению инфарктов． Вследствие очаговых истончений и разрывов эластического и мышечно－ 10 слоев，растяжения стенки сосудов возникаюот аневризмы．Аневризма－ тические выпячивания，состоящие из утолщенной интимы и адвентиции， 4а．то разрываются и могут стать нсточником тяжелото кровотечения．

Источником желудочно－кишечного кровотечения при узеляковом пе． ןиартериите особенно часто являются язвы проксимальных участков тонкого кишечника，в том числе двенадцатиперстной кишки，нсредко мнжжествениц с перфорашией $[1,5,6]$ ．

Среди наших 22 больных с различными формами узелкового периартеринта 14 больных были с проявлениями нарушений со стороны органов брюшной полости, в том числе 7-с язвами двенадцатиперст. ной кишки.

Наряду с жалобами, отражающими признаки общего, весьма пестрого по клиническим проявлениям заболєвания (головные боли, озяобы, обшая слабость, понижение аппетита, похудание, боли в конечно(тях и др.), имеются проявления абдоминального болевого синдрома.

Боли, как признак неблагополучия в брюшной полости, при узелковом периартериите отмечаются у $50-76,6 \%$ всех больных $[6,7]$. М. О. Вульфович [8] отмечает боли в брюшной полости у 11 больных из 21, P. В. Волевич [9]-у 10 из 11. В наших наблюдениях боли имели место у 10 больных из 14 , в том чнсле у всех с поражением двенадиатиперстнсї кншки.

Как показывают собственные наблюдения, поражения двенадцатиперстной кишки сопровождаютея более или менее выраженной клинической картиной, напоминающей отчасти язвенную болезнь. Это пэдтверждается также анализом 78 приведенных в литературе случаев ее язвениого поражения.

Больные очень часто отмечают появление болей, локализованных в эпигастральной и правой подвздошной областях, реже-по всему живоъу, а также тошнот и рвот.

В зависимости от патоморфологических изменений и функциональпых нарушении сосудов (тромбоз, спазм) и их влияния на кишечную (тенку (ишемня, инфаркт) характер болей может быть различным: ту. пые ноюшие, острые, возникающие приступообразно, колющие, режущие или опоясьіваюшие. Иногда внезапные резкие боли предшествуют тяжелому кровотечению. В отдельных случаях первым проявлением язвы служат изменение вида стула или картина «острого живота». Но ие всегда резкие, интенсивные боли сопровождаются резким папряжедием брюшной стенки. Зачастую живот остается мягким, прн пальпации иногда отмечается лишь легкая разлитая или ограниченная болезненпость. В подавляющем большинстве случаев клинические проявления измененнй в двенадиатиперстной кишке, подчас очень тяжелье, слазываются проявлениями поражений смежных органов (желудка, печени, поджелудочной железы, желчного пузыря) либо илеоцекального угла, :то затрудняет диагностику поражений двенадиатиперстной кипки.

Иллюстрацией служат следующие наблюдения.
Больной С., 21 года, райочий, поступил в клинику 9.1.1952 г. с жалобами на головные боли, общую слабость, ознобы, постоянные тупые боли в эпигастральной области, отрыжки, тошноты, отсутствие аппетита, исхудание. Месяц тому назад зайолел антиной с небольной темпе-

मатурой. Лечился амбулаторно: болей в горле не стало, но субфебрильная температура, головные боли и общая слабость остались; постепенно развились и другие нарушения, общее состояние ухудшилось. За недело до поступления температура стойкь повысилась до $39 — 39,5^{\circ}$.

Состолние средней тяжести. Больной пониженной упитанности. Лин. и видимые слизистые гиперемированы. Периферические лимфатические узлы пе увеличены. Температура 39°. Пульс 116 ударов в минуту, питмичный, удовлетворительного наполнения и напряжения. Артериальное давление $170 / 120$ мм рт. ст. Глухость тонов сердца с небольшим акцентом второго тона на аорте. Легкие без изменений. Язык обложен єерым налетом, сухой. Кивот мягкий, не вздут, при глубокой пальпапии болезнен в пределах верхней половины. Двусторонний положительғый симптом Пастернацкого, полиурия. Кровь: гб. 70\%, эр. 4800000, л. 11000 , лг. 2%, с. 72%, лимф. 22%, мон. 4%; РОЭ 40 мм в час. Остаๆочный азот 35 мп\%. Моча: удельный вес 1006, микрогематурия, белок 0.66%. Установлен послеангинозный сепсис.

Проведенное лечение (22 млн. ед. пенициллина и другие средетва) улучшения не достигло. Состояние больного постепенно ухудшалось. За последние три недели на коже левой половины лба по ходу сосудов появились мелкие круглые узелки, периодические острые боли в животе, в большей мере выраженные в области пупка, заметно развилась кахексия, снизнлось зрение до полной слепоты. 19.IV. 1952 г. потеря.т сознание и скончался.

На секции (Б. В. Круковский) установлеп узелюовый периартериит с поражением кожи и внутренних органов: сердца, аорты, печени, почек, поджелудочной железы, брыжейки, желудка и двенадцатиперстной кишки, очаговые некрозы с рубцеванием.

По ходу сосудов малой кривизны желудка множество серовато-белых плотных узелков размером $0,2-0,5$ см с полостлми или кровоизлияниями в центре. На верхней стенке луковицы двенадцатиперстной кишки овальной формы сквозной дефект кюшечной стенки размером 0.7×1 см с мягкими гладкими краями. Со стороны серозы, в области деФекта, обнаружена круглая полость диаметром 2,5 см с хорошо выраженной капсулой, выполненная сгустками крови; полость сообщается с просветом кишки.

Заключение: смерть наступила от острой кровопотери на почве сотрой пенетрируюшей язвы дзенадцатиперстной кишки.

Больной Г., 44 лет, автомеханик, поступил 13.X. 1947 г. с жалобаами па сильные боли в нижних конечностях, общую слабость, субфебрильную температуру. Заболел свыше трех недель назад: появнлись резкие боли в ногах и стойкая субфебрильная температура, Заболевание свя-

зывал с охлаждением. До поступления в клинику работал и лечился амібулаторно, по безуспешно.

Состояние больного удовлетворительное. Кожные покровы н видиआые слизистые оболочки обычной окраски. Периферические лимфоузлы не увеличены. Температура $37,2^{\circ}$. Пульс 88 ударов в минуту. Артериальное давление $130 / 90$ мм рт. ст. Отмечается глухость тонов сердца. Легкие без патологии. Язык слегка обложен, влажный. Живот мягкии, при пальпации безболезнен. Печень и селезенка не увеличены. Симптом Пастернацкого отрицательный. Небольшая припухлость всех суетавое आижних конечностей. Кровь: гб. 76%, эр. 5070000 , л. 11350 , п. 4%, с. 63%, : 1 мм 27% м мон. 6%; РО 35 мм в час. Моча: удельный вес 1010. (олержит следы белка и много слизн, лейкощитов 10 - 20 и эритронитов 2—3 в поле зрения. Посевы крови стерильные. Диагноз-бруцедлез.

В середине декабря 1947 г. появились тупые приступообразные боли в верхней половине живота, изредка с иррадиацией в поясничну область, сопровождавшиеся тошнотами и рвотами, дважды был дегтеоб́ разный стул. Рентгенологическое исследование проведено 19. X1I. 1947 г. Органы грудной клетки без изменений. Келудок гипотоничен, натощак содержит б́ольшое количество жидкости. Перистальтика поверх»остная. Рельеф и складки слизистой обычного вида. Привратник в согтоянии длительного первичного спазма. Луковнца двенадщатипсрстной кишки раздражена, выбрасывает барий обратно в желудск. На задней єе стенке отмечается нестойкая задержка бария в виде крутлсго пятна, с локальной болезненностыю при пальпации. Складки луковицы немносо утолщены (отечны). Стойкий спазм надсосковой части кишки.

Заключенне: язва луковишы двенадцатиперстной кишки.
15. I. 1948 г. открылась рвота с примесью желчи, на второй день отмечалось небольшое напряжение правой половины брюшной стенки. С. 21 января больной жаловальяя на чувство тяжести в животе и боли в правом подреберье. При пальпашии резкая болезненность в той же области. Спустя педелю состояние резко ухудшилось и больной умер при явлениях упадка сердечной деятельности.

Секџия. На поверхности печени и отдельных петель кишок небольшие фиброзны наложения, легко снимающиеся. На задней стенке луковицы двенадцатиперстной кишки язва круглой формы, с тонкими мягними краямн, размером 1 см. Дном се служит печеночнодуоденальная связка, пропитанная кровью. После отделения связи в кишке виден сквозной дефект и небольшая полость вокруг него. На боковой стюняе верхнего изгиба кишки вторая поверхностная язва размером $1,5 \times 1 \mathrm{~cm}$. Bокруг нее складкн укрупнены, но без уплотнения.

Гистологическим исследованием (В. В. Круковский) печени, селезенки, поджелудочной железы, почек, надпочечников и двенадцати-

перстной кишки установлены изменения сосудов типа узелкового пери－ артериита．

Приведенные наблюдения показывают，насколько различно клини－ чески может протекать развитие язв двенадцатиперстной кишки．Если в первом случае проявления язвы были слабыми，нечеткими，скорее на－ щоминали собой гастрит，то во втором они настойчиво диктовали необ． ходимость обращения внимания на состояние двенадщатиперстной киш－ ки и рентгенологически была установлена язва．Наши исследования с анатомическим контролем также убеждают，что подобные явления наблюдаютея и при эрозивных изменениях в пилородуоденальном участке．

Многие авторы［9，10，11，12］указывают на то，что у детей несколь－ ко чаще，чем у взрослых，отмечается осложнение узелкового периар－ гериита в виде «острого живота» на почве прободной язвы желудка， двенадщатиперстной кишки и других участков тонкого кишечника，не－戸едко с гнойным перитинитом．

При нзучении литературных данных обращает на себя внимание чрезвычайная редкость рентгенологического исследования желудочно－ ஈишечного тракға у больных узелковым периартериитом，с жалобами ：а боли в животє і диспепсические явления．Но и у больных，обследо－ ванных рентенологически，язвенные изменения в двенадцатиперстний кишке большей частыо не обнаруживаются，что является，по－видимому， следствием недостатков методики исследования．

В результате в одних случаях прибегали к запоздалым оператив－ ным вмешательствам，в других же при срочных операциях по поводу «перфоративных язв» двенадцатиперстной кишки язвы не находили．

Не подлежит сомнению，что своевременное квалифицированное рентгенологическое исследование может в значительной степени спо－ собствовать снижению числа катастрофических исходов，особенно у ле－ тей，среди которых часто ведущими являются клинические признаки поражения желудочно－кишечного тракта $[10,11]$ ．

Ренттенологические исследования показывают，что язвы двснадца－ типерстной кишкн при узелқовом периартерните в болыниистве случаев九окализуются на задней стенке，а также по верхнему краю луковицы． ТТо форме язвы бывают круглые，овальные либо неправильные．В на－ чальном периоде развития язвы могут быть обнаружены по нестойкой задержке бария，производящей зачастую ошибочное впечатление слу ษайного пятна，что объясняется незначительной глубиной，отсутствн юоспалительной инфильтрации и отека краев язв．Складки стизистой оболочки вокруг изъязвления незначительно утолщены（отечны），эла－ стичны，после кровотечения могут иметь соверненно нормальный вид．

Пальпания пораженного участка кишки в большинстве случаев болезиенна.

Оперативное лечєние своевременно выявленных изолированных язвсіных поражений двенадцатиперстной кишки не только спасает боль: ыых от неизбежного тяжелого осложнения язв (кровотечение, прободенне), но и надолго, по-видимому, может продлить им жизнь.

Примером служит одно из наших наблюдений.
Больной 10., 17 лет, учашийся, поступил 4. Х. 1948 г. в хирургцческое отделение с жалобами на постоянные легкие тупые боли в эпигастральной области, тошноты, обшую слабость, дегтеобразный вид стула. Почти месяц назад появились тупал непостоянная боль в элигастрии, изжога и отрыжка пищей. Бопь немного усиливалась через 11,5 часа после приема любой пищи. За несколько дней до поступления тупые боли сменились более острыми, локализованными в подложечной области. В последующие дни чувствовал слабость, головокружение; 6оли под мечевидным отростком притупились, изменился вид стула.

Общее состояние удовлетворительное. Больной пониженной упитанюости. Кожные покровы и видимые слизистые бледные. Температура нормальная. Пульс 86 ударов в минуту. Артериальное давление $85 / 60 \mathrm{~mm}$ рт. ст. Сердце и легкие без изменений. Язык слегка обложен, влажный. خивот мягкий, при пальпации небольшая чувствительность правее и выпе пупка. Кровь: тб. 64%, эр. 3900000 , л. 9700 , эоз. 3%, п. 2%, c. 70%, лимф. 21%, мон. 4%; РОЭ 15 мм в час. Моча без изменений. Реакция Грегерсена резко положительная. Рентгенологическое исследоіание: желудок нормотоничен, натощак содержит немного жидкости. Рельеф слизистой не изменен. Перистальтика средняя. Привратник в состолнии первичното спазма. Луковица двенадцатиперстной кишки об́ычғой формы, складки ее нормального калибра. На задней стенке луковицы язвенная ниша размером $0,8 \mathrm{~cm}$, с локальной болезненностью при пальпации.

Операция (М. Б. Хмельницкий): произведена резекция желудка по Финстереру-Гофмейстеру.

Препарат. Слизистая оболочка резецированнной части желудка и авенадшатнлерстной кишки нормального вида. На задней стенке лукоதицы язва диаметром менее 1 см, с гладкими краями. Часть ее дна составляет артериальный сосуд с отверстием в стенке размером до 2 мм. При гистологическом исследовании установлены очаговые утолшения стенки пораженного сосуда, чередующиеся с участками истончения. На участке расположения язвы имеется аневризматическое расширение с арозней стенки сосуда.

Патологоанатомическое заключение: острая язва двенадцатиперстной кишки, возникшая на почве узелкового периартериита; кровотеченне из язвы.

Через два года после операции жалобы на боли в брюшной полости, а также на диспепсические явления исчезли.

Изолированные язвенные поражения двенадцатиперстной кишки при узелковом периартериите обладают некоторыми свойственными им субъективиыми и объективными признаками.

Наиболее достоверными из них в большинстве случаев следует считать появление постоянных либо приступообразных различной интенсивности тупых, реже острых болей в подложечной области и несколько правее, нередко с тошнотами. Приступообразные боли возникают чаще самостоятельно, реже-через один-полтора-два часа после приема любой пищи. Острые боли могут иррадиировать в поясничную область вследствие вовлечения в процесс серозного покрова кишки. Локализаџия боли, установленной при объективном исследовании, в подавляющем большинстве случаев совпадает с субъективным ошущением ее в эпигастральной области, соответственно расположению пилородуодечального участка.

Внезапное усиление либо появление острых болей в эпигастральной области при ранее существовавших однообразных тупых болях служит предвестником развития либо признаком развившейся брюшной катастрофы. Наряду с этим встречаются также случаи почти бессимптомного развития язвы и ее осложнений.

Мак-КоуниГангули [12] считают, что оперативнсе вмешательство не исключает возможности возникновения новых язв и их осложнений. В качестве доказательства они сообщают о наблюдении над больғым, оперированным по поводу перфораций язв тонкой кишки четыре раза в течение одного года.

Коттьеи Фогт [13], исходя из собственных наблюдений, полаган)т, что удаление изолированно пораженных органов предотвращает дальнейшую генерализацию процесса.

Своевременному предупреждению осложнений и тяжелого исхода яэв при узелковом периартериите может способствовать раннее квалифицированное рентгенологическое исследование всех больных с жалобами на боли в животе или на диспепсические нарушения.

[^3](Поступило в редакцию 5.10 .1963)
31. , $2 \mathrm{mo} \mathrm{\partial dg} \mathrm{~g}$ "; XXXV: 2, 1964

 zón zo@oz lngmabmgon, conozmbigozols.

 mo̊gon .

1. М. Ф. Мельников-Разведенков. Материалы катологической анатомии и географическому распространению узелкового периартериита в СССР и за рубежом по данным 20 союзных случаев этого заболевания. Украинский медицинский архив, т. 3, № $1,1930,11-32$.
2. A. Arkin. A clinical and pathological study of periarteriitis nodosa. Am. J. Pathol., v. 6, 1930, 401-426.
3. Г. Ф. Л анг. Узелковый периартериит (клиника). БМЭ, т. 1, стр. 359.
4. А. И. Струков. Клинико-морфологические проявления коллагеновых болезней. Вестник Академии медицинских наук, № 3, 1959, 8-18.
5. Е. М. Тареев. Кклинике узелкового периартериита. Русская клиника, т. 6. № 23, 1926, 157-168.
6. B. Wolda A. A. Baggenstoss. The effect of cortisone on the lesions of periarteritis nodosa. Am. J. Pathol., v. 27. No 4, 1951, 537-559.
7. L. Boyd. Abdominal manifestations of periarteriitis nodosa. New-Jork Med, Coll. ve 4, 1941, 27.
8. М. О. Вульфович. Клииика узелкового периартериита. Терапевтический архив B. $6,1953,55-63$.
9. Р. В. Волевич. Узелковый периартериит. М., 1960.
10. С. Я. Флексер. Клиника нодозного периартериита у детей. Педиатрия, № 3. 1946, 46-51.
11. В. М. Афанасьева. К вопросу об узелковом периартериите. Советская медицина, № 5, 1956, 42-45.
12. K. C. Mc-Keowna. A. K. Ganguli. Gastro-intestinal symptoms in periarteriitis nodosa. Brit. J. Surgery, 1956, v. 44, № 185, 308-312.
13. H. Cottier u W. Vogt. Periarteriitis nodosa und Appendehtomie. Schweiz, Med. Wschr., Bd. 22, 1957, 638.

3. 8m(3Jd

 дmosel zuбzoonstrgavan.

 cofzanongaymos unlubmols (zomgzo pos dolun oुmofangobo. afgeob audmamentang.

2月る"

 (6,09 8\%, Бо (зз muce 7,49 a\%-Lo).

 \%евоквда.

 $1,128 \%$-0.


```
@)435030
```


 aronmoun
(mgerfornol amezneo 8.12.1963)

КЛИНИЧЕСКАЯ МЕДИЦИНА

Г. Г. ГОЦАДЗЕ

If BOHPOCY H3MEHEHMЯ ODIIETO DEHVA KPOBU 14 ELO ФРАКШИИ В ЗАВИСИМОСТИ ОТ IEPEЛИВАНИЯ СУХОЙ ПТАЗМЫ

Peзюм е
Нараду с кみнической картиной иशучеш пзменения количества обшего белка крови и его фракиии в зависимости от переливания сухой плазмь: крови при токсижозах второй поновнны беремнности. Ғоличество общего белка определялось рефрактометрическим методом, тогда как фракпии белка - электрофорезом на бумаге в сочетини с фогоколориметией.

Наблюдения проводилнсь на 40 женшинах: на $30-$ - при нормальной беременности, на го же - при токспкозах второй половины беременности. Пз этих Іо женшии пятерых лечили сернокислой магнезией по обшепринятой методике. Эга группа одновременно служила контролем для остальных пяги больных, которых лечили только при помощи внутривенного введения раствора сухой плазмн кровн.

Установлено, что при нормальной беременности количество общего белка и его фрақиии несколько понижается (7,59 г \%) , а при тоқсикозах второй половины беременности эти изменеиия носят более интенсивный характер (5,09 г\%). Магнезиальная терапия несколько повышает уровень изученных иами ингрелнентов (7,52 г \%), но они остаются ниже величин, характерных для нормальной беременности. При искусственном введении сухой плазмы отмеается резкое повышение обмего белка и его фракции $(8,82$ г\%), а ия уровень достигает величин, близких ік наблюдаемнм у небеременных женщин.

Результаты исследования позволили нам рекомендовать внутривенное введение сухой плазмы крови қак один из действенных способов қомпленсного лечения токсикозов второй половины беременности.

1. Е. П. Гребенников. Зависимость между тяжестью нефропатии беременных и содержанием в крови микроэлементов и белковых фракций. „Токсикозы беременных", т. 1. Киев, 1961.
2. Gy. Balo, I. Ruzicska. E. Kiss, G. Györik. Üben den wert der Plasmatransfusionen bei Schwangensahafstoxitimion Papierelectrophoretische Untersuchungen der Serumproeine. Zbl. f. Ginekol., N. 21, 1960.
3. Е. А. Могнян. Количество об́щего белка и белковых фракций в сыворотке крови при беременности. Акушерство и гинекология, № 3, 1957.
4 А. М. Королева. Антитоксическая функция печени при токсикозах беременности. В кн.; „Острые гепатиты", 1950.
4. Е. Л. Рыбалко. Белки плаценты и сыворотки крови у женщин, страдающих поздним токсикозом беременных. Акушерство и гинекология, ле 5, 1963.

Р. А. ДАВИГУЛИАНИ

К ВОПРОСУ ГЕМОДИНАМИЧЕСКИХ СДВИГОВ ПРИ HEKOTOPDX ФОРМАХ ПОВЫШШНИЯ ВНУТРИЧЕРЕПНОГО ДАВЛЕННЯ

(Представлено академиком П. П. Кавтарадзе 10. 2.1963)
Вопросу изменения гемодинамики при повышении внутричерепного лавления посвящено большое количество исследований $[1-8]$.

Актуальность этой проблемы обусловлена сложностью патогенеза внутричерепного давления и важностью выяснения роли и участия в нем гемодинамического фактора.

Наряду с этим, данный вопрос имеет и болышое практическое значєние при диагностике ранних признаког титракраниальной гипертензию; изменения показателей общего артериального, венозного и регилнарного давления могут быть также использованы в определении локализадии и стороны патологического процесса.

Исходя из указанного выше, мы задались целью изучить при поиынении внутричерепного давления динамику изменений общего артериального и венозного давлсния, давления в поверхностной висофной и пентральной артериях сетчатки и их взапмоотношение.

Всего исследовано 115 больных с различными формами и степенями пнтракраниальной гипертензни.

Кроме того, гемодинамические сдвиги были изучены при резком и быстром падении внутричерелного давления при эвакуации ликвора (29 больных) и быстром нарастании ликворного давления путем введения воздуха в спинномозговой канал (28 больных).

Повышение внутричерепного давления, обусловленнсе объемным процессом. мы условно подразделили на три группы: а) легкое (в основном субъективные жалобы, ликворное давление лежа от 18 до 23 по Клоду) ; б) умеренное (ликворное давление от 23 до 28, начальный этек сосяов зрительных нервов, на краниограмме-лєпие признаки поъышения внутричерепного давления) ; в) резкое (ликворное давление

ьыне 28. на рентенограмме черепа-пальцевые вдавления и изменения со стороны турецкого седла, резко выражепные застойные соскиі.

Опухолевый материал с учетом локализации по областям приведен в табл. 1.

Таблица 1

Общее артериальное систолическое давление оказалось повышен॥im у 6 , сниженным - у 12 , нормальным - у 61 больного. Іримерно такие же результаты получены в отношении минимального давления, разница лшшь в том, что в случаях нормального давления диастолитаское давление в большинстве стучаев соответствовало верхним граमицам нормы.

Особо надо отметить тот факт, что понижение артериального дявжения наблюдалось при локализации патологического очага в стволе 1 वловного мозга.

На нашем материале мы не смогли отметить параллелизна между повынением ликворного и общего артериального давления, более того, 1) части случаев резкого повышения внутричерепного давления орахиалыное давленне оказалось сниженным.

При двусторонием измерении брахиальное давление в полавляю!ем большинстве случаев оказалось симметричным нли же асимметрия не превышала 5-10 мм. рт. ст. В редких случаях асимметрия достигала $15-25 \mathrm{~mm}$ рт. ст. Болес высокое давление соответствовало (topose oryxom.

Піам удалоьь установить, что асимметрия брахиального давлеяня sаще наблюдается при опухолях лобной, височной и особенно теменной долеः.

Измерения артериального давления в динамике показали уменьшение асимметрии параллельно с улучшеннем состояния больных после опрративного удаления опухоли.

Таким об́разом, наши наблюдения в некоторых случаях показали »заимосвязь общего артериального давления с характером и локализицией патологического процесса, что проявляется в снижении давле„ия и асимметрии между правой и левой сторонами. Так, например, в случаях локализации опухоли в стволе мозга общее артериальное давление бывает сниженным, но симметричным с двух сторсн, тогда как при опухолях, расположенных на конвекситальной поверхности мозта (лоб, висок и особенно темень), наблюдаетсл асимметрия давлений.

Исследование давления в поверхностной височной артерии выязило его значительное повышение независимо от степени повышения интракраииального давления.

Нсключение составляют случаи опухолей лобной и теменной долей, а также задней черепной ямки, где височное давление повыштатгя параллельно повышению ликворного давления.

Давление в височной артерии в основном асимметрично (с разниней до 10 мм рт. ст.). Более высокие пифры давления соотьетствуют ,тороне поражения головного мозга.

Из 70 обследованных больных давление в щентральной артерни сетчаткн оказалось повышениым у 43, нормальным-у 20, сниженіым 17

Б случаях повышения давления в центральной артерии сетчатки повышаются как систолические, так н диастолические показатели, одпако минимальное давление выявляет тенденцию к более обширным колебаниям (30 мм рт. ст.), чем максимальное ($15-20 \mathrm{mм} \mathrm{рт}. \mathrm{ст)}$.

Интересно отметить. что в по-авляюцем большинстве случаев давлснне в центральной артерии сетчатки повышается при опухолях ство1а, желудочксв, задней черепной ямки и других локализашиях опухолей, которые ведут к отеку и дислокации ствола головною мозгл.

На наї взгляд, этот факт можно объясиить раздражением ствотояых сымпатических аппаратов.

Экспериментальные исследования [9] показали, что әлектрическое и механическое раздражение продолтоватого мозга и варолиева мостd вызывает симпатический эффект: эфферентные симпатические во.окна, начинающиеся в задних отделах гипоталамуса, проходят соедпий и продолговатый мозг. Часть их перекрещивается в ретикулярноі формации ствола и вместе с прямыми волокнами идет к цилио-спинальғому нентру Будге.

Думаем, что раздражение упомянутых симпатических образований обусловливает повышение ретинального артериального давления.

Соотношения височного и брахиального, височного и ретинальяоIC, а также ретинального и брахиального давлений приведены в табл. 2. Қак видно из таблицы, в большинстве случаев параллельно повы-

пению внутричерепного давления повышается височно-плечевой и ре-шнально-плечевой систолический нндексы, тогда как повышение отдельных ингредиентов (брахиального, зисочного и ретинального давле1f. i) наблюдаєтся в значительно меньшем количестве случаєв.

Таблица 2

Височно-плечевой индекс$(\mathrm{N}=0,50)$						Ретинально-плечевой систолический индекс$(\mathrm{N}=0,59)$						$\begin{gathered} \text { Ретинально-плече- } \\ \text { вой днастоличес- } \\ \text { кий индекс } \\ \left(\mathrm{N}^{-}=0,52\right) \end{gathered}$						Ретинально-височ- ный индекс $(\mathrm{N}=1,12)$			
79						70						69						69			
20			59						62			33			36			31		38	
式															$\begin{aligned} & \text { 플 } \\ & \ddot{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			중 $\underset{\sim}{0} \approx$ 会 흘울 은 들			
10		10	49	10		5		3	45	17		21	12	2	27				5	22	16
		Равномерный с двух сторон																			
10	2		38	-	-	2	-		-	10			,	10		6			6	$6 \mid 2$	12

Єаким образом, для выявления интракраннальной гипертензии большое значение надо придавать соотношению давлений, а не абсодютным их величинам.

Обращает на себя внимание более резкое повышение височно-плечевого и ретинально-плечевого систолического индексов на стороне очага, что приобретает важное значение с точки зрения вылснения сторонности поражения.

ㄴто эке касается височно-ретинального индекса, то он повышен на противоположной стороне опухоли. Этот факт также надо учитывать для выяснения сторонности патологического процесса.

К вопросу гемодинамических сдвигов при некоторых формах повыныния...
При глубинных опухолях, вызывающих отек и дислокацию ствола : оловного мозга, наблюдается резкое повышение всех индексов с двух сгорон б́єз значительной асимметрии.

Общее венозное давление было исследовано у 79 боліных.
Из 37 больных с резко выраженным повышением внутричерепного давления венозное давление оказалось резко повышенным у 30, умеренным - у 5 и пормальным - у 2 больных.

Из 31 больного с умеренной интракраниальной гипертензией резкое повышение венозного давления наблюдалось у. 9, умеренное - у 14; давление оставалось нормальным у 6 больных.

B случаях легкого повышения внутричерепного давления венозное давление в основном оставалось в пределах нормы.

Таким образом, высокие цифры венозного давления наблюдаются при умеренной и резкой интракраниальной гипертензии, причем между повышением венозного и внутричерепного давления выявляется ятрогий параллелизм.

Таблица 3

Наименова- ние болезни	Брахиальное давление						Ретинальное давление						Темноральное давление			Венозное давление		
	Систоли ческое			Диастолическое			Систолическое			Диастолическое								
		$\begin{aligned} & \stackrel{0}{0} \\ & \frac{1}{2} \\ & \frac{1}{5} \\ & \frac{5}{2} \\ & \frac{0}{I} \end{aligned}$														-		
Субдуральная гематома (6 больньіх)	1	4	1	-	4	2	1	2	3	1	2	3	1	1		-	2	4
Закрытая че-репномозговая (30 боль- ных		29	1		28	2	18	9	3	16	12	2	26	2	2	-	4	26

Измерения в динамике выявили нормализацию венозного давления после успешного оперативного вмешательства с тотальным удалением опухоли, в случаях же безуспешной активной терапии параллельно с ухудшением общего состояния больных венозное давление резко падает, что, по нашиім данным, является плохим прогностичегким признаком.

Противоположные данные были получены в случаях консервативного лечения - ухудшение обшего состояния больных сопровождалось повышением венозного давления.

Надо отметить, что в случаях венозной и тикворной гипертензии субарахнондальное давлєние всегда было выше венсзного н соотиошение нежду ними равнялосі $1: 1,4-1,5$.

установленный факт дает возможность примерно вычислить ликворное давление по величине венозного, без люмбальной пункии.

Нзучение изменений гемодинамики нами было проведено также у больных с закрытой черепномозговой травмой (табл. 3).

Как видно из табл. 3, общее артериальное давление особых изменений не выявляет, в то время как общее вепозное давление оказалось повышенным.

Ретинальное и особенно темпоральное давления были снижепы. Сниженными были и височно-плечевой, и ретинально-плечевой максимальный и минимальный индексы, в то время как в большинстве случаев наблюдалось повышение ретинально-височного индекса, чтп мпжно объяснить большим колебанием с тенденцией к понижению височного давления. Интересен тот факт, чпо после энергичной терапии параллельно с улучшением общего состояния больных отмечалась нормализация всех гемодинамических показателей, кроме венозного давления а ретинально-височного индекса, которые остаются повышениыми в течение 5-6 месяцев после перенесенной травмы. Этот факт может быть использован в динамике установления перенесенной закрытой черепномозговой травмы.

Изменения гемодинамических показателей при травматических (уо́дуральных гематомах выявило сходство с изменениями, наблюдаемыми при опухолевых заболеваниях головного мозга, с той лишь разницей, что при гематомах не отмечается прямой зависимости изменений гемодинамических показателей со степеньіо интракраниальной гипертензии. Это обстоятельство следует об́вянить нарастанием внутричерепного давления более быстрым іни гематомах, чем при опухолях.

Наши наблюдения, касающиеся быстрого повышения внутричерепного давль ия (введение воздуха в спинномозговой канал) и понижения его путем эвакуации ликвора, показали тесную связь и прямую зависимость изменения гемодинамики с изменением интракраниальной гилергензии.

Институт клинической и экспериментальной неврологии АМН СССР

Тбилиси

 yout on $3039^{\text {5. }}$

 उचмпо Јмдм

1. А. И. Арутюнов. Узловые вопросы учения о внутричерепной гипертензии и пути дальнейшего ее изучения. Проблемы нейрохирургии, т. II, 1955.
2. Э. И. Кандель. Асимметрии артериального давления при опухолях головного мозга. Вопросы нейрохирургии, т. XIX, 3, 1955.
3. Г. И. Маркелови С. А. Ровижский. Регионарные церебральные гипертонические и гипотонические синдромы. Советская психоневрология, ле 4, 1940.
4. И. И. Меркулови З. Д. Кизельман. Ретинальное кровообращение при опухолях головного мозга. Вопросы нейроофтальмологии, т. 3, 1959.
5. II. М. Сараджишвилии С. В. Мусхелишвили. К вопросу о взаимоотношениях между синокаротидным рефлексом и мозговым кровообращением. Сборник трудов, посвященный 50 -летию научно-педагогической деятельности В. В. Воронина. Тбилиси, 1941.
6. А. И. Златоверов. К механизму повышения внутричерепного давления. Bопросы нейрохирургии, №6, 1955.
7. P. Bailliart. La circulation retinienne a L'etat normal et pathologique. Paris, Doin, 1923.
8. M. Kalt. La pression arterielle retinienne dans L'hypertension intracranienne. Paris, 1927.
9. Л. А. Корейша и П. М. Иргер. К физиологической роли в иннервации внутриорбитальных мышц. Экзофтальмия при опухолях задней черепной ямки. Вопросы нейрохирургии, № 3, 1960.
 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, ХХХV:2, 1964 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, $\times \times \times V: 2,1964$

0. 6060003 1 da

[^4]

 ழ.œ๐бо?

 tro उamomozan ubgeo ontlbol.

 sbocmo Jomorymotio obocm agend by mens.

 3 -लっ5 [2].

 togth of ofazb.

 mog zon Form:

 dor刀ुल心.

 H. E. (I, 17).

 hewer: Freilich hat die Notiz bei sozomenus Verwirrung angerichtet [17]).

 Lgoubjogel amonбozaб.

Lognorbrt zucputufy foo

(ng@ofonnal amyzn@o 1.3.1964)

ЛИТЕРАТУРОВЕДЕНИЕ

Э. Г. ХИНТИБИДЗЕ

ИЗ НАУЧНОЙ ТЕЯТЕЛЬНОСГИ ЕФРЕМА МЦИРЕ
 Резюме

Статья касаесся некогорых научно-критических соображений грузинского филолога Ефрема Мцире.
I. В одном из оригинальных қомментариев Ефрема Мцире, ириложенных к грузинскому переводу «Нравственных правил», ставится вопрос об отношении древнейших грузинских переводов Евангелия к греческому тексту. Вопрос о том, проистекает ли грузинский перевод Евангелия непосредственно из греческого текста или же он был лишь нсправлен на основе гречесного оригинала в более поздний первод, до сих пор явщяется неразрешенным

В комментарии Ефрема обращается внимание на одно место из Евангелия, в котором древнейший грузинский перевод Четвероглава отличаетя от релакиии, перевсдеиной Георписм Афонским в XIв. Ефрем Миире отмечаст, что в этои тексге греческое Евангелие соответствует тексту, переведенному Георнем Афонскии, а древнеїший грузинский перевод отличается от этого треческого тенста.

Ефрем пбнаружия именно атот отрывок из Гвангелия в олном из произведений Baсиния Beликого. Он учитывает то обстоятельство, что Васитий Великий. которюй ириводит эгот отривок в «Нравственных правинах», двляется "исателем 1 V в. и поэтому в его сочпненин әто место должно быть прелставлено так, қак оно читалось, в треческом Евангелии 1 V в.

Эго спорное место из Евангелия ириведенное в "Нравственных иравилах», Ефрем сличает с грузинскими редакциями и убеддается в том, что греческое Івангелие IV в. здесь совпалает с древнейшим грузинским переводом.
2. Аскетические сочяиения вьдаюmerося представителя византийской литературы Василия Калнадокия̊скогс, видимо, еше при его дизии были объединены в со̄ориик, названный Аскетиконом». Известныиї историк Vв. Созомен указываег, что аскетическую киигу Васндия Юесарийского некоторые приписювают Евстафпю Севастийсюому (H. E., III, I4). Однако сотни сохранившихся до настоящего времени рунописей совериено определенно признают упоминтую Совомения аскетическуп кииту ириналлежащей Василию. Миогис писатели и псторики также считапт Васияия автором этой кииги.

Ефрем Mиире хорошо знаком с этям вопросом. Товазввая, что автором (Книгй уиражкнений» был Васнлииी Каппалокийскипі, а не Евстафий Севастийский, Еррем Миире написал спенимьиий ғомментарий, в котором он исходит непосрелствеино из первоняточинов. В частности, он заостряет внимание на сообтении Гриория Назианзина о том, что Василий учрелид в монастырях правила полвижиичества. В спецпальой научной литературе именно это сведение 1 ритория Нааиаизиа считается основным н несомненным доказательством в решении данной проблемы.

6. Ф. Жордания. Описание рукописей Тифлисского перковного музея, I1. 1902, 165.

8. J.-P. Migne. Patrologia Graeca, t. 67, 1864, $1077-1080$.
9. J. Grilomont. Histoire du texte des Ascétiques de s. Basile, Louvain, 1953
10. O. Bardenhewer. Geschichte der altkirchlichen Litesatur, 111, 1912.
11. Altaner Ber. Patrologie, 958.
12. P. Allard. St-Basile, 1899.
13. ф. фарр ар. Жизнь и труды свяғых отцов и учителей шеркви, 11, 1903.
14. J.-P. Migue. Patrologia Graeca, t. 36, 1858, 54 н.
15. Rufinus. Histoire Eccléscastique, XI, 9, ed, Mommsen, 10.7. nb.: J. Grilomont, Histoire..., 107.
16. R. Raabe. Petrus der Iberer. Leipzig. 1895, 135.
17. O. Bardenhewer. Geschichte der altkirchlichen Literatur, 111, 141.

 СООБЩЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР, $\mathrm{XXXV:2}$, BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, XXXV:2, 1964

Mnodmsongol nuommos

जMer. yozu500\%30cen

 Formb ([1]. $83.38-39$).

 nu zymon, mmajemna hizobnbo hoamazo meso fiolns.

 @o8tnugborygo 196 ([3], 83. 15).

 smeo (3memon @o ghooso Zuobyginon (44], 33. 92).

 5uдpodmao afamo.

 no

 znt abtygma

 Bैyocmmo ano

 ([3], 83. 120).

[^5]

'166-168).

 ழoз

([2], bob

 Oy30 juḿnz zulugmbgzo" @o

([2], Lón. 187 - 188).

 1730 9mabon.

((rg@っすunols वmyzn@ 14.4.1964)

ИСТОРИЯ ЛИТЕРАТУРЫ

С. И. КУБАНЕишвИли

O. ЛИЧНОСТИ АВТОРА «ВАХТАНГНАНИ»

Резюме
Поэма «Вахтангиани» заслуживает внимание как памятниқ исторического эпоса, содержащий подробные сведения о переселении грузин в Россию (XVIII в.) и деятельности трузинского паря Вахтанга V1 в 1724-1727 гг.

Поэма написана одним из членов свиты Вахтанга - Павленишвили.
Среди лиц, сопровождавіих Вахтанга VI в 1724 Г., числидись четыре Павленишвили (Георгий, Отиа, Пациа, Бери). Из них, Как выясняется, автором «Вахтангиани» был Отиа Павленишвилп.

После февраля у726 г. Отиа Павленишвили переселился из Астрахани в Mоскву. ІІри дворе паря Вахтанга он занимал определенную должность.

После концины щаря Вахтаны (25 марта 1737 г.) lеоргий, Отша и Бери Павленишвили приняли русское подланство.

C 28 июня 173^{8} г. Павленищвили были зачшслены в трузинскую гусарскую роту. В 1739 г. они получили поместья на Украине в c. Новый Санжар, по десять дворов каждый. В том же году они приняли участие в боях за Крым, а в г741-1742 гг. - в войпе против Швещии.

Отиа Павленишвили был освобожден от военной службы в у743I745 гг. Носле этого он поселидся на $\mathrm{V}_{\text {краине, в своем поместье, где }}$ занимался хозяйством и вел общественную леятедьность.

3. Uल

Гл. редактор - академик Академии наук Грузинской CCF
P. P. Дв а ли

Подписано к печати 25.7.1964; зак. № 1030; размер набора 7×11; размер бумаги 70×108; количество уч.-изд. листов 19 ; количество печатных листов 16; УӘ 02772; тираж 1400

Типография Издагемьства *Медниереба», Тбнинси. УА. Г. Табидзе № 3/5.

asめOas®®กふう－MATEMATИKA－MATHEMATICS
Ш．С．Кемхадзе．О некоторых свойствах факторизуемых групп 257
 262
Т．А．Эбаноидзе．О функциях ог счетного числа аргументов 265
 270
О．Н．Напетваридзе．О приближенном решении третьей краевой задачи теории теплопроводности 271
 276
 THEORY OF ELASTICITY
М．О．Башелейшвили．Решение третьей и четвертой граничных задач статики анизотропного упругого тела 277
 284

C．B．Меунаргия．Моделирование притока грунтовых вод к открытым ка－ налам прямоугольного профидя при наличии промежутка высачивания ． 285
 291
צ080Зड－ФНЗИК－PHYSICS
M．А．Мествиришвили，Э．Ш．Теплицкий．Квазистационарные уровни в цилиндрическом магнитном поле 293
 298
И．А．Мирцхулава，З．Н．Чигогидзе，Н．И．Курдиани，Л．В．Хве－ делидзе，Р．Б．Джанелидзе．О возможности получения высоко－ омны．．скомпенсированных кристаллов антимонида индия путем термо－ обработки 299
 301

 T⿹勹口yulyỏnt loznorboluangol 303
＊И．В．Айвазишвили，В．Г．Папалашвили．К вопросу оценки магни－ туды землетрясений Һавказа 306

[^6]Х. И. Арешидзе (член-корреспондент АН ГССР), Т. Н. Чарквиани. Исследование индивидуального углеводородного состава бензина мирза- анской нефти 307
 313
Т. С. Шакарашвили, Н. Г. Бекаури. Синтез алкилароматических угле- водородов 315
 agon 317
30Manans-БИОХИМИЯ-BIOCHEMISTRY
 319
*Ф. Г. Ветрогон, Е.Г. Ратиани. Белковые фракции, липопротеиды и гликопротеиды крови при разных формах нарушения мозгового кровооб- ращения 323
 325
*Л. А. Керкадзе. Применение некоторых бнохимических проб в грудном возрасте при различных формах пневмоний 331
зЈmamanmmmans-ПАЛЕОБИОлОГИЯ-PALAEOBIOLOGY
 6n@os 333
*Г. А. Мчедлидзе. Остатки хоботных из среднемионеновых отложений За- падной Грузии 337
Л. В. Мусхелишвили О своеобразном представителе рода Calliostoma из среднего сармата Мегрелии 339
 341
 STRUCTURAL MECHANICS
Г. В. Кизирия. Методика приближенного определения усилий в много- кратно статически неопределимых комбинированных конструкциях 343
 348
Н. А. Попов, Г. П. Хомерики. Агломерация материалов способом верх- него отсоса газов 349
 3ntro@s sampimzou âgorm@nom 353

М. Г. Джигаури. О применении вероятностного метода в определении ем- кости водохранилища комплексного назначения на горной реке 355
 362

И1．Е．Чичинадзе．Некоторые вопросы дождевания склонов дальнеструй－ ными аппаратами
363
363
 gウonn lajnのbn 370

A．С．Вашакидзе．Расчет усилий при горячей прокатке толстых полос
371
371
 ヶロ\％の
378
378
Г．Г．Гвелесиани，Ш．М．Безарашвили，Н．П．Мгалоблишвили． Об алюмотермическом восстановлении окнси европия
379
379
 386

A．А．Лзидзигури（член－корреспондент Академии наук Грузинской ССР）， Ш．И．Ониани，Т．О Лацабидзе．Нсследование геотермии шахты „Комсомольская＂треста „Ткибулуголь＂методом электрического моде－ лирования
387
387
 394

A．Г Гавакеташвили．Наследование и изменение некоторых признаков у межвидовых гибридов винограда 395
 401
добу0з0м3s－лECOBOДСТВО－FORESTRY

 403 403
＊Э．Д．Лобжанидзе．К вопросу изучения строения и физико－механических свойств древесины пицундской сосны 407

Д．Н．Кобахидзе．Большой еловый лубоед и большой ризофаг в еловых лесах Боржомского ушелья
409
409
 412
sбऽठmans－AHATOMИЯ－ANATOMY
Л．И．Шейнина．Состояние структуры центрального конца речедвигатель－ ного анализатора в предстарческом，старческом возрастах и в возрасте
долголетия долголетия

 419413
 ＊H．А．Мтварадзе．Состояние структуры стенки червеобразного отростка и его нервных приборов при остром аппендиците у детей 426
8. 8 y $\delta>$ ए 429.
*Г. П. Зубадалашвкли. Сравнительная оценка процессов пищеварения в эксперименте после резекции желудка по классическому методу Бильрот-I1 и после гастроеюнопластики 435
У. С. Русадзе. К вопросу отдаленных последствий черепномозговых травм в детском возрасте 437
 $\mathrm{O}_{3} \mathrm{O}_{3} \mathrm{zan}$ suojon 444
 445
*В. И. Гванцеладзе. К вопросу о механизме действия минеральной воды Зваре на внешнесекреторную функцию поджелудочной железы 451
И. В. Андгуладзе. Функциональная взаимосвязь анализаторов и их роль в динамике безусловных рефлексов 453
 458
 EXPERIMENTAL MEDICINE
Г. Д. Иоселиани, В. К. Буджиашвили, А. В. Хучуа. К методикеизо- лированной перфузии головного мозга и сердца в условиях гипотермин 461
 468
 CLINICAL MEDICINE
 एウை 469
*Т. Н. Гегия. Электрокардиографические изменения при эпидемическом гепа- тите 474
А. В. Ефремов. Язвенныс поражения двенадцатиперстной кишки при узел- ковом периартериите 475
 गtognool एomb 482
 483
*Г. Г. Гоцадзе. К вопросу изменения общего белка крови и сго фракции в зависимости от переливання сухой плазмы 486
P. A. Давитулиани. К вопросу гемодинамических сдвигов при некоторых формах повышения внутричерепного давления 489
 495
 LITERARY CRITICISM
 497
*Э. Г. Хинтибидзе. Из научной деятельности Ефрема Мцире 504
 HISTORY OF LITERATURE
 505
*С. И. Кубанеишвили. О личности автора „Вахтангиани" 511

УТВЕРЖДЕНО
Презндиумом Академии наук
Грузинской ССР
28.3.1963

ЏОЛОЖЕНИЕ О «СООБШЕНИЯХ АКАДЕМИИ НАУК ГРУЗИНСКОЙ ССР*

1. В „Сообщениях Академии наук Грузинской ССР" публикуются статьи научных работников Академии наук Грузинской ССР и других ученых, содержащие сжатое изложение основных результатов их исследований.
2. „Сообщениями" руководит редакционная коллегия, избираемая общим собранием Академии наук Грузинской ССР.
3. .Сообщения* выходят ежемесячно отдельными выпусками приблизительно в объеме 16 печатных листов каждый. Выпуски каждого квартала (три выпуска) составляют один том.
4. Статьи должны быть представлены на двух языках: на грузинском и русском. На одном из них, по желанию автора,-полный текст,а на другом языке-краткое изложение основного текста
5. Объем статьи, включая иллюстрации, не должен превышать 20000 тнпографских знаков (8 страниц журнала). Разделение статьи на отдельные части для опубликования в разных выпусках „Сообщений" не допускается.
6. Статьи действительных членов и членов-корреспондентов Академии наук Грузинской ССР сдаются непосредственно в редакцию ,Сообщений* для опубликования, а статьи других авторов публикуются только по представлению действительных членов или членов-корреспондентов Академии. Статьи, поступившие без представления, направляются редакцией одному из действительных членов или членовкорреспондентов Академии на рассмотрение, с тем чтобы в случае положительной оценки статья была представлена для опубликования.
7. Статьн (а также соответствующие иллюстрации и чертежи) должны быть тредставлены автором в одном экземпляре, в совершенно готовом для печатания виде формулы должны быть четко вписаны в текст от руки. Текстовые части на иллюстрациях должны быть выполнены на обоих языках. Никакие исправления и добавления после принятия к печати не допускаются.
8. Данные о цитированной литературе должны быть по возможности полными: нелбходимо указать полное заглавие статьи, название журнала, в котором опубликована статья, номер серии, тома, выпуска, год издания; если имеется ссылка на книгу, то необходимо указать полное наименование книги, место и год издания.
9. Цитируемая литература должна приводиться в конце статьи в виде списка. ІІри ссылке на литературу в тексте статьи или в подстрочных примечаниях следует указывать номер по списку, заключая его в квадратные скобки.
10. В конце текста статьи автор на соответствующем языке должен указать название и местонахождение того научного учреждения, где выполнена работа.

Статья датируется днем поступления ее в редакцию.
11. Автору представляется одна корректура в сверстанном виде на строго ограниченный срок (не более двух дней). В случае невозвращения корректуры к сроку редакция вправе приостановить печатание статьи или напечатать ее без визы aвтора.
12. Автор получает бесплатно 10 оттисков своей статьи.

АДРЕС РЕДАКЦИИ: ТБИЛИСИ, ул. ДЗЕРЖИНСКОГО, 8
Телефон 3-03-52
Условия подписки: на 1 год- 12 руб., на 6 месящев- 6 руб.

nぃЈ
¢ 03 m m 3 s

 タフロм

 es Pipmol anononjos．

 д̀yलの

11．उЗ るann（
 emb

[^0]: ${ }^{1}$ Другой вывод измеримости таких функций имеется в работе [2].

[^1]: ${ }^{(1}$ Аналогичные траектории при $|\boldsymbol{|}|<\mathrm{r}$, но для другой задачи получены в работе [5] (l-орбитальный момент).

[^2]: жаем ему блектральная часть исследования выполнена В. Г. Знзиным. за что выра

[^3]: Академия наук Грузинской ССР
 Институт экспериментальной и
 клинической хирургии и
 гематологии
 Тбилиси

[^4]:

[^5]:

[^6]:
 ＊Заглавие，отмеченное звездочкой，относится к резюме или к переводу пред－ шествующей статьи．
 ＊A title marked with an asterisk applies to a summary or translation of the preceding article．

