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EFFECTIVE SOLUTION OF THE DIRICHLET BVP OF THERMOELASTICITY
WITH MICROTEMPERATURES FOR AN ELASTIC SPACE WITH A
SPHERICAL CAVITY

Bitsadze L.

Abstract. In the present paper the linear theory of thermoelasticity with microtemperatures
is considered. The representation of regular solution for the equations of steady vibration of
the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for explicitly
solving Dirichlet boundary value problem (BVP) for an elastic space with a spherical cavity.
The obtained solutions are represented as absolutely and uniformly convergent series.

Keywords and phrases: Thermoelasticity with microtemperatures, absolutely and uni-
formly convergent series, spherical harmonic.
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1. Introduction

A thermodynamic theory for materials with inner structure whose particles, in ad-
dition to the classical displacement and temperature fields, possess microtemperatures
was established by Grot [1]. The linear theory of thermoelasticity with microtem-
peratures was presented in [2], where the existence theorems were proved and the
continuous dependence of solutions of the initial data and body loads were established.
The fundamental solutions of the equations of the three-dimensional (3D) theory of
thermoelasticity with microtemperatures were constructed by Svanadze [3]. The rep-
resentations of the Galerkin type and general solutions of the system in this theory were
obtained by Scalia, Svanadze and Tracina [4]. The 3D linear theory of thermoelasticity
for microstretch elastic materials with microtemperatures was constructed by Iesan [5],
where the uniqueness and existence theorems in the dynamical case for isotropic mate-
rials are proved. A wide class of external BVPs of steady vibrations is investigated by
Svanadze [6]. Effective solution of the Dirichlet and the Neumann BVPs of the linear
theory of thermoelasticity with microtemperatures for a spherical ring are obtained in
[7-8].

The two-dimensional model of thermoelasticity with microtemperatures is consid-
ered by Basheleishvili, Bitsadze and Jaiani in [9,10,11,12]. In particular, fundamental
and singular solutions of the system of equations of the equilibrium of the 2D thermoe-
lastisity theory with microtemperatures were constructed. Uniqueness and existence
theorems of some basic boundary value problems of the 2D thermoelasticity with mi-
crotemperatures are proved and the explicit solutions of boundary value problems for
the half-plane are constructed.

In the present paper the linear theory of thermoelasticity with microtemperatures is
considered. The representation of regular solution for the equations of steady vibrations
of the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for
explicitly solving Dirichlet boundary value problem (BVP) of steady vibrations for an
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elastic space with spherical cavity. The obtained solutions are represented as absolutely
and uniformly convergent series.

2. Basic equations

We consider an isotropic elastic material with microtemperatures. Let us assume
that DT is a ball, of radius R;, centered at point O(0,0,0) in space E5 and S is a spher-
ical surface of radius R;. Denote by D~-whole space with a spherical cavity. D+ :=
DTJS, D™ :=E5\D*.Let x:=(x1,79,73) € E3, 0x:= aiml, %, aixg) )

The basic homogeneous system of equations of steady vibrations in the linear theory
of thermoelasticity with microtemperatures has the following form [2]

pAu + (A + p)graddivu — Bgradf + ow’u = 0 (1)
ke AW + (k4 + ks5)graddivw — ksgradf + ksw =0 (2)
(kA + ag)0 + Bodivu + kydivw = 0 (3)

where u = (uy,u2)7 is the displacement vector, w = (wy,w;)” is the microtemperature
vector, 6 is the temperature measured from the constant absolute temperature
To (To > 0) by the natural state (i.e. by the state of the absence of loads), ay =
waly, 60 = iwﬁTo, ks = 1tbw — ]{?2, b > 0, a, )\, M, ﬁ, k’, k?j j =
1,...,6, are constitutive coefficients, A is the 3D Laplace operator and w is the oscilla-
tion frequency (w > 0). The superscript “7T” denotes transposition.

We will suppose that the following assumptions on the constitutive coefficients hold [2]
w>0, 3A+2u>0, a>0, b>0, k>0,
3ky + k5 + k?@ > 0, k’@ + k’5 > 0, (lfl + k3T0>2 < 4T()]€]€2

Definition 1. A vector-function U(Uy, Us, Us, Uy, Us, Ug, Uz) defined in the domain
D~ is called regular if [6]

1.
Ue (D )nci (D),
2. .
U=3U"x), 9=’ vy, v, 00,057,027, u),
(4)
UY e C*(D7)NCY (D),
3. '
(A+ )0 =0, (5)
and

0 . ; o x _
(% — z)\j) Ul(]) = eMo(|x|7Y),  for |x|>1, (6)
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U9 =0 =0 =0, m=1,23, j=1,2.5 [1=12..T,

where /\5, j = 1,2,3 are roots of equation D(—¢§) = 0, where

D(A) = (MQA + pr)k’lk’gA + (k}7A + kg)[ﬁﬁoA + (,U{)A + pr)(k:A + CL())],

1
AN+ A2+ A2 = ok [10(aoks + kks + kiks) + pw’kks + BBoks]

1
N2+ NI+ A2 = o [ks(poao + BPBo) + pw?(aoks + kks + kiks)] ,

apkspw®  agpkgAINE
pokks pokkr

ATAAS = ;Mo = A+ 2, kr = kg + ks + ke,

the constants A2 and A\? are determined by the formulas

The quantities /\?, 7 = 1,2,3,5 are complex numbers and are chosen so as to
ensure positivity of their imaginary part, i.e. it is assumed that 1 m)\g > 0.

Equations in (6) are Sommerfeld-Kupradze type radiation conditions in the linear
theory of thermoelastisity with microtemperatures.

The external Dirichlet BVP is formulated as follows:

Find in the unbounded domain D~ a regular solution U(u, w, ) of the equations
(1),(2),(3) by the boundary conditions

u =F(y), w =f(y), 0 =f(y), yes,

where F~(f1, fo, f3), £ (fa, f5, fs), f7 are prescribed functions on S.
The following theorem is valid [6].
Theorem 1. The external Dirichlet BVP admit at most one reqular solution.

3. Expansion of regular solutions

The following theorem is valid [6].

Theorem 2. The reqular solution U = (u, w,0) € C*(D™) of system (1-3) for
x € D™, is represented as the sum

u:Zu(j)(X>’ W — Z wi (x), QZZQU)’ (7)

Jj=1 J=1,2,3,5 Jj=1
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where

[ e|w i=1234

4 2
ul) — A+ A
=114

A+ N

w(®) [ N )\2 w, l#p, p=1,2305, (8)
1=1,2,3,5

A+ N
9<Q>—{HA2 A?]Q l#4q q=1,2,3.

u(j),w(j)and 0U) are reqular functions satisfying the following conditions
(A+Xu? =0, (A+X)wh =0, (A+22)§™ =0,
j:1’2’3’47 l:17273757 m:17273.

Thus, the regular in D~ solution of system (1-3) is represented as a sum of functions
u),  wb), U which satisfy Helmholtz’ equations in D~.

Lemma 1. In the domain of reqularity the regular solution of system (1),(3) can
be represented in the form

u = agrade; + asgrades + asgrades + u®,
w = bigrado + bagradps + bsgradps + w'® (9)

0 = @1 + @2 + s,

where
(A+M)p; =0, j=1,23 (A+xHu¥ =0,
(10)
divu® =0, (A+\)w® =0, diow® =0,
a; and b;, j=1,2,3, are constants.
Proof. Replacing u, w and 6 by their values from (8), and substituting
u, w, 0 into (1),(3), after some calculations we obtain

(A + pw?) (kA + kg)(u® +u® +u®) =

(A + p)kiks
Bo
(KA + ag)(krA + ks ) (01 + 02 + ©3)

grad | — (AT@1 4+ A3z + M) + B(krA + ks) (o1 + 2 + ¢3) (11)
(A+p)
+
Bo

Equation (11) is satisfied by

(1A + pw?) (k7 A + kg)uM) =
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{ A1) [ — JA2) (ks — BoA2) — bk 2] + Blks — Wf)} gradpr,

Bo
(HA + p?) (k7 A + kg)ul® =
A+
{ ( 60 Iu) [(ao — k’)\%)(l{ig — k7)\§) — ]{71]63/\3] + ﬁ(kB - ]C7/\g)} gradg02,
(HA + p?) (k7 A + kg )ul® =
A+
{ ( 60“) (a0 — kAZ) (ks — krA2) — kyksA2] + B(ks — m@} gradips.
last identity gives
u) = aigradp;, u® = aygradp, u® = asgradps (12)
where
a; = L Ao = L A2 = L
B Y T Y APy BT A
Similarly
wl) = bigrade, w® = bygradp, w® = bsgrades,
where
poo_ ks o ks, ks
YT RAZ — kA2 T kA — kA2 T kA2 — kA2
Thus

3
u = agrady; + asgrades + azgrades + u® = > a;grady; + u(4),
=1
3
w = bigradp; + bagradps + bygradps +w® = Y bigradp; + w®),
=1
3 (13)
0=w1+p2+ps=73 v
j=1

(A+M)p; =0, j=1,2,3, (A+I2)u =0,

divu® =0, (A+X)w® =0, divw® =0,

Now let us prove that if the vector U(u,w,0) = 0, then ¢ = vy = 3 = 0,
u® = w® = 0. It follows from (13) that

div]a;gradp, + asgradps + azgrades +u] =0,

div[bigradep, + bagradeps + bygrades + W(5)] =0,
©1(x) + p2(x) + p3(x) = 0.
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From these equations we obtain
2 2 2 _
a1A1p1 + a2y + azAzpsz =0,

b1)\%§01 + 52/\3902 + 53)\5903 =0,
©1(X) + pa(x) + p3(x) = 0.

The determinant of this system is

Dy = 5/€3M/€6)\z21/\§(/\% - )\3)0\% — )\:2),)()\% — )\g)(kﬁﬂo)\g - k’?/i)\i) 7& 0.
(pw? — poA3) (pw? — 110A3) (pw? — poA3) (ks — k7 AT) (ks — k7 A3) (ks — k7 )3)

Thus we have ¢ = o =3 =0, u® =0, w® =0 and the proof is completed.
We introduce the notations. If g(x) = g(g1, 92, 93) and q(x) = q(¢1, g2, g3), then by
symbols (g.q) and [g.q] will be denoted scalar product and vector product respectively

3
(g-q) = ng(ﬂm [g.a] = (9203 — 9342, 931 — 9143, G142 — G2,
k=1

Let us consider the metaharmonic equation
(A+v*)p =0, Imv#0.

For this equation the following statements are valid and we cite them without proof.
Lemma 2. If the regular vector v satisfies the conditions

A+ =0, Imv#0, divy =0,
(x-4) =0, x€D*(orD"),
then it can be represented in the form
h(x) = [x- V]h(x),
where

(A +v*)h(x) =0, V:(a 0 a).

Dy’ Oy’ Dy

/ h(x)ds = 0,

S(0,a)

In addition if

where S(0,a) C DT (orD™) is an arbitrary spherical surface of radius a, then between
the vector 1 and the function h there exists one-to-one correspondence.
Lemma 3. If the regular vector ¢ satisfies the conditions

(A+M)p =0, ImA#0 divip =0, x€& D (orD™),
then it can be represented in the form

h(x) = [x- V]ps(x) + rot[x - V]pa(x),
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where
(A+X)p; =0, j=34

In addition if

/ pids =0, j=3,4,
S(0,a)

where S(0,a) C Dt (orD™) is an arbitrary spherical surface of radius a, then between
the vector 1 and the functions ¢;, j = 1,..,4, there exists one-to-one correspon-
dence.
Lemma 2 and Lemma 3 are proved in [13].
Lemma 2 and Lemma 3 lead to the following result.
Theorem 3. The vector U = (u,w, ), is a reqular solution of the homogeneous
equations (1),(3), in D" (orD™), if and only if, when it is represented in the form
> H 3
u(x) = ; dep; + — rot
(9 = 3= a grad; + 24 ror?(x),

7j=1

3
w(x) =Y bjgrady; + @ rotap3(x), (14)
j=1 ks
0(x) = p1(x) + pa(x) + p3(x),
where
(A + XDy =0, divy® =0,
(A+X)p* =0, divg®=0,
(15)

PP (x) = [x - V]bs(x) + rot[x - V]ihu(x),

3 (x) =[x+ Vipa(x) + rot[x - V]ps(x),

(f ) Pids =0, (A+A])y; =0, j=34,
S(0,a

[ @ids=0, (A+X)p; =0, j=45,
S(0,a)

S(0,a) C DY (orD™) is an arbitrary spherical surface of radius a. Between the vector
Ulkx) = (u,w,0) and the functions ¢;, ; j = 1,..,4, there exists one-to-one
correspondence.

Remark. By virtue of the equality

rotrot[z.V]p, = —Alx. V],
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formula (14) can be written as

u(x) = i

ajgradyp; — [x - V]ihs(x) + /ﬁ rot[x - V]is(x),

J=1

w(x) = ébjgmdgaj — [x - V]ps(x) + :—Z rot[x - V]ps(x), (16)

0(x) = p1(x) + p2(x) + p3(x).

Below we shall use solution (16) to solve the Dirichlet boundary value problem of steady
vibrations for an elastic space with spherical cavity.

4. Some auxiliary formulas

In the sequel we use the following notations: let us introduce the spherical coordi-
nates

r1 = psinvcosp, xo=psinvsing, x3= pcosv,
y1 = Rysindgcos gy, yo = Rysindysingy, y3 = Rycosty, y €S, (17)

pPP=xi+as+ri 0<9<7m 0<¢<2r 0<p<Ry.

The operator 5 Sf(x) is determined as follows
x- V], = 0 k=123 x€kE
k — aSk(X) — 44 3
Simple calculations give
0 —xi—xi——cos 015193—31'712
95.(x)  Oms  Com, PV, o0
0 —xi—xi——sin ct19£—|—cos2
0S5(x)  P0m  loms PNV, T %oy
0 0 0 0

0S5(x) ~ Mor,  Pom  0p

The following identities are true [13]

(x - rotg(x)) = kzi:o ggii};) , Z 0 (rot[x - V]h), =0,

~—
ol

Il
[e=]
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k;o 85’1?()() [x - gl = p*divg(x) — (x - g(x)) - P(%(X - g(x)),
0 R, 3. 9gu(x)
kgl 3Sk(x) [X ) TOtg(X)]k - _(pa_p + 1) ; 8Sk(x)’
! 0 o 0 o 0
50560 " 05ux) Do Do DSk(x) (18)
3 0? 0? ) 1 52 s

=0,

2500 o Tt Sintiagr 95,

s 0 0 Y0 OY(d.p)
D TR T TN e i G T e

@F)=hil) L gesle Flom@. Y e ki)

k=1
) =@ Yl ki@, S ot —hi(@), = k(@)
4 ) k:185k(z) k 5 ) 8Sk(z) k 6 ) 7 7 :

Let us assume that fr. &k = 1,..,7 are sufficiently smooth(differentiable) functions.
Let us expand the functions h; in spherical harmonics

hy (Z) = Z hl:m(ﬁ? 90)’
m=0
where h, is the spherical harmonic of order m :

= _2m—|—1
ke = 47TR%

/ P, (cosv)h, (y)dsS,,

S

P, is Legendre polynomial of the m-th order, ~ is an angle formed by the radius-vectors

Ozx and Oy,

3
1
COS7y = m ;mkyk

From these formulas it follows that if g, is the spherical harmonic the operator
0

5. k =1,2,3, does not affect the order of the spherical function:
k

5 %gg((;)) = —m(m + 1)gm(x).
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The general solutions of the equations (A + M)y = 0,

domain D~ have the form [13]

B(x) = 3 U Np)Yu(0,0), p> Ri,

m=0
where
) Vv Rngi; (Axp)
Ui’ (Akp) = :

VAH L (AR

1
2

k = 1,2,3,4,5, in the

(19)

5. The Dirichlet BVP for an infinite space with the spherical cavity

The solution of the Dirichlet BVP problem

uw =F(fi,fo,f3), w =1 (fu,[5.f6), 0 =fr
in the domain D~ is sought in the form (16).
From (16) we get
(x u)—ia %+c 3 0"y
- = k‘p ap 1 £ asz(x)7
S ma Y,y
= 05 (x) 08 x) = 0SE(x)
5. Py - by
—alpZ +1
% as6g 5 TN L a5t
5 O —23: OV (k. w) —ib 22 L 23: O (20)
Z10S(x) = 0SE(x)’ = 9p T 0SE(x)’
5.0 0% > 8
X -Wlp=0> +b
,;1 ISk (x) [ e =1 ; 8S2(x) ; 0S2(x
' P 0 N~ P
+b — — +1 ;
s 2 a5200 ~ 3, Y 2 a5
i Owi i Pos i 1
= ) = ) €1 = 19> C2 = 15
£ 05(x) &~ 0Sp(x) L ST BTN
Suppose the functions ¢, (x), m =1,2,3,4,5, and v;, j = 3,4, are sought
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in the form

er(x) = 5 U ) Yim (9, 0), k=1,2,3,

m=0

oi(x) = > U ap)Yim(,0), J =45, (21)

m=0

Ui00 = X W p)Zim(0,), G =34, p> R,

where Yy,,, and Zj,, are the unknown spherical harmonic of order m,

VRH,) (Ap)
\Ilgrll,)(Akp) = (17)7L+§ .
Remark. The conditions [ ¢;ds =0, j=3,4, [ ¢ds=0, j=45in
5(0,a) 5(0,a)

fact mean that
Yio = Ys0 = Z3g = Zso = 0.

Substituting the expressions of ¢,,(z), m =1,2,3,4,5 and ¢;(x), j = 3,4 in (20),
we obtain

3 00 o
(X ’ u) = Z Z kpa (1)()‘kp)yk’m - Z m(m + 1)\115,11)()\4p)23m,
k=1 m=0

m=0

fe’e) 3 a
> m(m+1) {— > ax Vi) (Akp) i + oz + DV Map) Zom, } ,

Z m(m \If (1) (/\4p)Z4m,
m=0 (22)

(x-w) = E > bkp U () Yim — 2 Y m(m+ D)W (Asp) Y,

=1m=0

m=0
3 0
X WL =
,;1 8Sk(x)[ b 3 ;
> m(m+1) {— > bWl (Aep) Yiem + alpgs + DY (a0 Yim, } ,
m=0 k=1
3 a 00 " 3 o) "
> 5 == mm+ DT Asp)Vom, 0= > T (N\ep)Yim (D, ).
k:l

m=0 k=1 m=0
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Passing to the limit as p — R; and taking into account boundary conditions for the
determination of Y,,,; and Z,,; we obtain the system of algebraic equations

3 0
> ag {/J—\I/%)()\kp)l Yim — cim(m + 1) Zs,, = h,,,
k=1 ap p=R;
; 9 1) -
m(m—+1){ =3 arYim + 1 | (o5 + DU (Aap) Zom & = hy |
=1 dp P

—m(m + 1)Zy, = hs,,,

3 0
S b o VDO Vi = camn ¥ = i,
k=1 14 p=R;

3 0
m(m+1) < — 3 b Yim + ¢ [(p— + DU (Xsp) Yim, ¢ = hz,.
k=1 dp p=R

—m(m + 1)Y5,, = hg,

6m>

Zao = Yo = Z39 = Y50 = 0,

Yim + Yom + Yam = hopy hag = hgy = hyg = hso = 0. (23)

By virtue of Theorem 1 we conclude that the system (23) for m > 0 is uniquely solvable
and the functions Y}, and Z;,, are possible to express by the known functions h,,.

If we take into account the sufficient conditions of convergence of absolutely and
uniformly convergent series with respect to the spherical harmonic and the property
of functions ‘If,(%)()\kp) we conclude that the obtained solutions are represented as ab-
solutely and uniformly convergent series.
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ON THE HEXAGONAL QUANTUM BILLIARD
Khatiashvili N.

Abstract. In the paper a planar classical quantum billiard in the hexagonal type areas with
the hard wall conditions is considered. The process is described by the Helmholtz Equation in
the hexagon and hexagonal rug with the homogeneous boundary conditions. By means of the
conformal mapping method the problem is reduced to the elliptic partial differential equation
in the rectangle with the homogeneous boundary condition. It is assumed that one parameter
of mapping is sufficiently small. In this case the equation is simplified and analyzed. The
asymptotic solutions are obtained. The spectrum and the corresponding eigenfunctions are
found near the boundary of the hexagon. The wave functions are found in terms of the
Bessel’s functions. The results are applied for the estimation of the energy levels of electrons
in graphene.

Keywords and phrases: Quantum chaos, Helmholtz Equation, Bessel’s functions, graphene.

AMS subject classification (2010): 39A14, 35M11, 35Q40, 32H04.

Introduction

Quantum Billiard is a dynamical system, which describes a motion of a free particle
inside a closed domain D with a piece-wise smooth boundary S [2, 3, 7-11, 13-17, 19-
22]. In this case the Schrodinger Equation for a free particle assumes the form of the
Helmholtz Equation and the spectrum of the Helmholtz Equation reflects the energy
levels of the particle.

In the paper the following equation with the homogeneous boundary condition,
when D is the hexagon, is considered

2m
Au(zx,y) + ﬁEU(@"’ y) =0 ulg=0, (1)

2
where S is a boundary of D, u is the wave function of the particle, \? = h_?E is the

constant to be determined, F is the energy of the particle, m is mass, h is Planck’s
constant.
In some cases it is more convenient to replace the condition u|, = 0 by the condition

[2, 14, 17,19, 20, 22]
/ |u|*dxdy = 1.

D

The hexagonal type areas are very important, as the atoms of Carbon and its al-
lotropes are arranged in the hexagonal type structures [4, 7, 17, 19, 20] and has a lot
of applications in microeletronics. For example, graphene is a one-atom thick sheet
of carbon atoms which form a hexagonal structure ([4], see “One atom thick billiard”
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https//sites.google.com/a/ucr.edu/physics-lau/) and electrons in such structures be-
have like quantum billiard balls [4, 7, 17, 21].

The problem is investigated by means of the conformal mapping and partial dif-
ferential equation. The Helmholtz Equation (1*) is transformed to the equation of
the elliptic type. One parameter of the mapping is chosen sufficiently small, the ini-
tial equation is simplified and replaced by the approximate elliptic equation.The wave
function and eigenvalues of this equation are found.

Statement of the problem

Let D be the hexagon of the plane zy = xg+1yg, with the vertexes aq, as, as, ays, as, ag
(ay = 0, Reay = 0), and with the axis of symmetry ajay (Fig.1). In this area we
consider the following problem
Problem 1. To find a real function u(xg, yo) in D having second order derivatives,
satisfying the equation
Au(zo,yo) + Nu(zo,y0) = 0 (1)
and the boundary condition
ulg =0, (2)

where A is the constant to be determined, S is the boundary of D.

By means of the conformal mapping we reduce Problem 1 to the elliptic partial
differential equation in the rectangle.

At first we map the area D at the upper half-plane of the complex plane z = x + 1y,
by the Schwartz-Christoffel formula [1, 6, 15, 17] with the following correspondence of
points

a1 <> 0,09 <> a,az <> b,ay <> 00, a5 <> —a,ag <> —b;a,b > 0;

f(z) =2 = O/t‘1/3(t2 —a®) T3 — v?) "V 3at, (3)
0

where C' is the definite constant, which is determined from the formula

b
5=y =C [ = ) )

a

Let z = f(w) be the conformal mapping of the rectangle Do{—ap/2 < u <
ap/2; 0 < v < by} with the boundary Sy of the plane w(w = & + in), on the up-
per half-plane of z. This mapping will be given by [1, 6, 15, 17]

2= sn (%) , (4)

w = Cj /(1 — ) 7Y2(1 — K232,

0

or
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with the following correspondence of points
04 0,a <> ag/2,b <> ag/2 + iby, 00 <> iby, —a <> —ag/2 + by, —b <> —ag/2; ag, by > 0

(Fig. 2), where sn is the Jakobi “sinus” with the modulus k, having the periods 2ay
and 2by, Cj is the definite constant which is defined from the tables [15, 18], ag will be
chosen accordingly in the following.
By the mappings (3), (4) Problem 1 could be reduced to the following problem
Problem 2. To find a real function u(§,n) in Dy having second order derivatives,
satisfying the following equation

Aug(&,m) + N|f'(w) [Puo(&,m) = 0, (5)

with the boundary condition
uO‘SO = 07

where uo(€,1) = u(f(w)), and A is the constant to be determined.

& YEI
2y
& a5
ag
2
0| XD'
Fig. 1. The hexagonal area
LY
1y
_ % s ] g
2 2

Fig. 2. The image of the hexagon by the mapping z = f(w)
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Solution of Problem 2

It is obvious that
| fo ()2 = | fL(w)]? - |2, (w) > (6)

If we suppose a = 1, b = 1/k , from (3), (4), (6) after simple transformations we obtain

w w \ 2/3
cn—dn—

fulwp =i | =S| 7)
STLEO
where C; = k*3£- and sn, cn, dn are the Jacobi functions [1, 5, 6, 15].

As three parameters of the conformal mapping can be chosen arbitrarily, we can
assume that ¢ = e™™, (y = %), is sufficiently small and we can use formulas [5, 6,
15]

sn(w/Cy) ~ siny(1 + 4q cos? ),
en(w/Cy) = cosy(1 — 4gsin®v), (8)
dn(w/Cy) ~ (1 — 8¢sin?7),
where v = Z&-. Wi ~ 0 [1,5,6,15], then

the formulas (8) could be simplified and one obtains, (aq will be chosen in the following

way)
sn(w/Cy) = sin~,

en(w/Cy) = cosy,
dn(w/Cy) ~ 1, (9)

5&0 Qo
k~0,0213, b Cyp~ —.
0T T3 YT

Putting (9) into (7) we can write the approximate formula

e (F)" (10)

where

_cos(2mE/agco)
~ cosh(27mn/agco)’

By using (10) Equation (5) may be rewritten as

suen) + 20 (20) e = (1)

Hence, we obtain the degenerated elliptic equation.
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4 4
Now, let us choose ag in such a way, that <6a—7;£> and (T—f) are negligible. Taking
0 0

into account (9) and
2m€ 6mE 2\ 1 /6>
oS (—) ~1— = (—2) , cosh (—77> ~1+ - (—277) ,
aopCo 2\ ag apCo 2\ af
from (11) we obtain

2\ 2/3
(%) e

0

2 2 2/3
(1 + 9—4772 — 9—452)
ay a

0

AU()(f, 77) + /\2|Cl|2u0(€7 77) =0. (12>

By using the approximate formula

2 2 —2/3 2 2 5 2 2 2
1 9 -9 ~|[1-(6=n®—6—¢2 Z(9=n?—9—¢2
( HOgT 45) ( " aéf)+9( AT

and neglecting the terms
72 (9r2\¥? \? [ o2\ ¥?
o= (50) et - (%) (B) e erior-en

from (12) one obtains the approximate equation

92\ /3
(%) o7+ @raumien + ¥ic Pulem =0 (13

0

In our case we have the following estimations
4 4 4 4
(i) =) (&) =()

2 9 2\ 2/3 109 2/3 10/3
o (5) o rerroe-ema <o (12) (Z) . aw

0 Qo

2 2 Q2 2/3 . ) 109 2/3 T 16/3
o) () oreera-er<s () (3)

972\ 2/3 , . =\ 43
— <1097 (—) .
(%) e < vo0 (2

For example, if ag = 103, then by (14)

6 4 4
(lf) <7.9x1077, (6”—2”) <9.7x 107,

ap Qg
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72 972\ */? 7
s (?) (1 + &) (1 — €%)| < 6.8 x 107,
0 0
72\ 2 972 2/3 ; B
45 (—4) (—4) (* + )P =€) <14 x 107",
Qg Qg

97?2 2/3
(—4> (n? + )3 < 4.2 x 1073
Qg

If agp = 10* ,then by (14)

4 4
(%) <7.9x107", (6—Wf> <9.7x107",

2
Qg ap

x2 (9r2\*/?
61 (—4) O + €20 — €3] < 3.2 x 1070,
0o \ %

72\? (97 2P 2 212 2 212 1
5(5) (%) or e -gr <osx
0

o2 2/3
(%) (7 + €223 < 2 x 1074,

If ay = 10°, then

2 2
Qg ag

4 4
(%) <7.9x107Y, (6—7T§) <9.7x 1071,

™ 972 2/3
6oz (—4) (0 + €9 =€) < 15 x 107,
0

0

7T2 2 977'2 2/3
45 (—4) <—4) (* + )3 —€8)? <3x 1077,
Qg

2\ 2/3
(914) (7 + )3 <9 x 107"

Qg

In the polar coordinates & = r cos ¢, n = rsin ¢ equation (13) becomes

10u at \*"*
Bualri ) + 350+ ICE (25) Pl ) =0 (15

By the separation of variables ug = u(r)us(p) from (15) we obtain

" 1,
o S Ner~43 =, (16)
Uq T U
u/2,+5u2 = 07

where 5 > 0 is some constant and
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a 2/3
)\g = )\2‘01’2 <9—7:2> .

Suppose ,¢ < g, €4 ~ 0, then for 3 = 0, uy = Ap where A is some constant, which
will be calculated from the condition

€0 a0/2
/ / r|ul? dopdr = 1. (17)
0 0

We can rewrite the first equation of (16) in the form
" 1 / 2,.—4/3

By the notation r/3 = ¢ | equation (18) becomes
uf + 1)+ 9NGuy = 0.

The solution of this equation is u; (t) = Ip(3A\ot) and hence the solution of (18) will
be [5, 15]
uy (1) = Io(3or'/?), (19)
where [, is Bessel’s function.
Consequently, we can calculate the spectrum of the equation (18)by the boundary
condition In(3Xo(%L)'/?) = 0.
By using Maple and formulas (9) one obtains

L1
‘ / 1342 — @)V — )13 qt| = 0.342848,

@ ~ 92/310~1/3 |as — as|
Co Qo
N (3 c? a54/3

4/3
A2 =20 [ — (107323 0 =123 ...
" |le(a%) (10m°) 62/3 lag — as|?’ e

where ¢,, are zeros of Bessel’s function I,[15]

|C| = |as — as|/0.342848, |Cy| = k*/3 : (20)

m
cnwz—l—mr,

1~ 24, Cy =~ 557 C3 =~ 877 Cy =~ 117, Cy = ].49, e
The constant A will be calculated from the formula (17)

€0 ao/2 ao/2

// r|u|2dg0dT:A258/3/ | 123073 2dr = 1.
0 0

0
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Note 1. As we have symmetry, then in the areaDy,_., = {—ao/2 < & < ao/2,
by — g0 < n < bg }the solutions of the Problem 2 will be the similar to the solutions of
equation (18).

Now, let us consider (11) in the area D, near the line & = 0 with the conditions

(6;5) / luf2dgdn = 1, (21)

where D, = {—e¢ < £ < g, 0 < n < by}, ¢ is sufficiently small. For example, if
2
g:mﬁ,%:ur%mm(%% < 410718
0
By the conditions (21), (11) takes the form

3 (3;”7) Aug(€. 1) + N|Cy o€, m) = 0. (22)

0

2

In (22) we can suppose th? (3(1—7"{[) R <%1) , then the equation (22) may be rewritten
0 0

as

a2 4/3

Bl + 22 (52) (e = 23
By the separation of variables uo(&,n) = u1(§)ua(n) from (23) we obtain
Auy(§) + fur (§) =0, >0, (24)
Aus(n) + (A~ = Byuz(n) = 0, (25)
where
a2\ Y3

gk () (26)

3m

Here we suppose 8 = 0, hence (24) gives u; = B(ag/2 — £) (B is constant, which
will be determined from condition (21)). The solution of (25) will be represented in
terms of Bessel’s function I3/, [5,15]

ui(n) = \/513/2(3)\0771/3% (27)
where
1,,(3hon/?) = \f (38X) /2 sin<3Aon1/3>—\f (8%0) /2% cos(32gn'/%). (28)

(27)and (28) gives

2
() = 1/ 2330 [sin(3h0n'”) — 3hon" cos(hon' "]
The eigenvalues of Problem 2 will be found from the boundary condition

sin (30 (bo)?) — 3o (bo) "/ cos(3M(bo)/?) = 0,
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where by = E”%

Consequently, 3Xo(%42)/% will be zeros of Bessel’s function ]3/2(3/\0771/3) and the
spectrum of (25)could be determined by using Maple and formulas (20), (26),

D
3o(220y1/3 — g,
3
A2 /3r\*® d? ag
M=t (5) =100 =1,2,3,... 29
where d,, are zeros of Bessel’s function I, ,[15]
3
d, ~ ; + nmw

dy = 4.4934, dy = 7.7252, d3 ~ 10.9041, d, ~ 14.0662, d5 ~ 17.2208...
The constant B will be calculated from the formula (21)

bo
a’e 2
J[ e = 5225 [y [1a(rar ) an = 1. (30)
D 0

Note 2. The functions I and I3/, have the following asymptotics [5,15]

2 T T
/3y oy 2 s _ 0 _ 0 _
L(3Xor"?) = 4/ CESWATE cos (3/\07’ vy 4) , v=20,3/2.

According to (13), (15), (19), (20), (23),(27),(29) we conclude.

Conclusion

1. Near the boundary 7 = 0 and n = by the solutions of the Problem 2 are given by

Uy (€,1) = Amarctggromo(n? + &)1, (31)

where

2 2 2 (g 28 2/310—1/3 |az — as|
)\0 = )‘n1|Cl| 92 , |Cl| ~ 2°/°10 —a ,
’ (32)

n=123,...,

2 ay 4/3
A2 = (1072 4/3 “m1 7
n1 ( ) 62/3 ’(13 _ a2‘2
An, 1s the spectrum of Problem 1 and ¢,, are zeros of Bessel’s function Iy, A,, are the

definite constants
1
a0/2

A,Ql1 = (3/53) / T]g(3)\07“1/3)d7“ ) (33)
0

2. Near the line £ = 0 the solutions of Problem 2 will be given by
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Uny (€,1) = Buy(a0/26)v/Ms12(3Mon*"?), (34)
where
at \** las — as]
=220 (S |Cy| ~ 223107132 —2
07 Pm M gp2 M ag
4 ’ (35)
d? ag /3
A2 = (1072)4/3 22 =1,2,3,...
9o ( ™ ) 202/3 |a3 _a2|27 na ) Ly 9y )
where )\, is the spectrum of Problem 1, d,,, ns = 1,2,3,..., are zeros of Bassel’s

function I3/5,B,, are the definite constants

-1

B, = <i) 7)77 [13/2(3/\0771/3)}2@ : (36)

2

The energy of the particle will be calculated from the formulas [2,14,16]

h2 45 x 102 2 at?
E, =) — =2"""" (10733 _0 %10 =1,2,3,...
1 ni 2m 3 ( ™ ) 62/3 |a3 _ Cl2|2 , 5 Ly Iy )
(37)
h: 45 x 102 2,y
En,=) —=""""(107%)" 22 _0 x 10720 =1,2,3,...
na no 2m 3 ( ™ ) 202/3 |CL3 N CL2|2 , N2 ) Ay Iy )
Below, on Table 1 the numerical results are given for |az — as| = 107'° by using
Maple

ap=10* | ¢ A2 |El(eV)
cp =24 | 1072 ] 0.046745 | A~ /6 x 107! | 0.553961
d; =449 [ 10°%]0.073319| B~a~2x10~% | 0.8688876

Table 1.

Note 1. As f(w) is a holomorphic function, we can continue it through the sides
asaz and agas. Hence, we obtain the quantum billiard in the hexagonal rug (Fig.3).
Consequently, for this problem equation (5) will be valid. So, the solutions will be the
same as for the hexagon and given by formulas (31),(32), (33),(34),(35),(36), (37). The
boundary conditions will depend on the number of cells in the rug.

Also, we can continue f(w) through the sides agas,asas and agai, ajas. So we
obtain billiard in the hexagonal flower (Fig. 4), where energy levels of particles will be
calculated by formula (37).
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Yo

(L

0 P

Fig. 3. The hexagonal rug

Fig. 4. Hexagonal flower

Note 2. Let us consider a half of the hexagon D' = ajasasay (Fig.1). For this area
we can consider the following problem
Problem 3. To find a real function u(zg,yo) in D’ having second order derivatives,
satisfying the equation
Au(wo, yo) + Au(xo, yo) = 0,
and the boundary conditions

)

? }azag

|a1a4
where A is the constant to be determined.

The function f(w) map the area D’ at the rectangle D} with the vertexes (0,0),
(ap/2,0), (ao/2,by),(0,b9). We can continue f(w) through the sides ajay and asay
(step by step)and obtain the mapping of the hexagon with the hexagonal hall at the
rectangle D = {0 < € < ag/2;0 <n < 6by} (Fig. 5). So we can consider the billiard
in the hexagon with the hexagonal hall. In this cases equation (11) will be valid. for
the area DL = {0 < ¢ < a0/2;0 < n < e}the equation (11) may be rewritten as

a2\ Y3 -
Bl + VUG (52) € Pualen) =0,
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This equation can be solved in analogy with (23) with the boundary condition
[3/2(3)\0(@0/2)1/3) = 0.

Near the line 7 = 0 we obtain the following solutions

Un, (57 77) = an \/513/2(3)\061/3)7 Ng = 17 27 3a ceey
where g and B, are given by (35) and (36).

Fig. 5. Hexagon with the hexagonal hall

Note 3. By using the solutions of Problem 2 it is easy to obtain the solutions
of the same problem for the particle trapped in 3D potential box of the hexagonal
configuration D x {0 < ¢ < ¢y} . This problem can be solved in analogy with Problem
2 and the solutions will be given by

2
U= w/—un(f’,n)sinﬂ—nl, n,my =1,2,3,...,
Co Co

where u, (&, n) are given by (31),(32) or (34),(35) and corresponding energy eigenvalues
are given by

h2 2
En:)‘iQ n_217 n7n1_172737
0

Note 4. Problem 1 could also be applied for the description of the growth of the
single crystal of hexagonal configuration [12].

Discussion. The complete system of solutions of Problem 2 will be found if equa-
tion (11) or the equation

uf + 7 4+ 9N — Btu, = 0.

is solved globally.



26 Khatiashvili N.

Example. Now we consider the electron transport in graphene and find energy
levels of the electron. “As an emergent electronic material and model system for
condensed-matter physics, graphene and its electrical transport properties have become
a subject of intense focus. By performing low-temperature transport spectroscopy on
single-layer and bilayer graphene, we observe ballistic propagation and quantum in-
terference of multiply reflected waves of charges from normal electrodes and multiple
Andreev reflections from superconducting electrodes, thereby realizing quantum bil-
liards in which scattering only occurs at the boundaries.” (“Phase-Coherent Transport
in Graphene Quantum Billiards” (Science, Vol. 317, Issue 5844, Pages 1530-1533,
2007).

Graphen is a one-atom thick sheet of carbon atoms arranged in hexagonal rings in
which scattering occurs at the boundaries. Hence, we can apply our results (Fig.3).
The width of the side of the hexagonal cell is about 0.14 x 1071° [17, 21].As we have
billiard in the hexagonal rug, we can use formulas (31), (32), (33). Here we suppose,
that the rug has 7 cells and by using Maple we have obtained the following result
(Table 2)

ap | d 5 A2 A |E|(eV)
10% | 2.4 | 1076 | 0.046745 | V2 x 1075 | 0.553961

Table 2.
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OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS WITH SEVERAL
DELAY ARGUMENTS

Koplatadze R.

Abstract. In the paper the following difference equation
Au(k) + Y pilk) u(ri(k)) = 0
i=1

is considered, where m € N, the functions p; : N — Ry, 7, : N — N, 1i(k) < k — 1,
lim 7;(k) =400 (i = 1,...,m) are defined on the set of natural numbers and the difference
—+00

operator is defined by Au(k) = u(k + 1) — u(k). New oscillation criteria of all solutions to
these equation are established.

Keywords and phrases: Oscillation, proper solution, difference equations with several
delay.

AMS subject classification (2010): 34K11.

1. Introduction

Consider the difference equation
Au(k)+ " pi(k) u(ri(k)) =0, (1.1)
i=1

where m > 1 is a natural number, p; : N - R,, 7, : N - N, (i = 1,...,m), are
functions defined on the set N = {1,2,...} and Au(k) = u(k + 1) — u(k). Everywhere
below it is assumed that
lim 7;(k) =400, mi(k)<k—-1 (1.2)
k——+o0
For each n € N denote N, = {n,n+1,...}.

Definition 1.1. Let n € N. We will call a function v : N — R a proper solution
of equation (1.1) on the set N, if it satisfies (1.1) on N,, and sup{|u()| : i > k} > 0
for any k € N,,.

Definition 1.2. We say that a proper solution v : N, — R of equation (1.1)
is oscillatory if for any k& € N there exist ny,ny € Ny such that u(ng) - u(ng) <
Otherwise the solution is called nonoscillatory.

Definition 1.3. Equation (1.1) is said to be oscillatory, if any of its proper solutions
is oscillatory.

The problem of oscillation of solutions of linear difference equation (1.1) for m = 1,
has been studied by several authors, see [1,2] and references therein.

As to investigation of the analogous problem for equation of type (1.1) (m > 1), to
our knowledge for them there have not been obtained results analogous to those known
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for equation (1.1), where m = 1. Analogous results for first order differential equations
with several delay see [3,4].

2. Sufficient conditions for oscillation

Denote

Galk) =1, (H H [1+m(ﬁpe<j>)%sl<j>})% (21)

Theorem 2.1. Let there exist kg € N and nondecreasing functions o; : N — N
(t=1,...,m) such that

1+ 7(k)<oik)<k for ke N (i=1,...,m) (2.2)
and
m m k Uz(k) 1 m 1 i 1
leJsrupH (H Z pi(s H |:1+m<Hp€(j))m¢ko<j>:|> >
T i=1 s=cy(k) j=7i(s) =1

then equation (1.1) is oscillatory, where 1y, is given by (2.1) when k = ky.
Corollary 2.1. Let there exist nondecreasing functions o; : N — R such that

hmsupH(H > nils Ji(ﬁ_l {1+m<éﬁ1pe(j)>ﬂ>;>i,

hrtoo i=1 s=o,(k) J=7i(s)

then equation (1.1) is oscillatory.

Corollary 2.2. Let there exist nondecreasing functions o; : N — R such that
condition (2.2) is fulfilled and

k 1
hmsupH(H Z pi(s > >#7
i=1 s=0,(k)

k—4o00

then equation (1.1) is oscillatory.

Theorem 2.2. Let there exist nondecreasing functions o; : N — N such that (2.2)
18 fulfilled,

m m k Uz( )— %
nmsupH<H S s 1 (Hw ) ) =0 (23)
i=1 s=oy (k) i=7(s)

and

k—+oo
g=7e(k)

k m m
lim inf (sz(j)> =a, >0 (L=1,...,m). (2.4)
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Moreover, if for some £ € {1,...,m}

kgrfoo (k= 7e(k)) = +o0, (2.5)
then equation (1.1) is oscillatory.

Theorem 2.3. Let there exist nondecreasing functions o; : N — N, such that (2.2)
and (2.3) hold. If moreover,

l]ir_rgig)f (k—m(k)) =neeN ({=1,...,m) (2.6)
and .
m 1 no+m
[T > —m( 1o ) , (2.7)
o) ng \No +m

where ay (0 = 1,...,m) are given by (2.4) and ng = >_ny. Then equation (1.1) is
=1
oscillatory.

Theorem 2.4. Let 7, : N — N (i =1,...,m) be nondecreasing functions, let (2.6)
and (2.7) be fulfilled and

k—1

lim inf pi(i) >0 (j=1,...,m). (2.8)
k—4o00 P—

Then equation (1.1) is oscillatory, where ay is given by (2.4).
Theorem 2.5. Let there exist nondecreasing functions o; : N — N such that (2.2),
(2.3) and let (2.6) be fulfilled. Moreover, if m < > ny, and

(=1

- f: (ne+1)

Hoée > (2ym) = ; (2.9)
=1

then equation (1.1) is oscillatory, where

1

k m 2m
0¢ = liminf s ( Hlpm) (C=1,...,m). (2.10)
J=Te =

Theorem 2.6. Let 7, : N — N be nondecreasing functions and (2.6), (2.8) and let
(2.9) be fulfilled. Then equation (1.1) is oscillatory, where oy is given by (2.10).
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ON OSCILLATORY PROPERTIES OF SOLUTIONS OF n-TH ORDER
GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH
DELAY ARGUMENT

Koplatadze R.

Abstract. In the paper the following differential equation
u™ () + p(t) [u(r ()" signu(r(t)) = 0

is considered, where n > 3, p € Lipc(R4+; R-), p € C(R4;(0,400)), 7 € C(R4+; Ry), 7(t) < 't
fort € Ry and . li_IEl 7(t) = +00. We say that the equation is “almost linear” if the condition
—1T00

lim p(t) =1 is fulfilled, while if limsup u(t) # 1 or liminf p(t) # 1, then the equation is an
t——+o00 t—+oco t——+oo

essentially nonlinear differential equation. In case of “almost linear” and essentially nonlinear
differential equations to have Property A have been extensively studied [1-5]. In the paper
new sufficient conditions are established for a general class of essentially nonlinear functional
differential equations to have Property B.

Keywords and phrases: Property B, oscillation, functional differential equation.

AMS subject classification (2010): 34K11.

1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a
functional-differential equation of the form

u™ (t) + p(t) [u(r ()" signu(r (1)) = 0, (1.1)

where

p € Line(Ry; R.),  p € C(Ry; (0, +00)),

reC(RGRY), 7)<t and  lm 7(t) = +oo. (1.2)
—+00
It will always be assumed that the condition
p(t) <0 for te R, (1.3)

is fulfilled.

Let tp € R;. A function u : [ty, +00) is said to be a proper solution of equation (1.1)
if it is locally absolutely continuous together with its derivatives up to order n — 1 in-
clusive, sup{|u(s)| : s > t} > 0 for t > t, and there exists a function u € C'(R;; R) such
that (t) = u(t) on [t, +0o) and the equality @™ (¢) + p(t)|u(r(t))|*® signu(r(t)) = 0
holds almost everywhere for ¢ € [tg, +00). A proper solution u : [ty,+00) — R of
equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to +oo.
Otherwise the solution u is said to be nonoscillatory.
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Definition 1.1. We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory when n is even, and either is oscillatory or satisfies

(@) L0 as tT+oo (i=0,...,n—1) (1.4)

when n is odd.
Definition 1.2. We say that equation (1.1) has Property B if any of its proper
solutions is either oscillatory or satisfies either (1.4) or

(@)t 400 as tt4o0 (i=0,...,n—1) (1.5)

when n is even and either is oscillatory or satisfies (1.5), when n is odd.
Definition 1.3. We say that equation (1.1) is almost linear if the condition

tliin u(t)

—+00

= 1 holds, while if lgm +inf p(t) # 1 or limsup p(t) # 1, then we say that the equa-
—+o0

t—-+o0
tion is an essentially nonlinear differential equation.

Oscillatory properties of almost linear and essentially nonlinear differential equa-
tion with advanced argument are studied well enough in [1-5]. For Emden-Fowler
equations with deviating arguments, essential contribution was made in [6-9]. In the
present paper for the generalized differential equation with delay argument, sufficient
conditions are established for equation (1.1) to have Property B. Analogously results
for Property A, see [10].

2. Essentially nonlinear differential equation with property B
The following notations will be used throughout the work

a=inf{u(t):t€ R}, B=sup{u(t):te R},

(2.1)
T(—1)(t) = sup {s >0, 7(s) < t}, T(—k) = T(=1) © T(=(k—1))s Kk =2,3,...

Clearly 7(_1)(t) > t and 7(_1) is nondecreasing and coincides with the inverse of 7
when the latter exists.
Let a € [1,400), v € (1,40), £ € {1,...,n— 2} and t, € R,. Denote

t “+o00o

A (1) =0 exp{w) / N / f”—€—2<f<§>>1+“—”“<€>|p<§>|d§ds}, (2.2)
T(—1) T s

A=+ 2 [ [T e

ok <n - E)' T(,i)(t*) s
Lo

< (5 A (7€) Ol ds (=23, (23)

¥ it a>1,
Vo) = 1 : (2.4)
_ f =1
Om—o - °

In the section, when o« > 1, we derive sufficient conditions for functional differential
equation (1.1) to have Property B.
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Proposition 2.1. Let a > 1, conditions (1.2) and (1.3) be fulfilled and for any
Ce{l,...,n} with { +n even, the conditions

/ m (e, 7)) |p(t)|dt = 400 for ¢ € (0,1] (2.5,.)
0

and

oo e
[ ) ol = oo for £ n-2) (260
0

be fulfilled. Moreover, let for any large t, € R, for some k € N, v € (1,400) and
Je(1,q

+o0 +o0 w(€)—o
/ | / gn“5(T<§))5+@1>u<s>(%p,gfvgyt*(7(g))) P p(©)lde ds = +o0. (272)

(=) (b

Then equation (1.1) has Property B, where « is defined by first condition of (2.1) and
p,(:})t is given by (2.2)—~(2.4).

Proposition 2.1'. Let « > 1, f < 400, conditions (1.2) and (1.3) be fulfilled
and for any ¢ € {1,...,n — 2} with £ + n even, conditions (2.5,1) and (2.64) hold.
Moreover, let for some k € N, v € (1,+00) and 6 € (1,a] condition (2.7,) be fulfilled.
Then equation (1.1) has Property B, where o and 5 are defined by (2.1) and p,(gagt is
giwen by (2.2)~(2.4).

Theorem 2.1. Let o > 1, conditions (1.2), (1.3), (2.51.) and

£))#@)
lim inf (1))
t—400

>0 (2.8)

be fulfilled. Moreover, let for some ¢ € (1, ] the conditions

+oo  ptoo
kA / £7279(7(€))°p(€) € ds = +oo, (2.9)

when n is odd and

+oo +oo
A k/ £75-9(r(£))7 14O [p(£) d ds = +o0, (2.10)

when n is even, be fulfilled. Then equation (1.1) has Property B, where « is defined by
the first condition of (2.1).

Theorem 2.1'. Let a > 1 and B < +o0, conditions (1.2), (1.3), (2.51.1), (2.61) and
(2.8) be fulfilled. Moreover, let for some ¢ € (1, ), when n is odd (n is even) condition
(2.9) ((2.10)) holds. Then equation (1.1) has Property B, where o and § are given by
(2.1).

Remark 2.1. In Theorem 2.1 condition (2.5;.) cannot be replaced by condition
(2.511). Indeed, let n >3, c € (0,1), ¢1 € (¢, 1),

! —1)" —u(t)
pu(t) =nlogst, p(t) = —;fn ¢ (t"‘l + %) and 7(t) =t.
1
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It is obvious that condition (2.5;;) is fulfilled, but for large ¢, equation (1.1) has
the solution u(t) = c(t" 1 + #) Therefore, equation (1.1) has the solution wu,

satisfying the condition th+m u™ D (t) = ¢(n—1)!, that is equation (1.1) does not have
—+400

Property B.
Theorem 2.2. Let o > 1, let conditions (1.2), (1.3), (2.51.), (2.61) and (2.8) be
fulfilled and
+oo
lim inf ¢ / 378 [p(s)|ds > 0. (2.11)
t

t——+o0

Moreover, let for some § € (1,a] and v > 0

[ [ ety oo ds = oe 212)
0 s

Then equation (1.1) has Property B, where « is defined by the first condition of (2.1).
Theorem 2.2'. Let a« > 1 and f < 400, conditions (1.2), (1.3), (2.511), (2.61),
(2.8) and (2.11) be fulfilled. Moreover, if for some 6 € (1,a] and v > 0, condition
(2.12) holds, then equation (1.1) has Property B, where a and 5 are given by (2.1).
Theorem 2.3. Let a > 1, conditions (1.2), (1.3), (2.51.), (2.61), (2.8) and (2.11)
be fulfilled. Moreover, if there exists m € N such that
lim inf ~ ®)
t—+00 t

> 0, (2.13)

then equation (1.1) has Property B, where « is given by the first condition of (2.1).
Theorem 2.3'. Let a > 1 and f < 400, conditions (1.2), (1.3), (2.51.1), (2.61),
(2.8), (2.11) and for some m € N condition (2.13) be fulfilled. Then equation (1.1) has
Property B, where o and 8 are given by (2.1).
Theorem 2.4. Let o > 1, conditions (1.2), (1.3), (2.5,-1,), (2.6,—1) and

£))#(®)
lim sup% < 400 (2.14)

t—4o00

be fulfilled. Moreover, if for some § € (1, q]

[ e eer e ipe s = oo 215)
0 s

then equation (1.1) has Property B, where « is given by the first condition of (2.1).
Theorem 2.4'. Let a > 1 and f < 400, conditions (1.2), (1.3), (2.5,-11), (2.6,,—1)
and (2.14) be fulfilled. Moreover, if for some 6 € (1,a] condition (2.15) holds, then
equation (1.1) has Property B, where o and B are given by (2.1).
Theorem 2.5. Let o > 1, conditions (1.2), (1.3), (2.5,-1.), (2.75-1) and (2.14) be
fulfilled and

t——+o0

+o0
lim inf ¢ / (7(5))HO-IE) (5) [ ds > 0. (2.16)
t
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Moreover, if for some § € (1,a] and v >0

/+°° / i 170 (7(£)) T+ IHEO WO (£)|de ds = 400, (2.17)
0 s

then equation (1.1) has Property B, where a is given by (2.1).

Theorem 2.5. Let a > 1 and f < +oo, conditions (1.2), (1.3), (2.5,-11),
(2.6,,-1), (2.14) and (2.16) be fulfilled and for some 6 € (1,«) and v > 0 condition
(2.17) holds. Then equation (1.1) has Property B, where a and [ are given by (2.1).

Theorem 2.6 Let o > 1, conditions (1.2), (1.3), (2.5,-1.¢), (2.6,—1), (2.14) and
(2.17) be fulfilled. Moreover, if for some m € N condition (2.13) holds, then equation
(1.1) has Property B, where a is given by (2.1).

Theorem 2.6’. Let a > 1 and § < +00, conditions (1.2), (1.3), (2.5,-11), (2.6,,—1)
and (2.17) be fulfilled. Moreover, if for some m € N condition (2.13) holds, then
equation (1.1) has Property B, where o and 8 are given by (2.1).

3. Quasi-linear differential equations with property B

In the section we define sufficient conditions for functional differential equations
(1.1), when o = 1, to have Property B.

Proposition 3.1 Let o = 1, conditions (1.2) and (1.3) be fulfilled and for any
¢ e{l,...,n+ 1} with { + n even, conditions (2.5,.) and (2.6;) hold. Let moreover,
for any large t, € Ry and for some k € N

1 [t +o0 -
1imsup—/ / gn—f—l(T(f))(f 1)u(t)><
t S Js
(—k) (t

t——+o00
1 (1) M(&)
(e r(€)) (€l ds . (31,)

Then equation (1.1) has Property B, where « is given by the first condition of (2.1).
Proposition 3.1'. Let o« =1 and B < +o00, conditions (1.2) and (1.3) be fulfilled
and for any £ € {1,...,n} with {4+n even, conditions (2.5¢1) and (2.6,) hold. Moreover,
let for any large t, € R, and for some k € N, condition (3.1;) holds. Then equation
(1.1) has Property B, where o and 3 are given by (2.1).
Theorem 3.1 Let a = 1, conditions (1.2), (1.3), (2.51), (2.61) and (2.8) be fulfilled
and

t “+o0
limsup% /0 / 2 (€)|dE ds > 0. (3.2)

t——+o0

Then equation (1.1) has Property B, where « is defined by first condition of (2.1).
Theorem 3.1'. Let « = 1 and f < 400, conditions (1.2), (1.3), (2.511), (2.61),
(2.8) and (3.2) be fulfilled. Then equation (1.1) has Property B, where o and [ are
given by (2.1).
Theorem 3.2 Let a = 1, conditions (1.2), (1.3), (2.51.), (2.61) be fulfilled. Let

moreover "
£
lim inf ~ ) > 1 (3.3)
t——+o00
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and .
lim inft/ §"37(s))ds > (n — 1)\ (3.4)
t—-+o0 t
Then for equation (1.1) to have Property B it is sufficient that
1 t “+o00
imsup [ [ € @) Olplldgds > 0. (35)
t=t+oo T Jo Js

Theorem 3.2'. Let « = 1 and f < 400, conditions (1.2), (1.3), (2.511), (2.61),
(3.3) and (3.4) be fulfilled. Then equation (1.1) has Property B, it is sufficient that
condition (3.5) holds.

Theorem 3.3 Let a = 1, conditions (1.2), (1.3), (2.5,-1.¢), (2.6,—2) be fulfilled.

Moreover, if the conditions
(r (1))

lim inf <1 (3.6)
t—+o00
and e
lim inft/ (7(5)) =31 |p(s)|ds > 2(n — 2)! (3.7)
t—+o00 ¢
are fulfilled, then for equation (1.1) to have Property B it is sufficient that
1 t “+o00o
fimsup [ [ € (€)@ lple)ldg ds > 0. (33)
t——+o00 0 s

Theorem 3.3'. Let a = 1 and f < +oo, conditions (1.2), (1.3), (2.5,-11),
(2.6,-1), (3.6) and (3.7) be fulfilled. Then for equation (1.1) to have Property B,
it is sufficient that condition (3.8) holds.
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EFFECTIVE SOLUTION OF THE BASIC MIXED BOUNDARY VALUE
PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE IN A
CIRCULAR DOMAIN

Svanadze K.

Abstract. By the method N. Muskhelishvili an explisit solution to the basic mixed boundary
value problem for homogeneous equation of statics of the linear theory of elastic mixture for
a circular domain is obtained.

Keywords and phrases: Basic mixed boundary value problem, elastic mixture theory,
equation of statics, nodal points.

AMS subject classification (2010): 74E35, 74E20, 74G05.

1. Introduction

The basic plane boundary value problem and the basic mixed boundary value prob-
lem in a simple connected domain for homogeneous equation of statics of the linear
theory of elastic mixture, by analogues of general Kolosov-Muskhelishvili representa-
tion have been investigated in [3] and [2], respectively.

By the method M. Muskhelishvili an explicit solution of the basic mixed boundary
value problem for homogeneous equation of statics of the linear theory of elastic mixture
for an half-plane was obtained in [5].

In the present work we studied an analogous problem which in the case of the
plane theory of elasticity has been studied by N. Muskhelishvili [4, §123]. To solve the
problem we use the formulas due to Kolosov-Muskhelishvili and the method described
in [4,5].

1. Some auxiliary formulas and operators

The homogeneous equation of static of the linear theory of elastic mixtures in a
complex form is of the type [3]

0*U 0*U
Ko =0, 1.1
90z o (1.1)
0 1/ 0 0
where 2z = 11 + ix9, 7 =3 (8_1:1 — 28_352)’ U = (uy + iug, uz + iu4)T,
u = (up,us)” and u' = (us,us)” are partial displacements,
K — _1 em—l7 e — €4 €5 7 m-l — L m3 =M 7
2 €5 €6 Do | —me My
Ay = mymsz — mé, Mg = e, + = €34k, €1 = a2/dy, €3 = —c/dy,

2
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e3=ar/dy, dy=a1ay— ¢, a1 =p1— X5, ax=p—Xs, C=p3+As,
e1+es=b/d, eytes=—co/di, es+es=aldy, dy=ab—ci
a=a;+b, b=ay+by, co=c+d, b =pu+A\+A—ap/p,
by =pi2 +Aa+ As +aap1/p, a2 =Xy — A1, p=p1+pa
d=pg+ A3 — X5 — aop1/p = piz + Ay — A5 + aapa/p.

Here pq, po, p3, A, p = 1,5, are elastic modules characterizing mechanical
properties of the mixture, p; and py are partial densities of the mixture. It will be
assumed that the elastic constants puq, o, us, Ay, p = 1,5, and partial rigid
densities p; and p, satisfy the conditions (inequalities) [1].

In [3] M.O. Basheleishvili obtained the following representations:

U= (W) —mp+ g e+ G (12)

_ o (Tu)s=i(Tu) \ _ _ 0 ——
= ( (Tu)i —i(Tu); ) = 250 [(A —2E)p(2) + B2¢'(2) +2u¢(2)] , (1.3)
where ¢(2) = (o1, p2)T and 1(2) = (11, 19)Tare arbitrary analytic vector-functions,

_A1A2_ _ | M1 Hs _ | M1 Mg _01
A_{A?) A4]_2Mm’#_[ﬂ3 M2  B=pe, m= mg Mg  B= L0}’

Ag=dem >0, Aj=detu>0, Ay=det(A—2FE)>0, A +A3—2= DB+ Bs,
0 0 0

A Ay —2 = B B = —py— = — T
2+ Ay 2 + Dy, 95 () 712(%1 + nl@xg’ n (n1,n2)
unit vector of the outer normal, (Tu),, p = 1,4 are stress components, Tu =
((Tu)la (Tu)27 (TU)37 (Tu>4)T7[176]'
Now we note that, from (1,2) we have
ou 9, ;
Ap(z) + Bzy'(2) + 2u(2) | (1.4)

M35~ 95(x)

Formulas (1,2), (1,3) and (1,4) are analogous to the Kolosov-Muskhelishvili’s for-
mulas for the linear theory of elastic mixtures.

2. Statement of the mixed problem and scheme of its solution

In the present work we study an analogous problem which in the case of the plane
theory of elasticity has been studied by N. Muskhelishvili [4, §123]. For the solution of
the problem use will be made of the generalized Kolosov-Muskhelishvili’s formula and
the method developed in [4,5].

Let us assume that an elastic mixture occupies the circular domain Dt = {z :
|z| < 1} bounded by the circumference L = {z : |z| = 1,} and let L; = a;b;, j =
I,n, (ajy1 # bj, ans1 = ay), be arcs separately lying on it, note that the points
ai,bi,as, b, ..., a,, b, follow each other in the positive direction on L.
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Suppose that L' = [ L; and L" is the remaining part of L.
j=1
Definition 2.1. The vector u = (u',u")T = (ul,u2,u3,u4)T is called regular if
(seef2]) (i) u, € C2(DT)NC(DTUL), p=14
(ii)(Tu)p, (p = 1,4), is continuously extendable at every point of L from DT except
perhaps the points a; and b;, j = 1,n;

iii) near the points a; and b;, j = 1,n (Tu),, p = 1,4 admit estimate of the type
j j

[(T'u)p| < const|z — apl|™ B 0<B<l ze€ D (g = ay; o =b;, j=1,n),

p=14

We consider the mixed boundary value problem. Define an elastic equilibrium of
the plate DT if

Urt)=f°), tel, [TU®)| =0, tel’, (2,1) .0

where f0 = (f9, f9) is a given complex vector-function on L', (f°(t)) € H). Using the
Green formula [1] it is easy to prove.

Theorem 2.1. The homogeneous mized boundary value problem (2.1)y admits only
a trivial solution.

Below instead of conditions (2.1)7 we consider its following equivalent conditions

where f(t) = 2ufO(t).

: d dd d
Let t =€ 0 < 0 < 27. Then 0 — et &

95(0) ~d0 —dtds " ar

Now note that, on the basis of analogous Kolosov-Muskhelishvili’s formulas (1.4)
and (1.3) our problem is reduced to finding two analytic vector-functions ¢(z) = ¢'(2)
and ¥(z) = ¢'(2) in D* by the boundary conditions (see (2.1)")

[A(t) + Bo(t) — Btg/ (t) — 202U ()] " = (1), tel,
(A —2E)¢(t) + Bo(t) — Btd'(t) — 2ut2¥(t)|* =0, telL’. (2.2)

Counsider the vector-function

)+ 2 V). (2.3)

)+

B

Q| =
N | =
N | =

(A—=2E)¢(z) = —Bo(

From (2.3) it follows the equation (2.3) define ¢(z) as an analytic vector-function
1

toward z in the domain |z| > 1, and to — in the |z] < 1.

Due to the above formula we find that

(=) = (A~ 2B) 56(2) + Byolz) — B (2) (2.4)

|| =

If follows from (2.4) that the vector-function W(z) is definite in the entire z = x1+iz5
plane by means of the ¢(z).
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Note also that if
¢i(2) = AD 4 AP AP 2 2l <1, j=1,2,

. 1 1 .
0j(x) =B +BY -+ BY) S+ > 1, j=12

then due to Ay + A3 —2 = B, +Bs, Ay + Ay, —2 = By + By, (see[2]), we can
conclude that, (see(2.4)), W(z) to be analytic in the entire plane z = x + izy with the
point z = 0 it is sufficient that the conditions

(A, AP+ (B, B =0, (B BP) =0 (25)

be fulfilled.
In view of (2.3) the boundary conditions (2.2) can be written as:

oT(t) —ATHA-2E) (1) = AT [ () =h(t), teLl, h=(h,h)",  (26)

() - (t)=0, tel (2.7)

From (2.7) it follows that the vector-function ¢(z) is analytic in the entire plane
2z = x1 + 129 cutting to the .
To solve problem (2.6) we rewrite condition (2.6) as

( ; >¢+(t) B 2A0A12;01211+ Asy ( | >¢_(t) _ ( 1 )h(t)’ el s

Y

where y is an arbitrary real constant. We define the unknown y by the equation

A+ y(2A0AL - Ay)
C2A0A; — Ag+ Ay’
Note that 0 < A; + Ay < 4, A+ Ay — 4A0A1 > 0 and (Al + A4)2 — 16A0A1 >
0) (seel2]).
On the basis of (2,8) representation we can conclude that a bounded at infinity
solution of problem (2.6) is given by the formula (see [4 123])

or A3y2 -+ (A1 - A4>y - AQ = 0.

qb(z) 1 |: Y2 _y1:| N(Z)/[N+<t)]lR(t)dt+N<Z>Pn(Z) (210)

:yg—yl -1 1 271 t—=z
L/

where y; and y are the roots of equation (2.9),

ro=| e, we =]

R(2) = [[(z —an) 2P (z — )2, By =
k=1
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Py(2) = (P, (2), Poy(2))",  Puy(2)=> CY2"9,  j=12

q=0

To define C’éj), j=1,2, ¢q=0,n, we use the following conditions (see [4, 123],
(2.1)" and (2.5))

Ug + 21Uy

o [ ] B | = o - 100 60)+ 550 = (2.11)

bragi1

If we take into account (2.6), (2.7) and (2.10) for determining the unknown vectors
(C;,CHT, q=0,n, from (2.11) we obtain the following system of equations:

n (1)
2 / Po(to)dto + Zqu ( 232) ) = flars1) — f(br), (2.12)
braki1 9=0 !
cal cn® Y\ R(0 L R(t)dt
( o ) O ( Cn® ) i 2;2 /[W(t)] (t) =0 (2.13)

where (see (2.10))

w0 =t SR e

C Yo—wu omi t—ty
L/
2 Y2 —U _
Ny = { N(£)¢"dt.
— —1 1
vz o bragi1

Now note that, on the basis of the uniqueness theorem (see Theorem 2.1) for (2.1)
mixed problem, we can conclude that the (2.12) and (2.13) system is solvable for
o, q=0n, j=1,2

Having found C(gl), q=0,n, j=1,2we can be define ¢(z), hence ¥(2), ©(2)
and 1 (z). Finally by (1.2) we obtain the solution of the mixed (2.1) 0 problem.

The mixed boundary value problem considered in the paper, for domain outside
the circle, can be solved in a similar way.
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VARIATION FORMULAS OF SOLUTION FOR A CLASS OF CONTROLLED
NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATION CONSIDERING DELAY
FUNCTION PERTURBATION AND THE CONTINUOUS INITIAL CONDITION
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Abstract. Variation formulas of solution are obtained for linear with respect to prehistory
of the phase velocity (quasi-linear) controlled neutral functional-differential equation with
variable delays. The effects of delay function perturbation and continuous initial condition
are detected in the variation formulas.
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Let I = [a,b] be a finite interval and let R" be the n-dimensional vector space of
points x = (z!,...,2™)T, where T is the sign of transposition. Suppose that O C R? and
Up C R? are open sets. Let the n-dimensional function f(t,z,y,u) satisfy the following
conditions: for almost all ¢ € I, the function f(¢,-) : O* x Uy — R is continuously
differentiable; for any (z,y,u) € O* x Uy, the functions f(¢,z,y,u), f(), f,(), fu()
are measurable on [; for arbitrary compacts K C O,U C Uy there exists a function
m () € L(I,[0,00)), such that for any (z,y,u) € K* x U and for almost all ¢t € [

the following inequality is fulfilled
| fzyu) |+ [ O [+ A0 T+ ful) [€meo(?).

Further, let D be the set of continuously differentiable scalar functions (delay functions)
7(t),t € I, satisfying the conditions:

7(t) < t,7(t) > 0,inf{7(a) : 7 € D} :=7 > —o0.

Let ® be the set of continuously differentiable initial functions ¢(t) € O,t € I} =
[7,0] and let Q = {u € E, : clu(I) C Uy} be the set of control functions, where E, is
the space of bounded measurable functions v : I — R! and u(I) = {u(t) : t € I'}

To each element p = (to, 7,,u) € A = [a,b) x D x ) we assign the quasi-linear
controlled neutral functional-differential equation

i(t) = A(t)x(o(t) + f(t, (1), 2(7 (1)), u(t)) (1)
with the continuous initial condition
z(t) = (1)t € [7, to], (2)

where A(f) is a given continuous matrix function with dimension n x n;o € D is a
fixed delay function.
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Definition 1. Let u = (to,7,¢,u) € A. A function z(t) = z(t;pn) € O,t €
[7,t1],t1 € (to, ], is called a solution of equation (1) with the initial condition (2) or
a solution corresponding to the element p and defined on the interval [7,t], if x(t)
satisfies condition (2) and is absolutely continuous on the interval [to, ;] and satisfies
equation (1) almost everywhere on [t, t1].

Let po = (too, 70, 0, o) € A be a given element and let zo(¢) be the solution
corresponding to po and defined on [7,t10], with a < tgg < t19 < b.
Let us introduce the set of variations

V = {61 = (3t0, 07, 0p,8u) : | 3ty |< @, || 07 |I< o,

k
S =3 Nbpi, | A |< avi = TE, || du ||< a}.
=1
Here
dtog € R, 01 € D — 719, ||07]| = sup{|d7(t)| : t € I},0u € Q — g

and L
5902 GCD_SO(]?Z-:L]{

are fixed functions, a > 0 is a fixed number.

There exist numbers §; > 0 and ; > 0 such that for arbitrary (,du) € (0,61] x V
the element po +edu € A and there corresponds the solution z(t; po + edu) defined on
the interval [7,t19 + 61] C I; ( [1],Theorem 3).

Due to the uniqueness, the solution z(¢; 110) is a continuation of the solution xy(t)
on the interval [7,t19 + d1]. Therefore, the solution x((t) is assumed to be defined on
the interval [7,t10 + 61].

Let us define the increment of the solution x(t) = x(¢; po)

Ax(t;edp) = x(t; po + 0p) — o(t), V(¢ €, 6p) € [T, 10 + 1] X (0,61] x V.

Theorem 1. Let the following conditions hold:
1) The function fo(2), 2 = (t,z,y) € IxO? is bounded, where fo(t,z,y) = f(t,x,y, uo(t));
2) There exists the limit

lim fo(Z) = f()_’ S (CL,t[)()] x O?
where zg = (too, Po(too), vo(T0(teo))). Then there exist numbers eo € (0,e1) and o9 €
(0,81) such that
Ax(t;eop) = edx(t; 0p) + o(t; edp) (3)
for arbitrary (t,e,0u) € [too, t10 + 2] X (0,&2] X V=, where V= = {dp € V : ity < 0}
and
0x(t;0p) =Y (too—3t) [0 (too) — Altoo)Po(o(too)) — fo 10to + B(t;0p), (4)

too

B(t;0p) = W (too; 1)0p(too) +/ Y(0(s); ) foy[v0(s)1F0(5)0 0 (s)ds

70(too)
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+ / " Y (o(s): ) Alo(s))o(s)So(s)ds + / Y (31) fouslito (7o (5))57(s)ds

(too) too
t
= [ Vs fulslouls)ds: (5)
too
lim M = 0 uniformly for (t,0u) € [too,tio + 02 X V7,

e—0 g

Y (s;t) and U(s;t) are n X n-matriz functions satisfying the system

{‘l’s(s;t) = =Y (s:t) foult] = Y (0(5); ) foylr0(5))0(s),
Y(sit) = W(s;t) + Y (o(s);t)Ale(s))o(s), s € [too — b2, ]

and the condition
H s=1t,
O,s > t;

U(s;t) =Y (s;t) = {
Jools] = foa(s, 20(s), o(70(5)));

Yo($) is the inverse function of 7y(t), o(s) is the inverse function of o(¢), H is the identity
matrix and © is the zero matrix.

Some comments. The function dz(t;0u) is called the variation of the solution
xo(t),t € [too, t10 + d2], and the expression (4) is called the variation formula.
The addend .
| ¥ (st lshin(m(s)ar(s)ds
too

in formula (5) is the effect of perturbation of the delay function 7(t).
The expression

Y (too—;t)[0(too) — Altoo)Po(o(ton)) — fo 1dt0

is the effect of continuous initial condition (2) and perturbation of the initial moment
t00-
The expression

too

U (fao: £)Sp(ton) + / Y (10(5); ) foylbro (550 (s)50(s)ds

70(t00)

n / " Y (ols); ) Alo(s))a(s)bols)ds

(too)

in formula (5) is the effect of perturbation of the initial function ¢g(t).
The expression

/t Y (5;4) foulslou(s))ds

in formula (5) is the effect of perturbation of the control function wuy(t).
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Variation formulas of solution for various classes of neutral functional differential
equations without perturbation of delay are given in [2-4]. The variation formula of
solution plays the basic role in proving the necessary conditions of optimality and under
sensitivity analysis of mathematical models [5-8]. Finally we note that the variation
formula allows to obtain an approximate solution of the perturbed equation

@(t) = At)a(o(t)) + f(t,x(t), z(o(t) + €07(t)), uo(t) + edu(t))
with the perturbed initial condition
x(t) = @o(t) + edp(t), t € [T, too + £0to].
In fact, for a sufficiently small € € (0, 5] it follows from (3) that
x(t; po + €0p) = xo(t) + dx(t; dp).

Theorem 2. Let the following conditions hold:
1) The function fo(z),z € I x O is bounded;
2) There exists the limit

lim fo(2) = fi", 2 € [too, b) x O

Z—r20
Then for each ty € (too,t10) there exist numbers g5 € (0,e1) and &5 € (0,6,) such that
for arbitrary (t,e,5u) € [to, t1o + 2] X (0,85] x V¥, where V' = {6 € V : 5ty > 0},
formula (3) holds, where

ox(t; 00) =Y (too+; t) (@ (toon) — Altoo) (0 (ton)) — fo7)dto + B(t; o).

The following assertion is a corollary to Theorems 1 and 2.

Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. Moreover,
fo = fif = fo and toy ¢ {o(t0),02(t10)),...}. Then there exist numbers e € (0,e,)
and 9y € (0,01) such that for arbitrary (t,e,0u) € [tio— 02, t10+ 0] X (0,£2] X V' formula
(3) holds, where

8x(t;018) = Y (too; t) (A(teo)&(0(too)) — fo)bto + B(t; 6p).

All assumptions of Theorem 3 are satisfied if the function fo(t,z,y) is continuous and
bounded. Clearly, in this case fo = fo(too, ©o(teo), o(T0(te0)))-
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Abstract. For an optimal control problem involving neutral differential equation, whose
right-hand side is linear with respect to prehistory of the phase velocity, existence theorems
of optimal element are proved. Under element we imply the collection of delay parameters
and initial functions, initial moment and vector, control and finally moment.
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1. Formulation of main results

Let R" be the n-dimensional vector space of points x = (z!,..., 2™)T, where T is
the sign of transposition, let a < tg; < tgo < t11 < t12 < b,0< 7 < 7,0 < 0y < 09 be
given numbers with t1; — t92 > max{7, o2 }; suppose that O C R is a open set and
U C R is a compact set, the function F(t,z,y,u) = (fO(t, z,y,u), f1(t,z,y,u), ...,
f™(t,z,y,u))T is continuous on the set I x O? x U and continuously differentiable with
respect to x and y, where I = [a, b]; further, let ® and A be sets of measurable initial
functions ¢(t) € Ko, t € [T,t02] and ¢(t) € Ki,t € [T, t2], respectively, where 7 = a —
max{1y, 02}, Ky C O is a compact set, K; C R is a convex and compact set ; let {2 be
a set of measurable control functions u(t) € U,t € I and let g*(to,t1, 7,1, g, 21),i = 0,1
be continuous scalar functions on the set [to1, o2 X [t11, tia] X [T1, 2] X [071, 03] X X X O,
where Xy C O is a compact set.

To each element w = (to,t1, 7,0, T, @, s, u) € W = [tor, toz] X [t11,t12] X [11, 2] X
[01,09] X Xog X @ x A x Q we assign the quasi-linear neutral differential equation

2(t) = At)x(t — o) + f(t,x(t), x(t — 7),u(t)),t € [to, t1] (1.1)
with the initial condition
x(t) = p(t), 2(t) = <(t),t € [T, t0), x(to) = o, (1.2)

where A(t) = (a}(t)),i,j = 1,n,t € I is a given n x n -dimensional continuous matrix
function, f = (f',..., f")T.

Remark 1.1. The symbol #(t) on the interval [7,ty) is not connected with deriva-
tive of the function p(t).

Definition 1.1. Let w = (to,t1, 7,0, 20, ¢,5,u) € W. A function z(t) = z(t;w) €
O,t € [T,t4], is called a solution corresponding to the element w, if it satisfies condition
(1.2) and is absolutely continuous on the interval [to, ;] and satisfies equation (1.1)
almost everywhere (a.e.) on [to, t1].



On the Existence of an Optimal Element in ... 51

Definition 1.2. An element w = (to, t1, 7, 0, Zo, ¢, <, u) € W issaid to be admissible
if there exists the corresponding solution x(t) = x(t; w) satisfying the condition

g(t()?tla’r? g, xO?'x(tl)) :Oa (13)

where g = (¢, ..., ¢').

We denote the set of admissible elements by W,. Now we consider the functional

J<w) = go(t07 tla T,0,X0, x(tl))‘i‘

/ttl [ao(t):i:(t — o)+ fOt a(t), x(t — 7), u(®) |dt, w € W,

where z(t) = z(t; w), and ag(t) = (aj(t),...,al(t)),t € I is a given continuous function.
Definition 1.3. An element wy = (o0, t10, 70, 0, 00, P0, S0, Uo) € Wy is said to be
optimal if

J(wo) = inf J(w). (1.4)

weWy

The problem (1.1)-(1.4) is called the quasi-linear neutral optimal problem.
Theorem 1.1. There exists an optimal element wq if the following conditions hold:
1.1. W() 7é @;
1.2. There exists a compact set Ko C O such that for an arbitrary w € Wy

z(t;w) € Ky, t € [T,11];
1.3. The sets
P(t,z) = {F(t,z,y,u): (y,u) € Ko x U}, (t,x) € [ x O

and
Pi(t,x,y) = {F(t,x,y,u) Tu € U},(t,x,y) el x0O?

are convetw.
Remark 1.2. Let Ky and U be convex sets, and

F(t,z,y,u) = B(t,z)y + C(t, z)u.

Then the condition 1.3 of Theorem 1.1 holds.

Theorem 1.2.There exists an optimal element wy if the conditions 1.1 and 1.2 of
Theorem 1.1 hold, moreover the following conditions are fulfilled:

1.4. The function f(t,z,y,u) has a form

ft,z,y,u) = D(t, z)y + E(t, x)u;

1.5. The sets Ko and U are convex and for each fized (t,x) € I x O the function
Ot z,y,u) is conver in (y,u) € Ky x U.
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The proof of existence of optimal delay parameters, initial functions and initial
moment is the essential novelty in this work. Theorems of existence for optimal control
problems involving various functional differential equations with fixed delay , initial
function and moment are given in [1-5].

2. Auxiliary assertions

To each element p = (to, T, 0, Zo, p, ¢, u) € II = [to1, toz] X [11,Ta] X [01,09] X O X
® x A x © we will set in correspondence the functional differential equation

q(t) = A(t)h(to, <, )t — o) + f(t, q(t), hlto, 0, q)(t = 7), u(t)) (2.1)

with the initial condition
q(to) = o, (22)
where the operator h(tg, ¢, q)(t) is defined by the formula

p(t),t € [7,t0),

te
q(t),t € [to, b]. (23)

h(to, v, q)(t) = {

Definition 2.1. Let pu = (to, 7,0, 70, 0,6,u) € II. A function ¢(t) = q(t;u) €
O,t € [r1,rs], where r1 € [tor,to2], ™2 € [t11,112], is called a solution corresponding to
the element p and defined on [ry,re, if tg € [r1,72], and it satisfies condition (2.2)
and is absolutely continuous on the interval [r1, 73] and satisfies equation (2.1) a.e. on
[11,73].

Let K; C O,7 = 3,4 be compact sets and K, contains a certain neighborhood of
the set K3.

Theorem 2.1. Let ¢;(t) € Ks,i = 1,2, ..., be a solution corresponding to the ele-
ment p; = (toi, Ti, iy Toiy iy Siy i) € 114 = 1,2, ..., respectively,defined on the interval
[to, t1:], where t1; € [t11,t12]. Moreover,

hHl tOi = too, hm g; = 0p, hm tli = th- (24)
1—00 1— 00 1—00
Then there exist numbers 6 > 0 and M > 0 such that for a sufficiently large ig the

solution ;(t) corresponding to the element ;i > iy, respectively, is defined on the
interval [tog — 0,110 + 0] C 1. Moreover,

Pi(t) € Ky, | %(t) |< M, t € [too — 0, t10 + 9]

and
Yi(t) = qi(t), t € [toi, tri] C [too — 9,10 + ).

Proof. Let ¢ > 0 be so small that a closed ¢ -neighborhood of the set K3 : K3(¢) =
{r € O : 31 € Ks,|r — 2| < e} is contained intKy. There exists a compact set
Q C Ry x Ry
K3(€) X [KO U Kg(i‘:)] C Q C K4 x [KQ @) K4]
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and a continuously differentiable function x : R} x R} — [0, 1] such that

_JL(zy) €Q,
x(@,y) = {0, (r,y) ¢ Ky x [KoU K4 (25)

(see [6]). For each i = 1,2, ... the differential equation

() = A(t)h(tos, i, ) (t — 07) + D(t, D (t), hlte, i, V) (t — T2), wilt)),

where
otz y,u) = x(z,y) f(t, 2, y,u),

with the initial condition
Y(toi) = Zoi,
has the solution ;(t) defined on the interval I (see proof of Theorem 4.1,[7]). Since
(¢i(t), h(toi, i, ¢5)(t — 73)) € K3 X [KoU K3] C Q,t € [tos, tuil,
(see (2.3)), therefore
X(@i(t), hltoi, i, i) (t — 7)) = 1,1 € [tos, taal,
(see (2.5)),i.e.
O(t, qi(t), hlto, pi, a:)(t — 73),ui(t)) = f(t, qi(t), hltoi, i, i) (t — 73), wi(t)),

t € [tos, t1s)-

By the uniqueness
Vi(t) = qi(t), t € [toi, tri)- (2.6)
There exists a number M > 0 such that

| () |[<KMteli=1,2,.. (2.7)
Indeed, first of all we note that
| ¢(t7 1/}1(t)7 h<t0i7 2% ¢1)<t - Tl>7ul(t)) |S sup { | ¢(t,l‘, y7u> |: te I? LS K47

yEK4UK0,u€U} =Ny,i=1,2,....

It is not difficult to see that for sufficiently large 7y we have

[b — tOi:| _ [b — %00

:| = d77/ Z iO)
0;

0o

where [a] means the integer part of a number a, i.e.
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If t € [a,to; + 0;) then

| i(t) |=] A(t)si(t — 03) + &(t, i (t), hltor, @i, ) (t — 73), wi(t)) |
<|| A || Ny + Ny := M,

where

| Al|l=sup{ | A(t) [t €I}, Ny=sup{|&|: &€ Ki}.
Let t € [to; + 04, to; + 20;) then
| 0i() [<I Al Walt = 03) | +N1 <|[ A || My + Ny := M,
Continuing this process we obtain
|0 (t) ||| A || My + Ny i= My, t € [to; + (j — 1oy, toi + joi), 5 = 3, ..., d.
Moreover, if tg; + do; < b then we have
| i) |< Myga, t € [toi + do, b).

It is clear that for M = max{Mj, ..., M4} the condition (2.7) is fulfilled.
Further, there exists a number §; > 0 such that for an arbitrary ¢ = 1,2..., [to; —
do, t1; + o) C I and the following conditions hold

ilto) =i < [ [|A (b 51 00)(5 = )
o (s, ¥i(s), htoi, i, i) (s — 1), wi(s))|ds < €.t € [to; — o, Lo,

i) = it < [ [JAGh (b, 6 9 = )

t1i
+o(s,vi(s), h(toi, i, i) (s — Tl)vul(s))’] ds < e,t € [t1s, t1 + o).
These inequalities, taking into account ¢;(to;) € K3 and ;(t1;) € Ks, (see (2.6)),
yield
(1i(t), h(toi, i, i) (t — 7)) € Ks(e) % [Ko U Ks(e)], t € [to; — o, t1s + do),
ie.
X(Wi(t), h(toi, i, i) (t — 7)) = 1,t € [toi — do, tri + o)1 = 1,2, ...,

Thus, ;(t) satisfies equation (2.1) and the conditions ;(to;) = e, Vs(t) € Ky, t €
[toi — 0o, t1; + o), i.e. ;(t) is the solution corresponding to the element p; and defined
on the interval [to; — do, t1;+ o] C I. Let § € (0, dp), according to (2.4) for a sufficiently
large ig we have

[toi — do, t1i + 0o] D [too — 0, t10 + 0] D [toi, t1i], 7 > io.
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Consequently, 1;(t), 7 > ig solutions are defined on the interval [foo—9, t10+0] and satisfy
the conditions: wz(t) € K4, ’ w,L(t) |§ M,t S [too - 5, ti0 + 5], wz(t) = ql<t>,t S [tOi;tli]a
(see (2.6),(2.7)).
Theorem 2.2.([8]). Let p(t,u) € R} be a continuous function on the set I x U
and let the set
P(t) ={p(t,u) :ue U}

be conver and
pi(+) € Li(I), pi(t) € P(t) a.e. on [,i=1,2, ...
Moreover,
lim p;(t) = p(t) weakly on I.

1—00
Then
p(t) € P(t) a.e. on [

and there exists a measurable function u(t) € U,t € I such that

p(t,u(t)) = p(t) a.e. on I.

3. Proof of Theorem 1.1

Let
w; = (toi, tii, Ti, Oiy Toiy i, Sis i) € Wo, i =1,2, ...

be a minimizing sequence,i.e.

lim J(w;) = J = inf J(w).

i—00 weWy

Without loss of generality, we assume that

lim t()i = too, lim tli = tlo, lim T; = 70, lim g; = 0y, lim To; — Xoo-

The set A C Ly([7,t02]) is weakly compact (see Theorem 2.2), therefore we assume
that
lim ¢;(t) = go(t), weakly in t € [T, tgs]. (3.1)
1—>00

Introduce the following notation:

zd(t) = /t [ao(s)j:i(s — o) + (s, 2:(5), 24(s — 73), ui(s)) | ds,
i(t) = x(tswi), pi(t) = (27(1), (1)), ¢ € [toi, tui]-
Obviously,

A

2i(t) = @i(t),t € [T, t01), pi(tos) = (0, 20:)7,
Ti(t) = (1), t € [T, t0i),
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where A(t) = (ag(t) A(t))T. Tt is clear that
J(w;) = ¢°(toi, tis 7o, 0y Toi Ti(ths)) + 29 (ti).

To each element p = (to, T, 0, zo, ¢, s, u) € II we will set in correspondence the func-
tional differential equation

~

2(t) = A(t)h(to, s, 0)(t — o) + F(t,v(t), h(to, p,v)(t — 7),u(t)),

with the initial condition
Z(to) =20 = (OaxO)T>

where z(t) = (v9(¢),v(t))T € RL™™.
It is easy to see that

(to:) = (0, z01)"

(see (2.3)). Thus, p;(t) is the solution corresponding to p; = (to;, Ti, 04, Toi, iy iy Us) € 11
and defined on the interval [to;,t1;]. Since z;(t) € Ky, therefore in a similar way (see
the proof of Theorem 2.1) we prove that | #;(t) |< N, t € [tol,th] i=1,2,...., N3 > 0.
Further, there exists a compact H; C H = {z = (v°,v)7 : v* € RL,v € O} C RI™
such that pz(t) S Hl,t c [t0i7t1i]~

Let Hy C H be a compact set containing a certain neighborhood of the set H.
By Theorem 2.1 there exists a number § > 0 such that for a sufficiently large iy the
solutions z;(t) = z(t; p;), ¢ > 4o are defined on the interval [tog — d,t10 + 0] C I and the
following conditions hold

{p%( ) = A( )h<t02a C,,l’l)(t Z) + F(t>$i(t)v h(tOiv Pis SBZ)(t - Ti)’ ui(t))7t € [tOivtli]7
i) =

2(t) € Ha, | 2i(t) |< M, t € [tog — 6,t10 + 6], (3.2)
Zz(t) = ,0,(25) = (l‘?(t),l’z(t))T7t € [tol‘,th‘],i Z io. '
Thus, there exist numbers Ny > 0 and N5 > 0 such hat
|F<t7vl(t)7 h(tOM 9027102)(15 - Ul)?“l(t>>| S N57 (3 3)
| h(tos, i, 0:i)(t —1;) |< Na, t € [too — 9, t10 + 6], > .

The sequence z;(t) = (vV)(t),v:(t))T,t € [too — 6, t10 + 8],i > ig is uniformly bounded
and equicontinuous. By the Arzela-Ascoli lemma, from this sequence we can extract a
subsequence, which will again be denoted by z;(t),7 > 4o, that

lim 2(t) = 20(t) = (v](t), vo(t))" uniformly in [teg — &, 10 + 9]

1—00

Further, from the sequence Z;(t),7 > i, we can extract a subsequence, which will again
be denoted by Z;(t),7 > i, that

lim 2;(t) = y(t) weakly in [tog — 6,10 + 9],

1—00
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o7

(see (3.2)). Obviously,

t

20(t) = lim z(t) = ilirilo[zi(too —0)+ / Zi(s)ds]

1—>00 too -5

t

= Zo(too — (5) + / 7(8)615

too—0
Thus, 2o(t) = (%) i.e.
hIIl Zl(t) = Zo(t) Weakly in [too — 5, th + 5]
1—00

Further, we have

zi(t) = z0; + / [/Al(s)h(t% Giy 03)(s — ;) + F(s,v5(8), h(tos, i, vi) (s — 1), ui(s)) | ds

toi
= 20i + V14(t) + V2 + 015(t) + 02, t € [too, tio), 7 > i,
where

t
20i = (073301')T7191i(t) - / A<3)h<toz‘a§i>@i)(5 — 0;)ds,

too

01:(t) = / F(s,v;(s), h(toi, pi,vi)(s — 7i), ui(s))ds,

too

too
19% = / A(S)h(tOH Sis Ul)(s - O_i)ds’
toi

Oy = / : F(s,vi(s), h(toi, vi, vi)(s — 73), ui(s))ds.

toi
Obviously, ¥9; — 0 and 65; — 0 as ¢ — oo.
First of all we transform the expression 9;(t) for ¢ € [tog, t10]. For this purpose, we
consider two cases. Let t € [too, too + 00, we have

Ou(t) = 039 (t) + 02 (1),

where

t t
a0(t) = / Als)hlton, st i) (s — 0)ds, 02(0) = [ 9D (s)ds,

too too
95 (5) = Als) | ltor, i 3)(s = 1) = hlton, i, 0)(s = 7).
It is clear that .
[0 1< [ 190 | ds.t € ot 3.9

too

Suppose that to; + o; > to for i > ip. According to (2.3)

19&?(3) =0,s€ [t007t6?) U (téf),tu],
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where
féli) = min{ty; + 03, too + 04}, t((ﬁ) = max{to; + 0, o0 + 0;}
Since
L))y
}ggo(t()z‘ toi') =0,

therefore,

lim 1953) (t) = 0, uniformly in ¢ € [too, t10], (3.5)

71— 00

(see (3.3)). For 199)(15),15 € [too, too + 00| we get

t—o; R
0 (t) = / A(s + 03)h(toos si, 03) (s)ds = 932 (1) + 95 (1),
t

00— 04

where

t—oo

90 (1) = /t o A(s + o0)si(s)ds, 9 () = / [A(s Vo) — Als + ao)] G(s)ds

00—00 topo—oo
too—oo R t—o; R
—|—/ A(S —|—0‘i)h(t00,§i,@i)(8)d$+ / A(S+0i)h(t00,§i,@i)(8)d8.
too—0; t—oo
Obviously,
lim 195?) (t) = 0 uniformly in t € [too, too + 00)
71— 00
and
t—oo .
tim 90 (¢) = lim 90 (¢) = / Als + 00)(s)ds
1—00 1—00 to0—00
t A
= / A(8)so(s — ag)ds, t € [too, too + 00] (3.6)
too
(see (3.1)).

Let t € [t()o + ap, tl()] then
98 (1) = 97 (too + 00) + 90 (1),

where .
9O () = / A(8)h(tor, i, 0:) (5 — 03)ds.
too+o0

Further,

t t
99 (1) = / A(8)h(too, si,0:)(s — 03)ds + / 99 (s)ds = 9\ (1) + 9P (1),
too+oo too+o0
It is clear that
lim 193) (t) = 0 uniformly in t € [too + 00, t10],

i—00
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(see (3.5)). For 195? (t),t € [too + 00, t10] we have

t—o; .
90 (t) = / A(s + 0:)h(too, si, 01) (s)ds = 93 (1) + 900 (8),
too+oo—0;

where

too

t—oo N R
/ A(s + oo)is(s)ds, 919 (1) = / Als + o) h(tao, <5, 00) (s)ds

too too+oo—0;

N
—
= ©
=
—~
~
~—
I

t—o; R t—oo . .
+/ A(s + o) h(too, i, 05) (s)ds + / [A<s +0,) — A(s + a9) |0s(s)ds.
t

—o9p too
Obviously,
lim 1980) (t) = 0 uniformly in ¢ € [too + 00, t10]

1—00
and

too+oo
lim 04 () = lim 9 (too + 00) + lim 9O () = / A(t)so(t — og)dt

1—00
too

’ 19(9) B too+oo A t—oo A . q
+ lim vy, () = (t)so(t — oo)dt + (s 4+ 00)0o(s)ds

1—00
too too

:/00 UOA(t)go(t_go)dH/ A(s)io(s — a0)ds. (3.7)

too too+oo

Now we transform the expression 60y;(t) for ¢t € [too, t10]. We consider two cases again .
Let t € [too, too + 70, we have

Bu(t) = 65 (1) + 62 (1),

t t
o0 (1) = / F(s, 0i(5), htoo o v0) (5 — 72), wi(s))ds, 02 (1) = / 03 (3)ds,
too too
07 (s) = F(s,vi(s), h(tor, s, 0:) (5 — 75), ui(s)) — F(s,0:(5), h(too, 0, v:) (s — 72), wi((s)).
It is clear that .
162(1) |< / 169)(s) | ds, t € [t tro)- (3.8)
too

Suppose that to; + 7; > too for i > ig. According to (2.3)
95’)(3) =0,s € [too,té?) U (té%),tu],

where
tﬁ*) = min{ty; + 7, too + 7}, t%) = max{to; + 7, too + i}

Since

lim (15, — t5)) = 0

i—00
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therefore,
lim QS) (t) = 0 uniformly in ¢ € [tgo, t10], (3.9)
1— 00

(see (3.3)). For 0\ (),t € [too, too + 7o, We have

t—7;
6\ (t) = F(s + 73, vi(s + ), h(too, 01, 0:)(s), wi(s + 73))ds

too—Ti

= 01 (t) + 01 (1), > o,
where .
B
%ﬂwz/‘ F(s + 70, v0(s + 7o), 01(8), wi(s + 72))ds,
t

00—70

t—7;
HS) (t) = /t F(s+7,vi(s 4+ m), h(too, vi, v:i)(s), ui(s + 7))ds

00— T4

t—710
—/' F(s + 70, 005+ 70), @i(s), (s + 7)) ds.
t

00—70

For t € [too, too + T0] we obtain

t00—70
0 (1) = / F(s + 73, vi(s + 1), h(too, i, v:) (), wi(s + 7)) ds
t

00—T4

+/t B [F(s +75,vi(5 +73), 0i(5), ui(s +73)) = F(s 4 70, v0(s + 70), @i(s), us(s + 7)) ds

00—70

t—7;
+/ F(s+1;,v(s + 1), h(too, pi, v:)(8), ui(s + 7;))ds.
t

)

Suppose that | 7, — 79 |[< § as i > . According to condition (3.3) and

lim F(S + 7'1',’01(8 + Ti)a y,U) = F(S + 70, UO(S + TO)a y,U)

i—00
uniformly in (s,y,u) € [too — 7o, too] X Ko X U, we have

lim GS) (t) = 0 uniformly in ¢ € [toq, too + To)-

1—00

From the sequence Fj(s) = F(s+7y,vo(s+70), i(s), ui(s+7:)),1 > ig,t € [too — 7o, tool,
we extract a subsequence, which will again be denoted by Fj(s),i > i, such that

llggo Fi(s) = Fo(s) weakly in the space L1 ([too — 7o, too)),
(see (3.3)). It is not difficult to see that
Fi(s) € P(s+ 10,v0(s + 70)), s € [too — 7o, too]-
By Theorem 2.2

FQ(S) € P(S + 7'0,1)0(3 + TQ)) a.e.s € [too - Tg,too]
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and on the interval [too — 7o, too] there exist measurable functions g (s) € Ko, up1(s) €
U such that

Fo(s) = F(s+ 70,v0(s + 70), po1(s), uo1(s)) a.e.s € [too — To, Loo)-

Thus ,
t—T1o
lim Gﬁ)(t) = lim Gg?)(t) = / Fo(s)ds
i—00 i—00 too—T70
t—710
= [ Pl munls + 7). o) o (5)ds
too—To0
t
= / F(S,U0(5>,(p01(5—To),uOl(S—To))ds,t € [too,too—l-To]. (310)
too

Let t € [too -+ To, tlo] then
01 (t) = 01 (too + 70) + 01 (1), t € [too + 7o, o),

where .

09 (1) = /t F(s,vi(s), h(toi, 0i,v:) (s — 7), wi(s))ds.

00+70
Further,
6 7 8
01 (t) = 057 (1) + 017 (8),

t t
o0 () = / F(s, vi(s), hltao, 0 v1)) (s — 7). ws(s))ds, 68 (1) = / o) (s)ds.
00+70

00+70

It is clear that
lim HS)(t) = 0 uniformly in t € [too + 7o, t10),

i—00

(see (3.8),(3.9)). For the expression (99 (t),t € [too + To, t10] We have

t—T1;
Hg)(t) = / F(s+1;,v(s + 1), h(too, pi vi)(s), wi(s + 7;))ds
too+70—Ti
=0 (t) + 01, (), i > o,
where .
o
6&?)(15) = / F(s+ 10,v0(s + 70), v0(s), w;(s + 7))ds,

too

t—7;
OSO)(t) = / F(s+7,vi(s 4+ 7), h(too, vi, v:)(s), ui(s + 7))ds
t

00+70—Ti

t—710
—/ F(s+ 710,v0(s + 70),v0(s), ui(s + 7))ds.

too

Clearly, for ¢ € [too + 7o, t10] We get

too
619 (4) — / Fls + 75, vi(s + 7)., h(too, 01, v)(s), us(s + 7:))ds
t

00+70—T;
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—|—/TO[F(S—l—n,vi(s+T¢),vi(s),ui(s+n))—F(s—1—7'0,1)0(3—1—7'0),110(5),%(5—l—Ti))]ds

too

t—T;
—|—/ F(s + 73, vi(s + 7i), h(too, pi, vi) (), ui(s + 73) )ds.
t

—70

According to condition (3.3) and
lim F(s+7,vi(s 4+ 1), vi(s),u) = F(s + 19, v0(s + 70), vo($), )
1—00

uniformly in (s,u) € [too, t10 — 7o) X U, we obtain

080) (t) = 0 uniformly in ¢ € [tgo + 7o, t10]-

From the sequence F;(s) = F(s+79,v0(s+70),v0(8), wi(s+7)),1 > ig, t € [too, t10— 7o),
we extract a subsequence, which will again be denoted by Fj(s),i > i, such that

lliglo Fi(s) = Fo(s) weakly in the space L ([too, t10 — To])-
It is not difficult to see that
F;(s) € Pi(s+ 70,v0(s + 70),v0(8)), $ € [too, t10 — To)-
By Theorem 2.2

F()(S) - P1<S + T(),U()(S + T()),’U()(S)), a.e.s € [t()(), th — 7'0]

and on the interval [too, t10 — 7o) there exists a measurable function ug(s) € U such
that
Fo(s) = F(s 4+ 70, v0(s + 70), vo($), ug2(s)) a.e.s € [too, t10 — To)-

Thus,

too+T70
lim 98) (t) = linl 9%1)(t00+70)+1inl 88) (t) = / F(s,v0(8), vo1(s—70), up1(s—70))ds

1—00
too

t—T70 too+T70
+/ Fo(s)ds:/ F(s,v0(s), @ou(s — 7o), w01 (5 — 70))ds

too too
t—7o too+70
+/ F (5470, vo(s+70), vo($), ug2(s))ds :/ F(s,v0(s), vo1(s—70), uo1(s—70))ds
too too
t
—I—/ F(S,U0<8)7’l}0(8—To),UOQ(S—TQ)>dS,t € [tOO—I—Tg,tlQ], (311)
too+70

(see (3.10)).
Introduce the following notation

)@, s € [7,t00 — T0) U (too, toz),
Po(s) =
©o1(8), s € [too — 7o, too)s
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i, s € [a,to) U (t1o, b],
uo(s) = § uo1(s — 70), S € [too, too + Tol,
ug2(s — 79), s € (too + 7o, t10),

where ¢ € Ky and u € U are fixed points;

~Jeo(t),t € [7,too),
wo(f) = {vo(t)ﬂf € [too, t1ol;
To(t) = <o(t),t € [T,t00),

(see Remark 1.1),
wo(t) = v°(t),t € [too, t1o]-

Clearly, wo = (too, t10, 70, 00, Too, Yo, S0, Uo) € W. Taking into account (3.6),(3.7),(3.10)
and (3.11) we obtain

x)(t) = /t [ao(s)jto(s —00) + (s, 20(5), 20(5 — To),uo(s))] ds,t € [too, t1o],

too

2o(t) = 200 + /t [A(s)sco(s — 00) + £(s,20(s), (5 — 7o), uo(s»} ds, t € [too, t1o].

too

It is not difficult to see that

1—00 1—00

= llgélo[zz(th) — 2i(to)] + }LTJ%(QO) — 2(t10)] + 20(t10) = 20(t10)

= (1°(t10), vo(t10))" = (20 (t10), zo(t10))" € H,

(see (3.2)). Consequently,

0= ilirilog(tOi’tli’ i, iy Toi, Ti(t1:)) = g(too, t10, To, 00, oo, To(t10)),

i.e. the element wy is admissible and xy(t) = x(t;wo), t € [T, t10].
Further, we have

~

J = glglo[go(tontu,ﬂ, iy Toi, Ti(t1i)) + 20 (t1:)] = g(too, tio, To, 70, Toos To(t1o))

+$8(t10) = J(wo)

Thus, wy is an optimal element.

4. Proof of Theorem 1.2

First of all we note that the sets A C Ly ([7, tg2]) and Q C Ly (I) are weakly compacts
(see Theorem 2.2). Let

w; = (toi, t1i, Ti, 04, Toiy Pis Sis i) € Wo, i =1,2, ...
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be a minimizing sequence,i.e.

lim J(w;) =.J = inf J(w).

i—00 weWy

Without loss of generality, we assume that

lim £; = too, 11m t1i = o, .hm Ti = To, hm 0; = 0p, hm Zo; = X0,
1—>00

lim; o i (t) = wo(t), weakly on [T, tos],
limy; 00 5;(t) = so(t), weakly on [7, toa], (4.1)
lim; o0 u;(t) = up(t) weakly on I.
(see (3.1)).
To each element p = (to, 7, 0,20, ¢,5,u) € II we will set in correspondence the
functional differential equation

C(t) = A(D)h(to, s, Ot — o) + C(t,<(1)(to, 9, O)(t = 7) + D(t,C(¢))ult)

with the initial condition
C(to) = xo

It is easy to see that for x;(t) = x(t; w;) we have

@i(t) = A(t)h(to, s, 2:)(t — 0:) + C(t, 2:(1)) htoi, pi, i) (t — 7))+
D(t,a:z(t))ul(t),t c [toi,th’],
i (toi) = xo;.

Thus, z;(t) € K; is the solution corresponding to p; = (to;, 7i, i, Toi, Pis i, U;) and
defined on the interval [to;,t1;]. Let Ky C O be a compact set containing a certain
neighborhood of the set K5. By Theorem 2.1 there exists a number § > 0 such that
for a sufficiently large iy the solutions (;(t) = ((t; u;),7 > ip are defined on the interval
[too — 5, tlo + (S] C I and

Cl(t) < [A(Q,t € [too — 5, th -+ (5] C,L( ) = iIZ',L( ) t e [tOiatli]ai Z io.
After this (see the proof of Theorem 1.1) we prove in the standard way that
lim (;(t) = (o(t) uniformly in ¢ € [ty — 9, t10 + 9],
1—00

and ' _
11111 Cz(t) = go(t) Weakly ont & [too - 5, tl() + 5]7
i—00

where (y(t) is the solution corresponding to the element g = (o0, 70, 00,
Zoo, o, S0, Up), defined on the interval [tgo — d,t10 + ] and satisfying the condition
Co(too) = xpo. Moreover,

lim x;(ty;) = hm Gi(ty) = hm [Q(tlz) Gi(t10)]

i—00



On the Existence of an Optimal Element in ... 65

+ }H&Kﬁ(tlo) — Co(t10)] + Co(tio) = Co(t10)s

Hence,

0= lll)fglo 9(toi, t1is Ti, 04, Tois Ti(t1:)) = g(too, t1os 7o, 00, Too, Co(t10))-

Introduce the following notation

~ Jwolt),t € [7,t00),
molt) = {go(t),t € [too, t10) (4.2
o(t) = <o(t),t € [7,t00), (4.3)

(see Remark 1.1).
Clearly the function zy(t) is the solution corresponding to the element wy, =
(0o, t10, 705 70, Too, Y0, S0, o) € W and satisfying the condition

9(t00, t10, To, 00, oo, To(t10)) = 0,
i.e. wg € Wy.

Now we prove optimality of the element wy. We have,

Zliglo 9° (tois tris i, 01y Toi, i (i) = g° (toos t1os To, 705 Toos To(t0)),

/ " o (D)s(t — o3)dt = / Cao()h(ti &, E) (1 — o),

toq toq

/t FOt, 2a(t), it — 72), wi))dt = /t JOt, Gi(t), h(toi, i G (t — 72), uq(t))dt.

0

In a similar way (see proof of Theorem 1.1) it can be proved that

tlz .
/ ao(t)h(ti, i, G)(t — mi)dt = 015 + 02 + 03i
t

01
t15
/ FOt, G(1), htos, 0i, G)(E — T3), wi(t))dt = y1i + Yai + V34,
toq

0

where
t0o ti0—o0
oL = / ao(t + 00)&(t)dt, 02 = / ao(t + oo )05 (t)dt
too—00 too
too
s = / SOt + 70, Colt + 7o), pi(t), st + 7)),
too—70
t10—7o0
Yoi :/ SOt + 70, Co(t +70), Colt), wi(t + 7)) dt
too
and

1—+00 i—00
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The functionals

/too POt + 70, Co(t + 7o), 0(8), u(t))dt, (p,u) € AxQ

00—70

and —
/ FO(t + 70, Colt +70), Co(t), u(t))dt,u € Q
too

are lower semicontinuous (see [3]).
It is not difficult to see that, if

lim w;(t) = wuo(t) weakly on I

1—00

then
lim u;(t + 7;) = up(t + 70) weakly on [tog — 7o, t10 — 7o),
1— 00

(see (4.1)). Using the latter and above given relations, we get

J = lim J(w;) = lim [¢° (tos, t1i, Tiy 0iy Tois Ti(t1)) + 015 + 025 + 03

1—00 1—00
_ 0 :
+71i + Yoi + 73] = g (too, t10, To, 00, Toos To(t10)) + iliglo[gli + 02]

too

+ilinoé[71i + 72i] = ¢°(to0, t10, To, 00, Too, Zo(t10)) + / ao(t + 00)Co(t)dt

too—o0

+/10"0 ao(t—l—ao)éo(t)dt‘i‘/oo POt + 70, Go(t + 70), po(), uo(t + 70) )t

too too—7o0

tio—7o
+/ SOt + 70, Colt + 7o), Co(t), uo(t + 70))dt = g°(too, t10, To, 00, Too, To(t10))

too

tio
+/ [&Q(t)jﬁ'o(t - 0'0) + fo(t, l‘o(t), ZEo(t - Tg), Uo(t)) dt = J(wo),
too

(see (4.2),(4.3)). Here, by definition of J, the inequality is impossible. The optimality
of the element wy has been proved.
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THE BOUNDARY VALUE PROBLEMS IN THE FULL COUPLED THEORY OF
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Abstract. The purpose of this paper is to consider two-dimensional version of the full coupled
theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet and
Neumann BVPs of statics in the full coupled theory for an elastic plane with a circular
hole. The explicit solutions of these BVPs are represented by means of absolutely and
uniformly convergent series. The questions on the uniqueness of a solutions of the problems
are established.

Keywords and phrases: Double porosity, explicit solution,elastic plane with circular hole,
absolutely and uniformly convergent series.
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Introduction

Many geothermal fields are naturally fractured systems. Classic double porosity
models the flow between matrix and fractures, under the hypothesis that petrophysical
properties are uniform in each medium. Fractures have the largest permeability and
drive the fluid toward the wells. The matrix, with smaller permeability, only acts as
a source of fluid for the fractures. Double porosity models can be classified as special
cases of this general theoretical concept, applicable to all class reservoirs. The matrix
blocks surrounded by fractures can have several geometries and any size. Fractures have
very little storage, but provide the high permeability conduits to drive the fluid toward
the wells. Matrix blocks have higher porosity and constitute the largest storage, but
have smaller permeability, acting only as a source of stationary fluid for the fractures.

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable media
with two degrees of porosity. In a material with two degrees of porosity, there are two
pore systems, the primary and the secondary. For example in a fissured rock (i.e.a mass
of porous blocks separated from each other by an interconnected and continuously
distributed system of fissures) most of the porosity is provided by the pores of the
blocks or primary porosity, while most of permeability is provided by the fissures or
the secondary porosity.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K. Wil-
son and E. C. Aifantis [2] gave detailed physical interpretations of the phenomenological

IThis paper dedicated to our teacher to the 85" birth anniversary of professor Mikheil
Basheleishvili
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coefficients appearing in the double porosity theory. They also solved several represen-
tative boundary value problems. In part I of this series, uniqueness and variational
principles were established by D. E. Beskos and E. C. Aifantis [3] for the equations of
double porosity, while in part IIT Khaled, Beskos and Aifantis [4] provided a related
finite element to consider the numerical solution of Aifantis’ equations of double poros-
ity (see [2],[3],[4] and the references cited therein). The basic results and the historical
information on the theory of porous media were summarized by Boer [5].

However, Aifantis’ quasi-static theory ignored the cross-coupling effect between the
volume change of the pores and fissures in the system. The cross-coupled terms were
included in the equations of conservation of mass for the pore and fissure fluid and in
Darcy’s law for solids with double porosity by several authors [5,9]. In [10] the full
coupled linear theory of elasticity for solids with double porosity is considered. Four
spatial cases of the dynamical equations are considered. The fundamental solutions
are constructed by means of elementary functions and the basic properties of the fun-
damental solutions are established. The fundamental solution of quasi-static equations
of the linear theory elasticity for double porosity solids is constructed and basic prop-
erties are established in [11]. In [12-15] the explicit solutions of the problems of porous
elastostatics for an elastic circle and for the plane with a circular hole are constructed,
the uniqueness theorems for regular solutions are proved and the numerical results are
given for boundary value problems. Explicit solutions of the BVPs of the theory of
consolidation with double porosity for the half-plane and half-space are considered in
[16,17].

The purpose of this paper is to consider two-dimensional version of the full coupled
theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet
and Neumann BVPs of statics in the full coupled theory for an elastic plane with
a circular hole. The explicit solutions of these BVPs are represented by means of
absolutely and uniformly convergent series. The questions on the uniqueness of a
solutions of the problems are established.

Basic equations and boundary value problems

Let D be a plane with a circular hole. Let R be the radius of a circle with the
boundary S centered at point O(0,0). Let us assume that the domain D is filled with
an isotropic material with double porosity.

The system of homogeneous equations in the full coupled linear equilibrium theory
of elasticity for materials with double porosity can be written as follows [6,10]

pAu + (A + p)graddiva — grad(Bipr + Bap2) = 0, (1)

(k1A = y)p1 + (k12A +7)p2 = 0,
(2)
(k21A + ’Y)Pl + (/f2A — ’Y)p2 =0,

where u = u(uy,us)7 is the displacement vector in a solid, p; and p, are the pore
and fissure fluid pressures respectively. (; and [y  are the effective stress
parameters, v > 0 is the internal transport coefficient and corresponds to fluid trans-
fer rate with respect to the intensity of flow between the pore and fissures, A, u, are
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K12 R21

kio = —, ka = —-. p is the fluid viscosity,

C . K
constitutive coefficients, k; = — —

/o
and ks are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity, respectively, k15 and kg, are the cross-coupling permeabilities for fluid flow
at the interface between the matrix and fissure phases, A is the 2D Laplace operator.
Throughout this article it is assumed that (7 + 82 > 0, and the superscript "T”
denotes transposition.

Introduce the definition of a regular vector-function.

Definition. A vector-function U(x) = (uq,ug, p1,p2) defined in the domain D
is called regular if it has integrable continuous second derivatives in D, and U(x)
itself and its first order derivatives are continuously extendable at every point of the
boundary of D, i.e., U(x) € C}(D)(CYD); x € D, x = (x1,73). Note that in
the domain D the vector U(x) additionally has to satisfy certain conditions at infinity.

Note that system (2) would be considered separately. Further we assume that p; is
known, when x € D.

Supposing

(pl(x) ) _ ( koA —v = (k12A +7) >¢(X>
p2(x) —(katA+7) kA -y ’
where ¥ = (¢1,19) is a four times differentiable vector function, we can write the

system (2) as
(A + AP Ag;(x) = 0. (3)

With the help of (3) we find the solution of system (2) in the form
Pi(x) = ¢(x) + Aipi(x), pa(x) = (%) + ¢1(x), (4)
where

— kA2 kgt b
Ap=0, (A+A)p =0, A =__"12001_ 2
p=0 (B =0 A= e T T

ko
kikg — kigkay

ki > O, ko > O, v > O, kiko — kiokoy > O, ko > 0.

Al =1 =1\, t =V =1, ko = ki + ky + k1o + koy;

Let us substitute the expression  [1p; + fops  into (1) and let us search the
particular solution of the following nonhomogeneous equation

pAu + (A + p)graddiva = grad[(By + B2)¢ + (A1S1 + B2) 1]
It is well-known that a general solution of the last equation is presented in the form
u(x) = v(x) + vo(x), (5)
where v(x) is a general solution of the equation

PAV + (A + p)graddivv = 0, (6)
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and vo(x) is a particular solution of the nonhomogeneous equation

A
grad | (81 + B2)po — W% ) (7)
1

vo(x)

:)\—i-Q,u

where g is a biharmonic function AApy =0 and Agy=¢, Ap=0.

So it remains to study the problem of finding the functions p;(x), j=1,2.

We consider only the exterior boundary value problems. The interior one can be
treated quite similarly.

The basic BVPs in the full coupled linear equilibrium theory of elasticity for mate-
rials with double porosity are formulated as follows.

The Dirichlet BVP problem. Find a regular solution U(u, py,ps2) to systems
(1) and (2) for x € D satisfying the following boundary conditions:

u=1(z), p(z)=fs(z), pz)=/fuz), z€eS5; (8)

Note that for the domain D the vector U(x) additionally has to satisfy the following
decay conditions at infinity

where o(.) and O(.) are Landau’s notion.
The Neumann BVP problem. Find a regular solution U(u, p;,p2) to systems
(1) and (2) for x € D satisfying the following boundary conditions:

0 0 0
P(5on) U@ =t0) fonls) = o) fom@ = fila) z€S, (10
where f(z), and f;j(z), j = 3,4, are known functions, n(z) is the external unit
normal vector on S at z and P <’ n | U is the stress vector in the considered theory
b
P 3n Uu="T 3n u—n(Sip1 + Fap2) (11)
ax7 - aX’ 1P1 2P2),

0 . . . -
T (8_’ n) u is the stress vector in the classical theory of elasticity,
X

9 9 2
T (a_x’ n) u(x) = M(?_nu(x) + Andivu(x) + u;ni(x)gmdui(x).
Vector U(x) additionally has to satisfy the following decay conditions at infinity

JU(x)
(9:18]-

U(x) = O(1), =O(|z]™?), |zP=27+23 j=1,2 (12)
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The uniqueness theorems

For a regular solutions of the Dirichlet and the Neumann BVPs in D Green’s
formulas:

J1E(u,u) — (Bip1 + Bope)divu]dx = — [ uP(dy,n)Ud,S,
D s

/ {7v(p1 — p2)? + (kyg + ko1)gradp,gradp, }dx

J (13)

+ [ {igradn,? + kalgradps)*} ix =~ [ pP(0y. m)pd, s
D S

are valid, where

2 2
E(uﬂl)I(A+u)(divu)2+u<%_%) +M(0u2 8u1>.

9z, Dz Oz, | Ony
kl k12
op
P(l) (aX, Il)p = a_l’l’ P= (p17p2)‘
k21 k2

For positive definiteness of the potential energy the inequalities p >0, A+ p >0
are necessary and sufficient.

Now let us prove the following theorems.

Theorem 1. The Dirichlet boundary value problem has at most one reqular solution
in the infinite domain D.

Proof: Let the first BVP have in the domain D two regular solutions UY and U®.
Denote U =UW —U®. The vectors UY and U® in the domain D must satisfy the
condition (9); In this case formula (13) is valid and U(x) = C, x € D, where C'is a
constant vector. But U on the boundary satisfies the condition U = 0, which implies
that C' =0 and U(x) =0, x € D.

Theorem 2. The reqular solution of the Neumann boundary value problem U =
const in the infinite domain D.

Proof: For the exterior second homogeneous boundary value problem the vector U
must satisfy condition at infinite (12). In this case, the formulas (13) are valid for a
regular U. Using these formulas, we obtain

U1 = C1 — ETg, Up = Co+ €Ty, p; =py=const, xe€D,
where ¢, ¢, € are constants. Bearing in mind (12), we have ¢ = 0, and

Uy =1, Ug = Cy, P = py =const, xe€D.
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Explicit solution of the Dirichlet BVP for a plane with circular hole

A solution of system (2) with boundary conditions  pi(z) = f3(z), p2(z) =
fia(z), z €S issought in the form (5), where the functions ¢ and ¢; are unknown
in D. On the basis of boundary conditions we reformulate the problem in question as
follows

o(z) = z), ¢i(z) =M(z), z€S, (14)
where

h= kiowﬁ ko) fs + (o + ki) £,

(15)
1
ko

Obviously the function ¢ is solution of the equation Ap = 0 and it is represented
in the form of the following series ([19], p. 281)

hy (k1 + k1) (fa — f3).

o= (%) (Y- v(), (16)

where
v = (coskip,sinky), Yo =(A40,0), Ag= - [ h(0)do,

2 27
1 1
Ay = —/h(@) cos kOdf, By = —/h(@) sin k0d6.
s
0 0

™

The regular metaharmonic function ¢; in the domain D can be written as follows (
18], p. 99)

p1(x) = D Ki(hop)(Zy - vi(¥), (17)

k=0

where Kji(M\gp) 1is a modified Hankel’s function of an imaginary argument, with the
index k.

Ki(Aop) = 0, p— 005 vy = (cosky,sinky);  Zy = (Cy, Dy); Zo = (Co,0);
Cy, Ck, D, are the unknown quantities.

The function hy(z) in (15) can be represented in a Fourier series. Keeping in mind
(17) and boundary conditions (14) we obtain the values of Cj and Dy,

21 21

1 1

= — - - 1
Co= 5 Ko0uR) / (6)dd,  Cy=— KoOuR) / hi(0) coskOdo,  (18)
0 0
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2

1
Dy = ———— [ hi(0)sin k6do.
F WKk(AoR)/ 1( >Sln
0
If we substitute the values of ¢ and ¢; into (4), we find the functions p;(x) and

A solution v(x) = (v1,v2) of homogeneous equation (6) is sought in the form [14]

po(x) in D.
0 0P5
— (P, + Dy — —2
(%] (X) a$1 [ 1+ 2] 81'2 )
(19)
0 0P3
= —|P P i
’UQ(X) (9,]72[ 1+ 2] + 8:1;1 )
where ®;, ®, and ®3 are scalar functions,
AP =0, AADP, =0, AAD; =0,
0 0
A+2u)—ADPy — p—AP3; =0
¥ 20) g A = hig A8 =0, (20)

6(131

(A +2p) o
(21)

Taking into account (5) and boundary conditions (8), we can write

is the known vector; ¢(z) and ¢;(z) are defined by

where W(z) = f(z) — vo(2)
(22)

(f) (i wi(),

equalities (14). On the basis of equation Agg = ¢ the function ¢y is represented in

the following form
RS 1
T4 2 1—k

vo(z)

where Yy, is defined by (16).
In view of (20) we can represent the harmonic function ®;, biharmonic functions

®5 and P53 in the form
o0 R k
( ) (X1 - v (),

(I)lzz -

k=0
(23)

D, = IiRz (g) - (X2 - Vi (1)),

2 9 o0
o, = FA+20)
H =

0 (f) (X - (),



The Boundary Value Probems in the full Coupled ....

75

where Xy = (Xkir, Xgi2), k = 1,2 are the unknown two-component vectors,
vy = (coski,sin k), s, = (—sin ki, cos k). Using the formulas

9, 0 mng 0 9, 0 mn 0

o~ "Mop " o0 om op " p 0w
the boundary conditions (21) are rewritten in the form
vn(2z) = VU, (2), vs(z) =Vs(z), z€S, (24)

where v, and W, (z) are the normal components of the vectors v = (vy,v) and ¥ =
(U1, Uy) respectively; vs and W,(z) are the tangent components of the vectors
v = (v1,v2) and ¥ = (U, Uy) respectively. Substituting the equalities (19),(23) into
(24), we get

0 10

8p(<bl + ,) — ;%(Dg,

Unp =

_19
p oY

U, =V +noVWy, V,=-—noV;+n Vs,

0
Vs (D1 + @y) + —Ds,

dp

I )
n= (n17n2)7 5 = <_n27n1)7 ny = ?7 ng = ?

Let us expand the functions W, and WV, in Fourier series, that Fourier coefficients
are v, and Oy :

Yo = (701,0)7 Y = (%1,%2)7 00 = (50170), O = (5k1,5k2),

2w 2w
1 1
Yo1 = — / \I/n(g)dg, 501 = —/\I/S(G)dﬁ,
™ ™
0 0

X (26)

Y1 = —
s

0\57

21
1
U, (0) coskfdl, oy = — / U, (0) cos kOdO,
T
0

Y2 =

N | =
3=

27 27
/\115(9) sin k0df, o = /\Ifn(e) sin kOd6.
0 0

If we substitute (25) into (24), then obtained into (26), then passing to limit as p —
R, for determining the unknown values we obtain the following system of algebraic
equations whose solution is written in the following form:

R R(Yi + Ok
Xou:% , X ‘—M[Zu—k(z\—ku)k]

_ _ iR
2 T 0k + 3p)

]{: Y
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doi R (Vei + Oki) 1t )
Xogi = 28 Xy =~ TORIE 19 k=1,2,....
02 29RO+ 3u)”

Thus the solution of the Dirichlet boundary problem is represented by the sum (5) in
which v(x) is defined by means of formula (19), v (x) by formula (7), ¢o(x) by formula
(22) and ¢4 (x) by formulas (17) and (18). It can be proved that if the functions f and
fj» J = 3,4 satisfy the following conditions on S

fe C3(S), fieCS), j=34,

then the resulting series are absolutely and uniformly convergent.

Explicit solution of the Neumann BVP for a plane with circular hole

We sought the solution of the Neumann BVP in the form (4), where the functions ¢
and 7 are unknown in the domain D. Taking into account formulas (4), the boundary
conditions can be rewritten as

op(z) dp1(z)
or ~ M2 R

=hi(z), z€S. (27)

h(z) and hy(z) are given by (15), where f3 = %, fi= s

Thus for the unknown harmonic function ¢ we obtain the Neumann problem, the
solution that is represented in the form of series ([19],p.282)

o == 30 (1) oty 29

k=1 P

where ¢ is an arbitrary constant; Yy = (A, Br),

2 2
1 1
A= — / h(0) cos kOdh, By = — / h(0) sin k6d6.
T T

0 0

The metaharmonic function ¢;(x) in the domain D can be written as (17), where

Z; = (Ck,Dy); Cy, Ck, Dy are the unknown quantities. Keeping in mind (15) and
boundary conditions (27), we obtain the values of Z;, Cj and Dy

2
Co= 27erK (WR / h (6 Cr = m / hi(0) cos k0df,  (29)
0 0
2
Dy, = m/mw) sin k0d6,
where ’
KL() = OKy(§)  OKp(Aop) = MK (Mop),  Ki(AoR)#0, k=0,1,2,....

o¢ op
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0
Taking into account (10) the boundary condition (9) for T (a—, n) v(z) can be rewrit-
z

o t(2 0) v - 200, s "

where

2 2) = t(a) + n(@)api(a) + bela)] - T (5 0 volo

is the known vector, £ = (21,82); ¢ is defined by (28) and ¢; - formulas (17) and
(18); a=pi+ B2 b=Af+ B

Let us rewrite the boundary conditions (30) in the form

{T (%,n) v(z)]n = Q,(2), {T (%,n) V(z)} - 0, (z), (31)

where {T (8_’ n | v(z)| and ,(z) are the normal components of the vectors
Z n
0 0
T (6_’ n) v and (z) respectively; [T (8_’ n) V(z)] and Q(z) are the tangent
z z

0
components of the vectors T [ —,n | v(z)) and Q(z) respectively.

0z’
o ]
T (a’ “) V)|

()] o255

= (A+p) {
(32)

O,(z) = f.(z) — {T (%,n) vo(z)] , z€S.

S

v, and v, are defined from (25), vq is defined by means of formula (7), where function
wo(x) is the solution of equation Apy = ¢ and represented in the form [14]

o(x) = _f k(1 1_ 1) <§>k_2(Yk vi(¥)),
K—2

r

Y} are defined in (28); ¢; is an arbitrary constant.

Let us expand the functions €2, and (), in Fourier series, those Fourier coef-
ficients are vy = (Vk1,Vk2) and Op = (g1, dk2). Taking into account the formulas
(25),(23) and (32), then passing to limit as p — R, for determining the unknown
values we obtain the following system of algebraic equations
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kX +2u(k + 1)) X1+

A+ 20
i

A+ 2
k) — Nk R? {k’ + %(2 — k)} } Xioi = i R?,

{<A+2m<1 Bkt

Opi R?

9
At M(k2—3k+2)]Xk2i: -

1

—k(1 + 2k) Xp1; + R? [k:(?) —2k) +
i=1,2, k=12,

where y;; and dy; are the Fourier coefficients of normal and tangential components of
the vector €2(z) respectively.
We assume that the functions f and f;, (j = 3,4) satisfies the following conditions
on S
fe C?(S), fj € C*(S), j=34.

Under these conditions the resulting series are absolutely and uniformly convergent.
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