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Editorial

On the occasion of Andro Bitsadze’s 100th birthday anniversary
(May 22, 1916–September 6, 1994)

This issue is dedicated to the 100 birthday anniversary of the outstanding Georgian mathematician, Corresponding
member of the USSR Academy of Sciences, academician of the Georgian National Academy of Sciences, professor
Andro Bitsadze.

His scientific activity is so diverse that it is impossible to describe it in a full measure. It seems reasonable to divide
it into several stages keeping within the chronology. We will dwell only on those results that produced a broadest
resonance in the mathematical society and determined development of many fields of mathematics in the works of
subsequent generations.

Elliptic equations and systems together with the problems posed for them take an important place in A. Bitsadze’s
activity. The fact that the condition of uniform ellipticity of a linear equation or a system ensures fredholmity of the
boundary value problem in the given domain, in particular, of the first boundary value problem, was assumed formerly
indisputable. Irregularity of that fact has been illustrated by A. Bitsadze by a simple and clear for everyone example
of elliptic system called later on Bitsadze’s system.

As it turned out, the homogeneous Dirichlet problem for Bitsadze’s system in an arbitrary circle of arbitrarily small
radius has an infinite set of linearly independent solutions, thus the formula of their representation, containing an
arbitrary analytic function has been obtained.

This fact seemed at that time unexpected and almost unbelievable, became a subject of discussions for many
mathematicians trying to explain this phenomenon. At his known seminar, I. Gelfand made an attempt to explain
this fact by multiplicity of characteristic roots of the system. In reply, A. Bitsadze has constructed an elliptic system
with simple characteristic roots for which the Dirichlet problem in an arbitrary circle of arbitrarily small radius had
likewise an infinite set of linearly independent solutions. On the basis of those simple and refined examples, the theory
of boundary value problems for elliptic systems has acquired a great deal of new trends. The widely known theory of
nonfredholm boundary value problems is one of those trends.
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Afterwards, there arose the natural question to single out the classes of elliptic systems with solvable, in a certain
sense, boundary value problems, in particular, in the Fredholm, Noether, or Hausdorff sense. In this direction, it should
be noted that for elliptic systems constructed by A. Bitsadze, the Dirichlet problem is normally Hausdorff solvable, if
and only if the function, mapping conformally the given domain onto the circle, is rational. A. Bitsadze has singled
out a class of elliptic second order systems that are at present called weakly connected in Bitsadze’s sense for which
the Dirichlet problem is always Fredholmian one.

It was assumed that the solvability of the boundary value problems is determined only by the principal part of the
system. A. Bitsadze expressed somewhat different opinion that coefficients of the system with lower order derivatives
may significantly affect the solvability of the problem. Indeed, as it became clear, the normally solvable in one or
another sense boundary value problems for elliptic systems with Bitsadze’s operator in the principal part may turn out
to be unsolvable normally on adding lower order terms, or vice versa. Taking the above-mentioned facts into account,
he introduced the notion of strongly connected elliptic systems whose particular cases are constructed by him for
systems for which the same facts dealing with the normal solvability of the problem as for these particular cases of
elliptic systems, are valid.

The above-mentioned fundamental effects were discovered by A. Bitsadze by using the apparatus of the theory of
functions of a complex variable. In the development of boundary value problems for the second order elliptic systems
the leading part belongs to the formula obtained by him for representation of a general solution of those systems.

The instrument of the theory of analytic functions and of one-dimensional singular integral equations allows one to
investigate many boundary value problems with two independent variables. If there are more than two variables, there
arise considerable difficulties due to the absence of a complete theory of multidimensional singular integral equations.
Using the multidimensional analogue of the Sokhotski–Plemelj’s theorem, A. Bitsadze has studied the first boundary
value problem for the well-known Moisel–Theodorescu’s system, reduced it to a multidimensional system of singular
integral equations with a special matrix kernel and constructed the formula of its inversion which is called in literature
“Bitsadze’s inversion formula”.

Among the problems formulated for multidimensional elliptic equations and systems, the problem with an oblique
derivative is regarded as one of the basic ones. As far back as in G. Giraud’s works, it has been shown that if the direc-
tion of the oblique derivative does not meet the tangent plane, then the problem will be solvable in Fredholm’s sense.
Otherwise, the situation changes insomuch that many researches were inclined to regard this problem atypical for
elliptic equations. Considering just these nonstandard cases, A. Bitsadze has shown this problem not at all exceeds the
bounds of typical problems and proved the theorems on a number and on the existence of solutions. As it became clear,
the problem with an oblique derivative might turn out to be simultaneously underdetermined and overdetermined. To
make the problem well-posed, it is necessary in some cases (proceeding from the structure of interconnections between
the vector fields of an oblique derivative and the domain) to require that the supplementary boundary conditions at
some points of the boundary be fulfilled. Those results were found interesting and earned great attention of specialists,
as a consequence there appeared many important research works carried out by A. Bitsadze’s disciples.

The objects of A. Bitsadze’s investigations are always not ordinary. He studied the problems which are, as a rule,
not subjected to standard conditions ensuring the existence and uniqueness of solutions. Such problems may be related
to those suggested by A. Bitsadze for elliptic equations with parabolic degeneration with weighted conditions on the
boundary. These problems were dictated owing to their practical necessity, and the condition of uniform ellipticity
violates in such problems. They degenerate parabolically on the whole boundary, or on its certain part only.

Academician M. Keldysh restricted himself to the boundedness of solutions on the above-mentioned sets, releasing
them from any kind of boundary conditions. A. Bitsadze replaced the requirement of boundedness of solutions by the
weighted boundary conditions on the above-mentioned sets, taking thus into account the unbounded solutions, as well.
These problems have brought to light new practical and theoretical validity of weighted functional spaces that before
and after formulation of those problems have become the subject of a great number of research works.

The hyperbolic equations and systems are not less rich with the effects connected with parabolic degeneration.
Many factors affect the solvability of the problems formulated here; they include an order of parabolic degeneration,
orientation of a set of degeneration points with respect to the characteristic manifolds, etc. As distinct from a separately
taken equation, hyperbolic systems show a lot of unexpected properties even without parabolic degeneration. Thus,
for example, the well-known Goursat problem for a scalar equation is perfectly well-posed.

The hyperbolic system constructed by A. Bitsadze has shown that the corresponding Goursat homogeneous
problem may have an infinite set of linearly independent solutions, and what is more, he has shown that the lower
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order terms of the system may significantly affect the well-posedness of that problem. Those facts have given a great
impetus to many important researches and stimulated development of a series of scientific trends.

In the middle of the past century, mathematics has found new significant applications that should, seemingly, be
explained by an unprecedented rate of technical progress. Achievement of transonic and supersonic velocities posed
many problems including those of mixed type equations in which M. Lavrent’ev has shown special interest and awoken
it in A. Bitsadze. Combining the methods of the theory of analytic functions, partial differential equations and singular
integral equations, A. Bitsadze created a powerful and, at the same time, elegant apparatus, convenient for solving the
problems formulated for the mixed type equations. Efficiency of the suggested method has been tested on the boundary
value problems for Lavrent’ev–Bitsadze’s equation, being the model of the well-known Tricomi’s equations for which
A. Bitsadze posed a great number of actual problems and stated significant facts known as “Bitsadzian facts”. Here we
will mention only the Bitsadze’s extremum principle. For the Tricomi’s equation, along with the Tricomi’s problem,
researchers studied also the Dirichlet problem expecting its solvability. This was needed, mainly, for a practical,
concrete purpose.

A. Bitsadze has shown that this problem was not always well-posed, and for its solvability, it is necessary to
release some part of the boundary of hyperbolic subdomain from the conditions. To formulate the problem responding
practical purposes in which the whole boundary is occupied with the conditions, A. Bitsadze suggested several
versions. One of the versions links the solution values at different points of the boundary by the functional low.
This nonlocal problem was proved to be well-posed and prompted the ways of its natural generalization to a
multidimensional case.

To every well-posed plane problem one can assign several spatial versions of which it is necessary to single out
more rational ones. For example, the well-known Tricomi’s problem has several versions of spatial generalization,
where the structure of a set of type variation points becomes obvious. This set may turn out to be a surface oriented to
the space or time. This moment determines two essentially different trends in the theory of boundary value problems
for multidimensional mixed type equations. This subject-matter was not set aside. The problems posed here became
the point of investigations for many specialists in different fields of mathematics, for example, in spectral theory.

All equations refer to different types, depending on their characteristic roots. If the equation, along with its real
characteristic roots, has also complex ones, then it belongs to the composite type equations. Such equations include, for
example, the Laplace differentiated equation. If instead of the Laplace equation is differentiated Tricomi’s operator, we
obtain the mixed-composite type operator. For the equation of such a complicated nature, A. Bitsadze has formulated
a great deal of actual problems and obtained important results.

We have mentioned above the nonlocal problem in which the values of an unknown solution at different boundary
points are interconnected. Of practical and theoretical interest are the problems in which the boundary values of
solutions are connected by the specific law with their values on some set of interior points of the domain. These
problems cannot be in the literal sense considered as the boundary value problems. Their investigation comes across
practical difficulties very often. Among the problems of such a kind the Bitsadze–Samarski’s nonlocal problem takes
central place, and a great number of works are devoted to its general modifications.

A. Bitsadze constructed exact solutions of wide classes of nonlinear partial differential equations and systems
covering Einstein’s gravitation field equations, Heisenberg’s equations of ferromagnetic theory, various models of
Lorentz-covariant equations that can be found in the well-known monographs and reference books for exact solutions
of the above-mentioned equations.

Analysing A. Bitsadze’s scientific works, we can say with confidence that he did not keep to the beaten tracks,
but paved new ways in mathematical science, determining its progress for many years ahead. The ideas and methods
elaborated by A. Bitsadze serve at present as an inspiration source for numerous researches of his pupils and followers.
A large number of A. Bitsadze’s creative achievements, including those mentioned above, have become long ago a
corner stone on which scientific trends in the modern theory of partial differential equations are constructed.

S. Kharibegashvili
V. Kokilashvili
T. Jangveladze
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Abstract

We consider Dirichlet boundary value problem for Laplace–Beltrami Equation On Hypersurface S , when the Laplace–Beltrami
operator on the surface is described explicitly in terms of Günter’s differential operators. Using the calculus of Günter’s tangential
differential operators on hypersurfaces we establish Finite Element Method for the considered boundary value problem and obtain
approximate solution in explicit form.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MSC: 53A05; 76M10

Keywords: Hypersurface; Günter’s derivatives; Laplace–Beltrami equation; Finite Element Method

Let S be a C2 smooth orientable surface in R3 with Lipschitz boundary ∂S given by an immersion

ζ : ω→ S , ω ⊂ R2 (1)

where ω is open simple connected domain in R2 with Lipschitz boundary ∂ω and let θ : S → ω be the inverse
mapping

ζ ◦ θ = I d : S → S , θ ◦ ζ = I d : ω→ ω.

Denote by ν(y), y ∈ S the unit normal on S with the chosen orientation.
Günter’s tangential derivatives D j on S are defined by identities

D j := ∂ j − ν j (y)∂ν, j = 1, 2, 3, (2)

where ∂ν =
∑3

k=1 νk∂k denotes the normal derivative.

I The investigation is supported by the grant of the Shota Rustaveli Georgian National Science Foundation GNSF/DI/10/5-101/12.
∗ Corresponding author.

E-mail addresses: t buchukuri@yahoo.com (T. Buchukuri), roldud@gmail.com (R. Duduchava), giorgitephnadze@gmail.com
(G. Tephnadze).
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Tangential derivatives can be applied to the definition of Sobolev spaces W`
p(S ) = H`(S ), ` ∈ N0, 1 ≤ p <∞

on an `-smooth surface S (see [1,2])

H`(S ) =W`
p(S ) :=

{
ϕ ∈ D′(S ) : ∇αS ϕ ∈ Lp(S ) , ∀α ∈ Nn

0 , |α| ≤ `
}
. (3)

Equivalently, W`
p(S ) is the closure of the space C`(S ) with respect to the norm

‖ϕ
∣∣W`

p(S ) ‖ :=

[∑
|α|≤`

‖Dαϕ
∣∣Lp(S )‖p

]1/p

.

The space W`
p(S ) can also be understood in distributional sense: derivative D jϕ ∈ L2(S ) means that there exists a

function in L2(S ) denoted by D jϕ such that

(D jϕ,ψ) := (ϕ,D
∗

jψ) :=

∫
S
ϕ(y)D∗jψ(y) dσ ∀ψ ∈ L2(S ).

Space W`
2(S ) is a Hilbert space with the scalar product

(ϕ, v)
(`)

S :=
∑
|α|≤`

∫
S

Dα
j ϕ(y)D

α
j v(y)dσ. (4)

Under the space W−`2 (S ) with a negative order −`, ` ∈ N, is understood, as usual, the dual space of distributions to
the Sobolev space W`

2(S ).
Denote by ∆S the Laplace–Beltrami operator on S

∆S ϕ =

3∑
j=1

D2
j ϕ ∀ϕ ∈ C2(S ). (5)

Note, that if ϕ ∈ C2
0(S ), ψ ∈ C1(S ), then due to Kelvin—Stokes theorem

(−∆S ϕ,ψ)S =

3∑
j=1

(Dϕ j ,Dψ j )S . (6)

From (6) immediately follows

Theorem 1. If S is a C1 smooth surface in R3, then Laplace–Beltrami operator

−∆S : W1
2(S )→W−1

2 (S ) (7)

is positive definite (see [3])

(−∆S ϕ, ϕ)S =

3∑
k=1

(Dkϕ,Dkϕ)S = ‖∇S ϕ
∣∣L2(S )‖2 > 0

for ∀ϕ ∈W1
2(S ), ϕ 6= 0. (8)

We consider the following Dirichlet boundary value problem for the Laplace–Beltrami equation{
∆S u(y) = f (y), y ∈ S ,

u+(y) = 0, y ∈ ∂S ,
(9)

where f ∈ L2(S ).
From (6) follows variational formulation of (9):
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Find a vector ϕ ∈ H1
0(S ) that

3∑
k=1

(Dkϕ,Dkψ)S = −( f, ψ)S ∀ψ ∈ H1/2(S )3. (10)

Due to Theorem 1 and Poincaré inequality the sesquilinear form

a(ϕ, ψ) :=
3∑

k=1

(Dkϕ,Dkψ)S (11)

is bounded and coercive in H1
0(S )

M1
∥∥ϕ∣∣H1(S )

∥∥2
≥ a(ϕ, ϕ) ≥ M

∥∥ϕ∣∣H1(S )
∥∥2
, ∀ϕ ∈ H1

0(S ), (12)

for some M > 0, M1 > 0, therefore problem (10) possesses a unique solution by Lax–Milgram Theorem (see [4]).
Now we describe the discrete counterpart of the problem (cf. [5]).
Let Xh be a family of finite dimensional subspaces approximating H1(S ), i.e., such that

⋃
h Xh is dense in H1(S ).

Consider Eq. (10) in the finite-dimensional space Xh

a(ϕh, ψh) = f̃ (ψh) ∀ψ ∈ Xh, (13)

where f̃ (ψh) = −( f, ψh)S .

Theorem 2. Eq. (13) has the unique solution ϕh ∈ Xh for all h > 0. This solution converges in H1(S ) to the solution
ϕ of (10) as h → 0.

Proof. From the coercivity of sesquilinear form a immediately follows

c1
∥∥ϕh

∣∣H1(S )
∥∥2
≤ a(ϕh, ϕh) = | f̃ (ϕh)|

≤ c2
∥∥ϕh

∣∣H1(S )
∥∥ for all h. (14)

Let ϕh be the unique solution of the homogeneous equation:

a(ϕh, ψh) = 0 for all ψh ∈ Xh . (15)

Then (14) implies
∥∥ϕh

∣∣H1(S )
∥∥ = 0 and consequently, ϕh = 0. Therefore Eq. (13) has a unique solution. From (14)

it follows also that∥∥ϕh
∣∣H1(S )

∥∥2
≤

c2

c1

∥∥ϕh
∣∣H1(S )

∥∥.
Hence sequence {‖ϕh |H1(S )‖} is bounded and we can extract a subsequence {ϕhk } which converges weakly to some
ϕ ∈ H1(S ).

Let us take an arbitrary ψ ∈ H1(S ) and for each h > 0 choose ψh ∈ Xh such, that ψh → ψ in H1(S ). Then
from (13) we have

a(ϕ, ψ) = f̃ (ψ), ∀ψ ∈ H1(S ).

Hence, ϕ solves (10). Note, that since (10) is uniquely solvable, each subsequence {ϕhk } converges weakly to the same
solution ϕ, and consequently the whole sequence {ϕh} also converges weakly to ϕ. Now let us prove that it converges
in the space H1(S ).

Indeed, due to (14) we have

c1‖ϕh − ϕ‖
2
≤ |a(ϕh − ϕ, ϕh − ϕ)| ≤ |a(ϕh, ϕh − ϕ)− a(ϕ, ϕh − ϕ)|

= c1| f̃ (ϕh)− a(ϕh, ϕ)− f̃ (ϕh − ϕ)| → c1| f̃ (ϕ)− a(ϕ, ϕ)| = 0,

which completes the proof. �
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We can choose spaces Xh in different ways. As an example let us describe the discretization method based on the
representation of the surface S as a network of the triangle-shaped elements.

Let (Uα, ~α) be a parametrization of S . Here ~α : Uα ⊂ R2
→ S are injective differentiable mappings

(diffeomorphisms) of open sets Uα of R2 into S such that
⋃
α ~α(Uα) = S .

Let h > 0. We call Sh a triangulation of S if S is represented as S =
⋃

Tγ ∈Sh
Tα , where the sets Tγ possess the

following properties:

1. Each Tγ is a subset of some ~αγ (Uαγ ) and Tγ := ~−1
αγ
(Tγ ) ⊂ Uαγ is a triangle.

2. If Tγ = ~−1
α (Tγ ) and Tδ = ~−1

α (Tδ) are subsets of the same Uα , then their intersection can be only a common
vertex or a side.

3. Sides of the triangles ~−1
αγ
(Tγ ) do not exceed h.

Denote by NS the set of nodes of the triangulation S, i.e. the set of all points ~α(Pβ) ∈ S , where Pβ are vertices
of the triangles Tγ . Let ζ : NS → R be any mapping of NS into R, then it can be easily proved that there exists
function vζ ∈ H1(S ) such that:

1. rNS
vζ = ζ .

2. The restriction of vζ ◦ ~α on Tα is an affine function: vζ ◦ ~α(x1, x2) = a1x1 + a2x2 + a3.

Denote by Xh the set of all such functions, corresponding to the triangulation Sh . The set Xh consists of the piecewise-
linear functions and therefore

⋃
h Xh is dense in H1/2(S )3.

We can replace the triangle-shaped elements in the above-described network by quadrilateral, hexagonal or other
type polygonal elements.

In particular, consider a case, when ω = Uα in the above parametrization is a square part of R2

ω = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1}, ζ(ω) = S .

Allocate N 2 nodes Pi j = (i/(N + 1), j/(N + 1)), i, j = 1, . . . , N on ω.
Let αk, k = 1, . . . , N be piecewise linear functions defined on segment [0, 1] as follows:

αk(x) =



0, 0 ≤ x ≤
k − 1
N + 1

,

(N + 1)
(

x −
k − 1
N + 1

)
,

k − 1
N + 1

< x ≤
k

N + 1
,

(N + 1)
(

k + 1
N + 1

− x

)
,

k

N + 1
< x ≤

k + 1
N + 1

,

0,
k + 1
N + 1

< x ≤ 1,

j = k, . . . , N ,

(16)

and denote by ϕ̃i j , i, j = 1, . . . , N functions

ϕ̃i j (x1, x2) = αi (x1)α j (x2), i, j = 1, . . . , N , (x1, x2) ∈ ω. (17)

Evidently, ϕ̃i j are continuous functions, which take their maximal value ϕi j (Pi j ) = 1 at point Pi j and vanish outside
the set

ωi j = ω ∩

{
(x1, x2) : 0 ≤

∣∣∣∣x1 −
i

N + 1

∣∣∣∣ ≤ 1, 0 ≤

∣∣∣∣x2 −
j

N + 1

∣∣∣∣ ≤ 1
}
, (18)

consequently, they belong to H1(ω) and are linearly independent (see [6]).
Denote by X N the linear span of the functions ϕi j ◦ ϑ, i, j = 1, . . . , N . The space X N is N 2-dimensional space

contained into H1(S ).
Consider Eq. (13) in the space X N .

a(ϕ, ψ) = f̃ (ψ) ∀ψ ∈ X N . (19)
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We sought the solution ϕ ∈ X N of Eq. (19) in the form

ϕ =

N∑
i, j=1

Ci j ϕi j , (20)

where Ci j are unknown coefficients. Substituting ϕ in (19) and replacing ψ successively by ϕi j , i, j = 1, . . . , N , we
get the equivalent system of N 2 linear algebraic equations

N∑
i, j=1

Aijkl Ci j = fkl , k, l = 1, . . . , N , (21)

where

Aijkl = a
(
ϕi j , ϕkl

)
, fkl = f̃ (ϕkl). (22)

Matrix A = A(i j)(kl) is the Gram’s matrix of the positive semidefinite bilinear form a, therefore it is a nonsingular
matrix and Eq. (21) has a unique solution.

ϕ =

N∑
i, j,k, l=1

(
A
)−1
(i j)(kl) ϕi j fkl . (23)

To calculate explicitly A(i j)(kl) and fkl note, that

Dmϕi j (y) = ∂ymϕi j (y)+ νm∂νϕi j (y)

=

2∑
p=1

∂pϕ̂i j (ϑ(y))

(
∂mϑp(y)+ νm

3∑
l=1

νl∂lϑp(y)

)

=

2∑
p=1

∂pϕ̂i j (ϑ(y))Dmϑp(y), (24)

Aijkl = a
(
ϕi j , ϕkl

)
=

2∑
p,q=1

∫
S

(
∂pϕ̂i j (ϑ(y))

) (
∂q ϕ̂kl(ϑ(y))

) 3∑
m=1

Dmϑp(y)Dmϑq(y)dσ, (25)

fkl = −( f, ϕ̂kl)S = −

∫
S

f (y) ϕ̂kl(y) dσ. (26)

Changing variables y = ζ(x), x = ϑ(y) on right side of (25) and taking into account, that supp
(
∂pϕ̂i j (x)

)
= ωi j

we get

Aijkl =

2∑
p,q=1

∫
ωi j∩ωkl

(
∂pϕ̂i j (x)

) (
∂q ϕ̂kl(x)

) 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx, (27)

fkl = −

∫
ωkl

f (ζ(x)) ϕ̂kl(ζ(x))|σ
′(x)|dx (28)

where |σ ′(x)| is a surface element of S

|σ ′(x)| = |∂1ϑ(x)× ∂2ϑ(x)|.

From (16)–(19), (27)–(28) we obtain explicit expressions of Aijkl and fkl , 1 ≤ i, j, k, l,≤ N

Aijkl = 0, if i < k − 1 or k < i − 1 or j < l − 1 or l < j − 1,
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Aijkl = (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j+1
N+1

j
N+1

[
δp1

(
x2 −

j + 1
N + 1

)
+ δp2

(
x1 −

i + 1
N + 1

)][
δq1

(
x2 −

j

N + 1

)

+ δq2

(
x1 −

i

N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i + 1, l = j + 1,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j
N+1

j−1
N+1

[
δp1

( j − 1
N + 1

− x2

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

(
x2 −

j − 1
N + 1

)

+ δq2

(
x1 −

i

N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j+1
N+1

j
N+1

[
δp1

( j + 1
N + 1

− x2

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

( j + 1
N + 1

− x2

)

+ δq2

( i

N + 1
− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i + 1, l = j,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j
N+1

j−1
N+1

[
δp1

( j − 1
N + 1

− x2

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

( j

N + 1
− x2

)

+ δq2

(
x1 −

i

N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i + 1, l = j − 1,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j+1
N+1

j
N+1

[
δp1

( j + 1
N + 1

− x2

)
+ δp2

( i − 1
N + 1

− x1

)][
δq1

( j

N + 1
− x2

)

+ δq2

( i

N + 1
− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i − 1, l = j + 1,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j
N+1

j−1
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

(
x2 −

j − 1
N + 1

)

+ δq2

(
x1 −

i − 1
N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j+1
N+1

j
N+1

[
δp1

( j + 1
N + 1

− x2

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

( j + 1
N + 1

− x2

)

+ δq2

( i − 1
N + 1

− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j
N+1

j−1
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

( j − 1
N + 1

− x2

)
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+ δq2

( i + 1
N + 1

− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j+1
N+1

j
N+1

[
δp1

( j + 1
N + 1

− x2

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

( j + 1
N + 1

− x2

)

+ δq2

( i + 1
N + 1

− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i, l = j,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j
N+1

j−1
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

( j

N + 1
− x2

)

+ δq2

( i − 1
N + 1

− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i+1
N+1

i
N+1

∫ j
N+1

j−1
N+1

[
δp1

( j − 1
N + 1

− x2

)
+ δp2

( i + 1
N + 1

− x1

)][
δq1

(
x2 −

j

N + 1

)

+ δq2

(
x1 −

i + 1
N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i, l = j − 1,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j
N+1

j−1
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

( j − 1
N + 1

− x2

)

+ δq2

( i

N + 1
− x1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

+ (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j+1
N+1

j
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

(
x2 −

j + 1
N + 1

)

+ δq2

(
x1 −

i

N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i − 1, l = j,

Aijkl = (N + 1)4
2∑

p,q=1

∫ i
N+1

i−1
N+1

∫ j
N+1

j−1
N+1

[
δp1

(
x2 −

j − 1
N + 1

)
+ δp2

(
x1 −

i − 1
N + 1

)][
δq1

(
x2 −

j

N + 1

)

+ δq2

(
x1 −

i

N + 1

)] 3∑
m=1

Dmϑp(ζ(x))Dmϑq(ζ(x))|σ
′(x)|dx,

if k = i − 1, l = j − 1,

fkl = −(N + 1)2
∫ k

N+1

k−1
N+1

∫ l
N+1

l−1
N+1

(
x1 −

k − 1
N + 1

)(
x2 −

l − 1
N + 1

)
f (ζ(x))|σ ′(x)|dx

− (N + 1)2
∫ k+1

N+1

k
N+1

∫ l
N+1

l−1
N+1

( k + 1
N + 1

− x1

)(
x2 −

l − 1
N + 1

)
f (ζ(x))|σ ′(x)|dx



T. Buchukuri et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 300–307 307

− (N + 1)2
∫ k

N+1

k−1
N+1

∫ l+1
N+1

l
N+1

(
x1 −

k − 1
N + 1

)( l + 1
N + 1

− x2

)
f (ζ(x))|σ ′(x)|dx

− (N + 1)2
∫ k+1

N+1

k
N+1

∫ l+1
N+1

l
N+1

( k + 1
N + 1

− x1

)( l + 1
N + 1

− x2

)
f (ζ(x))|σ ′(x)|dx .

As an application of the aforementioned boundary value problem we can consider stationary state of heat conduc-
tion by an isotropic media, governed by the Laplace equations and constrained by classical Dirichlet–Neumann mixed
boundary conditions for the Laplace equation in the layer domain Ωε

:= S × (−ε, ε) of thickness 2ε, where S ⊂ C
is a smooth subsurface of a closed hypersurface C with smooth nonempty boundary ∂S

∆Ωεϕ(y, t) = f (y, t), (y, t) ∈ S × (−ε, ε), (29)

ϕ+(y, t) = g(y, t), (y, t) ∈ ∂S × (−ε, ε), (30)

±(∂tϕ)
+(y,±ε) = q±(y), y ∈ S , (31)

where

∆Ωεϕ =

4∑
j=1

D2
j ϕ +H 0

S ∂νϕ = ∆S ϕ + ∂
2
t ϕ +H 0

S ∂νϕ

and H 0
S is a Weingarten matrix

H 0
S (X ) :=

[
D jνk(X )

]
n×n , X ∈ S . (32)

It can be proved that when the thickness 2ε of the layer domain Ωε with the mid-surface C , tends to zero, this
boundary-value problem “converges” in the sense of Γ convergence to the following Dirichlet boundary value prob-
lem for Laplace–Beltrami equation on S

∆S ϕ(y) = f0(y) y ∈ S ,

ϕ+(τ ) = g(τ, 0), τ ∈ ∂S ,
(33)

where

f0(y) := f (y, 0)− (∂2
t G)(y, 0)−

1
2
[q+(y)+ q−(y)]

1
2

[
(∂t G)(y, 0)− (∂t G)(y, 0)

]
(34)

and G(x, t) is a continuation of the boundary data g(y, t), (y, t) ∈ ∂S × (−ε, ε), from the boundary into the domain
(x, t) ∈ Ωε.
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Abstract

We investigate the mixed boundary value problems of the generalized thermo-electro-magneto-elasticity theory for
homogeneous anisotropic solids with interior cracks. Using the potential methods and theory of pseudodifferential equations
on manifolds with boundary we prove the existence and uniqueness of solutions. We analyse the asymptotic behaviour and
singularities of the mechanical, electric, magnetic, and thermal fields near the crack edges and near the curves, where different
types of boundary conditions collide. In particular, for some important classes of anisotropic media we derive explicit expressions
for the corresponding stress singularity exponents and demonstrate their dependence on the material parameters. The questions
related to the so called oscillating singularities are treated in detail as well.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-
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1. Introduction

The paper deals with three-dimensional boundary value problems (BVP) arising in the generalized thermo-electro-
magneto-elasticity (GTEME) theory for homogeneous anisotropic solids with interior cracks.

The theory under consideration is associated with Green–Lindsay’s model of thermo-electro-magneto-elasticity
which describes full coupling of elastic, electric, magnetic, and thermal fields. Another feature of this model is that
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in contrast to the conventional theory of heat transfer, the heat propagation in Green–Lindsay’s theory occurs with a
finite speed (see [1,2]).

In the study of active material systems, there is significant interest in the coupling effects between elastic,
electric, magnetic and thermal fields. For example, piezoelectric materials (electro-elastic coupling) have been used
as ultrasonic transducers and micro-actuators; pyroelectric materials (thermal–electric coupling) have been applied
in thermal imaging devices; and magnetoelastic coupling effects are used in modern signal detection systems and
instrumentation (see [3–9] and the references therein).

Theories of thermoelasticity consistent with a finite speed propagation of heat recently are attracting increasing
attention. In contrast to the conventional thermoelasticity theory, these nonclassical theories involve a hyperbolic-type
heat transport equation, and are motivated by experiments exhibiting the actual occurrence of wave-type heat transport
(second sound). Several authors have formulated these theories on different grounds, and a wide variety of problems
revealing characteristic features of the theories has been investigated.

As it is well known from the classical mathematical physics and the classical elasticity theory, in general, solutions
to crack type and mixed boundary value problems have singularities near the crack edges and near the lines where
the types of boundary conditions change, regardless of the smoothness of given boundary data. Throughout the paper
we shall refer to such lines as exceptional curves. The same effect can be observed also in the GTEME theory. In
this paper, our main goal is a detailed theoretical investigation of regularity and asymptotic properties of thermo-
mechanical and electro-magnetic fields near the exceptional curves. By explicit calculations we show that the stress
singularity exponents essentially depend on the material parameters, in general.

We draw a special attention to the problem of oscillating singularities which is very important in engineering
applications. Such singularities usually lead to some mechanical contradictions, e.g., overlapping of materials (see,
e.g., [10] and the references therein). It turned out that there are classes of anisotropic media for which the oscillating
singularities near the exceptional curves do not occur. In particular, calcium phosphate based bioceramics, such as
hydroxyapatite, possess the above property. These materials are extensively used in medicine and dentistry [11,12].

Our main tools are the potential methods and the theory of pseudodifferential equations, which proved to be very
efficient in deriving the asymptotic formulas. They allow us to calculate effectively the field singularity exponents by
means of the characteristics related to the symbol matrices of the corresponding pseudodifferential operators. In our
analysis we essentially apply the results obtained in the references [13–16,18,19].

To demonstrate the dependence of the singularity exponents on the material parameters let us compare behaviour
of solutions to the crack type mixed boundary value problems near the exceptional curves for the Laplace equation
(Zaremba type problem), for equations of the classical elasticity (e.g., the Lamé equations for an isotropic solid) and
for the equations to generalized thermo-electro-magneto-elasticity equations for transversely-isotropic media.

Near the crack edge the asymptotic formulae for solutions of all the above three problems have the same form,
namely,

a0 r1/2
+ a1 r3/2

+ · · · , (1.1)

where r is the distance from the reference point x to the crack edge [20,21].
We have quite a different situation near the exceptional curve, where the different types of boundary conditions

(for example, the Dirichlet and Neumann type conditions) collide. Unlike the asymptotic expansion (1.1) of solutions
to the Laplace equation the asymptotic expansion of the solutions to Lamé equations has the form

b0 r1/2
+ b1 r1/2+i δ

+ b2 r1/2−i δ
+O(r3/2−ε),

where ε is an arbitrary positive number, while the asymptotic expansion of a solution to the generalized thermo-
electro-magneto-elasticity equations for transversely-isotropic case reads as

c0 rγ1 + c1 r1/2+i δ̃
+ c2 r1/2−i δ̃

+ c3 r1/2 ln r + c4 r1/2
+O(rγ2),

where γ1 ∈ (0, 1/2), γ2 > 1/2, and δ and δ̃ are real numbers. Note that γ1 − 1 represents the dominant stress
singularity exponent. The parameter γ1 in general depends on the material constants and the geometry of the curve
and may take an arbitrary value from the interval (0, 1/2) (for details see Section 6). Thus, the stress singularity
exponent essentially depends on the material constants and is less than−1/2, in general. Consequently, in the classical
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elasticity, we have oscillating stress singularities, while in the generalized thermo-electro-magneto-elasticity theory
we have no oscillating stress singularities for the transversely isotropic case due to the inequality γ1 < 1/2.

2. Formulation of the problem

2.1. Field equations

In this subsection, we collect the field equations of the generalized thermo-electro-magneto-elasticity (GTEME)
for a general anisotropic case and introduce the corresponding matrix partial differential operators

Throughout the paper u = (u1, u2, u3)
> denotes the displacement vector, σi j are the components of the mechanical

stress tensor, εk j = 2−1(∂k u j + ∂ j uk) are the components of the mechanical strain tensor, E = (E1, E2, E3)
> and

H = (H1, H2, H3)
> are electric and magnetic fields respectively, D = (D1, D2, D3)

> is the electric displacement
vector and B = (B1, B2, B3)

> is the magnetic induction vector, ϕ and ψ stand for the electric and magnetic potentials
and

E = −gradϕ , H = −gradψ ,

ϑ is the temperature change to a reference temperature T0, q = (q1, q2, q3)
> is the heat flux vector, and S is the

entropy density.
We employ also the notation ∂ = ∂x = (∂1, ∂2, ∂3), ∂ j = ∂/∂x j , ∂t = ∂/∂t ; the superscript (·)> denotes

transposition operation. In what follows the summation over the repeated indices is meant from 1 to 3, unless stated
otherwise. Throughout the paper the over bar, applied to numbers and functions, denotes complex conjugation and the
central dot denotes the scalar product of two vectors in the complex vector space CN , i.e., a · b ≡ (a, b) :=

∑N
j=1 a j b j

for a, b ∈ CN . Over bar, applied to a subset M of Euclidean space RN , denotes the closure of M, i.e. M = M∪∂M,
where ∂M is the boundary of M.

In the GTEME theory we have the following governing equations:

The constitutive relations:

σr j = σ jr = cr jkl εkl − elr j El − qlr j Hl − λr j (ϑ + ν0 ∂tϑ), r, j = 1, 2, 3, (2.1)

D j = e jkl εkl + ~ jl El + a jl Hl + p j (ϑ + ν0 ∂tϑ), j = 1, 2, 3, (2.2)

B j = q jkl εkl + a jl El + µ jl Hl + m j (ϑ + ν0 ∂tϑ), j = 1, 2, 3, (2.3)

% S = λkl εkl + pl El + ml Hl + a0 + d0 ϑ + h0 ∂tϑ. (2.4)

The equations of motion:

∂ jσr j + % Fr = % ∂
2
t ur , r = 1, 2, 3. (2.5)

The quasi-static equations for electric and magnetic fields:

∂ j D j = %e , ∂ j B j = %c . (2.6)

The linearized energy equations:

% T0 ∂t S = −∂ j q j + % Q, q j = −T0 η jl∂lϑ. (2.7)

Here the following notation is used: %—the mass density, %e—the electric charge density, %c—the electric current
density, F = (F1, F2, F3)

>—the mass force density, Q—the heat source intensity, cr jkl—the elastic constants, e jkl—
the piezoelectric constants, q jkl—the piezomagnetic constants, ~ jk—the dielectric (permittivity) constants, µ jk—
the magnetic permeability constants, a jk—the electromagnetic coupling coefficients, p j , m j , and λr j —coupling
coefficients connecting dissimilar fields, η jk—the heat conductivity coefficients, T0—the initial reference temperature,
that is the temperature in the natural state in the absence of deformation and electromagnetic fields, ν0 and h0—two
relaxation times, a0 and d0—constitutive coefficients.

The constants involved in the above equations satisfy the symmetry conditions:

cr jkl = c jrkl = cklr j , ekl j = ek jl , qkl j = qk jl ,

~k j = ~ jk, λk j = λ jk, µk j = µ jk, ak j = a jk, ηk j = η jk, r, j, k, l = 1, 2, 3.
(2.8)
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From physical considerations it follows that (see, e.g., [22,23,2,1,24]):

cr jkl ξr j ξkl ≥ δ0 ξkl ξkl , ~k j ξk ξ j ≥ δ1 |ξ |
2, µk j ξk ξ j ≥ δ2 |ξ |

2, ηk j ξk ξ j ≥ δ3 |ξ |
2,

for all ξk j = ξ jk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3,
(2.9)

ν0 > 0, h0 > 0, d0ν0 − h0 > 0, (2.10)

where δ0, δ1, δ2, and δ3 are positive constants depending on material parameters.

Due to the symmetry conditions (2.8), with the help of (2.9) we easily derive

cr jkl ζr j ζkl ≥ δ0 ζkl ζkl , ~k j ζk ζ j ≥ δ1 |ζ |
2, µk j ζk ζ j ≥ δ2 |ζ |

2, ηk j ζk ζ j ≥ δ3 |ζ |
2,

for all ζk j = ζ jk ∈ C and for all ζ = (ζ1, ζ2, ζ3) ∈ C3.
(2.11)

More careful analysis related to the positive definiteness of the potential energy and the thermodynamical laws insure
that the following 8× 8 matrix

M = [Mk j ]8×8 :=


[~ jl ]3×3 [a jl ]3×3 [p j ]3×1 [ν0 p j ]3×1
[a jl ]3×3 [µ jl ]3×3 [m j ]3×1 [ν0m j ]3×1
[p j ]1×3 [m j ]1×3 d0 h0
[ν0 p j ]1×3 [ν0m j ]1×3 h0 ν0h0


8×8

(2.12)

is positive definite. Note that the positive definiteness of M remains valid if the parameters p j and m j in (2.12) are
replaced by the opposite ones, −p j and −m j . Moreover, it follows that the matrices

Λ(1) :=
[
[~k j ]3×3 [ak j ]3×3
[ak j ]3×3 [µk j ]3×3

]
6×6

, Λ(2) :=
[

d0 h0
h0 ν0h0

]
2×2

(2.13)

are positive definite as well, i.e.,

~k j ζ
′

k ζ
′

j + ak j (ζ
′

k ζ
′′

j + ζ
′

k ζ
′′

j )+ µk j ζ
′′

k ζ
′′

j ≥ κ1 (|ζ
′
|
2
+ |ζ ′′|2) ∀ζ ′, ζ ′′ ∈ C3, (2.14)

d0 |z1|
2
+ h0 (z1 z2 + z1 z2)+ ν0h0 |z2|

2
≥ κ2 (|z1|

2
+ |z2|

2) ∀z1, z2 ∈ C, (2.15)

with some positive constants κ1 and κ2 depending on the material parameters involved in (2.13).

With the help of the symmetry conditions (2.9) we can rewrite the constitutive relations (2.1)–(2.4) as follows

σr j = cr jkl ∂luk + elr j ∂lϕ + qlr j ∂lψ − λr j (ϑ + ν0 ∂tϑ), r, j = 1, 2, 3, (2.16)

D j = e jkl ∂luk − ~ jl ∂lϕ − a jl ∂lψ + p j (ϑ + ν0 ∂tϑ), j = 1, 2, 3, (2.17)

B j = q jkl ∂luk − a jl ∂lϕ − µ jl ∂lψ + m j (ϑ + ν0 ∂tϑ), j = 1, 2, 3, (2.18)

S = λkl ∂luk − pl ∂lϕ − ml ∂lψ + a0 + d0 ϑ + h0 ∂tϑ. (2.19)

In the theory of generalized thermo-electro-magneto-elasticity the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (n1, n2, n3) have the form

σr j n j = cr jkl n j ∂luk + elr j n j ∂lϕ + qlr j n j ∂lψ − λr j n j (ϑ + ν0 ∂tϑ) , r = 1, 2, 3, (2.20)

while the normal components of the electric displacement vector, magnetic induction vector and heat flux vector read
as

D j n j = e jkl n j ∂luk − ~ jl n j ∂lϕ − a jl n j ∂lψ + p j n j (ϑ + ν0 ∂tϑ), (2.21)

B j n j = q jkl n j ∂luk − a jl n j ∂lϕ − µ jl n j ∂lψ + m j n j (ϑ + ν0 ∂tϑ), (2.22)

q j n j = −T0 η jl n j ∂lϑ.
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For convenience we introduce the following matrix differential operator

T = T (∂x , n, ∂t ) =
[

T pq(∂x , n, ∂t )
]

6×6

:=


[cr jkl n j ∂l ]3×3 [elr j n j ∂l ]3×1 [qlr j n j ∂l ]3×1 [−λr j n j (1+ ν0 ∂t )]3×1
[−e jkl n j ∂l ]1×3 ~ jl n j ∂l a jl n j ∂l −p j n j (1+ ν0 ∂t )

[−q jkl n j ∂l ]1×3 a jl n j ∂l µ jl n j ∂l −m j n j (1+ ν0 ∂t )

[0]1×3 0 0 η jl n j ∂l


6×6

. (2.23)

Evidently, for a smooth six vector U := (u, ϕ, ψ, ϑ)> we have

T (∂x , n, ∂t )U = ( σ1 j n j , σ2 j n j , σ3 j n j , −D j n j , −B j n j , −T−1
0 q j n j )

>. (2.24)

Due to the constitutive equations, the components of the vector T U given by (2.24) have the following physical
sense: the first three components correspond to the mechanical stress vector in the theory of generalized thermo-
electro-magneto-elasticity, the fourth and the fifth components correspond to the normal components of the electric
displacement vector and the magnetic induction vector respectively with opposite sign, and finally the sixth component
is (−T−1

0 ) times the normal component of the heat flux vector.
Note that the following pairs are called like fields:

(i) {u = (u1, u2, u3)
>, (σ1 j n j , σ2 j n j , σ3 j n j )

>
}—pair of mechanical fields,

(ii) {ϕ, −D j n j }—pair of electric fields,

(iii) {ψ, −B j n j }—pair of magnetic fields,

(iv) {ϑ, −T−1
0 q j n j }—pair of thermal fields.

As we see all the thermo-mechanical and electro-magnetic characteristics can be determined by the six functions:
three displacement components u j , j = 1, 2, 3, temperature distribution ϑ , and the electric and magnetic potentials
ϕ and ψ . Therefore, all the above field relations and the corresponding boundary value problems we reformulate in
terms of these six functions.

First of all, from Eqs. (2.5)–(2.7) with the help of the constitutive relations (2.1)–(2.4) we derive the basic linear
system of dynamics of the generalized thermo-electro-magneto-elasticity theory of homogeneous solids

cr jkl ∂ j∂l uk(x, t)+ elr j ∂ j∂lϕ(x, t)+ qlr j ∂ j∂lψ(x, t)− λr j ∂ jϑ(x, t)− ν0λr j∂ j∂tϑ(x, t)

− % ∂2
t ur (x, t) = −%Fr (x, t), r = 1, 2, 3,

−e jkl ∂ j∂luk(x, t)+ ~ jl ∂ j∂lϕ(x, t)+ a jl ∂ j∂lψ(x, t)− p j ∂ jϑ(x, t)− ν0 p j ∂ j∂tϑ(x, t) = −%e(x, t),

−q jkl ∂ j∂luk(x, t)+ a jl ∂ j∂lϕ(x, t)+ µ jl ∂ j∂lψ(x, t)− m j ∂ jϑ(x, t)− ν0 m j ∂ j∂tϑ(x, t) = −%c(x, t),

−λkl ∂t∂luk(x, t)+ pl ∂l∂tϕ(x, t)+ ml ∂l∂tψ(x, t)+ η jl ∂ j∂lϑ(x, t)− d0 ∂tϑ(x, t)

− h0 ∂
2
t ϑ(x, t) = −T−1

0 % Q(x, t).

(2.25)

Let us introduce the matrix differential operator generated by the left hand side expressions in Eqs. (2.25),

A(∂x , ∂t ) =
[
Apq(∂x , ∂t )

]
6×6

:=


[cr jkl ∂ j∂l − % δrk ∂

2
t ]3×3 [elr j ∂ j∂l ]3×1 [qlr j ∂ j∂l ]3×1 [−λr j ∂ j (1+ ν0∂t )]3×1

[−e jkl ∂ j∂l ]1×3 ~ jl ∂ j∂l a jl ∂ j∂l −p j ∂ j (1+ ν0∂t )

[−q jkl ∂ j∂l ]1×3 a jl ∂ j∂l µ jl ∂ j∂l −m j ∂ j (1+ ν0∂t )

[−λkl ∂l∂t ]1×3 pl ∂l∂t ml ∂l∂t η jl ∂ j∂l − d0 ∂t − h0 ∂
2
t


6×6

.

(2.26)

Then Eqs. (2.25) can be rewritten in matrix form

A(∂x , ∂t )U (x, t) = Φ(x, t) , (2.27)

where

U = (u1, u2, u3, u4, u5, u6)
>
:= (u, ϕ, ψ, ϑ)>
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is the sought for vector function and

Φ = (Φ1, . . . ,Φ6)
>
:= (−%F1,−%F2,−%F3,−%e,−%c,−%T−1

0 Q)> (2.28)

is the given vector function.
If all the functions involved in these equations are harmonic time dependent, that is they can be represented as

the product of a function of the spatial variables (x1, x2, x3) and the multiplier exp{τ t}, where τ = σ + iω is a
complex parameter, we have the pseudo-oscillation equations of the generalized thermo-electro-magneto-elasticity
theory. Note that the pseudo-oscillation equations can be obtained from the corresponding dynamical equations by the
Laplace transform. If τ = iω is a pure imaginary number, with the so called frequency parameter ω ∈ R, we obtain
the steady state oscillation equations. Finally, if τ = 0, i.e., the functions involved in Eqs. (2.25) are independent of
t , we get the equations of statics.

Recall that for a smooth function v(t) which is exponentially bounded,

e−σ0 t [
|v(t)| + |∂v(t)| + |∂2

t v(t)|
]
= O(1) as t →+∞, σ0 > 0, (2.29)

the corresponding Laplace transform

v̂(τ ) ≡ L t→τ [v(t)] :=
∫
+∞

0
e−τ t v(t) dt, τ = σ + iω, σ > σ0 , (2.30)

possesses the following properties

L t→τ [∂tv(t)] :=
∫
+∞

0
e−τ t ∂tv(t) dt = −v(0)+ τ v̂(τ ), (2.31)

L t→τ [∂
2
t v(t)] :=

∫
+∞

0
e−τ t ∂2

t v(t) dt = −∂tv(0)− τv(0)+ τ 2 v̂(τ ). (2.32)

Provided that all the functions involved in the dynamical equations (2.25) are exponentially bounded and applying the
Laplace transform to the system (2.25), we obtain the following pseudo-oscillation equations:

cr jkl ∂ j∂l ûk(x, τ )− % τ
2 ûr (x, τ )+ elr j ∂ j∂l ϕ̂(x, τ )+ qlr j ∂ j∂lψ̂(x, τ )

− (1+ ν0τ)λr j ∂ j ϑ̂(x, τ ) = −% F̂r (x, τ )+Ψ (0)
r (x, τ ), r = 1, 2, 3,

−e jkl ∂ j∂l ûk(x, τ )+ ~ jl ∂ j ∂l ϕ̂(x, τ )+ a jl ∂ j ∂lψ̂(x, τ )− (1+ ν0τ)p j ∂ j ϑ̂(x, τ )

= −%̂e(x, τ )+Ψ (0)
4 (x, τ ),

−q jkl ∂ j∂l ûk(x, τ )+ a jl ∂ j ∂l ϕ̂(x, τ )+ µ jl ∂ j ∂lψ̂(x, τ )− (1+ ν0τ)m j ∂ j ϑ̂(x, τ )

= −%̂c(x, τ )+Ψ (0)
5 (x, τ ),

−τ λkl ∂l ûk(x, τ )+ τ pl ∂l ϕ̂(x, τ )+ τ ml ∂lψ̂(x, τ )+ η jl ∂ j∂l ϑ̂(x, τ )

− (τd0 + τ
2h0)ϑ̂(x, τ ) = −T−1

0 % Q̂(x, τ )+Ψ (0)
6 (x, τ ),

(2.33)

where the overset “hat” denotes the Laplace transform of the corresponding function with respect to t (see (2.30)) and

Ψ (0)(x, τ ) =
(
Ψ (0)

1 (x, τ ), . . . ,Ψ (0)
6 (x, τ )

)>

:=


−% τ u1(x, 0)− % ∂t u1(x, 0)− ν0 λ1 j ∂ jϑ(x, 0)
−% τ u2(x, 0)− % ∂t u2(x, 0)− ν0 λ2 j ∂ jϑ(x, 0)
−% τ u3(x, 0)− % ∂t u3(x, 0)− ν0 λ3 j ∂ jϑ(x, 0)

ν0 p j ∂ jϑ(x, 0)
ν0 m j ∂ jϑ(x, 0)

−λkl ∂luk(x, 0)+ p j ∂lϕ(x, 0)+ m j ∂lψ(x, 0)− (d0 + τ h0)ϑ(x, 0)− h0∂tϑ(x, 0)

 . (2.34)

Note that the relations (2.30)–(2.32) can be extended to the spaces of generalized functions (see e.g., [25]).
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In matrix form these pseudo-oscillation equations can be rewritten as

A(∂x , τ ) Û (x, τ ) = Ψ(x, τ ) ,

where

Û = (̂u1, û2, û3, û4, û5, û6)
>
:= (̂u, ϕ̂, ψ̂, ϑ̂)>

is the sought for vector function,

Ψ(x, τ ) =
(
Ψ1(x, τ ), . . . ,Ψ6(x, τ )

)>
= Φ̂(x, τ )+Ψ (0)(x, τ )

with Φ̂(x, τ ) being the Laplace transform of the vector function Φ(x, t) defined in (2.28) and Ψ (0)(x, τ ) given by
(2.34), and A(∂x , τ ) is the pseudo-oscillation matrix differential operator generated by the left hand side expressions
in Eq. (2.33),

A(∂x , τ ) =
[
Apq(∂x , τ )

]
6×6

:=


[cr jkl∂ j∂l − %τ

2δrk]3×3 [elr j∂ j∂l ]3×1 [qlr j∂ j∂l ]3×1 [−(1+ ν0τ)λr j∂ j ]3×1
[−e jkl∂ j∂l ]1×3 ~ jl∂ j∂l a jl∂ j∂l −(1+ ν0τ) p j∂ j
[−q jkl∂ j∂l ]1×3 a jl ∂ j∂l µ jl∂ j∂l −(1+ ν0τ)m j∂ j

[−τλkl∂l ]1×3 τpl∂l τml∂l η jl∂ j∂l − τ
2h0 − τd0


6×6

. (2.35)

It is evident that the operator

A(0)(∂x ) :=


[cr jkl∂ j∂l ]3×3 [elr j∂ j∂l ]3×1 [qlr j∂ j∂l ]3×1 [0]3×1
[−e jkl∂ j∂l ]1×3 ~ jl∂ j∂l a jl∂ j∂l 0
[−q jkl∂ j∂l ]1×3 a jl∂ j∂l µ jl∂ j∂l 0
[0]1×3 0 0 η jl∂ j∂l


6×6

is the principal part of the operators A(∂x , τ ). Clearly, the symbol matrix A(0)(−i ξ), ξ ∈ R3, of the operator A(0)(∂x )

is the principal homogeneous symbol matrix of the operator A(∂x , τ ) for all τ ∈ C,

A(0)(−i ξ) :=


[−cr jkl ξ j ξl ]3×3 [−elr j ξ jξl ]3×1 [−qlr j ξ jξl ]3×1 [0]3×1
[e jkl ξ jξl ]1×3 −~ jl ξ jξl −a jl ξ jξl 0
[q jkl ξ jξl ]1×3 −a jl ξ jξl −µ jl ξ jξl 0
[0]1×3 0 0 −η jl ξ j ξl


6×6

.

From the symmetry conditions (2.8), inequalities (2.9) and positive definiteness of the matrix Λ(1) defined in (2.13) it
follows that there is a positive constant C0 depending only on the material parameters, such that

Re
(
−A(0)(−i ξ)ζ · ζ

)
= Re

(
−

6∑
k, j=1

A(0)k j (−i ξ) ζ j ζk

)
≥ C0 |ξ |

2
|ζ |2

for all ξ ∈ R3 and for all ζ ∈ C6.

Therefore, −A(∂x , τ ) is a non-selfadjoint strongly elliptic differential operator. We recall that the over bar denotes
complex conjugation and the central dot denotes the scalar product in the respective complex vector space. By
A∗(∂x , τ ) := [A(−∂x , τ )]

>
= A>(−∂x , τ ) we denote the operator formally adjoint to A(∂x , τ ),

A∗(∂x , τ ) =
[

A∗pq(∂x , τ )
]

6×6

:=


[cr jkl∂ j∂l − % τ

2 δrk]3×3 [−elr j∂ j∂l ]3×1 [−qlr j∂ j∂l ]3×1 [τλkl∂l ]3×1
[e jkl∂ j∂l ]1×3 ~ jl∂ j∂l a jl∂ j∂l −τ pl ∂l
[q jkl∂ j∂l ]1×3 a jl ∂ j∂l µ jl∂ j∂l −τ ml ∂l

[(1+ ν0τ)λr j∂ j ]1×3 (1+ ν0τ) p j∂ j (1+ ν0τ)m j∂ j η jl∂ j∂l − τ
2 h0 − τ d0


6×6

.

(2.36)
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Applying the Laplace transform to the dynamical constitutive relations (2.1)–(2.3) and (2.7) we get

σ̂r j (x, τ ) = cr jkl ε̂kl(x, τ )+ elr j∂l ϕ̂(x, τ )+ qlr j∂lψ̂(x, τ )− (1+ ν0τ)λr j ϑ̂(x, τ )

+ ν0λr jϑ(x, 0), r, j = 1, 2, 3,

D̂ j (x, τ ) = e jkl ε̂kl(x, τ )− ~ jl ∂l ϕ̂(x, τ )− a jl ∂lψ̂(x, τ )+ (1+ ν0τ)p j ϑ̂(x, τ )

− ν0 p jϑ(x, 0), j = 1, 2, 3,

B̂ j (x, τ ) = q jkl ε̂kl(x, τ )− a jl ∂l ϕ̂(x, τ )− µ jl∂lψ̂(x, τ )+ (1+ ν0τ)m j ϑ̂(x, τ )

− ν0m jϑ(x, 0), j = 1, 2, 3,

q̂ j (x, τ ) = − T0 η jl∂l ϑ̂(x, τ ).

With the help of these equalities, the Laplace transform of the stress vector T (∂x , n, ∂t )U (x, t) defined in (2.24) can
be represented as follows

L t→τ [T (∂x , n, ∂t )U (x, t)] = T (∂x , n, τ ) Û (x, τ )+ F (0)(x),

where

T (∂x , n, τ ) Û (x, τ ) =
(
σ̂1 j n j , σ̂2 j n j , σ̂3 j n j ,−D̂ j n j ,−B̂ j n j ,−T−1

0 q̂ j n j
)
− F (0)(x),

F (0)(x) :=


ν0λ1 j n jϑ(x, 0)
ν0λ2 j n jϑ(x, 0)
ν0λ3 j n jϑ(x, 0)
ν0 p j n jϑ(x, 0)
ν0m j n jϑ(x, 0)

0

 ,

and the boundary operator T (∂x , n, τ ) reads as (cf. (2.23))

T (∂x , n, τ ) =
[

T pq(∂x , n, τ )
]

6×6

:=


[cr jkl n j∂l ]3×3 [elr j n j∂l ]3×1 [qlr j n j∂l ]3×1 [−(1+ ν0τ)λr j n j ]3×1
[−e jkl n j∂l ]1×3 ~ jl n j∂l a jl n j∂l −(1+ ν0τ)p j n j
[−q jkl n j∂l ]1×3 a jl n j∂l µ jl n j∂l −(1+ ν0τ)m j n j
[0]1×3 0 0 η jln j∂l


6×6

. (2.37)

Below, in Green’s formulas there appears also the boundary operator P(∂x , n, τ ) associated with the adjoint
differential operator A∗(∂x , τ ),

P(∂x , n, τ ) =
[

P pq(∂x , n, τ )
]

6×6

=


[cr jkl n j ∂l ]3×3 [−elr j n j ∂l ]3×1 [−qlr j n j ∂l ]3×1 [τ λr j n j ]3×1
[e jkl n j ∂l ]1×3 ~ jl n j ∂l a jl n j ∂l −τ p j n j
[q jkl n j ∂l ]1×3 a jl n j ∂l µ jl n j ∂l −τ m j n j
[0]1×3 0 0 η jl n j ∂l


6×6

. (2.38)

2.2. Green’s formulas for the pseudo-oscillation model

Let Ω = Ω+ be a bounded domain in R3 with a smooth boundary S = ∂Ω+ and Ω− = R3
\ Ω+, Ω+ = Ω+ ∪ S.

By Ck(Ω) we denote the subspace of functions from Ck(Ω) whose derivatives up to the order k are continuously
extendable to S = ∂Ω from Ω .

The symbols { · }+S and { · }−S denote one sided limits on S from Ω+ and Ω− respectively. We drop the subscript in
{ · }
±

S if it does not lead to misunderstanding.
By L p, L p,loc, L p,comp, W r

p, W r
p,loc, W r

p,comp, H s
p, and Bs

p,q (with r ≥ 0, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞) we
denote the well-known Lebesgue, Sobolev–Slobodetskii, Bessel potential, and Besov function spaces, respectively
(see, e.g., [26,27]). Recall that H r

2 = W r
2 = Br

2,2 , H s
2 = Bs

2,2 , W t
p = Bt

p,p , and H k
p = W k

p , for any r ≥ 0, for any
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s ∈ R, for any positive and non-integer t , and for any non-negative integer k. In our analysis we essentially employ
also the spaces:

H̃ s
p(M) := { f : f ∈ H s

p(M0), supp f ⊂ M},

B̃s
p,q(M) := { f : f ∈ Bs

p,q(M0), supp f ⊂ M},
H s

p(M) := {rM f : f ∈ H s
p(M0)},

Bs
p,q(M) := {rM f : f ∈ Bs

p,q(M0) },

where M0 is a closed manifold without boundary and M is an open proper submanifold of M0 with nonempty
boundary ∂M 6= ∅; rM is the restriction operator onto M. Below, sometimes we use also the abbreviations H s

2 = H s

and W s
2 = W s .

If a function f ∈ Bs
p,q(M), where M is a proper part of a closed surface M0, can be extended by zero to the

whole M0 preserving the space, we write f ∈ B̃s
p,q(M) instead of f ∈ rM B̃s

p,q(M).
For arbitrary vector functions

U = (u1, u2, u3, ϕ, ψ, ϑ)
>
∈
[
C2(Ω)

]6 and U ′ = (u′1, u′2, u′3, ϕ
′, ψ ′, ϑ ′)> ∈

[
C2(Ω)

]6
we can derive the following Green’s identities with the help of the Gauss integration by parts formula:∫

Ω

[
A(∂x , τ )U ·U ′ + Eτ (U,U ′)

]
dx =

∫
S
{T (∂x , n, τ )U }+ · {U ′}+d S , (2.39)∫

Ω

[
U · A∗(∂x , τ )U ′ + Eτ (U,U ′)

]
dx =

∫
S
{U }+ · {P(∂x , n, τ )U ′}+d S , (2.40)∫

Ω

[
A(∂x , τ )U ·U ′ −U · A∗(∂x , τ )U ′

]
dx

=

∫
S

[
{T (∂x , n, τ )U }+ · {U ′}+ − {U }+ · {P(∂x , n, τ )U ′}+

]
d S, (2.41)

where the operators A(∂x , τ ), T (∂x , n, τ ), A∗(∂x , τ ) and P(∂x , n, τ ) are given in (2.35), (2.37), (2.36), and (2.38)
respectively,

Eτ (U,U ′) := cr jkl ∂luk ∂ j u′r + % τ
2 ur u′r + elr j (∂lϕ ∂ j u′r − ∂ j ur ∂lϕ′)

+ qlr j (∂lψ ∂ j u′r − ∂ j ur ∂lψ ′)+ ~ jl ∂lϕ ∂ jϕ′ + a jl (∂lϕ ∂ jψ ′ + ∂ jψ ∂lϕ′)

+µ jl ∂lψ ∂ jψ ′ + λk j [τ ϑ ′ ∂ j uk − (1+ ν0τ)ϑ ∂ j u′k] − pl [τ ϑ ′ ∂lϕ + (1+ ν0τ)ϑ ∂lϕ′]

−ml [τ ϑ ′ ∂lψ + (1+ ν0τ)ϑ ∂lψ ′] + η jl ∂lϑ ∂ jϑ ′ + τ (h0τ + d0) ϑ ϑ ′. (2.42)

Note that the above Green’s formula (2.39) by standard limiting procedure can be generalized to Lipschitz domains
and to vector functions U ∈ [W 1

p(Ω)]
6 and U ′ ∈ [W 1

p ′(Ω)]
6 with

A(∂x , τ )U ∈
[
L p(Ω)

]6
, 1 < p <∞,

1
p
+

1
p ′
= 1.

With the help of Green’s formula (2.39) we can correctly determine a generalized trace vector {T (∂x , n, τ )U }+ ∈

[B
−

1
p

p,p (S)]6 for a function U ∈ [W 1
p(Ω)]

6 with A(∂x , τ )U ∈ [L p(Ω)]6 by the following relation (cf. [28–30])

〈
{T (∂x , n, τ )U }+ , {U ′}+

〉
S :=

∫
Ω
[ A(∂x , τ )U ·U ′ + Eτ (U,U ′) ] dx, (2.43)

where U ′ ∈ [W 1
p ′(Ω)]

6 is an arbitrary vector function. Here the symbol 〈 · , · 〉S denotes the duality between the

function spaces [B
−

1
p

p,p (S)]6 and [B
1
p

p ′,p ′(S)]
6 which extends the usual L2 inner product for complex valued vector
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functions,

〈 f, g〉S =
∫

S

6∑
j=1

f j (x) g j (x) d S for f, g ∈ [L2(S)]
6.

Evidently we have the following estimate

‖{T (∂x , n, τ )U }+‖
[B−1/p

p,p (S)]6
≤ c0

{
‖A(∂x , τ )U‖[L p(Ω)]6 + (1+ |τ |

2)‖U‖[W 1
p(Ω)]

6
}
,

where c0 does not depend on U ; in general c0 depends on the material parameters and on the geometrical
characteristics of the domain Ω .

Let us introduce a sesquilinear form on [H1
2 (Ω)]

6
× [H1

2 (Ω)]
6

B(U, V ) :=
∫
Ω

Eτ (U, V ) dx,

where Eτ (U, V ) is defined by (2.42). With the help of the relations (2.9) and (2.42), positive definiteness of the matrix
(2.13) and the well known Korn’s inequality we deduce the following estimate

Re B(U,U ) ≥ c1 ‖U‖
2
[H1

2 (Ω)]
6 − c2 ‖U‖

2
[H0

2 (Ω)]
6 (2.44)

with some positive constants c1 and c2 depending on the material parameters (cf. [17,29]), which shows that the
sesquilinear form defined in (2.44) is coercive.

From the Green formulas (2.39)–(2.41) by standard limiting procedure we derive similar formulas for the exterior
domain Ω− provided the vector functions U, U ′ ∈ Z(Ω−), where the class Z(Ω−) is defined as a set of functions U
possessing the following asymptotic properties at infinity as |x | → ∞:

uk(x) = O(|x |−2), ∂ j uk(x) = O(|x |−2),

ϕ(x) = O(|x |−1), ∂ jϕ(x) = O(|x |−2),

ψ(x) = O(|x |−1), ∂ jψ(x) = O(|x |−2),

ϑ(x) = O(|x |−2), ∂ jϑ(x) = O(|x |−2),

k, j = 1, 2, 3.

(2.45)

Assume that A∗(∂x , τ )U ′ is compactly supported as well and U ′ satisfies the conditions of type (2.45). Then the
following Green formulas hold for the exterior domain Ω−:∫

Ω−

[
A(∂x , τ )U ·U ′ + Eτ (U,U ′)

]
dx = −

∫
S
{T (∂x , n, τ )U }− · {U ′}−d S ,∫

Ω−

[
U · A∗(∂x , τ )U ′ + Eτ (U,U ′)

]
dx = −

∫
S
{U }− · {P(∂x , n, τ )U ′}−d S ,∫

Ω−

[
A(∂x , τ )U ·U ′ −U · A∗(∂x , τ )U ′

]
dx = −

∫
S

[
{T (∂x , n, τ )U }− · {U ′}−

−{U }− · {P(∂x , n, τ )U ′}−
]
d S,

where Eτ is defined by (2.42). We recall that the direction of the unit normal vector to S = ∂Ω− is outward with
respect to the domain Ω = Ω+.

As we shall see below the fundamental matrix of the operator A(∂x , τ ) with τ = σ + i ω, σ > σ0 , possesses the
decay properties (2.45)

2.3. Boundary value problems for pseudo-oscillation equations

Throughout the paper we assume that the origin of the co-ordinate system belongs to Ω . Assume that the domain Ω
is occupied by an anisotropic homogeneous material with the above described generalized thermo-electro-magneto-
elastic properties (henceforth such type of materials will be referred to as GTEME materials).
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Further, we assume that ∂Ω is divided into two disjoint parts SD 6= ∅ and SN : ∂Ω = S = SD∪SN , SD∩SN = ∅.
Set ∂SD = ∂SN =: `m . In what follows, for simplicity we assume that S, SD , SN , `m are C∞-smooth.

Here we preserve the notation introduced in the previous subsections and formulate the boundary value problems
for the pseudo-oscillation equations of the GTEME theory. The operators A(∂x , τ ) and T (∂x , n, τ ) involved in the
formulations below are determined by the relations (2.35) and (2.37) respectively. In what follows we always assume
that

τ = σ + iω, σ > σ0 > 0, ω ∈ R,

if not otherwise stated.

The Dirichlet pseudo-oscillation problem (D) +τ : Find a solution

U = (u, ϕ, ψ, ϑ)> ∈ [W 1
p(Ω)]

6, 1 < p <∞

to the pseudo-oscillation equations of the GTEME theory,

A(∂x , τ )U (x) = Φ(x) , x ∈ Ω , (2.46)

satisfying the Dirichlet type boundary condition

{U (x)}+ = f (x), x ∈ S, (2.47)

i.e.

{ur (x)}
+
= fr (x), x ∈ S, r = 1, 2, 3, (2.48)

{ϕ(x)}+ = f4(x), x ∈ S, (2.49)

{ψ(x)}+ = f5(x), x ∈ S, (2.50)

{ϑ(x)}+ = f6(x), x ∈ S, (2.51)

where Φ = (Φ1, . . . ,Φ6)
>
∈ [L p(Ω)]6, and f = ( f1, . . . , f6)

>
∈ [B1−1/p

p,p (S)]6, 1 < p < ∞ are given functions
from the appropriate spaces.

In the case when U satisfies the homogeneous equation

A(∂x , τ )U (x) = 0, x ∈ Ω , (2.52)

we denote the corresponding problem by (D)+τ,0.

The Neumann pseudo-oscillation problem (N )+τ : Find a regular solution

U = (u, ϕ, ψ, ϑ)> ∈ [W 1
p(Ω)]

6, 1 < p <∞

to the pseudo-oscillation equations of the GTEME theory (2.46) satisfying the Neumann type boundary condition

{T (∂x , n, τ )U (x)}+ = F(x), x ∈ S, (2.53)

i.e.

{[T (∂x , n, τ )U (x)]r }
+
≡ {σr j n j }

+
= Fr (x), x ∈ S, r = 1, 2, 3, (2.54)

{[T (∂x , n, τ )U (x)]4}
+
≡ {−D j n j }

+
= F4(x), x ∈ S, (2.55)

{[T (∂x , n, τ )U (x)]5}
+
≡ {−B j n j }

+
= F5(x), x ∈ S, (2.56)

{[T (∂x , n, τ )U (x)]6}
+
≡ {−T−1

0 q j n j }
+
= F6(x), x ∈ S, (2.57)

where F = (F1, . . . , F6) ∈ [B
−1/p
p,p (S)]6, 1 < p <∞ is a given vector function.

In the case when U satisfies the homogeneous equation (2.52) we denote the corresponding problem by (N)+τ,0.
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Mixed boundary value problems for solids with interior cracks. Let us assume that a GTEME type solid
occupying the simply connected domain Ω contains an interior crack. We identify the crack surface as a two-
dimensional, two-sided manifold Σ with the crack edge `c := ∂Σ . We assume that Σ is a submanifold of a closed
surface S0 ⊂ Ω surrounding a domain Ω0 ⊂ Ω and that Σ , S0, and `c are C∞-smooth. Denote ΩΣ := Ω \ Σ .

We write v ∈ W 1
p(ΩΣ ) if v ∈ W 1

p(Ω0), v ∈ W 1
p(Ω \ Ω0), and rS0\Σ

{v}+ = rS0\Σ
{v}−.

Recall that throughout the paper n = (n1, n2, n3) stands for the exterior unit normal vector to ∂Ω and S0 = ∂Ω0.
This agreement defines the positive direction of the normal vector on the crack surface Σ .

We will consider the following problem (MC)τ :

(i) the magneto-piezoelectric elastic solid under consideration is mechanically fixed along the subsurface SD , and at
the same time there are given the temperature and the electric and magnetic potential functions (i.e., on SD there
are given the components of the vector {U }+-Dirichlet conditions);

(ii) on the subsurface SN there are prescribed the mechanical stress vector and the normal components of the heat
flux, the electric displacement and magnetic induction vectors (i.e., on SN there are given the components of the
vector {T U }+-Neumann conditions);

(iii) the crack surface Σ is mechanically traction free and we assume that the temperature, electric and magnetic
potentials, and the normal components of the heat flux, the electric displacement and magnetic induction vectors
are continuous across the crack surface.

Reducing the nonhomogeneous differential equations (2.46) to the corresponding homogeneous ones, we can
formulate the above problem mathematically as follows:

Find a vector U = (u, ϕ, ψ, θ)> = (u1, u2, u3, u4, u5, u6)
>
∈
[
W 1

p(ΩΣ )
]6 with 1 < p < ∞, satisfying the

homogeneous pseudo-oscillation differential equation of the GTEME theory

A(∂x , τ )U = 0 in ΩΣ , τ = σ + i ω, σ > 0, (2.58)

the crack conditions on Σ ,

{[ T U ] j }
+
= F+j on Σ , j = 1, 3, (2.59)

{[ T U ] j }
−
= F−j on Σ , j = 1, 3, (2.60)

{u4}
+
−
{
u4}
−
= f4 on Σ , (2.61)

{[ T U ]4}
+
− { [ T U ]4}

−
= F4 on Σ , (2.62)

{u5}
+
−
{
u5}
−
= f5 on Σ , (2.63)

{[ T U ]5}
+
− { [ T U ]5}

−
= F5 on Σ , (2.64)

{u6}
+
− {u6}

−
= f6 on Σ , (2.65)

{[ T U ]6}
+
− { [ T U ]6}

−
= F6 on Σ , (2.66)

and the mixed boundary conditions on S = SD ∪ SN ,

{U }+ = g(D) on SD, (2.67)

{ T U }+ = g(N ) on SN . (2.68)

We require that the boundary data possess the natural smoothness properties associated with the trace theorems,

F+j , F−j ∈ B
−

1
p

p,p (Σ ), j = 1, 2, 3; f4, f5, f6 ∈ B̃
1− 1

p
p,p (Σ ),

F4, F5, F6 ∈ B̃
−

1
p

p,p (Σ ), g(D) ∈
[
B

1− 1
p

p,p (SD)
]6
, g(N ) ∈

[
B
−

1
p

p,p (SN )
]6
,

1 < p <∞,
1
p
+

1
p ′
= 1.

(2.69)

Moreover, the following compatibility conditions

F+j − F−j ∈ B̃
−

1
p

p,p (Σ ), j = 1, 2, 3,

are to be satisfied.
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The differential equation (2.58) is understood in the distributional sense, in general. We remark that if U ∈
[W 1

p(ΩΣ )]
6 solves the homogeneous differential equation then actually we have the inclusion U ∈ [C∞(ΩΣ )]

6 due
to the ellipticity of the corresponding differential operators. In fact, U is a complex valued analytic vector function of
spatial real variables (x1, x2, x3) in ΩΣ .

The Dirichlet-type conditions (2.61), (2.63), (2.65) and (2.67) are understood in the usual trace sense, while the
Neumann-type conditions (2.59), (2.60), (2.62), (2.64), (2.66) and (2.68) involving boundary limiting values of the
components of the vector T U are understood in the above described generalized functional sense related to Green’s
formula (2.43).

2.3.1. Uniqueness theorems for the pseudo-oscillation problems

We prove here the following uniqueness theorem for solutions to the pseudo-oscillation problems in the case of
p = 2.

Theorem 2.1. Let S be Lipschitz surface and τ = σ + iω with σ > σ0 > 0 and ω ∈ R.

(i) The basic boundary value problem (D)+τ has at most one solution in the space
[
W 1

2 (Ω)
]6.

(ii) Solutions to the Neumann type boundary value problem (N )+τ in the space
[
W 1

2 (Ω)
]6 are defined modulo a

vector of type U (N )
= (0, 0, 0, b1, b2, 0)>, where b1 and b2 are arbitrary constants.

(iii) Mixed type boundary value problem (MC)τ has at most one solution in the space
[
W 1

2 (ΩΣ )
]6
.

Proof. Due to the linearity of the boundary value problems in question it suffices to consider the corresponding
homogeneous problems.

First we demonstrate the proof for the problems stated in the items (i) and (ii) of the theorem. Let U =

(u, ϕ, ψ, ϑ)> ∈
[
W 1

2 (Ω)
]6 be a solution to the homogeneous problem (D)+τ,0 or (N)+τ,0. For arbitrary U ′ =

(u′, ϕ′, ψ ′, ϑ ′)> ∈
[
W 1

2 (Ω)
]6 from Green’s formula (2.43) we have∫

Ω
Eτ (U,U ′) dx =

〈
{T (∂x , n, τ )U }, {U ′}+

〉
∂Ω , (2.70)

where Eτ (U,U ′) is given by (2.42).
If in (2.70) we substitute the vectors (u1, u2, u3, 0, 0, 0)>, (0, 0, 0, ϕ, 0, 0)>, (0, 0, 0, 0, ψ, 0)>, and (0, 0, 0,

0, 0, (1 + ν0τ)[τ ]
−1ϑ)> for the vector U ′ successively and take into consideration the homogeneous boundary

conditions, we get∫
Ω

[
cr jkl∂luk∂ j ur + %τ

2ur ur + elr j ∂lϕ ∂ j ur + qlr j ∂lψ ∂ j ur − (1+ ν0τ)λk jϑ ∂ j uk
]
dx = 0, (2.71)∫

Ω

[
−elr j ∂ j ur ∂lϕ + ~ jl ∂lϕ ∂ jϕ + a jl ∂ jψ ∂lϕ − (1+ ν0τ)pl ϑ ∂lϕ

]
dx = 0, (2.72)∫

Ω

[
−qlr j ∂ j ur ∂lψ + a jl ∂lϕ ∂ jψ + µ jl ∂lψ ∂ jψ − (1+ ν0τ)ml ϑ ∂lψ

]
dx = 0, (2.73)∫

Ω

{
(1+ ν0τ)[λk jϑ∂ j uk − plϑ∂lϕ − mlϑ∂lψ + (h0τ + d0)|ϑ |

2
] +

1+ ν0τ

τ
η jl∂lϑ∂ jϑ

}
dx = 0. (2.74)

Add to Eq. (2.71) the complex conjugate of Eqs. (2.72)–(2.74) and take into account the symmetry properties (2.8)
to obtain∫

Ω

{
cr jkl∂luk ∂ j ur + % τ

2
|u|2 + ~ jl ∂lϕ ∂ jϕ + a jl(∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl∂lψ ∂ jψ

− 2 Re
[

pl(1+ ν0τ)ϑ ∂lϕ
]
− 2 Re

[
ml(1+ ν0τ)ϑ ∂lψ

]
+ (1+ ν0τ)(h0τ + d0) |ϑ |

2

+
1+ ν0τ

τ
η jl ∂lϑ ∂ jϑ

}
dx = 0. (2.75)
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Due to the relations (2.11) and the positive definiteness of the matrix Λ(1) defined in (2.13), we find that

ci jlk ∂i u j ∂luk ≥ 0, η jl ∂lϑ ∂ jϑ ≥ 0,

[~ jl ∂lϕ ∂ jϕ + a jl (∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl ∂lψ ∂ jψ] ≥ λ0(|∇ϕ|
2
+ |∇ψ |2),

(2.76)

where λ0 is a positive constant. Use the equalities

τ 2
= σ 2

− ω2
+ 2iσω,

1+ ν0τ

τ
=
σ + ν0(σ

2
− ω2)

|τ |2
+ i

ω(1+ 2σν0)

|τ |2
,

(1+ ν0τ)(h0τ + d0) = d0 + ν0h0|τ |
2
+ (h0 + ν0d0)σ + i ω(ν0d0 − h0),

and separate the imaginary part of (2.75) to deduce

ω

∫
Ω

{
2 % σ |u|2 + (ν0d0 − h0)|ϑ |

2
+

1+ 2σν0

|τ |2
η jl ∂lϑ ∂ jϑ

}
dx = 0.

By the inequalities in (2.10) and since σ > σ0 > 0, we conclude u = 0 and ϑ = 0 in Ω for ω 6= 0. From (2.75) we
then have∫

Ω

[
~ jl ∂lϕ ∂ jϕ + a jl (∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl ∂lψ ∂ jψ

]
dx = 0.

Whence, in view of the last inequality in (2.76), we get ∂lϕ = 0, ∂lψ = 0, l = 1, 2, 3, in Ω . Thus, if ω 6= 0,

u = 0, ϕ = b1 = const, ψ = b2 = const, ϑ = 0 in Ω . (2.77)

If ω = 0, then τ = σ > 0 and (2.75) can be rewritten in the form∫
Ω

{
cr jkl∂luk ∂ j ur + % σ

2
|u|2 +

1+ ν0σ

σ
η jl ∂lϑ ∂ jϑ

}
dx

+

∫
Ω

{
~ jl ∂lϕ ∂ jϕ + a jl(∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl∂lψ ∂ jψ − 2pl(1+ ν0σ)Re

[
ϑ ∂lϕ

]
− 2ml(1+ ν0σ)Re

[
ϑ ∂lψ

]
+ (1+ ν0σ)(h0σ + d0) |ϑ |

2
}

dx = 0. (2.78)

The integrand in the first integral is nonnegative. Let us show that the integrand in the second integral is also
nonnegative. To this end, let us set

ζ j := ∂ jϕ, ζ j+3 := ∂ jψ, ζ7 := −ϑ, ζ8 := −σϑ, j = 1, 2, 3,

and introduce the vector

Θ := (ζ1, ζ2, . . . , ζ8)
>.

It can be easily checked that (summation over repeated indices is meant from 1 to 3)

~ jl ∂lϕ ∂ jϕ + a jl(∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl∂lψ ∂ jψ − 2pl(1+ ν0σ)Re
[
ϑ ∂lϕ

]
− 2ml(1+ ν0σ)Re

[
ϑ ∂lψ

]
+ (1+ ν0σ)(h0σ + d0) |ϑ |

2

= [~ jl ∂lϕ + a jl ∂lψ + p j (−ϑ)+ ν0 p j (−σϑ)] ∂ jϕ

+ [a jl ∂lϕ + µ jl ∂lψ + m j (−ϑ)+ ν0m j (−σϑ)] ∂ jψ
+ [pl∂lϕ + ml ∂lψ + d0(−ϑ)+ h0(−σϑ)](−ϑ)
+ [ν0 pl∂lϕ + ν0ml ∂lψ + h0(−ϑ)+ ν0h0(−σϑ)](−σϑ)
+ σ(d0ν0 − h0) |ϑ |

2

= [~ jl ζl + a jl ζl+3 + p jζ7 + ν0 p jζ8] ζ j
+ [a jl ζl + µ jl ζl+3 + m jζ7 + ν0m jζ8] ζ j+3
+ [plζl + ml ζl+3 + d0ζ7 + h0ζ8] ζ 7
+ [ν0 plζl + ν0ml ζl+3 + h0ζ7 + ν0h0ζ8] ζ 8
+ σ(d0ν0 − h0) |ϑ |

2

=

8∑
p,q=1

Mpqζq ζ p + σ(d0ν0 − h0) |ϑ |
2
= M Θ ·Θ + σ(d0ν0 − h0) |ϑ |

2
≥ C0 |Θ |2 (2.79)

with some positive constant C0 due to the positive definiteness of the matrix M defined by (2.12).
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Therefore, from (2.78) we see that the relations (2.77) hold for ω = 0 as well.
Thus the equalities (2.77) hold for arbitrary τ = σ+iω with σ > σ0 > 0 and ω ∈ R, whence the items (i) and (ii) of

the theorem follow immediately, since the homogeneous Dirichlet conditions for ϕ and ψ imply b1 = b2 = 0, while a
vector U (N )

= (0, 0, 0, b1, b2, 0)>, where b1 and b2 are arbitrary constants, solves the homogeneous Neumann BVP
(N )+τ,0.

To prove the third item of the theorem we have to add together two Green’s formulas of type (2.70) for the domains
Ω \ Ω0 and Ω0, where Ω0 is the above introduced auxiliary domain Ω0 ⊂ Ω . We recall that the crack surface
Σ is a proper part of the boundary S0 = ∂Ω0 ⊂ Ω and any solution to the homogeneous differential equation
A(∂x , τ )U = 0 of the class

[
W 1

2 (ΩΣ )
]6 and its derivatives are continuous across the surface S0 \Σ . If U is a solution

to the homogeneous crack type BVP by the same approach as above, we arrive at the relation∫
ΩΣ

{
cr jkl∂luk ∂ j ur + % τ

2
|u|2 + ~ jl ∂lϕ ∂ jϕ + a jl(∂lψ ∂ jϕ + ∂ jϕ ∂lψ)+ µ jl∂lψ ∂ jψ

− 2 Re
[

pl(1+ ν0τ)ϑ ∂lϕ
]
− 2 Re

[
ml(1+ ν0τ)ϑ ∂lψ

]
+ (1+ ν0τ)(h0τ + d0) |ϑ |

2

+
1+ ν0τ

τ
η jl ∂lϑ ∂ jϑ

}
dx = 0. (2.80)

The surface integrals vanish due to the homogeneous boundary and crack type conditions and the above mentioned
continuity of solutions and its derivatives across the auxiliary surface S0 \ Σ . Therefore, the proof of item (iii) can be
verbatim performed. �

3. Properties of potentials and boundary operators

The full symbol of the pseudo-oscillation differential operator A(∂x , τ ) is elliptic provided Re τ 6= 0, i.e.,

det A(−i ξ, τ ) 6= 0, ∀ ξ ∈ R3
\ {0}.

Moreover, the entries of the inverse matrix A−1(−i ξ, τ ) are locally integrable functions decaying at infinity as
O(|ξ |−2). Therefore, we can construct the fundamental matrix Γ (x, τ ) = [Γk j (x, τ )]6×6 of the operator A(∂x , τ )

by means of the Fourier transform technique,

Γ (x, τ ) = F−1
ξ→x

[
A−1(−iξ, τ )

]
. (3.1)

The properties of the fundamental matrix Γ (x, τ ) near the origin and at infinity, and the properties of corresponding
layer potentials are studied in [31]. Here we collect some results which are necessary for our further analysis. Detailed
proofs of the theorems below are similar to the proofs of their counterparts in [32,30,33–35].

Let us introduce the single and double layer potentials:

V (h)(x) =
∫

S
Γ (x − y, τ ) h(y) dy S,

W (h)(x) =
∫

S

[
P(∂y, n(y), τ )

[
Γ (x − y, τ )

]>]> h(y) dy S,

where h = (h1, h2, . . . , h6)
> is a density vector function.

Theorem 3.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R. Then the single and double layer potentials can be extended to
the following continuous operators

V :
[
Bs

p,q(S)
]6
→
[
B

s+1+ 1
p

p,q (Ω)
]6
, W :

[
Bs

p,q(S)
]6
→
[
B

s+ 1
p

p,q (Ω)
]6
,

:
[
Bs

p,q(S)
]6
→
[
B

s+1+ 1
p

p,q, loc (Ω
−)
]6
, :

[
Bs

p,q(S)
]6
→
[
B

s+ 1
p

p,q, loc(Ω
−)
]6
,

:
[
Bs

p,p(S)
]6
→
[
H

s+1+ 1
p

p (Ω)
]6
, :

[
Bs

p,p(S)
]6
→
[
H

s+ 1
p

p (Ω)
]6
,

:
[
Bs

p,p(S)
]6
→
[
H

s+1+ 1
p

p, loc (Ω−)
]6
, :

[
Bs

p,p(S)
]6
→
[
H

s+ 1
p

p, loc(Ω
−)
]6
.
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Theorem 3.2. Let

h(1) ∈
[
B−1+s

p,q (S)
]6
, h(2) ∈

[
Bs

p,q(S)
]6
, 1 < p <∞, 1 ≤ q ≤ ∞, s > 0.

Then {
V (h(1))(z)

}±
=

∫
S
Γ (z − y, τ )h(1)(y) dy S on S,

{
W (h(2))(z)

}±
= ±

1
2

h(2)(z)+
∫

S

[
P(∂y, n(y), τ )

[
Γ (z − y, τ )

]>]>h(2)(y) dy S on S.

The equalities are understood in the sense of the space [Bs
p,q(S)

]6.

Theorem 3.3. Let h(1) ∈
[
B
−

1
p

p,q (S)
]6, h(2) ∈

[
B

1− 1
p

p,q (S)
]6, 1 < p <∞, 1 ≤ q ≤ ∞. Then{

T V (h(1))(z)
}±
= ∓

1
2

h(1)(z)+
∫

S
T (∂z, n(z), τ )Γ (z − y, τ ) h(1)(y) dy S on S,{

T W (h(2))(z)
}+
=
{

T W (h(2))(z)
}− on S,

where the equalities are understood in the sense of the space [B
−

1
p

p,q (S)
]6.

We introduce the following notation for the boundary operators generated by the single and double layer potentials:

H(h)(z) =
∫

S
Γ (z − y, τ ) h(y) dy S, z ∈ S, (3.2)

K(h)(z) =
∫

S
T (∂z, n(z), τ )Γ (z − y, τ ) h(y) dy S, z ∈ S, (3.3)

N (h)(z) =
∫

S

[
P(∂y, n(y), τ )

[
Γ (z − y, τ )

]>]>h(y) dy S, z ∈ S,

L(h)(z) =
{

T W (h)(z)
}+
=
{

T W (h)(z)
}−
, z ∈ S.

Actually, H is a weakly singular integral operator (pseudodifferential operator of order −1), K and N are
singular integral operators (pseudodifferential operator of order 0), and L is a singular integro-differential operator
(pseudodifferential operator of order 1). These operators possess the following mapping and Fredholm properties
(see [31]).

Theorem 3.4. Let 1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R. Then the operators

H :
[
Bs

p,q(S)
]6
→

[
Bs+1

p,q (S)
]6
,

:
[
H s

p(S)
]6

→
[
H s+1

p (S)
]6
,

K, N :
[
Bs

p,q(S)
]6
→

[
Bs

p,q(S)
]6
,

:
[
H s

p(S)
]6

→
[
H s

p(S)
]6
,

L :
[
Bs

p,q(S)
]6
→

[
Bs−1

p,q (S)
]6
,

:
[
H s

p(S)
]6

→
[
H s−1

p (S)
]6

are continuous.
The operators H and L are strongly elliptic pseudodifferential operators, while the operators ± 1

2 I6 + K and
±

1
2 I6 +N are elliptic, where I6 stands for the 6× 6 unit matrix.
Moreover, the operators H, 1

2 I6 +N and 1
2 I6 +K are invertible, whereas the operators − 1

2 I6 +K, − 1
2 I6 +N

and L are Fredholm operators with zero index.
There hold the following operator equalities

L H = −
1
4

I6 +K2, H L = −
1
4

I6 +N 2 . (3.4)
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4. Existence and regularity of solutions to mixed BVP for solids with interior crack

If not otherwise stated, throughout this section we assume that

1 < p <∞, q ≥ 1, s ∈ R.

Before we start analysis of the mixed problem we present here existence results for the basic Dirichlet and Neumann
boundary value problems. Using Theorem 3.4 and the fact that the null spaces of strongly elliptic pseudodifferential
operators acting in Bessel potential H s

p(S) and Besov Bs
p,q(S) spaces actually do not depend on the parameters s, p,

and q, we arrive at the following existence results (for details see [31]).

Theorem 4.1. Let 1 < p <∞ and f ∈
[
B

1− 1
p

p,p (S)
]6. Then the pseudodifferential operator

2−1 I6 +N :
[
B

1− 1
p

p,p (S)
]6
→
[
B

1− 1
p

p,p (S)
]6

is continuously invertible, the interior Dirichlet BVP (2.52), (2.47)–(2.51) is uniquely solvable in the space [W 1
p(Ω)]

6

and the solution is representable in the form of double layer potential U = W (h) with the density vector function

h ∈
[
B

1− 1
p

p,p (S)
]6 being a unique solution of the equation

[ 2−1 I6 +N ] h = f on S.

Theorem 4.2. (i) Let a vector function U ∈ [W 1
p(Ω)]

6, 1 < p < ∞ solves the homogeneous differential equation
A(∂, τ )U = 0 in Ω . Then it is uniquely representable in the form

U (x) = V
(

H−1
{U }+

)
(x), x ∈ Ω ,

where {U }+ is the trace of U on S from Ω and belongs to the space
[
B

1− 1
p

p,p (S)
]6.

(ii) Let a vector function U ∈ [W 1
p, loc(Ω

−)]6, 1 < p < ∞ satisfy the decay conditions (2.45), and solve the
homogeneous differential equation A(∂, τ )U = 0 in Ω−. Then it is uniquely representable in the form

U (x) = V
(

H−1
{U }−

)
(x), x ∈ Ω−,

where {U }− is the trace of U on S from Ω− and belongs to the space
[
B

1− 1
p

p,p (S)
]6.

Theorem 4.3. Let 1 < p <∞ and F = (F1, . . . , F6)
>
∈
[
B
−

1
p

p,p (S)
]6.

(i) The operator

−2−1 I6 +K :
[
B
−

1
p

p,p (S)
]6
→
[
B
−

1
p

p,p (S)
]6 (4.1)

is an elliptic pseudodifferential operator with zero index and has a two-dimensional null space Λ(S) := ker(−2−1 I6+

K) ⊂ [C∞(S)]6, which represents a linear span of the vector functions

h(1), h(2) ∈ Λ(S),

such that

V (h(1)) = Ψ (1)
:= (0, 0, 0, 1, 0, 0)> and V (h(2)) = Ψ (2)

:= (0, 0, 0, 0, 1, 0)> in Ω . (4.2)

(ii) The null space of the operator adjoint to (4.1),

−2−1 I6 +K∗ :
[
B

1
p

p ′, p ′(S)
]6
→
[
B

1
p

p ′, p ′(S)
]6
,

1
p
+

1
p ′
= 1,

is a linear span of the vectors (0, 0, 0, 1, 0, 0)> and (0, 0, 0, 0, 1, 0)>.
(iii) The equation

[ −2−1 I6 +K ] h = F on S, (4.3)
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is solvable if and only if∫
S

F4(x) d S =
∫

S
F5(x) d S = 0. (4.4)

(iv) If the conditions (4.4) hold, then solutions to Eq. (4.3) are defined modulo a linear combination of the vector
functions h(1) and h(2).
(v) If the conditions (4.4) hold, then the interior Neumann type boundary value problem (2.52), (2.53)–(2.57) is

solvable in the space [W 1
p(Ω)]

6, 1 < p < ∞ and its solution is representable in the form of single layer potential

U = V (h), where the density vector function h ∈
[
B
−

1
p

p,p (S)
]6 is defined by Eq. (4.3). A solution to the interior

Neumann BVP in Ω is defined modulo a linear combination of the constant vector functions Ψ (1) and Ψ (2) given
by (4.2).

Remark 4.4. If boundary data of Dirichlet and Neumann boundary value problems (D)+τ,0 and (N )+τ,0 are sufficiently
smooth, then the problems have regular solutions (see [31]).

Now we start investigation of the mixed boundary value problems for solids with interior cracks.
First let us note that the boundary conditions on the crack faces Σ , (2.59) and (2.60), can be transformed

equivalently as{[
T U

]
j

}+
−
{[

T U
]

j

}−
= F+j − F−j ∈ B̃

−
1
p

p,p (Σ ), j = 1, 3,{[
T U

]
j

}+
+
{[

T U
]

j

}−
= F+j + F−j ∈ B

−
1
p

p,p (Σ ), j = 1, 3.

Thus, the boundary conditions (2.59)–(2.68) of the problem under consideration can be rewritten as{
T U

}+
= g(N ) on SN , (4.5){

U
}+
= g(D) on SD, (4.6){[

T U
]

j

}+
+
{[

T U
]

j

}−
= F+j + F−j on Σ , j = 1, 3, (4.7){

u4
}+
−
{
u4
}−
= f4 on Σ , (4.8){

u5
}+
−
{
u5
}−
= f5 on Σ , (4.9){

u6
}+
−
{
u6
}−
= f6 on Σ , (4.10){[

T U
]

j

}+
−
{[

T U
]

j

}−
= F+j − F−j on Σ , j = 1, 3, (4.11){

[ T U ]4
}+
−
{
[ T U ]4

}−
= F4 on Σ , (4.12){

[ T U ]5
}+
−
{
[ T U ]5

}−
= F5 on Σ , (4.13){

[ T U ]6
}+
−
{
[ T U ]6

}−
= F6 on Σ . (4.14)

We look for a solution of the boundary value problem (2.58)–(2.68) in the following form:

U = V (H−1 h)+Wc(h
(2))+ Vc(h

(1)) in ΩΣ , (4.15)

where H−1 is the operator inverse to the integral operator H defined by (3.2),

Vc(h
(1))(x) :=

∫
Σ

Γ (x − y, τ ) h(1)(y) dy S,

Wc(h
(2))(x) :=

∫
Σ

[
P(∂y, n(y), τ )[Γ (x − y, τ )]>

]> h(2)(y) dy S,

V (H−1 h)(x) :=
∫

S
Γ (x − y, τ ) (H−1 h)(y) dy S,
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h(i) = (h(i)1 , . . . , h(i)6 )
>, i = 1, 2, and h = (h1, . . . , h6)

> are unknown densities,

h(1) ∈
[
B̃
−

1
p

p,p (Σ )
]6
, h(2) ∈

[
B̃

1− 1
p

p,p (Σ )
]6
, h ∈

[
B

1− 1
p

p,p (S)
]6
. (4.16)

Due to the above inclusions, clearly, in Vc and Wc we can take the closed surface S0 as an integration manifold instead
of the crack surface Σ . Recall that Σ is assumed to be a proper part of S0 = ∂Ω0 ⊂ Ω (see Section 2.3).

The boundary and transmission conditions (4.5)–(4.14) lead to the equations:

rSN A h + rSN

[
T Wc(h

(2))
]
+ rSN

[
T Vc(h

(1))
]
= g(N ) on SN , (4.17)

rSD h + rSD

[
Wc(h

(2))
]
+ rSD Vc(h

(1)) = g(D) on SD, (4.18)

rΣ

[
T V

(
H−1h

)]
j + rΣ

[
Lc h(2)

]
j + rΣ

[
Kc(h

(1))
]

j = 2−1(F+j + F−j
)
, j = 1, 2, 3, on Σ , (4.19)

h(2)4 = f4 on Σ , (4.20)

h(2)5 = f5 on Σ , (4.21)

h(2)6 = f6 on Σ , (4.22)

h(1)j = F−j − F+j , j = 1, 2, 3, on Σ , (4.23)

h(1)4 = −F4 on Σ , (4.24)

h(1)5 = −F5 on Σ , (4.25)

h(1)6 = −F6 on Σ , (4.26)

where A :=
(
−2−1 I5 +K

)
H−1 is the Steklov–Poincaré type operator on S, and

Lc(h
(2))(z) :=

{
T Wc(h

(2))(z)
}+
=
{

T Wc(h
(2))(z)

}− on Σ ,

Kc(h
(1))(z) :=

∫
Σ

T (∂z, n(z), τ )Γ (z − y, τ ) h(1)(y) dy S on Σ .

As we see the sought for density h(1) and the last two components of the vector h(2) are determined explicitly by the
data of the problem. Hence, it remains to find the density h and the first three components of the vector h(2).

The operator generated by the left hand side expressions of the above simultaneous equations, acting upon the
unknown vector (h, h(2), h(1)) reads as

Q :=


rSN A rSN T Wc rSN T Vc
rSD I6 rSD Wc rSD Vc

rΣ [T V
(

H−1)
]3×6 rΣ [Lc]3×6 rΣ [Kc]3×6

[ 0 ]3×6 rΣ I ∗3×6 [ 0 ]3×6
[ 0 ]6×6 [ 0 ]6×6 rΣ I6


24×18

,

where [M ]3×6 denotes the first three rows of a 6× 6 matrix M , [ 0 ]m×n stands for the corresponding zero matrix,

I ∗3×6 :=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


3×6

.

This operator possesses the following mapping properties

Q : [H s
p(S)]

6
× [H̃ s

p(Σ )]
6
× [H̃ s−1

p (Σ )]6

→[H s−1
p (SN )]

6
× [H s

p(SD)]
6
× [H s−1

p (Σ )]3 × [H̃ s
p(Σ )]

3
× [H̃ s−1

p (Σ )]6 ,
Q : [Bs

p,q(S)]
6
× [B̃s

p,q(Σ )]
6
× [B̃s−1

p,q (Σ )]
6

→[Bs−1
p,q (SN )]

6
× [Bs

p,q(SD)]
6
× [Bs−1

p,q (Σ )]
3
× [B̃s

p,q(Σ )]
3
× [B̃s−1

p,q (Σ )]
6 ,

1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R.

(4.27)

Our main goal is to establish invertibility of the operators (4.27).
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To this end, by introducing a new additional unknown vector we extend Eq. (4.18) from SD onto the whole of S.
We will do this in the following way. Denote by g(D)0 some fixed extension of g(D) from SD onto the whole of S
preserving the space and introduce a new unknown vector φ on S

φ = h + rS

[
Wc(h

(2))
]
+ rS Vc(h

(1))− g(D)0 . (4.28)

It is evident that φ ∈
[
B̃

1− 1
p

p,p (SN )
]6 in accordance with (4.18), (4.16), (2.69), and the embedding g(D)0 ∈

[
B

1− 1
p

p,p (S)
]6.

Moreover, the restriction of Eq. (4.28) on SD coincide with Eq. (4.18). Therefore, we can replace Eq. (4.18) in
the system (4.17)–(4.26) by Eq. (4.28). Finally, we arrive at the following simultaneous equations with respect to
unknowns h, φ, h(2) and h(1):

rSN A h + rSN

[
T Wc(h

(2))
]
+ rSN

[
T Vc(h

(1))
]
= g(N ) on SN , (4.29)

h − φ + rS

[
Wc(h

(2))
]
+ rS Vc(h

(1)) = g(D)0 on S, (4.30)

rΣ
[

T V
(

H−1h
)]

j + rΣ
[

Lc h(2)
]

j + rΣ

[
Kc(h

(1))
]

j = 2−1(F+j + F−j
)
, j = 1, 2, 3, on Σ , (4.31)

h(2)4 = f4 on Σ , (4.32)

h(2)5 = f5 on Σ , (4.33)

h(2)6 = f6 on Σ , (4.34)

h(1)j = F−j − F+j , j = 1, 2, 3, on Σ , (4.35)

h(1)4 = −F4 on Σ , (4.36)

h(1)5 = −F5 on Σ , (4.37)

h(1)6 = −F6 on Σ . (4.38)

In what follows, for the zero vector g(D) = 0 on SD we always choose the fixed extension vector g(D)0 = 0 on S.
Rewrite the system (4.29)–(4.38) in the equivalent form

rSN Aφ + rSN T Wc(h
(2))− rSN A [rS Wc(h

(2))] + rSN T Vc(h
(1))

− rSN A [rS Vc(h
(1))] = g(N ) − rSN A g(D)0 on SN , (4.39)

− φ + h + rS

[
Wc(h

(2))
]
+ r∂Ω Vc(h

(1)) = g(D)0 on S, (4.40)

rΣ
[

T V
(

H−1h
)]

j + rΣ
[

Lc h(2)
]

j + rΣ

[
Kc(h

(1))
]

j = 2−1(F+j + F−j
)
, j = 1, 2, 3, on Σ , (4.41)

h(2)4 = f4 on Σ , (4.42)

h(2)5 = f5 on Σ , (4.43)

h(2)6 = f6 on Σ , (4.44)

h(1)j = F−j − F+j , j = 1, 2, 3, on Σ , (4.45)

h(1)4 = −F4 on Σ , (4.46)

h(1)5 = −F5 on Σ , (4.47)

h(1)6 = −F6 on Σ . (4.48)

Remark 4.5. The systems (4.17)–(4.26) and (4.39)–(4.48) are equivalent in the following sense:

(i) if (h, h(2), h(1))> solves the system (4.17)–(4.26), then (φ, h, h(2), h(1))> with φ given by (4.28) where g(D)0 is
some fixed extension of the vector g(D) from SD onto the whole of S involved in the right hand side of Eq. (4.40),
solves the system (4.39)–(4.48);

(ii) if (φ, h, h(2), h(1))> solves the system (4.39)–(4.48), then (h, h(2), h(1))> solves the system (4.17)–(4.26).
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The operator generated by the left hand sides of system (4.39)–(4.48) reads as

Q1 :=


rSN

A [ 0 ]6×6 rSN
R2 rSN

R1

−rS I6 rS I6 rS Wc rS Vc

[ 0 ]3×6 rΣ [T V
(

H−1)
]3×6 rΣ [Lc]3×6 rΣ [Kc]3×6

[ 0 ]3×6 [ 0 ]3×6 rΣ I ∗3×6 [ 0 ]3×6
[ 0 ]6×6 [ 0 ]6×6 [ 0 ]6×6 rΣ I6


24×24

, (4.49)

where

R1 = T Vc −A [rS Vc], R2 = T Wc −A [rS Wc].

Here and in what follows [M ]6×k with k < 6 denotes the first k columns of a 6×6 matrix M , while [M ]k×6 denotes
the first k rows of the same matrix, and [M ]k×k stands for the upper left k × k block of M .

This operator possesses the following mapping properties

Q1 : [H̃
s
p(SN )]

6
× [H s

p(S)]
6
× [H̃ s

p(Σ )]
6
× [H̃ s−1

p (Σ )]6

→[H s−1
p (SN )]

6
× [H s

p(S)]
6
× [H s−1

p (Σ )]3 × [H̃ s
p(Σ )]

3
× [H̃ s−1

p (Σ )]6 ,

Q1 : [B̃
s
p,q(SN )]

6
× [Bs

p,q(S)]
6
× [B̃s

p,q(Σ )]
6
× [B̃s−1

p,q (Σ )]
6

→[Bs−1
p,q (SN )]

6
× [Bs

p,q(S)]
6
× [Bs−1

p,q (Σ )]
3
× [B̃s

p,q(Σ )]
3
× [B̃s−1

p,q (Σ )]
6 ,

1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R.

(4.50)

Due to the above agreement about the extension of the zero vector we see that if the right hand side functions of the
system (4.17)–(4.26) vanish then the same holds for the system (4.39)–(4.48) and vice versa.

The uniqueness Theorem 2.1 and properties of the single and double layer potentials imply the following assertion.

Lemma 4.6. The null spaces of the operators Q and Q1 are trivial for s = 1/2 and p = 2.

Now we start to analyse Fredholm properties of the operator Q1.
From the structure of the operator Q1 it is evident that we need only to study Fredholm properties of the operator

generated by the upper left 15× 15 block of the matrix operator (4.49),

M :=

rSN
A [ 0 ]6×6 rSN

[R2]6×3

−rS I6 rS I6 rS [Wc ]6×3

[ 0 ]3×6 rΣ [T V
(

H−1)
]3×6 rΣ [Lc ]3×3


15×15

.

This operator has the following mapping properties:

M : [H̃ s
p(SN )]

6
× [H s

p(S)]
6
× [H̃ s

p(Σ )]
3

→[H s−1
p (SN )]

6
× [H s

p(S)]
6
× [H s−1

p (Σ )]3 ,

M : [B̃s
p,q(SN )]

6
× [Bs

p,q(S)]
6
× [B̃s

p,q(Σ )]
3

→[Bs−1
p,q (SN )]

6
× [Bs

p,q(S)]
6
× [Bs−1

p,q (Σ )]
3 ,

1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R.

(4.51)

For the principal part M0 of the operator M we have

M0 :=

rSN
A [ 0 ]6×6 [ 0 ]6×3

−rS I6 rS I6 [ 0 ]6×3

[ 0 ]3×6 [ 0 ]3×6 rΣ L(1)


15×15

, (4.52)

where

L(1)
:= ‖[Lc]k j‖3×3, Lc = ‖[Lc]kl‖6×6. (4.53)
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Clearly, the operator M0 has the same mapping properties as M and the difference M −M0 is compact. Actually,
M−M0 is an infinitely smoothing operator.

The operators Lc and A are strongly elliptic pseudodifferential operators of order 1 (see [31]). From (4.53) we get
then that L(1) is a strongly elliptic pseudodifferential operator as well. Moreover, we have the following invertibility
results.

Theorem 4.7. Let 1 < p <∞, 1 ≤ q ≤ ∞, 1/p − 1/2 < s < 1/p + 1/2. Then the operators

rΣ L(1)
:
[
H̃ s

p(Σ )
]3
→
[
H s−1

p (Σ )
]3
, rΣ L(1)

:
[
B̃s

p,q(Σ )
]3
→
[
Bs−1

p,q (Σ )
]3 (4.54)

are invertible.

Proof. With the help of the first equality in (3.4) we derive that the principal homogeneous symbol matrix of the
strongly elliptic pseudodifferential operator Lc reads as

S(Lc; x, ξ) = S(LS0; x, ξ) :=
(
−

1
4

I6 +S2(KS0; x, ξ)
)
[S(HS0; x, ξ) ]

−1

=

(
−

1
4

I6 +S2(Kc; x, ξ)
)
[S(Hc; x, ξ) ]

−1, x ∈ Σ , ξ ∈ R2
\ {0},

where HS0 and KS0 are integral operators given by (3.2) and (3.3) with S0 for S.
One can show that the principal homogeneous symbol matrix of the operator Kc is an odd matrix function in ξ ,

whereas the principal homogeneous symbol matrix of the operator Hc is an even matrix function in ξ . Consequently,
the matrix S(Lc; x, ξ) is even in ξ (for details see [31]).

From these results it follows that L(1) is a strongly elliptic pseudodifferential operator with even principal
homogeneous symbol. Therefore the matrix

[S(L(1)
; x, 0,+1) ]−1 S(L(1)

; x, 0,−1)

is the unit matrix and the corresponding eigenvalues equal to 1 (see Appendix A). Now, from Theorem A in
Appendix A it follows that the operators (4.54) are Fredholm with zero index for 1 < p < ∞, 1 ≤ q ≤ ∞ and
1/p−1/2 < s < 1/p+1/2. It remains to show that the corresponding null spaces are trivial. In turn, due to the same
Theorem A (see Appendix A), it suffices to establish that the operator

rΣ L(1)
:
[
H̃

1
2

2 (Σ )
]3
→
[
H
−

1
2

2 (Σ )
]3

is injective, i.e, we have to prove that the homogeneous equation

rΣ L(1) χ = 0 on Σ (4.55)

possesses only the trivial solution in the space
[
H̃

1
2

2 (Σ )
]3.

Let χ ∈
[
H̃

1
2

2 (Σ )
]3 solve Eq. (4.55) and construct the double layer potential

U = (u1, . . . , u6)
>
= Wc(χ̃), χ̃ = (χ, 0, 0, 0)> .

In view of properties of the double layer potential and Eq. (4.55), it can easily be verified that the vector U ∈[
W 1

2 (R
3
\ Σ )

]6 is a solution to the following crack type boundary transmission problem:

A(∂x , τ )U = 0 in R3
\ Σ ,{

[ T U ] j
}+
=
{
[ T U ] j

}−
= 0, j = 1, 2, 3, on Σ ,{

uk
}+
−
{
uk
}−
= 0, k = 4, 5, 6, on Σ ,{

[ T U ]k
}+
−
{
[ T U ]k

}−
= 0, k = 4, 5, 6, on Σ

and satisfy the decay conditions (2.45) at infinity, i.e., U ∈ Z(R3
\ Σ ).

Applying Green’s identity (2.70) by standard arguments we arrive at the equality U = 0 in R3
\ Σ . Whence

χ = (χ1, χ2, χ3)
>
= 0 on Σ follows due to the equalities

{
u j
}+
−
{
u j
}−
= χ j on Σ , j = 1, 2, 3. This completes

the proof. �
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Let λk, k = 1, 6, be the eigenvalues of the matrix

a0(x) := [S(A; x, 0,+1) ]−1 S(A; x, 0,−1), x ∈ `m,

where S(A; x, ξ) with x ∈ SN and ξ = (ξ1, ξ2) ∈ R2 is the principal homogeneous symbol of the Steklov–Poincaré
operator A.

We can show that λ = 1 is an eigenvalue of the matrix a0(x). It follows from the following technical lemma.

Lemma 4.8. Let Q be the set of all non-singular k × k square matrices with complex-valued entries and having the
structure[

[Ql j ](k−1)×(k−1) {0}(k−1)×1
{0}1×(k−1) Qkk

]
k×k

, k ∈ N.

If X, Y ∈ Q, then XY ∈ Q and X−1
∈ Q. Moreover, if in addition X = [X jl ]k×k and Y = [Y jl ]k×k are strongly

elliptic, i.e.

Re (Xζ ζ̇ ) > 0, Re (Y ζ ζ̇ ) > 0 for all ζ ∈ Ck
\ {0},

and Xkk and Ykk are real numbers, then λ = XkkYkk > 0 is an eigenvalue of the matrix XY .
In particular if Xkk = Y−1

kk , then λ = 1 is an eigenvalue of the matrix XY .

Let us introduce the notation

δ′ = inf
1≤ j≤6
x∈`m

1
2π

arg λ j (x), δ′′ = sup
1≤ j≤6
x∈`m

1
2π

arg λ j (x). (4.56)

Due to strong ellipticity of the operator A and since one eigenvalue, say λ6 equals 1, we easily derive that

−
1
2
< δ

′

≤ 0 ≤ δ
′′

<
1
2
.

Applying again Theorem A in Appendix A, we get (see [31], Lemma 5.20).

Theorem 4.9. Let 1 < p <∞, 1 ≤ q ≤ ∞, 1/p − 1/2+ δ′′ < s < 1/p + 1/2+ δ′ with δ′ and δ′′ given by (4.56).
Then the Steklov–Poincaré operators

rSN
A :

[
H̃ s

p(SN )
]6
→
[
H s−1

p (SN )
]6
,

rSN
A :

[
B̃s

p,q(SN )
]6
→
[
Bs−1

p,q (SN )
]6
,

are invertible.

These assertions imply

Theorem 4.10. Let

1 < p <∞, 1 ≤ q ≤ ∞, 1/p − 1/2+ δ′′ < s < 1/p + 1/2+ δ′ (4.57)

with δ′ and δ′′ given by (4.56). Then the operators (4.51) are Fredholm with index 0.

Proof. From Theorems 4.7 and 4.9 we conclude that for arbitrary p, q and s satisfying the conditions (4.57), the
operators

M0 : [H̃
s
p(SN )]

6
× [H s

p(S)]
6
× [H̃ s

p(Σ )]
3

→ [H s−1
p (SN )]

6
× [H s

p(S)]
6
× [H s−1

p (Σ )]3 ,

M0 : [B̃
s
p,q(SN )]

6
× [Bs

p,q(S)]
6
× [B̃s

p,q(Σ )]
3

→ [Bs−1
p,q (SN )]

6
× [Bs

p,q(S)]
6
× [Bs−1

p,q (Σ )]
3 ,

with M0 defined in (4.52) are invertible. Therefore the operators (4.51) are Fredholm operators with index 0. �
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Now we are in a position to prove the invertibility of the operator Q1.

Theorem 4.11. Let conditions (4.57) be satisfied. Then the operators (4.50) are invertible.

Proof. From Theorem 4.10 it follows that the operator Q1 is Fredholm with index zero if (4.57) holds. By Lemma 4.6
we conclude then that for s = 1/2 and p = 2 it is invertible. The null-spaces and indices of the operators (4.50)
are the same for all values of the parameter q ∈ [1,+∞], provided p and s satisfy the inequalities (4.57) (see [36,
Ch. 3., Proposition 10.6]). Therefore, for these values of the parameters p and s they are invertible. In particular, the
nonhomogeneous system (4.39)–(4.48) is uniquely solvable in the corresponding spaces. Moreover, it can be easily
shown that the solution vectors h, h(2), h(1) do not depend on the extension of the vector g(D), while φ does. However,
the sum φ + g(D)0 is defined uniquely. �

Due to Remark 4.5 we conclude that the operators (4.27) are invertible if p, q and s satisfy the conditions (4.57).
With the help of this theorem we arrive at the following existence result for the original mixed BVP.

Theorem 4.12. Let

4
3− 2δ′′

< p <
4

1− 2δ′
. (4.58)

with δ′ and δ′′ given by (4.56). Then the BVP (2.58)–(2.68) has a unique solution U in the space
[
W 1

p(ΩΣ )
]6, which

can be represented as U = V (H−1 h) + Wc(h(2)) + Vc(h(1)) in ΩΣ , where h, h(2) and h(1) are defined by the
system (4.17)–(4.25).

Proof. The condition (4.58) follows from the inequality (4.57) with s = 1 − 1/p. Now existence of a solution
U ∈ [W 1

p(ΩΣ )]
6 with p satisfying (4.58) follows from Theorem 4.6. Due to the inequalities − 1

2 < δ′ ≤ δ′′ < 1
2 we

have p = 2 ∈
(

4
3−2δ ′′ ,

4
1−2δ ′

)
. Therefore the unique solvability for p = 2 is a consequence of Theorem 2.1.

To show the uniqueness result for all other values of p from the interval (4.58) we proceed as follows. Let a vector
U ∈ [W 1

p(ΩΣ )]
6 with p satisfying (4.58) be a solution to the homogeneous boundary value problem (2.58)–(2.68).

Then, it is evident that{
U
}+

S ∈ [B
1− 1

p
p,p (S)]

6,
{

T U
}+

S ∈ [B
−

1
p

p,p (S)]
6,{

U
}±
Σ ∈ [B

1− 1
p

p,p (Σ )]6,
{

T U
}±
Σ ∈ [B

−
1
p

p,p (Σ )]6,{
U
}+
Σ −

{
U
}−
Σ ∈ [B̃

1− 1
p

p,p (Σ )]6,
{

T U
}+
Σ −

{
T U

}−
Σ = 0 on Σ .

By the general integral representation formula the vector U can be represented in ΩΣ as

U = Wc({U }
+

Σ − {U }
−

Σ )− Vc({T U }+Σ − {T U }−Σ )+W ({U }+S )− V ({T U }+S ) ,

i.e.,

U = U∗ +Wc(h
(2))+ Vc(h

(1)) in ΩΣ , (4.59)

where

h(1) = {T U }+Σ − {T U }−Σ , h(2) := {U }+Σ − {U }
−

Σ on Σ ,

U∗ := W ({U }+S )− V ({T U }+S ) ∈
[
W 1

p(Ω)
]6
.

Note that U∗ solves the homogeneous equation

A(∂, τ )U∗ = 0 in Ω .

Denote h := {U∗}+S . Clearly, h ∈
[
B1−1/p

p,p (S)
]6. Since the Dirichlet problem possesses a unique solution in the

space [W 1
p(Ω)]

6 for arbitrary p ∈ [1,+∞), we can represent U∗ uniquely in the form of a single layer potential,
U∗ = V (H−1 h) in Ω (for details see [31, Ch. 5, Section 5.6]). Therefore from (4.59) we get

U = V (H−1 h)+Wc(h
(2))+ Vc(h

(1)) in ΩΣ .
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Now, the homogeneous boundary and transmission conditions for U lead to the homogeneous system (cf.
(4.17)–(4.25)) QΨ = 0, where Ψ = (h, h(2), h(1))>. Whence, Ψ = 0 follows immediately due to invertibility of
Q (see Theorem 4.11). Consequently, U = 0 in ΩΣ . �

Let us now present some regularity results for solutions of the mixed boundary value problem (2.58)–(2.68).

Theorem 4.13. Let 1 < t <∞, 1 ≤ q ≤ ∞,

4
3− 2δ ′′

< p <
4

1− 2δ ′
,

1
t
−

1
2
+ δ ′′ < s <

1
t
+

1
2
+ δ ′,

with δ′ and δ′′ given by (4.56), and let U ∈ [W 1
p(ΩΣ )]

6 be the solution of the boundary value problem (2.58)–(2.68).
Then the following regularity results hold:

(i) If

F+j , F−j ∈ Bs−1
t, t (Σ ), F+j − F−j ∈ B̃s−1

t, t (Σ ), j = 1, 2, 3, Fk ∈ B̃s−1
t, t (Σ ),

fk ∈ B̃s
t, t (Σ ), k = 4, 5, 6, g(D) ∈

[
Bs

t, t (SD)
]6
, g(N ) ∈

[
Bs−1

t, t (SN )
]6
,

then U ∈
[
H

s+ 1
t

t (ΩΣ )
]6
;

(ii) If

F+j , F−j ∈ Bs−1
t, q (Σ ), F+j − F−j ∈ B̃s−1

t, q (Σ ), j = 1, 2, 3, Fk ∈ B̃s−1
t, q (Σ ),

fk ∈ B̃s
t, q(Σ ), k = 4, 5, 6, g(D) ∈

[
Bs

t, q(SD)
]6
, g(N ) ∈

[
Bs−1

t, q (SN )
]6
,

then U ∈
[
B

s+ 1
t

t, q (ΩΣ )
]6
;

(iii) If α > 0 and

F+j , F−j ∈ Bα−1
∞,∞(Σ ), F+j − F−j ∈ B̃α−1

∞,∞(Σ ), j = 1, 2, 3,

Fk ∈ B̃α−1
∞,∞(Σ ), fk ∈ Cα(Σ ), r`c fk = 0, k = 4, 5, 6,

g(D) ∈
[
Cα(SD)

]6
, g(N ) ∈

[
Bα−1
∞,∞(SN )

]6
,

then

U ∈
⋂
α ′<γ

Cα ′(Ω j ), j = 0, 1,

where γ = min{α, 1/2 + δ ′}, −1/2 < δ ′ ≤ 0 and Ω0 is an arbitrary proper subdomain of Ω such that
Σ ⊂ ∂Ω0 = S0 ∈ C∞ and Ω1 = Ω \ Ω0.

Moreover, in one-sided interior and exterior neighbourhoods of the surface S0 the vector U has C γ ′−ε-smoothness
with γ ′ = min{α, 1/2}, while in a one-sided interior neighbourhood of the surface S the vector U possesses C γ ′′− ε-
smoothness with γ ′′ = min{α, 1/2+ δ ′}; here ε is an arbitrarily small positive number.

Proof. The proof is exactly the same as that of Theorem 5.22 in [31]. �

Remark 4.14. Theorem 4.13 describes global smoothness properties of solutions. Below, in Section 6.1, with the help
of the asymptotic analysis, we will show that actually in a neighbourhood of the crack edge `c the functions u, ϕ and
ψ have C1/2 regularity while the temperature function ϑ possesses C3/2 smoothness.

5. Asymptotic expansion of solutions

Here we investigate the asymptotic behaviour of solutions to the problem (2.58)–(2.68) near the exceptional curves
`c and `m . For simplicity of description of the method applied below, we assume that the boundary data of the problem
are infinitely smooth,

F+j , F−j ∈ C∞(Σ ), F+j − F−j ∈ C∞0 (Σ ), j = 1, 2, 3, fk, Fk ∈ C∞0 (Σ ), k = 4, 5, 6,

g(D) ∈
[
C∞(SD)

]6
, g(N ) ∈

[
C∞(SN )

]6
,
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where C∞0 (Σ ) denotes a space of functions vanishing along with all tangential (to Σ ) derivatives on `c
= ∂Σ .

In Section 4, we have shown that the boundary value problem (2.58)–(2.68) is uniquely solvable and the solution
U can be represented by (4.15), where the densities are defined by Eqs. (4.17)–(4.26) or by the equivalent system
(4.39)–(4.48).

Let Φ := (φ, h, h(2), h(1))> be a solution of the system (4.39)–(4.48):

Q1 Φ = G,

where G is the vector constructed by the right hand sides of the system,

G ∈ [C∞(SN )]
6
× [C∞(S)]6 × [C∞(Σ )]3 × [C∞0 (Σ )]

9.

To establish the asymptotic behaviour of the vector U near the curves `c and `m , we rewrite (4.15) as follows

U = V
(

H−1 φ
)
+Wc (χ̃)+R, (5.1)

where

R := −V
(

H−1
[
rS Wc(h

(2))+ rS Vc(h
(1))− g(D)0

])
+Wc( f0)+ Vc(h

(1)),

with f0 = (0, 0, 0, f4, f5, f6)
>. Note that rΩ j

R ∈
[
C∞(Ω j )

]6
, where Ω j , j = 0, 1, are as in Theorem 4.13, item

(iii), since

rS Wc(h
(2))+ rS Vc(h

(1))− g(D)0 ∈ [C∞(S)]6,

h(1) =
(
F−1 − F+1 , F−2 − F+2 , F−3 − F+3 ,−F4,−F5,−F6

)
∈ [C∞0 (Σ )]

6,

h(2)4 = f4 ∈ C∞0 (Σ ), h(2)5 = f5 ∈ C∞0 (Σ ), h(2)6 = f6 ∈ C∞0 (Σ ).

Further, the vector χ̃ involved in (5.1) is defined as follows: χ̃ = (χ, 0, 0, 0)>, where χ = (χ1, χ2, χ3)
>
≡

(h(2)1 , h(2)2 , h(2)3 )>, and χ solves the pseudodifferential equation

rΣ L(1) χ = Ψ (1) on Σ (5.2)

with Ψ (1)
= (Ψ (1)

1 ,Ψ (1)
2 ,Ψ (1)

3 )>. Evidently,

Ψ (1)
j = 2−1 (F+j + F−j )− rΣ [T V

(
H−1 h

)
] j − rΣ [Kc(h

(1))] j ∈ C∞(Σ ), j = 1, 2, 3.

Finally, the vector φ involved in (5.1) solves the pseudodifferential equation

rSN
Aφ = Ψ (2) on SN , (5.3)

where

Ψ (2)
= g(N ) − rSN

A g(D)0 − rSN
T Wc(h

(2))+ rSN
A [rS Wc(h

(2))]

− rSN
T Vc(h

(1))+ rSN
A [rS Vc(h

(1))] ∈ [C∞(SN )]
6 .

The principal homogeneous symbol S(L(1)
; x, ξ), x ∈ Σ , ξ = (ξ1, ξ2) ∈ R2

\{0} of the pseudodifferential operator
L(1) is even with respect to the variable ξ and, therefore, the matrix[

S(L(1)
; x, 0,+1)

]−1
S(L(1)

; x, 0,−1), x ∈ `c,

is the unit matrix I3. Consequently, all eigenvalues of this matrix equal to one,

λ j (x) = 1, j = 1, 3, x ∈ `c.

Applying a partition of unity, natural local co-ordinate systems and local diffeomorphisms, we can rectify `c
and Σ locally in a standard way. For simplicity, let us denote the local rectified images of `c and Σ under this
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diffeomorphisms by the same symbols. Then we identify a one-sided neighbourhood (in Σ ) of an arbitrary point
x̃ ∈ `c as a part of the half-plane x2 > 0. Thus, we assume that (x1, 0) ∈ `c and (x1, x2,+) ∈ Σ for 0 < x2,+ < ε;.
Clearly, x2,+ = dist(x, `c).

Applying the results obtained in Refs. [14] and [37] we can derive the following asymptotic expansion for the
solution χ of the strongly elliptic pseudodifferential equation (5.2),

χ(x1, x2,+) = c0(x1) x
1
2
2,+ +

M∑
k=1

ck(x1) x
1
2+k
2,+ + χM+1(x1, x2,+) , (5.4)

where M is an arbitrary natural number, ck ∈
[
C∞(`c)

]3, k = 0, 1, . . . ,M, and the remainder term satisfies the
inclusion

χM+1 ∈
[
C M+1(`+c,ε)

]3
, `+c,ε = `c × [0, ε].

Note that, according to [37], the terms in the expansion (5.4) do not contain logarithms, since the principal
homogeneous symbol S(L(1)

; x, ξ) of the pseudodifferential operator L(1) is even in ξ .
To derive analogous asymptotic expansion for the solution vector φ of Eq. (5.3), we apply the same local technique

as above to a one-sided neighbourhood (in SN ) of the curve `m and preserve the same notation for the local co-
ordinates.

Consider a 6×6 matrix a0(x1) constructed by the principal homogeneous symbol of the Steklov–Poincaré operator
A,

a0(x1) :=
[
S(A; x1, 0,+1)

]−1
S(A; x1, 0,−1), (x1, 0) ∈ `m . (5.5)

Note that unlike to the above considered case, now (5.5) is not the unit matrix and therefore we proceed as follows.
Denote by λ1(x1), . . . , λ6(x1) the eigenvalues of the matrix a0. Denote by µ j , j = 1, . . . , l, 1 ≤ l ≤ 6, the distinct

eigenvalues and by m j their algebraic multiplicities: m1+· · ·+ml = 6. It is well known that the matrix a0(x1) admits
the following decomposition (see, e.g., [38], Chapter 7, Section 7)

a0(x1) = D(x1)Ja0(x1)D−1(x1), (x1, 0) ∈ `m,

where D is 6× 6 nondegenerate matrix with infinitely differentiable entries and Ja0 has a block diagonal structure

Ja0(x1) := diag {µ1(x1)B
(m1)(1) , . . . , µl(x1)B

(ml )(1)}.

Here B(ν)(t), ν ∈ {m1, . . . ,ml}, are upper triangular matrices:

B(ν)(t) = ‖b(ν)jk (t)‖ν×ν, b(ν)jk (t) =


tk− j

(k − j)!
, j < k,

1, j = k,
0, j > k,

i.e.,

B(ν)(t) =



1 t
t2

2!
· · ·

tν−2

(ν − 2)!
tν−1

(ν − 1)!

0 1 t · · ·
tν−3

(ν − 3)!
tν−2

(ν − 2)!
. . . . . . . . . . . . . . . . . .

0 0 0 · · · 1 t
0 0 0 · · · 0 1


ν×ν

.

Denote

B0(t) := diag {B(m1)(t), . . . , B(ml )(t)}.
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Again, applying the results from Ref. [14] we derive the following asymptotic expansion for the solution φ of the
strongly elliptic pseudodifferential equation (5.3)

φ(x1, x2,+) = D(x1) x
1
2+∆(x1)

2,+ B0

(
−

1
2π i

log x2,+

)
D−1(x1) b0(x1)

+

M∑
k=1

D(x1) x
1
2+∆(x1)+k
2,+ Bk

(
x1, log x2,+

)
+ φM+1(x1, x2,+), (5.6)

where b0 ∈
[
C∞(`m)

]6, φM+1 ∈
[
C M+1(`+m,ε)

]6
, `+m,ε = `m × [0, ε], and

Bk(x1, t) = B0

(
−

t

2π i

) k(2m0−1)∑
j=1

t j dk j (x1).

Here m0 = max {m1, . . . ,m6}, the coefficients dk j ∈
[
C∞(`m)

]6 and

∆ := (∆1, . . . ,∆6),

∆ j (x1) =
1

2π i
log λ j (x1) =

1
2π

arg λ j (x1)+
1

2π i
log |λ j (x1)|,

− π < arg λ j (x1) < π, (x1, 0) ∈ `m, j = 1, 6.

Furthermore,

x
1
2+∆(x1)

2,+ := diag
{

x
1
2+∆1(x1)

2,+ , . . . , x
1
2+∆6(x1)

2,+

}
.

Now, having at hand the formulae (5.4) and (5.6) with the help of the asymptotic expansion of potential-type
functions obtained in [15] we can write the following spatial asymptotic expansions for the solution vector U of the
boundary value problem (2.58)–(2.68) near the crack edge `c and near the collision curve `m .

(a) Asymptotic expansion near the crack edge `c:

U (x) =
∑
µ=±1

[ l0∑
s=1

ns−1∑
j=0

x j
3 z

1
2− j
s,µ d(c)s j (x1, µ)

+

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+ j+p≥1

x l
2 x j

3 z
1
2+p+k
s,µ d(c)slk jp(x1, µ)

]
+U (c)

M+1(x) (5.7)

with the coefficients

d(c)s j ( · , µ), d(c)slk jp( · , µ) ∈
[
C∞(`c)

]6 and U (c)
M+1 ∈

[
C M+1(Ω j )]

6, j = 0, 1.

Here Ω j , j = 0, 1, are as in Theorem 4.13(iii), and

zs,+1 = −(x2 + x3ζs,+1), zs,−1 = x2 − x3ζs,−1, (5.8)

− π < arg zs,±1 < π, ζs,±1 ∈ C∞(`c),

where {ζs,±1}
l0
s=1 are the different roots in ζ of multiplicity ns, s = 1, . . . , l0, of the polynomial det A(0)

([
J>~ (x1,

0, 0)
]−1

η±

)
with η± = (0,±1, ζ )>, satisfying the condition Re ζs,±1 < 0. The matrix J~ stands for the

Jacobian matrix corresponding to the canonical diffeomorphism ~ related to the local co-ordinate system. Under
this diffeomorphism `c and Σ are locally rectified and we assume that (x1, 0, 0) ∈ `c, x2 = dist(x (Σ ), `c),
x3 = dist(x,Σ ), where x (Σ ) is the projection of the reference point x ∈ ΩΣ onto the plane corresponding to the
image of Σ under the diffeomorphism ~.

Note that the coefficients d(c)s j ( · , µ) can be expressed by the first coefficient c0 in the asymptotic expansion (5.4)
(for details see [15, Theorem 2.3]).
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(b) Asymptotic expansion near the collision curve `m :

U (x) =
∑
µ=±1

{ l0∑
s=1

ns−1∑
j=0

x j
3

[
d(m)s j (x1, µ) z

1
2+∆(x1)− j
s,µ B0

(
−

1
2π i

log zs,µ

)]
c̃ j (x1)

+

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+ j+p≥1

x l
2 x j

3 d(m)sl j p(x1, µ) z
1
2+∆(x1)+p+k
s,µ Bsk jp

(
x1, log zs,µ

)}
+U (m)

M+1(x), (5.9)

where d(m)s j ( · , µ) and d(m)sl j p( · , µ) are matrices with entries belonging to the space C∞(`m), c̃ j ∈
[
C∞(`m)

]6,

U (m)
M+1 ∈

[
C M+1(Ω1)

]6 and

zκ+∆(x1)
s,µ := diag

{
zκ+∆1(x1)

s,µ , . . . , zκ+∆6(x1)
s,µ

}
, κ ∈ R, µ = ±1, x1 ∈ `m;

Bsk jp(x1, t) are polynomials with respect to the variable t with vector coefficients which depend on the variable x1 and
have the order νk jp = k(2m0−1)+m0−1+ p+ j , in general, where m0 = max{m1, . . . ,ml} and m1+· · ·+ml = 6.

Note that the coefficients d(m)s j ( · , µ) can be calculated explicitly, whereas the coefficients c̃ j can be expressed by
means of the first coefficient b0 in the asymptotic expansion (5.6) (for details see [15, Theorem 2.3]).

Remark 5.1. Note that the above asymptotic expansions hold also true for finitely smooth data. In this case the
asymptotic expansions can be obtained as in Ref. [16,14], and [15] with the help of the theory of anisotropic weighted
Sobolev and Bessel potential spaces.

6. Analysis of singularities of solutions

Let x ′ ∈ `c and Π (c)
x ′ be the plane passing through the point x ′ and orthogonal to the curve `c. We introduce the

polar coordinates (r, α), r ≥ 0, −π ≤ α ≤ π , in the plane Π (c)
x ′ with pole at the point x ′. Denote by Σ± the two

different faces of the crack surface Σ . It is clear that (r,±π) ∈ Σ±.
Denote the similar orthogonal plane to the curve `m by Π (m)

x ′ at the point x ′ ∈ `m and introduce there the polar

coordinates (r, α), with pole at the point x ′. The intersection of the plane Π (m)
x ′ and ΩΣ can be identified with the

half-plane r ≥ 0 and 0 ≤ α ≤ π .
In these coordinate systems, the functions zs,±1 given by (5.8) read as follows

zs,+1 = −r(cosα + ζs,+1(x
′) sinα),

zs,−1 = r(cosα − ζs,−1(x
′) sinα),

where x ′ ∈ `c ∪ `m , s = 1, . . . , l0. We can rewrite asymptotic expansions (5.7) and (5.9) in more convenient forms,
in terms of the variables r and α. Moreover, we establish more refined asymptotic properties.

6.1. Asymptotic analysis of solutions near the crack edge `c

The asymptotic expansion (5.7) yields

U = (u, ϕ, ψ, ϑ)> = a0(x
′, α) r1/2

+ a1(x
′, α) r3/2

+ · · · ,

where r is the distance from the reference point x ∈ Π (c)
x ′ to the curve `c, and a j = (a j1, . . . , a j6)

>, j = 0, 1, . . . ,
are smooth vector functions of x ′ ∈ `c.

From this representation it follows that in one-sided interior and exterior neighbourhoods of the surface S0 = ∂Ω0

the vector U = (u, ϕ, ψ, ϑ)> has C
1
2 -smoothness.

More detailed analysis shows that a06 = 0 and therefore for the temperature function we have the following
asymptotic expansion

ϑ = a16(x
′, α) r3/2

+ a26(x
′, α) r5/2

+ · · · .
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Indeed, we can see that u6 = ϑ solves the segregated mixed transmission problem:

ηi j∂i∂ j u6 = Q∗ in Ω \ S0, (6.1){
u6
}+
−
{
u6
}−
= f̃6 on S0, (6.2){

[T U ]6
}+
−
{
[T U ]6

}−
= F̃6 on S0, (6.3){

u6
}+
= g(D)6 on SD, (6.4){

[T U ]6
}+
= g(N )6 on SN (6.5)

with

Q∗ = τ T0 λil ∂lui − τ T0 pi ∂iϕ − τ T0 mi ∂iψ + τ α0 ϑ, [T U ]6 = ηil ni ∂lϑ,

f̃6 ∈ C∞(S0), F̃6 ∈ C∞(S0), g(D)6 ∈ C∞(SD), g(N )6 ∈ C∞(SN ),

where f̃6 and F̃6 are extensions of the functions f6 and F6 from Σ onto the whole of S0 by zero, and g(D)6 and g(N )6
are the sixth components of the vectors g(D) and g(N ), respectively.

The problem (6.1)–(6.5) is a classical transmission problem where transmission conditions are given on the closed
interface surface S0. Regularity of solutions to this problem near the line `c depends on smoothness of the right hand
side function Q∗, since all the other data possess C∞ smoothness on S0 (cf. [31], Section 8.2.1).

Let 1 < t <∞, 1/t − 1/2+ δ′′ < s < 1/t + 1/2+ δ′. Then due to Theorem 4.13(i) we deduce

U = (u1, u2, u3, ϕ, ψ, ϑ)
>
∈
[
H s+1/t

t (ΩΣ )
]6
.

Whence Q∗ ∈ H
s−1+ 1

t
t (ΩΣ ) follows. Using the mapping properties of the volume potential (see [39], Theorem 3.8)

we conclude that u6 = ϑ belongs to the space H
s+1+ 1

t
t in one-sided neighbourhoods of S0.

From the embedding theorem (see [26], Theorem 4.6.1) it then follows that for sufficiently large t there holds the
inclusion ϑ ∈ C1+ε in a neighbourhood of S0 with some positive ε. Due to this regularity result, from the expansion

ϑ = a06(x
′, α) r1/2

+ a16(x
′, α) r3/2

+ · · ·

it follows that a06 = 0, i.e., actually for ϑ we have

ϑ = a16(x
′, α) r3/2

+ a26(x
′, α) r5/2

+ · · ·

and, consequently, ϑ possesses C3/2-regularity in one-sided closed neighbourhoods of S0.

6.2. Asymptotic analysis of solutions near the curve `m

The asymptotic expansion (5.9) yields

U (x) =
∑
µ=±1

l0∑
s=1

ns−1∑
j=0

cs jµ(x
′, α) rγ+i δ B0

(
−

1
2π i

log r

)
c̃s jµ(x

′, α)+ · · · , (6.6)

where

rγ+i δ
:= diag

{
rγ1+i δ1 , . . . , rγ6+i δ6

}
,

γ j =
1
2
+

1
2π

arg λ j (x
′), δ j =

1
2π

log |λ j (x
′)|, x ′ ∈ `m, j = 1, 6, (6.7)

and λ j , j = 1, 6, are eigenvalues of the matrix

a0(x
′) =

[
S(A; x ′, 0,+1)

]−1
S(A; x ′, 0,−1), x ′ ∈ `m . (6.8)

Here S(A; x ′, ξ) is the principal homogeneous symbol of the Steklov–Poincaré operator

A =
(
−2−1 I6 +K

)
H−1.
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Moreover, the eigenvalues λ j , j = 1, 6, can be expressed in terms of the eigenvalues β j , j = 1, 6, of the matrix
S(K; x ′, 0,+1), where S(K; x ′, ξ) is the principal homogeneous symbol matrix of the singular integral operator K.
Indeed, we have the following assertion (see [31, Lemma C.1]).

Lemma 6.1. The principal homogeneous symbol S(K; x ′, ξ) x ′ ∈ S, ξ = (ξ1, ξ2), is an odd matrix-function with
respect to ξ and

S(K; x ′, ξ) = i R(x ′, ξ),

where the entries of the matrix R(x ′, ξ) are real-valued functions.

Proof. Assume, that to every point x0 ∈ Σ there corresponds some orthogonal local coordinate system such that a
part of Σ located inside a sphere with a centre at x0 admits the representation of the form

x3 = γ (x
′), x ′ = (x1, x2), x = (x ′, γ (x ′)) ∈ Σ , (6.9)

where γ ∈ C∞, γ (0) = ∂γ (0)
∂x1
=

∂γ (0)
∂x2
= 0. The principal homogeneous symbol of the pseudodifferential operator

−
1
2 I6 +K in the chosen local coordinate system has the form

S(−2−1 I6 +K; x ′, ξ) = ‖Spq(−2−1 I6 +K; x ′, ξ)‖6×6, p, q = 1, . . . , 6,

Spq(−2−1 I6 +K; x ′, ξ) =
1

2π

∫
l−

T pk(x ′, α>(x ′)(iξ, iζ ))∆qk(α
>(x ′)(iξ, iζ ))

∆(α>(x ′)(iξ, iζ ))
dζ, (6.10)

∆(α>(x ′)(iξ, iζ )) = det ‖Akq

(
α>(x ′)(iξ, iζ )

)
‖6×6,

α(x ′) =


1 0 0
0 1 0

∂γ (x ′)

∂x1

∂γ (x ′)

∂x2
−1

 ,
where ‖Akq(α

>(x ′)(iξ, iζ ))‖6×6 and ‖T pk(x ′, α>(x ′)(iξ, iζ ))‖6×6 are the principal homogeneous symbol
matrices of the operators A(∂x , τ ) and T (∂x , n, τ ) respectively, written in the local coordinate system (6.9).
∆qk(α

>(x ′)(iξ, iζ )), q, k = 1, 6, is a cofactor of Akq(α
>(x ′)(iξ, iζ )).

Represent the symbols A(α>(x ′)(iξ, iζ )) and T (x ′, α>(x ′)(iξ ′, iζ )) as

A(α>(x ′)(iξ, iζ )) = A(2)(x ′, iξ)+ A(1)(x ′, iξ)(iζ )+ A(0)(x ′)(iζ )2,

T (x ′, α>(x ′)(iξ, iζ )) = T (1)(x ′, iξ)+ T (0)(x ′)(iζ ),

where A( j)(x ′, iξ) = ‖A( j)
kq (x

′, iξ)‖6×6, j = 0, 1, 2, T ( j)(x ′, iξ) = ‖T ( j)
pk (x

′, iξ)‖6×6, j = 0, 1 are homoge-
neous polynomials in ξ of degree j .

Taking into account (6.10) we get

Spq(−2−1 I6 +K; x ′, ξ) =
1

2π
T (0)

pk (x
′)

∫
l−

iζ∆qk(α
>(x ′)(iξ, iζ ))

∆(α>(x ′)(iξ, iζ ))
dζ

+
1

2π
T (1)

pk (x
′, iξ)

∫
l−

∆qk(α
>(x ′)(iξ, iζ ))

∆(α>(x ′)(iξ, iζ ))
dζ.

Note that

1
2π

∫
l−

iζ∆qk(α
>(x ′)(iξ, iζ ))

∆(α>(x ′)(iξ, iζ ))
dζ

= −
i

12π

Â(0)qk (x
′)

det[A(0)(x ′)]

∫
l−

∂ζ∆(α>(x ′)(ξ, ζ ))
∆(α>(x ′)(ξ, ζ ))

dζ +
i

2π

∫
l−

∆̃qk(x ′, ξ, ζ )

∆(α>(x ′)(ξ, ζ ))
dζ

=
1
2

Â(0)qk (x
′)

det[A(0)(x ′)]
+

i

2π

∫
l−

∆̃qk(x ′, ξ, ζ )

∆(α>(x ′)(ξ, ζ ))
dζ,
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where Â(0)qk is the cofactor of A(0)kq and ∆̃qk(x ′, ξ, ζ ) is a polynomial of degree 10 in ζ of the form

∆̃qk(x
′, ξ, ζ ) =

Â(0)qk (x
′)

6 det[A(0)(x ′)]
∂ζ∆(α>(x ′)(ξ, ζ ))− ζ∆kq(α

>(x ′)(ξ, ζ )).

Therefore

Spq(K; x ′, ξ) =
i

2π
T (0)

pk (x
′)

∫
l−

∆̃qk(x ′, ξ, ζ )

∆(α>(x ′)(ξ, ζ ))
dζ

−
i

2π
T (1)

pk (x
′, ξ)

∫
l−

∆qk(α
>(x ′)(ξ, ζ ))

∆(α>(x ′)(ξ, ζ ))
dζ, p, q = 1, 6. (6.11)

Since ∆̃qk(x ′, ξ, ζ ) and ∆qk(α
>(x ′), ξ, ζ ) are polynomials of degree 10 in ζ , from (6.11) we can easily see that

Spq(K; x ′,−ξ) = −Spq(K; x ′, ξ)

and

Spq(K; x ′, ξ) = i Rpq(x
′, ξ), p, q = 1, 6,

where Rpq(x ′, ξ), p, q = 1, 6, are real functions. �

Remark 6.2. It is not difficult to check that the principal homogeneous symbol S(H; x ′, ξ) of the pseudodifferential
operator H is a real even matrix-function with respect to ξ (see Lemma C.2 in [31]).

Theorem 6.3. Let λ j , j = 1, 6, be the eigenvalues of the matrix (6.8). Then

λ j =
1+ 2β j

1− 2β j
, j = 1, 6,

where β j , j = 1, 6, are the eigenvalues of the matrix S(K; x ′, 0,+1).

Proof. The characteristic equation of the matrix a0 given by (6.8) has the form

det
{[
(−2−1 I6 + σ

+

K ) [σ
+

H]
−1
]−1[

(−2−1 I6 + σ
−

K ) [σ
−

H]
−1
]
− λI6

}
= 0, (6.12)

where

σ±K = S(K; x ′, 0,±1), σ±H = S(H; x ′, 0,±1). (6.13)

Since the matrix S(K; x ′, ξ) is odd and the matrix S(H; x ′, ξ) is even in ξ (see Lemma 6.1), we have σ−K = −σ
+

K
and σ−H = σ

+

H. Then the characteristic equation (6.12) can be rewritten as

det
{
σ+H [2

−1 I6 − σ
+

K ]
−1
[2−1 I6 + σ

+

K ] [σ
+

H]
−1
− λI6

}
= 0.

Since the matrices σ+H and 2−1 I6 ± σ
+

K are non-singular, from the previous equality we derive

det
{
[2−1 I6 + σ

+

K ] − λ[2
−1 I6 − σ

+

K ]
}
= 0.

Consequently,

det
[
σ+K +

1
2

(1− λ
1+ λ

)
I6

]
= 0. (6.14)

Let β j , j = 1, 6, be the eigenvalues of the matrix σ+K . Then it follows from (6.14) that the eigenvalues λ j of the
matrix a0 and the eigenvalues β j of σ+K are related by the equation

λ j − 1

λ j + 1
= 2β j , j = 1, 6,

which completes the proof. �



340 T. Buchukuri et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 308–351

It can be shown that λ6 = 1, i.e., β6 = 0 (for details see [31, Section 5.7]). Therefore, γ6 = 1/2 and δ6 = 0 in
accordance with (6.7). This implies that one could not expect better smoothness for solutions than C1/2, in general.

More detailed analysis leads to the following refined asymptotic behaviour for the temperature function.

Theorem 6.4. Near the line `m the function ϑ possesses the following asymptotic:

ϑ = b0r1/2
+R, (6.15)

where R ∈ C1+δ′−ε in a neighbourhood of `m and 1+ δ′ − ε > 1/2 for sufficiently small ε > 0.

Proof. Indeed, u6 = ϑ is a solution of the problem (6.1)–(6.5). Since the matrix [ηi j ]3×3 is positive definite,
this problem can be reduced to a system of integral equations, where the principal part is described by the
scalar positive-definite Steklov–Poincaré type operator A = (− 1

2 I + Kscalar )[Hscalar ]
−1 on SN , where Kscalar is

compact. This operator possesses an even principal homogeneous symbol S(A; x, ξ) = − 1
2S([Hscalar ]

−1
; x, ξ) =

−
1
2 [S(Hscalar ; x, ξ)]−1 which is positive and even in ξ . Hence we can establish refined explicit asymptotic (6.15) for

the temperature function u6 = ϑ in a neighbourhood of `m . �

From (6.15) it follows that:

(i) The leading exponent for u6 = ϑ in a neighbourhood of line `m equals 1/2;
(ii) Logarithmic factors are absent in the first term of the asymptotic expansion of ϑ ;

(iii) The temperature function ϑ does not oscillate in a neighbourhood of the collision curve `m and for the heat flux
vector we have no oscillating singularities.

In what follows, we will consider particular type GTEME materials and analyse the exponents γ j + iδ j which
determine the behaviour of u = (u1, u2, u3), ϕ, and ψ near the line `m . Non-zero parameters δ j lead to the so
called oscillating singularities for the first order derivatives of u, ϕ, and ψ , in general. In turn, this yields oscillating
stress singularities which sometimes lead to mechanical contradictions, for example, to overlapping of materials. So,
from the practical point of view, it is important to single out classes of solids for which the oscillating effects do not
occur.

To this end, we will consider a special class of bodies belonging to the 422 (Tetragonal) or 622 (Hexagonal) class
of crystals for which the corresponding system of differential equations reads as follows (see, e.g., [40])

(c11 ∂
2
1 + c66 ∂

2
2 + c44 ∂

2
3 )u1 + ( c12 + c66 ) ∂1∂2u2 + ( c13 + c44 ) ∂1∂3u3

− e14 ∂2∂3ϕ − q15 ∂2∂3ψ − γ̃1 ∂1ϑ − % τ
2 u1 = F1,

( c12 + c66 ) ∂2∂1u1 + ( c66 ∂
2
1 + c11 ∂

2
2 + c44 ∂

2
3 ) u2 + ( c13 + c44 ) ∂2∂3u3

+ e14∂1∂3ϕ − q15∂1∂3u2 − γ̃1∂2ϑ − % τ
2 u2 = F2,

( c13 + c44 ) ∂3∂1u1 + ( c13 + c44 ) ∂3∂2u2 + ( c44 ∂
2
1 + c44 ∂

2
2 + c33 ∂

2
3 ) u3

− γ̃3 ∂3ϑ − % τ
2 u3 = F3,

e14∂2∂3u1 − e14∂1∂3u2 + ( ~11 ∂
2
1 + ~11 ∂

2
2 + ~33 ∂

2
3 ) ϕ − (1+ ν0τ)p3 ∂3ϑ = F4,

q15∂2∂3u1 − q15∂1∂3u2 + ( µ11 ∂
2
1 + µ11 ∂

2
2 + µ33 ∂

2
3 ) ψ − (1+ ν0τ)m3 ∂3ϑ = F5,

−τ T0 ( γ̃1 ∂1u1 + γ̃1 ∂2u2 + γ̃3 ∂3u3 )+ τ T0 p3 ∂3ϕ + τ T0 m3 ∂3ψ

+ ( η11 ∂
2
1 + η11 ∂

2
2 + η33 ∂

2
3 ) ϑ − (τ d0 + τ

2h0) ϑ = F6,

(6.16)

where c11, c12, c13, c33, c44, c66, are the elastic constants, e14 is the piezoelectric constant, q15 is the
piezomagnetic constant, ~11 and ~33 are the dielectric constants, µ11 and µ33 are the magnetic permeability constants,
γ̃1 = (1+ν0τ)λ11 = (1+ν0τ)λ21 and γ̃3 = (1+ν0τ)λ31 are the thermal strain constants, η11 and η33 are the thermal
conductivity constants, p3 is the pyroelectric constant and m3 is the pyromagnetic constant. Note that in the case of
the Hexagonal crystals (622 class), we have c66 = (c11 − c12)/2.

Note that some important polymers and bio-materials are modelled by the above partial differential equations, for
example, the collagen–hydroxyapatite is one example of such a material. This material is widely used in biology and
medicine (see [12]). The other important example is TeO2 [40].
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In this model the thermoelectromechanical stress operator is defined as

T (∂x , n) =
∥∥T jk(∂x , n)

∥∥
6×6

with

T11(∂x , n) = c11n1∂1 + c66n2∂2 + c44n3∂3, T12(∂x , n) = c12n1∂2 + c66n2∂1,

T13(∂x , n) = c13n1∂3 + c44n3∂1, T14(∂x , n) = −e14n3∂2,

T15(∂x , n) = −q15n3∂2, T16(∂x , n) = −γ̃1 n1,

T21(∂x , n) = c66n1∂2 + c12n2∂1, T22(∂x , n) = c66n1∂1 + c11n2∂2 + c44n3∂3,

T23(∂x , n) = c13n2∂3 + c44n3∂2, T24(∂x , n) = e14n3∂1,

T25(∂x , n) = q15n3∂1, T26(∂x , n) = −γ̃1 n2,

T31(∂x , n) = c44n1∂3 + c13n3∂1, T32(∂x , n) = c44n2 ∂3 + c13n3∂2,

T33(∂x , n) = c44n1∂1 + c44n2∂2 + c33n3∂3, T34(∂x , n) = 0,
T35(∂x , n) = 0, T36(∂x , n) = −γ̃3 n3,

T41(∂x , n) = e14n2∂3, T42(∂x , n) = −e14n1∂3,

T43(∂x , n) = e14(n2∂1 − n1∂2), T44(∂x , n) = ~11(n1∂1 + n2∂2)+ ~33n3∂3,

T45(∂x , n) = 0, T46(∂x , n) = −p3n3,

T51(∂x , n) = q15n2∂3, T52(∂x , n) = −q15n1∂3,

T53(∂x , n) = q15(n2∂1 − n1∂2), T54(∂x , n) = 0,
T55(∂x , n) = µ11(n1∂1 + n2∂2)+ µ33n3∂3, T56(∂x , n) = −m3n3,

T6 j (∂x , n) = 0, for j = 1, 2, 3, 4, 5, T66(∂x , n) = η11(n1∂1 + n2∂2)+ η33n3∂3.

The material constants satisfy the following inequalities which follow from positive definiteness of the internal energy
form (see (2.9)–(2.10))

c11 > |c12|, c44 > 0, c66 > 0, c33(c11 + c12) > 2c2
13,

~11 > 0, ~33 > 0, η11 > 0, η33 > 0, µ11 > 0, µ33 > 0.

From (2.11), (2.14), (2.15), it follows also that

~33 >
p2

3 T0

d0
, µ33 >

m2
3 T0

d0
.

Under these conditions the corresponding mixed boundary value problem in question is uniquely solvable.

Furthermore, we assume that mechanical and electric fields are coupled, i.e. e14 6= 0, that
µ11
~11
=

µ33
~33
= α and the surface S is parallel to the plane of isotropy (i.e., to the plane x3 = 0) in some

neighbourhood of `m .

We will show that under these conditions we can find the exponents involved in the asymptotic expansions of
solutions explicitly in terms of the material constants.

In this case the symbol matrix σ+K = S(K; x ′, 0,+1) is calculated explicitly and has the form (see Appendix B):

σ+K =


0 0 0 A14 A15 0
0 0 A23 0 0 0
0 A32 0 0 0 0

A41 0 0 0 0 0
A51 0 0 0 0 0
0 0 0 0 0 0

 ,
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where

A14 = −i
e14 c66 (b2 − b1)

2 b1 b2
√

B
− i

e14q2
15

α~11ẽ2
14

[√
~11

~33
−

c44(b2 − b1)(~33 b1b2 + ~11)
√

B

]
, (6.17)

A41 = −i
e14 ~33 (b2 − b1)

2
√

B
, (6.18)

A15 = −i
q15 c66 (b2 − b1)

2α b1 b2
√

B
− i

q15e2
14

α~11ẽ2
14

[√
~11

~33
−

c44(b2 − b1)(~33 b1b2 + ~11)
√

B

]
, (6.19)

A51 = −i
q15 ~33 (b2 − b1)

2
√

B
, (6.20)

b1 =

√
A −
√

B

2 c44 ~33
, b2 =

√
A +
√

B

2 c44 ~33
,

ẽ14 =

(
e2

14 + α
−1q2

15

)1/2
, α =

µ11

~11
=
µ33

~33
> 0,

A = ẽ2
14 + c44 ~11 + c66 ~33 > 0, B = A2

− 4 c44 c66 ~11 ~33 > 0, A >
√

B.

It can be proved that A14 A41 + A15 A51 < 0 (see Appendix B).

To calculate the entries A23 and A32, we have to consider two cases. We set

C := c11 c33 − c2
13 − 2 c13 c44, D := C2

− 4 c2
44 c33c11.

First, let D > 0. Then it follows from the positive definiteness of the internal energy that C >
√

D and we have

A23 = i
c44 (d2 − d1) (c11 − c13 d1d2)

2 d1 d2
√

D
, (6.21)

A32 = −i
c44 (d2 − d1) (c33 d1 d2 − c13)

2 d1 d2
√

D
, (6.22)

d1 =

√
C −
√

D

2 c44 c33
, d2 =

√
C +
√

D

2 c44 c33
.

These equalities imply A23 A32 > 0.

Now, let D < 0. We get

A23 = i
a c44(

√
c11 c33 − c13)
√
−D

, A32 = −i
a c44(

√
c11 c33 − c13)
√
−D

√
c33
√

c11
,

where

a =
1
2

√
−C + 2c44

√
c11c33

c44c33
> 0 .

One can easily check that again

A23 A32 =
c2

44 a2(
√

c11 c33 − c13)
2

−D

√
c33
√

c11
> 0.
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The characteristic polynomial of the matrix σ+K can be represented as

det(σ+K − β I ) = det


−β A14 0 0 A15 0
A41 −β 0 0 0 0
0 0 −β A23 0 0
0 0 A32 −β 0 0

A51 0 0 0 −β 0
0 0 0 0 0 −β


= β2

(
β2
− A23 A32

) (
β2
− (A14 A41 + A15 A51)

)
.

Therefore, we have the following expressions for the eigenvalues of the matrix σ+K :

β1,2 = ∓i
√
−(A14 A41 + A15 A51), β3,4 = ∓

√
A23 A32 , β5 = β6 = 0.

Then by Theorem 6.3

λ1 =
1− 2i

√
−(A14 A41 + A15 A51)

1+ 2i
√
−(A14 A41 + A15 A51)

, λ2 =
1
λ1
, λ3 =

1− 2
√

A23 A32

1+ 2
√

A23 A32
, λ4 =

1
λ3
, λ5 = λ6 = 1.

Note that |λ1| = |λ2| = 1. Moreover, since λ3 and λ4 are real, they are positive (see Appendix A).
Applying the above results we can explicitly write the exponents of the first terms of the asymptotic expansions of

solutions (see (6.7)):

γ1 =
1
2
−

1
π

arctan 2
√
−(A14 A41 + A15 A51), δ1 = 0,

γ2 =
1
2
+

1
π

arctan 2
√
−(A14 A41 + A15 A51), δ2 = 0,

γ3 = γ4 =
1
2
, δ3 = −δ4 = δ̃ =

1
2π

log
1− 2

√
A23 A32

1+ 2
√

A23 A32
,

γ5 = γ6 =
1
2
, δ5 = δ6 = 0.

Note that B0(t) has the following form

B0(t) =

[
I4 [0]4×2

[0]4×2 B(2)(t)

]
, where B(2)(t) =

[
1 t
0 1

]
.

Now we can draw the following conclusions:

1. The solutions of the problem possess the following asymptotic behaviour near the line `m :

(u, ϕ, ψ)> = c0 rγ1 + c1 r
1
2+i δ̃
+ c2 r

1
2−i δ̃
+ c3r

1
2 ln r + c4r

1
2 + c5rγ2 + · · ·

ϑ = b3 r1/2
+ b4 rγ2 + · · · .

As we see, the exponent γ1 characterizing the behaviour of u, ϕ, and ψ near the line `m depends on the elastic,
piezoelectric, piezomagnetic, dielectric, and permeability constants, and does not depend on the thermal constants.
Moreover, γ1 takes values from the interval (0, 1/2).

For the general anisotropic case these exponents also depend on the geometry of the line `m , in general.
2. Since γ1 < 1/2, we have not oscillating singularities for physical fields in some neighbourhood of the curve `m .

Note that in the classical elasticity theory (for both isotropic and anisotropic solids) for mixed BVPs the dominant
exponents are 1/2, 1/2± i δ̃ with δ̃ 6= 0 and consequently we have oscillating stress singularities at the collision curve
`m .

The following questions arise naturally:

(a) does there exist a class of GTEME type media for which the real part of the principal exponent defining the
dominant stress singularity near the line `m does not depend on the material constants?
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(b) does there exist a class of GTEME type media for which the real part of the principal exponent equals
1/2?

As we will see below, both question have positive answers.
Indeed, let us consider the class of GTEME type media with cubic anisotropy. Note that such materials as

Bi12GeO20 and GaAs belong to this class (see, e.g., [40]). The latter material is widely used in the electronic industry.
The corresponding system of differential equations in this case reads as:

(c11 ∂
2
1 + c44 ∂

2
2 + c44 ∂

2
3 )u1 + ( c12 + c44 ) ∂1∂2u2 + ( c12 + c44 ) ∂1∂3u3

+ 2e14 ∂2∂3ϕ + 2q15 ∂2∂3ψ − γ̃1 ∂1ϑ − % τ
2 u1 = F1,

( c12 + c44 ) ∂2∂1u1 + ( c44 ∂
2
1 + c11 ∂

2
2 + c44 ∂

2
3 ) u2 + ( c12 + c44 ) ∂2∂3u3

+ 2e14∂1∂3ϕ + 2q15∂1∂3ψ − γ̃1∂2ϑ − % τ
2 u2 = F2,

( c12 + c44 ) ∂3∂1u1 + ( c12 + c44 ) ∂3∂2u2 + ( c44 ∂
2
1 + c44 ∂

2
2 + c11 ∂

2
3 ) u3

+ 2e14∂1∂2ϕ + 2q15∂1∂2ψ − γ̃3 ∂3ϑ − % τ
2 u3 = F3,

−2e14∂2∂3u1 − 2e14∂1∂3u2 − 2e14∂1∂2u3 + (~11∂
2
1 + ~11∂

2
2 + ~11∂

2
3 )ϕ − p3∂3ϑ = F4,

−2q15∂2∂3u1 − 2q15∂1∂3u2 − 2q15∂1∂2u3 + (µ11∂
2
1 + µ11∂

2
2 + µ11∂

2
3 )ψ − m3 ∂3ϑ = F5,

−τT0(γ̃1∂1u1 + γ̃1∂2u2 + γ̃3 ∂3u3)+ τT0 p3∂3ϕ + τT0m3∂3ψ

+ ( η11 ∂
2
1 + η11 ∂

2
2 + η33 ∂

2
3 ) ϑ − τ d0 ϑ = F6.

(6.23)

The elastic, dielectric, permeability and thermal constants involved in the governing equations satisfy the following
conditions:

c11 > 0, c44 > 0, −1/2 < c12/c11 < 1, ~11 > 0, µ11 > 0,

~33 >
p2

3 T0

d0
, µ33 >

m2
3 T0

d0
, η11 > 0, η33 > 0.

(6.24)

Introduce the notation,

D := C2
− 4 c2

11 c2
44, C := c2

11 − c2
12 − 2 c12 c44, a :=

1
2

√
−C + 2c44

√
c11

c44c11
> 0.

In the case under consideration, the matrix σ+K is self-adjoint and reads as:

σ+K =


0 0 0 0 0 0
0 0 A23 0 0 0
0 A32 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (6.25)

where

A23 = A32 = i
c44 (d2 − d1)(c11 − c12)

2
√

D
for D > 0,

d1 =

√
C −
√

D

2c44c11
, d2 =

√
C +
√

D

2c44c11
,

A23 = A32 = i
c44 a (c11 − c12)

2
√
−D

for D < 0.

The corresponding eigenvalues read as (see Theorem 6.3)

β j = 0, j = 1, 2, 5, 6, β3,4 = ±|A23|,

λ j = 1, j = 1, 2, 5, 6, λ3 =
1+ 2|A23|

1− 2|A23|
> 0, λ4 =

1
λ3
,
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and

γ j =
1
2
, j = 1, 6, δ j = 0, j = 1, 2, 5, 6, δ3 = −δ4 = δ̃ =

1
2π

log
1+ 2|A23|

1− 2|A23|
.

From Lemma 6.1, Remark 6.2 and equalities (6.25) and (6.8) we derive

a0 =

[
(−2−1 I6 + σ

+

K ) [σ
+

H]
−1
]−1[

(−2−1 I6 + σ
−

K ) [σ
−

H]
−1
]
= σ+H ã0 [σ

+

H]
−1 ,

where

ã0 = [2−1 I6 − σ
+

K ]
−1
[2−1 I6 + σ

+

K ].

This matrix is self-adjoint due to the equality (6.25) and it is similar to a diagonal matrix, i.e., there is a unitary matrix
D such that D ã0 [D]−1 is diagonal. Therefore the matrix a0 can be reduced to a diagonal matrix by the non-degenerate
matrix σ+H D−1. In turn, this implies that B0(t) = I and the leading terms of the asymptotic expansion (6.6) near the
curve `m do not contain logarithmic factors.

As a result we obtain the asymptotic expansion leading to the positive answers to the questions (a) and (b) stated
above,

(u, ϕ, ψ)> = c0 r1/2
+ c1 r1/2+i δ̃

+ c2 r1/2−i δ̃
+O(r3/2−ε),

ϑ = b0 r1/2
+O(r3/2−ε),

where ε is an arbitrary positive number. Consequently, u, ϕ, ψ , and ϑ possess C1/2-regularity in a neighbourhood of
the collision curve `m .
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Appendix A. Some results for pseudodifferential equations on manifolds with boundary

Here we collect some results describing the Fredholm properties of strongly elliptic pseudodifferential operators
on a compact manifold with boundary. They can be found in [36,16,41,19].

Let M ∈ C∞ be a compact, n-dimensional, nonselfintersecting manifold with boundary ∂M ∈ C∞ and let A be a
strongly elliptic N × N matrix pseudodifferential operator of order ν ∈ R on M. Denote by S(A; x, ξ) the principal
homogeneous symbol matrix of the operator A in some local coordinate system (x ∈ M, ξ ∈ Rn

\ {0}).
Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix

[S(A; x, 0, . . . , 0,+1) ]−1 S(A; x, 0, . . . , 0,−1) , x ∈ ∂M,

and let

δ j (x) = Re
[
(2π i)−1 ln λ j (x)

]
, j = 1, . . . , N .

Here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due to the strong
ellipticity of A we have the strict inequality −1/2 < δ j (x) < 1/2 for x ∈ M. The numbers δ j (x) do not depend on
the choice of the local coordinate system. In particular, if the eigenvalue λ j is real, then λ j is positive.

Note that when S(A, x, ξ) is a positive definite matrix for every x ∈ M and ξ ∈ Rn
\ {0} or when it is an even

matrix in ξ we have δ j (x) = 0 for j = 1, . . . , N , since all the eigenvalues λ j (x) ( j = 1, N ) are positive numbers for
any x ∈ M.

The Fredholm properties of strongly elliptic pseudo-differential operators are characterized by the following
theorem.
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Theorem A. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A be a strongly elliptic pseudodifferential operator of
order ν ∈ R, that is, there is a positive constant c0 such that

Re
(
σA(x, ξ)ζ · ζ

)
≥ c0 |ζ |

2

for x ∈ M, ξ ∈ Rn with |ξ | = 1, and ζ ∈ CN . Then

A : H̃ s
p(M)→ H s−ν

p (M), A : B̃s
p,q(M)→ Bs−ν

p,q (M), (A.1)

are Fredholm operators with index zero if

1
p
− 1+ sup

x∈∂M, 1≤ j≤N
δ j (x) < s −

ν

2
<

1
p
+ inf

x∈∂M, 1≤ j≤N
δ j (x). (A.2)

Moreover, the null-spaces and indices of the operators (A.1) are the same (for all values of the parameter
q ∈ [1,+∞]) provided p and s satisfy the inequality (A.2).

We essentially use this theorem in Section 4 to prove the existence and regularity results of solutions to mixed
boundary value problems for solids with interior cracks.

Appendix B. Calculation of the symbolic matrices

In this section we calculate the principal homogeneous symbol matrix σ+K = S(K; x1, 0,+1) corresponding to the
system (6.16) (422 and 622 classes). To this end we write the fundamental matrix (2.1) in the form (see [31, Section
3])

Γ (x, τ ) = F−1
ξ→x

[
A−1(−iξ, τ )

]
= F−1

ξ ′→x ′

[
±

1
2π

∫
l±

[
A(−iξ ′,−iζ, τ )

]−1 e−iζ x3 dζ
]
,

(B.1)

where the sign “−” corresponds to the case x3 > 0 and the sign “+” to the case x3 < 0. Here x ′ = (x1, x2),
ξ ′ = (ξ1, ξ2), ξ = (ξ ′, ξ3), l+(l−) is a closed contour with positive counterclockwise orientation enveloping all the
roots of the polynomial det A(−iξ ′,−iζ, τ ) with respect to the variable ζ in the half-plane I m ζ > 0 ( I m ζ < 0 ).

First, we write the principal homogeneous symbols A(0) and T (0) of the operators A(∂x , τ ) and T (∂, n) at a point
ζ̃ = (0, 1, ζ ). Choosing a local coordinate system appropriately, we can assume that the exterior unit normal vector
at this point reads as n = (0, 0, 1). Then we have

A(0)(̃ζ ) = −



A(0)11 0 0 A(0)14 A(0)15 0

0 A(0)22 A(0)23 0 0 0

0 A(0)23 A(0)33 0 0 0

−A(0)14 0 0 A(0)44 0 0

−A(0)15 0 0 0 A(0)55 0

0 0 0 0 0 A(0)66


, (B.2)

T (0)(̃ζ , n) = −



ic44ζ 0 0 −ie14 −iq14 0

0 ic44ζ ic44 0 0 0

0 ic13 ic33ζ 0 0 0

0 0 0 i~33ζ 0 0

0 0 0 0 iµ33ζ 0

0 0 0 0 0 iη33ζ


, (B.3)
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where

A(0)11 = c44ζ
2
+ c66, A(0)14 = −e14, A(0)15 = −q15,

A(0)22 = c44ζ
2
+ c11, A(0)23 = (c13 + c44)ζ, A(0)33 = c33ζ

2
+ c44,

A(0)44 = ~33ζ
2
+ ~11, A(0)55 = µ33ζ

2
+ µ11, A(0)66 = η33ζ

2
+ η11.

Recall, that we assume µ11
~11
=

µ33
~33
= α.

From (3.3), (B.1)–(B.3), (6.13), and Theorem 3.3 it follows that

−
1
2

I + σ+K = lim
x3→0

1
2π

∫
l+

T (0)(̃ζ , n)
[
A(0)(̃ζ )

]−1e−iζ x3dζ

=
1

2π

∫
l+

T (0)(̃ζ , n)
[
A(0)(̃ζ )

]−1dζ = ‖Ak j‖6×6, (B.4)

where

A11 =
i

2π

∫
l+

c44~33ζ
3
+ (c44~11 + ẽ2

14)ζ

P1(ζ )
dζ,

A14 = −
i

2π

∫
l+

c66e14

P1(ζ )
dζ −

i

2π

∫
l+

e14q2
15ζ

2

Q(ζ )
dζ

A15 = −
i

2π

∫
l+

c66q15

αP1(ζ )
dζ −

i

2π

∫
l+

e2
14q15ζ

2

Q(ζ )
dζ

A1 j = 0, j = 2, 3, 6, A22 =
i

2π

∫
l+

c33c44ζ
3
− c13c44ζ

P2(ζ )
dζ,

A23 = −
i

2π

∫
l+

c13c44ζ
2
− c11c44

P2(ζ )
dζ, A2 j = 0, j = 1, 4, 5, 6,

A3 j = 0, j = 1, 4, 5, 6, A32 = −
i

2π

∫
l+

c33c44ζ
2
− c13c44

P2(ζ )
dζ,

A33 =
i

2π

∫
l+

c33c44ζ
3
+ (c11c33 − c13c44 − c2

13)ζ

P2(ζ )
dζ,

A41 = −
i

2π

∫
l+

e14~33ζ
2

P1(ζ )
dζ, A4 j = 0, j = 2, 3, 5, 6,

A44 =
i

2π

∫
l+

c44~33ζ
3
+ c66~33ζ

P1(ζ )
dζ +

i

2π

∫
l+

~33q2
15ζ

3

Q(ζ )
dζ,

A51 = −
i

2π

∫
l+

q15~33ζ
2

P1(ζ )
dζ, A5 j = 0, j = 2, 3, 4, 6

A55 =
i

2π

∫
l+

c44~33ζ
3
+ c66~33ζ

P1(ζ )
dζ +

i

2π

∫
l+

α~33e2
14ζ

3

Q(ζ )
dζ,

A66 =
i

2π

∫
l+

η33ζ

η33ζ 2 + η11
dζ, A6 j = 0, j = 1, 5,

P1(ζ ) = c44~33ζ
4
+ (c44~11 + c66~33 + ẽ2

14)ζ
2
+ c66~11,

P2(ζ ) = c33c44ζ
4
+ (c11c33 − 2c13c44 − c2

13)ζ
2
+ c11c44,

Q(ζ ) = α(~33ζ
2
+ ~11)P1(ζ ), ẽ14 =

(
e2

14 + α
−1q2

15

)1/2
.

Denote by ζ ( j)
1 , ζ

( j)
2 , j = 1, 2, the roots of the polynomials Pj with positive imaginary part. Evidently, ζ (1)1 , ζ (1)2 and

ζ (3) = i
√
η11/η33 are then the roots of Q(ζ ) with positive imaginary parts.
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We have the following explicit formulas,

ζ
(1)
1 = ib1 = i

√
A −
√

B

2c44~33
, ζ

(1)
2 = ib2 = i

√
A +
√

B

2c44~33
,

ζ
(2)
1 = id1 = i

√
C −
√

D

2c44c33
, ζ

(2)
2 = id2 = i

√
C +
√

D

2c44c33
,

A = ẽ2
14 + c44~11 + c66~33 > 0, B = A2

− 4c44c66~11~33 > 0,
C = c11c33 − c2

13 − 2c13c44, D = C2
− 4c2

44c33c11.

Note that, if D > 0, then the roots ζ (2)1 and ζ (2)2 are purely imaginary. For D < 0 the roots are complex numbers with
opposite real parts and equal imaginary parts:

ζ
(2)
1 = a + i b, ζ

(2)
2 = −a + i b, a > 0, b > 0.

Curvilinear integrals participating in (B.4) can be calculated explicitly by applying theory of residues and Cauchy’s
theorem∫

l+

dζ

P1(ζ )
=

i π (ζ (1)2 − ζ
(1)
1 )

ζ
(1)
1 ζ

(1)
2

√
B

,

∫
l+

dζ

P2(ζ )
=

i π (ζ (2)2 − ζ
(2)
1 )

ζ
(2)
1 ζ

(2)
2

√
D

,∫
l+

ζ

P1(ζ )
dζ = 0,

∫
l+

ζ

P2(ζ )
dζ = 0,∫

l+

ζ 2

P1(ζ )
dζ = −

i π
√

B
(ζ
(1)
2 − ζ

(1)
1 ),

∫
l+

ζ 2

P2(ζ )
dζ = −

i π
√

D
(ζ
(2)
2 − ζ

(2)
1 ),∫

l+

ζ 3

P1(ζ )
dζ =

i π

c44~33
,

∫
l+

ζ 3

P2(ζ )
dζ =

i π

c44c33
,∫

l+

ζ 2

Q(ζ )
dζ =

π

α~11ẽ2
14

[√
~11

~33
−

c44(b2 − b1)(~33 b1b2 + ~11)
√

B

]
,

∫
l+

ζ 3

Q(ζ )
dζ = 2π i

3∑
k=1

ζ 3

Q′(ζ )

∣∣∣∣
ζ=ζk

= −
π i

α

(
b2

1

(~11 − ~33b2
1)(c44~11 + c66~33 + ẽ2

14 − 2c44~33b2
1)

+
b2

2

(~11 − ~33b2
2)(c44~11 + c66~33 + ẽ2

14 − 2c44~33b2
2)
+

b2
3

~33 P1(ib3)

)
.

Note, that the last equality implies that the integrals

i

2π

∫
l+

~33q2
15ζ

3

Q(ζ )
dζ and

i

2π

∫
l+

α~33e2
14ζ

3

Q(ζ )
dζ

which are involved in A44 and A55 are real, therefore due to Lemma 6.1 they must be zero.
As a result we obtain

A j j = −
1
2
, j = 1, 6, A1 j = 0, j = 2, 3, 6,

A14 =
e14c66(ζ

(1)
2 − ζ

(1)
1 )

2ζ (1)1 ζ
(1)
2

√
B

−
e14q2

15

2α~11ẽ2
14

[
i
√
~11

~33
−

c44(ζ2 − ζ1)(−~33 ζ1ζ2 + ~11)
√

B

]
,

A15 =
q15c66(ζ

(1)
2 − ζ

(1)
1 )

2αζ (1)1 ζ
(1)
2

√
B
−

e2
14q15

2α~11ẽ2
14

[
i
√
~11

~33
−

c44(ζ2 − ζ1)(−~33 ζ1ζ2 + ~11)
√

B

]
,

A2 j = 0, j = 1, 4, 5, 6, A23 = −
c44(ζ

(2)
2 − ζ

(2)
1 )(c11 + c13ζ

(2)
1 ζ

(2)
2 )

2ζ (2)1 ζ
(2)
2

√
D

,
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A3 j = 0, j = 1, 4, 5, 6, A32 = −
c44(ζ

(2)
2 − ζ

(2)
1 )(c33ζ

(2)
1 ζ

(2)
2 + c13)

2ζ (2)1 ζ
(2)
2

√
D

,

A41 = −
e14~33(ζ

(1)
2 − ζ

(1)
1 )

2
√

B
, A4 j = 0, j = 2, 3, 5, 6,

A51 = −
q15~33(ζ

(1)
2 − ζ

(1)
1 )

2
√

B
, A5 j = 0, j = 2, 3, 4, 6,

A6 j = 0, j = 1, 5.

Now, taking into account that

ζ
(1)
j = i b j , b j > 0, j = 1, 2,

ζ
(2)
j = i d j , d j > 0, j = 1, 2, if D > 0,

ζ
(2)
1 = a + i b, ζ

(2)
2 = −a + i b, a > 0, b > 0, ζ

(2)
1 ζ

(2)
2 = −

√
c11

c33
, if D < 0,

we obtain (6.17)–(6.22).
One can calculate the homogeneous symbol matrix σ+K = σK(x1, 0,+1) corresponding to the system (6.23) quite

similarly.
Now we prove that

A14 A41 + A15 A51 < 0. (B.5)

In view of the inequalities (6.24) and the relation

A14 A41 + A15 A51 = −
c66~33(b2 − b1)

2 ẽ 2
14

4Bb1b2

−
1
α

e2
14q2

15~33(b2 − b1)

2
√

B~11ẽ 2
14

[√~11

~33
−

c44(b2 − b1)(~33b1b2 + ~11)
√

B

]
,

and since

b2 − b1 > 0, b1 > 0, B > 0,

it is sufficient to show that√
~11

~33
−

c44(b2 − b1)(~33b1b2 + ~11)
√

B
> 0. (B.6)

Rewrite this inequality as

~11 B > c2
44~33(b2 − b1)

2(~33b1b2 + ~11)
2. (B.7)

Taking into account the equalities

(b2 − b1)
2
=

A
c44~33

− 2
√

c66~11
c44~33

, b1b2 =
√

c66~11
c44~33

, B = A2
− 4c66c44~11~33,

we find that (B.7) is equivalent to the relation

~11

(
A2
− 4c44c66~11~33

)
> c44

(
A − 2

√
c44c66~11~33

)(
~33

√
c66~11

c44~33
+ ~11

)2

.

In turn the last inequality is equivalent to the following one

~11

(
A + 2

√
c44c66~11~33

)
> c44

(
~33

√
c66~11

c44~33
+ ~11

)2

.
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At last, substituting here A = ẽ2
14 + c44~11 + c66~33 we arrive at the evident inequality

ẽ2
14 +

(√
c44~11 +

√
c44~11

)2
>
(√

c44~11 +
√

c44~11
)2
.

Thus (B.6) is valid and consequently (B.5) holds as well.
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Abstract

Due to the rapidly increasing interests of effective and efficient data processing, the developments of similarity measure have
been significantly expanded. This paper defines the eigenvalue distribution as a criterion of measuring similarity in a multivariate
system. The primary evaluations are conducted by simulations with the assistances and comparisons of several empirical statistical
tests. Furthermore, the proposed measure is conducted in simultaneous real case scenario by adopting the bootstrap re-sampling
technique. It also overcomes the difficulty of different series lengths in the multivariate system. Moreover, it does not have pre-
assumptions on distributions, and it can be easily employed and efficiently computed.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Similarity measure; Eigenvalue distribution; Singular value decomposition; Multivariate

1. Introduction

The studies of similarity have been overwhelmingly explored and applied in various disciplines on many different
formats, for example, numerical values [1,2], images [3,4], genes [5–7], chemical subjects [8–10], words [11,12] and
so on. According to [13], the similarity measure is the most essential core element of time series classification and
clustering. Therefore, the development of better similarity measure can significantly assist the improvement of data
analysis efficiency. According to [14], the similarity measure is closely related to the distance measure, as the distance
is defined as a quantitative degree of how far apart two objects are. Consequently, studies of distance and similarity are
significantly connected and crucial in terms of solving many pattern recognition related problems, such as clustering
technique [15,16], Taxonomy [17,18], image registration [19,20], etc.

As one of the crucial difficulties in similarity measure is that the different types of features are not comparable, this
paper proposes the novel similarity measure based on the eigenvalue distribution, which is inspired by the dynamical
approach and embedding theorem where a one dimensional time series will be transferred to multidimensional time
series in a Hankel matrix. Hankel matrix has many features as a square matrix, where gives a sequence of the
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one dimensional time series, also defines the dynamical state-space. This paper is the initial attempt of adopting
eigenvalue distribution into formulating a similarity measure in the multivariate system. Time series under evaluation
are embedded into multidimensional matrices and combined either vertically or horizontally to be transformed
into a Hankel matrix, where the eigenvalues can be extracted by Singular Value Decomposition (SVD) technique
accordingly. As Aristotle claimed in [21], the Formal Cause is “the account of what-it-is-to-be”, or “what makes a thing
one thing rather than many things”. Based on the “formal cause” claimed by Aristotle, here in this paper, we define
the corresponding distribution of extracted eigenvalues as the “formal” criterion for developing a novel similarity
measure. The successful implementation of this novel similarity measure can overcome the limitations of nonlinear
dynamic, complex fluctuations and the possibility of distinguishing similarity for particular or selected features.

In order to evaluate the reliability of eigenvalue distribution as the similarity measure, three empirical statistical
tests together with the real case scenario are overwhelmingly considered. Possible circumstances during the
formulation process of the new measure are comprehensively evaluated with brief introductions and comparisons
in following sections.

In general, this paper is structured as follows: Section 2 briefly introduce the techniques for obtaining the
corresponding eigenvalue distribution. The review of some empirical methods and the formulation of proposed novel
similarity measure are listed in Section 3. Section 4 provides the empirical results and evaluations by simulations,
whilst the real case scenario results are stated in Section 5. Finally, the discussion and conclusion are summarized in
Sections 6 and 7 respectively.

2. Eigenvalue distribution

To overcome the difficulty of existing diverse and incomparable features, the novel similarity measure extracts
the corresponding eigenvalue distributions as the formal criterion by considering the elements of time series as a
whole without removing any nonlinear or complex features. Note that as the structures of constructing Hankel matrix
containing multiple variables differ, including both horizontal and vertical forms.

Consider M time series with different series length Ni Y (i)Ni
= (y(i)1 , . . . , y(i)Ni

)(i = 1, . . . ,M). In this case, the

standard univariate form can be acquired by setting M = 1. Firstly, we transfer a one-dimensional time series Y (i)Ni

in to a multidimensional matrix [X (i)1 , . . . , X (i)Ki
] with vectors X (i)j that equals to (y(i)j , . . . , y(i)j+L i−1)

T
∈ RL i , where

L i (2 ≤ L i ≤ Ni/2) is the window length for each series with length Ni and Ki = Ni − L i + 1. We can then get the
trajectory matrix X(i) = [X (i)1 , . . . , X (i)Ki

] = (xmn)
L i ,Ki
m,n=1 after this step. The above procedure for each series separately

provides M different L i × Ki trajectory matrices X(i)(i = 1, . . . ,M).
To construct a block Hankel matrix in the vertical form we need to have K1 = · · · = KM = K . Accordingly, this

version enables us to have various window length L i and different series length Ni , but similar Ki for all series. The
result of this step is the following block Hankel trajectory matrix:

XV =

X(1)

...

X(M)

 .
Note that XV indicates that the output of the first step is a block Hankel trajectory matrix formed in a vertical form.

Then, the SVD of XV is performed in the following step. Note that the SVD technique is closely related to the
Singular Spectrum Analysis technique and its multivariate extension, which have been widely applied in a range of
different fields and a multitude of fairly precise results proved it as a powerful and applicable technique [22,29,23–28,
30–35]. Denote λV1 , . . . , λVLsum

as the eigenvalues of XV XT
V , arranged in decreasing order (λV1 ≥ · · · λVLsum

≥ 0)

and UV1 , . . . ,UVLsum
, the corresponding eigenvectors, where Lsum =

∑M
i=1 L i . Note also that the structure of the

matrix XV XT
V is as follows:

XV XT
V =


X(1)X(1)T X(1)X(2)T · · · X(1)X(M)T

X(2)X(1)T X(2)X(2)T · · · X(2)X(M)T

...
...

. . .
...

X(M)X(1)T X(M)X(2)T · · · X(M)X(M)T

 .
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The structure of the matrix XV XT
V is similar to the variance–covariance matrix in the classical multivariate statistical

analysis literature. The matrix X(i)X(i)T for the series Y ( j)
N j

, appears along the main diagonal and the products of two

Hankel matrices X(i)X( j)T (i 6= j), which are related to the series Y (i)Ni
and Y (i)N j

, appears in the off-diagonal. The SVD

of XV can be written as XV = XV1 + · · · + XVLsum
, where XVi =

√
λVi UVi V T

Vi
and VVi = XT

V UVi /
√
λVi (XVi =

0 if λVi = 0).
Moreover, the horizontal form decomposition is proved to produce more reliable and consistent eigenvalue

distributions. Note that the eigenvalue distributions by vertically and horizontally formed techniques are both carefully
considered and compared (detailed results are available upon request from authors). Hence, all tests in the following
sections are based on eigenvalues conducted by decomposition stage of the horizontal form.

3. Similarity measures

The distributions of eigenvalues of the trajectory matrices are here considered as the “formal” criterion of
measuring the similarity between two series. The explorations of the significance of the Hankel matrix and its
corresponding eigenvalues can be found in many different areas (for example [29,36–39]). In addition, more details
about the empirical distribution of the eigenvalues of the Hankel matrix divided by its trace can be found in [40,42,41].

In order to evaluate whether the extracted eigenvalues are similar or not to conclude the similarity between
two tested series, three empirical statistical tests (Chi-squared Test, Log-likelihood Goodness of Fit Test and
Kolmogorov–Smirnov Test) are adopted. Various distance and similarity measures are comprehensively reviewed and
categorized in [14], therefore, we do not reproduce here. Since the proposed similarity measure is expected to have no
assumption or limitation on measuring tested series with only the empirical distributions, some tests that are commonly
used to evaluate the consistency with the empirical distributions cannot be properly suitable here (i.e. Shapiro–Wilk
Test [43], Hellinger Distance [44], Kullback Leibler Divergence [45], Anderson–Darling Test [46]). Therefore, only
brief introductions of the suitable empirical statistical tests are provided respectively as follows.

3.1. Similarity measures

In general, coordinates and the cumulative distribution function (CDF) are the most generally accepted concepts to
represent the examined subject. We briefly summarize several important and dominant measurements that are referred
for formulating the novel similarity measure due to the special feature of eigenvalue distribution.

3.1.1. Chi-squared test
As an improved distance measure comparing to Euclidean distance, the Chi-squared statistic can be simply

considered as the summation of squared Euclidean distances of two vectors (by considering them in a n dimensional
space domain, where n is the number of observations for both vectors) over the corresponding “coordinates” of
the domain vector. The Chi-squared distribution (also known as Helmertian distribution) [47] is one of the most
significantly applied probability distributions, and it is most commonly accepted for measuring the distance or
similarity level between two probability distributions. Pearson [48] adopted the Chi-squared distribution in the
goodness of fit domain and conducted the Chi-squared test, which statistically evaluates the observed data about
its goodness of fit level and consistency with an expected distribution. Here in this paper, it is adopted for comparing
the eigenvalue distributions of two series (or one examined series with the benchmark population) as evidence of
similarity. The Chi-squared statistic formula is:

χ2(C, E) =
Z∑

i=1

(Ci − Ei )
2

Ei
, (1)

where Z is the number of levels of categories; C is the observed frequency and E is the expected count.
Therefore, in terms of Chi-squared test between two tested variables, assume Z A and Z B are the number of levels

of categorized variables A and B, so the degree of freedom can be calculated by d f = (Z A − 1) × (Z B − 1). The
expected counts/frequencies is computed by

EZ A,B = (CZ A × CZ B )/n, (2)
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where CZ refers to observed counts at specific level of category and n indicates the total observation number.
Consequently, the corresponding Chi-squared statistics is:

χ2(A, B) =
∑ (CZ A,B − EZ A,B )

2

EZ A,B

. (3)

3.1.2. Log-likelihood goodness of fit test
The Log-likelihood Goodness of Fit Test is actually based on the commonly used Chi-squared test statistics in [48].

According to [49], the Log-likelihood statistic formula is:

G = 2
∑

i

fi · ln

(
fi

qi

)
, (4)

where the fi refers to the observed frequency, whilst qi indicates the expected frequency. More specifically, the test is
adopted for evaluating whether the eigenvalue distribution of the examined series fit well to the eigenvalue distribution
of the benchmark series.

3.1.3. Kolmogorov–Smirnov test
The Kolmogorov–Smirnov Test (K–S Test) was firstly proposed in [50]. As a non-parametric statistical test, it

quantifies the distance based on the CDF with no assumption about the distribution of data. It can be adopted to
examine the similarity level of one distribution to empirical distribution, more importantly, K–S test is also applicable
for evaluating the similarity of distributions of two random samples. The K–S test statistic is defined as below, which
we mainly follows [51]:

Dn = supx |Fn(x)− F(x)|, (5)

where F refers to the theoretical cumulative distribution function, Fn represents the cumulative distribution up to n
observations, supx indicates the supremum of the set of distances, and Dn refers to the supremum distance reached up
to n observations. In terms of the two-sample case of K–S Test, the corresponding test statistic formula is:

Dn,n′i = supx |F1,n(x)− F2,n′(x)|, (6)

note that F1,n and F2,n′ are the corresponding distribution function for two tested samples respectively.
Specifically for the proposed similarity measure method based on eigenvalue distribution, two-sample K–S Test is

adopted to determine whether the “benchmark” populations created by the dominate series has consistent eigenvalue
distribution as the other series.

3.2. Novel similarity measure using eigenvalue distribution

By setting the eigenvalue distribution as our criterion and adopting the empirical methods listed above, the
hypotheses of the novel similarity measure are stated as below:

Null hypothesis (H0): there is no significant difference between the eigenvalue distributions of matrices by two tested
series.

Alternative hypothesis (Ha): there is a significant difference between the eigenvalue distributions of matrices by two
tested series.

The null hypothesis is rejected when the p-value is less than the 5% significance level, and therefore we conclude
that the set of eigenvalues are not similar and consequently two test series are different. While if the p-value is very
close to or equal to 1, we conclude that the two tested series are similar as they share very similar or even identical
eigenvalue distributions.

As the proposing method of measuring similarity based on eigenvalue distribution is considering a possible
implementation of detecting “Formal Cause”, different benchmarks of comparison will lead to different results.
Consider two random variables X and Y , “how similar is X to Y ” and “how similar is Y to X” are two different
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Fig. 1. The flowchart of the novel similarity measure using eigenvalue distribution.

questions, especially when the distribution of eigenvalues is the criterion. We should not expect exactly “same” results
when we compare X to Y and Y to X , while the expected final outcomes that define “similar” or “different” should
not vary. For instance, if the principle is to answer the question of how similar is Y to X , the eigenvalue distribution
by corresponding matrix (XYH or XXH determined by with or without the premise of multivariate system) will
be considered as the “benchmark” for further evaluation. Hence, if the other eigenvalue distribution by XXH or
YYH (determined by with or without the premise of multivariate system respectively) is statistically similar with the
“benchmark” eigenvalue distribution, Y will then concluded as similar with X .

Moreover, in order to ensure the consistency and comparability, the default window length is set as about 1/10 of
the time series length. This will be fairly number to include almost all significant eigenvalues without containing too
much unimportant ones. With a relatively larger window length, the information will be split either flatly or partly
flatly by more eigenvalues, and the differences will be split to be less significant to be identified; in contrast, a smaller
window length will result in the fewer amount of eigenvalues with more significant differences for all or some of the
eigenvalues. Without considering the consistency to be comparable, the most proper window length will be selected
heavily depends on the feature of the series being analyzed with the principle of relatively maximizing the significant
information with possibly small number of eigenvalues.

A flowchart is provided in Fig. 1 that briefly summarizes the formulation and evaluation process of this proposing
similarity measure. Note that in terms of simulation, corresponding process is repeated 1000 times respectively, and
the population of tested series are generated by involving random white noises that being maintained at about 10% of
the range of tested series.

The similarity measure is firstly built on the premise of multivariate system with the benchmark series as the
dominant role. Therefore, we evaluate the similarity of multivariate system formed by X and Y by comparing it to the
benchmark multivariate system formed by X and X or Y and Y respectively (determined by which series is considered
as the benchmark series). This will be considered as the scenario of on the premise of multivariate system.

Another question raise here is that we can only compare the system of X and X with Y and Y . This refers
to the scenario of without the premise of multivariate system. Note that all evaluations will be performed on the
corresponding eigenvalue distributions generated by the systems formed respectively. The detailed test results of
simulations with and without the premise scenarios will be separately presented in the following sections.

4. Empirical results

Three statistical tests are adopted for evaluating this novel similarity measure and examining the similarity
measure criterion of eigenvalue distribution, which are briefly introduced previously: Chi-squared Test, Log-likelihood
Goodness of Fit Test, Kolmogorov–Smirnov Test. In order to evaluate the performance of the proposed method,
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various types of simulated series are tested by being separated into two groups of circumstances: the similar group
and the different group, additionally the different choices of “benchmark” are also considered in each group.
The test results are summarized in Tables 1 and 2 by each empirical statistical method. Thus, the robustness
of accepting eigenvalue distribution as similarity measure criterion are preliminarily examined, followed by the
tests under simultaneous real case scenario by employing bootstrap re-sampling technique. We have managed to
obtain consistently promising results as simulative expectations, which convincingly prove the consistent, robust
performances of this novel similarity measure on several different types of simulated series. The initials of various
types of generated series are listed below for the sake of simplifying the expressions:

1. WN White noise.
2. UD[0, 1] Uniform distribution series [0, 1].
3. UD[−1, 1] Uniform distribution series [−1, 1].
4. EP[1] Exponential distribution series rate 1.
5. SINE[−1, 1] Sine wave series [−1, 1].

4.1. On the premise of multivariate system scenario

Regarding the scenario of on the premise of multivariate system, we evaluate the similarity of eigenvalue
distributions extracted from the matrices XYH and XXH (or YYH determined by which series is considered as the
benchmark series), respectively. Note that XYH is created from two time series X N and YN simultaneously, and XXH
(or YYH ) is formed by X N (or YN ) with itself respectively. The corresponding test results of eigenvalue distributions
as novel similarity measure by three different empirical methods are summarized in Table 1. Note that the bold number
indicates the best performance option in corresponding comparable level.

The Chi-squared test results show positive outcomes as expected for the “similar” group on both numbers of
observations scenarios, whilst in terms of the “different” group, the tests can perform better for longer series. However,
there are still significantly unexpected results (p-value is close to 1) for the UD[0,1] & EP[1] and UD[−1,1] &
SINE[−1,1] combinations, especially the results vary greatly for the UD[0,1] & SINE[−1,1] and EP[1] & SINE[−1,1]
cases. As mentioned earlier, the population for comparison is created by the “benchmark” series, therefore differences
are expected when switching the “benchmark” series, however, opposite results for the same pair of series are not
robust as expected, and it is even worse than the cases of indicating “similar” for the groups that are expected to be
“different”.

In terms of the log-likelihood goodness of fit test results, expected results for the “similar” group are confirmed in
accordance with the simulation results. P-values are equal to 1, which indicate that it is almost 100% sure to accept the
null hypothesis, therefor very similar or identical eigenvalue distributions prove the expected conclusion of “similar”.
Regarding the expected to be “different” group, both long and short series length, 1000 and 100 observations, show
generally consistent significant results, except the UD[0,1] & EP[1] combination. Since UD[0,1] and EP[1] indeed
show similar eigenvalue distributions and the differences are between the tails, the log-likelihood goodness of fit test is
not sensitive for detecting differences of distributions with flat tails. However, the advantage of this test can be noticed
in the shorter length of observation scenario; the results are almost stable and consistent with the expected results of
highly significant statistics.

Test results of K–S test show positive results as expected for the “similar” group on both numbers of observations
scenarios. In terms of N = 100 case for “different” group of combinations, only the UD[0,1] & UD[−1,1]
combination can be detected with 10% of significance level, however, the differences between switching dominant
series to create “benchmark” populations are not significant. Comparing to the results of previous tests, the
inconsistency is worse than less sensitivity of accurate detection, it has to be noticed that the two sample K–S test
shows great performance on consistency and stability, even in the quite unstable and greatly varied scenarios that
other tests cannot even provide uniformed results. In addition, for the “different” group with N = 1000 case, almost
all results are as expected to be significant (majority is under 5%, only a few are under 10%). Note that the EP[1]
& SINE[−1,1] combination is the only one that K–S test could not detect significantly, and this is mostly because
that K–S test is not that much sensitive to the differences at tail, also the natural character of eigenvalue distribution
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Table 1
Similarity measure evaluation by three different tests on simulated groups of series on the premise of multivariate system scenario.

Chi-squared test Log-likelihood GOF test K–S test
N = 100 N = 1000 N = 100 N = 1000 N = 100 N = 1000
L = 10 L = 100 L = 10 L = 100 L = 10 L = 100
p-value p-value p-value p-value p-value p-value

X Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y

Similar UD[0,1] UD[0,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UD[−1,1] UD[−1,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
EP[1] EP[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SINE[−1,1] SINE[−1,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Different UD[0,1] UD[−1,1] 0.14 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.07 0.05 0.00 0.00
UD[0,1] EP[1] 0.76 0.98 0.88 1.00 0.81 1.00 0.99 1.00 0.77 0.65 0.01 0.01
UD[0,1] SINE[−1,1] 0.98 0.35 1.00 0.00 0.00 0.00 0.00 0.00 0.76 0.89 0.02 0.01
UD[−1,1] EP[1] 0.01 0.88 0.00 0.01 0.05 0.35 0.00 0.00 0.49 0.65 0.00 0.00
UD[−1,1] SINE[−1,1] 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.00 0.11 0.41 0.10 0.10
EP[1] SINE[−1,1] 1.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.45 0.60 0.56 0.53

Table 2
Similarity measure evaluation by three different tests on simulated groups of series without the premise of multivariate system scenario.

Chi-squared test Log-likelihood GOF test K–S test
N = 100 N = 1000 N = 100 N = 1000 N = 100 N = 1000
L = 10 L = 100 L = 10 L = 100 L = 10 L = 100

X Y p-value p-value p-value p-value p-value p-value

Similar UD[0,1] UD[0,1] 0.99 1.00 0.99 1.00 0.99 0.99
UD[−1,1] UD[−1,1] 0.99 1.00 0.99 1.00 0.99 0.98
EP[1] EP[1] 0.99 1.00 0.99 1.00 0.98 0.93
SINE[−1,1] SINE[−1,1] 0.99 1.00 0.99 1.00 0.99 0.99

Different UD[0,1] UD[−1,1] 0.01 0.00 0.01 0.00 0.03 0.00
UD[0,1] EP[1] 0.72 0.73 0.72 0.64 0.61 0.00
UD[0,1] SINE[−1,1] 0.52 0.45 0.54 0.49 0.76 0.01
UD[−1,1] EP[1] 0.22 0.00 0.18 0.00 0.23 0.00
UD[−1,1] SINE[−1,1] 0.96 0.46 0.96 0.50 0.98 0.03
EP[1] SINE[−1,1] 0.58 0.49 0.59 0.50 0.99 0.57

for both types of series vary at the tail part with increasing differences when the window length of structuring matrix
increases.

4.2. Without the premise of multivariate system scenario

In terms of the scenario without the premise of multivariate system, the similarity measure is performed on the
eigenvalue distributions extracted from the matrices XXH and YYH respectively. To be consistent with the previous
evaluation process, we consider both similar and different groups of series and evaluate the performance of similarity
measure by 1000 time simulations. Note that this time there is no premise of a multivariate system, therefore, the
evaluation by simulated series will have no assumption on benchmark series. Hence, for each pair of series, there
is only one test statistic conducted. The default number of observation is 1000 and default window length is 100.
All statistical tests results are listed in Table 2. Note that the bold number indicates the best performance option in
corresponding comparable level.

It is worth to be noted that due to the algorithm of applying Chi-square test and Log-likelihood goodness of fit test
for two sample test, it is necessary to define one of the tested series as dominant series and re-scale the assumption of
distribution in the first place for the further tests. Consequently, for the scenario of without the premise of multivariate
system, the simulations of 1000 times are equally shared by both series in one pair of tested series. Therefore, both
series have same quantity of chances to be the dominant series to re-scale the assumption distribution. K–S test do not
have assumptions on any distribution, hence simulations for two sample test of K–S test here do not have significant
difference comparing to the corresponding process of previous scenario on the premise of multivariate system.



X. Huang et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 352–362 359

According to Table 2, all statistical tests provide consistent results on both short and long series for the similar
group, which all show p-value nearly equal or identical to 1. Hence it indicates significantly similar eigenvalue
distributions consequently the similarity between tested series. However, in terms of the different group, both Chi-
squared test and Log-likelihood goodness of fit test could not detect most of the differences properly except the
UD[0,1] & UD[−1,1] and UD[−1,1] & EP[1] combinations. It is mostly because of the variation and instability
caused by switching dominant series for re-scale distribution assumption. Even for the longer series case, most of the
results get smaller p-values (which indicates different eigenvalue distributions), they are still not significant enough
as we expected for the generated different group. K–S test is proved to outperform the other two tests for the long
series case, also it can accurately detect the similarity or differences for both simulated groups. Even for the short
series case, the results of K–S test are fairly close to the results of the other tests. Unlike the previous test results
of log-likelihood goodness of fit test, it does not show good performance on short series this time. In general, by
considering the scenario without the premise of a multivariate system, the K–S test is confirmed again as the most
proper statistics to be adopted for the new similarity measure based on eigenvalue distribution.

5. Similarity measure in simultaneous real case scenario by bootstrap re-sampling

Based on previous evaluations of eigenvalue distribution as similarity measure criterion by simulations, it can
be summarized that the eigenvalue distribution can be considered as a proper criterion of measure similarity by
adopting proper statistical test; K–S test outperforms others in the large data size domain with consistent results
as simultaneously expected.

Considering the real case scenario, data can be assumed to be formed by signal and noise. Therefore, we cannot
simulate noises to form and produce the population of dominate series as the benchmark to measure similarity.
Consequently, we adopt bootstrap re-sampling technique [52] to conduct the population of dominate series with
specific confidence level and evaluate how similar the other tested variable is to the benchmark population under
the specific confidence level circumstance. Note that the newly proposed method can certainly be performed without
any re-sampling process if there are already clear information of its population. The corresponding population will
only be generated by re-sampling for obtaining the information of its population. Due to the nature of similarity we
mentioned previously, the similarity level of X to Y and Y to X are two different questions regarding the differences of
the benchmark. Consequently, the re-sampling process will consider two different cases by choosing different original
series to create the population.

A flowchart is provided in Fig. 2 that briefly summarizes the formulation process under the simultaneous real case
scenario by bootstrap re-sampling. For instance, when the principle is to obtain the population of benchmark series X ,
thus, the population of λXYH XY T

H
or λX X H X X T

H (determined by with or without the premise of multivariate system)
are conducted, which are formed by eigenvalues distributions within specific confidence interval of K–S statistics.
Therefore, if the confidence level is fixed as 95%, we can conduct the population of eigenvalue distributions that
indicate significantly 95% similarity level with benchmark series. To this end, we can evaluate the other series by
comparing its corresponding K–S statistics with the range of K–S statistics by the population. Hence, we can identify
the similarity level respectively with necessary adjustment of confidence level in the bootstrap re-sampling stage.
The results by representative simultaneous groups of series are provided in Table 3. In terms of the similar group,
the similar group shows consistent results for both short and long series, in which, 95% significant level indicates
tested series share at least 95% of similarity based on the eigenvalue distributions from the corresponding matrices.
According to the previous evaluations of K–S test on short and long series for different group, we here only consider
to evaluate the performance on long series in accordance to its previous promising results in simulations (symbol \ for
short series in Table 3). The 5% significant level refers to that the test statistics does not fit even when the confidence
level of bootstrap re-sampling is set as 5%. This significantly indicates that tested series can be considered different
as they are not similar even for 5% significant level.

6. Discussion

Although as a novel similarity measure based on eigenvalue distribution with proven robustness and consistent
performances, it is also certain that it is still the beginning of developing this new measure. The types of series
in simulations are relatively limited, and there are still numerous choices of more complex series or combinations of
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Fig. 2. The flowchart of the simultaneous real case scenario by bootstrap re-sampling.

Table 3
Simultaneous real case similarity measure results by bootstrap re-sampling.

N = 100 L = 10 N = 1000 L = 100
Y to X X to Y Y to X X to Y

X Y Y/N Sig level Y/N Sig level Y/N Sig level Y/N Sig level

Similar UD[0,1] UD[0,1] 3 95% 3 95% 3 95% 3 95%
UD[−1,1] UD[−1,1] 3 95% 3 95% 3 95% 3 95%
EP[1] EP[1] 3 95% 3 95% 3 95% 3 95%

Different UD[0,1] UD[−1,1] \ \ \ \ 3 5% 3 5%
UD[0,1] EP[1] \ \ \ \ 3 5% 3 5%
UD[−1,1] EP[1] \ \ \ \ 3 5% 3 5%

Note: 3indicates the result is correctly proved by the measure.

series haven not been explored. The bootstrap re-sampling by K–S statistics for some real data (especially large size of
data that is much longer than the default 1000 observations in simulation) may take a longer time of calculation, which
makes it crucial to find a more straight forward process to identify the population information as the benchmark. Also,
the performance in short series is not as good as its effort on long series. However, there are also numerous possibilities
to improve this novel measure further: more representative data patterns, more types of noises with different levels
of variations and more options of window lengths are planned to be explored as the second stage of improving this
new measure; in terms of time series with different frequencies, it can also provide possible solution by adopting SSA
technique with specific modification accordingly; one significant implementation area of similarity measure is time
series classification, therefore, the evaluations of its performances on classifications of some empirical data are in
process.

7. Conclusion

In general, we overcome the difficulties and develop a novel similarity measure based on eigenvalue distribution
by combining the SVD technique. It is the initial attempt of adopting this technique in terms of the similarity
measure. The evaluation results are promising and robust as we have considered many possible circumstances in
the formulation process. We have examined the robustness of adopting eigenvalue distribution as proper criterion
of measuring similarity; additionally, we have found that K–S test outperforms others in the large data size domain
with consistent results as simultaneously expected. Furthermore, the simultaneous real case scenario is evaluated by
adopting the bootstrap re-sampling technique to prevent the possible impacts during the process of creating benchmark
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population. Consistent results are achieved in the simultaneous real case scenario indicating the robust performance
of distinguishing various “similar” or “different” groups of series.

This novel similarity measure can work properly on long series, and it does not require any assumption of
distributions during the measuring process. The computation is reasonably efficient and can be easily employed
by modifying currently available R packages. By considering eigenvalue distribution as the criterion of similarity
measure, the amount of computation is significantly reduced for large data set. More importantly, this novel similarity
measure can work with time series with different lengths and still identify the significant features for evaluations.
Furthermore, the signal and noise of time series are considered as a whole without one fixed model. In brief, this
novel similarity measure contributes to providing a measurement that has no limitations of series length, series with
nonlinear features or complex fluctuations, series sharing both signal and noises as similarities, etc. It is absolutely
worth looking forward to its developments and performance of implementations on various disciplines in the close
future.
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Abstract

The boundary contact problem for a micropolar homogeneous elastic hemitropic medium with a friction is investigated. Here,
on a part of the elastic medium surface with a friction, instead of a normal component of force stress there is prescribed the normal
component of the displacement vector. We give their mathematical formulation of the Problem in the form of spatial variational
inequalities. We consider two cases, the so-called coercive case (when elastic medium is fixed along some part of the boundary)
and semi-coercive case (the boundary is not fixed). Based on our variational inequality approach, we prove the existence and
uniqueness theorems and show that solutions continuously depend on the data of the original problem. In the semi-coercive case,
the necessary condition of solvability of the corresponding contact problem is written out explicitly. This condition under certain
restrictions is sufficient, as well.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the present paper we investigate the one-sided contact problem for a homogeneous hemitropic elastic medium
with a friction. In the considered model of the theory of elasticity, as distinct from the classical theory, every
elementary medium particle undergoes both displacement and rotation. In this case, all mechanical values are
expressed by means of the displacement and rotation vectors.

In their works [1] and [2], E. and F. Cosserats created and presented the model of solid medium in which every
material point has six degrees of freedom, three of which are defined by displacement components and the other three
by the components of rotation (for the history of the model of elasticity see [3–9] and references therein).

A micropolar medium, not isotropic with respect to the inversion, is called a hemitropic or noncentrosymmetric
medium.

Improved mathematical models describing hemitropic properties of elastic materials have been obtained and
considered in [10] and [11]. The main equations of that model are interconnected and generate a matrix second
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order differential operator of dimension 6 × 6. Particular problems for solid media of hemitropic theory of elasticity
have been considered in [12,13,8] and [9]. The basic boundary value problems and also the transmission problems of
the hemitropic theory of elasticity with the use of the potential method for smooth and nonsmooth Lipschitz domains
were studied in [12], the one-sided contact problems of statics of the hemitropic theory of elasticity free from friction
were investigated in [14–18], and the contact problems of statics and dynamics with a friction were considered in
[19–29]. Analogous one-sided problems of classical linear theory of elasticity have been considered in many works
and monographs (see [30–35] and the references therein).

In the present work, we present the basic equations of statics of the theory of elasticity for homogeneous hemitropic
media in a vector–matrix form, introduce the generalized stress operator and quadratic form of potential energy. Then
we describe mathematical model of boundary conditions which show the contact between a hemitropic medium and
a solid body with regard for the friction effect. We will consider the case, where some part of the elastic medium
boundary is fixed mechanically. The problem is reduced equivalently to the variational inequality, the question on the
existence and uniqueness of a weak solution of the initial problem is treated, and a continuous Lipschitz dependence
of the solution on the data of the problem is investigated. Further, we will investigate more complicated cases, where
friction is considered on the whole medium boundary. In such cases, the corresponding mathematical problem is,
in general, unsolvable. The necessary conditions of solvability are established and the sufficient conditions for the
existence of a solution are formulated explicitly.

2. Basic equations and Green’s formulas

2.1. Basic equations

Let Ω ⊂ R3 be a bounded simply connected domain with a C∞-smooth boundary S = ∂Ω , Ω = Ω ∪ S. The
domain Ω is assumed to be filled with a homogeneous hemitropic material.

The basic equilibrium equations in the hemitropic theory of elasticity written in components of the displacement
and rotation vectors are of the form

(µ+ α) ∆u(x)+ (λ+ µ− α) graddiv u(x)+ (~ + ν)∆ω(x)
+ (δ + ~ − ν) graddivω(x)+ 2α curlω(x)+ ρF(x) = 0,

(~ + ν) ∆u(x)+ (δ + ~ − ν) graddiv u(x)+ 2α curl u(x)+ (γ + ε)∆ω(x)
+ (β + γ − ε) graddivω(x)+ 4ν curlω(x)− 4αω(x)+ ρΨ(x) = 0,

(2.1)

where ∆ = ∂2
1 + ∂

2
2 + ∂

2
3 is the Laplace operator, ∂ j = ∂/∂x j , u = (u1, u2, u3)

> is the displacement vector,
ω = (ω1, ω2, ω3)

> is the vector of rotation, F = (F1, F2, F3)
> and Ψ = (Ψ1,Ψ2,Ψ3)

> are the mass force and mass
moment calculated per unit of mass, ρ is density of the elastic medium, and α, β, γ , δ, λ, µ, ∂ , ~ and ε are elastic
constants (see [11,13]). Here and in what follows, the symbol (·)> denotes transposition.

We introduce a matrix differential operator corresponding to the left-hand side of system (2.1):

L(∂) =

[
L(1)(∂) L(2)(∂)
L(3)(∂) L(4)(∂)

]
6×6

,

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (~ + ν)∆I3 + (δ + ~ − ν)Q(∂)+ 2αR(∂),

L(4)(∂) :=
[
(γ + ε)∆− 4α

]
I3 + (β + γ − ε)Q(∂)+ 4νR(∂),

where Ik is the unit k × k-matrix and

Q(∂) =
[
∂k ∂ j

]
3×3 , R(∂) =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 .
The system of Eqs. (2.1) can be rewritten in the matrix form

L(∂)U (x)+ G(x) = 0, x ∈ Ω ,

where U = (u, ω)> and G = (ρF, ρΨ)>.
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By T (∂, n) we denote the generalized stress operator of dimension 6× 6 (see [13]):

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]
, T ( j)

=
[
T ( j)

pq
]

3×3, j = 1, 4,

where

T (1)pq (∂, n) :=(µ+ α)δpq∂n + (µ− α)nq∂p + λn p∂q ,

T (2)pq (∂, n) :=(~ + ν)δpq∂n + (~ − ν)nq∂p + δn p∂q − 2α
3∑

k=1

εpqknk,

T (3)pq (∂, n) :=(~ + ν)δpq∂n + (~ − ν)nq∂p + δn p∂q ,

T (4)pq (∂, n) :=(γ + ε)δpq∂n + (γ − ε)nq∂p + δn p∂q − 2ν
3∑

k=1

εpqknk .

Here, n(x) = (n1(x), n2(x), n3(x)) denotes the outward (with respect to Ω ) unit normal vector at the point x ∈ S,
and ∂n = ∂/∂n is the normal derivative in the direction of the vector n. The six-component generalized stress vector
has the form

T (∂, n)U = (T U,MU )>,

where T U := T (1)u + T (2)ω is the force stress vector and MU := T (3)u + T (4)ω is the moment stress vector.

2.2. Green’s formulas

For the real-valued vector functions U = (u, ω)> and U ′ = (u′, ω′)> of the class [C2(Ω)]6 the following Green’s
formula [13]∫

Ω

[
L(∂)U ·U ′ + E(U,U ′)

]
dx =

∫
S

{
T (∂, n)U

}+
·
{
U ′
}+d S, (2.2)

is valid, where {·}+ denotes the trace operator on S from Ω , and E(· , ·) is a bilinear form defined by the equality

E(U,U ′) = E(U ′,U ) =
3∑

p,q=1

{
(µ+ α)u′pqu pq + (µ− α)u

′
pquqp

+ (~ + ν)
(
u′pqωpq + ω

′
pqu pq

)
+ (~ − ν)

(
u′pqωqp + ω

′
pquqp

)
+ (γ + ε)ω′pqωpq

+ (γ − ε)ω′pqωqp + δ
(
u′ppωqq + ω

′
qqu pp

)
+ λu′ppuqq + βω

′
ppωqq

}
,

where u pq and ωpq are the so-called tensors of deformation and torsion-bending for hemitropic media,

u pq = u pq(U ) = ∂puq −

3∑
k=1

εpqkωk, ωpq = ωpq(U ) = ∂pωq , p, q = 1, 2, 3. (2.3)

Here and in the sequel, by a · b we denote the scalar product of two vectors a, b ∈ Rm
: a · b =

∑m
j=1 a j b j .

Under certain assumptions on elastic constants (see [11,17,24]), specific energy of deformation E(U,U ) is a
positive definite quadratic form with respect to u pq(U ) and ωpq(U ), i.e., there exists a positive number C0 > 0,
depending only on the elastic constants, such that

E(U,U ) ≥ C0

3∑
p,q=1

[
u2

pq + ω
2
pq

]
.

The following assertion describes the null space of the energy quadratic form E(U,U ) (see [13]).
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Lemma 2.1. Let U = (u, ω)> ∈ [C1(Ω)]6 and E(U,U ) = 0 in Ω . Then

u(x) = [a × x] + b, ω(x) = a, x ∈ Ω ,

where a and b are arbitrary three-dimensional constant vectors and [· × ·] denotes the cross product of two vectors.

Vectors of the type ([a × x] + b, a) are called generalized rigid vectors. We observe that a generalized rigid
displacement vector vanishes, i.e., a = b = 0 if it is zero at a single point.

Throughout the paper, L p(Ω) (1 ≤ p ≤ ∞), L2(Ω) = H0(Ω) and H s(Ω) = H s
2 (Ω), s ∈ R, denote, respectively,

the Lebesgue and Bessel potential spaces (see e.g., [36,37]). The corresponding norms we denote by the symbols
‖ · ‖L p(Ω) and ‖ · ‖H s (Ω). By D(Ω) we denote the class of C∞(Ω) functions with support in the domain Ω . If M is an
open proper part of the manifold ∂Ω , i.e., M ⊂ ∂Ω , M 6= ∂Ω , then by H s(M) we denote the restriction of the space
H s(∂Ω) on M ,

H s(M) :=
{
rMϕ : ϕ ∈ H s(∂Ω)

}
,

where rM stands for the restriction operator on the set M . Further, let

H̃ s(M) :=
{
ϕ ∈ H s(∂Ω) : suppϕ ⊂ M

}
.

From the positive definiteness of the energy form E(·, ·) with respect to the variables (2.3) it follows that

B(U,U ) :=
∫
Ω

E(U,U )dx ≥ 0. (2.4)

Moreover, there exist positive constants C1 and C2, depending only on the material parameters, such that the
following Korn’s type inequality (see (Part I, Section 12, [32]))

B(U,U ) ≥ C1
∥∥U
∥∥2
[H1(Ω)]6 − C2

∥∥U
∥∥2
[H0(Ω)]6 (2.5)

holds for an arbitrary real-valued vector function U ∈ [H1(Ω)]6.

Remark 2.2. If U ∈ [H1(Ω)]6 and on some part S∗ ⊂ ∂Ω the trace {U }+ vanishes, i.e., rS∗{U }+ = 0, we have the
strict Korn’s inequality

B(U,U ) ≥ C
∥∥U
∥∥2
[H1(Ω)]6 (2.6)

with some positive constant C > 0 which does not depend on the vector U . This follows from (2.5) and the fact that
in this case B(U,U ) > 0 for U 6= 0 (see, e.g., [38], [32, Ch. 2, Exercise 2.17]).

Remark 2.3. By the standard limiting arguments, Green’s formula (2.2) can be extended to the Lipschitz domains
and to the vector function U ∈ [H1(Ω)]6 with L(∂)U ∈ [L2(Ω)]6 and U ′ ∈ [H1(Ω)]6 (see [38,36]),∫

Ω

[
L(∂)U ·U ′ + E(U,U ′)

]
dx =

〈{
T (∂, n)U

}+
,
{
U ′
}+〉

∂Ω , (2.7)

where 〈·, ·〉∂Ω denotes duality between the spaces [H−1/2(∂Ω)]6 and [H1/2(∂Ω)]6 which generalizes the usual inner
product in the space [L2(∂Ω)]6. By virtue of this relation, the generalized trace of the stress operator {T (∂, n)U }+ ∈
[H−1/2(∂Ω)]6 is correctly determined.

3. Contact problems with a friction

3.1. Pointwise and variational formulation of the contact problem

Let the boundary S of the domain Ω be divided into two open, connected and nonoverlapping parts S1 and S2 of
positive measure, S = S1 ∪ S2, S1 ∩ S2 = ∅. Assume that the hemitropic elastic body occupying the domain Ω is in
contact with another rigid body along the subsurface S2.
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Definition 1. A vector function U = (u, ω)> ∈ [H1(Ω)]6 is said to be a weak solution of the equation

L(∂)U + G = 0, G ∈ [L2(Ω)]6 (3.1)

in the domain Ω if

B(U,Φ) =
∫
Ω

G · Φ dx ∀Φ ∈ [D(Ω)]6,

where the bilinear form B(·, ·) is given by formula (2.4).

For the normal and tangential components of the force stress vector we will use, respectively, the following
notation:

(T U )n := T U · n, (T U )s := T U − n(T U )n .

Further, let

G =
(
ρF, ρΨ

)>
∈
[
L2(Ω)

]6
, ϕ ∈

[
H−1/2(S2)

]3 and g ∈ L∞(S2), g ≥ 0.

Consider the following contact problem of statics with a friction.

Problem A. Find a vector function U = (u, ω)> ∈ [H1(Ω)]6 which is a weak solution of Eq. (3.1) and satisfies the
inclusion rS2{(T U )s}+ ∈ [L∞(S2)]

3 and the following conditions:

rS1{U }
+
= 0 on S1, (3.2)

rS2{MU }+ =ϕ on S2, (3.3)

rS2{un}
+
= 0 on S2, (3.4)

if
∣∣rS2{(T U )s}

+
∣∣ <g, then rS2{us}

+
= 0, (3.5)

if |rS2{(T U )s}+| = g, then there exist nonnegative functions λ1 and λ2 which do not vanish simultaneously, and

λ1 rS2{us}
+
= −λ2 rS2{(T U )s}

+. (3.6)

The conditions (3.2) and (3.4) are understood in the usual trace sense, whereas (3.3) is understood in the generalized
functional sense described in Remark 2.3.

This problem can be reformulated as a variational inequality. To this end, let us introduce on the space [H1(Ω)]3

the following continuous convex functional

j (v) =
∫

S2

g
∣∣{vs}

+
∣∣d S, v ∈ [H1(Ω)]3. (3.7)

Next, we define the closed convex subset of [H1(Ω)]6,

K (Ω) :=
{

V = (v, ω)> ∈ [H1(Ω)]6 : rS1{V }
+
= 0, rS2{vn}

+
= 0

}
.

Consider the following variational inequality: Find U = (u, ω)> ∈ K (Ω) such that the variational inequality

B(U, V −U )+ j (v)− j (u) ≥
∫
Ω

G · (V −U )dx +
〈
ϕ, rS2{w − ω}

+
〉
S2

(3.8)

holds for all V = (v,w)> ∈ K (Ω).
Here and in what follows, the symbol

〈
· , ·

〉
M denotes the duality relation between the corresponding dual

pairs X (M) and X∗(M). In particular, the brackets
〈
· , ·

〉
S2

in (3.8) denote the duality relation between the spaces

[H−1/2(S2)]
3 and [H̃ 1/2(S2)]

3.
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3.2. Equivalence

Here we prove the following equivalence result.

Theorem 3.1. If a vector function U ∈ K (Ω) solves the variational inequality (3.8), then it is a solution
of Problem A, and vice versa.

Proof. Let U = (u, ω)> ∈ [H1(Ω)]6 be a solution of Problem A. With the help of Green’s formula (2.7), we get〈
{T (∂, n)U }+, {V −U }+

〉
S − B(U, V −U )+

∫
Ω

G · (V −U )dx = 0

for all V = (v,w)> ∈ K (Ω).
Since rS1{V −U }+ = 0 and rS2{vn − un}

+
= 0, these equations can be rewritten as

B(U, V −U )+ j (v)− j (u) =
∫
Ω

G · (V −U )dx + 〈ϕ, rS2{w − ω}
+
〉S2

+

∫
S2

[{
(T U )s

}+
· {vs − us}

+
+ g

(
|{vs}

+
| − |{us}

+
|
)]

d S. (3.9)

It is easy to see that if the conditions (3.5) and (3.6) hold, then

rS2

{
(T U )s

}+
· rS2{vs − us}

+
+ g

(∣∣rS2{vs}
+
∣∣− ∣∣rS2{us}

+
∣∣) ≥ 0 on S2.

Using this inequality, from (3.9) we obtain

B(U, V −U )+ j (v)− j (u) ≥
∫
Ω

G · (V −U )dx +
〈
ϕ, rS2{w − ω}

+
〉
S2
∀ V = (v,w)> ∈ K (Ω).

Thus, U = (u, ω)> ∈ [H1(Ω)]6 is a solution of the variational inequality (3.8).
Let now U ∈ K (Ω) be a solution of the variational inequality (3.8). Substituting U ± Φ for V in (3.8) with an

arbitrary Φ ∈ [D(Ω)]6, we obtain

B(U,Φ) =
∫
Ω

G · Φ dx ∀ Φ ∈ [D(Ω)]6

which implies that U is a weak solution of Eq. (3.1).
By virtue of the interior regularity theorems (see [32]), we have U ∈ [H2(Ω ′)]6 for every Ω ′ ⊂ Ω . Hence, the

following equation holds in the domain Ω

L(∂)U + G = 0.

Using again Green’s formula, we have

B(U, V −U )−
〈
rS2

{
(T U )s

}+
, rS2{vs − us}

+
〉
S2
−
〈
rS2

{
MU

}+
, rS2{w − ω}

+
〉
S2

=

∫
Ω

G · (V −U )dx ∀ V = (v,w)> ∈ K (Ω). (3.10)

We subtract (3.10) from inequality (3.8) and get〈
rS2

{
(T U )s

}+
, rS2{vs − us}

+
〉
S2
+

∫
S2

g
(∣∣{vs}

+
∣∣−∣∣{us}

+
∣∣)d S

+
〈
rS2

{
MU

}+
− ϕ, rS2{w − ω}

+
〉
S2
≥ 0 (3.11)

for all V = (v,w)> ∈ K (Ω).
Choose V = (v,w)> ∈ K (Ω) such that

rS2{v}
+
= rS2{u}

+ and rS2{w}
+
= rS2{ω}

+
± rS2ψ,
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where ψ ∈ [H̃1/2(S2)]
3 is an arbitrary vector function. Then (3.11) yields

rS2

{
MU

}+
= ϕ on S2,

i.e., (3.3) holds. The conditions (3.2) and (3.4) are satisfied automatically, since U ∈ K (Ω). Therefore the relation
(3.11) can be rewritten as〈

rS2

{
(T U )s

}+
, rS2{vs − us}

+
〉
S2
+

∫
S2

g
(∣∣{vs}

+
∣∣− ∣∣{us}

+
∣∣)d S ≥ 0

for all V = (v,w)> ∈ K (Ω).
Let ψ ∈ [H̃1/2(S2)]

3. Since
〈
rS2

{
(T U )s

}+
, rS2ψs

〉
S2
=
〈
rS2

{
(T U )s

}+
, rS2ψ

〉
S2

and |rS2ψs | ≤ |rS2ψ |, therefore

taking rS2ψs in the place of rS2{vs}
+, we obtain〈

rS2

{
(T U )s

}+
, rS2ψs

〉
S2
+

∫
S2

g|ψ |d S −

{〈
rS2

{
(T U )s

}+
, rS2ψs

〉
S2

+

∫
S2

g
∣∣{us}

+
∣∣d S

}
≥ 0 ∀ ψ ∈

[
H̃ 1/2(S2)

]3
. (3.12)

Further, let t ≥ 0 be an arbitrary number and take ±tψ for ψ in (3.12),

t

{
±
〈
rS2

{
(T U )s

}+
, rS2ψs

〉
S2
+

∫
S2

g|ψ |d S

}
−

{〈
rS2

{
(T U )s

}+
, rS2ψs

〉
S2
+

∫
S2

g
∣∣{us}

+
∣∣d S

}
≥ 0

∀ ψ ∈
[
H̃ 1/2(S2)

]3
whence by sending t first to +∞ and then to 0, we easily derive∣∣∣〈rS2

{
(T U )s

}+
, rS2ϕ

〉
S2

∣∣∣ ≤ ∫
S2

g|ψ |d S ∀ ψ ∈
[
H̃1/2(S2)

]3
, (3.13)

〈
rS2

{
(T U )s

}+
, rS2{us}

+
〉
S2
+

∫
S2

g
∣∣{us}

+
∣∣d S ≤ 0. (3.14)

Now we prove that rS2{(T U )s}+ ∈ [L∞(S2)]
3. Towards this end, we consider on the space [H̃1/2(S2)]

3 the linear
functional

Φ(ψ) =
〈
rS2

{
(T U )s

}+
, rS2ψ

〉
S2
∀ ψ ∈

[
H̃1/2(S2)

]3
.

Inequality (3.13) shows that the functional Φ is continuous on the space rS2 [H̃
1/2(S2)]

3 with respect to the topology,
induced by the space [L1(S2)]

3. Since the space rS2 [H̃
1/2(S2)]

3 is dense in [L1(S2)]
3, the functional Φ can be

continuously extended to the space [L1(S2)]
3 preserving the norm. Therefore, by the Riesz theorem, there is the

function Φ∗ ∈ [L∞(S2)]
3 such that

Φ(ψ) =
∫

S2

Φ∗ · ψ d S ∀ψ ∈ [L1(S2)]
3.

Thus,〈
rS2

{
(T U )s

}+
, rS2ψ

〉
S2
=

∫
S2

Φ∗ · ψ d S ∀ ψ ∈
[
H̃1/2(S2)

]3
,

that is,〈
rS2

{
(T U )s

}+
− Φ∗, rS2ψ

〉
S2
= 0 for all ψ ∈

[
H̃1/2(S2)

]3
,

which implies that

rS2

{
(T U )s

}+
= Φ∗ ∈

[
L∞(S2)

]3
.
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It is well known that for an arbitrary function ψ̃ ∈ L∞(S2) there is a sequence ψ̃e ∈ C∞(S2) with supp ϕ̃e ⊂ S2
such that (see, e.g., [39, Lemma 1.4.2])

lim
`→∞

ϕ̃`(x) = ψ̃(x) for almost all x ∈ S2

and ∣∣ϕ̃`(x)∣∣ ≤ ess sup
y∈S2

∣∣ψ̃(y)∣∣ for almost all x ∈ S2.

Therefore, from inequality (3.13), by the Lebesgue dominated convergence theorem, it follows that∫
S2

[
±
{
(T U )s

}+
· ψ − g|ψ |

]
d S ≤ 0 ∀ψ ∈

[
L∞(S2)

]3
.

In the place of ψ we can put χ ψ , where ψ ∈
[
L∞(S2)

]3 and χ is the characteristic function of an arbitrary
measurable subset Γ ⊂ S2. As a result, we arrive at the inequality ±{(T U )s}+ · ψ − g|ψ | ≤ 0 on S2 for all
ψ ∈

[
L∞(S2)

]3 and, consequently, by choosing ψ = {(T U )s}+, we finally get∣∣rS2

{
(T U )s

}+∣∣ ≤ g on S2. (3.15)

In view of (3.14) and (3.15), we obtain

rS2

{
(T U )s

}+
· rS2{us}

+
+ g

∣∣rS2{us}
+
∣∣ = 0 on S2. (3.16)

Now, it is evident that if
∣∣rS2

{
(T U )s

}+∣∣< g, then (3.16) implies rS2{us}
+
= 0. Also, if

∣∣rS2

{
(T U )s

}+∣∣ = g, then
(3.16) can be rewritten as follows:

g
∣∣rS2{us}

+
∣∣(cosα + 1) = 0 on S2,

where α is the angle lying between the vectors rS2{(T U )s}+ and rS2{us}
+ at the point x ∈ S2. Therefore there exist

the functions λ1(x) ≥ 0 and λ2(x) ≥ 0 such that λ1(x)+ λ2(x) > 0 and

λ1(x)rS2

{
us(x)

}+
= −λ2(x)rS2

{
(T U )s

}+ on S2.

Moreover, we may assume that λ1 belongs to the same class as {(T U )s}+, and λ2 belongs to the same class as
{us}

+.
Thus, the conditions (3.5) and (3.6) of Problem A hold as well, and the proof is complete. �

4. The existence and uniqueness theorems

Here we investigate the so-called coercive case, where the measure of the Dirichlet part of the boundary is positive,
i.e., meas S1 > 0.

Theorem 4.1. The variational inequality (3.8) has at most one solution.

Proof. Let U = (u, ω)> ∈ K (Ω) and U ′ = (u′, ω′)> ∈ K (Ω) be two solutions of the variational inequality (3.8).
Then

B(U,U ′ −U )+ j (u′)− j (u) ≥ (G,U ′ −U )+
〈
ϕ, rS2{ω

′
− ω}+

〉
S2

and

B(U ′,U −U ′)+ j (u)− j (u′) ≥ (G,U −U ′)+
〈
ϕ, rS2{ω − ω

′
}
+
〉
S2
.

Summing these inequalities and applying the property (2.4), we easily derive that B(U − U ′,U − U ′) = 0.
Therefore U − U ′ = ([a × x] + b, a) in Ω , where a, b ∈ R3 are arbitrary constant vectors (see Lemma 2.1). Since
rS1{U −U ′}+ = 0, we conclude that a = b = 0, i.e., U = U ′ in Ω . �
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To prove the existence result, we introduce on the set K (Ω) the following functional:

J (V ) =
1
2

B(V, V )+ j (v)−
∫
Ω

G · V dx −
〈
ϕ, rS2{w}

+
〉
S2
∀ V = (v,w)> ∈ K (Ω). (4.1)

Due to the symmetry property of the form B(U, V ), it is not difficult to show that the variational inequality (3.8)
is equivalent to the minimization problem for the functional (4.1) on the closed convex set K (Ω), i.e., the variational
inequality (3.8) is equivalent to the following minimizing problem:

Find U0 ∈ K (Ω) such that

J (U0) = inf
V∈K (Ω)

J (V ).

In turn, in accordance with the general theory of variational inequalities (see, e.g., [30,40]), the solvability of the
minimization problem immediately follows from the coercivity of the functional J , i.e., from the property

J (V )→+∞, when
∥∥V
∥∥
[H1(Ω)]6 →∞, V ∈ K (Ω). (4.2)

Since B is positive and bounded below on K (Ω), due to (2.6) and the inequality j (v) ≥ 0, it is easy to see by the
trace theorem that

J (V ) ≥ C1
∥∥V
∥∥2
[H1(Ω)]6 − C2

∥∥V
∥∥
[H1(Ω)]6 ,

where C1 and C2 are some positive constants, independent of V . This inequality shows that the functional (4.1) is
coercive on the set K (Ω). Therefore we have the following existence result for Problem A.

Theorem 4.2. Let G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S2)]
3, g ∈ L∞(S2) and g ≥ 0. Then Problem A has a unique solution

in [H1(Ω)]6, depending continuously on the data G, ϕ and g of the problem.

Proof. The unique solvability follows from the equivalence Theorem 3.1, uniqueness Theorem 4.1 and the coercivity
property (4.2) (see Theorem 2.1 in [40]).

Further, we establish the continuous dependence of solutions on the data of Problem A.
Let U = (u, ω)> ∈ [H1(Ω)]6 and Ũ = (̃u, ω̃)> ∈ [H1(Ω)]6 be two solutions of Problem A, corresponding to the

data G, ϕ, g and G̃, ϕ̃, g̃, respectively. Thus we have two variational inequalities of type (3.8): the first inequality for
U and the second one for Ũ . Substituting V = Ũ into the first inequality and V = U into the second one and taking
their sum, we obtain

−B(U − Ũ ,U − Ũ )−
∫

S2

(g − g̃)
(∣∣{us}

+
∣∣− ∣∣{̃us}

+
∣∣)d S

−

∫
Ω
(G − G̃) · (U − Ũ )dx −

〈
ϕ − ϕ̃, rS2{ω − ω̃}

+
〉
S2
.

Taking into account the last inequality, the inclusion U, Ũ ∈ K (Ω) and the strong Korn’s inequality (2.6) (see
Remark 2.2), we obtain∥∥U − Ũ

∥∥
[H1(Ω)]6 ≤ C

(∥∥g − g̃
∥∥

L2(S2)
+
∥∥G − G̃

∥∥
[L2(Ω)]6

+
∥∥ϕ − ϕ̃∥∥

[H−1/2(S2)]
3

)
with some positive constant C , not depending on U and Ũ and on the data of the problem under consideration. This
estimate shows the desired Lipschitz dependence of the solution on the data of the problem. �

5. The semicoercive case

Let S1 = ∅, S2 = S, G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S)]3, g ∈ L∞(S) and g ≥ 0. Consider the boundary contact
problem.

Problem B. Find a vector function U = (u, ω)> ∈ [H1(Ω)]6 which is a weak solution of Eq. (3.1), satisfying the
inclusion {(T U )s}+ ∈ [L∞(S)]3 and on the surface S the following boundary conditions:

{MU }+ = ϕ, {un}
+
= 0,

if
∣∣{(T U )s}

+
∣∣ < g, then {us}

+
= 0,
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if
∣∣{(T U )s}+

∣∣ = g, then there exist nonnegative functions λ1 and λ2 which do not vanish simultaneously, and

λ1{us}
+
= −λ2

{
(T U )s

}+
.

Analogously to the previous coercive case (see Theorem 3.1), we can show that Problem B is equivalent to the
following variational inequality:

B(U, V −U )+ j (v)− j (u) ≥
∫
Ω

G · (V −U )dx +
〈
ϕ, {w − ω}+

〉
S (5.1)

which holds for all V = (v,w)> ∈ [H1(Ω)]6. Here

j (v) =
∫

S
g
∣∣{vs}

+
∣∣d S.

Let U = (u, ω)> ∈ [H1(Ω)]6 be a solution of the variational inequality (5.1).
Substituting first V = 0 and then V = 2U into inequality (5.1), we obtain

B(U,U )+ j (u) =
∫
Ω

G ·U dx +
〈
ϕ, {ω}+

〉
S . (5.2)

By virtue of (5.2), from (5.1) we derive

B(U, V )+ j (v) ≥
∫
Ω

G · V dx +
〈
ϕ, {w}+

〉
S . (5.3)

Thus inequality (5.1) is equivalent to the simultaneous relations (5.2) and (5.3).
Substituting −V in the place of V in (5.3), we get∣∣∣∣ ∫

Ω
G · V dx +

〈
ϕ, {w}+

〉
S − B(U, V )

∣∣∣∣ ≤ j (v) (5.4)

for all V = (v, ω)> ∈ [H1(Ω)]6.
By R we denote the set of solutions of the equation B(U,U ) = 0 in the space [H1(Ω)]6 (see Lemma 2.1),

R :=
{
ξ = (ρ, a)> ∈

[
H1(Ω)

]6
; ρ = [a × x] + b, a, b ∈ R3

}
.

By the substitution of an arbitrary ξ = (ρ, a)> ∈ R in the place of V in (5.4), we derive the necessary condition
of solvability of the variational inequality (5.1),∣∣∣∣ ∫

Ω
G · ξ dx +

〈
ϕ, a

〉
S

∣∣∣∣ ≤ ∫
S

g
∣∣{ρs}

+
∣∣d S (5.5)

for all ξ = (ρ, a)> ∈ R.
Let in (5.5) we have the strict inequality. Then taking into account the fact that the space R has finite dimension,

dim R = 6, it is easy to see that (5.5) is equivalent to the relation∫
S

g
∣∣{ρs}

+
∣∣d S −

∣∣∣∣ ∫
Ω

G · ξ dx +
〈
ϕ, a

〉
S

∣∣∣∣ ≥ C
∥∥ξ∥∥
[L2(Ω)]6

(5.6)

with some positive constant C , and for all ξ ∈ R \ {0}.
Let PR be an orthogonal projection operator of the space [H1(Ω)]6 on R, in the sense of the space [L2(Ω)]6,

i.e., ∀ V ∈ [H1(Ω)]6 : V = W + ξ , where ξ = (ρ, a)> = PR V ∈ R, and

W = (η, ζ )> ∈ R⊥ :=
{

U ∈ [H1(Ω)]6 :
∫
Ω

U · ξ dx = 0, ∀ ξ ∈ R
}
.
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Due to inequality (2.5) and Lemma 5.1 in [19], the bilinear form B is semicoercive, i.e., there is a positive constant
C0 such that

B(V, V ) ≥ C0
∥∥V − PR V

∥∥2
[H1(Ω)]6 = C0

∥∥W
∥∥2
[H1(Ω)]6 ∀ V ∈

[
H1(Ω)

]6
. (5.7)

Therefore, for all V ∈ [H1(Ω)]6, due to (5.6) and (5.7), we have

J (V ) = J (W + ξ) =
1
2

B(W,W )+ j (η + ρ)− j (ρ)

−

∫
Ω

G ·W dx −
〈
ϕ, {ζ }+

〉
S −

∫
Ω

G · ξ dx −
〈
ϕ, a

〉
S+ j (ρ)

≥C0
∥∥W

∥∥2
[H1(Ω)]6 + C

∥∥ξ∥∥
[L2(Ω)]6

− C1
∥∥W

∥∥
[H1(Ω)]6 + j (η + ρ)− j (ρ),

for some positive constants C,C0,C1.
Let us now estimate j (η + ρ)− j (ρ). We have

j (η + ρ)− j (ρ) =
∫

S
g
(∣∣{(η + ρ)s}+∣∣− ∣∣{ρs}

+
∣∣)d S ≥ −

∫
S

g
∣∣{ηs}

+
∣∣d S ≥ −C2

∥∥W
∥∥
[H1(Ω)]6 ,

where the positive constant C2 is independent of η and ρ.
Taking into account this inequality, we finally have

J (V ) ≥ C0
∥∥W

∥∥2
[H1(Ω)]6 + C

∥∥ξ∥∥
[L2(Ω)]6

− C3
∥∥W

∥∥
[H1(Ω)]6

with some positive constants, whence it follows that

J (V )→∞, when
∥∥V
∥∥
[H1(Ω)]→∞, V ∈

[
H1(Ω)

]6
i.e., the functional is coercive and the minimization problem for this functional is solvable. Consequently, the
corresponding variational inequality (5.1) is solvable, as well (see [30,33]). Further, just as in Theorem 4.1, for
the two possible solutions U and U∗ to the variational inequality (5.1) of the class [H1(Ω)]6, we easily derive
B(U −U∗,U −U∗) = 0, which implies

U −U∗ =
(
[a × x] + b, a

)
, a, b ∈ R3.

Thus we have the following existence and uniqueness

Theorem 5.1. Let S1 = ∅, G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S)]3, g ∈ L∞(S), g ≥ 0 and the condition (5.6) be fulfilled.
Then the variational inequality (5.1) is solvable in the space [H1(Ω)]6. Moreover, the solutions are defined modulo
generalized rigid displacement vectors.

Remark 5.2. Analogously to the noncoercive case, we can study the problem, when on a part of the boundary S1
instead of the Dirichlet condition (3.2) there is assigned the following fractional boundary condition

rS1

{
T (∂, n)U

}+
= Q,

where Q ∈ [H̃ −1/2(S1)]
6. Moreover, we assume that the vector ϕ appearing in the condition (3.3) belongs to the

space [H̃ −1/2(S2)]
3.

In this case, instead of (3.8) we have the following variational inequality: Find U = (u, ω)> ∈ [H1(Ω)]6 such that
∀ V = (v,w)> ∈ [H1(Ω)]6

B(U, V −U )+ j (v)− j (u) ≥
∫
Ω

G · (V −U )dx +
〈
rS1 Q, rS1{V −U }+

〉
S1
+
〈
rS2ϕ, rS2{w − ω}

+
〉
S2
. (5.8)

The necessary condition for the solvability of the variational inequality (5.8) reads now as∣∣∣∣ ∫
Ω

G · ξ dx +
〈
rS1 Q, rS1{ξ}

+
〉
S1
+
〈
rS2ϕ, a

〉
S2

∣∣∣∣ ≤ ∫
S2

g
∣∣{ρs}

+
∣∣d S,

where ξ = (ρ, a)> ∈ R is an arbitrary generalized rigid displacement vector.
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Let us assume that in the necessary condition we have the strict inequality. Since R is finite-dimensional, we can
show that the strict inequality is equivalent to the condition: there is a positive constant C such that the inequality∫

S2

g
∣∣{ρs}

+
∣∣d S −

∣∣∣∣ ∫
Ω

G · ξ dx +
〈
rS1 Q, rS1{ξ}

+
〉
S1
+
〈
rS2ϕ, a

〉
S2

∣∣∣∣ ≥ C
∥∥ξ∥∥
[L2(Ω)]6

(5.9)

holds for all ξ ∈ R \ {0}. This condition is sufficient for the variational inequality (5.8) to be solvable.
Thus, we have the following existence result.

Theorem 5.3. Let mes S1 > 0, G ∈ [L2(Ω)]6, Q ∈ [H̃ −1/2(S1)]
6, ϕ ∈ [H̃ −1/2(S2)]

3, g ∈ L∞(S2), g ≥ 0 and the
condition (5.9) be fulfilled. Then the variational inequality (5.8) is solvable and the solution minimizes the functional

J (V ) =
1
2

B(V, V )+ j (V )−
∫
Ω

G · V dx −
〈
rS1 Q, rS1{V }

+
〉
S1
−
〈
rS2ϕ, rS2{w}

+
〉
S2
,

V = (v,w)> ∈ [H1(Ω)]6

on the space [H1(Ω)]6. Solutions of the variational inequality (5.8) are defined modulo generalized rigid displacement
vector.

Remark 5.4. Let the boundary S = ∂Ω fall into three mutually disjoint portions S1, ST and S2 such that S1 ∪

ST ∪ S2 = S, S1 ∩ S2 = ∅. Analogously to the coercive case, we can study the problem, when on a part of the
boundary ST there is assigned the traction boundary condition

rST

{
T (∂, n)U

}+
= Q,

where Q ∈ [H−1/2(ST )]
6. The conditions on the boundaries S1 and S2 in this case remain the same as in Problem A.

In this case we have the following variational inequality:
Find U = (u, ω)> ∈ K (Ω) such that ∀ V = (v,w)> ∈ K (Ω),

B(U, V −U )+ j (v)− j (u) ≥ (G, V −U )+
〈
Q, rST {V −U }+

〉
ST
+
〈
ϕ, rS2{w − ω}

+
〉
S2
,

where the functional j is defined by formula (3.7).
The proof of the existence and uniqueness theorems for this case can be carried out by repeating word for word the

above arguments.
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Abstract

A huge literature is devoted to the study of cusped prismatic shells on the basis of the classical theory of elasticity. It was
stimulated by the works of I. Vekua. I. Vekua considered very important to carry out investigations of boundary value and initial
boundary value problems for such bodies, since they are connected with degenerate partial differential equations and, therefore, are
not classical, in general. The present paper is devoted to cusped prismatic shells on the basis of the theory of micropolar elasticity.
Namely, on the basis of the N = 0 approximation of hierarchical models for micropolar elastic cusped prismatic shells constructed
by the I. Vekua dimension reduction method.
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1. Introduction

A huge literature is devoted to the study of cusped prismatic shells on the basis of the classical theory of elasticity. It
was stimulated by the work [1] of I. Vekua (see also [2]). I. Vekua considered very important to carry out investigations
of boundary value (BVP) and initial boundary value (IBVP) problems for such bodies, since they are connected
with degenerate partial differential equations (PDE) and, therefore, are not classical, in general. A survey of results
obtained in this direction one can find in [3] (see also the references therein). The present paper is devoted to cusped
prismatic shells on the basis of the theory of micropolar elasticity (see, e.g. [4,5]). Namely, on the basis of the N = 0
approximation of hierarchical models for micropolar elastic cusped prismatic shells constructed by the I. Vekua
dimension reduction method.

The paper is organized as follows. In Section 2 we give an exposition of the governing equations of the N = 0
approximation of hierarchical models of micropolar elastic prismatic shells and briefly sketch the N th approximation.
Section 3 contains an analysis of the system of PDEs constructed in Section 2. Peculiarities of well-posedness of
boundary conditions (BCs) for micropolar elastic cusped prismatic shells are revealed.
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2. N = 0 approximation

Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O . We conditionally assume the
x3-axis vertical. The elastic body Ω is called a prismatic shell [1–3] if it is bounded from above and below by,
respectively, the surfaces (so called face surfaces)

x3 =
(+)

h (x1, x2) and x3 =
(−)

h (x1, x2), (x1, x2) ∈ ω,

laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its vertical dimension is sufficiently small
compared with other dimensions of the body. ω := ω∪ ∂ω is the so-called projection of the prismatic shell on x3 = 0.

Let the thickness of the prismatic shell be

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,

≥ 0 for (x1, x2) ∈ ∂ω

and

2h̃(x1, x2) :=
(+)

h (x1, x2)+
(−)

h (x1, x2).

If the thickness of the prismatic shell vanishes on some subset of ∂ω, it is called cusped one.
Let us note that the lateral boundary of the standard shell is orthogonal to the “middle surface” of the shell, while

the lateral boundary of the prismatic shell is orthogonal to the prismatic shell’s projection on x3 = 0.
Let t ∈ T := [0,+∞[ be time, T+ :=]0,∞[, Ω×T denote the Cartesian product, ui ∈ C2(Ω×T+), i = 1, 2, 3, be

displacements, ωi ∈ C2(Ω × T+), i = 1, 2, 3, be microrotations, ei j ∈ C1(Ω × T+) be the asymmetric strain tensor,
u j i ∈ C1(Ω × T+) be the asymmetric microstrain (torsion-flexure) tensor, X j i ∈ C1(Ω × T+) be the asymmetric
force–stress tensor, χ j i ∈ C1(Ω×T+) be the asymmetric couple stress tensor, Φi ∈ C(Ω×T+) and Ψi ∈ C(Ω×T+)
be the fields of volume forces and volume couples, respectively, ρ be the density, I be the rotational inertia of the
medium, λ, µ, α̃, β̃, ν and ε be the elasticity constants of the medium, µ > 0, 3λ + 2µ > 0, α̃ > 0, β̃ > 0,
ν > 0, 3ε + 2ν > 0, ∈i jk be the Levi-Civita symbol. Here C2 and C1 are classes of twice and once, correspondingly,
continuously differentiable functions in the domain under consideration; C is a class of continuous functions on the
sets under consideration. Throughout the paper Einstein’s rule of summation is used for Latin indexes from 1 to 3,
and for Greek indexes from 1 to 2.

In order to construct governing equations of the N = 0 approximation of hierarchical models, using Vekua’s di-

mension reduction method, we integrate within the limits
(−)

h ,
(+)

h with respect to the thickness variable x3 the following
governing equations of the micropolar theory of elasticity (see [4,5] and the references therein):

Motion equations

X j i, j + Φi = ρüi , i = 1, 2, 3, (1)

χ j i, j + ∈i jk X jk +Ψi = Iω̈i , i = 1, 2, 3; (2)

Kinematic equations

u j i = ui, j − ∈k ji ωk = e j i + ∈k ji (θk − ωk), i, j = 1, 2, 3, (3)

ω j i = ωi, j , i, j = 1, 2, 3; (4)

Constitutive equations

X i j = λδi j ukk + (µ+ α̃)ui j + (µ− α̃)u j i = λuk,kδi j

+ (µ+ α̃)u j,i − (µ+ α̃)∈ki j ωk + (µ− α̃)ui, j − (µ− α̃)∈k ji ωk

= λuk,kδi j + (µ+ α̃)u j,i + (µ− α̃)ui, j − 2α̃ ∈ki j ωk, i, j = 1, 2, 3, (5)

χi j = εδi jωkk + (ν + β̃)ωi j + (ν − β̃)ω j i

= εωk,kδi j + (ν + β̃)ω j,i + (ν − β̃)ωi, j , i, j = 1, 2, 3, (6)
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considered in the domain

Ω := {x := (x1, x2, x3) ∈ R3
: (x1, x2) ∈ ω,

(−)

h (x1, x2) < x3 <
(+)

h (x1, x2)}

occupied by the prismatic shell with the projection ω on the plane x3 = 0.
By the corresponding calculations as values of tractions and couple stress vectors on the face surfaces we take their

prescribed values, while as values of displacements and microrotations we take their approximate values calculated
from their Fourier–Legendre expansions (see Remark 1) on the face surfaces corresponding to N = 0 approximation.

From (1), (2), (3), (4) we get

Xβi0,β + X0
i = ρüi0, i = 1, 2, 3; (7)

χβi0,β + ∈i jk X jk0 + χ
0
j = Iω̈ j0, i = 1, 2, 3, (8)

in ω, where

X0
i := Q (+)

ν i
·

√((+)
h ,1

)2
+

((+)
h ,2

)2
+ 1+ Q (−)

ν i
·

√((−)
h ,1

)2
+

((−)
h ,2

)2
+ 1+ Φi0,

χ0
j := Θ(+)

ν i
·

√((+)
h ,1

)2
+

((+)
h ,2

)2
+ 1+Θ(−)

ν i
·

√((−)
h ,1

)2
+

((−)
h ,2

)2
+ 1+Ψi0,

Q (±)
ν

and Θ(±)
ν

are tractions and couple stress vectors prescribed on face surfaces (in what follows superscripts (+) and

(−) mean values on upper and lower face surfaces, correspondingly),

uβi0 = ui0,β −
(+)
u i

(+)

h ,β +
(−)
u i

(−)

h ,β − ∈kβi ωk0, β = 1, 2; i = 1, 2, 3, (9)

u3i0 =
(+)
u i −

(−)
u i − ∈k3i ωk0 =

(+)
u i −

(−)
u i − ∈γ 3i ωγ 0, i = 1, 2, 3, (10)

ωβi0 = ωi0,β −
(+)
ω i

(+)

h ,β +
(−)
ω i

(−)

h ,β , β = 1, 2, i = 1, 2, 3; (11)

ω3i0 =
(+)
ω i −

(−)
ω i , i = 1, 2, 3. (12)

In indices 0 means integrated values of the corresponding quantities which are called the zero order moments.
In the N = 0 approximation we assume

ui (x1, x2, x3, t) =
1
2
vi0(x1, x2, t) =

1
2

ui0(x1, x2, t)

h(x1, x2)
, (13)

ωi (x1, x2, x3, t) =
1
2
ηi0(x1, x2, t) =

1
2
ωi0(x1, x2, t)

h(x1, x2)
. (14)

Evidently, by virtue of (9), (13), (14),

uβi0 = hvi0,β − ∈kβi hηk0, (15)

in view of (10), (14),

u3i0 = −∈γ 3i hηγ 0, (16)

whence,

u330 = 0, u320 = −∈123 ω10 = ω10, u310 = −∈231 ω20 = −ω20. (17)

By virtue of (11), (14),

ωβi0 = hηi0,β , β = 1, 2, i = 1, 2, 3. (18)

In view of (12), (14)

ω3i0 = 0, i = 1, 2, 3. (19)
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From (5) and (6), we obtain

X i j0 = λδi j ukk0 + (µ+ α̃)ui j0 + (µ− α̃)u j i0, i, j = 1, 2, 3, (20)

and

χi j0 = εδi jωkk0 + (ν + β̃)ωi j0 + (ν − β̃)ω j i0, i, j = 1, 2, 3, (21)

respectively.

Remark 1. The governing equations for the N th approximation can be constructed in the similar way.
From (17), (15) it follows

ukk0 = uγ γ 0 = hvγ 0,γ . (22)

From (19), (18) we obtain

ωkk0 = ωγ γ 0 = hηγ 0,γ . (23)

Since

∈kαβ ηk0 = ∈3αβ η30, (24)

we have

∈312 η30 = η30, ∈321 η30 = −η30.

From (20), taking into account (22), (15), (24), we find

Xβα0 = λhvγ 0,γ δβα + (µ+ α̃)h(vα0,β − ∈kβα ηk0)+ (µ− α̃)h(vβ0,α − ∈kαβ ηk0)

= λhvγ 0,γ δβα + (µ+ α̃)h(vα0,β − ∈3βα η30)+ (µ− α̃)h(vβ0,α − ∈3αβ η30)

= λhvγ 0,γ δβα + (µ+ α̃)hvα0,β + (µ− α̃)hvβ0,α + 2α̃h ∈3αβ η30, α, β = 1, 2; (25)

From (20), taking into account (15), (16), we find

X3β0 = (µ+ α̃)h(−∈γ 3β ηγ 0)+ (µ− α̃)h(v30,β − ∈kβ3 ηk0)

= −(µ+ α̃)h ∈γ 3β ηγ 0 + (µ− α̃)h(v30,β − ∈γβ3 ηγ 0)

= (µ− α̃)hv30,β + 2α̃h ∈γβ3 ηγ 0. (26)

From (20), by virtue of (22), (16) we get

X330 = λhvγ 0,γ .

From (20), in view of (16), (15), we obtain

Xβ30 = (µ+ α̃)h(v30,β − ∈γβ3 ηγ 0)+ (µ− α̃)h(−∈γ 3β ηγ 0)

= (µ+ α̃)hv30,β − 2α̃h ∈γβ3 ηγ 0. (27)

From (21), taking into account (23), (18), we have

χβα0 = εhηγ 0,γ δβα + (ν + β̃)hηα0,β + (ν − β̃)hηβ0,α. (28)

From (21), by virtue of (19), (18), we get

χ3β0 = (ν − β̃)hη30,β .

From (21), in view of (23), (19), we obtain

χ330 = εhηγ 0,γ .

From (21), according to (18), (19), we have

χβ30 = (ν + β̃)hη30,β . (29)
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Substituting (25) into (7), we arrive at the equation

λδβα(hvγ 0,γ ),β + (µ+ α̃)(hvα0,β),β + (µ− α̃)(hvβ0,α),β + 2α̃ ∈3αβ(hη30),β + X0
α = ρhv̈α0, α = 1, 2.

Hence,

(µ+ α̃)(hvα0,β),β + λ(hvγ 0,γ ),α + (µ− α̃)(hvβ0,α),β + 2α̃ ∈αβ3(hη30),β + X0
α = ρhv̈α0, α = 1, 2. (30)

Substituting (27) into (7), we have

(µ+ α̃)(hv30,β),β − 2α̃ ∈γβ3(hηγ 0),β + X0
3 = ρhv̈30.

Therefore,

(µ+ α̃)(hv30,β),β − 2α̃[(hη10),2 − (hη20),1] + X0
3 = ρhv̈30. (31)

Substituting (28) into (8), we get

ε(hηγ 0,γ ),α + (ν + β̃)(hηα0,β),β + (ν − β̃)(hηβ0,α),β + ∈α jk X jk0 + χ
0
α = I hη̈α0, α = 1, 2; (32)

Substituting (29) into (8), we obtain

(ν + β̃)(hη30,β),β + ∈3 jk X jk0 + χ
0
3 = I hη̈30. (33)

Since, by virtue of (25)–(27),

∈1 jk X jk0 = ∈123 X230 + ∈132 X320 = X230 − X320 = 2α̃hv30,2 − 4α̃hη10,

∈2 jk X jk0 = ∈213 X130 + ∈231 X310 = −X130 + X310
= −2α̃hv30,1 − 4α̃hη20,

∈3 jk X jk0 = ∈312 X120 + ∈321 X210 = X120 − X210
= (µ+ α̃)hv20,1 + (µ− α̃)hv10,2 + 2α̃h ∈321 η30
− (µ+ α̃)hv10,2 − (µ− α̃)hv20,1 − 2α̃h ∈312 η30

= 2α̃h(v20,1 − v10,2)− 4α̃hη30,

from (32), (33) we get

(ν + β̃)(hη10,β),β + ε(hηγ 0,γ ),1 + (ν − β̃)(hηβ0,1),β + 2α̃hv30,2 − 4α̃hη10 + χ
0
1 = I hη̈10, (34)

(ν + β̃)(hη20,β),β + ε(hηγ 0,γ ),2 + (ν − β̃)(hηβ0,2),β − 2α̃hv30,1 − 4α̃hη20 + χ
0
2 = I hη̈20, (35)

(ν + β̃)(hη30,β),β + 2α̃h(v20,1 − v10,2)− 4α̃hη30 + χ
0
3 = I hη̈30. (36)

3. Analysis of the constructed system

System (30), (31), (34)–(36) splits into two independent systems (30), (36) and (31), (34), (35) with respect to vα0,
α = 1, 2, η30 and v30, ηα0, α = 1, 2, correspondingly.

If h(x1, x2) > 0 on ω, in the static case the system (30), (31), (34)–(36) becomes elliptic and for existence and
uniqueness theorems of the Dirichlet problem general results (see e.g. [6,7,4] and the references therein) can be
applied.

Let us consider prismatic shells with a cusped edge ω0 ⊆ ∂ω, where the thickness 2h(x1, x2) vanishes:

ω0 := {(x1, x2) ∈ ∂ω : 2h(x1, x2) = 0}.

Evidently, ω0 is a closed set.

Dirichlet Problem. Find a solution wi0 ∈ C2(ω) ∩ C(ω), i = 1, 6

(w10, w20, w30, w40, w50, w60) := (v10, v20, v30, η10, η20, η30),

of the governing system (30), (31), (34)–(36) in ω, satisfying the BCs

wi0(x1, x2) = ϕi (x1, x2), (x1, x2) ∈ ∂ω, i = 1, 6,

where ϕi , i = 1, 6, are given continuous on ∂ω functions.
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Keldysh Problem. Find a bounded solution wi0 ∈ C2(ω)∩C(ω\ω0), i = 1, 6, of the governing system (30), (31),
(34)–(36) in ω, satisfying the BCs

wi0(x1, x2) = ϕi (x1, x2), (x1, x2) ∈ ∂ω\ω0, i = 1, 6,

where ϕi , i = 1, 6, are given continuous on (∂ω)\ω0 functions.
The following theorem is true [8] (compare with [9], where m1 = 0).

Theorem 2. If the coefficients aα , α = 1, 2, and c of the equation

xmα

2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, mα = const ≥ 0, α = 1, 2,

are analytic in ω bounded by a sufficiently smooth arc (∂ω\ω0) lying in the half-plane x2 ≥ 0 and by a segment ω0 of
the x1-axis, then
(i) if either m2 < 1, or m2 ≥ 1, a2(x1, x2) < xm2−1

2 in Īδ for some δ = const > 0, where

Iδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem is correct;
(ii) if m2 ≥ 1, a2(x1, x2) ≥ xm2−1

2 in Iδ and a1(x1, x2) = O(xm1
2 ), x2 → 0+ (O is the Landau symbol), the

Keldysh problem is correct.

Remark 3. If 1 < m2 < 2, a2(x, 0) ≤ 0, the Dirichlet problem is correct.

Remark 4. Using the method applied in [10] (see pages 58, 68–74), it is not difficult to verify that the theorem is also
true for Hölder continuous c and aα , α = 1, 2, on ω, provided:

(i) limx2→0+ x1−m2
2 a2(x1, x2) = a0 = const < 1 for (x1, 0) ∈ ω0 when 0 ≤ m2 < 1;

(ii) if a2(x0
1 , 0) = 0 for a fixed (x0

1 , 0) ∈ ω0 when 1 < m2 < 2, then there exists such a δ = const > 0 that
a2(x0

1 , x2) = ã2(x0
1 , x2)x2 with bounded ã2(x0

1 , x2) for 0 ≤ x2 < δ.

For the sake of transparency of revealing the peculiarities of well-posedness of non-classical, in general, BCs let
us consider the case

h = h(x2); η10 = η10(x2, t), η20 = η20(x2, t), v30 = v30(x2, t), (37)

x2 ∈ [0, L], L = const.

From (31) we have

(µ+ α̃)(hv30,2),2 − 2α̃(hη10),2 + X0
3 = ρhv̈30(x2, t). (38)

From (34) we get

(ν + β̃)(hη10,2),2 + 2α̃hv30,2 − 4α̃hη10 + χ
0
1 = I hη̈10. (39)

From (35) we obtain

(ν + β̃)(hη20,2),2 + ε(hη20,2),2 + (ν − β̃)(hη20,2),2 − 4α̃hη20 + χ
0
2 = I hη̈20,

whence,

(2ν + ε)(hη20,2),2 − 4α̃hη20 + χ
0
2 = I hη̈20. (40)

In the static case, determining hv30,2 from (39) and substituting into (38), we get

−
(µ+ α̃)(ν + β̃)

2α̃
(hη10,2),22 + 2(µ+ α̃)(hη10),2

−2α̃(hη10),2 −
µ+ α̃

2α̃
χ0

1,2 + X0
3 = 0,
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i.e.,

−
(µ+ α̃)(ν + β̃)

2α̃
(hη10,2),22 + 2µ(hη10),2 −

µ+ α̃

2α̃
χ0

1,2 + X0
3 = 0. (41)

From (41) after integration we find

(hη10,2),2 −
4α̃µ

(µ+ α̃)(ν + β̃)
hη10

+
1

ν + β̃
χ0

1 −
2α̃

(µ+ α̃)(ν + β̃)

∫ x2

x0
2

X0
3(τ )dτ + c1 = 0, c1 = const. (42)

Whence we derive

η10,22 +
h,2
h
η10,2 −

4α̃µ

(µ+ α̃)(ν + β̃)
η10

+
1

ν + β̃
h−1χ0

1 −
2α̃

(µ+ α̃)(ν + β̃)
h−1

∫ x2

x0
2

X0
3(τ )dτ + c1h−1

= 0. (43)

From (40) we have

(2ν + ε)(hη20,2),2 − 4α̃hη20 + χ
0
2 = 0. (44)

So, under assumptions (37) for η10, η20, v30, according to Remark 4, from (43) (i.e., (42)), (44) and (38) it follows
that if

h(x2) = h0xκ2 , x2 ∈ [0, L], h0, κ = const > 0, L = const, (45)

the Dirichlet type problem is well-posed when κ < 1, i.e.,
∫ L

0 h−1(t)dt < +∞, the Keldysh type problem is well-

posed when κ ≥ 1, i.e.,
∫ L

0 h−1(t)dt = +∞.
Let now

h = h(x2), v10 = v10(x2, t), v20 = v20(x2, t), η30 = η30(x2, t), (46)

x2 ∈ [0, L], L = const.

For α = 1 from (30) we have

(µ+ α̃)(hv10,2),2 + 2α̃(hη30),2 + X0
1 = ρhv̈10. (47)

For α = 2 from (30) we have

(µ+ α̃)(hv20,2),2 + λ(hv20,2),2 + (µ− α̃)(hv20,2),2 + X0
2 = ρhv̈20,

i.e.,

(λ+ 2µ)(hv20,2),2 + X0
2 = ρhv̈20. (48)

From (36) we have

(ν + β̃)(hη30,2),2 − 2α̃hv10,2 − 4α̃hη30 + χ
0
3 = I hη̈30. (49)

In the static case from (49) we get

hv10,2 =
ν + β̃

2α̃
(hη30,2),2 − 2hη30 +

1
2α̃
χ0

3 . (50)

Substituting (50) into (47) for the static case, we obtain

(µ+ α̃)(ν + β̃)

2α̃
(hη30,2),22 − 2µ(hη30),2 +

(µ+ α̃)

2α̃
χ0

3,2 + X0
1 = 0.
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Therefore, after integration we find

(hη30,2),2 −
4µα̃

(µ+ α̃)(ν + β̃)
hη30

+
1

ν + β̃
χ0

3 +
2α̃

(µ+ α̃)(ν + β̃)

∫ x2

x0
2

X0
1(τ )dτ + c2 = 0, x0

2 ∈ ]0, L[. (51)

So, in the case (46), according to Remark 4, from (47), (48), (51) we arrive at the same (see the previous case (37))
result for vα0, α = 1, 2, η30 in the sense of setting BCs.

Note, that cusped edge does not affect on setting initial conditions (ICs), and they remain classical, since on the
line t = 0 Eqs. (30), (31), (34)–(36) do not degenerate.

Let us consider a particular static case, when

vi0 ≡ 0, ηi0 6≡ 0, i = 1, 2, 3.

It means that points of the shell under consideration do not displace, while they possess microrotations. As it follows
from (30), (31), such a state is realizable only if

X0
α = −2α̃ ∈3αβ

(
hη30

)
,β , α = 1, 2,

X0
3 = 2α̃

[
(hη10),2−(hη20),1

]
,

(i.e., applied surface forces and volume forces should be chosen appropriately). In this case, from (34), (35), (36) it
follows that the governing equations have the following form

(ν + β̃)
(

hη10,β

)
,β +ε

(
hηγ 0,γ

)
,1+(ν − β̃)

(
hηβ0,1

)
,β −4α̃hη10 + χ

0
1 = 0, (52)

(ν + β̃)
(

hη20,β

)
,β +ε

(
hηγ 0,γ

)
,2+(ν − β̃)

(
hηβ0,2

)
,β −4α̃hη20 + χ

0
2 = 0, (53)

(ν + β̃)
(

hη30,β

)
,β −4α̃hη30 + χ

0
3 = 0. (54)

If the thickness 2h has the form (45) and ω is adjacent to the x1-axis, then the cusped edge ω0 is a segment of the
x1-axis, where Eq. (54) has the order degeneration and Theorem 2 can be applied. Namely, according to Remark 4 for
κ < 1 the Dirichlet and for κ ≥ 1 the Keldysh problems are well-posed.

If at the boundary couple stress vector should be prescribed, then at the cusped edge, by virtue of (28), (29), it leads
to the weighted (with the weight h) Neuman type BC with respect to the microrotations.

For investigation of the system (52), (53) the approach developed in [11,12] can be used. The results concerning
peculiarities of setting BCs will be similar to the results for Eq. (54).

4. Conclusion

1. Investigation of BVPs (static problems) and IBVPs (dynamical problems) for micropolar elastic cusped (tapered)
prismatic shells leads to study of BVPs and IBVPs for the corresponding elliptic and hyperbolic PDEs and systems of
PDEs with the order degeneration on a part corresponding to the cusped edge. Therefore, problems under consideration
are non-classical, in general.

2. If at boundary displacements and microrotations should be prescribed, then in certain cases the cusped edge
should be freed from BCs at all.

3. If at boundary the traction and couple stress vector should be prescribed, then at the cusped edge it leads
to the weighted Neuman problems with respect to the displacements and microrotations. The displacements and
microrotations are unbounded, in general, in a neighbourhood of the cusped edge.

4. The peculiarities of setting BCs at cusped edges for the displacements and microrotations are exactly the same.
5. Presence of cusped edges does not affect on setting ICs; ICs remain classical.
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Abstract

For a one-dimensional wave equation with integral nonlinearity, the second Darboux problem is considered for which the
questions on the existence and uniqueness of a global solution are investigated.
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1. Statement of the problem

In a plane of independent variables x and t we consider the wave equation with integral nonlinearity of the type

Lλu := ut t − uxx + λg

(
x, t, u,

∫ β(t)

α(t)
u(x, t)dx

)
= f (x, t), (1.1)

where λ 6= 0 is the given real constant; g, α, β and f are the given and u is an unknown real functions of their
arguments.

By DT := {(x, t) ∈ R2
: −k̃2 t < x < k̃1 t, 0 < t < T ; 0 < k̃i := const < 1, i = 1, 2} we denote a

triangular domain lying inside of a characteristic angle Λ := {(x, t) ∈ R2
: t > |x |} and bounded by the segments

γ̃1,T : x = k̃1 t , 0 ≤ t ≤ T , γ̃2,T : x = −k̃2 t , 0 ≤ t ≤ T and γ̃3,T : t = T , −k̃2 T ≤ x ≤ k̃1 T . For T = +∞,
D∞ := {(x, t) ∈ R2

: −k̃2 t < x < k̃1 t, 0 < t < +∞} (Fig. 1.1).
For Eq. (1.1), let us consider the second Darboux problem on finding in the domain DT a solution u(x, t) of the

above equation by the boundary conditions (see e.g., [1, p. 107]; [2, p. 228])

u|γ̃i,T = 0, i = 1, 2. (1.2)
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Fig. 1.1.

Below, when investigating problem (1.1), (1.2) it will be assumed that

−k̃2 t ≤ α(t) < β(t) ≤ k̃1 t, 0 < t <∞. (1.3)

For linear hyperbolic equations of second order with one spatial variable, a great number of works were devoted
to the questions of the well-posedness of the Darboux problem (see, e.g., [2,3] and references therein). As it turned
out, the presence of a weak nonlinearity in the equation affects the correctness of formulation even in the case of the
first Darboux problem (see, e.g., [4–10]). Note that hyperbolic equations with nonlocal nonlinearities of type (1.1)
have been considered in many works (see, e.g., [11–14] and references therein). In the present work it is shown that
under definite conditions on the growth of nonlinear function g = g(x, t, s1, s2) with respect to the variables s1, s2
the second Darboux problem (1.1), (1.2) is globally solvable.

Definition 1.1. Let α, β ∈ C([0, T ]), g ∈ C(DT × R2), f ∈ C(DT ). The function u is said to be a strong
generalized solution of problem (1.1), (1.2) of the class C in the domain DT if u ∈ C(DT ) and there exists a

sequence of functions un ∈
◦

C 2(DT ,ΓT ) such that un → u and Lλ un → f in the space C(DT ), as n →∞, where
◦

C 2(DT ,ΓT ) := {v ∈ C2(DT ) : v|ΓT = 0}, ΓT := γ̃1,T ∪ γ̃2,T .

Remark 1.1. Note that two different approximations with given properties define the same function in Definition 1.1.

Obviously, the classical solution of problem (1.1), (1.2) from the space
◦

C 2(DT ,ΓT ) is a strong generalized solution
of that problem of the class C in the domain DT . In its turn, if a strong generalized solution of problem (1.1), (1.2)
of the class C in the domain DT belongs to the space C2(DT ), then it will be a classical solution of that problem, as
well.

Definition 1.2. Let α, β ∈ C([0,∞)), g ∈ C(D∞ × R2), f ∈ C(D∞). We say that problem (1.1), (1.2) is globally
solvable in the class C , if for any finite T > 0, this problem has a strong generalized solution of the class C in the
domain DT .

2. An a priori estimate of solution of problem (1.1), (1.2)

Let us consider the following condition imposed on the function g:∣∣g(x, t, s1, s2)
∣∣ ≤ a + b|s1| + c|s2|, (x, t, s1, s2) ∈ DT × R2, (2.1)

where a, b, c = const ≥ 0.

Lemma 2.1. Let the condition (2.1) be fulfilled. Then for a strong generalized solution of problem (1.1), (1.2) of the
class C in the domain DT the following a priori estimate∥∥u

∥∥
C(DT )

≤ c1
∥∥ f
∥∥

C(DT )
+ c2 (2.2)

with nonnegative constants ci , i = 1, 2, independent of u and f , is valid.
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Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain DT . Then by virtue

of Definition 1.1, there exists a sequence of functions un ∈
◦

C 2(DT ,ΓT ) such that

lim
n→∞

∥∥un − u
∥∥

C(DT )
= 0, lim

n→∞

∥∥Lλ un − f
∥∥

C(DT )
= 0. (2.3)

Denote

fn := Lλ un . (2.4)

Multiplying both parts of equality (2.4) by unt and integrating with respect to the domain Dτ := {(x, t) ∈ DT :

t < τ }, 0 < τ ≤ T , we obtain

1
2

∫
Dτ
(u2

nt )t dx dt −
∫

Dτ
unxx unt dx dt + λ

∫
Dτ

g

(
x, t, un,

∫ β(t)

α(t)
un(x, t)dx

)
unt dx dt =

∫
Dτ

fn unt dx dt.

Assume ωτ := D∞ ∩ {t = τ }, 0 < τ ≤ T . Then taking into account that un|ΓT = 0, the integration by parts of the
left-hand side of the last equality yields

2
∫

Dτ
fn unt dx dt =

∫
Γτ

1
νt

[
(unx νt − unt νx )

2
+ u2

nt (ν
2
t − ν

2
x )
]
ds

+

∫
ωτ

(u2
nx + u2

nt )dx + 2λ
∫

Dτ
g

(
x, t, un,

∫ β(t)

α(t)
un(x, t)dx

)
unt dx dt, (2.5)

where ν := (νx , νt ) is the unit vector of the outer normal to ∂Dτ , and Γτ := ΓT ∩ {t ≤ τ }.
Taking into account that νt

∂
∂x − νx

∂
∂t is the inner differential operator on ΓT and un|ΓT = 0, we have

(unx νt − unt νx )
∣∣
Γτ
= 0. (2.6)

Since Dτ : −k̃2t < x < k̃1t , t < τ , it is easy to see that

(ν2
t − ν

2
x )
∣∣
Γτ
< 0, νt

∣∣
Γτ
< 0. (2.7)

Bearing in mind (2.6) and (2.7), from (2.5) we obtain

wn(τ ) :=

∫
ωτ

(u2
nx + u2

nt )dx ≤ 2
∫

Dτ
fn unt dx dt − 2λ

∫
Dτ

g

(
x, t, un,

∫ β(t)

α(t)
un(x, t)dx

)
unt dx dt. (2.8)

In view of (2.1), we have∣∣∣∣g(x, t, un,

∫ β(t)

α(t)
un(x, t)dx

)
unt

∣∣∣∣ ≤ (a + b|un| + c

∣∣∣∣ ∫ β(t)

α(t)
un(x, t)dx

∣∣∣∣)|unt |

≤
1
2

(
a + b|un| + c

∣∣∣∣ ∫ β(t)

α(t)
un(x, t)dx

∣∣∣∣)2

+
1
2

u2
nt

≤
3
2

a2
+

3
2

b2u2
n +

3
2

c2
(∫ β(t)

α(t)
un(x, t)dx

)2

+
1
2

u2
nt . (2.9)

If (x, t) ∈ DT , then owing to (1.3), un|ΓT = 0 and Schwartz inequality, we have

|un(x, t)| =

∣∣∣∣un(−k̃2 t, t)+
∫ x

−k̃2t
unx (s, t)ds

∣∣∣∣ = ∣∣∣∣ ∫ x

−k̃2t
unx (s, t)ds

∣∣∣∣
≤

(∫ x

−k̃2t
12ds

) 1
2
(∫ x

−k̃2t
u2

nx (s, t)ds

) 1
2

≤
√

2t

(∫ x

−k̃2t
u2

nx (s, t)ds

) 1
2

, (2.10)

(∫ β(t)

α(t)
un(x, t)dx

)2

≤

∫ β(t)

α(t)
12dx

∫ β(t)

α(t)
u2

n(x, t)dx ≤ 2t
∫ β(t)

α(t)
u2

n(x, t)dx . (2.11)
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It follows from (2.8), (2.10) and (2.11) that∣∣∣∣ ∫ β(t)

α(t)
u2

n(x, t)dx

∣∣∣∣ ≤ 2t
∫ β(t)

α(t)

[
2t
∫ x

−k̃2t
u2

nx (s, t)ds

]
dx

≤ (2t)2
∫ k̃1t

−k̃2t
dx
∫ k̃1t

−k̃2t
u2

nx (s, t)ds = 4t3(̃k1 + k̃2)

∫
ωt

u2
nx dx ≤ 8 t3

∫
ωt

(u2
nx + u2

nt )dx = 8 t3wn(t),

whence we get∫
Dτ

∣∣∣∣ ∫ β(t)

α(t)
un(ξ, t)dξ

∣∣∣∣2 dx dt =
∫ τ

0
dt
∫
ωt

∣∣∣∣ ∫ β(t)

α(t)
un(ξ, t)dξ

∣∣∣∣2 dx ≤
∫ τ

0
dt
∫
ωt

8 t3wn(t)dx

=

∫ τ

0
8 t3wn(t)mesωt dt ≤ 16 τ 4

∫ τ

0
wn(t)dt. (2.12)

From (2.9) and (2.12), we now obtain∫
Dτ

g

(
x, t, un,

∫ β(t)

α(t)
un(x, t)dx

)
unt dx dt ≤

3
2

a2 mes Dτ +
3
2

b2
∫

Dτ
u2

ndx dt

+

(
24 c2τ 4

+
1
2

) ∫ τ

0
wn(t)dt. (2.13)

Further, in view of (2.10), we have∫
Dτ

u2
ndx dt =

∫ τ

0
dt
∫
ωt

u2
n(x, t)dx ≤

∫ τ

0
dt
∫
ωt

(
2 t
∫ x

−k̃2t
u2

nx (s, t)ds

)
dx

≤

∫ τ

0
dt
∫
ωt

(
2 t
∫ k̃1t

−k̃2t
u2

nx (s, t)ds

)
dx ≤

∫ τ

0
mesωt

(
2 t
∫ k̃1t

−k̃2t
u2

nx (s, t)ds

)
dt

≤ 4 τ 2
∫ τ

0
dt
∫ k̃1t

−k̃2t
u2

nx (s, t)ds = 4 τ 2
∫ τ

0
dt
∫
ωt

u2
nx dx

≤ 4 τ 2
∫ τ

0
dt
∫
ωt

(u2
nx + u2

nt )dx = 4 τ 2
∫ τ

0
wn(t)dt. (2.14)

Taking into account (2.13), (2.14) and the fact that mes Dτ ≤ τ 2
≤ T 2, 2 fnunt ≤ u2

nt + f 2
n , as well as∫

Dτ
u2

nt dx dt ≤
∫ τ

0
wn(t)dt,

from (2.8) we get

wn(τ ) ≤ |λ|

(
3 a2T 2

+ 12 b2T 2
∫ τ

0
wn(t)dt + 48 c2T 4

∫ τ

0
wn(t)dt +

∫ τ

0
wn(t)dt

)
+

∫ τ

0
wn(t)dt

+
∥∥ fn

∥∥2
L2(DT )

≤

[
|λ|
(
12 b2T 2

+ 48 c2T 4
+ 1

)
+ 1

] ∫ τ

0
wn(t)dt + 3|λ|a2T 2

+
∥∥ fn

∥∥2
L2(DT )

, 0 < τ ≤ T .

Hence according to the Gronwall’s lemma, it follows that

wn(τ ) ≤
(

3|λ|a2T 2
+
∥∥ fn

∥∥2
L2(DT )

)
exp

(
T
[
|λ|
(
12 b2T 2

+ 48 c2T 4
+ 1

)
+ 1

])
, 0 < τ ≤ T . (2.15)

If (x, t) ∈ DT , then owing to (2.8), (2.10) and (2.15), we have∣∣un(x, t)
∣∣2 ≤ 2 t

∫ x

−k̃2t
u2

nx (s, t)ds ≤ 2 T
∫ k̃1t

−k̃2t

(
u2

nx + u2
nt

)
dx = 2 T wn(t)

≤ 2 T
(
3|λ|a2T 2

+
∥∥ fn

∥∥2
L2(DT )

)
exp

(
T
[
|λ|
(
12 b2T 2

+ 48 c2T 4
+ 1

)
+ 1

])
.
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This implies that∥∥un
∥∥

C(DT )
≤ c1

∥∥ fn
∥∥

C(DT )
+ c2, (2.16)

where

c1 =
√

2T exp
(T

2

[
|λ|
(
12 b2T 2

+ 48 c2T 4
+ 1

)
+ 1

])
,

c2 = a T
√

6T |λ| exp
(T

2

[
|λ|
(
12 b2T 2

+ 48 c2T 4
+ 1

)
+ 1

])
.

(2.17)

By virtue of (2.3), passing in inequality (2.16) to the limit, as n → ∞, we obtain the estimate (2.2) which proves
Lemma 2.1. �

Remark 2.1. If in inequality (2.1) the number a = 0, then in the a priori estimate (2.2) the value c2 = 0. In this case
estimate (2.2) takes the form∥∥u

∥∥
C(DT )

≤ c1
∥∥ f
∥∥

C(DT )
,

hence from f = 0 it follows that u = 0, which in a linear case implies the uniqueness of a solution of problem (1.1),
(1.2).

3. Equivalent reduction of problem (1.1), (1.2) to a nonlinear integral equation of Volterra type

In new independent variables ξ = 1
2 (t + x), η = 1

2 (t − x) the domain DT will go over to a triangular domain

GT with vertices at the points O(0, 0), Q1
( 1+k̃1

2 T, 1−k̃1
2 T

)
, Q2

( 1−k̃2
2 T, 1+k̃2

2 T
)

of the plane of variables ξ , η, and
problem (1.1), (1.2) will go over to the problem

L̃λv := vξη + λ K v = f̃ (ξ, η), (ξ, η) ∈ GT , (3.1λ)

v
∣∣
γi ,T
= 0, γi,T := O Qi , i = 1, 2, (3.2λ)

with respect to a new unknown function v(ξ, η) := u(ξ − η, ξ + η); f̃ (ξ, η) := f (ξ − η, ξ + η).
Here, the operator K acts by the formula

(K v)(ξ, η) = g

(
ξ − η, ξ + η, v,

∫ β(ξ+η)

α(ξ+η)

v(ξ, η)dξ − v(ξ, η)dη

)
, (3.3)

γ1,T : η = k1ξ, 0 ≤ ξ ≤ ξ0 := 2−1(1+ k̃1)T,
γ2,T : ξ = k2η, 0 ≤ η ≤ η0 := 2−1(1+ k̃2)T,

(3.4)

0 < ki :=
1− k̃i

1+ k̃i
< 1, i = 1, 2. (3.5)

Analogously to Definition 1.1, we introduce the notion of a strong generalized solution v of problem (3.1λ), (3.2λ) of
the class C in the domain GT .

If P0(ξ, η) ∈ GT , we denote by P1 M0 P0 N0 a rectangle, characteristic with respect to Eq. (3.1λ) whose vertices
N0 and M0 lie, respectively, on the segments γ1,T and γ2,T , that is, by virtue of (3.4): N0 := (ξ, k1ξ), M0 := (k2η, η),
P1 := (k2η, k1ξ). Since P1 ∈ GT , we construct analogously the characteristic rectangle P2 M1 P1 N1 whose vertices
N1 and M1 lie, respectively, on the segments γ1,T and γ2,T . Continuing this process, we obtain the characteristic
rectangle Pi+1 Mi Pi Ni for which Ni ∈ γ1,T , Mi ∈ γ2,T , and Ni := (ξi , k1ξi ), Mi := (k2ηi , ηi ), Pi+1 := (k2ηi , k1ξi )

if Pi := (ξi , ηi ), i > 0 (Fig. 3.1).
It is not difficult to see that

P2n =
(
(k1k2)

nξ, (k1k2)
nη
)
, P2n+1 =

(
(k1k2)

nk2η, (k1k2)
nk1ξ

)
, n = 0, 1, 2, . . . ,

M2n =
(
(k1k2)

nk2η, (k1k2)
nη
)
, M2n+1 =

(
(k1k2)

n+1ξ, (k1k2)
nk1ξ

)
, n = 0, 1, 2, . . . , (3.6)

N2n =
(
(k1k2)

nξ, (k1k2)
nk1ξ

)
, N2n+1 =

(
(k1k2)

nk2η, (k1k2)
n+1η

)
, n = 0, 1, 2, . . . .



390 S. Kharibegashvili, O. Jokhadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 385–394

Fig. 3.1.

Consider first a linear case, i.e., when in problem (3.1λ), (3.2λ) the parameter λ = 0. If v is a strong generalized
solution of problem (3.10), (3.20) of the class C in the domain GT , then considering the function v as a solution of
the Goursat problem for equation (3.10), in the rectangle Pi+1 Mi Pi Ni with data on characteristic segments Pi+1 Ni
and Pi+1 Mi , we have (see, e.g., [15, p. 173]),

v(Pi ) = v(Mi )+ v(Ni )− v(Pi+1)+

∫
Pi+1 Mi Pi Ni

f̃ dξ1 dη1, i = 0, 1, . . . .

Thus, by virtue of equality (3.20), it follows that

v(ξ, η) = v(P0) = v(M0)+ v(N0)− v(P1)+

∫
P1 M0 P0 N0

f̃ dξ1 dη1

= −v(P1)+

∫
P1 M0 P0 N0

f̃ dξ1 dη1

= −v(M1)− v(N1)+ v(P2)−

∫
P2 M1 P1 N1

f̃ dξ1 dη1 +

∫
P1 M0 P0 N0

f̃ dξ1 dη1

= v(P2)−

∫
P2 M1 P1 N1

f̃ dξ1 dη1

+

∫
P1 M0 P0 N0

f̃ dξ1 dη1 = · · · = (−1)nv(Pn)

+

n−1∑
i=0

(−1)i
∫

Pi+1 Mi Pi Ni

f̃ dξ1 dη1, (ξ, η) ∈ GT . (3.7)

Since the point Pn from (3.7) tends to the point O(0, 0), as n →∞, by (3.20), we have limn→∞ v(Pn) = 0. Hence,
passing in equality (3.7) to the limit, as n → ∞, for a strong generalized solution v of problem (3.10), (3.20) of the
class C in the domain GT , we obtain the following integral representation:

v(ξ, η) =

∞∑
i=0

(−1)i
∫

Pi+1 Mi Pi Ni

f̃ dξ1 dη1, (ξ, η) ∈ GT . (3.8)
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Remark 3.1. Since f̃ ∈ C(GT ) and there take place inequalities (3.5), and moreover, owing to (3.6),

mes Pi+1 Mi Pi Ni = (k1k2)
i (ξ − k2η)(η − k1ξ), (3.9)

the series in the right-hand side of equality (3.8) is uniformly and absolutely convergent.

Remark 3.2. From the above reasoning it follows that for any f̃ ∈ C(GT ), linear problem (3.10), (3.20) has a unique
strong generalized solution v of the class C in the domain GT which is representable in the form of uniformly and
absolutely converging series (3.8).

Introduce into consideration the operator L̃−1
0 : C(GT )→ C(GT ) acting by the formula

(L̃−1
0 f̃ )(ξ, η) :=

∞∑
i=0

(−1)i
∫

Pi+1 Mi Pi Ni

f̃ dξ1 dη1, (ξ, η) ∈ GT . (3.10)

Remark 3.3. According to (3.10) and Remark 3.2, a unique strong generalized solution v of problem (3.10), (3.20) of
the class C in the domain GT is representable in the form v = L̃−1

0 f̃ , and owing to (3.5), (3.9), we have the estimate

∣∣v(ξ, η)∣∣ ≤ ∞∑
i=0

∫
Pi+1 Mi Pi Ni

| f̃ | dξ1 dη1 ≤ (ξ + η)
2
∥∥ f̃
∥∥

C(GT )

∞∑
i=0

(k1k2)
i

≤
2(ξ2
+ η2)

1− k1k2

∥∥ f̃
∥∥

C(GT )
≤

1+ k̃2

1− k1k2
T 2
∥∥ f̃
∥∥

C(GT )
, k̃ := max{̃k1, k̃2},

whence in its turn it follows that∥∥L̃−1
0

∥∥
C(GT )→C(GT )

≤
1+ k̃2

1− k1k2
T 2. (3.11)

Lemma 3.1. The function v ∈ C(GT ) is a strong generalized solution of problem (3.1λ), (3.2λ) of the class C in
the domain GT , if and only if this function is a continuous solution of the following nonlinear Volterra type integral
equation

v(ξ, η)+ λ(L̃−1
0 K v)(ξ, η) = (L̃−1

0 f̃ )(ξ, η), (ξ, η) ∈ GT . (3.12)

Proof. Indeed, let v ∈ C(GT ) be a solution of Eq. (3.12). Since f̃ ∈ C(GT ), and the space C2(GT ) is dense
in C(GT ) (see, e.g., [16, p. 37]), there exists a sequence of functions f̃n ∈ C2(GT ) such that f̃n → f̃ in the
space C(GT ), as n → ∞. Analogously, since v ∈ C(GT ), there exists a sequence of functions wn ∈ C2(GT )

such that wn → v in the space C(GT ), as n → ∞. Assume vn := −λL̃−1
0 Kwn + L̃−1

0 f̃n , n = 1, 2, . . .. Taking
into account (3.5), (3.6), (3.9) and (3.10), it is easy to see that vn ∈ C2(GT ), and vn|γi,T = 0, i = 1, 2. On the
one hand, by virtue of estimate (3.1λ) and equality (3.12), we have vn → −λL̃−1

0 Kv + L̃−1
0 f̃ = v in the space

C(GT ), as n → ∞, i.e., vn → v in C(GT ), as n → ∞. On the other hand, L̃0vn = −λKwn + f̃n , but since
limn→∞ ‖vn − v‖C(GT )

= 0, limn→∞ ‖wn − v‖C(GT )
= 0 and limn→∞ ‖ f̃n − f̃ ‖C(GT )

= 0, in view of (2.3) we have

L̃λvn = L̃0vn + λKvn = −λKwn + f̃n + λKvn = −λ(Kwn − Kv)+ λ(Kvn − Kv)+ f̃n → f̃ in the space C(GT ),
as n→∞. Thus, the function v ∈ C(GT ) is a strong generalized solution of problem (3.1λ), (3.2λ) of the class C in
the domain GT . The converse is obvious. �

4. The case of global solvability of problem (1.1), (1.2) in the class of continuous functions

Lemma 4.1. The operator L̃−1
0 defined by formula (3.10) is the linear continuous operator acting from the space

C(GT ) to the space C1(GT ).



392 S. Kharibegashvili, O. Jokhadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 385–394

Proof. To prove the lemma, we first show that for f̃ ∈ C(GT ), the series in the right-hand side of (3.10) differentiated
formally with respect to ξ and to η converges uniformly on the set GT . Indeed, as it can be easily verified, we have

∂

∂ξ

[ ∞∑
i=0

(−1)i
∫

Pi+1 Mi Pi Ni

f̃ dξ1 dη1

]
=

∞∑
n=0

[
(k1k2)

n
∫

N2n P2n

f̃ dη1 + (k1k2)
n+1

∫
P2n+2 M2n+1

f̃ dη1

− (k1k2)
nk1

∫
M2n+1 N2n

f̃ dξ1

]
, (4.1)

∂

∂η

[ ∞∑
i=0

(−1)i
∫

Pi+1 Mi Pi Ni

f̃ dξ1 dη1

]
=

∞∑
n=0

[
(k1k2)

n
∫

M2n P2n

f̃ dξ1 + (k1k2)
n+1

∫
P2n+2 N2n+1

f̃ dξ1

− (k1k2)
nk2

∫
N2n+1 M2n

f̃ dη1

]
. (4.2)

By virtue of (3.6), the equalities

|N2n P2n| = (k1k2)
n(η − k1ξ), |P2n+2 M2n+1| = (k1k2)

nk1(ξ − k2η), |M2n+1 N2n| = (k1k2)
n(1− k1k2)ξ,

|M2n P2n| = (k1k2)
n(ξ − k2η), |P2n+2 N2n+1| = (k1k2)

nk2(η − k1ξ), |N2n+1 M2n| = (k1k2)
n(1− k1k2)η,

hold, hence with regard for (3.5), it follows that the series (4.1) and (4.2) converge uniformly and absolutely, and we
have the estimate

max
{∥∥∥ ∂
∂ξ
(L̃−1

0 f̃
)∥∥∥

C(GT )
,

∥∥∥ ∂
∂η
(L̃−1

0 f̃
)∥∥∥

C(GT )

}
≤

3

1− (k1k2)2
T
∥∥ f̃

∥∥
C(GT )

.

Thus by virtue of 3.1 and the fact that ‖v‖C1 := max{‖v‖C , ‖vξ‖C , ‖vη‖C }, we obtain the assertion of
Lemma 4.1. �

Remark 4.1. Since the space C1(GT ) is compactly embedded into C(GT ) (see, e.g., [17, p. 135]), the operator
L̃−1

0 : C(GT )→ C(GT ) in view of (3.1λ) and Lemma 4.1 is linear and compact one.

We rewrite Eq. (3.12) in the form

v = A v := L̃−1
0 (−λ K v + f̃ ), (4.3)

where the operator A : C(GT ) → C(GT ) is continuous and compact, since the nonlinear operator K : C(GT ) →

C(GT ), acting by formula (3.3), is bounded and continuous, whereas the linear operator L̃−1
0 : C(GT ) → C(GT )

is, according to Remark 4.1, compact. At the same time, by Lemmas 2.1 and 3.1, and by equalities (2.17), for
an arbitrary parameter τ ∈ [0, 1] and for any solution v ∈ C(GT ) of equation v = τ Av, the a priori estimate
‖v‖C(GT )

≤ c1‖ f̃ ‖C(GT )
+ c2 with the same nonnegative constants c1 and c2 as in (2.1), not depending on v, τ and

f̃ , is valid. Therefore, by the Leray–Schauder’s theorem (see, e.g., [18, p. 375]), Eq. (4.3) under the condition of
Lemma 2.1 has at least one solution v ∈ C(GT ). Thus, owing to Lemma 3.1, we have proved the following.

Theorem 4.1. Let α, β ∈ C([0, T ]), g ∈ C(DT × R2), f ∈ C(DT ) and condition (2.1) be fulfilled. Then
problem (1.1), (1.2) has at least one strong generalized solution of the class C in the domain DT in the sense
of Definition 1.1.

Corollary 4.1. Let α, β ∈ C([0,∞]), g ∈ C(D∞ × R2), f ∈ C(D∞) and condition (2.1) for (x, t) ∈ D∞ be
fulfilled. Then problem (1.1), (1.2) is globally solvable in the class C in the sense of Definition 1.2.

5. The smoothness and uniqueness of a solution of problem (1.1), (1.2). The existence of a global solution in
D∞

From equalities (3.12), (4.1), (4.2), by Lemmas 3.1 and 4.1 we immediately have

Lemma 5.1. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain DT in the
sense of Definition 1.1. Then if α, β ∈ C1([0, T ]), g ∈ C1(DT × R2) and f ∈ C1(DT ), then u ∈ C2(DT ).
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Lemma 5.2. For g ∈ C1(DT × R2), problem (1.1), (1.2) fails to have more than one strong generalized solution of
the class C in the domain DT .

Proof. Indeed, assume that problem (1.1), (1.2) has two possible different strong generalized solutions u1 and u2 of

the class C in the domain DT . By Definition 1.1, there exists a sequence of functions ui
n ∈

◦

C 2(DT ,ΓT ), i = 1, 2,
such that

lim
n→∞

∥∥ui
n − ui

∥∥
C(DT )

= 0, lim
n→∞

∥∥Lλui
n − f

∥∥
C(DT )

= 0, i = 1, 2. (5.1)

Assume vn := u2
n − u1

n . It can be easily seen that the function vn ∈
◦

C 2(DT ,ΓT ) is a classical solution of the
problem

L0wn + λ g1
n vn + λ g2

n

∫ β(t)

α(t)
vndx = fn, (5.2)

vn
∣∣
ΓT
= 0. (5.3)

Here,

g1
n :=

∫ 1

0
gs1

[
x, t, u1

n + s(u2
n − u1

n),

∫ β(t)

α(t)
u1

ndx

]
ds,

g2
n :=

∫ 1

0
gs2

[
x, t, u2

n,

∫ β(t)

α(t)
u1

ndx + s
∫ β(t)

α(t)
(u2

n − u1
n)dx

]
ds,

(5.4)

fn := Lλ u2
n − Lλ u1

n, (5.5)

where we have used the following obvious equality

ϕ(x2, y2)− ϕ(x1, y1) = (x2 − x1)

∫ 1

0
ϕx
[
x1 + s(x2 − x1), y1

]
ds

+ (y2 − y1)

∫ 1

0
ϕy
[
x2, y1 + s(y2 − y1)

]
ds

for the function ϕ(x, y).
Assume

A :=
{
(x, t, s1, s2) ∈ DT × R2

: (x, t) ∈ DT , |s1| ≤ c1
∥∥ f
∥∥

C(DT )
+ c2, |s2| ≤ 2 T c1

(∥∥ f
∥∥

C(DT )
+ c2

)}
and

B := max
{∥∥gs1

∥∥
C(A),

∥∥gs2

∥∥
C(A)

}
. (5.6)

Taking into account the a priori estimate (2.2), for the functions u1
n and u2

n , with regard for (5.4)–(5.6), we have∣∣∣∣g1
nvn + g2

n

∫ β(t)

α(t)
vndx

∣∣∣∣ ≤ B

(
|vn| +

∣∣∣∣ ∫ β(t)

α(t)
vndx

∣∣∣∣). (5.7)

Now, by virtue of (5.7), Lemma 2.1 and Remark 2.1 applied to the case when in inequality (2.1) a = 0, b = B, c = B
for the solution vn of problem (5.2), (5.3) we have the following estimate:∥∥vn

∥∥
C(DT )

≤
√

2T exp
(

T

2

[
|λ|
(
12 B2T 2

+ 48 B2T 4
+ 1

)
+ 1

])∥∥ fn
∥∥

C(DT )
. (5.8)

Since owing to (5.1),∥∥u2 − u1
∥∥ = lim

n→∞

∥∥vn
∥∥

C(DT )
, lim

n→∞

∥∥ fn
∥∥

C(DT )
= 0,
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therefore passing in estimate (5.8) to the limit, as n→∞, we obtain∥∥u2 − u1
∥∥

C(DT )
≤ 0,

i.e., u1 = u2, which contradicts our assumption. Thus Lemma 5.2 is proved. �

Theorem 5.1. Let α, β ∈ C1([0,+∞)), g ∈ C1(D∞ × R2) and condition (2.1) be fulfilled. Then for any

f ∈ C1(D∞), problem (1.1), (1.2) has the unique global classical solution u ∈
◦

C 2(D∞,Γ∞) in the domain D∞.

Proof. If f ∈ C1(D∞) and condition (2.1) is fulfilled, then according to Theorem 4.1 and Lemmas 5.1 and 5.2, in

the domain DT for T = n there exists the unique classical solution u ∈
◦

C 2(Dn,Γn) of problem (1.1), (1.2). Since
un+1 is likewise a classical solution of problem (1.1), (1.2) in the domain Dn , by Lemma 5.2, we have un+1|Dn = un .
Therefore, the function u constructed in the domain D∞ by the rule u(x, t) = un(x, t) for n = [t] + 1, where [t]
is integer part of the number t , and (x, t) ∈ D∞, will be the unique classical solution of problem (1.1), (1.2) in the

domain D∞ of the class
◦

C 2(D∞,Γ∞). Thus Theorem 5.1 is proved. �

Acknowledgment

The present work is supported by the Georgian Shota Rustaveli Scientific Fund (Grant No. 31/32).

References

[1] E. Goursat, Course of Mathematical Analysis, Vol. 3, Nauka, Moscow, 1933, Part 1 (in Russian).
[2] A.V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, Moscow, 1981 (in Russian).
[3] S. Kharibegashvili, Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems, Mem. Differential

Equations Math. Phys. 4 (1995) 1–127.
[4] G.K. Berikelashvili, O.M. Jokhadze, B.G. Midodashvili, S.S. Kharibegashvili, On the existence and nonexistence of global solutions of the

first Darboux problem for nonlinear wave equations, Differ. Uravn. 44 (3) (2008) 359–372, 430; translation in Differ. Equ. 44 (3) (2008)
374–389 (in Russian).

[5] O.M. Jokhadze, S.S. Kharibegashvili, On the first Darboux problem for second-order nonlinear hyperbolic equations, Mat. Zametki 84 (5)
(2008) 693–712, translation in Math. Notes 84 (5–6) (2008) 646–663 (in Russian).

[6] O. Jokhadze, On existence and nonexistence of global solutions of Cauchy-Goursat problem for nonlinear wave equations, J. Math. Anal.
Appl. 340 (2) (2008) 1033–1045.

[7] O. Jokhadze, B. Midodashvili, The first Darboux problem for wave equations with a nonlinear positive source term, Nonlinear Anal. 69 (9)
(2008) 3005–3015.

[8] S. Kharibegashvili, Boundary value problems for some classes of nonlinear wave equations, Mem. Differential Equations Math. Phys. 46
(2009) 1–114.

[9] O. Jokhadze, The Cauchy-Goursat problem for one-dimensional semilinear wave equations, Comm. Partial Differential Equations 34 (4)
(2009) 367–382.

[10] G. Berikelashvili, O. Jokhadze, B. Midodashvili, S. Kharibegashvili, Finite difference solution of a nonlinear Klein-Gordon equation with an
external source, Math. Comp. 80 (274) (2011) 847–862.

[11] S. Brzychczy, J. Janus, Monotone iterative methods for nonlinear integro-differential hyperbolic equations, Univ. Iagel. Acta Math. Fasciculus
37 (1999) 245–261.

[12] M. Kwapisz, J. Turo, On the existence and convergence of successive, approximations for some functional equations in a Banach space,
J. Differential Equations 16 (1974) 298–318.

[13] R. Torrejon, J. Yong, On a quasilinear wave equation with memory, Nonlinear Anal. 16 (1991) 61–78.
[14] T. Rabello, M. Vieira, C. Frota, L. Medeiros, Small vertical vibrations of strings with moving ends, Rev. Mat. Complut. 16 (1) (2003) 179–206.
[15] A.V. Bitsadze, Equations of Mathematical Physics, Nauka, Moscow, 1982 (in Russian).
[16] R. Narasimkhan, Analysis on Real and Complex Manifolds, Nauka, Moscow, 1971 (in Russian).
[17] G. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka, Moscow, 1989 (in Russian).
[18] V.A. Trenogin, Functional Analysis, Nauka, Moscow, 1993 (in Russian).



Available online at www.sciencedirect.com

ScienceDirect

Transactions of A. Razmadze Mathematical Institute 170 (2016) 395–401
www.elsevier.com/locate/trmi

Original article

Finite difference scheme for one nonlinear parabolic
integro-differential equation

Temur Jangveladze, Zurab Kiguradze∗

Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili, Tbilisi State University, 2 University Street, 0186 Tbilisi, Georgia
Georgian Technical University, 77 Kostava Ave., 0175 Tbilisi, Georgia

Received 22 July 2016; received in revised form 19 September 2016; accepted 26 September 2016
Available online 14 October 2016

Abstract

Initial–boundary value problem with mixed boundary conditions for one nonlinear parabolic integro-differential equation is
considered. The model is based on Maxwell system describing the process of the penetration of a electromagnetic field into a
substance. Unique solvability and asymptotic behavior of solution are fixed. Main attention is paid to the convergence of the finite
difference scheme. More wide cases of nonlinearity that already were studied are investigated.
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1. Introduction

Integro-differential equations of parabolic type arise in the study of various problems (see, for example, [1–5]
and references therein). One such model is obtained at mathematical modeling of processes of electromagnetic field
penetration in the substance. It is shown that in the quasi-stationary approximation the corresponding system of
Maxwell equations [6] can be rewritten in the following form [7]:

∂H

∂t
= −rot

[
a

(∫ t

0
|rot H |2 dτ

)
rot H

]
, (1.1)

where H = (H1, H2, H3) is a vector of the magnetic field, function a = a(S) is defined for S ∈ [0,∞).
Note that integro-differential models of (1.1) type are complex and still yields to the investigation only for special

cases (see, for example, [3,7–20] and references therein).
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Study of the models of type (1.1) has begun in the work [7]. In particular, for the case a(S) = 1+ S the theorems
of existence of solution of the first boundary value problem for scalar and one-dimensional space case and uniqueness
for more general cases are proved in this work. One-dimensional scalar variant for the case a(S) = (1 + S)p,
0 < p ≤ 1 is studied in [9]. Investigations for multi-dimensional space cases at first are carried out in the work [10].
Multidimensional space cases are also discussed in the following works [14,18].

Asymptotic behavior as t → ∞ of solutions of initial–boundary value problems for (1.1) type models is studied
in the works [3,11,14–16] and in a number of other works as well. In these works main attentions, are paid to one-
dimensional analogs.

Interest to above-mentioned integro-differential model is more and more arising and initial–boundary value
problems with different kinds of boundary and initial conditions are considered. Particular attention should be paid
to construction of numerical solutions and to their importance for integro-differential models. Finite element analogs
and Galerkin method algorithm as well as settling of semi-discrete and finite difference schemes for (1.1) type one-
dimensional integro-differential models are studied in [12,16,20–22] and in the other works as well (see [3] and
references therein).

Our main aim is to study finite difference scheme for numerical solution of initial–boundary value problem with
mixed boundary conditions for the one-component and one-dimensional analog of (1.1) system. Attention is paid to
the investigation of more wide cases of nonlinearity than already were studied.

This article is organized as follows. In Section 2 the formulation of the problem and unique solvability and
asymptotic behavior of solution are fixed. Main attention is paid to construction and investigation of finite difference
scheme in Section 3. We conclude the paper with some discussions in Section 4.

2. Formulation of the problem. Unique solvability and asymptotic behavior of solution

If the magnetic field has the form H = (0, 0,U ), U = U (x, t), then from (1.1) we obtain the following nonlinear
integro-differential equation

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (2.1)

where

S(x, t) =
∫ t

0

(
∂U

∂x

)2

dτ. (2.2)

In the domain [0, 1] × [0,∞) let us consider the following initial–boundary value problem for (2.1), (2.2):

U (0, t) =
∂U (x, t)

∂x

∣∣∣∣
x=1
= 0, (2.3)

U (x, 0) = U0(x), (2.4)

where U0 is a given function.
The study of unique solvability and long-time behavior of solution of the problem (2.1)–(2.4) is actual.
The following statement [13] shows the exponential stabilization of the solution of problem (2.1)–(2.4) in the norm

of the space C1(0, 1).

Theorem 2.1. If a(S) = (1+ S)p, 0 < p ≤ 1 and U0 ∈ H3(0, 1), U0(0) =
dU0(x)

dx

∣∣∣
x=1
= 0 , then for the solution of

problem (2.1)–(2.4) the following estimates hold as t →∞:∣∣∣∣∂U (x, t)

∂x

∣∣∣∣ ≤ C exp
(
−

t

2

)
,

∣∣∣∣∂U (x, t)

∂t

∣∣∣∣ ≤ C exp
(
−

t

2

)
,

uniformly in x on [0, 1].

Using the compactness method, a modified version of the Galerkin method [5,23] the unique solvability can be
proven.
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Let us note that same results are true for problem with first type homogeneous conditions on whole boundary (see,
for example, [3,14] and references therein).

3. Finite difference scheme

In [0, 1] × [0, T ] let us consider again problem (2.1)–(2.4) written in the following form:

∂U

∂t
=

∂

∂x

[(
1+

∫ t

0

(
∂U

∂x

)2

dτ

)p
∂U

∂x

]
, (3.1)

U (0, t) =
∂U (x, t)

∂x

∣∣∣∣
x=1
= 0, (3.2)

U (x, 0) = U0(x), (3.3)

where 0 < p ≤ 1, T is positive number and U0 is a given function.
On [0, 1] × [0, T ] let us introduce a net with mesh points denoted by (xi , t j ) = (ih, jτ), where i = 0, 1, . . . ,M;

j = 0, 1, . . . , N with h = 1/M , τ = T/N . The initial line is denoted by j = 0. The discrete approximation at (xi , t j )

is designed by u j
i and the exact solution to problem (3.1)–(3.3) by U j

i . We will use the following known notations [24]:

u j
x,i =

u j
i+1 − u j

i

h
, u j

x̄,i =
u j

i − u j
i−1

h
, u j

t,i =
u j+1

i − u j
i

τ
.

Introduce inner product and norm:

(u j , v j ) = h
M−1∑
i=1

u j
i v

j
i , ‖u

j
‖ = (u j , u j )1/2.

For problem (3.1)–(3.3) let us consider the following finite difference scheme:

u j+1
i − u j

i

τ
−

{(
1+ τ

j+1∑
k=1

(uk
x̄,i )

2

)p

u j+1
x̄,i

}
x

= f j
i , i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1, (3.4)

u j
0 = u j

x̄,M = 0, j = 0, 1, . . . , N , (3.5)

u0
i = U0,i , i = 0, 1, . . . ,M. (3.6)

Multiplying Eq. (3.4) scalarly by u j+1
i , it is not difficult to get the inequality

‖un
‖

2
+

n∑
j=1

‖u j
x̄‖

2τ < C, n = 1, 2, . . . , N , (3.7)

where here and below C is a positive constant independent from τ and h.
The a priori estimate (3.7) guarantee the stability of the scheme (3.4)–(3.6). Note, that it is easy to prove the

uniqueness of the solution of the scheme (3.4)–(3.6) too.
The main statement of the present section can be stated as follows.

Theorem 3.1. If problem (3.1)–(3.3) has a sufficiently smooth solution U (x, t), then the solution u j
= (u j

1, u j
2, . . . ,

u j
M ), j = 1, 2, . . . , N of the difference scheme (3.4)–(3.6) tends to the solution of continuous problem (3.1)–(3.3)

U j
= (U j

1 ,U
j

2 , . . . ,U
j
M ), j = 1, 2, . . . , N as τ → 0, h → 0 and the following estimate is true

‖u j
−U j

‖ ≤ C(τ + h). (3.8)
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Proof. To prove Theorem 3.1 let us introduce the difference z j
i = u j

i −U j
i . We have:

z j+1
t,i −

{(
1+ τ

j+1∑
k=1

(uk
x̄,i )

2

)p

u j+1
x̄,i −

(
1+ τ

j+1∑
k=1

(U k
x̄,i )

2

)p

U j+1
x̄,i

}
x

= −ψ
j

i , (3.9)

z j
0 = z j

x̄,M = 0,

z0
i = 0,

where

ψ
j

i = O(τ + h).

Multiplying Eq. (3.9) scalarly by τ z j+1
= τ

(
z j+1

1 , z j+1
2 , . . . , z j+1

M−1

)
, using the discrete analog of the formula of

integration by parts we get

‖z j+1
‖

2
−

(
z j+1, z j

)
+ τh

M∑
i=1

{(
1+ τ

j+1∑
k=1

(uk
x̄,i )

2

)p

u j+1
x̄,i

−

(
1+ τ

j+1∑
k=1

(U k
x̄,i )

2

)p

U j+1
x̄,i

}
z j+1

x̄,i = −τ
(
ψ j , z j+1

)
. (3.10)

Note that,{(
1+ τ

j+1∑
k=1

(
uk

x̄,i

)2
)p

u j+1
x̄,i −

(
1+ τ

j+1∑
k=1

(
U k

x̄,i

)2
)p

U j+1
x̄,i

}(
u j+1

x̄,i −U j+1
x̄,i

)

=

∫ 1

0

d

dµ

{(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ
(

uk
x̄,i −U k

x̄,i

)]2
)p [

U j+1
x̄,i + µ

(
u j+1

x̄,i −U j+1
x̄,i

)]}
dµ

×

(
u j+1

x̄,i −U j+1
x̄,i

)
= 2p

∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ
(

uk
x̄,i −U k

x̄,i

)]2
)p−1

× τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
] (

uk
x̄,i −U k

x̄,i

)
×

[
U j+1

x̄,i + µ
(

u j+1
x̄,i −U j+1

x̄,i

)]
dµ

(
u j+1

x̄,i −U j+1
x̄,i

)
+

∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2
)p (

u j+1
x̄,i −U j+1

x̄,i

)
dµ

(
u j+1

x̄,i −U j+1
x̄,i

)

= 2p
∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2
)p−1

× τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
] (

uk
x̄,i −U k

x̄,i

)
×

[
U j+1

x̄,i + µ
(

u j+1
x̄,i −U j+1

x̄,i

)] (
u j+1

x̄,i −U j+1
x̄,i

)
dµ

+

∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2
)p (

u j+1
x̄,i −U j+1

x̄,i

)2
dµ
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= 2p
∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2
)p−1

ξ
j+1
i (µ)ξ

j
t, i (µ) dµ

+

∫ 1

0

(
1+ τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2
)p (

u j+1
x̄,i −U j+1

x̄,i

)2
dµ,

where

ξ
j+1
i (µ) = τ

j+1∑
k=1

[
U k

x̄,i + µ
(

uk
x̄,i −U k

x̄,i

)] (
uk

x̄,i −U k
x̄,i

)
,

ξ0
i (µ) = 0,

and therefore,

ξ
j
t, i (µ) =

[
U j+1

x̄,i + µ
(

u j+1
x̄,i −U j+1

x̄,i

)] (
u j+1

x̄,i −U j+1
x̄,i

)
.

Introducing the following notation

s j+1
i (µ) = τ

j+1∑
k=1

[
U k

x̄,i + µ(u
k
x̄,i −U k

x̄,i )
]2

from the previous equality we have{(
1+ τ

j+1∑
k=1

(
uk

x̄,i

)2
)p

u j+1
x̄,i −

(
1+ τ

j+1∑
k=1

(
U k

x̄,i

)2
)p

U j+1
x̄,i

}(
u j+1

x̄,i −U j+1
x̄,i

)
= 2p

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

ξ
j+1
i ξ

j
t, i dµ+

∫ 1

0

(
1+ s j+1

i (µ)
)p (

u j+1
x̄,i −U j+1

x̄,i

)2
dµ.

After substituting this equality in (3.10) we get

‖z j+1
‖

2
− (z j+1, z j )+ 2τhp

M∑
i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

ξ
j+1
i ξ

j
t, i dµ

+ τh
M∑

i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p (

u j+1
x̄,i −U j+1

x̄,i

)2
dµ = −τ(ψ j , z j+1). (3.11)

Taking into account restriction p > 0 and relations

s j+1
i (µ) ≥ 0,

(z j+1, z j ) =
1
2
‖z j+1

‖
2
+

1
2
‖z j
‖

2
−

1
2
‖z j+1

− z j
‖

2,

τ ξ
j+1
i ξ

j
t, i =

1
2

(
ξ

j+1
i

)2
−

1
2

(
ξ

j
i

)2
+
τ 2

2

(
ξ

j
t, i

)2

from (3.11) we have

‖z j+1
‖

2
−

1
2
‖z j+1

‖
2
−

1
2
‖z j
‖

2
+

1
2
‖z j+1

− z j
‖

2

+ hp
M∑

i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

[(
ξ

j+1
i

)2
−

(
ξ

j
i

)2
]

dµ

+ τ 2hp
M∑

i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1 (

ξ
j
t, i

)2
dµ+ τh

M∑
i=1

(
u j+1

x̄,i −U j+1
x̄,i

)2
≤ −τ(ψ j , z j+1). (3.12)
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From (3.12) we arrive at

1
2
‖z j+1

‖
2
−

1
2
‖z j
‖

2
+
τ 2

2
‖z j

t ‖
2
+ hp

M∑
i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

[(
ξ

j+1
i

)2
−

(
ξ

j
i

)2
]

dµ

+ τ‖z j+1
x̄ ‖

2
≤
τ

2
‖ψ j
‖

2
+
τ

2
‖z j+1

‖
2. (3.13)

Using discrete analog of Poincaré inequality [24]

‖z j+1
‖

2
≤ ‖z j+1

x̄ ‖
2

from (3.13) we get

‖z j+1
‖

2
− ‖z j

‖
2
+ τ 2
‖z j

t ‖
2
+ 2hp

M∑
i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

[(
ξ

j+1
i

)2
−

(
ξ

j
i

)2
]

dµ

+ τ‖z j+1
x̄ ‖

2
≤ τ‖ψ j

‖
2. (3.14)

Summing (3.14) from j = 0 to j = n − 1 we arrive at

‖zn
‖

2
+ τ 2

n−1∑
j=0

‖z j
t ‖

2
+ 2hp

n−1∑
j=0

M∑
i=1

∫ 1

0

(
1+ s j+1

i (µ)
)p−1

[(
ξ

j+1
i

)2
−

(
ξ

j
i

)2
]

dµ

+ τ

n−1∑
j=0

‖z j+1
x̄ ‖

2
≤ τ

n−1∑
j=0

‖ψ j
‖

2. (3.15)

Note, that since s j+1
i (µ) ≥ s j

i (µ) and p ≤ 1, for the second line of last formula we have

n−1∑
j=0

(
1+ s j+1

i (µ)
)p−1

[(
ξ

j+1
i

)2
−

(
ξ

j
i

)2
]

=

(
1+ s1

i (µ)
)p−1 (

ξ1
i

)2
−

(
1+ s1

i (µ)
)p−1 (

ξ0
i

)2

+

(
1+ s2

i (µ)
)p−1 (

ξ2
i

)2
−

(
1+ s2

i (µ)
)p−1 (

ξ1
i

)2

+ · · · +
(
1+ sn

i (µ)
)p−1 (

ξn
i

)2
−
(
1+ sn

i (µ)
)p−1

(
ξn−1

i

)2

=
(
1+ sn

i (µ)
)p−1 (

ξn
i

)2
+

n−1∑
j=1

[(
1+ s j

i (µ)
)p−1

−

(
1+ s j+1

i (µ)
)p−1

] (
ξ

j
i

)2
≥ 0.

Taking into account the last relation and (3.15) one can deduce

‖zn
‖

2
+ τ 2

n−1∑
j=0

‖z j
t ‖

2
+ τ

n−1∑
j=0

‖z j+1
x̄ ‖

2
≤ τ

n−1∑
j=0

‖ψ j
‖

2. (3.16)

From (3.16) we get (3.8), and Theorem 3.1 thus is proved.

4. Conclusions

Nonlinear integro-differential parabolic equation associated with the penetration of an electromagnetic field in a
substance is considered. Unique solvability and asymptotic behavior of solution of initial–boundary value problem
(3.1)–(3.3) are fixed. The finite difference scheme (3.4)–(3.6) is constructed and investigated. One must note that
convergence of the semi-discrete scheme for problem (3.1)–(3.3) for 0 < p ≤ 1 was proven in [13]. The fully discrete
analogs for p = 1 for this type of models and different kind of boundary conditions are studied in [12] and in a number
of other works (see, for example, [3] and references therein). In [13] it was noted that it is important to construct and
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investigate fully discrete finite difference schemes and finite element analogs studied in this note type models for
more general type nonlinearities and for multi-dimensional cases as well. So, in the present work the finite difference
scheme is investigated for the case of the nonlinearity 0 < p ≤ 1.
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Abstract

A certain modified version of Kolmogorov’s strong law of large numbers is used for an extension of the result of C. Baxa and
J. Schoißengeier (2002) to a maximal set of uniformly distributed sequences in (0, 1)which strictly contains the set of all sequences
having the form ({αn})n∈N for some irrational number α and having the full `∞1 -measure, where `∞1 denotes the infinite power of
the linear Lebesgue measure `1 in (0, 1).
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-
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1. Introduction

A useful technique for numerical calculation of one-dimensional Riemann integral for a real-valued Riemann
integrable function over [0, 1] in terms of uniformly distributed sequences firstly was given in 1916 by Hermann
Weyl’s celebrated theorem as follows:

Theorem A ([1], Corollary 1.1, p. 3). The sequence of real numbers (xn)n∈N ∈ [0, 1]∞ is uniformly distributed in
[0, 1] if and only if for every real-valued Riemann integrable function f on [0, 1] we have

lim
N→∞

N∑
n=1

f (xn)

N
=

∫ 1

0
f (x)dx . (1)
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Main corollaries of this theorem were used successfully in Diophantine approximations (see, for example, [2]) and
have applications to Monte-Carlo integration (see, for example, [1,3,4]). During the last decades the methods of the
theory of uniform distribution modulo one have been intensively used for calculation of improper Riemann integrals
(see, for example, [5,6]).

Note that the set S of all uniformly distributed sequences in [0, 1] viewed as a subset of [0, 1]∞ has full
`∞1 -measure, where `∞1 denotes the infinite power of the linear Lebesgue measure `1 in [0, 1]. So each element
of the set S can be used for calculation of one-dimensional Riemann integral for an arbitrary Riemann integrable real-
valued function in [0, 1]. For an arbitrary Lebesgue integrable function f in [0, 1], there naturally arises the following
question.

Question 1. What is a maximal subset S f of S each element of which can be used for calculation of the Lebesgue
integral over [0, 1] by the formula (1) and whether this subset has the full `∞1 -measure?

In this note we consider two tasks:
The first task is an investigation of Question 1 by using Kolmogorov strong law of large numbers.
The second task is an improvement of the following result of C. Baxa and J. Schoißengeier.

Theorem B ([6], Theorem 1, p. 271). Let α be an irrational number, Q be a set of all rational numbers and
F ⊆ [0, 1] ∩Q be finite. Let f : [0, 1] → R be an integrable, continuous almost everywhere and locally bounded on
[0, 1] \ F. Assume further that for every β ∈ F there is some neighborhood U of β such that f is either bounded or
monotone in [0, β) ∩U and in (β, 1] ∩U as well. Then the following conditions are equivalent:

1. limn→∞
f ({kα})

n = 0;

2. limN→∞
1
N

∑N
k=1 f ({kα}) exists;

3. limN→∞
1
N

∑N
k=1 f ({kα}) =

∫
(0,1) f (x)dx,

where {·} denotes the fractional part of the real number.

More precisely, we plan to extend the result of Theorem B to a maximal set D f ⊂ S and E f ⊆ (0, 1)∞ strictly
containing the set S∗ of all sequences of the form ({αn})n∈N where α is an irrational number and to calculate `∞1
measures of D f and E f , respectively.

The paper is organized as follows.
In Section 2 we consider some auxiliary notions and facts from the theory of uniformly distributed sequences and

probability theory. In Section 3 we present our main results. In Section 4 we discuss our main result.

2. Preliminary notes/materials and methods

Definition 1. A sequence s1, s2, s3, . . . of real numbers from the interval [0, 1] is said to be uniformly distributed in
the interval [0, 1] if for any subinterval [c, d] of the [0, 1] we have

lim
n→∞

#({s1, s2, s3, . . . , sn} ∩ [c, d])

n
= d − c, (2)

where # denotes the counting measure.

Example 1 ([1], Exercise 1.12, p. 16). The sequence of all multiples of an irrational α

0, {α}, {2α}, {3α} · · · (3)

is uniformly distributed in (0, 1), where {·} denotes the fractional part of the real number.

Lemma 1 ([1] Theorem 2.2, p. 183). Let S be a set of all elements of [0, 1]∞ which are uniformly distributed in the
interval [0, 1]. Then `∞1 (S) = 1.

Lemma 2 (Kolmogorov–Khinchin [7], Theorem 1, p. 371). Let (X, S, µ) be a probability space and let (ξn)n∈N be
the sequence of independent random variables for which

∫
X ξn(x)dµ(x) = 0. If

∑
∞

n=1

∫
X ξ

2
n (x)dµ(x) < ∞, then

the series
∑
∞

n=1 ξn converges with probability 1.
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Lemma 3 (Toeplitz Lemma [7], Lemma 1, p. 377). Let (an)n∈N be a sequence of non-negative numbers, bn =∑n
i=1 ai , bn > 0 for each n ≥ 1 and bn ↑ ∞, when n → ∞. Let (xn)n∈N be a sequence of real numbers such

that limn→∞ xn = x. Then

lim
n→∞

1
bn

n∑
j=1

a j x j = x . (4)

In particular, if an = 1 for n ∈ N, then

lim
n→∞

1
n

n∑
k=1

xk = x . (5)

Lemma 4 (Kronecker Lemma [7], Lemma 2, p. 378). Let (bn)n∈N be an increasing sequence of positive numbers such
that bn ↑ ∞, when n →∞, and let (xn)n∈N be a sequence of real numbers such that the series

∑
k∈N xk converges.

Then

lim
n→∞

1
bn

n∑
j=1

b j x j = 0. (6)

In particular, if bn = 0, xn =
yn
n and the series

∑
∞

n=1
yn
n converges then

lim
n→∞

n∑
k=1

yk

n
= 0. (7)

Below we give the proof of a certain modification of the Kolmogorov Strong Law of Large Numbers (cf. [7],
Theorem 3, p. 379).

Lemma 5. Let (X,F, µ) be a probability space and let L(X) be a class of all real-valued Lebesgue measurable
functions on X. Let µ∞ be an infinite power of the probability measure µ. Then for f ∈ L(X) we have µ∞(A f ) = 1,
where A f is defined by

A f =

{
(xk)k∈N : (xk)k∈N ∈ X∞ & lim

N→∞

1
N

N∑
n=1

f (xn) =

∫
X

f (x)dx

}
. (8)

Proof. Without loss of generality, we can assume that f is non-negative. We put ξk((xi )i∈N) = f (xk) for k ∈ N and
(xi )i∈N ∈ X∞. We put also

ηk((xi )i∈N) =
1
k

[
ξk((xi )i∈N)χ{ω:ξk (ω)<k}((xi )i∈N)−

∫
X∞

ξk((zi )i∈N)χ{ω:ξk (ω)<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
(9)

for (xi )i∈N ∈ X∞.
Note that (ηk)k∈N is the sequence of independent random variables for which

∫
X∞ ηkdµ∞ = 0.

We have
∞∑

n=1

∫
X∞

η2
n((xi )i∈N)dµ

∞((xi )i∈N)

=

∞∑
n=1

1

n2

∫
X∞

ξ2
n ((xi )i∈N)χ{(yi )i∈N:ξn((yi )i∈N)<n}((xi )i∈N)dµ

∞((xi )i∈N)

−

∞∑
n=1

1

n2

(∫
X∞

ξn((xi )i∈N)χ{(yi )i∈N:ξn((yi )i∈N)<n}((xi )i∈N)dµ
∞((xi )i∈N)

)2
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=

∞∑
n=1

1

n2

∫
X∞

f (xn)
2χ{(yi )i∈N: f (yn)<n}((xi )i∈N)dµ

∞((xi )i∈N)

−

∞∑
n=1

1

n2

(∫
X∞

f (xn)χ{(yi )i∈N: f (yn)<n}((xi )i∈N)dµ
∞((xi )i∈N)

)2

=

∞∑
n=1

1

n2

∫
X

f 2(x)χ{ω: f (ω)<n}(x)dµ(x)−
∞∑

n=1

1

n2

(∫
X

f (x)χ{ω: f (ω)<n}(x)dµ(x)

)2

≤

∞∑
n=1

1

n2

∫
X

f 2(x)χ{ω: f (ω)<n}(x)dµ(x) =
∞∑

n=1

1

n2

n∑
k=1

∫
X

f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dµ(x)

=

∞∑
k=1

∫
X

f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dµ((x))
∞∑

n=k

1

n2 ≤ 2
∞∑

k=1

1
k

∫
X

f 2(x)χ{ω:k−1≤ f (ω)<k}(x)dµ(x)

≤ 2
∞∑

k=1

∫
X

f (x)χ{ω:k−1≤ f (ω)<k}(x)dµ((x)) = 2
∫

X
f (x)dµ(x). (10)

Since
∞∑

n=1

∫
X
η2

n((xi )i∈N)dµ((xi )i∈N) < +∞, (11)

by using Lemma 2 we get

µ

{
(xi )i∈N :

∞∑
k=1

1
k

[
f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−

∫
X∞

ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
is convergent

}
= 1. (12)

Now by Lemma 4 we get that

µ∞
{
(xi )i∈N : lim

N→∞

1
N

N∑
k=1

[
f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−

∫
X∞

ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
= 0

}
= 1. (13)

Note that
∞∑

n=1

µ∞({(xi )i∈N : ξ1((xi )i∈N) ≥ n})

=

∞∑
n=1

∑
k≥n

µ∞{(xi )i∈N : k ≤ ξ1((xi )i∈N) < k + 1}

=

∞∑
k=1

kµ∞{(xi )i∈N : k ≤ ξ1((xi )i∈N) < k + 1}

=

∞∑
k=0

∫
X∞

kχ{(y j ) j∈N:k≤ξ1((yi )i∈N)<k+1}((zi )i∈N)dµ
∞((zi )i∈N)

≤

∞∑
k=0

∫
X∞

ξ1((zi )i∈N)χ{(y j ) j∈N:k≤ξ1((y j ) j∈N)<k+1}((zi )i∈N)dµ
∞((zi )i∈N)

=

∫
X∞

ξ1((zi )i∈N)dµ
∞((zi )i∈N) < +∞. (14)
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Since (ξk)k∈N is a sequence of equally distributed random variables on X∞, we have
∞∑

n=1

µ∞({(xi )i∈N : ξk((xi )i∈N) ≥ n}) ≤
∫

X∞
ξ1((xi )i∈N)dµ

∞((xi )i∈N) < +∞, (15)

which by the well-known Borel–Cantelli lemma implies that

µ∞({(xi )i∈N : ξn((xi )i∈N) ≥ n} i.o.) = 0. (16)

The last relation means that

µ∞({(xi )i∈N : (∃N ((xi )i∈N))(∀n ≥ N ((xi )i∈N))→ ξn((xi )i∈N) < n}) = 1. (17)

Thus, we have obtained the validity of the equality µ∞(A∗f ) = 1, where

A∗f =

{
(xi )i∈N : lim

N→∞

1
N

N∑
k=1

[
f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−

∫
X∞

ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
= 0

&(∃N ((xi )i∈N))(∀n > N ((xi )i∈N)→ ξn((xi )i∈N) < n)

}
. (18)

Now it is obvious that for (xi )i∈N ∈ A∗f , we have

0 = lim
N→∞

1
N

N∑
k=1

[
f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−

∫
X∞

ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
= lim

N→∞

1
N

N∑
k=N ((xi )i∈N)

[
f (xk)χ{(yi )i∈N: f (yk )<k}((xi )i∈N)

−

∫
X∞

ξk((zi )i∈N)χ{(yi )i∈N: f (yk )<k}((zi )i∈N)dµ
∞((zi )i∈N)

]
= lim

N→∞

1
N

N∑
k=N ((xi )i∈N)

[
f (xk)−

∫
X

f (x)χ{y: f (y)<k}(x)dµ(x)

]

= lim
N→∞

1
N

N∑
k=1

[
f (xk)−

∫
X

f (x)χ{y: f (y)<k}(x)dµ(x)

]
. (19)

Since

lim
k→∞

∫
X

f (x)χ{y: f (y)<k}(x)dµ(x) =
∫

X
f (x)dµ(x), (20)

by Lemma 3 we get

lim
N→∞

1
N

N∑
k=1

∫
X

f (x)χ{y: f (y)<k}(x)dµ(x) =
∫

X
f (x)dµ(x) (21)

which implies that

lim
N→∞

1
N

N∑
k=1

f (xk) =

∫
X

f (x)dµ(x) (22)

for each (xi )i∈N ∈ A∗f .
The validity of the inclusion A∗f ⊆ A f ends the proof of Lemma 5. �
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Remark 1. Formulation of Lemma 2.4 (cf. [8], p. 285) needs a certain specification. More precisely, it should be
formulated for sequences (xk)k∈N ∈ S ∩ A∗f , where S comes from Lemma 1 and, A∗f comes from the proof of
Lemma 5 when (X,F, µ) = ((0, 1),B(0, 1), `1). Since `∞1 (S ∩ A∗f ) = 1, such reformulated Lemma 2.4 can be used
for the proof of Corollary 4.2 (cf. [8], p. 296).

3. Results and discussion

By using Lemmas 1 and 5, we get

Theorem C. Let f be a Lebesgue integrable real-valued function on (0, 1). Then we have

`∞1

({
(xk)k∈N : (xk)k∈N ∈ [0, 1]∞ & (xk)k∈N is uniformly distributed in (0, 1)

& lim
N→∞

1
N

N∑
k=1

f (xk) =

∫ 1

0
f (x)dx

})
= 1. (23)

Proof. Note that{
(xk)k∈N : (xk)k∈N ∈ [0, 1]∞

&(xk)k∈N is uniformly distributed in (0, 1) & lim
N→∞

1
N

N∑
k=1

f (xk) =

∫ 1

0
f (x)dx

}
= S ∩ A f , (24)

where S comes from Lemma 1 and A f comes from Lemma 5 when (X,F, µ) = ((0, 1),B(0, 1), `1). �

Note that the answer to Question 1 is contained in the following statement.

Theorem D. The set S f = A f ∩ S is a maximal subset of S each element of which can be used for calculation of the
Lebesgue integral over [0, 1] by the formula (1) and `∞1 (S f ) = 1.

Observation 1. Let f : (0, 1)→ R be a Lebesgue integrable function. Then we have A f ⊆ B f , where

B f =

{
(xk)k∈N : (xk)k∈N ∈ (0, 1)∞ & lim

N→∞

1
N

N∑
k=1

f (xk) exists

}
. (25)

Observation 2. Let f : (0, 1)→ R be a Lebesgue integrable function. Then we have B f ⊆ C f , where

C f =

{
(xk)k∈N : (xk)k∈N ∈ (0, 1)∞ & lim

N→∞

f (xN )

N
= 0

}
. (26)

Proof. Let (xk)k∈N ∈ B f . Then we get

lim
N→∞

f (xN )

N
= lim

N→∞

1
N

(
N∑

k=1

f (xk)−

N−1∑
k=1

f (xk)

)

= lim
N→∞

1
N

N∑
k=1

f (xk)− lim
N→∞

1
N

N−1∑
k=1

f (xk)

= lim
N→∞

1
N

N∑
k=1

f (xk)− lim
N−1→∞

N − 1
N

(
1

N − 1

N−1∑
k=1

f (xk)

)

= lim
N→∞

1
N

N∑
k=1

f (xk)− lim
N−1→∞

1
N − 1

N−1∑
k=1

f (xk) = 0. � (27)
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Remark 2. Note that for each Lebesgue integrable function f in (0, 1), the following inclusion S ∩ A f ⊆ S ∩ C f
holds true, but the converse inclusion is not always valid. Indeed, let (xk)k∈N be an arbitrary sequence of uniformly
distributed numbers in (0, 1). Then the function f : (0, 1) → R, defined by f (x) = χ(0,1)\{xk :k∈N}(x) for
x ∈ (0, 1)(here χ(0,1)\{xk :k∈N}(x) denotes an indicator function of the set (0, 1) \ {xk : k ∈ N} in (0, 1)) is Lebesgue
integrable, (xk)k∈N ∈ C f ∩ S but (xk)k∈N 6∈ A f ∩ S because

lim
N→∞

1
N

N∑
n=1

f (xn) = 0 6= 1 =
∫
(0,1)

f (x)dx . (28)

Theorem E. Let f : (0, 1) → R be a Lebesgue integrable function. Then the set D f of all uniformly distributed
sequences in (0, 1) for which the following conditions

1. limn→∞
f (xn)

n = 0;

2. limN→∞
1
N

∑N
k=1 f (xk) exists;

3. limN→∞
1
N

∑N
k=1 f (xk) =

∫
(0,1) f (x)dx;

are equivalent, has full `∞1 -measure and

D f = (A f ∩ S) ∪ (S \ C f ),

where S, A f and C f come from Lemma 1, Lemma 5 (when (X,F, µ) = ((0, 1),B(0, 1), `1)) and Observation 2,
respectively.

Proof. By Lemma 1 we know that `∞1 (S) = 1. By Lemma 5 when (X,F, µ) = ((0, 1),B((0, 1)), `1) we know that
`∞1 (A f ) = 1. Following Observations 1 and 2 we have A f ⊆ B f ⊆ C f . Since S f = A f ∩ B f ∩ C f ∩ S = A f ∩ S,
we get

`∞1 (S f ) = `
∞

1 (A f ∩ S) = 1. (29)

Since S f ⊆ D f we end the proof of theorem. �

Corollary 1. Let Q be a set of all rational numbers of [0, 1] and F ⊆ [0, 1] ∩ Q be finite. Let f : [0, 1] → R be
Lebesgue integrable, `1-almost everywhere continuous and locally bounded on [0, 1]\F. Assume that for every β ∈ F
there is some neighborhood Uβ of β such that f is either bounded or monotone in [0, β) ∩Uβ and in (β, 1] ∩Uβ as
well. Let S, A f and C f come from Lemma 1, Lemma 5 (when (X,F, µ) = ((0, 1),B(0, 1), `1)) and Observation 2,
respectively. We put

D f = (A f ∩ S) ∪ (S \ C f ).

Then for (xk)k∈N ∈ D f the following conditions are equivalent:

1. limn→∞
f (xn)

n = 0;

2. limN→∞
1
N

∑N
k=1 f (xk) exists;

3. limN→∞
1
N

∑N
k=1 f (xk) =

∫
(0,1) f (x)dx.

4. Conclusion

Note that D f is maximal subset of the set S for which conditions 1–3 participated in the formulation of Corollary 1
are equivalent, provided that for each (xk)k∈N ∈ D f the sentences 1–3 are true or false simultaneously, and for each
(xk)k∈N ∈ S \ D f the sentences 1–3 are not true or false simultaneously. This extends the main result of Baxa and
Schoißengeier [6] because, the class S∗ of all sequences of the form ({nα})n∈N is in D f for each irrational number α,
and no every element of D f can be presented in the same form. For example,

({(n + 1/2(1− χ{k:k≥2}(n)))π
χ{k:k≥2}(n)})n∈N ∈ D f \ S∗, (30)
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where {·} denotes the fractional part of the real number and χ{k:k≥2} denotes the indicator function of the set
{k : k ≥ 2}.

Similarly, setting

E f = A f ∪
(
((0, 1)∞ \ A f ) ∩ ((0, 1)∞ \ B f ) ∩ ((0, 1)∞ \ C f )

)
= A f ∪

(
(0, 1)∞ \ C f

)
, (31)

we get a maximal subset of (0, 1)∞ for which conditions 1–3 participated in the formulation of Corollary 1 are
equivalent, provided that for each (xk)k∈N ∈ E f the sentences 1–3 are true or false simultaneously, and for each
(xk)k∈N ∈ (0, 1)∞ \ E f the sentences 1–3 are not true or false simultaneously.

Note also that both sets D f and E f have full `∞1 measure.
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Abstract

The present paper investigates natural oscillations and stability of shells of revolution which are close by their form to cylindrical
ones, with elastic filler and under the action of meridional forces, external pressure and temperature. The shell is assumed to be thin
and elastic. A filler is simulated by an elastic base. The shells of positive and negative Gaussian curvature are considered. Formulas
for finding the least frequencies and a form of wave formation are written out. The questions dealing with the higher frequencies
and stability of shells of revolution are studied, and formulas for critical loadings are also written out.
c© 2016 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Oscillation; Stability; Shells; Critical load; Filler; Temperature; Lowest; Meridional forces; Frequency

We investigate natural oscillations and stability of closed shells of revolution which are close by their form to
cylindrical ones, with an elastic filler and under the action of meridional forces distributed uniformly over the end-
walls, external pressure and temperature. We consider a light filler for which tangential stresses on the contact area
and inertia forces may be neglected. The shell is assumed to be thin and elastic. Temperature is uniformly distributed
in the shell body. The elastic filler is simulated by the Winkler’s base, its extension upon heating is neglected. We
investigate the shells of middle length; the form of their middle surface generatrix is described by the parabolic
function. We consider the shells of positive and negative Gaussian curvatures. The boundary conditions on the end-
walls correspond to à free support admitting radial displacements in the initial state. The obtained formulas and
universal curves show that the least frequency and a form of wave formation depend on meridional loadings, external
pressure, temperature, elastic filler rigidity and on the deviation amplitude of the shell from the cylinder. It is shown
that in the presence of prestresses and of an elastic filler, temperature affects the lowest frequencies and a form of
wave formation differently, depending on the sign of Gaussian curvature of the shell. We consider the problem on the
highest frequencies and stability of the shell of revolution and derive formulas for finding critical loadings.

We consider the shell whose middle surface is formed by the rotation of square parabola around the z-axis of the
rectangular system of coordinates x, y, z with the origin in the midsegment of the axis of revolution. It is assumed
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that the radius R of the midsurface cross-section is defined by the equality

R = r + δ0
[
1− ξ2(r/`)2

]
,

where r is the radius of the end-wall cross-section, δ0 is a maximal deviation from the cylindrical form (for δ0 > 0
the shell is convex and for δ0 < 0 it is concave), L = 2` is the shell length, ξ = z/r .

We consider the shells of middle length [1] and assume that(
δ0/r

)2
,
(
δ0/`

)2
� 1. (1)

For the basic equations of oscillations we adopt equations of the theory of shallow shells [2]. For the shells of
middle length, the forms of oscillations corresponding to the lowest frequencies vary weakly in the longitudinal
direction compared with circumferential one. Therefore the relation

∂2 f

∂ξ2 �
∂2 f

∂ϕ2 ( f = w,ψ) (2)

is valid, where w and ψ are, respectively, the function of radial displacement and the stress function. As a result, the
system of equations for the shells under consideration is reduced to the following resolving equation (owing to the
adopted assumption, temperature terms are equal to zero [3]):

ε
∂8w

∂ϕ8 +
∂4w

∂ξ4 + 4 δ
∂4w

∂ξ2 ∂ϕ2 + 4 δ2 ∂
4w

∂ϕ4 − t0
1
∂6w

∂ξ2 ∂ϕ4 − t0
2
∂6w

∂ϕ6

− 2s0 ∂6w

∂ξ ∂ϕ5 + γ
∂4w

∂ϕ4 +
ρr2

E

∂2

∂t2

(∂4w

∂ϕ4

)
= 0, (3)

ε = h2/12(1− ν2)r2, δ = δ0r/`2, t0
i = T 0

i /Eh (i = 1, 2), s0
= S0/Eh, γ = βr2/Eh,

where T 0
1 and T 0

2 are, respectively, meridional and circumferential normal forces of the initial state; S0 is shearing
force of the initial state; E and ν are, respectively, the modulus of elasticity and the Poisson coefficient; h is the
shell thickness, ρ is density of the shell material; β is the “bed” coefficient of the elastic filler (characterizing elastic
rigidity); t is time.

The initial state is assumed to be momentless. On the basis of the corresponding solution, with regard for the filler
reaction and due to inequality (1), we obtain the following approximate expressions:

T 0
1 = P1

[
1+

δ0

r

(
ξ2(r/`)2 − 1

)]
+ qδ0

(
ξ2(r/`)2 − 1

]
,

T 0
2 = −2 P1δ0r/`2

− qr + β0rw0, S0
= 0,

(4)

where w0, β0 are, respectively, deflection and the “bed” coefficient of the filler in the initial state. Taking into account
that ∣∣ξ2(r/`)2 − 1

∣∣ ∂2w

∂ξ2 � 2(r/`)2
∂2w

∂ϕ2 ,
δ0

r

∣∣ξ2(r/`)2 − 1
∣∣ ∂2w

∂ξ2 �
∂2w

∂ϕ2 ,

the expressions (4) after substitution into (3) can be simplified, and they take the form

T 0
1

Eh
=

P1

Eh
,

T 0
2

Eh
= −2

P1

Eh
δ −

qr

Eh
+ w0

β0r

Eh
, T 0

i = σ
0
i h (i = 1, 2). (4′)

Taking into account the fact that in the initial state the shell deformation in the circumferential direction ε0
ϕ is

defined by the equalities

ε0
ϕ =

σ 0
2 − νσ

0
1

E
+ αT, ε0

ϕ = −
w0

r
,

where α is the linear extension coefficient, and T is temperature, we have

w0 =
(
−σ 0

2 + νσ
0
1

) r

E
− αT r. (5)
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Substituting (5) into (4′), we get

T 0
2

Eh
=
σ 0

2

E
= −

qr

Eh
− 2

P1

Eh
δ +

β0r2

Eh

(
−σ 0

2 + νσ
0
1

) 1
E
−
αTβ0r2

Eh

whence

σ 0
2

E

(
1+

β0r2

Eh

)
= −

qr

Eh
− 2

P1

Eh
δ + ν

σ 0
1

E

β0r2

Eh
− αT

β0r2

Eh
.

Introducing the notation

qr

Eh
= q,

P1

Eh
= −p,

β0r2

Eh
= γ0, 1+ γ0 = g

the expressions (4′) take the form

−
σ 0

1

E
= p, −

σ 0
2

E
=
(
q − 2 pδ + νpγ0 + αT γ0

)
g−1. (5′)

It should be noted that since R is close to r , therefore in the expressions (5′) for stresses we adopt R ≈ r .
As a result, Eq. (3) has the form

ε
∂8w

∂ξ8 +
∂4w

∂ξ4 + 4 δ
∂4w

∂ξ2∂ϕ2 + 4
(
δ2
+ γ /4

)∂4w

∂ϕ4 +
(
q − 2 pδ + νpγ0 + αT γ0

)
g−1 ∂

6w

∂ϕ6

+ p
∂6w

∂ξ2∂ϕ4 +
ρr2

E

∂2

∂t2

(∂4w

∂ϕ4

)
= 0. (6)

We consider harmonic oscillations. For the given boundary conditions of free support and for Eq. (6), the solution

w = Amn cos λmξ sin nϕ cosωt, λm = mπr/2` (m = 2i + 1, i = 0, 1, 2, . . .) (7)

is satisfied.
Substituting the expression (7) into Eq. (6), for the natural frequencies we obtain the following equality:

ω2
=

E

ρr2

[
εn4
+ λ4

mn−4
+ 4 δλ2

mn−2
+ 4(δ2

+ γ /4)− p(λ2
m − 2 δ̃n2)− (q + γ0αT )g−1n2]. (8)

Introduce the notation

δ 2
= δ2
+ γ /4, δ̃ =

(
δ −

1
2
νγ0

)
g−1, q̃ = (q + γ0αT )g−1,

then

ω2
=

E

ρr2

[
εn4
+ λ4

mn−4
+ 4 δλ2

mn2
+ 4 δ 2

− p(λ2
m − 2 δ̃n2)− q̃ n2]. (8′)

It is evident that for p = 0, δ > 0, to the least frequency there corresponds the value m = 1. It can also be shown
that this condition holds for δ < 0 if we take into account inequality (1) and the fact that ω2 > 0. Therefore, we will
first consider the forms of oscillations under which along the shell length there arises only one half-wave (m = 1),
while in the circumferential direction we have n waves. For the contraction p > 0, and for the tension p < 0; q is the
normal pressure which is assumed to be positive if it is external one.

We represent the expression (8′) for m = 1 in a dimensionless form. To this end, we introduce dimensionless
values

N = n2/n2
0, P = p/p0∗, Q̃ = q̃/q̃0∗, p0∗ =

(1− ν2)−1/2
√

3

h

r
, q0∗ = 0, 855(1− ν2)−3/4

(h

r

)3/2 r

L
,

δ∗ = δε
−1/2
∗ . ε∗ = (1− ν2)−1/2

( r

L

)2 h

r
, n2

0 = λ1ε
−1/4, λ1 = πr/L , δ 2

∗ = δ
2
∗ + γ∗/4, γ∗ = γ ε

−1
∗ ,

δ̃∗ = (δ − 0, 5 νγ0)ε
−1/2
∗ g−1, ω2

8 = 2λ2
1ε

1/2 E

ρr2 ,
q̃

q0∗
=

( q

q0∗
+
γ0αT

q0∗

)
g−1,

(9)
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where ω∗, p0∗ and q0∗ are, respectively, the least frequency, critical contraction loading and critical pressure for the
cylindrical midlength shell [1,4]. As a result, the equality (8′) can be written in the dimensionless form as follows:

ω2(N )/ω2
∗ = 0, 5

[
N 2
+ N−2

+ 2, 37 δ∗N−1
+ 1, 404 δ 2

∗ − 2P(1− 1, 185 δ̃∗N )− 1, 755 Q̃N
]
. (10)

The least frequency (for ω2(N ) > 0) is derived from the condition [ω2(N )]′ = 0. Thus we obtain either

0, 8775 Q̃ − 1, 185 δ̃∗P = N − 1, 185 δ∗N−2
− N−3

or

N 4
− (0, 8775 Q̃ − 1, 185 δ̃∗P)N 3

− 1, 185 δ∗N − 1 = 0. (11)

This implies that for P = Q̃ = 0, we have the known equation

N 4
− 1, 185 δ∗N − 1 = 0,

whose roots have been obtained explicitly in [5]. Moreover, from (11), for δ∗ = 0, Q̃ = 0 (δ = γ0 = 0, q = 0) we
obtain the equation N 4

− 1 = 0 whose positive root N = 1. Consequently, for the cylindrical shell of middle length,
the least frequency is realized for N = 1, independently of P , what fully agrees with [6].

For ω = 0, equality (10) yields

1, 755 Q = N + N−3
+ 2, 37 δ∗N−2

+ 1, 404 δ 2
∗N
−1
− 2P(N−1

− 1, 185 δ̃∗). (12)

The least Q̃ > 0, depending on N , is realized for Q̃ ′N = 0. This implies

N 4
+ cN 2

+ d N + e = 0, c = 2P − 1, 404 δ 2
∗, d = −4, 74 δ∗, e = −3. (13)

The roots of Eq. (13) coincide with those of the following two quadratic equations:

N 2
+

A1,2

2
N +

(
y1 −

d

A1,2

)
= 0, A1,2 = ±

√
8α,

N1,2 = −

√
α

2
±

√
d
√

8α
−
α1

2
, N3,4 =

√
α

2
±

√
−d
√

8α
−
α1

2
, (14)

α = y1 −
c

2
, α1 = y1 +

c

2
, (15)

where y1 is any real root of the cubic equation

y3
−

c

2
y2
− ey +

(ce

2
−

d2

8

)
= 0 (16)

or

z3
+ 3 pz + 2 q = 0 (z = y − c/6), (17)

p = 1−
(
2 P − 1, 404 δ 2

∗

)2
/36, q = −

1
2

(
2 P + 1, 404 δ 2

∗

)[
1−

(2 P − 1, 404 δ 2
∗)

3

108(2 P + 1, 404 δ 2
∗)

]
. (18)

If we adopt that(
2 P − 1, 404 δ 2

∗

)2
/36� 1

then the expressions (18) take the form p = 1, q = − 1
2 (2 P + 1, 404 δ 2

∗). Since the discriminant of Eq. (8)
D = q2

+ p3 > 0, we have one real root

z =
(
−q +

√
q2 + p3

)1/3
+
(
−q −

√
q2 + p3

)1/3
. (19)
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If we adopt that

(
2 P + 1, 404 δ 2

∗

)2
/36� 1 (20)

and expand into series the expressions appearing in (19), neglecting here the values of second order smallness, we get
z = [(2 P + 1, 404 (δ2

∗ − γ∗/4))]/3. Then, by virtue of (13), (15) and (17), we obtain

α = z − c/3 = 2 · 1, 404 δ 2
∗/3, α1 = z +

2
3

c = 2 P + 1, 404
(
δ2
∗ +

3
4
γ∗

)/
3. (21)

Taking into account that y1 is the root of Eq. (16), we have

d2

8(y1 − c/2)
= y2

1 − e,

whence it follows that

|d|
√

8α
=

√
y2

1 − e > y1 =
y1

2
+

y1

2
+

c

4
−

c

4
=

1
2

(
y1 −

c

2

)
+

1
2

(
y1 +

c

2

)
.

Consequently,

|d|
√

8α
−
α1

2
>
α

2
. (22)

Since N 2
= n2/n2

0, of our interest are only the positive roots of Eq. (13). Bearing in mind inequality (22), we can
see that positive for δ∗ < 0 (d > 0) is only the root N1, and for δ∗ > 0 (d < 0), only the root N3. Substituting the
values d, α, α1, according to equalities (13) and (21), into the expressions (14), we obtain

N∗ =

√
√

3+ 0, 234
(
δ2
∗ +

3
4
γ∗

)
− P − 0, 684 |δ∗| (δ∗ < 0),

N∗ =

√
√

3+ 0, 234
(
δ2
∗ +

3
4
γ∗

)
− P + 0, 684 δ∗ (δ∗ > 0).

(23)

Thus we obtain

n2
1,2 =

(√
√

3+ 0, 2703 ε−1/2
[(δ0

`

)2
+
γ

4

(`
r

)2]
− P ± 0, 735 ε−1/4 |δ0|

`

)
λ1ε

1/4, (24)

where the indices (1) and (2) correspond to δ0 > 0 and δ0 < 0, respectively. In particular, for δ0 = γ0 = p = 0, we
obtain the known formula for a critical number of waves of the cylindrical midlength shell n2

∗ =
4
√

3 λ1ε
−1/4 [1].

From formula (24), it is not difficult to notice that under the action of contractive forces, a critical number of waves
in the circumferential direction decreases, whereas under tensile forces it increases.

As is mentioned above, formula (23) holds when condition (20) is fulfilled. If, however, this condition is not
fulfilled, we have to proceed from the full expressions (18).

Defining in such a way the values of N∗ (for fixed δ∗, γ∗, P) and substituting them into (12), we obtain the
corresponding critical value of Q̃∗. In an expanded form, formula (12) for critical pressure has the form

qkp = 0, 57
[
N∗ + N−3

∗ + 2, 37 δ∗N−2
∗ + 1, 404(δ2

∗ + γ∗/4)N
−1
∗ − 2P(N−1

∗ − 1, 185 δ̃∗)
]
gq0∗ − γ0αT .
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Fig. 1.

Fig. 2.

In Fig. 1, in dimensionless form are given critical values of N∗ depending on P for δ∗ = −0, 4; 0; 0, 4 and for
γ∗ = 0; 1, 272. The corresponding charts for γ∗ = 0 are represented by firm curves and for γ∗ = 1, 272 by dotted
curves. The values of Q̃∗(δ∗, γ∗, P) denoted, respectively, by firm and dotted curves are given in Fig. 2. It should be
noted that the curve Q̃∗(δ∗ = 0, γ∗ = 0) for P > 0 given in Fig. 2 coincides practically with the corresponding curve
in [7].

Let us consider now Eq. (11) and write it in the form

N 4
+ bN 3

+ d N + e = 0, b = 1, 185 δ̃∗P − 0, 8775 Q̃, d = −1, 185 δ∗, e = −1. (25)

The roots of that equation coincide the roots of the two equations

N 2
+ (b + B1,2)

N

2
+

(
y1 +

by1 − d

B1,2

)
= 0 and B1,2 = ±

√
8(y1 + b2/8).

Introduce the notation

γ1 = y1 + b2/8, γ2 = y1 − b2/8.

Then the roots of these equations take the form

N1,2 = −

√
8 γ1 + b

4
±

√
−

by1 − d
√

8 γ1
−

b
√

8 y1 − 4 γ2

8
, (26)

N3,4 =

√
8 γ1 − b

4
±

√
by1 − d
√

8 γ1
−

b
√

8 y1 + 4 γ2

8
, (27)

where y1 is any real root of the cubic equation y3
+ 3py + 2q = 0,

3p = 1−
1, 1852 δ̃ 2

∗P M

4
, 2q = −

1, 1852 δ̃ 2
∗(1− P2 M2)

8
, M = 1− 0, 7405 Q̃/̃δ∗ P
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Fig. 3.

for

1, 1852 δ̃ 2
∗|P M |

4
� 1 (̃δ∗ ≤ 0, 5, P M ≤ 0, 5), p =

1
3
. q = −1, 1852 δ̃ 2

∗(1− P2 M2)/16. (28)

Since the discriminant of that equation D > 0, we have one real root

y1 = (−q +
√

D)1/3 + (−q −
√

D)1/3,
√

D =
√

1+ 0, 208 δ̃ 4
∗ (1− P2 M2)2/33/2.

If we take

0, 208 δ̃ 4
∗ (1− P2 M2)� 1 (29)

then in analogy with the above-said, we obtain y1 = 0, 1755 δ̃ 2
∗(1 − P2 M2). Under the restrictions (28), inequality

(29) is all the more fulfilled.
Substituting the values y1, b, d, γ1, γ2 into (26) and (27) and taking into account inequality (28), we find that for

d > 0 (δ∗ < 0), positive is only the root N1, whereas for d < 0 (δ∗ > 0), only the root N3. As a result, we have

N1 =
[
1+ 0, 1755 δ̃ 2

∗P M1(1− P2 M2
1 )− 0, 0877 δ̃ 2

∗(1+ 2 P M1 − 2 P2 M2
1 )
]1/2

+ 0, 2962 δ̃∗(1− P M1) (δ∗ > 0), (30)

N3 =
[
1+ 0, 1755 δ̃ 2

∗P M2(1− P2 M2
2 )− 0, 0877 δ̃ 2

∗(1+ 2 P M2 − 2 P2 M2
2 )
]1/2

− 0, 2962 |̃δ∗|(1− P M2) (δ∗ < 0), (31)

M1 = 1− 0, 7405 Q̃/̃δ∗P, M2 = 1+ 0, 7405 Q̃/|̃δ∗|P.

For δ̃∗ > 0, P/Q̃ > 0, the value M1 = 0, if δ̃∗ = 0, 7405 P/Q̃; for δ̃∗ < 0, P/Q̃ < 0, the value M2 = 0, if
|̃δ∗| = −0, 7405 P/Q̃. In addition, formulas (30) and (31) take the form

N =
√

1− 0, 0877 δ̃ 2
∗ + 0, 2962 δ̃∗ (δ∗ > 0),

N =
√

1− 0, 0877 δ̃ 2
∗ − 0, 2962 |̃δ∗| (δ∗ < 0).

Note that this case with definite values δ̃∗ corresponds to the cases where the normal circumferential stresses under
the action of meridional loading, external pressure and temperature neutralize each other.

For γ0 = 0, we have δ̃∗ = δ∗, and hence for N we obtain formulas given in [7]. In the sequel, we adopt that γ = γ0.
Substituting the values of N , owing to formulas (30) and (31) for the fixed values (̃δ∗, P, Q̃, γ ) into (10), we obtain

the least value for dimensionless frequency ω/ω∗. In Fig. 3 are given the values ω/ω∗ depending on P for the relation
Q̃ = 0, 54 P (for δ∗ = 0, 4; 0; −0, 4) and (γ∗ = 0; 1, 272). The corresponding dependencies for γ∗ = 0 are given
by firm curves and for γ∗ = 1, 272 by dotted ones. Moreover, for comparison, the curves of dependence of the least
frequency on P , when Q̃ = 0, γ = 0 for δ∗ = 0, 4; −0, 4 are denoted, respectively, by 1 and 2.
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Fig. 4.

Next, consider the values m > 1. Using notation (9), we can represent formula (8) in the form

ω2/ω2
∗ = 0, 5 m2[θ2

+ θ−2
+ 2, 37 δ∗θ−1m−1

+ 1, 404 δ̃ 2
∗m
−2

− 2P(1− 1, 185 δ̃∗θm−1)− 1, 755 Q̃θm−1], (32)

θ = N/m. (33)

For δ∗ = 0, formula (32) takes the form

ω2/ω2
∗ = 0, 5 m2[θ2

+ θ−2
+ 1, 404 γ∗/4m2

− 2P(1+ 1, 185 νγ∗g−1θ/m)− 1, 755 Q̃θm−1]. (34)

For ω = 0, γ∗ = 0 we obtain

1, 755 Q̃ = m(θ + θ−3
− 2Pθ−1).

Thus we can see that for the cylindrical shell the least value Q̃ > 0 depending on m will be for m = 1 (when P < 1),
whereas depending on θ , it will be for

θ2
=

√
3+ P2 − P

which completely coincides with the result in [7].
Let us define how ω2 varies as m varies for δ∗ = 0. Towards this end, we represent (34) in the form

ω2/ω2
∗ = 0, 5 m2

[
(θ2
+ θ−2)− 2P

(
1+ 0, 5925 νγ∗g−1 θ

m

)
− 1, 755 Q̃

θ

m

]
+ 1, 404 γ∗/4. (34′)

When m in square brackets increases, the last two terms in (34′) decrease (P > 0, Q̃ > 0). Consequently, the
expression in the square brackets increases, and moreover, the factor m2 increases. Therefore the least value ω is
realized when m = 1. The least value of ω from θ (for fixed m) will be defined below as a particular case of a more
general case, when δ∗ 6= 0.

Consider now the expression allowing us to define Q̃ > 0 for δ∗ 6= 0. The right-hand side in the relation (32)
vanishes for

1, 755 Q̃ = m(θ + θ−3
− 2 Pθ−1)+ 2, 37 δ∗θ−2

+ 1, 404 δ 2
∗θ
−1m−1

+ 2, 37 δ̃∗P.

In the sequel, taking into account inequality (1), we restrict ourselves to the consideration of |δ∗| ≤ 1.
The value of θ realizing the least value of Q̃ (for fixed m) can be defined by means of the positive root of the

equation

θ4
+ (2 P − 1, 404 δ 2

ν)θ
2
− 4, 74 δνθ − 3 = 0, δν = δ∗/m, δ 2

ν = (δ
2
∗ + γ /4)m

2.

Analogously to the above-said, taking into account inequality (20) (with δ∗ replaced by δν), we obtain

θ =

√
√

3+ 0, 234
(
δ2
∗ +

3
4
γ∗

)/
m2 − P + 0, 684 δ∗/m (δ∗ > 0),

θ =

√
√

3+ 0, 234
(
δ2
∗ +

3
4
γ∗

)/
m2 − P − 0, 684 |δ∗|/m (δ∗ < 0).



418 S. Kukudzhanov / Transactions of A. Razmadze Mathematical Institute 170 (2016) 410–419

In the case if the values δ∗, γ∗, P do not satisfy these inequalities, we have to proceed from the complete expressions
for the roots θ1 and θ3. They are of the same form as N1 and N3 defined by equalities (14), where δ∗ is replaced by δν ,
and δ 2

∗ by δ 2
ν .

In Fig. 4, we can see critical values of Q̃(m, P) when m = 1, 3, 5 for (γ∗ = 0; 1, 272), when δ∗ = 0, 4
(Fig. 4a) and δ∗ = −0, 4 (Fig. 4b). The corresponding dependencies for γ∗ = 0 are presented by firm curves, and for
γ∗ = 1, 272 by dotted ones. It is easily seen that for δ∗ > 0 and P < 1, the least value of Q̃∗ is realized, independently
of γ∗, for m = 1; whereas for P , approaching from the above to unity, the critical value of Q̃∗ is realized for large m.
For δ∗ < 0, the least value of Q̃∗ is realized for m = 1, when 0 ≤ P ≤ P∗ (P∗ is the critical value of P for Q̃ = 0).

Consider now the expression (32). The least value ω2 with respect to θ (for the fixed m) is defined by the condition

(ω2)′θ = 0, 5 m2(2 θ − 2 θ−1
− 2, 37 δνθ−2

+ 2, 37 Pδν − 1, 755 Q̃ν

)
= 0, Q̃ν = Q̃/m, δν = δ∗/m

from which it follows that

θ4
+ bθ3

+ dθ + e = 0, b = 1, 185 δ̃ν P − 0, 8775 Q̃ν, d = −1, 185 δν, e = −1.

This equation is of the same form as (25), where δ∗ is replaced by δν , δ̃∗ by δ̃ν and Q̃ by Q̃ν . Therefore, similarly
to the above-said, under the restrictions (34), we obtain

θ =

√
1+ 1, 755 δ̃ 2

ν P M1(1− P2 M2
1 )− 0, 08775 δ̃ 2

ν(1+ 2 P M1 − 2 P2 M2
1 )

+ 0, 2962 δ̃∗(1− P M1), (δ∗ > 0), (35)

θ =

√
1+ 1, 755 δ̃ 2

ν P M2(1− P2 M2
2 )− 0, 08775 δ̃ 2

ν(1+ 2 P M2 − 2 P2 M2
2 )

− 0, 2962 |̃δ∗|(1− P M2) (δ∗ < 0), (36)

where

M1,2 = 1∓
(
0, 7405 Q̃/|̃δ∗|P

)
δ̃ν = δ̃∗/m. (37)

The indices (1) and (2) correspond to δ∗ > 0 and δ∗ < 0, respectively. In the case if the values δν, P, Q̃ do not satisfy
inequality (29) (where δ∗ has to be replaced by δν), then we have to proceed from the full expressions for the roots
θ1 and θ3. They have the same form as N1 and N3 which are defined by equalities (26) and (27), where δ∗ has to be
replaced by δν , and M1,2 have the form (37), since Q̃ν/|̃δν | = Q/|δ∗|.

For δ∗ = 0, P = Q̃ = γ = 0 these formulas yield θ = N = 1 (m = 1). For δ∗ 6= 0, we get formulas derived
in [5].

For δ∗ 6= 0, P 6= 0, Q̃ = γ = 0 we obtain M1,2 = 1, and formulas (35) and (36) will have the form

θ =

√
1+ 1, 755 δ2

ν P(1− P2)− 0, 08775 δ2
ν(1+ 2 P − 2 P2)+ 0, 2962 δν(1− P) (δ∗ > 0),

θ =

√
1+ 1, 755 δ2

ν P(1− P2)− 0, 08775 δ2
ν(1+ 2 P − 2 P2)− 0, 2962 |δν |(1− P) (δ∗ < 0).

For δ∗ 6= 0, Q 6= 0, P = γ = 0, formulas (35) and (36) take the form

θ =

√
1− 0, 1295 δν Q̃ − 0, 08775 (δ2

ν − 1, 48 δν Q̃ − 1, 097 Q̃ 2)+ 0, 2962 (δν + 0, 7405 Q̃) (δ∗ > 0),

θ =

√
1− 0, 1295 δν Q̃ − 0, 08775 (δ2

ν + 1, 48 |δν |Q̃ − 1, 097 Q̃ 2)− 0, 2962 (|δν | − 0, 7405 Q̃) (δ∗ < 0).

In Fig. 5 we can see the least values of frequencies ω(m, P, Q̃), when Q̃ = 0, 54 P for m = 1, 3, 5; γ∗ = 0; 1, 272
for δ∗ = 0, 4 (Fig. 5a) and δ∗ = −0, 4 (Fig. 5b).

The corresponding dependencies for γ∗ = 0 are presented by firm curves and for γ∗ = 1, 272 by dotted ones. It is
not difficult to see that for δ∗ > 0, when P varies in the interval 0 ≤ P < 1, the least is the frequency for m = 1,
whereas for P , approaching from the above to unity, the least frequency is realized for large values m. For δ < 0,
when P varies in the interval 0 ≤ P ≤ P∗ (P∗ is the critical value of P for Q̃ = 0), the least frequency is realized for
m = 1.

It follows from the above formulas (35), (36) and (33) that for m > 1 (0 ≤ P < 1) the values θ are close to unity,
i.e., when n2

≈ λmε
−1/4. Therefore the obtained result is valid only for sufficiently thin shells, when ε−1/4

� λ2
m ;
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Fig. 5.

then the relation n2
� λ2

m holds, and hence the given theory is valid. Moreover, on the basis of formula (32) we find
that for comparatively large m, when θ ≈ 1, ω2/ω2

∗ ≈ 0, 5 m2(θ2
+ θ−2

− 2P) ≈ m2(1− P), i.e., the influence of δ∗
and Q̃ may practically be neglected.

Thus we have shown that if stresses arise in the considered shells, from the action of external pressure, temperature
and filler constraint, change essentially the lowest frequencies, then the influence of these factors on comparatively
higher frequencies is practically inessential. At the same time, the influence of meridional loading is essential both for
the lowest and for the highest frequencies.
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Abstract

The problem of definition of mechanical field in a homogeneous plate supported by finite inhomogeneous inclusion is
considered. The contact between the plate and inclusion is realized by a thin glue layer. The problem is reduced to the boundary
value problem for singular integro-differential equations. Asymptotic analysis is carried out. Using the method of orthogonal
polynomials, the problem is reduced to the solution of an infinite system of linear algebraic equations. The obtained system is
investigated for regularity.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Statement of the Problem and its Reduction to a Singular Integro-Differential Equation (SIDE)

Let an elastic plane with the modulus of elasticity E2 and the Poisson coefficient ν2 on a finite interval [−1, 1] of
the ox-axis be reinforced by an inclusion in the form of a cover plate of small thickness h1(x), with the modulus of
elasticity E1(x) and the Poisson coefficient ν1, loaded by tangential force of intensity τ0(x), and the plate at infinity
towards to the ox and oy-axes be subjected to uniformly stretching forces of intensities p and q, respectively.

Under the conditions of plane deformation we are required to determine contact stresses acting in the interval of
the inclusion and plate joint. An inclusion will be assumed to be a thin plate free from bending rigidity, and the contact
between the plate and inclusion is realized by a thin glue layer with thickness h0 and modulus of shear G0.

Equation of equilibrium of differential element of inclusion has the form [1]

d

dx

(
E(x)

du1(x)

dx

)
= τ−(x)− τ+(x)− τ0(x), |x | < 1, (1)
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where τ±(x) are unknown tangential contact stresses at the upper and lower contours of the inclusion, u1(x)
is horizontal displacement of inclusion points towards the ox-axis, E(x) = E1(x)h1(x)

1−ν2
1

. Introducing the notation

τ(x) := τ−(x)− τ+(x) and based on Eq. (1), deformation of points of inclusion can be expressed as

ε(1)x :=
du1(x)

dx
=

1
E(x)

∫ x

−1
[τ(t)− τ0(t)]dt, |x | < 1. (2)

The condition of equilibrium of the inclusion has the form∫ 1

−1
[τ(t)− τ0(t)]dt = 0. (3)

Assuming that every element of the glue layer is under the conditions of pure shear, the contact condition has the
form [2]

u1(x)− u2(x, 0) = k0τ(x), |x | ≤ 1, (4)

where u2(x, y) are displacement of the plate points along the ox-axis, k0 := h0/G0.
On the basis of the well-known results (see, e.g., [3]), the deformation ε(2)x :=

du2(x,0)
dx of the plane point along the

ox-axis caused by the force factors τ(x), p and q is represented in the form

ε(2)x =
ℵ

2πµ2(1+ ℵ)

∫ 1

−1

τ(t)dt

t − x
+
ℵ+ 1
8µ2

p +
ℵ− 3
8µ2

q, (5)

where ℵ = 3− 4ν2, while λ2 and µ2 are the Lamé parameters.
Taking into account (2) and (5), from the contact conditions (4), we get

1
E(x)

∫ x

−1
[τ(t)dt − τ0(t)]dt −

ℵ

2πµ2(1+ ℵ)

∫ 1

−1

τ(t)dt

t − x
−
ℵ+ 1
8µ2

p −
ℵ− 3
8µ2

q = k0τ
′(x), |x | < 1. (6)

In the notations

ϕ(x) =
∫ x

−1
[τ(t)− τ0(t)]dt, λ =

ℵ

2µ2(1+ ℵ)
,

g(x) =
λ

π

∫ 1

−1

τ0(t)dt

t − x
+ k0τ

′

0(x)+
ℵ+ 1
8µ2

p +
ℵ− 3
8µ2

q,

we rewrite Eq. (6) in the form

ϕ(x)

E(x)
−
λ

π

∫ 1

−1

ϕ′(t)dt

t − x
− k0ϕ

′′(x) = g(x), |x | < 1. (7)

Thus the equilibrium condition (3) takes the form

ϕ(1) = 0. (8)

Thus the above posed boundary contact problem is reduced to the solution of SIDE (7) with the condition (8). From
the symmetry of the problem, we assume, that function E(x) is even and external load τ0(x) is uneven, the solution
of Eq. (7) under the condition (8) can be sought in the class of even functions. Moreover, we assume that the function
is continuous and has a continuous first order derivative on the interval [−1, 1].

2. Asymptotic investigation

Under the assumption that

E(x) = (1− x2)γ b0(x), γ ≥ 0, b0(x) = b0(−x), b0 ∈ C([−1, 1]), (9)

b0(x) ≥ c0 = const > 0
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a solution of problem (7), (8) will be sought in the class of even functions whose derivatives are representable in the
form

ϕ′(x) = (1− x2)αg0(x), α > −1, (10)

where g0(x) = −g0(−x), g0 ∈ C ′([−1, 1]), g0(x) 6= 0, x ∈ [−1, 1].
Taking into account the following asymptotic formulas [4], for −1 < α < 0, we have∫ 1

−1

(1− t2)αg0(t)dt

t − x
= ∓π ctgπα g0(∓1)2α(1± x)α + Φ∓(x), x →∓1,

where Φ∓(x) = Φ∗∓(x)(1 ± x)α∓ , Φ∗∓ belongs to the class H in the neighbourhoods of the points x = ∓1,
α∓ = const > α;

If α = 0, we have∫ 1

−1

g0(t)dt

t − x
= ∓g0(∓1) ln(1± x)+ Φ̃∓(x), x →∓1,

where Φ̃±(x) satisfies the H condition in the neighbourhoods of the points x = ∓1, respectively.

If α > 0, the function Φ0(x) :=
∫ 1
−1

(1−t2)αg0(t)dt
t−x belongs to the class H in the neighbourhoods of the points

x = ±1. Moreover, we have [5]∫ x

−1
(1− t2)αg0(t)dt =

2α(1± x)α+1

α + 1
g0(∓1)F(α + 1, −α, 2+ α, (1± x)/2)+ G∓(x), x →∓1,

where F(a, b, c, x) is the Gaussian hypergeometric function, limx→∓1 G∓(x)(1± x)α+1
= 0.

In the case of the condition −1 < α < 0, Eq. (7) in the neighbourhoods of the points x = −1 takes the form

λ ctgπα g0(−1)2α(1+ x)α −
λ

π
Φ−(x)+

2α(1+ x)α+1g0(−1)
2γ (α + 1)(1+ x)γ b0(−1)

+ G−(x)

− k02α(1+ x)α−1g̃0(−1) = g(−1), g̃0(x) = (1− x2)g′0(x)− 2xg0(x)

which in the neighbourhoods of the points x = −1 is not satisfied. In the condition −1 < α < 0, Eq. (7) has no
solutions. Note, that the negative value of the index α contradicts the physical meaning of condition (4).

Let 0 ≤ α ≤ 1, then we have

λ

π
g0(−1) ln(1+ x) −

λ

π
Φ̃−(x)+

(1+ x)g0(−1)
2γ (1+ x)γ b0(−1)

+ G−(x)

− k0(1+ x)−1g̃0(−1) = g(−1), (11)

for α = 0, and

−
λ

π
Φ0(x)+

2α(1+ x)α+1g0(−1)
2γ (α + 1)(1+ x)γ b0(−1)

+ G−(x)− k02α(1+ x)α−1g̃0(−1) = g(−1) (12)

for 0 < α ≤ 1.
Multiplying now both sides of relations (11) (1+ x)1+ε and (12) by (1+ x)1+ε−α (ε is an arbitrarily small positive

number), we obtain

λg0(−1)(1+ x)1+ε ln(1+ x)−
λ

π
(1+ x)1+εΦ̃−(x)

+
(1+ x)2+εg0(−1)
2γ (1+ x)γ b0(−1)

+ G−(x)(1+ x)1+ε − k02α(1+ x)ε g̃0(−1)

= g(−1)(1+ x)1+ε
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and

−
λ

π
(1+ x)1+ε−αΦ0(x)+

2α(1+ x)2+εg0(−1)
2γ (α + 1)(1+ x)γ b0(−1)

+ G−(x)(1+ x)1+ε−α

− k02α(1+ x)ε g̃0(−1) = g(−1)(1+ x)1+ε−α.

When passing to the limit x → −1, analysis of the obtained equalities shows that the inequality 2 + ε > γ ,
i.e. γ ≤ 2, needs to be fulfilled.

If α > 1, then from relation (12) it follows that α = γ − 1.
Analogous result is obtained in the neighbourhoods of the points x = 1.
Thus we have proved the following statement: When fulfilling condition (9), if problem (7), (8) has a solution

whose derivative is representable in the form (10), then we have: if γ > 2, then α = γ − 1, (α > 1); if γ ≤ 2, then
0 ≤ α ≤ 1.

From the relation

1
π

∫ 1

−1

(1− t)α(1+ t)β P(α,β)m (t)d t

t − x
= ctgπα(1− x)α(1+ x)β P(α,β)m (x)

−
2α+βΓ (α)Γ (β + m + 1)
πΓ (α + β + m + 1)

F(m + 1, −α − β − m, 1− α, (1− x)/2)

obtained by Tricomi [6] for orthogonal Jacobi polynomials P(α,β)m and from the well-known equality (see, e.g., [7])

m!P(α,β)m (1− 2x) =
Γ (α + m + 1)

Γ (1+ α)
F(α + β + m + 1, −m, 1+ α, x)

we get the following spectral relation for the Hilbert singular operator∫ 1

−1

(1− t2)n−1/2 P(n−1/2,n−1/2)
m (t)d t

t − x
= −22n−1Γ (n − 1/2)Γ (3/2− n)P(1/2−n,1/2−n)

m+2n−1 (x), (13)

where Γ (z) is the known Gamma function.
If the inclusion rigidity varies by the law

E(x) = (1− x2)n+
1
2 b0(x),

where b0(x) > 0 for |x | ≤ 1, b0(x) = b0(−x), n ≥ 0 is integer, then following from the above asymptotic analysis,
we obtain α = n − 1

2 for n = 2, 3, . . . and 0 < α < 1 for n = 0 or n = 1 (the same result is obtained for
E(x) = b0(x) > 0, or E(x) = const, |x | ≤ 1).

3. An approximate solution of SIDE (7)

On the basis of the above asymptotic analysis performed in the cases n = 0, n = 1, E(x) = b0(x) > 0,
E(x) = const, |x | ≤ 1 a solution of Eq. (7) will be sought in the form

ϕ′(x) =
√

1− x2
∞∑

k=1

Xk P(1/2,1/2)k (x), (14)

where the numbers Xk have to be defined, k = 1, 2, . . . .
Using the relations arising from (13) and from the Rodrigue formula (see [8, p. 107]), for the orthogonal Jacobi

polynomials, we obtain

1
π

∫ 1

−1

√
1− t2 P(1/2,1/2)k (t)dt

t − x
= −2π P(−1/2,−1/2)

k+1 (x),

ϕ(x) = −(1− x2)3/2
∞∑

k=1

Xk

2k
P(3/2,3/2)k−1 (x), ϕ′′(x) = −2(1− x2)−1/2

∞∑
k=1

k Xk P(−1/2,−1/2)
k+1 (x). (15)
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Substituting relations (14), (15) into Eq. (7), we have

−
(1− x2)3/2

E(x)

∞∑
r=1

Xk

2k
P(3/2,3/2)k−1 (x)− 2λ

∞∑
k=1

Xk P(−1/2,−1/2)
k+1 (x)

+ 2k0(1− x2)−1/2
∞∑

k=1

k Xk P(−1/2,−1/2)
k+1 (x) = g(x), |x | ≤ 1. (16)

Multiplying both parts of equality (16) by P(−1/2,−1/2)
m+1 (x) and integrating in the interval (−1, 1), we obtain an

infinite system of linear algebraic equations of the type

k0m

(
Γ (m + 3/2)
Γ (m + 2)

)2

Xm −

∞∑
k=1

(
R(1)mk +

R(2)mk

k

)
Xk = gm, m = 1, 2, . . . , (17)

where

R(1)mk = −2λ
∫ 1

−1
P(−1/2,−1/2)

k+1 (x)P(−1/2,−1/2)
m+1 (x)dx,

R(2)mk =
1
2

∫ 1

−1

(1− x2)3/2

E(x)
P(3/2,3/2)k−1 (x)P(−1/2,−1/2)

m+1 (x)dx,

gm =

∫ 1

−1
g(x)P(−1/2,−1/2)

m+1 (x)dx .

Investigating system (17) for regularity in the class of bounded sequences and using the known relations for the
Chebyshev first order polynomials and for the function Γ (z) (see [5, pp. 584, 83]),

P(−1/2,−1/2)
m (x) =

Γ (m + 1/2)
√
πΓ (m + 1)

Tm(x), Tm(cos θ) = cos mθ

lim
m→∞

mb−a Γ (m + a)

Γ (m + b)
= 1,

we obtain

R(1)mk = −
2λα(k)β(m)

π
√
(k + 1)m + 1

∫ π

0
cos(k + 1)θ cos(m + 1)θ sin θdθ

= −
2λα(k)β(m)

π
√
(k + 1)(m + 1)

×


1−

1
(2m + 3)(2m + 1)

, k = m,

−
(−1)k+m

+ 1
2

[ 1
(k + m + 3)(k + m + 1)

+
1

(k − m + 1)(k − m − 1)

]
, k 6= m,

=

{
O(m−1), k = m, m →∞,
O(m−5/2), O(k−5/2), k 6= m, m →∞, k →∞,

α(k), β(m)→ 1 for k, m →∞. Introducing the notation X̃m = ωm Xm , where ωm = m
(

Γ (m+3/2)
Γ (m+2)

)2
→ 1, m →∞,

system (17) will take the form

k0 X̃m −

∞∑
k=1

( R(1)mk

ωk
+

R(2)mk

ωkk

)
X̃k = gm, m = 1, 2, . . . . (18)
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By virtue of the Darboux asymptotic formula (see [8, p. 175]), we obtain analogous estimates likewise for R(2)mk ,
and the right-hand side gm of Eq. (18) satisfies at least the estimate

gm = O(m1/2), m →∞.

However, if n = 2, a solution of Eq. (7) will be sought in the form

ϕ′(x) = (1− x2)3/2
∞∑

k=1

Yk P(3/2,3/2)k (x), (19)

where the numbers Yk are to be defined, k = 1, 2, . . . .
Using the relations arising from (13) and from the Rodrigue formula for the orthogonal Jacobi polynomials, we

get

1
π

∫ 1

−1

(1− x2)3/2 P(3/2,3/2)k (t)dt

t − x
= −2π P

(
−3/2,−3/2

)
k+1 (x),

ϕ(x) = −(1− x2)5/2
∞∑

k=1

Yk

2k
P(5/2,5/2)k−1 (x), ϕ′′(x) = −2(1− x2)1/2

∞∑
k=1

kYk P(1/2,1/2)k+1 (x). (20)

Substituting relations (19), (20) into Eq. (7) we obtain

−
1

b0(x)

∞∑
r=1

Yk

2k
P(5/2,5/2)k−1 (x)−

2λΓ 2
(
1/2

)
π

∞∑
k=1

Yk P(−3/2,−3/2)
k+1 (x)

+ 2k0(1− x2)1/2
∞∑

k=1

kYk P(1/2,1/2)k+1 (x) = g(x), |x | ≤ 1. (21)

Reasoning analogous to that carried out for system (18), from (21) we obtain

4k0m
(Γ (m + 5/2)

Γ (m + 3)

)2
Ym −

∞∑
k=1

(
R(3)mk +

R(4)mk

k

)
Yk = g̃m, m = 1, 2, . . . , (22)

where

R(3)mk = −2λ
∫ 1

−1
P(−3/2,−3/2)

k+1 (x)P(1/2,1/2)m+1 (x)dx,

R(4)mk =
1
2

∫ 1

−1

1
b0(x)

P(5/2,5/2)k−1 (x)dx P(1/2,1/2)m+1 (x)dx,

g̃m =

∫ 1

−1
g(x)P(1/2,1/2)m+1 (x)dx .

Introducing the notation Ỹm = δmYm , where δm = m
(

Γ (m+5/2)
Γ (m+3)

)2
→ 1, m →∞, system (22) will take the form

4k0Ỹm −

∞∑
k=1

( R(1)mk

δk
+ m

R(2)mk

δkk

)
Ỹk = g̃m, m = 1, 2, . . . . (23)

Using again the Darboux formula, and the known relation for the Chebyshev second order polynomial (see
[5, p. 584])

P(1/2,1/2)m (x) =
Γ (m + 3/2)
√
πΓ (m + 2)

Um(x), Um(cos θ) =
sin(n + 1)θ

sin θ
,
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for R(3)mk and R(4)mk , we obtain the following estimates:

R(3)mk =

{
O(m−1), k = m, m →∞,
O(m−5/2), O(k−5/2), k 6= m, m →∞, k →∞,

R(4)mk =

{
O(m−1), k = m, m →∞,
O(m−1/2), O(k−1/2), k 6= m, m →∞, k →∞,

and for the right-hand side g̃m of Eq. (23) we have at least the estimate

g̃m = O(m−1/2), m →∞.

Thus systems (18) and (23) are quasi-completely regular for any positive values of parameters k0 and λ in the class
of bounded sequences.

On the basis of the Hilbert alternatives [9,10], if the determinants of the corresponding finite systems of linear
algebraic equations are other than zero, then systems (18) and (23) will have unique solutions in the class of bounded
sequences. Therefore, by the equivalence of systems (18), (23) and SIDE (7) the latter has likewise a unique solution.
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