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Abstract

The following problem is studied: For a summable function f , what kind may be a set of all rotations γ for which
∫

f is not
differentiable with respect to the γ -rotation of the given basis B? In particular, for translation invariant bases on the plane, the
topological structure of possible sets of singular rotations is found.
Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Definitions and notation

A mapping B defined on Rn is said to be a differentiation basis if for every x ∈ Rn , B(x) is a family of bounded
measurable sets with positive measure and containing x , such that there exists a sequence Rk ∈ B(x)(k ∈ N) with
limk→∞ diam Rk = 0.

For f ∈ L(Rn), the numbers

DB

(∫
f, x

)
= lim

R∈B(x)
diam R→0

1
|R|

∫
R

f and D B

(∫
f, x

)
= lim

R∈B(x)
diam R→0

1
|R|

∫
R

f

are called the upper and the lower derivatives, respectively, of the integral of f at a point x . If the upper and
the lower derivative coincide, then their combined value is called the derivative of

∫
f at the point x and we

denote it by DB(
∫

f, x). We say that the basis B differentiates
∫

f (or
∫

f is differentiable with respect to B) if
DB(

∫
f, x) = D B(

∫
f, x) = f (x) for almost all x ∈ Rn . If this is true for each f in the class of functions X , we say

that B differentiates X .
Denote by I = I(Rn) the basis of intervals, i.e., the basis for which I(x) (x ∈ Rn) consists of all open n-dimensional

intervals containing x . Note that the differentiation with respect to I is called strong differentiation.
For the basis B, by FB we denote the class of all functions f ∈ L(Rn) whose integrals are differentiable with

respect to B.
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The basis B is called translation invariant (briefly, T I -basis) if B(x) = {x + R : R ∈ B(0)} for every x ∈ Rn .
Denote by Γn the family of all rotations in the space Rn .
Let B be the basis in Rn and γ ∈ Γn . The γ -rotated basis B is defined as follows:

B(γ )(x) = {x + γ (R − x) : R ∈ B(x)} (x ∈ Rn).

The set of two-dimensional rotations Γ2 can be identified with the circumference T = {z ∈ C : |z| = 1}, if to the
rotation γ we put into correspondence the complex number z(γ ) from T, the argument of which is equal to the value
of the angle by which the rotation about the origin takes place in the positive direction under the action of γ .

The distance d(γ, σ ) between the points γ, σ ∈ Γ2 is assumed to be equal to the length of the smallest arch of the
circumference T connecting the points z(γ ) and z(σ ).

Let B and H be bases in Rn and E ⊂ Γn . Let us call E a WB,H -set (W+B,H -set), if there exists a function f ∈ L(Rn)

( f ∈ L(Rn), f ≥ 0) such that: (1) f 6∈ FB(γ ) for every γ ∈ E and (2) f ∈ FH(γ ) for every γ 6∈ E .
Let B and H be bases in Rn and E ⊂ Γn . Let us call E an RB,H -set (R+B,H -set), if there exists a function f ∈ L(Rn)

( f ∈ L(Rn), f ≥ 0) such that: (1) DB(γ )
(∫

f, x
)
= ∞ almost everywhere for every γ ∈ E and (2) f ∈ FH(γ ) for

every γ 6∈ E .
When B = H , we will use the terms WB (W

+

B , RB, R+B )-set.

Remark 1. It is clear that:

(1) each W+B,H (R
+

B,H )-set is WB,H (RB,H )-set;

(2) if B ⊂ H , then each WB (W
+

B , RB, R+B )-set is WB,H (W+B,H , RB,H , R+B,H )-set.

The definitions of RI(R2), R+
I(R2)

and WI(R2)-sets were introduced in [1,2] and [3], respectively.

2. Results

Singularities of an integral of a fixed summable function with respect to the collection of rotated bases B(γ ) were
studied by various authors (see [1–9]). In particular, in [1] and [3], one can find the proof of the following results
dealing with the topological structure of RI(R2)-sets and WI(R2)-sets, respectively.

Theorem A. Each RI(R2)-set has Gδ type.

Theorem B. Each WI(R2)-set has Gδσ type.

The following generalizations of Theorems A and B are true.

Theorem 1. For an arbitrary translation invariant basis B in R2, each WB-set has Gδσ type.

Theorem 2. For an arbitrary translation invariant basis B in R2, each RB-set has Gδ type.

Theorems 1 and 2 were announced in [10].
We will also prove the following result.

Theorem 3. For arbitrary bases B and H in R2 not more than a countable union of RB,H -sets (R+B,H -sets) is

WB,H -set (W+B,H -set).

Proof of Theorem 1. Let f ∈ L(R2). We have to prove that the set

WB( f ) = {γ ∈ Γ2 : f 6∈ FB(γ )}

is of Gδσ type.
Without loss of generality, let us assume that f is finite everywhere and supp f ⊂ (0, 1)n .
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For the basis H , x ∈ R2 and r > 0 set

lH ( f )(x) = lim
R∈H(x)

diam R→0

∣∣∣∣ 1
|R|

∫
R

f − f (x)

∣∣∣∣,
lr
H ( f )(x) = sup

R∈H(x)
diam R<r

∣∣∣∣ 1
|R|

∫
R

f − f (x)

∣∣∣∣.
For the numbers ε > 0, α ∈ (0, 1], r > 0 and β ∈ (0, 1) we denote

WB( f, ε, α) = {γ ∈ Γ2 : |{lB(γ )( f ) ≥ ε}| ≥ α},

W r
B( f, ε, β) = {γ ∈ Γ2 : |{l

r
B(γ )( f ) > ε}| > β}.

First, let us prove that W r
B( f, ε, β) is an open set for any r > 0, ε > 0 and β ∈ (0, 1). Suppose γ ∈ W r

B( f, ε, β),
i.e.,

|{lr
B(γ )( f ) > ε}| > β.

If x ∈ {lr
B(γ )( f ) > ε}, then there is Rx ∈ B(γ )(x) with diam Rx < r such that∣∣∣∣ 1
|Rx |

∫
Rx

f − f (x)

∣∣∣∣ > ε.

Taking into account absolute continuity of the Lebesgue integral, it is easy to check that performing small enough
rotation of Rx around the point x , one derives the set R′x for which∣∣∣ 1

|R′x |

∫
R′x

f − f (x)
∣∣∣ > ε.

Therefore, for every x ∈ {lr
B(γ )( f ) > ε}, we can find kx ∈ N such that

lr
B(γ ′)( f )(x) > ε if dist(γ ′, γ ) < 1/kx .

For every m ∈ N by Am we denote the set of all points from {lr
B(γ )( f ) > ε} for which kx = m. Obviously,

A1 ⊂ A2 ⊂ · · · and
⋃

m∈N
Am = {l

r
B(γ )( f ) > ε}.

Now, using the property of continuity of outer measure from below, we can find m ∈ N for which |Am |∗ > β. The
last conclusion implies that

|{lr
B(γ ′)( f ) > ε}| > β if dist(γ ′, γ ) < 1/m.

Consequently, W r
B( f, ε, β) is an open set.

Let us now prove that WB( f, ε, α) is of Gδ type for any ε > 0 and δ ∈ (0, 1]. Let us consider strictly increasing
sequences of positive numbers (εk) and (αk) such that εk → ε and αk → α. Taking into account openness of sets
W r

B( f, ε, β), it is easy to see that for every γ ∈ WB( f, ε, α) and k ∈ N there is a neighbourhood Vγ,k of γ such that

|{l1/k
B(γ ′)( f ) > εk}| > αk if γ ′ ∈ Vγ,k .

Denote

Gk =
⋃

γ∈WB ( f,ε,α)

Vγ,k (k ∈ N).

Since WB( f, ε, α) ⊂ Gk (k ∈ N), we have WB( f, ε, α) ⊂
⋂

k∈N Gk . On the other hand, if γ ∈
⋂

k∈N Gk , then

|{lB(γ )( f ) ≥ ε}| =

∣∣∣∣ ⋂
k∈N
{l1/k

B(γ )( f ) > εk}

∣∣∣∣ ≥ lim
k→∞

αk = α.

Consequently, γ ∈ WB( f, ε, α). Thus WB( f, ε, α) ⊃
⋂

k∈N Gk . So we have proved that WB( f, ε, α) =
⋂

k∈N Gk ,
wherefrom follows the needed conclusion.
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It is easy to check that

WB( f ) =
⋃
k∈N

WB( f, 1/k, 1/k),

wherefrom we conclude that WB( f ) is of Gδσ type. �

Proof of Theorem 2. Let f ∈ L(R2) and supp f ⊂ (0, 1)2. Let us prove that the set

RB( f ) =

{
γ ∈ Γ2 : DB(γ )

(∫
f, x

)
= ∞ a.e. on (0, 1)2

}
is of Gδ type. It is easy to check that this assertion implies the validity of the theorem.

For the basis H , x ∈ R2 and r > 0 set

N r
H ( f )(x) = sup

R∈H(x)
diam R<r

1
|R|

∫
R

f.

For the numbers ε > 0, r > 0 and β ∈ (0, 1), we denote

Rr
B( f, ε, β) = {γ ∈ Γ2 : |{N

r
B(γ )( f ) > ε}| > β}.

First, let us prove that Rr
B( f, ε, β) is an open set for any r > 0, ε > 0 and β ∈ (0, 1). Suppose γ ∈ Rr

B( f, ε, β),
i.e.,

|{N r
B(γ )( f ) > ε}| > β.

If x ∈ {N r
B(γ )( f ) > ε}, then there is Rx ∈ B(γ )(x) with diam Rx < r such that

1
|Rx |

∫
Rx

f > ε.

Taking into account absolute continuity of the Lebesgue integral, it is easy to check that performing small enough
rotation of Rx around the point x one derives the set R′x for which

1
|R′x |

∫
R′x

f > ε.

Therefore, for every x ∈ {N r
B(γ )( f ) > ε}, we can find kx ∈ N such that

N r
B(γ ′)( f )(x) > ε if dist(γ ′, γ ) < 1/kx .

For every m ∈ N, by Am we denote the set of all points from {N r
B(γ )( f ) > ε} for which kx = m. Obviously,

A1 ⊂ A2 ⊂ · · · and
⋃

m∈N
Am = {N

r
B(γ )( f ) > ε}.

Using now the property of continuity of outer measure from below, we can find m ∈ N for which |Am |∗ > β. The last
conclusion implies that

|{N r
B(γ ′)( f ) > ε}| > β if dist(γ ′, γ ) < 1/m.

Consequently, Rr
B( f, ε, β) is an open set.

Next, let us prove that RB( f ) is of Gδ type. Taking into account openness of sets Rr
B( f, ε, β), it is easy to see that

for every γ ∈ RB( f ) and k ∈ N there is a neighbourhood Vγ,k of γ such that

|{N 1/k
B(γ ′)( f ) > k}| > 1− 1/k if γ ′ ∈ Vγ,k .

Denote

Gk =
⋃

γ∈RB ( f )

Vγ,k (k ∈ N).
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Since RB( f ) ⊂ Gk (k ∈ N), we have RB( f ) ⊂
⋂

k∈N Gk . On the other hand, if γ ∈
⋂

k∈N Gk , then∣∣∣∣{DB(γ )

(∫
f, x

)
= ∞ a.e. on (0, 1)2

}∣∣∣∣ = ∣∣∣∣ ⋂
k∈N
{N 1/k

B(γ )( f ) > k}

∣∣∣∣ ≥ lim
k→∞

(1− 1/k) = 1.

Consequently, γ ∈ RB( f ). Thus, RB( f ) ⊃
⋂

k∈N Gk . So we have proved that RB( f )=
⋂

k∈N Gk from which we
obtain the needed conclusion. �

Proof of Theorem 3. Let N ⊂ N be a not more than a countable non-empty set and for each k ∈ N , Ek be an
RB,H -set (R+B,H -set). For every k ∈ N let us consider a summable function fk with two properties from the definition

of RB,H -set (R+B,H -set): (1) DB(γ )
(∫

fk, x
)
= ∞ almost everywhere for every γ ∈ Ek and (2) fk ∈ FH(γ ) for every

γ 6∈ Ek . Let us consider also an arbitrary family of pairwise disjoint open squares Qk (k ∈ N ).
Denote

gk =
fkχQk

2k‖ fk‖L
(k ∈ N ),

f =
∑
k∈N

gk .

Then we have

‖ f ‖L =
∑
k∈N

‖gk‖L ≤
∑
k∈N

1
2k <∞.

Consequently, f is a summable function.
Using the disjointness of squares Qk , we find that for every γ ∈ Γ2, k ∈ N and x ∈ Qk ,

DB(γ )

(∫
f, x

)
= DB(γ )

(∫
gk, x

)
.

Therefore, for every k ∈ N and γ ∈ Ek ,

DB(γ )

(∫
f, x

)
= ∞ for a.e. x ∈ Qk .

Thus,

f 6∈ FB(γ ) for every γ ∈
⋃
k∈N

Ek . (1)

We take now an arbitrary γ 6∈
⋃

k∈N Ek . Then gk ∈ FH(γ ) for every k ∈ N . Consequently, using the disjointness
of squares Qk , we find that for every k ∈ N ,

DH(γ )

(∫
f, x

)
= DH(γ )

(∫
gk, x

)
= gk(x) = f (x)

for a.e. x ∈ Qk . Thus,

DH(γ )

(∫
f, x

)
= f (x) for a.e. x ∈

⋃
k∈N

Qk .

Now taking into account that f (x) = 0, for every x 6∈
⋃

k∈N Qk , we write

DH(γ )

(∫
f, x

)
= f (x) for a.e. x ∈ R2. (2)

(1) and (2) imply that
⋃

k∈N Ek is the WB,H -set (W+B,H -set). �
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Abstract

Theorems on the continuous dependence of the solution on perturbations of the initial data and the right-hand side of equation
are proved. Under initial data we understand the collection of initial moment, of delay function and initial function. Perturbations
of the right-hand side of equation are small in the integral sense.
c© 2015 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Formulation of main results

Let I = [a, b] be a finite interval and Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T , where
T denotes transposition. Suppose that O ⊂ Rn is an open set, and E f is the set of functions f : I × O2

→ Rn

satisfying the following conditions: for each fixed (x1, x2) ∈ O2 the function f (·, x1, x2) : I → Rn is measurable;
for each f ∈ E f and compact set K ⊂ O , there exist functions m f,K (t), L f,K (t) ∈ L(I,R+),R+ = [0,∞), such
that for almost all t ∈ I

| f (t, x1, x2)| ≤ m f,K (t) ∀(x1, x2) ∈ K 2,

| f (t, x1, x2)− f (t, y1, y2)| ≤ L f,K (t)
2∑

i=1

|xi − yi |

∀(x1, x2) ∈ K 2 and ∀(y1, y2) ∈ K 2.
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We introduce a topology in E f using the following base of neighborhoods of the origin{
VK ,δ : K ⊂ O is a compact set and δ > 0 is an arbitrary number

}
,

where

VK ,δ =

{
δ f ∈ E f : H(δ f ; K ) ≤ δ

}
H(δ f ; K ) = sup

{∣∣∣ ∫ t ′′

t ′
δ f (t, x1, x2)dt

∣∣∣ : t ′, t ′′ ∈ I, xi ∈ K , i = 1, 2
}
. (1.1)

Let D be the set of continuous differentiable scalar functions (delay functions) τ(t), t ∈ [a,∞), satisfying the
conditions:

τ(t) < t, τ̇ (t) > 0, inf{τ(a) : τ ∈ D} := τ̂ > −∞.

Let C(I1) be the space of continuous functions ϕ(t) ∈ Rn, t ∈ I1 = [τ̂ , b] equipped with the norm ‖ϕ‖I1 =

sup{|ϕ(t)| : t ∈ I1}. By Φ = {ϕ ∈ C(I1) : ϕ(t) ∈ O, t ∈ I1} we denote the set of initial functions.
To each element µ = (t0, τ, ϕ, f ) ∈ A = [a, b)× D×Φ× E f we assign the differential equation with distributed

prehistory on the interval [τ(t), t]

ẋ(t) =
∫ t

τ(t)
f (t, x(t), x(s))ds (1.2)

with the initial condition

x(t) = ϕ(t), t ∈ [τ̂ , t0]. (1.3)

Definition 1.1. Let µ = (t0, τ, ϕ, f ) ∈ A. A function x(t) = x(t;µ) ∈ O , t ∈ [τ̂ , t1], t1 ∈ (t0, b], is called a solution
of Eq. (1.2) with the initial condition (1.3) or a solution corresponding to the element µ and defined on the interval
[τ̂ , t1], if it satisfies the condition (1.3), is absolutely continuous on the interval [t0, t1] and satisfies Eq. (1.2) almost
everywhere on [t0, t1].

To formulate the main results, we introduce the following sets:

W (K ;α) =

{
δ f ∈ E f : ∃ mδ f,K (t), Lδ f,K (t) ∈ L(I, R+),

∫
I
[mδ f,K (t)+ Lδ f,K (t)]dt ≤ α

}
,

where K ⊂ O is a compact set and α > 0 is a fixed number depending on δ f ;

B(t00; δ) = {t0 ∈ I : |t0 − t00| < δ}, V (τ0; δ) = {τ ∈ D : ‖τ − τ0‖I < δ},

V1(ϕ0; δ) = {ϕ ∈ Φ : ‖ϕ − ϕ0‖I1 < δ},

where t00 ∈ [a, b) is a fixed point, τ0 ∈ D and ϕ0 ∈ Φ are fixed functions, δ > 0 is a fixed number.

Theorem 1.1. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, ϕ0, f0) ∈ A and defined on [τ̂ , t10], t10 < b.
Let K1 ⊂ O be a compact set containing a certain neighborhood of the set K0 = ϕ0(I1) ∪ x0([t00, t10]). Then the
following conditions hold:

1.1. there exist numbers δi > 0, i = 0, 1, such that to each element

µ = (t0, τ, ϕ, f0 + δ f ) ∈ V (µ0; K1, δ0, α) = B(t00; δ0)× V (τ0; δ0)

× V1(ϕ0; δ0)×
[

f0 + (W (K1;α) ∩ VK1,δ0)
]

corresponds solution x(t;µ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 and satisfying the condition x(t;µ) ∈ K1;
1.2. for an arbitrary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that the following inequality holds for

any µ ∈ V (µ0; K1, δ2, α):

|x(t;µ)− x(t;µ0)| ≤ ε ∀t ∈ [θ, t10 + δ1], θ = max{t0, t00};
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1.3. for an arbitrary ε > 0, there exists a number δ3 = δ3(ε) ∈ (0, δ0) such that the following inequality holds for
any µ ∈ V (µ0; K1, δ3, α):∫ t10+δ1

τ̂

|x(t;µ)− x(t;µ0)|dt ≤ ε.

Obviously, the solution x(t;µ0) is the continuation of the solution x0(t).
In the space Eµ = R× D × C(I1)× E f , we introduce the set of variations

= =

{
δµ = (δt0, δτ, δϕ, δ f ) ∈ Eµ − µ0 : |δt0| ≤ β, ‖δτ‖I ≤ β,

‖δϕ‖I1 ≤ β, δ f =
k∑

i=1

λiδ fi , |λi | ≤ β, i = 1, k

}
,

where β > 0 is a fixed number and δ fi ∈ E f − f0, i = 1, k are fixed functions.

Theorem 1.2. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, ϕ0, f0) ∈ A and defined on [τ̂ , t10], ti0 ∈
(a, b), i = 0, 1. Let K1 ⊂ O be a compact set containing a certain neighborhood of the set K0. Then the following
conditions hold:

1.4. there exist numbers ε1 > 0 and δ1 > 0 such that for an arbitrary (ε, δµ) ∈ (0, ε1)×=, we have µ0+εδµ ∈ A
and the solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 corresponds to this element. Moreover,
x(t;µ0 + εδµ) ∈ K1;

1.5. the following relations fulfilled:

lim
ε→0

[
sup

{
|x(t;µ0 + εδµ)− x(t;µ0)| : t ∈ [θ, t10 + δ1]

}]
= 0,

lim
ε→0

∫ t10+δ1

τ̂

|x(t;µ0 + εδµ)− x(t;µ0)|dt = 0

uniformly in δµ ∈ =, where θ = max{t00, t00 + εδt0}.

Theorem 1.2 is a simple corollary of Theorem 1.1.
Let U0 ⊂ Rr be an open set and Ω be the set of measurable functions u(t) ∈ U0, t ∈ I satisfying the conditions:

clu(I ) is a compact set in Rr and clu(I ) ⊂ U0.
To each element % = (t0, τ, ϕ, u) ∈ A1 = [a, b)× D ×Φ ×Ω we assign the controlled differential equation with

distributed prehistory

ẋ(t) =
∫ t

τ(t)
g(t, x(t), x(s), u(t))ds (1.4)

with the initial condition (1.3). Here the function g(t, x1, x2, u) is defined on I × O2
×U0 and satisfies the following

conditions: for each fixed (x1, x2, u) ∈ O2
×U0 the function g(·, x1, x2, u) : I → Rn is measurable; for each compact

sets K ⊂ O and U ⊂ U0 there exist functions mK ,U (t), L K ,U (t) ∈ L(I, R+) such that for almost all t ∈ I

|g(t, x1, x2, u)| ≤ mK ,U (t) ∀(x1, x2, u) ∈ K 2
×U,

|g(t, x1, x2, u1)− g(t, y1, y2, u2)| ≤ L K ,U (t)

[
2∑

i=1

|xi − yi | + |u1 − u2|

]
∀(x1, x2) ∈ K 2, ∀(y1, y2) ∈ K 2 and (u1, u2) ∈ U 2.

Definition 1.2. Let % = (t0, τ, ϕ, u) ∈ A1. A function x(t) = x(t; %) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b], is called a solution
of Eq. (1.4) with the initial condition (1.3) or a solution corresponding to the element % and defined on the interval
[τ̂ , t1], if it satisfies condition (1.3), is absolutely continuous on the interval [t0, t1] and satisfies Eq. (1.4) almost
everywhere on [t0, t1].
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Theorem 1.3. Let x0(t) be the solution corresponding to %0 = (t00, τ0, ϕ0, u0) ∈ A1 and defined on [τ̂ , t10], t10 < b.
Let K1 ⊂ O be a compact set containing a certain neighborhood of the set ϕ0(I1)∪ x0([t00, t10]). Then the following
conditions hold:

1.6. there exist numbers δi > 0, i = 0, 1 such that to each element

% = (t0, τ, ϕ, u) ∈ V̂ (%0; δ0) = B(t00; δ0)× V (τ0; δ0)× V1(ϕ0; δ0)× V2(u0; δ0)

corresponds solution x(t; %) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 and satisfying the condition x(t; %) ∈ K1, here
V2(u0; δ0) = {u ∈ Ω : ‖u − u0‖I < δ0};

1.7. for an arbitrary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that the following inequality holds for
any % ∈ V̂ (%0; δ2):

|x(t; ρ)− x(t; ρ0)| ≤ ε ∀t ∈ [θ, t10 + δ1], θ = max{t0, t00};

1.8. for an arbitrary ε > 0, there exists a number δ3 = δ3(ε) ∈ (0, δ0) such that the following inequality fulfilled
for any % ∈ V̂ (%0; δ3):∫ t10+δ1

τ̂

|x(t; %)− x(t; %0)|dt ≤ ε.

Some comments. In Theorem 1.1 perturbations of the right-hand side of Eq. (1.2) are small in the integral sense (see
(1.1)). Theorems 1.1–1.3 and their like theorems play an important role in the theory of optimal control, in proving
variation formulas of solution, in the sensitivity analysis of equations [1–7]. Theorem analogous to Theorem 1.1
without perturbations of constant delay are proved in [8]. Theorems on the continuous dependence of the solution for
various classes of ordinary and functional differential equations for the case in which the perturbation of the right-hand
side is small in the integral sense are given in [1,5,9–13,7,14].

2. Proof of Theorem 1.1

On the continuous dependence of solution for a class of functional differential equations. To each element µ ∈ A
we assign the functional differential equation

ẏ(t) =
∫ t

τ(t)
f (t, y(t), h(t0, ϕ, y)(s))ds (2.1)

with the initial condition

y(t0) = ϕ(t0), (2.2)

where h : I × Φ × C(I )→ C(I1) is the operator given by the formula

h(t0, ϕ, y)(t) =

{
ϕ(t) for t ∈ [τ̂ , t0),
y(t) for t ∈ [t0, b].

Definition 2.1. An absolutely continuous function y(t) = y(t;µ) ∈ O, t ∈ [r1, r2] ⊂ I , is called a solution of
Eq. (2.1) with the initial condition (2.2) or the solution corresponding to the element µ ∈ A and defined on [r1, r2], if
t0 ∈ [r1, r2], y(t0) = ϕ(t0) and satisfies Eq. (2.1) almost everywhere on the interval [r1, r2].

Remark 2.1. Let y(t;µ), t ∈ [r1, r2], µ ∈ A be the solution of Eq. (2.1) with the initial condition (2.2). Then, as is
easily seen, the function

x(t;µ) = h(t0, ϕ, y(·;µ))(t), t ∈ [τ̂ , r2]

is the solution of Eq. (1.2) with the initial condition (1.3).
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Theorem 2.1. Let y0(t) be a solution corresponding to µ0 ∈ A defined on [r1, r2] ⊂ (a, b) and let K1 ⊂ O be a
compact set containing a certain neighborhood of the set K0 = ϕ0(I1) ∪ y0([r1, r2]). Then the following conditions
hold:

2.1. there exist numbers δi > 0, i = 0, 1 such that a solution y(t;µ) defined on [r1− δ1, r2+ δ1] ⊂ I corresponds
to each element

µ = (t0, τ, ϕ, f0 + δ f ) ∈ V (µ0; K1, δ0, α).

Moreover,

ϕ(t) ∈ K1, t ∈ I1; y(t;µ) ∈ K1, t ∈ [r1 − δ1, r2 + δ1],

for arbitrary µ ∈ V (µ0; K1, δ0, α);
2.2. for an arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that the following inequality holds for

any µ ∈ V (µ0; K1, δ2, α)

|y(t;µ)− y(t;µ0)| ≤ ε, ∀t ∈ [r1 − δ1, r2 + δ1]. (2.3)

Proof. Let ε0 > 0 be so small that a closed ε0-neighborhood of the set K0:

K (ε0) = {x ∈ Rn
: ∃x̂ ∈ K0 |x − x̂ | ≤ ε0}

lies in int K1. There exist a compact set Q : K 2
0 (ε0) ⊂ Q ⊂ K 2

1 and a continuously differentiable function
χ : R2n

→ [0, 1] such that,

χ(x1, x2) =

{
1 for (x1, x2) ∈ Q,
0 for (x1, x2) 6∈ K 2

1
(2.4)

(see Assertion 3.2 in [1, p. 41]).
To each element µ ∈ A, we assign the functional differential equation

ż(t) =
∫ t

τ(t)
g(t, z(t), h(t0, ϕ, z)(s))ds (2.5)

with the initial condition

z(t0) = ϕ(t0), (2.6)

where g = χ f .
The function g(t, x1, x2) satisfies the conditions:

|g(t, x1, x2)| ≤ m f,K1(t), ∀xi ∈ Rn, i = 1, 2, (2.7)

for ∀x ′i , x ′′i ∈ Rn , i = 1, 2 and for almost all t ∈ I

|g(t, x ′1, x ′2)− g(t, x ′′1 , x ′′2 )| ≤ L f (t)
2∑

i=1

|x ′i − x ′′i |, (2.8)

where

L f (t) = L f,K1(t)+ α1m f,K1(t), α1 = sup

{
2∑

i=1

|χxi (x1, x2)| : xi ∈ Rn, i = 1, 2

}
(2.9)

(see [8]).
It is clear that if f = f0 + δ f then

L f,K1(t) = L f0,K1(t)+ Lδ f,K1(t), m f,K1(t) = m f0,K1(t)+ mδ f,K1(t). (2.10)

The solution of Eq. (2.5) with the initial condition (2.6) depends on the parameter

µ = (t0, τ, ϕ, f0 + δ f ) ∈ A0 = [a, b)× D × Φ ×
(

f0 +W (K1;α)
)
⊂ Eµ.

The topology in A0 is induced from the vector space Eµ.
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On the complete metric space C(I ) with the distance d(y1, y2) = ‖y1 − y2‖I we introduce a family

F(·;µ) : C(I )→ C(I ) (2.11)

of mapping depending on the parameter µ ∈ A0 by the formula

ζ(t) = ζ(t; z, µ) = ϕ(t0)+
∫ t

t0

[∫ ξ

τ(ξ)

g(ξ, z(ξ), h(t0, ϕ, z)(s))ds

]
dξ,

where g = χ( f0 + δ f ).
Clearly, every fixed point z(t;µ), t ∈ I , of mapping (2.11) is a solution of Eq. (2.5) with the initial condition (2.6).
Define the kth iteration Fk(z;µ) by

ζk(t) = ζk(t; z, µ) = ϕ(t0)+
∫ t

t0

[∫ ξ

τ(ξ)

g(ξ, ζk−1(ξ), h(t0, ϕ, ζk−1)(s))ds

]
dξ,

k = 1, 2, . . . , ζ0(t) = z(t).

Now let us prove that for a sufficiently large k, the family of mappings Fk(z;µ) is uniformly contractive. For this
purpose, we estimate the difference

|ζ ′k(t)− ζ
′′

k (t)| = |ζk(t; z
′, µ)− ζk(t; z

′′, µ)| ≤

∫ t

a

[∫ ξ

τ(ξ)

|g(ξ, ζ ′k−1(ξ), h(t0, ϕ, ζ
′

k−1)(s))

− g(ξ, ζ ′′k−1(ξ), h(t0, ϕ, ζ
′′

k−1)(s))|ds

]
dξ ≤

∫ t

a

[∫ ξ

τ(ξ)

L f (ξ)
(
|ζ ′k−1(ξ)− ζ

′′

k−1(ξ)|

+ |h(t0, ϕ, ζ
′

k−1)(s)− h(t0, ϕ, ζ
′′

k−1)(s)|
)

ds

]
dξ, i = 1, 2, . . . (2.12)

(see (2.8)), where a function L f (ξ) has the form (2.9) i.e.

L f (ξ) = L f0+δ f,K1(ξ)+ α1m f0+δ f,K1(ξ) = L f0,K1(ξ)+ Lδ f,K1(ξ)+ α1[m f0,K1(ξ)+ mδ f,K1(ξ)] (2.13)

(see (2.10)).
Here, it is assumed that ζ ′0 = z′(t) and ζ ′′0 = z′′(t).
It follows from the definition of the operator h(·) that

h(t0, ϕ, ζ
′

k−1)(s)− h(t0, ϕ, ζ
′′

k−1)(s) = h(t0, 0, ζ ′k−1 − ζ
′′

k−1)(s).

Using the last equality from relation (2.12) it follows that

|ζ ′k(t)− ζ
′′

k (t)| ≤ 2
∫ t

a
L f (ξ)(ξ − τ(ξ)) max

θ∈[a,ξ ]
|ζ ′k−1(θ)− ζ

′′

k−1(θ)|dξ

≤ 2(b − τ(a))
∫ t

a
L f (ξ) max

θ∈[a,ξ ]
|ζ ′k−1(θ)− ζ

′′

k−1(θ)|dξ.

Furthermore,

max
θ∈[a,ξ ]

|ζ ′k−1(θ)− ζ
′′

k−1(θ)| ≤ 2(b − τ(a))
∫ ξ

a
L f (ξ1) max

θ∈[a,ξ1]
|ζ ′k−2(θ)− ζ

′′

k−2(θ)|dξ1.

Therefore

|ζ ′k(t)− ζ
′′

k (t)| ≤ [2(b − τ(a))]
2
∫ t

a
L f (ξ1)dξ1

∫ ξ1

a
L f (ξ2) max

θ∈[a,ξ2]
|ζ ′k−2(θ)− ζ

′′

k−2(θ)|dξ2.

By continuing this procedure, we obtain

|ζ ′k(t)− ζ
′′

k (t)| ≤ [2(b − τ(a))]
kαk(t)‖z

′
− z′′‖,
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where

αk(t) =
∫ t

a
L f (ξ1)dξ1

∫ ξ1

a
L f (ξ2)dξ2 . . .

∫ ξk−1

a
L f (ξk)dξk .

By induction, one can readily show that

αk(t) =
1
k!

(∫ t

a
L f (ξ)dξ

)k

.

Thus,

d(Fk(z′;µ), Fk(z′′;µ)) = ‖ζ ′k − ζ
′′

k ‖I ≤
[2(b − τ(a))]k

k!

(∫ b

a
L f (ξ)dξ

)k

‖z′ − z′′‖I

= α̂k‖z
′
− z′′‖I .

Let us prove the existence of a number α2 > 0 such that∫
I

L f (t)dt ≤ α2, ∀ f ∈ f0 +W (K1;α).

Indeed, by (2.13) we have∫
I

L f (t)dt =
∫

I
(L f,K1(t)+ α1m f,K1(t))dt =

∫
I
[L f0,K1(t)+ Lδ f,K1(t)+ α1(m f0,K1(t)

+mδ f,K1(t))]dt ≤ α(α1 + 1)+
∫

I
[L f0,K1(t)+ α1m f0,K1(t)]dt = α2.

Taking into account this estimate, we obtain α̂k ≤ [2(b − τ(a))α2]
k/k!. Consequently, there exists a positive integer

k1 such that α̂k1 < 1. Therefore, the k1st iteration of the family (2.11) is contracting. By the fixed point theorem for
contraction mappings (see [1, p. 61], [15, p. 110]), the mapping (2.11) has a unique fixed point for each µ. Hence it
follows that Eq. (2.5) with the initial condition (2.6) has a unique solution z(t;µ), t ∈ I .

Let us prove that the mapping Fk(z(·;µ0); ·) : A0 → C(I ) is continuous at the point µ = µ0 for an arbitrary
k = 1, 2, . . .. For this purpose, it suffices to show that if a sequence µi = (t0i , τi , ϕi , fi ) ∈ A0, i = 1, 2, . . ., where
fi = f0 + δ fi , converges to µ0 = (t00, τ0, ϕ0, f0), i.e. if

lim
i→∞

(
|t0i − t00| + ‖τi − τ0‖I + ‖ϕi − ϕ0‖I1 + H(δ fi ; K1)

)
= 0

then

lim
i→∞

Fk(z(·;µ0);µi ) = Fk(z(·;µ0);µ0) = z(·;µ0). (2.14)

We prove relation (2.14) by induction. Let k = 1, then we have

|ζ i
1(t)− z0(t)| ≤ |ϕi (t0i )− ϕ0(t00)| +

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τi (ξ)

gi (ξ, z0(ξ), h(t0i , ϕi , z0)(s))ds

]
dξ

−

∫ t

t00

[∫ ξ

τ0(ξ)

g0(ξ, z0(ξ), h(t00, ϕ0, z0)(s))ds

]
dξ

∣∣∣∣∣ ≤ αi
1 + α

i
2(t), (2.15)

where

ζ i
1(t) = ζ1(t; z0, µi ), z0(t) = z(t;µ0), gi = χ fi = g0 + δgi , g0 = χ f0, δgi = χδ fi ;

αi
1 = |ϕi (t0i )− ϕ0(t00)| +

∣∣∣∣∣
∫ t

t0i

[∫ τ0(ξ)

τi (ξ)

|gi (ξ, z0(ξ), h(t0i , ϕi , z0)(s))|ds

]
dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t0i

t00

[∫ ξ

τ0(ξ)

|g0(ξ, z0(ξ), h(t00, ϕ0, z0)(s))|ds

]
dξ

∣∣∣∣∣,
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αi
2(t) =

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τ0(ξ)

|gi (ξ, z0(ξ), h(t0i , ϕi , z0)(s))− g0(ξ, z0(ξ), h(t00, ϕ0, z0)(s))|ds

]
dξ

∣∣∣∣∣.
According to (2.7) and (2.9) we have

αi
1 ≤ |ϕi (t0i )− ϕ0(t00)| +

∣∣∣ ∫ t

t0i

[
(τ0(ξ)− τi (ξ))m fi ,K1(ξ)

]
dξ
∣∣∣

+

∣∣∣ ∫ t0i

t00

[
(ξ − τ0(ξ))m f0,K1(ξ)

]
dξ
∣∣∣ ≤ |ϕi (t0i )− ϕ0(t00)|

+ ‖τ0 − τi‖I

[
α +

∫
I

m f0,K1(t)dt

]
+ (b − τ0(a))

∣∣∣ ∫ t00

t0i

m f0,K1(t)dt
∣∣∣,

therefore,

lim
i→∞

αi
1 = 0. (2.16)

After elementary transformation we obtain

αi
2(t) ≤

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τ0(ξ)

|g0(ξ, z0(ξ), h(t0i , ϕi , z0)(s))− g0(ξ, z0(ξ), h(t00, ϕ0, z0)(s))|ds

]
dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τ0(ξ)

|δgi (ξ, z0(ξ), h(t0i , ϕi , z0)(s))− δgi (ξ, z0(ξ), h(t00, ϕ0, z0)(s))|ds

]
dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τ0(ξ)

δgi (ξ, z0(ξ), h(t00, ϕ0, z0)(s))ds

]
dξ

∣∣∣∣∣ ≤ αi
3 + α

i
4 + α

i
5(t),

where

αi
3 =

∫
I

L f0(ξ)

[∫ ξ

τ0(ξ)

|h(t0i , ϕi , z0)(s)− h(t00, ϕ0, z0)(s)|ds

]
dξ,

αi
4 =

∫
I

Lδ fi (ξ)

[∫ ξ

τ0(ξ)

|h(t0i , ϕi , z0)(s)− h(t00, ϕ0, z0)(s)|ds

]
dξ,

αi
5(t) = max

t ′,t ′∈I

∣∣∣∣∣
∫ t ′

t ′

[∫ ξ

τ0(ξ)

δgi (ξ, z0(ξ), h(t00, ϕ0, z0)(s))ds

]
dξ

∣∣∣∣∣.
Introduce notation

s1i = min(t0i , t00), s2i = max(t0i , t00).

It is easy to see that

lim
i→∞

(s2i − s1i ) = 0.

Now we estimate αi
3 and αi

4. We have

αi
3 ≤ βi

∫
I

L f0(t)dt,

where

βi = ‖ϕi − ϕ0‖I1(b − τ(a))+
∫ s2i

s1i

|ϕi (s)− z0(s)|ds;

αi
4 ≤ βi

∫
I

Lδ f (t)dt ≤ α(1+ α1)βi .

It is clear that βi → 0.
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Thus,

lim
i→∞

αi
3 = lim

i→∞
αi

4 = 0. (2.17)

Obviously,

H(δgi ; K1) = H(χδ fi ; K1) ≤ H(δ fi ; K1)

(see (2.4)). Since H(δ fi ; K1)→ 0 as i →∞, we have

lim
i→∞

H(δgi ; K1) = 0.

This allows us to use Lemma 2 given in [8], which in turn, implies

lim
i→∞

αi
5(t) = 0 (2.18)

uniformly in t ∈ I .
Conditions (2.17) and (2.18) yield

lim
i→∞

αi
2(t) = 0 (2.19)

uniformly in t ∈ I .
Taking into account (2.16) and (2.19) we get

‖ζ i
1 − z0‖I = 0

(see (2.15)).
Relation (2.14) is proved for k = 1.
Let (2.14) hold for a certain k > 1; we will prove it for k + 1. Elementary transformations yield:

|ζ i
k+1(t)− z0(t)| ≤ |ϕi (t0i )− ϕ0(t00)| +

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τi (ξ)

gi (ξ, ζ
i
k (ξ), h(t0i , ϕi , ζ

i
k )(s))ds

]
dξ

−

∫ t

t00

[∫ ξ

τ0(ξ)

g0(ξ, z0(ξ), h(t00, ϕ0, z0)(s))ds

]
dξ

∣∣∣∣∣ ≤ αi
1 + α

i
2(t)+ α

i
3k(t),

where

αi
3k(t) =

∣∣∣∣∣
∫ t

t0i

[∫ ξ

τ0(ξ)

|gi (ξ, ζ
i
k (ξ), h(t0i , ϕi , ζ

i
k )(s))− gi (ξ, z0(ξ), h(t0i , ϕi , z0)(s))|ds

]
dξ

∣∣∣∣∣.
The quantities αi

1 and αi
2(t) have been estimated in the preceding, and it remains to estimate αi

3k . We have

αi
3k ≤

∣∣∣ ∫ t

t0i

L fi (ξ)

[∫ ξ

τ0(ξ)

(
|ζ i

k (ξ)− z0(ξ)| + |h(t0i , 0, ζ i
k − z0)(s)|

)
ds

]
dξ

≤ ‖ζ i
k − z0‖I (1+ b − τ0(a))α2.

Since

lim
i→∞
‖ζ i

k − z0‖I = 0

it follows that

lim
i→∞

αi
4k = 0. (2.20)

According to (2.16), (2.19) and (2.20), we have

lim
i→∞
‖ζ i

k+1 − z0‖I = 0.

Relation (2.14) is proved for every k = 1, 2, . . ..



16 P. Dvalishvili, T. Tadumadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 7–18

Let a number δ1 > 0 be so small that [r1 − δ1, r2 + δ1] ⊂ I and |z(t;µ0)− z(r1;µ0)| ≤ ε0/2 for t ∈ [r1 − δ1, r1]

and |z(t;µ0)− z(r2;µ0)| ≤ ε0/2 for t ∈ [r2, r2 + δ1].
We can conclude from the uniqueness of the solution z(t;µ0) that z(t;µ0) = y0(t) for t ∈ [r1, r2]. Taking into

account the above inequalities, we have

(z(t;µ0), h(t00, ϕ0, z(·;µ0))(s)) ∈ K 2(ε0/2) ⊂ Q, t ∈ [r1 − δ1, r2 + δ1], s ∈ [τ0(t), t].

Hence

χ(z(t;µ0), h(t00, ϕ0, z(·;µ0))(s)) = 1, t ∈ [r1 − δ1, r2 + δ1], s ∈ [τ0(t), t]

and the function z(t;µ0) satisfies the equation

ẏ(t) =
∫ t

τ0(t)
f0(t, y(t), h(t0, ϕ, y)(s))ds, t ∈ [r1 − δ1, r2 + δ1]

and the initial condition

y(t00) = ϕ0(t00).

Therefore,

y(t;µ0) = z(t;µ0), t ∈ [r1 − δ1, r2 + δ1].

According to the fixed point theorem, for ε0/2 there exists a number δ0 ∈ (0, ε0) such that a solution z(t;µ) satisfying
the condition

|z(t;µ)− z(t;µ0)| ≤ ε0/2, t ∈ I,

corresponds to each element µ ∈ V (µ0; K1, δ0, α). Therefore, for t ∈ [r1 − δ1, r2 + δ1]

z(t;µ) ∈ K (ε0)∀µ ∈ V (µ0; K1, δ0, α).

Taking into account that ϕ(t) ∈ K (ε0), we see that for t ∈ [r1 − δ1, r2 + δ1] and s ∈ [τ(t), t] this implies

χ(z(t;µ), h(t0, ϕ, z(·;µ))(s)) = 1 ∀µ ∈ V (µ0; K1, δ0, α).

Hence the function z(t;µ) satisfies Eq. (2.1) and condition (2.2), i.e.

y(t;µ) = z(t;µ) ∈ K1, t ∈ [r1 − δ1, r2 + δ1], µ ∈ V (µ0; K1, δ0, α). (2.21)

The first part of Theorem 2.1 is proved. By the fixed point theorem, for an arbitrary ε > 0, there exists a number
δ2 = δ2(ε) ∈ (0, δ0) such that for each µ ∈ V (µ0; K1, δ0, α),

|z(t;µ)− z(t;µ0)| ≤ ε, t ∈ I.

Whence using (2.21), we obtain (2.3). �

Proof of Theorem 1.1. In Theorem 2.1, let r1 = t00 and r2 = t10. Obviously, the solution x0(t) satisfies the following
equation on the interval [t00, t10]:

ẏ(t) =
∫ t

τ0(t)
f0(t, y(t), h(t00, ϕ, y)(s))ds.

Therefore, in Theorem 2.1, as the solution y0(t) we can take the function x0(t), t ∈ [t00, t10].
By Theorem 2.1, there exist numbers δi > 0, i = 0, 1, and for an arbitrary ε > 0, there exists a number

δ2 = δ2(ε) ∈ (0, δ0] such that the solution y(t;µ), t ∈ [t00− δ1, t10+ δ1], corresponds to each µ ∈ V (µ0; K1, δ2, α).
Moreover, the following conditions hold:ϕ(t) ∈ K1, t ∈ I1; y(t;µ) ∈ K1,

|y(t : µ)− y(t;µ0)| ≤ ε, t ∈ [t00 − δ1, t10 + δ1],

µ ∈ V (µ0; K1, δ2, α).

(2.22)
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For an arbitrary µ ∈ V (µ0; K1, δ0, α), the function

x(t;µ) =

{
ϕ(t), t ∈ [τ̂ , t0),
y(t;µ), t ∈ [t0, t1 + δ1]

is the solution corresponding to µ. Moreover, if t ∈ [θ, t10 + δ1], then x(t;µ0) = y(t;µ0) and x(t;µ) = y(t;µ).
Taking into account (2.22), we see that this implies 1.1 and 1.2. It is easy to note that for an arbitrary µ ∈

V (µ0; K1, δ0, α), we have∫ t10+δ1

τ̂

|x(t;µ)− x(t;µ0)|dt =
∫ θ0

τ̂

|ϕ(t)− ϕ0(t)|dt +
∫ θ

θ0

|x(t;µ)− x(t;µ0)|dt

+

∫ t10+δ1

θ

|x(t;µ)− x(t;µ0)|dt ≤ ‖ϕ − ϕ0‖I1(b − τ̂ )+ M |t0 − t00|

+ max
t∈[θ,t10+δ1]

|x(t;µ)− x(t;µ0)|(b − τ̂ ),

where θ0 = min{t0, t00}, M = sup{|x ′ − x ′′| : x ′, x ′′ ∈ K1}.
By 1.1 and 1.2, this inequality implies 1.3. �

3. Proof of Theorem 1.3

To each element % ∈ A1 we will set in correspondence the functional differential equation

ẏ(t) =
∫ t

τ(t)
g(t, y(t), h(t0, ϕ, y))(s), u(t)ds, (3.1)

with the initial condition (2.2).

Theorem 3.1. Let y0(t) be a solution corresponding to %0 = (t00, τ0, ϕ0, u0) ∈ A1 defined on [r1, r2] ⊂ (a, b) and
let K1 ⊂ O be a compact set containing a certain neighborhood of the set K0 = ϕ0(I1) ∪ y0([r1, r2]). Then the
following conditions hold:

3.1. there exist numbers δi > 0, i = 0, 1 such that to each element

% = (t0, τ, ϕ, u) ∈ V̂ (%0; δ0) = B(t00; δ0)× V (τ0; δ0)× V1(ϕ0; δ0)× V2(u0; δ0)

corresponds solution y(t; %) defined on the interval [r1 − δ1, r2 + δ1] ⊂ I and satisfying the condition y(t; %) ∈ K1;
3.2. for an arbitrary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that the following inequality holds for

any % ∈ V̂ (%0; δ2):

|y(t; ρ)− y(t; ρ0)| ≤ ε ∀t ∈ [r1 − δ1, r2 + δ1].

Proof. Rewrite Eq. (3.1) in the form

ẏ(t) =
∫ t

τ(t)
[g0(t, y(t), h(t0, ϕ, y)(s))+ δgu(t, y(t), h(t0, ϕ, y)(s))]ds,

where

g0(t, x1, x2) = g(t, x1, x2, u0(t)) ∈ E f ,

δgu(t, x1, x2) = g(t, x1, x2, u(t))− g0(t, x1, x2) ∈ E f .

Let δ̂0 > 0 be a number so small that V2(u0; δ̂0) ⊂ Ω . There exists a compact set M ⊂ U0 such that any function
from the neighborhood V2(u0; δ̂0) assumes its values in M .

Let K ⊂ O be a compact set. There exists a function L K (t) ∈ L(I,R+) such that for almost all t ∈ I , the
following inequality holds:

|g(t, x ′1, x ′′2 , u′)− g(t, x ′1, x ′′2 , u′′)| ≤ L K (t)

[
2∑

i=1

|x ′i − x ′′i | + |u
′
− u′′|

]
∀x ′i , x ′′i ∈ K , i = 1, 2, u′, u′′ ∈ M.
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Hence

|δgu(t, x1, x2)| ≤ L K (t)|u(t)− u0(t)| ≤ δ̂0L K (t) ∀xi ∈ K , i = 1, 2, ∀u ∈ V2(u0; δ̂0),

|δgu(t, x ′1, x ′2)− δgu(t, x ′′1 , x ′′2 )| ≤ 2L K (t)
2∑

i=1

|x ′i − x ′′i |, ∀x
′

i , x ′′i ∈ K , i = 1, 2.

It is easy to see that the following inclusions hold for δ ∈ (0, δ̂0]:

{δgu(t, x1, x2) : u ∈ V2(u0; δ)} ⊂ W (K ;α),

{δgu(t, x1, x2) : u ∈ V2(u0; δ)} ⊂ VK ,δ̂1
,

where

α = (2+ δ̂0)

∫
I

L K (t)dt, δ̂1 = δ

∫
I

L K (t)dt.

Now we can use Theorem 2.1, which, is turn, proves Theorem 3.1. �

Proof of Theorem 1.3. In Theorem 3.1, let r1 = t00 and r2 = t10. Obviously, the solution x0(t) satisfies the following
equation on the interval [t00, t10]:

ẏ(t) =
∫ t

τ0(t)
g(t, y(t), h(t0, ϕ0, y)(s), u0(t))ds.

Therefore, in Theorem 3.1, as the solution y0(t), we can take the function x0(t), t ∈ [t00, t10]. After that, the proof of
the theorem completely coincides with that of Theorem 1.1; for this purpose, it suffices to replace the element µ by
the element % and the set V (µ0; K1, δ0, α) by the set V̂ (%0; δ0) everywhere. �
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Abstract

We establish a general theorem for a wide class of sequences of superlinear operators {Tn : L1(I 2)→ L0(I 2), n = 1, 2, . . .}
about existence of a function g from a certain class Lφ(L) such that the sequence of functions {Tn(g), n = 1, 2, . . .} is essentially
unbounded in measure on I 2. This theorem implies several results about divergence of sequences of classical operators.
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BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Essential divergence in measure; Orthogonal Fourier series; Lebesgue functions; Superlinear operators

1. Introduction

We start with the following definitions.
Let µN , N = 1, 2, . . . , denote Lebesgue measure in the Euclidean space RN and I denote the interval [0, 1]. For

a number h ∈ (0, 1), by Ih we will denote the interval [0, 1− h].
If F is a Lebesgue measurable set in RN , with 0 < µN F < ∞, then let L0(F) denote the set of all Lebesgue

measurable functions on F that are a.e. finite on F .
A set Q of Lebesgue measurable functions on F is called bounded in measure on F if for any ε > 0 there is a

constant R > 0 such that µ2{(x, y) ∈ F : | f (x, y)| ≥ R} ≤ ε for any function f ∈ Q.
A sequence { fn(x, y) : n = 1, 2, . . .} of Lebesgue measurable functions on F is called bounded in measure on F

if the set Q consisting of the members of the sequence { fn(x, y) : n = 1, 2, . . .} is bounded in measure.
A sequence {gn(x, y) : n = 1, 2, . . .} of Lebesgue measurable functions on F is called essentially unbounded in

measure on F if for any Lebesgue measurable set E ⊂ F , µ2 E > 0, the sequence {gn(x, y) : n = 1, 2, . . .} is not
bounded in measure on E .

An operator T : L1(I 2)→ L0(I 2) is called superlinear [1, p. 131] if for any f0 ∈ L1(I 2) there is a linear operator
G f0 : L1(I 2)→ L0(I 2) such that

G f0( f0)(x, y) = T ( f0)(x, y) (1)
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and

|G f0( f )(x, y)| ≤ |T ( f )(x, y)| for any f ∈ L1(I 2) (2)

and for almost all points (x, y) in I 2.
We mention the following properties of superlinear operators [1, p. 131]: for all functions f, g ∈ L1(I 2) and any

real number k we have

|T ( f + g)(x, y)| ≤ |T ( f )(x, y)| + |T (g)(x, y)|,

|T (k f )(x, y)| = |k||T ( f )(x, y)|,

|T ( f + g)(x, y)| ≥ |T ( f )(x, y)| − |T (g)(x, y)|

for almost all points (x, y) ∈ I 2.
A superlinear operator T : L1(I 2)→ L0(I 2) is said to be bounded in measure on I 2 if the set

Q := {T ( f ) : ‖ f ‖L1 ≤ 1}

is bounded in measure on I 2.
For each pair of numbers (θ, η) ∈ I 2

h and a number h ∈ (0, 1) introduce the function of two variables (x, y) defined
on I 2 by

δθ,η,h(x, y) :=

{
h−2, if (x, y) ∈ [θ, θ + h] × [η, η + h];
0, otherwise on I 2.

(3)

The kernel of a superlinear operator T : L1(I 2)→ L0(I 2) is the function

K (x, y, θ, η) := lim
h→0

T (δθ,η,h(., .))(x, y), (x, y, θ, η) ∈ I 4,

provided the limit exists for a.e. (x, y, θ, η) ∈ I 4.
The system of Rademacher functions {rn(x)}∞n=0 on [0, 1) is defined as follows

r0(x) :=


1, if 0 ≤ x <

1
2
,

−1, if
1
2
≤ x < 1

(4)

and let r0(x) be continued to (−∞,∞) with period 1. For n ≥ 1 define

rn(x) := r0(2n x). (5)

Definition 1 ([2]). Let (X,Σ , ν) be σ -finite measure space, E ∈ Σ and ν(E) > 0. Let also a sequence of measurable
real-valued functions { fn(x)}∞n=1 be defined and a.e. finite on E . Then we say that the sequence { fn(x)}∞n=1 is
essentially divergent in measure on E if for every E1 ⊂ E with E1 ∈ Σ and ν(E1) > 0, the sequence is divergent in
measure (that is, does not converge in measure to an a.e. finite and measurable function) on E1.

Definition 2 ([2]). Let {ϕn(x)}∞n=1 be a complete orthonormal system on I := [0, 1] such that ϕ1(x) = 1 on I ; each
function ϕn(x) is a bounded function on I ; there exists an integer N > 1 such that for every positive integer n there
exists a number k(n) such that ϕn(N x) = ϕk(n)(x) and for any 1 ≤ n1 < n2 we have k(n1) < k(n2). Then we say
that the system {ϕn(x)}∞n=1 is a system of type T.

Note that the trigonometric system (contracted on I ) is a system of type T (with arbitrary integer N ≥ 2). The
Walsh system in Paley’s numeration also is a system of type T with N = 2l where l is an arbitrary positive integer.

A.N. Kolmogorov [3, p. 267] proved that all trigonometric Fourier series converge in measure on [0, 2π ]. S.V.
Konyagin [4] and the author of this paper [5] constructed a double trigonometric Fourier series that diverges in measure
by squares on [0, 2π ]2.
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Later we proved [6] the following.

Theorem 1 (R. Getsadze). Let {ϕk(x)}∞k=1 be an arbitrary uniformly bounded orthonormal system (ONS) on I . Then
there exists an integrable function on I 2 whose Fourier series with respect to the product system {ϕk(x)ϕl(y)}∞k,l=1

diverges in measure by squares on I 2.

The following theorem was proved in [2] (see p. 27).

Theorem 2 (M.I. Dyachenko; K.S. Kazaryan, P. Sifuéntes). Let {ϕm(x)}∞m=1 be a uniformly bounded ONS on I that is
a system of type T. Suppose that there exists a function g0 ∈ L(I 2) such that the Fourier series of g0 with respect to the
product system {ϕm(x)ϕn(y)}∞m,n=1 unboundedly diverges in measure by squares on I 2. Then there exists a function

f0 ∈ L(I 2) such that the Fourier series of f0 with respect to the product system {ϕm(x)ϕn(y)}∞m,n=1 essentially

diverges in measure by squares on I 2.

From the last two theorems it follows that there exists a function g ∈ L([0, 2π ]2) such that it is double
trigonometric Fourier series essentially diverges in measure by squares on [0, 2π ]2. The theorems imply also similar
results for the double Walsh–Paley system on I 2.

On the other hand, using uniform weak (1, 1) type property for the sequence of partial sums of one-dimensional
Fourier trigonometric series and using standard method of iteration we can conclude that the double Fourier trigono-
metric series of functions from the class L ln+ L([0, 2π ]2) converge in measure by rectangles. Similar statement is
valid for the double Walsh–Paley system. It is natural to ask the following question: what is the “exact statement” in
the sense of Lφ(L) classes of essential divergence in these cases. In this paper we will prove the following general
theorem that will imply the answers on this question.

Theorem 3. Let φ(u) be a nonnegative, continuous and nondecreasing function on [0,∞) such that uφ(u) is a convex
function on [0,∞).

Let {Tn : L1(I 2) → L0(I 2), n = 1, 2, . . .} be a sequence of superlinear operators that are bounded in measure
on I 2. Suppose also that for every f ∈ L2(I 2) the sequence {Tn( f )(x, y), n = 1, 2, . . .} is bounded in measure on
I 2 and let Kn(x, y, θ, η) be the kernel for Tn , that satisfies the following condition

‖Kn(x, y, θ, η)‖∞ <∞, (6)

where the norm is taken with respect to four variables and may depend on n.
Suppose that for any Lebesgue measurable set E, E ⊂ I 2, µ2 E > 0 and for each integer n > n0(E) there exist:

positive numbers hn , ξn(E), εn(E) and a Lebesgue measurable set En , En ⊂ E, µ2 En ≥ γ1µ2 E such that: For each
set F ⊂ En , whose Lebesgue measure µ2 F ≥ γ1

6 µ2 E, there exists a positive number λn(F) with the property

µ4{(x, y, θ, η) ∈ F × I 2
: |Kn(x, y, θ, η)| ≥ λn(F)} ≥

ξn(E)

λn(F)
> 0, (7)

lim
n→∞

ξn(E) = ∞ and lim
n→∞

εn(E) = 0, (8)

φ(h−2
n ) ≤ εn(E)ξn(E), (9)

µ4{(x, y, θ, η) ∈ E × I 2
tn : |Tn(δθ,η,hn )(x, y)− Kn(x, y, θ, η)| > 1} ≤

ξn(E)

20‖Kn(x, y, θ, η)‖∞
(10)

and

hn ≤ tn,

where

tn :=
ξn(E)

50‖Kn(x, y, θ, η)‖∞
(11)

and γ1 is a positive constant, independent of n, the set E and (x, y).
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Then there exists a function g ∈ L1(I 2) such that∫
I 2
|g(x, y)|φ(|g(x, y)|)dxdy <∞,

and the sequence of functions {Tn(g)(x, y), n = 1, 2, . . .}, is essentially unbounded in measure on I 2.

Using Theorem 3 we can prove the following two theorems.

Theorem 4. Let φ(u) be a nonnegative, continuous and nondecreasing function on [0,∞) such that uφ(u) is a convex
function on [0,∞) and

φ(u) = o(ln u) (u →∞). (12)

Then there exists a function g1 ∈ L1(I 2) such that∫
I 2
|g1(x, y)|φ(|g1(x, y)|)dxdy <∞,

and the sequence of the square partial sums of the double Fourier–Walsh–Paley series of g1 is essentially unbounded
in measure on I 2.

Theorem 5. Let φ(u) be a nonnegative, continuous and nondecreasing function on [0,∞) such that uφ(u) is a convex
function on [0,∞) and

φ(u) = o(ln u) (u →∞).

Then there exists a function g2 ∈ L1(I 2) such that∫
I 2
|g2(x, y)|φ(|g2(x, y)|)dxdy <∞,

and the sequence of the square partial sums of the double trigonometric Fourier series of g2 is essentially unbounded
in measure on I 2.

We will give in this paper the proofs of Theorems 3 and 4. The proof of Theorem 5 is similar to the proof of
Theorem 4.

Unboundedness in measure of sequences of superlinear operators was studied earlier by us in [7].

2. Proof of Theorem 3

Set

ψ(u) := uφ(u).

It is clear that (see (7))

sup
F : F⊂En ,µ2 F≥

γ1
6 µ2 E

λn(F) ≤ ‖Kn(x, y, θ, η)‖∞. (13)

We will prove the following.

Lemma 1. Under the conditions of Theorem 3, for an arbitrary Lebesgue measurable set E ⊂ I 2, µ2 E > 0 and a
number n > n0(E) there exists a function Ψn(x, y) = Ψn(x, y; E) ∈ L∞(I 2), ‖Ψn‖L1(I 2) ≤ 1, such that∫

I 2
ψ(Ψn(x, y))dxdy ≤ εn(E)ξn(E) (14)

and

µ2

{
(x, y) ∈ E : |Tn(Ψn)(x, y)| ≥

9ξn(E)

20

}
≥
γ1

36
µ2 E, (15)

where γ1 is a positive constant given in Theorem 3 and is independent of n, the set E and (x, y).
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Introduce the sets

Pn(F) := {(x, y, θ, η) ∈ F × I 2
: |Kn(x, y, θ, η)| ≥ λn(F)} (16)

and

Qn := {(x, y, θ, η) ∈ E × I 2
tn : |Tn(δθ,η,hn )(x, y)− Kn(x, y, θ, η)| > 1}. (17)

We shall show that for each n > r0(E) (r0(E) is a positive constant that may depend on E) there exist a positive
integer p(n) and the following finite sequences: a sequence of disjoint measurable sets {B(n)i }

p(n)
i=1 , B(n)i ⊂ En ,

i = 1, 2, . . . , p(n); a sequence of positive numbers {λ(n)i }
p(n)
i=1 and a sequence of pairs of numbers {(θ (n)i , η

(n)
i )}

p(n)
i=1 ,

(θ
(n)
i , η

(n)
i ) ∈ I 2

tn , i = 1, 2, . . . , p(n), such that

|Tn(δθ (n)i ,η
(n)
i ,hn

)(x, y)− Kn(x, y, θ (n)i , η
(n)
i )| ≤ 1 (x, y) ∈ B(n)i i = 1, 2, . . . , p(n), (18)

µ2{∪
p(n)
i=1 B(n)i } ≥

γ1

6
µ2 E > 0, (19)

µ2{B
(n)
i } ≥

ξn(E)

λ
(n)
i

for all i = 1, 2, . . . , p(n), (20)

|Kn(x, y, θ (n)i , η
(n)
i )| ≥

9
10
λ
(n)
i for all (x, y) ∈ B(n)i , i = 1, 2, . . . , p(n). (21)

Indeed, introduce the set

A(n)1 := Pn(En) ∩ ((E × I 2
tn ) \ Qn). (22)

It is clear that (see (16), (17))

Pn(En) = Pn(En)
⋂

(E × I 2)

= Pn(En)
⋂ {
[(E × I 2) \ Qn]

⋃
Qn

}
=

{
Pn(En)

⋂
[(E × I 2) \ Qn]

}⋃ {
Pn(En)

⋂
Qn

}
.

Now it follows that (see (16), (17), (7), (10))

ξn(E)

λn(En)
≤ µ4{Pn(En)} = µ4

{
Pn(En)

⋂
[(E × I 2) \ Qn]

}
+ µ4

{
Pn(En)

⋂
Qn

}
≤ µ4

{
Pn(En)

⋂
[(E × I 2) \ Qn]

}
+

ξn(E)

20‖Kn(x, y, θ, η)‖∞

and, consequently (see (13)),

µ4

{
Pn(En)

⋂
[(E × I 2) \ Qn]

}
≥

ξn

λn(En)
−

ξn

20λn(En)
. (23)

We note that

Pn(En)
⋂
[(E × I 2) \ Qn] ⊂

{
Pn(En)

⋂
[(E × I 2

tn ) \ Qn]

}⋃{
E × (I 2

\ I 2
tn )
}
,

that implies the following inequalities (see (11), (22), (23))

ξn

λn(En)
−

ξn

20λn(En)
≤ µ4

{
Pn(En)

⋂
[(E × I 2) \ Qn]

}
≤ µ4

{
Pn(En)

⋂
[(E × I 2

tn ) \ Qn]
}
+ µ4

{
E × (I 2

\ I 2
tn )
}

≤ µ4{A
(n)
1 } + 2tn ≤ µ4{A

(n)
1 } +

2ξn

50λn(En)
.
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Now it is obvious that (see (22))

µ4{A
(n)
1 } =

∫
En

∫
I 2
tn

χ
A(n)1
(x, y, θ, η)dxdydθdη ≥

9ξn

10λn(En)
,

where χ
A(n)1
(x, y, θ, η) is the characteristic function of the set A(n)1 .

Using Fubini’s theorem we conclude that there exists a pair of numbers

(θ
(n)
1 , η

(n)
1 ) ∈ I 2

tn

such that

µ2{(x, y) ∈ En : (x, y, θ (n)1 , η
(n)
1 ) ∈ A(n)1 } ≥

9ξn

10λn(En)
.

Now we let

B(n)1 := {(x, y) ∈ En : (x, y, θ (n)1 , η
(n)
1 ) ∈ A(n)1 }

and

λ
(n)
1 :=

10λn(En)

9
.

From (16) to (22) we see that the first step in the construction is completed.
We now assume that the pth step of the construction is complete. If it happens that

µ2{∪
p
i=1 B(n)i } ≥

γ1

6
µ2(E) > 0,

then the construction is complete.
Suppose, in the contrary, that

µ2{∪
p
i=1 B(n)i } <

γ1

6
µ2(E).

Then we let

F := En \ ∪
p
i=1 B(n)i .

According to one of the conditions of Theorem 3 we have µ2 En ≥ γ1µ2(E). Consequently, we have

µ2{En \ ∪
p
i=1 B(n)i } ≥

γ1

6
µ2(E) > 0.

Introduce the set

A(n)p+1 := Pn(En \ ∪
p
i=1 B(n)i ) ∩ ((E × I 2

tn ) \ Qn).

It is clear that (see (16), (13), (17), (11))∫
En\∪

p
i=1 B(n)i

∫
I 2
tn

χ
A(n)p+1

(x, y, θ, η)dxdydθdη ≥
9ξn

10λn(En \ ∪
p
i=1 B(n)i )

where χ
A(n)p+1

(x, y, θ, η) is the characteristic function of the set A(n)p+1.

Using Fubini’s theorem we conclude that there exists a pair of numbers (θ (n)p+1, η
(n)
p+1) ∈ I 2

tn such that

µ2{(x, y) ∈ En \ ∪
p
i=1 B(n)i : (x, y, θ (n)p+1, η

(n)
p+1) ∈ A(n)p+1} ≥

9ξn

10λn(En \ ∪
p
i=1 B(n)i )

. (24)

Now we let

B(n)p+1 := {(x, y) ∈ En \ ∪
p
i=1 B(n)i : (x, y, θ (n)p+1, η

(n)
p+1) ∈ A(n)p+1} (25)
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and

λ
(n)
p+1 :=

10λn(En \ ∪
p
i=1 B(n)i )

9
. (26)

From (24), (25), (26), (16), (17), (18), (21), (20) we see that the p + 1-st step in the construction is complete.
It follows now from the construction (see (13), (20)) that after the pth step we have

µ2(∪
p
i=1 B(n)i ) =

p∑
i=1

µ2 B(n)i ≥
9pξn

10‖Kn(x, y, θ, η)‖∞

and, consequently, this inequality cannot hold for sufficiently large numbers p. We can conclude now that the con-
struction terminates at some finite step p(n).

Now we introduce the functions defined on I 2 by (i = 1, 2, . . . , p(n)) (see (3))

f (n)i (x, y) := δ
θ
(n)
i ,η

(n)
i ,hn

(x, y) =

{
h−2

n , if (x, y) ∈ [θ (n)i , θ
(n)
i + hn] × [η

(n)
i , η

(n)
i + hn];

0, otherwise.
(27)

Introduce the functions

Φ(t)
n (x, y) =

p(n)∑
i=1

ξn(E)

λ
(n)
i

f (n)i (x, y)ri (t) where (x, y, t) ∈ I 2
× [0, 1), n > r0(E), (28)

where {ri (t), i = 1, 2, . . .} is the Rademacher system.
Consider the set

Hn =

p(n)⋃
i=1

B(n)i . (29)

Let (x, y) be any point from Hn . Then for some positive integer i0 = i0(x, y), 1 ≤ i0 ≤ p(n), we have (see (18),
(7), (8), (29))

|Tn( f (n)i0
)(x, y)| ≥

9
10
λ
(n)
i0
− 1 ≥

9
20
λ
(n)
i0
, (n > n0(E)). (30)

Clearly (see (28), (27), (20)), Φ(t)
n (x, y) ∈ L1(I 2) for each fixed t ∈ [0, 1). According to the definition of super-

linear operators (see (1), (2)) there exists a linear operator G(n)
i0
: L1(I 2)→ L0(I 2) such that

G(n)
i0
( f (n)i0

)(x, y) = Tn( f (n)i0
)(x, y)

and

|G(n)
i0
( f )(x, y)| ≤ |Tn( f )(x, y)| for any f ∈ L1(I 2)

and a.e.
Further it follows from (28) that for any t ∈ [0, 1)

|Tn(Φ(t)
n )(x, y)| ≥ |G(n)

i0
(Φ(t)

n )(x, y)|

=

∣∣∣∣∣ri0(t)
ξn(E)

λ
(n)
i0

Tn( f (n)i0
)(x, y)+

∑
i 6=i0

ri (t)
ξn(E)

λ
(n)
i

G(n)
i0
( f (n)i )(x, y)

∣∣∣∣∣ . (31)

The following easily verifiable fact is well known (see for example [8, p. 10]): Let
∑m

i=1 airi (t) be an arbitrary
polynomial with real coefficients in the Rademacher system and i0 a fixed integer, 1 ≤ i0 ≤ m. Then

µ1

{
t ∈ [0, 1) : ai0ri0(t)

∑
i 6=i0

airi (t) ≥ 0

}
≥

1
2
.
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Introduce the set

Q :=

{
(x, y, t) ∈ Hn × [0, 1) : |Tn(Φ(t)

n )(x, y)| ≥
9

20
ξn(E)

}
. (32)

According to (31) and (30) we conclude that for all (x, y) ∈ Hn we have the inequality∫ 1

0
χQ(x, y, t)dt ≥

1
2
,

where χQ(x, y, t) is the characteristic function of Q. Therefore (cf. (19), (29))∫
Hn

∫ 1

0
χQ(x, y, t)dxdydt ≥

γ1

12
µ2(E).

Consequently, there exists a number t0 ∈ [0, 1) such that∫
Hn

χQ(x, y, t0)dxdy ≥
γ1

12
µ2(E).

From (32) now we see that

µ2

{
(x, y) ∈ Hn : |Tn(Φ(t0)

n )(x, y)| ≥
9

20
ξn(E)

}
≥
γ1

12
µ2(E). (33)

We observe that (see (28), (27) and (20))∫ 1

0

∫ 1

0
|Φ(t0)

n (x, y)|dxdy ≤
p(n)∑
i=1

ξn(E)

λ
(n)
i

≤

p(n)∑
i=1

µ2{B
(n)
i } ≤ 1.

Set (see (28))

Ψn(x, y) := Φ(t0)
n (x, y), (x, y) ∈ I 2. (34)

From (34) and (33) we conclude that for any positive integer n > n0(E)

µ2

{
(x, y) ∈ E : |Tn(Ψn)(x, y)| ≥

9
20
ξn(E)

}
≥
γ1

12
µ2(E). (35)

Set

ψ(u) := uφ(u), u ∈ [0,∞). (36)

Taking account of an assumption on ψ we see that if a number C ∈ [0, 1] then for any x > 0

ψ(Cx)

Cx
≤
ψ(x)

x

and, consequently

ψ(Cx) ≤ Cψ(x), x > 0.

Introduce the sequence of numbers qi , i = 1, 2, . . . , p(n), and a number Qn defined by

qi :=
ξn(E)

λ
(n)
i

, i = 1, 2, . . . , p(n),

Qn :=

p(n)∑
l=1

ξn(E)

λ
(n)
l

.
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It is clear that (see (20)) 0 < Qn ≤ 1. The function ψ is a convex function. From (28), (34) we have that for all
(x, y) ∈ I 2

ψ(|Ψn(x, y)|) ≤ ψ

(
p(n)∑
i=1

qi | f
(n)
i (x, y)|

)

≤ Qnψ


p(n)∑
i=1

qi (| f
(n)
i (x, y)|)

Qn

 ≤ Qn

p(n)∑
i=1

qiψ(| f
(n)
i (x, y)|)

Qn
.

Now it is obvious that (see (9), (36), (27)) for any n > n0(E)∫ 1

0

∫ 1

0
ψ(|Ψn(x, y)|)dxdy ≤ ξn(E)εn(E).

The proof of Lemma 1 (see (34), (35), (14), (27)) is completed.
Introduce a sequence {an(E)}∞n=1 defined by

an(E) := min
(

1
√
εn(E)

,
√
ξn(E)

)
, n = 1, 2, . . . . (37)

It is clear that (see (8))

lim
n→∞

an(E)

ξn(E)
= 0 (38)

and

lim
n→∞

an(E) = ∞. (39)

By a dyadic interval in I we shall mean an interval of the form

∆(k)
n := [k2−n, (k + 1)2−n), (k = 0, 1, . . . , 2n

− 1, n = 0, 1, 2, . . .). (40)

Let n, i and j, 0 ≤ i, j ≤ 2n
− 1, be nonnegative integers. Set

∆(i, j)
n := ∆(i)

n ×∆( j)
n . (41)

Let Sn denote a finite one-dimensional sequence of all intervals ∆(i, j)
k where i, j = 0, 1, 2, . . . , 2k

− 1, k = 0, 1,
2, . . . , n. According to the following scheme

S0, S1, S2, . . . , Sn, . . . ,

we obtain a sequence of sets

E1, E2, . . . , Ek, . . . , (42)

that has the following properties:
(i) For each positive integer k there exists a triple of non negative integers (n, i, j) where 0 ≤ i, j ≤ 2n

− 1, such that

Ek = ∆(i, j)
n

and
(ii) for each triple of non negative integers (n, i, j), where i, j = 0, 1, 2, . . . , 2n

− 1, there exists an increasing
sequence of positive integers {rp = rp(n, i, j)}∞p=1 such that

Erp = ∆(i, j)
n (43)

for every p = 1, 2, . . . .
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By induction we will define: an increasing sequence of positive integers {l j }
∞

1=1, a sequence of positive integers
{R j }

∞

j=1 and a sequence of positive integers {δ j }
∞

j=2. Let (see (38)) l1 > n0(E1) be an integer, such that

al1(E1)

ξl1(E1)
≤

1
2

and εl1(E1) ≤
1
4
. (44)

Now let the numbers l1, l2, . . . , lk , R2, R3, . . . , Rk and δ2, δ3, . . . , δk be already defined.
According to one of the conditions of Theorem 3 the superlinear operator Tlk is bounded in measure, that is the set

Q := {Tlk ( f ) : ‖ f ‖1 ≤ 1}

is bounded in measure. According to the definition this means that for each ε > 0 there is a constant R = R(ε, k)
such that

µ2{(x, y) ∈ I 2
: |Tlk ( f )(x, y)| ≥ R} ≤ ε

for any function f such that

‖ f ‖1 ≤ 1.

If now h is any nonzero function in L1(I 2) then the function h
‖h‖1

has norm 1 and, consequently

µ2{(x, y) ∈ I 2
: |Tlk (h)(x, y)| ≥ R‖h‖1} ≤ ε

for any nonzero function h ∈ L1(I 2). We let (see ()) ε = γ1
108µ2 Ek . Then for some positive constant Rk+1 independent

of h we will have

µ2{(x, y) ∈ I 2
: |Tlk (h)(x, y)| ≥ Rk+1‖h‖1} ≤

γ1

108
µ2 Ek (45)

for any nonzero function h ∈ L1(I 2).
Introduce the function (see (38), (42))

αk(x, y) =
k∑

j=1

al j (E j )

ξl j (E j )
Ψl j (x, y; E j ), (x, y) ∈ I 2, (46)

where Ψl j (x, y; E j ) is the function in Lemma 1 corresponding to the integer n = l j and the set E = E j .
It is clear that αk(x, y) ∈ L∞(I 2) and, consequently, the sequence of functions {Tn(αk)(x, y), n = 1, 2, . . .} is

bounded in measure on I 2 according to one of the conditions of Theorem 3. Now it is clear that we can find a positive
number δk+1 such that for all n = 1, 2, . . . we have

µ2{(x, y) ∈ I 2
: |Tn(αk)(x, y)| ≥ δk+1} ≤

γ1

108
µ2 Ek+1. (47)

Now we define the number lk+1 such that the following inequalities are satisfied (see (38), (39), (8))

lk+1 > lk,

alk+1(Ek+1)

ξlk+1(Ek+1)
≤

1
2

alk (Ek)

ξlk (Ek)
, (48)

εnk+1 ≤
1
4
εnk , (49)

3alk+1(Ek+1)

20
≥ max(k + 1, δk+1), (50)

2Rk+1
alk+1(Ek+1)

ξlk+1(Ek+1)
≤

3
20

alk (Ek). (51)

The sequences {lk}∞k=1, {Rk}
∞

k=1 and {δk}
∞

k=2 are now constructed.
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Set

g(x, y) :=
∞∑
j=1

al j (E j )

ξl j (E j )
Ψl j (x, y; E j ), (x, y) ∈ I 2, (52)

βk(x, y) :=
∞∑

j=k+1

al j (E j )

ξl j (E j )
Ψl j (x, y; E j ), (x, y) ∈ I 2. (53)

It is clear that (see (48))∫
I 2
|g(x, y)|dxdy ≤

∞∑
i=1

al j (E J )

ξl j (E j )
≤ 1

and for all k = 1, 2, . . .∫
I 2
|βk(x, y)|dxdy ≤

∞∑
i=k+1

al j (E j )

ξl j (E j )
≤ 2

alk+1(Ek+1)

ξlk+1(Ek+1)
. (54)

Introduce the sequence of numbers bi , i = 1, 2, . . . , k, and a number Pk defined by

b j :=
al j (E j )

ξl j (E j )
, j = 1, 2, . . . , k, (55)

Pk :=

k∑
i=1

b j . (56)

It is now clear that (see (46), (55), (56), (44), (48))

ψ(|αk(x, y)|) ≤ ψ

( k∑
j=1

b j |Ψl j (x, y; E j )|

)
≤ Pkψ

( k∑
j=1

b j |Ψl j (x, y; E j )|

Pk

)

≤ Pk

k∑
j=1

b jψ(|Ψl j (x, y; E j )|)

Pk
=

k∑
j=1

b jψ(|Ψl j (x, y; E j )|), (x, y) ∈ I 2.

It is obvious that the sequence of functions {ψ(
∑k

j=1 b j |Ψl j (x, y; E j )|) k = 1, 2, . . .} is increasing and we have
for all k = 1, 2, . . . that (see (14), (49), (55), (37))∫

I 2
ψ

( k∑
j=1

b j |Ψl j (x, y; E j )|

)
dxdy ≤

k∑
j=1

ξl j (E j )εl j (E j )bi ≤

k∑
j=1

√
εl j (E j ) ≤ 1.

It follows now that the limit of the sequence{
ψ

( k∑
j=1

b j |Ψl j (x, y; E j )|

)
, k = 1, 2, . . .

}
,

is integrable on I 2 and this limit is an upper bound of the sequence

{ψ(|αk(x, y)|), k = 1, 2, . . .}.

Consequently, the limit of the latter, that is the function ψ(|g(x, y)|), is also integrable on I 2.
Now let E0 ⊂ I 2 be an arbitrary Lebesgue measurable set, µ2 E0 > 0. It is clear that there exist a triple of non

negative integers (n0, i0, j0), where 0 ≤ i0, j0, ≤ 2n0 − 1, and an increasing sequence of positive integers {kq}
∞

q=1
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such that (see (40), (41), (43))

µ2{E0 ∩∆(i0, j0)
n0 } ≥

(
1−

γ1

216

)
µ2∆

(i0, j0)
n0 (57)

and

Ekq = ∆(i0, j0)
n0

for all q = 1, 2, . . ..
From (52), (53) and (46) we have for all q = 2, 3, . . .

g(x, y) = αkq−1(x, y)+
alkq

(Ekq )

ξlkq
(Ekq )

Ψlkq
(x, y; Ekq )+ βkq (x, y), (x, y) ∈ I 2,

It is obvious that (see (15)) for all q = 1, 2, 3, . . . we have

γ1

36
µ2 Ekq ≤ µ2

{
(x, y) ∈ Ekq :

∣∣∣Tlkq

(alkq
(Ekq )

ξlkq
(Ekq )

Ψlkq
(., .; Ekq )

)
(x, y)

∣∣∣ ≥ 9
20

alkq
(Ekq )

}
≤ µ2{(x, y) ∈ Ekq : |Tlkq

(αkq−1)(x, y)| ≥
3

20
alkq

(Ekq )} + µ2{(x, y) ∈ Ekq : |Tlkq
(βkq )(x, y)|

≥
3

20
alkq

(Ekq )} + µ2{(x, y) ∈ Ekq : |Tlkq
(g)(x, y)| ≥

3
20

alkq
(Ekq )}. (58)

According to (47), (50) we have for any q = 1, 2, . . .

µ2

{
(x, y) ∈ Ekq : |Tlkq

(αkq−1)(x, y)| ≥
3
20

alkq
(Ekq )

}
≤

γ1

108
µ2 Ekq . (59)

Using (45), (51), (54) we come to the conclusion that

µ2

{
(x, y) ∈ Ekq : |Tlkq

(βkq )(x, y)| ≥
3

20
alkq

(Ekq )

}
≤

γ1

108
µ2 Ekq . (60)

Taking account of (58)–(60) we obtain for all q = 1, 2, . . .

µ2

{
(x, y) ∈ ∆(i0, j0)

n0 : |Tlkq
(g)(x, y)| ≥

3
20
(kq)

}
≥

γ1

108
µ2∆

(i0, j0)
n0 .

According to (57) now it is easy to see that for all q = 1, 2, . . .

µ2

{
(x, y) ∈ E0 ∩∆(i0, j0)

n0 : |Tlkq
(g)(x, y)| ≥

3
20
(kq)

}
≥

γ1

216
µ2∆(i0, j0)

n0 .

Consequently, the sequence of functions {Tn(g), n = 1, 2, . . .} is not bounded in measure on E0.
The proof of Theorem 3 is completed.

3. Proof of Theorem 4

The Walsh–Paley system {wn(x), n = 0, 1, 2, . . .} is defined on [0, 1) in the following way (see, for example
[9, p. 1]). Given a non-negative integer n it is possible to write n uniquely as

n =
∞∑

i=0

αi 2i , (61)

where αi = 0 or αi = 1. Then (see (4), (5))

wn(x) := Π∞i=0rαi
i (x). (62)
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We define Dirichlet kernels of the Walsh–Paley system by D0(x) := 0 and

Dm(x) :=
m−1∑
l=0

wl(x), x ∈ [0, 1), m = 1, 2, . . . . (63)

Let Sm,m( f ; x, y) denote the mth square partial sum of the Fourier series of f ∈ L1([0, 1)2) with respect to the
double Walsh–Paley system (m = 1, 2, . . .):

Sm,m( f ; x, y) :=
m−1∑
i=0

m−1∑
j=0

∫ 1

0

∫ 1

0
f (s, t)wi (s)w j (t)dsdtwi (x)w j (y), (x, y) ∈ [0, 1)2. (64)

Set for n = 1, 2, . . .

mn := 22n
+ 22n−2

+ · · · + 22
+ 20. (65)

It is known that (see, for example, [10]) if 2 ≤ p ≤ 2n − 2 then

|Dmn (x)| ≥ 2p−2 for all x ∈ (2−p, 21−p).

Introduce a set

Bn :=

2n−2⋃
p=2

(2−p, 21−p)× (2p−2n, 2p−2n+1).

It is clear that

|Dmn (θ)Dmn (η)| ≥ 22n−4 for all (θ, η) ∈ Bn (66)

and

µ2 Bn =
2n − 3

22n
(67)

for all n = 2, 3, . . ..
Let (x, y) ∈ I 2. Consider the set (for the definition and properties of the operation +̇ see [9, pp. 10–13])

Bn+̇(x, y) := {(θ, η) ∈ [0, 1)2 : (θ, η) = (θ1+̇x, η1+̇y), (θ1, η1) ∈ Bn}. (68)

It is clear that if (θ, η) ∈ Bn+̇(x, y) then there exists a point (θ1, η1) ∈ Bn such that (θ, η) = (θ1+̇x, η1+̇y) and,
consequently, (see (66)) we obtain

|Dmn (θ+̇x)Dmn (η+̇y)| = |Dmn (θ1)Dmn (η1)| ≥ 22n−4 for a.e. (θ, η) ∈ Bn+̇(x, y). (69)

It is clear that (see (67))

µ2(Bn+̇(x, y)) =
2n − 3

22n
. (70)

Let E be an arbitrary Lebesgue measurable set, E ⊂ I 2, µ2 E > 0.
We will use Theorem 3 to prove Theorem 4.
We set in Theorem 3

En := E for all n = 1, 2, . . . ,

γ1 := 1, (71)

hn := 2−9n for all n = 1, 2, . . . , (72)

and for each F ⊂ En we set

λn(F) := 22n−4. (73)
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It is clear that (see (12)) for each n = 1, 2, . . . there exists a positive number ε′n such that (see (72))

φ(h−2
n ) ≤ ε′nn

and

lim
n→∞

ε
′

n = 0. (74)

Now we set in Theorem 3 for each n = 2, 3, . . .

ξn(E) :=
2n − 3

6
µ2 E, (75)

and

εn(E) :=
nε
′

n

ξn(E)
. (76)

It is clear that (see (74)–(76))

lim
n→∞

εn(E) = 0 (77)

and

lim
n→∞

ξn = ∞.

We set in Theorem 3 for n = 1, 2, . . . (see (64))

Tn( f )(x, y) := Smn ,mn ( f ; x, y) f ∈ L1(I 2), (x, y) ∈ I 2 (78)

that is clearly superlinear and bounded in measure (see (1), (2)). It is easy to see that the kernel of Tn is (see (61)–(63))

Kn(x, y, θ, η) = Dmn (θ+̇x)Dmn (η+̇y) (x, y) ∈ I 2. (79)

It is obvious that (see (64), (78)) for each f ∈ L2(I 2) the sequence of functions {Tn( f )(x, y), n = 1, 2, . . .} is
bounded in measure on I 2.

Now let F ⊂ E be such that (see (71)) µ2 F ≥ 1
6µ2 E . Introduce the set

Ω (1)
n = {(x, y, θ, η) ∈ F × I 2

: |Dmn (θ+̇x)Dmn (η+̇y)| ≥ 22n−4
} (80)

where n = 1, 2, . . ..
It is easy to see from (69), (70) and (80) that for a.e. (x, y) ∈ F∫

I 2
χ
Ω (1)

n
(x, y, θ, η)dθdη ≥

2n − 3

22n

and, consequently, (see (73), (75))

µ4Ω (1)
n =

∫
F

∫
I 2
χ
Ω (1)

n
(x, y, θ, η)dxdydθdη ≥

1
6
·

2n − 3

22n
µ2 E =

ξn(E)

λn(F)
. (81)

Introduce the set

Gn =

22n+1⋃
i=1

22n+1⋃
j=1

[ i − 1

22n+1 ,
i

22n+1 −
1

28n

)
×

[ j − 1

22n+1 ,
j

22n+1 −
1

28n

)
.

It is clear that

µ2Gn ≥ 1−
2

24n
.

Now let (x, y, θ, η) ∈ I 2
× Gn . Then (see (4), (5), (61), (62), (64)) for all n > 16 we have

Smn ,mn (δθ,η,hn ; x, y) = Dmn (θ+̇x)Dmn (η+̇y).
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We introduce the set n = 1, 2, . . .

Θ (1)
n := {(x, y, θ, η) ∈ I 4

: |Smn ,mn (δθ,η,hn ; x, y)− Dmn (θ+̇x)Dmn (η+̇y)| > 1}.

It is obvious that Θ (1)
n ⊂ I 2

× (I 2
\ Gn) and, consequently,

µ4Θ (1)
n ≤

2

24n
.

We note also that (see (79), (61)–(63), (65))

‖Kn(x, y, θ, η)‖∞ ≤ m2
n ≤ 24n+2.

Taking account of (77)–(81), (6)–(11)) we can conclude that according to Theorem 3 we have completed the proof
of Theorem 4.
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Abstract

We characterize the weights w for which the operator Tψ f (x) =
∫ x

0 ψ(x, y) f (y) dy is bounded between weighted grand

Lebesgue spaces L p)
w for non-increasing functions. The conjugate of Tψ , for a special ψ , given by S∗φ f (x) :=

∫
∞

x f (y) φ(y)Φ(y) dy

is considered. An extrapolation type result giving L p)-boundedness of S∗φ for non-increasing functions has been proved. Also its
L p-boundedness has been characterized. Finally, a variant of S∗φ has been considered and discussed.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Non-increasing functions; Bφ, p class of weights; B∗φ, p class of weights; grand Lebesgue space

1. Introduction

By a weight function or simply a weight, we mean a function which is measurable, positive and finite almost
everywhere on the underlying domain. Let Ib = (0, b), 0 < b ≤ ∞ and w be a weight. We denote by L p

w(Ib),

0 < p <∞, the space of all measurable functions f on Ib for which

‖ f ‖L p
w(Ib)
:=

(∫ b

0
| f (x)|pw(x) dx

)1/p

<∞.

When b = ∞, we shall write L p
w instead of L p

w(I∞).
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A weight w is said to belong to Bb
p-class if the inequality∫ b

r

(r

t

)p
w(t) dt ≤ c

∫ r

0
w(t) dt

holds for all 0 < r < b. For b = ∞, we shall write Bp instead of B∞p . It was proved by Arino and Muckenhoupt [1]
that a Bp weight characterizes the inequality

‖A f ‖L p
w
≤ c‖ f ‖L p

w
, p ≥ 1

for all non-negative non-increasing functions f (now onwards written f ↓), where A is the averaging operator

A f (x) :=
1
x

∫ x

0
f (y) dy.

Also, they proved (see also [2–4]) a very important property of Bp-class of weights: if w ∈ Bp, 0 < p < ∞, then
there exists ε > 0 such that w ∈ Bp−ε. Also, Carro and Lorente [5] proved an extrapolation result involving Bp
weights that deals with more general inequalities.

Carro and Soria [6] considered a more general operator given by

Sφ f (x) :=
1

Φ(x)

∫ x

0
f (y)φ(y) dy, Φ(x) =

∫ x

0
φ(u)du (1.1)

and proved the following:

Theorem A. Let p > 1 and φ be non-negative, locally integrable and ↓. Then the inequality

‖Sφ f ‖L p
w
≤ c‖ f ‖L p

w

holds for all non-negative functions f ↓ if and only if∫
∞

r

(
Φ(r)
Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx, r > 0.

Lai [7] has considered even more general operator

Tψ f (x) :=
∫ x

0
ψ(x, y) f (y) dy,

ψ being a function from R+ × R+ to R+ and obtained its L p-boundedness for f ↓ as follows:

Theorem B. Let p ≥ 1. The inequality

‖Tψ f ‖L p
w
≤ c1‖ f ‖L p

w

holds for all non-negative functions f ↓ if and only if∫ r

0
Ψ(x, x)pw(x) dx +

∫
∞

r
Ψ(x, r)pw(x) dx ≤ c2

∫ r

0
w(x) dx, r > 0

where Ψ(x, r) =
∫ r

0 ψ(x, y) dy satisfies the following:

P1 Ψ(x, r) ≤ αΨ(x, t)Ψ(t, r) for some α > 0 and all 0 < r ≤ t ≤ x;
P2 f ↓⇒ Tψ f ↓.

The first aim of this paper is to characterize the boundedness of Tψ in weighted grand Lebesgue spaces for f ↓
defined as follows:

Let I := I1 = (0, 1), 1 < p < ∞ and w be a locally integrable weight function. The weighted grand Lebesgue
space L p)

w (I ) consists of all measurable functions f for which

‖ f ‖
L p)
w (I )
:= sup

0<ε<p−1

(
ε

∫ 1

0
| f (x)|p−εw(x) dx

)1/p−ε

<∞.
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These spaces without weights were introduced by Iwaniec and Sbordone [8] and with weights by Fiorenza, Gupta and
Jain [9]. Note that the space L p)

w (I ) is not rearrangement invariant except for the trivial case when w is a constant
weight. About the Lebesgue spaces, the implications f ∈ L p

w ⇐⇒ fw1/p
∈ L p hold. However, the same is not true

for grand Lebesgue spaces (see [9]). These facts make the study of weighted grand Lebesgue spaces important. In [9],
the authors studied the boundedness of the maximal operator between L p)

w (I )-spaces. Later, their technique was used
by several authors to study various operators, e.g., one may refer to [10–16].

Lai [7] also studied the adjoint of the operator Tψ given by

T ∗ψ f (x) :=
∫
∞

x
ψ(x, y) f (y) dy

and obtained its L p-boundedness as follows:

Theorem C. Let p ≥ 1. The inequality

‖T ∗ψ f ‖L p
w
≤ c‖ f ‖L p

w

holds for all non-negative functions f ↓ if and only if∫ r

0
Ψ∗(x, r)pw(x) dx ≤ c

∫ r

0
w(x) dx, r > 0

where Ψ∗(x, r) =
∫ r

x ψ(x, y) dy + 1 and satisfies the following:

P1* Ψ∗(x, y) ≤ αΨ∗(x, t)Ψ∗(t, y) for some α > 0 and all x ≤ t ≤ y;
P2* f ↓⇒ T ∗ψ f ↓.

Of particular interest is the case when ψ(x, y) = φ(y)
Φ(y)χ[x,∞)(y). In this case, the operator T ∗ψ becomes

S∗φ f (x) :=
∫
∞

x
f (y)

φ(y)

Φ(y)
dy

and its L p-boundedness for f ↓ has been obtained by Carro and Soria [6]. We prove in this paper that for 1 < p <∞,
the L p-boundedness of S∗φ for f ↓ is independent of p. Neugebauer [4] proved similar independence for the operator

A∗ f (x) :=
∫
∞

x
f (y)

y dy. Note that A∗ is a special case of S∗φ and consequently of T ∗ψ . We then prove the boundedness
of S∗φ for f ↓ between grand Lebesgue spaces.

Another special case of T ∗ψ that we deal with is when ψ(x, y) = φ(y)
Φ(y)χ[x,∞)(y). In this case, the corresponding

operator becomes

S̃φ f (x) :=
1

Φ(x)

∫
∞

x
f (y)φ(y) dy.

Although the L p-boundedness of S̃φ for f ↓ can obviously be written by Theorem C, but the proof of Theorem C does
not provide a precise estimate of the constant which is a key point for studying this boundedness in the framework
of grand Lebesgue spaces. Therefore, we provide an alternate proof for the L p-boundedness of S̃φ for f ↓ and then

study the corresponding boundedness between L p)
w -spaces.

All the functions considered in this paper are non-negative and measurable. In order to consider the case of finite
intervals as well, all the functions will be defined on (0, b) or (0, b) × (0, b), 0 < b ≤ ∞ as the case may be.
Consequently, the integrals

∫
∞

x mentioned in various operators will be changed to
∫ b

x but if there is no ambiguity, we
shall still denote the corresponding operators by T ∗ψ , S∗φ , etc.

2. Operator Tψ on grand Lebesgue spaces

In this section, our aim is to characterize the boundedness of the operator Tψ between weighted grand Lebesgue

spaces L p)
w for non-increasing functions.
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For 0 < p <∞, we denote by Bb
ψ,p, the class of weights w for which the inequality∫ b

r
Ψ(x, r)pw(x) dx ≤ C1

∫ r

0
w(x) dx, 0 < r < b,

holds for some constant C1 > 0.

Remark 2.1. As remarked by Lai [7], for 0 < p ≤ q < ∞, the inclusion Bb
ψ,p ⊆ Bb

ψ,q holds if the following
condition is satisfied:

P3 Ψ(x, x) ≤ D, x ∈ (0, b)

where D is a constant which, without loss of generality, can be taken ≥1.

Define

Hb
ψ,p :=

{
w :

∫ r

0
Ψ(x, x)pw(x) dx +

∫ b

r
Ψ(x, r)pw(x) dx ≤ c

∫ r

0
w(x) dx, 0 < r < b

}
,

and

‖w‖Hb
ψ,p
:= inf

{
c > 0 : w ∈ Hb

ψ,p

}
.

Remark 2.2. If 0 < p ≤ q <∞ and P3 holds, then Hb
ψ,p ⊆ Hb

ψ,q . Moreover,

‖w‖Hb
ψ,q
≤ Dq

+ Dq−p
‖w‖Hb

ψ,p
. (2.1)

Lemma 2.3. If 0 < p <∞ and P3 holds, then

w ∈ Hb
ψ,p with c = ‖w‖Hb

ψ,p
if and only if w ∈ Bb

ψ,p.

In view of the above consideration, Theorem B can be restated as

Theorem 2.4. Let 1 ≤ p <∞ and P1–P3 hold. Then the inequality∫ b

0

(
Tψ f

)p
(x)w(x) dx ≤ C2

∫ b

0
f p(x)w(x) dx

holds for all f ↓ if and only if w ∈ Bb
ψ,p.

Remark 2.5. In the above theorem, the constants C2 and C1 involved in the inequality and the condition, respectively,
are same for the necessary part. But for the sufficiency part, we get C2 = (C1 + D p)pα p(p−1).

Remark 2.6. In view of Lemma 2.3, the constant C1 of the condition in Theorem 2.4 can be replaced by ‖w‖Hb
ψ,p

.

We shall be using a result from [7] in the following modified form:

Theorem D. If 1 ≤ p <∞ and P1–P3 hold, then for w ∈ Bb
ψ,p there exists σ > 0 such that w ∈ Bb

ψ,p−σ .

Now we give our main result of this section.

Theorem 2.7. Let 1 < p <∞, and P1–P3 hold. Then the inequality

‖Tψ f ‖
L p)
w (I )
≤ C ‖ f ‖

L p)
w (I )

(2.2)

holds for all f ↓ if and only if w ∈ B1
ψ,p.
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Proof. For the necessity, taking f = χ(0,r ] for 0 < r < 1, the R.H.S. of the inequality (2.2) becomes

‖ f ‖
L p)
w (I )
=

(
εr

∫ r

0
w(x) dx

)1/(p−εr )

for some εr , 0 < εr < p − 1, while its L.H.S. gives

‖Tψ f ‖
L p)
w (I )
= sup

0<ε<p−1
ε1/(p−ε)

(∫ r

0
w(x)

(∫ x

0
ψ(x, y) f (y) dy

)p−ε

dx

+

∫ 1

r
w(x)

(∫ x

0
ψ(x, y) f (y) dy

)p−ε

dx

)1/(p−ε)

≥ ε
1/(p−εr )
r

(∫ r

0
Ψ(x, x)p−εrw(x) dx +

∫ 1

r
Ψ(x, r)p−εrw(x) dx

)1/(p−εr )

.

The above estimates lead to w ∈ B1
ψ,p−εr

and the necessity follows in view of Remark 2.1. Conversely, let w ∈ B1
ψ,p.

Then, by Theorem D, w ∈ B1
ψ,p−σ for some σ > 0. We assume that σ < p − 1 for otherwise the sufficiency follows

easily. Remark 2.1 gives that w ∈ B1
ψ,p−ε for all 0 < ε ≤ σ . For σ < ε < p − 1, by using Hölder’s inequality with

the conjugate exponents p−σ
p−ε and p−σ

ε−σ
, we get

‖Tψ f ‖L p−ε
w (I ) ≤ ‖Tψ f ‖L p−σ

w (I )

(∫ 1

0
w(x)dx

) ε−σ
(p−σ)(p−ε)

≤ ‖Tψ f ‖L p−σ
w (I ) β(p, σ ) (2.3)

since 0 < ε−σ
(p−σ)(p−ε) <

p−1−σ
p−σ , where β(p, σ ) :=

(∫ 1
0 w(x)dx + 1

) p−1−σ
p−σ

. Now by using (2.3), (2.1), Remarks 2.5

and 2.6, we obtain

‖Tψ f ‖
L p)
w (I )
≤ max

{
sup

0<ε≤σ

(
ε1/(p−ε)

‖Tψ f ‖L p−ε
w (I )

)
, sup

σ<ε<p−1
ε1/(p−ε)

‖Tψ f ‖L p−σ
w (I )β(p, σ )

}
≤ max

{
1, σ−

1
p−σ β(p, σ ) sup

σ<ε<p−1
ε1/(p−ε)

}
sup

0<ε≤σ

(
ε1/(p−ε)

‖Tψ f ‖L p−ε
w (I )

)
≤ max

{
1, pσ−

1
p−σ β(p, σ )

}
sup

0<ε≤σ

(
‖w‖H1

ψ,p−ε
+ D p−ε

)p−ε
α(p−ε)(p−ε−1)ε1/(p−ε)

‖ f ‖L p−ε
w (I )

≤ max
{

1, pσ−
1

p−σ β(p, σ )
} (

D p−σ
+ Dσ

‖w‖H1
ψ,p−σ

+ D p
)p

× (α + 1)p(p−1) sup
0<ε≤σ

(
ε1/(p−ε)

‖ f ‖L p−ε
w (I )

)
≤ C(p, σ, D, α) ‖ f ‖

L p)
w (I )

,

where

C(p, σ, D, α) = max
{

1, pσ−
1

p−σ β(p, σ )
} (

D p−σ
+ Dσ

‖w‖H1
ψ,p−σ

+ D p
)p
(α + 1)p(p−1),

and the result follows. �

Corollary 2.8. Let 1 < p <∞ and φ be non-negative locally integrable and ↓. Then the inequality

‖Sφ f ‖
L p)
w (I )
≤ c ‖ f ‖

L p)
w (I )
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holds for all f ↓ if and only if∫ 1

r

(
Φ(r)
Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx, 0 < r < 1,

Sφ being the operator given in (1.1).

Proof. This is immediate by taking ψ(x, y) = φ(y)
Φ(x)χ(0,x](y) in Theorem 2.7. �

Corollary 2.9. Let 1 < q <∞ and consider the operator

Aq f (x) :=
1

x1/q

∫ x

0

f (t)

t1/q ′
dt.

For 1 < p <∞, the inequality

‖Aq f ‖
L p)
w (I )
≤ c ‖ f ‖

L p)
w (I )

holds for all f ↓ if and only if∫ 1

r

( r

x

)p/q
w(x) dx ≤ c

∫ r

0
w(x) dx, 0 < r < 1. (2.4)

Proof. This can be obtained easily by taking φ(t) = 1
qt1/q′ in Corollary 2.8. �

Note that Corollary 2.9 extends a result of Meskhi ([14], Theorem 3.1).

Remark 2.10. In view of Theorem A and Corollary 2.8, we note that L p-boundedness of Sφ is equivalent to its
L p)-boundedness. The same is true for the operator Aq since L p-boundedness of Aq is also characterized by (2.4),
(see [4]).

3. Conjugate Hardy averaging operator

In this section, we shall deal with the operator

S∗φ f (x) :=
∫ b

x
f (y)

φ(y)

Φ(y)
dy, Φ(x) =

∫ x

0
φ(u)du, 0 < b ≤ ∞.

Let 1 < p <∞. We say that w ∈ B∗φ,p(Ib) if for all 0 < r ≤ b, the inequality∫ r

0

(
log

Φ(r)
Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx

holds for some constant c > 0. For b = 1 we shall write B∗φ,p(I ) instead of B∗φ,p(I1) and B∗φ,p := B∗φ,p(I∞) if
b = ∞.

We prove the following:

Theorem 3.1. For φ non-negative, locally integrable and ↓, the following statements are equivalent.

(i) The inequality

‖S∗φ f ‖L1
w(Ib)
≤ c‖ f ‖L1

w(Ib)
(3.1)

holds for all f ↓.
(ii) The inequality

‖S∗φ f ‖L p
w(Ib)
≤ c‖ f ‖L p

w(Ib)
(3.2)

holds for all p ∈ (1,∞) and for all f ↓.
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(iii) For a given p ∈ (1,∞), the inequality (3.2) holds for all f ↓.
(iv) w ∈ B∗φ,1(Ib).

Proof. (i)⇒ (ii). Define

G(x) = p

(∫ b

x
f (u)

φ(u)

Φ(u)
du

)p−1

f (x).

Then G is ↓ and∫ b

x
G(t)

φ(t)

Φ(t)
dt =

(∫ b

x
f (u)

φ(u)

Φ(u)
du

)p

. (3.3)

Using (3.1), (3.3) and Hölder’s inequality, we get

‖S∗φ f ‖p
L p
w(Ib)
=

∫ b

0
(S∗φG)(x) w(x) dx

≤ c
∫ b

0
G(x) w(x) dx

≤ pc

(∫ b

0
f p(x) w(x) dx

) 1
p
(∫ b

0

(∫ b

x
f (u)

φ(u)

Φ(u)
du

)p

w(x) dx

) 1
p′

= pc ‖ f ‖L p
w(Ib)
‖S∗φ f ‖p/p′

L p
w(Ib)

,

i.e.,

‖S∗φ f ‖L p
w(Ib)
≤ C‖ f ‖L p

w(Ib)

with C = pc.
(ii)⇒ (iii). Trivial.
(iii)⇒ (iv). For 0 < r ≤ b, take f = χ[0,r). Then for this choice of f , we have

‖S∗φ f ‖p
L p
w(Ib)
=

∫ r

0

(
log

Φ(r)
Φ(x)

)p

w(x) dx

and

‖ f ‖p
L p
w(Ib)
=

∫ r

0
w(x) dx

using which and applying Hölder’s inequality, (3.2) gives∫ r

0

(
log

Φ(r)
Φ(x)

)
w(x) dx ≤

(∫ r

0

(
log

Φ(r)
Φ(x)

)p

w(x) dx

) 1
p
(∫ r

0
w(x) dx

) 1
p′

≤ c
∫ r

0
w(x) dx

i.e., w ∈ B∗φ,1(Ib).

(iv)⇒ (i). Letw ∈ B∗φ,1(Ib). Choose r = ψ(y) for some function ψ ↓ such that ψ(0) = b, ψ(b) = 0 and integrate
from 0 to b so that we obtain∫ b

0

(∫ ψ(y)

0

(
log

Φ(ψ(y))
Φ(x)

)
w(x) dx

)
dy ≤ c

∫ b

0

(∫ ψ(y)

0
w(x) dx

)
dy.

Interchanging the orders of integration on both the sides of the above inequality, we get∫ b

0
w(x)

(∫ ψ−1(x)

0
log

(
Φ(ψ(y))

Φ(x)

)
dy

)
dx ≤ c

∫ b

0
ψ−1(x)w(x) dx . (3.4)
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By making variable substitution t = log
(

Φ(ψ(y))
Φ(x)

)
and writing γ = log

(
Φ(b)
Φ(x)

)
> 0, we have∫ ψ−1(x)

0
log

(
Φ(ψ(y))

Φ(x)

)
dy =

∫ γ

0
ψ−1

(
φ−1(et Φ(x))

)
dt

=

∫ b

x
ψ−1(u)

φ(u)

Φ(u)
du,

using which in (3.4) and taking ψ−1(u) = f (u), the assertion follows. �

We immediately have the following result which has been proved by Carro and Soria [6]:

Corollary 3.2. Let 1 < p <∞ and w be a weight function. The inequality

‖S∗φ f ‖L p
w
≤ C‖ f ‖L p

w

holds for all f ↓ if and only if w ∈ B∗φ,p.

Proof. The necessity follows by taking f = χ[0,r) for some 0 < r < ∞. For sufficiency, if w ∈ B∗φ,p, then by an
application of Hölder’s inequality, we get that w ∈ B∗φ,1. The assertion now follows by Theorem 3.1. �

Remark 3.3. Theorem 3.1 gives an extrapolation effect in the sense that if the inequality (3.2) holds for some p > 1,
then it holds for all p > 1. This kind of result, for a special case, has been proved by Neugebauer [4] which we derive
below as a corollary to Theorem 3.1:

Corollary 3.4. Let 1 < p <∞ and w be a weight function. Define A∗ f (x) :=
∫
∞

x
f (t)

t dt. Then the inequality

‖A∗ f ‖L p
w
≤ c‖ f ‖L p

w

holds for all f ↓ if and only if w ∈ B∗1,1.

Proof. For φ ≡ 1, S∗φ = A∗ and the proof follows. �

Now, we prove the L p)-boundedness of S∗φ .

Theorem 3.5. Let 1 < p <∞ and w be a weight function. Then the inequality

‖S∗φ f ‖
L p)
w (I )
≤ c‖ f ‖

L p)
w (I )

(3.5)

holds for all f ↓ if and only if w ∈ B∗φ,1(I ).

Proof. First assume that (3.5) holds. Taking f = χ[0,r) for 0 < r ≤ 1, the R.H.S. of (3.5) gives

‖ f ‖
L p)
w (I )
= sup

0<ε<p−1

(
ε

∫ r

0
w(x) dx

)1/(p−ε)

=

(
εr

∫ r

0
w(x) dx

)1/(p−εr )

for some 0 < εr < p − 1, while its L.H.S. gives

‖S∗φ f ‖
L p)
w (I )
= sup

0<ε<p−1

(
ε

∫ r

0

(∫ r

x

φ(t)

Φ(t)
dt

)p−ε

w(x) dx

)1/(p−ε)

= sup
0<ε<p−1

(
ε

∫ r

0

(
log

Φ(r)
Φ(x)

)p−ε

w(x) dx

)1/(p−ε)

≥

(
εr

∫ r

0

(
log

Φ(r)
Φ(x)

)p−εr

w(x) dx

)1/(p−εr )

.
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Consequently, the inequality (3.5) using Hölder’s inequality yields∫ r

0

(
log

Φ(r)
Φ(x)

)
w(x) dx ≤

(∫ r

0

(
log

Φ(r)
Φ(x)

)p−εr

w(x) dx

)1/(p−εr )

×

(∫ r

0
w(x) dx

)1− 1
p−εr

< C
∫ r

0
w(x) dx,

where C = max{c, c1/p
}, c being the constant in (3.5). Thus w ∈ B∗φ,1(I ).

Conversely, let w ∈ B∗φ,1(I ). Then, in view of Theorem 3.1, we find that for all ε > 0 such that p − ε > 1, the
inequality

‖S∗φ f ‖L p−ε
w (I ) ≤ c(p − ε)‖ f ‖L p−ε

w (I )

holds, i.e., the inequality

sup
0<ε<p−1

(
ε

1
p−ε ‖S∗φ f ‖L p−ε

w (I )

)
≤ c sup

0<ε<p−1

(
(p − ε)ε

1
p−ε ‖ f ‖L p−ε

w (I )

)
≤ cp sup

0<ε<p−1

(
ε

1
p−ε ‖ f ‖L p−ε

w (I )

)
holds. Hence the inequality (3.5) holds with the constant cp and the proof is complete. �

Corollary 3.6. Let 1 < p <∞ and w be a weight function. The inequality

‖A∗ f ‖
L p)
w (I )
≤ c‖ f ‖

L p)
w (I )

holds for all f ↓ if and only if w ∈ B∗1,1(I ).

Remark 3.7. In view of Theorem 3.5, it comes out that if the inequality (3.5) holds for some p ∈ (1,∞), then it
holds for all q ∈ (1,∞).

4. Conjugate type operator

This section deals with a variant of the operator S∗φ defined by

S̃φ f (x) :=
1

Φ(x)

∫ b

x
f (t)φ(t) dt, Φ(x) =

∫ x

0
φ(u)du, 0 < b ≤ ∞.

For 0 < p <∞, we denote by B̃b
φ,p, the class of all weights w for which the inequality∫ r

0

(
Φ(r)
Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx, 0 < r ≤ b (4.1)

holds for some constant c > 0.

Remark 4.1. Observe that the class B̃b
φ,p is monotonic in the index p so that if w ∈ B̃b

φ,p, then w ∈ B̃b
φ,q for all

q ≤ p.

Define

‖w‖B̃b
φ,p
:= inf

{
c > 0 :

∫ r

0
w(x) dx +

∫ r

0

(
Φ(r)
Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx, 0 < r ≤ b

}
.

Observe that

(i) ‖w‖B̃b
φ,p
> 1, and

(ii) ‖w‖B̃b
φ,p
≤ ‖w‖B̃b

φ,q
if p ≤ q.
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We immediately have the following:

Lemma 4.2. w ∈ B̃b
φ,p if and only if the inequality∫ r

0
w(x) dx +

∫ r

0

(
Φ(r)
Φ(x)

)p

w(x) dx ≤ A
∫ r

0
w(x) dx

holds for all 0 < r ≤ b with A = ‖w‖B̃b
φ,p

.

We prove the following:

Theorem 4.3. Let 1 ≤ p <∞. Then the inequality

‖S̃φ f ‖L p
w(Ib)
≤ c‖ f ‖L p

w(Ib)
, (4.2)

holds for all f ↓ if and only if w ∈ B̃b
φ,p, where c = ‖w‖B̃b

φ,p
.

Proof. We prove the theorem for 1 < p <∞. The proof for the case p = 1 is similar. Assume first that (4.2) holds.
For 0 < r ≤ b, take f = χ[0, r). Then using the inequality a p

+ bp
≥ 21−p(a + b)p, we get that w ∈ B̃b

φ,p with

constant cp
+1

21−p .

Conversely, assume that w ∈ B̃b
φ,p. Denote by λ f (y) := |{x : | f (x)| > y}|, the distribution function of f with

respect to the Lebesgue measure. Then following ([6], Corollary 2.2), we find that(∫ b

x
f (t)φ(t) dt

)p

= p
∫ b

x

(∫ b

t
f (s)φ(s)ds

)p−1

f (t)φ(t) dt

= p
∫ b

0
g(t)χ[x,b)(t)φ(t)(Φ(t))p−1 dt

= p
∫ b

0

(∫ λg(y)

0
χ[x,b)(t)φ(t)(Φ(t))p−1 dt

)
dy,

where g(t) =
(

1
Φ(t)

∫ b
t f (s)φ(s)ds

)p−1
f (t), which is a non-increasing function. By applying Fubini’s Theorem, we

get

‖S̃φ f ‖p
L p
w(Ib)

= p
∫ b

0

w(x)

(Φ(x))p

(∫ b

0

(∫ λg(y)

0
χ[x,b)(t)φ(t)(Φ(t))p−1 dt

)
dy

)
dx

= p
∫ b

0

∫ b

0

w(x)

(Φ(x))p

(∫ λg(y)

0
χ[x,b)(t)φ(t)(Φ(t))p−1 dt

)
dxdy

= p
∫ b

0

∫ λg(y)

0

w(x)

(Φ(x))p

(∫ λg(y)

x
φ(t)(Φ(t))p−1 dt

)
dxdy

=

∫ b

0

∫ λg(y)

0

[(
Φ(λg(y))

Φ(x)

)p

− 1
]
w(x) dxdy.

Since w ∈ B̃b
φ,p, taking r = λg(y) in (4.1) and using Lemma 4.2, we get

‖S̃φ f ‖p
L p
w(Ib)
≤ (‖w‖B̃b

φ,p
− 1)

∫ b

0
dy
∫ λg(y)

0
w(x) dx .
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Consequently, using ([6], Corollary 2.2) and Hölder’s inequality, we have

‖S̃φ f ‖p
L p
w(Ib)
≤ ‖w‖B̃b

φ,p

∫ b

0
g(x)w(x) dx

= ‖w‖B̃b
φ,p

∫ b

0

(
1

Φ(x)

∫ b

x
f (s)φ(s)ds

)p−1

f (x)w(x) dx

≤ ‖w‖B̃b
φ,p
‖S̃φ f ‖p−1

L p
w(Ib)
‖ f ‖L p

w(Ib)

and the assertion follows. �

Now, we prove the following for the boundedness of S̃φ on L p)
w (I )-spaces.

Theorem 4.4. Let 1 < p <∞ and w ∈ B̃1
φ,p. Then the inequality

‖S̃φ f ‖
L p)
w (I )
≤ c‖ f ‖

L p)
w (I )

(4.3)

holds for all f ↓. Conversely, if (4.3) holds for all functions f ↓, then w ∈ B̃1
φ,p−σ (I ) for some σ ∈ (0, p − 1).

Proof. Assume first that w ∈ B̃1
φ,p. Then in view of Remark 4.1, w ∈ B̃1

φ,p−ε for all 0 < ε < p − 1. Now, by
Theorem 4.3, we get

‖S̃φ f ‖
L p)
w (I )
= sup

0<ε<p−1
ε1/(p−ε)

‖S̃φ f ‖L p−ε
w (I )

≤ sup
0<ε<p−1

ε1/(p−ε)
‖w‖B̃1

φ,p−ε
‖ f ‖L p−ε

w (I )

≤ c‖ f ‖
L p)
w (I )

with c = ‖w‖B̃1
φ,p

and the sufficiency follows.

Conversely, suppose that the inequality (4.3) holds. Take f = χ[0, r) for some 0 < r ≤ 1. Then R.H.S. of (4.3)
becomes

‖ f ‖
L p)
w (I )
= sup

0<ε<p−1
ε1/(p−ε)

(∫ r

0
w(x) dx

)1/(p−ε)

=

(
εr

∫ r

0
w(x) dx

)1/(p−εr )

(4.4)

for some εr , 0 < εr < p − 1 and the L.H.S. gives

‖S̃φ f ‖
L p)
w (I )
= sup

0<ε<p−1
ε1/(p−ε)

(∫ r

0

(
Φ(r)
Φ(x)

− 1
)p−ε

w(x) dx

)1/(p−ε)

≥ sup
0<ε<p−1

ε1/(p−ε)

(
21−(p−ε)

∫ r

0

(
Φ(r)
Φ(x)

)p−ε

w(x) dx −
∫ r

0
w(x) dx

)1/(p−ε)

≥ ε
1/(p−εr )
r

(
21−(p−εr )

∫ r

0

(
Φ(r)
Φ(x)

)p−εr

w(x) dx −
∫ r

0
w(x) dx

)1/(p−εr )

. (4.5)

Thus, from (4.3)–(4.5), we get∫ r

0

(
Φ(r)
Φ(x)

)p−εr

w(x) dx ≤
cp−εr + 1

21−(p−εr )

∫ r

0
w(x) dx ≤ C

∫ r

0
w(x) dx, 0 < r ≤ 1

where C =
[
(c + 1)p

+ 1
]

2p. Therefore, w ∈ B̃1
φ,p−εr

which means that w ∈ B̃1
φ,p−σ for some 0 < σ < p− 1. �
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Remark 4.5. The condition w ∈ B̃b
φ,p−σ for some 0 < σ < p − 1 is not sufficient for (4.3) to hold. To see

this, take φ ≡ 1 on I = (0, 1) so that the operator S̃φ becomes S̃1 f (x) = 1
x

∫ 1
x f (t) dt . Take w(x) = xα for

0 < p − σ − 1 < α < p − 1. It can be seen that w ∈ B̃1
φ,p−σ . However, we claim that (4.3) is not satisfied for all

f ↓. Take f (x) = χ(0, s] for some 0 < s < 1. Then

‖S̃1 f ‖
L p)
w (I )
≥

(
ε

∫ s

0
(s − x)p−ε xα−p+ε dx

) 1
p−ε

. (4.6)

It is easy to check that
∫ s

0 (s− x)p−ε xα−p+ε dx converges if and only if α > p− ε for all 0 < ε < p− 1, i.e., α ≥ p.
But since α < p, the integral

∫ s
0 (s − x)p−ε xα−p+ε dx diverges for some ε ∈ (0, p − 1). Consequently, (4.6) gives

that ‖S̃1 f ‖
L p)
w (I )
= ∞. On the other hand

‖ f ‖
L p)
w (I )
= sup

0<ε<p−1

(
ε

∫ s

0
xα dx

) 1
p−ε

< p,

which is finite. Hence our claim is proved.

Remark 4.6. If we assume that w ∈ B̃b
φ, p−σ for all σ ∈ (0, p − 1), then w ∈ B̃b

φ, p.

5. Concluding remark and result

In this section, we consider functions f which need not be non-increasing. Consider the Hardy operator H f (x) :=∫ x
0 f (y) dy. It can be worked out that H is not bounded between (non-weighted) L p)-spaces. However, its adjoint

H∗ f (x) :=
∫ 1

x f (t) dt is so which we prove below:

Theorem 5.1. For 1 < p <∞, the inequality

‖H∗ f ‖L p)(I ) ≤ p‖ f ‖L p)(I )

holds for all f ≥ 0.

Proof. Take q = σ = p − ε. Since σ > q − 1 > 0 for all 0 < ε < p − 1, by an application of conjugate Hardy
inequality (see, e.g., [17]), we have∫ 1

0
(H∗ f (x))p−ε dx =

∫ 1

0
(H∗ f (x))q xσ−q dx

≤

(
q

σ − q + 1

)q ∫ 1

0
f q(x)xσ dx

≤

(
q

σ − q + 1

)q ∫ 1

0
f q(x) dx

= (p − ε)p−ε
∫ 1

0
f p−ε(x) dx

or (
ε

∫ 1

0
(H∗ f (x))p−ε dx

)1/p−ε

≤ (p − ε)

(
ε

∫ 1

0
f p−ε(x) dx

)1/p−ε

.

Now taking supremum on both the sides of the above inequality over all ε ∈ (0, p − 1), the result follows. �

Remark 5.2. Consider the Hardy averaging operator

S1 f (x) =
1
x

∫ x

0
f (t)dt, x ∈ (0, 1).
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It was proved in ([9], Theorem 2.1) that S1 is bounded between (non-weighted) L p)-spaces, where the functions in
L p) need not necessarily be non-increasing. Regarding the adjoint of S1, the two variants have been considered in this
paper, namely, S∗1 (precise conjugate of S1) and S̃1 (conjugate type of S1). It can be worked out, by taking f ≡ 1
that both S∗1 and S̃1 are not bounded between (non-weighted) L p)-spaces. It is of interest to obtain the weights which

characterize the boundedness of S∗1 as well as S̃1 between L p)
w -spaces for general non-negative functions.
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Abstract

Long-time behavior of solution and semi-discrete scheme for one nonlinear parabolic integro-differential equation are studied.
Initial–boundary value problem with mixed boundary conditions are considered. Attention is paid to the investigation of more wide
cases of nonlinearity than already were studied. Considered model is based on Maxwell’s system describing the process of the
penetration of a magnetic field into a substance.
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1. Introduction

Integro-differential equations of parabolic type arise in the study of various problems in physics, chemistry, tech-
nology, economics, etc. (see, for example, [1–3] and references therein). One such model is obtained by mathematical
modeling of processes of electromagnetic field penetration in the substance. In the quasi-stationary approximation the
corresponding system of Maxwell’s equations has the form [4]:

∂H

∂t
= − rot(νm rot H), (1.1)

∂θ

∂t
= νm (rot H)2 , (1.2)

where H = (H1, H2, H3) is a vector of the magnetic field, θ is temperature, νm characterizes the electro-conductivity
of the substance. Eq. (1.1) describes the process of diffusion of the magnetic field and Eq. (1.2)—change of the tem-
perature at the expense of Joule’s heating. If νm depends on temperature θ , i.e., νm = νm(θ), then the system (1.1),
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(1.2) can be rewritten in the following form [5]:

∂H

∂t
= − rot

[
a

(∫ t

0

∣∣ rot H
∣∣2 dτ

)
rot H

]
, (1.3)

where function a = a(S) is defined for S ∈ [0,∞).
Note that integro-differential parabolic models of (1.3) type are complex and still yields to the investigation only

for special cases (see, for example, [6–9,5,10–16] and references therein).
Study of the models of type (1.3) has begun in the work [5]. In particular, for the case a(S) = 1+ S the theorems

of existence of solution of the first boundary value problem for scalar and one-dimensional space case and uniqueness
for more general cases are proved in this work. One-dimensional scalar variant for the case a(S) = (1 + S)p,
0 < p ≤ 1 is studied in [7]. Investigations for multi-dimensional space cases at first are carried out in the work [8].
Multidimensional space cases are also discussed in the following works [11,14].

Asymptotic behavior as t →∞ of solutions of initial–boundary value problems for (1.3) type models are studied
in the work [9,11–13] and in a number of other works as well. In these works main attention is paid to one-dimensional
analogs.

Interest to above-mentioned integro-differential models is more and more arising and initial–boundary value
problems with different kinds of boundary and initial conditions are considered. Particular attention should be paid
to construction of numerical solutions and to their importance for integro-differential models. Finite element analogs
and Galerkin method algorithm as well as settling of semi-discrete and finite difference schemes for (1.3) type one-
dimensional integro-differential models are studied in [10,13,17,16] and in the other works as well.

Our aim is to study long-time behavior of solution and semi-discrete scheme for numerical solution of
initial–boundary value problem with mixed boundary condition for the one-dimensional (1.3) equation. Attention
is paid to the investigation of more wide cases of nonlinearity than already were studied.

This article is organized as follows. In Section 2 the formulation of the problem and asymptotic behavior of solution
is studied. Main attention is paid to construction and investigation of semi-discrete scheme in Section 3. We conclude
the paper with some discussion of future research in this area in Section 4.

2. Long-time behavior of solution

If the magnetic field has the form H = (0, 0,U ), U = U (x, t), then from (1.3) we obtain the following nonlinear
integro-differential equation

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (2.1)

where

S(x, t) =
∫ t

0

(
∂U

∂x

)2

dτ. (2.2)

In the domain (0, 1)× (0,∞) let us consider the following initial–boundary value problem for (2.1), (2.2):

U (0, t) =
∂U (x, t)

∂x

∣∣∣∣
x=1
= 0,

U (x, 0) = U0(x), (2.3)

where U0 is a given function.
The study of long-time behavior of solution of the problem (2.1)–(2.3) is actual.
The following statement shows the exponential stabilization of the solution of problem (2.1)–(2.3) in the norm of

the Sobolev space H1(0, 1).

Theorem 1. If a(S) = (1 + S)p, 0 < p ≤ 1 and U0 ∈ H2(0, 1), U0(0) =
∂U (x,t)
∂x

∣∣∣
x=1
= 0, then for the solution of

problem (2.1)–(2.3) the following estimate holds as t →∞∥∥∥∥∂U

∂x

∥∥∥∥+ ∥∥∥∥∂U

∂t

∥∥∥∥ ≤ C exp
(
−

t

2

)
.
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Theorem 1 can be proven using analogical method as in [9].
Now let us prove the main result of this section that gives exponential stabilization of solution in the norm of the

space C1(0, 1).

Theorem 2. a(S) = (1 + S)p, 0 < p ≤ 1 and U0 ∈ H3(0, 1), U0(0) =
dU0(x)

dx

∣∣∣
x=1
= 0 , then for the solution of

problem (2.1)–(2.3) the following estimates hold as t →∞:∣∣∣∣∂U (x, t)

∂x

∣∣∣∣ ≤ C exp
(
−

t

2

)
,

∣∣∣∣∂U (x, t)

∂t

∣∣∣∣ ≤ C exp
(
−

t

2

)
,

uniformly in x on [0, 1].

Proof. From (2.2) it follows that

∂S

∂t
=

(
∂U

∂x

)2

, S(x, 0) = 0. (2.4)

Let us multiply (2.4) by (1+ S)2p

1
1+ 2p

∂(1+ S)1+2p

∂t
=

(
∂U

∂x

)2

(1+ S)2p.

Note that Eq. (2.1) can be rewritten as

∂U

∂t
=
∂σ

∂x
,

where

σ = (1+ S)p ∂U

∂x
. (2.5)

We have

1
1+ 2p

∂(1+ S)1+2p

∂t
= σ 2, (2.6)

σ 2(x, t) =
∫ 1

0
σ 2(y, t)dy + 2

∫ 1

0

∫ x

y
σ(ξ, t)

∂U (ξ, t)

∂t
dξdy. (2.7)

Introducing the following notation

ϕ(t) = 1+
∫ t

0

∫ 1

0
σ 2dxdτ, (2.8)

from Theorem 1 and relations (2.6)–(2.8) we get

1
1+ 2p

(1+ S)1+2p
=

∫ t

0
σ 2dτ + 2

∫ t

0

∫ 1

0

∫ x

y
σ(ξ, τ )

∂U (ξ, τ )

∂τ
dξ dy dτ +

1
1+ 2p

≤ 2
∫ t

0

∫ 1

0
σ 2(y, τ )dydτ +

∫ t

0

∫ 1

0

(
∂U (x, τ )

∂τ

)2

dxdτ +
1

1+ 2p

≤ 2
∫ t

0

∫ 1

0
σ 2(y, τ )dydτ + C1

∫ t

0
exp(−τ)dτ +

1
1+ 2p

≤ C2ϕ(t),

i.e.,

1+ S(x, t) ≤ Cϕ
1

1+2p (t). (2.9)
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Analogously,

1
1+ 2p

(1+ S)1+2p
=

∫ t

0

∫ 1

0
σ 2(y, τ )dydτ + 2

∫ t

0

∫ 1

0

∫ x

y
σ(ξ, τ )

∂U (ξ, τ )

∂τ
dξdydτ +

1
1+ 2p

≥
1
2

∫ t

0

∫ 1

0
σ 2(y, τ )dydτ − C2 =

1
2
ϕ(t)− C3. (2.10)

We have

C3 (1+ S)1+2p
≥ C3. (2.11)

From (2.10) and (2.11) we get(
1

1+ 2p
+ C3

)
(1+ S)1+2p

≥
1
2
ϕ(t),

or

1+ S(x, t) ≥ cϕ
1

1+2p (t). (2.12)

Finally, from (2.9) and (2.12) it follows the following estimate

cϕ
1

1+2p (t) ≤ 1+ S(x, t) ≤ Cϕ
1

1+2p (t). (2.13)

Taking into account relations (2.8), (2.13) and Theorem 1 we have

dϕ(t)

dt
=

∫ 1

0
(1+ S)2p

(
∂U

∂x

)2

dx ≤ Cϕ
2p

1+2p (t) exp(−t),

or

d

dt

(
ϕ

1
1+2p (t)

)
≤ C exp(−t).

After integrating from 0 to t , keeping in mind definition (2.8), we get

1 ≤ ϕ(t) ≤ C.

From this, using the estimate (2.13), we receive

1 ≤ 1+ S(x, t) ≤ C. (2.14)

Using estimation (2.14), the equality (2.5) and Theorem 1 from (2.7) we obtain

σ 2(x, t) ≤ 2
∫ 1

0
(1+ S)2p

(
∂U

∂x

)2

dx +
∫ 1

0

(
∂U

∂t

)2

dx ≤ C exp(−t),

or

|σ(x, t)| ≤ C exp
(
−

t

2

)
.

This estimate, taking into account (2.14) and relation σ = (1+ S)p ∂U
∂x gives∣∣∣∣∂U (x, t)

∂x

∣∣∣∣ ≤ C exp
(
−

t

2

)
. (2.15)

Thus, the first part of Theorem 2 has been proven.
Now let us prove the second part of Theorem 2. By differentiating (2.1),

∂2U

∂t2 −
∂

∂x

[
∂(1+ S)p

∂t

∂U

∂x
+ (1+ S)p ∂

2U

∂t ∂x

]
= 0, (2.16)
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and multiplying (2.16) scalarly by ∂U/∂t , and using the formula of integration by parts, we obtain

1
2

d

dt

∫ 1

0

(
∂U

∂t

)2

dx +
∫ 1

0
(1+ S)p

(
∂2U

∂t ∂x

)2

dx + p
∫ 1

0
(1+ S)p−1

(
∂U

∂x

)3
∂2U

∂t ∂x
dx = 0. (2.17)

Using the Cauchy–Schwarz inequality in (2.17) leads to the relation

d

dt

∫ 1

0

(
∂U

∂t

)2

dx +
∫ 1

0
(1+ S)p

(
∂2U

∂t∂x

)2

dx ≤ p2
∫ 1

0
(1+ S)p−2

(
∂U

∂x

)6

dx . (2.18)

Let us take the inner product of (2.18) by exp(2t) and integrate the resulting equation over the interval (0, t). By
taking into account estimations (2.14), (2.15) and Theorem 1 and by performing simple manipulations, we obtain the
inequalities:∫ t

0
exp(2τ)

d

dτ

∫ 1

0

(
∂U

∂τ

)2

dx dτ +
∫ t

0
exp(2τ)

∫ 1

0
(1+ S)p

(
∂2U

∂x∂τ

)2

dx dτ

≤ p2
∫ t

0
exp(2τ)

∫ 1

0
(1+ S)p−2

(
∂U

∂x

)6

dx dτ,∫ t

0
exp(2τ)

∫ 1

0

(
∂2U

∂x ∂τ

)2

dx dτ ≤ − exp(2t)
∫ 1

0

(
∂U

∂t

)2

dx +
∫ 1

0

(
∂U

∂t

)2

dx

∣∣∣∣∣
t=0

+ 2
∫ t

0
exp(2τ)

∫ 1

0

(
∂U

∂τ

)2

dx dτ + C
∫ t

0
exp(−τ)dτ,

or ∫ t

0
exp(2τ)

∫ 1

0

(
∂2U

∂x∂τ

)2

dx dτ ≤ C exp(t). (2.19)

By taking the inner product of (2.16) by exp(2t)∂2U/∂t2 and by taking into account (2.15), the a priori estimates
(2.14) and (2.19), we obtain the relations:∫ t

0
exp(2τ)

∫ 1

0

(
∂2U

∂τ 2

)2

dx dτ +
1
2

∫ t

0

∫ 1

0
exp(2τ)(1+ S)p ∂

∂τ

(
∂2U

∂τ ∂x

)2

dx dτ

+ p
∫ t

0

∫ 1

0
exp(2τ)(1+ S)p−1

(
∂U

∂x

)3
∂

∂τ

(
∂2U

∂τ ∂x

)
dx dτ = 0,

exp(2t)

2

∫ 1

0

(
∂2U

∂t ∂x

)2

dx ≤
1
2

∫ 1

0

(
∂2U

∂t ∂x

)2

dx

∣∣∣∣∣
t=0

+

∫ t

0

∫ 1

0
exp(2τ)(1+ S)p

(
∂2U

∂τ ∂x

)2

dx dτ +
p

2

∫ t

0

∫ 1

0
exp(2τ)(1+ S)p−1

(
∂U

∂x

)2 (
∂2U

∂τ ∂x

)2

dx dτ

− p exp(2t)
∫ 1

0
(1+ S)p−1

(
∂U

∂x

)3
∂2U

∂t ∂x
dx + p

∫ 1

0

(
∂U

∂x

)3
∂2U

∂t ∂x
dx

∣∣∣∣∣
t=0

+ 2p
∫ t

0

∫ 1

0
exp(2τ)(1+ S)p−1

(
∂U

∂x

)3
∂2U

∂τ ∂x
dx dτ

+ p(p − 1)
∫ t

0

∫ 1

0
exp(2τ)(1+ S)p−2

(
∂U

∂x

)5
∂2U

∂τ ∂x
dx dτ

+ 3p
∫ t

0

∫ 1

0
exp(2τ)(1+ S)p−1

(
∂U

∂x

)2 (
∂2U

∂τ ∂x

)2

dx dτ

≤ C1 + C2 exp(t)+ C3

∫ t

0
exp(2τ) exp(−τ)

∫ 1

0

(
∂2U

∂τ ∂x

)2

dx dτ
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+
exp(2t)

4

∫ 1

0

(
∂2U

∂t ∂x

)2

dx + C4 exp(−t)+ C5

∫ t

0
exp(2τ)

∫ 1

0

(
∂2U

∂τ ∂x

)2

dx dτ

+C5

∫ t

0
exp(−τ)dτ + C6

∫ t

0
exp(2τ)

∫ 1

0

(
∂2U

∂τ∂x

)2

dxdτ + C6

∫ t

0
exp(−3τ)dτ

+C7

∫ t

0
exp(2τ) exp(−τ)

∫ 1

0

(
∂2U

∂τ ∂x

)2

dx dτ,

or ∫ 1

0

(
∂2U

∂t ∂x

)2

dx ≤ C exp(−t). (2.20)

The a priori estimate (2.20), together with the relation

∂U (x, t)

∂t
=

∫ 1

0

∂U (y, t)

∂t
dy +

∫ 1

0

∫ x

y

∂2U (ξ, t)

∂ξ∂t
dξ dy

and Theorem 1, implies that∣∣∣∣∂U (x, t)

∂t

∣∣∣∣ ≤ C exp
(
−

t

2

)
.

Therefore, Theorem 2 has been completely proven. �

Using the a priori estimates of this article, the compactness method, a modified version of the Galerkin method
[2,18] the existence and uniqueness of the solution can be proven.

Let us note that same results as in Theorems 1 and 2 are true for problem with first type homogeneous conditions
on whole boundary (see, for example, [11] and references therein).

3. Semi-discrete scheme

Let us again consider in (0, 1)× (0, T ) problem (2.1)–(2.3) written in the following form:

∂U

∂t
=

∂

∂x

[(
1+

∫ t

0

(
∂U

∂x

)2

dτ

)p
∂U

∂x

]
, (3.1)

U (0, t) =
∂U (x, t)

∂x

∣∣∣∣
x=1
= 0,

U (x, 0) = U0(x), (3.2)

where 0 < p ≤ 1, T is positive number and U0 is a given function.
On [0, 1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M , with h = 1/M . The

boundaries are specified by i = 0 and i = M . In this section the semi-discrete approximation at (xi , t) is designed
by ui = ui (t). The exact solution to the problem at (xi , t) is denoted by Ui = Ui (t). At points i = 1, 2, . . . ,M − 1,
the integro-differential equation will be replaced by approximation of the space derivatives by forward and backward
differences. We will use the following known notations [19]:

ux,i (t) =
ui+1(t)− ui (t)

h
, u x̄,i (t) =

ui (t)− ui−1(t)

h
.

Let us correspond to problem (3.1)–(3.2) the following semi-discrete scheme:

dui

dt
=

{(
1+

∫ t

0

(
u x̄,i

)2 dτ

)p

u x̄,i

}
x

, i = 1, 2, . . . ,M − 1, (3.3)

u0(t) = u x̄,M (t) = 0, (3.4)

ui (0) = U0,i , i = 0, 1, . . . ,M. (3.5)

So, we obtained Cauchy problem (3.3)–(3.5) for nonlinear system of ordinary integro-differential equations.
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Introduce usual inner products and norms [19]:

(u, v) = h
M−1∑
i=1

uivi , (u, v] = h
M∑

i=1

uivi ,

‖u‖ = (u, u)1/2, ‖u]| = (u, u]1/2.

Multiplying Eqs. (3.3) scalarly by u(t) = (u1(t), u2(t), . . . , uM−1(t)), after simple transformations we get

d

dt
‖u(t)‖2 + h

M∑
i=1

(
1+

∫ t

0

(
u x̄,i

)2 dτ

)p (
u x̄,i

)2
= 0.

From this we obtain the inequality

‖u(t)‖2 +
∫ t

0
‖u x̄‖

2dτ ≤ C, (3.6)

where, here and below in this section, C denotes a positive constant which does not depend on h.
The a priori estimate (3.6) guarantees the global solvability of the problem (3.1)–(3.2).
The principal aim of the present section is the proof of the following statement.

Theorem 3. If problem (3.1)–(3.2) has a sufficiently smooth solution U = U (x, t), then for 0 < p ≤ 1 the solution
u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem (3.1)–(3.2) tends to U = U (t) = (U1(t),U2(t), . . . ,UM−1(t))
as h → 0 and the following estimate is true∥∥u(t)−U (t)

∥∥ ≤ Ch. (3.7)

Proof. For U = U (x, t) we have:

dUi

dt
−

{(
1+

∫ t

0
(Ux̄,i )

2dτ

)p

Ux̄,i

}
x

= ψi (t), i = 1, 2, . . . ,M − 1, (3.8)

U0(t) = Ux̄,M (t) = 0, (3.9)

Ui (0) = U0,i , i = 0, 1, . . . ,M, (3.10)

where

ψi (t) = O(h).

Let zi (t) = ui (t)−Ui (t). From (3.1)–(3.2) and (3.8)–(3.10) we have:

dzi

dt
−

{(
1+

∫ t

0
(u x̄,i )

2dτ

)p

u x̄,i −

(
1+

∫ t

0
(Ux̄,i )

2dτ

)p

Ux̄,i

}
x

= −ψi (t), (3.11)

z0(t) = z x̄,M (t) = 0, zi (0) = 0.

Multiplying Eq. (3.11) scalarly by z(t) = (z1(t), z2(t), . . . , zM−1(t)), using the discrete analog of the formula of
integration by parts we get

1
2

d

dt
‖z‖2 +

M∑
i=1

{(
1+

∫ t

0
(u x̄,i )

2dτ

)p

u x̄,i −

(
1+

∫ t

0
(Ux̄,i )

2dτ

)p

Ux̄,i

}
z x̄,i h = −h

M−1∑
i=1

ψi zi . (3.12)

Note that,{(
1+

∫ t

0
(u x̄,i )

2dτ

)p

u x̄,i −

(
1+

∫ t

0
(Ux̄,i )

2dτ

)p

Ux̄,i

}
(u x̄,i −Ux̄,i )

= p
∫ 1

0

(
1+

∫ t

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]2dτ

)p−1 d

dt

(∫ t

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]
(u x̄,i −Ux̄,i )dτ

)2

dξ

+

∫ 1

0

(
1+

∫ t

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]2dτ

)p

dξ
(
u x̄,i −Ux̄,i

)2
.
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After substituting this equality in (3.12), integrating received equality on (0, t) and using formula of integration by
parts we get

‖z‖2 + 2h
M∑

i=1

∫ t

0

∫ 1

0

(
1+

∫ t ′

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]2dτ ′
)p (

u x̄,i −Ux̄,i
)2 dξ dτ

+ ph
M∑

i=1

∫ 1

0

(
1+

∫ t

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]2dτ

)p−1(∫ t

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]
(u x̄,i −Ux̄,i )dτ

)2

dξ

− p(p − 1)h
M∑

i=1

∫ 1

0

∫ t

0

(
1+

∫ t ′

0

[
Ux̄,i + ξ(u x̄,i −Ux̄,i )

]2dτ ′
)p−2[

Ux̄,i + ξ(u x̄,i −Ux̄,i )
]2

×

(∫ t ′

0

[
Ux̄,i + xi(u x̄,i −Ux̄,i )

]
(u x̄,i −Ux̄,i )dτ

′

)2

dξ dτ = −2h
M−1∑
i=1

ψi zi .

Taking into account relation 0 < p ≤ 1 we have from last equality

‖z(t)‖2 ≤
∫ t

0
‖z(τ )‖2dτ +

∫ t

0
‖ψi‖

2dτ. (3.13)

From (3.13) we get (3.7) and Theorem 3 thus is proved. �

4. Conclusions

Nonlinear integro-differential equation associated with the penetration of a magnetic field in a substance is
considered. Long-time behavior of solution of initial–boundary value problem with mixed boundary conditions is
studied. The semi-discrete scheme is investigated for that model as well. One must note that convergence of the fully
discrete scheme for p = 1 can be also proven [10]. It is important to construct and investigate fully discrete finite
difference schemes and finite element analogs studied in this note type models for more general type nonlinearities
and for multi-dimensional cases as well.
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1. Introduction

Let f ∈ L(a, b) and for function F we have following representation

F(x) =
∫ x

a
f (t)dt + F(a). (1.1)

According to Lebesgue statement: F can be represented as (1.1) if and only if F is absolutely continuous function
(see [1]).

F. Riesz [2] proved that function F can be represented as (1.1) where f ∈ L p, (1 < p < +∞) if and only if for
every partition of the interval (a, b) the sums∑

k

|F(xk)− F(xk−1)|
p

|xk − xk−1|
p−1

are uniformly bounded (such F functions are called functions of bounded Riesz p-variation). Besides this

sup
Π

∑
k

|F(xk)− F(xk−1)|
p

|xk − xk−1|
p−1 =

∫ b

a
| f (x)|pdx,

where Π is the set of all finite partitions of (a, b).
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It must be mentioned that in this statement interval may be infinite.
Z. Cybertowicz and W. Matuszewska generalized the Riesz’s above result for the functions from Orlicz space

(see [3]). Let ϕ be a convex function which satisfies following conditions

ϕ(t)/t → 0 as t → 0+ and ϕ(t)/t →+∞ as t →+∞,

then function F can be represented as (1.1) where f ∈ Lϕ if and only if the sums∑
k

ϕ

(
|F(xk)− F(xk−1)|

|xk − xk−1|

)
(xk − xk−1)

are uniformly bounded for every partition of the interval (a, b). Besides this

sup
Π

∑
k

ϕ

(
|F(xk)− F(xk−1)|

|xk − xk−1|

)
(xk − xk−1) =

∫ b

a
ϕ(| f (x)|)dx .

Let (ϕ(n)) and (p(n)) be some positive sequences, such that p(n) ↑ +∞, n → +∞ and ϕ(n) ≥ 1, p(n) > 1 for
any natural n.

On the finite interval (a, b) we consider the class of measurable functions f for which

A := sup
n

1
ϕ(n)

(∫ b

a
| f (x)|p(n)dx

)1/p(n)

< +∞. (1.2)

In [4] we considered an analogue of the Riesz statement for the above defined class of functions.
Namely we prove following:

(1) Let lim infn→+∞ ϕ(n) < +∞. Function f is essentially bounded if and only if function f satisfies condition
(1.2).

(2) Let lim infn→+∞ ϕ(n) = +∞. For any sequence (p(n)) there exists a function f which is not essentially bounded
but satisfies condition (1.2).

(3) Function F can be represented as (1.1) where f satisfies (1.2) if and only if

B := sup
n

1
ϕ(n)

(
sup
Π

∑
k

|F(xk)− F(xk−1)|
p(n)

|xk − xk−1|
p(n)−1

)1/p(n)

< +∞.

Besides of this A = B. The analogue of Riesz’s statement is true for functions of many variables (see [4]).

In the present paper we get the necessary and sufficient condition for that the function F can be represented as
(1.1) where f belongs to the variable exponent Lebesgue space.

Throughout the whole paper, we use C as an absolute positive constant, which may have different values in different
occurrences.

2. Variable exponent Lebesgue spaces

Given a measurable function p : [0, 1] → [1,+∞). L p(·)
[0, 1] denotes the set of all measurable functions f on

[0, 1] such that for some λ > 0∫
[0,1]

(| f (x)|/λ)p(x) dx < +∞.

This set becomes a Banach function space with the Luxemburg’s norm

‖ f ‖p(·) = inf
{
λ > 0 :

∫
[0,1]

(| f (x)|/λ)p(x) dx ≤ 1
}
.

The corresponding Sobolev space W k,p(·) is defined to be the subset of functions f in L p(·)
[0, 1] such that its

derivative of the order k − 1 is absolutely continuous and the function f and its derivatives up to order k have a finite
L p(·) norm, for given exponent.
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Note that by definition Sobolev space W 1,1 coincides with class of absolute continuous functions. Also W 1,∞

coincides with class of Lipschitz continuous functions ( f is called Lipschitz continuous if there exists a real constant
C ≥ 0 such that, for all x and y in [0, 1] | f (x)− f (y)| ≤ C |x − y|).

The variable exponent Lebesgue spaces L p(·)(Rn) and the corresponding variable exponent Sobolev spaces W k,p(·)

are of interest for their applications to the problems in fluid dynamics, partial differential equations with non-standard
growth conditions, calculus of variations, image processing, etc. (see [5]).

From Riesz’s statement follows that for constant exponent p(1 < p < ∞) Sobolev space W 1,p is fully described
by the Riesz p-variation, namely class of functions bounded Riesz p-variation coincides with W 1,p.

The aim of our paper is to introduce variable exponent bounded Riesz p(·)-variation and describe Sobolev class of
functions W 1,p(·).

For the given p(·), the conjugate exponent p′(·) is defined pointwise p′(x) = p(x)/(p(x)− 1), x ∈ [0, 1]. Given
a set Q ⊂ [0, 1] we define some standard notations:

p−(Q) := essinf
x∈Q

p(x), p+(Q) := esssup
x∈Q

p(x), p− := p−([0, 1]), p+ := p+([0, 1]).

Recall that the Hardy–Littlewood maximal operator is defined for any f ∈ L1
[0, 1] by

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (t)|dt,

where the supremum is taken over all Q ⊂ [0, 1] intervals containing point x (assume that sets like [0, a) and (a, 1]
are also intervals) and |Q| denotes the Lebesgue measure of Q.

Denote by B the class of all measurable exponents p(·), 1 < p− ≤ p+ < ∞ for which the Hardy–Littlewood
maximal operator is bounded on the space L p(·)

[0, 1]. Different aspects concerning this class can be found in
monographs [6] and [5].

Definition 2.1. Let Q ∈ Π . We define averaging operator with respect to Q by

TQ f (x) =
∑
Q∈Q
| f |QχQ(x),

where fQ =
1
|Q|

∫
Q f .

In [7], L. Diening showed that p ∈ B if and only if there exists C > 0 such that for any f ∈ L p(·)(Rn),

sup
Π
‖TQ f ‖p(·) ≤ C · ‖ f ‖p(·).

T. Kopaliani [8] gives following characterization of exponents in B.

Theorem 2.1. p(·) ∈ B if and only if

‖χQ‖p(·) � |Q|
1
|Q|

∫
Q

1
p(x) dx and ‖χQ‖p′(·) � |Q|

1
|Q|

∫
Q

1
p′(x)

dx
(2.1)

uniformly for all intervals Q ⊂ [0, 1].

Throughout the paper under the relationship A � B we mean that there exist absolute constants C1 > 0 and
C2 > 0 such that C1 · A ≤ B ≤ C2 · A.

For interval Q we define p̄(Q) and p̄′(Q) by

p̄(Q) :=

(
1
|Q|

∫
Q

1
p(x)

dx

)−1

, p̄′(Q) :=

(
1
|Q|

∫
Q

1
p′(x)

dx

)−1

.

Let us define discrete variable Lebesgue space l p,Q

l p,Q
:=

{xQ}Q∈Q :
∑
Q∈Q
|xQ |

p̄(Q) < +∞

 ,
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which is equipped with the Luxemburg’s norm

‖x‖l p,Q = inf

λ > 0 :
∑
Q∈Q
|xQ/λ|

p̄(Q)
≤ 1

 .
As usual {eQ}Q∈Q is the canonical basis of l p,Q (eQ has entry 1 at the index Q and 0 otherwise).
For discrete l p,Q space its associate space of l p,Q is defined by

(l p,Q)′ =

{yQ}Q∈Q :
∑
Q∈Q
|xQ · yQ | < +∞, for all x ∈ l p,Q


and endowed with associate norm

‖y‖(l p,Q)′ = sup

∑
Q∈Q
|xQ · yQ | : ‖x‖l p,Q ≤ 1

 .
Note that in this case the associate space of l p,Q is equal to l p′,Q and norms ‖ · ‖(l p,Q)′ and ‖ · ‖l p′,Q are equivalent.
Also we have Hölder’s inequality∑

Q∈Q
|xQ · yQ | ≤ C‖x‖l p,Q · ‖y‖l p′,Q , x ∈ l p,Q, y ∈ l p′,Q. (2.2)

Let us now provide the auxiliary result (see [7, Theorem 4.2], [9, Lemma 2.3]) which we will use in the proof of
our result.

Lemma 2.1. Let p ∈ B. Then∥∥∥∥∥∥
∑
Q∈Q

xQχQ

∥∥∥∥∥∥
p(·)

�

∥∥∥∥∥∥
∑
Q∈Q

xQ‖χQ‖p(·)eQ

∥∥∥∥∥∥
l p,Q

,

uniformly for all Q ∈ Π and all sequences {xQ}Q∈Q, xQ ∈ R.

3. Main result

Let Q = {Qi } be a finite partition of [0,1]. Let Π denote the set of all possible finite partitions of [0,1].
Let us define the class of functions of bounded Riesz p(·)-variation.

Definition 3.1. We say that F is function of bounded Riesz p(·)-variation if

D(F) := sup
Π

∑
i

|F(xi )− F(xi−1)|
p̄Qi

(xi − xi−1)
p̄Qi−1 < +∞.

It is clear that if exponent is constant p(x) = p for all x ∈ [0, 1], then the class of functions of bounded Riesz
p(·)-variation coincides with the class of functions of bounded Riesz p-variation.

The following theorem gives the characterization of Sobolev W 1,p(·) space by the bounded Riesz p(·)-variation.

Theorem 3.1. Let 1 < p− ≤ p+ < +∞.

(i) If D(F) < +∞, then F can be represented as (1.1) where f ∈ L p(·)
[0, 1];

(ii) If p(·) ∈ B and F is represented as (1.1) where f ∈ L p(·)
[0, 1], then D(F) < +∞.
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Proof. (i) Let D(F) < +∞ and Q is some finite family of disjoint intervals Qi = (xi ; yi ) from (0; 1). Using (2.2)
we obtain∑

i

|F(yi )− F(xi )| =
∑

i

|F(yi )− F(xi )|

|Qi |
( p̄Qi−1)/ p̄Qi

|Qi |
( p̄Qi−1)/ p̄Qi

≤ C ·

∥∥∥∥∥
{
|F(yi )− F(xi )|

|Qi |
( p̄Qi−1)/ p̄Qi

}
Qi∈Q

∥∥∥∥∥
l p,Q

·

∥∥∥∥{|Qi |
1/ p̄′Qi

}
Qi∈Q

∥∥∥∥
l p′,Q

.

Without loss of generality suppose that D(F) ≥ 1. By definition of D(F) we have

1 ≥
∑

i

(
|F(yi )− F(xi )|

|Qi |
( p̄Qi−1)/ p̄Qi

·
1

(D(F))1/ p̄Qi

) p̄Qi

≥

∑
i

(
|F(yi )− F(xi )|

|Qi |
( p̄Qi−1)/ p̄Qi

·
1

(D(F))1/p−

) p̄Qi

,

consequently by the definition of the norm in the space l p,Q we get∥∥∥∥∥
{
|F(yi )− F(xi )|

|Qi |
( p̄Qi−1)/ p̄Qi

}
Qi∈Q

∥∥∥∥∥
l p,Q

≤ (D(F))1/p− .

Analogously it is clear that∥∥∥∥{|Qi |
1/ p̄′Qi

}
Qi∈Q

∥∥∥∥
l p′,Q
≤

(∑
i

|Qi |

)1/p′+

.

Finally by the last two inequalities we obtain

∑
i

|F(yi )− F(xi )| ≤ C · (D(F))1/p− ·

(∑
i

|Qi |

)1/p′+

.

From this inequality we conclude that F is an absolutely continuous function.
Let us for each natural n divide (0, 1) into 2n equal intervals Qi = (xi−1; xi ), (i ∈ {1, . . . , 2n

}) and construct step
function fn

fn(t) =
2n∑

i=1

∣∣∣∣ F(xi )− F(xi−1)

xi − xi−1

∣∣∣∣ p̄Qi

χQi (t).

Since p(·) is a measurable function and 1 < p− ≤ p+ < +∞, it is integrable in Lebesgue sense, therefore by
Lebesgue differentiation theorem we have

lim
n→+∞

t∈Qi

p̄Qi = lim
n→+∞

t∈Qi

(
1
|Qi |

∫
Qi

dx

p(x)

)−1

= p(t), (3.1)

for almost all t ∈ [0, 1]. By (3.1) and the fact that F is absolutely continuous function we get that fn(t)→ |F ′(t)|p(t),
n→+∞ for almost all t ∈ [0, 1]. Therefore by Fatou’s lemma we obtain∫ 1

0
|F ′(t)|p(t)dt =

∫ 1

0
lim

n→+∞
fn(t)dt =

∫ 1

0
lim inf
n→+∞

fn(t)dt

≤ lim inf
n→+∞

∫ 1

0
fn(t)dt = lim inf

n→+∞

2n∑
i=1

∫
Qi

fn(t)dt

= lim inf
n→+∞

2n∑
i=1

∫
Qi

∣∣∣∣ F(xi )− F(xi−1)

xi − xi−1

∣∣∣∣ p̄Qi

χQi (t)dt
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= lim inf
n→+∞

2n∑
i=1

|F(xi )− F(xi−1)|
p̄Qi

(xi − xi−1)
p̄Qi−1

≤ sup
Π

2n∑
i=1

|F(xi )− F(xi−1)|
p̄Qi

(xi − xi−1)
p̄Qi−1 = D(F) < +∞.

This implies that F ′ ∈ L p(·)
[0, 1].

(ii) Let p ∈ B, f ∈ L p(·)
[0, 1] and F(x) =

∫ x
0 f (t)dt + F(0) then∣∣∣∣ F(xi )− F(xi−1)

xi − xi−1

∣∣∣∣ = 1
xi − xi−1

∣∣∣∣∫ xi

xi−1

f (t)dt

∣∣∣∣ = | fQi | ≤ | f |Qi . (3.2)

By (2.1) we have ‖χQi ‖p(·) � |Qi |
1/ p̄Qi . By (3.2) and the fact that p̄Qi numbers are uniformly bounded we get∑

i

|F(xi )− F(xi−1)|
p̄Qi

(xi − xi−1)
p̄Qi−1 =

∑
i

(
|F(xi )− F(xi−1)|

xi − xi−1

) p̄Qi

(xi − xi−1)

≤

∑
i

(
| f |Qi

) p̄Qi |Qi | =
∑

i

(
| f |Qi |Qi |

1/ p̄(Qi )
) p̄Qi
≤ C

∑
i

(
| f |Qi ‖χQi ‖p(·)

) p̄Qi . (3.3)

Since boundedness of the Hardy–Littlewood maximal operator implies the boundedness of the averaging operator TQ
in L p(·) then by Lemma 2.1 we get∥∥∥∥∥∥

∑
Q∈Q
| f |Q‖χQ‖p(·)eQ

∥∥∥∥∥∥
l p,Q

�

∥∥∥∑ | f |QχQ

∥∥∥
p(·)
= ‖TQ f ‖p(·) ≤ C‖ f ‖p(·), (3.4)

uniformly for all Q ∈ Π . By (3.3) and (3.4) we get that D(F) < +∞.
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Abstract

The paper considers a plane problem of elasticity for a circle with a rectangular hole. To find a solution, the use is made
both of the method of conformal mappings and of boundary value problems of analytic functions. In particular, relying on the
well-known Kolosov–Muskhelishvili’s formulas, the problem formulated with respect to unknown complex potentials is reduced
to the two Riemann–Hilbert problems for a circular ring, and the solutions of the latter problems allow us to construct potentials
effectively (analytically). The estimates of the obtained results in the neighborhood of angular points are given. Analogous results
(as a particular case) are obtained for a circular domain with a rectilinear cut.
c© 2016 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Conformal mapping; Kolosov–Muskhelishvili’s formulas; The Riemann–Hilbert problem for a circular ring

Statement of the Problem. Let S be a doubly-connected domain occupied by a plate on the plane z = x + iy of a
complex variable, bounded by circumference L0 = {|z| = R0} and rectangle B1 B2 B3 B4 whose sides are parallel to the
coordinate axes. By L1 we denote the boundary of the rectangle (that is, L1 = ∪

4
k=1 L(1)k , L(1)k = Bk Bk+1, k = 1, 4,

B5 = B1) and assume that the sides B1 B2 and B3 B4 (parallel to the ox-axis) are under the action of constant, normal
compressive forces with the given principal vector P (or normal displacements vn(t) = v

(k)
n = const, t ∈ L(1)k ,

k = 1, 4 are given), and the rest of the boundary L = L0 ∪ L1 is free from the external forces.
Note that certain simplifications in the statement of the problem concerning the cut forms and external forces are

insignificant and motivated only to make the problem more clear, namely, to find elastic equilibrium of the plate for a
finite doubly-connected domain.
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Analogous problems of the plane theory of elasticity and plate bending for finite doubly-connected domains
bounded by polygons have been considered in [1,2].

Solution of the Problem. As is known, the more effective ways of solving the boundary value problems of the
plane theory of elasticity by the methods of complex analysis are based on the construction of a conformally mapping
function of the given domain onto canonical domains (circle, circular ring). Therefore the above-mentioned methods
are little-suited for the effective solution of problems in multi-connected domains. Nevertheless, for some practically
important classes of multi-connected domains one manages to construct effectively (analytically) the conformally
mapping function of that domain onto a circular ring. These classes involve doubly-connected domains bounded by
polygons and their modifications (polygonal domain with a circular hole, or a circle with a polygonal hole). Moreover,
the Kolosov–Muskhelishvili’s methods in the above-mentioned case allow one to decompose these problems (with
respect to complex potentials ϕ(z) and ψ(z)) into two Riemann–Hilbert problems for a circular ring, and by solving
the latter problems to construct unknown potential in analytical form.

Here we present some results (see [3]) dealing with conformal mapping of a doubly-connected domain, bounded
by a polygon, onto a circular ring.

(1) The Dirichlet Problem for a Circular Ring. Let D(1 < |z| < R) be a circular ring bounded by circumferences
`0(|z| = R) and `1(|z| = 1). We consider the problem: find a holomorphic in the ring D function ϕ∗(z) = u + iv
under the boundary condition

Re[ϕ∗(t)] = f j (t), t ∈ ` j , j = 0, 1. (1)

The necessary and sufficient condition for solvability of problem (1) is of the form∫ 2π

0
f0(t)dϑ =

∫ 2π

0
f1(t)dϑ (2)

and a solution itself is given by the formula

ϕ∗(z) =
1
π i

∞∑
j=−∞

[∫
`0

f0(t)

t − R2 j z
dt +

∫
`1

f1(t)

t − R2 j z
dt

]
+ ik1,

where k1 is an arbitrary real constant. Integration on `0 and `1 taken in the positive direction leaves the domain D at
the left.

(2) Conformal Mapping of a Doubly-Connected Domain, Bounded by Polygons, onto a Circular Ring. Let S0 be
the doubly-connected domain on the plane z of a complex variable, bounded by convex polygons (A) and (B). Assume
that (A) is an outer and (B) is an interior boundary of the domain S0; by Ak (k = 1, . . . , n) and Bm(m = 1, . . . , p)
we denote the vertices (and their affixes) and by L(k)0 and L(k)1 the sides of polygons (A) and (B). By πα0

k and πβ0
m we

denote the sizes of inner angles S0 at the vertices Ak and Bm , and the angles lying between the ox-axis and exterior
normals to the contours L0

(
L0 = ∪

n
k=1 L(0)k

)
and L1

(
L1 = ∪

p
m=1 L(1)m

)
we denote by α(t) and β(t); the positive

direction on L = L0 ∪ L1 is taken that which leaves the domain S0 at the left.
Consider the problem: find the type of the function z = ω0(ζ ) conformally mapping the circular ring D(1 < |ζ | <

R) onto the domain S0.
From the equalities

t − Ak = i |t − Ak |e
iαk (t), t ∈ L(k)0 ; t − Bm = i |t − Bm |e

iβm (t), t ∈ L(m)1 ,

we get

Re
[
t · e−iα(t)]

= Re
[
A(t) · e−iα(t)], t ∈ L0;

Re
[
t · e−iβ(t)]

= Re
[
B(t) · e−iβ(t)], t ∈ L1,

(3)

where A(t), B(t), α(t) and β(t) are the piecewise constant functions;

A(t) = Ak; α(t) = αk(t), t ∈ L(k)0 ;

B(t) = Bm, β(t) = βm(t), t ∈ L(m)1 .
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From conditions (4) regarding the function ω0(ζ ) (after differentiation with respect to the abscissa s), we obtain
for the circular ring D the following Riemann–Hilbert boundary value problem (see [3]):

Re
[
iσ · e−iα0(σ )ω′0(σ )

]
= 0, σ ∈ `0 (|ζ | = R);

Re
[
iσ · e−iβ0(σ )ω′0(σ )

]
= 0, σ ∈ `1 (|ζ | = 1);

α0(σ ) = α[ω0(σ )]; β0(σ ) = β[ω0(σ )].

(4)

The boundary value problem (5) with respect to the function lnω′0(ζ ) is reduced in its turn to the Dirichlet problem
(1) whose condition of solvability (2) in the class h(b1, . . . , bp) (for this class, see [4], §82) has the form

n∏
k=1

(ak

R

)α0
k−1 p∏

m=1

(bm)
β0

m−1
= 1,

(ak and bk are the preimages of the points Ak and Bm), and the solution itself of the given class is given by the formula

ω′0(ζ ) = K 0
∗

∞∏
j=−∞

G(R2 jζ ) g(R2 jζ )R2δ j ,

where

G(ζ ) =
n∏

k=1

(ζ − ak)
α0

k−1
; g(ζ ) =

p∏
m=1

(ζ − bm)
β0

m−1
; δ j =

{
0, j ≥ 0,
1, j ≤ −1;

K 0
∗ is an arbitrary real constant.
Using the above results for the domain S0 under the condition that (A) is the right n-angle, and (B) is the given

rectangle, and considering the domain S as a limiting case S0 for n → ∞ (in this case α0(σ ) → γ (σ ), where
γ (σ ) = arg σ , σ ∈ `0, α0

k → 1(k = 1, 2, . . . , n)), we find that the derivative of the conformally mapping function
z = ω(ζ ) of the circular ring D (1 < |ζ | < R) onto the domain S is a solution of the Riemann–Hilbert problem

Re
[
i ω′(σ )

]
= 0, σ ∈ `0; Re

[
i σ e−iβ0(σ ) ω′(σ )

]
= 0, σ ∈ `1, (5)

and under the condition

4∏
m=1

(bm)
1/2
= 1

it has the form

ω′(ζ ) = K 0
4∏

m=1

(
1−

bm

ζ

) 1
2
∞∏
j=1

(
1−

ζ

R2 j bm

) 1
2
(

1−
bm

R2 jζ

) 1
2
. (6)

(K 0 is an arbitrary real constant).
We get back now to the problem under consideration. On the basis of the well-known Kolosov–Muskhelishvili’s

formulas (see [5], §41) for finding complex potentials ϕ(z) and ψ(z) in this case we have the boundary conditions

Re
[
ϕ(t)+ t ϕ′(t)+ ψ(t)

]
= D1, t ∈ L0,

Re
[
~ϕ(t)− t ϕ′(t)− ψ(t)

]
= 0, t ∈ L0,

Re
[
e−iβ(t)(ϕ(t)+ t ϕ′(t)+ ψ(t)

)]
= Re

[
e−iβ(t)

(
i
∫ s

0
(N (t0)+ iT (t0))e

iβ(t0)ds0 + c1 + ic2

)]
, t ∈ L1,

Re
[
e−iβ(t)(~ϕ(t))− t ϕ′(t)− ψ(t)

]
= 2µvn(t), t ∈ L1,

where ~ = λ+3µ
λ+µ

is the Muskhelishvili’s constant, λ and µ are the Lame constants, N (t) and T (t) are normal and
tangential stresses, respectively.
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The obtained conditions in their turn reduce to the two problems

Re
[
ϕ(t)

]
= F0(t), t ∈ L0; Re

[
e−iβ(t)ϕ(t)

]
= F1(t), t ∈ L1; (7)

Re
[
ϕ(t)+ t ϕ′(t)+ ψ(t)

]
= Γ0(t), t ∈ L0;

Re
[
e−iβ(t)(ϕ(t)+ t ϕ′(t)+ ψ(t)

)]
= Γ1(t), t ∈ L1,

(8)

where

F0(t) = (~ + 1)−1 D1, t ∈ L0; F1(t) = (~ + 1)−1[c2 + 2µvn(t)
]
, t ∈ L(1)1 ;

F1(t) = (~ + 1)−1(P + c1), t ∈ L(1)2 ;

F1(t) = −(~ + 1)−1[c2 + 2µvn(t)
]
, t ∈ L(1)3 ;

F1(t) = (~ + 1)−1c1, t ∈ L(1)4 ; Γ0(t) = D1, t ∈ L0; Γ1(t) = c2, t ∈ L(1)1 ;

Γ1(t) = P + c1, t ∈ L(1)2 ; Γ1(t) = −c2, t ∈ L(1)3 ; Γ1(t) = −c1, t ∈ L(1)4 .

(D1, c1, c2 are arbitrary real constants, one of which, for example D1, may be assumed to be zero).
After the domain S is mapped onto the circular ring D(1 < |ζ | < R), with respect to the function ϕ0(ζ ) = ϕ[ω(ζ )],

from (9) we obtain the Riemann–Hilbert boundary value problem for the circular ring

Re
[
ϕ0(σ )

]
= F00(σ ), σ ∈ `0; Re

[
e−iβ0(σ )ϕ0(σ )

]
= F10(σ ), σ ∈ `1, (9)

where

F00(σ ) = F0[ω(σ)], σ ∈ `0; F10(σ ) = F1[ω(σ)], σ ∈ `1; β0(σ ) = β[ω(σ)].

Let us consider both the homogeneous problem corresponding to problem (9),

Re
[
ϕ0(σ )

]
= 0, σ ∈ `0; Re

[
e−iβ0(σ )ϕ0(σ )

]
= 0, σ ∈ `1,

and the auxiliary problem

Re
[
iσ χ0(σ )

]
= 0, σ ∈ `0; Re

[
iσ e−iβ0(σ )χ0(σ )

]
= 0, σ ∈ `1. (10)

We will seek for solutions of that problem of the class h(b1, . . . , b4). The index of problem (10) of that class equals
−2.

Taking now into account that the function

T (ζ ) =
(

1−
ζ

R

)−2 ∞∏
j=1

(
1−

ζ

R · R2 j

)−2(
1−

R

R2 jζ

)−2

satisfies the conditions

T (σ )

T (σ )
=
σ

σ
, σ ∈ `0;

T (σ )

T (σ )
= 1, σ ∈ `1,

and writing conditions (8) in an expanded form

ω′(σ )− ω′(σ ) = 0, σ ∈ `0; ω′(σ )−
σ

σ
e2iβ0(σ )ω′(σ ) = 0, σ ∈ `1,

we conclude that the function χ0(ζ ) can be represented by the formula

χ0(ζ ) = K1T (ζ ) ω′(ζ )

(K1 is an arbitrary real constant).
Thus with respect to the function Θ(ζ ) = K1ζT (ζ ) ω′(ζ ), we obtain the equalities

Θ(σ )

Θ(σ )
= 1, σ ∈ `0;

Θ(σ )

Θ(σ )
= e2iβ0(σ ), σ ∈ `1
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and, hence, boundary conditions (9) can be rewritten in the form

Re
[

ϕ0(σ )

σ T (σ ) ω′(σ )

]
=

F00(σ )

σ T (σ ) ω′(σ )
, σ ∈ `0;

Re
[

ϕ0(σ )

σ T (σ ) ω′(σ )

]
=

F10(σ ) eiβ0(σ )

σ T (σ ) ω′(σ )
, σ ∈ `1.

(11)

The condition of solvability of problem (11) has the form (see item 1):∫
`0

F00(σ )

σ T (σ ) ω′(σ )

dσ

σ
=

∫
`1

F10(σ ) eiβ0(σ )

σ T (σ ) ω′(σ )

dσ

σ
(12)

and the solution itself is given by the formula

ϕ0(ζ ) = ζ T (ζ ) ω′(ζ )M(ζ ),

where

M(ζ ) =
1
π i

∞∑
j=−∞

[∫
`0

F00(σ )dσ

(σ − R2 jζ )σ T (σ ) ω′(σ )
+

∫
`1

F10(σ ) eiβ0(σ )dσ

(σ − R2 jζ )σ T (σ ) ω′(σ )

]
+ E0 + i E1, (13)

E0 =−
1

2π i

∫
`0

F00(σ )

σ T (σ ) ω′(σ )

sσ

σ
;

E1 is an arbitrary real constant.
Taking into account that the function T (ζ ) at the point ζ = R has the pole of the second order, we conclude that for

the function ϕ0(ζ ) to be continuously extendable in the domain D∪`, it is necessary and sufficient that the conditions

M(R) = 0; M ′(R) = 0 (14)

be fulfilled.
Denoting M0(ζ ) = T (ζ )M(ζ ) and taking into account that ϕ(z) = ϕ[ω(ζ )] = ϕ0(ζ ), and hence ϕ′(z) =

ϕ′0(ζ )[ω
′(ζ )]−1, we obtain

ϕ′(z) =
ϕ′0(ζ )

ω′(ζ )
= M0(ζ )+ ζ

ω′′(ζ )

ω′(ζ )
M0(ζ )+ ζ M ′0(ζ ). (15)

On the basis of the results given in [4] (§26) concerning the behavior of the Cauchy type integral in the vicinity of
points of density discontinuity, we can conclude that in the vicinity of the point bk(k = 1, . . . , 4) the function M0(ζ )

can be represented in the form

M0(ζ ) =
k

(ζ − bk)1/2
+ Ω0

k (ζ ), k = 1, . . . , 4,

where k is the definite constant and Ω0
k (ζ ) in the vicinity of the point bk admits the estimate∣∣Ω (k)

0 (ζ )
∣∣ < C

|(ζ − bk)α0 |
, C = const, 0 < α0 < 1/2.

As is known (see [6], §37), for the conformally mapping function ω(ζ ) in the vicinity of angular points the
estimates

ω(ζ ) = Bk + (ζ − bk)
β0

k Ωk(ζ ),

ζ
ω′′(ζ )

ω′(ζ )
=

bk(β
0
k − 1)

ζ − bk
+ Ω∗k (ζ ), k = 1, . . . , 4,

hold, where Ωk(bk) 6= 0, Ω∗k (ζ ) is the right part of the Laurent decomposition of the function ζ ω
′′(ζ )
ω′(ζ )

.
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Taking the above-said into account, from (15) we obtain the estimate

ϕ′(z) =
K0

(ζ − bk)1/2
+ Qk

0(ζ ), k = 1, . . . , 4, K0 =
1
2

K ,

and hence, in the vicinity of the point B (B is one of the points Bk(k = 1, . . . , 4)), we have the estimates∣∣ϕ′(z)∣∣ < M1
∣∣z − B

∣∣−1/3
;

∣∣ϕ′′(z)∣∣ < M2
∣∣z − B

∣∣−4/3
; M1,M2 = const . (16)

After the function ϕ(z) is defined, the finding of the function ψ(z) by virtue of (8) reduces to the problem,
analogous to problem (7),

Re
[
R(t)

]
= N0(t), t ∈ L0; Re

[
eiβ(t)R(t)

]
= N1(t), t ∈ L1, (17)

where

R(z) = ψ(z)+ P(z) ϕ′(z);

N0(t) = Γ0(t)− Re
[
(ϕ(t))+ (t − P(t))ϕ′(t)

]
, t ∈ L0;

N1(t) = Γ1(t)− Re
[
eiβ(t)(ϕ(t))+ (t − P(t))ϕ′(t)

]
, t ∈ L1,

P(z) is the interpolated polynomial satisfying the condition P(Bk) = Bk(k = 1, . . . , 4) and having the form

P(z) =
(z − B2) · · · (z − B4)

(B1 − B2) · · · (B1 − B4)
· B1 + · · · +

(z − B1) · · · (z − B3)

(B4 − B1) · · · (B4 − B3)
· B4.

Insertion of the polynomial P(z) into consideration ensures the boundedness of the right-hand side in the boundary
condition (17), and thus, a solution of that problem can be constructed analogously to the previous one (see problem
(7)), namely, after the domain D is conformally mapped on S, the factorization of problem (14) is written as follows:

1 =
σ ω′(σ ) T (σ )

σ ω′(σ ) T (σ )
, σ ∈ `0; e−2iβ0(σ ) =

σ ω′(σ ) T (σ )

σ ω′(σ ) T (σ )
, σ ∈ `1,

and the condition of solvability will have the form∫
`0

N0(t) ω
′(t) T (t)dt =

∫
`1

N1(t) e−iβ(t)ω′(t) T (t)dt. (18)

If this condition is fulfilled, the solution of problem (17) is represented by the formula

R0(ζ ) =
[
ζ T (ζ ) ω′(ζ )

]−1 M1(ζ ),

where R0(ζ ) = R[ω(ζ )], and the function M1(ζ ) having the form, analogous to the function M(ζ ) (see formula (13))
and involving one arbitrary real constant E2, can be easily written out.

The condition of continuous extendability of the function R0(ζ ) in the domain D ∪ ` has the form

M1(bk) = 0, k = 1, . . . , 4, (19)

and thus we have eight conditions (conditions (12), (14), (18) and (19)) with respect to eight real constants: C1, C2, E1,
E2, v(k)n (t)(k = 1, . . . , 4). These conditions are, in fact, a system of linear algebraic equations with real coefficients
of the form

8∑
k=1

aik dk = `i (i = 1, . . . , 8),

where aik(i, k = 1, . . . , 8) are the known real constants, independent of the external forces P , and `i are the constants
vanishing for P = 0. dk are the above-mentioned unknown real constants (c1, c2, . . .).

Assuming that the determinant of the system equals zero, we find that the homogeneous system

8∑
k=1

aik dk = 0, i = 1, . . . , 8,
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has nontrivial solutions which as a consequence implies that the problem under consideration has a solution (different
from a rigid displacement), representable by complex potentials ϕ1(z) and ψ1(z) for which the equality (see [4], §113)

Im
∫

L

[
ϕ1(t)+ t ϕ′1(t)+ ψ1(t)

]
d
[
~ϕ1(t)− t ϕ′1(t)− ψ1(t)

]
= 4

∫∫
S

{
2(~ − 1)Re

[
ϕ′1(z)

]2
+
∣∣z ϕ′′1 (z)+ ψ ′1(z)∣∣2}dx dy,

is valid. In our case this equality can be rewritten in the form∫
L

{
Re i e−iν(t)[ϕ1(t)+ t ϕ′1(t)+ ψ1(t)

]
d Re eiν(t)[~ϕ1(t)− t ϕ′1(t)− ψ1(t)

]}
= 4

∫∫
S

{
2(~ − 1)

[
Reϕ′1(t)

]2
+
∣∣z ϕ′′1 (z)+ ψ ′1(z)∣∣2}dx dy. (20)

When writing this equality, we have taken into account continuous extensions of the expression ~ϕ1(z) − z ϕ′1(z) −
ψ1(z) in the domain S ∪ L and those of ϕ′1(z) and z ϕ′′1 (z) + ψ

′

1(z) up to the boundary L , except possibly the points
Bk(k = 1, . . . , 4).

Taking into account the boundary conditions (∗), from (20) we have

ϕ′1(z) = i H0, ϕ1(z) = i H0z + H1; ψ1(z) = H2,

where H0 is the real and H1 and H2 are the complex constants, and thus we have rigid displacement of the body as
a whole which contradicts our assumption, and consequently, the system determinant is different from zero and the
above-posed problem is uniquely solvable.

Remark. The obtained results can be extended to the case of a circular domain with a rectilinear cut (the cut can be
considered as a limiting case of a rectangle under contraction of segments B2 B3 and B4 B1 to a point). In this case the
conformally mapping function has the form

ω′(ζ ) = K 00
2∏

k=1

(
1−

bk

ζ

) ∞∏
j=1

2∏
k=1

(
1−

ζ

R2 j bk

)(
1−

bk

R2 jζ

)
,

and the estimate (23) can be written as follows:

|ϕ′(z)| < M1|z − Bk |
−1/2
; |ϕ′′(z)| < M2|z − Bk |

−3/2
; k = 1, 2.
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Abstract

It is proved that every uncountable solvable group contains two negligible sets whose union is an absolutely nonmeasurable
subset of the same group.
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In this paper we will be dealing with measures invariant (or, more generally, quasi-invariant) under various transfor-
mation groups. We will be interested in the behavior of certain sets with respect to such measures. The notation and ter-
minology used in the paper is primarily taken from [1] and [2]. All basic facts of modern measure theory can be found
in [3]. An extensive survey devoted to measures given on different algebraic-topological structures is presented in [4].

Let E be a base (ground) set and let G be some group of transformations of E . In this case, the pair (E,G) is
usually called a space equipped with a transformation group.

We shall say that a set X ⊂ E is G-negligible (in E) if the following two conditions are fulfilled for X :
(a) there exists at least one nonzero σ -finite G-invariant (G-quasi-invariant) measure µ on E such that X ∈

dom(µ);
(b) for every σ -finite G-invariant (G-quasi-invariant) measure ν on E such that X ∈ dom(ν), the equality ν(X) = 0

holds true.
We shall say that a set Y ⊂ E is G-absolutely nonmeasurable (in E) if, for any nonzero σ -finite G-quasi-invariant

measure θ on E , we have X 6∈ dom(θ).
If (G, ·) is a group, then we may consider G as a ground set E and take the group of all left translations of G as

a group of transformations of E . Obviously, identifying G with the group of all left translations of G, we may speak
of left G-invariant (left G-quasi-invariant) measures on E (=G) and, respectively, we may consider G-negligible and
G-absolutely nonmeasurable subsets of G.
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Example 1. If (G, ·) is an arbitrary uncountable solvable group, then there exists a G-absolutely nonmeasurable
subset of G (in this connection, see e.g. [2] and references therein). At the same time, it is still unknown whether there
exists a Γ -absolutely nonmeasurable set in any uncountable group (Γ , ·).

The main goal of this paper is to show (for a certain class of spaces (E,G)) that there exist two G-negligible sets
in E , the union of which turns out to be G-absolutely nonmeasurable in E . In particular, if E itself is an uncountable
solvable group and G coincides with the group of all left translations of E , then the above-mentioned fact is valid for
(E,G). Clearly, this yields some generalization of the statement formulated in Example 1.

It should be noticed that basic technical tools which lead us to the required result are motivated by the method of
surjective homomorphisms (cf. [1,2,5]).

For our further purposes, we need several auxiliary propositions. The first of them is essentially contained in [2].
As usual, the symbol ω(=ω0) denotes the least infinite cardinal (ordinal) number and ω1 denotes the least

uncountable cardinal (ordinal) number.

Lemma 1. Let a space (E,G) satisfy the following two relations:
(1) card(E) = ω1 and the group G acts freely and transitively in E;
(2) there are two subgroups G0 and G1 of G such that

card(G0) = ω, card(G1) = ω1, G0 ∩ G1 = {IdE },

where IdE is the identity transformation of E.
Then there exist two G-negligible subsets T1 and T2 of E such that the set T1 ∪ T2 is G-absolutely nonmeasurable

in E.

Proof. We would like to recall one construction of a G-absolutely nonmeasurable subset of E (see [2], Chapter 11,
Lemma 3). First, let us observe that relation (1) directly implies the equality

card(G) = ω1.

So we may take an ω1-sequence {Γξ : ξ < ω1} of subgroups of G, such that:
(a) Γ0 = G0;
(b) for all ordinals ξ < ω1, we have card(Γξ ) = ω;
(c) for each ordinal ξ < ω1, the set ∪{Γζ : ζ < ξ} is a proper subset of Γξ (in particular, this ω1-sequence of

subgroups of G is strictly increasing by inclusion);
(d) ∪{Γξ : ξ < ω1} = G.
Further, fix a point y ∈ E and, for any ordinal number ξ < ω1, put

Yξ = Γξ (y) \ ∪{Γζ (y) : ζ < ξ}.

A straightforward verification shows that the family of sets {Yξ : ξ < ω1} forms a partition of E and each Yξ is a
Γ ′ξ -invariant subset of E , where the group Γ ′ξ is defined by the formula

Γ ′ξ = ∪{Γζ : ζ < ξ}.

According to relation (c), the group Γ ′ξ is a proper subgroup of Γξ . Also, by virtue of the free action of G in E , it is
not hard to see that

card(Yξ ) = ω (ξ < ω1).

Now, for each ordinal number ξ < ω1, introduce the group

G1,ξ = G1 ∩ Γ ′ξ .

Obviously, the ω1-sequence {G1,ξ : ξ < ω1} of groups is increasing by inclusion and

∪{G1,ξ : ξ < ω1} = G1.

Fix for a while an ordinal ξ < ω1 and consider the two partitions of Yξ into orbits associated with the groups G0 and
G1,ξ , respectively. Taking into account the free action of G in E and the relation

G0 ∩ G1 = {IdE },
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we infer that the above-mentioned two partitions of Yξ are mutually transversal; in other words, any equivalence class
of the first partition has at most one common point with any equivalence class of the second partition. Starting with
this fact, we define by recursion an ω-sequence

{xξ,0, xξ,1, . . . , xξ,k, . . .}

of points from Yξ , such that:
(i) G0({xξ,k : k < ω}) = Yξ ;
(ii) for any two distinct natural numbers k and m, the point xξ,k does not belong to the orbit G1,ξ (xξ,m).
Indeed, let {Zξ,k : k < ω} denote an injective family of all those G0-orbits which are contained in Yξ . Suppose

that, for a natural number k, the elements

xξ,0 ∈ Zξ,0, xξ,1 ∈ Zξ,1, . . . , xξ,k−1 ∈ Zξ,k−1

have already been defined and that they lie in pairwise distinct G1,ξ -orbits. Consider the set

Pk = G1,ξ (xξ,0) ∪ G1,ξ (xξ,1) ∪ . . . ∪ G1,ξ (xξ,k−1).

Clearly, we have

card(Pk ∩ Zξ,k) ≤ k, card(Zξ,k) = ω.

Consequently, there exists an element x ∈ Zξ,k \ Pk . So we can put xξ,k = x .
Therefore, for each ordinal ξ < ω1, we get the corresponding ω-sequence {xξ,k : k < ω} of points from Yξ ,

fulfilling conditions (i) and (ii).
Now, we define X = {xξ,k : ξ < ω1, k < ω} and verify that the set X is G-absolutely nonmeasurable in E .
Indeed, on the one hand, we may write

G0(X) = ∪{G0({xξ,k : k < ω}) : ξ < ω1} = ∪{Yξ : ξ < ω1} = E

and the above relation implies that if X is measurable with respect to some nonzero σ -finite G-quasi-invariant measure
µ on E , then necessarily µ(X) > 0.

On the other hand, let us take an arbitrary element g ∈ G1 \ {IdE }. Then there exists an ordinal ξ0 < ω1 for which
g ∈ G1,ξ0 . Further, for any ξ < ω1, let us denote

Xξ = {xξ,k : k < ω}.

Evidently, we have

(∀ξ < ω1)(card(Xξ ) = ω).

Also, the equality

X = ∪{Xξ : ξ < ω1}

implies the inclusion

g(X) ∩ X ⊂ ∪{g(Xζ ) ∩ Xη : ζ < ω1, η < ω1}.

If ζ < ω1 and η < ω1 satisfy the relations ξ0 < ζ and ξ0 < η, then

g(Xζ ) ∩ Xη = ∅.

In addition to this, if ζ < ξ0 and η > ξ0, or, respectively, ζ > ξ0 and η < ξ0, then

g(Xζ ) ∩ Xη = g(Xζ ∩ g−1(Xη)) ⊂ g(Yζ ∩ Yη) = ∅,

or, respectively,

g(Xζ ) ∩ Xη ⊂ Yζ ∩ Yη = ∅.

We thus get the inclusion

g(X) ∩ X ⊂ (∪{g(Xζ ) : ζ ≤ ξ0}) ∪ (∪{Xη : η ≤ ξ0})
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and, therefore,

card(g(X) ∩ X) ≤ ω.

Finally, suppose that g and h are any two distinct elements of G1. Then

h−1
◦ g 6= IdE , h−1

◦ g ∈ G1,

and, according to the fact established above, we may write

card((h−1
◦ g)(X) ∩ X) ≤ ω

which implies at once that

card(g(X) ∩ h(X)) ≤ ω.

The last inequality shows that if the set X is measurable with respect to some σ -finite G-quasi-invariant measure
µ on E , then µ(X) = 0. So we must have simultaneously µ(X) > 0 and µ(X) = 0. Obviously, this yields a
contradiction and hence X is a G-absolutely nonmeasurable subset of E .

Now, let us return to the partition {Yξ : ξ < ω1} of our ground set E and introduce the following two sets:

T1 = ∪{X ∩ Yξ : ξ < ω1, ξ is an odd ordinal number},

T2 = ∪{X ∩ Yξ : ξ < ω1, ξ is an even ordinal number}.

Clearly, X = T1 ∪ T2 and T1 ∩ T2 = ∅. Further, if {gi : i ∈ I } is an arbitrary countable family of elements of G, then

E \ ∪{gi (T1) : i ∈ I } 6= ∅, E \ ∪{gi (T2) : i ∈ I } 6= ∅.

It is not hard to infer from this property of the sets T1 and T2 that there exist two probability G-invariant measures µ1
and µ2 on E such that

T1 ∈ dom(µ1), T2 ∈ dom(µ2), µ1(T1) = µ2(T2) = 0.

Finally, keeping in mind the relations T1 ⊂ X and T2 ⊂ X , we conclude that both T1 and T2 are G-negligible sets in
E . Lemma 1 has thus been proved. �

Lemma 2. Let (G, ·) and (H, ·) be two groups and let

φ : (G, ·)→ (H, ·)

be a surjective homomorphism. The following assertions are valid for any two sets X ⊂ H and Y ⊂ H:
(1) if X is an H-negligible subset of H, then φ−1(X) is a G-negligible subset of G;
(2) if Y is an H-absolutely nonmeasurable subset of H, then φ−1(Y ) is a G-absolutely nonmeasurable subset

of G.

The proof of Lemma 2 is not difficult (see, e.g., [1] or [2]).
The next two propositions are purely algebraic and can be deduced from well-known theorems of the general theory

of commutative groups (cf. [6,7]).

Lemma 3. If (H,+) is an uncountable commutative group, then there exist two subgroups H0 and H1 of (H,+)
such that:
(1) card(H0) = ω and card(H1) = ω1;
(2) H0 ∩ H1 = {0}, where 0 stands for the neutral element of H.

Lemma 4. If (G,+) is an uncountable commutative group, then there exists a surjective homomorphism

φ : (G,+)→ (H,+),

where (H,+) is some commutative group of cardinality ω1.

Lemma 5. Let (G, ·) be a group and let H be a normal subgroup of G such that card(G/H) ≤ ω. The following two
assertions are valid:
(1) if a set X is H-absolutely nonmeasurable in H, then X is also G-absolutely nonmeasurable in G;
(2) if a set Y is H-negligible in H, then Y is also G-negligible in G.



A. Kharazishvili / Transactions of A. Razmadze Mathematical Institute 170 (2016) 69–74 73

The proof of Lemma 5 readily follows from the definitions of negligible and absolutely nonmeasurable sets.

Theorem 1. If (G,+) is an uncountable commutative group, then there exist two G-negligible subsets Y1 and Y2 in
G such that their union Y1 ∪ Y2 is G-absolutely nonmeasurable in G.

Proof. According to Lemma 4, there exists a surjective homomorphism

φ : (G,+)→ (H,+)

for some commutative group (H,+) of cardinality ω1. Applying Lemmas 1 and 3 to (H,+), we obtain two
H -negligible subsets X1 and X2 of H such that the set X1 ∪ X2 is H -absolutely nonmeasurable in H . Let us denote

Y1 = φ
−1(X1), Y2 = φ

−1(X2).

By virtue of Lemma 2, both sets Y1 and Y2 are G-negligible in G. Also, in view of the same lemma, the set

Y1 ∪ Y2 = φ
−1(X1) ∪ φ

−1(X2) = φ
−1(X1 ∪ X2)

turns out to be G-absolutely nonmeasurable in G. This finishes the proof of Theorem 1. �

Theorem 2. If (G, ·) is an uncountable solvable group, then there exist two G-negligible sets Y1 and Y2 in G such
that the set Y1 ∪ Y2 is G-absolutely nonmeasurable in G.

Proof. Since (G, ·) is solvable, there exists a finite sequence

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn−1 ⊂ Gn = G

of subgroups of G satisfying these two relations:
(i) for each natural index k ∈ [1, n], the group Gk−1 is normal in the group Gk ;
(ii) for each natural index k ∈ [1, n], the quotient group Gk/Gk−1 is commutative.
To demonstrate the validity of our assertion, we argue by induction on n.
If n = 1, then the uncountable group G = Gn is commutative, and we may apply Theorem 1 to this G.
Suppose now that the assertion holds true for a natural number n − 1 ≥ 1 and let us establish its validity for n.
For this purpose, consider the commutative quotient group H = Gn/Gn−1, where, as above, Gn = G. Here only

two cases are possible.
(a) the group H = Gn/Gn−1 is uncountable.
In this case, we take the canonical surjective homomorphism

φ : (Gn, ·)→ (H,+).

By virtue of Theorem 1, there are two H -negligible subsets X1 and X2 in H such that their union X1 ∪ X2 is
H -absolutely nonmeasurable in H . We put

Y1 = φ
−1(X1), Y2 = φ

−1(X2).

Then, keeping in mind Lemma 2, we see that both sets Y1 and Y2 are G-negligible in G, and we also deduce that the
set

Y1 ∪ Y2 = φ
−1(X1) ∪ φ

−1(X2) = φ
−1(X1 ∪ X2)

turns out to be G-absolutely nonmeasurable in G.
(b) the group H = Gn/Gn−1 is countable.
In this case, in view of the uncountability of Gn = G, the group Gn−1 is necessarily uncountable, and we can

apply the inductive assumption to this Gn−1. So there are two Gn−1-negligible subsets Y1 and Y2 of Gn−1 such that
the set Y1 ∪ Y2 is Gn−1-absolutely nonmeasurable in Gn−1. Lemma 5 now yields that, simultaneously, Y1 and Y2 are
G-negligible subsets of G and their union Y1∪Y2 is a G-absolutely nonmeasurable set in G. Theorem 2 has thus been
proved. �

Example 2. Let (G, ·) be an arbitrary uncountable solvable group. It directly follows from Theorem 2 that there are
two G-negligible sets Y1 and Y2 in G possessing the following property: for any nonzero σ -finite left G-quasi-invariant
measure µ on G, at least one of the sets Y1 and Y2 is nonmeasurable with respect to µ.
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Abstract

Sharp weighted bounds for strong maximal functions, multiple potentials and singular integrals are derived in terms of
Muckenhoupt type characteristics of weights.
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1. Introduction

In this paper, we establish sharp weighted bounds for strong maximal functions and multiple integral operators.
Our derived results involve, in particular, Buckley-type estimates for strong Hardy–Littlewood and fractional maximal
functions, potentials and singular integrals with product kernels, and their one-sided analogs.

One of the main problems in Harmonic Analysis is to characterize a weight w for which a given integral operator
is bounded in L p

w (one-weight inequality). An important class of such weights is the well-known Ap class. It is known
that Ap condition is necessary and sufficient for the boundedness of Hardy–Littlewood and singular integral operators
(see, e.g., [1–3]); however, the sharp dependence of the corresponding L p

w norms in terms of Ap characteristic of w is
known only for some operators. The interest in the sharp weighted norm, for example, for singular integral operators
is motivated by applications in partial differential equations (see e.g., [4–7]).

Strong maximal operator different from the usual one is defined with respect to parallelepipeds with sides parallel
to the co-ordinate axes; the operators with product kernels, such as multiple singular and potential operators have
singularities not only at a single point but on the hyperplanes. That is why to study mapping properties for such
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operators became more complicated; however from the one weight viewpoint it is possible to get one-weight
boundedness results as well as sharp weighted bounds by deducing the problem to the single variable result and
using repeatedly the latter one uniformly with respect to other variables. In this direction Proposition 2.1 is one of
the keys to get the main results. One of the important aspects of this paper is that this point enables us to get sharp
one-weight results for a quite large class of multiple operators including one-sided cases.

Let X and Y be two Banach spaces. Given a bounded operator T : X → Y , we denote the operator norm by
‖T ‖X→Y which is defined in the standard way i.e. ‖T ‖X→Y := sup‖ f ‖X≤1 ‖T f ‖Y . If X = Y we use the symbol
‖T ‖X .

An almost everywhere positive locally integrable function (i.e. weight) w defined on Rn is said to satisfy Ap(Rn)

condition (w ∈ Ap(Rn)) for 1 < p <∞ if

‖w‖Ap(Rn) := sup
Q

(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q
w(x)1−p′dx

)p−1

<∞,

where p′ = p
p−1 and supremum is taken over all cubes Q in Rn with sides parallel to the co-ordinate axes. We call

‖w‖Ap(Rn) the Ap characteristic of w.
In 1972 B. Muckenhoupt [3] showed that if w ∈ Ap(Rn), where 1 < p <∞, then the Hardy–Littlewood maximal

operator

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy

is bounded in L p
w(Rn).

S. Buckley [8] investigated the sharp Ap bound for the operator M and established the inequality

‖M‖L p
w(Rn) ≤ C‖w‖

1
p−1
Ap(Rn)

, 1 < p <∞. (1.1)

Moreover, he showed that the exponent 1
p−1 is best possible in the sense that we cannot replace ‖w‖

1
p−1
Ap

by ψ(‖w‖Ap )

for any positive non-decreasing function ψ growing slowly than x
1

p−1 . From here it follows that for any λ > 0,

sup
w∈Ap

‖M‖L p
w

‖w‖
1

p−1−λ

Ap

= ∞.

To explain better the point of sharp estimates for multiple operators, let us discuss, for example, the strong
Hardy–Littlewood maximal operator M (s) defined on R2. Denote by A(s)p (R2) the Muckenhoupt class taken with
respect to the rectangles with sides parallel to the co-ordinate axes (see Section 2 for the definitions). Let ‖w‖

A(s)p (R2)

be A(s)p characteristic of w. There arises a natural question regarding the sharp bound in the inequality

‖M (s)
‖L p

w(R2) ≤ c‖w‖β
A(s)p (R2)

. (1.2)

We show that the following estimate is sharp

‖M (s)
‖L p

w(R2) ≤ c

(
‖w‖Ap(x1)‖w‖Ap(x2)

)1/(p−1)

, (1.3)

where ‖w‖Ap(xi ) is the characteristic of the weight w defined with respect to the i th variable uniformly to another one
i = 1, 2 (see e.g., [9–11], Ch. IV for the one-weight theory for multiple integral operators). Inequality (1.3) together
with the Lebesgue differentiation theorem implies that (1.2) holds for β = 2

p−1 ; however, unfortunately we do not
know whether it is or not sharp.

Under the symbol A ≈ B we mean that there are positive constants c1 and c2 (depending on appropriate parameters)
such that c1 A ≤ B ≤ c2 A; A � B means that there is a positive constant c such that A ≤ cB.
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Finally we mention that constants (often different constants in one and the same lines of inequalities) will be
denoted by c or C . The symbol p′ stands for the conjugate number of p: p′ = p/(p − 1), where 1 < p <∞.

2. Strong maximal and multiple integral operators

Let w be a weight function on a domain Ω ⊆ Rn . We denote by L p
w(Ω), 1 < p < ∞, the set of all measurable

functions f : Ω → R for which the norm

‖ f ‖L p
w(Ω)
=

(∫
Ω
| f (x)|pw(x)dx

) 1
p

is finite. If w ≡ const, then we denote L p
w(Ω) = L p(Ω).

In this section, we give sharp weighted bounds for strong maximal and multiple integral operators. Given an
operator TR acting on function in R, by T k , k = 1 · · · n, we denote the operators defined on class of functions acting
on Rn by letting TR acting on the kth variable and keeping rest of n − 1 variable fixed. Formally, for every x ∈ Rn ,

(T k f )(x) = TR( f (x1, x2, . . . , xk−1, ·, xk, . . . , xn))(xk). (2.1)

Remark 2.1. It can be easily verified (see [11], pg. 450–451) that if TR is bounded, then T k is also bounded and
further

‖T k f ‖L p(Rn) ≤ c‖TR‖‖ f ‖L p(Rn),

holds.

Definition 2.1. A weight function w satisfies A(s)p (Rn) condition (w ∈ A(s)p (Rn)), 1 < p <∞, if

‖w‖
A(s)p (Rn)

:= sup
P

(
1
|P|

∫
P
w(x)dx

)(
1
|P|

∫
P
w(x)−1/(p−1)dx

)p−1

<∞,

where the supremum is taken over all parallelepipeds P in Rn with sides parallel to the co-ordinate axes.

Definition 2.2. Let 1 < p <∞. A weight function w = w(x1, . . . , xn) defined on Rn is said to satisfy Ap condition
in xi uniformly with respect to other variables (w ∈ Ap(xi )) if

‖w‖Ap(xi ) := ess sup
(x1,...,xi−1,xi+1··· ,xn)∈Rn−1

sup
I

(
1
|I |

∫
I
w(x1, . . . , xn)dxi

)

×

(
1
|I |

∫
I
w1−p′(x1, . . . , xn)dxi

)p−1

<∞,

where by I we denote a bounded interval in R.

Remark 2.2. w(x1, . . . , xn) ∈ A(s)p (Rn)⇔ w ∈
⋂n

i=1 Ap(xi ) (see e.g., pp. 453–454 of [11,10]).

Proposition 2.1. Let T k be the operators given by the formula (2.1) and let T be an operator defined for functions on
Rn such that for every x ∈ Rn ,

(T f )(x) ≤ (T 1
◦ · · · ◦ T n)( f )(x)

and

‖T k
‖L p

w(R) ≤ c‖w‖γ (p)Ap(xk )
k = 1, . . . , n, (2.2)

holds, where γ (p) is a constant depending only on p. Then the following estimate

‖T ‖L p
w(Rn) ≤ c(‖w‖Ap(x1) · · · ‖w‖Ap(xn))

γ (p)

holds.
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Proof. For simplicity we give proof for n = 2 the proof general case is the same. Suppose that f ≥ 0. Using (2.1)
two times and Fubini’s theorem we have,

‖T f ‖p
L p
w(R2)

=

∫∫
R2
(T f (x1, x2))

pw(x1, x2)dx1dx2

≤

∫
R

(∫
R
(T 1(T 2 f (·, x2)))(x1)

pw(x1, x2)dx1

)
dx2

≤ c‖w‖pγ (p)
Ap(x1)

∫
R

(∫
R
(T 2 f (x1, x2))

pw(x1, x2)dx1

)
dx2

= c‖w‖pγ (p)
Ap(x1)

∫
R

(∫
R
(T 2 f (x1, x2))

pw(x1, x2)dx2

)
dx1

= c(‖w‖Ap(x1)‖w‖Ap(x2))
pγ (p)
‖ f ‖p

L p
w(R2)

. �

2.1. Strong Hardy–Littlewood maximal functions and multiple singular integrals

The following theorem is due to S. Buckley [8].

Theorem A. If w ∈ Ap(Rn), then ‖M f ‖L p
w(Rn) ≤ cn,p‖w‖

1/(p−1)
Ap(Rn)

‖ f ‖L p
w(Rn). The exponent 1/(p − 1) is best

possible.

Let f be a locally integrable function on Rn . Then we define strong Hardy–Littlewood maximal operator as(
M (s) f

)
(x) = sup

P3x

1
|P|

∫
P
| f (y)|dy, x ∈ Rn,

where the supremum is taken over all parallelepipeds P 3 x in Rn with sides parallel to the co-ordinate axes.

Theorem 2.3. Let 1 < p < ∞ and w be a weight function on Rn such that w ∈ A(s)p (Rn). Then there exists a
constant c depending only on n and p such that the following inequality

‖M (s) f ‖L p
w(Rn) ≤ c

( n∏
i=1

‖w‖Ap(xi )

)1/(p−1)

‖ f ‖L p
w(Rn) (2.3)

holds, for all f ∈ L p
w(Rn). Further, the exponent 1/(p − 1) in estimate (2.3) is sharp.

Proof. For every x ∈ Rn we can estimate M (s) as follows(
M (s) f

)
(x) ≤

(
M1
◦ M2

◦ · · · ◦ Mn) f (x),

where(
Mk f

)
(x1, . . . , xn) = M( f (x1, x2, . . . , xk−1, ·, xk, . . . , xn))(xk)

= sup
Ik3xk

1
|Ik |

∫
Ik

| f (x1, . . . , xk−1, t, xk+1, . . . , xn)|dt.

Now by Theorem A and Proposition 2.1 (for γ (p) = 1
p−1 ) we find that

‖M (s) f ‖L p
w(Rn) ≤ c

( n∏
i=1

‖w‖Ap(xi )

)1/(p−1)

‖ f ‖L p
w(Rn).

For sharpness we consider the case for n = 2. Observe that whenw is of product type, i.e.w(x1, x2) = w1(x1)w2(x2),
then

‖w‖Ap(x1) = ‖w1‖Ap(R), ‖w‖Ap(x2) = ‖w2‖Ap(R). (2.4)
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Let us take 0 < ε < 1. Suppose that w(x1, x2) = |x1|
(1−ε)(p−1)

|x2|
(1−ε)(p−1). Then it is easy to check that

(‖w‖Ap(x1)
‖w‖Ap(x2)

)1/(p−1)
≈

1

ε2 .

Observe also that for

f (x1, x2) = x1
ε−1χ(0,1)(x1)x2

ε−1χ(0,1)(x2),

we have ‖ f ‖p
L p
w
≈

1
ε2 . Now let 0 < x1, x2 < 1. Then we find that the following estimate

(
M (s) f

)
(x1, x2) ≥

1
x1x2

∫ x1

0

∫ x2

0
f (t, τ )dtdτ =

1

ε2 f (x, y)

holds. Finally

‖M (s) f ‖L p
w
≥

1

ε2 ‖ f ‖L p
w
.

Thus we have the sharpness in (2.3). �

Now we present the sharp weighted estimates for multiple singular integrals. S. Buckley, in his celebrated paper [8]
showed that for 1 < p <∞, convolution Calderón–Zygmund singular operator satisfies

‖T ‖L p
w(Rn) ≤ c‖w‖

p
p−1
Ap(Rn)

and the best possible exponent is at least max{1, 1
p−1 }. S. Petermichl [6,7] proved that the estimate

‖S‖L p
w(Rn) ≤ c‖w‖

max
{

1, 1
p−1

}
Ap(Rn)

is sharp, where S is either the Hilbert transform or one of the Riesz transforms in Rn

R j f (x) = cn p · v ·
∫

Rn

x j − y j

|x − y|n+1 f (y)dy.

S. Petermichl obtained the results for p = 2. The general case p 6= 2 then follows by the sharp version of the
Rubio de Francia extrapolation theorem given by O. Dragičević, L. Grafakos, C. Pereyra and S. Petermichl [12]
(see also, T. Hytönen [13] regarding the A2 conjecture for Calderón–Zygmund operators which, in fact, implies
appropriate estimate for all exponents 1 < p <∞ by applying a sharp version of the Rubio de Francia’s extrapolation
theorem).

Let us denote by H(n) the Hilbert transform with product kernels (or n-dimensional Hilbert transform) defined
by (

H(n) f
)
(x) = lim

ε1→0
···

εn→0

∫
|x1−t1|>ε1

· · ·

∫
|xn−tn |>εn

f (t1, . . . , tn)

(x1 − t1) · · · (xn − tn)
dt1 · · · dtn .

We denote H(1)
=: H. Notice that for each x ∈ Rn , we can write(

H(n) f
)
(x) =

(
H1
◦ · · · ◦Hn) f (x) (2.5)

where,(
Hk f

)
(x) = H( f (x1, x2, . . . , xk−1, ·, xk, . . . , xn))(xk)

= lim
εk→0

∫
|xk−yk |>εk

f (x1, . . . , yk, . . . , xn)

xk − yk
dyk .

The following theorem is due to S. Petermichl [6].
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Theorem B. Let 1 < p < ∞. Then there exists a positive constant c depending only on p such that for all weights
w ∈ Ap(R) we have

‖H f ‖L p
w(R) ≤ c‖w‖βAp(R)‖ f ‖L p

w(R), f ∈ L p
w(R), (2.6)

where β = max{1, p′/p}. Moreover, the exponent β in this estimate is sharp.

Theorem 2.4. Let 1 < p < ∞ and w be a weight function on Rn such that w ∈ A(s)p (Rn). Then there exists a
constant c depending only on n and p such that the following inequality

‖H(n) f ‖L p
w(Rn) ≤ c(‖w‖Ap(x1) · · · ‖w‖Ap(xn))

max{1,p′/p}
‖ f ‖L p

w(Rn) (2.7)

holds for all f ∈ L p
w. Further the exponent max{1, p′/p} in estimate (2.7) is sharp.

Proof. Using representation (2.5), Proposition 2.1 and Theorem B, we have that

‖H(n) f ‖L p
w(Rn) �

(
‖w‖Ap(x1) · · · ‖w‖Ap(xn)

)max{1,p′/p}
‖ f ‖L p

w(Rn).

Let n = 2. For sharpness we observe that when w is of product type i.e. w(x1, x2) = w1(x1)w2(x2), then inequality
(2.4) holds. Let us first derive sharpness for p = 2. Let us take 0 < ε < 1 and let w(x1, x2) = w1(x1)w2(x2), where
w1(x1) = |x1|

1−ε and w2(x2) = |x2|
1−ε . Then it is easy to check that (2.4) holds. Observe also that for

f (x1, x2) = x1
ε−1χ(0,1)(x1)x2

ε−1χ(0,1)(x2), (2.8)

‖ f ‖2
L2
w
≈

1
ε
. Now let 0 < x1, x2 < 1. Then we find that

‖H(2) f ‖L2
w(R2) ≥ 4ε−3.

Letting ε → 0 we have sharpness in (2.7) for p = 2 i.e., the estimate

‖H(2)
‖L2

w(R2) � ‖w‖A2(x1)‖w‖A2(x2)

is sharp.

Let 1 < p < 2. Suppose that 0 < ε < 1 and that w(x1, x2) = |x1|
(1−ε)(p−1)

|x2|
(1−ε)(p−1). Then it is easy to check

that

(‖w‖Ap(x1)
‖w‖Ap(x2)

)1/(p−1)
≈

1

ε2 .

Observe also that for the function defined by (2.8) the relation ‖ f ‖L p
w
≈ ( 1

ε2 )
1
p holds. Now let 0 < x1, x2 < 1. Then

we find that following estimates

‖H(2) f ‖L p
w(R2) ≥

1

ε2 ‖ f ‖L p
w(R2) ≈

(
‖w‖Ap(x1)‖w‖Ap(x2)

)p′/p
‖ f ‖L p

w(R2)

are fulfilled. Thus we have sharpness in (2.7) for 1 < p < 2. Using the fact that n-dimensional Hilbert transform is
essentially self-adjoint and applying duality argument together with the obvious equality

‖u1−p′
‖Ap′
= ‖u‖1/(p−1)

Ap
, u ∈ Ap,

we have sharpness for p > 2. This completes the proof. �

Let x = (x (1), . . . , x (n)) ∈ Rd1 × · · · × Rdn , where d1, d2, . . . , dn ∈ N. Suppose that x (k)jk
are components of x (k),

k = 1, . . . , n, 1 ≤ jk ≤ dk . Then we define n-fold Riesz transform

(
R(n)( j1,..., jn)

f
)
(x) = p.v.

∫
Rd1
· · ·

∫
Rdn

n∏
k=1

(x (k)jk
− y(k)jk

)

|x (k) − y(k)|dk+1
f (y(1), . . . , y(n))dy(1) · · · dy(n),

where 1 ≤ jk ≤ dk , k = 1, . . . , n. It can be noticed that(
R(n)( j1,..., jn)

f
)
(x) =

(
R1

j1 ◦ · · · ◦ Rn
jn f
)
(x)
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where

(
Rk
( j1,..., jn) f

)
(x) = p.v.

∫
Rdk

x (k)jk
− y(k)jk

|x (k) − y(k)|dk+1
f (x (1), . . . , x (k−1), y(k), x (k+1)

· · · , x (n))dy(k).

Theorem 2.5. Let 1 < p < ∞ and w be a weight function on Rd1 × · · · × Rdn satisfy the condition w ∈
A(s)p (Rd1 × · · · × Rdn ). Then there exists a constant c independent of f ∈ L p

w(Rd) and w such that the following
inequality

‖R(n)( j1,..., jn)
f ‖L p

w(Rd ) ≤ c(‖w‖Ap(x (1)) · · · ‖w‖Ap(x (n)))
max{1,p′/p}

‖ f ‖L p
w(Rd ) (2.9)

holds for all 1 ≤ jk ≤ dk , k = 1 · · · n, where d = d1 + · · · ,+dn . Further, the exponent max{1, p′/p} in
estimate (2.9) is sharp.

Proof of this statement is similar to that of the previous one; we need to apply Proposition 2.1 and the results
of [7]. �

Example 2.1. Let −1 < γ < p − 1. It is known that w(x) = |x |γ belongs to A(s)p (Rn). Let w(t) = |t |γ , t ∈ R. We

set bγ := max{2
γ
2 , 1} and dγ := max{2

−γ
2 −p+1, 1}.

(i) It follows from Theorem 2.3 that

‖M (s)
‖L p

w(Rn) ≤ CnCγ
n

p−1

(
1+ ‖w‖Ap(R)

) n
p−1

(2.10)

where C is the constant from the Buckley’s estimate (see (1.1)) and

Cγ =

{
bγ , 0 ≤ γ < p − 1,
dγ , −1 < γ < 0.

(2.11)

It is known (see [14] pp 287–289) that C in (2.10) can be taken as C = 3p+p′2p′−p p′24
2
p p

1
p−1 .

(ii) It follows from Theorem 2.4 that

‖H(n)
‖L p

w(Rn) ≤ cnCn max{1,p′/p}
γ

(
1+ ‖w‖Ap(R)

)n max
{

1, p′

p

}

holds, where c is the constant from (2.6) and Cγ is defined in (2.11).
Following [14], pp 285–286, it can be verified that

‖w‖Ap(R) ≤ max
{

2|γ |,
4p

(γ + 1)(γ (1− p′)+ 1)p−1

}
.

We can get also another type of estimate of the norms in L p
w. By using the same arguments as in [14], pp 285–286,

we find that

‖w‖Ap(xi ) ≤

{
Γγ , 0 ≤ γ < p − 1,
Gγ , −1 < γ < 0;

i = 1, 2,

where

Γγ = max
{
((4/3)2 + 1)γ /2(2/3)γ , bγ 4p

(
(γ + 1)−1(γ (1− p′)+ 1)1−p

+ 1
)}
,

Gγ = max
{
((4/3)2 + 1)−γ /2(2/3)γ , d0dγ 4p

(
(γ + 1)−1(γ (1− p′)+ 1)1−p

+ 1
)}
.
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Consequently, using directly Theorems 2.3 and 2.4 we have the following estimate

‖M (s)
‖L p

w(Rn) ≤ Cn

{
Γ n/(p−1)
γ , 0 ≤ γ < p − 1,

Gn/(p−1)
γ , −1 < γ < 0;

‖H(n)
‖L p

w(Rn) ≤ cn

{
Γ n max{1,p′/p}
γ , 0 ≤ γ < p − 1,

Gn max{1,p′/p}
γ , −1 < γ < 0;

where C and c are constants in (1.1) and (2.6) respectively.

2.2. Strong fractional maximal functions and Riesz potentials with product kernels

In this subsection, we state and prove sharp weighted norm estimates for strong fractional maximal and Riesz
potential with product kernels. To get the main results we use the ideas of the previous subsection.

In 1974 B. Muckenhoupt and R. Wheeden [15] found necessary and sufficient condition for the one-weight
inequality; namely, they proved that the Riesz potential Iα (resp the fractional maximal operator Mα) is bounded
from L p

w p (Rn) to Lq
wq (Rn), where 1 < p < ∞, 0 < α < n/p, q = np

n−αp if and only if w satisfies the so called
Ap,q(Rn) condition (see the definition below). Moreover, from their result it follows that there is a positive constant c
depending only on p and α such that

‖Tα‖L p
wp (Rn)→Lq

wq (Rn) ≤ c‖w‖βAp,q (Rn)
, (2.12)

for some positive exponent β, where Tα is Iα (resp. Mα), and ‖w‖Ap,q (Rn) is the Ap,q characteristic of w:

‖w‖Ap,q (Rn) := sup
Q

(
1
|Q|

∫
Q
wq(x)dx

)(
1
|Q|

∫
Q
w−p′(x)dx

)q/p′

.

In their paper M. Lacey, K. Moen, C. Perez and R. Torres [16] proved that the best possible value of β in (2.12) is
(1− α/n)max{1, p′/q} for Iα (resp. p′/q(1− α/n)) for Mα (see also [17] for this and other sharp results).

Definition 2.3. A weight function w satisfies A(s)p,q condition (w ∈ A(s)p,q), 1 < p <∞ if

‖w‖
A(s)p,q
:= sup

P3x

(
1
|P|

∫
P
wq(x)dx

)1/q( 1
|P|

∫
P
w(x)−p′dx

)1/p′

<∞,

where the supremum is taken over all parallelepipeds P in Rn with sides parallel to the co-ordinate axes.

Definition 2.4. Let 1 < p ≤ q < ∞. A weight function w = w(x1, . . . , xn) defined on Rn is said to satisfy Ap,q
condition in xi uniformly with respect to other variables (w ∈ Ap,q(xi )) if

‖w‖Ap,q (xi ) := ess sup
(x1,...,xi−1,xi+1··· ,xn)∈Rn−1

sup
I

(
1
|I |

∫
I
wq(x1, . . . , xn)dxi

)1/q

×

(
1
|I |

∫
I
w−p′(x1, . . . , xn)dxi

)1/p′

<∞,

where I is a bounded interval.

Remark 2.6. Like A(s)p (Rn) weights for given w(x1, . . . , xn) ∈ A(s)p,q ⇔ w ∈
⋂n

i=1 Ap,q(xi ).

Proposition 2.2. Let 1 < p ≤ q < ∞. Suppose that operators T k are defined by the formula (2.1) and that T is an
operator defined for functions on Rn . Suppose that weight w belongs to the class A(s)p,q . Let

‖T k
‖L p

wp (R)→Lq
wq (R) ≤ c‖w‖γ (p,q)Ap,q (xk )

k = 1, . . . , n, (2.13)



V. Kokilashvili et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 75–90 83

hold, where γ (p, q) is a constant depending only on p and q. Then

‖T ‖L p
wp (Rn)→Lq

wq (Rn) ≤ c(‖w‖Ap(x1) · · · ‖w‖Ap(xn))
γ (p,q).

Proof is similar to that of Proposition 2.1; therefore it is omitted.
The following theorem is from [16].

Theorem C. Suppose that 0 < α < n, 1 < p < n/α and q is defined by the relationship 1/q = 1/p − α/n. If
w ∈ Ap,q(Rn), then

‖wMα f ‖Lq (Rn) ≤ c‖w‖
p′

q (1−α/n)

Ap,q (Rn)
‖w f ‖L p(Rn).

Furthermore, the exponent p′

q (1− α/n) is sharp.

Let f be a locally integrable function and let 0 < α < 1. The strong fractional maximal operator is defined by(
M (s)
α f

)
(x) = sup

P3x

1

|P|1−α

∫
P
| f (y)|dy,

where the supremum is taken over all parallelepipeds P in Rn with sides parallel to the co-ordinate axes. It is easy to
see that(

M (s)
α f

)
(x) ≤

(
M1
α ◦ M2

α ◦ · · · ◦ Mn
α f
)
(x), (2.14)

where(
Mk
α f
)
(x1, . . . , xn) = Mα( f (x1, x2, . . . , xk−1, ·, xk, . . . , xn))(xk)

= sup
Ik3xk

1

|Ik |
1−α

∫
Ik

| f (x1, . . . , xk−1, t, xk+1, . . . , xn)|dt,

where Ik are intervals in R such that P = I1 × · · · × Ik .

Theorem 2.7. Let 0 < α < 1, 1 < p < 1
α

, q = p
1−αp and w be a weight function on Rn such that w ∈ A(s)p,q(Rn).

Then there exists a constant c depending only on n, p and α such that the following inequality

‖wM (s)
α f ‖Lq (Rn) ≤ c

( n∏
i=1

‖w‖Ap,q (xi )

) p′

q (1−α)

‖w f ‖L p(Rn) (2.15)

holds, for all f ∈ L p
w p (Rn). Further, the exponent p′

q (1− α) in estimate (2.15) is sharp.

Proof. Using estimate (2.14), Theorem C and Proposition 2.2 we get easily (2.15). The main “difficulty” here is
to derive sharpness. Let, for simplicity, n = 2. Let us take 0 < ε < 1. Suppose that w is of product type
w(x1, x2) = w1(x1)w2(x2), where w1(x1) = |x1|

(1−ε)/p′ and w2(x2) = |x2|
(1−ε)/p′ . Then it is easy to see that

‖w‖Ap,q (x1) = ‖w1‖A1+q/p′ (R) ≈ ε
−q/p′
; ‖w‖Ap,q (x2) = ‖w2‖A1+q/p′ (R) ≈ ε

−q/p′ .

Further, if

f (t1, t2) = |t1|
ε−1χ(0,1)(t1)|t2|

ε−1χ(0,1)(t2),

then ‖w f ‖L p(R2) ≈
1
ε2/p . Let 0 < x1, x2 < 1. Then we find that

M (s)
α f (x1, x2) ≥

1

|x1|
1−α|x2|

1−α

∫ x1

0

∫ x2

0
f (t1, t2)dt1dt2 ≈ c

|x1|
ε−1+α

|x2|
ε−1+α

ε2 .

Finally we conclude that,

‖wM (s)
α f ‖Lq (R2) ≥ ε

−2−2/q . (2.16)

Thus letting ε → 0 we have sharpness. �
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Let 0 < α < 1. We define Riesz potential with product kernels on Rn as follows:

(I (n)α f )(x) =
∫

Rn

f (t1, . . . , tn)
n∏

i=1
|xi − ti |1−α

dt1 · · · dtn, x = (x1, . . . , xn) ∈ Rn .

When n = 1 we use the symbol Iα for I (1)α . The following theorem is from [16].

Theorem D. Let 0 < α < n, 1 < p < n/α. We put q = np
n−αp . Suppose that w ∈ Ap,q(Rn). Then

‖w Iα f ‖Lq (Rn) ≤ c‖w‖(1−α/n)max{1,p′/q}
Ap,q (Rn)

‖w f ‖L p(Rn).

Further, the exponent (1− α/n)max{1, p′/q} is sharp.

Our result regarding I (n)α reads as follows:

Theorem 2.8. Let 0 < α < 1, 1 < p < 1/α. We put q = p
1−αp . Let w be a weight function on Rn such that

w ∈ A(s)p,q(Rn). Then there exists a constant c depending only on n, p and α such that the following inequality

‖w I (n)α f ‖Lq (Rn) ≤ c

( n∏
i=1

‖w‖Ap,q (xi )

)max{1, p′

q }(1−α)

‖w f ‖L p(Rn) (2.17)

holds for all f ∈ L p
w p (Rn). Further, the exponent max{1, p′

q }(1− α) in estimate (2.17) is sharp.

Proof of this statement follows using the same arguments as in the proof of Theorem 2.7 together with Theorem D.

3. One-sided operators

In 1986 E. Sawyer proved the following inequality for the right maximal operator M+:

‖M+ f ‖L p
w(R) ≤ C p‖w‖

β

A+p (R)
‖ f ‖L p

w(R), f ∈ L p
w(R), (3.1)

with some positive exponent β, where ‖w‖A+p (R) is A+p characteristic of a weight w defined by

‖w‖A+p (R) := sup
x∈R,h>0

(
1
h

∫ x

x−h
w(t)dt

)(
1
h

∫ x+h

x
w1−p′(t)dt

)p−1

,

and

M+ f (x) = sup
h>0

1
h

∫ x+h

x
| f (t)|dt.

The authors of this work in [18] showed that the best possible exponent in (3.1) is β = 1
p−1 .

In their celebrated work [19], K. Andersen and E. Sawyer completely characterized the one-weight boundedness
for one-sided fractional operators. In particular, they proved that if 1 < p <∞, 0 < α < 1/p, q = p

1−αp , then

‖wN+α f ‖Lq (R) ≤ C p,α‖w‖
β

A+p,q (R)
‖w f ‖L p(R), f ∈ L p

w p (R), (3.2)

for some positive β, where N+α is either the Weyl transform Wα or the right fractional maximal operator M+α defined
by:

M+α f (x) = sup
h>0

1
hα

∫ x+h

x
| f (t)|dt Wα( f )(x) =

∫
∞

x

f (t)

(t − x)1−α
dt 0 < α < 1,
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and ‖w‖A+p,q (Rn) is the right A+p,q characteristic of a weight w given by

‖w‖A+p,q (R) := sup
x∈R
h>0

(
1
h

∫ x

x−h
wq(t)dt

)(
1
h

∫ x+h

x
w−p′(t)dt

)q/p′

.

In [18] the authors proved that the best possible exponent β in (3.2) is p′

q (1−α) for M+α , and is (1−α)max{1, p′

q }

for Wα .
Now we list these and related results from [18].

Theorem 3.1. Let 1 < p <∞. Then
(i)

‖M+‖L p
w(R) ≤ c‖w‖

1
p−1

A+p (R)

holds and the exponent 1
p−1 is best possible, where A+p (R).

(ii)

‖M−‖L p
w(R) ≤ c‖w‖

1
p−1

A−p (R)

holds and the exponent 1
p−1 is best possible, where A−p (R) is the left Muckenhoupt characteristic of weight:

‖w‖A−p (R) := sup
x∈R
h>0

(
1
h

∫ x+h

x
w(t)dt

)(
1
h

∫ x

x+h
w1−p′(t)dt

)p−1

.

Theorem 3.2. Suppose that 0 < α < 1, 1 < p < 1/α and that q is such that 1/p − 1/q − α = 0. Then
(i) there exists a positive constant c depending only on p and α such that

‖M+α ‖L p
wp (R)→Lq

wq (R) ≤ c‖w‖
p′

q (1−α)

A+p,q (R)
. (3.3)

Moreover, the exponent p′

q (1− α) is best possible.
(ii) there exists a positive constant c depending only on p and α such that

‖M−α ‖L p
wp (R)→Lq

wq (R) ≤ c‖w‖
p′

q (1−α)

A−p,q (R)
, (3.4)

where

‖w‖A−p,q (R) := sup
x∈R
h>0

(
1
h

∫ x+h

x
wq(t)dt

)(
1
h

∫ x

x+h
w−p′(t)dt

)q/p′

.

Moreover, the exponent p′

q (1− α) is best possible,

Theorem 3.3. Let 0 < α < 1, 1 < p < 1/α and let q satisfy q = p
1−αp . Then

(a) there is a positive constant c depending only on p and α such that

‖Rα‖L p
wp (R)→Lq

wq (R) ≤ c‖w‖(1−α)max{1,p′/q}
A−p,q (R)

. (3.5)

Furthermore, this estimate is sharp;
(b) there is a positive constant c depending only on p and α such that

‖Wα‖L p
wp (R)→Lq

wq (R) ≤ c‖w‖(1−α)max{1,p′/q}
A+p,q (R)

. (3.6)

Moreover, this estimate is sharp.

One of our aims is to apply known results to give sharp estimates for multiple operators.
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3.1. Strong one-sided maximal operators

Let f be locally integrable function on Rn . We define one-sided strong fractional maximal operators as

M+(s) f (x1, . . . , xn) = sup
h1,...,hn>0

1
n∏

i=1
hi

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

| f (y1, . . . , yn)|dy1 · · · dyn, (3.7)

M−(s)α f (x1, . . . , xn) = sup
h1,...,hn>0

1
n∏

i=1
hi

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

| f (y1, . . . , yn)|dy1 · · · dyn . (3.8)

Let 1 < p <∞. We say that a weight function w belongs to the class A−(s)p (Rn) if

‖w‖
A−(s)p (Rn)

:= sup
h1,...,hn>0
x1,...,xn∈R

(
1

h1 · · · hn

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

w(t1, . . . , tn)dt1 · · · dtn

)

×

(
1

h1 · · · hn

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

w1−p′(t1, . . . , tn)dt1 · · · dtn

)p−1

<∞;

further, w ∈ A−(s)p (Rn) if

‖w‖
A+(s)p (Rn)

:= sup
h1,...,hn>0
x1,...,xn∈R

(
1

h1 · · · hn

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

w(t1, . . . , tn)dt1 · · · dtn

)

×

(
1

h1 · · · hn

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

w1−p′(t1, . . . , tn)dt1 · · · dtn

)p−1

<∞.

Definition 3.1. Let 1 < p <∞. A weight function w = w(x1, . . . , xn) defined on Rn is said to satisfy A−p condition
in xi uniformly with respect to other variables (w ∈ A−p (xi )) if

‖w‖A−p (xi )
:= ess sup

(x1,...,xi−1,xi+1··· ,xn)∈Rn−1
sup
hi>0

(
1
hi

∫ xi+hi

xi

w(x1, . . . , xi−1, t, xi−1, . . . , xn)dt

)

×

(
1
hi

∫ xi

xi−hi

w(x1, . . . , xi−1, t, xi−1, . . . , xn)
−1/(p−1)dt

)p−1

<∞.

Further, w ∈ A+p (xi ) if

‖w‖A+p (xi )
:= ess sup

(x1,...,xi−1,xi+1··· ,xn)∈Rn−1
sup
hi>0

(
1
hi

∫ xi

xi−hi

w(x1, . . . , xi−1, t, xi−1, . . . , xn)dt

)

×

(
1
hi

∫ xi+hi

xi

w(x1, . . . , xi−1, t, xi−1, . . . , xn)
−1/(p−1)dt

)p−1

<∞.

Remark 3.4. It is known that (see [20], Ch. 5) that w(x1, . . . , xn) ∈ A±(s)p (Rn)⇔ w ∈
⋂n

i=1 A±p (xi ).

Theorem 3.5. Let 1 < p <∞.
(i) Suppose that a weight functionw on Rn belongs to the class A+(s)p (Rn). Then there exists a constant c depending

only on n and p such that the following inequality

‖M+(s) f ‖L p
w(Rn) ≤ c

( n∏
i=1

‖w‖A+p (xi )

)1/(p−1)

‖ f ‖L p
w(Rn) (3.9)

holds for all f ∈ L p
w(Rn). Further, the exponent 1/(p − 1) in estimate (3.9) is sharp.
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(ii) Letw ∈ A−(s)p (Rn). Then there exists a constant c depending only on n and p such that the following inequality

‖M−(s) f ‖L p
w(Rn) ≤ c

( n∏
i=1

‖w‖A−p (xi )

)1/(p−1)

‖ f ‖L p
w(Rn) (3.10)

holds for all f ∈ L p
w(Rn). Further, the exponent 1/(p − 1) in estimate (3.10) is sharp.

Proof. We show (i). The proof of (ii) is similar. Since the proof of inequality (3.9) follows in the same way as in
the case of M (s) (see Theorem 2.3), we show only sharpness. Let n = 2. We take 0 < ε < 1. Let w(x1, x2) =

|1− x1|
(1−ε)(p−1)

|1− x2|
(1−ε)(p−1). Then it is easy to check that

(‖w‖A+p (x1)
‖w‖A+p (x2)

)1/(p−1)
≈

1

ε2 .

Observe also that for

f (x1, x2) = (1− x1)
ε(p−1)−1χ(0,1)(x1)(1− x2)

ε(p−1)−1χ(0,1)(x2),

we have ‖ f ‖L p
w
≈

1
ε2 . Now let 0 < x1, x2 < 1. Then

M+(s) f (x1, x2) ≥
1

(1− x1)(1− x2)

∫ 1

x1

∫ 1

x2

f (t, τ )dtdτ = c
1

ε2 f (x1, x2).

Finally

‖M+(s) f ‖L p
w(R2) ≥ c

1

ε2 ‖ f ‖L p
w
.

Thus we have the sharpness in (3.9). �

3.2. One-sided multiple fractional integrals

Now we discuss sharp bounds for one-sided strong maximal potential operators with product kernels.
Let f be a locally integrable function on Rn and let 0 < α < 1. We define one-sided strong fractional maximal

operators as

M+(s)α f (x1, . . . , xn) = sup
h1,...,hn>0

1
n∏

i=1
h1−α

i

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

| f (y1, . . . , yn)|dy1 · · · dyn, (3.11)

M−(s)α f (x1, . . . , xn) = sup
h1,...,hn>0

1
n∏

i=1
h1−α

i

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

| f (y1, . . . , yn)|dy1 · · · dyn . (3.12)

Let 1 < p ≤ q <∞. We say that a weight function w belongs to the class A−(s)p,q (Rn) if

‖w‖
A−(s)p,q (Rn)

:= sup
h1,...,hn>0
x1,...,xn∈R

(
1

h1 · · · hn

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

wq(t1, . . . , tn)dt1 · · · dtn

)1/q

×

(
1

h1 · · · hn

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

w−p′(t1, . . . , tn)dt1 · · · dtn

)1/p′

<∞;

further, w ∈ A+(s)p,q (Rn) if

‖w‖
A+(s)p,q (Rn)

:= sup
h1,...,hn>0
x1,...,xn∈R

(
1

h1 · · · hn

∫ x1

x1−h1

· · ·

∫ xn

xn−hn

wq(t1, . . . , tn)dt1 · · · dtn

)1/q

×

(
1

h1 · · · hn

∫ x1+h1

x1

· · ·

∫ xn+hn

xn

w−p′(t1, . . . , tn)dt1 · · · dtn

)1/p′

<∞.
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Definition 3.2. Let 1 < p ≤ q < ∞. A weight function w = w(x1, . . . , xn) defined on Rn is said to satisfy A−p,q
condition in xi uniformly with respect to other variables (w ∈ A+p,q(xi )) if

‖w‖A+p,q (xi )
:= ess sup

(x1,...,xi−1,xi+1...,xn)∈Rn−1
sup
hi>0

(
1
hi

∫ xi+hi

xi

wq(x1, . . . , xi−1, t, xi+1 . . . , xn)dt

)1/q

×

(
1
hi

∫ xi

xi−hi

w−p′(x1, . . . , xi−1, t, xi+1 . . . , xn)dt

)1/p′

<∞,

further, w ∈ A−p,q(xi ) if

‖w‖A−p,q (xi )
≡ sup

(x1,...,xi−1,

xi+1··· ,xn )∈Rn−1

sup
hi>0

(
1
hi

∫ xi

xi−hi

wq(x1, . . . , xi−1, t, xi+1 . . . , xn)dt

)1/q

×

(
1
hi

∫ xi+hi

xi

w−p′(x1, . . . , xi−1, t, xi+1 . . . , xn)dt

)1/p′

<∞.

Remark 3.6. It is easy to check that w(x1, . . . , xn) ∈ A±(s)p,q (Rn)⇔ w ∈
⋂n

i=1 A±p,q(xi ).

Theorem 3.7. Let 0 < α < 1, 1 < p < 1/α. We put q = p
1−αp . Suppose that w is a weight function defined on

Rn such that w ∈ A+(s)p,q (Rn). Then there exists a constant c depending only on n, p and α such that the following
inequality

‖wM+(s)α f ‖Lq (Rn) ≤ c
(
‖w‖A+p,q (x1)

· · · ‖w‖A+p,q (xn)

) p′

q (1−α)‖w f ‖L p(Rn) (3.13)

holds for all f ∈ L p
w p (Rn). Further, the exponent p′

q (1− α) in estimate (3.13) is sharp.

Proof. Estimate (3.13) follows in the same way as in the previous cases. For sharpness we take n = 2 and
w(x1, x2) = w1(x1)w2(x2), where w1(x1) = |1− x1|

(1−ε)p′ ; w2(x2) = |1− x2|
(1−ε)p′ , 0 < ε < 1. Then

‖w‖A+p,q (x1)
‖w‖A+p,q (x2)

= ‖w1‖A+p,q (R)‖w‖A+p,q (R) = ‖w
q
1‖A+

1+q/p′
(R)‖w2‖A+

1+q/p′
(R)

≈ ε2q/p′ .

If

f (t1, t2) = (1− t1)
ε−1χ(0,1)(t1)(1− t2)

ε−1χ(0,1)(t2),

then ‖w f ‖L p(R)2 ≈
1
ε2/p . Now let 0 < x < 1. Then we find that the following estimate

M+(s)α f (x1, x2) ≥
1

|1− x1|
1−α|1− x2|

1−α

∫ 1

x1

∫ 1

x2

f (t1, t2)dt1dt2

≈
|1− x1|

ε−1+α
|1− x2|

ε−1+α

ε2

holds. Finally

‖wM+(s)α f ‖Lq (R2) ≥ ε
−2−2/q . (3.14)

Thus, letting ε → 0 we are done. �

The next statement can be proved analogously. Details are omitted.

Theorem 3.8. Let α, p and q satisfy the condition of Theorem 3.7. Let w be a weight function on Rn such
that w ∈ A−(s)p,q (Rn). Then there exists a constant c depending only on n, p and α such that the following
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inequality

‖wM−(s)α f ‖Lq (Rn) ≤ c(‖w‖A−p,q (x1)
· · · ‖w‖A+p,q (xn)

)
p′

q (1−α)‖w f ‖L p(Rn) (3.15)

holds for all f ∈ L p
w p (Rn). Further, the exponent p′

q (1− α) in estimate (3.15) is sharp.

Let f be a measurable function on Rn and let 0 < α < 1. We define one-sided potentials R(n)
α and W(n)

α with
product kernels

R(n)
α f (x1, . . . , xn) =

∫ x1

−∞

· · ·

∫ xn

−∞

f (t1, . . . , tn)

(x1 − t1)1−α · · · (xn − tn)1−α
dt1 · · · dtn,

W(n)
α f (x1, . . . , xn) =

∫
∞

x1

· · ·

∫
∞

xn

f (t1, . . . , tn)

(t1 − x1)1−α · · · (tn − xn)1−α
dt1 · · · dtn,

where xi ∈ R, i = 1, . . . , n.
Finally we formulate the “sharp result” for one-sided potentials with product kernels. We do not repeat the

arguments using above, and therefore omit the proof of the next statement.

Theorem 3.9. Let α, p and q satisfy the conditions of Theorem 3.7. Suppose that w be a weight function on Rn such
that w ∈ A−(s)p,q (Rn). Then
(i) there exists a constant c depending only on n, p and α such that the following inequality

‖wR(n)
α f ‖Lq (Rn) ≤ c

( n∏
i=1

‖w‖A−p,q (xi )

)max{1, p′

q }(1−α)

‖w f ‖L p(Rn) (3.16)

holds for all f ∈ L p
w p (Rn). Further, the exponent max{1, p′

q }(1− α) in estimate (3.16) is sharp.
(ii) There is a constant c depending only on n, p and α such that

‖wW(n)
α f ‖Lq (Rn) ≤ c

( n∏
i=1

‖w‖A+p,q (xi )

)max{1, p′

q }(1−α)

‖w f ‖L p(Rn) (3.17)

for all f ∈ L p
w p (Rn). Further, the exponent max{1, p′

q }(1− α) in estimate (3.17) is sharp.
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Abstract

In this manuscript, using (E .A) property and (C L R) property common fixed point results for weakly compatible mappings,
satisfying integral type contractive condition in complex valued metric spaces are investigated.
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1. Introduction

Banach contraction principle [1] is the most powerful result in the field of metric fixed point theory. This principle
provides distinctive solution to various mathematical models such as Integral equations, Differential equations and
Functional equations. Banach’s contraction principle has been extended and generalized for different kinds of con-
tractions in various metric spaces. A significant generalization of Banach principle [1] is the Branciari [2] fixed point
theorem for integral type inequality. Afterward, several researchers [3–8] further generalized the result of Branciari in
metric spaces.

Azam et al. [9] introduced the notion of complex valued metric space and proved common fixed point theorems
for two self-mappings satisfying a rational type inequality. Bhatt et al. [10] initiated the concept of weakly compatible
maps to study common fixed point theorem for weakly compatible maps in complex valued metric spaces. Verma and
Pathak [11] introduced the notion of property (E .A) and (C L R) property and established common fixed point theo-
rems using these properties in complex valued metric space. Manro et al. [12] generalized the theorem of Branciari [2]
for two self-maps under contractive condition of integral type satisfying (E .A) and (C L R) properties in the setting
of complex valued metric spaces.
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The aim of this paper is to prove common fixed point theorems for integral type contractive condition using property
(E .A) and (C L R) property in complex valued metric spaces.

2. Preliminaries

Definition 2.1 ([9]). Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:
z1 - z2 ⇔ Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can say that z1 - z2 if one of the following conditions is satisfied:

(1) Re(z1) = Re(z2), Im(z1) < Im(z2);
(2) Re(z1) < Re(z2), Im(z1) = Im(z2);
(3) Re(z1) < Re(z2), Im(z1) < Im(z2);
(4) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (1)–(3) is satisfied and we will write z1 ≺ z2 if only (3) is
satisfied.

Note that one can easily verifies that

• a, b ∈ R and a ≤ b⇒ az - bz for all z ∈ C;
• 0 - z1 � z2 ⇒ |z1| < |z2|;
• z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 2.2 ([9]). Let X be a nonempty set. Suppose that the mapping d : X × X → C satisfies the following
axioms:

(1) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), for all x, y ∈ X ;
(3) d(x, y) - d(x, z)+ d(z, y), for all x, y, z ∈ X .

Then d is called a complex valued metric on X and the pair (X, d) is called complex valued metric space.

Example 2.1 ([13]). Let X = C and d : X × X → C be the mapping defined by

d(x, y) = eι̇m |x − y|,

where x, y ∈ X and 0 ≤ m ≤ π
2 . Then (X, d) is a complex valued metric space.

Definition 2.3 ([9]). Let {xn} be a sequence in complex valued metric (X, d) and x ∈ X . Then x is called the limit of
{xn} if for every c ∈ C, with 0 < c there is n0 ∈ N such that d(xn, x) < c for all n > n0 and we write limn→∞ xn = x .

Lemma 2.1 ([9]). Any sequence {xn} in complex valued metric space (X, d) converges to x if and only if
|d(xn, x)| → 0 as n→∞.

Definition 2.4 ([14]). Let K and L be self maps of a non empty set X . Then

(i) x ∈ X is said to be fixed point of L if Lx = x .
(ii) x ∈ X is said to be a coincidence point of K and L if K x = Lx .

(iii) x ∈ X is said to be a common fixed point of K and L if K x = Lx = x .

Definition 2.5 ([10]). Let X be a complex valued metric space. Then the self-mappings K , L : X → X are weakly
compatible if there exist a point x ∈ X such that K Lx = L K x whenever K x = Lx .

Definition 2.6 ([11]). Two self-maps K and L on a complex valued metric space X satisfy property (E .A), if there
exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

Lxn = x for some x ∈ X.
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Definition 2.7 ([11]). Two self-maps K and L on a complex valued metric space X satisfy the common limit in the
range of L property, denoted by (C L RK ) if there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

Lxn = K x for some x ∈ X.

Lemma 2.2 ([15]). If {an} is a sequence in [0,∞), then limn→∞
∫ an

0 φ (s) ds = 0 if and only if an → 0, as n→∞.

3. Main results

From [2], let Φ = {φ : φ : [0,∞[→ [0,∞[ is a Lebesgue-integrable mapping which is summable on each compact
subset of [0,∞[, non-negative, non-decreasing and such that for each ε > 0,

∫ ε
0 φ (t) dt > 0}.

Now, for any z1, z2 ∈ C+, define

[z1, z2] = {r (s) ∈ C : r (s) = z1 + s(z2 − z1) for some s ∈ [0, 1]} . (1)

(z1, z2] = {r (s) ∈ C : r (s) = z1 + s(z2 − z1) for some s ∈ (0, 1]} . (2)

A set P = {z1 = w0, w1, w2, . . . , wn = z2} is a partition of [z1, z2] if and only if the sets {[wi−1, wi )}
n
i=1 are

pairwise disjoint and their union along with z2 is [z1, z2].

Let ζ : [z1, z2] → C be defined as:

ζ (x, y) = (φ1 (x) , φ2 (y)) ,

where (x, y) ∈ [z1, z2] and φ1, φ2 ∈ Φ. Now, for a given partition P̂ of [z1, z2], we define the lower summation as:

SL

(
ζ, P̂

)
=

n−1∑
n=0

(φ1 (xi ) , φ2 (yi )) |(xi+1, yi+1)− (xi , yi )| .

Similarly the upper summation as:

SU

(
ζ, P̂

)
=

n−1∑
n=0

ζ (φ1 (xi+1) , φ2 (yi )) |(xi+1, yi+1)− (xi , yi )| .

Then the integral
∫ z2

z1
ζdC if exists is defined as:∫ z2

z1

ζdC = lim
n→∞

n−1∑
n=0

(φ1 (xi ) , φ2 (yi )) |(xi+1, yi+1)− (xi , yi )|

= lim
n→∞

n−1∑
n=0

ζ (φ1 (xi+1) , φ2 (yi )) |(xi+1, yi+1)− (xi , yi )| .

For any ζ := (φ1, φ2) : [(a, b), (c, d)] → C, define∫ z2=(c,d)

z1=(a,b)
ζdC =

(∫
C1

φ1 (s) |z2 − z1| ds,
∫

C2

φ2 (s) |z2 − z1| ds

)
.

Using (1), we have∫ z2=(c,d)

z1=(a,b)
ζdC =

(∫
C1

φ1 (s)
∣∣ŕ(s)∣∣ ds,

∫
C2

φ2 (s)
∣∣ŕ(s)∣∣ ds

)
.

Particularly for any ζ := (φ1, φ2) : [(0, 0), (a, b)] →, we have∫ z2=(a,b)

z1=(0,0)
ζdC =

(∫ a

0
φ1 (s)

∣∣ŕ(s)∣∣ ds,
∫ b

0
φ2 (s)

∣∣ŕ(s)∣∣ ds

)
.

We denote the set of all complex integrable functions ζ : [z1, z2] → C by L1 ([z1, z2] ,C).
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Lemma 3.1. Let ζ ∈ L1 ([z1, z2] ,C) and {zn} be a sequence in C+, then limn→∞
∫ zn

0 ζ (s) ds = (0, 0) if and only if
zn → (0, 0), as n→∞.

Proof. From (1), r(s) = (0, 0)+ s (zn − (0, 0))⇒ ŕ(s) = zn . Then

lim
n→∞

∫ zn

0
ζ (s) ds = 0 ⇔ lim

n→∞

(∫ an

0
φ1 (s) |zn|ds,

∫ bn

0
φ2 (s) |zn|ds

)
= (0, 0)

lim
n→∞

∫ zn

0
ζ (s) ds = 0 ⇔ lim

n→∞

∫ an

0
φ1 (s) ds = 0 and lim

n→∞

∫ bn

0
φ2 (s) ds = 0

⇔ an → 0 and bn → 0, as n→∞, by Lemma 2.2.
⇔ an → 0 and bn → 0, as n→∞.
⇔ zn → (0, 0) , as n→∞. �

Definition 3.1. A complex valued function ϕ : Rn
→ C is measurable if both its real and imaginary parts are

measurable.

Now we extend our ideas to Complex valued measurable functions. Let E ⊂ Rn be a measurable set. Suppose
f : E → C. Split f into its real and imaginary parts so that f = Re( f ) + i Im( f ). Then we define the lebesgue
integral of f to be∫

E
f =

∫
E

Re ( f )+ i
∫

E
Im ( f ) =

(∫
E

Re ( f ) ,
∫

E
Im ( f )

)
,

provided that Re( f ) and Im( f ) are Lebesgue integrables. Denote the set of all such complex valued lebesgue
integrable functions by L1 (E,C) .

We define Φ∗ = {ϕ : Rn
→ C as a complex valued Lebesgue-integrable mapping (i.e., ϕ ∈ L1 (E,C)), which is

summable and non-vanishing on each measurable subset of Rn , such that for each ε � 0,
∫ ε

0 ϕ (t) dt � 0}.
The following Remark and Lemma are the direct consequences of the above whole discussion.

Remark 3.1. Let ϕ ∈ Φ∗, such that Re (ϕ), Im (ϕ) ∈ Φ and {zn} is a sequence in C+ converges to z, then
limn→∞

∫ zn
0 ϕ (s) ds =

∫ z
0 ϕ (s) ds.

Lemma 3.2. Let ϕ ∈ Φ∗, such that Re (ϕ), Im (ϕ) ∈ Φ and {zn} is a sequence in C+, then limn→∞
∫ zn

0 ϕ (s) ds = 0
if and only if zn → (0, 0), as n→∞.

Now, we present our main results.

Theorem 3.1. Let (X, d) be a complex valued metric space and K , L : X → X be self-mappings satisfying the
following conditions:

I. the pair (K , L) satisfies property (E .A) such that K (X) ⊆ L(X) and L(X) is a closed subspace of X;
II. ∀ x, y ∈ X∫ d(K x,Ly)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ2

∫ d(K y,Ly)

0
ϕ(t)dt

+ λ3

∫ d(K y,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Ly)

0
ϕ(t)dt

where λi ∈ [0, 1) for i = 1, 2, 3, 4 with
∑4

i=1 λi < 1 and ϕ ∈ Φ∗.

If the pair (K , L) is weakly compatible, then the mappings K and L have a unique common fixed point in X.

Proof. Assume that the pair (K , L) satisfies (E .A.) property, so there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

Lxn = z for some z ∈ X. (3)
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Since L(X) is a closed subspace of X , then there exists u ∈ X such that Lu = z. Thus from (3), we get

lim
n→∞

K xn = lim
n→∞

Lxn = z = Lu. (4)

We show that K u = Lu, for this putting x = u and y = xn in condition (II) of Theorem 3.1, we have∫ d(K u,Lxn)

0
ϕ(t)dt - λ1

∫ d(K u,Lu)

0
ϕ(t)dt + λ2

∫ d(K xn ,Lxn)

0
ϕ(t)dt

+ λ3

∫ d(K xn ,Lu)

0
ϕ(t)dt + λ4

∫ d(K u,Lxn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (4), we get∫ d(K u,Lu)

0
ϕ(t)dt - λ1

∫ d(K u,Lu)

0
ϕ(t)dt + λ4

∫ d(K u,Lu)

0
ϕ(t)dt,

(1− λ1 − λ4)

∫ d(K u,Lu)

0
ϕ(t)dt - 0 ⇒

∣∣∣∣(1− λ1 − λ4)

∫ d(K u,Lu)

0
ϕ(t)dt

∣∣∣∣ ≤ 0.

But 1− λ1 − λ4 > 0, so that∣∣∣∣∫ d(K u,Lu)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, which implies that

∣∣∣∣∫ d(K u,Lu)

0
ϕ(t)dt

∣∣∣∣ = 0, thus K u = Lu.

Hence from Eq. (4), we get

K u = Lu = z. (5)

That is z is the common coincident point of K and L .
Next, we show that z is the common fixed point of K and L . For this, since the pair (K , L) is weakly compatible,

therefore

K u = Lu ⇒ L K u = K Lu ⇒ Lz = K z. (6)

Now, we have to show that K z = z. For this, using condition (II) of Theorem 3.1 with x = z and y = u, we have∫ d(K z,z)

0
ϕ(t)dt =

∫ d(K z,Lu)

0
ϕ(t)dt - λ1

∫ d(K z,Lz)

0
ϕ(t)dt + λ2

∫ d(K u,Lu)

0
ϕ(t)dt

+ λ3

∫ d(K u,Lz)

0
ϕ(t)dt + λ4

∫ d(K z,Lu)

0
ϕ(t)dt.

Using (5) and (6), we get∫ d(K z,z)

0
ϕ(t)dt - λ3

∫ d(z,K z)

0
ϕ(t)dt + λ4

∫ d(K z,z)

0
ϕ(t)dt.

(1− λ3 − λ4)

∫ d(K z,z)

0
ϕ(t)dt - 0. But 1− λ3 − λ4 > 0, so that

∫ d(K z,z)

0
ϕ(t)dt - 0,

which shows that
∫ d(K z,z)

0
ϕ(t)dt = 0, thus K z = z. Hence from (6), we can get

K z = Lz = z.

That is z is a common fixed point of K and L .
Finally, to check the uniqueness, let z∗ be another fixed point of K and L , i.e. K z∗ = Lz∗ = z∗. Then using

condition (II) with x = z and y = z∗, we have∫ d(z,z∗)

0
ϕ(t)dt =

∫ d(K z,Lz∗)

0
ϕ(t)dt - λ1

∫ d(K z,Lz)

0
ϕ(t)dt + λ2

∫ d(K z∗,Lz∗)

0
ϕ(t)dt

+ λ3

∫ d(K z∗,Lz)

0
ϕ(t)dt + λ4

∫ d(K z,Lz∗)

0
ϕ(t)dt

- (λ3 + λ4)

∫ d(z,z∗)

0
ϕ(t)dt.
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Thus

(1− λ3 − λ4)

∫ d(z,z∗)

0
ϕ(t)dt - 0, But 1− λ3 − λ4 > 1, so that

∫ d(z,z∗)

0
ϕ(t)dt - 0,

thus z = z∗. Hence z is a unique common fixed point of K and L . �

Theorem 3.2. Let (X, d) be a complex valued metric space and K , L ,M, N : X → X be self-mappings satisfying
the following conditions:

I. one of the pairs (K , N ) and (L ,M) satisfies (E .A.) property such that K (X) ⊆ M(X) and L(X) ⊆ N (X);
II. ∀ x, y ∈ X∫ d(K x,Ly)

0
ϕ(t)dt - λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt,

where λi ∈ [0, 1) for i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1 and ϕ ∈ Φ∗.

If one of M(X) and N (X) is a closed subspace of X and the pairs (K , N ), (L ,M) are weakly compatible, then the
mappings K , L ,M and N have a unique common fixed point in X.

Proof. Assume that the pair (K , N ) satisfies (E .A) property, so there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

N xn = z for some z ∈ X. (7)

Since K (X) ⊆ M(X), so there exists {yn} in X such that K xn = Myn and thus from (7), we get

lim
n→∞

K xn = lim
n→∞

N xn = lim
n→∞

Myn = z. (8)

We show that limn→∞ Lyn = z. If limn→∞ Lyn = w 6= z, then putting x = xn and y = yn in condition (II) of
Theorem 3.2, we have∫ d(K xn ,Lyn)

0
ϕ(t)dt - λ1

∫ d(K xn ,N xn)

0
ϕ(t)dt + λ2

∫ d(K xn ,Myn)

0
ϕ(t)dt

+ λ3

∫ d(Lyn ,N xn)

0
ϕ(t)dt + λ4

∫ d(Lyn ,Myn)

0
ϕ(t)dt + λ5

∫ d(Myn ,N xn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (8), we get∫ d(z,w)

0
ϕ(t)dt - λ3

∫ d(w,z)

0
ϕ(t)dt + λ4

∫ d(w,z)

0
ϕ(t)dt = (λ3 + λ4)

∫ d(w,z)

0
ϕ(t)dt.

That is∣∣∣∣(1− λ3 − λ4)

∫ d(w,z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0,

But 1− λ3 − λ4 > 0, so that

∣∣∣∣∫ d(w,z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, which is possible if z = w and

hence limn→∞ Lyn = z. Therefore from (8), we get

lim
n→∞

K xn = lim
n→∞

N xn = lim
n→∞

Lyn = lim
n→∞

Myn = z. (9)

Further, since M(X) is a closed subspace of X , so there exists u ∈ X such that Mu = z and hence from (9), we get

lim
n→∞

K xn = lim
n→∞

N xn = lim
n→∞

Lyn = lim
n→∞

Myn = z = Mu. (10)
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Now, we assert that Lu = Mu, for this putting x = xn and y = u in condition (II) of Theorem 3.2, we have∫ d(K xn ,Lu)

0
ϕ(t)dt - λ1

∫ d(K xn ,N xn)

0
ϕ(t)dt + λ2

∫ d(K xn ,Mu)

0
ϕ(t)dt

+ λ3

∫ d(Lu,N xn)

0
ϕ(t)dt + λ4

∫ d(Lu,Mu)

0
ϕ(t)dt + λ5

∫ d(Mu,N xn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (10), we get∫ d(z,Lu)

0
ϕ(t)dt - λ3

∫ d(Lu,z)

0
ϕ(t)dt + λ4

∫ d(Lu,z)

0
ϕ(t)dt = (λ3 + λ4)

∫ d(Lu,z)

0
ϕ(t)dt,

(1− λ3 − λ4)

∫ d(Lu,z)

0
ϕ(t)dt - 0 ⇒

∫ d(Lu,z)

0
ϕ(t)dt = 0, as 1− λ3 − λ4 > 0

thus Lu = z and hence (10) becomes

Lu = Mu = z. (11)

But L(X) ⊆ N (X), so there exists v ∈ X such that Lu = Nv and hence (11) becomes,

Lu = Mu = Nv = z. (12)

Also, we assert that Kv = Nv, for this setting x = v and y = u in condition (II) of Theorem 3.2, we have∫ d(Kv,Lu)

0
ϕ(t)dt - λ1

∫ d(Kv,Nv)

0
ϕ(t)dt + λ2

∫ d(Kv,Mu)

0
ϕ(t)dt

+ λ3

∫ d(Lu,Nv)

0
ϕ(t)dt + λ4

∫ d(Lu,Mu)

0
ϕ(t)dt + λ5

∫ d(Mu,Nv)

0
ϕ(t)dt.

Using Eq. (12), we get∫ d(Kv,z)

0
ϕ(t)dt - λ1

∫ d(Kv,z)

0
ϕ(t)dt + λ2

∫ d(Kv,z)

0
ϕ(t)dt,∣∣∣∣(1− λ1 − λ2)

∫ d(Kv,z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0.

But 1− λ1 − λ2 > 0, so that

∣∣∣∣∫ d(Kv,z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, thus Kv = z, that is Kv = Nv

and hence from (12), one can write

Kv = Lu = Mu = Nv = z, (13)

showing that is z is the common coincident point of the pairs (L ,M), (K , N ).
Next, we have to show that z is the common fixed point of K , L ,M and N . For this, using the weak compatibility

of the pairs (K , N ), (L ,M) and Eq. (13), we have

Kv = Nv ⇒ N Kv = K Nv ⇒ K z = N z. (14)

Lu = Mu ⇒ M Lu = L Mu ⇒ Lz = Mz. (15)

Now, we claim that K z = z. To support our claim, setting x = z and y = u in condition (II) of Theorem 3.2, we have∫ d(K z,Lu)

0
ϕ(t)dt - λ1

∫ d(K z,N z)

0
ϕ(t)dt + λ2

∫ d(K z,Mu)

0
ϕ(t)dt

+ λ3

∫ d(Lu,N z)

0
ϕ(t)dt + λ4

∫ d(Lu,Mu)

0
ϕ(t)dt + λ5

∫ d(Mu,N z)

0
ϕ(t)dt.
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Using Eqs. (13) and (14), we get∫ d(K z,z)

0
ϕ(t)dt - λ2

∫ d(K z,z)

0
ϕ(t)dt + λ3

∫ d(z,K z)

0
ϕ(t)dt + λ5

∫ d(z,K z)

0
ϕ(t)dt.∣∣∣∣(1− λ2 − λ3 − λ5)

∫ d(z,K z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0. But 1− λ2 − λ3 − λ5 > 0, so that∣∣∣∣∫ d(z,K z)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, thus K z = z and hence from Eq. (14), we get

K z = N z = z. (16)

Similarly, setting x = v and y = z in condition (II) of Theorem 3.2 and using Eqs. (13), (15), we get

Lz = Mz = z. (17)

From (16) and (17), we can write

K z = Lz = Mz = N z = z.

That is z is a common fixed point of K , L ,M and N in X.
Uniqueness, let z∗ be another fixed point of K , L ,M and N , i.e. K z∗ = Lz∗ = Mz∗ = N z∗ = z∗. Then using

condition (II) of Theorem 3.2 with x = z and y = z∗, we have∫ d(z,z∗)

0
ϕ(t)dt =

∫ d(K z,Lz∗)

0
ϕ(t)dt

- λ1

∫ d(K z,N z)

0
ϕ(t)dt + λ2

∫ d(K z,Mz∗)

0
ϕ(t)dt + λ3

∫ d(Lz∗,N z)

0
ϕ(t)dt

+ λ4

∫ d(Lz∗,Mz∗)

0
ϕ(t)dt + λ5

∫ d(Mz∗,N z)

0
ϕ(t)dt

- λ2

∫ d(z,z∗)

0
ϕ(t)dt + λ3

∫ d(z∗,z)

0
ϕ(t)dt + λ5

∫ d(z∗,z)

0
ϕ(t)dt,

thus ∣∣∣∣(1− λ2 − λ3 − λ5)

∫ d(z,z∗)

0
ϕ(t)dt

∣∣∣∣ ≤ 0 ⇒

∣∣∣∣∫ d(z,z∗)

0
ϕ(t)dt

∣∣∣∣ ≤ 0,

which is a contradiction, unless z = z∗. Hence z is a unique common fixed point of K , L ,M and N in X . �

From Theorem 3.2, we can derive the following corollaries:

Corollary 3.1. Let (X, d) be a complex valued metric space and L ,M, N : X → X be self-mappings satisfying the
following conditions:

I. one of the pairs (L , N ) and (L ,M) satisfies (E .A.) property such that L(X) ⊆ M(X) and L(X) ⊆ N (X);

II. ∀ x, y ∈ X∫ d(Lx,Ly)

0
ϕ(t)dt - λ1

∫ d(Lx,N x)

0
ϕ(t)dt + λ2

∫ d(Lx,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt

where λi ∈ [0, 1) for i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1 and ϕ ∈ Φ∗.
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If one of M(X) and N (X) is a closed subspace of X and the pairs (L , N ), (L ,M) are weakly compatible, then the
mappings L ,M and N have a unique common fixed point in X.

Corollary 3.2. Let (X, d) be a complex valued metric space and L ,M : X → X be self-mappings satisfying the
following conditions:

I. the pair (L ,M) satisfies property (E .A) such that L(X) ⊆ M(X);
II. ∀ x, y ∈ X∫ d(Lx,Ly)

0
ϕ(t)dt - λ1

∫ d(Lx,Mx)

0
ϕ(t)dt + λ2

∫ d(Lx,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,Mx)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,Mx)

0
ϕ(t)dt

where λi ∈ [0, 1) for i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1 and ϕ ∈ Φ∗.

If M(X) is a closed subspace of X and the pair (L ,M) is weakly compatible, then the mappings L and M have a
unique common fixed point in X.

To illustrate Theorem 3.2, we construct the following example.

Example 3.1. Let X = (1, 3] ∪ [4, 6] be a metric space with metric d : X × X → C defined by d(x, y) = eι̇m |x − y|,
where x, y ∈ X and 0 ≤ m ≤ π

6 . Define self-maps K , L ,M and N on X by:

K x =


3
2

if x ∈

(
1,

3
2

]
∪ [4, 6]

1.1 if x ∈

(
3
2
, 3
] ; Lx =


3
2

if x ∈

(
1,

3
2

]
∪ [4, 6]

2 if x ∈

(
3
2
, 3
] ;

Mx =



3− x if x ∈

(
1,

3
2

)
3
2

if x =
3
2

4 if x ∈

(
3
2
, 3
]

1.1 if x ∈ [4, 6]

and N x =



3 if x ∈

(
1,

3
2

)
3
2

if x =
3
2

2x if x ∈

(
3
2
, 3
]

2 if x ∈ [4, 6].

Also define ϕ : R2
→ C by ϕ(t) = 3z2, where t = (a, b) and z = a + ι̇b. Then

K (X) =

{
1.1,

3
2

}
, L(X) =

{
3
2
, 2
}
, M(X) =

[
3
2
, 2
]
∪ {1.1, 4},

N (X) = [3, 6] ∪
{

2,
3
2

}
.

First we check condition (I) of Theorem 3.2 for this let {xn} = {
9n−2

6n }n≥1 be a sequence in X . Then

lim
n→∞

Lxn = lim
n→∞

L

(
9n − 2

6n

)
= lim

n→∞

3
2
=

3
2

and

lim
n→∞

Mxn = lim
n→∞

M

(
9n − 2

6n

)
= lim

n→∞

(
3−

9n − 2
6n

)
= lim

n→∞

(
9n + 2

6n

)
=

3
2
,

that is there exists a sequence {xn} in X such that lim
n→∞

Lxn = lim
n→∞

Mxn =
3
2
∈ X.

Hence (L ,M) satisfies (E .A) property.
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Next, to check condition (II) of Theorem 3.2, we discuss the following cases:
Case 1. Let x, y ∈ (1, 3

2 ), then K x = K y = 3
2 ,My = 3− x and N x = 3. Then∫ d(K x,Ly)

0
ϕ(t)dt = 0 ≺ λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Case 2. Let x = y = 3
2 , then K x = Ly = My = N x = 3

2 and∫ d(K x,Ly)

0
ϕ(t)dt = 0 = λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Case 3. Let x, y ∈ ( 3
2 , 3], then K x = 1.1, Ly = 2,My = 4 and N x = 2x .

Now ∫ d(K x,Ly)

0
ϕ(t)dt =

∫ eι̇m

0
3z2dt = z3

∣∣∣∣∣
eι̇m

0

= e3ι̇m .

Also,
for λ1 =

1
9 , λ2 =

1
13 , λ3 =

1
5 , λ4 =

1
11 , λ5 =

1
2 , with

∑5
i=1 λi = 0.9789432789 < 1, we have

λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt

�
1
9
(6.859e3ι̇m)+

1
13
(24.389e3ι̇m)+

1
5

e3ι̇m
+

1
11

8e3ι̇m
+

1
2

e3ι̇m

� 4e3ι̇m .

Thus ∫ d(K x,Ly)

0
ϕ(t)dt = e3ι̇m

≺ 4e3ι̇m

≺ λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Case 4. Let x, y ∈ [4, 6], then K x = Ly = 3
2 ,Mx = 1.1 and N y = 2. Thus∫ d(K x,Ly)

0
ϕ(t)dt = 0 ≺ λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Therefore, in view of the above four cases, the integral contractive condition (II) of Theorem 3.2 is satisfied.
Also K (X) ⊆ M(X) and L(X) ⊆ N (X) such that M(X) is a closed subspace of X and the pairs (K ,M), (L , N )

are weakly compatible. Hence from Theorem 3.2 we can say that, 3
2 is a unique common fixed point of K , L ,M

and N .
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Theorem 3.3. Let (X, d) be a complex valued metric space and K , L : X → X be self-mappings satisfying the
following conditions:

I. the pair (K , L) satisfies (C L RL) property;
II. ∀ x, y ∈ X∫ d(K x,Ly)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ2

∫ d(K y,Ly)

0
ϕ(t)dt

+ λ3

∫ d(K y,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Ly)

0
ϕ(t)dt,

where λi ∈ [0, 1) for i = 1, 2, 3, 4 with
∑4

i=1 λi < 1 and ϕ ∈ Φ∗.

If the pair (K , L) is weakly compatible, then the mappings K and L have a unique common fixed point in X.

Proof. Assume that the pair (K , L) satisfies (C L RL) property, so there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

Lxn = Lx for some x ∈ X. (18)

We show that K x = Lx . For this putting y = xn in condition (II) of Theorem 3.3, we have∫ d(K x,Lxn)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ2

∫ d(K xn ,Lxn)

0
ϕ(t)dt

+ λ3

∫ d(K xn ,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Lxn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (18), we can write∫ d(K x,Lx)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Lx)

0
ϕ(t)dt,

(1− λ1 − λ4)

∫ d(K x,Lx)

0
ϕ(t)dt - 0 ⇒

∣∣∣∣(1− λ1 − λ4)

∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ ≤ 0.

But 1− λ1 − λ4 > 0, so that∣∣∣∣∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, which is possible if

∣∣∣∣∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ = 0. Thus K x = Lx .

Now, let K x = Lx = z. Then since the pair (K , L) is weakly compatible, so that

K x = Lx ⇒ L K x = K Lx ⇒ Lz = K z. (19)

Next, show that z is a common fixed point of K and L . For this using condition (II) of Theorem 3.3 with x = z
and y = x , we get∫ d(K z,z)

0
ϕ(t)dt =

∫ d(K z,Lx)

0
ϕ(t)dt - λ1

∫ d(K z,Lz)

0
ϕ(t)dt + λ2

∫ d(K x,Lx)

0
ϕ(t)dt

+ λ3

∫ d(K x,Lz)

0
ϕ(t)dt + λ4

∫ d(K z,Lx)

0
ϕ(t)dt

- (λ3 + λ4)

∫ d(K z,z)

0
ϕ(t)dt.

But 0 < λ3 + λ4 < 1. Therefore K z = z.
Hence from Eq. (19), we get

K z = Lz = z. (20)

Thus z is a common fixed point of K and L .
Finally, to check the uniqueness, proceeding the same steps as in Theorem 3.1, we conclude that z is a unique

common fixed point of K and L . �
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Our next results are proved with the help of C L R Property.

Theorem 3.4. Let (X, d) be a complex valued metric space and K , L , N ,M : X → X be self-mappings satisfying
the following conditions:

I. either the pair (K , N ) satisfies (C L RK ) property or the pair (L ,M) satisfies (C L RL) property such that
K (X) ⊆ M(X) and L(X) ⊆ N (X);

II. ∀ x, y ∈ X∫ d(K x,Ly)

0
ϕ(t)dt - λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt

where λi ∈ [0, 1) for i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1 and ϕ ∈ Φ∗.

If the pairs (K , N ) and (L ,M) are weakly compatible, then the mappings K , L ,M and N have a unique common
fixed point in X.

Proof. Assume that the pair (K , L) satisfies (C L RL) property, so there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

Lxn = Lx for some x ∈ X. (21)

We show that K x = Lx . For this putting y = xn in condition (II) of Theorem 3.3, we have∫ d(K x,Lxn)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ2

∫ d(K xn ,Lxn)

0
ϕ(t)dt

+ λ3

∫ d(K xn ,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Lxn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (21), we can write∫ d(K x,Lx)

0
ϕ(t)dt - λ1

∫ d(K x,Lx)

0
ϕ(t)dt + λ4

∫ d(K x,Lx)

0
ϕ(t)dt,

(1− λ1 − λ4)

∫ d(K x,Lx)

0
ϕ(t)dt - 0 ⇒

∣∣∣∣(1− λ1 − λ4)

∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ ≤ 0.

But 1− λ1 − λ4 > 0, so that∣∣∣∣∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ ≤ 0, which is possible if

∣∣∣∣∫ d(K x,Lx)

0
ϕ(t)dt

∣∣∣∣ = 0. Thus K x = Lx .

Now, let K x = Lx = z. Then since the pair (K , L) is weakly compatible, so that

K x = Lx ⇒ L K x = K Lx ⇒ Lz = K z. (22)

Next, show that z is common fixed point of K and L . For this using condition (II) of Theorem 3.3 with x = z and
y = x , we get∫ d(K z,z)

0
ϕ(t)dt =

∫ d(K z,Lx)

0
ϕ(t)dt - λ1

∫ d(K z,Lz)

0
ϕ(t)dt + λ2

∫ d(K x,Lx)

0
ϕ(t)dt

+ λ3

∫ d(K x,Lz)

0
ϕ(t)dt + λ4

∫ d(K z,Lx)

0
ϕ(t)dt

- (λ3 + λ4)

∫ d(K z,z)

0
ϕ(t)dt.

But 0 < λ3 + λ4 < 1. Therefore K z = z.
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Hence from Eq. (22), we get

K z = Lz = z. (23)

Thus z is a common fixed point of K and L .
Finally, to check the uniqueness, proceeding the same steps as in Theorem 3.1, we conclude that z is a unique

common fixed point of K and L . �

Our next results are proved with the help of C L R Property.

Theorem 3.5. Let (X, d) be a complex valued metric space and K , L , N ,M : X → X be self-mappings satisfying
the following conditions:

I. either the pair (K , N ) satisfies (C L RK ) property or the pair (L ,M) satisfies (C L RL) property such that
K (X) ⊆ M(X) and L(X) ⊆ N (X);

II. ∀ x, y ∈ X∫ d(K x,Ly)

0
ϕ(t)dt - λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt

where λi ∈ [0, 1) for i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1 and ϕ ∈ Φ∗.

If the pairs (K , N ) and (L ,M) are weakly compatible, then the mappings K , L ,M and N have a unique common
fixed point in X.

Proof. Assume that the pair (K , N ) satisfies (C L RK ) property, then there exists a sequence {xn} in X such that

lim
n→∞

K xn = lim
n→∞

N xn = K x for some x ∈ X. (24)

Since K (X) ⊆ M(X), so there exists u ∈ X such that K x = Mu.
We show that Lu = Mu, for this put x = xn and y = u in condition (II) of Theorem 3.5, we have∫ d(K xn ,Lu)

0
ϕ(t)dt - λ1

∫ d(K xn ,N xn)

0
ϕ(t)dt + λ2

∫ d(K xn ,Mu)

0
ϕ(t)dt

+ λ3

∫ d(Lu,N xn)

0
ϕ(t)dt + λ4

∫ d(Lu,Mu)

0
ϕ(t)dt + λ5

∫ d(Mu,N xn)

0
ϕ(t)dt.

Taking limit as n→∞ and using (24), we get∫ d(K x,Lu)

0
ϕ(t)dt - λ1

∫ d(K x,K x)

0
ϕ(t)dt + λ2

∫ d(K x,K x)

0
ϕ(t)dt + λ3

∫ d(Lu,K x)

0
ϕ(t)dt

+ λ4

∫ d(Lu,K x)

0
ϕ(t)dt + λ5

∫ d(K x,K x)

0
ϕ(t)dt

- (λ3 + λ4)

∫ d(Lu,K x)

0
ϕ(t)dt,

(1− λ3 − λ4)

∫ d(K x,Lu)

0
ϕ(t)dt - 0 ⇒

∣∣∣∣(1− λ3 − λ4)

∫ d(K x,Lu)

0
ϕ(t)dt

∣∣∣∣ ≤ 0.

But 1− λ3 − λ4 > 0, so that

∣∣∣∣∫ d(K x,Lu)

0
ϕ(t)dt

∣∣∣∣ = 0, thus Lu = K x and hence

Lu = Nu = K x . (25)

Further, since L(X) ⊆ N (X), so there exists v ∈ X such that Lu = Nv. Thus (25) becomes

Lu = Mu = Nv = K x . (26)
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Now, we show that Kv = Nv, for this setting x = v and y = u in condition (II) of Theorem 3.5, we have∫ d(Kv,Lu)

0
ϕ(t)dt - λ1

∫ d(Kv,Nv)

0
ϕ(t)dt + λ2

∫ d(Kv,Mu)

0
ϕ(t)dt + λ3

∫ d(Lu,Nv)

0
ϕ(t)dt

+ λ4

∫ d(Lu,Mu)

0
ϕ(t)dt + λ5

∫ d(Mu,Nv)

0
ϕ(t)dt.

Using Eq. (26), we get∫ d(Kv,K x)

0
ϕ(t)dt - λ1

∫ d(Kv,K x)

0
ϕ(t)dt + λ2

∫ d(Kv,K x)

0
ϕ(t)dt

= (λ1 + λ2)

∫ d(K x,Kv)

0
ϕ(t)dt.

As λ1 + λ2 > 0, so that Kv = K x implies that Kv = Mv = K x . Therefore from Eq. (26), we get

Kv = Lu = Mu = Nv = K x = z (say). (27)

Hence z is a common coincident point of K , L ,M and N in X .
Finally, proceeding in the same lines as in Theorem 3.2, we conclude that z is a unique common point of K , L ,M

and N in X . �

Similar to the arguments in Theorem 3.2 one can easily derive corollaries from Theorem 3.5.
To illustrate Theorem 3.5, we construct the following example.

Example 3.2. Let X = (1, 5) be a metric space with metric d : X × X → C defined by d(x, y) = eι̇m |x − y|, where
x, y ∈ X and 0 ≤ m ≤ π

4 . Define self-maps K , L ,M and N on X by:

K x =

{
3 if x ∈ (1, 3]
1.5 if x ∈ (3, 5)

; Lx =

{
3 if x ∈ (1, 3]
2 if x ∈ (3, 5)

;

Mx =


x

3
+ 1 if x ∈ (1, 3)

3 if x = 3
5 if x ∈ (3, 5)

and N x =

{
x if x ∈ (1, 3]
4 if x ∈ (3, 5)

.

Also define ϕ : R2
→ C by ϕ(t) = 2z, where t = (a, b) and z = a + ι̇b. Then

K (X) = {1.5, 3}, L(X) = {2, 3}, M(X) =

(
4
3
, 2
)
∪ {3, 5}, N (X) = (1, 3] ∪ {4}.

Firstly, we verify condition (I) of Theorem 3.5. For this, let {xn} = {3− 1
n2+1
}n≥1 be a sequence in X . Then

lim
n→∞

K xn = lim
n→∞

K

(
3−

1

n2 + 1

)
= lim

n→∞
3 = 3

and

lim
n→∞

N xn = lim
n→∞

N

(
3−

1

n2 + 1

)
= lim

n→∞

(
3−

1

n2 + 1

)
= 3,

that is ∃ a sequence {xn} in X 3 lim
n→∞

K xn = lim
n→∞

N xn = 3 = K x ∀ x ∈ (1, 3].

That is lim
n→∞

K xn = lim
n→∞

N xn = 3 = K x for some x ∈ X.

Hence (K , N ) satisfies (C L RK ) property.
With a view to check condition (II) of Theorem 3.5, we distinguish the following three cases:

Case 1. let x, y ∈ (1, 3), then K x = K y = 3,Mx = x
3 + 1 and N y = y.
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Now, for all λi ∈ [0, 1); i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1, one can get∫ d(K x,Ly)

0
ϕ(t)dt = 0 - λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Case 2. Let x = y = 3, then K x = Ly = Mx = N y = 3 and for all λi ∈ [0, 1); i = 1, 2, . . . , 5 with
∑5

i=1 λi < 1,
one can get∫ d(K x,Ly)

0
ϕ(t)dt = 0 = λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt

+ λ3

∫ d(Ly,N x)

0
ϕ(t)dt + λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Case 3. Let x, y ∈ (3, 5), then K x = 1.5, Ly = 2, Mx = 5 and N y = 4.∫ d(K x,Ly)

0
ϕ(t)dt =

∫ 0.5eι̇m

0
3z2dt = z2

∣∣∣∣∣
0.5eι̇m

0

= 0.25e2ι̇m .

Also, for λ1 =
1

13 , λ2 =
1

17 , λ3 =
1

11 , λ4 =
1

15 , λ5 =
1
3 , with

∑5
i=1 λi =

7617
12155 < 1, we have

λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt

=
1
13
(6.25e2ι̇m)+

1
17
(12.25e2ι̇m)+

1
11

4e2ι̇m
+

1
15

9e2ι̇m
+

1
3

e2ι̇m

� 2.4e2ι̇m .

Thus ∫ d(K x,Ly)

0
ϕ(t)dt = 0.25e2ι̇m

≺ 2.4e2ι̇m

≺ λ1

∫ d(K x,N x)

0
ϕ(t)dt + λ2

∫ d(K x,My)

0
ϕ(t)dt + λ3

∫ d(Ly,N x)

0
ϕ(t)dt

+ λ4

∫ d(Ly,My)

0
ϕ(t)dt + λ5

∫ d(My,N x)

0
ϕ(t)dt.

Therefore, in view of foregoing three cases, the integral contractive condition (II) of Theorem 3.5 is satisfied.
Also K (X) ⊆ M(X) and L(X) ⊆ N (X) and the pairs (K ,M) and (L , N ) are weakly compatible. Thus all the

conditions of Theorem 3.5 are satisfied and 3 is a unique common fixed point of K , L ,M and N .

Remark 3.2. Theorems 3.2 and 3.5 are still valid, if we put λ1 = λ4 = λ5 = 0.

Remark 3.3. If we put λ1 = λ2 = λ3 = λ4 = 0 in Corollary 3.2, we get Theorem 3.3 of [12].

Remark 3.4. If we put K = L , N = M and λ1 = λ2 = λ3 = λ4 = 0 in Theorem 3.5, we get Theorem 3.4 of [12].
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Abstract

The problem of finding mechanical and electrical fields in a homogeneous piezoelectric plate supported by a thin wedged-
shaped cover plate is considered. Using the methods of the theory of analytic functions, the problem is reduced to a system of
singular integro-differential equations. With the help of integral transformation, the exact solution of the posed by us problem is
obtained.
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Earlier we have considered the problems of finding mechanical and electrical fields in a piezoelectric medium (a
crystal of hexagonal system 6 mm, polarized ceramics), weakened by tunnel rectilinear [1–3] and curvilinear cuts
[4,5]. Various boundary value problems of destruction mechanics for a piezoelectric medium have been considered in
the monograph [6].

In the present paper we consider a homogeneous unbounded piezoelectric plate (a crystal of hexagonal system
6 mm) in the conditions of plane deformation. The plate is supported by a finite inclusion which is under the action
of tangential strain of intensity τ0(x). As for the inclusion having the form of a weakly-curved cover plate of small
thickness, we assume that it is rigidly linked with a plate, stretches or shrinks like a rod, lying in a uniaxial stressed
state. We adopt the condition of compatibility of horizontal deformations in the inclusion and in elastic homogeneous
solid plate loaded with tangential stresses.

The problem is to find jumps of tangential τ(x) and normal p(x) contact stresses along the contact line and to
establish their behavior in the neighborhood of cover plate ends. The problem is formulated as follows: Let an elastic
body S occupy the plane of a complex variable z = x + iy which along the segment ` = (0, 1) contains an elastic
inclusion with the modulus of elasticity E0(x), of thickness h0(x) and with the Poisson coefficient ν0. External force
τ0(x) is the function, integrable on the segment ` = [0, 1].

The boundary values of functions on the upper and lower ends of the inclusion will be denoted by the indices “+”
and “−”, respectively.
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On the segment `, we have the following conditions:

du0(x)

dx
=

1
E(x)

∫ x

0

[
τ(t)− τ0(t)

]
dt, x ∈ `,

dν0(x)

dx
= 0, E(x) =

E0(x) h0(x)

1− ν2
0

,

(1)

where u0(x) and ν0(x) are horizontal and vertical displacements of the inclusion points, and the condition of
equilibrium of the inclusion is of the form∫ 1

0

(
τ(t)− τ0(t)

)
dt = 0.

As is known, in the conditions of plane deformation of the piezoelectric medium in the plane xoy, the system of
resolving equations with respect to the stress function ϕ1 and electric field potential ϕ2 has the form [6]:

`11 ϕ1 + `12 ϕ2 = 0, `21 ϕ1 + `22 ϕ2 = 0, (2)

where

`11 = a10 ∂
4
1 + a12 ∂

2
1 ∂

2
2 + a14 ∂

4
2 , ∂1 =

∂

∂x
, ∂2 =

∂

∂y
,

`12 = `21 = a21 ∂
2
1 ∂2 + a23 ∂

3
2 , `22 = a20 ∂

2
1 + a22 ∂

2
2 ,

a10 = s33 − s2
13 s−1

11 , a12 = s44 + 2s13(1− s12 s−1
11 ),

a14 = s11 − s2
12 s−1

11 , a21 = s13 d13 s−1
11 − d33 + d15,

a23 = d13(s12 s−1
11 − 1), a20 = ε11, a22 = ε33 − d2

13 s−1
11 ,

snk, dnk, εnk are, respectively, elastic pliability, piezoelectric modules and dielectric constants appearing in the
equations of medium state.

A general solution of system (2) has the form

ϕ1 = 2 Re
3∑

k=1

γk

∫
Φk(zk)dzk, ϕ2 = −2 Re

3∑
k=1

λkΦk(zk),

zk = x + µk y, µ3+k = µk, γk = a20 + a22 µ
2
k, λk = a21 µk + a23 µ

3
k,

(3)

µk (k = 1, 2, 3) are the roots of the corresponding characteristic equation (Imµk 6= 0).

c0 µ
6
+ c1 µ

4
+ c2 µ

2
+ c3 = 0,

where

c0 = a14 a22 − a2
23, c1 = a12 a22 + a14 a20 − 2a21 a23,

c2 = a10 a22 + a12 a20 − a21, c3 = a10 a20.

Using equations of the state and formulas (3), we find expressions for stresses, displacements, electric field strength
and electric induction components in the medium

σx = 2 Re
3∑

k=1

γk µ
2
k Φ′k(zk), σy = 2 Re

3∑
k=1

γk Φ′k(zk),

σxy = −2 Re
3∑

k=1

γk µk Φ′k(zk), u = 2 Re
3∑

k=1

pk Φk(zk),

ν = 2 Re
3∑

k=1

qk Φk(zk), Ex = 2 Re
3∑

k=1

λk Φ′k(zk),
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Ey = 2 Re
3∑

k=1

λk µk Φ′k(zk), Dx = 2 Re
3∑

k=1

rk µk Φ′k(zk),

Dy = −Re
3∑

k=1

rk Φ′k(zk),

pk = a14 γk µ
2
k + 1/2(a12 − s44)γk − a23 λk µk,

qk = 1/2(a12 − s44)γk µk + a10 γk µ
−1
k − (a21 − d15)λk,

rk = a20 λk µ
−1
k − d15 γk .

The boundary values at the edges of the inclusion are of the form

σ+y − σ
−
y = p(x), σ+xy − σ

−
xy = τ(x),(∂u

∂x

)+
−

(∂u

∂x

)−
= 0,

(∂ν
∂x

)+
−

(∂ν
∂x

)−
= 0,

E+x (x) = E−x (x), D+y (x) = D−y (x), 0 < x < 1.

Introducing the notations Hk(x) = [Φ′k(x)]
+
− [Φ′k(x)]

− (k = 1, 2, 3), we can express them through the newly
introduced analytic functions

Re
3∑

k=1

rk Hk(x) = 0, Re
3∑

k=1

γk Hk(x) =
p(x)

2
, Re

3∑
k=1

pk Hk(x) = 0, (4a)

Re
3∑

k=1

γk µk Hk(x) = −
τ(x)

2
, Re

3∑
k=1

λk Hk(x) = 0, Re
3∑

k=1

qk Hk(x) = 0. (4b)

Assume µk = iβk (i =
√
−1, βk > 0), then the first from the last systems (4a) with the real coefficients can be

rewritten as

3∑
k=1

rk Re Hk(x) = 0,
3∑

k=1

γk Re Hk(x) =
p(x)

2
,

3∑
k=1

pk Re Hk(x) = 0. (5)

If the corresponding determinant

∆ =

∣∣∣∣∣∣
r1 r2 r3
γ1 γ2 γ3
p1 p2 p3

∣∣∣∣∣∣ 6= 0,

then a solution of system (5) has the form

Re Hk(x) =
∆̃k

2∆
p(x), k = 1, 2, 3, ∆̃k = A2k,

A2k are the corresponding cofactors.
Then the second system (4b) with the real coefficients takes the form

3∑
k=1

i γk µk Im Hk(x) = −
τ(x)

2
,

3∑
k=1

i λk Im Hk(x) = 0,

3∑
k=1

i qk Im Hk(x) = 0.
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Having solved this system, we arrive at the problem of linear conjugation

[
Φ′k(x)

]+
−
[
Φ′k(x)

]−
=

∆̃k

2∆
p(x)−

∆k

2∆0
i τ(x), k = 1, 2, 3, (6)

where

∆0 =

∣∣∣∣∣∣
i γ1 µ1 i γ2 µ2 i γ3 µ3

i λ1 i λ2 i λ3
i q1 i q2 i q3

∣∣∣∣∣∣ 6= 0, ∆k ≡ B1k,

B1k are the corresponding cofactors.
In view of the fact that for x > 1, τ(x) = 0, p(x) = 0, a general solution of problem (6) is represented in the form

Φ′k(zk) =
∆̃k

4π i ∆

∫ 1

0

p(t)dt

t − zk
−

∆k

4π ∆0

∫ 1

0

τ(t)dt

t − zk
, zk ∈ S.

From the condition of equality of deformations of elastic planes on the segment occupied by the inclusion and
those of inclusion sides described by Eqs. (1), we obtain the following system of integral differential equations:

ω1

∫ 1

0

ϕ′(t)dt

t − x
+ ω2

∫ 1

0

p(t)dt

t − x
=
π ϕ(x)

2E(x)
+

π

2E(x)
f0(x),

ω3

∫ 1

0

ϕ′(t)dt

t − x
+ ω4

∫ 1

0

p(t)dt

t − x
= 0, 0 < x < 1,

(7)

where

ϕ(x) =
∫ x

0
τ(t)dt, f0(x) = −

∫ x

0
τ0(t)dt, ϕ(1) =

∫ 1

0
τ0(t)dt ≡ T0,

ω1 =

3∑
k=1

pk ∆k

∆0
, ω2 =

3∑
k=1

pk ∆̃k

∆
, ω3 =

3∑
k=1

qk ∆k

∆0
, ω4 =

3∑
k=1

qk ∆̃k

∆
.

We seek for a solution ϕ(x) of system (7) in the class of functions H satisfying Hölder’s condition on the segment
[0, 1], while the derivative of the function ϕ(x) and the function p(x) may belong to the class H∗ [7].

The system of integral equations (7) reduces to the integral differential equation with respect to the function ϕ(t).
If the inclusion rigidity varies according to the linear low, i.e., E(x) = h x , x ∈ (0, 1), then performing substitution
t = eζ , x = eξ and applying the generalized Fourier transformation [8–10], we arrive at the Riemann’s problem

Ψ+(s) = G(s)Φ−(s)+ g(s), −∞ < s <∞, (8)

where

G(s) = s cthπs − ω,

Φ−(s) =
1
√

2π

∫ 0

−∞

ϕ(eζ ) eisζdζ, g(s) = i T0(cthπs)− + g1(s),

Ψ+(s) = −
1
π

∫ 0

−∞

ψ(eζ ) eζ(1+is)dζ, g1(s) = ω
∫ 0

−∞

f0(e
ξ ) eξ(1+is)dξ,

ψ(ξ) =


0, ξ < 0,

−
1
√

2π

∫
∞

−∞

ϕ′(eζ )dζ

1− e−(ξ−ζ )
, ξ > 0,

ω =
ω4

2h(ω1 ω4 − ω2 ω3)
.

The function g1(s) = O(s−1), as s →−∞.
The functions Ψ+(s) and Φ−(s) represent, by virtue of their definition, the limiting values of functions,

holomorphic in the upper and lower half-planes, respectively.
The lower index “-” denotes that for s = 0, the generalized function should be understood in the known sense [10].
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The function G(s) has at infinity the first order discontinuity, since

G̃(∞) = −G̃(−∞) = 1, G̃(s) = s cthπs.

Then condition (8) can be represented in the form

Ψ+(s)
√

s + i
=

G(s)
√

1+ s2
Φ−(s)

√
s − i +

g(s)
√

s + i
. (9)

Under
√

z + i and
√

z − i we mean the branches, analytical, respectively, in the planes with cuts along the rays
drawn from the points z = −i and z = i to x which get, respectively, positive and negative values on the upper side of
the cut. The function

√
1+ z2 for such a choice of branches is analytic in the strip −1 < Im z < 1 and takes positive

value on the real axis.
Thus, the above-posed problem can be formulated as follows: Find both the function Ψ+(z), holomorphic in the

half-plane Im z > 0 and vanishing at infinity, and the function Φ−(z), holomorphic in the half-plane Im z < 1, except
the points which are the roots of the function G(z), vanishing at infinity and satisfying the condition (9).

Introducing the notation G0(s) = G(s)(1+ s2)1/2, we can show that Re G0(t) > 0 and G0(∞) = G0(−∞) = 1,
therefore Ind G0(t) = 0.

A solution of problem (9) has the form

Φ−(z) =
X̃(z)
√

z − i
, Im z ≤ 0; Ψ+(z) = X̃(z)

√
z + i, Im z > 0,

Φ−(z) =
(
Ψ+(z)− g(z)

)
G−1(z), 0 < Im z < 1,

where

X̃(z) = X (z)

{
−

1
2π

∫
∞

−∞

g(t)dt

X+(t)
√

t + i (t − z)

}
,

X (z) = exp
{

1
2π i

∫
∞

−∞

ln G0(t)dt

t − z

}
.

We can show that Φ−(s + i 0) = Φ−(s − i 0) and, hence, the function Φ−(z) is holomorphic in the half-plane
Im z < 1, except the points which are zeros of the function G(z) in the strip 0 < Im z < 1.

The boundary value of the function K (z) = T0 − i z Φ−(z) is the Fourier transform of the function ϕ′(eξ ). We
have

K (z) = T0 +
z X (z)

π
√

z − i

∫
∞

−∞

g(t)dt

X+(t)
√

t + i (t − z)

= T0 −
i T0 z X (z)

π
√

z − i

∫ 0

−∞

cthπ t dt

X+(t)
√

t + i (t − z)

−
X (z)

2π
√

z − i

∫
∞

−∞

g1(t)dt

X+(t)
√

t + i
+

X (z)

2π
√

z − i

∫
∞

−∞

t g1(t)dt

X+(t)
√

t + i (t − z)

= T0 +
C
√

z − i
+

C(X (z)− X (∞))
√

z − i
+

X (z)

2π
√

z − i

∫
∞

−∞

t g1(t)dt

X+(t)
√

t + i (t − z)

−
i T0 z X (z)

π
√

z − i

∫ 0

−∞

cthπ t dt

X+(t)
√

t + i (t − z)
,

where

C = −
1

2π

∫
∞

−∞

g1(t)dt

X+(t)
√

t + i
.



112 N. Shavlakadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 107–113

Let us study the behavior of the function

K0(z) =
i T0 z X (z)

π
√

z − i

∫ 0

−∞

cthπ t dt

X+(t)
√

t + i (t − z)

at infinity.
The change of variables z = − 1

ξ
and t = − 1

t0
provides us with

K ∗0 (ξ) =
T0 X∗(ξ)

√
ξ

π i
√

1+ i ξ

∫
∞

0

cth π
t0

dt0

X+∗(t0)
√

1− i t0
√

t0 (t0 − ξ)
,

where

K ∗0 (ξ) = K0

(
−

1
ξ

)
, X∗(ξ) = X

(
−

1
ξ

)
.

Applying N. Muskhelishvili’s formulas [7] in the neighborhood of the point ξ = 0, we obtain

K ∗0 (ξ) = T0 + o(1).

Respectively, the function K (z) vanishes at infinity and its boundary value K−(s) = C
√

s−i
+ K̃−0 (s) is the Fourier

transformation of the function ϕ′(eξ ). In addition, K̃ −0 (s) is the Fourier transformation of the function which is
continuous on the half-axis x ≤ 0, except may be the point s = 0 at which it may have logarithmic singularity. The
inverse Fourier transformation results in the expression for the unknown function

τ(x) = ϕ′(x) =
1

√
2π x

∫
∞

−∞

K−(t) e−i t ln x dt. (10)

Its behavior in the neighborhood of the point x = 1 has the form

ϕ′(x) = O
(
1/
√

1− x
)
, x → 1− . (11)

Let us study now the behavior of the function τ(x) in the neighborhood of the point z = 0. The poles of the
function K−(z) in the domain D0 = {z : 0 < Im z < 1} may be zeros of the function G(z).

Suppose that z0 = x0+i τ0 is a simple zero of the function G(z)with the smallest imaginary part in the domain D0.
Then, applying to the function e−iξ z K−(z) the Cauchy residue theorem for the rectangle D(N ) (z0 ∈ D(N )) with the
boundary L(N ) consisting of the segments [−N , N ], [N+i 0, N+i β0], [N+i β0,−N+i β0], [−N+i β0,−N+i 0]
(τ0 < β0 < τ 1

0 ), (G0(x1 + iτ ′0) = 0), we obtain∫
L(N )

K−(t) e−i tξdt =
∫ N

−N
K−(t) e−i tξdt − eβ0ξ

∫ N

−N
K−(t + i β0) e−i tξdt + ρ(N , ξ) = K1 eξ(τ0−i x0),

where ρ(N , ξ)→ 0, as N →∞. Passing to the limit and getting back to the above variables, we obtain

τ(x) = ϕ′(x) = O(xτ0−1−i x0), x → 0+ . (12)

Thus the following theorem is proved.

Theorem. The solution of the integral differential equation with respect to the function ϕ(x) obtained from
system (7) is representable explicitly by formula (10) and satisfies the estimates (11)–(12).

It can be shown that if the function G(z) has no simple zeros in the domain D0, and if z = i is a simple pole of the
function Φ−(z), then the contact stresses are bounded in the neighborhood of zero, but if z = i is the second order
pole of the function Φ−(z), then the stress will have logarithmic singularity in the neighborhood of zero.

Remark. The normal contact stress (the function p(x) ∈ H∗) can be defined from the second equation of system (7).
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Abstract

Motivated by the cohomology theory of loop spaces, we consider a special class of higher order homotopy commutative
differential graded algebras and construct the filtered Hirsch model for such an algebra A. When x ∈ H(A) with Z coefficients
and x2

= 0, the symmetric Massey products 〈x〉n with n ≥ 3 have a finite order (whenever defined). However, if k is a field of
characteristic zero, 〈x〉n is defined and vanishes in H(A⊗ k) for all n. If p is an odd prime, the Kraines formula 〈x〉p = −βP1(x)
lifts to H∗(A⊗Zp). Applications of the existence of polynomial generators in the loop homology and the Hochschild cohomology
with a G-algebra structure are given.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Hirsch algebra; Filtered model; Multiplicative resolution; Symmetric Massey product; Steenrod operation; Hochschild cohomology

1. Introduction

In this paper we investigate a special class of homotopy commutative algebras called Hirsch algebras [20]. When
the structural operations of a Hirsch algebra A agree component-wise with those of a homotopy G-algebra (HGA),
the pre-Jacobi axiom can fail [7,8,19,37] and the induced product on the bar construction B A is not necessarily
associative. Indeed, the theory of loop space cohomology suggests that it is impossible in general, to construct a
small model for H∗ (Ω X) in the category of HGAs. The investigation here applies a perturbation theory that extends
the well-developed perturbation theories for differential graded modules and differential graded algebras (dgas)
[3,9,13,11,27,28].

One difficulty encountered when constructing a theory of homological algebra for Hirsch algebras is that the
Steenrod cochain product a^1 b fails to be a cocycle even for cocycles a and b. Consequently a^1 b does not
necessarily lift to cohomology. We control such difficulties by introducing the notion of a filtered Hirsch algebra,
which can be thought of as a specialization of a distinguished resolution in the sense of [10] (see also [14]). On the
other hand, the filtered Hirsch model (RH, d + h) of a Hirsch algebra A is itself a Hirsch algebra whose structural
operations E p,q : RH⊗p

⊗ RH⊗q
−→ RH are completely determined by the commutative graded algebra (cga)

structure of H = H(A, dA); furthermore, the perturbation h : RH → RH of the resolution differential d is

E-mail address: sane@rmi.ge.
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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2346-8092/ c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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determined by the Hirsch algebra structure on A (Theorem 1). Thus by ignoring the operations E p,q we obtain a
multiplicative resolution (RH, d)→ (H, 0) of the cga H thought of as a non-commutative version of its Tate–Jozefiak
resolution [35,16] and the filtered model of the dga A is the perturbation (RH, d + h) → (A, dA) in [27] (such a
filtered model in the category of cdgas over a field of characteristic zero was constructed by Halperin and Stasheff
in [11]).

A Hirsch resolution always admits a binary operation ∪2, which can be viewed as divided Steenrod ^2-operation.
This leads to the notion of a quasi-homotopy commutative Hirsch algebra (QHHA) introduced here. We note that in
general, the construction of a Hirsch map (RH, d + h)→ A compatible with a QHHA structure on A is obstructed
by the non-free action of Sq1 on its cohomology H(A).

Every cdga H can be thought of as a trivial Hirsch algebra in which the operations E p,q ≡ 0 for all p, q ≥ 1.
However, we exhibit an example of a cohomology algebra H = H(A) with a non-trivial Hirsch algebra structure
determined by Sq1.

For a Hirsch algebra A over the integers, we establish some formulas relating the structural operations E p,q with
syzygies in (RH, d) that arise from a single element x ∈ H(A) with x2

= 0. Whereas the n-fold symmetric Massey
product 〈x〉n with n ≥ 3 is defined in H(A) [23,22], our formulas imply that 〈x〉n has finite order. Note that when
A is an algebra over a field k of characteristic zero, 〈x〉n is defined and vanishes for all n ≥ 3 (Theorem 2). As a
consequence we have (compare [4]):

Theorem A. Let X be a simply connected space, let k be a field of characteristic zero and let σ∗ : H∗(Ω X;k) →
H∗+1(X;k) be the suspension map. If y 6∈ Ker σ∗ and y2

6= 0, then yn
6= 0 for all n ≥ 2.

Given an odd prime p, consider the Hirsch algebra A ⊗ Zp, let x ∈ H2m+1(A ⊗ Zp), and let β be the Bockstein
operator. We obtain the formula

〈x〉p = −βP1(x), (1.1)

which has the same form as Kraines’s formula in [23], however, the cohomology operation P1 : H2m+1(A ⊗ Zp)→

H2mp+1(A⊗Zp) in (1.1) is canonically determined by the iteration of the^1-product on A⊗Zp (Theorem 3). Dually,
if A is the singular chains on the triple loop space Ω3 X , we can identify P1 with the Dyer–Lashof operation (see [22]).
In fact the validity of (1.1) in a general algebraic framework is conjectured by May [25, Section 6]. Furthermore, when
X = B F4, the classifying space of the exceptional group F4, we exhibit explicit perturbations in the filtered model of
X and recover formula (1.1) in H∗(X;Z3).

Although Theorem 1 provides a theoretical model of a Hirsch algebra A endowed with higher order operations
E p,q , in practice one can construct a small multiplicative model for recognizing H∗(B A) as an algebra in which the
product is determined only by the binary operation E1,1 =^1. Thus, a (minimal) multiplicative resolution of H∗(A)
endowed with a ^1-product provides an economical way to calculate the algebra H∗(B A). We apply this technique
to the Hochschild cochain complex A = C•(P; P) of an associative algebra P over a field k of characteristic zero to
establish the following.

Theorem B. If the Hochschild cohomology H∗ = H(C•(P; P)) is a free algebra, then the Lie algebra structure on
T or A
∗ (k,k) is completely determined by that of the G-algebra H∗. Consequently, the product µ∗ on T or A

∗ (k,k) is
commutative if and only if the G-product on H∗ is trivial.

Some applications of filtered Hirsch algebras considered in an earlier version of this paper are also considered
in [31,32] (see also [29,33]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number
of helpful comments and for having suggested many improvements of the exposition.

2. The category of Hirsch algebras

This section defines the generalized notion of a Hirsch algebra applied here, the morphisms between them, and the
notion of a Hirsch resolution.

Let k be a commutative ring with unity 1 and characteristic ν; in the applications, k will be the integers Z, a finite
field Zp = Z/pZ with p prime, or a field of characteristic zero. Graded k-modules A∗ are assumed to be graded over
Z. A module A∗ is connected if A0

= k, and a non-negatively graded, connected module A∗ is 1-reduced if A1
= 0.
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For a module A, let T (A) =
⊕
∞

i=0 A⊗i , where A0
= k, be the tensor module of A. An element a1⊗· · ·⊗an ∈ A⊗n

is denoted by [a1| · · · |an] when T (A) is viewed as the tensor coalgebra or by a1 · · · an when T (A) is viewed as the
tensor algebra. We denote by s−1 A the desuspension of A, i.e., (s−1 A)i = Ai+1.

A dga (A, dA) is assumed to be supplemented; in particular, it has the form A = Ã ⊕ k. The (reduced)
bar construction B A on A is the tensor coalgebra T ( Ā), Ā = s−1 Ã, with differential d = d1 + d2 given for
[ā1| · · · |ān] ∈ T n( Ā) by

d1[ā1| · · · |ān] = −
∑

1≤i≤n

(−1)ε
a
i−1 [ā1| · · · |dA(ai )| · · · |ān]

and

d2[ā1| · · · |ān] = −
∑

1≤i<n

(−1)ε
a
i [ā1| · · · |ai ai+1| · · · |ān],

where εx
i = |x1| + · · · + |xi | + i.

Let us generalize (slightly) the definition of a Hirsch algebra [20]. Let A be a dga and consider the dg module
(Hom(B A ⊗ B A, A),∇), where ∇ is the canonical Hom differential. Since the tensor product B A ⊗ B A is a dgc
with the standard coalgebra structure, the ^-product induces a dga structure on (Hom(B A ⊗ B A, A),∇,^).

Definition 1. A Hirsch algebra is an associative dga A equipped with multilinear maps

E p,q : A⊗p
⊗ A⊗q

→ A, p, q ≥ 0, p + q > 0,

satisfying the following conditions:

(i) deg E p,q = 1− p − q;
(ii) E1,0 = I d = E0,1 and E p>1,0 = 0 = E0,q>1;

(iii) The homomorphism E : B A ⊗ B A→ A defined by

E([ā1| · · · |āp] ⊗ [b̄1| · · · |b̄q ]) = E p,q(a1, . . . , ap; b1, . . . , bq) (2.1)

is a twisting cochain in the dga (Hom(B A ⊗ B A, A),∇,^), i.e., ∇E = −E ^ E .

A morphism f : A→ B between two Hirsch algebras is a dga map f that commutes with E p,q for all p, q.

Condition (iii) implies that µE : B A⊗ B A→ B A is a chain map; thus B A is a dg bialgebra whose multiplication
µE is not necessarily associative (compare [8,37,5,21,26]); in particular, µE10+E01

is the shuffle product on B A, and
a Hirsch algebra with E p,q ≡ 0 for all p, q ≥ 1 is just a cdga (cf. (2.3)). It is useful to express Eq. (2.1) component-
wise:

d E p,q(a1, . . . , ap; b1, . . . , bq)

=

∑
1≤i≤p

(−1)ε
a
i−1 E p,q(a1, . . . , dai , . . . , ap; b1, . . . , bq)

+

∑
1≤ j≤q

(−1)ε
a
p+ε

b
j−1 E p,q(a1, . . . , ap; b1, . . . , db j , . . . , bq)

+

∑
1≤i<p

(−1)ε
a
i E p−1,q(a1, . . . , ai ai+1, . . . , ap; b1, . . . , bq)

+

∑
1≤ j<q

(−1)ε
a
p+ε

b
j E p,q−1(a1, . . . , ap; b1, . . . , b j b j+1, . . . , bq)

+

∑
0≤i≤p
0≤ j≤q

(i, j)6=(0,0)

(−1)εi, j Ei, j (a1,. . . , ai ; b1,. . . , b j ) · E p−i,q− j (ai+1,. . . , ap; b j+1,. . . , bq), (2.2)

εi, j = ε
a
i + ε

b
j + (ε

a
i + ε

a
p)ε

b
j + 1.
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In particular, the operation E1,1 satisfies conditions similar to Steenrod’s cochain ^1-product:

d E1,1(a; b)− E1,1(da; b)+ (−1)|a|E1,1(a; db) = (−1)|a|ab − (−1)|a|(|b|+1)ba; (2.3)

consequently, E1,1 measures the non-commutativity of the product · on A. We shall use the notation a^1 b =
E1,1(a; b) interchangeably. The following special cases will also be important for us, so we write them explicitly:

The Hirsch formulas up to homotopy

d E2,1(a, b; c) = E2,1(da, b; c)− (−1)|a|E2,1(a, db; c)+ (−1)|a|+|b|E2,1(a, b; dc)

− (−1)|a|(ab)^1 c + (−1)|a|+|b|+|b||c|(a^1 c)b + (−1)|a|a(b^1 c)

and

d E1,2(a; b, c) = E1,2(da; b, c)− (−1)|a|E1,2(a; db, c)+ (−1)|a|+|b|E1,2(a; b, dc)

+ (−1)|a|+|b|a^1(bc)− (−1)|a|+|b|(a^1 b)c − (−1)|a|(|b|−1)b(a^1 c)

tell us that the deviations of the binary operation ^1 from left and right derivation of the · product are measured by
the respective boundaries of the operations E1,2 and E2,1 on three variables.

The following definition describes a class of Hirsch algebras in which the ^1-product itself is homotopy
commutative (cf. (2.5)).

Definition 2. A quasi-homotopy commutative Hirsch algebra (QHHA) is a Hirsch algebra A equipped with a
binary product ∪2 : A ⊗ A→ A such that

d(a ∪2 b) = da ∪2 b + (−1)|a|a ∪2 db + (−1)|a|a^1 b + (−1)(|a|+1)|b|b^1 a − q(a; b), (2.4)

where q(a; b) satisfies:

(2.4)1 Leibniz rule: dq(a; b) = −q(da; b)− (−1)|a|q(a; db);
(2.4)2 Acyclicity: [q(a, b)] = 0 ∈ H(A, d) for da = db = 0.

Note that (2.4)1 follows from the equalities (2.2) and d2
= 0. Obviously, discarding the parameter q(a; b), the

above formula just becomes the Steenrod formula for the ^2-cochain product:

d(a^2 b) = da^2 b + (−1)|a|a^2 db + (−1)|a|a^1 b + (−1)(|a|+1)|b|b^1 a. (2.5)

However, q(−;−) may be non-zero when passing to models constructed via cohomology as below. In the following
four examples, the first is a naturally occurring example of a cochain Hirsch algebra (compare Example 5); in the
second example QHHA structures are considered for certain Hirsch algebras; in the third and fourth examples a
Hirsch algebra structure is lifted to the cohomology level. In fact, the fourth example was the original motivation for
this paper.

Example 1. The primary examples of Hirsch algebras for topological spaces X are their cubical or simplicial cochain
complexes [20,19,21]. In the simplicial case one can choose E p,q = 0 for q ≥ 2 and obtain an HGA structure on the
simplicial cochains C∗(X;k) [2] (see also [19]). Furthermore, the product µE on BC∗(X;k) gives the multiplicative
structure of the loop space cohomology H∗(Ω X;k).

Here the cochain complex C∗(X;k) of a space X is 1-reduced, since by definition C∗(X;k) =
C∗(Sing1 X;k)/C>0(Sing x ;k) where Sing1 X ⊂ Sing X is the Eilenberg 1-subcomplex generated by the singular
simplices that send the 1-skeleton of the standard n-simplex ∆n to the base point x of X . Unlike the cubical cochains,
the Hirsch algebra structure of the simplicial cochains is associative, i.e., the above product µE is associative.

Example 2. First, note that the Hirsch algebras from the previous example are also QHHA’s by setting ∪2 =^2 and
q(−;−) = 0. Let A be a special Hirsch algebra, i.e., A is an associative Hirsch algebra and B A also admits a Hirsch
algebra structure. Then A is a QHHA since it admits a ∪2-product satisfying (2.5) (cf. [18]). An important example
of a special Hirsch algebra is A = C∗(X;k) from the previous example (cf. [20,34]). Finally, for a QHHA A with ν
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to be zero or odd and ^2-product satisfying (2.5), define the divided ^2-operation ∪2 as

a ∪2 b =

{1
2

a^2 a, a = b

a^2 b, otherwise.

Then A with this ∪2-operation is again a QHHA.

Example 3. Let (H, d = 0) be a free cga H = S〈H∗〉 generated by a graded set H∗. Then any map of sets
Ẽ p,q : H×p

× H×q
→ H of degree 1 − p − q extends to a Hirsch algebra structure E p,q : H⊗p

⊗ H⊗q
→ H

on H . Indeed, using formula (2.2) the construction goes by induction on the sum p + q. In particular, if only Ẽ1,1 is
non-zero then the image of E p,q for p + q ≥ 3 is into the submodule of H spanned by the monomials of the form
Ẽ1,1(a1; b1) · · · Ẽ1,1(ak; bk) · x for ai , bi ∈ H, x ∈ H , and k ≥ 1.

Example 4. The argument in Example 3 suggests how to lift a Hirsch Z2-algebra structure from the cochain level
to cohomology. Given a Hirsch algebra A, let H = H∗(A). For a cocycle a ∈ Am , one has dA E1,1(a, a) = 0 and
Sq1 : Hm

→ H2m−1 is defined by

[a] → [E1,1(a, a)].

The trick here is to convert the Hirsch formulas up to homotopy on A to the Cartan formula Sq1(ab) = Sq1a·Sq0b+
Sq0a · Sq1b on H by fixing a set of multiplicative generators H ⊂ H . Define the map S̃q1,1 : H × H → H for
a, b ∈ H by

S̃q1,1(a; b) =

{
Sq1a, a = b,
0, otherwise

and extend to the operation Sq1,1 : H ⊗ H → H as a (two-sided) derivation with respect to the · product; then in
particular, Sq1,1(u; u) = Sq1u for all u ∈ H . Define Sqp,q = E p,q : H⊗p

⊗ H⊗q
→ H for p + q ≥ 3 by means

of (2.2). Note that if the multiplicative structure on H is not free, such an extension might not exist. This procedure
gives a Hirsch algebra structure

{
Sqp,q

}
on the cohomology algebra H in the following situations:

(i) H has trivial multiplication (e.g. the cohomology of a suspension).
(ii) H is a polynomial algebra.

(iii) H has the following property: If a · b = 0, then Sq1a · b = 0 = Sq1a · Sq1b for all a, b ∈ H.

Obviously we have the following proposition:

Proposition 1. A morphism f : A→ A′ of Hirsch algebras induces a Hopf dga map of the bar constructions

B f : B A→ B A′.

If the modules A, A′ are k-free and f is a homology isomorphism, so is B f.

This proposition is useful when applying special models for a Hirsch algebra A to calculate the cohomology
algebra H∗(B A) = T or A(k,k) (see Section 3.4), and consequently, the loop space cohomology H∗(Ω X;k) when
A = C∗(X;k) (see, for example, [31]).

Given a Hirsch algebra A with cohomology H = H(A), let us construct a Hirsch algebra model of A. The
commutative algebra H admits a special multiplicative resolution (RH, d), which is endowed with the Hirsch algebra
structure

{
E p,q

}
. The perturbed differential dh on RH gives the desired Hirsch algebra model (RH, dh) of A.

2.1. Hirsch resolution

Let H∗ be a graded algebra and recall that a multiplicative resolution (R∗H∗, d) of H∗ is the bigraded tensor
algebra T (V ) generated by the bigraded free k-module

V =
⊕

j,m≥0

V− j,m,
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where V− j,m
⊂ R− j Hm . The total degree of R− j Hm is the sum− j+m, d is of bidegree (1, 0) and ρ : (RH, d)→ H

is a map of bigraded algebras inducing an isomorphism ρ∗ : H∗(RH, d)
≈
→ H∗ where H∗ is bigraded via H0,∗

= H∗

and H<0,∗
= 0 ([27]; compare [11,13]). In other words,(

(R∗Hm, d)
ρ
→ Hm

)
= (· · ·

d
→ R−2 Hm d

→ R−1 Hm d
→ R0 Hm ρ

→ Hm)

is a usual free (additive) resolution of the k-module Hm for each m, and there is a multiplication on the family
{R∗Hm

}m∈Z, which is compatible with both d and the bidegree. When each Hm is k-free, Ω B H (the cobar–bar
construction of H ) is an example of RH with V = B H . In general, the multiplicative structure of H∗ gives rise to
(additively) non-minimal submodules (R∗Hm, d) even for Hm to be k-free or Hm

= 0. The reason for this is that
a (multiplicative) relation in H involving elements of degree <m can produce an element a ∈ R−1 H k with k < m,
say m = kn, some n ≥ 2, and since the multiplication on R∗H∗ respects the bidegree, the non-zero element an , the
nth power of a, ultimately belongs to R−n Hm, the nth component of a k-module resolution of Hm (see the proof of
Proposition 3). Furthermore, even for H to be a free cga over a field k, the non-commutative nature of RH fails to
imply R∗Hm to be a minimal k-module resolution of Hm , i.e.,

R0 Hm
= Hm and R−i Hm

= 0, i > 0;

this is quite different from the situation in [11].
For example, consider the polynomial algebra H = Z2[x, y] with x, y ∈ H2 and x0, y0 ∈ R0 H2 satisfying

ρx0 = x and ρy0 = y. Then R−1 H4
6= 0 since there is an element a ∈ R−1 H4 such that da = x0 y0 + y0x0.

In particular, if H is the cohomology of a dga A with a non-commutative ^1-product (and perhaps higher order
operations E p,q; cf. Examples 1 and 5), then the construction of a Hirsch algebra model of A using RH requires to
add another element b in R−1 H4 with db = x0 y0 + y0x0. Then denote a = x0^1 y0 and b = y0^1 x0 respectively
(see Theorem 1). Furthermore, if H∗ is 1-reduced and we wish to have a 1-reduced multiplicative resolution RH , we
must restrict the resolution length of R∗Hm so that R−i Hm

= 0 for i ≥ m − 1 (e.g. Hm is k-free for all m or H2 is
k-free and k is a principal ideal domain). This motivates the following definition:

Definition 3. Let H∗ be a cga. An absolute Hirsch resolution of H is a multiplicative resolution

ρ : R∗H∗→ H∗, RH = T (V ), V = 〈V〉,

endowed with the Hirsch algebra structural operations

E p,q : RH⊗p
⊗ RH⊗q

→ V ⊂ RH

such that V is decomposed as V ∗,∗ = E∗,∗ ⊕ U∗,∗ in which E 0,∗
= 0, U 0,∗

= V 0,∗ and E∗,∗ =
⊕

p,q≥1
E<0,∗

p,q is

distinguished by an isomorphism of modules

E p,q :
⊕

i(p)+ j(q)=s
k(p)+`(q)=t

(
⊗

1≤r≤p
Rir H kr

⊗
⊗

1≤n≤q
R jn H `n

)
≈
−→ E s−p−q+1 , t

p,q ⊂ V ∗,∗

where x(r) = x1 + · · · + xr .

Given a Hirsch algebra (A, {E p,q}, d), a submodule J ⊂ A is a Hirsch ideal of A if it is an ideal with
E p,q(a1, . . . , ap; ap+1, . . . , ap+q) ∈ J whenever ai ∈ J for some i.

Definition 4. Let ρa : (Ra H, d) → H be an absolute Hirsch resolution and J ⊂ Ra H be a Hirsch ideal such that
d : J → J and the quotient map g : Ra H → Ra H/J is a homology isomorphism. A Hirsch resolution of H is the
Hirsch algebra RH = Ra H/J with a map ρ : RH → H such that ρa = ρ ◦ g.

Thus an absolute Hirsch resolution is a Hirsch resolution by taking J = 0.
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Proposition 2. Every cga H∗ has an (absolute) Hirsch resolution ρ : R∗H∗→ H∗.

Proof. We build a Hirsch resolution of H∗ by induction on the resolution degree. Let H∗ ⊂ H∗ be a set of
multiplicative generators. Denote V 0,∗

= H∗; let V 0,∗
= 〈V 0,∗

〉 be the free k-module span of V 0,∗ and form the
free (tensor) graded algebra R0 H∗ = T (V 0,∗). Obviously, there is a dga epimorphism ρ0

: (R0 H∗, 0) → H∗.
Inductively, given n ≥ 0, assume we have constructed a k-module R(−n)H∗ = ⊕0≤r≤n R−r H∗ with a map
ρ(n) : (R(−n)H∗, d)→ H∗ with ρr (R−r H∗) = 0 for 1 ≤ r ≤ n, where d : R−r H∗ → R−r+1 H∗ is a differential of
bidegree (1, 0) defined for 1 ≤ r ≤ n and acyclic in resolution degrees −r for 1 ≤ r < n; R−r H∗ is a component of
bidegree (−r, ∗) of T (V (−r),∗) for V (−r),∗

= V 0,∗
⊕ · · · ⊕ V−r,∗, so that

R−r H∗ = V−r,∗
⊕D−r,∗

= E−r,∗
⊕U−r,∗

⊕D−r,∗

where E−r,∗
=

⊕
p,q≥1

E−r,∗
p,q and E−r,∗

p,q spans the set of (formal) expressions E p,q(a1, . . . , ap; b1, . . . , bq), a j ∈

R−ik H∗, b` ∈ R− j` H∗, r = i(p) + j(q) + p + q − 1, while D−r,∗ is the module of decomposables of bidegree
(−r, ∗) in T (V (−r),∗); d is given by formula (2.2) on E−r,∗, while acts as a derivation on D−r,∗.

Let E−n−1,∗
=

⊕
p,q≥1

E−n−1,∗
p,q where E−n−1,∗

p,q spans the set of expressions E p,q(a1, . . . , ap; b1, . . . , bq), ak ∈

R−ik H∗, b` ∈ R− j` H∗, n+1 = i(p)+ j(q)+ p+q−1, and let D−n−1,∗ be the module of decomposables of bidegree
(−n − 1, ∗) in T

(
V (−n),∗

⊕ E−n−1,∗
)
; define d by formula (2.2) on E−n−1,∗ and as a derivation on D−n−1,∗ so that

E−n−1,∗
⊕D−n−1,∗ d

→ R−n H∗
d
→ R−n+1 H∗.

Define a free k-module U−n−1,∗ and d on it to achieve acyclicity in resolution degree −n, i.e, denoting V−n−1,∗
=

E−n−1,∗
⊕U−n−1,∗, we obtain a partial resolution for each m ∈ Z

V−n−1,m
⊕D−n−1,m d

→ R−n Hm d
→ R−n+1 Hm d

→· · ·
d
→ R−1 Hm d

→ R0 Hm ρ
→ Hm .

Define R−n−1 H∗ = V−n−1,∗
⊕D−n−1,∗ and ρn+1

: R−n−1 H∗→ H∗ to be trivial. This completes the inductive step.
Finally, set R∗H∗ = ⊕n R(−n)H∗ with V ∗,∗ = 〈V∗,∗〉, E∗,∗ = ⊕n E−n,∗,U∗,∗ = ⊕n U−n,∗, ρ|R0 H∗ = ρ0 and

ρ|R−n H∗ = 0 for n > 0 to obtain the desired resolution map ρ : RH → H . �

Note that in a Hirsch resolution (RH, {E p,q}, d), we may have relations among E p,q ’s (e.g. E p,q = 0 for some
p, q ≥ 1; cf. Section 2.6). For example, the Hirsch structure of RH is associative if the product µE on the bar
construction B(RH) is associative and is equivalent to the equalities among E p,q ’s as follows.

Given a Hirsch algebra A and an arbitrary triple

(a;b; c) = (a1, . . . , ak ; b1, . . . , b` ; c1, . . . , cr ), ai , b j , cs ∈ A,

denote

Rk,`,r ((a;b); c) =
∑

k(p)=k;`(p)=`
1≤p≤k+`

(−1)εE p,r (Ek1,`1(a1, . . . , ak1; b1, . . . , b`1),

. . . , Ekp,`p (ak−k p+1 , . . . , ak; b`−`p+1 , . . . , bp) ; c1, . . . , cr )

and

Rk,`,r (a; (b; c)) =
∑

`(q)=`;r(q)=r
1≤q≤`+r

(−1)δEk,q(a1, . . . , ak; E`1,r1(b1, . . . , b`1; c1, . . . , cr1),

. . . , E`q ,rq (b`−`q+1 , . . . , b`; cr−rq+1 , . . . , cq)),

where we use the convention that E0,1(−; a) = E1,0(a;−) = a, E0,m(−; a1, . . . , am) = Em,0(a1, . . . , am;−) =

0,m ≥ 2, and x(n) = x1 + · · · + xn , while the signs ε and δ are induced by permutations of symbols ai , b j , cs
(cf. [37]). Then the associativity of A is equivalent to the equalities

Rk,`,r ((a;b); c) = Rk,`,r (a; (b; c)), k, `, r ≥ 1.
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Now consider the expression

Rk,`,r (a; (b; c))−Rk,`,r ((a;b); c) ∈ E 1−k−`−r,∗

in an absolute Hirsch resolution RH. We have that this expression belongs to E−2,∗ and is a cocycle for (a;b; c) =
(a; b; c), a, b, c ∈ R0 H (see (2.6) and Fig. 1 in which the boundaries of both hexagons are labeled by the 6
components of d R1,1,1(a; (b; c)) = d R1,1,1((a; b); c)). So there is an element, denoted by s(R1,1,1 (a; (b; c)))
∈ V−3,∗ such that ds(R1,1,1 (a; (b; c))) = R1,1,1(a; (b; c)) − R1,1,1((a; b); c). In general, define elements
s(Rk,`,r (a; (b; c))) ∈ V such that

ds(Rk,`,r (a; (b; c)))+ s(Rk,`,r (da; (b; c)))+ (−1)ε1s(Rk,`,r (a; (db; c)))

+ (−1)ε2s(Rk,`,r (a; (b; dc))) = Rk,`,r (a; (b; c))−Rk,`,r ((a;b); c)

ε1 = |a| + k, ε2 = |a| + |b| + k + `.

Consequently, RH = Ra H/Jass is an associative Hirsch resolution, where Jass ⊂ Ra H is a Hirsch ideal generated
by

{Rk,`,r (a; (b; c))−Rk,`,r ((a;b); c), s(Rk,`,r (a; (b; c)))}.

In particular, for (a;b; c) = (a; b; c) the associativity of a Hirsch resolution implies the following.

Proposition 3. For a, b, c ∈ RH, there is the equality

(a^1 b)^1 c + E2,1(a, b; c)+ (−1)(|a|+1)(|b|+1)E2,1(b, a; c)

= a^1(b^1 c)+ E1,2(a; b, c)+ (−1)(|b|+1)(|c|+1)E1,2(a; c, b). (2.6)

A Hirsch resolution (RH, d) is minimal if

d(u) ∈ E +D + κu ·V for all u ∈ U,

where D∗,∗ ⊂ R∗H∗ denotes the submodule of decomposables RH+ · RH+ (RH+ denotes RH modulo the unital
component) and κu ∈ k is non-invertible. For example, when k = Z we have κu ∈ Z \ {−1, 1}; when k is a field
we have κu = 0 for all u. Note that a minimal Hirsch resolution is not minimal in the category of dgas since the
resolution differential does not send multiplicative generators into D even when k is a field. Furthermore, the notion
of minimality of RH does not depend upon whether some operation E p,q is zero (cf. Section 2.6). On the other hand,
in order to define a ^2-operation in a simple way on RH we have to consider a non-minimal Hirsch resolution in the
next subsection.

Such a flexibility of choice of RH is due to the trivial Hirsch structure of H , and, in practice, the choice is suggested
by a Hirsch algebra A that realizes H as the cohomology algebra.

2.2. QHHA structures on Hirsch algebras

First, note that one can introduce a ^2-product on a Hirsch resolution that satisfies (2.5). However, such a QHHA
structure on RH in not always satisfactory, and we shall consider a ∪2-operation simultaneously for the reasons
explained below. For an even dimensional a, or for any a whenever ν = 2, we have that a^1 a is cocycle for da = 0;
hence, there is an element x ∈ RH with dx = a^1 a. But we cannot identify x with a^2 a because d(a^2 a) = 0
according to (2.5). On the other hand, it is helpful to denote x := a ∪2 a since certain formulas are conveniently
expressed in terms of the binary operation ∪2 (see, for example, Proposition 5 or Remark 7). Furthermore, we can
identify a ∪2 a with 1

2 a^2 a for |a| even and 2 invertible in k.
By construction of a Hirsch resolution in Proposition 2, the definition of ^2 mimics that of ^1 . We start with the

consideration of the expression

(−1)aa^1 b + (−1)(|a|+1)|b|b^1 a ∈ E−1,∗ for a, b ∈ V 0,∗.
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It is a cocycle in (RH, d), and hence, must be killed by a multiplicative generator; denote this generator by
a^2 b ∈ U−2,∗. Inductively, assume that the right-hand side of (2.5) has been defined as an element of U−n+1,∗.
Then it is bounded by a multiplicative generator a^2 b ∈ U−n,∗. Thus, a^2 b ∈ U for all a, b ∈ RH. In particular,
if dx = 0, then d(x ^2 x) = 0 or d( ν2 x ^2 x) = 0 for |x | to be odd or for both |x | and ν to be even respectively in
which case a multiplicative generator y ∈ U with dy = x ^2 x is denoted by x ∪3 x .

Now define a ∪2-operation by

a ∪2 b =

{
a^2 b, a 6= b, a, b are in a basis of RH
0, a = b, |a| and ν are odd,

(2.7)

while, otherwise, define a ∪2 a ∈ U by

d(a ∪2 a) =

{
a^1 a + a^2 da + da ∪3 da, |a| is even
ν

2
(a^1 a + a^2 da)+ da ∪3 da, |a| is odd, ν is even.

Hence, a ∪2 b ∈ U for any a, b ∈ RH , and let

T = {a ∪2 b ∈ U | a, b ∈ RH}.

Thus, we obtain the decomposition U = T ⊕M, some M, and, hence, the decomposition

V = E ⊕U = E ⊕ T ⊕M.

In particular, T contains elements of the form a1 ∪2 · · · ∪2 an , ai ∈ RH, obtained by the iteration of the ∪2-product
for n ≥ 2. In particular, for ai ∈ V 0,2r we have the following equality

d(a1 ∪2 · · · ∪2 an) =
∑
(i;j)

sgn(i; j)(ai1 ∪2 · · · ∪2 aik ) ^1 (a j1 ∪2 · · · ∪2 a j`),

where the summation is over unshuffles (i; j) = (i1 < · · · < ik; j1 < · · · < j`) of n with (ai1 , . . . , aik ) =

(ai ′1
, . . . , ai ′k

) if and only if i = i′ and sgn(i; j) is induced by the permutation sign ai ∪2 a j = (−1)|ai ||a j |a j ∪2 ai

(see also Fig. 1 for n = 3); consequently, for a1 = · · · = an = a and a∪2 n
:= a ∪2 · · · ∪2 a, we get

da∪2 n
=

∑
k+`=n

a∪2 k ^1 a∪2 `, k, ` ≥ 1. (2.8)

Note that the above equalities do not depend on the parity of ai ’s when ν = 2.

Remark 1. 1. The definition of T does not depend on the (Hirsch) associativity of RH.
2. In a minimal Hirsch resolution one can also minimize the module T as

T = {a ∪2 b ∈ U | a, b ∈ M},

while a ∪2 b for a, b ∈ RH is extended by certain derivation formulas. These formulas are rather complicated, but
they could be written down if necessary.

3. The module M reflects the complexity of the multiplicative relations of the commutative algebra H.

For example, if H is a polynomial algebra and RH is a minimal Hirsch resolution, then M = M0,∗
= V 0,∗ and,

consequently, RH is completely determined by the ^1- and ∪2-operations [31] (see also Theorem 4).

2.3. Some canonical syzygies in the Hirsch resolution

Below we give topological interpretation of some canonical syzygies in the Hirsch resolution RH . In particular
these syzygies reflect the non-associativity of the^1-product. Remark that higher order canonical syzygies should be
also related with the combinatorics of permutahedra. In practice, such relations are helpful to construct small Hirsch
resolutions RH (cf. [31], see also Remark 1).
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Fig. 1. Topological interpretation of some canonical syzygies in the Hirsch resolution RH .

The symbol “=” in the figure above assumes equality (2.6); the picture for a ∪2 b∪2 c is in fact 4-dimensional and
must be understood as follows: Whence a ∪2 b corresponds to the 2-ball, the boundary of a ∪2 b∪2 c consists of the
six 3-balls each of which is subdivided into four 3-cells by fixing two equators (these cells just correspond to the four
summand components of the differential evaluated on the compositions of the ^1- and ∪2-products). Then given a
3-ball, two cells from these four cells are glued to the ones of the boundary of the (diagonally) opposite 3-ball, and
the other cells are glued to the ones of the boundaries of the neighboring 3-balls according to the relation

x ^1(y^1 z)+ (x ^1 y)^1 z = y^1(x ^1 z)+ (y^1 x)^1 z.

2.4. Filtered Hirsch model

Recall that a dga (A∗, d) is multialgebra if it is bigraded An
= ⊕

n=i+ j
Ai, j , i ≤ 0, j ≥ 0, and d =

d0
+ d1

+ · · · + dn
+ · · · with dn

: Ap,q
→ Ap+n,q−n+1 [12]. A dga A is bigraded via A0,∗

= A∗ and Ai,∗
= 0 for

i 6= 0; consequently, A is a multialgebra. A multialgebra A is homological if d0
= 0 (hence d1d1

= 0) and

H i (· · ·
d1

→ Ai,∗ d1

→ Ai+1,∗ d1

→· · ·
d1

→ A0,∗) = 0, i < 0.

For a homological multialgebra the sum d2
+d3
+· · ·+dn

+· · · is called a perturbation of d1. In the sequel we always
consider homological multialgebras, d1 is denoted by d , dr is denoted by hr , and the sum h2

+ h3
+ · · · + hn

+ · · ·

is denoted by h. We sometimes denote d + h by dh .

A multialgebra morphism ζ : A → B between two multialgebras A and B is a dga map of total degree zero that
preserves the resolution (column) filtration, so that ζ has the components ζ = ζ 0

+· · ·+ζ i
+· · · , ζ i

: As,t
→ Bs+i,t−i .

A chain homotopy s : A → B between two multiplicative maps f, g : A → B is an ( f, g)-derivation homotopy if
s(ab) = s(a)g(b) + (−1)|a| f (a)s(b). A homotopy between two morphisms f, g : A → B of multialgebras is an
( f, g)-derivation homotopy s : A→ B of total degree −1 that lowers the column filtration by 1.

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given m ≥ 2, the map
hm
|A−m,∗ : A−m,∗

→ A0,∗ is referred to as the transgressive component of h and is denoted by htr . A multialgebra A
with a Hirsch algebra structure

E p,q : ⊗
p
r=1 Air ,kr

⊗
⊗

q
n=1 A jk ,`n −→ As−p−q+1 , t
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with (s, t) =
(
i(p) + j(q) , k(p) + `(q)

)
, p, q ≥ 1, is called Hirsch multialgebra. A homotopy between two

morphisms f, g : A → A′ of Hirsch (multi)algebras is a homotopy s : A → A′ of underlying (multi)algebras
and

s(E p,q(a1, . . . , ap ; b1, . . . , bq))

=

∑
1≤`≤q

(−1)ε
a
p+ε

b
`−1 E p,q( f a1, . . . , f ap ; f b1, . . . , f b`−1, sb`, gb`+1, . . . , gbq)

+

∑
1≤k≤p

(−1)ε
a
k−1 E p,q( f a1, . . . , f ak−1, sak, gak+1, . . . , gap ; gb1, . . . , gbq)

−

∑
1≤i≤p

1<`≤ j≤q

(−1)εi, j,` Ei, j ( f a1, . . . , f ai ; f b1, . . . , f b`−1, sb`, gb`+1, . . . , gb j )

× E p−i,q− j ( f ai+1, . . . , f ap−1, sap ; gb j+1, . . . , gbq)

−

∑
0≤i<k≤p

1≤ j≤q

(−1)εi, j,k Ei, j ( f a1, . . . , f ai ; sb1, gb2, . . . , gb j )

× E p−i,q− j ( f ai+1, . . . , f ak−1, sak, gak+1, . . . , gap ; gb j+1, . . . , gbq), (2.9)

εi, j,m = ε
a
p−1 + ε

b
m−1 + (ε

a
p + ε

a
i )ε

b
j , p, q ≥ 1,

in which the first equality is

s(a^1 b) = (−1)|a|+1 f a^1 sb + sa^1 gb − (−1)(|a|+1)(|b|+1)sb · sa.

Denote the homotopy classes of morphisms between two Hirsch (multi)algebras by [−,−].

Definition 5. A quasi-free Hirsch homological multialgebra (A, {E p,q}, d + h) is a filtered Hirsch algebra if it has
the following additional properties:

(i) In A = T (V ) a decomposition

V ∗,∗ = E∗,∗ ⊕U∗,∗

is fixed where E∗,∗ =
⊕

p,q≥1
E<0 ,∗

p,q is distinguished by an isomorphism of modules

E p,q : A⊗p
⊗ A⊗q ≈

−→ E p,q ⊂ V, p, q ≥ 1;

(ii) The restriction of the perturbation h to E has no transgressive components htr , i.e., htr
|E = 0.

Given a Hirsch algebra B, a filtered Hirsch model for B is a filtered Hirsch algebra A together with a Hirsch algebra
map A → B that induces an isomorphism on cohomology. Our next proposition, which is a Adams–Hilton type of
statement, exhibits a basic property of filtered Hirsch algebras:

Proposition 4. Let ζ : B → C be a map of (filtered) Hirsch algebras that induces an isomorphism on cohomology. If
A is a filtered Hirsch algebra, there is a bijection of sets of homotopy classes of (filtered) Hirsch algebra maps

ζ# : [A, B]
≈
−→[A,C].

Proof. Discarding Hirsch algebra structures, the proof goes by induction on the resolution grading and is similar to
that of Theorem 2.5 in [12] (see also [28]). The Hirsch algebra structure serves to specify a choice of homotopy s on
the multiplicative generators E ⊂ V . When constructing a chain homotopy s : A → C between two multiplicative
maps f, g : A→ C , we can choose an s on E i,∗ that satisfies formula (2.9) in each step of the induction. �

The basic examples of a filtered Hirsch algebra are provided by the following theorem, which states our main result
on Hirsch algebras:
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Theorem 1. Let H be a cga and let ρ : (RH, d)→ H be an absolute Hirsch resolution. Given a Hirsch algebra A,
assume there exists an isomorphism i A : H ≈ H(A, d). Then

(i) Existence. There is a pair (h, f ) where h : RH → RH is a perturbation of the resolution differential d on RH
and

f : (RH, d + h)→ A

is a filtered Hirsch model of A such that ( f |
R0 H
)∗ = i Aρ|R0 H

: R0 H → H(A).

(ii) Uniqueness. If (h̄, f̄ ) and f̄ : (RH, d + h̄)→ A satisfy the conditions of (i), there is an isomorphism of filtered
Hirsch models

ζ : (RH, d + h)
≈
−→(RH, d + h̄)

of the form ζ = I d + ζ 1
+ · · · + ζ r

+ · · · with ζ r
: R−s H t

→ R−s+r H t−r such that f is homotopic to f̄ ◦ ζ.

Note that the proof of the theorem uses an induction on resolution grading as it is used by the construction of
filtered model due to Halperin–Stasheff [11] (compare also [27,28]); although in the rational case for the existence
and the uniqueness of a pair (h, f ) the zero characteristic of k is essentially involved, the proof below shows that such
a restriction can be simply avoided. Here a technical subtlety is that we have certain canonically chosen multiplicative
generators on which (h, f ) must act by a canonical rule.

Proof. Existence. Let RH = T (V ) with V = E ⊕ U . We define a perturbation h and a Hirsch algebra map
f : (RH, d+h)→ (A, d) by induction on resolution (column) grading. First consider R0 H = T (V 0,∗) (=T (U 0,∗)).
Define a chain map f0

: (V 0,∗, 0)→ (A, d) by (f0)∗ = i Aρ|V 0,∗ : V
0,∗
→ H(A). Extend f0 multiplicatively to obtain

a dga map f 0
: R0 H → A. There is a map f1

: V−1,∗
→ A∗−1 with f 0d|V−1,∗ = df1

; in particular, choose
f1 on E−1,∗ (=E−1,∗

1,1 ) defined by the formula f1(a^1 b) = f 0a^1 f 0b for a, b ∈ R0 H . Then extend f0
+ f1

multiplicatively to obtain a dga map f
(1)
# : T (V (−1),∗) → (A, d); then denote the restriction of f

(1)
# to R(−1)H by

f (1) : (R(−1)H, d)→ (A, d).
Inductively, assume that a pair (h(n), f (n)) has been constructed that satisfies the following conditions:

(1) h(n) = h2
+ · · · + hn is a derivation on RH,

(2) Equality (2.2) holds on R(−n)H for d + h(n) in which

hr E p,q(a1, . . . , ap ; b1, . . . , bq) =

p∑
i=1

(−1)ε
a
i−1 E p,q(a1, . . . , hr ai , . . . , aq ; b1, . . . , bq)

+

q∑
j=1

(−1)ε
a
p+ε

b
j−1 E p,q(a1, . . . , ap ; b1, . . . , hr b j , . . . , bq),

2 ≤ r ≤ n,

(3) dhn
+ hnd +

∑
i+ j=n+1 hi h j

= 0,

(4) f (n) : R(−n)H → A is the restriction of a dga map f
(n)
# : T

(
V (−n),∗

)
→ A to R(−n)H for f (n) = f 0

+ · · · + f n
;

(5) f (n)(d + h(n)) = d f (n) on R(−n)H , and
(6) f (n) is compatible with the maps E p,q on E (−n),∗.

Consider

f (n)(d + h(n))|V−n−1,∗ : V−n−1,∗
→ A∗−n−1

;

clearly d f (n)(d + h(n)) = 0. Define a linear map hn+1
: U−n−1,∗

→ R0 H∗−n with ρhn+1
= i−1

A [ f
(n)(d + h(n))] and

extend hn+1 on RH as a derivation (denoting by the same symbol) with

dhn+1
+ hn+1d +

∑
i+ j=n+2

hi h j
= 0
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and

hn+1 E p,q(a1, . . . , ap ; b1, . . . , bq) =

p∑
i=1

(−1)ε
a
i−1 E p,q(a1, . . . , hn+1ai , . . . , aq ; b1, . . . , bq)

+

q∑
j=1

(−1)ε
a
p+ε

b
j−1 E p,q(a1, . . . , ap ; b1, . . . , hn+1b j , . . . , bq).

Then there is a map fn+1
: V−n−1,∗

→ A∗−n−1 such that it is compatible with E p,q on E−n−1,∗ and

f (n)(d + h(n+1))|V−n−1,∗ = dfn+1.

Extend f(n+1)
:= f0

+ · · · + fn+1 multiplicatively to obtain a dga map f
(n+1)
# : T (V (−n−1),∗)→ A; the restriction of

f
(n+1)
# to R(−n−1)H is denoted by

f (n+1)
: R(−n−1)H → A.

Thus the construction of the pair
(
h(n+1), f (n+1)

)
completes the inductive step. Finally, a perturbation h = h2

+· · ·+

hn
+ · · · and a Hirsch algebra map f such that f = f 0

+ · · · + f n
+ · · · are obtained as desired.

Uniqueness. Using Proposition 4 we construct a multialgebra morphism

ζ : (RH, d + h)→ (RH, d + h̄),

ζ = ζ 0
+ ζ 1

+ · · · , with f̄ ◦ ζ ' f ; in addition, it is easy to choose ζ with ζ 0
= I d. �

2.5. Filtered model for a QHHA

Referring to Section 2.2, this section considers the compatibility of the perturbation h and the Hirsch map f with
the ∪2-product of RH in Theorem 1. Even if A is a QHHA in the theorem, it is impossible to obtain a QHHA map f
which commutes with ∪2-products because the compatibility of parameters q(−;−) under f is obstructed. When A is
a Z2-algebra, for example, the obstruction is caused by the non-free action of Sq1 on H. However, when q(−;−) = 0
for the ∪2-operation in A (cf. Example 2), one can refine the perturbation h in Theorem 1 as it is stated in Proposition 5
(in particular, item (i) of this proposition is an essential detail of the proof of the main result in [33]).

Let T ⊂ T be a submodule defined by

T = 〈a ∪2 b ∈ T | a 6= b in a basis of M〉.

For ν = 2, let Sq1 : Hm(A)→ H2m−1(A) be the map from Example 4.

Proposition 5. Let A be a QHHA with ∪2-operation satisfying (2.5) (e.g. A is a special Hirsch algebra
from Example 2). Then in the filtered Hirsch model f : (RH, dh) → A given by Theorem 1, the perturbation h
can be chosen such that

(i) htr
|T = 0;

(ii) Let ν = 2. Then for zi = htr (a∪2 2i
) with a ∈ R0 H,

ρz1 = Sq1(ρa) and h(a∪2 2n
) =

∑
1≤i<n

zi∪2 a∪2(2n
−2i)
+ zn .

Proof. (i) First, remark that any element of T satisfies (2.5) (cf. (2.7)). Following the construction of a pair (h, f ) in
the proof of Theorem 1, define f for a ∪2 b ∈ T−2,∗ with a, b ∈ V 0,∗ by the formula

f (a ∪2 b) = f a ∪2 f b. (2.10)

Since (2.5), f is chain with respect to the resolution differential d of RH , so we can set h2(a ∪2 b) = 0. Inductively,
assume that for a ∪2 b ∈ T−r,∗, 2 ≤ r < n, the map f is defined by (2.10), while h is defined by

h(a ∪2 b) = ha ∪2 b + (−1)|a|a ∪2 hb. (2.11)
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Then for a ∪2 b ∈ T−n,∗ define h again by (2.11). Clearly, f dh(a ∪2 b) is a cocycle in A and is bounded by f a ∪2 f b.
Therefore, we can define f on a ∪2 b by (2.10). Consequently, we set htr (a ∪2 b) = 0 as required.

(ii) Since f is a Hirsch map, it commutes with ^1-products and the first equality follows from the definition of
Sq1. The verification of the second equality follows immediately from (2.8). �

Remark 2. Whereas Sq1 induces the product on H(B A), the transgressive values zi in item (ii) of Proposition 5
are closely related with the existence of the symmetric Massey products of the element σ ∗(ρa) ∈ H(B A) for the
suspension map σ ∗ : H∗(A) → H∗−1(B A) (compare Theorem 3 and Remark 7): When σ ∗(ρzk) = 0 for k < i
(e.g. zk ∈ D0,∗), the cohomology class σ ∗(ρzi ) is automatically identified with the symmetric Massey product
〈σ ∗(ρa)〉2

i
.

Unlike Example 1, the Hirsch algebra A provided by the following example does not have a ^2-product. This fact
allows us to lift a combination a^1 b±b^1 a for cocycles a, b ∈ A to the cohomology level as a non-trivial (binary)
product (see also Section 3.4).

Example 5. It is known that the Hochschild cochain complex C•(P; P) of an associative algebra P admits an
HGA structure [17,8], which is a particular Hirsch algebra. Furthermore, whereas the Hochschild cohomology
H = H (C•(P; P)) is a cga, H is also endowed with the binary operation x ∗ y defined for x = [a] and y = [b]
by x ∗ y = [a ◦ b − (−1)(|a|+1)(|b|+1)b ◦ a], where ◦(=^1) is Gerstenhaber’s operation on the Hochschild cochain
complex. The ∗ product on the Hochschild cohomology is referred to as the G-algebra structure. Since H is a cga,
we can apply Theorem 1 for A = C•(P; P) and obtain the filtered Hirsch model f : (RH, d + h) → C•(P; P).
Given a, b ∈ V 0,∗, obviously we have ρh2(a ∪2 b) = ρa ∗ ρb (since f 1(a^1 b) = f 0a ◦ f 0b). In other words, the
non-triviality of the G-algebra structure on H implies the non-triviality of perturbation h2 restricted to the submodule
T ⊂ V . Consequently, the operation a ∪2 b with q(a, b) satisfying item (2.4)2 does not exist on the filtered Hirsch
model of C•(P; P) in general.

2.6. A small Hirsch resolution Rς H

Let A be a Hirsch algebra over k. Whereas (RH, dh) = (T (V ), dh) in a filtered Hirsch model f : (RH, dh)→ A,
the calculation of H(B A) can be carried out in terms of V as follows. Denote V̄ = s−1(V>0) ⊕ k and define the
differential d̄h on V̄ by the restriction of d + h to V to obtain the cochain complex (V̄ , d̄h). There are isomorphisms

H∗(V̄ , d̄h) ≈ H∗(B(RH), dB(RH))
B f ∗

≈ H∗(B A, dB A ) ≈ T or A(k;k). (2.12)

In particular, for A = C∗(X;k) with X simply connected (cf. Example 1),

H∗(V̄ , d̄h) ≈ H∗(BC∗(X;k), dBC ) ≈ H∗(Ω X;k).

Remark 3. Note that the first isomorphism of (2.12) is a consequence of a general fact about tensor algebras [6],
while the second follows from Proposition 1.

Furthermore, to conveniently involve the multiplicative structure of (2.12), one can reduce V at the cost of E ⊂ V
in the manner we shall describe. Let Jς ⊂ Ra H be the Hirsch ideal of an absolute Hirsch resolution Ra H generated by

{E p,q(a1, . . . , ap; ap+1, . . . , ap+q), d E p,q(a1, . . . , ap; ap+1, . . . , ap+q) | p + q ≥ 3}

with

a1, . . . , ap ∈ Ra H, ap+1 ∈ V, p ≥ 1, q = 1
a1, . . . , ap+q ∈ Ra H, p ≥ 1, q > 1.

Then

Rς H = Ra H/Jς

is a Hirsch resolution of H. Indeed, using (2.2) we see that d : Jς → Jς and H(Jς , d) = 0. Thus gς : (Ra H, d)→
(Rς H, d) is a homology isomorphism. We have an obvious projection ρς : (Rς H, d) → H such that ρ = ρς ◦ gς .
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Fig. 2. A fragment of the filtered Hirsch Z-algebra obtained as a perturbed resolution (RH, d + h) of a cga H .

Consequently, ρς is also a resolution map. Furthermore, we have h : Jς → Jς so that (Rς H, dh) is a Hirsch algebra
(in fact an HGA) and gς extends to a quasi-isomorphism of filtered Hirsch algebras

gς : (Ra H, dh)→ (Rς H, dh). (2.13)

Thus, the Hirsch (HGA) structure of Rς H = T (Vς ) is generated by the ^1-product and (2.2) is equivalent to the
following two equalities:

1. The (left) Hirsch formula. For a, b, c ∈ Rς H :

c^1 ab = (c^1 a)b + (−1)(|c|+1)|a|a(c^1 b).

2. The (right) generalized Hirsch formula. For a, b ∈ Rς H and c ∈ Vς with dh(c) =
∑

c1 · · · cq , ci ∈ Vς :

ab^1c =


a(b^1c)+ (−1)|b|(|c|+1)(a^1c) b, q = 1,
a(b^1c)+ (−1)|b|(|c|+1)(a^1c) b
+

∑
1≤i< j≤q

(−1)ε c1 · · · ci−1(a^1ci ) ci+1 · · · c j−1(b^1 c j ) c j+1 · · · cq , q ≥ 2,
(2.14)

where ε = (|a| + 1)
(
εc

i−1 + i + 1
)
− (|b| + 1)

(
εc

j−1 + j
)
.

Remark 4. First, Formula (2.14) can be thought of as a generalization of Adams’ formula for the ^1-product in the
cobar construction [1, p. 36] from q = 2 to any q ≥ 2. Second, the usage of Rς H shows that the multiplication µ∗E
on H∗(B A) ≈ H∗(V̄ς , d̄h) is in fact determined only by the ^1-product on Vς .

Note that for any Hirsch resolution of H considered here, and consequently for any filtered Hirsch model, the first
two columns in Fig. 2 are the same.

3. Some examples and applications

In the discussion that follows we sometimes abuse notation and denote Rς H by RH . As we mentioned in the
introduction, certain applications of the above material are given in [31,32]. The applications that appear here are
new.

3.1. Symmetric Massey products

Recall the definition of the n-fold symmetric Massey product 〈x〉n (cf. [23,25]). Let x ∈ H(A) be an element for
a dga A, and x0 ∈ A be a cocycle with x = [x0]. Given n ≥ 3, consider a sequence (x0, x1, . . . , xn−2) in A such
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that

dxk =
∑

i+ j=k−1

(−1)|xi |+1xi x j , 1 ≤ k ≤ n − 2; (3.1)

in particular, dx1 = −(−1)|x0|x2
0 , i.e., x2

= 0. Then
∑

i+ j=n−2(−1)|xi |+1xi x j is a cocycle, and a subset of
H(A) formed by the classes of all such cocycles is denoted by 〈x〉n . (In other words, the existence of a sequence
(x0, x1, . . . , xk, . . .) satisfying (3.1) for all k implies that c :=

∑
k≥0 xk is a twisting element in A whenever this sum

(possibly infinite) has a sense; an element c ∈ A is twisting if dc = ± c · c; cf. [3].)
When A = C∗(X;Zp) for p to be an odd prime, and x ∈H2m+1(X;Zp) is odd dimensional, the following formula

is established in [23] (for the dual case see [22]):

〈x〉p = −βP1(x) (3.2)

where P1 : H2m+1(X;Zp) → H2mp+1(X;Zp) is the Steenrod cohomology operation. Thus, the formulas in [23]
and [22] involve the connection of the symmetric Massey products with the Steenrod and Dyer–Lashof (co)homology
operations in their respective topological settings (cf. [25]). Below Theorem 3 emphasizes the algebraic content of
these formulas and generalizes them using a filtered Hirsch model over the integers.

3.2. Massey syzygies in the Hirsch resolution

Let (RH, d) be a Hirsch resolution of H. Given a sequence of relations of the form dai = λbi and

dui = (−1)|ai |+1ai ai+1 + λvi , dvi = (−1)|ai |bi ai+1 + ai bi+1,

ai , ui , vi ∈ RH, λ ∈ Z \ {−1, 1}, 1 ≤ i < n, (3.3)

in (RH, d), there are elements uai1 ,...,aik
∈ RH , 3 ≤ k ≤ n, defined in terms of syzygies that mimic the definition of

k-fold Massey products arising from k-tuples (ai1 , . . . , aik ) [23]. Precisely, ua1,...,an is defined by

dua1,...,an =

∑
0≤i<n

(−1)ε
a
i ua1,...,ai uai+1,...,an + λva1,...,an ,

dva1,...,an =

∑
0≤i<n

((−1)ε
a
i +1va1,...,ai uai+1,...,an + ua1,...,ai vai+1,...,an ), (3.4)

with the convention that uai = ai , uai ,ai+1 = ui and vai = bi , vai ,ai+1 = vi . When bi = 0, Eq. (3.4) reduces to

dua1,...,an =

∑
0≤i<n

(−1)ε
a
i ua1,...,ai uai+1,...,an .

We are interested in the special case of (3.3) obtained by setting a1 = · · · = an . More precisely, we consider the
following situation (see also Example 6).

Let A be a torsion free Hirsch algebra over Z and fix a filtered model f : (RH, dh) → A. For a module C over
Z, let Ck := C ⊗Z k and let tk : C → Ck be the standard map; then Ak = A⊗Z k and RHk = RH ⊗Z k. Also let
Hk := H(Ak). There is the Hirsch model of (Ak, dAk) given by

fk = f ⊗ 1 : (RHk, dh ⊗ 1)→ (Ak, dAk).

Given an element x ∈ Hk, let x0 be a representative of x in RH so that [tk f (x0)] = x . In particular, x0 ∈ R0 H∗

for β(x) = 0, k ≥ 1, and x0 ∈ R−1 H∗ with dx0 = λx ′0, x ′0 ∈ R0 H∗, for β(x) 6= 0, where β denotes the Bockstein
cohomology homomorphism associated with the sequence

0→ Zλ→ Zλ2 → Zλ→ 0.

If x ∈ H = H∗(A), then obviously x0 ∈ R0 H∗. In any case, assuming x2
= 0 we have the corresponding relation in

(RH, d):

dx1 = (−1)|x0|+1x2
0 + λx ′1
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with the convention that x ′1 = 0 whenever x0 ∈ R0 H∗. This equality is a special case of (3.3), so (3.4) gives the
following sequence of relations in (RH, d):

dxn =
∑

i+ j=n−1
i, j≥0

(−1)|xi |+1xi x j + λx ′n, n ≥ 1, (3.5)

where x ′n = 0 for x0 ∈ R0 H.

We have the following description of Massey symmetric products in terms of the sequence x = {xn}n≥0 in
(RH, dh). Denote yi = tkxi in (RHk, dh). If hyi = 0 for 0 ≤ i < n, then (3.5) implies dhd(yn) = dd(yn) = 0, and
consequently, [dyn] = −[hyn]. Therefore

f ∗k [dyn] = − f ∗k [hyn] ∈ 〈x〉
n+1. (3.6)

Furthermore, the elements xn appear in a family of relations in (RH, d). For example, these relations can be
deduced from the following observation. For x ∈ H with x2

= 0, let ι : B H → B(RH, d) be a chain map such
that ι([x̄ | · · · |x̄]) = (−1)n[xn] for [x̄ | . . . |x̄] ∈ Bn+1 H , n ≥ 0. Assuming B H is endowed with the shuffle product
shH , the map ι will be multiplicative up to a chain homotopy b. Since B(RH) is cofree, we can choose b to be
(µE ◦ (ι ⊗ ι), ι ◦ shH )-coderivation. This observation easily extends to the mod λ case when x0 ∈ R−1 H with
dx0 = λx ′0. Now let

b̄k,` := b(

k︷ ︸︸ ︷
[x̄ | · · · |x̄]⊗

`︷ ︸︸ ︷
[x̄ | · · · |x̄] ) |

RH
and i[n] := i1 + · · · + in + n;

then the equality µE (ι⊗ ι)− ι ◦ shH = dB(RH)b+ bdB H⊗B H implies in (RH, d):

For |x0| odd:

dbk,` = (−1)k+`
(

k + `

k

)
xk+`−1

+

∑
i[p]=k, j[q]=`

(−1)k+`+p+q E p,q(xi1 , . . . , xi p ; x j1 , . . . , x jq )

−

∑
0≤r<k,0≤m<`
i[s]=r, j[t]=m

(−1)r+m ((−1)s+t Es,t (xi1 , . . . , xis ; x j1 , . . . , x jt )bk−r,`−m

+

(
r + m

r

)
bk−r,`−m xr+m−1

)
+ λb′k,` (3.7)

in which b′k,` = 0 for x0 ∈ R0 H , and the first equalities are:

db1,1 = 2x1 + x0^1 x0 + λb
′

1,1,

db2,1 = −3x2 + E2,1(x0, x0; x0)− x1^1 x0 − x0b1,1 + b1,1x0 + λb
′

2,1,

db1,2 = −3x2 + E1,2(x0; x0, x0)− x0^1 x1 − x0b1,1 + b1,1x0 + λb
′

1,2.

For |x0| even:

dbk,` = (−1)k+`αk,` xk+`−1

+

∑
i[p]=k, j[q]=`

(−1)k+`+p+q E p,q(xi1 , . . . , xi p ; x j1 , . . . , x jq )

−

∑
0≤r<k,0≤m<`
i[s]=r, j[t]=m

(
(−1)(k+r+1)m+s+r+tEs,t (xi1 , . . . , xis ; x j1 , . . . , x jt )bk−r,`−m

+ (−1)k+`+r(`+m)αr,mbk−r,`−m xr+m−1

)
+ λb′k,`, (3.8)
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αi, j =



(
(i + j)/2

i/2

)
, i, j are even,(

(i + j − 1)/2
i/2

)
, i is even, j is odd,

0, i, j are odd,

in which b′k,` = 0 for x0 ∈ R0 H , and the first equalities are:

db1,1 = x0^1 x0 + λb
′

1,1 (i.e., b1,1 = x0 ∪2 x0 when x0 ∈ R0 H∗),

db2,1 = −x2 + E2,1(x0, x0; x0)− x1^1 x0 − x0b1,1 − b1,1x0 + λb
′

2,1,

db1,2 = −x2 + E1,2(x0; x0, x0)− x0^1 x1 + x0b1,1 + b1,1x0 + λb
′

1,2.

Of course, for the sake of minimality, one can choose only certain bk,` above to be nontrivial. For example, let |x | be
even, let b2 j+1 := b1,2 j+1, and set x2n in (3.5) as

x2n = −x0^1 x2n−1 +
∑

i+ j=n−1

(x2ib2 j+1 − b2 j+1x2i ). (3.9)

Thus one can also set b1,2n = 0 and eliminate b1,2n from (3.8); in particular, b2,1 can be identified with x0^2 x1 for
n = 1.

Note that for an HGA A (e.g. A = C∗(X;Z)) we have that E p,q = 0 for all q ≥ 2, that the second Hirsch formula
up to homotopy from Section 2 becomes strict, and consequently, the formulas above are much simpler (see also
Section 2.6).

Theorem 2. Let A be a Hirsch algebra over Z and let k be a field of characteristic p ≥ 0.

(i) Let x ∈ H(A) with x2
= 0. If 〈x〉n is defined for n ≥ 3, it has a finite order.

(ii) Let x ∈ Hk with x2
= 0 and p > 0. Then 〈x〉n is defined for 3 ≤ n ≤ p and vanishes whenever 3 ≤ n < p.

(iii) Let x ∈ Hk with x2
= 0 and p = 0. Then 〈x〉n is defined and vanishes for all n.

Proof. (i) Observe that the inductive construction of the terms hr , r ≥ 2, of h in (RH, dh) implies hxi = 0 for
0 ≤ i ≤ n − 2 whenever 〈x〉n is defined. Apply formulas (3.7)–(3.8) to verify that m〈x〉n = 0 with m = n for |x | odd
(take (k, `) = (1, n − 1) in (3.7)), while m = r − 1 or m = r for n = 2r or n = 2r + 1 (take (k, `) = (2, n − 2) in
(3.8)) for |x | even.

(ii)–(iii) The proof follows an argument similar to that in (i). �

Remark 5. First, regarding Theorem 2, item (i), note that formula (3.9) implies that 〈x〉n = 0 whenever |x | and n are
even. Second, if |x | is odd, formulas (3.7) –(3.8) imply that whenever defined, 〈x〉n consists of a single cohomology
class independent of the parity of n (see [23,22]).

3.3. The Kraines formula

Let p := λ be an odd prime. Let a ∈ A2m+1 be an element with da = 0 or da = pa′ for some a′. Given n ≥ 2,
take (the right most) nth-power of ā ∈ Ā under the µE product on B A and consider its component in Ā. Denote this
component by s−1(a]n) for a]n

∈ A2mn+1. The element a]n has the form

a]n
= a^1 n

+ Qn(a),

where Qn(a) is expressed in terms of E1,k for 1 < k < n (for the relations of small degrees involving this power, see
also Fig. 2). For example, Q2(a) = 0 since a]2

= a^1 2 and Q3(a) = 2E1,2(a; a, a). In particular, if A is an HGA,
then obviously a]n

= a^1 n . Thus da]n is divided by an integer p ≥ 2 if and only if p is a prime and n = pi , some
i ≥ 1. Consequently, the homomorphism

P1 : H2m+1
Zp

→ H2mp+1
Zp

, [tZp (a)] → [tZp (a
]p)], a ∈ A, d(tZp (a)) = 0, (3.10)

is well defined.



132 S. Saneblidze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 114–136

Theorem 3. Let A be a Hirsch algebra as in Proposition 5. Let A be torsion free and p be an odd prime. Then
formula (3.2) holds in HZp for P1 given by (3.10).

Proof. Given n ≥ 1, let bn := b1,n and set (k, `) = (1, n) in (3.7) to obtain

dbn = (−1)n+1

(n + 1)xn −
∑
j[q]=n
1≤q≤n

(−1)q E1,q(x0; x j1 , . . . , x jq )

+ ∑
i+ j=n−1

(−1)i
(
b j xi − xib j

)
+ pb′n . (3.11)

By means of the element x0 and the sequence {bn}n≥1, form the sequence {cn}n≥1 in RH as follows:

c1 = b1 and cn = n! bn + x0^1 cn−1, n ≥ 2.

For n = p − 1, relation (3.11) implies a relation of the form

dcp−1 = −p! x p−1 + x]p
0 + pu p−1, (3.12)

where u p−1 ∈ RH+ · RH+ for β(x) = 0, while u p−1 = wp−1 + (p − 1)! b′p−1 with wp−1 ∈ RH+ · RH+ for

β(x) 6= 0. Hence, from d2(cp−1) = 0 we get

d(x]p
0 ) = p! dx p−1 − p du p−1 = p((p − 1)! dx p−1 − du p−1).

Obviously, h(x]p
0 ) = 0 because h(x0) = 0 (recall that a perturbation h annihilates R(−1)H and is a derivation on E ).

Consequently,

dh(x
]p
0 ) = p((p − 1)! dx p−1 − du p−1).

Taking into account (p − 1)! = −1 mod p, and passing to HZp we obtain

βP1(x) = f ∗Zp
[−dyp−1 − dvp−1] = − f ∗Zp

[dyp−1] − f ∗Zp
[dvp−1] for vp−1 := tZp

(u p−1).

Since f ∗Zp
[dyp−1] = 〈x〉p by (3.6), it remains to show that f ∗Zp

[dvp−1] = 0. Indeed, if β(x) = 0, then x0 ∈ R0 H ,

u p−1 ∈ RH+ · RH+, and hvp−1 = 0 by the similar argument as in the proof of Theorem 2 (ii). Consequently,
0 = f ∗Zp

[−hvp−1] = f ∗Zp
[dvp−1]. If β(x) 6= 0, then x0 ∈ R−1 H , and let dx0 = px ′0. We have that u p−1 contains

b′p−1 as a summand, and hvp−1 = −hb′p−1. Denoting z0 = gς (x0) and z′0 = gς (x ′0) in (Rς , dh) where gς is given by

(2.13), we have that gς (x
]p
0 ) = z^1 p

0 and gς (hb′p−1) is mod p cohomologous to∑
0≤i<p

z^1 i
0 ^1 z′0^1 z^1 p−i−1

0 , a summand component of d(z^1 p
0 ).

But this component bounds
∑

0≤i≤p−2
z^1 i

0 ^1(z0 ∪2 z′0)^1 z^1 p−i−2
0 mod p that finishes the proof. �

Remark 6. When p = 2 the relation d(x0^1 x0) = −2x2
0 + 2(x ′0^1 x0 + x0^1 x ′0) implies the Adem relation

Sq0(a) = Sq1Sq1(a) in HZ2 thought of as the “Kraines formula” 〈a〉2 = a2
= βSq1(a).

Example 6. Fix a Hirsch filtered model f : (RH, dh) → A with RH = T (V ). Suppose that we are given a single
relation

da = λb, a ∈ V−1,2k+1, b ∈ V 0,2k+1, λ ≥ 2, k ≥ 1, (3.13)

and deduce the following relations in (RH, d): First, define c ∈ V by

dc =

{
ab +

λ

2
b^1 b, λ is even

2ab + λb^1 b, λ is odd.
(3.14)

When λ is odd, denote (cf. (3.3))

u2a,b := −c, ub,2a := c − 2a^1 b and u2b,b := 2ab +(λ− 1)b^1 b
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and obtain

dua,a = −a2
+ λva,a, va,a = c − a^1 b,

dua,2b,b = −au2b,b − ua,2bb + λva,2b,b = −2a2b − (λ− 1)a(b^1 b)+ cb + λub,2b,b,

dub,2a,b = bu2a,b − ub,2ab + λvb,2a,b = bc − (c − 2a^1 b)b + λub,2b,b,

dua,2a,b = −au2a,b + u2a,ab + λva,2a,b,

where va,2b,b = vb,2a,b = ub,2b,b = 2ub,b,b. Keeping in mind the fact that d2
h = 0, there is the following action of the

perturbation h on the relations above:

dh2ua,a = −λh2c,

dh2ua,2b,b = −h2c · b − λh2ub,2b,b,

dh2ub,2a,b = b · h2c + h2c · b − λh2ub,2b,b,

dh2ua,2a,b = −a · h2c − 2h2ua,a · b − λh2va,2a,b,

dh3ua,2a,b = −h3u2a,a · b − λh3va,2a,b − h2h2ua,2a,b.

Below we shall exploit the third equality in list of relations above. First, we have

d
(

h2ub,2a,b + b^1 h2c
)
= −λh2ub,2b,b.

Suppose that k is a ring such that ν divides λ and

[tk(a)][tk(b)] = 0. (3.15)

By (3.14) one has [tk(ab)] = −[tkh2c], so that h2c = 0 mod ν above. Denoting [tk f (a)] := y and [tk f (b)] := x , we
have xy = 0 by (3.15). Thus the triple Massey product 〈x, y, x〉 is defined in Hk and contains [tk f (bua,b − ub,ab)]
(= −[tk f (hub,a,b)]). Obviously, 〈x〉3 is also defined and

βλ〈x, y, x〉 = −〈x〉3

(here βλ denotes the Bockstein map associated with 0→ Zν → Zνλ → Zλ → 0). Now let p = λ = 3 and consider
(3.12) for x . Then

c2 = 2b2 + x0^1 b1, x]3
0 = x`1 3

0 + 2E1,2(x0; x0, x0), u2 = b1x0 − x0b1

and

dc2 = −6x2 + x`1 3
0 + 2E1,2(x0; x0, x0)+ 3(b1x0 − x0b1).

Since [x0]
2
= 0, one has h2b1 = 0 and hence

hc2 = 2(h2
+ h3)b2

(for the relations above, see also Fig. 2). In particular, dh2c2 = 6h2x2. Let a := y0, b := x0, ub,b := x1
and ub,b,b := x2 and set h2c2 = −2h2ux0,y0,x0 . Furthermore, if we also have h3c2 = h3ux0,y0,x0 mod 3, then
[tk f (x]3

0 )] = −[tk f (hc2)] = −[tk f (hux0,y0,x0)] and, consequently,

P1(x) ∈ 〈x, y, x〉. (3.16)

For example, let A = C∗(B F4;Z3), the cochain complex of the classifying space B F4 of the exceptional group
F4. Then equality (3.15) together with (3.16) holds in H(B F4;Z3). More precisely, let xi ∈ H i (B F4;Z3) be
multiplicative generators in notation of [36] and recall the following relations among them: x8x9 = 0 = x4x21,
δx8 = x9, δx25 = x26; also P 3(x9) = x21 and P 1(x21) = x25; thus P 1 P 3(x9) = P1(x9) = x25 by an application
of the Adem relation. Thus the knowledge of both H∗(B F4;Z3) and H∗(F4;Z3) in low degrees enables us to use
the filtered Hirsch model of B F4 to deduce the following: Let a and b be defined in (3.13) by [tZ3

f (a)] = x8 and

[tZ3
f (b)] = x9. Then [tZ3

f (hc2)] = [tZ3
f (hub,a,b)] = −x25 and [tZ3

f (h2ub,b,b)] = x26 so that

〈x9〉
3
= −βP1(x9) with P1(x9) = 〈x9, x8, x9〉.
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Finally, we remark that the both sides of this formula become trivial under the loop suspension map σ ∗ :

H∗(B F4;Z3) → H∗−1(F4;Z3) by a general well-known fact about Massey products [23,24] (compare P1(i3) for
i3 ∈ H3(K (Z3; 3);Z3)).

3.4. Hochschild cohomology with the G-algebra structure

In this section we assume that k is a field of characteristic zero. Refer to Example 5 and recall that the HGA
structure E = {E p,q}p≥0;q=0,1 on the Hochschild cochain complex A = C•(P; P) induces an associative product
µE on the bar construction B A and hence the product µ∗E on H∗(B A) = T or A

∗ (k,k). Since T or A
∗ (k,k) is an

associative algebra, it can be converted into a Lie algebra in the standard way.

Theorem 4. If the Hochschild cohomology H∗ = H(C•(P; P)) is a free algebra, then the Lie algebra structure on
T or A
∗ (k,k) is completely determined by that of the G-algebra H∗. Consequently, the product µ∗E on T or A

∗ (k,k) is
commutative if and only if the G-product on H∗ is trivial.

Proof. For a free algebra H , the module M ⊂ V has simple form in the (minimal) Hirsch resolution (RH, d),
i.e., M<0,∗

= 0. Indeed, given an odd dimensional multiplicative generator x ∈ H and a representative x0 ∈ R0 H
of x , the elements xn in the sequence (3.5) can be defined as xn =

(−1)n

(n+1)! x`1 n+1
0 and hence xn ∈ E for

n ≥ 1. In particular, there is a map of dg algebras (RH, d) → A and hence an isomorphism of dg coalgebras
H∗(B A) ≈ H∗(B H) for a dga A with H = H∗(A) (a free k-algebra H is intrinsically k-formal). Regarding
the filtered Hirsch model (RH, dh), the perturbation h may be non-zero only on T . More precisely, according to
Example 5 the cohomology class [h(a ∪2 b)] ∈ H∗(RH, dh) is defined by ρa ∗ ρb ∈ H for a, b ∈ V 0,∗. Since
H∗(B H) ≈ H∗(B A) ≈ H∗(V̄ , d̄h) (cf. (2.12)), the multiplication µ∗E on H∗(B H) is induced by the ^1-product on
V (cf. Remark 3). Therefore, the Lie bracket on H∗(B H) is determined by the bracket

[a, b] = a^1 b − (−1)(|a|+1)(|b|+1)b^1 a

on V . The observation that s−1
[a, b] is cohomologous to s−1h(a ∪2 b) in V̄ for all a, b ∈ V 0,∗ completes the

proof. �

Remark 7. Note that the transgressive component htr evaluated on the elements a1 ∪2 · · · ∪2 an ∈ T for ai ∈

V 0,∗, n ≥ 3, determines higher order operations on T or A(k;k) that extend the Lie algebra structure to an L∞-
algebra structure.

For example, a polynomial algebra P = k[x1, . . . , xn] provides the case of H∗ in the theorem. Indeed, in general,
to calculate the Hochschild cohomology of an algebra P construct a small complex (C•V (P), d̄), which is quasi-
isomorphic to C•(P; P) as follows (compare [15]): Fix an ordinary multiplicative resolution ρ : R P → P with
R P = T (V ), view P as an R P-bimodule via ρ, and let B(ρ)• : C•(P; P) → C•(R P; P) be a quasi-isomorphism
induced by B(ρ) : B(R P) → B P . Set (C•V (P), d̄) = (Hom(V̄ , P), d̄) in which d̄ is defined for f ∈ C•V (P) by
d̄ f = g,

g(x̄) =
∑

1≤i≤k

(−1)νiρ(v1) · · · f (v̄i ) · · · ρ(vk), dx =
∑

v1 · · · vk, vi ∈ V, k ≥ 1,

νi = (| f | + 1)(|v1| + · · · + |vi−1|), and define a chain map χ : C•V (P)→ C•(R P; P) by χ f = f ′,

f ′(x̄) =


f (x̄), x ∈ V,∑

1≤i≤n

(−1)νiρ(v1) · · · f (v̄i ) · · · ρ(vn), x =
∑

v1 · · · vn, vi ∈ V, n ≥ 2.

Isomorphism (2.12) implies that χ is a homology isomorphism. On the other hand, the ^-product on C•(P; P)
induces a ^-product on C•V (P); more precisely, we have that V̄ is a coalgebra with the coproduct ∆̄ : V̄ → V̄ ⊗ V̄
induced by the standard coproduct of B P and, consequently, Hom(V̄ , P) is endowed with the standard ^-product.
When P is polynomial, the minimal V ∗ can be thought of as generated by the iterations of a (commutative)
^1-product [30]; consequently, (V̄ ∗, ∆̄) is an exterior coalgebra. Dually, V̄∗ is an exterior algebra on generators
x̄1, . . . , x̄n . Furthermore, d̄ = 0 and hence H(C•V (P), d̄) = C•V (P). Thus the Hochschild cohomology H∗ is
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isomorphic to the algebra C•V (P) ≈ V̄∗−1 ⊗ P∗, which is the tensor product of an exterior algebra and a polynomial
algebra, as required.

3.5. Symmetric Massey products in C∗(X;k) and powers in the loop homology H∗(Ω X;k)

Let A∗ be a dg coalgebra over a field k and let A∗ = Hom(A∗,k) be a dg algebra so that H(A∗) =
Hom(H(A∗),k). Let

ι : H(B A∗)→ Hom(H(Ω A∗),k)),

be the canonical map, where Ω A∗ denotes the cobar construction of the coalgebra A∗. Given the suspension
map σ ∗ : H∗(A∗) → H∗−1(B A∗), let x ∈ H∗(A∗) and y ∈ H∗−1(Ω A∗), where y is a basis element with
ι(σ ∗x)(y) = 1 ∈ k, and ι(σ ∗x)(y′) = 0 for any basis element y′ 6= y.

Suppose that 〈x〉n is defined for x . Let {ai }0≤i<n be a defining system of 〈x〉n with a0 ∈ A∗ a representative cocycle
of x . Then ā0 ∈ B A∗ is a cocycle with [ā0] = σ

∗x and {ai }0≤i<n lifts to a cocycle a ∈ B A∗ so that the cohomology
class [a] ∈ H∗(B A∗) is represented by the yn (the nth-power of y) in H∗(Ω A∗) via the map ι. Then Theorem 2
immediately implies the following:

Theorem 5. Let X be a simply connected space, let k be a field of characteristic zero, and let σ∗ : H∗(Ω X;k) →
H∗+1(X;k) be the suspension map. If y ∈ H∗(Ω X;k) such that y 6∈ Ker σ∗ and y2

6= 0, then yn
6= 0 in H∗(Ω X;k)

for all n ≥ 2.

Finally, recalling the connection between symmetric Massey products and twisting elements in A∗, which arise
from the sequences {ai }i≥0 above, we remark that the observation above relates the existence of twisting elements in
A∗ with the existence of polynomial generators in H∗(Ω A∗).
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Abstract

In this paper we study spectral estimates of the p-Laplace Neumann operator in conformal regular domains Ω ⊂ R2. This study
is based on (weighted) Poincaré–Sobolev inequalities. The main technical tool is the theory of composition operators in relation
with the Brennan’s conjecture. We prove that if the Brennan’s conjecture holds for any p ∈ (4/3, 2) and r ∈ (1, p/(2 − p))
then the weighted (r, p)-Poincare–Sobolev inequality holds with the constant depending on the conformal geometry of Ω . As
a consequence we obtain classical Poincare–Sobolev inequalities and spectral estimates for the first nontrivial eigenvalue of the
p-Laplace Neumann operator for conformal regular domains.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Conformal mappings; Sobolev spaces; Elliptic equations

1. Introduction and methodology

Let Ω ⊂ R2 be a simply connected planar domain with a smooth boundary ∂Ω . We consider the Neumann
eigenvalue problem for the p-Laplace operator (1 < p < 2):

− div
(
|∇u|p−2

∇u
)
= µp|u|

p−2u in Ω
∂u

∂n
= 0 on ∂Ω .

(1.1)

The weak statement of this spectral problem is as follows: a function u solves the previous problem if and only if
u ∈ W 1,p(Ω) and∫∫

Ω

(
|∇u(x, y)|p−2

∇u(x, y)
)
· ∇v(x, y) dxdy = µp

∫∫
Ω
|u|p−2u(x, y)v(x, y) dxdy

for all v ∈ W 1,p(Ω).
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The first nontrivial Neumann eigenvalue µp can be characterized as

µp(Ω) = min
{∫∫

Ω |∇u(x, y)|p dxdy∫∫
Ω |u(x, y)|p dxdy

: u ∈ W 1,p(Ω) \ {0},
∫∫

Ω
|u|p−2u dxdy = 0

}
.

Moreover, µp(Ω)
−

1
p is the best constant Bp,p(Ω) (see, for example, [1,2]) in the following Poincaré–Sobolev

inequality

inf
c∈R
‖ f − c | L p(Ω)‖ ≤ Bp,p(Ω)‖∇ f | L p(Ω)‖, f ∈ W 1,p(Ω).

We prove, that µp(Ω) depends on the conformal geometry of Ω and can be estimated in terms of Sobolev norms
of a conformal mapping of the unit disc D onto Ω (Theorem A).

The main technical tool is existence of universal weighted Poincaré–Sobolev inequalities

inf
c∈R

(∫∫
Ω
| f (x, y)− c|r h(x, y) dxdy

) 1
r

≤ Br,p(Ω , h)

(∫∫
Ω
|∇ f (x, y)|p dxdy

) 1
p

, f ∈ W 1,p(Ω), (1.2)

in any simply connected planar domain Ω 6= R2 for conformal weights h(x, y) := Jϕ(x, y) = |ϕ′(x, y)|2 induced by
conformal homeomorphisms ϕ : Ω → D.

Main results of this article can be divided onto two parts. The first part is the technical one and concerns
weighted Poincaré–Sobolev inequalities in arbitrary simply connected planar domains with nonempty bound-
aries (Theorem C and its consequences). Results of the first part will be used for (non weighted) Poincaré–Sobolev
inequalities in so-called conformal regular domains (Theorem B) that lead to lower estimates for the first nontriv-
ial eigenvalue µp (Theorem A). To the best of our knowledge lower estimates were known before for convex domains
only. The class of conformal regular domains is much larger. It includes, for example, bounded domains with Lipschitz
boundaries and quasidiscs, i.e images of discs under quasiconformal homeomorphisms of whole plane.

Brennan’s conjecture [3] is that for a conformal mapping ϕ : Ω → D∫∫
Ω
|ϕ′(x, y)|β dxdy < +∞, for all

4
3
< β < 4. (1.3)

For the inverse conformal mapping ψ = ϕ−1
: D→ Ω Brennan’s conjecture [3] states∫∫

D
|ψ ′(u, v)|α dudv < +∞, for all − 2 < α <

2
3
. (1.4)

A connection between Brennan’s Conjecture and composition operators on Sobolev spaces was established in [4]:
Equivalence Theorem. Brennan’s Conjecture (1.3) holds for a number β ∈ (4/3; 4) if and only if a conformal

mapping ϕ : Ω → D induces a bounded composition operator

ϕ∗ : L1,p(D)→ L1,q(p,β)(Ω)

for any p ∈ (2;+∞) and q(p, β) = pβ/(p + β − 2).
The inverse Brennan’s Conjecture states that for any conformal mapping ψ : D → Ω , the derivative ψ ′ belongs

to the Lebesgue space Lα(D), for −2 < α < 2/3. The integrability of the derivative in the power greater than 2/3
requires some restrictions on the geometry of Ω . If Ω ⊂ R2 is a simply connected planar domain of finite area, then∫∫

D
|ψ ′(u, v)|2 dudv =

∫∫
D

Jψ (u, v) dudv = |Ω | <∞.

Integrability of the derivative in the power α > 2 is impossible without additional assumptions on the geometry of Ω .
For example, for any α > 2 the domain Ω necessarily has a finite geodesic diameter [5].
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Let Ω ⊂ R2 be a simply connected planar domain. Then Ω is called a conformal α-regular domain if there exists
a conformal mapping ϕ : Ω → D such that∫∫

D

∣∣∣(ϕ−1)′(u, v)
∣∣∣α dudv <∞ f or some α > 2. (1.5)

If Ω is a conformal α-regular domain for some α > 2 we call Ω a conformal regular domain.
The property of α-regularity does not depend on choice of a conformal mapping ϕ and depends on the hyperbolic

geometry of Ω only [6]. For connection between conformal mapping and hyperbolic geometry see, for example, [7].
Note that a boundary ∂Ω of a conformal regular domain can have any Hausdorff dimension between one and two,

but cannot be equal two [8].
The next theorem gives lower estimates of the first nontrivial p-Laplace Neumann eigenvalue:

Theorem A. Let ϕ : Ω → D be a conformal homeomorphism from a conformal α-regular domain Ω to the unit disc
D and Brennan’s Conjecture holds. Then for every p ∈ (max{4/3, (α + 2)/α}, 2) the following inequality holds

1
µp(Ω)

≤ inf
q∈[1,2p/(4−p))

{
‖(ϕ−1)′|Lα(D)‖2

(∫∫
D

∣∣∣∣(ϕ−1
)′∣∣∣∣

(p−2)q
p−q

dudv

) p−q
q

· B p
αp
α−2 ,q

(D)
}
.

Here Br,q(D) is the best constant in the corresponding (r, q)-Poincare–Sobolev inequality in the unit disc D for
r = αp/(α − 2).

In the limit case α = ∞ and p = q we have

Corollary A. Suppose that Ω is a smooth bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini
continuous normal. Let ϕ : Ω → D be a conformal homeomorphism from Ω onto the unit disc D. Then for every
p ∈ (1, 2) the following inequality holds

1
µp(Ω)

≤ ‖(ϕ−1)′|L∞(D)‖p 1
µp(D)

.

Remark 1.1. The constant Br,q(D) satisfies [9,10]:

Br,q(D) ≤
2
π δ

(
1− δ

1/2− δ

)1−δ

, δ = 1/q − 1/r.

Remark 1.2. The Brennan’s conjecture was proved for α ∈ [α0, 2/3) when α0 = −1.752 [11].
In the Introduction we formulate main results under the assumptions that the Brennan’s conjecture holds true for

all −2 < α < 2/3. In the main part of the paper we prove main results for α0 = −1.752 < α < 2/3 that was proved
recently.

This difference is related to our belief that the Brennan’s conjecture is correct.

Remark 1.3. The estimates for the µp(Ω) were known before only for convex domains. For example, in [12] it was
proved that

µp(Ω) ≥
(
πp

d(Ω)

)p

where

πp = 2
∫ (p−1)

1
p

0

dt

(1− t p/(p − 1))
1
p

= 2π
(p − 1)

1
p

p(sin(π/p))
.

Theorem A has a direct connection with the spectral stability problem for the p-Laplace operator. See, the recent
papers, [13–16], where one can found the history of the problem, main results in this area and appropriate references.

Theorem A is a corollary (after simple calculations) of the following version of the Poincaré–Sobolev inequality.
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Theorem B. Suppose that Ω ⊂ R2 is a conformal α-regular domain and Brennan’s Conjecture holds. Then for every
p ∈ (max{4/3, α/(α − 1)}, 2), every s ∈ (1, α−2

α
p

2−p ) and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R

(∫∫
Ω
| f (x, y)− c|s dxdy

) 1
s

≤ Bs,p(Ω)
(∫∫

Ω
|∇ f (x, y)|p dxdy

) 1
p

(1.6)

holds with the constant

Bs,p(Ω) ≤ ‖(ϕ−1)′|Lα(D)‖
2
s Br,p(Ω , h) ≤ inf

q∈[1,2p/(4−p))

{
B αs
α−2 ,q

(D) · ‖(ϕ−1)′|Lα(D)‖
2
s K p,q(D)

}
.

Here Br,p(Ω , h), r = αs/(α − 2), is the best constant of the following weighted Poincaré–Sobolev inequality:

Theorem C. Suppose Ω ⊂ R2 is a simply connected domain with non empty boundary, Brennan’s Conjecture holds
and h(z) = J (z, ϕ) is the conformal weight defined by a conformal homeomorphism ϕ : Ω → D. Then for every
p ∈ (4/3, 2) and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R

(∫∫
Ω
| f (x, y)− c|r h(x, y) dxdy

) 1
r

≤ Br,p(Ω , h)

(∫∫
Ω
|∇ f (x, y)|p dxdy

) 1
p

(1.7)

holds for any r ∈ [1, p/(2− p)) with the constant

Br,p(Ω , h) ≤ inf
q∈[1,2p/(4−p))

{
K p,q(D) · Br,q(D)

}
.

Here Br,q(D) is the best constant in the (non-weighted) (r.q)-Poincaré–Sobolev inequality in the unit disc D ⊂ R2

and K p,q(Ω) is the norm of composition operator(
ϕ−1

)∗
: L1,p(Ω)→ L1,q(D)

generated by the inverse conformal mapping ϕ−1
: D→ Ω :

K p,q(Ω) ≤
(∫∫

D

∣∣∣∣(ϕ−1
)′∣∣∣∣

(p−2)q
p−q

dudv

) p−q
pq

.

Remark 1.4. Theorem C holds (without referring the Brennan’s Conjecture) for

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
(1.8)

and p ∈ ((|α0| + 2)/(|α0| + 1), 2), where α0 = −1.752 represents the best result for which Brennan’s conjecture was
proved.

Remark 1.5. Let Ω ⊂ R2 be a simply connected smooth domain. Then ϕ−1
∈ Lα(D) for all α ∈ R and we have the

weighted Poincaré–Sobolev inequality (1.2) for all p ∈ [1, 2) and all r ∈ [1, 2p/(2− p)].

In the case, when we have an embedding of a weighted Lebesgue space into a non-weighted one, the weighted
Poincaré–Sobolev inequality (1.7) implies the standard Poincaré-Sobolev inequality (1.6).

Let us give some historical remarks about the notion of conformal regular domains. This notion was introduced
in [16] and was applied to the stability problem for eigenvalues of the Dirichlet–Laplace operator. In [10] the lower
estimates for the first non-trivial eigenvalues of the Neumann–Laplace operator in conformal regular domains were
obtained. In [5] we proved but did not formulated the following important fact about conformal regular domains and
the Poincaré–Sobolev inequality:
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Theorem 1.6. Let Ω ⊂ R2 be a simply connected domain of finite area such that the (s, 2)-Poincaré–Sobolev
inequality

inf
c∈R

(∫∫
Ω
| f (x, y)− c|s dxdy

) 1
s

≤ Bs,2(Ω)
(∫∫

Ω
|∇ f (x, y)|2 dxdy

) 1
2

does not hold for some s ≥ 2. Then Ω is not a conformal regular domain.

In the present work we suggest for the conformal regular domains a new method based on the theory of composition
operators [17,18] and its applications to the Sobolev type embedding theorems [19,20].

The following diagram illustrates this idea:

W 1,p(Ω)
ϕ∗

−→ W 1,q(D)
↓ ↓

Ls(Ω)
(ϕ−1)∗

←− Lr (D).

Here the operator ϕ∗ defined by the composition rule ϕ∗( f ) = f ◦ ϕ is a bounded composition operator on
Sobolev spaces induced by a homeomorphism ϕ of Ω and D and the operator (ϕ−1)∗ defined by the composition
rule (ϕ−1)∗( f ) = f ◦ ϕ−1 is a bounded composition operator on Lebesgue spaces. This method allows to transfer
Poincaré–Sobolev inequalities from regular domains (for example, from the unit disc D) to Ω .

In recent works we studied composition operators on Sobolev spaces in connection with the conformal mappings
theory [21]. This connection leads to weighted Sobolev embeddings [22,4] with the universal conformal weights.
Another application of conformal composition operators was given in [16] where the spectral stability problem for
conformal regular domains was considered.

2. Composition operators

Since all composition operators that will be used in this paper are induced by conformal homeomorphisms we
formulate results about composition operators for diffeomorphisms only.

2.1. Composition operators on Lebesgue spaces

For any domain Ω ⊂ R2 and any 1 ≤ p < ∞ we consider the Lebesgue space L p(Ω) of measurable functions
f : Ω → R equipped with the following norm:

‖ f | L p(Ω)‖ :=
(∫∫

Ω
| f (x, y)|p dxdy

)1/p

<∞.

The following theorem about composition operators on Lebesgue spaces is well known (see, for example [18]):

Theorem 2.1. Let ϕ : Ω → Ω ′ be a diffeomorphism between two planar domains Ω and Ω ′. Then the composition
operator

ϕ∗ : Lr (Ω ′)→ Ls(Ω), 1 ≤ s ≤ r <∞,

is bounded, if and only if(∫∫
Ω ′

(
Jϕ−1(u, v)

) r
r−s dudv

) r−s
rs

= K <∞, 1 ≤ s < r <∞,

sup
(u,v)∈Ω ′

(
Jϕ−1(u, v)

) 1
s = K <∞, 1 ≤ s = r <∞.

The norm ‖ϕ∗‖ of the composition operator ϕ∗ equals K .
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2.2. Composition operators on Sobolev spaces

We define the Sobolev space W 1,p(Ω), 1 ≤ p <∞ as a Banach space of locally integrable weakly differentiable
functions f : Ω → R equipped with the following norm:

‖ f | W 1,p(Ω)‖ =
(∫∫

Ω
| f (x, y)|p dxdy

) 1
p

+

(∫∫
Ω
|∇ f (x, y)|p dxdy

) 1
p

.

We define also the homogeneous seminormed Sobolev space L1,p(Ω) of locally integrable weakly differentiable
functions f : Ω → R equipped with the following seminorm:

‖ f | L1,p(Ω)‖ =
(∫∫

Ω
|∇ f (x, y)|p dxdy

) 1
p

.

Recall that the embedding operator i : L1,p(Ω)→ L1
loc(Ω) is bounded.

Let Ω and Ω ′ be domains in R2. We say that a diffeomorphism ϕ : Ω → Ω ′ induces a bounded composition
operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule ϕ∗( f ) = f ◦ ϕ if ϕ∗( f ) ∈ L1,q(Ω) and there exists a constant K <∞ such that

‖ϕ∗( f ) | L1,q(Ω)‖ ≤ K‖ f | L1,p(Ω ′)‖ for all f ∈ L1,p(Ω).

The main result of [17] gives the analytic description of composition operators on Sobolev spaces (see also [18])
and asserts (in the case of diffeomorphisms) that

Theorem 2.2 ([17]). A diffeomorphism ϕ : Ω → Ω ′ between two domains Ω and Ω ′ induces a bounded composition
operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q < p <∞,

if and only if

K p,q(Ω) =
(∫∫

Ω

(
|ϕ′(x, y)|p

|Jϕ(x, y)|

) q
p−q

dxdy

) p−q
pq

<∞.

Definition 2.3. We call a bounded domain Ω ⊂ R2 as a (r, q)-embedding domain, 1 ≤ q, r ≤ ∞, if the embedding
operator

iΩ : W
1,q(Ω) ↪→ Lr (Ω)

is bounded. The unit disc D ⊂ R2 is an example of the (r, 2)-embedding domain for all r ≥ 1.

The following theorem gives a characterization of composition operators in the normed Sobolev spaces [10]. For
readers convenience we reproduce here the proof of the theorem.

Theorem 2.4. Let Ω be an (r, q)-embedding domain for some 1 ≤ q ≤ r < ∞ and |Ω ′| < ∞. Suppose that a
diffeomorphism ϕ : Ω → Ω ′ induces a bounded composition operator

ϕ∗ : L1,p(Ω ′)→ L1,q(Ω), 1 ≤ q ≤ p <∞,

and the inverse diffeomorphism ϕ−1
: Ω ′→ Ω induces a bounded composition operator

(ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′)

for some p ≤ s ≤ r .
Then ϕ : Ω → Ω ′ induces a bounded composition operator

ϕ∗ : W 1,p(Ω ′)→ W 1,q(Ω), 1 ≤ q ≤ p <∞.
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Proof. Because the composition operator (ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′) is bounded, then the following inequality

‖(ϕ−1)∗g | Ls(Ω ′)‖ ≤ Ar,s(Ω)‖g | Lr (Ω)‖

holds. Here Ar,s(Ω) is a positive constant.
If a domain Ω is an embedding domain and the composition operators

(ϕ−1)∗ : Lr (Ω)→ Ls(Ω ′), ϕ∗ : L1,p(Ω ′)→ L1,q(Ω)

are bounded, then for a function f = g ◦ ϕ−1 the following inequalities

inf
c∈R
‖ f − c | Ls(Ω ′)‖ ≤ Ar,s(Ω) inf

c∈R
‖g − c | Lr (Ω)‖

≤ Ar,s(Ω)M‖g | L1,q(Ω)‖ ≤ Ar,s(Ω)K p,q(Ω)M‖ f | L1,p(Ω ′)‖

hold. Here M and K p,q(Ω) are positive constants.
The Hölder inequality implies the following estimate

|c| = |Ω ′|−
1
p ‖c | L p(Ω ′)‖ ≤ |Ω ′|−

1
p
(
‖ f | L p(Ω ′)‖ + ‖ f − c | L p(Ω ′)‖

)
≤ |Ω ′|−

1
p ‖ f | L p(Ω ′)‖ + |Ω ′|−

1
s ‖ f − c | Ls(Ω ′)‖.

Since q ≤ r we have

‖g | Lq(Ω)‖ ≤ ‖c | Lq(Ω)‖ + ‖g − c | Lq(Ω)‖ ≤ |c||Ω |
1
q + |Ω |

r−q
r ‖g − c | Lr (Ω)‖

≤

(
|Ω ′|−

1
p ‖ f | L p(Ω ′)‖ + |Ω ′|−

1
s ‖ f − c | Ls(Ω ′)‖

)
|Ω |

1
q + |Ω |

r−q
r ‖g − c | Lr (Ω)‖.

From previous inequalities we obtain for ϕ∗( f ) = g finally

‖g | Lq(Ω)‖ ≤ |Ω |
1
q |Ω ′|−

1
p ‖ f | L p(Ω ′)‖ + Ar,s(Ω)K p,q(Ω)M |Ω |

1
q |Ω ′|−

1
p ‖ f | L1,p(Ω ′)‖

+ K p,q(Ω)M |Ω |
r−q

r ‖ f | L1,p(Ω)‖.

Therefore the composition operator

ϕ∗ : W 1,p(Ω ′)→ W 1,q(Ω)

is bounded. �

3. Poincaré–Sobolev inequalities

3.1. Weighted Poincare–Sobolev inequalities

Let Ω ⊂ R2 be a planar domain and let v : Ω → R be a smooth positive real valued function in Ω . For 1 ≤ p <∞
consider the weighted Lebesgue space L p(Ω , v) of measurable functions f : Ω → R with the finite norm

‖ f | L p(Ω , v)‖ :=
(∫∫

Ω
| f (x, y)|pv(x, y) dxdy

)1/p

<∞.

It is a Banach space for the norm ‖ f | L p(Ω , v)‖.
Applications of the conformal mappings theory to the Poincaré–Sobolev inequalities in planar domains are based

on the following result (Theorem 3.3, Proposition 3.4 [4]) which connected the classical mappings theory and the
Sobolev spaces theory.

Theorem 3.1. Let Ω ⊂ R2 be a simply connected domain with non-empty boundary and ϕ : Ω → D be a conformal
homeomorphism. Suppose that the (Inverse) Brennan’s Conjecture holds for the interval [α0, 2/3) where α0 ∈

(
−2, 0

)
and p ∈

(
|α0|+2
|α0|+1 , 2

)
.

Then the inverse mapping ϕ−1 induces a bounded composition operator

(ϕ−1)∗ : L1
p(Ω)→ L1

q(D)
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for any q such that

1 ≤ q ≤
p |α0|

2+ |α0| − p
<

2p

4− p

and for any function f ∈ L1
p(Ω) the inequality

‖(ϕ−1)∗ f | L1,q(D)‖ ≤
(∫∫

D
|(ϕ−1)′|

(p−2)q
p−q dudv

) p−q
pq

‖ f | L1,p(Ω)‖

holds.

Remark 3.2. Let us remark that |α0|+2
|α0|+1 >

4
3 for any α0 ∈

(
−2, 0

)
.

Using this theorem we prove

Theorem C′. Suppose that Ω ⊂ C is a simply connected domain with non empty boundary, the Brennan’s Conjecture
holds for the interval [α0, 2/3), where α0 ∈

(
−2, 0

)
and h(z) = Jϕ(z) is the conformal weight defined by a conformal

homeomorphism ϕ : Ω → D. Then for every p ∈ ((|α0| + 2)/(|α0| + 1), 2) and every function f ∈ W 1,p(Ω), the
inequality

inf
c∈R

(∫∫
Ω
| f (x, y)− c|r h(z) dxdy

) 1
r

≤ Br,p(Ω , h)

(∫∫
Ω
|∇ f (x, y)|p dxdy

) 1
p

holds for any r such that

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p

with the constant

Br,p(Ω , h) ≤ inf
q∈[1,2p/(4−p))

{
K p,q(D) · Br,q(D)

}
.

Here Br,q(D) is the best constant in the (non-weighted) Poincaré–Sobolev inequality in the unit disc D ⊂ C and
K p,q(Ω) is the norm of composition operator(

ϕ−1
)∗
: L1,p(Ω)→ L1,q(D)

generated by the inverse conformal mapping ϕ−1
: D→ Ω :

K p,q(Ω) ≤
(∫∫

D

∣∣∣∣(ϕ−1
)′∣∣∣∣

(p−2)q
p−q

dudv

) p−q
pq

.

Proof. By the Riemann Mapping Theorem, there exists a conformal mapping ϕ : Ω → D, and by the (Inverse)
Brennan’s Conjecture,∫

D
|(ϕ−1)′(u, v)|α dudv < +∞, for all − 2 < α0 < α < 2/3.

Hence, by Theorem 3.1, the inequality

‖∇( f ◦ ϕ−1) | Lq(D)‖ ≤ K p.q(D)‖∇ f | L p(Ω)‖

holds for every function f ∈ L1,p(Ω) and for any q such that

1 ≤ q ≤
p |α0|

2+ |α0| − p
<

2p

4− p
. (3.1)
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Choose arbitrarily f ∈ C1(Ω). Then g = f ◦ ϕ−1
∈ C1(D) and, by the classical Poincaré–Sobolev inequality,

inf
c∈R
‖ f ◦ ϕ−1

− c | Lr (D)‖ ≤ Bq,r (D)‖∇( f ◦ ϕ−1) | Lq(D)‖ (3.2)

for any r such that

1 ≤ r ≤
2q

2− q
.

By elementary calculations from the inequality (3.1), it follows that

2q

2− q
≤

2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Combining inequalities for 2q/(2− q) and r we conclude that the inequality (3.2) holds for any r such that

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Using the change of variable formula, the classical Poincaré–Sobolev inequality for the unit disc

inf
c∈R

(∫∫
D
|g(u, v)− c|r dudv

) 1
r

≤ Br,q(D)
(∫∫

D
|∇g(u, v)|q dudv

) 1
q

and Theorem 3.1, we finally infer

inf
c∈R

(∫∫
Ω
| f (x, y)− c|r h(x, y) dxdy

) 1
r

= inf
c∈R

(∫∫
Ω
| f (x, y)− c|r Jϕ(x, y) dxdy

) 1
r

= inf
c∈R

(∫∫
D
|g(u, v)− c|r dudv

) 1
r

≤ Br,q(D)
(∫∫

D
|∇g(u, v)|q dudv

) 1
q

≤ K p,q(D) · Br,q(D)
(∫∫

Ω
|∇ f (x, y)|p dxdy

) 1
p

.

Approximating an arbitrary function f ∈ W 1,p(Ω) by smooth functions we obtain

inf
c∈R

(∫∫
Ω
| f (x, y)− c|r h(z) dxdy

) 1
r

≤ Br,p(Ω , h)

(∫∫
Ω
|∇ f (x, y)|p dxdy

) 1
p

with the constant

Br,p(Ω , h) ≤ inf
q:q∈[1,2p/(4−p))

{
K p,q(D) · Br,q(D)

}
. �

The property of the conformal α-regularity implies the integrability of a Jacobian of conformal mappings
(conformal weights) and therefore for any conformal α-regular domain we have the embedding of weighted Lebesgue
spaces Lr (Ω , h) into non-weighted Lebesgue spaces Ls(Ω) for s = α−2

α
r .

Lemma 3.3. Let Ω be a conformal α-regular domain. Then for any function f ∈ Lr (Ω , h), α/(α− 2) ≤ r <∞, the
inequality

‖ f | Ls(Ω)‖ ≤
(∫∫

D

∣∣∣(ϕ−1)′
∣∣∣α dudv

) 2
α
·

1
s

‖ f | Lr (Ω , h)‖

holds for s = α−2
α

r .

Proof. Since Ω is a conformal α-regular domain then there exists a conformal mapping ϕ : Ω → D such that(∫∫
D

∣∣Jϕ−1(u, v)
∣∣ r

r−s dudv

) r−s
rs

=

(∫∫
D

∣∣∣(ϕ−1)′(u, v)
∣∣∣α dudv

) 2
α
·

1
s

<∞,
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for s = α−2
α

r . Then

‖ f | Ls(Ω)‖ =
(∫∫

Ω
| f (x, y)|s dxdy

) 1
s

=

(∫∫
Ω
| f (x, y)|s J

s
r
ϕ (x, y)J

−
s
r

ϕ (x, y) dxdy

) 1
s

≤

(∫∫
Ω
| f (x, y)|r Jϕ(x, y) dxdy

) 1
r
(∫∫

Ω
J
−

s
r−s

ϕ (x, y) dxdy

) r−s
rs

=

(∫∫
Ω
| f (x, y)|r h(x, y) dxdy

) 1
r
(∫∫

D
J

r
r−s

ϕ−1 (u, v) dudv

) r−s
rs

=

(∫∫
Ω
| f (x, y)|r h(x, y) dxdy

) 1
r
(∫∫

D

∣∣∣(ϕ−1)′(u, v)
∣∣∣α dudv

) 2
α
·

1
s

. (3.3)

The Lemma is proved. �

From Theorem C′ and Lemma 3.3 follows Theorem B′:

Theorem B′. Suppose that Ω ⊂ C is a simply connected domain with non empty boundary, the Brennan’s Conjecture
holds for the interval [α0, 2/3), where α0 ∈

(
−2, 0

)
.

Then for every

p ∈

(
max

{
4
3
,

2α(|α0| + 2)
(2α + 3α|α0| − 4|α0|)

, 2
})

,

every s ∈ [1, α−2
α

p
2−p

|α0|
2+|α0
] and every function f ∈ W 1,p(Ω), the inequality

inf
c∈R

(∫∫
Ω
| f (x, y)− c|s dxdy

) 1
s

≤ Bs,p(Ω)
(∫∫

Ω
|∇ f (x, y)|p dxdy

) 1
p

(3.4)

holds with the constant

Bs,p(Ω) ≤ ‖(ϕ−1)′|Lα(D)‖
2
s Br,p(Ω , h) ≤ inf

q∈[1,2p/(4−p))

{
B αs
α−2 ,q

(D) · ‖(ϕ−1)′|Lα(D)‖
2
s K p,q(D)

}
.

Proof. The inequality (3.4) immediately follows from the main inequality of Theorem C′ and the main inequality of
Lemma 3.3. The last part of this inequality used known estimates for the constant of the Poincaré–Sobolev inequality
in the unit disc.

It is necessary to clarify the restrictions for parameters p, r, s, because these restrictions do not follow directly from
Theorem A′ and Lemma 3.3.

By Lemma 3.3 s = α−2
α

r . By Theorem C′

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Hence

1 ≤ s ≤
α − 2
α
·

2p

2− p
·
|α0|

2+ |α0|
<
α − 2
α
·

p

2− p
.

Since 1 ≤ s we have from this inequality that

α

α − 2
≤

2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.
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By elementary calculations

p ≥
2α(2+ |α0|)

2α + 3α|α0| − 4|α0|
>

α

α − 1
.

The last inequality is correct by factor that Brennan’s conjecture is correct for all α : −2 < α < 2/3. �

Theorem A′ follows from Theorem B′, using s = p, that is necessary for coincidence of the first nontrivial
Neumann–Laplace eigenvalue and the constant in the Poincaré–Sobolev inequality of Theorem B′.

Theorem A′. Let ϕ : Ω → D be a conformal homeomorphism from a conformal α-regular domain Ω to the unit disc
D and the Brennan’s Conjecture holds for the interval [α0, 2/3), where α0 ∈

(
−2, 0

)
.

Then for every

p ∈

(
max

{
4/3,

4(α + |α0|)

α(2+ |α0|)

}
, 2
)

the following inequality holds

1
µp(Ω)

≤ inf
q∈[1,2p/(4−p))

{
B p

αp
α−2 ,q

(D) · ‖(ϕ−1)′|Lα(D)‖2
(∫∫

D

∣∣∣∣(ϕ−1
)′∣∣∣∣

(p−2)q
p−q

dudv

) p−q
q
}
.

Proof. By Lemma 3.3 p = α−2
α

r . By Theorem C′

1 ≤ r ≤
2p

2− p
·
|α0|

2+ |α0|
<

p

2− p
.

Hence

α

α − 2
≤

1
2− p

·
2 |α0|

2+ |α0|
.

By elementary calculations

p ≥ 2−
2 |α0|

2+ |α0|

α − 2
α
=

4(α + |α0|)

α(2+ |α0|)
>
α + 2
α

.

The last inequality holds provided that the Brennan’s conjecture holds true all α : −2 < α < 2/3. �

Corollary A′. Suppose that Ω is smoothly bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini
continuous normal. Let ϕ : Ω → D be a conformal homeomorphism from Ω onto the unit disc D. Then for every
p ∈ (1, 2) the following inequality is correct

1
µp(Ω)

≤ ‖(ϕ−1)′|L∞(D)‖p 1
µp(D)

.

Proof. If Ω is smoothly bounded Jordan domain with a boundary ∂Ω of a class C1 with a Dini continuous normal,
then for a conformal mapping ϕ : Ω → D, the derivative ϕ′ is bounded away from 0 and ∞ [23]. Hence. we can
apply Theorem A′ in the limit case α = ∞ and p = q . Then

1
µp(Ω)

≤ B p
p,p(D) · ‖(ϕ−1)′|L∞(D)‖2‖(ϕ−1)′|L∞(D)‖p−2

= ‖(ϕ−1)′|L∞(D)‖p 1
µp(D)

.

The corollary is proved. �

As an application we obtain the lower estimate of the first non-trivial eigenvalue on the Neumann eigenvalue
problem for the p-Laplace operator in the interior of the cardioid (which is a non-convex domain with a non-smooth
boundary).
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Example 3.4. Let Ωc be the interior of the cardioid ρ = 2(1+ cos θ). The diffeomorphism

z = ψ(w) = (w + 1)2, w = u + iv,

is conformal and maps the unit disc D onto Ωc. Then by Theorem A′:

1
µp(Ωc)

≤ inf
1≤q≤ 2p

4−p

(
2
π δ

(
1− δ

1/2− δ

)1−δ
)p (∫∫

D
(2|w + 1|)α dudv

) 2
α

×

(∫∫
D
(2|w + 1|)

(p−2)q
p−q dudv

) p−q
q

. (3.5)

Here δ = 1/q − (α − 2)/αp.
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