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SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS IN THIN
PRISMATIC DOMAINS

Jaiani G.

Abstract. The paper is devoted to a dimension reduction method for solving boundary
value and initial boundary value problems of systems of partial differential equations in thin
non-Lipschitz, in general, prismatic domains.

Keywords and phrases: Partial differential equations, order degeneration, dimension re-
duction method, thin non-Lipschitz prismatic domains.

AMS subject classification (2000): 35A25; 35J70; 35J75; 35K65; 35K67; 35L80; 35L81.

The paper deals with the system of n first order linear partial differential equations

Aijkuj,k + Bijuj + Ci(x) = 0, i = 1, 2, . . . , n, (1)

where

Aijk, Bij = const and functions Ci(x), i, j = 1, 2, . . . , n, k = 1, 2, 3, are given

(under repeated index j the sum from 1 to n is meant, under repeated k the sum from
1 to 3 is meant, and under repeated Greek indices the sum from 1 to 2 is meant), in
n unknown functions ui (x1, x2, x3) of three variables in the following non-Lipschitz, in
general, 3D prismatic domain with the Lipschitz 2D projection ω on x3 = 0:

Ω :=

{
x := (x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω,

(−)

h (x1, x2) < x3 <
(+)

h (x1, x2)

}

where 2h :=
(+)

h −
(−)

h > 0 in ω ∪ γ1, 2h = 0 on γ0; ∂ω = γ̄0 ∪ γ̄1, ν is an inward normal
to ∂ω. Each of γ0 and γ1 may be empty but , clearly, not at the same time. When
∂h

∂ν
= 0 on γ0, the domain Ω is a non-Lipschitz one.

The boundary value problems for the system (1) in the 3D non-Lipschitz, in general,
domain Ω can be reduced to the boundary value problems in the Lipschitz 2D domain ω
for the infinite system of singular first order partial differential equations with respect to
the s. c. weighted Legendre moments (see [1,2]) of the unknown functions ui (x1, x2, x3):

vir(x1, x2) =
uir(x1, x2)

hr+1
, i = 1, 2, ..., n, r = 0, 1, ..., (2)

where

uir (x1, x2) =

(+)

h (x1,x2)∫

(−)

h (x1,x2)

ui (x1, x2, x3) Pr (ax3 − b) dx3,

a =
1

h
, b =

h̃

h
, 2h̃ =

(+)

h +
(−)

h .
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By this approach difficulties caused by the geometrical singularity of the 3D domain
are reduced to the singularity of the equations. In other words, we avoid consideration
of 3D non-Lipschitz domains but we get the infinite system of partial differential equa-
tions with singular coefficients in 2D Lipschitz domains. In order to present this we
apply I.Vekua’s dimension reduction method [1,2]. To this end we multiply both the
sides of the system (1) by Pr(ax3 − b) and the obtained expressions integrate within

the limits
(−)

h (x1, x2) and
(+)

h (x1, x2):

Aijα

[
ujr,α −

(+)

h ,αuj

(
x1, x2,

(+)

h

)
+ (−1)r

(−)

h ,αuj

(
x1, x2,

(−)

h

)

−

(+)

h (x1,x2)∫

(−)

h (x1,x2)

(a,αx3 − b,α) P ′
r (ax3 − b) uj(x1, x2, x3)dx3




+Aij3

[
uj

(
x1, x2,

(+)

h

)
− (−1)ruj

(
x1, x2,

(−)

h

)

−a

(+)

h (x1,x2)∫

(−)

h (x1,x2)

P ′
r(ax3 − b) uj(x1, x2, x3) dx3




+Bijujr + Cir (x1, x2) = 0, (x1, x2) ∈ ω, i = 1, n, r = 0, 1, . . .

(under repeated α the sum from 1 to 2 is meant), i.e.,

Aijα

(
ujr,α +

r∑
s=0

r
aαsujs

)
+ Aij3

r∑
s=0

r
a3sujs + Bijujr

+Aijα

[
−

(+)

h ,αuj

(
x1, x2,

(+)

h

)
+ (−1)r

(−)

h ,αuj

(
x1, x2,

(−)

h

)]

+Aij3

[
uj

(
x1, x2,

(+)

h

)
− (−1)ruj

(
x1, x2,

(−)

h

)]

+Cir (x1, x2) = 0, i = 1, 2, 3, r = 0, 1, . . . ,

where

r
aαr := r

h,α

h
,

r
aαs := (2s + 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, s 6= r, α = 1, 2,

r
a3s := −(2s + 1)

1− (−1)s+r

2h
.

The last system is the system of singular partial differential equations which can
be easily rewritten in terms of vir. The obtained infinite system of partial differential
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equations will be a system with the order degeneration for a nonempty γ0:

Aijα

[
(hr+1vjr),α +

r∑
s=0

r
aαsh

s+1vjs

]
+ Aij3

r∑
s=0

r
a3sh

s+1vjs + Bijh
r+1vjr = Fir, (3)

i.e.,

Aijα(hr+1vjr),α +
r∑

s=0

r

Eijsh
s+1vjs = Fir, i = 1, 2, ..., n, r = 0, 1, 2, ...,

where
r

Eijs := Aijk
r
aks + Bijδrs,

δrs =

{
1, r = s;
0, r 6= s,

i, j = 1, 2, ...n, s = 0, 1, ..., r, r = 0, 1, 2, ...,

Fir := Aijα

[
(+)

h ,αuj

(
x1, x2,

(+)

h

)
− (−1)r

(−)

h ,αuj

(
x1, x2,

(−)

h

)]

−Aij3

[
uj

(
x1, x2,

(+)

h

)
− (−1)ruj

(
x1, x2,

(−)

h

)]
− Cir (x1, x2) , (4)

i = 1, 2, ..., n, r = 0, 1, 2, · · · .

Those of uj(x1, x2,
(+)

h ), uj(x1, x2,
(−)

h ) which are given in 3D problem on x3 =
(+)

h (x1, x2)

and x3 =
(−)

h (x1, x2) remain with its given boundary values in the right hand side Fir of

the system (3), those of uj(x1, x2,
(+)

h ), uj(x1, x2,
(−)

h ) which are not given on the above
surfaces should be replaced by their Legendre-Fourier expansions there, i.e.,

uj(x1, x2,
(±)

h ) =
∞∑

s=0

(±1)s(s +
1

2
)hsvjs(x1, x2),

containing unknown functions vjs(x1, x2). The last terms are to be transferred to the
left hand side of the system (3), since they contain unknown functions which are sought
for.

On the lateral subsurface

Γ := {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ∂ω,
(−)

h (x1, x2) ≤ x3 ≤
(+)

h (x1, x2)}

of ∂Ω the boundary conditions should be reformulated as follows:

(i) where
(+)

h (x1, x2) >
(−)

h (x1, x2), the functions vjr should be calculated by given
uj(x1, x2, x3)|(x1,x2)∈∂ω by means of the formulas

vjr(x1, x2) =
1

hr+1(x1, x2)

(+)

h (x1,x2)∫

(−)

h (x1,x2)

uj(x1, x2, x3) Pr(ax3 − b) dx3, (x1, x2) ∈ ∂ω; (5)



4 Jaiani G.

(ii) where
(+)

h (x1, x2) =
(−)

h (x1, x2), i.e., on the cusped (in particular, cuspidal) edge,
depending on the sharpening geometry of the cusped edge, the unknown functions vjr

either should be prescribed or not, but how to calculate them from boundary conditions
of 3D problem is the subject of special investigation.

The system (1), in particular, contains the governing first order system of the linear
theory of elasticity with respect to the stress tensor and displacement vector compo-
nents. This approach is already successfully applied to the investigation of cusped
prismatic shells with cuspidal edges (see [3-7]).

This method can be also applied to the systems of higher order partial differential
equations as a method of dimension reduction from Rm to Rm−1, m ≥ 2.
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SOLUTION OF THE THIRD AND FOURTH BVPs OF THE THEORY OF
CONSOLIDATION WITH DOUBLE POROSITY FOR THE SPHERE AND FOR

SPACE WITH A SPHERICAL CAVE

Basheleishvili M., Bitsadze L.

Abstract. The purpose of this paper is to explicitly solve the basic third and the fourth
boundary value problems (BVPs) of the theory of consolidation with double porosity for the
sphere and for the whole space with a spherical cavity. The obtained solutions are represented
as absolutely and uniformly convergent series.

Keywords and phrases: Porous media, double porosity, absolutely and uniformly conver-
gent series, spherical harmonic.

AMS subject classification (2000): 74G05; 74G10.

Introduction

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable
media with two degrees of porosity. In a material with two degrees of porosity, there
are two pore systems, the primary and the secondary. For example, in a fissured rock
(i.e., a mass of porous blocks separated from each other by an interconnected and
continuously distributed system of fissures) most of the porosity is provided by the
pores of the blocks or primary porosity, while most of permeability is provided by the
fissures or the secondary porosity. When fluid flows and deformation processes occur
simultaneously , three coupled partial differential equations can be derived [1],[2] to
describe the relationships governing pressure in the primary and secondary pores (and
therefore the mass exchange between them) and the displacement of the solid.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K.
Wilson and E. C. Aifantis [1] gave detailed physical interpretations of the phenomeno-
logical coefficients appearing in the double porosity theory.They also solved several
representative boundary value problems. In part II of these series, uniqueness and
variational principles were established by D. E. Beskos and E. C. Aifantis [2] for the
equations of double porosity,while in part III Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equations of
double porosity (see [1],[2],[3] and references cited therein). The basic results and the
historical information on the theory of porous media were summarized by de Boer [4].

The main goal of this investigation is to construct explicitly, in the form of ab-
solutely and uniformly convergent series, the solutions of the basic the third and the
fourth boundary value problems (BVPs) of the theory of consolidation with double
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porosity for the sphere and for the whole space with spherical cave.

1. Formulation of boundary value problems and uniqueness theorems

The basic Aifantis’ equations of statics of the theory of consolidation with double
porosity are given in the form [1], [2]

µ∆u + (λ + µ)graddivu− grad(β1p1 + β2p2) = 0, (1.1)

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0, (1.2)

where u = (u1, u2, u3) is the displacement vector, p1 is the fluid pressure within the
primary pores and p2 is the fluid pressure within the secondary pores. . The constant
λ is the Lame modulus, µ is the shear modulus and the constants β1 and β2 measure

the change of porosities due to an applied volumetric strain. mj =
kj

µ∗
, j = 1, 2.

The constants k1 and k2 are the permeabilities of the primary and secondary systems
of pores, the constant µ∗ denotes the viscosity of the pore fluid and the constant k
measures the transfer of fluid from the secondary pores to the primary pores. The
quantities λ, µ, k, βj, kj (j = 1, 2) and µ∗ are all positive constants. 4 is
Laplace operator.

Let D+ = {x ∈ E3||x| < a} be an open sphere of radius a centered at point 0 in
space E3 and let S = {x ∈ E3||x| = a} be a spherical surface of radius a. Denote by
D−-whole space with a spherical cave.

Introduce the definition of a regular vector-function.
Definition 1. A vector-function U(x) = (u1, u2, u3, p1, p2) defined in the domain

D+(D−) is called regular if it has integrable continuous second derivatives in D+(D−),
and U itself and its first order derivatives are continuously extendable at every point
of the boundary of D+(D−), i.e., U ∈ C2(D+)

⋂
C1(D+), (U ∈ C2(D−)

⋂
C1(D−)).

Note that for the infinite domain D− the vector U(x) additionally satisfies the following
conditions at infinity:

U(x) = O(|x|−1),
∂Uk

∂xj

= O(|x|−2), |x|2 = x2
1 + x2

2 + x3
2, j = 1, 2, 3. (1.3)

For the equations (1.1)-(1.2) we pose the following boundary value problems:
The third internal and external problem (Problem (III)±). Find in D+(D−) a

regular solution U , of the equations (1.1)-(1.2), by the boundary conditions

u±(z) = f(z)±,

(
∂p1(z)

∂n

)±
= f±4 ,

(
∂p2(z)

∂n

)±
= f±5 (z), z ∈ S,

where
f± ∈ C1,α(S), f±k ∈ C0,α(S), 0 < α ≤ 1, k = 4, 5,

are given functions.
The fourth internal and external problem (Problem (IV )±).
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Find in D+(D−) a regular solution U , of the equations (1.1)-(1.2), by the boundary
conditions

(Pu)± = f(z)±, p±1 (z) = f±4 , p±2 (z) = f±5 (z), z ∈ S,

where f± ∈ C0,α(S), f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5, are given functions, Pu is
a stress vector, which acts on an elements of the S with the normal n = (n1, n2, n3)

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.4)

here T (∂x, n) is a stress tensor [7]

T (∂x, n) =‖ Tkj(∂x, n) ‖3x3,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj

+ µnj
∂

∂xk

, k, j, = 1, 2, 3.
(1.5)

Further we assume that pj is known, when x ∈ D+ or x ∈ D−. Substitute β1p1+β2p2

in (1.1) and search the particular solution of the following equation

µ∆u + (λ + µ)graddivu = grad(β1p1 + β2p2).

It is known, that a particular solution of the equation (1.1) is the following potential
[7]

u0(x) = − 1

4π

∫ ∫

D

∫
Γ(x− y)grad(β1p1 + β2p2)dy, (1.6)

where

Γ(x− y) =
1

4µ(λ + 2µ)

∥∥∥∥
(λ + 3µ)δkj

r
+

(λ + µ)(xk − yk)(xj − yj)

r3

∥∥∥∥
3×3

,

r2 = (x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2.

Substituting the volume potential u0 into (1.1) we obtain (see [7])

µ∆u0 + (λ + µ)graddivu0 = grad(β1p1 + β2p2).

Thus we have proved that u0(x) is a particular solution of the equation (1.1). In
(1.6) D denotes either D+ or D−, grad(β1p1 +β2p2) is a continuous vector in D+ along
with its first derivatives. When D = D− the vector grad(β1p1 + β2p2) has to satisfy
the following condition at infinity

grad(β1p1 + β2p2) = O(|x|−2−α), α > 0.

Thus the general solution of the equation (1.1) is representable in the form u =
V + u0, where

A(∂x)V = µ∆V + (λ + µ)graddivV = 0. (1.7)



8 Basheleishvili M., Bitsadze L.

The latter equation is the equation of an isotropic elastic body. i.e. we reduce
the solution of basic BVPs of the theory of consolidation with double porosity to the
solution of the basic BVPs for the equation of an isotropic elastic body.

2. Some auxiliary formulas

The spherical coordinates are defined by the equalities

x1 = ρ sin ϑ cos ϕ, x2 = ρ sin ϑ sin ϕ, x3 = ρ cos ϑ, x ∈ D+,

y1 = a sin ϑ0 cos ϕ0, y2 = a sin ϑ0 sin ϕ0, y3 = a cos ϑ0, y ∈ S,

ρ2 = x2
1 + x2

2 + x2
3, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π,

(2.1)

Let

f(z) =
∞∑

m=0

fm(ϑ, ϕ),

where fm is the sperical function of order m :

fm(ϑ, ϕ) =
2m + 1

4πa2

∫

S

Pm(cos γ)f(y)dSy,

Pm is Legender polynomial of the m-th order, γ is an angle formed by the radius-vector
Ox and Oy,

cos γ =
1

|x||y|
3∑

m=1

xkyk.

The general solutions of the equation (∆− λ2
0)ψ = 0 in the domains D+(D−) have

the form ([6])

ψ(x) =
∞∑

n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ < a,

ψ(x) =
∞∑

n=0

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ > a,

(2.2)

λ2
0 =

k

m1

+
k

m2

> 0.

Yn(ϑ, ϕ) is the spherical harmonic.
The general solutions of the equation ∆φ = 0 in the domains D+(D−) have the

form ([5], p.505)

φ(x) =
∞∑

n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

φ(x) =
∞∑

n=0

an+2

(2n + 1)ρn+1
Zn(ϑ, ϕ), ρ > a,

(2.3)

Zn(ϑ, ϕ) is the spherical harmonic.
It is easy to show that the general solution of the equation (1.2) is representable in

the form
p1 = −m2ψ + φ, p2 = m1ψ + φ (2.4)
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where ψ and φ are arbitrary solutions of the following equations

(∆− λ2
0)ψ = 0, ∆φ = 0.

The following theorems are valid and we cite them without proof.
Theorem 1. The boundary value problems (III)−, (IV )− have at most one

regular solution in the domain D−.
Theorem 2. Two regular solutions of the boundary value problem (III)+ in the

domain D+ may differ by the vector V (u, p1, p2), where u = 0, and p1 = p2 = c.
Theorem 3. Two regular solutions of the boundary value problem (IY )+ may differ

by the vector V (u, p1, p2), where u vector is a rigid displacement u1 = c1 − εx2, u2 =
c2 + εx1, and p1 = p2 = 0, x ∈ D+, ε and cj, j = 1, 2, are arbitrary real constants.

3. Solution of the third boundary value problem

Problem (III)+. First of all we construct a solution for the equations (1.2). A
solution of the boundary value problem ([∂p1

∂n
]+ = f+

4 (z), [∂p2

∂n
]+ = f+

5 (z)) we seek in
the following form

p1 = −m2

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

p2 = m1

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ)), ρ < a.

(3.1)

Taking into account the fact that
∂

∂n
=

∂

∂ρ
, from the last equation we obtain

∂p1

∂n
=

∂p1

∂ρ
= −m2

∞∑
n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

∂p2

∂n
=

∂p2

∂ρ
= m1

∞∑
n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑
n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a.

(3.2)
Let us rewrite (3.2) as

∂p1

∂ρ
= −m2

∞∑
n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ)), ρ < a,

∂p2

∂ρ
= m1

∞∑
n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

(3.3)

where Hn(ρ) =
∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
.

Let

fk(z) =
∞∑

n=0

f̂nk(ϑ0, ϕ0),
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where f̂nk, k = 4, 5 is the sperical function of order n :

f̂nk(ϑ0, ϕ0) =
2n + 1

4πa2

∫

S

Pn(cos γ)fk(y)dSy, k = 4, 5.

Passing to the limit in (3.3) as D+ 3 ρ → a, we obtain

−m2

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂5n(ϑ0, ϕ0).

(3.4)

For the coefficients of Yn and Zn, (3.4) yields the following equations:

−m2Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0), n = 1, 2, ..

(3.5)

By elementary calculation from (3.5) we define Yn and Zn, for n ≥ 1

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)

(m1 + m2)Hn(a)
,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0)]

n(m1 + m2)
, n = 1, 2, ...

(3.6)

Note that Z0 is an arbitrary constant and

Y0 =

∫

S

f4dS =

∫

S

f5dS = 0.

Substituting (3.6) into (3.1), we obtain a solution of the BVP in the form of series

p1 =
−m2

(m1 + m2)
√

ρ

∞∑
n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑
n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c, ρ < a,

p2 =
m1

(m1 + m2)
√

ρ

∞∑
n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑
n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c, ρ < a.

(3.7)
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Problem (III)−. The boundary value problem [∂p1

∂n
]− = f−4 (z), [∂p2

∂n
]− = f−5 (z)

can be solved analogously and we have

p1 =
−m2

(m1 + m2)
√

ρ

∞∑
n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

− 1

m1 + m2

∞∑
n=1

an+2

(n + 1)ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a,

p2 =
m1

(m1 + m2)
√

ρ

∞∑
n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

− 1

m1 + m2

∞∑
n=1

an+2

(n + 1)%n+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a,

(3.8)

where hn(ρ) =
∂

∂ρ

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
.

The functions
∂pk

∂ρ
can be calculated from (3.7)-(3.8).

The solution of the equation

µ∆V + (λ + µ)graddivV = 0,

when V ± = F± for a ball is due to Natroshvili D. [8]. (A detailed exposition of the
solution can be found in monograph [7]).

V (x) =

∫∫

S

(1)+

K (x, y)F+(y)dyS, x ∈ D+, y ∈ S,

V (x) =

∫∫

S

(1)−
K (x, y)F−(y)dyS, x ∈ D−, y ∈ S,

where
(1)+

K =‖
(1)+

K
kj
‖3×3,

(1)+

K
kj

=
1

4πa

[
a2 − ρ2

r3
δij + β(a2 − ρ2)

∂2Φ(x, y)

∂xi∂xj

]
,

Φ(x, y) =

1∫

0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t1+α
,

Q(t) = (a2 − 2aρtcosγ + ρ2t2)
3
2 ,

(1)−
K =‖

(1)−
K
kj
‖3×3,
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(1)−
K
kj

=
1

4πa

[
ρ2 − a2

r3
δij + β(ρ2 − a2)

∂2Φ∗(x, y)

∂xi∂xj

]
,

Φ∗(x, y) =

1∫

0

ρ2 − a2t2

Q∗(t)
tαdt, Q∗(t) = (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

cosγ =
x1y1 + x2y2 + x3y3

ar
= sinθsinθ′cos(φ− φ′) + cosθcosθ′,

r2 = a2 − 2atcosγ + ρ2, β =
λ + µ

(2λ + 3µ)
, α =

λ + 2µ

2(λ + 3µ)
< 1, F± ∈ C1,α(S).

Finally we have proved the following
Theorem 4. The third BVP (III)−is uniquely solvable in the class of regular func-

tions and the solution is represented in the form of absolutely and uniformly convergent
series if the boundary data are from space C1,α(S), α > 1

2
. The solution of third BVP

(III)+ is represented in the form of absolutely and uniformly convergent series if the
boundary data are from space C1,α(S), α > 1

2
and two regular solutions of the bound-

ary value problem (III)+ in the domain D+ may differ only to within additive constant
c, pj = c, j = 1, 2.

4. Solution of the fourth boundary value problem

Problem (IV )+.First of all we will construct a solution for the equations (1.2). A
solution of the boundary value problem (p+

1 (z) = f+
4 , p+

2 (z) = f+
5 (z),) is sought in the

form (3.1):
Passing to the limit in (3.1) as D+ 3 ρ → a, we have

−m2

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑
n=0

1

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑
n=0

1

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑
n=0

f̂5n(ϑ0, ϕ0),

(4.1)

For the coefficients of Yn and Zn, (4.1) yields the following equations:

−m2

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0),

(4.2)

By elementary calculation from (4.2) we obtain

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)

(m1 + m2)Jn+ 1
2
(iλ0a)

√
a,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0))]

a(m1 + m2)
.

(4.3)



Solution of the Third and Fourth BVPs .... 13

Substituting (4.3) into (3.1), we obtain a solution of the BVP in the form of a series

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑
n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑
n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1

√
a

(m1 + m2)
√

ρ

∞∑
n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑
n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ < a,

Problem (IV )−. Analogously we construct a solution of the BVP p−1 (z) =
f−4 , p−2 (z) = f−5 (z), in the domain D−

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑
n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

(m1 + m2)

∞∑
n=0

an+1

ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1

√
a

(m1 + m2)
√

ρ

∞∑
n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(θ, φ)− f̂4n(θ, φ)]

+
1

(m1 + m2)

∞∑
n=0

an+1

ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a.

For these series together with their first derivatives to be absolutely and uniformly
convergent it is sufficient that f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5. Solutions obtained
under such conditions are regular in D+.

The solution of the problem (TV )± = F±, for the equation (1.8) for a ball is given
in the work by D. Natroshvili [8] (A detailed exposition of the solution can be found
in monograph [7]).

V (x) =

∫∫

S

(2)+

K (x, y)F+(y)dys + a1 + [ω, x] +
c(β1 + β2)

3λ + 2µ
x, x ∈ D+,

TV =
1

4πρ

∫∫

S

‖ a2 − ρ2

r3
δij + (a2 − ρ2)

∂2Φ4(x, y)

∂xi∂xj

‖3x3 F+(y)ds, x ∈ D+,

V (x) =

∫∫

S

(2)−
K (x, y)F−(y)dys, x ∈ D−,

TV =
1

4πρ

∫∫

S

‖ ρ2 − a2

r3
δij + (ρ2 − a2)

∂2Φ∗
4(x, y)

∂xi∂xj

‖3x3 F−(y)ds, x ∈ D−,

where
(2)+

K =‖
(2)+

K
kj
‖3×3,
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(2)+

K
kj

=
1

8µπ

[
(Φ1 + Φ2)δij +

a2 − 3ρ2

2

∂2Φ3(x, y)

∂xi∂yj

+ xj
∂

∂xi

(Φ1 − Φ2)− 2xi
∂Φ1

∂xj

]

+
1

8µπ

[
xi

∂

∂xj

(2ρ
∂Φ3

∂ρ
− Φ3) + ρ2

(
∂2Φ2(x, y)

∂xi∂yj

− ∂2Φ1(x, y)

∂xi∂yj

)]
,

Φ1(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t
, Q(t) = (a2 − 2aρtcosγ + ρ2t2)

3
2 ,

Φ2(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t2
,

Φ0(x, y) =
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t1+α1
, Φ3 =

1

b1

ImΦ0, Φ4 = Re(b2Φ0),

α1 = b0 + ib1 =
µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, b2 =

1

2
+

3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
,

(2)−
K =‖

(2)−
K
kj
‖3×3,

(2)−
K
kj

=
1

8µπ

[
−(Φ∗

1 + Φ∗
2)δij +

a2 − 3ρ2

2

∂2Φ∗
3(x, y)

∂xi∂yj

− xj
∂

∂xi

(Φ1 − Φ2) + 2xi
∂Φ∗

1

∂xj

]

+
1

8µπ

[
xi

∂

∂xj

(2ρ
∂Φ∗

3

∂ρ
− Φ∗

3)− ρ

(
∂2Φ2(x, y)

∂xi∂yj

− ∂1Φ1(x, y)

∂xi∂yj

)]
,

Φ∗
l (x, y) =

1∫

0

ρ2 − a2t2

Q∗(t)
tl−1dt, l = 1, 2, Φ∗

3 =
2(λ + µ)√

2λ2 + 6λµ + 3µ2
Im

1∫

0

ρ2 − a2t2

Q∗(t)
dt

tα2

Φ∗
4(x, y) = ReA

1∫

0

ρ2 − a2t2

Q∗(t)
dt

tα2
, Q∗(t) = (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

α2 =
−µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, A =

1

2
− i

3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
.

Thus we have proved the following
Theorem 5. For the solvability of the BVP (IV )+ it is necessary that the prin-

cipal vector and the principal moment of external forces be equal to zero. The BVP
(IV )+ is solvable in the class of regular functions and the solution is represented in the
form of absolutely and uniformly convergent series if the boundary data are from space
C0,α(S), α > 1

2
. Two regular solutions of BVP (IV )+ may differ only to within additive

vector a + [b, x], where a, b, are arbitrary real constant vectors, x = x(x1, x2, x3). The
BVP (IV )− is solvable in the class of regular functions and the solution is represented
in the form of absolutely and uniformly convergent series.
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EMDEN-FOWLER EQUATIONS WITH ADVANCED ARGUMENT
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Abstract. The generalized Emden-Fowler Equation

u(n)(t) + p(t)
∣∣u(σ(t))

∣∣µ(t) signu(σ(t)) = 0

is considered, where p ∈ Lloc(R+;R−), µ ∈ C(R+; (0, +∞)), σ ∈ C(R+; R+) and σ(t) ≥ t

for t ∈ R+. Oscillatory properties of solutions of the equation are studied. In particular,
sufficient conditions are established for the equation to have Property B.

Keywords and phrases: Functional-differential equation, oscillation, Property B.

AMS subject classification (2000): 34K06; 34K11.

1. Introduction

In the paper the following differential equation is considered:

u(n)(t) + p(t)
∣∣u(σ(t))

∣∣µ(t)
sign u(σ(t)) = 0, (1.1)

where
p ∈ Lloc(R+; R−), µ ∈ C(R+; (0, +∞)), σ ∈ C(R+; R+)

and σ(t) ≥ t for t ∈ R+.
(1.2)

New sufficient conditions are established for oscillation of solutions of (1.1). Specif-
ically, sufficient conditions are given for the equation (1.1) to have Property B (see
below the definition of Property B).

A function u : [t0, +∞) → R is said to be a proper solution of (1.1), if it is locally
absolutely continuous together with its derivatives up to the order n − 1 inclusive,
sup{|u(s)| : s ≥ t} > 0 for t ≥ t0 and satisfies (1.1) almost everywhere on [t0, +∞).
A proper solution u : [t0, +∞) → R of the (1.1) is said to be oscillatory if it has a
sequence of zeros tending to +∞. Otherwise the solution u is said to be nonoscillatory.

Definition. We say that the equation (1.1) has Property B if any of its proper
solutions either is oscillatory or satisfies

∣∣u(i)(t)
∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n− 1)

or ∣∣u(i)(t)
∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n− 1), (1.3)

when n is even and either is oscillatory or satisfies (1.3) when n is odd.

In the present paper sufficient conditions of new type will be given for the equation
(1.1) to have Property B. Analogous results for Property A are presented in [1]. As
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to almost linear equations (i.e. when lim
t→+∞

µ(t) = 1), analogous issues for them are

substantively studied in [2–4]. The result of the present paper make somewhat more
complete those of [5] in case of Property B.

Let t0 ∈ R+ and ` ∈ {1, . . . , n − 1}. By U`,t0 we denote the set of all proper
solutions u : [t0, +∞) → R of the equation (1.1) satisfying the conditions

u(i)(t) > 0 for t ≥ t∗ (i = 0, . . . , `− 1),

(−1)i+` u(i)(t) > 0 for t ≥ t∗ (i = `, . . . , n− 1),
(1.4`)

where t∗ ∈ [t0, +∞).

2. Sufficient conditions of nonexistence of solutions of the type (1.4`)

The assumption of the Theorems presented below contain one of the following two
conditions:

µ(t) ≤ λ < 1 for t ∈ R+ (2.1)

or
µ(t) ≥ λ for t ∈ R+ and λ ∈ (0, 1). (2.2)

The results of this section play an important role in establishing sufficient conditions
for the equation (1.1) to have Property B.

Theorem 2.1. Let the conditions (1.2), (2.1) and
∫ +∞

0

tn−`−1
(
σ(t)

)`µ(t)|p(t)|dt = +∞ (2.3`)

be fulfilled and for some γ ∈ (0, 1)

lim inf
t→+∞

tγ
∫ +∞

t

sn−`−1+µ(s)−λ
(
σ(t)

)(`−1)µ(s)|p(s)|ds > 0, (2.4`)

where ` ∈ {1, . . . , n − 1} with ` + n even. If, moreover, for some δ ∈ [0, λ] and
σ∗ ∈ C(R+) such that

t ≤ σ∗(t) ≤ σ(t) for t ∈ R+, (2.5)∫ +∞

0

tn−`−1+λ−δ
(
σ∗(t)

)µ(t)−λ+
δ(1−γ)
1−λ

(
σ(t)

)(`−1)µ(t)|p(t)|dt = +∞,

then for any t0 ∈ R+ we have U`,t0 = ∅.
Theorem 2.2 Let the conditions (1.2), (2.1), (2.3`) and

lim inf
t→+∞

t

∫ +∞

t

sn−`−1+µ(s)−λ
(
σ(s)

)(`−1)µ(s)|p(s)|ds > 0 (2.6`)

be fulfilled, where ` ∈ {1, . . . , n− 1} with ` + n even. If, moreover, for some δ ∈ [0, λ]
and σ∗ ∈ C(R+) satisfying the condition (2.5) the equality

∫ +∞

0

tn−`−1+λ−δ
(
σ∗(t)

)µ(t)−λ(
σ(t)

)µ(t)(`−1)

× (
ln(1 + σ∗(t))

) δ
1−λ |p(s)|ds = +∞
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holds, then for any t0 ∈ R+ we have U`,t0 = ∅.
Theorem 2.3. Let the conditions (1.2), (2.2), (2.3`) and

lim inf
t→+∞

tγ
∫ +∞

t

sn−`−1
(
σ(s)

)(`−1)µ(s)|p(s)|ds > 0 (2.7`)

be fulfilled, where γ ∈ (0, 1) and ` ∈ {1, . . . , n − 1} with ` + n even. If, moreover, for
some δ ∈ [0, λ] the equality

∫ +∞

0

tn−`−1+δ
(
σ(t)

)(`−1)µ(t)+
(µ(t)−δ)(1−γ)

1−λ |p(t)|dt = +∞

holds, then for any t0 ∈ R+ we have U`,t0 = ∅.
Theorem 2.4. Let the conditions (1.2), (2.2) and

lim inf
t→+∞

t

∫ +∞

t

sn−`−1
(
σ(s)

)(`−1)µ(s)
p(s)ds > 0 (2.8`)

be fulfilled, where ` ∈ {1, . . . , n − 1} with ` + n odd. If, moreover, for some δ ∈ [0, λ]
the equality

∫ +∞

0

tn−`−1+λ+δ
(
σ(t)

)(`−1)µ(t)(
ln(1 + σ(t)

)µ(t)−δ
1−λ |p(t)|dt = +∞

holds, then for any t0 ∈ R+ we have U`,t0 = ∅.

3. Differential equations with property B (case µ(t) ≤ λ)

Theorem 31. Let the conditions (1.2), (2.1), (2.31), (2.41) and

lim inf
t→+∞

(σ(t))µ(t)

t
> 0, (3.1)

be fulfilled. If, moreover,

∫ +∞

0

tn−2+µ(t)+
λ(λ−γ)

1−λ |p(t)|dt = +∞,

then the equation (1.1) has Property B.
Theorem 3.2. Let the conditions (1.2), (2.1), (2.31), (2.41) and (3.1) be fulfilled

and ∫ +∞

0

tn−2
(
σ(t)

)µ(t)+
λ(λ−γ)

1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 3.3. Let the conditions (1.2), (2.1), (2.31), (2.61) and (3.1) be fulfilled

and ∫ +∞

0

tn−2+µ(t)−λ
(
ln(1 + t)

) λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
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Theorem 3.4. Let the conditions (1.2), (2.1), (3.1), (2.31) and (2.61) be fulfilled
and ∫ +∞

0

tn−2
(
σ(t)

)µ(t)−λ(
ln(1 + σ(t))

) λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 3.5. Let the conditions (1.2), (2.1), (2.3n−1), (2.4n−2) and

lim sup
t→+∞

(σ(t))µ(t)

t
< +∞ (3.2)

be fulfilled. If, moreover,

∫ +∞

0

tµ(t)+
λ(λ−γ)

1−λ

(
σ(t)

)µ(t)(n−3)|p(t)|dt = +∞,

then the equation (1.1) has Property B.
Theorem 3.6. Let the conditions (1.2), (2.1), (2.3n−1), (3.4n−2) and (3.2) be

fulfilled and ∫ +∞

0

t
(
σ(t)

)(n−2)µ(t)+
λ(1−γ)

1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 3.7 Let the conditions (1.2), (2.1), (2.3n−1), (2.6n−2) and (3.2) be fulfilled

and ∫ +∞

0

t1+µ(t)−λ
(
σ(t)

)(n−3)µ(t)(
ln(1 + t)

) λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 3.8. Let the conditions (1.2), (2.1), (2.3n−2), (2.6n−2) and (3.2) be

fulfilled and

∫ +∞

0

(
σ(t)

)(n−1)µ(t)−λ(
ln(1 + σ(t))

) λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.

4. Differential equations with property B (case µ(t) ≥ λ)

Theorem 4.1. Let the conditions (1.2), (2.2), (2.31), (2.91) and (3.1) be fulfilled
and ∫ +∞

0

tn−2
(
σ(t)

)µ(t)(1−γ)
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.2. Let the conditions (1.1), (1.2), (2.31), (2.91) and (3.1) be fulfilled

and ∫ +∞

0

t1+λ
(
σ(t)

) (µ(t)−λ)(1−γ)
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
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Theorem 4.3. Let the conditions (1.2), (2.2), (3.1), (2.31) and (2.81) be fulfilled
and ∫ +∞

0

tn−2
(
ln(1 + σ(t))

) µ(t)
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.4. Let the conditions (1.2), (2.2), (2.31), (2.81) and (3.1) be fulfilled

and ∫ +∞

0

tn−2+λ
(
ln(1 + σ(t))

)µ(t)−λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.5. Let the conditions (1.2), (2.2), (2.3n−1), (2.7n−2) and (3.2) be

fulfilled and ∫ +∞

0

t
(
σ(t)

)(n−3)µ(t)+
µ(t)(1−γ)

1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.6. Let the conditions (1.2), (2.2), (2.3n−1), (2.7n−2) and (3.2) be

fulfilled and ∫ +∞

0

t1+λ
(
σ(t)

)(n−3)µ(t)+
(µ(t)−λ)(1−γ)

1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.7. Let the conditions (1.2), (2.2), (2.3n−1), (3.2) and (2.8n−2), be

fulfilled and ∫ +∞

0

t
(
σ(t)

)(n−3)µ(t)(
ln(1 + σ(t))

) µ(t)
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
Theorem 4.8. Let the conditions (1.2), (2.2), (2.3n−1) and (2.8n−2) be fulfilled and

∫ +∞

0

t1+λ
(
σ(t)

)(n−3)µ(t)(
ln(1 + σ(t))

)µ(t)−λ
1−λ |p(t)|dt = +∞.

Then the equation (1.1) has Property B.
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UNIQUENESS AND EXISTENCE THEOREMS OF STATICS BVPs OF THE
THEORY OF CONSOLIDATION WITH DOUBLE POROSITY

Basheleishvili M., Bitsadze L.

Abstract. The purpose of this paper is to consider two-dimensional version of statics of
the Aifantis’ equation of the theory of consolidation with double porosity and to study the
uniqueness and existence of solutions of basic boundary value problems (BVPs).

In this work we intend to extend potential method and the theory of integral equation
to BVPs of the theory of consolidation with double porosity. The potential method and the
theory of integral equation are applied to the investigation of the first and second BVPs of
statics of the theory of consolidation with double porosity. For their problems we construct
Fredholm type integral equations. Using these equations, the potential method and general-
ized Green’s Formulas, we prove the existence and uniqueness theorems of solutions for the
first and second BVPs for the bounded and unbounded domains. For the Aifantis’ equation
of statics we construct one particular solution and we reduce the solution of basic BVPs of
the theory of consolidation with double porosity to the solution of the basic BVPs for the
equation of an isotropic body.

Keywords and phrases: Porous media, double porosity, consolidation, fundamental solu-
tion.

AMS subject classification (2000): 74G25; 74G30.

1. Introduction

In a material with two degrees of porosity, there are two pore system, the primary
and the secondary. For example in a fissured rock (i.e., a mass of porous blocks sep-
arated from each other by an interconnected and continuously distributed system of
fissures) most of the porosity is provided by the pores of the blocks or primary porosity,
while most of permeability is provided by the fissures or secondary porosity. When fluid
flow and deformations processes occur simultaneously, three coupled partial differential
equations can be derived [1, 2] to describe the relationships governing pressure in the
primary and secondary pores (and therefore the mass exchange between them) and the
displacement of the solid.

A theory of consolidation with double porosity has been proposed by Aifantis. The
physical and mathematical foundations of the theory of double porosity were considered
in the papers [1-3], where analytical solutions of the relevant equations are also given.
In part I of a series of paper on the subject, Wilson and Aifantis [1] gave detailed
physical interpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value problems. In
part II of this series, uniqueness and variational principles were established by Beskos
and Aifantis [2] for the equations of double porosity, while in part III Khaled, Beskos
and Aifantis [3] provided a related finite element to consider the numerical solution of
Aifantis’ equations of double porosity (see [1-3] and references cited therein).The basic
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results and the historical information on the theory of porous media were summarized
by de Boer [4].

In this work we prove the existence and uniqueness theorems of solutions of basic
BVPs of the theory of consolidation with double porosity for bounded and unbounded
domains. We used the potential method for the proof of all theorems. The basic results
on this method are given in [6].

2. Basic equations and boundary value problems

Let x = (x1, x2) be the point of the Euclidean two-dimensional space E2. The basic
equations of statics of the theory of consolidation with double porosity in the case of
plane deformation have the following form [1-2]

B(∂x)u = µ ∆u + (λ + µ)grad div u− grad(β1p1 + β2p2) = 0,

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0,
(1)

where u = (u1, u2) is the displacement vector, p1 is the fluid pressure within the primary

pores and p2 is the fluid pressure within the secondary pores, mj =
kj

µ∗ , j = 1, 2. The
constant λ is the Lame modulus, µ is the shear modulus, the constants β1 and β2 are
measure the change of porosities due to an applied volumetric strain. The constant µ∗

denotes the viscosity of the pore fluid, the constant k measures the transfer of fluid
from the secondary pores to the primary pores. The quantities λ, µ, βj, k (j = 1, 2) and

µ∗ are all positive constants. 4 =
∂2

∂x2
1

+
∂2

∂x2
2

is two-dimensional Laplace operator.

The equation (1) can be written in matrix-vector form

A(∂x)U(x) = 0, (2)

where U(x) = (u1, u2, p1, p2),

A(∂x) =‖ Apq(∂x) ‖4x4, Ajj(∂x) = µ∆ + (λ + µ)
∂2

∂x2
j

,

A12(∂x) = A21(∂x) = (λ + µ)
∂2

∂x1∂x2

,

Aj3(∂x) = −β1
∂

∂xj

, Aj4(∂x) = −β2
∂

∂xj

,

A3j(∂x) = 0, A4j(∂x) = 0, A33(∂x) = m1∆− k,

A34(∂x) = A43(∂x) = k, A44(∂x) = m2∆− k, j = 1, 2.

Let D+(D−) be a bounded (an unbounded) two-dimensional domain surrounded
by the contour S. D+ = D+∪S, D− = E2 \D+. Suppose that S ∈ C1,α, 0 < α ≤ 1.

First of all we introduce the definition of a regular vector-function.
Definition 1. A vector-function U = (u1, u2, p1, p2) defined in D+ (or in D−)

is called regular if U ∈ C2(D+)
⋂

C1(D+) (or U ∈ C2(D−)
⋂

C1(D−)) and in the
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unbounded domain D− the vector U additionally satisfies the following conditions at
infinity:

U(x) = o(1),
∂Uk

∂xj

= O(|x|−2), |x|2 = x2
1 + x2

2, j = 1, 2. (3)

The internal and external basic BVPs are formulated as follows:
Find a regular vector U satisfying in D+(D−) the equation (1) and on the boundary

S one of the following conditions is given:
Problem (I)±f . The displacement vector and the fluid pressures are given on S :

u± = f±(z), p±1 = f±3 (z), p±2 = f±4 (z), z ∈ S,

Problem (II)±f . The stress vector and the normal derivatives of the preasure func-

tions
∂pj

∂n
, j = 1, 2, are given on S :

[P(∂x, n)u]± = f±(z),

(
∂p1

∂n

)±
= f±3 (z),

(
∂p2

∂n

)±
= f±4 (z), z ∈ S.

Problem (III)±f . The displacement vector and the normal derivatives of the pres-

sure functions
∂pj

∂n
, j = 1, 2, are given on S :

u± = f±(z),

(
∂p1

∂n

)±
= f±3 (z),

(
∂p2

∂n

)±
= f±4 (z), z ∈ S.

Problem (IV )±f . The stress vector and the fluid pressures are given on S :

[P(∂x, n)u]± = f±(z), p±1 = f±3 (z), p±2 = f±4 (z), z ∈ S,

where (.)+ denotes the limiting value from D+, (.)− denotes the limiting value from
D− and f = (f1, f2), f3, f4 are the given functions, P(∂x, n)u is a stress vector which
acts on the elements of the arc with the exterior to D+ unit normal vector n = (n1, n2)
at the point x ∈ S,

P(∂x, n)u = T(∂x, n)u− n(β1p1 + β2p2), (4)

and [6]
T(∂x, n) = ‖ Tkj ‖2x2,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj

+ µnj
∂

∂xk

,

∂

∂n
= n1

∂

∂x1

+ n2
∂

∂x2

, k, j, = 1, 2.

(5)

Now we introduce the generalized stress vector
κ

P(∂x, n)u, where

κ

P(∂x, n)u =
κ

T(∂x, n)u− n(β1p1 + β2p2),
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κ is an arbitrary positive constant and

κ

T(∂x, n)u = (2µ− κ)
∂u

∂n
+ (λ + κ)ndivu + (κ− µ)sω,

s =

( −n2

n1

)
, n =

(
n1

n2

)
, omega =

∂u2

∂x1

− ∂u1

∂x2

.

(6)

If κ = 0 from (6) we have
κ

T(∂x, n)u = T(∂x, n)u. We set
κ

T(∂x, n)u = N(∂x, n)u for

κ = µ(λ+µ)
λ+3µ

.

3. Generalized Green’s formulas

Let us write the generalized Green’s formulas for the domains D+ and D−. Let
u(x) be a regular solution of equation (1) in D+. Multiply the first equation of (1) by
u(x). Integration the result over D+ and apply the integration by parts formula to
obtain

∫

D+

uB(∂x)udσ =

∫

S

u
κ

P(∂x, n)uds−
∫

D+

[ κ

E(u,u)− (β1p1 + β2p2)divu
]
dσ.

If the vector u is a solution of homogeneous equation B(∂x)u = 0, then the last
equation gives

∫

D+

[ κ

E(u,u)− (β1p1 + β2p2)divu
]
dσ =

∫

S

u
κ

P(∂x, n)u ds, (7)

where

2
κ

E(u,u) = (2λ+2µ−κ)(divu)2 +(2µ−κ)

[(
∂u1

∂x1

− ∂u2

∂x2

)2

+

(
∂u1

∂x2

+
∂u2

∂x1

)2
]

+
κ

2
ω2.

For the positive definiteness of the potential energy the inequality 0 < κ ≤ 2µ
is necessary and sufficient. Obviously the potential energy E(u,u) is obtained from
κ

E(u,u) if we set κ = 0.
If the vector u(x) satisfies the conditions (3) the Green’s formula for the region D−

takes the form
∫

D−

[ κ

E(u,u)− (β1p1 + β2p2)div u
]
dσ = −

∫

S

u
κ

P(∂x, n)uds. (8)

Analogously we obtain the Green’s formula for pj, j = 1, 2,

∫

D+

[
m1(gradp1)

2 + m2(gradp2)
2 + k(p1 − p2)

2
]
dσ =

∫

S

[
m1p1

∂p1

∂n
+ m2p2

∂p2

∂n

]
ds,

(9)
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∫

D+

[
m1(gradp1)

2 + m2(gradp2)
2 + k(p1 − p2)

2
]
dσ = −

∫

S

[
m1p1

∂p1

∂n
+ m2p2

∂p2

∂n

]
ds.

(10)

Remark. Note that if β1p1 + β2p2 = const, in view of the equality

∫

D+

divu =

∫

S

nuds, from (7) we get

∫

D+

κ

E(u,u)dσ =

∫

S

u
κ

T(∂x, n)u ds. (11)

4. The uniqueness theorems

In this subsection we prove the uniqueness theorems of solutions to the above for-
mulated problems. Let above formulated problems have two regular solutions U(1)(x)

and U(2)(x), where U(k)(x) = (u
(k)
1 , u

(k)
2 , p

(k)
1 , p

(k)
2 ), k = 1, 2. Let’s consider

U(x) = U(1)(x)−U(2)(x).

Evidently, the vector U(x) satisfies (1) and the homogeneous boundary conditions
(f = 0, f3 = 0, f4 = 0).

Now we prove the following theorems:
Theorem 1. The first internal boundary value problem (I)+

f admit at most one
regular solution in the domain D+.

Proof. Evidently, the vector U(x) satisfies the system (1) and the boundary con-
dition U(x) = 0 on S. From (9) we obtain p1 = p2 = c, x ∈ D+. Since p+

k = 0,
we have c = 0, and p1 = p2 = 0, x ∈ D+. Note that if u is a regular solution
of the equation (1), we have Green’s formula (7). Using (7), when κ = 0 and taking
into account the fact that the potential energy is positive definite, we conclude that
u1 = c1 − εx2, u2 = c2 + εx1 x ∈ D+, where ε, c = const. Since U+ = 0, we have
c = 0, ε = 0 and u(x) = 0, x ∈ D+.

Theorem 2. The first external boundary value problem (I)−f has at most one
regular solution in the domain D−.

Proof. The vectors U(1) and U(2) in the domain D− must satisfy the condition
(3). In this case the formulas (8)-(10) are valid and U(x) = C, x ∈ D−, where C is
again the constant vector. But U on the boundary satisfies the condition U− = 0,
which implies that C = 0 and U(x) = 0, x ∈ D−.

Analogously the following theorems can be proved :
Theorem 3. If the condition 0 < κ ≤ 2µ is satisfied then any two regular solutions

of the second internal boundary value problem (II)+
f may differ only to within additive

vector V = (u, p1, p2), where

u1 = c1 − εx2 + c1x1, u2 = c2 + εx1 + c1x2 pk = c, x ∈ D+,
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ε and c are arbitrary real constants and c1 = c(β1+β2)
2(λ+µ)

.

Theorem 4. The boundary value problems (II)−f , (III)−f , (IV )−f admit at most
one regular solution in the domain D−.

Theorem 5. Two regular solutions of the (III)+
f boundary value problem in the

domain D+ may differ by the vector V = (u, p1, p2), where u = 0, and p1 = p2 = c.
Theorem 6. Two regular solutions of the (IY )+

f boundary value problem may differ
by the vector V(u, p1, p2), where u vector is a rigid displacement and p1 = p2 = 0.

5. An existence theorems

In this section we establish the existence of regular solutions of the basic BVPs
(I)±f and (II)±f by means of the potential method and the theory of singular integral
equations.

Problem (I)+
f . First let us show that the nonhomogeneous system

(m1∆− k)p1 + kp2 = F3(x), kp1 + (m2∆− k)p2 = F4(x) (12)

always reduces to the homogeneous system by seeking one particular solution. We
choose more simple method for constructing particular solution. A solution pk, k =
1, 2 is sought in the form

p1 = − m2

2πs2

∫

D+

[K0(sr) + ln r] F3(y)dσ, p2 =
m1

2πs2

∫

D+

[K0(sr) + ln r] F4(y)dσ, (13)

where [5]

K0(sr) = −I0(sr)
(
ln

sr

2
+ C

)
− 2

∞∑
k=1

1

(k!)2

(sr

2

)2k
(

1

k
+

1

k − 1
+ ... + 1

)
,

I0(sr) =
∞∑

k=1

1

(k!)2

(sr

2

)2k

, s2 = k

(
1

m1

+
1

m2

)
, r2 = (x1 − y1)

2 + (x1 − y1)
2.

It is obvious that integrand in (13) contains the terms r2k ln r, k = 1, 2, ... and we
can write

(∆− s2)p1 =
m2

2π

∫

D+

ln rF3(y)dσ, (∆− s2)p2 = −m1

2π

∫

D+

ln rF4(y)dσ.

From this we get

∆(∆− s2)p1 = m2F3(x), ∆(∆− s2)p2 = −m1F4(x).

Thus we obtain that the particular solutions of the equation (12) are

p1 =
1

2πm2s2

∫

D+

[K0(sr) + ln r]F3(y)dσ,

p2 = − 1

2πm1s2

∫

D+

[K0(sr) + ln r]F4(y)dσ.
(14)
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At first let’s search the fundamental solution of the following equation

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0. (15)

It is obvious that(
m1∆− k k

k m2∆− k

)(
m2∆− k − k
−k m1∆− k

)
=

(
1 0
0 1

)
m1m2∆(∆− s2), (16)

where s2 = k

(
1

m1

+
1

m2

)
. The fundamental solution of the equation ∆(∆− s2)ψ = 0

is
ψ = α0K0(sr) + α1 ln r.

For the unknown coefficient αj we obtain the following equations

−α0 + α1 = 0, α0s
2 = 1.

from here we obtain α0 = α1 =
1

s2
and ψ =

1

s2
(K0(sr) + ln r). Obviously ∆ψ

contains a logarithmic singularity as x → y.
From the reduced discussion it is evident that the fundamental matrix of the equa-

tion (15) must have the form

Γ(1)(x− y) =




m2K0(sr)− k

s2
[K0(sr) + ln r] − k

s2
[K0(sr) + ln r]

− k

s2
[K0(sr) + ln r] m1K0(sr)− k

s2
[K0(sr) + ln r]


 . (17)

The matrix Γ(1)(x− y) has a logarithmic singularity as x → y. It is evident
that every column of the matrix Γ(1)(x− y) is a solution of the system (15) with
respect to the point x , if x 6= y.

First let us prove the existence of solution of the first BVP (p+
1 = f+

4 , p+
2 = f+

5 , )
for the equation (15) in the domain D+. A solution will be sought in the form of the
double layer potential

p(x) =

(
p1(x)
p2(x)

)
=

1

π

∫

S

∂

∂n
Γ(1)(y − x)g(y)dsy, x ∈ D+. (18)

Passing the limit as x → z ∈ S and taking into account the boundary condition,
for determining the unknown vector function g(y) = (g3, g4), we obtain the following
Fredholm integral equation of the second kind

−m2g3(z) + p1(z) = f+
3 (z), −m2g4(z) + p2(z) = f+

4 (z), (19)

where f+
j (z), j = 3, 4, are given continuous functions and

p1(z) =
1

π

∫

S

∂

∂n

[
m2K0(sr)g3(y)− k

s2
(K0(sr) + ln r)(g3(y) + g4(y))

]
dsy,

p2(z) =
1

π

∫

S

∂

∂n

[
m2K0(sr)g4(y)− k

s2
(K0(sr) + ln r)(g3(y) + g4(y))

]
dsy.

(20)
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Let us prove that the equation (19) is solvable for any continuous right-hand side.
Let us prove that the homogeneous version of (19) (fj = 0) has only the trivial solution.
Let the vector g 6= 0 be some solution to it. Obviously (pj)

+ = 0, j = 1, 2. Using
Green’s formula in D+

∫

D+

[
m1(gradp1)

2 + m2(gradp2)
2 + k(p1 − p2)

2
]
ds =

∫

S

[
m1p1

∂p1

∂n
+ m2p2

∂p2

∂n

]
ds,

we obtain p1 = p2 = c, x ∈ D+. (c is an arbitrary constant). It is easy to show that gj

has a continuous derivative, then we have the following formula

0 =

(
∂p1

∂n

)+

=

(
∂p1

∂n

)−
, 0 =

(
∂p2

∂n

)+

=

(
∂p2

∂n

)−
.

Using Green’s formula in D−, we obtain p1 = p2 = c1, where c1 is an arbitrary
constant, i.e. we have (p1)

+ − (p1)
− = −2m2g3, (p2)

+ − (p2)
− = −2m1g4. If we

substitute the last identity in (20), after elementary transformation we obtain g3 =
c− c1

2m2

, g4 =
c− c1

2m1

and (18) takes the form

(
p1

p2

)
=

1

π

∫

S

∂lnr

∂n

( −1
−1

)
(c− c1)ds = 2

(
1
1

)
(c− c1).

From here we get c = c1, g3 = g4 = 0 and hence the homogeneous equation (19)0

corresponding to the equation (19) has only the trivial solution. This implies that the
equation (19) is solvable for any continuous right-hand side.

Remark. Analogously we prove the existence of solution of external first BVP
(p−1 = f−3 , p−2 = f−4 , ) for the equation (15) in the domain D−. A solution of the first
boundary value problem has the form

P(x) =
1

π

∫

S

∂

∂n
Γ(1)(y − x)g(y)dsy, x ∈ D−, (21)

where g(y) is a solution of the following Fredholm integral equation of the second kind

m2g1(z) + p1(z) = f−3 (z), m2g2(z) + p2(z) = f−4 (z), (22)

fj(z), j = 3, 4, are given continuous functions and pj, j = 1, 2, are given by (20).
Further we assume that P(x) is known, when x ∈ D+ or x ∈ D+(see (18) and (21)).

Substitute the β1p1 + β2p2 in (1). Let’s search the particular solution of the following
equation

µ∆u + (λ + µ)graddivu = grad(β1p1 + β2p2). (23)

We put

u0 =
1

π

∫

D

Γ(x− y)grad(β1p1 + β2p2)ds, (24)
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where [6]

Γ(x− y) =




λ + 3µ

2aµ
ln r − λ + µ

2aµ

(
∂r

∂x1

)2

, −λ + µ

2aµ

∂r

∂x1

∂r

∂x2

−λ + µ

2aµ

∂r

∂x1

∂r

∂x2

,
λ + 3µ

2aµ
ln r − λ + µ

2aµ

(
∂r

∂x2

)2


 .

Substituting the volume potential u0 into (23), we obtain [6]

µ∆u0 + (λ + µ)graddivu0 = grad(β1p1 + β2p2). (25)

Thus we have proved that u0 is a particular solution of the equation (23). In (24)
D denotes either D+ or D−, grad(β1p1 +β2p2) is a continuous vector in D+ along with
its first order derivatives. When D = D−, the vector grad(β1p1 + β2p2) has to satisfy
the following decay condition at infinity

grad(β1p1 + β2p2) = O(|x|−2−α), α > 0.

Thus the general solution of the equation (23) is representable in the form u =
V + u0, where

µ∆V + (λ + µ)graddivV = 0. (26)

This equation is the equation of an isotropic elastic body. Thus we have reduced
the solution of basic BVPs of the theory of consolidation with double porosity to the
solution of the basic BVPs for the equation of an isotropic elastic body.

The solution of the first BVP ( V + = F+) is given in the form [6]

V(x) =
1

π

∫

S

N(∂y, n)Γ(x− y)g(y)ds, (27)

where

N(∂y, n)Γ(x− y) =




1 +
λ + µ

λ + 3µ
cos 2θ,

λ + µ

λ + 3µ
sin 2θ

λ + µ

λ + 3µ
sin 2θ, 1− λ + µ

λ + 3µ
cos 2θ


 ∂θ

∂s
,

θ = arctan
y2 − x2

y1 − x1

,
∂

∂s
= n1

∂

∂x2

− n2
∂

∂x1

,

g is a solution of Fredholm integral equation of the second kind

g(z) +
1

π

∫

S

N(∂y,n)Γ(y − z)g(y)ds = f+(z). (28)

To prove the regularity of the double layer potential in the domain D+, it is sufficient
to assume that S ∈ C2,β, 0 < β < 1, f ∈ C1,α(S), 0 < α < β.

We have thereby proved the following theorem.



Uniqueness and Existence Theorems of .... 31

Theorem 7. If S ∈ C2,β, 0 < β < 1, f3, f4, f ∈ C1,α(S), 0 < α < β, then
a regular solution of problem (I)+

f exists, it is unique and represented by the potential
of double-layer (18) and (27), where g is a solution of the Fredholm integral equations
(19) and (28) respectively which are always solvable for arbitrary functions f3, f4, and
f.

Problem (I)−f . Now consider the first BVP (V−(z) = f−(z)) in the domain D−.
The solution is sought in the form [6]

V(x) =
1

π

∫

S

[
N(∂y, n)Γ(x− y) +

1

2
N(∂y, n)Γ(y)

]
g(y)ds. (29)

For determining the unknown vector g we obtain the following Fredholm integral
equation of the second kind

−g(z) +
1

π

∫

S

[
N(∂y,n)Γ(y − z) +

1

2
N(∂y, n)Γ(y)

]
g(y)ds = f−(z). (30)

Here we assume that
∫
S

g(y)ds = 0 which implies the single layer potential vanishing

at infinity.
The equation (30) is always solvable if the condition

∫
S

g(y)ds =
∫
S

f(y)ds = 0 is

fulfilled [6].
To prove the regularity of the potential defined by (29) in the domain D−, it is

sufficient to assume that S ∈ C2,β, 0 < β < 1, f ∈ C1,α(S), 0 < α < β.
Theorem 8. S ∈ C2,β, 0 < β < 1, f3, f4, f ∈ C1,α(S), 0 < α < β, then a

regular solution of problem (I)−f exists, it is unique and represented by the potentials
of double-layer (21) and (29), where g is a solution of the Fredholm integral equations
(22) and (30) respectively which are always solvable for an arbitrary right hand side.

Thus we have proved the solvability of the first boundary value problem in the
domains D+ and D−.

Problem (II)+
f . A solution of BVP

(
∂p1

∂n

)+

= f3(z),

(
∂p2

∂n

)+

= f4(z) of the

equation (15) will be sought in the form

p(x) =
1

π

∫

S

Γ(1)(x− y)

(
g3(y)
g4(y)

)
dsy, (31)

where Γ(1)(x− y) is given by formula (17), S ∈ C1,β, 0 < β ≤ 1 is a closed Lyapunow
curve, gk, k = 3, 4, are unknown functions.

Taking into account the boundary conditions for determining the functions gk,we
obtain Fredholm integral equations of the second kind

m2g3(z) +
∂p1(z)

∂n
= f3(z), m1g4(z) +

∂p2(z)

∂n
= f4(z), z ∈ S. (32)

The origin is assumed to be in the domain D+. Let us prove that the equation
(32) is always solvable. To this end, we consider the homogeneous equation obtained
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from (32) for fj = 0 and prove that it has only the trivial solution. Let g0 6= 0 be any
solution of this equation. Since fj = 0, we have

(
∂p1

∂n

)+

= 0,

(
∂p2

∂n

)+

= 0.

Using Green’s formula (9), we obtain

pk = c = const, k = 1, 2, x ∈ D+. (33)

But the potential (31) is a continuous function when the point x tends to any point z
of the boundary and we get pk(x) = c, x ∈ D−. From last conditions it follows that

0 =

(
∂p1

∂n

)+

=

(
∂p1

∂n

)−
, 0 =

(
∂p2

∂n

)+

=

(
∂p2

∂n

)−
,

0 =

(
∂p1

∂n

)+

−
(

∂p1

∂n

)−
= 2m2g3, 0 =

(
∂p2

∂n

)+

−
(

∂p2

∂n

)−
= 2m1g4.

Finally we conclude that the homogeneous equation, corresponding to the equation
(32) has only the trivial solution. Thus the equation (32) is always solvable for any
continuous right-hand side.

As above, the equation

µ∆ u + (λ + µ)graddivu− grad(β1p1 + β2p2) = 0

has the particular solution u0(x) (see (24)) and the last equation has a solution u =
u0 + V, where

µ∆ V + (λ + µ)graddiv V = 0. (34)

As it is already clear here (TV)+ is given. Thus we have the second BVP for the
equation of an isotropic elastic body. The solution is sought in the form [6]

V(x) =
1

π

∫

S

[M(x, y)−M(0, y)g(y)ds, (35)

where g is an unknown function and M(x, y) has the form

M(x, y) =
1

2µ(λ + µ)
Im


 ia ln σ − i(λ + µ)

σ

2σ
− µ ln σ + (λ + µ)

σ

2σ

µ ln σ + (λ + µ)
σ

2σ
, ia ln σ + i(λ + µ)

σ

2σ


 ,

where
σ = x1 − y1 + i(x2 − y2).

From (35), after some operations we find that

T(∂x, n)V(x) =
1

π

∫

S

T(∂x, n)M(x, y)g(y)ds, x ∈ D+, (36)



Uniqueness and Existence Theorems of .... 33

where

T(∂x, n)M(x, y) =

(
1 + cos 2θ, sin 2θ
sin 2θ, 1− cos 2θ

)
∂θ

∂s
,

θ = arctan
y2 − x2

y1 − x1

,
∂ ln r

∂n
=

∂θ

∂s
.

(37)

When x → z ∈ S, for determining the vector g we obtain the following integral equation

−g(z) +
1

π

∫

S

(
1 + cos 2θ, sin 2θ
sin 2θ, 1− cos 2θ

)
∂θ

∂s
gds = f+(z). (38)

The homogeneous equation, corresponding to the equation (38) has nontrivial so-
lution. It is expedient to modify the preceding equation. Therefore we consider the
following equation

−g(z) +
1

π

∫

S

TzM(z, y)g(y)ds +
1

2π
TzM(z)

∫

S

g(y)ds−

1

2π

d

dψ

( − sin ψ sin 2ψ
−2 sin3 ψ

)
M = f+(z), z ∈ S,

(39)

ψ = arctan
x2

x1

, M =

(
∂V2

∂x1

− ∂V1

∂x2

)

x1=x2=0

. (40)

Performing elementary calculation, from (39) we get
∫

S

g(y)ds =

∫

S

f+ds, M =

∫

S

[x1f
+
2 − x2f

+
1 ]ds. (41)

If the principal vector
∫
S

f+(y)ds and the principal moment
∫
S

(x1f
+
2 − x2f

+
1 )ds are

equal to zero, then
∫
S

gds = 0 and M = 0. Then every solution g of the equation (39)

is, at the same time, a solution of the integral equation (38).
Let us prove that the equation (39) is always solvable if the the principal vector

and the principal moment are equal to zero. To this end we consider the homogeneous
equation obtained from (39) for f+ = 0 and prove that it has only trivial solution. Let
g0 be any solution of that equation. Since f+ = 0 it is obvious that

∫
S

f+ds = 0, M =

0 are fulfilled for g0. In this case the obtained homogeneous equation corresponds to
the boundary condition (Tu0)

+ = 0, where u0 is obtained from (35), if instead of g we
take g0. Using the uniqueness theorem for the second BVP for D+, we obtain

u0(x) =

(
c1

c2

)
+ ε

( −x2

x1

)
, x ∈ D+,

where cj, and ε are arbitrary constants.
Noting that M0 = 0 and V(0) = 0, therefore u0(x) = 0, whence [6] ( u0 and W0

are the conjugate vectors, φ = u0 + iW 0)

0 = N(∂x, n)u0(x) =
λ + 3µ

2aµ

∂W0

∂S(x)
, x ∈ D+. (42)
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From here W0 = c, x ∈ D+, where [6]

W0 =
1

π
Re

∫

S




ln σ − λ + µ

λ + 3µ

σ

2σ
− λ + µ

λ + 3µ

σ

2σ

− λ + µ

λ + 3µ

σ

2σ
, ln σ − λ + µ

λ + 3µ

σ

2σ


g(y)ds. (43)

We can easily establish that if g0 is a continuous vector, then (TW0)
+− (TW0)

− = 0.
But since (TW0)

+ = 0, from the last formula we obtain (TW0)
− = 0. By virtue

of
∫
S

gds = 0, the vector W0 is one valued on the entire plane and of order |x|−1 at

infinity, W(∞) = 0. Using this fact and uniqueness theorem we obtain

W0(x) = 0, x ∈ D−. (44)

The formula W0 = c, x ∈ D+ and (44) yield (L(∂x, n)W0)
+ = 0, x ∈

D+, (L(∂x, n)W0)
− = 0, x ∈ D−, where the operator L(∂x, n) is obtained from

κ

T(∂x, n) for κ = 2µ. Further, if we use the formula [6]

0 = (L(∂x, n)W0(x))+ − (L(∂x, n)W0(x))− =
2µ

a
g0(z),

we obtain g0 = 0.
Thus the homogeneous equation corresponding to the (39) has only trivial solution.

Consequently, the equation (39) has a unique solution g. Substituting g in (35), we get
solution of the second BVP, provided the principal vector and the principal moment
of external stresses are equal to zero.

Theorem 9. If S ∈ C2,β, 0 < β < 1, f, fj ∈ C1,α(S), 0 < α < β, then a
regular solution of problem (II)+

f exists, it is unique and represented by the potentials
of singlelayer (31) and (35), where g is a solution of the Fredholm integral equations
(32) and (39) respectively which are always solvable for an arbitrary right hand side.

Problem (II)−f . Now let us prove the existence of solution of the second BVP

((TV)− = f−) in the domain D−. The solution is sought in the form

V(x) =
1

π

∫

S

M(z, y)g(y)ds +
µ

aρ

(
cos ψ cos 2ψ
cos ψ

)
M, (45)

where

ψ = arctan
x2

x1

, M =

(
∂V2

∂x1

− ∂V1

∂x2

)

x1=x2=0

. (46)

Here g is an unknown vector. For the vector V to be single valued and bounded
at infinity, we assume that the condition

∫
S

gds = 0, is fulfilled. Later on the principal

vector will be assumed to be equal to zero.
For determining of vector g we obtain the following Fredholm integral equation of

the second kind

g(z) +
1

π

∫

S

(
1 + cos 2θ, sin 2θ
sin 2θ, 1− cos 2θ

)
∂θ

∂s
g(y)ds +

µ

a

∂

∂ψ

(
cos ψ cos 2ψ
cos ψ

)
M = f−(z).

(47)
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By integration, from (47) we obtain

∫

S

gds =

∫

S

f−ds. (48)

Now we will establish that the equation (47) is always solvable. To this end, we
consider the homogeneous equation obtained from (47) for f− = 0. Let’s prove that
this equation has only trivial solution. Let’s assume the contrary and denote by g0

any solution of the homogeneous equation. Since f− = 0, from (48) we have
∫
S

g0ds =

0. Note that the homogeneous equation corresponds now to the boundary condition
(TV)− = 0. Taking into account the uniqueness theorem for the second BVP in
the domain D−, we obtain V0(x) = 0, x ∈ D−. In this case (LV0)

− = (LV0)
+ = 0.

Therefore

0 =

∫

S

[x1(LV0)
+
1 + x2(LV0)

−
2 ]ds = M0, x ∈ D−

and (45) takes the form

V0 = u0(x) =
1

π

∫

S

M(x, y)gds = 0, x ∈ D−.

From here

0 = N(∂x, n)u0 =
λ + 3µ

2aµ

∂W0

∂s(x)
.

The last equation gives W0 = c, x ∈ D−. As since W0(∞) = 0, we obtain c = 0
and W0 = 0, x ∈ D−. From here it follows that (TW0)

− = 0. But (TW0)
− =

(TW0)
+. Therefore (TW0)

+ = 0 and

W0(x) =

(
c1

c2

)
+ ε

( −x2

x1

)
, x ∈ D+.

By appling (46) we obtain M0 = ε = 0 and W0 = c, x ∈ D+.
Later having used the formula

0 = (L(∂x, n)W0(x))+ − (L(∂x, n)W0(x))− =
2µ

a
g0(z).

we obtain g0 = 0.
Consequently (47) has a unique solution, provided the principal vector is equal to

zero.

Remark. As above the solution of BVP

[
∂p1

∂n

]−
= f−3 (z),

[
∂p2

∂n

]−
= f−4 (z),

will be represented by the singlelayer potential (31), where g3 and g4 are the solutions
of Fredholm integral equations of the second kind

−m2g3(z) +
∂p1(z)

∂n
= f3(z), −m1g4(z) +

∂p2(z)

∂n
= f4(z), z ∈ S. (49)
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Thus the existence of the solution of the second boundary value problem in the
domain D− is proved.

Theorem 10. If S ∈ C2,β, 0 < β < 1, f3, f4, f ∈ C1,α(S), 0 < α < β, then a
regular solution of problem (II)−f exists, it is unique and represented by the potentials
of singlelayer (45) and (31), where g is a solution of the Fredholm integral equations
(47) and (49) respectively which are always solvable for an arbitrary right hand side.
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EXISTENCE OF OPTIMAL INITIAL DATA AND CONTINUITY OF THE
INTEGRAL FUNCTIONAL MINIMUM WITH RESPECT TO PERTURBATIONS

FOR A CLASS OF NEUTRAL DIFFERENTIAL EQUATION

Tadumadze T.

Abstract. For the system of differential equations, linear with respect to prehistory of veloc-
ity, sufficient conditions of existence of optimal initial data are obtained. Under initial data
we imply the collection of constant delays, initial moment and vector, initial functions. The
question of the continuity of the integral functional minimum with respect to perturbations
of the right-hand side of equation and integrand is investigated.
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Let 0 < τ1i < τ2i, i = 1, s, 0 < η1j < η2j, j = 1,m, t1 < t2 < t3 be given numbers,
with t3−t2 > τ = max(τ21, ..., τ2s, η21, ..., η2m); let Rn be the n-dimensional vector space
of points

x = (x1, ..., xn)T , |x|2 =
n∑

i=1

(xi)2,

where T means transpose; the functions

Fi(t, x, y) = (f 0
i (t, x, y), fi(t, x, y))T ∈ R1+n, i = 1, s

are continuous on the set I×Rn×Rn, where I = [t1, t3], and continuously differentiable
with respect to x, y ∈ Rn; suppose that Φ ⊂ Rn, X0 ⊂ Rn are compact sets, V ⊂ Rn is
a compact and convex set. By ∆1 and ∆2 we denote sets of measurable ϕ(t) ∈ Φ, t ∈
I1 = [τ̂ , t2], τ̂ = a− τ, and v(t) ∈ V, t ∈ I1 initial functions, respectively. Further, Rn×n

is the space of matrices

A = (aij)
n
i,j=1, |A|2 =

n∑
i,j=1

(aij)
2;

the functions Aj(t) ∈ Rn×n, aj(t) = (a1
j(t), ..., a

n
j (t)), j = 1,m are continuous on the

interval I.
The collection of initial data τi, i = 1, s, ηj, j = 1,m, t0, x0, ϕ(t), v(t) is said to be

initial element and we denote it by w.
To each initial element

w = (τ1, ..., τs, η1, ..., ηm, t0, x0, ϕ, v) ∈ W = [τ11, τ21]× · · · × [τ1s, τ2s]

×[η11, η21]× ...× [η1m, η2m]× [t1, t2]×X0 ×∆1 ×∆2
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we assign the neutral differential equation

ẋ(t) =
s∑

i=1

fi(t, x(t), x(t− τi)) +
m∑

j=1

Aj(t)ẋ(t− ηj), t ∈ [t0, t3] (1)

with the initial condition

x(t) = ϕ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

Remark. The symbol ẋ(t) on the interval [τ̂ , t0) is not connected with derivative
of the function ϕ(t).

Definition 1. Let w ∈ W . A function x(t) = x(t; w) ∈ Rn, t ∈ [τ̂ , t3] is called
a solution, corresponding to the element w, if it satisfies condition (2), is absolutely
continuous on the interval [t0, t3] and satisfies Eq.(1) almost everywhere on [t0, t3].

By W0 we denote the set of such initial elements w ∈ W for which there exists the
corresponding solution x(t; w). In what follows we will assume that W0 6= ∅.

We note that, if the following condition

|fx(t, x, y)|+ |fy(t, x, y)| ≤ L,∀(t, x, y) ∈ I ×Rn ×Rn

is fulfilled, where L > 0 is a given number, then W0 = W.
Let us consider the following functional

J(w) =
s∑

i=1

∫ t3

t0

[f 0
i (t, x(t), x(t− τi))

+
m∑

j=1

aj(t)ẋ(t− ηj)]dt, w ∈ W0,

where x(t) = x(t; w).
Definition 2. An initial element w0 = (τ10, ..., τs0, η10, ..., ηm0, t00, x00, ϕ0, v0) ∈ W0

is said to be optimal for the differential equation (1) if

J(w0) ≤ J(w)

for any w ∈ W0.
Theorem 1. Let the following conditions hold:
1) there exists a compact K0 ⊂ Rn such that

x(t; w) ∈ K0, t ∈ [t0, t3],∀w ∈ W0;

2) for any (ξi, xi) ∈ I ×K0, i = 1, s the set

{
(F1(ξ1, x1, y), ..., Fs(ξs, xs, y)) : y ∈ Φ

} ⊂ R(1+n)s

is convex. Then there exists an optimal initial element w0.
Theorem 2. Let fi(t, x, y) = Bi(t, x)y,B(t, x) ∈ Rn×n and function f 0

i (t, x, y) is
convex with respect to y. Moreover, let the set Φ be convex and let the condition 1) of
Theorem 1 be fulfilled. Then there exists an optimal initial element w0.
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Theorems 1,2 are proved by a scheme given in [1,2].
Let us consider the perturbed differential equation

ẋ(t) =
s∑

i=1

[
fi(t, x(t), x(t− τi)) + giδ(t, x(t), x(t− τi))

]

+
m∑

j=1

[Aj(t) + Ajδ(t)]ẋ(t− ηj), t ∈ [t0, t3] (3)

with the initial condition (2) and the perturbed functional

J(w; δ) =

∫ t3

t0

{ s∑
i=1

[
f 0

i (t, x(t), x(t− τi)) + g0
iδ(t, x(t), x(t− τi))

+
m∑

j=1

[
aj(t) + ajδ(t)

]
ẋ(t− ηj)

}
dt,

where the functions Giδ(t, x, y) = (g0
iδ(t, x, y), giδ(t, x, y))T , i = 1, s are continuous on

the set I×Rn×Rn and continuously differentiable with respect to x, y ∈ Rn; Ajδ(t), ajδ(t),
j = 1,m, t ∈ I are continuous functions.

Definition 3. An initial element w0δ = (τ1δ, ..., τsδ, η1δ, ..., ηmδ, t0δ, x0δ, ϕδ, vδ) ∈ W0

is said to be optimal for the differential equation (3) if

J(w0δ; δ) ≤ J(w; δ)

for any w ∈ W0.
Theorem 3. Let the conditions of the Theorem 1 hold . Then for any ε > 0 there

exists a number δ > 0 such that for arbitrary functions Giδ(t, x, y), i = 1, s; Ajδ(t), ajδ(t),
j = 1,m satisfying the conditions:

s∑
i=1

∫ t3

t1

sup
{∣∣∣∂Giδ(t, x, y)

∂x

∣∣∣ +
∣∣∣∂Giδ(t, x, y)

∂y

∣∣∣ : x, y ∈ K1

}
dt ≤ C, (4)

s∑
i=1

∫ t3

t1

sup
{∣∣∣Giδ(t, x, y)

∣∣∣ : x, y ∈ K1

}
dt +

m∑
j=1

[
‖Ajδ‖+ ‖ajδ‖

]
≤ δ (5)

and the set

{
(F1(ξ1, x1, y) + G1δ(ξ1, x1, y), ..., Fs(ξs, xs, y) + Gsδ(ξs, xs, y)) : y ∈ Φ

}

is convex, where C > 0 is a fixed number,

‖Ajδ‖ = sup{|Ajδ(t)| : t ∈ I}
and K1 ⊂ Rn is a compact set containing some neighborhood of set K0∪Φ; there exists
an optimal initial element w0δ and the following inequality

|J(w0δ; δ)− J(w0)| ≤ ε (6)
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is fulfilled.
Theorem 4. Let the conditions of Theorem 2 hold. Then for any ε > 0 there exists

a number δ > 0 such that for arbitrary functions

Giδ(t, x, y) = (g0
iδ(t, x, y), Biδ(t, x)y)T , i = 1, s

and Ajδ(t), a
0
jδ(t), j = 1,m satisfying the conditions (4),(5) and the functions g0

iδ(t, x, y),

i = 1, s are convex with respect to y; there exists an optimal element w0δ and the in-
equality (6) is fulfilled.

Theorems 3,4 are proved by a scheme given in [3]. The similar questions are con-
sidered for delay differential equations in [4].

Finally, we note that Theorems 1-4 play an important role in solving inverse prob-
lems for neutral differential equations [5].
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NECESSARY OPTIMALITY CONDITIONS OF SINGULAR CONTROLS IN
CONTROL PROBLEM FOR VOLTERRA TYPE TWO-DIMENSIONAL

DIFFERENCE EQUATION

Amirova R., Mansimov K.

Abstract. Necessary optimality condition is obtained in the form of discrete maximum
principle in an optimal control problem described by a system of two-dimensional difference
equations of Volterra type. Moreover, the case of degeneration of discrete maximum condition
is considered.
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1. Introduction

Optimization problems for Volterra integral equations occupy an important place
in the theory of optimal control. The Volterra integral equations are widely used
in modeling some phenomena of continuum mechanics and biomechanics [1-8]. The
optimal control problems described by Volterra integral equations have been studied
in [8-11]. The present paper deals with investigation of an optimal control problem
described by system of Volterra two-dimensional difference equations. The necessary
optimality condition is proved in the form of discrete maximum condition. Moreover,
necessary optimality conditions are proved for controls which are singular optimal
controls in the sense of Pontryagin’s maximum principle.

2. Statement of the problem

Consider a problem on minimum of the functional

S(u) = ϕ(z(t1, x1)), (2.1)

under restrictions

u(t, x) ∈ U ⊂ Rr, (t, x) ∈ T ×X = {(t, x) : t = t0, t0 + 1, ..., t1

; x = x0, x0 + 1, ..., x1}, (2.2)

z(t, x) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ, s, z(τ, s), u(τ, s)), (t, x) ∈ T ×X (2.3)

Here ϕ(z) is a given twice differentiable scalar function, t0, t1, x0, x1 are given numbers,
f(t, x, τ, s, z, u) is a given n -dimensional vector-function continuous by the aggregate
of variables together with partial derivatives with respect to z up to the second order
inclusive, u(t, x) is a control function, U is a given non-empty and bounded set.
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A control function u(t, x) satisfying the restriction (2.2) and the pair (u(t, x), z(t, x))
will be called an admissible control and an admissible process, respectively.

Equation (2.3) is a difference analogue of Volterra two-dimensional integral equa-
tion. It is assumed that to each admissible control u(t, x) corresponds unique solution
of discrete equation (2.2). The existence, uniqueness and boundedness problems of
solutions of Volterra one-dimensional difference equations have been investigated in [5,
12-14].

We note that different aspects of multi parameter, in particular two-parameter
discrete control systems have been studied in [15-22].

The admissible control u(t, x) minimizing the functional (2.1) under restrictions
(2.2), (2.3) is said to be an optimal control, the corresponding process (u(t, x), z(t, x))
an optimal process.

3. The second order increment formula

In this section we derive representation for the increments of cost functional S(u).
Let the set

f(t, x, τ, s, z, U) = {α : α = f(t, x, τ, s, z, v), v ∈ U} , (3.1)

be convex for all (t, x, τ, s, z) .
Let (u(t, x), z(t, x)) be a fixed admissible process, by u(t, x; ε) we denote an arbi-

trary admissible control such that its appropriate state of the process z(t, x; ε) satisfies
the relation

z(t, x; ε) =
t∑

τ=t0

x∑
s=x0

f(t, x, τ, s, z(τ, s : ε), u(τ, s : ε)) ≡
t∑

τ=t0

x∑
s=x0

[
f(t, x, τ, s, z(τ, s : ε)

, u(τ, s)) + ε [f(t, x, τ, s, z(τ, s : ε), v(τ, s))− f(t, x, τ, s, z(τ, s : ε), u(τ, s))]
]
, (3.2)

where ε ∈ [0, 1] is an arbitrary number, v(t, x) ∈ U , (t, x) ∈ T × X is an arbitrary
admissible control.

Such an admissible control u(t, x; ε) exists by the convexity of set (3.1).
Introduce the functions

y(t, x) =
∂z(t, x : ε)

∂ε

∣∣∣∣∣
ε=0

; Y (t, x) =
∂2z(t, x : ε)

∂ε2

∣∣∣∣∣
ε=0

. (3.3)

Using (3.2), and taking into account the smoothness of the function f(t, x, τ, s, z, u), it
is proved that y(t, x) and Y (t, x) are the solutions of Volterra type linear inhomogeneous
difference equations

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s))
]
, (3.4)
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Y (t, x) =
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))Y (τ, s) + 2∆v(τ,s)fz(t, x, τ, s, z(τ, s)

, u(τ, s))y(τ, s) + y
′
(τ, s)fzz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

]
. (3.5)

Here and in the sequel, we use the denotation

∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s)) ≡ f(t, x, τ, s, z(τ, s), v(τ, s))

−f(t, x, τ, s, z(τ, s), u(τ, s)),

(′) prime means a scalar product for the vectors, the transpose operation for the matri-
ces. Moreover, special increment of functional (2.1) responding to admissible controls
u(t, x; ε) and u(t, x) will be written in the form

∆Sε(u) = S(u(t, x; ε))− S(u(t, x)) = ε
∂ϕ

′
(z(t1, x1))

∂z
y(t1, x1)

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1) +

ε2

2

∂ϕ(z(t1, x1))

∂z
Y (t1, x1) + 0(ε2). (3.6)

Now we Introduce the Hamilton-Pontryagins function

H(t, x, z(t, x), u(t, x), ψ(t, x)) =

t1∑
τ=t

x1∑
s=x

ψ
′
(τ, s)f(τ, s, t, x, z(t, x), u(t, x))

−ϕ
′
z(z(t1, x1))f(t1, x1, t, x, z(t, x), u(t, x)),

where ψ = ψ(t, x) is n-dimensional vector-function of conjugated variables being a
solution of the equation

ψ(t, x) = Hz(t, x, z(t, x), u(t, x), ψ(t, x)). (3.7)

Equation (3.7) is an analogy of the conjugated system [23-25] for control problem
(2.1)-(2.3) and is a Volterra linear nonhomogeneous equation with respect to ψ(t, x).

Theorem 3.1 The second order increment of functional (2.1) can be represented
by the following formula

∆Sε(u) = −ε

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) +
ε2

2

{
y
′
(t1, x1)

∂2ϕ(z(t1, x1))

∂z2

×y(t1, x1)−
t1∑

t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

−2

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

}
+ 0(ε2). (3.8)

Proof. Multiplying scalarly the both sides of relations (3.4), (3.5) from the left by
ψ(t, x), and summing the both sides of the obtained relations over t (x) from t0 (x0)
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to t1 (x1), we get

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)y(t, x) =

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)

[
t∑

τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+∆v(τ,s)f(t, x, τ, s, z(τ, s), u(τ, s))
]]

. (3.9)

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)Y (t, x) =

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)

[ t∑
τ=t0

x∑
s=x0

[
fz(t, x, τ, s, z(τ, s), u(τ, s))Y (τ, s)

+2∆v(τ,s)fz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

+y
′
(τ, s)fzz(t, x, τ, s, z(τ, s), u(τ, s))y(τ, s)

]]
. (3.10)

The following statement is true.
Lemma 3.1 Let L(t, x, τ, s) and K(t, x, τ, s) be given (n × n) matrix functions.

Then the identity

m∑
t=t0

∑̀
x=x0

[
t∑

τ=t0

x∑
s=x0

L(m, `, t, x)K(t, x, τ, s)

]
=

m∑
t=t0

∑̀
x=x0

[
m∑

τ=t

∑̀
s=x

L(m, `, τ, s)K(τ, s, t, x)

]

is valid.
The lemma is a two-dimensional discrete analogue of Fubini formula [1, 7]. Using

this lemma and assuming

M(t, x, z(t, x), u(t, x), ψ(t, x)) =

t1∑
τ=t

x1∑
s=x

ψ
′
(τ, s)f(τ, s, t, x, z(t, x), u(t, x)),

identities (3.9), (3.10) can be transformed into the form

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)y(t, x) =

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+∆v(t,x)M(t, x, z(t, x), u(t, x), ψ(t, x))
]
, (3.11)

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x)Y (t, x) =

t1∑
t=t0

x1∑
x=x0

[
Mz(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x)

+2∆v(t,x)M
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+y
′
(t, x)Mzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
. (3.12)

Further, it is clear that from (3.4), (3.5) follows

y(t1, x1) =

t1∑
t=t0

x1∑
x=x0

[
fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)
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+∆v(t,x)f(t1, x1, t, x, z(t, x), u(t, x))
]
.

Y (t1, x1) =

t1∑
τ=t0

x1∑
s=x0

[
fz(t1, x1, τ, s, z(τ, s), u(τ, s))Y (τ, s)

+2∆v(τ,s)fz(t1, x1, τ, s, z(τ, s), u(τ, s))y(τ, s)

+y
′
(τ, s)fzz(t1, x1, τ, s, z(τ, s), u(τ, s))y(τ, s)

]
.

Taking into account identities (3.11)-(3.13) in (3.6), we get

∆Sε(u) = ε

t1∑
t=t0

x1∑
x=x0

∂ϕ
′
(z(t1, x1))

∂z

[
fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)

+∆v(t,x)f(t1, x1, t, x, z(t, x), u(t, x))
]

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1)

+
ε2

2

t1∑
t=t0

x1∑
x=x0

∂ϕ(z(t1, x1))

∂z

[
fz(t1, x1, t, x, z(t, x), u(t, x))Y (t, x)

+2∆v(τ,s)fz(t1, x1, t, x, z(t, x), u(t, x))y(t, x)

+y
′
(t, x)fzz(t1, x1, t, x, z(t, x), u(t, x))

]
+ ε

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) y(t, x)

−ε

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x) + ∆v(t,x)M(t, x, z(t, x), u(t, x), ψ(t, x))

]

+
ε2

2

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) Y (t, x)− ε2

2

t1∑
t=t0

x1∑
x=x0

[
M

′
z(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x)

+2∆v(t,x)M
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+y
′
(t, x)Mzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
+ 0(ε2).

Hence, grouping the similar terms and taking into consideration the expressions of
Hamilton-Pontryagins function, we have

∆Sε(u) = −ε

t1∑
t=t0

x1∑
x=x0

H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

−ε2

2

t1∑
t=t0

x1∑
x=x0

H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Y (t, x) + ε

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) y(t, x)

+
ε2

2

t1∑
t=t0

x1∑
x=x0

ψ
′
(t, x) Y (t, x)− ε

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
(t, x, z(t, x), u(t, x), ψ(t, x))

+
ε2

2
y
′
(t1, x1)

∂2ϕ
′
(z(t1, x1))

∂z2
y(t1, x1)− ε2

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))

×y(t, x)− ε2

2

t1∑
t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x) + 0(ε2).
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Hence, with regard to the fact that ψ(t, x) is a solution of equation (3.7), we obtain
formula (3.8).

4. The second order increment formula

By arbitrariness of ε ∈ [0, 1] the following theorem immediately follows from ex-
pression (3.8)

Theorem 4.1. If the set (3.1) is convex, then for optimality of the admissible
control u(t, x) the inequality

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) ≤ 0 (4.1)

should be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
Theorem 4.1 is an analogue of Pontryagins discrete maximum principle [22-25] for

the considered problem and is a first order necessary optimality condition. Therefore,
the number of non-optimal controls satisfying the maximum condition (4.1) may be
sufficiently great. Besides, possibility of degeneration of optimality condition (4.1) (see
[26]) is not excluded.

Now we investigate the case of degeneration of necessary optimality condition (4.1).
Definition 4.1. The admissible control u(t, x) is called singular control in the

sense of Pontryagins maximum principle, if the relation

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H(t, x, z(t, x), u(t, x), ψ(t, x)) = 0 (4.2)

is fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X. By definition, the singular controls satisfy
first order necessary optimality conditions and consequently to analyze them from the
optimality point of view we need second order and sometimes higher order optimality
conditions [26].

Allowing for (4.2), the following statement follows from expression (3.8).
Theorem 4.2. If the set (3.1) is convex, then for optimality of the singular control

u(t, x) the inequality

y
′
(t1, x1)ϕzz(z(t1, x1))y(t1, x1)−

t1∑
t=t0

x1∑
x=x0

[
y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

+2∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

]
≥ 0 (4.3)

should be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
Here, y(t, x) is a solution of the equation in variations (3.4). Inequality (4.3) is

a sufficiently general necessary optimality condition of singular controls. Based on
this inequality, in some cases we can get constructively verifiable necessary optimality
conditions of singular controls that are expressed obviously by the parameters of the
problem (2.1)-(2.3).
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The equations in variations (3.4) is a Volterra type linear, nonhomogeneous two-
dimensional difference equation.

Using the scheme of the papers [1, 3-7], it is proved that the solution of the equation
in variations (3.4) y(t, x) allows the representation

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
∆v(τ,s)fz(t, x, τ, s, z(τ, s), u(τ, s))

+
t∑

α=τ

x∑

β=s

R(t, x, α, β)∆v(τ,s)f(α, β, τ, s, z(τ, s), u(τ, s))
]
. (4.4)

Here, R(t, x, τ, s) is a solution of the Volterra type linear nonhomogeneous matrix
difference equation

R(m, `, t, x) =
m∑

τ=t

∑̀
s=x

R(m, `, τ, s)fz(τ, s, t, x, z(t, x), u(t, x))

−fz(m, `, t, x, z(t, x), u(t, x)). (4.5)

Equation (4.5) is a discrete analogue of the resolvent of Volterra type integral equation.
By means of the scheme, for example of the paper [1], it is proved that R(m, `, t, x) is
also a solution of the equation

R(m, `, t, x) =
m∑

τ=t

∑̀
s=x

fz(m, `, τ, s, z(τ, s), u(τ, s))R(τ, s, t, x)

−fz(m, `, t, x, z(t, x), u(t, x)). (4.6)

By analogy with the papers [1, 3-7], we call the matrix function R(m, `, t, x) a resol-
vent of the equation in variations (3.4) and equations (4.5), (4.6) the equations of the
resolvent. Assume that the right-hand side of system (2.3) has the form:

f(t, x, τ, s, z, u) = A(t, x, τ, s) g(τ, s, z, u). (4.7)

Then representation (4.4) takes the form

y(t, x) =
t∑

τ=t0

x∑
s=x0

[
A(t, x, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

+
t∑

α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s)∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
]

=
t∑

τ=t0

x∑
s=x0

{[
A(t, x, τ, s) +

t∑
α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s)

]
∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

}
.

Assuming

Q(t, x, τ, s) = A(t, x, τ, s) +
t∑

α=τ

x∑

β=s

R(t, x, α, β)A(α, β, τ, s),
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this formula can be written in the form

y(t, x) =
t∑

τ=t0

x∑
s=x0

Q(t, x, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s)). (4.8)

It is clear that from representation (4.8) we have

y(t1, x1) =

t1∑
τ=t0

t1∑
α=t0

Q(t1, x1, τ, s) ∆v(τ,s)g(τ, s, z(τ, s), u(τ, s)).

Therefore we get

y
′
(t1, x1)ϕzz(z(t1, x1))y(t1, x1) =

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
′

×ϕzz(z(t1, x1))∆v(α,β)g(α, β, z(α, β), u(α, β)). (4.9)

Thus,

t1∑
t=t0

x1∑
x=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

=

t1∑
t=t0

x1∑
x=x0

[ t∑
τ=t0

x∑
s=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, τ, s)

×∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))
]
. (4.10)

Finally, using the scheme of the papers [20, 21], we prove the identity

t1∑
t=t0

x1∑
x=x0

y
′
(t, x)Hzz(t, x, z(t, x), u(t, x), ψ(t, x))y(t, x)

=

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g
′
(τ, s, z(τ, s), u(τ, s))

×




t1∑

t=max(τ,α)

x1∑

x=max(s,β)

Q(
′
t, x, τ, s) Hzz(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, α, β)





×∆v(α,β)g(α, β, z(α, β), u(α, β)). (4.11)

Taking into account identities (4.9)-(4.11) in inequality (4.3), we get the relation

t1∑
τ=t0

x1∑
s=x0

t1∑
α=t0

x1∑

β=x0

∆v(τ,s)g
′
(τ, s, z(τ, s), u(τ, s))M(τ, s, α, β)∆v(α,β)g(α, β, z(α, β), u(α, β))

+2

t1∑
τ=t0

x1∑
s=x0

[
t∑

τ=t0

x∑
s=x0

∆v(t,x)H
′
z(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, τ, s)

×∆v(τ,s)g(τ, s, z(τ, s), u(τ, s))

]
≤ 0 (4.12)
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where

M(τ, s, α, β) = −Q
′
(t1, x1, τ, s) ϕzz(z(t1, x1)) Q(t1, x1, α, β)

+

t1∑

t=max(τ,α)

x1∑

x=max(s,β)

Q(
′
t, x, τ, s) Hzz(t, x, z(t, x), u(t, x), ψ(t, x))Q(t, x, α, β). (4.13)

Now we formulate the obtained result.
Theorem 4.3. If the function f(t, x, τ, s, z, u) has the form (4.7) and the set (3.1)

is convex, then for optimality of the singular control u(t, x) the inequality (4.12) should
be fulfilled for all v(t, x) ∈ U , (t, x) ∈ T ×X.
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NECESSARY OPTIMALITY CONDITIONS OF SECOND ORDER IN DISCRETE
TWO-PARAMETER STEPWISE CONTROL PROBLEMS
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Abstract. A stepwise optimal control problem described by two-dimensional discrete sys-
tems is considered. Under openness of a control domain, necessary optimality conditions of
first and second order are obtained.
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AMS subject classification (2000): 49K15; 49K20; 49K22; 49K99; 34H05; 49N65.

1. Introduction

Discrete dynamical models of controlled systems are an important class among
of mathematical models. Such models arise in modeling of real processes and dis-
cretization of continuous models [1-10]. Optimization problems of stepwise or variable
structure systems occupy an important place in the theory of optimal control [11-21].
The present paper is devoted to derivation of necessary optimality conditions for one
class of control problem described by two-dimensional stepwise discrete system. Fi-
nally, we note that various necessary and sufficient optimality conditions for discrete
two-dimensional controlled systems are obtained in [8, 22-27].

2. Statement of the problem

Let the controlled system be described by the following discrete two-parametric
system of equations

{
zi(t + 1, x + 1) = fi(t, x, zi(t, x), zi(t + 1, x), zi(t, x + 1), ui(t, x)),

(t, x) ∈ Di, i = 1, 3,
(2.1)

with boundary conditions





z1(t0, x) = a1(x), x = x0, x0 + 1, ..., X, z1(t, x0) = β1(t), t = t0, t0 + 1, ..., t1,

z2(t1, x) = z1(t1, x), x = x0, x0 + 1, ..., X, z2(t, x0) = β2(t), t = t1, t1 + 1, ..., t2,

z3(t2, x) = z2(t2, x), x = x0, x0 + 1, ..., X, z3(t, x0) = β3(t), t = t2, t2 + 1, ..., t3,

a1(x0) = β1(t0), z1(t1, x0) = β2(t1), z2(t2, x0) = β3(t2).

(2.2)

Here, Di = {(t, x) : t = ti−1, ti−1 + 1, ..., ti− 1; x = x0, x0 + 1, ..., X − 1}, i = 1, 3, where
x0, X, ti, i = 1, 3 are fixed numbers; fi(t, x, ai, bi, ui), i = 1, 3 are n-dimensional vector-
functions continuous in the aggregate of variables together with partial derivatives with
respect to (zi, ai, bi, ui), i = 1, 3 up to the second order inclusive, α1(x), βi(t), i = 1, 3
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are given n-dimensional vector-functions, and ui(t, x), i = 1, 3 are r-dimensional control
functions with values from the given non-empty, bounded and open sets Ui ⊂ Rr, i =
1, 3, i.e.

ui(t, x) ∈ Ui ⊂ Rr, (t, x) ∈ Di, i = 1, 3. (2.3)

The triple u(t, x) = (u1(t, x), u2(t, x), u3(t, x))′ with the above mentioned properties
and its corresponding solution z(t, x) = (z1(t, x), z2(t, x), z3(t, x))′ of boundary value
problem (2.1)-(2.2) will be called an admissible control and admissible state of the
process, respectively. The pair (u(t, x), z(t, x)) is said to be an admissible process.

The problem is to minimize the cost functional

S(u) =
3∑

i=1

ϕi(zi(ti, X)) (2.4)

determined on the solutions of boundary value problem (2.1)-(2.2) generated by all
possible admissible controls.
Here, ϕi(zi), i = 1, 3 are the given twice continuously differentiable scalar functions.
In the sequel, the problem on the minimum of the functional (2.4) under restrictions
(2.1)-(2.3) will be called problem (2.1)-(2.4). The admissible process (u(t, x), z(t, x))
being a solution of problem (2.1)-(2.4) will be called an optimal process.

3. Auxiliary facts and variations of cost functional

Let (u(t, x), z(t, x)) be a fixed admissible process. In the sequel, the following
denotations will be used:

Hi(t, x, zi, ai, bi, ui, ψi) = ψ′ifi(t, x, zi, ai, bi, ui),

∂fi[t, x]

∂ai

=
∂fi(t, x, zi(t, x), zi(t + 1, x), zi(t, x + 1), ui(t, x))

∂ai

,

∂Hi[t, x]

∂zi

=
∂Hi(t, x, zi(t, x), zi(t + 1, x), zi(t, x + 1), ui(t, x), ψi(t, x))

∂zi

,

∂2Hi[t, x]

∂z2
i

=
∂2Hi(t, x, zi(t, x), zi(t + 1, x), zi(t, x + 1), ui(t, x), ψi(t, x))

∂z2
i

,

where ψi = ψi(t, x), i = 1, 3 are n-dimensional vector-functions of conjugated being
the solutions of the problem

ψi(t− 1, x− 1) =
∂Hi[t, x]

∂zi

+
∂Hi[t− 1, x]

∂ai

+
∂Hi[t, x− 1]

∂bi

, i = 1, 3, (3.1)

ψ1(t1 − 1, X − 1) = ψ2(t1 − 1, X − 1)− ∂ϕ1(z1(t1, X))

∂z1

,

ψ1(t1 − 1, x− 1) = ψ2(t1 − 1, x− 1) +
∂H1[t1 − 1, x]

∂a1

− ∂H2[t1 − 1, x]

∂a2

,

ψ1(t− 1, X − 1) =
∂H1[t− 1, X − 1]

∂b1

,

ψ2(t2 − 1, X − 1) = ψ3(t2 − 1, X − 1)− ∂ϕ2(z2(t2, X))

∂z2

,
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ψ2(t2 − 1, x− 1) = ψ3(t2 − 1, x− 1) +
∂H2[t2 − 1, x]

∂a2

− ∂H3[t2 − 1, x]

∂a3

,

ψ2(t− 1, X − 1) =
∂H2[t,X − 1]

∂b2

, ψ3(t3 − 1, X − 1) = −∂ϕ3(z3(t3, X))

∂z3

,

ψ3(t3 − 1, x− 1) =
∂H3[t3, x]

∂a3

, ψ3(t− 1, X − 1) =
∂H3[t, X − 1]

∂b3

. (3.2)

Using a scheme for example from [23, 28, 29] we can show that the first and second
variations (in the classical sense) of functional (2.4) have the form

δ1S(u; δu) = −
3∑

i=1




t1−1∑
t=ti−1

X−1∑
x=x0

∂H
′
i [t, x]

∂ui

δui(t, x)


 , (3.3)

δ2S(u; δu) =
3∑

i=1

δz
′
i(ti, X)

∂2ϕi(zi(ti, X)

∂z2
i

δzi(ti, X))

−
3∑

i=1

[
t1−1∑

t=ti−1

X−1∑
x=x0

[
δz

′
i(t, x)

∂2Hi[t, x]

∂z2
i

δzi(t, x) + δz
′
i(t + 1, x)

∂2Hi[t, x]

∂ai ∂zi

δzi(t, x) + δz
′
i(t, x)

×∂2Hi[t, x]

∂zi ∂ai

δzi(t + 1, x) + δz
′
i(t + 1, x)

∂2Hi[t, x]

∂a2
i

δzi(t + 1, x) + δz
′
i(t, x)

∂2Hi[t, x]

∂zi ∂bi

×δzi(t, x + 1) + δz
′
i(t, x + 1)

∂2Hi[t, x]

∂bi ∂zi

δzi(t, x) + δz
′
i(t, x + 1)

∂2Hi[t, x]

∂b2
i

δzi(t, x + 1)

+δz
′
i(t + 1, x)

∂2Hi[t, x]

∂ai ∂bi

δzi(t, x + 1) + δz
′
i(t, x + 1)

∂2Hi[t, x]

∂bi ∂ai

δzi(t + 1, x)

+2δu
′
i(t, x)

∂2Hi[t, x]

∂ui ∂zi

δzi(t, x) + 2δu
′
i(t, x)

∂2Hi[t, x]

∂ui ∂ai

δzi(t + 1, x) + 2δu
′
i(t, x)

∂2Hi[t, x]

∂ui ∂bi

×δzi(t, x + 1) + δu
′
i(t, x)

∂2Hi[t, x]

∂u2
i

δui(t, x)

]]
(3.4)

respectively, where δui(t, x) ∈ Rr, (t, x) ∈ Di, i = 1, 3 is an arbitrary bounded vector-
function called an admissible variation of the control ui(t, x), i = 1, 3, and δzi(t, x) is
a variation of the trajectory zi(t, x) being a solution of the equation in variations

δzi(t + 1, x + 1) =
∂fi[t, x]

∂zi

δzi(t, x) +
∂fi[t, x]

∂ai

δzi(t + 1, x) +
∂fi[t, x]

∂bi

δzi(t, x + 1)

+
∂fi[t, x]

∂ui

δui(t, x), i = 1, 3, (3.5)

with boundary conditions




δz1(t0, x) = 0, x = x0, x0 + 1, ..., X, δz1(t, x0) = 0, t = t0, t0 + 1, ..., t1,

δz2(t1, x) = δz1(t1, x), x = x0, x0 + 1, ..., X, δz2(t, x) = 0, t = t1, t1 + 1, ..., t2,

δz3(t2, x) = δz2(t2, x), x = x0, x0 + 1, ..., X, δz3(t, x0) = 0, t = t2, t2 + 1, ..., t3.

(3.6)
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The system of difference equations (3.5) is linear and nonhomogeneous. Therefore,
we can represent (see [23, 26, 27]) the solution of problem (3.5)-(3.6) in the form

δz1(t, x) =
t−1∑
τ=t0

x−1∑
s=x0

R1(t, x; τ, s)
∂f1[τ, s]

∂u1

δu1(τ, s), (3.7)

δz2(t, x) =

t1−1∑
τ=t0

x−1∑
s=x0

Q1(t, x; τ, s)
∂f1[τ, s]

∂u1

δu1(τ, s)

+
t−1∑
τ=t1

x−1∑
s=x0

R2(t, x; τ, s)
∂f2[τ, s]

∂u2

δu2(τ, s), (3.8)

δz3(t, x) =

t1−1∑
τ=t0

x−1∑
s=x0

Q2(t, x; τ, s)
∂f1[τ, s]

∂u1

δu1(τ, s) +

t2−1∑
τ=t1

x−1∑
s=x0

Q3(t, x; τ, s)

×∂f2[τ, s]

∂u2

δu2(τ, s) +
t−1∑
τ=t2

x−1∑
s=x0

R3(t, x; τ, s)
∂f3[τ, s]

∂u3

δu3(τ, s), (3.9)

where by definition

Q1(t, x; τ, s) = R2(t, x; t1 − 1, x− 1) R1(t, x; τ, s)

+
x−1∑

β=s+1

[
R2(t, x; t1 − 1, β − 1)−R2(t, x; t1 − 1, β)

∂f2[t1 − 1, β]

∂a2

]
R1(t1, β; τ, s),

Q2(t, x; τ, s) = R3(t, x; t2 − 1, x− 1) Q1(t2, x; τ, s)

+
x−1∑

β=s+1

[
[R3(t, x; t2 − 1, β − 1)−R3(t, x; t2 − 1, β)]

∂f3[t2 − 1, β]

∂a3

]
Q1(t2, β; τ, s),

Q3(t, x; τ, s) = R3(t, x; t2 − 1, x− 1) R2(t2, x; τ, s)

+
x−1∑

β=s+1

[
[R3(t, x; t2 − 1, β − 1)−R3(t, x; t2 − 1, β)]

∂f3[t2 − 1, β]

∂a3

]
R2(t2, β; τ, s),

Here, Ri(t, x; τ, s), i = 1, 3 are (n × n) dimensional matrix functions being the
solutions of the following problems:

Ri(t, x; τ − 1, s− 1) = Ri(t, x; τ, s)
∂fi[τ, s]

∂zi

+ Ri(t, x; τ − 1, s)
∂fi[τ − 1, s]

∂ai

+Ri(t, x; τ, s− 1)
∂fi[τ, s− 1]

∂bi

,

Ri(t, x; t− 1, s− 1) = Ri(t, x; t1 − 1, s)
∂fi[t− 1, s]

∂ai

,

Ri(t, x; τ − 1, x− 1) = Ri(t, x; τ, x− 1)
∂fi[τ, x− 1]

∂bi

,

Ri(t, x; t− 1, x− 1) = E, (E − (n× n) is a unit function).
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Let (u(t, x), z(t, x)) be an optimal process. Then, along this process, for all the
admissible variations δu(t, x) of the control u(t, x), the first variation (3.3) of functional
(2.4) should equal zero, the second variation (3.4) of functional (2.4) should be non-
negative, i.e.

δ1S(u; δu) = 0, (3.10)

δ2S(u; δu) ≥ 0. (3.11)

The relations (3.10) and (3.11) are implicit necessary conditions of first and second
orders, respectively.

In the next section, using these relations we obtain the explicit necessary optimality
conditions expressed directly by the parameter of the stated problem.

4. Necessary optimality conditions

Allowing for representation (3.10), by independence of the admissible variations
δui(t, x), i = 1, 3 of the control it follows from (3.3) that along the optimal process

∂Hi[θ, ξ]

∂ui

= 0, for all (θ, ξ) ∈ Di, i = 1, 3. (4.1)

The relation (4.1) representing a first order necessary optimality conditions is an
analogy of Euler equation for problem (2.1)-(2.4).

Each admissible control u(t, x) satisfying Euler equation (4.1) is said to be classic
extremal in problem (2.1)-(2.4).

Using inequality (3.11), in many cases we can get explicit necessary optimality
condition of second order.

To this end, assume that in system (2.1)

fi(t, x, zi, ai, bi, ui) = Bi(t, x) bi + F (t, x, zi, ai, ui). (4.2)

Assume

K1(τ, s) = −R
′
1(t1, X; θ, τ)

∂2ϕ1(z1(t1, X))

∂z2
1

R1(t1, X; θ, s)−Q
′
1(t2, X; θ, τ)

×∂2ϕ2(z2(t2, X))

∂z2
2

Q2(t2, X; θ, s)−Q
′
3(t3, X; θ, τ)

∂2ϕ3(z3(t3, X))

∂z2
3

Q3(t3, X; θ, s)

+

t1−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

[
R
′
1(t, x; θ, τ)

∂2H1[t, x]

∂z2
1

R1(t, x; θ, s) + R
′
1(t, x; θ, τ)

∂2H1[t, x]

∂z1 ∂a1

×R1(t + 1, x; θ, s) + R
′
1(t + 1, x; θ, τ)

∂2H1[t, x]

∂a1 ∂z1

R1(t, x; θ, s)

]

+

t1−1∑

t=θ

X−1∑

x=max(τ,s)+1

R
′
1(t + 1, x; θ, τ)

∂2H1[t, x]

∂a2
1

R1(t + 1, x; θ, s)
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+

t2−1∑
t=t1

X−1∑

x=max(τ,s)+1

[
Q
′
1(t, x; θ, τ)

∂2H2[t, x]

∂z2
2

Q1(t, x; θ, s) + Q
′
1(t, x; θ, τ)

∂2H2[t, x]

∂z2 ∂a2

×Q1(t + 1, x; θ, s) + Q
′
1(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2∂z2

Q1(t, x; θ, s) + Q
′
1(t + 1, x; θ, τ)

×∂2H2[t, x]

∂a2
2

Q1(t + 1, x; θ, s)

]
+

t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

[
Q
′
2(t, x; θ, τ)

∂2H3[t, x]

∂z2
3

Q2(t, x; θ, s)

+Q
′
2(t, x; θ, τ)

∂2H3[t, x]

∂z3 ∂a3

Q2(t + 1, x; θ, s) + Q
′
2(t + 1, x; θ, τ)

∂2H3[t, x]

∂a3 ∂z3

Q2(t, x; θ, s)

+Q
′
2(t + 1, x; θ, τ)

∂2H3[t, x]

∂a2
3

Q2(t + 1, x; θ, s)

]
, (4.3)

K2(τ, s) = −R
′
2(t2, X; θ, τ)

∂2ϕ2(z2(t2, X))

∂z2
2

R2(t2, X; θ, s)−Q
′
3(t3, X; θ, τ)

×∂2ϕ3(z3(t3, X))

∂z2
3

Q3(t3, X; θ, s) +

t2−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

[
R
′
2(t, x; θ, τ)

∂2H2[t, x]

∂z2
2

×R2(t, x; θ, s) + R
′
2(t, x; θ, τ)

∂2H2[t, x]

∂z2 ∂a2

R2(t + 1, x; θ, s) + R
′
2(t + 1, x; θ, τ)

×∂2H2[t, x]

∂a2 ∂z2

R2(t, x; θ, s)

]
+

t2−1∑

t=θ

X−1∑

x=max(τ,s)+1

R
′
2(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2
2

×R2(t + 1, x; θ, s) +

t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

[
Q
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z2
3

Q3(t, x; θ, s)

+Q
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z3 ∂a3

Q3(t + 1, x; θ, s) + Q
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a3∂z3

Q3(t, x; θ, s)

+Q
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a2
3

Q3(t + 1, x; θ, s)

]
, (4.4)

K3(τ, s) = −R
′
3(t3, X; θ, τ)

∂2ϕ3(z3(t3, X))

∂z2
3

R3(t3, X; θ, s)

+

t3−1∑

t=θ

X−1∑

x=max(τ,s)+1

[
R
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z2
3

R3(t, x; θ, s)

+R
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z3 ∂a3

R3(t + 1, x; θ, s) + R
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a3 ∂z3

R3(t, x; θ, s)

]

+

t3−1∑

t=θ

X−1∑

x=max(τ,s)+1

R
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a2
3

R3(t + 1, x; θ, s). (4.5)
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Using the discrete variants of line variations [30], we prove the following
Theorem 4.1 If the sets Ui, i = 1, 3 are open, then under the assumptions made for

optimality of the classical extremal u(t, x) in problem (2.1)-(2.4), (4.2) the following
relations

1)
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

K1(τ, s)
∂f1[θ, s]

∂u1

v1(s) +

x1−1∑
x=x0

v
′
1(x)

∂2H1[θ, x]

∂u2
1

v1(x)

+2
X−1∑
x=x0

[
x−1∑
s=x0

v
′
1(x)

∂2H1[θ, x]

∂u1 ∂a1

R1(θ + 1, x; θ, s)
∂f1[θ, s]

∂u1

v1(s)

]
≤ 0 (4.6)

should be fulfilled for all v1(x) ∈ Rr, x = x0, x0 + 1, . . . , X − 1, θ ∈ T1 = {t0, t0 +
1, . . . , t1 − 1},

2)
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

K2(τ, s)
∂f2[θ, s]

∂u2

v2(s) +

x1−1∑
x=x0

v
′
2(x)

∂2H2[θ, x]

∂u2
2

v2(x)

+2
X−1∑
x=x0

[
x−1∑
s=x0

v
′
2(x)

∂2H2[θ, x]

∂u2 ∂a2

R2(θ + 1, x; θ, s)
∂f2[θ, s]

∂u2

v2(s)

]
≤ 0 (4.7)

for all v2(x) ∈ Rr, x = x0, x0 + 1, . . . , X − 1, θ ∈ T2 = {t1, t1 + 1, . . . , t2 − 1},

3)
X−1∑
τ=x0

X−1∑
s=x0

v
′
3(τ)

∂f
′
3[θ, τ ]

∂u3

K3(τ, s)
∂f3[θ, s]

∂u3

v3(s) +

x1−1∑
x=x0

v
′
3(x)

∂2H3[θ, x]

∂u2
3

v3(x)

+2
X−1∑
x=x0

[
x−1∑
s=x0

v
′
3(x)

∂2H3[θ, x]

∂u3 ∂a3

R3(θ + 1, x; θ, s)
∂f3[θ, s]

∂u3

v3(s)

]
≤ 0 (4.8)

for all v3(x) ∈ Rr, x = x0, x0 + 1, . . . , X − 1, θ ∈ T3 = {t2, t2 + 1, . . . , t3 − 1}.
Proof. Using arbitrariness of admissible variations of the control u(t, x) = (u1(t, x),

u2(t, x), u3(t, x)), we assume

δu∗1(t, x) =

{
v1(x), t = θ ∈ T1; x = x0, x0 + 1, . . . , X − 1,

0, t 6= θ; x = x0, x0 + 1, . . . , X − 1,
(4.9)

δu∗1(t, x) = 0, (t, x) ∈ Di, i = 1, 2.

Here, v1(x) ∈ Rr, x = x0, x0+1, . . . , X−1 is an arbitrary bounded vector-function,
θ ∈ T1 = {t0, t0 + 1, . . . , t1 − 1} is an arbitrary point.

By δz∗(t, x) = (δz∗1(t, x), δz∗2(t, x), δz∗3(t, x)) we denote the solution of problems
(3.5)-(3.6) that corresponds to special variation (4.9) of control. It follows from repre-
sentations (3.7)-(3.9) that

δz∗1(t, x) =





0, t = t0, t0 + 1, . . . , θ; x = x0, x0 + 1, . . . , X,
x−1∑
s=x0

R1(t, x; θ, s)
∂f1[θ, s]

∂u1

v1(s), t ≥ θ + 1; x = x0, x0 + 1, ..., X,

(4.10)
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



δz∗2(t, x) =
∑x−1

s=x0
Q1(t, x; θ, s)

∂f1[θ, s]

∂u1

v1(s),

t = t1, t1 + 1, ..., t2; x = x0, ..., X,

(4.11)





δz∗3(t, x) =
∑x−1

s=x0
Q2(t, x; θ, s)

∂f1[θ, s]

∂u1

v1(s),

t = t2, t2 + 1, ..., t3; x = x0, ..., X,

(4.12)

Allowing for (3.4), (4.5), (4.9) from (3.11) we get that for the optimality of classic
singular control u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) in problem (2.1)-(2.4), (4.2) the
inequality

3∑
i=1

δz∗
′

i (ti, X)
∂2ϕi(zi(ti, X))

∂z2
i

δz∗i (ti, X)− 1

2

3∑
i=1

[
ti−1∑

t=ti−1

X−1∑
x=x0

[
δz∗

′

i (t, x)
∂2Hi[t, x]

∂z2
i

×δz∗i (t, x) + δz∗
′

i (t, x)
∂2Hi[t, x]

∂zi ∂ai

δz∗i (t + 1, x) + δz∗
′

i (t + 1, x)
∂2Hi[t, x]

∂ai ∂zi

δz∗i (t, x)

+δz∗
′

i (t + 1, x)
∂2Hi[t, x]

∂a2
i

δz∗i (t + 1, x)

]]
− 2

t1−1∑
t=t0

x1−1∑
x=x0

[
δu∗

′

1 (t, x)
∂2H1[t, x]

∂u1 ∂z1

δz∗1(t, x)

+δu∗
′

1 (t, x)
∂2H1[t, x]

∂u1 ∂a1

δz∗1(t + 1, x)

]
−

X−1∑
x=x0

v
′
1(x)

∂2H1[t, x]

∂u2
1

v1(x) ≥ 0, (4.13)

should be fulfilled for all v1(x) ∈ Rr, x = x0, x0 + 1, ..., X − 1.
Further, using representations (4.10)-(4.12), we get

3∑
i=1

δz∗
′

i (ti, X)
∂2ϕi(zi(ti, X))

∂z2
i

δz∗i (ti, X) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

[
R
′
1(t1, X; θ, τ)

×∂2ϕ1(z1(t1, X))

∂z2
1

R1(t1, X; θ, s) + Q
′
1(t2, X; θ, τ)

∂2ϕ2(z2(t2, X))

∂z2
2

Q1(t2, X; θ, s)

+Q
′
2(t3, X; θ, τ)

∂2ϕ3(z3(t3, X))

∂z2
3

Q2(t3, X; θ, s)

]
∂f1[θ, s]

∂u1

v1(s). (4.14)

By the scheme given in [25, 26], we have

t1−1∑
t=t0

X−1∑
x=x0

δz∗
′

1 (t, x)
∂2H1[t, x]

∂z2
1

δz∗1(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t1−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
1(t, x; θ, τ)

∂2H1[t, x]

∂z2
1

R1(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),
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t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t, x)
∂2H2[t, x]

∂z2
2

δz∗2(t, x) =

t1−1∑
t=t0

X−1∑
x=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t2−1∑
t=t1

X−1∑

x=max(τ,s)+1

Q
′
1(t, x; θ, τ)

∂2H2[t, x]

∂z2
2

Q1(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t, x)
∂2H3[t, x]

∂z2
3

δz∗3(t, x) =

t1−1∑
t=t0

X−1∑
x=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
2(t, x; θ, τ)

∂2H3[t, x]

∂z2
3

Q2(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s), (4.15)

t1−1∑
t=t0

X−1∑
x=x0

δz∗
′

1 (t, x)
∂2H1[t, x]

∂z1 ∂a1

δz∗1(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t1−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
1(t, x; θ, τ)

∂2H1[t, x]

∂z1∂a1

R1(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t1−1∑
t=t0

X−1∑
x=x0

δz∗
′

1 (t + 1, x)
∂2H1[t, x]

∂a1 ∂z1

δz∗1(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t1−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
1(t + 1, x; θ, τ)

∂2H1[t, x]

∂a1∂z1

R1(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t, x)
∂2H2[t, x]

∂z2 ∂a2

δz∗2(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t2−1∑
t=t1

X−1∑

x=max(τ,s)+1

Q
′
1(t, x; θ, τ)

∂2H2[t, x]

∂z2∂a2

Q1(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t + 1, x)
∂2H2[t, x]

∂a2 ∂z2

δz∗2(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t2−1∑
t=t1

X−1∑

x=max(τ,s)+1

Q
′
1(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2∂z2

Q1(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),



60 Mansimov K., Nasiyati M.

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t, x)
∂2H3[t, x]

∂z3 ∂a3

δz∗3(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
2(t, x; θ, τ)

∂2H3[t, x]

∂z3∂a3

Q2(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t + 1, x)
∂2H3[t, x]

∂a3 ∂z3

δz∗3(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
2(t + 1, x; θ, τ)

∂2H3[t, x]

∂a3∂z3

Q2(t, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t1−1∑
t=t0

X−1∑
x=x0

δz∗
′

1 (t + 1, x)
∂2H1[t, x]

∂a2
1

δz∗1(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t1−1∑

t=θ

X−1∑

x=max(τ,s)+1

R
′
1(t + 1, x; θ, τ)

∂2H1[t, x]

∂a2
1

R1(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t + 1, x)
∂2H2[t, x]

∂a2
2

δz∗2(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t2−1∑
t=t1

X−1∑

x=max(τ,s)+1

Q
′
1(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2
2

Q2(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s),

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t + 1, x)
∂2H3[t, x]

∂a2
3

δz∗3(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
1(τ)

∂f
′
1[θ, τ ]

∂u1

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
2(t + 1, x; θ, τ)

∂2H3[t, x]

∂a2
3

Q3(t + 1, x; θ, s)


 ∂f1[θ, s]

∂u1

v1(s).

Further, on the basis of discrete analogy of Fubini theorem (see [20, 28, 29]), we get

t1−1∑
t=t0

X−1∑
x=x0

δu∗
′

1 (t, x)
∂2H1[t, x]

∂u1∂a1

δz∗1(t + 1, x) =
X−1∑
x=x0

[
X−1∑
s=x0

v
′
1(x)

∂2H1[θ, x]

∂u1 ∂a1

R1(t + 1, x; θ, s)

×∂f1[θ, s]

∂u1

v1(s)

]
=

X−1∑
x=x0

[
X−1∑

s=x+1

v
′
1(s)

∂2H1[θ, s]

∂u1 ∂a1

R1(t + 1, s; θ, x)

]

×∂f1[θ, x]

∂u1

v1(x), (4.16)
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Taking into account relations (4.14)-(4.16) and denotation (3.10) in relation (4.13)
we arrive at inequality (4.6).

Now, we introduce the special variation of the control u(t, x) by the formula




δu∗1(t, x) = 0, (t, x) ∈ Di, i = 1, 3,

δu∗2(t, x) =

{
v2(x), t = θ ∈ T2; x = x0, x0 + 1, . . . , X − 1,

0, t 6= θ; x = x0, x0 + 1, . . . , X − 1.

(4.17)

Here, v2(x) ∈ Rr, x = x0, x0 + 1, . . . , X − 1 is an arbitrary r-dimensional bounded
vector-function, θ ∈ T2 = {t1, t1 + 1, . . . , t2 − 1} is an arbitrary point.

Denote by δz∗(t, x) = (δz∗1(t, x), δz∗2(t, x), δz∗3(t, x)) the solution of problems (3.5)-
(3.6) that corresponds to the special variation (35) of the control.

It follows from representations (3.7)-(3.9) that

δz∗1(t, x) = 0,

δz∗2(t, x) =





0, t = t1, t1 + 1, . . . , θ; x = x0, x0 + 1, . . . , X,
x−1∑
s=x0

R2(t, x; θ, s)
∂f2[θ, s]

∂u2

v2(s), t ≥ θ + 1,
(4.18)

δz∗3(t, x) =
x−1∑
s=x0

Q3(t, x; θ, s)
∂f2[θ, s]

∂u2

v2(s), t = t2, t2 + 1, ..., t3; x = x0, ..., X.

Allowing for (3.4), (4.17), from (3.11) we obtain that for optimality of the classic
extremal u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) in problem (1)-(4), (17) the inequality

3∑
i=2

δz∗
′

i (ti, X)
∂2ϕi(zi(ti, X))

∂z2
i

δz∗i (ti, X)− 1

2

3∑
i=2

[
ti−1∑

t=ti−1

X−1∑
x=x0

[
δz∗

′

i (t, x)
∂2Hi[t, x]

∂z2
i

×δz∗i (t, x) + δz∗
′

i (t, x)
∂2Hi[t, x]

∂zi ∂ai

δz∗i (t + 1, x) + δz∗
′

i (t + 1, x)
∂2Hi[t, x]

∂ai ∂zi

δz∗i (t, x)

+δz∗
′

i (t + 1, x)
∂2Hi[t, x]

∂a2
i

δz∗i (t + 1, x)

]]
− 2

t2−1∑
t=t1

x1−1∑
x=x0

[
δu∗

′

2 (t, x)
∂2H2[t, x]

∂u2 ∂z2

δz∗2(t, x)

+δu∗
′

2 (t, x)
∂2H2[t, x]

∂u2 ∂a2

δz∗2(t + 1, x)

]
−

X−1∑
x=x0

v
′
2(x)

∂2H2[t, x]

∂u2
2

v2(x) ≥ 0, (4.19)

should be fulfilled for all v2(x) ∈ Rr, x = x0, x0 + 1, ..., X − 1.
Further, using representations (4.18), we get

3∑
i=1

δz∗
′

i (ti, X)
∂2ϕi(zi(ti, X))

∂z2
i

δz∗i (ti, X) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

[
R
′
2(t2, X; θ, τ)

×∂2ϕ2(z2(t2, X))

∂z2
2

R2(t2, X; θ, s) + Q
′
3(t3, X; θ, τ)

∂2ϕ3(z3(t3, X))

∂z2
3

Q3(t3, X; θ, s)

]

×∂f2[θ, s]

∂u2

v2(s). (4.20)
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t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t, x)
∂2H2[t, x]

∂z2
2

δz∗2(t, x) =

t1−1∑
τ=t0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t2−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
2(t, x; θ, τ)

∂2H2[t, x]

∂z2
2

R2(t, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.21)

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t, x)
∂2H3[t, x]

∂z2
3

δz∗3(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z2
3

Q3(t, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.22)

t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t, x)
∂2H2[t, x]

∂z2 ∂a2

δz∗2(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t2−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
2(t, x; θ, τ)

∂2H2[t, x]

∂z2∂a2

R2(t + 1, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.23)

t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t + 1, x)
∂2H2[t, x]

∂a2 ∂z2

δz∗2(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t2−1∑

t=θ+1

X−1∑

x=max(τ,s)+1

R
′
2(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2∂z2

R2(t, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.24)

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t, x)
∂2H3[t, x]

∂z3 ∂a3

δz∗3(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
3(t, x; θ, τ)

∂2H3[t, x]

∂z3∂a3

Q3(t + 1, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.25)

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t + 1, x)
∂2H3[t, x]

∂a3 ∂z3

δz∗3(t, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a3∂z3

Q3(t, x; θ, s)


 ∂f2[θ, s]

∂u2

v2(s), (4.26)
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t2−1∑
t=t1

X−1∑
x=x0

δz∗
′

2 (t + 1, x)
∂2H2[t, x]

∂a2
2

δz∗2(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t2−1∑

t=θ

X−1∑

x=max(τ,s)+1

R
′
2(t + 1, x; θ, τ)

∂2H2[t, x]

∂a2
2

R2(t + 1, x; θ, s)




×∂f2[θ, s]

∂u2

v2(s), (4.27)

t3−1∑
t=t2

X−1∑
x=x0

δz∗
′

3 (t + 1, x)
∂2H3[t, x]

∂a2
3

δz∗3(t + 1, x) =
X−1∑
τ=x0

X−1∑
s=x0

v
′
2(τ)

∂f
′
2[θ, τ ]

∂u2

×



t3−1∑
t=t2

X−1∑

x=max(τ,s)+1

Q
′
3(t + 1, x; θ, τ)

∂2H3[t, x]

∂a2
3

Q3(t + 1, x; θ, s)




×∂f2[θ, s]

∂u2

v2(s). (4.28)

Using the discrete analogy of Foubini theorem [23], we have

t2−1∑
t=t1

X−1∑
x=x0

δu∗
′

2 (t, x)
∂2H2[t, x]

∂u2 ∂a2

δz∗2(t + 1, x)

=
X−1∑
x=x0

[
X−1∑

s=x+1

v
′
2(s)

∂2H2[θ, s]

∂u2 ∂a2

R2(t + 1, s; θ, x)

]
∂f2[θ, x]

∂u2

v2(x). (4.29)

Taking into account identities (4.20)-(4.29), and also denotation (4.4) in inequality
(4.19), we arrive at relation (4.7). Inequality (4.8) is also proved by the appropriate
arguments. This completes the proof of the theorem.

Remark. Similar symmetric results are obtained in the case when the right-hand
side of system (2.1) has the form

fi(t, x, zi, ai, bi, ui) = Ai(t, x) ai + Qi(t, x, zi, bi, ui).
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A REMARK CONCERNING PECULIARITIES OF TWO MODELS OF CUSPED
PRISMATIC SHELLS
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Abstract. Comparative analysis of peculiarities of setting of boundary value problems are
carried out for cusped prismatic shells within the framework of the zero approximation of hi-
erarchical models when on the face surfaces either stress or displacement vectors are assumed
to be known.
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Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the x3-axis vertical. The elastic body is called a prismatic
shell if it is bounded above and below by, respectively, the surfaces (so called face
surfaces)

x3 =
(+)

h (x1, x2) and x3 =
(−)

h (x1, x2),

laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its vertical
dimension is sufficiently small compared with other dimensions of the body.

In other words, the 3D elastic prismatic shell-like body occupies a bounded region
Ω with boundary ∂Ω, which is defined as:

x3=  ( , )h x x1 2

(-)

x3=  ( , )h x x1 2

(+)

2h( , )x x1 2

x3

x2
O

Fig.1. A cross-section of a typical non-cusped prismatic shell

Fig.2. A cross-section of a blunt cusped prismatic shell
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Fig.3. A cross-section of a blunt cusped prismatic shell (ϕ ∈]0, π
2
[)

Fig.4. A cross-section of a blunt cusped prismatic shell (ϕ = 0)

Fig.5. A cross-section of a blunt cusped plate (ϕ = π)

Fig.6. A cross-section of a blunt cusped prismatic shell (ϕ = π
2
)

Fig.7. A cross-section of a blunt cusped prismatic shell (ϕ ∈]π
2
, π[)
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Fig.8. Non-cusped edges Fig.9. ϕ = π
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Fig.12. ϕ = π
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Fig.13. ϕ = π
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(+)
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(+)
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Fig.14. 0 < ϕ < π
2

Fig.15. 0 < ϕ < π
2

T
(+)

T
(-) x

2

T
(+)

T
(-) x

2

Fig.16. 0 < ϕ < π Fig.17. ϕ = 0

T
(+)

T
(-)

x
2

Fig.18. Wedge
Typical cross-sections of prismatic shells

x1

x2

x3

x3=  ( , )h x x1 2

(-)

x3=  ( , )h x x1 2

(+)

Fig.19. Prismatic shell of constant thickness
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x3

x2

x1

x3=  ( , )h x x1 2

(+)

x3=  ( , )h x x1 2

(-)

G
0= g

0

Fig.20. A sharp cusped prismatic shell with a semicircle projection

x1

x2

x3

x3=  ( , )h x x1 2

(+)

x3=  ( , )=0h x x1 2

(-)

O

G
0= g

0

Fig.21. A sharp cusped prismatic shell with a semicircle projection

x3=  ( , )h x x1 2

x3=  ( , )h x x1 2

(+)

(-)

x3

x2

x1

g
1

g
2

Fig.22. A cusped plate with sharp γ1 and blunt γ2 edges, γ0 = γ1 ∪ γ2

x h3=  ( , )x x1 2

(+)

(-)

x h3=  ( , ) =0x x1 2

G
0= g

0

Fig.23. A blunt cusped plate with the edge γ0

Ω :=

{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω,

(−)

h (x1, x2) < x3 <
(+)

h (x1, x2)

}
,

where ω := ω ∪ ∂ω is the so-called projection of the prismatic shell Ω := Ω ∪ ∂Ω (see
Figures 1-18, where typical cross-sections of prismatic shells with an angle ϕ between
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tangents
(+)

T and
(−)

T are given and Figures 19-23); γ = ∂ω and ∂Ω denote boundaries
of ω and Ω, respectively; Rn is an n-dimensional Euclidian space.

In what follows we assume that

(±)

h (x1, x2) ∈ C2(ω) ∩ C(ω̄), 1

and

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,
≥ 0 for (x1, x2) ∈ ∂ω

is the thickness of the prismatic shell Ω at the points (x1, x2) ∈ ω̄ = ω ∪ ∂ω. max{2h}
is essentially less than characteristic dimensions of ω. Let

2h(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2).

In the symmetric case of the prismatic shells, i.e., when

(−)

h (x1, x2) = −
(+)

h (x1, x2), i.e., 2h(x1, x2) = 0,

we have to do with plates of variable thickness 2h(x1, x2) and a middle-plane ω (see
Figures 22, 23). Prismatic shells are called cusped ones if a set γ0, consisting of
(x1, x2) ∈ ∂ω for which 2h(x1, x2) = 0, is not empty. For such prismatic shells ∂Ω
may be non-Lipschitz boundary (see Fig. 22)

Fig.24. Comparison of cross-sections of prismatic and standard shells

Fig.25. Cross-sections of a prismatic (left) and a standard shell with the same
mid-surface

Distinctions between the prismatic shell of constant thickness and the standard
shell of constant thickness are shown on Figures 24 and 25. The lateral boundary of
the standard shell is orthogonal to the middle surface of the shell, while the lateral

1C(ω̄) denotes a class of continuous on ω̄ functions; C2(ω) denotes a class of twice continuously
dofferentiable functions with respect to x1, x2, (x1, x2) ∈ ω.
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boundary of the prismatic shell is orthogonal to the projection of the prismatic shell
on x3 = 0.

In what follows Xij and eij are the stress and strain tensors, respectively, ui are
the displacements, Φi are the volume force components, ρ is the density, λ and µ are
the Lamé constants, δij is the Kroneker delta, subscripts preceded by a comma mean
partial derivatives with respect to the corresponding variables. Moreover, repeated
indices imply summation (Greek letters run from 1 to 2, and Latin letters run from 1
to 3, unless stated otherwise).

I.Vekua’s hierarchical models for elastic prismatic shells are the mathematical mod-
els, which were introduced by I. Vekua [1, 2], and which were constructed by the mul-
tiplication of the basic equations of linear elasticity
Motion Equations

Xij,j + Φi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0, i = 1, 2, 3;

Generalized Hooke’s law (isotropic case)

Xij = λθδij + 2µeij, i, j = 1, 2, 3, θ := eii;

Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 2, 3,

by Legendre polynomials Pl(ax3 − b), l = 0, 1, 2, . . . , where

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h(x1, x2)

h(x1, x2)
,

and then integration with respect to x3 within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2).
By these calculations in Vekua’s first version on upper and lower face surfaces stress-
vectors are assumed as prescribed, while values of the displacements are calculated
there from their (displacements’) Fourier-Legendre series expansions on the segment

x3 ∈
[(−)

h (x1, x2),
(+)

h (x1, x2)
]

and vice versa in his second version. So, we get the

equivalent infinite system of relations with respect to the so called l-th order moments

(
Xijl, eijl, uil

)
(x1, x2, t) :=

(+)

h (x1,x2)∫

(−)

h (x1,x2)

(
Xij, eij, ui

)
(x1, x2, x3, t)

× Pl(ax3 − b) dx3. (1)

Then, having followed the usual procedure used in the theory of elasticity, we get an
equivalent infinite system with respect to the l-th order moments uil. After this if we
assume that the moments whose subscripts, indicating order of moments are greater
than N equal zero and consider only the first N + 1 equations (for every i = 1, 2, 3)
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in the obtained infinite system of equations with respect to the l-th order moments uil

we obtain the N−th order approximation (hierarchical model) governing system with

respect to
N
uil (roughly speaking

N
uil is an “approximate value” of uil).

In the zero approximation of I.Vekua’s hierarchical models of shallow prismatic
shells the governing system has the form

µ
[
(hvα0,β),α + (hvβ0,α),α

]
+ λ(hvγ0,γ),β = − 0

Xβ + ρhv̈β0, β = 1, 2, (2)

µ(hv30,α),α = − 0

X3 + ρhv̈30, (3)

where vk0 := uk0

h
, k = 1, 2, 3, are unknown so called weighted “moments” of displace-

ments,

0

Xj :=
(+)
σ3j −

(+)
σαj

(+)

h,α + (−1)r
[
− (−)

σ3j +
(−)
σαj

(−)

h,α

]
+ Φj0

= Q(+)
n j

√
1 +

((+)

h,1

)2

+
((+)

h,2

)2

+(−1)rQ(−)
n j

√
1 +

((−)

h,1

)2

+
((−)

h,2

)2

+ Φj0, j = 1, 2, 3, r = 0, N.

By Q(+)
n j

and Q(−)
n j

components of the stress vectors acting on the upper and lower

surfaces, respectively, are denoted. By Φj0 we denote the zero order moments of the
components of the volume forces.

When on the face surfaces displacements are prescribed for N = 0 approximation
the governing system has the following form

µ [(hvα0),β +(hvβ0),α ],β + λ [(hvγ0),γ ],α
−(ln h),β {λδαβ(hvγ0),γ + µ [(hvα0),β +(hvβ0),α ]}
+2µ Ψαβ,β(x1, x2, t) + λ Ψkk,α(x1, x2, t) (4)

−(ln h),β [λδαβΨkk(x1, x2, t) + 2µ Ψαβ(x1, x2, t)]

+Φα0(x1, x2, t) = ρhv̈α0, α = 1, 2;

µ(hv30),ββ −(ln h),β µ(hv30),β +2µ Ψ3β,β(x1, x2, t) (5)

−2µ(ln h),β Ψ3β(x1, x2, t) + Φ30(x1, x2, t) = ρhv̈30,

where

Ψ33(x1, x2, t) := u3(x1, x2,
(+)

h , t)− u3(x1, x2,
(−)

h , t),

2Ψiβ (x1, x2, t) := ui

(
x1, x2,

(−)

h , t

)
(−)

h,β −ui

(
x1, x2,

(+)

h , t

)
(+)

h,β

+





−uβ

(
x1, x2,

(+)

h , t

)
(+)

h,α +uβ

(
x1, x2,

(−)

h , t

)
(−)

h,α for i = α, α = 1, 2;

uβ

(
x1, x2,

(+)

h , t

)
− uβ

(
x1, x2,

(−)

h , t

)
for i = 3.
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Let now
2h = h0x

κ
2 , h0, κ = const > 0, x2 ≥ 0. (6)

In the static case, for deflections from (3) we get

µ(hv30,α),α = −
0

X3, x2 ≥ 0.

Assuming that u30 depends only on x2 (i.e., we consider cylindrical deformation)

(xκ
2v30,α),α = −2µ−1h−1

0

0

X3,

whence,

v30,22 +
κ

x2

v30,2 = −2µ−1h−1
0 x−κ

2

0

X3, (7)

The general solution of the latter has the form

v30 = 2(κ− 1)−1µ−1h−1
0

x2∫

x0
2

(
x1−κ

2 − ξ1−κ
) 0

X3(ξ)dξ (8)

+c1x
1−κ
2 + c2, κ 6= 1, c1, c2 = const;

v30 = 2µ−1h−1
0

x2∫

x0
2

(ln ξ − ln x2)
0

X3(ξ)dξ + c1 ln x2 + c2, (9)

κ = 1, x0
2 ∈]0, l[, c1, c2 = const.

Hence, under the evident assumption on
0

X3, it is easy to conclude that on the boundary
x2 = 0 in the class of bounded functions displacement v30

2
can be prescribed when

0 ≤ κ < 1, while for κ ≥ 1 the boundary x2 = 0 should be freed from the boundary
condition (BC). Boundary value problems (BVPs) and initial boundary value problems
(IBVPs) for the system (2), (3) and in the general N -th approximation are studied
sufficiently well in the case of cusped prismatic shells (see [3-18]). For prismatic cusped
shells the system (4), (5) is not studied at all. If we consider the case (6) for equation
(5), it is easy to see that the systems (2), (3) and (4), (5) qualitatively differ from each
other.

In the static case, from (5) we get

µ(hv30),ββ −(ln h),β µ(hv30),β +2µ Ψ3β,β(x1, x2) (10)

−2µ(ln h),β Ψ3β(x1, x2) + Φ30(x1, x2) = 0,

i.e.,
hv30,ββ + 2h,βv30,β + h,ββv30 − (ln h),β(hv30,β + h,βv30)

= −2Ψ3β,β + 2(ln h),β Ψ3β − µ−1Φ30.

Therefore,

hv30,ββ + h,βv30,β + [h,ββ − (ln h),βh,β]v30

= −2Ψ3β,β + 2(ln h),β Ψ3β − µ−1Φ30. (11)
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Assuming that Φ30 ∈ C(ω̄), uα ≡ 0, α = 1, 2, and v30 depends only on x2, taking into
account (6) and dividing the equality (11) on h0

2
xκ−2

2 , from (11) we get

x2
2v30,22 + κx2ν30,2 − κv30 = 2h−1

0 [−2x2−κ
2 Ψ32,2 + 2κx1−κ

2 Ψ32 − µ−1x2−κ
2 Φ30]. (12)

The last equation is well-known Euler equation and, since κ+1 > 0, its general solution
has the form

v30 =
u30

h0

2
xκ

2

= −2(κ + 1)−1h−1
0

x2∫

x0
2

(x2ξ
−κ − x−κ

2 ξ) (13)

×
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30

]
dξ

+2h−1
0 c1x2 + 2h−1

0 c2x
−κ
2 , 0 < x0

2 < L,

where c1 and c2 are arbitrary constants.
The last results can also be achieved as follows: if we rewrite (5) with respect to

u30

µ(u30),ββ −(ln h),β µ(u30),β = −2µΨ3β,β + 2µ(ln h),β Ψ3β − Φ30

and take into account (6) we get

u30,22 − κ

x2

u30,2 = −2Ψ32,2 + 2
κ

x2

Ψ32 − µ−1Φ30. (14)

Its general solution has the form

u30 = −(κ + 1)−1

x2∫

x0
2

(x1+κ
2 ξ−κ − ξ)Ψ(ξ)dξ + c1x

1+κ
2 + c2, (15)

where

Ψ(ξ) := 2Ψ32,2(ξ)− 2κ

ξ
Ψ32(ξ) + µ−1Φ30(ξ).

Hence, since in the zero approximation it is assumed that

ui(x1, x2, x3, t) =
1

2h
ui0(x1, x2, t) =:

1

2
vi0(x1, x2, t),

we obtain (13).
Note that, in view of (15),

X320(x2) = µ(hv30),2 +2µΨ32(x2) = µu30,2 + 2µΨ32(x2)

= µc1(κ + 1)xκ
2 − µxκ

2

x2∫

x0
2

ξ−κΨ(ξ)dξ + 2µΨ32(x2).
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Clearly, if
(+)

h (x2) = h1x
κ
2 ,

(−)

h (x2) = h2x
κ
2 , h1, h2 = const, h1 > h2 (h0 := h1 − h2),

lim
x2→0

X320(x2) =
µ

κ
lim

x2→0

(
2x2Ψ32,2 − 2κΨ32 + µ−1x2Φ30

)
+ 2µ lim

x2→0
Ψ32

=
2µ

κ
lim

x2→0
x2Ψ32,2

=
2µ

κ





0 if κ > 1 and u3; u3,2 = O(1), x2 → 0;

κ(κ− 1)(
(−)

d1h2 −
(+)

d1h1) if 0 < κ ≤ 1 and u3,2 = O(1), x2 → 0,

u3(x1, x2,
(±)

h (x2)) =
(±)

ψ (x1, x2)x
1−κ
2 , lim

x2→0

(±)

ψ (x1, x2) =
(±)

d 1;

O∗(xκ−1
2 ) = d0κ(κ− 1)xκ−1

2 , x → 0, if 0 < κ < 1 and u3,2 = O(1),

lim
x2→0

u3(x1, x2,
(±)

h (x2)) = d0 6= 0.

Since under assumption of boundedness of 3D u3, all its moments (because of bound-
edness of the integrand in (1) and tending of integration limits to 0 as x2 → 0) vanish
at cusped edge, in particular

u30(0) = 0

should be fulfilled. It will be achieved if in (15) we take

c2 = −(κ + 1)−1

0∫

x0
2

ξ
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30(ξ)

]
dξ, (16)

This is easily seen because of

lim
x2→0

xκ+1
2

x2∫

x0
2

ξ−κ
[
2Ψ32,2(ξ)− 2κξ−1Ψ32(ξ) + µ−1Φ30(ξ)

]
dξ = 0.

If (16) is violated, then, by virtue of (15), taking into account the last limit, u30(0) 6= 0
and from (13) it follows that v30 is unbounded as x2 → 0, which contradicts the
boundedness of u3.

Applying the general representation (13) of v30, let us analyze the setting of bending
BVPs on [0, L].

If c2 has the form (16), then, by virtue of (13), (15),

lim
x2→0

v30 = lim
x2→0

u30

h0

2
xκ

2

= lim
x2→0

2
{

c2 − (κ + 1)−1
x2∫
x0
2

(xκ+1
2 ξ−κ − ξ)Ψ(ξ)dξ

}

h0xκ
2

= lim
x2→0

−2(κ + 1)−1(xκ+1
2 x−κ

2 − x2)Ψ(x2)− xκ
2

x2∫
x0
2

ξ−κΨ(ξ)dξ

κh0x
κ−1
2
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= lim
x2→0


 0

κh0x
κ−1
2

− x2

κh0

x2∫

x0
2

ξ−κΨ(ξ)dξ


 .

Therefore,

lim
x2→0

v30(x2) = 0− 1

κh0

lim
x2→0

x2

x2∫

x0
2

ξ−κΨ(ξ)dξ (17)

if Ψ is such a function that there exists the last limit.
Thus,

v30(x2) = 2h−1
0 c1x2 + 2h−1

0 (κ + 1)−1x−κ
2

×
{ x2∫

0

ξΨ(ξ)dξ − xκ+1
2

∫ x2

x0
2

ξ−κΨ(ξ)dξ
}

(18)

is bounded near x2 = 0 under some restrictions on Ψ and choosing appropriately c1 we
can satisfy either BC

v30(L) = vL
30 (19)

or BC

X320(L) = µ(hv30),2 |x2=L + 2µΨ32(L) = µu30,2|x2=L + 2µΨ32(L) = XL
320. (20)

Namely, correspondingly,

c1 = 2−1h0L
−1vL

30 − (κ + 1)−1
{

L−κ−1

L∫

0

ξΨ(ξ)dξ −
L∫

x0
2

ξ−κΨ(ξ)dξ
}

(21)

and

c1 = (1 + κ)−1µ−1L−κXL
320 + (1 + κ)−1

L∫

x0
2

ξ−κΨ(ξ)dξ − 2(1 + κ)−1L−κΨ32(L). (22)

Under some restrictions on Ψ from boundedness of u3 there follows boundedness of
v30 ∈ C2(]0, L[) ∩ C(]0, L]), which given by (18) with (21) is a unique solution of the
BVP (12), (19), when κ > 0. Thus, actually we have solved the Keldysh type BVP.

If volume forces and the displacement on the face surfaces are equal to zero, i.e.,
Φ30 ≡ 0, Ψ32 ≡ 0, it is natural to set BC on the edge x2 = 0 as

v30(0) = 0 (23)

since the last follows from (17).
(18) with (21) gives a unique solution of BVP (12)0

2, (23), (19), of the form

v30(x2) =
νL

30

L
x2.

2(12)0 means homogeneous equation (12).
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This BVP is not correct since by inhomogeneous BC (23) it will not be solvable. In
order to get correct BVP, BC (23) should be replaced by boundedness of the solution,
so, we again arrive at the correct Keldysh type BVP.

As it follows from the general representation (8), (9) of the solution v30 of equation
(7) analogous BVP for equation (7) (the model, when stress vectors on the face surfaces
are prescribed) is uniquely solvable only if 0 ≤ κ < 1, moreover, the non-homogenous
BC (23) is admissible in contrast to the previous model (see (12)). When κ ≥ 1 under
condition of boundedness of v30 it is possible to satisfy only one BC.

Remark. In the case under consideration under assumption of boundedness of 3D
displacements it follows from (14), (15) that

u30,22 − κ

x2

u30 = 0, (24)

u30 = c1x
1+κ
2 + c2.

Evidently, BVP (24),
u30(0) = u0

30, u30(L) = uL
30,

is uniquely solvable provided that u0
30 and uL

30 are assumed to be known. From 3D BVP
in displacements uL

30 is known, while u0
30 = 0 and cannot be arbitrarily prescribed. If

nevertheless we find u0
30 to be assigned, displacement v30 will become unbounded as

x2 → 0, which will be nonsense since ∞ cannot be approximate value of 0. While zero
can be considered as approximate boundary value since we consider small deflections.
In such sense we could consider (23) as BC when Ψ32 6≡ 0.

Now, let us analyze the possibility of prescribing the stress vectors on the prismatic
shell edges.

Since

X320(x2) = µu30,2 =
1

2
µh0(x

κ
2v30),2 ,

by virtue of (15),
X320(x2) = µ(1 + κ)c1x

κ
2 .

The last means that
X320(0) = 0.

Hence, X320 can be arbitrarily prescribed only at non-cusped edge x2 = L.
For the homogeneous equation (12)0 besides the BC (23) we can set the BC (20),

i.e., on the edge x2 = L the stress vector is given.
(18) with (22) gives a unique solution of BVP (12)0, (23), (20) of the form

v30 =
2XL

320

µh0(κ + 1)Lκ
x2.

Considering (8) we easily conclude that analogous BVP (7)0,(23),(20), is uniquely
solvable for the model (7), provided that 0 ≤ κ < 1 (in this case also the non-
homogenous BC (19) is admissible). For κ ≥ 1 from (8), (9) it is easily seen that
only bounded solution is a constant and if XL

320 6= 0, BVP (7)0, (23), (20), is not
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solvable. If XL
320 = 0, then a solution of BVP (7)0, nonhomogeneous (23), (20)0 is a

constant given at x2 = 0.
Conclusion. In the case of the first model [see (7)] the Dirichlet problem is correct

for 0 < κ < 1 and the Keldysh problem is correct for κ ≥ 1, while in the case of the
second model [see (12)] the Keldysh problem is correct for κ > 0.
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ON EFFECTS OF CONSTANT DELAY PERTURBATION AND THE
DISCONTINUOUS INITIAL CONDITION IN VARIATION FORMULAS OF
SOLUTION OF DELAY CONTROLLED FUNCTIONAL-DIFFERENTIAL

EQUATION

Tadumadze T., Gorgodze N.

Abstract. Variation formulas of solution (variation formulas) are proved for a controlled non-
linear delay functional-differential equation with the discontinuous initial condition, under
perturbations of initial moment, delay parameter, initial vector, initial and control functions.
The effects of delay perturbation and the discontinuous initial condition are discovered in the
variation formulas. The discontinuity of the initial condition means that the values of the
initial function and the trajectory, generally, do not coincide at the initial moment.

Keywords and phrases: Controlled delay functional-differential equation; variation for-
mula of solution; effect of delay perturbation; effect of the discontinuous initial condition.
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1. Introduction

Linear representation of the main part of the increment of a solution of an equation
with respect to perturbations is called the variation formula. The variation formula
allows one to construct an approximate solution of the perturbed equation in an ana-
lytical form on the one hand, and in the theory of optimal control plays the basic role in
proving the necessary conditions of optimality [1-11], on the other. Variation formulas
for various classes of functional-differential equations without perturbation of delay are
given in [6,10,12-14].Variation formulas for delay functional-differential equations with
the continuous and discontinuous initial condition taking into consideration constant
delay perturbation are proved in [15] and [16], respectively. Variation formulas for
controlled delay functional-differential equations with the continuous initial condition
taking into consideration constant delay perturbation are proved in [17]. In this pa-
per the variation formulas are proved for the controlled delay functional-differential
equation

ẋ(t) = f(t, x(t), x(t− τ0), u0(t))

with the discontinuous initial condition

x(t) = ϕ0(t), t ∈ [t00 − τ0, t00), x(t00) = x00

under perturbations of initial moment t00, delay parameter τ0, initial vector x00, initial
function ϕ0(t) and control function u0(t).

2. Notation and auxiliary assertions

Let Rn
x be the n-dimensional vector space of points x = (x1, ..., xn)T , where T means

transpose; suppose that O ⊂ Rn
x and V ⊂ Rr

u are open sets. Let the n-dimensional
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function f(t, x, y, u) satisfy the following conditions: for almost all t ∈ I = [a, b], the
function f(t, ·) : O2×V → Rn

x is continuously differentiable; for any (x, y, u) ∈ O2×V,
the functions f(t, x, y, u), fx(·), fy(·), fu(·) are measurable on I; for arbitrary compacts
K ⊂ O, U ⊂ V there exists a function mK,U(·) ∈ L(I, [0,∞)), such that for any
(x, y, u) ∈ K2 × U and for almost all t ∈ I the following inequality is fulfilled

| f(t, x, y, u) | + | fx(·) | + | fy(·) | + | fu(·) |≤ mK,U(t).

Further, let 0 < τ1 < τ2 be given numbers; Let Eϕ be the space of continuous functions
ϕ : I1 → Rn

x, where I1 = [τ̂ , b], τ̂ = a − τ2; Φ = {ϕ ∈ Eϕ : ϕ(t) ∈ O, t ∈ I1} is a set of
initial functions; let Eu be the space of bounded measurable functions u : I → Rr

u and
let Ω = {u ∈ Eu : clu(I) ⊂ V } be a set of control functions, where u(I) = {u(t) : t ∈ I}
and clu(I) is the closer of the set u(I).

To each element µ = (t0, τ, x0, ϕ, u) ∈ Λ = (a, b) × (τ1, τ2) × O × Φ × Ω we assign
the controlled delay functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t)) (2.1)

with the initial condition

x(t) = ϕ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2.2)

The condition (2.2) is said to be the discontinuous initial condition since generally
x(t0) 6= ϕ(t0).

Definition 2.1. Let µ = (t0, τ, x0, ϕ, u) ∈ Λ. A function x(t) = x(t; µ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b), is called a solution of equation (2.1) with the initial condition (2.2) or
a solution corresponding to µ and defined on the interval [τ̂ , t1] if it satisfies condition
(2.2) and is absolutely continuous on the interval [t0, t1] and satisfies equation (2.1)
almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, x00, ϕ0, u0) ∈ Λ be a fixed element. In the space Eµ = R1
t0
×R1

τ ×
Rn

x × Eϕ × Eu we introduce the set of variations:

V = {δµ = (δt0, δτ, δx0, δϕ, δu) ∈ Eµ − µ0 : | δt0 |≤ α, | δτ |≤ α, | δx0 |≤ α,

δϕ =
k∑

i=1

λiδϕi, δu =
k∑

i=1

λiδui, | λi |≤ α, i = 1, k}, (2.3)

where δϕi ∈ Eϕ−ϕ0, δui ∈ Eu−u0, i = 1, k are fixed functions ; α > 0 is a fixed number.

Lemma 2.1. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, x0, ϕ0, u0) ∈ Λ
and defined on [τ̂ , t10], t10 ∈ (t00, b) and let K0 ⊂ O and U0 ⊂ V be compact sets
containing neighborhoods of sets ϕ0(I1) ∪ x0([t00, t10,]) and clu0(I), respectively. Then
there exist numbers ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ [0, ε1]× V, we have
µ0 +εδµ ∈ Λ. In addition, a solution x(t; µ0 +εδµ) defined on the interval [τ̂ , t10 +δ1] ⊂
I1 corresponds to this element. Moreover,

{
x(t; µ0 + εδµ) ∈ K0, t ∈ [τ̂ , t10 + δ1],

u0(t) + εδu(t) ∈ U0, t ∈ I.
(2.4)
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This lemma is a result of Theorem 5.3 in [18, p.111].
Remark 2.1. Due to the uniqueness, the solution x(t; µ0) is a continuation of the

solution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, in the sequel the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Lemma 2.1 allows one to define the increment of the solution x0(t) = x(t; µ0) :
{

∆x(t) = ∆x(t; εδµ) = x(t; µ0 + εδµ)− x0(t),

(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.
(2.5)

Lemma 2.2. Let the following conditions hold:
2.1. t00 + τ0 < t10;
2.2. the function ϕ0(t), t ∈ I1 is absolutely continuous and the function ϕ̇0(t) is

bounded;
2.3. there exist compact sets K0 ⊂ O and U0 ⊂ V containing neighborhoods of

sets ϕ0(J1) ∪ x0([t00, t10]) and clu0(I), respectively, such that the function f(t, x, y, u)
is bounded on the set I ×K2

0 × U0;
2.4. there exists the limit

lim
w→w0

f(w, u0(t)) = f−0 , w = (t, x, y) ∈ (a, t00]×O2,

where w0 = (t00, x00, ϕ0(t00− τ0)). Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1]
such that

max
t∈[t00,t10+δ2]

| ∆x(t) |≤ O(εδµ)3 (2.6)

for arbitrary (ε, δµ) ∈ [0, ε2]× V −, where V − = {δµ ∈ V : δt0 ≤ 0, δτ ≤ 0}. Moreover,

∆x(t00) = ε
[
δx0 − f−0 δt0

]
+ o(εδµ). (2.7)

Lemma 2.3. Let the conditions 2.1-2.3 of Lemma 2.2 hold, and there exists the
limit

lim
w→w0

f(w, u0(t)) = f+
0 , w = (t, x, y) ∈ [t00, b)×O2.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that the inequality

max
t∈[t0,t10+δ2]

| ∆x(t) |≤ O(εδµ), (2.8)

is valid for arbitrary (ε, δµ) ∈ [0, ε2]×V +, where t0 = t00 + εδt0, V
+ = {δµ ∈ V : δt0 ≥

0, δτ ≥ 0}. Moreover,

∆x(t0) = ε
[
δx0 − f+

0 δt0

]
+ o(εδµ). (2.9)

Lemmas 2.2 and 2.3 can be proved in analogy to Lemma 2.3 (see [15]).

3Here and throughout the following, the symbols O(t; εδµ), o(t; εδµ) stand for quantities (scalar or
vector) that have the corresponding order of smallness with respect to ε uniformly with respect to t
and δµ.
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Lemma 2.4. Let the conditions of Lemma 2.2 hold. Then

α(t00 + τ0, t10 + δ2; εδµ) =

∫ t10+δ2

t00+τ0

ζ(t)
[
|∆x(t− τ)−∆x(t− τ0)|

]
dt

≤ o(εδµ), (2.10)

for arbitrary (ε, δµ) ∈ (0, ε2] × V −, where τ = τ0 + εδτ, ζ(·) ∈ L(J, [0,∞)), about ε2

and δ2 see Lemma 2.2.
Proof. It is obvious that t − τ ≥ t00 and t − τ0 ≥ t00 for t ∈ [t00 + τ0, t10 + δ2].

Therefore,

α(t00 + τ0, t10 + δ2; εδµ) ≤
∫ t10+δ2

t00+τ0

ζ(t)
[ ∫ t−τ

t−τ0

|∆̇x(ξ)|dξ
]
dt

=

∫ t10+δ2

t00+τ0

ζ(t)
[ ∫ t−τ

t−τ0

θ(ξ; εδµ)dξ
]
dt,

where

θ(ξ; εδµ) = |f(ξ, x0(ξ) + ∆x(ξ), x0(ξ − τ) + ∆x(ξ − τ), u0(ξ) + εδu(ξ))

−f [ξ]|, f [ξ] = f(ξ, x0(ξ), x0(ξ − τ0), u0(ξ))

see (2.5).
a) Let t00 + 2τ0 ≤ t10 and ε2 ∈ (0, ε1] be so small that t0 + 2τ > t00 + τ0, ∀(ε, δµ) ∈

(0, ε2]× V −, then we have

α(t00 + τ0, t10 + δ2; εδµ) = α(t00 + τ0, t0 + 2τ ; εδµ) + α(t0 + 2τ, t00 + 2τ0; εδµ)

+α(t00 + 2τ0, t10 + δ2; εδµ).

The function θ(ξ; εδµ) is bounded (see the condition 2.3 of Lemma 2.2), therefore

α(t0 + 2τ, t00 + 2τ0; εδµ) ≤ o(εδµ).

We note that there exists L(·) ∈ L(I, [0,∞)) such that

|f(t, x1, y1, u1)− f(t, x2, y2, u2)| ≤ L(t)
(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

)
,

t ∈ I, (xi, yi, ui) ∈ K2
0 × U0, i = 1, 2, 3.

It is not difficult to see that

α(t00 + τ0, t10 + δ2; εδµ) ≤ α1(t00 + τ0, t0 + 2τ ; εδµ) + o(εδµ)

+α1(t00 + 2τ0, t10 + δ2; εδµ), (2.11)

where

α1(t
′
, t
′′
; εδµ) =

∫ t
′′

t
′

ζ(t)α2(t; εδµ)dt, α2(t; εδµ)
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=

∫ t−τ

t−τ0

L(ξ)
{
|∆x(ξ)|+ |x0(ξ − τ)− x0(ξ − τ0)|+ |∆x(ξ − τ)|+ ε|δu(ξ)|

}
dξ.

If t ∈ [t00 + τ0, t0 + 2τ ] and ξ ∈ [t − τ0, t − τ ] then ξ ≥ t00, ξ − τ ≤ t0, ξ − τ0 ≤ t0.
Therefore,

|∆x(ξ)| ≤ O(εδµ), |x0(ξ − τ)− x0(ξ − τ0)| = |ϕ0(ξ − τ)− ϕ0(ξ − τ0)|

=

∫ t−τ

t−τ0

|ϕ̇0(ξ)|dξ = O(εδµ), |∆x(ξ − τ)| = ε|δϕ(ξ − τ)|. (2.12)

Thus,
α1(t00 + τ0, t0 + 2τ ; εδµ) ≤ o(εδµ). (2.13)

Further, if t ∈ [t00 + 2τ0, t10 + δ2] and ξ ∈ [t − τ0, t − τ ] then ξ ≥ t00 + τ0, ξ − τ ≥
t00, ξ − τ0 ≥ t00. Therefore,

|∆x(ξ)| ≤ O(εδµ), |x0(ξ − τ)− x0(ξ − τ0)| =
∫ t−τ

t−τ0

|ẋ0(ξ)|dξ

=

∫ t−τ

t−τ0

|f [ξ]|dξ = O(εδµ), |∆x(ξ − τ)| = O(εδµ).

Consequently,
α1(t00 + 2τ0, t10 + δ2; εδµ) ≤ o(εδµ). (2.14)

From (2.11) by virtue (2.13) and (2.14) we obtain (2.10).
b) Let t00 + 2τ0 > t10 and, ε2 and δ2 be so small that t00 + 2τ > t10 + δ2. It is clear

that
α(t00 + τ0, t10 + δ2; εδµ) ≤ α1(t00 + τ0, t10 + δ2; εδµ).

If t ∈ [t00 + τ0, t10 + δ2] and ξ ∈ [t − τ0, t − τ ] then ξ ≥ t00, ξ − τ ≤ t0, ξ − τ0 ≤ t0.
Therefore,

α1(t00 + τ0, t10 + δ2; εδµ) ≤ o(εδµ)

(see (2.12)). Lemma 2.4 is proved.
Lemma 2.5. Let the conditions of Lemma 2.3 hold. Then

∫ t10+δ2

t0+τ

ζ(t)
[
|∆x(t− τ)−∆x(t− τ0)|

]
dt ≤ o(εδµ).

for arbitrary (ε, δµ) ∈ (0, ε2]× V +.
This Lemma can be proved in analogy to Lemma 2.4.

3. Formulation of main results

Theorem 3.1. Let the conditions of Lemma 2.2 hold.Moreover, there exits the
limit

lim
(w1,w2)→(w01,w02)

[f(w1, u0(t))− f(w2, u0(t))] = f−1 , wi ∈ (a, t00 + τ0]×O2, i = 1, 2,
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where

w01 = (t00 + τ0, x0(t00 + τ0), x00), w02 = (t00 + τ0, x0(t00 + τ0), ϕ0(t00)).

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3.1)

for arbitrary (t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× V − and

δx(t; δµ) = −
{

Y (t00; t)f
−
0 + Y (t00 + τ0; t)f

−
1

}
δt0

−Y (t00 + τ0; t)f
−
1 δτ + β(t; δµ), (3.2)

where

β(t; δµ) = Y (t00; t)δx0 +

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

−
{ ∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
}

δτ +

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ. (3.3)

Here Y (ξ; t) is the n × n-matrix function satisfying the linear functional-differential
equation with advanced argument

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]− Y (ξ + τ0; t)fy[ξ + τ0], ξ ∈ [t00, t], (3.4)

and the condition

Y (ξ; t) =

{
H for ξ = t,

Θ for ξ > t,
(3.5)

fx =
∂

∂x
f, fx[ξ] = fx(ξ, x0(ξ), x0(ξ − τ0), u0(ξ));

H is the identity matrix and Θ is the zero matrix.
Some comments. The expression (3.2) is called the variation formula.

c1. Theorem 3.1 corresponds to the case when the variations at the points t00 and τ0

are performed simultaneously on the left.
c2. The summand

−
{

Y (t00 + τ0; t)f
−
1 +

∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
}

δτ

in formula (3.2) (see also (3.3)) is the effect of perturbation of the delay τ0.
c3. The expression

−
{

Y (t00; t)f
−
0 + Y (t00 + τ0; t)f

−
1

}
δt0

is the effect of discontinuous initial condition (2.2) and perturbation of the initial
moment t00.
c4. The expression

Y (t00; t)δx0 +

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ +

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ
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in formula (3.3) is the effect of perturbations of the initial vector x0, initial ϕ0(t) and
control u0(t) functions.
c5. The variation formula allows one to obtain an approximate solution of the per-
turbed functional-differential equation

ẋ(t) = f(t, x(t), x(t− τ0 − εδτ), u0(t) + εδu(t))

with the perturbed initial condition

x(t) = ϕ0(t) + εδϕ(t), t ∈ [τ̂ , t00 + εδt0), x(t00) = x00 + εδx0.

In fact, for a sufficiently small ε ∈ (0, ε2] from (3.1) it follows

x(t; µ0 + εδµ) ≈ x0(t) + εδx(t; δµ)

(see (2.5)).
c6. Finally we note that the variation formula which is proved in the present work
doesn’t follows from the formula proved in [15].

Theorem 3.2. Let the conditions of Lemma 2.3 hold.Moreover, there exits the
limit

lim
(w1,w2)→(w01,w02)

[f(w1, u0(t))− f(w2, u0(t))] = f+
1 , wi ∈ [t00 + τ0, b)×O2, i = 1, 2.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that for arbitrary (t, ε, δµ) ∈
[t10 − δ2, t10 + δ2]× [0, ε2]× V +, formula (3.1) holds and

δx(t; δµ) = −
{

Y (t00; t)f
+
0 + Y (t00 + τ0; t)f

+
1

}
δt0

−Y (t00 + τ0; t)f
+
1 δτ + β(t; δµ). (3.6)

Theorem 3.2 corresponds to the case when the variations at the points t00 and τ0 are
performed simultaneously on the right. Theorems 3.1 and 3.2 are proved by a scheme
given in [10].

4. Proof of Theorem 3.1

Here and in what follows we shall assume that t0 = t00 + εδt0, τ = τ0 + εδτ, ϕ(t) =
ϕ0(t) + εδϕ(t), u(t) = u0(t) + εδu(t). Let ε2 ∈ (0, ε1] be so small (see Lemma 2.2) that
for arbitrary (ε, δµ) ∈ (0, ε2]× V − the following inequalities hold

t00 − τ ≤ t0, t0 + τ ≥ t00.

The function ∆x(t) (see (2.5)) satisfies the equation

∆̇x(t) = f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u(t))− f [t]

= fx[t]∆x(t) + fy[t]∆x(t− τ0) + εfu[t]δu(t) + r(t; εδµ) (4.1)
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on the interval [t00, t10 + δ2], where

r(t; εδµ) = f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u(t))− f [t]

−fx[t]∆x(t)− fy[t]∆x(t− τ0)− εfu[t]δu(t), (4.2)

By using the Cauchy formula ([10], p.21), one can represent the solution of equation
(4.1) in the form

∆x(t) = Y (t00; t)∆x(t00) + ε

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ

+
1∑

i=0

Ri(t; t00, εδµ), t ∈ [t00, t10 + δ2], (4.3)

where 



R0(t; t00, εδµ) =
∫ t00

t00−τ0
Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ,

R1(t; t00, εδµ) =
∫ t

t00
Y (ξ; t)r(ξ; εδµ)dξ

(4.4)

and Y (ξ; t) is the matrix function satisfying equation (3.4) and condition (3.5).
Let a number δ2 ∈ (0, δ1] be so small that t00 + τ0 < t10 − δ2. The function Y (ξ; t)

is continuous on the set

Π = {(ξ, t) : ξ ∈ [t00, t00 + τ0], t ∈ [t10 − δ2, t10 + δ2]}
([10], Lemma 2.1.7). Therefore,

Y (t00; t)∆x(t00) = εY (t00; t)
[
δx0 − f−0 δt0

]
+ o(t; εδµ) (4.5)

(see (2.7)). One can readily see that

R0(t; t00, εδµ) = ε

∫ t0

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+

∫ t00

t0

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ = ε

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+

∫ t00+τ0

t0+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ + o(t; εδµ), (4.6)

where

o(t; εδµ) = −ε

∫ t00

t0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ.

For t ∈ [t10 − δ2, t10 + δ2] we have

R1(t; t00, εδµ) =
3∑

i=1

αi(t; εδµ) (4.7)
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α1(t; εδµ) =

∫ t0+τ

t00

r1(ξ; t, εδµ)dξ, α2(t; εδµ) =

∫ t00+τ0

t0+τ

r1(ξ; t, εδµ)dξ,

α3(t; εδµ) =

∫ t

t00+τ0

r1(ξ; t, εδµ)dξ, r1(ξ; t, εδµ) = Y (ξ; t)r(ξ; εδµ).

We introduce the notations:

f [t; s, εδµ] = f(t, x0(t) + s∆x(t), x0(t− τ0) + s{x0(t− τ)− x0(t− τ0)

+∆x(t− τ)}, u0(t) + sεδu(t)), σ(t; s, εδµ) = fx[t; s, εδµ]− fx[t],

ρ(t; s, εδµ) = fy[t; s, εδµ]− fy[t], ϑ(t; s, εδµ) = fu[t; s, εδµ]− fu[t].

It is easy to see that

f(t, x0(t) + ∆x(t), x0(t− τ) + ∆x(t− τ), u0(t) + εδu(t))− f [t]

=

∫ 1

0

d

ds
f [t; s, εδµ]ds =

∫ 1

0

{
fx[t; s, εδµ]∆x(t) + fy[t; s, εδµ]{x0(t− τ)

−x0(t− τ0) + ∆x(t− τ)}+ εfu[t; s, εδµ]δu(t)
}

ds

=
[ ∫ 1

0

σ(t; s, εδµ)ds
]
∆x(t) +

[ ∫ 1

0

ρ(t; s, εδµ)ds
]
{x0(t− τ)

−x0(t− τ0) + ∆x(t− τ)}+ ε
[ ∫ 1

0

ϑ(t; s, εδµ)ds
]
δu(t)

+fx[t]∆x(t) + fy[t]{x0(t− τ)− x0(t− τ0) + ∆x(t− τ)}+ εfu[t]δu(t).

On account of the last relation we have

α1(t; εδµ) =
5∑

i=1

α1i(t; εδµ),

where

α11(t; εδµ) =

∫ t0+τ

t00

Y (ξ; t)σ1(ξ; εδµ)∆x(ξ)dξ,

σ1(ξ; εδµ) =

∫ 1

0

σ(ξ; s, εδµ)ds, α12(t; εδµ)

=

∫ t0+τ

t00

Y (ξ; t)ρ1(ξ; εδµ){x0(ξ − τ)− x0(ξ − τ0) + ∆x(ξ − τ)}dξ,
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ρ1(ξ; εδµ) =

∫ 1

0

ρ(ξ; s, εδµ)ds, α13(t; εδµ)

= ε

∫ t0+τ

t00

Y (ξ; t)ϑ1(ξ; εδµ)δu(ξ)dξ, ϑ1(ξ; εδµ)

=

∫ 1

0

ϑ(ξ; s, εδµ)ds, α14(t; εδµ) =

∫ t0+τ

t00

Y (ξ; t)fy[ξ]{∆x(ξ − τ)

−∆x(ξ − τ0)}dξ, α15(t; εδµ) =

∫ t0+τ

t00

Y (ξ; t)fy[ξ]{x0(ξ − τ)

−x0(ξ − τ0)}dξ

For ξ ∈ [t00, t0 + τ ] we have





|∆x(ξ)| ≤ O(εδµ), ∆x(ξ − τ) = εδϕ(ξ − τ),

∆x(ξ − τ)−∆x(ξ − τ0) = ε[δϕ(ξ − τ)− δϕ(ξ − τ0)]

x0(ξ − τ)− x0(ξ − τ0) = ϕ0(ξ − τ)− ϕ0(ξ − τ0)

(4.8)

(see (4.2)). The function ϕ0(t) is absolutely continuous, therefore for each fixed
Lebesgue point ξ ∈ (t00, t00 + τ0) of function ϕ̇0(ξ − τ0) we get

ϕ0(ξ − τ)− ϕ0(ξ − τ0) =

∫ ξ−εδτ

ξ

ϕ̇0(s− τ0)ds

= −εϕ̇0(ξ − τ0)δτ + γ(ξ; εδµ), (4.9)

with

lim
ε→0

γ(ξ; εδµ)

ε
= 0 uniformly for δµ ∈ V −. (4.10)

Thus, (4.9) and (4.10) are valid for almost all points of the interval (t00, t00 + τ0). From
(4.9) taking into account boundedness of the function ϕ̇0(t) it follows

| ϕ0(ξ − τ)− ϕ0(ξ − τ0) |≤ O(εδµ) and
∣∣∣γ(ξ; εδµ)

ε

∣∣∣ ≤ const. (4.11)

Consequently, for α1i(t; εδµ)), i = 1, 4 we have





| α11(t; εδµ)| ≤‖ Y ‖ O(εδµ)σ2(εδµ),

| α12(t; εδµ)| ≤‖ Y ‖ O(εδµ)ρ2(εδµ),

| α13(t; εδµ)| ≤ ε ‖ Y ‖ ϑ2(εδµ),

| α14(t; εδµ)| ≤ o(εδµ),

α15(t; εδµ) = γ1(t; εδµ)− ε
[ ∫ t0+τ

t00

Y (ξ; t)fy[ξ]ϕ̇0(ξ − τ0)dξ
]
dt,
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(see (4.8),(4.9),(4.11)). Here

σ2(εδµ) =

∫ t00+τ0

t00

[ ∫ 1

0

∣∣∣fx(t, x0(t) + s∆x(t), ϕ0(t− τ0) + s(ϕ0(t− τ)− ϕ0(t− τ0))

+sδϕ(t− τ), u0(t) + sεδu(s))− fx(t, x0(t), ϕ0(t− τ0), u0(t))
∣∣∣ds

]
dt, ρ2(εδµ)

=

∫ t00+τ0

t00

[ ∫ 1

0

∣∣∣fy(t, x0(t) + s∆x(t), ϕ0(t− τ0) + s(ϕ0(t− τ)− ϕ0(t− τ0))

+sδϕ(t− τ), u0(t) + sεδu(s))− fy(t, x0(t), ϕ0(t− τ0), u0(t))
∣∣∣ds

]
dt,

ϑ2(εδµ) =

∫ t00+τ0

t00

[ ∫ 1

0

∣∣∣fu(t, x0(t) + s∆x(t), ϕ0(t− τ0) + s(ϕ0(t− τ)− ϕ0(t− τ0))

+sδϕ(t− τ), u0(t) + sεδu(s))− fu(t, x0(t), ϕ0(t− τ0), u0(t))
∣∣∣ds

]
dt

‖Y ‖ = sup
{
|Y (ξ; t)| : (ξ, t) ∈ Π

}
, γ̂(t; εδµ) =

∫ t

t00

Y (ξ; t)fy[ξ]γ(ξ; εδµ)dξ.

Obviously, ∣∣∣ γ̂(t; εδµ)

ε
≤‖ Y ‖

∫ t00+τ0

t00

|fy[ξ]|
∣∣∣γ(ξ; εδµ)

ε

∣∣∣dξ.

By the Lebesguer theorem on passing to the limit under the integral sign, we have

lim
ε→0

σ2(εδµ) = 0, lim
ε→0

ρ2(εδµ) = 0, lim
ε→0

ϑ2(εδµ) = 0, lim
ε→0

∣∣∣ γ̂(t; εδµ)

ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [t00, t00 + τ0]× V − (see (4.10)). Thus,

α1i(t; εδµ) = o(t; εδµ), i = 1, 4; (4.12)

and

α15(t; εδµ) = −ε
[ ∫ t0+τ

t00

Y (ξ; t)fy[ξ]ϕ̇0(ξ − τ0)dξ
]
δτ + o(t; εδµ).

Further,

ε
[ ∫ t00+τ0

t0+τ

Y (ξ; t)fy[ξ]ϕ̇0(ξ − τ0)dξ
]
δτ = o(t; εδµ),

ẋ0(ξ − τ0) = ϕ̇0(ξ − τ0), ξ ∈ [t00, t00 + τ0],

therefore,

α15(t; εδµ) = −ε
[ ∫ t00+τ0

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (4.13)

On the basis of (4.12) and (4.13) we obtain

α1(t; εδµ) = −ε
[ ∫ t00+τ0

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (4.14)
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Now let us transform α2(t; εδµ). We have

α2(t; εδµ) =
4∑

i=1

α2i(t; εδµ),

where

α21(εδµ) =

∫ t00+τ0

t0+τ

Y (ξ; t)
[
f(ξ, x0(ξ) + ∆x(ξ), x0(ξ − τ) + ∆x(ξ − τ), u0(ξ) + εδu(ξ))

−f [ξ]
]
dξ, α22(t; εδµ) = −

∫ t00+τ0

t0+τ

Y (ξ; t)fx[ξ]∆x(ξ)dξ, α23(t; εδµ)

= −
∫ t00+τ0

t0+τ

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ, α24(t; εδµ) = −ε

∫ t00+τ0

t0+τ

Y (ξ; t)fu[ξ]∆δu(ξ)dξ.

If ξ ∈ [t0 + τ, t00 + τ0] then

|∆x(ξ)| ≤ O(εδµ), x0(ξ − τ) + ∆x(ξ − τ) = x(ξ − τ ; µ0 + εδµ)

= x00 + εδx0 +

∫ ξ−τ

t0

f(s, x(s; µ0 + εδµ), x(s− τ ; µ0 + εδµ), u0(s) + εδu(s))ds

therefore

lim
ε→0

(ξ, x0(ξ) + ∆x(ξ), x0(ξ − τ) + ∆x(ξ − τ)) = (t00 + τ0, x0(t00 + τ0), x00) = w02.

Moreover,

lim
ε→0

(ξ, x0(ξ), x0(ξ − τ0)) = (t00 + τ0, x0(t00 + τ0), ϕ0(t00)) = w01.

Thus,

lim
ε→0

[
f(ξ, x0(ξ) + ∆x(ξ), x0(ξ − τ) + ∆x(ξ − τ), u0(ξ) + εδu(ξ))− f [ξ]

]

= lim
(w1,w2)→(w01,w02)

[f(w1, u0(t))− f(w2, u0(t))] = f−1 , wi ∈ (a, t00 + τ0]×O2, i = 1, 2,

Since the function Y (ξ; t) is continuous on the set Π, therefore

α21(t; εδµ) = −εY (t00 + τ0; t)f
−
1 (δt0 + δτ) + o(t; εδµ).

Further, for ξ ∈ [t0 + τ, t0 + τ0] we have

∆x(ξ − τ0) = εδϕ(ξ − τ0),

therefore

α23(t; εδµ) = −ε

∫ t0+τ0

t0+τ

Y (ξ; t)fy[ξ]δϕ(ξ − τ0)dξ
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−
∫ t00+τ0

t0+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ = −
∫ t00+τ0

t0+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ

+o(t; εδµ).

Obviously,
α22(t; εδµ) = o(t; εδµ), α24(t; εδµ) = o(t; εδµ).

Finally, for α2(t; εδµ) we get

α2(t; εδµ) = −εY (t00 + τ0; t)f
−
1 (δt0 + δτ)−

∫ t00+τ0

t0+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ

+o(t; εδµ). (4.15)

It remains to estimate α3(t; εδµ). We have

α3(t; εδµ) =
5∑

i=1

α3i(t; εδµ), α31(t; εδµ)

where

α31(t; εδµ) =

∫ t

t00+τ0

Y (ξ; t)σ1(ξ; εδµ)∆x(ξ)dξ, α32(t; εδµ)

=

∫ t

t00+τ0

Y (ξ; t)ρ1(ξ; εδµ){x0(ξ − τ)− x0(ξ − τ0) + ∆x(ξ − τ)}dξ,

α33(t; εδµ) = ε

∫ t

t00+τ0

Y (ξ; t)ϑ1(ξ; εδµ)δu(ξ)dξ, α34(t; εδµ)

=

∫ t

t00+τ0

Y (ξ; t)fy[ξ]{∆x(ξ − τ)−∆x(ξ − τ0)}dξ, α35(t; εδµ)

=

∫ t

t00+τ0

Y (ξ; t)fy[ξ]{x0(ξ − τ)− x0(ξ − τ0)}dξ.

For ξ ∈ [t00 + τ0, t10 + δ2] we have

|∆x(ξ)| ≤ O(εδµ), |∆x(ξ − τ)| ≤ O(εδµ), (4.16)

(see (4.2)). For each fixed Lebesgue point ξ ∈ (t00 + τ0, t10 + δ2) of function ẋ0(ξ − τ0)
we get

x0(ξ − τ)− x0(ξ − τ0) =

∫ ξ−εδτ

ξ

ẋ0(s− τ0)ds

= −εẋ0(ξ − τ0)δτ + γ1(ξ; εδµ), (4.17)

with

lim
ε→0

γ1(ξ; εδµ)

ε
= 0 uniformly for δµ ∈ V −. (4.18)
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Thus, (4.17) and (4.18) are valid for almost all points of the interval (t00 + τ0, t10 + δ2).
From (4.17) taking into account boundedness of the function f(t, x, y, u) it follows

| x0(ξ − τ)− x0(ξ − τ0) |≤ O(εδµ) and
∣∣∣γ1(ξ; εδµ)

ε

∣∣∣ ≤ const. (4.19)

For α3i(t; εδµ)), i = 1, 4 we have





| α31(t; εδµ)| ≤‖ Y ‖ O(εδµ)σ3(εδµ),

| α32(t; εδµ)| ≤‖ Y ‖ O(εδµ)ρ3(εδµ),

| α33(t; εδµ)| ≤ ε ‖ Y ‖ ϑ3(εδµ),

| α34(t; εδµ)| ≤ o(εδµ),

(see (4.17),(4.19) and Lemma 2.4). Here

σ3(εδµ) =

∫ t10+δ2

t00+τ0

σ1(ξ; εδµ)dξ, ρ3(εδµ) =

∫ t10+δ2

t00+τ0

ρ1(ξ; εδµ)dξ,

ϑ3(εδµ) =

∫ t10+δ2

t00+τ0

ϑ1(ξ; εδµ)dξ.

Obviously, ∣∣∣ γ̂1(t; εδµ)

ε
≤‖ Y ‖

∫ t10+δ2

t00+τ0

|fy[ξ]|
∣∣∣γ1(ξ; εδµ)

ε

∣∣∣dξ.

By the Lebesguer theorem on passing to the limit under the integral sign, we have

lim
ε→0

σ3(εδµ) = 0, lim
ε→0

ρ3(εδµ) = 0, lim
ε→0

ϑ3(εδµ) = 0, lim
ε→0

∣∣∣ γ̂1(t; εδµ)

ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V − (see (4.18)).
Thus,

α3i(t; εδµ) = o(t; εδµ), i = 1, 4

and

α35(t; εδµ) = −ε
[ ∫ t

t00+τ0

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ).

On the basis of last relations we get

α3(t; εδµ) = −ε
[ ∫ t00+τ0

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ + o(t; εδµ). (4.20)

Taking into account (4.14),(4.15) and (4.20) the expression (4.7) can be represented in
the form

R1(t; t00, εδµ) = −εY (t00 + τ0; t)f
−
1 δt0 − ε

[
f−1 +

∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ
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−
∫ t00+τ0

t0+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ + o(t; εδµ). (4.21)

Finally, from (4.3) by virtue of (4.6) and (4.21) we obtain (3.1), where δx(t; δµ) has
the form (3.2).

5. Proof of Theorem 3.2

The function ∆x(t) satisfies equation (4.1) on the interval [t0, t10 + δ2]. By using
the Cauchy formula, we can represent it in the form

∆x(t) = Y (t0; t)∆x(t0) + ε

∫ t

t0

Y (ξ; t)fu[ξ]δu(ξ)dξ +
1∑

i=0

Ri(t; t0, εδµ), (5.1)

(see (4.4)). Let a number δ2 ∈ (0, δ1] be so small that t00 + τ0 < t10 − δ2. The matrix
function Y (ξ; t) is continuous on Π, therefore

Y (t00; t)∆x(t00) = εY (t00; t)
[
δx0 − f+δt0

]
+ o(t; εδµ) (5.2)

(see (2.8)).
Now let us transform R0(t; t0, εδµ). It is not difficult to see that

R0(t; t0, εδµ) = ε

∫ t00

t0−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+

∫ t0

t00

Y (ξ + τ0; t)fy[ξ + τ0]∆x(ξ)dξ = ε

∫ t00

t00−τ0

Y (ξ + τ0; t)fy[ξ + τ0]δϕ(ξ)dξ

+

∫ t0+τ0

t00+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ + o(t; εδµ). (5.3)

In a similar way, for t ∈ [t10 − δ2, t10 + δ2] one can prove

R1(t; t0, εδµ) = −εY (t00 + τ0; t)f
+
1 δt0 − ε

[
f+

1 +

∫ t

t00

Y (ξ; t)fy[ξ]ẋ0(ξ − τ0)dξ
]
δτ

−
∫ t0+τ0

t00+τ0

Y (ξ; t)fy[ξ]∆x(ξ − τ0)dξ + o(t; εδµ). (5.4)

Finally, we note that

ε

∫ t

t0

Y (ξ; t)fu[ξ]δu(ξ)dξ = ε

∫ t

t00

Y (ξ; t)fu[ξ]δu(ξ)dξ + o(t; εδµ). (5.5)

for t ∈ [t10 − δ2, t10 + δ2].
Taking into account (5.2)-(5.5), from (5.1), we obtain (3.1), where δx(t; εδµ) has

form (3.6).
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ON THE UNIQUENESS OF THE SOLUTION OF AN INVERSE PROBLEM OF
THE POTENTIALLY THEORY IN A THREE-DIMENSIONAL SPACE

Kapanadze J.

Abstract. In the present paper we consider the inverse problem for a volume potential.
First we consider piecewise-smooth simply-connected domains and after that smooth simply-
connected domains in a three-dimensional space.

Keywords and phrases: Inverse problem, potential, Keldish theorem, strictly locally con-
vex.

AMS subject classification (2000): 31B05.

The solution of an inverse problem of the potential theory is of great theoretical
and practical importance. The practical application of inverse problems is so significant
that they are regarded as topical problems of modern mathematical analysis.

The uniqueness of the solution of an inverse problem in the class of star domains
of constant density was for the first time proved P.S. Novikov [1].

In the present paper we consider the inverse problem for a volume potential.First
we consider piecewise-smooth simply-connected domains and after that smooth simply-
connected domains in a three-dimensional space.

Let us define volume potentials and simple-layer potentials.

V f (x) =

∫

Ω

Γ(x, y)f(y)dSy, Uψ(x) =

∫

∂Ω

Γ(x, y)ψ(y)dSy,

where Ω is a bounded piecewise-smooth domain, f ∈ C(∂Ω), ψ ∈ C(∂Ω), Γ(x, y) =
|x−y|−1. We denote by Ω∞ the simply-connected component of R3−Ω which contains
a point at infinity, and by ∅ an empty set. Ck, k = 1, 2, 3, . . . are positive constants.

Definition 1. Let Q be a simply-connected bounded piecewise-smooth domain
from R3. We will set the domain Q is strictly convex if for any points z1 ∈ Q, z2 ∈ Q
an interval point of a segment z1z2 is an interval point for the domain Q.

Definition 2. Let Ω be a simply-connected bounded piecewise-smooth domain
from R3, and each smooth part for ∂Ω belongs to class C(1,α). We will say that the
domain Ω is strictly convex at a point x0 ∈ ∂Ω if for some neighborhood σ = {x :
|x− x0| < ε} the intersection Ω ∩ σ is a strict domain.

Theorem 1. Let Ω1, Ω2 be a bounded simple-connected domain from R3. Assume
that there exists a smooth point x0 ∈ ∂Ω1, x0 /∈ Ω2, for which the domain Ω1 or R3−Ω1

is strictly convex at a point x0. Then the potentials

v1(x) =

∫

Ω1

Γ(x, y)dy, v2(x) =

∫

Ω2

Γ(x, y)dy (1)

do not coincide on Ω∞ ( Ω = Ω1 ∪ Ω2, ∂Ωi = ∂Ωi, i = 1, 2.)
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Proof. Let us assume the contrary,i.e. v1(x) = v2(x), x ∈ Ω∞. Each smooth part
∂Ωi (i = 1, 2) belongs to C(1,α). Denote σ1 = {x : |x − x0| < ε} ∩ ∂Ω1, x0 = (x0

1, x
0
2),

σ =
{

x : |x− x0| < ε

2

}
∩ ∂Ω1, (σ1 ∩ Ω2 = ∅), Ω = Ω1 ∪ Ω2 ⊂ S = {x : |x| < r}.

Rotate the coordinate system. After rotation the tangent plane at the point x0 becomes
parallel to the plane x2ox3. Pass the plan P1 through the point x0, for which P1 ⊥ x2ox3,
P1 ⊥ x10x2. Let us consider the curve l = P1 ∩ σ, the equation of which has the form
x3 = τ(x1, c1), x2 = c1 = const, x ∈ l, x0

1 − ε1 < x1 < x0
1, |τ ′(x0

1, c)| = ∞.
From equality (1) we obtain

∫

Ω1

Uψ(x)dx =

∫

Ω2

Uψ(x)dx, ψ ∈ C(1,α)(∂S)

∫

Ω1

∂Uψ

∂x3

dx =

∫

Ω2

∂Uψ

∂x3

dx ψ ∈ C(1,α)(∂S) (2)

By the Green-Ostrogradski formula, from (2) we have

∫

Ω1

Uψ(x) cos(ν∧x x3)dSx =

∫

Ω2

Uψ(x) cos(ν∧x x3)dSx (3)

Let ω be the domain containing the surface σ.
For any ψ ∈ C(σ) the following inequality is valid

||ψ||{C3(σ)∗} ≤ C1||Uψ||{C1
0 (ω)}∗ , (4)

where C1
0(ω) - are finite functions from C1(ω). It is obvious that the boundary function

on σ′

g(x1, x2) · x3 = g(x1x2) · τ(x1x2)

x3 = τ(x1x2) is the equation σ′ = {(x1x2x3) ∈ σ, x3 < x0
3}, L1 =

∂δx1

∂t
·δx2 , (x1, x2, x3) ∈

σ′, where δx1 , δx2 are Dirac measures.

From this and the above reasoning we obtain for a ball
{
||Uψ||{C1

0 (ω)}∗ ≤ 1
}

(||ψ||{C3(σ)}∗ ≤ C1

)
.

1

C1

∂δx1

∂t
×δx2·x3 ∈

{
||Uψ||{C1

0 (ω)} ≤ 1
}

, Uψ1(x1, x2, x3)=
1

C1

∂δx1

∂t
×δx2·x3, (x1x2x3) ∈ σ′.

sup

∣∣∣∣∣∣

∫

σ1

Uψ(x1, x2, x3) cos(νxˆx3)dSx

∣∣∣∣∣∣
≥ C2 sup

∣∣∣∣∣∣

∫

σ′

Uψ(x1, x2)τ(x1x
0
2)dx1dx2

∣∣∣∣∣∣
= ∞. (5)

By virtue of (4) we have

∫

σ1

Uψ(x) cos(ν∧x x3)dSx =

∫

∂Ω2

Uψ(x) cos(ν∧x x3)dSx −
∫

∂Ω1−σ1

Uψ(x) cos(ν∧x x3)dSx (6)



On the Uniqueness of the Solution .... 99

sup
∂Ω2

|Uψ(x)| ≤ C3, sup
∂Ω1−σ1

|Uψ(x)| ≤ C4, ψ ∈ {C3(σ)}∗. (7)

From (5), (6), (7) we obtain a contradiction.
Theorem 1 is proved.
Theorem 2. Let Ω1 and Ω2 be simply connected bounded domains from the class

C2. Then the solution of an inverse problem is unique.
Proof. Let us assume the contrary, i.e. that v1(x) = v2(x), x ∈ Ω∞, Ω1 6= Ω2.
For the domains Ω1 and Ω2 the following alternatives are valid.
I) ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω∞ - is a finite number of smooth curves.
II) ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω∞ - contains some smooth surface σ.
Assume that alternative (I) is fulfilled. Consider the diameter of the domain Ω =

Ω1 ∪ Ω2

d(Ω) = max |x− y|, x ∈ Ω, y ∈ Ω. d(Ω) = |x0 − y0|.
It is not difficult to see that in the neighborhood of point x0 (or y0) there exists a
smooth point z0 ∈ ∂Ω1, z0 /∈ Ω2, for which the domain Ω1 is strictly locally convex at
a point z0. Now is suffices to repeat the reasoning of Theorem 1.

Assume that alternative (II) is fulfilled. Consider the difference

(Ω1 ∪ Ω2)− (Ω1 ∩ Ω2) =
N⋃
1

Qi.

Since σ ⊂ ∂Ω1∩∂Ω2∩∂Ω∞, the complement of the closed set F =
N⋃
1

Qi is a connected

set (domain). Now assume that the potentials

v1(x) =

∫

Ω1

Γ(x, y)dy, v2(x) =

∫

Ω2

Γ(x, y)dy

are considered on Ω∞. Then we obtain
∫

Ω1−(Ω1∩Ω2)

Uψ(y)dy =

∫

Ω2−(Ω1∩Ω2)

Uψ(y)dy ψ ∈ C(∂Ω∞). (8)

By virtue of Keldish theorem [2, ch. II] there exists a sequence of potentials for which
we obtain

lim
n→∞

∫

Q1

[Uψn(x)− 1]2dx = 0, lim
n→∞

∫

F−Q1

[Uψn(x)]2dx = 0.

∫

Q1

dy = 0, |Q1| = 0.

We have come to a contradiction. Theorem 2 is proved.
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Abstract. In the present paper we solve explicitly, by means of absolutely and uniformly
convergent series, the second boundary value problems of porous elastostatics for the plane
with a circular hole.
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1. Introduction

In the E.C. Aifantis theory of consolidation the elastic medium with double porosity
is considered. For such a kind of media the problem is formulated under the following
boundary conditions: the value of the displacement (or stress) vector and the value of
pressures (or normal derivative pressures) of a liquid in pores are given. In the present
work we solve explicitly, by means of absolutely and uniformly convergent series, the
second boundary value problem of porous elastostatics for the plane with a circular
hole. From the point of view of applications, very actual is the construction of solu-
tions explicitly which allows one to perform numerical analysis of the problem under
investigation.

2. Basic equations

We consider the plane D with a circular hole. Let R be the radius of the boundary
S. Find a regular vector U(u(x), p1(x), p2(x)), satisfying in D a system of equations
[1,2]:

µ∆(u(x)) + (λ + µ)graddiv(u(x)) = grad[β1p1(x) + β2p2(x)],

(m1∆− k)p1(x) + kp2(x) = 0,

kp1(x) + (m2∆− k)p2(x) = 0, x ∈ D

(1)

and on the circumference S one of the following conditions:

I.u(z) = f(z), ∂np1 = f3(z), ∂np2(z) = f4(z);

II.P (∂z, n)U(z) = f(z), p1(z) = f3(z), p2(z) = f4(z),
(2)

where λ, µ, m1,m2, β1, β2 are the known elastic and physical constants, k,mi > 0, i =
1, 2[1, 2]; u(x) = (u1(x)), u2(x)) is the displacement of the point x;n(z) = (n1(z), n2(z)),
z = (z1, x2) ∈ S, p1 is the fluid pressure within the primary pores and p2 is the fluid
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pressure within the secondary pores; ∆ is the Laplace operator; f(z) = (f1(z), f2(z)),
f3(z), f4(z) are the given functions on the circumference S;

P (∂x, n)U(x) = T (∂x, n)u(x)− n(x)[β1p1(x) + β2p2(x)] (3)

is the stress vector of the theory of poroelasticity; T (∂x, n)u(x) = µ∂nu(x) +

λn(x)div(u(x)) + µ
∞∑
i=1

ni(x)gradui(x) is the stress vector of the theory of elasticity;

∂n =
∂

∂n
; ∂k =

∂

∂xk

, k = 1, 2.

Vector U(x) satisfies the following conditions at infinity:

U(x) = O(1), ∂kU(x) = O(1), k = 1, 2. (4)

We will study separately the following problems:
1. Find in a plane D solution u(x) of equation (1)1, if on the circumference S there

are given the values: a) of the vector u - problem A1; b) of the vector P (∂z, n)u(z) -
problem A2.

2. Find in a plane D solutions p1(x) and p2(x) of the system of equations (1)2 and
(1)3, if on the circumference S there are given the values: a) of the function p1 and the
vector p2 - problem B1; b)of the derivates ∂np1(z) and ∂np2(z) - problem B2.

Thus the above-formulated problems of poroelastostatics can be considered as a
union of two problems: I - (A1, B2) and II - (A2, B1).

3. Uniqueness theorems

For regular solutions of equation (1)1 and equations (1)2 and (1)3 Green’s formulas:

∫

D

[E(u(x), u(x))− (β1p1(x) + β2p2)(x)divu(x)]dx =

∫

S

u(y)P (∂y, n(y))dyS; (5)

∫

D

[m1 | gradp1 |2 +m2 | gradp2 |2 +k(p2 − p1)
2]dx

=

∫

S

[m1p1(y)∂np1(y) + m2p2(y)∂np2(y)]dyS (6)

are valid, where

E(u, u) = (λ + µ)(∂1u1 + ∂2u2)
2 + µ(∂1u1 − ∂2u2)

2 + µ(∂2u1 + ∂1u2)
2

is a nonnegative quadratic form under the condition that λ + µ > 0, µ > 0 .
Problems B. Since mi, k > 0, therefore in the case of homogeneous boundary con-

ditions (2) the product pi∂npi vanishes. Let p1 and p2 be differences of two different
solutions of problems B1 and B2. By virtue of equality (6), the following theorems are
valid.
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Theorem 1. The difference of two arbitrary solutions of problem B1 is equal to
zero: p1(x) = p2(x) = 0.

Theorem 2. The difference of two arbitrary solutions of problem B2 may differ
only by an arbitrary constant p1(x) = p2(x) = c.

Problems A. Let (u′, p′1, p
′
2) and (u′′, p′′1, p

′′
2) be two different solutions of any of

the problems I, II. Then the differences u = u′ − u′′, p1 = p′1 − p′′1 and p2 = p′2 − p′′2 are
the solutions of the corresponding homogeneous problems.

Taking into account Theorems 1 and 2, and formula (5), under the homogeneous
boundary conditions for the problems I and II, we obtain E(u, u) = 0. The solution
of the above equation has the form

u1(x) = −cx2 + q1, u2(x) = cx1 + q2, (7)

where c, q1 and q2 are arbitrary constants.
Taking into account conditions (4) and formulas (7), we obtain:
u1(x) = u2(x) = 0 - for problem A1;
u1(x) = q1, u2(x) = q2 - for problem A2;
The following theorems are valid.
Theorem 3. The difference of two arbitrary solutions of problem I is the vector

U(u1(x), u2(x), p1(x), p2(x)), where u1 = u2 = 0, p1 = p2 = c;
Theorem 4. The difference of two arbitrary solutions of problem II is the vector

U(u1(x), u2(x), p1(x), p2(x)), where u1(x) = q1, u2(x) = q2 and p1 = p2 = 0.

4. Solutions of the problems

On the basis of the system [(1)2, (1)3], we can write m1m24(4 + λ2
0)pi = 0,

i = 1, 2. Solutions of these equations are represented in the form

p1(x) = a1ϕ1(x) + a2ϕ2(x), p2(x) = a3ϕ1(x) + a4ϕ2(x), (8)

where

λ2
0 = −k(m1 + m2)

m1m2

, a1 = a3 =
2

m1 + m2

, a2 = − m1 −m2

m1(m1 + m2)
,

a4 = − m1 −m2

m2(m1 + m2)
; 4ϕ1 = 0, (4+ λ2

0)ϕ2 = 0,

Taking into account (8), we write

β1p1 + β2p2 = aϕ2 + bϕ1, (9)

where
a = (β1 + β2)a1, b = β1a2 + β2a4. (10)

Problem B1. The functions ϕ1 and ϕ2 in formulas (8) are unknown. From the
conditions (2), for problem B1 we can write

ϕ1(z) =
d1(z)

d
≡ Ω1(z), ϕ2(z) =

d2(z)

d
≡ Ω2(z), z ∈ S, (11)
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where

d = a1a4 − a2
2, d1(z) = a4f3(z)− a2f4(z), d2(z) = a1f4(z)− a2f3(z).

Taking into account (11), for the harmonic function ϕ1(x) we have:

ϕ1(x) =
∞∑

m=0

(R

r

)m

(Am cos mψ + Bm sin mψ), (12)

where

r2 = x2
1 + x2

2, x = (x1, x2) = (r, ψ), A0 =
1

2π

2π∫

0

Ω1(θ)dθ,

Am =
1

π

2π∫

0

Ω1(θ) cos mθdθ, Bm =
1

π

2π∫

0

Ω1(θ) sin mθdθ.

Taking into account (8), the values in the plane of metaharmonic function ϕ2(x)
can be represented as follows [3]:

ϕ2(x) = K0(λ0r)C0 +
∞∑

m=1

Km(λ0r)(Cm cos mψ + Dm sin mψ), (13)

where Km(λ0r) is the modified Hancel , s function of an imaginary argument,

Cm =
1

π

∫ 2π

0

Ω2(θ) cos mθdθ, Dm =
1

π

∫ 2π

0

Ω2(θ) sin mθdθ, m = 0, 1, . . . . (14)

Using now formulas (8), with regard to (12) and (13), we can find values of the functions
p1(x) and p2(x).

Problem B2. Taking into account formulas (8), the boundary conditions of prob-
lem B2 can be rewritten as

∂Rϕ1(z) = F1(z), ∂Rϕ2(z) = F2(z), z ∈ S, (15)

where F1(z) =
1

d
[a4f3(z)− a2f4(z)], F2(z) =

1

d
[a1f4(z)− a2f3(z)], ∂R ≡ ∂n.

Then the harmonic function ϕ1(x) can be represented in the form of a series:

ϕ1(x) = c0 −
∞∑

m=1

R

m

(
R

r

)m

(Am cos mψ + Bm sin mψ), (16)

where c0 is an arbitrary constant, Am =
1

π

2π∫

0

F1(θ) cos mθdθ and Bm =
1

π

2π∫

0

F1(θ) sin mϕdθ.
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Expanding the function F2(z) into Fourier series and substituting (13) into (15),
we obtain the representation of the metaharmonic function ϕ2(x) in the plane in the
form

ϕ2(x) =
1

λ0

∞∑
m=1

Km(λ0r)

K ′
m(λ0R)

(αm cos mψ + βm sin mψ), (17)

where αm and βm are the Fourier coefficients of the function F2(z),

K ′
m(ζ) = ∂ζKm(ζ), ∂rKm(λ0r) = λ0K

′
m(λ0r).

Problem A1. A solution of equation (1)1 is sought in the form of a sum

u(x) = v0(x) + v(x), (18)

where v0 is a particular solution of equation (1)1, and v is a general solution of the
corresponding homogeneous equation (1)1. Direct checking shows that v0 has the form

v0(x) =
1

λ + 2µ
grad

[
− a

λ2
0

ϕ2(x) + bϕ0(x)
]
, (19)

where a and b are defined by formulas (10), and ϕ0 is a biharmonic function: 4ϕ0 = ϕ1.
A solution v(x) = (v1, v2) of the homogeneous equation corresponding to (1)1 is

sought in the form

v1(x) = ∂1[Φ1(x) + Φ2(x)]− ∂2Φ3(x), v2(x) = ∂2[Φ1(x) + Φ2(x)] + ∂1Φ3(x), (20)

where
4Φ1(x) = 0, 44Φ2(x) = 0, 44Φ3(x) = 0,

(λ + 2µ)∂14Φ2(x)− µ∂24Φ3(x) = 0,

(λ + 2µ)∂24Φ2(x) + µ∂14Φ3(x) = 0,

(21)

Φ1, Φ2, Φ3 are the scalar functions.
Taking into account (18) and relying on the condition (2)I , we can write

v(z) = Ψ(z), (22)

where Ψ(z) = f(z) − v0(z) is the known vector; v0 is defined by formula (19), and ϕ1

and ϕ2 by equalities (11). The value of the function ϕ0 is defined by means of the
equation 4ϕ0 = ϕ1; it has the form

ϕ0(x) =
R2

4

∞∑
m=2

1

1−m

(R

r

)m−2

(Am cos mψ + Bm sin mψ) +
A0

4
r2, (23)

where Am and Bm are defined in (12).
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In view of (21), we can represent the harmonic function Φ1 and biharmonic functions
Φ2 and Φ3 in the form

Φ1(x) =
∞∑

m=0

(R

r

)m

(Xm1 · νm(ψ)),

Φ2(x) = R2

∞∑
m=0

(R

r

)m−2

(Xm2 · νm(ψ)),

Φ3(x) = R2λ + 2µ

µ

∞∑
m=0

(R

r

)m−2

(Xm2 · sm(ψ)),

(24)

where Xmk are the unknown two-component vectors, k = 1, 2;

νm(ψ) = (cos mψ, sin mψ), sm(ψ) = (− sin mψ, cos mψ), x = (r, ψ), x ∈ D.

Substituting (24) into (20), the condition (22) for every m results in a system of
linear algebraic equations whose solution is written as follows:

X01 =
α0R

4
, X02 =

β0R

4
,

Xm1 =
R(αm + βm)

2m(λ + 3µ)
[2µ + (λ + µ)m]− Rαm

m
, Xm2 =

µ(αm + βm)

2(λ + 3µ)R
,

m = 1, 2, ...; αm and βm are the Fourier coefficients of, respectively, the normal and
tangential components of the function Ψ(z) = f(z)− v0(z), z ∈ S.

Thus the solution of problem A1 is represented by the sum (21) in which v(x) is
defined by means of formula (23), and v0(x) by formula (22).

Problem A2. Taking into account (3) and (9), the boundary condition (2)II can
be rewritten as

T (∂z, n)v(z) = Ψ(z), z ∈ S, (25)

where
Ψ(z) = f(z) + n(z)[aϕ2(z) + bϕ1(z)]− T (∂z, n)v0(z)

is the known vector, Ψ = (Ψ1, Ψ2).
We substitute (24) first into (23) and then into (25). For the unknowns Xm1 and

Xm2 we obtain a system of algebraic equations:

2(λ + 2µ)X01 =
α0

2
, 2(λ + 2µ) =

β0

2
,

m[λ + 2µ(m + 1)]Xm1 + {(λ + 2µ)(1−m)(2−m +
λ + 2µ

µ
m)

−λmR2[m +
λ + 2µ

µ
(2−m)]}Xm2 = αmR2,

−m(1 + 2µ)Xm1 + R2[m(3− 2m) +
λ + 2µ

µ
(m2 − 3m + 2)]Xm2 = βm

R2

µ
,

m = 1, 2, ...; αm and βm are the Fourier coefficients of, respectively, the normal and tan-
gential components of the function Ψ(z) = f(z)+n(z)[aϕ2(z)+bϕ1(z)]−T (∂z, n)v0(z);



Solution of the Problems of Elastostatics for .... 107

v0 is defined by means of formula (19) in which ϕ0(x) for problem B1 has the form (23)
and for problem B2 the form

ϕ0(x) =
R3

4

∞∑
m=2

1

m(1−m)

(R

r

)m−2

(Am cos mψ + Bm sin mψ),

where Am and Bm are defined in (16).
Conditions: f, p1, p2 ∈ C3(S) - in problem A1 and conditions: f, p1, p2 ∈ C2(S) in

problem A2, ensure absolutely and uniformly convergence of series obtained for v(x)
and v0(x) and also, (8).

Having solved problems A1, A2, B1 and B2, we can write solutions of the initial
problems I and II.
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qarTuli reziumeebi 
 
wrfiv kerZowarmoebulian diferencialur gantolebaTa 

sistemebi Txel prizmul areebSi  
 

g. jaiani 

 

   statia eZRvneba ganzomilebis reduqciis meTods kerZowarmoebulian 

diferencialur gantolebaTa sistemebisaTvis sasazRvro da sawyis-

sasazRvro amocanebis amosaxsnelad, sazogadod, aralifSicur Txel 

prizmul areebSi. 

 

 
Mmesame da meoTxe sasazRvro amocanebis amoxsna orgvari 
forovnobis mqone sferosaTvis da sivrcisaTvis sferuli 

RruTi 
 

m. baSaleiSvili, l. biwaZe 

 

naSromSi agebulia mesame da meoTxe sasazRvro amocanebis amonaxsnebi, 

absoluturad da Tanabrad krebadi mwkrivebis saxiT,   orgvari 

forovnobis mqone sferosaTvis da usasrulo sivrcisaTvis sferuli 

RruTi. 
 
 

winwaswrebul argumentiani emden-fauleris  
ganzogadoebuli diferencialuri gantolebis  

amonaxsnebis asimptoturi yofaqceva 

 
r. koplaraZe, g. kvinikaZe, g. giorgaZe 

 
ganxilulia emden-fauleris ganzogadoebuli diferencialuri ganto-

leba. Seswavlilia amonaxnebis oscilaciuri Tvisebebi. dadgenilia rxeva-

dobis, nulisaken miswrafebis da SemousazRvreli amonaxsnebis arsebobis 

sakmarisi pirobebi. 
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statikis ZiriTadi sasazRvro amocanebis Aarsebobis da 
erTaderTobis Teoremebi orgvari forovnobis mqone 

sxeulisaTvis 
 

m. baSeleiSvili, l. biwaZe 
 

     naSromSi ganxilulia statikis gantolebebi orgvari 

forovnobis mqone sxeulebisaTvis. Ddamtkicebulia ZiriTadi sasazRvro 

amocanebis amonaxsnis erTaderTobis Teoremebi. Aagebulia amonaxsnebis 

ZiriTadi fundamenturi matrici. Sedgenilia martivi da ormagi fenis 

potencialebi da Seswavlilia maTi Tvisebebi. potencialTa meTodis 

gamoyenebiT Ddamtkicebulia ZiriTadi sasazRvro amocanebis amonaxsnis 

arsebobis Teoremebi sasruli da usasrulo areebisaTvis.  
 
 

optimaluri sawyisi monacemebis arseboba da integraluri 
funqcionalis minimumis uwyvetoba SeSfoTebebis mimarT 

erTi klasis neitraluri diferencialuri gantolebisaTvis 
 

T. TadumaZe 

 

statiaSi moyvanilia optimaluri sawyisi monacemebis arsebobis 

Teoremebi. gamokvleulia integraluri funqcionalis minimumis 

uwyvetobis sakiTxi gantolebis marjvena mxarisa da integradis 

SeSfoTebis mimarT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 qarTuli reziumeebi   
   

110 

gansakuTrebuli marTvebis optimalurobis aucilebeli 
pirobebi marTvis amocanaSi volteras tipis 
organzomilebia sxvaobiani gantolebisaTvis  

 

r. amirova, k. mansimovi 

 

miRebulia optimalurobis aucilebeli piroba diskretuli maqsimumis 

principis formiT optimaluri marTvis amocanisaTvis, romelic aRiwereba 

volteras tipis organzomilebian sxvaobiani gantolebiT. gamokvleulia 

diskretuli maqsimumis pirobis gadagvarebis SemTxveva. 

 
 

optimalurobis meore rigis aucilebeli pirobebi marTvis 
orparametrian safexurebian diskretul amocanebSi 

 
k. mansimovi, m. nasiaiti  

   
ganxilulia optimaluri marTvis safexurebiani amocana, romelic 

aRiwereba organzomilebiani diskretuli sistemebiT. miRebulia 

optimalurobis pirveli da meore rigis aucilebeli pirobebi im 

SemTxvevisTvis, roca marTvis are Ria simravlea. 
 

 
wamaxvilebuli prizmuli garsebis or modelTan 

dakavSirebuli erTi SeniSvna 

 

g. jaiani 

 

Catarebulia sasazRvro amocanebis dasmis TaviseburebaTa SedarebiTi 

analizi prizmuli garsebis ierarqiuli modelebis nulovan miaxloebaSi, 

roca piriT zedapirebze mocemulia an Zabvis an gadaaadgilebis 

veqtorebi. 
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mudmivi dagvianebis da wyvetili sawyisi pirobis efeqtebi 
dagvianebul argumentiani samarTi funqcionalur-
diferencialuri gantolebis amonaxsnis variaciis 

formulebSi 
 

T. TadumaZe, n. gorgoZe 

 

dagvianebul argumentiani samarTi arawrfivi funqcionalur-

diferencialuri gantolebisaTvis, wyvetili sawyisi pirobiT, damtkicebulia 

amonaxsnis variaciis formulebi, sawyisi momentis, dagvianebis parametris, 

sawyisi veqtoris, sawyisi da marTvis funqciebis SeSfoTebebis momarT. 

amonaxsnis variaciis formulebSi gamovlenilia dagvianebis SeSfoTebis da 

wyvetili sawyisi pirobis efeqtebi. 

 

     
potencialTa Teoriis Sebrunebuli amocanis amonaxsnis 

erTaderTobis Sesaxeb samganzomilebian sivrceSi 
 

j. kapanaZe 

 

statiaSi ganxilulia moculobiTi potencialisaTvis Sebrunebuli 

amocanis amonaxsnis erTaderTobis sakiTxi. aRniSnuli amocana arako-

reqtulia, ris gamoc amocanis amonaxsnis erTaderTobis damtkicebas 

mniSvnelovani  adgili ukavia. statiaSi SemoRebulia uban-uban gluvi 

SemosazRvruli, martivadbmuli aris sazRvris gluv wertilSi 

lokalurad mkacrad amozneqilobis cneba. damtkicebulia, rom Tu 1Ω  

are wertilSi mkacrad amozneqilia 0x ∈∂Ω1 0 2(x )∉Ω , maSin Sebrunebul 

amocanas erTaderTi amonaxseni aqvs. garda amisa, ganxilulia Sebrunebuli 

amocana SemosazRvruli martivadbmuli areebisaTvis  klasidan.  
2C
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elastostatikis sasazRvro amocanebis amoxsna orgvari 
forovnobis mqone drekadi sibrtyisaTvis wriuli xvreliT 

 
i. cagareli,  m. svanaZe 

 

naSromSi cxadad, absoluturad da Tanabrad krebadi mwkrivebis saxiT 

amoxsnilia foroelastostatikis ori amocana Semdegi sasazRvro 

pirobebiT: 1) mocemulia gadaadgilebis veqtorisa da forebSi wnevaTa 

normaluri mdgenelebis mniSvnelobebi; 2) mocemulia Zabvis veqtorisa da 

forebSi wnevaTa mniSvnelobebi. dadgenilia gansaxilveli amocanebis 

amonaxsnTa erTaderTobis sakiTxebi. 
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