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Introduction

A thermodynamic theory for elastic materials with inner structure the particles
of which, in addition to microdeformations, possess microtemperatures was proposed
by Grot [1]. Iesan and Quintanilla [2] have formulated the boundary value prob-
lems (BVPs) and presented an uniqueness result and a solution of the Boussinesq-
Somigliana-Galerkin type. The fundamental solutions of the equations of the 3D the-
ory of thermoelasticity with microtemperatures were constructed by Svanadze [3]. The
representations of the Galerkin type and general solutions of the system of equations
in this theory were obtained by Scalia, Svanadze and Tracinà [4]. In [5], a wide class
of external BVPs of steady vibrations is investigated and Sommerfeld-Kupradze type
radiation conditions and the basic properties of thermoelastopotentials are established.
Here the uniqueness and existence theorems of regular solutions of the external BVPs
are proved using the potential method and the theory of singular integral equations.
The fundamental solutions of the equations of the two-dimensional (2D) theory of ther-
moelasticity with microtemperatures were constracted by Basheleishvili, Bitsadze and
Jaiani [6]. The 2D BVPs of statics of the theory of thermoelasticity with microtem-
peratures are formulated and the uniqueness and existence theorems are presented
in [7]. The basic results and extensive review of the theory of elastic materials with
microstructure are given in the literature [8].

For investigation, boundary-value problems of the theory of elasticity and ther-
moelasticity by potential method are necessary to construct fundamental solutions of
respective systems of partial differential equations and to establish their basic proper-
ties. There are several known methods to construct a fundamental solution of systems
of differential equations of the theory of elasticity and thermoelasticity [9-12].

In the present paper the linear 2D theory of thermoelasticity with microtempera-
tures is considered. The representation of regular solution of the system of equations
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of steady vibration of the theory of thermoelasticity with microtemperatures is ob-
tained.The fundamental and singular solutions for a governing system of equations of
this theory are constructed. Finally, the single-layer, double-layer and volume poten-
tials are presented.

Basic equations

We consider an isotropic elastic material with microtemperatures. LetD+(D−) be a
bounded (respectively, an unbounded) domain of the Euclidean 2D space E2 bounded
by the contour S. D+ := D+

∪
S, D− := E2\D+. Let x := (x1, x2) ∈ E2, ∂x :=(

∂

∂x1
,
∂

∂x2

)
. In 2D space “rot” is defined as a scalar

rotϕ :=
∂ϕ2

∂x1
− ∂ϕ1

∂x2

for a vector ϕ := (ϕ1, ϕ2) and as a vector

rotψ :=

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
for a scalar ψ.

The basic system of equations of steady vibrations in the linear 2D theory of ther-
moelasticity with microtemperatures has the following form [1],[2]

µ∆u+ (λ+ µ)graddivu− βgradθ + ϱω2u = −ϱN, (1)

k6∆w+ (k4 + k5)graddivw− k3gradθ + k8w = ρM, (2)

(k∆+ a0)θ + β0divu+ k1divw = −ρs, (3)

where u = (u1, u2)
T is the displacement vector, w = (w1, w2)

T is the microtemperature
vector, θ is the temperature measured from the constant absolute temperature T0 (T0 >
0) by the natural state (i.e. by the state of the absence of loads), ρ is the reference mass
density (ρ > 0), N = (N1, N2) is the body force, M = (M1,M2) is first heat source
moment vector, s is the heat supply, a0 = iωaT0, β0 = iωβT0, k8 = iωb − k2, b >
0, λ, µ, β, k, kj, (j = 1, ..., 6), are the constitutive coefficients, ∆ is the 2D Laplace
operator and ω is the oscillation frequency (ω > 0). The superscript “T ” denotes
transposition.

We introduce the matrix differential operator

A(∂x, ω) :=∥ Alj(∂x, ω) ∥5×5,

where

Aαγ := µδαγ(∆ + ρω2) + (λ+ µ)
∂2

∂xα∂xγ
,

Aα+2;γ+2 := δαγ(k6∆+ k8) + (k4 + k5)
∂2

∂xα∂xγ
,
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Aα,γ+2 := Aα+2,γ = 0, Aα5 := −β ∂

∂xα
, Aα+2;5 := −k3

∂

∂xα
,

A5γ := β0
∂

∂xγ
, A5;γ+2 := k1

∂

∂xγ
, A55 := k∆+ a0, α, γ = 1, 2,

δαγ is the Kronecker delta. Then the system (1)-(3) can be rewritten as

A(∂x, ω)U = F, (4)

where
U := (u1, u2, w1, w2, θ)

T , F = (−ϱN, ϱM,−ϱs).
When F = 0, we have homogeneous system of equations of steady vibrations in the 2D
theory of thermoelasticity with microtemperatures

µ∆u+ (λ+ µ)graddivu− βgradθ + ϱω2u = 0, (5)

k6∆w+ (k4 + k5)graddivw− k3gradθ + k8w = 0, (6)

(k∆+ a0)θ + β0divu+ k1divw = 0. (7)

The matrix Ã(∂x, ω) :=∥ Ãlj(∂x, ω) ∥5×5:= AT (−∂x, ω), will be called the associ-
ated operator to the differential operator A(∂x, ω). Thus, the homogeneous associated
system to (4) has the following form

µ∆u+ (λ+ µ)graddivu− β0gradθ + ρω2u = 0,

k6∆w+ (k4 + k5)graddivw− k1gradθ + k8w = 0,

(k∆+ a0)θ + k3divw+ βdivu = 0.

We assume that µµ0kk6k7 ̸= 0, where µ0 := λ+ 2µ, k7 := k4 + k5 + k6. Obviously,
if the last condition is satisfied, then A(∂x, ω) is the elliptic differential operator.

Representation of regular solutions

Definition. A vector function U(u,w, θ) is called regular in D−(or D+) if

1. U ∈ C2(D−) ∩ C1(D̄−) or (U ∈ C2(D+) ∩ C1D̄+),

2. u =
4∑

j=1

u(j)(x), w =
∑

j=1,2,3,5

w(j)(x), θ =
3∑

j=1

θ(j)(x),

3. (∆ + λ2j)u
(j) = 0, (∆ + λ2l )w

(l) = 0, (∆ + λ2m)θ
(m) = 0,

u(j) = (u
(j)
1 , u

(j)
2 ), w(l) = (w

(l)
1 , w

(l)
2 ),

j = 1, 2, 3, 4, l = 1, 2, 3, 5, m = 1, 2, 3

(8)

and (
∂

∂|x|
− iλj

)
u
(j)
l = eiλj |x|o(|x|− 1

2 ), j = 1, 2, 3, 4, l = 1, 2,

(
∂

∂|x|
− iλl

)
w

(l)
k = eiλl|x|o(|x|− 1

2 ), l = 1, 2, 3, 5, k = 1, 2,

(9)
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(
∂

∂|x|
− iλm

)
θ(m) = eiλm|x|o(|x|− 1

2 ), m = 1, 2, 3 for |x| =
√
x21 + x22 >> 1;

where λ2j , j = 1, 2, 3, are roots of equation D(−ξ) = 0,

D(∆) = (µ0∆+ ρω2)k1k3∆+ (k7∆+ k8)[ββ0∆+ (µ0∆+ ρω2)(k∆+ a0)] =

µ0kk7(∆ + λ21)(∆ + λ22)(∆ + λ23)

and the constants λ24 and λ25 are determined by the formulas

λ24 :=
ρω2

µ
> 0, λ25 :=

k8
k6
.

The quantities λ2j , j = 1, 2, 3, 5 are complex numbers and are chosen so as to
ensure positivity of their imaginary part, i.e. it is assumed that Imλ2j > 0.

Equalities in (9) are Sommerfeld-Kupradze type radiation conditions in the linear
theory of thermoelastisity with microtemperatures.

Remark. The equalities (9) imply [5]

Ul(x) = eiλj |x|O(|x|−
1
2 ) for |x| >> 1, l, j = 1, .., 5. (10)

Theorem 1. The regular solution U = (u,w, θ) of the systems (5)-(7) admits in
the domain of regularity a representation

U = (
1
u+

2
u,

1
w +

2
w, θ),

where
1
u,

2
u,

1
w and

2
w are the regular vectors, satisfying the conditions

(∆ + λ21)(∆ + λ22)(∆ + λ23)
1
u = 0, rot

1
u = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)
1
w = 0, rot

1
w = 0,

(∆ + λ24)
2
u = 0, div

2
u = 0, (∆ + λ25)

2
w = 0, div

2
w = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)θ = 0.

Proof. Let U = (u,w, θ) be a regular solution of the equations (5)-(7). Taking
into account the identity

∆w = graddivw− rotrotw, (11)

where

rotrotw :=

(
∂

∂x2

(
∂w2

∂x1
− ∂w1

∂x2

)
,− ∂

∂x1

(
∂w2

∂x1
− ∂w1

∂x2

))
,

from (5),(6) we obtain

u = − µ0

ρω2
graddivu+

µ

ρω2
rotrotu+

β

ρω2
gradθ,
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w = −k7
k8
graddivw+

k6
k8
rotrotw+

k3
k8
gradθ,

Let
1
u := − µ0

ρω2
graddivu+

β

ρω2
gradθ, (12)

2
u :=

µ

ρω2
rotrotu, (13)

1
w := −k7

k8
graddivw+

k3
k8
gradθ, (14)

2
w :=

k6
k8
rotrotw. (15)

Clearly

u =
1
u+

2
u, w =

1
w +

2
w rot

1
u = 0, rot

1
w = 0, div

2
u = 0, div

2
w = 0. (16)

Taking into account the identity ∆
2
u = −rotrot2u, ∆ 2

w = −rotrot 2w, from (13)-(15) we
get

(∆ + λ24)
2
u = 0, (∆ + λ25)

2
w = 0. (17)

Applying the operator div to equations (5), (6) we obtain

(µ0∆+ ρω2)divu− β∆θ = 0,

(k7∆+ k8)divw − k3∆θ = 0,

(k∆+ a0)θ + k1divw + β0divu = 0,

(18)

Rewrite system (18) as follows

D(∆)Ψ :=

 µ0∆+ ρω2 0 − β∆
0 k7∆+ k8 − k3∆

β0 k1 k∆+ a0

Ψ = 0,

where Ψ = (divu, divw, θ)T . Clearly, detD = µ0kk7(∆ + λ21)(∆ + λ22)(∆ + λ23),

(∆ + λ21)(∆ + λ22)(∆ + λ23)divu = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)divw = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)θ = 0.

(19)

Applying the operator (∆+ λ21)(∆+ λ22)(∆+ λ23) to equations (12), (14) using the last
relations we obtain

(∆ + λ21)(∆ + λ22)(∆ + λ23)
1
u = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)
1
w = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)θ = 0.
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The last formulas prove the theorem.
Theorem 2. The regular solution U = (u,w, θ) ∈ C2(D) of equation A(∂x)U =

0 for x ∈ D, is represented as the sum

u =
4∑

j=1

u(j)(x), w =
∑

j=1,2,3,5

w(j)(x), θ =
3∑

j=1

θ(j), (20)

where D is a domain in E2 and u(j),w(j)and θ(j) are regular functions satisfying the
following conditions

(∆ + λ2j)u
(j) = 0, (∆ + λ2l )w

(l) = 0, (∆ + λ2m)θ
(m) = 0,

j = 1, 2, 3, 4, l = 1, 2, 3, 5, m = 1, 2, 3.
(21)

Proof. Applying the operator div to the equations (5) and (6) and taking into
account the relations (18) and (19) we obtain

(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ24)u = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ25)w = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)θ = 0.

(22)

We introduce the notations:

u(j) =

[
4∏

l=1;l ̸=j

∆+ λ2l
λ2l − λ2j

]
u, j = 1, 2, 3, 4,

w(p) =

[ ∏
l=1,2,3,5

∆+ λ2l
λ2l − λ2p

]
w, l ̸= p, p = 1, 2, 3, 5,

θ(q) =

[
3∏

l=1

∆+ λ2l
λ2l − λ2q

]
θ, l ̸= j, j = 1, 2, 3.

(23)

By virtue of (23), it follows that

u =
4∑

j=1

u(j), w =
∑

j=1,2,3,5

w(j), θ =
3∑

j=1

θ(j), (24)

(∆ + λ2j)u
(j) = 0, (∆ + λ2l )w

(l) = 0, (∆ + λ2m)θ
(m) = 0,

j = 1, 2, 3, 4, l = 1, 2, 3, 5, m = 1, 2, 3.

Thus, the regular in D solution of equation A(∂x, ω)U = 0 is represented as a sum
of functions u(j), w(j), θ(j), which satisfy Helmholtz’ equations in D.

Matrix of fundamental solutions

We introduce the matrix differential operator B(∂x) consisting of cofactors of ele-
ments of the transposed matrix AT divided on µµ0kk6k7

B(∂x, ω) :=∥ Blj(∂x, ω) ∥5×5,
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where

Bαγ := B∗
11δαγ −B∗

12ξαξγ, Bα+2,γ+2 := B∗
33δαγ −B∗

34ξαξγ,

B1γ+2 := B∗
13ξ1ξγ, B2γ+2 := B∗

13ξ2ξγ, Bα5 := B∗
15ξα, B5α := B∗

51ξα,

B5γ+2 := B∗
53ξγ, ξα :=

∂

∂xα
, α, γ = 1, 2, B55 := B∗

55,

B3γ := B∗
31ξ1ξγ, B4γ := B∗

31ξ2ξγ, B2+γ,5 := B∗
35ξγ,

B∗
11 :=

1

µ
(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ25),

B∗
12 :=

(∆ + λ25)

kk7µµ0

{ββ0(k7∆+ k8) + (λ+ µ)[(k∆+ a0)(k7∆+ k8) + k1k3∆]} ,

B∗
13 := − βk1

µ0kk7
((∆ + λ24)(∆ + λ25), B∗

15 :=
β

µ0kk7
(∆ + λ24)(∆ + λ25)(k7∆+ k8),

B∗
51 := − β0

µ0kk7
(∆ + λ24)(∆ + λ25)(k7∆+ k8), µ0 := λ+ 2µ,

B∗
53 := − hk1

µ0kk7
(∆ + λ24)(∆ + λ25)(µ0∆+ ρω2),

B∗
55 :=

1

µ0kk7
(∆ + λ24)(∆ + λ25)(µ0∆+ ρω2)(k7∆+ k8),

B∗
31 := − k3β0

µ0kk7
((∆ + λ24)(∆ + λ25) B∗

35 :=
k3

µ0kk7
(∆ + λ24)(∆ + λ25)(µ0∆+ ρω2),

B∗
33 :=

1

k6
(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ24),

B∗
34 :=

(∆ + λ24)

µ0kk6k7
{k1k3(µ0∆+ ρω2) + (k4 + k5)[(µ0∆+ ρω2)(k∆+ a0) + ββ0∆]}.

Substituting the vector U(x) = B(∂x, ω)Ψ into A(∂x, ω)U = 0, where Ψ is a
five-component vector function, we get

B(∆) = (∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ24)(∆ + λ25)Ψ.

Whence, applying the method developed in [6], after some calculations, the vector Ψ
can be represented as

Ψ =
5∑

j=1

djH
(1)
0 (λjr),

5∑
j=1

dj = 0,
5∑

j=1

dj(λ
2
m − λ2j) = 0, m = 4, 5, (25)

5∑
j=1

dj(λ
2
4 − λ2j)(λ

2
5 − λ2j) = 0, dj =

5∏
m=1

1

λ2j − λ2m
, j ̸= m, j = 1, 2, .., 5,

where H
(1)
0 (λjr) are Hankel’s functions of the first kind with the index equal to 0 and

r = |x− y|.
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Substituting (25) into U = BΨ, we obtain the matrix of fundamental solution,
which we denote by Γ(x-y, ω)

Γ(x-y, ω) :=∥ Γkj(x-y, ω) ∥5×5,

where

Γαγ(x-y, ω) := δαγ
H

(1)
0 (λ4r)

µ
− ∂2Ψ11

∂xα∂xγ
, Ψ11 := −H

(1)
0 (λ4r)

µλ24

+
3∑

m=1

lm
λ2mµ0kk7

[(k8 − k7λ
2
m)(a0 − kλ2m)− k1k3λ

2
m]H

(1)
0 (λmr)

Γα+2,γ+2(x-y, ω) := δαγ
H

(1)
0 (λ5r)

k6
− ∂2Ψ33

∂xα∂xγ
, Ψ33 := −H

(1)
0 (λ5r)

k6λ25

+
3∑

m=1

lm
λ2mµ0kk7

[(a0 − kλ2m)(ρω
2 − µ0λ

2
m)− ββ0λ

2
m]H

(1)
0 (λmr),

Γ55(x-y, ω) :=
1

kk7µ0

3∑
m=1

lm((ρω
2 − µ0λ

2
m)(k8 − k7λ

2
m)H

(1)
0 (λmr),

Γα5(x-y, ω) := β
∂ψ15

∂xα
, Γ2+α,5(x-y, ω) := k3

∂ψ51

∂xα
, α, γ − 1, 2,

Γ5γ(x-y, ω) := −β0
∂ψ15

∂xγ
, ψ15 =

1

kk7µ0

3∑
m=1

lm(k8 − k7λ
2
m)H

(1)
0 (λmr),

Γ5,2+γ(x-y, ω) := −k1
∂ψ51

∂xγ
, ψ51 =

1

kk7µ0

3∑
m=1

lm(ρω
2 − µ0λ

2
m)H

(1)
0 (λmr),

Γα,2+γ(x-y, ω) := −k1β
∂2ψ13

∂xα∂xγ
, ψ13 :=

1

kk7µ0

3∑
m=1

lmH
(1)
0 (λmr),

Γα+2,γ(x-y, ω) := −k3β0
∂2ψ13

∂xα∂xγ
, lm = dm(λ

2
4 − λ2m)(λ

2
5 − λ2m), l = 1, 2, 3,

3∑
m=1

lm = 0,
3∑

m=1

lmλ
2
m = 0,

3∑
m=1

lmλ
4
m = 1.

We can easily prove the following
Theorem 3. The elements of the matrix Γ(x-y, ω) has a logarithmic singularity as

x → y and each column of the matrix Γ(x-y, ω), considered as a vector, is a solution
of the system A(∂x, ω)U = 0 at every point x if x ̸= y.

According to the method developed in [5], we construct the matrix Γ̃(x, ω) :=

ΓT (−x, ω) and the following basic properties of Γ̃(x, ω) may be easily verified:

Theorem 4. Each column of the matrix Γ̃(x-y, ω), considered as a vector, satisfies

the associated system Ã(∂x)Γ̃(x-y, ω) = 0, at every point x if x ̸= y and the elements

of the matrix Γ̃(x-y, ω) have a logarithmic singularity as x → y.

Matrix of singular solutions

In solving BVPs of the theory of thermoelasticity with microtemperatures by the
potential method, besides the matrix of fundamental solutions, some other matrices
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of singular solutions to equations (5)-(7) are of a great importance. Using the matrix
of fundamental solutions, we construct the so-called singular matrices of solutions by
means of elementary functions.

We introduce the special generalized stress vector
τ

R(∂x,n)U, which acts on
the element of the arc with the unit normal n = (n1, n2), where

τ

R(∂x,n) :=∥
τ

Rlj ∥5×5,

τ

Rαγ := δαγµ
∂

∂n
+ (λ+ µ)nα

∂

∂xγ
+ τ1Mαγ,

τ

Rα,γ+2 ≡
τ

Rα+2,γ ≡
τ

Rα+2,5

≡
τ

R5γ ≡ 0,
τ

Rα5 := −βnα,
τ

Rα+2;γ+2 := δαγk6
∂

∂n
+ (k4 + k5)nα

∂

∂xγ
+ τ2Mαγ,

τ

R5,γ+2 := k1nγ,
τ

R55 := k
∂

∂n
, Mαγ := nγ

∂

∂xα
− nα

∂

∂xγ
, α, γ = 1, 2, (26)

here τ = (τ1, τ2), τα, α = 1, 2, are the arbitrary numbers. If τ1 = µ, τ2 =
k5, we denote the obtained operator by P(∂x,n). The operator, which we get from
τ

R(∂x,n) for τ1 =
µ(λ+ µ)

λ+ 3µ
, τ2 =

k6(k4 + k5)

k4 + k5 + 2k6
, will be denoted by N(∂x,n)

and the vector N(∂x,n)U will be called the pseudostress vector.

Applying the operator
τ

R(∂x,n) to the matrix Γ(x-y, ω), we construct the so-
called singular matrix of solutions

τ

R(∂x,n)Γ(x-y, ω) := ∥
τ

Mlj(∂x) ∥5×5,

where

τ

Mγγ(∂x) :=
∂H

(1)
0 (λ4r)

∂n
+ (−1)γ(τ1 + µ)

∂

∂s

∂2Ψ11

∂x1∂x2
+ nγρω

2∂Ψ11

∂xγ
,

τ

M12(∂x) :=
τ1
µ

∂

∂s
H

(1)
0 (λ4r)− (τ1 + µ)

∂

∂s

∂2Ψ11

∂x22
+ ρω2n1

∂Ψ11

∂x2
,

τ

M21(∂x) := −τ1
µ

∂

∂s
H

(1)
0 (λ4r) + (τ1 + µ)

∂

∂s

∂2Ψ11

∂x21
+ ρω2n2

∂Ψ11

∂x1
,

τ

M1,γ+2(∂x) := k1β

[
n1ϱω

2∂ψ13

∂xγ
− (µ+ τ1)

∂

∂s

∂2ψ13

∂xγ∂x2

]
,

τ

M2,γ+2(∂x) := k1β

[
n2ϱω

2∂ψ13

∂xγ
+ (µ+ τ1)

∂

∂s

∂2ψ13

∂xγ∂x1

]
,

τ

M15(∂x) := β

[
(τ1 + µ)

∂

∂x2

∂

∂s
− ρω2n1

]
ψ15,

τ

M25(∂x) := −β
[
(τ1 + µ)

∂

∂x1

∂

∂s
+ ρω2n2

]
ψ15,

τ

M3α(∂x) := k3β0

[
n1

kµ0

3∑
m=1

lmλ
2
m

∂

∂xα
H

(1)
0 (λmr)− (τ2 + k6)

∂

∂s

∂2ψ13

∂x2∂xα

]
,



10 Bitsadze L.

τ

M35(∂x) :=
k3
kµ0

3∑
m=1

lm(ρω
2 − µ0λ

2
m)

[
−n1λ

2
m +

τ2 + k6
k7

∂

∂x2

∂

∂s

]
H

(1)
0 (λmr),

τ

M4α(∂x) := k3β0

[
n2

kµ0

3∑
m=1

lmλ
2
m

∂

∂xα
H

(1)
0 (λmr) + (τ2 + k6)

∂

∂s

∂2ψ13

∂x1∂xα

]
,

τ

M45(∂x) := − k3
kµ0

3∑
m=1

lm(ρω
2 − µ0λ

2
m)

[
n2λ

2
m +

τ2 + k6
k7

∂

∂x1

∂

∂s

]
H

(1)
0 (λmr),

τ

M5γ(∂x) := − β0
k7µ0

3∑
m=1

lm

[
k1k3
k

+ k8 − k7λ
2
m

]
∂2H

(1)
0 (λmr)

∂n∂xγ
,

τ

M5,γ+2(∂x) :=

[
nγ

k6
H

(1)
0 (λ5r)−

∂2(Ψ33 + kψ51)

∂xγ∂n

]
k1

τ

M55(∂x) :=
1

µ0k7

3∑
m=1

lm(ρω
2 − µ0λ

2
m)

[
k1k3
k

+ k8 − k7λ
2
m

]
∂H

(1)
0 (λmr)

∂n
,

τ

M2+γ,2+γ(∂x) :=
∂H

(1)
0 (λ5r)

∂n
+ (−1)γ(τ2 + k6)

∂

∂s

∂2Ψ33

∂x1∂x2
− nγ

∂

∂xγ
[k1k3ψ51 − k8Ψ33]

τ

M43(∂x) := − τ2
k6

∂H
(1)
0 (λ5r)

∂s
+ (τ2 + k6)

∂2

∂x21

∂Ψ33

∂s
− n2

∂

∂x1
[k1k3ψ51 − k8Ψ33],

τ

M34(∂x) :=
τ2
k6

∂H
(1)
0 (λ5r)

∂s
− (τ2 + k6)

∂2

∂x22

∂Ψ33

∂s
− n1

∂

∂x2
[k1k3ψ51 − k8Ψ33]. (27)

We prove the following theorem.

Theorem 5. Every column of the matrix
[ τ

R(∂y,n)Γ(y-x, ω)
]T
, considered as a

vector, is a solution of the system Ã(∂x, ω) = 0 at any point x if x ̸= y.
Let

R̃τ (∂x,n) :=



τ

R11

τ

R12 0 0 − β0n1
τ

R21 R22 0 0 − β0n2

0 0
τ

R33

τ

R34 0

0 0
τ

R43

τ

R44 0

0 0 k3n1 k3n2

τ

R55


,

where
τ

Rαγ,
τ

Rα+2,γ+2,
τ

R55, α, γ = 1, 2, are given by (26), then

R̃τ (∂x,n)Γ̃(x-y, ω) = ∥M̃
τ

lj(∂x, )∥5×5,
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Here

M̃
τ

αγ(∂x) :=
τ

Mαγ(∂x), M̃
τ

α+2,γ+2(∂x) :=
τ

Mα+2,γ+2(∂x), M̃
τ

55(∂x) :=
τ

M55(∂x),

M̃
τ

1,γ+2(∂x) := k3β0

[
n1ρω

2∂ψ13

∂xγ
− (τ1 + µ)

∂

∂s

∂2ψ13

∂x2∂xγ

]
,

M̃
τ

2,γ+2(∂x) := k3β0

[
n2ρω

2∂ψ13

∂xγ
+ (τ1 + µ)

∂

∂s

∂2ψ13

∂x1∂xγ

]
,

M̃
τ

15(∂x) := β0

[
−n1ρω

2ψ15 + (τ1 + µ)
∂

∂s

∂ψ15

∂x2

]
,

M̃
τ

25(∂x) := −β0
[
n2ρω

2ψ15 + (τ1 + µ)
∂

∂s

∂ψ15

∂x1

]
,

M̃
τ

3γ(∂x) := k1β

[
n1

kµ0

3∑
m=1

lmλ
2
m

∂H
(1)
0 (λmr)

∂xγ
− (τ2 + k6)

∂

∂s

∂2ψ13

∂x2∂xγ

]

M̃
τ

4γ(∂x) := k1β

[
n2

kµ0

3∑
m=1

lmλ
2
m

∂H
(1)
0 (λmr)

∂xγ
+ (τ2 + k6)

∂

∂s

∂2ψ13

∂x1∂xγ

]

M̃
τ

35(∂x) := −k1

[
n1

kµ0

3∑
m=1

lmλ
2
m(ρω

2 − µ0λ
2
m)H

(1)
0 (λmr)− (τ2 + k6)

∂

∂s

∂ψ51

∂x2

]
,

M̃
τ

45(∂x) := −k1

[
n2

kµ0

3∑
m=1

lmλ
2
m(ρω

2 − µ0λ
2
m)H

(1)
0 (λmr) + (τ2 + k6)

∂

∂s

∂ψ51

∂x1

]
,

M̃
τ

5γ(∂x) := − β

k7µ0

3∑
m=1

lm

[
k8 − k7λ

2
m +

k1k3
k

]
∂2H

(1)
0 (λmr)

∂xγ∂n
,

M̃
τ

5,γ+2(∂x) := k3

[
nγ

k6
H

(1)
0 (λ5r)−

∂2(ψ33 + kψ51)

∂xγ∂n

]
.

Let [P̃(∂y,n)Γ̃(y-x), ω]T , be the matrix which we get from P̃(∂x,n)Γ̃(x-y, ω) by trans-
position of the columns and rows and the variables x and y. The superscript “T ”
denotes transposition.

We prove the following theorem.

Theorem 6. Every column of the matrix
[
R̃τ (∂y,n)Γ̃(y-x, ω)

]T
, considered as a

vector, is a solution of the system A(∂x, ω)U = 0 at any point x if x ̸= y.
Let g and ϕ be continuous (or Hölder continuous) vectors and S be a closed Lya-

punov curve.
We introduce the potential of a single-layer

Z(1)(x,g) =

∫
S

Γ(x− y, ω)g(y)ds,

the potential of a double-layer

Z(2)(x,g) =

∫
S

[R̃τ (∂y,n)ΓT (y-x, ω)]Tg(y)ds
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and the potential of volume

Z(3)(x,ϕ) =

∫
D±

Γ(x− y, ω)ϕ(y)ds,

where Γ is the fundamental matrix, g and ϕ are five-component vectors.
The following theorem is valid:
Theorem 7. The vectors Z(j) (j = 1, 2, ) are the solutions of the system

A(∂x, ω)U = 0

in both the domains D+ and D− and the elements of the matrix
[
R̃τ (∂y,n)ΓT (y-x, ω)

]T
,

contain a singular part, which is integrable in the sense of the Cauchy principal value.
The vector Z(3)(x,ϕ) is a solution of the system A(∂x, ω)Z(3) = ϕ.
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NONLINEAR MATHEMATICAL MODEL OF DYNAMICS OF VOTERS OF TWO
POLITICAL SUBJECTS

Chilachava T.

Abstract. In the present paper the nonlinear mathematical model describing dynamics

of voters of pro-governmental and oppositional parties (two selective subjects, coalitions) is

offered. In model three objects are considered: governmental and administrative structures

influencing by means of administrative resources citizens (first of all in opposition adjusted

voters) for the purpose of their attraction on the side of pro-governmental party; citizens with

the selective voice, at present supporting opposition party; citizens with the selective voice,

at present supporting pro-governmental party. In cases constant or variable (in proportion to

number of voters of opposition party) uses of administrative resources the problem of Cauchy’s

for nonlinear system of the differential equations is solved analytically exactly. Conditions

for model parameters at which the opposition party (coalition) will win the next elections

are found. The mathematical model except theoretical interest has also important practical

value, as both sides (the state structures together with pro-governmental party; opposition

party) can use results according to the purposes. It allows the sides, according to the chosen

strategy, to select parameters of action and to achieve desirable results for themselves.

Keywords and phrases: Nonlinear mathematical model, pro-governmental party (coali-

tion), administrative resources, opposition party (coalition), elections.

AMS subject classification (2010): 7M10, 97M70.

Introduction

Mathematical modeling and computing experiment the last decades gained all-
round recognition in a science as the new methodology which is roughly developing
and widely introduced not only in natural-science and technological spheres, but also
in economy, sociology, political science and other public disciplines [1 - 5].

In [6 - 8] the mathematical model of political rivalry devoted to the description
of fight occurring in imperious elite competing (but not surely antagonistic) political
forces, for example, power branches is considered. It is supposed that each of the
parties has ideas of ”number” of the power which this party would like to have itself,
and about ”number” of the power which she would like to have for the partner.

Works [9 - 12] are devoted to creation of mathematical model of such social process
what administrative management is. The last can be carried out as at macrolevel
(for example, the state) and at microlevel (for example, an educational or research
institution, an industrial facility, etc.).

A certain interest represents creation of the mathematical model, allowing to define
dynamics of voters of political subjects. It is known that in many countries including
developed ones, there are two-party systems. Such systems are characterized by the
existence of two largest parties which periodically replace each other in power. And,
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when in power there is one party, the second is the leading party of opposition. How-
ever it doesn’t mean that except these two parties in the country there are no other
parties, simply their influence on political processes is insignificant. In some countries
eventually to change of one of the largest parties can come any else, earlier being in
a shadow. For example, in Great Britain in the XIX century and at the beginning of
the XX century two largest parties were conservative and liberal. In the XX century
Liberal party in this tandem replaced labor, however the two-party system remained.
The most rigid option of two-party system exists in the USA. Here only republican
and democratic parties apply for the power, other parties almost don’t play any role.
And in the Congress for it more than two hundred year’s history other parties almost
were never presented. A version of two-party system is the two-block system. Here
not largest parties, and party coalitions appear confronting forces. It is caused by
that any party unable to achieve sufficient support of voters independently to create
the government therefore parties according to the political orientation and ideological
installations unite for increase in the influence. Thus such competing coalitions remain
almost in invariable structure throughout quite a long time. Such party system de-
veloped, for example, in the Netherlands. Such party systems in which as two main
competing forces act, on the one hand, party, and, meet another – the party block also.
So, in Australia agrarian and liberal parties make the constant union resisting to the
Labour party.

In the real work the nonlinear mathematical model describing dynamics of voters of
pro-governmental and oppositional parties (two selective subjects, coalitions) is offered.
In the model three objects are considered:

1. The state and administrative structures influencing by means of administrative
resources citizens (first of all in opposition adjusted voters) for the purpose of their
attraction on the party of pro-governmental party.

2. Citizens with the selective voice, at present supporting opposition party.
3. Citizens with the selective voice, at present supporting pro-governmental party.

1. System of the equations and entry conditions

For dynamics description between elections of voters of pro-governmental and oppo-
sitional parties (two selective subjects) we offer the following nonlinear mathematical
model:

dN1 (t)

dt
= (α1(t)− α2(t))N1 (t)N2 (t)− f(t, N1(t))

dN2 (t)

dt
= (α2(t)− α1(t))N1 (t)N2 (t) + f(t, N1(t))

(1.1)

N1(0) = N10, N2(0) = N20, N10 < N20, (1.2)

where N1(t), N2(t) are respectively, a number of the voters supporting oppositional
and pro-governmental parties at the moment of time t and t ∈ [0, T ], t = 0 is the
moment of time of the last elections owing to which the party won elections and be-
came pro-governmental (N10 < N20) ; t = T is the moment of the following, for ex-
ample, parliamentary elections (as a rule T = 4 years or 1460 days if t will change
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on days); a1 (t) , a1 (t) respectively factors of attraction of votes of oppositional and
pro-governmental parties at the moment of time t, connected with the action program,
financial and information possibilities (PR technology) of these parties; f (t, N1 (t)) is
the positive function of the arguments characterizing use of administrative resources,
directed on voters of opposition party, for the purpose of their attraction on the party
and power preservation that is the purpose of any authorities in power.

In model (1.1), (1.2) it is supposed that total number of voters (N10 + N20 = a)
from elections to elections doesn’t change (often, in many countries, their change is
insignificant in comparison with a total number of voters). Thus, we consider that in
a period between elections the number of the dead voters and the voters who for the
first time have received a vote are equal (in many countries of 18 years) authorities in
power.

This mathematical model doesn’t consider falsification of elections in the election
day though it is possible to consider and falsification cases, having initially set their
percentage value.

Two cases are considered:
1. α1(t) = α1 = const > 0, α2(t) = α2 = const > 0, f(t, N1(t)) = b > 0 is constant

nature of use of administrative resources.
2. α1(t) = α1 = const > 0, α2(t) = α2 = const > 0, f(t, N1(t)) = βN1(t), β > 0

variable nature of use of administrative resources (in proportion to a number of voters
of opposition party).

2. Constant nature of use of administrative resources

In this case we have a system of the equations

dN1 (t)

dt
= (α1 − α2)N1 (t)N2 (t)− b

dN2 (t)

dt
= (α2 − α1)N1 (t)N2 (t) + b

(2.1)

depending on ratios between constants of model, the exact solution of a problem of
Cauchy’s (2.1), (1.2) look like:
a) α1 < α2

N1(t) =
a

2
+

p

(
1 +

N10 −N20 − 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pt

)
1 +

N20 −N10 + 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pt)

N2(t) =
a

2
−
p

(
1 +

N10 −N20 − 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pt

)
1 +

N20 −N10 + 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pt)

(2.2)

p =

√
b

α2 − α1

+ a2
/
4 >

a/2
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exp(2(α2 − α1)pt1) =
a+ 2p

2p− a
· N10 −N20 + 2p

N20 −N10 + 2p
> 1

N2(t1) = a, N1(t1) = 0

t1 =
1

2(α2 − α1)p
ln
[a+ 2p

2p− a
· N10 −N20 + 2p

N20 −N10 + 2p

]
. (2.3)

If t1 ≤ T, then on the following elections the opposition party will have no voters
supporting them (exponential aspiration to an one-party regime); if t1 > T, then on
the following elections opposition party will support only insignificant number of voters
(close to a one-party regime)

N1(T ) =
a

2
+

p

(
1 +

N10 −N20 − 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pT )

)
1 +

N20 −N10 + 2p

N10 −N20 + 2p
· exp(2(α2 − α1)pT )

> 0 (2.4)

b) α1 = α2

N1(t) = −bt+N10 N2(t) = bt+N20. (2.5)

It is clear, that in case of equality of factors of attraction of votes of competing parties,
the number of voters of pro-governmental party grows, and oppositional falls, and, if

t2 = N10/b ≤ T,

then on the following elections the opposition party will have no voters supporting
them (linear aspiration to an one-party regime). If

t2 = N10/b > T,

then on the following elections opposition party will support only an insignificant num-
ber of voters (close to a one - party regime).

N1(T ) = −bT +N10 > 0 (2.6)

c) α1 > α2

D =
a2

4
− b

α1 − α2

(2.7)

c1) D = 0

N1(t) =
a

2
+

N10 −N20

2 + (α1 − α2)(N10 −N20)t
, (2.8)

N2(t) =
a

2
+

N20 −N10

2 + (α1 − α2)(N10 −N20)t
.

The decision (2.8) is considered only at a period

t ∈ [0, t3], t3 =
4N10

a(α1 − α2)(N20 −N10)
> 0, N1(t3) = 0, N2(t3) = a. (2.9)



Nonlinear Mathematical Model of Dynamics of ... 17

Therefore, if

t3 ≤ T,

then on the following elections the opposition party will have no voters supporting
them (hyperbolic aspiration to a one-party regime); if

t3 > T,

that at the following elections opposition party will support only an insignificant num-
ber of voters (close to a one - party regime)

N1(T ) =
a

2
+

N10 −N20

2 + (α1 − α2)(N10 −N20)T
> 0 (2.10)

c2) D > 0

D =
a2

4
− b

α1 − α2

= q2, q < a/2 (2.11)

N1(t) =
a

2
+

q

(
1 +

N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qt

)
1− N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qt)

, (2.12)

N2(t) =
a

2
−
q

(
1 +

N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qt)

)
1− N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qt)

.

If the inequality is executed

N10 < N20 < N10 + 2q, (2.13)

then, at

t4 =
1

2(α1 − α2)q
ln
N20 −N10 + 2q

N10 + 2q −N20
(2.14)

the ratio takes place
N1(t4) = N2(t4),

then, at
t > t4, N1(t) > N2(t). (2.15)

Therefore, if t4 < T, that the opposition party will win the following elections, a case

t4 = T

on the following elections both parties will collect identical quantities of votes, and at

t4 > T,
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at the following elections at pro - governmental party all the same while will be voters
more.

If equality takes place
N20 = N10 + 2q, (2.16)

that decision (2.12) will become

N1(t) = N10, N2(t) = N20, (2.17)

i.e. the number of voters of parties doesn’t change over time and at the subsequent
elections the pro - governmental party will keep the power.

At inequality performance

a > N20 > N10 + 2q

t5 =
1

2(α1 − α2)q
ln
N20 −N10 + 2q

N20 −N10 − 2q
· N10 +N20 − 2q

N20 +N10 + 2q
(2.18)

N1(t5) = 0, N2(t5) = a.

Therefore, if
t5 ≤ T,

then at the following elections the opposition party will have no voters supporting them
(exponential aspiration to a one - party regime); if

t5 > T,

that at the following elections opposition party will support only insignificant number
of voters (close to a one - party regime)

N1(T ) =
a

2
+

q

(
1 +

N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qT )

)
1− N20 −N10 + 2q

N20 −N10 − 2q
· exp(−2(α1 − α2)qT )

> 0 (2.19)

c3) D < 0

D =
a2

4
− b

α1 − α2

= −r2, (2.20)

N1(t) =
a

2
−
r

(
N20 −N10

2r
+ tan((α1 − α2)rt

)
1− N20 −N10

2r
tan((α1 − α2)rt)

(2.21)

N2(t) =
a

2
+

r

(
N20 −N10

2r
+ tan((α1 − α2)rt

)
1− N20 −N10

2r
tan((α1 − α2)rt)
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t6 =
1

(α1 − α2)r
arctg

4rN10

N2
20 −N2

10 + 4r2

N1(t6) = 0, N2(t6) = a.

Therefore, if
t6 ≤ T,

then on the following elections the opposition party will have no voters supporting
them (transcendental aspiration to a one-party regime); if t6 > T, that of the following
elections opposition party will support only an insignificant number of voters (close to
an one-party regime)

N1(T ) =
a

2
−
r

(
N20 −N10

2r
+ tan((α1 − α2)rT

)
1− N20 −N10

2r
tan((α1 − α2)rT )

> 0 (2.22)

3. Variable nature of use of administrative resources

In this case we have a system of the equations

dN1 (t)

dt
= (α1 − α2)N1 (t)N2 (t)− βN1(t), (3.1)

dN2 (t)

dt
= (α2 − α1)N1 (t)N2 (t) + βN1(t).

Depending on ratios between constants of model, the exact solution of a problem of
Cauchy’s (3.1), (1.2) look like:
a) α1 = α2

N1(t) = N10e
−βt, N2(t) = a−N10e

−βt. (3.2)

From (3.2) it is clear that in case of equality of factors of involvement of voters of
competing parties, the number of voters of pro - governmental party grows, and oppo-
sitional falls and on the following elections it will support only an insignificant number
of voters (exponential aspiration to a one - party regime)

N1(T ) = N10e
−βT , (3.3)

b) α1 ̸= α2, (α1 − α2)a = β, α1 > α2

N1(t) =
N10

1 + (α1 − α2)N10t
,

N2(t) =
N20 + (α1 − α2)aN10t

1 + (α1 − α2)N10t

(3.4)

From (3.4) it follows that if a number of voters of pro - governmental party grows, and
oppositional falls and at the following elections it will support only an insignificant
number of voters (hyperbolic aspiration to a one - party regime).



20 Chilachava T.

c)α1 ̸= α2, (α1 − α2)a ̸= β

N1(t) =
((α2 − α1)a+ β)N10e

−((α2−α1)a+β)t

(α2 − α1)N20 + β + (α2 − α1)N10e−((α2−α1)a+β)t
(3.5)

N2(t) =
(α2 − α1)aN20 + aβ − βN10e

−((α2−α1)a+β)t

(α2 − α1)N20 + β + (α2 − α1)N10e−((α2−α1)a+β)t

c1) α1 < α2 From (3.5) it follows that in this case, the number of voters of pro -
governmental party grows, and oppositional falls and at the following elections it will
support only an insignificant number of voters (exponential aspiration to a one - party
regime)

N1(T ) =
((α2 − α1)a+ β)N10e

−((α2−α1)a+β)T

(α2 − α1)N20 + β + (α2 − α1)N10e−((α2−α1)a+β)T
(3.6)

c2) α1 > α2, 0 < (α1 − α2)a < β From (3.5) it follows that in this case, the number of
voters of pro - governmental party grows, and oppositional falls and at the following
elections it will support only an insignificant number of voters (exponential aspiration
to a one - party regime)

N1(T ) =
(β − (α1 − α2)a)N10e

−(β−(α1−α2)a)T

β − (α2 − α1)N20 − (α2 − α1)N10e−(β−(α1−α2)a)T
(3.7)

c3) α1 > α2, (α1 − α2)a > β.
Let’s introduce the notation

g(t) ≡ (α1 − α2)N20 − β + (α1 − α2)N10e
((α1−α2)a−β)t. (3.8)

It is easy to show that we have

g′(t) > 0, g(0) > 0.

Therefore owing to a g(t) function continuity

g(t) > 0, for t > 0

If the inequality takes place
(α1 − α2)a > 2β, (3.9)

then inequalities are fair

(α1 − α2)N20 > 2β,
((α1 − α2)N20 − β)a

N10((α1 − α2)a− 2β)
> 1, (3.10)

and also an inequality for required functions

N1(t) ≥ N2(t), t ≥ t7, (3.11)

t7 =
1

(α1 − α2)a− β
ln

((α1 − α2)N20 − β)a

N10((α1 − α2)a− 2β)
.
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Therefore, if
t7 < T,

then the opposition party will win the following elections, a case

t7 = T

at the following elections both parties will collect identical quantities of votes, and at

t7 > T,

at the following elections at pro - governmental party all the same while will be voters
more.

In the case
β < (α1 − α2)a ≤ 2β,

N1(t) < N2(t), t ≥ 0

and the opposition party will lose the following elections.
The mathematical model except theoretical interest has also important practical

value, as both parties (the state structures in together with pro - governmental party;
opposition party) can use results according to the purposes. It allows the parties,
according to the chosen strategy, to select parameters of action and to achieve desirable
results for them.
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Let a < t01 < t02 < t11 < t12 < b, θ > 0, τ > 0 be given numbers and let Rn
x be

the n-dimensional vector space of points x = (x1, ..., xn)T , where T means transpose;
suppose that O ⊂ Rn

x is an open set and U ⊂ Rr
u is a compact and convex set, the n×r

-dimensional matrix-function f(t, x) is continuous on the set I × O and continuously
differentiable with respect to x ∈ O, where I = [a, b]. Further, let the scalar function
f 0(t, x, u) be continuous on the set I × O × U and convex in u ∈ U ; let Φ be the set
of continuous initial functions φ(t) ∈ O, t ∈ [a− τ, t02]; let Ω be the set of measurable
control functions u(t) ∈ U, t ∈ [a− θ, b].

To each element

w = (t0, t1, u(·)) ∈ W = [t01, t02]× [t11, t12]× Ω

we assign the differential equation linear with respect to control

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

f(t, x(t+ s))u(t+ ξ)ds
}
dξ, t ∈ [t0, t1] (1)

with the initial condition

x(t) = φ0(t), t ∈ [t0 − τ, t0), x(t0) = x00, (2)

where φ0(·) ∈ Φ is a given initial function, x00 ∈ O is a given initial vector.
Equation (1) is called a differential equation with distributed delay in phase coor-

dinates and in controls.
Definition 1. Let w = (t0, t1, u(·)) ∈ W . A function x(t) = x(t;w) ∈ O, t ∈

[t0 − τ, t1] is called solution corresponding to the element w, if the conditions (1) and
(2) are fulfilled. Moreover, the function x(t), t ∈ [t0, t1] is absolutely continuous and
satisfies equation (1) almost everywhere on [t0, t1].

Definition 2. An element w = (t0, t1, u(·) ∈ W is admissible if there exists the
corresponding solution x(t) = x(t;w), t ∈ [t0 − τ, t1] and the condition

x(t1) = x1 (3)
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is fulfilled. Here x1 ∈ O is a given point and also x1 ̸= x00.
The set of admissible elements will be denoted by W0.
Definition 3. An element w0 = (t00, t10, u0(·)) ∈ W0 is called optimal, if

J0 = J(w0) = inf
w∈W0

J(w), (4)

where

J(w) =

∫ 0

−θ

{∫ 0

−τ

f 0(t, x(t+ s), u(t+ ξ))ds
}
dξ, x(t) = x(t;w).

Problem (1)-(4) is called an optimal problem with distributed delay. The element w0

is called the solution of problem (1)-(4).
To formulate the main result we need the following notation: E is the space of

vector functions G(t, x) = (g0(t, x), g1(t, x), ..., gn(t, x))T which satisfy the following
conditions: for every x ∈ O the function G(t, x) is measurable on I; for every G ∈ E
and any compact set K ⊂ O there exist functions mG,K(·), LG,K(·) ∈ L1(I;R+), R+ =
[0,∞) such that the inequalities

|G(t, x)| ≤ mG,K(t), ∀x ∈ K,

|G(t, x)−G(t, y)| ≤ LG,K(t)|x− y|,∀(x, y) ∈ K2

are fulfilled for almost all t ∈ I.
Let K ⊂ O be a compact set, C > 0 is a given number. Denote by WK the set of

perturbations:

WK =
{
G ∈ E | ∃mG,K(·), LG,K(·) ∈ L1(I;R+),

∫
I

[
mG,K(t) + LG,K(t)

]
dt ≤ C

}
.

Furthermore,

Vδ,K =
{
G ∈ WK | sup

(t′ ,t′′ ,x)∈I2×K

∣∣∣ ∫ t
′′

t′
G(s, x)ds

∣∣∣ ≤ δ
}
, δ > 0;

Bx00,δ =
{
x0 ∈ O | |x0 − x00| ≤ δ

}
, Bφ0,δ =

{
φ0(·) ∈ Φ|∥φ0 − φ∥ ≤ δ

}
,

∥φ0 − φ∥ = max
t∈[a−τ,t02]

|φ0(t)− φ(t)|.

Theorem 1. Let the following conditions be fulfilled:
1) W0 ̸= Ø;
2) there exists a compact set K0 ∈ O such that

x(t;w) ∈ K0, t ∈ [t0 − τ, t1],∀w ∈ W0.

Then for any ε > 0 there exists a number δ = δ(ε) > 0 such that for every

µ = (x0, φ(·), G) ∈ Bx00,δ ×Bφ0,δ × Vδ,K1
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the perturbed optimal control problem

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

[
f(t, x(t+ s))u(t+ ξ) + g(t, x(t+ s))

]
ds
}
dξ, t ∈ [t0, t1],

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x0, x(t1) ∈ Bx1,δ,

J(w;µ) =

∫ 0

−θ

{∫ 0

−τ

[
f 0(t, x(t+ s), u(t+ ξ)) + g0(t, x(t+ s))

]
ds
}
dξ → min

has the solution w0(µ) = (t00(µ), t10(µ), u0(·;µ)). Also,if

µi = (x0i, φi(·), Gi) ∈ Bx00,δi ×Bφ0,δi × Vδi,K1 , i = 1, 2, ...,

where δi = δ(εi), εi → 0, then

lim
i→∞

J(w0(µi);µi) = J0.

Moreover, from the sequence wi, i = 1, 2, ... we can choose a subsequence

w0(µik) = (t00(µik), t10(µik), u0(·;µik)), k = 1, 2, ...

such that
lim
k→∞

t00(µik) = t00, lim
k→∞

t10(µik) = t10,

lim
k→∞

u0(t;µik) = u0(t), weakly in L1([a− θ, b];U)

and w0 = (t00, t10, u0(·)) is a solution of the problem (1)-(4). Here g = (g1, ..., gn)T ,
K1 ⊂ O is a compact set containing a certain neighborhood of the compact K0.

Some comments.
c1. If the problem (1)-(4) has a unique solution w0 = (t00, t10, u0(·)), then we have

lim
i→∞

t00(µi) = t00, lim
i→∞

t10(µi) = t10,

lim
i→∞

u0(t;µi) = u0(t), weakly in L1([a− θ, b];U).

c2. A theorem analogous to Theorem 1 also is valid for the following optimal
control problem

ẋ(t) =

∫ 0

−θ

{∫ 0

−τ

[
f(t, x(t+ s))u(t+ ξ) + f1(t, x(t+ s))

]
ds
}
dξ, t ∈ [t0, t1],

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x00, x(t1) = x1,∫ 0

−θ

{∫ 0

−τ

[
f 0(t, x(t+ s), u(t+ ξ)) + f 0

1 (t, x(t+ s))
]
ds
}
dξ → min,

where (f 0
1 , f1)

T ∈ E is a given function.
c3. Theorem 1 is proved by the method given in [1].
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c4. Theorems of the continuity of the minimum of the integral functional (well-
posedness ) with respect to perturbations for various classes of optimal control prob-
lems, when perturbations are small in the integral sense, are proved in [1-5]. A theorem
on the well-posedness for an nonlinear optimal problem with distributed delay in phase
coordinates is proved in [6, 7], with distributed delay in phase coordinates and control-
in [8, 9].

c5. Finally, we note that various small values are as a rule ignored in the numerical
solutions of optimal problems and therefore it is important to establish the connection
between initial and perturbed problem.
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We won’t be mistaken if we say, that an ultimate goal of studying any discipline is
receiving the most real forecasting estimates. However, unfortunately it is very difficult
to do this in economics and finance. The importance of forecasting is well expressed in
the words: “My interest is in the future because I am going to spend the rest of my life
there” (C. E. Ketering) [1]. But one thing is the interest and wish, another whether it
is possible. The difficulty can be well seen from the following definition (belonging to
Evan Esar): “An economist is an expert who will know tomorrow why the things he
predicted yesterday didn’t happen today”([1]).This is certainly a joke. More seriously
this question was considered by a well-known macroeconomist Gr. Mankiw in his most
famous textbook in economics, where he says: “Unfortunately with the accounting of
modern knowledge of economy, processes flowing in it often are unpredictable”, or as
famous macroeconomist R. Lukas said: “As consultants, we sometimes try to bend
down through ourselves”. Thus, forecasting in economics and finance is a very actual,
complicated and therefore, very interesting thing.

Scientific forecasts are made by applying logical inference to facts and past expe-
rience under the assumption that the future tends to replicate the past. In this way,
forecast errors made in the past can be systematically studied, to improve forecast
accuracy in the future. The principal technique, used in economic and business fore-
casting, vary from simple methods to complicated econometric model forecasts. Simple
methods are mechanical and ignore the structural relationships of economic systems.
Sophisticated methods, which can be empirical, statistical or econometric, are derived
from economic theories and statistical inference; and these methods, to a greater extent,
incorporate economic causality into the forecasting system. The procedure for making
forecasts is similar, no matter what technique is used. It involves building a forecasting
device, putting inputs into this device and making a forecast. To an econometrician,
the mathematical model is the forecasting device, and judgments along with historical
data and inputs. Although, before the device is put into use, it must go trough a series
of rigorous economic and statistical tests, to assess its forecasting ability.

The building of such forecasting device is not devoid of a builder’s judgments. A
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forecasting model is greatly influenced by the builder’s interpretations of data infor-
mation, views of economic theories, and preferences for statistical inference techniques.
In addition, the construction of a forecast device is also subject to the limitations on
time, funds, and the availability of data. Given the objective of the forecast and its
limitations, it is the forecaster’s judgment to decide how to construct the forecasting
model.

Forecasting methods are separated into two groups according to their level of sophis-
tication. Noneconometric forecasts include simple extrapolation, judgmental forecasts,
economic indicators and survey forecasts. The econometric techniques these methods
require do not go beyond simple and multiple regression analyses.

Econometric forecasts involve the use of a number of advanced econometric tech-
niques and can be classified into three categories, each involving an increased level of
sophistication. In a single-equation regression model, the dependent variable to be
forecast is explained by a number of explanatory variables in a single equation. The
second group consists of methods which are oriented to use a multidimensional econo-
metric models, assuming that initial variants of these models has a structural form (are
constructed in accordance with economic theory). The third level of complexity is the
time-series (stochastic) models, which are usually empirical.

As to the complexity of using models or methods, here everything depends on the
complexity of problem to be solved. Actually, as A. Einstein said: “All must be done
as simple as it is possible, but no more”. In our opinion it is possible to formulate this
idea in a form of “necessary (or corresponding) complexity principle”. For illustration
of this principle, recall some examples from our issues (of course, we can recall many
examples from others issues, but as it is said in a Russian proverb: ”our own shirt is
closer to the body”!).

Let us begin this following increasing of complexity of mathematical apparatus and
models.

Consider, for example, very actual for our economy, Georgian consolidated budget
revenues forecasting problem (say, for 2013-2015 years), for incomes expected from tax
of profit. Using well known computer system Eviews (Econometric views), we can
construct a model of dependence of Gcbr from gdp of the country. The corresponding
linear logarithmic model (regression equation) has the form:

LOG(GCBTP) = −13.69992633 + 2.136274694 ∗ LOG(GDP), (1)

where GCBTP denotes Georgian consolidate budget tax of profit volume (in million
GELs), GDP is volume of gdp, LOG is natural logarithm.

As it is clear from the corresponding results, the model has rather high level of
accuracy: R2 = 0.98, t-statistics of parameters are rather high, DW-statistic is almost
2, F-statistics is equal to 411, etc.

Besides this, it should be noted that, due to the model (1), the elasticity coefficient
of tax of profit, with respect to GDP equals 2.14, i.e. 1% increase of GDP shall cause
2.14% increase of the Georgian tax of profit.

The forecasting problem of this index the model (1) it reduces on finding the fore-
casting estimation of exogenous variable GDP, for forecasting period.
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Finally, concerning GDP’s forecasting problem, the semilogarithm trend model of
this index has the form:

LOG(GDP) = 8.121026344 + 0.1243837372 ∗@TREND, (2)

where @TREND denotes artificial time (trend) variable. The accuracy of model (2) is
rather high: R2 = 0.99, t-statistics of parameters are very high, F-statistics are equal
to 1238, etc.

After all, accounting forecasting estimations from this model, in the model (1) gives
forecasting estimations of resulting variable for appropriate period, what’s very easy
by using Eviews.

Analogously we can forecast the other budget revenues, although sometimes, for
achieving appropriate accuracy, one must include trend component in the model.

For example, it can be shown, that Georgian consolidated budget total (own) rev-
enues model (on the base of data of 1995-2011 years) has the form:

NSSH = −902.6632766 + 0.3854412984 ∗GDP− 95.58398125 ∗@TREND,

where NSSH denotes the volume of total (own) revenues of Georgian consolidate bud-
get.

However, from the above-considered examples we must not make a conclusion that
all forecasting problems can be solved on the basis of such simple models. Consider,
for example, Georgian commercial banks total actives forecasting problem basis on
dynamics of this index. It can be shown, that based on the months data of 2007.12−
2010.04, Georgian commercial banks total actives, with rather high accuracy, can be
described by following autoregressive and moving average type (ARMA) model (using
Eviews):

CBA = 7417816.211 + 69742.51203 ∗@TREND+ [AR(2) = 0.502738842,MA(1)

= 1.238605111, INITMA = 2008M02],

where AR(2) denotes second order autoregressive term, while MA(1) represents first
order moving average (as it is known MA(1) = ut−1, where ut−1 represents error term
of this equation for the previous period).

Although this model is rather accurate, (as it is known) the accuracy of such models
will begin to deteriorate as the forecasting period extends. Besides the above, the
necessity of use of rather sophisticated models can be caused by technical complexity
of problem or specifics of modeling situation or country.

Consider, for example, the capital cost computing problem for investment projects
(see [3]). Let us begin again from the very simple example. Consider an investment
project which requires initial investment of 100000$ to buy a new special device. By
market department’s forecasting estimations, the living circle duration of this product
is 3 years and the probable incomes from this device at the end of each year will be,
correspondingly, 50000, 40000 and 30000$. Within this conditions, net present value
(NPV) for this project can be calculated as follows ( see [4]):

NPV = −100 + 50/(1 + k) + 40/(1 + k)2 + 30/(1 + k)3 (3)
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where k (rate of discount) denotes the capital cost for this project.
Clearly for this project there should exist a value of k, say k0 (internal rate of

profitability, IRR), for which NPV of the project equals 0 or project never brings profit
nor loss. This means that if k > k0, then NPV < 0, i.e. project brings loss and if
k < k0, then the project brings profit, i.e. NPV > 0 or profit is 0. From this it is clear,
that if k0 for project is rather low, the project is not acceptable and it is acceptable
for the case when k0 is sufficiently high. Thus, it is clear, that problem of finding k0 in
this case is reduced to the solution of equation NPV = 0, which by (3) means that it
is needed to solve a third order equation. On the other hand, to solve such an equation
(and more complex ones) is very simple by using modern computer programs, such
as Matlab (see, for example [5]). Actually, using this system, the above mentioned
problem can be solved by using the single command:

fsolve(′−100 + 50/(1 + x) + 40/(1 + x)2 + 30/(1 + x)3
′
, 0),

which gives the value k0 = 0.1065. Thus, if capital cost of this project is lower than
10.65%, the project is profitable, and not otherwise. Now it is clear, that analogously
one can find internal value of profitability for projects, which have any living circle
duration, i.e. solve the profitability problem for them.

At last a real problem in economics and finance can be so complex, that it will
require the application of all above mentioned instruments. For example, consider very
actual problem for Georgian economy, optimal tax burden definition problem (see [6-
7]). As is known, this problem (in a theory) can be solved using Lafer curve. If we try
practical realization this theory for Georgia in the base of data of 1995-2011 years, we
receive following classical Lafer’s product curve equation

X = −34790.71 ∗ q2 + 48624.40 ∗ q − 942.65, (4)

where X denotes value of gdp (in real representation), and q denotes tax burden level
on economy. It should be noted that, although statistical characters of coefficients of
this equation are not very high, they have ”right” signs (i.e. corresponding to the signs
of economic theory ). Besides this, as a whole, the obtained regression equation is not
very unreliable: R2 = 0.89, F-statistics is equal to 52.7, etc. Hence, one can use it
for deriving some estimations. If we try to define the optimal tax burden for Georgia
on the basis of maximization of (4) we find that from the production point of view
optimal tax burden level for Georgia must be near to 70% and such a result is very far
from the reality. By this reason (and taking into account the specifics our country!), it
may have a sense to create and analyse an alternative (non-classical) variant of product
curve(see [7]). One of this non-classical product curve equation for our economy has
form:

X = (42325.99251 ∗ q − 690.0227668)/(1 + 25.76346016 ∗ q4). (5)

It is remarkable, that this equation has the same level of accuracy as (4), i.e. we
can use it instead of the equation (4). However, additional difficulty in this case is that
the maximization problem of function (5) is much more complex; however this problem
is not very hard to solve using the same Matlab system. In fact, since maximization
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of X is equivalent to minimization of the function −X, by using Matlab we will have:

fminbnd(′−(42325.99251 ∗ x− 90.0227668)/(1 + 25.76346016 ∗ x4)′, 0, 1)ans = 0.3428

Hence, in this case we obtain that the so called Lafer’s first type point for Georgian
economy tax burden is the 34% and this corresponds much better to the real situation.
Besides this, from (5), considering the relation

q = T/X,

where T denotes Georgian consolidate budget tax revenues (in real representation),
one can built fiscal curves following non-classical variant, for our country:

T = (42325.99251 ∗ q − 690.0227668) ∗ q/(1 + 25.76346016 ∗ q4). (6)

From the equation (6) one can find also an estimation of the tax burden level corre-
sponding tax revenues maximum (Lafer’s second type point). Actually, in this case,
maximization of function T (i.e. minimization of function −T ) on the basis of Matlab,
gives:

fminbnd(′−x∗(42325.99251∗x−90.0227668)/(1+25.76346016∗x4)′, 0, 1)ans = 0.4481

Hence, on the basis of 1996-2011 years data, achieving maximal tax revenues level
of Georgian consolidate budget requires 44.8% tax burden. It’s obvious that, this is
maximal level of tax burden for Georgian economy. Moreover, as we have mentioned
this above, real tax burden on our economy must not exceed Lafer’s first type point, i.e.
34%. Hence, for the solution of this problem we are forced to use such computer systems
as Eviews and Matlab. Note that we did not say anything about more complicated
direction in forecasting, which suggests to use models of so called nonlinear dynamics
(for example Samuelson-Hicks models, etc.) and which is of course very perspective.
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Abstract. In the present paper, for the quasilinear functional differential equation with the

discontinuous initial condition we formulate the theorems on the continuous dependence of

the solution, on perturbations of the initial moment, the variable delay entering in the phase

coordinates, the initial vector, the initial functions and the nonlinear term of right-hand

side. The discontinuous initial condition means that the values of the initial function and

trajectory, generally, do not coincide at the initial moment.
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Let Rn
x be the n-dimensional vector space of points x = (x1, ..., xn)T , where T

means transpose; let I = [a, b] ⊂ R1
t be a finite interval, let O ⊂ Rn

x be a open set;
let D be the set of continuously differentiable functions τ(t) satisfying the conditions:
τ(t) < t, τ̇(t) > 0 with

inf{τ(a) : τ ∈ D} = τ̂ <∞, ||τ || = sup{|τ(t)| : t ∈ I}.

Let Eφ be the space of piecewise-continuous functions φ : I1 = [τ̂ , b] → Rn
x, with

finitely many discontinuity points of the first kind, ||φ|| = sup{|φ(t)| : t ∈ I1}; let
Φ1 = {φ ∈ Eφ : φ(t) ∈ O, t ∈ I1} be the set of initial functions with clφ(I1) ⊂ O; let
Φ2 be the set of bounded measurable functions h : I1 → Rn

x, ||h|| = sup{|h(t)| : t ∈ I1}.
Let Ef be the space of functions f : I×O2 → Rn

x satisfying the following conditions:
the function f(·, x, y) : I → Rn

x is measurable for each fixed (x, y) ∈ O2; for an
arbitrary compact set K ⊂ O and for f ∈ Ef there exist functions mf,K(·), Lf,K(·) ∈
L(I, [0,∞)), such that for almost all t ∈ I the following inequalities are fulfilled

| f(t, x, y) |≤ mf,K(t), ∀(x, y) ∈ K2,

| f(t, x1, y1)− f(t, x2, y2) |≤ Lf,K(t)(| x1 − x2 | + | y1 − y2 |),

∀(xi, yi) ∈ K2, i = 1, 2.

To each element µ = (t0, τ, x0, φ, h, f) ∈ Λ = I ×D ×O × Φ1 × Φ2 × Ef we put in
correspondence the quasilinear neutral functional differential equation

ẋ(t) = A(t)ẋ(σ(t)) + f(t, x(t), x(τ(t))) (1)
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with the initial condition

x(t) = φ(t), ẋ(t) = h(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

Here A(t) is a given continuous matrix function with dimension n×n;σ ∈ D is a fixed
function.

The condition (2) is said to be the discontinuous initial condition since generally
x(t0) ̸= φ(t0).

Definition 1. Let µ = (t0, τ, x0, φ, h, f) ∈ Λ, t0 ∈ [a, b). A function x(t) =
x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b], is called a solution of equation (1) with the initial
condition (2) or a solution corresponding to element µ and defined on the interval [τ̂ , t1]
if it satisfies condition (2) and it is absolutely continuous on the interval [t0, t1] and
satisfies equation (1) almost everywhere on [t0, t1].

If t1− t0 is a sufficiently small number, then the unique solution always corresponds
to µ.

To formulate the main results, we introduce the following sets:

W (K,α1) =
{
δf ∈ Ef : ∃mδf,K , Lδf,K ∈ L(I, [0,∞)),∫

I

[mδf,K(t) + Lδf,K(t)]dt ≤ α1

}
,

where K ⊂ O is a compact set and α1 > 0 is a given number independent of δf ;

VK,δ =
{
δf ∈ Ef :

∣∣∣ ∫ s2

s1

δf(t, x, y)dt
∣∣∣ ≤ δ, ∀(s1, s2, x, y) ∈ I2 ×K2

}
,

B(t00; δ) = {t0 ∈ I : |t0 − t00| < δ}, B(x00; δ) = {x0 ∈ O : |x0 − x00| < δ},
V (τ0; δ) = {τ ∈ D : ||τ − τ0|| < δ}, V (φ0; δ) = {φ ∈ Φ1 : ||φ− φ0|| < δ},

V (h0; δ) = {h ∈ Φ2 : ||h− h0|| < δ},
where t00 ∈ I, x00 ∈ O are fixed points; τ0 ∈ D, φ0 ∈ Φ1, h0 ∈ Φ2 are fixed functions.

Theorem 1. Let x0(t) = x(t;µ0), where µ0 = (t00, τ0, x00, φ0, h0, f0) ∈ Λ, is the
solution defined on [τ̂ , t10], t10 < b; let K1 ⊂ O be a compact set containing a certain
neighborhood of the set clφ0(I1) ∪ x0([t00, t10,]). Then the following assertions hold:

1. there exist numbers δi > 0, i = 0, 1, such that, to each element

µ ∈ V (µ0;K1, δ0, α1) = B(t00; δ0)× V (τ0; δ0)×B(x00; δ0)× V (φ0; δ0)

×V (h0; δ0)×
[
f0 +W (K1, α1) ∩ VK1,δ0

]
we put in correspondence the solution x(t;µ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1
and satisfying the condition x(t;µ) ∈ intK1, t ∈ [τ̂ , t10 + δ1];

2. for an arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0] such that for
any µ ∈ V (µ0;K1, δ2, α1) the following inequality holds:

|x(t;µ)− x(t;µ0)| ≤ ε, ∀t ∈ [s1, t10 + δ1], s1 = max{t00, t0};
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3. for an arbitrary ε > 0 there exists a number δ3 = δ3(ε) ∈ (0, δ0] such that for
any µ ∈ V (µ0;K1, δ3, α1) the following inequality holds:∫ t10+δ1

τ̂

|x(t;µ)− x(t;µ0)|dt ≤ ε.

In the space Eµ − µ0, where Eµ = R1
t ×D × Rn

x × Φ1 × Φ2 × Ef introduce the set
of variation:

ℑ =
{
δµ = (δt0, δτ, δx0, δφ, δh, δf) ∈ Eµ − µ0 : | δt0 |≤ α2, | δτ |≤ α2,

| δx0 |≤ α2, ∥δφ∥1 ≤ α2, ∥δh∥1 ≤ α2, δf =
k∑

i=1

λiδfi, |λi| ≤ α2, i = 1, k
}
,

where α2 > 0 is a fixed number, δfi ∈ Ef , i = 1, k, are fixed functions.
The following theorem is a simple consequence of theorem 1.
Theorem 2. Let x0(t) = x(t;µ0) be the solution defined on [τ̂ , t10], ti0 ∈ (a, b), i =

0, 1; let K1 ⊂ O be a compact set containing a certain neighborhood of the set clφ0(I1)∪
x0([t00, t10,]). Then the following assertions hold:

4. there exist numbers ε1 > 0, δ1 > 0, such that, for an arbitrary (ε, µ) ∈ [0, ε1]×ℑ
the element µ0 + εδµ ∈ Λ, we put in correspondence the solution x(t;µ0 + εδµ) defined
on the interval [τ̂ , t10+δ1] ⊂ I1 and satisfying the condition x(t;µ0+εδµ) ∈ intK1, t ∈
[τ̂ , t10 + δ1];

5. the following relations hold:

lim
ε→0

sup{|x(t;µ0 + εδµ)− x(t;µ0)| : t ∈ [s1, t10 + δ1]} = 0, s1 = max{t00, t00 + εδt0};

lim
ε→0

∫ t10+δ1

τ̂

|x(t;µ0 + εδµ)− x(t;µ0)|dt = 0

uniformly for δµ ∈ ℑ.
Now let us formulate the theorem on the continuous dependence of the solution for

an equation whose righthand side depends on the control. Let U0 ⊂ Rr
u be an open set

and let Ω be the set of measurable functions u(t) ∈ U0, t ∈ I, satisfying the condition:
clu(I) is a compact set in Rr

u and clu(I) ⊂ U0.
To each element ρ = (t0, τ, x0, φ, h, u) ∈ Λ1 = [a, b) × D × O × Φ1 × Φ2 × Ω we

assign the control neutral functional differential equation

ẋ(t) = A(t)ẋ(σ(t)) + g(t, x(t), x(τ(t)), u(t)) (3)

with the initial condition (2). Here the function g(t, x, y, u) is defined on I × O2 × U0

and satisfies the following conditions: for each fixed (x, y, u) ∈ O2 × U0 the function
g(·, x, y, u) : I → Rn

u is measurable; for each compact sets K ⊂ O and U ⊂ U0 there
exist functions mK,U , LK,U ∈ L(I, [0,∞)) such that for almost all t ∈ I

|g(t, x, y, u)| ≤ mK,U(t), ∀(x, y, u) ∈ K2 × U,
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|g(t, x1, y1, u1)− g(t, x2, y2, u2)| ≤ LK,U(t)
[
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

]
,

∀(x1, x2, y1, y2, u1, u2, ) ∈ K4 × U2.

Definition 2. Let ρ = (t0, τ, x0, φ, h, u) ∈ Λ1. A function x(t) = x(t; ρ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b], is called a solution of equation (3) with the initial condition (2) or
a solution corresponding to element ρ and defined on the interval [τ̂ , t1], if it satisfies
condition (2) and is absolutely continuous on the interval [t0, t1] and satisfies equation
(3) almost everywhere on [t0, t1].

Theorem 3. Let x0(t) = x(t; ρ0), where ρ0 = (t00, τ0, x00, φ0, h0, u0) ∈ Λ1, be a
solution defined on [τ̂ , t10], t10 < b; let K1 ⊂ O be a compact set containing a certain
neighborhood of the set clφ0(I1) ∪ x0([t00, t10,]). Then the following assertions hold:

6. there exist numbers δi > 0, i = 0, 1, such that, to each element ρ ∈
V̂ (ρ0; δ0) = B(t00; δ0)× V (τ0; δ0)×B(x00; δ0)× V (φ0; δ0)× V (h0; δ0)× V (u0; δ0) corre-
sponds the solution x(t; ρ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 and satisfying the
condition x(t; ρ) ∈ intK1; here V (u0; δ0) = {u ∈ Ω : ||u− u0|| < δ};

7. for an arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0] such that for
any ρ ∈ V̂ (ρ0; δ0) the following inequality holds:

|x(t; ρ)− x(t; ρ0)| ≤ ε, ∀t ∈ [s1, t10 + δ1], s1 = max{t00, t0};

8. for an arbitrary ε > 0 there exists a number δ3 = δ3(ε) ∈ (0, δ0] such that for
any ρ ∈ V̂ (ρ0; δ0) the following inequality holds:∫ t10+δ1

τ̂

|x(t; ρ)− x(t; ρ0)|dt ≤ ε.

Some comments. Theorems analogous to Theorem 1-3, without perturbation of
variable delay, for various classes of functional differential equations are proved in [1-3].
In Theorem 1 perturbations of the nonlinear term of right-hand side of equation (1) are
small in the integral sense. Theorems 1-3 play an important role in proving necessary
optimality conditions and variation formulas of solution [1,4-7].
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Abstract. The purpose of this paper is investigation of the three-dimensional interior Neu-

mann type boundary value problem of the theory of thermoelastostatics for hemitropic solids.

Hemitropic solids belong to the class of Cosserat type continua and the corresponding system

of partial differential equations generates a 7× 7 nonselfadjoint matrix elliptic operator. The

uniqueness and existence results are studied by the potential method and the theory of singu-

lar integral equations. The boundary integral operators associated with the layer potentials

are analyzed and on the basis of the results obtained we derive the explicit necessary and

sufficient conditions for the interior Neumann type boundary value problem to be solvable.

We show that solutions are representable in the form of the single layer potential.

Keywords and phrases: Elasticity theory, elastic hemitropic materials, potential theory,

uniqueness theorems, existence theorems.
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1. Introduction

In a generalized solid continuum, the usual displacement field has to be supple-
mented by a microrotation field. Such materials are called micropolar or Cosserat
solids. They model continua with a complex inner structure whose material particles
have 6 degree of freedom (3 displacement components and 3 microrotation compo-
nents). Recall that the classical elasticity theory allows only 3 degrees of freedom (3
displacement components).

Mathematical models describing the so called hemitropic properties of elastic ma-
terials have been proposed by Aero and Kuvshinski [1], [2] (for historical notes see also
[3], [4], [19], and the references therein).

Hemitropic solids are not isotropic with respect to inversion, i.e., they are isotropic
with respect to all proper orthogonal transformations but not with respect to mirror
reflections.

In the present paper we deal with the model of micropolar elasticity for hemitropic
solids when the thermal effects are taken into consideration.

In the mathematical theory of hemitropic thermoelasticity there are introduced
the asymmetric force stress tensor and couple stress tensor, which are kinematically re-
lated with the asymmetric strain tensor, torsion (curvature) tensor and the temperature
function via the constitutive equations. All these quantities along with the heat flux
vector are expressed in terms of the components of the displacement and microrotation
vectors and the temperature function. In turn, the displacement and microrotation
vectors and the temperature distribution function satisfy a coupled complex system of
second order partial differential equations. When the mechanical and thermal charac-
teristics (displacements, microrotations, temperature, body force, body couple vectors,
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and heat source) do not depend on the time variable t we have the differential equations
of statics. These equations generate a strongly elliptic, formally nonselfadjoint 7 × 7
matrix differential operator.

The Dirichlet, Neumann and mixed type boundary value problems (BVP) for the
so called pseudo oscillation case with complex frequency parameter, which are related
to the dynamical equations via the Laplace transform, are well investigated for homo-
geneous bodies of arbitrary shape (see [14], [15], [17], [18], [13], [16] and the references
therein).

The main goal of the present paper is investigation of the interior Neumann type
boundary value problem of statics of thermoelasticity for hemitropic solids. In the case
of static problems there arise significant difficulties which need a special consideration.

Here we develop the boundary integral equations method to obtain the existence
and uniqueness results in Hölder (Ck,α) functional spaces. We reduce the Neumann
type BVP to the equivalent system of normally solvable singular integral equations.
We construct explicitly the null spaces of the corresponding singular integral operator
and its adjoint one, and on the basis of the results obtained we derive necessary and
sufficient conditions for the interior Neumann type BVP to be solvable.

2. Problems setting, Green’s formulas and uniqueness theorems

Let Ω+ ⊂ R3 be a bounded domain with smooth boundary ∂Ω+ =: S ∈ C1, κ with
0 < κ ≤ 1, Ω+ = Ω+ ∪ S, and Ω− = R3 \ Ω+. The outward unit normal vector to
S at the point x ∈ S we denote by n(x) = (n1(x), n2(x), n3(x)). We assume that the
domains Ω+ are filled with a hemitropic elastic continua.

The basic governing homogeneous equations of the theory of thermoelastostatics
for hemitropic materials read as (see [19])

(µ+ α)∆u(x) + (λ+ µ− α) grad div u(x) + (χ+ ν)∆ω(x)

+(δ + χ− ν) grad divω(x) + 2α curlω(x)− η gradϑ(x) = 0,

(χ+ ν)∆u(x) + (δ + χ− ν) grad div u(x) + 2α curlu(x) + (γ + ε)∆ω(x)

+(β + γ − ε) grad divω(x) + 4ν curlω(x)− ζ gradϑ(x)− 4αω(x) = 0,

κ
′
∆ϑ(x) = 0,

(2.1)

where u = (u1, u2, u3)
⊤ and ω = (ω1, ω2, ω3)

⊤ are the displacement vector and the
microrotation vector respectively, ϑ is the temperature distribution function, α, β, γ,
δ, λ, µ, ν, χ, ε, η, ζ and κ ′ are the material constants, ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj,
j = 1, 2, 3, the symbol (·)⊤ denotes transposition.

The matrix differential operator generated by these equations is not formally self-
adjoint and has the form

L(∂) =


L(1)(∂) L(2)(∂) L(5)(∂)

L(3)(∂) L(4)(∂) L(6)(∂)

[0]1×3 [0]1×3 κ
′
∆


7×7

, (2.2)
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where

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (χ+ ν)∆I3 + (δ + χ− ν)Q(∂) + 2αR(∂),

L(4)(∂) := [(γ + ε)∆− 4α]I3 + (β + α− ε)Q(∂) + 4νR(∂), (2.3)

L(5)(∂) := −η∇⊤, L(6)(∂) := −ζ∇⊤,

R(∂) := [−εpqj∂j ]3×3, Q(∂) := [ ∂k∂j ]3×3.

Here and in what follows εpqj denotes the permutation (Levi-Civitá) symbol and Ik
stands for the k × k unit matrix . Throughout the paper repeated indices indicate
summation from one to three if not otherwise stated.

Denote by L∗(∂) := L⊤(−∂) the operator formally adjoint to L(∂). Moreover, let

L̃(∂) denote the operator corresponding to the equilibrium equations of hemitropic
elastostatics when thermal effects are not taken into consideration (see [14])

L̃(∂) =

 L(1)(∂) L(2)(∂)

L(3)(∂) L(4)(∂)


6×6

, (2.4)

where L(k)(∂) are defined in (2.3). Note that L̃(∂) is formally selfadjoint, i.e., L̃(∂) =

L̃∗(∂) = L̃⊤(−∂).
The force stress tensor {τpq}3×3 and the couple stress tensor {µpq}3×3 in the linear

theory of hemitropic thermoelasticity read as follows (the constitutive equations) [18]

τpq = τpq(U) := (µ+ α)∂puq + (µ− α)∂qup + λδpq div u+ δ δpq divω

+ (κ + ν)∂pωq + (κ − ν)∂qωp − 2αεpqkωk − δpq η ϑ,

µpq = µpq(U) := δ δpq div u+ (κ + ν)
[
∂puq − εpqkωk

]
+ β δpq divω

+(κ−ν)
[
∂qup−εqpkωk

]
+(γ + ε)∂pωq+(γ − ε)∂qωp−δpqζϑ,

where U = (u, ω, ϑ)⊤, δpq is the Kronecker delta.
The components of the force stress vector τ (n) and the couple stress vector µ(n),

acting on a surface element with a unite normal vector n = (n1, n2, n3), are expressed
as

τ (n) =
(
τ
(n)
1 , τ

(n)
2 , τ

(n)
3

)⊤
, µ(n) =

(
µ
(n)
1 , µ

(n)
2 , µ

(n)
3

)⊤
,

where
τ (n)q = τpqnp, µ(n)

q = µpqnp, q = 1, 2, 3.
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Introduce the generalized stress operators associated with the differential operators
L(∂) and L̃(∂) (cf. [14], [17], [18])

P(∂, n) =


T (1)(∂, n) T (2)(∂, n) −ηn⊤

T (3)(∂, n) T (4)(∂, n) −ζn⊤

[0]1×3 [0]1×3 κ
′
∂n


7×7

, (2.5)

P∗(∂, n) =


T (1)(∂, n) T (2)(∂, n) [0]3×1

T (3)(∂, n) T (4)(∂, n) [0]3×1

[0]1×3 [0]1×3 κ
′
∂n


7×7

, (2.6)

where

T (j) = [T
(j)
pq ]3×3, j = 1, 4, n = (n1, n2, n3),

T
(1)
pq (∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T
(2)
pq (∂, n) = (χ+ ν)δpq∂n + (χ− ν)nq∂p + δnp∂q − 2αεpqknk,

T
(3)
pq (∂, n) = (χ+ ν)δpq∂n + (χ− ν)nq∂p + δnp∂q,

T
(4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2νεpqknk.

Here ∂n = ∂/∂n denotes the usual normal derivative.
In addition, let us introduce the “pure hemitropic boundary stress operator” asso-

ciated with the differential operator L̃(∂)

T (∂, n) =

 T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)


6×6

(2.7)

with T (j)(∂, n) defined in (2.4).
For a vector U = (u, ω, ϑ)⊤ the seven vector P(∂, n)U has the following physical

sense: the first three components

T (1)(∂, n)u+ T (2)(∂, n)ω − η n⊤ ϑ =
(
τ
(n)
1 , τ

(n)
2 , τ

(n)
3

)⊤
correspond to the thermo-mechanical stress vector, the second triplet

T (3)(∂, n)u+ T (4)(∂, n)ω − ζ n⊤ ϑ =
(
µ
(n)
1 , µ

(n)
2 , µ

(n)
3

)⊤
corresponds to the thermo-mechanical couple stress vector, while the seventh compo-
nent κ

′
∂n ϑ corresponds to the normal component of the heat flux vector.

For regular vector-functions

U = (u, ω, ϑ)⊤, U ′ = (u′, ω′, ϑ′)⊤ ∈ [C2(Ω+)]7 ∩ [C1(Ω+)]7,
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the following Green’s formula holds [18]∫
Ω+

[
U ′ · L(∂)U−L∗(∂)U ′ · U

]
dx =

∫
∂Ω+

[
{U ′}+ · {P(∂, n)U}+−{P∗(∂, n)U ′}+ · {U}+

]
dS,

(2.8)

where the operator L(∂) is defined in (2.2) and L∗(∂) = L⊤(−∂) is the operator formally
adjoint to L(∂), while P(∂, n) and P∗(∂, n) are given by (2.5) and (2.6); the symbols
{·}± denote one sided limits on S from Ω± respectively, while the central dot denotes
scalar product of two vectors in Euclidean space Rn.

3. Problem formulation and uniqueness theorem

The Neumann type interior boundary value problem (N)+ is formulated as follows:
Find a regular vector-function U ∈ [C1(Ω+)]7 ∩ [C2(Ω+)]7 satisfying the differential
equation

L(∂)U(x) = 0, x ∈ Ω+ (3.1)

and the Neumann type boundary condition on S{
P(∂, n)U(x)

}+
= F (x), x ∈ S, (3.2)

where F = (F1, F2, ..., F7)
⊤ ∈

[
C(S)

]7
is a given vector-function.

The following uniqueness theorem holds true.
Theorem 3.1. A general solution to the homogeneous Neumann type interior

boundary value problem reads as

U0 = (Ψ̃, 0)⊤ + ϑ0 (u0, ω0, 1)

where Ψ̃ is a generalized rigid displacement vector,

Ψ̃(x) = ([a× x] + b, a)⊤ (3.3)

with a = (a1, a2, a3)
⊤ and b = (b1, b2, b3)

⊤ being arbitrary three dimensional constant
vectors, ϑ0 is an arbitrary constant, while the vector-functions u0 = (u01, u02, u03)

⊤ and

ω0 = (ω01, ω02, ω03)
⊤ are such that the six dimensional vector-function Ṽ0 = (u0, ω0)

⊤

solves the following boundary value problem

L̃(∂)Ṽ0(x) = 0, x ∈ Ω+, (3.4)

{T (∂, n)Ṽ0}+ = (η n(x), ζ n(x))⊤, x ∈ S.

Here η and ζ are material parameters involved in the basic system (2.1) and the oper-

ators L̃(∂) and T (∂, n) are defined in (2.4) and (2.7).
Proof. Form the structure of the operators (2.2) and (2.5) it is easy to see that

for the temperature function ϑ the corresponding boundary value problem can be
separated, which reads as

∆ϑ(x) = 0, x ∈ Ω+,
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{∂ϑ(x)
∂n

}+

= 0, x ∈ S.

A general solution to this problem is a constant function,

ϑ(x) = ϑ0 = const, x ∈ Ω+,

where ϑ0 is an arbitrary real constant.
Therefore a general solution to the homogeneous Neumann type boundary value

problem has the following form: U = (u, ω, ϑ0)
⊤ = (Ũ , ϑ0)

⊤ with Ũ = (u, ω)⊤. Con-

sequently, in view of (2.2), (2.4), (2.5), and (2.7), the vector Ũ solves the following
nonhomogeneous boundary value problem

L̃(∂) Ũ(x) = 0, x ∈ Ω+, (3.5)

{T (∂, n) Ũ(x)}+ = F̃0(x), x ∈ S,

where

F̃0(x) = ϑ0 (η n(x), ζ n(x))
⊤, x ∈ S. (3.6)

Recall that n(x) is the outward unit normal vector at the point x ∈ S, while η and

ζ are the material parameters. Thus Ũ is a solution to the nonhomogeneous interior
Neumann type boundary value problem for hemitropic model, when the thermal effects
are not taken into consideration. In the reference [18] it is shown that the condition∫

S

F̃0(x) · Ψ̃(x) dS = 0 (3.7)

is necessary and sufficient for the problem (3.5)–(3.6) to be solvable. Here Ψ̃ is a
generalized rigid displacement vector define in (3.3).

With the help of the relations

[a×x] ·n = [x×n] ·a,
∫
S

nk(x)dS = 0,

∫
S

[xjnk(x)−xknj(x)]dS = 0, k, j = 1, 2, 3,

and the Gauss divergence theorem, it is easy to verify that conditions (3.7) for the
vector (3.6) hold true,∫
S

ϑ0(η n(x), ζn(x))
⊤ · ([a× x] + b, a)⊤dS = ϑ0

∫
S

{
η
(
n · [a× x] + n · b

)
+ ζ n · a

}
dS

= ϑ0 η

∫
S

[x× n] · a dS = ϑ0 η

3∑
k=1

ak

∫
S

[x× n]kdS = 0.

Consequently, the boundary value problem (3.5) is solvable for arbitrary constant ϑ0

and solutions are defined modulo the vector Ψ̃ given by (3.3). Denote by Ṽ0 := (u0, ω0)
⊤



44 Ivanidze D., Natroshvili D.

with u0 = (u01, u02, u03)
⊤ and ω0 = (ω01, ω02, ω03)

⊤ some particular solution of prob-

lem (3.4) which coincide with problem (3.5) for ϑ0 = 1. Then it follows that ϑ0Ṽ0
represents a particular solution of problem (3.5), while a general solution of the same

problem reads as Ũ = ϑ0Ṽ0 + Ψ̃. Whence we deduce that the vector U = (Ũ , ϑ0)
⊤ =

ϑ0(u0, ω0, 1)
⊤+(Ψ̃, 0) is a general solution to the homogeneous interior Neumann type

problem which completes the proof. 2

Remark 3.2. Introduce the system of vector-functions {Φ(k)(x)}7k=1, where

Φ(1) = (0,−x3, x2, 1, 0, 0, 0)⊤, Φ(2) = (x3, 0,−x1, 0, 1, 0, 0)⊤,

Φ(3) = (−x2, x1, 0, 0, 0, 1, 0)⊤, Φ(4) = (1, 0, 0, 0, 0, 0, 0)⊤,

Φ(5) = (0, 1, 0, 0, 0, 0, 0)⊤, Φ(6) = (0, 0, 1, 0, 0, 0, 0)⊤,

Φ(7) = (u0, ω0, 1)
⊤.

(3.8)

Here the vector (u0, ω0)
⊤ is a particular solution of the nonhomogeneous problem (3.4)

existence of which is shown in the above presented proof of Theorem 3.1 It is easy
to check that the vectors (3.8) are linearly independent in Ω+ and each of them is a
solution to the homogeneous interior Neumann type problem (3.1)–(3.2) with F = 0.
Moreover, from Theorem 3.1 it follows that a general solution to the homogeneous
interior Neumann type problem is representable as

U(x) =
7∑

k=1

CkΦ
(k)(x),

where Ck are arbitrary real constants, while Φ(k)(x) are defined in (3.8).
In our analysis below, we need uniqueness results for the exterior boundary value

problems for the operators L(∂) and L∗(∂) in special spaces of vector-functions which
are bounded at infinity. To this end let us introduce the following definitions.

Definition 3.3. A vector-function U = (u, ω, ϑ)⊤ is said to belong to the class
Z(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

(i) u(x) = O(1), ω(x) = O(|x|−2), ϑ(x) = O(|x|−1) as |x| → ∞,

(ii) lim
R→∞

1

4πR2

∫
Σ(0,R)

u(x) dΣ(0, R) = 0,

where Σ(0, R) is a sphere centered at the origin and radius R.
Definition 3.4. A vector-function U∗ = (u∗, ω∗, ϑ∗)⊤ is said to belong to the class

Z∗(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

(i) u∗(x) = O(|x|−1), ω∗(x) = O(|x|−2), ϑ∗(x) = O(1) as |x| → ∞,(3.9)

(ii) lim
R→∞

1

4πR2

∫
Σ(0,R)

ϑ∗(x) dΣ(0, R) = 0. (3.10)
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4. Layer potentials and general integral representations

The matrix of fundamental solutions Γ(x − y) = [Γkj(x − y)]7×7 associated with
the operator L(∂) can be constructed explicitly in terms of standard functions (see
Appendix). It is a solution of the distributional equation L(∂x)Γ(x− y) = I7δ(x− y),
where δ(x−y) is Dirac’s delta distribution. Let us introduce the single layer and double
layer potentials

V (g)(x) = VS(g)(x) :=

∫
S

Γ(x− y) g(y) dSy, x ∈ R3 \ S,

W (g)(x) = WS(g)(x) :=

∫
S

[
P∗(∂y, n(y))Γ⊤(x− y)

]⊤
g(y) dSy, x ∈ R3 \ S,

where g = (g1, g2, ..., g7)
⊤ and h = (h1, h2, ..., h7)

⊤ are density vector-functions defined
on S, while the boundary operator P∗(∂, n) is defined in (2.6).

Further, we introduce the “adjoint” layer potentials associated with the operator
L∗(∂),

V ∗(g)(x) :=

∫
S

Γ∗(x− y g(y) dSy, x ∈ R3 \ S, (4.1)

W ∗(g)(x) :=

∫
S

[
P
(
∂y, n(y)

)[
Γ∗(x− y)

]⊤]⊤
g(y) dSy, x ∈ R3 \ S, (4.2)

where Γ∗(x−y) := Γ⊤(y−x) is a fundamental matrix of the operator L∗(∂), the bound-
ary operator P

(
∂, n

)
is defined in (2.5), and g = (g1, g2, ..., g7)

⊤ and h = (h1, h2, ..., h7)
⊤

are density vector-functions defined on S.
Theorem 4.1. Let S ∈ C1,κ with 0 < κ 6 1 and vector-functions U ∈ [C1(Ω+)]7 ∩

[C2(Ω+)]7 and U∗ ∈ [C1(Ω+)]7∩[C2(Ω+)]7 be regular solutions of the equations L(∂)U =
0 and L∗(∂)U∗ = 0 in Ω+ respectively. Then the following integral representation
formulas hold

W
(
{U}+

)
(x)− V

(
{PU}+

)
(x) =

{
U(x), x ∈ Ω+,

0, x ∈ Ω−,
(4.3)

W ∗({U∗}+
)
(x)− V ∗({P∗U∗}+

)
(x) =

{
U∗(x), x ∈ Ω+,

0, x ∈ Ω−.
(4.4)

Proof. It is standard and follows from Green’s formula (2.8). 2

The mapping properties of the above introduced layer potentials V , W , V ∗, and
W ∗ can be established by standard arguments applied, e.g., in the references [9], [10],
[6], [12], [14].

Theorem 4.2. The single and double layer potentials V (g) and W (g) solve the
homogeneous equation L(∂)U = 0 in R3\S, belong to the class Z(Ω−) and the following
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operators
V : [Ck, σ(S)]7 → [Ck+1, σ(Ω±)]7,

W : [Ck, σ(S)]7 → [Ck, σ(Ω±)]7,

are continuous provided S ∈ Ck+1, κ, where k > 0 is an integer and 0 < σ < κ 6 1.
Proof. It can be found in [7]. 2

Lemma 4.3. The single and double layer potentials V ∗(g) and W ∗(g) solve the
homogeneous equation L∗(∂)U∗ = 0 in R3 \ S, belong to the class Z∗(Ω−), and the
following operators

V ∗ : [Ck, σ(S)]7 → [Ck+1, σ(Ω±)]7,

W ∗ : [Ck, σ(S)]7 → [Ck, σ(Ω±)]7

are continuous provided S ∈ Ck+1,κ, where k > 0 is an integer number and 0 < σ <
κ 6 1.

Proof. It can be found in [8]. 2

Theorem 4.4. Let S ∈ C1, κ, g ∈ [C0, σ(S)]7 and h ∈ [C1, σ(S)]7 with 0 < σ < κ 6
1. Then the following relations hold true:

{V (g)(x)}± = V (g)(x) = Hg(x),
{P(∂x, n(x))V (g)(x)}± = [∓2−1I7 +K ] g(x),

{W (g)(x)}± = [±2−1I7 +N ] g(x),

{P(∂x, n(x))W (h)(x)}+ = {P(∂x, n(x))W (h)(x)}− = Lh(x), S ∈ C2, κ,

where H is a weakly singular integral operator, K and N are singular integral operators,
while L is a singular integro-differential operator

Hg(x) :=
∫
S

Γ(x− y)g(y)dSy,

Kg(x) :=
∫
S

[
P
(
∂x, n(x)

)
Γ(x− y)

]
g(y)dSy,

N g(x) :=

∫
S

[
P∗(∂y, n(y))Γ⊤(x− y)

]⊤
g(y)dSy,

Lh(x) := lim
Ω±∋z→x∈S

P
(
∂z, n(x)

) ∫
S

[
P∗(∂y, n(y))Γ⊤(z − y)

]⊤
h(y)dSy.

Proof. It can be found in [7]. 2

Theorem 4.5. Let k > 0 be integers, and S ∈ Ck+1, κ with 0 < σ < κ 6 1. Then
the following operators are continuous

H : [Ck, σ(S)]7 → [Ck+1, σ(S)]7, K : [Ck, σ(S)]7 → [Ck, σ(S)]7,
N : [Ck, σ(S)]7 → [Ck, σ(S)]7, L : [Ck, σ(S)]7 → [Ck−1, σ(S)]7.

Moreover, the operators

±2−1I7 +K : [Ck, σ(S)]7 → [Ck, σ(S)]7, ±2−1I7 +N : [Ck, σ(S)]7 → [Ck, σ(S)]7
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are elliptic singular integral operators with index equal to zero. The principal homoge-
nous symbol matrices of the operators −H and L are positive definite.

The operators H, ±1
2
I7 +K, ±1

2
I7 +N and L are pseudodifferential operators with

zero index and of order −1, 0, 0, and 1, respectively.
Moreover, the following operator equalities hold true:

NH = HK, LN = KL, HL = −4−1 I7 +N 2, LH = −4−1 I7 +K2.

Proof. It can be found in [18]. 2

Remark 4.6. Let S ∈ C2,κ and 0 < σ < κ 6 1. The integral operator

H : [C0,σ(S)]7 → [C1,σ(S)]7

is invertible and
[H]−1 : [C1,σ(S)]7 → [C0,σ(S)]7

is a pseudodifferential operator of order 1, more precisely, it is a singular integro-
differential operator (cf., [18]).

Now we prove the counterpart of Theorem for exterior unbounded domains.
Theorem 4.7. Let S ∈ C1,κ with 0 < κ 6 1 and vector-functions U ∈ [C1(Ω+)]7 ∩

[C2(Ω−)]7 ∩ Z(Ω−) and let U∗ ∈ [C1(Ω−)]7 ∩ [C2(Ω+)]7 ∩ Z∗(Ω−) be regular solutions
of the equations L(∂)U = 0 and L∗(∂)U∗ = 0 in Ω− respectively. Then the following
integral representation formulas hold

−W
(
{U}−

)
(x) + V

(
{PU}−

)
(x) =

{
U(x), x ∈ Ω−,
0, x ∈ Ω+,

(4.5)

−W ∗({U∗}−
)
(x) + V ∗({P∗U∗}−

)
(x) =

{
U∗(x), x ∈ Ω−,
0, x ∈ Ω+.

(4.6)

Proof. Formula (4.5) is derived in [7]. To prove (4.6) we proceed as follows. Let
U∗ be as in the theorem and let us write the integral representation formula (4.4) for a
bounded domain Ω−

R := Ω− ∩B(0, R), where R is a sufficiently large positive number,
B(0, R) := {x ∈ R3 : |x| < R} is a ball centered at the origin and radius R, such that
Ω+ ⊂ B(0, R),

U∗(x) = −W ∗
S({U∗}−S ) + V ∗

S ({P∗U∗}−S ) + Φ∗
R(x), x ∈ Ω−

R, (4.7)

0 = −W ∗
S({U∗}−S ) + V ∗

S ({P∗U∗}−S ) + Φ∗
R(x), x ∈ Ω+ ∪

[
R3 \B(0, R)

]
; (4.8)

here V ∗
S and W ∗

S are the single and double layer potentials defined in (4.1) and (4.2),
while

Φ∗
R(x) := W ∗

ΣR

(
{U∗}+ΣR

)
(x)− V ∗

ΣR

(
{P∗U∗}+ΣR

)
(x) (4.9)

with V ∗
ΣR

and W ∗
ΣR

being again the single and double layer potentials with the integra-
tion surface ΣR = ∂ B(0, R).
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From equality (4.9) it follows that

L∗(∂)Φ∗
R(x) = 0, x ̸∈ ΣR. (4.10)

Moreover, from (4.7) and (4.8) we have

Φ∗
R(x) =U∗(x) +W ∗

S

(
{U∗}−S

)
− V ∗

S

(
{P∗U∗}−S

)
, x ∈ Ω−

R,

Φ∗
R(x) =W ∗

S

(
{U∗}−S

)
− V ∗

S

(
{P∗U∗}−S

)
, x ∈ Ω+ ∪

[
R3 \B(0, R)

]
.

This implies that for sufficiently large numbers R1 < R2,

Φ∗
R1
(x) = Φ∗

R2
(x) for |x| < R1 < R2. (4.11)

Therefore, for arbitrary x ∈ R3 the following limit exists

Φ∗(x) := lim
R→∞

Φ∗
R(x) =

{
U∗(x) +W ∗

S

(
{U∗}−S

)
(x)− V ∗

S

(
{P∗U∗}−S

)
(x), x ∈ Ω−,

W ∗
S

(
{U∗}−S

)
(x)− V ∗

S

(
{P∗U∗}−S

)
(x), x ∈ Ω+.

(4.12)

Consequently,
L∗(∂)Φ∗(x) = 0, x ∈ Ω+ ∪ Ω−.

On the other hand, from (4.11) we get

Φ∗(x) = lim
R→∞

Φ∗
R(x) = Φ∗

R1
(x) (4.13)

for arbitrary x ∈ R3 with R1 > |x| and Ω+ ⊂ B(0, R1). From (4.9) and (4.10) then we
conclude

L∗(∂)Φ∗(x) = 0, x ∈ R3. (4.14)

At the same time, from (4.12) we have

Φ∗ ∈ Z∗(R3), (4.15)

since U∗ ∈ Z∗(Ω−) and W ∗
S , V

∗
S ∈ Z∗(Ω−) due to Lemma 4.3.

From the relations (4.14) we deduce that Φ∗(x) = 0, for all x ∈ R3. Indeed, from
the relations (4.14)-(4.15) by the Fourier transform we get

L∗(−iξ) Φ̂∗(ξ) = 0, ξ ∈ R3,

where Φ̂∗(ξ) is a generalized vector-function that belongs to the Schwartz space of
tempered distributions. Since the determinant detL∗(−iξ) is nonsingular for ξ ∈ R3 \
{0} (see [18]), it follows that the support of the distribution Φ̂∗(ξ) is the origin ξ = 0.

Consequently, Φ̂∗ is a linear combination of the Dirac distribution and its derivatives,

Φ̂∗(ξ) =
∑

|α|6M

Cαδ
(α)(ξ),
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where α = (α1, α2, α3) is a multi-index with |α| = α1 + α2 + α3, Cα are constant seven
dimensional vectors, M is a nonnegative integer, while δ(α) stands for the α-th order
derivative of δ. Therefore the vector-function Φ∗(x) is a polynomial in x,

Φ∗(x) =
∑

|α|6M

Cαx
α, x ∈ R3.

Further, since Φ∗ ∈ Z∗(R3), in accordance with (3.9) and (3.10), we finally conclude
Φ∗(x) = 0 for x ∈ R3. Now, passing to the limit in (4.7) as R → ∞ and keeping in
mind (4.13), we arrive at the general integral representation formula (4.6). 2

Further we characterize the jump relations for the adjoint layer potentials (for
details see [8]).

Theorem 4.8. Let S ∈ C1,κ, g ∈ [C0,σ(S)]7 and h ∈ [C1,σ(S)]7 with 0 < σ < κ 6 1.
Then for all points x ∈ S the following relations hold true:

{V ∗(g)(x)}± = V ∗(g)(x) = H∗g(x), (4.16)

{P∗(∂x, n(x))V
∗(g)(x)}± = [∓2−1I7 +K∗]g(x), (4.17)

{W ∗(g)(x)}± = [±2−1I7 +N ∗]g(x), (4.18)

{P∗(∂x, n(x))W
∗(h)(x)}+ = {P∗(∂x, n(x))W

∗(h)(x)}− = L∗h(x), S ∈ C2,κ, (4.19)

where the operators H∗, K∗, N ∗, and L∗ are pseudodifferential operators of order −1,
0, 0, and 1, respectively, and are defined by the formulas

H∗g(x) :=

∫
S

Γ∗(x− y)g(y)dSy, (4.20)

K∗g(x) :=

∫
S

[
P∗(∂x, n(x))Γ∗(x− y)

]
g(y)dSy, (4.21)

N ∗g(x) :=

∫
S

[
P
(
∂y, n(y)

)[
Γ∗(x− y)

]⊤]⊤
g(y)dSy, (4.22)

L∗h(x) := lim
Ω±∋z→x∈S

P∗(∂z, n(x)) ∫
S

[
P
(
∂y, n(y)

)[
Γ∗(z − y)

]⊤]⊤
g(y)dSy. (4.23)

The following equalities hold in appropriate function spaces:

N ∗H∗ = H∗ K∗, L∗N ∗ = K∗ L∗,

H∗ L∗ = −4−1 I7 + [N ∗]2, L∗H∗ = −4−1 I7 + [K∗]2.

Proof. It can be found in [8]. 2

Lemma 4.9. Let S ∈ C2,κ and 0 < σ < κ 6 1. The integral operator

H∗ : [C0,σ(S)]7 → [C1,σ(S)]7

is invertible and
[H∗]−1 : [C1,σ(S)]7 → [C0,σ(S)]7

is a pseudodifferential operator of order 1, more precisely, it is a singular integro-
differential operator.
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Proof. It is word for word of the proof of Theorem 6.6 in [18]. 2

In our analysis below we need also the following auxiliary assertion which is proved
in [8].

Theorem 4.10. Let S ∈ C2,κ and 0 < σ < κ 6 1. The null spaces of the singular
integral operators

2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

are trivial, while the null spaces of the singular integral operators

− 2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

− 2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

have the dimension equal to 7. Moreover, the vectors

Ψ(1)(x) = (0,−x3, x2, 1, 0, 0, 0)⊤, Ψ(2)(x) = (x3, 0,−x1, 0, 1, 0, 0)⊤,
Ψ(3)(x) = (−x2, x1, 0, 0, 0, 1, 0)⊤, Ψ(4)(x) = (1, 0, 0, 0, 0, 0, 0)⊤, (4.24)

Ψ(5)(x) = (0, 1, 0, 0, 0, 0, 0, 0)⊤, Ψ(6)(x) = (0, 0, 1, 0, 0, 0, 0)⊤,

Ψ(7)(x) = (0, 0, 0, 0, 0, 0, 0, 1)⊤,

restricted onto the surface S,
{
Ψ(k)(x), x ∈ S

}k=7

k=1
, represent a basis of the null space

of the operator [−2−1I7 +N ∗], while the system of vectors
{
g(k)(x), x ∈ S

}k=7

k=1
with

g(k) = [H∗]−1Ψ(k), k = 1, 7,

represents a basis of the null space of the operator [−2−1I7 +K∗].

5. Reduction to integral equations and existence theorems

We look for a solution to the interior Neumann type boundary value problem in
the form of the single layer potential

U(x) = V (g)(x) =

∫
S

Γ(x− y) g(y) dSy, x ∈ Ω+, (5.1)

where g ∈ [C0,σ(S)]7 is an unknown density vector-function. Evidently, the vector-
function (5.1) automatically satisfies the differential equation (3.1), while the boundary
condition (3.2) leads to the following singular integral equation

−2−1g(x) +K g(x) = F (x), x ∈ S, (5.2)

where the operator K is defined by (4.10). Due to Theorem 4.5 the operator [−2−1I7+
K] is an elliptic singular integral operator of normal type, i.e., its symbol matrix is
non-degenerate and for the equation (5.2) the Fredholm theorems hold.

To analyse the solvability of equation (5.2) we need to investigate the null spaces
of the operator [−2−1I7 +K] and its adjoint one.
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First we study ker[−2−1I7 + K]. To this end let us consider the homogeneous
equation

−2−1g(x) +K g(x) = 0, x ∈ S. (5.3)

In what follows we show that (5.3) possesses only seven independent solutions, i.e.,

dim ker[−2−1I7 +K] = 7.

Indeed, let g0 ∈ ker[−2−1I7 + K] and consider the single layer potential V (g0). It
is evident that V (g0) solves the homogeneous Neumann type interior boundary value
problem (3.1)–(3.2) with F = 0. Therefore in view of Remark 3.2, the following
representation

V (g0)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ Ω+, (5.4)

holds with appropriately chosen constants Ck. Here the vector-functions Φ
(k), k = 1, 7,

are defined in (3.8). Theorem and the relation (5.4) imply

{V (g0)(x)}+ = H(g0)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ S,

where the integral operator H is defined by (4.9). By the invertibility of the operator
H (see Remark 4.6, we deduce

g0(x) =
7∑

k=1

Ck H−1Φ(k)(x), x ∈ S.

Further, since the system {Φ(k)(x)}7k=1 is linearly independent in Ω+ , the same system
is linearly independent on S as well. Indeed, if there are constants bk, k = 1, 7, such
that

∑7
k=1 |bk| ≠ 0 and

7∑
k=1

bk Φ
(k)(x) = 0, x ∈ S,

then it follows that the vector-function

U(x) :=
7∑

k=1

bk Φ
(k)(x), x ∈ Ω+,

solves the interior Dirichlet type problem in Ω+ and due to the uniqueness Theorem
2.2 in [7], we conclude U(x) = 0, x ∈ Ω+, which contradicts to the linear independency
of the system {Φ(k)(x)}7k=1 in Ω+.

Let us now prove that the system

{H(−1)Φ(k)(x)}7k=1, x ∈ S,
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is also linearly independent. Indeed, let there be constants dk, k = 1, 7, such that∑7
k=1 |dk| ̸= 0 and

7∑
k=1

dk H−1Φ(k)(x) = 0, x ∈ S.

Applying the operator H to this equation we get

7∑
k=1

dk Φ
(k)(x) = 0, x ∈ S,

which contradicts the linear independency of the system {Φ(k)(x)}7k=1 on S.
Further, let us introduce the notation

g(k)(x) := H−1Φ(k)(x), x ∈ S. (5.5)

It is evident that the system {g(k)(x)}7k=1 is linearly independent, implying that

dim ker[−2−1I7 +K] > 7.

On the other hand, from the above arguments it follows that the system {g(k)(x)}7k=1 is
a basis of the null space ker[−2−1I7+K], i.e., any solution to the homogeneous equation
(5.3) is representable in the form

g0 =
7∑

k=1

Ck g
(k)(x), x ∈ S

with some constants Ck. Thus we have proven the following assertion.
Theorem 5.1. Let S ∈ C2,α with 0 < α 6 1. The dimension of the null space of the

singular integral operator [−2−1I7+K] equals to seven and the system {H−1Φ(k)(x)}7k=1,
x ∈ S, is its basis, where Φ(k), k = 1, 7, are given in (3.8). Moreover, if the nonhomo-
geneous equation (5.2) is solvable and g∗ is its particular solution, then the vector

g = g∗ +
7∑

k=1

Ck g
(k)

with g(k) given by (5.5) and Ck being arbitrary constants, solves the same nonhomoge-
neous equation.

To derive the necessary and sufficient conditions for the nonhomogeneous equation
(5.2) to be solvable, we need to analyze the null space of the corresponding adjoint

operator [−2−1 I7 + K̃], where K̃ is the operator adjoint to K in the sense of the space

[L2(S)]
7, i.e., (Kg, φ)[L2(S)]7 = (g, K̃φ)[L2(S)]7 for all g, φ ∈ [L2(S)]

7.
From the following chain of equalities

(Kg, φ)[L2(S)]7 =

∫
S

(∫
S

P
(
∂x, n(x)

)
Γ(x− y)g(y)dSy

)
φ(x)dSx
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=

∫
S

(∫
S

P
(
∂x, n(x)

)
Γ(x− y)g(y)φ(x)dSx

)
dSy

=

∫
S

(∫
S

g(y)
[
P
(
∂x, n(x)

)
Γ(x− y)

]⊤
φ(x)dSx

)
dSy

=

∫
S

g(y)
(∫

S

[
P
(
∂x, n(x)

)
Γ(x− y)

]⊤
φ(x)dSx

)
dSy

=

∫
S

g(x)
(∫

S

[
P
(
∂y, n(y)

)
Γ(y − x)

]⊤
φ(y)dSy

)
dSx,

and taking into account that Γ(y − x) = [Γ∗(x− y)]⊤, we get

K̃φ(x) =

∫
S

[
P
(
∂y, n(y)

)(
Γ∗(x− y)

)⊤]⊤
φ(y)dSy, x ∈ S,

whence it follows that the operator K̃ coincides with the operator N ∗ defined in (4.22),

i.e., N ∗ = K̃. Therefore the following assertion immediately follows from Theorem
4.10.

Theorem 5.2. Let S ∈ C2,α with 0 < α 6 1. The null space of the operator
[−2−1I7 + K̃] is seven dimensional and the system of vector-functions {Ψ(k)(x)}7k=1,
x ∈ S, with Ψ(k), k = 1, 7 defined in (4.24), represents its basis.

Now we are in the position to formulate the main existence results which directly
follow from Theorems 5.1 and 5.2.

(see, e.g., [6. Ch. IV],[11])
Theorem 5.3. Let S ∈ C2,α and F ∈ C0,σ(S) with 0 < σ < α 6 1. For solvability

of the nonhomogeneous equation (5.2) the necessary and sufficient conditions read as
follows

(F,Ψ(k))[L2(S)]7 ≡
∫
S

F (x) ·Ψ(k)(x) dS = 0, k = 1, 7, (5.6)

where the system of vector-functions {Ψ(k)(x)}7k=1, x ∈ S, is defined in (4.24).
Proof. It immediately follows from the general theory of singular integral equations

(see, e.g., [6. Ch. IV], [11]). since the operator [−2−1I7 + K] is of normal type with
index equal to zero and the system of vector-functions {Ψ(k)(x)}7k=1, x ∈ S, defined

in (4.24) represents the basis of the null space of the adjoint operator [−2−1I7 + K̃].
Therefore for a given right hand side vector-function F the nonhomogeneous equation
(5.2) is solvable if and only if the orthogonality conditions (5.6) are satisfied. 2

Theorem 5.4. Let S ∈ C2,α and F ∈ C0,σ(S) with 0 < σ < α 6 1. The
nonhomogeneous Neumann type boundary value problem (3.1)–(3.2) is solvable if and
only if the boundary vector-function F satisfies the orthogonality conditions (5.6).

Moreover, a solution U to the interior Neumann type boundary value problem is
representable by the single layer potential (5.1), where the density vector-function g is
defined by the singular integral equation (5.2). The solution vector U is defined modulo
a linear combination

U (∗)(x) =
7∑

k=1

Ck Φ
(k)(x), x ∈ Ω+,
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where Ck are arbitrary constants and Φ(k), k = 1, 7, are defined in (3.8).
Proof. It directly follows from Theorems 5.1, 5.2, and 5.3. 2

6. Appendix
6.1 Particular solutions the problem (3.4)
Unlike the classical thermoelasticity theory, explicit construction of a particular

solution Ṽ0 = (u0, ω0)
⊤ of the problem (3.4) in Ω+ is problematic. If the condition

η

2µ+ 3λ
=

ζ

2χ+ 3δ

is satisfied, then for an arbitrary domain Ω+ a particular solution to the problem (3.4)
reads as

Ṽ0 =
η

2µ+ 3λ
(x, 0)⊤ =

η

2µ+ 3λ
(x1, x2, x3, 0, 0, 0)

⊤.

If the domain Ω+ is a sphere B(0, R) centered at the origin and radius R, then a

particular solution Ṽ0 = (u0, ω0)
⊤ to the problem (3.4) can be constructed without any

restriction of material parameters and reads as follows [18]

u0(x) = A1x
⊤ − A2(δ + 2χ)

dg0(r)

dr
ñ(x), ω0(x) = A2(λ+ 2µ)

dg0(r)

dr
ñ(x),

where

x = (x1, x2, x3), r = |x|, ñ(x) =
x⊤

r
, g0(r) =

J1/2(iλ1r)√
r

, λ1λ
2 =

4α(λ+ 2µ)

d2
,

A1 =
4η

RD

{[
χ(δ + 2χ)− γ(λ+ 2µ)

]dg0(R)
dR

+ α(λ+ 2µ)Rg0(R)
}
− 4ζ(µδ − λχ)

RD

dg0(R)

dR
,

A2 =
ζ(3λ+ 2µ)− η(3δ + 2χ)

D
,

D =
{
(3λ+ 2µ)

[
χ(δ + 2χ)− γ(λ+ 2µ)

]
+ (3δ + 2χ)(λχ− µδ)

} 4
R

dg0(R)

dR
+ 4α(λ+ 2µ)(3λ+ 2µ)g0(R),

d2 := (λ+ 2µ)(β + 2γ)− (δ + 2χ)2 > 0.

Here J1/2(iλ1r) is the Bessel function of the first order. Note that the vector ñ(x) for
x ∈ ∂B(0, R) coincides with the exterior normal vector at the point x ∈ ∂B(0, R).

6.2 Fundamental solution

The fundamental matrix of the operator of elastostatics L(∂), which solves the
distributional matrix differential equation L(∂x)Γ(x − y) = I7 δ(x − y) with Dirac’s
delta distribution δ(x− y), reads as (for details see [18], [5])

Γ(x) =


[Γ

(1)
pq (x)]3×3 [Γ

(2)
pq (x)]3×3 [Γ

(5)
pq (x)]3×1

[Γ
(3)
pq (x)]3×3 [Γ

(4)
pq (x)]3×3 [Γ

(6)
pq (x)]3×1

[Γ
(7)
pq (x)]1×3 [Γ

(8)
pq (x)]1×3 Γ(9)(x)


7×7
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=
1

4π


Ψ̃1(x)I3 Ψ̃2(x)I3 [0]3×1

Ψ̃3(x)I3 Ψ̃4(x)I3 [0]3×1

[0]1×3 [0]1×3 Ψ̃5(x)


7×7

− 1

4π


Q(∂)Ψ̃6(x) Q(∂)Ψ̃7(x) [0]3×1

Q(∂)Ψ̃8(x) Q(∂)Ψ̃9(x) [0]3×1

[0]1×3 [0]1×3 0


7×7

+
1

4π


R(∂)Ψ10(x) R(∂)Ψ11(x) ∇⊤Ψ14(x)

R(∂)Ψ12(x) R(∂)Ψ13(x) ∇⊤Ψ15(x)

[0]1×3 [0]1×3 0


7×7

,

where

Ψ1(x) =− γ + ε

d1|x|
− 1

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
{
4[αd1 + αµ(γ + ε) + 4ν(αχ− µν)]

+ d1(γ + ε)λ21 +
16α2µ

λ2j

}eiλj |x| − 1

|x|
,

Ψ2(x) =Ψ3(x) =
χ+ ν

d1|x|
+

1

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
{
4α[µ(χ+ ν) + 2(αχ− µν)]

+ d1(χ+ ν)λ2j

}eiλj |x| − 1

|x|
,

Ψ4(x) =− µ+ α

d1|x|
− µ+ α

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j(d1λ
2
j + 4αµ)

eiλj |x| − 1

|x|
,

Ψ5(x) =− 1

κ′|x|
,

Ψ6(x) =− (λ+ µ)|x|
2µ(λ+ 2µ)

+
(δ + 2χ)2d2
4α(λ+ 2µ)2

e−λ1|x| − 1

|x|
+

1

λ22 − λ23

3∑
j=2

(−1)j
{γ + ε

d1

+
4

d21λ
2
j

[αd1 + αµ(γ + ε) + 4ν(αχ− µν)] +
16α2µ

d21λ
4
j

}eiλj |x| − 1

|x|
,

Ψ7(x) =Ψ8(x) = − δ + 2χ

4α(λ+ 2µ)

e−λ1|x| − 1

|x|
− 1

λ22 − λ23

3∑
j=2

(−1)j
{χ+ ν

d1
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+
4α

d21λ
2
j

[
µ(χ+ ν) + 2(αχ− µν)

]}eiλj |x| − 1

|x|
,

Ψ9(x) =
1

4α

e−λ1|x| − 1

|x|
+

1

λ22 − λ23

3∑
j=2

(−1)j
µ+ α

d21

(
d1 +

4αµ

λ2j

)eiλj |x| − 1

|x|
,

Ψ10(x) =
4

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
[
νd1 + (γ + ε)(αχ− µν) +

4α2χ

λ2j

]eiλj |x| − 1

|x|
,

Ψ11(x) =Ψ12(x) =
2

d21(λ
2
2 − λ23)

3∑
j=2

(−1)j
[
2(χ+ ν)(µν − αχ)− αd1

− 4α2µ

λ2j

]eiλj |x| − 1

|x|
,

Ψ13(x) =
4(µ+ α)(αχ− µν)

d21(λ
2
2 − λ23)

eiλ2|x| − eiλ3|x|

|x|
,

Ψ14(x) =
1

κ′

{
− η|x|
2(λ+ 2µ)

+
[
ζ(λ+ 2µ)−η(δ + 2χ)

] δ + 2χ

4α(λ+ 2µ)2
e−λ1|x| − 1

|x|

}
,

Ψ15(x) =
η(δ + 2χ)− ζ(λ+ 2µ)

4κ′α(λ+ 2µ)

e−λ1|x| − 1

|x|
;

where

d1 := (µ+ α)(γ + ε)− (κ + ν)2, d2 := (λ+ 2µ) (β + 2 γ)− (δ + 2κ)2,

d3 := (µ+ α) (I σ2 − 4α) + (γ + ε) ϱσ2 + 4α2, λ21 =
4α(λ+ 2µ)

d2
> 0,

λ22,3 =
4

d21

{
2(µν − αχ)2 − αµd1 ± i2(µν − αχ)

√(
µ+ α[α(µγ − χ2) + µ(αε− ν2)]

)}
.
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SOLUTION OF THE BASIC PLANE BOUNDARY VALUE PROBLEMS OF
STATICS OF THE ELASTIC MIXTURE FOR A MULTIPLY CONNECTED

DOMAIN BY THE METHOD OF D. SHERMAN
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Abstract. In the present work we consider the basic plane boundary value problems of
statics of the linear theory of elastic mixture for a multiply connected finite domain, when
on the boundary a displacement vector (the first problem) and a stress vector (the second
problem) are given.

For the solution of the problem we use the generalized Kolosov-Muskhelishvili formulas

and the method of D. Sherman.
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Muskhelishvili’s representation, Method D. Sherman.
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1. Introduction

The construction and the intensive investigation of the mathematical models of
elastic mixtures arise by the wide use of composites into practice. The diffusion and
shift models of the linear theory of elastic mixtures are presented by several authors.

In [1,3.4] for a simply connected finite and infinite domain the basic plane bound-
ary value problems of statics of the elastic mixture theory are considered when on the
boundary a displacement vector (the first problem), a stress vector (the second prob-
lem); differences of partial displacements and the sum of stress vector components (the
third problem) are given.

In [1] two-dimensional boundary value problems of statics are investigated by po-
tential method and the theory of singular integral equations.

In [3] by applying the general Kolosov-Muskhelishvili representations from ([2])
these problems are splitted and reduced to the first and the second boundary value
problem for an elliptic equation which structurally coincides with an equation of statics
of an isotropic elastic body.

In [4] using potentials with complex densities the solutions of basic plane boundary
value problems of statics are reduced to solution of Fredholm linear integral equation
of second kind.

In [5] the basic mixed boundary value problem of equation of statisc of the elastic
mixture theory is considered in a simply connected domain when the displacement
vector is given on one part of the boundary and the stress vector on the remaing part.

In [7] three - dimensional boundary value problems of two isotropic elastic medea
are investigated by means of the potential method. The uniqueness and existence
theorems for the statics, steady oscillations and dynamical problems are proved.

In the present work in the case of the plane theory of elastic mixture for a multiply
connected finite domain we study the problems the variant of which in the case of the
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plane theory of elasicity has been solved by N. Muskhelishvili, owing to the method of
D. Sherman [6, §102]

For the solution of the problem the use will be made of the generalized Kolosov-
Muskhelishvuli’s formula [2,4] and the method D. Sherman developed in [6; §102].

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixture in the complex
form is written as [4]

∂2U

∂z∂z̄
+K

∂2Ū

∂z̄2
= 0 (2.1)

where U = (u1 + iu2, u3 + iu4)
T , u

′
= (u1, u2)

T and u
′′
= (u3, u4)

T are partial displace-
ments, ∂

∂z
= 1

2
( ∂
∂x1

− i ∂
∂x2

), ∂
∂z

= 1
2
( ∂
∂x1

+ i ∂
∂x2

), z = x1 + ix2, z̄ = x1 − ix2,

K = −1
2
lm−1, l =

 l4 l5

l5 l6

, m−1 =

 m1 m2

m2 m3

−1

,

mk = lk +
1
2
l3+k, k = 1, 2, 3, l1 = a2/d2, l2 = −c/d2, l3 = a1/d2,

a1 = µ1−λ5, a2 = µ2−λ5, c = µ3+λ5, d2 = a1a2− c2, l1+ l4 = b/d1, l2+ l5 = −c0/d1,
l3 + l6 = a/d1, a = a1 + b1, b = a2 + b2, c0 = c + d, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,
b2 = µ2 + λ2 + λ5 + α2ρ1/ρ, d = µ3 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ,
α2 = λ3 − λ4, ρ = ρ1 + ρ2, d1 = ab− c2.

ρ1 and ρ2 appearing in (2.2) are the partial densities, and µ1, µ2, µ3, λp, p = 1, 5 are
real constants characterizing physical properties of the elastic mixture and satisfying
certain inequalities [1] and [7].

Let D+ be a bounded two-dimensional domain (surrounded by the curve S) and
let D− be the complement of D̄+ = D+US. We assume that S ∈ Ck+β, k = 1, 2,
0 < β ≤ 1.

A vector u = (u
′
, u

′′
)T = (u1, u2, u3, u4)

T is said to be regular in D+[D−] if uk ∈
C2(D+)

∩
C1(D̄+) [uk ∈ C2(D−)

∩
C1(D̄−)] and the second order derivatives of uk

are summable in D+[D−], in the case of the domain D− we assume, in addition the
following conditions at infinity

uk(x) = 0 (1), |x|2∂uk
∂xj

= 0(1), j = 1, 2; k = 1, 4,

to be fulffiled with |x|2 = x21 + x22.
In [2] M. Basheleishvili obtained the following representations

U = (U1, U2)
T = (u1 + iu2, u3 + iu4)

T = mφ(z) +
1

2
l zφ′(z) + ψ(z), (2.3)

TU = [(TU)1, (TU)2]
T = [(Tu)2 − i(Tu)1, (Tu)4 − i(Tu)3]

T

=
∂

∂s(x)
[(A− 2E)φ(z) +Bzφ′(z) + 2µψ(z)], (2.4)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2) are arbitrary analytic vector-functions,
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A =

 A1 A2

A3 A4

 = 2µm, µ =

 µ1 µ3

µ3 µ2

, m =

 m1 m2

m2 m3

,

B =

 B1 B2

B3 B4

 = µl, E =

 1 0

0 1

 ,
are known matrices and (see [5])

A1 + A3 − 2 = B1 +B3, A2 + A4 − 2 = B2 +B4, (2.5)

det m > 0, det µ > 0, det(A− 2E) > 0.
∂

∂S(x)
= n1

∂

∂x2
− n2

∂

∂x1
, n = (n1, n2)

T is a unit vector of the outer normal

(Tu)p, p = 1, 4 are the components of stresses [2]

(Tu)1 = r
′
11n1 + r

′
21n2, (Tu)2 = r

′
12n1 + r

′
22n2,

(Tu)3 = r
′′
11n1 + r

′′
21n2, (Tu)4 = r

′′
12n1 + r

′′
22n2,

τ (1) =

 r
′
11

r
′′
11

 =

 a c0

c0 b

 θ
′

θ
′′

− 2µ
∂

∂x2

 u2

u4

 ,

τ (2) =

 r
′
22

r
′′
22

 =

 a c0

c0 b

 θ
′

θ
′′

− 2µ
∂

∂x1

 u1

u3

 ,

η(1) =

 η
′
21

η
′′
21

 = −

 a1 c

c a2

 ω
′

ω
′′

+ 2µ
∂

∂x1

 u2

u4

 ,

η(2) =

 r
′
12

r
′′
12

 =

 a1 c

c a2

 ω
′

ω
′′

+ 2µ
∂

∂x2

 u1

u3

 . (2.6)

θ
′
= divu

′
, θ

′′
= divu

′′
, ω

′
= rotu

′
, ω

′′
= rotu

′′
.

By virtue of (2.2) and (2.6) we obtain lengthy but elementary calculations.

τ = τ (1) + τ (2) = 2(2E − A−B)Re φ
′
(z),

τ (1) − τ (2) − iη = 2[Bzφ
′′
(z) + 2µψ

′
(z)], η = η1 + η2, (2.7)

det(2E − A−B) > 0 (see [2]).
Formulas (2.3), (2.4) and (2.7) are analogous to the Kolosov-Muskhelishvili’s for-

mulas for the linear theory of elastic mixture.
Also note that
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X + iY = i[(A− 2E)φ(t) + Btφ′(t) + 2µψ(t)]S (2.8)

is the principal vector of stresses applied on S.
For our purpose let us rewrite formulas (2.4) in a more convenient form. Namely,

for the stress vector we have

(A− 2E)φ(z) + Bzφ′(z) + 2µψ(z) = F + ν, (2.4)′

where ν = (ν1, ν2)
T is an arbitrary complex vector,

F = (F1, F2)
T =

∫ z

z0

TUds,

here the integral is taken over any smooth arc within D+ connecting an arbitrary fixed
point z0 with a variable point z of D+.

Multiplying (2.4)́ by

(
1
1

)
dt and integrating over S. Owing to (2.5) we obtain(

B1 +B3

B2 +B4

)∫
S

[φ(t)dt− φ(t)dt] =

∫
S

(
1
1

)
F (t)dt. (2.9)

From (2.9) we have Re
∫
S
F (t)dt = 0.

Below we will need the following Greens formulas [1] and [4]∫
D±

E(u, u)dx = ± Im

∫
S

UTUds, (2.10)

where E(u, u) is the positively defined quadratic form, the equation

E(u, u) = 0 admits a solution u = (u
′
, u

′′
)T , u

′
= (u1, u2)

T = a
′
+ b

′
(

−x2
x1

)
,

u
′′
= (u3, u4)

T = a
′′
+ b

′
(

−x2
x1

)
, (2.11)

where a
′
and a

′′
are arbitrary real constant vectors, and b

′
is an arbitrary real constant.

LetG+ be a finite multiply connected domain bounded by the contours L1, L2, L3, ....,
Lp, Lp+1, the last of which contains all the others, Lj ∈ C1,β 0 < β ≤ 1, j = 1, p+ 1.

In this case the boundary of G+ is L =
p+1∪
j=1

Lj; note that the contours Lj(j ≤ p) are

oriented clockwise, while Lp+1 is oriented counterclockwise. Let Gj(j = 1, p) be a finite
two-dimensional domain bounded by the contour Lj, j = 1, p. By Gp+1 we denote an

infinite domain bounded by the contour Lp+1. G
′
=

p+1∪
j=1

Gj, and G− = R2 \
p∪

j+1

Gp.

Note that in a domain G+ components of the partial displasements and stress
vectors are one-valued functions.

Repeating word by word the reasoning developed in [6 §35], owing to formulas
(2.7)-(2.8) we obtain that (2.3) represent one-valued vector-function in the domain
G+, when
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φ(z) =

p∑
k=1

γkln(z − zk) + φ∗(z) (2.12)

ψ(z) =

p∑
k=1

γ
′

kln(z − zk) + ψ∗(z) (2.13)

where zk is an arbitrary point in Gk, k = 1, p

γk = −Xk + iYk
4π

, γ′k = −m(Xk − iYk)

4π
,

Xk + iYk = i[(A − 2E)φ(t) + Btφ′(t) + 2µψ(t)]Lk
; φ∗(z) and ψ∗(z) are holomorphic

vector-functions in G+.
Finally note that the formula (2.10)+ is valid for domain G+∫

G+

E(u, u)dx = Im

∫
L

UTUds

= Im

∫
L

[mφ(t) +
1

2
ltφ′(t) + ψ(t)]d[(A− 2E)φ(t) + Btφ́(t) + 2µψ(t)]. (2.14)

3. Solution of the first boundary valu problem for the finite multiply
connected domain

Let G+ be a finite multiply connected domain (see section 2). The first boundary
value problem is formulated as follows: Find in the domain G+ a vector U(x) which
belongs to the class C2(G+)

∩
C(1,α)(G+) is a solution of equation (2.1.) and satisfying

the following condition

U+(t0) = f(t0) on L, −(I)+f problem;

where f ∈ C1,α(L), L ∈ C(2,β), 0 < α < β ≤ 1 is a given complex vector-function.
Using the Green formula (2.14) it is easy to prove.
Theorem 3.1. The homogeneous problem (I)+0 , has no nontrivial regular solution.
By virtue of (2.3) it is obvious that the (I)+f problem can be reduced to a problem

of defining two analytic vector-functions φ(z) and ψ(z) in G+ using the boundary
condition

U+(t0) = mφ((t0) +
1

2
lt0φ´ (t0) + ψ(t0) = f(t0), on L. (3.1)

Let us look for analytic vector-functions φ(z) and ψ(z) in the form (see (2.12) and
(2.13))

φ(z) =
m−1

2πi

∫
L

g(t)dt

t− z
+

p∑
j=1

m−1qj ln(z − zj), (3.2)

ψ(z) =
1

2πi

∫
L

g(t)dt

t− z
− K

2πi

∫
L

g(t)dt

t− z
+
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+
K

2πi

∫
L

tg(t)dt

(t− z)2
+

p∑
j=1

qj ln(z − zj), (3.3)

where zj = x1j + ix2j is a arbitrary point in Gj, j = 1, p, z = (x1 + ix2) ∈ G+,
g = (g1, g2)

T is the unknown complex vector to the Hölder class and has the integrable
derivative, and qj = (qj1, qj2)

T is an arbitrary constant vector, (j = 1, p).
We tie the unknown constant vector qj and the unknown vector g by the relation

qj =

∫
Lj

g(t)ds, j = 1, p. (3.4)

Substituting (3.2) and (3.3) into (2.3.) we have by (3.4) that

U(x) =
1

2πi

∫
L

g(t)dln
t− z

t− z
+

K

2πi

∫
L

g(t)d
t− z

t− z

+

p∑
j=1

[
2ln|z − zj|

∫
Lj

g(t)ds−K
z

z − zj

∫
Lj

g(t)ds

]
. (3.5)

Passing to the limit in (3.5) G+ ∋ z → t0 ∈ L and using boundary condition (3.1.)
to define the vector g we obtain the following integral equation of Sherman type

g(t0) +
1

2πi

∫
L

g(t)dln
t− t0
t− t0

+
K

2πi

∫
L

g(t)d
t− t0
t− t0

+

p∑
j=1

[2ln|t0 − zj|

−K t0
t0 − zj

]

∫
Lj

g(t)ds = f(t0), t0 ∈ L. (3.6)

Since f ∈ C1,α(L), L ∈ C2,β (0 < α < β ≤ 1), therefore from (3.6) it follows
(see [4]) g ∈ C1,α(L).

Let us show now that equation (3.6) is always solvable. For this it is suficient that
the homogeneous equation corresponding to (3.6) has only a trivial solution. Denote
the homogeneous equation (which we do not write) by (3.6.)0 and assume that it has
a solution different from zero which is denoted by g0. Compose the complex potentials
φ0(z) and ψ0(z) using (3.2) and (3.3.), where g is replased by g0. We have

U0(t0) = mφ0(t0) +
1

2
lt0φ́ (t0) + ψ0(t0) = 0, t0 ∈ L. (3.7)

Due to Theorem 3.1. we obtain u0(x) = 0, x ∈ G+, hence (see [5])

φ0(z) = ν; ψ0(z) = −mν, (3.8)

where ν = (ν1, ν2)
T is an arbitrary constant vector.

Now note that since vector-functions φ0(z) and ψ0(z) are one-valued in G+ therefore
by (3.2.) - (3.4.) and (3.8.) we can write

φ0(z) =
m−1

2πi

∫
L

g0dt

t− z
= ν, z ∈ G+,
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ψ0(z) =
1

2πi

∫
L

g0(t)dt

t− z
+

K

2πi

∫
L

tg
′
0(t)dt

t− z
= −mν, z ∈ G+, (3.9)

q0j =

∫
Lj

g0(t)ds j = 1, p. (3.10)

Consider the following vector-functions:

iφ∗(t) = m−1g0(t)− ν; ; iψ∗(t) = g0(t) +Ktg
′

0(t) +mν. (3.11)

By virtue of (3.9.) we obtain

1

2πi

∫
L

φ∗(t)dt

t− z
= 0,

1

2πi

∫
L

ψ∗(t)dt

t− z
= 0, ∀z ∈ G+.

Hence we conclude, that (see [6, §74]) the vector-functions φ∗(t) and ψ∗(t) are the
boundary values of the vector functions φ∗(z) and ψ∗(z) which are holomorphic in the
domains G1, G2, G3, ..., Gp, Gp+1 and φ∗(∞) = 0, ψ∗(∞) = 0.

After eliminating g0(t); in (3.11.), we obtain

mφ∗(t0) +
1

2
l t0φ

∗́(t0) + ψ∗(t0) = −2imν, on Lj, j = 1, p+ 1.

By (2.3.) this condition correspoinds to the first boundary value problem of statics in
the elastic mixture theory the domain Gj, j = 1, p+ 1, when at the body boundary
the displacement vector is equal to constants −2imν.

Using the uniqueness theorem for the domain Gj, j = 1, p+ 1 (see [4]) we
have

φ∗(z) = cj, ψ∗(z) = −imν −mcj, in Gj, j = 1, p+ 1,

where cj = (cj1, cj2)
τ , (j = 1, p+ 1), is an arbitrary constant complex vector.

Since in the domain GP+1 φ∗(∞) = ψ∗(∞) = 0 therefore ν = 0 and Cp+1 = 0.
Hence φ∗(z) = cj, ψ∗(z) = −mcj, in Gj j = 1, p, φ∗(z) = ψ∗(z) = 0 in Gp+1.

In that case (3.11) implies

m−1g0(t) = icj on Lj, j = 1, p and g0(t) = 0 on LP+1. (3.12)

Now on the basis of (3.10) we obtain that every cj = 0, hence g0(t) = 0.
Consequently the homogeneous equation corresponding to (3.6) has no nontrivial

solution. This means that (3.6) has a unique solution. Substituting g in (3.5), we get
a solution of the first boundary value problem.

The existence of solution of the first boundary value problem can also be proved
when domain G is an infinite multiply-connected domain

4. Solution of the second boundary value problem for the finite multiply
connected domain

Let G+ be a finite multiply connected domain (see section 2). The origin is assumed
to lie in the domain GP+1.

The second boundary value problem is investigated with the vector
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TU = ((Tu)2− i(Tu)1, (Tu)4− i(Tu)3)
T given on the boundary where (Tu)k, k =

1, 4 are the components of stresses (see (2.6).)
Using the Green formula (2.14) it easy to prove.
Theorem 4.1. The general solution of the second homogeneous boundary value

problem, in G+ is represented by the formula

U = a0 + iε0
(

1
1

)
z,

where z = x1 + ix2, a
0 = (a01, a

0
2)

T is an arbitrary complex constant vector, and ε0 is
an arbitrary constant.

The latter formula expresses a rigid displacement of the body.
It is assumed that the principal vector and the principal moment of external forces

are equal to zero on every contour Lj(j = 1, p). Moreover for solvability of the problem
we also assume that the principal vector of external forces is equal to zero on LP+1.

By virtue of (2.4) and (2.4)́ it is obvious that the second plane boundary value
problem can be reduced to a problem of defining two analytic vector-functions φ(z)
and ψ(z) in G+ using the boundary condition

(A− 2E)φ(t0) +Bt0φ
′(t0) + 2µψ(t0)− νk = F (t0),

on Lk, k = 1, p+ 1, (4.1)

where F = (F1F2)
T ∈ C1,α(Lk), Lk ∈ C2,β, 0 < α < β ≤ 1 is a given vector-function.

νk = (νk1, νk2)
T , (k = 1, p+ 1) is a constant vector. Note that the constants

ν1, ν2, ν3, ..., νp, νp+1 are not given in advance and defined while solving the problem, if
we fix one of them. Below we will assume that νp+1 = 0.

In (4.1) φ(t0), φ
′
(t0) and ψ(t0) denote the boundary values on Lk, k = 1, p+ 1, of

the vector-functions φ(z), φ
′
(z) and ψ(z) respectively.

In the sequel we will be assume that

Re

∫
L

(
1
1

)
F (t)dt = 0. (4.2)

Note that (see [6], [4]) condition (4.2) expresses the principal vector and the prin-
cipal moment of external forces are equal to zero.

The analytic vector-functions φ(z) and ψ(z) sought for in the domain G+ have the
form

φ(z) =
(A− 2E)−1

2πi

∫
L

g(t)dt

t− z
+

P∑
j=1

(
1
1

)
Mj

z − zj
, (4.3)

ψ(z) = (2µ)−1

[
1

2πi

∫
L

g(t)dt

t− z
+

H

2πi

∫
L

g(t)dt

t− z
− H

2πi

∫
L

tg(t)dt

(t− z)2

+
P∑

j=1

B

(
1
1

)
Mj

z − zj

]
(4.4)
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where H = B(A− 2E)−1 is a known matrix, zj = x1j + x2j is an arbitrary fixed point
in Gj, (j = 1, p), g = (g1, g2)

T is a complex unknown vector-function, Mj is a real
constant. Then we tie the unknown constant Mj and unknown vector-function g by
the relation

Mj = i

(
1
1

)∫
Lj

(g(t)dt− g(t)dt), j = 1, p. (4.5)

Taking into account (4.3) and (4.4) in (4.1) after some calculations for the deter-
mination of the vector g we obtain the following equation of Sherman type

g(t0) +
1

2πi

∫
L

g(t)dln
t− t0
t− t0

− H

2πi

∫
L

g(t)d
t− t0
t− t0

+

p∑
j=1

[
(A− 2E)

(
1
1

)
Mj

t0 − zj
+B

(
1
1

)
Mj

t0 − zj
−B

(
1
1

)
Mjt0

(t0 − zj)2

]
−νk = F (t0), on Lk, k = 1, p+ 1, (4.6)

where νk, k = 1, p are an arbitrary constant vector, νp+1 = 0, and Mj, j = 1, p are
given by (4.5).

We tie the unknown constant vector νk and the unknown vector-function g by the
relation

νk = −
∫
Lk

g(t)ds, k = 1, p. (4.7)

If now in the left-hand side of the second integral equation in (4.6) under the vector
νk is meant the expression (4.7) then this equation will transform into a equation
containing no unknown except vector g.

To investigate equation (4.6) it’s advisable to consider, instead of (4.6) the equation

g(t0) +
1

2πi

∫
L

g(t)dln
t− t0
t− t0

− H

2πi

∫
L

g(t)d
t− t0
t− t0

+

p∑
j=1

[
(A− 2E)

(
1
1

)
Mj

t0 − zj
+B

(
1
1

)
Mj

t0 − zj
−B

(
1
1

)
Mjt0

(t0 − zj)2

]

+
1

4πi

(
1
1

)
Mp+1(

1

t0
+

1

t0
− t

t20
)− νk = F (t0),

on Lk. k = 1, p+ 1, (4.8)

where

MP+1 = −i
(

1
1

)
(φ

′
(ξ0)− φ′(ξ0)), (4.9)

ξ0 = ξ01 + i ξ02 is a fixed point in G+.
Now note that, by means of analytic vector-functions φ(z) and ψ(z) (which are

defined by (4.3) and (4.4)) equation (4.8) can be rewritten as

(A− 2E)φ(t0) +Bt0φ
′(t0) + 2µψ(t0) +

1

4πi

(
1
1

)
Mp+1

(
1

t0
+

1

t0
− t

t20

)
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−νj = F (t0) on Lj, j = 1, p+ 1, (4.8)′

where φ(t0), φ
′
(t0) and ψ(t0) are boundary values on Lj of the analytic vector-functions

φ(t0), φ
′
(t0) and ψ(t0) respectively.

Multiplying (4.8)′ by

(
1
1

)
dt0 and integrating over L. Owing to (2.5) we obtain

(
B1 B3

B2 B4

)
[φ(t0)dt0 − φ(t0)dt] +

Mp+1

4πi

∫
L

[
dt0
t0

+
dt0
t0

]
+Mp+1

=

∫
L

(
1
1

)
F (t0)dt0.

Since Mp+1 represents a real constant, (see (4.9)), therefore by virtue of (4.2) from
the last equalities we find that

Mp+1 = Re

∫
L

(
1
1

)
F (t0)dt0 = 0. (4.10)

From (4.10) it follows that the principal vector and the principal moment of eternal
forces are equal to zero (see (4.2)), then any solution g of equation (4.8) is simultane-
ously a solution of the initial equation (4.6).

Let us prove that equation (4.8) is always solvable. To this end it is sufficient
to show that the homogeneous equation corresponding to (4.8)has only the trivial
solution.Assume the contrary, let g0 be its solution.Denote the corresponding complex
potentials by φ0(z) and ψ0(z). By virtue of (4.3)-(4.5) and (4.7) we obtain

φ0(z) =
(A− 2E)−1

2πi

∫
L

g0(t)dt

t− z
+

p∑
j=1

(
1
1

)
M0

j

z − zj
, (4.11)

ψ0(z) =
(2µ)−1

2πi

∫
L

g0(t)dt

t− z
− (2µ)−1H

2πi

∫
L

tg′0(t)dt

t− z

+(2µ)−1

p∑
j=1

B

(
1
1

)
M0

j

z − zj
, (4.12)

ν0j = −
∫
Lj

g0(t)ds, M
0
j = i

(
1
1

)∫
Lj

(g0(t)dt− g0(t)dt), j = 1, p. (4.13)

Obviously the condition

M0
p+1 = −i

(
1
1

)
(φ′

0(ξ0)− φ́0(ξ0)) = 0 (4.14)

is fulfilled.
Finally note that, it is easy to see that analytic vector-functions, i.e.complex po-

tentials, φ0(z) and ψ0(z) satisfy the condition
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(A− 2E)φ0(t0) +Bt0φ′(t0) + 2µψ0(t0)− ν0j = 0, onLj, j = 1, p+ 1, ν0p+1 = 0. (4.15)

In that case condition (4.15) corresponds to the boundary condition

(TU0(t0)
+ = 0, t0 ∈ L,

where U0 is obtained from (2.3), if instead of φ(z) and ψ(z) we take φ0(z) and ψ0(z).
Now note that on the basis of uniqueness of Theorem 4.1. we can conclude that

solution of the problem (4.15) in the case

ν0j = 0, j = 1, p+ 1, (4.16)

is given by

U0 = mφ0(z) +
1

2
l zφ′

0(z) + ψ0(z),

where
φ0(z) = iεRz + (A− 2E)−1γ, ψ0(z) = −(2µ)−1γ. (4.17)

Here R is an arbitrary real constant, γ = (γ1, γ2)
T is an arbitrary constant complex

vector, and ε = (ε1, ε2)
T is the real vector defined by, (see[5]),

ε1 =
1

△2

[A2 −H0(2− A4)], ε2 =
1

△2

(2− A1 −H0A3). (4.18)

H0 =
A2(µ2 + µ3)− (2− A1)(µ1 + µ3)

(2− A4)(µ2 + µ3)− A3(µ1 + µ3)
;△2 = det(A− 2E) > 0.

Due to (4.17) and (4.14) we arrive at

φ0(z) = (A− 2E)−1γ, ψ0(z) = −(2µ)−1γ, z ∈ G+. (4.19)

Finally comparing (4.11), (4.12) and (4.19) we obtain

γ =
1

2πi

∫
L

g0(t)dt

t− z
+ (A− 2E)

p∑
j=1

(
1
1

)
M0

j

z − zj
, (4.20)

−γ =
1

2πi

∫
L

g0(t)dt

t− z
− H

2πi

∫
L

tǵ0(t)dt

t− z
+

p∑
j=1

B

(
1
1

)
M0

j

z − zj
. (4.21)

Introduce the notation

iφ∗(t) = (A− 2E)−1g0(t) +

p∑
j=1

(
1
1

)
M0

j

t− zj
− (A− 2E)−1γ, (4.22)

iψ∗(t) = (2µ)−1g0(t)− (2µ)−1Htg′0(t)

+(2µ)−1

p∑
j=1

B

(
1
1

)
M0

j

t− zj
+ (2µ)−1γ . (4.23)
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By (4.20) and (4.21) we obtain

1

2πi

∫
L

φ∗(t)dt

t− z
= 0,

1

2πi

∫
L

ψ∗(t)dt

t− z
= 0,∀z ∈ G+. (4.24)

From (4.24) we have, (see [6, §74]) the vector-functions (4.22) and (4.23) are the
boundary value of the vector-functions φ∗(z) and ψ∗(z) which are holomorphic in the
domains G1, G2, ..., Gp+1 and φ∗(∞) = ψ∗(∞) = 0.

After eliminating g0(t) in (4.22) and (4.23) we obtain

(A− 2E)φ∗(t) +Btφ∗′(t) + 2µψ∗(t) = i

p∑
j=1

[(A− 2E)

(
1
1

)
M0

j

t− z

−B
(

1
1

)
M0

j

t− zj
+B

(
1
1

)
M0

j t

(t− zj)2
]− 2iγ, on L. (4.25)

Multiplying (4.25) by

(
1
1

)
dt and integrating over Lk, k = 1, p. Owing to (2.5)

we obtain (
B1 +B3

B2 +B4

)∫
Lk

[φ∗(t)dt− φ∗(t)dt]

= i

p∑
j=1

(
B1 +B3

B2 +B4

)
M0

j

(
1
1

)∫
Lk

[
dt

t− zi
+

dt

t− zi

]
− 4πM0

k , k = 1, p.

Since M0
k , (k = 1, p) are real constants (see (4.13)) therefore from the last relation

it follows
M0

k = 0, (k = 1, p) (4.26)

Thus, we have

(A− 2E)φ∗(t) +Btφ∗́ (t) + 2µψ∗(t) = −2iγ, onLk, k = 1, p+ 1.

By (2.4)′ this condition corresponds to the second boundary value problem of statics
in the domains G1, G2, G3, ..., Gp, and Gp+1, when the boundaries are free form external
forces.

By virtue of uniqueness theorem [1] for domain Gp+1 and the fact that φ∗(∞) =
ψ∗(∞) = 0, we find that φ∗(z) = ψ∗(z) = 0, in Gp+1, then γ = 0.

Due to the above reasoning we can write

(A− 2E)φ∗(t) + Btφ∗′(t) + 2µψ∗(t) = 0, on Lk, k = 1, p.

Using the uniqueness theorem for the problem (II)+0 , (see [1]), in the domain
Gk, k = 1, p we find that

φ∗(z) = iRkεz + (A− 2E)−1Ck,

ψ∗(z) = −(2µ)−1Ck z ∈ Gk, k = 1, p, (4.27)



70 Svanadze K.

where Rk is an arbitrary real constant, Ck = (Ck1, Ck2)
T is an arbitrary complex

constant vector and ε = (ε1, ε2)
T is a real vector defined by (4.18).

From (4.27) it follows, (see (4.22), (4.23) and (4.26)) that

g0(t) = −Rkεt+ i(A− 2E)−1Ck on Lk, k = 1, p,

further since φ∗(z) = ψ∗(z) = 0 in Gp+1, therefore

g0(t) = 0 on Lp+1.

Finally, note that from (4.9), (4.26), (4.7) and (4.16) it follows that Rk = Ck = 0
for every k, hence g0(t) = 0 on L.

Thus, we proved that the homogeneous equation correspond to equation (4.8) has
no solution different from zero.

Therefore equation (4.8) has one and only one solution g = (g1, g2)
T . Further note

that g ∈ Co,α(L).
On substituting value g = (g1, g2)

T info formula (4.3) and (4.4) we find the analytic
vector-functions φ(z) and ψ(z).

Having found the vector-functions φ(z) and ψ(z) by virtue of (2.3) we obtain a
solution of the second boundary value problem provided that the requirement for the
principal vector and the principal moment of external forces to be equal to zero is
fulfilled. Displacement U is defined to within rigind displacement, while stresses are
defined precisely.

The existence of solution of the second boundary value problem can also be proved
when domain G is an infinite multiply-connected domain.

R E F E R E N C E S

1. Basheleishvili M. Two-dimensional boundary-value problems of statics of the theory of elastic
mixtures. Mem. Differential Equations Math. Phys., 6 (1995), 59-105.

2. Basheleishvili M. Analogues of the Kolosov-Muskhelishviuli general representation formulas
and Cauchy-Riemann conditions in the theory of elastic mixtures. Georgian Math. J., 4, 3 (1997),
223-242.

3. Basheleishvili M. Application of analogues of general Kolosov-Muskhelishvili representations
in theory of elastic mixtures. Georgian Math. J., 6, 1 (1999), 1-18.

4. Basheleishvili M. Svanadze K. A new method of solving the basic plane boundary value prob-
lems of statics of the elastic mixture theory. Georgian Math. J., 8, 3 (2001), 427-446.

5. Basheleishvili M. Zazashvili Sh. The basic mixed plane boundary value problem of statics of
the elastic mixture theory. Georgian Math. J. 7, 3 (2000), 427-440.

6. Muskhelishvili N.J. Some basic problems of the mathematical theory of elasticity. (Russian)
Nauka, Moscow, 1966.

7. Natroshvili D., Jagmaidze A.Ya., Svanadze M. Some problems of the linear theory of elastic
mixtures. (Russian) Tbilisi Univ. Press, Tbilissi, 1986.



Solution of the Basic Plane Boundary Value Problem .... 71

Received 26.12.2012; revised 7.04.2013; accepted 5.07.2012.

Author’s address:

K. Svanadze
A. Tsereteli Kutaisi State University
59, Tamar Mepe St., Kutaisi 4600
Georgia
E-mail: kostasvanadze@yahoo.com



Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 39, 2013

ON THE PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE
ON FINDING EQUISTRONG HOLES IN A SQUARE
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Abstract. In the present work we consider one inverse problem of statics in the linear
theory of elastic mixture for a square which is weakened by four unknown equal holes, whose
boundaries are free from external forces, and the sides of the square are under the action of
absolutely rigid punches of rectilinear base.

Unknown boundaries of the holes are found under the condition that tangential normal

stress takes on them one and the same constant value.
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10 The homogeneous equation of statics of the linear theory of elastic mixture in
the complex form is written as [1]

∂2U

∂z∂z̄
+K

∂2Ū

∂z̄2
= 0, U =

 u1 + iu2

u3 + iu4

 , (1)

where up, p = 1, 4 are components of the displacement vector,

z = x1 + ix2,
∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
, K = −1

2
em−1,

e =

 e4 e5

e5 e6

 , m−1 =

 m1 m2

m2 m3

−1

. mk = ek +
1

2
e3+k,

the eq, q = 1, 6 are expressed in terms of the elastic mixture [1].
In [1] M. Basheleishvili obtained the representations:

2µU = 2µ(u1 + iu2, u3 + iu4)
T = Aφ(z) + Bzφ′(z) + 2µψ(z), (2)

TU =

 (TU)2 − i(TU)1

(TU)4 − i(TU)3

 =

 r′12n1 + r′22n2 − i(r′11n1 + r′21n2)

r′′12n1 + r′′22n2 − i(r′′11n1 + r′′21n2)


=

∂

∂s(x)
((A− 2E)φ(z) + Bzφ′(z) + 2µψ(z)), (3)



On the Problem of Statics of the Theory of .... 73

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions, (TU)p,
p = 1, 4, are the components of stress vector,

∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
, n = (n1, n2)

T is unit vector

A = 2µm, µ =

 µ1µ3

µ3µ2

 , B = µe, E =

 10

01

 , µ1, µ2 and µ3 are elastic

constants [1].
Let us now consider the vectors:

Un = (u1n1 + u2n2;u3n1 + u4n2)
T , Us = (u2n1 − u1n2;u4n1 − u3n2)

T ,

σn =

 (TU)1n1 + (TU)2n2

(TU)3n1 + (TU)4n2

 , σs =

 (TU)2n1 − (TU)1n2

(TU)4n1 − (TU)3n2

 ,

σt =

 [r
′
21n1 − r

′
11n2; r

′
22n1 − r

′
12n2]

T s[
r
′′
21n1 − r

′′
11n2; r

′′
22n1 − r

′′
12n2

]T
s

 . (4)

Here n = (n1, n2)
T = (cosα sinα)T , s = (−n2, n1)

T = (− sinα, cosα))T , and α(t)
is an angle between the outer normal to the contour L of the point t and ox1 axis.
Let us call the vector (4) tangential normal stress vector in the linear theory of elastic
mixture.

Elementary calculations result in [4]

σn + σt = (2E − A−B) Reφ
′
(t), t ∈ L, (5)

σn + 2µ

(
∂Us

∂s
+
Un

ρ0

)
+ i

[
σs − 2µ

(
∂Un

∂s
− Us

ρ0

)]
= 2φ′(t) t ∈ L, (6)

[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)]L = −i
∫
L

eiα(σn + iσs)ds, (7)

where
1

ϱ0
is the curvature of the curve L at the point t.

20 in the work, in the case of the linear theory of elastic mixtures we study the
problem analogous to that solved in [2]. For the solution of the problem the use will
be made of the generalized Kolosov-Muskhelishvili formula and the method developed
in [2] and [4].

Let an isotropic elastic mixture occupy on the plane z = x1 + ix2 a multiply con-
nected domain G, which is square with vertices lying on the coordinate axes weakened
by four unknown equal holes. The holes are intersected by the square diagonals and
are symmetric both with respect to these diagonals and to the straight lines connecting
middle points of the opposite square sides. The boundaries of the holes are assumed
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to be free from external loads, the square sides are under the action of absolutely rigid
punches of rectilinear base, and concentrated forces P = (p1, p2)

T are applied to the
middle points of the punches.

Assume that the vector σs is equal to zero on the entire boundary G, also σn = 0 on
the unknown part of the boundary G. Further note that the vector Un takes on sides
square constant value. Suppose also that the surfaces of the bodies are assumed to be
absolutely smooth, and hence the frictional force will be neglected.

The problem is formulated as follows: Find unknown holes and stressed state of the
square under the condition that the tangential normal stress σt at the hole boundaries
takes constant value. Let σt = −K0, K0 = (K0

1 , K
0
2) = const.

Since the problem is axially symmetric, we consider a curvilinear pentagon A1A2A3

A4A5 (Figure 1).

Figure 1:

Introduce the notation AkAk+1 = Γk, k = 1, 2, 3, Γ4 = A5A1, Γ =
4∪

k=1

Γk. Let

us denote the arc A4A5 by Γ5 and the domain occupied by the curvilinear pentagon by
D. Let 2d0 be the square diagonal.

On the basis of analogous Kolosov-Muskhelishvilis formulas (5)-(7) our problem is
reduced to finding two analytic vector-functions φ(z) and ψ(z) in D by the boundary
condtions:

Reφ
′
(t) =

1

2
(A+B − 2E)−1K0, t ∈ Γ5, Imφ

′
(t) = 0, t ∈ Γ, (8)

(A− 2E)φ(t) +Btφ′(t) + 2µψ(t) = q0, t ∈ Γ5, q0 = const, (9)

Ree−iα(t)[(A− 2E)φ(t) + Btφ′(t) + 2µψ(t)] = C(t), t ∈ Γ, (10)
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where α(t) is the size of the angle made by the normal and the ox1 axis,

C(t) =

∫ t

A1

σn(t0) sin(α(t0)− α(t))ds0, t ∈ Γ, If t ∈ Γj,

then

C(t) = 0, t ∈ Γ1 ∪ Γ3 ∪ Γ4, C(t) =
1

2
P, t ∈ Γ2.

The conditions (8) are the vector-form of the Keldysh-Sedov problem for the domain
D. It is proved that

φ(z) =
1

2
(A+B − 2E)−1K0z + (A− 2E)−1l0,

z ∈ D, l0 = const, Iml0 = 0. (11)

If t ∈ Γk, k = 1, 4, then Re(e−iαkt) = Re(e−iαkAk), t ∈ Γk, k = 1, 4,

α1 =
π

4
, α2 =

3

4
π, α3 = α4 =

3

2
π.

Taking into accound equality (11), we can rewrite the boundary conditions (9) and
(10) as follows:

1

2
K0t+ 2µψ(t) = q0 − l0, t ∈ Γ5,

2µRe(e−iα(t)ψ(t)) = −


Ree−iα(t)

(
1

2
K0t+ l0

)
, t ∈ Γ1 ∪ Γ3 ∪ Γ4,

Ree−iα(t)

(
1

2
K0t+ l0

)
− 1

2
P, t ∈ Γ2.

(12)

Further note that

Re(e−iα(t)t) =

√
2

2
d0, t ∈ Γ1, Re(e

−iα(t)t) = 0, t ∈ Γ2 ∪ Γ3 ∪ Γ4, (13)

Let the function z = w(ζ), ζ = ξ1 + iξ2 map conformaly domain D onto semi-circle
|ζ| < 1, Imζ > 0. In addition, we may assume that the arc A4A5is mapped onto the
diameter (−1, 1);A4 → β4 = −1, A5 → β5 = 1, A2 → β2 = i. We map two points A1

and A3 onto the unknown points β1 and β3.
If we introduce

W (ζ) =


1
2
K0w(ζ), |ζ| < 1, Imζ > 0,

−2µψ0(ζ) + q0 − l0, |ζ| < 1, Imζ < 0, ψ0(ζ) = ψ(w(ζ)),
(14)

then the boundary value problems (12)-(13) (see [2]) are reduced to the Riemann-
Hilbert problem for the circle |ζ| < 1

Re
(
(e−iα(σ)W (σ)) = f(σ), σ ∈ γ,Re(e−iα(σ)W (σ))

)
= f 0(σ), σ ∈ γ0, (15)
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where γ =
4∪

k=1

γk, γk = ω−1(Γk), k = 1, 4 and γ0 is the mirror image of γ with respect

to the diameter (-1,1).
A solution of the problem (15) can be represented in the form [3] and [2]

W (ζ) =
ℵ(ζ)
2πi

∫
γ
∪

γ0

ζ + σ

σ − ζ

F (σ)

σℵ(σ)
dσ, F (σ) =


f(σ), σ ∈ γ,

f 0(σ), σ ∈ γ0.

ℵ(ζ) = exp

 1

4πi

∫
γ
∪

γ0

ζ + σ

σ − ζ

2iα(σ)dσ

σ

 =
ℵ1(ζ)√
ℵ1(0)

,

ℵ1(ζ) =
4

√
ζ − β2
ζ − β1

(
ζ − β3
ζ − β2

)3(
ζ − β3
ζ − β3

)2(
ζ − β2

ζ − β3

)3
ζ − β1

ζ − β2

(
ζ − β1

ζ − β1

)2

.

Having known W (ζ) we can define ψ0(ζ) and ω(ζ) by (14) and the stressed state
of the body and the boundaries of unknown holes.
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თერმოდრეკადობის ბრტყელი თეორიის მდგრადი  რხევის 
განტოლებათა სისტემის ზოგიერთი ამონახსნის შესახებ 

მიკროტემპერატურის გათვალისწინებით 
 

ლ. ბიწაძე 
 

მიღებულია ზოგადი ამონახსნის წარმოდგენის ფორმულა. კვადრატურებში 
აგებულია ფუნდამენტურ და სინგულარულ ამონახსნთა მატრიცები. 

 
 

ორი პოლიტიკური სუბიექტის ამომრჩეველთა დინამიკის 
არაწრფივი მათემატიკური მოდელი 

 
თ. ჩილაჩავა 

 
შემოთავაზებულია არაწრფივი მათემატიკური მოდელი, რომელიც აღწერს 

სახელისუფლებო და ოპოზიციური პარტიების (ორი საარჩევნო სუბიექტი, 
კოალიცია) ამომრჩეველთა დინამიკას. მოდელში განიხილება სამი ობიექტი: 
სახელისუფლებო და ადმინისტრაციული სტრუქტურები, რომლებიც ადმინის-
ტრაციული რესურსების მეშვეობით ზემოქმედებენ ამომრჩეველზე (უპირველეს 
ყოვლისა ოპოზიციურად განწყობილზე) რათა გადაიბირონ ისინი სახელი-
სუფლებო პარტიის მხარეზე; ამომრჩევლები, რომლებიც  მოცემულ მომენტში 
სახელისუფლებო პარტიის მხარდამჭერია; ამომრჩევლები, რომლებიც მოცემულ 
მომენტში ოპოზიციური პარტიის მხარდამჭერია. მუდმივი და ცვლადი 
(ოპოზიციური პარტიის ამომრჩეველთა რაოდენობის პროპორციულად) 
ადმინისტრაციული რესურსების გამოყენების შემთხვევაში კოშის ამოცანა 
არაწრფივი დიფერენციალურ განტოლებათა სისტემისათვის ამოხსნილია 
ანალიზურად ზუსტად. ნაპოვნია პირობები მოდელის კონსტანტებზე, როდესაც 
ოპოზიციური პარტია (კოალიცია)  მოიგებს მორიგ არჩევნებს. მათემატიკურ 
მოდელს თეორიული ინტერესის გარდა გააჩნია პრაქტიკული მნიშვნელობა, 
რადგანაც ორივე მხარეს (სახელმწიფო სტრუქტურები სახელმწიფო პარტიასთან 
ერთად; ოპოზიციური პარტია) შეუძლია გამოიყენონ შედეგები თავისი 
მიზნების შესაბამისად. მოდელის შედეგები აძლევს საშუალებას მხარეებს, 
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არჩეული სტრატეგიის შესაბამისად, შეარჩიონ მოქმედების პარამეტრები და 
მიაღწიონ თავისთვის სასურველ მიზნებს.  

 
 
 

ოპტიმალური მართვის ერთი კლასის განაწილებულ 
დაგვიანების შემცველი ამოცანის კორექტულობის შესახებ 

 
ფ. დვალიშვილი 

 
მოყვანილია თეორემა მართვის მიმართ წრფივი ოპტიმალური ამოცანის 

კორექტულობის შესახებ, როცა განტოლების მარჯვენა მხარისა და 
ინტეგრანდის შეშფოთებები მცირეა ინტეგრალური აზრით . 
 
 
 

პროგნოზირების მეთოდები ეკონომიკასა და ფინანსებში 
 

ა. გაბელაია 
 

განხილულია პროგნოზირების პრობლემა  ეკონომიკასა და ფინანსებში. 
მოცემულია ეკონომიკური პროგნოზირების მეთოდების კლასიფიკაცია. ჩამოყა-
ლიბებულია „აუცილებელი (ანუ შესაბამისი) სირთულის პრინციპი“ და 
ნაჩვენებია პროგნოზირების მოდელების პრაქტიკული გამოყენების შესაძლებ-
ლობები თანამედროვე კომპიუტერული პროგრამის ბაზაზე, საქართველოს 
ეკონომიკის მაგალითზე. 
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თერმოდრეკადობის თეორიის ნეიმანის ტიპის შიგა 
სასაზღვრო ამოცანის გამოკვლევა ჰემიტროპული 

სხეულებისათვის 
 

დ. ივანიძე, დ. ნატროშვილი 
 
ჰემიტროპული სხეულებისათვის, პოტენციალთა მეთოდისა და სინგუ-

ლარული ინტეგრალური განტოლებების თეორიის გამოყენებით, გამოკვლე-
ულია თერმოდრეკადობის თეორიის  ნეიმანის ტიპის შიგა სასაზღვრო ამოცანის 
ამონახსნის ერთადერთობისა და არსებობის საკითხი. გაანალიზებულია 
სასაზღვრო ინტეგრალური ოპერატორის თვისებები, ცხადი სახითაა 
ამოწერილი შესაბამისი ნულ სივრცეები და მიღებული შედეგების საფუძველზე 
დადგენილია ნეიმანის ტიპის შიგა სასაზღვრო ამოცანის ამოხსნადობის 
აუცილებელი და საკმარისი  პირობები. ნაჩვენებია, რომ ამონახსნები 
წარმოდგენადია მარტივი ფენის პოტენციალის სახით. 
 
 
 

დრეკად ნარევთა ბრტყელი თეორიის სტატიკის ძირითადი 
სასაზღვრო ამოცანების ამოხსნა მრავლადბმულ არეში  

დ. შერმანის მეთოდით 
 

კ. სვანაძე 
 

განზოგადებული კოლოსოვ-მუსხელიშვილის ფორმულებისა და დ. შერმა-
ნის მეთოდის გამოყენებით, სასრულ მრავლადბმულ არეს შემთხვევაში, 
ამოხსნილია დრეკად ნარევთა წრფივი თეორიის სტატიკის ძირითადი ბრტყელი 
სასაზღვრო ამოცანები, როცა საზღვარზე მოცემულია გადაადგილების ვექტორი 
(პირველი ამოცანა) და ძაბვის ვექტორი (მეორე ამოცანა). 
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დრეკად ნარევთა თეორიის სტატიკის ამოცანა კვადრატში 
თანაბრადმტკიცე ხვრელების მოძებნის შესახებ  

 
კ. სვანაძე 

 
გამოკვლეულია დრეკად ნარევთა წრფივი თეორიის სტატიკის ერთი 

შებრუნებული ამოცანა, ოთხი უცნობი ტოლი სიდიდის ხვრელით 
შესუსტებული დრეკადი კვადრატისათვის, როდესაც ხვრელების საზღვარი 
თავისუფალია გარე დატვირთვისაგან, ხოლო კვადრატის გვერდებზე 
მოქმედებს სწორფუძიანი აბსოლუტურად ხისტი შტამპები. შტამპების შუა 
წერტილებზე მოდებულია შეყურსული ძალები. მოძებნილია ხვრელების 
უცნობი საზღვარი იმ პირობით, რომ მასზე ტანგეციალური ნორმალური ძაბვა  
ღებულობს ერთი და იგივე მუდმივ მნიშვნელობას.  

 
 
 

კოშის ამოცანის კორექტულობის შესახებ ერთი კლასის 
ნეიტრალური ფუნქციონალურ დიფერენციალური განტო-
ლებისთვის დაგვიანების შეშფოთების გათვალისწინებით 

 
ნ. გორგოძე 

 
კვაზი წრფივი ნეიტრალური ფუნქციონალურ დიფერენციალური განტოლე-

ბისთვის მოყვანილია თეორემები ამონახსნის საწყისი მონაცემებისა და 
განტოლების მარჯვენა მხარის შეშფოთებებზე უწყვეტად დამოკიდებულების 
შესახებ. საწყისი მონაცემების ქვეშ იგულისხმება საწყისი მომენტის, ფაზურ 
კოორდინატებში შემავალი ცვლადი დაგვიანების, საწყისი ვექტორისა და 
საწყისი ფუნქციების ერთობლიობა. 
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