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EFFECTIVE SOLUTION OF THE DIRICHLET BVP OF THERMOELASTICITY
WITH MICROTEMPERATURES FOR AN ELASTIC SPACE WITH A

SPHERICAL CAVITY

Bitsadze L.

Abstract. In the present paper the linear theory of thermoelasticity with microtemperatures

is considered. The representation of regular solution for the equations of steady vibration of

the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for explicitly

solving Dirichlet boundary value problem (BVP) for an elastic space with a spherical cavity.

The obtained solutions are represented as absolutely and uniformly convergent series.

Keywords and phrases: Thermoelasticity with microtemperatures, absolutely and uni-

formly convergent series, spherical harmonic.

AMS subject classification (2010): 74F05, 74G05.

1. Introduction

A thermodynamic theory for materials with inner structure whose particles, in ad-
dition to the classical displacement and temperature fields, possess microtemperatures
was established by Grot [1]. The linear theory of thermoelasticity with microtem-
peratures was presented in [2], where the existence theorems were proved and the
continuous dependence of solutions of the initial data and body loads were established.
The fundamental solutions of the equations of the three-dimensional (3D) theory of
thermoelasticity with microtemperatures were constructed by Svanadze [3]. The rep-
resentations of the Galerkin type and general solutions of the system in this theory were
obtained by Scalia, Svanadze and Tracinà [4]. The 3D linear theory of thermoelasticity
for microstretch elastic materials with microtemperatures was constructed by Iesan [5],
where the uniqueness and existence theorems in the dynamical case for isotropic mate-
rials are proved. A wide class of external BVPs of steady vibrations is investigated by
Svanadze [6]. Effective solution of the Dirichlet and the Neumann BVPs of the linear
theory of thermoelasticity with microtemperatures for a spherical ring are obtained in
[7-8].

The two-dimensional model of thermoelasticity with microtemperatures is consid-
ered by Basheleishvili, Bitsadze and Jaiani in [9,10,11,12]. In particular, fundamental
and singular solutions of the system of equations of the equilibrium of the 2D thermoe-
lastisity theory with microtemperatures were constructed. Uniqueness and existence
theorems of some basic boundary value problems of the 2D thermoelasticity with mi-
crotemperatures are proved and the explicit solutions of boundary value problems for
the half-plane are constructed.

In the present paper the linear theory of thermoelasticity with microtemperatures is
considered. The representation of regular solution for the equations of steady vibrations
of the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for
explicitly solving Dirichlet boundary value problem (BVP) of steady vibrations for an
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elastic space with spherical cavity. The obtained solutions are represented as absolutely
and uniformly convergent series.

2. Basic equations

We consider an isotropic elastic material with microtemperatures. Let us assume
that D+ is a ball, of radius R1, centered at point O(0, 0, 0) in space E3 and S is a spher-
ical surface of radius R1. Denote by D−-whole space with a spherical cavity. D+ :=

D+
∪
S, D− := E3\D+. Let x := (x1, x2, x3) ∈ E3, ∂x :=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

The basic homogeneous system of equations of steady vibrations in the linear theory
of thermoelasticity with microtemperatures has the following form [2]

µ∆u+ (λ+ µ)graddivu− βgradθ + ϱω2u = 0 (1)

k6∆w+ (k4 + k5)graddivw− k3gradθ + k8w = 0 (2)

(k∆+ a0)θ + β0divu+ k1divw = 0 (3)

where u = (u1, u2)
T is the displacement vector, w = (w1, w2)

T is the microtemperature
vector, θ is the temperature measured from the constant absolute temperature
T0 (T0 > 0) by the natural state (i.e. by the state of the absence of loads), a0 =
iωaT0, β0 = iωβT0, k8 = ibω − k2, b > 0, a, λ, µ, β, k, kj, j =
1, ..., 6, are constitutive coefficients, ∆ is the 3D Laplace operator and ω is the oscilla-
tion frequency (ω > 0). The superscript “T ” denotes transposition.

We will suppose that the following assumptions on the constitutive coefficients hold [2]

µ > 0, 3λ+ 2µ > 0, a > 0, b > 0, k > 0,

3k4 + k5 + k6 > 0, k6 ± k5 > 0, (k1 + k3T0)
2 < 4T0kk2.

Definition 1. A vector-function U(U1, U2, U3, U4, U5, U6, U7) defined in the domain
D− is called regular if [6]

1.
U ∈ C2(D−) ∩ C1(D−),

2.

U =
5∑

j=1

U(j)(x), U (j) = (U
(j)
1 , U

(j)
2 , U

(j)
3 , U

(j)
4 , U

(j)
5 , U

(j)
6 , U

(j)
7 ),

U (j) ∈ C2(D−) ∩ C1(D−),

(4)

3.

(∆ + λ2j)U
(j)
l = 0, (5)

and (
∂

∂|x|
− iλj

)
U

(j)
l = eiλj |x|o(|x|−1), for |x| ≥ 1, (6)
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U (5)
m = U

(4)
7 = U

(5)
7 = 0, m = 1, 2, 3, j = 1, 2, .., 5, l = 1, 2, ..., 7,

where λ2j , j = 1, 2, 3 are roots of equation D(−ξ) = 0, where

D(∆) = (µ0∆+ ρω2)k1k3∆+ (k7∆+ k8)[ββ0∆+ (µ0∆+ ρω2)(k∆+ a0)],

λ21 + λ22 + λ23 =
1

µ0kk7

[
µ0(a0k7 + kk8 + k1k3) + ρω2kk7 + ββ0k7

]
,

λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 =

1

µ0kk7

[
k8(µ0a0 + ββ0) + ρω2(a0k7 + kk8 + k1k3)

]
,

λ21λ
2
2λ

2
3 =

a0k8ρω
2

µ0kk7
=
a0µk6λ

2
4λ

2
5

µ0kk7
, µ0 = λ+ 2µ, k7 = k4 + k5 + k6,

the constants λ24 and λ25 are determined by the formulas

λ24 =
ρω2

µ
> 0, λ25 =

k8
k6
.

The quantities λ2j , j = 1, 2, 3, 5 are complex numbers and are chosen so as to
ensure positivity of their imaginary part, i.e. it is assumed that Imλ2j > 0.

Equations in (6) are Sommerfeld-Kupradze type radiation conditions in the linear
theory of thermoelastisity with microtemperatures.

The external Dirichlet BVP is formulated as follows:

Find in the unbounded domain D− a regular solution U(u,w, θ) of the equations
(1),(2),(3) by the boundary conditions

u− = F−(y), w− = f−(y), θ− = f−
7 (y), y ∈ S,

where F−(f1, f2, f3), f−(f4, f5, f6), f−
7 are prescribed functions on S.

The following theorem is valid [6].

Theorem 1. The external Dirichlet BVP admit at most one regular solution.

3. Expansion of regular solutions

The following theorem is valid [6].

Theorem 2. The regular solution U = (u,w, θ) ∈ C2(D−) of system (1-3) for
x ∈ D−, is represented as the sum

u =
4∑

j=1

u(j)(x), w =
∑

j=1,2,3,5

w(j)(x), θ =
3∑

j=1

θ(j), (7)
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where

u(j) =

[
4∏

l=1;l ̸=j

∆+ λ2l
λ2l − λ2j

]
u, j = 1, 2, 3, 4,

w(p) =

[ ∏
l=1,2,3,5

∆+ λ2l
λ2l − λ2p

]
w, l ̸= p, p = 1, 2, 3, 5,

θ(q) =

[
3∏

l=1

∆+ λ2l
λ2l − λ2q

]
θ, l ̸= q, q = 1, 2, 3.

(8)

u(j),w(j)and θ(j) are regular functions satisfying the following conditions

(∆ + λ2j)u
(j) = 0, (∆ + λ2l )w

(l) = 0, (∆ + λ2m)θ
(m) = 0,

j = 1, 2, 3, 4, l = 1, 2, 3, 5, m = 1, 2, 3.

Thus, the regular in D− solution of system (1-3) is represented as a sum of functions
u(j), w(j), θ(j), which satisfy Helmholtz’ equations in D−.

Lemma 1. In the domain of regularity the regular solution of system (1),(3) can
be represented in the form

u = a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4),

w = b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5),

θ = φ1 + φ2 + φ3,

(9)

where
(∆ + λ2j)φj = 0, j = 1, 2, 3, (∆ + λ24)u

(4) = 0,

divu(4) = 0, (∆ + λ25)w
(5) = 0, divw(5) = 0,

(10)

aj and bj, j = 1, 2, 3, are constants.
Proof. Replacing u, w and θ by their values from (8), and substituting

u, w, θ into (1),(3), after some calculations we obtain

(µ∆+ ρω2)(k7∆+ k8)(u
(1) + u(2) + u(3)) =

grad

[
−(λ+ µ)k1k3

β0
(λ21φ1 + λ22φ2 + λ23φ3) + β(k7∆+ k8)(φ1 + φ2 + φ3)

+
(λ+ µ)

β0
(k∆+ a0)(k7∆+ k8)(φ1 + φ2 + φ3)

]
.

(11)

Equation (11) is satisfied by

(µ∆+ ρω2)(k7∆+ k8)u
(1) =
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{
(λ+ µ)

β0
[(a0 − kλ21)(k8 − k7λ

2
1)− k1k3λ

2
1] + β(k8 − k7λ

2
1)

}
gradφ1,

(µ∆+ ρω2)(k7∆+ k8)u
(2) ={

(λ+ µ)

β0
[(a0 − kλ22)(k8 − k7λ

2
2)− k1k3λ

2
2] + β(k8 − k7λ

2
2)

}
gradφ2,

(µ∆+ ρω2)(k7∆+ k8)u
(3) ={

(λ+ µ)

β0
[(a0 − kλ23)(k8 − k7λ

2
3)− k1k3λ

2
3] + β(k8 − k7λ

2
3)

}
gradφ3.

last identity gives

u(1) = a1gradφ1, u(2) = a2gradφ2 u(3) = a3gradφ3 (12)

where

a1 =
β

µλ24 − µ0λ21
, a2 =

β

µλ24 − µ0λ22
, a3 =

β

µλ24 − µ0λ23
.

Similarly
w(1) = b1gradφ1, w(2) = b2gradφ2 w(3) = b3gradφ3,

where

b1 =
k3

k6λ25 − k7λ21
, b2 =

k3
k6λ25 − k7λ22

, b3 =
k3

k6λ25 − k7λ23
.

Thus

u = a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4) =
3∑

j=1

ajgradφj + u(4),

w = b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5) =
3∑

j=1

bjgradφj +w(5),

θ = φ1 + φ2 + φ3 =
3∑

j=1

φj,

(∆ + λ2j)φj = 0, j = 1, 2, 3, (∆ + λ24)u
(4) = 0,

divu(4) = 0, (∆ + λ25)w
(5) = 0, divw(5) = 0,

(13)

Now let us prove that if the vector U(u,w, θ) = 0, then φ1 = φ2 = φ3 = 0,
u(4) = w(5) = 0. It follows from (13) that

div[a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4)] = 0,

div[b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5)] = 0,

φ1(x) + φ2(x) + φ3(x) = 0.
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From these equations we obtain

a1λ
2
1φ1 + a2λ

2
2φ2 + a3λ

2
3φ3 = 0,

b1λ
2
1φ1 + b2λ

2
2φ2 + b3λ

2
3φ3 = 0,

φ1(x) + φ2(x) + φ3(x) = 0.

The determinant of this system is

D1 =
βk3µk6λ

2
4λ

2
5(λ

2
1 − λ22)(λ

2
1 − λ23)(λ

2
2 − λ23)(k6µ0λ

2
5 − k7µλ

2
4)

(ρω2 − µ0λ21)(ρω
2 − µ0λ22)(ρω

2 − µ0λ23)(k8 − k7λ21)(k8 − k7λ22)(k8 − k7λ23)
̸= 0.

Thus we have φ1 = φ2 = φ3 = 0, u(4) = 0, w(5) = 0 and the proof is completed.
We introduce the notations. If g(x) = g(g1, g2, g3) and q(x) = q(q1, q2, q3), then by

symbols (g.q) and [g.q] will be denoted scalar product and vector product respectively

(g.q) =
3∑

k=1

gkqk, [g.q] = (g2q3 − g3q2, g3q1 − g1q3, g1q2 − g2q1),

Let us consider the metaharmonic equation

(∆ + ν2)ψ = 0, Imν ̸= 0.

For this equation the following statements are valid and we cite them without proof.
Lemma 2. If the regular vector ψ satisfies the conditions

(∆ + ν2)ψ = 0, Imν ̸= 0, divψ = 0,

(x · ψ) = 0, x ∈ D+(orD−),

then it can be represented in the form

ψ(x) = [x · ∇]h(x),

where

(∆ + ν2)h(x) = 0, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

In addition if ∫
S(0,a)

h(x)ds = 0,

where S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a, then between
the vector ψ and the function h there exists one-to-one correspondence.

Lemma 3. If the regular vector ψ satisfies the conditions

(∆ + λ2)ψ = 0, Imλ ̸= 0 divψ = 0, x ∈ D+(orD−),

then it can be represented in the form

ψ(x) = [x · ∇]φ3(x) + rot[x · ∇]φ4(x),
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where

(∆ + λ2)φj = 0, j = 3, 4.

In addition if ∫
S(0,a)

φjds = 0, j = 3, 4,

where S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a, then between
the vector ψ and the functions φj, j = 1, .., 4, there exists one-to-one correspon-
dence.

Lemma 2 and Lemma 3 are proved in [13].

Lemma 2 and Lemma 3 lead to the following result.

Theorem 3. The vector U = (u,w, θ), is a regular solution of the homogeneous
equations (1),(3), in D+(orD−), if and only if, when it is represented in the form

u(x) =
3∑

j=1

aj gradφj +
µ

ρω2
rotψ3(x),

w(x) =
3∑

j=1

bjgradφj +
k6
k8

rotφ3(x),

θ(x) = φ1(x) + φ2(x) + φ3(x),

(14)

where

(∆ + λ24)ψ
3 = 0, divψ3 = 0,

(∆ + λ25)φ
3 = 0, divφ3 = 0,

ψ3(x) = [x · ∇]ψ3(x) + rot[x · ∇]ψ4(x),

φ3(x) = [x · ∇]φ4(x) + rot[x · ∇]φ5(x),

(15)

∫
S(0,a)

ψjds = 0, (∆ + λ24)ψj = 0, j = 3, 4,

∫
S(0,a)

φjds = 0, (∆ + λ25)φj = 0, j = 4, 5,

S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a. Between the vector
U(x) = (u,w, θ) and the functions φj, ψj j = 1, .., 4, there exists one-to-one
correspondence.

Remark. By virtue of the equality

rotrot[x.∇]φ4 = −∆[x.∇]φ4,
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formula (14) can be written as

u(x) =
3∑

j=1

ajgradφj − [x · ∇]ψ4(x) +
µ

ρω2
rot[x · ∇]ψ3(x),

w(x) =
3∑

j=1

bjgradφj − [x · ∇]φ5(x) +
k6
k8

rot[x · ∇]φ4(x),

θ(x) = φ1(x) + φ2(x) + φ3(x).

(16)

Below we shall use solution (16) to solve the Dirichlet boundary value problem of steady
vibrations for an elastic space with spherical cavity.

4. Some auxiliary formulas

In the sequel we use the following notations: let us introduce the spherical coordi-
nates

x1 = ρ sinϑ cosφ, x2 = ρ sinϑ sinφ, x3 = ρ cosϑ,

y1 = R1 sinϑ0 cosφ0, y2 = R1 sinϑ0 sinφ0, y3 = R1 cosϑ0, y ∈ S,

ρ2 = x21 + x22 + x23, 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π 0 ≤ ρ ≤ R1.

(17)

The operator
∂

∂Sk(x)
is determined as follows

[x · ∇]k =
∂

∂Sk(x)
k = 1, 2, 3 x ∈ E3,

Simple calculations give

∂

∂S1(x)
= x2

∂

∂x3
− x3

∂

∂x2
= −cosφctgϑ ∂

∂φ
− sinφ

∂

∂ϑ
,

∂

∂S2(x)
= x3

∂

∂x1
− x1

∂

∂x3
= −sinφctgϑ ∂

∂φ
+ cosφ

∂

∂ϑ
,

∂

∂S3(x)
= x1

∂

∂x2
− x2

∂

∂x1
=

∂

∂φ
.

The following identities are true [13]

(x · rotg(x)) =
3∑

k=0

∂gk(x)

∂Sk(x)
,

3∑
k=0

∂

∂Sk(x)
(rot[x · ∇]h)k = 0,

3∑
k=0

∂

∂Sk(x)
(rotg(x))k = ρ

∂

∂ρ
divg(x)−

3∑
k=0

xk∆gk(x),
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3∑
k=0

∂

∂Sk(x)
[x · g]k = ρ2divg(x)− (x · g(x))− ρ

∂

∂ρ
(x · g(x)),

3∑
k=1

∂

∂Sk(x)
[x · rotg(x)]k = −(ρ

∂

∂ρ
+ 1)

3∑
k=0

∂gk(x)

∂Sk(x)
,

3∑
k=0

xk
∂

∂Sk(x)
= 0,

∂

∂Sk(x)

∂

∂xk
=

∂

∂xk

∂

∂Sk(x)
,

3∑
k=0

∂2

∂S2
k(x)

=
∂2

∂ϑ2
+ ctgϑ

∂

∂ϑ
+

1

sin2ϑ

∂2

∂φ2
,

∂xk
∂Sk

= 0,

3∑
k=0

∂

∂Sk(x)

∂

∂xk
= 0,

∂g(ρ)Y (ϑ, φ)

∂Sk(x)
= g(ρ)

∂Y (ϑ, φ)

∂Sk(x)
.

(18)

Let

(z · F−) = h−1 (z),
3∑

k=1

∂

∂Sk(z)
[z · F−]k = h−2 (z),

3∑
k=1

∂

∂Sk(z)
F−
k = h−3 (z),

(z · f−) = h−4 (z),
3∑

k=1

∂

∂Sk(z)
[z · f−]k = h−5 (z),

3∑
k=1

∂

∂Sk(z)
f−
k = h−6 (z), f−

7 = h−7 (z).

Let us assume that fk. k = 1, .., 7 are sufficiently smooth(differentiable) functions.
Let us expand the functions hk in spherical harmonics

h−k (z) =
∞∑

m=0

h−km(ϑ, φ),

where h−km is the spherical harmonic of order m :

h−km =
2m+ 1

4πR2
1

∫
S

Pm(cos γ)h
−
k (y)dSy,

Pm is Legendre polynomial of the m-th order, γ is an angle formed by the radius-vectors
Ox and Oy,

cos γ =
1

|x||y|

3∑
m=1

xkyk.

From these formulas it follows that if gm is the spherical harmonic the operator
∂

∂Sk

, k = 1, 2, 3, does not affect the order of the spherical function:

3∑
k=0

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).
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The general solutions of the equations (∆ + λ2k)ψ = 0, k = 1, 2, 3, 4, 5, in the
domain D− have the form [13]

ψ(x) =
∞∑

m=0

Ψ
(1)
m (λkρ)Ym(ϑ, φ), ρ > R1, (19)

where

Ψ
(1)
m (λkρ) =

√
R1H

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR1)
.

5. The Dirichlet BVP for an infinite space with the spherical cavity

The solution of the Dirichlet BVP problem

u− = F−(f1, f2, f3), w− = f−(f4, f5, f6), θ− = f−
7

in the domain D− is sought in the form (16).

From (16) we get

(x · u) =
3∑

k=1

akρ
∂φk

∂ρ
+ c1

3∑
k=1

∂2ψ3

∂S2
k(x)

,

3∑
k=1

∂

∂Sk(x)
[x · u]k = a1

3∑
k=1

∂2φ1

∂S2
k(x)

+ a2

3∑
k=1

∂2φ2

∂S2
k(x)

+a3
3∑

k=1

∂2φ3

∂S2
k(x)

− c1(ρ
∂

∂ρ
+ 1)

3∑
k=1

∂2ψ3

∂S2
k(x)

,

3∑
k=1

∂uk
∂Sk(x)

=
3∑

k=1

∂2ψ4

∂S2
k(x)

, (x ·w) =
3∑

k=1

bkρ
∂φk

∂ρ
+ c2

3∑
k=1

∂2φ4

∂S2
k(x)

,

3∑
k=1

∂

∂Sk(x)
[x ·w]k = b1

3∑
k=1

∂2φ1

∂S2
k(x)

+ b2

3∑
k=1

∂2φ2

∂S2
k(x)

+b3
3∑

k=1

∂2φ3

∂S2
k(x)

− c2(ρ
∂

∂ρ
+ 1)

3∑
k=1

∂2φ4

∂S2
k(x)

,

3∑
k=1

∂wk

∂Sk(x)
=

3∑
k=1

∂2φ5

∂S2
k(x)

, θ =
3∑

k=1

φk, c1 =
1

λ24
, c2 =

1

λ25
.

(20)

Suppose the functions φm(x), m = 1, 2, 3, 4, 5, and ψj, j = 3, 4, are sought
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in the form

φk(x) =
∞∑

m=0

Ψ
(1)
m (λkρ)Ykm(ϑ, φ), k = 1, 2, 3,

φj(x) =
∞∑

m=0

Ψ
(1)
m (λ5ρ)Yjm(ϑ, φ), j = 4, 5,

ψj(x) =
∞∑

m=0

Ψ
(1)
m (λ4ρ)Zjm(ϑ, φ), j = 3, 4, ρ > R1,

(21)

where Ykm, and Zjm are the unknown spherical harmonic of order m,

Ψ(1)
m (λkρ) =

√
R1H

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR1)
.

Remark. The conditions
∫

S(0,a)

ψjds = 0, j = 3, 4,
∫

S(0,a)

φjds = 0, j = 4, 5 in

fact mean that
Y40 = Y50 = Z30 = Z40 = 0.

Substituting the expressions of φm(x), m = 1, 2, 3, 4, 5 and ψj(x), j = 3, 4 in (20),
we obtain

(x · u) =
3∑

k=1

∞∑
m=0

akρ
∂

∂ρ
Ψ(1)

m (λkρ)Ykm − c1

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ4ρ)Z3m,

3∑
k=1

∂

∂Sk(x)
[x · u]k =

∞∑
m=0

m(m+ 1)

{
−

3∑
k=1

akΨ
(1)
m (λkρ)Ykm + c1(ρ

∂

∂ρ
+ 1)Ψ(1)

m (λ4ρ)Z3m,

}
,

3∑
k=1

∂uk
∂Sk(x)

= −
∞∑

m=0

m(m+ 1)Ψ(1)
m (λ4ρ)Z4m,

(x ·w) =
3∑

k=1

∞∑
m=0

bkρ
∂

∂ρ
Ψ(1)

m (λkρ)Ykm − c2

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ5ρ)Y4m,

3∑
k=1

∂

∂Sk(x)
[x ·w]k =

∞∑
m=0

m(m+ 1)

{
−

3∑
k=1

bkΨ
(1)
m (λkρ)Ykm + c2(ρ

∂

∂ρ
+ 1)Ψ(1)

m (λ5ρ)Y4m,

}
,

3∑
k=1

∂wk

∂Sk(x)
= −

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ5ρ)Y5m, θ =

3∑
k=1

∞∑
m=0

Ψ(1)
m (λkρ)Ykm(ϑ, φ).

(22)
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Passing to the limit as ρ → R1 and taking into account boundary conditions for the
determination of Ymj and Zmj we obtain the system of algebraic equations

3∑
k=1

ak

[
ρ
∂

∂ρ
Ψ(1)

m (λkρ)

]
ρ=R1

Ykm − c1m(m+ 1)Z3m = h−1m,

m(m+ 1)

{
−

3∑
k=1

akYkm + c1

[
(ρ
∂

∂ρ
+ 1)Ψ(1)

m (λ4ρ)

]
ρ=R1

Z3m

}
= h−2m,

−m(m+ 1)Z4m = h−3m,

3∑
k=1

bk

[
ρ
∂

∂ρ
Ψ(1)

m (λkρ)

]
ρ=R1

Ykm − c2m(m+ 1)Y4m = h−4m,

m(m+ 1)

{
−

3∑
k=1

bkYkm + c2

[
(ρ
∂

∂ρ
+ 1)Ψ(1)

m (λ5ρ)

]
ρ=R1

Y4m,

}
= h−5m,

−m(m+ 1)Y5m = h−6m, Z40 = Y40 = Z30 = Y50 = 0,

Y1m + Y2m + Y3m = h−7m, h−30 = h−60 = h−20 = h−50 = 0. (23)

By virtue of Theorem 1 we conclude that the system (23) form ≥ 0 is uniquely solvable
and the functions Yjm and Zjm are possible to express by the known functions h−jm.

If we take into account the sufficient conditions of convergence of absolutely and
uniformly convergent series with respect to the spherical harmonic and the property
of functions Ψ

(1)
m (λkρ) we conclude that the obtained solutions are represented as ab-

solutely and uniformly convergent series.
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ON THE HEXAGONAL QUANTUM BILLIARD

Khatiashvili N.

Abstract. In the paper a planar classical quantum billiard in the hexagonal type areas with

the hard wall conditions is considered. The process is described by the Helmholtz Equation in

the hexagon and hexagonal rug with the homogeneous boundary conditions. By means of the

conformal mapping method the problem is reduced to the elliptic partial differential equation

in the rectangle with the homogeneous boundary condition. It is assumed that one parameter

of mapping is sufficiently small. In this case the equation is simplified and analyzed. The

asymptotic solutions are obtained. The spectrum and the corresponding eigenfunctions are

found near the boundary of the hexagon. The wave functions are found in terms of the

Bessel’s functions. The results are applied for the estimation of the energy levels of electrons

in graphene.

Keywords and phrases: Quantum chaos, Helmholtz Equation, Bessel’s functions, graphene.

AMS subject classification (2010): 39A14, 35M11, 35Q40, 32H04.

Introduction

Quantum Billiard is a dynamical system, which describes a motion of a free particle
inside a closed domain D with a piece-wise smooth boundary S [2, 3, 7-11, 13-17, 19-
22]. In this case the Schrödinger Equation for a free particle assumes the form of the
Helmholtz Equation and the spectrum of the Helmholtz Equation reflects the energy
levels of the particle.

In the paper the following equation with the homogeneous boundary condition,
when D is the hexagon, is considered

∆u(x, y) +
2m

h2
Eu(x, y) = 0 u|S = 0, (1∗)

where S is a boundary of D, u is the wave function of the particle, λ2 =
2m

h2
E is the

constant to be determined, E is the energy of the particle, m is mass, h is Planck’s
constant.

In some cases it is more convenient to replace the condition u|
S
= 0 by the condition

[2, 14, 17,19, 20, 22] ∫∫
D

|u|2dxdy = 1.

The hexagonal type areas are very important, as the atoms of Carbon and its al-
lotropes are arranged in the hexagonal type structures [4, 7, 17, 19, 20] and has a lot
of applications in microeletronics. For example, graphene is a one-atom thick sheet
of carbon atoms which form a hexagonal structure ([4], see “One atom thick billiard”
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https//sites.google.com/a/ucr.edu/physics-lau/) and electrons in such structures be-
have like quantum billiard balls [4, 7, 17, 21].

The problem is investigated by means of the conformal mapping and partial dif-
ferential equation. The Helmholtz Equation (1*) is transformed to the equation of
the elliptic type. One parameter of the mapping is chosen sufficiently small, the ini-
tial equation is simplified and replaced by the approximate elliptic equation.The wave
function and eigenvalues of this equation are found.

Statement of the problem

LetD be the hexagon of the plane z0 = x0+iy0, with the vertexes a1, a2, a3, a4, a5, a6
(a1 = 0, Re a4 = 0), and with the axis of symmetry a1a4 (Fig.1). In this area we
consider the following problem

Problem 1. To find a real function u(x0, y0) in D having second order derivatives,
satisfying the equation

∆u(x0, y0) + λ2u(x0, y0) = 0 (1)

and the boundary condition
u|

S
= 0, (2)

where λ is the constant to be determined, S is the boundary of D.
By means of the conformal mapping we reduce Problem 1 to the elliptic partial

differential equation in the rectangle.
At first we map the area D at the upper half-plane of the complex plane z = x+ iy,

by the Schwartz-Christoffel formula [1, 6, 15, 17] with the following correspondence of
points

a1 ↔ 0, a2 ↔ a, a3 ↔ b, a4 ↔ ∞, a5 ↔ −a, a6 ↔ −b; a, b > 0;

f(z) = z0 = C

z∫
0

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt, (3)

where C is the definite constant, which is determined from the formula

a3 − a2 = C

b∫
a

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt.

Let z = f(w) be the conformal mapping of the rectangle D0{−a0/2 ≤ u ≤
a0/2; 0 ≤ ν ≤ b0} with the boundary S0 of the plane w(w = ξ + iη), on the up-
per half-plane of z. This mapping will be given by [1, 6, 15, 17]

z = sn

(
w

C0

)
, (4)

or

w = C0

z∫
0

(1− t2)−1/2(1− k2t2)−1/2dt,
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with the following correspondence of points

0 ↔ 0, a↔ a0/2, b↔ a0/2 + ib0,∞ ↔ ib0,−a↔ −a0/2 + ib0,−b↔ −a0/2; a0, b0 > 0

(Fig. 2), where sn is the Jakobi “sinus” with the modulus k, having the periods 2a0
and 2b0, C0 is the definite constant which is defined from the tables [15, 18], a0 will be
chosen accordingly in the following.

By the mappings (3), (4) Problem 1 could be reduced to the following problem
Problem 2. To find a real function u0(ξ, η) in D0 having second order derivatives,

satisfying the following equation

∆u0(ξ, η) + λ2|f ′(w)|2u0(ξ, η) = 0, (5)

with the boundary condition
u0|S0

= 0,

where u0(ξ, η) = u(f(w)), and λ is the constant to be determined.

Fig. 1. The hexagonal area

Fig. 2. The image of the hexagon by the mapping z = f(w)
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Solution of Problem 2

It is obvious that
|f ′

w(w)|2 = |f ′
z(w)|2 · |z′w(w)|2. (6)

If we suppose a = 1, b = 1/k , from (3), (4), (6) after simple transformations we obtain

f ′
w(w)

2 = C2
1

cn
w

C0

dn
w

C0

sn
w

C0


2/3

. (7)

where C1 = k2/3 C
C0

and sn, cn, dn are the Jacobi functions [1, 5, 6, 15].
As three parameters of the conformal mapping can be chosen arbitrarily, we can

assume that q = e−πχ, (χ = 2b0
a0
), is sufficiently small and we can use formulas [5, 6,

15]

sn(w/C0) ≈ sin γ(1 + 4q cos2 γ),

cn(w/C0) ≈ cos γ(1− 4q sin2 γ),

dn(w/C0) ≈ (1− 8q sin2 γ),

(8)

where γ = πw
a0C0

. Without loss of generality we can also suppose q ≈ 0 [1, 5, 6, 15], then
the formulas (8) could be simplified and one obtains, (a0 will be chosen in the following
way)

sn(w/C0) ≈ sin γ,

cn(w/C0) ≈ cos γ,

dn(w/C0) ≈ 1,

k ≈ 0, 0213, b0 =
5a0
3
, C0 ≈

a0
3
.

(9)

Putting (9) into (7) we can write the approximate formula

|f ′
w(w)|2 ≈ |C1|2

(
1 + V

1− V

)2/3

, (10)

where

V =
cos(2πξ/a0c0)

cosh(2πη/a0c0)
,

By using (10) Equation (5) may be rewritten as

∆u0(ξ, η) + λ2|C1|2
(
1 + V

1− V

)2/3

u0(ξ, η) = 0. (11)

Hence, we obtain the degenerated elliptic equation.
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Now, let us choose a0 in such a way, that
(

6πξ
a20

)4
and

(
6πη
a20

)4
are negligible. Taking

into account (9) and

cos

(
2πξ

a0c0

)2

≈ 1− 1

2

(
6πξ

a20

)2

, cosh

(
2πη

a0c0

)2

≈ 1 +
1

2

(
6πη

a20

)2

,

from (11) we obtain(
9π2

a40

)2/3

(η2 + ξ2)2/3(
1 + 9

π2

a40
η2 − 9

π2

a40
ξ2
)2/3

∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0. (12)

By using the approximate formula(
1 + 9

π2

a40
η2 − 9

π2

a40
ξ2
)−2/3

≈

(
1−

(
6
π2

a40
η2 − 6

π2

a40
ξ2
)
+

5

9

(
9
π2

a40
η2 − 9

π2

a40
ξ2
)2
)

and neglecting the terms

6
π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2), 45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2,

from (12) one obtains the approximate equation(
9π2

a40

)2/3

(η2 + ξ2)2/3∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0 (13)

In our case we have the following estimations(
6πξ

a20

)4

≤
(
3π

a0

)4

,

(
6πη

a20

)4

≤
(
10π

a0

)4

,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)Big| ≤ 150

(
109

108

)2/3(
π

a0

)10/3

, (14)

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 55
(
109

108

)2/3(
π

a0

)16/3

,

(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 1092/3
(
π

2a0

)4/3

.

For example, if a0 = 103, then by (14)(
6πξ

a20

)4

≤ 7.9× 10−9,

(
6πη

a20

)4

≤ 9.7× 10−7,
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∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 6.8× 10−7,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 1.4× 10−10,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 4.2× 10−3.

If a0 = 104 ,then by (14)(
6πξ

a20

)4

≤ 7.9× 10−13,

(
6πξ

a20

)4

≤ 9.7× 10−11,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 3.2× 10−10,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 6.5× 10−16,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 2× 10−4,

If a0 = 105, then (
6πξ

a20

)4

≤ 7.9× 10−17,

(
6πξ

a20

)4

≤ 9.7× 10−15,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 1.5× 10−13,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 3× 10−21,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 9× 10−6.

In the polar coordinates ξ = r cosφ, η = r sinφ equation (13) becomes

∆u0(r, φ) +
1

r

∂u

∂r
+ λ2|C1|2

(
a40
9π2

)2/3

r−4/3u0(r, φ) = 0. (15)

By the separation of variables u0 = u1(r)u2(φ) from (15) we obtain

u′′1
u1

+
1

r

u′1
u1

+ λ20r
−4/3 = β, (16)

u′′2 + βu2 = 0,

where β ≥ 0 is some constant and
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λ20 = λ2|C1|2
(
a40
9π2

)2/3

.

Suppose ,φ ≤ ε0, ε
4
0 ≈ 0, then for β = 0, u2 = Aφ where A is some constant, which

will be calculated from the condition

ε0∫
0

a0/2∫
0

r |u|2 dφdr = 1. (17)

We can rewrite the first equation of (16) in the form

u′′1 +
1

r
u′1 + λ20r

−4/3 = 0. (18)

By the notation r1/3 = t , equation (18) becomes

u′′1 + t−1u′1 + 9λ20u1 = 0.

The solution of this equation is u1(t) = I0(3λ0t) and hence the solution of (18) will
be [5, 15]

u1(r) = I0(3λ0r
1/3), (19)

where I0 is Bessel’s function.
Consequently, we can calculate the spectrum of the equation (18)by the boundary

condition I0(3λ0(
a0
2
)1/3) = 0.

By using Maple and formulas (9) one obtains

∣∣∣ k−1∫
a

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt
∣∣∣ = 0.342848,

|C| = |a3 − a2|/0.342848, |C1| = k2/3
|C|
C0

≈ 22/310−1/3 |a3 − a2|
a0

, (20)

λ2n =
λ20
|C1|

(
3π

a20

)4/3

= (10π2)2/3
c2n
62/3

a
−4/3
0

|a3 − a2|2
, n = 1, 2, 3, . . .

where cn are zeros of Bessel’s function I0[15]

cn ≈ 3π

4
+ nπ,

c1 ≈ 2.4, c2 ≈ 5.5, c3 ≈ 8.7, c4 ≈ 11.7, c5 ≈ 14.9, . . .

The constant A will be calculated from the formula (17)

ε0∫
0

a0/2∫
0

r |u|2 dφdr = A2 ε30/3

a0/2∫
0

r|I20 (3λ0r1/3)|2dr = 1.
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Note 1. As we have symmetry, then in the areaDb0−ε0 = {−a0/2 ≤ ξ ≤ a0/2,
b0 − ε0 ≤ η ≤ b0}the solutions of the Problem 2 will be the similar to the solutions of
equation (18).

Now, let us consider (11) in the area Dε near the line ξ = 0 with the conditions(
6πξ

a20

)2

≈ 0,

∫∫
Dε

|u|2dξdη = 1, (21)

where Dε = {−ε ≤ ξ ≤ ε; 0 ≤ η ≤ b0}, ε is sufficiently small. For example, if

ε = 10−4, a0 = 10−3, then
(

6πξ
a20

)2
≤ 4.10−18 .

By the conditions (21), (11) takes the form

th4/3
(
3πη

a20

)
∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0. (22)

In (22) we can suppose th2
(

3πη
a20

)
≈
(

3πη
a20

)2
, then the equation (22) may be rewritten

as

∆u0(ξ, η) + λ2|C1|2
(
a20
3π

)4/3

η−4/3u0(ξ, η) = 0. (23)

By the separation of variables u0(ξ, η) = u1(ξ)u2(η) from (23) we obtain

∆u1(ξ) + βu1(ξ) = 0, β ≥ 0, (24)

∆u2(η) + (λ20η
−4/3 − β)u2(η) = 0, (25)

where

λ20 = λ2|C1|2
(
a20
3π

)4/3

. (26)

Here we suppose β = 0 , hence (24) gives u1 = B(a0/2 − ξ) (B is constant, which
will be determined from condition (21)). The solution of (25) will be represented in
terms of Bessel’s function I3/2 [5,15]

u1(η) =
√
ηI3/2(3λ0η

1/3), (27)

where

I
3/2

(3λ0η
1/3) =

√
2

π
(3λ0)

−3/2η−1/2 sin(3λ0η
1/3)−

√
2

π
(3λ0)

−1/2η−1/6 cos(3λ0η
1/3). (28)

(27)and (28) gives

u1(η) =

√
2

π
(3λ0)

−3/2
[
sin(3λ0η

1/3)− 3λ0η
1/3 cos(3λ0η

1/3)
]

The eigenvalues of Problem 2 will be found from the boundary condition

sin(3λ0(b0)
1/3)− 3λ0(b0)

1/3 cos(3λ0(b0)
1/3) = 0,
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where b0 =
5a0
3
.

Consequently, 3λ0(
5a0
3
)1/3 will be zeros of Bessel’s function I

3/2
(3λ0η

1/3) and the
spectrum of (25)could be determined by using Maple and formulas (20), (26),

3λ0(
5a0
3

)1/3 = dn,

λ2n =
λ20
|C1|

(
3π

a20

)4/3

= (10π2)2/3
d2n

202/3
a
−4/3
0

|a3 − a2|2
, n = 1, 2, 3, . . . (29)

where dn are zeros of Bessel’s function I
3/2

[15]

dn ≈ 3π

2
+ nπ

d1 ≈ 4.4934, d2 ≈ 7.7252, d3 ≈ 10.9041, d4 ≈ 14.0662, d5 ≈ 17.2208 . . .

The constant B will be calculated from the formula (21)

∫∫
Dε

|u|2dξdη = B2a
2
0ε

2

b0∫
0

η
[
I3/2(3λ0η

1/3)
]2
dη = 1. (30)

Note 2. The functions I0 and I3/2 have the following asymptotics [5,15]

Iν(3λ0r
1/3) ≈

√
2

3πλ0r1/3
cos
(
3λ0r

1/3 − ν
π

2
− π

4

)
, ν = 0, 3/2.

According to (13), (15), (19), (20), (23),(27),(29) we conclude.

Conclusion

1. Near the boundary η = 0 and η = b0 the solutions of the Problem 2 are given by

un1(ξ, η) = An1arctg
η

ξ
I0(3λ0(η

2 + ξ2)1/3), (31)

where

λ20 = λ2n1
|C1|2

(
a40
9π2

)2/3

, |C1| ≈ 22/310−1/3 |a3 − a2|
a0

,

λ2n1
= (10π2)4/3

c2n1

62/3
a
−4/3
0

|a3 − a2|2
, n1 = 1, 2, 3, . . . ,

(32)

λn1 is the spectrum of Problem 1 and cn1 are zeros of Bessel’s function I0, An1 are the
definite constants

A2
n1

= (3/ε30)

 a0/2∫
0

rI20 (3λ0r
1/3)dr

−1

. (33)

2. Near the line ξ = 0 the solutions of Problem 2 will be given by
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un2(ξ, η) = Bn2(a0/2ξ)
√
ηI3/2(3λ0η

1/3), (34)

where

λ20 = λ2n1
|C1|2

(
a40
9π2

)2/3

, |C1| ≈ 22/310−1/3 |a3 − a2|
a0

,

λ2n2
= (10π2)4/3

d2n2

202/3
a
−4/3
0

|a3 − a2|2
, n2 = 1, 2, 3, . . . ,

(35)

where λn2 is the spectrum of Problem 1, dn2 , n2 = 1, 2, 3, . . . , are zeros of Bassel’s
function I3/2,Bn2 are the definite constants

B2
n2

=

(
2

a20ε

) b0∫
0

η
[
I3/2(3λ0η

1/3)
]2
dη

−1

. (36)

The energy of the particle will be calculated from the formulas [2,14,16]

En1 = λ2n1

h2

2m
=

4.5× 102

3
(10π2)4/3

c2n1

62/3
a
−4/3
0

|a3 − a2|2
× 10−20, n1 = 1, 2, 3, . . . ,

En2 = λ2n2

h2

2m
=

4.5× 102

3
(10π2)4/3

d2n2

202/3
a
−4/3
0

|a3 − a2|2
× 10−20, n2 = 1, 2, 3, . . . ,

(37)

Below, on Table 1 the numerical results are given for |a3 − a2| = 10−10 by using
Maple

a0 = 104 ε λ20 |E|(eV)
c1 = 2.4 10−3 0.046745 A ≈

√
6× 10−1 0.553961

d1 = 4.49 10−6 0.073319 B ≈ 2× 10−8 0.8688876

Table 1.

Note 1. As f(w) is a holomorphic function, we can continue it through the sides
a2a3 and a6a5. Hence, we obtain the quantum billiard in the hexagonal rug (Fig.3).
Consequently, for this problem equation (5) will be valid. So, the solutions will be the
same as for the hexagon and given by formulas (31),(32), (33),(34),(35),(36), (37). The
boundary conditions will depend on the number of cells in the rug.

Also, we can continue f(w) through the sides a3a4,a4a5 and a6a1, a1a2. So we
obtain billiard in the hexagonal flower (Fig. 4), where energy levels of particles will be
calculated by formula (37).
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Fig. 3. The hexagonal rug

Fig. 4. Hexagonal flower

Note 2. Let us consider a half of the hexagon D′ = a1a2a3a4 (Fig.1). For this area
we can consider the following problem

Problem 3. To find a real function u(x0, y0) in D
′ having second order derivatives,

satisfying the equation
∆u(x0, y0) + λ2u(x0, y0) = 0,

and the boundary conditions

u
∣∣
a1a4

= 0, u
∣∣
a2a3

= 0,

where λ is the constant to be determined.
The function f(w) map the area D′ at the rectangle D′

0 with the vertexes (0, 0),
(a0/2, 0), (a0/2, b0), (0, b0). We can continue f(w) through the sides a1a2 and a3a4
(step by step)and obtain the mapping of the hexagon with the hexagonal hall at the
rectangle D′

0 = {0 ≤ ξ ≤ a0/2; 0 ≤ η ≤ 6b0} (Fig. 5). So we can consider the billiard
in the hexagon with the hexagonal hall. In this cases equation (11) will be valid. for
the area D′

ε = {0 ≤ ξ ≤ a0/2; 0 ≤ η ≤ ε}the equation (11) may be rewritten as

∆u0(ξ, η) + λ2|C1|2
(
a20
3π

)4/3

ξ−4/3u0(ξ, η) = 0,
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This equation can be solved in analogy with (23) with the boundary condition

I3/2(3λ0(a0/2)
1/3) = 0.

Near the line η = 0 we obtain the following solutions

un2(ξ, η) = Bn2

√
ξI3/2(3λ0ξ

1/3), n2 = 1, 2, 3, . . . ,

where λ0 and Bn2 are given by (35) and (36).

Fig. 5. Hexagon with the hexagonal hall

Note 3. By using the solutions of Problem 2 it is easy to obtain the solutions
of the same problem for the particle trapped in 3D potential box of the hexagonal
configuration D×{0 ≤ ζ ≤ c0} . This problem can be solved in analogy with Problem
2 and the solutions will be given by

U =

√
2

c0
un(ξ, η)sin

πn1

c0
, n, n1 = 1, 2, 3, . . . ,

where un(ξ, η) are given by (31),(32) or (34),(35) and corresponding energy eigenvalues
are given by

En = λ2n
h2

2m

n2
1

c20
, n, n1 = 1, 2, 3, . . .

Note 4. Problem 1 could also be applied for the description of the growth of the
single crystal of hexagonal configuration [12].

Discussion. The complete system of solutions of Problem 2 will be found if equa-
tion (11) or the equation

u′′1 + t−1u′1 + 9(λ20 − βt4)u1 = 0.

is solved globally.
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Example. Now we consider the electron transport in graphene and find energy
levels of the electron. “As an emergent electronic material and model system for
condensed-matter physics, graphene and its electrical transport properties have become
a subject of intense focus. By performing low-temperature transport spectroscopy on
single-layer and bilayer graphene, we observe ballistic propagation and quantum in-
terference of multiply reflected waves of charges from normal electrodes and multiple
Andreev reflections from superconducting electrodes, thereby realizing quantum bil-
liards in which scattering only occurs at the boundaries.”(“Phase-Coherent Transport
in Graphene Quantum Billiards” (Science, Vol. 317, Issue 5844, Pages 1530-1533,
2007).

Graphen is a one-atom thick sheet of carbon atoms arranged in hexagonal rings in
which scattering occurs at the boundaries. Hence, we can apply our results (Fig.3).
The width of the side of the hexagonal cell is about 0.14 × 10−10 [17, 21].As we have
billiard in the hexagonal rug, we can use formulas (31), (32), (33). Here we suppose,
that the rug has 7 cells and by using Maple we have obtained the following result
(Table 2)

a0 d ε λ20 A |E|(eV)
104 2.4 10−6 0.046745

√
2× 10−6 0.553961

Table 2.
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Abstract. In the paper the following difference equation

∆u(k) +

m∑
i=1

pi(k)u(τi(k)) = 0

is considered, where m ∈ N , the functions pi : N → R+, τi : N → N , τi(k) ≤ k − 1,

lim
k→+∞

τi(k) = +∞ (i = 1, . . . ,m) are defined on the set of natural numbers and the difference

operator is defined by ∆u(k) = u(k + 1) − u(k). New oscillation criteria of all solutions to

these equation are established.

Keywords and phrases: Oscillation, proper solution, difference equations with several

delay.

AMS subject classification (2010): 34K11.

1. Introduction

Consider the difference equation

∆u(k) +
m∑
i=1

pi(k)u(τi(k)) = 0, (1.1)

where m ≥ 1 is a natural number, pi : N → R+, τi : N → N , (i = 1, . . . ,m), are
functions defined on the set N = {1, 2, . . . } and ∆u(k) = u(k+1)− u(k). Everywhere
below it is assumed that

lim
k→+∞

τi(k) = +∞, τi(k) ≤ k − 1. (1.2)

For each n ∈ N denote Nn = {n, n+ 1, . . . }.
Definition 1.1. Let n ∈ N . We will call a function u : N → R a proper solution

of equation (1.1) on the set Nn, if it satisfies (1.1) on Nn and sup{|u(i)| : i ≥ k} > 0
for any k ∈ Nn.

Definition 1.2. We say that a proper solution u : Nn → R of equation (1.1)
is oscillatory if for any k ∈ N there exist n1, n2 ∈ Nk such that u(n1) · u(n2) ≤ 0.
Otherwise the solution is called nonoscillatory.

Definition 1.3. Equation (1.1) is said to be oscillatory, if any of its proper solutions
is oscillatory.

The problem of oscillation of solutions of linear difference equation (1.1) for m = 1,
has been studied by several authors, see [1,2] and references therein.

As to investigation of the analogous problem for equation of type (1.1) (m > 1), to
our knowledge for them there have not been obtained results analogous to those known
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for equation (1.1), where m = 1. Analogous results for first order differential equations
with several delay see [3,4].

2. Sufficient conditions for oscillation

Denote

ψ1(k) = 1, ψs(k) =

( m∏
ℓ=1

k∏
j=τℓ(k)

[
1 +m

( m∏
ℓ=1

pℓ(j)
) 1

m
ψs−1(j)

]) 1
m

(2.1)

k ∈ N, s = 2, 3, . . .

Theorem 2.1. Let there exist k0 ∈ N and nondecreasing functions σi : N → N
(i = 1, . . . ,m) such that

1 + τi(k) ≤ σi(k) ≤ k for k ∈ N (i = 1, . . . ,m) (2.2)

and

lim sup
k→+∞

m∏
ℓ=1

(
m∏
i=1

k∑
s=σℓ(k)

pi(s)

σi(k)−1∏
j=τi(s)

[
1 +m

( m∏
ℓ=1

pℓ(j)
) 1

m
ψk0(j)

]) 1
m

>
1

mm
,

then equation (1.1) is oscillatory, where ψk0 is given by (2.1) when k = k0.
Corollary 2.1. Let there exist nondecreasing functions σi : N → R such that

lim sup
k→+∞

m∏
ℓ=1

(
m∏
i=1

k∑
s=σℓ(k)

pi(s)

σi(k)−1∏
j=τi(s)

[
1 +m

( m∏
ℓ=1

pℓ(j)
) 1

m

]) 1
m

>
1

mm
,

then equation (1.1) is oscillatory.
Corollary 2.2. Let there exist nondecreasing functions σi : N → R such that

condition (2.2) is fulfilled and

lim sup
k→+∞

m∏
ℓ=1

(
m∏
i=1

k∑
s=σℓ(k)

pi(s)

) 1
m

>
1

mm
,

then equation (1.1) is oscillatory.
Theorem 2.2. Let there exist nondecreasing functions σi : N → N such that (2.2)

is fulfilled,

lim sup
k→+∞

m∏
ℓ=1

(
m∏
i=1

k∑
s=σℓ(k)

pi(s)

σi(k)−1∏
j=τj(s)

( m∏
ℓ=1

pℓ(j)

) 1
m

) 1
m

> 0 (2.3)

and

lim inf
k→+∞

k∏
j=τℓ(k)

(
m∏
i=1

pi(j)

) 1
m

= αℓ > 0 (ℓ = 1, . . . ,m). (2.4)
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Moreover, if for some ℓ ∈ {1, . . . ,m}

lim
k→+∞

(
k − τℓ(k)

)
= +∞, (2.5)

then equation (1.1) is oscillatory.
Theorem 2.3. Let there exist nondecreasing functions σi : N → N , such that (2.2)

and (2.3) hold. If moreover,

lim inf
k→+∞

(
k − τℓ(k)

)
= nℓ ∈ N (ℓ = 1, . . . ,m) (2.6)

and
m∏
ℓ=1

αℓ >
1

nm
0

(
n0

n0 +m

)n0+m

, (2.7)

where αℓ (ℓ = 1, . . . ,m) are given by (2.4) and n0 =
m∑
ℓ=1

nℓ. Then equation (1.1) is

oscillatory.
Theorem 2.4. Let τi : N → N (i = 1, . . . ,m) be nondecreasing functions, let (2.6)

and (2.7) be fulfilled and

lim inf
k→+∞

k−1∑
i=τj(k)

pj(i) > 0 (j = 1, . . . ,m). (2.8)

Then equation (1.1) is oscillatory, where αℓ is given by (2.4).
Theorem 2.5. Let there exist nondecreasing functions σi : N → N such that (2.2),

(2.3) and let (2.6) be fulfilled. Moreover, if m ≤
m∑
ℓ=1

nℓ and

m∏
ℓ=1

αℓ > (2
√
m)

−
m∑
ℓ=1

(nℓ+1)
, (2.9)

then equation (1.1) is oscillatory, where

αℓ = lim inf
k→+∞

k∏
j=τℓ(k)

(
m∏
i=1

pi(j)

) 1
2m

(ℓ = 1, . . . ,m). (2.10)

Theorem 2.6. Let τi : N → N be nondecreasing functions and (2.6), (2.8) and let
(2.9) be fulfilled. Then equation (1.1) is oscillatory, where αℓ is given by (2.10).
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ON OSCILLATORY PROPERTIES OF SOLUTIONS OF n-TH ORDER
GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH

DELAY ARGUMENT

Koplatadze R.

Abstract. In the paper the following differential equation

u(n)(t) + p(t)
∣∣u(τ(t))∣∣µ(t) signu(τ(t)) = 0

is considered, where n ≥ 3, p ∈ Lloc(R+;R−), µ ∈ C(R+; (0,+∞)), τ ∈ C(R+;R+), τ(t) ≤ t

for t ∈ R+ and lim
t→+∞

τ(t) = +∞. We say that the equation is “almost linear” if the condition

lim
t→+∞

µ(t) = 1 is fulfilled, while if lim sup
t→+∞

µ(t) ̸= 1 or lim inf
t→+∞

µ(t) ̸= 1, then the equation is an

essentially nonlinear differential equation. In case of “almost linear” and essentially nonlinear

differential equations to have Property A have been extensively studied [1–5]. In the paper

new sufficient conditions are established for a general class of essentially nonlinear functional

differential equations to have Property B.

Keywords and phrases: Property B, oscillation, functional differential equation.

AMS subject classification (2010): 34K11.

1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a
functional-differential equation of the form

u(n)(t) + p(t)
∣∣u(τ(t))∣∣µ(t) signu(τ(t)) = 0, (1.1)

where
p ∈ Lloc(R+;R−), µ ∈ C(R+; (0,+∞)),

τ ∈ C(R+;R+), τ(t) ≤ t and lim
t→+∞

τ(t) = +∞.
(1.2)

It will always be assumed that the condition

p(t) ≤ 0 for t ∈ R+ (1.3)

is fulfilled.
Let t0 ∈ R+. A function u : [t0,+∞) is said to be a proper solution of equation (1.1)

if it is locally absolutely continuous together with its derivatives up to order n− 1 in-
clusive, sup{|u(s)| : s ≥ t} > 0 for t ≥ t0 and there exists a function u ∈ C(R+;R) such
that u(t) ≡ u(t) on [t0,+∞) and the equality u (n)(t) + p(t)|u(τ(t))|µ(t) signu(τ(t)) = 0
holds almost everywhere for t ∈ [t0,+∞). A proper solution u : [t0,+∞) → R of
equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to +∞.
Otherwise the solution u is said to be nonoscillatory.
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Definition 1.1. We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory when n is even, and either is oscillatory or satisfies∣∣u(i)(t)∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n− 1) (1.4)

when n is odd.
Definition 1.2. We say that equation (1.1) has Property B if any of its proper

solutions is either oscillatory or satisfies either (1.4) or∣∣u(i)(t)∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n− 1) (1.5)

when n is even and either is oscillatory or satisfies (1.5), when n is odd.
Definition 1.3. We say that equation (1.1) is almost linear if the condition

lim
t→+∞

µ(t)

= 1 holds, while if lim inf
t→+∞

µ(t) ̸= 1 or lim sup
t→+∞

µ(t) ̸= 1, then we say that the equa-

tion is an essentially nonlinear differential equation.
Oscillatory properties of almost linear and essentially nonlinear differential equa-

tion with advanced argument are studied well enough in [1–5]. For Emden-Fowler
equations with deviating arguments, essential contribution was made in [6–9]. In the
present paper for the generalized differential equation with delay argument, sufficient
conditions are established for equation (1.1) to have Property B. Analogously results
for Property A, see [10].

2. Essentially nonlinear differential equation with property B

The following notations will be used throughout the work

α = inf
{
µ(t) : t ∈ R+

}
, β = sup

{
µ(t) : t ∈ R+

}
,

τ(−1)(t) = sup
{
s ≥ 0, τ(s) ≤ t

}
, τ(−k) = τ(−1) ◦ τ(−(k−1)), k = 2, 3, . . .

(2.1)

Clearly τ(−1)(t) ≥ t and τ(−1) is nondecreasing and coincides with the inverse of τ
when the latter exists.

Let α ∈ [1,+∞), γ ∈ (1,+∞), ℓ ∈ {1, . . . , n− 2} and t∗ ∈ R+. Denote

ρ
(α)
1,ℓ,t∗

(t) = ℓ! exp

{
γℓ(α)

∫ t

τ(−1)(t∗)

∫ +∞

s

ξn−ℓ−2(τ(ξ))1+(ℓ−1)µ(ξ)|p(ξ)|dξ ds
}
, (2.2)

ρ
(α)
i,ℓ,t∗

(t) = ℓ! +
1

(n− ℓ)!

∫ t

τ(−i)(t∗)

∫ +∞

s

ξn−ℓ−1(τ(ξ))(ℓ−1)µ(ξ)×

×
( 1
ℓ!
ρ
α)
i−1,ℓ,t∗

(τ(ξ))
)µ(ξ)

|p(ξ)|dξ ds (i = 2, 3, . . . ), (2.3)

γℓ(α) =

 γ if α > 1,
1

ℓ! (n− ℓ)!
if α = 1.

(2.4)

In the section, when α > 1, we derive sufficient conditions for functional differential
equation (1.1) to have Property B.
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Proposition 2.1. Let α > 1, conditions (1.2) and (1.3) be fulfilled and for any
ℓ ∈ {1, . . . , n} with ℓ+ n even, the conditions∫ +∞

0

tn−ℓ
(
c, τ ℓ−1(t)

)µ(t)|p(t)|dt = +∞ for c ∈ (0, 1] (2.5ℓ,c)

and ∫ +∞

0

tn−ℓ−1
(
τ(t)

)ℓ µ(t)|p(t)|dt = +∞ for ℓ ∈ {1, . . . , n− 2} (2.6ℓ)

be fulfilled. Moreover, let for any large t∗ ∈ R, for some k ∈ N , γ ∈ (1,+∞) and
δ ∈ (1, α]∫ +∞

τ(−k)(t∗)

∫ +∞

s

ξn−ℓ−1−δ(τ(ξ))δ+(ℓ−1)µ(ξ)
( 1
ℓ!
ρ
(α)
k,ℓ,t∗

(τ(ξ))
)µ(ξ)−δ

|p(ξ)|dξ ds = +∞. (2.7ℓ)

Then equation (1.1) has Property B, where α is defined by first condition of (2.1) and

ρ
(α)
k,ℓ,t∗

is given by (2.2)–(2.4).
Proposition 2.1′. Let α > 1, β < +∞, conditions (1.2) and (1.3) be fulfilled

and for any ℓ ∈ {1, . . . , n − 2} with ℓ + n even, conditions (2.5ℓ,1) and (2.6ℓ) hold.
Moreover, let for some k ∈ N , γ ∈ (1,+∞) and δ ∈ (1, α] condition (2.7ℓ) be fulfilled.

Then equation (1.1) has Property B, where α and β are defined by (2.1) and ρ
(α)
k,ℓ,t∗

is
given by (2.2)–(2.4).

Theorem 2.1. Let α > 1, conditions (1.2), (1.3), (2.51,c) and

lim inf
t→+∞

(τ(t))µ(t)

t
> 0 (2.8)

be fulfilled. Moreover, let for some δ ∈ (1, α] the conditions∫ +∞

0

∫ +∞

s

ξn−2−δ(τ(ξ))δ|p(ξ)|dξ ds = +∞, (2.9)

when n is odd and ∫ +∞

0

∫ +∞

s

ξn−3−δ(τ(ξ))δ+µ(ξ)|p(ξ)|dξ ds = +∞, (2.10)

when n is even, be fulfilled. Then equation (1.1) has Property B, where α is defined by
the first condition of (2.1).

Theorem 2.1′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61) and
(2.8) be fulfilled. Moreover, let for some δ ∈ (1, α), when n is odd (n is even) condition
(2.9) ((2.10)) holds. Then equation (1.1) has Property B, where α and β are given by
(2.1).

Remark 2.1. In Theorem 2.1 condition (2.51,c) cannot be replaced by condition
(2.51,1). Indeed, let n ≥ 3, c ∈ (0, 1), c1 ∈ (c, 1),

µ(t) = n log 1
c1

t, p(t) = − c n!

t1+n
c−µ(t)

(
tn−1 +

(−1)n

t

)−µ(t)

and τ(t) ≡ t.
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It is obvious that condition (2.51,1) is fulfilled, but for large t, equation (1.1) has

the solution u(t) = c(tn−1 + (−1)n

t
). Therefore, equation (1.1) has the solution u,

satisfying the condition lim
t→+∞

u(n−1)(t) = c(n−1)!, that is equation (1.1) does not have

Property B.
Theorem 2.2. Let α > 1, let conditions (1.2), (1.3), (2.51,c), (2.61) and (2.8) be

fulfilled and

lim inf
t→+∞

t

∫ +∞

t

sn−3τ(s)|p(s)|ds > 0. (2.11)

Moreover, let for some δ ∈ (1, α] and γ > 0∫ +∞

0

∫ +∞

s

ξn−2−δ(τ(ξ))δ+γ(µ(ξ)−δ)|p(ξ)|dξ ds = +∞. (2.12)

Then equation (1.1) has Property B, where α is defined by the first condition of (2.1).
Theorem 2.2′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61),

(2.8) and (2.11) be fulfilled. Moreover, if for some δ ∈ (1, α] and γ > 0, condition
(2.12) holds, then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.3. Let α > 1, conditions (1.2), (1.3), (2.51,c), (2.61), (2.8) and (2.11)
be fulfilled. Moreover, if there exists m ∈ N such that

lim inf
t→+∞

τm(t)

t
> 0, (2.13)

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Theorem 2.3′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61),

(2.8), (2.11) and for some m ∈ N condition (2.13) be fulfilled. Then equation (1.1) has
Property B, where α and β are given by (2.1).

Theorem 2.4. Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−1) and

lim sup
t→+∞

(τ(t))µ(t)

t
< +∞ (2.14)

be fulfilled. Moreover, if for some δ ∈ (1, α]∫ +∞

0

∫ +∞

s

ξ1−δ(τ(ξ))δ+(n−3)µ(ξ)|p(ξ)|dξ ds = +∞, (2.15)

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Theorem 2.4′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1), (2.6n−1)

and (2.14) be fulfilled. Moreover, if for some δ ∈ (1, α] condition (2.15) holds, then
equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.5. Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.7n−1) and (2.14) be
fulfilled and

lim inf
t→+∞

t

∫ +∞

t

(τ(s))1+(n−3)µ(s)|p(s)|ds > 0. (2.16)
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Moreover, if for some δ ∈ (1, α] and γ > 0∫ +∞

0

∫ +∞

s

ξ1−δ(τ(ξ))δ+(n−3)µ(ξ)+γ(µ(ξ)−δ)|p(ξ)|dξ ds = +∞, (2.17)

then equation (1.1) has Property B, where α is given by (2.1).
Theorem 2.5′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1),

(2.6n−1), (2.14) and (2.16) be fulfilled and for some δ ∈ (1, α) and γ > 0 condition
(2.17) holds. Then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.6 Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−1), (2.14) and
(2.17) be fulfilled. Moreover, if for some m ∈ N condition (2.13) holds, then equation
(1.1) has Property B, where α is given by (2.1).

Theorem 2.6′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1), (2.6n−1)
and (2.17) be fulfilled. Moreover, if for some m ∈ N condition (2.13) holds, then
equation (1.1) has Property B, where α and β are given by (2.1).

3. Quasi-linear differential equations with property B

In the section we define sufficient conditions for functional differential equations
(1.1), when α = 1, to have Property B.

Proposition 3.1 Let α = 1, conditions (1.2) and (1.3) be fulfilled and for any
ℓ ∈ {1, . . . , n + 1} with ℓ + n even, conditions (2.5ℓ,c) and (2.6ℓ) hold. Let moreover,
for any large t∗ ∈ R+ and for some k ∈ N

lim sup
t→+∞

1

t

∫ t

τ(−k)(t∗)

∫ +∞

s

ξn−ℓ−1
(
τ(ξ)

)(ℓ−1)µ(t)×

×
(
1

ℓ!
ρ
(1)
k,ℓ,t∗

(τ(ξ))

)µ(ξ)

|p(ξ)|dξ ds > 0. (3.1ℓ)

Then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Proposition 3.1′. Let α = 1 and β < +∞, conditions (1.2) and (1.3) be fulfilled

and for any ℓ ∈ {1, . . . , n} with ℓ+n even, conditions (2.5ℓ,1) and (2.6ℓ) hold. Moreover,
let for any large t∗ ∈ R+ and for some k ∈ N , condition (3.1ℓ) holds. Then equation
(1.1) has Property B, where α and β are given by (2.1).

Theorem 3.1 Let α = 1, conditions (1.2), (1.3), (2.51,c), (2.61) and (2.8) be fulfilled
and

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξn−2|p(ξ)|dξ ds > 0. (3.2)

Then equation (1.1) has Property B, where α is defined by first condition of (2.1).
Theorem 3.1′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.51,1), (2.61),

(2.8) and (3.2) be fulfilled. Then equation (1.1) has Property B, where α and β are
given by (2.1).

Theorem 3.2 Let α = 1, conditions (1.2), (1.3), (2.51,c), (2.61) be fulfilled. Let
moreover

lim inf
t→+∞

(τ(t))µ(t)

t
> 1 (3.3)
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and

lim inf
t→+∞

t

∫ +∞

t

sn−3τ(s))ds > (n− 1)!. (3.4)

Then for equation (1.1) to have Property B it is sufficient that

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξn−2(τ(ξ))µ(ξ)|p(ξ)|dξ ds > 0. (3.5)

Theorem 3.2′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.51,1), (2.61),
(3.3) and (3.4) be fulfilled. Then equation (1.1) has Property B, it is sufficient that
condition (3.5) holds.

Theorem 3.3 Let α = 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−2) be fulfilled.
Moreover, if the conditions

lim inf
t→+∞

(τ(t))µ(t)

t
< 1 (3.6)

and

lim inf
t→+∞

t

∫ +∞

t

(τ(s))1+(n−3)µ(s)|p(s)|ds > 2(n− 2)! (3.7)

are fulfilled, then for equation (1.1) to have Property B it is sufficient that

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξ(τ(ξ))(n−3)µ(ξ)(τ(ξ))µ(ξ)|p(ξ)|dξ ds > 0. (3.8)

Theorem 3.3′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1),
(2.6n−1), (3.6) and (3.7) be fulfilled. Then for equation (1.1) to have Property B,
it is sufficient that condition (3.8) holds.
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Abstract. By the method N. Muskhelishvili an explisit solution to the basic mixed boundary

value problem for homogeneous equation of statics of the linear theory of elastic mixture for

a circular domain is obtained.
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1. Introduction

The basic plane boundary value problem and the basic mixed boundary value prob-
lem in a simple connected domain for homogeneous equation of statics of the linear
theory of elastic mixture, by analogues of general Kolosov-Muskhelishvili representa-
tion have been investigated in [3] and [2], respectively.

By the method M. Muskhelishvili an explicit solution of the basic mixed boundary
value problem for homogeneous equation of statics of the linear theory of elastic mixture
for an half-plane was obtained in [5].

In the present work we studied an analogous problem which in the case of the
plane theory of elasticity has been studied by N. Muskhelishvili [4, §123]. To solve the
problem we use the formulas due to Kolosov-Muskhelishvili and the method described
in [4,5].

1. Some auxiliary formulas and operators

The homogeneous equation of static of the linear theory of elastic mixtures in a
complex form is of the type [3]

∂2U

∂z∂z
+K

∂2U

∂z2
= 0, (1.1)

where z = x1 + ix2,
∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
, U = (u1 + iu2, u3 + iu4)

T ,

u
′
= (u1, u2)

T and u
′′
= (u3, u4)

T are partial displacements,

K = −1

2
em−1, e =

[
e4 e5
e5 e6

]
, m−1 =

1

△0

[
m3 −m2

−m2 m1

]
,

△0 = m1m3 −m2
2, mk = ek +

1

2
e3+k, e1 = a2/d2, e2 = −c/d2,
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e3 = a1/d2, d2 = a1a2 − c2, a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,

e1 + e4 = b/d1, e2 + e5 = −c0/d1, e3 + e6 = a/d1, d1 = ab− c20,

a = a1 + b1, b = a2 + b2, c0 = c+ d, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,

b2 = µ2 + λ2 + λ5 + α2ρ1/ρ, α2 = λ3 − λ4, ρ = ρ1 + ρ2,

d = µ2 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ.

Here µ1, µ2, µ3, λp, p = 1, 5, are elastic modules characterizing mechanical
properties of the mixture, ρ1 and ρ2 are partial densities of the mixture. It will be
assumed that the elastic constants µ1, µ2, µ3, λp, p = 1, 5, and partial rigid
densities ρ1 and ρ2 satisfy the conditions (inequalities) [1].

In [3] M.O. Basheleishvili obtained the following representations:

U =

(
u1 + iu2
u3 + iu4

)
= mφ(z) +

1

2
ezφ′(z) + ψ(z), (1.2)

TU =

(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

∂

∂S(x)

[
(A− 2E)φ(z) +Bzφ′(z) + 2µψ(z)

]
, (1.3)

where φ(z) = (φ1, φ2)
T and ψ(z) = (ψ1, ψ2)

Tare arbitrary analytic vector-functions,

A =

[
A1 A2

A3 A4

]
= 2µm, µ =

[
µ1 µ3

µ3 µ2

]
, B = µe, m =

[
m1 m2

m2 m3

]
, E =

[
0 1
1 0

]
,

∆0 = dem > 0, ∆1 = detµ > 0, ∆2 = det(A− 2E) > 0, A1 +A3 − 2 = B1 +B3,

A2 + A4 − 2 = B2 + B4,
∂

∂S(x)
= −n2

∂

∂x1
+ n1

∂

∂x2
, n = (n1, n2)

T

unit vector of the outer normal, (Tu)p, p = 1, 4 are stress components, Tu =
((Tu)1, (Tu)2, (Tu)3, (Tu)4)

T ,[1,6].
Now we note that, from (1,2) we have

2µ
∂U

∂S(x)
=

∂

∂S(x)

[
Aφ(z) +Bzφ′(z) + 2µψ(z)

]
. (1.4)

Formulas (1,2), (1,3) and (1,4) are analogous to the Kolosov-Muskhelishvili’s for-
mulas for the linear theory of elastic mixtures.

2. Statement of the mixed problem and scheme of its solution

In the present work we study an analogous problem which in the case of the plane
theory of elasticity has been studied by N. Muskhelishvili [4, §123]. For the solution of
the problem use will be made of the generalized Kolosov-Muskhelishvili’s formula and
the method developed in [4,5].

Let us assume that an elastic mixture occupies the circular domain D+ = {z :
|z| < 1} bounded by the circumference L = {z : |z| = 1, } and let Lj = ajbj, j =
1, n, (aj+1 ̸= bj, an+1 ≡ a1), be arcs separately lying on it, note that the points
a1, b1, a2, b2, ..., an, bn follow each other in the positive direction on L.



Effective Solution of the Basic Mixed Boundary ... 41

Suppose that L
′
=

n∪
j=1

Lj and L
′′
is the remaining part of L.

Definition 2.1. The vector u = (u
′
, u

′′
)T = (u1, u2, u3, u4)

T is called regular if
(see[2]) (i) up ∈ C2(D+)

∩
C(D+

∪
L), p = 1, 4;

(ii)(Tu)p, (p = 1, 4), is continuously extendable at every point of L from D+ except
perhaps the points aj and bj, j = 1, n;
(iii) near the points aj and bj, j = 1, n (Tu)p, p = 1, 4 admit estimate of the type
|(Tu)p| < const|z − α0|−β, 0 ≤ β < 1, z ∈ D+ (α0 = aj; α0 = bj, j = 1, n),
p = 1, 4.

We consider the mixed boundary value problem. Define an elastic equilibrium of
the plate D+ if

U+(t) = f 0(t), t ∈ L
′
, [TU(t)]+ = 0, t ∈ L

′′
, (2, 1)f,0

where f 0 = (f 0
1 , f

0
2 ) is a given complex vector-function on L

′
, (f 0(t))

′ ∈ H). Using the
Green formula [1] it is easy to prove.

Theorem 2.1. The homogeneous mixed boundary value problem (2.1)0 admits only
a trivial solution.

Below instead of conditions (2.1)f,0 we consider its following equivalent conditions

2µ

(
∂U(t)

∂S(t)

)+

=
∂f(t)

∂S(t)
, t ∈ L

′
, (TU(t))+ = 0, t ∈ L

′′
, (2.1)

′

where f(t) = 2µf 0(t).

Let t = eiθ 0 ≤ θ ≤ 2π. Then
∂

∂S(t)
=

d

dθ
=

d

dt

d

dθ
= ieiθ

d

dt
.

Now note that, on the basis of analogous Kolosov-Muskhelishvili’s formulas (1.4)
and (1.3) our problem is reduced to finding two analytic vector-functions ϕ(z) = φ

′
(z)

and Ψ(z) = ψ
′
(z) in D+ by the boundary conditions (see (2.1)

′
)

[Aϕ(t) +Bϕ(t)−Btϕ′(t)− 2µt2Ψ(t)]+ = f
′
(t), t ∈ L

′
,

[(A− 2E)ϕ(t) +Bϕ(t)−Btϕ′(t)− 2µt2Ψ(t)]+ = 0, t ∈ L
′′
. (2.2)

Consider the vector-function

(A− 2E)ϕ(z) = −Bϕ(1
z
) +B

1

z
ϕ′(

1

z
) + 2µ

1

z2
Ψ(

1

z
). (2.3)

From (2.3) it follows the equation (2.3) define ϕ(z) as an analytic vector-function

toward z in the domain |z| > 1, and to
1

z
in the |z| < 1.

Due to the above formula we find that

2µΨ(z) = (A− 2E)
1

z2
ϕ(

1

z
) +B

1

z2
ϕ(z)−B

1

z
ϕ

′
(z). (2.4)

If follows from (2.4) that the vector-function Ψ(z) is definite in the entire z = x1+ix2
plane by means of the ϕ(z).



42 Svanadze K.

Note also that if

ϕj(z) = A
(j)
0 + A

(j)
1 z + A

(j)
2 z2 + ..., |z| < 1, j = 1, 2,

ϕj(z) = B
(j)
0 +B

(j)
1

1

z
+B

(j)
2

1

z2
+ ..., |z| > 1, j = 1, 2,

then due to A1 + A3 − 2 = B1 + B3, A2 + A4 − 2 = B2 + B4, (see[2]), we can
conclude that, (see(2.4)), Ψ(z) to be analytic in the entire plane z = x1 + ix2 with the
point z = 0 it is sufficient that the conditions

(A
(1)
0 , A

(2)
0 )T + (B

(1)
0 , B

(2)
0 )T = 0, (B

(1)
1 , B

(2)
1 )T = 0 (2.5)

be fulfilled.
In view of (2.3) the boundary conditions (2.2) can be written as:

ϕ+(t)− A−1(A− 2E)ϕ−(t) = A−1f
′
(t) = h(t), t ∈ L

′
, h = (h1, h2)

T , (2.6)

ϕ+(t)− ϕ−(t) = 0, t ∈ L
′′
. (2.7)

From (2.7) it follows that the vector-function ϕ(z) is analytic in the entire plane
z = x1 + ix2 cutting to the L

′
.

To solve problem (2.6) we rewrite condition (2.6) as

(
1
y

)
ϕ+(t)− 2∆0∆1 − A4 + A3y

2∆0∆1

(
1
y

)
ϕ−(t) =

(
1
y

)
h(t), t ∈ L

′
, (2.8)

where y is an arbitrary real constant. We define the unknown y by the equation

y =
A2 + y(2∆0∆1 − A1)

2∆0∆1 − A4 + A3y
, or A3y

2 + (A1 − A4)y − A2 = 0.

Note that 0 < A1 + A4 < 4, A1 + A4 − 4∆0∆1 > 0 and (A1 + A4)
2 − 16∆0∆1 >

0) (see[2]).
On the basis of (2,8) representation we can conclude that a bounded at infinity

solution of problem (2.6) is given by the formula (see [4 123])

ϕ(z) =
1

y2 − y1

[
y2 −y1
−1 1

]ℵ(z)
2πi

∫
L
′

[ℵ+(t)]−1R(t)dt

t− z
+ ℵ(z)Pn(z)

 (2.10)

where y1 and y2 are the roots of equation (2.9),

R(t) =

[
1 y1
1 y2

]
h(t), ℵ(z) =

[
ℵ1(z) 0
0 ℵ2(z)

]
,

ℵj(z) =
n∏

k=1

(z − ak)
− 1

2
−iβj(z − bk)

− 1
2
+iβj , βj =

ln|Mj|
2π

,
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Mj =
1

4∆0∆1

[
4∆0∆1 − A1 − A4 − (−1)j

√
(A1 + A4)2 − 16∆0∆1

]
< 0

Pn(z) = (Pn1(z), Pn2(z))
T , Pnj

(z) =
n∑

q=0

C(j)
q zn−q, j = 1, 2.

To define C
(j)
q , j = 1, 2, q = 0, n, we use the following conditions (see [4, 123],

(2.1)
′
and (2.5))

2µ

∫
bkak+1

d

[
u1 + iu2
u3 + iu4

]
= f(ak+1)− f(bk), ϕ(0) + ϕ(∞) = 0. (2.11)

If we take into account (2.6), (2.7) and (2.10) for determining the unknown vectors
(C1

q , C
2
q )

T , q = 0, n, from (2.11) we obtain the following system of equations:

2

∫
bkak+1

ϕ0(t0)dt0 +
n∑

q=0

Nkq

(
C

(1)
q

C
(2)
q

)
= f(ak+1)− f(bk), (2.12)

(
C

(1)

0

C
(2)

0

)
+ ℵ(0)

(
Cn(1)

Cn(2)

)
+

ℵ(0)
2πi

∫
L
′

[ℵ+(t)]−1R(t)dt

t
= 0. (2.13)

where (see (2.10))

ϕ0(t) =
1

y0 − y1

[
y2 −y1
−1 1

]
ℵ(t0)
2πi

∫
L′

[ℵ+(t)]−1R(t)dt

t− t0
,

Nkq =
2

y2 − y1

[
y2 −y1
−1 1

] ∫
bkak+1

ℵ(t)tn−qdt.

Now note that, on the basis of the uniqueness theorem (see Theorem 2.1) for (2.1)
mixed problem, we can conclude that the (2.12) and (2.13) system is solvable for

C
(1)
q , q = 0, n, j = 1, 2.

Having found C
(1)
q , q = 0, n, j = 1, 2 we can be define ϕ(z), hence Ψ(z), φ(z)

and ψ(z). Finally by (1.2) we obtain the solution of the mixed (2.1)f,0 problem.
The mixed boundary value problem considered in the paper, for domain outside

the circle, can be solved in a similar way.
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NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATION CONSIDERING DELAY
FUNCTION PERTURBATION AND THE CONTINUOUS INITIAL CONDITION
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Abstract. Variation formulas of solution are obtained for linear with respect to prehistory

of the phase velocity (quasi-linear) controlled neutral functional-differential equation with

variable delays. The effects of delay function perturbation and continuous initial condition

are detected in the variation formulas.
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Let I = [a, b] be a finite interval and let Rn be the n-dimensional vector space of
points x = (x1, ..., xn)T , where T is the sign of transposition. Suppose that O ⊂ Rn

x and
U0 ⊂ Rr

u are open sets. Let the n-dimensional function f(t, x, y, u) satisfy the following
conditions: for almost all t ∈ I, the function f(t, ·) : O2 × U0 → Rn

x is continuously
differentiable; for any (x, y, u) ∈ O2 × U0, the functions f(t, x, y, u), fx(·), fy(·), fu(·)
are measurable on I; for arbitrary compacts K ⊂ O,U ⊂ U0 there exists a function
mK,U(·) ∈ L(I, [0,∞)), such that for any (x, y, u) ∈ K2 × U and for almost all t ∈ I
the following inequality is fulfilled

| f(t, x, y, u) | + | fx(·) | + | fy(·) | + | fu(·) |≤ mK,U(t).

Further, letD be the set of continuously differentiable scalar functions (delay functions)
τ(t), t ∈ I, satisfying the conditions:

τ(t) < t, τ̇(t) > 0, inf{τ(a) : τ ∈ D} := τ̂ > −∞.

Let Φ be the set of continuously differentiable initial functions φ(t) ∈ O, t ∈ I1 =
[τ̂ , b] and let Ω = {u ∈ Eu : clu(I) ⊂ U0} be the set of control functions, where Eu is
the space of bounded measurable functions u : I → Rr

u and u(I) = {u(t) : t ∈ I}
To each element µ = (t0, τ, φ, u) ∈ Λ = [a, b) × D × Ω we assign the quasi-linear

controlled neutral functional-differential equation

ẋ(t) = A(t)ẋ(σ(t)) + f(t, x(t), x(τ(t)), u(t)) (1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0], (2)

where A(t) is a given continuous matrix function with dimension n × n;σ ∈ D is a
fixed delay function.
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Definition 1. Let µ = (t0, τ, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b], is called a solution of equation (1) with the initial condition (2) or
a solution corresponding to the element µ and defined on the interval [τ̂ , t1], if x(t)
satisfies condition (2) and is absolutely continuous on the interval [t0, t1] and satisfies
equation (1) almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, φ0, u0) ∈ Λ be a given element and let x0(t) be the solution
corresponding to µ0 and defined on [τ̂ , t10], with a < t00 < t10 < b.

Let us introduce the set of variations

V =
{
δµ = (δt0, δτ, δφ, δu) : | δt0 |≤ α, ∥ δτ ∥≤ α,

δφ =
k∑

i=1

λiδφi, | λi |≤ α, i = 1, k, ∥ δu ∥≤ α
}
.

Here
δt0 ∈ R, δτ ∈ D − τ0, ∥δτ∥ = sup{|δτ(t)| : t ∈ I}, δu ∈ Ω− u0

and
δφi ∈ Φ− φ0, i = 1, k

are fixed functions, α > 0 is a fixed number.
There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1]× V

the element µ0 + εδµ ∈ Λ and there corresponds the solution x(t;µ0 + εδµ) defined on
the interval [τ̂ , t10 + δ1] ⊂ I1 ( [1],Theorem 3).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t)
on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is assumed to be defined on
the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0) :

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), ∀(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1]× V.

Theorem 1. Let the following conditions hold:
1) The function f0(z), z = (t, x, y) ∈ I×O2 is bounded, where f0(t, x, y) = f(t, x, y, u0(t));
2) There exists the limit

lim
z→z0

f0(z) = f−
0 , z ∈ (a, t00]×O2

where z0 = (t00, φ0(t00), φ0(τ0(t00))). Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈
(0, δ1) such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3)

for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2] × (0, ε2] × V −, where V − = {δµ ∈ V : δt0 ≤ 0}
and

δx(t; δµ) = Y (t00−; t)[φ̇0(t00)− A(t00)φ̇0(σ(t00))− f−
0 ]δt0 + β(t; δµ), (4)

β(t; δµ) = Ψ(t00; t)δφ(t00) +

∫ t00

τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s)ds
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+

∫ t00

σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s)ds+

∫ t

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s)ds

+

∫ t

t00

Y (s; t)f0u[s]δu(s)]ds; (5)

lim
ε→0

o(t; εδµ)

ε
= 0 uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V −,

Y (s; t) and Ψ(s; t) are n× n-matrix functions satisfying the system{
Ψs(s; t) = −Y (s; t)f0x[t]− Y (γ0(s); t)f0y[γ0(s)]γ̇0(s),

Y (s; t) = Ψ(s; t) + Y (ϱ(s); t)A(ϱ(s))ϱ̇(s), s ∈ [t00 − δ2, t]

and the condition

Ψ(s; t) = Y (s; t) =

{
H, s = t,

Θ, s > t;

f0x[s] = f0x(s, x0(s), x0(τ0(s)));

γ0(s) is the inverse function of τ0(t), ϱ(s) is the inverse function of σ(t), H is the identity
matrix and Θ is the zero matrix.

Some comments. The function δx(t; δµ) is called the variation of the solution
x0(t), t ∈ [t00, t10 + δ2], and the expression (4) is called the variation formula.

The addend ∫ t

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s)ds

in formula (5) is the effect of perturbation of the delay function τ0(t).
The expression

Y (t00−; t)[φ̇0(t00)− A(t00)φ̇0(σ(t00))− f−
0 ]δt0

is the effect of continuous initial condition (2) and perturbation of the initial moment
t00.

The expression

Ψ(t00; t)δφ(t00) +

∫ t00

τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s)ds

+

∫ t00

σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s)ds

in formula (5) is the effect of perturbation of the initial function φ0(t).
The expression ∫ t

t00

Y (s; t)f0u[s]δu(s)]ds

in formula (5) is the effect of perturbation of the control function u0(t).
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Variation formulas of solution for various classes of neutral functional differential
equations without perturbation of delay are given in [2-4]. The variation formula of
solution plays the basic role in proving the necessary conditions of optimality and under
sensitivity analysis of mathematical models [5-8]. Finally we note that the variation
formula allows to obtain an approximate solution of the perturbed equation

ẋ(t) = A(t)ẋ(σ(t)) + f(t, x(t), x(τ0(t) + εδτ(t)), u0(t) + εδu(t))

with the perturbed initial condition

x(t) = φ0(t) + εδφ(t), t ∈ [τ̂ , t00 + εδt0].

In fact, for a sufficiently small ε ∈ (0, ε2] it follows from (3) that

x(t;µ0 + εδµ) ≈ x0(t) + εδx(t; δµ).

Theorem 2. Let the following conditions hold:
1) The function f0(z), z ∈ I ×O2 is bounded;
2) There exists the limit

lim
z→z0

f0(z) = f+
0 , z ∈ [t00, b)×O2

Then for each t̂0 ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that
for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2] × (0, ε2] × V +, where V + = {δµ ∈ V : δt0 ≥ 0},
formula (3) holds, where

δx(t; δµ) = Y (t00+; t)(φ̇(t00)− A(t00)ẋ(σ(t00))− f+
0 )δt0 + β(t; δµ).

The following assertion is a corollary to Theorems 1 and 2.
Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. Moreover,

f−
0 = f+

0 := f̂0 and t00 /∈ {σ(t10), σ2(t10)), ...}. Then there exist numbers ε2 ∈ (0, ε1)
and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t10−δ2, t10+δ2]×(0, ε2]×V formula
(3) holds, where

δx(t; δµ) = Y (t00; t)(A(t00)ẋ(σ(t00))− f̂0)δt0 + β(t; δµ).

All assumptions of Theorem 3 are satisfied if the function f0(t, x, y) is continuous and
bounded. Clearly, in this case f̂0 = f0(t00, φ0(t00), φ0(τ0(t00))).
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and initial functions, initial moment and vector, control and finally moment.

Keywords and phrases: Neutral differential equation, neutral optimal problem, optimal

element, existence theorem.

AMS subject classification (2010): 49j25.

1. Formulation of main results

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T is

the sign of transposition, let a < t01 < t02 < t11 < t12 < b, 0 < τ1 < τ2, 0 < σ1 < σ2 be
given numbers with t11 − t02 > max{τ2, σ2}; suppose that O ⊂ Rn

x is a open set and
U ⊂ Rr

u is a compact set, the function F (t, x, y, u) = (f 0(t, x, y, u), f 1(t, x, y, u), ...,
fn(t, x, y, u))T is continuous on the set I×O2×U and continuously differentiable with
respect to x and y, where I = [a, b]; further, let Φ and ∆ be sets of measurable initial
functions φ(t) ∈ K0, t ∈ [τ̂ , t02] and ς(t) ∈ K1, t ∈ [τ̂ , t02], respectively, where τ̂ = a −
max{τ2, σ2}, K0 ⊂ O is a compact set, K1 ⊂ Rn

x is a convex and compact set ; let Ω be
a set of measurable control functions u(t) ∈ U, t ∈ I and let gi(t0, t1, τ, η, x0, x1), i = 0, l
be continuous scalar functions on the set [t01, t02]× [t11, t12]× [τ1, τ2]× [σ1, σ2]×X0×O,
where X0 ⊂ O is a compact set.

To each element w = (t0, t1, τ, σ, x0, φ, ς, u) ∈ W = [t01, t02] × [t11, t12] × [τ1, τ2] ×
[σ1, σ2]×X0 × Φ×∆× Ω we assign the quasi-linear neutral differential equation

ẋ(t) = A(t)ẋ(t− σ) + f(t, x(t), x(t− τ), u(t)), t ∈ [t0, t1] (1.1)

with the initial condition

x(t) = φ(t), ẋ(t) = ς(t), t ∈ [τ̂ , t0), x(t0) = x0, (1.2)

where A(t) = (aij(t)), i, j = 1, n, t ∈ I is a given n× n -dimensional continuous matrix
function, f = (f 1, ..., fn)T .

Remark 1.1. The symbol ẋ(t) on the interval [τ̂ , t0) is not connected with deriva-
tive of the function φ(t).

Definition 1.1. Let w = (t0, t1, τ, σ, x0, φ, ς, u) ∈ W . A function x(t) = x(t;w) ∈
O, t ∈ [τ̂ , t1], is called a solution corresponding to the element w, if it satisfies condition
(1.2) and is absolutely continuous on the interval [t0, t1] and satisfies equation (1.1)
almost everywhere (a.e.) on [t0, t1].



On the Existence of an Optimal Element in ... 51

Definition 1.2. An element w = (t0, t1, τ, σ, x0, φ, ς, u) ∈ W is said to be admissible
if there exists the corresponding solution x(t) = x(t;w) satisfying the condition

g(t0, t1, τ, σ, x0, x(t1)) = 0, (1.3)

where g = (g1, ..., gl).

We denote the set of admissible elements by W0. Now we consider the functional

J(w) = g0(t0, t1, τ, σ, x0, x(t1))+∫ t1

t0

[
a0(t)ẋ(t− σ) + f 0(t, x(t), x(t− τ), u(t))

]
dt, w ∈ W0,

where x(t) = x(t;w), and a0(t) = (a10(t), ..., a
n
0 (t)), t ∈ I is a given continuous function.

Definition 1.3. An element w0 = (t00, t10, τ0, σ0, x00, φ0, ς0, u0) ∈ W0 is said to be
optimal if

J(w0) = inf
w∈W0

J(w). (1.4)

The problem (1.1)-(1.4) is called the quasi-linear neutral optimal problem.
Theorem 1.1. There exists an optimal element w0 if the following conditions hold:
1.1. W0 ̸= Ø;
1.2. There exists a compact set K2 ⊂ O such that for an arbitrary w ∈ W0

x(t;w) ∈ K2, t ∈ [τ̂ , t1];

1.3. The sets

P (t, x) =
{
F (t, x, y, u) : (y, u) ∈ K0 × U

}
, (t, x) ∈ I ×O

and
P1(t, x, y) =

{
F (t, x, y, u) : u ∈ U

}
, (t, x, y) ∈ I ×O2

are convex.
Remark 1.2. Let K0 and U be convex sets, and

F (t, x, y, u) = B(t, x)y + C(t, x)u.

Then the condition 1.3 of Theorem 1.1 holds.
Theorem 1.2.There exists an optimal element w0 if the conditions 1.1 and 1.2 of

Theorem 1.1 hold, moreover the following conditions are fulfilled:
1.4. The function f(t, x, y, u) has a form

f(t, x, y, u) = D(t, x)y + E(t, x)u;

1.5. The sets K0 and U are convex and for each fixed (t, x) ∈ I ×O the function
f 0(t, x, y, u) is convex in (y, u) ∈ K0 × U.
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The proof of existence of optimal delay parameters, initial functions and initial
moment is the essential novelty in this work. Theorems of existence for optimal control
problems involving various functional differential equations with fixed delay , initial
function and moment are given in [1-5].

2. Auxiliary assertions

To each element µ = (t0, τ, σ, x0, φ, ς, u) ∈ Π = [t01, t02] × [τ1, τ2] × [σ1, σ2] × O ×
Φ×∆× Ω we will set in correspondence the functional differential equation

q̇(t) = A(t)h(t0, ς, q̇)(t− σ) + f(t, q(t), h(t0, φ, q)(t− τ), u(t)) (2.1)

with the initial condition
q(t0) = x0, (2.2)

where the operator h(t0, φ, q)(t) is defined by the formula

h(t0, φ, q)(t) =

{
φ(t), t ∈ [τ̂ , t0),

q(t), t ∈ [t0, b].
(2.3)

Definition 2.1. Let µ = (t0, τ, σ, x0, φ, ς, u) ∈ Π. A function q(t) = q(t;µ) ∈
O, t ∈ [r1, r2], where r1 ∈ [t01, t02], r2 ∈ [t11, t12], is called a solution corresponding to
the element µ and defined on [r1, r2], if t0 ∈ [r1, r2], and it satisfies condition (2.2)
and is absolutely continuous on the interval [r1, r2] and satisfies equation (2.1) a.e. on
[r1, r2].

Let Ki ⊂ O, i = 3, 4 be compact sets and K4 contains a certain neighborhood of
the set K3.

Theorem 2.1. Let qi(t) ∈ K3, i = 1, 2, ..., be a solution corresponding to the ele-
ment µi = (t0i, τi, σi, x0i, φi, ςi, ui) ∈ Π, i = 1, 2, ..., respectively,defined on the interval
[t0i, t1i], where t1i ∈ [t11, t12]. Moreover,

lim
i→∞

t0i = t00, lim
i→∞

σi = σ0, lim
i→∞

t1i = t10. (2.4)

Then there exist numbers δ > 0 and M > 0 such that for a sufficiently large i0 the
solution ψi(t) corresponding to the element µi, i ≥ i0, respectively, is defined on the
interval [t00 − δ, t10 + δ] ⊂ I. Moreover,

ψi(t) ∈ K4, | ψ̇i(t) |≤M, t ∈ [t00 − δ, t10 + δ]

and
ψi(t) = qi(t), t ∈ [t0i, t1i] ⊂ [t00 − δ, t10 + δ].

Proof. Let ε > 0 be so small that a closed ε -neighborhood of the set K3 : K3(ε) =
{x ∈ O : ∃x̂ ∈ K3, |x − x̂| ≤ ε} is contained intK4. There exists a compact set
Q ⊂ Rn

x ×Rn
y

K3(ε)× [K0 ∪K3(ε)] ⊂ Q ⊂ K4 × [K0 ∪K4]
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and a continuously differentiable function χ : Rn
x ×Rn

y → [0, 1] such that

χ(x, y) =

{
1, (x, y) ∈ Q,

0, (x, y) /∈ K4 × [K0 ∪K4]
(2.5)

(see [6]). For each i = 1, 2, ... the differential equation

ψ̇(t) = A(t)h(t0i, ςi, ψ̇)(t− σi) + ϕ(t, ψ(t), h(t0i, φi, ψ)(t− τi), ui(t)),

where
ϕ(t, x, y, u) = χ(x, y)f(t, x, y, u),

with the initial condition
ψ(t0i) = x0i,

has the solution ψi(t) defined on the interval I (see proof of Theorem 4.1,[7]). Since

(qi(t), h(t0i, φi, qi)(t− τi)) ∈ K3 × [K0 ∪K3] ⊂ Q, t ∈ [t0i, t1i],

(see (2.3)), therefore

χ(qi(t), h(t0i, φi, qi)(t− τi)) = 1, t ∈ [t0i, t1i],

(see (2.5)),i.e.

ϕ(t, qi(t), h(t0i, φi, qi)(t− τi), ui(t)) = f(t, qi(t), h(t0i, φi, qi)(t− τi), ui(t)),

t ∈ [t0i, t1i].

By the uniqueness
ψi(t) = qi(t), t ∈ [t0i, t1i]. (2.6)

There exists a number M > 0 such that

| ψ̇i(t) |≤M, t ∈ I, i = 1, 2, .... (2.7)

Indeed, first of all we note that

| ϕ(t, ψi(t), h(t0i, φi, ψi)(t− τi), ui(t)) |≤ sup
{
| ϕ(t, x, y, u) |: t ∈ I, x ∈ K4,

y ∈ K4 ∪K0, u ∈ U
}
:= N1, i = 1, 2, ....

It is not difficult to see that for sufficiently large i0 we have[b− t0i
σi

]
=
[b− t00

σ0

]
:= d, i ≥ i0,

where [α] means the integer part of a number α, i.e.

t0i + dσi ≤ b < t0i + (d+ 1)σi.
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If t ∈ [a, t0i + σi) then

| ψ̇i(t) |=| A(t)ςi(t− σi) + ϕ(t, ψi(t), h(t0i, φi, ψi)(t− τi), ui(t)) |

≤∥ A ∥ N2 +N1 :=M1,

where
∥ A ∥= sup

{
| A(t) |: t ∈ I

}
, N2 = sup

{
| ξ |: ξ ∈ K1

}
.

Let t ∈ [t0i + σi, t0i + 2σi) then

| ψ̇i(t) |≤∥ A ∥| ψ̇i(t− σi) | +N1 ≤∥ A ∥M1 +N1 :=M2

Continuing this process we obtain

| ψ̇i(t) |≤∥ A ∥Mj−1 +N1 :=Mj, t ∈ [t0i + (j − 1)σi, t0i + jσi), j = 3, ..., d.

Moreover, if t0i + dσi < b then we have

| ψ̇i(t) |≤Md+1, t ∈ [t0i + dσi, b].

It is clear that for M = max{M1, ...,Md+1} the condition (2.7) is fulfilled.
Further, there exists a number δ0 > 0 such that for an arbitrary i = 1, 2..., [t0i −

δ0, t1i + δ0] ⊂ I and the following conditions hold

|ψi(t0i)− ψi(t)| ≤
∫ t0i

t

[
|A(s)h(t0i, ςi, ψ̇i)(s− σi)|

+|ϕ(s, ψi(s), h(t0i, φi, ψi)(s− τi), ui(s))|ds ≤ ε, t ∈ [t0i − δ0, t0i

]
,

|ψi(t)− ψi(t1i)| ≤
∫ t

t1i

[
|A(s)h(t0i, ξi, ψ̇i)(s− σi)|

+|ϕ(s, ψi(s), h(t0i, φi, ψi)(s− τi), ui(s))|
]
ds ≤ ε, t ∈ [t1i, t1i + δ0].

These inequalities, taking into account ψi(t0i) ∈ K3 and ψi(t1i) ∈ K3, (see (2.6)),
yield

(ψi(t), h(t0i, φi, ψi)(t− τi)) ∈ K3(ε)× [K0 ∪K3(ε)], t ∈ [t0i − δ0, t1i + δ0],

i.e.
χ(ψi(t), h(t0i, φi, ψi)(t− τi)) = 1, t ∈ [t0i − δ0, t1i + δ0], i = 1, 2, ...,

Thus, ψi(t) satisfies equation (2.1) and the conditions ψi(t0i) = x0i, ψi(t) ∈ K4, t ∈
[t0i − δ0, t1i + δ0], i.e. ψi(t) is the solution corresponding to the element µi and defined
on the interval [t0i− δ0, t1i+ δ0] ⊂ I. Let δ ∈ (0, δ0), according to (2.4) for a sufficiently
large i0 we have

[t0i − δ0, t1i + δ0] ⊃ [t00 − δ, t10 + δ] ⊃ [t0i, t1i], i ≥ i0.
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Consequently, ψi(t), i ≥ i0 solutions are defined on the interval [t00−δ, t10+δ] and satisfy
the conditions: ψi(t) ∈ K4, | ψ̇i(t) |≤ M, t ∈ [t00 − δ, t10 + δ];ψi(t) = qi(t), t ∈ [t0i, t1i],
(see (2.6),(2.7)).

Theorem 2.2.([8]). Let p(t, u) ∈ Rm
p be a continuous function on the set I × U

and let the set
P (t) = {p(t, u) : u ∈ U}

be convex and
pi(·) ∈ L1(I), pi(t) ∈ P (t) a.e. on I, i = 1, 2, ....

Moreover,
lim
i→∞

pi(t) = p(t) weakly on I.

Then
p(t) ∈ P (t) a.e. on I

and there exists a measurable function u(t) ∈ U, t ∈ I such that

p(t, u(t)) = p(t) a.e. on I.

3. Proof of Theorem 1.1

Let
wi = (t0i, t1i, τi, σi, x0i, φi, ςi, ui) ∈ W0, i = 1, 2, ...

be a minimizing sequence,i.e.

lim
i→∞

J(wi) = Ĵ = inf
w∈W0

J(w).

Without loss of generality, we assume that

lim
i→∞

t0i = t00, lim
i→∞

t1i = t10, lim
i→∞

τi = τ0, lim
i→∞

σi = σ0, lim
i→∞

x0i = x00.

The set ∆ ⊂ L1([τ̂ , t02]) is weakly compact (see Theorem 2.2), therefore we assume
that

lim
i→∞

ςi(t) = ς0(t), weakly in t ∈ [τ̂ , t02]. (3.1)

Introduce the following notation:

x0i (t) =

∫ t

t0i

[
a0(s)ẋi(s− σi) + f 0(s, xi(s), xi(s− τi), ui(s))

]
ds,

xi(t) = x(t;wi), ρi(t) = (x0i (t), xi(t))
T , t ∈ [t0i, t1i].

Obviously,
ρ̇i(t) = Â(t)ẋi(t− σi) + F (t, xi(t), xi(t− τi), ui(t)), t ∈ [t0i, t1i],

xi(t) = φi(t), t ∈ [τ̂ , t0i), ρi(t0i) = (0, x0i)
T ,

ẋi(t) = ςi(t), t ∈ [τ̂ , t0i),
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where Â(t) = (a0(t) A(t))
T . It is clear that

J(wi) = g0(t0i, t1i, τi, σi, x0i, xi(t1i)) + x0i (t1i).

To each element µ = (t0, τ, σ, x0, φ, ς, u) ∈ Π we will set in correspondence the func-
tional differential equation

ż(t) = Â(t)h(t0, ς, v̇)(t− σ) + F (t, v(t), h(t0, φ, v)(t− τ), u(t)),

with the initial condition
z(t0) = z0 = (0, x0)

T ,

where z(t) = (v0(t), v(t))T ∈ R1+n
z .

It is easy to see that{
ρ̇i(t) = Â(t)h(t0i, ςi, ẋi)(t− σi) + F (t, xi(t), h(t0i, φi, xi)(t− τi), ui(t)), t ∈ [t0i, t1i],

ρi(t0i) = (0, x0i)
T

(see (2.3)). Thus, ρi(t) is the solution corresponding to µi = (t0i, τi, σi, x0i, φi, ςi, ui) ∈ Π
and defined on the interval [t0i, t1i]. Since xi(t) ∈ K2, therefore in a similar way (see
the proof of Theorem 2.1) we prove that | ẋi(t) |≤ N3, t ∈ [t0i, t1i], i = 1, 2, ..., N3 > 0.
Further, there exists a compact H1 ⊂ H = {z = (v0, v)T : v0 ∈ R1

v0 , v ∈ O} ⊂ R1+n
z

such that ρi(t) ∈ H1, t ∈ [t0i, t1i].
Let H2 ⊂ H be a compact set containing a certain neighborhood of the set H1.

By Theorem 2.1 there exists a number δ > 0 such that for a sufficiently large i0 the
solutions zi(t) = z(t;µi), i ≥ i0 are defined on the interval [t00 − δ, t10 + δ] ⊂ I and the
following conditions hold{

zi(t) ∈ H2, | żi(t) |≤M, t ∈ [t00 − δ, t10 + δ],

zi(t) = ρi(t) = (x0i (t), xi(t))
T , t ∈ [t0i, t1i], i ≥ i0.

(3.2)

Thus, there exist numbers N4 > 0 and N5 > 0 such hat{
|F (t, vi(t), h(t0i, φi, vi)(t− σi), ui(t))| ≤ N5,

| h(t0i, ςi, v̇i)(t− ηi) |≤ N4, t ∈ [t00 − δ, t10 + δ], i ≥ i0.
(3.3)

The sequence zi(t) = (v0i (t), vi(t))
T , t ∈ [t00 − δ, t10 + δ], i ≥ i0 is uniformly bounded

and equicontinuous. By the Arzela-Ascoli lemma, from this sequence we can extract a
subsequence, which will again be denoted by zi(t), i ≥ i0, that

lim
i→∞

zi(t) = z0(t) = (v00(t), v0(t))
T uniformly in [t00 − δ, t10 + δ].

Further, from the sequence żi(t), i ≥ i0, we can extract a subsequence, which will again
be denoted by żi(t), i ≥ i0, that

lim
i→∞

żi(t) = γ(t) weakly in [t00 − δ, t10 + δ],
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(see (3.2)). Obviously,

z0(t) = lim
i→∞

zi(t) = lim
i→∞

[zi(t00 − δ) +

∫ t

t00−δ

żi(s)ds]

= z0(t00 − δ) +

∫ t

t00−δ

γ(s)ds.

Thus, ż0(t) = γ(t) i.e.

lim
i→∞

żi(t) = ż0(t) weakly in [t00 − δ, t10 + δ].

Further, we have

zi(t) = z0i +

∫ t

t0i

[
Â(s)h(t0i, ςi, v̇i)(s− σi) + F (s, vi(s), h(t0i, φi, vi)(s− τi), ui(s))

]
ds

= z0i + ϑ1i(t) + ϑ2i + θ1i(t) + θ2i, t ∈ [t00, t10], i ≥ i0,

where

z0i = (0, x0i)
T , ϑ1i(t) =

∫ t

t00

Â(s)h(t0i, ςi, v̇i)(s− σi)ds,

θ1i(t) =

∫ t

t00

F (s, vi(s), h(t0i, φi, vi)(s− τi), ui(s))ds,

ϑ2i =

∫ t00

t0i

Â(s)h(t0i, ςi, v̇i)(s− σi)ds,

θ2i =

∫ t00

t0i

F (s, vi(s), h(t0i, φi, vi)(s− τi), ui(s))ds.

Obviously, ϑ2i → 0 and θ2i → 0 as i→ ∞.
First of all we transform the expression ϑ1i(t) for t ∈ [t00, t10]. For this purpose, we

consider two cases. Let t ∈ [t00, t00 + σ0], we have

ϑ1i(t) = ϑ
(1)
1i (t) + ϑ

(2)
1i (t),

where

ϑ
(1)
1i (t) =

∫ t

t00

Â(s)h(t00, ςi, v̇i)(s− σi)ds, ϑ
(2)
1i (t) =

∫ t

t00

ϑ
(3)
1i (s)ds,

ϑ
(3)
1i (s) = Â(s)

[
h(t0i, ςi, v̇i)(s− σi)− h(t00, ςi, v̇i)(s− σi)

]
.

It is clear that

| ϑ(2)
1i (t) |≤

∫ t10

t00

| ϑ(3)
1i (s) | ds, t ∈ [t00, t10]. (3.4)

Suppose that t0i + σi > t00 for i ≥ i0. According to (2.3)

ϑ
(3)
1i (s) = 0, s ∈ [t00, t

(1)
0i ) ∪ (t

(2)
0i , t1i],



58 Tadumadze T., Nachaoui A.

where

t
(1)
0i = min{t0i + σi, t00 + σi}, t(2)0i = max{t0i + σi, t00 + σi}

Since

lim
i→∞

(t
(2)
0i − t

(1)
0i ) = 0,

therefore,

lim
i→∞

ϑ
(2)
1i (t) = 0, uniformly in t ∈ [t00, t10], (3.5)

(see (3.3)). For ϑ
(1)
1i (t), t ∈ [t00, t00 + σ0] we get

ϑ
(1)
1i (t) =

∫ t−σi

t00−σi

Â(s+ σi)h(t00, ςi, v̇i)(s)ds = ϑ
(4)
1i (t) + ϑ

(5)
1i (t),

where

ϑ
(4)
1i (t) =

∫ t−σ0

t00−σ0

Â(s+ σ0)ςi(s)ds, ϑ
(5)
1i (t) =

∫ t−σ0

t00−σ0

[
Â(s+ σi)− Â(s+ σ0)

]
ςi(s)ds

+

∫ t00−σ0

t00−σi

Â(s+ σi)h(t00, ςi, v̇i)(s)ds+

∫ t−σi

t−σ0

Â(s+ σi)h(t00, ςi, v̇i)(s)ds.

Obviously,

lim
i→∞

ϑ
(5)
1i (t) = 0 uniformly in t ∈ [t00, t00 + σ0]

and

lim
i→∞

ϑ
(1)
1i (t) = lim

i→∞
ϑ
(4)
1i (t) =

∫ t−σ0

t00−σ0

Â(s+ σ0)ς0(s)ds

=

∫ t

t00

Â(s)ς0(s− σ0)ds, t ∈ [t00, t00 + σ0] (3.6)

(see (3.1)).
Let t ∈ [t00 + σ0, t10] then

ϑ
(1)
1i (t) = ϑ

(1)
1i (t00 + σ0) + ϑ

(6)
1i (t),

where

ϑ
(6)
1i (t) =

∫ t

t00+σ0

Â(s)h(t0i, ςi, v̇i)(s− σi)ds.

Further,

ϑ
(6)
1i (t) =

∫ t

t00+σ0

Â(s)h(t00, ςi, v̇i)(s− σi)ds+

∫ t

t00+σ0

ϑ
(3)
1i (s)ds = ϑ

(7)
1i (t) + ϑ

(8)
1i (t).

It is clear that

lim
i→∞

ϑ
(8)
1i (t) = 0 uniformly in t ∈ [t00 + σ0, t10],
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(see (3.5)). For ϑ
(7)
1i (t), t ∈ [t00 + σ0, t10] we have

ϑ
(7)
1i (t) =

∫ t−σi

t00+σ0−σi

Â(s+ σi)h(t00, ςi, v̇i)(s)ds = ϑ
(9)
1i (t) + ϑ

(10)
1i (t),

where

ϑ
(9)
1i (t) =

∫ t−σ0

t00

Â(s+ σ0)v̇i(s)ds, ϑ
(10)
1i (t) =

∫ t00

t00+σ0−σi

Â(s+ σi)h(t00, ςi, v̇i)(s)ds

+

∫ t−σi

t−σ0

Â(s+ σi)h(t00, ςi, v̇i)(s)ds+

∫ t−σ0

t00

[
Â(s+ σi)− Â(s+ σ0)

]
v̇i(s)ds.

Obviously,
lim
i→∞

ϑ
(10)
1i (t) = 0 uniformly in t ∈ [t00 + σ0, t10]

and

lim
i→∞

ϑ
(1)
1i (t) = lim

i→∞
ϑ
(1)
1i (t00 + σ0) + lim

i→∞
ϑ
(6)
1i (t) =

∫ t00+σ0

t00

Â(t)ς0(t− σ0)dt

+ lim
i→∞

ϑ
(9)
1i (t) =

∫ t00+σ0

t00

Â(t)ς0(t− σ0)dt+

∫ t−σ0

t00

Â(s+ σ0)v̇0(s)ds

=

∫ t00+σ0

t00

Â(t)ς0(t− σ0)dt+

∫ t

t00+σ0

Â(s)v̇0(s− σ0)ds. (3.7)

Now we transform the expression θ1i(t) for t ∈ [t00, t10]. We consider two cases again .
Let t ∈ [t00, t00 + τ0], we have

θ1i(t) = θ
(1)
1i (t) + θ

(2)
1i (t),

θ
(1)
1i (t) =

∫ t

t00

F (s, vi(s), h(t00, φi, vi)(s− τi), ui(s))ds, θ
(2)
1i (t) =

∫ t

t00

θ
(3)
1i (s)ds,

θ
(3)
1i (s) = F (s, vi(s), h(t0i, φi, vi)(s− τi), ui(s))− F (s, vi(s), h(t00, φi, vi)(s− τi), ui(s)).

It is clear that

| θ(2)1i (t) |≤
∫ t10

t00

| θ(3)1i (s) | ds, t ∈ [t00, t10]. (3.8)

Suppose that t0i + τi > t00 for i ≥ i0. According to (2.3)

θ
(3)
1i (s) = 0, s ∈ [t00, t

(3)
0i ) ∪ (t

(4)
0i , t1i],

where
t
(3)
1i = min{t0i + τi, t00 + τi}, t(4)1i = max{t0i + τi, t00 + τi}.

Since
lim
i→∞

(t
(4)
0i − t

(3)
0i ) = 0
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therefore,
lim
i→∞

θ
(2)
1i (t) = 0 uniformly in t ∈ [t00, t10], (3.9)

(see (3.3)). For θ
(1)
1i (t), t ∈ [t00, t00 + τ0], we have

θ
(1)
1i (t) =

∫ t−τi

t00−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds

= θ
(4)
1i (t) + θ

(5)
1i (t), i ≥ i0,

where

θ
(4)
1i (t) =

∫ t−τ0

t00−τ0

F (s+ τ0, v0(s+ τ0), φi(s), ui(s+ τi))ds,

θ
(5)
1i (t) =

∫ t−τi

t00−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds

−
∫ t−τ0

t00−τ0

F (s+ τ0, v0(s+ τ0), φi(s), ui(s+ τi))ds.

For t ∈ [t00, t00 + τ0] we obtain

θ
(5)
1i (t) =

∫ t00−τ0

t00−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds

+

∫ t−τ0

t00−τ0

[F (s+ τi, vi(s+ τi), φi(s), ui(s+ τi))−F (s+ τ0, v0(s+ τ0), φi(s), ui(s+ τi))]ds

+

∫ t−τi

t−τ0

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds.

Suppose that | τi − τ0 |≤ δ as i ≥ i0. According to condition (3.3) and

lim
i→∞

F (s+ τi, vi(s+ τi), y, u) = F (s+ τ0, v0(s+ τ0), y, u)

uniformly in (s, y, u) ∈ [t00 − τ0, t00]×K0 × U, we have

lim
i→∞

θ
(5)
1i (t) = 0 uniformly in t ∈ [t00, t00 + τ0].

From the sequence Fi(s) = F (s+τ0, v0(s+τ0), φi(s), ui(s+τi)), i ≥ i0, t ∈ [t00−τ0, t00],
we extract a subsequence, which will again be denoted by Fi(s), i ≥ i0, such that

lim
i→∞

Fi(s) = F0(s) weakly in the space L1([t00 − τ0, t00]),

(see (3.3)). It is not difficult to see that

Fi(s) ∈ P (s+ τ0, v0(s+ τ0)), s ∈ [t00 − τ0, t00].

By Theorem 2.2

F0(s) ∈ P (s+ τ0, v0(s+ τ0)) a.e.s ∈ [t00 − τ0, t00]
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and on the interval [t00− τ0, t00] there exist measurable functions φ01(s) ∈ K0, u01(s) ∈
U such that

F0(s) = F (s+ τ0, v0(s+ τ0), φ01(s), u01(s)) a.e.s ∈ [t00 − τ0, t00].

Thus ,

lim
i→∞

θ
(1)
1i (t) = lim

i→∞
θ
(4)
1i (t) =

∫ t−τ0

t00−τ0

F0(s)ds

=

∫ t−τ0

t00−τ0

F (s+ τ0, v0(s+ τ0), φ01(s), u01(s))ds

=

∫ t

t00

F (s, v0(s), φ01(s− τ0), u01(s− τ0))ds, t ∈ [t00, t00 + τ0]. (3.10)

Let t ∈ [t00 + τ0, t10] then

θ
(1)
1i (t) = θ

(1)
1i (t00 + τ0) + θ

(6)
1i (t), t ∈ [t00 + τ0, t10],

where

θ
(6)
1i (t) =

∫ t

t00+τ0

F (s, vi(s), h(t0i, φi, vi)(s− τi), ui(s))ds.

Further,
θ
(6)
1i (t) = θ

(7)
1i (t) + θ

(8)
1i (t),

θ
(7)
1i (t) =

∫ t

t00+τ0

F (s, vi(s), h(t00, φi, vi))(s− τi), ui(s))ds, θ
(8)
1i (t) =

∫ t

t00+τ0

θ
(3)
1i (s)ds.

It is clear that
lim
i→∞

θ
(8)
1i (t) = 0 uniformly in t ∈ [t00 + τ0, t10],

(see (3.8),(3.9)). For the expression θ
(7)
1i (t), t ∈ [t00 + τ0, t10] we have

θ
(7)
1i (t) =

∫ t−τi

t00+τ0−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds

= θ
(9)
1i (t) + θ

(10)
1i (t), i ≥ i0,

where

θ
(9)
1i (t) =

∫ t−τ0

t00

F (s+ τ0, v0(s+ τ0), v0(s), ui(s+ τi))ds,

θ
(10)
1i (t) =

∫ t−τi

t00+τ0−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds

−
∫ t−τ0

t00

F (s+ τ0, v0(s+ τ0), v0(s), ui(s+ τi))ds.

Clearly, for t ∈ [t00 + τ0, t10] we get

θ
(10)
1i (t) =

∫ t00

t00+τ0−τi

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds
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+

∫ t−τ0

t00

[F (s+ τi, vi(s+ τi), vi(s), ui(s+ τi))− F (s+ τ0, v0(s+ τ0), v0(s), ui(s+ τi))]ds

+

∫ t−τi

t−τ0

F (s+ τi, vi(s+ τi), h(t00, φi, vi)(s), ui(s+ τi))ds.

According to condition (3.3) and

lim
i→∞

F (s+ τi, vi(s+ τi), vi(s), u) = F (s+ τ0, v0(s+ τ0), v0(s), u)

uniformly in (s, u) ∈ [t00, t10 − τ0]× U, we obtain

θ
(10)
1i (t) = 0 uniformly in t ∈ [t00 + τ0, t10].

From the sequence Fi(s) = F (s+ τ0, v0(s+τ0), v0(s), ui(s+ τi)), i ≥ i0, t ∈ [t00, t10−τ0],
we extract a subsequence, which will again be denoted by Fi(s), i ≥ i0, such that

lim
i→∞

Fi(s) = F0(s) weakly in the space L1([t00, t10 − τ0]).

It is not difficult to see that

Fi(s) ∈ P1(s+ τ0, v0(s+ τ0), v0(s)), s ∈ [t00, t10 − τ0].

By Theorem 2.2

F0(s) ∈ P1(s+ τ0, v0(s+ τ0), v0(s)), a.e.s ∈ [t00, t10 − τ0]

and on the interval [t00, t10 − τ0] there exists a measurable function u02(s) ∈ U such
that

F0(s) = F (s+ τ0, v0(s+ τ0), v0(s), u02(s)) a.e.s ∈ [t00, t10 − τ0].

Thus,

lim
i→∞

θ
(1)
1i (t) = lim

i→∞
θ
(1)
1i (t00+τ0)+ lim

i→∞
θ
(9)
1i (t) =

∫ t00+τ0

t00

F (s, v0(s), φ01(s−τ0), u01(s−τ0))ds

+

∫ t−τ0

t00

F0(s)ds =

∫ t00+τ0

t00

F (s, v0(s), φ01(s− τ0), u01(s− τ0))ds

+

∫ t−τ0

t00

F (s+τ0, v0(s+τ0), v0(s), u02(s))ds =

∫ t00+τ0

t00

F (s, v0(s), φ01(s−τ0), u01(s−τ0))ds

+

∫ t

t00+τ0

F (s, v0(s), v0(s− τ0), u02(s− τ0))ds, t ∈ [t00 + τ0, t10], (3.11)

(see (3.10)).
Introduce the following notation

φ0(s) =

{
φ̂, s ∈ [τ̂ , t00 − τ0) ∪ (t00, t02],

φ01(s), s ∈ [t00 − τ0, t00],
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u0(s) =


û, s ∈ [a, t00) ∪ (t10, b],

u01(s− τ0), s ∈ [t00, t00 + τ0],

u02(s− τ0), s ∈ (t00 + τ0, t10],

where φ̂ ∈ K0 and û ∈ U are fixed points;

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

v0(t), t ∈ [t00, t10];

ẋ0(t) = ς0(t), t ∈ [τ̂ , t00),

(see Remark 1.1),
x00(t) = v0(t), t ∈ [t00, t10].

Clearly, w0 = (t00, t10, τ0, σ0, x00, φ0, ς0, u0) ∈ W. Taking into account (3.6),(3.7),(3.10)
and (3.11) we obtain

x00(t) =

∫ t

t00

[
a0(s)ẋ0(s− σ0) + f 0(s, x0(s), x0(s− τ0), u0(s))

]
ds, t ∈ [t00, t10],

x0(t) = x00 +

∫ t

t00

[
A(s)ẋ0(s− σ0) + f(s, x0(s), x0(s− τ0), u0(s))

]
ds, t ∈ [t00, t10].

It is not difficult to see that

lim
i→∞

(x0i (t1i), xi(t1i))
T = lim

i→∞
ρi(t1i) = lim

i→∞
zi(t1i))

= lim
i→∞

[zi(t1i)− zi(t10)] + lim
i→∞

[zi(t10)− z0(t10)] + z0(t10) = z0(t10)

= (v0(t10), v0(t10))
T = (x00(t10), x0(t10))

T ∈ H,

(see (3.2)). Consequently,

0 = lim
i→∞

g(t0i, t1i, τi, σi, x0i, xi(t1i)) = g(t00, t10, τ0, σ0, x00, x0(t10)),

i.e. the element w0 is admissible and x0(t) = x(t;w0), t ∈ [τ̂ , t10].
Further, we have

Ĵ = lim
i→∞

[g0(t0i, t1i, τi, σi, x0i, xi(t1i)) + x0i (t1i)] = g(t00, t10, τ0, σ0, x00, x0(t10))

+x00(t10) = J(w0).

Thus, w0 is an optimal element.

4. Proof of Theorem 1.2

First of all we note that the sets ∆ ⊂ L1([τ̂ , t02]) and Ω ⊂ L1(I) are weakly compacts
(see Theorem 2.2). Let

wi = (t0i, t1i, τi, σi, x0i, φi, ςi, ui) ∈ W0, i = 1, 2, ...
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be a minimizing sequence,i.e.

lim
i→∞

J(wi) = Ĵ = inf
w∈W0

J(w).

Without loss of generality, we assume that

lim
i→∞

t0i = t00, lim
i→∞

t1i = t10, lim
i→∞

τi = τ0, lim
i→∞

σi = σ0, lim
i→∞

x0i = x00,
limi→∞ φi(t) = φ0(t),weakly on [τ̂ , t02],

limi→∞ ςi(t) = ς0(t),weakly on [τ̂ , t02],

limi→∞ ui(t) = u0(t) weakly on I.

(4.1)

(see (3.1)).
To each element µ = (t0, τ, σ, x0, φ, ς, u) ∈ Π we will set in correspondence the

functional differential equation

ζ̇(t) = A(t)h(t0, ς, ζ̇)(t− σ) + C(t, ζ(t))h(t0, φ, ζ)(t− τ) +D(t, ζ(t))u(t)

with the initial condition
ζ(t0) = x0

It is easy to see that for xi(t) = x(t;wi) we have
ẋi(t) = A(t)h(t0, ς, ẋi)(t− σi) + C(t, xi(t))h(t0i, φi, xi)(t− τi)+

D(t, xi(t))ui(t), t ∈ [t0i, t1i],

xi(t0i) = x0i.

Thus, xi(t) ∈ K2 is the solution corresponding to µi = (t0i, τi, σi, x0i, φi, ςi, ui) and
defined on the interval [t0i, t1i]. Let K̂2 ⊂ O be a compact set containing a certain
neighborhood of the set K2. By Theorem 2.1 there exists a number δ > 0 such that
for a sufficiently large i0 the solutions ζi(t) = ζ(t;µi), i ≥ i0 are defined on the interval
[t00 − δ, t10 + δ] ⊂ I and

ζi(t) ∈ K̂2, t ∈ [t00 − δ, t10 + δ], ζi(t) = xi(t), t ∈ [t0i, t1i], i ≥ i0.

After this (see the proof of Theorem 1.1) we prove in the standard way that

lim
i→∞

ζi(t) = ζ0(t) uniformly in t ∈ [t00 − δ, t10 + δ],

and
lim
i→∞

ζ̇i(t) = ζ̇0(t) weakly on t ∈ [t00 − δ, t10 + δ],

where ζ0(t) is the solution corresponding to the element µ0 = (t00, τ0, σ0,
x00, φ0, ς0, u0), defined on the interval [t00 − δ, t10 + δ] and satisfying the condition
ζ0(t00) = x00. Moreover,

lim
i→∞

xi(t1i) = lim
i→∞

ζi(t1i) = lim
i→∞

[ζi(t1i)− ζi(t10)]
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+ lim
i→∞

[ζi(t10)− ζ0(t10)] + ζ0(t10) = ζ0(t10),

Hence,

0 = lim
i→∞

g(t0i, t1i, τi, σi, x0i, xi(t1i)) = g(t00, t10, τ0, σ0, x00, ζ0(t10)).

Introduce the following notation

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

ζ0(t), t ∈ [t00, t10]
(4.2)

ẋ0(t) = ς0(t), t ∈ [τ̂ , t00), (4.3)

(see Remark 1.1).
Clearly the function x0(t) is the solution corresponding to the element w0 =

(t00, t10, τ0, σ0, x00, φ0, ς0, u0) ∈ W and satisfying the condition

g(t00, t10, τ0, σ0, x00, x0(t10)) = 0,

i.e. w0 ∈ W0.
Now we prove optimality of the element w0. We have,

lim
i→∞

g0(t0i, t1i, τi, σi, x0i, xi(t1i)) = g0(t00, t10, τ0, σ0, x00, x0(t10)),∫ t1i

t0i

a0(t)ẋi(t− σi)dt =

∫ t1i

t0i

a0(t)h(t1i, ξi, ζ̇i)(t− σi)dt,∫ t1i

t0i

f 0(t, xi(t), xi(t− τi), ui(t))dt =

∫ t1i

t0i

f 0(t, ζi(t), h(t0i, φi, ζi)(t− τi), ui(t))dt.

In a similar way (see proof of Theorem 1.1) it can be proved that∫ t1i

t0i

a0(t)h(t1i, ςi, ζ̇i)(t− ηi)dt = ϱ1i + ϱ2i + ϱ3i

∫ t1i

t0i

f 0(t, ζi(t), h(t0i, φi, ζi)(t− τi), ui(t))dt = γ1i + γ2i + γ3i,

where

ϱ1i =

∫ t00

t00−σ0

a0(t+ σ0)ξi(t)dt, ϱ2i =

∫ t10−σ0

t00

a0(t+ σ0)v̇i(t)dt

γ1i =

∫ t00

t00−τ0

f 0(t+ τ0, ζ0(t+ τ0), φi(t), ui(t+ τi))dt,

γ2i =

∫ t10−τ0

t00

f 0(t+ τ0, ζ0(t+ τ0), ζ0(t), ui(t+ τi))dt

and
lim
i→∞

ϱ3i = 0, lim
i→∞

γ3i = 0.
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The functionals∫ t00

t00−τ0

f 0(t+ τ0, ζ0(t+ τ0), φ(t), u(t))dt, (φ, u) ∈ ∆× Ω

and ∫ t10−τ0

t00

f 0(t+ τ0, ζ0(t+ τ0), ζ0(t), u(t))dt, u ∈ Ω

are lower semicontinuous (see [3]).
It is not difficult to see that, if

lim
i→∞

ui(t) = u0(t) weakly on I

then
lim
i→∞

ui(t+ τi) = u0(t+ τ0) weakly on [t00 − τ0, t10 − τ0],

(see (4.1)). Using the latter and above given relations, we get

Ĵ = lim
i→∞

J(wi) = lim
i→∞

[g0(t0i, t1i, τi, σi, x0i, xi(t1i)) + ϱ1i + ϱ2i + ϱ3i

+γ1i + γ2i + γ3i] = g0(t00, t10, τ0, σ0, x00, x0(t10)) + lim
i→∞

[ϱ1i + ϱ2i]

+ lim
i→∞

[γ1i + γ2i] ≥ g0(t00, t10, τ0, σ0, x00, x0(t10)) +

∫ t00

t00−σ0

a0(t+ σ0)ζ0(t)dt

+

∫ t10−σ0

t00

a0(t+ σ0)ζ̇0(t)dt+

∫ t00

t00−τ0

f 0(t+ τ0, ζ0(t+ τ0), φ0(t), u0(t+ τ0))dt

+

∫ t10−τ0

t00

f 0(t+ τ0, ζ0(t+ τ0), ζ0(t), u0(t+ τ0))dt = g0(t00, t10, τ0, σ0, x00, x0(t10))

+

∫ t10

t00

[
a0(t)ẋ0(t− σ0) + f 0(t, x0(t), x0(t− τ0), u0(t))

]
dt = J(w0),

(see (4.2),(4.3)). Here, by definition of Ĵ , the inequality is impossible. The optimality
of the element w0 has been proved.
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Abstract. The purpose of this paper is to consider two-dimensional version of the full coupled

theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet and

Neumann BVPs of statics in the full coupled theory for an elastic plane with a circular

hole. The explicit solutions of these BVPs are represented by means of absolutely and

uniformly convergent series. The questions on the uniqueness of a solutions of the problems

are established.
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Introduction

Many geothermal fields are naturally fractured systems. Classic double porosity
models the flow between matrix and fractures, under the hypothesis that petrophysical
properties are uniform in each medium. Fractures have the largest permeability and
drive the fluid toward the wells. The matrix, with smaller permeability, only acts as
a source of fluid for the fractures. Double porosity models can be classified as special
cases of this general theoretical concept, applicable to all class reservoirs. The matrix
blocks surrounded by fractures can have several geometries and any size. Fractures have
very little storage, but provide the high permeability conduits to drive the fluid toward
the wells. Matrix blocks have higher porosity and constitute the largest storage, but
have smaller permeability, acting only as a source of stationary fluid for the fractures.

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable media
with two degrees of porosity. In a material with two degrees of porosity, there are two
pore systems, the primary and the secondary. For example in a fissured rock (i.e.a mass
of porous blocks separated from each other by an interconnected and continuously
distributed system of fissures) most of the porosity is provided by the pores of the
blocks or primary porosity, while most of permeability is provided by the fissures or
the secondary porosity.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K. Wil-
son and E. C. Aifantis [2] gave detailed physical interpretations of the phenomenological

1This paper dedicated to our teacher to the 85th birth anniversary of professor Mikheil
Basheleishvili
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coefficients appearing in the double porosity theory. They also solved several represen-
tative boundary value problems. In part II of this series, uniqueness and variational
principles were established by D. E. Beskos and E. C. Aifantis [3] for the equations of
double porosity, while in part III Khaled, Beskos and Aifantis [4] provided a related
finite element to consider the numerical solution of Aifantis’ equations of double poros-
ity (see [2],[3],[4] and the references cited therein). The basic results and the historical
information on the theory of porous media were summarized by Boer [5].

However, Aifantis’ quasi-static theory ignored the cross-coupling effect between the
volume change of the pores and fissures in the system. The cross-coupled terms were
included in the equations of conservation of mass for the pore and fissure fluid and in
Darcy’s law for solids with double porosity by several authors [5,9]. In [10] the full
coupled linear theory of elasticity for solids with double porosity is considered. Four
spatial cases of the dynamical equations are considered. The fundamental solutions
are constructed by means of elementary functions and the basic properties of the fun-
damental solutions are established. The fundamental solution of quasi-static equations
of the linear theory elasticity for double porosity solids is constructed and basic prop-
erties are established in [11]. In [12-15] the explicit solutions of the problems of porous
elastostatics for an elastic circle and for the plane with a circular hole are constructed,
the uniqueness theorems for regular solutions are proved and the numerical results are
given for boundary value problems. Explicit solutions of the BVPs of the theory of
consolidation with double porosity for the half-plane and half-space are considered in
[16,17].

The purpose of this paper is to consider two-dimensional version of the full coupled
theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet
and Neumann BVPs of statics in the full coupled theory for an elastic plane with
a circular hole. The explicit solutions of these BVPs are represented by means of
absolutely and uniformly convergent series. The questions on the uniqueness of a
solutions of the problems are established.

Basic equations and boundary value problems

Let D be a plane with a circular hole. Let R be the radius of a circle with the
boundary S centered at point O(0, 0). Let us assume that the domain D is filled with
an isotropic material with double porosity.

The system of homogeneous equations in the full coupled linear equilibrium theory
of elasticity for materials with double porosity can be written as follows [6,10]

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) = 0, (1)

(k1∆− γ)p1 + (k12∆+ γ)p2 = 0,

(k21∆+ γ)p1 + (k2∆− γ)p2 = 0,
(2)

where u = u(u1, u2)
T is the displacement vector in a solid, p1 and p2 are the pore

and fissure fluid pressures respectively. β1 and β2 are the effective stress
parameters, γ > 0 is the internal transport coefficient and corresponds to fluid trans-
fer rate with respect to the intensity of flow between the pore and fissures, λ, µ, are
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constitutive coefficients, kj =
κj
µ′ , k12 =

κ12
µ′ , k21 =

κ21
µ′ . µ

′ is the fluid viscosity, κ1

and κ2 are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity, respectively, κ12 and κ21 are the cross-coupling permeabilities for fluid flow
at the interface between the matrix and fissure phases, ∆ is the 2D Laplace operator.
Throughout this article it is assumed that β2

1 + β2
2 > 0, and the superscript ”T”

denotes transposition.
Introduce the definition of a regular vector-function.
Definition. A vector-function U(x) = (u1, u2, p1, p2) defined in the domain D

is called regular if it has integrable continuous second derivatives in D, and U(x)
itself and its first order derivatives are continuously extendable at every point of the
boundary of D, i.e., U(x) ∈ C2(D)

∩
C1(D); x ∈ D, x = (x1, x2). Note that in

the domain D the vector U(x) additionally has to satisfy certain conditions at infinity.
Note that system (2) would be considered separately. Further we assume that pj is

known, when x ∈ D.
Supposing (

p1(x)
p2(x)

)
=

(
k2∆− γ − (k12∆+ γ)
−(k21∆+ γ) k1∆− γ

)
ψ(x),

where ψ = (ψ1, ψ2) is a four times differentiable vector function, we can write the
system (2) as

(∆ + λ21)∆ψj(x) = 0. (3)

With the help of (3) we find the solution of system (2) in the form

p1(x) = φ(x) + A1φ1(x), p2(x) = φ(x) + φ1(x), (4)

where

∆φ = 0, (∆ + λ21)φ1 = 0, A1 =
γ − k12λ

2
1

γ + k1λ21
= −k2 + k12

k1 + k21
,

λ1 = i

√
γk0

k1k2 − k12k21
= iλ0, i =

√
−1, k0 = k1 + k2 + k12 + k21;

k1 > 0, k2 > 0, γ > 0, k1k2 − k12k21 > 0, k0 > 0.

Let us substitute the expression β1p1 + β2p2 into (1) and let us search the
particular solution of the following nonhomogeneous equation

µ∆u+ (λ+ µ)graddivu = grad[(β1 + β2)φ+ (A1β1 + β2)φ1].

It is well-known that a general solution of the last equation is presented in the form

u(x) = v(x) + v0(x), (5)

where v(x) is a general solution of the equation

µ∆v+ (λ+ µ)graddivv = 0, (6)
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and v0(x) is a particular solution of the nonhomogeneous equation

v0(x) =
1

λ+ 2µ
grad

[
(β1 + β2)φ0 −

β1A1 + β2
λ21

φ1

]
, (7)

where φ0 is a biharmonic function ∆∆φ0 = 0 and ∆φ0 = φ, ∆φ = 0.
So it remains to study the problem of finding the functions pj(x), j = 1, 2.
We consider only the exterior boundary value problems. The interior one can be

treated quite similarly.
The basic BVPs in the full coupled linear equilibrium theory of elasticity for mate-

rials with double porosity are formulated as follows.
The Dirichlet BVP problem. Find a regular solution U(u, p1, p2) to systems

(1) and (2) for x ∈ D satisfying the following boundary conditions:

u = f(z), p1(z) = f3(z), p2(z) = f4(z), z ∈ S; (8)

Note that for the domain D the vector U(x) additionally has to satisfy the following
decay conditions at infinity

U(x) = o(1),
∂U(x)

∂xj
= O(|x|−2), |x|2 = x21 + x22, j = 1, 2, (9)

where o(.) and O(.) are Landau’s notion.
The Neumann BVP problem. Find a regular solution U(u, p1, p2) to systems

(1) and (2) for x ∈ D satisfying the following boundary conditions:

P

(
∂

∂x
,n

)
U(z) = f(z),

∂

∂n
p1(z) = f3(z),

∂

∂n
p2(z) = f4(z), z ∈ S, (10)

where f(z), and fj(z), j = 3, 4, are known functions, n(z) is the external unit

normal vector on S at z and P

(
∂

∂x
,n

)
U is the stress vector in the considered theory

P

(
∂

∂x
,n

)
U = T

(
∂

∂x
,n

)
u− n(β1p1 + β2p2), (11)

T

(
∂

∂x
,n

)
u is the stress vector in the classical theory of elasticity,

T

(
∂

∂x
,n

)
u(x) = µ

∂

∂n
u(x)+ λndivu(x)+ µ

2∑
i=1

ni(x)gradui(x).

Vector U(x) additionally has to satisfy the following decay conditions at infinity

U(x) = O(1),
∂U(x)

∂xj
= O(|x|−2), |x|2 = x21 + x22, j = 1, 2. (12)
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The uniqueness theorems

For a regular solutions of the Dirichlet and the Neumann BVPs in D Green’s
formulas: ∫

D

[E(u,u)− (β1p1 + β2p2)divu]dx = −
∫
S

uP(∂y,n)UdyS,

∫
D

{γ(p1 − p2)
2 + (k12 + k21)gradp1gradp2}dx

+

∫
D

{
k1(gradp1)

2 + k2(gradp2)
2
}
dx = −

∫
S

pP(1)(∂y,n)pdyS,

(13)

are valid, where

E(u,u) = (λ+ µ)(divu)2 + µ

(
∂u1
∂x1

− ∂u2
∂x2

)2

+ µ

(
∂u2
∂x1

+
∂u1
∂x2

)2

.

P(1)(∂x,n)p =

 k1 k12

k21 k2

 ∂p

∂n
, p = (p1, p2).

For positive definiteness of the potential energy the inequalities µ > 0, λ+ µ > 0
are necessary and sufficient.

Now let us prove the following theorems.

Theorem 1. The Dirichlet boundary value problem has at most one regular solution
in the infinite domain D.

Proof: Let the first BVP have in the domain D two regular solutions U(1) and U(2).
Denote U = U(1)−U(2). The vectors U(1) and U(2) in the domain D must satisfy the
condition (9); In this case formula (13) is valid and U(x) = C, x ∈ D, where C is a
constant vector. But U on the boundary satisfies the condition U = 0, which implies
that C = 0 and U(x) = 0, x ∈ D.

Theorem 2. The regular solution of the Neumann boundary value problem U =
const in the infinite domain D.

Proof: For the exterior second homogeneous boundary value problem the vector U
must satisfy condition at infinite (12). In this case, the formulas (13) are valid for a
regular U. Using these formulas, we obtain

u1 = c1 − εx2, u2 = c2 + εx1, p1 = p2 = const, x ∈ D,

where c1, c2, ε are constants. Bearing in mind (12), we have ε = 0, and

u1 = c1, u2 = c2, p1 = p2 = const, x ∈ D.
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Explicit solution of the Dirichlet BVP for a plane with circular hole

A solution of system (2) with boundary conditions p1(z) = f3(z), p2(z) =
f4(z), z ∈ S is sought in the form (5), where the functions φ and φ1 are unknown
in D. On the basis of boundary conditions we reformulate the problem in question as
follows

φ(z) = h(z), φ1(z) = h1(z), z ∈ S, (14)

where

h =
1

k0
[(k1 + k21)f3 + (k2 + k12)f4],

h1 =
1

k0
(k1 + k21)(f4 − f3).

(15)

Obviously the function φ is solution of the equation ∆φ = 0 and it is represented
in the form of the following series ([19], p. 281)

φ(x) =
∞∑
k=0

(
R

ρ

)k

(Yk · νk(ψ)), (16)

where
x(x1, x2) = (ρ, ψ), ρ2 = x21 + x22, Yk = (Ak, Bk),

νk = (cos kψ, sin kψ), Y0 = (A0, 0), A0 =
1

2π

2π∫
0

h(θ)dθ,

Ak =
1

π

2π∫
0

h(θ) cos kθdθ, Bk =
1

π

2π∫
0

h(θ) sin kθdθ.

The regular metaharmonic function φ1 in the domain D can be written as follows (
[18], p. 99)

φ1(x) =
∞∑
k=0

Kk(λ0ρ)(Zk · νk(ψ)), (17)

where Kk(λ0ρ) is a modified Hankel’s function of an imaginary argument, with the
index k.

Kk(λ0ρ) → 0, ρ → ∞; νk = (cos kψ, sin kψ); Zk = (Ck, Dk); Z0 = (C0, 0);
C0, Ck, Dk are the unknown quantities.

The function h1(z) in (15) can be represented in a Fourier series. Keeping in mind
(17) and boundary conditions (14) we obtain the values of Ck and Dk

C0 =
1

2πK0(λ0R)

2π∫
0

h1(θ)dθ, Ck =
1

πKk(λ0R)

2π∫
0

h1(θ) cos kθdθ, (18)
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Dk =
1

πKk(λ0R)

2π∫
0

h1(θ) sin kθdθ.

If we substitute the values of φ and φ1 into (4), we find the functions p1(x) and
p2(x) in D.

A solution v(x) = (v1, v2) of homogeneous equation (6) is sought in the form [14]

v1(x) =
∂

∂x1
[Φ1 + Φ2]−

∂Φ3

∂x2
,

v2(x) =
∂

∂x2
[Φ1 + Φ2] +

∂Φ3

∂x1
,

(19)

where Φ1, Φ2 and Φ3 are scalar functions,

∆Φ1 = 0, ∆∆Φ2 = 0, ∆∆Φ3 = 0,

(λ+ 2µ)
∂

∂x1
∆Φ2 − µ

∂

∂x2
∆Φ3 = 0,

(λ+ 2µ)
∂

∂x2
∆Φ2 + µ

∂

∂x1
∆Φ3 = 0.

(20)

Taking into account (5) and boundary conditions (8), we can write

v(z) = Ψ(z), (21)

where Ψ(z) = f(z) − v0(z) is the known vector; φ(z) and φ1(z) are defined by
equalities (14). On the basis of equation ∆φ0 = φ the function φ0 is represented in
the following form

φ0(x) =
R2

4

∞∑
k=2

1

1− k

(
R

ρ

)k−2

(Yk · νk(ψ)), (22)

where Yk is defined by (16).
In view of (20) we can represent the harmonic function Φ1, biharmonic functions

Φ2 and Φ3 in the form

Φ1 =
∞∑
k=0

(
R

ρ

)k

(Xk1 · νk(ψ)),

Φ2 =
∞∑
k=0

R2

(
R

ρ

)k−2

(Xk2 · νk(ψ)),

Φ3 =
R2(λ+ 2µ)

µ

∞∑
k=0

(
R

ρ

)k−2

(Xk2 · sk(ψ)),

(23)
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where Xki = (Xki1, Xki2), k = 1, 2 are the unknown two-component vectors,
νk = (cos kψ, sin kψ), sk = (− sin kψ, cos kψ). Using the formulas

∂

∂x1
= n1

∂

∂ρ
− n2

ρ

∂

∂ψ
,

∂

∂x2
= n2

∂

∂ρ
+
n1

ρ

∂

∂ψ

the boundary conditions (21) are rewritten in the form

vn(z) = Ψn(z), vs(z) = Ψs(z), z ∈ S, (24)

where vn and Ψn(z) are the normal components of the vectors v = (v1, v2) and Ψ =
(Ψ1,Ψ2) respectively; vs and Ψs(z) are the tangent components of the vectors
v = (v1, v2) and Ψ = (Ψ1,Ψ2) respectively. Substituting the equalities (19),(23) into
(24), we get

vn =
∂

∂ρ
(Φ1 + Φ2)−

1

ρ

∂

∂ψ
Φ3,

vs =
1

ρ

∂

∂ψ
(Φ1 + Φ2) +

∂

∂ρ
Φ3,

Ψn = n1Ψ1 + n2Ψ2, Ψs = −n2Ψ1 + n1Ψ2,

n = (n1, n2), s = (−n2, n1), n1 =
x1
ρ
, n2 =

x2
ρ
.

(25)

Let us expand the functions Ψn and Ψs in Fourier series, that Fourier coefficients
are γk and δk :

γ0 = (γ01, 0), γk = (γk1, γk2), δ0 = (δ01, 0), δk = (δk1, δk2),

γ01 =
1

π

2π∫
0

Ψn(θ)dθ, δ01 =
1

π

2π∫
0

Ψs(θ)dθ,

γk1 =
1

π

2π∫
0

Ψn(θ) cos kθdθ, δk1 =
1

π

2π∫
0

Ψs(θ) cos kθdθ,

γk2 =
1

π

2π∫
0

Ψs(θ) sin kθdθ, δk2 =
1

π

2π∫
0

Ψn(θ) sin kθdθ.

(26)

If we substitute (25) into (24), then obtained into (26), then passing to limit as ρ −→
R, for determining the unknown values we obtain the following system of algebraic
equations whose solution is written in the following form:

X01i =
γ0iR

2
, Xk1i =

R(γki + δki)

2k(λ+ 3µ)
[2µ+ (λ+ µ)k]− γkiR

k
,
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X02i =
δ0iRµ

2
, Xk2i =

(γki + δki)µ

2R(λ+ 3µ)
, i = 1, 2, k = 1, 2, ....

Thus the solution of the Dirichlet boundary problem is represented by the sum (5) in
which v(x) is defined by means of formula (19), v0(x) by formula (7), φ0(x) by formula
(22) and φ1(x) by formulas (17) and (18). It can be proved that if the functions f and
fj, j = 3, 4 satisfy the following conditions on S

f ∈ C3(S), fj ∈ C3(S), j = 3, 4,

then the resulting series are absolutely and uniformly convergent.

Explicit solution of the Neumann BVP for a plane with circular hole

We sought the solution of the Neumann BVP in the form (4), where the functions φ
and φ1 are unknown in the domain D. Taking into account formulas (4), the boundary
conditions can be rewritten as

∂φ(z)

∂R
= h(z),

∂φ1(z)

∂R
= h1(z), z ∈ S. (27)

h(z) and h1(z) are given by (15), where f3 =
∂p1
∂R

, f4 =
∂p2
∂R

.

Thus for the unknown harmonic function φ we obtain the Neumann problem, the
solution that is represented in the form of series ([19],p.282)

φ(x) = c1 −
∞∑
k=1

R

k

(
R

ρ

)k

(Yk · νk(ψ)), (28)

where c1 is an arbitrary constant; Yk = (Ak, Bk),

Ak =
1

π

2π∫
0

h(θ) cos kθdθ, Bk =
1

π

2π∫
0

h(θ) sin kθdθ.

The metaharmonic function φ1(x) in the domain D can be written as (17), where
Zk = (Ck, Dk); C0, Ck, Dk are the unknown quantities. Keeping in mind (15) and
boundary conditions (27), we obtain the values of Z0, Ck and Dk

C0 =
1

2πλ0K ′
0(λ0R)

2π∫
0

h1(θ)dθ, Ck =
1

πλ0K ′
k(λ0R)

2π∫
0

h1(θ) cos kθdθ, (29)

Dk =
1

πλ0K ′
k(λ0R)

2π∫
0

h1(θ) sin kθdθ,

where

K ′
k(ξ) =

∂Kk(ξ)

∂ξ
,

∂Kk(λ0ρ)

∂ρ
= λ0K

′
k(λ0ρ), K ′

k(λ0R) ̸= 0, k = 0, 1, 2, ....



The Boundary Value Probems in the full Coupled .... 77

Taking into account (10) the boundary condition (9) for T

(
∂

∂z
,n

)
v(z) can be rewrit-

ten as

T

(
∂

∂z
,n

)
v(z)(z) = Ω(z), z ∈ S, (30)

where

Ω( z) = f(z) + n(z)[aφ1(z) + bφ(z)]−T

(
∂

∂z
,n

)
v0(z)

is the known vector, Ω = (Ω1,Ω2); φ is defined by (28) and φ1 - formulas (17) and
(18); a = β1 + β2, b = A1β1 + β2.

Let us rewrite the boundary conditions (30) in the form[
T

(
∂

∂z
,n

)
v(z)

]
n

= Ωn(z),

[
T

(
∂

∂z
,n

)
v(z)

]
s

= Ωs(z), (31)

where

[
T

(
∂

∂z
,n

)
v(z)

]
n

and Ωn(z) are the normal components of the vectors

T

(
∂

∂z
,n

)
v and Ω(z) respectively;

[
T

(
∂

∂z
,n

)
v(z)

]
s

and Ωs(z) are the tangent

components of the vectors T

(
∂

∂z
,n

)
v(z)) and Ω(z) respectively.

[
T

(
∂

∂z
,n

)
v(z)

]
n

= (λ+ µ)

[
∂vn(z)

∂ρ

]
ρ=R

+
λ

R

∂vs(z)

∂ψ
,

[
T

(
∂

∂z
,n

)
v(z)

]
s

= µ

[
∂vs(z)

∂ρ

]
ρ=R

+
µ

R

∂vn(z)

∂ψ
;

(32)

Ωn(z) = fn(z) + aφ1(z) + bφ(z)−
[
T

(
∂

∂z
,n

)
v0(z)

]
n

,

Ωs(z) = fs(z)−
[
T

(
∂

∂z
,n

)
v0(z)

]
s

, z ∈ S.

vn and vs are defined from (25), v0 is defined by means of formula (7), where function
φ0(x) is the solution of equation ∆φ0 = φ and represented in the form [14]

φ0(x) =
−R3

4

∞∑
k=2

1

k(1− k)

(R
r

)k−2

(Yk · νk(ψ)),

Yk are defined in (28); c1 is an arbitrary constant.
Let us expand the functions Ωn and Ωs in Fourier series, those Fourier coef-

ficients are γk = (γk1, γk2) and δk = (δk1, δk2). Taking into account the formulas
(25),(23) and (32), then passing to limit as ρ −→ R, for determining the unknown
values we obtain the following system of algebraic equations
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k[λ+ 2µ(k + 1)]Xk1i+{
(λ+ 2µ)(1− k)(2− k +

λ+ 2µ

µ
k)− λkR2

[
k +

λ+ 2µ

µ
(2− k)

]}
Xk2i = γkiR

2,

−k(1 + 2k)Xk1i +R2

[
k(3− 2k) +

λ+ 2µ

µ
(k2 − 3k + 2)

]
Xk2i =

δkiR
2

µ
,

i = 1, 2; k = 1, 2, ...,

where γki and δki are the Fourier coefficients of normal and tangential components of
the vector Ω(z) respectively.

We assume that the functions f and fj, (j = 3, 4) satisfies the following conditions
on S

f ∈ C2(S), fj ∈ C2(S), j = 3, 4.

Under these conditions the resulting series are absolutely and uniformly convergent.
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