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Introduction 

In the epoch when the results of the experiments carried out in the physical Microworld for 
studying the radiation of an absolutely black body are comprehend, the data of observation of the 
receding Galaxies in the Megaworld were processed, such definitions and notionsas the integrity 
of the physical system and its dissipativity were not applied, and while the variational methods 
were used, the equivalence of the Euler-Lagrange and Hamilton equations were not taken into 
consideration. However, these definitions, notions and methods are essential in modeling the 
processes of the Microworld and Megaworld, since they allow us to look at the optimality of those 
worlds from the variational position. At the same time, these definitions, notions and methods are 
common to Microworld and Megaworld. They make the physical Microworld and Megaworld 
similar. 

The integrity of the system, i.e. its indivisibility into subsystems, can be interpreted on the 

example of the system of observations (measurements). 

Let the system of observations be given by scalar equations 

𝑥̇𝑥 = −𝛼𝛼𝛼𝛼 + 𝜉𝜉(𝑡𝑡),                                                                                                             (0.1) 

𝑦𝑦 = 𝑥𝑥 + 𝜁𝜁(𝑡𝑡),                                                                                                                 (0.2) 

of the object (0.1) and the observation channel (0.2). 

In the expressions (0.1) and (0.2), 𝜉𝜉(𝑡𝑡) and 𝜁𝜁(𝑡𝑡)are scalar random processes of the white 

noise type with the following stochastic characteristics: 

 𝐸𝐸[𝜉𝜉(𝑡𝑡)] = 0, 𝐸𝐸[𝜉𝜉(𝑡𝑡)𝜉𝜉(𝑡𝑡′)] = 𝜌𝜌𝜌𝜌(𝑡𝑡 − 𝑡𝑡′),  

         𝐸𝐸[𝜁𝜁(𝑡𝑡)𝜁𝜁(𝑡𝑡′)] = 𝑟𝑟𝑟𝑟(𝑡𝑡 − 𝑡𝑡′), 𝐸𝐸[𝜁𝜁(𝑡𝑡)] = 0, 
where 𝐸𝐸  is the operator of mathematical expectation;  𝛿𝛿  is the Dirac function, and the 
parameters , , rα ρ  are constant.  

Introduce the following notations: ( ) 00E x  =   ( )2
00E x ν  =  , ( )2ˆE x xν  = −  ,  where 

𝑥𝑥 � is the conditional estemation of the variable 𝑥𝑥 by observation 𝑦𝑦 received by the method of 
the minimum squares, and ν  is the dispersion of variable 𝑥𝑥. 

In this case, the equation for dispersion ν  will be given by [1]: 

( ) 22 1/ ,rν αν ν ρ= − − +

1    ( ) 00 .ν ν=                                                                         (0.3) 

                                                           
1We refer equation (0.3) as Riccati equation, where the constant term is zero, i.e. 0=ρ  
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Expression (0.3) is the Riccati equation. The right-hand side part of (0.3) can be written 

in the form of a soliton 

 ( )2 *   sech   ,d A t
dt
ν β ϕ=− −                                                                                              (0.4) 

where 

( ) 1
* 2 2 0

1 0

, ln , ,r c c ν νβ α ρ ϕ
ν ν

− +
= + = =

− 1 0ν ν> , 

( ) ( )* * * 1 2
1 2. , ,

2
r r A D D

c
ν νν β α ν β α β +

= − = + = = . 

Finally, as the solution of equation (0.4) allows us to determine the dispersion we have 

 ( )
0

2
0 sech  

t

t

A t t dtν β ϕ ′ = − − −  ′∫ .                                                                                (0.5) 

The representation of the system of observations (measurements) as object (0.1) and the 
observation channel as (0.2) is formal. In natural conditions the observation system is an 
integral formation that cannot be divided into object (0.1) and observation channel (0.2). 
Observation channel (0.2) is an inherent part of observation object (0.1) [2]. Representation of 
a real observation system in the form of expressions (0.1) and (0.2) is rational for mathematical 
processing of the observation by the indirect data. 

In the Megaworld there are some objects that can be described by the following equations 

𝑧̇𝑧 = 𝑚𝑚𝑚𝑚(𝑛𝑛 − 𝑧𝑧),                                                                                                           (0.6𝑎𝑎) 

𝑧̇𝑧 = −𝑚𝑚𝑚𝑚(𝑛𝑛 − 𝑧𝑧).                                                                                                         (0.6b) 

Solutions for equations (0.6a) and (0.6b) are given by 

( )
0

2 2
0

1 1sech  
4 2

t

t

z n m mn t t dt = −  
′ ′∫ ,                                                                           (0.7𝑎𝑎) 

( )
0

2 2
0

1 1sech  
4 2

t

t

z n m mn t t dt = − −  
′ ′∫ .                                                                       (0.7b) 

From the even-parity property of the soliton it follows that parameter n can have a positive 
or a negative sign in the solutions (0.7a) and (0.7b). It should be noted that the equations (0.6a) 
and (0.6b) represent a particular case of equation (0.3). 

Dissipative property means that the second order derivative of the dissipative functionin 
its argument changes the sign of the dissipative function to the inverse. The dissipative 
functions are not invertible in an appropriate argument. The conservative functions are 
invertible: their second order derivative in its argument does not change the sign to the 
inverse. If the argument of function is time, then it is said that dissipative functions are not 
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invertible in time, while the conservative functions are invertible. Physicists consider that the 
stochastic systems (in this case (0.1) and (0.2)) are not convertible. Since the equations (0.1) 
and (0.2) are the artificially recorded expressions corresponding to the indivisible equation 
(0.3), then to prove the irreversibility of equation (0.3), it is advicable to use the method of the 
second order derivative applicable to solution (0.5). This method gives positive answer.  

The physical Microworld and Megaworld are subject to optimization1 laws. To have an 
idea about those laws it is expedient to turn to the history of application of the Euler-Lagrange 
optimization equation and its equivalent Hamilton equation. E. Schrödinger was the first who 
expressed the presence of optimal property in elementary particles when he recorded his 
equation for the particles of the physical Microworld by means of the Hamilton function. After 
establishing the adequacy of modeling the Microworld processes by means of that equation, it 
became clear that the Microworld is based on the optimal principles. Einstein used tensor 
notation of the extremal property of geodesic line to create the general theory of relativity 
(GTR), partially modelling the optimal system of the Megaworld. Actually, it showed that a 
certain part of Megaworld is subjected to an optimization principle. 

Now, let us determine the essence of the optimization principle dominating in the physical 
Microworld and Megaworld. According to this principle, under the influence of conservative 
forces any dynamical system moves in such a way as to minimize the average value of time 
difference between the kinetic and potential energies, i.e. 

 ( )
2

1

0
t

t

T V dtδ − =∫  

or 
2

1

0
t

t

Ldtδ =∫ , 

where 𝑇𝑇(𝑞𝑞, 𝑝𝑝) is the kinetic energy; 

𝑉𝑉(𝑞𝑞) –  potential energy; 

𝐿𝐿 ≡ 𝐿𝐿(𝑞𝑞, 𝑝𝑝) = 𝑇𝑇 − 𝑉𝑉–  the Lagrange function; 

𝑞𝑞 – generalized coordinate; 

𝑝𝑝 = 𝑞̇𝑞 – generalized impulse. 

The variation of Lagrangian function has the following form 

22 2 2 2 2 2

1 1 1 1 1 11

0,
tt t t t t t

t t t t t tt

L L L L d L L d LLdt pdt qdt qdt q qdt qdt
p q q p dt p q dt p

δ δ δ δ δ δ δ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + − = − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∫ ∫ ∫ ∫ ∫ ∫  

and in the last formula it is assumed that 𝛿𝛿𝛿𝛿 = 0 when 𝑡𝑡1 = 𝑡𝑡 and 𝑡𝑡2 = 𝑡𝑡. 

                                                           
1Further, instead of the words "variational equation", the term "optimization equation" is used, since the 
Euler-Lagrange variational equation was used in applied (optimization) problems. 
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Since the number of generalized coordinates 𝑞𝑞 is equal to the number of degrees of 
freedom, and since 𝛿𝛿𝛿𝛿 does not depend on time, the last equation is satisfied if the expression 
in square brackets equals zero, i.e. 

 

0 0d L L dp H Hp
dt q q dt q q

∂ ∂ ∂ ∂
= − ≡ + = ⇒ = −

∂ ∂ ∂ ∂




,                                                     (0.8𝑎𝑎) 

0 0 0d L L H Hq q
dt p p p p

∂ ∂ ∂ ∂
= − ≡ − + = ⇒ =

∂ ∂ ∂ ∂
 



,                                                      (0.8b) 

where 𝐻𝐻 = 𝑇𝑇 + 𝑉𝑉 is the Hamiltonian function (Hamiltonian). Expressions (0.8a)  and (0.8b) 
show that the Euler-Lagrange equations are equivalent to the Hamiltonian equations 
representing the right-hand side part (of the equivalence symbol "≡") in the expressions (0.8a)  
and (0.8b). 

The derivative of the solution for the Riccati scalar equation (0.3) having constant 

coefficients represents a soliton (0.4); the integral from the solition (see (0.5)) satisfies the 

Euler-Lagrange equation [3]. Thus, the solution of the Euler-Lagrange equation is a 

functional. This fact determines the existence of an important Euler-Lagrange equation 

property of invariance to arbitrary transformation of coordinates. In fact, this property turned 

out to be one of the prerequisites for using the optimization equation in GTR. 

The optimization principles of this equation imply not only the property of invariance, but 

also the possibility of continuum and discrete aspects of the system modeling. Despite the 

glaring contrast between the physical Microworld and Megaworld, for their modeling the same 

optimization equations are used written in a discrete or continuous form. Application of discrete 

algorithms of optimization becomes necessary only if it is impossible to ignore the discreteness 

of the modelling particle. 

Present monograph consists of two chapters. In the first chapter the new models of physical 

Microworld are given and corresponding optimal expressions are obtained. In the second 

chapter the new models of Megaworld are obtained, confirming that the world obeys the 

optimal laws. 

Mathematical Supplements represent the inherent part of the main text and should be 

considered together with it as a method of a unified approach. Such a way of representation 

of the problems solved in the monograph was chosen as optimal for better understanding the 

physical sense of the problem and its mathematical interpretation. 

In each paragraph of the monograph the designations have independent values. 
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CHAPTER 1 

New models of physical Microworld and their optimality 

 

Nothing takes place in the world whose                                                                                                
meaning is not that of some maximum or minimum.  

 L. Euler 

 

In §1.1 - §1.3, the new models of the physical Microworld are obtained. The results of 
these paragraphs are not interrelated in content, but the yare conceptually related by means of 
the word "optimality". Structurally, §1.5-§1.7 are related by means of the equation of separatrix 
of the mathematical pendulum, and conceptually by means of the word "optimality", because 
there is used the optimal property of the separatrix of the pendulum, which satisfies the 
Hamiltonian equation. 

In §1.4, the well-known conditions for a polarized light wave of the Maxwell's equations 

are provided allowing us to move from the microscopic study of the matter to the mesoscopic 

level.  §1.5 shows that at the mesolevel, the stationary atoms are on the separatrix, i.e. their 

location is optimal. §1.6 shows that the moving atoms considered at the mesolevel move on the 

separatrix. This means that the moving atoms are in an optimal state. 

§ 1.7 is of particular value, which gives an entirely new approach to GTR based on the 
optimal property of the separatrix of a mathematical pendulum. 

 

§1.1. Transition to the discrete analogue of the Schrödinger equation and inverse 

problem solution 

In the mid-twenties of the last century, Austrian physicist Erwin Schrödinger applied de 
Broglie's idea of an optico-mechanical analogy in the behavior of a microparticle, and basing 
on the Hamilton optimization principle, synthesized the basic equation of quantum mechanics 
bearing his name: 

( )2
2

2

U1
2

x
j

t x m
ε ε

 ∂Ψ ∂
= − Ψ + Ψ ∂ ∂  

,      (1.1) 

where 1j = − ,  / mε =  ,  341,05459 10 J s−= ⋅ ⋅  is the Planck constant divided by 2π ; 

 Ψ  is the wave function of the elementary particle searched for, ( )U x  is the potential energy 

of a particle with 𝑚𝑚 mass and coordinate 𝑥𝑥.  

https://www.goodreads.com/author/show/186483.Leonhard_Euler
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After obtaining equation (1.1), Schrödinger immediately applied the stationary equation 

(for 𝛹̇𝛹 = 0) corresponding to equation (1.1) to the hydrogen atom (using a spherical coordinate 

system) and obtained the spectrum of the energy eigenvalues coinciding with all the known 

experimental data. This showed that the stationary equation correctly describes the motion of 

an electron in a potential electric field. Therefore, this equation was adopted as the basic 

equation of stationary states in quantum mechanics. The complexity of solving the stationary 

Schrödinger equation depends on the form of the potential energy and on the dimension of the 

space in which the problem is solved. 

Equation (1.1) is valid for the much smaller velocity of an elementary particle than the 

speed of light 𝑐𝑐, i.e. for the prerelativity case. Also, equation (1.1) assumes that the motion of 

the particle is continuous in time. 

The English theoretical physicist P. Dirac obtained the quantum mechanics equation for 

the relativistic analog of equation (1.1). The nonrelativistic Schrödinger equation can then be 

obtained as an approximation of the Dirac equation for the velocity of particle 𝜈𝜈 satisfying the 

condition 𝜈𝜈 с⁄ << 1. 

Since the matter is discrete at the microlevel, it is necessary to move from the continuous 

equation (1.1) to a discrete analogue. This problem is solved below [4]. 

For the transition from the continuous equation (1.1) to the corresponding discrete equation, it 
is necessary to use the system of equations of stochastic mechanics 

 

( ) 0P P
t

∂
+ ⋅ =

∂
Δ υ ,                    (1.2) 

21
2t m

ε∂
+ ⋅ = + ⋅ −

∂
υ Fυ Δυ u Δu Δ u ,      (1.3) 

1
2

P Pε= −u Δ ,         (1.4) 

where υ  and u  are the unidimensional dispersion and diffusion vectors of the particle;  

 𝚫𝚫 ≡ 𝜕𝜕
𝜕𝜕𝒙𝒙 is the unidimensional vector operator, and d U

d
=F

x
 is the gradient of field U , i.e, 

U=F grad ,  the dot ". " denotes the scalar product. 

Since, in this case, the angle between the corresponding vectors is equal to 0 degree, the 

point in equations (1.2) and (1.3) can be omitted, i.e. to replace the scalar product by the usual 

product.  
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It is well known that the system of equations of stochastic mechanics (1.2) – (1.4) is 

equivalent to equation (1.1). Therefore, to switch from equation (1.1) to the corresponding 

discrete equation, it is necessary to replace the continuous function of probability density 

𝑃𝑃(𝑥𝑥, 𝑡𝑡) by a discrete probability density function. 

If we introduce the notation 

Ψ exp jP
ε

 = ∫ ⋅ 
 

υ dx ,        (1.5) 

and then, taking equation (1.4) into consideration, we will have a differential relation 

( )Ψ υ u Ψj jε− ∆ = + . 

From this relation we can switch to the wave function (1.5) 

( )
( ) ( )

0 0

1, u ,

Ψ ,
j x t dx x t dx

x t e

τ τ

τ τ

υ
ε ε

−∫ ∫
= ,       (1.6) 

where 𝜏𝜏0 is the minimum time, but other than zero, i.e. 0 0τ ≠  . 

The discrete probability density function will be sought as a derivative of the inverse 

Laplace transform of the expression 0 1 th
2

s
s

τ 
 
 

, using the symbol of correspondence 

"       " between the Laplace transform and its original. As a result of inverse transformation we 
have: 

 

0 1 th
2

s
s

τ 
 
 

       ( ) 11 n−− ,    
0

1 tn n
τ

− ≤ < , 

where 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗, 𝑡𝑡 is the current time, 𝜏𝜏0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑛𝑛 = 1,2, ….Taking into consideration 

equality ( )2 11 j keπ +− =  ( )  0,1, 2,k = …  the last expression is written as follows 

 

01 th
2
s

s
τ 

 
 

       ( )( ) 02 1 1j k neπ τ+ − ,    ( ) 0 01n t nτ τ− ≤ < . 

Introduce notation 0n xτ τ= = ; it is clear that 𝑡𝑡 = 0 ,when  1n = . For the case when

( ) ( )01 2,3,n t for nτ− = = …  taking into account equality tτ∂ = ∂ , we have relation 

 

1 th
2

s
s n

τ
τ
∂  

 ∂  
        ( )2 1j k te

t
π +∂

∂
.       (1.7) 
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After performing the differentiation in (1.7), we obtain the expression for the probability 

density 

21 sech
2 2

s
n n

τ 
 
 

.        ( ) ( ) ( )2 12 1 ,j k tj k e P t kππ ++ ≡ .    (1.8) 

To use formula (1.6), it is necessary to determine diffusion ( )u ,x t  and dispersion 𝜐𝜐(𝑥𝑥, 𝑡𝑡). 

Diffusion is found according to (1.4): 

( )u 2 1
2

j k constε π= − + = .        (1.9) 

Expression (1.9) is valid for any value of 𝑘𝑘. To find the dispersion 𝜐𝜐, we substitute the 
density  𝑃𝑃(𝑡𝑡, 𝑘𝑘), determined according to (1.8), into equation (1.2): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 1 2 1 2 1 2 12 22 1 2 1 2 1 : 2 1 .j k t j k t j k t j k tk e k e j k e j k e
x

π π π πυπ υπ π π+ + + +∂
− + − + = − + +

∂
The last expression will give the differential equation 

( )( )2 1 1j k
x
υ π υ∂

= − + +
∂

.       (1.10) 

If we use diffusion value (1.9) in the Nelson equation (1.3), then we have equation 

( )F x
t x m
υ υυ∂ ∂

+ =
∂ ∂

.        (1.11) 

The simultaneous solution of equations (1.10) and (1.11) leads to 2𝑘𝑘 + 1(𝑘𝑘 = 0,1,2, … ) 
number of scalar equations of Riccati type 

( ) ( ) ( )22 1 2 1 Fj k j k x m
t
υ π υ π υ∂

= + + + +
∂

.     (1.12) 

For a particular k the expression (1.12) is a scalar Riccati equation with constant 
coefficients; the derivative of the solution of this equation is a soliton; integral of soliton 
sitesfies Euler-Lagrange equation. 

The solution of the Riccati equation (1.12) for a particular value  𝑘𝑘 has the form 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )

1 2
1

20 2

0 1

,
1x t

x x
x t x

x x
e

x x
β

υ υ
υ υ

υ υ
υ υ

+
= +

 +
− − 

,     (1.13) 

where 

( ) ( ) ( ) ( ) ( )2
2 F

2 1 2 1
4

x
x jx k j k

m
πβ β π≡ = − + − + ,    ( )0.13a  



12 
 

( ) ( ) ( ) ( ) ( )1
1 1 2 1 2 1

2
x jx j k x j kπυ υ π β

−  ≡ = − + + +     
,   (1.13b) 

( ) ( ) ( ) ( ) ( )1
2 2 2 1 2 1

2
x jx j k x j kπυ υ π β

−  ≡ = − + − +     
,   (1.13c) 

and ( )0 ,0xυ υ=  is the value of dispersion for 0t = . For solution of equation (1.12), we can 

assume 0 0υ = . Then the solution of equation (1.12) can be written in the following form [5]: 

( ) ( ) ( ) ( ) ( )2

0

, sechx t D x x x t x dtυ β β ϕ
∞

= −  ∫ ,     (1.14) 

where  ( ) ( ) ( ) ( )
( ) ( ) ( ) 11 2 2

1

, , ln
2

x x x
D x c x c

xc
υ υ υ

ϕ
υ

−+
= = = .  

The functional (1.14) determining dispersion 𝜐𝜐(𝑥𝑥, 𝑡𝑡) over a time interval ( )0,t ⊂ ∞  

depends on the particle coordinatein a complex way; therefore, the substitution of the 

dispersion 𝜐𝜐(𝑥𝑥, 𝑡𝑡) in the formula of wave function (1.6) greatly complicates computation of this 

function, making this calculation practically impossible. However, for determining the disper-

sion 𝜐𝜐(𝑥𝑥, 𝑡𝑡) in the stationary case, i.e. when t = ∞ , and at the initial moment, when  

𝑡𝑡 = 0,  calculation of the dispersion becomes possible. 

Indeed, when t = ∞ , according to formula (1.13), we have ( ) ( )1x xυ υ= , if 𝑡𝑡 = 0, then 

from (1.13) we get  𝜐𝜐(𝑥𝑥) = 0 . Consequently, the calculation of the integral (1.14) in the 

stationary state and at the initial moment will be given by: 

 ( ) ( ) ( )1 1, 0
0

x t x x xυ υ υ υ
∞ 

= = = − = 
 

.      (1.15) 

According to formula (1.13b), the expression (1.15) will be written as follows: 

𝜐𝜐(𝑥𝑥) = 𝜐𝜐1(𝑥𝑥) = −[𝑗𝑗𝑗𝑗(2𝑘𝑘 + 1)]−1𝛽𝛽(𝑥𝑥) −  1
2.      (1.16) 

If in formula (0.13𝑎𝑎)we take the term − 𝜋𝜋2

4 (2𝑘𝑘 + 1)2 out of the radical sign, then we have 

( ) ( ) ( ) ( )42 1 1 F
2 2 1

x j k j x
m k

πβ
π

= + +
+

.     (1.17) 

If we take into consideration (1.17)  in expression (1.16), then we have  

 

( ) ( ) ( )1 1 1 11 æF 1
2 2 2 2

x j x jz xυ = − + − = − + − ,    (1.18) 
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where ( ) ( ) ( )4æ , æF
2 1

z x x
m kπ

= =
+

.  

Taking into consideration 

21 11 , 1
2 2

r rjz j r z
 + −

+ = ± + = + 
 

,     (1.17𝑎𝑎) 

expression (1.17) will be written as follows:  

( ) ( ) ( )x j x xβ η γ = ± −  ,        

where   ( ) ( ) 12 1
2 2

rx kπη +
= + ,    ( ) ( ) 12 1

2 2
rx kπγ −

= + . 

According to (1.6), the operations with account of expressions (1.9) and (1.18) will be 
performed in exponential degree; the exponential degree has the following form: 

( ) ( )
0 0 0

0 0 0

11 2 1
2 2 2

n n nj jjz x dx dx j k dx
τ τ τ

τ τ τ

π
ε ε

− + − + +∫ ∫ ∫ .    (1.19) 

For  the expression ( )( )1/2
1 1jz x+ ≤  can be expanded into binomial series 

( ) 2 31 1 1 1 1 31 1
2 2 4 2 4 6

jz x j z z j z⋅ ⋅ ⋅
+ = + + − −

⋅ ⋅ ⋅
      (1.20) 

We confine ourselves to the first three terms of expansion (1.20) and calculate the integrals in 
expression (1.19); then the integration of the partition terms of the sum (1.19), without taking 

into consideration coefficient 
1
2

, will give 

1. ( ) ( ) ( )
0

0

0 0 0 1 01
nj j jdx n n j n
τ

τ

τ τ τ α τ
ε ε ε

− = − − = − − = −∫ , 

2. ( ) ( ) ( )( ) ( )
0 0

0 0

0 0 2 0
1 dU 1 æ 1 ææ dU U U
2 dx 2 2

n nj j dx x n n
τ τ

τ τ

τ τ α τ
ε ε ε

  − = ⋅ = ⋅ − =    
∫ ∫ , 

3. ( )
0

0

2
2

3 0
1 dUæ dx
8 dx

nj j n
τ

τ

α τ
ε

  − = −     
∫ , 

4. ( ) ( ) ( ) ( )
0

0

0 0 0 4 0 1 01
n j jj dx n n j n j n
τ

τ

τ τ τ α τ α τ
ε ε ε

− = − − = − − = − ≡ −∫ , 

5. . 

( ) 12 ≤jz

( ) ( )( ) ( )( ) ( )05000 1121212
0

0

τατπττππ
τ

τ

njnkjnkjdxkj
n

=−+=−+=+ ∫
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The substitution of the values −𝑗𝑗𝛼𝛼1 ,𝛼𝛼2 ,−𝑗𝑗𝛼𝛼3 ,−𝑗𝑗𝛼𝛼4 ,𝑗𝑗𝛼𝛼5  into the sum (1.19), and then 
taking this sum into consideration in (1.6), allows us to determine the discrete wave function 

( ) ( ) ( ) ( ) ( )[ ]{ }
,3,2,05030102 2

2
1

0 ==Ψ
−+−

nen
nnnjn τατατατα

τ       ,constk =   (1.21) 

which is the solution of the discrete analogue of the Schrödinger equation. 

The parameter k defined from the condition  æ (k)=1 with following make to round off the 

next whole number. 

By means of formula (1.21) the inverse problem is solved: on certain wave function the 

potential energy of a particle having little proper time  cτ is determined.Such objects are: 

isotope of polonium 238
0P having period with halp-decay 73 10cτ −= ⋅ s, lifetime atom of a 

hydrogen in condition 1/22Р  equally 91,6 10cτ −= ⋅ s, lifetime atom of a hydrogen in condition

1/2 2S , equally 0,14cτ = s and so forth. Thus, for example, potential energy of particle is 

determined from the equality 2
1
2

*

e
α

= cτ ,  and superposable restrictions for the energy of the 

particle is found from the expression *
5 3 12 0,α α α− − = where 

æ(k)=1
*
i iα α= ,   i=2,3. 

Transition from equation (1.1) to the discrete analogue is carried out by taking into 

account ( )0 1t nτ= −  and 0x nτ=  in equation (1.1). The quantization time 0 τ  must be much 

lesser than the proper time, i.e. 0 cτ τ<< . 

The above results can be used to justify the phenomenon of "birth out of nothing" (i.e, 

from virtual particles) of the real particles occurring in a strong gradient of electric field [2]. 

To determine the gradient of the electric field at which real particles are formed from 

virtual particles, we use formula (1.17𝑎𝑎)instead of the first term of the expression (1.19). In 

this case, without taking into consideration coefficient  1  / 2  we have  

 

( )
0

0

1 1 1 1 2 1
2 2

n r rj j k dx
τ

τ

π
ε ε

  + − − ± + + − +  
   

∫ .    (1.22) 

After multiplying expression (1.22) by−𝑗𝑗, in formula (1.22) we will have imaginary and 
non-imaginary terms separately 

( )
0

0

1 1 1 2 1
2 2

n r j r j j k dx
τ

τ

π
ε ε ε

    − + ± − ± − + +    
     

∫ .     (1.23) 
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In the case when there are no virtual particles, the sum of the coefficients for imaginary 
terms must be zero in expression (1.23), i.e. 

( )1 1 1 2 1 0
2

r kπ
ε ε

 +
− ± − + + = 

 
 ,            2 21r æ F= + .   (1.24) 

If there are no virtual particles, then we have only the real particles. 

Since , then it follows from (1.24) that  

2 21 Fæ G+ = ,         (1.25) 

where ( ) ( )22 21 4 2 1 2 2 1G k kπε π ε= − + + + . 

From (1.25) we find the gradient of the electric field where the real particles appear 

21F 1G
æ

= ± − .        (1.26) 

In formula (1.26) the sign of the absolute value is conditioned by the fact that the 

expression 
( )
4
2 1
Fz

m kπ
=

+
 is positive and, consequently, 𝐹𝐹 > 0.   

Dimensional of intensity of the electrical field is [ ]
1/2

1/2F
( )

g
cm s

=
⋅

. 

We receive the final result of formation of real particles "out of nothing" if in expression 

(1.23) we take into consideration (1.24), and also take into consideration formula (1.21) and 

denotation 𝜏𝜏0(𝑛𝑛 − 1) = 𝑡𝑡: 

( )
( ) 1

2 2, , 0,1, 2, .
r kt

k t e k t constε
−

Ψ = = … =                                                       (1.26′) 

Thus, transition from the continuous equation (1.1) to the discrete equation allowed to 

obtain a discrete wave function (1.21), and also to determine the field gradient (1.26) where 

according to formula (1.26′)  the real particles are formed. 

 

§1.2. Knots and binary functions. The optimality frequencies at which the binary 

functions are formed 

Knots can be formed only in the space of dimension "three". To avoid difficulties for 

representation of knots in three-dimensional space, the projections of knots on the plane are 

considered. Besides, the axiom about line proposed by Euclid, which states that the line is a 

"breadthless length”, is taken into consideration. 
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As a result of ordering the number of knots with less than 10 intersections on their 

projections, 105 knots were identified; some of them (35 knots) are shown in Fig. 1. 

In Fig. 1 the knots are arranged in the increasing order of the minimum quantily of 

intersections on their projections. If there are several different knots with the same quantily of 

intersections, they are grouped together and each of them receives an additional index apart 

from the quantily of intersections. For example, the first figure (three-leaved figure) has three 

intersections and it is just one with so many intersections, the refore it is denoted by31. 

 
Fig.1 

The second figure (figure of eight) has four intersections; it is the only one with such a 

quantily of intersections, therefore, it is denoted by41etc. Now, let us determine the principle 

of the change of the quantily of intersections into the number of knots. Table 1 built according 

to Fig. 1 [6] shows the dependence of the number of knots on the quantily of intersections: 

Table 1 

Number 

of knots 

 

Quantily of 

intersections 

3 

Quantily of 

intersections 

4 

Quantily of 

intersections 

5 

Quantily of 

intersections 

6 

Quantily of 

intersections 

7 

Quantily of 

intersections 

8 

𝑊𝑊𝑖𝑖 1 1 2 3 7 21 
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Table 1 shows that the number of the first four knots with the same quantily of intersections 

subjects to the principle of Fibonacci sequence, for which the recurrence relation holds: 

1 2 , 1, 2,3, 4i i iU U U i− −= + = .                                                                            (1.27) 

It can be noted that the next value, i.e. the fifth (see Fig. 1) one with 7 intersections is 

defined as the sum of the number of all previous knots 
4

5
1

7i
i

V U
=

= =∑                                                                                 (1.28)                              

              

As a result of extrapolation of the data given in Table 1, we obtain a recurrent formula for 

the number of knots with the same quantily of intersections: 

𝑉𝑉𝑖𝑖 = 2𝑉𝑉𝑖𝑖−1 + 7, 𝑖𝑖 = 5,6,7, …,                                                                                (1.29) 

Thus, the sequence of the number of knots with the same quantily of intersections 

𝑊𝑊 consists of two sequences (1.27) and (1.29); formula (1.28) is a link between these 

sequences. Thus, we have a sequence of the number of knots with the same quantily of 

intersections 

        5,    1, 2,3, 4,
          5,  5,6,7,

i
i

i

U for i i
W

V for i i
< =

=  ≥ = …
       (1.30) 

Consequently, if we introduce denotation ℓ = 𝑛𝑛 + 4(𝑛𝑛 = 1,2, … ) , then according to 

formula (1.29), the number of knots 𝑉𝑉ℓ with ℓ quantily of intersections can be represented as a 

row matrix 

7 1 3 7 15 31 63V =


 .       (1.31) 

Matrix (1.31) can be written in the following form:  
1 2 3 4 5 67 2 1 2 1 2 1 .2 1 2 1 2 1V = − − − − − −



    (1.31𝑎𝑎) 

Each element in matrix(1.31𝑎𝑎) can be represented as a particular solution of the difference 
equation 

𝑉𝑉𝑚𝑚 = (1 + 𝑟𝑟)𝑉𝑉𝑚𝑚−1 + 𝑉𝑉0  

for 𝑟𝑟 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉0 = 7. The solution has the following form: 

( )[ ]11 10 −+= +m
m r

r
VV  , 

where 𝑚𝑚 = 0,1,2, …. 

Now, let us define the notion of the quantum system (QS). A characteristic feature of QS 
is that a particle in it can have only two values, conventionally denoted as 1 and 0 or +1 and  

5V
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–1 i.e. it represents a binary function. An infinite (in time) sequence of binary functions form 
quantum-mechanical functions (QMF). 

Consider the function of pure delay, i.e. piecewise-constant function, shown in Fig. 2a. 

The Laplace transform of this function can be written as follows: 

1 − е−𝜏𝜏𝜏𝜏 , where𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗, 𝜎𝜎 > 0, 𝑗𝑗 = √−1 .Variation of this function on the interval 
[0, 2𝜏𝜏] of a semi-infinite time axis �𝑡𝑡 ⊂ [0, ∞)�is shown in Fig. 2b. 

 

Fig. 2 

Laplace transform of variation of that function over the entire semi-infinite time axis has 
the following form 

( )0
1 th
1 2

s

s
e sD s
e

τ

τ

ττ
−

−

−  = =  +  
.        (1.32) 

Let us now consider variation of other functions, ( ) ( ) ( )2 3 4
1 , 1 , 1s s se e eτ τ τ− − −− − −  etc. 

over the whole semi-infinite time axis and express that variation through the Laplace transform 
of the binary function (1.32) that will give the following QMF1: 

( ) ( )






+









=
+
−

= −

−

2
th1

2
th2

1
1

2

2

2

2

1 s

s

e
esD s

s

τ

τ

τ τ

τ
,       (1.33) 

( ) ( )






+









=
+
−

= −

−

2
th31

2
th2

1
1

2

32

3

3

2 s

s

e
esD s

s

τ

τ

τ τ

τ
,       (1.34) 

                                                           
1Further Laplace transform is mentioned as QMF. 

а 

b 
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( ) ( )






+






+









=
+
−

= −

−

2
th

2
th61

2
th2

1
1

42

43

4

4

3 ss

s

e
esD s

s

ττ

τ

τ τ

τ
,     (1.35) 

( ) ( )






+






+









=
+
−

= −

−

2
th5

2
th101

2
th2

1
1

42

54

5

5

4 ss

s

e
esD s

s

ττ

τ

τ τ

τ
,     (1.36) 

( ) ( )
=















+






+














+









=
+
−

= −

−

2
th

2
th141

2
th1

2
th2

1
1

422

65

6

6

5 sss

s

e
esD s

s

τττ

τ

τ τ

τ

  







+






+






+









=

2
th

2
th15

2
th151

2
th2

642

65

sss

s

τττ

τ

 ,       (1.37) 

 

( ) ( )






+






+






+









=
+
−

= −

−

2
th7

2
th21

2
th351

2
th2

1
1

642

76

7

7

6 sss

s

e
esD s

s

τττ

τ

τ τ

τ
,    (1.38) 

        ( ) ( )






+






+






+






+









=
+
−

= −

−

2
th

2
th28

2
th70

2
th281

2
th2

1
1

8642

87

8

8

7 ssss

s

e
esD s

s

ττττ

τ

τ τ

τ
,  (1.39) 

etc. 

Formulas (1.33) -- (1.39) have definite properties. 

1) The number of terms in the denominator of formulas (1.33) -- (1.39) in each subsequent 
pair variesby one. Thus, in pair 1, number of 2 terms is 2, in pair 3, number of 4 terms is 3, in 
pair 5, number of 6 terms is 4, in pair 7, number of 8 terms is 5, etc. 

2) In the denominator of the QMF (formulas (1.33) – (1.39)) there is a certain number of 

parts of the binomial coefficients; the sum of all the coefficients in the denominator QMF (for 

th �𝜏𝜏𝜏𝜏
2 � = ±1)  is equal to 2n: 

0 1 1
1 1 2С С+ = ,    0 1 2 0 2 4 3

3 3 4 4 42 ,      2 ,С С С С С+ = + + =  

0 2 1 4 0 2 4 6 5 0 3 2 1 6
5 5 5 6 6 6 6 7 7 7 72 ,      2 ,       2 ,С С С С С С С С С С С+ + = + + + = + + + =  

0 2 4 6 8 7
8 8 8 8  8  2 ,С С С С С+ + + + = ... 
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( )
( )

0

2
n

n n
nСν

µ
ν =

=∑ ,     ( ) ( )1,3,4,5,...;    0,1, 2,...n nµ ν= =   

where 𝑛𝑛 is the number of the QMF, and the symbol ( )
( )n
nCν

µ denotes the number of combinations 

from 𝜇𝜇 to 𝜈𝜈. 

Since the discrete power function 2𝑛𝑛 appears in the numerators of the QMF, then the  
subtraction of 1  from it can give the corresponding element of the row matrix (1.31𝑎𝑎). Thus, 
the whole row matrix (1.31𝑎𝑎) is constructed the same way; its every element multiplied by 7 
shows the number of knots, which have the same quantity of intersections. 

In order to prove the optimality of the frequencies the QS, we consider Riccati’s 

quantum equation 

 ( ) ( ) ( )2dГ τs
= σГ τs - sσГ τs

dτ
1       (1.40)

 
where 

( )  
 
 

1 τsГ τs = th
s 2

.        (1.41) 

The derivative with respect to 𝜏𝜏 in the solution of Riccati’s quantum equation (1.40) is a 
soliton that satisfies the corresponding Euler-Lagrange optimization equation. 

Substitution of denotation (1.41) into equation (1.40) leads to equation 

0
2
1

2
sτth

s
σ

2
sτth

2
1

s
σ 2 =+






−














 − .       (1.42) 

The solution of equation (1.42) has the following roots: 

1 2

τs τsth 1 th  
2 2 2

sand
sσ

   = =    −   
 .      (1.43) 

The first root shows that equation (1.40) is satisfied by the Laplace transform of the Dirac 
𝛿𝛿 – function.  

The roots (1.43) are unsuitable for establishing the binarity of the QMF.  

However, if we have 𝜎𝜎 = 0 in the second root and assume that 𝜔𝜔 ≠ 0, then we receive 

root th �𝜏𝜏𝜏𝜏𝜏𝜏
2 �

2
= −1 that is suitable for establishing the binarity of the QMF. In this case, there 

is no real part in the Laplace transforms (1.32) – (1.39). 

Indeed, the substitution of th
22

jτ ω 
 
 

= −1 in (1.33) − (1.39) gives 

                                                           
1s is considered as a parameter independent from the variable τ . 
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1 3 5 7 1D D D D= = = = +  

and 

2 4 6 1D D D= = = − . 

These expressions confirm the existence of the binary QMF.  

Let us determine the frequencies, where QMF is binary. We have 

th 1 
2

j τω±  = ± 
 

  or   jtg
2

τω± 
 
 

= ±1 ⇒ tg
2

j
τω 

= 
 



  . 

Let us find  𝑗𝑗 and −𝑗𝑗 . If−1 = 𝑒𝑒𝜋𝜋𝜋𝜋(2𝑘𝑘+1) , then 𝑗𝑗 = 𝑒𝑒
𝜋𝜋
2𝑗𝑗(2𝑘𝑘+1) and  −𝑗𝑗 = 𝑒𝑒

3𝜋𝜋
2 𝑗𝑗(2𝑘𝑘+1) . With 

account of Euler formula xjxe xj sincos += , from relation tg �
𝜏𝜏𝜏𝜏∓

2 � = ∓𝑗𝑗 we have the 

desired frequencies: 

 ( ) ( ) ( )1 1
2 3 2Arctg tg sin 2 1 : , , 1, 2,3,

2 2 3
k k k kτω π αω ω α

τ
−

− − − −

    = + = = …         
From the last formula we have 

 ( )2 1 1
3 2sin 2 1 , , 1, 2,3, 
2 3

D k kα
π α α− −

 = + = = …  
 

𝜔𝜔+(𝑘𝑘) =
2
𝜏𝜏

Arctg �tg �
𝜏𝜏𝜔𝜔+

2
� sin �

𝜋𝜋
2

(2𝑘𝑘+1 + 1)��� : 𝜔𝜔+(𝑘𝑘), 𝑘𝑘+1 = 2𝛼𝛼, 𝛼𝛼 = 1,2,3, … 

Similarly, from the last expression we receive 

 ( )2 1 1 1sin 2 1 , 2 , 1, 2,3,
2

D k kα
π α α− + +

 = + = = …    
Consequently, at frequencies of 𝜔𝜔− and 𝜔𝜔+ the condition of binarity of QMF is satisfied. 

The frequencies 3
2
π

− ≡ω   ( )12 1k− +  and ( )12 1
2

kπ
+ +≡ +ω    are optimal, since they (for σ=0) 

follow directly from representation (1.42) of Riccati’s quantum equation (1.40), the left-hand 
side part of which (soliton) satisfies the Euler-Lagrange optimization equation. 

§ 1.3. The optimality characteristic of Fermi-Dirac gas 

For a Fermi-Dirac gas consisting of 𝑁𝑁 particle we have the relation 

, 

where the summation is carried out on all permitted values of energy Е𝑖𝑖  of the particle; 
chemical potential  𝜇𝜇 for the fermions can be either positive or negative depending on the 
properties and state of the system, i.e., μ≶0. The value of chemical potential 𝜇𝜇(𝛵𝛵 = 0)is the 

( ) ( )∑∑ =
+

= − N
e

EN kTE
i

i i 1
1

µ
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maximum energy of a particle in Fermi-Dirac gas for 𝛵𝛵 = 0; 𝑘𝑘 and  𝛵𝛵  are the Boltzmann 
constant and the absolute temperature, respectively. 

In quantum theory, there is a principle of identity of identical particles forming the given 
quantum-mechanical system; according to this principle, all identical particles are completely 
same. These particles do not interact with each other; therefore, the total energy of the system 
is equal to the sum of the energies of individual states of the particles 

1 2
1

n

n i
i

E E E E E
=

= + + + = ∑ . 

The law of distribution 

( ) ( )/

1
1n E kN E

e µ− Τ
=

+
         (1.44) 

is called the Fermi-Dirac distribution, and the aggregate of particles described by this law is 
the Fermi-Dirac gas. 

The derivative of the distribution (1.44) is the distribution density; the normalized density is 
denoted by 

2
0( )

'1( ) ( 4 ) sech ( )
2E k

E

L E kT E E
e µ

λ
− Τ

   = ⋅ − = −      
,
    

(1.45)
 

where 𝜆𝜆 = 1 𝑘𝑘𝑘𝑘⁄ , 𝐸𝐸0 = 𝜇𝜇. 

The Euler-Lagrange equation for the normalized density (1.45) of a Fermi-Dirac gas has the 
form [7] 

( )
0

/
L L
y E y E

∂ ∂ ∂
− =

∂ ∂ ∂ ∂ ∂
,        (1.46) 

where 

( )



 −= 02

hsec EEy λ  and y corresponds to the coordinate 𝑞𝑞, and y
E

∂
∂

  – to impulse 𝑝𝑝. 

In equation (1.46), in comparison with the Euler-Lagrange equation, the operator ( )d
dt

⋅
is 

replaced by an operator ( )
E

∂ ⋅
∂

, and the structure of equation (1.46) is the same as that of the 

Euler-Lagrange equations. 

In its unfoldet form, equation (1.46) can be written as follows 

0y Ey yy y yL L L y L y′ ′ ′ ′′− − ⋅ ′′− ⋅ = .        (1.46𝑎𝑎) 

In equation(1.46𝑎𝑎), we have the following values, which include the terms [5]: 
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( )



 −=≡ ′ 02

hsec2 EELL yEy
λ ,       (1.47) 

( )



 −=′⋅′ 02

hsec2 EEyL yy
λ ,       (1.48) 
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( )
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
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
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
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 −



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 −

=′′⋅′′ 0
2

0
2

0

2
hsec21

2
ht

2
hsec

EE
EE

EE
yL yy

λ
λ

λ

,    (1.49)

 
The substitution of the values (1.47) – (1.49) in equation (1.46𝑎𝑎) with account

( ) 0
2

hsec 0 ≠



 − EEλ  gives the following equation: 

( ) ( ) 0
2

hsec21
2

th2 0
2

0
2 =



 −−+



 − EEEE λλ . 

From this equation we have  

( )
4
3

2
hsec 0

2 =



 −≡ EEL λ .       (1.50) 

What is the condition that the density function of the Fermi-Dirac gas (1.44) must satisfy 
in order this density had an optimal property? To answer this question, we define the second 
derivative of expression (1.44) for the energy 

( )( ) ( ) ( )








−



 −



 −=″ 1

2
hsec

2
3

2
hsec 0

2
0

22 EEEEEL E
λλλ .   (1.51) 

Let us find a condition under which the value of function  (1.50) becomes minimum. 
That would happen if function (1.51) is positive and consequently satisfies the condition 

( ) 01
2

hsec
2
3

0
2 >−



 − EEλ . 

This inequality results in the condition 

( )
3
2

2
hsec 0

2 >



 − EEλ .                                                                                      (1.52) 

Condition (1.52) does not contradict equality (1.50). This means that the state (1.50) 
is the minimum for the density of the Fermi-Dirac gas. 

We use the relation ( ) ( )æhsec1æth 22 −= for the transition from the function (1.50) to the 
function of the square of the hyperbolic tangent: 

( )2
0

1th
2 4

E Eλ − =  
. 

L

L
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From this equality we have two roots 

( ) ( )0 0
1 2

1 1th and th
2 2 2 2

E E E Eλ λ   − = − = −      
.  

From the first root ( )0
1

1th
2 2

E Eλ − =  
 it is not difficult to find the energy of the field of 

Fermi-Dirac gas: 0kT ln 3 kTE E= + . 

The Lagrange function (Lagrangian) satisfies the Euler-Lagrange equation and, 

consequently, the parameters of the Fermi-Dirac gas found by solving the Euler-Lagrange 

equation are optimal. 

According to the second root, ( )0
2

1th
2 2

E Eλ  − = −    
 the energy of the Fermi-Dirac gas 

field is  

0kT ln 3 kTE E= − + .                                                                                           (1.53) 

The negativity of energy (1.53) means that there is no physical meaning for this quantity. 

To get rid of the difficulties associated with the negative value of the energy field (1.53) 
Dirac suggested that in the normal state, i.e. in a vacuum, all positive energy electronic levels 
are free, and all negative energy levels are occupied. Such a state of the electron-positron field 
is equilibrium, since, by virtue of the Pauli principle, transitions into the state of negative 
energy cannot take place. Dirac suggested that electrons that are at negative levels are 
unobservable; the observed ones are the deviations from the state of the vacuum. Consequently, 
the "hole" in the vacuum can be interpreted as a positively charged electron, i.e. as a positron. 
From the Dirac theory it follows that the observed energy field (the density of the Lagrangian 
of the Fermi-Dirac gas) is positive and equal to the sum of the energy fields produced by 
electrons and positrons. 

Fermions particles having positive energies can totality create both positive and negative 
energy fields [2] (p. 82). The point is that, if we assume that the positive energy field created 
by the fermions is on the Riemannian surface, then the negative energy field created by them 
is located on the pseudo-Riemannian surface, i.e., on the reverse side of the Riemannian 
surface. Thus, the record (1.53) is valid. Consequently, Dirac's theory has lost its significance. 

 

§ 1.4. Consideration of the Maxwell equations on the mesoscopic level 

Between the microlevel and the macrolevel there is the mesolevel. This representation of 
the levels of matter is conditional, though, useful. The most striking example for considering 
the matter at the meso-level is the Brownian motion. The Schrödinger stationary equation (1.1) 
is also valid for the meso-level. 
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The Maxwell equations, like the Euler-Lagrange equation, have an important property of 
invariance under coordinate transformations [8]. It is necessary to note the essential difference 
between the Euler-Lagrange equation and the Maxwell equations. Euler-Lagrange equation 
was obtained from pure mathematical (variational) considerations, while Maxwell's equations 
are derived from physical characteristics. If we consider Maxwell's equations at the meso-level, 
then it becomes possible to use optimization methods. 

The electromagnetic field vectors characterizing the light wave are described by Maxwell's 
equations (see, for example, [9]): 

1
c t

∂
∇× = −

∂
BE ,         (1.54𝑎𝑎) 

4 1
c c t
π ∂

∇× = +
∂
DB j ,         (1.54b) 

4πρ∇ ⋅ =E ,         (1.54c) 

0∇ ⋅ =B ,          (1.54d) 

where  4π= +D E P , 𝐏𝐏 is the polarization of the medium. 

Since below we will talk about the propagation of a light wave in a spatially homogeneous, 
electrically neutral medium, we can assume . In this case, the only source of the light 
wave in the medium is the polarization term 𝑃𝑃. Polarization arises from the deviation of the   
atom shape from ideal spherical symmetry, and the deviation itself is a consequence of 
appearance of the electromagnetic field of a light wave in the medium. It is this interaction of 
the light wave with the medium that introduces nonlinearity into the problem. A light wave 
satisfies the wave equation, which can be obtained by taking the rotor from(1.54𝑎𝑎) and using 
(1.54b). As a result, we have 

2 2
2

2 2 2 2

1 4
c t c t

π∂ ∂
∇ − =

∂ ∂
E PE .        (1.55) 

Since 𝐏𝐏  depends on, 𝐄𝐄  equation (1.55) turns out to be nonlinear. Nonlinearity is 

conditioned by the fact that the relaxation phenomena (collisions, spontaneous emission) do 

not have time to destroy the phase memory of the system, as a result of which the polarization 

of the medium becomes a nonlinear function of the amplitude and phase of the propagating 

electromagnetic pulse. 

Since the duration of the light pulse varies from nanoseconds(10−9𝑠𝑠) to picoseconds(10−12𝑠𝑠), 

and the duration of the light cycle is femtoseconds (10−15𝑠𝑠), even the shortest pulses contain many 

light cycles. Therefore, it is expedient to write down the value of the field 𝐸𝐸(𝑥𝑥, 𝑡𝑡)in the form of a 

rapidly oscillating traveling wave with a more slowly varying envelope. It is also considered 

reasonable to adopt a slow phase change in the carrier wave ϕ  and record 

( ) ( ) ( )[ ]txtkxtxtxE ,cos,, ϕω +−ℜ= .      (1.56) 

0== jρ
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A slow change in both length ℜ and ϕ  time scales means the fulfillment of the following 

strengthened inequalities 

,k
x t

ω∂ ∂
<< <<

∂ ∂
R R

R R ,        (1.57) 

.        (1.58) 

Thus, the fulfillment of the expression (1.56) and the conditions (1.57) and (1.58) allows 
us to consider the Maxwell equations at the mesoscopic level. In what follows we will need the 
below-defined parameters of atomic physics, which occur in the next two sections. 

Below we shall consider an idealized medium consisting of atoms having only two energy 
levels. It is assumed that the energy difference between the upper level 𝑎𝑎 and the lower level 𝑏𝑏 
is approximately proportional to the frequency of the incident light 0 02ω πν= . Consequently, 

it is assumed that the resonance condition 0a b abE E ω ω− ≈≡    is satisfied, where ℏ is the 

Planck constant divided by . 

We will use the concept of the initial polarization of an atom 

𝑝𝑝0 ≡ −𝑒𝑒 ∫ 𝜓𝜓𝑎𝑎
∗𝑟𝑟𝜓𝜓𝑏𝑏𝑑𝑑𝑑𝑑 = −𝑒𝑒 ∫ 𝜓𝜓𝑏𝑏

∗ 𝑟𝑟𝜓𝜓𝑎𝑎𝑑𝑑𝑑𝑑, 

where 

е is the electron charge; 

𝜓𝜓𝑎𝑎 – the wave function of the Schrödinger equation, corresponding to the level 𝑎𝑎; 

𝜓𝜓𝑎𝑎
∗  –the self-adjoint wave function of the Schrödinger equation, corresponding to the  

level 𝑎𝑎, 

𝑟𝑟 –   the internal atomic coordinate. 

Since the atoms are distributed depending on the velocity, i.e. according the velocities, 
then there is a corresponding distribution over the frequency shifts 𝛻𝛻𝜔𝜔 . Generally, the 
distribution of the frequency shifts is given by the function g(𝛻𝛻𝜔𝜔). The function g(𝛻𝛻𝜔𝜔) is often 
assumed to be Gaussian. 

Modeling the process of propagation of ultra-short pulses in a two-level resonant medium 
is given by Maxwell's equations (1.54) for describing the electromagnetic pulse, as well as a 
binary (two-level) ensemble of energy levels of atoms to describe the medium in which the 
impulse moves. 

  

ωϕϕ
<<

∂
∂

<<
∂
∂

t
k

x
,
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§1.5. The optimality of the stationary atom model 

We introduce the dependent variable 

ℜ� = 𝑝𝑝0ℜ ℏ⁄  , 

which has a frequency dimension. 

We define it as follows 

t
σ∂

=
∂

R . 

From the last denotation we have 

( ) ( ), ,
t

x t x t dtσ
−∞

′= ′∫ R , 

and 𝜎𝜎(𝑥𝑥, −∞) = 0. This case refers to the state of the system before the arrival of the pulse. 

Next, we introduce the coordinate transformation [9]: 

( )/ , /x c t x cξ τ= Ω = Ω − ,       (1.59) 

where 
2

2 0 0 02 n pπ ω
Ω =



, 

𝑛𝑛0‒ the number of atoms per unit volume; 

𝑥𝑥 –  is the coordinate of the atom; 

 𝑐𝑐 – speed of light. 

Denotation (1.59) leads to the following operators 

,
t x cτ ξ τ

 ∂ ∂ ∂ Ω ∂ ∂
= Ω = − ∂ ∂ ∂ ∂ ∂ 

.      (1.60) 

If we use operators (1.60) in relation to the defining equation 

σsin
~~

2Ω±=
∂
ℜ∂

+
∂
ℜ∂

x
c

t
,       (1.61) 

then equation (1.61) takes the form of the sine-Gordon equation 
2

sinσ σ
ξ τ

∂
= ±

∂ ∂
,         (1.61𝑎𝑎) 

where the bottom sign refers to the amplifier, and the upper sign to the attenuator, if 

( ), 0xσ −∞ = .  

In Supplement A it is shown that the sine-Gordon equation(1.61𝑎𝑎) is optimal. The atom is 

in a stationary state on the separatrix of a mathematical pendulum, i.e. it is at some point of 
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the optimal trajectory. It depends on the coordinate of the atom, whether exactly at which point 

of the separatrix the atom is. 

 

§ 1.6. The optimality model of moving atoms 

A well-known result of the theory of solitons in atomic physics – the area theorem shows how 

the propagation of a light pulse in attenuators and amplifiers affects the total area under the 

impulse, determined by the expression 

( ) ( )0 ,px x t dt
∞

−∞

Θ = ∫


R .                                                                                      (1.62) 

After some simple but long transformations [9] of (1.62), we can have equation 

     d
dx
Θ  cos

2
α

= ± Θ   (compare  with A.6).     (1.63)   

The sign "+" refers to the amplifier, and the sign "–" to the attenuator, ( )2 2
0 0 04 0

 
n p g

c
π ω

α =


. 

An intermediate solution of equation (1.63) satisfying condition 0 0for x xΘ = Θ = , 

will be written as follows: 

( )00 2tg tg
2 4 2

x xS e
απ ± −Θ Θ + =  

 
. 

From the last expression, we find the required area as a function of the coordinate of the 

atom x  and the initial conditions Θ0 and 0x : 

( )0
02arctg tg exp

2 2 2s x xα π
±

 Θ   Θ = ± ± −       
 .    (1.64) 

We introduce the notations 0/ 2, , / 2S S x tϕ ω αΘ = = ± = ± , then equation (1.63) 

becomes equivalent to equation (А.6); this means that the relation (1.64) (for initial conditions

0  90oΘ =  when 0  0x =  determines the angle of rotation of the separatrix as a function of the 

coordinate of the atom 𝑥𝑥: 

( )04arctg x
S eω π+Θ = −         (1.65𝑎𝑎) 

and 

( )04arctg x
S e ω π−

−Θ = − + .        (1.65b) 

Formulas (1.65𝑎𝑎)and (1.65b) are identical to formulas (А.8) (Supplement A). Since in the 

relation (1.64) the initial condition 0 Θ is other than 90о ( )0 0 90 0о for xΘ ≠ ≠ , then formula 
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(1.64) also determines the angle of rotation of the separatrix of a mathematical pendulum as a 

function of the coordinate of the atom and the initial conditions 0Θ  and 𝑥𝑥0: 

( )0
02arctg tg exp

2 2 2S x xα π
+

 Θ   Θ = + − −       
     (1.66𝑎𝑎) 

and 

( )0
02arctg tg exp

2 2 2S x xα π
−

 Θ   Θ = − − − +       
.    (1.66b) 

Formulas(𝟏𝟏. 𝟔𝟔𝟔𝟔𝟔𝟔) and (1.66b) show that the motion of atoms occurs along the trajectory 

of the separatrix, i.e. on the optimal trajectory. The value ( )0α ω  is called the absorption 

coefficient of a weak monochromatic field of frequency 𝜔𝜔0. 

Since expressions (1.66) satisfy Hamilton's equations (A.3), the optimality of the model of 

moving atoms is obvious. This conclusion can be arrived at by comparing equations (1.63) and 

(A.6), from which it is clear that they are structurally identical and, consequently, equation (1.63) 

has the same optimal property as equation (A.6). 

The propagation of an ultra-short pulse in a two-level resonant medium under the action of the 

leading edge of the pulse causes the transition of atoms of the lower energy state Eb to the upper 

energy state Ea; as a result of this transition, the medium becomes completely inverted. Under the 

action of the remainder of the pulse, the atoms that have passed to the upper energy state begin to 

radiate in an induced manner. This phenomenon was called "self-induced transparency." When the 

phenomenon of "self-induced transparency" appears, the energy transferred to the quantum system 

is inversely to taken away, there by restoring the original form of the pulse. In the dictionary of 

synergetics, it sounds as "self-organizing transparency". From the mathematical point of view, this 

phenomenon is caused by the fact that the "reversal" operator is used (see Supplement A) for 

obtaining expressions (1.66). As a result of using the " reversal " operator, the system (1.66) becomes 

closed, i.e. self-organizing. 

§1.7.  Modern interpretation of the General Theory of Relativity (GTR) [10] 

The creation of GTR was preceded by a special theory of relativity (STR). Created in order to 

solve the problems of electrodynamics, STR also contained unresolved problems of GTR for 

example, a differential equation that establishes a connection between energy and mass 𝑚𝑚 moving 

with the velocity 𝑐𝑐commensurate with the speed of light, given by 

( )2dE d mc
dt dt

= ,          (1.67) 

is the link between the problems of STR and GTR. 
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To solve the relativity problems, A. Einstein formulated GTR. In equation (1.67), the 
mass  𝑚𝑚 is determined by using the Lorentz transformation 

0
2

1

mm
v
c

=
 −  
 

,          (1.68) 

where 𝑚𝑚0 is the initial mass, found for 𝑣𝑣 = 0. 

For GTR Einstein used tensor calculus. In our opinion, the tensor calculus has two 

significant drawbacks: 1. It reduces the solution of the problem to an open form, when it is 

necessary to determine the infinite number of tensor components for its exact solution; 2. The 

tensor calculus has no physical interpretation. These shortcomings adversely affect the solution 

of problems using tensor calculus. This monograph proposes a new approach to creation of 

GTR, free from these shortcomings. 

It should be noted that K. Schwarzschild [11] found the exact solution of problem of GTR 

for a static mass possessing spherical symmetry, i.e. for a particular case, without the use of an 

infinite number of tensor components. 

Fig. 3 shows the flowcharts of sequences of mathematical operations for solving the 

problem of GTR, proposed by Einstein (Fig. 3a) and by the author (Fig. 3b). 

The sequence of mathematical operations of Einstein 

 

а                                       ⇒                                                          ⇒ 

 

The sequence of mathematical operations of the author 

 

b                                        ⇒                                                                    ⇒ 

 

Fig. 3 

To illustrate the author's method, it is advisable to consider the functioning of a 

mathematical pendulum in terrestrial conditions. The phase trajectories of the motion of the 

mathematical pendulum, depending on the various values of the total energy (see A.2), are 

shown in Fig. 4. Fig. 4a shows different levels of total energy at which the pendulum functions, 

and Fig. 4b gives corresponding phase portrait of these trajectories. In Fig. 4b we have the 

following notations: 

Extremal 
property of 

geodesic line 

Approximation geodesic line by means 
of components of the tensor calculus of 

infinite namber  
(Open form) 

Extremal property of the 
separatrix of 

mathematical pendulum 

The choice of a finite number of points on the 
pendulum separatrix corresponding to the 

velocity of the moving body 
(Closed form) 

GTR 
 

GTR 
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Number 3 – the pendulum separatrix has the breadthless length; it does not represent a set  

(Supplement B, case  2b), 

Number 2 – corresponds to the oscillatory motion of the pendulum; it is edged with the set 

2 and itself belongs to this set (Supplement B, case 1), 

Number 1 – corresponds to the pendulum's swinging motion; it belongs to a set that extends from 

contour 1 to separatrix 3. Separatrix 3 does not belong to set 1 (Supplement B, case 2ɑ). 

To create GTR, Einstein used the extreme property of a geodesic line. Variational methods make 

it possible to replace the equation of the geodesic line by the Euler-Lagrange equation.1 As noted in 

the introduction (see also (0.8a) and (0.8b)), the Euler-Lagrange equation is equivalent to the 

Hamilton equation. Consequently, according to Hamilton's equation (the first equation (A.3)), the 

pendulum separatrix has an extremal (optimal) property. We use the extremal property of the 

separatrix of a mathematical pendulum to create GTR instead of the extreme property of a geodesic 

line. 

Let's consider the practical implementation of the author's algorithm according to the block 

diagram in Fig. 3b. Let us turn to the segment of the separatrix ABC, shown in Fig. 4b, which 

corresponds to the formula (A.8d). 

                                                           
1Lagalli M. Vector calculus. Moscow, 1936  
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Fig. 4 

 
On the interval [0, 𝜋𝜋] the separatrix segment ABC is characterized by a concave, 

descending branch of the BA, i.e. by some line of a pseudo-Riemannian surface; it is defined 

by the formula (A.8b) with account of sign " – ": 

( )04arctg expS tϕ ω−  = − −  ,       (1.69) 

without taking into consideration term 𝜋𝜋. 

On the interval [𝜋𝜋, 2𝜋𝜋]the separatrix segment ABC is a convex ascending branch of BC, 

i.e. a certain line of the Riemannian surface; it is defined by the formula (𝐴𝐴. 8𝑎𝑎) with account 

of sign "+": 

( )04arctg expS tϕ ω+  =   ,        (1.70) 

without taking into consideration the term 𝜋𝜋. 

Consequently, instead of formulas (1.69) and (1.70), the separatrix ABC can be described 

by a single formula 

( )[ ] [ ]
( )[ ] [ ]




⊂

⊂−−
=≡

.2,,exparctg4
,,0,exparctg4

00

00

ππωω
πωω

ϕϕ
tfort

tfort
SABCS    (1.71) 
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The separatrix segment ABC is shown separately in Fig. 5. 

 
Fig. 5 

 

Now, let us find the asymptotes of the separatrix segment ABC (Fig. 5). The solution of 

the lower equation (1.71) for 𝜔𝜔0𝑡𝑡 = 𝜑𝜑𝑆𝑆  allows us to determine the upper asymptote 

...275659.6max =Sϕ  . We used a personal computer to solve the transcendental equation 

(1.71) in an iterative way. Saturation of six digits after the decimal began after six iteration 

steps, starting with the first step equal to one. Since the curve ABC is symmetric about the axis  

𝑂𝑂𝜑𝜑𝑆𝑆, the lower asymptote is determined by the difference  ...006525.02 maxmin =−= SS ϕπϕ  

To determine the body mass 𝑚𝑚 moving with a velocity  𝑣𝑣  commensurate with the speed 

of light 𝑐𝑐, it is necessary to use formula (1.68). For this purpose, the values of the ABC curve 

should be displayed on the hyperbolic tangent function, i.e. for a fixed point 𝜑𝜑𝑆𝑆,𝑖𝑖 of the curve 

ABC, you need to find the corresponding value of the function th(𝜑𝜑𝑆𝑆,𝑖𝑖) = 𝜈𝜈𝑖𝑖/𝑐𝑐. Consequently, 

the velocity of the body at a point 𝑖𝑖 will be defined from relation 

( ){ }th 4arctg ,i
i iv c eϕ π ϕ π = − ≤ ≤  ,       (1.72) 

whose mass at the point 𝑖𝑖 is in expression (1.68) 

( )0ch 4arctg ,i
i im m eϕ π ϕ π = − ≤ ≤  .      (1.73) 

The use of formulas (1.72) and (1.73) is illustrated in five examples. 

1. Assume 𝜑𝜑 = −2, where ( )2
, 2 4arctg 0.538072S eϕ −
− = = . Speed of the body will be 

( )th 0.538072v c  =   , and the body weight will be equal to ( )0ch 0.538072m m= . 

2. Assume   𝜑𝜑 = −1, where  ( )1
, 1 4arctg 1.410054S eϕ −
− = = . Speed of the body will be 

( )th 1.410054v c  =   , and the body weight will be equal to ( )0ch 1.410054m m= . 
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3. If 𝜑𝜑 = 0, then we will have: ( )0
,0 4arctg 3.141592S eϕ π= = = . In such a case speed of 

the body is equal to ( )th 3.141592v c  =   , and the body weight will be: ( )0ch 3.141592m m= . 

4. If 𝜑𝜑 = 1 , we have ( )1
,1 4arctg 4.873132S eϕ = = . The speed of the body  

( )th 4.873132v c  =   , and the corresponding body weight is equal to ( )0ch 4.873132m m= . 

5. If we assume that 𝜑𝜑 = 2, then we will have: ( )2
,2 4arctg 5.745113S eϕ = = , speed of the 

body will be   ( )th 5.745113v c  =   , and the body weight will be:  ( )0ch 5.745113m m= . 

Thus, it follows from the Lorentz transformations that the state (i.e., the value) of a 

physical quantity (in this case mass) depends on its speed, if this speed is commensurable with 

the speed of light. For an arbitrary physical quantity (length, time, etc.), the above can be 

generalized by using these hyperbolic functions. 

Let us find the length  ℓ𝑖𝑖 of a certain body moving with the velocity 𝑣𝑣𝑖𝑖 corresponding to 

point 𝑖𝑖 of the function ABC (see Fig. 5), and commensurable to the speed of light 𝑐𝑐. The 

velocity of this body, expressed in terms of the speed of light, is found from formula (1.72). 

The length of a given body, determined with the use of the Lorentz transformation, is reduced 

in accordance with expression 

( ) sech 4arctg ,i
i iL e Lϕ π ϕ π = < − ≤ ≤  , 

where  𝐿𝐿  is  the length of the body at rest, i.e. when 𝑣𝑣 = 0. 

In the case when the system moves at a speed corresponding to the first point of the ABC 

function (see Fig. 5), not only does the length of this system (body) decrease, but the time 

flow 𝜏𝜏𝑖𝑖 also slows down according to formula 

( )iφ sech 4arctg e ,i it tτ π ϕ π = < − ≤ ≤  , 

where 𝑡𝑡  is the time flow in a stationary system (𝑣𝑣 = 0). 

Consequently, the use of the above technique for determining the changes in physical 

quantities (mass increase, shortening and slowing down of the timeflow) of a system moving 

with a speed commensurate with the speed of light gives the same results as GTR. 

Two different approaches to the solution of one problem lead to two different algorithms of 

its solution. However, it should be noted that the starting point in both approaches is the 

optimality of the problem posed: in one case, the basis of the solution is the Euler-Lagrange 

optimization equation, and in the other, the equivalent Hamiltonian equation. 
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It is possible to compare these two approaches in the case of an exact solution of the stated 

problem, i.e. for the Schwarzschild problem. 

For a spherical coordinate system 

𝑥𝑥 = 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 , 𝑦𝑦 = 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 , 𝑧𝑧 = 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃,   (1.74) 

Near a static mass with spherical symmetry, for a Riemannian interval 𝑑𝑑𝑠𝑠2there is an exact 

solution 

( )
2

2 2 2 2 2 2 2sin 1
1

dr ads r d d c dta r
r

θ θ ψ  = − − + + − 
 −

,    (1.75) 

where 2

2æ , æ
c

ma = – gravitational constant of Newton, m  ̶ mass of a body with spherical 

symmetry. 

It should be noted that the coordinate system (1.74) is an orthogonal curvilinear system. 

In the gravitational field of this body, the trajectories of the uncharged particle are the geodesic 

lines of the Riemannian space satisfy an equation 
2

2 0
,

d y dy dy
ds ds ds

ρ µ νρ
µ ν

 
+ = 

 
,        (1.76) 

where
,
ρ

µ ν
 
 
 

is the Christopher symbol. 

Symbol 
,
ρ

µ ν
 
 
 

 is replaced by its values calculated using potentials 

233
00 22 2

11

1 1 ,
sin

a r
r θ

 = − = − = = − 
 

g
g g

g
. 

We write the equation of the geodesic line (1.76) first for 𝜌𝜌 = 2 . Assuming 

𝑦𝑦1 = 𝑟𝑟, 𝑦𝑦2 = 𝜃𝜃, 𝑦𝑦3 = 𝜓𝜓   we obtain 
22

2

2 cos sin 0d dr d d
ds r ds ds ds

θ θ ψθ θ  + − = 
 

. 

We choose the coordinate system (1.74) so that the motion of the particle occurs on the 

plane 𝑥𝑥𝑥𝑥𝑥𝑥, i.e. when  𝑧𝑧 = 0. This is achieved when 𝜃𝜃 = 𝜋𝜋 2⁄ . In such a case  

(𝑑𝑑2𝜃𝜃 = 0) equation (1.75) will be written as follows 

2 2 2 2 2 21ds dr r d c dtψ α
α

= − − + ,      (1.77) 

where 2

2æ1 1
c

m a
r r

α = − = −  
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Equation (1.76) for 𝜌𝜌 = 3   and   𝜌𝜌 = 0 will be written as follows 
2

2

2 0d d dr
ds r ds ds

ψ ψ
+ = , 

'2

2 0rd t dr dt
ds ds ds

α
α

+ = . 

Integration of the last two equation will give 

2
2

1 ,d h dt kr
ds c ds cb
ψ

α
= ≡ = ,        (1.78) 

where ℎ  and 𝑘𝑘   are the constants of integration. 

If we now integrate (1.76) for 𝜌𝜌 = 1, excluding from it 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 with the help of (1.78), 

we will have 
2 2 2

2 2 2 2

1 1h dr h k
r c d r c cα ψ α

 
+ − = − 

 
.       (1.79) 

We introduce notation 

1u
r

= .          (1.80) 

With account of notation (1.80), expression (1.79) can be written as follows 
2 2 2 2

3 2
2 2 2 4

2æ 2æ 1du m m c k hu u u
d c h h cψ

  
= − + − −  

   
.     (1.81) 

The solution of the Schwarzschild problem (1.81) cannot be compared with the author's 

method. The impossibility of such a comparison is due to the fact that the solution (1.81) uses 

the rotation angle 𝜓𝜓  of the spherical coordinate system (1.74) as the distance argument  

1/u r=  up to a spherically symmetric mass, while the author's method is based on the formula 

(1.71), in which the angle of rotation of the separatrix Sϕ  depends on the current time or the 

corresponding angle specified in radians. However, since the Hamilton equations are 

equivalent to the Euler-Lagrange equations (see(0.8𝑎𝑎) and (0.8b)), it is possible to compare 

the exact solution (1.81) if the Schwarzschild problem is solved using the Euler-Lagrange 

equation, which is equivalent to the author's solution. Therefore, we turn to the solution of the 

Schwarzschild problem with the application of Euler-Lagrange equation. 

The Lagrange function 𝐿𝐿 is defined only as the sum of the kinetic energies of the 
corresponding terms of the Riemannian interval (1.77):    

2
2 2 2 21 1 1 1

2 2 21
s

s s
r aL r c ta r

r

ψ  = − − + − 
 −

.       (1.82) 
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The Euler-Lagrange equations1 can be written in the form 

0
s

d L L
ds ψ ψ

 ∂ ∂
− = ∂ ∂ 

,        (1.83) 

0
s

d L L
ds t t

 ∂ ∂
− = ∂ ∂ 

,        (1.84) 

0
s

d L L
ds r r

 ∂ ∂
− = ∂ ∂ 

,        (1.85) 

where the index 𝑠𝑠 for variables 𝜓𝜓 , 𝑡𝑡 , 𝑟𝑟 denote the derivative of 𝑠𝑠 . From the solution of 

equations (1.83) and (1.84) it follows that .
s

L const
ψ
∂

=
∂

 and .
s

L const
t

∂
=

∂
, i. e. we have 

2 1dr
ds b
ψ

= ,         (1.86) 

2

2
1 a dt k

r ds c b
 − = − 
 

,        (1.87) 

where  
2

2

cb
h

≡   – is constant. 

With account of equations (1.86) and (1.87) in equation (1.77), we will have      

 
2 2 2

2 2 2

2
1

1 1

dr k rbr r da ac
r r

ψ

 
 
 = − + −

  − −    

.      (1.88) 

Taking into consideration the notation (1.80) of equation (1.88) we obtain 

        
2 2

3 2
2

du kau u abu b
d cψ

 
= − + + − 

 
.       (1.89) 

If in (1.89) we substitute the above notations 22æ /a m c= and 2 2/b c h= , then the 

equation (1.89) will coincide with equation (1.81). This proves that the application of the 

author's method is equivalent to the application of the Einstein method for solution of the 

Schwarzschild problem. 

By solving equation (1.85), one can verify the validity of the Euler-Lagrange equation. 

                                                           
1Equations (1.83) ‒ (1.85) are called Euler-Lagrange equations, because the interval ds  is proportional to 

the interval of time  dt , i.e. dtds υ= , where υ  is the speed of a moving body. 
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In the monograph [12] (§14), there was expressed an idea that in the case of 

geometrodynamics, the dynamic object is not a space-time, i.e.it is three-dimensional spaceand 

not four-dimensional. 

The space dimension is not an objective reality, and depends on the coordinate system the 

researcher chooses. If there is no need to consider the relativistic effect (for example, in 

geometrodynamic), then it is necessary to use a coordinate system that does not explicitly show 

time, but describes a three-dimensional space changing in time. 

If it is necessary to consider the relativistic effect, then according to equation (1.81), we 

should choose the orthogonal curvilinear coordinate system (1.74). This can be illustrated by 

the example of the Schwarzschild problem. 

The trajectory of motion of the planet Mercury can be obtained if the equation (1.81) is 

differentiated by 𝑢𝑢: 
2

2
2 2 2

3d u æm æmu u
d c hψ

+ = + .                                                                                       (1.90) 

It is not difficult to show [13] that in this case, equation (1.90) leads to the precession of 
the major axis of the elliptical trajectory along which the planet moves; this precession in a 

century is 
( )

12

2

20946.357 10 42,9
1 Tε

⋅
Ω = =

∆ −
  angular seconds, 

where   Δ = 5,8 ⋅ 1012𝑐𝑐𝑐𝑐  is the major axis of trajectory, 
𝜀𝜀 = 0.2056 is the eccentricity of trajectory, 

87.97T = days – the period of revolution of the planet in the star days. 

It will take three million years for the major axis of the ellipse, along which Mercury 

moves, to make a complete revolution around the Sun. 

We now turn to the solution of this problem in the case of a coordinate system using the 

Weierstrass elliptic function ℘. Introduce notation 

4 1
3

u U
a a

= + .                                                                                                            (1.91) 

With account of notation (1.91), equation (1.89) can be written in the form 

   
2

3
2 34dU U g U g

dψ
 

= − − 
 

,                                                                                    (1.92) 

where 
2 2 2 2

2 3 2

1 1,
12 4 216 24 16

a b a b a kg g
c

= − = + − . 

The integration of equation (1.92) gives 𝑈𝑈 = ℘(𝜓𝜓 + 𝐶𝐶), 

where 𝐶𝐶 is the constant of integration. 
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Taking the last expression into consideration, the substitution of (1.91) will be written as 
follows 

( )1 1 4
3

u C
r a a

ψ= ≡ + ℘ + .                                                                                       (1.93) 

Consequently, substitution of (1.91) allows us to change equation (1.89) into equation 

(1.92), with its subsequent solution by the Weierstrass elliptic function. 

We now define the trajectory of the planet in the coordinate system (𝑈𝑈, 𝜓𝜓). To this end, 

we differentiate equation (1.92) in terms of  U : 
2

2
22

16
2

d U U g
dψ

− = − .                                                                                              (1.94) 

Expression (1.94) is the equation of an unstable oscillator; the coefficient of the variable 
2U does not contain the speed of light c. This circumstance explains the fact that a body 

moving according to (1.94) does not have a relativistic effect. It is also necessary to pay 
attention to one of the coefficients of the equation of the planet Mercury trajectory (1.90), 
which contains the speed of light  𝑐𝑐 : this is the coefficient 3æ𝑚𝑚 𝑐𝑐2⁄ for the variable 𝑢𝑢2 . 
According to the dependence of the coefficient of the desired variable u on c, there will be a 
relativistic effect. 

Thus, the choice of this or that coordinate system imposes a restriction on the physical 

meaning of the problem. The results of GTR are used: in Microworld for elementary particles 

moving with the velocities commensurate with the speed of light, in the Macroworld for 

spacecraft flight, in Megaworld for moving the Galaxies, stars and planets. 
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CHAPTER 2 

New models of Megaworld and their optimality 
 

To someone who grasp the Universe from a unified standpoint, 

the entire creation would appear as a unique truth and necessity 

J. d'Alembert 

 

Cosmology came to the conclusion that the mass of matter in the Universe, possessing the 

appropriate gravity, is capable to stop the expansion of the Universe. The current expansion of 

the Universe is modeled by an imaginary sphere, on the surface of which there are particles - 

Galaxies. After the expansion of the Universe, its compression will take place; the whole 

process of expansion and compression is of a pulsating nature, adequately described by the 

equations of a mathematical pendulum. Expansion of the Universe is a stable process, and its 

compression is an instable process. At a constant rate of change in the radius (an imaginary 

inflation or compression) of the sphere, the whole process of expansion and compression, as 

shown in §2.3, is simulated by the equations of closeness and super-closeness. These equations 

are the consequence of the joint solution of the instable and stable systems of Lotka-Volterra 

equations. As a result of solving the equations of closeness and super-closeness, the radius of 

an imaginary sphere an expanding and compressing is determined. The inverse value of this 

radius serves as the curvature of the Universe (see §2.4, point 6). Consequently, the curvature 

of the Universe can be defined not by the solution of classical equations of the gravitational 

field [14], but as the inverse values of the radius of the spheres corresponding to the expansion 

and compression of the Universe. This method of determining the curvature of the Universe 

follows from the approach to modeling the evolution of the Universe  proposed by us. 

 

§2.1. Possible model of the formation of dark matter in the Universe 

In recent years, a very important discovery was made: it became known that the mass of 

luminous objects in the Universe is about four percent of the total mass of the matter existing 

in the Cosmos. The rest of the mass (about 96%) falls on a dark (unclear) matter. This means 

that the average density of matter in the Universe is  1.2 310 /g cmρ −=  that many times exceeds 

its critical density 29 310 /c g cmρ −= . It follows from the above said that the total mass of matter 

in the Universe is such that it is able to stop its expansion [15], i.e. the Universe is closed. The 
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expansion of the Universe, which began at the time of "creation of the World", is followed by 

the process of its compression, and the compression is followed by expansion and so on. 

Consequently, the Universe is characterized by a cyclic evolution. 

The fact that the space curved by gravity initiates the formation of matter is well known. 

However, the mechanism of formation of the matter in a curved space was never considered. 

The environment in which the mechanism of the matter formation proposed by us can act is an 

elastic model of the physical vacuum, and the elementary particle acts as a singularity in this 

medium. Consequently, in this model the physical vacuum is an elastic solid, and the particle 

is regarded as a localized agent of this body. It should be noted that such a model of the physical 

vacuum is not something new. In the book [16] a similar model is given in an elementary but 

informative presentation. The problem of the formation of matter in a vacuum is considered in 

[17], and the elastic model of vacuum is devoted to the work [18]. 

The displacement equation for changing the state of an elastic medium in the linear 

approximation is given in the monograph [19]; in vector form it has the form 

( )
2

2
rotrot 2 div

t
ρ µ λ µ

∂
+ − + ∇ =

∂

u
u u X ,     (2.1) 

where 

𝐮𝐮 is the particle displacement vector; 

𝜌𝜌  – density of medium; 

𝜇𝜇 and 𝜆𝜆 are the constants of an elastic medium, called Lame coefficients having a dimension 

of 3

erg
cm

, 𝑿𝑿  is the vector of external action with respect to the elastic medium. If we introduce 

the notation 1 /c µ ρ=   and  ( )2 2 /c λ µ ρ= + ,   then equation (2.1) can be written in the 

form 

Xuuu 12
2

2
12

2

graddivrotrot −=−+
∂
∂ ρcc

t
,      (2.2) 

where: 

𝑐𝑐1 is the propagation velocity of the transverse wave, 

𝑐𝑐2 – the velocity of propagation of a longitudinal wave in an elastic medium. 

In our opinion, the increase of the volume in a space curved by gravity (vacuum), in which 

a dark matter is formed, is described by the stationary equation corresponding to equation (2.2). 

Based on these considerations, a localized microparticle of a dark matter is characterized by a 
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point-like inclusion defect, i.e. center of dilatation. This dilatation center is a right-hand side 

part of the stationary equation 

Quu =− graddivrotrot 2
2

2
1 cc , 

which is given by [20]     

( )gradb r rδ
ρ

= − − ′Q ,                                                                                                 (2.3) 

where 
1ρ −=Q X  is the reduced vector of external action with respect to the elastic medium; 

b≡b – the Burgers vector value; 

𝛿𝛿– the Dirac function; 

𝒓𝒓′   ̶  vector of the current distance to the center of inclusion (dilatation), i.e. the center of the 

sphere radius r .  

In the elastic medium, the reduced external action vector (2.3) causes a potential displacement 

field  

( ) 2
24

1 .b
cπρ

= −
 
 ′− 

u r
r r

grad       

The divergence of this displacement is everywhere equal to zero, except for the dilatation 

point [20]; consequently, we have 

( )2
2

b
cρ

′=u r rdiv - .                                                                                                   (2.4) 

It is well known that the negative value of the Burgers vector is defined as the circulation 

of the differential of the displacement vector 

( )∫ −= bu rd .                         (2.5) 

If the integrand of equation (2.5) for each component of the displacement vector 𝑢𝑢𝑘𝑘will be 

written in the form 

k ik idu u dr= ,                                                                                                                   (2.6) 

(where  ik k
i

u u
r
∂

=
∂

is the tensor of elastic distortion), then we have 

∮ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑟𝑟𝑖𝑖 = −𝑏𝑏𝑘𝑘,                 (2.5a) 

i.e., the circulation of the tensor of elastic distortion around the dilatation gives the negative 

component of the Burgers vector. 

For the displacement component defined by expression (2.4), we have 
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( )'
2
2

, 1, 2,k
ik i i

bu r r i
c

δ
ρ

= − = …                                                                                (2.7) 

If we introduce the notation 𝑢𝑢𝑘𝑘 = 𝛥𝛥𝑉𝑉𝑘𝑘, then, taking into account (2.6) and (2.7), we can 

assert that as a result of the displacement of the 𝑘𝑘 -th particle in a vacuum curved by gravity, 

there is an increase in the volume 𝛥𝛥𝑉𝑉𝑘𝑘, where a dark matter is formed; this increase in volume 

is determined from expression  

( )' '
2 2
2 2

k k
k i i i

b bV r r dr
c c

δ
ρ ρ

∆ = ∫ − = .  

The last expression is considered as the statement of the problem of determining the 

volume in which a dark matter is formed. 

We introduce the notion of probability density of finding a 𝑘𝑘 -th particle of a volume 𝑉𝑉𝑘𝑘, 

denoting this density by ( ),kp t′r . In this case, the probability of finding the Burgers 𝑏𝑏𝑘𝑘vector 

component in the volume 𝑉𝑉𝑘𝑘will be equal to ( ),k kb p t′r . 

We introduce the definition that the two dilatation centers do not interact in a contact-free 

way1, i.e., we have 

( ) ( ) ( )2
2

, , , 0k
k

b bk p t p t dr
cρ

Ξ = − ′ ′ =′∫


 r r , for 𝑘𝑘 ≠ ℓ. 

Interaction occurs only with direct contact of two concentrated inclusions of an elastic 

medium: 

( ) ( )
2

2
2
2

, , 0,
2

k
k

bk k p t d for k
cρ

Ξ ∫ ≠′ =′= − r r .                                                (2.8) 

For the probability density function,  𝑝𝑝𝑘𝑘(𝒓𝒓, 𝑡𝑡)  the following formulas hold 

∫ 𝑝𝑝𝑘𝑘(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓 = 1,                                                                                                 (2.8𝑎𝑎) 

𝑝𝑝𝑘𝑘 = 1 𝑉𝑉𝑘𝑘⁄ .                                                                                                           (2.8b) 

Formula (2.8) shows that the contact interaction of two dilatation centers generates the 

energy defined by this expression. Taking into account the inside energy of particles given by 

equation (2.8), by means of Gibbs thermodynamic potential [21], we can estimate the volume 

of the region of the curved physical vacuum that is occupied by the particle. For this problem, 

the Gibbs thermodynamic potential is written as follows: 

( ) ( ) ( ) 0, k k k kG k k k T H k T H s V= Ξ − + +  .                                                               (2.9) 

                                                           
1Дмитриев В.П. Стохастическая механика. М.: Высшая школа, 1990. 
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The terms and parameters in the potential (2.9) denote the following: ( ) */ lnk k k kH k b b K V=

  is the entropy of an ideal gas corresponding to the equilibrium state of a fluid in volume of 

, k kV T   is the temperature of the point inclusion fluid of the 𝑘𝑘-th particle,  𝐾𝐾𝑘𝑘  the coefficient, 

depending on the elastic properties of the medium with of the k-th particle included [20],  𝑏𝑏𝑘𝑘
∗    ̶  

the component of the Burgers vector, corresponding to one mole1 of a point inclusion fluid,  

𝐻𝐻0 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠   – the initial entropy of an ideal gas in an equilibrium state; 𝑠𝑠𝑘𝑘    ̶ background 

pressure of the point inclusion  of 𝑘𝑘 -th particle. 

With account of these notations and formulas (2.8), (2.8a), (2.8b), the potential (2.9) can 
be written as follows 

( )
2

02 *
2

ln
2

k k
k k k k k k

k k

b bG k K T V T H s V
c V bρ

= − − + + .                                                      (2.9𝑎𝑎) 

In order to determine the amount of the dark matter occupied by 𝑘𝑘 - th particle, it is 

necessary to solve the unconditional optimization equation written for the sought volume 

     ( ) 0=
∂

∂ kG
kV

.                                                (2.10) 

Substitution of the potential (2.9) into equation (2.10) leads to the square equation 
02 =+− µkkk mVVs , 

where 
2

* 2
2

,
2

k k k
k

k

K T bm b
b c

µ
ρ

= = . 

The solution of the last equation has the form 

𝑉𝑉𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑏𝑏𝑘𝑘,              (2.11) 

where 

𝐷𝐷𝑘𝑘 = 𝛷𝛷𝑘𝑘𝛹𝛹𝑘𝑘, 

and *2
k k

k
k k

K T
s b

Φ = , 
 

*2

2 2 2
2

21 1 k k
k

k k

b s
c K Tρ

Ψ = + − . 

If there is a strong inequality 
*2

2 2 2
2

21 k k

k k

b s
c K Tρ

>> , then in this case we will have *
k k

k
k k

K TD
s b

= . 

The total volume is defined as the infinite sum of elementary volumes (2.11) 

1
k

k

V V
∞

=

= ∑ . 

The last expression can be represented as a product of a row vector 𝑫𝑫, having an infinite 

number of components 𝐷𝐷𝑘𝑘on a column vector ∮ 𝐝𝐝𝐮𝐮(𝒓𝒓) (see (2.5)), which also has an infinite 

                                                           
1Mole is a unit of measurement for amount of substance equaling the amount of the substance system, which 
contains the same number of structural elements (atoms, molecules, ions, etc.) as atoms contained in carbon

C12  with a mass of 0.012 kg. 
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number of components (see (2.5a)). Given the fact that the negative volume has no physical 

meaning, we will have  

𝑉𝑉 = 𝑫𝑫 ∮ 𝐝𝐝𝐮𝐮(𝒓𝒓). 

As a result of circulation, the fluid is in a rotational state. The centrifugal force acts on 

different parts of the fluid in different ways: a greater centrifugal force acts on that part of the 

fluid that contains structural elements (atoms, molecules, etc.) of a greater mass. Consequently, 

as a result of the circulation of the fluid, the volume is unevenly filled with this substance. In 

rotation, condensation of the fluid takes place, which turns into a solid body. This explains why 

the body formed from the solidified fluid does not have an ellipsoidal (round) shape: it has 

different configurations in different directions. As a result of the rotation of the dark matter 

around the axis passing through the center of mass (like the center of gravity) of the body, the 

individual points of the configuration of the dark matter rotate with the same angular velocity 

𝜔𝜔. In this case, it is possible to determine the rotational power of the dark matter around this 

axis: 

𝑊𝑊 = 𝑀𝑀𝑀𝑀, 

where 𝑀𝑀 is the mass of a dark matter equal to 𝑀𝑀 = 𝜌⃰⃰𝜌 𝑉𝑉 and 𝜌⃰⃰𝜌  is the density of the dark matter. 

Power  𝑊𝑊 can be taken as the main dynamic characteristic of a dark matter. 

The obtained results show how the gravitational energy causing the curvature of space 

turns into real matter. 

In view of the small value of the Newtonian constant of gravitation 

( )238 sec1067.6æ ⋅⋅= − gmc , in the above-described stage of dark matter formation, there 

is no gravitational phenomenon. However, after the mass of a dark matter reaches certain 

magnitude, the gravitational effect begins to act. 

In the subsequent stages of formation of the dark matter, due to the appearance of 

gravitational forces, the dark matter can accept both macroscopic and megascopic dimensions 

commensurate with the objects of the Cosmos space. 

The results of this section allow us to explain the rotation of the planet Uranus around its 

axis. This rotation has the opposite direction to all other planets of the solar system: in rotation 

of the Sun around the center of the Galaxy, the gravitational field of the Sun captured the dark 

matter rotating around its axis. This dark matter was called the planet Uranus. 

Asteroids should be viewed not as fragments, as failed planets, but as fragments of the 

dark matter. 
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Finally, the origin of Phobos and Deimos the moons of the planet Mars can be explained 

by the gravitational field of the planet capturing the passing asteroids. 

 

 

§2.2. Dynamic model of expansion and compression of the Universe 

In the previous paragraph it was noted that since the average density of matter in the 

Universe is greater than critical, the evolution of the Universe is cyclic: expansion is followed 

by compression of the Universe, and compression is followed by expansion, etc. In our opinion, 

the cyclic evolution of the Universe adequately simulates the functioning of a mathematical 

pendulum. Equations of motion of the pendulum have the form 

111111 ,sin pGFp =−= ϕϕ  ,                                                       (2.12) 

where  𝑝𝑝1 is the impulse,  2
1 1 1 1 1 1 11/ ,F m h G m h mγ γ= =  is the force of gravity, i.e. the 

gravitational force acting on a Galaxy having a mass 𝑚𝑚1, from the side of luminous objects and 

the dark matter of the Universe (this means that gravitation is created by all kinds of matter), 

the cumulative mass of which is 𝑀𝑀, ℎ1   ̶ length of the pendulum, 2
1

Mæ
h

γ = −  acceleration,  

 æ    ̶  Newtonian constant of gravitation; 𝜑𝜑1    ̶  angle of deviation of the pendulum from the 

vertical. 

Let us write the Hamiltonian for the equations of a mathematical pendulum (2.12):  

1 1 1 1H T U E= + =  

or 

2
1 1 1 1 1 1

1 cos
2

H G p F Eϕ= − = ,           (2.13) 

where  2
1 1 1

1
2

T G p=  is the kinetic energy, 

1 1 1cosU F ϕ= −  – potential energy, 

𝐸𝐸1     ̶  the total energy of the Universe (Metagalaxy). 

Let the total energy 𝐸𝐸1 = 𝐸𝐸𝑢𝑢 be greater than the maximum value of the potential energy 

𝐹𝐹1. In this case, the impulse 𝑝𝑝1 is always other than zero; this leads to an unlimited change 𝜑𝜑1, 

i.e. to rotation (see Supplement B, case 2). For 𝑝𝑝1 > 0 the motion is from left to right with 

energy +𝐸𝐸𝑢𝑢, and for 𝑝𝑝1 < 0,  the motion is from right to left with the energy −𝐸𝐸𝑢𝑢. The positive 

and negative energy in the Universe depends on where (below the 𝑜𝑜𝜑𝜑1 axis or above the axis 

(see Fig. 4)) we observe the pendulum motion. In the Universe, there are no "bottom" and "top" 
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concepts, therefore, the symbol of energy "–" is a formality.  The relativity of the energy symbol 

becomes clear when we determine the volume that cannot be a negative value.  

We introduce the notation 𝐸𝐸𝑢𝑢 = 𝐹𝐹1 + 𝛥𝛥𝐸𝐸𝑢𝑢 [22]. We will be interested in the maximum and 

minimum value of the pulse, which it takes at the limit values of the function 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑1, i.e. for 

𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑1 = ±1. Then, according to the Hamiltonian (2.13), we will have (see Fig. 6)   

( )uEF
G

Rp ∆+=≡ 1
1

maxmax1
2 ,                          (2.14) 

1
minmin1

2
G

ERp u∆
=≡ .                (2.15) 

 

 
Fig. 6. 

 

Thus, the minimum radius 𝑹𝑹𝒎𝒎𝒎𝒎𝒏𝒏 of an expanding imaginary sphere, and the maximum 

radius 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎, which the imaginary sphere will have after expansion of the Universe, are 

defined. The minimum radius of an imaginary sphere corresponds to the initial density of 

matter in the first second of "Creation of the World" [15], i.e. 5
0 38 10 g

cm
ρ = ⋅ , as well as in the 

compression of the Universe. 

To avoid the overload of Fig. 6, the maximum radius of the sphere is shifted to the right 

for one period from 𝑀𝑀𝑀𝑀′ to 𝑁𝑁𝑁𝑁′. The sphere and the trajectory of its motion are denoted by 

bold curves. Index 𝑠𝑠 of the energy, i.e. 𝐸𝐸𝑠𝑠 indicates that the energy belongs to a separatrix. 

Now, let us define the increase of the total energy of the Universe 𝛥𝛥𝐸𝐸𝑢𝑢, which appears in 

the expressions (2.14) and (2.15). To this end, let us turn to formula 
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3min 4
3

πρ

∗

=
MR ,                          (2.16) 

where 𝑀𝑀∗ = 𝑀𝑀 +m1. 

Equating the right-hand side part of the formulas (2.15) and (2.16), we determine the 

magnitude of the increase in the total energy of the Universe 

2*
1 3

3
2 4u

G ME
πρ

 
∆ =  

 
.                                              (2.17) 

With account of formula (2.17) in expression (2.14), we will have the maximum radius of 

an imaginary sphere 























+=

∗

3

2

1
1

1
max 4

3
2

2
πρ
MGF

G
R .                                 (2.18) 

Since the equations of the mathematical pendulum (2.12) satisfy Hamilton's equations 

(A.3) (Supplement A), the evolution of the Universe is optimal in the sense of Hamilton's 

equations (0.8a) and (0.8b). 

 

§2.3. The physical prerequisites for expansion and compression of the Universe 

According to the postulate of physics, matter can exist in two states: substance and field 

[23]. In the Universe, the process of transition (transformation) of the substance into field and 

the process of transition of the field into substance occur in parallel to each other. Fig. 7 

schematically shows these transitions. 

 

 

 

 

 

Fig. 7 

On the scale of the Universe, these transformations occur at all levels of the matter. On the 

level of elementary particles, these transformations are described figuratively by M. A. 

Tonnelat [13]: “At the end, the experiments in which a quantum of electromagnetic radiation 

with the energy 𝐸𝐸0 = ℎ𝜈𝜈0 8F

1 turns into a pair of oppositely charged particles with a common 

                                                           
1 h -Planck's constant, 
   0ν  -frequency of electromagnetic radiation. 

Matter 

Substance Field 
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energy  2𝑚𝑚0𝑐𝑐2 , as well as experiments in which the opposite process is observed: 

transformation of the matter into radiationallows us to give meaning to the relation 2E mc∆ = ∆

in the case when as a result of the reaction the mass arises from radiation or, on the contrary, 

completely disappears and turns into radiation. “ 

On the level of stars, the transformation of matter into a field, i.e. in radiation, takes place 

in the catastrophic explosion of a star at the end of life. This phenomenon is called the flash of 

a supernova star. The light component (the brightness of the star) is part of the general, sharply 

increasing radiation (field) emitted during the explosion of the supernova star. The 

transformation of the field into matter is described in paragraph 2.1, when dark matter is formed 

in a vacuum curved by a gravitational field. 

For the processes of expansion and compression of the Universe, the statement of the 

founder of modern cosmology, G. Lemaitreis very important, who believed that the Universe 

consists of particles – Galaxies, which are in the process of either moving in different directions 

(expansion of the Universe), or moving toward each other (compression of the Universe). As 

follows from this statement, the expansion of the Universe is accompanied by rarefaction of 

gas consisting of particles – Galaxies. As already noted, this phenomenon is modeled by the 

occur of particles – Galaxies on the surface of an imaginary expanding sphere. The expansion 

model of the Universe, given below, is designed to simulate the process of rarefaction of the 

average density of matter in the Universe. 

Let us now turn to the physical models of expansion and compression of the Universe. As 

a model of expansion of the Universe, the model of the effect of "closeness" [24] is taken: the 

closer each Galaxy is to other Galaxies, the worse it is for it, i.e., the greater the concentration 

of Galaxies, the worse. Therefore, the term describing the concentration decrease of the 

Galaxies must be proportional to 𝑧𝑧2: 

2dz z z
dt

β µ+
+ + + += − ,                                      (2.19) 

where  𝑧𝑧+ is the density of matter in an imaginary expanding sphere. 

Another model simulating the compression of the Universe is: 

2dz z z
dt

β µ−
− − − −= − + ,                                                 (2.20) 

where 𝑧𝑧− is the density of matter in a compressing sphere. 

Equation (2.20) is called the model of "super-closeness". This model is that the closer each 

Galaxy is to other Galaxies, the better it is for it, i.e., the greater the concentration of Galaxies 

the better. The models (2.19) and (2.20) are Riccati equations without a free term; the integral 
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from the soliton (see (0.7a) and (0.7b)) that satisfies the Euler-Lagrange equation, i.e. these 

models are optimal. 

Although the density of substance y is many times more than the field density x, for a 

large mass of the field their competitive behavior becomes real. Soon after the Big Bang, the 

radiation, i.e. the field made a much larger contribution to the density of matter than the 

substance. This period is called the "radiation era"1. As is known, the competitive behavior of 

two variables 𝑥𝑥 and 𝑦𝑦 are adequately modeled by the Lotka-Volterra equations - the "predator-

prey" equations. The expediency of application of these equations in modeling the Big Bang is 

given in Supplement  𝐶𝐶. 

The report [25] shows that if for two competing variables 𝑥𝑥 and  𝑦𝑦, satisfying the system 

of Lotka-Volterra equations predator-prey, the stable 

 
, , 0,

               
, , 0,

dx ax bxy a b
dt M
dy cxy dy c d
dt

= − >

= − >
 

and the instable 

 
, , 0,

               
, , 0,

dx ax bxy a b
dt N
dy dy cxy c d
dt

= − >

= − >
 

for denotation 𝑧𝑧 = 𝑥𝑥𝑥𝑥 and the condition according to which the rate of change in the density 

of matter z  is constant, i.e. 

/z z q const= ± =                                              (2.21) 

the transition from systems M and N to the modified Riccati equation can be carried out [25] 

( )dz bcd q z
dt a q

= − +



2z  .                                                        (2.22) 

For explaining the role of the parameters 𝑎𝑎 and 𝑏𝑏 in the first equation of the system 𝑀𝑀, let 

us represent the equation in the tempo record: 

dx
dt a by
x

= − .         (2.23) 

                                                           
1Silk  J. The Big Bang. The birth and evolution of the Universe. Moscow: Mir, 1982 
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It is clear from the expression (2.23) that the parameter 𝑎𝑎 describes the rate of production 

of the field density 𝑥𝑥 = 𝜌𝜌(𝑥𝑥) ; parameter  𝑏𝑏  is the weight coefficient for the density of 

substance 𝑦𝑦 = 𝜌𝜌(𝑦𝑦)  in equation (2.23). 

Similarly, to identify the assignment of parameters 𝑐𝑐 and 𝑑𝑑 in the second equation of the 

system 𝑀𝑀, we represent this equation in a tempo form: 

dy
dt cx d
y

= − .          (2.24) 

Equation (2.24) shows that the parameter 𝑑𝑑  characterizes the rate of production 

(formation) of the density of substance 𝑦𝑦 = 𝜌𝜌(𝑦𝑦), and the parameter 𝑐𝑐 is the weighting factor 

for the field density 𝑥𝑥 = 𝜌𝜌(𝑥𝑥). 

It should be noted that equation (2.22) includes equation (2.19) modeling the expanding 

Universe, and equation (2.20) modeling the compressing Universe; all depends on the choice 

of coefficients for 𝒛𝒛 and 𝒛𝒛𝟐𝟐. 

Let us now define the parameter𝑞𝑞. To this end, the solution of (2.22) will be sought in the 

class of generalized functions [22]. Actually, let us turn to equations 

± 1d
dt
χ

ψ
=  ,         (2.25) 

1d
dt
ψ

χ
=   .         (2.26) 

From equations (2.25) and (2.26) it follows that 

± ( )'1 1ln 

d
d d
d ψ

χ
χ χ ψ χ
ψ ψ χ ψ ψ

= ⇒ ± = ⇒ ± =│ │  .     (2.27) 

If in formula (2.27) we substitute 𝜒𝜒 by 𝑧𝑧, and substitute  𝜓𝜓  by current time 𝑡𝑡, then denote 

0
tz z=  ,          (2.28) 

(𝑧𝑧0 is the value of matter density in equilibrium state: 0bcza e
d

= , and letter 𝑒𝑒  denotes the  

Napier’s number, i.e.. е = 2.7182 …) with account of (2.21), we will have   

       ( )'1      / ln ln
t

z z z q
t

= = ± = = ±
│ │       ( 2.29) 

Expression (2.29) shows that the parameter 𝑞𝑞 belongs to the class of generalized functions. 

We divide both sides of equation (2.22) by 𝑧𝑧, then with account (2.21) we obtain equality 
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bcq d q z
a q

± = − ± +


 

From the last expression we define 𝑧𝑧:  

( ) d a q
z

bc
=



.          (2.30) 

According to the relation (2.29), the expression (2.30) and the notation (2.28) can be 

written as follows 

( ) ( )
0

0

  
ln ln

d a q d a q
z t e

bc bcz
 

= ⇒ = ± 
 

 

 .      (2.31) 

From the relation (2.31) we obtain two formulas 

0
1

bczq a e
d

 = ± − 
 

,        (2.32) 

0
2

bczq a e
d

 = ± + 
 

.        (2.33) 

Root 𝑞𝑞2 (2.33) is not suitable, because it corresponds only to the compressing or only  to the 

expanding Universe: 2
0         q tz z e for t= →∞ →∞  or  2

0 0       .q tz z e for t−= → →∞  

From the first expression it follows that the density of matter tends to infinity.  

Root  1q  (2.32) can be used in modeling the expanding Universe for 0 bcz e a
d

> , and in the 

modeling of a compressing Universe for 0bcza e
d

> . In equation (2.22), the parameter 𝑞𝑞 implies 

root 𝑞𝑞1. Consequently, the density of matter corresponding to the root 𝑞𝑞1 will be written as 

follows 
1

0
q tz z e= .          (2.32𝑎𝑎) 

Thus, for  a constant rate (2.21) of change of the matter density 𝑧𝑧(𝑧𝑧 = 𝑥𝑥𝑥𝑥), formula (2.32𝑎𝑎) 

determines the total density of the field 𝑥𝑥 and the substance 𝑦𝑦 in the form of an exponential 

function, consisting of the production of the current time 𝑡𝑡 , difference  0
1  bczq a e

d
= −

 characteristic of the relationship between the weight coefficients of the field ( ),a d ,  the 

substance (𝑏𝑏, 𝑐𝑐)  and the value of the total density of the matter in the equilibrium  state

0 0
0

0 0

  a dz
b c e

= , where the parameters 0 0 0 0, , ,a b c d  correspond to the equilibrium state of the 

parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, for which equality 
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 0 0bcza e
d

− =  holds.  

Consequently, for an expanding Universe, i.e. for the equation (2.19), the parameters 

𝛽𝛽+ and 𝜇𝜇+ are defined as follows  

( ) 0 0

0 0

0 ,

0.
 

bcz bczd q d a e e a d
d d

bc bc d
bcza q z ea e a

d

β

µ

+

+

 = − + = − − + > ⇒ > +

 = = = > − + −


    (2.34) 

For a shrinking Universe, i.e. for the equation (2.20), the parameters β−  and  µ−  are found 

from expressions  

 

0 0

0
0 0

0 ,

0       for     2 .
2 

bcz bczq d a e d a d e
d d

bc bc bcd ad bcz ebcza q ad bcz ea a e
d

β

µ

−

−

= − = −



− > ⇒ − >

= = = > >






−+ −



+

   (2.35) 

So long as we have inequality 2
0a bc dd ez> +  then condition 02 ead bcz>  is in exeess; its 

automatic realization. 

The imaginary sphere (Fig. 6) moves from left to right: the size of the sphere increases, 

which corresponds to the expansion of the Universe that is currently taking place; this causes 

the corresponding process of rarefaction of the matter. The state of the sphere 𝑀𝑀𝑀𝑀′ is 

characterized by a stable position: the radius of the sphere is maximum, i.e. we have 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, and 

the density of matter reaches minimum 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 . After the 𝑀𝑀𝑀𝑀′ state the sphere begins 

compression; this process ends in a state ℑℑ′, when the density reaches maximum value 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 

and the radius of the sphere becomes minimum 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚. Further, according to the model of the 

pendulum, the process of expansion and compression of the Universe repeats. 
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§2.4. Solution of the equations of the pendulum functioning in the Universe for 

separatrix, vibrational and rotational motions. Determination of the volume 

corresponding to the oscillatory motion of the pendulum of the Universe. Determination 

of the separatrix surface in the Universe. Curvature of the Universe 

 
In the present and in the next section, instead of acceleration of the free fall of a pendulum 

operating in terrestrial conditions, the acceleration 2
1

æM
h

γ = − , more precisely, the absolute 

value of this acceleration corresponding to a pendulum functioning on the scale of the Universe 

will be discussed. The structure of the equation of the pendulum of the Universe (2.12) remains 

the same. 

1. Solving the equations of the pendulum of the Universe corresponding to the 

separatrix. 

The differential equations for the separatrix of the pendulum (B.6 𝑎𝑎 ) and (B.6b) 

(Supplement B, case 2b) remain in effect 

( )01
2

1 hsec ϕϕ −=′p ,          (2.36) 

( )01
2

2 hsec ϕϕ −−=′p ,          (2.37) 

where the angle of rotation of the separatrix is determined by the formula (B.7). 

The solutions of the differential equations (2.36) and (2.37) allow to determine the 

impulses corresponding to separatrices moving from left to right and from right to left: 

( )∫ −=
1

0

101
2

1 hsec
ϕ

ϕ

ϕϕϕ dp ,                                                                                (2.38) 

( )∫ −−=
0

1

101
2

2 hsec
ϕ

ϕ

ϕϕϕ dp .                   (2.39) 

As already noted above, the separatrix is not a set, but a line having the length but not the 

breadth. 

Solutions (2.38) and (2.39) correspond to the values of the energies 

𝐸𝐸𝑠𝑠   and  −𝐸𝐸𝑠𝑠 corresponding to the separatrix of the pendulum of the Universe (see Fig. 4b, 

number 3). 
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2. A set corresponding to the oscillatory motion of the pendulum of the Universe. 

 

In this case, the inequalities for energies  𝐸𝐸1  and  −𝐸𝐸1  are given by (Fig. 4b, number 2): 

𝐸𝐸𝑠𝑠 > 𝐸𝐸1 ≥ 0,             (2.40𝑎𝑎) 

−𝐸𝐸𝑠𝑠 < −𝐸𝐸1 ≤ 0,                        (2.40b) 

where 𝐸𝐸1  is the total energy of the pendulum. 

As already noted (see the text after formula (2.13)), the negative energy −𝐸𝐸1 in the 

Universe is absent; this concept is relative: the positive and negative energy depends on the 

location of the observer in relation to the axis 10ϕ . We use the axis 10ϕ  (for which 

1 1 1 3
1

, æMt
h

ϕ ω ω= = ), since from the pendulum functioning in terrestrial conditions (see Fig. 

4) we go to the pendulum of the Universe. If the observer is below the axis 0𝜑𝜑1, then we have 

inequalities (2.40) and (2.40b). If the observer is above the axis 0𝜑𝜑1, then the negative energy 

(2.40b) becomes positive (2.40) and vice versa. This can also be interpreted by using the 

equivalence symbol“≡”applicable to integrals 
b a

a b

≡ −∫ ∫ . 

The negative impulse 𝑝𝑝  negative energy corresponds −𝐸𝐸 that can be verified by 

elementary reasoning. According to formula p mv= , if the impulse 𝑝𝑝 is negative, then the 

mass 𝑚𝑚 will be negative and consequently, energy 2E mc=  will also be negative. Since the 

negative mass has no physical meaning, the existence of negative energy is nonsense. 

The oscillatory motion of the pendulum of the Universe corresponds to the formula (B.2) 

substituted in it parameter  g
h

ω = by parameter  1 3
1

æM
h

ω = : 

( )1 03
1

sn ,æMp k t t k
h± ±

 
= − 

 
.                          (2.41) 

Formula (2.41) has the property of symmetry with respect to the axis 0𝜑𝜑1 (see Fig. 4b); 

for the parameter value 𝑘𝑘+, belonging to the interval ±(0…, ,k …1), i.e, ( )0 , , 1k k+ ∈ + … …  

(Supplement B), it describes the upper part (with respect to the axis 0 𝜑𝜑1) of set 2, and for 

( )  0 , , 1k k− ∈− … … , describes the mirror reflection of the upper part of this set relative to the 
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axis 0𝜑𝜑1, which is below the axis 0𝜑𝜑1 and therefore 𝑘𝑘− = −𝑘𝑘+. Since the set 2 is closed, the 

initial condition 𝑡𝑡0  can be omitted. The argument in the last formula can be presented in 

appropriate corner (see B.7): 

( )1 1sn ,p k kϕ± ±= .                           (2.42) 

According to the well-known properties of Jacobi's elliptic function sn, the oscillatory 

motion is periodic, having a period 

𝑇𝑇 = 4𝜔𝜔1𝐾𝐾,                           (2.43) 

where 

 
1 1

2 2 2

0

1 1K t k t dt
−

 = − −
 ∫ . 

3. A set corresponding to the rotational motion of the pendulum of the Universe. 

In this case, the inequalities for energies have the form (see Fig. 4b, number. 1): 

𝐸𝐸𝑢𝑢 ≥ 𝐸𝐸1 > 𝐸𝐸𝑠𝑠, 

−𝐸𝐸𝑢𝑢 ≤ −𝐸𝐸1 < −𝐸𝐸𝑠𝑠. 
The rotational motion of the pendulum of the Universe corresponds to the formula (B.3) again 

by substitution its parameter g
h

ω =   by parameter  1 3
1

æM
h

ω = : 

0
1 3

1

sn ,t tæMp k
h k ±

±

 −
= ⋅  

 
.                                    (2.44) 

Formula (2.44) has the property of symmetry about the axis 0𝜑𝜑1  (see Fig. 4b); for the  

parameter value 𝑘𝑘+ belonging to the interval ±( 0 , , 1k… … ),  𝑘𝑘+ ∈ +� 0 , , 1k… … �  (see 

Supplement B), it describes the upper part (with respect to the axis 0𝜑𝜑1) set 1, which extends 

to a separatrix 3, and for 𝑘𝑘− ∈ −� 0 , , 1k… … �, describes a mirror image of this set below the 

axis 0𝜑𝜑1 and therefore 𝑘𝑘− = −𝑘𝑘+.  So far as sn(.,.) is odd function, then p1(2.44) is symmetric 

to the axis 0𝜑𝜑1. 

Last expression can be presented in following form (see B.7): 

1 0
1 sn ,p k

k
ϕ ϕ

±
±

 −
=  

 
.                                    (2.45) 

4. Determination of the volume corresponding to the oscillatory motion of the pendulum 

of the Universe. 

The volume of the ellipsoid 𝑊𝑊 corresponding to the oscillatory motion, formed by rotating 

the expression (2.42) about the axis 0𝜑𝜑1, is found by formula  
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( )2 2
1 1sn ,

n

n

W k k dπ ϕ ϕ
−

= ∫ .                                      (2.46) 

The Jacobi elliptic function sn is determined in the form of a convergent series 

( )sn ,x k 1 ( ) ( ) ( ) ,
!7

1351351
!5

141
!3

1
7

642
5

42
3

2
++++−++++−=

xkkkxkkxkx  

where −𝑛𝑛 and 𝑛𝑛 are the extreme points of the major axis of the ellipsoid (Fig. 8), formed as a 

result of rotation of the function (2.42) about the axis 0𝜑𝜑1, i.e. they characterize the length of 

the major axis of the ellipsoid equal to 

2эL n n n= + − = .                         (2.47) 

The length 𝐿𝐿э  is found as the product of the speed of movement of Galaxy 𝑉𝑉  in the 

ellipsoid for 𝑡𝑡𝑛𝑛  time of the Galaxy's motion about the major axis of the ellipsoid 

э nL Vt= .                            (2.48) 

The transit time is determined by using formula (2.43). Comparing expressions (2.47) and 

(2.48), the value of point 𝑛𝑛 can be found and the volume of the ellipsoid be determined by 

formula (2.46). 

                                                           
1Determination of the terms in the expansion of the Jacobi function is given in F. Tricomi's monograph: 
Differential Equations. Moscow: IL., 1962. 
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Fig. 8 

 

 

 

5. Definition of the separatrix surface in the Universe. 

In §1.7 it was shown that motion along a separatrix means a trajectory motion that provides 

a relativistic effect. The effect is the same for motion along a separatrix surface. Therefore, it 

is of interest to find the surface area formed by the rotation of the separatrix 3 (see Fig. 4b) 

about the axis 0𝜑𝜑1, with the angle 𝜑𝜑 replaced by the rotation angle of the pendulum of the 

Universe 𝜑𝜑1, defined according to (B.7). 
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The separatrix 𝜑𝜑𝑠𝑠  consists of two sections: a concave section 𝜑𝜑𝑠𝑠−  (BA) and a convex 

section 𝜑𝜑𝑠𝑠+ (BC). Therefore, the area 𝑄𝑄 formed by the rotation of the separatrix 3 about the 

axis 0𝜑𝜑1  is represented as the sum of the areas formed by the rotation of these sections around 

the axis 0𝜑𝜑1: 

( )( ) ( )
+







 −
+= ∫

−
−

π ϕ
ϕ ϕ

ϕ
π

m

d
d

edeQ
0

1

2

1

1
1

arctg414arctg-2  

( ) ( )
∫ 








++

π

π

ϕ
ϕ ϕ

ϕ
π

2

1

2

1

1
1

arctg414arctg2
m

m

d
d

ede ,                                                     (2.49) 

2𝜋𝜋𝜋𝜋 is the number corresponding to the extreme point of the separatrix of the Universe. 

The first syllable in (2.49) is the area of the pseudo-Riemannian surface, and the second 

corresponds to the area of the Riemannian surface. 

 

6. Curvature of the Universe. 

As the curvature of the Universe, we take the reciprocal of the current radius of the 
imaginary sphere, on the surface of which there are particles - Galaxies: 

𝐾𝐾+ = 1
𝑅𝑅+

                                       (2.50) 

for the expanding Universe and 
𝐾𝐾− = 1

𝑅𝑅−
                                      (2.51) 

for a compressing Universe. 
In formulas (2.50) and (2.51), the radius of the imaginary expanding and compressing 

spheres are determined from the well-known expressions: 

3
3 *
4
MR

zπ+
+

=                                      (2.52) 

and 

3
3 *
4

MR
zπ−

−

= .                                       (2.53) 

The densities of matters 𝑧𝑧+  and  𝑧𝑧−  are determined according to formulas (B.8𝑒𝑒 ) and 

(B.8f). Since the negative density of matter 𝑧𝑧− is deprived of physical meaning, in the formula 

(2.53) this value is determined by using the symbol of the absolute value |𝑧𝑧−|. 

 It follows from (2.50) and (2.51) that over time the curvature of the expanding and 

compressing Universe, i.e. for 𝑡𝑡 → ∞ and 𝑡𝑡′ → ∞  decreases and increases, correspondingly; 

this can be seen from the analysis of formulas (2.50), (2.52), (В.8𝑒𝑒) and (2.51), (2.53), (B.8f). 



60 
 

Since the results of this section follow directly from the equations of a mathematical 

pendulum that satisfy the Hamilton equations (0.8𝒂𝒂)  and (0.8b), the results given in points 

1-6 are optimal. 

§2.5. Hypothetical model of the formation of an elliptical Galaxy 

In the fifties of the 20th century, K.F. vonWeizsäcker hypothesized the whirlpool nature of 

formation of the Galaxies. This hypothesis was shared by G.A. Gamow, the author of the theory 

of the hot Universe. The model of the evolution of the Universe proposed by us (see §2.4;  2 

and 4) confirms the possibility of the whirlpool nature of formation of the Galaxies. Indeed, in 

the oscillatory motion of the mathematical pendulum of the Uuniverse, a region is formed 

in the form of an elongated ellipsoid of energy (Fig. 8), in which there are lines of whirl of 

the gravitational field 𝑬𝑬𝟏𝟏, i.e. vector field lines 𝒓𝒓𝒓𝒓𝒓𝒓𝑬𝑬𝟏𝟏  these lines satisfy expression 

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝑬𝑬𝟏𝟏 = 𝟎𝟎,     

which implies that the lines of whirl have no beginning and  no end. The lines of whirl are 

closed on the plane (Fig. 4b, number 2) and in space (Fig. 9). Total energy E1 is proportional 

of the impulse p1. for our case (E1 =Eb) we have E1=Jp1 , where J= 2c /v and v is velocity of 

stars. The stars that fall into the ellipsoid of energy move along the corresponding lines of 

whirl. The form (shape) of the Galaxy depends on the lines of whirl of the energy ellipsoid and 

the angle at which the stream of stars falls. Therefore, for formation of a Galaxy of a certain 

shape, the star’s entering place in the elongated energy ellipsoid (in front or on the side) and 

angle of their entering into the ellipsoid are significant. 

 

 
Fig. 9 
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The trajectories of a stream of stars drawn by the gravitational field of an energy ellipsoid 

can have three possible locations in relation to the axes of a (large and small) energy ellipsoid: 

– along the whirling motion, 

– across the whirling motion, 

– arbitrary arrangement with respect to the axes of the ellipsoid. 

These three trajectories of the stream of stars completely determine the forms of all (except 

elliptical) Galaxies: disk-shaped, wheel-shaped, spiral, spherical, peculiar, irregular-shaped, 

etc. 

The characteristic dimensions of the Galaxies are 500.000 light years. 

Rotation of Galaxies is a strong argument in favor of their whirl origin. 

The stars, in all the Galaxies listed above, move in their orbits deterministically. In 

elliptical Galaxies, the stars move almost chaotically [26]. Therefore, we used the model of the 

surface of the strange attractor [27] simulating an almost chaotic motion for modeling the 

chaotic motion of stars. 

The formation of ordinary (non-elliptical) Galaxies occurs only under the influence of the 

lines of whirl of the gravitational field of the energy ellipsoid. In an elliptical Galaxy, the 

imaginary plane with the trajectory of the stars drawn by the gravitational field of the energy 

ellipsoid into this ellipsoidis deformed. This deformation can be verbally described as follows. 

Each star moving along the trajectory (see Fig. 10a) has a definite mass and a 

corresponding electromagnetic field. Gravitational whirling motion in the energy ellipsoid 

occurs around the small axis of the ellipsoid, and the rotational motion of the electromagnetic 

field in the ellipsoid induced by the motion of stars in the flow, occurs around the major axis 

of the ellipsoid. 

For formation of an elliptical Galaxy, the stream of stars moving along the corresponding 

trajectory is drawn by the gravitational field of the energy ellipsoid into the front region of the 

ellipsoid parallel to the axis 0𝜑𝜑1 or, at best, this trajectory coincides with the axis 0𝜑𝜑1 (Fig. 

11a). Because of the impact on the imaginary plane of the electromagnetic field of stars, there 

is an effect causing stretching of the imaginary plane (Fig. 10a). It is known that stars, like the 

Sun, have a positive charge. Consequently, in the energy ellipsoid the stream of stars moving 

along the trajectory induces electromagnetic field rotating around the axis 0𝜑𝜑1. This rotating 

field acts on a stretched imaginary plane, forming a fold (Fig. 10a). Further, in the energy 

ellipsoid the rotational motion together with the gravitational motion causes the rotation of the 

fold and its motion. As a result, the lines 𝐴𝐴𝐴𝐴 and 𝐴𝐴′𝐵𝐵′are smoothly connected with each other. 
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The final form of the strange attractor is shown in Fig. 10b. Here, the imaginary plane, on 

which the trajectory of the stars is located, is deformed. 

Thus, in formation of an elliptical Galaxy, two fields are involved: the gravitational field 

of the energy ellipsoid and the electromagnetic field induced by the stream of stars. Fig. 11a 

shows the general view of the energy ellipsoid together with the trajectory of the stream of 

stars, and Fig. 11b shows the appearance of an elliptical Galaxy formed by the combined action 

of gravitational and electromagnetic fields on an imaginary plane (Fig. 10a), on which the 

trajectory of stars is located. 

The elliptical Galaxy is referred to in the English-language literature by the cat's eye 

Galaxy. 
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Fig. 10 
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Fig. 11 
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§2.6. Using the equations of mathematical pendulum for modeling the star systems for 

Galaxy 

When modeling the motion of stars in the Galaxy, the main task is to analyze the nature of 

the gravitational forces of other stars acting on the star of our interest. General considerations 

require classification of these forces. It is necessary to distinguish the action of the gravitational 

field of the entire Galaxy and the local action of the field of stars of the surrounding 

neighborhood: in the first case, we have a gravitational force in the form of a smoothly changing 

function of space and time, and in the second case, a force subjected to relatively rapid 

fluctuations [28]. On the scale of our Galaxy we do not know the form of the probability density 

function of some random process corresponding to these fluctuations. For other forms of 

Galaxies, this density will be different. Based on these considerations, we will choose the first 

case, i.e. we use this force in modeling the functioning of a mathematical pendulum on the 

scale of the Galaxy. 

To this end, we use the results of Holzmark for definition of the gravitational force acting 

on the star. Holzmark [29] found a stationary distribution 

𝑊𝑊(|𝑓𝑓|) = 𝐻𝐻(𝛽𝛽) 𝑄𝑄𝐻𝐻⁄  

for gravitational force 𝑓𝑓, acting on the star from the side of other stars and determined this force 

acting per unit mass 

|𝑓𝑓| = 𝛽𝛽𝑄𝑄𝐻𝐻,            (2.54) 

where 𝛽𝛽 is the Holzmark distribution parameter 

( ) ( )[ ]∫
∞

−=
0

2
3

sinexp2 xdxxxH β
πβ

β , 

and 

𝑄𝑄𝐻𝐻 ≡ 𝑎𝑎2
3� , 

where 

( )( )
3 3

2 2
24 /15 2

N
a æ m nπ= , 

( )
3 3

2 2
2 2 2 2

0N
m m m dmω

∞

= ∫ , 

𝜔𝜔(𝑚𝑚2) is the frequency of meeting the stars of different masses 𝑚𝑚2, 

𝑁𝑁 ‒ the number of stars in the Galaxy; in our Galaxy this number is equal to: 𝑁𝑁 = 2 ⋅ 1011, 

æ ‒ the Newtonian constant of gravitation, 
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𝑛𝑛 ‒ the density of distribution of stars in the Galaxy, i.e. magnitude of the concentration of 

stars. 

The structure of the mathematical pendulum remains the same as in the case of the pendulum 

functioning in terrestrial conditions and in conditions of the Universe 

222222 ,sin pGFp =−= ϕϕ  .                                       (2.55) 

In equations (2.55) we have the parameters corresponding to the stellar system 

(Galaxy):𝐹𝐹2 = ℎ2𝑚𝑚2|𝑓𝑓|, where 𝑚𝑚2|𝑓𝑓| is the gravitational force acting on a star having a mass 

𝑚𝑚2, ℎ2 is the length of the pendulum, denoting the distance from the star of interest to the 

center of the averaged mass of stars of the Galaxy, 𝜑𝜑2 is the angle of deviation of the pendulum 

from the vertical, 𝑝𝑝2 is the impulse, and 2
2 2 21/G m h= . 

Thus, the substitution of force |𝑓𝑓|, determined by (2.54), in the first equation (2.55) allows 

us to use a pendulum to model the gravitational field in the scale of the Galaxy. 

From the results of this section it follows that the evolution of the stellar system in the 

Galaxy obeys the Hamiltonian system (2.55), which satisfies the Hamilton equation (0.8𝒂𝒂). 

Consequently, the evolution of the stellar system is optimal. 

According to GTR, the gravitational field of a spherical body cannot depend on time 

regardless of the fact whether the distribution of matter creating the field is at rest or spherically 

- symmetrically expands in space in a radial direction. For generalized structure of this 

gravitational field, it does not matter whether it is created by the sun (considered as a spherical 

object), by a neutron or a collapsing star. Only the active gravitational mass (equal to the inertial 

mass) and the radius of the extinguished star influence the gravitational field of the star. 

Independence from time, i.e. the stationarity of the gravitational field created by this body 

is easily justified by using the Euler-Lagrange equation. Potential energy 𝑈𝑈  of the gravitational 

field is the Lagrangian for equation 

0U d U
q dt p

∂ ∂
− =

∂ ∂
,                          (2.56) 

where 𝑞𝑞 ≡ 𝜑𝜑 is the cyclic coordinate. 

Since equation (2.56) contains a cyclic coordinate, it will be written as follows 

0d U
dt p

∂
=

∂
. 

Integration of the last equation with respect to 𝑡𝑡 gives  

U const
p

∂
=

∂
. 



67 
 

The last equation is stationary. Consequently, the gravitational field, as required by GTR, 

does not depend on time. 

§2.7. Hypothetical model explaining emissions of luminous matter from the nucleus 

of the Galaxy 

In the forties of the twentieth century, the well-known scientist and astrophysicist 

Academician V.A. Ambarzumian observed an unusual phenomenon: the emission of a glowing 

substance from the core of the Galaxy [30]. This surprising phenomenon did not receive an 

adequate explanation. In our opinion, the situation is as follows. 

In the core of the Galaxy there is a supermassive clot of gravitational energy. The 

electromagnetic wave of the Galaxy, colliding with this clot of energy, is reflected from it. As 

a result of reflection from a clot of gravitational energy, the electromagnetic wave already has 

a different wavelength, which is in the visible range of waves. This means that an invisible 

electromagnetic wave becomes visible to the human eye, which creates the effect of throwing 

a glowing substance out of the core of the Galaxy. Consequently, in fact, there is no emission 

of a glowing substance from the core of the Galaxy, and the observer sees reflected 

electromagnetic waves. 

*  *  * 

From the opinion of outstanding scientist, cited in the epigraph to this chapter, it follows 

that they considered the Universe to evolve in an optimal way. As shown in this chapter, the 

optimal arrangement of the Universe means that the process of its evolution must obey the 

optimization equations. In the times of I. Newton and A. Einstein, the classification of systems 

dividing them into conservative and dissipative one was not used. The apparent stationarity of 

the Universe misled Einstein when he considered the Universe (like Newton) a conservative 

system and recorded its equations of the gravitational field with the constant 𝛬𝛬, corresponding 

to the forces of vacuum repulsion, i.e. negative energy. In his subsequent statements, Einstein 

called "the biggest blunder of his life"with respect to term 𝛬𝛬11F

1. The results of this chapter show 

that the Universe is a dissipative system whose optimization equations obey its evolution. 

 

                                                           
1The possibility of the existence of a quantum vacuum that takes place in difficult-to-comprehend time and 
space intervals was not considered by Einstein. 
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Supplement A 
 

Optimality of the equations of a mathematical pendulum. Optimality of the separatrix 

equation for a mathematical pendulum and connection of this equation with the  

sine-Gordon equation 

 

Equations of a mathematical pendulum have the form 

GpFp =−= ϕϕ  ,sin  ,                                  (А.1) 

where 2, 1/ , F hmg G mh mg= =  is the force of gravity acting on the mass 𝑚𝑚, ℎis the length of 

the pendulum, 𝜑𝜑 is the angle of deviation from vertical, and 𝑝𝑝 is the angular momentum. The 

Hamiltonian, as already noted, is the sum of the kinetic energy 1
2

𝐺𝐺𝑝𝑝2 and potential energy 

 ϕcosFU −= : 

EFGpH =−= ϕcos
2
1 2  .                                                (А.2) 

The value of the Hamiltonian 𝐸𝐸 corresponds to the total energy of the system (A.1). The 

motion of the pendulum for different values of the energy 𝐸𝐸 (Fig. 4a) is shown in Fig. 4b. If 

𝐸𝐸 is greater than the maximum value of the potential energy, then the impulse is always other 

than zero. This leads to an unlimited change 𝜑𝜑, i.e. to rotation (see Supplement  B, case 2𝑎𝑎). 

In this case, 𝑝𝑝 > 0 motion is from left to right with energies 𝐸𝐸𝑢𝑢 . For 𝐸𝐸 < 𝐹𝐹  the motion is 

limited (within the potential pit) and corresponds to the oscillations of the pendulum (see 

Supplement B, case 1). If 𝐸𝐸 = 𝐹𝐹 ≡ 𝐸𝐸𝑠𝑠 , then the motion occurs along the separatrix (see 

Supplement B, case 2b). Motion has two special points for 𝑝𝑝 = 0; one is at the origin of the 

coordinate for 𝜑𝜑 = 0 and is stable or elliptic singular point, the other (at the junction of the two 

branches of the separatrix for 𝜑𝜑 = ±𝜋𝜋) is an instable or hyperbolic singular point. 

The coordinate 𝝋𝝋 and impulse 𝒑𝒑 of the mathematical pendulum satisfy the Hamilton 

equation  (0.8𝑎𝑎) and (0.8b) 

ϕ
ϕ

ϕ sin, FH
dt
dpGp

p
H

dt
d

−=
∂
∂

−==
∂
∂

=                                                     (А.3) 

Now let us find the separatrix equation, using the Hamiltonian (A.2) and condition 

𝐸𝐸 = 𝐹𝐹, when the module of the elliptic function 𝑘𝑘 is equal to 𝑘𝑘 = ±1 (see Supplement B 

case 2b): 
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( )
1/2

1/202 1 coss sp
G

ω ϕ= +  ,                                                                                            (А.4) 

where 𝜔𝜔0 = (𝐹𝐹𝐹𝐹)1 2⁄ , and index 𝑠𝑠 corresponds to the values of the variables on the separatrix 

(Fig. 4b). 

From (А.4) it follows 

02 cos
2

s
sp

G
ω ϕ

= ± ,                       (А.5) 

where plus and minus correspond to the upper and lower branches of the separatrix. 

Application of the first Hamiltonian equation (A.3), with account (A.5), gives 

       02 cos
2

s sd
dt
ϕ ϕω= ± .                                   (А.6) 

Solving equation (A.6) with respect to 𝑑𝑑𝑑𝑑 and integrating with the initial condition 

𝜑𝜑 = 0 for 𝑡𝑡 = 0, we will have 

( )
( )0

0

/ 2
lntg

cos / 2 4 4

s
sd

t
ϕ ϕ ϕ πω

ϕ

±

± = = +∫ .                                 (А.7) 

Expression (A.7) requires a joint (integral) representation of the masses 𝝎𝝎𝟎𝟎and time𝒕𝒕. 

The formula (A.7) can be written separately for the plus and minus signs in the function 

lntg
4 4
sϕ π±  ± +  

  
: 

( )
( )0

0

/ 2
lntg

cos / 2 4 4

s
sd

t
ϕ ϕ ϕ πω

ϕ

+

+ + = = + 
 ∫ ,                  (А.7𝑎𝑎) 

( )
( )0

0

/ 2
lntg

cos / 2 4 4

s
sd

t
ϕ ϕ ϕ πω

ϕ

−

−  − = = − +  
  

∫ .                     (А.7b) 

The choice of the sign in formulas (A.7a) and (A.7b) is made in accordance with the 

direction of the separatrix motion shown in Fig. 4b. 

After the reversal of formulas (A.7a) and (A.7b), we will have    

( ) [ ]0 04arctg  exp ,      , 2πs t for tϕ ω π ω π+  = − ⊂   ,                                                 (A.8a) 

( ) [ ]0 04arctg  exp ,      0, πs t for tϕ ω π ω−  = − − + ⊂    .                                               (A.8b) 

In Fig. 4b the section BA of the separatrix ABC, is equal to 

( )[ ] [ ]πωπωϕ ,0,exparctg4 00 ⊂+−−=− tforts                              (А.8с) 

without taking into account the direction of motion of the separatrix. 



73 
 

Consequently, the formula (A.8c) is considered on the descending section of the separatrix 3; 

The segment BC of the separatrix ABC is determined by the formula (А.8𝑎𝑎). On the whole, 

the entire separatrix ABC (Fig. 4b) is the sum of these sections: 

( )[ ] [ ]+⊂−−=+= +− πωωϕϕϕ ,0,exparctg4 00 ttssSABC  

( ) [ ]0 04arctg exp , , 2t tω ω π π + ⊂  .                                                                  (А.8d) 

It should be noted that instead of (A.7b), the following formula can be written 

( )
( )

( )
( )0

0 0

/ 2 / 2
ln tg

cos / 2 ch / 2 4 4

s sj j
sd j d

t j
j

ϕ ϕϕ ϕ ϕ πω
ϕ ϕ

− −

−  − = ≡ = − +    
∫ ∫ , where 1j = − . 

 

The reversal of the last expression again leads to formula (A.8b); this is understandable, 

since the concave segment BA of the separatrix ABC indicates the finding of a separatrix on a 

pseudo-Riemannian surface (Fig. 4b). 

The "reversal" operator denotes that we have a closed system in which the angle of rotation 

of the separatrix  𝜑𝜑𝑠𝑠± and its argument ±𝜔𝜔0𝑡𝑡 are interdependent. 

Let us now find out what connection exists between the solution (А.8𝑎𝑎) and the  

sine-Gordon equation 
2

sinσ σ
ξ τ

∂
=

∂ ∂
.                                      (А.9)                              

The monograph [31] shows that the solution of equation (A.9) has the form  

( )4arctg expσ σ= .                                    (А.10) 

Solution (A.8) for a point located on a separatrix, i.e. for 0 stω ϕ +=  coincides with the 

solution of the sine-Gordon equation (A.10), if we do not consider the constant 𝜋𝜋 in solution 

(A.8). 

It should be noted that equation 

 
2

sinσ σ
ξ τ

∂
= −

∂ ∂
.                                     (А.11) 

This is not the sine-Gordon equation, as it is said in some monographs (see, for example, 

[9]), but it is the adjoint sine-Gordon equation. However, equations (A.9) and (A.11) are often 

written together 
2

sinσ σ
ξ τ

∂
= ±

∂ ∂
,                                     (А.12) 
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referring the expression (A.12) as the sine-Gordon equation. The solution of equation (A.11) 

is written as follows 

( )4arctg expσ σ = − −  .                                                 (А.13) 

It should be noted that the solution (A.13) reflects the motion along the concave segment 

BA (Fig. 4b) of the separatrix 3, i.e. the pseudo-Riemannian surface, and the solution (A.10) 

corresponds to a motion along the convex segment BC of the separatrix 3, i,e. over the 

Riemannian surface. 

Since the solution of the sine-Gordon equation (A.9) is equivalent to the solution of 

the equation of the mathematical pendulum (A.8𝑎𝑎) (without a free term 𝝅𝝅), and the 

expression (A.8𝑎𝑎) is a solution of the Hamiltonian optimization equation (0.8𝑎𝑎), the  

sine-Gordon equation (A.9) is optimal.   

This means that there can be carried out a transition from the Hamilton equation (A.6) to 

the sine-Gordon equation (A.12). The reader is invited to make this transition. 
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Supplement B 

Solutions of the equations of a mathematical pendulum. 

Stochastic nature of the impulse of a mathematical pendulum 
The joint representation of the equations of a mathematical pendulum (A.1) and (A.2) has 

the form:    

( )2 2 21
2

gp p p
h h

ν = − − 
 

 ,        (В.1) 

where 22 , 1  hk E
h F
νν = = +  . 

From these relations we have: 
1/2 

2
F Ek

F±
+ ∈ ± 

 
. For E= –F+ΔE  we have   ( )  0... , ,...1k k+ +∈  

and ( )  0... , ,...1k k− ∈− , where 
1/2

2
Ek
F

∆ =  
 

. 

We consider separately two types of motion of the pendulum: oscillatory motion, when 

the point oscillates near the lowest position of the circle, and rotational motion, when the point 

is so fast that it constantly describes the complete circles. 

1. In oscillatory motion, the point stops, not reaching the highest position of the circle; 

therefore, 𝑝̇𝑝 becomes zero for some value 1p < . Thus, in this case, 2/ 2 1h kν ±= < , where 

 𝑘𝑘± = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the module of the elliptic Jacobi function, describes the relative energy (for 
1

 or k k± ±

−
) of the mathematical pendulum. 

To solve equation (B.1) in the class of elliptic Jacobi functions, it is necessary to represent 

equation (B.1) in the equivalent form 
2 2 2

2 2
2 21 1gk p pp k

h k k
  

= − ⋅ −  
  

 . 

The solution of the last equation is given by 

( )0 sn ,gp k t t k
h± ±

 
= − 

 
.                         (В.2) 

Expression (B.2) is a solution to the problem of the oscillatory motion of a mathematical 

pendulum. Constants of integration 𝑡𝑡0  and 𝑘𝑘 must be found from the initial conditions of 

motion. According to the well-known properties of Jacobi's elliptic function sn, formula (B.2) 

describes a motion that is periodic. 
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2𝑎𝑎. In rotation of the pendulum, 2hν > . Consequently, assuming 2ℎ = 𝜈𝜈𝑘𝑘2, we will have  

1k± <  and �𝑘𝑘±�
−1

> 1. In this case, the differential equation (B.1) takes the form 

( )( )2 2 2 2
2 1 1gp p k p

hk
= − −   

The solution of the last equation is written using the elliptic Jacobi function1 

0sn ,t tgp k
h k ±

±

 −
= ⋅  

 
.                          (В.3) 

 

2b. Finally, let 𝜈𝜈 = 2ℎ; the moving point of the pendulum reaches the highest position of 

the circle. In this case, the differential equation (B.1) is written as follows 

( )22 21gp p
h

= −  

or 

( )21gp p
h

= ± − .                          (В.4) 

The last expression represents two Riccati differential equations; their solutions are given 

by hyperbolic functions 

( ) ( ) ( )1,2 0 0 0th th thgp t t
h

ϕ ϕ ϕ ϕ
 

 = ± − = ± − = ± −   
 

,           (В.5) 

where 

0 0 0 0 0, , gt t
h

ϕ ω ϕ ω ω= = = . 

Hyperbolic functions 𝑝𝑝1 and  𝑝𝑝2 , having opposite signs, show that the point of the 

pendulum can describe complete circles in opposite directions. 

It should be noted that the solutions (B.2) and (B.3) of the pendulum equation (B.1) do not 

satisfy the Euler-Lagrange optimization equations (0.8𝑎𝑎), (0.8b), although the equations of the 

mathematical pendulum (A.1) themselves satisfy Hamilton equations (A.3). To avoid this 

inconsistency in the solutions (B.2) and (B.3) it is necessary to assume 𝑘𝑘 = ±1. In this case, 

the solutions of the pendulum equation (B.1) take the form of solutions of the Riccati equations 

that satisfy the Euler-Lagrange equations, (0.8𝑎𝑎), 0.8b). Consequently, if in decisions (B.2) 

and (B.3) we assume 𝒌𝒌 = ±𝟏𝟏, then we obtain solutions (B.5) of the Riccati equations (B.4); 

                                                           
1Jacobi function ( )kt,sn has the property that for 1±=k it becomes a hyperbolic tangent, i.e. ( ) ( )tt th1,sn =± . 
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in this case, the above inconsistency will disappear. As was shown in § 1.7, this behavior 

of the pendulum is equivalent to motion on the separatrix (see case 2b). 

Finally, we show the stochastic nature of the momentum of a mathematical pendulum. To 

this end, we represent the two Riccati equations (B.4) separately: 
2

1 0 0 1p pω ω= − ,         (В. 4𝑎𝑎) 

2
2 0 0 2p pω ω= − + .         (В.4b) 

These equations correspond to the following observation systems (see formulas (0.1) and 

(0.2)) 

( )
( )

,

,

x t

y x t

ξ

ζ

=

= +







         (В.4I) 

   

( )
( )

* *

* * *

,

,

x t

y x t

ξ

ζ





=

= +



         (В.4II) 

  

where ( )tξ and ( )  tζ uncorrelated real white Gaussian noises,while ( )* tξ  and ( )* tζ  are also, 

they uncorrelated imaginary white Gaussian noise. These noises have the following stochastic 

characteristics: 

( ) 0E tξ  =  and ( )* 0E tξ  =  , ( ) ( ) ( )0E t t t tξ ξ ω δ =′  − ′ , ( ) ( ) ( )* *
0E t t t tξ ξ ω δ = −′ − ′ , 

( ) ( ) ( )1
0E t t t tζ ζ ω δ−  =′ − ′ , ( ) ( ) ( )* * 1

0E t t t tζ ζ ω δ−  = − − ′ ′ , where  𝐸𝐸 is the operator of 

mathematical expectation, 𝛿𝛿 is the Dirac function. 

In the case of system (B.4I), the equation for the variance 𝑝𝑝1 has the form  (В. 4𝑎𝑎), and in 

the case of the system (B.4II), the equation determining the variance  𝑝𝑝2 will be (В.4b). 

Consequently, the impulses 𝑝𝑝1  and  𝑝𝑝2 , found according to the formula (B.5), are the 

variances of some observation systems. The solutions of the equations of a mathematical 

pendulum, occurring as the solutions of the Riccati equations, determine dispersion and, 

consequently, are dissipative functions 

( )1 0thp ϕ ϕ= −          (В.5𝑎𝑎) 

and 

( )2 0thp ϕ ϕ= − − .        (В.5b) 
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In view of the fact that the function th(⋅)is odd, i.e. ( ) ( )th thω ω− = − , impulse-dispersion 

𝑝𝑝2  corresponds to such motion of the pendulum, which have the opposite direction, which 

takes place for impulse -dispersion 𝑝𝑝1 (see Fig. 4b);  the trajectory of these motions is below 

the axis 0𝜑𝜑. 

The derivatives of formulas (В.5𝑎𝑎) and (B.5b) on  𝜑𝜑 lead to known differential relations 

for hyperbolic functions 

 

( )0
2

1 hsec ϕϕ −=′p ,        (В.6𝑎𝑎) 

( )0
2

2 hsec ϕϕ −−=′p .        (В.6b) 

Equations (B.6𝑎𝑎) and (B.6b) are written for dispersion-pulses of a mathematical pendulum 

functioning in terrestrial conditions. For the pendulum functioning in the Universe, the 

structure of equations (B.6𝑎𝑎) and (B.6b) remains the same, only the parameter 𝜔𝜔 is subject to 

change. In the case of the Universe, this parameter is determined by the formula 

1 3
1 1

æM
h h
γ

ω
−

= ≡  and consequently, 

1 1tϕ ω= .          (В.7) 

In §2.4, the angle of deviation of the pendulum, functioning in terrestrial conditions, is 

everywhere replaced by the angle of deviation of the pendulum, functioning on the scale of the 

Universe. 

If in the right-hand side parts of equations (2.19) and (2.20) we factor out the terms zµ+ +

and − zµ− − , we will have 

( )dz z n z
dt

µ+
+ + + += − ,        (В.8𝑎𝑎) 

( )dz z n z
dt

µ−
− − − −′

= − − ,        (В.8b) 

where /n β µ+ + += and /n β µ− − −= ; values  , and ,  β µ β µ+ + − − are defined by formulas 

(2.34) and (2.35). Equations (D.8𝑎𝑎) and (D.8b) can be written as follows 

( )



 −= ++++

+
0

22

2
1hsec

4
1 ttnn

dt
dz µµ ,      (В.8с) 

( )



 ′−′−=

′ −−−−
−

0
22

2
1hsec

4
1 ttnn

td
dz µµ ,     (В.8d) 
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where the moment of "the creation of the world" is  𝑡𝑡0, and the beginning of the compression 

of the Universe is  𝑡𝑡0
′ . From equations (B.8c) and (B.8d) it is clear that for evolution of the 

Universe, the matter density satisfies differential equations having the same structure as 

impulse-dispersion (B.6a) and (B.6b). 

The solution of equations (B.8a) and (B8b) have the form: 

( )01 n t t

nz
e µ+ +

+
+ − −

=
+

,        (В.8е) 

( )'
01 n t t

nz
eµ− − ′

−
− −

= −
+

.       (В.8f) 
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Supplement C 
Model of the Big Bang in the Universe 

 

By its nature, the results of this Supplement refer to a separate paragraph. However, in 

view of the large number of formulas, the author considered it possible to render the present 

material as a mathematical supplement. 

In the "radiation era" the field density is determined by the formula 

2

3
32

x
ætπ

= ,             (С.1) 

the time  𝑡𝑡 is given in seconds. 

The density of matter in the Universe is determined by the expression (2.32a) 𝑧𝑧 =

𝑧𝑧0𝑒𝑒�𝑎𝑎− 𝑏𝑏𝑏𝑏𝑧𝑧0
𝑑𝑑 𝑒𝑒�𝑡𝑡,                     (С.2) 

where the parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑   satisfy "predator - prey" systems  𝑀𝑀  (see page 50) and 𝑁𝑁  

(𝑧𝑧0 definitely on the page 53). Since in the early moments of time the strong inequality must 

hold 

0bcza e
d

>> , 

instead of the expression (C.2), we obtain a simplified formula 

0
atz z e= .                                     (С.3) 

Since in the early moments of time after the Big Bang the field made a much larger 

contribution to the matter density than the substance, the weight coefficient 𝑏𝑏  in the first 

equation of the system 𝑀𝑀 is approximately equal to zero, i.e.𝑏𝑏 ≈ 0. Proceeding from this, the 

first equation of the system 𝑀𝑀 will take the form:  

dx
dt a
x

= . 

The solution of the last equation is written as 
0

ln
t

x a dt= ∫ . 

If in the last equation we take into account 𝑥𝑥 according to (C.1), we will have   
2ln lnat K t= − ,                        (С.4) 

where 3
32

K
æπ

= . 

In formula (C.3), substitution of value 𝑎𝑎𝑎𝑎 found from (C.4), will give 
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2ln ln
0

K tz z e e−= ⋅  

The volume occupied by matter in the Universe during the Big Bang is 
2nl

0
teVV =           (С.5) 

where 

.nl
0

0 const
ez

MV K ==
∗

 

Formula (C.5) shows that as a result of the Big Bang the volume of matter in the 

Universe grows exponentially – logarithmic; it adequately reflects the exponential expansion 

of the Universe that occurs during the Big Bang. On the basis of physical considerations, in 

the formula (C.5), the current time 𝒕𝒕 must satisfy the initial condition 𝒕𝒕𝟎𝟎 = 𝟏𝟏. 

In the course of time, the contribution of the density of matter to the density of matter 

increases. In quantitative terms, this increase is appropriately reflected by an increase of the 

value of coefficient 𝑏𝑏  in the first equation of the system 𝑀𝑀 . In addition, the process of 

expansion of the Universe slows down, because the difference 0bcza e
d

−  decreases. Such 

development of scenario is actually observed.   

 

Considerations 
On the expediency of application of the model of a mathematical pendulum 

(from the point of view of GTR) in modeling the Megaworld evolution considering 

the relationship between space, time and matter 

As noted in Supplement A, the pendulum parameter  𝜔𝜔0 should be considered together 

with the current time. However, the parameter 𝜔𝜔1 is distributed in space, as evidenced by the 

dependence of the parameter 𝜔𝜔1  on the mass 𝑀𝑀  and the length ℎ1 of the pendulum, i.e. 

1 3
1

æM
h

ω = . This means that the equations of the pendulum establish a relationship between 

matter, space and time. Acceleration 𝛾𝛾 also depends on the length ℎ1  (see page 46) of the 

pendulum. Therefore, the relationship between 𝜔𝜔1, 𝑡𝑡 and the space already exists, because 

mass 𝑀𝑀 is distributed in space. 
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Conclusion 

There is not a universal theory for the discrete objects of the physical Microworld and 

therefore, naturally, investigation are based on the study of particular cases. In the process of 

searching for a theory that would characterize all the discrete objects of the physical 

Microworld, the author found out what unites the discrete objects of the physical Microworld 

and also found out what the physical Microworld and Megaworld make similar. Such a 

common factor was found to be the optimality of the objects in the physical Microworld and 

Megaworld. The optimality of the physical Microworld and Megaworld allowed us to look at 

how these worlds are organized, from a new, optimization position. 

In examining the optimality of the physical Microworld, some new physical properties 

inherent to this world were revealed. Thus, for example (see §1.1), in transition to the discrete 

analogue of the Schrödinger equation, it was found that for solution of the discrete analogue of 

the Schrödinger equation, an electric field gradient can be determined, where the elementary 

particles are "born out of nothing". § 1.2 defines the relation between the knots and binary 

functions, and also there is received a relation between the number of knots having the same 

number of intersections and the optimal frequencies on which the knots are formed in binary 

systems. From the standpoint of physics, a lot of flattering words have been expressed about 

the distribution of Fermi-Dirac gas. Unfortunately, no laudatory words were found in the 

address of the optimizing property of this distribution. Therefore, in § 1.3 we have proved the 

optimality of this gas from the point of view of its Lagrangian satisfying the Euler-Lagrange 

equation. Although the models of fixed and moving atoms are well known, up to now, no 

attention has been paid to the optimal property of these models. In order to remove this 

drawback in §1.5 and §1.6 it is proved that models of stationary and moving atoms have optimal 

properties; The atoms in these models are located and move along the separatrix of the 

mathematical pendulum. §1.7. is of particular value. It gives an alternative approach to the 

problem of GTR, based on the optimal separatrix property of a mathematical pendulum. This 

approach is a new word in this field of science, since instead of the extreme property of the 

geodesic line, it uses the optimal separatrix property of the mathematical pendulum and, 

consequently, solves the GTR problem in a closed form, when this problem is solved by using 

a finite number of computations. 

After putting the “Hubble” and “Kepler” telescopes into near-Earth orbit, it became known 

that the amount of matter in the Universe is able to stop the expansion of the Universe. This 

fact had a significant impact on the problems of cosmology. A dark matter constitutes the 

overwhelming part of matter that is in the Universe. The model for the formation of a dark 
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matter is given in §2.1. It is based on the use of the Gibbs thermodynamic potential and attests 

to the important role played by optimality in the formation of matter in the Universe. The model 

of expansion and contraction of the Universe is proposed in §2.2; it is entirely based on the 

equations of a mathematical pendulum satisfying the Hamilton equation. The physical 

preconditions for the evolution of the Universe are given in §2.3. They are based on the Lotka 

–Volterra "predator-prey" model, which plays an important role in the modeling of competitive 

processes. This model satisfies the Euler-Lagrange equation, i.e. it is optimal. In §2.4, based 

on the use of the elliptic Jacobi function, solutions are given to the equations for the separatrix, 

the vibrational and rotational motions of the mathematical pendulum. In this paragraph we 

determine the volume of the ellipsoid and show how to calculate the separatrix surface in the 

Universe. In the last point of this paragraph, we propose a new approach to determining the 

curvature of the Universe. All the points in this paragraph are in some way connected with the 

functioning of the mathematical pendulum, i.e. the results presented in them are optimal. The 

use of the results of Holzmark, when modeling a mathematical pendulum on the scale of the 

Galaxy, is devoted to §2.6. In §2.5 and §2.7 hypothetical models of the formation of an 

elliptical Galaxy and the emission of a luminous matter from the nucleus of the Galaxy are 

proposed. 

The model of the Big Bang of the Universe given in Supplement C is very important. The 

hyperextension of the Universe, taking place at the initial moments of the "Creation of the World", 

is adequately modeled by using Lotka –Volterra  "predator-prey" models. Thus, the expediency of 

applying the proposed Big Bang model to simulate the evolution of the Universe is confirmed. 

Thus, the task set before the present monograph is achieved: the new models of the 

Microworld and Megaworld are obtained, and their optimality is proved. 

The above results concern the inanimate Megaworld (the Universe). It should be noted, 

however, that there are star systems in Galaxies that have planets on which life, like our planet, can 

arise. The development of life on our planet is eloquently described in the monograph [2]: “Random 

genetic changes – accidents - generate an arbitrary set of possibilities, from which nature selects 

only that what gives the body an advantage in its continuous struggle for survival. Only by looking 

through an extremely wide range of possible changes does the body find an option that accidentally 

finds an option that facilitates its adaptation in the environment”.  This statement does not use the 

term "optimization", although this term is invisibly present in this quote (optimization by means 

of random search). At the early stage of the emergence of the living, the same thought sounds 

in the text of the monograph [32]: "Evolution is a procedure for further optimization in the 

presence of certain superposable restrictions by the selection criteria." 
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Beginning with the early stages of the birth of human communities to the present day, the 

term "optimization" has not lost its relevance, rather it has acquired new spheres of its 

application, since all inanimate and living (including reasonable) is created and evolves on the 

basis of principles of optimality. 

It is amazing that in the living and inanimate nature the same optimization equations are 

functioning. This explanation is understandable, since there is no sharp line between living and 

non-living. This is evidenced by viruses simultaneously related to both living and non-living 

nature. 
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