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Abstract

In this paper there is considered the Elastoplastic problem for infinite plate, that is weakened by two identical square holes.
The boundaries of the holes are partially unknown contours. The plate is in a stressed state, a region of plasticity contains only
unknown parts of holes contours and does not spread inside of the plate. Applying the theory of functions of a complex variable
and the conformal mapping theory the problem is reduced to a boundary value problem of the analytic function theory and the
solution of this problem is obtained, the unknown parts of the holes contours are defined.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Stressed state; Region of plasticity; Conformal mapping; A linear conjugation value problem

Let us consider a homogeneous isotropic infinite plate weakened by two identical square-shaped holes. Assume
that two absolutely rigid square-shaped washers are inserted into the holes and the friction is ignored. Assume that
the plate undergoes compression under the action of principal stresses σ∞x = A, σ∞y = B acting at infinity. Since
the friction is ignored and the washers are absolutely rigid, we have the conditions τtn = 0, un = 0 on the hole
contours. Under such conditions, the behavior of stresses near the vertices of the squares (holes) might be singular
and, naturally, there exists a probability that the plate will develop cracks at these very points.

If we consider a plate of this kind but with cuts at the vertices of the squares along the smooth contours (see Fig. 1),
the stress concentration will be a different one. It is obvious that the distribution of stresses along the hole contours
depends on the cut configuration and dimension. Let us consider such a plate and denote by S the domain occupied
by it in the complex plane z = x + iy. The smooth contours, along which the cuts are made, are unknown parts of the
plate boundary and we denote them by l1, while the remaining rectilinear part of the boundary consists of the known
lines and we denote them by l0. The entire boundary contour is denoted by l. It is assumed that in the X OY coordinate
system in the complex plane z = x + iy, the line l0 consists of the segments parallel to the O X - and OY -axes, while
the domain S is symmetric with respect to the coordinate axes.

It is assumed that the principal stresses are the known values

σ∞x = A, σ∞y = B, τ∞xy = 0. (1)
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Fig. 1. The infinite plate weakened by two square-shaped holes.

The unknown part of the boundary is free from load, while the normal displacement on the rectilinear part is a constant
value:

σn = 0, t ∈ l1, (2)

un = const, t ∈ l0. (3)

The friction is ignored throughout the boundary,

τtn = 0, t ∈ l. (4)

Let us consider the following problem: Given conditions (1)–(4), define the shape of the sought line l1, the part
of the hole contour boundary of the considered plate and the stressed state of the plate with an additional assumption
that the unknown part l1 of the hole contour is in the plastic state, the plastic zone covering only the line l1 and not
spreading inwards the plate,

(σt − σn)
2
+ 4τ 2

tn = 4b2, t ∈ l1, (5)

where σt is a tangential normal stress value.
After some elementary transformations on the basis of well-known Kolosov–Muskhelishvili formulae, we obtain

the equalities

σn + iτtn = Φ(z)+ Φ(z)− e−2iα(t)(zΦ′(z)+Ψ(z)), (6)

2µ(u′t − iu′n) = ~Φ(z)− Φ(z)+ e−2iα(t)(zΦ′(z)+Ψ(z)), (7)

where ϕ(z) and ψ(z) or Φ(z) and Ψ(z), (Φ(z) = ϕ′(z), Ψ(z) = ψ ′(z)) are analytic functions in the domain S
occupied by the body, α(t) is the angle between the O X -axis and the outward normal to the contour L at a point t .

By the plastic state equality (5), using conditions (2)–(4) we obtain the equality

4 Re Φ(t) = σt + σn = 2b, t ∈ l1.

Using conditions (3), (4), from formulas (6), (7) we have the boundary condition

Im Φ(z) = 0, t ∈ l0.

In this case the analytic function Φ(z) have the form

Φ(z) = Γ + Φ0(z), (8)

where Φ0(z) is a holomorphic function in the domain S that vanishes at the point at infinity,

4 Re Γ = σ∞x + σ
∞
y = A + B. (9)

By equalities (8) and (9) we may conclude that the function Φ(z) is bounded at the point at infinity (the rotation angle
at the point at infinity can be ignored since it does not influence the stressed state). Thus for the function Φ(z), which
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is holomorphic in the domain S and bounded at the point at infinity we obtain the following conditions

Re Φ(t) = p, t ∈ l1, (10)

Im Φ(t) = 0, t ∈ l0, (11)

|Φ(t)| < C |z − Ak |
−ε (k = 1, 2, . . . , 8), 0 ≤ ε < 1. (12)

By the symmetry of the plate, for the vectors of stresses acting at the symmetric points z and −z we have the
equality

EFn(z) = − EFn(−z).

By virtue of this equality and taking into account the fact that the normals at the symmetric points can be regarded
as lying in the opposite directions, we may conclude that the expressions σn + iτtn and un + iut take equal values (at
the symmetric points). Thus, using equalities (6), (7) we obtain the following equality for the function Φ(z),

Φ(z) = Φ(−z). (13)

By the symmetry of the problem, the normal displacement and the tangential stress on the OY -axis are equal to
zero and therefore it suffices to consider a part of the domain S, Re z > 0. This part is denoted by D.

We denote by D1 the external part of the unit circle of the plane ζ with center at the origin and cut along the real
axis from the point ζ = m (m > 1) to infinity.

Suppose the function z = −i
√
ω(ζ ) conformally maps the domain D onto the domain D1, where ω(ζ ) is the

analytic function in a domain |ζ | > 1, equal to zero at the point ζ = m and having, for large |ζ |, the form

ω(ζ ) = R · ζ + O(ζ−1), R > 0. (14)

Also, assume that the points Ak (angular points) are mapped into the points ak , k = 1, 2, . . . , 8.
Denote the images of the contours l ′0 and l ′1 by L0 and L1, respectively (l ′0 and l ′1 denote respectively those parts of

the contours l0 and l1 which lie in the domain D). By virtue of equality (13), the values of Φ0(ζ ) = Φ(−i
√
ω(ζ )) on

the cut of the domain D1 from above and from below are equal to each other and thus the function Φ0(ζ ) is analytic
outside the unit circle in a domain |ζ | > 1 and, by virtue of equalities (10) and (11), satisfies the conditions

Re Φ0(σ ) = p, σ ∈ L1, (15)

Im Φ0(σ ) = 0, σ ∈ L0. (16)

Define the function Φ1(ζ ) by the rule

Φ1(ζ ) = Φ0(ζ )− p.

Then the boundary conditions (15), (16) can be written as

Re Φ1(σ ) = 0, σ ∈ L1, (17)

Im Φ1(σ ) = 0, σ ∈ L0. (18)

Define the function Φ2(ζ ) as follows

Φ2(ζ ) =


Φ1(ζ ), |ζ | > 1,

Φ1

(1

ζ

)
, |ζ | < 1.

(19)

From equality (18) it follows that for Φ2(ζ ) the line L0 is not a jump line, and by equality (17) the boundary condition
on the line L1 takes the form

Φ+2 (σ )+ Φ−2 (σ ) = 0, σ ∈ L1, (20)

where L1 is the union of separately lying arcs of the unit circle |ζ | = 1.
At the ends of the line l, in the neighborhood of the points Ak the function ω(ζ ) can be represented as follows [1]

ω(ζ )− Ak = (ζ − ak)
αk ·

{
c0 + c1(ζ − ak)+ · · ·

}
= (ζ − ak)

αk · ω∗(ζ ),
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where ω∗(ζ ) is a nonzero function in the neighborhood of the points ak . γ = αkπ . The angle γ (see Fig. 1) is not
larger than π

2 and therefore 0 < αk ≤
1
2 . Thus, taking into account (12) we obtain

|Φ1(ζ )| < const |ζ − ak |
−βk , where 0 ≤ βk <

1
2
.

So, we look for solutions of the boundary value problem (20) which are unbounded of order less than 1
2 near the points

ak . In the class of such functions, problem (20) has only the zero solution Φ2(ζ ) = 0 and, finally, for the function
Φ(z) we obtain

Φ(z) = p. (21)

Thus it remains to define the line l1 and the function Ψ(z).
By virtue of Eqs. (6), (7) and using conditions (2)–(4), the boundary conditions take the form

e2iα(t)Ψ(t) = b, t ∈ l ′1, (22)

Im e2iα(t)Ψ(t) = 0, t ∈ l ′0, (23)

The angular points of the contour l are denoted by Ak (k = 1, 2, . . . , 8) as shown in the figure. α(t) is a piecewise-
constant function on the contour l ′0: α(t) = αk when t ∈ Ak Ak+1 (k = 2n − 1 or k is odd).

Together with equalities (22), (23), consider the equation of the contour l ′0

t − Ak = −iρ · eiα, ρ = |t − Ak |.

Hence we obtain

Re(te−iα(t)) = Re(A(t) · e−iα(t)), (24)

where A(t) = Ak when t ∈ Ak Ak+1, k = 1, 3, 5, 7.
Taking into account (21) the function Ψ(z) at the point at infinity can be written in the form Ψ∞(z) = B−A

2 and
the condition

B − A

2
< k

must be fulfilled since τmax∞ =
σy−σx

2 =
B−A

2 ; otherwise the entire plate will be in the plastic state.
During the conformal mapping of the domain D onto the domain D1 by the functions z = −i

√
ω(ζ ), Eqs.

(22)–(24) take the following form

e2iα0(σ )Ψ0(σ ) = b, σ ∈ L1, (25)

Im e2iα0(σ )Ψ0(σ ) = 0, σ ∈ L0, (26)

Re
(

e−iα0(σ )
(
−i
√
ω(σ)

))
= Re

(
A0(σ ) · e

−iα0(σ )
)
, σ ∈ L0, (27)

where

Ψ0(σ ) = Ψ
(
−i
√
ω(σ)

)
, α0(σ ) = α

(
−i
√
ω(σ)

)
,

α0(σ ) is the known piecewise-constant function on the contour L0 and the unknown function on L1 since the contour
itself is unknown,

A0(σ ) = Ak, σ ∈ akak+1, k = 1, 3, 5, 7.

To express e2iα0(σ ) we have the equality

e2iα0(σ ) = −
σ 2ω′(σ )
√
ω(σ)

·

√
ω(σ)

ω′(σ )
, |σ | = 1. (28)

Due to the cyclic symmetry of the plate, for the analytic function Ψ(z) we have the equality

Ψ(zeiβ) = e−2iβΨ(z),
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which in our case, in view of the fact that the angle of cyclic symmetry is equal to π (β = π), can be written as

Ψ(−z) = Ψ(z), z ∈ S. (29)

When in the complex plane ζ approaches from above and from below to some point σ lying on the cut, the boundary
values of the function Ψ0(ζ ) are Ψ−0 (σ ) and Ψ+0 (σ ), which in their turn represent Ψ(t) and Ψ(−t). By virtue of
equality (29) we can conclude that the boundary values of Ψ0(ζ ) from above and from below on the cut of the plane
ζ are equal to each other.

So, Ψ0(ζ ) is an analytic function in the external domain of the circle |ζ | = 1.
If we use relation (28) in equality (25), then after differentiating equality (27) with respect to the variable ζ we

obtain the boundary conditions

−σ 2iω′(σ )

2
√
ω(σ)

·Ψ0(σ ) = b ·
iω′(σ )

2
√
ω(σ)

, σ ∈ L1, (30)

Im
(
σ ·

(
−iω′(σ )

2
√
ω(σ)

)
· e−iα0(σ )

)
= 0, σ ∈ L0, (31)

Im
(
e2iα0(σ )Ψ0(σ )

)
= 0, σ ∈ L0. (32)

Equality (30) can be written in the form

−σ 2iω′(σ )

2
·

√
σ − m

ω(σ)
·Ψ0(σ ) ·

√
σ − m =

biω′(σ )

2
·

√
σ − m

ω(σ)
·
√
σ − m. (33)

Consider the function defined by the rule

F(ζ ) =



−ζ 2iω′(ζ )

2
·

√
ζ − m

ω(ζ )
·Ψ0(ζ ) ·

√
1

ζ
− m, |ζ | > 1,

biω′( 1
ζ
)

2
·

√√√√√ 1
ζ
− m

ω( 1
ζ
)
·
√
ζ − m |ζ | < 1.

(34)

Here ζ = m is a unique point in the external domain of a unit circle |ζ | > 1, where the analytic function ω(ζ ) has a

first order zero and therefore
√
ζ−m
ω(ζ )

will be an analytic function in this domain. The function F(ζ ) defined by equality
(34) will be analytic inside and outside the unit circle |ζ | = 1 and, by virtue of Eq. (33), will satisfy, on the part of the
circle |ζ | = 1, the boundary condition

F+(σ ) = F−(σ ), σ ∈ L1. (35)

If we take into consideration equalities (31), (32) and (34), then for the analytic function F(ζ ) in the domain cut along
the line L0 we obtain the boundary conditions

Im
F±(σ )

σ
eiα
= 0, σ ∈ L0. (36)

In the considered case, the expression e−2iα on the contour L0 gets the values equal to 1 or−1. Thus, if we multiply
second of equalities (36) by e−2iα , then for the analytic function F(ζ ) in the complex plane ζ cut along the line L0
we obtain the boundary conditions

Im
F±(σ )

σ
e±iα
= 0, σ ∈ L0. (37)

The obtained equalities can be rewritten as follows

F±(σ )

σ
· e±iα

= σ · F±(σ ) · e∓iα, σ ∈ L0. (38)
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On the contour |ζ | = 1, the positive direction is chosen so that when moving along this direction the domain |ζ | < 1
remains on the left side.

We consider the function F∗(ζ ) defined by

F∗(ζ ) = F(
1

ζ
) =



iω′( 1
ζ
)

2ζ 2 ·

√√√√√ 1
ζ
− m

ω( 1
ζ
)
·Ψ0

(1

ζ

)
·
√
ζ − m, |ζ | < 1,

−biω′(ζ )

2
·

√
ζ − m

ω(ζ )
·

√
1

ζ
− m, |ζ | > 1,

(39)

and also consider the functions W (ζ ) and W∗(ζ ) defined by the equalities

W (ζ ) =
1
ζ

F(ζ ), (40)

W∗(ζ ) = W
(1

ζ

)
. (41)

Further we introduce the function Ω(ζ )

Ω(ζ ) = W (ζ )+W∗(ζ ). (42)

Boundary values of the function Ω(ζ ) are written in the form

Ω+(σ ) = W+(σ )+W+∗ (σ ) =
1
σ

F+(σ )+ σ F−(σ ), (43)

Ω−(σ ) = W−(σ )+W−∗ (σ ) =
1
σ

F−(σ )+ σ F+(σ ). (44)

Using equalities (35), (43) and (44) we have

Ω+(σ ) = Ω−(σ ), σ ∈ L1. (45)

For the boundary values of the function Ω(ζ ) on the internal and the external side of the contour L0, by virtue of
condition (38) and equalities (43), (44) we obtain the equality

Ω+(σ ) = e−2iαΩ−(σ ), σ ∈ L0. (46)

Let us introduce the function T (ζ ) defined by the equality

T (ζ ) = W (ζ )−W∗(ζ ). (47)

Boundary values of the function T (ζ ) are written in the form

T+(σ ) = W+(σ )−W+∗ (σ ) =
1
σ

F+(σ )− σ F−(σ ), (48)

T−(σ ) = W−(σ )−W−∗ (σ ) =
1
σ

F−(σ )− σ F+(σ ). (49)

In view of equalities (35), (48) and (49), for the boundary values of the function T (ζ ) we have

T+(σ ) = T−(σ ), σ ∈ L1. (50)

For the boundary values of the function T (ζ ) on the internal and the external side of the contour L0, by virtue of
condition (38), and equalities (48), (49) we obtain the equality

T+(σ ) = −e−2iα
· T−(σ ), σ ∈ L0. (51)
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The expression e−2iα on the contour L0 gets the values

e−2iα
=

{
1, if σ ∈ a1a2 ∪ a5a6,

−1, if σ ∈ a3a4 ∪ a7a8.
(52)

With (52) taken into account, the boundary equalities (46) and (51) for Ω(ζ ) and T (ζ ) can be rewritten respectively
as follows{

Ω+(σ ) = −Ω−(σ ), σ ∈ a3a4 ∪ a7a8,

Ω+(σ ) = Ω−(σ ), σ ∈ a1a2 ∪ a5a6,
(53){

T+(σ ) = −T−(σ ), σ ∈ a1a2 ∪ a5a6,

T+(σ ) = T−(σ ), σ ∈ a3a4 ∪ a7a8.
(54)

Equalities (53), (54) imply that for the function Ω(ζ ) the part of the contour L0 (a1a2 ∪ a5a6) and the curve L1 is not
a jump line. For the function T (ζ ) the part of the contour L0 (a3a4 ∪ a7a8) and the curve L1 is not the jump line.

The problem is thus reduced to a problem of finding analytic functions Ω(ζ ) and T (ζ ) in the complex plane ζ cut
along a part of the contour L0 (the plane is cut along the lines a3a4 ∪ a7a8 for the function Ω(ζ ), and along the lines
a1a2 ∪ a5a6 for the function T (ζ )) with the conditions

Ω+(σ ) = −Ω−(σ ), σ ∈ a3a4 ∪ a7a8, (55)

T+(σ ) = −T−(σ ), σ ∈ a1a2 ∪ a5a6. (56)

By virtue of equalities (34), (39)–(42) and (47) we may conclude that the sought functions Ω(ζ ) and T (ζ )must satisfy
the following additional conditions

Ω(ζ ) = Ω
(1

ζ

)
, (57)

T (ζ ) = −T
(1

ζ

)
. (58)

Problems (55), (56) are the particular cases of a linear conjugation problem, where the boundary consists of
separately lying smooth contours. In particular the coefficient of the problem is G(σ ) = −1.

We will seek unbounded solutions of order less than one near the nonsingular points ak or, which is the same,
solutions of the class h0 [2].

A general solution of problem (55) has the form

Ω(ζ ) = χ1(ζ ) · P1(ζ ), (59)

where P1(ζ ) is a polynomial, the function χ1(ζ ) is a canonical solution of the same problem that in the general case
has the form

χ(ζ ) = eγ (ζ )
n∏

k=1

(ζ − ak)
λk . (60)

In our case, this formula can be written in the form

χ1(ζ ) = eγ (ζ )(ζ − a3)
λ3 · (ζ − a4)

λ4 · (ζ − a7)
λ7 · (ζ − a8)

λ8 ,

γ (ζ ) =
1

2π i

∫
a3a4

π idσ

σ − ζ
+

1
2π i

∫
a7a8

π idσ

σ − ζ
=

1
2

ln
ζ − a4

ζ − a3
+

1
2

ln
ζ − a8

ζ − a7
,

eγ (ζ ) =
(ζ − a4

ζ − a3

) 1
2
·

(ζ − a8

ζ − a7

) 1
2
.

Here under the expressions ( ζ−a4
ζ−a3

)
1
2 and ( ζ−a8

ζ−a7
)

1
2 we mean the holomorphic branches in the plane cut along the arcs

a3a4 and a7a8 which at the point at infinity are equal to one.

λ3 = λ7 = 0, λ4 = λ8 = −1.
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For the index of the problem we obtain the equality

~1 = −(λ4 + λ8) = 2. (61)

For a canonical solution of the class h0 we eventually obtain the expression

χ1(ζ ) =
C∗1
√

R1(ζ )
, (62)

where C∗1 is constant different from zero,

R1(ζ ) = (ζ − a3) · (ζ − a4) · (ζ − a7) · (ζ − a8). (63)

Under 1
√

R1(ζ )
we mean the holomorphic branch in the plane cut along the arcs a3a4 and a7a8, the expansion of which

into decreasing powers ζ near the point at infinity has the form

1
√

R1(ζ )
= ζ−2

+ B ′1ζ
−3
+ B ′2ζ

−4
+ · · · . (64)

From equalities (34), (39), (40) and (42) we see that the function Ω(ζ ) at the points ζ = 0 and ζ = ∞ has a first
order pole. Since the order of the canonical function χ1(ζ ) is equal to −~1 at the point at infinity, applying the above
argumentation and equality (61), for the function Ω(ζ ) we obtain

Ω(ζ ) = χ1(ζ ) ·
(c′0
ζ
+ c′1 + c′2ζ + c′3ζ

2
+ c′4ζ

3
)
. (65)

In view of equality (57) we may conclude that the constants c′0, c′1, c′2, c′3, c′4 satisfy the conditions

c′0 = c′4, c′1 = c′3, c′2 = c′2. (66)

By an analogous reasoning for problem (56) we obtain

χ2(ζ ) =
C∗2
√

R2(ζ )
, (67)

where C∗2 is a constant different from zero,

R2(ζ ) = (ζ − a1)(ζ − a2)(ζ − a5)(ζ − a6). (68)

In this case, too, under 1
√

R2(ζ )
we mean that holomorphic branch on the plane cut along the arcs a1a2 and a5a6, the

expansion of which near the point at infinity has the form

1
√

R2(ζ )
= ζ−2

+ B ′′1 ζ
−3
+ B ′′2 ζ

−4
+ · · · , (69)

~2 = 2. (70)

For the sought function T (ζ ) we finally obtain

T (ζ ) = χ2(ζ ) ·
(c′′0
ζ
+ c′′1 + c′′2ζ + c′′3ζ

2
+ c′′4ζ

3
)
, (71)

where the constants c′′0 , c′′1 , . . . , c′′4 satisfy the conditions

c′′0 = c′′4 ,

c′′1 = c′′3 ,

c′′2 = c′′2 .

(72)

The constants c′0, c′1, c′2, c′3, c′4 and c′′0 , c′′1 , c′′2 , c′′3 , c′′4 in expressions (65) and (71) for the functions Ω(ζ ) and T (ζ ) can
be found if we use the known lengths of the linear parts of the plate boundary and fix some angular point.
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After that, knowing the functions Ω(ζ ) and T (ζ ), by virtue of equalities (34), (40), (42) and (47), we define the
function F(ζ ). Knowing the function F(ζ ) and using equalities (34) and (39) we find the functions f ′(ζ ) and Ψ0(ζ )

(z = f (ζ ) = −i
√
ω(ζ )).

So, we have defined Ψ0(ζ ) and at the same time the function Ψ(z), too, which together with the function Φ(z)
describes the stressed state of the plate.
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Abstract
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1. Introduction

Let (X,G) be a space equipped with a transformation group G. We say that G acts freely on X if {x ∈ X : gx =
x} = ∅ for all g ∈ G \ {e} where ‘e’ is the identity element of G (in fact, e : X → X is the identity transformation
on X). For any g ∈ G and E ⊆ X, we write gE for the set {gx : x ∈ E} and call a nonempty family (or, class) A
of subsets of X as G-invariant [1] if gE ∈ A for every g ∈ G and E ∈ A. If A is a σ -algebra, then a measure µ on
A is called G-invariant [1] if A is a G-invariant class and µ(gE) = µ(E) for every g ∈ G and E ∈ A. It is called
G-quasiinvariant [1] if A and the σ -ideal generated by µ-null sets are both G-invariant classes. Obviously, every
G-invariant measure is also G-quasiinvariant but not conversely. From a measure theoretic viewpoint, the concept of
“G acting freely” can be suitably extended by saying that “G acts freely with respect to µ” (or, in short, µ-freely) on
X if µ∗{x ∈ X : gx = x} = 0 for every g ∈ G \ {e} where µ∗ is the outer measure induced by µ.

Given a subgroup H of G and an element x of X, a set of the form Hx = {hx : h ∈ H} is called a H-orbit of x in X;
and as x runs over X, the collection of all such H-orbits gives rise to a partition of X into mutually disjoint nonempty
sets. A subset E of X is called invariant with respect to H (or, in short H-invariant) [1] if g(E) = E for every g ∈ H.
It may be easily checked that E is H-invariant if there exists a set F ⊆ X such that E =

⋃
x∈F Hx . A subset E of X

is called a partial selector for H (or, in short, a partial H-selector) if E ∩ Hx consists of at most one point for each
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x ∈ X. If E ∩ Hx consists of exactly one point for each x ∈ X, then E is called a complete H-selector (or, simply,
a H-selector) in X. A partial (resp. complete) H-selector is a subset Y of X which can be similarly defined by taking
restriction of H-orbits on Y . Every partial selector in X is in fact a complete selector with respect to some subcollection
(or, subfamily) of H-orbits and by axiom of choice, every partial H-selector can be extended to a complete H-selector.

Any H-selector in X can be taken as a generalized Definition of a V itali set in X corresponding to the subgroup
H. In particular, the classical V itali set is a Q-selector corresponding to the subgroup Q of rationals in R.

Below we state some generalizations of the classical Vitali Theorem in spaces with transformation groups. The first
two results (Theorems 1.1 and 1.2) are by K harazishvili [2,3] which deal with quasiinvariant measures and the third
one deals with invariant measures and is due to Solecki [4].

Theorem 1.1. Let (X,G) be a space with transformation group G and let µ a σ -finite, G-quasiinvariant measure on
X. Suppose G contains an uncountable subgroup Γ acting µ-freely on X. Then every µ-measurable set of positive
measure contains a subset which is nonmeasurable with respect to µ.

Theorem 1.2. Let (X,G) be a space with transformation group G and let µ be a σ -finite, G-quasiinvariant measure on
X. Suppose G contains an uncountable subgroup Γ acting µ-freely on X, and H be an arbitrary countable subgroup of
Γ . Then there exists a subfamily of {Hx : x ∈ X} such that its union is a µ-nonmeasurable subset of X. Consequently,
all the H-selectors with respect to this subfamily are µ-nonmeasurable subsets of X.

Theorem 1.3. Let (X,G) be space with a transformation group and µ be a σ -finite, G-invariant measure on X.
Suppose G is uncountable and acts µ-freely on X. Then every µ-measurable set E of positive measure in X contains
a subset which is nonmeasurable with respect to every invariant extension of µ.

Detailed proofs of Theorems 1.1 and 1.2 are based on Ulam’s transfinite matrix (or, Ulam (ω,ω1)-matrix) [5] but
the same does not apply in the case of Theorem 1.3 where the proof is entirely independent of it. It may be noted here
that Ulam

,
s transfinite matrix was developed by Ulam for investigating various problems relating to the existence of

nonmeasurable sets and sets not having the Baire property (for details, see [6,7]).
In this article, we give abstract formulations of the three Theorems stated above. They are called abstract because

they are free from any use of measure functions. Instead, we use a new type of structure which is introduced in the
next section.

2. Preliminaries and results

Throughout the paper, we identify every infinite cardinal with the least ordinal representing it, and, every ordinal
with the set of all ordinals preceding it. We write card(A) and card(A) to denote the cardinals of any set A or any class
A of sets and as is usually done else where, express the first infinite and first uncountable cardinals by the symbols ω0

and ω1 respectively. For any cardinal, we use symbols such as ξ , %, η, k, etc. and write k
+

for the successor of k. In
the entire discourse, we work within the framework of ZFC.

Definition 2.1. Let (X, G) be a space with a transformation group G and k be any arbitrary infinite cardinal such that
card(X) ≥ k

+

. A pair (S, I) consisting of two classes S and I of subsets of X will be called a k-additive measurable
structure on (X,G) if

(i) S is an algebra and I (⊆S ) a proper ideal in X.

(ii) Both S and I are k-additive in the sense that they are closed with respect to union of at most k number of sets.

and

(iii) S and I are G-invariant classes.

Henceforth, a k-additive algebra (resp. ideal) on (X,G) will mean that it is a k-additive algebra (resp. ideal) on
X and also G-invariant. In particular, if G consists only of the identity transformation on X, then (S, I) is called a
k-additive measurable structure on X.

Definition 2.2. A measurable structure (S, I) on (X,G) will be called k+-saturated if the cardinality of any arbitrary
collection of mutually disjoint sets from S \ I is at most k.
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The notion of a ω0-additive measurable structure on a nonempty basic set E was defined by K harazishvili [8].
This was referred to as a measurable structure consisting a pair (S, I) where S is a σ -algebra and I ⊆ S a proper
σ -ideal of sets in E. If E is a group and S , I are G-invariant classes, then (S, I) according to K harazishvili is
a G-invariant measurable structure on E. Using this notion of measurable structures, K harazishvili proved several
interesting results in commutative (and more generally) in solvable groups [8]. In [9], he used similar type of structures
to generalize two classical results of Sier pi ński .

It may be noted that the notion of a k-additive, k
+

-saturated measurable structure (S, I) on (X,G) lies somewhere
in between a k-additive measurable structure on (X,G) satisfying countable chain condition (or, Suslin condition) and
a ω0-additive measurable structure on (X,G) which is k

+

-saturated for it is weaker than the former whereas stronger
than the later. We say that G acts I -freely on X if the set {x ∈ X : gx = x} ∈ I for every g ∈ G \ {e}. In fact, this
notion is an extension of “G acts µ-freely on X” already stated in the introduction. If G acts freely on X, then it acts
I -freely on X for every ideal I on X.

The following Theorem is an abstract formulation of Theorems 1.1 and 1.2.

Theorem 2.3. Let k be any arbitrary infinite cardinal and (S, I) be a k-additive measurable structure on (X,G)
where card (X) ≥ k

+

. Also let card (G) = k
+

, G acts I -freely on X and (S, I) be k
+

-saturated. Then every set
E ∈ S \ I contains a subset F which is (S, I)-nonmeasurable. In particular, if E is G-invariant, then for every
subgroup H of G having card H = k, there exists a subfamily of H-orbits in X all selectors with respect to which are
(S, I)-nonmeasurable.

A proof of Theorem 2.3 can be established based on a similar line of argument as given for Theorem 8, Ch 4 [2] and
Theorem 1, Theorem 2 [3] except that we need to replace ω0-additivity, ω1-saturation by k-additivity, k

+

-saturation
and Ulam’s (ω0, ω1)-matrix by a generalized form of the same as defined below.

Definition 2.4 ([6]). Let E be an infinite set with card(E) = k
+

. A double family (Eξ,ζ )ξ<k,ζ<k+ of subsets of E is

called an Ulam (k, k
+

)-matrix over E if the following two conditions are satisfied:

(i) card (E \ ∪{Eξ,ζ : ξ < k}) ≤ k for every ζ < k
+

(ii) Eξ,ζ ∩ Eξ,ζ ′ = ∅ for all ξ < k and any two distinct ordinals ζ < k
+

and ζ ′ < k
+

.

Theorem 2.3 can be further advanced using combinatorial approach. Combinatorial set theory plays a distinctive
role in the construction of a maximal (in the sense of cardinality) family of independent sets in an infinite basic set
and this was first observed by T arski [10]. Here based on the use of some combinatorial methods, we will show that
under certain restrictions in any G-invariant set E ∈ S \ I , there exists a maximal k-independent family of (S, I)-
nonmeasurable sets. Apart from the use of generalized Ulam

,
s matrix, the proof also depends on the following set of

Definitions and results.

Definition 2.5. A family {Ai : i ∈ I} of subsets of X is called k-independent (resp. strictly k-independent) if for each
set J ⊆ I having card(J) < k (resp. card(J) ≤ k) and every function f : J → {0, 1}, we have ∩{A f ( j)

j : j ∈ J} 6= ∅

where A f ( j)
j = A j if f ( j) = 0 and A f ( j)

j = X \ A j if f ( j) = 1.

The definition of an independent or ω0-independent (in the set theoretic sense) family is already given in [11]. The
above definition is framed on this pattern. For another introduction to k-independent (resp. strictly k-independent)
family see [12].

The existence of an ω0-independent family of subsets of an infinite set, with maximal cardinality was solved by

Tarski [10]. He showed that such a family exists is of cardinality 2
card(E)

. The result has many interesting applications.

One such is its use in proving that the cardinality of all ultrafilters defined on an arbitrary infinite set E is 2
2

card(E)

.
However, if the cardinality of the set E is that of the continuum, then the existence of a strictly independent family
of subsets of E having cardinality 2

c
can be proved where c is the cardinality of the continuum. The result has an

application in the construction of a nonseparable invariant extension of the Lebesgue measure space [13].

Proposition 2.6 ([12]). Assume that the generalized continuum hypothesis holds. Then for any two infinite cardinals
λ, k where λ < k we have k

λ
= k provided λ is not cofinal with k.
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Proposition 2.7 ([12]). Let E be an infinite set satisfying the condition card(E k) = card(E), where k is an infinite
cardinal. Then there exists a maximal strictly k-independent family {Ai : i ∈ I} of subsets of E such that card
(I) = 2

cardE
.

Definition 2.5 can be generalized using Definition 2.1, we say that

Definition 2.8. A family {Ai : i ∈ I} of subsets of X is k-independent (resp. strictly k-independent) with respect to
any k-additive measurable structure (S, I) on (X,G) if for each set J ⊆ I having card(J) < k (resp. card(J) ≤ k) and
every function f : J → {0, 1}, B ⊆ X \ ∩{A f ( j)

j : j ∈ J} and B ∈ S implies that B ∈ I , where A f ( j)
j ( j ∈ J) has the

same meaning as before.

Note that in the above Definition, condition (iii) of Definition 2.1 plays no role. So it may be conceived also with
respect to any k-additive measurable structure (S, I) on X. The notion of an independent (resp. strictly independent)
family with respect to a measure is already given in [14]. So the above definition is just an extension of this concept
given in terms of k-additive measurable structures.

Definition 2.9 ([1]). In a space (X,G) with transformation group G, a set E ⊆ X is called almost G-invariant with
respect to an ideal I if gE ∆E ∈ I for every g ∈ G.

If the ideal is k-additive, then it can be easily checked that the class of all sets in X which are almost G-invariant
with respect to I constitutes a k-additive algebra in X.

Definition 2.10. A set E ⊆ X is called (S, I)-thick if B ⊆ X \ E and B ∈ S implies B ∈ I .

Viewed in the above perspective, a family {Ai : i ∈ I} can be called k-independent (resp. strictly k-independent)
with respect to (S, I) on X if for each set J ⊆ I having card(J) < k (resp. card(J) ≤ k) and each function
f : J→ {0, 1}, the set ∩{A f ( j)

j : j ∈ J} is (S, I)-thick in X.

Proposition 2.11. Assume that the pair (S, I) is a k-additive measurable structure on a space (X,G) equipped with
a transformation group G. Also let (S, I) be k

+

-saturated and E ⊆ X be almost G-invariant with respect to I . Then
E ∈ S implies either E ∈ I or X \ E ∈ I . If E 6∈ S , then both E and X \ E are (S, I)-thick in X.

Proof. Let E ∈ S . If E ∈ I , then there is nothing to prove. Suppose E 6∈ I . Then X \E ∈ I , for otherwise it is possible
to generate by transfinite recursion a k-sequence {gα : α < k} in G such that X \

⋃
0≤α<k

gαE ∈ I . But this contradicts
the hypothesis.

Now let E 6∈ S . Then E 6∈ I and also X \ E 6∈ I . If E is not (S, I)-thick, then there should exist B ∈ S \ I
such that B ⊆ X \ E. By a similar reasoning as given above, there exists a k-sequence {hα : α < k} in G such that
X \

⋃
0≤α<k

hαB ∈ I . But then from k-additivity of I , there exists some α0 < k such that E ∩ hα0
B 6∈ I . But this

again contradicts the hypothesis.
Finally, we arrive at

Theorem 2.12. Let k be any arbitrary infinite cardinal and (S, I) be k-additive measurable structure on (X,G)where
card (X) ≥ k

+

. Also let card (G) = k
+

, G acts freely on X and (S, I) be k
+

-saturated. Then under the assumption of
generalized continuum hypothesis, for every G-invariant set E ∈ S \ I which contains at least one G-selector L ∈ S ,
there exists a family {Ai : i ∈ I} of (S, I)-nonmeasurable subsets of E which is strictly k-independent (and hence

k-independent) with respect to (S, I) on E and having cardinality 2k
+

.

Proof. We write G in the form G =
⋃

%<k
+

G% where {G% : % < k
+

} is an increasing family of subgroups of G

satisfying (i) G% 6=
⋃

η<%
Gη and (ii) card G% ≤ k for every % < k

+

(for the above representation, see [11], Exercise
19, Ch 3).

Since G acts freely on X, the above increasing family yields a disjoint covering {Ωγ : γ < k
+

} of E where
Ωγ = (Gγ \

⋃
η<γ

Gη)L. Moreover, as L ∈ S , G acts freely on X and (S, I) is k
+

-saturated, so gL ∈ I for every
g ∈ G.
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Now we consider the Ulam (k, k
+

)-matrix (Πξ,%)ξ<k,%<k+ over k
+

and set Eξ,% =
⋃

γ∈Πξ ,%
Ωγ . Then there exists

ξ0 and a subset Ξ of k
+

having card Ξ = k
+

such that the sets Eξ0 ,%
6∈ I for % ∈ Ξ and are mutually disjoint. This is

so because I is k-additive and E 6∈ I . Moreover, each Eξ0 ,%
for % ∈ Ξ is almost G-invariant with respect to I which

follows from the constructions of the sets Ωγ .
Now note that k is not cofinal with k

+

. This is so because k is not cofinal with 2k and 2k
= k

+

under the assumption
of generalized continuum hypothesis. Hence according to Propositions 2.6 and 2.7 it follows that there exists a strictly

k-independent family {Ξi : i ∈ I} of subsets of Ξ such that card(I) = 2k
+

. This means that for every set J ⊆ I
having card(J) ≤ k and every function f : J → {0, 1},

⋂
j∈J

Ξ
f ( j)

j 6= ∅. Consequently,
⋂

j∈J
A

f ( j)

j 6= ∅ where
Ai =

⋃
%∈Ξi

Eξ0
,% for i ∈ I making {Ai : i ∈ I} a strictly k-independent family of sets in E. Moreover, this family is

strictly k-independent (and hence k-independent) with respect to (S, I) on E consisting only of (S, I)-nonmeasurable
sets since each Eξ0

,% is (S, I)-thick in E.
Hence the theorem.
In all the previous derivations, Ulam (k, k

+

)-matrix (or, generalized Ulam matrix) played a decisive role. But such
matrices cannot be applied in proving our next Theorem (which is an abstract formulation of Theorem 1.3). Instead,
we pursue a different line of development, where we assume in advance the existence of a system of small sets (or, a
small system) satisfying a definite set of axioms. The approach is a modified version of the one originally introduced
by Riećan and Neubrunn [15] (see also [16–19]) in giving abstract formulations of some well-known classical results
on measure and integration.

Let S be a k-additive algebra on (X,G) and

Definition 2.13. {Nα}0<α<k be a k-sequence members which are classes of subsets of X satisfying the following set
of conditions:

(i) ∅ ∈ Nα , Nα ⊆ S and S ∩N ′α 6= ∅ for 0 < α < k where N ′α = {E ⊆ X : E 6∈ Nα}.

(ii) For every α, β < k, there exists γ > α, β such that Nγ ⊆ Nα and Nγ ⊆ Nβ . In other words, with respect to the
inclusion relation (among classes of sets), the system {Nα}0<α<k is directed.

(iii) For any α < k, there exists α∗ > α such that for any one-to-one correspondence β → Nβ with β > α∗,⋃
β Eβ ∈ Nα whenever Eβ ∈ Nβ .

(iv) Each Nα is a G-invariant class.

(v) If E ∈ Nα and F ⊆ E, then F ∈ Nα . Thus every Nα is a hereditary class. Moreover, if {Eξ : ξ < k} is a nested
family of sets in S such that

⋂
ξ

Eξ ∈ Nα , then Eξ ∈ Nα for some ξ < k.

We further add that

Definition 2.14. A k-additive algebra S on (X,G) is ergodic (with respect to {Nα}0<α<k) if given E ∈ S ∩N ′α and
F ∈ S ∩N ′β , there exist g ∈ G and γ > α, β such that gE ∩ F ∈ S ∩N ′γ .

Theorem 2.15. Let k be an infinite regular cardinal and S be a k-additive algebra on (X,G) such that card
(G) = k

+

≤ card(X), G acts freely on X and {Nα}0<α<k be as defined above. Moreover,

(1) Let S be ergodic with respect to {Nα}0<α<k

(2) X 6∈
⋂

0<α<k Nα and X =
⋃

0<α<k Yα where Yα ∈ S such that for no k-additive algebra T on (X,G) containing
S , there can exist α0 < k and a collection {Eβ : β ∈ D} having card(D) = k of mutually disjoint sets Eβ ∈ T∩N ′α0
which are all contained in some set in the given collection {Yα : α < k}. Then every set E which belongs to S but not
in

⋂
0<α<k Nα contains a subset F that does not belong to any k-additive algebra on (X,G) which contains S .

Proof. We set N∞ =
⋂

0<α<k
Nα . From the conditions (i), (iii), (iv) and first part of (v), it is easy to check that N∞

is a k-additive ideal on (X,G) so that the pair (S,N∞) becomes a k-additive measurable structure on (X,G). Since
X 6∈ N∞, so without loss of generality, we may assume that Yα 6∈ N∞ for 0 < α < k.

Now since E ∈ S and not in N∞, we fix α0 < k so that E ∈ N ′α0
. The justification for this follows from the

Definition of N∞. It is possible, by virtue of ergodicity to generate an injective mapping λ : k → k with the property
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that for each α < k, there exists g ∈ G such that g−1(Yα) ∩ E ∈ N ′λ(α). Also by condition (ii) (defining {Nα}0<α<k),
the family {Nλ(α) : α < k} can be chosen as a nested one with λ(α) > α∗0 .

We set Γα = {g ∈ G : g−1(Yα) ∩ E ∈ N ′λ(α)} and claim that there is some α1 < k such that card Γα1
= k

+

. For

otherwise, card (
⋃

Γα : α < k) ≤ k and so for any g ∈ G \
⋃

α<k
Γα , g−1(Yα)∩E ∈ Nλ(α) which consequently leads

to the conclusion that E = E ∩ X = E ∩ g−1(
⋃

α<k
Yα) =

⋃
α<k

g−1(Yα) ∩ E ∈ Nα0
. But this contradicts the choice

of the set E.
From Γα1

we choose a set {gα : α < k} of cardinality k. Then by first part of condition (v),
⋃

β>α
g−1
β (Yα1

) ∩ E ∈

N ′λ(α1 )
and by an application of the second part of the same condition, the set E0 =

⋂
α<k

⋃
β>α

g−1
β (Yα1

) ∩ E ∈

S ∩N ′λ(α1 )
. We set Wα =

⋃
β>α

g−1
β (Yα1

) ∩ E so that E0 =
⋂

α<k
Wα .

Let H be a subgroup generated by {gα : α < k}. Then card H = k. From the family of all H-orbits we extract out
the subfamily members of which have nonempty intersection with E0 , and choose one selector (or, partial selector)
V0 corresponding to this subfamily such that V0 ⊆ E0 . Let V be an H-selector in X which extends V0 and we write
F = E ∩ V .

We claim that F cannot belong to any k-additive algebra on (X,G) which contains S . If possible, let F belong to
one such k-additive algebra T. Then V0 = F ∩ E0 ∈ T and therefore E0 ⊆ H(V0). Let Vα = V0 ∩ Wα . Now as the
action of G on X is free, so the collection {gα(Vα ) : α < k} consists of mutually disjoint sets. We claim that for every
ξ < k, there exists α < k such that Vβ ∈ Nξ for β > α. For otherwise, there would exist ξ0 < k and a cofinal set D
of k such that Vα ∈ N ′ξ0

for every α ∈ D and {gα(Vα ) : α ∈ D} is a family of mutually disjoint subsets of Yα1
. As k

is regular, this contradicts the hypothesis. Hence V0 =
⋂

α<k

⋃
β>α

Vβ ∈ N∞ and therefore E0 ∈ T ∩ N∞. But this
again contradicts our earlier derivation that E0 ∈ S ∩N ′λ(α1 )

⊆ T ∩N ′λ(α1 )
.

This proves the theorem.

Remarks. The above result is an abstract generalization (without using measure) of Solecki’s theorem. This may be
easily observed if we choose k = ω0 and (R,R) as our space with transformation group (R,+); S = dom(λ) where
λ is Lebesgue measure on R, T = dom(µ) where µ is any translation invariant extension of λ and for any n < ω

define Nn = {E ∈ dom(λ) : λ(E) < 1
n }.
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Abstract

An elementary proof of Robinson’s Energy Delay Theorem on minimum-phase functions is provided. The situation in which
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1. Introduction

Let D be the unit disk in the complex plane and T = {z ∈ C: |z| = 1} be its boundary. The set of all analytic in
D functions is denoted by A(D). The Hardy space H2

= H2(D) consists of all the functions f ∈ A(D) the Taylor
series

f (z) =
∞∑

n=0

anzn

of which satisfy the condition

∞∑
n=0

|an|
2 <∞.

In engineering, these functions are known as z-transforms (resp. transfer functions) of discrete-time causal signals
(resp. filter impulse responses) with a finite energy. It is well known that the boundary values of f ∈ H2 exist a.e.,

f+(e
iθ ) = lim

r→1−
f (reiθ ) for a.a. θ ∈ [0, 2π), (1)
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and f+ ∈ L2(T), the Lebesgue space of square integrable functions on T. Furthermore, f+ ∈ L2
+(T) := { f ∈

L2(T) : cn( f ) = 1
2π

∫ 2π
0 f (eiθ )e−inθ dθ = 0 for n < 0}. Actually, there is a one-to-one correspondence between H2

and L2
+(T), and therefore we may naturally identify these two classes.

For any function f ∈ H2, the inequality

| f (0)| ≤ exp

(
1

2π

∫ 2π

0
log | f+(eiθ )| dθ

)
(2)

holds (see, e.g., [1, Th. 17.17]). The extreme functions for which (2) turns into an equality are called outer. In
engineering they are also known as minimum-phase, or optimal, functions. According to the original definition of
outer functions by Beurling [2], they admit the representation

f (z) = c · exp

(
1

2π

∫ 2π

0

eiθ
+ z

eiθ − z
log | f+(eiθ )| dθ

)
, (3)

where c is a unimodular constant. This representation easily implies that the equality holds in (2) for outer functions
and it can be proved that the converse is also true. In particular, boundary values of the modulus of an outer function
uniquely determine the function itself up to a constant multiple with absolute value 1.

The following property of minimum-phase functions, first observed by Robinson [3], plays an important role in
several signal processing applications.

Theorem 1. Let f (z) =
∑
∞

n=0 anzn and g(z) =
∑
∞

n=0 bnzn be H2-functions satisfying

| f+(e
iθ )| = |g+(e

iθ )| for a.e. θ. (4)

If f is of minimum-phase, then for each N,

N∑
n=0

|an|
2
≥

N∑
n=0

|bn|
2. (5)

Robinson gave a physical interpretation to inequality (5) “that among all filters with the same gain, the outer
filter makes the energy built-up as large as possible, and it does so for every positive time” [4] and found geological
applications of minimum-phase waveforms. Consequently, the term minimum-delay [5, p. 211] functions is being
used to describe optimal functions, and Theorem 1 is known as the Energy Delay Theorem within the geological
community [6, p. 52].

Theorem 1 was further extended to the matrix polynomial case and used in MIMO communications in [7]. In [8],
the theorem is formulated and proved for general operator valued functions in abstract Hilbert spaces.

In this paper, we provide a very short and simple proof of Theorem 1 based on classical facts from the theory of
Hardy spaces. This is done in Section 3, while the modification of this proof fitting the matrix case is discussed in
Section 4. In final Section 5, we treat the situation in which (5) turns into an equality for infinitely many values of N .
The preliminary Section 2 contains some notation and known results, included for convenience of reference.

2. Notation

Let L p
= L p(T), 0 < p ≤ ∞, be the Lebesgue space of p-integrable complex functions f with the norm

‖ f ‖L p =
( 1

2π

∫ 2π
0 | f (e

iθ )|p dθ
) 1

p for p ≥ 1 (with the standard modification for p = ∞), and let H p
= H p(D),

0 < p ≤ ∞, be the Hardy space{
f ∈ A(D) : sup

r<1

∫ 2π

0
| f (reiθ )|p dθ <∞

}
with the norm ‖ f ‖H p = supr<1 ‖ f (rei ·)‖L p for p ≥ 1 (H∞ is the space of bounded analytic functions with the
supremum norm). It is well known that boundary value function f+ (see (1)) exists for every f ∈ H p, p > 0, and
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belongs to L p. Furthermore,

‖ f ‖H p = ‖ f+‖L p (6)

for every p ≥ 1, and it follows from the standard Fourier series theory that∥∥∥∥∥ ∞∑
n=0

anzn

∥∥∥∥∥
H2

=

(
∞∑

n=0

|an|
2

)1/2

. (7)

Condition∫ 2π

0
log | f+(eiθ )| dθ > −∞ (8)

holds for every f ∈ H p, and the function f is called outer if the representation (3) is valid. We have the equality (the
optimality condition) in (2) if and only if f is outer (see [1, Th. 17.17]). One can check, using the Hölder inequality,
that if f and g are outer functions from H p and Hq , respectively, then the product f g is the outer function from
H pq/(p+q).

A function u ∈ A(D) is called inner if u ∈ H∞ and

|u+(e
iθ )| = 1 for a.a. θ ∈ [0, 2π). (9)

If in addition u(z) 6= 0 for z ∈ D, then it is called a singular inner function. Every h ∈ H p can be factorized as

h(z) = B(z)I(z) f (z), (10)

where B(z) = zm ∏
n=1

|ωn |
ωn

ωn−z
1−zn z is a Blaschke product, I is a singular inner function and f is an outer function from

H p. (Observe that |h+| = | f+| a.e.) In these terms, a function is outer if and only if the inner factor in factorization
(10) is constant, i.e., without loss of generality, B ≡ I ≡ 1.

These definitions and factorization (10) are classical in mathematical theory of Hardy spaces. However, engineers
frequently discard the middle term in the factorization (10): a singular inner factor, having the form

I(z) = exp

(
−

1
2π

∫ 2π

0

eiθ
+ z

eiθ − z
dµs(θ)

)
,

where µs is a singular measure on [0, 2π), is trivial in case of rational f and thus not encountered in practice. So, they
sometimes define a minimum-phase function f ∈ H2(D) by the condition 1/ f ∈ A(D) (i.e. f (z) 6= 0 for z ∈ D). This
definition can be used for rational functions, however, not for arbitrary analytic functions. As an example of a singular
inner function I shows, the inequality in (2) might be strict in this case (|I(0)| < 1, while

∫ 2π
0 log |I+(eiθ )| dθ = 0).

So, the equality may not hold in (2) even if f −1
∈ A(D), as it was incorrectly claimed in [9, p. 574].

We will make use of the following standard result from the theory of Hardy spaces (see [10, p. 109]).
Smirnov’s Generalized Theorem: if f = g/h, where g ∈ H p, p > 0, h is an outer function from Hq , q > 0,

and f+ ∈ Lr , r > 0, then f ∈ H r .
For a positive integer N , let PN be the projection operator on H2 defined by

PN :
∞∑

n=0

anzn
7−→

N∑
n=0

anzn .

For h(z) =
∑
∞

n=0 γnzn
∈ A(D), let supp(ĥ) = {n ∈ N0 : γn 6= 0}.

Now we turn to matrices and matrix functions. For a given set X of scalars or scalar valued functions, let Xm×n
stand for the set of m × n matrices with the entries from X . The elements of L p

d×d (resp. H p
d×d ) are assumed to be

matrix functions with domain T (resp. D) and range Cd×d , and of course F+ ∈ L p
d×d for F ∈ H p

d×d .
For M ∈ Cd×d , we consider the Frobenius norm of M :

‖M‖2 =

( d∑
i=1

d∑
j=1

|mi j |
2
)1/2

=
(
Tr(M M∗)

)1/2
,
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where M∗ = M
T

, and for F ∈ H p
d×d , we define

‖F‖H2
d×d
=

( d∑
i=1

d∑
j=1

| fi j |
2
H2

)1/2

.

Similarly, we define ‖F+‖L2
d×d

for F+ ∈ L2
d×d . By virtue of (6), we have

‖F‖H2
d×d
= ‖F+‖L2

d×d
(11)

and, as in (7),∥∥∥∥∥ ∞∑
n=0

Anzn

∥∥∥∥∥
H2

d×d

=

(
∞∑

n=0

‖An‖
2
2

)1/2

(12)

for any sequence of matrix coefficients A0, A1, . . . from Cd×d .
A matrix function F ∈ H2

d×d is called outer if det F is an outer function from H2/d . This definition is equivalent
to number of other definitions of outer matrix functions (see, e.g., [11]). On the other hand, a matrix function
U ∈ A(D)d×d is called inner if U ∈ H∞d×d and U+ is unitary a.e.:

U+(e
iθ )U∗+(e

iθ ) = Id for a.a. θ ∈ [0, 2π). (13)

3. Proof of Theorem 1

According to (7), the statement of Theorem 1 is equivalent to

‖PN ( f )‖H2 ≥ ‖PN (g)‖H2 , N ∈ N0. (14)

For any bounded analytic function u ∈ H∞, we have

PN (u f ) = PN
(
u · PN ( f )

)
(15)

since PN
(
u · PN ( f )

)
= PN

(
u( f − ( f − PN ( f )))

)
= PN (u f ) − PN

(
u( f − PN ( f ))

)
= PN (u f ). Here we utilized

the fact that the kernel of PN is the set of functions in H2 having zero as its root of multiplicity at least N , and thus
invariant under multiplication by u.

Since (4) holds, by virtue of Beurling factorization (10), there exists an inner function u such that g = u f .
Therefore, taking into account (6), (9), and (15), we get

‖PN ( f )‖H2 = ‖u PN ( f )‖H2 ≥ ‖PN
(
u PN ( f )

)
‖H2 = ‖PN (u f )‖H2 = ‖PN (g)‖H2 . (16)

Thus (14) follows, and Theorem 1 is proved.

4. The matrix case

In this section we prove the following matrix version of Theorem 1.

Theorem 2. Let F(z) =
∑
∞

n=0 Anzn , An ∈ Cd×d , and G(z) =
∑
∞

n=0 Bnzn , Bn ∈ Cd×d , be matrix functions from
H2

d×d satisfying

F+(e
iθ )
(
F+(e

iθ )
)∗
= G+(e

iθ )
(
G+(e

iθ )
)∗ for a.a. θ ∈ [0, 2π). (17)

If F is optimal, then for each N ∈ N0,

N∑
n=0

‖An‖
2
2 ≥

N∑
n=0

‖Bn‖
2
2. (18)
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Proof. Let PN be the projection operator on H2
d×d defined by

PN :

∞∑
n=0

Anzn
7−→

N∑
n=0

Anzn .

By virtue of (12), we have to prove that

‖PN (F)‖H2
d×d
≥ ‖PN (G)‖H2

d×d
. (19)

Let

U (z) = F−1(z)G(z). (20)

It follows from (17) that (13) holds. Therefore, U+ ∈ L∞d×d . Since, in addition, F−1(z) = 1
det F(z)Cof

(
F(z)

)
,

where det F(z) is an outer function, by the generalized Smirnov’s theorem (see Section 2), we have U ∈ H∞d×d .
Consequently, (20) is an inner matrix function.

Exactly in the same manner as (15) was proved, we can show that

PN (FU ) = PN
(
PN (F)U

)
. (21)

Since unitary transformations preserve standard Euclidian norm on the space Cd , it follows from (13) that, for any
V ∈ C1×d ,

‖V ‖2 = ‖V ·U+(e
iθ )‖2 for a.a. θ ∈ [0, 2π). (22)

Therefore, by virtue of (11) and (22),

‖X‖H2
d×d
= ‖X+‖L2

d×d
= ‖X+U+‖L2

d×d
= ‖XU‖H2

d×d
(23)

for any X ∈ H2
d×d . It follows now from (23), (21), and (20) that

‖PN (F)‖H2
d×d
= ‖PN (F) ·U‖H2

d×d
≥ ‖PN

(
PN (F) ·U

)
‖H2

d×d

= ‖PN (FU )‖H2
d×d
= ‖PN (G)‖H2

d×d
.

Thus (19) is true, and Theorem 2 is proved. �

5. An energy conservation property

As was mentioned in the Introduction, in the setting of Theorem 1 it can happen that the equality is attained in (5)
for some values of N even when g is not a constant multiple of f . The next proposition describes exactly when it
is possible. Though not very explicit, it will become instrumental when characterizing the case of (5) turning into an
equality for infinitely many values of N .

Proposition 1. Let f, g ∈ H2 satisfy (4), with f being an outer function. Then

N∑
n=0

|an|
2
=

N∑
n=0

|bn|
2 (24)

holds for some N ∈ N if and only if

g = u f, (25)

where u is a finite Blaschke product,

u(z) = czm0

m1∏
j=1

z − α j

1− α j z
, |c| = 1, m0,m1 ∈ N0, 0 < |α j | < 1 for j = 1, 2, . . . ,m1, (26)

the polynomial PN ( f ) has the degree

deg(PN ( f )) ≤ N − m0 (27)
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and vanishes at w j := 1/α j , j = 1, 2, . . . ,m1:

PN ( f )(w j ) = 0, j = 1, 2, . . . ,m1. (28)

Proof. It follows from (4) that (25) holds for some inner function u.
The chain of relations in (16) reveals that the equality

‖PN ( f )‖H2 = ‖PN (g)‖H2 (29)

holds if and only if

‖u PN ( f )‖H2 = ‖PN
(
u PN ( f )

)
‖H2 .

Therefore (24), which is equivalent to (29), holds if and only if

u PN ( f ) is a polynomial with deg
(
u PN ( f )

)
≤ N . (30)

Under the conditions (26), (27), and (28) the relation (30) holds since

m1∏
j=1

z − α j

1− α j z
PN ( f ) is a polynomial of the same degree as PN ( f ) (31)

and

deg
(
u PN ( f )

)
= m0 + deg

(
PN ( f )

)
. (32)

Thus sufficiency is proved.
If now (30) holds, then u = u PN ( f )/PN ( f ) is a rational function and, being inner, it has to be of the form (26).
Furthermore, the polynomial PN ( f ) should be divisible by

∏m1
j=1(1−α j z). Therefore (28) holds and (31) follows.

This implies that (32) holds and (27) follows by virtue of (30), thus proving the necessity. �

Note that conditions (27), (28) imply the inequality N ≥ m0+m1 =: m. In particular, N = 0 only if m0 = m1 = 0,
that is, g is a scalar multiple of f . This is of course in agreement with the extremal property of outer functions, and
guarantees (in a trivial way) that (24) holds for all N ∈ N, and thus infinitely many times. The next theorem describes
all the cases in which the latter phenomenon occurs.

Theorem 3. Let f (z) =
∑
∞

n=0 anzn and g(z) =
∑
∞

n=0 bnzn be functions from H2 satisfying (4), with f being outer.
The set N of those positive integers N for which (24) holds is infinite if and only if (25), (26) hold and

f = qh, (33)

where

q(z) =
m1∏
j=1

(z − w j ) with w j = 1/α j , j = 1, 2, . . . ,m1, (34)

and h is an outer “lacunary” analytic function with infinitely many gaps in its Fourier spectrum supp(ĥ) of length at
least m = m0 + m1. Moreover, N ∈ N if and only if

N − m + 1, . . . , N 6∈ supp(ĥ). (35)

Proof. Sufficiency. Let g be defined by (25) and (26), and let (33) hold for the polynomial (34) of degree m1 and an
outer analytic function h satisfying (35) for some N . Then we have

PN ( f ) = PN (qh) = PN
(
q PN (h)

)
= q

N−m∑
n=0

γnzn

due to (33), (15), and (35). Therefore,

deg
(
PN ( f )

)
≤ m1 + N − m = N − m0.

Hence N ∈ N by virtue of Proposition 1.
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Necessity. By Proposition 1, g is given by (25), where the inner multiple (26), is such that (27), (28) hold for all
N ∈ N .

Labeling elements of N as an increasing sequence Nk , we thus have

PNk ( f ) = qhk, (36)

where polynomials hk satisfy

deg(hk) ≤ Nk − m. (37)

The function q is the same for all k as it is uniquely determined by (26).
Since PNk ( f ) → f in H2 as k → ∞, we have qhk → f . Therefore (hk)+ converges to f+/q+ in L2(T) (since

1/q+ is bounded on T), and consequently hk is convergent in H2. Let h be the limit. Letting k →∞ in (36), we arrive
at (33). Since f is outer, the function h is such as well.

Let now N = Nk be an arbitrary element of N . Because of (33) and (36), we have

f − PN ( f ) = q(h − hk).

Since f − PN ( f ) is divisible by zN+1 and 0 is not the root of q, we have h−hk = zN+1h̃k for some analytic function
h̃k ∈ H2. Therefore h = hk + zN+1h̃k with deg(hk) ≤ N − m (see (37)) and this implies that the coefficients with
indices from {N − m + 1, N − m + 2, . . . , N } are omitted in the power expansion of h. Thus (35) holds and the
theorem is proved. �

Corollary 1. Let {N1, N2, . . .} ⊂ N be any infinite set. Then there exist functions f, g ∈ H2 where f is an outer
function such that

N∑
n=0

|an|
2
=

N∑
n=0

|bn|
2 (38)

if and only if N ∈ {N1, N2, . . .}.

Proof. Let q(z) = z − w with |w| > 1, and let h(z) =
∑
∞

n=0 γnzn be an outer function from H2 such that γn = 0 if
and only if n ∈ {N1, N2, . . .} (the outerness of h can be achieved, for example, by making sure that |γ0| >

∑
∞

n=1 |γn|).
Define f = qh and g(z) = (1−wz)h(z). Then it follows from the proof of the theorem that (38) holds if and only if
N ∈ {N1, N2, . . .}. �
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Abstract

Our aim is to establish sharp weighted bounds for the Hilbert transform of odd and even functions in terms of the mixed type
characteristics of weights. These bounds involve A p and A∞ type characteristics. As a consequence, we obtain weighted bounds
in terms of so-called Andersen–Muckenhoupt type characteristics.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Hilbert transform; Sharp weighted bound; One-weight inequality

1. Introduction

In this paper, we investigate sharp weighted bounds, involving Ap and A∞ characteristics of weights, for
the Hilbert transform of odd and even functions. Following general results we derive these sharp weighted Ap
bounds in terms of so-called Andersen-Muckenhoupt characteristics. Let X and Y be two Banach spaces. Given a
bounded operator T : X → Y , we denote the operator norm by ‖T ‖B(X,Y ) which is defined in the standard way
i.e. ‖T ‖B(X,Y ) = sup‖ f ‖X≤1 ‖T f ‖Y . If X = Y we use the symbol ‖T ‖B(X).

A non-negative locally integrable function (i.e. a weight function) w defined on Rn is said to satisfy the Ap(Rn)

condition (w ∈ Ap(Rn)) for 1 < p <∞ if

‖w‖Ap(Rn) := sup
Q

(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q
w(x)1−p′dx

)p−1

<∞,

where p′ = p
p−1 and supremum is taken over all cubes Q in Rn with sides parallel to the coordinate axes. We call

‖w‖Ap(Rn) the Ap characteristic of w.

∗ Corresponding author.
E-mail addresses: jgilles@mail.sdsu.edu (J. Gilles), meskhi@rmi.ge (A. Meskhi).
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In 1972, B. Muckenhoupt [1] showed that ifw ∈ Ap(Rn), where 1 < p <∞, then the Hardy–Littlewood maximal
operator

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy

is bounded in L p
w(Rn). S. Buckley [2] investigated the sharp Ap bound for the operator M . In particular, he established

the inequality

‖M‖L p
w(Rn) ≤ C‖w‖

1
p−1
Ap(Rn)

, 1 < p <∞. (1.1)

Moreover, he showed that the exponent 1
p−1 is best possible in the sense that we cannot replace ‖w‖

1
p−1
Ap

by ψ(‖w‖Ap )

for any positive non-decreasing function ψ growing slowly than x
1

p−1 . From here it follows that for any λ > 0,

sup
w∈Ap

‖M‖L p
w

‖w‖
1

p−1−λ

Ap

= ∞.

Let H be the Hilbert transform given by

(H f )(x) = p.v.
1
π

∫
∞

−∞

f (t)

x − t
dt, x ∈ R.

In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden [3] solved the one-weight problem for the Hilbert transform in
terms of Muckenhoupt condition. In particular, they established the inequality

‖H f ‖L p
w(R) ≤ cp‖w‖

β

Ap(R)‖ f ‖L p
w(R) (1.2)

for some positive constant β and some constant cp depending on p. S. Petermichl showed that the value of the
exponent β = max{1, p′/p} in (1.2) is sharp. In particular, the following statement holds (see [4] for p = 2, [5] for
p 6= 2):

Theorem A. Let 1 < p < ∞ and let w be a weight function on R. Then there is a positive constant cp depending
only on p such that

‖H‖B(L p
w)
≤ cp‖w‖

β

Ap(R), (1.3)

where β = max
{

1, p′

p

}
. Moreover, the exponent in (1.3) is sharp.

We say that w ∈ A∞(Rn) if w ∈ Ap(R) for some p > 1. In what follows we will use the symbol ‖ρ‖A∞ for the
A∞ characteristic of a weight function ρ:

‖ρ‖A∞ = sup
I

1
ρ(I )

∫
I

M(ρχI )(x)dx .

This characteristic appeared first in the papers by Fiji [6] and Wilson [7,8] and is lower than that the one introduced
by Hruščev [9]:

[ρ]A∞ = sup
I

(
1
|I |

∫
I
ρ(x)dx

)
exp

(
1
|I |

∫
I

log ρ−1(x)dx

)
.

In 2012, Hytönen, Perez and Rela [10] improved Buckley’s result and obtained a sharp weighted bound involving
A∞ constant:

‖M‖B(L p
w)
≤ cn

(
1

p − 1
‖w‖Ap‖σ‖A∞

)1/p

, 1 < p <∞, σ = w1−p′ .
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Later, in [11], it was proved that the sharp weighted bound involving the A∞ characteristic for the Calderón–
Zygmund operator provides an improved estimate than the one obtained by Hytönen in his celebrated paper [12]
about the A2 conjecture. We recall the result of [10] for the Hilbert transform H in the following theorem.

Theorem B. Let H be the Hilbert transform and let p ∈ (1,∞). Then if w ∈ Ap(R+), we have

‖H‖B(L p
w)
≤

‖w‖
2/p
Ap
‖σ‖

2/p−1
A∞

, if p ∈ (1, 2],

‖w‖
2/p
Ap
‖w‖

1−2/p
A∞

, if p ∈ [2,∞),
(1.4)

where σ := w1−p′ .

It is known (see [11]) that

cn‖ρ‖A∞ ≤ [ρ]A∞ ≤ ‖ρ‖Ap . (1.5)

It can be checked that

[σ ]
p−1
A∞
≤ ‖σ‖

p−1
A′p
= ‖w‖Ap .

In the sequel we will use the following relation between weights w : R→ R+ and W : R+ → R+ (resp. between
σ : R→ R+ and Σ : R+→ R+)

w(x) :=
W (
√
|x |)

2
√
|x |

(
resp. σ(x) :=

Σ (
√
|x |)

2
√
|x |

)
,

where x 6= 0.
Finally we mention that weighted sharp estimates for one-sided operators on the real line in terms of one-sided

Muckenhoupt characteristics were established in [13] (see also [14] for related topics regarding multiple integral
operators).

The relation A ≈ B means that there are positive constants c1 and c2 (in general these constants will depend only
on the space exponents r or p) such that c1 B ≤ A ≤ c2 B.

For a weight function ρ and a measurable set E ⊂ R, we denote

ρ(E) :=
∫

E
ρ(x)dx .

Constants will be denoted by c or C (the same notation will be used even if they can differ from line to line).

2. Preliminaries

Let f : R→ R+ be odd. Then it is easy to check that H f is even and given by (H f )(x) = (H0 f )(x) for x > 0,
where

(H0 f )(x) =
2
π

∫
∞

0

t f (t)

t2 − x2 dt, x > 0.

If f is even, then H f is odd and is given by (H f )(x) = (He f )(x) for x > 0, where

(He f )(x) =
2
π

∫
∞

0

x f (t)

t2 − x2 dt.

Our aim is to investigate the sharp weighted bound of the type (1.4) for operators H0 and He, and to derive sharp
estimates of the type:

‖H0 f ‖L p
W (R+)

≤ cp‖W‖
β

A0
p(R+)
‖ f ‖L p

W (R+)
, (2.1)

‖He f ‖L p
W (R+)

≤ cp‖W‖
γ

Ae
p(R+)
‖ f ‖L p

W (R+)
(2.2)
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where 1 < p <∞ and

‖W‖A0
p(R+) := sup

[a,b]⊂(0,∞)

(
1

b2 − a2

∫ b

a
W (x)dx

)(
1

b2 − a2

∫ b

a
x p′W 1−p′(x)dx

)p−1

‖W‖Ae
p(R+) := sup

[a,b]⊂(0,∞)

(
1

b2 − a2

∫ b

a
x pW (x)dx

)(
1

b2 − a2

∫ b

a
W 1−p′(x)dx

)p−1

.

K. Andersen [15] showed that if 1 < p <∞, then

(i) H0 is bounded in L p
W (R+) if and only if ‖W‖A0

p(R+) <∞;

(ii) He is bounded in L p
W (R+) if and only if ‖W‖Ae

p(R+) <∞.
The following lemma was proved in [15] but we give the proof because of the exponents of characteristics of

weights.

Lemma 2.1. Let 1 < r <∞ and let w be a non-negative measurable function on (0,∞). Then

‖W‖A0
r (R+) ≈ ‖w‖Ar (R)

with constants depending only on r.

Proof. First we show that

‖w‖Ar (R) ≤ cr‖W‖A0
r (R+).

Let [a, b] ⊂ (0,∞). Then(∫ b

a
w(x)dx

)(∫ b

a
w1−r ′(x)dx

)r−1

=

(∫ b

a
W (
√

x)
dx

2
√

x

)(∫ b

a
W 1−r ′(

√
x)

dx

(2
√

x)1−r ′

)r−1

= 2r
(∫ √b

√
a

W (x)dx

)(∫ √b

√
a

xr ′W 1−r ′(x)dx

)r−1

.

If ‖W‖A0
r (R+) <∞, then the latter expression is bounded by

2r
‖W‖A0

r (R+)((
√

b)2 − (
√

a)2)r = 2r
‖W‖A0

r (R+)(b − a)r .

This follows from the definition of ‖W‖A0
r (R+).

Suppose now that [a, b] ⊂ (−∞, 0). Arguing as before, we see that(∫ b

a
w(x)dx

)(∫ b

a
w1−r ′(x)dx

)r−1

= 2r
(∫ √

−a

√
−b

W (x)dx

)(∫ √
−a

√
−b

xr ′W 1−r ′(x)dx

)r−1

≤ 2r
‖W‖A0

r (R+)(b − a)r .

Now let a < 0 < b. Suppose that c > 0 is a number such that [a, b] ⊂ [−c, c], and [a, b] and [−c, c] have at least
one common endpoint. Then by using the above arguments we see that(∫ b

a
w(x)dx

)(∫ b

a
w1−r ′(x)dx

)r−1

≤ 2r
(∫ c

0
w(x)dx

)(∫ c

0
w1−r ′(x)dx

)r−1

≤ cr‖W‖A0
r (R+)(b − a)r

where cr is a positive constant depending only on r . Finally,

‖w‖Ar (R) ≤ cr‖W‖A0
r (R+).

Inequality ‖W‖A0
r (R+) ≤ cr‖w‖Ar (R) follows from the arguments similar to those used above. �
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Now we introduce Wilson type A∞ characteristic for weights defined on R+. The classes A0
∞ and Ae

∞ are defined
as follows:

A0
∞ = ∪p>1 A0

p; Ae
∞ = ∪p>1 Ae

p.

Let ‖W‖A0
∞

be the A0
∞ characteristic of a W on R+ defined as follows:

‖W‖A0
∞
= sup
(a,b)⊂R+

1
W ([a, b])

∫ b

a
x
(
M(Wχ(a,b))

)
(x)dx,

where

M f (x) = sup
(c,d)3x

1

d2 − c2

∫ d

c
W (t)dt. (2.3)

Here the supremum is taken over all interval (c, d) ⊂ R+ containing x .
The next statement will be useful to prove the main Theorem.

Lemma 2.2. Let w be a weight on R. Then the following relation holds:

‖w‖A∞(R) ≈ ‖W‖A0
∞(R+) (2.4)

with constants independent of w.

Proof. At first suppose that I := (a, b) ⊂ R+. Then it is easy to see that

1
w(I )

∫
I

M(wχI )(x)dx ≈
1

W ([
√

a,
√

b])

∫ √b

√
a

x M
(
Wχ
[
√

a,
√

b]

)
(x)dx, (2.5)

with constants independent of I and w, where M is defined by formula (2.3).
Next, we use the following observation: let x ∈ (a, b),

M
(
wχ(a,b)

)
(x) ≈ M

(
Wχ(

√
|a|,
√
|b|)

)
(
√

x)

which can be obtained from the relation between w and W . In a similar manner, if I := (a, b) ⊂ R−, we have

1
w(I )

∫ b

a
M(wχI )(x)dx ≈

1

W ([
√
−a,
√
−b])

∫ √
−a

√
−b

x M
(
Wχ(

√
a,
√

b)

)
(x)dx . (2.6)

Let now 0 ∈ I . Then we represent I = (a, 0] ∪ (0, b) to get

1
w(I )

∫
I

M(wχI )(x)dx ≤
1

w(I )

∫
(a,0)

M(wχ(a,0))(x)dx

+
1

w(I )

∫
(a,0)

M(wχ(0,b))(x)dx +
1

w(I )

∫
(0,b)

M(wχ(a,0))(x)dx

+
1

w(I )

∫
(0,b)

M(wχ(0,b))(x)dx := S1 + S2 + S3 + S4.

We have to estimate S2 and S3. Estimates for S1 and S4 can be derived in a similar manner by using the estimates

1
w(I )

∫ 0

a
M(wχ[a,0])(x)dx ≤

1
w([a, 0])

∫ 0

a
M(wχ[a,0])(x)dx

and

1
w(I )

∫ b

0
M(wχ[0,b])(x)dx ≤

1
w([0, b])

∫ b

0
M(wχ[0,b])(x)dx .
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Simple observations lead us to the estimates:

Si ≤ C
1

W ([0,
√

A])

∫ √A

0
x M

(
Wχ
[0,
√

A]

)
(x)dx ≤ C‖W‖A0

∞
, i = 2, 3,

where A := max{|a|, |b|}. Finally we have that

‖w‖A∞(R) ≤ C‖W‖A0
∞

with a constant C independent of w. The reverse estimate can be obtained in a similar manner. �

The next lemma is a consequence of (1.5), Lemmas 2.2 and 2.1.

Lemma 2.3. Let 1 < p <∞. Then

‖W‖A0
∞
≤ C‖W‖A0

p
.

In the sequel we assume that σ = w1−p′ . Taking into account the definition of Σ ,we have that

Σ (u) = W 1−p′(u)(2u)p′ . (2.7)

Theorem 2.1. Let 1 < p <∞. Then (i)

‖H0‖B(L p
W )
≤

‖W‖
2/p
A0

p
(‖Σ‖A0

∞
)2/p−1, if p ∈ (1, 2],

‖W‖2/p
A0

p
(‖W‖A0

∞
)1−2/p, if p ∈ [2,∞),

(2.8)

(ii)

‖He‖B(L p
W )
≤

‖W‖
2/p
Ae

p
(‖W 1−p′

‖A0
∞
)1−2/p′ , if p ∈ (1, 2],

‖W‖2/p
Ae

p
(‖Wp‖A0

∞
)2/p′−1, if p ∈ [2,∞),

(2.9)

where W and Σ are related by (2.7) and Wp(x) = W (x)(2x)p.

Proof. Let us prove (i). The proof for (ii) is a consequence of the dual arguments and will be discussed afterwards.
Let us denote g(x) := f (

√
x), x > 0, g(x) = 0 otherwise. Suppose that w and W are related as in Lemma 2.1, we

have ∫
+∞

−∞

|g(x)|pw(x)dx =
∫
∞

0
| f (
√

x)|pw(x)dx =
∫
∞

0
| f (
√

x)|p
W (
√

x)

2
√

x
dx =

∫
∞

0
| f (u)|pW (u)du.

Furthermore, for x > 0,

(Hg)(x) =
1
π

∫
∞

0

f (
√

t)

t − x
dt =

1
π

∫
∞

0

2t f (t)

t2 − x
dt = (H0 f )(

√
x).

By definition, we have

‖H0 f ‖p
L p

W (R+)
=

∫
∞

0
|(H0 f )(x)|pW (x)dx =

∫
∞

0
|(H0 f )(

√
u)|pW (

√
u)

du

2
√

u

=

∫
∞

0
|(H0 f )(

√
u)|pw(u)du

=

∫
∞

0
|(Hg)(u)|pw(u)du ≤ ‖Hg‖p

L p
w(R)

.

Let 1 < p ≤ 2. Then by Theorem B and Lemmas 2.1 and 2.2 we have that

‖H‖B(L p
w(R)) ≤ ‖w‖

2/p
Ap(R)‖σ‖

2/p−1
A∞(R) ≈ ‖W‖

2/p
A0

p(R+)
‖Σ‖2/p−1

A0
∞(R+)
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where σ = w1−p′ , σ(x) = Σ (
√
|x |)/(2

√
|x |). Observe that W and Σ are related also by (2.7). The case p ≥ 2

follows analogously. Thus we have (2.8).
To prove (2.9) we use the duality arguments. First observe that the Riesz identity for the classical Hilbert transform

H and the appropriate substitution of the variable yields that∫
R+
(H0 f )(x)g(x)dx = −

∫
R+
(Heg)(x) f (x)dx .

Hence, it follows that the adjoint of Ho is He with the equation

‖He‖B(L p
w(R+)) = ‖Ho‖B(L p′

σ (R+))
.

By applying case (i) and Lemmas 2.1 and 2.2 we have the desired result also for (ii). �

The next statement gives sharp weighted bound in terms of Ap characteristics.

Theorem 2.2. Let 1 < p <∞ and let W be a weight function on R+. Then the following estimates hold
(a)

‖H0‖L p
W (R+)

≤ cp‖W‖
β

A0
p(R)
; (2.10)

(b)

‖He‖L p
W (R+)

≤ C p‖W‖
β

Ae
p(R+)

(2.11)

with some positive constants cp and C p, respectively, depending only on p, where β = max{1, p′

p }. Moreover the
exponent β in (2.10) and (2.11) is best possible.

Proof. We prove (a). The estimate (b) follows from the duality arguments. Let 1 < p ≤ 2. To show the validity of (a)
we use (2.8), Lemma 2.1 and relations

‖Σ‖A0
∞(R+) ≈ ‖σ‖A∞(R) ≤ ‖σ‖Ap′ (R) = ‖w‖

p′−1
Ap(R) ≈ ‖W‖

p′−1
A0

p(R+)
.

The case p > 2 follows from the estimates:

‖W‖A0
∞(R+) ≈ ‖w‖A∞(R) ≤ ‖w‖Ap(R) ≈ ‖W‖A0

p(R).

Sharpness: First we will show the sharpness for p = 2. Let

g(x) = xε−1χ(0,1), w(x) = |x |1−ε.

Then (see [4]) the following estimate holds:

‖g‖L2(R) ≈
1
ε
; ‖w‖A2(R) ≈

1
ε
; ‖Hg‖L2

w(R) ≥ 4ε−3.

Let now

f (x) = x2(ε−1)χ(0,1), W (x) = |x |3−ε.

Hence by using the same changing of variable we find that

‖ f ‖2
L2

W (R)
≈

1
ε
; ‖H0 f ‖2

L2
W (R+)

≥ ε−3.

Consequently, if the exponent 1− ε is the best possible for the A0
2 characteristic in the one-weight inequality for some

λ > 0, we have

4ε−3
≤ ‖H0 f ‖L2

W (R+)
≤ C‖W‖1−λ

A0
2
‖ f ‖L2

W (R)
≤ C‖W‖1−ε

A0
2
≤ Cελ−3.

Let 1 < p < 2. Suppose that 0 < ε < 1 and that w(x) = |x |(1−ε)(p−1). Then it is easy to check that (see also [4])

‖w‖
1/(p−1)
Ap

≈
1
ε
.
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Observe also, that for the function defined by

f (x) = xε−1χ(0,1), (2.12)

the relation ‖ f ‖L p
w
≈

1

ε
1
p

holds. Let

g(x) = x2(ε−1), W (x) = |x |2(1−ε)(p−1).

Then the following estimates can be checked easily by using the appropriate change of variables:

‖H0g‖L p
w(R+) = 2−1/p

‖H f ‖L p
w(R) ≥ 2−1/p 1

ε
‖ f ‖L p

w(R)

≈ ‖w‖
p′/p
Ap
‖ f ‖L p

w(R) ≈ ‖W‖
p′/p
A0

p
‖g‖L p

W (R+)

are fulfilled. Thus we have sharpness in (2.10) for 1 < p < 2.
It remains to consider the case when p > 2. In the same manner as above, we can argue for the operator He

and obtain the sharpness in (2.11) for 1 < p < ∞. The duality arguments now imply the sharpness in (2.10) for
2 < p <∞. �
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Abstract

In this paper, we prove a Hölder’s type inequality for fully measurable grand Lebesgue spaces, which involves the notion of
fully measurable small Lebesgue spaces. It is proved that these spaces are non-reflexive rearrangement invariant Banach function
spaces. Moreover, under certain continuity assumptions, along with several properties of fully measurable small Lebesgue spaces,
we establish Levi’s theorem for monotone convergence and that grand and small spaces are associated to each other.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Banach function norm; Grand Lebesgue space; Associate space and Levi’s theorem

1. Introduction

Let I = (0, 1) and 1 < p < ∞. The grand Lebesgue space L p) consists of measurable functions f defined on I
for which

‖ f ‖L p) := sup
0<ε<p−1

(
ε

∫
I
| f (x)|p−εdx

)1/(p−ε)

<∞.

This space was originated in [1], and since then it has attained enormous attention. The people have studied this space
for its basic properties like duality and convergence, for which one may refer to [2,3] and [4]. Further, the weighted
version of this space was introduced in [5], and thereafter the boundedness of several integral operators has been
studied on these spaces. One may refer to [6–8] and the references therein.
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In [9], Capone, Formica and Giova generalized the space L p), the new space being denoted by L p),δ , which consists
of measurable functions f defined on I , for which

‖ f ‖L p),δ := ess sup
0<ε<p−1

(
δ(ε)

∫
I
| f (x)|p−εdx

)1/(p−ε)

<∞, (1.1)

where 0 6≡ δ ∈ L∞(0, p − 1).
In a very recent paper [10], Anatriello and Fiorenza have made a further generalization, replacing p− ε in (1.1) by

a general measurable function and called it as fully measurable grand Lebesgue space, denoted by L p[·],δ(·) defined as
follows:

Let p(·) be a measurable extended real valued function defined on I such that p(·) ≥ 1 almost everywhere (a.e.),
δ ∈ L∞, δ > 0 a.e. and 0 < ‖δ‖L∞ ≤ 1. The space L p[·],δ(·) consists of measurable functions f defined on I for
which ‖ f ‖L p[·],δ(·) := ρp[·],δ(·)(| f |) <∞, where

ρp[·],δ(·)(| f |) = ess sup
x∈I

ρp(x)(δ(x)| f (·)|)

and

ρp(x)(δ(x)| f (·)|) =


(∫

I
(δ(x)| f (t)|)p(x)dt

) 1
p(x)

if 1 ≤ p(x) <∞;

ess sup
t∈I

(δ(x)| f (t)|) if p(x) = ∞.

In [10], some properties of the space L p[·],δ(·) have been established and moreover, Hardy inequality has been obtained
in the framework of these spaces. The authors in [10] clearly pointed it out that the space L p[·],δ(·) is different than
the variable exponent Lebesgue space L p(x) which has been studied extensively during the recent past. A systematic
treatment of the space L p(x) along with updated references can be found in [11].

The aim of the present paper is to investigate the duality for the fully measurable grand Lebesgue space L p[·],δ(·).
For the grand Lebesgue space L p), the duality was studied by Fiorenza [2]. In fact, he introduced the so called small
Lebesgue space, denoted by L p)′ and proved that this space is the associate space of L p), where 1

p +
1
p′ = 1. In order

to define the space L p)′ , Fiorenza formulated an auxiliary space L(p
′

and then, its norm was used to define a norm on
the space L p)′ . Moreover, in an other paper [12], it was shown that the norms defined on the spaces L(p

′

and L p)′ are
equivalent. In our case, under continuity assumptions for δ and p, we define fully measurable small Lebesgue space
L(p[·]

′,δ(·) as associate space of the space L p[·],δ(·). Here, the novelty is that we do not go via intermediary auxiliary
space.

The paper is organized as follows: In order not to disturb the flow of the paper, we collect certain prerequisites in
Section 2 in the form of notations, conventions, known definitions and results. In Section 3, we define fully measurable
small Lebesgue space and prove that it is a Banach space, and possesses lattice property. The fact that fully measurable
small Lebesgue space is a Banach function space has been proved in Section 4, where we also prove Levi’s theorem
for monotone convergence and a Hölder type inequality for such spaces. Finally, in Section 5, we discuss the fully
measurable small Lebesgue space as associate space of fully measurable grand Lebesgue space.

2. Prerequisites

Throughout the paper, we shall be using the following notations/conventions/considerations:

• N := set of natural numbers.
• M := set of extended real valued measurable functions defined on I .
• M+

:= subset of M, consisting of non-negative functions.
• M0 := set of finite a.e. measurable functions defined on I .
• M+

0 := subset of M0, consisting of non-negative functions.
• p+ := ess supx∈I p(x).
• |E | := Lebesgue measure of E, E ⊆ I .
• χE := the characteristic function on E, E ⊆ I .
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• For a fixed x ∈ I , ρp(x)(| f |) denotes the L p-norm of f on I , i.e.,

ρp(x)(| f |) =


(∫

I
| f (t)|p(x)dt

) 1
p(x)

if 1 ≤ p(x) <∞;

ess sup
t∈I
| f (t)| if p(x) = ∞.

• For a fixed x ∈ I, L p(x) denotes the usual L p- space with exponent p = p(x).
• For a fixed x ∈ I, p(x)′ is the conjugate of p(x),i.e., 1

p(x) +
1

p(x)′ = 1.

• δ(E) := ess infx∈E
1
δ(x) , where E ⊆ I, |E | > 0. In particular, 0 < δ(I ) <∞.

• fn ↑ f means that { fn} is nondecreasing sequence converging to f.
• C denotes a positive constant which may be different at different places.
• The relation A ≈ B means there exist positive constants c1 and c2, such that c1 A ≤ B ≤ c2 A.
• Unless specified otherwise, our discussion will be on the set I = (0, 1) and all the functions will be extended real

valued measurable, defined on I.

Below we collect certain definitions and results which can easily be found in the literature, e.g., one may refer
to [13] and [14].

A mapping ρ : M+

0 → [0,∞] is called a Banach function norm if for all f, g, fn ∈ M+

0 , n ∈ N, for all constants
λ ≥ 0, and for all measurable subsets E ⊂ I , the following properties hold:

• ρ( f ) = 0 if and only if f = 0 a.e. on I
• ρ(λ f ) = λρ( f )
• ρ( f + g) ≤ ρ( f )+ ρ(g)
• If 0 ≤ g ≤ f a.e. in I , then ρ(g) ≤ ρ( f ) (lattice property)
• If 0 ≤ fn ↑ f a.e. in I , then ρ( fn) ↑ ρ( f ) (Fatou property)
• ρ(χE ) <∞
•
∫

E f (t)dt ≤ CE ρ( f ), for some constant CE <∞, depending upon E and ρ, but independent of f.

Note. In the above definition, one can take any measurable set Ω ⊂ R in place of I.

If ρ is a Banach function norm, then the Banach space

X = X (ρ) := { f ∈ M0 : ρ(| f |) <∞}

is called a Banach function space (BFS) with the norm ‖ f ‖X := ρ(| f |).
A function f in a BFS X is said to have an absolutely continuous norm in X if ‖ f χEn‖X → 0 for every sequence

{En}
∞

n=1 satisfying En → ∅ a.e. The set of all those functions in X having absolutely continuous norm is denoted by
Xa . If X = Xa,then the space X is said to have absolutely continuous norm.

Let X be a BFS, then the closure in X of the set of bounded functions is denoted by Xb.

Theorem A. Let X be a BFS, then Xa ⊆ Xb ⊆ X.

If ρ is a Banach function norm, then its associate norm ρ′ is defined on M+

0 by

ρ′(g) := sup
f ∈M+, ρ( f )≤1

∫
I

f (t)g(t)dt, g ∈ M+

0 .

Let ρ be a Banach function norm and X = X (ρ) a BFS determined by ρ. Let ρ′ be the associate norm of ρ. Then
the BFS X ′ = X ′(ρ′) determined by ρ′ is called the associate space of X.

Theorem B. Every BFS X, coincides with its second associate space X ′′.

Theorem C. The Banach space dual X∗ of a BFS X, is isometrically isomorphic to the associate space X ′ if and only
if X has absolutely continuous norm.

Theorem D. A BFS X is reflexive if and only if both X and its associate space X ′ have absolutely continuous norm.

Theorem E. Let X be a rearrangement invariant BFS and X ′ be its associate space, then X ′ is rearrangement
invariant.
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3. Fully measurable small Lebesgue space

In this section, we shall define “fully measurable small Lebesgue space” which later, under continuity assumptions
for δ and p, has been proved to be the associate space of L p[·],δ(·).

Let p(·) ∈ M be such that p(·) ≥ 1 a.e., δ ∈ L∞ and δ > 0 a.e. For g ∈ M+

0 , E ⊆ I and |E | > 0, define

ρ′p[·]′,δ(·),E (g) := inf
g=
∑

gk
gk∈M0

∞∑
k=1

ess inf
x∈E

ρp(x)′

(
1
δ(x)
|gk(·)|

)
. (3.1)

In particular, when E = I , we write ρ′p[·]′,δ(·),E as ρ′p[·]′,δ(·).
The following lemma was proved in [2]:

Lemma F. If f, g ∈ M+

0 and g ≤ f =
∑
∞

k=1 fk, fk ≥ 0, k ∈ N, then g =
∑
∞

k=1( fk − hk), where

hk =

(
fk −max

{
g −

k−1∑
j=1

f j , 0

})
χEk

,

Ek =

{
x ∈ I :

k∑
j=1

f j (x) > g(x)

}
and 0 ≤ hk ≤ fk, for all k ∈ N.

In the expression (3.1), g is composed of gk ∈ M0. However, in view of Lemma F, following the steps as in
Corollary 2.2 of [2], it can be proven that it is sufficient to have gk’s in M+

0 . Precisely, we have the following:

Proposition 3.1. For g ∈ M+

0 , we have

ρ′p[·]′,δ(·)(g) = inf
g=
∑

gk
gk∈M+

0

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
.

Now onwards, the definition of ρ′p[·]′,δ(·)(·) will be taken as that in Proposition 3.1.

Proposition 3.2. If p(x) = p+ for x ∈ E ⊆ I and |E | > 0, then for g ∈ M+

0

ρ′p[·]′,δ(·)(g) ≈ ρ(p+)′(g).

Proof. Let g ∈ M+

0 , then

ρ′p[·]′,δ(·)(g) ≤ ess inf
x∈E

ρp(x)′

(
1
δ(x)

g(·)

)
= ess inf

x∈E
ρ(p+)′

(
1
δ(x)

g(·)

)
= ρ(p+)′(g) ess inf

x∈E

1
δ(x)
= δ(E)ρ(p+)′(g). (3.2)

For the reverse estimate, let σ > 0. Then there exists a decomposition {gk}, gk ∈ M+

0 of g such that g =
∑
∞

k=1 gk
and

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
< ρ′p[·]′,δ(·)(g)+

σ

2
. (3.3)

Now, note that for each k ∈ N, σ
2k > 0 and there exists Aσk ⊆ I such that |Aσk | > 0, where

Aσk =

{
x ∈ I : ρp(x)′

(
1
δ(x)

gk(·)

)
< ess inf

x∈I
ρp(x)′

(
1
δ(x)

gk(·)

)
+
σ

2k

}
.
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Therefore, for xσk ∈ Aσk with 0 < δ(xσk ) <∞, we have

∞∑
k=1

ρp(xσk )
′

(
1

δ(xσk )
gk(·)

)
<

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
+
σ

2
,

which on using (3.3) gives
∞∑

k=1

ρp(xσk )
′

(
1

δ(xσk )
gk(·)

)
< ρ′p[·]′,δ(·)(g)+ σ,

i.e.,
∞∑

k=1

1
δ(xσk )

ρp(xσk )
′ (gk) < ρ′p[·]′,δ(·)(g)+ σ.

Therefore,

∞∑
k=1

ρp(xσk )
′ (gk) <

1
δ(I )

[
ρ′p[·]′,δ(·)(g)+ σ

]
. (3.4)

Case I. If p+ = 1, then p(x) = 1 a.e. on I . By (3.4), we obtain

ρ(p+)′(g) = ρ(p+)′

(
∞∑

k=1

gk

)

≤

∞∑
k=1

ρ(p+)′(gk)

<
1
δ(I )

[
ρ′p[·]′,δ(·)(g)+ σ

]
(3.5)

for all σ > 0. The assertion follows by (3.2) and (3.5).

Case II. If p+ > 1, then p(x) ≤ p+ a.e. on I , so that p(x)′ ≥ (p+)′ a.e. on I . Therefore

ρp(x)′(gk) ≥ ρ(p+)′(gk)

a.e. on I , for all k ∈ N. Consequently,
∞∑

k=1

ρp(x)′(gk) ≥

∞∑
k=1

ρ(p+)′(gk)

a.e. on I . In particular

∞∑
k=1

ρp(xσk )
′(gk) ≥

∞∑
k=1

ρ(p+)′(gk). (3.6)

Using (3.4) in (3.6), we get
∞∑

k=1

ρ(p+)′(gk) <
1
δ(I )

[
ρ′p[·]′,δ(·)(g)+ σ

]
which on taking σ → 0 gives

ρ(p+)′(g) ≤
∞∑

k=1

ρ(p+)′(gk) <
1
δ(I )

ρ′p[·]′,δ(·)(g). (3.7)

The assertion now, follows from (3.2) and (3.7). �

Remark 3.3. If p(x) = ∞ on a set of positive measures, then p+ = ∞. Therefore, by Proposition 3.2, ρ′p[·]′,δ(·)(g) ≈
ρ1(g). Hence without loss of generality, we may assume that p(x) <∞ a.e. on I .
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Definition 3.4. For p(·) ∈ M, p(·) ≥ 1 a.e., δ ∈ L∞ and δ > 0 a.e. on I , we define the “fully measurable small
Lebesgue space” by

L(p[·]
′,δ(·)
:=

{
g ∈ M0 : ‖g‖L(p[·]′,δ(·) = ρ

′

p[·]′,δ(·)(|g|) <∞
}
.

We prove the following:

Theorem 3.5. L(p[·]
′,δ(·) is a Banach space.

Proof. Without any loss of generality, we may assume that the members of L(p[·]
′,δ(·) belong to M+

0 .
It is obvious that ρ′p[·]′,δ(·)(g) ≥ 0 for all g ∈ M+

0 and that if g = 0, then ρ′p[·]′,δ(·)(g) = 0. Assume that
ρ′p[·]′,δ(·)(g) = 0. We prove that g = 0.

Let σ > 0 be given. Then there exists a decomposition {gk}, gk ∈ M+

0 of g such that g =
∑
∞

k=1 gk and∑
∞

k=1 ess infx∈Iρp(x)′
(

1
δ(x)gk(·)

)
< σ , i.e.,

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
< σ, k = 1, 2, . . .

so that there exists Aσk ⊆ I such that |Aσk | > 0, where

Aσk =

{
x ∈ I : ρp(x)′

(
1
δ(x)

gk(·)

)
< σ

}
.

Therefore, for xσk ∈ Aσk such that 0 < δ(xσk ) <∞, for each k = 1, 2, . . . we have

ρp(xσk )
′

(
1

δ(xσk )
gk(·)

)
< σ, i.e., 0 ≤

1
δ(xσk )

ρp(xσk )
′(gk) < σ.

Since σ > 0 is arbitrary, we have

1
δ(xσk )

ρp(xσk )
′(gk) = 0, i.e., ρp(xσk )

′(gk) = 0

which gives that for all k, gk = 0 a.e. Consequently,

g =
∞∑

k=1

gk = 0 a.e. on I.

Next, let λ > 0 and {gk}, gk ∈ M+

0 be a decomposition of g, so that {λgk} is a decomposition of {λg}. We have

ρ′p[·]′,δ(·)(λg) ≤
∞∑

k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

(λgk)(·)

)

≤ λ inf
g=
∑

gk
gk∈M+

0

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

(gk)(·)

)
= λ ρ′p[·]′,δ(·)(g). (3.8)

Again, let {hk}, hk ∈ M+

0 be any decomposition of λg. Then g =
∑
∞

k=1
1
λ

hk so that, we have

ρ′p[·]′,δ(·)(g) ≤
∞∑

k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

1
λ

hk(·)

)

≤
1
λ

inf
λg=

∑
hk

hk∈M+

0

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

hk(·)

)

=
1
λ
ρ′p[·]′,δ(·)(λg),
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which along with (3.8) gives that

ρ′p[·]′,δ(·)(λg) = λ ρ′p[·]′,δ(·)(g) for all λ > 0.

Next we prove the triangle inequality.
Let g1, g2 ∈ M+

0 and σ > 0 be given. Then there exist decompositions {g1,k} and {g2,k} of g1 and g2 respectively,
such that

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

g1,k(·)

)
< ρ′p[·]′,δ(·)(g1)+

σ

2

and
∞∑

k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

g2,k(·)

)
< ρ′p[·]′,δ(·)(g2)+

σ

2
.

Clearly, g1 + g2 exists a.e. and

g1 + g2 =

2∑
i=1

∞∑
k=1

gi,k =

2,∞∑
i,k

gi,k .

Thus

ρ′p[·]′,δ(·)(g1 + g2) ≤

2,∞∑
i,k

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gi,k(·)

)

=

2∑
i=1

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gi,k(·)

)

<

2∑
i=1

ρ′p[·]′,δ(·)(gi )+ σ.

Since the last inequality holds for all σ > 0, the triangle inequality follows.
Finally, in order to prove that L(p[·]

′,δ(·) is a Banach space, in view of the well known Riesz–Fischer property, it
suffices to prove that for any sequence {gn} ∈ L(p[·]

′,δ(·),

ρ′p[·]′,δ(·)

(
∞∑

n=1

gn

)
≤

∞∑
n=1

ρ′p[·]′,δ(·)(gn),

which in fact, can easily be obtained on following the steps of triangle inequality being applied for
∑
∞

n=1 gn . �

Proposition 3.6. Lattice property holds in L(p[·]
′,δ(·).

Proof. Let f, g ∈ M+

0 such that g ≤ f a.e. Let f =
∑
∞

k=1 fk for fk ∈ M+

0 . Then by Lemma F, g =
∑
∞

k=1( fk−hk),
where 0 ≤ hk ≤ fk for all k. Therefore

ρ′p[·]′,δ(·)( f ) = inf
f=
∑

fk
fk∈M+

0

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

fk(·)

)

≥ inf
f=
∑

fk
fk∈M+

0

∞∑
k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

( fk − hk)(·)

)
≥ ρ′p[·]′,δ(·)(g). �

Theorem 3.7. For ε > 0, the following continuous embeddings hold:

L(p+)
′
+ε
⊆ L(p[·]

′,δ(·)
⊆ L(p+)

′

a.e. on I.
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Proof. The second embedding holds in view of (3.5) and (3.7). For the first one, let ε > 0 and g ∈ L(p+)
′
+ε. Note that

‖g‖L(p[·]′,δ(·) ≤ ess inf
x∈I

ρp(x)′

(
1
δ(x)
|g(·)|

)
. (3.9)

Now, if p+ = 1, then p(x) ≡ 1 a.e. on I , and (3.9) gives

‖g‖L(p[·]′,δ(·) ≤ ess inf
x∈I

ρ∞

(
1
δ(x)
|g(·)|

)
= ρ∞(|g|) ess inf

x∈I

1
δ(x)
= δ(I )ρ∞(|g|)

which means that the desired embedding holds in this case.
On the other hand, let p+ 6= 1. Observe that p′+ = ess infx∈I p(x)′. Let ε > 0 be given, then there exists Aε ⊂ I

such that |Aε| > 0, where

Aε = {x ∈ I : p(x)′ < p′+ + ε}.

Since |Aε| > 0, we may choose xε ∈ Aε such that

(p+)
′
≤ p(xε)

′ < (p+)
′
+ ε

and δ(xε) > 0. We get

‖g‖L(p[·]′,δ(·) ≤ ρp(xε)′

(
1

δ(xε)
|g(·)|

)
=

1
δ(xε)

ρp(xε)′(|g|)

≤
1

δ(xε)
ρ(p+)′+ε(|g|) <∞.

Thus, for ε > 0 a.e. on I , we have

‖g‖L(p[·]′,δ(·) ≤
1

δ(xε)
ρ(p+)′+ε(|g|)

and we are done. �

Remark 3.8. Note that, in particular L∞ ⊆ L(p[·]
′,δ(·).

4. Further properties of the space L( p[·]′,δ(·)

In this section, we shall prove the Levi’s theorem of monotone convergence for the fully measurable small Lebesgue
space L(p[·]

′,δ(·). In Section 3, it was proved that L(p[·]
′,δ(·) is a Banach space. Here, we shall prove that the space

L(p[·]
′,δ(·) is, in fact, a BFS. We first prove the following:

Lemma 4.1. Let p(·) ∈ M be such that p(·) ≥ 1 a.e., δ ∈ L∞ and δ > 0 a.e. Then for g ∈ M+

0 , the following holds
for all τ ∈ [1, p+).

‖g‖L(p[·]′,δ(·) ≈ ρ
′

p[·]′,δ(·),p−1[τ,p+]
(g). (4.1)

Proof. If p(·) ≡ 1, then p+ = 1 and therefore equivalence in (4.1) makes sense only for τ = 1. Since p−1({1}) = I ,
the equality holds in (4.1).

Let p(·) 6≡ 1. If τ = 1, or if, τ ∈ (1, p+) is such that |p−1
[1, τ )| = 0, then again the equality holds in (4.1).

Thus we consider the case when τ 6= 1 and |p−1
[1, τ )| > 0. Set Xτ = p−1([τ, p+]) and Yτ = p−1([1, τ )).

Let {gk}, gk ∈ M+

0 be a decomposition of g. For x ∈ Xτ , we have ρp(x)′(gk) ≤ ρτ ′(gk) and for x ∈ Yτ , we have
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ρτ ′(gk) ≤ ρp(x)′(gk). For y ∈ Xτ , we have

ess inf
x∈Yτ

ρp(x)′

(
1
δ(x)

gk(·)

)
≥ ess inf

x∈Yτ

1
δ(x)

ρτ ′(gk)

≥ ρp(y)′(gk) ess inf
x∈Yτ

1
δ(x)

. (4.2)

Now, for
‖δ‖L∞(Xτ )

2 > 0, there exists X δτ ⊆ Xτ such that |X δτ | > 0 and δ(y) >
‖δ‖L∞(Xτ )

2 > 0 for all y ∈ X δτ a.e.
Consequently, for y ∈ X δτ , (4.2) gives

ess inf
x∈Yτ

ρp(x)′

(
1
δ(x)

gk(·)

)
≥ ess inf

x∈Yτ

1
δ(x)

ess inf
y∈X δτ

(
1
δ(y)

ρp(y)′(gk)

)
· δ(y)

≥ ess inf
x∈Yτ

1
δ(x)

ess inf
y∈X δτ

(
1
δ(y)

ρp(y)′(gk)

)
‖δ‖L∞(Xτ )

2

≥ C ess inf
y∈Xτ

(
ρp(y)′

(
1
δ(y)

gk(·)

))
(4.3)

where C = δ(Yτ )
‖δ‖L∞(Xτ )

2 , which is independent of k and g, but depends on τ . Also, on using (4.3), we have

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
= min

{
ess inf

x∈Xτ
ρp(x)′

(
1
δ(x)

gk(·)

)
, ess inf

x∈Yτ
ρp(x)′

(
1
δ(x)

gk(·)

)}
≥ min{1, C} ess inf

x∈Xτ
ρp(x)′

(
1
δ(x)

gk(·)

)
.

Therefore,
∞∑

k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
≥ min{1, C}

∞∑
k=1

ess inf
x∈Xτ

ρp(x)′

(
1
δ(x)

gk(·)

)
for all decompositions {gk} of g, which implies that

‖g‖L(p[·]′,δ(·) ≥ min{1, C}ρ′p[·]′,δ(·),Xτ (g) (4.4)

for all τ ∈ (1, p+), where C = δ(Yτ )
‖δ‖L∞(Xτ )

2 .

The reverse estimate holds trivially as Xτ ⊆ I . �

We shall be using the following lemma (see [4]).

Lemma G. (i) If a ≥ b ≥ 0, p ≥ 1, then (a − b)p
≤ a p

− bp.
(ii) If 0 ≤ b < a, r > 0, a ≤ (1 + r)b, 0 < α0 ≤ α < 1, then there exists a constant c = c(r, α0) such that

(a − b)α ≤ c(aα − bα) with c = rα0

(1+r)α0−1 .

Now, we are ready to prove Levi’s theorem of monotone convergence for fully measurable small Lebesgue space.

Theorem 4.2. Let p(·) ∈ M be such that p(·) > 1 a.e., δ ∈ L∞, δ > 0 a.e., and let { fm}, fm ∈ M+

0 be a
nondecreasing sequence such that M = supm ‖ fm‖L(p[·]′,δ(·) <∞. Then, the function f = supm fm is such that

(i) f ∈ L(p[·]
′,δ(·)
;

(ii) fm → f in L(p[·]
′,δ(·) and

(iii) fm ↑ f a.e. on I.

Proof. Choose 1 < τ < p+ and set Xτ = p−1([τ, p+]). In view of Lemma 4.1, it is sufficient to prove the theorem
with ‖ · ‖L(p[·]′,δ(·) being replaced by ρ′p[·]′,δ(·),Xτ . Further, without loss of generality, we may assume that the sequence
{ρ′p[·]′,δ(·),Xτ

( fm)} is convergent, since otherwise, there exists a convergent subsequence of it. Then, first the theorem
can be proved for this subsequence and then by using the lattice property of ‖ · ‖L(p[·]′,δ(·) , we would get the assertion
in general.
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Let σ > 0 be given. Then there exists a decomposition { fr,k}, fr,k ∈ M+

0 of fr , i.e., fr =
∑
∞

k=1 fr,k , so that

∞∑
k=1

ess inf
x∈Xτ

ρp(x)′

(
1
δ(x)

fr,k(·)

)
< ρ′p[·]′,δ(·),Xτ ( fr )+

σ

2
. (4.5)

Also, for each k = 1, 2, . . . , there exists Ar,k ⊆ Xτ , such that |Ar,k | > 0, and

ρp(x)′

(
1
δ(x)

fr,k(·)

)
< ess inf

x∈Xτ
ρp(x)′

(
1
δ(x)

fr,k(·)

)
+
σ

2k

for all x ∈ Ar,k a.e. In particular, we may choose xr,k ∈ Ar,k ⊆ Xτ such that 1 < p(xr,k) < ∞ and 1
δ(xr,k )

6= 0 and
finite. Therefore, we have

ρp(xr,k )
′

(
1

δ(xr,k)
fr,k(·)

)
< ess inf

x∈Xτ
ρp(x)′

(
1
δ(x)

fr,k(·)

)
+
σ

2k . (4.6)

Using (4.5) and (4.6), we get∑
k∈N

ρp(xr,k )
′

(
1

δ(xr,k)
fr,k(·)

)
< ρ′p[·]′,δ(·),Xτ ( fr )+ σ. (4.7)

Since s < r ⇒ fs < fr , therefore, by Lemma F, there exists a decomposition { fs,k} of fs such that fs =
∑
∞

k=1 fs,k
and 0 ≤ fs,k ≤ fr,k for all k = 1, 2, . . .. Therefore, fr − fs =

∑
∞

k=1( fr,k − fs,k). Now, as 1 < p(xr,k) < ∞, we
have by using Lemma G(i)

ρ′p[·]′,δ(·),Xτ ( fr − fs) ≤

∞∑
k=1

ess inf
x∈Xτ

ρp(x)′

(
1
δ(x)

( fr,k − fs,k)(·)

)

≤

∞∑
k=1

ρp(xr,k )
′

(
1

δ(xr,k)
( fr,k − fs,k)(·)

)

=

∞∑
k=1

(∫
I

(
1

δ(xr,k)
( fr,k − fs,k)(t)

)p(xr,k )
′

dt

) 1
p(xr,k )

′

≤

∞∑
k=1

[∫
I

(
1

δ(xr,k)
fr,k(t)

)p(xr,k )
′

dt

−

∫
I

(
1

δ(xr,k)
fs,k(t)

)p(xr,k )
′

dt

] 1
p(xr,k )′

. (4.8)

Now, for 0 < γ < 1, consider the decomposition N = Pγ ∪ Qγ , where

Pγ =

{
k ∈ N :

∫
I

(
fr,k(t)

)p(xr,k )
′

dt < (1+ γ )
∫

I

(
fs,k(t)

)p(xr,k )
′

dt

}
;

and Qγ = N \ Pγ . Since ‖ fr‖L(p[·]′,δ(·) ≤ M , we have by using (4.7) and (4.4)

∑
k∈Pγ

[∫
I

(
1

δ(xr,k)
fr,k(t)

)p(xr,k )
′

dt −
∫

I

(
1

δ(xr,k)
fs,k(t)

)p(xr,k )
′

dt

] 1
p(xr,k )

′

<
∑
k∈Pγ

1
δ(xr,k)

(
γ

∫
I

(
fs,k(t)

)p(xr,k )
′

dt

) 1
p(xr,k )

′

≤ γ

(
1
τ ′

) ∑
k∈Pγ

1
δ(xr,k)

(∫
I

(
fs,k(t)

)p(xr,k )
′

dt

) 1
p(xr,k )

′
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≤ γ

(
1
τ ′

)∑
k∈N

ρp(xr,k )
′

(
1

δ(xr,k)
fr,k(·)

)
< γ

(
1
τ ′

) (
ρ′p[·]′,δ(·),Xτ ( fr )+ σ

)
≤ γ

(
1
τ ′

)
M

Cτ
, (4.9)

where Cτ = min
{

1, δ(Yτ )
‖δ‖L∞(Xτ )

2

}
, since σ > 0 is arbitrary.

On the other hand, for k ∈ Qγ , by Lemma G(ii), there exists C(γ, 1
τ ′
) such that

∑
k∈Qγ

[∫
I

(
1

δ(xr,k)
fr,k(t)

)p(xr,k )
′

dt −
∫

I

(
1

δ(xr,k)
fs,k(t)

)p(xr,k )
′

dt

] 1
p(xr,k )

′

≤ C

(
γ,

1
τ ′

) ∑
k∈Qγ

1
δ(xr,k)

[(∫
I

(
fr,k(t)

)p(xr,k )
′

dt

) 1
p(xr,k )

′

−

(∫
I

(
fs,k(t)

)p(xr,k )
′

dt

) 1
p(xr,k )

′

]

= C

(
γ,

1
τ ′

) ∑
k∈Qγ

[
ρp(xr,k )

′

(
1

δ(xr,k)
fr,k(·)

)
− ρp(xr,k )

′

(
1

δ(xr,k)
fs,k(·)

)]

≤ C

(
γ,

1
τ ′

)[
ρ′p[·]′,δ(·),Xτ ( fr )+ σ − ρ

′

p[·]′,δ(·),Xτ ( fs)
]

= C

(
γ,

1
τ ′

)[
ρ′p[·]′,δ(·),Xτ ( fr )− ρ

′

p[·]′,δ(·),Xτ ( fs)
]

(4.10)

on using (4.7), and the fact that σ > 0 is arbitrary. By using (4.9) and (4.10) in (4.8), we get

ρ′p[·]′,δ(·),Xτ ( fr − fs) ≤ γ
1
τ ′

M

Cτ
+ C

(
γ,

1
τ ′

)[
ρ′p[·]′,δ(·),Xτ ( fr )− ρ

′

p[·]′,δ(·),Xτ ( fs)
]
. (4.11)

Let ε > 0 be given. Since limγ→0(γ
1
τ ′ )→ 0, there exists ηε > 0 such that

γ
1
τ ′

M

Cτ
<
ε

2
(4.12)

whenever 0 < γ < ηε. Since {ρ′p[·]′,δ(·),Xτ ( fm)} is convergent, for ε2 > 0 there exists a positive integer Nε such that

C

(
γ,

1
τ ′

)[
ρ′p[·]′,δ(·),Xτ ( fr )− ρ

′

p[·]′,δ(·),Xτ ( fs)
]
<
ε

2
(4.13)

for all r > s ≥ Nε. Using (4.12) and (4.13) in (4.11), we get

ρ′p[·]′,δ(·),Xτ ( fr − fs) ≤ ε,

for r > s, r, s ∈ N, and for all 1 < τ < p+, which means that the sequence { fm} is Cauchy in L(p[·]
′,δ(·) and hence

convergent, say, to f ∈ L(p[·]
′,δ(·). Hence (i) and (ii) are done.

Further, since L1
⊇ L(p[·]

′,δ(·) and fm ↑ f a.e., it follows that the limit f coincides a.e. with supm fm , which is
also the a.e. limit of { fm}. �

Theorem 4.3 (Fatou Property). If 0 ≤ gn ↑ g a.e. on I , then ‖gn‖L(p[·]′,δ(·) ↑ ‖g‖L(p[·]′,δ(·) .

Proof. By lattice property of ‖ · ‖L(p[·]′,δ(·) , the sequence {‖gn‖L(p[·]′,δ(·)} is nondecreasing and

lim
n→∞
‖gn‖L(p[·]′,δ(·) ≤ ‖g‖L(p[·]′,δ(·) . (4.14)

Now if g ∈ L(p[·]
′,δ(·), then supn ‖gn‖L(p[·]′,δ(·) <∞, and the assertion follows from Theorem 4.2.
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On the other hand, let g 6∈ L(p[·]
′,δ(·). Then ‖g‖L(p[·]′,δ(·) = ∞. On the contrary, if

lim
n→∞
‖gn‖L(p[·]′,δ(·) 6= ‖g‖L(p[·]′,δ(·) ,

then it follows that

lim
n→∞
‖gn‖L(p[·]′,δ(·) <∞

which, by Theorem 4.2 gives that g ∈ L(p[·]
′,δ(·), a contradiction. Hence the assertion follows in this case too. �

Theorem 4.4 (Hölder’s Type Inequality). For f ∈ L p[·],δ(·) and g ∈ L(p[·]
′,δ(·), the following holds:∫

I
f (t)g(t)dt ≤ ‖ f ‖L p[·],δ(·)‖g‖L(p[·]′,δ(·) .

Proof. The result is trivially true if f = 0 a.e. So assume that f 6= 0. Let |g| =
∑
∞

k=1 gk, gk ∈ M+

0 be a
decomposition of |g|. Then for each k ∈ N and for each fixed x ∈ I , by applying L p-Hölder’s inequality on the
index p(x), we have∫

I
f (t)gk(t)dt ≤

∫
I
| f (t)gk(t)|dt ≤ ‖ f ‖L p(x)‖g‖L p(x)′ a.e. on I.

Since δ(x) > 0 a.e. on I , for x ∈ I such that δ(x) 6= 0, for each k ∈ N, we have

‖ f ‖L p(x)‖gk‖L p(x)′ ≤

(
1
δ(x)
‖gk‖L p(x)′

)
ess sup

x∈I

(
δ(x)‖ f ‖L p(x)

)
= ρp[·],δ(·)(| f |)

(
1
δ(x)
‖gk‖L p(x)′

)
a.e. on I

≤ ρp[·],δ(·)(| f |) ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(·)

)
.

Thus, using the above estimates, we have∫
I

f (t)g(t)dt ≤
∫

I
| f (t)||g(t)|dt

=

∫
I
| f (t)|

(
∞∑

k=1

gk(t)

)
dt

=

∞∑
k=1

∫
I
| f (t)|gk(t)dt

≤

∞∑
k=1

ρp[·],δ(·)(| f |) ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(.)

)

= ρp[·],δ(·)(| f |)
∞∑

k=1

ess inf
x∈I

ρp(x)′

(
1
δ(x)

gk(.)

)
which holds for all decompositions {gk} of |g|. Taking the infimum over all such decompositions, the assertion
follows. �

Theorem 4.5. For p(·) ∈ M, p(·) > 1 a.e., δ ∈ L∞, δ > 0 a.e., the fully measurable small Lebesgue space
L(p[·]

′,δ(·) is a BFS.

Proof. For any E ⊆ I , we have

‖χE‖L(p[·]′,δ(·) ≤ ess inf
x∈I

ρp(x)′

(
1
δ(x)

χE (.)

)
= ess inf

x∈I

1
δ(x)
‖χE‖L p(x)′ ≤ δ(I ) <∞,
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and also by Theorem 4.4∫
E

f (t)dt =
∫

I
f (t)χE (t)dt

≤ ‖χE‖L p[·],δ(·)‖ f ‖L(p[·]′,δ(·)

≤ ess sup
x∈I

δ(x)‖ f ‖L(p[·]′,δ(·) = C(δ)‖ f ‖L(p[·]′,δ(·) ,

where the constant C(δ) = ess supx∈I δ(x) is independent of f . Now, in view of Theorems 4.3 and 3.5 and
Proposition 3.6, it follows that L(p[·]

′,δ(·) is a Banach function space (BFS). �

5. Associate space of L p[·],δ(·)

We begin with the following:

Theorem 5.1. L(p[·]
′,δ(·)
= L(p[·]

′,δ(·)
a , i.e., the BFS L(p[·]

′,δ(·) has an absolutely continuous norm.

Proof. Let En ⊆ I, n ∈ N be such that χEn ↓ 0 a.e. on I and g ∈ L(p[·]
′,δ(·),which without any loss of generality can

be assumed to be non-negative. Define

gn = g − gχEn =

{
0, x ∈ En
g(x), x 6∈ En .

Since χEn ↓ 0, we find that {gn} is a nondecreasing sequence such that gn ≤ g for all n so that

‖gn‖L(p[·]′,δ(·) ≤ ‖g‖L(p[·]′,δ(·) <∞.

Therefore by Theorem 4.2, gn → g in L(p[·]
′,δ(·), which gives

‖gχEn‖L(p[·]′,δ(·) = ‖g − gn‖L(p[·]′,δ(·) → 0. �

Theorem 5.2. L(p[·]
′,δ(·)
= L(p[·]

′,δ(·)
b , i.e., the set of bounded functions is dense in fully measurable small Lebesgue

space.

Proof. It can be obtained in view of Theorems A and 5.1. �

Lemma 5.3. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. Let 0 6= f ∈ L∞, then there exists g ∈ L∞ such that the following holds∫

I
f (t)g(t)dt = ‖ f ‖L p[·],δ(·)‖g‖L(p[·]′,δ(·) .

Proof. Since 0 6= f ∈ L∞, we have ‖ f ‖L∞ 6= 0, so that

lim
x→0+

ρp(x) (δ(x)| f (·)|) = lim
x→0+

δ(x)‖ f ‖L p(x) = 0.

Therefore,

‖ f ‖L p[·],δ(·) = ess sup
x∈I

ρp(x) (δ(x)| f (·)|) = ρp(x0) (δ(x0)| f (·)|) (5.1)

for some x0 ∈ I . For index p(x0), define g = | f |p(x0)
′
−1
· sgn f on I , where sgn f (t) := 1, 0,−1 accordingly as

f (t) > 0,= 0, < 0 respectively. Now, for indices p(x0) and p(x0)
′, we obtain that∫

I
f (t)g(t)dt = ‖ f ‖L p(x0)‖g‖L p(x0)

′ . (5.2)
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By Theorem 4.4, Eqs. (5.1) and (5.2) we have∫
I

f (t)g(t)dt ≤ ‖ f ‖L p[·],δ(·)‖g‖L(p[·]′,δ(·)

≤ ‖ f ‖L p[·],δ(·) ess inf
x∈I

ρp(x)′

(
1
δ(x)
|g(·)|

)
≤ ‖ f ‖L p[·],δ(·) ρp(x0)

′

(
1

δ(x0)
|g(·)|

)
= ρp(x0) (δ(x0)| f (·)|) ρp(x0)

′

(
1

δ(x0)
|g(·)|

)
= ‖ f ‖L p(x0)‖g‖L p(x0)

′ =

∫
I

f (t)g(t)dt

and we are done. �

Theorem 5.4. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. Let g ∈ L(p[·]

′,δ(·). Then

‖g‖L(p[·]′,δ(·) = sup
06= f ∈L p[·],δ(·)

∫
I f g

‖ f ‖L p[·],δ(·)
.

Proof. By Theorem 4.4, we have

‖g‖L(p[·]′,δ(·) ≥ sup
06= f ∈L p[·],δ(·)

∫
I f g

‖ f ‖L p[·],δ(·)
. (5.3)

It is sufficient to prove the result for g ∈ L∞, since the assertion would then follow from Theorem 5.2. So, let g ∈ L∞.
Then by Lemma 5.3, there exists f ∈ L∞ such that∫

I
f g = ‖ f ‖L p[·],δ(·)‖g‖L(p[·]′,δ(·) . (5.4)

Therefore, for f ∈ L∞ ⊆ L p[·],δ(·), we have by (5.4) and (5.3)

‖g‖L(p[·]′,δ(·) =

∫
I f g

‖ f ‖L p[·],δ(·)

≤ sup
06= f ∈L p[·],δ(·)

∫
I f g

‖ f ‖L p[·],δ(·)
≤ ‖g‖L(p[·]′,δ(·) ,

i.e.,

‖g‖L(p[·]′,δ(·) = sup
06= f ∈L p[·],δ(·)

∫
I f g

‖ f ‖L p[·],δ(·)

and we are done. �

In view of Theorem 5.4, we immediately have the following:

Theorem 5.5. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. Then the associate space of L p[·],δ(·) is L(p[·]

′,δ(·).

Remark 5.6. In view of Theorem B, it follows that under the continuity of δ and p, L p[·],δ(·) is associate space of
L(p[·]

′,δ(·).

In [10], Anatriello and Fiorenza mentioned that the space L p[·],δ(·) is rearrangement invariant. Consequently, by
Theorem E, we have the following:



46 P. Jain et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 32–47

Theorem 5.7. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. Then the space L(p[·]

′,δ(·) is a rearrangement invariant BFS.

Theorem 5.8. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. Then the Banach space dual of the BFS L(p[·]

′,δ(·) is canonically isometrically isomorphic to its
associate space L p[·],δ(·), i.e.,(

L(p[·]
′,δ(·)

)∗
∼=

(
L(p[·]

′,δ(·)
)′
∼= L p[·],δ(·).

Proof. It follows from Theorems C, 5.1 and Remark 5.6. �

Towards the end of the paper, we show that fully measurable grand Lebesgue space and its associate space are not
reflexive. For this purpose, the following theorem is required.

Theorem 5.9. Let p(·) ∈ M be such that p(·) > 1 a.e. and continuous. Let δ ∈ L∞, continuous and δ > 0 a.e. with
limx→0+ δ(x) = 0. If f ∈ L p[·],δ(·)

b , then limx→0+ ρp(x)(δ(x) f (·)) = 0.

Proof. If f ∈ L p[·],δ(·)
b , then there exists a sequence { fn} of bounded functions such that fn → f in L p[·],δ(·). Let

ε > 0 be given. Then, there exists n0 ∈ N such that

‖ fn0 − f ‖L p[·],δ(·) <
ε

2
. (5.5)

By using the monotonicity of ‖ · ‖L p(x) with respect to the exponent p(x), we have

‖ fn0‖L p(x) ≤ ‖ fn0‖L p+

a.e. on I . For x ∈ I such that δ(x) 6= 0, multiplying the above inequality by δ(x) and letting x → 0+, we get

lim
x→0+

δ(x)‖ fn0‖L p(x) = 0.

Therefore, for ε > 0, there exists η0 > 0 such that

δ(x)‖ fn0‖L p(x) <
ε

2
(5.6)

whenever 0 < x < η0. Thus for 0 < x < η0, we have by using (5.6) and (5.5)

ρp(x)(δ(x) f (·)) = δ(x)‖ f ‖L p(x)

≤ δ(x)‖ f − fn0‖L p(x) + δ(x)‖ fn0‖L p(x)

< δ(x)‖ f − fn0‖L p(x) +
ε

2

≤ ess sup
x∈I

δ(x)‖ f − fn0‖L p(x) +
ε

2

= ‖ fn0 − f ‖L p[·],δ(·) +
ε

2
< ε

and the assertion follows. �

Remark 5.10. (i) The set of bounded functions is not dense in L p[·],δ(·), i.e., L p[·],δ(·)
6= L p[·],δ(·)

b . For example,

consider p(x) = 2− x, x ∈ I, δ(x) = x
1

2−x , x ∈ I, f (t) = t−1/2, t ∈ I , then

‖ f ‖L p[·],δ(·) = ess sup
x∈I

(
x

1
2−x ‖ f ‖L p(x)

)
= ess sup

x∈I
x

1
2−x

(∫
I

t
−1
2 (2−x)dt

) 1
2−x

= ess sup
x∈I

x
1

2−x

(
2
x

) 1
2−x

=
√

2 <∞,
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i.e., f ∈ L p[·],δ(·). But

lim
x→0+

ρp(x)(δ(x) f (·)) = lim
x→0+

x
1

2−x

(∫
I

t
−1
2 (2−x)dt

) 1
2−x

= lim
x→0+

2
1

2−x 9 0,

so that by Theorem 5.9, f 6∈ L p[·],δ(·)
b .

(ii) In view of Theorem A and the remark above, L p[·],δ(·) does not have absolutely continuous norm.

In light of Remark 5.10(ii) and Theorem D, we have the following:

Theorem 5.11. The spaces L p[·],δ(·) and L(p[·]
′,δ(·) are not reflexive.

Remark 5.12. The associate space of L p[·],δ(·) is not isometrically isomorphic to its dual space. According to
Theorem 5.8, the dual of fully measurable small Lebesgue space L(p[·]

′,δ(·) coincides with its associate space which is
L p[·],δ(·). However, since L p[·],δ(·) does not have absolutely continuous norm, its dual and associate spaces are not the
same, i.e.,(

L p[·],δ(·)
)′
�
(

L p[·],δ(·)
)∗
.

Note. Recently the authors learnt that the same definition of fully measurable small Lebesgue spaces has been
considered, independently, also by Anatriello, Formica and Giova [15]. During the revision of the present paper,
the authors take this opportunity to acknowledge their work.
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Abstract

In the current paper we consider an integral representation of functions and embedding theorems of multianisotropic Sobolev
spaces in the three-dimensional case when the completely regular polyhedron has an arbitrary number of anisotropic vertices. This
work generalizes results obtained in Karapetyan (in press) and Karapetyan (2016). Particularly, in Karapetyan (in press) the two-
dimensional case was fully solved and in Karapetyan (2016) analogous results were obtained for the case of one anisotropic vertex.
The problem takes root from various works of Sobolev, particularly, Sobolev (1938) and Sobolev (0000) [4,5]. Related results were
obtained by many authors and can be found in Besov et al. (1967), Reshetnyak (1971), Smith (1961), Nikolsky (0000) and Il’in
(1967) [6–10]. The monograph (Besov, 1978) contains an overview of the problem. The results obtained in this paper are based on
a generalization of regularization by a quasi-homogeneous polynomial (see Uspenskii (1972) and Karapetyan (1990) [11,12]).
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Integral representation; Embedding theorem; Multianisotropic spaces; Completely regular polyhedron

1. Estimation of integrals containing the multianisotropic polynomial

Let R3-be the three-dimensional Euclidean space, Z3
+ be the set of multi-indices. For ξ, η ∈ R3, α ∈ Z3

+, t > 0
denote by |α| = α1+α2+α3, ξα = ξα1

1 ξ
α2
2 ξ

α3
3 , tη = (tη1 , tη2 , tη3). Let Dk =

1
i
∂
∂xk

, (k = 1, 2, 3), Dα
= Dα1

1 Dα2
2 Dα3

3
denote the weak derivative. A polyhedron N is said to be completely regular if it has a vertex at the origin and further
vertices on each of the coordinate axes; the components of the outer-normals of all two-dimensional non-coordinate
faces are positive. Let α1, α2, . . . , αn

∈ Z3
+ be the vertices of a completely regular polyhedron N (excluding the

origin), where α1
= (l1, 0, 0), α2

= (0, l2, 0), α3
= (0, 0, l3) lie on the coordinate axes, while the others are in

the positive octant. We call points of the latter type anisotropic. For a completely regular polyhedron N denote
by N2

i (i = 1, . . . ,M) the two-dimensional non-coordinate faces with corresponding outer normal µi , so that the

∗ Corresponding author.
E-mail addresses: garnik karapetyan@yahoo.com (G. Karapetyan), michael.arakel@gmail.com (M. Arakelian).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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2346-8092/ c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



G. Karapetyan, M. Arakelian / Transactions of A. Razmadze Mathematical Institute 171 (2017) 48–56 49

equation of that face is given by
(
α,µi

)
= 1. Suppose that N2

i for i = 1, 2, 3 contains the vertices {α1, α2, α3
} \ {αi

}.
Let γ be the point of intersection of the planes passing through N2

1,N
2
2 and N2

3 correspondingly. Since N is completely
regular,

(
γ, µi

)
≥ 1.

For ν > 0 and positive integer k the multianisotropic polynomial P(ν, ξ) is defined as

PN(ν, ξ) =

n∑
i=1

(
νξα

i
)2k

, (1)

where ξ ∈ R3 and ξα = (ξα1
1 , ξ

α2
2 , ξα

3

3 ). Let m = (m1,m2,m3) ∈ Z3
+. Consider the following integral

I (ν) =
∫

R3
ξme−PN(ν,ξ)dξ. (2)

We are interested in its behaviour for 0 < ν < 1. Let Ω be a domain in R3. Consider the integral

IΩ (ν) =
∫
Ω
ξme−PN(ν,ξ)dξ. (3)

Definition 1. We call the substitution ξ = ν−µ
i
η = (ν−µ

i
1η1, ν

−µi
2η2, ν

−µi
3η3) through the vertices β1, β2, β3 lying

on the non-coordinate face N2
i feasible for the multi-index m = (m1,m2,m3) if there exists p = (p1, p2, p3), such

that pk ≥ −1 and the relation

3∏
k=1

(
ηβ

k
)pk/β

k
k
= ηm

3∏
k=1

3∏
j=1
j 6=k

η
−βk

j /β
k
k

j (4)

holds. Equivalently, we can state the condition of feasibility in terms of existence of a non-negative solution to the
system of linear equations

Aβ1,β2,β3 · p′ =

m1 + 1

m2 + 1

m3 + 1

 , (5)

where p′k = (1+ pk)/β
k
k and Aβ1,β2,β3 is defined as

Aβ1,β2,β3 =

β
1
1 β2

1 β3
1

β1
2 β2

2 β3
2

β1
3 β2

3 β3
3

 .
If m and β1, β2, β3 are clear from the context, we refer to the substitution as µi -transformation.

Note that if there exists a feasible µi -transformation of (3) for the given m, then by applying the µi -transformation
and afterwards the change of variables

τk =

n∏
j=1

η

β
k,i
j

β
k,i
k

j (k = 1, . . . , n) (6)

we can make an estimate of (3)

IΩ (ν) ≤ Cν−
(
|µi
|+(m,µi )

) ∫
Ω∗
τ pe−Q(τ )dτ,

where Ω∗ is the image of Ω under the transformations, C is independent of ν and Q(τ ) is

Q(τ ) = τ
2kβ1

1
1 + τ

2kβ2
2

2 + τ
2kβ3

3
3 .
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Note that the solution is non-negative if and only if the point (m1+ 1,m2+ 1,m3+ 1) lies in the conic hull generated
by the points β1, β2 and β3, which we denote by Cone({β1, β2, β3

}).

Lemma 1. Let A = {α1, α2, . . . , αk
} ⊂ R3, αi

6= 0. Suppose all of them lie on a plane p. Let β ∈ Cone(A)\{0}.
Denote Ai = {α

i , αi+1β} where αk+1
= α1. Then

Cone(A) =
k⋃

i=1

Cone(Ai ).

Proof. Since β ∈ Cone(A), it is apparent that
⋃k

i=1 Cone(Ai ) ⊆ Cone(A), so we need to show the inverse inclusion.
First, we show that it is sufficient to consider the case β ∈ Conv(A). Since β ∈ Cone(A), there are bi ∈ R+ such that

β =

k∑
i=1

biα
i .

Let s =
∑k

i=1 bi . Since β 6= 0 and bi ≥ 0, then s > 0 (otherwise β = 0). Then 1
s β ∈ Conv(A). Finally, note that

Ai = Cone(αi , αi+1, β) = Cone(αi , αi+1, 1
s β). So considering the case when β ∈ Conv(A) is sufficient.

Now let β ∈ Conv(A), then β also lies on the plane p. Thus, we have Conv(A) =
⋃k

i=1 Conv(Ai ), because β is
inside Conv(A). Let a ∈ Cone(A), then there is a constant t > 0, such that ta ∈ Conv(A). It follows that ta lies in
one of the Conv(Ai ), so a ∈ Cone(Ai ).

Lemma 2. Let N be a completely regular polyhedron with at least one anisotropic vertex. Then any such vertex lies
inside the conic hull generated by its neighbouring vertices.

Proof. Let β be an anisotropic vertex of N and A = {α1, α2, . . . , αk
} be the set of its neighbours where αi -s are

ordered in such a way that there is a face of N passing through the points β, αi and αi+1 for i = 1, . . . , k (here αk+1

is equal to α1). We need to show that β ∈ Cone(A). Let Ai = {α
i , αi+1, β}. Without loss of generality, suppose that

the neighbours of β lie on a plane p (otherwise we can multiply each αi by some small enough positive number so
that they do lie on one plane). Let µ0 be the outer-normal of the plane p passing through the points of A and let µi be
the outer-normal of the face passing through the points of the set Ai . As N is completely regular, p separates β and
the origin, so t =

(
β,µ0

)
> 1. Also

(
αi , µ j

)
≤ 1 for i, j = 1, . . . , k. It means that Conv(A∪{β}) can be represented

as an intersection of half-spaces

Conv(A ∪ {β}) =

(
k⋂

i=1

{
x |
(
µi , x

)
≤ 1

})
∩

{
x |
(
µ0, x

)
≥ 1

}
.

If we show that β ′ = 1
t β ∈ Conv(A) then β ∈ Cone(A), since t > 1. Due to the choice of t , we have

(
β ′, µ0

)
= 1.

Note that
(
β,µi

)
= 1 for i = 1, . . . , k, because β lies on each of the faces corresponding to these outer-normals.

Consequently,
(
β ′, µi

)
=

1
t

(
β,µi

)
=

1
t < 1. Thus, β ′ lies in each of the half-spaces {x |

(
µi , x

)
≤ 1} and in the

half-space {x |
(
µ0, x

)
≥ 1}. As β ′ also lies on the plane p we have

β ′ ∈

(
k⋂

i−1

{
x |
(
µi , x

)
≤ 1

})
∩

{
x |
(
µ0, x

)
≥ 1

}
∩ p

= Conv(A ∪ {β}) ∩ p = Conv(A).

Corollary 1. For a given m ∈ Z3
+ and any completely regular polyhedron N there is at least one feasible µi -

transformation of the integral (3).

Proof. The proof is by induction on the number of anisotropic points of N (denoted by n).
Base case: n = 0. When there are no anisotropic points the only non-coordinate face contains the points

α1
= (l1, 0, 0), α2

= (0, l2, 0) and α3
= (0, 0, l3). The solution to the system (5) over the points α1, α2 and α3 for
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any m ∈ Z3
+ is (m1+1

l1
,

m2+1
l2
,

m3+1
l3
), which is positive. Hence, the transformation over the outer-normal of that face is

feasible.
Inductive step: Suppose that the claim holds for a given m ∈ Z3

+ and any completely regular polyhedron with n
anisotropic points, such that those vertices are also vertices of N. Let N be any completely regular polyhedron with
n + 1 anisotropic vertices. It is possible to cut N in such a way, that the resulting polyhedron N′ is still completely
regular and has exactly n anisotropic points. Call the left out anisotropic point β. By the inductive step the claim holds
for N′, so there exists a face of N′, such that the transformation over its outer-normal is feasible. If it is also a face
of N, then we are finished. Otherwise, the points that lie on that face are neighbours of β. By applying Lemma 2 and
then Lemma 1 we get that m lies in the conic hull generated by vertices of a face passing through β and two of its
neighbours, so the solution to the system (5) over those points is non-negative.

Lemma 3. For any m ∈ Z3
+ there are constants c0, c1, c2 which are independent of m and N, such that for any

ν ∈ (0, 1)

|I (ν)| ≤ (c2(ln ν)2 + c1| ln ν| + c0)ν
− max

i=1,...,M

(
|µi
|+(m,µi )

)
. (7)

Proof. By Corollary 1 there exists a feasible µi -transformation. Consider the p-vector of the feasible transformation.

Case 1. All pk > −1. Let Ω = R3
+ then by applying Corollary 1 we get

IR3
+
(ν) ≤ Cν−

(
|µi
|+(m,µi )

) ∫
R3
+

τ pe−Q(τ )dτ ≤ Cν−
(
|µi
|+(m,µi )

)
,

since the integral converges due to pi > −1.
Case 2. Some of pk = −1. As we have noted before, p 6= (−1,−1,−1), so either one or two of p’s coordinates

equal −1. Let µ0
= (µ0

1, µ
0
2, µ

0
3) be such that µ0

j = mini=1,...,M µ
i
j . Consider IR3

+
. We can represent it as a

sum of integrals

IR3
+
= I1 + I2 + · · · + I8 =

∫ ν
−µ0

1

0

∫ ν
−µ0

2

0

∫ ν
−µ0

3

0
ξme−PN(ν,ξ)dξ

+

∫
∞

ν
−µ0

1

∫ ν
−µ0

2

0

∫ ν
−µ0

3

0
ξme−PN(ν,ξ)dξ + I3 + I4

+ · · · +

∫
∞

ν
−µ0

1

∫
∞

ν
−µ0

2

∫ ν
−µ0

3

0
ξme−PN(ν,ξ)dξ +

∫
∞

ν
−µ0

1

∫
∞

ν
−µ0

2

∫
∞

ν
−µ0

3
ξme−PN(ν,ξ)dξ.

Let us estimate each summand separately. If we make the substitution ξ = ν−µ
i
η in I1 for some i =

1, . . . ,M , then we get

I1 ≤ Cν−
(
|µi
|+(m,µi )

)
,

since µi
j − mu0

j ≥ 0.

To estimate I2, we apply the substitution ξ = ν−µ
2
η and get

I2 ≤ Cν−
(
|µi
|+(m,µi )

) ∫ ∞
0

η
m1
1 e−η

2kl1
1 dη1

∫ 1

0
η

m2
2 dη2

∫ 1

0
η

m3
3 dη3.

I3 and I4 can be estimated analogously.
Let M = N∩{z = 0}. Then M is a completely regular polyhedron in R2. Referring to [1] (see Lemma 1.1

in particular), we deduce that there is a one-dimensional face of M passing through some points α j , α j+1,
such that the transformation over its outer-normal is feasible for the integral∫

R2
+

ξ
m1
1 ξ

m2
2 e−PM(ν,ξ1,ξ2)dξ1dξ2.



52 G. Karapetyan, M. Arakelian / Transactions of A. Razmadze Mathematical Institute 171 (2017) 48–56

Now consider a face of N passing through the points α j , α j+1 and let µi be the outer normal of that face. By
applying ξ = ν−µ

i
η to I5 and taking Lemma 1.1 of [1] into account, we get

I5 ≤ Cν−
(
|µi
|+(m,µi )

) ∫ ∞
ν
µi

1−µ
0
1

∫
∞

ν
µi

2−µ
0
2
η

m1
1 η

m2
2 e−η

2kα
j
1

1 η
2kα

j
2

2 −η
2kα

j+1
1

1 η
2kα

j+1
2

2 dη1dη2

≤ (c1| ln ν| + c0|) ν
−
(
|µi
|+(m,µi )

)
.

I6 and I7 can be handled in a similar fashion.
Now consider I8. By Corollary 1 there is a feasible µi -transformation of I8. By applying it to I8 we get

I8 ≤ Cν−
(
|µi
|+(m,µi )

) ∫ ∞
ν
µi

1−µ
0
1
τ

p1
1 e−τ

2kβ1
1

1 dη1

∫
∞

ν
µi

2−µ
0
2
τ

p2
2 e−τ

2kβ2
2

1 dη2

·

∫
∞

ν
µi

3−µ
0
3
τ

p3
3 e−τ

2kβ3
3

3 dη3 ≤ ν
−
(
|µi
|+(m,µi )

) (
c2| ln ν|2 + c1| ln ν| + c0

)
,

because if p j > −1, then the integral is convergent, if p j = −1 then

∫
∞

ν
µi

j−µ
0
j

e−τ
2kβ

j
j

j

η j
dη j ≤ (c1| ln ν| + c0) .

Combining the estimates for each summand, the claim follows.

2. Multianisotropic kernels and the integral representation by them

Denote by G0(ξ, ν) and G1, j (see [1] and [2]) the multianisotropic kernels

G0(ξ, ν) = e−PN(ν,ξ), (8)

G1, j (ξ, ν) = 2k(νξα
j
)2k−1e−PN(ν,ξ) j = 1, . . . , n. (9)

Let Ĝ0(ξ, ν) and ˆG1, j (ξ, ν) be the respective Fourier transforms of G0(ξ, ν) and G1, j (ξ, ν). It is apparent, that these
functions belong to the Schwartz space S(R3) of rapidly decreasing functions.

Let γ = (γ1, γ2, γ3) be defined as previously. Suppose that γ1 < γ2 < γ3. Then let σ = (σ1, σ2, 0) be the point of
intersection of the x–y plane and the planes passing through N2

1 and N2
2. An easy calculation shows that σ1 =

γ1l3
l3−γ3

and σ2 =
γ2l3

l3−γ3
. Since γ1 < γ2, σ1 < σ2. Let δ = (δ1, 0, 0) be the point of intersection of the x-axis and the plane

passing through N2
1. If a positive integer N is such that Nγ, Nσ , and Nδ ∈ 2Z3

+, we will call such N straightening.

Lemma 4. Let γ1 < γ2 < γ3 and ν ∈ (0, 1). Then for any m = (m1,m2,m3) ∈ Z3
+ and a straightening N there are

constants ci (i = 0, 1, 2), such that

|Dm ˆG1, j (t, ν)| ≤ ν
− max

i=1,...,M

(
|µi
|+(m,µi )

)
c2(ln ν)2 + c1| ln ν| + c0

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) . (10)

It is an analogue of Lemma 1.1 of [1] and has a similar proof. Furthermore, analogues of Lemma 1.2–1.6 of [1] are
true as well. Let us formulate them.

Lemma 5. Let γ1 < γ2 < γ3, then there is a constant C > 0, such that for any ν ∈ (0, 1)∫
R3

dt

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) ≤ Cν|µ
1
|. (11)
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Lemma 6. Let γ1 < γ2 = γ3 and ν ∈ (0, 1). Then for any multi-index m = (m1,m2,m3) and a straightening N
there are constants ci (i = 0, 1, 2), such that

|Dm ˆG1, j (t, ν)| ≤ ν
− max

i=1,...,M

(
|µi
|+(m,µi )

) (
c2(ln ν)2 + c1| ln ν| + c0

)
·

1

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) · 1

1+ ν−N
(
t Nγ + t Nr + t Nδ

) . (12)

Here σ = (σ1, σ2, 0) is the point of intersection of the line passing through the points α3 and γ and the x Oy
plane. r = (r1, 0, r2) is the point of intersection of line passing through the points α2 and γ and the x Oy plane.
δ = (δ1, 0, 0)?

Lemma 7. Let γ1 < γ2 = γ3. Then there is a constant C > 0, such that for any ν ∈ (0, 1)∫
R3

dt(
1+ ν−N

(
t Nγ + t Nσ + t Nδ

)) (
1+ ν−N

(
t Nγ + t Nr + t Nδ

)) ≤ Cν|µ
1
|. (13)

Lemma 8. Let γ1 = γ2 = γ3 and ν ∈ (0, 1). Then for any multi-index m = (m1,m2,m3) and a positive straightening
integer N there are constants ci (i = 0, 1, 2), such that

|Dm ˆG1, j (t, ν)| ≤ ν
− max

i=1,...,M

(
|µi
|+(m,µi )

) (
c2(ln ν)2 + c1| ln ν| + c0

)
·

1

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) · 1

1+ ν−N
(
t Nγ + t Nr + t Nq

)
·

1

1+ ν−N
(
t Nγ + t Nk + t Nm

) , (14)

where σ = (σ1, σ2, 0) is the point of intersection of the x Oy plane and the planes passing through the faces of N2
1

and N2
2, r = (r1, 0, r2) is the point of intersection of the x Oz plane and the planes passing through the faces N2

1 and
N2

3. k = (0, k1, k2) is the point of intersection of the yOz plane and planes passing through faces N2
2 and N2

3.

Lemma 9. Let γ1 = γ2 = γ3. Then there are constants ci (i = 0, 1, 2), such that∫
R3

1(
1+ ν−N

(
t Nγ + t Nσ + t Nδ

)) (
1+ ν−N

(
t Nγ + t Nr + t Nq

))
·

dt

1+ ν−N
(
t Nγ + t Nk + t Nm

) ≤ ν min
i=1,2,3

|µi
| (

c2(ln ν)2 + c1| ln ν| + c0

)
. (15)

Lemma 10. Let λ = (λ1, λ2, λ3) = (
1
l1
, 1

l2
, 1

l3
). Then there is a constant c, such that for ν ∈ (0, 1)

|Ĝ0(t, ν)| ≤ cν
−|λ|− max

i=1,...,n

((
λ,αi )

−1
)

1

1+ ν−N
(

t Nl1
1 + t Nl2

2 + t Nl3
3

) . (16)

As in [1], for any function U consider a regularization with the kernel Ĝ0(t, ν)

Uν(x) =
1

(2π)3/2

∫
R3

U (t)Ĝ0(t − x, ν)dt. (17)

Such a regularization has some useful properties.

Lemma 11. If f ∈ L p(R3), then fν ∈ L p(R3), and limν→0 ‖ fν − f ‖L p(R3) = 0.
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For proof we refer to Lemma 2.2 of [1].
Using (17) we can get an integral representation of functions by the multianisotropic kernels G1, j .

Theorem 1. Let 1 ≤ p < ∞. Let f be such that Dαi
f ∈ L p(R3), where αi are the vertices of a completely regular

polyhedron N. Let h > 0 be fixed. Then almost everywhere

f (x) = fh(x)+ lim
ε→0

1

(2π)3/2

n∑
i=1

∫ h

ε

dν
∫

R3
Dαi

f (t) ˆG1,i (t − x, ν)dt. (18)

Proof. By the Fundamental Theorem of Calculus and the integral representation (17)

fh(x)− fε(x) =
1

(2π)3/2

∫ h

ε

∂

∂ν
dν
∫

R3
f (x + t)Ĝ0(t, ν)dt

=
1

(2π)3/2

∫ h

ε

dν
∫

R3
f (x + t)

∂

∂ν
Ĝ0(t, ν)dt

=
1

(2π)3/2

∫ h

ε

dν
∫

R3
f (x + t)

n∑
i=1

Dαi

t G1,i (t, ν)dt

=
1

(2π)3/2

n∑
i=1

∫ h

ε

dν
∫

R3
Dαi

f (x + t) ˆG1,i (t, ν)dt. (19)

The claim follows from the properties of L p convergence.

3. Embedding theorems for multianisotropic spaces

Let N be a completely regular polyhedron with vertices α1, α2, . . . , αn . The space of functions W N
p (R3) where

W N
p

(
R3
)
=

{
f : f ∈ L p

(
R3
)
; Dαi

f ∈ L p

(
R3
)

1 ≤ i ≤ n
}

is called the multianisotropic Sobolev space. It is a generalization of the isotropic and anisotropic Sobolev spaces.

Theorem 2. Let γ = (γ1, γ2, γ3) and suppose γ1 ≤ γ2 ≤ γ3. Denote by l the number of equal components in the
vector γ minus one (0 ≤ l ≤ 2). Let p and q be such that 1 ≤ p ≤ q < ∞ or 1 ≤ p < ∞ and q = ∞. Let
m = (m1,m2,m3) be a multi-index. Denote by ~

~ = max
i=1,...,M

(
|µi
| +

(
m, µi

))
− min

i=1,...,l+1
|µi
|

(
1−

1
p
+

1
q

)
.

If ~ < 1 then Dm W N
p (R3) ↪→ Lq(R3), and the following inequality holds

‖Dm f ‖Lq (R3) ≤ h1−~
(

al+2| ln h|l+2
+ · · · + a0

) n∑
i=1

‖Dαi
f ‖L p(R3)

+ h−~
(

bl+2| ln h|l+2
+ · · · + b0

)
‖ f ‖L p(R3). (20)

Proof. By (19) we have

Dm fh(x)− Dm fε(x) =
1

(2π)3/2

n∑
i=1

∫ h

ε

dν
∫

R3
Dαi

f (t)Dm ˆG1,i (t − x, ν)dt. (21)

By applying Young’s inequality we get

‖Dm fh − Dm fε‖Lq (R3) ≤ C
n∑

i=1

∫ h

ε

dν

‖Dαi
f ‖L p(R3)‖D

m ˆG1,i (·, ν)‖Lr (R3),

(22)
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where 1 − 1
r =

1
p −

1
q . We can estimate ‖Dm ˆG1,i (·, ν)‖Lr (R3) by applying either one of Lemmas 4–9 depending on

how components of γ relate to each other. We consider only the case γ1 = γ2 = γ3, since the other cases can be
handled analogously.

‖ ˆG1,i (·, ν)‖Lr (R3) ≤ ν
− max

i=1,...,M

(
|µi
|+(m,µi )

)
(c2(ln ν)2 + c1| ln ν| + c0)

·

∫
R3

1

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) · 1

1+ ν−N
(
t Nγ + t Nr + t Nq

)
·

1

1+ ν−N
(
t Nγ + t Nk + t Nm

)dt. (23)

Now we can apply Lemma 9 to the right-hand side of (23)

‖ ˆG1,i (·, ν)‖Lr (R3) ≤ ν
−~(cl+2| ln ν|l+2

+ · · · c0).

We can use the above estimate in (22) to get

‖Dm fh − Dm fε‖Lq (R3) ≤ h1−~(cl+2| ln h|l+2
+ · · · c0)

n∑
i=1

‖Dαi
f ‖L p(R3). (24)

The right-hand side tends to 0 when h → 0, so Dm fh is a Cauchy sequence in Lq(R3). By the properties of Sobolev
weak derivative (see Lemma 6.2 of [3]) and by Lemma 11 it follows that the Sobolev weak derivative Dm f exists,
Dm f ∈ Lq(R3) and ‖Dm f − Dm fε‖Lq (R3)→ 0 when ε→ 0. Consequently, we get

‖Dm f ‖Lq (R3) ≤ ‖D
m fh‖Lq (R3) + ‖D

m f − Dm fh‖Lq (R3)

≤ ‖Dm fh‖Lq (R3) + h1−~(al+2| ln h|l+2
+ · · · c0)

n∑
i=1

‖Dαi
f ‖L p(R3).

Now let us estimate ‖Dm fh‖Lq (R3). By the integral representation and Young’s inequality we get

‖Dm fh‖Lq (R3) ≤ C‖ f ‖L p(R3)‖D
m Ĝ0(·, h)‖Lr (R3).

By Lemma 4 for Ĝ0(t, ν) we get

‖Dm Ĝ0(·, h)‖Lr (R3) ≤ ν
− max

i=1,...,M

(
|µi
|+(m,µi )

) (
c2(ln h)2 + c1| ln h| + c0

)
·

∫
R3

1

1+ ν−N
(
t Nγ + t Nσ + t Nδ

) · 1

1+ ν−N
(
t Nγ + t Nr + t Nq

)
·

1

1+ ν−N
(
t Nγ + t Nk + t Nm

)dt.

Again, by Lemma 9 we get

‖Dm fh‖Lq (R3) ≤ h−~(bl+2| ln h|l+2
+ · · · b0).

Remark 1. If q = ∞ then as a consequence of Theorem 2 we obtain the embedding Dm W N
p (R3) ↪→ C(R3).
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Abstract

The recursive estimation problem of a one-dimensional parameter for statistical models associated with semimartingales is
considered. The asymptotic properties of recursive estimators are derived, based on the results on the asymptotic behavior of a
Robbins–Monro type SDE. Various special cases are considered.
c© 2016 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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0. Introduction

Beginning from the paper [1] of A. Albert and L. Gardner a link between Robbins–Monro (RM) stochastic
approximation algorithm (introduced in [2]) and recursive parameter estimation procedures was intensively exploited.
Later on recursive parameter estimation procedures for various special models (e.g., i.i.d. models, non i.i.d. models
in discrete time, etc.) have been studied by a number of authors using methods of stochastic approximation (see,
e.g., [3–12]). It would be mentioned the fundamental book [13] by M.B. Nevelson and R.Z. Khas’minski (1972)
between them.

In 1987 by N. Lazrieva and T. Toronjadze a heuristic algorithm of a construction of the recursive parameter
estimation procedures for statistical models associated with semimartingales (including both discrete and continuous
time semimartingale statistical models) was proposed [14]. These procedures could not be covered by the generalized
stochastic approximation algorithm with martingale noises (see, e.g., [15]), while in discrete time case the classical
RM algorithm contains recursive estimation procedures.

To recover the link between the stochastic approximation and recursive parameter estimation in [16–18] by
Lazrieva, Sharia and Toronjadze the semimartingale stochastic differential equation was introduced, which naturally
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includes both generalized RM stochastic approximation algorithms with martingale noises and recursive parameter
estimation procedures for semimartingale statistical models.

In the present work we are concerning with the construction of recursive estimation procedures for semimartingale
statistical models asymptotically equivalent to the MLE and M-estimators, embedding these procedures in the
Robbins–Monro type equation. For this reason in Section 1 we shortly describe the Robbins–Monro type SDE and
give necessary objects to state results concerning the asymptotic behavior of recursive estimator procedures.

In Section 2 we give a heuristic algorithm of constructing recursive estimation procedures for one-dimensional
parameter of semimartingale statistical models. These procedures provide estimators asymptotically equivalent to
MLE. To study the asymptotic behavior of these procedures we rewrite them in the form of the Robbins–Monro type
SDE. Besides, we give a detailed description of all objects presented in this SDE, allowing us separately study special
cases (e.g. discrete time case, diffusion processes, point processes, etc.).

In Section 4 we formulate main results concerning the asymptotic behavior of recursive procedures, asymptotically
equivalent to the MLE.

In Section 5, we develop recursive procedures, asymptotically equivalent to M-estimators.
Finally, in Section 6, we give various examples demonstrating the usefulness of our approach.

1. The Robbins–Monro type SDE

Let on the stochastic basis (Ω ,F , F = (Ft )t≥0, P) satisfying the usual conditions the following objects be given:

(a) the random field H = {Ht (u), t ≥ 0, u ∈ R1
} = {Ht (ω, u), t ≥ 0, ω ∈ Ω , u ∈ R1

} such that for each u ∈ R1 the
process H(u) = (Ht (u))t≥0 ∈ P (i.e. is predictable);

(b) the random field M = {M(t, u), t ≥ 0, u ∈ R1
} = {M(ω, t, u), ω ∈ Ω , t ≥ 0, u ∈ R1

} such that for each u ∈ R1

the process M(u) = (M(t, u))t≥0 ∈ M2
loc(P);

(c) the predictable increasing process K = (Kt )t≥0 (i.e. K ∈ V+ ∩ P ).

In the sequel we restrict ourselves to the consideration of the following particular case: for each u ∈ R1 M(u) =
ϕ(u) · m + W (u) ∗ (µ− ν), where m ∈ Mc

loc(P), µ is an integer-valued random measure on (R × E,B(R+)× E),
ν is its P-compensator, (E, E) is the Blackwell space, W (u) = (W (t, x, u), t ≥ 0, x ∈ E) ∈ P ⊗ E . Here we also
mean that all stochastic integrals are well-defined.1

Later on by the symbol
∫ t

0 M(ds, us), where u = (ut )t≥0 is some predictable process, we denote the following
stochastic line integrals:∫ t

0
ϕ(s, us) dms +

∫ t

0

∫
E

W (s, x, us)(µ− ν)(ds, dx)

provided the latters are well-defined.
Consider the following semimartingale stochastic differential equation

zt = z0 +

∫ t

0
Hs(zs−) d Ks +

∫ t

0
M(ds, zs−), z0 ∈ F0. (1.1)

We call SDE (1.1) the Robbins–Monro (RM) type SDE if the drift coefficient Ht (u), t ≥ 0, u ∈ R1 satisfies the
following conditions: for all t ∈ [0,∞) P-a.s.

(A)
Ht (0) = 0,
Ht (u)u < 0 for all u 6= 0.

The question of strong solvability of SDE (1.1) is well-investigated (see, e.g., [20]).
We assume that there exists a unique strong solution z = (zt )t≥0 of Eq. (1.1) on the whole time interval [0,∞) and

such that M̃ ∈ M2
loc(P), where

M̃t =

∫ t

0
M(ds, zs−).

Sufficient conditions for the latter can be found in [20].

1 See [19] for basic concepts and notations.
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The unique solution z = (zt )t≥0 of RM type SDE (1.1) can be viewed as a semimartingale stochastic approximation
procedure.

In [16,17], the asymptotic properties of the process z = (zt )t≥0 as t → ∞ are investigated, namely, convergence
(zt → 0 as t →∞ P-a.s.), rate of convergence (that means that for all δ < 1

2 , γ δt zt → 0 as t →∞ P-a.s., with the
specially chosen normalizing sequence (γt )t≥0) and asymptotic expansion

χ2
t z2

t =
L t

〈L〉1/2t

+ Rt

with the specially chosen normalizing sequence χ2
t and martingale L = (L t )t≥0, where Rt → 0 as t → ∞

(see [16,17] for definition of objects χ2
t , L t and Rt ).

2. Basic model and regularity

Our object of consideration is a parametric filtered statistical model

E = (Ω ,F ,F = (Ft )t≥0, {Pθ ; θ ∈ R})

associated with one-dimensional F-adapted RCLL process X = (X t )t≥0 in the following way: for each θ ∈ R1 Pθ
is assumed to be the unique measure on (Ω ,F) such that under this measure X is a semimartingale with predictable
characteristics (B(θ),C(θ), νθ ) (w.r.t. standard truncation function h(x) = x I{|x |≤1}). For simplicity assume that all
Pθ coincide on F0.

Suppose that for each pair (θ, θ ′) Pθ
loc
∼ Pθ ′ . Fix some θ0 ∈ R and denote P = Pθ0 , B = B(θ0), C = C(θ0),

ν = νθ0 .
Let ρ(θ) = (ρt (θ))t≥0 be a local density process (likelihood ratio process)

ρt (θ) =
d Pθ,t
d Pt

,

where for each θ Pθ,t := Pθ |Ft , Pt := P|Ft are restrictions of measures Pθ and P on Ft , respectively.
As it is well-known (see, e.g., [21, Ch. III, §3d, Th. 3.24]) for each θ there exists a P̃ -measurable positive function

Y (θ) = {Y (ω, t, x; θ), (ω, t, x) ∈ Ω × R+ × R},

and a predicable process β(θ) = (βt (θ))t≥0 with

|h(Y (θ)− 1)| ∗ ν ∈ A+loc(P), β2(θ) ◦ C ∈ A+loc(P),

and such that

(1) B(θ) = B + β(θ) ◦ C + h(Y (θ)− 1) ∗ ν,
(2) C(θ) = C, (3) νθ = Y (θ) · ν.

(2.1)

In addition, the function Y (θ) can be chosen in such a way that

at := ν({t}, R) = 1⇐⇒ at (θ) := νθ ({t}, R) =
∫

Y (t, x; θ)ν({t})dx = Ŷt (θ) = 1.

We give a definition of the regularity of the model based on the following representation of the density process as
exponential martingale:

ρ(θ) = E(M(θ)),

where

M(θ) = β(θ) · X c
+

(
Y (θ)− 1+

Ŷ (θ)− a

1− a
I{0<a<1}

)
∗ (µ− ν) ∈ Mloc(P), (2.2)

Et (M) is the Dolean exponential of the martingale M (see, e.g., [19]). Here X c is a continuous martingale part of X
under measure P .
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We say that the model is regular if for almost all (ω, t, x) the functions β : θ → βt (ω; θ) and Y : θ → Y (ω, t, x; θ)
are differentiable (notation β̇(θ) := ∂

∂θ
β(θ), Ẏ (θ) := ∂

∂θ
Y (θ)) and differentiability under integral sign is possible.

Then

∂

∂θ
ln ρ(θ) = L(Ṁ(θ),M(θ)) := L(θ) ∈ Mloc(Pθ ),

where L(m,M) is the Girsanov transformation defined as follows: if m,M ∈ Mloc(P) and Q � P with d Q
d P = E(M),

then

L(m,M) := m − (1+1M)−1
◦ [m,M] ∈ Mloc(Q).

It is not hard to verify that

L(θ) = β̇(θ) · (X c
− β(θ) ◦ C)+ Φ(θ) ∗ (µ− νθ ), (2.3)

where

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1− a(θ)

with I{a(θ)=1}ȧ(θ) = 0, and 0/0 = 0 (recall that ∂
∂θ

Ŷ (θ) = ȧ(θ)).
Indeed, due to the regularity of the model, we have

Ṁ(θ) = β̇(θ) · X c
+

(
Ẏ (θ)−

ȧ(θ)

1− a
I(0<a<1)

)
∗ (µ− ν)

and (2.3) simply follows from (1.16)–(1.18) of [22, Part I] with

g(θ) = Y (θ)− 1+
a(θ)− a

1− a
I(0<a<1),

ψ(θ) = Ẏ (θ)−
ȧ(θ)

1− a
I(0<a<1).

The empirical Fisher information process is Ît (θ) = [L(θ), L(θ)]t and if we assume that for each θ ∈ R1L(θ) ∈
M2

loc(Pθ ), then the Fisher information process is

It (θ) = 〈L(θ), L(θ)〉t .

3. Recursive estimation procedure for MLE

In [14], a heuristic algorithm was proposed for the construction of recursive estimators of unknown parameter θ
asymptotically equivalent to the maximum likelihood estimator (MLE).

This algorithm was derived using the following reasons:
Consider the MLE θ̂ = (θ̂t )t≥0, where θ̂t is a solution of estimational equation

L t (θ) = 0.

The question of solvability of this equation is considered in [22, Part II].
Assume that

(1) for each θ ∈ R1, It (θ)→∞ as t →∞, Pθ -a.s., the process ( Ît (θ))
1/2(θ̂t − θ) is Pθ -stochastically bounded and,

in addition, the process (θ̂t )t≥0 is a Pθ -semimartingale;
(2) for each pair (θ ′, θ) the process L(θ ′) ∈ M2

loc(Pθ ′) and is a Pθ -special semimartingale;
(3) the family (L(θ), θ ∈ R1) is such that the Itô–Ventzel formula is applicable to the process (L(t, θ̂t ))t≥0 w.r.t. Pθ

for each θ ∈ R1;
(4) for each θ ∈ R1 there exists a positive increasing predictable process (γt (θ))t≥0, γ0 > 0, asymptotically equivalent

to Î−1
t (θ), i.e.

γt (θ) Ît (θ)
Pθ
→ 1 as t →∞.
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Under these assumptions using the Ito–Ventzel formula for the process (L(t, θ̂t ))t≥0 we get an “implicit” stochastic
equation for θ̂ = (θ̂t )t≥0. Analyzing the orders of infinitesimality of terms of this equation and rejecting the high order
terms we get the following SDE (recursive procedure)

dθt = γt (θt−)L(dt, θt−), (3.1)

where L(dt, ut ) is a stochastic line integral w.r.t. the family {L(t, u), u ∈ R1, t ∈ R+} of Pθ -special semimartingales
along the predictable curve u = (ut )t≥0.

Note that in many cases under consideration one can choose γt (θ) = (I
−1
t (θ)+ 1)−1, or in ergodic situations such

as i.i.d. case, ergodic diffusion one can replace It (θ) by another process equivalent to them (see examples).
To give an explicit form to the SDE (3.1) for the statistical model associated with the semimartingale X assume for

a moment that for each (u, θ) (including the case u = θ )

|Φ(u)| ∗ µ ∈ A+loc(Pθ ). (3.2)

Then for each pair (u, θ) we have

Φ(u) ∗ (µ− νu) = Φ(u) ∗ (µ− νθ )+ Φ(u)
(

1−
Y (u)

Y (θ)

)
∗ νθ .

Based on this equality one can obtain the canonical decomposition of Pθ -special semimartingale L(u) (w.r.t.
measure Pθ ):

L(u) = β̇(u) ◦ (X c
− β(θ) ◦ C)+ Φ(u) ∗ (µ− νθ )+ β̇(u)(β(θ)− β(u)) ◦ C + Φ(u)

(
1−

Y (u)

Y (θ)

)
∗ νθ .

(3.3)

Now, using (3.3) the meaning of L(dt, ut ) is∫ t

0
L(ds, us−) =

∫ t

0
β̇s(us−)d(X

c
− β(θ) ◦ C)s +

∫ t

0

∫
Φ(s, x, us−)(µ− νθ )(ds, dx)

+

∫ t

0
β̇s(us)(βs(θ)− βs(us))dCs +

∫ t

0

∫
Φ(s, x, us−)

(
1−

Y (s, x, us−)

Y (s, x, θ)

)
νθ (ds, dx).

Finally, the recursive SDE (3.1) takes the form

θt = θ0 +

∫ t

0
γs(θs−)β̇s(θs−)d(X

c
− β(θ) ◦ C)s +

∫ t

0

∫
γs(θs−)Φ(s, x, θs−)(µ− νθ )(ds, dx)

+

∫ t

0
γs(θ)β̇s(θs)(βs(θ)− βs(θs))dCs

+

∫ t

0

∫
γs(θs−)Φ(s, x, θs−)

(
1−

Y (s, x, θs−)

Y (s, x, θ)

)
νθ (ds, dx). (3.4)

Remark 3.1. One can give more accurate than (3.2) sufficient conditions (see, e.g., [21,19]) to ensure the validity of
decomposition (3.3).

Assume that there exists a unique strong solution (θt )t≥0 of the SDE (3.4).
Fix arbitrary θ ∈ R1. To investigate the asymptotic properties, under measure Pθ , of recursive estimators (θt )t≥0

as t → ∞, namely, a strong consistency, rate of convergence and asymptotic expansion we reduce the SDE (3.4) to
the Robbins–Monro type SDE.

For this aim denote zt = θt − θ . Then (3.4) can be rewritten as

zt = z0 +

∫ t

0
γs(θ + zs−)β̇(θ + zs−)(βs(θ)− βs(θ + zs−))dCs

+

∫ t

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)

(
1−

Y (s, x, θ + zs−)

Y (s, x, θ)

)
νθ (ds, dx)
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+

∫ t

0
γs(θ + zs)β̇s(θ + zs)d(X

c
− β(θ) ◦ C)s

+

∫ t

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)(µ− νθ )(ds, dx). (3.5)

For the definition of the objects K θ , {H θ (u), u ∈ R1
} and {Mθ (u), u ∈ R1

} we consider such a version of
characteristics (C, νθ ) that

Ct = cθ ◦ Aθt ,

νθ (ω, dt, dx) = d Aθt Bθω,t (dx),

where Aθ = (Aθt )t≥0 ∈ A+loc(Pθ ), cθ = (cθt )t≥0 is a nonnegative predictable process, and Bθω,t (dx) is a transition
kernel from (Ω × R+,P) in (R,B(R)) with Bθω,t ({0}) = 0 and

1Aθt Bθω,t (R) ≤ 1

(see [21, Ch. 2, §2, Prop. 2.9]).
Put K θ

t = Aθt ,

H θ
t (u) = γt (θ + u)

{
β̇t (θ + u)(βt (θ)− βt (θ + u))cθt +

∫
Φ(t, x, θ + u)

(
1−

Y (t, x, θ + u)

Y (t, x, θ)

)
Bθω,t (dx)

}
,

(3.6)

Mθ (t, u) =
∫ t

0
γs(θ + u)β̇s(θ + u)d(X c

− β(θ) ◦ C)s +
∫ t

0

∫
γs(θ + u)Φ(s, x, θ + u)(µ− νθ )(ds, dx).

(3.7)

Assume that for each u, u ∈ R, Mθ (u) = (Mθ (t, u))t≥0 ∈ M2
loc(Pθ ). Then

〈Mθ (u)〉t =
∫ t

0
(γs(θ + u)β̇s(θ + u))2cθs d Aθs +

∫ t

0
γ 2

s (θ + u)

(∫
Φ2(s, x, θ + u)Bθω,s(dx)

)
d Aθ,cs

+

∫ t

0
γ 2

s (θ + u)Bθω,t (R)

{∫
Φ2(s, x, θ + u)qθω,s(dx)

− as(θ)

(∫
Φ(s, x, θ + u)qθω,s(dx)

)2}
d Aθ,ds ,

where as(θ) = 1Aθs Bθω,s(R), qθω,s(dx)I{as (θ)>0} =
Bθω,s (dx)
Bθω,s (R)

I{as (θ)>0}.

Now we give a more detailed description of Φ(θ), I (θ), H θ (u) and 〈Mθ (u)〉. This allows us to study the special
cases separately (see Remark 3.2 below). Denote

dνc
θ

dνc := F(θ),
qθω,t (dx)

qω,t (dx)
:= fω,t (x, θ) (:= ft (θ)).

Then

Y (θ) = F(θ)I{a=0} +
a(θ)

a
f (θ)I{a>0}

and

Ẏ (θ) = Ḟ(θ)I{a=0} +

(
ȧ(θ)

a
f (θ)+

a(θ)

a
ḟ (θ)

)
I{a>0}.

Therefore

Φ(θ) =
Ḟ(θ)

F(θ)
I{a=0} +

{
ḟ (θ)

f (θ)
+

ȧ(θ)

a(θ)(1− a(θ))

}
I{a>0} (3.8)

with I{a(θ)>0}
∫ ḟ (θ)

f (θ) qθ (dx) = 0.
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Remark 3.2. Denote β̇(θ) = `c(θ), Ḟ(θ)
F(θ) := `

π (θ), ḟ (θ)
f (θ) := `

δ(θ), ȧ(θ)
a(θ)(1−a(θ)) := `

b(θ).
Indices i = c, π, δ, b carry the following loads: “c” corresponds to the continuous part, “π” to the Poisson type

part, “δ” to the predictable moments of jumps (including a main special case—the discrete time case), “b” to the
binomial type part of the likelihood score `(θ) = (`c(θ), `π (θ), `δ(θ), `b(θ)).

In these notations we have for the Fisher information process:

It (θ) =

∫ t

0
(`c

s(θ))
2dCs +

∫ t

0

∫
(`πs (x; θ))

2 Bθω,s(dx)d Aθ,cs

+

∫ t

0
Bθω,s(R)

[∫
(`δs(x; θ))

2qθω,s(dx)

]
d Aθ,ds +

∫ t

0
(`b

s (θ))
2(1− as(θ))d Aθ,ds . (3.9)

For the random field H θ (u) we have

H θ
t (u) = γt (θ + u)

{
`c

t (θ + u)(βt (θ)− βt (θ + u))cθt

+

∫
`πt (x; θ + u)

(
1−

Ft (x; θ + u)

Ft (x; θ)

)}
Bθω,t (dx)I

{1Aθt =0}

+

{∫
`δt (x; θ + u)qθω,t (dx)`b

t (θ + u)
at (θ)− at (θ + u)

at (θ)

}
Bθω,t (R)I{1Aθt >0}. (3.10)

Finally, we have for 〈Mθ (u)〉:

〈Mθ (u)〉t =
(
γ (θ + u)`c(θ + u)

)2 cθ ◦ Aθt +
∫ t

0
γ 2

s (θ + u)
∫
(`πs (x; θ + u))2 Bθω,s(dx)d Aθ,cs

+

∫ t

0
γ 2

s (θ + u)Bθω,s(R)

{∫
(`δs(x; θ + u)+ `b

s (θ + u))2qθω,s(dx)

− as(θ)

(∫
(`δs(x; θ + u)+ `b

s (θ + u))qθω,s(dx)

)2}
d Aθ,ds . (3.11)

Thus, we reduced SDE (3.5) to the Robbins–Monro type SDE with K θ
t = Aθt , and H θ (u) and Mθ (u) defined by

(3.6) and (3.7), respectively.
As it follows from (3.6), (3.10)

H θ
t (0) = 0 for all t ≥ 0, Pθ -a.s.

As for condition (A) to be satisfied it is enough to require that for all t ≥ 0, u 6= 0 Pθ -a.s.

β̇t (θ + u)(βt (θ)− βt (θ + u)) < 0,(∫
Ḟ(t, x, θ + u)

F(t, x, θ + u)

(
1−

F(t, x; θ + u)

F(t, x; θ)

)
Bθω,t (dx)

)
I
{1Aθt =0}u < 0,(∫

ḟ (t, x; θ + u)

f (t, x; θ + u)
qθt (dx)

)
I
{1Aθt >0}u < 0,

ȧt (θ + u)(at (θ)− at (θ + u))u < 0,

and the simplest sufficient conditions for the latter ones are the strong monotonicity (P-a.s.) of functions β(θ), F(θ),
f (θ) and a(θ) w.r.t. θ .

4. Main results

We are ready to formulate main results about asymptotic properties of recursive estimators {θt , t ≥ 0} as t →∞,
(Pθ -a.s.), which is the same of solution zt , t ≥ 0, of Eq. (3.5).
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For simplicity we restrict ourselves by the case when semimartingale X = (X t )t≥0 is left quasi-continuous, so
ν(ω; {t}, R) = 0 for all t ≥ 0, P-a.s., and Aθ = (Aθt )t≥0 is a continuous process. In this case

H θ
t (u) = γt (θ + u)

{
β̇t (θ + u)(βt (θ)− βt (θ + u))cθt +

∫
Ḟt (x; θ + u)

Ft (x; θ + u)

(
1−

Ḟt (x; θ + u)

Ft (x; θ)

)
Bθω,t (dx)

}
,

(4.1)

〈Mθ (u)〉t =
∫ t

0
(γs(θ + u)β̇s(θ + u))2d Aθs +

∫ t

0
γ 2

s (θ + u)

(∫ (
Ḟs(x; θ + u)

Fs(x; θ + u)

)2

Bθω,s(dx)

)
d Aθs , (4.2)

It (θ) =

∫ t

0
(β̇s(θ))

2cθs d Aθs +
∫ t

0

∫ (
Ḟs(x; θ)

Fs(x; θ)

)2

Bω,s(dx)d Aθs . (4.3)

Theorem 4.1 (Strong Consistency). Let for all t ≥ 0, Pθ -a.s. the following conditions be satisfied:

(A) H θ
t (0) = 0, H θ

t (u)u < 0, u 6= 0,
(B) hθt (u) ≤ Bθt (1+ u2), where Bθ = (Bθt )t≥0 is a predictable process, Bθt ≥ 0, Bθ ◦ Aθ∞ <∞,

hθt (u) =
d〈Mθ (u)〉t

d Aθt
, (4.4)

(C) for each ε, ε > 0,

inf
ε≤|u|≤ 1

ε

|H θ (u)u| ◦ Aθ∞ = ∞.

Then for each θ ∈ R1

θ̂t → 0 (or zt → 0), as t →∞, Pθ -a.s.

Proof. Immediately follows from conditions of Theorem 3.1 of [16] applied to prespecified by (4.1)–(4.3)
objects. �

In the sequel we assume that for each θ ∈ R1

Pθ

(
lim

t→∞

Ît (θ)

It (θ)
= 1

)
= 1,

from which it follows that γt (θ) = I−1
t (θ). Denote

gθt =
d It (θ)

d Aθt
= (β̇t (θ))

2cθt +
∫ (

Ḟt (x; θ)

Ft (x; θ)

)2

Bω,t (dx). (4.5)

We assume also that zt → 0 as t →∞, Pθ -a.s.

Theorem 4.2 (Rate of Convergence). Suppose that for each δ, 0 < δ < 1, the following conditions are satisfied:

(i)
∫
∞

0

[
δ

gθt
I θt
− 2βθt (zt )

]+
d Aθt <∞, Pθ -a.s., where βθt (u) =


−

H θ
t (u)

u
, u 6= 0,

− lim
u→0

H θ
t (u)

u
, u = 0,

(4.6)

(ii)
∫
∞

0
(It (θ))

δhθt (zt )d Aθt <∞, Pθ -a.s.

Then for each θ ∈ R1, δ, 0 < δ < 1,

I δt (θ)z
2
t → 0 as t →∞, Pθ -a.s.
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Proof. It is enough to note that conditions (2.3) and (2.4) of Theorem 2.1 from [17] are satisfied with It (θ) instead of
γt , δgθt /It (θ) instead of r δt and βθt (u) instead of βt (u). �

In the sequel we assume that for all δ, 0 < δ < 1
2 ,

I δt (θ)zt → 0 as t →∞, Pθ -a.s.

It is not hard to verify that the following expansion holds true

I 1/2
t (θ)zt =

Lθt
〈Lθ 〉1/2t

+ Rθt , (4.7)

where Lθt , Rθt will be specified below.
Indeed, according to “Preliminary and Notation” section of [17]

β
θ

t = − lim
u→0

H θ
t (u)

u
= −I−1

t (θ)gθt .

Further,

−β
θ
◦ Aθt =

∫ t

0
I−1
s (θ)

d Is(θ)

d As(θ)
d Aθs = ln It (θ).

Therefore

Γ θ
t = ε

−1
t (−β

θ
◦ Aθt ) = It (θ) (4.8)

and

Lθt =
∫ t

0
Γ θ

s d Mθ (s, 0)

with

〈Lθ 〉t =
∫ t

0
(Γ θ

s )
2d〈Mθ (0)〉s =

∫ t

0
I 2
s (θ)I

−2
s (θ)d Is(θ) = It (θ). (4.9)

Finally, we obtain

χθt = Γ θ
t 〈L

θ
〉
−1/2
t = I 1/2

t (θ). (4.10)

As for Rθt , one can use the definition of Rt from the same section by replacing of objects by the corresponding objects

with upperscripts “θ”, e.g. β t by β
θ

t , L t by Lθt , etc.

Theorem 4.3 (Asymptotic Expansion). Let the following conditions be satisfied:

(i) 〈Lθ 〉t is a deterministic process, 〈Lθ 〉∞ = ∞,
(ii) there exists ε, 0 < ε < 1

2 , such that

1
〈Lθ 〉t

∫ t

0
|βθs − β

θ
s (zs)|I

−ε
s (θ)〈Lθ 〉sd Aθs → 0 as t →∞, Pθ -a.s.,

(iii)

1
〈Lθ 〉t

∫ t

0
I 2
t (θ)(h

θ
s (zs, zs)− 2hθs (zs, 0)+ hs(0, 0))d Aθs

Pθ
→ 0 as t →∞,

where

hθt (u, v) =
d〈Mθ (u),Mθ (v)〉

d Aθt
. (4.11)
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Then in Eq. (4.7) for each θ ∈ R

Rθt
Pθ
→ 0 as t →∞.

Proof. It is not hard to verify that all conditions of Theorem 3.1 from [17] are satisfied with 〈Lθ 〉t instead of 〈L〉t ,
βθs (u) instead of βs(u), I−1

θ (θ) instead of γt , Aθt instead of χt , Γ θ
s instead Γs , and I 1/2

t (θ) instead of χt , hθt (u, v)
instead of ht (u, v), and, finally, Pθ instead of P . �

Remark. It follows from Eq. (4.7) and Theorem 4.3 that, using the Central Limit Theorem for martingales

I 1/2
t (θ)(θt − θ)

d
→ N (0, 1).

5. Recursive procedure for M-estimators

As stated in previous section the maximum likelihood equation has the form

L t (θ) = L t (Ṁθ ,Mθ ) = 0.

This equation is the special member of the following family of estimational equations

L t (mθ ,Mθ ) = 0 (5.1)

with certain P-martingales mθ , θ ∈ R1. These equations are of the following sense: their solutions are viewed as
estimators of unknown parameter θ , so-called M-estimators. To preserve the classical terminology we shall say that
the martingale mθ defines the M-estimator, and Pθ -martingale L(mθ ,Mθ ) is the influence martingale.

As it is well known M-estimators play the important role in robust statistics, besides they are sources to obtain
asymptotically normal estimators.

Since for each θ ∈ R1 Pθ is a unique measure such that under this measure X = (X t )t≥0 is a semimartingale
with characteristics (B(θ), c(θ), νθ ) all Pθ -martingales admit an integral representation property w.r.t. continuous
martingale part and martingale measure (µ − νθ ) of X . In particular, the P-martingale Mθ has the form (see Eq.
(2.2))

Mθ = β(θ) ◦ X s
+ ψ ∗ (µ− ν), (5.2)

where

ψ(s, x, θ) = Y (t, x, θ)− 1+
Ŷ (t, θ)− a

1− a
I(0<a<1)

and mθ ∈ Mloc(P) can be represented as

m(θ) = g(θ) ◦ X c
+ G(θ) ∗ (µ− ν) (5.3)

with certain functions g(θ) and G(θ).
It can be easily shown that Pθ -martingale L(mθ ,Mθ ) can be represented as

L(mθ ,Mθ ) = ϕm(θ) · (X
c
− β(θ) ◦ C)+ Φm(θ) ∗ (µ− νθ ), (5.4)

where the functions ϕm and Φm are expressed in terms of functions β(θ), ψ(θ), g(θ) and G(θ).
On the other hand, it can be easily shown that each Pθ -martingale M̃θ can be expressed as L(m̃θ ,Mθ ) with P-

martingale m̃θ defined as

m̃θ = L(M̃θ , L(−Mθ ,Mθ )) ∈ Mloc(P)

(since d P
d Pθ
= E(L(−Mθ ,Mθ )), according to the generalized Girsanov theorem L(M̃θ , L(−Mθ ,Mθ )) ∈ Mloc(P)).

Therefore without loss of generality one can consider the M-estimator associated with the parametric family
(M̃θ , θ ∈ R) of Pθ -martingale as the solution of the estimational equation

M̃t (θ) = 0. (5.5)
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In the sequel we assume that for each θ ∈ R1, M̃θ ∈ M2
loc(Pθ ). Assume also that there exists a positive decreasing

predictable process γ̃t (θ) with γ̃0(θ) = 1 such that γ̃t (θ)〈M̃θ 〉t
Pθ
→ 1 as t →∞.

Now using the same arguments as in Section 3 we introduce the following recursive procedure for constructing
estimator (θ̃t , t ≥ 0) asymptotically equivalent to the M-estimator defined by relation (5.5) as the solution of the
following SDE

d θ̃t = γ̃t (θ)M̃(dt, θ̃t−). (5.6)

To obtain the explicit form of the last SDE, recall that M̃θ has an integral representation property

M̃t (θ) = ϕ̃(θ) ◦ (X
c
− β(θ) ◦ 〈X c

〉)+ Φ̃(θ) ∗ (µ− νθ ).

We can obtain the canonical decomposition of Pθ -semimartingale M̃t (u), u ∈ R1 (w.r.t. measure Pθ )

M̃(u) = ϕ̃(u) ◦ (X c
− β(θ) ◦ C)+ Φ̃(u) ∗ (µ− νθ )

+ [ϕ̃(u)(β(θ)− β(u))] ◦ C + Φ̃(u)
(

1−
y(u)

y(θ)

)
∗ (µ− νθ ).

Based on the last expression we can derive the explicit form of SDE (5.5)

θt = θ0 +

∫ t

0
γ̃s(θ̃s−)ϕ̃(s, θs−)d(X

c
− β(θ) ◦ C)+

∫ t

0

∫
γ̃s(θs−)Φ̃(s, x, θ̃s−)(µ− νθ )(ds, dx)

+

∫ t

0
γ̃s(θs−)ϕ̃(s, θ̃s−)(βs(θ)− βs(θs−))dCs

+

∫ t

0

∫
γs(θs−)Φ̃(s, x, θ̃s−)

(
1−

Y (s, x, θ̃s−)

Y (s, x, θ)

)
νθ (ds, dx). (5.7)

To study the asymptotic properties of the solution of this equation (θ̃t , t ≥ 0) (e.g. consistency, rate of convergence,
asymptotic normality) is more convenient to rewrite this equation as (zt = θ̃t − θ)

zt = z0 +

∫ t

0
γ̃s(θ + zs−)ϕ̃(s, θ + zs−)d(X

c
− β(θ) ◦ C)

+

∫ t

0

∫
γ̃s(θ + zs−)Φ̃(s, x, θ + zs−)(µ− νθ )(ds, dx)

+

∫ t

0
γ̃s(θ + zs−)ϕ̃(s, θ + zs−)(βs(θ)− βs(θs + zs−))dCs

+

∫ t

0

∫
γ̃s(θ + zs−)Φ̃(s, x, θ + zs−)

(
1−

Y (s, x, θ + zs−)

Y (s, x, θ)

)
νθ (ds, dx). (5.8)

6. Examples

To make the things more clear let us begin with the simplest case of i.i.d. observations.

Example 1. Let {pθ , θ ∈ R1} be the family of probability measures defined on some measurable space (X,B) such
that for each pair θ, θ ′, pθ ∼ pθ ′ .

Put Ω = X∞, Fn = B(Xn), F = B(X∞), Pθ = pθ × pθ × · · · . Then for θ, θ ′, Pθ
loc
∼ Pθ ′ . Fix some θ0 ∈ R1 and

denote p = pθ0 . Let dpθ/dp = f (x, θ). Then the local density process

ρn(θ) =
d Pn,θ

d Pn
=

n∏
i=1

f (X i , θ) = En(Mθ ), (6.1)
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where

M(θ) =
n∑

i=1

( f (X i , θ)− 1)

is a P-martingale. Here (Xn)n≥1 is a coordinate process, Xn(ω) = xn .
Assume that for all x , f (x, θ) is continuous differentiable in θ and denote ∂

∂θ
f (X, θ) = ḟ (X, θ). Assume also

that ∂
∂θ

∫
f (x, θ)p(dx) =

∫
ḟ (x, θ)p(dx). Then Ṁn(θ) =

∑n
i=1 ḟ (X i , θ) is a P-martingale.

In these notation the MLE takes the form

Ln(Ṁ(θ),Mθ ) =

n∑
i=1

ḟ (X i , θ)

f (X i , θ)
= 0.

The Fischer information process

In(θ) = 〈L(Ṁθ ,Mθ )〉 = nI (θ), (6.2)

where I (θ) = Eθ
( ḟ (·,θ)

f (·,θ)

)2, assuming that the last integral is finite.
The recursive estimation procedure to obtain the estimator θn , asymptotically equivalent to MLE is well known:

θn = θn−1 +
1

nI (θn−1)

ḟ (Xn, θn−1)

f (Xn, θn−1)
. (6.3)

Let us derive this equation from the general recursive SDE.
For this aim consider the process Sn =

∑n
i=1 X i , n ≥ 1. This process is a semimartingale with the jump measure

µ(ω, [0, n] × B) =
∑
i≤n

I{X i∈B}

and its Pθ -compensator is

νθ (ω, [0, n] × B) =
∑
i≤n

Pθ (X i ∈ B) = n
∫

B
f (x, θ)p(dx).

Note that an(θ) = ν(ω, {n}; X) = 1 for all n ≥ 1 and θ ∈ R1.
It is obvious that νθ = Y · ν, where Yθ (ω, n, x) ≡ f (x, θ). Besides,

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1− a(θ)
=

ḟ (·, θ)

f (·, θ)
.

At the same time the general recursive SDE for this special case can be written as

θn = θn−1 +
1

nI (θn−1)

ḟ (xn, θn−1)

f (xn, θn−1)
−

1
nI (θn−1)

∫
ḟ (x, u)

f (x, u)

f (x, u)

f (x, θ)
f (x, θ) dµ|u=θn−1 .

But
∫

ḟ (x, u) dµ = 0 and thus the last term equals zero and we come to Eq. (6.3).
In terms of zn = θn − θ Eq. (6.3) takes the form

zn = zn−1 +
1

nI (θ + zn−1)
b(θ, zn−1)+

1
nI (θ + zn−1)

1mn,

where

b(θ, u) =
∫

ḟ (x, u)

f (x, u)
f (x, θ) dµ, 1mn = 1mn(u), 1mn =

ḟ (x, u)

f (x, u)
− b(θ, u).

Concerning M-estimators recall that by the definition the estimational equation is

Ln(m(θ),M(θ)) = 0, (6.4)

where m(θ) is some P-martingale, mn(θ) =
∑

i≤n g(X i , θ) with
∫

g(x, θ) dp = 0.
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Eq. (6.4) can be written as∑
i≤n

g(X i , θ)

f (X i , θ)
= 0.

Thus, without loss of generality, we can define M-estimator as the solution of the equation

M̃n(θ) =
∑
i≤n

ψ(X i , θ) = 0, (6.5)

where∫
ψ(xi , θ) f (xi , θ) µ(dx) = 0, 〈M̃(θ)〉n = n

∫
ψ2(x, θ) f (x, θ) µ(dx) = nIψ (θ).

Now using the same arguments as in the case of MLE we obtain the following recursive procedure for constructing
the estimator asymptotically equivalent to the M-estimator defined by (6.5)

θn = θn−1 +
1

nIψ (θn−1)
ψ(Xn, θn−1).

Example 2. Discrete time case.
Let X0, X1, . . . , Xn, . . . be observations taking values in some measurable space (X ,B(X )) such that the regular

conditional densities of distributions (w.r.t. some measure p) fi (xi , θ |xi−1, . . . , x0), i ≤ n, n ≥ 1 exist, f0(x0, θ) ≡

f0(x0), θ ∈ R1 is the parameter to be estimated. Denote Pθ corresponding distribution on (Ω ,F) := (X∞,B(X∞)).
Identify the process X = (X i )i≥0 with coordinate process and denote F0 = σ(X0), Fn = σ (X i , i ≤ n). If
ψ = ψ(X i , X i−1, . . . , X0) is a r.v., then under Eθ (ψ |Fi−1) we mean the following version of conditional expectation

Eθ (ψ | Fi−1) :=

∫
ψ(z, X i−1, . . . , X0) fi (z, θ | X i−1, . . . , X0)µ(dz),

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

∂

∂θ
fi (xi , θ | xi−1, . . . , x0) := ḟi (xi , θ | xi−1, . . . , x0),

the maximum likelihood scores

li (θ) :=
ḟi

fi
(X i , θ | X i−1, . . . , X0)

and the empirical Fisher information

In(θ) :=

n∑
i=1

Eθ (l
2
i (θ) | Fi−1).

Denote also

bn(θ, u) := Eθ (ln(θ + u) | Fn−1)

and indicate that for each θ ∈ R1, n ≥ 1

bn(θ, 0) = 0 (Pθ -a.s.). (6.6)

Using the same arguments as in the case of i.i.d. observations we come to the following recursive procedure

θn = θn−1 + I−1
n (θn−1)ln(θn−1), θ0 ∈ F0.

Fix θ , denote zn = θn − θ and rewrite the last equation in the form

zn = zn−1 + I−1
n (θ + zn−1)bn(θ, zn−1)+ I−1

n (θ + zn−1)1mn,

z0 = θ − θ,
(6.7)

where 1mn = 1m(n, zn−1) with 1m(n, u) = ln(θ + u)− Eθ (ln(θ + u)|Fn−1).
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Note that the algorithm (6.7) is embedded in SDE (1.1) with

Hn(u) = I−1
n (θ + u)bn(θ, u) ∈ Fn−1, 1Kn = 1,

1M(n, u) = I−1
n (θ + u)1m(n, u).

This example clearly shows the necessity of consideration of random fields Hn(u) and M(n, u).
The discrete time case was considered by T. Sharia in [10,11].

Example 3. Recursive parameter estimation in the trend coefficient of a diffusion process.
Here we consider the problem of recursive estimation of the one-dimensional parameter in the trend coefficient of

a diffusion process ξ = {ξt , t ≥ 0} with

dξt = a(ξt , θ) dt + σ(ξt ) dwt , ξ0, (6.8)

where w = {wt , t ≥ 0} is a standard Wiener process, a(·, θ) is the known function, θ ∈ Θ ⊆ R is a parameter to be
estimated, Θ is some open subset of R, σ 2(·) is the known diffusion coefficient.

We assume that there exists a unique weak solution of Eq. (6.8).
For each θ ∈ Θ denote by Pθ the distribution of the process ξ on (C[0,∞),B).
Let X = {X t , t ≥ 0} be the coordinate process, that is, for each x = {xt , t ≥ 0} ∈ C[0,∞), X t (x) = xt , t ≥ 0.

Fix some θ ∈ Θ and assume that for each θ ′ ∈ Θ , Pθ
(loc)
∼ Pθ

′

. Then the density process ρt (X, θ) can be written
as

ρt (X, θ) :=
d Pθt
d Pθ

′

t

(X) = exp
{∫ t

0

a(Xs, θ)− a(Xs, θ
′)

σ (Xs)

(d Xs − a(Xs, θ
′)ds)

σ (Xs)

}
−

1
2

∫ t

0

(
a(Xs, θ)− a(Xs, θ

′)

σ (Xs)

)2

ds.

Recall that if for all t ≥ 0 Pθ -a.s.∫ 1

0
σ 2(Xs) ds <∞, (6.9)

then the process
{

X t −
∫ t

0 a(Xs, θ) ds, t ≥ 0
}
∈ M2

loc(P
θ ) with the square characteristic

∫ t
0 σ

2(Xs) ds.

Under suitable regularity conditions if we assume that for all t ≥ 0 Pθ -a.s.∫ t

0

(
ȧ(Xs, θ)

σ (Xs)

)2

ds <∞, (6.10)

we will have{
∂

∂θ
ln ρt (X, θ) =

∫ t

0

(
ȧ(Xs, θ)

σ (Xs)

)
d(Xs − a(Xs, θ)ds), t ≥ 0

}
∈ M2

loc(P
θ ),

where ȧ(·, θ) denotes the derivative of a(·, θ) w.r.t. θ .
Below we assume that conditions (6.9) and (6.10) are satisfied.
Introduce the Fisher information process

It (θ) =

∫ t

0

(
ȧ(Xs, θ)

σ (Xs)

)2

ds.

Then, according to Eq. (3.4), the SDE for constructing the recursive estimator (θt , t ≥ 0) has the form

dθt = It (θt )

[
ȧ(X t , θt )

σ 2(Xs)
d X c

t +
ȧ(X t , θt )

σ 2(X t )
(a(X t , θ)− a(X t , θt )) dt

]
. (6.11)
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Fix some θ ∈ Θ . To study the asymptotic properties of the recursive estimator {θt , t ≥ 0} as t →∞ under measure
Pθ let us denote zt = θt − θ and rewrite (6.11) in the following form:

dzt = It (θ + zt )

[
ȧ(X t , θ + zt )

σ 2(Xs)
d X c

t +
ȧ(X t , θ + zt )

σ 2(X t )
(a(X t , θ)− a(X t , θ + zt )) dt

]
. (6.12)

In the sequel we assume that there exists a unique strong solution of Eq. (6.12) such that{∫ t

0
Is(θ + zs)

ȧ(Xs, θ + zs)

σ 2(Xs)
d X c

s , t ≥ 0
}
∈ M2

loc(Pθ ),

that is, for each t ≥ 0 Pθ -a.s.∫ t

0
I 2
s (θ + zs)

(
ȧ(Xs, θ + zs)

σ (Xs)

)2

ds <∞.

To study the asymptotic properties of the process z = {zt , t ≥ 0} as t →∞ (under the measure Pθ ) one can use
the results of Theorems 4.1–4.3 concerning the asymptotic behavior of solutions of the Robbins–Monro type SDE

zt = z0 +

∫ t

0
Hs(zs−) d Ks +

∫ t

0
M(ds, zs−). (6.13)

Note that Eq. (6.13) covers Eq. (6.12) with Kt = t ,

Ht (u) := H θ
t (u) = It (θ + u)

ȧ(X t , θ + u)

σ 2(X t )
(a(X t , θ)− a(X t , θ + u)) , H θ

t (0) = 0, (6.14)

M(u) := Mθ (u) =

{
Mθ (t, u) =

∫ t

0
Is(θ + u)

ȧ(X t , θ + u)

σ 2(X t )
d X c

s , t ≥ 0
}
. (6.15)

Let for each u ∈ R the process Mθ (u) ∈ M2
loc(P

θ ). Then

〈Mθ (u),Mθ (v)〉t =

∫ t

0
hs(u, v) ds,

where

ht (u, v) = hθt (u, v) = It (θ + u)It (θ + v)
ȧ(X t , θ + u)ȧ(X t , θ + v)

σ 2(X t )
. (6.16)

This problem is fully studied by Lazrieva and Toronjadze in [14].

Example 4. Let (Ω ,F = (Ft )t≥0, P, Pθ , θ ∈ R1) be filtered probability space and M = (Mt )t≥0 be a P-martingale
with the deterministic characteristic 〈M〉t , 〈M〉∞ = ∞. Let for each θ ∈ R1 Pθ be unique measure on (Ω ,F) such
that the process X (t) follows the equation

X t = X0 + a(θ)〈M〉t + Mt ,

where a(θ) is known function depending on the unknown parameter θ . Then for each pair (θ, θ ′), Pθ
loc
∼ Pθ ′ . Fix some

θ0 ∈ R1. Then the local density process

ρt (θ) =
d Pθ,t
d Pθ0,t

= Et (M(θ)),

where

Mt (θ) = (a(θ)− a(θ0))(X t − a(θ0)〈M〉t ). (6.17)

Assume that a(θ) is strongly monotone function continuously differentiable in θ . Then

L t (θ) =
∂

∂θ
ln ρt (θ) = L t (Ṁ(θ),M(θ)) = ȧ(θ)(X t − a(θ)〈M〉t )
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and the Fischer information process is

It (θ) = 〈L(θ), L(θ)〉t = [ȧ(θ)]
2
〈M〉t .

Put γt (θ) = [ȧ(θ)]−2 1
〈M〉t+1 = [ȧ(θ)]

−2γ−1
t (with the obvious notation γt = 〈M〉t + 1). Therefore the recursive

estimation procedure to obtain estimator asymptotically equivalent to the MLE θt is

θt = θ0 +

∫ t

0

1
〈M〉s + 1

a(θ)− a(θs)

ȧ(θs)
d〈M〉s +

∫ t

0

1
1+ 〈M〉s

1
ȧ(θs)

d(Xs − a(θ)〈M〉s). (6.18)

Denote zt = θt − θ and rewrite the last equation

dzt =
1

〈M〉t + 1
a(θ)− a(θ + zt )

ȧ(θ + zt )
d〈M〉t +

1
〈M〉t + 1

1
ȧ(θ + zt )

d(X t − a(θ)〈M〉t ). (6.19)

Further, denote

Ht (θ, u) =
1

〈M〉t + 1
a(θ)− a(θ + zt )

ȧ(θ + zt )
,

Mt (θ, u) =
∫ t

0

1
〈M〉s + 1

1
ȧ(θ + u)

d(Xs − a(θ)〈M〉t ).

In these notation Eq. (6.19) is the Robbins–Monro type equation

dzt = Ht (θ, zt )d〈M〉t + d Mt (θ, zt ). (6.20)

Indeed, condition (A) of Theorem 4.1 is satisfied since

Ht (θ, 0) = 0 and Ht (θ, u)u < 0 for all u 6= 0.

We study the asymptotic behavior of zt as t →∞ under measure Pθ .
(1) Convergence: zt → 0 as t →∞ Pθ -a.s. or θt → θ as t →∞ Pθ -a.s. (strong consistency).

Proposition 6.1. Let the following condition be satisfied

[ȧ(θ + u)]2(1+ u2) ≥ c, (6.21)

where c is some constant depending on θ . Then

zt → 0 as t →∞ Pθ -a.s.

Proof. Let us check conditions (A), (B), (C) of Theorem 4.1. (A) is evident. Concerning condition (B) note that

〈M(θ, u)〉t =
1

(ȧ(θ + u))2

∫ t

0

1

(〈M〉s + 1)2
d〈M〉s

and

ht (θ, u) =
1

(ȧ(θ + u))2
1

(〈M〉t + 1)2
.

Then if we denote Bt =
1

(〈M〉t+1)2
, taking into account Eq. (6.21) we simply obtain

ht (θ, u) ≤ Bt (1+ u2) with B ◦ 〈M〉∞ <∞.

As for condition (C), we have to verify that for each ε > 0

inf
ε≤u≤ 1

ε

∣∣∣∣a(θ)− a(θ + u)

ȧ(θ + u)

∣∣∣∣ ∫ ∞
0

d〈M〉t
〈M〉t + 1

= ∞.

The last condition is satisfied if for each ε > 0

inf
ε≤|u|≤ 1

ε

∣∣∣∣a(θ)− a(θ + u)

ȧ(θ + u)

∣∣∣∣ > 0,

which holds since ȧ(θ) is continuous. �
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(2) Rate of convergence. Here we assume that zt → 0 as t →∞ Pθ -a.s.

Proposition 6.2. For all δ, 0 < δ < 1
2 , we have

γ δt zt = (〈M〉t + 1)δzt → 0 as t →∞, Pθ -a.s.

Proof. We have to check conditions (i) and (ii) of Theorem 4.2.
Condition (ii) is satisfied. Indeed, for all 0 < δ < 1∫

∞

0
(〈M〉t + 1)δ[ȧ(θ + u)]−2 1

(〈M〉t + 1)2
d〈M〉t <∞.

As for condition (i), it is enough to verify that for all δ, 0 < δ < 1
2 ,∫

∞

0

1
〈M〉t + 1

[
δ − I(zt=0) −

a(θ)− a(θ + zt )

zt ȧ(θ + zt )

]+
d〈M〉t <∞.

But
[
δ − I(zt=0) −

a(θ)−a(θ+zt )
zt ȧ(θ+zt )

I{zt 6=0}
]+
= 0 eventually since zt → 0. �

(3) Asymptotic expansion. Here we assume that for all δ, 0 < δ < 1
2 , γ δt zt → 0 as t →∞ Pθ -a.s.

Proposition 6.3. Let there exist some ε > 0, γ > 0 and c(θ) such that

|ȧ(θ + u)− ȧ(θ + v)| ≤ c|u − v|γ (6.22)

for all (u, v) ∈ Oε(0), then all conditions of Theorem 4.3 are satisfied and the following asymptotic expansion holds
true

(1+ 〈M〉t )1/2ȧ(θ)zt =
L t

〈L〉1/2t

+ Rt ,

where Rt → 0 as t →∞ P-a.s., L t = [ȧ(θ)]−1(X t − a(θ)〈M〉t ).

Example 5 (Point Process with Continuous Compensator). Let Ω be a space of piecewise constant functions
x = (xt )t≥0 such that x0 = 0, xt = xt− + (0 or 1), F = σ {x : xs , s ≥ 0} and Ft = σ {x : xs , 0 < s ≤ t}.
Let for x ∈ Ω

τn(x) = inf{s : s > 0, xs = n}

setting τn(∞) = ∞ if limt→∞ xt < n. Let τ∞(x) = limn→∞ τn(x).
Note that x = (xt )t≥0 can be written as

xt =
∑
n≥1

I{τn(x)≤t},

and so (xt )t≥0 and the family of σ -algebras (Ft )t≥0 are right-continuous.
Let for each θ ∈ R1 Pθ be a probability measure on (Ω ,F) such that under this measure the coordinate process

X t (ω) = xt if ω = (xt )t≥0 is a point process with compensator At (θ) = A(θ)A(t), where A(t) = A(t, ω) is
an increasing process with continuous trajectories (Pθ -a.s.), A(0) = 0, Pθ {A∞ = ∞} = 1, and for each t > 0
Pθ̇ (At < ∞) = 1, A(θ) is a strongly monotone deterministic function, A(θ) > 0, and A(θ) is continuously
differentiable (denote Ȧ(θ) = d

dθ A(θ)).

Assume that for each pair (θ, θ ′), Pθ
loc
∼ Pθ ′ . Fix as usual some θ0 ∈ R1. Then the local density process

ρt (θ) =
d Pθ,t
d Pθ0,t

can be represented as

ρt (θ) = Et (M(θ)),

where

Mt (θ) =

(
A(θ)

A(θ0)
− 1

)
(X t − A(θ0)At ).
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Therefore L t (θ) =
∂
∂θ

ln ρt (θ) has the form

L t (θ) = L t (Ṁ(θ),M(θ)) =
Ȧ(θ)

A(θ)
(X t − A(θ)A(t)).

The Fisher information process is

It (θ) = 〈L(Ṁ(θ),M(θ))〉t =

[
Ȧ(θ)

A(θ)

]2

A(θ)A(t).

Put γt (θ) =
A(θ)
[ Ȧ(θ)]2

1
A(t)+1 . It is evident that

lim
t→∞

γt (θ)It (θ) = 1.

Note that the process (X t )t≥0 is a Pθ -semimartingale with the triplet of characteristics (A(θ)A(t), 0, A(θ)A(t)).
Therefore, according to Section 3,

F(θ) = F(ω, t, x, θ) =
A(θ)

A(θ0)
, Φ(θ) =

Ȧ(θ)

A(θ)
,

`c(θ) = `δ(θ) = `b(θ) = 0, `π (θ) =
Ȧ(θ)

A(θ)
.

Thus from (3.10) we obtain

H θ
t (u) =

1
A(t)+ 1

A(θ)− A(θ + u)

Ȧ(θ + u)
,

Mθ (t, u) =
1

Ȧ(θ + u)

∫ t

0

1
A(s)+ 1

d(Xs − A(θ)A(s)),

and the equation for zt = θt − θ is

dzt =
1

A(t)+ 1
A(θ)− A(θ + zt )

Ȧ(θ + zt )
d A(t)+

1
A(t)+ 1

1

Ȧ(θ + zt )
d(X t − A(θ)A(t)), (6.23)

where (θt )t≥0 is recursive estimation satisfying the equation

dθt =
1

A(t)+ 1
A(θ)− A(θt )

Ȧ(θt )
d A(t)+

1
A(t)+ 1

1

Ȧ(θt )
d(X t − A(θ)A(t)).

As one can see Eq. (6.23) is quite similar to (6.19) with A(θ) instead of a(θ) and A(t) instead of 〈M〉t .
Now if conditions (6.21) and (6.22) with A(θ) instead of a(θ) and A(t) instead of 〈M〉t are satisfied, then the

asymptotic expansion holds true

(A(t)+ 1)1/2 Ȧ(θ)zt =
L t

〈L〉1/2t

+ Rt ,

where Rt → 0 as t →∞ Pθ -a.s., L t = [ Ȧ(θ)]−1(X t − A(θ)A(t)).
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Abstract

Generalized stochastic integral from predictable operator-valued random process with respect to a cylindrical Wiener process in
an arbitrary Banach space is defined. The question of existence of the stochastic integral in a Banach space is reduced to the problem
of decomposability of the generalized random element. The sufficient condition of existence of the stochastic integral in terms of
p-absolutely summing operators is given. The stochastic differential equation for generalized random processes is considered and
existence and uniqueness of the solution is developed. As a consequence, the corresponding results of the stochastic differential
equations in an arbitrary Banach space are given.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

First results on the infinite dimensional stochastic differential equations started to appear in the mid 1960s. The
traditional finite dimensional methods gave desired results for Hilbert space case (see [1,2]), but they turned out
deadlock in the general Banach space case. Then, researchers began to develop the problem in such Banach spaces,
the geometry of which is close to the geometry of Hilbert space (see for example [3,4]). Important results are received
in the case, when the Banach space has UMD property (see [5–7]). But the class of UMD Banach spaces is very
narrow—they are reflexive Banach spaces. Stochastic analysis in UMD spaces intensively developed after the end of
the eighties of the lust century, but the class of Banach spaces, where the traditional methods give desired results, has
not yet extended. Numerous works are dedicated to this problem (see [8–10,6]). Therefore, it is greatly interesting to
develop the stochastic differential equations in an arbitrary Banach space.

The first step to investigate this direction is to construct the Ito stochastic integral in an arbitrary separable Banach
space. Stochastic integral for Banach space valued non random function by one dimensional Wiener process (the
Wiener integral) is constructed in [11]. Stochastic integral from operator-valued non-random process by the Banach
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space valued Wiener process is considered in [12]. In [13] is constructed the stochastic integral from operator-
valued (from Hilbert space to Banach space) non random function by the cylindrical Wiener process. There are also
considered the traditional conditions of the existence of the stochastic integral with relation to the geometry of Banach
space. The Ito stochastic integral in 2-uniformly smooth Banach spaces is considered in [3,14–16]. In [17] is shown,
that the property of definition of 2-uniformly smooth Banach space is equivalent to the martingale type 2 property.
Stochastic integral in UMD Banach spaces is constructed in [18,19,7]. In [20] is considered linear stochastic evolution
equations on some special Banach spaces. We define the generalized stochastic integral in an arbitrary Separable
Banach space for a wide class of non-anticipating operator-valued random processes by the cylindrical Wiener process,
which is a generalized random element (a random linear function or a cylindrical random element), and if there
exists the corresponding random element, that is, if this generalized random element is decomposable by the Banach
space valued random element, then we say that this random element is the stochastic integral. Thus, the problem of
existence of the stochastic integral in an arbitrary separable Banach space is reduced to the well known problem of
decomposability of the generalized random element. We give the sufficient condition of existence of the stochastic
integral using the L. Schwartz’s and S. Kwapien’s result in terms of p-absolutely summing operator (see [21,22]).

The second main problem to develop the stochastic differential equations in a Banach space is to estimate the
stochastic integral, which is necessary for the iteration procedure to prove the existence and uniqueness of the solution.
Such estimation is yet impossible in an arbitrary Banach space case. We consider the Banach space of generalized
random elements and introduce there the stochastic differential equation for the generalized random process. For this
situation, it is possible to use traditional methods to develop the problem of existence and uniqueness of the solution
as a generalized random process. Afterward, from the main stochastic differential equation in an arbitrary Banach
space we produce the equation for a generalized random process. As we have proved the existence and uniqueness
of the solution of this equation, we receive the generalized random process as a solution of the produced stochastic
differential equation. If this generalized random process is decomposable, then the corresponding Banach space valued
random process will be the solution of the main stochastic differential equation in a Banach space. Therefore, we have
also reduced the problem of existence of the solution of the stochastic differential equation in an arbitrary Banach
space to the problem of decomposability of the generalized random element.

The investigation of the stochastic differential equations in a Banach space takes place in three directions. They can
be described by means of the corresponding stochastic integrals in the equation. In the first (relatively) direction, the
integrand non-anticipating process takes its values in a Banach space and the stochastic integral is taken by the scalar
Wiener process. We considered this case in the paper [23]. In the second direction the integrand non-anticipating
process is operator-valued (from Banach space to Banach space) and the stochastic integral is taken by the Wiener
process in a Banach space. This case we investigated in the papers [24–26]. In the third direction the integrand is an
operator-valued non-anticipating random function from Hilbert space to Banach space while the stochastic integral is
taken by the cylindrical Wiener process in a Hilbert space. This article is devoted to this direction.

Now we give some definitions and preliminary results to realize our approach.
Let X be a real separable Banach space. X∗—its conjugate, B(X)—the Borel σ -algebra of X , (Ω ,B, P)—a

probability space. The continuous linear operator L : X∗ → L2(Ω ,B, P) is called a generalized random element
(GRE). (Sometimes the terms: linear random function or cylindrical random element are used). We consider such
GRE, which maps X∗ to a fixed closed separable subspace G ⊂ L2(Ω ,B, P). Denote M1 := L(X∗,G)—the Banach
space of GRE with the norm ‖L‖ = sup‖x∗‖≤1 ‖Lx∗‖L2 . A random element (measurable map) ξ : Ω → X is said to
have a weak second order, if, for all x∗ ∈ X∗, E〈ξ, x∗〉2 <∞. ξ we can realize as an element of M1 : Lξ x∗ = 〈ξ, x∗〉.
But in infinite dimensional spaces not every GRE may be represented by the Banach space valued random element.
The problem of finding the conditions under which the GRE is represented by the Banach space valued random
element is well known, otherwise also called the problem of decomposability of the GRE. This is the reason why
we allot the superiority to the term GRE; GRE is a generalization of the random element in the infinite dimensional
spaces. In the finite dimensional spaces every GRE is decomposable, thus, it is a random element. This term was early
used by many authors (see for example [27,28,2,22] p. 140). Likewise, the problem of decomposability of the GRE
is equal to the problem of extension of the finite additive (cylindrical) measure to the σ -additive measure. This is a
reason why the term “cylindrical random element” appears.

Denote by M2 the linear space of all random elements of the weak second order with the norm ‖ξ‖ = ‖Lξ‖.
Therefore, we can assume M2 ⊆ M1.
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Let L ∈ M1. Consider the map mL : X∗ → R1, mL x∗ = E Lx∗. mL is linear and bounded, therefore mL ∈ X∗∗,
which is called the mean of the GRE L . When L ∈ M2, that is, if there exists ξ : Ω → X such that Lx∗ = 〈ξ, x∗〉,
then m ∈ X (see [22] Th.2.3.1), and it is the Pettis integral of ξ . Further we consider the GRE with the mean 0.

The covariance operator of L ∈ M1 is a symmetric and positive operator RL : X∗→ X∗∗, 〈RL x∗, y∗〉 = E Lx∗Ly∗

for all x∗ and y∗ from X∗. RL = L∗L . It is known that if L = Lξ ∈ M2, then RL maps X∗ to X (see
[22, Th.3.2.1]), and if R is a positive and symmetric linear operator from X∗ to X , then there exist (x∗k )k∈N ⊂ X∗

and (xk)k∈N ⊂ X such that 〈Rx∗k , x∗j 〉 = δk j , Rx∗k = xk , and for x∗ ∈ X∗, Rx∗ =
∑
∞

k=1〈xk, x∗〉xk (see [22, Lemma
3.1.1]). In general, for a positive and symmetric linear operator RL : X∗ → X∗∗ (as G is a separable subspace
of L2(Ω ,B, P)), there exist (x∗k )k∈N ⊂ X∗ and (x∗∗k )k∈N ⊂ X∗∗ such that 〈Rx∗k , x∗j 〉 = δk j , Rx∗k = x∗∗k , and for
x∗ ∈ X∗, Rx∗ =

∑
∞

k=1〈x
∗∗

k , x∗〉x∗∗k .

Proposition 1. Let T be a GRE. There exist (x∗k )k∈N ⊂ X∗ and (x∗∗k )k∈N ⊂ X∗∗ such that for all x∗ ∈ X∗,
T x∗ =

∑
∞

k=1〈x
∗, x∗∗k 〉T x∗k , ET x∗k T x∗j = 〈RT x∗k , x∗j 〉 = δk j , RT x∗k = x∗∗k , RT x∗ =

∑
∞

k=1〈x
∗, x∗∗k 〉x

∗∗

k . Therefore, if
T is a Gaussian, then T x∗k , k = 1, 2, . . . are independent, standard Gaussian random variables.

Proof. Consider the covariance operator of the GRE T , RT : X∗ → X∗∗, RT = T ∗T . Let (x∗k )k∈N ⊂ X∗ and
(x∗∗k )k∈N ⊂ X∗∗ be such that 〈RT x∗k , x∗j 〉 = δk j , RT x∗k = x∗∗k , RT x∗ =

∑
∞

k=1〈x
∗, x∗∗k 〉x

∗∗

k , for all x∗ ∈ X∗.

If we take up Tn x∗ =
∑n

k=1〈x
∗, x∗∗k 〉T x∗k , then E(T x∗ − Tn x∗)2 = E(T x∗)2 − 2ET x∗Tn x∗ + E(Tn x∗)2 =∑

∞

k=1〈x
∗∗

k , x∗〉2 − 2
∑n

k=1〈x
∗∗

k , x∗〉2 +
∑n

k=1〈x
∗∗

k , x∗〉2 =
∑
∞

k=n+1〈x
∗∗

k , x∗〉2 → 0.
Therefore T x∗ =

∑
∞

k=1〈x
∗, xk〉T x∗k .

If T is a Gaussian GRE, then T xk and T xm are independent for all k 6= m as ET x∗k T x∗m = 〈RT x∗k , x∗m〉 = δk,m =

0. �

A family of GRE (L t )t∈[0,1] is called a generalized random process (GRP). A weak second order Banach space
valued random process (ξt )t∈[0,1] can be represented as a GRP: Lξt x

∗
= 〈ξt , x∗〉. The GRP is called Gaussian, if for

all t1, t2, . . . , tn and x∗1 , x∗2 . . . , xn , the n-dimensional vector (L t1 x∗1 , L t2 x∗2 , . . . , L tn x∗n ) is a Gaussian vector in Rn .

Definition 1. The Gaussian generalized random process (WH (t))t∈[0,1] in a separable Hilbert space H is called a
cylindrical Wiener process, if for all h and g from H , and t , s, from [0, 1], EWH (t)hWH (s)g = min(t, s)〈h, g〉.

Proposition 2. Let (WH (t))t∈[0,1] be a cylindrical Wiener process in H. For any orthonormal basis (ek)k∈N in
H, there exists the sequence of independent, standard, real valued Wiener processes wk(t) such that WH (t)h =∑
∞

k=1〈ek, h〉wk(t).

Proof. For any orthonormal basis (ek)k∈N the random processes WH (t)ek , k = 1, 2, . . . are standard, one dimensional,
independent Wiener processes in H . Therefore, WH (t)h = WH (t)

∑
∞

k=1〈h, ek〉ek =
∑
∞

k=1〈h, ek〉WH (t)ek =∑
∞

k=1〈ek, h〉wk(t), where wk(t) ≡ WH (t)ek , k = 1, 2, . . . . �

Definition 2. The Gaussian GRP (Tt )t∈[0,1] is called a generalized Wiener process in a Banach space X , if, for all x∗ ∈
X∗, Tt x∗ is one dimensional Wiener process and for all t, s from [0, 1] and y∗ ∈ X∗, ETt x∗Ts y∗ = min(t, s)〈Rx∗y∗〉,
where R : X∗→ X∗∗ is the covariance operator of the GRE T1.

Let R be the covariance operator of the GRE T1, R : X∗ → X∗∗, by the factorization lemma (see [22, Lemma
3.1.1]) we have R = A∗A, where A : H → X∗∗, H is a real separable Hilbert space.

Proposition 3. Let (Tt )t∈[0,1] be a generalized Wiener process and R be the covariance operator of T1, R = AA∗.
A : H → X∗∗. There exists the cylindrical Wiener process (WH (t))t∈[0,1], in H such that Tt = AWH (t) =∑
∞

k=1 Aekwk(t), where (ek)k∈N is an orthonormal basis in H and wk(t), k = 1, 2, . . . is a sequence of one
dimensional independent Wiener processes. Therefore every generalized Wiener process in X is the “image” of the
cylindrical Wiener process in a separable Hilbert space H.

Proof. Let R = AA∗ be the covariance operator of the GRE T1. We have (x∗k )k∈N ⊂ X∗ and (x∗∗k )k∈N ⊂ X∗∗

such that, 〈Rx∗k , x∗j 〉 = δk j , Rx∗k = x∗∗k and for x∗ ∈ X∗, Rx∗ =
∑
∞

k=1〈x
∗∗

k , x∗〉x∗∗k . By the definition of the
generalized Wiener process, Tt x∗k , k = 1, 2, . . . are one dimensional Wiener processes, and for all t, s from [0, 1] and
x∗j , ETt x∗k Ts x∗j = min(t, s)〈Rx∗k x∗j 〉 = δk, j . Therefore Tt x∗k := wk(t), k = 1, . . . is a sequence of one dimensional
independent Wiener processes.
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Denote Tn(t) =
∑n

k=1 Aekwk(t) =
∑n

k=1 x∗∗k Tt x∗k . Then, for any x∗ ∈ X∗,

E(Tt x
∗
− Tn(t)x

∗)2 = E(Tt x
∗)2 − 2ETt x

∗Tn(t)x
∗
+ E(Tn(t)x

∗)2

= t〈Rx∗, x∗〉 − 2t
n∑

k=1

〈Rx∗k , x∗〉 + t
n∑

k=1

〈Rx∗k , x∗k 〉

= t
∞∑

k=1

〈x∗∗k , x∗〉2 − 2
n∑

k=1

〈x∗∗k , x∗〉2 +
n∑

k=1

〈x∗∗k , x∗〉2 =
∞∑

k=n+1

〈x∗∗k , x∗〉2 → 0.

That is, Tt x∗ = lim Tn(t)x∗ =
∑
∞

k=1〈Aek, x∗〉wk(t) = lim〈A(
∑n

k=1 ekwk(t)), x∗〉 = 〈AWH (t), x∗〉. �

Remark 1. In [29] we have analyzed the definition of the Wiener processes in a Banach space, where we have
used the term “canonical generalized Wiener Process” instead of the term “cylindrical Wiener process”. The term
“cylindrical random element” appeared in relation to the cylindrical measures in vector spaces, as cylindrical random
element (generalized random element) induces the finitely additive measure in a Banach space, which is naturally
defined in the cylindrical algebra. We mentioned above the reason why we use the term GRE. In our opinion this term
better responds to the purpose of the definition than the term “cylindrical random element”. As the term “cylindrical
Wiener process” is widely applied in literature, we also use this term here and intend to continue discussions on the
terminology.

Remark 2. If H = Rn and (WH (t))t∈[0,1] is n-dimensional standard Wiener process WH (t) = (WH (t)e1, . . . ,

WH (t)en) = (w1(t), w2(t), . . . , wn(t)), then, for all linear operators A : Rn
→ Rn , (AWH (t))t∈[0,1] is a

Wiener process in Rn with covariance operator R = AA∗. For infinite dimensional H and bounded linear operator
A : H → H , (AWH (t))t∈[0,1], AWH (t) =

∑
∞

k=1 Aekwk(t) is a Hilbert space valued Wiener process with the
covariance operator R = AA∗, if, and only if, A is a Hilbert–Schmidt operator. The generalized Wiener process in
X , (Wt )t∈[0,1] ≡ (AWH (t))t∈[0,1], A : H → X , is X -valued Wiener process, if, and only if, R = AA∗ is a Gaussian
covariance. The sum Wt =

∑
∞

k=1 Aekwk(t) converges a.s. uniformly for t in X (see [30,31,25]).

Remark 3. Wiener process in a Banach space was first considered by L. Gross [32]. He introduced for it a special
term—the measurable pseudonorm. The definition of the Wiener process introduced by L. Gross is unnatural in
comparison with the definition of the finite dimensional Wiener process. The definition of the covariance operator
of the Banach space valued random elements (see [33,22]) allows to consider Wiener process in a Banach space
analogous to the finite dimensional case.

2. Stochastic integrals

2.1. Stochastic integral of the Hilbert space valued random function by the cylindrical Wiener process

Let (WH (t))t∈[0,1] be a cylindrical Wiener process in H , (Ft )t∈[0,1]—be the increasing family of σ -algebras such
that (a) for all h ∈ H , WH (t)h is Ft -measurable for all t ∈ [0, 1]; (b) WH (s)h − WH (t)h is independent to the
σ -algebra Ft for all s > t . Ft contains all P-null sets from B. We say that (WH (t))t∈[0,1] is adapted to the family
(F)t∈[0,1]. Consider the non-anticipating function ϕ : [0, 1] ×Ω → H , that is, ϕ is B([0, 1])×B(Ω)-measurable and
ϕ(t) is Ft -measurable for all t ∈ [0, 1].

We define the stochastic integral for a non-anticipating function ϕ : [0, 1] × Ω → H ,
∫ 1

0

∫
Ω ‖ϕ‖

2dtd P < ∞ by
the cylindrical Wiener process (WH (t))t∈[0,1].

If ϕ(t, ω) is a step function, ϕ(t, ω) =
∑n−1

k=0 ϕ(tk)χ[tk ,tk+1), 0 = t0 < t1 < · · · < tn = 1, ϕtk : Ω →
H , k = 0, 1, . . . , (n − 1), then the stochastic integral of ϕ by the (WH (t))t∈[0,1] is defined by the equality∫ 1

0 ϕ(t)dWH (t) =
∑n−1

k=0〈WH (tk+1)−WH (tk), ϕ(tk)〉.
Let (hi )i∈N be any orthonormal basis in H , then WH (t)hi ≡ wi (t) are independent Ft -adapted standard real valued

Wiener processes and
∫ 1

0 ϕ(t)dWH (t) =
∑n−1

k=0
∑
∞

i=1〈hi , ϕ(tk)〉(wi (tk+1)− wi (tk)).

We have E(
∫ 1

0 ϕ(t)dWH (t))2 =
∑n−1

k=0(tk+1 − tk)
∑
∞

i=1 E〈ϕtk , hi 〉
2
=

∑n−1
k=0 E‖ϕ(tk)‖2(tk+1 − tk) =∫ 1

0

∫
Ω ‖ϕ(t, ω)‖

2dtd P .
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The following lemma will be used to define the stochastic integral of non-anticipating function from L2([0, 1] ×
Ω , H).

Lemma 1. For any non-anticipating function ϕ(t, ω) ∈ L2([0, 1]×Ω , H) there exists a sequence of non-anticipating
step functions ϕn(t, ω) ∈ L2([0, 1] × Ω , H) such that ϕn → ϕ in L2([0, 1] × Ω , H).

Proof. Define φn(t, ω) =
∑n

k=1〈ϕ(t, ω), hk〉hk . We have∫ 1

0
E‖φn − ϕ‖

2dt =
∫ 1

0
E

∥∥∥∥∥ n∑
k=1

〈ϕ(t, ω), hk〉hk −

∞∑
k=1

〈ϕ(t, ω), hk〉hk

∥∥∥∥∥
2

dt

=

∫ 1

0
E

∥∥∥∥∥ ∞∑
k=n+1

〈ϕ(t, ω), hk〉hk

∥∥∥∥∥
2

dt =
∫ 1

0
E
∞∑

k=n+1

〈ϕ(t, ω), hk〉
2dt → 0.

For a fixed k ∈ N , let (ϕkm)m∈N be a sequence of real valued non-anticipating step functions such that
ϕkm → 〈ϕ, hk〉 in L2([0, 1]×Ω), when m →∞. Let φnm =

∑n
k=1 ϕkmhk . Then ‖φnm−φn‖

2
L2
=
∑n

k=1

∫ 1
0

∫
Ω (ϕkm−

〈ϕ, hk〉)
2dtd P → 0. Therefore we can choose a subsequence (ϕn)n∈N of ((φ)nm)n,m∈N converging to ϕ in

L2([0, 1] × Ω , H). Lemma 1 is proved. �

Let ϕ(t, ω) ∈ L2([0, 1] × Ω , H) be a non-anticipating function. By Lemma 1, there exists the sequence of
step functions (ϕn)n∈N converging to ϕ in L2([0, 1] × Ω , H). Then as E(

∫ 1
0 ϕn(t)dWH (t) − ϕm(t)dWH (t))2 =∫ 1

0 E‖ϕn − ϕm‖
2dt → 0, n,m →∞, we can define the stochastic integral for an arbitrary non-anticipating function

ϕ(t, ω) ∈ L2([0, 1] × Ω , H).

Definition 3. Let ϕ(t, ω) ∈ L2([0, 1]×Ω , H) be a non-anticipating function. The limit of the sequence of the random
variables

∫ 1
0 ϕn(t)dWH (t) in L2(Ω) is called the stochastic integral of ϕ by the cylindrical Wiener process in H , and

is denoted by
∫ 1

0 ϕ(t)dWH (t).

We can naturally define the stochastic integral
∫ t

0 ϕ(s)dWH (s) for all t ∈ [0, 1]. It is easy to see that∫ t
0 ϕ(s)dWH (s) =

∑
∞

k=1

∫ t
0 〈ϕ(s), ek〉dwk(s), where (ek)k∈N is an arbitrary orthonormal basis in H and (wk(t) =

WH (t)ek)t∈[0,1], k = 1, 2 . . . are independent one-dimensional standard Wiener processes.

2.2. Stochastic integral of operator valued random process by the cylindrical Wiener process

Let (F)t∈[0,1] be a filtration, (Ω ,B, P), (WH (t))t∈[0,1] be the cylindrical Wiener process in H adapted to (Ft )t∈[0,1],
X be a real separable Banach space. Consider the Banach space of linear bounded operators L(H, X)(L(X∗, H)) from
H to X (from X∗ to H ).

Definition 4. A function ϕ(t, ω) : [0, 1] × Ω → L(H, X) is called non-anticipating with respect to (F)t∈[0,1], if

1. For all h ∈ H the function (t × ω)→ ϕ(t, ω)h is measurable;
2. For all h ∈ H , t ∈ [0, 1] the function ω→ ϕ(t, ω)h is Ft -measurable.

Definition 5. We say that a non-anticipating function ϕ(t, ω) : [0, 1] × Ω → L(H, X) belongs to the class
G(L(H, X)) if

sup
‖x∗‖≤1

∫ 1

0

∫
Ω
‖ϕ∗(t, ω)x∗‖2dtd P <∞,

where ϕ∗(t, ω) is the conjugate of the operator ϕ(t, ω). We can define the norm in the linear space G(L(H, X)):
‖ϕ‖2G ≡ sup‖x∗‖≤1

∫ 1
0

∫
Ω ‖ϕ

∗(t, ω)x∗‖2dtd P .

Let ϕ ∈ G(L(H, X)) and take any x∗ ∈ X∗. ϕ∗x∗ maps [0, 1]×Ω into H ,
∫ 1

0

∫
Ω ‖ϕ

∗x∗‖2dtd P <∞ and it is non-

anticipating. Therefore, we can define the stochastic integral
∫ 1

0 ϕ
∗(t, ω)x∗dWH (t) which is a real random variable

with variance
∫ 1

0

∫
Ω ‖ϕ

∗(t, ω)x∗‖2dtd P . Consider the map Tϕ : X∗→ L2(Ω ,B, P), Tϕx∗ =
∫ 1

0 ϕ
∗(t, ω)x∗dWH (t).

Tϕ is a GRE.



B. Mamporia / Transactions of A. Razmadze Mathematical Institute 171 (2017) 76–89 81

Definition 6. Let ϕ ∈ G(L(H, X)). The generalized random element Tϕ : X∗ → L2(Ω ,B, P), Tϕx∗ =
∫ 1

0 ϕ
∗(t, ω)

x∗dWH (t) is called the generalized stochastic integral of the operator-valued random function ϕ with respect to the
cylindrical Wiener process (WH (t))t∈[0,1].

Accordingly, we define the generalized stochastic integral Tϕ(t)x∗ =
∫ t

0 ϕ
∗(s, ω)x∗dWH (s), for all t ∈ [0, 1].

We have
∫ t

0 ϕ
∗(s, ω)x∗dWH (s) =

∑
∞

k=1

∫ t
o 〈ϕ
∗(s, ω)x∗, ek〉dwk(t), where wk(t) = 〈WH (t), ek〉, k = 1, 2, . . . are

one dimensional independent standard Wiener processes.
For any ϕ ∈ G(L(H, X)) the generalized stochastic integral as a GRE exists.
Let ϕ ∈ G(L(H, X)), Tϕ : X∗ → L2(Ω ,B, P) be a generalized stochastic integral of ϕ. Denote by Lϕ : X∗ →

X∗∗ the covariance operator of the GRE Tϕ . It is easy to see that Lϕ = T ∗ϕ Tϕ .

Theorem 1. The covariance operator of the generalized stochastic integral of an operator-valued random function
ϕ ∈ G(L(H, X)) with respect to the cylindrical Wiener process (WH (t))t∈[0,1] has the form Lϕx∗ =∫ 1

0

∫
Ω ϕϕ

∗x∗dtd P and maps X∗ to X (the double integral is meant in the sense of Pettis).

Proof. Let us find the value of the operator Lϕ on x∗ ∈ X∗. For any x∗1 ∈ X∗, we have

〈Lϕx∗, x∗1 〉 = ETϕx∗Tϕx∗1 = E
∫ 1

0
ϕ(t, ω)∗x∗dWH (t)

∫ 1

0
ϕ(t, ω)∗x∗1 dWH (t)

=

∫ 1

0

∫
Ω
〈ϕ∗(t, ω)x∗, ϕ∗(t, ω)x∗1 〉H dtd P =

∫ 1

0

∫
Ω
〈ϕϕ∗x∗, x∗1 〉dtd P.

Therefore the Pettis integral
∫ 1

0

∫
Ω ϕϕ

∗x∗dtd P as an element of X∗∗ exists for all x∗ ∈ X∗.
Let (hk)k∈N be an orthonormal basis in H . Then

Lϕx∗ =
∫ 1

0

∫
Ω
ϕ(t, ω)ϕ∗(t, ω)x∗dtd P =

∫ 1

0

∫
Ω
ϕ(t, ω)

(
∞∑

k=1

〈ϕ∗(t, ω)x∗, hk〉hk

)
dtd P

=

∫ 1

0

∫
Ω

∞∑
k=1

〈ϕ(t, ω)hk, x∗〉ϕ(t, ω)hkdtd P.

Denote L(n)ϕ =
∫ 1

0

∫
Ω

∑n
k=1〈ϕ(t, ω)hk, x∗〉ϕ(t, ω)hkdtd P . Consider the random element ϕhk : [0, 1] × Ω → X ,

k = 1, 2, . . . . As ϕhk is a random element of the weak second order, its covariance operator maps X∗ to X and equals
Lk x∗ =

∫ 1
0

∫
Ω 〈ϕ(t, ω)hk, x∗〉ϕ(t, ω)hkdtd P .

Therefore, for all n and x∗, L(n)ϕ x∗ belongs to X . As X is a closed subspace of X∗∗, it is enough to prove the

convergence of the sequence L(n)ϕ x∗, n = 1, 2, . . . , to the Lϕx∗ in X∗∗ for all x∗ ∈ X∗. We have

‖Lϕx∗ − L(n)ϕ x∗‖ = sup
‖x∗1‖≤1

∫ 1

0

∫
Ω

∞∑
k=n+1

〈ϕ(t, ω)hk, x∗〉〈ϕ(t, ω)hk, x∗1 〉dtd P

≤ sup
‖x∗1‖≤1

(∫ 1

0

∫
Ω

∞∑
k=n+1

〈ϕ(t, ω)hk, x∗1 〉
2dtd P

)1/2

×

(∫ 1

0

∫
Ω

∞∑
k=n+1

〈ϕ(t, ω)hk, x∗〉2dtd P

)1/2

→ 0.

As we have(∫ 1

0

∫
Ω

∞∑
k=n+1

〈ϕ(t, ω)hk, x∗〉2dtd P

)1/2

→ 0 and

sup
‖x∗1‖≤1

(∫ 1

0

∫
Ω

∞∑
k=n+1

〈ϕ(t, ω)hk, x∗1 〉
2dtd P

)1/2

≤ ‖Lϕx∗‖ <∞.

Therefore L(n)ϕ x∗→ Lϕx∗, n→∞. That is Lϕx∗ ∈ X . Theorem 1 is proved. �
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We defined the generalized stochastic integral for a wide class of non-anticipating operator-valued random
functions G(L(H, X)). The generalized stochastic integral from ϕ ∈ G(L(H, X)) is GRE. This GRE Tϕ is not
always decomposable. That is, there does not always exist a random element ξ : Ω → X such that Tϕx∗ = 〈ξ, x∗〉,
x∗ ∈ X∗.

Definition 7. Let ϕ ∈ G(L(H, X)) be an operator-valued non-anticipating random function. We say that a random
element ξ : Ω → X (if such element exists) is the stochastic integral of ϕ with respect to a cylindrical Wiener process
(WH (t))t∈[0,1] if for all x∗ ∈ X∗Tϕx∗ = 〈ξ, x∗〉 a.s. and write ξ =

∫ 1
0 ϕ(t, ω)dWH (t).

Thus, the question of the existence of the stochastic integral is reduced to the problem of decomposability of the
GRE. This problem is equivalent to the problem of extension of the weak second order cylindrical measure to the
countable-additive measure. Therefore, to study the problem of the existence of the stochastic integral we can use the
results in the mentioned fields.

Now we give a sufficient condition of existence of the stochastic integral from the operator-valued non-anticipating
random process by the cylindrical Wiener process using the term of p-absolutely summing operators. In case of the
Banach spaces the role of the Hilbert–Schmidt operator plays the p-absolutely summing operator.

Definition 8. A linear operator A : H → X is called p-absolutely summing, if there exist a constant c > 0 such that
for all n ∈ N and h1, h2, . . . , hn from H( n∑

i=1

‖Ahi‖
p
)1/p

≤ c sup
‖h‖≤1

( n∑
i=1

〈hi , h〉p
)1/p

.

If X is a Hilbert space, then for any p ≥ 1 the class of the p-absolutely summing operators from H to H coincides
with the class of the Hilbert–Schmidt operators (see [34, Corr. 3.16 and Th.4.10]].

By the factorization lemma, the covariance operator Lϕ factorized through separable Hilbert space Lϕ = AA∗,
A : H → X , if (ek)k∈N is the orthonormal basis in H , then there exists (xk)k∈N and (x∗k )k∈N such that Aek = xk ,
〈xk, x∗j 〉 = δk, j and Lϕ =

∑
∞

k=1〈xk, x∗〉xk .

Theorem 2. Let ϕ ∈ G(L(H, X)) be an operator-valued non-anticipating random process, Lϕx∗ =
∫ 1

0

∫
Ω ϕϕ

∗

x∗dtd P be the covariance operator of the generalized stochastic integral of ϕ with respect to the cylindrical
Wiener process (WH (t))t∈[0,1]. If Lϕ = AA∗ be such, that A : H → X is the p-absolutely summing operator
for any p ≥ 2, there exists the closed subspace S ⊂ L2(Ω , B, P) such that for all x∗ ∈ X∗Tϕx∗ ∈ S and

S ⊂ L p(Ω , B, P) ⊂ L2(Ω , B, P), then the stochastic integral ξ =
∫ 1

0 ϕ(t, ω)dWH (t) exists, E‖ξ‖p < ∞,

ξ =
∑
∞

k=1 xk
∫ 1

0 ϕ
∗(t, ω)x∗k dWH (t) and the convergence is in L p(Ω , X), where Aek = xk , 〈xk, x∗j 〉 = δk, j and

Lϕ =
∑
∞

k=1〈xk, x∗〉xk .

Proof. By Proposition 1, for any x∗ ∈ X∗, we have Tϕx∗ =
∫ 1

0 ϕ
∗(t, ω)x∗dWH (t) =

∑
∞

k=1〈xk, x∗〉
∫ 1

0 ϕ
∗(t, ω)x∗k

dWH (t). Since Tϕx∗ ∈ S and S ⊂ L p(Ω , B, P), we can consider the identical map I : S → L p(Ω , B, P). By the

closed graph theorem, I is a bounded operator, therefore, there exists c > 0, such that (E(Tϕx∗)p)
1
p ≤ c(E(Tϕx∗)2)

1
2 .

In a Hilbert space H consider the sum ηn ≡
∑n

k=1 ek
∫ 1

0 ϕ
∗(t, ω)x∗k dWH (t). For all h ∈ H , 〈ηn, h〉 converges in

L p(Ω , B, P) as

(E(〈ηn, h〉 − 〈ηm, h〉)p)
1
p =

(
E

( m∑
k=n

〈ek, h〉
∫ 1

0
ϕ∗(t, ω)x∗k dWH (t)

)p) 1
p

=

(
E

(∫ 1

0
ϕ∗(t, ω)

( m∑
k=n

〈ek, h〉x∗k

))p

dt

) 1
p

dt

≤ c

(
E

(∫ 1

0
ϕ∗(t, ω)

( m∑
k=n

〈ek, h〉x∗k

))2

dt

) 1
2

=

( m∑
k=n

〈h, ek〉
2
) 1

2

→ 0.
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Here we used the following equalities: 〈Lx∗i , x∗j 〉 = δi, j = ETϕx∗i Tϕx∗j =
∫ 1

0

∫
Ω 〈ϕ

∗(t, ω)x∗i ϕ
∗(t, ω)x∗j 〉dtd P .

That is, (ηn)n∈N is a sequence of the weak pth order random elements in H such that, for all h ∈ H , the sequence
〈ηn, h〉 converges in L p(Ω , B, P). As A is a p-absolutely summing operator, by the lemma 6.5.2 of [22], the sequence∑n

k=1 Aek
∫ 1

0 ϕ
∗(t, ω)x∗k dWH (t) converges in L p(Ω , X). Therefore, the stochastic integral ξ =

∫ 1
0 ϕ(t, ω)dWH (t)

exists, ξ =
∑
∞

k=1 xk
∫ 1

0 ϕ
∗(t, ω)x∗k dWH (t) and E‖ξ‖p <∞. �

Remark 4. Stochastic integral of operator-valued non-anticipating random process by the Wiener process in an
arbitrary Banach spaces we considered in [24] (see also [25]), where we gave the sufficient condition of existence
of the stochastic integral using p-absolutely summing operators.

Denote by M H
1 := L(X∗, L2(Ω , B, P, H)) the Banach space of generalized random elements with the norm

‖T ‖2 = sup‖x∗‖≤1
∫
Ω ‖T x∗‖2d P <∞. If ϕ : Ω → L(H, X) is such that for all x∗ ∈ X∗,

∫
Ω ‖ϕ

∗x∗‖2d P <∞, then,
by the closed graph theorem, Tϕ : X∗→ L2(Ω , B, P, H), Tϕx∗ = ϕ∗x∗ belongs to the space M H

1 . Denote by M H
2 the

subspace of M H
1 of such GRE Tϕ , that ϕ : Ω → L(H, X) and

∫
Ω ‖ϕ

∗x∗‖2d P < ∞, for all x∗ ∈ X∗. Consider now
the family of linear bounded operators (Tt )t∈[0,1], Tt : X∗ → L2(Ω , B, P, H) such that for all x∗ ∈ X∗ the random
process Tt x∗ is non-anticipating and sup‖x∗‖≤1

∫ 1
0

∫
Ω ‖Tt x∗‖2dtd P <∞. Denote by T M H

1 the Banach space of such
family of operators (Tt )t∈[0,1]. We can define the generalized stochastic integral from (Tt )t∈[0,1] ∈ T M H

1 .

Definition 9. Consider the GRP (Tt )t∈[0,1] ∈ T M H
1 . The stochastic integral from (Tt )t∈[0,1] by the cylindrical Wiener

process in H is the GRE defined by IT x∗ =
∫ 1

0 Tt x∗dWH (t), for all x∗ ∈ X∗.

It is easy to see, that

IT x∗ =
∫ 1

0
Tt x
∗dWH (t) =

∞∑
k=1

∫ 1

0
〈Tt x

∗(ω), ek〉dwk(t).

We have

‖IT ‖
2
= sup
‖x∗‖≤1

E

(∫ 1

0
Tt x
∗dWH (t)

)2

= sup
‖x∗‖≤1

∫ 1

0

∫
Ω
‖Tt x

∗
‖

2dtd P.

Accordingly, we have the isometrical operator

I : T M H
1 → M1, I ((Tt )t∈[0,1]) =

∞∑
k=1

∫ 1

0
〈Tt x

∗(ω), ek〉dwk(t).

3. Stochastic differential equations

3.1. Stochastic differential equation for generalized random process driven by the cylindrical Wiener process

Consider now the Banach space of GRE M1 and the stochastic differential equation for generalized random process
in it:

dTt = a(t, Tt )dt + B(t, Tt )dWH (t), (1)

with F0-measurable initial condition T0 = L , where a : [0, 1] × M1 → M1 and B : [0, 1] × M1 → M H
1 .

Definition 10. A GRP (Tt )t∈[0,1] is called the strong generalized solution of Eq. (1) with the F0-measurable initial
condition T0 = L , if the following assertions are true:

for all x∗ ∈ X∗, a(t, Tt )x∗ and B(t, Tt )x∗ are B[0, 1] × Ft measurable;
E
∫ 1

0 (a(t, Tt )x∗)2dt + E
∫ 1

0 ‖B(t, Tt )x∗‖2dt < ∞; Tt x∗ is continuous, Ft -adapted random process and for all
t ∈ [0, 1] and x∗ ∈ X∗,

Tt x∗ = T0x∗ +
∫ t

0 a(s, Ts)x∗ds +
∫ 1

0 B(s, Ts)x∗dWH (s) a.s.



84 B. Mamporia / Transactions of A. Razmadze Mathematical Institute 171 (2017) 76–89

Definition 11. We say that the stochastic differential equation (1) has a unique strong generalized solution, if
(Tt )t∈[0,1] and (Tt )t∈[0,1] are two solutions, then for each x∗ ∈ X∗,

P(ω : Tt (ω)x
∗
= Tt (ω)x

∗ for all t ∈ [0, 1]) = 1.

The following theorem gives the sufficient conditions of existence and uniqueness of a strong generalized solution
to a stochastic differential equation for GRP.

Theorem 3. Suppose that the coefficients of the stochastic differential equation (1) satisfy the following conditions:

1. ‖a(t, T )‖2M1
+ ‖B(t, T )‖2

M H
1
≤ K 2(1+ ‖T ‖2M1

),

2. ‖a(t, T )− a(t, S)‖2M1
+ ‖B(t, T )− B(t, S)‖2

M H
1
≤ K 2

‖T − S‖2M1
.

Then there exists a unique strong generalized solution (Tt )t∈[0,1] to (1) with initial condition T0 = L , L ∈ M1 and
for all x∗ ∈ X∗, Lx∗ is F0-measurable. The GRP T : [0, 1] → M1 is continuous.

Proof. To prove this Theorem we use the one dimensional technique which works here successfully. For all t ∈ [0, 1],
let T (0)t = L and

T (n)t x∗ = T (0)t x∗ +
∫ t

0
a(s, T (n−1)

s )x∗ds +
∫ t

0
B∗(s, T (n−1)

s )x∗dWH (s),

‖T (n+1)
t − T (n)t ‖

2
M1
≤ 2 sup

‖x∗‖≤1
E

(∫ t

0
(a(s, T (n)s )− a(s, T (n−1)

s ))x∗ ds

)2

+ 2 sup
‖x∗‖≤1

(
E

(∫ t

0
(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))x∗dWH (s)

))2

≤ 2
∫ t

0
‖a(s, T (n)s )− a(s, T (n−1)

s )‖2M1
ds + 2

∫ t

0
‖B∗(s, T (n)s )− B∗(s, T (n−1)

s )‖2
M H

1
ds

≤ 2K 2
∫ t

0
‖T (n)s − T (n−1)

s ‖
2
M1

ds.

Then we have

‖T (n+1)
t − T (n)t ‖

2
M1
≤ (2K 2)(n−1)

∫ t

0

(t − s)(n−1)

(n − 1)!
‖T (1)s − T (0)s ‖

2
M1

ds,

‖T (1)s − T (0)s ‖
2
M1
≤ 2

∥∥∥∥∫ t

0
a(s, T (0)s )ds

∥∥∥∥2

M1

+ 2

∥∥∥∥∫ t

0
(B∗s, T (0)s )dWH (s)

∥∥∥∥2

M H
1

≤ 2K 2(1+ ‖T0‖
2
M1
).

Consequently, ‖T (n+1)
t − T (n)t ‖

2
M1
≤ pCn/n! for any positive p and C .

It is easy to see, that
∫ t

0 (B
∗(s, T (n)s )−B∗(s, T (n−1)

s )x∗)dWH (s) is a martingale for all fixed x∗ ∈ X∗ and therefore,

E sup
0≤t≤1

∣∣∣∣∫ t

0
(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))x∗ dWH (s)

∣∣∣∣2 ≤ 4
∫ 1

0
E‖(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))x∗‖2ds

≤ 4 sup
‖x∗‖≤1

∫ 1

0
E‖(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))x∗‖2ds

≤ 4
∫ 1

0
E‖(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))‖2
M H

1
ds.

Therefore, we have

E sup
0≤t≤1

|(T (n+1)
t − T (n)t )x∗|2 ≤ 2E sup

0≤t≤1

∫ t

0
((a(s, T (n)s )− a(s, T (n−1)

s ))x∗)2ds

+ 2E sup
0≤t≤1

∣∣∣∣∫ t

0
(B∗(s, T (n)s )− B∗(s, T (n−1)

s ))x∗ dWH (s)

∣∣∣∣2
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≤ 2
∫ 1

0
‖a(s, T (n)s )− a(s, T (n−1)

s )‖2M1
ds + 8

∫ 1

0
‖B∗(s, T (n)s )− B∗(s, T (n−1)

s )‖2M1
ds

≤
10pCn−1

(n − 1)!
.

Then we have
∞∑

n=1

P
(

sup
0≤t≤1

|(T (n+1)
t − T (n)t )x∗| ≥

1

n2

)
≤

∞∑
n=1

n4 E

(
sup

0≤t≤1
|(T (n+1)

t − T (n)t )x∗|2 ≤ 10p
∞∑

n=1

n4Cn−1

(n − 1)!

)
.

By the Borel–Cantelli lemma, the series T (0)t x∗(ω) +
∑
∞

n=1(T
(n)

t (ω) − T (n−1)
t (ω))x∗ converges uniformly for t

(P-a.s.) to the continuous random process which we denote by Tt x∗, x∗ ∈ X∗. Therefore, we get GRP Tt : X∗ →
L2(Ω , B, P). From Eq. (2) we obtain

Tt x
∗
= T (0)x∗ +

∫ t

0
a(s, Ts)x

∗ds +
∫ t

0
B∗(s, Ts)x

∗dWH (s) a.s.

Therefore, the GRP (Tt ), t ∈ [0, 1], constructed above, is a strong generalized solution of Eq. (1).
The uniqueness of the solution we can prove similarly to the finite dimensional case. �

3.2. Stochastic differential equation in an arbitrary Banach space driven by the cylindrical Wiener process

Let us now consider the stochastic differential equation in an arbitrary Banach space

dξt = a(t, ξt )dt + B(t, ξt )dWH (t), (2)

where a : [0, 1] × X → X and B : [0, 1] × X → L(H, X) are such functions that a(t, ξ) ∈ M2 and B∗(t, ξ) ∈ M H
2

for all t ∈ [0, 1] and for all weak second order random elements ξ ; and the following inequalities hold at that:

1′. ‖a(t, ξ)‖2M1
+ ‖B∗(t, ξ)‖2

M H
1
≤ K 2(1+ ‖ξ‖2M1

),

2′. ‖a(t, ξ)−a(t, η)‖2M1
+‖B∗(t, ξ)−B∗(t, η)‖2

M H
1
≤ K 2

‖ξ−η‖2M1
, where ξ and η are weak second order X -valued

random elements.

We can extend the coefficients a and B on M2 ⊂ M1 correspondingly: Let T ∈ M2, there exists (ξn)n∈N ⊂ M2
such that ‖ξn − T ‖M1 → 0. Then ‖a(t, ξn)− a(t, ξm)‖

2
M1
≤ K 2

‖ξn − ξm‖
2
M1
→ 0 and ‖B(t, ξn)h− B(t, ξm)h‖2M1

≤

K 2
‖h‖2‖ξn− ξm‖

2
M1
→ 0. ‖B∗(t, ξn)− B∗(t, ξm)‖

2
M H

1
≤ K 2

‖ξn− ξm‖
2
M1
→ 0. Denote a(t, T ) := limn→∞ a(t, ξn),

B(t, T )h := limn→∞ B(t, ξn)h and B∗(t, T ) := lim B∗(t, ξn). a(t, T ) ∈ M2, B(t, T )h ∈ M2 and B∗(t, T ) ∈ M H
2 ⊂

M H
1 . Therefore, we receive from Eq. (2) the corresponding stochastic differential equation for GRP:

dTt = a(t, Tt )dt + B∗(t, Tt )dWH (t), (3)

with initial condition T0x∗ = 〈ξ0, x∗〉. It is easy to see that the coefficients of this equation satisfy the conditions 1
and 2 of Theorem 2.

Remember that we have the condition B∗(t, ξ) ∈ M H
1 , that is sup‖x∗‖≤1 E‖B∗x∗‖2 = sup‖x∗‖≤1

∑
∞

k=1 E〈B∗(t, ξ)
x∗, ek〉

2 <∞. Further we need the following assertion:

sup
‖x∗‖≤1

∞∑
k=n

E〈B∗(t, ξ)x∗, ek〉
2
→ 0. (4)

It is easy to see, that if B∗(t, ξ) satisfies the condition (4) for all ξ ∈ M2, then this condition is true for all T ∈ M2.
Then we have the following theorem:

Theorem 4. If the coefficients of Eq. (2) satisfy the conditions 1′, 2′, (4) and for all ξ ∈ M2, a(., ξ) from [0, 1] to M2

and B∗(., ξ) from [0, 1] to M H
2 are continuous, then the corresponding stochastic differential equation (3) possesses a

unique strong generalized solution with initial condition T0x∗ = 〈ξ0, x∗〉. The solution (Tt )t∈[0,1] is such that Tt ∈ M2
for all t ∈ [0, 1].
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Proof. To use Theorem 2, it is enough to prove that in the iteration formula

T (n)t x∗ = T (0)t x∗ +
∫ t

0
a(s, T (n−1)

s )x∗ds +
∫ t

0
B∗(s, T (n−1)

s )x∗dWH (s), (5)

the members
∫ t

0 a(s, T (n−1)
s )x∗ds and

∫ t
0 B∗(s, T (n−1)

s )x∗dWH (s) of the formula (5) belong to the space M2, where
T (0)x∗ = 〈ξ0, x∗〉. As we showed above, a(t, T ) and B(t, T )h belong to M2 for all h ∈ H .

In [23] we defined the generalized stochastic integral from the non-anticipating weak second order Banach
space valued random processes (from the non-anticipating GRP) by one dimensional standard Wiener process. If
ϕ(t, ω) ∈ G(L(H, X)) is a non-anticipating function, (WH (t))t∈[0,1], WH (t) =

∑
∞

k=1 ekwk(t) is the cylindrical
Wiener process for any (ek)k∈N orthonormal basis of H , then ϕ(t, ω)ek is X -valued non-anticipating random process
for all k ∈ N . The generalized stochastic integral

∫ t
0 ϕ(t, ω)ekdwk(t) exists. This stochastic integral belongs to

M2; moreover, if L : [0, 1] → M2, is continuous,
∫ 1

0 ‖L(t)‖
2
M1

< ∞, then
∫ 1

0 L(t)dwt ∈ M2 (see [23],

Theorem 2). We will use this result to prove that I (t) : X∗ → L2(Ω , B, P), I (t)x∗ =
∫ t

0 B∗(s, T (n−1)
s )x∗dWH (s)

belongs to M2 for all n ∈ N : x∗ →
∫ t

0 〈B
∗(s, T 0

s )x
∗, ek〉dwk(s) belongs to M2. If T (n−1)

s belongs to M2,

then x∗ →
∫ t

0 〈B
∗(s, T (n−1)

s )x∗, ek〉dwk(s) belongs to M2. Therefore, Im(t) : X∗ → L2(Ω , B, P), Im(t)x∗ :=∑m
k=1

∫ t
0 〈B
∗(s, T (n−1)

s )x∗, ek〉dwk(s) belongs to M2; ‖I (t)−Im(t)‖2M1
= ‖

∑
∞

k=m+1

∫ t
0 B(s, T (n−1)

s )ekdwk(s)‖2M1
=

sup‖x∗‖≤1
∑
∞

k=m+1

∫ t
0 E〈B∗(t, T (n−1))x∗, ek〉

2
→ 0 by the condition (4) and Lebesgue Theorem, as sup‖x∗‖≤1∑

∞

k=m+1 E〈B∗(t, T (n−1))x∗, ek〉
2
≤ sup‖x∗‖≤1

∑
∞

k=1 E〈B∗(t, T (n−1))x∗, ek〉
2
= sup‖x∗‖≤1 E‖B∗x∗‖2 =

‖B∗(t, T (n−1))x∗‖2
M H

1
≤ K 2(1+ ‖T (n−1)

‖
2) <∞, we have I (t) ∈ M2. �

Consequently, we receive the GRP (Tt )t∈[0,1] ∈ M2,

Tt x
∗
= 〈ξ0, x∗〉 +

∫ t

0
〈a(s, Ts), x∗〉ds +

∫ t

0
B∗(s, Ts)x

∗dWH (s) (6)

as a generalized solution of the stochastic differential equation (3) corresponding to the stochastic differential equation
(2) in an arbitrary separable Banach space.

Consider now the members of the equality (6): denote T ′t x∗ =
∫ t

0 〈a(s, Ts), x∗〉ds +
∫ t

0 B∗(s, Ts)x∗dWH (s). Let
L ′1 be the covariance operator of the GRE T ′1. By Theorem 1, the operator L ′1 maps X∗ to X . Let L ′1 = A′A′∗ be the
factorization of the covariance operator L ′1, A′ : H → X . From Theorems 2 and 4 we receive the following:

Corollary 1. If the GRE T ′1 satisfies the conditions of Theorem 2, in particular, if the operator A′ : H → X
is 2-absolutely summing, then there exists the X-valued random process (ξt )t∈[0,1] such that E‖ξt‖

2 < ∞ and
ξt = ξ0 +

∫ t
0 a(s, ξs)ds +

∫ t
0 B(s, ξs)dWH (s), that is, (ξt )t∈[0,1] is the solution of the stochastic differential

equation (2) in an arbitrary separable Banach space.

Consider now a linear stochastic differential equation in a separable Banach space.

dξt = A(t)ξt dt + B(t)ξt dWH (t), (7)

where A : [0, 1] → L(X, X) and B : [0, 1] → L(X, L(H, X)) are continuous and B(t, x) is such, that
there exists (ek)k∈N the orthonormal basis in H with the property supt∈[0,1] sup‖x∗‖≤1

∑
∞

k=n ‖B(t)
∗δek ,x∗‖

2
→

0, where δek ,x∗ is an element of L(H, X)∗, 〈C, δek ,x∗〉 = 〈Cek, x∗〉, for all C ∈ L(H, X). Denote D ≡

supt∈[0,1] sup‖x∗‖≤1
∑
∞

k=1 ‖B(t)
∗δek ,x∗‖

2. Then maxt∈[0,1](‖A(t)‖, D) ≡ M <∞. For all weak second order random
elements ξ , we have

‖A(t)ξ‖2M1
= sup
‖x∗‖≤1

E〈A(t)ξ, x∗〉2 = sup
‖x∗‖≤1

E〈ξ, A∗(t)x∗〉2

= ‖A∗(t)‖2 sup
‖x∗‖≤1

E

〈
ξ,

A∗(t)x∗

‖A∗(t)‖

〉2

≤ ‖A∗(t)‖2 sup
‖x∗‖≤1

E〈ξ, x∗〉2 ≤ M2(1+ ‖ξ‖2M1
),
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and for all weak second order random elements ξ and η we have also

‖A(t)ξ − A(t)η‖2M1
= sup
‖x∗‖≤1

E〈A(t)(ξ − η), x∗〉2

= sup
‖x∗‖≤1

E〈(ξ − η), A∗(t)x∗〉2 = ‖A∗(t)‖2 sup
‖x∗‖≤1

E

〈
(ξ − η),

A∗(t)x∗

‖A∗(t)‖

〉2

≤ M2 sup
‖x∗‖≤1

E〈(ξ − η), x∗〉2 = M2
‖ξ − η‖2M1

.

Further, for all weak second order random elements ξ

‖B(t)ξ‖2
M H

1
= sup
‖x∗‖≤1

E‖(B(t)ξ)∗x∗‖2

= sup
‖x∗‖≤1

E
∞∑

k=1

〈(B(t)ξ)∗x∗, ek〉
2
= sup
‖x∗‖≤1

E
∞∑

k=1

〈ξ, B(t)∗δx∗,ek 〉
2

≤ sup
‖x∗‖≤1

∞∑
k=1

‖B(t)∗δek ,x∗‖
2 E

〈
ξ,

B(t)∗δx∗,ek

‖B(t)∗δek ,x∗‖

〉2

≤ sup
‖x∗‖≤1

∞∑
k=1

‖B(t)∗δek ,x∗‖
2 sup
‖x∗‖≤1

E〈ξ, x∗〉2 ≤ M2
‖ξ‖2M1

.

Analogously, we can receive the inequality ‖B(t)ξ − B(t)η‖2
M H

1
≤ M2

‖ξ − η‖2M1
.

Further,

sup
t∈[0,1]

sup
‖x∗‖≤1

∞∑
k=n

E〈B∗(t, ξ)x∗, ek〉
2
= sup

t∈[0,1]
sup
‖x∗‖≤1

∞∑
k=n

E〈(B(t)ξ)∗x∗, ek〉
2

= sup
t∈[0,1]

sup
‖x∗‖≤1

∞∑
k=n

‖B(t)∗δx∗ek‖
2 E

〈
ξ,

B(t)∗δx∗,ek

‖B(t)∗δx∗ek‖

〉2

≤ ‖ξ‖2M1
· sup

t∈[0,1]
sup
‖x∗‖≤1

∞∑
k=n

‖B(t)∗δx∗ek‖
2
→ 0.

Therefore, if there exists (ek)k∈N the orthonormal basis in H , such that supt∈[0,1] sup‖x∗‖≤1
∑
∞

k=n ‖B(t)
∗δek ,x∗‖

2
→

0, then for the linear stochastic differential equation (7) the conditions 1′ and 2′ and (4) are satisfied. Thus, by
Theorem 4 we have the following:

Theorem 5. For the linear stochastic differential equation (7), if there exists (ek)k∈N the orthonormal basis in H
with the property supt∈[0,1] sup‖x∗‖≤1

∑
∞

k=n ‖B(t)
∗δek ,x∗‖

2
→ 0, then there exists the unique generalized solution of

this equation (Tt )t∈[0,1], Tt ∈ M2 for all t ∈ [0, 1] with the initial condition T0x∗ = 〈ξ0, x∗〉, where ξ0 ∈ M2 is
F0-measurable.

In [26] we considered the stochastic differential equation driven by the Wiener process in a Banach space. If
R = UU∗ is a Gaussian covariance in a Banach space, then Wt ≡ U WH (t) =

∑
∞

k=1 Uekwk(t), t ∈ [0, 1] is
a Wiener process in a Banach space for all orthonormal bases in H and convergence we have in C([0, 1], X). If
A : [0, 1] → L(X, X) and B : [0, 1] → L(X, L(X, X)) are continuous, then by Theorem 2 of [26], we have the
following.

Corollary 2. For the linear stochastic differential equation dξt = A(t)ξt dt + (B(t)ξt )UdWH (t), where A : [0, 1] →
L(X, X) and B : [0, 1] → L(X, L(X, X)) are continuous and R = UU∗ is a Gaussian covariance, there exists the
unique generalized solution (Tt )t∈[0,1], Tt ∈ M2 for all t ∈ [0, 1] with the initial condition T0x∗ = 〈ξ0, x∗〉, where
ξ ∈ M2 is F0-measurable.
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Abstract

In this paper we study the Sobolev regularity of the Bergman projection B and the ∂-Neumann operator N on a certain pseudo-
convex domain. We show that if Ω is a domain with Lipschitz boundary, which is relatively compact in an n-dimensional compact
Kähler manifold and satisfies some “log δ-pseudoconvexity” condition, the operators B, N and ∂

∗
N are regular in the Sobolev

spaces W k
r,s(Ω , E) for forms with values in a holomorphic vector bundle E and for any k < η/2, 0 < η < 1, 0 ≤ r ≤ n,

0 ≤ s ≤ n − 1.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let X be an n-dimensional Kähler manifold and Ω be a relatively compact domain in X . Let δ be the boundary
distance function of Ω with respect to the Kähler form ω associated to the Kähler metric σ on X , then Ω is log δ-
pseudoconvex if ∂∂(− log δ + h) ≥ cω for some c > 0 and some bounded function h on Ω .

For example, if X is a Stein manifold, then any relatively compact domain Ω in X , which is locally Stein, satisfies
the log δ-pseudoconvexity condition (see [12]). The same is true if X has positive holomorphic bisectional curvature,
that is T 1,0 X is positive in the sense of Griffiths (see [22,12,23]).

In this paper, we consider a log δ-pseudoconvex domain Ω with Lipschitz boundary in a compact Kähler manifold
X of complex dimension n. We show that, for any η ∈ (0, 1), the Bergman projection B, the ∂-Neumann operator
N and the canonical solution operator ∂

∗
N are regular in the Sobolev spaces W k

r,s(Ω , E), k < η/2, 0 ≤ r ≤ n,
0 ≤ s ≤ n−1, for forms with values in a holomorphic vector bundle E . This result generalizes the well known results
of Boas–Straube [4], Berndtsson–Charpentier [2], Cao–Shaw–Wang [6], Harrington [15] and Saber [20] in the case of
log δ-pseudoconvex domain in a compact Kähler manifold for forms with values in a holomorphic vector bundle E .

Indeed, when Ω is smooth pseudoconvex domain in Cn admitting a defining function that is plurisubharmonic on
the boundary bΩ of Ω , Boas–Straube [4] proved that B maps W k(Ω) to itself for any k > 0. For a pseudoconvex
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domain Ω with C2 boundary in Cn , Berndtsson–Charpentier [2] (see also Kohn [18]) obtained the Sobolev regularity
for B. If Ω is a locally Stein in the complex projective space, Cao–Shaw–Wang [6] obtained the Sobolev regularity
of the operators N , ∂N , ∂

∗
N and B. Harrington [15] proved this result on a bounded pseudoconvex domain with

Lipschitz boundary in Cn . In [20], Saber proved the Sobolev regularity of the operators N , ∂
∗

N and B on a weakly
q-convex domain Ω with smooth boundary in Cn .

2. Notations and preliminaries

Let X be an n-dimensional Kähler manifold with Kähler metric σ and π : E −→ X be a holomorphic vector
bundle, of rank p, over X . Let T X be the tangent bundle of X and ω be the Kähler form associated to the Kähler
metric σ . Let {U j }, j ∈ J , be an open covering of X such that E |U j is trivial, namely π−1(U j ) = U j × Cp, and
(z1

j , z2
j , . . . , zn

j ) be local coordinates on U j . Let (ρ j ) be a partition of unity subordinate to U j . A Hermitian metric
h = {h j } along the fibers of E is defined by specifying on each U j a positive definite Hermitian matrix h j whose
entries we require to be differentiable functions and on U j ∩Uk we have hk =

t f jkh j f jk , where { f jk} is the system
of transition functions of E and t f jk is the transpose of f jk . For an orthonormal basis e1, e2, . . . , ep on the fiber

Ez = π
−1(z), over z, we express h j as h j = (h jab); h jab = h j (ea, eb). Let (hab

j ) be the inverse matrix of (h jab).

Thus every E-valued differential (r, s)-form u on X can be written locally, on U j , as u(z) =
∑p

a=1 ua(z) ea(z),
where ua are the components of the restriction of u on U j . Let C∞r,s(X, E) be the complex vector space of E-valued
differential forms of class C∞ and of type (r, s) on X . Let # : C∞r,s(X, E) −→ C∞s,r (X, E?) be the operator defined
locally by (#u) j = h j u j . For u, f ∈ C∞r,s(X, E), we define a local inner product (u, f ) with respect to σ and h by

(u, f ) dV =
p∑

a=1

ua
∧ ? (h f )a = t u ∧ ? # f,

where dV is the volume element with respect to σ , ? : C∞r,s(X, E) −→ C∞n−s,n−r (X, E) is the Hodge star operator
defined by σ . Let Ω be a relatively compact domain in X and

C∞r,s(Ω , E) =
{
u |Ω ; u ∈ C∞r,s(X, E)

}
be the subspace of C∞r,s(Ω , E) whose elements can be extended smoothly up to the boundary bΩ of Ω . Let Dr,s(Ω , E)
be the subspace of C∞r,s(Ω , E) whose elements have compact support disjoint from bΩ . For u, f ∈ C∞r,s(Ω , E), the
associated global inner product 〈u, f 〉φ and the L2-norm ‖u‖Ω , with respect to σ , h and the weight function φ, are
defined by

〈u, f 〉φ =
∫
Ω
(u, f ) e−φdV,

‖u‖2φ = 〈u, u〉φ =
∫
Ω

e−φ |u|2 dV,

where |u|2 = (u, u). We shall consider the weighted L2-spaces

L2
r,s(Ω , e−φ, E) = { f : ‖ f ‖φ <∞}

of E-valued differential forms of various degrees. Let ∂ : L2
r,s(Ω , e−φ, E) −→ L2

r,s+1(Ω , e−φ, E) be the maximal

closed extension of the original ∂ and ∂
∗

φ : L2
r,s(Ω , e−φ, E) −→ L2

r,s−1(Ω , e−φ, E) be its Hilbert space adjoint. Let

�φ = ∂ ∂
∗

φ + ∂
∗

φ∂ be the associated complex Laplace operator. Let Nφ be the ∂-Neumann operator on (r, s)-forms
(cf. [13]), solving

Nφ�φ f = f

for any (r, s)-form f in L2
r,s(Ω , e−φ, E). We denote by Bs,φ the Bergman operator, mapping a (r, s)-form in

L2
r,s(Ω , e−φ, E) to its orthogonal projection in the closed subspace of ∂-closed forms. In particular, for s = 0, B0,φ

maps a section to a holomorphic section. By a classical result, if f is ∂-closed, then

u = ∂
∗

φNφ f
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is the solution to ∂u = f of minimal norm in L2
r,s(Ω , e−φ, E). If φ = 0 we shall omit subscripts and write simply

∂
∗

φ = ∂
∗
, �φ = � etc.

Let α = (α1, . . . , αn) be a multiindices, that is, α1, . . . , αn are nonnegative integers. For x ∈ Rn , we define
xα = xα1

1 . . . xαn
n . Let Dβ be the operator defined by

Dβ
=

(
1
i

∂

∂x1

)β1

. . .

(
1
i

∂

∂xn

)βn

.

Denote by T the Schwartz space of rapidly decreasing smooth functions on Rn , that is, T consists of all smooth
functions f on Rn with sup

x∈Rn
|xαDβ f (x)| < ∞ for all multiindices α, β. We define the Fourier transform f̂ of a

function f ∈ T by

f̂ (ξ) = (2π)−n/2
∫

Rn
f (x) e−i x .ξ dx,

where x . ξ =
∑n

j=1 x j ξ j and dx = dx1 ∧ · · · ∧ dxn with x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn). If f ∈ T, then

f̂ ∈ T (cf. [21], Chapter 14, Theorem 1.1). The Sobolev space W k(Rn), k ∈ R, is the completion of T under the
Sobolev norm

‖ f ‖2W k (Rn)
=

∫
Rn
(1+ |ξ |2)k | f̂ (ξ)|2 dξ.

Suppose that X is a compact complex manifold of complex dimension n. Choose finite covering {U j }, j ∈ J by
domains of the charts η j : U j −→ V j ⊂ Rn and let φi : E |U j −→ V j × Cp be a collection of trivializations. Let

φ∗i be an induced map φ∗j ξ = φ j ◦ ξ ◦ η
−1
j acting from C∞(U j , E |U j ) to C∞(V j ,Cp) which can be identified with

C∞(Vi )
p. Let (ρ j ) j be a smooth partition of unity subordinate to (U j ) j and put

‖ f ‖W k (X,E) =
∑

j

‖φ∗jρ j f ‖W k (Rn), (2.1)

where on the right hand side we have usual Sobolev k-norm defined as in the Euclidean case. Then, the Sobolev
k-space, W k(X, E), is defined as the completion of the space of all f ∈ C∞(X, E) such that (2.1) is finite. We denote
by W k(Ω , E), k ≥ 0, the space of the restriction of all sections u ∈ W k(X, E) to Ω . Denote by

‖ f ‖W k (Ω ,E) = inf
{
‖u‖W k (X,E), u ∈ W k(X, E), u|Ω = f

}
the W k(Ω , E)-norm. Let W k

0 (Ω , E) be the completion of D(Ω , E) under the W k(Ω , E)-norm. If Ω is a Lipschitz
domain, then C∞(Ω , E) is dense in W k(Ω , E) with respect to the W k(Ω , E)-norm. If 0 ≤ k ≤ 1/2, we also have
that D(Ω , E) is dense in W k(Ω , E) (cf. [14]; Theorem 1.4.2.4). For k > 0, we define W−k(Ω , E) to be the dual of
W k

0 (Ω , E). For k > 0, we define W−k(Ω , E) to be the dual of W k
0 (Ω , E) and the norm of W−k(Ω , E) is defined by

‖u‖W−k (Ω ,E) = sup
|〈u, f 〉Ω |

‖ f ‖W k (Ω ,E)
,

where the supremum is taken over all nonzero sections f ∈ D(Ω , E). We denote by W k
r,s(Ω , E) the Hilbert spaces of

(r, s)-forms with W k(Ω , E)-coefficients and their norms are denoted by ‖ . ‖W k
r,s (Ω ,E)

. It is verified that, if T? is the

adjoint map of T with respect to the L2-norm, then

‖T f ‖
W k/2

r,s (Ω ,E)
= sup

g∈L2

〈T f, g〉Ω
‖g‖

W k/2
r,s (Ω ,E)

= sup
g∈Ω

〈 f,T?g〉L2

‖g‖
W−k/2

r,s (Ω ,E)

≤ ‖T?‖
W−k/2

r,s (Ω ,E)
‖g‖

W k/2
r,s (Ω ,E)

. (2.2)

Let V be a vector space of finite dimension. We call∧α V the α-th exterior product of V . Elements of∧α V are written
in the form u1 ∧ · · · ∧ uα , where u1, . . . , uα ∈ V . Let HomR(T X,C) be the complex vector space of complex-valued
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real-linear mappings of T X to C. We denote by

∧HomR(T X,C) =
2n∑

t=0

∑
r+s=t

∧
r,s T ∗X,

the C-linear exterior algebra of HomR(T X,C). A linear mapping L : ∧HomR(T X,C) −→ ∧HomR(T X,C) is
defined by Lφ = e(ω)φ = ω ∧ φ, for φ ∈ ∧r,s T ∗X , i.e., L : ∧r,s T ∗X −→ ∧r+1,s+1 T ∗X. The formal adjoint
operator Λ : ∧r,s T ∗X −→ ∧r−1,s−1 T ∗X of the operator L is defined locally by:

Λφ = (−1)r+s ? L ? φ.

Let θ = {θ j }; θ j = (θ
c
ja), θ

c
ja =

∑n
α=1

∑p
b=1 hcb

j
∂h jab
∂ zαj

dzαj =
∑n
α=1 µ

c
jaαdzαj , be the (1, 0)-form of the connection

associated to h. Put Θc
jaαβ

= −
∂µc

jaα

∂zβj
. Since the curvature form, associated to h, is defined by Θ = {Θ j };

Θ j = i ∂θ j = i ∂∂ log h j . Then Θ j = {Θc
ja};Θ

c
ja = i

∑n
α,β=1 Θc

jaαβ
dzαj ∧ dzβj ; 0 ≤ a ≤ p and 0 ≤ c ≤ p. Let

Π =
(
Π jbβ,cα

)
=

(
p∑

a=1

h jab Θa
jcαβ

)
(2.3)

be the associated curvature matrix. For 0 ≤ r ≤ n, we define

mr (Ω; E) = sup{m ∈ R|Θ(∧n−r TΩ ⊗ E) ≥ m ω ⊗ Id∧n−r TΩ⊗E }, (2.4)

where Θ(∧n−r TΩ⊗ E) and Id∧n−r TΩ⊗E are the curvature form and the identity homomorphism of the holomorphic
vector bundle ∧n−r TΩ ⊗ E , respectively.

Definition 1. Let T and E be complex vector spaces of dimensions n, p respectively, and let Θ be a Hermitian form
on T ⊗ E .

(a) A tensor ξ ∈ T X ⊗ E is said to be of rank m if m is the smallest positive integer such that we can write
ξ(z) =

∑m
j=1 t j ⊗ e j , t j ∈ Tz X , e j ∈ Ez .

(b) Π is said to be m-semi-positive (Π ≥m 0), m an integer ≥ 1, if

Π (ξ, ξ) =
∑

Πb β,c αξ
c
b ξ

α
β ≥ 0,

for any ξ ∈ Tz X ⊗ Ez and of rank ≤ m.
(c) Π is said to be m-positive (Π >m 0) if Π (ξ, ξ) > 0 for any tensor ξ ∈ Tz X ⊗ Ez ; ξ 6= 0, and of rank ≤ m.

Let φ be a real (1, 1)-form with values in the vector bundle Herm(E; E) = E∗ ⊗ E satisfies φ≥n−s+1 0. For
φ ∈ ∧n,s T ∗X ⊗ E , we put

| f |2φ = sup
u∈∧n,s T ∗X⊗E,

u 6=0

|( f, u)|2

(φ ∧ Λu, u)
.

Definition 2. Let X be an n-dimensional Kähler manifold and Ω b X be an open set. Let δ(z) be the distance from
z ∈ Ω to the boundary bΩ of Ω with respect to the metric σ . We say that Ω is log δ-pseudoconvex, if there exists a
smooth bounded function h on Ω such that

i∂∂(− log δ + h) ≥ cω in Ω , (2.5)

for some c > 0, where ω is the Kähler form associated to the Kähler metric σ .

In particular, every log δ-pseudoconvex domain admits a strictly plurisubharmonic exhaustion function, therefore
is a Stein manifold.
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Example 2.1. Let X be a Stein manifold and let Ω b X be a domain which is locally Stein, i.e. for every x ∈ bΩ ,
there exists a neighborhood Ux of x in X such that Ux is Stein. It was shown in [12] that there exists a Kähler metric
σ on X such that is log δ-pseudoconvex.

In particular, every bounded weakly pseudoconvex domain with smooth boundary in Cn is log δ-pseudoconvex.

Example 2.2. Let (X, σ ) be a Kähler manifold with positive holomorphic bisectional curvature, that is T 1,0 X is
positive in the sense of Griffiths. Then every domain Ω b X , which is locally Stein, is log δ-pseudoconvex (see [23]
for the case X = Pn , [12,22]).

Example 2.3. Let X be a complex manifold such that there exists a continuous strongly plurisubharmonic function
on X and Ω b X a locally Stein domain. It was shown in [12] that there exists a Kähler metric on X such that Ω is
log δ-pseudoconvex.

In particular, every locally Stein domain in a Stein manifold is log δ-pseudoconvex.

Definition 3. (a) A Riemannian manifold (X, σ ) is said to be complete if (X, σ ) is complete as a metric space.
(b) A continuous function ψ : X −→ R is said to be exhaustive if for every c ∈ R the sublevel set

Xc = {x ∈ X;ψ(x) < c} is relatively compact in X .
(c) A sequence (Kν)ν∈N of compact subsets of X is said to be exhaustive if X =

⋃
Kν and if Kν is contained in

the interior of Kν+1 for all ν (so that every compact subset of X is contained in some Kν).

Lemma 2.1 (cf. [5]). Let (X, σ ) be a Kähler manifold and E be a holomorphic vector bundle, of rank p (p ≥ 1),
over X. Let h = {h j } be a Hermitian metric along the fibers of E and Θ be the associated curvature form. Then, for
f ∈ C∞r,s(X, E), at any point, we have((

�r,s − ?
−1�n−s,n−r?

)
f, f

)
= (Ar,s

E,σ f, f ), (2.6)

where Ar,s
E,σ = [iΘ(E),Λ] acting on ∧r,s T ∗X ⊗ E and �r,s = ∂ ϑ + ϑ∂ .

Lemma 2.2 (cf. [9]). Let σ1, σ2 be two Hermitian metrics on X such that σ2 ≥ σ1. For every u ∈ ∧n,s T ∗ X ⊗ E,
s ≥ 1, we have

|u|2σ2
dVσ2 ≤ |u|

2 dV,

((An,s
E,σ2

)−1u, u)σ2 dVσ2 ≤ ((A
n,s
E,σ1

)−1u, u) dV,

where an index σ2 means that the corresponding term is computed in terms of σ2 instead of σ1.

Lemma 2.3 (cf. [9]). The (n, n)-form | f |2φ dv is a decreasing function of ω. Also, for any real number c ≥ 0 such
that Π ≥n−s+1 cω ⊗ IdE , and for each f ∈ ∧n,s T ∗X ⊗ E, we have

| f |2φ ≤
1

s c
| f |2.

Finally, let η be a (0, 1)-form on X, then we get

| η ∧ f |φ ≤ |η| | f |φ .

Lemma 2.4 (cf. [10]). The following properties are equivalent:
(i) (X, σ ) is complete;
(ii) there exists an exhaustive function φ ∈ C∞(X,R) such that |dφ|σ ≤ 1;
(iii) there exists an exhaustive sequence (Kν)ν∈N of compact subsets of X and functions φν ∈ C∞(X,R) such that

φν = 1 in a neighborhood of Kν , supp φν ⊂ K ◦ν+1, 0 ≤ φν ≤ 1 and |dφν |σ ≤ 2−ν .

Lemma 2.5 ([10]; Theorem 5.2). Every weakly pseudoconvex Kähler manifold (X, σ ) carries a complete Kähler
metric σ̃ .
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3. L2 estimates for solutions of ∂-equations

Our goal here is to prove a central L2 existence theorem, which is essentially due to Hörmander [16], and
Andreotti–Vesentini [1]. We will only outline the main ideas, referring e.g. to Demailly [9] for a more detailed
exposition of the technical situation considered here.

Theorem 3.1 (cf. [10]). Let (X, σ ) be complete Kähler manifold of complex dimension n. Let E be a holomorphic
vector bundle over X. Suppose Ar,s

E,σ is a positive Hermitian operator on ∧r,s T ∗X ⊗ E, and let f ∈ L2
r,s(X, E) with

s ≥ 1 satisfying ∂ f = 0 and∫
X
((Ar,s

E,σ )
−1 f, f ) dVσ < +∞,

there exists u ∈ L2
r,s−1(X, E) such that ∂u = f and∫

X
|u|2dVσ ≤

∫
X
((Ar,s

E,σ )
−1 f, f ) dVσ .

Proof. Consider the Hilbert space orthogonal decomposition

L2
r,s(X, E) = Ker ∂ ⊕ (Ker ∂)⊥,

observing that Ker ∂ is weakly (hence strongly) closed. Let v = v1 + v2 be the decomposition of a smooth form
v ∈ Dr,s(X, E)with compact support according to this decomposition (v1, v2 do not have compact support in general).

Since (Ker ∂)⊥ = Im ∂
∗
⊂ Ker ∂

∗
and f, v1 ∈ Ker ∂ by hypothesis, we get ∂

∗
v2 = 0 and by the Cauchy–Schwarz

inequality, we have

|〈 f, v〉|2 = |〈 f, v1〉|
2
≤

∫
X
((Ar,s

E,σ )
−1 f, f ) dVσ

∫
X
(Ar,s

E,σ v1, v1) dVσ .

By using a priori inequality

‖∂u‖2 + ‖∂
∗
u‖2 ≥ (Ar,s

E,σu, u)

for every u ∈ Dom∂ ∩ Dom∂
∗

of bidegree (r, s) if Ar,s
E,σ acting on ∧r,s T ∗X ⊗ E is semi-positive. Applying (2.6) to

u = v1 yields∫
X
(Ar,s

E,σ v1, v1) dVσ ≤ ‖∂v1‖
2
+ ‖∂

∗
v1‖

2
= ‖∂

∗
v1‖

2
= ‖∂

∗
v‖2.

Combining both inequalities, we find

|〈 f, v〉|2 ≤

(∫
X
((Ar,s

E,σ )
−1 f, f ) dVσ

)
‖∂
∗
v‖2

for every smooth (r, s)-form v with compact support. This shows that we have a well defined linear form

w = ∂
∗
v 7−→ (v, f ), L2

r,s−1(X, E) ⊃ ∂
∗
(Dr,s(X, E)) 7−→ C

on the range of ∂
∗
. This linear form is continuous in L2 norm and has norm ≤ C with

C =

(∫
X
((Ar,s

E,σ )
−1 f, f ) dVσ

)
‖∂
∗
v‖2.

By the Hahn–Banach theorem, there is an element u ∈ L2
r,s−1(X, E) with ‖u‖ ≤ C , such that 〈v, f 〉 = 〈∂

∗
v, u〉 for

every v, hence ∂u = f in the sense of distributions. The inequality ‖u‖ ≤ C is equivalent to the last estimate in the
theorem. �

If we apply the main L2 existence theorem (Theorem 3.1) to a sequence σε of complete Kähler metrics, we see, by
passing to the limit, that the theorem even applies to non necessarily complete metrics if our manifold is pseudoconvex.
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Theorem 3.2 (cf. [10]). Let (X, σ ) be a Kähler manifold (σ is not assumed to be complete). Assume that X is weakly
pseudo-convex. Let E be a holomorphic vector bundle over X and assume that there exists a positive continuous
function γ : X −→ R such that

Θ(E) ≥ γ ω ⊗ IdE .

Then, for f ∈ L2
loc(X, ∧

n,s T ∗ X ⊗ E), s ≥ 1, satisfying ∂ f = 0 and
∫

X γ
−1
| f |2 dVσ < +∞, there exists a solution

u ∈ L2(X, ∧n,s−1 T ∗ X ⊗ E) to the equation ∂u = f such that∫
X
|u|2dVσ ≤

∫
X
γ−1
| f |2 dVσ .

Proof. Indeed, under the assumption on E , we have

(An,s
E,σ f, f )σ ≥ γ | f |

2
σ ,

hence ((An,s
E,σ )

−1 f, f )σ ≤ γ−1
| f |2σ . The assumption that f ∈ L2

loc(X, ∧
n,s T ∗ X ⊗ E) instead of f ∈

L2(X, ∧n,s T ∗ X⊗E) is not a real problem, since we may restrict ourselves to Xc = {x ∈ X : ρ(x) < c} b X , where
ρ is a plurisubharmonic exhaustion function on X . Then Xc is itself weakly pseudoconvex (with plurisubharmonic
exhaustion function ρc = 1/(c−ρ)), hence Xc can be equipped with a complete Kähler metric σc,ε = σ + ε i∂∂(ρ2

c ).
For each (c, ε), Theorem 3.1 yields a solution uc,ε ∈ L2

σc,ε
(Xc, ∧

n,s−1 T ∗ X ⊗ E) to the equation ∂uc,ε = f on
Xc such that∫

Xc

|uc,ε|
2
σc,ε

dVσc,ε ≤

∫
Xc

((An,s
E,σc,ε

)−1 f, f )σc,ε dVσc,ε .

From Lemma 2.2, we obtain∫
Xc

((An,s
E,σc,ε

)−1 f, f )σc,ε dVσc,ε ≤

∫
Xc

((An,s
E,σ )

−1 f, f )σ dVσ

≤

∫
X
γ−1
| f |2σ dVσ < +∞.

Thus, the solutions ψc,ε are uniformly bounded in L2 norm on every compact subset of X . Since the closed unit ball
of an Hilbert space is weakly compact, we can extract a subsequence

ucm , εm −→ u ∈ L2
loc

converging weakly in L2 on any compact subset K ⊂ X , for some cm −→ +∞ and εm −→ 0. By the weak continuity
of differentiations, we get again in the limit ∂u = f . Also, for every compact set K ⊂ X , we get∫

K
|ψ |2σdVσ ≤ lim inf

m−→∞

∫
K
|ucm ,εm |

2
σcm ,εm

dVσcm ,εm

by weak L2
loc convergence. Finally, we let K increase to X and conclude that the desired estimate holds on all

of X . �

Theorem 3.3 (cf. [9]). Let X be an n-dimensional Kähler manifold. Assume that X is weakly pseudoconvex. Let E
be a holomorphic vector bundle over X and φ ∈ L1

loc be a weight function which is plurisubharmonic and of class C2

in X. Suppose that the curvature form Θ(E) and φ satisfy the inequality

Θ(E)+ i∂∂φ ⊗ IdE ≥ γω ⊗ IdE ,

where γ is a positive continuous function on X. Then, for f ∈ L2
n,s(X, loc, E) with s ≥ 1 satisfying ∂ f = 0 and∫

X | f |
2
i∂∂φ

e−φdv < +∞, there exists u ∈ L2
n,s−1(X, loc, E) such that ∂u = f and∫

X
|u|2e−φdv ≤

∫
X
| f |2

i∂∂φ
e−φdv.
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Proof. Apply the general estimates to the bundle E deduced from E by multiplication of the metric by e−φ ; we have

iΘ(Eφ) = iΘ(E)+ i∂∂φ.

It is not necessary here to assume in addition that u ∈ L2
n,s−1(X, Eφ). In fact, u is in L2

loc and we can exhaust
X by the relatively compact weakly pseudoconvex domains {Xc = x ∈ X;ψ(x) < c}, where ψ ∈ C∞(X,R) is
a plurisubharmonic exhaustion function (note that − log(c − ψ) is also such a function on Xc). We get therefore
solutions fc on Xc with uniform L2 bounds; any weak limit f gives the desired solution. �

Remark 3.4. To obtain the same result of Theorem 3.3 for (r, s)-form as well, we just observe that we have a canonical
duality pairing ∧m TΩ ⊗∧m T ∗Ω −→ C, hence a (r, s)-form with values in E can be viewed as a section of

∧
r,s T ∗Ω ⊗ E = ∧0,s T ∗Ω ⊗∧r T ∗Ω ⊗ E = ∧n,s T ∗Ω ⊗ Ẽ,

where Ẽ is the holomorphic vector bundle

Ẽ = ∧n TΩ ⊗∧r T ∗Ω ⊗ E = ∧n−r TΩ ⊗ E,

through the contraction pairing

∧
n TΩ ⊗∧r T ∗Ω ' ∧n−r TΩ .

Thus L2
r,s(Ω , E) = L2

n,s(Ω ,∧
n−r TΩ ⊗ E).

4. Sobolev regularity of the Bergman projection

In this section we prove the main results of this paper.

Lemma 4.1. Let Ω b X be a log δ-pseudoconvex domain in an n-dimensional Kähler manifold X. Let ψk = −k log δ,
where k is a positive constant. Then, there exists α ∈ (0, 1) small enough such that

i∂ψk ∧ ∂ψk <

(
k

α

)
i∂∂ψk on Ω . (4.1)

Proof. As in Ohsawa and Sibony [19] and Cao and Shaw [7], by using (2.5), there exists a constant α ∈ (0, 1) such
that

i∂∂(−δα) > 0 on Ω .

Since

i∂∂(−δα) = α δα
(
(1− α)

i∂δ ∧ ∂δ

δ2 +
i∂∂(−δ)

δ

)
,

then

(1− α)
i∂δ ∧ ∂δ

δ2 +
i∂∂(−δ)

δ
> 0 on Ω . (4.2)

But

i∂∂(− log δ) =
i∂δ ∧ ∂δ

δ2 +
i∂∂(−δ)

δ
.

It follows, from (4.2), that

i∂∂(− log δ) > α
i∂δ ∧ ∂δ

δ2 . (4.3)

Since ∂ψk = −k ∂δ
δ

and ∂ψk = −k ∂δ
δ

, then

i∂ψk ∧ ∂ψk = k2 i∂δ ∧ ∂δ

δ2 .
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Thus, from (4.3), we obtain

i∂∂(− log δ) >
( α

k2

)
i∂ψk ∧ ∂ψk .

Thus (4.1) follows. �

Theorem 4.2. Let X be an n-dimensional Kähler manifold and E be a holomorphic vector bundle over X. Let Ω b X
be a log δ-pseudoconvex domain and φβ = −β log δ, where β ≥ 0 and δ is the function defined in Definition 2. Let
mr (Ω; E) be defined as in (2.4) such that mr (Ω; E) > 0. Then, for f ∈ L2

r,s(Ω , δ
β , E), 1 ≤ s ≤ n, with ∂ f = 0,

there exists u ∈ L2
r,s−1(Ω , δ

β , E) such that ∂u = f and∫
Ω
|u|2δβdv ≤

∫
Ω
| f |2

i∂∂φβ
δβdv. (4.4)

Proof. Since mr (Ω; E) > 0 and by using (2.4) and (2.5), there exists a positive constant m such that

Θ(∧n−r TΩ ⊗ E)+ β i ∂∂(− log δ)⊗ Id∧n−r TΩ⊗E ≥ [m + β C]ω ⊗ Id∧n−r TΩ⊗E .

Thus, according to Remark 3.4, by using the solution to the ∂-equation for (n, s)-forms of Theorem 3.3 with
values in the holomorphic vector bundle ∧n−r TΩ ⊗ E and with the weight function φβ = −β log δ, there exists
u ∈ L2

r,s−1(Ω , δ
β , E) such that ∂u = f and∫

Ω
|u|2 δβ dV ≤

∫
Ω
| f |2

i∂∂φβ
δβ dV .

Thus the proof follows. �

Remark 4.3. One can always select the solution u of Theorem 4.2 satisfying the additional property u ∈
(
ker(∂, E)

)⊥
(otherwise, just replace u by its orthogonal projection on

(
ker(∂, E)

)⊥
). The solution u satisfies the additional property

u ∈ L2
r,s−1(Ω , e−φβ , E) ∩

(
ker(∂, E)

)⊥
, i.e., satisfies the following∫

Ω
e−φβ t u ∧ ?h υ = 0, (4.5)

for any ∂-closed form υ ∈ L2
r,s−1(Ω , e−φβ , E). Hence the theorem implies that if u is any form which is orthogonal

to L2
r,s−1(Ω , e−φβ , E) ∩ ker(∂, E), u satisfies∫

Ω
|u|2e−φβ dV ≤

∫
Ω
|∂u|2

i∂∂φβ
e−φβ dV . (4.6)

Theorem 4.4. Let X, Ω and E be the same as in Theorem 4.2. Let φ and ψ be plurisubharmonic and of class C2 in
Ω , and assume ψk ≥ 0 satisfies (4.1) with r < 1. Let 0 ≤ r ≤ n such that mr (Ω; E) > 0. Let f ∈ L2

r,s(Ω , δ
β−k, E),

1 ≤ s ≤ n, with ∂ f = 0 and let u = ∂
∗

βNβ f be the solution to the equation ∂u = f in L2
r,s(Ω , δ

β , E). Thus, there
exists a positive constant C such that∫

Ω
|u|2δβ−kdV ≤ C

∫
Ω
| f |2

i∂∂(ψk+φβ )
δβ−kdV . (4.7)

Proof. Since f ∈ L2
r,s(Ω , δ

β , E), thus by Theorem 4.2 there is a solution u ∈ L2
r,s−1(Ω , δ

β , E) ∩ (ker(∂, E))⊥. Put
g = u eψk = u δ−k , then∫

Ω
|u|2δβ−kdV =

∫
Ω
|g|2δβ+kdV . (4.8)
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Thus, from (4.5), we have

0 =
∫
Ω

e−φβ t u ∧ ? #Eυ =

∫
Ω

e−(ψk+φβ ) t g ∧ ? #Eυ

=

∫
Ω
δβ+k t g ∧ ? #Eυ.

Thus, u is orthogonal to all ∂-closed forms of L2
r,s−1(Ω , δ

β+k, E), so by (4.6) we have∫
Ω
| u|2δβ+kdV ≤

∫
Ω
|∂u|2

i∂∂(ψk+φβ )
δβ+kdV .

Thus, from (4.8), we obtain∫
Ω
|u|2δβ−kdV ≤

∫
Ω
|∂g|2

i∂∂(ψk+φβ )
δβ+kdV . (4.9)

Since, for any two real numbers a and b, and for every ε > 0, we have

2|a| |b| ≤ ε|a|2 +
1
ε
|b|2,

and since ∂g = δ−k ∂u + δ−k ∂ψk ∧ u. Thus, from (4.9), we obtain∫
Ω
|u|2δβ−kdV ≤

∫
Ω
| ∂u + ∂ψk ∧ u|2

i∂∂(ψk+φβ )
δβ−kdV

≤

∫
Ω
|∂u|2

i∂∂(ψk+φβ )
δβ−kdV + |∂ψk ∧ u|2

i∂∂(ψk+φβ )
δβ−kdV

+ 2|∂u|i∂∂(ψk+φβ )
|∂ψk ∧ u|i∂∂(ψk+φβ )

δβ−kdV

≤

(
1+

1
ε

)∫
Ω
| f |2

i∂∂(ψk+φβ )
δβ−kdV + (1+ ε)

∫
Ω
| ∂ψk ∧ u|2

i∂∂(ψk+φβ )
δβ−kdV .

Since i∂ψk ∧ ∂ψk < t i ∂∂ψk is valid for 0 < t < 1. This means that the norm of the form ∂ψk , measured in the
metric with Kähler form i∂∂ψk is smaller than t at any point. Also, we can improve the estimate (4.4) by replacing
| f |i∂∂φβ e−φβ by | f |i∂∂(ψk+φβ )

e−φβ without having to change the weight function from φβ to ψk + φβ . Thus

| ∂ψk ∧ u|2
i∂∂(ψk+φβ )

≤ | ∂ψk |
2
i∂∂(ψk+φβ )

|u|2 ≤ |∂ψk |
2
i∂∂ψk

|u|2 ≤ t |u|2. (4.10)

By choosing ε so small such that (1+ ε)t < 1, we obtain∫
Ω
|u|2δβ−kdV ≤ C

∫
Ω
| f |2

i∂∂(ψk+φβ )
δβ−kdV,

with C =

(
1+ 1

ε

)
[1−(1+ε)t] . �

We are now ready to prove the main theorem of this section.

Theorem 4.5. Let Ω b X be a log δ-pseudoconvex domain with Lipschitz boundary in an n-dimensional compact
Kähler manifold and E be a holomorphic vector bundle over X. Let 0 ≤ r ≤ n such that mr (Ω; E) > 0. Then, for
η ∈ (0, 1), the operators B, N and ∂

∗
N are exact regular in the Sobolev spaces W k

r,s(Ω , E) for 0 < k < η/2, 0 ≤ s ≤

n − 1. In other words, B, N and ∂
∗

N are continuous in W k
r,s(Ω , E), k < η/2 and satisfies the following estimates:

‖Bu‖2
W k/2

r,s (Ω ,E)
≤ c1‖u‖

2
W k/2

r,s (Ω ,E)
, (4.11)

‖Nu‖
W k/2

r,s (Ω ,E)
≤ c2‖u‖W k/2

r,s (Ω ,E)
, (4.12)

‖∂
∗

Nu‖
W k/2

r,s (Ω ,E)
≤ c3‖u‖W k/2

r,s (Ω ,E)
, (4.13)

where c1, c2 and c3 are positive constants depend only on k.
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Proof. From the Kohn’s formula, we have the following:

Bβ = I − ∂
∗

βNβ

r,s+1∂. (4.14)

For u ∈ L2
r,s(Ω , δ

β−k, E) and for f ∈ L2
r,s(Ω , δ

β−k, E) ∩ ker(∂, E), we have from (4.14) that

〈Bβu, f 〉β,Ω = 〈u − ∂
∗

βNβ∂u, f 〉β,Ω

= 〈u, f 〉β,Ω − 〈∂
∗

βNβ∂u, f 〉β,Ω

= 〈δ−ku, f 〉β+k,Ω

= 〈δ−ku, f 〉β+k,Ω − 〈∂
∗

β+k Nβ+k∂(δ−ku), f 〉β+k,Ω

= 〈(I − ∂
∗

β+k Nβ+k∂)(δ−ku), f 〉β+k,Ω

= 〈Bβ+k(δ−ku), f 〉β+k,Ω

= 〈δk Bβ+k(δ−ku), f 〉β,Ω .

Thus we have Bβ(δk Bβ+k(δ−ku)) = Bβu. Using (4.14), we get

Bβu = Bβ(δk Bβ+k(δ−ku))

= (I − ∂
∗

βNβ∂)δk Bβ+k(δ−ku)

= δk Bβ+k(δ−ku)− ∂
∗

βNβ(∂δk
∧ Bβ+k(δ−ku))

= δk Bβ+k(δ−ku)− k ∂
∗

βNβ

(
∂δ

δ
∧ δk Bβ+k(δ−ku)

)
, (4.15)

because ∂Bβ+k
= 0. For simplicity, we write η = δk Bβ+k(δ−k u). Then, for u ∈ L2

r,s(Ω , δ
β−k, E), we have∫

Ω
|η|2 δβ−k dV =

∫
Ω

∣∣∣ δk Bβ+k(δ−k u)
∣∣∣2 δβ−k dV

=

∫
Ω

∣∣∣ Bβ+k(δ−k u)
∣∣∣2 δβ+k dV

≤

∫
Ω

∣∣∣ δ−k u
∣∣∣2 δβ+k dV

=

∫
Ω
|u|2 δβ−k dV . (4.16)

Thus, from (4.7), we obtain∫
Ω

∣∣∣ ∂∗βNβ(∂ψk ∧ η)

∣∣∣2 δβ−k dV ≤ c1

∫
Ω

∣∣ ∂ψk ∧ η
∣∣2
i∂∂(ψk+φβ )

δβ−k dV . (4.17)

From (4.10), we obtain∣∣ ∂ψk ∧ η
∣∣2
i∂∂(ψk+φβ )

≤
∣∣ ∂ψk ∧ η

∣∣2
i∂∂ψk

≤ t |η|2 . (4.18)

Substituting (4.16) and (4.18) into (4.17), we obtain∫
Ω

∣∣∣ ∂∗βNβ(∂ψk ∧ η)

∣∣∣2 δβ−k dV ≤ c1t
∫
Ω
|u|2 δβ−k dV . (4.19)

Thus, by using (4.15), (4.18) and (4.19), we obtain∥∥Bβu
∥∥2
β−k,Ω ≤ c2 ‖u‖

2
β−k,Ω . (4.20)

Thus, the Bergman projection Bβ maps L2
r,s(Ω , δ

β−k, E) boundedly to itself. Since Bβu = (I − ∂
∗

βNβ∂)u and

∂
∗

βNβu = Nβ∂
∗

βu, then ∂
∗

βNβu = ∂
∗

βNβBβu and we already know that Bβ is bounded on L2
r,s(Ω , δ

β−k, E) we may
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as well assume from the start that ∂ f = 0. Then, by using (4.7) and (4.20), we obtain∥∥∥∂∗βNβu
∥∥∥2

β−k,Ω
=

∥∥∥∂∗βNβBβu
∥∥∥2

β−k,Ω
≤ c1‖B

βu‖2β−k,Ω ≤ c1c2 ‖u‖
2
β−k,Ω . (4.21)

Thus, the operator ∂
∗

βNβ maps L2
r,s(Ω , δ

β−k, E) boundedly to itself. Thus by taking β = 0 and by using (4.20) and
(4.21), we obtain

‖Bu‖2
−k ≤ c3‖u‖

2
−k

‖∂
∗

Nu‖2
−k ≤ c3‖u‖

2
−k . (4.22)

By [14, Theorem 1.4.4.3], for 0 < k < 1
2 , the space W k/2(Ω , E) is continuously embedded in L2(Ω , δ−k, E). Also

since any harmonic section in L2(Ω , δ−k, E) also lies in W k/2(Ω , E) (see [17, Theorem 4.2], [11, Lemma 1] and also
[8, Lemma 6.5.4 and Theorem C.4]). Then, from (4.22), we obtain

‖Bψ‖2W k/2(Ω ,E) ≤ ‖Bu‖2
−k ≤ c3‖u‖

2
−k ≤ c3‖u‖

2
W k/2(Ω ,E). (4.23)

It follows that the Bergman projection B is continuous in W k(Ω , E), 0 < k < η/2. Since B = I − ∂
∗

N∂ and
∂
∗

N = N∂
∗
, then ∂

∗
Nu = ∂

∗
N Bu and

‖∂
∗

Nu‖k = ‖∂
∗

N Bu‖k ≤ c1‖Bu‖k ≤ c1c3‖u‖k . (4.24)

Using (4.24) and as in (4.23), we obtain that ∂
∗

N is bounded operator on W k/2
r,s (Ω , E) for any s ≥ 1 and satisfies

‖∂
∗

Nu‖2W k/2(Ω ,E) ≤ c2‖u‖
2
W k/2(Ω ,E).

Then ∂
∗

N is continuous in W k(Ω , E), 0 < k < η/2. Due to the result of Boas–Straube [3], the ∂-Neumann operator
N is regular if and only if the Bergman projection B is regular. Thus the exact regularity of N follows. �

Corollary 1. Under the same assumption of Theorem 4.5 and for 0 ≤ s ≤ n − 1, the operators N, ∂
∗

N and B are
exact regular in the Sobolev space W−k

r,s (Ω , E) for 0 < k < η/2, 0 ≤ s ≤ n − 1 and satisfy the following estimates:

‖Bu‖2
W−k/2

r,s (Ω ,E)
≤ c4‖u‖

2
W−k/2

r,s (Ω ,E)
,

‖Nu‖
W−k/2

r,s (Ω ,E)
≤ c5‖u‖W−k/2

r,s (Ω ,E)
,

‖∂
∗

Nu‖
W−k/2

r,s (Ω ,E)
≤ c6‖u‖W−k/2

r,s (Ω ,E)
,

where c4, c5 and c6 are positive constants depend only on k.

Proof. By using (2.2), (4.11), (4.12) and (4.13) the result follows. �
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Abstract

A Dirichlet generalized harmonic problem for finite right circular cylindrical domains is considered. The term “generalized”
indicates that a boundary function has a finite number of first kind discontinuity curves. It is shown that if a finite domain is
bounded by several surfaces and the curves are placed in arbitrary form, then the generalized problem has a unique solution
depending continuously on the data. The problem is considered for the simple case when the curves of discontinuity are circles
with centers situated on the axis of the cylinder. An algorithm of numerical solution by a probabilistic method is given, which in
its turn is based on a computer simulation of the Wiener process. A numerical example is considered to illustrate the effectiveness
and simplicity of the proposed method.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is known (see e.g., [1–5]) that in practical stationary problems (for example, for the determination of the
temperature of the thermal field or the potential of the electric field, and so on) there are cases when the corresponding
boundary function has a finite number of first kind discontinuity points (in the case of 2D) or curves (in the case of
3D). Problems of such type are known as Dirichlet generalized problems [1], and their solutions represent generalized
solutions, respectively. In general, it is known (see [3,6]) that methods used to obtain an approximate solution to
ordinary boundary problems are less suitable (or not suitable at all) for solving boundary problems with singularities.
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In particular, the convergence is very slow in the neighborhood of boundary singularities and, consequently, the
accuracy of the approximate solution of the generalized problem is very low.

The choice and construction of the computational schemes (algorithms) mainly depend on the problem class,
its dimension, geometry and location of singularities on the boundary. e.g., plane Dirichlet generalized problems
for harmonic functions with concrete location of discontinuity points in the cases of simply connected domains are
considered in [3,7], and general cases for finite and infinite domains are studied in [8–12].

In the case of spatial (3D) harmonic generalized problems, due to their higher dimension, the difficulties become
more significant. On the other hand, the study of such problems from the viewpoint of correctness and approximate
solution is of certain interest, since, some processes occur whose investigation is reduced to solution of problems of the
indicated type (see e.g., [3,4]). In the 3D case, there does not exist a standard scheme which can be applied to a wide
class of domains. In the classical literature, simplified, or so called “solvable” generalized problems (problems whose
“exact” solutions can be constructed by series, whose terms are represented by special functions) are considered,
and for their solution the classical method of separation of variables is mainly applied and therefore the accuracy of
the solution is rather low. In particular, in the mentioned problems, the boundary functions (conditions) are mainly
constants, and in the general case, the analytic form of the “exact” solution is so difficult in the sense of numerical
implementation, that it only has theoretical significance (see e.g., [5]).

As a consequence of the above, from our viewpoint, the construction of high accuracy and effectively realizable
computational schemes for the approximate solution of 3D generalized harmonic problems (whose application is
possible to a wide class of domains) has both theoretical and practical importance.

2. Statement of the problem and properties of its solution

Let D be a finite right circular cylindrical domain in the Euclidian space E3, bounded by a surface S. Without loss
of generality we assume that the coordinate axis ox3 of the Cartesian coordinates ox1x2x3 is the axis of the cylinder
D. We consider the Dirichlet generalized problem for the Laplace equation.

Problem A. Function g(y) is given on the boundary S of the domain D and is continuous everywhere, except a finite
number of circles l1, l2, . . . , ln which represent discontinuity curves of the first kind for the function g(y). Besides, it
is assumed that the centers of these circles are situated on the axis of the cylinder D. It is required to find a function
u(x) ≡ u(x1, x2, x3) ∈ C2(D)

⋂
C(D \

⋃n
k=1 lk) satisfying the conditions:

1u(x) = 0, x ∈ D, (2.1)

u(y) = g(y), y ∈ S, y∈lk (k = 1, n), (2.2)

|u(y)| < c, y ∈ D, (2.3)

where ∆ =
∑3

i=1
∂2

∂x2
i

is the Laplace operator and c is a real constant.

For the sake of simplicity, in the following we assume that the circles lk(k = 1, n) are situated on S preserving the
order of succession in the direction of axis ox3. It is evident that the surface S is divided into parts Sk(k = 1, n + 1)
by the circles lk or S =

⋃n+1
k=1 Sk . On the basis of the above, the boundary function g(y) has the following form

g(y) =


g1(y), y ∈ S1,

g2(y), y ∈ S2,

. . . . . . . . . . . . . . .

gn+1(y), y ∈ Sn+1,

(2.4)

where the functions gk(y) = gk(y1, y2, y3), y ∈ Sk are continuous on the parts Sk of S, respectively.
Note that the additional requirement (2.3) of boundedness concerns actually only the neighborhoods of the

discontinuity curves of the function g(y) and it plays an important role in the extremum principle (see Theorem 1).

Remark 1. If inside the surface S there is a vacuum then we have the generalized problem with respect to a right
circular cylindrical shell.
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In order to study the properties of the solution of Problem ((2.1), (2.2), (2.3)), we will first prove the generalized
extremum principle in a more general case. Let us consider a finite domain D in the space E3 with surface S (D may
be bounded by several surfaces).

Theorem 1. If the function u(x) is harmonic in D, bounded in D and takes a value g(y) on the boundary S, which is
continuous on S everywhere, except a finite number of curves l1, l2, . . . , ln (with discontinuities of first kind), then

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x), (2.5)

where for x ∈ S it is meant that x ∈ lk (k = 1, n).

Proof. Let M = max u(x), x ∈ S′, S′ = S \
⋃n

k=1 lk and consider function

v(x) = M + ε
n∑

k=1

1
rk
, x ∈ D. (2.6)

In (2.6): ε is an arbitrary positive number, rk is the minimal distance from the considered point x to the kth curve of
discontinuity lk or rk = min ρ(x; yk), where yk-is a point on the curve lk . Evidently, the function v(x) is harmonic
and larger than M in D, continuous in D everywhere, except curves lk and lim v(x) = ∞ for x → lk . Assume that
C(yk, δ) are kernels with radius δ and with centers at points yk of the curves lk(k = 1, n). At passing by point yk the
line lk by the kernel C(yk, δ) we obtain certain domain Tk , respectively. It is evident that Tk → lk when δ→ 0.

Let us consider the closed domain Dδ = D \
⋃n

k=1 Tk . The function v(x)− u(x) is continuous in Dδ , harmonic in
Dδ and v(x)−u(x) > 0 on the common part of the boundaries D and Dδ . For sufficiently small δ the above inequality
is also valid on the surfaces of the domains Tk (since the function u(x) is bounded in D and for δ→ 0 the values v(x)
increase infinitely on the surfaces of domains Tk). Thus, from the usual extremum principle we have u(x) < v(x),
x ∈ Dδ , and consequently

u(x) < v(x), x ∈ D. (2.7)

Indeed, any point x in the domain D belongs to some domain Dδ for arbitrarily small δ.
Since u(x) does not depend on ε, from (2.7) we obtain u(x) < M, x ∈ D or

u(x)x∈D < max
x∈S′

u(x)

for any fixed point x in the domain D when ε→ 0.
Now, if in the role of function v(x) we take

v(x) = m − ε
n∑

k=1

1
rk
, x ∈ D,

where m = min u(x), x ∈ S′, then the inequality

u(x)x∈D > min
x∈S′

u(x),

can be proved in a similar way.
Thus, for the solution of Problem A, the generalized extremum principle (2.5) is valid. �

It should be noted that the following results can be obtained from Theorem 1.

Corollary 1. If the generalized functions (in the sense of Theorem 1) u(x) and v(x) are harmonic in D, continuous
in D′ = D \

⋃n
k=1 lk and if u(x) ≤ v(x) on S′, then u(x) ≤ v(x), x ∈ D.

Indeed, the function v(x) − u(x) is continuous on S′ and harmonic in D and v(x) − u(x) ≥ 0 on S′. Due to
Theorem 1 v(x)− u(x) ≥ 0, x ∈ D or u(x) ≤ v(x), x ∈ D.

Corollary 2. If the functions u(x) and v(x) are harmonic in D and continuous in D′, and if |u(x)| ≤ v(x) on S′,
then |u(x)| ≤ v(x), x ∈ D.

From the conditions it follows that −v(x) ≤ u(x) ≤ v(x), x ∈ S′.
Applying twice Corollary 1, we have −v(x) ≤ u(x) ≤ v(x), x ∈ D or |u(x)| ≤ v(x), x ∈ D.
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Corollary 3. For the function u(x) which is harmonic in D and continuous in D′ the inequality |u(x)| ≤ max |u| |S′ ,
x ∈ D′ is valid.

In order to prove this we put v = max |u| |S′ and use Corollary 2.
Now the theorem for the uniqueness of solution of boundary Problem A can be easily proved.

Theorem 2. The generalized spatial inner Dirichlet problem for the Laplace equation cannot have two different
solutions.

Proof. Assume that there exist two different functions u1(x) and u2(x), satisfying the conditions of the problem.
Their difference u(x) = u1(x) − u2(x) is harmonic in the domain D, bounded in D and u(x) = 0, x ∈ S′, From
Theorem 1 it follows, that u(x) ≡ 0, x ∈ D, i.e. u1(x) = u2(x), x ∈ D. The theorem is thus proved. �

Theorem 3. The solution of the generalized spatial inner Dirichlet problem for the Laplace equation depends
continuously on the boundary data.

Proof. It is known [2], that a problem is called physically definite (or stable), if a small change in the conditions,
determining the problem solution (boundary conditions in the given case), causes a small change of the solution itself.

Let u1(x) and u2(x) be generalized solutions of the problem and which satisfy the condition

|u1(x)− u2(x)| ≤ ε, x ∈ S′. (2.8)

Then the same inequality is true in D. Indeed, the functions u(x) = u1(x) − u2(x) and v(x) = ε are harmonic in D
and continuous in D′, therefore due to Corollary 2 of Theorem 1, inequality (2.8) is valid in D.

Thus the theorem is proved. �

3. A method of probabilistic solution

It is known [13] that a relation between the theory of probability and the Dirichlet problem for Laplace’s equation
was observed long before the general theory of Markov’s processes arose (the works by G. Phillips and N. Wiener
(1923), R. Courant, K. Fredrichs and Kh. Levi (1928)). This idea was further developed in the works of A.Ya.
Khintchin (1933) and I.G. Petrovski (1934).

This idea obtained a completed form by E.B. Duenkin [13]. He obtained a formula which expresses the relation
between a solution of a Dirichlet ordinary (or generalized) boundary problem for Laplace’s equation and the Wiener
(diffusion) process, when the problem dimension is n ≥ 2.

In particular, E.B. Duenkin proved a general theorem which for n = 3 states:

Theorem 4. If a finite domain D ∈ E3 is bounded by a piecewise smooth surface S and g(y) is a continuous (or
discontinuous) bounded function on S, then the solution of the Dirichlet ordinary (or generalized) boundary problem
for the Laplace equation at the fixed point x ∈ D has the form

u(x) = Mx g(x(t)). (3.1)

In (3.1): Mx g(x(t)) is the mathematical expectation of the values of the boundary function g(y) at the random
intersection points of the Wiener process and the boundary S; t is the moment of first exit of the Wiener process
x(t) = (x1(t), x2(t), x3(t)) from the domain D. It is assumed that the starting point of the Wiener process is always
x(t0) = (x1(t0), x2(t0), x3(t0)) ∈ D, where the value of the desired function is being determined. If the number N of
the random intersection points yi

= (yi
1, yi

2, yi
3) ∈ S(i = 1, N ) is sufficiently large, then according to the law of large

numbers, from (3.1) we have

u(x) ≈ uN (x) =
1
N

N∑
i=1

g(yi ) (3.2)

or u(x) = lim uN (x) for N → ∞, in the probabilistic sense. Thus, in the presence of the Wiener process the
approximate value of the probabilistic solution to Problem A at a point x ∈ D is calculated by formula (3.2).
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Thus, on the basis of Theorem 4, the existence of solution of the Dirichlet generalized problem in the case of
Laplace’s equation for a sufficiently wide class of domains is shown. Besides, we have also an explicit formula giving
such a solution.

Remark 2. If the finite domain D is bounded by several surfaces (or S =
⋃m

k=1 Sk and Sk
∩ S j
= ∅ for k 6= j), then

instead of formula (3.2) we have the following formula

u(x) ≈ uN (x) =
1
N

m∑
k=1

Nk∑
i=1

gk(yk,i ). (3.3)

In (3.3): N = N1 + N2 + · · · + Nm ; gk(y) is a boundary function on Sk
; Nk is the number of the intersection

points yk,i (k = 1,m; i = 1, Nk) of the Wiener process and the surface Sk . It is evident, that it is not necessary for
discontinuity curves to be situated on all Sk .

Analogously to the considered cases (see [14–18]), on the basis of Theorem 4, the probabilistic solution of
Problem A consists in the realization of the Wiener process using the three-dimensional generator, which gives
three independent values w1(t), w2(t), w3(t). In our case the Wiener process is realized by computer simulation.
In particular, for the computer simulation of the Wiener process we use the following recursion relations:

x1(tk) = x1(tk−1)+ w1(tk)/kv,
x2(tk) = x2(tk−1)+ w2(tk)/kv,
x3(tk) = x3(tk−1)+ w3(tk)/kv, (k = 1, 2, . . .),

(3.4)

with the help of which the coordinates of the point x(tk) = (x1(tk), x2(tk), x3(tk)) are being determined. In (3.4):
w1(tk), w2(tk), w3(tk) are three normally distributed independent random numbers for the kth step, with zero means
and variances one; kv is a quantification number and when kv → ∞, then the discrete Wiener process approaches
the continuous Wiener process. In the implementation, the random process is simulated at each step of the walk and
continues until it crosses the boundary.

It is known that there exist two principles for generating random numbers, physical and programmatic:

1. The physical principle of generation gives real random numbers but its realization is connected with computation-
ally expensive, especially in the multidimensional case, and therefore its application is not practical.

2. In spite of a great number of methods the generating random numbers, they also have disadvantages which are
contained in the generating principle itself. Firstly, they are pseudo-random, and not real random numbers. Be-
sides, we can observe periodicity at generating such numbers. In particular, when solving the Dirichlet boundary
problems for Laplace’s equation it is possible to use pseudo-random numbers. In our computations generation of
pseudo-random numbers is done in MATLAB.

4. Numerical example

We consider a numerical example from [3,4] where it is solved by the method of separation of variables. In
particular, Problem A is considered for the finite right circular cylinder D(0 ≤ r ≤ a, 0 ≤ x3 ≤ h), in which
n = 2 and l1, l2 are the circles of the bases of the cylinder. Besides, it is assumed that the boundary function g(y)
(potential) has the form

g(y) =

0, y ∈ S1,

v = const, y ∈ S2,

0, y ∈ S3,

(4.1)

where S1, S3 are the bases and S2 is the lateral surface of the cylinder, respectively. In [3] it is noted that fields of these
types occur in electron-optical apparatuses.

(a) In the conditions (4.1) the “exact” solution to Problem A obtained by G. Grinberg and W.R. Smythe has the
following form (in cylindrical coordinates)

W (r, x3) =
4v
π

∞∑
k=0

Io

[
(2k+1)πr

h

]
Io

[
(2k+1)πa

h

] sin (2k+1)πx3
h

2k + 1
≡

∞∑
k=0

ωk(r, x3), (4.2)
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Table 1

(r, x3) wm (r, x3) (r, x3) wm (r, x3) wm (r, x3)

r = 0 m = 10 r = 0.5 m = 1000 m = 4000

0.0001 0.000252825 0.0001 0.391704 1.13433
0.0005 0.00126412 0.0005 1.17898 0.94994
0.001 0.00252824 0.001 0.902825 0.974749
0.005 0.0126403 0.005 0.979786 0.994937
0.01 0.0252753 0.01 0.989891 0.997472
0.05 0.125528 0.05 0.998065 0.999516
0.1 0.245902 0.1 0.999167 0.999792
0.2 0.454543 0.2 0.999832 0.999958
0.3 0.604858 0.3 1.00012 1.00003
0.4 0.69272 0.4 1.00027 1.00007
0.5 0.721326 0.5 1.00032 1.00008

where r = (x2
1 + x2

2)
1
2 , h is a height of the cylinder, and a is a radius of the bases. In (4.2) I0(x) is Bessel’s function

of order zero. Namely,

I0(x) ≡ J0(i x) =
∞∑

n=0

( x
2

)2n

(n!)2
, where x ∈ R,

I0(0) = 1 and I0(x)→
ex

√
2πx

for x →∞.

(4.3)

It is evident, that for the solution W (r, x) the boundary conditions are satisfied on the bases S1 and S3 or
W (r, 0) = W (r, h) = 0, where 0 ≤ r ≤ a.

From (4.3), it is easy to see that the series (4.2) converges rapidly for all points (r, x3) ∈ D, when 0 ≤ r < a,
especially for r = 0. If r = a, then the rate of convergence becomes worse on S2, especially in the neighborhood
of curves l1 and l2 (i.e., when (r, x3) ∈ S2 and x3 → 0 or x3 → h). In particular, the convergence is very slow and
consequently, the accuracy in the satisfaction of boundary condition on S2 is very low. This is caused by the fact that,
when x3 → 0 or x3 → h, all terms of the series (4.2) tend to zero.

Besides, it should be noted that the methods which are considered in [3,4], can be applied to solution of Problem A
only when the discontinuity curves are the circles of the bases of the cylinder. In particular, if n = 2, then l1, l2 are the
circles of bases of the cylinder, and if n = 1, then l1 is one of these circles.

Since boundary condition (4.1) is independent of the angle of rotation with respect to ox3 and symmetric with
respect to the plane x3 =

h
2 , the potential has the same properties. In the numerical experiments we took: v = 1,

h = 1, a = 0.5.
In Table 1 the results of the calculations for the sum of the first m + 1 terms of the series (4.2) (which is denoted

by wm(r, x3)) are given.
In Table 1, because of the above-mentioned, wm(r, x3) is calculated at the points (r, x3) (r = 0, 0.5 and

0 < x3 ≤ 0.5) which represent a certain interest. The numerical calculations have shown that practically w10(0, x3) =

wm(0, x3) when m > 10, therefore in Table 1 the results of calculations are given only for m = 10. For example,
ω11(0; 0.0001) ≈ 0.1 ∗ 10−17, and ω101(0; 0.5) ≈ −0.7 ∗ 10−139 (see (4.2)).

It should be noted that in spite of the low accuracy of the solution W (r, x3) (on the basis of the extremum principle
and condition (4.1)) |u(x)−W (r, x3)| is minimal on the axis, where u(x) is the exact solution of Problem A.

(b) In order to determine the intersection points yi
= (yi

1, yi
2, yi

3)(i = 1, N ) of the Wiener process and of the
surface S, we operate in the following way. During the implementation of the Wiener process, for each current point
x(tk), defined from (3.4), its location with respect to S is checked. In particular: if x(tk) ∈ D then the Wiener process
is continued by (3.4); if x(tk) ∈ S then yi

= x(tk), in this case, if yi
∈ l1 or yi

∈ l2 then we always assume that
yi
∈ S1 or yi

∈ S2, respectively.
Let x(tk−1) ∈ D for the moment t = tk−1 and x(tk)∈ D for the moment t = tk . In this case, for the approximate

determination of the point yi , an equation of a line l passing through the points x(tk−1) and x(tk) is first obtained. For
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Table 2

uN (0, 0, x3)

(0, 0, x3) kv = 200 kv = 200 kv = 200 kv = 400
N = 50 000 N = 100 000 N = 200 000 N = 200 000

(0, 0, 0.0001) 0.0096 0.0090 0.0092 0.0041
(0, 0, 0.0005) 0.0097 0.0095 0.0098 0.0058
(0, 0, 0.001) 0.0110 0.0108 0.0106 0.0064
(0, 0, 0.005) 0.0200 0.0197 0.0197 0.0157
(0, 0, 0.01) 0.0325 0.0322 0.0324 0.0285
(0, 0, 0.05) 0.1313 0.1322 0.1312 0.1287
(0, 0, 0.1) 0.2511 0.2515 0.2514 0.2477
(0, 0, 0.2) 0.4586 0.4587 0.4576 0.4554
(0, 0, 0.3) 0.6078 0.6037 0.6063 0.6055
(0, 0, 0.4) 0.6914 0.6961 0.6940 0.6908
(0, 0, 0.5) 0.7222 0.7194 0.7197 0.7210

Table 3

uN (0, 0, x3), N = 200 000
(0, 0, x3) kv = 1000 kv = 2000 kv = 4000 kv = 8000

(0, 0, 0.0001) 0.0019 0.0010 0.0005 0.00034
(0, 0, 0.0005) 0.0028 0.0018 0.0016 0.0015
(0, 0, 0.001) 0.0037 0.0033 0.0031 0.0027
(0, 0, 0.005) 0.0141 0.0133 0.0121
(0, 0, 0.01) 0.0268 0.0254 0.0253
(0, 0, 0.05) 0.1262
(0, 0, 0.1) 0.2455

the intersection point yi we have three cases: (1) yi
= l ∩ S1; (2) yi

= l ∩ S3; (3) yi
= l ∩ S2. In this case, if we have

two intersection points x∗ and x∗∗ of the line l and the surface S2, then in the role of the point yi we choose the one
(from x∗ and x∗∗) for which |x(tk)− x | is minimal.

The results of the probabilistic solution to Problem A for cylinder D with boundary function (4.1) (calculated by
formula (3.2)) are given in Tables 2 and 3. The numerical solutions uN (0, 0, x3) are found at the same points of the
axis for various N and kv, where N is the number of the implementation of the Wiener process, and kv is the number
of the quantification.

The analysis of the results of numerical experiments show the following (see Tables 2 and 3): if the point x(to) (at
which the approximate solution of Problem A must be determined) is situated at a small distance from surface S, then
the current point x(tk) must be under the condition of a random walk in D until it crosses S. To get this, the number
kv must be taken sufficiently large.

Although, we have solved Problem A for n = 2, its solution under condition (2.4) is not difficult. Indeed, after
finding the intersection point yi of the Wiener process and the surface S, it is easy to establish the part of S in which
the point yi is situated. Moreover, in general, we can solve Problem A for all such locations of discontinuity curves,
which give the possibility to of establishing the part of surface S where the intersection point is located.

From Tables 1–3 and the above mentioned it is clear that the results obtained by the probabilistic method are
reliable, and this method is effective for numerical solution of problems of type A. In particular, the algorithm is
sufficiently simple for numerical implementation.

It should be noted that if we apply the method of parallel programming to probabilistic solution of Problem A,
then we will avoid that difficulty which is noted in point 2 of Section 3. Consequently, significantly less time will be
needed for numerical realization and besides the accuracy of the obtained results will improve.
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5. Concluding remarks

1. The method is suitable for the approximate solution of both ordinary and generalized Dirichlet problems for a
rather wide class of domains, in the case of Laplace’s equation. The results obtained using this method are reliable
and characterized by an accuracy which is sufficient for many problems (see [14–18]).

2. The method is very simple and does not require sophisticated numerical methods and programming. Accordingly,
it satisfies modern requests to numerical methods and algorithms.
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