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SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS IN THIN
PRISMATIC DOMAINS

Jalani G.

Abstract. The paper is devoted to a dimension reduction method for solving boundary
value and initial boundary value problems of systems of partial differential equations in thin
non-Lipschitz, in general, prismatic domains.

Keywords and phrases: Partial differential equations, order degeneration, dimension re-
duction method, thin non-Lipschitz prismatic domains.

AMS subject classification (2000): 35A25; 35J70; 35J75; 35K65; 35K67; 35L80; 35L81.
The paper deals with the system of n first order linear partial differential equations
Ajjpuir + Biju; + Ci(x) =0, i=1,2,...,n, (1)
where
Aijk, Bij = const and functions Cj(z), 4,5 =1,2,...,n, k=1,2,3, are given

(under repeated index j the sum from 1 to n is meant, under repeated k the sum from
1 to 3 is meant, and under repeated Greek indices the sum from 1 to 2 is meant), in
n unknown functions wu; (x1, T2, x3) of three variables in the following non-Lipschitz, in
general, 3D prismatic domain with the Lipschitz 2D projection w on z3 = 0:

(=) (+)
Q= {:p 1= (21,9, 73) € R* 1 (21,79) €w, h (v1,72) <73< h (531,932)}

+ =)
where 2h:= b — b > 0in w Uy, 2h =0 on vy; dw = 9 U1, v is an inward normal

to Jw. Each of 79 and 7, may be empty but , clearly, not at the same time. When

oh
— = 0 on 7y, the domain €2 is a non-Lipschitz one.
v

The boundary value problems for the system (1) in the 3D non-Lipschitz, in general,
domain €2 can be reduced to the boundary value problems in the Lipschitz 2D domain w
for the infinite system of singular first order partial differential equations with respect to
the s. c. weighted Legendre moments (see [1,2]) of the unknown functions u; (21, e, x3):

Vip (71, 12) = %Lm i=1,2,...,n, r=0,1,.., (2)
where
o)
h (z1,22)
Uiy (1317 152) = U; (1517 T2, xs) P, (axg - b) dxs,
(ﬁ (z1,22)
1 h = B )
a % % h + h
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By this approach difficulties caused by the geometrical singularity of the 3D domain
are reduced to the singularity of the equations. In other words, we avoid consideration
of 3D non-Lipschitz domains but we get the infinite system of partial differential equa-
tions with singular coefficients in 2D Lipschitz domains. In order to present this we
apply I.Vekua’s dimension reduction method [1,2]. To this end we multiply both the

sides of the system (1) by P.(axs — b) and the obtained expressions integrate within

S (+)
the limits A (z1,22) and b (21, x2):

(+) (+) (=) (=)
Ajja | Wjra — h Ui | 1,22, h | +(=1)" h quj ( 1,22, h

(+)
h ($1 7]32)

— (@03 —by) Pl (axs — b) uj(xy, Ta, x3)dxs

(=)
h (z1,22)

(+) (=)
+Aij3 |:Uj <3U175C2, h) — (=1)"u, (5U1,$27 h)

(+)
h (z1,z2)

—a Pl(axs — b) uj(x1, v, x3) dus
(=)

h (z1,x2

)
+Bijujr + Cip (71,29) = 0, (21,72) €W, i

I
S
=
I
=
—_

(under repeated a the sum from 1 to 2 is meant), i.e.,

r r
r r
Aija (ujr,a + E aasujs) + Aij3 E a38ujs + Bijujr

s=0 s=0

) (+) =) )
+Aija —h aly | L1, o, h |+ (—1)T h alj | T, T, h

(+) )
+A;j3 [Uj <x1,952, h) — (=) <x1,x2, h )]

+C¢T($17$2):O, 1=1,2,3, r=0,1,...,

where
(+) (=)
r ha r oo _1 s o
aar::rT’, aaS::(25+1)h (Zh) h , S#Fr, a=1,2
r 1—(=1)5t"
o= —(2 1)
as ( s 4+ ) 2h

The last system is the system of singular partial differential equations which can
be easily rewritten in terms of v;,.. The obtained infinite system of partial differential
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equations will be a system with the order degeneration for a nonempty ~:

Aija + Aijs Z a33h8+1vjs + Bih"™ vy, = Fy, (3)

s=0

r
r+1 2 : " s+1
(h Uj?")va + aash Vjs

s=0

ie.,

Aijoc(hr+1va)’oc + Z éijshs+1vjs - ET? 1= 17 27 N, T= 07 17 27 ceey
s=0
where .
Eijs = Aiji Qs + B;jors,

I, r=s . . _ -
6rs_{ O, 7'7£3, 17.]_1727"'717 8_07]-7"'7T7 T_071727"‘7

(+) (+) () (=)
Fip = Ajjo | h oty | ®1,22, b ) — (=1)" h ouj | 21,22, R

(+) (=)
—Aijs [Uj (ihiﬂz, h) — (—1)"uy, ($1,9€2, h )] — Ciy (21, 22) , (4)
1=1,2,...n, 7=0,1,2,---.

(+) (=) +)
Those of uj(x1, 2, h ), uj(x1, 2, h ) which are given in 3D problem on x5 = h (21, z2)
)
and x3 = h (71, x2) remain with its given boundary values in the right hand side F},. of

(+) (=)
the system (3), those of w;(x1, 22, h ), u;j(z1, 22, h ) which are not given on the above

surfaces should be replaced by their Legendre-Fourier expansions there, i.e.,

oo

(£) 1
uj(x1, 22, h ) = Z(il)s(s + §)hsvjs(x1,x2),

s=0

containing unknown functions v;s(x1, ). The last terms are to be transferred to the
left hand side of the system (3), since they contain unknown functions which are sought
for.

On the lateral subsurface

(=) (+)
[={(z1,29,23) € R3 : (x1,29) € Ow, h (x1,22) <23 < h (T1,22)}

of 02 the boundary conditions should be reformulated as follows:

1) where h (x1,29) > ;L x1,T2), the functions v;,. should be calculated by given
(4) : ; ; y g
u; (21, T2, 3) |(21,20)cow Dy means of the formulas

)
. h (z1,x2)
vjr (21, T2) = m uj(x1, o2, x3) Pr(axs — b) dwy, (21,22) € Ow;  (5)
=)
h (%1,%2)
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(17) where (Z)(azl, x9) = h (1, x2), i.e., on the cusped (in particular, cuspidal) edge,
depending on the sharpening geometry of the cusped edge, the unknown functions v;,
either should be prescribed or not, but how to calculate them from boundary conditions
of 3D problem is the subject of special investigation.

The system (1), in particular, contains the governing first order system of the linear
theory of elasticity with respect to the stress tensor and displacement vector compo-
nents. This approach is already successfully applied to the investigation of cusped
prismatic shells with cuspidal edges (see [3-7]).

This method can be also applied to the systems of higher order partial differential
equations as a method of dimension reduction from R™ to R™ !, m > 2.
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SOLUTION OF THE THIRD AND FOURTH BVPs OF THE THEORY OF
CONSOLIDATION WITH DOUBLE POROSITY FOR THE SPHERE AND FOR
SPACE WITH A SPHERICAL CAVE

Basheleishvili M., Bitsadze L.

Abstract. The purpose of this paper is to explicitly solve the basic third and the fourth
boundary value problems (BVPs) of the theory of consolidation with double porosity for the
sphere and for the whole space with a spherical cavity. The obtained solutions are represented
as absolutely and uniformly convergent series.

Keywords and phrases: Porous media, double porosity, absolutely and uniformly conver-
gent series, spherical harmonic.

AMS subject classification (2000): 74G05; 74G10.

Introduction

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable
media with two degrees of porosity. In a material with two degrees of porosity, there
are two pore systems, the primary and the secondary. For example, in a fissured rock
(i.e., a mass of porous blocks separated from each other by an interconnected and
continuously distributed system of fissures) most of the porosity is provided by the
pores of the blocks or primary porosity, while most of permeability is provided by the
fissures or the secondary porosity. When fluid flows and deformation processes occur
simultaneously , three coupled partial differential equations can be derived [1],[2] to
describe the relationships governing pressure in the primary and secondary pores (and
therefore the mass exchange between them) and the displacement of the solid.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K.
Wilson and E. C. Aifantis [1] gave detailed physical interpretations of the phenomeno-
logical coefficients appearing in the double porosity theory. They also solved several
representative boundary value problems. In part II of these series, uniqueness and
variational principles were established by D. E. Beskos and E. C. Aifantis [2] for the
equations of double porosity,while in part III Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equations of
double porosity (see [1],[2],[3] and references cited therein). The basic results and the
historical information on the theory of porous media were summarized by de Boer [4].

The main goal of this investigation is to construct explicitly, in the form of ab-
solutely and uniformly convergent series, the solutions of the basic the third and the
fourth boundary value problems (BVPs) of the theory of consolidation with double



6 Basheleishvili M., Bitsadze L.

porosity for the sphere and for the whole space with spherical cave.

1. Formulation of boundary value problems and uniqueness theorems

The basic Aifantis’ equations of statics of the theory of consolidation with double
porosity are given in the form [1], [2]

pAu+ (A + p)graddivu — grad(Bipr + Bop2) = 0, (1.1)

(miA — k)py + kpa =0,  kpy + (meA — k)py = 0, (1.2)

where u = (uq,us,us) is the displacement vector, p; is the fluid pressure within the
primary pores and p, is the fluid pressure within the secondary pores. . The constant
A is the Lame modulus, p is the shear modulus and the constants (3; and 3 measure

the change of porosities due to an applied volumetric strain. m; = —i, j =12

The constants k; and ky are the permeabilities of the primary and secondary systems
of pores, the constant pu* denotes the viscosity of the pore fluid and the constant k
measures the transfer of fluid from the secondary pores to the primary pores. The
quantities A\, p, k, B;, k; (j = 1,2) and p* are all positive constants. A is
Laplace operator.

Let D = {z € Esl||x| < a} be an open sphere of radius a centered at point 0 in
space 3 and let S = {x € Es||x| = a} be a spherical surface of radius a. Denote by
D~-whole space with a spherical cave.

Introduce the definition of a regular vector-function.

Definition 1. A vector-function U(z) = (uy,ug,us, p1,pe) defined in the domain
DT (D7) is called regular if it has integrable continuous second derivatives in D* (D),
and U itself and its first order derivatives are continuously extendable at every point
of the boundary of D*(D™), i.e., U e C*(DY)NCYDT), (U e C*(D")NCHD)).
Note that for the infinite domain D~ the vector U(z) additionally satisfies the following
conditions at infinity:

oU

U) = O™, 3!

=O0(z[7?), [aff =af+a3+a3 j=123.  (L3)

For the equations (1.1)-(1.2) we pose the following boundary value problems:
The third internal and external problem (Problem (I11)*). Find in D* (D7) a
regular solution U, of the equations (1.1)-(1.2), by the boundary conditions

0= () g () 2, e

where

fre ot (9), ffel™(S), 0<a<l, k=4,5,

are given functions.
The fourth internal and external problem (Problem (IV)*).
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Find in DT (D7) a regular solution U, of the equations (1.1)-(1.2), by the boundary
conditions

(Pu)*=f(2)*,  pi(2)=fi, p(2)=f5(2), z€5

where f* € C%(S), ffe ' (S), 0<a<1, k=45, are given functions, Pu is
a stress vector, which acts on an elements of the S with the normal n = (ny, ng, n3)

P(0z,n)u = T(0x,n)u —n(Bip1 + Pop2), (1.4)
here T'(0x,n) is a stress tensor [7]

T(0z,n) =|| Tyj(0x,n) ||323,

(1.5)

0 0 8
Tyj(0x,n) = uékja + Anp— -+ ,tm]a k,j,=1,2,3.

oz,

Further we assume that p; is known, when z € Dt or x € D~. Substitute 51p; +ap2
in (1.1) and search the particular solution of the following equation

pAu + (A + p)graddivu = grad(Bipr + apz)-

It is known, that a particular solution of the equation (1.1) is the following potential

7
7 i [ [ [T~ vradtsim + s (1.6)

H A+3u>5kj (A + ) (2 ;3%)( — )

where

F(:v—y)—

Y

3x3

()\—l—Qu

= (z1—y1)* + (22— 12)* + (x5 — y3)*.

Substituting the volume potential uy into (1.1) we obtain (see [7])

uAug + (A + p)graddivug = grad(Bip1 + Bap2).

Thus we have proved that wug(z) is a particular solution of the equation (1.1). In
(1.6) D denotes either DT or D™, grad(B1p1 + 32p2) is a continuous vector in D along
with its first derivatives. When D = D~ the vector grad(f1p; + [2p2) has to satisfy
the following condition at infinity

grad(Bipr + Bap2) = O(|z]7>7%), a > 0.

Thus the general solution of the equation (1.1) is representable in the form u =
V + ug, where
A(0z)V = pAV + (A + p)graddivV = 0. (1.7)
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The latter equation is the equation of an isotropic elastic body. i.e. we reduce
the solution of basic BVPs of the theory of consolidation with double porosity to the
solution of the basic BVPs for the equation of an isotropic elastic body.

2. Some auxiliary formulas
The spherical coordinates are defined by the equalities
x1 = psindcosp, Ty = psindsing, x3=pcost, x € DT,
y1 = asindg cos gy, Yo = asintgsinpg, y3 = acosty, y € S, (2.1)

p2:x%+xg+x§, Ogﬁgﬂ', OS(,DSQTU
Let

f(Z) = Z fm(ﬁﬁﬁ),

where f,, is the sperical function of order m :

/ Pou(cos ) (4)dS,.

S

2m+1
4mra?

fm(ﬁv ‘:0) =

P, is Legender polynomial of the m-th order, v is an angle formed by the radius-vector

Oz and Oy,
138
COSY = —— LY.
el 2=

The general solutions of the equation (A — A\2)1 = 0 in the domains D (D) have
the form ([6])

§—Yn<07 QD)J P <a,
(2.2)

Y, (9, ¢) is the spherical harmonic.
The general solutions of the equation A¢ = 0 in the domains D (D) have the
form ([5], p.505)

00 p’ﬂ
= —Zn 197 ) <a,
n+2 (23)
- —Zn 197 7 > 7
Zn (0, ) is the spherical harmonic.
It is easy to show that the general solution of the equation (1.2) is representable in

the form

a

8

pL=-—mop+ ¢, pa=muY+ ¢ (2.4)



Solution of the Third and Fourth BVPs ....

where 1 and ¢ are arbitrary solutions of the following equations
(A= X)) =0, Ap=0.

The following theorems are valid and we cite them without proof.

Theorem 1. The boundary value problems (II11)~, (IV)~ have at most one
reqular solution in the domain D~.

Theorem 2. Two regular solutions of the boundary value problem (II1)" in the
domain DT may differ by the vector V(u, p1,p2), where u =0, and p; = py = c.

Theorem 3. Two reqular solutions of the boundary value problem (IY )™ may differ
by the vector V (u,py1, p2), where u vector is a rigid displacement u; = ¢; — €xy, U =
cotexy, andpy =p, =0, x€ DT, eand ¢;, j=1,2, are arbitrary real constants.

3. Solution of the third boundary value problem

Problem (III)*. First of all we construct a solution for the equations (1.2). A
solution of the boundary value problem ([22]* = f(2), [Z2]* = f5(z)) we seek in
the following form

l(l/\()p) ©° n
="M Z 2— n(r&? 90) + Z p—n_lzn(ﬁ7 30)7 p<a,
VP (2n+1)a
n=0
(3.1)
< Sy 1 (iAop) = p"
= ——Y, (9, —— 7, (v, p)), .
P2 my nz::O \/ﬁ ( ()0) + g (271 4 1>an_1 ( 90)) p<a
Taking into account the fact that — n aa from the last equation we obtain
n
op1  Om =9 Jn+§(i>\oﬂ) > np" !
- _—Yn 197 —Zn 19; 9 9
P D DY ey ( w)+n§%(2n+1>an1 (W,9), p<a
8p2 apg > 0 Jn+1(1)\0p) e npnfl
— == —Y, (¥ 7, (¥ .
on ap mlnzzoap \/ﬁ n( 7QO)+nZ:0<2n+1)an—l n( ’Qo)a p<a
(3.2)
Let us rewrite (3.2) as
8p1 S~ npnfl
:_m2ZH +ZmZn(ﬁ7w)), p<a,
=0 (3.3)
8])2 npnfl
= Hn YTL 797 —Zn 197 ) < )
o mlnzzo (P)Yal( <ﬂ)+nz:0 Gnt Dot (W, 9), p<a

where H,(p) = o o

Let
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where fnk, k=4,5 is the sperical function of order n :

-~ 2n+1
Juk(Vo, 0) = Ira? /Pn(COS’Y)fk(y)dSy, k=4,5.
S

Passing to the limit in (3.3) as D" 2 p — a, we obtain

—my Y, Hy(a)Y, (Yo, p0) + 2 LZn(ﬁoﬁpo) = Z A4n(1907900),
n—0 n—=0 (2n + 1) -0
o= (3.4)
o0 o0 n ~
my nZ:OHn(a)Yn(ﬂoa ©o) + nZ:o mZn(ﬁo, ©o) = nz% 5n (Y0, o).

For the coefficients of Y,, and Z,,, (3.4) yields the following equations:

LZnﬁ(h 0 :Anﬁm 0/
@n 1) (Y0, p0) = fan(Po, o) 5

Zn(ﬁoang) = .}/6\571('(907900)7 n = ]-727 ..

—moH, (a)Yy, (90, vo) +

n
my Hy,(a)Y, (Yo, po) + @t 1)

By elementary calculation from (3.5) we define Y, and Z,,, for n > 1

_ J/C\5n(1907900) - J/C;n(ﬁm%@o)

Yn<7907 900) - )
(mq + mgA)Hn(a) A 56)
Zn (Yo, o) = (2n 1)[m1f42((179’2;ﬁ)m—:)m2f5n<00’ @0)]7 n=12 ..

Note that Zj is an arbitrary constant and

Yoz/f4d5:/f5dS:0.
S S

Substituting (3.6) into (3.1), we obtain a solution of the BVP in the form of series

B —My > Jn—&—%(l/\op) —~ B ~
p1= (mr + m2)\/ﬁ ; H,(a) [f5n(0,0) — fan(D, 0)]

1

V12

my j_mz ; ncfz)"—l [mlﬁln(ﬁa (P> + mgﬁ',n(ﬁ, gp)] +c¢ p<a, (3 7)
& Dy dop) ] .
pr= (m1 + mg)\/ﬁ ; Hn((l) [f5n(19, (P) - f4n(19; 80)]

1

3

(e} n

1 ~ ~
p_l[m1f4n(ﬁ’(p> +m2f5n(197 SO)] +c, p<a.

my + me — na™

3
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Problem (I/I1)~. The boundary value problem [%]* = fi(2), [Z2] = fi(2)
can be solved analogously and we have

— ~ H? 1(2)\09) —~
— ma2 "t —
b = (ml + m2>\/ﬁ nz; h ( ) [f5n(197 (10) f4n(197 @)]
1 o n+2 —~ ~
S ma 2_: (n —I(—Zl)PTHrl i funlD: ) 12 fon(D )} 0>
n=t ) (3.8)
. my - H +%<2)\ p> 9 = 9
D2 = (ml T mz)\/ﬁ ra h, ( ) [f5n( ?90) - f4n< 7(10)]
0 n+2

nt1 [mlﬁtn(ﬁ? 90) + m2f\5n<197 90)]7 P > a,

1 Z a
my +mp <= (n+1)o

L ho(p) = 0 H ) (Mop)
where  h,(p —_—
7 8
The functions Gipk can be calculated from (3.7)-(3.8).

The solution of the equation
pAV + (A + p)graddivV = 0,

when V* = F* for a ball is due to Natroshvili D. [8]. (A detailed exposition of the
solution can be found in monograph [7]).

O+
:// K (z,y)F*(y)d,S, =€ D", yes,

(1)—
// (x,y)F~(y)d,S, ze€D”, yes,

where
1)+ L)+
K =| K l|3%3,
kj
W+ 1 [a®—p? 0*®(z,y)
_ (51 2 2 )
5 dra [ 70 0@ = 7)) Ox;0x; }

1
a?—p*? 1 3tpcosy| dt
R R
0

I\D\OJ

Q(t) = (a® — 2aptcosy + p*t?)z,

(1H)- (1H)-
K =| K l|3%3,
kj
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1)- 1 [p°— o O20* (1, y)
= 5@ —_— s
5 dma [ r3 + 0" — ) O0x;0x;
P2 20
—a“t
O*(x,y) = %tadt, Q*(t) = (p* — 2aptcosy + a’t )%
Q*(t)
0
cosy = DL Y Tala ¥ s sinfsind'cos(¢p — ¢') + cosbcost)
ar

A+ A+ 2

(2A 4+ 3u)’ “= 2(A +3p)

Finally we have proved the following

Theorem 4. The third BVP (111)~is uniquely solvable in the class of reqular func-
tions and the solution is represented in the form of absolutely and uniformly convergent
series if the boundary data are from space C*(S), a > % The solution of third BVP
(I11)* is represented in the form of absolutely and uniformly convergent series if the
boundary data are from space C1(S), a > % and two reqular solutions of the bound-
ary value problem (II11)" in the domain DT may differ only to within additive constant
c,pj=c¢j=172

2

r? = a® — 2atcosy + p*, = <1, F*ech(9).

4. Solution of the fourth boundary value problem

Problem (IV)*.First of all we will construct a solution for the equations (1.2). A
solution of the boundary value problem (pi () = f,", p3(z) = f5"(2),) is sought in the
form (3.1):

Passing to the limit in (3.1) as D" 3 p — a, we have

00 J 1(2/\0&) o e
—Mmy Z QT Yo, ©o) Z (2n +1 (Do, o) Z 2 (Yo, o),
00 Jn+7(2)\0a) o< o0 R (41)
m EOQT Yo, ¢o) Z Zn (Yo, o) = Zf (Yo, o),
For the coefficients of Y,, and Z,,, (4.1) yields the following equations:
et o) + 5= Zulln ) = Fon )
L e ) ) a5, 1%n ) = Jan ) )
2 Ja 0, Yo 1 0, %0 4n\V0, Po (42)
et o)+ = (00, 0) = oo ) |
my Ja n\V0; ¥0 M1 0,%0) = Jsn\Vo, o),

By elementary calculation from (4.2) we obtain

f5n(1907900) fzn(ﬁo?@o)
(my +m2)J, 1 (ida) va,

(2n + 1)[m1ﬁn(1907 ®o) + m2.]?5n(7907 ©0))]
a(my + my) '

Yo (1907%)

(4.3)

Zn(ﬁm 300) =
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Substituting (4.3) into (3.1), we obtain a solution of the BVP in the form of a series
(m1 + m2 J
1 p"

(m1 +m2) "0 am

(iAop)

o) om0 ) = Fin(00)

p1 =

l\J\»—‘ [\.’)\»—‘

[mlﬁln( 90) + m2f5n<79? 90)}7

. ml\/a > J (1)‘0p)
m_WﬁmﬁfX: (iXoa)

1 p" -~ ~
(ml +m2) £ an [m1f4n< 90) +m2f5n<797§0)}7 p<a,

(f5n(19 90) f/zln(ﬁa QO))

M\H m\»a

Problem (IV)~. Analogously we construct a solution of the BVP  p;(2) =
fi, ps(z)=f5(z), in the domain D~

)
b= —m2\/a Z H +%(2/\0p)
: (m1 +ma)\/p < Hr(f)f(i)\oa)

[ffm(ﬁ 90) ﬁln(ﬁv ‘70)]

1 0 anrfo +;
(m1 + ma) Z prtt 1 fin(9: ) % 2 on (0, )]
=0

pr= V2 Z’%,a@mw—&@w

1 = "t -~
P (1 fan (9, 0) + mafan (0, 0)],  p > a.

(m1 + ’ITLQ) 0

For these series together with their first derivatives to be absolutely and uniformly
convergent it is sufficient that f¥ € C'*(S), 0 < a <1, k = 4,5. Solutions obtained
under such conditions are regular in D™,

The solution of the problem (T'V)* = F* for the equation (1.8) for a ball is given
in the work by D Natroshvili [8] (A detailed exposition of the solution can be found
in monograph [7

(2)+
// (z,y)F* (y)d,s + ar + [w, 2] + éﬁ;:f:)x, re DT,

a’ — p? 0Py (z,y) + +
TV — g I ERHI) F D
v 4m//u oy (0 = ) TG Ny P, € D,

S
Vi(z) = //QI){(x,y)F(y)dys, xre D,
S

1 p* — a? 0?04 (z,y) a _
_ 5+ (7 — ) B pe)ds, we D

where
2)+ 2)+
K =| K [sxs,
kj
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a® — 3p2 *Ps(x,y) 0 0P,
g (D —Po) — 2t
kj 8um 2 0x;0y; & axi( ! 2) i 5’%}

2 ! 2
+ L |:sz 0 2,08CI)3 — g4 —|—p2 <8 @2(@9) _ 9 @1(l‘7y)):| :
H dp
)

8xi3yj 89518%
1 dt
bf } = Q) = (¢” — 2aptcosy + P2,
LTa? —p 3tpcosy | dt
Daay) = [ |0 L eyt
0
1
J
0

a
2_pft? 1] dt 1
u — _:| ®3 = b—ImCI)O, @4 = R€<b2®0),
1

Q(t) tltar’
[+ /202 + 6 + 3p2 1 3\ + 4p

) b ==+ )
2(/\+u) Y2 9 /2N G + 32

(Xl:bo—i‘ibl:

_H ”3><37

a® — 3p* 0*®3(x, y 0 0d;
= — (@] + D3)d;; b, - 2x;

K= O Rt == o~ Tigg (1 %) “;Zaxj}
1 9 . 0 . PPy(x,y)  0'®y(x, )

s Y05, %0, ¥ P Tane 00 ’
[ x; P Z2;0Yj Li0Yj

1

2 — a%t? A 2t2 dt
& (2, ) :/utl‘ldt, 1=1,2, @ = 20+ 1) /
Q*(t) V2A2 6 + 32 Q(t) to=

1
p? — a*t? dt
Q) =
0
— A+ /222 + 6+ 3y AL 3\ + 4pu
s = — — 1 .
2(A + ) 2 20/202 4+ 6u + 342
Thus we have proved the following
Theorem 5. For the solvability of the BVP (IV)*1 it is necessary that the prin-
cipal vector and the principal moment of external forces be equal to zero. The BVP
(IV)* is solvable in the class of reqular functions and the solution is represented in the
form of absolutely and uniformly convergent series if the boundary data are from space
C%(S), a > 1. Two regular solutions of BVP (IV)* may differ only to within additive
vector a + [b, x|, where a,b, are arbitrary real constant vectors, x = x(x1, 22, x3). The
BVP (IV)~ is solvable in the class of reqular functions and the solution is represented
in the form of absolutely and uniformly convergent series.

0

3
2

Oi(zr,y) = ReA Q*(t) = (p* — 2aptcosy + a*t?)z,

Qg =
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ON ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF GENERALIZED
EMDEN-FOWLER EQUATIONS WITH ADVANCED ARGUMENT

Koplatadze R., Kvinikadze G., Giorgadze G.

Abstract. The generalized Emden-Fowler Equation
u™ () + p(t) [u(a (£) |1 signu(a(t)) = 0

is considered, where p € Lioc(R4; R-), p € C(R4;(0,400)), 0 € C(R+; Ry) and o(t) > t
for t € Ry. Oscillatory properties of solutions of the equation are studied. In particular,
sufficient conditions are established for the equation to have Property B.

Keywords and phrases: Functional-differential equation, oscillation, Property B.

AMS subject classification (2000): 34K06; 34K11.

1. Introduction

In the paper the following differential equation is considered:

u™ (1) + p() [ula ()| signu(a () = 0, (1.1)

where

p€ Lie(Ry;R.), € C(Ry;(0,+00)), o€ C(Ry;Ry)

1.2
and o(t) >t for teR,. (12)

New sufficient conditions are established for oscillation of solutions of (1.1). Specif-
ically, sufficient conditions are given for the equation (1.1) to have Property B (see
below the definition of Property B).

A function u : [ty, +00) — R is said to be a proper solution of (1.1), if it is locally
absolutely continuous together with its derivatives up to the order n — 1 inclusive,
sup{|u(s)| : s > t} > 0 for t > ¢, and satisfies (1.1) almost everywhere on [ty, +00).
A proper solution u : [tg, +00) — R of the (1.1) is said to be oscillatory if it has a
sequence of zeros tending to +o0o. Otherwise the solution u is said to be nonoscillatory.

Definition. We say that the equation (1.1) has Property B if any of its proper
solutions either is oscillatory or satisfies
‘u(i)(t)| 10 as t7400 (i=0,...,n—1)
or
WD) T 400 as tT400 (i=0,...,n—1), (1.3)
when n is even and either is oscillatory or satisfies (1.3) when n is odd.

In the present paper sufficient conditions of new type will be given for the equation
(1.1) to have Property B. Analogous results for Property A are presented in [1]. As
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to almost linear equations (i.e. when ltlim wu(t) = 1), analogous issues for them are
—+00

substantively studied in [2-4]. The result of the present paper make somewhat more
complete those of [5] in case of Property B.

Let tp € Ry and ¢ € {1,....,n — 1}. By Uy, we denote the set of all proper
solutions w : [tg, +00) — R of the equation (1.1) satisfying the conditions

uD(t) >0 for t>t, (i=0,...,0—1), (140
(1) u®(t) >0 for t>t. (i=4(,...,n—1), o
where ¢, € [to, +00).

2. Sufficient conditions of nonexistence of solutions of the type (1.4,)

The assumption of the Theorems presented below contain one of the following two
conditions:
u(t) <A<1 for te Ry (2.1)

or
p(t) > for te Ry and Xe(0,1). (2.2)

The results of this section play an important role in establishing sufficient conditions
for the equation (1.1) to have Property B.
Theorem 2.1. Let the conditions (1.2), (2.1) and

/0 - = (o(8) M p(t) | dt = +o0 (2.3,)

be fulfilled and for some v € (0,1)

t—+o0

+oo
liminf ¢ / s (1) T ()| ds > 0, (2.4¢)
t

where { € {1,...,n — 1} with ¢ + n even. If, moreover, for some 6 € [0, and
o. € C(Ry) such that

t<o.(t)<o(t) for teRy, (2.5)

5(1—7)

+00
| ) O o) e = o
0

then for any ty € R+ we have Uy, = &.
Theorem 2.2 Let the conditions (1.2), (2.1), (2.3;) and
t—+o00

“+00
liminf ¢ / SO (0 (6) T () ds > 0 (2.6/)
t

be fulfilled, where £ € {1,...,n — 1} with { + n even. If, moreover, for some 6 € [0, ]
and o, € C(Ry) satisfying the condition (2.5) the equality

+o0
1A= (5 (4 p(t)=A olt p(t)(e—1)
/ (0.0)" (o 1)

% (In(1 + .(t))) = |p(s)|ds = +oo
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holds, then for any ty € Ry we have Uy, = .
Theorem 2.3. Let the conditions (1.2), (2.2), (2.3,) and

t—+00

. e n—_f—1 (t=1)pu(s)
lim inf t'y/ s (o(s)) Ip(s)|ds >0 (2.7,)
¢

be fulfilled, where v € (0,1) and ¢ € {1,...,n — 1} with { + n even. If, moreover, for
some 0 € [0, \] the equality

+o00 _ w®)=86)(1A=)
/ tn—€—1+5 (O'(t))(e Dp(t)+-5 T—X . |p(t)|dt = 400
0

holds, then for any ty € R+ we have Uyy, = <.
Theorem 2.4. Let the conditions (1.2), (2.2) and

T (E-1u(s)
lim inf t/ s" o (s)) p(s)ds >0 (2.8¢)
¢

t——+o00

be fulfilled, where £ € {1,...,n — 1} with £ +n odd. If, moreover, for some ¢ € [0, ]
the equality

T o146 (E=1)p(t) uho
/ (1 (5 (1) (In(1 + 0 (8) > |p()|dt = +o0
0
holds, then for any ty € R we have Uy, = @.

3. Differential equations with property B (case u(t) < \)
Theorem 31. Let the conditions (1.2), (2.1), (2.31), (2.41) and

u(t)
liming (2
t——+o0

>0, (3.1)

be fulfilled. If, moreover,

+oo
( —
/ (2O (1) dt = oo,
0

then the equation (1.1) has Property B.
Theorem 3.2. Let the conditions (1.2), (2.1), (2.31), (2.41) and (3.1) be fulfilled
and

+oo A(A—7)
| e ety T ol = o
0

Then the equation (1.1) has Property B.
Theorem 3.3. Let the conditions (1.2), (2.1), (2.31), (2.61) and (3.1) be fulfilled
and

+o0 A
/ tn—2+u(t)—/\(1n(1 + t)) T—X ’p(t)ldt = +00.
0

Then the equation (1.1) has Property B.
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Theorem 3.4. Let the conditions (1.2), (2.1), (3.1), (2.31) and (2.61) be fulfilled
and

+oo (t)—A A
/0 "2 (o)™ (In(1+ o(t))) ™ |p(t)|dt = +o0.

Then the equation (1.1) has Property B.
Theorem 3.5. Let the conditions (1.2), (2.1), (2.3,-1), (2.4,_2) and

w(t)
lim sup % < 400 (3.2)

t—+00

be fulfilled. If, moreover,
AR Ye ) () (n—3)
/ TS (0 (1)) Ip(t)|dt = +o0,
0

then the equation (1.1) has Property B.
Theorem 3.6. Let the conditions (1.2), (2.1), (2.3,-1), (3.4,—2) and (3.2) be
fulfilled and

oo e A=)
/ H(o (1) "I (o) dt = 4o
0

Then the equation (1.1) has Property B.
Theorem 3.7 Let the conditions (1.2), (2.1), (2.3,-1), (2.6,_2) and (3.2) be fulfilled
and

+o00
/ FHON (o (1)) 7O (1 4 1)) T [p(8) | dt = +oo.
0

Then the equation (1.1) has Property B.
Theorem 3.8. Let the conditions (1.2), (2.1), (2.3,-2), (2.6,—2) and (3.2) be
fulfilled and

+o0 _ _ L
/ (O_(t))(n Dp(t) )\(ln<1+0_(t)))l—A Ip(t)|dt = +o0.
0
Then the equation (1.1) has Property B.

4. Differential equations with property B (case u(t) > \)
Theorem 4.1. Let the conditions (1.2), (2.2), (2.31), (2.91) and (3.1) be fulfilled

and

tee u(®)(1=7)
/ 2 (o(8)) T ()| dt = +o0.
0

Then the equation (1.1) has Property B.
Theorem 4.2. Let the conditions (1.1), (1.2), (2.31), (2.91) and (3.1) be fulfilled

and
(u(t)*MA(l*v)

/0 T (o(t)) ™ |p(t)|dt = +oo.

Then the equation (1.1) has Property B.
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Theorem 4.3. Let the conditions (1.2), (2.2), (3.1), (2.31) and (2.8;) be fulfilled

and
©(t)

+o0
/0 " (In(1+o(t))) " [p(t)|dt = +o0.

Then the equation (1.1) has Property B.
Theorem 4.4. Let the conditions (1.2), (2.2), (2.31), (2.81) and (3.1) be fulfilled

and N
o0 B)—A
/ 72 (In(1 + o(£)) T [p(t)|de = +oo.
0

Then the equation (1.1) has Property B.
Theorem 4.5. Let the conditions (1.2), (2.2), (2.3,-1), (2.7,—2) and (3.2) be
fulfilled and

o0 e p(®)(1=7)
/ Ho(0) T p(t)dt = +oc.
0

Then the equation (1.1) has Property B.
Theorem 4.6. Let the conditions (1.2), (2.2), (2.3,-1), (2.7,—2) and (3.2) be
fulfilled and

00 e (=N (1=7)
[ o) O e = o
0

Then the equation (1.1) has Property B.
Theorem 4.7. Let the conditions (1.2), (2.2), (2.3,-1), (3.2) and (2.8,,—2), be
fulfilled and

w(t)

/0 h (o ()" (In(1 4 a(£))) 7 [p(1)]dt = 4.

Then the equation (1.1) has Property B.
Theorem 4.8. Let the conditions (1.2), (2.2), (2.3,-1) and (2.8,_2) be fulfilled and

B(t)—A

/0 e ()" (In(1+ o (t)) T [p(t)]dt = +oo.

Then the equation (1.1) has Property B.
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UNIQUENESS AND EXISTENCE THEOREMS OF STATICS BVPs OF THE
THEORY OF CONSOLIDATION WITH DOUBLE POROSITY

Basheleishvili M., Bitsadze L.

Abstract. The purpose of this paper is to consider two-dimensional version of statics of
the Aifantis’ equation of the theory of consolidation with double porosity and to study the
uniqueness and existence of solutions of basic boundary value problems (BVPs).

In this work we intend to extend potential method and the theory of integral equation
to BVPs of the theory of consolidation with double porosity. The potential method and the
theory of integral equation are applied to the investigation of the first and second BVPs of
statics of the theory of consolidation with double porosity. For their problems we construct
Fredholm type integral equations. Using these equations, the potential method and general-
ized Green’s Formulas, we prove the existence and uniqueness theorems of solutions for the
first and second BVPs for the bounded and unbounded domains. For the Aifantis’ equation
of statics we construct one particular solution and we reduce the solution of basic BVPs of
the theory of consolidation with double porosity to the solution of the basic BVPs for the
equation of an isotropic body.

Keywords and phrases: Porous media, double porosity, consolidation, fundamental solu-
tion.

AMS subject classification (2000): 74G25; 74G30.

1. Introduction

In a material with two degrees of porosity, there are two pore system, the primary
and the secondary. For example in a fissured rock (i.e., a mass of porous blocks sep-
arated from each other by an interconnected and continuously distributed system of
fissures) most of the porosity is provided by the pores of the blocks or primary porosity,
while most of permeability is provided by the fissures or secondary porosity. When fluid
flow and deformations processes occur simultaneously, three coupled partial differential
equations can be derived [1, 2] to describe the relationships governing pressure in the
primary and secondary pores (and therefore the mass exchange between them) and the
displacement of the solid.

A theory of consolidation with double porosity has been proposed by Aifantis. The
physical and mathematical foundations of the theory of double porosity were considered
in the papers [1-3], where analytical solutions of the relevant equations are also given.
In part I of a series of paper on the subject, Wilson and Aifantis [1] gave detailed
physical interpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value problems. In
part II of this series, uniqueness and variational principles were established by Beskos
and Aifantis [2] for the equations of double porosity, while in part III Khaled, Beskos
and Aifantis [3] provided a related finite element to consider the numerical solution of
Aifantis’ equations of double porosity (see [1-3] and references cited therein).The basic



Uniqueness and Existence Theorems of ....

results and the historical information on the theory of porous media were summarized
by de Boer [4].

In this work we prove the existence and uniqueness theorems of solutions of basic
BVPs of the theory of consolidation with double porosity for bounded and unbounded
domains. We used the potential method for the proof of all theorems. The basic results
on this method are given in [6].

2. Basic equations and boundary value problems

Let x = (21, 22) be the point of the Euclidean two-dimensional space E2. The basic
equations of statics of the theory of consolidation with double porosity in the case of
plane deformation have the following form [1-2]

B(0z)u = pAu+ (A + p)graddiva — grad(Bip: + Bape) = 0,
(1)

(A —k)pr +kpy =0, kpi + (m2A — k)p2 = 0,

where u = (uy, us) is the displacement vector, p; is the fluid pressure within the primary
pores and py is the fluid pressure within the secondary pores, m; = %, 7 =1,2. The
constant A is the Lame modulus, y is the shear modulus, the constants 3; and (3, are
measure the change of porosities due to an applied volumetric strain. The constant p*
denotes the viscosity of the pore fluid, the constant & measures the transfer of fluid
from the secondary pores to the primary pores. The quantities A, i, 3;,k (j = 1,2) and
0? o?
0x? + 03
The equation (1) can be written in matrix-vector form

w* are all positive constants. A = is two-dimensional Laplace operator.

A(0z)U(z) =0, (2)

where U(z) = (uq, uz2, p1,p2),

82
A(0r) = Ap(02) liea, A35(02) = u+ (1) .
02 ’
8ZE18ZE27
0 0
Aj3(a$) = —518—%7 Aj4(8x) = —52%,

J

Am(@l’) = A21(8x) = ()\ + ,U)

Agj(al‘) = 0, A4J(6:v) = 0, Agg(@ﬂ?) = mlA — k‘,
A34((‘3x) = A43(8$) = k, A44(8!L‘) = mzA - k, j = 1, 2.

Let DT (D~) be a bounded (an unbounded) two-dimensional domain surrounded
by the contour S. DT = D*US, D~ = E,\ DT. Suppose that S € C*, 0<a < 1.

First of all we introduce the definition of a regular vector-function.

Definition 1. A vector-function U = (uy,us, p1,p2) defined in Dt (or in D7)
is called regular if U € C*(DT)NCY(D*) (or U € C*(D7)(CY(D~)) and in the
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unbounded domain D~ the vector U additionally satisfies the following conditions at
infinity:
Uy
83:]-
The internal and external basic BVPs are formulated as follows:
Find a regular vector U satisfying in D" (D~) the equation (1) and on the boundary
S one of the following conditions is given:
Problem (7 )jf The displacement vector and the fluid pressures are given on S :

U(z) = o(1), = O(]x\_Q), |:Jc|2 = x% + a:%, j=1,2. (3)

ut=£5(2),  pr=fi), py=Ji),  z€S
Problem (/1 )ij The stress vector and the normal derivatives of the preasure func-

Op; . :
tions ﬁ, j=1,2, are given on S :
on

[P0, m)ul* = £5(2), (%)izmz), (%)izmz), ses.

Problem (/711 )jf The displacement vector and the normal derivatives of the pres-

Op; . :
sure functions %, j=1,2, are given on S :
n

wore (D) g (2) oo, ses
’ on sATh on n '
Problem (7 V)]? The stress vector and the fluid pressures are given on S :

POz, nu™ = £5(2),  pf=fi(z), p=fi(z), =z€S

where ()% denotes the limiting value from D¥, (.)~ denotes the limiting value from
D~ and f = (f1, f2), f3, f4 are the given functions, P(dz,n)u is a stress vector which
acts on the elements of the arc with the exterior to D' unit normal vector n = (ny, ny)
at the point z € S,

P(0z,n)u = T(0x,n)u — n(fip1 + Pap2), (4)
and [6]
T(0z,n) = || Tij 339, 5
Ty (0z,n) = M%‘a—n + )\”ka—xj + I e (5)
9 0 .0 koj=1.2
an—nlal n282 ), =1, 4.

K
Now we introduce the generalized stress vector P(0x, n)u, where

(am n)u (8x n)u — n(fipy + Fap2),
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k is an arbitrary positive constant and

(0, n)u @u—@g

s—( omega = 212 _ 9
N g4 = 8x1 61’2'

If K =0 from (6) we have 'f‘(ax,n)u = T(0z,n)u. We set %(81:, n)u = N(0x,n)u for
pA+u)
P

+ (A + k)ndivu + (k — p)sw,

(6)

K =

3. Generalized Green’s formulas

Let us write the generalized Green’s formulas for the domains Dt and D~. Let
u(x) be a regular solution of equation (1) in DT. Multiply the first equation of (1) by
u(x). Integration the result over Dt and apply the integration by parts formula to
obtain

B(9z)udo = [ uP(dz,n)uds — | |E(u,u) — (Bips + Bops)divu| do.
D[u xr)udo S/u r,n)uds D[[ u,u 1P1 2D wu] o

If the vector u is a solution of homogeneous equation B(dz)u = 0, then the last
equation gives

/ [ﬁ(u,u) — (Bip1 + 52]72)6%1111] do = /ulg((‘?x,n)u ds, (7)
D+ S
where
K , Oouy;  Ous 2 Oup  Ous 2 K
_ . 2 _ ouy _ Ouz ouy | duz Ro2
2E(u,u) = 2A+2p—k)(divu)” + (2u— k) [(8x1 8%) + <8x2 + 8x1) + 5w

For the positive definiteness of the potential energy the inequality 0 < x < 2u
is necessary and sufficient. Obviously the potential energy F(u,u) is obtained from
ﬁ(u,u) if we set kK = 0.

If the vector u(z) satisfies the conditions (3) the Green’s formula for the region D~
takes the form

/ [ﬁ(u,u) — (Bip1 + Bops)div u} do = —/ulg(ax, n)uds. (8)
D= S
Analogously we obtain the Green’s formula for p;, j =1,2,
2 2 2 _ Op1 Op2
[ml(gradpl) + m2(g7”adp2) + k(pl _p2) ] do = m1p1% + mnga—n ds,
5
(9)

D+
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0 0
/ [mi(gradp:)? + ma(gradps)* + k(p1 — p2)*] do = — / [mﬂﬂ% T m2P2%1 s
D+ y’

(10)
Remark. Note that if 5ip; + Bape = const, in view of the equality / divu =
D+
/ nuds, from (7) we get
S

/ﬁ(u,u)da - /u%(ax,n)u ds. (11)
S

4. The uniqueness theorems

In this subsection we prove the uniqueness theorems of solutions to the above for-
mulated problems. Let above formulated problems have two regular solutions U(l)(x)

and U®(z), where U®(z) = (ugk),uék),pgk),pgk)), k =1,2. Let’s consider

Evidently, the vector U(z) satisfies (1) and the homogeneous boundary conditions
(f=0, f3=0, fi=0).

Now we prove the following theorems:

Theorem 1. The first internal boundary value problem (I)jf admit at most one
reqular solution in the domain D™ .

Proof. Evidently, the vector U(z) satisfies the system (1) and the boundary con-
dition U(z) = 0 on S. From (9) we obtain p; =py =¢, x € D. Since p; =0,
we have ¢ = 0, and p; = p, = 0, x € D*. Note that if u is a regular solution
of the equation (1), we have Green’s formula (7). Using (7), when x = 0 and taking
into account the fact that the potential energy is positive definite, we conclude that
U = €] — €Ty, Uy = Cy +€exy x € DT, where €, ¢ = const. Since UT = 0, we have
c=0, e=0 and wu(x)=0, ze€ DT

Theorem 2. The first external boundary value problem (I)JT has at most one
reqular solution in the domain D~.

Proof. The vectors UM and U® in the domain D~ must satisfy the condition
(3). In this case the formulas (8)-(10) are valid and U(z) = C, x € D~, where C is
again the constant vector. But U on the boundary satisfies the condition U™ = 0,
which implies that C=0and U(z)=0, z¢€ D~.

Analogously the following theorems can be proved :

Theorem 3. If the condition 0 < k < 2p is satisfied then any two reqular solutions
of the second internal boundary value problem (II)}r may differ only to within additive
vector V = (u, p1,p2), where

Uy = C1 — €Ty + C1T1, Uy =Co+€x1+C1T2 pr=c¢, «€DT,
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: _ c(P1+p2)
€ and c are arbitrary real constants and ¢ = SO

Theorem 4. The boundary value problems (I1);, (I1I)y, (IV); admit at most
one reqular solution in the domain D~ .

Theorem 5. Two regular solutions of the (III);E boundary value problem in the
domain DT may differ by the vector V= (w,p1,ps), where u= 0, and p; = py = c.

Theorem 6. Two regqular solutions of the (IY)}L boundary value problem may differ
by the vector — V(u,p1,pa), where w vector is a rigid displacement and p; = py = 0.

5. An existence theorems

In this section we establish the existence of regular solutions of the basic BVPs
(1 )jf and (11 )jf by means of the potential method and the theory of singular integral
equations.

Problem (7). First let us show that the nonhomogeneous system
(mlA — k)pl -+ kp2 = Fg(l’), ]Cpl -+ (mgA — k)pg = F4(.Z') (12)

always reduces to the homogeneous system by seeking one particular solution. We
choose more simple method for constructing particular solution. A solution p,, k =
1,2 is sought in the form

mo
2752

my

/ [Ko(sr) + Inr| F3(y)do, py = 5o / [Ko(sr) + Inr| Fy(y)do, (13)

D+ D+

p1 =

where [5]

Ko(sr) = —1Iy(sr) (ln% + C) — 2}2 (k;l')z (%>2k <% + ﬁ + ..+ 1> :

nn = o () =k (b ) = P )

= (k)2 N2 my My
It is obvious that integrand in (13) contains the terms r*Inr, k = 1,2,... and we
can write

ma

(A —sH)p, = o /lang(y)da, (A —sHpy = —— / InrFy(y)do.

™
D+ D+

From this we get
A(A — 8)p1 = maF3(x), A(A — 8%)py = —my Fy(z).

Thus we obtain that the particular solutions of the equation (12) are

1
= K Inr|F:
Pl /[ o(sr) +Inr|F3(y)do,
L . K Inr|Fy(y)d )
P2 = T s /[ o(s7) + Inr|Fy(y)do.

D+
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At first let’s search the fundamental solution of the following equation
(miA —k)p1 + kpa =0, kp1 + (m2A — k)p2 = 0. (15)

It is obvious that

mlA—k k mgA—]{Z —k . 1 0 2
( k M2A—k>< —k m1A—]€)_(O 1)m1m2A(A_S)’ (16)

1 1
where s = k (— - —) . The fundamental solution of the equation A(A —s?)y =0
mq o

is
= agKy(sr) + aplnr.

For the unknown coefficient a; we obtain the following equations

—apg+og =0, ops? =1.

1 1
from here we obtain ag = a3 = = and ¢ = E(Ko(sr) + Inr). Obviously A
contains a logarithmic singularity as z — y.
From the reduced discussion it is evident that the fundamental matrix of the equa-

tion (15) must have the form

k k
moKo(sr ——2K0 sr)+1Inr ——2K0 sr)+1Inr
oy [ TR = FlRler) = Gl ) |
—;[Ko(sr) +1Inr]  miKo(sr) — ?[Ko(sr) +In7]

The matrix T®(z —y) has a logarithmic singularity as x — y. It is evident
that every column of the matrix T'™M(x —g) is a solution of the system (15) with
respect to the point = | if z #£y.

First let us prove the existence of solution of the first BVP (pf = ff, py = f",)
for the equation (15) in the domain D*. A solution will be sought in the form of the
double layer potential

1T 0 1
p(r) = ( §2E$§ ) = %S/%I’( )(y —)g(y)ds,, =€ D' (18)

Passing the limit as * — z € S and taking into account the boundary condition,
for determining the unknown vector function g(y) = (g3, g4), we obtain the following
Fredholm integral equation of the second kind

—mags(2) + p1(2) = f5'(2),  —maga(2) + pa(2) = fi(2), (19)

where f;r(z), j = 3,4, are given continuous functions and

- maa(sr)nt) = 5 (Ka(sr) + ) o) + 940 s,

e
Q.7|QJ

1 P (20)

pale) = 7 [ g | maBolsriants) = S5 (olsr) + nr)aslo) + ()| ds,
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Let us prove that the equation (19) is solvable for any continuous right-hand side.
Let us prove that the homogeneous version of (19) (f; = 0) has only the trivial solution.
Let the vector g # 0 be some solution to it. Obviously (p;)™ =0, j = 1,2. Using
Green’s formula in DT

0 0
P1 p2:| ds,

/ [ml (gradpy)? + my(gradps)? + k(p — p2)2] ds = / [mlpla_n + m2p2%

D+

we obtain p; = ps = ¢, © € DT. (cis an arbitrary constant). It is easy to show that g;
has a continuous derivative, then we have the following formula

o (O (O (0T _ (O
on on ) ’ “\on) \on)

Using Green’s formula in D™, we obtain p; = p, = c¢1, where ¢; is an arbitrary

constant, i.e. we have (p1)* — (p1)” = —2mag3, (p2)T — (p2)” = —2mqg4. If we
substitute the last identity in (20), after elementary transformation we obtain g3 =
- 01’ gs = A and (18) takes the form
2m2 2m1
P\ l olnr ( —1 B _ 1 B
(p2>_7r/—8n <_1 (c—c1)ds =2 1 (c— ).
S

From here we get ¢ = ¢;, g3 = g4 = 0 and hence the homogeneous equation (19)
corresponding to the equation (19) has only the trivial solution. This implies that the
equation (19) is solvable for any continuous right-hand side.

Remark. Analogously we prove the existence of solution of external first BVP
(py = f3, py = f1,) for the equation (15) in the domain D~. A solution of the first
boundary value problem has the form

P() - 1 / T r0(y — a)gly)ds, e D™ (21)
S

where ¢(y) is a solution of the following Fredholm integral equation of the second kind

magi(2) +p1(2) = f5(2), maga(2) + pa(2) = fi (2), (22)

fi(z), 7 =3,4, are given continuous functions and p;, j = 1,2, are given by (20).

Further we assume that P(x) is known, when 2z € DT or x € D (see (18) and (21)).
Substitute the B1p; + Fapa in (1). Let’s search the particular solution of the following
equation

pAu + (A + p)graddiva = grad(Bipr + Bopa). (23)
We put
1
w = / T(z — y)grad(Bups + Bops)ds, (24)

D
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where [6]
A+ 3u A+p [ or\° A+ p Or Or
Inr — — 1, - —
T(z—y) = 2ap 2ap \ Oxq 2ap 0x1 0o
Y Adtpdr O  A+3u At [ or\°
- , Inr — —
2ap 0xq 0T 2ap 2ap  \ 0z
Substituting the volume potential uy into (23), we obtain [6]
pAug + (A + p)graddivay = grad(Bipr + Bapz). (25)

Thus we have proved that ug is a particular solution of the equation (23). In (24)
D denotes either Dt or D™, grad(fip1 + f2p2) is a continuous vector in Dt along with
its first order derivatives. When D = D™, the vector grad(fBip1 + [2p2) has to satisfy
the following decay condition at infinity

grad(Bipy + Bopz) = O(|z|727%), a > 0.

Thus the general solution of the equation (23) is representable in the form u =
V + ug, where
PAV + (X + p)graddivV = 0. (26)

This equation is the equation of an isotropic elastic body. Thus we have reduced
the solution of basic BVPs of the theory of consolidation with double porosity to the
solution of the basic BVPs for the equation of an isotropic elastic body.

The solution of the first BVP ( V't = F'*) is given in the form [6]

1
V) =+ [ Ny - ygln)ds (27)
S
where
Ao
1+ cos 2 sin 260
N A+ 3 oA+ 3u o0
N((’?y,n)l‘(:ﬂ y)_ )\+/Lsin29 1-— At cos 20 s
A+ 3 ’ A+ 3u
9—&rctany2_x2 g—ni—ni
N v — 1 Os O 202,

g is a solution of Fredholm integral equation of the second kind

8(:)+ 3 [ Ny )y — 2)gl)ds = (). (23)
S

To prove the regularity of the double layer potential in the domain D™, it is sufficient
to assume that S € C*%, 0< <1, feCh(S), 0<a<pf.
We have thereby proved the following theorem.
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Theorem 7. If S € C*’, 0< B <1, f3,fi,f€CH(S), 0<a<f, then
a reqular solution of problem (I)F emists, it is unique and represented by the potential
of double-layer (18) and (27), where g is a solution of the Fredholm integral equations
(19) and (28) respectively which are always solvable for arbitrary functions fs, fy, and
f

Problem (I);. Now consider the first BVP (V7(2) =f (2)) in the domain D~.
The solution is sought in the form [6]

1

Via) = & [ [N@p TG = )+ 3N@n 0T el)ds, (20)

For determining the unknown vector g we obtain the following Fredholm integral
equation of the second kind

() + 1 [ |N@uT( - )+ NO ) g)ds £ (). G0

Here we assume that [ g(y)ds = 0 which implies the single layer potential vanishing

s
at infinity.
The equation (30) is always solvable if the condition [ g(y)ds = [f(y)ds = 0 is
s s
fulfilled [6].

To prove the regularity of the potential defined by (29) in the domain D, it is
sufficient to assume that S € C?#, 0<g3<1, feCh(S), 0<a<p.

Theorem 8. S € C*° 0< B <1, f3,fi,fe CH(S), 0<a<f, then a
reqular solution of problem (I )J? exists, it is unique and represented by the potentials
of double-layer (21) and (29), where g is a solution of the Fredholm integral equations
(22) and (30) respectively which are always solvable for an arbitrary right hand side.

Thus we have proved the solvability of the first boundary value problem in the
domains D and D~.

. op1 * Op2 *

Problem (I1)}. A solution of BVP (8_n> = f3(2), (a_n) = fa(z) of the

equation (15) will be sought in the form

pla) = 2 [0 =) (£ ) as, (31)

T 94(y)

where T® (z — y) is given by formula (17), S € C*#,0 < 8 < 1 is a closed Lyapunow
curve, gi, k = 3,4, are unknown functions.
Taking into account the boundary conditions for determining the functions g, we
obtain Fredholm integral equations of the second kind
Ip1(2) Op2(2)

mags(z) + “on f3(2), miga(z) + “on fa(z), z€S8S. (32)

The origin is assumed to be in the domain D*. Let us prove that the equation
(32) is always solvable. To this end, we consider the homogeneous equation obtained
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from (32) for f; = 0 and prove that it has only the trivial solution. Let gy # 0 be any
solution of this equation. Since f; = 0, we have

o\ o (%) _,
on on
Using Green’s formula (9), we obtain

pr=c=const, k=12 x€D". (33)

But the potential (31) is a continuous function when the point = tends to any point z
of the boundary and we get px(z) = ¢, « € D~. From last conditions it follows that

o (" (O (Om\T L (e
“\on/) \om/) ' " \on) \on/)’
_ (9» Ip1 _ (9p2 Ips
0_(871) (8n) = 2mags, O_(ﬁn) (8n) = 2 ga.

Finally we conclude that the homogeneous equation, corresponding to the equation
(32) has only the trivial solution. Thus the equation (32) is always solvable for any

continuous right-hand side.
As above, the equation

pA u+ (A + p)graddiva — grad(Bipy + Bapa) = 0

has the particular solution ug(x) (see (24)) and the last equation has a solution u =
ug + V, where
pA V + (A + p)graddiv V = 0. (34)

As it is already clear here (T'V)T is given. Thus we have the second BVP for the
equation of an isotropic elastic body. The solution is sought in the form [6]

V) = = [M(e.y) - MO.y)gn)ds. )

S

where g is an unknown function and M(z,y) has the form

MTQI

1 zalna—z(A—l—u) —plno+(A+p
M(z,y) = —~——=1m

2p(A + p) puino + (A + p)~

l\.’)

20 Z
oy ialno +i(A+ /1)2i
where

o=x1—y1 +i(x2— y2).
From (35), after some operations we find that

T@%mw@:%/f@@mmgwg@@,xeDﬂ (36)
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where 0 0\ 00
[ 1+cos20, sin2
T(0z,n)M(z,y) = sin20, 1 —cos26 ) Js’ (37)

G—arctanyz_% alnr_%
N p—x1 On Os

When z — z € S, for determining the vector g we obtain the following integral equation
1 1+ cos20, sin26 \ 00 B
—8(z) + ;/ ( sin2¢, 1 — cos20 ) %gds =f'(2). (38)
S

The homogeneous equation, corresponding to the equation (38) has nontrivial so-
lution. It is expedient to modify the preceding equation. Therefore we consider the
following equation

—g(z)+ l/Tzl\/I(z,y)g(y)als + %TZM(Z) /g(y)ds—

T
1 d i 1 sin 29 S v
—sin ) sin
%@(_2Sing¢ )M:er(z), z €S,
— L2 — AL — oM
¢ = arctan 3:17 M= (al‘l 8$2)m1z20 ' (4())

Performing elementary calculation, from (39) we get

/ a(y)ds = / £rds. M — / [ — 2o fF]ds. (41)
S S

S

If the principal vector [f7(y)ds and the principal moment [(z1fy — x2f;)ds are
s s
equal to zero, then [ gds =0 and M = 0. Then every solution g of the equation (39)
s

is, at the same time, a solution of the integral equation (38).

Let us prove that the equation (39) is always solvable if the the principal vector
and the principal moment are equal to zero. To this end we consider the homogeneous
equation obtained from (39) for f" =0 and prove that it has only trivial solution. Let
g, be any solution of that equation. Since " =0 it is obvious that [f7ds =0, M =

S

0 are fulfilled for g,. In this case the obtained homogeneous equation corresponds to
the boundary condition (Tug)™ = 0, where uy is obtained from (35), if instead of g we
take g,. Using the uniqueness theorem for the second BVP for DT, we obtain

uo(x)—(z;>+6<_§21>, xr € DT,

where ¢;, and ¢ are arbitrary constants.
Noting that My = 0 and V(0) = 0, therefore ug(z) = 0, whence [6] ( ugp and Wy
are the conjugate vectors, ¢ = ug + iWy)

A+ 3u OW
0 = N(dz, n)ug(z) = TMME)S(;)’

e D*. (42)
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From here Wy = ¢, © € D", where [6]

Ap o A+p o
1 S WV P o 2_
W, = —Re/ A+p T H )\ g(y)ds. (43)
g , Ino—
S A+ 3u20 )\+3u20

We can easily establish that if g is a continuous vector, then (TWq)* — (TW;)~ = 0.
But since (TWj)*™ = 0, from the last formula we obtain (TWg)~ = 0. By virtue
of [gds = 0, the vector Wy is one valued on the entire plane and of order |z|™! at

infinity, W(oo) = 0. Using this fact and uniqueness theorem we obtain
Wy(z) =0, ze€D. (44)

The formula Wy = ¢, « € DT and (44) yield (L(dz,n)Wo)" = 0, z €
D*, (L(0z,n)Wy)~ =0, =z € D~, where the operator L(dz,n) is obtained from

f‘(&x, n) for k = 2u. Further, if we use the formula [6]
2
= (L(0z,n)Wo())" = (L(0z,n)Wo(z))” = ;Mgo(?«),

we obtain g, = 0.

Thus the homogeneous equation corresponding to the (39) has only trivial solution.
Consequently, the equation (39) has a unique solution g. Substituting g in (35), we get
solution of the second BVP, provided the principal vector and the principal moment
of external stresses are equal to zero.

Theorem 9. If S € C?*, 0< B <1, f fieCS), 0<a<p thena
reqular solution of problem (]I)jf exists, it is unique and represented by the potentials
of singlelayer (31) and (35), where g is a solution of the Fredholm integral equations
(32) and (39) respectively which are always solvable for an arbitrary right hand side.

Problem (/1);. Now let us prove the existence of solution of the second BVP

((TV)~ =f") in the domain D~. The solution is sought in the form

/sz ds+ﬂ<22:ZCOSQw>M, (45)

where

v Wl) . (46)
xr1=x2=0

o)
=arctan —, M =|——-—
v 1 (8x1 01y

Here g is an unknown vector. For the vector V to be single valued and bounded

at infinity, we assume that the condition [ gds = 0, is fulfilled. Later on the principal
S
vector will be assumed to be equal to zero.

For determining of vector g we obtain the following Fredholm integral equation of
the second kind

1 1+cos26, sin26 \ 00 w0 [ coscosy B
g(z)—i_;/(sin%, 1 — cos26 ) Js 8(y)ds taou ( cos M =1£(2).

(47)
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By integration, from (47) we obtain

/ gds = / £ ds. (48)

Now we will establish that the equation (47) is always solvable. To this end, we
consider the homogeneous equation obtained from (47) for £~ = 0. Let’s prove that
this equation has only trivial solution. Let’s assume the contrary and denote by g,

any solution of the homogeneous equation. Since £~ = 0, from (48) we have [ g ds =
s
0. Note that the homogeneous equation corresponds now to the boundary condition

(TV)~ = 0. Taking into account the uniqueness theorem for the second BVP in
the domain D™, we obtain Vo(z) = 0,2 € D~. In this case (LV,)™ = (LVy)*t = 0.
Therefore
0= / 2 (IVo)F + (V)3 ]ds = Mo, o € D
S
and (45) takes the form

1
Vo = ug(x) = ;/M(m,y)gds =0,z € D".
S

From here

A+ 31 AW,

2ap Os(x)
The last equation gives Wy = ¢, = € D~. As since Wy(o0) = 0, we obtain ¢ = 0
and Wy =0, 2 € D~. From here it follows that (TWy)~ =0. But (TW;)™ =
(TWy)*. Therefore (TWq)* =0 and

Wg(x):(?)—i—a(_xm), x € DT,
2 1

By appling (46) we obtain My =¢ =0 and Wy =¢, x € D™.
Later having used the formula

0 =N(9z,n)ug =

0= (L(0, ) Wo()) " — (L0, )} Wo(r))™ = g (2).

we obtain g, = 0.
Consequently (47) has a unique solution, provided the principal vector is equal to
ZEro.
opr | Opa |
Remark. As above the solution of BVP {%} = f5(2), { %} = fi(2),
n n

will be represented by the singlelayer potential (31), where g3 and g4 are the solutions
of Fredholm integral equations of the second kind

maga() + D ) i)+ 2D ), e )
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Thus the existence of the solution of the second boundary value problem in the
domain D~ is proved.

Theorem 10. If S € C*°, 0< B <1, fs, f1,f€CH(S), 0<a<f, thena
reqular solution of problem (II)]? exists, it is unique and represented by the potentials
of singlelayer (45) and (31), where g is a solution of the Fredholm integral equations
(47) and (49) respectively which are always solvable for an arbitrary right hand side.
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EXISTENCE OF OPTIMAL INITIAL DATA AND CONTINUITY OF THE
INTEGRAL FUNCTIONAL MINIMUM WITH RESPECT TO PERTURBATIONS
FOR A CLASS OF NEUTRAL DIFFERENTIAL EQUATION

Tadumadze T.

Abstract. For the system of differential equations, linear with respect to prehistory of veloc-
ity, sufficient conditions of existence of optimal initial data are obtained. Under initial data
we imply the collection of constant delays, initial moment and vector, initial functions. The
question of the continuity of the integral functional minimum with respect to perturbations
of the right-hand side of equation and integrand is investigated.

Keywords and phrases: Neutral differential equation; existence of initial data; continuity
of the integral functional minimum.

AMS subject classification (2000): 49J25; 34K35.

Let 0 < 715 < Toi,8 = 1,8,0 < m1j < moj,j = 1,m,t1 <ty < t3 be given numbers,
with t3—te > 7 = max(7o1, ..., Tos, M21, ---, om); let R™ be the n-dimensional vector space

of points

w= (', 2" 2P =) (@)

=1

where T means transpose; the functions

are continuous on the set I x R™ x R", where I = [t, t3], and continuously differentiable
with respect to x,y € R"; suppose that ® C R", Xy C R" are compact sets, V C R" is
a compact and convex set. By A; and Ay we denote sets of measurable p(t) € ®,t €
I, = [7,ts], 7 = a—1, and v(t) € V,t € I; initial functions, respectively. Further, R™*"
is the space of matrices

n

A= (aij)Zj:17 |A|2 = Z(azj)Q;

1,7=1

the functions A;(t) € R™", a;(t) = (aj(t),...,a}(t)),j = 1,m are continuous on the
interval I.

The collection of initial data 7;,¢ = 1,s,7;,7 = 1,m,to, zo, ¢(t),v(t) is said to be
initial element and we denote it by w.

To each initial element

W = (T4 ooy Ty My - NMim, Lo, Toy 0, V) € W= [T11, To1] X - -+ X [T15, Tos)

X1, M21] X oo X [Nim, Nam] X [t1, t2] X Xo X Ay X Ay
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we assign the neutral differential equation

m

i(t) = Z filt, (), 2t — ) + S A (1)t —ny),t € [to, ts] (1)

=1

with the initial condition

2(t) = (1), (1) = v(t), 1 € [T, 1), 2(to) = 0. (2)

Remark. The symbol &(¢) on the interval [7,ty) is not connected with derivative
of the function ¢(¢).

Definition 1. Let w € W. A function z(t) = x(t;w) € R",t € [T,t3] is called
a solution, corresponding to the element w, if it satisfies condition (2), is absolutely
continuous on the interval [to, t3] and satisfies Eq.(1) almost everywhere on [ty, t3].

By Wy, we denote the set of such initial elements w € W for which there exists the
corresponding solution x(¢;w). In what follows we will assume that Wy # 0.

We note that, if the following condition

|fult. 2 y)| + [ fy(t2,y)| < LV(Ez,y) €1 X R" x R”

is fulfilled, where L > 0 is a given number, then Wy = W.
Let us consider the following functional

Hw) =3 [ttt =)

m

+3 " ai(t)i(t —ny)]dt, w € Wy,

j=1
where x(t) = z(t; w).
Definition 2. An initial element wy = (710, .-+, T505 710, ---» Mmo, L0os Toos Po, Vo) € Wo
is said to be optimal for the differential equation (1) if

J(wp) < J(w)

for any w € Wj.
Theorem 1. Let the following conditions hold:
1) there exists a compact Ky C R™ such that

x(t,w) S Ko,t S [to,tg],vw S Wo;
2) for any (&, 1;) € I x Ko,i =1,s the set

{(Fl(&,ﬂsl,y), ...,Fs(gs,xs’y)) TS (I)} C R(H—n)s

1s convex. Then there exists an optimal initial element wy.

Theorem 2. Let fi(t,z,y) = Bi(t,x)y, B(t,z) € R™" and function f2(t,x,y) is
convez with respect to y. Moreover, let the set ® be convexr and let the condition 1) of
Theorem 1 be fulfilled. Then there exists an optimal initial element wy.
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Theorems 1,2 are proved by a scheme given in [1,2].
Let us consider the perturbed differential equation

s

B(t) =) [filt, (), x(t — 7)) + gis(t, x(t), x(t —72))]

i=1
+ D 1A (1) + Ajs(D)i(t =), t € [to, 1] (3)
j=1
with the initial condition (2) and the perturbed functional

s

swis)= [ > (20200t = ) + bt (0 alt = )

to

Z £) + ajs(t)] i (t—nj)}dt,

where the functions Gi(;(t,x,y) = (g% (t, 2, y), gis(t,x,y))T,i = 1,5 are continuous on
the set I x R"x R" and continuously differentiable with respect to z,y € R"™; A;5(t), a;s(t),
j =1,m,t € I are continuous functions.

Definition 3. An initial element wos = (716, .-, Tss, M16 --+» Tms, Loss Tos, Ps, Vs) € Wo
is said to be optimal for the differential equation (3) if

J(wos; 0) < J(w;0)

for any w € Wj.

Theorem 3. Let the conditions of the Theorem 1 hold . Then for any € > 0 there
exists a number § > 0 such that for arbitrary functions Gis(t, z,y),i = 1, s; A;j5(t), a;s(t),
j = 1,m satisfying the conditions:

Z/ 8G“5 txm y)‘ + ‘aG“(aty’m’y)‘ Lz € Kl}dt < (4)

S t3 m
> [ s {[Guttan)] s w € Kafat+ 30 1l +lawl] <5 6)
i=1 74 Jj=1

and the set

{(F1<§1,.T1,y) + G16(§17x17y>, ey Fs(ésammy) + GS5(§sux87y>> ‘Y e CI)}
i1s convex, where C' > 0 is a fized number,
[Ajsll = sup{[|Ajs(t)] - ¢ € I}

and K1 C R" is a compact set containing some neighborhood of set KoU®; there exists
an optimal initial element wos and the following inequality

|/ (wos; ) — J (wo)| < & (6)
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18 fulfilled.
Theorem 4. Let the conditions of Theorem 2 hold. Then for any e > 0 there exists
a number 6 > 0 such that for arbitrary functions

Gié(ta xz, y) = (gg;(t, xz, y)? Bz’&(ta :C)y)T?Z. = E

and Ajs(t),als(t), j = 1,m satisfying the conditions (4),(5) and the functions gi5(t, z,y),
i = 1,5 are convex with respect to y; there exists an optimal element wos and the in-
equality (6) is fulfilled.

Theorems 3,4 are proved by a scheme given in [3]. The similar questions are con-
sidered for delay differential equations in [4].

Finally, we note that Theorems 1-4 play an important role in solving inverse prob-
lems for neutral differential equations [5].
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NECESSARY OPTIMALITY CONDITIONS OF SINGULAR CONTROLS IN
CONTROL PROBLEM FOR VOLTERRA TYPE TWO-DIMENSIONAL
DIFFERENCE EQUATION

Amirova R., Mansimov K.

Abstract. Necessary optimality condition is obtained in the form of discrete maximum
principle in an optimal control problem described by a system of two-dimensional difference
equations of Volterra type. Moreover, the case of degeneration of discrete maximum condition
is considered.

Keywords and phrases: Necessary optimality condition, system of Volterra difference
equations, discrete principle of the maximum, singular controls.
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1. Introduction

Optimization problems for Volterra integral equations occupy an important place
in the theory of optimal control. The Volterra integral equations are widely used
in modeling some phenomena of continuum mechanics and biomechanics [1-8]. The
optimal control problems described by Volterra integral equations have been studied
in [8-11]. The present paper deals with investigation of an optimal control problem
described by system of Volterra two-dimensional difference equations. The necessary
optimality condition is proved in the form of discrete maximum condition. Moreover,
necessary optimality conditions are proved for controls which are singular optimal
controls in the sense of Pontryagin’s maximum principle.

2. Statement of the problem

Consider a problem on minimum of the functional

S(u) = (z(t1, 1)), (2.1)
under restrictions

u(t,z) e U C R, (t,x) € T x X ={(t,x): t =to,to+1,.... 01
s =120, 20+ 1,..., 21}, (2.2)

dtx) =) flt,a,7,82(78),u(r,s), (tz)eTxX (2.3)

T=to s=T0

Here ¢(z) is a given twice differentiable scalar function, g, t1, xg, 1 are given numbers,
f(t,z, 7,8, 2,u) is a given n -dimensional vector-function continuous by the aggregate
of variables together with partial derivatives with respect to z up to the second order
inclusive, u(t, z) is a control function, U is a given non-empty and bounded set.
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A control function u(t, z) satisfying the restriction (2.2) and the pair (u(t, z), z(¢, ))
will be called an admissible control and an admissible process, respectively.

Equation (2.3) is a difference analogue of Volterra two-dimensional integral equa-
tion. It is assumed that to each admissible control u(¢, ) corresponds unique solution
of discrete equation (2.2). The existence, uniqueness and boundedness problems of
solutions of Volterra one-dimensional difference equations have been investigated in [5,
12-14].

We note that different aspects of multi parameter, in particular two-parameter
discrete control systems have been studied in [15-22].

The admissible control w(t,z) minimizing the functional (2.1) under restrictions
(2.2), (2.3) is said to be an optimal control, the corresponding process (u(t, x), z(t,x))
an optimal process.

3. The second order increment formula

In this section we derive representation for the increments of cost functional S(u).
Let the set

ft,x,7,8,2,U) ={a: a= f(t,z,7,s,2,v),ve U}, (3.1)

be convex for all (t,x,7,s,z2) .

Let (u(t,z), z(t,x)) be a fixed admissible process, by u(t, z; €) we denote an arbi-
trary admissible control such that its appropriate state of the process z(t, z; €) satisfies
the relation

2(t, x;€) Zthl‘TSZTS e),u(r,s:¢€)) ZZ[ (t,xz,7,8,2(1,5:€)

T=to S=T¢ T=to s=x¢

u(r,s)) +elf(t,x,7,s,2(1,s:¢),0(1,8)) — f(t,x, 7,8, 2(T,5: ), u(T, s))]}, (3.2)

where € € [0,1] is an arbitrary number, v(t,z) € U, (t,z) € T x X is an arbitrary
admissible control.

Such an admissible control u(t, z; ) exists by the convexity of set (3.1).

Introduce the functions

Oz(t,x:e)|
Oe ’

e=0

D*z(t,z : €)

Y(t,x) = 922

y(t,z) = (3.3)

e=0

Using (3.2), and taking into account the smoothness of the function f(¢,x,7,s, z,u), it
is proved that y(t, z) and Y (¢, z) are the solutions of Volterra type linear inhomogeneous
difference equations

= Z Z [fz(t,a:,T,s, 2(7, 8),u(T, s))y(T, s)

T=tg s=xo

+ Ay f(t 2, 7,8, 2(T, 8), u(T, s))], (3.4)
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= Z i [t 2,75, 2(7,8),u(T, 8))Y (T, 8) + 20y (r5) [-(t, 2,7, 5, 2(7, 5)

T=to sS=x¢

) U’<T7 S))y<7-7 S) + Z/(T, S)fZZ (tv iIZ', T, 37 Z(Tv 8)7 U(T, 8))y<7—7 5)] : (35)
Here and in the sequel, we use the denotation

A’U(T,S)f<t7 T, T8, Z<7_7 8)7 U(T, 8)) = f(tv T, T,S, Z<T7 8)7 U<T7 S))
—f(t,x, 7,8, 2(7,8),u(r,s)),

(") prime means a scalar product for the vectors, the transpose operation for the matri-
ces. Moreover, special increment of functional (2.1) responding to admissible controls
u(t, ;) and u(t, z) will be written in the form

AS.(u) = S(u(t,z;¢)) — S(u(t,z)) = 5M y(t1, x1)

0z
g2, %9 (2(t1, 21)) g2 0p(2(t1, 1))
T35 (t, 1) 5.2 y(t, 1) + CO Y (ty, 1) + 0(€?). (3.6)

Now we Introduce the Hamilton-Pontryagins function

H(t,z,z(t,z),u(t, x) Ziw (1,8)f(7,8,t, 2, 2(t, ), u(t, x))

T=t s=x

—go;(z(tl, x1))f(ty, z1,t, z, 2(t, ), u(t, x)),

where v = (t,z) is n-dimensional vector-function of conjugated variables being a
solution of the equation

W(t,x) = H,(t,x, z(t, x),u(t, z),¥(t, x)). (3.7)

Equation (3.7) is an analogy of the conjugated system [23-25] for control problem
(2.1)-(2.3) and is a Volterra linear nonhomogeneous equation with respect to ¥ (¢, x).

Theorem 3.1 The second order increment of functional (2.1) can be represented
by the following formula

2

W) = —e 3N A H(t, 2, (1 2), ult, 2), 0t 7)) + g—{y’(tl,ml)—a Pt 21))

t=tg x=x9 2 822
y(ti, 1) Z Z y (t,x)H.,(t,x, 2(t, x), u(t,z),¥(t, z))y(t, z)
—22 Z Aoy Ho (1,2, 2(t, ), (t,m),w(t,x))y(t,a:)} +0(%). (3.8)

t=to x=x9

Proof. Multiplying scalarly the both sides of relations (3.4), (3.5) from the left by
¥ (t,x), and summing the both sides of the obtained relations over ¢ (x) from ¢y (x¢)
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to t; (x1), we get

Zzwtx (t,z) Zzwtx[ZZ[fztxrszrs)u(r,s))y(T,s)

t=to x=x9 t=tg x=x9 T=to s=xo

+ D)t 2,7, 5, 2(7, 5), u(T, s))}] . (3.9)

lelz//(t,x) Zzw (t,2) {ZZ[ (t,2,7, 5, 2(1,8),u(r, )Y (7, 5)

t=to x=x9 t=to r=x0 T=to S=T0

F20y(r0) f2(t, @, 7,8, 2(T, 5),u(T, 5))y(T, 5)
+y (7, 8) oo (t, 2,7, 5, 2(7, 8), u(T, 8))y(T, S)H . (3.10)

The following statement is true.
Lemma 3.1 Let L(t,x,7,s) and K(t,x,7,s) be given (n X n) matriz functions.
Then the identity

S5 S Lt ms] Zzlzzmem <T,s,t,x>]

t=to x=x9 LT=to s=xo t=tg x=x9 LT=t s=x

15 valid.
The lemma is a two-dimensional discrete analogue of Fubini formula [1, 7]. Using
this lemma and assuming

M(t,z, z(t,x),u(t, x) Zzw T,8)f(1,8,t,2, 2(t, x), u(t, z)),

T=t s=x

identities (3.9), (3.10) can be transformed into the form

ZZ@Dtx (t,z) ZZ[ (t,z, 2(t,z),u(t,x),¥(t, x))y(t, z)

t=tg r=x9 t=to T=x0

Aoy M (L, 7, 2(1, ), ult, ), (1, x))], (3.11)

SN a)Y( Z Z MLt 2(,2), ult, @), 0(t2)Y (¢, 2)

t=tg x=x0 t=to x=x9

+2Av(t,x)M;(t, x, z(t,x),u(t,z),¥(t,x))y(t, x)
oy (7)Mo (2 (t, @), ult, ), 0 (¢, 2))y(t, x)] . (3.12)

Further, it is clear that from (3.4), (3.5) follows

t1 x1

gt o) = 30 D [feltron tow, 2(t,2), ult, 2)y(t, 2)

t=to x=xo
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+Av(t z)f(tlv x1,t,, Z<t7 x)v U(t, 37)):| :

Y(ty,x1) = Z Z [fz t1,x1,7,8,2(7,8),u(r,$))Y(T,Ss)

T=to S=T¢
+2Av(7—,s)fz (tb Iy, T, S, Z<7—7 5)7 u<7_v S))@j(T, 8)
+y (7,8) o (t1, 21,7, 8, 2(7, 5), u(T, $))y(T, s)] )
Taking into account identities (3.11)-(3.13) in (3.6), we get
0 t
ez PGttt ot 2, 24 2), ult, 2)y(t, @)

t=tg x=x¢
e, 020 (z(t, x
+Av<t,xf(tl,xl,t,x,z@,x),u(t,x»]+5y<t1,x1> AU NS

+= - Zl Zl thml [f(tr, 21, t, 2, 2(t, @), u(t, @)Y (¢, x)

t=to x=x9

—{—QAU(T,s)fZ(tl,xl,t x, z(t, x), (t x))y(t, x)

+y (8, 2) fou(ty, 1, t, 2, 2(E, @) —i—gz Z V' (t, x)

t=tg x=x9

Mé(t, x,2(t @), ut,x), Y(t, x))y(t, x) + Ay M(t, x, 2(t, ), ult, z),)(t, x))]

\
™

t=tox=x0
82 2l L1 T
Ty ;;wm (t,x) ——220[1\4 (t,x, 2(t, 2), u(t, ), (¢, 2))Y (¢, x)

+2Av(t,x)M;(ta Z, Z(ta ZL‘), U(t, $)7 ¢(t7 Ilf))y(t, LL')
Hence, grouping the similar terms and taking into consideration the expressions of

Hamilton-Pontryagins function, we have

==Y > H.(t.w z(t,x)ult,z), Pt x))y(t, z)

t=tg x=x0

t1 1 t o
__22 Z H.(t,z,2(t,z) (t,x),¢(t,x))Y(t,x)+5Z Zq//(t,x)y t.x
+§ tit: i ¢/(t’x) t X _51; Z A tz t x, Z(t Qf) (t,x%@[;(tx))

g2, %9 (2(ty, 1)) L
—1—33/ (t1,21) 9.2 y(ti,x1) — € Z Z Ay Ho(t, @, 2(t, x), ult, 2), (L, x))

t=tg x=x9

2 t1 T

y(t,x) — —Z Z y (t,2)H,.(t, 2, 2(t, 2), u(t, ), ¥(t, 2))y(t, z) + 0(e?).

t=to x=x9
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Hence, with regard to the fact that (¢, ) is a solution of equation (3.7), we obtain
formula (3.8).

4. The second order increment formula

By arbitrariness of ¢ € [0, 1] the following theorem immediately follows from ex-
pression (3.8)

Theorem 4.1. If the set (3.1) is convez, then for optimality of the admissible
control u(t,x) the inequality

SN Ay Hit,, 2(tx), u(t,z), (¢, ) < 0 (4.1)

t=to x=x9

should be fulfilled for all v(t,x) € U, (t,x) € T x X.

Theorem 4.1 is an analogue of Pontryagins discrete maximum principle [22-25] for
the considered problem and is a first order necessary optimality condition. Therefore,
the number of non-optimal controls satisfying the maximum condition (4.1) may be
sufficiently great. Besides, possibility of degeneration of optimality condition (4.1) (see
[26]) is not excluded.

Now we investigate the case of degeneration of necessary optimality condition (4.1).

Definition 4.1. The admissible control u(t,z) is called singular control in the
sense of Pontryagins maximum principle, if the relation

DY Ay H(t , 2(t, @), u(t,x), () = 0 (4.2)

t=tg x=x¢

is fulfilled for all v(t,x) € U, (t,x) € T' x X. By definition, the singular controls satisfy
first order necessary optimality conditions and consequently to analyze them from the
optimality point of view we need second order and sometimes higher order optimality
conditions [26].
Allowing for (4.2), the following statement follows from expression (3.8).
Theorem 4.2. [f the set (3.1) is convex, then for optimality of the singular control
u(t, x) the inequality

Y (t, 20)pes(2(t, )yt ) — D> [y/(tw)sz(t, z, 2(t, ), ut, z), ¥(t, z))y(t, ©)

t=to x=x9

2 ey HL (2, 2(t, 2), u(t, ), (1, )y L, x)] >0 (4.3)

should be fulfilled for all v(t,x) € U, (t,x) € T x X.

Here, y(t,x) is a solution of the equation in variations (3.4). Inequality (4.3) is
a sufficiently general necessary optimality condition of singular controls. Based on
this inequality, in some cases we can get constructively verifiable necessary optimality
conditions of singular controls that are expressed obviously by the parameters of the

problem (2.1)-(2.3).
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The equations in variations (3.4) is a Volterra type linear, nonhomogeneous two-
dimensional difference equation.

Using the scheme of the papers [1, 3-7], it is proved that the solution of the equation
in variations (3.4) y(t, z) allows the representation

ZZ[ virs) f=(t, @, 7,8, 2(T, 5),u(T, 5))

+ Z Z R(t? T, ﬂ)Av(T,s)f(@a ﬂa T, S, Z(T7 8)7 ’LL(T, S)) . (44)

Here, R(t,z,7,s) is a solution of the Volterra type linear nonhomogeneous matrix
difference equation

R(m,{,t,x) ZZRmETsfz(Tstxz(tx) u(t, z))

T=t s=x

—fo(m, 0t x, 2(t, ), u(t, x)). (4.5)

Equation (4.5) is a discrete analogue of the resolvent of Volterra type integral equation.
By means of the scheme, for example of the paper [1], it is proved that R(m, ¥, t, ) is
also a solution of the equation

R(m,(t, ) ZZfszTsz(T s),u(t,s))R(T,s,t, )

T=t s=x

—f.(m, 0t x, 2(t, x), u(t, x)). (4.6)

By analogy with the papers [1, 3-7], we call the matrix function R(m,¢,t,z) a resol-
vent of the equation in variations (3.4) and equations (4.5), (4.6) the equations of the
resolvent. Assume that the right-hand side of system (2.3) has the form:

f(t7x7 T? S7Z7u) = A<t7'x77—7 S) 9(778727 u)' (4'7)

Then representation (4.4) takes the form
Z Z A 2,7,5) Dugrg (7.5, 2(7, ), u(7, )

t x
+ Z Z R(t,x, o, B)A(c, 3,7, 8) Ay(r,99(T, 5, 2(7, 8), u(T, s))]

— Z Z {{ (t,z,T,s +ZZR (t,z,a, B) Al ,ﬁ,T,S):| Av(ﬂs)g(T,S,Z(T,S),U(T,s))},

T=tg s=x0 a=T B=s

Assuming

Qt,z,7,8) = A(t,z,7,8) + > Y R(t,z,0,8) A, 3,7, 5),
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this formula can be written in the form

= Z Z Q(t,x,7,8) Ayr,09(T, 5,2(7, 5),u(T, 5)). (4.8)

T=tg s=xo

It is clear that from representation (4.8) we have

t1 4
Zflaxl Z Z Q tbxlaT 3 v( ,s)g(T,S,Z(T, S)?”(Ta 8))

T=tg a=to

Therefore we get

Y (tr, 1)@z (2(tn, 21) )y (ty, 1) = Z Z Z Z Ayir09(T, 8, 2(1, 8),u(T, 5))

T=tg s=x0 a=tg B=xo

X(,OZZ(Z(tl, xl))Av(a,ﬂ)g(aa ﬁv Z(Oé, 5)a U,(Oé, 5)) (49)
Thus,

Z Z Aoy Ho (1,2, 2(t, @), ult, ), ¥(t, 2))y(t, )

t=to x=xo

= Z Z [Z Z Aoy Ho(t, 2, 2(t, @), ult, ), ¥(t, 2)Q(t, x, T, 5)

t=tg x=x9 T=to s=xo

X Doy(rs)9(T, 8, 2(7,8), u(T, )| (4.10)
Finally, using the scheme of the papers [20, 21], we prove the identity

Z Z y/(t,x)sz(t,x, 2(t,x),u(t, ), ¥t x))y(t, x)

t=to x=x0

— Z Z Z Z Ayrs) g (7,5,2(7,5),u(r,s))

T=tg s=x0 a=tg B=x¢

X Z Z Q(t x,7,8) H,,(t,x, z(t, x), u(t, ), ¥(t,x)Q(t, z, a, B)

t=max(T,a) z=max(s,3)
XAU(aﬂ)g(Oé,ﬂ,Z(Oé,ﬂ),U(Oé,ﬂ)). (411)
Taking into account identities (4.9)-(4.11) in inequality (4.3), we get the relation

Z Z Z Z Ay(r,s) T,S,Z(T, s),u(t,8))M(1,s,a, B)Aya,pg(a, B, z(a, B),ula, B))

T=tg s=xg = toﬂ 1)

+2ZZ ZZA oy HL (1,2, 2(t, @), ult, @), ¥ (t, 2))Q(t, x, 7, 5)

T=to s=xo LT=to s=xo

X Ay(r)9(7, 8, 2(7,8), u(7,5)) | <0 (4.12)
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where

M(r,s,a,f3) = —qQ (t1,21,7,8) @ax(2(t1, 1)) Q(t1, 1, 0, B)

~
=

z1

+ Q(/t,x,T,s)sz(t,x,z(t,x),u(t,x),w(t,x))Q(t,x,a,ﬁ). (4.13)

t=mazx(T,a) x=max(s,B)

Now we formulate the obtained result.

Theorem 4.3. If the function f(t,z,T,s,z,u) has the form (4.7) and the set (3.1)
is convex, then for optimality of the singular control u(t,x) the inequality (4.12) should
be fulfilled for all v(t,xz) € U, (t,x) € T x X.
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Abstract. A stepwise optimal control problem described by two-dimensional discrete sys-
tems is considered. Under openness of a control domain, necessary optimality conditions of
first and second order are obtained.
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1. Introduction

Discrete dynamical models of controlled systems are an important class among
of mathematical models. Such models arise in modeling of real processes and dis-
cretization of continuous models [1-10]. Optimization problems of stepwise or variable
structure systems occupy an important place in the theory of optimal control [11-21].
The present paper is devoted to derivation of necessary optimality conditions for one
class of control problem described by two-dimensional stepwise discrete system. Fi-
nally, we note that various necessary and sufficient optimality conditions for discrete
two-dimensional controlled systems are obtained in [8, 22-27].

2. Statement of the problem

Let the controlled system be described by the following discrete two-parametric
system of equations

)

zit+ Lo+ 1) = fi(t,x, zi(t,x), z;(t + 1, x), z(t, x + 1), u(t, x)),
{ (t,z) € D;yi=1,3, (21)
with boundary conditions
(21(to, ) = a1(x), x = xo, w0 + 1, ..., X, z1(t,20) = B1(t), t =to, to+ 1,..., 11,
2o(t1, @) = z1(t1, @), © = 20,20 + 1, ..., X, 20(t,x0) = Pa(t), t =1t1,t1 + 1, ..., Lo,
23(to, ) = 29(to, ), T = xo, w0 + 1,..., X, 2z3(t,20) = B3(t), t = to,ta + 1,.... 13, (22)
(

a1 (o) = Bi(to), z1(t1, 20) = Pa(t1), 2a(ta, xo) = Bs(t2).

Here, D; = {(t,x) : t =t;_1,t; 1+ 1, t;— Lo =m0, 20+ 1,..., X — 1},i = 1,3, where
1o, X, t;,i = 1,3 are fixed numbers; f;(t,z,a;,b;,u;),i = 1,3 are n-dimensional vector-
functions continuous in the aggregate of variables together with partial derivatives with
respect to (z;, a;, bi,u),i = 1,3 up to the second order inclusive, ay(z), 3i(t),i = 1,3
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are given n-dimensional vector-functions, and u;(t, x), i = 1, 3 are r-dimensional control
functions with values from the given non-empty, bounded and open sets U; C R",i =
1,3, ie.

Uz(t,l') eU; C R, (t,CL') eD;, 1= m (23)

The triple u(t,z) = (ui(t,x), us(t, x),us(t,x)) with the above mentioned properties

and its corresponding solution z(t,z) = (21(t,x), 22(t, z), 2z3(t, x))" of boundary value

problem (2.1)-(2.2) will be called an admissible control and admissible state of the

process, respectively. The pair (u(t,x), z(t, z)) is said to be an admissible process.
The problem is to minimize the cost functional

S(u) = Z%(@'(%X)) (2.4)

determined on the solutions of boundary value problem (2.1)-(2.2) generated by all
possible admissible controls.

Here, ©;(2;),i = 1,3 are the given twice continuously differentiable scalar functions.
In the sequel, the problem on the minimum of the functional (2.4) under restrictions
(2.1)-(2.3) will be called problem (2.1)-(2.4). The admissible process (u(t,z), z(t, x))
being a solution of problem (2.1)-(2.4) will be called an optimal process.

3. Auxiliary facts and variations of cost functional

Let (u(t,z),z(t,z)) be a fixed admissible process. In the sequel, the following
denotations will be used:
Hz(ty X, 24y Qg bia U, 1/]7,) = ,lvz):fl(t) X, z;, Ay, bi7 ui))
ofilt,x]  Ofi(t,x,z(t,x), 2zt +1,2), zi(t, x + 1), u(t, v))

Oa; da; ’
OH;[t,x]  OH;(t,x,zi(t,x), zi(t + 1,2), zi(t, v + 1), us(t, ), ¢s(t, 7))
0z 0z ’
OPHilt,x]  O°H(t,x, z(t,x), z(t + 1,2), z(t, v + 1), w;(t, x), (¢, x))
9z 022 ’

where v; = 1;(t,x), i = 1,3 are n-dimensional vector-functions of conjugated being
the solutions of the problem
OH;[t,x] OH;[t —1,2] OHt,x —1]
(t—1Lx—1)=
¢Z( - ) 82, + 6ai * 8bz ’
01 (z1(t1, X
it — 1, X — 1) = n(ty — 1, X —1) — 221 é(zl ).

1
6H1[t1-1,1’] 3H2[t1—1,x]
ti—lLx—1)=1(t; — L,x —1 —

Uit — Lo —1)=s(th — L,z 1)+ da, Day )
OH [t —1,X — 1]
by ’

Ualty — 1, X — 1) = tha(ts — 1, X — 1) — 8902(2;(;27)())’

i=T1,3, (3.1)

bt —1,X —1) =
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3H2[t2 — 1,1’] _ 8H3[t2 — 1,1’]
3@2 8a3

@Dg(tg—l,x—l) :Qﬂg(tg—l,ilﬁ—l)—i‘

OHyt, X — 1 o t3, X
1?2(75_17)(_1):%, U3t —1,X —1) = — ¢3(Z;(233 )>7
OHs|ts, OH;[t, X — 1
oty =1, 1 = ] gy gy PX L

Using a scheme for example from [23, 28, 29] we can show that the first and second
variations (in the classical sense) of functional (2.4) have the form

518w o) = -3 | Y ZaH” ()|, (3.3)

3 t1—1 X-—1
=1 |t=t;—1 x=x0

3
’ 82901(22(12,)()
525 (u; du) = Za i(ti,X)a—Zgézi(ti,X))

3 1—1 X-1 -
_;th: [52 (t,7) 8 H[ ]5zz(t z) + 0zt +1 f)aaf;—[éij&i(t,x)Jr&;(t,x)

O?H;[t, z] )

0*H; [t Jc]

277 ,
ag’—yézi(t +1,2) + 62(t, x)
32Hi[t, LC]

ob?

O?H;[t, x] 82Hi[t,x]
32Hl[t,a}]

RO ) 0
O*Hit, x] / 82Hz~[t,x] /
62t @) + 20u;(t, 2) 5 ~5r=da(t + 1, @) + 20u;(t, @) =5 <o

8u,- 821'
O?H[t, x

X0z (t, & + 1) + ou(t, x)#’]&%(t, x)}

U

82Hi [tv ZL‘]

x0zi(t, x4 1) 4+ 0z (t, x4 1) dzi(t,x + 1)

+20u,(t, )

(3.4)

respectively, where du;(t,z) € R", (t,z) € D;, i = 1,3 is an arbitrary bounded vector-
function called an admissible variation of the control u;(t,z), i = 1,3, and dz;(t, x) is
a variation of the trajectory z;(¢,x) being a solution of the equation in variations

dzi(t+1,x+1) = afla[i’ il dzi(t,x) + afé[; ] dzi(t+1,2) + afé[;’ il dzi(t,x + 1)
L9 é[t{ ] Sui(t,z), i=1,3, (3.5)

with boundary conditions

521(t0,$) = 0, T = Xg,Xo + 1, ...,X, (521<t,$0) = 0, t= to,to + 1, ...,tl,

522(t1,$) = 521(t17.’1/’), T = To, Lo + ]_, ...,X, 522(t,$) == O, t= tl,tl + 1, ...,tg, (36)
523(t2,$) = 522(t2,l‘), Tr = Zo,Xo + ]_, ...,X, 523(t,l‘0) = 0, t= tQ,tZ + 1, ...,t3
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The system of difference equations (3.5) is linear and nonhomogeneous. Therefore,
we can represent (see [23, 26, 27]) the solution of problem (3.5)-(3.6) in the form

t—1 z—1 8f1[T, S]
021 (t, ) Z Z Ry(t, z; T, 50 dup (T, 8), (3.7)

T=tg s=xo 1

— 8(]01[7' 3]

dzo(t, ) Z Z Q1(t,x 8u17 duy (T, 8)

T=to9 s=x¢

t—1 z—1
+Z ZRQ T, 8{;[;’ $]5u2(7, s), (3.8)

T=t1 s=xo

to—1 z—1

t1—1 z—1
0z3(t,x) = ZZQthT 3f1[ +ZZQ3tx7's
T=tg s=xo T=t1 s=xo
Ofalr.s) s — o Ohalr. s
2 EIRE)
X 0 +ZZR3 T;T, S o ————us(T,s), (3.9)

T=t2 §=x¢

where by definition
Q1(t,x;71,8) = Ro(t,x;ty — 1,z — 1) Ry(t, x; 7, 8)

z—1
+ Z |:R2(t,$,t1 - 175 - 1) - RQ(tal.;tl - 176)%(;75]1 R1<t17/6; T, S),
B=s+1

Qa(t,;7,5) = Ra(t, w5t — 1, — 1) Q1(ta, 257, 5)

r—1
+ Z [[R:’,(t7$;t2 —1,8—1) = R3(t,z;t2 — 1, 3)] W} Q1(t2, B; 7, 5),
B=s+1
Qs(t,x;7,8) = Ry(t, x;te — 1, @ — 1) Ro(ta, x; 7T, 5)
rz—1
+ Z {[R:s(tﬁ;tz —1,8—1) = R3(t,z;t2 — 1, )] W} Ry(ta, B; 7, 8),
B=s+1

Here, R;(t,z;7,s), i = 1,3 are (n x n) dimensional matrix functions being the

solutions of the following problems:
dfilr, s] ofilr — 1, ]
th7> _17 -1 :Rita;a thav _17
(t,x; T s—1) (t,x;7,5) o7, + Ri(t, ;7 s) 20,

ob; ’
Rz(t;l’;t - ].,S — ]_) = R’L(t;x,tl _ 1?S)W,
Q;
8]%[7',23— 1]

Ri(t,x;7— 1,2 — 1) = Ri(t, ;7,0 — 1)T’
Ri(t,z;t— 1,2 — 1) = E, (F — (n x n) is a unit function).
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Let (u(t,z),z(t,z)) be an optimal process. Then, along this process, for all the
admissible variations du(t, x) of the control u(t, x), the first variation (3.3) of functional
(2.4) should equal zero, the second variation (3.4) of functional (2.4) should be non-
negative, i.e.

§*S(u; du) =0, (3.10)
628 (u; du) > 0. (3.11)

The relations (3.10) and (3.11) are implicit necessary conditions of first and second
orders, respectively.

In the next section, using these relations we obtain the explicit necessary optimality
conditions expressed directly by the parameter of the stated problem.

4. Necessary optimality conditions

Allowing for representation (3.10), by independence of the admissible variations
du;(t,x), i = 1,3 of the control it follows from (3.3) that along the optimal process

= 11 yi=1,3. 1
0, 0, forall (0,{)e D;,i=1,3 (4.1)

The relation (4.1) representing a first order necessary optimality conditions is an
analogy of Euler equation for problem (2.1)-(2.4).

Each admissible control u(t, x) satisfying Euler equation (4.1) is said to be classic
extremal in problem (2.1)-(2.4).

Using inequality (3.11), in many cases we can get explicit necessary optimality
condition of second order.

To this end, assume that in system (2.1)

filt, @, 2, a4, b, u5) = By(t, ) by + F(t, 2, 2, a;, u;). (4.2)
Assume

82@1 (21 (tl, X
073

K\(r,5) = — R, (t1, X: 0,7) D Ryt X1 6,5) = Q) (t, X: 6,7)

3 pa(za(ta, X)) 0”3 (23(ts, X))

822 Q2<t27X; 075> - Q;s(ti’an 977—) 82% Q3(t37X; 97 3)
t1—1
— / 82H1[t,x] / 82H1[t,x]
+ Z Z Rl(t,$, 6.77—) a—Z%Rl(taxv 975) + Rl(t,.’li, 077_) W
t=0+1 z=maz(7,s)+1
’ 82H t,l'
XRl(t + 1,2 07 S) + Rl(t + 1, z; 877—) #[621] Rl(t7xa 9’8)

82H1 [t, ZE]

+ Rl(t+1,x; 0,7)
! da?

Rl(t + 1737; 97‘9)
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to—1
- ’ 82H2[t,{li] ) ’ ) 82H2[t,x]
+) Z Qu(t 23 0,7) —~5— Qu(t, 25 0, 5) + Q1 (¢, 2; 9a7)m
t=t1 x=max(7,s)+1 2
82H2[t, .CL’]

xQu(t+ 1,25 0,5) + Q\(t +1,7; 0,7) Qu(t,x; 0,5)+Qy(t+1,2;0,7)

8a28zz
82H2[t 7] = , 02 Hs|t, ]
Qi(t+1,2;0,8)| + > Z Qy(t, e,T)a—ngz(t,x; 0, )
t=t2 x=max(7,s)+1
’ 82H3[t,x] ’ 82H3[t,$]
+Q2(t7x, 9,7’) (92’3 aa3 QZ(t+ y L3 97 S) + Q2(t+ y L3 9,7’) aa3 82’3 QQ(t7$a 97'9)
) O? Hst
+Q,(t+ 1, x; 9,7)%@2@—}—1@; 0, s)], (4.3)
3

0 pa(22(t2, X))

KQ(T7S> = _RIZ(t27X7 977—) 022
2

R2(t27X; 078) - Q;(ti’nXu 977—)

o ts, X = & 02 Ho[t
X ¢3(?<23’ )) Q3(t3aX; 97 8) + Z Z RQ(t Z; 0 ) 82[ I]
3 t=0+1 x=maz(7,s)+ 22

82H2 [t, ZE]
82’2 8a2

to—1

/ 82[—[ t,x
+Z Z Rg(t‘l—l,l‘, 977)%

t=0 z=maz(7,s)+1

X Ra(t,x; 0,5) + Ry(t, a3 0,7) Ro(t+1,2; 0,5) + Ry(t +1,3; 0,7)

O?Hyt, x|

Ry(t,x; 0,
X Oty 0z 8(1262’2 2 . S

t3—1

XRo(t+1,2;0,s) +Z Z

t=t2 x=maxz(r,s)

82]‘[3 [t, I]
073

82H3 [t, l’]
8a3823

Qs(t+1,z; 0, 5)] , (4.4)

Q:S(tax; 077—) Q3<t7x; 97 8)

82IL[?) [ta 37]

otz d 1 . ! 1 .
72 0 Qs(t+1,2;0,s)+Qs(t+1,2;6,7)

—l—Q;(t, x; 0,7) Qs(t,z; 0,s)

’ 82H3[t, ZE]
+Q5(t+ 1, ; 0,7—)8—@%
D?p3(z3(ts, X))

Ks(r,s) = —R;(tg,X; 0,7) 922

Rg(tg, X, 9, S)

tz3—1

X—

O Hslt, x

+§j E: Rg(txe) 33[2 ]Rg(t,x;ﬁ,s)
0 z=maz(r,s)+

82 Hg [t, .ﬁE]
823 8(13

82H3 [t, .ﬁE]

+Ry(t,z; 0,7) S Do

Rs(t+1,z;0,s) + R;(t +1,z;0,7) Rs(t, x; 0, s)]

= , 02 Hy|t, x]
—i—Z Z Ry(t+ 1, x; Q,T)a—a%Rg(t—i-l,a:; 0,s). (4.5)

t=0 z=maz(7,s)+1
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o7

Using the discrete variants of line variations [30], we prove the following

Theorem 4.1 If the sets U;, i = 1,3 are open, then under the assumptions made for
optimality of the classical extremal u(t,x) in problem (2.1)-(2.4), (4.2) the following
relations

X—1X-1 211
/ (9f1 6, 7] df110, s| — . 0?H[0, ]
! Z Z” ou ) " gu “1<5>+9;mv1<x>a—@gm(x>

+2 Z rg: vy () aHl—MR1(9+ 1,2; 0,s) 95110, vi(s)] <0 (4.6)

8U1 0@1

r=xz0 |Ls=xo

should be fulfilled for all vi(z) € R", v = xg, x0+ 1,...,. X — 1, 0 € Ty = {to, to +
1, .t — 1},

X-1X-1 z1—1
8f2 8f2[9,3] . ’ @ZHQ[Q,:E]
2) TZxO g a, K2(7', s) s va(8) + I:ZIO vy () 9 vy ()
x—1
a Hy[0, x] 010, 5]
- - - . < .
+2:§;0 LE;O vy () s as Ry(0 4 1,x; 0, 5) 9, vo(5) 0 (4.7)
for allvay(x) € R, x =xg, ko + 1,...,. X =1, 0 € To={t;,t1 + 1, ..., ta — 1},
X-1X-1 ) 211
/ 8f3[9, T] 8f3 - 82H3 0 ZL‘]
2 ;;”3’(7) oy R au3 +;€O“3 —oz @)

+22 rzvé(rc)wfzg(eﬂ,x; 0, )af?’[@ .9 vs(s)| <0 (4.8)

Ous Oas Oug

r=x0 Ls=zo

for allvs(x) € R, x =xg, o+ 1,..., X = 1,0 € T3 ={ta, to+1, ..., t3 —1}.
Proof. Using arbitrariness of admissible variations of the control u(t, z) = (us (¢, ),
us(t, x), ug(t, z)), we assume

, t=0¢€T); x=ux, 1,..., X —1,

Sul(t,x) = o () 1; =T, To+ (4.9)
0, t#6;, x=uxp, x0+1,..., X —1,
ui(t,z) =0, (t,z)e D;, i=1,2.

Here, vi(z) € R", x = 9, 29+1,..., X —11is an arbitrary bounded vector-function,

€Ty ={ty, to+1, ..., t; — 1} is an arbitrary point.

By 6z*(t,x) = (0z{(t,x), 6z5(t,x), 625(t,x)) we denote the solution of problems
(3.5)-(3.6) that corresponds to special variation (4.9) of control. It follows from repre-
sentations (3.7)-(3.9) that

0, t:to,to+1,...,0; I:l'o,ZEo—Fl,...,X,
vl ofi1l0
Z R1<t,l’;0, S) fé[ ’S]U1(5)7 > 0+ 17 T = To,To + 17 "'7X7
Uy

(4.10)

025 (t,x) =
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¢ o0f1l0,
J 975t 2) = e, Qult 30, 5) f;il owts), (4.11)

\t = tl,tl + 1, ...,tg; r = Ty, ...,X,

( . af1[6,
0z5(t,x) = Zs:al;o Qa(t, ;0, s) féELl : vi(s), (4.12)

\t = tg,tg + 17 ...,tg; Tr = Xy, ...,X,

Allowing for (3.4), (4.5), (4.9) from (3.11) we get that for the optimality of classic
singular control u(t,x) = (u1(t,x), us(t,x), us(t,x)) in problem (2.1)-(2.4), (4.2) the
inequality

Zdz (ti, X) (pi(ggi’X))dz (t;, X) — —Zlg le{ 8 H[’; , 7

1=1 [t=t;—1 x=x0 Zi
% « 82Hl[t l‘] 82Hz[t,l‘] %
K O°Hilt,x] gy S a Hilt, ] .
65 <t+1,x>8—a?5zi<t+1x} —222[ 50,0
o O2Ht, 7 — ., O*Hilt,a]
T —— 12527 1 — —_— > 4.1
v (1,0 T bt 4 1,0) Lo g 2o
should be fulfilled for all vy(x) € R", x = zg, 20 + 1,..., X — 1.
Further, using representations (4.10)-(4.12), we get
X-1X-1 /
901 Zj t’UX / 8f 9,7’ /
Z5Z (t;, X) (8( ))521 (t;, X) = 23;082;001(7') é[m ] R,(t1,X; 0,71)
8 z1(t1, X / 0 29(te, X
901( 1( - ))Rl(tth 078)+Q1(t27X; 977—) SDQ( 2(22 ))Ql(t27Xa 078)
0z} 025
0?3 z3(ts, X o0fil0, s
+Q2(t3,X; 0,7) ¢3(5(23 ))Qg(tg,X; 0,3)} fl[ ] v1(s). (4.14)
23 S ouy
By the scheme given in [25, 26], we have
t1—1 X—1 X-1X-1 /
! J O*Hilt,x] ., o 0f116, 7]
;0 ; 21 (t,0) =57 — 071 (1,2) = ; ; n (M=
t1—1 X-1
. ! 82]—Il [t7 ZE] afl [97 8]
X Z Z Rl(tvxu 077—)8—2%R1(t7 T 97 S) a—ulvl(s)a

t=0+1 x=mazx(7,s)+1
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ta—1 X—1 t1—1 X—1 /
S S NOPH[ta] N v ON[0,7]
;1 ;;O% (1) =5 705 (t,2) = tzt: gvl(f) o
to—1 X-1
< , O H,lt, 0f110, s
X Z Z Q(t,x; 0,71) 822[2 ]Ql(t,x; 0,s) fé[u ]vl(s),
t=t1 z=max(T,s)+1 2 1
t3—1 X—1 t—1 X—1
. */ 82H3[t I’ * — 8f1 ]
)IPIEIIELE IRISTEY o) SRBL A
t=to x=x9 t=to r=x0
tz3—1 X—-1
/ O*Hst, 0f100, s
o I A e e ICNE(RE
t=te2 x=max(7,s)+1 !
t—1 X—1 X-1X-1 /
N ! O*H,[t, x] 0110, 7]
* Y * 1 — Y
S 3 0 By 1,0y = 3 3 0h i 2
t=to r=x9 T=T0 S=T0
ti—1 X-1
. ’ 82H1[t,$] afl[ ]
X [Z Z Ry (t,x; 0,7) 92 0a; Ri(t+1,z;0,s) B, v1(s),
t=0+1 x=max(7,s)+1
o8 SR TFRERLL I N S /s
t=to z=x0 aal 821 = = 1 8U1
t1—1
L ’ aQHl [t,ﬂf] 8f1[ ]
1 . .
[ Z Z R1<t + y s 97 7_) aalazl R1<t7 xZ; 97 3) aul Ul(s)a
t=0+1 z=maz(1,s)+1
th—1 X—1 X-1X-1
d ! O? Hyt x] afl 0, 7]
* ) 1
Z Z 025 (t,az:)—az2 a4, S(t+1,2) Z Z vy (T B,
t=t1 r=x9 T=X0 S=T0
ta—1
: b 0?Hylt, x] ‘ df1(0, s]
[Z Z Q(t, x; Q,T)le(t +1,2;0,5) Bu, v1(s),
t=t1 x=max(7,s)+1
1Xx-1 X-1X-1 /
= 8 Ht,z] ., B . 0f110,7]
1; :EZZO 6 t ! 1 ’ W522 (t’ x) N T=I(o S=T( B (T) 8U1
ta—1
. ’ 82H2[t I] 8f1 [9 8]
X t+1,2;0,7)—————Q1(t,xz; 0,s5)| ————v1(s),
[Z mZ S)HQl( ) Ganom | =ga )
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O?Hjlt, x]Q (t+1,2;0 s)] %UI(SL

tz3—1
X [Z Z Qy(t,x; 0,7 )azga%

t=t2 z=max(7,s)+1

t3—1 X—1 X—-1X-1
2%623 (t+1,2) aa38z3 sz()gvl 8u1
tz3—1
. / . 82H3[t,l’] . afl[ea 8]
X [Z QQ(t+ 1,1‘, 977_) aa3823 Q2(taxa 973) a—ul 1(8)

t=t2 x=max(7,s)+1

X-1X-1 3f197'

t1—1 X—1

22(521 (t+1,x 82 1t+1,z) szl 0,

t=to T=x0 T=Z(Q S=X0
t1—1

— : O°Hy [t of:10

Z Z R1<t+ 171:’ 97T>$Rl(t+ 17$a €73> fé[ ’S]Ul(s)a
t=0 z=maz(7,s)+1 “ th

to—1 X—1 X-1X-1

a HZ[tax] afl

t=t1 r=x¢
2
O°Hlt, 2] Qa(t + 1,15 6, s)] 8%5,8] v1(s),
1

th—1
[Z Z Qll(t +1,2;0,7) da

t=t1 x=max(7,s)+1

t3—1 X—1 X—-1X-1
82H3[t,1'] 2 : 2 : afl
E E (5 t + 1 a—ag t + 1 Q? Pt 'Ul au1

t=to x=x9

[3 )ng(t—F 1,z; 0, S)] af(;gi, 5]1)1(8).

Z Z Q;(t—l—l,:r; 0,1 Da

t=t2 x=max(7,s)+1

Further, on the basis of discrete analogy of Fubini theorem (see [20, 28, 29]), we get

ti—1 X—1 X—1[X-1
S « 82H1[t7'r] * / 82H1[9,$]
0z (t+1,2) = Z Z%@)W&(H'Lf; 0,s)

tzt:o JZ;O 5”1 (t7 Jj) aulaal 1 ==
0116 5] ==, 2H [0, .
ou, Ul(s) - :;xo Szx;rl ’01<S) Ouy Oay Rl(t +1,s; 0733)
DL (4.16)

aul
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Taking into account relations (4.14)-(4.16) and denotation (3.10) in relation (4.13)
we arrive at inequality (4.6).
Now, we introduce the special variation of the control u(t, ) by the formula

ui(t,x) =0, (t,x)e D;, i=1,3,

ve(x), t=0€Ty; x=1x9, 20+1,..., X —1, (4.17)
us(t, x) =

0, t#6; xr=x9,20+1,..., X —1.

Here, vy(x) € R, x = x9, g + 1,..., X — 1 is an arbitrary r-dimensional bounded
vector-function, 6 € Ty = {t1, t; + 1, ..., to — 1} is an arbitrary point.

Denote by dz*(t,z) = (02 (t,x), 6z5(t,x), 25(t, z)) the solution of problems (3.5)-
(3.6) that corresponds to the special variation (35) of the control.

It follows from representations (3.7)-(3.9) that

325 (t,x) =0,
O, t:tl,t1+1 9 ZL':.Z'[),ZEO—{—L‘..,X,
oz3(t,x) = ¢ ==l 0 fQ[e ] (4.18)

Z Rg(t, €, 9, )

s), t>0+1,
S=xg 8u2 2()

0
dz3(t, x) ZQg (t,x;0,s) f;g@ i va(s), t=to,ta+1,...,t3; x=1x0,....,X.

s=xg

Allowing for (3.4), (4.17), from (3.11) we obtain that for optimality of the classic
extremal u(t,z) = (uy(t, x), us(t, x), us(t,x)) in problem (1)-(4), (17) the inequality

gdz;‘/ (ti,X)(aQ%(gz(?’X))d “(ti, X) — —;Lz;ljz;:{éz (t,z) ('3 H [t 7]

x0z7 (t,x) + (522‘/ (t,m)%ézﬂt +1,2)+ 5,2;" (t+ 1,1:)%525(25,1;)

+5z;‘/(t+1,x)82g+cg’x]5,z;‘(t+l x} —22:2:[ , %52*@ )
oul (t, x)%az; (t+1, x)} - le v;(x)yg;u[;x]vg(m) >0, (4.19)

should be fulfilled for all vy(x) € R", x = xg, 20+ 1,..., X — 1.
Further, using representations (4.18), we get

X-1X-1

WZ(Zl(tuX) an ] ! .
Zdz (ti, X) e 027 (1, X) =) )yl . Ry(ts, X; 0,7)

T=x(9 S=T0

0%p3(23(ts, X))
D23

2(8). (4.20)

3 pa(2a(t2, X))

RZ(t27X; 07 S) + Q;,(t&X) 077_)
023

Qg(tg, X, 0, 8):|

Jfs]0, s]
X 8uQ
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to—1 X—1 t1—1 X—1 ’

0" Hslt, x| ., . O0f,l0,T
S5 o ) P s 0y = 373 g 2201
t=t1 z=x0 023 r—to s—z0 Jug

{Z AT Py e,s>] )

t=0+1 z=maz(r,s)+1

%Z_IXZ_I(SZ*/@ x)w X X-1X- 1U af20 ;
3 \" 8232) 2 au2
B T=Zp $=X0
t3—1 X_1
: O Hsll, dfsl0, s
X Z Z Qs(t,x; 0,7) 3[ ]Q3< t,z; 0,5) %02(3)’
t=to2 x=max(7,s)+1 5
to—1 X—1 o
) 2 f,[0,7]
1 =

to—1 X-1
. / ) 82Hg[t,l‘] ) 8f2[6’, S]
X |: Z Z R, (t, z; G,T)WRQ(IS + 1,25 0, 5) 5 v (),

to—1 X—1 X-1X-1
5 (t 4+ 1,0) 212l 7l oy(ry 2L2l0: 7]
t=t1 x=x9 ’ , 8@2 822 T=x0 S=x0 2 8U2
to—1 X-1
. / 82H2[t7 $] 8f2 [97 8]
X |:Z R2(t+17$7 977—)WR2<taxa 973) au2 UQ(‘S)’
t=0+1 z=maz(1,s)+1
tz3—1 X—1 X-1X-1
: ' Ol 3597
023 (t,x)————02z;(t + 1,
2 2 U )T G st L) = 3 2wl

t=t2 z=max(7,s)+1

t-1 GRHL 1, 870,
[Z Z Qs(t,w; 0,7) "= D220003 Qs(t + 1,20 3)] Dty va(s),

t3—1 X—1

8H3[t$ pu iy 8f97
;;;:Zxoé t+1 ZE 8@3823 szszzovz EUQ

= , 9?H. BIAL
[Z Y Qe e,ﬂﬁ@g(t,x; 9,s>] OB, (o),

t=t2 c=max(7,s)+1

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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to—1 X—1 X-1X-1

0 Holt, a] an [0, 7]
L) —F5— 1,
225 (TR L = 3 3
to—1 X-1
Rlz@"‘ L, x; 977)8%“[]1%(25—1—1 z; 0,s)
t=0 z=max(T,s)+ 2
dfs]0, s
X]Cg[—w]vz(S), (4.27)
ts—1 X—1 o1 X1
N | Hilt, a] L 2L6.7)
L) —F5— 1,
tzmzmd (t+ JaT 0 (t+1,2) T_ZIOZ% '
t3—1 9
/ 0°Hslt,
Z Z Qs(t +1,z; ‘977)%623(15%— 1,x;0,5s)
t=t2 z=max(7,s)+1 as
0150, s
Xf;[—uz]”?(s)‘ (4.28)

Using the discrete analogy of Foubini theorem [23], we have

to—1 X—1

);xzmo(s W&ZQ(t‘i‘ 1,:1}')
X-1[ X-1
8 HQ[@ S] . afg[e,x]
- Z Z BUQ s Ro(t+1,s; 0, x) o, vo (). (4.29)

rx=x09 Ls=xz-+1

Taking into account identities (4.20)-(4.29), and also denotation (4.4) in inequality
(4.19), we arrive at relation (4.7). Inequality (4.8) is also proved by the appropriate
arguments. This completes the proof of the theorem.

Remark. Similar symmetric results are obtained in the case when the right-hand
side of system (2.1) has the form

filt, @, 2, ai, b5, u;) = Ai(t, ) ai + Qi(t, x, 24, by, u;).
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A REMARK CONCERNING PECULIARITIES OF TWO MODELS OF CUSPED
PRISMATIC SHELLS

Jaiani G.

Abstract. Comparative analysis of peculiarities of setting of boundary value problems are
carried out for cusped prismatic shells within the framework of the zero approximation of hi-
erarchical models when on the face surfaces either stress or displacement vectors are assumed
to be known.
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linear elasticity, degenerate and singular elliptic and hyperbolic equations and systems.
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Let Oz125x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the zsz-axis vertical. The elastic body is called a prismatic
shell if it is bounded above and below by, respectively, the surfaces (so called face
surfaces)

(+) )
x3 = h(r1,72) and x3 = h (z1,x2),
laterally by a cylindrical surface I' of generatrix parallel to the x3-axis and its vertical
dimension is sufficiently small compared with other dimensions of the body.

In other words, the 3D elastic prismatic shell-like body occupies a bounded region

Q with boundary 02, which is defined as:

x3 A

0
Fig.1. A cross-section of a typical non-cusped prismatic shell

X

3 ()
h(v)
*) it
T _ ‘h)%
Ol () v

T
Fig.2. A cross-section of a blunt cusped prismatic shell
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X 31& (+)
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Fig.3. A cross-section of a blunt cusped prismatic shell (¢ €]0, 7)

X 31& (+)
A h(v)
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Fig.4. A cross-section of a blunt cusped prismatic shell (¢ = 0)
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Fig.5. A cross-section of a blunt cusped plate (¢
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Fig.6. A cross-section of a blunt cusped prismatic shell (¢ = 7)
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Fig.7. A cross-section of a blunt cusped prismatic shell (¢ €]7,7])
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Fig.8. Non-cusped edges Fig9. o =7
(*)
» T >
(i) ‘xz (_K x2
Fig.10. $ <ep<m Figll. 2 <e<m
) (+)%
T T
(f)l\ x, (%) X,
Fig12. p =3 Fig.13. p =3
) +
Ty — ‘ (T)
¢) Xy (-)\\ xrz
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Figl4d. 0 <p < 3 Fig.15. 0 <p < 3
() )
O~ X 0 X
T 2 T
Fig.16. 0 < p<m Fig.17. ¢ =0
(+)
T
13
() 2
T

Fig.18. Wedge
Typical cross-sections of prismatic shells

)
xXy=h(x,X,)

- o
xXy=h(x,X,)

X

Fig.19. Prismatic shell of constant thickness
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()

x3=h(x,x))

Fig.21. A sharp cusped prismatic shell with a semicircle projection

)
xy=h(xx,)

-_—
~—

)
xy=h(x,x,)

Fig.22. A cusped plate with sharp +; and blunt v, edges, v = 11 U 7

)
x3=h(x,.x,)

=1, 0

x3=h(x, x,) =0

Fig.23. A blunt cusped plate with the edge o

(=) (+)
Q= {(33'1,.%’2,%3) c R3 : (331,33'2) cw, h (513'1,1'2> <z3< h (%1,1’2)},

where @ := w U dw is the so-called projection of the prismatic shell Q := QU 99 (see
Figures 1-18, where typical cross-sections of prismatic shells with an angle ¢ between
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(+) (=)
tangents 7' and T are given and Figures 19-23); v = 0w and 0f2 denote boundaries

of w and €2, respectively; R" is an n-dimensional Euclidian space.
In what follows we assume that

(%)
h (71, 15) € C*w) N O(@),!

and
) ) >0 for (x1,79) € w,
2h(w1,w0) i= h (21,22) = h (21,72) { >0 for Exi ng € Jw

is the thickness of the prismatic shell Q at the points (x1,25) € @ = w U Ow. max{2h}
is essentially less than characteristic dimensions of w. Let

_ (+) (=)
2h(x1,z2) := h (z1,22) + h (1, 72).

In the symmetric case of the prismatic shells, i.e., when

(=) (+) . —
h(x1,22) = — h (21,22), ie., 2h(xy,22) =0,

we have to do with plates of variable thickness 2h(z1,x2) and a middle-plane w (see
Figures 22, 23). Prismatic shells are called cusped ones if a set 7y, consisting of
(x1,22) € Ow for which 2h(zq,22) = 0, is not empty. For such prismatic shells 0f
may be non-Lipschitz boundary (see Fig. 22)

Fig.24. Comparison of cross-sections of prismatic and standard shells

Fig.25. Cross-sections of a prismatic (left) and a standard shell with the same
mid-surface

Distinctions between the prismatic shell of constant thickness and the standard
shell of constant thickness are shown on Figures 24 and 25. The lateral boundary of
the standard shell is orthogonal to the middle surface of the shell, while the lateral

1C(w) denotes a class of continuous on & functions; C?(w) denotes a class of twice continuously
dofferentiable functions with respect to x1, 2, (21,22) € w.
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boundary of the prismatic shell is orthogonal to the projection of the prismatic shell
on xr3 = 0.

In what follows X;; and e;; are the stress and strain tensors, respectively, u; are
the displacements, ®; are the volume force components, p is the density, A and u are
the Lamé constants, d;; is the Kroneker delta, subscripts preceded by a comma mean
partial derivatives with respect to the corresponding variables. Moreover, repeated
indices imply summation (Greek letters run from 1 to 2, and Latin letters run from 1
to 3, unless stated otherwise).

I.Vekua’s hierarchical models for elastic prismatic shells are the mathematical mod-
els, which were introduced by I. Vekua [1, 2], and which were constructed by the mul-
tiplication of the basic equations of linear elasticity
Motion Equations

Xijj + @i = ptiy(z1, 22, 03,), (21,72,23) € QCR?, t>1y, i=1,23;
Generalized Hooke’s law (isotropic case)
Xij = )\0% + 2#6@', Z,] = ]_, 2, 3, 0 = €44,
Kinematic Relations
1 .
Cij = 5(“2&1 +uy;), 4,5 =123,
by Legendre polynomials P,(ax3 —b), l =0,1,2,..., where

1 E(l’l,l'g)

a(xl,xz) = m, b((lfl,$2) = m,

- (+)
and then integration with respect to x3 within the limits h (x1,25) and h (21, x2).
By these calculations in Vekua’s first version on upper and lower face surfaces stress-
vectors are assumed as prescribed, while values of the displacements are calculated

there from their (displacements’) Fourier-Legendre series expansions on the segment

(=) (+)
x3 € [h (x1,22), h (:1:1,:1:2)] and vice versa in his second version. So, we get the

equivalent infinite system of relations with respect to the so called I-th order moments

+)

h (z1,x2)
(Xijla €ijs Uu)(ﬂfl,ifz,t) = / (Xij7 €ij, Ui)(ﬂfl,ﬂfz,%,t)
<?(:101,962)
x  Paxs —b) dzs. (1)

Then, having followed the usual procedure used in the theory of elasticity, we get an
equivalent infinite system with respect to the [-th order moments u;. After this if we
assume that the moments whose subscripts, indicating order of moments are greater
than N equal zero and consider only the first N + 1 equations (for every i = 1,2, 3)
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in the obtained infinite system of equations with respect to the [-th order moments u;
we obtain the N—th order approximation (hierarchical model) governing system with

N . N .
respect to u; (roughly speaking u; is an “approximate value” of uy).
In the zero approximation of I.Vekua’s hierarchical models of shallow prismatic
shells the governing system has the form

0
M[(hvaoﬂ>,a + (hvﬂoﬂ),a} + )‘(hU'YUﬁ>ﬁ =—Xpg+ ph@ﬁov p=12 (2)

0
1(hvso.a)sa = —X3 + phisg, (3)

where vy == %2, k = 1,2, 3, are unknown so called weighted “moments” of displace-
ments,

0 + 1y () — 4y (=)
X; = 05y = Gughoo + (<1 { — gy + a)jh,ai| +Pjo

= Q(pj\/l + <(h+,)1>2 + <(h+,)2>2

(=)\2 (=)\2 _
+(_1)TQ()\/1 + (hﬂ) + (ha2> + (I)j07 .] = 1a 2737 r= 07N
n'j

By Q@) and @, components of the stress vectors acting on the upper and lower
nj nj

surfaces, respectively, are denoted. By ®;, we denote the zero order moments of the
components of the volume forces.

When on the face surfaces displacements are prescribed for N = 0 approximation
the governing system has the following form

1t [(hvao) 5 +(hvgo) a ],ﬁ + A[(hvso) 1y ],a

—(Inh) 5 {A0ap(hvso) 5 + 11 [(hVa0).5 +(hvgo)a ] }

+21 Vog p(1, 2, t) + A VUpp o(x1, T2, t) (4)
—(Inh) g [ANoapWir(x1, x2,t) + 20 VUop(z1, 22, 1))

+D0(x1, 20, t) = phiny, a=1,2;

1(hvso),ps —(Inh),g p(hvso) 5 +21 Wag (21, 22, ¢) (5)
—2u(Inh),s U35(x1, 2,t) + P30(1, T2, 1) = phiis,

where

+ —_
Uss(z1, T2, t) i= us(z1, 22, h,t) —us(z1, 22, h,t),

(=) (=) (+) (+)
Q\IIZ'IQ (LUl,.CL’Q,t) =U; | 1,29, h ,t h“@ —U; | 1,29, h ,t h“g

(+) (+) (=) (-) )
—ug | ©1,72, h ,t | ho tug (21,22, h,t | hy fori=a, a=1,2;

+ (+) ) |
ug | 1,22, h,t| —ug| x1,22, h,t| for i =3.
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Let now
2h = hozs, ho, k = const >0, xs > 0. (6)

In the static case, for deflections from (3) we get

0
p(hvsoa).a = —Xs, 2 > 0.

Assuming that ugy depends only on x5 (i.e., we consider cylindrical deformation)

0
(T5030,0).0 = =20 "hy ' X,
whence,
K 11—k
V30,22 + S Us02 = —2p" hy xy " X, (7)
2
The general solution of the latter has the form

z2

v = 206 = 1)yt [ (s - €77) Kale)dg ©)

0
T3

terxy ey, k#1, ¢, ¢y = const;

T2

0
V39 = Q,U_lhal /(ln{ —In I‘Q)Xg(g)dg + In To + Co, (9)

0
Tg

k=1, 29¢€0,I[, c1, c; = const.
Hence, under the evident assumption on )0( 3, it is easy to conclude that on the boundary
7o = 0 in the class of bounded functions displacement “° can be prescribed when
0 < k < 1, while for k > 1 the boundary x5 = 0 should be freed from the boundary
condition (BC). Boundary value problems (BVPs) and initial boundary value problems
(IBVPs) for the system (2), (3) and in the general N-th approximation are studied
sufficiently well in the case of cusped prismatic shells (see [3-18]). For prismatic cusped
shells the system (4), (5) is not studied at all. If we consider the case (6) for equation
(5), it is easy to see that the systems (2), (3) and (4), (5) qualitatively differ from each
other.
In the static case, from (5) we get

11(hvso),p5 —(In k)5 p(hvso) 5 +20 Wag 5(21, 22) (10)
—2u(Inh),s Uss(x1, x2) + Pso(z1,22) = 0,
ie.,
hvso g + 2h gvso s + h ggvso — (Inh) g(hvse g + h guso)
= —2W355+2(Inh),s Vss — ' Dyp.
Therefore,

hvgoﬂﬁ + hﬂvgoﬁ + [h”gg — (ln h)ﬂhﬁ]’l)go
= —2W355+2(Inh),s Vss — p ' Psp. (11)



74 Jaiani G.

Assuming that ®3p € C'(w), us, =0, a = 1,2, and v3y depends only on s, taking into
account (6) and dividing the equality (11) on 222572, from (11) we get

$3U30722 + KTals00 — KU30 = 2h51[—2x§_“‘1132,2 + 2Ky " Way — ,u_lxg_“@go]. (12)

The last equation is well-known Euler equation and, since k+1 > 0, its general solution
has the form

2

e Rl (G (13)

2 2

V3o =

0
T2

X [2‘1132,2(5) — 2k M Wgs(€) + /flq):so} dg§
+2h5101x2 + 2h6162x2_“, 0< xg < L,

where c¢; and ¢y are arbitrary constants.
The last results can also be achieved as follows: if we rewrite (5) with respect to

U3o
1i(uzo),ps — (I h),g p(uso),s = —2uWas5 + 2u(Inh),s Was — P
and take into account (6) we get

K K _
Us0,22 — ——Us02 = —2W39 9 + 230—‘1’32 — Dy (14)
2 2

Its general solution has the form

2

s = e+ 17 [ A€ - GUEE + ek 4 (15)
where 5
W(E) 1= 2Wi,5(€) — f“wf) + i g (€).

Hence, since in the zero approximation it is assumed that

1 1
wi(xq, xg, 23, 1) = ﬁuio(l’l,l’%t) =: 5%0(%175(32715)7

we obtain (13).
Note that, in view of (15),

Xaoo(z2) = p(hvsg),2 +2uWs0(xs) = pruge s + 2uVse(22)

= pea(+ 1)af = o [ €V + 2uan(a).

Tg



A Remark Concerning Peculiarities of .... 75

(+) =)
Clearly, if b (SL’Q) = hliL’g, h (LCQ) = hgl'g, hl, hy = const, hi > ho (ho = hy — hg),

lim ngo(l’g) = H lim <2(L’2\I/3272 — 2&@32 + ,u_lxgq)ggo) + 2,U, lim \1132
xo—0 K x2—0 x9—0

_2p

= lim .’]72\1/3272
K x2—0
(0 if k>1 and ug; uze = O(1), 9 — 0;
(=) (+)
KZ(KZ — 1)<d1h2 — dlhl) if 0<k<1 and Ug,2 = O(l), Tog — O,
24 () £) L& =)
= uz(z1, 2, h (22)) = ¥ (21, 22) 75", xhglo Y (21,29) = d 13
O* (x5 = dor(k — 1)y, 2 —0, f 0<rk <1 and uzo = O(1),
(&)
lim0u3(x1,x2, h (C(]Q)) = do 7é 0.
\ r2—

Since under assumption of boundedness of 3D wug, all its moments (because of bound-
edness of the integrand in (1) and tending of integration limits to 0 as x5 — 0) vanish
at cusped edge, in particular

UgQ(O) =0

should be fulfilled. It will be achieved if in (15) we take

crm ~n 17 [ €[20na(€) - 206 M0l + uRw(O] 6, (10

Tg

This is easily seen because of

lim 25* / ¢n [2%272(5) — k6T Wy (€) + u*@go(g)} ¢ = 0.

x9—0

T2

If (16) is violated, then, by virtue of (15), taking into account the last limit, u30(0) # 0
and from (13) it follows that wvsy is unbounded as xs — 0, which contradicts the
boundedness of us.

Applying the general representation (13) of v3g, let us analyze the setting of bending
BVPs on [0, L].

If ¢y has the form (16), then, by virtue of (13), (15),

T2

22— (6 +1)7 [ (@5*E - W(e)de |

0
Ta

. . 0 .
lim v3p = lim - = lim
z2—0 z2—0 70335 x2—0 hoZL‘g

“2(s 1) M@y ey — )W () — 2 [ €U(E)de

Tg

= lim —
x2—0 khoxs
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= i — "(&)d
:rleO Iihol’ /§ Jdt
Therefore,
Jim, vso(2) —O—T%innoxz / SIS (17)

if ¥ is such a function that there exists the last hmlt.
Thus,

v3o(2) = 2hg terwy + 2hg H(k 4+ 1)ty "
/ vl —ay | v "

is bounded near zo = 0 under some restrictions on ¥ and choosing appropriately c¢; we
can satisfy either BC

v30(L) = v (19)
or BC

Xso0(L) = pu(hvs0) 2 g1 + 20Vs2(L) = pugole,—1 + 20 Ws2(L) = X (20)

Namely, correspondingly,

=2l el = (e ) 2 [ [erwoay e

0
Tg

and

= (L) L Xy (L) [ €U - 2040 L V(D). (22)

Under some restrictions on ¥ from boundedness of us there follows boundedness of
v3o € C2(]0, L) N C(]0, L]), which given by (18) with (21) is a unique solution of the
BVP (12), (19), when x > 0. Thus, actually we have solved the Keldysh type BVP.

If volume forces and the displacement on the face surfaces are equal to zero, i.e.,
®30 =0, U3y =0, it is natural to set BC on the edge x5 = 0 as

U30(0) =0 (23)

since the last follows from (17).
(18) with (21) gives a unique solution of BVP (12)42, (23), (19), of the form

L
Vs
U3o($2) = 70932

2(12)¢ means homogeneous equation (12).
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This BVP is not correct since by inhomogeneous BC (23) it will not be solvable. In
order to get correct BVP, BC (23) should be replaced by boundedness of the solution,
so, we again arrive at the correct Keldysh type BVP.

As it follows from the general representation (8), (9) of the solution vsg of equation
(7) analogous BVP for equation (7) (the model, when stress vectors on the face surfaces
are prescribed) is uniquely solvable only if 0 < xk < 1, moreover, the non-homogenous
BC (23) is admissible in contrast to the previous model (see (12)). When x > 1 under
condition of boundedness of v3q it is possible to satisfy only one BC.

Remark. In the case under consideration under assumption of boundedness of 3D
displacements it follows from (14), (15) that

K
U30,22 — $—U30 =0, (24)
2

1
Uso = Cll’z—Hi + Cs.

Evidently, BVP (24),
uz0(0) = gy, uso(L) = up,

is uniquely solvable provided that u3, and u%; are assumed to be known. From 3D BVP
in displacements uf; is known, while uJ, = 0 and cannot be arbitrarily prescribed. If
nevertheless we find u3, to be assigned, displacement vzy will become unbounded as
x9 — 0, which will be nonsense since co cannot be approximate value of 0. While zero
can be considered as approximate boundary value since we consider small deflections.
In such sense we could consider (23) as BC when W3, # 0.

Now, let us analyze the possibility of prescribing the stress vectors on the prismatic
shell edges.

Since

X320($2) = HuUszp2 = §,Mho($gv3o)72 )

by virtue of (15),
X320(I2> = ,u(l + K)Clxg.

The last means that
X320(0) — 0

Hence, X399 can be arbitrarily prescribed only at non-cusped edge x5 = L.

For the homogeneous equation (12)g besides the BC (23) we can set the BC (20),
i.e., on the edge x5 = L the stress vector is given.

(18) with (22) gives a unique solution of BVP (12), (23), (20) of the form

V30 = —————To.
07 pho(k + 1)LF 7

Considering (8) we easily conclude that analogous BVP (7)0,(23),(20), is uniquely
solvable for the model (7), provided that 0 < x < 1 (in this case also the non-
homogenous BC (19) is admissible). For x > 1 from (8), (9) it is easily seen that
only bounded solution is a constant and if XL, # 0, BVP (7)o, (23), (20), is not
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solvable. If XL, = 0, then a solution of BVP (7)g, nonhomogeneous (23), (20), is a
constant given at xs = 0.

Conclusion. In the case of the first model [see (7)] the Dirichlet problem is correct
for 0 < Kk < 1 and the Keldysh problem is correct for x > 1, while in the case of the
second model [see (12)] the Keldysh problem is correct for x > 0.
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ON EFFECTS OF CONSTANT DELAY PERTURBATION AND THE
DISCONTINUOUS INITIAL CONDITION IN VARIATION FORMULAS OF
SOLUTION OF DELAY CONTROLLED FUNCTIONAL-DIFFERENTIAL
EQUATION
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Abstract. Variation formulas of solution (variation formulas) are proved for a controlled non-
linear delay functional-differential equation with the discontinuous initial condition, under
perturbations of initial moment, delay parameter, initial vector, initial and control functions.
The effects of delay perturbation and the discontinuous initial condition are discovered in the
variation formulas. The discontinuity of the initial condition means that the values of the
initial function and the trajectory, generally, do not coincide at the initial moment.

Keywords and phrases: Controlled delay functional-differential equation; variation for-
mula of solution; effect of delay perturbation; effect of the discontinuous initial condition.

AMS subject classification (2000): 34K99.

1. Introduction

Linear representation of the main part of the increment of a solution of an equation
with respect to perturbations is called the variation formula. The variation formula
allows one to construct an approximate solution of the perturbed equation in an ana-
lytical form on the one hand, and in the theory of optimal control plays the basic role in
proving the necessary conditions of optimality [1-11], on the other. Variation formulas
for various classes of functional-differential equations without perturbation of delay are
given in [6,10,12-14].Variation formulas for delay functional-differential equations with
the continuous and discontinuous initial condition taking into consideration constant
delay perturbation are proved in [15] and [16], respectively. Variation formulas for
controlled delay functional-differential equations with the continuous initial condition
taking into consideration constant delay perturbation are proved in [17]. In this pa-
per the variation formulas are proved for the controlled delay functional-differential
equation

#(t) = f(t, (1), z(t = 70), uo(t))

with the discontinuous initial condition

z(t) = @o(t),t € [too — 0, too), (too) = Too

under perturbations of initial moment ¢qy, delay parameter 7y, initial vector xq, initial
function g (t) and control function wug(t).

2. Notation and auxiliary assertions

Let R" be the n-dimensional vector space of points z = (z', ..., 2™)T, where T' means

transpose; suppose that O C R and V C R}, are open sets. Let the n-dimensional
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function f(¢,x,y,u) satisfy the following conditions: for almost all ¢t € T = [a, b], the
function f(t,-) : O x V' — R" is continuously differentiable; for any (x,y,u) € O* x V,
the functions f(¢,x,y,u), fz(-), fy(+), fu(:) are measurable on I; for arbitrary compacts
K C O,U C V there exists a function mg y(-) € L(I,]0,00)), such that for any
(z,y,u) € K* x U and for almost all ¢ € I the following inequality is fulfilled

Further, let 0 < 7, < 7» be given numbers; Let £, be the space of continuous functions
@: Iy — R}, where I} = [7,b], T =a—T1; 0 ={p € E,: p(t) € O,t € I} is a set of
initial functions; let E,, be the space of bounded measurable functions u : I — R] and
let Q = {u € E, : clu(I) C V} be aset of control functions, where u(I) = {u(t) : t € I'}
and clu([l) is the closer of the set u(7).

To each element p = (ty, 7,29, p,u) € A = (a,b) X (11,73) X O x ¢ x ) we assign
the controlled delay functional-differential equation

(t) = f(t,x(t), z(t — 7),u(t)) (2.1)

with the initial condition

The condition (2.2) is said to be the discontinuous initial condition since generally
(o) # p(to).

Definition 2.1. Let p = (to, 7,20, 9, u) € A. A function z(t) = z(t; u) € O,t €
[7,t1],t1 € (to, D), is called a solution of equation (2.1) with the initial condition (2.2) or
a solution corresponding to p and defined on the interval [7, ] if it satisfies condition
(2.2) and is absolutely continuous on the interval [to, ;] and satisfies equation (2.1)
almost everywhere on [tg, t1].

Let p10 = (o0, 7o, Zoo; Yo, o) € A be a fixed element. In the space E,, = R%O X R x
R} x E, x E, we introduce the set of variations:

V = {p = (0ty, 67, 6z, 09, 6u) € E,, — o = | 0ty |[< o, | 67 |< @, | 9z |< v,

k k
i=1 i=1
where 0p; € E,—o,0u; € E,—up,t = 1, k are fixed functions ; o > 0 is a fixed number.

Lemma 2.1. Let xy(t) be the solution corresponding to o = (too, To, To, Lo, Uo) € A
and defined on [7,t10],t10 € (too,b) and let Ko C O and Uy C V be compact sets
containing neighborhoods of sets wo(I1) U xo([teo, t10,]) and clug(I), respectively. Then
there exist numbers 1 > 0 and §; > 0 such that, for any (¢,0u) € [0,e1] X V, we have
to+edp € A. In addition, a solution x(t; po+edp) defined on the interval [T,t10+61] C
I, corresponds to this element. Moreover,

{ZL‘(t’#’O + 56”) € KOat € [%71’-10 + 51]7 (2 4)

Uo(t) + €5U(t) € U(),t el
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This lemma is a result of Theorem 5.3 in [18, p.111].

Remark 2.1. Due to the uniqueness, the solution x(¢; 1) is a continuation of the
solution x¢(t) on the interval [T, %19 + d1]. Therefore, in the sequel the solution xy(t) is
assumed to be defined on the interval [7,t19 + 01].

Lemma 2.1 allows one to define the increment of the solution xq(t) = x(¢; uo) :

{Am(t) = Au(t;edp) = x(t; po + edp1) — zo(t),

2.5
(t7576:u) € [7:77510 + 61] X [0781] X V ( )

Lemma 2.2. Let the following conditions hold:

2.1. too + 10 < t10;

2.2. the function po(t),t € Iy is absolutely continuous and the function ¢o(t) is
bounded;

2.3. there exist compact sets Ko C O and Uy C V' containing neighborhoods of
sets o(J1) U xo([too, t1o]) and clug(I), respectively, such that the function f(t,z,y,u)
is bounded on the set I x K2 x Up;

2.4. there exists the limit

lim f('lU,Uo(t)) = f()_’w = (t,ﬂf,y) S (avtOO] X 027

wW—W,

where wy = (too, oo, Pol(too — 70)). Then there exist numbers o € (0,e1] and 09 € (0, 1]
such that
max | Az(t) |< O(edu)? (2.6)

tE€[too,t10+02]
for arbitrary (e,0p) € [0,e3] X V=, where V- = {ou € V : §tg < 0,07 < 0}. Moreover,
Ax(to) = 5[5% — fo_éto] + o(edp). (2.7)

Lemma 2.3. Let the conditions 2.1-2.3 of Lemma 2.2 hold, and there exists the
limat
lim f(wau()(t)) = f0+7w = (t,x,y) € [t()Oa b) X 02'
w—wo
Then there ezist numbers o € (0,e1] and 09 € (0,81 such that the inequality
max | Az(t) |< O(edp), (2.8)

te(to,t10+02]

is valid for arbitrary (e,0u) € [0,e2] X VT, where to = tog+ote, VT = {ou € V : §tg >
0,07 > 0}. Moreover,

Au(ty) = 2|0z — f Sto| + o(zp). (2.9)

Lemmas 2.2 and 2.3 can be proved in analogy to Lemma 2.3 (see [15]).

3Here and throughout the following, the symbols O(t;edu), o(t;edu) stand for quantities (scalar or
vector) that have the corresponding order of smallness with respect to £ uniformly with respect to ¢
and dp.
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Lemma 2.4. Let the conditions of Lemma 2.2 hold. Then

t10+902
a(too + 7o, tio + 02;€0p) = /

too+70
< of=dp), (2.10)

for arbitrary (g,0p) € (0,e9] X V=, where 7 = 19 + €67,((+) € L(J,[0,0)), about e,
and 6y see Lemma 2.2.

Proof. It is obvious that t — 7 > too and t — 79 > too for t € [teo + To, 10 + Oa).
Therefore,

¢(t) [\Ax(t ) — Azt — TO)\] dt

t10+02 t—1
a(too -+ To, o + 025 2001) < / C(t)[ /t |Ax(g)|d§}dt

too+70 —70

- / ] / ooy ar

00+70 —T0

where
0(&:eop) = [f(& 20(§) + Ax(§), wo(§ — 7) + Az(§ — 7), uo(§) + £du(§))

—f1Ell; f1€] = (&, 20(§), 0(§ — T0), uo(§))

see (2.5).
a) Let oo + 219 < t19 and €9 € (0, e;] be so small that ¢y + 27 > too + 70, V(e,dp) €
(0,e5] x V~, then we have

a(too + 7o, t1o + 025 601) = aultoo + To, to + 27501) + ato + 27, too + 270; €011)

+a(tog + 270, t1o + d2;€01).
The function 6(&;edpu) is bounded (see the condition 2.3 of Lemma 2.2), therefore

a(to + 27, to + 270;e01) < o(edp).

We note that there exists L(-) € L(1,[0,00)) such that

|f(t, 21,y u1) — f(E, 22,92, up)| < L(t)<|5’71 — To| 4 [y1 — o] + Jur — U2’)>
le -[7 (xzaylauz) € Kg X U07'i = 17273'
It is not difficult to see that
a(too + 7o, t1o + 925 601) < v (too + 7o, to + 275 01) + o(edp)

+C¥1(t00 —|—27'0,t10+52;€5u), (211)

where

t//
ot t'50) = [ ((Bas(tsin)dr, aalticop)
t/
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- / T LO{IAT(E)] + frol€ — 7) — 0l — )| + [Aa(§ — )] + eldu(e) |}

—70

Ift e [too +7'0,t0 + 27’] and 5 S [t — To,t — 7'] then f > too,f —7 < t0,€ — 70 < .
Therefore,

[Az(§)] < O(edp), [2o(§ = 7) = 20(§ — 70)| = l@o(§ — ) — ¥o(§ — 70)]

_ /t  gol6)]de = O(edp), |A(e — )] = eldele — 7). (2.12)

-
Thus,
ai(too + 7o, to + 275 01) < o(edp). (2.13)

Further, if t € [too + 270,t10 + 2] and £ € [t — 79,t — 7| then & > tog + 79, — 7 >
too, & — To > tog. Therefore,

t—1

A2(6)] < O(ebu), Jol€ — 1) — wo(€ — )] = / 0 (€)de

t—T10

= [ 1fl€llds = Otedn. (e - )] = Olet)

0
Consequently,
Oél<t00 + 27’0, th + 52; 65#) S o(eé,u). (214)

From (2.11) by virtue (2.13) and (2.14) we obtain (2.10).
b) Let tgo 4+ 270 > t10 and, 5 and Jy be so small that tog + 27 > t19 + 2. It is clear
that

a(too + To, tio + 02560 p) < o (too + To, tro + O2;€01).

Ift € [too + 79,10 +5Q] and 5 c [t — To,t — T] then f > t00,£ -7 < to,g — 19 < 1p.
Therefore,
a1 (too + 7o, t1o + 02;€01) < o(edp)

(see (2.12)). Lemma 2.4 is proved.
Lemma 2.5. Let the conditions of Lemma 2.3 hold. Then

t10+02
/ ()| 8at — 1) — Aa(t — 7o) dt < ofesp)
to+71
for arbitrary (e,0u) € (0,&] x V.

This Lemma can be proved in analogy to Lemma 2.4.

3. Formulation of main results

Theorem 3.1. Let the conditions of Lemma 2.2 hold.Moreover, there exits the
limat

lim [f (wy, uo(t)) — f(we,uo(t)] = fi,w; € (a,to + 0] x Oi = 1,2,

(w1,w2)—(wo1,wo2)



On Effects of Constant Delay Perturbation and the ....

85

where

wor = (too + 7o, To(too + 7o), Too), Woz = (too + 7o, Zo(too + o), Po(too))-
Then there ezist numbers o € (0,e1] and dy € (0,81] such that
Ax(t;edp) = edx(t; o) + o(t;edp) (3.1)

for arbitrary (t,e,0p) € [t1o — 02, t10 + 0] X [0,62] X V™ and
w(t:on) = —{¥ (tooi I+ (too + 703 )7 }oto

=Y (oo + 70 t) f1 6T + B(¢;0p), (3.2)

where
too

B(t:8p) = Y (too: 1)00 + / Y (€ + i 1), € + ol (€)de

too—To
t

_{/t y(f;t)fy[é]ﬁco(f—To)d§}57+/ Y (&;t) ful€]0u(€)dE. (3.3)

too too

Here Y (&;t) is the n x n-matriz function satisfying the linear functional-differential
equation with advanced argument

Ye(&5t) = =Y (&) f[E] — Y€+ 703 t) fyl€ + 70, € € [too, t], (3.4)
and the condition
. JH for&=t,

fo = oo FolE) = Fol6 0(E), ol — o), wE));

H s the identity matriz and © is the zero matrix.
Some comments. The expression (3.2) is called the variation formula.
cl. Theorem 3.1 corresponds to the case when the variations at the points oy and 7
are performed simultaneously on the left.
c2. The summand

t

(Yt +mi0)f + [ Y(EOLE0(E - e }or
too

in formula (3.2) (see also (3.3)) is the effect of perturbation of the delay 7.

c3. The expression

~{V(tooi 17 + ¥ (koo + i )7 ot

is the effect of discontinuous initial condition (2.2) and perturbation of the initial
moment £gg.
c4. The expression

too

Y (fo0; )30 + / Y (€ + 705 0)f, € + olo(€)de + / Y (€ ) fuledu(€)de

too—To too
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in formula (3.3) is the effect of perturbations of the initial vector xy, initial ¢((¢) and
control ug(t) functions.

c5. The variation formula allows one to obtain an approximate solution of the per-
turbed functional-differential equation

(t) = f(t,x(t), x(t — 170 — €0T), up(t) + £du(t))
with the perturbed initial condition
z(t) = po(t) +edp(t),t € [7,too + €dto), T(too) = Too + €00
In fact, for a sufficiently small € € (0, 5] from (3.1) it follows
x(t; o + o) =~ xo(t) + oz (t; o)

(see (2.5)).
c6. Finally we note that the variation formula which is proved in the present work
doesn’t follows from the formula proved in [15].

Theorem 3.2. Let the conditions of Lemma 2.3 hold. Moreover, there exits the
limat

lim [f(wl,uo(t)) — f(’lUg,Uo(t))] = ff“,wl S [too + To,b) X 02,i = 1,2

(w1,w2)—(wo1,wo2)

Then there exist numbers eo € (0,e1] and o9 € (0,1] such that for arbitrary (t,e,du) €
[t10 — 02, t10 + d2] X [0,e2] x VT, formula (3.1) holds and

dx(t;0p) = —{Y(too; ) fo + Y (too + 7‘0§t)f1+}5t0

—Y (too + 705 ) [ 0T + B(t; 0p). (3.6)

Theorem 3.2 corresponds to the case when the variations at the points g9 and 7y are
performed simultaneously on the right. Theorems 3.1 and 3.2 are proved by a scheme
given in [10].

4. Proof of Theorem 3.1

Here and in what follows we shall assume that ty = tog + €dto, 7 = 70 + €07, (1) =
wo(t) +edp(t),u(t) = ug(t) + eou(t). Let e5 € (0,e1] be so small (see Lemma 2.2) that
for arbitrary (e,0u) € (0,e2] x V'~ the following inequalities hold

too — 7 < to, to + 7 = Loo-
The function Axz(t) (see (2.5)) satisfies the equation

Az(t) = f(t, xo(t) + Ax(t), zo(t — 7) + Azt — 1), u(t)) — f[]
= fo[t|Ax(t) + f,[t]Az(t — 10) + e fu[t]du(t) + r(t;edp) (4.1)
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on the interval [too, t19 + d2], where
r(t;eop) = f(t, zo(t) + Ax(t), zo(t — 7) + Az(t — 7),ul(t)) — f[t]
—f[t]Ax(t) — fy[t]Az(t — 7o) — e fult]ou(t), (4.2)

By using the Cauchy formula ([10], p.21), one can represent the solution of equation
(4.1) in the form

Aalt) = ¥t )alt) + = [ V() flEou(e)de

too

1
+ Z R;(t;to0, €6p),t € [too, tro + 02, (4.3)
=0
where

Ro(t;too, €0p1) = [0 Y (€ 4 70; ) £ + 7o Aw(€)dE,

too—

(4.4)
Ry(t;too, £0p) = [, Y (&t)r(&;edp)dé

and Y'(§;t) is the matrix function satisfying equation (3.4) and condition (3.5).
Let a number d; € (0, d1] be so small that tgy + 79 < t190 — d2. The function Y (;1t)
is continuous on the set

II={(&1t): &€ too, too + 7o), t € [tio — 02, t10 + 2]}

([10], Lemma 2.1.7). Therefore,

(see (2.7)). One can readily see that

Ro(t: too, £0p1) = / Y€€+ lSpl€)de
+ [TV mfl+nlan@ds = [ YiE+ mn s+ nloele)ds
too+To0
fﬁ+ Y (& 0)f, [E1Aa(E — 70)de + oft: ebu), (4.6)

where

o(t;eop) = —5/ N Y (€ + 105 t) fyl€ + To]0p(€)dE.

to
For t € [t1g — d2, t10 + 2] we have

3

Ry (t;too, e0pu) = Z a;(t;edp) (4.7)

=1
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too+70

to+71
anltietm = [ (€t asttien) = [ (e,

00 0+T7
t

s (1 551) = / Fu (€, 0PN, 71 (51, 20) = Y (€: )r(E: 20).
too+T0

We introduce the notations:

flt;s,eop] = f(t,xo(t) + sAx(t), xo(t — 70) + s{xo(t — 7) — xo(t — 70)
A (t — 1)}, wolt) + sebu(t)), ot 5,£6) = fults s, <0u] — fule],

p(t;s,e0u) = fylt; s, eop] — f,[t], 0(t; s,e0p) = fult; s, e0u] — fult].

It is easy to see that

f(t, xo(t) + Ax(t), xo(t — 7) + Ax(t — 7), uo(t) + du(t)) — f[t]

= [ stes.coulds = [ {lss,cdulaee) + 4t bulrolt ~ )
—xo(t —70) + Azt — 1)} + efult; s, 55u]6u(t)}ds
— [ /0 1 o(t: s, gau)ds} Az(t) + [ /0 o 55u)ds] {wo(t — 7)
“g(t— ) + Aa(t 7)) + < /0 ks, cop)ds] buft)
LA + fy ol — 7) — molt — 70) + At — 7)} + £ fulE)oult).
On account of the last relation we have

5
v (t;edp) = Z a1 (t;e0p),
=1

where

to+T7
anltsedn) = [ V(g0 (6 e ar(@ds

00

1
o1(&;e0p) :/ o(&;s,e0u)ds, ara(t;edp)
0

-/ " Y (€ )1 (6 £6) o€ — 7) — (€ — ) + A€ — )},

00
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1
p1(&;€dp) :/0 p(&; s,e0p)ds, az(t; edp)

to+7
o GGG A

too

1 to+7
- / D& s, e0)ds, auna(t 0p1) = / Y (€0, [ Ax(E — 7)

too

to+7
Aw(€ — mo) e, ass(t o) = / Y (& 0)f, 1€ folé — 7)

too
—x0(§ — 7o) pd§
For £ € [too, to + 7] we have

|Az (&) < O(edp), Azx(§ — 1) = edp(§ — 7),
Ax(§—71)— Ax(§ — 1) =€ldp(§ —7) — dp(§ — 70)] (4.8)
2o(§ — 1) — 20(§ — 10) = ¢o(§ = T) — ¢o(§ — 7o)

(see (4.2)). The function @g(t) is absolutely continuous, therefore for each fixed
Lebesgue point & € (tgo, too + 7o) of function ¢g(& — 79) we get

E—edT
o0lE —7) — pol€ — 7o) = /5 Gols — 7o)ds

= —epo(§ — 10)dT + (& b ), (4.9)

with 5
lim v(&;edp)

1 = 0 uniformly for du € V. (4.10)
£—> £

Thus, (4.9) and (4.10) are valid for almost all points of the interval (¢oo, too + 7). From
(4.9) taking into account boundedness of the function ¢y(t) it follows

| ¢0(§ —7) — o€ — 7o) |[< O(edp) and ‘@‘ < const. (4.11)

| an(t;eopu)| <[ Y || O(edp)oa(edp),
| ana(t;e0p)| <[ Y || O(edp)pa(edp),
| cuz(tiedp)| < e || Y || 9a(edp),

| cna(t;edp)| < oledp),

to+T7
aus(t;edp) = y(t;edp) — 6[/ Y (&) fyl€lpo(§ — To)dE | dt,

too
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(see (4.8),(4.9),(4.11)). Here

too+70 1
oa(edp) :/ [/
too 0

st — T, uo(t) + sedu(s)) — faolt, 2o(t), wolt — 7o), uo(t)) ‘ds] dt, pa(edp1)

/too-i-m [ /1
too 0

+80p(t — ), uo(t) + sedu(s)) — fy(t, zo(t), ot — 10), uo(t))

too+70 1
o =[]
too 0

+50p(t — 7),up(t) + seou(s)) — fult, zo(t), po(t — 7o), uo(t))

fa(t, 20(t) + sAz(t), po(t — 70) + s(po(t — 7) — @o(t — 70))

Syt xo(t) + sAx(t), po(t = 70) + 5(po(t = 7) = ot = 70))

ds] dt,

fult, o(t) + sAz(t), po(t — 7o) + s(po(t — 7) — wolt — 70))

ds} dt

IVl = sup {I¥ &0+ €.0) € ThAkdn) = [ Yigs)fll(sseoms

00

Obviously,

R <y [ g [ e

9 €

By the Lebesguer theorem on passing to the limit under the integral sign, we have

y(t; €6
lirréag(aé,u) =0, liﬂém(@(sﬂ) =0, 1in(1)192(56,u) =0, [im ‘7( ’56 M)‘ =0

uniformly for (¢,0u) € [too, too + To] X V'~ (see (4.10)). Thus,

cns(t: e6p) = olt: dp), i = T,4: (4.12)
and
custt 20 = <[ [ Y& D51l ~ m)de]or + ot b
Further, h
[ [ vi0slsle - mide]or = ofsetn),
i0(€ — 7o) = $0(§ — 70), & € [foo, oo + o],
therefore,

st 26p1) = <] /t ) £ o€ — )] 57 + oft; <0p). (4.13)

On the basis of (4.12) and (4.13) we obtain

on (1 0p1) = <] /t Y et f ol )] 57 + oft; <0p). (4.14)
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Now let us transform as(t;e0p). We have

4
a(t;edp) = Zazi(t§ 0p),
i=1
where

too+70
a1 (edp) = /t Y (&) [f(ﬁ', zo(§) + Ax(&),20(€ — 7) + Az (€ — 7),up(§) + edu())

o+T7
too+T70
—f[é“]}dé‘,om(t;sw) = —/ Y (&:t) fol€]An(§)dE, as(t; edpu)
to+T1
too+70 too+70
—— [ VG088l - mids.antizin) =~ [ V(G OLIGATE)E
to+T to+7

If¢e [to + 7, %00 + T()] then

|Az(§)| < O(edp), wo(§ — 7) + Ax(§ — 7) = (€ — 75 po + €6p1)
E—1
= xgo + €070 + J(s,2(s5 o +€dp), x(s — 75 o + €01), up(s) + edu(s))ds

to

therefore
l{{%(@ 2o(§) + Ax(&),20(§ —7) + Az(§ — 7)) = (too + 70, To(too + 70), Too) = Wo2-
Moreover,

l{%(&ﬂfo(ﬁ)a 20(§ — 70)) = (too + 7o, Zo(too + 70), Po(teo)) = Wor.

Thus,
lim | £(&,20(€) + Aw(€), o€ = 7) + A(€ = 7), uo(€) + 20u(€)) — fI¢]
= lim [f (wi,uo(8)) = flwa,uo(8)] = fiywi € (a,too + 7] x O%i = 1,2,

(w1,w2)—(wo1,wo2)

Since the function Y'(§;¢) is continuous on the set II, therefore
a9 (t;edp) = —eY (too + 705 t) fi (0to + 67) + o(t; e0p).
Further, for £ € [ty + T, to + 7] we have

Ax(§ —19) = e0p(€ — 1),

therefore
to+70

ot 26) = < / Y (&0)f, [E150(E — m)de

to+T7
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too+70 too+T0
—/t V(& 1) fyl€]Ax(§ — 70)dE = —/t V(&) fy[€]Ax(€ — m0)dE

0o+70 0+70
+o(t;edp).

Obviously,
a(t;edu) = o(t;edu), aoy(t; edp) = o(t; edp).
Finally, for as(t;edpu) we get
too+70

ay(t;edp) = —eY (too + T0;t) f1 (0to + 07) — / Y (&;t) fyl€]Ax(E — 70)dE

to+70
+o(t;edp). (4.15)

It remains to estimate ag(t;edp). We have

5
as(t;edp) = Z a3 (t;e0p), aui(t; e0p)

i=1

where .

anltseon) = [ V(Est)on(6 et Ar(e)de, anltiin)

too+70

:/t . V(& t)pr(§ eop){wo(§ — 7) — 20(€ — 7o) + Az (€ — 7)}dE,

asltiedn) == [ V(& 006 bmoul€)de, alticon)

too+70

- /tt+ Y (&) flE1{Ax(€ — ) — A€ — 70) }dE, auss(t; eop)

= [ Y@ hlnnle - 7) - wole - m)as
too+70
For f € [tgo + 709, %10 + 52] we have
IA(€)] < O(edy), |Ax(€ — )] < O(edp), (116)

(see (4.2)). For each fixed Lebesgue point & € (too + 7o, t10 + d2) of function (& — 7o)
we get

E—edT
2o(§ —7) —x0(§ — 1) = /£ To(s — m0)ds

= —eito(€ — 70)07 + 71 (€ £0p), (4.17)
with
lim 71(§;€dp)

) = 0 uniformly for jp € V. (4.18)
£—> £
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Thus, (4.17) and (4.18) are valid for almost all points of the interval (¢oo + 70, t10 + 02).
From (4.17) taking into account boundedness of the function f(¢,x,y,u) it follows

)’Yl §;

| 2o(& — 7) — 20(§ — 710) |< O(edp) and —55M‘ < const. (4.19)

1,4 we have

For ag;(t;edp)), i

| asi(t;ep)| <[ 'Y || O(edp)os(edp),
| aga(t;e0p)| <[| Y [| O(edp)ps(edp),
| ass(t;eop)| < e[| Y || Js(edp),
| aza(t;edp)| < oedp),
(see (4.17),(4.19) and Lemma 2.4). Here
t10+02 t10+d2
s = [ oG edudcpcon) = [ pileonds
too+7o too+7o
t10+02
D) = [ il e,
too+70
Obviously,
A (t;edp o+ (& edp
WED e [ 1 e[ g
too+To

By the Lebesguer theorem on passing to the limit under the integral sign, we have

(t;e0p)
lin% o3(edp) = 0, lin%pg(géu) =0, 111%793(85/,4) ~0, lim u‘ 0

uniformly for (¢,0u) € [too, tio + d2] X V'~ (see (4.18)).
Thus,
agi(t;edp) = o(t;edp),i =1,4

ags(t;edp) = —5[/t

00+70

and
t

Y (&) fy[€liol€ — 7o)€ |07 + oft; e0p).

On the basis of last relations we get

too+T70
aattizdn) = —<[ [ VG liole - rde] o7 + oft o) (4.20)

too

Taking into account (4.14),(4.15) and (4.20) the expression (4.7) can be represented in
the form

Ry (t;too, e0p) = —Y (too + To5t) f1 0t — E[ff +/ Y (&) fyl€]To(€ — m0)dE |67

too
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too+70
- [ VGO AE  m)ds + oft ), (4.21)

o+70

Finally, from (4.3) by virtue of (4.6) and (4.21) we obtain (3.1), where 0x(¢;d0u) has
the form (3.2).

5. Proof of Theorem 3.2

The function Az(t) satisfies equation (4.1) on the interval [tg,t10 + d2]. By using
the Cauchy formula, we can represent it in the form

Ax(t) =Y (to;t) Ax(t) + E/t Y (&;t) ful€]ou(§)dE + Z Ri(t;to, £6p), (5.1)

(see (4.4)). Let a number 05 € (0,6;] be so small that too + 70 < t19 — d2. The matrix
function Y (§;t) is continuous on II, therefore

Y (too; ) Az (te) = €Y (too: t) [(mo - fﬂSto} + o(t; 20p) (5.2)
(see (2.8)).
Now let us transform Ry(t;to,edu). It is not difficult to see that
Roftito,ed) =< [ Y(€+mit)yl¢ + mldol€)dg
+ [ Vet mnnle s mida@de = [ vie+minnle+misoe)s
to+70
[ VG DRlEAD(E - )t +oftizon). (5.3)

In a similar way, for t € [t19 — 02, t10 + 2] one can prove

Ry (t;to,e0p) = —Y (too + 705 t) f1 6to — <"5[f1+ +/t Y (&) fyl€]Ho(€ — To)dg] oT

‘/t e A (E — e + ol o). (5.4)

00+70

Finally, we note that

[ Y@ nigsua =< [ VGO + otz 69
fort € [tlo — (527 tio + (52]
Taking into account (5.2)-(5.5), from (5.1), we obtain (3.1), where dz(¢;edu) has
form (3.6).
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ON THE UNIQUENESS OF THE SOLUTION OF AN INVERSE PROBLEM OF
THE POTENTIALLY THEORY IN A THREE-DIMENSIONAL SPACE

Kapanadze J.

Abstract. In the present paper we consider the inverse problem for a volume potential.
First we consider piecewise-smooth simply-connected domains and after that smooth simply-
connected domains in a three-dimensional space.

Keywords and phrases: Inverse problem, potential, Keldish theorem, strictly locally con-
vex.

AMS subject classification (2000): 31B05.

The solution of an inverse problem of the potential theory is of great theoretical
and practical importance. The practical application of inverse problems is so significant
that they are regarded as topical problems of modern mathematical analysis.

The uniqueness of the solution of an inverse problem in the class of star domains
of constant density was for the first time proved P.S. Novikov [1].

In the present paper we consider the inverse problem for a volume potential.First
we consider piecewise-smooth simply-connected domains and after that smooth simply-
connected domains in a three-dimensional space.

Let us define volume potentials and simple-layer potentials.

V() = /r<x,y>f<y>dsy, U () = /r<x,y>w<y>dsy,

Q o0N

where 2 is a bounded piecewise-smooth domain, f € C(00), ¢ € C(0Q), I'(z,y) =
|z —y|~*. We denote by €, the simply-connected component of R* — which contains
a point at infinity, and by () an empty set. Ci, k = 1,2,3,... are positive constants.

Definition 1. Let ) be a simply-connected bounded piecewise-smooth domain
from R®. We will set the domain Q is strictly convex if for any points 2, € Q, 22 € Q
an interval point of a segment z;z; is an interval point for the domain Q).

Definition 2. Let €2 be a simply-connected bounded piecewise-smooth domain
from R?, and each smooth part for 9 belongs to class C»®). We will say that the
domain € is strictly convex at a point xo € 09 if for some neighborhood o = {z :
|z — 20| < €} the intersection Q N7 is a strict domain.

Theorem 1. Let Qy, Qy be a bounded simple-connected domain from R3. Assume
that there exists a smooth point xy € 08y, xo ¢ Q,, for which the domain Q; or R® —Qy
18 strictly convex at a point xo. Then the potentials

wie) = [Py, @) = [y 0

Q1 Qo

do not coincide on Que (2= QL UQy, O =0Q;, i =1,2.)
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Proof. Let us assume the contrary,i.e. vi(z) = va(x), z € Q. Each smooth part
o8 (i = 1,2) belongs to C®). Denote o, = {x : |z — mo| < e} NI, 29 = (29, 1Y),
o= {ZL‘Z |z — x0| < %}ﬂ@Ql, TN =0),0=0UQ CcS={z:|z|<r}
Rotate the coordinate system. After rotation the tangent plane at the point zy becomes
parallel to the plane x50x3. Pass the plan P; through the point zq, for which P, 1 x50x3,
P, 1 210z5. Let us consider the curve [ = P; N o, the equation of which has the form
13 =7(x1,01), T9 = 1 = const, v € [, 1) —e; <z <2V, |7 (22, ¢)| = 0.

From equality (1) we obtain

/U¢(x)d:1: = /U’/’(x)dx, P € O (98)

o o
ouY ouv
- — - (1,@) 9
o dx o de e CHY(09) (2)

951 Qo

By the Green-Ostrogradski formula, from (2) we have

/U¢(m) cos(vhr3)dS, = /U¢(a:) cos(v) x3)dS, (3)

Ql Q2

Let w be the domain containing the surface o.
For any ¢ € C(o) the following inequality is valid

1¥]lies o)y < ClHUwH{Cé(w)}*a (4)

where Cj (w) - are finite functions from C*(@). It is obvious that the boundary function
/
on o

9(5U17332) c X3 = 9(5131332) 'T(ﬂfliﬂz)
80,
ot

x3 = T(x122) is the equation o’ = {(z11273) € 0, 13 < 23}, L1 = Oy, (21, X2, 3) €
o', where d,,,d,, are Dirac measures.

From this and the above reasoning we obtain for a ball {||U Ity < 1}
(I1llca@y < Ch)-

1 96,
C1 ot

1 96,
Xazg'x3 S {HUwH{C%(w)} < 1}, Ud”(l'l,xg,l'g): 5_8t1 X5x2'.’173, (.1'11'2.1'3) co'.
1

sup /Uw(l’l,llfg,l'g) cos(v; x3)dS,| > Cysup /Uw($1,$2)7'(.’£1$3)dl‘1d$2 =o00. (5)

o1 o’

By virtue of (4) we have

/Uw(x) cos(vVhw3)dS, = /Uw(x) cos(vhw3)dS, — /Uw(:c) cos(vhw3)dS,  (6)

o1 002 01 —01
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sup [U¥(z)] < G5, sup |U¥(2)] < Cu, ¢ € {C°(0)}". (7)
0o o1 —o1
From (5), (6), (7) we obtain a contradiction.
Theorem 1 is proved.
Theorem 2. Let £y and €2y be simply connected bounded domains from the class
C2. Then the solution of an inverse problem is unique.
Proof. Let us assume the contrary, i.e. that vi(x) = vo(x), € Qu, Q1 # Q.
For the domains €2; and €25 the following alternatives are valid.
I) 09 N0 N Oy - is a finite number of smooth curves.
IT) 91 N 9Ny N 0N - contains some smooth surface o.
Assume that alternative (I) is fulfilled. Consider the diameter of the domain Q =
QU
dQ) =max|z —y|, €Q, y€ Q. dQ) = |vo — yol.
It is not difficult to see that in the neighborhood of point xy (or o) there exists a
smooth point 2y € 9Qy, 2z & Qy, for which the domain € is strictly locally convex at
a point zo. Now is suffices to repeat the reasoning of Theorem 1.
Assume that alternative (II) is fulfilled. Consider the difference

(L UD) - (N = UQi-

1
N

Since o C 921 NI N O, the complement of the closed set F' = U@Z is a connected
1

set (domain). Now assume that the potentials

wi@) = [C)dy, o) = [ty

Ql QQ

are considered on €2.. Then we obtain

/ U (y)dy = / V¥ (y)dy 1 € C090). (8)

51 — (51 ﬂﬁz) ﬁg — (ﬁl ﬂﬁg)

By virtue of Keldish theorem [2, ch. II] there exists a sequence of potentials for which
we obtain

lim [ [U%(x) —1]*de =0, lim [U% (z))*dx = 0.

n—oo n—oo

Q1 F—

Q1

We have come to a contradiction. Theorem 2 is proved.
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SOLUTION OF THE PROBLEMS OF ELASTOSTATICS FOR DOUBLE POROUS
AN ELASTIC PLANE WITH A CIRCULAR HOLE. THE UNIQUENESS
THEOREMS

Tsagareli 1., Svanadze M.

Abstract. In the present paper we solve explicitly, by means of absolutely and uniformly
convergent series, the second boundary value problems of porous elastostatics for the plane
with a circular hole.

Keywords and phrases: Porous medium, double porosity, boundary value problems, ex-
plicit solution, uniqueness theorems.
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1. Introduction

In the E.C. Aifantis theory of consolidation the elastic medium with double porosity
is considered. For such a kind of media the problem is formulated under the following
boundary conditions: the value of the displacement (or stress) vector and the value of
pressures (or normal derivative pressures) of a liquid in pores are given. In the present
work we solve explicitly, by means of absolutely and uniformly convergent series, the
second boundary value problem of porous elastostatics for the plane with a circular
hole. From the point of view of applications, very actual is the construction of solu-
tions explicitly which allows one to perform numerical analysis of the problem under
investigation.

2. Basic equations

We consider the plane D with a circular hole. Let R be the radius of the boundary
S. Find a regular vector U(u(z),p1(z), pa(x)), satisfying in D a system of equations
[1,2]:
pAu(x)) + (A + p)graddiv(u(z)) = grad(fip: (x) + Gapa(2)];

(miA = k)pi(z) + kpa(z) =0, (1)
kp(z) + (moA — k)pe(x) = 0,2 € D
and on the circumference S one of the following conditions:
Lu(z) = f(2), Oupr = f3(2),  Onpa(2) = fa(2);
I1.P(0.,n)U(z) = f(2), pi1(2) = f3(2), p2(2) = fa(2),

where A, i, my, mo, 31, B2 are the known elastic and physical constants, k,m; > 0,7 =
1,2[1,2]; u(x) = (us(x)), us(x)) is the displacement of the point z;n(z) = (nq1(2), n2(z)),
z = (21,x2) € S, pp is the fluid pressure within the primary pores and ps is the fluid

(2)
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pressure within the secondary pores; A is the Laplace operator; f(z) = (fi(2), f2(2)),
f3(2), fa(2) are the given functions on the circumference S;

P9y, n)U(x) = T(0x, n)u(x) — n(x)[Bip(x) + Gapa(z)] (3)

is the stress vector of the theory of poroelasticity; T'(0,, n)u(x) = pd,u(x) +
An(z)div(u(z)) + Y ni(x)gradu;(x) is the stress vector of the theory of elasticity;
i=1

0 0
8n 8n’ 8k 8xk’ K ’

Vector U(x) satisfies the following conditions at infinity:
Ux)=0(), oU(x)=0(Q1), k=12 (4)

We will study separately the following problems:

1. Find in a plane D solution u(z) of equation (1)y, if on the circumference S there
are given the values: a) of the vector u - problem Aj; b) of the vector P(0.,n)u(z) -
problem A,.

2. Find in a plane D solutions p;(z) and pa(x) of the system of equations (1), and
(1)s, if on the circumference S there are given the values: a) of the function p; and the
vector py - problem By; b)of the derivates 0,p;1(z) and 9,p2(z) - problem Bs.

Thus the above-formulated problems of poroelastostatics can be considered as a
union of two problems: I - (A, By) and II - (A, By).

3. Uniqueness theorems

For regular solutions of equation (1); and equations (1), and (1)3 Green’s formulas:

/D [B(u(z), u(®@)) — (Bupr (@) + fope) (@) divu(z)]dz = / u(y) PO, n(w)dyS:  (5)

S

/[ml | gradp, \2 +my | gradps |* +k(ps —pl)Q]d:z:
D

= /S[mlpl(y)anm(y) + map2(y)Onpa(y)]d,S (6)

are valid, where
E(u,u) = (A4 p)(0rug + 82102)2 + p(Oyuy — 82U2)2 + p(Ohuy + (91U2)2

is a nonnegative quadratic form under the condition that A+ >0, >0 .

Problems B. Since m;, k > 0, therefore in the case of homogeneous boundary con-
ditions (2) the product p;0,p; vanishes. Let  p; and ps be differences of two different
solutions of problems B; and By. By virtue of equality (6), the following theorems are
valid.
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Theorem 1. The difference of two arbitrary solutions of problem By 1is equal to
zero: pi(x) = pa(x) = 0.

Theorem 2. The difference of two arbitrary solutions of problem Bo may differ
only by an arbitrary constant pi(x) = pa(x) = c.

Problems A. Let (v/,p},p5) and (u”,p},p5) be two different solutions of any of
the problems I, II. Then the differences u = v' — u”, p; = p| — p{ and py = p), — pf are
the solutions of the corresponding homogeneous problems.

Taking into account Theorems 1 and 2, and formula (5), under the homogeneous
boundary conditions for the problems I and /I, we obtain E(u,u) = 0. The solution
of the above equation has the form

ur(z) = —cxo + q1, uz(x) = cry + ¢o, (7)

where ¢, ¢ and ¢y are arbitrary constants.

Taking into account conditions (4) and formulas (7), we obtain:

uy(z) = ug(z) =0 - for problem Aj;

ui(x) = q1, wus(x) =¢qo - for problem A,;

The following theorems are valid.

Theorem 3. The difference of two arbitrary solutions of problem I is the vector
U(uy(z), ua(x), p1(x), p2(x)), where uy = ug =0, p; = pa = ¢;

Theorem 4. The difference of two arbitrary solutions of problem 11 is the vector
U(uy(x),us(x), pr(x), pe(z)), where uy(x) = q1, us(x) = g2 and p; = py = 0.

4. Solutions of the problems

On the basis of the system [(1)2,(1)3], we can write mimaA(A + X3)p; = 0,
1 = 1,2. Solutions of these equations are represented in the form

p1(2) = a101(2) + apa(x), p2() = aspi () + aspa(x), (8)
where
k 2 —
)\3:_ <m1+m2)7 a; = az = ) ay = — m e )
mimse my + Mo my (m1 + m2)

my —Mme

T AL =0, (A AR, =0,
m2(m1 +m2) ¥1 ( 0)%02

a4 =
Taking into account (8), we write

Bip1 + Bap2 = aps + by, 9)
where
a= (B + B2)ar, b= Braz+ [ray. (10)

Problem B;. The functions ¢; and @9 in formulas (8) are unknown. From the
conditions (2), for problem B; we can write

v1(z) = d1C(ZZ) =M(2), waol2) = d2§lz> =M(z), z€8, (11)
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where

d=aas — a3, di(2) = aufs(2) — a2fu(z),  da(z) = a1 fu(z) — azfs(2).

Taking into account (11), for the harmonic function ¢;(x) we have:

oo R m
pr(@) =3 ()" (Ancosmy + By sinm), (12)
m=0
where
2
2 _ 2, .2 1
rt=x+ a5, = (21,72) = (1,¢), A= Gy 2(6)do,
0
] 2w 1 2
A, = —/Q1(9) cosmfdl, B, = —/91(9) sin mfdo.
T T
0 0

Taking into account (8), the values in the plane of metaharmonic function gs(z)
can be represented as follows [3]:

pa(x) = Ko(Aor)Co + Z K, (Mor)(Cy cosmap + Dy, sinmap), (13)

m=1
where K,,(A\or) is the modified Hancel * s function of an imaginary argument,
1 2w 2m

Cp = — Q9(6) cosmbdl, D,, = — Qo(0) sinmbdf, m=0,1,.... (14)

™ Jo ™ Jo

Using now formulas (8), with regard to (12) and (13), we can find values of the functions

p1(z) and po(x).
Problem B,. Taking into account formulas (8), the boundary conditions of prob-
lem B, can be rewritten as

Orp1(z) = F1(2), Orpa(z) = F2(2), z€S, (15)

1 1
where F1(2) = Slaafs(2) —anfa(2)], Fa(2) = Slaifa(z) — az2fs(2)], O = On.
Then the harmonic function ¢;(z) can be represented in the form of a series:

o1() = co — Zg (E)m(Amcosmw—i—Bmsinmw), (16)
m=1

r

2m 2m
1 1
where ¢ is an arbitrary constant, A, = — / F1(0) cosmfdf and B, = — / F1(0) sinmpd.
T T
0

0
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Expanding the function Fy(z) into Fourier series and substituting (13) into (15),
we obtain the representation of the metaharmonic function ¢,(x) in the plane in the

form
(o)

o) = )\io Z % (v cosmp + B, sinmap), (17)

m=1

where «,,, and (3, are the Fourier coefficients of the function Fy(z),
K7,(€) = 0cKm(C),  OrKin(Xor) = Aok, (AoT)-
Problem A;. A solution of equation (1) is sought in the form of a sum
u(x) = vo(x) + v(x), (18)

where vy is a particular solution of equation (1);, and v is a general solution of the
corresponding homogeneous equation (1);. Direct checking shows that vy has the form

1
A+ 2u

vo () gmd[ — )\%g}g(x) + bpo(z) |, (19)

where a and b are defined by formulas (10), and ¢y is a biharmonic function: Apy = ¢;.
A solution v(x) = (v1,v9) of the homogeneous equation corresponding to (1); is
sought in the form

vi(x) = N[P1(z) + Pa(z)] — P3(x), v2(w) = Oo[Pi(z) + Po(x)] + 01 P3(x), (20)

where

APy (z) =0, AADy(z) =0, AAD3(x) =0,
(A + 20)0 A () — pdy Sy () =0, (21)
(A +20) 0 APy (x) + po Ad3(z) = 0,
®q, &y, P3 are the scalar functions.
Taking into account (18) and relying on the condition (2);, we can write

v(z) = U(z), (22)

where WU(z) = f(z) — vo(2) is the known vector; vy is defined by formula (19), and ¢,
and ¢y by equalities (11). The value of the function ¢q is defined by means of the
equation Apy = q; it has the form

o0

1 m—2 A

RQ

wo() 1

where A,, and B, are defined in (12).
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In view of (21), we can represent the harmonic function ®; and biharmonic functions
®5 and P53 in the form

310) = 3 (B) " K- a0,

wa) = 123 (B X vl 24

o) = LS (506, a0,

where X, are the unknown two-component vectors, k = 1, 2;

U (1) = (cosmap, sinma)), s, (¥) = (—sinmap, cosmy)), x = (r,¢),z € D.

Substituting (24) into (20), the condition (22) for every m results in a system of
linear algebraic equations whose solution is written as follows:

oo R R

XOI - ?T? X02 - 60T7
R(am +6m) Rayy, N(am +ﬁm>
X1 = 2 A — T X =
S SO g g 20T O] == 2= 9+ 3u)R

m=1,2,...; a,,, and [, are the Fourier coefficients of, respectively, the normal and
tangential components of the function ¥(z) = f(2) — vo(z2), z € S.

Thus the solution of problem A; is represented by the sum (21) in which v(x) is
defined by means of formula (23), and vy(z) by formula (22).

Problem A,. Taking into account (3) and (9), the boundary condition (2);; can
be rewritten as

T(0.,n)v(z) =V(z), z€S, (25)
where
U(z) = f(2) + n(2)awa(z) + bpr(2)] = T(0z, n)vo(2)

is the known vector, ¥ = (U, U5).
We substitute (24) first into (23) and then into (25). For the unknowns X,,; and
X2 we obtain a system of algebraic equations:

20+ 2 X0 = 0, 2+ 2p) = 2,
A2
mA + 2u(m + D)) X + {4+ 20) (1 — m)(2 — m + M’“‘m)
A2
B2 m 4 20— )V X = an B2,
A+ 20 R?

—m(1 + 2p) X1 + R*[m(3 — 2m) +

(m2 = 3m +2)| X2 = Bn—,
I u

m=1,2,...; a,,, and [3,,, are the Fourier coefficients of, respectively, the normal and tan-
gential components of the function V(z) = f(z)+n(z)[aps(2) +bp1(2)] —T(0., n)ve(2);
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vg is defined by means of formula (19) in which ¢q(z) for problem B; has the form (23)
and for problem B, the form

R & 1 Rym—2 ,
= m <—> (A cosmip + By, sinma),

vo(z)
m=2 r

where A, and B, are defined in (16).

Conditions: f,py,p2 € C3(S) - in problem A; and conditions: f,p;,ps € C?(S) in
problem A,, ensure absolutely and uniformly convergence of series obtained for v(x)
and vy(z) and also, (8).

Having solved problems A;, As, By and By, we can write solutions of the initial
problems I and II.
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