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We consider the initial boundary-value problem for the 1D cubic-nonlinear modified Burgers’
equation with source term

∂u

∂t
+ (u)2

∂u

∂x
− µ

∂2u

∂x2
= f, (x, t) ∈ Q := [0; 1]× [0;T ], (1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ Ω, (2)

where Ω := [0; 1], and the parameter µ = const > 0.
A three-level finite difference scheme is constructed and investigated. Two-level scheme is used

to find the values of unknown function on the first level. For each new level the obtained algebraic
equations are linear with respect to the values of the unknown function.

Assume that a solution of this problem belongs to the fractional-order Sobolev spaces W k
2 (Q),

k > 2, whose norms and seminorms are denoted by a ∥ · ∥Wk
2 (Q) and | · |Wk

2 (Q), respectively.
The finite domain Q is divided into rectangular grid by the points (xi, tj) = (ih, jτ), i =

0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and temporal mesh
sizes, respectively.

Let

ω =
{
xi : i = 0, 1, . . . , n

}
, ω =

{
xi : i = 1, 2, . . . , n− 1

}
, ω+ =

{
xi : i = 1, 2, . . . , n

}
.

The value of mesh function U at the node (xi, tj) is denoted by U j
i , that is, U(ih, jτ) = U j

i .
For the sake of simplicity sometimes we will use notations without subscripts: U j

i = U , U j+1
i = Û ,

U j−1
i = Ǔ . Moreover, let

U
0
=

U1 + U0

2
, U

j
=

U j+1 + U j−1

2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:

(Ui)x =
Ui − Ui−1

h
, (Ui)◦x =

1

2h
(Ui+1 − Ui−1), (Ui)xx =

Ui+1 − 2Ui + Ui−1

h2
,

(U)t =
Û − Ǔ

2τ
, t = τ, 2τ, . . . , (U0)t =

U1 − U0

τ
.
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Let H0 be the set of functions defined on the mesh ω and equal to zero at x = 0 and x = 1. On
H0 we define the following inner product and norm:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.

Let, moreover,
(U, V ] =

∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2.

We need the following averaging operators for functions defined on Q:

Sv :=
1

τ

τ∫
0

v(x, ζ) dζ, t = 0, Sv :=
1

2τ

t+τ∫
t−τ

v(x, ζ) dζ, t = τ, 2τ, . . . ,

P̂v :=
1

h

x+h∫
x

v(ξ, t) dξ, x = 0, h, . . . , Pv :=
1

h2

x+h∫
x−h

(h− |x− ξ|)v(ξ, t) dξ, x = h, 2h, . . . .

Notice that
S ∂v

∂t
= vt, P ∂2v

∂x2
= vxx.

We approximate problem (1), (2) with the help of the difference scheme:

LU j
i = F j

i , i = 1, 2, . . . , n− 1, j = 0, 1, . . . J − 1, (3)
U j
0 = U j

n = 0, j = 0, 1, . . . J, U0
i = φ(xi), i = 0, 1, . . . , n, (4)

where
F = Pf, LU := Ut +

1

4
ΛU − µUxx, ΛU := (U)2U ◦

x
+ ((U)2U)◦

x
.

Theorem 1. The finite difference scheme (3), (4) is uniquely solvable.

The proof of this theorem is based on partial summation formulas and the following identities(
Y V◦

x
+ (Y V )◦

x
, V

)
= 0, (V◦

x
, V ) = 0, if V ∈ H0

as well.
Let Z := U − u, where u is the exact solution of problem (1), (2), and U is the solution of

the finite difference scheme (3), (4). Substituting U = Z + u into (3), (4), we obtain the following
problem for the error Z:

(Zj)t − µ(Zj)xx = −1

4
(ΛU j − Λuj) + Ψj , j = 0, 1, 2, . . . , (5)

Z0 = 0, Zj
0 = Zj

n = 0, j = 0, 1, 2, . . . (6)

where
Ψ := F − Lu.

Let
Bj := ∥Zj∥2 + ∥Zj−1∥2, j = 1, 2, . . . .
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Lemma 1. For a solution of problem (5), (6) the following relations are valid

B1 ≤ ∥τΨ0∥2, (7)

Bj+1 ≤ c1B
1 + c2τ

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . . (8)

In order to determine the rate of convergence of the finite difference scheme (3), (4) with the
help of Lemma 1, it is sufficient to estimate the terms on the right-hand side of (7), (8). For
this, we use a particular case of the Dupont–Scott approximation theorem [4] and it represents a
generalization of Bramble–Hilbert lemma [3] (see, e.g. [1, 2, 5]).

Theorem 2. Let the exact solution of the initial-boundary value problem (1), (2) belong to W k
2 (Q),

2 < k ≤ 3. Then the convergence rate of the finite difference scheme (3), (4) is determined by the
estimate

∥U j − uj∥ ≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q),

where c = c(u) denotes a positive constant, independent of h and τ .
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We consider the question on the well-posedness of the Cauchy problem

u(n) =

n∑
l=1

pl(t)u
(l−1) + p0(t) for t ∈ I, (1)

u(i−1)(t0) = ci0 (i = 1, . . . , n), (2)

where pl ∈ Lloc(I;R) (l = 0, . . . , n), t0 ∈ I and cio ∈ R (i = 1, . . . , n), and I is an arbitrary interval
from R.

By AC(I;R) we denote the set of all absolutely continuous functions defined on I.
Let u0 (u(i−1) ∈ AC(I;R), i = 1, . . . , n) be the unique solution of the Cauchy problem (1), (2).
Along with problem (1), (2) we consider the sequence of problems

u(n) =
n∑

l=1

plk(t)u
(l−1) + p0k(t) for t ∈ I, (1k)

u(i−1)(tk) = cik (i = 1, . . . , n) (2k)

(k = 1, 2, . . . ), where plk ∈ L(I;R) (l = 0, . . . , n), tk ∈ I and cik ∈ R (i = 1, . . . , n; k = 1, 2, . . . ).
Let

lim
k→+∞

tk = t0. (3)

Definition 1. We say that the sequence (plk, . . . , pnk, p0k; tk) (k = 1, 2, . . . ) belongs to the set
S(p1, . . . , pn, p0; t0)) if for every ci0 ∈ R (i = 1, . . . , n) and a sequence cik ∈ R (i = 1, . . . , n;
k = 1, 2, . . . ), satisfying the condition

lim
k→+∞

cik = ci0 (i = 1, . . . , n), (4)

the condition
lim

k→+∞
u
(i−1)
k (t) = u

(i−1)
0 (t) (i = 1, . . . , n) (5)

holds uniformly on I, where uk is the unique solution of the Cauchy problem (1k), (2k) for any
natural k.
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Along with equations (1) and (1k) (k = 1, 2, . . . ) we consider the corresponding homogeneous
equations

u(n) =

n∑
l=1

pl(t)u
(i−1) for t ∈ I (10)

and

u(n) =

n∑
l=1

plk(t)u
(i−1) for t ∈ I (10k)

(k = 1, 2, . . . ).
If the functions vi (i = 1, . . . , n) are such that v

(l−1)
i (i, l = 1, . . . , n) are absolutely continuous,

then by w0(v1, . . . , vn)(t) = det((v
(l−1)
i (t))ni,l=1) we denote so called Wronskiĭ’s determinant, and by

wil(v1, . . . , vn)(t) (i, l = 1, . . . , n) we denote a cofactor of the il-element of w0(v1, . . . , vn).
Let ul (l = 1, . . . , n) and ulk (l = 1, . . . , n; k = 1, 2, . . . ) be the fundamental systems of solutions

of the homogeneous systems (1)0) and (20k) (k = 1, 2, . . . ), respectively.

Theorem 1. Let pl ∈ Lloc(I;R) (l = 0, . . . , n), plk ∈ Lloc(I;R) (l = 0, . . . , n; k = 1, 2, . . . ), tk ∈ I
(k = 0, 1, . . . ) and clk ∈ R (l = 1, . . . , n; k = 0, 1, . . . ) be such that conditions (3), (4) and

lim
k→+∞

sup
t∈I, t ̸=tk

{ n∑
l=1

∣∣∣∣
t∫

tk

(plk(τ)− pl(τ)) dτ

∣∣∣∣ (1 + n∑
l=1

∣∣∣∣
t∫

tk

|plk(τ)− pl(τ)| dτ
∣∣∣∣)} = 0 (6)

hold. Then

lim
k→+∞

sup
t∈I, t ̸=tk

n∑
i=1

∣∣u(i−1)
k (t)− u

(i−1)
0 (t)

∣∣ = 0, (7)

where uk is the unique solution of the Cauchy problem (1k), (2k) for any natural k.

Below we give some sufficient conditions, as well necessary and sufficient conditions guaranteeing
the inclusion

((plk, . . . , pnk, p0k; tk))
+∞
k=1 ∈ S(p1, . . . , pn, p0; t0). (8)

Theorem 2. Let pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . ) and tk ∈ I
(k = 0, 1, . . . ) be such that condition (3) holds. Then inclusion (8) holds if and only if there exists
a sequence of functions hil, hilk ∈ AC(I;R) (i, l = 1, . . . , n; k = 0, 1, . . . ) such that the conditions

inf
{∣∣ det((hil(t))ni,l=1)

∣∣ : t ∈ I
}
> 0 (9)

and

lim sup
k→+∞

n∑
i,l=1

∫
I

∣∣∣h′ilk(t) + h1 l−1 k(t) sgn(l − 1) + h1nk(t)pl(t)
∣∣∣ dt < +∞ (10)

hold, and the conditions
lim

k→+∞
hilk(t) = hil(t) (i, l = 1, . . . , n) (11)

and

lim
k→+∞

t∫
tk

hink(τ)plk(τ) dτ =

t∫
t0

hin(τ)pl(τ) dτ (i = 1, . . . , n; l = 0, . . . , n)

hold uniformly on I.
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Theorem 3. Let pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ Lloc(I;R) (l = 0, . . . , n; k = 1, 2, . . . ) and
tk ∈ I (k = 0, 1, . . . ) be such that condition (3) holds. Then inclusion (8) holds if and only if the
conditions

lim
k→+∞

u
(i−1)
lk (t) = u

(i−1)
l (t) (i, l = 1, . . . , n)

and

lim
k→+∞

t∫
a∗

win(u1k, . . . , unk)(τ)

w0(u1k, . . . , unk)(τ)
p0k(τ) dτ =

t∫
a∗

win(u1, . . . , un)(τ)

w0(u1, . . . , un)(τ)
p0(τ) dτ (i = 1, . . . , n) (12)

hold uniformly on I.

Theorem 4. Let pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ Lloc(I;R) (l = 0, . . . , n; k = 1, 2, . . . ), tk ∈ I
(k = 0, 1, . . . ) and clk ∈ R (l = 1, . . . , n; k = 0, 1, . . . ) be such that the conditions (3), (4) and

lim sup
k→+∞

∫
I

∥plk(t)∥dt < +∞ (l = 1, . . . , n)

hold, and the condition

lim
k→+∞

t∫
tk

plk(τ) dτ =

t∫
t0

pl(τ) dτ (l = 0, . . . , n)

holds uniformly on I. Then condition (5) holds uniformly on I, where uk is the unique solution of
the Cauchy problem (1k), (2k) for any natural k.

Corollary 1. Let pl ∈ L(I;R) (l = 0, . . . , n), plk ∈ L(I;R) (l = 0, . . . , n; k = 1, 2, . . . ) and tk ∈ I
(k = 0, 1, . . . ) be such that conditions (3), (4) and (10) hold, and conditions (11) and

lim
k→+∞

t∫
tk

hink(τ)plk(τ) dτ =

t∫
t0

p∗l (τ) dτ (i = 1, . . . , n; l = 0, . . . , n)

hold uniformly on I, where p∗l ∈ L(I;R) (l = 0, . . . , n); hil, hilk ∈ AC(I;R) (i, l = 1, . . . , n;
k = 0, 1, . . . ). Then the inclusion(

(plk, . . . , pnk, p0k; tk)
)+∞
k=1

∈ S(p1 − p∗1, . . . , pn − p∗n, p0 − p∗0; t0)

holds.

Remark 1. In Theorem 2 and Corollary 1, without loss of generality we can assume that hii(t) ≡ 1
and hil(t) ≡ 0 (i ̸= l; i, l = 1, . . . , n). So condition (9) is valid evidently.

Remark 2. If n = 2 in Theorem 3, then condition (12) has the form

lim
k→+∞

t∫
a∗

u′1k(τ)p0k(τ)

u1k(τ)u
′
2k(τ)− u2k(τ)u

′
1k(τ)

dτ =

t∫
a∗

u′1(τ)p0(τ)

u1(τ)u′2(τ)− u2(τ)u′1(τ)
dτ,

lim
k→+∞

t∫
a∗

u1k(τ)p0k(τ)

u1k(τ)u
′
2k(τ)− u2k(τ)u

′
1k(τ)

dτ =

t∫
a∗

u1(τ)p0(τ)

u1(τ)u′2(τ)− u2(τ)u′1(τ)
dτ.

In the last equalities we can take u2k instead of u1k (k = 1, 2, . . . ), and u2 instead of u1.
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For the proof we use the well-known concept. It is well-known that if the function u is a
solution of problem (1), (2), then the vector-function x = (xi)

n
i=1, xi = u(i−1) (i = 1, . . . , n), will be

a solution of the Cauchy problem for the linear system of ordinary differential equations

dx

dt
= P (t)x+ q(t),

x(t0) = c0,

where the matrix- and vector-functions P (t) = (pil(t))
n
i,l=1 and q(t) = (qi(t))

n
i=1 are defined, re-

spectively, by

pil(t) ≡ 0, pi i+1 ≡ 1 (l ̸= i+ 1; i = 1, . . . , n− 1; l = 1, . . . , n),

pnl(t) ≡ pl(t) (l = 1, . . . , n);

qi(t) ≡ 0 (i = 1, . . . , n− 1), qn(t) ≡ p0(t),

and c0 = (ci0)
n
i=1.

Analogously, problem (1k), (2k) can be rewriten in the form of the last type problem for every
natural k. So, using the results contained in [1] and [2], we get the results given above.

References
[1] M. Ashordia, Criteria of correctness of linear boundary value problems for systems of gener-

alized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996), no. 3, 385–404.
[2] M. Ashordia, Sh. Akhalaia and N. Kekelia, On necessary and sufficient conditions for stability

of linear systems of generalized ordinary differential equations. Mem. Differential Equations
Math. Phys. 46 (2009), 115–128.
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For the linear system of generalized ordinary differential equations

dx = dA0(t) · x+ df0(t) for t ∈ I (1)

we consider the Cauchy problem
x(t0) = c0, (2)

where I ⊂ R is an interval, A0 ∈ BVloc(I;Rn×n) and f0 ∈ BVloc(I;Rn), t0 ∈ I, c0 ∈ Rn.
We use the notations.
BV([a, b];Rn×m) is the set of all n × m-matrix-functions with bounded variation components

on the closed interval [a, b] from I.
BVloc(I;Rn×n) is the sets of all n×m-matrix-functions with bounded variation components on

every closed interval [a, b] from I.
By a solution of system (1) we understand a vector function x ∈ BV(I;Rn) such that

x(t) = x(s) +

t∫
s

dA0(τ)x(τ) for s < t, s, t ∈ I,

where the integral is considered in the Kurzweil sense (see, [4]).
We present some results from [1] and [2].
Let x0 be the unique solution of problem (1), (2).
Along with the Cauchy problem (1), (2) consider the sequence of the Cauchy problems

dx = dAk(t) · x+ dfk(t), (1k)
x(tk) = ck, (2k)

(k = 1, 2, . . . ), where Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I
(k = 1, 2, . . . ) and ck ∈ Rn (k = 1, 2, . . . ).

We give the conditions both for each from the two problems:

(a) The Cauchy problem (1k), (2k) has a unique solution xk for any sufficiently large k and

lim
k→+∞

sup
t∈I

∥xk(t)− x0(t)∥ = 0, (3)

and

(b) The Cauchy problem (1k), (2k) has a unique solution xk for any sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥xk(t)− x0(t)∥ = 0. (4)
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We assume that
lim

k→+∞
tk = t0.

For the formulation of theorems we use the notations.

- X(t−) and X(t+) are, respectively, the left and the right limits of matrix-function X at the
point t; d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

-
b∨
a
(X) is the sum of total variations on [a, b] of the components of the matrix-function X :

[a, b] → Rn×m;

- If X ∈ BVloc(I;Rn×n) and Y ∈ BVloc(I;Rn×m, then

B(X,Y )(a) = On×m,

B(X,Y )(t) = X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ) for t ∈ I,

where a ∈ I is a fixed point.

Definition 1. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition

lim
k→+∞

ck = c0, (5)

problem (1k), (2k) has a unique solution xk for any sufficiently large k and condition (3) holds.

Theorem 1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), t0 ∈ I and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that the conditions

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 and for t = t0

if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . } (6)

hold. Then the inclusion
((Ak, fk; tk))

+∞
k=1 ∈ S(A0, f0; t0) (7)

is true if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . . )
such that the conditions

inf
{
|det(H0(t))| : t ∈ I

}
> 0

and
lim sup
k→+∞

∨
I

(Hk + B(Hk, Ak)) < +∞

hold, and the conditions

lim
k→+∞

Hk(t) = H0(t),

lim
k→+∞

(
B(Hk, Ak)(t)− B(Hk, Ak)(tk)

)
= B(H0, A0)(t)− B(H0, A0)(t0)

and

lim
k→+∞

(
B(Hk, fk)(t)− B(Hk, fk)(tk)

)
= B(H0, f0)(t)− B(H0, f0)(t0)

hold uniformly on I.
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Remark 1. In Theorem 1 without loss of generality we can assume that H0(t) ≡ In, where In is
the identity n× n matrix.

Theorem 1′. Let

det
(
In + (−1)jdjAk(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2; k = 0, 1, . . . ).

Then inclusion (7) holds if and only if the conditions

lim
k→+∞

X−1
k (t) = X−1

0 (t)

and
lim

k→+∞

(
B(X−1

k , fk)(t)− B(X−1
k , fk)(tk)

)
= B(X−1

0 , f0)(t)− B(X−1
0 , f0)(t0)

hold uniformly on [a, b], where X0 and Xk are fundamental matrices of the homogeneous systems
corresponding to systems (1) and (1k), respectively, for every k ∈ {1, 2, . . . }.

We also consider the case when the condition

lim
k→+∞

ckj = c0j if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 (k = 0, 1, . . . ) (5j)

holds instead or along with (5), where

ckj = ck + (−1)j
(
djAk(tk)ck + djfk(tk)

)
(j = 1, 2; k = 0, 1, . . . ). (8)

Note that if
lim

k→+∞
djAk(tk) = djA0(t0) and lim

k→+∞
djfk(tk) = djf0(t0)

for some j ∈ {1, 2}, then condition (5j) follows from (5).

Theorem 2. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), c0 ∈ Rn, t0 ∈ I, and the sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that conditions (5), (6) hold. Let, moreover, the sequences of matrix-
and vector functions Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and
bounded sequence of constant vectors ck ∈ Rn (k = 1, 2, . . . ) be such that conditions (5j),

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥Akj(t)−A0j(t)∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0

and

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥fkj(t)− f0j∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0

hold if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . }, where ckj (k = 0, 1, . . . )
are defined by (8),

Akj(t) ≡ (−1)j(Ak(t)−Ak(tk))− djAk(tk) (j = 1, 2; k = 0, 1, . . . )

and

fkj(t) ≡ (−1)j(fk(t)− fk(tk))− djfk(tk) (j = 1, 2; k = 0, 1, . . . ).

Then the Cauchy problem (1k), (2k) has a unique solution xk for any sufficiently large k and
condition (4) holds.
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It is evident that if condition (3) holds, then condition (4) holds as well. But the inverse
proposition is not true, in general.

We give the corresponding example, which is simple modification of the example given in [3].

Example 1. Let I = [−1, 1], n = 1, αk (k = 1, 2, . . . ) and βk (k = 1, 2, . . . ) be an arbitrary
increasing in [−1, 0) and decreasing in (0, 1], respectively, sequences such that

lim
k→∞

αk = lim
k→∞

βk = 0 and lim
k→∞

γk = γ0 ∈ [0, 1),

where γk = αk(αk − βk)
−1.

Let tk = t0 = 0 (k = 1, 2, . . . ), ck = exp(γk − γ0)c0 (k = 1, 2, . . . ), where c0 is arbitrary,
fk(t) = f0(t) ≡ 0n (k = 1, 2, . . . ),

Ak(t) =


0 for t ∈ [−1, αk[,
t− αk

βk − αk
for t ∈ [αk, βk],

1 for t ∈ ]βk, 1] (k = 1, 2, . . . ).

It is not difficult to verify that the unique solution of the corresponding homogeneous initial
problem has the form

xk(t) =


ck for t ∈ [−1, αk[ ,

ck exp
(
t(βk − αk)

−1
)

for t ∈ [αk, βk],

ck exp(1) for t ∈ ]βk, 1] (k = 1, 2, . . . ).

So, condition (4) holds, where

x0(t) =


c0 for t ∈ [−1, 0[ ,

c0 exp(γ0) for t = 0,

c0 exp(1) for t ∈ ]0, 1],

but (3) does not hold uniformly on [0, 1], because the function x0(t) is discontinuous at the point
t = 0.

On the other hand, in the “limit” equation

dx = dA∗
0(t) · x,

the function A∗
0 is defined as

A∗
0(t) =


0 for t ∈ [−1, 0[ ,

γ0 for t = 0,

1 for t ∈ ]0, 1],

and, therefore, the unique solution of the equation under the condition x(0) = c0(1− γ0)
−1 has the

form

x∗0(t) =


c0 for t ∈ [−1, 0[ ,

c0(1− γ0)
−1 for t = 0,

c0(2− γ0)(1− γ0)
−1 for t ∈ ]0, 1].

It is evident that x∗0 ̸= x0.
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On the other hand, x0 is the solution of the initial problem

dx = dA0(t) · x, x(0) = c0 exp(γ0),

where

A0(t) =


0 for t ∈ [−1, 0[ ,

1− exp(−γ0) for t = 0,

exp(1− γ0)− exp(−γ0) for t ∈ ]0, 1].

The obtained “anomaly” corresponds to the statement of Theorem 2, in particular to condition
(4), where Hk(t) ≡ In (k = 1, 2, . . . ), and

hk(t) =


c0 − ck for t ∈ [−1, αk[ ,

c0(1− γk)
−1 − ck exp

(
t(βk − αk)

−1
)

for t ∈ [αk, βk],

c0(2− γk) (1− γk)
−1 − ck exp(1) for t ∈]βk, 1] (k = 1, 2, . . . ).

It is evident that the functions x∗k(t) = xk(t) are solutions of the problem

dx = dA∗
k(t) · x, x(0) = c0(1− γk)

−1

for every natural k, where

A∗
k(t) =


0 for t ∈ [−1, αk[ ,

γk for t ∈ [αk, βk],

1 for t ∈ ]βk, 1] (k = 1, 2, . . . ).

So, due to the conditions lim
k→+∞

γk = γ0, we have

lim
k→+∞

sup
t∈I, t ̸=tk

∥A∗
k(t)−A∗

0(t)∥ = 0.
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1 Introduction
Consider the mixed boundary value problem

ut = (a(x, t)ux)x + b(x, t)ux, (x, t) ∈ QT = (0, 1)× (0, T ), T > 0, (1.1)
u(0, t) = φ(t), ux(1, t) = ψ(t), t > 0, (1.2)

u(x, 0) = ξ(x), 0 < x < 1, (1.3)

where a and b are sufficiently smooth functions on QT , 0<a0≤a(x, t)≤a1<∞, |b(x, t)|≤ b1<∞,
φ ∈W 1

2 (0, T ), ψ ∈W 1
2 (0, T ), ξ ∈ L2(0, 1). We treat the functions ξ and ψ as fixed and the function

φ as a control function to be found. The problem is to find a control function φ = φ0 making
the temperature u(x, t) at some fixed point x = c ∈ (0, 1) maximally close to a given one, z(t),
during the whole time interval (0, T ). The quality of the control is estimated by the quadratic cost
functional

J [z, φ] =

T∫
0

(uφ(c, t)− z(t))2 dt, (1.4)

where the function uφ(x, t) is a solution to problem (1.1)–(1.3). This problem arises while studying
the problem of the temperature control in industrial greenhouses (see [6, 8]). Note that various
extremum problems for partial differential equations with integral functionals were considered by
different authors, a survey is contained in [12,14], see also [6, 9].

The main difference between the problem considered in this paper and in previous works consists
in the type of observation. We consider the pointwise observation contrary to the previously studied
control problems with final and distributed observation (see, for example, [11]).
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This paper develops results obtained in [2–4, 6–8]. We consider more general problem (the
equation with variable coefficient a = a(x, t), convection term and a non-homogeneous initial con-
dition), and prove new results on qualitative properties of its minimizer. We prove these results
by methods of qualitative theory of differential equations and, in particular, by some methods
described in [1, 5].

2 Notations, definitions and preliminary results
Definition 2.1 (see [10, p. 26]). By V 1,0

2 (QT ) we denote the Banach space of all functions u ∈
W 1,0

2 (QT ) with the finite norm

∥u∥
V 1,0
2 (QT )

= sup
0≤t≤T

∥u(x, t)∥L2(0,1) + ∥ux∥L2(QT )

such that t 7→ u( · , t) is a continuous mapping [0, T ] → L2(0, 1).

Definition 2.2. By W̃ 1
2 (QT ) we denote the space of all functions η∈W 1

2 (QT ) satisfying η(x, T )=0,
η(0, t) = 0.

Definition 2.3. We say that a function u ∈ V 1,0
2 (QT ) is a weak solution to problem (1.1)–(1.3) if

it satisfies the boundary condition u(0, t) = φ(t) and the integral identity

∫
QT

(
a(x, t)uxηx − b(x, t)uxη − uηt

)
dx dt =

1∫
0

ξ(x)η(x, 0) dx+

T∫
0

a(1, t)ψ(t) η(1, t) dt

for any function η ∈ W̃ 1
2 (QT ).

Theorem 2.1 ([8]). There exists a unique weak solution u ∈ V 1,0
2 (QT ) to problem (1.1)–(1.3) and

this solution satisfies the following inequality

∥u∥
V 1,0
2 (QT )

≤ C1

(
∥φ∥W 1

2 (0,T ) + ∥ψ∥W 1
2 (0,T ) + ∥ξ∥L2(0,1)

)
,

where the constant C1 is independent of φ, ψ, and ξ.

Hereafter we denote by uφ the unique solution to problem (1.1)–(1.3) with φ,ψ ∈ W 1
2 (0, T ),

ξ ∈ L2(0, 1), existing according to Theorem 2.1.
Suppose z ∈ L2(0, T ). Let Φ ⊂ W 1

2 (0, T ) be a bounded closed convex set of control functions.
For some c ∈ (0, 1) consider the functional J [z, φ] defined by (1.4) and put

m[z,Φ] = inf
φ∈Φ

J [z, φ]. (2.1)

Definition 2.4. We call problem (1.1)–(1.3), (2.1) densely controllable on Z ⊂ L2(0, T ) by Φ if for
any z ∈ Z we have m[z,Φ] = 0.

For a necessary condition of optimality we will consider also the adjoint to (1.1)–(1.3), (2.1)
mixed problem for the inverse parabolic equation

pt + (a(x, t)px)x − (b(x, t)p)x = δ(x− c)⊗ (uφ(c, t)− z(t)), (x, t) ∈ QT , (2.2)
p(0, t) = 0, a(1, t)px(1, t)− b(1, t)p(1, t) = 0, 0 < t < T, (2.3)

p(x, T ) = 0, 0 < x < 1, (2.4)

where uφ is a solution of problem (1.1)–(1.3).
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Definition 2.5. We say that a function p ∈ V 1,0
2 (QT ) is a weak solution to problem (2.2)–(2.4) if

it satisfies the boundary condition p(0, t) = 0 and the integral identity

∫
QT

(
(a(x, t)px − b(x, t)p)ηx + pηt

)
dx dt = −

T∫
0

(uφ0(c, t)− z(t))η(c, t) dt

for any function η ∈W 1
2 (QT ) satisfying η(0, t) = 0 and η(x, 0) = 0.

3 Main results
We denote by φ0 minimizer of problem (1.1)–(1.3), (2.1), and Φ ⊂ W 1

2 (0, T ) is a bounded closed
convex set.

Theorem 3.1. For any z ∈ L2(0, T ) there exists a unique function φ0 ∈ Φ such that m[z,Φ] =
J [z, φ0].

Theorem 3.2. Suppose the coefficients a and b in equation (1.1) do not depend on t, m[z,Φ] > 0,
and φ0 is a minimizer. Then φ0 ∈ ∂Φ.

Theorem 3.3. Suppose the coefficients a and b in equation (1.1) do not depend on t, and Φj,
j = 1, 2, Φj, j = 1, 2 are bounded convex closed sets in W 1

2 (0, T ) such that Φ2 ⊂ IntΦ1, and
m[z,Φ1] > 0. Then m[z,Φ1] < m[z,Φ2].

Theorem 3.4. Suppose the coefficients a and b in equation (1.1) do not depend on t. Then for
any z ∈ L2(0, T ) the equality m[z,W 1

2 (0, T )] = 0 holds.

Theorem 3.4 states dense controllability on L2(0, T ) by W 1
2 (0, T ). To prove this result we use

the Titchmarsh convolution theorem [13, Theorem 7].

Theorem 3.5. Let φ0 ∈ Φ be a minimizer. Then for any φ ∈ Φ the following inequality holds:

T∫
0

(uφ0(c, t)− z(t))(uφ(c, t)− uφ0(c, t)) dt ≥ 0.

Theorem 3.6. There exists a unique weak solution p ∈ V 1,0
2 (QT ) to problem (2.2)–(2.4) and this

solution satisfies the following inequality

∥p∥
V 1,0
2 (QT )

≤ C2

(
∥φ∥W 1

2 (0,T ) + ∥ψ∥W 1
2 (0,T ) + ∥ξ∥L2(0,1) + ∥z∥L2(0,T )

)
,

where the constant C2 is independent of φ, ψ, ξ and z.

Theorem 3.7. Let φ0 ∈ Φ be a minimizer. Then for any φ ∈ Φ the following inequality holds:

T∫
0

a(0, t)px(0, t)(φ(t)− φ0(t)) dt ≤ 0,

where p is a weak solution of problem (2.2)–(2.4) with φ = φ0.

Theorems 3.5 and 3.7 give us necessary conditions to minimizer.
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Let a finite interval [a, b] ⊂ R and parameters {m,n, r} ⊂ N, 1 6 p 6 ∞, be given. By
Wn

p = Wn
p ([a, b];C) := {y ∈ Cn−1[a, b] : y(n−1) ∈ AC[a, b], y(n) ∈ Lp[a, b]} we denote a complex

Sobolev space and set W 0
p := Lp. This space is a Banach one with respect to the norm

∥y∥n,p =
n−1∑
k=0

∥y(k)∥p + ∥y(n)∥p,

where ∥ · ∥p is the norm in the space Lp([a, b];C). Similarly, by (Wn
p )

m := Wn
p ([a, b];Cm) and

(Wn
p )

m×m := Wn
p ([a, b];Cm×m) we denote Sobolev spaces of vector-valued functions and matrix-

valued functions, respectively, whose elements belong to the function space Wn
p .

We consider the following linear boundary-value problem

Ly(t) := y′(t) +A(t)y(t) = f(t), t ∈ (a, b), (1)
By = c, (2)

where the matrix-valued function A( · ) ∈ (Wn−1
p )m×m, the vector-valued function f( · ) ∈ (Wn−1

p )m,
the vector c ∈ Cr, the linear continuous operator

B : (Wn
p )

m → Cr (3)

are arbitrarily chosen; and the vector-valued function y( · ) ∈ (Wn
p )

m is unknown.
We represent vectors and vector-valued functions in the form of columns. A solution of the

boundary-value problem (1), (2) is understood as a vector-valued function y( · ) ∈ (Wn
p )

m satisfying
equation (1) almost everywhere on (a, b) (everywhere for n ≥ 2) and equality (2) specifying r scalar
boundary conditions. The solutions of equation (1) fill the space (Wn

p )
m if its right-hand side f( · )

runs through the space (Wn−1
p )m. Hence, the boundary condition (2) with continuous operator (3)

is the most general condition for this equation.
It includes all known types of classical boundary conditions, namely, the Cauchy problem, two-

and multi-point problems, integral and mixed problems, and numerous nonclassical problems. The
last class of problems may contain derivatives of the unknown functions of the order k 6 n.

It is known that, for 1 ≤ p < ∞, every operator B in (3) admits a unique analytic representation

By =

n−1∑
k=0

αky
(k)(a) +

b∫
a

Φ(t)y(n)(t) dt, y( · ) ∈ (Wn
p )

m,

where the matrices αk∈Cr×m and the matrix-valued function Φ( · )∈Lp′([a, b];Cr×m), 1/p+1/p′= 1.
For p = ∞ this formula also defines an operator B ∈ L((Wn

∞)m;Cr). However, there exist other
operators from this class generated by the integrals over finitely additive measures.
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We rewrite the inhomogeneous boundary-value problem (1), (2) in the form of a linear operator
equation (L,B)y = (f, c), where (L,B) is a linear operator in the pair of Banach spaces

(L,B) : (Wn
p )

m → (Wn−1
p )m × Cr. (4)

Recall that a linear continuous operator T : X → Y , where X and Y are Banach spaces, is called
a Fredholm operator if its kernel kerT and cokernel Y/T (X) are finite-dimensional. If operator T
is Fredholm, then its range T (X) is closed in Y and the index

indT := dimkerT − dim(Y/T (X))

is finite.

Theorem 1. The linear operator (4) is a bounded Fredholm operator with index m− r.

Theorem 1 allows the next refinement.
By Y ( · ) ∈ (Wn

p )
m×m we denote a unique solution of the linear homogenous matrix equation

(LY )(t) = Om, Y (a) = Im, where Om is the (m×m) zero matrix, and Im is the (m×m) identity
matrix.

Definition 1. A rectangular numerical matrix M(L,B) ∈ Cm×r is characteristic for the boundary-
value problem (1), (2) if its j-th column is the result of the action of the operator B on the j-th
column of the matricant Y ( · ).

Here m is the number of scalar differential equations of the system (1), and r is the number of
scalar boundary conditions.

Theorem 2. The dimensions of the kernel and cokernel of the operator (4) are equal to the
dimensions of the kernel and cokernel of the characteristic matrix M(L,B) respectively.

Theorem 2 implies a criterion for the invertibility of the operator (4).

Corollary 1. The operator (L,B) is invertible if and only if r = m and the matrix M(L,B) is
nondegenerate.

Let us consider parameterized by number ε ∈ [0, ε0), ε0 > 0, linear boundary-value problem

L(ε)y(t; ε) := y′(t; ε) +A(t; ε)y(t; ε) = f(t; ε), t ∈ (a, b), (5)
B(ε)y( · ; ε) = c(ε), (6)

where for every fixed ε the matrix-valued function A( · ; ε) ∈ (Wn−1
p )m×m, the vector-valued function

f( · ; ε) ∈ (Wn−1
p )m, the vector c(ε) ∈ Cm, B(ε) is the linear continuous operator B(ε) : (Wn

p )
m →

Cm, and the solution (the unknown vector-valued function) y( · ; ε) ∈ (Wn
p )

m.
It follows from Theorem 2 that the boundary-value problem (5), (6) is a Fredholm one with

index zero.

Definition 2. A solution of the boundary-value problem (5), (6) continuously depends on the
parameter ε for ε = 0 if the following conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0, ε1) and arbitrary right-hand
sides f( · ; ε) ∈ (Wn−1

p )m and c(ε) ∈ Cm this problem has a unique solution y( · ; ε) that
belongs to the space (Wn

p )
m;

(∗∗) the convergence of the right-hand sides f( · ; ε) → f( · ; 0) in (Wn−1
p )m and c(ε) → c(0) in Cm

as ε → 0+ implies the convergence of the solutions y( · ; ε) → y( · ; 0) in (Wn
p )

m.
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Consider the following conditions as ε → 0+:

(0) limiting homogeneous boundary-value problem

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y( · , 0) = 0

has only the trivial solution;

(I) A( · , ε) → A( · , 0) in the space (Wn−1
p )m×m;

(II) B(ε)y → B(0)y in Cm for any y ∈ (Wn
p )

m.

Theorem 3. A solution of the boundary-value problem (5), (6) continuously depends on the pa-
rameter ε for ε = 0 if and only if it satisfies condition (0) and the conditions (I) and (II).

Consider the following quantities: ∥∥y( · ; 0)− y( · ; ε)
∥∥
n,p

, (7)

d̃n−1,p(ε) :=
∥∥L(ε)y( · ; 0)− f( · ; ε)

∥∥
n−1,p

+
∥∥B(ε)y( · ; 0)− c(ε)

∥∥
Cm , (8)

where (7) is the error and (8) is the discrepancy of the solution y( · ; ε) of the boundary-value problem
(5), (6) if y( · ; ε) is its exact solution and y( · ; 0) is an approximate solution of the problem.

Theorem 4. Suppose that the boundary-value problem (5), (6) satisfies conditions (0), (I) and
(II). Then there exist the positive quantities ε2 < ε1 and γ1, γ2 such that, for any ε ∈ (0, ε2), the
following two-sided estimate is true:

γ1 d̃n−1,p(ε) ≤
∥∥y( · ; 0)− y( · ; ε)

∥∥
n,p

≤ γ2 d̃n−1,p(ε),

where the quantities ε2, γ1, and γ2 do not depend of y( · ; ε) and y( · ; 0).

According to this theorem, the error and discrepancy of the solution y( · ; ε) of the boundary-
value problem (5), (6) have the same order of smallness.

For any ε ∈ [0, ε0), ε0 > 0, we associate with the system (5) multi-point Fredholm boundary
condition

B(ε)y( · , ε) =
r∑

j=0

ωj(ε)∑
k=1

n∑
l=0

β
(l)
j,k(ε)y

(l)(tj,k(ε), ε) = q(ε), (9)

where the numbers {r, ωj(ε)} ⊂ N, vectors q(ε) ∈ Cm, matrices β
(l)
j,k(ε) ∈ Cm×m, and points

{tj , tj,k(ε)} ⊂ [a, b] are arbitrarily given.
It is not assumed that the coefficients A( · , ε), β(l)

j,k(ε) or points tj,k(ε) have a certain regularity
on the parameter ε as ε > 0. It will be required that for each fixed j ∈ {1, . . . , r} all the points
tj,k(ε) have a common limit as ε → 0+, but for the zero-point series t0,k(ε) this requirement will
not be necessary.

The solution y = y( · , ε) of the multi-point boundary-value problem (5), (9) is continuous on
the parameter ε if it exists, is unique, and satisfies the limit relation∥∥y( · , ε)− y( · , 0)

∥∥
n,p

−→ 0 as ε → 0 + . (10)

Consider the following assumptions as ε → 0+ and p = ∞:

(α) tj,k(ε) → tj for all j ∈ {1, . . . , r}, and k ∈ {1, . . . , ωj(ε)};
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(β)
ωj(ε)∑
k=1

β
(l)
j,k(ε) −→ β

(l)
j for all j ∈ {1, . . . , r}, and l ∈ {0, . . . , n};

(γ)
ωj(ε)∑
k=1

∥β(l)
j,k(ε)∥ |tj,k(ε)−tj | −→ 0 for all j ∈ {1, . . . , r}, k ∈ {1, . . . , ωj(ε)}, and l ∈ {0, . . . , n};

(δ)
ω0(ε)∑
k=1

∥β(l)
0,k(ε)∥ −→ for all k ∈ {1, . . . , ω0(ε)}, and l ∈ {0, . . . , n}.

Assumptions (β) and (γ) imply that the norms of the coefficients β(l)
j,k(ε) can increase as ε → 0+,

but not too fast.
Theorem 5. Let the boundary-value problem (5), (9) for p = ∞ satisfy the assumptions (α), (β),
(γ), (δ). Then it satisfies the limit condition (II). If, moreover, the conditions (0) and (I) are fulfil-
led, then for a sufficiently small ε its solution exists, is unique and satisfies the limit relation (10).

Consider also the following assumptions as ε → 0+ and 1 6 p < ∞:

(γp)

ωj(ε)∑
k=1

∥β(n)
j,k (ε)∥ |tj,k(ε)− tj |1/p

′
= O(1) for all j ∈ {1, . . . , r}, and k ∈ {1, . . . , ωj(ε)};

(γ′)

ωj(ε)∑
k=1

∥β(l)
j,k(ε)∥ |tj,k(ε)−tj |−→0 for all j∈{1, . . . , r}, k∈{1, . . . , ωj(ε)}, and l∈{0, . . . , n−1}.

Theorem 6. Let the boundary-value problem (5), (9) for 1 6 p < ∞ satisfy the assumptions (α),
(β), (γp), (γ′), (δ). Then it satisfies the limit condition (II). If, moreover, the conditions (0) and
(I) are fulfilled, then for a sufficiently small ε its solution exists, is unique and satisfies the limit
relation (10).

The results are published in [1–4]. They allow extension for the systems of differential equations
of higher order [5] and for boundary-value problems in Hölder spaces [6].
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For a given positive integer n let us denote by Mn the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1)

defined on the time semi-axis R+ with continuous bounded coefficients. Let λ1(A) 6 · · · 6 λn(A)
denote the Lyapunov exponents [6, p. 561], [1, p. 38] of the system (1). Besides, we denote by Rn

the subclass of the class Mn consisting of Lyapunov regular systems [6, p. 563], [1, p. 61]. In what
follows, we identify the system (1) with its defining function A( · ) and therefore write A ∈ Mn or
A ∈ Rn.

In the paper [7] O. Perron constructed an example of a system A ∈ M2 with negative Lyapunov
exponents for which there exists an exponentially decaying perturbation Q : R+ → R2×2 such that
the largest Lyapunov exponent of the perturbed system

ẋ = (A(t) +Q(t))x, x ∈ R2, t ∈ R+,

is positive. Put differently, the Lyapunov exponents, which are responsible for the stability, are
not stable themselves (even under those perturbations of a system’s coefficient matrix that decay
exponentially).

As a result of Perron’s example the problem naturally arises of finding wide enough subclasses
of the class Mn consisting of the systems whose Lyapunov exponents are invariant under vanish-
ing at infinity perturbations of the coefficient matrix. It was a long-standing conjecture that the
class Rn of Lyapunov regular systems possesses the desired property. The conjecture was based
essentially on the fundamental result by Lyapunov which claims that if a nonlinear system (with
natural restrictions on the right-hand side) has a regular first approximation system and the latter
is conditionally exponentially stable, then so is the zero solution of the original system (with the
same dimension of the stable manifold and asymptotic exponent) [6, pp. 577–579]. Nevertheless, in
the paper [8] R. E. Vinograd provided an example of a system A ∈ R2 whose Lyapunov exponents
change under some vanishing at infinity perturbation of its coefficient matrix (the Lyapunov expo-
nents of a regular system are invariant under exponentially decaying perturbations of its coefficient
matrix, which is implied by Bogdanov–Grobman theorem [5, p. 188]).

Let M be a metric space. Let us introduce the classes En(M) and Zn(M) of jointly continuous
matrix-valued functions Q( · , · ) : R+ × M → Rn×n. The class En(M) consists of the functions
Q( · , · ) exponentially decaying as t → +∞ with a uniform exponent with respect to µ ∈ M :

lim
t→+∞

t−1 ln ∥Q(t, µ)∥ < const < 0,
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and the class Zn(M) consists of the functions Q( · , · ) vanishing at infinity uniformly in µ ∈ M :

lim
t→+∞

sup
µ∈M

∥Q(t, µ)∥ = 0.

Generalizing the situation considered in examples of Perron and Vinograd, for each system
A ∈ Mn, let us define the class Pn(A;M) consisting of the families

ẋ = (A(t) +Q(t, µ))x, x ∈ Rn, t ∈ R+, (2)

of linear differential systems, where µ ∈ M is a parameter and Q( · , · ) ∈ En(M). Next, for each
A ∈ Rn we define the class Vn(A;M) to consist of those families (2) in which Q( · , · ) ∈ Zn(M).
Therefore, fixing a value of the parameter µ ∈ M in the family (2) we obtain a linear differential
system with continuous coefficients bounded on the semi-axis. Let λ1(µ;A+Q) 6 · · · 6 λn(µ;A+Q)
stand for the Lyapunov exponents of this system. Thus for each k = 1, n we get the function
λk( · ;A) : M → R, which is called the k-th Lyapunov exponent of the family (2), and the vector
function Λ( · ;A+Q) : M → Rn defined by Λ(µ;A+Q) = (λ1(µ;A+Q), . . . , λn(µ;A+Q)), which
is called the spectrum of the Lyapunov exponents of the family (2).

We state the problems to be solved as follows: for each n ∈ N and every metric space M
completely describe the classes of vector functions

Pn(M) =
{
Λ( · ;A+Q) | A ∈ Mn, Q ∈ En(M)

}
,

Vn(M) =
{
Λ( · ;A+Q) | A ∈ Rn, Q ∈ Zn(M)

}
.

Solutions to these problems will contain as special cases examples of Perron and Vinograd, respec-
tively. If n = 1, then the descriptions of the above classes immediately follow from the definition
of the Lyapunov exponent – for any metric space M both the classes P1(M) and V1(M) coincide
with the class of constant functions M → R. Therefore, from now on, we assume that n > 2.

Let a vector function f( · ) = (f1( · ), . . . , fn( · )) : M → Rn belong to the class Pn(M) or to the
class Vn(M). Let us state three properties of the vector function f( · ) that it must satisfy (below
these properties are numbered as 1), 2), 3)). One of the properties is trivially implied by the very
definition of this vector function: 1) for every µ ∈ M the inequalities f1(µ) 6 · · · 6 fn(µ) hold.
Another property follows from the fact that a matrix-valued function A is bounded on the time
semi-axis and for every µ ∈ M , a perturbation matrix Q( · , µ) vanishes at infinity: 2) the vector
function f( · ) is bounded on M . For example, |Λ(µ;A + Q)| 6 n sup{∥A(t)∥ | t ∈ R+} for all
µ ∈ M . Before stating the third property let us recall that a function g : M → R is said [4, p. 267]
to be of the class (∗, Gδ) if for each r ∈ R the preimage g−1([r,+∞)) of the half-interval [r,+∞)
is a Gδ-set of the metric space M . As follows from the paper [2], in which a complete description
is obtained for the spectra of the Lyapunov exponents of general parametric families of linear
differential systems continuous in the parameter uniformly in t ∈ R+, the property 3) is true: the
components fk( · ) of the vector function f( · ) are of the class (∗, Gδ).

Theorem 1. Let M be a metric space, n > 2 an integer, and a vector function f : M → Rn satisfy
the properties 1)–3). Then there exist a system A ∈ Mn and a matrix-valued function Q ∈ En(M)
such that the spectrum of the Lyapunov exponents of the family (2) coincides with the function f ,
i.e. Λ(µ;A+Q) = f(µ) for all µ ∈ M .

Theorem 2. Let M be a metric space, n > 2 an integer, and a vector function f : M → Rn satisfy
the properties 1)–3). Then there exist a Lyapunov regular system A ∈ Rn and a matrix-valued
function Q ∈ Zn(M) such that the spectrum of the Lyapunov exponents of the family (2) coincides
with the function f , i.e. Λ(µ;A+Q) = f(µ) for all µ ∈ M .
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Thus, from the said above it follows that the classes Pn(M) and Vn(M) are identical, and their
common complete description is contained in the following

Theorem 3. For any n > 2 and every metric space M , a vector function (f1, . . . , fn) : M → Rn

belongs to the class Pn(M) (to the class Vn(M)) if and only if it satisfies the properties 1)–3).
For each metric space M the class P1(M) (the class V1(M) coincides with the class of constant
functions M → R.

Note that if M is a segment of the real line, then in Theorems 1–3 above one can choose a
matrix-valued function Q( · , · ) : R+ ×M → Rn×n to be analytical in µ ∈ M for each t ∈ R+.

Recall that a subset of a metric space M is said to be an Fσδ-set if it can be expressed as
countable intersection of Fσ sets in M . The latter, in turn, are those which can be represented as
countable unions of closed sets in M [4, p. 96]. Combining Theorem 2 above with [3, Corollary 2]
we arrive at the following

Corollary. Let an integer n > 2 and a metric space M be given. Then for any Fσδ-set S in M
there exist a Lyapunov regular system A ∈ Rn and a matrix-valued function Q ∈ Zn(M) such that
S is the set of those µ ∈ M for which the system (2) is Lyapunov regular.
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We consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′)f(y, y′). (1)

Here α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ are continuous
functions, f : ∆Y0 ×∆Y1 → ]0,+∞[ is a continuously differentiable function, Yi ∈ {0,±∞}, ∆Yi is
a one-sided neighborhood of Yi, i ∈ {0, 1}. We suppose also that every function φi(z) is a regularly
varying function as z → Yi (z ∈ ∆Yi) of order σi, σ0 + σ1 ̸= 1 and the function f satisfies the
condition

lim
vk→Yk
vk∈∆Yk

vk · ∂f
∂vk

(v0, v1)

f(v0, v1)
= 0 uniformly in vj ∈ ∆Yj , j ̸= k, k, j ∈ {0, 1}. (2)

Many works (see, e.g., [3,4,6]) have been devoted to the establishing of asymptotic representation
of solutions of equations of the form (1) in case f ≡ 1. In the work, the right part of (1) was or in
explicit form or asymptotically represented as the product of expressions, each of which depends
only of t, or only of y, or only of y′. The fact is of the most importance. In general case equation
(1) can contain nonlinearities of another types, for example, e|γ ln |y|+µ ln |y′||α , 0 < α < 1, γ, µ ∈ R.

Definition. The solution y of equation (1) is called Pω(Y0, Y1, λ0)-solution if it is defined on [t0, ω[⊂
[a, ω[ and for all i ∈ {0, 1}

lim
t↑ω

y(i)(t) = Yi, lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

The Pω(Y0, Y1, λ0)-solutions of equation (1) are regularly varying functions as t ↑ ω of index
λ0

λ0−1 if λ0 ∈ R \ {0, 1}.
We need the next subsidiary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
Θi(z) = φi(z)|z|−σi , i =∈ {0, 1},

J1(t) = |λ0 − 1|
1

1−σ1 sign y01

t∫
B1

ω

|πω(τ)p(τ)|
1

1−σ1 dτ,

B1
ω =


b if

ω∫
b

|πω(τ)p(τ)|
1

1−σ1 dτ = +∞,

ω if
ω∫
b

|πω(τ)p(τ)|
1

1−σ1 dτ < +∞,
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I1(t) = α0

∣∣∣λ0 − 1

λ0

∣∣∣σ0

t∫
A1

ω

(τ)

|πω(τ)|−σ0
dτ, A1

ω =


a if

ω∫
a

p(τ)

|πω(τ)|−σ0
dτ = +∞,

ω if
ω∫

a

p(τ)

|πω(τ)|−σ0
dτ < +∞,

J2(t) = |σ0|−
1
σ0 sign y01

t∫
B2

ω

|I1(τ)|
− 1

σ0 dτ, B2
ω =


b if

ω∫
b

|I1(τ)|
− 1

σ0 dτ = +∞,

ω if
ω∫
b

|I1(τ)|
− 1

σ0 dτ < +∞.

Theorem 1. Let σ1 ̸= 1. Then for the existence of Pω(Y0, Y1, λ0)-solutions of equation (1), where
λ0 ∈ R \ {0, 1}, the next conditions are necessary

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, πω(t)α0y

0
1(λ0 − 1) > 0 as t ∈ [a, ω[ , (3)

lim
t↑ω

y00|πω(t)|
λ0

λ0−1 = Y0, lim
t↑ω

y01|πω(t)|
1

λ0−1 = Y1, lim
t↑ω

πω(t)J
′
1(t)

J1(t)
=

1− σ0 − σ1
1− σ1

· λ0

λ0 − 1
. (4)

If
λ0 ̸= σ1 − 1 or (σ1 − 1)(σ0 + σ1 − 1) > 0, (5)

conditions (3), (4) are sufficient for the existence of such solutions of equation (1).
For Pω(Y0, Y1, λ0)-solutions of equation (1) the next asymptotic representations take place as

t ↑ ω,
y(t)|y(t)|−

σ0
1−σ1

(f(y(t), y′(t))Θ0(y(t))Θ1(y′(t)))
1

1−σ1

=
1− σ0 − σ1

1− σ1
J1(t)[1 + o(1)],

y′(t)

y(t)
=

λ0

(λ0 − 1)πω(t)
[1 + o(1)].

(6)

By conditions (3), (5) and the first of the asymptotic representations (6), obtained in Theorem
1, it is clear that the case σ1 = 1 requires a separate investigation. The following theorem covers
this case.

Theorem 2. Let σ1 = 1. Then for the existence of Pω(Y0, Y1, λ0)-solutions of equation (1), where
λ0 ∈ R \ {0, 1}, the next conditions are necessary and sufficient

y00J2(t) > 0, α0y
0
0λ0 > 0, y01σ0I1(t) < 0 as t ∈ [a, ω[ ,

lim
t↑ω

y01|I1(t)|
− 1

σ0 = Y1, lim
t↑ω

y00|πω(t)|
λ0

λ0−1 = Y0, lim
t↑ω

πω(t)I
′
1(t)

I1(t)
=

σ0
1− λ0

.

For Pω(Y0, Y1, λ0)-solutions of equation (1) the next asymptotic representations take place as
t ↑ ω,

y(t)|Θ0(y(t))Θ1(y
′(t))f(y(t), y′(t))|

1
σ0 = J2(t)[1 + o(1)],

y′(t)

y(t)
=

λ0

(λ0 − 1)πω(t)
[1 + o(1)].

For the equations of the form (1) the existence of different types of Pω(Y0, Y1, λ0)-solutions
essentially depends from the orders σ0 and σ1 of the regularly varying functions φ0, φ1 as their
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arguments tend to Y0, Y1 respectively, and from the type of function p, that as must be mentioned,
does not necessary have to be a regularly varying. By the results of Theorem 1, precisely by the
third condition of (3), it is clear that Pω(Y0, Y1, λ0)-solutions for which λ0 ∈ R \ {0, 1} may appear
in the equations of the form (1), when p is regularly varying function as t ↑ ω. To simplify the
calculations, we take p(t) ≡ tγ . On the interval [t0; +∞[ (t0 > 0) we consider the differential
equation

y′′ = tγφ0(y)φ1(y
′) exp

(
| ln |y||µ0 + | ln |y′||µ1

)µ2 , (7)
where γ ∈ R \ {0}, µi ∈ (0, 1) for each i ∈ {0, 1, 2}. This equation is of the form (1), with α0 = 1,
p(t) = tγ , f(y, y′) = exp(| ln |y||µ0 + | ln |y′||µ1)µ2 . Now

∆Yk
= [y0k,+∞[ (∀ k ∈ {0, 1}), ω = Y0 = Y1 = +∞,

J1(t) =
1− σ1

γ − σ1 + 2
|λ0 − 1|

1
1−σ1 sign y01t

γ−σ1+2
1−σ1 , I1(t) =

∣∣∣λ0 − 1

λ0

∣∣∣σ0 tσ0+γ+1

σ0 + γ + 1
,

J2(t) = −
(σ0 + γ + 1

|σ0|

) 1
σ0 σ0

γ + 1
sign y01t

− γ+1
σ0 .

Condition (2) in our case takes the following form

lim
vk→Yk
vk∈∆Yk

µkµ2| ln |vk||µk−1
(
| ln |v0||µ0 + | ln |v1||µ1

)µ2−1
= 0,

where k ∈ {0, 1}.
It is clear that since mi − 1 < 0 for all i ∈ {0, 1, 2}, the function under the sign of a limit tends

to zero uniformly over vj ∈ [y0k; +∞[ , j ̸= k, k, j ∈ {0, 1}.
We apply Theorem 1 and obtain that from all P+∞(+∞,+∞, λ0)-solutions, where λ0 ∈ R \

{0, 1}, equation (7) can have only P+∞(+∞,+∞, γ−σ1+2
γ+σ1+1)-solutions if

(γ − σ1 + 2)(1− σ0 − σ1) > 0,
1− σ0 − σ1
γ + σ0 + 1

> 0.

These conditions are necessary, and if, together to them,

γ − σ1 + 2

γ + σ0 + 1
̸= σ1 + 1 or (σ1 − 1)(σ0 + σ1 − 1) > 0,

they are sufficient for the existence of such solutions of equation (7). In addition, for each such
P+∞(+∞,+∞, γ−σ1+2

γ+σ1+1)-solution of equation (7) the following asymptotic representations take place
as t → +∞,

(y(t))1−σ1 |y′(t)|σ1

φ0(y(t))φ1(y′(t)) exp(| ln |y(t)||µ0 + | ln |y′(t)||µ1)µ2

=
(1− σ0 − σ1
γ − σ1 + 2

)1−σ1
∣∣∣1− σ0 − σ1
γ + σ0 + 1

∣∣∣tγ−σ1+2[1 + o(1)],

y′(t)

y(t)
=

γ − σ1 + 2

1− σ0 − σ1
· 1
t
[1 + o(1)].

Then we also consider the differential equation (7) under the assumption that σ1 = 1. We apply
Theorem 2 and find that in this case from the P+∞(+∞,+∞, λ0)-solutions, where λ0 ∈ R \ {0, 1},
equation (7) can have only P+∞(+∞,+∞, γ+1

σ0+γ+1)-solutions if

y01σ0 < 0, y00
γ + 1

σ0 + γ + 1
> 0.



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 29

This condition is necessary and sufficient for the existence of such solutions of equation (7). In
addition, for any P+∞(+∞,+∞, γ+1

σ0+γ+1)-solution of equation (7) the following asymptotic repre-
sentations take place as t → +∞,

y(t) exp
((| ln |y||µ0 + | ln |y′||µ1)µ2

σ0

)
= −

(σ0 + γ + 1

|σ0|

) 1
σ0 σ0

γ + 1
sign y01t

− γ+1
σ0 [1 + o(1)],

y′(t)

y(t)
= −γ + 1

σ0t
[1 + o(1)].

Another classes of Pω(Y0, Y1, λ0)-solutions of equation (1) have also been investigated before
(see, e.g., [5]). The sufficiently important class of Pω(Y0, Y1,±∞)-solutions of equations like (1)
has been considered only for cases when f(y, y′) ≡ 1 and the function φ0(z)|z|−σ0 satisfies some
additional conditions. Later it has appeared an opportunity to extend the results onto more general
cases (see, e.g., [1]). But functions that contain in their left side the derivative of the unknown
function as it is in general case of equation (1), haven’t been considered before. Let us notice that
the derivative of every Pω(Y0, Y1,±∞)-solution is a slowly varying function as t ↑ ω. It makes a lot
of difficulties for the investigations. The sufficiently important class of Pω(Y0, Y1,±∞)-solutions of
equation (1) is established (see, [2]) for the case f(y, y′) ≡ exp(R(| ln |yy′||)), R : ]0; +∞[→ ]0;+∞[
is continuously differentiable function, that is regularly varying on infinity of the order µ, 0 < µ < 1
and has monotone derivative.
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On the Solvability of Focal Boundary Value Problems
for Higher-Order Linear Functional Differential Equations
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We obtain sharp solvability conditions for focal boundary value problems for higher-order linear
functional differential equations with functional operators under integral and point-wise restrictions.

Consider the focal boundary value problem
(−1)(n−k)x(n)(t) + (Tx)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , k − 1,

x(j)(1) = 0, j = k, . . . , n− 1,

(0.1)

where k ∈ {1, 2, . . . , n− 1}, n ≥ 2, T : C[0, 1] → L[0, 1] is a linear boundary operator, C[0, 1] and
L[0, 1] are the spaces of continuous and integrable real functions on the interval [0, 1] (wish usual
norms).

The problems of solving various focal boundary value problems for linear and nonlinear ordi-
nary differential equations and functional differential equations arise in many studies of physical,
chemical, and biological processes [1, 2, 8, 13,15].

For the zero operator T , the boundary value problem
(−1)(n−k)x(n)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , k − 1,

x(j)(1) = 0, j = k, . . . , n− 1

has a unique solution x(t) =
1∫
0

G(t, s)f(s) ds, t ∈ [0, 1], where the Green function (see, for exam-

ple, [8])

G(t, s) =
1

(n− k − 1)!

1

(k − 1)!

min(t,s)∫
0

(s− τ)n−k−1(t− τ)k−1 dτ, t, s ∈ [0, 1],

is non-negative.

1 Integral restrictions
The following simple assertion is a corollary of the Banach fixed-point theorem and the Fredholm
property of the boundary value problem.

Assertion 1.1. If ∥T∥C→L ≤ (n− 1)(n− k − 1)!(k − 1)!, then problem (0.1) is uniquely solvable.

Definition 1.1. A linear operator T : C[0, 1] → L[0, 1] is called positive if it maps every nonneg-
ative continuous function into an almost everywhere nonnegative integrable function.
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In this work, we weaken the solvability conditions from Assertion 1.1 in the case of positive
operator T . For some other boundary value problems similar unimprovable conditions are obtained
by R. Hakl, A. Lomtatidze, S. Mukhigulashvili, B. Půža, J. Šremr, and others [6, 9–12].

The norm of a positive operator T : C[0, 1] → L[0, 1] is defined by the equality

∥T∥C→L =

1∫
0

(T1)(t) dt,

where 1 is the unit function.
Theorem 1.1. Let a non-negative number T be given. Problem (0.1) is uniquely solvable for all
linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if the following inequality is
valid:

T ≤ min
0<t<1, 0<s<1

G(t, 1) +G(1, s) + 2
√
G(t, s)G(1, 1)

G(t, s)G(1, 1)−G(t, 1)G(1, s)
.

Remark 1.1. In (1.1), the expression G(t, s)G(1, 1)−G(t, 1)G(1, s) is positive for all t, s ∈ (0, 1)
because of the kernel G(t, s) is totally positive (see, for example, [7, 14]).

The proof of Theorem 1.1 is based on the following lemma.
Lemma 1.1 ([3]). Let a non-negative number T be given. Problem (0.1) is uniquely solvable for
all linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if for all numbers c, d,
τ1, τ2, T1, T2 satisfied the conditions

c, d ∈ [0, 1], 0 ≤ τ1 ≤ τ2 ≤ 1,

T1 ≥ 0, T2 ≥ 0, T1 + T2 ≤ T ,

the inequality

1 + T1G(τ1, c) + T2G(τ2, d) + T1T2
(
G(τ1, c)G(τ2, d)−G(τ2, c)G(τ1, d)

)
≥ 0

is fulfilled.
Theorem 1.2. Let a non-negative number T be given and n = 2k. Problem (0.1) is uniquely
solvable for all linear positive operators T : C[0, 1] → L[0, 1] with norm T if and only if the
following inequality is valid:

T ≤ 2((n/2− 1)!)2

max
0<t<1

(
t(n−1)/2

n−1 −
t∫
0

(t− τ)n/2−1(1− τ)n/2−1 dτ
) ≡ Tn.

For n = 2, n = 4, n = 6, the numbers Tn can be calculated exactly. We have

T2 = 8,

T4 = 66 + 30
√
5 ≈ 133.1,

T6 =
8

t5/2

5 − t36(t
2
6−5t6+10)

30

≈ 2610.5,

where

t6 =
(C1 − 1−

√
27 + 22/C1 − C2

1

4

)2
,

C1 =
√

2C2 + 9 + 48/C2, C2 =
3

√
124 + 4

√
97 .

For even n ≥ 8, we obtain sufficient solvability conditions.
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Corollary 1.1. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

∥T∥C→L ≤ (n2 − 9)(n2 − 1)((n/2− 1)!)2

3 + (n− 2)(n−7
n−3)

n+1
2

,

then the boundary value problem (0.1) is uniquely solvable.

Corollary 1.2. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

∥T∥C→L ≤ e2(n− 3)3((n/2− 1)!)2, (1.1)

then the boundary value problem (0.1) is uniquely solvable.

Remark 1.2. The sufficient condition in Corollary 1.2 is sharp. The constant e2 and the exponents
cannot be increased in (1.1). Inequality (1.1) significantly improves the solvability condition from
Assertion 1.1 (the constant in the solvability conditions is increased approximately (en)2 times for
large n).

2 Point-wise restrictions
Consider problem (0.1) for k = n− 1,

x(n)(t)− (Tx)(t) = f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0.

(2.1)

Assertion 2.1. Let T : C[0, 1] → L[0, 1] be a linear bounded operator. If

vrai sup
t∈[0,1]

|(T1)(t)| < (n− 2)!n,

then problem (2.1) is uniquely solvable.

We can improve this assertion for positive operators T .

Lemma 2.1 ([3, Lemma 2.19], [4, Lemma 2], [5, Lemma 1]). Let a non-negative function p ∈ L[0, 1]
be given. Problem (2.1) is uniquely solvable for all positive operators T : C[0, 1] → L[0, 1] satisfied
the equality T1 = p if and only if the focal boundary value problem

x(n)(t) = p1(t)x(t1) + p2(t)x(t2), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0

has only the trivial solution for all points t1 ≤ t2, t1, t2 ∈ [0, 1] and for all non-negative functions
p1, p2 ∈ L[0, 1] such that p1 + p2 = p.

Define
k(t) ≡ 1 + P

(
1− t

n

) tn−1

(n− 1)!
, t ∈ [0, 1],

where P is a constant,

G1(t, s) ≡


tn−1 − (t− s)n−1

(n− 1)!
, 1 ≥ t ≥ s ≥ 0,

tn−1

(n− 1)!
, 1 ≥ s > t ≥ 0.



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 33

Theorem 2.1. Let a non-negative number P be given. Then the focal boundary value problem
(2.1) is uniquely solvable for all positive operators T : C[0, 1] → L[0, 1] such that

vrai sup
t∈[0,1]

(T1)(t) ≤ P

if and only if the inequality

k(t2) + P

1∫
s

(
G1(t2, τ)k(t1)−G1(t1, τ)k(t2)

)
dτ > 0

is fulfilled for all 0 ≤ t1 ≤ t2 ≤ 1 and all s ∈ (0, t2].

We obtain some sufficient solvability conditions for the simplest functional differential equations
with one concentrated argument.

Corollary 2.1. Let p ∈ L[0, 1] be a non-negative coefficient, h : [0, 1] → [0, 1] be a measurable
deviated argument.

Then for n = 2, the focal boundary value problem
x(n)(t) = p(t)x(h(t)) + f(t), t ∈ [0, 1],

x(i)(0) = 0, i = 0, . . . , n− 2,

x(n−1)(1) = 0

(2.2)

is uniquely solvable if
vrai sup
t∈[0,1]

p(t) ≤ 16, p(t) ̸≡ 16,

where the constant “16” is unimprovable.
For n = 3, problem (2.2) is uniquely solvable if

vrai sup
t∈[0,1]

p(t) ≤ 58.

For n = 4, problem (2.2) is uniquely solvable if

vrai sup
t∈[0,1]

p(t) ≤ 270.

Remark 2.1. It seems that for n = 2 the best constants “8” and “16” in Theorem 1.2 and
Corollary 2.1 are known (see, for example, [3, p. 109] for integral restriction). However, as we
know, for higher-order functional differential equations these results are new.
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We consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′). (1)

Here, α0 ∈ {−1; 1}, functions p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), and φi : ∆Yi → ]0,+∞[
(i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi is either an interval [y0i , Yi] or an interval ]Yi, y0i ]. If
Yi = +∞ (Yi = −∞) we will take y0i > 0 or y0i < 0, respectively.

We also suppose that the function φ1 is a regularly varying function of index σ1 as y → Y1
(y ∈ ∆Y1) [4, pp. 10–15], the function φ0 is twice continuously differentiable on ∆Y0 and satisfies
the next conditions

φ′
0(y) ̸= 0 as y ∈ ∆Y0 , lim

y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (2)

From the results obtained in the monograph by V. Maric (see, [3, pp. 91–92, p. 117]) it follows
the next lemmas.

Lemma 1. If the function φ : ∆Y → ]0,+∞[ is differentiable on ∆Y and the following condition
takes place

lim
y→Y
y∈∆Y

yφ′(y)

φ(y)
= l,

then φ(y) is normalized slowly or regularly varying function as y → Y in cases l = 0, l ∈ R \ {0},
respectively, and a rapidly varying function as y → Y in case l = ±∞.

Lemma 2. If the function φ : ∆Y → ]0,+∞[ is measurable, twice continuously differentiable on
∆Y and satisfies conditions

lim
y→Y
y∈∆Y

φ(y) = Z ∈ {0,+∞}, lim
y→Y
y∈∆Y

yφ′(y)

φ(y)
= ±∞, lim

y→Y
y∈∆Y

φ′′(y)φ(y)

(φ′(y))2
= 1,

then:

1) the function φ and its first derivative are rapidly varying functions as y → Y ;

2) there exists a slowly varying function l1 : ∆Z → ]0,+∞[ as the argument tends to Z (∆Z is
a one-sided neighborhood of Z) such that

φ′(y) = φ(y) · l1(φ(y));
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3) the function z(y) = (φ(y))s (s ∈ R \ {0}) satisfies the condition

lim
y→Y
y∈∆Y

z′′(y)z(y)

(z′(y))2
= 1; (3)

4) the function z(y) =
y∫

y00

φ(τ) dτ , where

y00 =



y0 as
Y∫

y0

φ(τ) dτ = +∞,

Y as
Y∫

y0

φ(τ) dτ < +∞,

satisfies condition (3).

Lemma 3. If the function φ : ∆Y → ]0,+∞[ satisfies conditions (2), the function L : ∆Y → ]0,+∞[
is a slowly varying function as y → Y (y ∈ ∆Y ), then

y∫
y00

L(τ)φ(τ) dτ ∼ L(y)

y∫
y00

φ(τ) dτ as y → Y,

where

y00 =



y0 as
Y∫

y0

L(τ)φ(τ) dτ = +∞,

Y as
Y∫

y0

L(τ)φ(τ) dτ < +∞,

y0 ∈ ∆Y .

Lemma 4. If φ0 : ∆Y0 → ]0,+∞[ is a rapidly varying function as the argument tends to Y0, the
function φ1 : ∆Y1 → ∆Y0 satisfies the condition lim

y→Y1
y∈∆Y

φ1(y) = Y0 and is a regularly varying function

of index σ ̸= 0 as the argument tends to Y1, then the function φ0(φ1) is also a rapidly varying
function as the argument tends to Y1.

Lemma 5. If the rapidly varying as y → Y function φ : ∆Y → ]0,+∞[ is strictly monotone on
∆Y and satisfies the conditions

lim
y→Y
y∈∆Y

φ(y) = Z ∈ {0,+∞}, φ(∆Y ) = ∆Z ,

where ∆Z is one-sided neighborhood of Z, then the function φ−1 : ∆Z → ∆Y is a slowly varying
function as the argument tends to Z.

Definition 1. The solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called
Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞) if the following conditions take place

y(i) : [t0, ω[−→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.
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In this work we establish the necessary and sufficient conditions for the existence of Pω(Y0, Y1, λ0)-
solutions of equation (1) in case λ0 = 0 and find asymptotic representations of such solutions and
its first order derivatives as t ↑ ω.

The main result of the work is obtained under the assumption that for Pω(Y0, Y1, 0)-solutions
of equation (1) there exist the next finite or infinite limit

lim
t↑ω

πω(t)y
′′(t)

y′(t)
.

According to the properties of such solutions (see, for example, [1]) we have

lim
t↑ω

πω(t)y
′(t)

y(t)
= 0,

lim
t↑ω

πω(t)y
′′(t)

y′(t)
= −1. (4)

From (4) it follows that function y′(t) is a normalized regularly varying function of index (−1)
as t ↑ ω, that means it can be represented in the form

y′(t) = |πω(t)|−1L1(t),

where L1(t) : [t0, ω[→ ] −∞,+∞[ is a normalized slowly varying function as t ↑ ω [4, pp. 10–15].
It follows that

lim
t↑ω

sign(y01)

|πω(t)|
= Y1.

From the fact that the function L1 is a normalized slowly varying function, it follows that
the function L1(t(z)), where t(z) is the inverted function to the function z(t) =

sign(y01)
|πω(t)| , is also

a normalized slowly varying function as t ↑ ω because it is a composition of slow and regularly
varying functions.

Let us introduce in the following notations.

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,
θ1(y) = φ1(y)|y|−σ1 ,

Φ(y) =

y∫
Aω

|φ0(z)|
1

σ1−1 dz, Aω =



y00 if
Y0∫

y00

|φ0(z)|
1

σ1−1 dz = ±∞,

Y0 if
Y0∫

y00

|φ0(z)|
1

σ1−1 dz = const,

µ0 = sign(φ′
0(y)), Z0 = lim

y→Y0
y∈∆Y0

Φ(y).

From the indicated conditions onto the function φ0 we have

lim
y→Y0
y∈∆Y0

Φ(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

Φ′′(y) · Φ(y)
(Φ′(y))2

= 1.

It follows from this that, like the function φ0, the function Φ is also a rapidly varying function
when the argument tends to Y0 [4, pp. 10–15]. In addition, the following lemma takes place.
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Lemma 6.

1)

Φ(y) = (σ1 − 1)
φ

σ1
σ1−1

0 (y)

φ′
0(y)

[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

from which we have
µ0 · sign(Φ(y)) = sign(σ1 − 1) as y ∈ ∆Y0 .

2) The function Φ−1(z) · Φ′(Φ−1(z))
z is a slowly varying function as z → Z0.

Proof. Statement 1) of the lemma follows from the conditions on the function φ0.
Let us prove statement 2). We have

lim
z→Z1

Φ′′
1(Φ

−1
1 (z))z

(Φ′
1(Φ

−1
1 (z)))2

= lim
y→Y0

Φ′′
1(Φ

−1
1 (Φ1(y)))Φ1(y)

(Φ′
1(Φ

−1
1 (Φ1(y))))2

= lim
y→Y0

Φ′′
1(y)Φ1(y)

(Φ′
1(y))

2
= 1.

So,

lim
z→Z1

z · (Φ−1
1 (z) · Φ′

1(Φ
−1
1 (z))
z )′

Φ−1
1 (z) · Φ′

1(Φ
−1
1 (z))
z

= lim
y→Z1

Φ′′
1(Φ

−1
1 (z))z

(Φ′
1(Φ

−1
1 (z)))2

− 1 = 0.

The last one means that the function Φ−1
1 (z) · Φ′

1(Φ
−1
1 (z))
z is a slowly varying function as z → Z1.

And the function Φ−1
1 (z) is a slowly varying as z → Z1 like an inverse function to the rapidly

varying one.

Let’s introduce the additional notations.

I(t) = sign(y01) ·
t∫

B2
ω

∣∣∣∣πω(τ)p(τ)θ1(sign(y01)|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ,

B2
ω =


ω if

ω∫
b

∣∣∣∣πω(τ)p(τ)θ1(sign(y01)|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ < +∞,

b if
ω∫
b

∣∣∣∣πω(τ)p(τ)θ1(sign(y01)|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ = +∞,

b ∈ [a;ω[ .

Definition 2. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies
the condition S as z → Y if for any continuous differentiable normalized slowly varying as z → Y
(z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

Conditions S are satisfied, for example, for such functions as ln |y|, | ln |y||µ (µ ∈ R), ln ln |y|.
The following theorem is valid.

Theorem 1. Let σ1 ̸= 1, the function θ1 satisfy the condition S. For the existence of Pω(Y0, Y1, λ0)-
solutions of equation (1), for which the following finite or infinite limit lim

t↑ω
πω(t)y′′(t)

y′(t) exists, the



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 39

following conditions are necessary

α0πω(t)y
0
1 < 0 as t ∈ [a;ω[ ,

lim
t↑ω

y01
|πω(t)|

= Y1, (5)

lim
t↑ω

I2(t) = Z0, µ0(σ1 − 1)I2(t) > 0 as t ∈ ]b;ω[ , (6)

lim
t↑ω

I ′2(t)πω(t)

Φ′
2(Φ

−1
2 (I2(t)))Φ

−1
2 (I2(t))

= 0. (7)

For each such solution the next asymptotic representations take place as t ↑ ω:

Φ0(y(t)) = I2(t)[1 + o(1)],
y′(t)Φ′

0(y(t))

Φ2(y(t))
=

I ′2(t)

I2(t)
[1 + o(1)]. (8)

Theorem 2. Let σ1 ̸= 1, the function θ1 satisfy the condition S, the function πω(t)·I′(t)
I(t) be a

normalized slowly varying function as t ↑ ω, the function (Φ
′(y)

Φ(y) ) be a regularly varying function of
some real index as y → Y0 (y ∈ ∆Y0). Then in case either

0 <
∣∣∣ lim
t↑ω

πω(t)I
′
2(t)

I2(t)

∣∣∣ < +∞, (9)

or
lim
t↑ω

πω(t)I
′(t)

I(t)
= ±∞, µ0α0 < 0, (10)

conditions (5)–(7) are sufficient for the existence of Pω(Y0, Y1, 0)-solutions of equation (1), for which
the finite or infinite limit lim

t↑ω
πω(t)y′′(t)

y′(t) exists.

During the proof of Theorem 2, equation (1) is reduced by a special transformation to the
equivalent system of quasilinear differential equations. The limit matrix of coefficients of this system
has real eigenvalues of different signs. We obtain that for this system of differential equations all
the conditions of Theorem 2.2 in [2] take place. According to this theorem, the system has a one-
parameter family of solutions {zi}2i=1 : [x1,+∞[→ R2 (x1 ≥ x0), that tends to zero as x → +∞.

Any solution of the family gives raise to such a solution y of equation (1) that, together with
its first derivative, admits the asymptotic images (8) as t ↑ ω. From these images and conditions
(5)–(7), (9), (10) it follows that these solutions are Pω(Y0, Y1, 0)-solutions.
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We investigate the problem of finding bounded solutions [2, 3, 5]

z(k) ∈ Rn, k ∈ Ω := {0, 1, 2, . . . , ω}

of linear Noetherian (n ̸= υ) boundary value problem for a system of linear difference-algebraic
equations [2, 5]

A(k)z(k + 1) = B(k)z(k) + f(k), ℓz( · ) = α, α ∈ Rυ; (1)

here A(k), B(k) ∈ Rm×n are bounded matrices and f(k) are real bounded column vectors,

ℓz( · ) : Rn → Rυ

is a linear bounded vector functional defined on a space of bounded functions. We assume that
the matrix A(k) is, generally speaking, rectangular: m = n. It can be square but singular. The
problem of finding bounded solutions z(k) of a boundary value problem for a linear non-degenerate

detB(k) ̸= 0, k ∈ Ω

system of first-order difference equations

z(k + 1) = B(k)z(k) + f(k), ℓz( · ) = α ∈ Rυ

was solved by A. A. Boichuk [2]. Thus, the boundary value problem (1) is a generalization of the
problem solved by A. A. Boichuk. We investigate the problem of finding bounded solutions to
linear Noetherian boundary value problem for a system of linear difference-algebraic equations (1)
in case

1 ≤ rank A(k) = σ0, k ∈ Ω.

As it is known [1,10], any (m× n)-matrix A(k) can be represented in a definite basis in the form

A(k) = R0(k) · Jσ0 · S0(k), Jσ0 :=

(
Iσ0 O
O O

)
;

here, R0(k) and S0(k) are nonsingular matrices. The nonsingular change of the variable

y(k + 1) = S0(k)z(k + 1)

reduces system (1) to the form [11]

A1(k)φ(k + 1) = B1(k)φ(k) + f1(k); (2)
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Under the condition [10], when matrices A+
1 (k)B1(k) and column vectors A+

1 (k)f1(k), are bounded
and also

PA∗(k) ̸= 0, PA∗
1
(k) ≡ 0, (3)

we arrive at the problem of construction of solutions of the linear difference-algebraic system

φ(k + 1) = A+
1 (k)B1(k)φ(k) + F1(k, ν1(k)), ν1(k) ∈ Rρ1 ; (4)

here,
F1(k, ν1(k)) := A+

1 (k)f1(k) + PAϱ1
(k)ν1(k),

ν1(k) ∈ Rρ1 is an arbitrary bounded vector function, A+
1 (k) is a pseudoinverse (by Moore–Penrose)

matrix [3]. In addition, PA∗
1(k)

is a matrix-orthoprojector [3]:

PA∗
1
(k) : Rσ0 → N(A∗

1(k)),

PAρ1
(k) is an (ρ0×ρ1)-matrix composed of ρ1 linearly independent columns of the (ρ0×ρ0)-matrix-

orthoprojector:
PA1(k) : Rρ0 → N(A1(k)).

By analogy with the classification of pulse boundary-value problems [3, 6, 7] we say in the (3),
provided that the matrices A+

1 (k)B1(k) and column vectors A+
1 (k)f1(k) are bounded, that, for the

linear difference-algebraic system (1), the first-order degeneration holds. Thus, the following lemma
is proved [11].

Lemma 1. For the first-order degeneration difference-algebraic system (1) having a solution of the
form

z(k, cρ0) = X1(k) cρ0 +K[f(j), ν1(j)](k), cρ0 ∈ Rρ0 ;

which depends on an arbitrary continuous vector-function ν1(k) ∈ Rρ1, where X1(k) is a fundamental
matrix, K[f(j), ν1(j)](k) is the generalized Green operator of the Cauchy problem for the linear
difference-algebraic system (1).

Denote the vector
ν1(k) := Ψ1(k)γ, γ ∈ Rθ;

here, Ψ1(k) ∈ Rρ1×θ is an arbitrary bounded full rank matrix. Generalized Green operator of the
Cauchy problem for the linear difference-algebraic system (1) of the form

K
[
f(j), ν1(j)

]
(k) = K

[
f(j)

]
(k) +K

[
Ψ1(j)

]
(k) γ;

here,
K
[
Ψ1(j)

]
(k) := S−1

0 (k − 1)PDρ0
K
[
Ψ1(s))

]
(k),

and

K
[
Ψ1(j)

]
(0) := 0, K

[
Ψ1(j)

]
(1) := PAρ1

(0)Ψ1(0),

K
[
Ψ1(j)

]
(2) := A+

1 (1)B1(1)K
[
Ψ1(j)

]
(1) + PAρ1

(1)Ψ1(1), . . . ,

K
[
Ψ1(j)

]
(k + 1) := A+

1 (k)B1(k)K
[
Ψ1(j)

]
(k) + PAρ1

(k)Ψ1(k).

Denote the matrix
D1 :=

{
Q1; ℓK

[
Ψ1(j)

]
( · )

}
∈ Rυ×(ρ0+θ).
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Substituting the general solution of the system of linear difference-algebraic equations (1) into the
boundary condition (1), we arrive at the linear algebraic equation

D1 č = α− ℓK
[
A+(j)f(j)

]
( · ), č := col(cρ0 , γ) ∈ Rρ0+θ. (5)

Equation (5) is solvable iff
PD∗

1

{
α− ℓK

[
f(j)

]
( · )

}
= 0. (6)

Here, PD∗
1

is a matrix-orthoprojector:

PD∗
1
: Rυ → N(D∗

1).

In this case, the general solution of equation (5)

č = D1
+
{
α− ℓK

[
f(j)

]
( · )

}
+ PD1 δ, δ ∈ Rρ0+θ

determines the general solution of the boundary-value problem (1)

z(k, δ) =
{
X1(k);K

[
Ψ1(j)

]
(k)

}
D+

1

{
α− ℓK

[
f(j)

]
( · )

}
+K

[
f(j)

]
(k) +

{
X1(k);K

[
Ψ1(j)

]
(k)

}
PD1 δ.

Here, PD1 is a matrix-orthoprojector:

PD1 : Rρ0+θ → N(D1).

Thus the following theorem is valid.

Theorem 1. The problem of finding bounded solutions of a system of linear difference-algebraic
equations (1) in the case of first-order degeneracy, under condition (3), in the case of first-order
degeneracy for a fixed full rank bounded matrix Ψ1(k), has a solution of the form

z(k, cρ0) = X1(k) cρ0 +K[f(j), ν1(j)](k), cρ0 ∈ Rρ0 .

Under condition (6) and only under it, the general solution of the difference-algebraic boundary
value problem (1)

z(k, cr) = Xr(k)cr +G
[
f(j);Ψ1(j);α

]
(k), cr ∈ Rr

is determined by the Green operator of a difference-algebraic boundary value problem (1)

G
[
f(j);Ψ1(j);α

]
(k) := K

[
f(j)

]
(k) +

{
X1(k);K

[
Ψ1(j)

]
(k)

}
D+

1

{
α− ℓK

[
f(j)

]
( · )

}
.

The matrix Xr(k) is composed of r linearly independent columns of the matrix{
X1(k);K

[
Ψ1(j)

]
(k)

}
PD1 .

Under condition PD∗
1
̸= 0, we say that the difference-algebraic boundary-value problem (1) in the

case of first-order degeneracy is a critical case, and vice versa: under condition PQ∗
1
̸= 0, PD∗

1
= 0,

we say that the difference-algebraic boundary-value problem (1) is reduced to the non-critical case.
The proposed scheme of studies of difference-algebraic boundary-value problems can be transfer-

red analogously to [2–4, 9] onto nonlinear difference-algebraic boundary-value problems. On the
other hand, in the case of nonsolvability, the difference-algebraic boundary-value problems can be
regularized analogously [8, 12].
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Until the middle of the 20th century, the study of periodic solutions of periodic differential
systems was based on the hypothesis of the commensurability of the periods of a solution and a
system. At the same time, N. D. Papaleksi carried out work on the study of parametric effects
on dual-circuit electrical systems. He demonstrated the possibility of excitation of oscillations
at a frequency incommensurable with the frequency of changes in the system parameters [8]. In
1950, H. Massera showed that periodic differential systems can have periodic solutions such that
the period of a solution is incommensurable with the period of the system. His work [7] laid the
foundation for a new direction in the qualitative theory of differential equations which was further
developed in the studies of J. Kurzweil and O. Vejvoda [5], N. P. Erugin [2], I. V. Gaǐshun [3],
E. I. Grudo [4] and others. Subsequently, such periodic solutions were called strongly irregular [1, p.
16], and the oscillations described by them were called asynchronous. The problem of constructing
of asynchronous modes can be formulated as the problem of controlling of the spectrum of irregular
oscillations.

First we present the necessary definitions from the theory of almost periodic (on Bohr) functions
[6]. Let f be a real continuous function. The function f is called almost periodic if, for an arbitrary
positive ε, the set of its ε-almost-periods is relatively dense. Each almost periodic function f has
an average value

f̂ = lim
T→∞

1

T

T∫
0

f(s) ds.

Put f̃(t) = f(t) − f̂ . The function f̃ will be called the oscillating part of an almost periodic
function f . Note that in contrast to periodic functions, there exist almost periodic functions f̃
whose integral is not a almost periodic. A real number λ such that

lim
T→∞

1

T

T∫
0

exp(−iλs)f(s) ds ̸= 0

is called the Fourier exponent (or frequency) of an almost periodic function f . The set of all
frequencies forms the set of Fourier exponents (frequency spectrum) of the function f . The module
(frequency module) Mod(f) of an almost periodic function f is the smallest additive group of real
numbers containing all the Fourier exponents of this function.

Let g(t, x) be a vector function that is almost periodic in t uniformly with respect to x from
some compact set. An almost periodic solution x(t) of the system of ordinary differential equations

ẋ = g(t, x)
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will be called strongly irregular if the intersection of the frequency modules of the solution and the
right-hand side of the system is trivial, i.e.

Mod(x) ∩Mod(g) = {0}.

Let P (t) be a continuous matrix. Denote by rankcol P the column rank of the matrix P (t), i.e.
rankcol P is the largest number of its linearly independent columns.

Consider the linear control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where A(t) is a continuous almost periodic n×n-matrix, B is a constant n×n-matrix. We assume
that the linear state feedback control

u = U(t)x (2)
with a continuous almost periodic n× n-matrix U(t) is used, Mod(U) ⊆ Mod(A).

The problem of finding a matrix U(t) (the feedback factor) such that the closed-loop system

ẋ = (A(t) +BU(t))x

has a strongly irregular almost periodic solutions with a given frequency spectrum L (the objective
set) is called the control problem for the spectrum of irregular oscillations with objective set L
(control problem of asynchronous spectrum).

Note first that in the case of a non-singular matrix B, the solution of this problem is not difficult.
Therefore, we will assume that the matrix B is a singular,

rankB = r < n (n− r = d).

By Bd,n and Br,n we denote the matrices consisting of the first d rows and the remaining r rows of
the matrix B, respectively. One can assume that the first d rows of the matrix B are zero, i.e.,

rankBd,n = 0, (3)

because otherwise such a form can be achieved by a linear nonsingular stationary transformation.
Note that the rank of the matrix Br,n is equal to r as well.

We will also assume that the matrix A(t) has a zero mean value, i.e.,

Â = lim
T→∞

1

T

T∫
0

A(s) ds = 0, (4)

We give conditions for the solvability of the control problem of asynchronous spectrum for sys-
tem (1).

Let
L = {λ1, λ2, . . . }

be the objective frequency set.
Taking into account the structure of the matrix B, we represent the coefficient matrix A(t) in

a block form. Let Ad,d(t) and Ar,d(t) be its left upper and lower blocks, and let Ad,r(t) and Ar,r(t)
be the right upper and lower blocks (the subscripts show the block dimension).

The following theorem holds.

Theorem. Let the first d rows of the matrix B in system (1) be zero and the remaining rows be
linearly independent, let the coefficient matrix A(t) have a zero mean value, and let the following
estimates hold:
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(i) rankcol Ad,r = r1 < r;

(ii) |L| ≤ [(r − r1)/2].

Then the control problem for the spectrum of irregular oscillations with objective set L for system
(1) with feedback (2) is solvable.

Remark. Estimates (i) and (ii) in the theorem are necessary and sufficient conditions for the
solvability of the investigated problem for the class of systems (1) under assumptions (3), (4).
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On an interval [0, ω] we consider the system

u′1 = p1(t)|u2|λ1 sgnu2 + q1(t), u′2 = p2(t)|u1|λ2 sgnu1 + q2(t) (1)

subject to the boundary conditions

u1(0) = u1(ω) + c1, u2(0) = u2(ω) + c2. (2)

Here we suppose that pi, qi ∈ L([0, ω]), ci ∈ R, i = 1, 2 and

λ1 > 0, λ1λ2 = 1. (3)

In the linear case, i.e., where λ1 = 1 (and λ2 = 1), problem (1), (2) as well as its particular case,
scalar problem, are studied in sufficient detail. As for the general case, as far as we know, there is
still a broad field for further investigations. The aim of the present paper is to fill the existing gap
in a certain sense.

Along with (1), (2), we consider also the corresponding “homogeneous” problem

u′1 = p1(t)|u2|λ1 sgnu2, u′2 = p2(t)|u1|λ2 sgnu1, (10)
u1(0) = u1(ω), u2(0) = u2(ω). (20)

It has been proved recently in [1] that if (3) holds and (10), (20) has no non-trivial solution,
then for any q1, q2 ∈ L([0, ω]) and c1, c2 ∈ R, problem (1), (2) possesses at least one solution. In
other words, the Fredholm property, which is well-known for the linear case, remains true (except
uniqueness).

Introduce the definition.

Definition. Let (3) hold and p1, p2 ∈ L([0, ω]). We say that the vector function (p1, p2) belongs
to the set V −(ω, λ1) if for any (u1, u2) ∈ AC([0, ω];R2) such that

u′1(t) = p1(t)|u2(t)|λ1 sgnu2(t), u′2(t) ≥ p2(t)|u1(t)|λ2 sgnu1(t),
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for a.e. t ∈ [0, ω], and
u1(0) = u1(ω), u2(0) ≥ u2(ω),

the inequality
u1(t) ≤ 0 for t ∈ [0, ω]

is fulfilled.

Remark 1. It is not difficult to verify that if p1 ̸≡ 0 on [0, ω] and (p1, p2) ∈ V −(ω, λ1), then
problem (10), (20) has no non-trivial solutions. Consequently, (1), (2) is solvable, however in spite
of linear problem it is not known whether or not the solution of (1), (2) is unique.

Below we suppose also that

p1(t) ≥ 0 for a.e. t ∈ [0, ω] and p1 ̸≡ 0 on [0, ω]. (4)

The next theorem states that in some cases problem (1), (2) has no more than one solution.

Theorem 1. Let (3) and (4) hold, (p1, p2) ∈ V −(ω, λ1), c ≥ 0, q ∈ L([0, ω]) and q(t) ≥ 0 for a.e.
t ∈ [0, ω]. Let, moreover,

c+mes
{
t ∈ [0, ω] : q(t) > 0

}
> 0.

Then the problem

u′1 = p1(t)|u2|λ1 sgnu2, u′2 = p2(t)|u1|λ2 sgnu1 − q(t),

u1(0) = u1(ω), u2(0) = u2(ω)− c

is uniquely solvable and its solution (u1, u2) satisfies

u1(t) > 0 for t ∈ [0, ω].

Next, let us present necessary and sufficient conditions for the inclusion (p1, p2) ∈ V −(ω, λ1).

Theorem 2. Let (3) and (4) be fulfilled. Then the inclusion (p1, p2) ∈ V −(ω, λ1) holds if and only
if there exists (γ1, γ2) ∈ AC([0, ω];R2) satisfying

γ1(t) > 0 for t ∈ [0, ω],

γ′1(t) = p1(t)|γ2(t)|λ1 sgn γ2(t), γ′2(t) ≤ p2(t)γ
λ2
1 (t) for a.e. t ∈ [0, ω],

γ1(0) ≥ γ1(ω),
γ2(ω)

γλ2
1 (ω)

≥ γ2(0)

γλ2
1 (0)

,

and
γ1(0)− γ1(ω) +

γ2(ω)

γλ2
1 (ω)

− γ2(0)

γλ2
1 (0)

+ mes
{
t ∈ [0, ω] : γ′2(t) < p2(t)γ

λ2
1 (t)

}
> 0.

The following corollary follows from Theorem 2 with (γ1, γ2)
def
= (1, 0).

Corollary 1. Let (3) and (4) hold, p2(t) ≥ 0 for t ∈ [0, ω], and p2 ̸≡ 0 on [0, ω]. Then (p1, p2) ∈
V −(ω, λ1).
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Corollary 2. Let (3) and (4) hold and let there exist φ ∈ AC([0, ω]) such that

ω∫
0

p1(s)|φ(s)|λ1 sgnφ(s) ds ≤ 0, (5)

φ(0) ≤ φ(ω), (6)

and
Φ(t)

def
= φ′(t) + λ2p1(t)|φ1(t)|λ1+1 − p2(t) ≤ 0 for a.e. t ∈ [0, ω].

Let, moreover, either one of inequalities (5) or (6) hold in a strong sense or mes{t ∈ [0, ω] : Φ(t) <
0} > 0. Then (p1, p2) ∈ V −(ω, λ1).

Theorem 1 with suitable choice of vector function (γ1, γ2) implies the following efficient condi-
tions for inclusion (p1, p2) ∈ V −(ω, λ1).

Theorem 3. Let (3) and (4) hold, p2 ̸≡ 0 on [0, ω],

∥p1∥L∥[p2]−∥λ1
L < 2λ1+1, (7)

and
∥[p2]+∥L > ∥[p2]−∥L

(
1− 1

2λ1+1
∥p1∥L ∥[p2]−∥λ1

L

)−λ2

. (8)

Then the inclusion (p1, p2) ∈ V −(ω, λ1) holds.

Remark 2. Assumption (8) in Theorem 3 is optimal and cannot be weakened to the assumption

∥[p2]+∥L ≥ ∥[p2]−∥L
(
1− 1

2λ1+1
∥p1∥L ∥[p2]−∥λ1

L

)−λ2

. (9)

Nevertheless, it is possible to prove the following theorem.

Theorem 4. Let (3), (4), (7), and (9) hold. Let, moreover, either

p1(t) > 0 for a.e. t ∈ [0, ω]

or
λ1 < 1 and p

2
λ1+1

1 ̸∈ L([0, ω]).

Then (p1, p2) ∈ V −(ω, λ1).

Theorem 5. Let (3) and (4) hold,

c
def
=

1

∥p1∥L

ω∫
0

p2(s) ds > 0, (10)

and
ω∫

0

[p2(s)− cp1(s)]+ ds ≤
( c

λ2

) 1
λ1+1

. (11)

Then (p1, p2) ∈ V −(ω, λ1).
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Example. Let ω = 2π, p1 ≡ 1 and p2(t)
def
= a− b cos t for t ∈ [0, ω], where a > 0. Then it is clear

that
ω∫

0

p2(s) ds = aω and c = a

with c defined by (10). Assumption (11) has the form |b| ≤ 1
2 (aλ

−1
2 )

1
λ1+1 . On the other hand, if

a ≥ |b|, then the conditions of Corollary 1 are obviously satisfied. Finally, if (3) holds and

|b| ≤ max
{
a,

1

2
(aλ−1

2 )
1

λ1+1

}
,

then the vector function (p1, p2) defined above belongs to the set V −(ω, λ1).
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1 Introduction
Consider the differential equation with damping term

x′′ = h(t, x(t), x(γ(t)))x′(t) + f(t, x(τ(t)), x(t)), (1.1)

where:

1. the functions γ, τ are continuous functions on [t0,∞) such that γ(t) ≥ t0, τ(t) ≥ t0 and
lim
t→∞

γ(t) = lim
t→∞

τ(t) = ∞;

2. the function h is a continuous function on [t0,∞)× R× R;

3. the function f is a continuous function on [t0,∞)× R× R and

0 < f(t, u, v) ≤ b(t) for any (u, v) ∈ (0, 1]× (0, 1], (Hp1)

where b is a positive continuous function on [t0,∞).

Let x be a solution of (1.1) and denote by Hx the function

Hx(t) = exp

(
−

t∫
t0

h
(
r, x(r), x(γ(r))

)
dr

)
.

Hence (1.1) is equivalent to the functional equation

(Hx(t)x
′(t)) = Hx(t)f

(
t, x(τ(t)), x(t)

)
, (1.2)

that is an equation in which the differential operator depends also on the state x. Equations of this
type model reaction-diffusion problems with non-constant diffusivity, see, e.g., the papers [6, 14]
and the references therein.
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A prototype of (1.2) is the nonlinear equation

(p(t)g(x)x′(t))′ = f(t, x(τ(t)), (1.3)

where p is a positive continuously differentiable function on [t0,∞) and g is a continuously positive
differentiable function on R. Equation (1.3) includes the well-known Thomas–Fermi equation, as
well as the Schroedinger–Persico equation, which occur in the study of atomic fields, see [17]. More-
over, (1.3) arises also in some mechanical problems as the law of angular momentum conservation
when the field strength is time dependent, see [11].

Our aim here is to present some results concerning solutions x of (1.1) satisfying

x(t) > 0, x′(t) < 0 for large t. (1.4)

Further, the asymptotic behavior is also examined, jointly with some comments and open problems.
These results are taken from [7] and are here presented without proofs.

Solutions of (1.1) satisfying (1.4) are usually called Kneser solutions. The Kneser existence
problem and the asymptotic decay of Kneser solutions have been deeply studied in the case without
deviating arguments. We refer the reader to the monograph [9], the papers [1,3] and the references
therein. In the general case of equations with deviating arguments, we refer to the books [8, 12],
the papers [10,16] and the references therein.

2 Main results
Since lim

t→∞
γ(t) = lim

t→∞
τ(t) = ∞, there exists t̃ ≥ t0 such that γ(t) ≥ t0 and τ(t) ≥ t0 for any

t ∈ [t̃,∞). Thus, define t1 such that

t1 = inf
{
t̃ ≥ t0 : min{γ(t), τ(t)} ≥ t0 on [t̃,∞)

}
. (2.1)

Our main result is the following.

Theorem 2.1. Assume that there exist two functions λ ∈ C1(I,R+), θ ∈ C(I,R) such that:

(i1) for any t ≥ t0 and 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

h(t, u, v) ≥ λ′(t)

λ(t)
. (2.2)

(i2)
∞∫

t1

λ(s)

∞∫
s

θ(r)b(r) dr ds <∞. (2.3)

(i3) for every t > t0
λ(t)θ(t) > t0. (2.4)

Then the BVP (1.1), (1.4) has at least one solution.

Theorem 2.1 requires the existence of two auxiliary functions, namely λ and θ, satisfying certain
properties. The following results give examples of such functions.
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Corollary 2.1. Assume that for some n ∈ N ∪ {0},
∞∫

t0

s−n

∞∫
s

rnb(r) dr ds <∞.

If for any t ≥ t0 and 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

h(t, u, v) ≥ −n
t
, (2.5)

then the BVP (1.1), (1.4) has at least one solution.

Proof. The assertion follows from Theorem 2.1 by choosing

λ(t) = t−n, θ(t) = (t0 + 1)tn.

Corollary 2.2. Assume that for some M > 0,
∞∫

t0

e−Ms

∞∫
s

eMrb(r) dr ds <∞.

If for any t ≥ t0 and 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

h(t, u, v) ≥ −M, (2.6)

then BVP (1.1), (1.4) has at least one solution.

Proof. The assertion follows from Theorem 2.1 by choosing

λ(t) = e−Mt, θ(t) = (t0 + 1)eMt.

Remark 2.1. Observe that the assumption (2.5) in Corollary 2.1 and the assumption (2.6) in
Corollary 2.2 permit us to choose damping terms which take negative values.

Remark 2.2. Theorem 2.1 does not require superlinear conditions (or sublinear conditions) on
the forcing term f . Hence, it may be applicable in a wide variety of cases.

Remark 2.3. The proof of Theorem 2.1 is based on a fixed point theorem for multivalued operators
which arises from [4]. The main advantage of this approach is that the explicit form of the fixed
point operator is not needed, because the topological properties, like the compactness and continuity
of the fixed point operator are obtained directly from the a-priori bounds for solutions of a suitable
associated BVP.

In the sequel, consider the special case of (1.1)

x′′(t) = h(t, x(t), x(γ(t)))x′(t) + ψ(t, x(τ(t))), (2.7)

where the functions γ, τ and h are as in (1.1), τ is a delay and ψ is a continuous function on
[t0,∞)× R such that

0 < ψ(t, u) ≤ b(t) for any u ∈ (0, 1]. (2.8)

Observe that in (2.7) the forcing term ψ depends on state x at time τ(t), but does not depend on
x at time t.
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Theorem 2.2. Assume that:

(i1)
∞∫

t0

t b(t) dt <∞. (2.9)

(i2) τ(t) < t.

(i3) The function h is nonnegative on [t0,∞)× [0, 1]× [0, 1].

Then the equation (2.7) has Kneser solutions x which satisfy

x(t)x′(t) < 0 on t ∈ [t1,∞), (2.10)

where t1 is given in (2.1) and
lim
t→∞

x(t) = 0. (2.11)

Theorem 2.2 shows a discrepancy between equations with or without delay, which is illustrated
by the following example.

Example 2.1. Consider the equation

x′′(t) = g(t)
√
x2(t) + x2(γ(t)) x′(t) + e−tx(t− π), (2.12)

where g is a nonnegative continuous function on [t0,∞). In view of Theorem 2.2, equation (2.12)
has Kneser solutions which satisfy (2.10) and (2.11). Observe that when g ≡ 0 on [t0,∞), then any
Kneser solution of the corresponding linear equation without delay

x′′(t) = e−tx(t)

does not converge to zero as t→ ∞, see, e.g. [15, Section 4].

3 Open problems
Open problem 1. Consider the Emden–Fowler equation

x′′(t) = b(t)|x(t)|β sgnx(t) (3.1)

and the corresponding equation with deviating argument

x′′(t) = b(t)|x(τ(t))|β sgnx(τ(t)), (3.2)

where b is a positive function on [t0,∞) and τ(t) < t.
First observe that if β > 1 and b is positive, then equation (3.1) always has Kneser solutions.

Moreover, if in addition
∞∫

t0

sb(s) ds <∞,

then (3.1) does not have Kneser solutions which tend to zero as t → ∞, see, e.g., [3]. If τ(t) < t,
then this result may fail for (3.2) as Theorem 2.2 illustrates.
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In the sublinear case, that is 0 < β < 1, there might exist equations of type (3.1) without
Kneser solutions. For instance, if

lim inf
t→∞

t2b(t) > 0, (3.3)

then (3.1) does not have Kneser solution, see [9, Corollary 17.3]. On the other hand, from Corol-
lary 2.1 with n = 0 we get that the equation

x′′(t) =
1

t2 log t
|x(τ(t))|β sgnx(τ(t)), t ≥ 2, (3.4)

has Kneser solutions. For (3.4) we have

lim inf
t→∞

t2b(t) = lim inf
t→∞

1

log t
= 0.

Thus, it is an open problem if the Kiguradze condition (3.3) is sufficient for the nonexistence of
Kneser solutions of (3.2) when 0 < β < 1 and τ(t)− t ̸≡ 0. Finally, observe that if

τ(t) < t and 0 < β < 1,

then, in view of Theorem 2.2, equation (3.4) has Kneser solutions which tend to zero as t→ ∞.
Open problem 2. Kneser solutions which are decaying to zero as t → ∞ may have a different
asymptotic behavior, as the following example illustrates.

Example 3.1. Equation

x′′(t) =
(t3 − 2et)(t2 + t lnx− 2e

t
2 (ln t+ lnx))

2t(t2 − et)(ln t− t)
x
( t
2

)
x′(t)

+
t− 2

t(et − t2)

(
t(lnx+ t)(x− e−t)

2(t− ln t)(1t − e−t)
+

e
t
2 (lnx+ ln t)(x− 1

t )

(ln t− t)(e−t − 1
t )

)
x
( t
2

)
has solutions x(t) = 1

t and x(t) = e−t.

It should be interesting to study the relation between the decay of Kneser solutions and the
asymptotic growth of the deviating arguments γ and τ .
Open problem 3. Sufficient conditions ensuring that all bounded solutions of equation

(a(t)Φ(x′))′ = b(t)f(x(g(t))), g(t) < t, (3.5)

are oscillatory have been given in [5, Corollary 3]. This result is a consequence of some results
concerning necessary conditions for the existence of bounded nonoscillatory solutions of (3.5).

It would be interesting to obtain necessary conditions for the existence of Kneser solutions of
(1.1) and, as a consequence of such result, to obtain criteria that every bounded solution of (1.1)
is oscillatory.
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The differential equation
y(n) = f(t, y, y′, . . . , y(n−1)) (1)

is considered. Here n ≥ 2, f : [a, ω[×∆Y0 ×∆Y1 × · · · ×∆Yn−1 → R is some continuous function,
−∞ < a < ω ≤ +∞, Yj equals to zero, or to ±∞, ∆Yj is some one-sided neighborhood of Yj ,
j = 0, 1, . . . , n− 1.

The asymptotic estimations for singular, quickly varying, and Kneser solutions of equation (1)
are described in the monograph by I. T. Kiguradze, T. A. Chanturia [4].

Definition 1. The solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called
Pω(Y0, Y1, . . . , Yn−1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if the next conditions take place

y(j)(t) ∈ ∆Yj as t ∈ [t0, ω[ , lim
t↑ω

y(j)(t) = Yj (j = 0, 1, . . . , n− 1),

lim
t↑ω

[y(n−1)(t)]
2

y(n−2)(t)y(n)(t)
= λ0.

The asymptotic behavior of such solutions earlier has been investigated in the works by V. M. Ev-
tukhov and A. M. Klopot [1–3,5] for the differential equation

y(n) =

m∑
i=1

αipi(t)

n−1∏
j=0

φij(y
(j)),

where n ≥ 2, αi ∈ {−1; 1}, pi : [a, ω[→ ]0,+∞[ is a continuous function, i = 1, . . . ,m, −∞ < a <
ω ≤ +∞, φij : ∆Yj → ]0,+∞[ is a continuous regularly varying as y(j) → Yj function of order σj ,
j = 0, 1, . . . , n− 1 (i = 1, . . . ,m).

The aim of the paper is in establishing the necessary and sufficient conditions of the existence
of Pω(Y0, Y1, . . . , Yn−1, 1)-solutions of equation (1) and in finding the asymptotic representations of
such solutions and their derivatives to the order n− 1 including.

Every Pω(Y0, Y1, . . . , Yn−1, 1)-solution of the differential equation (1) has (see, for example, [1])
the next a priori asymptotic properties

y′(t)

y(t)
∼ y′′(t)

y′(t)
∼ · · · ∼ y(n)(t)

y(n−1)(t)
as t ↑ ω, lim

t↑ω

πω(t)y
′(t)

y(t)
= ±∞,

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.
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Definition 2. The function f in the differential equation (1) is called a function, that satisfies
the condition (RN)1, if there exist a number α0 ∈ {−1, 1}, a continuous function p : [a, ω[→
]0,+∞[ and continuous regularly varying as z → Yj (j = 0, n− 1) functions φj : ∆Yj → ]0,+∞[
(j = 0, n− 1) of orders σj (j = 0, n− 1), such that for all continuously differentiable functions
zj : [a, ω[→ ∆Yj (j = 0, n− 1), satisfying the conditions

lim
t↑ω

zj(t) = Yj , lim
t↑ω

πω(t)z
′
j(t)

zj(t)
= ±∞ (j = 0, n− 1),

lim
t↑ω

z′j−1(t)zj(t)

zj−1(t)z′j(t)
= 1 (j = 1, n− 1),

the next representation takes place

f(t, z0(t), z1(t), . . . , zn−1(t)) = α0p(t)

n−1∏
j=0

φj(zj(t))[1 + o(1)] as t ↑ ω.

Furthermore, we will use the following notations.

γ = 1−
n−1∑
j=0

σj , µn =
n−2∑
j=0

σj(n− j − 1);

νj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is the right neigbourhood of zero,
−1 if Yj = −∞, or Yj = 0 and ∆Yj is the left neigbourhood of zero

(j = 0, n− 1);

J0(t) =

t∫
A0

p(s) ds, J00(t) =

t∫
A00

J0(s) ds,

where

A0 =


a if

ω∫
a

p(s) ds = +∞,

ω if
ω∫

a

p(s) ds < +∞,

A00 =


a if

ω∫
a

|J0(s)| ds = +∞,

ω if
ω∫

a

|J0(s)| ds < +∞.

Theorem 1. Let the function f satisfy the condition (RN)1 and γ ̸= 0. Then for the existence of
Pω(Y0, . . . , Yn−1, 1)-solutions of equation (1) the next conditions are necessary:

p(t)

J0(t)
∼ J0(t)

J00(t)
as t ↑ ω, lim

t↑ω

πω(t)p(t)

J0(t)
= ±∞,

νj lim
t↑ω

|J0(t)|
1
γ = Yj (j = 0, n− 1),

and, for t ∈ ]a, ω[ , the next inequalities take place

α0νn−1γJ0(t) > 0, νjνn−1(γJ0(t))
n−j−1 > 0 (j = 0, n− 2).

As the algebraic of ρ equation

(1 + ρ)n =
n−1∑
j=0

σj(1 + ρ)j (2)
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has no roots with zero real part, the conditions also are sufficient for the existence of such solutions
of equation (1). Moreover, for any such solution the next asymptotic representations

y(j)(t) =
(γJ00(t)

J0(t)

)n−j−1
y(n−1)(t)[1 + o(1)] (j = 0, n− 2), (3)

|y(n−1)(t)|γ
n−1∏
j=0

Lj

(
(γJ00(t)J0(t)

)n−j−1y(n−1)(t)
) = α0νn−1γJ0(t)

∣∣∣γJ00(t)
J0(t)

∣∣∣µn

[1 + o(1)], (4)

take place as t ↑ ω. Here Lj(y
(j)) = |y(j)|−σjφj(y

(j)t) (j = 0, n− 1). There exists m-parametric
family of such solutions, if among the roots of equation (2) there exist m roots (taking into account
multiply roots), the real parts of which have the sign that is among opposite to the sign α0νn−1.

The asymptotic representation of the (n − 1)-th derivative of Pω(Y0, . . . , Yn−1, 1)-solution of
equation (1) is given in the implicit form. We will indicate the conditions by implementation of
which the asymptotic representations (3), (4) can be written in the explicit form.

Definition 3. The slowly varying as y → Y function L : ∆Y → ]0,+∞[ , where Y equals either
zero, or ±∞, ∆Y is a one-sided neighborhood of Y , is called satisfying the condition S0 if the next
condition takes place:

L(νe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y (y ∈ ∆Y ),

where ν = sign y.

Theorem 2. Let the conditions of Theorem 1 be satisfied and regularly varying functions Lj

(j = 0, n− 1) satisfy the condition S0. Then for any Pω(Y0, . . . , Yn−1, 1)-solution of equation (1)
the next asymptotic representations

y(j)(t) = νn−1

(γJ0(t)
p(t)

)n−j−1
∣∣∣∣γJ0(t)∣∣∣γJ0(t)p(t)

∣∣∣µn
n−1∏
j=0

Lj

(
νj |J0(t)|

1
γ
)∣∣∣∣ 1

γ

[1 + o(1)] (j = 0, n− 1)

take place as t ↑ ω.
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1 Mathematical model

As is known the real controlled dynamical systems contain effects with delayed action and are
described by differential equations with delay in control [3]. To illustrate this, below we will
consider the simplest model of marketing relation.

Let t1 > t0, β > α ≥ 0 and θ2 > θ1 > 0 be given numbers. Let market relation demand and
supply be described by the functions D(t, p) and S(t, q), which are continuous and continuously
differentiable with respect to p and q.

Let the function p(t) ∈ P = [α, β], t ∈ I1 = [t0 − θ2, t1] be price of a good, changing over time.
Suppose that at time t ∈ I2 = [t0, t1] will be satisfied demand of consumer which has been ordered
at time t − θ, i.e. when price of a good was p(t − θ). Here θ ∈ I3 = [θ1, θ2] is so-called delay
parameter.

The function
R(t) = D(t, p(t))− S(t, p(t− θ)), t ∈ I2,

we call the disbalance index.
If R(t) = 0, then at the moment t we do not have disbalance between supply and demand, and

the customer will buy exactly the quantity of goods he needs.
It is clear that at various time moment t the disbalance index R(t) is possible to be not positive

as well as positive. At time t, if R(t) > 0, then demand exaggerates supply. If R(t) < 0, then
supply exaggerates demand. To describe development of marketing relation process in time, i.e.
create dynamical model, we consider the integral index of disbalance

y(t) = R(t0) +

t∫
t0

R(s) ds. (1.1)

The function y(t) gives complete information about the disbalance from the initial time t0 to any
time t.

From (1.1) we get the differential equation

ẏ(t) = D(t, p(t))− S(t, p(t− θ)), t ∈ I2 (1.2)

with the initial condition
y(t0) = y0 := R(t0).
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2 Statement of the problem. Necessary optimality conditions
Let O ⊂ Rn be an open set and U ⊂ Rr be a convex and compact set. Let the (n+1)-dimensional
function

F (t, x, u, v) =
(
f0(t, x, u, v), f(t, x, u, v)

)⊤
,

where f = (f1, . . . , fn)⊤, be continuous on I2×O×U2 and continuously differentiable with respect
to x and u, v. Furthermore, let x0, x1 ∈ O be fixed points and let Ω be a set of absolutely
continuous control functions u(t) ∈ U , t ∈ I1. To each element w = (θ, u) ∈ Λ := I3 × Ω we assign
the differential equation

ẋ(t) = f
(
t, x(t), u(t), u(t− θ)

)
, t ∈ (t0, t1) (2.1)

with the initial condition
x(t0) = x0. (2.2)

Definition 2.1. Let w = (θ, u) ∈ Λ. A function x(t) = x(t;w) ∈ O, t ∈ I2, is called a solution
of equation (2.1) with the initial condition (2.2) or a solution corresponding to the element w and
defined on the interval I2 if it satisfies condition (2.2) and is continuously differentiable and satisfies
equation (2.1) everywhere on (t0, t1).

Definition 2.2. An element w = (θ, u) ∈ Λ is said to be admissible if the corresponding solution
x(t) = x(t;w) satisfies the condition

x(t1) = x1. (2.3)

Denote by Λ0 the set of admissible elements.

Definition 2.3. An element w0 = (θ0, u0) ∈ Λ0 is said to be optimal if for an arbitrary element
w ∈ Λ0 we have

J(w0) ≤ J(w), (2.4)

where

J(w) =

t1∫
t0

f0(t, x(t), u(t), u(t− θ)) dt

and x(t) = x(t;w).

(2.1)–(2.4) is called the optimization problem of delay parameter θ and control u(t).

Theorem 2.1. Let w0 be an optimal element and let x0(t) = x(t;w0) be the optimal trajectory.
Then there exists a nontrivial solution Ψ(t) = (ψ0(t), ψ(t)) of the equation

ψ̇(t) = −Ψ(t)Fx[t], (2.5)

where
Fx[t] = Fx

(
t, x0(t), u0(t), u0(t− θ0)

)
,

such that ψ0(t) ≡ const ≤ 0 and the following conditions hold:

(i1) the integral condition for the optimal delay parameter θ0
t1∫

t0

Ψ(t)Fv[t]u̇0(t− θ0) dt = 0;
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(i2) the integral maximum principle for the optimal control u0(t)
t1∫

t0

Ψ(t)
[
Fu[t]u0(t) + Fv[t]u0(t− θ0)

]
dt = max

u(t)∈Ω

t1∫
t0

Ψ(t)
[
Fu[t]u(t) + Fv[t]u(t− θ0)

]
dt.

The necessary optimality condition for the delay parameter in controls for the optimization
problem with the Meyer type functional is provided in [2].

3 Optimization problem for equation (1.2).
Necessary optimality conditions

Let y1 be a fixed number and let V be a set of absolutely continuous control functions p(t) ∈ P ,
t ∈ I1. To each element ϑ = (θ, p) ∈ Π := I3 × V we assign the differential equation

ẏ = D(t, p(t))− S(t, p(t− θ)), t ∈ I2

with the initial condition
y(t0) = y0.

Definition 3.1. An element ϑ = (θ, p) ∈ Π is said to be admissible if the corresponding solution
y(t) = y(t;ϑ) satisfies the condition

y(t1) = y1.

Denote by Π0 the set of admissible elements.
Definition 3.2. An element ϑ0 = (θ0, p0) ∈ Π0 is said to be optimal if for an arbitrary element
ϑ ∈ Π0 we have

t1∫
t0

g(t, p0(t)) dt ≤
t1∫

t0

g(t, p(t)) dt,

where the function g(t, p) is continuous and continuously differentiable with respect to p.
It is clear that for the considered problem we have ψ̇ = 0 (see (2.5)). Taking into account the

last equation from Theorem 2.1 it follows
Theorem 3.1. Let ϑ0 be an optimal element. Then there exists a nontrivial vector Ψ = (ψ0, ψ),
ψ0 ≤ 0 such that the following conditions hold:
(i3) the integral condition for the optimal delay parameter θ0

ψ

t1∫
t0

Sq(t, p0(t− θ0))ṗ0(t− θ0) dt = 0;

(i4) the integral maximum principle for the optimal control p0(t)
t1∫

t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t))

)
p0(t)− ψSq(t, p0(t− θ0))p0(t− θ0)

]
dt

max
p(t)∈V

t1∫
t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t))

)
p(t)− ψSq(t, p0(t− θ0))p(t− θ0)

]
dt.

Analogous problem for equation (1.2) with the fixed θ is investigated in [1].
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We consider the differential equation

y′′′ = α0p(t)φ(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a twice continuously differentiable function such that

φ′(y) ̸= 0 for y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
either 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (2)

Y0 equals either zero or ±∞, ∆Y0 is some one-sided neighborhood of Y0.
From the identity

φ′′(y)φ(y)

φ′2(y)
=

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2
+ 1 for y ∈ ∆Y0

and conditions (2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
and y → Y0 (y ∈ ∆Y0) and lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

It means that in the considered equation the continuous function φ and its first order derivative
are [6, Ch. 3, § 3.4, Lemmas 3.2, 3.3, pp. 91–92] rapidly varying as y → Y0.

For two-term differential equations of second order with nonlinearities satisfying condition (2),
the asymptotic properties of solutions were studied in the works by M. Marić [6], V. M. Evtukhov
and his students N. G. Drik, A. G. Chernikova [2, 3].

In the works by V. M. Evtukhov, A. G. Chernikova [3] for the differential equation (1) of second
order in the case when φ satisfies condition (2), the asymptotic properties of so-called Pω(Y0, λ0)-
solutions were studied with λ0 ∈ R \ {0, 1}.

In the works by V. M. Evtukhov, N. V. Sharay [5] for the differential equation (1) of third
order in the case when φ satisfies condition (2), the asymptotic properties of so-called Pω(Y0, λ0)-
solutions were studied with λ0 ∈ R \ {0, 1, 12}. In this work, we propose the distribution of [3]
results to third-order differential equations.

Solution y of the differential equation (1) specified on the interval [t0, ω[⊂ [a, ω[ is said to be
Pω(Y0, λ0)-solution if it satisfies the following conditions:

lim
t↑ω

y(t) = Y0, lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞,
k = 1, 2, lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.
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The goal of this work is to establish the necessary and sufficient conditions for the existence
of Pω(Y0, λ0)-solutions of equation (1) in the non-singular case when λ0 ∈ R \ {0, 1, 12}, as well as
asymptotic representations as t ↑ ω for such solutions and their derivatives up to the second order
inclusively.

Without loss of generality, we assume that

∆Y0 =

{
[y0, Y0[ if ∆Y0 is the left neighborhood of Y0,
]Y0, y0] if ∆Y0 is the right neighborhood of Y0,

(3)

where y0 ∈ R is such that |y0| < 1, when Y0 = 0 and y0 > 1 (y0 < −1), when Y0 = +∞ (when
Y0 = −∞).

A function φ : ∆Y0 → R \ {0}, satisfying condition (2), belongs to the class ΓY0(Z0), that was
introduced in the work [3] which extends the class of function Γ, introduced by L. Khan (see, for
example, [1, Ch. 3, § 3.10, p. 175]). Using properties from this class the main results are obtained.

We introduce the necessary auxiliary notation. We assume that the domain of the function
φ ∈ ΓY0(Z0) is determined by formula (3). Next, we set

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1 if ∆Y0 = [y0, Y0[ ,

−1 if ∆Y0 = ]Y0, y0],

and introduce the following functions

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,
J1(t) =

t∫
A1

p
1
3 (τ) dτ, Φ1(y) =

y∫
B1

ds

s
2
3φ

1
3 (s)

,

where

A1 =


ω if

ω∫
a

p
1
3 (τ) dτ = const,

a if
ω∫

a

p
1
3 (τ) dτ = ±∞,

B1 =



Y0 if
Y0∫

y0

ds

s
2
3φ

1
3 (s)

= const,

y0 if
Y0∫

y0

ds

s
2
3φ

1
3 (s)

= ±∞.

Considering the definition of Pω(Y0, 1)-solutions of the differential equation (1), we note that
the numbers ν0, ν1 determine the signs of any Pω(Y0, 1)-solution and of its first derivative in some
left neighborhood of ω. It is clear that the condition

ν0ν1 < 0, if Y0 = 0, ν0ν1 > 0, if Y0 = ±∞,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function Φ. It retains a sign on the

interval ∆Y0 , tends either to zero or to ±∞ as y → Y0 and increases by ∆Y0 , because on this
interval Φ′

1(y) =
1

φ(y) > 0. Therefore, for it there is an inverse function Φ−1
1 : ∆Z0 → ∆Y0 , where

due to the second of conditions (2) and the monotone increase of Φ−1
1 ,

Z0 = lim
y→Y0
y∈∆Y0

Φ1(y) =

{
eitherr 0,

or +∞,
∆Z0 =

{
[z0, Z0[ , or ∆Y0 = [y0, Y0[ ,

]Z0, z0], or ∆Y0 = ]Y0, y0],
z0 = Φ1(y0).
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In addition to the indicated notation, using Φ−1
1 we also introduce the auxiliary functions

q1(t) =
α0ν1J1(t)

p
1
3 (t)φ

1
3 (Φ−1

1 (ν1J1(t)))(Φ
−1
1 (ν1J1(t)))

2
3

,

H1(t) =
Φ−1
1 (ν1J1(t))φ

′(Φ−1
1 (ν1J1(t)))

φ(Φ−1
1 (ν1J1(t)))

,

J2(t) =

t∫
A2

p(τ) φ(Φ−1
1 (ν1J1(τ))) dτ, J3(t) =

t∫
A3

J2(τ) dτ,

where

A2 =


t0 if

ω∫
t2

p(τ) φ(Φ−1
1 (ν1J1(τ))) dτ = +∞,

ω if
ω∫

a

p(τ) φ(Φ−1
1 (ν1J1(τ))) dτ < +∞,

A3 =


t0 if

ω∫
t3

J2(τ) dτ = +∞,

ω if
ω∫

a

J2(τ) dτ < +∞,

t2, t3 ∈ [a, ω).

For equation (1) the following assertions are valid.

Theorem 1. Let λ0 ∈ R \ {0; 1; 12}. For the existence of Pω(Y0, 1)-solutions of the differential
equation (1), it is necessary to comply with the conditions

α0ν0 > 0, µ0ν1J1(t) > 0for t ∈ (a, ω);

ν1 lim
t↑ω

J1(t) = Z0, lim
t↑ω

πω(t)J
′
1(t)

J1(t)
= ±∞, lim

t↑ω
q(t) = 1

and
lim
t↑ω

p(t)φ
(
Φ−1
1 (ν1J1(t))

)
J3(t)

(J2(t))2
= 1.

Moreover, for each such solution there take place the asymptotic representations

y(t) = Φ−1
(
α0(λ0 − 1)J1(t)

)[
1 +

o(1)

H1(t)

]
as t ↑ ω,

y′(t) = ν1p
1
3 (t)φ

1
3
(
Φ−1
1 (ν1J1(t))

)(
Φ−1
1 (ν1J1(t))

) 2
3 [1 + o(1)] as t ↑ ω,

y′′(t) = α0J2(t)[1 + o(1)] as t ↑ ω.

In addition, sufficient conditions for the existence of such solutions are obtained.
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1 Introduction

Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1.1)
y(0) = y(1) = 0, (1.2)

where Q belongs to the set Tα,β,γ of all measurable locally integrable on (0, 1) functions with
non-negative values such that the following integral condition hold

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0, (1.3)

1∫
0

x(1− x)Q(x) dx < ∞. (1.4)

A function y is a solution to problem (1.1), eqrefTelnova eq 2 if it is absolutely continuous on
the segment [0, 1], satisfies (1.2), its derivative y′ is absolutely continuous on any segment [ρ, 1−ρ],
where 0 < ρ < 1

2 , and equality (1.1) holds almost everywhere in the interval (0, 1).
For γ < 0, α ≤ 2γ − 1, −∞ < β < +∞ or γ < 0, β ≤ 2γ − 1, −∞ < α < +∞, the set Tα,β,γ

is empty, the first eigenvalue of problem (1.1), (1.2) does not exist. Given γ < 0, α, β > 2γ − 1 or
γ > 0, −∞ < α, β < +∞, Q ∈ Tα,β,γ , we obtain

λ1(Q) = inf
y∈H1

0 (0,1)\{0}
R[Q, y], where R[Q, y] =

1∫
0

y′2 dx−
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

.

For any α, β, γ, γ ̸= 0, for any Q ∈ Tα,β,γ , the following relations hold

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)
R[Q, y] ≤ inf

y∈H1
0 (0,1)\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

= π2.
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2 Main results
Theorem 2.1.

1. If γ < 0, α, β > 2γ − 1 or 0 < γ < 1, then mα,β,γ = −∞.

2.1. If γ = 1, α, β 6 0, then mα,β,γ > 3
4π

2.

2.2. If γ = 1, β 6 0 < α 6 1 or α 6 0 < β 6 1, then mα,β,γ > 0.

2.3. If γ = 1, 0 < α, β 6 1, then mα,β,γ > 0.

2.4. If γ > 1, α, β 6 0, then mα,β,γ > 0.

Proof. By the Hölder inequality, for any y ∈ H1
0 (0, 1), for any x ∈ (0, 1), we have

y2(x) =

( x∫
0

y′(t) dt

)2

6 x

x∫
0

y′
2
(t) dt, (2.1)

y2(x) =

(
−

1∫
x

y′(t) dt

)2

6 (1− x)

1∫
x

y′
2
(t) dt.

Then

y2

x(1− x)
=

y2

x
+

y2

1− x
6

x∫
0

y′
2
(t) dt+

1∫
x

y′
2
(t) dt =

1∫
0

y′
2
(t) dt,

y2(x) 6 x(1− x)

1∫
0

y′
2
(t) dt. (2.2)

1.1. If γ < 0, α, β > 2γ − 1, then there exists a number r > 0 such that α > 2γ − 1 + r,
β > 2γ − 1 + r. For 0 < ε < 1, consider the function Qε ∈ Tα,β,γ :

Qε(x) =

r
1
γ (1− ε)

1
γ ε

− r
γ x

−α+1−r
γ (1− x)

−β
γ , 0 < x 6 ε;

r
1
γ (1− ε)

− r
γ ε

1
γ x

−α
γ (1− x)

−β+1−r
γ , ε < x < 1.

By the Hölder inequality, for any function y ∈ H1
0 (0, 1), we have

1∫
0

y2 dx =

ε∫
0

y2 dx+

1∫
ε

y2 dx 6 ε2

2

ε∫
0

y′
2
dx+ r

− 1
γ ε

− 1
γ (1− ε)

r
γ

1∫
ε

Qε(x)y
2 dx.

Then
1∫

0

Qε(x)y
2 dx >

1∫
ε

Qε(x)y
2 dx > r

1
γ ε

1
γ (1− ε)

− r
γ

( 1∫
0

y2 dx− ε2

2

1∫
0

y′
2
dx

)
.

For any function y∗ ∈ H1
0 (0, 1), for example, for y∗ = sinπx,

R[Qε, y∗] 6

1∫
0

y∗
′2 dx+ r

1
γ ε

1
γ (1− ε)

− r
γ
(
ε2

2

1∫
0

y∗
′2 dx−

1∫
0

y∗
2 dx

)
1∫
0

y∗2 dx

.
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Therefore,

inf
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)\{0}
R[Q, y] 6 lim

ε→0
inf

y∈H1
0 (0,1)\{0}

R[Qε, y] 6 lim
ε→0

R[Qε, y∗] = −∞.

1.2. Let 0 < γ < 1 and α, β be arbitrary real numbers. For 0 < ε < 1, consider the function
Qε ∈ Tα,β,γ :

Qε(x) =


0, 0 6 x <

1

2
− ε

2
,

1

2
+

ε

2
< x 6 1;

ε
− 1

γ x
−α

γ (1− x)
−β

γ ,
1

2
− ε

2
6 x 6 1

2
+

ε

2
.

If y∗ = sinπx and Cε = min[ 1
2
− ε

2
, 1
2
+ ε

2
] x

−α
γ (1− x)

−β
γ , then

1∫
0

Qε(x)y∗
2 dx =

1
2
+ ε

2∫
1
2
− ε

2

ε
− 1

γ x
−α

γ (1− x)
−β

γ sin2 πx dx

> Cε · ε−
1
γ

1
2
+ ε

2∫
1
2
− ε

2

1− cos 2πx

2
dx = Cε · ε−

1
γ

(ε
2
+

sinπε

2π

)
.

Similarly to case 1.1, we obtain mα,β,γ = −∞.
2.1. Let γ = 1 and α, β 6 0. It is known (see, for ex., [1]) that for any y ∈ H1

0 (0, 1), the
inequality

sup
[0,1]

y2 6 1

4

1∫
0

y′
2
dx

holds. For any functions Q ∈ Tα,β,γ and y ∈ H1
0 (0, 1), we obtain

1∫
0

Q(x)y2 dx 6 sup
[0,1]

y2
1∫

0

Q(x)xα(1− x)β dx 6 sup
[0,1]

y2 6 1

4

1∫
0

y′
2
dx.

Therefore,

mα,β,γ > 3

4
inf

y∈H1
0 (0,1)\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

=
3

4
π2.

2.2. Let γ = 1, β 6 0 < α 6 1. In virtue of (2.1), for any function Q ∈ Tα,β,γ , we have
1∫

0

Q(x)y2 dx 6 sup
[0,1]

y2

xα

1∫
0

Q(x)xα(1− x)β dx 6 sup
[0,1]

y2

x
6

1∫
0

y′
2
dx.

Then

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)\{0}

1∫
0

y′2 −
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

> 0.
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The case α 6 0 < β 6 1 = γ is symmetrical to the case β 6 0 < α 6 1 = γ.

2.3. Let γ = 1, 0 < α, β 6 1. In virtue of (2.2),

1∫
0

Q(x)y2 dx 6 sup
[0,1]

y2

xα(1− x)β

1∫
0

Q(x)xα(1− x)β dx 6 sup
[0,1]

y2

x(1− x)
6

1∫
0

y′
2
dx.

and also mα,β,γ > 0.

2.4. Let γ > 1, α, β 6 0. By the Hölder inequality, for any Q ∈ Tα,β,γ and y ∈ H1
0 (0, 1), we

obtain the same result due to
1∫

0

Q(x)y2 dx 6
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

6
( 1∫

0

|y|
2γ
γ−1 dx

) γ−1
γ

6
1∫

0

y′
2
dx. (2.3)

3 On precise estimates for mα,β,γ as γ > 1, α, β < 2γ − 1

Theorem 3.1. If γ > 1, α, β < 2γ − 1, then there exist functions Q∗ ∈ Tα,β,γ and u ∈ H1
0 (0, 1),

u > 0 on (0, 1), such that mα,β,γ = R[Q∗, u], moreover, u satisfies equation

u′′ +mu = −x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 (3.1)

and the integral condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1. (3.2)

Proof. Let γ > 1, α, β < 2γ − 1. In virtue of (2.3), for any Q ∈ Tα,β,γ and y ∈ H1
0 (0, 1),

λ1(Q) = inf
y∈H1

0 (0,1)\{0}
R[Q, y] > inf

y∈H1
0 (0,1)\{0}

G[y] = m,

where

G[y] =

1∫
0

y′2 dx−
( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

1∫
0

y2 dx

,

and
mα,β,γ > m.

Following the proof of Theorem 2.1 [2], we obtain that the minimizing sequence of G[y] converges
in H1

0 (0, 1) to some function u and

inf
y∈H1

0 (0,1)\{0}
G[y] = G[u] = m.

Similarly, the function u satisfies equation (3.1) and the integral condition (3.2). Since u is
non-negative on (0, 1), the graph of u cannot cross the axis Ox. The touching the axis Ox is also
impossible due to the existence and uniqueness theorem for the solution of the Cauchy problem, as
γ > 1 and γ+1

γ−1 > 1. Therefore, the function u is positive on (0, 1).
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On (0, 1) the function Q∗(x) = x
α

1−γ (1 − x)
β

1−γ u
2

γ−1 satisfies conditions (1.3) and (1.4). Since
for Q = Q∗ and λ = m the function u satisfies equation (1.1), satisfies conditions (1.2), since u is
continuous on [0, 1], positive on (0, 1) and its derivative u′ is continuous on (0, 1), the function u is
the first eigenfunction of problem (1.1)–(1.4) with Q = Q∗ and the first eigenvalue λ1(Q∗) = m.

Then

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)\{0}
R[Q, y] 6 inf

y∈H1
0 (0,1)\{0}

R[Q∗, y] = R[Q∗, u] = G[u] = m.

Therefore, we obtain mα,β,γ = m.
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Consider a second-order ordinary differential equation of the form

u′′ +
g(t)

uλ
= h(t)uδ + µf(t), (1)

where g, h, f ∈ L(R/TZ), g(t) ≥ 0 for a.e. t ∈ R, g > 0, h < 0, f > 0, λ > 0, δ ∈ (0, 1), and µ ≥ 0
is a parameter.

Throughout we use the following notation.

• C(R/TZ) is a Banach space of T -periodic continuous functions u : R → R endowed with a
norm ∥u∥C = max{|u(t)| : t ∈ [0, T ]}.

• AC1(R/TZ) is a set of T -periodic functions u : R → R such that u and u′ are absolutely
continuous.

• Lp(R/TZ) (p ≥ 1) is a Banach space of T -periodic functions h : R → R that are integrable
with the p-th power on the interval [0, T ] endowed with a norm

∥h∥p =
( T∫

0

|h(s)|p ds
)1/p

.

We write L(R/TZ) instead of L1(R/TZ).

• [x]+ = 1
2 (|x|+ x), [x]− = 1

2 (|x| − x).

• If h ∈ L(R/TZ) then h = 1
T

T∫
0

h(s) ds.
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By a T -periodic solution to (1) we understand a function u ∈ AC1(R/TZ) which is positive and
satisfies the equality (1) for almost every t ∈ R.

Theorem 1. Let [h]+, [f ]+ ∈ Lp(R/TZ) with p ≥ 1. Let, moreover, there exist φ ∈ Lq(R/TZ)
(q ≥ 1) such that1

[h]+(t) + [f ]+(t) ≤ φ(t)g
q−1
q (t) for a.e. t ∈ R

and let

lim
x→t+

t+T/2∫
x

g(s)

(s− t)
λ(2p−1)q

p

ds+ lim
x→t−

x+T∫
t+T/2

g(s)

(t+ T − s)
λ(2p−1)q

p

ds = +∞

be fulfilled for every t ∈ R. Then there exist µ∗ ≥ µ∗ > 0 such that

• Eq. (1) has at least two T -periodic solutions provided µ > µ∗;

• Eq. (1) has at least one T -periodic solution provided µ = µ∗;

• Eq. (1) has no T -periodic solution provided µ ∈ [0, µ∗).

Remark. In the case when h(t) ≤ 0 for a. e. t ∈ R it can be proved that the numbers µ∗ and µ∗
appearing in Theorem 1 coincide.

Before we pass to the proof of Theorem 1, we introduce some definitions and notation.

Definition 1. We say that α, β ∈ AC1(R/TZ) are, respectively, lower and upper functions to the
T -periodic problem for (1), if they are positive and

α′′(t) +
g(t)

αλ(t)
≥ h(t)αδ(t) + µf(t) for a.e. t ∈ R,

resp.
β′′(t) +

g(t)

βλ(t)
≤ h(t)βδ(t) + µf(t) for a.e. t ∈ R.

Definition 2. We say that a lower function α and an upper function β to the T -periodic problem
for (1) are well-ordered if

α(t) ≤ β(t) for t ∈ R.

Definition 3. We say that a lower function α, resp. an upper function β to the T -periodic problem
for (1) is strict if the inequality

α(t) ≤ u(t), resp. u(t) ≤ β(t) for t ∈ R

implies
α(t) < u(t), resp. u(t) < β(t) for t ∈ R

provided u is a T -periodic solution to (1).

Notation. We will write α(t;µ), β(t;µ), or u(t;µ) to emphasize that the lower function α, the
upper function β, or the solution u to the T -periodic problem for (1) corresponds to the particular
parameter µ.

Sketch of the proof of Theorem 1. First we show that every T -periodic solution u to (1) is bounded
from above. In particular, the following assertion holds.

1If q = 1 then we put g
q−1
q (t) = 1 for t ∈ R.
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Lemma 1. There exists a non-decreasing function ρ : R+ → R+ such that for every µ > 0 we have

u(t;µ) < ρ(µ)

provided u is a T -periodic solution to (1).

A condition δ > 0 is essential in the proof of Lemma 1. The next step is a construction of
well-ordered strict lower and upper functions to the T -periodic problem for (1).

Lemma 2. Let the assumptions of Theorem 1 be fulfilled. Then for every µ > 0 there exists a
strict lower function α to the T -periodic problem for (1). Moreover,

α(t;µ) < u(t;µ) for t ∈ R, µ > 0

whenever u is a T -periodic solution to (1).

An important property of the lower functions α(t;µ) appearing in Lemma 2 is that they are
constructed in such a way that

α(t;µ1) ≤ α(t;µ2) for t ∈ R whenever µ1 ≥ µ2.

Lemma 3. For every µ sufficiently large there exists a strict upper function β to the T -periodic
problem for (1) such that

α(t;µ) < β(t;µ) < ρ(µ) for t ∈ R,

where ρ, resp. α are functions appearing in Lemma 1, resp. Lemma 2.

Now the condition δ < 1 is essential in construction of the upper functions β in Lemma 3.

The next step is obvious – for sufficiently large µ we have constructed well-ordered lower and
upper functions α and β. Therefore there exists at least one T -periodic solution u to (1) between
them. Moreover, since α and β are strict, we have

α(t;µ) < u(t;µ) < β(t;µ) for t ∈ R, µ sufficiently large.

Furthermore, if we rewrite T -periodic problem for (1) in an equivalent operator form

u = Mµ[u]

then it follows that the Leray-Schauder degree of the operator I −Mµ over the set

Ωµ
def
=

{
x ∈ C(R/TZ) : α(t;µ) < x(t) < β(t;µ) for t ∈ R

}
is different from zero. More precisley,

dLS(I −Mµ,Ωµ, 0) = 1 for µ sufficiently large. (2)

Thus we have proved the existence of at least one T -periodic solution to (1) in Ωµ (for every µ
sufficiently large), and have established the relation (2).

On the other hand, the following assertion holds.

Lemma 4. Let the assumptions of Theorem 1 be fulfilled. Then there exists µ∗ > 0 such that there
is no T -periodic solution to (1) with µ ∈ [0, µ∗).
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For every µ > 0 we define a set

Ψµ
def
=

{
x ∈ C(R/TZ) : α(t;µ) < x(t) < ρ(µ) for t ∈ R

}
.

Let µ0 be arbitrary but fixed and let, moreover, it be sufficiently large such that

dLS(I −Mµ0 ,Ωµ0 , 0) = 1.

Then, according to Lemma 4 we have

dLS(I −Mµ,Ψµ0 , 0) = 0 for µ ∈ [0, µ∗).

Furthermore, due to the fact that ρ is non-decreasing and α is non-increasing with respect to µ,
from Lemmas 1 and 2 it follows that there is no T -periodic solution to (1) on ∂Ψµ0 for µ ∈ [µ∗, µ0].
Consequently,

dLS(I −Mµ0 ,Ψµ0 , 0) = 0.

Now, in view of Lemma 3 we have Ωµ0 ( Ψµ0 , and so the additive property of the Leray-Schauder
degree results in

dLS(I −Mµ0 ,Ψµ0 \ Ωµ0 , 0) = −1,

i.e., there is another T -periodic solution to (1) in Ψµ0 \ Ωµ0 .
Now define

A
def
=

{
τ > 0 : Eq. (1) has at least two T -periodic solutions for every µ ≥ τ

}
.

Obviously, on account of the above-proven, the set A is nonempty. Moreover, according to Lemma 4,
the set A is bounded from below by µ∗. Put

µ∗ def
= inf A,

and let {µn}+∞
n=1 be a sequence of parameters such that

µn > µ∗ and lim
n→+∞

µn = µ∗.

Obviously, there exist a sequence of T -periodic solutions {u( · ;µn)}+∞
n=1 to (1) (with µ = µn). In

addition, with respect to Lemmas 1 and 2, this sequence of solutions is uniformly bounded and
equicontinuous. Thus, by standard arguments one can prove that there exists also at least one
T -periodic solution to (1) with µ = µ∗. Now the sketch of the proof of Theorem 1 is complete.
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Consider the planar autonomous differential system
dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where the functions P,Q : R2 → R are 2π-periodic in the first variable. Under this assumption
we can identify the phase space of (1) with the cylinder Z := S1 × R, where S1 is the unit circle.
The most difficult problem in the qualitative investigation of autonomous differential systems is
the localization and the estimate of the number of limit cycles.

In the case of a cylindrical phase space we have to distinguish two kinds of limit cycles. A limit
cycle of system (1) which does not surround Z is called a limit cycle of the first kind, otherwise it
is called a limit cycle of the second kind. Whereas the existence of a limit cycle of the first kind
of system (1) requires the existence of an equilibrium point, a limit cycle of the second kind can
exist without the existence of any equilibrium point [1, p. 34–35], [2, p. 218–227]. For the study
of limit cycles of the first kind, the methods for planar autonomous systems can be applied (see,
e.g. [2]). In particular, a well-known way to get an upper bound for the number of limit cycles of
the first kind in planar systems is to check whether the criteria of I. Bendixson and H. Dulac [2]
can be applied.

The method of the Dulac function has been extended by L. Cherkas [3]. The type of functions
he has introduced nowadays is called Dulac–Cherkas function [7]. The existence of a Dulac–Cherkas
function has the following advantages over a Dulac function: it guarantees that all limit cycles are
hyperbolic (there is no multiple limit cycle), it provides some annuli containing a unique limit cycle
(approximate localization of a limit cycle), it yields a simple criterion to determine the stability
of limit cycles and provides lower and upper bounds for their maximum number. These functions
have been applied by L. Cherkas and his coauthors also for the investigation of limit cycles of the
second kind [4, 5, 8].

The fundamental importance of a Dulac–Cherkas function consists in the fact that its zero-level
set defines curves which are crossed transversally by the trajectories of the corresponding system.
We denote these curves in what follows as transversal curves. By this way, the cylindrical phase
space is divided into doubly connected regions, where we have to distinguish between interior
regions whose boundaries consist of transversal curves and which contain a unique limit cycle,
and two outer regions, where only one boundary of these regions is a transversal curve and which
contain at most one limit cycle. To be able to determine the exact number of limit cycles we have
to investigate the existence of a limit cycle in the two outer regions. The main contribution of this
paper is to show that the existence of a unique limit cycle in the outer regions can be established
either by means of the existence of additional Dulac–Cherkas functions or by factorized Dulac
functions. Thus, we present results on the exact number of limit cycles of the second kind.

The estimate of the number of limit cycles in some given region depends also on the structure
of the region itself. Hence, our first assumption reads
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(A0). Let G be an open bounded doubly connected region on Z whose boundary consists of two
simple closed curves ∆u and ∆l surrounding Z. We suppose that ∆u is located above ∆l,
that is, ∆u is the upper boundary and ∆l is the lower boundary of G.

We denote by C1
2π(G,R) the space of continuously differentiable functions mapping G into R and

which are 2π-periodic in the first variable. For the following we assume:

(A1). The functions P and Q belong to the space C1
2π(G,R).

(A2). G does not contain an equilibrium point of (1).

Assumption (A2) implies that any closed orbit of system (1) completely located in G must surround
the cylinder Z. That means that any limit cycle of system (1) in G is a limit cycle of the second
kind which we denote by Γ. Our goal is to determine or at least to estimate the number of limit
cycles of the second kind of system (1) in G. We denote this number by ♯Γ(G). The vector field
defined by system (1) is denoted by X.

A known tool to estimate the number ♯Γ(G) is the Dulac function.

Definition 1. A function D ∈ C1
2π(G,R) is called a Dulac function of system (1) in G if div(DX)

does not change sign in G.

The following result is well-known [2].

Theorem 1. Suppose the assumptions (A0)–(A2) are satisfied. If there is a Dulac function of
system (1) in the region G, then it holds ♯Γ(G) 6 1.

The concept of the Dulac function has been generalized by L. Cherkas [3]. For this new class
of functions we introduced in [7] the name Dulac–Cherkas function.

Definition 2. Suppose the assumptions (A0) and (A1) are satisfied. A function Ψ ∈ C1
2π(G,R) is

called a Dulac–Cherkas function of system (1) in G if the set W := {(x, y) ∈ G : Ψ(x, y) = 0} does
not contain a curve which is a trajectory of system (1) and there is a real number k ̸= 0 such that
the following condition holds

Φ(x, y, k) := (gradΨ, X) + kΨdivX > 0 (6 0) ∀ (x, y) ∈ G, (2)

where the set Vk := {(x, y) ∈ G : Φ(x, y, k) = 0} has measure zero.

For k = 1 the definition of a Dulac–Cherkas function coincides with the definition of a Dulac
function. If Ψ is a Dulac–Cherkas function of system (1) in G, then |Ψ|1/k is a Dulac function of
(1) in G \W . For the following results we introduce the assumption.

(A3). There is a Dulac–Cherkas function Ψ of system (1) in G with k < 0 such that the set W
consists of l > 1 simple closed curves w1, ..., wl surrounding the cylinder Z (we call them
ovals) and which do not meet each other as well as the boundaries ∆u and ∆l of G.

Remark 1. If we consider the function Φ on any oval wi of the set W , then we get from (2)

Φ(x, y, k)|wi
= (gradΨ, X)|wi

=
dΨ

dt |wi

> 0 (6 0),

where d/dt denotes the differentiation along system (1). The conditions in Definition 2 implies

dΨ

dt |wi

̸≡ 0,

and we can conclude that any trajectory of (1) which meets any oval wi will cross it for increasing
or decreasing t.



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 79

Concerning the location of these ovals on the cylinder Z we assume that the oval wi is located
over the oval wi+1. The doubly connected subregion of G bounded by wi and wi+1 is denoted by
Zi, i = 1, . . . , l − 1, the region bounded by ∆u and w1 is denoted by Z0, and the region bounded
by wl and ∆l is denoted by Zl, which are the outer regions.

The following result is also known [5].

Theorem 2. Suppose that the assumptions (A0)–(A3) are valid. Then it holds:

(i) Each region Zi, 1 6 i 6 l − 1, contains a unique limit cycle Γi of the second kind of system
(1). Γi is hyperbolic, it is stable (unstable) if Φ(x, y, k)Ψ(x, y) > 0 (< 0) in Zi.

(ii) The regions Z0 and Zl may contain a unique limit cycle of the second kind which is hyperbolic,
and therefore, it implies immediately the estimate

l − 1 6 ♯Γ(G) 6 l + 1. (3)

Remark 2. Under the assumptions (A0)–(A3) any improvement of estimate (3) is connected with
the existence or absence of a limit cycle of the second kind in the regions Z0 and Zl.

Now we want to establish conditions for the existence of a limit cycle of the second kind in Z0

and/or in Zl. By Remark 1 we can conclude that any trajectory of system (1) that meets an oval
wi of the set W will cross wi for increasing or decreasing t. Therefore, appropriate Dulac–Cherkas
functions can be used to construct doubly-connected regions to which the Poincaré–Bendixson
theorem can be applied.

Theorem 3. Suppose that the assumptions (A0)–(A3) are valid. Additionally, we assume the exis-
tence of a second Dulac–Cherkas function Ψ0 of system (1) in some doubly connected subregion Z̃0 of
Z0 whose boundaries surround Z such that the corresponding set W0 := {(x, y) ∈ Z̃0 : Ψ0(x, y) = 0}
consists of exactly one oval v0 and where the ovals v0 and w1 form the boundaries of the doubly
connected region Z00 to which the Poincaré-Bendixson theorem can be applied. Then it holds

l 6 ♯Γ(G) 6 l + 1.

In the same way we can formulate the similar theorem for the region Zl.

Remark 3. If the assumptions of Theorem 3 are fulfilled simultaneously for both regions Z0 and
Zl, then it holds

♯Γ(G) = l + 1. (4)

The exact number of limit cycles of the second kind in G can be also determined by means of
an additional Dulac–Cherkas function defined in the same region G.

Theorem 4. Suppose the assumptions (A0)–(A3) are valid. Additionally, we assume the existence
of a second Dulac–Cherkas function Ψ1 of system (1) in G with k1 < 0 such that the corresponding
set W1 consists of l + 2 ovals. Then estimate (4) holds.

As the next step we present another approach based on factorized Dulac functions.
Let χ1 and χ2 be functions of the space C1

2π(G,R). For the following, we introduce the sets

Ui :=
{
(x, y) ∈ G : χi(x, y) = 0

}
, i = 1, 2.

We denote by U the set U := U1 ∪ U2 and define the function D : G \ U → R+ by

D(x, y, k1, k2) := |χ1(x, y)|k1 |χ2(x, y)|k2 , (5)



80 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

where k1 and k2 are real numbers. For the divergence of the vector field we get from (5) in the
region G \ U

div(DX) = |χ1 |k1−1|χ2 |k2−1 sgnχ1 sgnχ2

(
χ1χ2 divX + k1χ2(gradχ1 , X) + k2χ1(gradχ2 , X)

)
.

Our goal is to derive conditions such that D is a Dulac function in some region of G\U . Therefore,
additionally we suppose

(C1). There are functions χ1 , χ2 ∈ C1
2π(G,R) and real numbers k1, k2 such that in G the following

condition holds

Θ(x, y, k1, k2) := χ1χ2 divX + k1χ2(gradχ1 , X) + k2χ1(gradχ2 , X) < 0 (> 0).

Since we are interested in estimating the number of limit cycles of the second kind in G, we
assume

(C2). The set U consists in G of n ovals surrounding Z.

We denote by v1, . . . , vm the ovals of U , where vi is located above vi+1. We denote by Zi, 1 6 i 6
n− 1, the open doubly connected region bounded by vi and vi+1, Z0 is the open doubly connected
region bounded by ∆u and v1, Zn is the open doubly connected region bounded by vn and ∆l.

Theorem 5. Suppose the assumptions (A0), (A1), (A2) and (C1) with k1 < 0, k2 < 0, and (C2)
are valid. Then it holds:

(i) Each region Zi, 1 6 i 6 n− 1, contains a unique limit cycle Γi of the second kind of system
(1). Γi is hyperbolic and stable (unstable) if the inequality

Θ(x, y, k1, k2)

χ1(x, y)χ2(x, y)
< 0 (> 0)

is valid in Zi.

(ii) In each of the regions Z0 and Zn a unique hyperbolic limit cycle of the second kind could be
located.

A detailed presentation of our approaches to check the existence of a limit cycle in the regions
Z0 and Zl or Zn by means of an additional Dulac–Cherkas functions or by special factorized Dulac
functions and their application to some classes of systems (1) are contained in our paper [6].
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We consider the linear differential system

ẋ = A(t)x, x ∈ R2, t ≥ 0, (1)

with a bounded continuously differentiable matrix of coefficients A(t) and with negative charac-
teristic exponents λ1(A) ≤ λ2(A) < 0. The system is a linear approximation for the nonlinear
system

ẏ = A(t)y + f(t, y), y = (y1, y2)
⊤ ∈ R2, t ≥ 0. (2)

In addition, the so-called m-perturbation f(t, y) is continuously differentiable in its arguments t ≥ 0
and y1, y2 ∈ R and has an m ≥ 1 order of smallness in some neighbourhood of the origin and growth
outside of it:

∥f(t, y)∥ ≤ Cf∥y∥m, m > 1, y ∈ R2, t ≥ 0. (3)

Perron’s effect [7], [6, pp. 50, 51] of sign and value change of characteristic exponents establishes
the existence of system (1) with negative Lyapunov exponents and 2-perturbation (3) such that
all nontrivial solutions of the perturbed system (2) turn out to be infinitely continuable and have
finite Lyapunov exponents equal to:

(1) the negative higher exponent λ2 of the initial system (1) for solutions starting at the initial
moment on the axis y1 = 0 (that allows one to consider Perron’s effect not full);

(2) a certain positive value for all the rest solutions (calculated in [2, pp. 13–15]).

A number of works written by the author and jointly with Korovin contain various versions of the
full Perron’s effect when all nontrivial solutions of the nonlinear system (2) with m-perturbation (3)
are infinitely continuable (this is not the case in a general case) and have finite positive Lyapunov
exponents under negative exponents of the system of linear approximation (1). These versions
correspond to different types of the set λ(A, f) ⊂ (0,+∞) of Lyapunov’s characteristic exponents
of all nontrivial solutions of the perturbed system (2), to distribution of these solutions with respect
to the exponents from the set λ(A, f) and, finally, to an arbitrary order of systems (1) and (2).

In particular, it is stated in [3, 4] that the sets λ(A, f) in this full Perron’s effect are Suslin’s
ones [1, pp. 97, 98, 192]. For a complete description of (bounded) families λ(A, f) ⊂ (0,+∞) in
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that effect there arises an inverse question on the realization of an arbitrary bounded Suslin’s set
S ⊂ (0,+∞) by the family λ(A, f) of characteristic exponents of a certain perturbed system (2),
i.e., the question on the realization of the equality Λ(As, fs) ≡ S for the above-mentioned matrix
As(t) and vector-function fs(t, y).

The positive and stronger answer to the above question in classes of infinitely differentiable
matrices A(t) and vector-functions f(t, y) in the corresponding spaces (that will be additionally
supposed in the sequel) is contained in the present report.

The following theorem is valid.

Theorem 1 ([5]). For arbitrary parameters m > 1, λ1 ≤ λ2 < 0 and arbitrary bounded on the axis
R0 = R \ 0 Baer’s 1st class functions

ψi : R0 → [βi, bi] ⊂ (0,+∞), b1 ≤ β2, i = 1, 2,

there exist a linear system (1) with bounded infinitely differentiable on the semi-axis [t0,+∞)
coefficients and exponents λ1(A) = λ1 ≤ λ2 = λ2(A) and the infinitely differentiable in its arguments
t ≥ t0 and y1, y2 ∈ R m-perturbation f(t, y) such that all nontrivial solutions t(t, c) of the nonlinear
system (2) are infinitely continuable to the right and have characteristic exponents

λ[y( · , c)] =

{
ψ1(c1), c1 ̸= 0, c2 = 0,

ψ2(c2), c2 ̸= 0, ; c = (c1, c2) ∈ R2.

The above theorem results in the following corollary.

Corollary 1 ([5]). For arbitrary parameters m > 1, λ1 ≤ λ2 < 0 and the bounded Suslin’s set
S ⊂ (0,+∞) there exist systems (1) and (2) mentioned in the above theorem such that the set of
characteristic exponents of nontrivial solutions of the latter coincides with the set S.

When proving the theorem we have used the following statements.

Lemma 1 ([5]). Let the bounded on the axis R0 = R \ {0} function

ψ : R0 → |β0, b0|, −∞ < β0 < b0 < +∞,

be Baer’s 1st class function. Then for arbitrary constants β < β0 and b > b0 there exists a sequence
{ψn(x)} of infinitely differentiable uniformly bounded on the axis R0 functions ψn : R0 =⇒ [β, b],
n ∈ N, converging on that axis to the function ψ(x).

Lemma 2 ([5]). For arbitrary numbers ε > 0 and continuous on the axis R0 function F0 : R0 → R
there exists an infinitely differentiable on that axis function F : R0 → R for which the inequality

|F (x)− F0(x)| ≤ ε, x ∈ R0

is fulfilled.
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Systems of nonlinear partial differential equations are describing many real processes. The
present note is devoted to one of such mathematical model arising in the investigation of the vein
formation in leaves of higher plants and is represented as the two-dimensional nonlinear partial
differential system [7]:

∂U

∂t
=

∂

∂x

(
V

∂U

∂x

)
+

∂

∂y

(
W

∂U

∂y

)
,

∂V

∂t
= −V +G

(
V

∂U

∂x

)
,

∂W

∂t
= −W +H

(
W

∂U

∂y

)
,

(1)

where U = U(x, y, t), V = V (x, y, t), W = W (x, y, t) are unknown functions defined on the domain
Q = Ω × [0, T ] = [0, 1] × [0, 1] × [0, T ], T = Const > 0 and G, H are known functions of their
arguments.

In Q we consider initial-boundary value problems for (1) and for the following parabolic type
regularization of system (1):

∂Uε

∂t
=

∂

∂x

(
Vε

∂Uε

∂x

)
+

∂

∂y

(
Wε

∂Uε

∂y

)
,

∂Vε

∂t
= −Vε +G

(
Vε

∂Uε

∂x

)
+ ε

∂2Vε

∂x2
,

∂Wε

∂t
= −Wε +H

(
Wε

∂Uε

∂y

)
+ ε

∂2Wε

∂y2
,

(2)

with the first type boundary conditions for U , Uε and the second type boundary conditions for Vε

and Wε. In (2) we assume that ε = Const > 0.
Some properties of the solutions of initial-boundary problems for systems (1) and (2) are studied.
The convergence of the solution of initial-boundary value problem of the regularized system (2)

as ε → 0 to corresponding solution of model (1) in the norm of the space L2(Ω) is discussed.
For building approximate solutions of considered problems two different approaches are used.

Both belong to the so-called decomposition methods [8]. The first approach is a decomposition
method based on the variable directions difference scheme [1] and the second approach is based on
averaged model [8]. The stability and convergence of these schemes are analyzed.

The one-dimensional (1) type system at first has been investigated in [2] and multi-dimensional
one in [3,4]. For a brief overview of some research devoted to (1), (2), and relative models we refer
to the papers [5, 6].
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In a plane of independent variables x and t in the half-strip D∞ : 0 < x < l, t > 0 consider the
mixed problem of finding solution u(x, t) of the linear inhomogeneous wave equation of the form

�u = f(x, t), (x, t) ∈ D∞, (1)

satisfying the following initial

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (2)

and boundary conditions

u(0, t) = µ1(t), t ≥ 0, (3)
u(l, t) = µ2(t), t ≥ 0, (4)

where f , φ, ψ, µi, i = 1, 2, are given functions and u is unknown real function, and � := ∂2

∂t2
− ∂2

∂x2 .
It is easy to see that for

f ∈ C1(D∞), φ ∈ C2([0, l]), ψ ∈ C1([0, l]), µi ∈ C2([0,∞)), i = 1, 2,

the necessary conditions for solvability of problem (1)–(4) in the class C2(D∞) are the following
second order agreement conditions

φ(0) = µ1(0), ψ(0) = µ′1(0), µ′′1(0)− φ′′(0) = f(0, 0),

φ(l) = µ2(0), ψ(l) = µ′2(0), µ′′2(0)− φ′′(l) = f(l, 0).

Let
m = m(t) :=

[ t
l

]
, t > 0,

where [·] is an integer part of a real number.
Let us divide the domain Em : 0 < x < l, ml < t < (m + 1)l, m = 0, 1, 2, . . . , which is a

quadrat with vertices in points Am(0,ml), Bm(0, (m + 1)l), Cm(l, (m + 1)l) and Dm(l,ml) into
four rectangular triangles: E1

m := ∆AmOmDm, E2
m := ∆AmOmBm, E3

m := ∆DmOmCm and
E4

m := ∆BmOmCm, where point Om( l2 , (m+ 1
2)l) is a center of the quadrat Em.

Below we get the representation of the classical solution u ∈ C2(D∞) of problem (1)–(4) in the
half-strip D∞ in the form of finite sum of addends, depending on boundary, initial values of this
solution and right-hand side of equation (1).
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First let P = P (x, t) ∈ E0. In the triangle E1
0 due to (2) and the d’Alembert’s formula, the

equality [7, p. 59]

u(x, t) = A1(φ,ψ, f)(x, t)

:=
1

2

[
φ(x− t) + φ(x+ t)

]
+

1

2

x+t∫
x−t

ψ(τ) dτ +
1

2

∫
Ω1

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E1
0 (5)

is valid, where Ω1
x,t is the triangle with vertices at the points (x, t), (x− t, 0) and (x+ t, 0).

As it is known, for any twice continuously differentiable function v and characteristic to equation
(1) rectangle PP1P2P3 from its domain of definition the equality [1, p. 173]

v(P ) = v(P1) + v(P2)− v(P3) +
1

2

∫
PP1P2P3

� v(ξ, τ) dξ dτ (6)

is valid, where P and P3, P1 and P2 are opposite vertices of this rectangle, and the ordinate of
point P is larger than those of the rest points.

Let now P ∈ E2
0 . Then, using equality (6) for characteristic rectangle with vertices at the points

P (x, t), P1(0, t − x), P2(t, x) and P3(t − x, 0), and formula (5) for point P2(t, x) ∈ E1
0 , in view of

(1) and (3) we have

u(x, t) = A2(φ,ψ, µ1, f)(x, t)

:= µ1(t− x) +
1

2

[
φ(t+ x)− φ(t− x)

]
+

1

2

t+x∫
t−x

ψ(τ) dτ +
1

2

∫
Ω2

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E2
0 . (7)

Here Ω2
x,t is the quadrangle PP ∗

2P3P1, where P ∗
2 := (t+ x, 0).

Analogously, we have

u(x, t) = A3(φ,ψ, µ2, f)(x, t) := µ2(x+ t− l)

+
1

2

[
φ(x− t)− φ(2l − x− t)

]
+

1

2

2l−x−t∫
x−t

ψ(τ) dτ +
1

2

∫
Ω3

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E3
0 , (8)

and

u(x, t) = A4(φ,ψ, µ1, µ2, f)(x, t) := µ1(t− x) + µ2(x+ t− l)

− 1

2

[
φ(t− x) + φ(2l − t− x)

]
+

1

2

2l−t−x∫
t−x

ψ(τ) dτ +
1

2

∫
Ω4

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E4
0 . (9)

Here Ω3
x,t is a quadrangle with vertices P 3(x, t), P 3

1 (l, x+ t− l), P 3
2 (x− t, 0) and P 3

3 (2l− x− t, 0),
while Ω4

x,t is a pentagon with vertices P 4(x, t), P 4
1 (0, t − x), P 4

2 (t − x, 0), P 4
3 (2l − x − t, 0) and

P 4
4 (l, x+ t− l).

If the point P0 := P0(x, t) ∈ Em, m ≥ 1, then denote by P0M1P1N1 the characteristic rectangle
with respect to equation (1), whose vertices M1 and N1 lay on the straight lines x = 0 and x = l,
respectively, i.e. M1 := (0, t− x), N1 := (l, t+ x− l), P1 := (l− x, t− l). Since P1 ∈ Em−1, then by
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analogy we can consider the characteristic rectangle P1M2P2N2, whose vertices M2 and N2 lay on
the straight lines x = 0 and x = l, respectively. Continuing this process we get the characteristic
rectangle Pi−1MiPiNi with vertices Mi and Ni, respectively, on the straight lines x = 0 and x = l,
and due to P0 ∈ Em,

Pm ∈ E0, (10)

where Pm = (l− x, t−ml) if m is odd, and Pm = (x, t−ml) if m is even. At the same time if the
point P0 ∈ E1

m(E4
m), then Pm ∈ E1

0(E
4
0) for any m, and if P0 ∈ E2

m(E3
m), then Pm ∈ E3

0(E
2
0) for

odd m and Pm ∈ E2
0(E

3
0) for even m. For the coordinates of the points Mi and Ni we have

Mi = (0, t− x− (i− 1)l), Ni = (l, t+ x− il), i = 1, 3, 5, . . . ,

Mi = (0, t+ x− il), Ni = (l, t− x− (i− 1)l), i = 2, 4, 6, ,̇.

By induction over number m it can be proved the validity of the following representation of the
solution u ∈ C2(D∞) of problem (1)–(4) in the half-strip D∞

u(P0) =

m∑
i=1

(−1)i−1

[
µ1(Mi) + µ2(Ni) +

1

2

∫
Pi−1MiPiNi

f(ξ, τ) dξ dτ

]
+ (−1)mu(Pm), P0 ∈ Em,

where due to (10) in the case of odd m

u(Pm) =


A1(φ,ψ, f)(Pm), P0 ∈ E1

m,

A3(φ,ψ, µ2, f)(Pm), P0 ∈ E2
m,

A2(φ,ψ, µ1, f)(Pm), P0 ∈ E3
m,

A4(φ,ψ, µ1, µ2, f)(Pm), P0 ∈ E4
m,

while for even m

u(Pm) =


A1(φ,ψ, f)(Pm), P0 ∈ E1

m,

A2(φ,ψ, µ1, f)(Pm), P0 ∈ E2
m,

A3(φ,ψ, µ2, f)(Pm), P0 ∈ E3
m,

A4(φ,ψ, µ1, µ2, f)(Pm), P0 ∈ E4
m.

Here the operators Ai, i = 1, 2, 3, 4 are defined by formulas (5), (7)–(9).
The obtained representation will unconditionally find application during a study of other initial-

boundary value problems both for linear and nonlinear hyperbolic equations and systems. Let us
note that other representations of the solution of problem (1)–(4) in the form of infinite series are
given in [1–9].
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Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space. By Z := (z1, . . . , zm)T we denote an m-dimen-
sional semimartingale (see, e.g. [7]). A popular example of such Z is the vector Brownian motion
(the Wiener process). The linear space kn consists of all n-dimensional F0-measurable random
variables.

The main idea of the method, which is outlined below, is to represent the property of Lyapunov
stability in terms of invertibility of certain linear operators in suitable functional spaces.

The following linear homogeneous stochastic delay differential equation is considered

dx(t) = (Vhx)(t) dZ(t) (t ≥ 0) (1)

endowed with two initial conditions

x(s) = φ(s) (s < 0) (2)

and
x(0) = b. (3)

Here Vh is a k-linear Volterra operator which is defined in certain linear spaces of vector stochastic
processes, φ is an B(−∞, 0) ⊗ F0-measurable stochastic process and b ∈ kn. By k-linearity of the
operator Vh we mean the following property

Vh(α1x1 + α2x2) = α1Vhx1 + α2Vhx2,

which holds for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic
processes x1, x2 belonging to the domain of the operator Vh. The exact assumptions on the
domain and the range of Vh are specified below in connection with the properties of the associated
operator V .

The solution of the initial value problem (1)–(3) will be denoted by x(t, b, φ), t ∈ (−∞,∞).
The solution is always assumed to exist and to be unique for an appropriate choice of φ(s), b: for
specific conditions see e.g. [3].

According to the habilitation thesis [3], the following classes of linear stochastic equations are
particular cases of Eq. (1):
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(A) Systems of linear ordinary (i.e. non-delay) stochastic differential equations driven by an
arbitrary semimartingale (in particular, systems of ordinary Itô equations);

(B) Systems of linear stochastic differential equations with discrete delays driven by a semimartin-
gale (in particular, systems of Itô equations with discrete delays);

(C) Systems of linear stochastic differential equations with distributed delays driven by a semi-
martingale (in particular, systems of Itô equations with distributed delays);

(D) Systems of linear stochastic integro-differential equations driven by a semimartingale (in
particular, systems of Itô integro-differential equations);

(E) Systems of linear stochastic functional difference equations driven by a semimartingale (in
particular, systems of Itô functional difference equations).

Definition 1. For a given real number q (1 ≤ q < ∞) we call the zero solution of Eq. (1)

• q-stable (with respect to the initial data b and φ) if for any ε > 0 there is δ(ε) > 0 such that
E|b|q +ess sup

s<0
E|φ(s)|q < δ implies E|x(t, b, φ)|q ≤ ε for all t ≥ 0 and all F0-measurable φ, b;

• exponentially q-stable if there exist positive constants K, λ such that the inequality

E|x(t, b, φ)|q ≤ K
(
E|b|q + ess sup

s<0
E|φ(s)|q

)
exp{−λs}

holds true for all t ≥ 0 and all F0-measurable φ, b.

Let Sn be a linear subspace of the space of Ft-adapted, n-dimensional stochastic processes
whose trajectories belong to a normed space E with the norm ∥ · ∥E . Then we denote by Sn

q

(1 ≤ q < ∞), the linear subspace of Sn containing all processes f ∈ Sn, for which the norm defined
by ∥f∥qSn

q
= E∥f∥qE is finite.

For instance, if Φn stands for all F0-measurable, n-dimensional prehistory functions φ with
essentially bounded trajectories, then the norm in Φn

q is given by

∥φ∥q = ess sup
s<0

E|φ(s)|q.

This simplifies the notation in Definition 1, where the expression E|b|q + ess sups<0E|φ(s)|q may
be replaced by ∥b∥qknq + ∥φ∥qΦn

q
.

To describe the regularization method, one needs to represent (1)–(2) in a canonical form
[1,3]. Let x(t) be a stochastic process on [0,+∞) and x+(t) be a stochastic process on (−∞,+∞)
coinciding with x(t) for t ≥ 0 and equalling 0 for t < 0, while φ−(t) be a stochastic process
on (−∞,+∞) coinciding with φ(t) for t < 0 and equalling 0 for t ≥ 0. Then the stochastic
process x+(t) + φ−(t), defined for t ∈ (−∞,+∞) will be a solution of the problem (1)–(3) if x(t)
(t ∈ [0,+∞)) satisfies the initial value problem

dx(t) =
[
(V x)(t) + f(t)

]
dZ(t) (t ≥ 0), (4)

x(0) = b, (5)

where (V x)(t) := (Vhx+)(t), f(t) := (Vhφ−)(t) for t ≥ 0. Indeed, by k-linearity we have that
Vh(x+ + φ−) = Vh(x+) + Vh(φ−) = V x + f , which gives (4). Note that f is uniquely defined by
the prehistory function φ. Let us also observe that the initial value problem (4)–(5) is equivalent
to the initial value problem (1)–(3) only for f , which have the representation f = Vhφ

′, where φ′

is an arbitrary extension of the function φ to the real line (−∞,∞).
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The solution of (4)–(5) is below denoted by xf (t, b).
Let Bn be a linear subspace of the space of Ft-adapted stochastic processes with trajectories

which are almost surely essentially bounded on [0,∞). According to our notation, the norm in the
space Bn

q is defined by
∥f∥qBn

q
= ess sup

t≥0
E|f(t)|q.

Let Ln(Z) be the set of all n × m-matrix predictable stochastic processes defined on [0,+∞)
and whose rows are locally integrable with respect to the semimartingale Z, see e.g. [3], and Dn

be the set of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ kn, H ∈ Ln(Z). The space Dn and its linear subspaces Dn
q are called the spaces of

solutions of Eq. (4) (see [3]). The operator V is usually assumed to be a bounded linear operator
from Dn

q to Ln
q (Z) for some 1 ≤ q < ∞.

This yields two linear operators

L1 : φ 7−→ (Vhφ−)(t) (6)

and
L2 : f 7−→ xf ( · , b). (7)

The following result is crucial for the framework (see e.g. [5]).

Theorem 1. Assume that the linear operators L1 : Φq → Bn
q and L2 : Bn

q → Dn
q are bounded.

Then the zero solution of Eq. (1) is q-stable in the sense of Definition 1.

In applications, the operator L1 is usually bounded, so that the only challenge in application
of Theorem 1 is to prove boundedness of the operator L2. This can be done by the regularization
method called in [1] and [3] ‘the W -method’. The regularization is usually constructed with the
help of an auxiliary equation

dx(t) =
[
(Qx)(t) + g(t)

]
dZ(t) (t ≥ 0), (8)

where Q is again a k-linear Volterra operator. This equation is similar to Eq. (4), possesses the
existence and uniqueness property as well, but it is usually chosen to be ‘simpler’ in the sense that
the required stability property for this equation is already known (see assumption (2) in Theorem 2
below).

The following representation formula for the solutions of Eq. (8) can be directly deduced from
the existence and uniqueness property

x(t) = U(t)x(0) + (Wg)(t) (t ≥ 0), (9)

where U(t) is the fundamental matrix of the associated homogeneous equation, and W is the
corresponding Cauchy operator.

Using representation (9) we can regularize Eq. (4). This algorithm is based on the framework
described in [3, 5].

Using Eq. (8) we rewrite Eq. (4) as follows

dx(t) =
[
(Qx)(t) + ((V −Q)x)(t) + f(t)

]
dZ(t) (t ≥ 0),
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or, taking (9) into account, as

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t) (t ≥ 0).

Putting W (V −Q) = Θ, we obtain the operator equation

x(t) = (Θx)(t) + U(t)x(0) + (Wf)(t) (t ≥ 0). (10)

Theorem 2. Assume that Eq. (4) and the reference equation (8) satisfy the following conditions:

(1) the linear operators V , Q act continuously from Dn
q to Bn

q ;

(2) the Cauchy operator W in (9) constructed for the reference equation (8) is bounded as an
operator from Bn

q to Dn
q ;

(3) the operator I −Θ : Dn
q → Dn

q has a bounded inverse.

Then the operator L2 : B
n
q → Dn

q in (7) is bounded.

Theorems 1 and 2 justify the regularization method for Lyapunov stability of stochastic linear
functional differential equations. The main challenge of the method is to prove that the operator
I −Θ has a bounded inverse. In [3–5] (see also the references therein) this property is checked by
estimating the norm of the integral operator Θ: if ∥Θ∥Dn

q
< 1 in the inequality

∥x∥Dn
q
≤ ∥Θ∥Dn

q
∥x∥Dn

q
+K1∥x(0)∥knq +K2∥f∥Bn

q
, (11)

then Eq. (1) is q-stable due to Theorem 1. Moreover, if q ≥ 2 and the equation remains q-stable
after the substitution y(t) = exp(λt)x(t) for some positive λ, then Eq. (1) is, in fact, exponentially
q-stable.

Another approach, which has recently been suggested in [2] in the deterministic case and in [6]
in the stochastic case, is based on the properties of monotone operators. In this case, the estimation
is done componentwise, and if the resulting matrix has a bounded inverse, then one still obtains
inequalities like (11). A short description of this method is given below.

Recall that an m×m-matrix B = (bij)
m
i,j=1 is said to be nonnegative, resp. positive if bij ≥ 0,

resp. bij > 0 for all i, j = 1, . . . ,m.

Definition 2. A matrix Γ = (γij)
n
i,j=1 is called a (non-singular) M-matrix if γij ≤ 0 for i, j =

1, . . . , n, i ̸= j, and all the principal minors of the matrix Γ are positive.

Let
x(t) = col(x1(t), . . . , xn(t)), xi = sup

t≥0

(
E|xi(t)|q

)1/q
, x = col(x1, . . . , xn).

Suppose that after componentwise estimation in the vector equation (10) we get the following vector
inequality

Dx ≤ ∥x(0)∥knq e1 + ∥f∥Bn
q
e2, (12)

where D is an n × n-matrix, e1, e2 are some column n-vectors with nonnegative components.
Typically, D = E − T , where E is the n × n identity matrix, while T and ei replace Θ and Ki

(i = 1, 2) in the scalar inequality (11), respectively. Then we obtain

Theorem 3. If D is an M-matrix in the sense of Definition 2, then the operator L2 : Bn
q → Dn

q

in (7) is bounded.
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Proof. As D is an M-matrix, the matrix D−1 is positive, and we can rewrite (12) as

x ≤ D−1
(
∥x(0)∥knq e1 + ∥f∥Bn

q
e2
)
.

Therefore,
|x| ≤ K

(
∥x(0)∥knq + ∥f∥Bn

q

)
, (13)

where K = ∥D−1∥max{|e1|, |e2|}. As ∥x∥Dn
q

≤ |x|, we conclude from (13) that x ∈ Dn
q and

∥x∥Dn
q
≤ K(∥b∥knq +∥f∥Bn

q
) for some positive K. Thus, the operator L2 : Bn

q → Dn
q is bounded.

Again, if q ≥ 2 and one uses the substitution y(t) = exp(λt)x(t) for some positive λ and
Theorems 1, 3 and proves q-stability of the equation for y(t), then this result will imply exponential
q-stability of Eq. (1).

The outlined frameworks can be applied to all systems of stochastic differential equations men-
tioned above as classes (A)–(E). Notice that the second Lyapunov method might be difficult to use
in many of these cases.
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In the Euclidean space Rn+1 of the variables x = (x1, x2, . . . , xn) and t we consider the nonlinear
equation of the type

Lfu :=
∂2(2k+1)u

∂t2(2k+1)
−∆2u+ f(u,∇u) = F (x, t), (1)

where f and F are given, and u is an unknown real functions, ∇ := ( ∂
∂x1

, . . . , ∂
∂xn

, ∂
∂t), ∆ :=

n∑
i=1

∂2

∂x2
i
,

k is a natural number and n ≥ 2.
For the equation (1) we consider the boundary value problem: find in the cylindrical domain

DT := Ω × (0, T ), where Ω is a Lipschitz domain in Rn, a solution u = u(x, t) of that equation
according to the boundary conditions

∂iu

∂ti

∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k, (2)

u
∣∣
ΓT

= 0,
∂u

∂ν

∣∣∣
ΓT

= 0, (3)

where ΓT := ∂Ω × (0, T ) is the lateral face of the cylinder DT , Ω0 : x ∈ Ω, t = 0 and ΩT : x ∈
Ω, t = T are bottom and top bases of this cylinder, respectively, and ∂

∂ν is a derivative along the
outer normal to the boundary ∂DT of the domain DT . For T = ∞ we have D∞ = Ω × (0,∞),
Γ∞ = ∂Ω× (0,∞).

Note that the linear part of the operator Lf from (1), i.e. L0 is a hypoelliptic operator.
Below, for function f = f(s0, s1, . . . , sn+1), (s0, s1, . . . , sn+1) ∈ Rn+2 we assume that

f ∈ C(Rn+2) (4)

and ∣∣f(s0, s1, . . . , sn+1)
∣∣ ≤ M +

n+1∑
i=0

Mi|si|αi ∀ s = (s0, s1, . . . , sn+1) ∈ Rn+2, (5)

where M,Mi, αi = const > 0, i = 0, 1, . . . , n+ 1.
Denote by C4,4k+2(DT ) the space of continuous functions in DT having continuous partial

derivatives ∂β
xu, ∂lu

∂tl
in DT , where ∂β

x = ∂|β|

∂x
β1
1 ...∂xβn

n

, β = (β1, . . . , βn), |β| =
n∑

i=1
βi ≤ 4; l =

1, . . . , 4k + 2.
Assume

C4,4k+2
0 (DT , ∂DT ) :=

{
u ∈ C4,4k+2(DT ) : u

∣∣
ΓT

=
∂u

∂ν

∣∣∣
ΓT

= 0,
∂iu

∂ti

∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k

}
.
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Let u ∈ C4,4k+2
0 (DT , ∂DT ) be a classical solution of the problem (1), (2), (3). Multiplying both

parts of the equation (1) by an arbitrary function φ ∈ C4,4k+2
0 (DT , ∂DT ) and integrating the

obtained equation by parts over the domain DT , we obtain

−
∫
DT

[∂2k+1u

∂t2k+1
· ∂

2k+1φ

∂t2k+1
+∆u ·∆φ

]
dx dt+

∫
DT

f(u,∇u)φ dx dt

=

∫
DT

Fφ dx dt ∀φ ∈ C4,4k+2(DT , ∂DT ). (6)

We take the equality (6) as a basis for our definition of the weak generalized solution u of the
problem (1), (2), (3).

Introduce the Hilbert space W 2,2k+1
0 (DT ) as a completion with respect to the norm

∥u∥2
W 2,2k+1

0 (DT )
=

∫
DT

[
u2 +

n∑
i=1

( ∂u

∂xi

)2
+

n∑
i,j=1

( ∂2u

∂xi∂xj

)2
+

2k+1∑
i=1

(∂iu

∂ti

)2
]
dx dt (7)

of the classical space C4,4k+2
0 (DT , ∂DT ).

Remark 1. From (7) it follows that if u ∈ W 2,2k+1
0 (DT ), then u ∈

◦
W 1

2(DT ) and ∂2u
∂xi∂xj

, ∂
lu

∂tl
∈

L2(DT ); i, j = 1, . . . , n; l = 1, . . . , 2k+1. Here Wm
2 (DT ) is the well-known Sobolev space consisting

of the elements of L2(DT ), having generalized derivatives from L2(DT ) up to m-th order inclusively,
and

◦
W 1

2(DT ) = {u ∈ W 1
2 (DT ) : u|∂DT

= 0}, where the equality u|∂DT
= 0 is understood in the

sense of the trace theory. Moreover, when the domain Ω is convex, and therefore the domain DT

is also convex, and since the following estimate

∫
DT

[ n∑
i,j=1

( ∂2u

∂xi∂xj

)2
+

n∑
i=1

( ∂2u

∂xi∂t

)2
+

(∂2u

∂t2

)2
]
dx dt

≤ c

∫
DT

[ n∑
i=1

∂2u

∂x2i
+

∂2u

∂t2

]2
dx dt ∀u ∈

◦
C2(DT , ∂DT ) :=

{
u ∈ C2(DT ) : u

∣∣
∂DT

= 0
}

holds with a positive constant c not dependant on u and the domain DT , then from (7) we have
continuous embedding of spaces

W 2,2k+1
0 (DT ) ⊂ W 2

2 (DT ). (8)

Below, we assume that Ω is a convex domain.

Remark 2. As it is known the space W 2
2 (DT ) is continuously and compactly embedded into

Lp(DT ) for p < 2(n+1)
n−3 when n > 3 and for any p ≥ 1 when n = 2, 3; analogously, the space

W 1
2 (DT ) is continuously and compactly embedded into Lq(DT ) if q < 2(n+1)

n−1 . Therefore, taking
into account continuous embedding of the spaces (8), the inequality (5) and the properties of the
Nemytski operators Ni, i = 0, 1, . . . , n+1, acting by formula Niv = |v|αi , we get that the nonlinear
operator N : W 2,2k+1

0 (DT ) → L2(DT ) acting by formula Nu = f(u,∆u), will be continuous and
compact if the nonlinearity exponent αi in the right-hand side of the inequality (5) satisfies the
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following inequalities:

1 < α0 <
n+ 1

n− 3
for n > 3; α0 > 1 for n = 2, 3; (9)

1 < αi <
n+ 1

n− 1
, i = 1, . . . , n+ 1, n ≥ 2. (10)

Besides, from the above-mentioned remarks it follows that if u ∈ W 2,2k+1
0 (DT ), then f(u,∇u) ∈

L2(DT ) and for um → u in the space W 2,2k+1
0 (DT ) we have f(um,∇um) → f(u,∇u) in the space

L2(DT ).

Definition 1. Let function f satisfy the conditions (4), (5), (9) and (10); F ∈ L2(DT ). The
function u ∈ W 2,2k+1

0 (DT ) is said to be a weak generalized solution of the problem (1), (2), (3) if
for any φ ∈ W 2,2k+1

0 (DT ) the integral equality (6) is valid.

Notice that when the conditions (4), (5), (9) and (10) are fulfilled, if u ∈ W 2,2k+1
0 (DT ) and

φ ∈ W 2,2k+1
0 (DT ), then according to Remark 2 we have f(u,∇u) ∈ L2(DT ), φ ∈ L2(DT ) and the

second addend ∫
DT

f(u,∇u)φ dx dt

in the left-hand side of the equality (6) is defined correctly.
It is not difficult to verify that if the solution of the problem (1), (2), (3) in the sense of Definition

1 belongs to the class C4,4k+2
0 (DT , ∂DT ), then it will also be a classical solution of this problem.

Definition 2. Let function f satisfy the conditions (4), (5), (9) and (10); F ∈ L2,loc(D∞) and
F |DT

∈ L2(DT ) ∀T > 0. We say that the problem (1), (2), (3) is globally solvable in the class
W 2,2k+1

0 if for any T > 0 this problem has at least one weak generalized solution u ∈ W 2,2k+1
0 (DT )

in the sense of Definition 1.

Definition 3. Let function f satisfy the conditions (4), (5), (9) and (10); F ∈ L2,loc(D∞) and
F |DT

∈ L2(DT ) ∀T > 0. We say that the problem (1), (2), (3) is locally solvable in the class
W 2,2k+1

0 if there exists a number T0 = T0(F ) such that for any positive T < T0 this problem has at
least one weak generalized solution u ∈ W 2,2k+1

0 (DT ) in the sense of Definition 1.

It is proved that when the conditions (4), (5), (9) and (10); F ∈ L2,loc(D∞) and F |DT
∈ L2(DT )

∀T > 0 are fulfilled, then the problem (1), (2), (3) is locally solvable in the class W 2,2k+1
0 in the

sense of Definition 3, and for some additional conditions on the problem’s data, in certain cases
the problem (1), (2), (3) is locally solvable whereas it is not globally solvable, and in other cases we
have a global solvability in the sense of Definition 2.

The case of uniqueness of the solution of this problem in D∞ is also considered.
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M. Jasný and J. Kurzweil [1,2] was the first who revealed the fact that unlike the second order
linear differential equations, the Emden-Fowler type nonlinear differential equation

u′′ = p(t)|u|λ sgn(u),

where λ = const > 1, and p : [a,+∞) → ]−∞, 0[ is a continuous function, may have simultaneously
oscillatory and nonoscillatory solutions.

According to F. V. Atkinson’s theorem [3], from the proven by J. Kurzweil [2] oscillation theorem
it follows that if the function t 7→ t

λ+3
2 |p(t)| is nondecreasing and

+∞∫
a

t|p(t)| dt < +∞,

then the above-mentioned Emden–Fowler type equation along with oscillatory solutions has also
separated from zero slowly growing solutions. Such type of theorems for different classes of super-
linear and sublinear differential equations of second and fourth order have been proven in [4–8].

We have established unimprovable in a certain sense conditions guaranteeing the fact that the
higher order Emden–Fowler type differential equation

u(n) = p(t)|u|λ(|u|) sgn(u) (1)

has Kurzweil’s property. Here, n > 3, p : [a,+∞[→ R is a function, Lebesgue integrable on every
finite interval contained in [a,+∞[ , a > 0, and λ : [0,+∞[→ R is a continuous function. Moreover,
the function p satisfies the inequality

(−1)n−n0p(t) ≤ 0 for t ≥ a, (2)

where n0 is the integer part of number n
2 , and the function λ satisfies either the condition

1 < λ(x) ≤ λ(y) for 0 < x < y < +∞, (3)

or the conditions

λ(0) > 1, λ(x) ≥ λ(y) for 0 ≤ x < y < +∞, −∞ < λ0 = lim
x→+∞

λ(x) < 1,

lim sup
x→+∞

(λ(x)− λ0) ln(x) < +∞.
(4)

Let t0 ∈ [a,+∞[ . The solution u : [t0,+∞[→ R of equation (1) is said to be proper if it is not
identically equal to zero in non of the neighborhood of +∞.

The proper solution u : [t0,+∞[→ R is called:
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1) oscillatory if it changes its sign in any neighborhood of +∞ and nonoscillatory, otherwise;

2) Kneser solution if

u(t) ̸= 0, (−1)iu(i)(t)u(t) ≥ 0 for t ≥ t0 (i = 1, . . . , n− 1);

3) vanishing at infinity if the equality

lim
t→+∞

u(t) = 0

is fulfilled, and separated from zero if the inequality

lim inf
t→+∞

|u(t)| > 0

is fulfilled;

4) slowly growing if
lim sup
t→+∞

|u(n−1)(t)| < +∞

and rapidly growing if
lim

t→+∞
|u(n−1)(t)| = +∞.

Definition 1. Equation (1) has property K if it has a continuum of proper oscillatory solutions
and a continuum of separated from zero slowly growing solutions.

Definition 2. Equation (1) has property K0 if it has a continuum of proper oscillatory solutions, a
continuum of separated from zero slowly growing solutions and a continuum of vanishing at infinity
Kneser solutions.

Theorem 1. Let n0 be odd and along with (2) and (3), the condition
+∞∫
a

tn−2+λ(tx)|p(t)| dt = +∞ for x > 0 (5)

be fulfilled. Then equation (1) has property K if and only if
+∞∫
a

tn−1|p(t)| dt < +∞. (6)

Theorem 1′. Let n = 2n0+1 (n = 2n0), n0 be odd and conditions (2), (3), (5) and (6) be fulfilled.
Then every nonoscillatory proper solution of equation (1) is separated from zero Kneser solution
(either is separated from zero Kneser solution, or rapidly growing solution).

Theorem 2. Let n0 be even (odd) and along with (2) and (4) the condition
+∞∫
a

tn−n0+(n0−1)λ0 |p(t)| dt = +∞ (7)

be fulfilled. Then equation (1) has property K (property K0) if and only if
+∞∫
a

t(n−1)λ0 |p(t)| dt < +∞. (8)
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Theorem 2′. Let n0 be even (odd) and conditions (2), (4), (7) and (8) be fulfilled. Then every
proper nonoscillatory solution of equation (1) is separated from zero slowly growing (either is
separated from zero slowly growing, or vanishing at infinity Kneser solution).

Example. Let
λ(x) = λ0 +

λ1

1 + |x|
, where λ0 ∈ ]−∞, 1[ , λ1 > 1− λ0. (9)

Then conditions (4) are fulfilled. Therefore, if n0 is even (is odd) and the function p satisfies
conditions (2), (7) and (8), then equation (1) has property K (property K0). Moreover, every
proper nonoscillatory solution of that equation is separated from zero slowly growing (either is
separated from zero slowly growing, or vanishing at infinity Kneser solution).

Remark. Condition (7) in Theorems 2 and 2′ is unimprovable in the sense that it cannot be
replaced by the condition

+∞∫
0

tn−n0+(n0−1)λ0+ε|p(t)| dt = +∞,

no matter how small ε > 0 is.

Finally, it should be noted that in the case n = 3 the question on the validity of Theorems 1
and 2 remains open. In particular, the following problems remain unsolved.

Problem 1. Let n = 3, λ(x) ≡ λ0 > 1,

p(t) ≤ 0 for t ≥ a,

+∞∫
a

t1+λ0 |p(t)| dt = +∞,

+∞∫
a

t2|p(t)| dt < +∞.

Then, does equation (1) have at least one proper oscillatory solution or not?

Problem 2. Let n = 3 and along with (9) the conditions

p(t) ≤ 0 for t ≥ a,

+∞∫
a

t2|p(t)| dt = +∞,

+∞∫
a

t2λ0 |p(t)| dt < +∞

be fulfilled. Then, does equation (1) have at least one proper oscillatory solution or not?
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Let Ω = (0, ω1)×(0, ω2) be an open rectangle, and let D be an orthogonally convex open domain
with C2 boundary inscribed in Ω such that

D = {(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

where γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2), and

γ1(ξ
∗
1) = 0, γ2(ξ

∗
2) = ω2, η1(ζ

∗
1 ) = 0, η2(ζ

∗
2 ) = ω1

for some ξ∗1 , ξ∗2 ∈ [0, ω1] and ζ∗1 , ζ
∗
2 ∈ [0, ω2].

In the domain D consider the problem

u(2,2) = p1(x1, x2)u
(2,0) + p2(x1, x2)u

(0,2) +
1∑

j=0

1∑
k=0

pjk(x1, x2)u
(j,k) + q(x1, x2), (1)

u(ηi(x2), x2) = φi(x2) (i = 1, 2); u(2,0)(x1, γi(x1)) = ψ′′
i (x1) (i = 1, 2), (2)

where
u(j,k)(x1, x2) =

∂j+ku

∂xj1∂x
k
2

,

pi ∈ C(D) (i = 1, 2), pjk ∈ C(D) (j, k = 0, 1), q ∈ C(D), ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2),
Cm,n(D) is the Banach space of functions u : D → R, having continuous partial derivatives u(i,j)
(i = 0, . . . ,m; j = 0, . . . , n), with the norm

∥u∥Cm,n(D) =

m∑
j=0

n∑
k=0

∥u(j,k)∥C(D),

and D is the closure of the set D.
Problem (1), (2) was studied in [1–3]. The Dirichlet problem for higher order linear hyperbolic

equations in a rectangular domain was studied in [4].
Along with problem (1), (2) consider its corresponding homogeneous problem

u(2,2) = p1(x1, x2)u
(2,0) + p2(x1, x2)u

(0,2) +
1∑

j=0

1∑
k=1

pjk(x1, x2)u
(j,k), (10)

u(ηi(x2), x2) = 0 (i = 1, 2); u(2,0)(x1, γi(x1)) = 0 (i = 1, 2). (20)

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ C2,2(D)∩
C2,0(D) satisfying equation (1) and boundary conditions (2) everywhere in D and ∂D, respectively.
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Theorem 1. Let pi ∈ C(Ω) (i = 1, 2), pjk ∈ C(Ω) (j, k = 0, 1), q ∈ C(Ω), ϕi ∈ C2([0, ω2]),
ψi ∈ C2([0, ω1]) (i = 1, 2), and let

p1(x1, x2) ≥ 0, p2(x1, x2) ≥ 0 for (x1, x2) ∈ D.

Then problem (1), (2) has the Fredholm property, i.e.:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) problem (1), (2) is uniquely solvable if and only if problem (10), (20) has only the trivial
solution.

Furthermore, every solution of problem (1), (2) in a unique way can be continued to a solution of
equation (1) in the domain Ω.

Remark 1. Orthogonal convexity of the domain D is very important and cannot be relaxed.
Indeed, in the domain

D =
{
(x1, x2) : x1 ∈ (0, 4), x2 ∈ (γ(x1), 2)

}
,

where

γ(x) =

{
e

1
(x−1)(x−3) for x ∈ (1, 3)

0 for x ∈ [0, 1] ∪ [3, 4]
,

consider the problem

u(2,2) = 0, (3)
u
∣∣
∂D

= 0; u(2,0)
∣∣
∂D

= 1. (4)

Notice that the function y = γ(x) belongs to C∞([0, 4]), it is increasing on the interval [1, 2] and it
is decreasing on the interval [2, 3]. It is easy to show that

η1(y) = 2−
√
1 + ln−1(y)

is the function inverse to γ(x) on the interval [1, 2], and

η2(y) = 2 +

√
1 + ln−1(y)

is the function inverse to γ(x) on the interval [2, 3].
It is clear that the only possible solution of problem (3), (4) is a solution of the problem

u(2,0) = 1, (5)
u
∣∣
∂D

= 0. (6)

Problem (5), (6) has the unique solution

u(x1, x2) =



x1(x1 − η1(x2))

2
for x1 ∈ [0, 2), x2 ∈ [0, e−1)

(x1 − η2(x2))(x1 − 4)

2
for x1 ∈ (2, 4], x2 ∈ [0, e−1)

x1(x1 − 4)

2
for x1 ∈ [0, 4], x2 ∈ (e−1, 2]

.

One can easily see that u(x1, x2) is not a classical solution of problem (3), (4), since it is
discontinuous along the line segment 0 ≤ x1 ≤ 4, x2 = e−1.
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Remark 2. C2 smoothness of the boundary of the domain D is very important and cannot be
relaxed. Indeed, let α ∈ [1, 2) be an arbitrary number,

γi(x2) = 1 + (−1)i
√
1− |x2 − 1|α(i = 1, 2)

and
ηi(x1) = 1 + (−1)ix

1
α
1 (2− x1)

1
α (i = 1, 2).

In the domain

D =
{
(x1, x2) : x1 ∈ (0, 2), x2 ∈

(
1− x

1
α
1 (2− x1)

1
α , 1 + x

1
α
1 (2− x1)

1
α
)}

=
{
(x1, x2) : x2 ∈ (0, 2), x1 ∈

(
1−

√
1− |x2 − 1|α, 1 +

√
1− |x2 − 1|α

)}
consider the problem

u(2,2) = 0, (7)
u(ηi(x2), x2) = 0 (i = 1, 2); u(2,0)(x1, γi(x1)) = 2 (i = 1, 2). (8)

It is clear that the only possible solution of problem (7), (8) is a solution of the problem

u(2,0) = 2, (9)
u(ηi(x2), x2) = 0 (i = 1, 2). (10)

Problem (9), (10) has the unique solution

u(x1, x2) =
(
x1 − 1−

√
1− |x2 − 1|α

)(
x1 − 1 +

√
1− |x2 − 1|α

)
= (x1 − 1)2 − 1 + |x2 − 1|α = x21 − 2x1 + |x2 − 1|α.

However, u(0,2)(x1, x2) is discontinuous along the line segment 0 ≤ x1 ≤ 2, x2 = 1, since α ∈ [1, 2).
Thus, problem (7), (8) is not solvable in classical sense due to the fact that the boundary ∂D is not
C2 smooth at points (0, 1) and (2, 1).

Consider the quasilinear equation

u(2,2) = ρ1
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(2,0) + ρ2

(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(0,2)

+

1∑
j=0

1∑
k=0

ρjk
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(j,k) + q

(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
, (11)

where ρi(x1, x2, z) (i = 1, 2), ρjk(x1, x2, z) (j, k = 0, 1) and q(x1, x2, z) are continuous functions on
D× R4, and z = (z1, z2, z3, z4).

Theorem 2. Let ρi ∈ C(D × R4) (i = 1, 2), ρjk ∈ C(D × R4) (j, k = 0, 1), q ∈ C(D × R4),
ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2), and let there exist functions Pil ∈ C(D) (i, l = 1, 2)
and Pijk ∈ C(D) (i, j = 0, 1; j, k = 0, 1) such that:

(A0)

0 ≤ P1l(x1, x2) ≤ ρl(x, y, z) ≤ P2l(x1, x2) for (x1, x2, z) ∈ D× R4 (l = 1, 2);

(A1)
P1jk(x1, x2) ≤ ρjk(x1, x2, z) ≤ P2jk(x1, x2) for (x1, x2, z) ∈ D× R4 (j, k = 0, 1);



106 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

(A2) for arbitrary measurable functions pi : D → R (i = 1, 2) and pjk : D → R (j, k = 0, 1)
satisfying the inequalities

P1l(x1, x2) ≤ pl(x, y) ≤ P2l(x1, x2) for (x1, x2, z) ∈ D× R4 (l = 1, 2),

P1jk(x1, x2) ≤ pjk(x1, x2) ≤ P2jk(x1, x2) for (x1, x2, z) ∈ D× R4 (j, k = 0, 1),

problem (10), (20) has only the trivial solution;

(A3)
lim

∥z∥→+∞

q(x1, x2, z)

∥z∥
= 0 uniformly on D.

Then problem (11), (2) has at least one solution.

Consider the linear and quasilinear equations

u(2,2) =
(
p1(x1, x2)u

(1,0)
)(1,0)

+
(
p2(x1, x2)u

(0,1)
)(0,1)

+ p0(x1, x2)u+ q(x1, x2), (12)

u(2,2) =
(
p1(x1, x2, u)u

(1,0)
)(1,0)

+
(
p2(x1, x2, u)u

(0,1)
)(0,1)

+ p0(x1, x2, u) + q
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)

(13)

and
u(2,2) =

(
p1(x1, x2)u

(1,0)
)(1,0)

+
(
p2(x1, x2)u

(0,1)
)(0,1)

+ p0(x1, x2, u) + q(x1, x2). (14)

Theorem 3. Let D be an open convex domain with C2 boundary inscribed in Ω such that

D =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

where γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2),

(−1)iγ′′i (x1) ≤ 0 for x1 ∈ (0, ω1) (i = 1, 2),

(−1)iη′′i (x2) ≤ 0 for x2 ∈ (0, ω2) (i = 1, 2),

and
γ1(ξ

∗
1) = 0, γ2(ξ

∗
2) = ω2, η1(ζ

∗
1 ) = 0, η2(ζ

∗
2 ) = ω1

for some ξ∗1 , ξ
∗
2 ∈ [0, ω1] and ζ∗1 , ζ

∗
2 ∈ [0, ω2]. Furthermore, let p1 ∈ C1,0(Ω), p2 ∈ C0,1(Ω),

p0, q ∈ C(Ω), ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2), and let

p1(x1, x2) ≥ 0, p2(x1, x2) ≥ 0, p0(x1, x2) ≤ 0 for (x1, x2) ∈ D.

Then problem (12), (2) is uniquely solvable, and its solution in a unique way can be continued to a
solution of equation (12) in the domain Ω.

Furthermore, if
(−1)iγ′′i (x1) < 0 for x1 ∈ (0, ω1) (i = 1, 2) (15)

and
(−1)iη′′i (x2) < 0 for x2 ∈ (0, ω2) (i = 1, 2), (16)

then the solution of problem (12), (2) can be continued to a solution of equation (12) in the closed
domain Ω.
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Theorem 4. Let D be an open convex domain same as in Theorem 3, and let p1 ∈ C1,0,1(D×R),
p2 ∈ C0,1,1(D× R), p0 ∈ C(D× R), q ∈ C(D× R4), and a nonnegative number M be such that

p1(x1, x2, z) ≥ 0, p2(x1, x2, z) ≥ 0 for (x1, x2, z) ∈ D× R,
p0(x1, x2, z)z ≤M for (x1, x2, z) ∈ D× R,

lim
∥z∥→+∞

q(x1, x2, z)

∥z∥
= 0 uniformly on D.

Then problem (13), (2) has at least one solution. Moreover, if inequalities (15) and (16) hold, then
every solution of problem (13), (2) belongs to C2,2(D).

Corollary 1. Let D be an open convex domain same as in Theorem 3, let p1 ∈ C1,0(D), p2 ∈
C0,1(D), p0 ∈ C(D× R), q ∈ C(D), and let(

p0(x1, x2, z1)− p0(x1, x2, z1)
)
(z1 − z2) ≤ 0 for (x1, x2, z) ∈ D× R.

Then problem (14), (2) has one and only one solution. Moreover, if inequalities (15) and (16) hold,
then the solution of problem (13), (2) belongs to C2,2(D).

Remark 3. Under the conditions of Theorem 3 the functions p0, p1 and p2 may have arbitrary
growth order with respect to the phase variable. As an example, consider the equation

u(2,2) =
(
eα1(x1,x2)u2

u(1,0)
)(1,0)

+
(
eα2(x1,x2)u3

u(0,1)
)(0,1) − u2n+1

+

2n∑
k=0

βk(x1, x2)u
k +

(
1 + |u|+ |u(1,0)|+ |u(0,1)|+ |u(1,1)|

)1−ε
, (17)

where α1 ∈ C1,0(D), α2 ∈ C0,1(D), βk ∈ C(D) (k = 0, . . . , 2n) are arbitrary functions, n is an
arbitrary positive integer, and ε ∈ (0, 1). By Theorem 4, problem (17), (2) has at least one solution.
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In the domain [0; 1] × [0;T ], where T = const > 0, let us consider the initial-boundary value
problem for the heat equation

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t),

U(0, t) = U(1, t) = 0, t ≥ 0,

U(x, 0) = U0(x), x ∈ [0; 1],

(1)

where a is a positive constant and U0 and f are given functions.
For the numerical solution of problem (1) let us introduce a net whose mesh points are denoted

by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N and consider
the following weighted finite difference scheme (see, for example, [8]):

uj+1
i − uji

τ
− a
[
σ1

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
+ σ2

uji+1 − 2uji + uji−1

h2

]
= η1f

j+1
i + η2f

j
i ,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

uj0 = ujM = 0, j = 0, 1, . . . , N,

u0i = U0,i, i = 0, 1, . . . ,M.

(2)

Here the initial line is denoted by j = 0. The discrete approximation at (xi, tj) is denoted by uji
and the exact solution to problem (1) at those points is denoted by U j

i .
Qualitative and quantitative properties, as well as numerical solution for problem (1) and its

nonlinear analogs are well studied in the literature (see, for example, [2, 3, 8] and the references
therein). By tuning the parameters τ , h, σ1, σ2, η1, η2 and take relevant approximation for the
right side the stability of the scheme (2), the different accuracy can be achieved for the numerical
solution.

Our goal is to find the above-mentioned parameters automatically by using Bayesian machine
learning. In particular, we will minimize objective function applying Bayesian Optimization (BO).
The objective function is designed as a maximum of the absolute value of the difference between
exact and numerical solutions at each grid point (xi, tj), i = 0, 1, . . . ,M ; j = 0, 1, . . . , N . For
training, the different types of initial and boundary conditions with the corresponding right-hand
side were selected. The output of the objective function depend on unknown parameters implic-
itly. Thus, we deal with, so-called black-box function optimization problem [1]. Since we do not
have the close formula for the objective function, there is no information regarding gradient. So,
the derivative-free optimization method is needed. BO is one of the most popular black-box op-
timization methods [1, 4–6]. It is based on Gaussian Process (GP) and Bayes Theorem [7]. BO
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is a model-based approach that makes sequential decisions to search the space, so the number of
simulations gets minimized.

A GP is a generalization of the Gaussian Probability Distribution. Notation for Gaussian prob-
ability distribution is N (µ, σ), where µ is mean and σ is standard deviation of random variables.
While a Gaussian probability distribution describes random variables which are scalars or vec-
tors, a stochastic process governs the properties of functions. GP is an extension of Multivariate
Gaussian Distribution. In turn, the multivariate Gaussian distribution is a generalization of the
one-dimensional normal distribution to higher dimensions. The probability density function of the
multivariate Gaussian distribution in D-dimensions is defined by the following formula:

g(z) =
1

(2π)D/2|Σ|1/2
exp

[
− 1

2
(z − µ)′Σ−1(z − µ)

]
,

where, in general Σ′ denotes transpose of Σ, Σ−1 denotes inverse of Σ, µ = (µ1, µ2, . . . , µD) is mean
vector of z = (z1, z2, . . . , zD) and Σ = cov[z] is the D × D covariance matrix, which is positively
defined and is constructed by, one of the so-called covariance functions [7]. One of the common
covariance function is Squared Exponential function:

KSE = k(zi, zj) = σ exp
(
−1

2

∥zi − zj∥2

θ2

)
,

where σ and θ are hyper-parameters which can be tuned by users. Note that GP is fully described
by mean and covariance functions.

Most of the efficiency derived from Bayesian optimization ability to incorporate prior belief
about the problem to help direct the sampling, and to trade of exploration and exploitation of
the search space [1]. Algorithm is called Bayesian because it uses the well-known Bayes Theorem,
which can be stated as follows

P (A | B) ∼ P (B | A)P (A),

where P (A | B) is probability of A given B, P (B | A) is probability of B given A and P (A) is the
marginal probability [1, 7].

Let us now consider how the new query can be obtained using the aforementioned Bayes Theo-
rem. Assume, the dataset with n points is already obtained D1:n = {z1:n, g(z1:n)}. Bayes Theorem
helps to estimate posterior distribution P (g | D1:n) by combining a prior distribution P (g) with
the likelihood function P (D1:n | g)

P (g | D1:n) ∼ P (D1:n | g)P (g).

To find the next sample point zn+1, the so-called acquisition function is maximized. There
are different types of acquisition functions. One of the most popular acquisition function is Upper
Confidence Bound (UCB)

UCB(z) = µ(z) + κσ(z),

where κ is tunable trade-off parameter.
The BO algorithm performs as follows:

1. Collect data D1:n = {z1:n, g(z1:n)} and fit the GP. Note, that BO can be started from one
point dataset;

2. Find the next querying point by maximizing acquisition function;

3. Augment dataset D1:n+1 = {z1:n+1, g(z1:n+1)} and update GP;
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4. End process when the desired accuracy is obtained or the number of iterations reaches a
certain value.

Note that all steps in the BO algorithm are clear except step 3 (note also that since the
evaluation of the acquisition function is not expensive its maximization in step 2 can be done by
some standard optimization algorithm). In step 3 we need to update the GP and find the updated
mean and variance functions, based on which the acquisition functions are constructed. Bellow,
the close formulas for calculating the updated mean and variance functions are given. Assume,
dataset D1:n = {z1:n, g(z1:n)} is already obtained. The function values are drawn according to a
multivariate normal distribution N (0,K), where the kernel matrix is given by:

K =

k(z1, z1) · · · k(z1, zn)
... . . . ...

k(zn, z1) · · · k(zn, zn)

 .

Let us denote gn+1 = g(zn+1), where zn+1 is the next sampling point, which is obtained from
the maximization of the acquisition function. gn+1 and g1:n are jointly Gaussian:[

g1:n
gn+1

]
∼ N

(
0,

[
K k
k′ k(zn+1, zn+1)

])
,

where
k =

[
k(zn+1, z1), k(zn+1, z2), . . . , k(zn+1, zn)

]
.

Using the Sherman–Morrison–Woodbury formula [1,7] the following predictive distribution can
be obtained:

P (gn+1 | D1:n+1, zn+1) ∼ N
(
µn(zn+1), σ

2
n(zn+1)

)
,

where

µn(zn+1) = k′K−1g1:n,

σ2
n(zn+1) = k(zn+1, zn+1)− k′K−1k.

To implement the BO for our problem the IMGPO (Infinite-Metric GP Optimization) algorithm
is used [4]. Note that the IMGPO algorithm does not require any prior data. It can be started
from any random point, say from the center point of the search space, as in our case. IMGPO uses
UCB acquisition function and avoids its maximization for finding the next sample point, instead it
handles the tradeoff with the assumption of the existence of a tighter bound than UCB and remain
the exponential convergence at the same time (for details see [4]).

In our numerical experiment we took σ2 = 1 − σ1, η2 = 1 − η1 and the search space is
(τ, h, σ1, η1) ∈ [0; 0.1] × [0; 0.1] × [0; 1] × [0; 1]. The stopping criterion for BO is as follows, the
algorithm stops when maximum error is less then τ + h2 and less than ε = 0.0001 or maximum
error is less than τ + h2 and maximum number of iterations I = 30 is reached.

We have carried out various numerical experiments for different test cases and found the values
of parameters for the best performance of the scheme (2).
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1 Introduction
y′′′ = p(x, y, y′, y′′)|y|k0 |y′|k1 |y′′|k2 sgn(yy′y′′), k0, k1, k2 > 0, (1.1)

with positive continuous and Lipschitz continuous in u, v, w function p(x, u, v, w) satisfying in-
equalities

0 < m ≤ p(x, u, v, w) ≤ M < +∞. (1.2)

Equation (1.1) in the case k0 > 0, k0 ̸= 1, k1 = k2 = 0, was studied by I. Astashova in [1,
Chapters 6–8]. In particular, asymptotic classification of solutions to such equations was given
in [4, 6], and proved in [3].

For higher order differential equations, nonlinear with respect to derivatives of solutions, the
asymptotic behavior of certain types of solutions was studied by V. M. Evtukhov, A. M. Klopot
in [7, 8]. Another approach to study asymptotic properties of solutions to higher order equations
was offered by I. T. Kiguradze and T. A. Chanturia in [9].

Using methods described in [1, 2, 5] by I. V. Astashova, the behavior of solutions to (1.1) near
domain boundaries is considered with respect to the values k0, k1 and k2.

2 Main results
Consider positive increasing convex solutions to equation (1.1).

Theorem 2.1. Suppose the function p(x, u, v, w) is continuous, Lipschitz continuous in u, v, w,
and satisfies inequalities (1.2), and let y(x) be a positive increasing convex on (x1, x2) solution to
equation (1.1). Then for k2 ̸= 2 the following estimates hold:

m(y(x1))
k0 (y′(x))k1+1

k1 + 1

∣∣∣∣x2

x1

≤ (y′′(x))2−k2

2− k2

∣∣∣∣x2

x1

≤ M(y(x2))
k0 (y′(x))k1+1

k1 + 1

∣∣∣∣x2

x1

, (2.1)

and for k2 ̸= 1 the following estimates hold:

m(y′(x1))
k1−1 (y(x))

k0+1

k0 + 1

∣∣∣∣x2

x1

≤ (y′′(x))1−k2

1− k2

∣∣∣∣x2

x1

≤ M(y′(x2))
k1−1 (y(x))

k0+1

k0 + 1

∣∣∣∣x2

x1

. (2.2)

Proof. Let us prove inequalities (2.1). Since y(x) is positive, increasing and convex, for x ∈ [x1, x2]
we have

m(y(x1))
k0(y′(x))k1(y′′(x))k2 ≤ y′′′ ≤ M(y(x2))

k0(y′(x))k1(y′′(x))k2 ,
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hence
m(y(x1))

k0(y′(x))k1y′′ ≤ y′′′(y′′(x))1−k2 ≤ M(y(x2))
k0(y′(x))k1y′′.

Let us integrate the above inequality on [x1, x2]:

m(y(x1))
k0

x2∫
x1

(y′(x))k1 dy′ ≤
x2∫

x1

(y′′(x))1−k2 dy′′ ≤ M(y(x2))
k0

x2∫
x1

(y′(x))k1 dy′,

so
m(y(x1))

k0 (y′(x))k1+1

k1 + 1

∣∣∣∣x2

x1

≤ (y′′(x))2−k2

2− k2

∣∣∣∣x2

x1

≤ M(y(x2))
k0 (y′(x))k1+1

k1 + 1

∣∣∣∣x2

x1

,

and thus, estimates (2.1) are obtained.
Now let us prove inequalities (2.2). Due to equation (1.1) and that fact that the function

p(x, u, v, w) is bounded, for any x ∈ [x1, x2] it holds that

m(y′(x1))
k1−1(y(x))k0y′(x)(y′′(x))k2 ≤ y′′′ ≤ M(y′(x2))

k1−1(y(x))k0y′(x)(y′′(x))k2 ,

and therefore

m(y′(x1))
k1−1(y(x))k0y′(x) ≤ y′′′(y′′(x))−k2 ≤ M(y′(x2))

k1−1(y(x))k0y′(x).

By integrating these inequalities on [x1, x2], we obtain

m(y′(x1))
k1−1

x2∫
x1

(y(x))k0 dy ≤
x2∫

x1

(y′′(x))−k2 dy′′ ≤ M(y′(x2))
k1−1

x2∫
x1

(y(x))k0 dy,

which implies

m(y′(x1))
k1−1 (y(x))

k0+1

k0 + 1

∣∣∣∣x2

x1

≤ (y′′(x))1−k2

1− k2

∣∣∣∣x2

x1

≤ M(y′(x2))
k1−1 (y(x))

k0+1

k0 + 1

∣∣∣∣x2

x1

,

and estimates (2.2) are also proved.

Theorem 2.2. Suppose the function p(x, u, v, w) is continuous, Lipschitz continuous in u, v, w,
and satisfies inequalities (1.2). Then the second derivative of any maximally extended solution y(x)
to equation (1.1), satisfying the conditions y(x0) = y0 > 0, y′(x0) = y1 > 0, y′′(x0) = y2 > 0 at
some point x0, tends to +∞ as x → x̃, where x̃ is the right domain boundary of solution y(x),
x0 < x̃ ≤ +∞.

Proof. Since initial data are positive and p(x, u, v, w) > m, we obtain y′′′(x) ≥ myk00 yk11 yk22 for
x ≥ x0.

Denote C0 = myk00 yk11 yk22 , then y′′′ ≥ C0, and by consequently integrating obtained inequalities
on [x0, x] we derive

y′′(x) > C0(x− x0), y′(x) >
C0

2
(x− x0)

2, y(x) >
C0

6
(x− x0)

3.

Then from equation (1.1) it follows that

y′′′(x) > m
(C0

6
(x− x0)

3
)k0(C0

2
(x− x0)

2
)k1

(C0(x− x0))
k2 =

mCk0+k1+k2
0

6k02k1
(x− x0)

3k0+2k1+k2 ,
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that is,
y′′(x) > C̃0(x− x0)

3k0+2k1+k2+1,

where C̃0 > 0 is a constant. Thus, y′′(x) → +∞ as x → +∞, and the theorem is proved for
x̃ = +∞.

Consider now the case x̃ < +∞. If for a constant D > 0 inequality y′′(x) ≤ D holds for
x ∈ (x0, x̃), then

y′(x) ≤ D(x− x0) + y′(x0) ≤ D(x̃− x0) + y′(x0) = D1 < +∞,

y(x) ≤ D1(x− x0) + y(x0) ≤ D1(x̃− x0) + y′(x0) = D2 < +∞,

so y′′′(x) ≤ MDk0
2 Dk1

1 Dk2 < +∞, and, since the solution and all its derivatives up to the third
are increasing and bounded on a finite interval, there exist finite limits of the solution and its
derivatives as x → x̃. Then the solution y(x) can be extended to the right of x̃, and we obtain a
contradiction.

Thus, y′′(x) → +∞ as x → x̃, and the theorem is proved.

Theorem 2.3. Suppose k0 + k1 + k2 > 1, and the function p(x, u, v, w) is continuous, Lipschitz
continuous in u, v, w, and satisfies inequalities (1.2). Then for any maximally extended solution
y(x) to equation (1.1), satisfying the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) = y2 > 0 at some
point x0, its right domain boundary x̃ is finite and satisfies the estimate

x̃− x0 < ξy
− k0+k1+k2−1

2k0+k1+1

2 ,

with ξ =
( (2k0+k1+1)2k0

m

) 1
2k0+k1+1 (1− 2

− k0+k1+k2−1
2k0+k1+1 )−1.

Proof. As it was shown above, the second derivative of such solution is infinitely increasing as
argument tends to the right domain boundary. Consider the sequence of points xi, i = 0, 1, . . . ,
such that y′′(xi) = 2y′′(xi−1) = 2iy2.

For x ∈ [xi, xi+1] the following inequalities hold:

y′′(x) ≥ 2iy2,

y′(x) > y′(x)− y′(xi) ≥ 2iy2(x− xi),

y(x) > y(x)− y(xi) ≥ 2i−1 y2(x− xi)
2.

Then from equation (1.1) we derive

y′′′(x) > m
∣∣2i−1y2(x− xi)

2
∣∣k0∣∣2iy2(x− xi)

∣∣k1 |2iy2|k2 ,
y′′′(x) > m · 2i(k0+k1+k2)−k0yk0+k1+k2

2 (x− xi)
2k0+k1 .

By integrating this inequality on [xi, xi+1], we obtain

2i+1y2 − 2iy2 >
m · 2i(k0+k1+k2)−k0

2k0 + k1 + 1
yk0+k1+k2
2 (xi+1 − xi)

2k0+k1+1,

2iy
−(k0+k1+k2−1)
2 >

m · 2i(k0+k1+k2)−k0

2k0 + k1 + 1
(xi+1 − xi)

2k0+k1+1,

(xi+1 − xi)
2k0+k1+1 <

(2k0 + k1 + 1) · 2k0
m

(2iy2)
−(k0+k1+k2−1),
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and, since 2k0 + k1 + 1 > 0,

xi+1 − xi <
((2k0 + k1 + 1)2k0

m

) 1
2k0+k1+1

(2iy2)
− k0+k1+k2−1

2k0+k1+1 .

Now let us summarize these inequalities:

+∞∑
i=0

(xi+1 − xi) <
((2k0 + k1 + 1)2k0

m

) 1
2k0+k1+1

y
− k0+k1+k2−1

2k0+k1+1

2

+∞∑
i=0

2
−i

k0+k1+k2−1
2k0+k1+1 .

Since k0 + k1 + k2 > 1, the series in the right part converges and

x̃− x0 = lim
i→+∞

xi − x0 =
+∞∑
i=0

(xi+1 − xi) < ξy
− k0+k1+k2−1

2k0+k1+1

2 ,

with ξ =
( (2k0+k1+1)2k0

m

) 1
2k0+k1+1 (1− 2

− k0+k1+k2−1
2k0+k1+1 )−1.

Thus, x̃ is finite and the theorem is proved.

Theorem 2.4. Suppose k0+k1+k2 ̸= 1, k2 ̸= 1, k2 ̸= 2, and the function p(x, u, v, w) is continuous,
Lipschitz continuous in u, v, w, and satisfies inequalities (1.2). Let y(x) be a maximally extended
solution to equation (1.1), satisfying the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) > 0 at some point
x0. Then

1. if k0 + k1 + k2 < 1, then y → +∞, y′ → +∞, y′′ → +∞ as x → x̃ < +∞ or y → +∞,
y′ → +∞, y′′ → +∞ as x → x̃ = +∞;

2. if k0 + k1 + k2 > 1, k1 ≤ 1, k2 < 1, then y → +∞, y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

3. if k1 > 1, k2 < 1, then y → const, y′ → +∞, y′′ → +∞ as x → x̃ < ∞ or y → +∞,
y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

4. if 1 < k2 < 2, then y → const, y′ → +∞, y′′ → +∞ as x → x̃ < ∞;

5. if k2 > 2, then y → const, y′ → const, y′′ → +∞ as x → x̃ < ∞.

Proof. Since the initial data are nonnegative as well as the function p(x, u, v, w), solution y(x) and
its first, second and third derivatives are positive and increasing as x → x̃, where x̃ is a right
domain boundary of y(x). According to the Theorem 2.2, the second derivative is increasing and
unbounded.

Let us show that if the first derivative is bounded, then the solution with positive initial data
cannot be bounded. Indeed, let y′ ≤ C, then y ≤ C(x− x0)+ y(x0), which implies that in the case
x̃ < +∞ the solution is also bounded. If the solution is infinitely extensible to the right, then, since
y′(x0) > 0, we derive y(x) > y′(x0)(x − x0) + y(x0), and unboundedness of this solution follows
from unboundedness of x.

Thus, there are three possible options: a solution and its first derivative are bounded; a solution
is bounded, but its derivative is unbounded, and both solution and its derivative are unbounded.

At first, let us consider the case k2 > 2. In this case k0 + k1 + k2 > 1, and by Theorem 2.3, the
domain of solution is finite. Values k0+1 and k1+1 are positive; besides, 1− k2 < 2− k2 < 0, and
therefore, using inequality (2.1) on the interval (x0, x), as x → x̃ we have

m(y(x0))
k0 (y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≤ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
< +∞,
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which implies that y′(x) is bounded as x → x̃. Analogously, inequality (2.1) implies that the
solution y(x) is also bounded.

Consider the case 1 < k1 < 2. Again, k0 + k1 + k2 > 1, and, by Theorem 2.3, the domain of
y(x) is finite; also 1 − k2 < 0 < 2 − k2, and, due to (2.1), (2.2) and the fact that y′′ → +∞ as
x → x̃, we derive

M(y(x))k0
(y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≥ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
→ +∞,

m(y′(x0))
k1−1 (y(x))

k0+1 − (y(x0))
k0+1

k0 + 1
≤ (y′′(x))1−k2 − (y′′(x0))

1−k2

1− k2
< +∞,

hence y(x) → const and y′(x) → +∞ as x → x̃.
Further, suppose k2 < 1, k1 > 1. Then k0 + k1 + k2 > 1, the domain of solution is finite,

2− k2 > 1− k2 > 0, and we obtain

M(y(x))k0
(y′(x))k1+1 − (y′(x0))

k1+1

k1 + 1
≥ (y′′(x))2−k2 − (y′′(x0))

2−k2

2− k2
−→ +∞,

M(y′(x))k1−1 (y(x))
k0+1 − (y(x0))

k0+1

k0 + 1
≥ (y′′(x))1−k2 − (y′′(x0))

1−k2

1− k2
−→ +∞.

In this case there are two possible options: y → const, y′ → +∞, and y → +∞, y′ → +∞.
Finally, for k2 < 1, k1 ≤ 1, according to the above inequalities, the only possible option is

y → +∞, y′ → +∞; moreover, if k0 + k1 + k2 > 1, then x̃ < +∞, and the theorem is proved.

Remark 2.1. In the cases 1 and 3 Theorem 2.4 does not state the existence of solutions of every
possible type of behavior. In the cases 4 and 5 for k0 ≥ 1, k1 ≥ 1, k2 > 1 the existence of solutions
of described type is guaranteed by classical existence and uniqueness theorem. For 0 < k0 < 1,
k1 ≥ 1, k2 ≥ 1 the existence of solutions to equation (1.1) with positive initial data is guaranteed
by the following theorem.

Theorem 2.5 (I. Astashova, [1]). Let the function p(x, y0, . . . , yn−1) be continuous in x and Lip-
schitz continuous in y0, . . . , yn−1. Then for any set of numbers x0, y

0
0, . . . , y

0
n−1 with not every y0i

equal to zero, the corresponding Cauchy problem for the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sgn y, n ≥ 2, 0 < k < 1,

has a unique solution.
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We consider depending on a parameter µ ∈ R linear differential system

ẋ = µC(t)x, x(t) ∈ Rn, t ≥ 0 (1µ)

with a piecewise continuous bounded coefficients. By an irregularity set of the system

ẋ = C(t)x, x(t) ∈ Rn, t ≥ 0 (2C)

we call [2] the set of those values µ ∈ R such that the corresponding system (1µ) is irregular under
Lyapunov.

E. K. Makarov constructed (see references in [2]) examples of systems (2C) that have various
metric and topological properties of their irregularity sets. Some of them have an arbitrary Lebesgue
measure [5].

Later E. A.Barabanov proved [1] that every open set of real line without zero point can be
realized as irregularity set of some system (2C). Paper [4] held an analogous result for closed sets.

Recently P. A. Khudyakova has established that the reducibility sets of systems (1µ) are exactly
the class of Fσ sets [3].

In the present talk we completely describe the structure of irregularity sets for system (2C),
that solve N. A. Izobov’s problem from [2].

For every φ ∈ R we denote a rotation matrix with the angle φ clockwise as

U(φ) ≡
(

cosφ sinφ
− sinφ cosφ

)
,

and let
J := U(2−1π) =

(
0 1
−1 0

)
.

For each y = (y1, y2)
⊤ ∈ R2 and 2 × 2-matrix Z we use the notations ∥y∥ ≡

√
y21 + y22 for an

Euclid norm and ∥Z∥ ≡ max
∥y∥=1

∥Zy∥ for a spectral norm.

For any strongly increasing sequence {mk}+∞
k=1 ⊂ N and for the numbers 5 ≤ ik ∈ N we define

the sequence {Tk}+∞
k=1, setting

T1 := 2, Tk+1 := mk(ik + 2)Tk, k ∈ N.

Next let
θk := mkikTk, τk := θk +mkTk, k ∈ N.
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For every sequence {bk}+∞
k=1 ⊂ R and for a number d ∈ R, d ̸= 0, we define the matrix A( · ) =

A( · , d, {mk, ik, bk}∞k=1), for each l = 1, Tk, k ∈ N setting

A(t) ≡ bkJ, t ∈ (τk −mkl, τk −mkl + 1],

A(t) ≡ −bkJ, t ∈ [τk +mkl − 1, τk +mkl).

For all other t ≥ 0 let A(t) ≡ ddiag[1,−1].
We denote as XA(t, s) the Cauchy matrix for system (2A) and define the number δ(d) in the

case d > 0 by the equality δ(d) := 1, and in the case d < 0, let δ(d) := 2. Let us denote as well

Ld(α) :=
{
x ∈ R2 :

∣∣∣x3−δ(d)

xδ(d)

∣∣∣ ≤ α
}
.

Note that (
m 0

0
1

m

)
Ld(α) = Ld(m

−2 sgn dα).

Lemma 1. The matrix XA(Tk+1, θk) is self-conjugated.
For all d ̸= 0 we define k0(d) ∈ N by the equality k0(d) := 2 + [|d|−1] ([ · ] denotes the integer

part of a number).
Lemma 2. For every k ∈ N, k ≥ k0(d)− 1, the next inclusion holds

X(Tk+1, Tk0(d))eδ(d) ⊂ Ld(2e
4mkTk|d|).

Let us denote
Ŷκ(γ) := U(γ) diag[eκ, e−κ], γ,κ ∈ R.

Lemma 3. For all γ,κ ∈ R such that | cos γ| ≤ e−2|κ|, the next estimation is true ∥Ŷ 2
κ (γ)∥ < e2.

Lemma 4. If d ̸= 0 and there exist l ∈ N and a sequence (kj)
+∞
j=1 ⊂ N such that for all p ∈ (kj)

+∞
j=1

both the inequalities ip ≤ l, mp ≥ 2max{l, |d|−1} and the estimate | cos bp| < e−2mp|d| hold, then
system (2A) is irregular under Lyapunov.

Let us denote

L̃κ := Lsgnκ(2
3κ2), κ ∈ R, L̂k,d := Ld(2

3d2(mk − 1)2).

Lemma 5. For all γ,κ ∈ R, | sin γ| ≥ κ−2, κ > 24, the inclusion

Ŷκ

(
γ +

π

2

)
L̃κ ⊂ L̃κ

and for any x ∈ L̃κ the inequality ∥∥∥Ŷκ(γ +
π

2

)
x
∥∥∥ > ∥x∥eκ−

√
κ

are correct.
Lemma 6. For all d ̸= 0, k ∈ N such that

mk > 1 + 24|d|−1, | cos bk| ≥ d−2(mk − 1)−2,

the inclusion
XA(Tk+1, θk −mk + 1)L̂k,d ⊂ L̂k,d

holds, and for any solution x( · ) of system (2A) with the initial condition x(θk −mk +1) ∈ L̂k,d for
every 1 ≤ l ≤ 2Tk the next estimation is true

∥x(θk +mkl)∥
∥x(θk +mk(l − 1))∥

≥ e|d|(mk−1)−
√

|d|(mk−1) .
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Lemma 7. If mk → +∞ whereas k → +∞ and for any l ∈ N there exists kl ∈ N such that for all
k ≥ kl, satisfying the condition ik ≤ l, the estimate | cos bk| > |d|−2(mk − 1)−2 holds, then system
(2A) is regular under Lyapunov.

Let M be an arbitrary Gδσ set. One can find an open sets M̌n,l ⊂ R, l, n ∈ N, for which the

sets M̃l, l ∈ N, defined by the equalities M̃l :=
+∞∩
n=1

M̌n,l, satisfy the relation M =
+∞∪
l=1

M̃l. Let us

denote M̂n,l :=
n∩

p=1
M̌p,l. It is easy to see that the inclusion M̂n+1,l ⊂ M̂n,l as well as the equality

M̃l =
+∞∩
n=1

M̂n,l are correct.

We define by the recurrence a sequence {jn}∞n=0 ⊂ N ∪ {0}, by set up

j0 := 0, jn := 2n 9n+n3
+ jn−1, n ∈ N.

For any k, l, n ∈ N and α ∈ R we denote

Jn := {jn−1 + 1, . . . , jn}, κk(n) := 9−n−n3(
k − 2−1(jn + jn−1)

)
,

ρn,l(α) = ρn,l(α, M̂n,l) := inf
β∈R\M̂n,l

|α− β|.

Moreover, let us denote In,k = In,k({M̂n,l}n,l∈N) for the set of all l ∈ N such that either ρn,l(κk(n)) ≥
2n−1, or there exists p ∈ {1, . . . , n− 1} for which

2n−1 ≤ ρp,l(κk(n)) ≤ 5n−1.

Lemma 8. For all µ ̸∈ M and l ∈ N one can find n0 = n0(µ, l) ∈ N such that for every n ≥ n0 the
correctness for some k ∈ Jn of the inequality |µ− κk(n)| < 2n−1 implies the inclusion l ̸∈ In,k.

For any integer k there exists a singular n = n(k) ∈ N, for which k ∈ Jn. We define the
values mk, ik and bk, depending on a choice of the open sets M̌n,l ⊂ R, l, n ∈ N, such that

M =
+∞∪
l=1

+∞∩
n=1

M̌n,l, by the equalities

d := µ, µ ∈ R, mk := 1 + n(k)2, n ∈ N.

Let
ik := max

{
5,min In,k

}
, bk(µ) := 2−1π + n−1(µ− κk(n)), µ ∈ R,

in the case In,k ̸= ∅, and let

ik := 5, bk(µ) ≡ 0, if In,k = ∅.

Let us define the matrix Ãµ( · ) = Ãµ( · , {M̂n,l}n,l∈N), µ ∈ R, by the equality

Ãµ(t) := A(t) = A(t, d, {mk, ik, bk}∞k=1), t ≥ 0,

with the defined as above values of parameters d, mk, ik, bk.

Lemma 9. If 0 ̸∈ M , then the system (2
Ãµ

) is irregular under Lyapunov for all µ ∈ M and is
regular for any other µ ∈ R \M .
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Let us denote by T the set of all t ∈ R+ := R ∩ [0,+∞) such that Ãµ(t) = µ diag[1,−1].
For any t ∈ T we define the function ω( · ) by the equality ω(t) ≡ 0. For all other t ∈ [Tk, Tk+1),

k ∈ N, let qt := 0 if t < τk,j , and qt := 1 in another case, and let ω(t) := (−1)qtbk(0). We define a
matrix C(t), t ≥ 0, by the relations

C(t) := U−1(τ)
(
Ã1(t)U(τ)− d

dt
U(τ)

)
, t > 0, τ = τ(t) :=

t∫
0

ω(s) ds. (1)

Next statement contains the main result of this paper.

Theorem. For every Gδσ set M ⊂ R, 0 ̸∈ M , system (1µ) with the matrix C( · ), given by equality
(1), is irregular under Lyapunov for all µ ∈ M and is regular for any other µ ∈ R.
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We are interested in the existence and non-existence of a positive solution to the periodic
boundary value problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω). (0.1)

Here, p, h, f ∈ L([0, ω]),
h(t) ≥ 0 for a.e. t ∈ [0, ω], h(t) ̸≡ 0,

λ ∈ ]0, 1[ , and a parameter µ ∈ R. By a solution to problem (0.1), as usually, we understand
a function u : [0, ω] → R which is absolutely continuous together with its first derivative, satisfies
given equation almost everywhere, and verifies periodic conditions.

Definition 0.1. We say that the function p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if
for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality
u(t) ≥ 0 for t ∈ [0, ω]

(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 0.2. We say that the function p ∈ L([0, ω]) belongs to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (0.2)

has a positive solution.

For the cases p ∈ V−(ω), p ∈ V0(ω), and p ∈ V+(ω), we provide some results concerning
the existence or non-existence of positive solutions to problem (0.1) depending on the choice of
a parameter µ.
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1 The case p ∈ V−(ω)

Theorem 1.1. Let p ∈ V−(ω) and

ω∫
0

[f(t)]− dt > exp

( ω∫
0

[p(t)]+ dt

) ω∫
0

[f(t)]+ dt.

Then there exists µ∗ ≥ 0 such that

• for any µ > µ∗, problem (0.1) has a unique positive solution,

• for any µ ≤ µ∗, problem (0.1) has no positive solution.

Theorem 1.1 yields immediately the following result.

Theorem 1.2. Let p ∈ V−(ω) and

ω∫
0

[f(t)]+ dt > exp

( ω∫
0

[p(t)]+ dt

) ω∫
0

[f(t)]− dt.

Then there exists µ∗ ≤ 0 such that

• for any µ < µ∗, problem (0.1) has a unique positive solution,

• for any µ ≥ µ∗, problem (0.1) has no positive solution.

2 The case p ∈ V0(ω)

Theorem 2.1. Let p ∈ V0(ω) and
ω∫

0

f(t)u0(t) dt < 0,

where u0 is a positive solution to problem (0.2). Then there exists µ∗ ≥ 0 such that

• for any µ > µ∗, problem (0.1) has a unique positive solution,

• for any µ ≤ µ∗, problem (0.1) has no positive solution.

From Theorem 2.1, we immediately derive the following result.

Theorem 2.2. Let p ∈ V0(ω) and
ω∫

0

f(t)u0(t) dt > 0,

where u0 is a positive solution to problem (0.2). Then there exists µ∗ ≤ 0 such that

• for any µ < µ∗, problem (0.1) has a unique positive solution,

• for any µ ≥ µ∗, problem (0.1) has no positive solution.
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3 The case p ∈ V+(ω)

Theorem 3.1. Let p ∈ IntV+(ω) and the solution u to the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3.1)

be non-negative. Then there exists −∞ < µ∗ < 0 such that

• for any µ > µ∗, problem (0.1) has a positive solution,

• for any µ < µ∗, problem (0.1) has no positive solution.

Remark 3.1. The assumption about the non-negativity of u in Theorem 3.1 is meaningful. For
instance, it follows from Definition 0.1 that the solution u to problem (3.1) is non-negative provided

f(t) ≥ 0 for a.e. t ∈ [0, ω].

Moreover, it is known that if
ω∫

0

[f(t)]+ dt > ∆(p)

ω∫
0

[f(t)]− dt,

where ∆(p) is a number depending only on p, then the solution u to problem (3.1) is positive.

Theorem 3.1 yields immediately the following result.

Theorem 3.2. Let p ∈ IntV+(ω) and the solution u to the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω)

be non-positive. Then there exists 0 < µ∗ < +∞ such that

• for any µ < µ∗, problem (0.1) has a positive solution,

• for any µ > µ∗, problem (0.1) has no positive solution.

The last statement complements Theorems 3.1 and 3.2.

Theorem 3.3. Let p ∈ IntV+(ω) and the solution u to the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω)

change its sign. Then there exist −∞ < µ∗ < 0 and 0 < µ∗ < +∞ such that

• for any µ ∈ ]µ∗, µ
∗[ , problem (0.1) has a positive solution,

• for any µ ∈ ]−∞, µ∗[∪ ]µ∗,+∞[ , problem (0.1) has no positive solution.
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In this contribution, based on the very recent paper [21], we analyze the quasilinear indefinite
Neumann problem 

−
( u′√

1 + (u′)2

)′
= λa(x)f(u) in (0, 1),

u′(0) = u′(1) = 0.

(1)

Here, λ ∈ R is regarded as a parameter and

(a1) the function a ∈ L∞(0, 1) satisfies, for some z ∈ (0, 1), a(x) > 0 a.e. in (0, z) and a(x) < 0

a.e. in (z, 1), as well as
1∫
0

a(x) dx < 0;

(f1) the function f ∈ C(R) ∩ C1[0,+∞) satisfies f(s) > 0 and f ′(s) ≥ 0 for all s > 0, and there
exist four constants, h > 0, k > 0, q > 1 and p ≥ 2, such that

lim
s→+∞

f(s)

sq−1
= qh, lim

s→0+

f(s)

sp−1
= pk.

Condition (f1) implies that the potential F of f , defined by F (s) =
s∫
0

f(t) dt, satisfies

lim
s→+∞

F (s)

sq
= h, lim

s→0+

F (s)

sp
= k

and, thus, F must be superlinear at +∞ and either quadratic or superquadratic at 0. We also
introduce the following condition on the weight function a at the nodal point z, which is going to
play a pivotal role in the mathematical analysis carried out in [21]

(a2)
( z∫

x

a(t) dt

)− 1
2

∈ L1(0, z) and
( z∫

x

a(t) dt

)− 1
2

∈ L1(z, 1).

We use the following notions of a solution.

• A couple (λ, u) is said to be a regular solution of (1) if u ∈ W 2,1(0, 1) and it satisfies the
differential equation a.e. in (0, 1), as well as the boundary conditions.
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• A couple (λ, u) is said to be a bounded variation solution of (1) if u ∈ BV (0, 1) and it satisfies

1∫
0

DauDaϕ√
1 + |Dau|2

dx+

1∫
0

Dsu

|Dsu|
Dsϕ =

1∫
0

λaf(u)ϕdx

for all ϕ ∈ BV (0, 1) such that |Dsϕ| is absolutely continuous with respect to |Dsu| (cf. [2]).

• A couple (λ, u) is said to be a singular solution of (1) whenever it is a non-regular bounded
variation solution; that is, u ∈ BV (0, 1) \W 2,1(0, 1).

• When the couple (λ, u) solves (1) in any of the previous senses, it is said that (λ, u) is a
positive solution if, in addition,

λ > 0, ess inf u > 0.

As usual, for any function v ∈ BV (0, 1),

Dv = Dav dx+Dsv

stands for the Lebesgue decomposition of the Radon measure Dv and Dsv
|Dsv| denotes the density

function of the measure Dsv with respect to its total variation |Dsv| (see [1]). By [23, Prop. 3.6],
any positive singular solution, (λ, u), of (1) actually satisfies

u
∣∣
[0,z)

∈ W 2,1
loc [0, z) ∩W 1,1(0, z) and is concave,

u
∣∣
(z,1]

∈ W 2,1
loc (z, 1] ∩W 1,1(z, 1) and is convex;

(2)

moreover, u′(x) < 0 for every x ∈ (0, 1) \ {z}, u′(0) = u′(1) = 0 and

u′(z−) = u′(z+) = −∞,

where u′(z−) and u′(z+) are the left and the right Dini derivatives of u at z. The same argument
used in [23, Lem. 2.1] shows that λ > 0 is necessary for the existence of positive non-constant,
either regular or singular, solutions.

Problem (1) is a one-dimensional prototype model of
−div

( ∇u√
1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(3)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and g : Ω×R → R and
σ : ∂Ω → R are given functions. Problem (3) plays a central role in the mathematical analysis of a
number of geometrical and physical issues, such as prescribed mean curvature problems for cartesian
surfaces in the Euclidean space [3, 9, 12–15, 19, 25, 26], capillarity phenomena for incompressible
fluids [6, 10, 11, 16, 17], and reaction-diffusion processes where the flux features saturation at high
regimes [5, 18,24].

The model (1) has been recently investigated by the authors in [22, 23] and [20]. In [22] the
existence of bounded variation solutions was analyzed by using variational methods and in [23]
the existence of regular solutions was dealt with by means of classical phase plane and bifurcation
techniques. The main result of [20] established the existence of a component of bounded variation
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solutions bifurcating from the trivial state (λ, 0) in the special, but significant, case where p = 2.
According to the results of these papers, it is already known that, under conditions (a1) and (f1),
problem (1) cannot admit positive solutions if λ < 0 and that it possesses at least one positive
bounded variation solution for sufficiently small λ > 0.

Quite strikingly, whether or not these bounded variation solutions are singular depends on
whether or not condition (a2) holds true: this is the main result of [21] which can be stated as
follows.

Theorem 1. Assume (a1) and (f1). Then, the following conclusions hold for sufficiently small
λ > 0:

(i) any positive solution of (1) is singular if (a2) holds;

(ii) any positive solution of (1) is regular if (a2) fails.

In other words, condition (a2) completely characterizes, under (a1) and (f1), the development
of singularities by the positive solutions of (1) for sufficiently small λ > 0.

By having a glance at condition (a2) it becomes apparent that it fails whenever the function a
is differentiable at the nodal point z, whereas a very simple example where (a2) holds occurs when
the function a is discontinuous at z, like, for instance, in the special case when a is assumed to
be a positive constant, A > 0, in [z − η1, z) and a negative constant, −B < 0, in (z, z + η2], for
some η1, η2 > 0. The huge contrast on the nature of the positive solutions of the problem with
respect to the integrability properties of the function a near the node z can also be realized by
considering any weight function a satisfying the requirements of (a1) except for the fact that a = 0
in [z − η, z + η] for some η > 0. In such case, thanks to the convexity and concavity properties of
the positive bounded variation solutions of (1) guaranteed by [23, Prop. 3.6], any positive solution
u must be linear in the interval [z− η, z+ η] and hence, due to (2), it cannot develop singularities.

As a consequence of Theorem 1, when p = 2, the global structure of the component of the
positive solutions of (1), C+, whose existence is guaranteed by the main theorem of [20], drastically
changes according to whether or not the condition (a2) holds as illustrated in Figure 1, where λ0

stands for the principal positive eigenvalue of the linear weighted problem−φ′′ = λa(x)φ in (0, 1),

φ′(0) = φ′(0) = 0.

The non-existence of positive regular solutions of (1) in the very special cases when p = 2 and
the weight a is constant in [0, z) and in (z, 1] has been recently established in Section 8 of [23]
by using some classical, but sophisticated, phase portrait techniques. This induced the authors to
presume that an analogous non-existence result should also be valid for general weight functions a,
without imposing the integrability condition (a2). So, they formulated [23, Th. 7.1]. Theorem 1 in
particular shows that [23, Th. 7.1] has to be complemented with condition (a2).

Similarly as for p = 2, also in the case p > 2 the global structure of the set of positive solutions
of (1), C+, whose existence is now guaranteed by [22, Th. 1.1] and [23, Th. 10.1], changes for
sufficiently small λ > 0 according to whether or not condition (a2) holds, as illustrated by Figure 2.

Our proof of Theorem 1 is based upon the characterization of the exact limiting profiles of the
positive solutions of (1), both regular and singular, as the parameter λ approximates zero. These
profiles are provided by the next theorem, regardless their particular nature.
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∥u∥∞

λ0

•
λ

regular solutions

singular solutions

∥u∥∞

λ0

•
λ

regular solutions

Figure 1. Global components emanating from the positive principal eigenvalue λ0

in case p = 2 when (a2) holds (on the left), or (a2) fails (on the right).

Theorem 2. Assume (a1) and (f1), and let ((λn, un))n be an arbitrary sequence of positive solutions
of (1) with lim

n→∞
λn = 0. Then, for sufficiently small η > 0, the following assertions hold:

lim
n→+∞

un(x)

un(0)
= 1 uniformly in x ∈ [0, z − η],

lim
n→+∞

un(x)

un(0)
=

( z∫
0

a(t) dt

−
1∫
z
a(t) dt

) 1
q−1

uniformly in x ∈ [z + η, 1],

lim
n→+∞

(λnf(un(x))) =
1

z∫
0

a(t) dt

uniformly in x ∈ [0, z − η],

lim
n→+∞

(λnf(un(x))) =
1

−
1∫
z
a(t) dt

uniformly in x ∈ [z + η, 1],

lim
n→+∞

u′n(x) =

−
x∫
0

a(t) dt√( z∫
0

a(t) dt
)2

−
( x∫

0

a(t) dt
)2 uniformly in x ∈ [0, z − η],

and

lim
n→+∞

u′n(x) =

1∫
x
a(t) dt√( 1∫

z
a(t) dt

)2
−
( 1∫

x
a(t) dt

)2 uniformly in x ∈ [z + η, 1].

Note that condition (a2) is equivalent to requiring the integrability in both intervals, (0, z) and
(z, 1), of the asymptotic profile of the derivatives of the positive solutions of (1) as λ → 0+, which
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∥u∥∞

λ

regular solutions

singular solutions

∥u∥∞

λ

regular solutions

Figure 2. Global bifurcation diagrams in case p > 2 when (a2) holds (on the left),
or (a2) fails (on the right).

is equivalent to impose that the “limiting derivative”

u′ω(x) =



−
x∫
0

a(t) dt√( z∫
0

a(t) dt
)2

−
( x∫

0

a(t) dt
)2 for x ∈ [0, z),

1∫
x
a(t) dt√( 1∫

z
a(t) dt

)2
−
( 1∫

x
a(t) dt

)2 for x ∈ (z, 1],

belongs to both L1(0, z) and L1(z, 1).
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous and bounded coefficient matrix A such that ∥A(t)∥ ≤ M < +∞ for all
t ≥ 0. We denote the Cauchy matrix of (1) by XA and the highest Lyapunov exponent of (1) by
λn(A). Together with system (1) consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with piecewise continuous and bounded perturbation matrix Q such that

∥Q(t)∥ ≤ NQ exp(−σt), t ≥ 0. (3)

Denote the higher exponent of (2) by λn(A+Q).
Let Mσ(A) be the set of all perturbations Q satisfying condition (3) and having the appropriate

dimensions. Any Q ∈ Mσ is said to be a sigma-perturbation and the number ∇σ(A) := sup{λn(A+
Q) : Q ∈ Mσ(A)} is called [7], [10, p. 225], [9, p. 214] the highest sigma-exponent or the Izobov
exponent of system (1). It was proved in [7] that the Izobov exponent can be evaluated by means
of the following algorithm:

∇σ(A) = lim
m→∞

ξm(σ)

m
, (4)

ξm(σ) = max
k<m

(
ln ∥XA(m, k)∥+ ξk(σ)− σk

)
, ξ1 = 0, k ∈ N.

According to [1,11], there exists a unique critical value σ0(A) ≥ 0 such that ∇σ(A) = λn(A) for
all σ ≥ σ0(A) and ∇σ(A) > λn(A) when 0 < σ < σ0(A). It is well known that ∇σ(A) = λn(A) for
all σ > 2M and, therefore, σ0(A) ≤ 2M . Using the Lyapunov σL(A), Grobman σG(A) or Perron
σP(A) irregularity coefficients [4, pp. 67, 73], [8, pp. 77, 81] one can obtain some more accurate
estimates for σ0(A). Indeed, the inequalities σ0(A) ≤ σL(A) and σ0(A) ≤ σG(A) were proved in [3]
and [5]. It was also proved that the inequality σ0(A) ≤ σP(A) holds for n = 2, see [6], and is not
valid for n > 2, see [12, 15]. These relations are combined in [15], where the irregularity quantity
σλ(A) is constructed in such a way that σG(A) ≥ σλ(A) ≥ σ0(A) for all n ∈ N and σλ(A) = σP(A)
for n = 2.

In [13] we give an explicit formula for evaluation of σ0(A) from the Cauchy matrix XA of the
original system. To formulate this result we need some notation.

Let D(m) be the set of all nonempty d ⊂ {1, . . . ,m − 1} ⊂ N. Further we assume that for
each d ∈ D(m) the elements of d are arranged in the increasing order, so that d1 < d2 < · · · < ds
and d = {d1, d2, . . . , ds}, where s = |d| is the number of elements of the set d. We also put
∥d∥ := d1 + · · ·+ ds for d ∈ D(m) and ∥d∥ := 0 for d = ∅. In addition, for the sake of convenience
we assume that d0 = 0 and ds+1 = m for each d ∈ D0(m) := D(m) ∪ {∅}. Note that we do not
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include these additional elements in the set d. Under the above assumptions, let us define the
quantity Ξ(m, d) as

Ξ(m, d) :=
s∑

i=0

ln ∥XA(di+1, di)∥,

where m ∈ N, d ∈ D(m) and s := |d|. From [2,14] we can assert that

ξm(σ) = max
d∈D0(m)

(
Ξ(m, d)− σ∥d∥

)
. (5)

Theorem 1 ([13]). The equality

σ0(A) = lim
m→∞

max
d∈D(m)

∥d∥−1(Ξ(m, d)−mλn(A)) (6)

holds.

Theorem 2 ([13]). The estimate

σ0(A) ≥ σ+ := lim
m→∞

max
k<m

k−1
(
ln ∥XA(m, k)∥+ ln ∥XA(k, 0)∥ −mλn(A)

)
(7)

is valid. If the limit lim
m→∞

m−1 ln ∥XA(m, 0)∥ exists, then σ0(A) = σ+.

These theorems are obtained by direct inversion of (4) and (5) using some standard tools of
convex analysis.

Since σ0(A) is said to be a critical value, we can say that all sigma-perturbations with σ > σ0(A)
are supercritical. In order to investigate some fine properties of such perturbations we should modify
the above expressions. It seems to be a natural idea to replace mλn(A) by ln ∥XA(m, 0)∥ in (6) or
(7). In this way we put

σ#(A) = lim
m→∞

max
d∈D(m)

∥d∥−1
(
Ξ(m, d)− ln ∥XA(m, 0)∥

)
.

Evidently, σ#(A) ≥ σ0(A).
Let XA+Q be the Cauchy matrix of system (2). Using the estimates for the norm of XA+Q

obtained in [14] we can prove the following statement.

Theorem 3. If σ > σ#(A), then ∥XA+Q(t, 0)∥ ≤ K∥XA(t, 0)∥ with some K > 0 for all t > 0. If
σ < σ#(A), then ∥XA+Q(t, 0)∥∥XA(t, 0)∥−1 is unbounded as t → +∞.

It should be noted that to reveal the meaning of

σ∆ := lim
m→∞

max
k<m

k−1
(
ln ∥XA(m, k)∥+ ln ∥XA(k, 0)∥ − ln ∥XA(m, 0)∥

)
still remains an open problem.
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1 Introduction
Here we follow the previous works [2–4] and consider the linear continuous-discrete functional
differential system

δy = T y + r, (1.1)

where y = col(x, z), r = col(f, g), x : [0, T ] → Rn, z : {0, t1, . . . , tµ} → Rν , δy = col(ẋ, z), T =(
T11 T12
T21 T22

)
, and T11 : ACn → Ln, T12 : FDν → Ln, T21 : ACn → FDν , T22 : FDν → FDν are

linear Volterra operators. Here Ln is the space of summable functions f : [0, T ] → Rn, ACn is the
space of absolutely continuous functions x : [0, T ] → Rn, the space FDν is defined by the given set
J = {0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T, as the space of functions z : J → Rν . The spaces
Ln, ACn and FDν are assumed to be equipped with natural norms.

It should be noted that the system (1.1) can be considered as a concrete realization of the so-
called Abstract Functional Differential Equation, the theory of which is thoroughly treated in [1].
The systems of the kind (1.1) arise in particular as dynamic models in Mathematical Economics
and cover many kinds of systems with aftereffect. Representation of solutions to some classes of
dynamic models close to (1.1) and discussion of actual applied problems can be found in [10].
The questions of stability to functional differential systems with continuous and discrete times are
studied in [13].

The central point of the consideration is the representation of solutions to (1.1). The structure
and some principal properties of the Cauchy operator are described in [8] with the use of the general
representation to the operators Tij , i, j = 1, 2. The main aim of this paper is to give an explicit
representation for the components of the Cauchy operator in a special case.

2 The Cauchy operator

Let V be the integration operator: (V u)(t)=
t∫
0

u(s) ds, and K = T11V be an integral operator with

the kernel K(t, s) = (kij(t, s)) that satisfies the condition K: for all the elements kij , there exists a
common summable majorant κ(·), |kij(t, s)| ≤ κ(t), t ∈ [0, T ].

Let us recall some general results [2] for the case that the condition K is fulfilled.
The general solution of (1.1) has the representation(

x
z

)
= X

(
x(0)
z(0)

)
+ C

(
ccf
g

)
,
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where X =

(
X11 X12

X21 X22

)
is the fundamental operator (fundamental matrix), C =

(
C11 C12
C21 C22

)
is the

Cauchy operator.
Denote by C1 and X(t) the Cauchy operator and the fundamental matrix to the equations

ẋ = T11x, and denote by C2 and Z(ti) the Cauchy operator and the fundamental matrix to the
equation z = T22z.

Define the operators Hij , i, j = 1, 2 by the equalities

H11 = (I − C1T12C2T21)−1, H12 = −(I − C1T12C2T12)−1C1T21,
H21 = C2T21(I − C1T12C2T21)−1, H22 = (I − C2T21C1T12)−1,

where I is the identity operator.

Theorem 2.1 ([9]). The Cauchy operator C = (Cij) of (1.1) is defined by the equalities

Cij = HijCj , i, j = 1, 2.

It should be noted that C2 can be constructed in the explicit form. From Theorem 2.1 it follows
that the component C1 is of principal interest and requires the development of efficient algorithms
to approximate construction of it. Some of those are described in [7].

In what follows we shall construct the Cauchy operator for the following continuous-discrete
functional differential system

ẋ(t) =
∑
i: ti<t

Ai(t)x(ti) +
∑
i: ti<t

Bi(t)z(ti) + f(t), t ∈ [0, T ], (2.1)

z(ti) =
∑
j<i

Djx(tj) +
∑
j<i

Hjz(tj) + g(ti), i = 1, . . . , µ (2.2)

with summable (n × n)-matrices Ai(t), (n × ν)-matrices Bi(t) and constant (ν × n)-matrices Dj ,
(ν × ν)-matrices Hj .

Let us define the operator Θ : ACn → Ln by the equality

(Θx)(t) =
∑
i: ti<t

Ai(t)x(ti) +
∑
i: ti<t

Bi(t)
[ i∑
j=1

C2(i, j)
∑
k<j

Dk x(tk)
]
.

After some transformations this operator can be represented in the form

(Θx)(t) =
∑
i: ti<t

Ai(t)x(ti), (2.3)

where the matrices Ai(t) are calculated by Ai(t), Bi(t), C2(i, j), Di.
Denote by C(t, s) the Cauchy matrix [5] to the equation ẋ = Θx.
As is shown in [7, Theorem 1, Remark 2], C(t, s) can be constructed explicitly. Let us recall

the main relationships from [7]. Let ηi(t), i = 1, . . . . , µ−1, be the characteristic function of the set
[ti−1, ti), and ηµ(t) denotes the characteristic function of the segment [tµ−1, tµ]. Define the kernel

of the integral operator (Kz)(t) =
t∫
0

K(t, s)z(s) ds by the equality

K(t, s) =

µ∑
i=1

i∑
j=1

ηi(t)Pi(t)Qij(s)ηj(s), (2.4)
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where Pi(t) and Qij(s) are (n × n)-matrices, P1(t) = 0, Qij(s) = 0, j ≥ i, elements of Pi are
summable on [0, T ], elements of Qij are measurable and essentially bounded on [0, T ]. Next define
the matrices Bki by the equalities

Bki =

T∫
0

k∑
j=1

Qkj(t)ηj(t)ηi(t)Pi(t) dt.

Notice that by definition the block matrix G = {Gki}k,i=1,...,µ, Gkk = En, k = 1, . . . , µ, where En is
the identity (n×n)-matrix, Gki = −Bki, is a lower triangle matrix with En as the diagonal blocks.
Finally denote by Fki the block elements of the inverse G−1. By Theorem 1 of [7] we have the
explicit representation of the resolvent kernel R(t, s) for the kernel K(t, s) defined by (2.4):

R(t, s) =

µ∑
i=1

µ∑
k=1

k∑
j=1

ηi(t)Pi(t)FikQkj(s)ηj(s),

and

C(t, s) = En +

t∫
s

R(τ, s) dτ.

It remains to note that, for the operator Θ (2.3), we have

(ΘV u)(t) =

t∫
0

∑
i: ti<t

Ai(t)ηi(s)u(s) ds,

and this is the integral operator with the kernel of the kind (2.4). Now we are ready to give the
representations of the fundamental matrix X and the Cauchy operator C for the system (2.1), (2.2)
in terms of X(t), Z(ti), C(t, s) and C2(i, j).

Theorem 2.2. The representation of the components to the fundamental matrix and the Cauchy
operator of (2.1), (2.2) is defined by the equalities

X11(t) = X(t), X12(t) =

t∫
0

C(t, s)
[ ∑
i: ti<t

Bi(t)Z(ti)
]
ds,

X21(ti) =

i∑
j=1

C2(i, j)
[∑
k<j

DkX11(tk)
]
, X22(ti) = Z(ti) +

i∑
j=1

C2(i, j)
[∑
k<j

DkX11(tk)
]
,

(C11f)(t) =
t∫

0

C(t, s)f(s) ds, (C12g)(t) =
t∫

0

C(t, s)
∑

i: ti<s

Bi(s)
[ i∑
j=1

C2(i, j)g(tj)
]
ds,

(C21f)(ti) =
i∑

j=1

C2(i, j)
[∑
k<j

Dk(C11f)(tk)
]
, (C22g)(ti) =

i∑
j=1

C2(i, j)
[∑
k<j

Dk(C12g)(tk) + g(tj)
]
.

The systems (2.1), (2.2) are actively studied as models of some dynamic economic processes [12].
Furthermore, they can be used as approximations of more general systems (1.1) which opens the
way to obtaining external estimates of attainability sets for control problems [6, 11].
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Consider on the interval I = [a, b] the fourth order homogeneous linear ordinary differential
equations

u(4)(t) = p(t)u(t)− µq(t)u(t), (0.1)
u(4)(t) = p(t)u(t), (0.2)

and the nonlinear equation

u(4)(t) = p(t)u(t) + f(t, u(t)) + h(t), (0.3)

under the boundary conditions

u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (0.4)

where µ ∈ R, h ∈ L(I,R), p, q ∈ L(I,R+
0 ), and f ∈ K(I × R,R). The study of the fourth order

boundary value problems has increased recently, among them because they appear as a model
equations for a large class of higher order parabolic equations arising, for instance, in statistical
mechanics, phase field models, hydrodynamics, suspension bridges models, etc.

In [6] (see Lemma 4.2) it has been shown that the disconjugacy character of equation (0.1)
implies the nonnegativity of Greens’s function of problem (0.1), (0.4). However, as we can see
in [3], there are coefficients of (0.1), for which Green’s function has constant sign but equation
(0.1) is not disconjugate on I. For these reasons, we study disconjugacy of equation (0.1) on
the interval I in connection with parameter µ, under the assumption that problem (0.2), (0.4)
has constant sign nonzero solution (see Definition 0.2). Also we find the necessary and sufficient
conditions of nonnegativity of Green’s function of problem (0.1), (0.4) when p ∈ D(I), and on the
basis of these results we prove the sufficient conditions of solvability and unique solvability of the
nonlinear problem (0.3), (0.4).

The following notations are used throughout the paper.

- R = ]−∞,+∞[ , R+ = ]0,+∞[ , R+
0 = [0,+∞[ ;

- C(I;R) is the Banach space of continuous functions u : I → R with the norm ∥u∥C =
max{|u(t)| : t ∈ I};

- C̃3(I;R) is the set of functions u : I → R which are absolutely continuous together with their
third derivatives;
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- L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm

∥p∥L =
b∫
a
|p(s)| ds;

- K(I ×R;R) is the set of functions f : I ×R → R satisfying the Carathéodory conditions.

By a solution of equation (0.3) we understand a function u ∈ C̃3(I,R) which satisfies equation
(0.3) a.e. on I.

Definition 0.1. Equation (0.1) is said to be disconjugate on I if every nontrivial solution u has
less than four zeros on I, the multiple zeros being counted according to their multiplicity.

Definition 0.2. We say that p ∈ D(I) if p ∈ L(I;R+
0 ), and problem (0.2), (0.4) has a solution u

such that
u(t) > 0 for t ∈ ]a, b[ . (0.5)

If we consider the equation
u(4)(t) = λp(t)u(t), (0.6)

the set D(I) can be interpreted as a set of the functions p ∈ L(I,R+
0 ) for which λ = 1 is the first

eigenvalue of problem (0.6), (0.4).

1 Disconjugacy of equation (0.1)

Theorem 1.1. Let p ∈ D(I), q ∈ L(I,R+
0 ), q ̸≡ 0, and

µ1 = sup
{
µ : p(t)− µq(t) ≥ 0 a.e. on I

}
> 0. (1.1)

Then for an arbitrary µ ∈ ]0, µ1] equation (0.1) is disconjugate on I.

Remark 1.1. Notice that condition (1.1) holds iff

mes
{
t ∈ I : p(t) = 0, q(t) ̸= 0

}
= 0.

Corollary 1.1. Let p0 ∈ D(I), p ∈ L(I,R), p ̸≡ p0, and

0 ≤ p(t) ≤ p0(t) a.e. on I. (1.2)

Equation (0.2) is disconjugate on I.

From the last Corollary it immediately follows

Corollary 1.2. Let λ1 ∈ R+ be such that λ1p ∈ D(I). Then equation (0.6) is disconjugate on I
for an arbitrary λ ∈ [0, λ1[ .

Corollary 1.2 for p ≡ 1 is proved in [7] (see Theorem 3.1) and is optimal.

Remark 1.2 ([6, Lemma 4.2]). If equation (0.1) is disconjugate on I, then problem (0.1), (0.4) has
only the trivial solution and its Green’s function is nonnegative on I × I.



140 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

2 Nonnegativity of Green’s function of problem (0.1), (0.4)
The disconjugacy is only a sufficient condition in order to ensure the constant sign of Green’s
function of problem (0.1), (0.4). Now we give the theorem where necessary and sufficient conditions
of nonnegativity of Green’s function of problem (0.1), (0.4) are given when p ∈ D(I), and q ≡ 1.
Consider for this the boundary conditions

u(a) = · · · = u(k−1)(a) = 0, u(b) = · · · = u(3−k)(b) = 0, (2.1k)

and let
µ2 = min{µ′

1, µ
′
3},

where µ′
k (k = 1, 3) are the least positive eigenvalues of problem (0.1), (2.1k) (The existence of µ′

1

and µ′
3 for q ≡ 1 follows from the prove of Theorem 2.1). Then the next theorem is true.

Theorem 2.1. Let p ∈ D(I) ∩ C(I,R+), and q ≡ 1. Then problem (0.1), (0.4) has only the zero
solution and its Green’s function is nonnegative on I × I if and only if µ ∈ ]0, µ2].

3 Nonlinear problem
Theorem 3.1. Let problem (0.2), (0.4) be uniquely solvable, its Green’s function be nonnegative on
I × I, and the condition

f(t, x) signx ≤ δ(t, x) for |x| > r, t ∈ I, (3.1)

hold, where r ∈ R+, δ ∈ K(I ×R,R+) is nondecreasing in the second argument, and

lim
ρ→+∞

1

ρ

b∫
a

δ(s, ρ) ds = 0. (3.2)

Then problem (0.3), (0.4) has at least one solution.

From the last theorem by Remark 1.2 and Theorems 1.1, 2.1 it immediately follow.

Corollary 3.1. Let p ∈ D(I), q ∈ L(I,R+
0 ), q ̸≡ 0, and condition (1.1) hold. Let, moreover,

conditions (3.1) and (3.2) be fulfilled, where r ∈ R+, and δ ∈ K(I ×R,R+) is nondecreasing in the
second argument. Then the equation

u(4)(t) = (p(t)− µq(t))u(t) + f(t, u(t)) + h(t) (3.3)

under the boundary conditions (0.4) has at least one solution for an arbitrary µ ∈ ]0, µ1].

Corollary 3.2. Let p ∈ D(I) ∩ C(I,R+), q ≡ 1, and µ2 be the constant defined in Theorem 2.1.
Let, moreover, conditions (3.1) and (3.2) be fulfilled, where r ∈ R+, and δ ∈ K(I × R,R+) is
nondecreasing in the second argument. Then problem (3.3), (0.4) has at least one solution for an
arbitrary µ ∈ ]0, µ2].

Theorem 3.2. Let p0 ∈ D(I), p ∈ L(I,R), p ̸≡ p0,

0 ≤ p(t) ≤ p0(t) for t ∈ I, (3.4)

and the condition

−p(t)|x1 − x2| ≤ (f(t, x1)− f(t, x2)) sign(x1 − x2) ≤ 0 (3.5)

hold on I ×R. Then problem (0.3), (0.4) is uniquely solvable.
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We consider the two-dimensional linear differential system

u′i = pi(t)u3−i + qi(t) (i = 1, 2) (1)

with the boundary conditions
u1(a+) = 0, u1(b−) = 0, (2)

where p1 and q1 : ]a, b[→ R are Lebesgue integrable functions, while the functions p2 and q2 : ]a, b[→
R are Lebesgue integrable on every closed interval contained in ]a, b[ .

We are mainly interested in the case where the functions p2 and q2 have nonintegrable singu-
larities at the points a and b, i.e. the case, where

b∫
a

(
|p2(t)|+ |q2(t)|

)
dt = +∞.

System (1) is singular in that sense.
We have proved the theorem on the Fredholmity of problem (1), (2), and based on this theorem

we have established unimprovable in a certain sense conditions guaranteeing the unique solvability
of the above-mentioned problem. They are generalizations of some results by T. Kiguradze [1],
concerning the unique solvability of the Dirichlet problem for singular second order linear differential
equations.

We use the following notation.

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
;

u(t0+) and u(t0−) are the right and the left limits, respectively, of the function u at the point t0;
L([a, b]) is the space of Lebesgue integrable on [a, b] real functions;
Lloc(]a, b[) is the space of real functions which are Lebesgue integrable on every closed interval

contained in ]a, b[ ;
If p ∈ L([a, b]), then

Ia,b(p)(t) =

t∫
a

p(s) ds

b∫
t

p(s) ds for a ≤ t ≤ b.

A vector-function (u1, u2) : ]a, b[→ R2 is said to be a solution of system (1) if its components
are absolutely continuous on every closed interval contained in ]a, b[ and satisfy system (1) almost
everywhere on ]a, b[ .

A solution of system (1) satisfying the boundary conditions (2) is said to be a solution of
problem (1), (2).
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Everywhere below it is assumed that

p1 ∈ L([a, b]), q1 ∈ L([a, b]),

p2 ∈ Lloc(]a, b[), q2 ∈ Lloc(]a, b[).

Along with system (1) we consider the corresponding homogeneous system

u′i = pi(t)u3−i (i = 1, 2). (10)

Theorem 1. Let the functions p1 and p2 satisfy the conditions

p1(t) ≥ 0 for a < t < b, δ =

b∫
a

p1(t) dt > 0, (3)

b∫
a

Ia,b(p1)(t)[p2(t)]− dt < +∞, (4)

and let the functions q1 and q2 satisfy the conditions
b∫

a

Ia,b(p1)(t)
(
Ia,b(|q1|)(t)[p2(t)]+ + |q2(t)|

)
dt < +∞. (5)

If, moreover, the homogeneous problem (10), (2) has only the trivial solution, then problem (1), (2)
has one and only one solution.
Remark 1. If

lim sup
t→a+

p1(t)

(t− a)α0
< +∞, lim sup

t→b−

p1(t)

(b− t)β0
< +∞,

lim sup
t→a+

|q1(t)|
(t− a)α1

< +∞, lim sup
t→b−

|q1(t)|
(b− t)β1

< +∞,

where αi > −1, βi > −1 (i = 0, 1), then for conditions (4) and (5) to be satisfied it is sufficient
that the conditions

b∫
a

(t− a)α0+1(b− t)β0+1[p2(t)]− dt < +∞,

b∫
a

[
(t− a)α0+α1+2(b− t)β0+β1+2

[
p2(t)]+ + (t− a)α0+1(b− t)β0+1|q2(t)|

]
dt < +∞

are fulfilled, respectively.
Theorem 2. Let there exist a constant λ ≥ 1 and a measurable function p : ]a, b[→ [0,+∞[ such
that along with (3) the conditions

[p2(t)]− = p(t)p
1− 1

λ
1 (t) for a < t < b,

b∫
a

Ia,b(p1)(t)p
λ(t) dt ≤

(π
δ

)2λ−2
δ (6)

are satisfied. If, moreover, the functions q1 and q2 satisfy condition (5), then problem (1), (2) has
one and only one solution.



144 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

Corollary 1. If along with (3) and (5) the condition

b∫
a

Ia,b(p1)(t)[p2(t)]− dt ≤ δ (7)

holds, then problem (1), (2) has one and only one solution.

Corollary 2. If along with (3) and (5) the conditions

p2(t) ≥ −
(π
δ

)2
p1(t) for a < t < b, (8)

mes
{
t ∈ ]a, b[ : p2(t) > −

(π
δ

)2
p1(t)

}
> 0 (9)

hold, then problem (1), (2) has one and only one solution.

Remark 2. Inequalities (6) and (7) in Theorem 2 and Corollary 1 are unimprovable and they
cannot be replaced, respectively, by the conditions

b∫
a

Ia,b(p1)(t)p
λ(t) dt ≤

(π
δ

)2λ−2
δ + ε

and
b∫

a

Ia,b(p1)(t)[p2(t)]− dt ≤ δ + ε,

no matter how small ε > 0 would be.

Remark 3. Inequalities (8) and (9) in Corollary 2 are unimprovable as well since if along with (3)
and (5) the condition

p2(t) ≡ −
(π
δ

)2
p1(t)

holds, then problem (1), (2) either has no solution or has an infinite set of solutions.

Remark 4. Under the conditions of the above-formulated theorems and their corollaries, the
function p2 may have singularities of arbitrary order. For example, if

p1(t) ≡ (t− a)α(b− t)β, p2(t) ≡ exp
( 1

(t− a)(b− t)

)
,

|q1(t)| ≤ (t− a)−2(b− t)−2 exp
(
− 1

(t− a)(b− t)

)
, |q2(t)| ≤ (t− a)α1(b− t)β1 ,

where α > −1, β > −1, α1 > −α−2, β1 > −β−2, then the conditions of Theorems 1 and 2 as well
as the conditions of Corollaries 1 and 2 are satisfied, and therefore problem (1), (2) has a unique
solution.
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Introduction and setting of the problem
The qualitative theory of differential equations with impulsive perturbations is outlined in [1,10,14],
and for impulsive dynamical systems in [3,5,9,11,12]. In the case of an infinite dimensional phase
space, the qualitative behavior of dissipative systems is studied in the framework of the theory
of global attractors [15]. The generalization of the basic concepts and results of the theory of
attractors to infinite-dimensional impulsive dynamical systems was carried out in [4, 7, 13]. The
main object of research is the minimal compact uniformly attracting set – uniform attractor. The
questions of existence, structure and invariance of uniform attractors for different classes of infinitely
dimensional impulsive systems are dealt with in [4,6,7]. In [8], authors proposed the conditions for
impulsive semiflows, which guarantee the stability of the non-impulsive part of uniform attractors.
In the present paper, we refine these conditions and apply them to the study of the stability
of uniform attractors of a weakly-nonlinear N -dimensional impulsive-perturbed parabolic system.
More precisely, in bounded domain Ω ⊂ Rn, n ≥ 1 we consider the following N-dimensional weakly
nonlinear parabolic system 

∂u1
∂t

= a1∆u1 − εf1(u1, . . . , uN ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂uN
∂t

= aN∆uN − εfN (u1, . . . , uN ),

u1
∣∣
∂Ω

= · · · = uN
∣∣
∂Ω

= 0,

(1)

where ε > 0 is a small parameter, ai > 0, f = (f1, . . . , fN )T is a nonlinear vector-function,
f ∈ C1(R2) satisfies

∃C > 0, ∀u ∈ RN , ∀ i = 1, N |fi(u)| ≤ C, f ′(u) ≥ −C. (2)

These assumptions guarantee global existence and uniqueness of a weak solution of the problem (1)

for every initial data from the phase space X = (L2(Ω))N having the norm ∥u∥X =

√
N∑
i=1

∥ui∥2 .

(Here ∥ · ∥ and ( · , · ) mean a norm and a scalar product in L2(Ω).)
For fixed positive numbers α1, . . . , αN , µ and for the function ψ ∈ L2(Ω) the following impulsive

problem is considered: the phase point u(t), when it encounters the impulse set

M =
{
u ∈ X |

N∑
i=1

αi(ui, ψ)
2 = 1

}
, (3)
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is transferred to a new position Iu ∈M
′ using impulsive map I :M →M ′, where

M ′ =
{
u ∈ X |

N∑
i=1

αi(ui, ψ)
2 = 1 + µ

}
. (4)

It is proved in the paper that, for a sufficiently wide class of impulsive mappings I : M → M ′,
the impulsive-perturbed problem (1)–(4) generates an impulse semiflow for sufficiently small ε
generates a pulsed semiflow Gε, which has a uniform attractor Θε having an invariant and stable
non-impulsive part, provided that the impulsive mapping I :M →M ′ is continuous.

Existence and stability of the uniform attractor of impulsive systems
Let a continuous semigroup V : R+×X → X, the impulsive set M ⊂ X, and the impulsive mapping
I : M → X be given in the phase space (X, ∥ · ∥X). The impulsive semiflow G : R+ ×X → X is
constructed according to the following rule: [9]: if V (t, x) ̸∈ M for x ∈ X and for all t > 0, then
G(t, x) = V (t, x); otherwise

G(t, x) =

{
V (t− Tn, x

+
n ), t ∈ [Tn, Tn+1),

x+n+1, t = Tn+1,
(5)

where T0 = 0, Tn+1 =
n∑

k=0

sk, x+n+1 = IV (sn, x
+
n ), x+0 = x, sn are the intervals between moments of

impulsive perturbations characterized by the condition V (sn, x
+
n ) ∈M .

Under conditions
M– closed, M ∩ IM = ∅,

∀x ∈M, ∃ τ = τ(x) > 0, ∀ t ∈ (0, τ) V (t, x) ̸∈M,

∀x ∈ X t→ G(t, x) defined on [0,+∞)

(6)

the formula (5) determines a semigroup G : R+ × X → X [3, 7], which we will call an impulsive
semiflow.
Remark 1. It follows from conditions (6) and the continuity of the V [3, 6] that for an arbitrary
x ∈ X or there exists a moment of the time s := s(x) > 0 such that ∀ t ∈ (0, s) V (t, x) ̸∈ M ,
V (s, x) ∈M , or ∀ t > 0 V (t, x) ∩M = ∅ (and in this case we put s(x) = ∞).
Definition ([7]). A compact Θ ⊂ X will be called a uniform attractor of the impulsive semiflow
G if Θ is a uniformly attracting set, i.e., for any bounded B ⊂ X

dist(G(t, B),Θ) −→ 0, t→ ∞,

and Θ is minimal among all closed uniformly attracting sets.
Remark 2. A uniform attractor may not be invariant with respect to G [7].
Lemma 1. Suppose that a continuous semigroup V : R+ ×X → X and a map I :M → X satisfy
the following conditions: there is a compactly embedded space Y b X such that

∃C1 > 0, ∃ δ > 0, ∀ t ≥ 0, ∀x ∈ X ∥V (t, x)∥X ≤ ∥x∥Xe−δt + C1,

∀ t > 0, ∀ r > 0, ∃C(t, r) > 0, ∀x ∥x∥X ≤ r, ∥V (t, x)∥Y ≤ C(t, r),

∃C2 > 0, ∀x ∈ X ∩M ∥Ix∥X ≤ ∥x∥X + C2,

∀ r > 0, ∃C(r) > 0, ∀x ∈ Y ∩M ∥x∥Y ≤ r, ∥Ix∥Y ≤ C(r),

∃ s > 0, ∀x ∈ IM s(x) ≥ s.

Then the impulsive semiflow G has an uniform attractor Θ.
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It is known [2,5] that one of the equivalent definitions of stability of a compact invariant set A
with respect to a continuous semiflow is equality

A = D+(A) :=
∪
x∈A

{
y | y = limG(tn, xn), xn → x, tn ≥ 0

}
. (7)

It was shown in [8] that a uniform attractor of an impulsive semiflow may not satisfy (7), al-
though under additional assumptions regarding the nature of the behavior of the trajectories in the
neighborhood of the impulsive set, we can obtain the following result.

Lemma 2 ( [8]). Let impulsive semiflow G has a uniform attractor Θ. Let impulsive mapping
I :M → X be continuous, and the following conditions are satisfied:

- for any sequence xn → x ∈ Θ \M{
s(x) = ∞, if s(xn) = ∞ for infinitely many n,
s(xn) → s(x), otherwise;

- for any sequence xn → x ∈ Θ ∩M

either s(xn) = ∞ for infinitely many n, or s(xn) → 0.

Then Θ \M is invariant with respect to semiflow G and

Θ = Θ \M, D+(Θ \M) ⊂ Θ \M. (8)

Application to impulsive-perturbed parabolic problem
To apply Lemmas 1, 2 to impulsive problems (1)–(4), we specify the perturbation parameters. Let
{λk}∞k=1, {ψk}∞k=1 be solutions to the spectral problem ∆ψ = −λψ, ψ ∈ H1

0 (Ω). Assume that in
the definition of sets M , M ′ we have ψ = ψ1, λ = λ1. Then it is natural to consider the following
class of impulsive mappings I :M 7→M ′:

for u =

 c1
...
cN

ψ1 +
∞∑
k=2

 ck1
...
ckN

ψk ∈M we have I(u) =

d1
...
dN

ψ1 +
∞∑
k=2

 ck1
...
ckN

ψk.

The simplest example: ∀ i = 1, N di =
√
1 + µ ci.

The main result of this paper is the following theorem.

Theorem. Let conditions (2) be satisfied. Then for sufficiently small ε > 0, the problem (1)–(4)
in the phase space X = (L2(Ω))N generates an impulsive semiflow having a uniform attractor Θε.
If, in addition, the map I : M 7→ M ′ is continuous, then Θε has invariant non-impulsive part and
satisfies the stability properties (8).
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1 Introduction
Some real world models are described by means of impulse control of nonlinear BVPs, where time
instants of impulse actions depend on intersection points of solutions with given barriers. For
i = 1, . . . ,m, and [a, b] ⊂ R, continuous functions γi : R → [a, b] determine barriers Γi = {(t, z) :
t = γi(z), z ∈ R}. A solution (x, y) of a planar BVP on [a, b] is searched such that the graph of its
first component x(t) has exactly one intersection point with each barrier, i.e. for each i ∈ {1, . . . ,m}
there exists a unique root t = tix ∈ [a, b] of the equation t = γi(x(t)). The second component y(t)
of the solution has impulses (jumps) at the points t1x, . . . , tmx. Since a size of jumps and especially
the points t1x, . . . , tmx depend on x, impulses are called state-dependent.

More precisely, for T > 0 and given continuous functions γ1, . . . , γm, we prove the existence
of a T -antiperiodic solution (x, y) of the van der Pol equation with a positive parameter µ and a
Lebesgue integrable T -antiperiodic function f

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a.e. t ∈ [0, T ], t ̸∈ {t1x, . . . , tmx}, (1.1)

where y has impulses at the points t1x, . . . , tmx ∈ (0, T ) determined by the barriers Γ1, . . . ,Γm

through the equalities
tix = γi(x(tix)), i = 1, . . . ,m, (1.2)

and y is continuous anywhere else in [0, T ]. The impulse conditions have the form

y(t+)− y(t−) = Ji(x), t = tix, i = 1, . . . ,m, (1.3)

where Ji are continuous bounded functionals defining a size of jumps.
Previous results in the literature for this antiperiodic problem assume that impulse points

are values of given continuous functionals, see [1, 3]. Such formulation is certain handicap for
applications to real world problems where impulse instants depend on barriers. We have found
conditions which enable to reach such functionals from given barriers. Consequently the existence
results from [2] for impulsive antiperiodic problem to the van der Pol equation formulated in terms
of barriers are obtained.

Notations
- T -antiperiodic function x (satisfying (1.1), (1.2), (1.3)) will be found in the set of 2T -periodic

real-valued functions. To do it functional sets defined below are used.

- L1 consists of 2T -periodic Lebesgue integrable functions on [0, 2T ] with the norm ∥x∥L1 :=

1
2T

2T∫
0

|x(t)| dt,
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- BV consists of 2T -periodic functions of bounded variation on [0, 2T ],

- var(x) for x ∈ BV is the total variation of x on [0, 2T ],

- ∥x∥∞ := sup{|x(t)| : t ∈ [0, 2T ]} for x ∈ BV,

- NBV consists of normalized functions x ∈ BV in the sense that x(t) = 1
2 (x(t+) + x(t−)),

- x := 1
2T

2T∫
0

x(t) dt = 0 is the mean value of x ∈ BV,

- ÑBV consists from functions x ∈ NBV with x = 0; ÑBV with the norm var(x) is the Banach
space,

- AC(J) consists of 2T -periodic absolutely continuous functions on J ⊂ [0, 2T ] and if J = [0, 2T ]
we write AC,

- ÃC := AC∩ ÑBV.

- A couple (x, y) ∈ ÃC× ÑBV satisfying (1.1), (1.2), (1.3) is a 2T -periodic solution of problem
(1.1)–(1.3). If in addition

x(0) = −x(T ), y(0) = −y(T ), (1.4)

then (x, y) is a T -antiperiodic solution of problem (1.1)–(1.3).

2 Main result
The main existence result from [2] is contained in the next theorem.

Theorem 2.1 (Main result). Let T ∈ (0,
√
3), K,L ∈ (0,∞), let Ji, i = 1, . . . ,m, be continuous

bounded functionals on ÑBV, and let f ∈ L1 be T -antiperiodic, i.e. f(t + T ) = −f(t) for a.e.
t ∈ R. Assume that there exist a, b ∈ (0, T ) such that functions γ1, . . . , γm satisfy

0 < a ≤ γ1(z) < γ2(z) < · · · < γm(z) ≤ b < T, z ∈ [−K,K]. (2.1)

Further, assume that Li ∈ (0, 1/L), i = 1, . . . ,m, are such that

|γi(z1)− γi(z2)| ≤ Li|z1 − z2|, z1, z2 ∈ [−K,K], i = 1, . . . ,m. (2.2)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] problem (1.1)–(1.3) has a T -antiperiodic
solution (x, y), where y has m jumps at the points t1x, . . . , tmx ∈ [a, b] and y is continuous anywhere
else in [0, T ]. Moreover, the estimate

|x(t)| ≤ var(x) ≤ K, |y(t)| ≤ L, t ∈ [0, T ], (2.3)

is valid.

We can find the optimal (maximal) value µ0 as follows. Since Ji are bounded, it holds

Ji : ÑBV → [−ai, ai], i = 1, . . . ,m,

for some ai ∈ (0,∞). Denote

c1 := T∥f∥L1 +
m∑
i=1

ai, (2.4)
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and define a function φ by

φ(µ) :=
1− µT − T 2

3

3

√
1− µT − T 2

3

µT
, µ ∈

(
0,

1

T
− T

3

]
. (2.5)

Then, according to the proof of Theorem 2.1, µ0 = φ−1(Tc1) ∈ (0, 1
T − T

3 ).

Auxiliary results
Denote

(x ∗ y)(t) := 1

2T

2T∫
0

x(t− s)y(s) ds, t ∈ [0, 2T ] for x, y ∈ L1,

and remind the inequalities

var(x ∗ y) ≤ var(x)∥y∥∞, x, y ∈ NBV, (2.6)
var(x ∗ f) ≤ var(x)∥f∥L1 , x ∈ NBV, f ∈ L1, (2.7)

∥x∥L1 ≤ ∥x∥∞ ≤ var(x), x ∈ ÑBV. (2.8)

Further, using the function

E1(t) =

{
T − t for t ∈ (0, 2T ),

0 for t = 0,

which fulfils
var(E1) = 4T, ∥E1∥∞ = T, (2.9)

we introduce antiderivative operators I and I2 by

Iu := E1 ∗ u ∈ ÃC, I2u := I(Iu) ∈ ÃC, u ∈ L1. (2.10)

For τ ∈ R we define a distribution ετ by the Fourirer series

ετ :=
∑
n∈Z

(
1− (−1)n

)
e

inπ
T

(t−τ), t ∈ R. (2.11)

Then it holds
Iετ ∈ ÑBV, I2ετ ∈ ÃC, ∥Iετ∥∞ = T. (2.12)

See [3] for more details. Using this we investigated in [3] the van del Pol equation

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a.e. t ∈ R, (2.13)

with a positive parameter µ, a Lebesgue integrable T -antiperiodic function f , and with the state-
dependent impulse conditions

lim
t→τi(x)+

y(t)− lim
t→τi(x)−

y(t) = Ji(x), i = 1, . . . ,m, (2.14)

where Ji and also τi, i = 1, . . . ,m, are given continuous and bounded real-valued functionals on
ÑBV. For such setting we proved the existence result contained in Theorem 2.2.
Theorem 2.2 ([3, Theorem 1.1]). Assume that T ∈ (0,

√
3), and the functionals τ1, . . . , τm have

values in (0, T ). Further, let

i ̸= j =⇒ τi(x) ̸= τj(x), x ∈ ÃC, i, j = 1, . . . ,m. (2.15)

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] the problem (2.13), (2.14) has a T -antiperiodic
solution (x, y).
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3 Existence of continuous functionals
If we study problem (1.1)–(1.3) which is formulated by means of barriers, then a number of impulse
points for some solution (x, y) of (1.1) is equal to a number of values of t satisfying the equations
t− γi(x(t)) = 0, i = 1, . . . ,m. In general, for any (x, y) satisfying (1.1), such equations need not be
solvable, or they can have finite or infinite number of roots. In Theorem 2.1, we present conditions
imposed on barriers which yield unique solvability of these equations provided x belongs to some
suitable set ΩKL (see (3.1)). This yields functionals continuous on ΩKL. We prove it in the next
lemmas.

In particular, for positive numbers K and L, define a set ΩKL

ΩKL :=
{
x ∈ ÃC : var(x) ≤ K, |x′(t)| ≤ L for a.e. t ∈ [0, 2T ], x is T -antiperiodic

}
. (3.1)

Lemma 3.1. The set ΩKL is nonempty, bounded, convex and closed in ÑBV.

Lemma 3.2. Let K,L ∈ (0,∞). Assume that there exist a, b ∈ (0, T ) and Li ∈ (0, 1/L), i =
1, . . . ,m, such that (2.1) and (2.2) are fulfilled. Then for each x ∈ ΩKL and i ∈ {1, . . . ,m} the
equation

t = γi(x(t)) (3.2)

has a unique solution tix ∈ [a, b].

Lemma 3.3. Let the assumptions of Lemma 3.2 be fulfilled. Then for i ∈ {1, . . . ,m}, the functional

τi : ΩKL → [a, b], τi(x) = tix, (3.3)

where tix is a solution of (3.2), is continuous.

Having continuous functionals τ1, . . . , τm from Lemma 3.3, we can argue similarly as in [3] in
the proof of Theorem 2.2 and prove Theorem 2.1.
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1 Introduction
The problem of the existence of solutions to Emden–Fowler type equations with prescribed number
of zeros on a given domain is studied.

Consider the equation

y(n) + p(t, y, y′, . . . , yn−1)|y|k sgn y = 0, k ∈ (0, 1) ∪ (1,∞). (1.1)

We say that p ∈ Pn if for some m,M ∈ R the inequalities 0 < m ≤ p(t, ξ1, ξ2, . . . , ξn) ≤ M < ∞
hold, the function p(t, ξ1, ξ2, . . . , ξn) is continuous and Lipschitz continuous in (ξ1, ξ2, . . . , ξn).

We prove that this equation with p ∈ Pn has a solution with a given finite number of zeros
on a given interval. Results considering the existence of solutions with countable number of zeros
are presented in [9, 10]. For the equation (1.1) with n = 3, 4 and constant potential p = p0 the
existence of solutions with a given finite number of zeros on a given interval is proved in [4], and
for the case n = 3, p ∈ Pn – in [5, 7]. Now we generalise this result for n > 3, p ∈ Pn.

2 Main result
Theorem 2.1. For any k ∈ (0, 1) ∪ (1,∞), n ≥ 3, p ∈ Pn, [a, b] ⊂ R, and integer S ≥ 2, equation
(1.1) has a solution defined on the segment [a, b], vanishing on its end points a, b, and having exactly
S zeros on [a, b].

3 Sketch of the proof
3.1 The case of constant potential
In the case of constant potential p proof is based on the following theorems.

Theorem 3.1 ([3], [1, Theorem 5]). For any n > 2 and real k > 1 there exists a non-constant
oscillatory periodic function h such that for any p0 ∈ R with p0 > 0 and any t∗ ∈ R the function

y(t) = |p0|
1

1−k (t∗ − t)−αh(log(t∗ − t)), −∞ < t < t∗, α =
n

k − 1
,

is a solution to equation (1.1) with constant potential p = p0.

Theorem 3.2 ([1, Theorem 9]). For any n > 2 and real k ∈ (0, 1) there exists a non-constant
oscillatory periodic function h such that for any p0 ∈ R with (−1)np0 > 0 and any t∗ ∈ R function

y(t) = |p0|
1

1−k (t∗ − t)−αh(log(t∗ − t)), −∞ < t < t∗, α =
n

k − 1
,

is a solution to equation (1.1) with constant potential p = p0.
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Lemma 3.1 ([2, Lemma 6.1]). If y(t) is a solution to equation (1.1) with constant potential p = p0,
and constants A, B, C satisfy |A| = B

n
k−1 , B > 0, then z(t) = Ay(Bt + C) is also a solution to

the same equation.

From theorems 3.1 and 3.2 it follows that equation (1.1) with constant potential p = p0 has a
solution y(t) with countable number of zeros. Then it is possible to choose segment [t1, t2] where
y(t1) = y(t2) = 0 and y(t) has exactly S zeros on the segment. Then, due to lemma 3.1, function

ỹ(t) =
( |t2 − t1|

|b− a|

) n
k−1

y
(
x1 +

|t2 − t1|
|b− a|

(t− a)
)
, (3.1)

is a solution to the equation, it is defined on the segment [a, b], y(a) = 0, y(b) = 0, and y(t) has
exactly S zeros on [a, b]. When n is odd, we use substitution t 7→ −t to consider p0 with opposite
sign. This completes the proof in the case of constant potential.

3.2 The case of variable potential
It is impossible to use same methods to prove main theorem when p ∈ Pn. The full proof of the
main theorem is given in [8] (the case k ∈ (1,∞)) and in [6] (the case k ∈ (0, 1)). The proof is
based on the following results.

Lemma 3.2 (generalisation of [2, Lemma 7.1]). If y(t) is a solution to (1.1) satisfying, at some t0,
the conditions

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0,

then at some t′0 > t0 the solution has a local maximum and satisfies

t′0 − t0 ≤ (µy′(t0))
− k−1

k+n−1 ,

y(t′0) > (µy′(t0))
n

k+n−1 ,

where the constant µ > 0 depends only on n, k, m, M .

Lemma 3.3 (generalisation of [2, Lemma 7.2]). If y(t) is a solution to (1.1) satisfying, at some t′0,
the conditions

y(t′0) > 0, y′(t′0) ≤ 0, . . . , y(n−1)(t′0) ≤ 0,

then at some t0 > t′0 the solution is equal to zero, and

t0 − t′0 ≤ (µy(t′0))
− k−1

n ,

y′(t0) < −(µy(t′0))
k+n−1

n ,

where the constant µ > 0 depends only on n, k, m, M .

Lemma 3.4 (generalisation of [2, Lemma 7.3]). Under the assumptions of Lemmas 3.2 and 3.3,
for any t1 > t0 with y(t0) = 0, y(t1) = 0 the inequality

|y′(t1)| > Q|y′(t0)|

holds true, where the constant Q > 1 depends only on k, m, M .

Lemma 3.5 ([5, 8]). Suppose D ⊂ Rn and D̃ ⊂ Rn+1 are open connected sets such that for every
c ∈ D there exists a segment [0, xc] with [0, xc] × {c} ⊂ D̃. Suppose that f(x, c) is a continuous
function D̃ → R as well as its derivative in x. Suppose that for every c ∈ D the following conditions
are fulfilled.
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• f(0, c) = 0.

• There exists x1(c) ∈ (0, xc) such that f(x1(c), c) = 0 and f(x, c) ̸= 0 for all x ∈ (0, x1(c)).

•
f ′
x(x, c)

∣∣
x=0

̸= 0, f ′
x(x, c)

∣∣
x=x1(c)

̸= 0.

Then x1(c) is a continuous function D → R.
In the case k > 1 the main result is proved as follows. We consider a solution y(t) with initial

values
y(a) = 0, y′(a) = y1, y

′′(a) = y2, . . . , y
(n−1)(a) = yn−1,

where yi > 0, i = 1, . . . , n − 1. Due to Lemmas 3.2–3.4, the solution y(t) oscillates; so, y(t) has a
sequence of zeros tj , j ∈ N. We consider the position of a particular zero tS−1 as a function of initial
values y1, . . . , yn−1, and with the help of Lemma 3.5 we find out that this function is continuous.
Then, obtaining some estimates, we prove that the range of values of tS−1(y1, . . . , yn−1) is (a,+∞),
and that means that for some initial values we have tS−1 = b, whence the corresponding solution
y(t) has exactly S zeros on [a, b].

In the case k ∈ (0, 1) the same methods apply, but equation (1.1) with k ∈ (0, 1) does not
satisfy the conditions of the theorem of continuous dependence of solutions to ODE, which was
used in the proof. We have to find a workaround here, and it is provided by the following lemmas
(see [6]), which act as replacements for the mentioned continuous dependence theorem.
Lemma 3.6 ([6]). Suppose that n ≥ 3, k ∈ (0, 1), p ∈ Pn, and y is a solution to

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, y(i)(t0) = yi, i = 0, n− 1,

defined on [a, b]. In addition, suppose that for some w ∈ R the inequality |y′| ≥ w > 0 holds true
on [a, b]. Then there exists v ∈ R+ such that for every I = [t0, t

∗] ⊂ [a, b] with |I| < v, for every
ε > 0 there exists δ > 0 such that if some q ∈ Pn, zi ∈ R, i = 0, n− 1, satisfy the inequalities

|p− q| < δ, |zi − yi| < δ, i = 0, n− 1,

and z is a solution to

z(n) + q(t, z, z′, . . . , z(n−1))|z|k sgn z = 0, z(i)(t0) = zi, i = 0, n− 1,

then z is defined on or can be extended onto I with the inequalities∣∣z(i)(t)− y(i)(t)
∣∣ < ε, i = 0, n− 1,

satisfied on it.
Lemma 3.7 ([6]). Suppose that n ≥ 3, k ∈ (0, 1), p ∈ Pn, and y is a solution to

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, y(i)(t0) = yi, i = 0, n− 1,

defined on [a, c], and y has a finite number of zeros, all of them being of first order. Then for every
ε > 0 there exists δ > 0 such that if some q ∈ Pn, zi ∈ R, i = 0, n− 1, satisfy the inequalities

|p− q| < δ, |zi − yi| < δ, i = 0, n− 1,

and z is a solution to

z(n) + q(t, z, z′, . . . , z(n−1))|z|k sgn z = 0, z(i)(t0) = zi, i = 0, n− 1,

then z is defined on or can be extended onto [a, c] with the inequalities∣∣z(i)(t)− y(i)(t)
∣∣ < ε, i = 0, n− 1,

satisfied on it.
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We study the T -periodic boundary value problem for the autonomous system of differential
equations

u′(t) = f(u(t)), t ∈ [0, T ]; u(0) = u(T ), (1)

where T is the unknown period, f : Rn → Rn is a continuous function defined on a closed bounded
set (see (9)).

In [3] , we have suggested an approach for the investigation of general type of non-linear bound-
ary value problem with the functional boundary conditions

u′(t) = f(t, u(t)), t ∈ [a, b], Φ(u) = d, (2)

where ϕ : C([a, b],Rn) is a vector functional (possibly non-linear), which involves a kind of reduction
to a parametrized family of problems with separated conditions

u′(t) = f(t, u(t)), t ∈ [a, b], (3)
u(a) = z, u(b) = η, (4)

where z := col(z1, . . . , zn), η := col(η1, . . . , ηn) are unknown parameters. The techniques of [3] are
based on properties of the iteration sequence

um(t, z, η) := z +

t∫
a

f(s, um−1(s, z, η)) ds

− t− a

b− a

b∫
a

f(s, um−1(s, z, η)) ds+
t− a

b− a
[η − z], t ∈ [a, b], m = 1, 2, . . . , (5)

u0(t, z, η) := z +
t− a

b− a
[η − z]
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and on the solution of the algebraic system

∆(z, η) := η − z −
b∫

a

f(s, um(s, z, η)) ds. (6)

Formulas (5), (6) are used to compute the corresponding functions explicitly for certain values
of m, which, under additional conditions, allows one to prove the solvability of the problem and
construct approximate solutions.

It is known, that the T -periodic solution u∗(t) of autonomous system is not isolated in the
extended phase space which means that every member of the one-parameter family of functions
t → u∗(t+φ), φ ∈ [0, T ] is also a T -periodic solution. But, all these periodic solutions represent one
and the same trajectory. In the autonomous T -periodic case (1) z = η and the direct application
of the successive approximation technique (5), (6) implies that

um(t, z, η) = z, ∆(z, η) = f(z) = 0.

Therefore, the successive approximations scheme determined by (5), (6) “detects” only constant
stationary periodic solutions. In [1], it was considered the investigation of periodic solutions of
autonomous systems by transforming them with special replacements into non-autonomous systems.
Here we show that for the study of periodic solutions of autonomous systems it is advisable to use
the technique of dividing a segment in half [2, 4].

In view of the foregoing, without loss of generality, having replaced u∗ by u∗( · + φ) with a
suitable φ, we can assume in the subsequent consideration that a certain fixed, say jth component
of the periodic function u∗( · + φ) takes extremal value over [0, T ] at the point t = 0. So, we study
the periodic solution of (1) for which

fj
(
u1(0), u21(0), . . . , un1(0)

)
= 0. (7)

Let us fix certain closed bounded sets D0, D1 ⊂ Rn and focus on the continuously differentiable
T -periodic solutions u (T is unknown) of problem (1), (7) with values

u(0) ∈ D0, u(T/2) ∈ D1, u(T ) ∈ D0. (8)

Based on the sets D0 and D1, we introduce the sets

D0,1 = (1− θ)z + θη, z ∈ D0, η ∈ D1, θ ∈ [0, 1],

and its component-wise vector ρ neighborhood

Dρ = O(D0,1, ρ). (9)

The problem is to find a continuously differentiable solution u : [0, T ] → Dρ to problem (1) for
which inclusions (8) hold. We introduce the vectors of parameters

z = col(z1, z2, . . . , zn), η = col(η1, η2, . . . , ηn)

by formally putting
z := u(0), η := u(T/2), z := u(T ). (10)

Instead of (1) using a natural interval halving technique, we will consider on the intervals t ∈ [0, T/2]
and [T/2, T ], respectively, the following two “model-type” two-point problems with separated
parametrised conditions

x′(t) = f(x(t)), t ∈ [0, T/2], x(0) = z, x(T/2) = η, (11)
y′(t) = f(y(t)), t ∈ [T/2, T ], y(T/2) = η, y(T ) = z. (12)
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We suppose that

f ∈ Lip(K,Dρ) with the vector ρ satisfying the inequality ρ ≥ T

2
δDρ(f), (13)

r(Q) < 1, where Q =
3T

20
K, δDρ(f) =

1

2

(
max
x∈Dρ

f(x)− min
x∈Dρ

f(x)
)
.

To study the solutions of problems (11) and (12) let us introduce the following parametrised se-
quence of functions

xm(t, z, η, T ) := z +

t∫
0

f(xm−1(s, z, η, T )) ds

− 2t−
T

T/2∫
0

f(xm−1(s, z, η, T )) ds+
2t

T
[η − z], t ∈ [0, T/2], m = 1, 2, . . . , (14)

x0(t, z, η, T ) := z +
2t

T
[η − z],

and

ym(t, z, η, T ) := η +

t∫
T/2

f(ym−1(s, z, η, T )) ds−
2(t− T/2)

T

T∫
T/2

f(ym−1(s, z, η, T )) ds

+
2(t− T/2)

T
[z − η], t ∈ [T/2, T ], m = 1, 2, . . . , (15)

y0(t, z, η, T ) := η +
2(t− T/2)

T
[η − z].

Theorem 1. Assume that for problem (1) conditions (13) are satisfied. Then for arbitrary (z, η) ∈
D0 ×D1:

1. All members of sequences (14), (15) are continuously differentiable functions on the intervals
t ∈ [0, T/2] and t ∈ [T/2, T ] satisfying conditions

xm(0, z, η) = z, xm(T/2, z, η) = η, ym(T/2, z, η) = η, ym(T, z, η) = z.

2. Sequences (14), (15) in t ∈ [0, T/2] and t ∈ [T/2, T ], respectively, converge uniformly as
m → ∞ to the limit functions

x∞(t, z, η, T ) = lim
m→∞

xm(t, z, η, T ), y∞(t, z, η, T ) = lim
m→∞

ym(t, z, η, T ).

3. The limit functions are the unique continuously differentiable solution of the following addi-
tively perturbed equations for all (z, η) ∈ D0 ×D1

x(t) := z +

t∫
0

f(x(s)) ds− 2t−
T

T/2∫
0

f(x(s)) ds+
2t

T
[η − z], t ∈ [0, T/2],

y(t) := η +

t∫
T/2

f(y(s)) ds− 2(t− T/2)

T

T∫
T/2

f(y(s)) ds+
2(t− T/2)

T
[z − η], t ∈ [T/2, T ].
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Theorem 2. Let the conditions of Theorem 1 hold. Then the function

u∞(t) =

x∞(t, z, η), t ∈ [0, T/2]

x∞(t, z, η), t ∈ [T/2, T ]

is a continuously differentiable T -periodic solution of (1) if and only if the triplet (z, η, T ) satisfies
the system of 2n+ 1 algebraic or transcendental determining equations

∆(z, η, T ) = η − z −
T/2∫
0

f(x∞(s, z, η, T )) ds = 0, (16)

H(z, η, T ) = η − z −
T∫

T/2

f(y∞(s, z, η, T )) ds = 0,

fj(z1, z2, . . . , zn) = 0.

Note that the solvability of (1) can be established by studying the approximate determining system,
when in (16) instead of ∞ stands m.

Let us apply the approach described above to the system
du1
dt

= u2, (17)

du2
dt

= −4u1 + u21 +
u22
16

− 1

64
.

The domains D0, D1, vector ρ can be choosen to satisfy the conditions of Theorem 1. Applying
Maple (14), we carried out the calculations. Note that as a zeroth approximation in formulas (14),
(15), one can choose any function with values in domain Dρ.

Introduce the following parameters z = col(z1, z2), η = col(η1, η2). If in (7) j = 1, then from
(17) it follows that z2 = 0. The system (17) has two stationary constant solutions

z1 = −0.9765029026 · 10−3, z2 = 0 and z1 = 16.00097650, z2 = 0.

The exact π
2 -periodic solution of system (17) is u1(t) = 1

8 cos(4t), u2(t) = −1
2 sin(4t). For a different

number of approximations m, we obtain from (14), (15) and from the approximate determining
system (16) the following numerical values for the introduced parameters which are presented in
Table 1.

Table 1.

m z1 η1 η2 T

0 0.09964844522 −0.1003515548 1.079348881 · 10−12 1.570796327

1 0.09965288938 −0.1003558995 3.849442526 · 10−12 1.570796327

3 0.0996603478 −0.1003631726 −1.637826662 · 10−12 1.570796327

Exact 0.125 −0.1250000000 0 1.570796327

Note that the second equilibrium point and the π
2 -periodic solution are unstable.

On Figure 1, we have the graphs of the exact solution (solid line) and its third approximation
(×) for the first and second components on the intervals t ∈ [0, T ].
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Figure 1.
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1 The Perron stability definition
For a given zero neighborhood G in the Euclidean space Rn, we consider the system

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,∞), x ∈ G, (1.1)

with the right-hand side f ∈ C1(R+ × G) admitting a zero solution. Let S∗(f) denote the set of
all non-continuable nonzero solutions x of the system (1.1), then let Sδ(f) and Sδ(f) denote its
subsets given by the initial conditions |x(0)| < δ and |x(0)| = δ, respectively.

Definition 1.1. We say that a system (1.1) (more precisely, its zero solution, implied implicitly
everywhere below) has the following Perron features:

(1) Perron stability if for any ε > 0 there is a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
requirement

lim
t→∞

|x(t)| < ε; (1.2)

(2) asymptotic Perron stability if there is a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
requirement

lim
t→∞

|x(t)| = 0; (1.3)

(3) Perron instability if there is no Perron stability, i.e. there is an ε > 0 such that for any δ > 0
there is a solution x ∈ Sδ(f) not satisfying the requirement (1.2) (in particular, not defined
on the whole semi-axis R+);

(4) complete Perron instability if there are ε, δ > 0 such that no solution x ∈ Sδ(f) satisfies the
requirement (1.2).

Remark 1.1. In Definition 1.1, each of the four Perron features:

(a) in a standard way (namely, with a simple shift of coordinates) extends from the zero solution
to any other one, and not only to the points of rest of the system under study;

(b) is of a local character, i.e. it depends on the behavior of only those solutions that start near
zero;

(c) characterizes the behavior of solutions starting near zero from the point of view of the pos-
sibility for them to approach the origin arbitrarily late or, conversely, ultimately move away
from it.
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The next two theorems describe some seemingly paradoxical situations.

Theorem 1.1. There is a complete Perron unstable two-dimensional system (1.1) which has at
least one solution x ∈ S∗(f) satisfying the requirement (1.3) and even the condition

lim
t→∞

|x(t)| = 0. (1.4)

Theorem 1.2. There exists a Perron unstable two-dimensional autonomous system (1.1) such that
for some δ > 0 all solutions x ∈ Sδ(f) satisfy the requirement (1.4).

2 Perron and Lyapunov stability joint properties
Definition 2.1 ([1, Ch. II, § 1]). Let us assign the Lyapunov analogue to each of the four Perron
features above:

(a) Lyapunov stability, instability and complete instability are obtained by replacing the require-
ment (1.2) in the first, third and fourth paragraphs of the Definition 1.1 respectively by the
following requirement

sup
t∈R+

|x(t)| < ε;

(b) asymptotic Lyapunov stability is obtained by replacing the requirement (1.3) in the second
paragraph of the Definition 1.1 by the requirement (1.4), but with the Lyapunov stability.

Remark 2.1. For any system (1.1) the following logical statements are true:

(1) it is either Perron (Lyapunov) stable, or Perron (respectively, Lyapunov) unstable;

(2) if it is asymptotically Perron (Lyapunov) stable, then it is Perron (respectively, Lyapunov)
stable;

(3) if it is completely Perron (Lyapunov) unstable, then it is Perron (respectively, Lyapunov)
unstable;

(4) if it is Lyapunov stable (asymptotically), then it is Perron stable (respectively, asymptoti-
cally);

(5) if it is Perron unstable (completely), then it is Lyapunov unstable (respectively, completely).

Definition 2.2. We will call strict the following varieties of Perron (Lyapunov) features:

(a) asymptotic Perron (Lyapunov) stability;

(b) non-asymptotic Perron (Lyapunov) stability;

(c) complete Perron (Lyapunov) instability;

(d) incomplete Perron (Lyapunov) instability.

Consider a linear system of the form

ẋ = A(t)x, x ∈ Rn, t ∈ R+, (2.1)

defined by its continuous operator function A : R+ → EndRn (if it is bounded, we call the system
bounded too). Denote by Sδ

A the set of solutions x of the system (2.1) satisfying the initial condition
|x(0)| = δ.

All combinations of varieties of stability features from the Definition 2.2 which are logically
admissible by the formulation of the previous remark turn out to be possible.



164 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

Theorem 2.1. Any pair formed by any strict Perron and Lyapunov features and not conflicting
with the statements of the Remark 2.1 is implemented in some at least two-dimensional bounded
linear system (2.1).

A special role in the study on the stability of a linear (and not only) system is played by
characteristic exponents of its solutions x ∈ S∗(f) – the Lyapunov ones [2, Ch. I] and, respectively,
the Perron ones [3, § 2]

λ(x) ≡ lim
t→∞

1

t
ln |x(t)|, π(x) ≡ lim

t→∞

1

t
ln |x(t)|.

Theorem 2.2. For each n ∈ N there is a complete Lyapunov unstable, but asymptotically (non-
asymptotically) Perron stable n-dimensional bounded linear system (2.1) for which all Lyapunov
exponents are positive and all Perron exponents are negative (respectively, equal to zero).

From a practical point of view, the following two most natural situations seem to be particularly
important:

(1) asymptotic Perron stability combined with Lyapunov stability;

(2) complete Perron (and, therefore, Lyapunov) instability.

3 The important special cases
If the system (1.1) is one-dimensional, then the verification of Perron features is somewhat simplified
because of the possibility to order the solutions by increasing their initial values in the numerical
phase straight line.

Theorem 3.1. For a one-dimensional system (1.1):

(1) Perron stability is equivalent to the fact that for any ε > 0 there exist two opposite-sign
solutions x ∈ S∗(f) satisfying the requirement (1.2);

(2) asymptotic Perron stability is equivalent to the existence of two opposite-sign solutions x ∈
S∗(f) satisfying the requirement (1.3);

(3) complete Perron instability is equivalent to the existence of an ε > 0 such that for any δ > 0
there are two opposite-sign solutions x ∈ Sδ(f) that do not satisfy the requirement (1.2).

Remark 3.1. In the case of complete Perron instability, it is fundamentally excluded (due to the
continuous dependence of the solutions on the initial values) the opportunity to find ε, δ > 0, and
T ∈ R such that all at once solutions x ∈ Sδ(f) satisfy the requirement

inf
t T

|x(t)| ε. (3.1)

Despite the Remark 3.1, in both one-dimensional and autonomous cases, the situation described
in Theorem 1.1 is impossible, and the complete Perron instability still has a certain uniformity.

Theorem 3.2. If a one-dimensional or autonomous system (1.1) is completely Perron unstable,
then:

(1) for some ε > 0 no solution x ∈ S∗(f) satisfies the requirement (1.2);

(2) for any δ > 0 there exists an ε > 0 such that all solutions x ∈ S∗(f) \ Sδ(f) satisfy the
requirement (3.1) already at T = 0.
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Each of the Perron features in the case of a linear system is completely determined by the
properties of its solutions starting on some sphere.

Theorem 3.3. The Perron stability of the linear system (2.1) is equivalent to fulfilling the require-
ment

sup
x∈S1

A

lim
t→∞

|x(t)| < ∞,

and its asymptotic Perron stability or complete Perron instability is equivalent to the fact that any
solution x ∈ S1

A satisfies the requirement (1.3) or, respectively, the requirement

lim
t→∞

|x(t)| = ∞. (3.2)

In the simplest case of a linear autonomous system the Perron and Lyapunov stability analysis
lead to the identical result (unambiguously recognized by the real parts of the eigenvalues of the
operator that defines the system and the orders of its Jordan cells corresponding to the purely
imaginary ones [1, Ch. II, § 8]).

Theorem 3.4. The linear autonomous system (2.1) is Perron stable (asymptotically stable, un-
stable, completely unstable) if and only if it is Lyapunov stable (respectively, asymptotically stable,
unstable, completely unstable).

The statement of Theorem 3.4 does not extend from autonomous linear systems to a slightly
wider class of regular linear systems [1, Ch. III, § 11].

Theorem 3.5. For each n ∈ N there exists a regular bounded linear system (2.1) that is asymptot-
ically Perron stable, but completely Lyapunov unstable.

In the case of a linear system, the fulfillment of the requirements (1.3) or (3.2) not for all its
non-zero solutions, but only for those that constitute a fundamental solution system is not sufficient
for Perron stability or, respectively, complete Perron instability.

Theorem 3.6. For each n > 1, there is an n-dimensional bounded linear system (2.1) with Perron
instability (with incomplete instability) for which the Perron exponents of all solutions from some
of its fundamental systems are negative (respectively, positive).

However, in some (even non-linear) cases, the knowledge of the set of exponents of all solutions
of the system starting close to zero gives full information about the Perron and Lyapunov features.

Theorem 3.7. If for some δ > 0 the Perron (Lyapunov) exponents of all solutions x ∈ Sδ(f) of
the system (1.1) are negative, then the system is asymptotically Perron (respectively, Lyapunov)
stable, and if they are positive, then it is completely unstable.

4 The first-order stability
Let the linear part be distinguished in the right-hand side of the system (1.1), i.e. let it be
represented as

ẋ = A(t)x+ h(t, x) ≡ f(t, x), (t, x) ∈ R+ ×G, sup
t∈R+

|h(t, x)| = o(x), x → 0, (4.1)

where A(t) ≡ f ′
x(t, 0), t ∈ R+. Then for it the corresponding system (2.1) will be considered as the

first approximation system.
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Definition 4.1. We say that the first approximation system (2.1) provides a given Perron or
Lyapunov feature if any system (4.1) with this first approximation has the given one.

The study of asymptotic stability by the first approximation, which is the essence of the first
Lyapunov method, has been the subject of a huge number of works (see [3, § 11]). However,
the study by the first approximation of stability or asymptotic stability, according to Perron or
Lyapunov – all of them are possible only for the same systems.

Theorem 4.1. If a linear approximation (2.1) provides at least one of the four features: Perron
stability, Lyapunov stability, asymptotic Perron stability, or asymptotic Lyapunov stability – then
it provides the other three of them.
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We consider the differential equation

y′′′ = α0p(t)y| ln |y||σ, (1)

where α0 ∈ {−1; 1}, p : [a, ω) → (0,+∞) is a continuous function, σ ∈ R, ∞ < a < ω ≤ +∞. It
belongs to the equations class of the form

y′′′ = α0p(t)L(y), (2)

where α0 ∈ {−1; 1},p : [a, ω) → (0,+∞) is a continuous function, ∞ < a < ω ≤ +∞, the function
L is continuous and positive in a one-sided neighborhood of ∆Y0 at points Y0 (Y0 equals ±∞).

For equations of the form (2) in the work of N. Sharay and V. Evtukhov [4] for the function L(y)
with rapidly varying nonlinearity it was investigated the question of the existence and asymptotic
behavior as t → ω of the so-called Pω(Y0, λ0)-solution.

In [5, 10] A. Stekhun and V. Evtukhov obtained the results on the existence and asymptotic
behavior as t → ω of the endangered and unlimited solutions of the differential equation (2), where
L(y) = yL1(y), L1(y) is a regularly varying function.

For second order equations of the form (1) in the works of V. Evtukhov and M. Jaber [1,2] it was
investigated the question on the existence and asymptotic behavior as t ↑ ω of all Pω(λ0)-solutions.
It seems natural to try to extend these results to the third-order differential equations.

A solution y of equation (1), specified on the interval [ty, w) ⊂ [a, ω), is said to be a Pω(λ0)-
solution if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞
(k = 0, 1, 2), lim

t↑ω

[y′′(t)]2

y′′′(t)y′(t)
= λ0.

In the work [3] it is shown that a set of Pω(λ0)-solutions with regards to their asymptotic
properties in the five class solutions, corresponding values λ0 ∈ R\{0; 1; 12}, λ0 = ±∞, λ0 = 0 ,
λ0 =

1
2 and λ0 = 1.

Earlier in [7–9] the results were obtained in the case, when λ0 ∈ R\{0,±1, 12} and λ0 = ±∞.
The goal of the work is the establishment existence conditions for equation (1) of Pω(1)-solutions
and also asymptotic representations as t ↑ ω of such solutions and their derivatives of second order.
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We introduce the necessary notation.

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,
IB(t) =

t∫
B

p
1
3 (τ) dτ, B =


a if

ω∫
a

p
1
3 (τ) dτ = +∞,

ω if
ω∫

a

p
1
3 (τ) dτ < +∞.

Theorem 1. Let σ ̸= 3, the function p : [a, ω) → (0,+∞) be continuously differentiable and there
exist a finite or equal to ±∞ limit

lim
t↑ω

(p
1
3 (t)|IB(t)|

σ
2−σ )′

p
2
3 (t)|IB(t)|

2σ
3−σ

. (3)

For the existence of Pω(1)-solutions of equation (1) it is necessary and sufficient the conditions

α0 > 0 and lim
t↑ω

πω(t)p
1
3 (t)|IB(t)|

σ
3−σ = ∞ (4)

to hold. Moreover, for each such solution there take place the following asymptotic representations
as t ↑ ω

ln |y(t)| = µ
∣∣∣3− σ

3
IB(t)

∣∣∣ 3
3−σ

[1 + o(1)],
y′(t)

y(t)
= p

1
3 (t)

∣∣∣3− σ

3
IB(t)

∣∣∣ σ
3−σ

[1 + o(1)],

y′′(t)

y(t)
= p

1
3 (t)

∣∣∣3− σ

3
IB(t)

∣∣∣ σ
3−σ

[1 + o(1)],

where µ = sign(3−σ
3 IB(t)).

Theorem 2. Let σ ̸= 3, the function p : [a, ω) → (0,+∞) be continuously differentiable and along
with (3), (4) the following condition

lim
t↑ω

(p
2
3 (t)|IB(t)|

2σ
3−σ )′

p(t)|IB(t)|
3(σ−1)
3−σ

= 0

hold. Then for any C = ±1 equation (1) has a Pω(1)-solution. Furthermore, for every such solution
the following asymptotic representations as t → ω

y(t) = C exp
[
µ
∣∣∣3− σ

3
IB(t)

∣∣∣ 3
3−σ

]
[1 + o(1)], y′(t) = µp

1
3 (t)

∣∣∣3− σ

3
IB(t)

∣∣∣ σ
3−σ

y(t)[1 + o(1)],

y′′(t) = µp
2
3 (t)

∣∣∣3− σ

3
IB(t)

∣∣∣ 2σ
3−σ

y(t)[1 + o(1)]

take place.

We give a corollary of these theorems, when σ = 0, i.e. for the following linear differential
equation

y
′′′
= α0p(t)y, (5)

where α0 ∈ {−1; 1}, σ ∈ R, p : [a,w) → (0,+∞) is a continuous function, a < w ≤ +∞.
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Corollary 1. Let the function p : [a, ω) → (0,+∞) be continuously differentiable and there exist a
finite or equal to ±∞ limit lim

t↑ω
p′(t)p−

5
3 (t). For the existence of Pω(1)-solutions of equation (5) it

is necessary and sufficient the conditions

α0 > 0 and lim
t↑ω

π3
ω(t)p(t) = +∞ (6)

to hold. Moreover, for each such solution the following asymptotic representations as t ↑ ω

ln |y(t)| = µ
∣∣∣3− σ

3
IB(t)

∣∣∣[1 + o(1)],
y′(t)

y(t)
= p

1
3 (t)[1 + o(1)],

y′′(t)

y(t)
= p

1
3 (t)[1 + o(1)],

where µ = sign(IB(t)), take place.

Corollary 2. Let the function p : [a, ω) → (0,+∞) be continuously differentiable and along with
conditions (6) the following condition is satisfied

ω∫
a

∣∣∣p′(t)
p(t)

∣∣∣ dt < +∞.

Then equation (5) has a Pω(1)-solution. Furthermore, for any such solution the following asymptotic
representations as t → ω

yi(t) = exp
[
(−1)i−1IB(t)

]
[1 + o(1)], y′(t) = (−1)i−1p

1
3 (t)y(t)[1 + o(1)],

y′′(t) = (−1)i−1p
2
3 (t)y(t)[1 + o(1)] (i = 1, 2, 3)

take place.

The obtained results are consistent with the already known results for linear differential equa-
tions (see [6, Chapter 1]).
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Let
G =

{
t, ε : t ∈ [t0,+∞), ε ∈ (0, ε0), ε0 ∈ R+

}
.

Definition. We say that the function f(t, ε) belongs to the class S(m), m ∈ N ∪ {0}, if:

1) f : G → C,

2) f(t, ε) ∈ Cm(G) at t,

3) dkf(t, ε)/dtk = εkfk(t, ε) (0 ≤ k ≤ m),

∥f∥S(m)
def
=

m∑
k=0

sup
G

|fk(t, ε)| < +∞.

By slowly varying function we mean a function from the class S(m).
Consider the system of differential equations

dx

dt
=

(
A0(t, ε) +

r∑
s=1

As

(
t, ε, θ(t, ε)

)(
µ(θ(t, ε))

)s)
x, (1)

x = colon(x1, . . . , xn), A0(t, ε) – (N × N)-matrix, whose elements belong to the class S(m). The
function θ(t, ε) has the form

θ(t, ε) =

t∫
t0

φ(τ, ε) dτ, (2)

φ ∈ R+, φ(t, ε) ∈ S(m), inf
G

φ(t, ε) = φ0 > 0. The elements of matrices As(t, ε, θ) belong to the
class S(m) with respect to t, ε, are continuous and 2π-periodic with respect to θ ∈ [0,+∞). The
function µ(θ) is continuous in [0,+∞).

With a small function µ(θ) system (1) is close to the system with slowly varying coefficients

dx0
dt

= A0(t, ε)x0.

The terms depending on θ in system (1) has the order O(µ). We study the problem of reducing
system (1) to the form where the terms depending on θ has the order O(µr+1), or O(ε). If a
parameter ε is sufficiently small, then the transformed system will be closer to a system with slowly
varying coefficients than to system (1).

Theorem. Let system (1) satisfy the following conditions:
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1) eigenvalues λj(t, ε) (j = 1, N) of matrix A0(t, ε) are such that

λj(t, ε)− λk(t, ε) = injkφ(t, ε), njk ∈ Z,

where the function φ(t, ε) are defined by condition (2);

2) there exists a matrix L(t, ε), the elements of which belong to the class S(m) such that
inf
G

| detL(t, ε)| > 0, and

L−1(t, ε)A0(t, ε)L(t, ε) = Λ(t, ε) = diag
[
λ1(t, ε), . . . , λN (t, ε)

]
;

3) the function µ(θ) is such that

µ(θ) ∈ R, sup
[0,+∞)

µ(θ) ≤ µ0 < +∞,

+∞∫
0

µk(θ)dθ ≤ µ0 < +∞ (k = 1, r).

Then for sufficiently small values of µ0 there exists the transformation of the kind

x = Φ(t, ε, θ(t, ε))y,

where the elements of the matrix Φ(t, ε, θ(t, ε)) are bounded on G× [t0,+∞), that leads system (1)
to the kind

dy

dx
=

(
Λ(t, ε) + εV (t, ε, θ) +W (t, ε, θ)

)
y, (3)

where the elements of the matrices V (t, ε, θ) and W (t, ε, θ) are bounded on G × [t0,+∞), and the
elements of the matrix W (t, ε, θ) has the order µr+1

0 .

Proof. We make in system (1) the substitution

x = L(t, ε)x(1),

where x(1) – new unknown vector od dimension N . We obtain

dx(1)

dt
=

(
Λ(t, ε) + εH(t, ε) +

r∑
s=1

Bs(t, ε, θ)(µ(θ))
s
)
x(1), (4)

where
H(t, ε) = −1

ε
L−1(t, ε)

dL(t, ε)

dt
, Bs(t, ε, θ) = L−1(t, ε)As(t, ε, θ)L(t, ε). (5)

The elements of the matrix H(t, ε) belong to the class S(m− 1).
We seek the transformation, which leads system (4) to the kind (3), in the form

dx(1)

dt
=

(
E +

r∑
s+1

Qs(t, ε, θ)
)
y, (6)

where the matrices Qs(t, ε, θ) (s = 1, r) are defined from the next chain of the differential equations

φ(t, ε)
∂Q1

∂θ
= Λ(t, ε)Q1 −Q1Λ(t, ε) +B1(t, ε, θ)µ(θ), (7)

φ(t, ε)
∂Q2

∂θ
= Λ(t, ε)Q2 −Q2Λ(t, ε) +B2(t, ε, θ)(µ(θ))

2 +B1(t, ε, θ)Q1t, ε, θ)µ(θ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ(t, ε)
∂Qr

∂θ
= Λ(t, ε)Qr −QrΛ(t, ε) +Br(t, ε, θ)(µ(θ))

r +
r−1∑
s=1

Bs(t, ε, θ)Qr−s(t, ε, θ)(µ(θ))
s.
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The matrices V (t, ε, θ), W (t, ε, θ) are defined from the equations

(
E +

r∑
s=1

Qs(t, ε, θ)
)
V = H(t, ε)

(
E +

r∑
s=1

Qs(t, ε, θ)
)
− 1

ε

r∑
s=1

∂Qs(t, ε, θ)

dt
, (8)

(
E +

r∑
s=1

Qs(t, ε, θ)
)
W =

r∑
j=1

r∑
s=j

Bs(t, ε, θ)Qr+j−s(t, ε, θ)(µ(θ))
s. (9)

Let
Qs = (q

(s)
jk )j,k=1,N , Bs = (b

(s)
jk )j,k=1,N , s = 1, r.

Consider equation (7). By virtue condition 1) of the theorem equation (7) is equal to the set of
scalar equations

∂q
(1)
jk

∂θ
= injkq

(1)
jk +

1

φ(t, ε)
µ(θ)b

(1)
jk (t, ε, θ), j, k = 1, N. (10)

For each of equations (10), we consider its solution

q
(1)
jk (t, ε, θ) =

1

φ(t, ε)
einjkθ

θ∫
0

µ(ϑ)b
(1)
jk (t, ε, ϑ)e

−injkϑdϑ, j, k = 1, N. (11)

From the fact that elements of matrices As(t, ε, θ) in system (1) belong to the class S(m) with
respect to t, ε, and are continuous and 2π-periodic with respect to θ ∈ [0,+∞), and from equality
(5) it follows that the elements of the matrices Bs(t, ε, θ) also have similar properties. Hence

sup
G×[0,+∞)

|b(1)jk (t, ε, θ)| = c
(1)
jk < +∞, j, k = 1, N.

From (11) and condition 3) of the theorem we have

sup
G×[0,+∞)

∣∣q(1)jk (t, ε, θ)
∣∣ ≤ 1

φ0
µ0c

(1)
jk , j, k = 1, N.

For q
(r)
jk (t, ε, θ) we define

q
(r)
jk (t, ε, θ) =

1

φ(t, ε)
einjkθ

×
θ∫

0

(
(µ(ϑ))rb

(r)
jk (t, ε, ϑ) +

r−1∑
s=1

(µ(ϑ))s
N∑
l=1

b
(s)
jl (t, ε, ϑ)q

(r−k)
lk (t, ε, ϑ)

)
e−injkϑ dϑ, j, k = 1, N.

All functions q
(s)
jk (t, ε, θ) (j, k = 1, N , s = 1, r − 1) are bounded at t ∈ G × [t0,+∞). All

functions b
(s)
jk (t, ε, θ) (j, k = 1, N , s = 1, r) are bounded also at t ∈ G × [t0,+∞). Hence, the

condition 3) of the theorem guarantees existence of bounded solutions q(r)jk (t, ε, θ) (j, k = 1, N), and
these solutions have the order µr

0. For the small µ0 the same condition guarantees non-degeneracy
of transformation (6). The matrix V (t, ε, θ) is uniquely defined from equation (8), and the matrix
W (t, ε, θ) is uniquely defined from equation (9), and how easy it is to see that the order of the
elements of the matrix W (t, ε, θ) are not less than µr+1

0 .
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We consider the system of differential equations

y′i = fi(t, y1, . . . , yn), i = 1, n, (1)

where fi : [a, ω[×
n∏

i=1
∆(Y 0

i ) → R, i = 1, n, are continuous functions, −∞ < a < ω ≤ +∞1, ∆(Y 0
i ),

i ∈ {1, . . . , n} is one-sided neighborhood of Y 0
i , Y 0

i equals either 0 or ±∞.

Definition 1. A solution (yi)
n
i=1 of system (1) is called Pω(Λ1, . . . ,Λn−1)-solution if it is defined

on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

yi(t) ∈ ∆(Y 0
i ) while t ∈ [t0, ω[ , lim

t↑ω
yi(t) = Y 0

i , (2)

lim
t↑ω

yi(t)y
′
i+1(t)

y′i(t)yi+1(t)
= Λi (i = 1, n− 1). (3)

System (1) was considered in T. A. Chanturia’s works [1, 2]. In these works, T. A. Chanturia
obtained results about existence of proper, singular and oscillating solutions of system (1). These
results are especially effective for cyclic systems.

In [3–5, 7, 8], the asymptotics for Pω(Λ1, . . . ,Λn−1)-solutions for cyclic differential equations
systems of the following form were considered

y′i = αipi(t)φi+1(yi+1) (i = 1, n)2,

where αi ∈ {−1, 1} (i = 1, n), pi : [a, ω[→ ]0,+∞[ (i = 1, n) are continuous functions, φi :
∆(Y 0

i ) → ]0;+∞[ (i = 1, n) are continuously differentiable functions and satisfy conditions

lim
yi→Y 0

i

yi∈∆(Y 0
i )

yiφ
′
i(yi)

φi(yi)
= σi (i = 1, n),

n∏
i=1

σi ̸= 1.

Assume that the definition of Pω(Λ1, . . . ,Λn−1)-solution does not give the direct connection
between the first and the n−th components of this solution. In order to establish this connection,
we define the following functions

λi(t) =
yi(t)y

′
i+1(t)

y′i(t)yi+1(t)
(i = 1, n).

1For ω = +∞ consider a > 0.
2Here and in the sequel, all functions and parametres with the subscript n+1 are assumed to coincide with those

with the subscript 1.
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We proceed and show that

λn(t) =
yn(t)y

′
1(t)

y′n(t)y1(t)
=

yn(t)y
′
n−1(t)

y′n(t)yn−1(t)
·
yn−1(t)y

′
n−2(t)

y′n−1(t)yn−2(t)
· · · y2(t)y

′
1(t)

y′2(t)y1(t)
=

1

λ1(t) · · ·λn−1(t)
. (4)

From (3) it follows that lim
t↑ω

λi(t) = Λi (i = 1, n− 1). Therefore, if there are zeros among Λi

(i = 1, n− 1) from (4), we obtain
Λn = lim

t↑ω
λn(t) = ±∞.

In particular, it is evident that the case, when among all Λi (i = 1, . . . , n− 1) there is a single ±∞,
while all others are real numbers different from zero, could be transformed into the case described
in this work. This transformation is carried out by cyclic redesignation of variables, functions and
constants. For instance, if Λl = ±∞ (l ∈ {1, . . . , n− 1}), the indices are redesignated as follows

l −→ n, l + 1 −→ 1, . . . , n −→ n− l, 1 −→ n− l + 1, . . . , l − 1 −→ n− 1.

It is obvious that Λi = 0 when i = n− l.
Further, we introduce auxiliary notation.
First, if

µi =

{
1 as Y 0

i = +∞, or Y 0
i = 0 and ∆(Y 0

i ) is right neighborhood of 0,
−1 as Y 0

i = −∞, or Y 0
i = 0 and ∆(Y 0

i ) is left neighborhood of 0,

it is obvious that µi (i = 1, n) determine the signs of the components of Pω(Λ1, . . . ,Λn−1)-solution
in some left neighborhood of ω.

The existence of Pω(Λ1, . . . ,Λn−1)-solutions of system (1) for fixed values of Λi ∈ R (
n−1∏
i=1

Λi = 0),

i = 1, n− 1, and their asymptotics as t ↑ ω will be explored when this system is in a certain way
close to a cyclic one with regularly varying non-linearities.

Definition 2. We say that system (1) satisfies the condition N(Λ1, . . . ,Λn−1), where Λi ∈ R,
i = 1, n− 1, if for any k ∈ {1, . . . , n} there exist a number αk ∈ {−1, 1}, a continuous function
pk : [a, ω[→ ]0,+∞[ and continuous regularly varying φk+1 : ∆(Y 0

k+1) → ]0;+∞[ of σk+1 orders
(when yk+1 → Y 0

k+1) which admit the following representation for any functions yi : [a, ω[→ ∆(Y 0
i ),

i = 1, n, satisfying conditions (2), (3):

fk(t, y1(t), . . . , yn(t)) = αkpk(t)φk+1(yk+1(t))[1 + o(1)] when t ↑ ω. (5)

Since functions φi (i = 1, n) are regularly varying as z → Y 0
i of σi orders, they admit the

following representation (see [6]):

φi(yi) = |yi|σiθi(yi) (i = 1, n), (6)

where θi : ∆(Y 0
i ) → ]0;+∞[ (i = 1, n) are slowly varying functions as z → Y 0

i .
Having supposed that system (1) for certain Λi, i ∈ {1, . . . , n − 1}, satisfies the condition

N (Λ1, . . . ,Λn−1) and
n∏

k=1

σk ̸= 1 (for orders σk, k = 1, n of functions φk), we introduce auxiliary

designation.
We denote sets

I =
{
i ∈ {1, . . . , n− 1} : 1− Λiσi+1 ̸= 0

}
, I = {1, . . . , n− 1} \ I
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and suppose that 1− Λn−1σn ̸= 0.
By taking into account the fact that n−1 ∈ I, we denote auxiliary functions Ii, Qi (i = 1, . . . , n)

and non-zero constants βi (i = 1, . . . , n), supposing that

Ii(t) =



t∫
Ai

pi(τ) dτ for i ∈ I,

t∫
Ai

pi(τ)Ii+1(τ) dτ for i ∈ I,

t∫
An

pn(τ)qn(τ) dτ for i = n,

βi =


1− Λiσi+1 if i ∈ I,

βi+1Λi if i ∈ I,

1−
n∏

k=1

σk if i = n,

Qi(t) =


αiβiIi(t) for i ∈ I ∪ {n},

αiβiIi(t)

Ii+1(t)
for i ∈ I,

where each limit of integration Ai ∈ {ω, a} (i ∈ {1, . . . , n − 1}), An ∈ {ω, b} (b ∈ [a, ω[) is chosen
in such a way that its corresponding integral Ii aims either to zero, or to ∞ as t ↑ ω,

qn(t) = θ1
(
µ1|I1(t)|

1
β1

)
|Qn−1(t)|

n−1∏
k=1

σk
n−2∏
k=1

∣∣∣Qk(t)θk+1

(
µk+1|Ik+1(t)|

1
βk+1

)∣∣∣ k∏
i=1

σi

.

In addition, we introduce numbers

A∗
i =

{
1 if Ai = a,

−1 if Ai = ω
(i = 1, . . . , n− 1), A∗

n =

{
1 if An = b,

−1 if An = ω.

These numbers enable us to define the signs of functions Ii (i = 1, . . . , n− 1) on the interval ]a, ω[
and the sign of function In on the interval ]b, ω[ .

Definition 3. We say that the function φk (k ∈ {1, . . . , n}) satisfies the condition S if for any
continuously differentiable function l : ∆(Y 0

k ) → ]0,+∞[ with the property

lim
z→Y 0

k

z∈∆(Y 0
k )

z l′(z)

l(z)
= 0,

the function θk (defined in (6)) admits the asymptotic representation

θk(zl(z)) = θk(z)[1 + o(1)] when z → Y 0
k (z ∈ ∆(Y 0

k )).

For instance, S – condition is obviously satisfied by functions φk of the following type

φk(yk) = |yk|σk | ln yk|γ1 , φk(yk) = |yk|σk | ln yk|γ1 | ln | ln yk||γ2 ,

where γ1, γ2 ̸= 0. S – condition is also satisfied by functions φk which include functions θk that
have the eventual limit as yk → Y 0

k . S – condition is also satisfied by many other functions.
By means of introduced designations, we will establish the necessary and sufficient conditions

for the existence of Pω(Λ1, . . . ,Λn−1)-solutions for (1).
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Theorem. Let system (1) satisfy N(Λ1, . . . ,Λn−1)-condition and Λi ∈ R (i = 1, n− 1) include
those equal zeros, n − 1 ∈ I and m = max{i ∈ I : Λi = 0}. Let also functions φk (k = 1, n− 1),
defined in (5), satisfy S-condition. Then for the existence of Pω(Λ1, . . . ,Λn−1)-solutions of system
(1) it is necessary, and if the algebraic equation

(1 + λ)

n−1∏
j=m+1

(Mj + λ) =

n∏
j=1

σj

n∏
j=1

σj − 1

( n−1∑
k=m

k∏
j=m+1

(Mj + λ)
n−1∏

s=k+2

Ms

)
λ , 3 (7)

where

Mj =
( n−1∏

i=j

Λi

)−1
(j = m+ 1, n− 1),

does not have roots with zero real part, it is also sufficient that

lim
t↑ω

Ii(t)I
′
i+1(t)

I ′i(t)Ii+1(t)
= Λi

βi+1

βi
(i = 1, n− 1),

and for each i ∈ {1, . . . , n} the following conditions are satisfied

A∗
iβi > 0 if Y 0

i = ±∞, A∗
iβi < 0 if Y 0

i = 0,

sign[αiA
∗
iβi] = µi.

Moreover, components of each solution of that type admit the following asymptotic representation
as t ↑ ω

yi(t)

φi+1(yi+1(t))
= Qi(t)[1 + o(1)] (i = 1, n− 1),

yn(t)

[φn(yn(t))]

n−1∏
i=1

σi

= Qn(t)[1 + o(1)],

and there exists the whole k-parametric family of these solutions if there are k positive roots among
the solutions of the following algebraic equation

γi =


βiA

∗
i if i ∈ I \ {m+ 1, . . . , n− 1},

βiA
∗
iA

∗
i+1 if i ∈ I \ {m+ 1, . . . , n− 1},

A∗
n

( n−1∏
j=1

σj − 1
)
Reλ0

i−m if i ∈ {m+ 1, . . . , n},

where λ0
j (j = 1, n−m) are roots of the algebraic equation (7) (along with multiple ones).
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1 Introduction
Let T > 0 be given, J = [0, T ] and X = C(J)× C(J).

We investigate the system of fractional differential equations

cDαu(t) + p(t)cDα1u(t) = f(t, u(t), v(t)),

cDβv(t) + q(t)cDβ1v(t) = g(t, u(t), v(t)),

}
(1.1)

where 0 < α1 < α ≤ 1, 0 < β1 < β ≤ 1, p, q ∈ C(J), f, g ∈ C(J × R2) and cD denotes the Caputo
fractional derivative.

Let K,R : C(J) → R be functionals given as

Kx =

m1∑
k=1

ckx(ρk), Rx =

m2∑
k=1

dkx(ξk),

where mj ∈ N or mj = ∞, j = 1, 2, {ρk}m1
k=1 ⊂ (0, T ], {ξk}m2

k=1 ⊂ (0, T ] are increasing sequences

and ck > 0, dk > 0,
m1∑
k=1

ck = 1,
m2∑
k=1

dk = 1.

Together with system (1.1) we study the boundary condition

(u(0), v(0)) = (Ku,Rv). (1.2)

Definition 1.1. We say that (u, v) : J → R2 is a solution of system (1.1) if (u, v), (cDαu, cDβv) ∈ X
and (u, v) satisfies (1.1) for t ∈ J . A solution (u, v) of (1.1) satisfying the boundary condition (1.2)
is called a solution of problem (1.1), (1.2).

Since each constant vector-function (u, v) on the interval J is a solution of problem cDαu +
p(t)cDα1u = 0, cDβv + q(t)cDβ1v = 0, (1.2), problem (1.1), (1.2) is at resonance.

We recall the definitions of the Riemann–Liouville fractional integral and the Caputo fractional
derivative [1, 2].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is defined
as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s) ds,

where Gamma is the Euler gamma function. I0 is the identical operator.
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The Caputo fractional derivative cDγx of order γ ∈ (0, 1) of a function x : J → R is given as

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0)) ds =

d

dt
I1−γ (x(t)− x(0)).

If γ = 1, then cDγx(t) = x′(t).
The special case of (1.1) (for α = 1, β = 1) is the system of generalized Basset fractional

differential equations [3]

u′(t) + p(t)cDα1u(t) = f(t, u(t), v(t)),

v′(t) + q(t)cDβ1v(t) = g(t, u(t), v(t)).

}

The special cases of (1.2) are the periodic condition

(u(0), v(0)) = (u(T ), v(T ))

and the infinite-point boundary condition

(u(0), v(0)) =
( ∞∑

k=1

cku(ρk),
∞∑
k=1

dkv(ξk)
)
.

We will work with the following conditions for the functions p, q, f and g in (1.1):

(H1) There exist D,H,K,L ∈ R, D < H, K < L, such that

f(t,D, y) > 0, f(t,H, y) < 0 for t ∈ J , y ∈ [K,L],

g(t, x,K) > 0, f(t, x, L) < 0 for t ∈ J , x ∈ [D,H].

(H2) p(t) ≥ 0 and q(t) ≥ 0 for t ∈ J .

The aim of this paper is to discuss the existence of solutions to problem (1.1), (1.2). The
existence results are proved by the following procedure. By the combination of initial value method
[4] with the maximum principle for the Caputo fractional derivative [4] and the Schaefer fixed
point theorem we first prove that for each (c1, c2) ∈ [D,H] × [K,L] there exists a solution (u, v)
of system (1.1) on the interval J satisfying the initial condition (u(0), v(0)) = (c1, c2). Then we
discuss the set C of all such solutions and show that C is a compact metric space. Assuming that
(u(0), v(0)) ̸= (Ku,Rv) for all (u, v) ∈ C we obtain a contradiction by the study of some compact
subsets of C.

2 Initial value problem
For r ∈ C(J) and γ ∈ (0, 1), let Λr,γ : C(J) → C(J) be defined as

Λr,γx(t) = −r(t)Iγx(t)

and Λ0
r,γ be the identical operator on C(J). For n ∈ N, let Λn

r,γ = Λr,γ ◦ Λr,γ ◦ · · · ◦ Λr,γ︸ ︷︷ ︸
n

be nth

iteration of Λr,γ . Let Dr,γ : C(J) → C(J) be an operator defined as

Dr,γx(t) =

∞∑
n=0

Λn
r,γx(t).
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Let (H1) hold. Let

η(x) =


H if x > H,

x if x ∈ [D,H],

D if x < D,

ρ(y) =


L if y > L,

y if y ∈ [K,L],

K if y < K,

and f∗, g∗ : J × R2 → R be given as

f∗(t, x, y) = f(t, η(x), ρ(y)), g∗(t, x, y) = g(t, η(x), ρ(y)).

Then f∗, g∗ ∈ C(J × R2) are bounded and

f∗(t, x, y) > 0 if x < D, y ∈ R, f∗(t, x, y) < 0 if x > H, y ∈ R,
g∗(t, x, y) > 0 if x ∈ R, y < K, g∗(t, x, y) < 0 if x ∈ R, y > L,

}
for t ∈ J . Let operators F ,G : X → C(J) be the Nemytskii operators associated to f∗, g∗,

F(x, y)(t) = f∗(t, x(t), y(t)), G(x, y)(t) = g∗(t, x(t), y(t)),

and A,B : C(J) → C(J),

Ax(t) = Dp,α−α1x(t), Bx(t) = Dq,β−β1x(t),

where p, q, α, α1, β and β1 are from (1.1).
We now consider the fractional initial value problem

cDαu(t) + p(t)cDα1u(t) = f∗(t, u(t), v(t)),

cDβv(t) + q(t)cDβ1v(t) = g∗(t, u(t), v(t)),

}
(2.1)

(u(0), v(0)) = (c1, c2), (c1, c2) ∈ R2. (2.2)

Let an operator Q : X → X be defined by the formula

Q(x, y) = (Q1(x, y),Q2(x, y)),

where Qj : X → C(J),

Q1(x, y)(t) = c1 + IαAF(x, y)(t), Q2(x, y)(t) = c2 + IβBG(x, y)(t),

and c1, c2 are from (2.2).
The following result gives the relation between solutions of problem (2.1), (2.2) and fixed points

of Q.

Lemma 2.1. Let (H1) hold. Then (u, v) is a fixed point of Q if and only if (u, v) is a solution of
problem (2.1), (2.2).

The existence results for problems (2.1), (2.2) and (1.1), (2.2) are stated in the following two
lemmas.

Lemma 2.2. Let (H1) hold. Then there exists at least one solution of problem (2.1), (2.2).

Let ∆ = [D,H]× [K,L], where D,H,K and L are from (H2).

Lemma 2.3. Let (H1), (H2) hold and let (c1, c2) ∈ ∆. Then problem (1.1), (2.2) has at least one
solution and all its solutions (u, v) satisfy

D < u(t) < H, K < v(t) < L for t ∈ (0, T ]. (2.3)
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3 Existence result for problem (1.1), (1.2)
Theorem 3.1. Let (H1) and (H2) hold. The problem (1.1), (1.2) has at least one solution (u, v)
and

D < u(t) < H, K < v(t) < L for t ∈ J. (3.1)

Sketch of proof. Having in mind Lemma 2.3, for (c1, c2) ∈ ∆ let C(c1,c2) be the set of all solutions
to problem (1.1), (2.2). Let

C =
∪

(c1,c2)∈∆

C(c1,c2).

Then for each (u, v) ∈ C the equalities

u(t) = u(0) + IαAF(u, v)(t), v(t) = v(0) + IβBG(u, v)(t), t ∈ J,

and inequality (2.3) hold. We can prove that C is a compact metric space equipped with the metric

ρ((u, v), (u1, v1)) = max
{
|u(t)− u1(t)| : t ∈ J

}
+max

{
|v(t)− v1(t)| : t ∈ J

}
.

Assume to the contrary that

|u(0)−Ku|+ |v(0)−Rv| > 0 for (u, v) ∈ C, (3.2)

where K,R are from the boundary condition (1.2). Condition (3.2) is equivalent to

(u, v) ∈ C =⇒

either u(0)−Ku = 0 and v(0)−Rv ̸= 0

or u(0)−Ku ̸= 0 and v(0)−Rv = 0.
(3.3)

Keeping in mind (3.3), let

P1 =
{
(u, v) ∈ C : u(0) = Ku, v(0)−Rv ̸= 0

}
,

P2 =
{
(u, v) ∈ C : u(0)−Ku ≠ 0, v(0) = Rv

}
.

Then C = P1 ∪ P2 and P1 ∩ P2 = ∅ and we can prove that P1, P2 are nonvoid compact subsets of
C. Hence the compact metric space C is the union of nonvoid, mutually disjoint compact subsets
P1,P2, which is impossible. As a result assumption (3.2) is false. Consequently, problem (1.1), (1.2)
has a solution (u, v).

It remains to prove that (u, v) satisfies inequality (3.1). We know that (u, v) satisfies inequality
(2.3). Assume, for example, that v(0) = K. Since v > K on (0, T ], we have

v(0)−Rv = v(0)−
m2∑
k=1

djv(ξj) < K −K

m2∑
k=1

dj = K −K = 0,

which contradicts v(0)−Rv = 0. Hence v > K on J .

Example 3.1. Let r, l, p, q ∈ C(J), r > 1, l > 0, and let ρ ≥ 1. Then the functions f(t, x, y) =
r(t)− ex+ e−y, g(t, x, y) = l(t)+x− |y|ρ satisfy condition (H1) for D = 0, H = ln(2+ ∥r∥), K = 0
and L = q

√
1 + ∥l∥+ ln(2 + ∥r∥). Applying Theorem 3.1, the system

cDαu+ |p(t)|cDα1u = r(t)− eu + e−v,

cDβv + |q(t)|cDβ1v = l(t) + u− |v|ρ

}
has a solution (u, v) satisfying the boundary condition (1.2) and

0 < u(t) < ln(2 + ∥r∥), 0 < v(t) < q
√

1 + ∥l∥+ ln(2 + ∥r∥) , t ∈ J.
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We study the application of the method of averaging to the problems of optimal control over
impulsive differential equations. The procedure of averaging allows to replace the original problem
with the problem of optimal control by a system of ordinary differential equations. The optimal
control problems are investigated on finite and infinite horizons.

Introduction
For a system of differential equations with an impulsed action at non-fixed moments of time

ẋ = εX(t, x, u), t ̸= ti(x),

△x
∣∣
t=ti(x)

= εIi(x, vi),

x(0) = x0, ti(x) < ti+1(x),

(0.1)

two optimal control problems on a finite and infinite interval with a quality criterion are considered:
(1) on a finite interval with a quality criterion are considered:

J1
ε (u, v) = ε

T
ε∫

0

Φ(t, x(t), u(t)) dt+ ε
∑

0<ti(x)<
T
ε

Ψi(x(ti), vi) −→ inf, (0.2)

(2) on an infinite interval with a quality criterion are considered:

J2
ε (u, v) = ε

∞∫
0

e−γtL(t, x(t)) dt −→ inf . (0.3)

Here T > 0, ε > 0, γ > 0 are fixed; t ≥ 0, x ∈ D is a domain in the space Rd, u ∈ U ⊂ Rm,
vi ∈ V ⊂ Rr, where U and V are the subsets in the spaces Rm and Rr, respectively. We denote by
| · | the Euclidean norm of the vector, and by ∥ · ∥ we denote the norm of the matrix consistent
with the norm of the vector.

Controls of u = u(t) = (u1(t), u2(t), . . . , um(t)) and v = vi = (vi1, vi2, . . . , vir) will be considered
admissible for problems (0.1)–(0.3) if:
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(a1) the function u(t) is measurable and locally integrated at t ≥ 0;

(a2) u(t) ∈ U , t ≥ 0;

(a3) for every u(t) there exists a constant u0 ∈ U such that u(t) → u0 for t → ∞ uniformly for all
controls, i.e. for arbitrary δ > 0 there exists a constant T0 > 0, independent of u(t), u0, such
that for all t ≥ T0 the inequality |u(t)− u0| < δ holds;

(a4) for each sequence of vectors vi there exists v0 ∈ V such that vi → v0, i → ∞ uniformly for all
controls, i.e. for arbitrary δ > 0 there exists a constant N0, independent of vi, v0, such that
for all i ≥ N0 the inequality |vi − v0| < δ is satisfied;

(a5) condition |Jε(u, v)| < ∞ holds for functional (0.3).

Note that conditions (a3) and (a4) are obviously satisfied if there exist a function φ(t) → 0,
and a sequence φ(t) → 0, t → ∞ which are independents of u(t) and vi, respectively, such that
|u(t)−u0| ≤ φ(t), � |vi− v0| < ai. Condition (a3) for control, first appeared in M. M. Moiseyev [3],
when applying the method of averaging to practical problems. In this monograph, such controls
are called asymptotically constant.

We denote the set of admissible controls of problems (0.1), (0.2) and (0.1)–(0.3) by F1 and F2,
respectively. In this case,

J1
ε = inf

(u,v)∈F1

J1
ε (u, v)

and
J2
ε = inf

(u,v)∈F2

J2
ε (u, v).

Denote by xε(t, u, v) the solution of the Cauchy problem corresponding to the admissible control
(u, v). The triple (x∗ε(t, u, v), u

∗
ε, v

∗
ε) is optimal for problems (0.1)–(0.3) if (u∗ε, v∗ε) is an admissible

pair and J1
ε (u

∗
ε, v

∗
ε) = J1

ε for functional (0.2), or J2
ε (u

∗
ε, v

∗
ε) = J2

ε for functional (0.3).
Let the averaging conditions be satisfied:

(a6) there are limits uniformly across t ≥ 0, x ∈ D, u ∈ U , v ∈ V :

lim
s→∞

1

s

s+t∫
t

X(τ, x, u) dτ = X0(x, u), (0.4)

lim
s→∞

1

s

∑
t<ti(x)<s+t

Ii(x, v) = I0(x, v), (0.5)

lim
s→∞

1

s

s+t∫
t

Φ(τ, x, u) dτ = Φ0(x, u), (0.6)

lim
s→∞

1

s

∑
t<ti(x)<s+t

Ψi(x, v) = Ψ0(x, v). (0.7)

With respect to the moments of impulse action, we will assume that there exists a constant
C > 0 such that for t ≥ 0, x ∈ D ∑

t<ti(x)<s+t

Ii ≤ Cs. (0.8)
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We will put averaged tasks in accordance with the problems of optimal control (0.1)–(0.3)

ẏ = ε[X0(y, u0) + I0(y, v0)], y(0) = x0, (0.9)

J
1
ε (u0, v0) = ε

T
ε∫

0

[
Φ0(y(t), u0) + Ψ0(y(t), v0)

]
dt −→ inf, (0.10)

J
2
ε (u0, v0) = ε

∞∫
0

e−γtL(t, y(t)) dt −→ inf, (0.11)

where u0 ∈ U , v0 ∈ V are already constant vectors. These tasks are much simpler than the
original ones because they are problems of optimal control for systems of ordinary differential
equations. Denote by analogy as in the case of initial problems J

1
ε = inf

(u0,v0)∈F1

J
1
ε (u0, v0) and

J
2
ε = inf(u,v)∈F2

J
2
ε (u0, v0).

The main result is obtained which states that the optimal control (u∗0(ε), v
∗
0(ε)) of averaged

problems is η-optimal for the initial problems, namely, for arbitrary η > 0 there exists ε0 > 0 such
that for all ε ∈ (0, ε0) the inequalities:∣∣J1

ε (u
∗
0(ε), v

∗
0(ε))− J1

ε

∣∣ < η,
∣∣J2

ε (u
∗
0(ε), v

∗
0(ε))− J2

ε

∣∣ < η

are satisfied.
It is known that the averaging method is one of the most common methods of analyzing non-

linear dynamic systems. For ordinary differential equations, this method was substantiated by
M. M. Bogolyubovym [1]. The validation of this method for systems with impulse action in the
general form was first obtained in [6]. We also note the works [7, 9], where the results of [6] have
been further developed.

The averaging method also proved to be effective for solving problems of optimal control. A
number of papers are devoted to this question (see, for example, [5], where there is an extensive
bibliography). In [4] developed a different approach as for to applying the averaging method to
tasks of optimal control, namely, considering the control function u as a parameter, was averaging
over by time, that clearly included in the right-parts sides of the system.

In this paper, the approach under consideration is applied to the problems of optimal control of
impulse systems with non-fixed moments of impulse actions. Such problems with the application
of the principle of maximum were previously studied in [8].

This paper describes the problem formulation and reviews the literature, gives strict formu-
lation of the problem, and presents the main results obtained when solving the problems under
consideration.

1 Statement of the problem and formulation of the main results
In what follows, we consider the following conditions for problems (0.1)–(0.3) and their correspond-
ing averaged problems (0.9)–(0.11):
2.1. The functions X, Ii, Φ, Ψi, L are uniformly continuous on the set of variables at t ≥ 0, x ∈ D,

u ∈ U , v ∈ V , evenly at i = 1, 2, . . . .

2.2. There is a positive constant M such that∣∣∣∂ti(x)
∂x

∣∣∣+ |X(t, x, u)|+ |Φ(t, x, u)|+ |Ψi(x, v)|+ |Ii(x, v)| ≤ M,

for t ≥ 0, x ∈ D, u ∈ U , v ∈ V , i = 1, 2, . . . .
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2.3. There is a positive constant K such that

|X(t, x, u)−X(t, x1, u)|+ |Ii(x, v)− Ii(x1, v)|+ |Φ(t, x, u)− Φ(t, x1, u)|

+ |Ψi(x, v)−Ψi(x1, v)|+
∣∣∣∂ti(x)

∂x
− ∂ti(x1)

∂x

∣∣∣ ≤ K|x− x1|,
∣∣∣∂ti(x)

∂x

∣∣∣ ≤ K

for t ≥ 0, x, x1 ∈ D, i = 1, 2, . . . , u ∈ U , v ∈ V .

2.4. Condition (a5) is satisfied.

2.5. The averaged Cauchy problem (0.9) has the solution y(εt) = y(εt, x0, u0, v0), y(0, x0, u0, v0) =
x0, which for ε = 1 belongs to D for t ∈ [0, T ] together with some own ρ-circle (independent
of u0, v0) and the inequality

∂ti(y(εt))

∂x
Ii(y(εt), v) ≤ β < 0

holds when t′i < t < t′′i , v ∈ V , or
∂ti(x)

∂x
≡ 0.

Here
t′i = inf

x∈D
ti(x), t′′i = sup

x∈D
ti(x), i = 1, l, tl <

T

ε
< tl+1.

The following theorem is on the connection between problems of optimal control on finite time
intervals.

Theorem 1.1 ([2]). Let conditions 2.1–2.5 be satisfied and there be an optimal control (u∗0(ε), v∗0(ε))
of the averaged problem (0.9), (0.10) for 0 < ε ≤ ε0. Then for arbitrary η > 0 there exists
ε1 = ε1(η, ε0) > 0 such that for all ε ∈ (0, ε1) the following conditions hold:

(1) J1
ε > −∞;

(2) the inequality holds
|J1

ε (u
∗
0(ε), v

∗
0(ε))− J1

ε | ≤ η. (1.1)

Remark 1.1. If the conditions of Theorem 1.1 state that the sets of admissible controls U and V
are compact, then the optimal control (u∗0(ε), v∗0(ε)) of the averaged problem exists.

Indeed, the solution of the averaged problem (0.9) extends to the interval [0, Tε ]. Conditions of
Theorem 1.1 imply that y(t, u0, v0) is a continuous function of the parameters u0 and v0, therefore,
Lebesgue’s theorem on majorized convergence also implies the continuity of J

1
ε (u0, v0) over u0

and v0. The statement of Remark 1.1 is now a consequence of the Weierstrass theorem.

Remark 1.2. If X0(y, u0)+ I0(y, v0), Φ0(y, u0)+Ψ0(y, v0) are continuous differentiated functions,
then problem (0.9), (0.10) is a smooth finite-dimensional extremal problem.

Consider the problem of optimal control on the axis, for this system (0.9) we write at “slow
time”: τ = εt:

dy

dτ
=

[
X0(y, u0) + I0(y, v0)

]
, y(0) = x0. (1.2)
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Theorem 1.2 ([2]). Let the conditions 2.1–2.5 hold, and let the solution y(τ) = y(τ, x0, u0, v0) of
the Cauchy problem (1.2) be uniformly asymptotically stable at τ0, u0 and v0, and belong to the
domain D at τ ≥ 0 together with its some p-circle (independent of u0, v0), and the inequalities
∂ti(x)
∂x Ii(x) ≤ β < 0 (or ∂ti(x)

∂x ≡ 0) hold for all i = 1, 2, . . . and x from some ρ0-circle of the solution
y(τ).

Then, if there is an optimal control (u∗0(ε), v
∗
0(ε)) for ε ∈ (0, ε0] of the averaged problem

(0.9), (0.11), then for arbitrary h> 0 there is ε1 = ε1(ε0, η) > 0 such that

(1) for arbitrary ε ∈ (0, ε1), it holds |J2
ε | < ∞;

(2) the inequality |J2
ε (u

∗
0(ε), v

∗
0(ε))− J2

ε | ≤ η holds.

Remark 1.3. If under Theorem 1.2 the sets of admissible controls are compact, then optimal
control of the averaged problem (0.9), (0.10) exists.

This observation follows from a continuous dependence on the parameters at each finite in-
terval of the solution y(t, u0, v0) and Lebesgue, Weierstrass theorems. The proof is based on the
corresponding result by A. M. Samoilenko from [6, Theorem 1] for unmanaged impulse systems.
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The controlled differential equations with delay arise in different areas of natural sciences and
economics. To illustrate this, below we will consider the simplest model of economic growth.
Let p(t) be a quantity of a product produced at the moment t expressed in money units. The
fundamental principle of the economic growth has the form

p(t) = a(t) + i(t), (1)

where a(t) is the so-called apply function and i(t) is a quantity induced investment. We consider
the case where the functions a(t) and i(t) have the form

a(t) = u1(t)p(t) (2)

and
i(t) = u2(t)p(t− τ) + αṗ(t), (3)

where ui(t) ∈ (0, 1) for i = 1, 2, are control functions, α > 0 is a given number and τ > 0 is so-called
delay parameter.

Formula (3) shows that the value of investment at the moment t depends on the quantity of
money at the moment t− τ (in the past) and on the velocity (production current) at the moment
t. From formulas (1)–(3) we get the delay controlled differential equation

ṗ(t) =
1− u1(t)

α
p(t)− u2(t)

α
p(t− τ). (4)

Let I = [t0, t1] be a given interval, suppose that O ⊂ Rn is an open set and U ⊂ Rr is a
compact set. Let the n-dimensional function f(t, x, y, u, v) be continuous on I × O2 × U2 and
continuously differentiable with respect to x, y and u, v. Furthermore, let τ2 > τ1 > 0 and θ > 0
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be given numbers; let Φ be a set of continuously differentiable functions φ : I1 = [τ̂ , t0] → O, where
τ̂ = t0 − τ2 and let Ω be a set of piecewise-continuous functions u(t) ∈ U , t ∈ I2 = [θ̂, t1], where
θ̂ = t0 − θ. To each element µ = (τ, φ, u) ∈ Λ := [τ1, τ2] × Φ × Ω we assign the delay controlled
differential equation

ẋ(t) = f
(
t, x(t), x(t− τ), u(t), u(t− θ)

)
, t ∈ (t0, t1) (5)

with the initial condition
x(t) = φ(t), t ∈ I1. (6)

Definition. Let µ = (τ, φ, u) ∈ Λ. A function x(t;µ) ∈ O for t ∈ I3 = [τ̂ , t1], is called a solution of
equation (5) with the initial condition (6), or a solution corresponding to the element µ and defined
on the interval I3, if x(t;µ) satisfies condition (6), is absolutely continuous on the interval I and it
satisfies equation (5) almost everywhere on (t0, t1).

Let us introduce notations

|µ| = |τ |+ ∥φ∥1 + ∥u∥, Λε(µ0) =
{
µ ∈ Λ : |µ− µ0| ≤ ε

}
,

where
∥φ∥1 = sup

{
|φ(t)|+ |φ̇(t)| : t ∈ I1

}
, ∥u∥ = sup

{
|u(t)| : t ∈ I2

}
,

ε > 0 is a fixed number and µ0 = (τ0, φ0, u0) ∈ Λ is a fixed initial element; furthermore,

δτ = τ − τ0, δφ(t) = φ(t)− φ0(t), δu(t) = u(t)− u0(t),

δµ = µ− µ0 = (δτ, δφ, δu), |δµ| = |δτ |+ ∥δφ∥1 + ∥δu∥.

Theorem. Let x0(t) := x(t;µ0) be the solution corresponding to the initial element µ0 = (τ0, φ0, u0) ∈
Λ and defined on the interval I3, where τ0 ∈ (τ1, τ2). Then, there exists ε1 > 0 such that for each
perturbed element µ ∈ Λε1(µ0) there corresponds the solution x(t;µ) defined on the interval I3 and
the following representation holds

x(t;µ) = x0(t) + δx(t; δµ) + o(t; δµ), t ∈ (t0, t1), (7)

where
lim

|δµ|→0

|o(t; δµ)|
|δµ|

= 0 uniformly for t ∈ (t0, t1).

Moreover, the function

δx(t) =

{
δφ(t), t ∈ I1,

δx(t; δµ), t ∈ (t0, t1)

is a solution to the “equation in variations”

δ̇x(t) = fx[t]δx(t) + fy[t]δx(t− τ0)− fy[t]ẋ0(t− τ0)δτ + fu[t]δu(t) + fv[t]δu(t− θ), t ∈ (t0, t1) (8)

with the initial condition
δx(t) = δφ(t), t ∈ [τ̂ , t0]. (9)

Here fx[t] = fx(t, x0(t), x0(t− τ0), u0(t), u0(t− θ)).
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The theorem is proved by the scheme given in [1]. Formula (7) and equation (8) allow us to
obtain an approximate solution of the perturbed equation (5) in analytical form. In fact, for a
small |δµ|, from (7) it follows that

x(t;µ) ≈ x0(t) + δx(t; δµ), t ∈ (t0, t1). (10)

For the economical model (4), where u0(t) = (u10(t), u20(t)) in the initial element µ0 =
(τ0, φ0, u0) and p0(t) = p(t;µ0), the equation in variations and the initial condition, respectively,
have the forms

δ̇p(t) =
1− u10(t)

α
δp(t)− u20(t)

α
δp(t− τ0)

+
u20(t)

α
ṗ0(t− τ0)δτ − p0(t)

α
δu1(t)−

p0(t− τ0)

α
δu2(t), t ∈ (t0, t1)

and
δp(t) = δφ(t), t ∈ [τ̂ , t0].

Below, on the basis of formula (10) an approximate solution is constructed for the perturbed
equation.

Example.

(a) Let t0 = 0, t1 = 2, τ1 = 0.5, τ2 = 1.5, τ0 = 1, φ0(t) ≡ 1,

u0(t) =

{√
2(t+ 1)2 + 1, t ∈ [0, 1],√
2(t+ 1)2 + t2, t ∈ [1, 2],

i.e., in this case µ0 = (1, 1, u0). Consider the scalar original equation

ẋ(t) = 2x2(t) + x2(t− 1)− u20(t) + 1, t ∈ (0, 2),

with the initial condition
x(t) = 1, t ∈ [−1.5, 0].

It is easy to see that

x0(t) := x(t;µ0) =

{
1, t ∈ [−1.5, 0],

t+ 1, t ∈ [0, 2].

(b) The perturbed equation

ẋ(t) = 2x2(t) + x2(t− 1− ρ1)− [u0(t) + ρ3 sin(t)]2 + 1, t ∈ (0, 2),

with the perturbed initial condition

x(t) = 1 + 2ρ2 cos(t), t ∈ [−1.5, 0],

where |ρi| for i = 1, 2, 3 are small fixed numbers. In this case we have

µ = (1 + ρ1, 1 + 2ρ2 cos(t), u0(t) + ρ3 sin(t)),

δτ = ρ1, δφ(t) = 2ρ2 cos(t), δu(t) = ρ3 sin(t).
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(c) It is clear that

fx[t] = 4x0(t) = 4(t+ 1), fy[t] = 2x0(t− 1), fu[t] = −2u0(t).

Thus, (8) and (9), respectively, have the forms

δ̇x(t) = 4(t+ 1)δx(t) + 2x0(t− 1)δx(t− 1)− 2ρ1x0(t− 1)ẋ0(t− 1)− 2ρ3 sin(t)u0(t)

and
δx(t) = 2ρ2 cos(t), t ∈ [−1.5, 0].

By elementary calculations we obtain

δx(t; δµ) =

{
δx1(t), t ∈ [0, 1),

δx2(t), t ∈ [1, 2),

where

δx1(t) = 2

{
e2t(t+2)

[
ρ2 +

t∫
0

e−2s(s+2)
(
2ρ2 cos(s− 1)− ρ3 sin(s)

√
2(s+ 1)2 + 1

)
ds

]}
,

δx2(t) = e2(t
2+2t−3)

×
{
δx1(1)+

t∫
1

e−2(s2+2s−3)
(
2sδx1(s−1)−2ρ1s−2ρ3 sin(s)

√
2(s+1)2+s2

)
ds

}
.

Consequently, the approximate solution x(t;µ) of the perturbed equation has the form (see
(10))

x(t;µ) ≈ t+ 1 + δx(t; δµ), t ∈ (0, 2).
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1 Introduction
This paper is concerned with positive solutions of the two-dimensional cyclic systems of first order
nonlinear differential equations of the forms

(A) x′ + p(t)yα = 0, y′ − q(t)xβ = 0, t = a;

(B) x′ − p(t)yα = 0, y′ + q(t)xβ = 0, t = a

for which the following conditions are always assumed to hold:

(a) α and β are positive constants such that αβ < 1;

(b) p, q : [a,∞) → (0,∞), a = 0 are regularly varying functions such that

p(t) = tλl(t), q(t) = tµm(t), l,m ∈ SV .

By a positive solution of (A) or (B) we mean a vector function (x(t), y(t)) both components of
which are positive and satisfy the system (A) or (B) in a neighborhood of infinity. In this paper
we are concerned with exclusively with positive solutions of (A) and (B) both components of which
are regularly varying functions in the sense of Karamata. Such a solution (x(t), y(t)) is called
regularly varying of index (ρ, σ) if x(t) and y(t) are regularly varying of indices ρ(∈ R) and σ(∈ R),
respectively, and is denoted by (x, y) ∈ RV(ρ, σ).

Since the publication of the book [3] of Marić in the year 2000, the class of regularly vary-
ing functions in the sense of Karamata is a well-suited framework for the asymptotic analysis of
nonoscillatory solutions of second order linear differential equation of the form

x′′ = q(t)x, q(t) > 0.

The definitions and properties of regularly varying functions
Definition 1.1. A measurable function f : [a,∞) → (0,∞) is said to be a regularly varying of
index ρ if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for any λ > 0, ρ ∈ R.

Propsoition 1.1 (Representation Theorem). A measurable function f : [a,∞) → (0,∞) is regu-
larly varying of index ρ if and only if it can be written in the form

f(t) = c(t) exp

{ t∫
t0

δ(s)

s
ds

}
, t = t0,
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for some t0 > a, where c(t) and δ(t) are measurable functions such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

The totality of regularly varying functions of index ρ is denoted by RV(ρ). The symbol SV is
used to denote RV(0) and a member of SV = RV(0) is referred to as a slowly varying function. If
f ∈ RV(ρ), then f(t) = tρL(t) for some L ∈ SV. Therefore, the class of slowly varying functions is
of fundamental importance in the theory of regular variation. In addition to the functions tending
to positive constants as t → ∞, the following functions

N∏
i=1

(logi t)
mi (mi ∈ R), exp

{ N∏
i=1

(logi t)
ni

}
(0 < ni < 1), exp

{ log t

log2 t

}
,

where log1 t = log t and logk t = log logk−1 t for k = 2, 3, . . . , N , also belong to the set of slowly
varying functions.

Propsoition 1.2. Let L(t) be any slowly varying function. Then, for any γ > 0,

lim
t→∞

tγL(t) = ∞ and lim
t→∞

t−γL(t) = 0.

For the most complete exposition of the theory of regular variation and its applications the
reader is referred to the book of Bingham, Goldie and Teugels [1].

2 Main results

The papers [2] and [4] are devoted to the analysis of strongly decreasing and increasing regularly
varying solutions (x, y) ∈ RV(ρ, σ) of the system

(C) x′ + p(t)yα = 0, y′ + q(t)xβ = 0, t = a;

(D) x′ − p(t)yα = 0, y′ − q(t)xβ = 0, t = a.

(More precisely, ρ < 0 and σ < 0, ρ = 0 and σ < 0, ρ < 0 and σ = 0 for system (C), moreover,
ρ > 0 and σ > 0, ρ = 0 and σ > 0, ρ > 0 and σ = 0 for system (D).) The purpose of this talk
is to supplement necessary and sufficient conditions for the existence of regularly varying solutions
(x, y) ∈ RV(ρ, σ) of (A) and (B) with either ρ = 0 or σ = 0, in which case either x(t) or y(t) is
slowly varying, and then to determine their asymptotic behavior as t → ∞ accurately. Our main
results are the following.

Theorem 2.1. System (A) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ = 0 and
σ > 0 such that lim

t→∞
x(t) = 0 and lim

t→∞
y(t) = ∞ if and only if

λ+ 1 + α(µ+ 1) = 0, µ+ 1 > 0

and
∞∫
a

p(t)(tq(t))αdt < ∞,
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in which case σ = µ+1 and any such solution (x(t), y(t)) of (A) has one and the same asymptotic
behavior

x(t) ∼
[
(1− αβ)

∞∫
t

p(s)
(sq(s)

σ

)α
ds

] 1
1−αβ

, t → ∞,

y(t) ∼ tq(t)

σ

[
(1− αβ)

∞∫
t

p(s)
(sq(s)

σ

)α
ds

] β
1−αβ

, t → ∞,

where the symbol ∼ is used to denote the asymptotic equivalence

f(t) ∼ g(t) as t → ∞ ⇐⇒ lim
t→∞

f(t)

g(t)
= 1.

Theorem 2.2. System (A) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ < 0 and
σ = 0 such that lim

t→∞
x(t) = 0 and lim

t→∞
y(t) = ∞ if and only if

λ+ 1 < 0, β(λ+ 1) + µ+ 1 = 0

and
∞∫
a

(tp(t))βq(t) dt = ∞,

in which case ρ = λ + 1 any such solution (x(t), y(t)) of (A) has one and the same asymptotic
behavior

x(t) ∼ − tp(t)

ρ

[
(1− αβ)

t∫
a

(sp(s)
−ρ

)β
q(s) ds

] α
1−αβ

, t → ∞,

y(t) ∼
[
(1− αβ)

t∫
a

(sp(s)
−ρ

)β
q(s) ds

] 1
1−αβ

, t → ∞.

Theorem 2.3. System (A) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ < 0 and
σ > 0 such that lim

t→∞
x(t) = 0 and lim

t→∞
y(t) = ∞ if and only if

λ+ 1 + α(µ+ 1) < 0, β(λ+ 1) + µ+ 1 > 0,

in which case
ρ =

λ+ 1 + α(µ+ 1)

1− αβ
, σ =

β(λ+ 1) + µ+ 1

1− αβ

and any such solution (x(t), y(t)) of (A) has one and the same asymptotic behavior

x(t) ∼
[ t1+αp(t)q(t)α

−ρσα

] 1
1−αβ

, y(t) ∼
[ t1+βp(t)βq(t)

(−ρ)βσ

] 1
1−αβ

, t → ∞.

Theorem 2.4. System (B) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ = 0 and
σ < 0 such that lim

t→∞
x(t) = ∞ and lim

t→∞
y(t) = 0 if and only if

λ+ 1 + α(µ+ 1) = 0, µ+ 1 < 0
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and
∞∫
a

p(t)(tq(t))α dt = ∞,

in which case σ = µ+1 and any such solution (x(t), y(t)) of (B) has one and the same asymptotic
behavior

x(t) ∼
[
(1− αβ)

t∫
a

p(s)
(sq(s)

−σ

)α
ds

] 1
1−αβ

, t → ∞,

y(t) ∼ − tq(t)

σ

[
(1− αβ)

t∫
a

p(s)
(sq(s)

−σ

)α
ds

] β
1−αβ

, t → ∞.

Theorem 2.5. System (B) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ > 0 and
σ = 0 such that lim

t→∞
x(t) = ∞ and lim

t→∞
y(t) = 0 if and only if

λ+ 1 > 0, β(λ+ 1) + µ+ 1 = 0

and
∞∫
a

(tp(t))βq(t) dt < ∞,

in which case ρ = λ+ 1 and any such solution (x(t), y(t)) of (B) has one and the same asymptotic
behavior

x(t) ∼ tp(t)

ρ

[
(1− αβ)

∞∫
t

(sp(s)
ρ

)β
q(s) ds

] α
1−αβ

, t → ∞,

y(t) ∼
[
(1− αβ)

∞∫
t

(sp(s)
ρ

)β
q(s) ds

] 1
1−αβ

, t → ∞.

Theorem 2.6. System (B) possesses regularly varying solutions (x, y) ∈ RV(ρ, σ) with ρ > 0 and
σ < 0 such that lim

t→∞
x(t) = ∞ and lim

t→∞
y(t) = 0 if and only if

λ+ 1 + α(µ+ 1) > 0, β(λ+ 1) + µ+ 1 < 0,

in which case
ρ =

λ+ 1 + α(µ+ 1)

1− αβ
, σ =

β(λ+ 1) + µ+ 1

1− αβ

and any such solution (x(t), y(t)) of (B) has one and the same asymptotic behavior

x(t) ∼
[ t1+αp(t)q(t)α

ρ(−σ)α

] 1
1−αβ

, y(t) ∼
[ t1+βp(t)βq(t)

−ρβσ

] 1
1−αβ

, t → ∞.
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Let us give a precise definition of topological entropy [1]. Let (X, d) be a compact metric space
and let f : X → X be a continuous mapping. Along with the original metric d, we define an
additional system of metrics

dfn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)), x, y ∈ X, n ∈ N,

where f i, i ∈ N, is the i-th iteration of the mapping f , f0 ≡ idX . For any n ∈ N and ε > 0,
by Nd(f, ε, n) we denote the maximum number of points in X such that the pairwise dfn-distances
between them are greater than ε. Such a set of points is said to be (f, ε, n)-separated. Then the
topological entropy of the dynamical system generated by the continuous mapping f is defined as
the quantity (which may be a nonnegative real number or infinity)

htop(f) = lim
ε→0

lim
n→∞

1

n
lnNd(f, ε, n). (1)

Note that the quantity (1) remains unchanged if the metric d in its definition is replaced by any
other metric that defines the same topology on X as d; this, in particular, explains why the entropy
(1) is said to be topological.

Given a metric space M and a jointly continuous mapping

f : M×X → X (2)

we form the function
µ 7−→ htop(f(µ, · )). (3)

Recall that a point µ0 of the metric space M is called a point of lower semicontinuity of a
function h : M → R ∪ {∞} if for each sequence (µk)k∈N of points in M converging to µ0, one has
the inequality

h(µ0) ≤ lim
k→+∞

h(µk).

It was proved in [3] that if the space M is complete, then the property of lower semicontinuity
is Baire typical for the topological entropy of a family of mappings (2); in other words, the set of
points of M at which the function (3) is lower semicontinuous contains a dense Gδ-set in M. It
was established in [4] that the set of points of lower semicontinuity is itself an everywhere dense
Gδ-set in M. In addition, an example of a mapping (2) (where the parameter space M is the
Cantor perfect set in the interval [0, 1]) for which the set of points of lower semicontinuity is not
an Fσ-set was constructed in [4].
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By definition [2, p. 277], a metric space has dimension zero if any of its points has an arbitrarily
small neighborhood that is simultaneously closed and open, which is equivalent to the emptiness of
the boundary of this neighborhood. One example of such a space is the Cantor perfect set K (the
set of infinite ternary fractions x = 0, a1a2a3, . . . , where ai ∈ {0, 2}) in the interval [0, 1] with the
metric induced by the natural metric of the real line.

A natural question arises: what is the set of lower semicontinuity points of a function (3). In
the paper [5] we derived a complete description of the set of points of lower semicontinuity of a
function (3) for each complete metric separable zero-dimensional space M.

For an open everywhere dense subset of a complete metric separable zero-dimensional space M
the following theorem holds.

Theorem 1. Let M be a complete separable zero-dimensional metric space and let X = K be the
Cantor perfect set in the interval [0, 1] with the metric induced by the natural metric of the real line.
Then for each open everywhere dense subset G of the space M there exists a mapping (2) such that
the function (3) is bounded and its set of points of lower semicontinuity coincides with the set G.

For an open everywhere dense Gδ-subset of a complete metric separable zero-dimensional space
M the following theorem holds.

Theorem 2. Let M be a complete separable zero-dimensional metric space and let X = K be the
Cantor perfect set in the interval [0, 1] with the metric induced by the natural metric of the real
line. Then for each everywhere dense Gδ-subset G of the space M there exists a mapping (2) such
that the set of points of lower semicontinuity of the function (3) coincides with the set G.

References
[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy. Trans. Amer. Math.

Soc. 114 (1965), 309–319.
[2] K. Kuratowski, Topology. Vol. I. New edition, revised and augmented. Translated from the

French by J. Jaworowski Academic Press, New York–London; Państwowe Wydawnictwo
Naukowe, Warsaw, 1966.

[3] A. N. Vetokhin, Typical property of the topological entropy of continuous mappings of compact
sets. (Russian) Differ. Uravn. 53 (2017), no. 4, 448–453; translation in Differ. Equ. 53 (2017),
no. 4, 439–444.

[4] A. N. Vetokhin, The set of lower semi-continuity points of topological entropy of a continuous
one-parametric family of dynamical systems. (Russian) Vestnik Moskov. Univ. Ser. I Mat.
Mekh., 2019, no. 3, 69–71; translation in Moscow Univ. Math. Bull. 74 (2019), no. 3, 131–133.

[5] A. N. Vetokhin, On some properties of topological entropy and topological pressure of families
of dynamical systems continuously depending on a parameter. (Russian) Differ. Uravn. 55
(2019), no. 10, 1319–1327.



200 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

C o n t e n t s

Mariam Ambroladze, Givi Berikelashvili
Finite Difference Approximation of Modified Burgers Equation in Sobolev Spaces . . . . . . . . 3

Besarion Anjafaridze, Malkhaz Ashordia
On the Well-Posedness of the Cauchy Problem for High
Order Ordinary Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Malkhaz Ashordia
On the Well-Posedness of the Cauchy Problem for Generalized
Ordinary Linear Differential Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I. V. Astashova, A. V. Filinovskiy, D. A. Lashin
On Qualitative Properties of Minimizers for an Extremal Problem to
Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Olena Atlasiuk, Vladimir Mikhailets
On Linear Boundary-Value Problems for Differential Systems in Sobolev spaces . . . . . . . . 19

E. A. Barabanov, V. V. Bykov
Generalization of Perron’s and Vinograd’s Examples of Lyapunov Exponents
Instability to Linear Differential Systems with Parametric Perturbations . . . . . . . . . . . . . . . 23

M. O. Bilozerova, G. A. Gerzhanovskaya
Asymptotic Representations of Solutions of Second Order Differential Equations
with Nonlinearities, that are in Some Sense Near to Regularly Varying Functions . . . . . . . 26

Eugene Bravyi
On the Solvability of Focal Boundary Value Problems for Higher-Order
Linear Functional Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

O. O. Chepok
Asymptotic Properties of Pω(Y0, Y1, 0)-solutions of Second Order
Differential Equations with Rapidly and Regularly Varying Nonlinearities . . . . . . . . . . . . . . 35

Sergey Chuiko, Yaroslav Kalinichenko, Nikita Popov
Boundary Value Problems for Systems of Difference-Algebraic Equations . . . . . . . . . . . . . . . 40



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 201

A. K. Demenchuk
Control Problem of Asynchronous Spectrum of Linear Almost Periodic Systems
with the Trivial Averaging of Coefficient Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Matej Dolník, Alexander Lomtatidze
On Periodic Boundary Value Problem for a Certain Planar System of
Nonlinear Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Zuzana Došlá, Petr Liška, Mauro Marini
Decaying Solutions of Delay Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A. V. Drozhzhyna
Asymptotic Representations of Rapid Varying Solutions of Differential Equations
Asymptotically Close to the Equations with Regularly Varying Nonlinearities . . . . . . . . . . 57

Phridon Dvalishvili, Medea Iordanishvili
Optimization of the Delay Parameter for One Class of Controlled Dynamical System . . . 60

V. M. Evtukhov, N. V. Sharay
Asymptotic of Rapid Varying Solutions of Third-Order Differential Equations
with Rapid Varying Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

S. Ezhak, M. Telnova
On Below Estimates for the First Eigenvalue of a Sturm–Liouville Problem . . . . . . . . . . . . . 68

José Godoy, R. Hakl, Xingchen Yu
Existence and Multiplicity of Periodic Solutions to Second-Order
Differential Equations with Attractive Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A. A. Grin, S. V. Rudevich
On the Detection of Exact Number of Limit Cycles for Autonomous Systems
on the Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

N. A. Izobov, A. V. Il’in
Description by Suslin’s Sets of Bounded Families of Liapunov’s
Characteristic Exponents in the Full Perron’s Effect of Their Value Change . . . . . . . . . . . . 82

Temur Jangveladze
On Investigation and Approximate Solution of One System of
Nonlinear Two-Dimensional Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



202 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

Otar Jokhadze, Sergo Kharibegashvili
Representation of the Solution of the Inhomogeneous Wave Equation in a Half-Strip
in the Form of Finite Sum of Addends, Depending on Boundary, Initial Values
of the Solution and Right-Hand Side of the Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Ramazan I. Kadiev, Arcady Ponosov
Regularization Method in Stability Analysis of Stochastic
Functional Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Sergo Kharibegashvili
Solvability of the Boundary Value Problem for One Class of Higher-Order
Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Ivan Kiguradze
Emden–Fowler Type Differential Equations Possessing Kurzweil’s Property . . . . . . . . . . . . . 99

Tariel Kiguradze, Reemah Alhuzally
Dirichlet type Problem in a Smooth Convex Domain for Quasilinear
Hyperbolic Equations of Fourth Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Zurab Kiguradze
A Bayesian Optimization Approach for Selecting the Best Parameters for
Weighted Finite Difference Scheme Corresponding to Heat Equation . . . . . . . . . . . . . . . . . . 108

T. Korchemkina
On the Behavior of Solutions with Positive Initial Data
to Third Order Differential Equations with General Power-Law Nonlinearities . . . . . . . . . 112

Andrew Lipnitskii
Solution of Izobov–Bogdanov Problem on Irregularity Sets of Linear
Differential Systems with a Parameter-Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Alexander Lomtatidze, Jiří Šremr
On Positive Periodic Solutions to Parameter-Dependent Second-Order
Differential Equations with a Sub-Linear Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Julian López-Gómez, Pierpaolo Omari
Characterizing the Formation of Singularities in a Superlinear Indefinite Mean
Curvature Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E. K. Makarov
On Some Fine Properties of Supercritical Sigma-Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 131



International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia 203

Vladimir P. Maksimov
A Class of Continuous-Discrete Functional Differential Equations
with the Cauchy Operator Constructed Explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Mariam Manjikashvili, Sulkhan Mukhigulashvili
Disconjugacy and Solvability of Dirichlet BVP for the Fourth Order
Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Nino Partsvania
The Dirichlet Problem for Singular Two-Dimensional Linear Differential Systems . . . . . . 142

Mykola Perestyuk, Oleksiy Kapustyan, Farhod Asrorov, Valentyn Sobchuk
Existence and Stability of Uniform Attractors for N -Dimensional
Impulsive-Perturbed Parabolic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Irena Rachůnková, Lukáš Rachůnek
Antiperiodic Problem with Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

V. V. Rogachev
On Existence of Solutions with Prescribed Number of Zeros
to Emden–Fowler Equations with Variable Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A. Rontó, M. Rontó, I. Varga
Investigation of Periodic Solutions of Autonomous System by Halving the Interval . . . . . 157

I. N. Sergeev
Definition and Properties of Perron Stability of Differential Systems . . . . . . . . . . . . . . . . . . . 162

N. V. Sharay, V. N. Shinkarenko
Asymptotic Behavior of Solutions of Third Order Ordinary Differential Equations . . . . . 167

S. A. Shchogolev
On Increasing the Order of Smallness of Fast Variables
in Linear Differential Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

M. Shlyepakova
Asymptotic Representations for Solutions of Non-Linear Systems of
Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Svatoslav Staněk
Initial Value Method in Boundary Value Problems for Systems of Two-Term
Fractional Differential Equations at Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



204 International Workshop QUALITDE – 2019, December 7 – 9, 2019, Tbilisi, Georgia

O. Stanzhytskyi, V. Mogyluova, T. Shovkoplyas
Application of the Averaging Method to Optimal Control Problems of Systems
with Impulse Action in Non-Fixed Moments of Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Tamaz Tadumadze, A. Nachaoui, Tea Shavadze
The Equation in Variations for the Controlled Differential Equation
with Delay and its Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Tomoyuki Tanigawa
Asymptotic Analysis of Two-Dimensional Cyclic Systems of First Order
Nonlinear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A. N. Vetokhin
Set of Points of Lower Semicontinuity for the Topological Entropy of a Family
of Dynamical Systems Continuously Depending on a Parameter . . . . . . . . . . . . . . . . . . . . . . . 198


