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ON THE OCCASION OF BORIS KHVEDELIDZE’S 100TH
BIRTHDAY ANNIVERSARY

This year we mark the centenary of Boris Khvedelidze, one of the brilliant
representatives of the Georgian mathematical school, outstanding scientist,
academician of the Georgian National Academy of Sciences.

Boris Khvedelidze was born on November 7, 1915 in the town of Chiatura
(Georgia). His father Vladimir Khvedelidze and mother Olga Berishvili were
doctors.

In 1931, upon graduation from the Tbilisi pedagogical technical college he
worked in the fundamental library of the Georgian Polytechnical Institute
as librarian. In 1933, he continued his education at the faculty of physics
and mathematics of the Tbilisi State University. During his studies at
this faculty he was deeply impressed by the lectures delivered by professors
Levan Gokieli, Archil Kharadze, Niko Muskhelishvili, Ilya Vekua and Levan
Magnaradze whom he always recalled with a great warmth.

Having graduated with honours from the University, in 1938 Boris Khve-
delidze was successfully enrolled in the post-graduate course at the Institute
of Mathematics of the Georgian branch of Academy of Sciences of the USSR.
His supervisor was Ilya Vekua. Under his guidance B. Khvedelidze set about
investigation of the Poincaré boundary value problem for the second order
differential equation of elliptic type. His first research work in this subject
has been presented by N. Muskhelishvili for publication in “Transactions of
the Academy of Sciences of the USSR”.
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The years of B. Khvedelidze’s post-graduate studies coincided with the
period when mathematical research work in Georgia were effectively devel-
oping. Under the N. Muskhelishvili’s supervision the seminar in the theory
of Cauchy integrals and their applications to the boundary value problems
of analytic and harmonic functions was working intensively. This seminar
has played an important role in the formation of many Georgian mathe-
maticians who have in the sequel carried out the well-known investigations
dealt with the boundary value problems of the function theory of a com-
plex variable and with singular integral equations. At one of the seminar
sessions the supervisor put the question on the extension of the known re-
sults obtained for the Riemann problem in a simply-connected domain to a
multiply connected domain. This problem was successfully solved by Boris
Khvedelidze.

In 1942 B. Khvedelidze defended his Candidate’s thesis. About the re-
sults obtained in this dissertation N. Muskhelishvili in his monograph “Sin-
gular Integral Equations” (M., 1968) wrote: “The first complete solution of
the problem
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∂u

∂n
+B(s)

∂u

∂s
+ c(s)u = f(s)

has been given by B. Khvedelidze”. The results of this work and those
obtained by I. Vekua were applied in Holland to study mathematical prob-
lems arisen after the destructive flood in 1953. On the mathematical method
employed to this event, professor Dantzig at the International Congress of
Mathematicians in Amsterdam declared: “These methods have been dis-
cussed in detal at the Tbilisi School under the supervision of N. Muskhel-
ishvili. For our aims, the results obtained by I. Vekua and B. Khvedelidze
are of particular importance”.

In 1957 B. Khvedelidze defended his Doctoral dissertation under the title
“Linear Boundary Value Problems of the Function Theory, Singular Inte-
gral Equations and Some Their Applications”. Its content is presented in
detail in his monograph under the same title (Proceedings of Tbilisi A. Raz-
madze Mathematical Institute, vol. 23, 1956). In this work B. Khvedelidze
developed the method of Cauchy type integrals with density from Lp(Γ),
p > 1 to solve that group of boundary value problems which he called dis-
continuous (i.e., the problems when an unknown function may have on the
boundary an infinite set of singularities). Towards this end, it was, first of
all, necessary to study the problem of continuity of the operator generated
by a singular Cauchy integral in Lebesgue spaces. In the case, where the
line of integration is a Lyapunov’s curve, he proved that the operator in the
weighted space Lp(Γ, ρ), p > 1 is continuous when ρ is the power function

ρ(t) =

n∏
k=1

|t− tk|αk , tk ∈ Γ, ti ̸= tj , when i ̸= j, −1

p
< αk <

1

p′
.
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Such a result for conjugate functions and Hilbert transformation (which
are the Cauchy singular operators for a circumference and a straight line,
respectively) was, for the first time, stated by Hardy and Littlewood. This
result in the case of general rectifiable curves has found wide applications
and, seemingly, therefore the above weighted function is frequently called
in literature as Khvedelidze’s weight.

Further, the method of Cauchy type integrals has been effectively used
by B. Khvedelidze for inversion of a singular integral and for solution of
boundary value problems of the theory of analytic functions. This is, first of
all, concerns with the problem of linear conjugation in Privalov’s statement,
that is, with the solution of the problem in the class of Cauchy type integrals
with density from Lp(Γ). He has achieved “essential progress in a class of
free terms of a boundary condition and in a class of admissible solutions”
(F. D. Gakhov, in: “Investigation of Modern Problems of the Theory of
Functions of a Complex Variable”, M., 1964, p. 361).

With the same success B. Khvedelidze studied singular integral equa-
tions with the Cauchy kernel in Lebesgue spaces. In his book “Singular
Integral Equations” (M., 1960, 404-405) N. Muskhelishvili writes: “At last
we note one more of the results of great interest from the point of view of
the questions dealt with in the present book”. B. Khvedelidze has shown
that singular integral equations considered in this chapter have the same
solutions in the class H∗, as well as in classes Lp(Γ), p > 1.

The above-mentioned results obtained by B. Khvedelidze were later on
developed by him, his pupils and collaborators and also by many followers
beyond Georgia. A part of the results obtained in this direction have been
skillfully expounded in his paper “The Method of Cauchy Type Integrals
in Discontinuous Boundary Value Problems of the Theory of Holomorphic
Functions of One Complex Variable” (Modern Problems of Mathematics,
vol. 7, M., 1975, 5-162; English translation in: “J. Sov. Math.”, 7(1977),
309-414). This and the above-mentioned work published in “Proceedings of
A. Razmadze Mathematical Institute” are up to the present days the hand-
books of many specialists engaged in this area. It is difficult to find research
works in the boundary value problems of the function theory and singular
integral equations lack of references to the works of Boris Khvedelidze. Be-
sides numerous works in this subject, there are more than ten monographs.

In 1967 B. Khvedelidze was elected Corresponding Member and in 1983
Full Member of the Georgian Academy of Sciences.

In is not easy to list his vast scientific, pedagogical and public activity
he led for many dozens of years. From 1957 to 1986 he headed department
of Function Theory and Functional Analysis at A. Razmadze Mathematical
Institute, and from 1986 to the end of his life he was the head of organized
by his initiative department of the Methods of Complex Analysis.



4 BORIS KHVEDELIDZE’S 100TH BIRTHDAY ANNIVERSARY

B. Khvedelidze was the head of Organizing Committee of the Georgian
Mathematical Society and repeatedly he was elected its Vice-President. For
many years he was at the head of the Chair of Higher Mathematics at Geor-
gian Polytechnical Institute. B. Khvedelidze made an important contribu-
tion to the formation of Abkhazian State University and Sukhumi branch
of the Tbilisi State University, being one of the leading professors from the
day of its foundation.

Together with A. Kharadze, V. Chelidze and I. Kartsivadze, he was the
author of the course in mathematical analysis in Georgian language which
has played an important role in formation of many generations of Geor-
gian mathematicians. It is no less important to mention B. Khvedelidze’s
remarkable human gualities-tenderness, benevolence, willingness to render
assistance. B. Khvedelide was always strong-willed, with fortitude he en-
dured vital confusions. In the years of Soviet repressions his family was
deported to the South Kazakhstan (his nephew after the war has stayed in
France). For a year and a half he was a teacher at zooveterinary technical
school in the town of Kaplanbec. Thanks to his friends, who supplied him
with the needed literature, he was able to continue scientific work even in
exile. With a great gratitude he recalled the fact that his own library gifted
by him before exile to the Tbilisi State University has been given him back
after exile.

It should be noted that in days when scientific circles mark Boris Khvede-
lidze’s centenary, officials of A. Razmadze Mathematical Institute inten-
sively continue research work in new aspects of boundary value problems
of the function theory, theory of operators and singular integral equations.
Recently, several monographs in this direction have been published by the
research workers of the institute.

Boris Khvedelidze passed away on March 27, 1993.
His name once again reminds us of his veritable professionalism, rear

pedagogical talent, devotion to his people and work.
Blessed memory on the well-known scientist and wonderful person will

for a long time remain in the hearts.

V. Kokilashvili and V. Paatashvili
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ON ONE NONLINEAR ANALOGUE OF THE DARBOUX
PROBLEM

R. BITSADZE AND M. MENTESHASHVILI

Abstract. For one nonlinear oscillation equation, we consider a
problem which is a nonlinear analogue of the Darboux problem
and consists in the simultaneous determination of a regular so-
lution and its domain of definition. The question of solvability
of the formulated problem is solved by the method of charac-
teristics.

ÒÄÆÉÖÌÄ. ÀÒÀßÒ×ÉÅÉ ÒáÄÅÄÁÉÓ ÄÒÈÉ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÂÀÍ-
áÉËÖËÉÀ ÀÌÏÝÀÍÀ, ÒÏÌÄËÉÝ ßÀÒÌÏÀÃÂÄÍÓ ÃÀÒÁÖÓ ÀÌÏÝÀ-
ÍÉÓ ÀÒÀßÒ×ÉÅ ÀÍÀËÏÂÓ ÃÀ ÌÏÉÈáÏÅÓ ÒÄÂÖËÀÒÖËÉ ÀÌÏá-
ÓÍÉÓÀ ÃÀ ÌÉÓÉ ÂÀÍÓÀÆÙÅÒÉÓ ÀÒÉÓ ÄÒÈÃÒÏÖËÀÃ ÃÀÃÂÄÍÀÓ.
ÂÀÍáÉËÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ ÐÒÏÁËÄÌÀ ÂÀÃÀàÒÉËÉÀ
ÌÀáÀÓÉÀÈÄÁÄËÈÀ ÌÄÈÏÃÉÈ.

As is known, the carrier of the initial characteristic Darboux problem
for linear equations consists of two curves drawn from the common point
of these curves [1]. One of these curves is characteristic, and the other has
nowhere characteristic direction.

The characteristics of linear hyperbolic equations are completely defined
by means of principal coefficients. In nonlinear cases these coefficients al-
ready depend on a sought solution and its lower derivatives. Since the
characteristics, too, depend on them, the linear formulation of a Darboux
characteristic problem cannot be automatically extended to the case of non-
linear equations which are of particular interest from the standpoint of
application [2]. Therefore the formulations of Darboux problems for such
equations should be revised with regard for general characteristic invariants
[3]–[7].

In this paper, an attempt is made to formulate correctly a partially char-
acteristic problem for a quasilinear equation, which arises when studying

2010 Mathematics Subject Classification. 35L70, 35L15.
Key words and phrases. Characteristics, general integral, domain of definition.
This paper is supported by the European Union’s Seventh Framework Programme

(FP7/2007-2013) under grant agreements no. 317721, no. 318202.
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nonlinear oscillations
x2(u4yuxx − uyy) = cuu4y, c = const . (1)

The particular case of equation (1) for the purpose of outfitting warships
by order of Pentagon has been investigated in [8], [9]. The general solution
of the equation has been constructed for c = 0.

Equation (1) is interesting by the degeneracy of its order and, perhaps,
by the hyperbolicity, too. The former is completely defined and occurs on
the coordinate axis. The parabolic degeneracy [10] depends on the behavior
of the derivative uy of an unknown solution u(x, y). Hence the set of points
of this degeneracy is not a priori prescribed in this case and has to be defined
simultaneously with a solution.

Since the set of points of parabolic degeneracy and the characteristics
are not defined by the equation, they have to be defined by the conditions
of the problem. For this we need all characteristic rules of equation (1).

The characteristic roots of equation (1)

λ1 = u−2
y , λ2 = −u−2

y

provide differential relations of characteristic directions
u2ydy − dx = 0, u2ydy + dx = 0. (2)

If, taking into account (2), we consider equation (1), we come to the
differential characteristic relations
x2u4y dux − x2u2y duy − cu4yu dx = 0, x2u4y dux + x2u2y duy − cu4yu dx = 0.

The following theorem [11] is true.

Theorem 1. Assuming c > −1
4 , each of the characteristic systems of

equation (1) admits exactly two first integrals, and they are represented
explicitly as {

ξ ≡ (u−1
y + ux)x

α − αuxα−1,

ξ1 ≡ (u−1
y + ux)x

1−α − (1− α)ux−α,
(3)

for the family of the root λ1, and asη ≡ (u−1
y − ux)x

α + αuxα−1,

η1 ≡ (u−1
y − ux)x

1−α + (1− α)ux−α, α =
1

2

(
1 +

√
4c+ 1

)
,

(4)

for the family of the root λ2.

By virtue of these two pairs of first integrals (ξ, ξ1) and (η, η1), which are
actually characteristic invariants, it follows that in the class of hyperbolic
solutions we can construct two intermediate integrals

ξ1 = φ′(ξ), η1 = ψ′(η)
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of equation (1) [12]. In these integrals, φ, ψ are arbitrary smooth functions
such that they ensure the differentiability of the sought solution up to the
second order.

Theorem 2. If φ,ψ ∈ C3(R), then equation (1) is equivalent to the
triple of the following relations [11]

x =
(φ′(ξ) + ψ′(η)

ξ + η

) 1
1−2α

, (5)

y =
1

4(1− 2α)

[
(ξ + η)

(
ψ′(η)− φ′(ξ)

)
+ 2

(
φ(ξ)− ψ(η)

)]
, (6)

u =
1

1− 2α

[
ξ
(φ′(ξ) + ψ′(η)

ξ + η

) 1−α
1−2α − φ′(ξ)

(φ′(ξ) + ψ′(η)

ξ + η

) α
1−2α

]
. (7)

To relations (5)–(7) we come from equation (1) without any additional
conditions. By removing arbitrary parameters φ, ψ, from these relations
we return to equation (1). Hence this triple of relations can be taken as
a general integral of equation (1), and the invariants ξ, η as characteristic
variables.

However, the above-constructed general integral (5)–(7) does not define
in any way at least one characteristic of either of the families in order to
take it as a data carrier of a mixed characteristic problem. Hence we have
to choose such a characteristic arbitrarily, at our discretion. Suppose it is
some arc γ given in explicit form

γ : y = g(x), 0 < a ≤ x ≤ b, g ∈ C3(R). (8)

The function g is assumed to be strictly monotonic, and the arc γ to be
ascending. Without loss of generality, it can be assumed that

g(a) = 0.

Let the function h given on some segment [a, d] be twice continuously dif-
ferentiable and contracting this segment to the segment [a, b]. It is assumed
that h satisfies the conditions

h(a) = a, h(d) = b, h′ < 0.

The Problem. Find a regular hyperbolic solution u(x, y) of equation
(1) and define simultaneously its domain of definition if along this solution
the curve γ is characteristic, the solution itself satisfies the conditions

u(a, 0) = µ, ux(a, 0) = θ, (9)

and each pair of points (x, 0), (h(x), g(h(x))) connected with the mapping
of h belongs to the respective general characteristic of the family of the
root λ2.
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According to the formulation of the problem, the curve γ is actually
attributed to the family of characteristics of the root λ1. This is equivalent
to the equality

g′(x) = u−2
y (x, g(x)). (10)

Thus we can define two variants of values of the derivative uy along the
curve γ:

uy =
1

±
√
g′(x)

. (11)

Of them we choose the arithmetic value of the root. The reasoning for
the other root is analogous. To solve the problem, along with (11) we also
need to define on the arc γ the values of a solution u and its derivative ux.
To this end, we have to use the characteristic invariants ξ, ξ1 of the family
λ1. The values of u and ux at the initial point (a, 0) of the curve γ are
known. Using (9), (11), we calculate the characteristic invariants ξ, ξ1 at
the point (a, 0) for which we introduce the notation

ξ
∣∣
(a,0)

=
(√

g′(a) + θ
)
aα − αµaα−1 ≡ [ξ]a,

ξ1
∣∣
(a,0)

=
(√

g′(a) + θ
)
a1−α − (1− α)µa−α ≡ [ξ1]a.

(12)

Since the characteristic invariants ξ, ξ1 take constant values along γ, we
have [

(u−1
y + ux)x

α − αuxα−1
]∣∣∣

γ
= [ξ]a,[

(u−1
y + ux)x

1−α − (1− α)ux−α
]∣∣∣

γ
= [ξ1]a.

Considering these two relations as a system relative to u and ux, we
define their values on γ as follows:

u
∣∣
γ
=

1

2− α

[
x1−α[ξ]a − [ξ1]ax

α
]
,

ux
∣∣
γ
=

1− α

2− α
[ξ]ax

−α − α

1− 2α
[ξ1]ax

α−1 −
√
g′(x) .

Thus we have succeeded in defining the values of the sought solution and
its first order derivatives all over the characteristic γ. Using these values, we
can define the solution and its first order derivatives outside γ and establish
the limits of their propagation.

To define the values of u(x, 0), ux(x, 0) and uy(x, 0), from an arbitrary
point P (x, 0), a < x ≤ d, we draw the characteristic Γ of the family of the
root λ2, which by the conditions of problem (1), (9) intersects the charac-
teristic γ at the point N(h(x), g(h(x))). The invariants η and η1 must be
constant along the characteristic Γ.
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Since the values of the invariants η, η1 at the point N

η
∣∣
N

= 2
√
g′(h(x))hα(x)− [ξ]a,

η1
∣∣
N

= 2
√
g′(h(x))h1−α(x)− [ξ1]a,

remain unchanged all over the characteristic Γ, the point (x, 0) inclusive,
the equalities

η(x, 0) = η
∣∣
N
, η1(x, 0) = η1

∣∣
N

will be fulfilled. These invariants can be written in the explicit form

[η]x ≡
(
u−1
y (x, 0)− ux(x, 0)

)
xα + αu(x, 0)xα−1 =

= 2
√
g′(h(x))hα(x)− [ξ]a, (13)

[η1]x ≡
(
u−1
y (x, 0)− ux(x, 0)

)
x1−α + (1− α)u(x, 0)x−α =

= 2
√
g′(h(x))h1−α(x)− [ξ1]a. (14)

We take these equalities as a linear algebraic system and define the sought
solution at an arbitrary point (x, 0) of the segment [a, d]

u(x, 0) =
2

2α− 1

√
g′(h(x))

(
hα(x)x1−α − h1−α(x)xα

)
−

− 1

2α− 1
[ξ]ax

1−α +
1

2α− 1
[ξ1]ax

α. (15)

This is quite sufficient in order to define at the same points the first order
derivatives ux(x, 0) and uy(x, 0) of the sought solution u. The derivative ux
is obtained by direct differentiation of (15)

ux(x, 0) =
1

2α− 1

g′′(h(x)) · h′(x)√
g′(h(x))

(
hα(x)x1−α − h1−α(x)xα

)
+

+
2

2α− 1

√
g′(h(x))

(
αhα−1(x)h′(x)x1−α + (1− α)hα(x)x−α−

− (1− α)h−α(x)h′(x)xα − αh1−α(x)xα−1
)
−

− 1− α

2α− 1
[ξ]ax

−α +
α

2α− 1
[ξ1]ax

α−1. (16)
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The other derivative uy is defined by substituting (15), (16) into (13) or
(14)

uy(x, 0) =

{
2
√
g′(h(x))

2α− 1

[
(α− 1)hα(x)x−α + (1− α)h1−α(x)xα−1+

+ αhα−1(x)h′(x)x1−α − (1− α)h−α(x)h′(x)xα
]
+

1

2α− 1
×

× g′′(h(x)) · h′(x)√
g′(h(x))

(
hα(x)x1−α − h1−α(x)xα

)
+

1− α

2α− 1
[ξ]ax

α

}−1

. (17)

Because of the nonlinearity of equation (1) and depending on the ux(x, 0),
uy(x, 0), the segment [a, d] may turn out to be the characteristic of either
of the families. This is the cause for which the problem under consideration
may be ill-posed or even unsolvable.

In order to avoid transformation of the segment [a, d] to the characteristic,
we should find the conditions ensuring an a priori estimate

0 < |uy(x, 0)| <∞.

It is understood that these conditions should be expressed in terms g, h.
The above estimate excludes for y = 0 not only the characteristic direc-

tion of the carrier, but also the parabolic degeneracy of equation (1).
The assumptions h ∈ C1(J), g ∈ C2(I), J ≡ (a, d), I ≡ (a, b) ensure the

fulfillment of the condition
uy(x, 0) ̸= 0, x ∈ J

and the existence of minimal and maximal values of the functions g′, |g′′|
on I and of |h| on J . We denote by n the smallest of minimal values and
by N the largest of maximal values. We obtain the estimate

|uy(x, 0)| < +∞, x ∈ J

if one of the following conditions

2
√
N

[
(α−1)

(a
d

)α

−(α−1)
(d
a

)α−1

−α
( b
a

)α−1

N−(α−1)
(d
a

)α

N

]
−

− N2

√
n
(dαa1−α − d1−αaα)− (α− 1)[ξ]aa

α > 0, (18)

is fulfilled, where the value [ξ]a is given by formula (12), and α > 1;

√
N η∗(1 + sgn η∗) +

√
n η∗(1− sgn η∗) +

N2

√
n
(dαa1−α − d1−αaα)−

− (α− 1)ξ[a]
(
aα

1 + sgn[ξ]a
2

+ dα
1− sgn[ξ]a

2

)
< 0, (19)
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η∗ ≡ (α−1)
( b
a

)α

− (α−1)
(a
b

)α−1

−α
(a
d

)α−1

n−(α−1)
(a
b

)α

n, α>1,

g′′(x) ≤ 0, x ∈ I, α = 1; (20)
g′′(x) > 0, −2n2 +N2(d− a) < 0, x ∈ I, α = 1; (21)

√
N η∗(1− sgn η∗) +

√
n η∗(1 + sgn η∗)− N2

√
n
(d− a)+

+(1− α)ξ[a]
[
aα

1 + sgn[ξ]a
2

+ dα
1− sgn[ξ]a

2

]
> 0, (22)

η∗ ≡ (α− 1)
( b
a

)α

+ (1− α)
(a
d

)1−α

− α
(d
a

)1−α

N+

+ (1− α)
(a
d

)α

n,
1

2
< α < 1;

η0
√
n (1− sgn η0) + η0

√
N (1 + sgn η0) +

n2√
n
(d− a)+

+ (1− α)[ξ]a

(
dα

1 + sgn[ξ]a
2

+ aα
1− sgn[ξ]a

2

)
< 0, (23)

η0 ≡ (α− 1)
(a
d

)α

+ (1− α)
( b
a

)1−α

− α
(a
b

)1−α

n+

+(1− α)
(d
a

)α

N,
1

2
< α < 1.

Let (ρ, 0) and (σ, 0) be arbitrarily chosen points from the segment [a, d].
Using the values of u(σ, 0), ux(σ, 0), uy(σ, 0), we define the constants [ξ]σ,

[ξ1]σ, whose values must coincide with the invariants ξ, ξ1 on the unknown
yet characteristic Γ1 of the family of the root λ1 drawn from the point
A(σ, 0). Assume that this characteristic is given by the formula y = m(x),
where the function m is to be defined. Then on this curve, we have
ξ
∣∣
Γ1

=
(
u−1
y (x,m(x)) + ux(x,m(x))

)
xα − αu(x,m(x))xα−1 = [ξ]σ, (24)

ξ1
∣∣
Γ1

=
(
u−1
y (x,m(x)) + ux(x,m(x))

)
x1−α−

−(1− α)u(x,m(x))x−α = [ξ1]σ, (25)
where

[ξ]σ = ξ
∣∣
A
=

4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ) + (1− α)h1−α(σ)σ2α−1−

− αhα−1(σ)h′(σ)σ1−α − (1− α)h−α(σ)h′(σ)σ2α
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)σ − h1−ασ2α

)
+
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+
2− 2α

2α− 1
[ξ]aσ

2α − 2
√
g′(h(σ))hα(σ) + [ξ]a,

[ξ1]σ = ξ1
∣∣
A
=

4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ)σ−1 + (1− α)h1−α(σ)σ2α−2+

+ αhα−1(σ)h′(σ)− (1− α)h−α(σ)h′(σ)σ2α−1
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)− h1−α(σ)σ2α−1

)
+

+
2− 2α

2α− 1
[ξ]aσ

2α−1 − 2
√
g(h(σ)) + [ξ1]a.

In an absolutely analogous manner we define the invariants η, η1 on the
characteristic Γ2 of the other family drawn from the point B(ρ, 0). Assume
that this characteristic is given by the equation y = ℓ(x), where ℓ is an
unknown yet function. Thus we have

η
∣∣
Γ2

=
(
u−1
y (x, ℓ(x))− ux(x, ℓ(x))

)
xα + αu(x, ℓ(x))xα−1 = [η]ρ, (26)

η1
∣∣
Γ2

=
(
u−1
y (x, ℓ(x))− ux(x, ℓ(x))

)
x1−α+

+(1− α)u(x, ℓ(x))x−α = [η1]ρ, (27)
where

[η]ρ = 2
√
g′(h(ρ))hα(ρ)− [ξ]a,

[η1]ρ = 2
√
g′(h(ρ))h1−α(ρ)− [ξ1]a.

At the intersection point (x1, y1) of these characteristics, if such a point
exists, conditions (24)–(27) and ℓ(x1) = m(x1) must be fulfilled simultane-
ously. Therefore in the left-hand parts of (24), (25) we can replace m(x1)
by ℓ(x1). As a result, we obtain the following system for defining the values
of x, u, ux, uy at the point C(x1, ℓ(x1))(

u−1
y (x1, ℓ(x1)) + ux(x1, ℓ(x1))

)
xα1 − αu(x1, ℓ(x1))x

α−1
1 =[ξ]σ, (28)(

u−1
y (x1, ℓ(x1)) + ux(x1, ℓ(x1))

)
x1−α
1 − (1− α)u(x1, ℓ(x1))x

−α
1 =[ξ1]σ, (29)(

u−1
y (x1, ℓ(x1))− ux(x1, ℓ(x1))

)
xα1 + αu(x1, ℓ(x1))x

α−1
1 =[η]ρ, (30)(

u−1
y (x1, ℓ(x1))− ux(x1, ℓ(x1))

)
x1−α
1 + (1− α)u(x1, ℓ(x1))x

−α
1 =[η1]ρ. (31)

Taking these equalities as a linear algebraic system, we define the values
of the abscissa x1 of the intersection point C of the characteristics Γ1 and
Γ2, and also of the sought solution u(x1, ℓ(x1)) together with its first order
derivatives ux(x1, ℓ(x1)) and uy(x1, ℓ(x1)).

So far ρ, σ have been chosen arbitrarily on the segment [a, d] and it
has been through them that we have defined the coordinates (x1, y1) of
the intersection point of the characteristics. Now, if we assume that they
run through this segment, we obtain the set of intersection points of the
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characteristics drawn from all possible pairs of points (ρ, 0), (σ, 0). That is
why in the notations of solutions of the algebraic system (28)–(31) we omit
the indexes

x = X(ρ, σ), (32)
u = U(ρ, σ), (33)
ux = P (ρ, σ), (34)
uy = Q(ρ, σ), (35)

where

X(ρ, σ) =
( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

) 1
2α−1

,

U(ρ, σ) =
1

1− 2α

[( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

) 1−α
2α−1

[ξ]σ − [ξ1]σ

( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

) α
2α−1

]
,

P (ρ, σ) =
( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

)− α
2α−1

( 1

2− 4α
[ξ]σ−

− 1

2
[η]ρ

)
− α

1− 2α
[ξ1]σ

( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

) α−1
2α−1

,

Q(ρ, σ) =2
( [ξ]σ + [η]ρ
[ξ1]σ + [η1]ρ

) α
2α−1 (

[ξ]σ + [η]ρ
)−1

.

To describe the structure of this set of points, we must express the ordi-
nate y as a function of arguments ρ, σ, in the same way as all other were
represented by formulas (32)–(35). To construct the function y = Y (ρ, σ),
we need the explicit representations of X and Q in the form

X(ρ, σ) =

{
4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ) + (1− α)h1−α(σ)σ2α−1−

−αhα−1(σ)h′(σ)σ1−α − (1− α)h−α(σ)h′(σ)σ2α
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)σ − h1−α(σ)σ2α

)
+

2− 2α

2α− 1
[ξ]aσ

2α−

−2
√
g′(h(σ))hα(σ) + 2

√
g′(h(ρ))hα(ρ)

} 1
2α−1

×

×

{
4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ) + (1− α)h1−α(σ)σ2α−1−

−αhα−1(σ)h′(σ)σ1−α − (1− α)h−α(σ)h′(σ)σ2α
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)σ − h1−α(σ)σ2α

)
+

2− 2α

2α− 1
[ξ]aσ

2α−
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−2
√
g′(h(σ))h1−α(σ) + 2

√
g′(h(ρ))h1−α(ρ)

} 1
1−2α

, (36)

Q(ρ, σ) = 2

{
4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ) + (1− α)h1−α(σ)σ2α−1−

−αhα−1(σ)h′(σ)σ1−α − (1− α)h−α(σ)h′(σ)σ2α
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)σ − h1−α(σ)σ2α

)
+

2− 2α

2α− 1
[ξ]aσ

2α−

−2
√
g′(h(σ))hα(σ) + 2

√
g′(h(ρ))hα(ρ)

} α
2α−1

×

×

{
4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ) + (1− α)h1−α(σ)σ2α−1−

−αhα−1(σ)h′(σ)σ1−α − (1− α)h−α(σ)h′(σ)σ2α
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)σ − h1−α(σ)σ2α

)
+

2− 2α

2α− 1
[ξ]aσ

2α−

−2
√
g′(h(σ))h1−α(σ) + 2

√
g′(h(ρ))h1−α(ρ)

} α
1−2α

×

×

{
4
√
g′(h(σ))

2α− 1

[
(α− 1)hα(σ)σ−1 + (1− α)h1−α(σ)σ2α−2+

+αhα−1(σ)h′(σ)− (1− α)h−α(σ)h′(σ)σ2α−1
]
+

+
2

2α− 1
· g

′′(h(σ))h′(σ)√
g′(h(σ))

(
hα(σ)− h1−α(σ)σ2α−1

)
+

2− 2α

2α− 1
[ξ]aσ

2α−1−

−2
√
g′(h(σ))h1−α(σ) + 2

√
g′(h(ρ))hα(ρ)

}−1

. (37)

To define the function m, the equation of the characteristic Γ1 is formally
written in the form

y = m(x) = m[X(ρ, σ)] ≡M(ρ, σ),

where the little line over the letter means this value is constant. The direc-
tion of this characteristic is defined by the root λ1 or, in other words, by
the values of the derivative uy = Q(σ, ρ). Therefore we have

dm(X(ρ, σ))

dX(ρ, σ)
=
dm(X(ρ, σ))

X ′
ρ(ρ, σ) dρ

=
1

Q2(ρ, σ)
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or, which is the same,
dM(ρ, σ)

dρ
=
X ′

ρ(ρ, σ)

Q2(ρ, σ)
. (38)

Hence by integration we obtain

M(ρ, σ) =

ρ∫
a

X ′
t(t, σ)

Q2(t, σ)
dt+M(a, σ), ρ ∈ [a, d],

where the value M(a, σ) is unknown yet.
By an analogous reasoning, using the notation y = ℓ(x) = ℓ

[
X(ρ, σ)

]
≡

L(ρ, σ) and taking into account the direction of the characteristic Γ2 defined
by the root λ2, we obtain

dL(ρ, σ)

dσ
= −X

′
σ(ρ, σ)

Q2(ρ, σ)

and

L(ρ, σ) = −
σ∫

a

Xz(ρ, z)

Q2(ρ, z)
dz + L(ρ, a), σ ∈ [a, d],

where L(ρ, a) is not known either and has to be defined.
To define the unknown values, note that L(ρ, a) is the value of L at the

intersection point of the characteristics γ and Γ2. Therefore
L(ρ, a) = g(h(ρ)),

and

M(a, σ) = L(a, σ) = −
σ∫

a

X ′
z(a, z)

Q2(a, z)
dz + g(h(a)),

where g(h(a)) = g(a) = 0.
In defining the characteristics of the families of the roots λ1 and λ2, the

functions M(ρ, σ) and L(ρ, σ) are given by the equalities

M(ρ, σ) =

ρ∫
a

X ′
t(t, σ)

Q2(t, σ)
dt−

σ∫
a

X ′
z(a, z)

Q2(a, z)
dz (39)

with an argument ρ ∈ [a, d] and a parameter σ ∈ [a, d], and

L(ρ, σ) = −
σ∫

a

X ′
z(ρ, z)

Q2(ρ, z)
dz + g(h(ρ)), (40)

with a variable σ ∈ [a, d] and a parameter ρ ∈ [a, d].
Thus the integral of problem (1), (9) is given by formulas (32), (33) and

y = Y (ρ, σ), (41)
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where

Y (ρ, σ) = −
σ∫

a

X ′
z(ρ, z)

Q2(ρ, z)
dz + g(h(ρ)),

and the variables ρ, σ ∈ [a, d].
The domain of definition D of the solution of problem (1), (9) is com-

pletely defined by relations (32), (41), where expressions of x, y depend on
ρ, σ. The values of these functions are treated as the current coordinates
describing the domain D.

The domain of definition of the solution of the problem under consider-
ation is bounded by four characteristics. The first of them which is an arch
of the curve γ is given by the condition of the problem. The other charac-
teristics are represented parametrically. In our representations we take as
parameters the values ρ, σ of the abscissa of the intersection points through
which these characteristics pass:

Γ3 : x = X(d, σ), y = L(d, σ), (42)

Γ4 : x = X(ρ, d), y =M(ρ, d), (43)
Γ5 : x = X(a, σ), y = L(a, σ), (44)

where the functions X, M , L are given by (36), (39), (40).
Such is the structure of the domain of definition of the solution of the

problem when the values of the derivative uy on the arc γ in formula (11)
are defined by the positive root. The domain has the same kind of structure
when the root in (11) is negative. The latter case is investigated by analogy
with the preceding case.

Thus the following theorem is valid.

Theorem 3. If along the curve γ it occurs that uy > 0, then under the
conditions (18)–(23) there exists the solution of problem (1), (9) given by
the formulas (32), (33), (41). The domain D of the solution is bounded by
the arcs of characteristic curves (8), (42), (43) and (44).

The case uy > 0 along the curve γ can be studied in a similar way.
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OPTIMIZATION OF A STATE FINANCING MODEL OF
VOCATIONAL COLLEGES

R. CHARTOLANI, N. DURGLISHVILI AND Z. KVATADZE

Abstract. The paper presents the results of the quantitative
sociological research. The basic factors which essentially deter-
mine the attitude of students to vocational education are iden-
tified and analyzed, which on its part is one of the important
prerequisites for the formation of a rating system of vocational
colleges and for the optimization of the model of their financial
support by the state.

ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÒÀÏÃÄÍÏÁÒÉÅÉ ÓÏÝÉÏ-
ËÏÂÉÖÒÉ ÊÅËÄÅÉÓ ÛÄÃÄÂÄÁÉ. ÌÀÈ ÛÏÒÉÓ, ÉÃÄÍÔÉ×ÉÝÉÒÄÁÖ-
ËÉ ÃÀ ÂÀÀÍÀËÉÆÄÁÖËÉÀ ÞÉÒÉÈÀÃÉ ×ÀØÔÏÒÄÁÉ ÒÏÌËÄÁÉÝ
ÀÒÓÄÁÉÈÀÃ ÂÀÍÓÀÆÙÅÒÀÅÓ ÓÔÖÃÄÍÔÈÀ ÃÀÌÏÊÉÃÄÁÖËÄÁÀÓ
ÐÒÏ×ÄÓÉÖËÉ ÓÀÓßÀÅËÄÁËÉÓ ÌÉÌÀÒÈ, ÒÀÝ, ÈÀÅÉÓ ÌáÒÉÅ,
ÐÒÏ×ÄÓÉÖËÉ ÓÀÓßÀÅËÄÁËÄÁÉÓ ÓÀÒÄÉÔÉÍÂÏ ÓÉÓÔÄÌÉÓ ×ÏÒÌÉ-
ÒÄÁÉÓÀ ÃÀ ÓÀáÄËÌßÉ×Ï ÃÀ×ÉÍÀÍÓÄÁÉÓ ÌÏÃÄËÉÓ ÏÐÔÉÌÉÆÄÁÉÓ
ÄÒÈ-ÄÒÈ ÌÍÉÛÅÍÄËÏÅÀÍ ßÉÍÀÐÉÒÏÁÀÓ ßÀÒÌÏÀÃÂÄÍÓ.

Post-Soviet Georgia is faced with complex and multivariate challenges of
modernization. In the process of integration into the modern democratic
world and formation of an independent state one of the most urgent tasks is
to make the education system match the up-to-date international standards.
Proceeding from the fact that the reform of the education system takes place
against the background of acute economic problems, it is very important to
use such methods that are directed not to additional investments but to an
optimal distribution of the existing resources, which will make it possible
to get a maximal effect at minimal expenditures.

Resolution of the Government of Georgia, No. 244 [1] dated September
19, 1913 (On the Determination of the Order and Terms of the Financing
of Vocational Education and Confirmation of a Maximal Payment for the
Study in Vocational Education Programs) established the rules and terms
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of a financial support given by the Government to the vocational education
in Georgia.

According to these rules, every student receives–according to his profes-
sion–a voucher of financial support that exceeds a minimal payment amount
needed for his training. As a result, after students finish their training
course, a certain amount of money (“surplus”) remains in the possession of
the college which the latter can spend at its discretion for the purpose of
development of the training process. If the students of the college under in-
vestigation are regarded as a united set, then their financial “surplus” at the
current moment of time is “scattered” as a non-uniform amount among var-
ious educational institutions–so, there does not exist a unified mechanism
of surplus calculation and expenditure.

The training of a student in one and the same profession in various col-
leges may involve different cost sums and, accordingly, the surplus amount
that remains can be different. Moreover, there does not exist a monitoring
mechanism by means of which we could evaluate how effectively the optimal
sum was spent. It is not excluded that a minimal expenditure will nega-
tively affect the quality of training or a maximal expenditure does not at all
mean a better quality of training. Therefore, based only on the expenditure
and surplus amounts, no conclusion can be made as to how purposefully
the state resource was spent, i.e. to what an extent each college acquires
a “free” surplus according to its individual rule and ensures, also according
to its individual rule, a rise in the competitiveness of a graduate student at
the job market.

We have to deal with yet another problematic fact that the surplus of
each college and the sum of surpluses of the same college are qualitatively
different sums: in individual colleges this surplus cannot produce any sig-
nificant influence on the resolution of their own problems (this especially
concerns a college with a minimal budget), whereas the concentration and
purposeful resolution enables a college to solve important and large-scale
problems.

The purpose of the statistical survey results presented in the present
paper is to make a contribution to the optimization of the process of financ-
ing vocational college students by the state, namely: to contribute to the
elaboration of an optimal model of surplus distribution and monitoring.

To accomplish this aim, it is necessary, on the one hand, to carry out
an analysis of the needs of vocational colleges and, on the other hand, to
range the existing colleges, i.e. to work out the national rating system, on
the basis of which a model of concentration and maximally effective use of
surpluses can be elaborated.

In the initial stage, to solve the above-mentioned problems we used the
method of quantitative sociological investigation to identify those basic
factors which essentially determine the attitude of students to vocational
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training, which, on its part, is one of the most important components of
vocational training estimation.

The general parameters of the research are as follows: a general set
consisting of students of the existing state-founded vocational colleges in
Georgia and the selected quantity of students equal to 1036. In selecting
students, a simple random method was used. The method of questioning is
a face-to-face interview. An average interviewing time is 40–50 minutes.

The investigation techniques were prepared on the basis of consultations
with education and professional experts by using the approved measurement
methods. Field work was carried out observing the ethics investigation
standards (see [2–6]). Data analysis was carried out by the methods of
descriptive statistics analysis and factor analysis (SPSS software, version
20.0).

Basic Results

The frequency indices of sex values–52% for female sex and 48% for
male sex give the grounds to make a conclusion that the choice to receive
education at a vocational college does not depend on sex (analogous indices
of Georgia’s population are 56% for female sex and 44% for male sex. These
are the data of the poll of 2014 [7]).

The distribution of students by age groups is as follows:

15-19 yrs 47.3%
20-24 yrs 26.4%
25-29 yrs 8.3%
30-34 yrs 4.2%
35-39 yrs 2.3%
40-44 yrs 2.2%
45+ 9.3%

Approximately three-thirds of students are collected in 15-24 years age
groups. Attention is given to the fact that the specific fraction of students
aged 45 years and more noticeably exceeds an analogous index of the age
group of first-year students aged 30-44, which, in view of demands of the
job market, can be associated with the necessity to change the professional
qualification or to receive a new qualification.

The majority of students (71%) have the base or secondary education.
Students having a higher degree of education are represented by a much

lower specific fraction. It should be noted that the specific fraction of bache-
lors who finished the course at technical secondary schools, colleges, special
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secondary schools exceeds the index. This result is quite important from
the viewpoint of investigation of the mutual relationship between these two
steps of education, though in order to make a concrete conclusion this ques-
tion demands a deeper study.

Education

Base 30%
Secondary 41%
secondary school, college, special secondary school, 10%
Bachelor 13%
Master 3%
Other 3%

To estimate the attitude of students to vocational colleges we chose the
following three general parameters: estimation of services rendered to stu-
dents and the related activities of the administration and auxiliary person-
nel; estimation of the teaching quality, which includes estimation of the
pedagogical resource and curricula; estimation of the logistics (material-
and-technical base). Each of these parameters is, in turn, subdivided into
concrete indicators. As a result, measurements were done by means of 48
variables. Factor analysis or, more specifically, the method of selection of
concrete components was applied. From 48 variables we chose 8 general
factor variables of latent character which essentially influence the attitude
of students to a vocational school.

Factor 1 includes 11 variables. This factor is conditionally called “ser-
vicing of students” since it contains all the variables which were used to
estimate the services rendered directly to students and also some of those
variables which are related to the administrative and auxiliary personnel
who render these services.

Measurements were done by the ten-point scale, the minimal and maxi-
mal values being 1 and 10, respectively.
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Factor No. 1. Services Rendered to Students

Variable description Average Standard Variation
deviation coefficient

Information is timely provided by col-
lege administration

9.00 1.881 20.9%

Administration is staffed with profes-
sional specialists

9.14 1.756 19.2%

Administration resolves problems in
proper time

8.97 1.998 22.3%

Information on the college web-page is
regularly up-graded

8.71 2.261 25.9%

College web-page performs information
and communication function

8.73 2.223 25.5%

Health of college students and person-
nel is properly protected

8.98 1.957 21.8%

Security of college students and person-
nel is properly provided

9.02 1.945 21.6%

Students have access to internet 8.34 2.731 32.8%
Time-tables are timely prepared 9.09 1.872 20.6%
Registration of students takes place 9.32 1.569 16.8%
in connection with additional exams
and training process

9.01 2.000 22.2%

It should be noted that an individual factor unites variables which are
used to for estimating the personal mutual relations of a student with the
administrative or auxiliary personnel.

Factor No. 2. Personal Communication with the
Administration

Variable description Average Standard Variation
deviation coefficient

Students’ files connected with ad-
ministrative matters are organized

9.11 1.741 19.1%

Student has support on the part of
administration

9.02 1.892 21.0%

Communication with administrative
personnel is simple

9.09 1.747 19.2%

Thus, on the part of administration the resolution of general problems
and the communication with individual students are estimated differen-
tially, which in a vocational college even more clearly reveals the relevance
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of individual contacts with every student as they depend on his concrete
demands.

Factor No. 3. Teaching Quality

The qualification of the pedagogical resource and the quality of training
programs are apprehended by students from the viewpoint of indivisible
integrity–all variables connected with these two aspects of the teaching pro-
cess are united into a single factor. This logically expected result once more
emphasizes the fact that both aspects should continue their development in
this harmony. Otherwise the effect of failure of one of them will automati-
cally affect the other.

Variable description Average Standard Variation
deviation coefficient

General estimation of the general
education program

9.16 1.459 15.9%

Estimation of teaching personnel
professionalism

9.54 1.233 12.9%

Estimation of assessment system ex-
isting in college

9.14 1.569 17.2%

Estimation of theoretical lectures 9.41 1,261 13.4%
Estimation of work in group 9.17 1.546 16.9%
Estimation of training practical
work

9.14 1.719 18.Ge8%

Estimation of examination process 9.29 1.469 15.8%
Modern methods are actively used
in delivering lectures

9.03 1.729 19.2%

Teacher is always well prepared for
lecture

9.51 1.311 13.8%

Master-classes which are not directly integrated into the teaching process,
buffet and various events outside the educational process (competitions,
sports contests and so on) are in fact regarded on the part of students as a
single factor. It is of interest to note that as compared with other variables
the average estimates included in this factor have low indices. We call
conditionally this factor the student medium.

From the picture presented above it is obvious that: a) as different from
the teaching process, the student medium outside the teaching process is
problematic and needs improvement; b) the integration of master-classes
into the non-teaching medium shows that a master-class is regarded not as
an improving phenomenon of professional competence, but as an unimpor-
tant addition to the education process, which indicates the necessity of a
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further investigation of this issue and the obligatory integration of master-
classes into the education process.

Factor No. 4. Student Medium Outside the Education Process

Variable description Average Standard Variation
deviation coefficient

Education process includes master-
classes

7.21 3.194 44.3%

Functioning of buffet in educational
establishments

4.76 4.275 89.8%

Various events such as competitions,
sports contests and so on are orga-
nized

7.27 3.363 46.2%

Resources that are connected with information receiving and communi-
cation are grouped in a separate factor.

Factor No. 5. Information and Communication Resources

Variable description Average Standard Variation
deviation coefficient

Education process is provided with
computer facilities

8.58 2.367 27.6%

Education process is provided with
library

8.47 2.437 28.8%

Education process is provided with
internet

8.39 2.589 30.9%

Use of computer class is accessible 8.42 2.572 30.5%
Assessment of logistics available in
library

8.18 2.447 29.9%

Quantity of computers available for
students is satisfactory

8.49 2.517 29.7%

Computer software is satisfactory 8.43 2.386 28.3%
Monitors mounted in lecture-rooms
function properly

7.85 3.029 38.6%

Xerox is available for students 7.22 3.381 46.8%

General infrastructure, equipment of students’ practical work and the
state of lecture-rooms are estimated by students differentially and regarded
as independent factors.
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Factor No. 6. General Infrastructure

Variable description Average Standard Variation
deviation coefficient

Floors are in good condition and do
not hamper normal conducting of
training process

9.12 1.984 21.7%

Walls, windows, doors are in good
condition

9.06 2.035 22.5%

Electric power supply system func-
tions properly

8,85 2.224 25.1%

Heating and air conditioning system
functions properly

8.20 2.777 33.9%

Running water supply system func-
tions properly

8.50 2.557 30.1%

Educational institutions are
equipped in conformity with
modern standards

8.30 2.561 30.9%

Training practical work is carried
out in college on permanent basis

8.12 2.695 33.2%

Wet points are in good order 8.23 2.737 33.3%
Sanitary conditions are satisfactory 8.64 2.421 28.0%

Factor No. 7. Training Practice – Equipment

Variable description Average Standard Variation
deviation coefficient

Lecture-rooms are provided with re-
quired hardware

8.48 2.400 28.3%

Training practice laboratories are
provided with required equip-
ment/tools

8.30 2.479 29.9%

Training practice is provided with
required materials

8.36 2.405 28.7%

Factor No. 8. Lecture Rooms

Variable description Average Standard Variation
deviation coefficient

Sufficient quantity of desks and
chairs are available in lecture-rooms

9.41 1.589 16.9%

Desks used by students are conve-
nient

9.00 2.043 22.7%

All lecture-rooms have blackboards 9.48 1.499 15.8%
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To conclude, it can be said that students estimate the main components of
the educational process with sufficient conscientiousness. Based on students’
estimates, the selected factors, i.e. variables of general character by means of
which students form their attitude to vocational education, characterize and
the position and functioning of an educational institution and successfully
perform the function of an essential parameter for establishing the rating of
vocational institutions.
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THE JACOBI TRANSFORM METHOD IN
APPROXIMATION THEORY

E. IBRAHIMOV

Abstract. In this paper, the behavior of Fourier coefficients of
some classes of functions on an arbitrary orthogonal system is
studied. The estimations of order of convergence to zero of
Fourier–Jacobi coefficients are found. These estimations are pre-
cise and of terminal character. The obtained results are used
for the convergence of Fourier–Jacobi series.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÍÄÁÉÓÌÉÄÒÉ ÏÒÈÏÂÏÍÀ-
ËÖÒÉ ÓÉÓÔÄÌÉÓ ÆÏÂÉÄÒÈÉ ÊËÀÓÉÓ ×ÖÍØÝÉÄÁÉÓ ×ÖÒÉÄÓ ÊÏÄ-
×ÉÝÉÄÍÔÄÁÉÓ ÚÏ×ÀØÝÄÅÀ. ÍÀÐÏÅÍÉÀ ×ÖÒÉÄ-ÉÀÊÏÁÉÓ ÊÏÄ×ÉÝÉ-
ÄÍÔÄÁÉÓ ÍÖËÈÀÍ ÊÒÄÁÀÃÏÁÉÓ ÒÉÂÉÓ ÛÄ×ÀÓÄÁÄÁÉ. ÄÓ ÛÄ×ÀÓÄ-
ÁÄÁÉ ÆÖÓÔÉÀ ÃÀ ÀØÅÈ ÆÙÅÒÖËÉ áÀÓÉÀÈÉ. ÌÉÙÄÁÖËÉ ÛÄÃÄ-
ÂÄÁÉ ÂÀÌÏÉÚÄÍÄÁÀ ×ÖÒÉÄ-ÉÀÊÏÁÉÓ ÌßÊÒÉÅÄÁÉÓ ÊÒÄÁÀÃÏÁÉÓÀÈ-
ÅÉÓ.

0. Introduction

The estimations of Fourier-Legendre coefficients of functions belonging
to one of the classes C [−1, 1], L [−1, 1] or L2 [−1, 1] were given in [1]. The
obtained inequalities were applied to the problems of convergence of Fourier-
Legendre series. In [2], these results were generalized to ultraspherical series
for f ∈ Lp, µ [−1, 1], 1 ≤ p ≤ ∞. In [3], the author obtained the estimations
of the Fourier–Jacobi coefficient of smooth functions of bounded variation.

Unlike the above-indicated papers, in this paper we study the behavior of
Fourier coefficients of some classes of functions on an arbitrary orthogonal
system.

Suppose µ be a measure on [a, b], such that µ[a, b] = 1.
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and Jacobi integral, asymptotic estimation, convergence.
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Let φn (x), n = 0, 1, . . . be a system of orthogonal functions with respect
to µ on the segment [a, b] and let

∧
f (n) =

b∫
a

f (x)φn (x) dµ (x) (0.1)

be the n-th Fourier coefficient of the functions f , belonging to one of the
classes Lp, µ [a, b], (1 ≤ p <∞), that is to a class of summable functions of
p-th degree, with respect to the measure µ. L′ is a class of functions with
an integrable derivative on [a, b].

Denote by X one of the linear spaces Lp, µ or L′ and by L = L (X, X)
the space of linear operators acting from X to X, for which the equality

b∫
a

(Arf) (x) g (x) dµ (x) =

b∫
a

f (x) (Arg) (x) dµ (x) , r = 1, 2, . . . . (0.2)

is fulfilled.
In the case f ∈ Lp, µ we assume g ∈ Lq, µ, where 1

p + 1
q = 1.

We’ll say that f ∈W r
X , if ∃g ∈ X such that

f (x) = (Arg) (x) + c, r = 1, 2, . . . , (0.3)

where A ∈ L (X, X), A0f = f , Arf = A
(
Ar−1f

)
, r = 1, 2, . . . and c is

some constant.
Define the norm f ∈ Lp, µ by

∥f∥Lp, µ
≡ ∥f∥p, µ =

( b∫
a

|f (x)|p dµ (x)
) 1

p

<∞, 1 ≤ p <∞,

and the norm of f ∈ L′ by ∥f∥L′ ≡ ∥f∥C = sup
a≤x≤b

|f (x)| .

Hereafter the operator satisfying the condition (0.2) for which presenta-
tion (0.3) is true will be constructed.

In Section 1 we prove general theorems on the convergence to zero of
Fourie coefficients of the functions from X on an arbitrary orthogonal sys-
tem. In Section 2 we study basic properties of the Jacobi transform of the
functions in X. The operator satisfying the conditions (0.2) and (0.3) is
constructed in Section 3. Here we establish integral estimates for Jacobi
polynomials. The results of Section 4 have auxiliary character. The results
of Section 5 are realization of generalized theorems of Section 1. The order
of convergence to zero of Fourier–Jacobi coefficients of the functions from
X are found. In Section 6 we prove the asymptotics of theorems on the
order of convergence for particular sums of Fourier–Jacobi series.
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1. On Fourier Coefficients of Classes X

In this section we prove the generalized theorems on the convergence to
zero of Fourier coefficients from X.

Theorem 1.1. Let f ∈W r
X (X = Lp,µ), (1 < p <∞), 1

p + 1
q = 1. If

10. ∥Arφn∥q, µ ≤M − const, q > 1, r = 0, 1, . . . ;

20. lim
n→∞

β∫
α

(Arφn) (x) dµ (x) = 0, a ≤ α < β ≤ b, r = 0, 1, . . . , where α

and β are arbitrary numbers, then

lim
n→∞

∧
f (n) = 0.

Proof. According to (0.2), we can write

∧
f (n) =

b∫
a

f (x) φn (x) dµ (x) =

b∫
a

((Arg) (x) + c)φn (x) dµ (x) =

=

b∫
a

(Arg) (x)φn (x) dµ (x) + c

b∫
a

φn (x) dµ (x) =

=

b∫
a

g (x) (Arφn) (x) dµ (x) + c

b∫
a

φn (x) dµ (x) = An +Bn. (1.1)

By condition 20 of the theorem,

lim
n→∞

Bn = 0, (1.2)

since A0φn = φn.
Let’s turn to An. Let g ∈ Lp,µ [a, b]. By density of C in Lp,µ, ∃h ∈ C,

such that
∥h− g∥p, µ <

ε

M
. (1.3)

Further,

|An| ≤
∣∣∣∣

b∫
a

(g (x)− h (x)) (Arφn) (x) dµ (x)

∣∣∣∣+
+

∣∣∣∣
b∫

a

h (x) (Arφn ) (x) dµ (x)

∣∣∣∣ = |An.1|+ |An.2|. (1.4)
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By condition 10 of the theorem, inequality (1.3) and Hőlder’s inequality

|An.1| ≤
b∫

a

|g (x)− h (x)| |(Arφn) (x)| dµ (x) ≤

≤
( b∫

a

|g (x)− h (x)|p dµ (x)
) 1

p
( b∫

a

|(Arφn) (x)|q dµ (x)
) 1

q

=

= ∥Arφn∥q, µ ∥f − g∥p, µ < ε. (1.5)
It remains to consider An,2. According to the Cantour theorem, we

partition the segment [a, b] by the points a = x0 < x1 < · · · < xm = b so
that at each partial interval [xk, xk+1] , k = 0, 1, . . . ,m− 1, the vibrations
of the function h couldn’t exceed the given ε > 0.

Then

|An,2| =
∣∣∣∣

b∫
a

h (x) (Arφn) (x) dµ (x)

∣∣∣∣ ≤
≤
∣∣∣∣ m∑
k=1

xk∫
xk−1

(h (x)− h (xk−1)) (A
rφn) (x) dµ (x)

∣∣∣∣+
+

∣∣∣∣ m∑
k=1

h (xk−1)

xk∫
xk−1

(Arφn) (x) dµ (x)

∣∣∣∣ = A
(1)
n·2 +A

(2)
n·2.

But

A
(1)
n·2 ≤

m∑
k=1

xk∫
xk−1

|h (x)− h (xk−1)| |(Arφn) (x)| dµ (x) <

< ε

b∫
a

|(Arφn) (x)| dµ (x) < ε∥Arφn∥q,µ < ε ·M. (1.6)

And the sum A
(2)
n·2 by condition 20 tends to zero as n→ ∞ and therefore

for the great enough numbers n > n0(ε) turns out lesser than ε > 0, i.e.,∣∣∣A(2)
n·2

∣∣∣ < ε, for n > n0

This and (1.6) imply that
|An·2| < ε(M + 1). (1.7)

Taking into account (1.5) and (1.7) in (1.4), we get
|An| < ε(M + 2). (1.8)
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Using (1.2) and (1.8) on (1.1), we get the assertion of the above
theorem. �

Theorem 1.2. Let f ∈W r
X (X = L1,µ) . If

10. |(Arφn) (x)| ≤M − const, r = 0, 1, . . . , x ∈ [a, b] ;

20. lim
n→∞

β∫
α

(Arφn) (x) dµ (x) = 0, a ≤ α < β ≤ b, where α and β are

arbitrary numbers, then

lim
n→∞

∧
f (n) = 0.

Proof. As in Theorem 1.1, the proof is reduced to the study of the integral
An. Let first g ∈ C [a, b], then by the Cantour theorem we partition the
segment [a, b], a = x0 < · · · < xm = b so that ∀ε > 0, ∃δ (ε) > 0, such that
∀x ∈ [xk, xk+1], max

k
|xk − xk+1| < δ,

|f (g)− g (xk)| < ε. (1.9)

Therefore

|An| =
∣∣∣∣

b∫
a

(g (x)− g (xk)) (A
rφn) (x) dµ (x)+

+

b∫
a

g (xk) (A
rφn) (x) dµ (x)

∣∣∣∣ ≤
≤

b∫
a

|g (x)− g (xk)| |(Arφn) (x)| dµ (x) +
∣∣∣∣

b∫
a

g (xk) (A
rφn) (x) dµ (x)

∣∣∣∣ =
=

m∑
k=1

xk∫
xk−1

|g (x)− g (xk)| |(Arφn) (x)| dµ (x)+

+

∣∣∣∣ m∑
k=1

g (xk)

xk∫
xk−1

(Arφn) (x) dµ (x)

∣∣∣∣ = An.1 +An.2. (1.10)

From (1.9) and condition 10 of the theorem, we have

An.1 < ε ·M
b∫

a

dµ (x) = ε · µ. (1.11)

From condition 20 of the theorem,

lim
n→∞

An.2 = 0. (1.12)
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Taking into account (1.10) and (1.11) in (1.9), we get

lim
n→∞

An = 0. (1.13)

Now let g be a measurable bounded function

|g (x)| ≤M1 − const, x ∈ [a, b] . (1.14)

By N. Lusin’s theorem (see [11], p. 118), ε > 0 ∃ν (x) ∈ C [a, b] such that

mE (g ̸= ν) < ε, |ν (x)| ≤M1. (1.15)

Then

|An| =
∣∣∣∣

a∫
b

g (x) (Arφn) (x) dµ (x)

∣∣∣∣ ≤
≤
∣∣∣∣

b∫
a

[g (x)− ν (x)] (Arφn) (x) dµ (x)

∣∣∣∣+
+

∣∣∣∣
b∫

a

ν (x) (Arφn) (x) dµ (x)

∣∣∣∣.
But by (1.15) and condition 10 of the theorem,∣∣∣∣

b∫
a

[g (x)− ν (x)] (Arφn) (x) dµ (x)

∣∣∣∣ =
=

∣∣∣∣ ∫
E(f ̸=ν)

[g (x)− ν (x)] (Arφn) (x) dµ (x)

∣∣∣∣ < 2MM1ε.

On the other hand, by (1.13) for great enough n one has βn < ε. Thus we
have

|An| < (2MM1 + 1) ε. (1.16)
From this follows the assertion of the theorem for measurable bounded

function.
Finally, let g ∈ L1, µ. Taking ε > 0 and using the absolute continuity of

the integral, we find δ > 0 such that for any measurable set e ∈ [a, b] with
measure me < δ (see [11], p. 165),∫

e

|g (x)| dµ (x) < ε. (1.17)

We find a bounded measurable function ν (x), so that (see [11], p. 113)

mE (g ̸= ν) < δ, |ν (x)| ≤M2 − const . (1.18)
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Then by (1.15)–(1.18) and condition 10 of the theorem,

|An| ≤
∣∣∣∣

b∫
a

(g − ν) (x) (Arφn) (x) dµ (x)

∣∣∣∣+
+

∣∣∣∣
b∫

a

ν (x) (Arφn) (x) dµ (x)

∣∣∣∣≤ ∣∣∣∣ ∫
E(g ̸=ν)

(g − ν) (x) (Arφn) (x) dµ (x)

∣∣∣∣+ ε<

< Mε+ ε = (M + 1) ε,

Thus the proof of the theorem is complete. �

Note that to essence for µ (x) ≡ 1 this theorem was proved by Henri
Lebesgue (see [11], p. 300). We present the proof for completeness of
explanation.

Theorem 1.3. Let f ∈W r
X (X = L′). If

10.

∣∣∣∣ x∫
a

(Arφn) (t) dµ (t)

∣∣∣∣ ≤M , r = 0, 1, . . . , x ∈ [a, b] ;

20. lim
n→∞

β∫
α

(Arφn) (x) dµ (x) = 0, a ≤ α < β ≤ b, then almost everywhere

lim
n→∞

∧
f (n) = 0.

Proof. Since f ∈ L′, then ([11], p. 292)

f (x) = f (a) +

x∫
a

f ′ (t) dt.

Then
b∫

a

f (x) (Arφn) (x) dµ (x) =

=

b∫
a

(
f (a) +

x∫
a

f ′ (t) dt

)
(Arφn) (x) dµ (x) =

= f (a)

b∫
a

(Arφn) (x) dµ (x)+

+

b∫
a

x∫
a

f ′ (t) dt (Arφn) (x) dµ (x) = An.1 +An.2. (1.19)
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By condition 20 of the theorem,

lim
n→∞

An.1 = 0. (1.20)

By 10 ([11], p. 113), almost everywhere

An.2 =

b∫
a

( x∫
a

f ′ (t) dt

)
d

x∫
a

(Arφn) (t) dµ (t) =

=

x∫
a

f ′ (t) dt

x∫
a

(Arφn) (t) dµ (t)|ba −

−
b∫

a

( x∫
a

(Arφn) (t) dµ (t)

)
f ′ (x) dx =

b∫
a

f ′ (t) dt

b∫
a

(Arφn) (t) dµ (t)−

−
b∫

a

( x∫
a

(Arφn) (t) dµ (t)

)
f ′ (x) dx =

= (f (b)− f (a))

b∫
a

(Arφn) (t) dµ (t)−

−
b∫

a

( x∫
a

(Arφn) (t) dµ (t)

)
f ′ (x) dx = A′

n.2 +A′′
n.2. (1.21)

By condition 20 of the theorem,

lim
n→∞

A′
n.2 = 0.

And by the conditions of the theorem and Lebesgue theorem ([11] p.
139),

lim
n→∞

A′′
n.2 = 0.

Taking into account (1.22) and (1.23) in (1.21), we get

lim
n→∞

An.2 = 0.

Using (1.20) and (1.24) in (1.19), we get the assertion of the theorem. �

Remark. Theorems 1.1–1.3 are just for arbitrary linear operator satisfy-
ing the condition (0.3).
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2. Basic Properties of the Jacobi Transform

In this section, we study the properties of Jacobi’s transform of some
classes of functions. We introduce the concept of a strong derivative and
of the Jacobi integral. The connection between them is established. Owing
to this concept, becomes clear structural description of classes of functions.
The obtained results are analogues to some theorems proved in [4] for Le-
gendre transform.

Next, let X be one of the spaces Lp, α [−1, 1] , 1 ≤ p < ∞ or C [−1, 1]
endowed with the norms

∥f∥Lp, α
≡ ∥f∥p, α =

( 1∫
−1

|f (x)|p dµα (x)

) 1
p

<∞, 1 ≤ p <∞,

∥f∥L′ ≡ ∥f∥C = sup
−1≤x≤1

|f (x)| ,

where dµα (x) = c1 (α) (1− x)
α
(1 + x)

− 1
2 dx, − 1

2 < α < 1
2 ,

c1 (α) =
Γ
(
α+ 3

2

)
2α+

1
2Γ
(
1
2

)
Γ (α+ 1)

=

( 1∫
−1

(1− x)
α
(1 + x)

− 1
2 dx

)−1

.

We consider the Jacobi polynomials P (α,−
1
2 )

n (x) , for − 1
2 < α < 1

2 ,
n = 0, 1, . . . , which form the orthogonal system of functions on the segment
[−1, 1] with weight (1− x)

α
(1 + x)

− 1
2 , that is (see [5], p. 80)

1∫
−1

P
(α,− 1

2 )
n (x)P

(α,− 1
2 )

k (x) (1− x)
α
(1 + x)

− 1
2 dx =

=

{
0, k ̸= n,

hn(α), k = n,
(2.1)

where

hn (α) =
2α+

1
2Γ (n+ α+ 1)Γ

(
n+ 1

2

)(
α+ 1

2 + 2n
)
Γ (n+ 1)Γ

(
n+ α+ 1

2

) .
Further (see [6], p. 250),

max
|x|≤1

∣∣∣∣P (α,− 1
2 )

n (x)

∣∣∣∣ = P
(α,− 1

2 )
n (1) =

Γ (n+ α+ 1)

Γ (α+ 1)Γ (n+ 1)
, (2.2)

d

dx
P
(α,− 1

2 )
n (x) =

1

2

(
n+ α+

1

2

)
P
(α+1, 1

2 )
n−1 (x) . (2.3)

Assume R(α,−
1
2 )

n (x) = P
(α,− 1

2 )
n (x) /P

(α,− 1
2 )

n (1).
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According to (1.2),

max
|x|≤1

∣∣∣∣R(α,− 1
2 )

n (x)

∣∣∣∣ = 1. (2.4)

The Jacobi transform (the Fourier–Jacobi coefficients) is defined for f ∈X
by

∧
f(α,− 1

2 )
(n) =

∧
f (n) =

1∫
−1

f (x)R
(α,− 1

2 )
n (x) dµα (x) .

Lemma 2.1. Assuming f, g ∈ X and c ∈ R = (−∞, ∞), we have

(a)
∣∣∣ ∧
f (n)

∣∣∣ ≤ ∥f∥X , n ∈ P := {0, 1, 2, . . . } ;

(b) (f + g) ∧ (n) =
∧

f (n)+
∧

g (n), (cf) ∧ (n) = cf ∧ (n) ;

(c)
(
R
(α,− 1

2 )
n

)
∧ (n) =

0, k ̸= n,

2α+1
2 Γ2(α+1)Γ(n+ 1

2 )Γ(n+1)

(α+ 1
2+2n)Γ(n+α+ 1

2 )Γ(n+α+1)
, k = n;

(d) for all n ∈ P , the relation
∧

f (n) = 0 ⇔ f (x) = 0 (a.e),
is true and means that the assertion holds for all x ∈ [−1, 1] if X =
C [−1, 1], and for almost all x ∈ [−1, 1] if X = Lp, α [−1, 1], 1 ≤ p <∞.

Proof. We prove (a). Let f ∈ L′ [−1, 1], then by (1.4),∣∣∣ ∧
f (n)

∣∣∣ ≤ sup
|x≤1|

|f (x)|
1∫

−1

∣∣∣R(α,− 1
2 )

n (x)
∣∣∣dµα (x) ≤ ∥f∥C . (2.5)

Now let f ∈ Lp, α. For p = 1, by (2.4), we have∣∣∣ ∧
f (n)

∣∣∣ ≤ 1∫
−1

|f (x)|
∣∣∣R(α,− 1

2 )
n (x)

∣∣∣dµα (x) ≤ ∥f∥1, α , (2.6)

and for p > 1, by Hölder’s inequality∣∣∣ ∧
f (n)

∣∣∣ ≤ ∥f∥p, α
∥∥∥R(α,− 1

2 )
n

∥∥∥
q, α

≤ ∥f∥p, α . (2.7)

Thus from (2.5)–(2.7) it follows that for all f ∈ X∣∣∣ ∧
f (n)

∣∣∣ ≤ ∥f∥X .

The properties (b) are obvious and (c) follows by (2.1).
We prove (d). The direct assertion is obvious. The conserve assertion

follows from the uniquesness theorem for the Jacobi transform.
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In this way, for all n ∈ P , we have
f ∧ (n) = g ∧ (n) ⇔ f (x) = g (x) (a.e.).

Thus Lemma is proved. �

Corollary 2.1. For all n ∈ N

∧
f (n) (n) = 0 ⇒ f (x) = constant (a.e.).

Proof. Really, let n ∈ N . From property (c) it follows that c ∧(n) = 0 for
n ∈ N , where (c) is an arbitrary constant. But then we have

f ∧ (n) = f ∧ (n)− c ∧ (n) = (f − c) ∧ (n) =

=

1∫
−1

(f (x)− c)R
(α,− 1

2 )
n (x) dµα (x) .

This implies that
f ∧ (n) = 0 ⇒ f (x)− c = 0 (a.e.).

Thus Corollary 2.1 is proved. �

For α > β = −1
2 , the generalized Jacobi shift operator is of the form

(see [7])

(τtf) (x) =

1∫
−1

f (x, t, r) dmα (r) , (2.8)

where

f (x, t, r) = f
(
xt+ r

√
1− x2

√
1− t2 − 1

2

(
1− r2

)
(1− x) (1− t)

)
,

dmα (r) = c2 (α)
(
1− r2

)a− 1
2 dr and

c2 (α) =
Γ (α+ 1)

Γ
(
1
2

)
Γ
(
α+ 1

2

) =

( 1∫
−1

(
1− r2

)α− 1
2 dr

)−1

.

The following important equality(
τtR

(α,− 1
2 )

n

)
(x) = R

(α,− 1
2 )

n (x)R
(α.− 1

2 )
n (t) (2.9)

follows from the “multiplication theorem” for Jacobi polynomials (see [8],
p. 130):

P
(α,− 1

2 )
n (x)P

(α,− 1
2 )

n (t) =
Γ (n+ α+ 1)

Γ (α+ 1)Γ (n+ 1)

1∫
−1

P
(α,− 1

2 )
n (x, t, r) dmα (r) .
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Lemma 2.2. The operator τt is linear from X into itself, satisfying
(a) ∥τt1∥[X,X] = 1, (t ∈ [−1, 1]) ;

(b) lim
t→1−0

∥τtf − f∥X = 0, (f ∈ X);

(c) (τtf) ∧ (n) =
∧

f (n)R
(α,− 1

2 )
n (t), (f ∈ X, t ∈ [−1, 1] , n ∈ P ) ;

(d) (τtf) (x) = (τxf) (t), (f ∈ X, x, t ∈ [−1, 1]) .

(e) limn→∞
∧

f (n) = 0.

Proof. We prove (a). First, we’ll show that

∥τtf∥p, α ≤ ∥f∥p, α , 1 ≤ p <∞. (2.10)

By (2.8) and Hölder’s inequality, we have

|(τtf) (x)|p =

( ∣∣∣∣
1∫

−1

f (x, t, r) dmα (r)

∣∣∣∣ )p

≤

≤
( 1∫
−1

dmα (r)

)p−1
1∫

−1

|f (x, t, r)|p dmα (r) =

1∫
−1

|f (x, t, r)|p dmα (r) .

Hence we have

∥τtf∥pp, α =

1∫
−1

|(τtf) (x)|p dµα (x) ≤

≤ c1 (α) c2 (α)

1∫
−1

1∫
−1

(1− x)
α
(1 + x)

− 1
2
(
1− r2

)α− 1
2 ×

×
∣∣∣∣f (xt+ r

√
1− x2

√
1− t2 − 1

2

(
1− r2

)
(1− x) (1− t)

)∣∣∣∣p dxdr.
Assuming t = cosu and y = cos u

2 , we obtain

cosu = 2y2 − 1, sinu = 2y
√
1− y2,

then

∥τtf∥p, α ≤ c1 (α) c2 (α)

1∫
−1

1∫
−1

(1− x)
α
(1 + x)

− 1
2
(
1− r2

)α− 1
2 ×

×
∣∣∣f [x (2y2−1

)
+2ry

√
1− y2

√
1− x2 −

(
1−r2

)
(1−x)

(
1−y2

)]∣∣∣pdrdx.
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Making substitution x = cos θ and denoting z = cos θ
2 we get

∥τtf∥p, α ≤ c1 (α) c2 (α) 2
α+ 3

2

1∫
0

1∫
−1

(
1− z2

)α (
1− r2

)α− 1
2 ×

×
∣∣f [(2z2 − 1

) (
2y2 − 1

)
+

+4ryz
√
1− y2

√
1− z2 − 2

(
1− r2

) (
1− y2

) (
1− z2

)]∣∣∣p drdz =
= 2α+

3
2 c1 (α) c2 (α)

1∫
0

1∫
−1

(
1− z2

)α (
1− r2

)α− 1
2

∣∣∣f[2 (yz+
+r
√
1− y2

√
1− z2

)2
− 1
]∣∣pdrdz.

Substituting the inner integral, putting v = yz + r
√
1− y2

√
1− z2 and

taking into account that

r = (v − yz)
(
1− y2

)− 1
2
(
1− z2

)− 1
2 , dr =

(
1− y2

)− 1
2
(
1− z2

)− 1
2 dv,

we obtain

∥τtf∥p, α ≤ 2α+
3
2 c1 (α) c2 (α)

(
1− y2

)−α

1∫
0

dz×

×

yz+
√

1−y2
√
1−z2∫

yz−
√

1−y2
√
1−z2

∣∣f (2v2 − 1
)∣∣p (1− y2 − z2 − v2 + 2yzv

)α− 1
2 dv.

Changing the order of integration and using the formula (see [9], p. 298)

b∫
a

(b− x)
µ−1

(x− a)
ν−1

dx = (b− a)
µ+ν−1 Γ (µ) Γ (ν)

Γ (µ+ ν)
,

we obtain

∥τtf∥p, α ≤ 2α+
3
2 c1 (α) c2 (α)

(
1− y2

)−α

1∫
0

∣∣f (2v2 − 1
)∣∣p dv×

×

yv+
√

1−y2
√
1−v2∫

yv−
√

1−y2
√
1−v2

(
1− y2 − z2 − v2 + 2yzv

)α− 1
2 dz =
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= 23α+
3
2 c1 (α) c2 (α)

Γ2
(
α+ 1

2

)
Γ (2α+ 1)

1∫
0

(
1− v2

)α ∣∣f (2v2 − 1
)∣∣p dv.

Substituting v =
√

1+u
2 and the equality (see [12], p. 760)

22αΓ2
(
α+ 1

2

)
Γ (2α+ 1)

=
Γ
(
1
2

)
Γ
(
α+ 1

2

)
Γ (α+ 1)

=
1

c2 (α)
,

we obtain

∥τtf∥p, α ≤
( 1∫
−1

|f (u)|p dmα (u)

) 1
p

= ∥f∥p, α ,

from which follows (2.10).
On the other hand,

∥τt1∥p, α =

( 1∫
−1

∣∣∣∣
1∫

−1

dmα (r)

∣∣∣∣pdµα (x)

) 1
p

= ∥1∥p, α = 1.

From this and (2.10) it follows that in the case X = Lp, α, p ≥ 1,
∥τt1∥p, α = 1, (t ∈ [−1, 1]). (2.11)

But the case X = L′ is elementary.
Really, assuming

z = xt+ r
√
1− x2

√
1− t2 − 1

2

(
1− r2

)
(1− x) (1− t) ≤

≤ xt+ r
√
1− x2

√
1− t2 ≤ xt+

√
1− x2

√
1− t2

and taking x = cosu , t = cos v, we obtain
z ≤ cosx cos t+ sinx sin t = cos (x− t) ≤ 1.

On the other hand,

z = xt+ r
√
1− x2

√
1− t2 − 1

2

(
1− r2

)
(1− x) (1− t) ≥ −1 ⇔

⇔ 2xt+ 2r
√
(1− x2) (1−t2) + r2 (1−x) (1−t)−1−xt+ x+ t ≥−2 ⇔

⇔ r2 (1− x) (1− t) + 2r
√
(1− x2) (1− t2) + xt+ x+ t+ 1 ≥ 0 ⇔

⇔ r2 (1− x) (1− t) + 2r
√
(1− x2) (1− t2) + (1 + x) (1 + t) ≥ 0 ⇔

⇔
(
r
√
(1− x) (1− t) +

√
(1 + x) (1 + t)

)2
≥ 0.

Thus −1 ≤ z ≤ 1, then by (2.8),
∥τtf∥C ≤ sup

−1≤z≤1
|f (z)| = ∥f∥C .
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This implies that
∥τt1∥C = 1. (2.12)

Property (a) follows from (2.11) and (2.12).
We prove (b). Let f ∈ Lp, α (p ≥ 1). Then by density of C in Lp, α for an
arbitrary number ε > 0 there exists ψ ∈ C [−1, 1] such that

∥f − ψ∥p, α <
ε

3
. (2.13)

If ψ ∈ C [−1, 1], then ∀ε > 0, ∃δ (ε) > 0.

|ψ (x, t, r)− ψ (x)| < ε

3
(2.14)

for all t ∈ (1− δ; 1). Then for any t ∈ (1− δ; 1) one has

|(τtψ) (x)− ψ (x)| < ε

3
, (2.15)

from which follows

∥τtψ − ψ∥p, α =

( 1∫
−1

|(τtψ (x)− ψ (x))|p dµα (x)

) 1
p

<
ε

3
. (2.16)

Now taking into account (2.10), (2.13) and (2.16), for any t ∈ (1− δ, 1),
we obtain

∥τtf − f∥p, α ≤ ∥τtψ − f∥p, α + ∥ψ − τtψ∥p, α + ∥τtψ − τtf∥p, α < ε,

equivalent to
lim

t→1−0
∥τtf − f∥p, α = 0, p ≥ 1. (2.17)

Now, from (2.14) and (2.8) follows
lim

t→1−0
∥τtf − f∥C = 0. (2.18)

The validity of assertion (b) follows from (2.17) and (2.18).
We prove (c). Doing as in proving property (a), we obtain

(τtf) ∧ (n) =

1∫
−1

R
(α,− 1

2 )
n (x) (τtf) (x) dµα (x) =

= 2α+
1
2 c1 (α) c2 (α)

(
1− y2

)−α

1∫
0

R
(α,− 1

2 )
n

(
2z2 − 1

)
×

×

yz+
√

1−y2
√
1−z2∫

yz−
√

1−y2
√
1−z2

f
(
2v2 − 1

) (
1− y2 − z2 − v2 + 2yzv

)α− 1
2 dzdv.
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It is known (see [5], p. 71) that

P
(α,− 1

2 )
n

(
2z2 − 1

)
=

Γ (n+ α+ 1)Γ (2n+ 1)

Γ (2n+ α+ 1)Γ (n+ 1)
P

(α, α)
2n (z) , (2.19)

where P (α, α)
n (z) are ultraspherical polynomials which form the orthogonal

system of functions on the segment [−1, 1] with weight
(
1− z2

)α. Then
according (1.2), we have

R
(α,− 1

2 )
n

(
2z2 − 1

)
=

Γ (α+ 1)Γ (2n+ 1)

Γ (2n+ α+ 1)
P

(α, α)
2n (z) . (2.20)

Taking into account (2.20) and changing the order of integration, we obtain

(τtf) ∧ (n)=2α+
1
2 c1 (α) c2 (α)

Γ (α+1)Γ (2n+1)

Γ (2n+α+1)

(
1−y2

)−α

1∫
0

f
(
2v2−1

)
×

×

yv+
√

1−y2
√
1−v2∫

yv−
√

1−y2
√
1−v2

P
(α, α)
2n (z)

(
1− y2 − z2 − v2 + 2yzv

)α− 1
2 dzdv.

Substituting the inner integral

z = yv + r
√

1− y2
√

1− v2,

we obtain

(τtf) ∧ (n)=2α+
1
2 c1 (α) c2 (α)

Γ (α+1)Γ (2n+1)

Γ (2n+α+1)

1∫
0

(
1−v2

)α
f
(
2v2−1

)
×

×
1∫

−1

P
(α, α)
2n

(
yv + r

√
1− y2

√
1− v2

) (
1− r2

)α− 1
2 drdv.

By the “multiplication theorem”, for ultraspherical polynomials

P
(α, α)
2n (y)P

(α, α)
2n (v) =

=
Γ (2n+ α+ 1)

Γ (2n+ 1)Γ (α+ 1)

1∫
−1

P
(α, α)
2n

(
yv + r

√
1− y2

√
1− v2

)
dmα (r) ,

we have

(τtf) ∧ (n) =
Γ
(
α+ 3

2

)
Γ2 (2n+ 1)Γ (α+ 1)

Γ
(
1
2

)
Γ2 (2n+ α+ 1)

P
(α, α)
2n (y)×

×
1∫

0

(
1− v2

)α
f
(
2v2 − 1

)
P

(α, α)
2n (v) dv.
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And by formula (2.20),

(τtf) ∧ (n) =
Γ
(
α+ 3

2

)
Γ
(
1
2

)
Γ (α+ 1)

R
(α,− 1

2 )
n

(
2y2 − 1

)
×

×
1∫

0

(
1− v2

)α
f
(
2v2 − 1

)
R
(α,− 1

2 )
n

(
2v2 − 1

)
dv.

Since 2y2 − 1 = t, making the change of variables v =
√

1+u
2 , we obtain

(τtf) ∧ (n) = R
(α,− 1

2 )
n (t)

1∫
−1

f (u)R
(α,− 1

2 )
n (u) dµα (u) = R

(α,− 1
2 )

n (t)
∧

f (n) .

Property (d) is obvious by the definition.
It remains to prove (e). Let xn be the greater root of P (α,−

1
2 )

n (x). From
Lemma 2.1 (a, b) and Lemma 2.2 (c) for n ∈ N one can deduce that∣∣∣ ∧

f (n)
∣∣∣ = |(f − τxnf ) ∧ (n)| ≤ ∥f − fxn∥X . (2.21)

By Stieltjes inequality (see [5], p. 131, formula (6.21.5)),
2n− 1

2n+ 1
π ≤ xn ≤ 2n

2n+ 1
π ⇒ lim

n→∞
xn = 1. (2.22)

Assertion (e) follows from Lemma 2.2 (b), (2.21) and (2.22). Part (e) is
a Riemann–Lebesgue type result.

For the functions f, g defined on [−1, 1], the Jacobi convolution is given
by

(f ∗ g) (x) =
1∫

−1

g (u) (τuf) (x) dµα (u) ,

whenever the integral exists. �

Lemma 2.3. If f ∈ X, g ∈ L1, α, then f ∗ g exists (a.e.) and belongs
to X. Furthermore, one has:

(a) (f ∗ g) (x) = (g ∗ f) (x)
(b) ∥f ∗ g∥X ≤ ∥f∥X ∥g∥1, α (X = Lp, α, 1 ≤ p <∞),

(c) (f ∗ g) ∧ (n) =
∧

f (n)
∧

g (n) , n ∈ P.

Proof. We prove (a). By definition (see the prove of Lemma 2.2 (a)),

(f ∗ g) (x) =
1∫

−1

g (u)

( 1∫
−1

f (x, t, r) dmα (r)

)
dµα (u) =
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=2α+
1
2 c1 (α) c2 (α)

1∫
0

1∫
−1

g
(
2u2 − 1

)
f

[
2
(
uy + r

√
1− u2

√
1− y2

)2
− 1

]
×

×
(
1− r2

)α− 1
2
(
1− u2

)α
drdu =

= 2α+
1
2 c1 (α) c2 (α)

(
1− y2

)−α

1∫
0

g
(
2u2 − 1

) uy+
√
1−u2

√
1−y2∫

uy=
√
1−u2

√
1−y2

f
(
2v2 − 1

)
×

×
(
1− u2 − y2 − v2 + 2uyv

)α− 1
2 dvdu =

= 2α+
1
2 c1 (α) c2 (α)

(
1− y2

)−α

1∫
0

f
(
2v2 − 1

)
×

×

vy+
√
1−v2

√
1−y2∫

vy−
√
1−v2

√
1−y2

g
(
2u2 − 1

) (
1− u2 − y2 − v2 + 2uyv

)α− 1
2 dudv =

= 2α+
1
2 c1 (α) c2 (α)

1∫
0

(
1− v2

)
f
(
2v2 − 1

)
×

×
1∫

−1

g

[
2
(
vy + r

√
1− v2

√
1− y2

)2
− 1

] (
1− r2

)α− 1
2 drdv =

=

1∫
−1

f (u) (τug) (x) dµα (u) = (g ∗ f) (x) .

We prove (b). Let X = Lp, α, 1 ≤ p <∞.
By Minkovski’s inequality (see [10], p. 179) and (2.10), we obtain

∥f ∗ g∥p, α =

( 1∫
−1

∣∣∣∣
1∫

−1

g (u) (τxf) (u) dµα (u)

∣∣∣∣pdµα (x)

) 1
p

≤

≤
1∫

−1

|g (u)|
( 1∫
−1

|τxf (u)|p dµα (x)

) 1
p

dµα (u) =

=

1∫
−1

∥τuf∥p, α |g (u)| dµα (u) ≤ ∥f∥p, α ∥g∥1, α . (2.23)



THE JACOBI TRANSFORM METHOD IN APPROXIMATION THEORY 51

Let now X = L′. Then

∥f ∗ g∥L′ = sup
|x|≤1

∣∣∣∣
1∫

−1

g (u) (τuf) (x) dµα (u)

∣∣∣∣ ≤
≤

1∫
−1

∥τuf∥C |g (u)| dµα (u) ≤ ∥f∥C ∥g∥1, α . (2.24)

Property (b) follows from (2.23) and (2.24).
It remains to prove (c). By Fubini’s theorem (see [11], p. 379) and Lemma

2.2 (c), we obtain

(f ∗ g) ∧ (n) =
1∫

−1

R
(α,− 1

2 )
n (x)

( 1∫
−1

g (u) (τuf) (x) dµα (u)

)
dµα (x) =

=

1∫
−1

R
(α,− 1

2 )
n (x) (τuf) (x) dµα (x)

1∫
−1

g (u) dµα (u) =

=

1∫
−1

g (u) (τuf) ∧ (n) dµα (u) =

=
∧

f (n)

1∫
−1

g (u)R
(α,− 1

2 )
n (u) dµα (u) =

∧
f (n)

∧
g (n) .

Thus the lemma is proved. �

3. The Jacobi Derivative and Integral

We start with the definition of a strong (or norm) derivative.

Definition 3.1. If for f ∈ X there exists g ∈ X such that

lim
t→1−0

∥∥∥∥f − τtf

1− t
− g

∥∥∥∥
X

= 0,

then g is called a strong Jacobi derivative of f which we denote by Df .
For any r ∈ N , the r-th strong derivative of f is defined with D0f = f by
Drf = D

(
Dr−1f

)
, whenever this is meaningful. The set of all f ∈ X for

which Drf exists as an element of X, we denote by W r
X .

Lemma 3.1. If f ∈W r
X , r ∈ N , then

(Drf) ∧ (n) =

(
n
(
n+ α+ 1

2

)
2 (α+ 1)

)r ∧
f (n) , n ∈ P. (3.1)
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Proof. Let r = 1. Using Lemma 2.2 (c) and Lemma 2.1 (a, b), we obtain∣∣∣∣1−R
(α,− 1

2 )
n (t)

1− t

∧
f (n)− ˆ(Df) (n)

∣∣∣∣ =
=

∣∣∣∣(f − τtf

1− t
−Df

)
∧ (n)

∣∣∣∣ ≤ ∥∥∥∥f − τtf

1− t
−Df

∥∥∥∥
X

.

Since the right-hand side tends to zero as t→ 1− 0, it follows that

lim
t→1−0

1−R
(α,− 1

2 )
n (t)

1− t

∧
f (n) = (Df) ∧ (n) .

Taking into account (2.2) and (2.3), we obtain

lim
t→1−0

1−R
(α,− 1

2 )
n (t)

1− t
=

(
R
(α,− 1

2 )
n (t)

)′

t=1

=

(
n+ α+ 1

2

)
P
(α+1, 1

2 )
n−1 (1)

2P
(α,− 1

2 )
n (1)

=

=

(
n+ α+ 1

2

)
Γ (α+ 1)Γ (n+ 1)

2Γ (α+ 2)Γ (n)
=
n
(
n+ α+ 1

2

)
2 (α+ 1)

, (3.2)

and then for r = 1,

(Df) ∧ (n) =
n
(
n+ α+ 1

2

)
2 (α+ 1)

∧
f (n) .

The result for r ≥ 2 follows by induction.
Lemma is proved. �

A simple consequence of this results is

Corollary 3.1. f ∈ W r
X and Drf = 0 (a.e.) for some r ∈ N holds if

and only if f = const (a.e.).

Proof. Direct assertion follows from Corollary 2.1 of Lemma 2.1. The con-
verse follows from the definition of Drf , since (τtf) (x) = f (x) (a.e.) if
f = const (a.e.).

In order to define an inverse operator Dr, one has to look for a function
ψr ∈ L1, α (−1, 1) whose Jacobi transform is given by

ψr
∧ (n) =

( 2 (α+ 1)

n
(
n+ α+ 1

2

))r, r ∈ N. (3.3)

Thus Corollary is proved. �

Proposition 3.1. The functions

ψ1 (u) = 2 (α+ 1)

u∫
−1

[
(1− x)

−1−α
(1 + x)

− 1
2

x∫
−1

(1− t)
α
(1 + t)

− 1
2 dt

]
dx,

u ∈ (−1, 1) ψr (u) = (ψ1 ∗ ψr−1) (u) , r = 2, 3, . . .
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belong to L1, α (−1, 1) for each r ∈ N , and their Jacobi coefficients are given
by (3.3).

Proof. First we’ll show that ψ1 ∈ L1, α (−1, 1).
Really

1∫
−1

ψ1 (u) dµα (2α+ 2)×

×
1∫

−1

{ u∫
−1

[
(1− x)

−1−α
(1 + x)

− 1
2

x∫
−1

(1− t)
α+ 1

2 dt

(1− t)
1
2 (1 + t)

1
2

]
dx

}
dµα (u) ≤

≤ 2α+
1
2 (α+ 1)

1∫
−1

{ u∫
−1

[
(1− x)

−α− 3
2

(1 + x)
1
2

x∫
−1

(1 + t)
− 1

2 dt

]
dx

}
dµα (u) =

= 2α+
5
2 (α+ 1)

1∫
−1

[ u∫
−1−1

(1− x)
−α− 3

2 (1 + x)
− 1

2 (1 + t)
1
2 |x−1dx

]
dµα (u) =

= 2α+
5
2
α+ 1

α+ 1
2

1∫
−1

(1− u)
α
(1 + u)

− 1
2

(
(1− u)

−α− 1
2 − 2−α− 1

2

)
du =

= 2α+
7
2
α+ 1

2α+ 1

( 1∫
−1

(
1− u2

)− 1
2 du− 2−α− 1

2

1∫
−1

(1− u)
α
(1 + u)

− 1
2 du

)
=

= 2α+
7
2
α+ 1

2α+ 1
arcsinu|1−1 −

8 (α+ 1)

2α+ 1

2α+
1
2Γ
(
1
2

)
Γ (α+ 1)

Γ
(
α+ 3

2

) =

= 2α+
7
2
(α+ 1)π

2α+ 1
− 8 (α+ 1)

2α+ 1

2α+
1
2Γ
(
1
2

)
Γ (α+ 1)

Γ
(
α+ 3

2

) =

= 2α+
7
2
α+ 1

2α+ 1
Γ

(
1

2

)(
Γ

(
1

2

)
− Γ (α+ 1)

Γ
(
α+ 3

2

)) = cα.

This implies that
∥ψ1∥1, α ≤ cα.

Now we’ll show that

ψr ∈ L1, α (−1, 1) , r = 2, 3, . . . .

Assume r = 2. Using Lemma 2.3 (b), we can write

∥ψ2∥1, α = ∥ψ1 ∗ ψ1∥1, α ≤ ∥ψ1∥21, α ≤ c2α.
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The result for r ≥ 3 follows by induction

∥ψr∥1, α = ∥ψ1 ∗ ψr−1∥1, α ≤ ∥ψ1∥1, α ∥ψr−1∥1, α ≤ c2α.

Now we show that for ψr (u), r ∈ N the equality (3.3) holds. According to
Lemma 2.3, it suffices to have the differential equation (see [5], p. 73)

P
(α,− 1

2 )
n (u)=− (1− u)

−α
(1+u)

1
2

n
(
n+ α+ 1

2

) d

du

[
(1−u)α+1

(1 + u)
1
2
d

du
P
(α,− 1

2 )
n (u)

]
.

Integrating by parts, we find

∧
ψ1 (n) = 2 (α+ 1)

1∫
−1

{ u∫
−1

[
(1− x)

−α−1
(1 + x)

− 1
2

x∫
−1

dµα (t)

]
dx

}
×

×R(α,−
1
2 )

n (u) dµα (u) =

= − 2 (α+ 1)

n
(
n+ α+ 1

2

) 1∫
−1

{ u∫
−1

[
(1− x)

−α−1
(1 + x)

− 1
2

x∫
−1

dµα (t)

]
dx

}
×

×d
[
(1− u)

α+1
(1 + u)

1
2
d

du
R
(α,− 1

2 )
n (u)

]
=

=
2 (α+ 1)

n
(
n+ α+ 1

2

) 1∫
−1

d

du
R
(α,− 1

2 )
n (u)

u∫
−1

dµα (t) =

=
2 (α+ 1)

n
(
n+ α+ 1

2

) 1∫
−1

( u∫
−1

dµα (t)

)
dR

(α,− 1
2 )

n (u) =

=
2 (α+ 1)

n
(
n+ α+ 1

2

)
R(α,− 1

2 )
n (1)

1∫
−1

dµα (t)−
1∫

−1

R
(α,− 1

2 )
n (u) dµα (u)

 =

=
2 (α+ 1)

n
(
n+ α+ 1

2

) ,
where we have also used Lemma 2.1 (c) and (2.4).
Thus Proposition 3.1 is proved. �

For r ∈ N , the Jacobi integral Ir can now be defined as follows:

(Irf) (x) := (f ∗ ψr) (x) , (x ∈ [−1, 1] ; f ∈ X) . (3.4)

Proposition 3.2. The integral Ir is the bounded linear operator from X
into itself, which satisfies for each r ∈ N and f ∈ X, r, s ∈ N :

(a) (IrIsf) (x) = (IsIrf) (x) = (Ir+sf) (x), (a.e.)
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(b) (Irf) ∧ (n) =

(
2(α+1)

n(n+α+ 1
2 )

)r ∧
f (n) , n ∈ N ;

(c) for f ∈W r
X , one has

(IrDrf) (x) = f (x)− c, (a.e.) ; (3.5)
(d) for any f, g ∈ X, the equality

1∫
−1

g (x) (Irf) (x) dµα (x) =

1∫
−1

f (x) (Irg) (x) dµα (x)

is valid.

Proof. The linearity of the operator is obvious, and the boundedness follows
from the inequality (see Lemma 2.3 (b))

∥Irf∥X = ∥f ∗ ψr∥X ≤ ∥ψr∥1, α ∥f∥X ≤ crα ∥f∥X .

We prove (a). By definition,
ψr+s = ψ1 ∗ ψr+s−1 = ψ1 ∗ (ψ1 ∗ ψr+s−2) =

= (ψ1 ∗ ψ1) ∗ ψr+s−2 = ψ2 ∗ ψr+s−2 = · · · = ψr ∗ ψs

from which we have
(IrIsf) (x) = (Irf ∗ ψs) (x) = ((f ∗ ψr) ∗ ψs) (x) =

= (f ∗ (ψr ∗ ψs)) (x) = (f ∗ ψr+s) (x) =
(
Ir+sf

)
(x) .

We’ll prove (b). By Proposition 3.1 and Lemma 2.3 (c), we obtain

(Irf) ∧ (n) = (f ∗ ψr) ∧ (n) =
∧

f (n)
∧

ψr (n) =
( 2 (α+ 1)

n
(
n+ α+ 1

2

))r ∧
f (n) .

We’ll prove (c). By Proposition 3.2 (b) and (3.1), we have

(IrDrf) ∧ (n) =
( 2 (α+ 1)

n
(
n+ α+ 1

2

))r (Drf) ∧ (n) =
∧

f (n), n ∈ N. (3.6)

Since R(α,−
1
2 )

0 (x) = 1 (see [5], p.82), by the orthogonality of polynomials
R
(α,− 1

2 )
0 (x), we have

∧
c (n) = c

1∫
−1

R
(α,− 1

2 )
0 (x)R

(α,− 1
2 )

n (x) dµα (x) =

{
0, n ∈ N,
c, n = 0.

Then from (3.6) we find that

(IrDrf) ∧ (n) =
∧

f (n)−
∧

c (n) = (f (x)− c) ∧ (n) , n ∈ N,

from which it follows that
(IrDrf) (n) = f (x)− c, (a.e.) .



56 E. IBRAHIMOV

We’ll prove (d).
1∫

−1

g (x) (Irf) (x) dµα (x) =

1∫
−1

g (x) (f ∗ ψr) (x) dµα (x) =

=

1∫
−1

g (x)

{ 1∫
−1

f (t)

[ 1∫
−1

ψr (x, t, r) dmα (r)

]
dµα (t)

}
dµα (x) =

=

1∫
−1

f (t)

{ 1∫
−1

g (x)

[ 1∫
−1

ψr (x, t, r) dmα (r)

]
dµα (x)

}
dµα (t) =

=

1∫
−1

f (t)

[ 1∫
−1

g (x) (τtψr) (x) dµα (x)

]
dµα (t) =

=

1∫
−1

f (t) (g ∗ ψr) (t) dµα (t) =

1∫
−1

f (t) (Irg) (t) dµα (t) .

The proposition is proved. �

The analogue of (3.5) for r = 1 in the classical analysis is
x∫

−1

f ′(t)dt = f (x)− f (−1) , (3.7)

which holds for each continuous function f integrable derivative. Making
interchange of order of integration and performing differentiation in (3.7),
one can get an equation which will be valid for each continuous function f ,
namely,

d

dx

x∫
−1

f (t) dt = f (x) .

Therefore there arises the question whether the equation

(DrIrf) (x) = f (x)− c (a.e.) (3.8)

is likewise true for each f ∈ X.
Thus we consider the function

(x; t)=

 α+1
c1(α)

(
log 2

1+t

)−1 ∫ x

t
(1− u)

−α−1
(1 + u)

− 1
2 du, −1<t≤x<1;

0, otherwise ,

and put Atf = f ∗ (· ; t), t ∈ (−1, 1).
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Lemma 3.2. For each t ∈ (−1, 1) and x ∈ [−1, 1], the function (· ; t)
belongs to L1, α (−1, 1), it is nonnegative and satisfies:

(a) ( (· ; t)) ∧ (n) =
(α+1)

(
1−R

(α,− 1
2 )

n (t)

)
n(n+α+ 1

2 )

(
log 2

1+t

)−1

, n ∈ N ;
(b) For each t ∈ (−1, 1), the At is the positive linear bounde operator

from X into itself and
lim

t→1−0
∥Atf − f∥X = 0 (f ∈ X) . (3.9)

Let n ∈ N . Then by the partial integration (see the proof of Proposition
3.1.), we have

( (· ; t)) ∧ (n) = α+ 1

c1 (α)

(
log 2

1 + t

)−1
1∫

t

[ x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 du

]
×

× (1− x)
α
(1 + x)

− 1
2 R

(α,− 1
2 )

n (x) dx = −
(α+ 1)

(
log 2

1+t

)−1

c1 (α)n
(
n+ α+ 1

2

)×
×

1∫
t

[ x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 du

]
d

[
(1− u)

α+1

(1 + u)
− 1

2

d

du
R
(α,− 1

2 )
n (u)

]
=

=
(α+ 1)

(
log 2

1+t

)−1

n
(
n+ α+ 1

2

) 1∫
t

d

dx
R
(α,− 1

2 )
n (x) dx=

α+ 1

n
(
n+ α+ 1

2

) 1−R
(α,− 1

2 )
n (t)

log 2
1+t

.

We can show that X (x; t) belongs to L1, α (−1, 1).

∥ (· ; t)∥1, α =
α+ 1

log 2
1+t

1∫
t

(1− x)
α
(1 + x)

− 1
2

x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 dudx =

= −
(

log 2

1 + t

)−1
1∫

t

(1 + x)
− 1

2

[ x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 du

]
d (1− x)

α+1
.

By the partial integration, we obtain

∥ (· ; t)∥1, α =

(
log 2

1 + t

)−1

×

×
1∫

t

[
(1− x)

−α−1

1 + x
− 1

2
(1 + x)

− 3
2

x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 du

]
(1− x)

α+1
dx=

=

(
log 2

1 + t

)−1

×
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×
1∫

t

[
1

1 + x
− 1

2
(1− x)

α+1
(1 + x)

− 3
2

x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 du

]
dx =

= 1− 1

2 log 2
1+t

1∫
t

(1− x)
α+1

(1 + x)
− 3

2

x∫
t

(1− u)
−α−1

(1 + u)
− 1

2 dudx.

Then we have
∥ (· ; t)∥1, α ≤ 1.

From this, taking into account Lemma 2.3 (b), we obtain

∥Atf∥X ≤ ∥ (· ; ; t)∥1, α ∥f∥X ≤ ∥f∥X . (3.10)

Further, by Lemma 2.3 (c), we have(
AtR

(α,− 1
2 )

n

)
∧ (n) =

(
R
(α,− 1

2 )
n ∗ (· ; t)

)
∧ (n) =

=

(
R
(α,− 1

2 )
n

)
∧ (n) ((· ; t)) ∧ (n) =

=
(α+ 1)

(
1−R

α,− 1
2

n (t)
)

n
(
n+ α+ 1

2

)
log 2

1+t

(
R
(α,− 1

2 )
n

)
∧ (n) .

This implies that

AtR
(α,− 1

2 )
n (x) =

2 (α+ 1)

(
1−R

(α,− 1
2 )

n (t)

)
n
(
n+ α+ 1

2

)
2 log 2

1+t

R
(α,− 1

2 )
n (x) (a.e.) (3.11)

Using (3.2) in (3.11), by de L’Hospital’s rule, we obtain

lim
t→1−0

AtR
(α,− 1

2 )
n (x)=

2 (α+ 1)

n
(
n+ α+ 1

2

)R(α,− 1
2 )

n (x) lim
t→1−0

1−R
(α,− 1

2 )
n (t)

1− t
×

× lim
t→−0

1− t

2 log 2
1+t

= R
(α,− 1

2 )
n (x) ,

from which it follows that

lim
t→1−0

∥∥∥∥AtR
(α,− 1

2 )
n −R

(α,− 1
2 )

n

∥∥∥∥
X

= 0. (3.12)

Using the density of the space of polynomials in the space X for any
f ∈ X, there exists the polynomial Qn (x) such that for every ε > 0 and for
sufficient n,

∥f −Qn∥X <
ε

3
.
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On the other hand (see [12], p. 334), there can appear Qn (x) in the form

Qn (x) =
n∑

k=0

αkR
(α,− 1

2 )
k (x) ,

where αk is same number.
But then by (3.12) for the chosen ε, there exists δ (0 < δ < 1) such that

for t ∈ (1− δ; 1), we have

∥AtQn −Qn∥X ≤
n∑

k=0

αk

∥∥∥∥AtR
(α,− 1

2 )
k −R

(α,− 1
2 )

k

∥∥∥∥
X

<
ε

3
(3.13)

Taking now into account (3.10) and (3.13), from the inequality

∥Atf − f∥X ≤ ∥At (f −Qn)∥X + ∥AtQn −Qn∥X +

+ ∥f −Qn∥X ≤ 2 ∥f −Qn∥+ ∥AtQn −Qn∥X < ε

we obtain the approval (3.9).
The following theorem is the analogue, suitable for Theorem 1 from [4],

obtained for the Legendre transform.

Theorem 3.3. The following statements are equivalent to f ∈ X, r ∈ N :
(a) f ∈W r

X = {f ∈ X; Drf ∈ X}
(b) there exists g1 ∈ X such that

∧
g1 (n) =

(n (n+ α+ 1
2

)
2 (α+ 1)

)r ∧
f (n),

for any n ∈ N .
(c) there exists g2 ∈ X such that

f (x) = (Irg2) (x) + const (a.e.). (3.14)

The functions g1, g2 are uniquely determined (a.e.) a part form additive
constant and one has

(Drf) (x) = g1 (x)−
∧

g1 (0) = g2 (x)−
∧

g2 (0) (a.e.) (3.15)

Proof. Let f ∈W r
X . By Lemma 3.1, one has

(Drf) ∧ (n) =
(n (n+ α+ 1

2

)
2 (α+ 1)

)r ∧
f (n)

i.e., (b) is valid with g1 = Drf .
Let now g1 ∈ X and

g1 ∧ (n) =
(n (n+ α+ 1

2

)
2 (α+ 1)

)r ∧
f (n), (n ∈ N) ,
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then by Lemma 3.1,
∧

g1 (n) = (Drf) ∧ (n), from which it follows that
g1 (x) = (Drf) (x) (a.e.), i.e., Drf ∈ X. On the other hand, if (b) holds,
then by Proposition 3.2 (b),

∧
f (n) =

( 2 (α+ 1)

n
(
n+ α+ 1

2

))rg1 ∧ (n) = (Irg1) ∧ (n) , (n ∈ N) .

This implies that f (x) = (Irg1) (x) (a.e.). But since g1 ∈ X and
Ir : X → X, therefore f ∈ X.

We show that (a) is equivalent to (c). If f ∈ W r
X , then by Proposition

3.2 (c),

f (x) = (IrDrf) (x) + c (a.e.)

and it suffices to put g2 = Drf .
Now let (c) be satisfied with r = 1. We show that

f (x)− (τtf) (x)

1− t
=

2 log 2
1+t

1− t

[
(Atg2) (x)−

∧
g2 (0)

]
(a.e.). (3.16)

On the one hand,
f (x)− (τtf) (x) = (Ig2) (x)− (τtIg2) (x) =

= (g2 ∗ ψ1) (x)− τt (g2 ∗ ψ1) (x) .

By Lemmas 2.2 (c), 2.3 (c) and (3.3), we have

((g2 ∗ ψ1)− τt (g2 ∗ ψ) (x)) ∧ (n) =
∧

g2 (n)
∧

ψ1 (n)
(
1−R

(α,− 1
2 )

n (t)
)

2 (α+ 1)

n
(
n+ α+ 1

2

)(1−R
(α,− 1

2 )
n (t)

) ∧
g2 (n) . (3.17)

On the other hand, by Lemmas 2.3 (c), 3.2 (b) and (3.3),(
Atg2 −

∧
g2 (0)

)
∧ (n) = (g2 ∗X (·; t)) ∧ (n)−

( ∧
g2 (0)

)
∧ (n) =

=
∧

g2 (n) (X (· ; t)) ∧ (n) = α+ 1

n
(
n+ α+ 1

2

) ∧
g2 (n)

1−R
(α,− 1

2 )
n (t)

log 2
1+t

. (3.18)

Now (3.16) follows from (3.17) and (3.18).
Taking into account (3.9) and (3.16), we obtain∥∥∥∥f − τtf

1− t
− g2 +

∧
g2 (0)

∥∥∥∥
X

=

∥∥∥∥2 log 2
1+t

1− t

(
Atg2 −

∧
g2 (0)

)
− g2 +

∧
g2 (0)

∥∥∥∥
X

≤

≤
∣∣∣∣1− 2 log 2

1+t

1− t

∣∣∣∣ (∥Atg2∥X +
∣∣∣ ∧
g2 (0)

∣∣∣)+ ∥Atg2 − g2∥X =0 (1) , t→1− 0,
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since by de L’Hospital’s rule,

lim
t→1−0

2 log 2
1+t

1− t
= lim

t→1−0

2

1 + t
= 1,

from which it follows that (3.16) holds for r = 1 , i.e., Df ∈ X. The general
case follows by induction.

We show that the presentation (3.15) is unique. We suppose that there
exists g1 ∈ X such that

f (x) = (Irg1) (x) + const,

then

(Drf) (x) = g1 (x)−
∧

g1 (0) . (3.19)
From (3.15) and (3.19) it follows that for n ∈ N ,
∧

g2 (n) =
∧

g1 (n) ⇒ g2 (x) = g1 (x), (a.e.)
i.e., the presentation (3.15) is unique.
Thus the theorem is proved. �

Corollary 3.2. If f ∈W r
X , r ∈ N and g ∈ L1, α, then f ∗ g ∈W r

X and

(a) (Dr (f ∗ g)) (x) = ((Drf) ∗ g) (x) (a.e.), (3.20)

(b)
(
DrR

(α,− 1
2 )

n

)
(x) =

(n (n+ α+ 1
2

)
2 (α+ 1)

)r
R
(α,− 1

2 )
n (x) ,

(x ∈ [−1, 1] , r ∈ N, n ∈ P ) .

(c) The Jacobi integral Irf of f ∈ X belongs to W r
X for each r ∈ N ,

and one has

(DrIrf) (x) = f (x)−
∧

f (0) (a.e.) (3.21)
(d) Atf ∈W r

X of f ∈ X for each t ∈ (−1, 1) and

(DAtf) (x) =
f (x)− (τtf) (x)

2 log 2
1+t

(a.e.),

moreover,
(DAtf) (x) = (AtDf) (x) (a.e.).

(e) The operator Dr :W r
X → X is closed, i.e., if

lim
n→∞

∥fn − f∥X = lim
n→∞

∥Drfn − g∥X = 0

for a sequence {fn}∞n=1 ∈ W r
X and f, g ∈ X, then f ∈ W r

X and Drf = g
(a.e.).
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We prove (a). Let f ∈W r
X and g ∈ L1, α (−1, 1), then Drf ∈ X, and by

Lemma 2.3, (a) (Drf) ∗ g ∈ X. But by Lemma 2.3 (c) and Lemma 3.1, we
have

((Drf) ∗ g) ∧ (n) = (Drf) ∧ (n)
∧

g (n) =
(n (n+ α+ 1

2

)
2 (α+ 1)

)r ∧
f (n)

∧
g (n)(n (n+ α+ 1

2

)
2 (α+ 1)

)r
(f ∗ g) ∧ (n) = (Dr (f ∗ g)) ∧ (n) ,

whence follows (3.20), and f ∗ g ∈W r
X .

We prove (b). First, let r = 1. By (2.9) and (3.2), we have

lim
t→1−0

R
(α,− 1

2 )
n (x)−

(
τtR

(α,− 1
2 )

n

)
(x)

1− t
=

= lim
t→1−0

1−R
(α,− 1

2 )
n

1− t
R
(α,− 1

2 )
n (x) =

n
(
n+ α+ 1

2

)
2 (α+ 1)

R
(α,− 1

2 )
n (x) .

The last means that ∀ε > 0 ∃δ (ε) > 0 such that ∀t ∈ (1− δ, 1) and
∀x ∈ [−1, 1]∣∣∣∣∣∣∣∣

R
(α,− 1

2 )
n (x)−

(
τtR

(α,− 1
2 )

n

)
(x)

1− t
−
n
(
n+ α+ 1

2

)
2 (α+ 1)

R
(α,− 1

2 )
n (x)

∣∣∣∣∣∣∣∣ < ε,

whence it follows that for ∀t ∈ (1− δ, 1),∥∥∥∥∥∥∥∥
R
(α,− 1

2 )
n −

(
τtR

(α,− 1
2 )

n

)
1− t

−
n
(
n+ α+ 1

2

)
2 (α+ 1)

R
(α,− 1

2 )
n

∥∥∥∥∥∥∥∥ < ε,

i.e.,
(
DR

(α,− 1
2 )

n

)
(x) =

n(n+α+ 1
2 )

2(α+1) R
(α,− 1

2 )
n (x).

The general case for r ≥ 2 follows by induction. If in Theorem 3.1 (c) we
put g2 = f , then we obtain (3.21) and the assertion Irf ∈W r

X .
We prove (d). By Lemmas 3.1 and 2.3, we have

(DAtf) ∧ (n) =
n
(
n+ α+ 1

2

)
2 (α+ 1)

(Atf) ∧ (n)

n
(
n+ α+ 1

2

)
2 (α+ 1)

(f ∗ (· ; t)) ∧ (n) =
n
(
n+ α+ 1

2

)
2 (α+ 1)

∧
f (n)

∧
(n) . (3.22)

From (3.22), according to Lemma 3.2 (a), we obtain

(DAtf) ∧ (n) =
1−R

(α,− 1
2 )

n (t)

2 log 2
1+t

∧
f (n) =

( f − τtf

2 log 2
1+t

)
∧ (n) ,
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from which it follows that

(DAtf) (x) =
f (x)− (τtf) (x)

2 log 2
1+t

(a.e.).

Further, if f ∈W r
X , then

(AtDf) ∧ (n) = (Df ∗ (·; t)) ∧ (n) = (Df) ∧ (n) ( (·; t)) ∧ (n) =

=
n
(
n+ α+ 1

2

)
2 (α+ 1)

f ∧ (n)
∧
(n) . (3.23)

From (3.22) and (3.23) follows
(DAtf) (x) = (AtDf) (x) (a.e.).

Finally, we prove (e). From (3.15), we have
(Drf) (x) = g1 (x)− g1 ∧ (0) , g1 ∈ X

and
(Drfn) (x) = g1n (x)− g1n ∧ (0) , g1n ∈ X, n = 1, 2, . . . .

By supposition
lim

n→∞
∥g1 − g1n∥X = 0.

But then along with Lemma 2.1 (a), we have
| (Drf − g) ∧ (n) | ≤ ∥Drf − g∥X ≤

≤ ∥Drf −Drfn∥X + ∥Drfn − g∥X ≤
≤ ∥Drfn − g∥X + ∥g1 − g1n∥X + |g1 ∧ (0)− g1n ∧ (0) | ≤ ∥Drfn − g∥X+

+2∥g1 − g1n∥X → 0 as n→ ∞,

which implies that (Drf) (x) = g (x) (a.e.), but g ∈ X ⇒ f ∈W r
X .

Thus Corollary is proved.

4. Auxiliary Assertions

In this section we prove some facts that we’ll need later on, though they
are of independent interest.

In what follows, by M we denote positive constants, independent of x
and n.

Lemma 4.1. Let −1

2
< α <

1

2
. For n = 2, 3, . . ., the estimations

∣∣∣∣
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤
≤M(1− t)

α
2 − 1

4 (1 + t)−
1
2n−

3
2 , t ∈ (−1, 1) , (4.1)
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∣∣∣∣
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤Mn
2

2α+3−
3
2 , t ∈ [−1, 1] (4.2)

are valid.

Here and in the sequel, M will denote different constants.

Proof. Using the formula ([5], p. 73)

P
(α,− 1

2 )
n (x) = − 1

n(n+ α+ 1
2 )

{
(1− x2)

d2

dx2
P

(α,− 1
2 )

n (x)−

−
[
1

2
+ α+

(
α+

3

2

)
x

]
d

dx
P

(α,− 1
2 )

n (x)
}
,

we obtain
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx =

= − 1

n(n+ α+ 1
2 )

{ t∫
−1

(1− x)α+1(1 + x)
1
2
d2

dx2
P

(α,− 1
2 )

n (x)−

−
t∫

−1

(1− x)α(1 + x)−
1
2

[
1

2
+ α+

(
α+

3

2

)
x

]
d

dx
P

(α,− 1
2 )

n (x)dx

}
=

= − 1

n(n+ α+ 1/2)

{
(1− x)α+1(1 + x)

1
2
d

dx
P

(α,− 1
2 )

n (x)
∣∣∣t
−1

+

+

t∫
−1

(1− x)α(1 + x)−
1
2

[
1

2
+ α+

(
α+

3

2

)
x

]
d

dx
P

(α,− 1
2 )

n (x)dx−

−
t∫

−1

(1− x)α(1 + x)−
1
2

[
1

2
+ α+

(
α+

3

2

)
x

]
d

dx
P

(α,− 1
2 )

n (x)dx

}
=

= − 1

n(n+ α+ 1/2)
(1− t)α+1(1 + t)

1
2
d

dt
P

(α,− 1
2 )

n (t). (4.3)

Since ([5|, pp. 84, 82)

(1− x2)
d

dx
P

(α,− 1
2 )

n (x) =
(n+ α+ 1

2 )[(2n+ α+ 3
2 )x+ α+ 1

2 ]P
(α,− 1

2 )
n (x)

2n+ α+ 3
2

−

−
2(n+ 1)(n+ α+ 1

2 )

2n+ α+ 3
2

P
(α,− 1

2 )
n+1 (x) =

(
n+ α+

1

2

)
xP

(α,− 1
2 )

n+1 (x)+
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+
(α+ 1

2 )(n+ a+ 1
2 )

2n+ α+ 3
2

P
(α,− 1

2 )
n (x)−

2(n+ 1)(n+ α+ 1
2 )

2n+ α+ 3
2

P
(α,− 1

2 )
n+1 (x) (4.4)

and

2(n+ 1)

(
n+ α+

1

2

)(
2n+ α− 1

2

)
P

(α,− 1
2

n+1 (x) =

=

(
2n+ α+

1

2

)[(
2n+ α+

3

2

)(
2n+ α− 1

2

)
x+ α2 − 1

4

]
P

(α,− 1
2 )

n (x)−

−2(n+ α)

(
n− 1

2

)(
2n+ α+

3

2

)
P

(α,− 1
2 )

n+1 (x),

therefore(
2n+ α+

1

2

)(
2n+ α+

3

2

)(
2n+ α− 1

2

)
xP

(α,− 1
2 )

n (x) =

= 2(n+ 1)

(
n+ α+

1

2

)(
2n+ α− 1

2

)
P

(α,− 1
2 )

n+1 (x)+

+2(n+ α)

(
n− 1

2

)(
2n+ α+

3

2

)
P

(α,− 1
2 )

n+1 (x)−

−
(
2n+ α+

1

2

)(
α2 − 1

4

)
P

(α− 1
2 )

n (x).

Further,

xP
(α,− 1

2 )
n (x) =

2(n+ 1)(n+ α+ 1
2 )

(2n+ α+ 1
2 )(2n+ α+ 3

2 )
P

(α,− 1
2 )

n+1 (x)+

+
2(n+ α)(n− 1

2 )

(2n+ α+ 1
2 )(2n+ α− 1

2 )
P

(α,− 1
2 )

n+1 (x)+

+
1
4 − α2

(2n+ α+ 3
2 )(2n+ α− 1

2 )
P

(α,− 1
2 )

n (x). (4.5)

Using (4.5) in (4.4) and (4.3), we obtain
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx =
(1− t)α(1 + t)−

1
2

n(n+ α+ 1
2 )

×

×
{
2(n+ 1)(n+ α+ 1

2 )

2n+ α+ 3
2

P
(α,− 1

2 )
n+1 (x)−

(α+ 1
2 )(n+ α+ 1

2 )

2n+ α+ 3
2

P
(α,− 1

2 )
n (x)−

−
2(n+ 1)(n+ α+ 1

2 )
2

(2n+ α+ 1
2 )(2n+ α+ 3

2 )
P

(α,− 1
2 )

n+1 (x)−

−
2(n+ α)(n− 1

2 )(n+ α+ 1
2 )

(2n+ α+ 3
2 )(2n+ α− 1

2 )
P

(α,− 1
2 )

n+1 (x)−
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−
( 14 − α2)(n+ α+ 1

2 )

(2n+ α+ 3
2 )(2n+ α− 1

2 )
P

(α,− 1
2 )

n+1 (x)

}
,

which implies that
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx = O(
1

n
)(1− t)α(1 + t)−

1
2

∣∣∣P (α,− 1
2 )

n (t)
∣∣∣ .

Using estimation of the latter correlation ([6], p. 265)

(1− x)
α
2 + 1

4

∣∣∣P (α,− 1
2 )

n (x)
∣∣∣ ≤Mn− 1

2 , α ≥ −1

2
, −1 ≤ x ≤ 1, (4.6)

we obtain (4.1).
Now we prove inequality (4.2). Let −1 ≤ t ≤ −1 + n−4/(3+2α).
Then using (4.6), we obtain∣∣∣∣

t∫
−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤
≤

−1+n−4/(3+2α)∫
−1

(1− x)α(1 + x)−
1
2

∣∣∣P (α,− 1
2 )

n (x)
∣∣∣ dx ≤

≤Mn− 1
2

−1+n−4/(3+2α)∫
−1

(1− x)
α
2 − 1

4 (1 + x)−
1
2 dx ≤

≤Mn− 1
2

−1+n−4/(3+2α)∫
−1

(1 + x)−
1
2 dx ≤Mn− 1

2n−
2

3+2a ≤Mn
2

2α+3−
3
2 . (4.7)

Let now −1 + n−4/(3+2α) ≤ t ≤ δ < 1.
Then from (4.1) we obtain∣∣∣∣

t∫
−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤Mn
2

2α+3−
3
2 . (4.8)

Let δ ≤ t ≤ 1− n−
4

3+2α . Again, from (4.1), we have∣∣∣∣
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤Mn( 1
4−

α
2 ) 4

2α+3−
3
2 =

=Mn
1−2α
3+2α− 3

2 ≤M · n
2

2α+3−
3
2 . (4.9)

At last, let
1− n−

4
3+2α ≤ t ≤ 1.
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Then we have
t∫

−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx =

=

1−n
− 4

3+2α∫
−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx+

+

t∫
1−n

− 4
3+2α

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx = J1 + J2. (4.10)

Applying the estimates (4.7)–(4.9) for J1, we obtain the estimate (4.11)

J1 ≤Mn
2

2a+3−
3
2 . (4.11)

It remains to estimate J2. Using inequality (4.6), we obtain

J2 ≤
t∫

1−n
− 4

3+2α

(1− x)α(1 + x)−
1
2

∣∣∣P (α,− 1
2 )

n (x)
∣∣∣ dx ≤

≤Mn−
1
2

t∫
1−n

− 4
3+2α

(1− x)
α
2 − 1

4 (1 + x)−
1
2 dx ≤

≤Mn− 1
2

t∫
1−n

− 4
3+2α

(1− x)
α
2 − 1

4 dx ≤Mn− 1
2n−(

α
2 + 3

4 )
4

3+2α =Mn− 3
2 . (4.12)

Using (4.11) and (4.12) in (4.10), we obtain for which 1 − n−4/(3+2a) ≤
t ≤ 1 the estimate∣∣∣∣

t∫
−1

(1− x)α(1 + x)−
1
2P

(α,− 1
2 )

n (x)dx

∣∣∣∣ ≤Mn
2

2α+3−
3
2 . (4.13)

is valid. Now, using (4.7), (4.8), (4.9) and (4.13), we obtain inequality (4.2).
Thus Lemma 4.1 is proved. �

Since ([5], p. 70 and [11], p. 131)

P
(α,− 1

2 )
n (1) =

Γ(n+ 1 + α)

Γ(n+ 1)Γ(α+ 1)
=

nα

Γ(α+ 1)

{
1 +O

( 1
n

)}
, (4.14)

for Lemma 4.1 we get the following
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Corollary 4.1. For n = 2, 3, . . . ; −1
2 < α < 1

2 , the estimates

∣∣∣∣
t∫

−1

(1− x)α(1 + x)−
1
2R

(a,− 1
2 )

n (x)dx

∣∣∣∣ ≤
≤M

{
(1− t)

α
2 − 1

4 (1 + t)−
1
2n−α− 3

2 , t ∈ (−1, 1) ,

n
2

2α+3−
3
2−α, t ∈ [−1, 1]

are true.

Lemma 4.2. Let −1
2 < α < 1

2 . Then for n = 2, 3, . . ., the estimates

∣∣∣∣
t∫

−1

(1− x)α(1 + x)−
1
2 (IrR

(α,− 1
2 )

n )(x)dx

∣∣∣∣ ≤
≤M

{
(1− t)

α
2 − 1

4 (1 + t)−
1
2n−2r−α− 3

2 , t ∈ (−1, 1) ,

n
2

2α+3−
3+2α

2 −2r, t ∈ [−1, 1]

are true.

Proof. From (2.4) and (1.9), we have

t∫
−1

(
IrR

(α,− 1
2 )

n

)
(x)dµα (x) =

t∫
−1

(
R

(α,− 1
2 )

n ∗ ψr

)
(x)dµα (x) =

=

t∫
−1

1∫
−1

(
τuR

(α,− 1
2 )

n

)
(x)ψr (u) dµα (u) dµα (x) =

=

1∫
−1

ψr(u)R
(α,− 1

2 )
n (u)dµα (u)

t∫
−1

R
(α,− 1

2 )
n (x)dµx =

=
∧

ψr (n)

t∫
−1

R
(α,− 1

2 )
n (x)dµα(x) =

=
∧

ψr (n)

t∫
−1

R
(α, − 1

2 )
n (x)dµα(x). (4.15)

Using (2.3), Corollary 4.1 in (4.15), we obtain assertions of
Lemma 4.2. �
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Lemma 4.3. For n = 1, 2, . . ., the estimates

∥∥∥R(α,− 1
2 )

n

∥∥∥
q,α

≤M


n−

1
q , (α+ 1

2 )q > 1,

n−(α+ 1
2 )
√

logn, (α+ 1
2 )q = 1,

n−(α+ 1
2 ), (α+ 1

2 )q < 1.

are true.

∥∥∥R(α,− 1
2 )

n

∥∥∥
q,α

= C1(α)

1∫
−1

(1− x)α(1 + x)−
1
2

∣∣∣R(α,− 1
2 )

n (x)
∣∣∣ dx =

= 2a+
3
2C1(α)

1∫
0

(1− x2)α
∣∣∣R(α,− 1

2 )
n (2x2 − 1)

∣∣∣ dx. (4.16)

Using the equality ([5], p. 71)

P
(α,− 1

2 )
n (2x2 − 1) =

Γ(n+ 1 + α)Γ(2n+ 1)

Γ(n+ 1)Γ(2n+ α+ 1)
P

(α,α)
2n (x)

and (4.14), we find

R
(α,− 1

2 )
n (2x2 − 1) =

Γ(1 + α)Γ(2n+ 1)

Γ(2n+ α+ 1)
P

(α,α)
2n (x). (4.17)

Using (4.17) in (4.16), we obtain∥∥∥R(α,− 1
2 )

n

∥∥∥q
q,µ

=

= 2α+
3
2C1(α)

{
Γ(1 + α)Γ(2n+ 1)

Γ(2n+ α+ 1)

}q
1∫

0

(1− x2)α
∣∣∣P (α,α)

2n (x)
∣∣∣q dx.

by the Cauchy-Buniakowsky’s inequality∥∥∥R(α,− 1
2 )

n

∥∥∥q
q,α

≤

≤ 2α+
3
2C1(α)

{
Γ(α+ 1)Γ(2n+ 1)

Γ(2n+ α+ 1)

}q( 1∫
0

(1− x2)2αdx

) 1
2

≤

≤
( 1∫

0

|P (α,α)
2n (x)|2qdx

) 1
2

≤

≤ C3(α)

( 1∫
0

|P (α,α)
2n (x)|2qdx

) 1
2

(4.18)
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where

C3(α)=2α+1C1(α)

{
Γ(2α+ 1)Γ( 12 )

Γ(2α+ 3
2 )

} 1
2
{
Γ(α+ 1)Γ(2n+ 1)

Γ(2n+ α+ 1)

}q

≤Mn−αq

From the inequality ([5], p. 177)∣∣∣P (α,α)
2n (x)

∣∣∣ ≤Mn− 1
2 (1− x+ n−2)−

α
2 − 1

4 , 0 ≤ x ≤ 1

it follows that

( 1∫
0

∣∣∣P (α,α)
2n (x)

∣∣∣2q dx) 1
2

≤Mn−
q
2


n(α+

1
2 )q−1, (α+ 1

2 )q > 1,
√

log n, (α+ 1
2 )q = 1,

1, (α+ 1
2 )q < 1,

≤

≤M


nqα−1, (α+ 1

2 )q > 1,

n−q/2
√

log n, (α+ 1
2 )q = 1,

n−q/2, (α+ 1
2 )q < 1.

(4.19)

are true.
Using (4.14) and (4.19) in (4.15), we obtain the assertion of Lemma 4.3.

Lemma 4.4. For n = 1, 2, . . . the estimates

∥∥∥IrR(α,− 1
2 )

n

∥∥∥
q,µ

≤M


n−2r−α−1/2, (α+ 1

2 )q < 1,
n−2r−α−1/2

√
log n 1

2q , (α+ 1
2 )
√

log n,
n−2r−1/q, (α+ 1

2 )q > 1

are true.

Proof. By (2.4) and (1.9), we obtain∥∥∥IrR(α,− 1
2 )

n

∥∥∥
q,α

=
∥∥∥R(α,− 1

2 )
n ∗ ψr

∥∥∥
q,α

=

=

∥∥∥∥
1∫

−1

ψr(u)
(
τuR

(α,− 1
2 )

n (·) dµα(u)
)∥∥∥∥

q,α

=

=

∥∥∥∥
1∫

−1

ψr(u)R
(α,− 1

2 )
n (u)R

(α,− 1
2 )

n (·) dµα(u)

∥∥∥∥
q,α

=

=

∥∥∥∥ ∧
ψr (n)R

(α,− 1
2 )

n

∥∥∥∥
q,α

=
∧

ψr (n)
∥∥∥R(α,− 1

2 )
n

∥∥∥
q,α

,

from which using (3.3) and Lemma 4.3, we obtain the statement of
Lemma 4.4. �
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Lemma 4.5. Let −1

2
< α <

1

2
. For r = 0, 1, . . . and n = 1, 2, . . . the

equality ∥∥∥IrR(α,− 1
2 )

n

∥∥∥
C[−1,1]

=
∧

ψr (n) =

{
2(α+ 1)

n(n+ α+ 1
2 )

}r

is valid.

Proof. By (2.7) and (3.3), we obtain∥∥∥IrR(α,− 1
2 )

n

∥∥∥
C[−1,1]

=
∥∥∥R(α,− 1

2 )
n ∗ ψ

∥∥∥
C[−1,1]

=

=

∥∥∥∥
1∫

−1

ψr(u)
(
τuR

(α,− 1
2 )

n

)
(·)dµα(u)

∥∥∥∥
C[−1,1]

=

=

∥∥∥∥
1∫

−1

ψr(u)R
(α,− 1

2 )
n (u)dµα(u)R

(α,− 1
2 )

n (·)
∥∥∥∥
C[−1,1]

=

=
∧

ψr (n)
∥∥∥R(α,− 1

2 )
n (·)

∥∥∥
C[−1,1]

=
∧

ψr (n) =

{
2(α+ 1)

n(n+ α+ 1
2

}r

.

Thus Lemma 4.5 is proved. �

Lemma 4.6. Let −1

2
< α <

1

2
. For n = 2, 3, . . . and r = 0, 1, . . ., the

estimate ∥∥∥IrR(α,− 1
2 )

n

∥∥∥
1,α

≤Mn−2r−α− 1
2

is valid.

Proof. Also, as when proving Lemma 4.4, we find∥∥∥(IrR(α,− 1
2 )

n

)∥∥∥
1,α

=
∧

ψr (n)
∥∥∥R(α,− 1

2 )
n

∥∥∥
1,α

. (4.20)

Since (see proof of Lemma 4.3)

∥R(α,− 1
2 )

n ∥1,α = 2α+
3
2C1(α)

Γ(α+ 1)Γ(2n+ 1)

Γ(2n+ α+ 1)

1∫
0

(1 − x2)α|P (α,α)
2n (x)|dx,

using the estimate (4.6) and the relation (4.14), we obtain

∥R(α,− 1
2 )

n ∥1α ≤Mn−α−1/2

1∫
0

(1− x2)
α
2 − 1

4 dx ≤

≤Mn−α−1/2

1∫
0

(1− x)
α
2 − 1

4x−
1
2 dx =M

Γ
(
2α+3

4

)
Γ
(
1
2

)
Γ
(
2α+5

4

) n−α− 1
2 . (4.21)
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Using Lemma 4.5 and (4.12) in (4.20), we obtain the assertion of
Lemma 4.6. �

5. On Estimations of Coefficients of Fourier–Jacobi Functions
from W r

X

In this section we give applications of general theorems from Section 1.
We formulate them in conformity with our case.

Theorem A. Let f ∈W r
X (X = Lp,α, 1 < p <∞), 1

p + 1
q = 1. If

1. ∥Irφn∥q,α ≤M − const., q > 1, r = 0, 1, . . . ;
2. limn→∞

∫ t

−1
(Irφn) (x)dµα(x) = 0, t ∈ [−1, 1],

then

lim
n→∞

1∫
−1

f(x)φn(x)dµα(x) = 0,

where φn(x), n = 0, 1, . . . is the system of orthogonal functions with the
weight µα(x) = C1(α)(1− x)α(1 + x)−

1
2 on the segment [−1, 1].

Theorem B. Let f ∈W r
X (X = L1,α) . If

1. | (Irφn(x)) | ≤M − const, r = 0, 1, . . . , x ∈ [−1, 1];
2. limn→∞

∫ t

−1
(Irφn) (x)dµα(x) = 0, t ∈ [−1, 1] ,

then

lim
n→∞

1∫
−1

f(x)φn(x)dµα(x) = 0.

Theorem C. Let f ∈W r
X

(
X = L

′)
. If

1.
∣∣∣∫ x

−1
(Irφn) (t)dµα (t)

∣∣∣ ≤M − const, r = 0, 1, . . . , x ∈ [−1, 1],

2. limn→∞
∫ t

−1
(Irφn) (x)dµα(x) = 0, t ∈ [−1, 1],

then

lim
n→∞

1∫
−1

f(x)φn(x)dµα(x) = 0.

To each f ∈ X let us now associate its Fourier–Jacobi series

f(x) ∼
∞∑

n=0

(2n+ α+ 1
2 )Γ(n+ α+ 1

2 )Γ(n+ α+ 1)

2α+
1
2Γ2(α+ 1)Γ(n+ 1

2 )Γ(n+ 1)

∧
f (n)R

(α,− 1
2 )

n (x),

where
∧

f (n) =

1∫
−1

f(t)R
(α,− 1

2 )
n (t)dµα(t).
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Theorem 5.1. Let f ∈W r
X (X = Lp,α, 1 < p <∞), then

lim
n→∞

n2r+α+ 1
2

∧
f (n) = 0, 0 <

(
α+

1

2

)
q < 1, r = 0, 1, . . . .

Proof. Proof of the theorem is reduced to the verification of the condition
of Theorem A. According to (5.2),

n2r+α+ 1
2

∧
f (n) =

1∫
−1

φn(x)dµα(x),

where
φ
(α,− 1

2 )
n ≡ φn(x) = n2r+α+ 1

2 (x)R
(α,− 1

2 )
n (x).

The first condition of Theorem A follows easily from Lemma 4.4.

∥Irφn∥q,α = n2r+α+ 1
2 ∥R(α,−

1
2 )

n ∥q,α ≤M,

and by Lemma 4.2, we have∣∣∣∣
t∫

−1

(Irφn) (x) dµα (x)

∣∣∣∣ = n2r+α+ 1
2

∣∣∣∣
t∫

−1

(
IrR

α,− 1
2

n

)
(x) dµα (x)

∣∣∣∣ ≤
≤M

{
(1− t)

α
2 − 1

4 (1 + t)
−1
2

1
n , t ∈ (−1, 1),

n−
2α+1
2α+3 , t ∈ [−1, 1].

From this we obtain condition 2 of Theorem A.
Thus Theorem 5.1 is proved. �

Remark. If f ∈W r
X (X = Lp,α), then for each sequence of real numbers,

γn tends to infinity

lim
n→∞

n2r+α+ 1
2

∧
f (n) γn,

not approaching zero.

Proof. Just as in proving Lemma 4.2, we obtain

∥γn(Irφn)∥2,µ = n2r+α+ 1
2

∧
ψr (n)

∥∥∥R(α,− 1
2 )

n

∥∥∥
2,µ

γn.

Using (1.1) and (1.2), we get

∥R(a,−1/2)
n ∥2,µ =

{ 1∫
−1

[
R

(α,− 1
2 )

n (x)
]2
dµα(x)

} 1
2

=

=

{
C1(α)

2α+
1
2Γ(n+ α+ 1)Γ(n+ 1

2 )

(2n+ α+ 1
2 )Γ(n+ 1)Γ(n+ α+ 1

2 )

(
Γ(n+ 1)Γ(α+ 1)

Γ(n+ α+ 1)

)2} 1
2

=
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=

{
C1(α)

2α+
1
2Γ(n+ 1

2 )Γ(n+ 1)Γ2(α+ 1)

(2n+ α+ 1
2 )Γ(n+ α+ 1)Γ(n+ α+ 1

2 )

} 1
2

∼

∼
(
2α+

1
2Γ2(α+ 1)C1(α)

1

n2α+1

) 1
2

= 2
α
2 + 1

4Γ(α+ 1)
√
C1(α)n

−α− 1
2 .

Then
∥γn(Irφn)(·)∥2,µ ∼

∼ 2
α
2 + 1

4Γ(α+ 1)C
3
2
1 (α)(2(α+ 1))rγn

n2r+α+ 1
2n−α− 1

2(
n(n+ α+ 1

2 )
)r ∼

∼ 2r+
α
2 + 1

4 (α+ 1)r(C1(α))
3/2γn,

since Γ(α+λ)
Γ(λ) ∼ αλ, α→ ∞, ([9], p. 951).

Hence we find that
lim

n→∞
∥γn(Irφn)∥2,µ = ∞,

i.e., not fluttering the first condition of Theorem A. Consequently, if
f ∈W r

X(L2,α), then the order is final in Theorem 5.1. �

Theorem 5.2. Let f ∈ W r
X (X = L1,α) . Then for −1

2
< α <

1

2
and

r = 0, 1, . . . ,

lim
γ 7→∞

n2r
∧

f (n) = 0, r = 0, 1, . . . ,

but
lim
n→∞

γnn
2r

∧
f (n)

not approaching zero, as γn-tends to infinity.

Proof. According to (5.2),

n2r
∧

f (n) =

1∫
−1

f(x)φn(x)dµα(x),

where

φn(x) = n2rR
(α,− 1

2 )
n (x).

The first condition of Theorem B follows by Lemma 4.5.
Using Lemma 4.2, we have∣∣∣∣

t∫
−1

(Irφn) dµα(x)

∣∣∣∣ = n2r
∣∣∣∣

t∫
−1

(
IrR

(α,− 1
2 )

n

)
(x)dµα(x)

∣∣∣∣ ≤
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≤M

{
(1− t)

α
2 − 1

4 (1 + t)
−1
2 n−n− 3

2 , t ∈ (−1, 1),

n
2

2α+3−
2α+3

2 , t ∈ [−1, 1],

from which we get the second condition of Theorem B. Thus the first asser-
tion of Theorem 5.2 is proved.

We prove the second assertion of the theorem.
From the proof of Lemma 4.5, it follows that

∥γn (Irφn)∥C[−1,1] = γnn
2r

∧
ψr (n) ∥|R

(α,− 1
2 )

n |∥ =

= γnn
2r

∧
ψr (n) = (2(α+ 1))r

n2rγn

(n(n+ α+ 1
2 ))

r
,

whence it follows that
lim
n→∞

∥γn (Jrφn)∥C[−1,1] = ∞,

i.e., the first condition of Theorem B is not fulfill.
Thus Theorem 5.2 is proved. �

Theorem 5.3. Let f ∈ W r
X

(
X = L

′
)
. Then for − 1

2 < α < 1
2 , the

equality

lim
n→∞

n2r+
2α+3

2 − 2
2α+3

∧
f (n) = 0, (r = 0, 1, . . . )

is valid.

Proof. By (5.2), we have

n2r+
2α+3

2 − 2
2α+3

∧
f (n) =

1∫
−1

f(x)φn(x)dµα(x),

where
φn(x) = n2r+

2α+3
2 − 2

2α+3R
(α,− 1

2 )
n (x). (5.1)

The first condition of Theorem C for (5.4) follows from Lemma 4.2. Fur-
ther, just as in proving Lemma 4.5, we have

1∫
−1

(Irφn)(x)dµα(x) = n2r+
2α+3

2 − 2
2α+3

t∫
−1

(Irφn)(x)dµα(x) =

= n2r+
2α+3

2 − 2
2α+3

{
2(α+ 1)

n(n+ α+ 1
2 )

}r
t∫

−1

R
(α,− 1

2 )
n (x)dµα(x) ≤

≤ (2(α+ 1))r

{
0, n = 1, 2, . . . ; t = ±1,

n
2α+3

2 − 2
2α+3

∫ t

−1
R

(α,− 1
2 )

n (x)dµα(x), t ̸= ±1.
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Taking into account Corollary 4.1, we obtain∣∣∣∣
t∫

−1

(Irφn)(x)dµα(x)

∣∣∣∣ ≤M(1− t)
α
2 − 1

4 (1 + t)−
1
2n−

2
2α+3 .

This implies that the second condition of Theorem C for (5.4) is correct.
Thus Theorem 5.3 is proved. �

6. On the Convergence of Fourier–Jacobi Series

In this section, using the results of Section 5 dealt with the convergence
of Fourier–Jacobi series,

∞∑
n=0

(
2n+ α+ 1

2

)
Γ(n+ 1)Γ

(
n+ α+ 1

2

)
2α+

1
2Γ(n+ α+ 1)Γ

(
n+ 1

2

) ×

×
( 1∫
−1

P
(α,− 1

2 )
n (t)dµα(t)

)
P
(α,− 1

2 )
n (x). (6.1)

Let us consider the n−th partial sum of series (6.1)

Sn(f ;x) =

1∫
−1

f(t)Kn(t, x)dµα(t), (6.2)

where

Kn(t, x) =

n∑
k=0

(
2k + α+ 1

2

)
Γ(k + 1)Γ

(
k + α+ 1

2

)
2α+

1
2Γ(k + α+ 1)Γ

(
k + 1

2

) P
(α,− 1

2 )
k (t)P

(α,− 1
2 )

k (x).

Applying multiplication theorem to the Jacobi polynomials [8]

Γ(α+ 1)Γ(n+ 1)

C2(α)Γ(n+ α+ 1)
P

(α,− 1
2 )

n (t)P
(α,− 1

2 )
n (x) =

=

1∫
−1

P
(α,− 1

2 )
n

(
xt+ r

√
1− x2

√
1− t2−

−1

2
(1− r2)(1− x)(1− t)

)
(1− r2)α−

1
2 dr

in (6.2), we obtain

Sn(f ;x) =
C2(α)

2α+
1
2Γ(α+ 1)

1∫
−1

(1− t)α(1 + t)−
1
2 f(t)×
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×
{ n∑

k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n

(
xt+

+r
√
1− x2

√
1− t2 − 1

2
(1− r2)(1− x)(1− t)

)
dr

}
dt.

Substituting t = cosu and y = cos u
2 , we obtain

Sn(f ;x) =
C2(α)

2α+
1
2Γ(α+ 1)

π∫
0

(1− cosu)α(1 + cosu)− 1
2 f(cosu)×

×
{ n∑

k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n (x cosu+

+r
√
1− x2 sinu− (1− r2)(1− x) sin2 u

2

)
dr

}
sinudu =

=
C2(α)

2α+
1
2Γ(α+ 1)

π∫
0

(
2 sin2 u

2

)α (
2 cos2 u

2

)− 1
2

f
(
2 cos2 u

2
− 1
)
×

×
{ n∑

k=0

(
2k+α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n

[
x
(
2 cos2 u

2
−1
)
+

+2r
√
1− x2

√
1− cos2 u

2
cos u

2
− (1− r2)(1− x)sin2

u

2

]
dr

}
×

×2

√
1− cos2 u

2
cos u

2
du =

2C2(α)

Γ(α+ 1)

1∫
0

(1− y2)αf(2y2 − 1)×

×
{ n∑

k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n

[
x
(
2y2 − 1

)
+

+2ry
√
1− x2

√
1− y2 − 1

2
(1− r2)(1− x)(1− y2)

]
dr

}
dy.

Assuming that in the inside integral x = cos θ and z = cos θ
2 , we obtain

Sn(f ;x) =
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

×

×
1∫

−1

(1− y2)
α

f(2y2 − 1)

{ 1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n

[
(2z2 − 1)(2y2 − 1)+
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+4ryz
√
1− z2

√
1− y2 − 2(1− r2)(1− z2)(1− y2)

]
dr

}
dy =

=
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
0

(1− y2)
α

f(2y2 − 1)×

×
{ 1∫
−1

(1− r2)α−
1
2P

(α,− 1
2 )

n

[
2
(
zy + r

√
1− z2

√
1− y2

)2
− 1

]
dr

}
dy.

Making substitution in the inside integral

v = zy + r
√

1− z2
√

1− y2

and taking into account that

r = (v − zy)(1− y2)−
1
2 (1− z2)−

1
2 , dr = (1− y2)−

1
2 (1− z2)−

1
2 dv,

we obtain

Sn(f ;x) =
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ
(
k + α+ 1

2

)
Γ
(
k + 1

2

) ×

×
1∫

0

(1− y2)
α

f(2y2 − 1)(1− y2)−
1
2 (1− z2)−

1
2×

×

zy+
√
1−z2

√
1−y2∫

zy−
√
1−z2

√
1−y2

[
1−

( v − zy
√
1− z2

√
1− y2

)2]α− 1
2

P
(α,− 1

2 )
n (2v2 − 1)dvdy =

=
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)Γ (k + α+ 1
2

)
Γ
(
k + 1

2

) (1− z2)
−α

1∫
0

f(2y2 − 1)×

×


zy+

√
1−z2

√
1−y2∫

zy−
√
1−z2

√
1−y2

(1− z2 − y2 − v2 + 2zyv)α−
1
2P

(α,− 1
2 )

n (2v2 − 1)dv

 dy.

By the change of order of integration, we obtain

Sn(f ;x) =
2C2(α)

Γ(α+ 1)
×

×
n∑

k=0

(
2k + α+

1

2

)Γ (k + α+ 1
2

)
Γ
(
k + 1

2

) (1− z2)
−α

1∫
0

P
(α,− 1

2 )
n (2v2 − 1)×
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×


vz+

√
1−v2

√
1−z2∫

vz−
√
1−v2

√
1−z2

(1− z2 − y2 − v2 + 2zyv)α−
1
2 f(2y2 − 1)dy

 dv.

Now, making substitution

y = vz + r
√
1− v2

√
1− z2,

we obtain
Sn(f ;x) =

2C2(α)

Γ(α+ 1)
×

×
n∑

k=0

(
2k + α+

1

2

)Γ (k + α+ 1
2

)
Γ
(
k + 1

2

) 1∫
0

(1− v2)P
(α,− 1

2 )
n (2v2 − 1)×

×
{ 1∫
−1

(1− r2)α−
1
2 f

[
2
(
vz + r

√
1− v2

√
1− z2

)2
− 1

]
dr

}
dv =

=
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ
(
k + α+ 1

2

)
Γ
(
k + 1

2

) ×

×
1∫

0

(1− v2)αP
(α,− 1

2 )
n (2v2 − 1)

{ 1∫
−1

(1− r2)α−
1
2 f
[
2v2z2+

+4rzv
√
1− v2

√
1− z2 + r2(1− v2)(1− z2)− 1

]
dr

}
dv =

=
2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

1∫
0

(1− v2)
α

P
(α,− 1

2 )
n (2v2 − 1)×

×
{ 1∫
−1

(1− r2)α−
1
2 f
[
(2z2 − 1)(2v2 − 1)+

+4rzv
√

1− v2
√
1− z2 + r2(1−v2)(1− z2)−

−2(1− r2)(1− z2)(1− v2)
]
dr

}
dv =

∣∣∣z = cos θ
2
;x = cos θ

∣∣∣ =
=

2C2(α)

Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

×

×
1∫

0

(1− v2)
α

P
(α,− 1

2 )
n (2v2 − 1)

{ 1∫
−1

(1− r2)α−
1
2 f
[
x(2v2 − 1)+

+2rv
√
1− x2

√
1− v2 − (1− r2)(1− x)(1− v2)

]
dr

}
dv =
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=
∣∣∣2v2 − 1 = u; dv = 2−

3
2 (1 + u)−

1
2 du

∣∣∣ =
=

C2(α)

2α+
1
2Γ(α+ 1)

n∑
k=0

(
2k + α+

1

2

)
Γ(k + α+ 1

2 )

Γ(k + 1
2 )

×

×
1∫

−1

(1−u)α(1+u)− 1
2P

(α,− 1
2 )

n (u)

{ 1∫
−1

(1− r2)α− 1
2 f

[
xu+ r

√
1− u2

√
1− x2−

−1

2
(1−r2)(1−x)(1−u)

]
dr

}
=C2(α)

1∫
−1

(1−u)α(1+u)− 1
2 (τuf)(x)Kn(u)du,

where

Kn(u) =
n∑

k=0

(2k + α+ 1
2 )Γ(2k + α+ 1

2 )

2α+
1
2Γ(α+ 1)Γ(k + 1

2 )
P

(α,− 1
2 )

k (u).

Applying Cristoffel-Darbu formula
n∑

ν=0

(2ν + α+ 1
2 )Γ(ν + α+ 1

2 )

2α+
1
2Γ(α+ 1)Γ(ν + 1

2 )
P

(α,− 1
2 )

ν (u) =

=
2

1
2−αΓ(n+ α+ 3

2 )

(2n+ α+ 3
2 )Γ(α+ 1

2 )Γ(n+ 1
2 )

×

×
(n+ α+ 1)P

(α,− 1
2 )

n (x)− (n+ 1)P
(α,− 1

2 )
n+1 (x)

1− x

and using Sn(1;x) ≡ 1, we obtain
f(x)− Sn(f ;x) =

=
C2(α)2

1
2−αΓ(n+ α+ 3

2 )(n+ 1 + α)

Γ(α+ 1)(2n+ α+ 3
2 )Γ(n+ 1

2 )

1∫
−1

µ(u)φu(x)P
(α,− 1

2 )
n (u)du

C2(α)2
1
2−αΓ(n+ α+ 3

2 )(n+ 1)

Γ(α+ 1)(2n+ α+ 3
2 )Γ(n+ 1

2 )

1∫
−1

µ(u)φu(x)P
(α,− 1

2 )
n+1 (u)du,

where
φu(x) =

f(x)− (τuf)(x)

1− u
.

And since

P
(α,− 1

2 )
n (x) = P

(α,− 1
2 )

n (1)R
(α,− 1

2 )
n (x) =

Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
R

(α,− 1
2 )

n (x),

therefore
f(x)− Sn(f ;x) =
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=
C2(α)2

1
2−αΓ(n+ α+ 3

2 )Γ(n+ α+ 2)

Γ2(α+ 1)Γ(n+ 1)(2n+ α+ 3
2 )Γ(n+ 1

2 )

1∫
−1

µ(u)φu(x)R
(α,− 1

2 )
n (u)du−

−
C2(α)2

1
2−αΓ(n+ α+ 3

2 )Γ(n+ α+ 2)

Γ2(α+ 1)Γ(n+ 1)(2n+ α+ 3
2 )Γ(n+ 1

2 )

1∫
−1

µ(u)φu(x)R
(α,− 1

2 )
n+1 (u)du =

=
C2(α)2

1
2−αΓ(n+ α+ 3

2 )Γ(n+ α+ 2)((
∧

φx (n))− (
∧

φx (n+ 1)))

Γ2(α+ 1)C1(α)Γ(n+ 1)(2n+ α+ 3
2 )Γ(n+ 1

2 )
∼

∼ C2(α)2
1
2−α

C1(α)Γ2(α+ 1)
((

∧
φx (n))− (

∧
φx (n+ 1)))n2α+1 =

=
2

Γ(α+ 3
2 )

((
∧

φx (n))− (
∧

φx (n+ 1)))n2α+1.

For the theorems in Section 5 we have obtained the following theorems
on the order of pointwise convergence of Fourier–Jacobi series.

Theorem 6.1. For each point x ∈ [−1, 1|, φu(x) ∈ W r
X (X = Lp,α,

1 < p <∞), for r = 0, 1, . . . , and 0 < (α+ 1
2 ) q < 1, the equality

lim
n→∞

n2r−α− 1
2 {f(x)− Sn(f ;x)} = 0

is valid, moreover, for p = 2, the order here is final.

Theorem 6.2. For each point x ∈ [−1, 1|, φu(x) ∈W r
X (X = L1,α), for

r = 0, 1, . . . , and − 1
2 < α < 1

2 , the equality

lim
n→∞

n2r−2α−1{f(x)− Sn(f ;x)} = 0,

is valid, moreover, the order here is final.

Theorem 6.3. For each point x ∈ [−1, 1|, φu(x) ∈W r
X (X = L

′

1,α), for
r = 0, 1, . . . , and − 1

2 < α < 1
2 , the equality

lim
n→∞

n2r+
2α−1
4α+6−α{f(x)− Sn(f ;x)} = 0 is valid.
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CYCLIC REFINEMENT OF BECK’S INEQUALITIES

K. A. KHAN AND J. PEČARIĆ

Abstract. In this paper, we refine the discrete Jensen’s inequal-
ity for vectors by the idea recently given in [2]. As a conse-
quence, we are able to refine the inequality of E. Beck [1] with
the help of cyclic generalized mixed symmetric means. This
leads to the refinements of the classical Hölder and Minkowski’s
inequalities.

ÒÄÆÉÖÌÄ. [2] ÛÒÏÌÀÛÉ ÂÀÍÅÉÈÀÒÄÁÖË ÉÃÄÀÆÄ ÃÀÚÒÃÍÏÁÉÈ
ÃÀÆÖÓÔÄÁÖËÉÀ ÉÄÍÓÄÍÉÓ ÖÔÏËÏÁÀ ÅÄØÔÏÒÄÁÉÓÀÈÅÉÓ. ÀÌ
ÛÄÃÄÂÆÄ ÃÀÚÒÃÍÏÁÉÈ ÆÖÓÔÃÄÁÀ Ä. ÁÄÊÉÓ [1] ÖÔÏËÏÁÀ ÝÉÊ-
ËÖÒÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÛÄÒÄÖËÉ ÓÀÛÖÀËÏÄÁÉÓ ÂÀÌÏÚÄÍÄ-
ÁÉÈ. ÀÌ ÖÊÀÍÓÀÊÍÄË ÖÔÏËÏÁÀÓ ÌÏÓÃÄÅÓ äÄËÃÄÒÉÓÀ ÃÀ
ÌÉÍÊÏÅÓÊÉÓ ÊËÀÓÉÊÖÒÉ ÖÔÏËÏÁÄÁÉÓ ÃÀÆÖÓÔÄÁÀ.

1. Introduction and Preliminary Results

Let U be a convex subset of a real linear space, and let f : U → R be a
convex function. If xi ∈ U (1 ≤ i ≤ n) and pi ≥ 0 (1 ≤ i ≤ n) such that
n∑

i=1

pi = 1, then the discrete Jensen’s inequality

f

( n∑
i=1

pixi

)
≤

n∑
i=1

pif(xi) (1)

holds. Particularly, we have

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi). (2)

Let I ⊂ R be an interval, h : I → R be a continuous and strictly mono-
tone function, and let a = (a1, . . . , an) ∈ In. Then the quasi-arithmetic

2010 Mathematics Subject Classification. Primary 26D07, 26D15, 26D20, 26D99.
Key words and phrases. Convex function, Beck’s inequality, Hölder and Minkowski’s

inequalities.
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h-mean of vector a is defined by

hn(a) = hn(ai; 1 ≤ i ≤ n) = h(a;n) := h−1

(
1

n

n∑
i=1

h(ai)

)
.

First, we extend Beck’s results (see [1]). The use will be made of the
following hypothesis:

(A1) Let Lt : It → R (t = 1, . . . ,m) and N : IN → R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f : I1 × · · · × Im → IN be a continuous function. Let x(1), . . . ,x(m) ∈ Rn

(n ≥ 2) such that x(t) ∈ I
n

t for each t = 1, . . . ,m.
The following result is a simple consequence of the discrete Jensen’s in-

equality (2).

Theorem 1.1. Assume (A1). If N is an increasing function, then the
inequality

f
(
L1(x(1);n), . . . , Lm(x(m);n)

)
≥

≥ N−1

(
1

n

n∑
i=1

N(f(x
(1)
i , . . . , x

(m)
i ))

)
, (3)

holds for all possible x(t) (t = 1, . . . ,m), if and only if the function H defined
on L1(I1)× · · · × Lm(Im) by

H(t1, . . . , tm) := N
(
f
(
L−1
1 (t1), . . . , L

−1
m (tm)

))
(4)

is concave. The inequality in (3) is reversed for all possible x(t) (t =
1, . . . ,m), if and only if H is convex.

Proof. We replace the convex function f by −H or H, and xi by Lt(x
(t)
i )

in (2) and then, applying the increasing function N−1, we get the required
results. �

Beck’s original result (see [4], p. 249 or [3], p. 300) was the weighted
form of Theorem 1.1 (see in [10], p. 157), but with m = 2 and I1 = [k1, k2],
I2 = [l1, l2] and IN = [n1, n2].

For the simplicity, in case m = 2 we use the following form of (A1):
(A2) Let K : IK → R, L : IL → R and N : IN → R be continuous

and strictly monotone functions whose domains are intervals in R, and let
f : IK × IL → IN be a continuous function. Let a, b ∈ Rn (n ≥ 2) such
that a ∈ InK and b ∈ InL.

Then (3) has the form

f (Kn(a), Ln(b)) ≥ Nn (f(a,b)) , (5)

where f(a,b) means (f(a1, b1), . . . , f(an, bn)).
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The following results are the important special cases of Theorem 1.1
and generalize the corresponding results of Beck. We use the following
hypothesis:

(A3) Let K : IK → R, L : IL → R and N : IN → R be continuous
and strictly monotone functions whose domains are intervals in R such that
either IK+IL ⊂ IN and f(x, y) = x+y ((x, y) ∈ IK×IL), or IK , IL ⊂]0,∞[,
IK · IL ⊂ IN and f(x, y) = xy ((x, y) ∈ IK × IL). Assume further that the
functions K, L and N are twice continuously differentiable on the interior
of their domains, respectively. Let a, b ∈ Rn (n ≥ 2) such that a ∈ InK and
b ∈ InL.

The interior of a subset A of R is denoted by A◦.
Corollary 1.2. Assume (A3) with f(x, y) = x + y ((x, y) ∈ IK × IL),

and assume that K ′, L′, N ′, K ′′, L′′ and N ′′ are all positive. Introducing
E := K′

K′′ , F := L′

L′′ , G := N ′

N ′′ , (5) holds for all possible tuples a and b, if
and only if

E(x) + F (y) ≤ G(x+ y), (x, y) ∈ I◦K × I◦L. (6)
Corollary 1.3. Assume (A3) with f(x, y) = xy ((x, y) ∈ IK × IL).

Suppose the functions A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and
C(x) := N ′(x)

N ′(x)+xN ′′(x) are defined on I◦K , I◦L and I◦N , respectively. Assume
further that K ′, L′, N ′, A, B and C are all positive. Then (5) holds for all
possible tuples a and b, if and only if

A(x) +B(y) ≤ C(xy), (x, y) ∈ I◦K × I◦L.

To prove these corollaries, similar arguments can be applied as in the
analogous results of Beck. We just sketch the proof of Corollary 1.2.

Proof. By Theorem 1.1, it is enough to prove that the function
H : K(IK)× L(IL) → R, H(t, s) := N

(
K−1(t) + L−1(s)

)
is concave. Since H is continuous, and twice continuously differentiable on
the interior K(I◦K)× L(I◦L) of its domain, we have to show that

h2
1

∂2H(t, s)

∂t2
+ 2h1h2

∂2H(t, s)

∂t∂s
+ h2

2

∂2H(t, s)

∂s2
≤ 0

for all (t, s) ∈ K(I◦K)× L(I◦L) and (h1, h2) ∈ R2. By computing the partial
derivatives of H of order 2 at the points of K(I◦K) × L(I◦L), we have the
condition (6) (see [3] p. 303). �

The interpolations of the discrete Jensen’s inequality (2) given in [13]
are used in [11] (see also [12], p.195) to refine the inequality of E. Beck for
a function of two variables. The similar idea is utilized in [8, 9] (see also
[10], Chapter 7) for the refinements of weighted discrete Jensen’s inequality
(1) appeared in [5, 6, 7]. Analogously, in this paper we work out the new
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refinement of Beck’s inequality (3) by cyclic mixed symmetric means as a
consequence of the new refinement of the discrete Jensen’s inequality (2)
constructed in [2]. This, obviously, leads to some new refinements of the
classical Hölder and Minkowski’s inequalities.

We need another hypothesis:
(H2) Let U be a convex set in Rm, x1, . . . ,xn ∈ U , such that xi+n = xi,

and λ := (λ1, . . . , λn) be a positive n-tuple such that
∑k

i=1λi = 1 for
2 ≤ k ≤ n. Further, let f : U → R be a convex function.

The following refinement of the discrete Jensen’s inequality for functions
of several variables is analogous to the refinement given in [2] for the function
of one variable:

Theorem A. Assume (H2), and consider the following sum

S =
1

n

n∑
i=1

f

( k−1∑
j=0

λj+1xi+j

)
. (7)

Then

f

(∑n
i=1 xi

n

)
≤ 1

n

n∑
i=1

f

( k−1∑
j=0

λj+1xi+j

)
≤
∑n

i=1 f(xi)

n
. (8)

Proof. The idea of proof is the same as that given in [2].
First, we prove the second inequality in (8). Since f is convex, by Jensen’s

inequality, we have
n∑

i=1

f

(k−1∑
j=0

λj+1xi+j

)
≤

n∑
i=1

k−1∑
j=0

λj+1f(xi+j) =

=

n∑
i=1

f(xi)

k∑
j=1

λj =

n∑
i=1

f(xi)

Now we prove the first inequality in (8). Since f is convex, by Jensen’s
inequality, we have

1

n

n∑
i=1

f

(k−1∑
j=0

λj+1xi+j

)
≥ f

(∑n
i=1

∑k−1
j=0 λj+1xi+j

n

)
=

= f

(∑n
i=1 xi

∑k
j=1 λj

n

)
= f

(∑n
i=1 xi

n

)
�

2. Refinement of Beck’s Inequality

In what follows, we assume (A1) such that x(t)
i+n = x

(t)
i (t = 1, . . . ,m) and

(λ1, . . . , λn) is a positive n-tuple in the way that
∑k

i=1λi = 1 for 2 ≤ k ≤ n.
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The cyclic mixed symmetric means relative to (7) are defined by

M(L1, . . . , Lm;x(1), . . . ,x(m)) :=

= N−1

(
1

n

n∑
i=1

N
(
f
(
L1(x(1); k), . . . , Lm(x(m); k)

)))
(9)

Lt(x(t); k) = L−1
t

(k−1∑
j=0

λj+1Lt(x
(t)
i+j)

)
; t = 1, . . . ,m.

Now, we get an interpolation of (3) by the direct application of Theorem
A as follows.

Theorem 2.1. Assume (A1) such that x
(t)
i+n = x

(t)
i (t = 1, . . . ,m), and

(λ1, . . . , λn) is a positive n-tuple such that
∑k

i=1λi = 1 for 2 ≤ k ≤ n. If N
is an increasing (decreasing) function, then the inequalities

f
(
L1(x(1);n), . . . , Lm(x(m);n)

)
≤ M(L1, . . . , Lm;x(1), . . . ,x(m)) ≤

≤ N−1

(
1

n

n∑
i=1

N(f(x
(1)
i , . . . , x

(m)
i ))

)
, (10)

hold for all possible x(t) (t = 1, . . . ,m), if and only if the function H defined
in Theorem 1.1 is convex (concave). If N is an increasing (decreasing)
function, then the inequalities in (10) are reversed for all possible x(t) (t =
1, . . . ,m), if and only if H is concave (convex).

Proof. Suppose N is increasing and the function H : L1(I1)× · · ·×Lm(Im)
→ R,

H(t1, . . . , tm) = N
(
f
(
L−1
1 (t1), . . . , L

−1
m (tm)

))
is convex. We apply Theorem A to the function H and to the vectors
(L1(x

(1)
i ), . . . , Lm(x

(m)
i )), i = 1, . . . , n. Then the first term in (8) gives

H

(
1

n

n∑
i=1

(
L1(x

(1)
i ), . . . , Lm(x

(m)
i )

))
=

= H

(
1

n

n∑
i=1

L1(x
(1)
i ), . . . ,

1

n

n∑
i=1

Lm(x
(m)
i )

)
=

= N

(
f

(
L−1
1

(
1

n

n∑
i=1

L1(x
(1)
i )

)
, . . . , L−1

m

(
1

n

n∑
i=1

Lm(x
(m)
i )

)))
=

= N
(
f
(
L1(x(1);n), . . . , Lm(x(m);n)

))
.
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The last term in (8) is

1

n

n∑
i=1

H(L1(x
(1)
i ), . . . , Lm(x

(m)
i )) =

1

n

n∑
i=1

N
(
f
(
x
(1)
i , . . . , x

(m)
i

))
,

and the middle term in (8) has the form

1

n

n∑
i=1

H

(k−1∑
j=0

λj+1

(
L1(x

(1)
i+j), . . . , Lm(x

(m)
i+j )

))
=

=
1

n

n∑
i=1

H

(k−1∑
j=0

λj+1L1(x
(1)
i+j), . . . ,

k−1∑
j=0

λj+1Lm(x
(m)
i+j )

)
=

=
1

n

n∑
i=1

N

(
f

(
L−1
1

(k−1∑
j=0

λj+1L1(x
(1)
i+j)

)
, . . . , L−1

m

(k−1∑
j=0

λj+1Lm(x
(m)
i+j )

)))
=

=
1

n

n∑
i=1

N
(
f
(
L1(x(1); k), . . . , Lm(x(m); k)

))
.

The inequalities (10) follow from these observations and Theorem A since
N−1 is increasing.

The converse is obtained by Theorem 1.1. �

Assume (A2) such that ai+n = ai, bi+n = bi, and (λ1, . . . , λn) is a positive
n-tuple such that

∑k
i=1λi = 1 for 2 ≤ k ≤ n. Then, for m = 2, the reverse

of (10) can be written as

f (Kn(a), Ln(b)) ≥ M(K,L;a,b) ≥ N−1

(
1

n

n∑
i=1

N(f(ai, bi)).

)
(11)

Example 2.2. Let f(x)=xy and N(x)=x, then H(s, t)=K−1(s)L−1(t).
If H is concave, then (11) gives the following refinement of Hölder’s inequal-
ity,

1

n

n∑
i=1

aibi ≤
1

n

n∑
i=1

K(a; k)L(b; k) ≤ Kn(a)Ln(b). (12)

In particular, if H(s, t) = s1/qt1/r, then H is concave for q, r > 1 and
q−1 + r−1 = 1; we get the following refinement of the classical Hölder’s
inequality for positive n-tuples a and b.

n∑
i=1

aibi ≤
n∑

i=1

(k−1∑
j=0

λj+1a
q
i+j

) 1
q(k−1∑

j=0

λj+1b
r
i+j

) 1
r

≤
( n∑

i=1

aqi

) 1
q
( n∑

i=1

bri

) 1
r

.

Example 2.3. If H(s, t) = (s1/p + t1/p)p, then H is concave for p > 1,
and (11) reduces to the following refinement of the classical Minkowski’s
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inequality for positive n-tuples a and b.(
n∑

i=1

(ai + bi)
p

) 1
p

≤

≤
(

n∑
i=1

((
k−1∑
j=0

λj+1a
p
i+j

) 1
p

+

(
k−1∑
j=0

λj+1b
p
i+j

) 1
p
)p) 1

p

≤

≤
(

n∑
i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.

On the analogy of Corollary 1.2 and Corollary 1.3, we have the following
consequences of Theorem 2.1.

Corollary 2.4. Assume (A3) such that ai+n = ai, bi+n = bi, and
(λ1, . . . , λn) is a positive n-tuple such that

∑k
i=1λi = 1 for 2 ≤ k ≤ n.

Suppose f(x, y) = x + y ((x, y) ∈ IK × IL), and assume that K ′, L′, N ′,
K ′′, L′′ and N ′′ are all positive. Introducing E := K′

K′′ , F := L′

L′′ , G := N ′

N ′′ ,
(11) holds for all possible a and b, if and only if

E(x) + F (y) ≤ G(x+ y), (x, y) ∈ I◦K × I◦L.

In this case,

M(K,L;a,b) = N−1

(
1

n

n∑
i=1

N (K(a; k) + L(b; k))
)
. (13)

Corollary 2.5. Assume (A3) such that ai+n = ai, bi+n = bi, (λ1, . . . , λn)

is a positive n-tuple such that
∑k

i=1λi = 1 for 2 ≤ k ≤ n, and f(x, y) = xy

((x, y) ∈ IK × IL). Suppose the functions A(x) := K′(x)
K′(x)+xK′′(x) , B(x) :=

L′(x)
L′(x)+xL′′(x) and C(x) := N ′(x)

N ′(x)+xN ′′(x) are defined on I◦K , I◦L and I◦N ,
respectively. Assume further that K ′, L′, M ′, A, B and C are all positive.
Then (11) holds for all possible a and b, if and only if

A(x) +B(y) ≤ C(xy), (x, y) ∈ I◦K × I◦L.

In this case,

M(K,L;a,b) = N−1

(
1

n

n∑
i=1

N (K(a; k)L(b; k))
)
. (14)

3. Refinement of Minkowski’s Inequality

(A4) Let I be an interval in R, and let M : I → R be a continuous
and strictly monotone function. Let xi ∈ Im be such that xi+n = xi

(i = 1, . . . , n), (λ1, . . . , λn) be a positive n-tuple such that
∑k

i=1λi = 1 for
2 ≤ k ≤ n, and let w = (w1, . . . , wm) be a nonnegative m-tuple such that
m∑
i=1

wi = 1.
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We give a refinement of Minkowski’s inequality by using Theorem A.

Theorem 3.1. Assume (A4), and let the quasi-arithmetic mean function

x → Mm(x;w) := M−1

( m∑
i=1

wiM(xi)

)
, x ∈ Im

be convex. Then

Mm

(
1

n

n∑
i=1

xi;w
)

≤

≤ 1

n

n∑
i=1

Mm

(k−1∑
j=0

λj+1xi+j ;w
)

≤ 1

n

n∑
r=1

Mm(xr;w). (15)

Proof. This is obtained by applying Theorem A to the function Mm(·;w)
and to the vectors xi (i = 1, . . . , n). �

The following necessary and sufficient condition for the quasi-arithmetic
mean function to be convex is given in [12], p. 197:

Theorem B. If M : [m1,m2] → R has continuous derivatives of sec-
ond order and it is strictly increasing and strictly convex, then the quasi-
arithmetic mean function Mm(·;w) is convex, if and only if M ′/M ′′ is a
concave function.

(A5) Let M :]0,∞[→]0,∞[ be a continuous and strictly monotone func-
tion such that lim

x→0
M(x) = ∞ or lim

x→∞
M(x) = ∞. Let xi ∈ Im be such

that xi+n = xi (i = 1, . . . , n), (λ1, . . . , λn) be a positive n-tuple such that∑k
i=1λi = 1 for 2 ≤ k ≤ n. Let w = (w1, . . . , wm) be positive m-tuple such

that wi ≥ 1 (i = 1, . . . ,m).
Then we define

M̃m(x;w) = M−1

( m∑
i=1

wiM(xi)

)
. (16)

The following result is also given in ([12], page 197):
Theorem C. If M :]0,∞[→]0,∞[ has continuous derivatives of second

order and it is strictly increasing and strictly convex, then M̃m(·;w) is a
convex function if M/M ′ is a convex function.

By using (16), we have

Theorem 3.2. Assume (A5). If the function

x → M̃m(x;w), x ∈]0,∞[m

is convex, then Theorem 3.1 remains valid for M̃m(x;w) instead of Mm(x;w).
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ON VARIABLE EXPONENT HARDY CLASSES OF
ANALYTIC FUNCTIONS

V. KOKILASHVILI AND V. PAATASHVILI

Abstract. The paper studies the Hardy type classes Hp(t) and
hp(t) of analytic and harmonic functions respectively when a
variable exponent p(t) satisfies the log-continuity condition and
its least value equals to one. Generalizations of the Fichten-
holz, Smirnov and Tumarkin’s theorems known for the classical
Hardy classes are given. The Dirichlet problem is solved in the
framework of spaces Hp(t) in two different statements.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÀÍÀËÉÆÖÒ ÃÀ äÀÒÌÏÍÉÖË

×ÖÍØÝÉÀÈÀ äÀÒÃÉÓ ÔÉÐÉÓ Hp(t) ÃÀ hp(t) ÊËÀÓÄÁÉ, ÒÏÃÄÓÀÝ
ÝÅËÀÃÉ ÌÀÜÅÄÍÄÁÄËÉ p(t) ÀÊÌÀÚÏ×ÉËÄÁÓ ËÏÂÀÒÉÈÌÖËÉ Öß-
ÚÅÄÔÏÁÉÓ ÐÉÒÏÁÀÓ ÃÀ ÌÉÓÉ ÖÌÝÉÒÄÓÉ ÌÍÉÛÅÍÄËÏÁÀ ÔÏËÉÀ
ÄÒÈÉÓ. ÂÀÍÆÏÂÀÃÄÁÖËÉÀ ×ÉáÔÄÍÂÏËÝÉÓ, ÓÌÉÒÍÏÅÉÓ ÃÀ
ÔÖÌÀÒÊÉÍÉÓ ÈÄÏÒÄÌÄÁÉ, ÒÏÌËÄÁÉÝ ÊÀÒÂÀÃÀÀ ÝÍÏÁÉËÉ äÀÒ-
ÃÉÓ ÊËÀÓÉÊÖÒÉ ÓÉÅÒÝÄÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ. ÀÌÏáÓÍÉËÉÀ ÃÉ-
ÒÉáËÄÓ ÀÌÏÝÀÍÀ ÏÒÉ ÓáÅÀÃÀÓáÅÀ ÃÀÓÌÉÈ äÀÒÌÏÍÉÖË ×ÖÍ-
ØÝÉÀÈÀ äÀÒÃÉÓ ÝÅËÀÃÌÀÜÅÄÍÄÁËÉÀÍ ÊËÀÓÄÁÛÉ.

The interest in new functional spaces including those which involve Lebes-
gue integration with a variable exponent p(t) has appreciably increased in
the last two decades, and these spaces have become the subject of study by
many mathematicians. This was motivated by the fact that investigation
of applied problems in such classes allows one to consider local singularities
of the given and unknown functions in more detail (see, e.g., [1]–[7] et al.)

In studying boundary value problems of the theory of analytic functions
and certain problems for harmonic functions, the more fruitful turned out
to be the notion of variable exponent Hardy classes suggested in [8].

Here we introduce some definitions.
Let U = {w : |w| < 1} be a circle with the boundary γ = {t : |t| = 1}

and p(t) = p(eiσ) ≡ p(σ), 0 ≤ σ ≤ 2π be the given on γ positive measurable
function.

2010 Mathematics Subject Classification. 47B38, 45P05, 42B20.
Key words and phrases. Hardy classes with a variable exponent, Cauchy type integral,

Dirichlet problem.
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We say that an analytic in U function Φ(w) belongs to the class Hp(·), if

sup
0<r<1

2π∫
0

∣∣Φ(reiσ)∣∣p(σ)dσ < ∞; (1)

analogously, a harmonic function u(w) belongs to the class hp(·), if

sup
0<r<1

2π∫
0

∣∣u(reiσ)∣∣p(σ)dσ < ∞. (2)

Assume

h̃p(·) =
{
u : ∃Φ ∈ Hp(·) u(w) = ReΦ(w), w ∈ U

}
.

In the most of the above-mentioned works it is assumed that p(t) satisfies
the following conditions:

(1) there exists the constant C(p) such that for any t1, t2 ∈ γ,∣∣p(t1)− p(t2)
∣∣ < C(p)

∣∣ ln(t1 − t2)
∣∣−1

; (3)

(2) min
t∈γ

p(t) = p > 1.
A set of such functions we denote by P(γ).
The class of functions p(t) for which (3) holds and
(2′) min

t∈γ
p(t) = p = 1, (4)

we denote by P1(γ).
The classes indicated in [8]–[11] have been investigated under the as-

sumption that p ∈ P(γ). However, from the point of view of applications,
it is desirable to maintain the case p = 1.

In the present paper we present some properties of functions from the
classes Hp(·), hp(·) and h̃p(·) for p ∈ P1(γ). The classes Hardy are considered
in the domain U− = {w : |w| > 1}, as well. It turns out that for p ∈ P(γ)
the equality

hp(·) ≈ h̃p(·)

holds. For p ∈ P1(γ), this is, generally speaking, false (the corresponding
example can be found in item 4.2).

In the final part of the present work we consider the Dirichlet problem
in two different statements:

I. Find a harmonic function u(w) of the class h̃p(·) such that almost
everywhere on γ we have

u+(t) = b(t). (5)
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II. The certain new class of functions V ⊂ Lp(·)(γ) which is invariant
with respect to the Cauchy singular operator

S : b → Sb, (Sb)(t) =
1

πi

∫
γ

b(τ)dτ

τ − t
,

i.e.,
S(V ) = V

has been introduced in [12].
We consider the problem: find the function u from the set

h̃p(γ;U) =

{
u : ∃Φ ∈ Hp(·),

Φ(w) =
1

2πi

∫
γ

Φ+(τ)dτ

τ − w
, Φ+ ∈ Lp(·)(γ), u = ReΦ

}
for which equality (5) holds.

We prove that for problem (5) to be solvable in the first statement, it is
necessary and sufficient that

b(t) ∈ Lp(·)(γ), (Sb)(t) ∈ Lp(·)(γ). (6)

The problem in the second statement is solvable for any b ∈ V .
In both cases we have a unique solution.

2. Preliminaries

2.1. The Class Lp(·)(γ). Let p(t) be a positive measurable function on γ.
For the measurable on γ function f(τ) = f(eiσ), 0 ≤ σ ≤ 2π we put

∥f∥p(·) = inf
{
λ > 0 :

2π∫
0

∣∣∣∣f(eiσ)λ

∣∣∣∣p(σ)dσ ≤ 1, p(σ) = p(eiσ)

}
.

Let
Lp(·)(γ) =

{
f : ∥f∥p(·) < ∞

}
.

2.2. The Hardy Classes Hp(·)(U−).
Definition. We say that the function Φ(w), analytic in the domain

U− = {w : |w| > 1}, belongs to the class Hp(·)(U−), if

sup
R>1

2π∫
0

∣∣Φ(Reiσ)
∣∣p(σ)Rdσ < ∞.

For p ≡ 1, we write H1(U−).
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2.3. Classes of Functions Representable by the Cauchy Type Inte-
gral. By Kp(·)(γ) we denote a set of functions Φ(w), analytic in the plane,
cut along γ, and representable in the form of the integral

Φ(w) =
1

2πi

∫
γ

φ(τ)

τ − w
dτ = (Kγφ)(w), w∈γ, φ ∈ Lp(t)(Γ). (7)

3. Some Properties of Hardy Class Functions

3.1. The existence of boundary values. Relying on the Fatou’s lemma,
it is not difficult to prove that functions of classes hp(·) and Hp(·) for almost
all points t ∈ γ possess an angular boundary value, and the boundary
functions belong to Lp(·)(γ).

3.2. The condition for belonging of analytic function to the class
Hp(·).

Theorem 1. Let p ∈ P1(γ). If the analytic in U function Φ(w) is
representable by one of the formulas

Φ(w) =
1

2πi

∫
γ

Φ+(τ)

τ − w
dτ, w ∈ U, (the Cauchy formula), (8)

or

Φ(w) = Φ(r eiϑ) =
1

2π

2π∫
0

Φ+(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ, (9)

(the Poisson formula),

where Φ+ ∈ Lp(·)(γ), then it is representable by another formula, as well.
A set of such functions coincides with the class Hp(·).

Proof. We make use of the following result from [6].
If f is 2π-periodic function from Lp(·)(T ), T = [0, 2π], p ∈ P0(γ), then

for the Poisson integral

uf (r, ϑ) =
1

2πi

2π∫
0

f(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ

the estimate ∥∥uf (r, ϑ)
∥∥
p(·) ≤ M∥f∥p(·) (10)

is valid, where M does not depend on f .
This implies that for almost all t ∈ γ there exists an angular limit u+(t)

which is equal to t(eiϑ), and
lim
r→1

∥∥uf (re
iϑ)− f(eiϑ)

∥∥
p(·) = 0,
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hence,
u+(re

iϑ) ∈ hp(·), p ∈ P0(γ). (11)
Let now (9) hold, where Φ = u + iv and Φ+ = (u+ + iv+) ∈ Lp(·)(γ),

then u(r, ϑ) = uReΦ+(r, ϑ), v(r, ϑ) = uIm Φ+(r, ϑ) and by virtue of equality
(11), we have u ∈ hp(·), v ∈ hp(·). Thus Φ ∈ Hp(·) ⊂ H1, and according
to the Fichtenholz theorem, Φ is representable by formula (8), where Φ+ ∈
Lp(·)(γ).

If (8) is valid, then Φ ∈ H1 and Φ+ ∈ Lp(·)(γ). Again, by virtue of
Fichtenholz theorem, formula (9), where Φ+ ∈ Lp(·)(γ), is valid according
to the assumption, and Φ ∈ Hp(·), by the above proven.

If Φ ∈ Hp(·), then it belongs to H1 and Φ+ ∈ Lp(·)(γ) (see item 3.1).
This implies that both equalities (8) and (9) are valid. �

3.3. On the functions of the class H1(U−). (a) If the analytic in U−

function Φ(w) belongs to H1(U−), then the function F (ζ) = Φ( 1ζ ), ζ ∈ U

belongs to H1, and F (0) = 0.
Conversely, if F (0) = 0 and F (ζ) ∈ H1, then Φ(ζ) = F ( 1ζ ), ζ ∈ U−

belongs to H1(U−).
(b) For the analytic in U− function Φ(w) to belong to H1(U−), it is

necessary and sufficient that it be representable by the Cauchy integral

Φ(w) = − 1

2πi

∫
γ

Φ−(τ)dτ

τ − w
, w ∈ U−. (12)

3.4. On the representability of a pair of functions given on U and
U− by the Cauchy type integral.

(a) If Φ1 ∈ H1, Φ2 ∈ H1(U−), then the function

F (w) =
1

2πi

∫
γ

Φ+
1 (τ)− Φ−

2 (τ)

τ − w
dτ, w∈γ

coincides both with Φ1(w) for w ∈ U and with Φ2(w) for w ∈ U−. If,
however, Φ1 ∈ Hp(·), Φ2 ∈ Hp(·)(U−), then F ∈ Kp(·)(γ).

(b) If Φ1 ∈ H1, Φ2 ∈ H1(U−) and almost for all t ∈ γ we have

Φ+
1 (t) = Φ−

2 (t),

then Φ1(w) = 0, w ∈ U , Φ2(w) = 0, w ∈ U−.

3.5. On the classes hp(·) and h̃p.

Theorem 2. If p ∈ P(γ), then

hp(·) = h̃p(·). (13)
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Proof. The fact that h̃p(·) ⊂ hp(·) is obvious. Let us prove that hp(·) ⊂ h̃p(·).
Let u ∈ hp(·), then u ∈ hp, p > 1; by the known Riesz theorem, the

function v, harmonically conjugate to u, likewise belongs to hp, hence

Φ(w) = [u(w) + iv(w)] ∈ Hp ⊂ H1.

By the Fichtenholz theorem,

Φ(w) =
1

2πi

∫
γ

u(τ) + iv(τ)

τ − w
dτ,

where (u + iv) ∈ Lp(·)(γ), p ∈ P(γ). But the Cauchy type integral
1

2πi

∫
γ

f(τ)dτ
τ−w , w ∈ U for f ∈ Lp(·)(γ) belongs to Hp(·) (see [11], p. 76).

Consequently, Φ ∈ Hp(·), and u = ReΦ, i.e., u ∈ h̃p(·). �

3.6. Generalization of one Smirnov’s theorem. The following
Smirnov’s theorem is well known [13].

Theorem. If Φ ∈ Hp, Φ+ ∈ Lp1(γ), p1 > p, then Φ ∈ Hp1 .
For the variable p, the theorem below is valid.

Theorem 3. If Φ ∈ Hp(·), p > 0 and Φ+ ∈ Lµ(·)(γ), µ ∈ P1(γ), then
Φ ∈ Hλ(·), where λ(t) = max(p(t), µ(t)).

In [11] (p. 76), this theorem has been proved under the assumptions
p > 0, µ ∈ P(γ).

Proof. Let Φ(z) ∈ Hp(·), p > 0 and Φ ∈ Lµ(·)(γ). This implies that Φ+ ∈
L1(γ); consequently, Φ(z) ∈ H1. Then Φ(z) = 1

2πi

∫
γ

Φ+(τ)dτ
τ−z . Here Φ+(t) ∈

Lµ(t)(γ), where µ(t) ∈ P1(γ). By Theorem 1, we conclude that Φ ∈ Hµ(t).
Thus Φ ∈ Hp(·) (by the assumption) and Φ ∈ Hµ(·) (by the above proven),
hence Φ ∈ Hµ(t). �

3.7. On the convergence of a function sequence from Hp(·), p∈P0(γ).

Theorem 4. Let {Φn(ζ)} be a sequence of boundary values of functions
Φn(z) ∈ Hp(·), p ∈ P1(γ) and∫

γ

∣∣Φn(ζ)
∣∣p(ζ)|dζ| = 2π∫

0

∣∣Φn(ζ
iϑ)

∣∣p(ϑ)dϑ < C, p(ϑ) = p(eiϑ),

where ζ is independent of n.
If {Φn(ζ)} converges in measure on γ, then the sequence {Φn(ζ)} con-

verges uniformly in U to some function Φ(z) of the class Hp(·), and {Φn(ζ)}
converges in measure on γ to the function Φ+(ζ).
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Proof. We have∫
γ

∣∣Φn(ζ)
∣∣|dζ| = ∫

{ζ:|Φn(ζ)|≤1}

∣∣Φn(ζ)
∣∣|dζ|+ ∫

{ζ:|Φn(ζ)|>1}

∣∣Φn(ζ)
∣∣|dζ| ≤

≤ 2π +

∫
γ

∣∣Φn(ζ)
∣∣p(ζ)|dζ| ≤ 2π + C.

Using Tumarkin’s theorem ([14], p. 263-9) (in which it is stated that
the provable theorem is valid for p = const), we conclude that {Φn(ζ)}
converges in U to some function Φ ∈ H1. Let us show that Φ+ ∈ Lp(·)(γ).

From the converging in measure on γ sequence {Φn(ζ)} we select the sub-
sequence {Φn(z)}, converging almost everywhere on γ. Then |Φnk

(eiϑ)|p(ϑ)
converges almost everywhere on γ to the function |Φ(eiϑ)|p(ϑ). By the Fa-
tou’s lemma, we obtain∫

γ

∣∣Φ+(ζ)
∣∣p(ζ)|dζ| = ∫

γ

lim
k→∞

∣∣Φnk
(ζ)

∣∣p(ζ)|dζ| ≤ ∫
γ

∣∣Φnk
(ζ)

∣∣p(ζ)|dζ| < C.

Thus Φ ∈ H1, Φ+ ∈ Lp(·)(γ). Hence

Φ(z) =
1

2πi

∫
γ

Φ+(t)dt

t− z
, Φ+ ∈ Lp(·)(γ).

By Theorem 1, Φ(z) ∈ Hp(·). �

Theorem 4 is a partial generalization of G. Tumarkin’s theorem (see [14],
p. 268–269).

4. The Dirichlet Problem in the Class h̃p(·)

4.1. For p ∈ P(γ), the Dirichlet problem is solved in the class hp(·) for
b ∈ Lp(·)(γ) (see, e.g., [11], p. 219). The solution is unique and representable
by the Poisson integral.

When p ∈ P1(γ), situation changes in the main. Here we have the
following

Theorem 5. Let p ∈ P1(γ); for the solvability of the Dirichlet problem
in the class h̃p(·), that is, for the existence of the function u(w) which is the
real part of some function from Hp(·) and

u+(t) = b(t) (14)

it is necessary and sufficient that the conditions

b(t) ∈ Lp(·)(γ), (Sb)(t) ∈ Lp(t)(γ). (15)
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be fulfilled. If these conditions are fulfilled, then the Dirichlet problem in
the class h̃p(·)(γ) is uniquely solvable and the solution u(w) is given by the
equality

u(w) = ℜ 1

2π

∫
γ

b(τ)
τ + w

τ − w

dτ

τ
, (16)

or what us the same,

u(w) =
1

2π

∫
γ

b(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ, w = reiϑ. (17)

Proof. The necessity. We use the following result.
If Φ(w) ∈ H1, then it is representable in the form

Φ(w) =
1

2π

∫
γ

ReΦ+(τ)
τ + w

τ − w

dτ

τ
+ i ImΦ(0). (18)

(This statement is well-known for the functions Φ, analytic in U and con-
tinuous in U . In the above formulation, this statement can be found in [15]
(see also [11], p. 11)).

Thus, let u(w) ∈ h̃p(·) and satisfy the condition (14), then there exists
the function Φ(w) ∈ Hp(·) ⊂ H1 such that u(w) = ReΦ(w).

By virtue of the statement from item 3.2, a solution u(w) may be only
the function given by equality (16). For this function to be a solution, it is
necessary that the function

Φb(w) =
1

2π

∫
γ

b(τ)
τ + w

τ − w

dτ

τ

belongs to H1, i.e., the equality

Φb(w) =
1

2πi

∫
γ

Φ+
b (τ)dτ

τ − w

be valid.
Since

Φb(w) =
1

2πi

∫
γ

2b(τ)dτ

τ − w
− 1

2πi

∫
γ

b(τ)

τ
dτ, (19)

by virtue of Sokhotskii-Plemelj formula we, find
Φ+

b (t) = b(t) + (Sb)(t) + const . (20)

By the statement from item 3.1, we should have [b(t)+(Sb)(t)] ∈ Lp(·)(γ).
Since b(t) ∈ Lp(·)(γ), we should have (Sb)(t) ∈ Lp(·)(γ). Hence conditions
(15) are fulfilled.
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The sufficiency. Let the conditions (15) be fulfilled. Let us prove that
Φb(w) ∈ Hp(·). It is seen from (19) that Φb(w), as the Cauchy type integral,
belongs to ∩

δ<1
Hδ (see [14]. p. 96). It follows from (15) that Φb(w) ∈ H1,

and hence,

Φb(w) =
1

2πi

∫
γ

Φ+
b (τ)dτ

τ − w
.

According to (20) and (15), we find that Φb(w) is representable by the
Cauchy integral with density Φ+

b ∈ Lp(·)(γ). By virtue of Theorem 1, we
conclude that Φb ∈ Hp(·). Consequently, u = ReΦb is the solution of
problem (14) of the class h̃p(t). �

Remark. The fact that Φb(w) belongs to the class Hp(·) can be also
proved as follows.

As is mentioned above, Φb ∈ ∩
δ<1

Hδ; assume Φb ∈ H1/2. Next, owing to

(15), the function Φ+
b ∈ Lp(t)(γ).

Using Theorem 3, we find that Φb ∈ Hλ(t), where λ(t) = max( 12 ; p(t)) =
p(t).

4.2. On the functions b(t) for which problem (14) is unsolvable. If
p ∈ P(γ), then for any function b ∈ Lp(·)(γ) we have Sb ∈ Lp(·)(γ) (see [15]
and also [11], p. 44). But when p ∈ P1(γ), then this is, generally speaking,
impossible at least for such p(t) which admit value 1 on some arc γ0 ⊂ γ.
Indeed, were Sb for any b from Lp(·)(γ) belong to Lp(·)(γ), the Cauchy
operator S : b → Sb would be continuous in Lp(·)(γ) (see [16], and also [11],
p. 101). But this is impossible, since there exist the functions b̃ ∈ L1(γ0)

for which Sb̃∈L1(γ0); taking as b(t) the function b1 from Lp(·)(γ) which
equals b̃ on γ0, we have b1 ∈L1(γ0), and hence, Sb1 ∈Lp(·)(γ).

Obviously, in the case under consideration there exist linearly indepen-
dent functions b1, b2, . . . , bn, . . . for which problem (14) is unsolvable in the
class h̃p(·).

4.3. Certain subsets of functions from Lp(·)(γ), min
t∈γ

p(t) = 1, for
which conditions (15) are fulfilled. In [12], in connection with the in-
vestigation of problems dealing with the approximation of functions from
Lp(·)(γ), it was considered the sets Vr, r ∈ N0 = {0, 1, 2, . . . } of those
function f from Lp(·)(γ) for which

δ0∫
0

Ω(t, δ)

δ

(
ln 1

δ

)r

dδ < ∞, where δ0 > 0,
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and

Ω(f, δ) = sup
h≤δ

∥∥∥∥
s+h∫

s−h

f(eiσ)dσ − f(s)

∥∥∥∥
p(·)

.

It has been proved that the Cauchy operator S : b → Sb transfers Vr+1 into
Vr, and S(V0) ⊂ Lp(·)(γ).

Consequently, the following theorem is valid.

Theorem 6. If b ∈ V0, then problem (14) is solvable in the class h̃p(·).

4.4. On classes of functions V and h̃p(·)(γ;V ). The Dirichlet prob-
lem in the class h̃p(·)(γ;V ). The above-mentioned work [12] considers also
the set

V = ∩
z∈N0

Vr.

which is invariant with respect to the operator S, i.e.,
S(V ) = Vl.

Let us consider the Dirichlet problem in the following statement: find
the function u(w) from the set

h̃p(·)(γ;V ) =

{
u : ∃Φ ∈ Hp(·)Φ(w) =

1

2πi

∫
γ

Φ+(τ)dτ

τ − w
,

Φ+ ∈ V, u(w) = ReΦ(w)
}
,

which satisfies the boundary condition
u+(t) = b(t).

In this case the theorem below is valid.

Theorem 7. If b ∈ V , then the Dirichlet problem is solvable in the class
h̃p(·)(γ;U).
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THE RIEMANN BOUNDARY VALUE PROBLEM IN
VARIABLE EXPONENT SMIRNOV CLASS OF

GENERALIZED ANALYTIC FUNCTIONS

V. KOKILASHVILI AND V. PAATASHVILI

Abstract. The present paper studies the Riemann boundary
value problem for generalized analytic in I. Vekua sense func-
tions. The problem is formulated as follows: on the plane,
cut along a simple, closed, rectifiable curve Γ, find the general-
ized analytic function W (z) which in the domains G+ and G−,
bounded by the curve Γ, belongs to the Smirnov classes with a
variable exponent and W±(t) its boundary values almost for all
t ∈ Γ satisfy the condition

W+(t) = a(t)W−(t) + b(t),

where a(t) and b(t) are the given on Γ functions.
Various conditions of solvability are revealed and solutions

(if any) are constructed.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ É. ÅÄÊÖÀÓ ÀÆÒÉÈ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÍÀ-
ËÉÆÖÒÉ ×ÖÍØÝÉÄÁÉÓÀÈÅÉÓ ÂÀÌÏÊÅËÄÖËÉÀ ÒÉÌÀÍÉÓ ÓÀÓÀÆ-
ÙÅÒÏ ÀÌÏÝÀÍÀ ÌÀÒÔÉÅ ÛÄÊÒÖË Γ ßÉÒÆÄ ÂÀàÒÉË ÓÉÁÒÔÚÄÛÉ.
ÅÉÐÏÅÏÈ ÉÓÄÈÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÍÀËÉÆÖÒÉ ×ÖÍØÝÉÀ W (z),
ÒÏÌÄËÉÝ Γ-ÈÉ ÛÄÌÏÓÀÆÙÅÒÖË ÀÒÄÄÁÛÉ ÌÉÄÊÖÈÅÍÄÁÀ ÓÌÉÒ-
ÍÏÅÉÓ ÝÅËÀÃ p(t) ÌÀÜÅÄÍÄÁËÉÀÍ ÊËÀÓÄÁÓ ÃÀ ÒÏÌËÉÓ ÓÀÓÀÆ-
ÙÅÒÏ ÌÍÉÛÅÍÄËÏÁÄÁÉ ÃÀ W±(t) Γ ßÉÒÉÓ ÈÉÈØÌÉÓ ÚÅÄËÀ
ßÄÒÔÉËÛÉ ÀÊÌÀÚÏ×ÉËÄÁÄÍ ÔÏËÏÁÀÓ

W+(t) = a(t)W−(t) + b(t),

ÓÀÃÀÝ a(t) ÃÀ b(t)-ÆÄ ÌÏÝÄÌÖËÉ ×ÖÍØÝÉÄÁÉÀ.
ÌÏÞÄÁÍÉËÉÀ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ ÓáÅÀÃÀÓáÅÀ ÐÉÒÏÁÄ-

ÁÉ, ÀÌÏÍÀáÓÍÄÁÉ ÀÂÄÁÖËÉÀ ÝáÀÃÉ ÓÀáÉÈ.

2010 Mathematics Subject Classification. 47B38, 42B20, 45P05.
Key words and phrases. Generalized analytic functions, Smirnov classes of analytic

functions, Riemann problem, domains with a nonsmooth boundary.
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1. Introduction

In the boundary value problems appearing in various fields of mathemat-
ics it is frequently required of the solution that unknown functions would
belong to a certain Lebesque class (see, e.g., [2], [6], [7], [26], etc.)

Recently, the problems of pseudo-differential equations are being inten-
sively studied in nonstandard Banach functional spaces, in particular, in the
framework of variable exponent Lebesgue spaces. Such a statement of the
problem is motivated by the fact that the classes of functions in definition
of which the integration exponent is, generally speaking, a function, more
precisely take into account local singularities of the given functions. Such
spaces are natural ones in which we seek for solutions.

There is a vast literature devoted to the investigation of variable expo-
nent Lebesgue spaces. It suffices to mention monographs [1], [3], [12] and
references therein.

The works [3], [9], [11], [12], [22], [24], [25], etc. dealing with the boundary
value problems for analytic and harmonic functions and related singular
integral equations have been studied in the framework of variable exponent
Lebesgue spaces.

In these problems regarding p(t) it is more frequently assumed that p(t) ∈
P (Γ), i.e., the conditions:

(a) there exists the number M such that for any t1, t2 ∈ Γ we have
|p(t1)− p(t2)| < M | ln |t1 − t2||−1; (1)

(b)
min
t∈Γ

p(t) = p > 1, (2)

are fulfilled.
Further, the generalized Cauchy type integral and the generalized sin-

gular integral have been investigated in [13], and Smirnov classes with a
variable exponent p(t) for generalized analytic functions have been intro-
duced and studied in [21]. The results obtained in these works give every
reason to investigate boundary value problems for generalized analytic func-
tions when boundary values of unknown functions and those prescribed in
the boundary conditions belong to Lp(t)(Γ).

The Riemann problem for continuous statement has been considered in
[17]. Smirnov classes for a constant p are studied in [18]. A number of
problems in these classes have been investigeted in [14], [5], [7], [8], [15],
[16], [18], [19].

In the present paper we investigate the Riemann problem which is for-
mulated as follows.

Let Γ be a simple, closed, rectifiable curve dividing the plane C into two
domains G+ and G−. Find such a generalized analytic in I. Vekua sense
function W which
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1) is a regular solution of the class Us,2(A,B,C) s > 2 of equation;

LW = ∂zW +A(z)W (z) +B(z)W (z) = 0; (3)

2) belongs to the class Kp(t)(A;B; Γ), i.e., is representable by the gener-
alized Cauchy type integral

W (z) = (K̃Γφ)(z) =

=
1

2π

∫
Γ

Ω1(z, τ)φ(τ)dτ − Ω2(z, τ)φ(τ)dτ, φ ∈ Lp(·)(Γ), z∈Γ; (4)

3) the boundary functions W+(t) and W−(t) almost everywhere on Γ
satisfy the condition

W+(t) = a(t)W−(t) + b(t), (5)

where b(t) ∈ Lp(t)(Γ).
Regarding Γ, p(t) and a(t), it is assumed that
(a) Γ is a curve of the class I∗ containing, in particular, piece-wise smooth

and Radon’s curves without external peaks;
(b) p(t) is the function of the class P(Γ);
(c) a(t) belongs to the A(p(t),Γ) class of measurable functions on Γ which

is a natural generalization of I. Simonenko’s class (see [26]).
Under the adopted assumptions, the generalized Cauchy type integrals

(2) on the domains G+ and G− belong to the Smirnov classes Ep(·)(A;B;G+)
and Ep(·)(A;B;G−), respectively [21].

A set of generalized analytic functions in the plane, cut along the closed
curve Γ such that in the domains G+ and G− bounded by Γ they belong to
the classes Ep(·)(A;B;G±), we denote by PEp(·)(A;B; Γ). Such functions in
the conditions (1), (a) and (b) are representable by the generalized Cauchy
type integral in the domains G+ and G−, and therefore are representable by
the Cauchy integral with density from Lp(·)(Γ) [21]. By virtue of the above-
said, a picture of solvability of the Riemann problem in classes Kp(·)(A;B; Γ)
and PEp(·)(A;B; Γ) is the same.

2. Preliminaries

2.1. The function of the class Ls,ν(G). Let G be the domain in the
plane C, and f(z) be the function of the class Ls(G), s > 0. We continue
it on C\G by zero and for the obtained function we preserve the notation
f(z). Assume fν(z) = zνf

(
1
z

)
.

A set of functions f for which

f ∈ Ls(C), fν(z) ∈ Ls(U), U = {z : |z| < 1}. (6)

we denote by Ls,ν(C) [27, p. 29].
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2.2. Regular solutions of equation (3). We say that the function W =
W (z) is a regular solution in G of equation (3), if every point z0 ∈ G
possesses a neighbourhood G0 in which W has a generalized in Sobolev
sense derivative ∂zW = 1

2

(
∂W
∂x + i∂W∂y

)
, (z = x+ iy) and almost everywhere

in G0 − LW = 0.
A set of regular solutions of equation (3), when A,B ∈ Ls,2(G), we denote

by Us,2(A;B;G).
For s > 2, every function W ∈ Us,2(A;B;G) is representable in the form

W = ΦW expωW , ωW (z) =

∫∫
G

(
A+B

W

W

) dζdη

ζ − z
, ζ = ξ + iη, (7)

where ΦW is holomorphic in G, ωW belongs to the Hölder class H s−2
s
(C),

and ωW (∞) = 0 [27, pp. 160–162].
The function ΦW is called an analytic divisor and ωW is a logarithmic

difference of the generalized analytic function W (z).

2.3. The principal kernels. Let A,B ∈ Ls,2(G), s > 2, Φ be an ana-
lytic function in G and t be a fixed point from C. It is proved in [27]
(p. 175-7) that there exists a regular solution W (z; t) of equation (3) such
that: 1) W0 = W (z,t)

Φ(z) is continuous in G and continuously extendable on C;
2) W0(z) ̸= 0; 3) W (t) = 1; 4) W0(z) is holomorphic outside of G.

The operator which assigns to each pair Φ and t the function W (z; t) we
denote by RA;B

t (Φ(z)).
If Φ1(z) =

1
2(t−z) , Φ2(z) =

1
2i(t−z) and Xj(z, t) = RA,B

t (Φj(z)), j = 1, 2

are regular solutions of equation (3) in C{t}, then the functions

Ω1(z, t) = X1(z, t) + iX2(z, t), Ω2(z, t) = X1(z, t)− iX2(z, t)

are called the principal kernels of the class Us,2(A;B;G).

2.4. Generalized polynomials. A generalized polynomial of order n of
the class Us,2(A;B;C) is called that regular solution of equation (3) whose
analytic divisor is a classical polynomial of order n [27, p. 167].

Suppose

ν′2k = R−A,−B
∞ (zk), ν′2k+1(z) = R−A,−B

∞ (izk).

2.5. The space Lp(·)(Γ). For the measurable on Γ function f(t) we put

∥f∥p(·) = inf{λ > 0 :

b∫
0

∣∣∣f(t(σ))
λ

∣∣∣p(t(σ))dσ ≤ 1},
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where t = t(σ), 0 ≤ σ ≤ l is the equation of the curve Γ with respect to the
arc abscissa σ. And let

Lp(·)(Γ) = {f : ∥f∥p(·) < ∞}.

For p ∈ P (Γ), the set Lp(σ)(Γ) with the norm ∥·∥p(·) is the Banach space.

3. The Variable Exponent Smirnov Class

3.1. Definition. We say that the generalized analytic function W belongs
to the class Ep(·)(A;B;G), if W ∈ Us,2(A;B;G), s > 2 and

sup
0<ρ<1

2π∫
0

|W (z(ρeiθ))|p(θ)|z′(ρeiθ)|dθ < ∞, p(θ) ≡ p(z(eiθ)), (8)

where z = z(ρeiθ) is the comformal mapping of U onto G (for details on
those classes, see [21]).

If W ∈ Ep(·)(A;B;G), p ∈ P (Γ) then almost for all t ∈ Γ, there exists
an angular boundary value W+(t), and the function t → W+(t) belongs to
Lp(·)(Γ).

It follows from the representation (7) that the belonging of W to the
class Ep(·)(A;B;G) is equivalent to the fact that the function ΦW belongs
to the class Ep(·)(G), i.e.,

sup
2π∫
0

|ΦW (z(ρeiθ))|p(θ)|z′(ρeiθ)|dθ < ∞.

If G is an unbounded domain and there is the polynomial Q(z) such that
[Φ(z)−Q(z)] ∈ Ep(·)(G), we write Φ ∈ Ẽp(t)(G).

3.2. Classes of functions representable by the generalized Cauchy
type integral. Let Γ be a simple rectifiable curve bounding the domains
G+ and G−, Ω1(z, t) and let Ω2(z, t) be the kernels of the class Us,2(A;B;C),
f ∈ L(Γ). The function

(K̃Γf)(z) =

∫
Γ

Ω1(z, t)f(t)dt− Ω2(z, t)f(t)dt, z∈Γ

is called the generalized Cauchy type integral [27, p. 198].
This function is a regular solution of (3) of the class Us,2(A;B;C).
Assume

Kp(t)(A;B; Γ) = {W : W (z) = (K̃Γf)(z), f ∈ Lp(·)(Γ)};

Kp(t)(Γ) = Kp(t)(0; 0; Γ).

K̃p(t)(A;B; Γ) = {W : ∃ polynomial p
W

: W (z) = W0(z) + p
W
(z), W0 ∈

Kp(t)(A;B; Γ)}.
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4. Classes of Curves

4.1. Lavrent’ev’s curves (of the class Λ). The curve Γ belongs to the
class Λ, if supt1,t2∈Γ s(t1, t2)[|t1 − t2|−1] < ∞, where s(t1, t2) is the length
of the least of two arcs lying on Γ and joining t1 and t2.

4.2. The class I0. I0 is a set of curves Γ with the equation t = t(σ),
0 ≤ σ ≤ l (with respect to the arc abscissa) for which there exists a smooth
curve with the equation µ = µ(σ), 0 ≤ σ ≤ l such that

ess sup
0≤σ0≤l

l∫
0

∣∣∣ t′(σ)

t(σ)− t(σ0)
− µ′(σ)

µ(σ)− µ(σ0)

∣∣∣dσ < ∞.

4.3. The class I∗. The simple curve Γ belongs to the class I∗, if Γ ∈ Λ
and it can be represented as a finite union of arcs of the class I0, having
tangents at the ends.

4.4. Examples. I∗ contains piecewis-smooth and piecewise-Radonean
curves without cusps (see [4], pp. 23-30, [1], pp. 146-7).

5. The class of functions A(p(t),Γ).

A measurable function a(t) belongs to the class A(p(t),Γ), if
1) 0 < m = ess inf

t∈Γ
|a(t)| ≤ ess sup

t∈Γ
|a(t)| = M < ∞;

2) for every point τ ∈ Γ, there exists the arc Γτ ⊂ Γ containing τ on
which almost all values a(t) lie inside of the angle with vertex at the origin,
of size less than

ατ = 2π
[

sup
t∈Γτ

max(p(t), q(t))
]−1

, q(τ) =
p(τ)

p(τ)− 1
.

For the function a(t) from A(p(t),Γ), following [26], we define a branch of
the function arg a(t). We select a finite covering of Γ by the arcs Γk = Γτk .

Let c be the point on Γτ1 at which there exists the tangent and the point
a(σ) lies inside of the angle of size αr1 . We fix (arg a(c))− ∈ [0, 2π). Moving
along γ, we define the value arg a(t) so as for t1, t2, lying on one of the arcs
Γτk , to have | arg a(t1)− arg a(t2)| < ατk . Going around Γ, the point c falls
into Γτ1 with a new value (arg(c))+.

The number
κ =

1

2π

[
(arg a(c))+ − (arg a(c))−

]
(9)

is the integer, independent of the covering of Γ by the arcs Γk, and the
choice of c. We call this number an index of the function a(t) and write
κ = ind a(t).

For p = const, the class A(p,Γ) coincides with the known I. Simonenko’s
class [26].
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6. Statement of the Riemann problem.

When Γ is the Carleson curve bounding the domains G+ and G−, and
A,B ∈ Ls,2(G+), s > 2, p ∈ P (Γ), p = sup

t∈Γ
p(t),

p′ =
p

p− 1
,

s

2
> p′ (10)

then as is proved in [21], the equality
Kp(·)(A;B;G+) = Ep(·)(A;B;G+) (11)

holds.
In particular, inclusion (11) holds if

A,B ∈ L∞(G+), p ∈ P (Γ). (12)
When

Γ ∈ I∗, p ∈ P (Γ), a ∈ A(p(t),Γ), b ∈ Lp(t)(Γ) (13)
problem (5) in the class Kp(t)(Γ) has been investigated in [22].

Since when solving problem (5) in the class Kp(t)(A;B; Γ), of impor-
tance for us is equality (11) and knowledge of a picture of its solvability in
Kp(t)(A;B; Γ), we will assume that the condition

Γ ∈ I∗, A,B ∈ Ls,2(G), s > 2, p ∈ P (Γ),
s

2
> p′, (14)

or
Γ ∈ I∗, A,B ∈ L∞(G), p ∈ P (Γ), (15)

is fulfilled.
In the first case, the choice for A,B is wide, but the set of admissible

p(t) is bounded by the condition s
2 > p′. In the second case, the set of A

and B contracts, but now p(t) is arbitrary from P (Γ).
Thus, let condition (14) or (15) be fulfilled and we are required to find a

generalized analytic function W which is a regular solution of equation (3),
representable by the generalized Cauchy type integral with density Lp(·)(Γ)
and almost everywhere on Γ equality (5) is valid.

When we say that W is a regular solution of problem (5), we regard that
all the conditions adopted in this section for W are satisfied.

7. Solution of the Problem

7.1. One necessary condition of solvability. If
Γ ∈ I∗, a ∈ A(p(t),Γ) p ∈ P (Γ). (16)

then the function

X(z) =

{
exph(z), z ∈ G+,

(z − z0)
−κ exph(z), z0 ∈ G+, z ∈ G− (17)
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satisfies the following conditions: there exists δ > 0 such that

X(z) ∈ Ẽp(t)+δ(G±), (18)

[X(z)]−1 ∈ Ẽq(t)+δ(G±) (19)
a(t) = X+(t)[X−(t)]−1 (20)

(see [22]).
We write condition (5) in the form

W+(X+)−1 −W−(X−)−1 = b(X+)−1, (21)
and assume

V = W (X)−1. (22)

Lemma 1. Let

LW = ∂zW +AW +BW, L1V = ∂zV +AV +B
X

X
V .

If LW = 0, then L1V = 0, where V is given by equality (22). Conversely,
if L1V = 0 and W = V X, then LW = 0.

Proof. Since X(z) and (X(z))−1 are the functions, analytic in G, it can be
easily verified that

L1V = L1
W

X
=

1

X
(∂zW +AW +BW ) =

1

X
LW.

From the above equality follow two statements of the lemma. �

Corollary 1. If W ∈ Us,2(A;B;G), s > 2 then V ∈ Us,2(A;BX
X ;G).

Corollary 2. If V is the function given by equality (22), then
V = ΦV expωV , (23)

where
ΦV =

ΦW

X
, ω

V
= ω

W
. (24)

Proof. We have

V =
W

X
=

ΦW

X
expωW ,

ω
W

=

∫∫
G

(
A+B

W

W

) dξdη

ζ − z
=

∫∫
G

(
A+B

XV

XV

) dξdη

ζ − z
=

=

∫∫
G

(
A+B

X

X

V

V

) dξdη

ζ − z
= ω

V
; (25)

(We have used here the equality W = V X and Corollary 1).
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Thus,
V = ΦV expω

V
=

ΦW

X
expω

V

and hence,
ΦV =

ΦW

X
. (26)

Equalities (25) and (26) are just the provable by us equalities (24). �

Since ΦW ∈ Ep(·)(G+) and 1
X ∈ Ẽq(·)+δ(G±) (see (19)), it follows from

(26) that ΦV ∈ E1+ε(G+), ε > 0 and hence V ∈ E1+ε
(
A;BX

X ;G+
)

. Be-
havior of the function ϕV in the domain G− depends on 1

X .
If κ = ind a ≥ 0, then it is easily seen from (17) that limz→∞ V (z) = 0

for κ = 0 and limz→∞ V (z) = const for κ = 1.
For κ > 1, the function V at the point z = ∞ admits the pole of order

κ−1. Therefore there exist Φ̃ ∈ E1+ε(G−), ε > 0 and the polynomial Qκ−1

of order κ − 1 such that
ΦV = Φ̃ +Qκ−1.

By virtue of (21)–(22), we have

V + − V − =
b

X+
.

Since ΦV and Φ̃V belong to E1+ε(G±), then W belongs to the class
E1+ε

(
A;BX

X ;G±
)

.
Let Ω1,1(z, t) and Ω2,1(z, t) be the principal kernels of the class

Us,2
(
A;BX

X ;G±
)
s > 2. Then

W (z)

X(z)
= V (z) = K̃Γ,1

( b

X+

)
+ Vκ−1(z),

where

K̂Γ,1

( b

X+

)
=

∫
Γ

Ω1,1(z, t)
b(t)

X+(t)
− Ω2,1(z, t)

( b(t)

X+(t)

)
dt

where V̂κ−1(z) is the generalized polynomial of order κ − 1. This implies
that one possible solution of problem (5) will be

W (z) = X(z)Wb(z) +X(z)V̂χ−1(z), (27)
where

Wb(z) = K̃Γ,1

( b

X+

)
.

Since
b

X+
∈ L1+η(Γ), η > 0
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we have

W = X
(
K̃Γ,1

b

X+

)
= XΦWb

expω
Wb

∈ Eη
(
A;B

X

X
;G±

)
. (28)

Next,

W+
b =

1

2

(
b+X+S̃Γ,1

( b

X+

))
, W−

b =
1

2a

(
− b+X+S̃Γ,1

( b

X+

))
. (29)

This implies that for the inclusion Wb ∈ Kp(·)(A;B; Γ) it is necessary
that

(Tb)(t) = X+(t)S̃Γ,1

( b

X+

)
(t) ∈ Lp(t)(Γ). (30)

Conversely, if (30) holds, then Wb ∈ Eη
(
A;BX

X ;G±
)

and (Wb)
+ ∈

Lp(t)(Γ). According to the generalized Smirnov’s theorem (see [17]), we
will have Wb ∈ Ep̃(t)(A;B;G), where p̃(t) = max(p(t), η) = p(t), i.e.,

Wb(z) ∈ Ep(t)(A;B;G±). (31)
Thus the following lemma is valid.
Lemma 2. For problem (5) to be solvable for κ ≥ 0, it is necerssary and

sufficient that inclusions (30) be fulfilled.
Let condition (30) be fulfilled. Find out under what additional conditions

Wb is a particular solution of problem (5) and construct its general solution.
We consider separately the cases κ ≥ 0 and κ < 0.

7.2. The case κ ≥ 0. By virtue of (31),
Wb(z)=K̃Γ,1(W

+
b −W−

b ) = (K̃Γ,1f)(z), f(t)=(W+
b (t)−W−

b (t)) ∈ Lp(t)(Γ).

Since Γ∈I∗; p∈H(Γ) and Wb(∞)=0, we have Wb(z) ∈ Kp(·)
(
A;BX

X ; Γ
)

(see Corollary 1).
Therefore (K̃Γ,1f)(z) ∈ Ep(·)

(
A;BX

X ;G±
)

, and hence, Wb is the solution
of problem (5). Now, to find its general solution, we have to solve the
problem

V + − V − = 0 (32)
in the class of functions whose analytic divisor admits the representation
Φv = Φ̃v +Qκ−1, Φ̃ ∈ Ep(t)(G±).

It follows from (32) that Φ̃+
v − Φ̃v = 0, and since Wb ∈ Kp(·)

(
A, BX

X ,Γ
)

,
therefore Φ̃v = 0. Consequently, the solutions of (32) are the functions V
for which analytic divisor is the polynomial Qκ−1.

We denote such a function by V̂κ−1. Then if condition (30) is fulfilled, a
general solution of the problem is

W (z) = X(z)K̃Γ,1

( b

X+

)
(z) +X(z)Ṽκ−1(z). (33)
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7.3. The case κ < 0. In this case the only one possible solution of the
problem may be only the function Wb(z); however, for this function to be
of the class Ep(·)(A;B;G−), it is necessary and sufficient that the function
K̃Γ,1

(
b

X+

)
(z) at the point z = ∞ have zero of order |κ|. For this to be so,

it is necessary and sufficient that

Im
∫
Γ

uk(t)b(t)dt = 0, k = 0, 1, . . . , 2(1 + |κ|)− 3, (34)

where uk are linearly independent solutions of the homogeneous problem

u+(t) =
1

a(t)
u−(t) (35)

(see [4], p. 53).
Let us show that uk belongs to Eq(t)(G±).
Since 1

a(t) ∈ A(q(t),Γ) and ind 1
a(t) = −κ > 0, according to the result

obtained in item 7.2, the solutions of problem (35) are given by the equality

u(z) =
1

X(z)
ũ|κ|−1,

where û|κ|−1 is the generalized polynomial of order |κ| − 1.
Consequently, the analytic divisor of the generalized analytic function

u(z) is Q|κ|−1(z)

X(z) .
By virtue of the fact that we have inclusion (19) and Φu(∞) = 0, we can

conclude that ΦW (z) ∈ Eq(t)(G±), and hence, u(z) ∈ Eq(·)(A;B;G±). This
implies that the function Wb under conditions (30) and (34) is the solution
of problem (5).

7.4. The main theorem. From the results obtained in items 6.2 and 6.3 it
follows that if condition (14) or (15) with respect to Γ, p(t), a(t), b(t) are ful-
filled, then for the Riemann problem considered in the class Kp(t)(A;B; Γ)
(or in PEp(t)(A;B; Γ)), the theorem, analogous to that appearing in the
classical assumptions and in the class Kp(t)(Γ), is valid.

Theorem. Let Γ be the simple closed curve bounding the domains G+

and G− and let the condition (14) or (15) be fulfilled. If, moreover, a(t) ∈
Λ(p(t),Γ), b(t) ∈ Lp(·)(Γ) and κ = ind a(t), then for problem (5) to be
solvable in the class Kp(t)(A;B; Γ), it is necessary and sufficient that the
condition

(T̃ b)(t) = X+(t)
(
S̃Γ,1

b

X+

)
(t) ∈ Lp(t)(Γ)

be fulfilled, where S̃Γ,1 is the generalized Cauchy singular integral with prin-
cipal kernels Ω1,1 and Ω1,2 of the class Us,2(A;BX

X ;G±), and X(z) is the
function given by equality (17).
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If this condition is fulfilled, then:
(i) when κ = ind a ≥ 0, the problem is solvable and its general solution

is given by the equality

W (z) = X(z)K̃
( b

X+

)
(z) +X(z)V̂κ−1(z),

where Ṽκ−1(z) is an arbitrary generalized polynomial of order (Vκ−1(z)
= 0);

(ii) when κ < 0, then for the solvability of the problem it is necessary
and sufficient that the condition T̃ b ∈ Lp(t)(Γ) and

Im
∫
Γ

uk(t)b(t)dt = 0, k = 0, 1, . . . , 2(1 + |x|)− 3

be fulfilled, where uk are linearly independent solutions of the class Kp(t)(−A;

−BX
X ; Γ) of the problem

u+(t) =
1

a(t)
u−(t).

Remark. If b ∈ Lp(t)+δ(δ), δ > 0 then T̃b ∈ Lp(t)(Γ).
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CRITERIA FOR THE BOUNDEDNESS OF POTENTIAL
OPERATORS IN GRAND LEBESGUE SPACES

A. MESKHI

Abstract. It is shown that the fractional integral operators with
the parameter α, 0 < α < 1, are not bounded between the
generalized grand Lebesgue spaces Lp),θ1 and Lq),θ2 for θ2 <
θ1q/p, where 1 < p < 1/α and q = p

1−αp
. It is proved that the

one–weight inequality
∥Iα(fwα)∥

L
q), θq/p
w

≤ c∥f∥
L
p),θ
w

,

where Iα is the potential operator on the interval [0, 1], holds if
and only if w ∈ A1+q/p′([0, 1]).

ÒÄÆÉÖÌÄ. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ßÉËÀÃÖÒÉ ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀ-
ÔÏÒÉ α ÐÀÒÀÌÄÔÒÉÈ, 0 < α < 1, ÀÒ ÀÒÉÓ ÛÄÌÏÓÀÆÙÅÒÖËÉ
Lp),θ1 ÃÀ Lq),θ2 ÂÒÀÍÃ ËÄÁÄÂÉÓ ÓÉÒÅÒÝÄÄÁÓ ÛÏÒÉÓ, ÓÀÃÀÝ
θ2 < θ1q/p, 1 < p < 1/α ÃÀ q = p

1−αp
. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ

ÄÒÈßÏÍÉÀÍÉ ÖÔÏËÏÁÀ

∥Iα(fwα)∥
L
q), θq/p
w

≤ c∥f∥
L
p),θ
w

,

ÓÀÃÀÝ Iα ÐÏÔÄÍÝÉÀËÉÓ ÏÐÄÒÀÔÏÒÉÀ [0, 1] ÉÍÔÄÒÅÀËÆÄ, ÞÀ-
ËÀÛÉÀ ÌÀÛÉÍ ÃÀ ÌáÏËÏÃ ÌÀÛÉÍ, ÒÏÝÀ w ∈ A1+q/p′([0, 1]).

Introduction

In this paper we prove that potential operators with the parameter α,
0 < α < 1, are not bounded from Lp) to Lq), where 1 < p < ∞ and q is
the Hardy–Littlewood–Sobolev exponent of p: q = p

1−αp . This phenomena
motivates us to investigate the boundedness problem for the Riesz potential
operator Iα in the generalized grand Lebesgue spaces. In particular, we
study this problem in weighted Lp),θ

w spaces and prove that the one–weight

2010 Mathematics Subject Classification. 42B25, 46E30.
Key words and phrases. Fractional integrals, grand Lebesque spaces, one-weight in-

equality, boundedness, one-sided potentials.
The results of this paper were presented in the Seminars of the Department of Math-

ematical Analysis at A. Razmadze Mathematical Institute on October 13, 2011. They
were included also in the preprint [10].



120 A. MESKHI

inequality
∥Iα(fwα)∥

L
q), θq/p
w ([0,1])

≤ c∥f∥
L
p),θ
w ([0,1])

holds if and only if w belongs to the Muckenhoupt’s class A1+q/p′ .
The unweight spaces Lp),θ (i.e. Lp),θ

w for w ≡ const) were introduced by
E. Greco, T. Iwaniec and C. Sbordone [6] when they studied existence and
uniqueness of the nonhomogeneous n− harmonic equation divA(x,∇u) = µ.

The grand Lebesgue spaces Lp) = Lp),1 first appeared in the paper by
T. Iwaniec and C. Sbordone [7]. In that paper the authors showed that if
f = (f1, . . . , fn) : Ω → Rn belongs to the Sobolev class W 1,1, where Ω is
an open subset in Rn, n ≥ 2, then the Jacobian determinant J = J(f, x) =
det Df(x) (J(x, f) ≥ 0 a.e.) of f belongs to the class L1

loc(Ω) provided that
g ∈ Ln), where

g(x) := |Df(x)| = {sup |Df(x)y| : y ∈ Sn−1}.

Recently necessary and sufficient conditions guaranteeing the one–weight
inequality for the Hardy–Littlewood maximal operator in L

p)
w (I), where

I = [0, 1], were established by A. Fiorenza, B. Gupra and P. Jain [4], while
the same problem for the Hilbert transform was studied in the paper [9].
In particular, it turned out that the Hardy–Littlewood maximal operator
(resp. the Hilbert transform) is bounded in Lp)

w (I) if and only if the weight
w belongs to the Muckenhoupt class Ap(I).

1. Preliminaries

Let Ω be a bounded subset of Rn and let w be an a.e. positive, integrable
function on Ω (i.e. a weight). The weighted generalized grand Lebesgue
space Lp),θ(Ω) (1 < p < ∞) is the class of those f : Ω → R for which the
norm

∥f∥
L
p),θ
w (Ω)

= sup
0<ε≤p−1

(
εθ

|Ω|

∫
Ω

|f(t)|p−εw(t)dt

)1/(p−ε)

is finite.
If w ≡ const 1, then we denote Lp),θ(Ω) := L

p),θ
w (Ω). The space Lp),θ

w (Ω)
is not rearrangement invariant unless w ≡ const.

Hölder’s inequality and simple estimates yield the following embeddings
(see also [6], [4]):

Lp
w(Ω) ⊂ Lp),θ1

w (Ω) ⊂ Lp),θ2
w (Ω) ⊂ Lp−ε

w (Ω), (1.1)

where 0 < ε < p− 1 and θ1 < θ2.
In the classical weighted Lebesgue spaces Lp

w the equality

∥f∥Lpw = ∥w1/pf∥Lp
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holds but this property fails in the case of grand Lebesgue spaces. In par-
ticular, there is f ∈ L

p)
w such that w1/pf /∈ Lp) (see also [4] for the details).

Let φ be positive increasing function on (0, p−1) satisfying the condition
φ(0+) = 0, where 1 < p < ∞. We will also need the following auxiliary
class of functions defined on Ω and associated with φ:

Lp),φ(x)
w (Ω) :=

{
f : sup

0<ε≤p−1

(
φ(ε)

1
p−ε ∥f∥Lp−εw

)
<∞

}
.

The space L
p),θ
w (Ω), θ > 0, is the special case of Lp),φ(x)

w (Ω) taking
φ(x) = xθ

|Ω| .
Throughout the paper the symbol φ(t) ≈ ψ(t) means that there exist

positive constants c1 and c2 such that c1φ(t) ≤ ψ(t) ≤ c2ψ(t). Constants
(often different constants in the same series of inequalities) will generally
be denoted by c or C. By the symbol p′ we denote the conjugate number
of p, i.e. p′ := p

p−1 , 1 < p <∞.

2. Fractional Integrals and Fractional Maximal Functions in
Unweighted Grand Lebesgue Spaces

Let

(Iαf)(x) =

1∫
0

f(y)

|x− y|1−α
dy, 0 < α < 1

be the Riesz potential operator defined on [0, 1]. We begin this section with
the following result:

Theorem 2.1. Let 0 < α < 1, 1 < p < 1
α , θ1 and θ2 be positive numbers

such that θ2 < θ1q/p, where q = p
1−αp . Then the operator Iα is not bounded

from Lp),θ1 to Lq),θ2 .

Proof. First observe that q/p = 1+αq. Suppose the contrary: Iα is bounded
from Lp),θ1 to Lq),θ2 i. e. the inequality

∥Iαf∥Lq),θ2 ≤ c∥f∥Lp),θ1 (2.1)

holds, where the positive constant c does not depend on f . Taking f = χJ

in (2.1), where J is an interval in [0, 1], we have

(Iαf)(x) =

∫
J

dy

|x− y|1−α
≥ |J |α, x ∈ J.

Consequently,
∥Iαf∥Lq),θ2 ≥ |J |α∥χJ∥Lq),θ2 .

Taking inequality (2.1) into account we have that
|J |α∥χJ∥Lq),θ2 ≤ c∥χJ∥Lp),θ1 , (2.2)
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where the positive constant c does not depend on J .
Let us define the number εJ ∈ (0, p− 1] satisfying the condition

sup
0<ε≤p−1

(
εθ1 |J |

) 1
p−ε =

(
εθ1J |J |

) 1
p−εJ . (2.3)

Now we claim that lim
|J|→0

εJ = 0. Indeed, suppose the contrary: that there

is a sequence of intervals Jn and a positive number λ such that |Jn| → 0
and εJn ≥ λ > 0 for all n ∈ N . It is obvious that we can choose Jn0 so that

|Jn0 |
1
θ1 (p− 1)

e
< e−

p
λ/2 .

Now we claim that g′(x) < 0 for x satisfying the condition x ∈ [λ/2, p− 1],
where g(x) =

(
xθ1 |Jn0 |

) 1
p−x . Indeed, it is easy to see that for such an x,

|Jn0
|

1
θ1 x

e
≤ |Jn0

|
1
θ1 (p− 1)

e
< e−

p
λ/2 ≤ e−

p
x

hold. Hence, using the formula

g′(t) = g(t) · 1

p− t

[
ln
(
tθ1 |Jn0 |

)
p− t

+
θ1
t

]
and the fact that

g′(t) < 0 ⇐⇒ t|Jn0 |
1
θ1

e
< e−

p
t

we conclude that g′(x) < 0 for x ∈ [λ/2, p − 1]. This observation together
with the equality lim

x→0
g(x) = 0 gives that 0 < εJn0

< λ, where εJn0
is

defined by

sup
0<ε≤p−1

(
εθ1 |Jn0 |

) 1
p−ε =

(
εθ1Jn0

|Jn0 |
)1/(p−εJn0

)

.

This contradicts the assumption that εJn ≥ λ > 0 for all n.
Further, we choose ηJ so that

α =
1

p
− 1

q
=

1

p− εJ
− 1

q − ηJ
.

This is equivalent to say that

ηJ = q − p− εJ
1− α(p− εJ)

. (2.4)

By (2.2) and (2.3) we have that

|J |αη
θ2

q−ηJ
J |J |

1
q−ηJ ≤ cε

θ1
p−εJ
J |J |

1
p−εJ . (2.5)
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(here we used the fact that if εJ is small, then 0 < ηJ < q − 1). Now (2.5)
yields:

η
θ2

q−ηJ
J ε

− θ1
p−εJ

J ≤ c. (2.6)

Further, (2.4) and (2.6) imply(
q − p−εJ

1−α(p−εJ )

εJ

) θ2
p−εJ

−αθ2

ε
− θ1
p−εJ

+
θ2

p−εJ
−αθ2

J ≤ c. (2.7)

Passing now to the limit as |J | → 0 we see that the left-hand side of (2.7)

tends to +∞ because the limit of the first factor is
[

1
(1−αp)2

] θ2
p −αθ2

, and

lim
|J|→0

ε
θ2−θ1
p−εJ

−αθ2

J = lim
|J|→0

ε
θ2−θ1
p −αθ2

J = ∞

(Here we used the observation θ2
θ1
< 1 + αq ⇐⇒ θ2−θ1

p − αθ2 < 0). �

Analysing the proof of Theorem 2.1 we have the result similar to that of
the previous statement for the fractional maximal operator

Mαf(x) = sup
J∋x

J⊂[0,1]

1

|J |1−α

∫
J

|f |, x ∈ [0, 1].

Theorem 2.2. Let the conditions of Theorem 2.1 be satisfied. Then the
operator Mα is not bounded from Lp),θ1 to Lq),θ2 .

Proof. Proof is the same as in the case of Theorem 2.1. We only need to
observe that the inequality

Mαf(x) ≥
1

|J |1−α

∫
J

dx = |J |α, x ∈ J,

holds for f(x) = χJ(x), where J is a subinterval of [0, 1]. Details are
omitted. �

3. Sobolev’s Embedding in Weighted Generalized Grand
Lebesgue Spaces

This section is devoted to the investigation of the one–weight inequality
for the operator Iα in L

p),θ
w spaces.

First we introduce the function

φ(u) =

[
u− q

1− α(u− q)
+ p

]1−(u−q)α

(3.1)

where 0 < α < 1, 1 < p < 1
α , q = p

1−αp .

To prove the main results we need some auxiliary statements.
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Lemma 3.1. φ(x) ≈ x1+αq near 0.

The proof is straightforward and therefore is omitted.

Lemma 3.2. Let 1 < q <∞ and let w be a weight. Then
∥f∥

L
q),φ(x)
w ([0,1])

≈ ∥f∥
L
q),1+αq
w ([0,1])

where φ is defined by (3.1).

Proof. Follows immediately from Lemma 3.1. �

Lemma 3.3. Let 1 < q <∞ and let θ > 0. Then
∥f∥

L
q),φ(xθ)
w ([0,1])

≈ ∥f∥
L
q),θ(1+αq)
w ([0,1])

,

where φ is defined by (3.1).

The proof follows immediately from Lemma 3.1.

Lemma 3.4. Let 1 < p <∞ and let Φ be a positive increasing function
on (0, p− 1) satisfying Φ(0+) = 0. Then there is a positive constant c such
that for all intervals J ⊂ [0, 1] and f ∈ L

p,Φ(x)
w the inequality

∥f∥
L
p),Φ(x)
w (J)

≤ c(w(J))−
1
p

(∫
J

|f(t)|pw(t)dt
) 1
p

∥χJ∥Lp),Φ(x)
w

holds.

Proof. We have

∥f∥
L
p),Φ(x)
w (J)

= sup
0<ε≤p−1

(
Φ(ε)

∫
J

|f(x)|p−εw(x)dx

) 1
p−ε

=

= sup
0<ε≤p−1

(
Φ(ε)

∫
J

|f(x)|p−εw(x)
p−ε
p w(x)

ε
p dx

) 1
p−ε

≤

≤ sup
0<ε≤p−1

Φ(ε)
1
p−ε

(∫
J

(
|f(x)|p−εw(x)

p−ε
p

) p
p−ε

dx

) 1
p

×

×
(∫

J

[
w
ε
p (x)

] p
ε

dx

) ε
p(p−ε)

=

= sup
0<ε≤p−1

Φ(ε)
1
p−ε

(∫
J

|f(x)|pw(x)dx
) 1
p
(∫

J

w(x)dx

) ε
p(p−ε)

=

=

(∫
J

|f(x)|pw(x)dx
) 1
p
(∫

J

w(x)dx

)− 1
p

sup
0<ε≤p−1

(
Φ(ε)

∫
J

w(x)dx

) 1
p−ε

=
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=

(∫
J

|f(x)|pw(x)dx
) 1
p

(w(J))−
1
p ∥χJ∥Lp),Φ(x)

w (J)
. �

Lemma 3.5. Let θ > 0, 1 < p < ∞, 0 < α < 1/p and let q = p
1−αp .

Let ψ be a positive increasing function on (0, q− 1) satisfying the condition
ψ(0+) = 0. Suppose that the inequality

∥Iα(fwα)∥
L
q),ψ(x)
w ([0,1])

≤ c∥f∥
L
p),θ
w ([0,1])

(3.2)

holds. Then
1∫

0

w−p′/q(x)dx <∞.

Proof. Suppose the contrary:
1∫
0

w−p′/q(x)dx = ∥wα−1∥
Lp

′
w

= ∞. This

means that there is a function g ∈ Lp
w such that

1∫
0

gwα = ∞.

On the other hand,

Iα(gw
α)(x) =

1∫
0

g(t)wα(t)

|x− t|1−α
dt ≥

1∫
0

g(t)wα(t)dt = ∞, x ∈ [0, 1].

Further, Lemma A implies that g ∈ L
p),θ
w ([0, 1]). This contradicts (i). �

Definition 3.1. Let 1 < r <∞. We say that a weight function w belongs
to the Muckenhoupt’s class Ar([0, 1]) (w ∈ Ar([0, 1])) if

Ar(w) := sup
J⊂[0,1]

(
1

|J |

∫
J

w(t)dt

)1/r(
1

|J |

∫
J

w1−r′(t)dt

)1/r′

<∞,

where the supremum is taken over all subintervals J of [0, 1].

Lemma 3.6. Let 0 < α < 1, 1 < p < 1/α. We set q = p
1−αp . Suppose

that w ∈ A1+q/p′([0, 1]), i.e.,

sup
J⊂[0,1]

(
1

|J |

∫
J

w(t)dt

)1/q(
1

|J |

∫
J

w−p′/q(t)dt

)1/p′

<∞.

Then there are positive constants σ1, σ2 and L satisfying the conditions:
1

p− σ2
− 1

q − σ1
= α, w ∈ A

1+
q−σ1

(p−σ2)′
,

∥Kα∥Lp−ηw →Lq−εw
≤ L

for all 0 ≤ ε ≤ σ1, 0 ≤ η ≤ σ2 with 1
p−η − 1

q−ε = α, where Kα is the
operator defined as follows Kαf = Iα(fw

α).
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Proof. Since w ∈ A1+q/p′ by the openness property of Muckenhoupt’s classes
(see [11]) we have that there are small positive numbers σ1 and σ2 such that

1
p−σ2

− 1
q−σ1

= α and w ∈ A1+(q−σ1)/(p−σ2)′ .
Now we use the idea from [8]. By the result of B. Muckenhoupt and

R. L. Wheeden [12] we have that the operator Kα is bounded from Lp
w to

Lq
w and from Lp−σ2

w to Lq−σ1
w . Let 0 < t < 1 and let us define positive

numbers η and ε so that
1

p− η
=
t

p
+

1− t

p− σ2
,

1

q − ε
=
t

q
+

1− t

q − σ1
.

Then by applying the Riesz–Thorin theorem (see e.g. [2], p. 16) we have
that Kα is bounded from Lp−η

w to Lq−ε
w and moreover,

∥Kα∥Lp−ηw →Lq−εw
≤ ∥Kα∥tLpw→Lqw

∥Kα∥1−t

L
p−σ2
w →L

q−σ1
w

.

Observe now that
1

p− η
− 1

q − ε
=
t

p
− t

q
+

1− t

p− σ2
− 1− t

q − σ1
=

= t
(1
p
− 1

q

)
+ (1− t)

( 1

p− σ2
− 1

q − σ1

)
= tα+ (1− t)α = α.

The lemma is proved since we can take L = ∥Kα∥Lpw→Lqw∥Kα∥Lp−σ2w →L
q−σ1
w

(since without loss of generality we can assume that each factor in the latter
expression is greater or equal to 1). �

Theorem 3.1. Let 1 < p <∞ and let 0 < α < 1/p. Suppose that θ > 0.
We set q = p

1−αp . Then the inequality

∥Iα(fwα)∥
L
q),θq/p
w ([0,1])

≤ c∥f∥
L
p),θ
w ([0,1])

(3.3)

holds if and only if w ∈ A1+q/p′([0, 1]).

Proof. By Lemma 3.1 we have that (3.3) is equivalent to the inequality

∥Iα(fwα)∥
L
q),ψ(x)
w ([0,1])

≤ c∥f∥
L
p),θ
w ([0,1])

, (3.4)

where

ψ(x) = φ(xθ), φ(x) =

[
x− q

1− α(x− q)
+ p

]1−(x−q)α

. (3.5)

Necessity. Let (3.3) and hence (3.4) hold. By Lemma 3.5 we have that
1∫
0

w−p′/q <∞. Let us take f = χJw
−α−p′/q. Then for x ∈ J , we get that

Iα(w
αf)(x) ≥ 1

|J |1−α

∫
J

wαf =
1

|J |1−α

∫
J

w−p′/q.
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Hence,

∥Iα(wαf)∥
L
q),ψ(x)
w ([0,1])

≥ |J |α−1

(∫
J

w−p′/q

)
∥χJ∥Lq),ψ(x)

w ([0,1])
.

Further, by Lemma 3.4 with Φ(x) = xθ we find that

|J |α−1

(∫
J

w−p′/q

)
∥χJ∥Lq),ψ(x)

w ([0,1])
≤

≤ c∥f∥Lp),θ([0,1]) ≤ c(w(J))−
1
p

(∫
J

|f(t)|pw(t)dt
) 1
p

∥χJ∥Lp),θw ([0,1])
=

= cw(J)−
1
p

(∫
J

w−p′/q

)1/p

∥χJ∥Lp),θw ([0,1])
.

It is easy to see that there is a number ηJ depending on J such that
0 < ηJ ≤ p− 1 and

|J |α−1w(J)
1
p

(∫
J

w−p′/q

) 1
p′

∥χJ∥Lq),ψ(x)
w ([0,1])

≤ c (ηJw(J))
1

p−ηJ .

For such an ηJ we choose εJ so that
1

p− ηJ
− 1

q − εJ
= α.

Then 0 < εJ ≤ q − 1 and

|J |α−1w(J)
1
p−

1
p−ηJ η

− θ
p−ηJ

J ψ(εJ)
1

q−εJ w(J)
1

q−εJ

(∫
J

w−p′/q

) 1
p′

≤ c.

Observe that by Lemma 3.1 we have that

η
− θ
p−ηJ

J ψ(εJ)
1

q−εJ = η
− θ
p−ηJ

J φ
(
εθJ
) 1
q−εJ ≈ η

− θ
p−ηJ

J ε
θ(1+αq)
q−εJ

J =

=

(
η
− 1
p−ηJ

J ε
1+αq
q−εJ
J

)θ

≈
(
η
− 1
p−ηJ

J φ(εJ)
1

q−εJ

)θ

= 1

and also,
1

p
− 1

p− ηJ
+

1

q − εJ
=

1

p
− α =

1

q
.

Finally, we have that

|J |α−1w(J)
1
q

(∫
J

w−p′/q

)1/p′

≤ c.

Necessity is proved.



128 A. MESKHI

Sufficiency. Using Lemma 3.6 we have that there are positive constants
σ1, σ2 and L satisfying the conditions: 1

p−σ2
− 1

q−σ1
= α, w ∈ A

1+
q−σ1

(p−σ2)′
,

∥Kα∥Lp−ηw →Lq−εw
≤ L for all 0 ≤ ε ≤ σ1, 0 ≤ η ≤ σ2 with 1

p−η − 1
q−ε = α,

where Kα is the operator defined by Kαf = Iα(fw
α).

Let σ be a small positive number such that σ < σ1 < q− 1 and let us fix
ε ∈ (σ, q − 1]. Then q−σ

q−ε > 1. By Hölder’s inequality we have that

∥Iα(fwα)∥Lq−εw ([0,1]) ≤
( 1∫

0

|Iα(fwα)(x)|q−σw(x)dx

) 1
q−σ

w([0, 1])
ε−σ

(q−σ)(q−ε)

because
(

q−σ
q−ε

)′
= q−σ

ε−σ .
Further, the conditions σ < q − 1 and σ < ε < q − 1 yield

0 <
ε− σ

(q − σ)(q − ε)
<
q − 1− σ

q − σ
.

Consequently, using the well–known result by B. Muckenhoupt and
R. L. Wheeden [12] for the classical weighted Lebesgue spaces:

∥Iα(fwα)∥Lqw([0,1]) ≤ c∥f∥Lpw([0,1]) ⇐⇒ w ∈ A1+q/p′([0, 1]), q =
p

1− αp
,

we find that

∥Iα(fwα)∥
L
q),ψ(x)
w ([0,1])

= max
{

sup
0<ε≤σ

ψ(ε)
1
q−ε ∥Iα(fwα)∥Lq−εw ([0,1]),

sup
σ<ε≤q−1

ψ(ε)
1
q−ε ∥Iα(fwα)∥Lq−εw ([0,1])

}
≤

≤ max
{

sup
0<ε≤σ

ψ(ε)
1
q−ε ∥Iα(fwα)∥Lq−εw ([0,1]),

∥Iα(fwα)∥Lq−σw
sup

σ<ε≤q−1
ψ(ε)

1
q−εw([0, 1])

ε−σ
(q−σ)(q−ε)

}
≤

≤ max
{
1, sup

σ<ε≤q−1
ψ(ε)

1
q−εψ(σ)−

1
q−σw([0, 1])

ε−σ
(q−σ)(q−ε)

}
×

× sup
0<ε≤σ

ψ(ε)
1
q−ε ∥Iα(fwα)∥Lq−εw ([0,1]) ≤

≤ cmax
{
1,

[
sup

σ<ε≤q−1
(ψ(ε))

1
q−ε

]
ψ(σ)−

1
q−σ (1 + w([0, 1])

q−1−σ
q−σ

}
×

× sup
0<η≤σ0

η
θ

p−η ∥f∥Lp−ηw ([0,1]) ≤

≤ c

(
sup

σ<ε≤q−1
ψ(ε)

1
q−ε

)
ψ(σ)−

1
q−σ (1 + w([0, 1]))

q−1−σ
q−σ ∥f∥

L
p),θ
w ([0,1])

.
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Here σ0 is small positive number chosen so that if 0 < ε ≤ σ, then 0 < η ≤
σ0 < σ1 < p− 1. Also, we used the estimates:

ψ(ε)
1
q−ε ≈ ε

θ(1+αq)
q−ε ≈ φ(ε)

θ
q−ε = η

θ
p−η , as ε→ 0,

where 1
p−η − 1

q−ε = α. �

Remark 3.1. Theorem 3.1 implies that if 1 < p < ∞, 0 < α < 1/p,
q = p

1−α and µ > 0, then the one-weight inequality

sup
0<ε<q−1

εµ
( 1∫

0

|Iα(fwα)(x)|q−εw(x)dx

) 1
q−ε

≤

≤ C sup
0<η<p−1

ηµ
( 1∫

0

|f(x)|p−ηw(x)dx

) 1
p−η

with the positive constant C independent of f holds if and only if
w ∈ A1+q/p′([0, 1]).

This follows from the following easily verifiable relation

∥g∥
L
r),θ
w ([0,1])

≈ sup
0<ε<r−1

ε
θ
r

( 1∫
0

|g(x)|r−εw(x)dx

) 1
r−ε

,

which holds for weighted grand Lebesgue space Lr),θ
w ([0, 1]), where 1<r<∞

and θ > 0.

Corollary 3.1. Let θ > 0 and let 1 < p <∞. Suppose that 0 < α < 1/p.
We set q = p

1−αp . Then Iα is bounded from Lp),θ1([0, 1]) to Lq),θ2([0, 1])

provided that θ2 > θ1q/p.

Proof. follows immediately from Theorem 3.1 (in the unweighted case
w(x) ≡ const) and (1.1). �

4. One-sided potentials

In this section we show that the unboudedness result in grand Lebesgue
spaces is also true for the one–sided potentials:

(Rαf)(x) =

x∫
0

f(t)

(x− t)1−α
dt, x ∈ (0, 1);

and

(Wαf)(x) =

1∫
x

f(t)

(t− x)1−α
dt, x ∈ (0, 1),
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where 0 < α < 1. In particular, we claim that Rα and Wα are not bounded
from Lp),θ1 to Lq),θ2 , where q = p

1−αp , 1 < p < ∞, θ1, θ2 > 0, θ2 < θ1q
p .

Indeed, let us show the result first for Rα.
Suppose the contrary:

∥Rαf∥Lq),θ2 ([0,1]) ≤ c∥f∥Lp),θ1 ([0,1]), θ2 <
θ1q

p
, (4.1)

where c does not depend on f . Let fn(x) = χ(0,1/2n)(x) in (4.1). Then
taking the following inequality

(Rαfn)(x) ≥

1
2n∫
0

1

(x− t)1−α
dt ≥

( 1

2n

)α
, x ∈

(
1

2n
,
1

n

)
, (4.2)

into account, (4.1) yields that

(2n)−α
∥∥∥χ( 1

2n , 1
n )

∥∥∥
Lq),θ2 ([0,1])

≤ c

∥∥∥∥χ(0,1/2n)

∥∥∥∥
Lp),θ1 ([0,1])

. (4.3)

Now we choose εn positive number so that

sup
0<ε≤p−1

(
εθ1

1

2n

) 1
p−ε

=

(
εθ1n

1

2n

) 1
p−εn

. (4.4)

We now observe that lim
n→0

εn = 0 (see the proof of Theorem 2.1 for the
similar arguments). Choose now ηn so that

α =
1

p
− 1

q
=

1

p− εn
− 1

q − ηn
.

Hence,

ηn = q − p− εn
1− α(p− εn)

. (4.5)

By (4.3)–(4.5) we conclude that

(2n)−αη
θ2

q−ηn
n

(
1

2n

) 1
q−ηn

≤ cε
θ1

p−εn
n (2n)−1/(p−εn). (4.6)

From (4.6) we have that

η
θ2

q−ηn
n ε

− θ1
p−εn

n ≤ cp, for all n ∈ N (4.7)

because
1

2
≤
(
1

2

) 1
p−εn

≤
(
1

2

) 1
p

,

1

2
≤
(
1

2

) 1
q−ηn

≤
(
1

2

) 1
q

.
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Now (4.5) yields[
q − p−εn

1−α(p−εn)

εn

] θ2
p−εn−αθ2

ε
− θ1
p−εn+

θ2
p−εn−αθ2

n ≤ cp.

Hence, [
q − p−εn

1−α(p−εn)

εn

] θ2
p−εn−αθ2

ε
θ2−θ1
p−εn −αθ2
n ≤ cp,

which is impossible, because lim
n→∞

ε
θ2−θ1
p−εn −αθ2
n = ∞ (recall that θ2−θ1

p −αθ2 =

θ2
q − θ1

p < 0).
Analogously, we have that Wα is not bounded from Lp),θ1 to Lq),θ2 . This

follows from the inequalities

(Wα)(x)≥

1− 1
3n∫

x

f(t)

(t− x)1−α
dt ≥

(
2

3n

)α−1

· 1
6n

= cαn
−α, x∈

(
1− 1

n
, 1− 1

2n

)
,

where f(t) = χ(1− 1
2n ,1− 1

3n )(t). Hence,

cαn
−α

∥∥∥∥χ(1− 1
n ,1− 1

2n )

∥∥∥∥
Lq),θ2 ([0,1])

≤ c
∥∥∥χ(1− 1

2n ,1− 1
3n )

∥∥∥
Lp),θ1 ([0,1])

.

Choosing now εn so that[
εθ1n

1

6n

] 1
p−εn

= sup
0<εn≤p−1

[
εθ1n

1

6n

] 1
p−ε

, 0 < εn ≤ p− 1,

and observing that lim
n→∞

εn = 0 (see the proof of Theorem 2.1 for the similar
arguments) we find that the conclusion similar to the case of Rα is valid.

4.1. Conclusions and Remarks.
Let 0 < α < 1 and let Iα, Rα, Wα be potential operators defined above.

In the sequel we denote by Tα one of these operators.

Corollary 4.1. Let 1 < p < ∞ and let 0 < α < 1/p. We set q = p
1−αp .

Suppose that θ1 and θ2 be positive numbers. Then:
(i) If θ2 < θ1q/p, then Tα is not bounded from Lp),θ1 to Lq),θ2 .
(ii) If θ2 ≥ θ1q/p, then Tα is bounded from Lp),θ1 to Lq),θ2 .

Remark 4.1. There is a function f from Lp)\Lp such that Tαf ∈ Lq)\Lq.

Indeed, let f(t) = t−
1
p , t ∈ (0, 1). Then f ∈ Lp)\Lp. On the other hand,

(see e. g. [13]), Tαf ≈ t−
1
q . Hence Tαf ∈ Lq)\Lq.
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ON SLIGHTLY CONTINUOUS MULTIFUNCTIONS VIA
GENERALIZED TOPOLOGY

B. ROY

Abstract. In this paper, the notion of upper (lower) slightly
(µ, σ)-continuous multifunctions has been introduced. Some
characterizations of these types of multifunctions have been
given. Several properties of such multifunctions are also ob-
tained.

ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÛÄÌÏÙÄÁÖËÉÀ ÆÄÃÀ (ØÅÄÃÀ) ÌÝÉÒÄÃ
(µ, σ)-ÖßÚÅÄÔÉ ÌÖËÔÉ×ÖÍØÝÉÄÁÉ. ÌÉÙÄÁÖËÉÀ ÀÓÄÈÉ ÔÉÐÉÓ
×ÖÍØÝÉÄÁÉÓ ÂÀÒÊÅÄÖËÉ ÃÀáÀÓÉÀÈÄÁÀ ÃÀ ÃÀÃÂÄÍÉËÉÀ ÌÀÈÉ
ÆÏÂÉÄÒÈÉ ÈÅÉÓÄÁÀ.

1. Introduction

One of the most important area in the theory of classical point set topol-
ogy is continuity of functions and multifunctions as they are important tools
for studying properties of spaces and for constructing new spaces from pre-
viously existing ones. Several weaker forms of continuous functions have
been introduced and studied by different mathematicians. In [7] A. Kanibir
and I. L. Reilly introduced upper (lower) semi generalized continuous mul-
tifunctions by using the concept of generalized topology. Similar types of
functions have also been studied by C. Boonpok [2]. Such a generalized
topology was first introduced by A. Császár. We first recall some notions
defined in [3]. Let X be a non-empty set, expX denotes the power set of
X. We call a class µ j expX a generalized topology [3], (briefly, GT) if
∅ ∈ µ and union of elements of µ belongs to µ. A set X, with a GT µ on it
is said to be a generalized topological space (briefly, GTS) and is denoted
by (X,µ). For a GTS (X,µ), the elements of µ are called µ-open sets and
the complements of µ-open sets are called µ-closed sets. For A j X, we
denote by cµ(A) the intersection of all µ-closed sets containing A, i.e., the
smallest µ-closed set containing A; and by iµ(A) the union of all µ-open

2010 Mathematics Subject Classification. 54C08, 54C60.
Key words and phrases. Upper (lower) slightly (µ, σ)-continuous multifunctions, µ-

connectedness, (µ, σ)-clopen graph.
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sets contained in A, i.e., the largest µ-open set contained in A (see [3, 4] for
details).

It is easy to observe that iµ and cµ are idempotent and monotonic, where
γ : expX → expX is said to be idempotent iff A j B j X implies γ(γ(A))
= γ(A) and monotonic iff γ(A) j γ(B). It is also well known from [4, 5]
that if µ is a GT on X and A j X, x ∈ X, then x ∈ cµ(A) iff x ∈ M ∈ µ
⇒ M ∩A ̸= ∅ and cµ(X \A) = X \ iµ(A).

Throughout the paper, we shall use (X,µ) to mean a generalized topolog-
ical space and (Y, σ) will denote a topological space. For a subset A, cl(A)
and int(A) denote the closure and interior of A respectively. For a multi-
function F : (X,µ) → (Y, σ), the upper and lower inverse of a set A of Y are
denoted by F+(A) and F−(A) and defined by F+(A) = {x ∈ X : F (x) j A}
and F−(A) = {x ∈ X : F (x) ∩A ̸= ∅}. Also here µ(x) = {U ∈ µ : x ∈ U}.

2. Slightly (µ, σ)-Continuous Multifunctions

Definition 2.1. A multifunction F : (X,µ) → (Y, σ) is said to be
(a) upper slightly (µ, σ)-continuous if for each point x ∈ X and each

clopen set V in Y containing F (x), there exists U ∈ µ(x) in X such that
F (U) j V .

(b) lower slightly (µ, σ)-continuous if for each point x ∈ X and each
clopen set V in Y with F (x)∩V ̸= ∅, there exists U ∈ µ(x) in X such that
F (u) ∩ V ̸= ∅ for each u ∈ U .

Theorem 2.2. For a multifunction F : (X,µ) → (Y, σ) the followings
are equivalent:

(a) F is upper slightly (µ, σ)-continuous;
(b) F+(V ) is µ-open for each clopen set V of Y ;
(c) F−(V ) is µ-closed for each clopen set V of Y .

Proof. (a) ⇒ (b): Let V be any clopen set in Y and x ∈ F+(V ). Then
F (x) j V . Thus by (a), there exists U ∈ µ(x) in X such that F (U) j V .
Thus x ∈ U j F+(V ) and hence x ∈ iµ(F

+(V )). Therefore, F+(V ) j
iµ(F

+(V )) i.e., F+(V ) is µ-open.
(b) ⇒ (c): Let V be a clopen set of Y . Then Y \V is clopen in Y . Then

by (b), X \ F−(V ) = F+(Y \ V ) = iµ(F
+(Y \ V )) = X \ cµ(F−(V )). Thus

F−(V ) = cµ(F
−(V )) i.e., F−(V ) is µ-closed.

(c) ⇒ (b): This follows from the fact that F−(Y \ B) = X \ F+(B) for
any subset B of Y .

(b) ⇒ (a): Let x ∈ X and V be any clopen set of Y containing F (x).
Then x ∈ F+(V ) = iµ(F

+(V )). Thus there exists U ∈ µ(x) such that
U j F+(V ). Therefore, there exists a µ-open set U in X containing x such
that F (U) j V . Thus F is upper slightly (µ, σ)-continuous. �
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Theorem 2.3. For a multifunction F : (X,µ) → (Y, σ) the followings
are equivalent:

(a) F is lower slightly (µ, σ)-continuous;
(b) F−(V ) is µ-open for each clopen set V of Y ;
(c) F+(V ) is µ-closed for each clopen set V of Y .

Proof. (a) ⇒ (b): Let V be a clopen set of Y and x ∈ F−(V ). Then
F (x)∩V ̸= ∅ and hence by (a) there exists U ∈ µ(x) such that F (u)∩V ̸= ∅
for each u ∈ U . Therefore, we have U j F−(V ) and hence x ∈ U j
iµ(F

−(V )). Thus F−(V ) j iµ(F
−(V )) i.e., F−(V ) is µ-open.

(b) ⇒ (c): Let V be a clopen set in Y . Then Y \V is clopen in Y and by
(b), we have X \ F+(V ) = F−(Y \ V ) = iµ(F

−(Y \ V )) = X \ cµ(F+(V )).
Thus F+(V ) is µ-closed.

(c) ⇒ (a): Let x be any point of X and V be any clopen set in Y such that
F (x)∩V ̸= ∅. Then x ∈ F−(V ) and hence x ̸∈ X\F−(V ) = F+(Y \V ). As
Y \ V is clopen in Y , by (c) we have x ̸∈ cµ(F

+(Y \ V )). Thus there exists
U ∈ µ(x) such that U∩F+(Y \V ) = ∅; hence U j F−(V ). Thus F (u)∩V ̸=
∅ for each u ∈ U . Therefore F is lower slightly (µ, σ)-continuous. �

Definition 2.4. A topological space (X, τ) is said to be extremally dis-
connected (in short, E.D.) if closure of each open set in X is open in X.

Theorem 2.5. Let (Y, σ) be an extremally disconnected space. For a
multifunction F : (X,µ) → (Y, σ) the followings are equivalent:

(a) F is upper slightly (µ, σ)-continuous;
(b) cµ(F

−(V )) j F−(cl(V )) for each open set V in Y ;
(c) F+(int(K)) j iµ(F

+(K)) for each closed set K in Y .

Proof. (a) ⇒ (b): Let V be an open set in Y . Then cl(V ) is clopen
in Y (as Y is E.D.). By Theorem 2.2, F−(cl(V )) = cµ(F

−(cl(V ))) and
F−(V ) j F−(cl(V )). Thus c

µ
(F−(V )) j c

µ
(F−(cl(V ))) = F−(cl(V )). So

cµ(F
−(V )) j F−(cl(V )).

(b) ⇒ (c): Let K be any closed set in Y . Put V = Y \ K. Then V is
an open set in Y . Then X \ iµ(F+(K)) = cµ(X \ F+(K)) = cµ(F

−(V )) j
F−(cl(V )) (by (b)) = F−(Y \ int(K)) = X \ F+(int(K)). Thus we have
F+(int(K)) j iµ(F

+(K)).
(c) ⇒ (a): Let x be any point of X and V be a clopen set in Y contain-

ing F (x). Then by (c) we have x ∈ F+(int(V )) = F+(V ) j iµ(F
+(V )).

Therefore, there exists U ∈ µ(x) such that U j F+(V ). Thus there exists
a µ-open set U in X containing x such that F (U) j V . Therefore, F is
upper slightly (µ, σ)-continuous. �

Theorem 2.6. Let (Y, σ) be an extremally disconnected space. For a
multifunction F : (X,µ) → (Y, σ) the followings are equivalent:

(a) F is lower slightly (µ, σ)-continuous;
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(b) cµ(F
+(V )) j F+(cl(V )) for each open set V in Y ;

(c) F−(int(K)) j iµ(F
−(K)) for every closed set K in Y .

Proof. The proof is similar to that of Theorem 2.5. �
Lemma 2.7 ([8]). For a topological space (Y, σ), the followings are equiv-

alent:
(a) (Y, σ) is extremally disconnected;
(b) The closure of every semi-open set of (Y, σ) is open;
(c) The closure of every pre-open set of (Y, σ) is open;
(d) The closure of every β-open set of (Y, σ) is open.

Lemma 2.8. Let (Y, σ) be an extremally disconnected space. For a
multifunction F : (X,µ) → (Y, σ) the followings are equivalent:

(a) F is upper slightly (µ, σ)-continuous;
(b) cµ(F−(V )) j F−(cl(V )) for each semi-open (resp. pre-open, β-open)

set V in Y ;
(c) F+(int(K)) j iµ(F

+(K)) for each semi-closed (resp. pre-closed,
β-closed) set K in Y .

Proof. The proof is similar to that of Theorem 2.5 and it follows from
Theorem 2.2 and Lemma 2.7. �

Theorem 2.9. Let (Y, σ) be an extremally disconnected space. For a
multifunction F : (X,µ) → (Y, σ) the followings are equivalent:

(a) F is lower slightly (µ, σ)-continuous;
(b) cµ(F+(V )) j F+(cl(V )) for each semi-open (resp. pre-open, β-open)

set V in Y ;
(c) F−(int(K)) j iµ(F

−(K)) for each semi-closed (resp. pre-closed,
β-closed) set K in Y .

Proof. The proof is similar to that of Theorem 2.6 and it follows from
Theorem 2.3 and Lemma 2.7. �

Definition 2.10. A multifunction F : (X,µ) → (Y, σ) is said to be
(a) upper (µ, σ)-continuous (resp. upper almost (µ, σ)-continuous, upper

weakly (µ, σ)-continuous) if for each point x ∈ X and each open set V of Y
containing F (x), there exists a µ-open set U in X containing x such that
F (U) j V (resp. F (U) j int(cl(V )), F (U) j cl(V )).

(b) lower (µ, σ)-continuous (resp. lower almost (µ, σ)-continuous, lower
weakly (µ, σ)-continuous) if for each point x ∈ X and each open set V of
Y with F (x) ∩ V ̸= ∅, there exists a µ-open set U in X containing x such
that F (u) ∩ V ̸= ∅ (resp. F (u) ∩ int(cl(V )) ̸= ∅, F (u) ∩ cl(V ) ̸= ∅) for
each u ∈ U .

Theorem 2.11. If a multifunction F : (X,µ) → (Y, σ) is upper weakly
(µ, σ)-continuous, then it is upper slightly (µ, σ)-continuous.
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Proof. Let x ∈ X and V be a clopen set in Y containing F (x). Since F
is upper weakly (µ, σ)-continuous, there exists a µ-open set U containing x
such that F (U) j cl(V ) = V . So F is upper slightly (µ, σ)-continuous. �

Theorem 2.12. If a multifunction F : (X,µ) → (Y, σ) is lower weakly
(µ, σ)-continuous, then it is lower slightly (µ, σ)-continuous.

Proof. Similar to that of Theorem 2.11. �

Example 2.13. Let X = Y = {a, b, c}, µ = {∅, {a}, {a, b}, X}, σ =
{∅, {a}, {b}, {a, b}, X}. It can be shown that the function F : (X,µ) →
(Y, σ) defined by F (a) = {b, c}, F (b) = F (c) = {a} is upper slightly (µ, σ)-
continuous, but not upper weakly (µ, σ)-continuous.

Lemma 2.14. A multifunction F : (X,µ) → (Y, σ) is upper almost
(µ, σ)-continuous (resp. lower almost (µ, σ)-continuous) if and only if for
each regular open set V containing F (x) (resp. V ∩ F (x) ̸= ∅) there exists
a µ-open set U containing x such that F (U) j V (resp. F (u) ∩ V ̸= ∅ for
each u ∈ U).

Theorem 2.15. If a multifunction F : (X,µ) → (Y, σ) is upper slightly
(µ, σ)-continuous and (Y, σ) is extremally disconnected then F is upper al-
most (µ, σ)-continuous.

Proof. Let x ∈ X and V be any regular open set of Y containing F (x).
Then V is a clopen set (as Y is extremally disconnected [see [10], Lemma
5.6]). Since F is upper slightly (µ, σ)-continuous, there exists a µ-open set
U in X containing x such that F (U) j V . Thus by Lemma 2.14, F is upper
almost (µ, σ)-continuous. �

Theorem 2.16. If a multifunction F : (X,µ) → (Y, σ) is lower slightly
(µ, σ)-continuous and (Y, σ) is extremally disconnected, then F is lower
almost (µ, σ)-continuous.

Proof. Similar to that of Theorem 2.15. �

Definition 2.17. A topological space (X, τ) is said to be 0-dimensional
[14] if each point of X has a base consisting of clopen sets.

Definition 2.18. A topological space (X, τ) is said to be mildly com-
pact [13] or slightly compact [10] if every clopen cover of X admits a finite
subcover. A subset A of X is called mildly compact relative to X if every
cover of A by clopen subsets of X has a finite subcover.

Theorem 2.19. If a multifunction F : (X,µ) → (Y, σ) is upper slightly
(µ, σ)-continuous and (Y, σ) is 0-dimensional and F (x) is mildly compact
relative to Y for each x ∈ X, then F is upper (µ, σ)-continuous.
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Proof. Let x ∈ X and V be any open set of (Y, σ) containing F (x). Then
by 0-dimensionality of (Y, σ), for each y ∈ F (x) there exists a clopen set
Gy such that y ∈ Gy j V . Since F (x) is mildly compact relative to Y ,
there exists a finite number of points y1 , y2 , . . . , yn ∈ F (x) such that Gy

i

is clopen in Y for each i and F (x) j ∪{Gy
i
: i = 1, 2, . . . , n} j V . Let

G = ∪{Gy
i
: i = 1, 2, . . . , n}. Then G is clopen in Y and F (x) j G j V .

Since F is upper slightly (µ, σ)-continuous, there exists a µ-open set U with
x ∈ U such that F (U) j G j V . Thus F is upper (µ, σ)-continuous. �

Theorem 2.20. If a multifunction F : (X,µ) → (Y, σ) is lower slightly
(µ, σ)-continuous and (Y, σ) is 0-dimensional, then F is lower (µ, σ)-conti-
nuous.

Proof. Let x ∈ X and V be an open set in Y such that F (x)∩V ̸= ∅. Then
there exists a clopen set Vx such that Vx ∩ F (x) ̸= ∅ and Vx j V . Since F
is lower slightly (µ, σ)-continuous and Vx ∩ F (x) ̸= ∅ there exists U ∈ µ(x)
such that F (u) ∩ Vx ̸= ∅ for each u ∈ U . Thus there exists U ∈ µ(x) such
that F (u) ∩ V ̸= ∅ for each u ∈ U (as Vx j V ). Therefore F is lower
(µ, σ)-continuous. �

The clopen subsets of a topological space (X, τ) forms a base for a topol-
ogy on X. This topology is called ultra-regularization [9] of τ and is denoted
by τu. A topological space (X, τ) is said to be ultra-regular [6] if τ = τu.

Theorem 2.21. If a multifunction F : (X,µ) → (Y, σ) is upper slightly
(µ, σ)-continuous and (Y, σ) is ultra-regular and F (x) is mildly compact
relative to Y for each x ∈ X, then F is upper (µ, σ)-continuous.

Proof. Similar to that of Theorem 2.19. �

Theorem 2.22. If a multifunction F : (X,µ) → (Y, σ) is lower slightly
(µ, σ)-continuous and (Y, σ) is ultra-regular, then F is lower (µ, σ)-continu-
ous.

Proof. Similar to that of Theorem 2.20. �

3. Properties of Upper (Lower) Slightly (µ, σ)-Continuous
Multifunctions

Definition 3.1. A GTS (X,µ) is said to be µ-connected [12] if X can
not be written as union of two non-empty µ-open sets.

Theorem 3.2. Let F : (X,µ) → (Y, σ) be an upper (lower) slightly
(µ, σ)-continuous surjection. If (X,µ) is µ-connected and F (x) is connected
for each x ∈ X, then (Y, σ) is connected.

Proof. If possible let (Y, σ) be not connected. Then there exists a pair of
disjoint open sets U and V such that Y = U ∪ V . Since F (x) is connected,
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for each x ∈ X either F (x) j U or F (x) j V . If x ∈ F+(U ∪ V ), then
F (x) ∈ U ∪ V and hence x ∈ F+(U) ∪ F+(V ). Also, as F is surjective
there exist x, y ∈ X such that F (x) j U , F (y) j V hence x ∈ F+(U) and
y ∈ F+(V ). Thus F+(U) ∪ F+(V ) = F+(U ∪ V ) = X, F+(U) ∩ F+(V ) =
F+(U ∩ V ) = ∅ and F+(U) ̸= ∅ ̸= F+(V ).

If F is upper slightly (µ, σ)-continuous then since U and V are clopen,
by Theorem 2.2 F+(U) and F+(V ) are µ-clopen in X- a contradiction to
the fact that X is µ-connected. If F is lower slightly (µ, σ)-continuous then
by Theorem 2.3 we can have a similar contradiction. �

Definition 3.3. A multifunction F : (X,µ) → (Y, σ) is said to have a
(µ, σ)-clopen graph if for each (x, y) ∈ X × Y \G(F ), there exist a µ-open
set U in X containing x and a clopen set V in Y containing y such that
(U × V ) ∩G(F ) = ∅.

Lemma 3.4. A multifunction F : (X,µ) → (Y, σ) has a (µ, σ)-clopen
graph if and only if for each (x, y) ∈ X × Y \ G(F ), there exist a µ-open
set U in X containing x and a clopen set V in Y containing y such that
F (U) ∩ V = ∅.

Definition 3.5. A topological space (X, τ) is said to be ultra-Hausdorff
[13] if for each pair of distinct points x, y ∈ X, there exist disjoint pair of
clopen sets U and V such that x ∈ U and y ∈ V .

Theorem 3.6. If F : (X,µ) → (Y, σ) is an upper slightly (µ, σ)-conti-
nuous multifunction such that F (x) is mildly compact relative to Y for each
x ∈ X and (Y, σ) is ultra-Hausdorff, then G(F ) is (µ, σ)-clopen.

Proof. Suppose that (x0 , y0) ∈ X × Y \G(F ). Then y0 ̸∈ F (x0). Since Y is
ultra-Hausdorff, for each y ∈ F (x0) there exist clopen sets Gy and Hy in Y
containing y and y0 respectively, such that Gy ∩Hy = ∅. Then the family
{Gy : y ∈ F (x0)} is a clopen cover of F (x0). Since F (x0) is mildly compact
relative to Y , there exists a finite number of points y1 , y2 , . . . , yn in F (x0)
such that F (x0) j ∪{Gy

i
: i = 1, 2, . . . , n} = G (say). Let H = ∩{Hy

i
:

i = 1, 2, . . . , n}. Then G and H both are clopen in Y such that F (x0) j G,
y0 ∈ H and G ∩H = ∅. Since F is upper slightly (µ, σ)-continuous, there
exists a µ-open set U in X containing x0 such that F (U) j G. Thus
F (U) ∩H = ∅. Hence by Lemma 3.4, G(F ) is (µ, σ)-clopen. �

Definition 3.7. For any subset A of a GTS (X,µ), the µ-frontier [11]
of A is denoted by Frµ(A) and defined by Frµ(A) = cµ(A) ∩ cµ(X \A).

Theorem 3.8. The set of all points x ∈ X at which a multifunction
F : (X,µ) → (Y, σ) is not upper (lower) slightly (µ, σ)-continuous is identical
with the union of µ-frontier of the upper (resp. lower) inverse image of
clopen sets containing (resp. meeting) F (x).
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Proof. We shall prove the theorem when F is upper slightly (µ, σ)-conti-
nuous. The case for lower slightly (µ, σ)-continuous can be shown in a
similar fashion. Suppose that F is not upper slightly (µ, σ)-continuous
at x ∈ X. Then there exists a clopen set V in Y containing F (x) such
that U ∩ (X \ F+(V )) ̸= ∅ for each µ-open set U containing x. Then
x ∈ cµ(X \F+(V )). On the other hand, we have x ∈ F+(V ) j cµ(F

+(V )).
Hence x ∈ Frµ(F

+(V )).
Conversely, suppose that F is upper slightly (µ, σ)-continuous at x ∈ X.

Let V be any clopen set in Y containing F (x). Then there exists a µ-
open set U in X containing x such that U j F+(V ); hence x ∈ iµ(F

+(V )).
Therefore, x ̸∈ Frµ(F

+(V )) for each clopen set V in Y containing F (x). �
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MULTILINEAR FRACTIONAL INTEGRALS IN WEIGHTED
GRAND LEBESGUE SPACES
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Our goal is to present weighted inequalities for multilinear fractional in-
tegral operators in grand Lebesgue spaces. The theory of grand Lebesgue
spaces introduced by T. Iwaniec and C. Sbordone [14] is one of the in-
tensively developing directions of the modern analysis. It was realized the
necessity for the study of these spaces because of their rather essential role
and applications in various fields. These spaces naturally arise, for example,
in the integrability problems of the Jacobian under minimal hypothesis (see
[14] for the details).

Structural properties of grand Lebesgue spaces were investigated in the
papers [4], [2]. In [5] the authors proved that for the boundedness of the
Hardy–Littlewood maximal operator defined on [0, 1] in weighted grand

Lebesgue spaces L
p)
w ([0, 1]) it is necessary and sufficient that the weight

w satisfies the Muckenhoupt’s Ap condition on the interval [0, 1].
The same phenomenon was noticed for the Hilbert transform in [22]. We

refer also to [17], [16], [28] for one–weight results regarding maximal and
singular integrals of various type in these spaces.

In [25] the boundedness criteria for fractional integral operators in weigh-
ted grand Lebesgue spaces from the one–weight viewpoint were established.
In particular, in that paper the author determined values of the second
parameter for grand Lebesgue spaces governing the boundedness of frac-
tional integral operator in these spaces, and established criterion for which
inequality (8) (see below) holds in the linear case (see also [23] for related
topics).
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42B20; 42B25.

Key Words and Phrases: Multisublinear maximal operators, multilinear singular inte-
grals, one-weight inequality, grand Lebesgue space, multilinear fractional integrals, trace
inequality.
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In [21] trace inequality criteria for fractional integrals in grand Lebesgue
spaces defined on metric measure spaces were derived.

Multilinear fractional integrals were introduced and studied in the papers
by L. Grafakos [6], C. Kenig and E. Stein [15], L. Grafakos and N. Kalton [8].

For the boundedness and other properties of multi(sub)linear fractional
integrals in (weighted) Lebesgue spaces we refer, e.g., to [26], [27], [3], [29],
[18], [19].

Recently, in [20] the authors of this paper presented the one-weight in-
equality for the multi(sub)linear Hardy–Littlewood maximal and Calderón-
Zygmund operators defined on an SHT.

It should be stressed that the results of this paper are new even for Eu-
clidean spaces. In the most cases the derived conditions are simultaneously
necessary and sufficient for appropriate one-weight inequality in the linear
case (see, e.g., [23], [22], [21], [25]).

In the sequel the following notation will be used:

−→p := (p1, . . . , pm),

where pi ∈ (0,∞) for each 1 ≤ i ≤ m;
−→
f = (f1, . . . , fm),

where fi are µ− measurable functions defined on X;

1

p
:=

m∑
i=1

1

pi
dµ(−→y ), d−→y := dµ(y1) · · · dµ(ym);

ν−→w :=
m∏
j=1

w
p/pj

j , ν̃−→w :=
m∏
j=1

w
q/qj
j ;

Bxy := µ
(
B(x, d(x, y))

)
.

Let s ∈ [1,∞]. As usual we put s′ := s
s−1 if s ∈ (1,∞) and s′ := ∞ for

s = 1 and s′ := 1 for s = ∞;

Ap,q,α := q(1/p− α)

for 1 < p < q < ∞ and 0 < α < 1/p;
Let (X, d, µ) be a quasi-metric measure space with quasi-metric d and

measure µ. If µ satisfies the well-known doubling condition, then (X, d, µ)
is called space of homogeneous type (SHT).

Let 1 ≤ r < ∞. We denote by Lr(X,µ) the Lebesgue space on X with
an exponent r.

If w is a weight (locally integrable, µ-a.e. positive function on X), then
we denote the weighted Lebesgue spaces by Lr

w(X,µ), i.e., f ∈ Lr
w(X,µ) if

∥f∥Lr
w(X,µ) = ∥f∥Lr(X,wdµ) < ∞.

Let µ(X) < ∞, 1 < p < ∞ and let φ be a continuous positive function
on (0, p−1) such that it is non-decreasing on (0, σ) for some small positive σ
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and satisfies the condition lim
x→0+

φ(x) = 0. The generalized grand Lebesgue

space Lp),φ(X,µ) is the class of those f : X → R for which the norm

∥f∥Lp),φ(X,µ) = sup
0<ε<p−1

(
φ(ε)

∫
X

|f(x)|p−ε dµ(x)

)1/(p−ε)

is finite. If w is a weight on X, then the weighted grand Lebesgue space with

weight w is denoted by L
p),φ
w (X,µ) and coincides with the class

Lp),φ(X,wdµ). In this case we assume that ∥f∥
L

p),φ
w (X,µ)

= ∥f∥Lp),φ(X,wdµ).

If φ(x) = xθ, where θ is a positive number, then we denote Lp),φ(X,µ)

(resp., L
p),φ
w (X,µ)) by Lp),θ(X,µ) (resp. by L

p),θ
w (X,µ)).

The space Lp),θ(X,µ) is a Banach space.
It is easy to check that the following continuous embeddings hold:

Lp(X,µ) ↪→ Lp),θ1(X,µ) ↪→ Lp),θ2(X,µ) ↪→ Lp−ε(X,µ),

where 0 < ε ≤ p− 1 and θ1 < θ2.
It turns out that in the theory of PDEs the generalized grand Lebesgue

spaces are appropriate to the solutions of existence and uniqueness, and,
also, the regularity problems for various nonlinear differential equations.
The space Lp),θ (defined on bounded domains in Rn) for arbitrary positive
θ was introduced in the paper [12], where the authors studied the nonhomo-
geneous n-harmonic equation div A(x,∇u) = µ. If θ = 1, then Lp),θ(X,µ)
coincides with the Iwaniec–Sbordone space, which we denote by Lp)(X,µ).
The grand Lebesgue space is non-reflexive, non-separable and, in general,
is non-rearrangement invariant (see, e.g., [4]).

We define the class
∏m

j=1 Lpj),φ(X,µj) of vector functions
−→
f as follows:

−→
f ∈

∏m
j=1 Lpj),φ(X,µj) if

∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

= sup
1<r<p

{
φ
( p

r′

) r
p

m∏
j=1

∥fj∥Lpj/r(X,µj)

}
=

= sup
1<r<p

{ m∏
j=1

φ
( p

r′

) r
pj ∥fj∥Lpj/r(X,µj)

}
< ∞.

The expression ∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
can be rewritten as follows:

∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

=

= sup
0<η<p−1

{ m∏
j=1

φ(η)
1

pj−ηj ∥fj∥Lpj−ηj (X,µj)
:

p

p− η
=

pj
pj − ηj

, j=1, . . . ,m

}
.
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It is easy to check that

m∏
j=1

Lpj),φ(X,µj) ↪→
m∏
j=1

Lpj),φ(X,µj),

in particular, ∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

≤
∥∥−→f ∥∥∏m

j=1 Lpj),φ(X,µj)
.

This follows from the fact that if p
p−η =

pj

pj−ηj
, j = 1, . . . ,m, then η ≤ ηj

because 1
η =

∑m
j=1

1
ηj
.

When we deal with grand Lebesgue spaces we assume that µ(X) < ∞.
Let 1 < r < ∞. We say that a weight function w belongs to the Muck-

enhoupt class Ar(X) if

∥w∥Ar := sup
B

(
1

µ(B)

∫
B

w dµ

)(
1

µ(B)

∫
B

w1−r′ dµ

)r−1

< ∞.

Let us recall the definition of the vector Muckenhoupt condition (see [24]
for Euclidean spaces and [9] for metric measure spaces).

Definition A. Let 1 ≤ pj < ∞ for each 1 ≤ j ≤ m, and 0 < p < ∞. We
say that −→w satisfies the A−→p (X) condition (−→w ∈ A−→p ) if

∥−→w ∥A−→p := sup
B⊂X

(
1

µ(B)

∫
B

ν−→w (x)dµ(x)

)
×

×
m∏
j=1

(
1

µ(B)

∫
B

w1−p′

j (x) dµ(x)

)p/p′
j

< ∞,

where the supremum is taken over all balls B in X. For pj = 1, the expres-

sion
(

1
µ(B)

∫
B

w1−p′

j (x)dµ(x)
)1/p′

j is understood as (infB wj)
−1.

The expression ∥−→w ∥A−→p is called A−→p characteristic of −→w .

It is known (see [24]) that if −→w satisfies the condition A−→p (Rn), then
the boundedness of the multi(sub)linear Hardy–Littlewood and Calderón-
Zygmund operators defined on Rn from

∏m
j=1 L

pj
wj (Rn) to Lp

ν−→w
(Rn) holds,

where 1 < pj < ∞ for each 1 ≤ j ≤ m, and 1
p =

∑m
j=1

1
pj
.

In the linear case (m = 1) the class A−→p coincides with the well-known
Muckenhoupt class Ap.

Definition B (vector Muckenhoupt-Wheeden condition). Let (X, d, µ)
be a metric measure space, 1 ≤ pi < ∞ for i = 1, . . . ,m. Suppose that
p < q < ∞. Let w1, . . . , wm be a weight functions on X. We say that
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−→w = (w1, . . . , wm) satisfies A−→p ,q(X) condition (−→w ∈ A−→p ,q(X)) if

sup
B

(
1

µB

∫
B

( m∏
i=1

wi

)q

dµ

)1/q m∏
i=1

(
1

µB

∫
B

w
−p′

i
i dµ

)1/p′
i

< ∞,

where the supremum is taken over all balls B in X. For pj = 1, the expres-

sion
(

1
µ(B)

∫
B

w1−p′

j (x)dµ(x)
)1/p′

j is understood as (infB wj)
−1.

Theorem A ([26]). Let 1 < p1, . . . , pm < ∞, 0 < α < mn, 1
m < p < n

α .

Suppose that q is an exponent satisfying the condition 1
q = 1

p − α
n . Suppose

that wi are a.e. positive functions on Rn such that wpi

i are weights. Then
the inequality(∫

Rn

(∣∣Jα(
−→
f )(x)

∣∣ m∏
i=1

wi(x)
)q

dx

)1/q

≤ C
m∏
i=1

(∫
Rn

(
|fi(yi)|wi

)pi
dyi

)1/pi

,

holds, where

Jα(
−→
f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d−→y ,

holds, if and only if −→w ∈ A−→p ,q(Rn).

The next statement characterizes those weights v on Rn for which the
Iα :

∏m
j=1 L

pj (Rn) → Lq
v(Rn) holds, where p < q < ∞.

Theorem B ([18]). Let 1 < pi < ∞ for each 1 ≤ i ≤ m. Let p < q.
Then Jα is bounded from

∏m
j=1 L

pj (Rn) to Lq
v(Rn) if and only if

sup
Q

(∫
Q

v(x)(x) dx

)1/q

|Q|α−n/p < ∞

is satisfied, where the supremum is taken over all cubes Q in Rn.

This statement remains valid if we replace Rn by an interval in R, and
Jα by potential operator on an interval:

(Jαf)(x) =

1∫
0

f(t)

|x− t|1−α
dt, 0 < α < 1, x ∈ [0, 1]. (1)

Let 1 < p < ∞, 0 < α < 1/p and q be the Hardy–Littlewood–Sobolev
exponent, i.e., q = p

1−αp . It is known (see [25]) that the operator Jα and,

consequently, appropriate fractional maximal operator

(Mαf)(x) = sup
I∋x

1

|I|1−α

∫
I

|f(t)| dt, 0 < α < 1, x ∈ [0, 1]. (2)
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is bounded from Lp),θ1([0, 1]) to Lq),θ2([0, 1]) if θ2 ≥ qθ1
p . However, this

boundedness fails if θ2 < qθ1
p . Moreover, it was shown that the one-weight

inequality ∥∥Tα(fw
α)
∥∥
L

q),θq/p
w ([0,1])

≤ C∥f∥
L

p),θ
w ([0,1])

,

where Tα is Jα or Mα, 1 < p < 1
α , q = p

1−αp , θ > 0, holds if and only if

w ∈ A1+q/p′([0, 1]).
The next statement gives D. Adams type (see [1]) trace inequality charac-

terization for the fractional integrals and corresponding fractional maximal
functions defined by

(Tαf)(x) =
∫
X

f(y)

µ(Bxy)1−α
dµ(y), x ∈ X, 0 < α < 1,

(Mαf)(x) = sup
B∋x

1

µ(B)1−α

∫
B

|f(y)| dµ(y), 0 < α < 1,

where the supremum is taken over all balls B ⊂ X containing x.

Theorem C ([21]). Let 1 < p < q < ∞ and let 0 < α < 1/p. Suppose
that (X, d, µ) is an SHT and ν is an another finite measure on X. Let
θ > 0. Then the following conditions are equivalent:

(i) the operator Tα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);
(ii) the operator Mα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);
(iii) there is a positive constant C such that for all balls B in X the

inequality

ν(B) ≤ C
(
µ(B)

)Ap,q,α
(3)

holds, where

Ap,q,α := q
(1
p
− α

)
. (4)

1. The Main Results

In this section we the main results.

1.1. Unboundedness of Multilinear Fractional Integrals. Let
(X, d, µ) be an SHT and let

Mα(
−→
f )(x) = sup

B∋x

m∏
i=1

1

µ(B)1−α/m

∫
B

|fi(yi)| dµ(yi), 0 ≤ α < m;

Iα(
−→
f )(x) =

∫
Xm

f1(y1) · · · fm(ym)(
Bxy1 + · · ·+Bxym

)m−α dµ(−→y ),

defined, generally speaking, on an STH in the classical Lebesgue spaces.
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The following statement shows the range of the second parameter for
which the boundedness of the operator Mα (resp. Iα) from the product
space to grand Lebesgue space fails (for linear fractional integrals on an
interval see [25] and linear potentials on an SHT we refer to [21]).

Proposition 1. Let (X, d, µ) be an SHT with µ(X) < ∞. Suppose that
1 < pj < ∞, 1

p =
∑m

j=1
1
pj

and 1 < p < q < ∞. Let

lim inf
µ(B)→0

ν(B)µ(B)Ap,q,α ̸= 0,

where Ap,q,α is defined by (4). If 0 < θ2 < θ1q
p , then the operator Nα,

where Nα is either Mα or Iα, is not bounded from
∏m

j=1 LLpj),θ1 (X,µ) to

Lq),θ2(X, ν).

Corollary 1. Let (X, d, µ) be an SHT . Suppose that 0 < α < 1,
1 < pj < ∞ for each 1 ≤ j ≤ m, 1

p =
∑

j=1
1
pj

and 1/m < p < 1/α. We set

q = p
1−αp . Suppose that 0 < θ2 < θ1q

p . Then the operator Nα is not bounded

from
∏m

j=1 Lpj),θ1(X,µ) to Lq),θ2(X,µ), where Nα is Mα or Iα.

Let (X, d, µ) be an SHT . To formulate the next statement we need to
introduce the class M−→p ,q(X, ν, µ1, . . . , µm) (pj , q > 1, 1 ≤ j ≤ m) of m+1-
tuple of finite measures (ν, µ1, . . . , µm) defined on X.

Definition C. Let (X, d, µ) be an SHT and let µ1, . . . , µm, ν be measures
on X. A multilinear operator T belongs to the class M−→p ,q(X,µ1, . . . , µm, ν)

if T is bounded from
∏m

j=1 L
pj (X,µj) to Lq(X, ν).

If dµj = wjdµ for every 1 ≤ j ≤ m, dν = vdµ for some weight functions
w1, . . . , wm, v then we denote M−→p ,q(X,µ1, . . . , µm, ν) by M−→p ,q(X,w1, . . . ,
wm, v).

Let 1 < q < ∞, ε0 ∈ (0, q − 1) and η0 ∈ (0, a), where a is sufficiently
small positive number. Ne denote

g(x) :=
qε0(p− η0)x

η0(q − ε0)(p− x) + xε0(p− x)
, (5)

Ψ(x) :=Φ(g(x))
p−x

q−g(x) , (6)

with Φ ∈ R(0, σ), where R(0, σ) is the class of those increasing functions ϕ
an interval (0, σ), with small positive σ, such that lim

x→0
ϕ(x) = 0.

Theorem 1. Let (X, d, µ) be an SHT . Let 1 < pj < ∞ for each
1 ≤ j ≤ m. Let 1 < q < ∞. We set 1

p =
∑m

j=1
1
pj
. Let Ψ ∈ R(0, σ)

and Ψ is defined by (6). Suppose that a multilinear operator T satisfies
the condition T ∈ M−→p ,q(X,µ1, . . . , µm, ν) ∩M−→p /r,q/s(X,µ1, . . . , µm, ν) for

some r, s > 1. Then T is bounded from
∏m

j=1 Lpj),Ψ(X,µj) to Lq),Φ(X, ν).
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Now we reformulate the one-weight result for Iα and Mα, where X =
[0, 1] and dµ = dx is the Lebesgue measure (cf. Theorem A).

Let wj are weights on [0, 1] for 1 ≤ j ≤ m. In what follows we assume
that

Ñα,−→w
−→
f := Nα(f1w

α1
1 , . . . , fmwαm

m ),

where Nα is Iα or Mα. We put αj =
1
pj

− 1
qj

for each 1 ≤ j ≤ m and

α =
1

p
− 1

q
,

1

p
=

m∑
j=1

1

pj
,

1

q
=

m∑
j=1

1

qj
. (7)

Taking the version of Theorem B for bounded interval into account we
find that the next statement holds:

Proposition B. Let 1 < pj < ∞ for each 1 ≤ j ≤ m, and 1
m < p < 1

α ,

where 1
p =

∑m
j=1

1
pj
. We set q = p

1−αp . Let for weight functions wj, 1 ≤
j ≤ m,

ν̃−→w :=

m∏
j=1

w
q/qj
j .

Then the inequality∥∥Ñα,−→w

−→
f
∥∥
Lq

ν̃−→w ([0,1])

≤ C
m∏
j=1

∥fj∥Lpj
wj

([0,1])

holds if and only if −→w ∈ A−−−→
l(p,q)

([0, 1]), where
−−−→
l(p, q) := (1 + q1/p

′
1, . . . , 1 +

qm/p′m), i.e.

sup
I

(
1

|I|

∫
I

ν̃−→w (x) dx

)1/q m∏
j=1

(
1

|I|

∫
I

w
−p′

j/q

j (x) dx

)1/p′
j

< ∞,

where the supremum is taken over all subintervals I of [0, 1].

Theorem 2. Let 1/m < p < ∞, pi = mp for each 1 ≤ i ≤ m. We set
q = p

1−αp . Let 1
qj

= 1
pj

− α
m ≥ 0. Suppose that θ > 0. Then the condition

−→w ∈ A−−−→
l(p,q)

([0, 1]), where
−−−→
l(p, q) := (1 + q1/p

′
1, . . . , 1 + qm/p′m) guarantees

the following one-weight inequality∥∥Nα(f1w
αj

j , . . . , fmwαm
m )

∥∥
L

q),θq/p
ν̃−→w

([0,1])
≤ C

∥∥−→f ∥∥∏m
j=1 L

pj),θ
wj

([0,1])
, (8)

where Nα is Iα or Mα, and αj are defined by (7), j = 1, . . . ,m.

Now we formulate another type of one-weight inequality which is new
even in the linear (m = 1) case.
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Theorem 3. Let 1/m < p < ∞, pj = mp for each 1 ≤ i ≤ m. We
set q = p

1−αp . Let 1
qj

= 1
pj

− α
m > 0. Suppose that θ > 0. Let for weight

functions wj, 1 ≤ j ≤ m,

ν̃−→w :=

m∏
j=1

w
q/qj
j .

Then the condition −→w ∈ A−→p ,q([0, 1]) implies the one-weight inequality

∥∥(Nα
−→
f
)
ν̃−→w

∥∥
Lq),θq/p([0,1])

≤ C
m∏
j=1

∥∥fjwj

∥∥
Lpj),θ([0,1])

,

where Nα is Iα or Mα and the positive constant C is independent of fj,
1 ≤ j ≤ m.

In the linear case the latter statement is formulated as follows:

Corollary 2. Let m = 1 and let 1 < p < ∞. We set q = p
1−αp . Suppose

that θ > 0. Let Jα be the fractional integral operator defined by (1). If
the condition w ∈ A−→p ,q([0, 1]) is satisfied, then the following one-weight
inequality holds ∥∥(Jαf)w∥∥Lq),θq/p([0,1])

≤ C
∥∥fw∥∥

Lp),θ([0,1])

with the positive constant C independent of f .

1.2. Trace type inequality. Now we give necessary and sufficient condi-
tion governing the boundedness of Nα from

∏m
j=1 Lpj),θ([0, 1]) to

Lq),θq/p([0, 1], ν), where Tα is Jα or Mα and ν is another measure on [0, 1].
Here Jα or Mα are defined by (1), (2) respectively.

Theorem 4. Let 1 < pj < ∞ for every 1 ≤ j ≤ m and let θ > 0. Let
1
p =

∑m
j=1

1
pj
. Suppose that 0 < α < 1

p and p < q < ∞. Then the following

conditions are equivalent:

(i) the operator Jα is bounded from
∏m

j=1 Lpj),θ([0, 1]) to L
q),θq/p
v ([0, 1]);

(ii) the operator Jα is bounded from
∏m

j=1 Lpj),θ([0, 1]) to L
q),θq/p
v ([0, 1]);

(iii) there is a positive constant C such that

v(I) ≤ C|I|Aα,p,q . (9)
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Umultowska 87,61-614 Poznań, Poland
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