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Abstract

For q ∈ (0, 1), the q-deformation of the square white noise Lie algebra is introduced using the q-calculus. A representation of
this Lie algebra is given, using the q-derivative (or Jackson derivative) and the multiplication operator. The free square white noise
Lie algebra is defined. Moreover, its representation on the Hardy space is given.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In mathematics, the first order white noise over R can be described as the current algebra of the 1-mode CCR
algebra [a, a+] = 1 over the algebra C := {step f unctions on Rd

}. Similarly the second order white noise can be
described as the current algebra of the sl2(R)-Lie algebra

[a2, a+2] = c + 4a+a, [a2, a+a] = 2a+a

based on the same algebra C as above. The combined 1-st and 2-nd order Boson white noise can be defined as the
current algebra over the Lie algebra, with generators: a, a+, 1, a+a, a2, a+2 also called the Schrodinger algebra, based
on the same algebra C as above.

In the following commutation relations [1]

[a2
s , a+2

t ] = 4δ(t − s)a+

s at + 2δ(t − s)2

the term δ(t − s)2 shows that a+2
t and a2

t are not well defined even as operator valued distributions. The following
formula, due to Ivanov, for the square of the delta function δ2(t) = cδ(t), c is arbitrary constant, was used by Accardi,
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Lu and Volovich to realize the program for the second powers of white noise. See [1]. Using this, one can obtain the
renormalized commutation relation:

[a2
s , a+2

t ] = 4δ(t − s)a+

s at + 2cδ(t − s). (1)

Moreover

[a2
s , a+

t at ] = 2δ(t − s)a2
t . (2)

The relations (1), (2) are then taken as the definition of the renormalized square of white noise (RSWN)-Lie algebra.
Recalling that sl2(R) is the-Lie algebra with three generators B−, B+, M and relations

[B−, B+] = M, [M, B±] = ∓2B±, (B−)∗ = B+, M∗
= M

one concludes that the RSWN-Lie algebra is isomorphic to a current algebra, over R, of a central extension of sl2(R)
(see [1]).

Without using the renormalization conditions, in the papers [2–10], it was given many representations of this and
other Lie algebras on nuclear algebras of entire functions. More precisely, they introduce a new product of two test
functions and based on the space of entire functions with θ -exponential growth of minimal type, they define a new fam-
ily of infinite dimensional analytical operators using the holomorphic derivative and its adjoint. Also, they introduce a
new operator obtained from the quantum white noise derivatives which satisfies new important commutation relations
generalizing those of the renormalized power white noise Lie algebra without using renormalization conditions.

In the above introduction (for q = 1), we have described the renormalization problem obtained from the above
commutation relations, moreover the square white noise Lie algebra was introduced (see [1]). On the other hand, in
recent years the q-deformation of the Heisenberg commutation relation has drawn attention. In the paper [11], the
purpose was to understand the probability distribution of a non-commutative random variable a + a∗, where a is a
bounded operator on some Hilbert space satisfying

aa∗
− qa∗a = 1, (3)

for some q ∈ [−1, 1). The calculation is inspired by the case, q = 0, where a and a∗ turn out to be the left and right
shift on l2(N). In this case a and a∗ can be quite nicely represented as operators on the Hardy class H2 of all analytic
functions on the unit disk with L2 limits toward the boundary.

Subsequently, they find a measure µq , q ∈ [0, 1), on the complex plane that replaces the Lebesgue measure
on the unit circle in the above: µq is concentrated on a family of concentric circles, the largest of which has the
radius 1

√
1−q . Their representation space (see [11]) will be H2(Dq , µq ), the completion of the analytic functions on

Dq = {z ∈ C | z|2 < 1
(1−q) } with respect to the inner product defined by µq . In this space annihilation operator a is

represented by a q difference operator Dq . As q tends to 1, µq will tend to the Gauss measure on C and Dq becomes
differentiation. So, it is natural to ask what is the q-deformation of the square white noise Lie algebra.

In this paper, we introduce the q-square white noise Lie algebra and we give its representation without any
renormalization conditions. Also, the free square white noise Lie algebra is defined. Moreover, its representation
on the Hardy space is given.

The paper is organized as follows. In Section 2, we briefly recall well-known results on q-calculus, Jackson
derivative (or q-derivative) and useful representations. In Section 3, we introduce the free square white noise Lie
algebra and we give its representation on the Hardy space H2. In Section 4, we define the q-square white noise Lie
algebra. Moreover, we give its representation on the space H2(Dq , µq ).

2. Preliminaries

We recall some basic notations of the language of q-calculus (see [11–15]). The natural number n has the following
q deformation:

[n]q := 1 + q + q2
+ · · · + qn−1, wi th [0]q = 0.

Occasionally we shall write [∞]q for the limit of these numbers: 1
(1−q) . The q factorials and q binomial coefficients

are defined naturally as

[n]q ! := [1]q · [2]q · · · [n]q wi th [0]q := 1.
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Recall that from [11], for q ∈ (0, 1) relation (3) admits, up to unitary equivalence, a unique non-trivial bounded
irreducible representation given on the canonical basis {en|n ∈ N} of l2(N) by:

(i) a∗en = en+1

(ii) aen = [n]qen−1

(iii) ⟨en, em⟩ = δn,m[n]q !

For q ∈ (0, 1) and analytic f : C → C define operators Z and Dq as follows (see [11,14,15])

(Z f )(z) := z f (z),

(Dq f )(z) =

⎧⎨⎩
f (z) − f (qz)

z(1 − q)
, z ̸= 0

f ′(0).

The operator Dq has the following properties :

(i) limq↑1(Dq f )(z) = f ′(z),
(ii) Dq (zn) = [n]q zn−1,

(iii) Dq ( f (z)g(z)) = (Dq f )(z)g(z) + f (qz)(Dq g)(z),

(iv) Dq
( f (z)

g(z)

)
=

(Dq f )(z)g(z)− f (z)(Dq g)(z)
g(z)g(qz) .

It is well known [11] that the operators Dq and Z give a bounded representation of (3), i.e., Dq and Z satisfy

Dq Z − q Z Dq = 1.

With respect to the measure (see [11])

µq (dz) = (q; q)∞
∞∑

k=0

qk

(q; q)k
λrk (dz), 0 < q < 1 and rk =

q
k
2

√
1 − q

where λrk is the normalized Lebesgue measure on the circle with radius rk , they define the inner product

⟨ f, g⟩µq :=

∫
C

f (z)g(z)µq (dz)

for all f, g ∈ H2(Dq , µq ). Note that µq → µ0 when q → 0, where µ0 is the normalized Lebesgue measure on the
unit circle and that, in the limit q ↑ 1, µq tends to the Gauss measure on the complex plane.

The identification a = Dq and a∗
= Z determine a representation of (3) on H2(Dq , µq ). In particular, with

en := zn , (i), (i i) and (i i i) are satisfied, and therefore D∗
q = Z . For more details see Ref. [11].

3. Free square white noise Lie algebra

Relation (3) is reduced to aa∗
= 1 when q → 0 and this obviously admits more than one representation: any

isometry a∗ suffices. By a representation with q → 0, we shall simply mean one satisfying (i), (i i) and (i i i).
The calculation is inspired by the case, q = 0, where a and a∗ turn out to be the left and right shift on l2(N). In

this case a and a∗ can be quite nicely represented as operators on the Hardy class H2 of all analytic functions on the
unit disk with L2 limits toward the boundary via the equivalence l2(N) → H2 given by

(ξn)n∈N ↦→

∞∑
n=0

ξnzn, | z |< 1.

Under this equivalence a∗ and a change into multiplication by z and the operator

(D f )(z) :=
f (z) − f (0)

z
.
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Definition 3.1. The free square white noise Lie algebra is by definition the Lie algebra spanned by the operators A, B
and C such that

[A, C] = 2A
[B, C] = −2B
[A, B] = 0.

Let ∆−,∆+ and N given by ∆−
:= D2, ∆+

:= Z2 and N is the classical number operator which verifies
N (zn) := nzn . Then, we have the following

Theorem 3.1 (Representation of Free Square White Noise Lie Algebra). We have

[∆
−

, N ] = 2∆− (4)

[∆
+

, N ] = −2∆+ (5)

[∆
−

,∆+] = 0 (6)

on the Hardy space H2.

Proof. Applying ∆− to N (zn), we get

∆−N (zn) = ∆−(nzn)
= n∆−(zn).

But, we have

∆−(zn) = D2(zn)
= lim

q→0
[n]q [n − 1]q zn−2

= zn−2.

Then, we get

∆−N (zn) = nzn−2.

Then, on the other hand, we obtain

N∆−(zn) = N
(
zn−2)

= N
(
zn−2)

= (n − 2)zn−2

from which we get

[∆−, N ]zn
=

(
n − (n − 2)

)
zn−2

= 2zn−2

= 2∆−(zn).

This proves (4).
Now, applying ∆+ to N (zn), we get

∆+N (zn) = ∆+(nzn)
= n∆+(zn)
= nzn+2.

On the other hand, we have

N∆+(zn) = N (zn+2)
= (n + 2)zn+2
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then, we get

[∆+, N ]zn
=

(
n − (n + 2)

)
zn+2

= −2zn+2

= −2∆+(zn).

This proves (5).
Finally, we have

∆−
(
∆+(zn)

)
= ∆−(zn+2)
= zn

and

∆+
(
∆−(zn)

)
= ∆+

(
zn−2)

= zn

then, we get

[∆−,∆+]zn
= 0,

which completes the proof. □

Remark 1. Theorem 3.1 is not a simple case (when q = 0) of Theorem 4.1 (see below), because of the representations,
i.e., H2 is not a particular case of H2(Dq , µq ).

4. q-square white noise Lie algebra

Let 0 < q < 1. Then, one can define the q-square white noise Lie algebra as follows:

Definition 4.1. The q-square white noise Lie algebra is by definition the Lie algebra spanned by the operators A, B
and C such that

[A, C] = 2A
[B, C] = −2B

[A, B] =
−[2]q

1 − q

(
q2C−1

− qC
− qC−1).

Theorem 4.1 (Representation of q-square White Noise Lie Algebra)). Let 0 < q < 1. Then, we have

[∆
−

q , N ] = 2∆−

q (7)

[∆
+

, N ] = −2∆+ (8)

[∆
−

q ,∆+] = −[2]q
(q2N−I

− q N
− q N−I

1 − q

)
(9)

on H2(Dq , µq ), where ∆−
q is given by ∆−

q := D2
q .

Proof. Let 0 < q < 1. Then, we have

∆−

q N (zn) = ∆−

q (nzn)

= n∆−

q (zn)

= n[n]q [n − 1]q zn−2.

On the other hand

N∆−

q (zn) = N
(
[n]q [n − 1]q zn−2)

= (n − 2)[n]q [n − 1]q zn−2
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from which we get

[∆−

q , N ]zn
= [n]q [n − 1]q

(
n − (n − 2)

)
zn−2

= 2[n]q [n − 1]q zn−2

= 2∆−

q (zn).

This proves (7). The proof of (8) is the same as (5).
We have

∆−

q

(
∆+(zn)

)
= ∆−

q (zn+2)
= [n + 2]q [n + 1]q zn

and

∆+
(
∆−

q (zn)
)

= ∆+
(
[n]q [n − 1]q zn−2)

= [n]q [n − 1]q zn

then, we get

[∆−

q ,∆+]zn
=

(
[n + 2]q [n + 1]q − [n]q [n − 1]q

)
zn.

But we know that

[n + 2]q [n + 1]q − [n]q [n − 1]q =
(1 − qn+2)(1 − qn+1)

(1 − q)2 −
(1 − qn)(1 − qn−1)

(1 − q)2

=
1 − qn+1

− qn+2
+ q2n+3

− (1 − qn
− qn−1

+ q2n−1)
(1 − q)2

=
q2(q2n−1

− qn
− qn−1) − (q2n−1

− qn
− qn−1)

(1 − q)2

=
(q2

− 1)(q2n−1
− qn

− qn−1)
(1 − q)2

= −[2]q
(q2n−1

− q
n
− qn−1

1−q

)
. (10)

This completes the proof. □

Remark 2. Using (10), one can get
−[2]q

1 − q
(q2n−1

− qn
− qn−1) → 4n + 1

when q → 1, for which the relation (9) gives

[∆−

q ,∆+] → 4N + 2I

this shows that the q-square white noise Lie algebra gives the square white noise Lie algebra when q → 1.
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Abstract

In this paper, we recall Ostrowski’s inequality, Hadamard’s inequality and the definition of log-convex functions. We also
mention an useful integral identity in the first part of our study. The second part of our study includes new results. We prove new
generalizations for log-convex functions. Several new Ostrowski type inequalities have been established and some special cases
have been given by choosing h = 0 or x =

a+b
2 .

c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let f : I ⊂ [0, ∞) → R be a differentiable function on I ◦, the interior of the interval I, such that f ′
∈ L[a, b]

where a, b ∈ I with a < b. If
⏐⏐ f ′(x)

⏐⏐ ≤ M, then the following inequality holds:⏐⏐⏐⏐ f (x) −
1

b − a

∫ b

a
f (u) du

⏐⏐⏐⏐ ≤
M

b − a

[
(x − a)2

+ (b − x)2

2

]
. (1.1)

This inequality is well known in the literature as the Ostrowski inequality.
The following inequality is well known in the literature as the Hermite–Hadamard integral inequality:

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

(1.2)

where f : I ⊆ R → R is a convex function on the interval I of real numbers and a, b ∈ I with a < b.

∗ Corresponding author.
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In [1], Pečarić et al. mentioned log-convex functions as follows:
A function f : I → [0, ∞) is said to be log-convex or multiplicatively convex if log f is convex, or, equivalently,

for all x, y ∈ I and t ∈ [0, 1] one has the inequality

f (t x + (1 − t)y) ≤ [ f (x)]t [ f (y)]1−t .

Example 1. The function f (x) =
1
x , x ∈ (0, ∞) is log-convex on (0, ∞). The function f (x) = x x , x > 0 or

f (x) = ex
+ 1, x ∈ R, etc.

Many different extensions, generalizations and improvements related to log-convex functions can be found in [1–9].
In order to prove our main results we use the following equality from [10] that is mentioned in [11]:

Lemma 1. Let f : [a, b] → R be a twice differentiable mapping on (a, b), then this equality holds∫ b

a
f (t) dt = (b − a)(1 − h) f (x) − (b − a)(1 − h)

(
x −

a + b
2

)
f ′(x)

+ h
b − a

2
( f (a) + f (b)) −

h2(b − a)2

8

(
f ′(b) − f ′(a)

)
+

∫ b

a
K (x, t) f ′′(t)dt

for all x ∈
[
a + h b−a

2 , b − h b−a
2

]
and h ∈ [0, 1] . Here K : [a, b]2

→ R

K (x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

[
t −

(
a + h

b − a
2

)]2

, if t ∈ [a, x]

1
2

[
t −

(
b − h

b − a
2

)]2

, if t ∈ (x, b].

The main purpose of this paper is to give some new integral inequalities of Ostrowski type for logarithmically
convex functions by using the above lemma.

2. Main results

Let us start our first result:

Theorem 1. Let f : [a, b] → R be a twice differentiable mapping on (a, b). If
⏐⏐ f ′′

⏐⏐ is log-convex, the following
inequality holds for all x ∈

[
a + h b−a

2 , b − h b−a
2

]
:⏐⏐⏐⏐⏐

∫ b

a
f (t) dt − (b − a)(1 − h) f (x) + (b − a)(1 − h)

(
x −

a + b
2

)
f ′(x)

− h
b − a

2
( f (a) + f (b)) +

h2(b − a)2

8

(
f ′(b) − f ′(a)

)⏐⏐⏐⏐⏐
≤

1
2

⎡⎣(⏐⏐ f ′′(a)
⏐⏐x

| f ′′(x)|a

) 1
x−a

τ1 +

(⏐⏐ f ′′(x)
⏐⏐b

| f ′′(b)|x

) 1
b−x

τ2

⎤⎦
where

τ1 =

[
x −

(
a + h

b − a
2

)]2 T x

ln T
− h2 (b − a)2

4
T a

ln T

−
2

(ln T )2

[
x −

(
a + h

b − a
2

)]
T x

+ h
b − a
(ln T )2 T a

+
2

(ln T )3

[
T x

− T a] ,
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τ2 = h2 (b − a)2

4
Mb

ln M
−

[
x −

(
b − h

b − a
2

)]2 M x

ln M
− h

b − a
(ln M)2 Mb

+
2

(ln M)2

[
x −

(
b − h

b − a
2

)]
M x

−
2

(ln M)3

[
M x

− Mb] .
Here T =

(
| f ′′(x)|
| f ′′(a)|

) 1
x−a

and M =

(
| f ′′(b)|
| f ′′(x)|

) 1
b−x

. And also T, M ̸= 1.

Proof. From Lemma 1, and using the property of the modulus and log-convexity of
⏐⏐ f ′′

⏐⏐ we can write⏐⏐⏐⏐⏐
∫ b

a
f (t) dt − (b − a)(1 − h) f (x) + (b − a)(1 − h)

(
x −

a + b
2

)
f ′(x)

− h
b − a

2
( f (a) + f (b)) +

h2(b − a)2

8

(
f ′(b) − f ′(a)

)⏐⏐⏐⏐⏐
≤

∫ b

a
|K (x, t)|

⏐⏐ f ′′(t)
⏐⏐ dt

=

∫ x

a

1
2

[
t −

(
a + h

b − a
2

)]2 ⏐⏐⏐⏐ f ′′

(
t − a
x − a

x +
x − t
x − a

a
)⏐⏐⏐⏐ dt

+

∫ b

x

1
2

[
t −

(
b − h

b − a
2

)]2 ⏐⏐⏐⏐ f ′′

(
t − x
b − x

b +
b − t
b − x

x
)⏐⏐⏐⏐ dt

≤

∫ x

a

1
2

[
t −

(
a + h

b − a
2

)]2 [⏐⏐ f ′′(x)
⏐⏐ t−a

x−a
⏐⏐ f ′′(a)

⏐⏐ x−t
x−a
]

dt

+

∫ b

x

1
2

[
t −

(
b − h

b − a
2

)]2 [⏐⏐ f ′′(b)
⏐⏐ t−x

b−x
⏐⏐ f ′′(x)

⏐⏐ b−t
b−x

]
dt

=
1
2

(⏐⏐ f ′′(a)
⏐⏐x

| f ′′(x)|a

) 1
x−a ∫ x

a

[
t −

(
a + h

b − a
2

)]2

T t dt

+
1
2

(⏐⏐ f ′′(x)
⏐⏐b

| f ′′(b)|x

) 1
b−x ∫ b

x

[
t −

(
b − h

b − a
2

)]2

M t dt.

By computing the above integrals, we get the desired result. □

Corollary 1. Under the assumptions of Theorem 1, if we choose h = 0, the following inequality holds:⏐⏐⏐⏐ 1
b − a

∫ b

a
f (t)dt − f (x) −

(
x −

a + b
2

)
f ′(x)

⏐⏐⏐⏐
≤

1
2(b − a)

(⏐⏐ f ′′ (a)
⏐⏐x

| f ′′ (x)|a

) 1
x−a

×

[
(x − a)2 T x

ln T
− 2(x − a)

T x

(ln T )2 +
2

(ln T )3 (T x
− T a)

]

+
1

2(b − a)

(⏐⏐ f ′′ (x)
⏐⏐b

| f ′′ (b)|x

) 1
b−x

×

[
2(x − b)

M x

(ln M)2 − (x − b)2 M x

ln M
+

2
(ln M)3 (Mb

− M x )
]
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Corollary 2. Under the assumptions of Corollary 1, if we choose x =
a+b

2 , then the following inequality holds:⏐⏐⏐⏐ 1
b − a

∫ b

a
f (t) dt − f

(
a + b

2

)⏐⏐⏐⏐
≤

1
2(b − a)

⎛⎝⏐⏐ f ′′ (a)
⏐⏐ a+b

2⏐⏐ f ′′
( a+b

2

)⏐⏐a
⎞⎠ 2

b−a

×

⎡⎣(b − a
2

)2 K
a+b

2
1

ln K1
− (b − a)

K
a+b

2
1

(ln K1)2 +
2

(ln K1)3 (K
a+b

2
1 − K a

1 )

⎤⎦
+

1
2(b − a)

(⏐⏐ f ′′
( a+b

2

)⏐⏐b
| f ′′ (b)|

a+b
2

) 2
b−a

×

⎡⎣(b − a)
M

a+b
2

1

(ln M1)2 −

(
b − a

2

)2 M
a+b

2
1

ln M1
+

2
(ln M1)3 (Mb

1 − M
a+b

2
1 )

⎤⎦

where K1 =

( ⏐⏐⏐ f ′′
(

a+b
2

)⏐⏐⏐
| f ′′(a)|

) 2
b−a

and M1 =

(
| f ′′(b)|⏐⏐⏐ f ′′

(
a+b

2

)⏐⏐⏐
) 2

b−a

.

Corollary 3. Under the assumptions of Theorem 1, the following inequality holds:⏐⏐⏐⏐ f (a) + f (b)
2

−
b − a

8

(
f ′(b) − f ′(a)

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

1
2(b − a)

(⏐⏐ f ′′ (a)
⏐⏐x

| f ′′ (x)|a

) 1
x−a

τ3 +
1

2(b − a)

(⏐⏐ f ′′ (x)
⏐⏐b

| f ′′ (b)|x

) 1
b−x

τ4

where

τ3 =

(
x −

a + b
2

)2 T x

ln T
−

(b − a)2

4
T a

ln T

− 2
T x

(ln T )2

(
x −

a + b
2

)
+

b − a
(ln T )2 T a

+
2

(ln T )3 (T x
− T a),

τ4 =
(b − a)2

4
Mb

ln M
−

(
x −

a + b
2

)2 M x

ln M

−
b − a

(ln M)2 Mb
+ 2

M x

(ln M)2

(
x −

a + b
2

)
+

2
(ln M)3 (Mb

− M x )

and T , M are defined as in Theorem 1.

Corollary 4. Under the assumptions of Corollary 3, if we choose x =
a+b

2 , then the following inequality holds:⏐⏐⏐⏐ f (a) + f (b)
2

−
b − a

8

(
f ′(b) − f ′(a)

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

1
2(b − a)

⎛⎝⏐⏐ f ′′ (a)
⏐⏐ a+b

2⏐⏐ f ′′
( a+b

2

)⏐⏐a
⎞⎠ 2

b−a

×

[
−

(b − a)2

4
K a

1

ln K1
+

b − a
(ln K1)2 K a

1 +
2

(ln K1)3 (K
a+b

2
1 − K a

1 )
]
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+
1

2(b − a)

(⏐⏐ f ′′
( a+b

2

)⏐⏐b
| f ′′ (b)|

a+b
2

) 2
b−a

×

[
(b − a)2

4
Mb

1

ln M1
−

b − a
(ln M1)2 Mb

1 +
2

(ln K1)3 (Mb
1 − M

a+b
2

1 )
]

where K1 and M1 are defined as in Corollary 2.

Theorem 2. Let f : [a, b] → R be continuous on [a, b] and twice differentiable on (a, b). If
⏐⏐ f ′′

⏐⏐q is log −convex,
the following inequality holds for all x ∈

[
a + h b−a

2 , b − h b−a
2

]⏐⏐⏐⏐⏐
∫ b

a
f (t) dt − (b − a)(1 − h) f (x) + (b − a)(1 − h)

(
x −

a + b
2

)
f ′(x)

− h
b − a

2
( f (a) + f (b)) +

h2(b − a)2

8

(
f ′(b) − f ′(a)

)⏐⏐⏐⏐⏐
≤

1
2(b − a)

(⏐⏐ f ′′ (a)
⏐⏐x

| f ′′ (x)|a

) 1
x−a(T qx

− T qa

q ln T

) 1
q

×

((
x −

(
a + h b−a

2

))2p+1
−
(
h b−a

2

)2p+1

2p + 1

) 1
p

+
1

2(b − a)

(⏐⏐ f ′′ (x)
⏐⏐b

| f ′′ (b)|x

) 1
b−x (Mqb

− Mqx

q ln M

) 1
q

×

((
h b−a

2

)2p+1
−
(
x −

(
b − h b−a

2

))2p+1

2p + 1

) 1
p

where q > 1, 1
p +

1
q = 1 and T , M are defined as in Theorem 1.

Proof. From Lemma 1 and using the property of the modulus, Hölder inequality and log −convexity of
⏐⏐ f ′′

⏐⏐q we can
write ⏐⏐⏐⏐⏐

∫ b

a
f (t) dt − (b − a)(1 − h) f (x) + (b − a)(1 − h)

(
x −

a + b
2

)
f ′(x)

−h
b − a

2
( f (a) + f (b)) +

h2(b − a)2

8

(
f ′(b) − f ′(a)

)⏐⏐⏐⏐⏐
≤

∫ b

a
|K (x, t)|

⏐⏐ f ′′(t)
⏐⏐ dt

≤
1
2

(∫ x

a

[
t −

(
a + h

b − a
2

)]2p

dt

) 1
p(∫ x

a

⏐⏐⏐⏐ f ′′

(
t − a
x − a

x +
x − t
x − a

a
)⏐⏐⏐⏐qdt

) 1
q

+
1
2

(∫ b

x

[
t −

(
b − h

b − a
2

)]2p
) 1

p(∫ b

x

⏐⏐⏐⏐ f ′′

(
t − x
b − x

b +
b − t
b − x

x
)q ⏐⏐⏐⏐ dt

) 1
q

≤
1
2

(∫ x

a

[
t −

(
a + h

b − a
2

)]2p

dt

) 1
p(∫ x

a

⏐⏐ f ′′(x)
⏐⏐( t−a

x−a )q ⏐⏐ f ′′(a)
⏐⏐( x−t

x−a )qdt
) 1

q

+
1
2

(∫ b

x

[
t −

(
b − h

b − a
2

)]2p
) 1

p(∫ b

x

⏐⏐ f ′′(b)
⏐⏐( t−x

b−x

)
q ⏐⏐ f ′′(x)

⏐⏐( b−t
b−x

)
qdt

) 1
q

.

By computing the above integrals, we get the desired result. □
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Corollary 5. Under the assumptions of Theorem 2, if we choose h = 0, the following inequality holds:⏐⏐⏐⏐ 1
b − a

∫ b

a
f (t)dt − f (x) −

(
x −

a + b
2

)
f ′(x)

⏐⏐⏐⏐
≤

1
2(b − a)

(
(x − a)2p+1

2p + 1

) 1
p
(⏐⏐ f ′′ (a)

⏐⏐x
| f ′′ (x)|a

) 1
x−a(T qx

− T qa

q ln T

) 1
q

+
1

2(b − a)

(
(b − x)2p+1

2p + 1

) 1
p
(⏐⏐ f ′′ (x)

⏐⏐b
| f ′′ (b)|x

) 1
b−x (Mqb

− Mqx

q ln M

) 1
q

where T , M are defined as in Theorem 1.

Corollary 6. Under the assumptions of Corollary 6, if we choose x =
a+b

2 , then the following inequality holds:⏐⏐⏐⏐ 1
b − a

∫ b

a
f (t) dt − f

(
a + b

2

)⏐⏐⏐⏐
≤

1

23+
1
p

(
(b − a)2p+1

2p + 1

) 1
p

⎡⎢⎣
⎛⎝⏐⏐ f ′′ (a)

⏐⏐ a+b
2⏐⏐ f ′′

( a+b
2

)⏐⏐a
⎞⎠ 2

b−a
⎛⎝K

q a+b
2

1 − K qa
1

q ln K1

⎞⎠ 1
q

+

(⏐⏐ f ′′
( a+b

2

)⏐⏐b
| f ′′ (b)|

a+b
2

) 2
b−a
⎛⎝Mqb

1 − M
q a+b

2
1

q ln K1

⎞⎠ 1
q
⎤⎥⎦

where K1 and M1 are defined as in Corollary 2.

Remark 1. Many applications can be given based on our results to the special means and to numerical integration,
we omit the details.
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Abstract

In this paper, we define the right Boolean lifting property (left Boolean lifting property) RBLP (LBLP) for pseudo BL-algebra to
be the property that all Boolean elements can be lifted modulo every right filter (left filter) and next we study the behavior of RBLP
(LBLP) with respect to direct products of pseudo BL-algebra. We introduce some conditions, which turn out to be a strengthening
and a weakling of RBLP (LBLP) respectively and which open new ways of approaching the study of the RBLP (LBLP) in pseudo
BL-algebras.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lifting property; Boolean center; (prime, maximal) filter; (maximal, local, hyper Archimedean, quasi-local, semi local) pseudo
BL-algebra

1. Introduction

In 1998, Hajek introduced BL-algebra; an algebraic semantics of basic fuzzy logic which is generated by
continuous t-norms on the interval [0, 1] and their residuals [1]. Then Georgescu introduced pseudo BL-algebra
as a non-commutative extension of BL-algebra [2]. The idea of pseudo BL-algebra originates not only in logic and
algebra, but also in algebraic properties that come from the syntax of certain non-classical propositional logics and
intuitionistic logic. A lifting property for Boolean elements appears in the study of maximal MV-algebras and maximal
BL-algebra. The left lifting property for Boolean elements modulo radical plays an essential part in the structure
theorem for maximal pseudo BL-algebra. Extending previous works, Georgescu and Muresan studied Boolean lifting
property for arbitrary residuated lattice [1]. The results of this study were similar to idempotent elements in the
rings. In [3] we studied pseudo BL-algebra which satisfies the left (right) lifting property of Boolean elements
modulo every left filter, a property that we have called LBLP (RBLP) for abbreviation. Also it shows that each
Boolean algebra infused a pseudo BL-algebra with LBLP (RBLP), that hyper Archimedean have LBLP (RBLP).

∗ Corresponding author.
E-mail address: a b saeid@yahoo.com (A. Borumand Saeid).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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2346-8092/ c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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It turns out that the algebras at pseudo BL-algebra with LBLP (RBLP) are exactly the quasi-local pseudo BL-
algebras. The target of this article is to study and introduce two conditions which share some properties with the
RBLP (LBLP), (Propositions 5.12, 5.14 and 5.15) and appear to also differ by some properties from the RBLP
(LBLP). Moreover, it shows that a finite direct product pseudo BL-algebra has RBLP iff each pseudo BL-algebra
in the products has RBLP (LBLP) and this holds for individual filter, as well. Weaker results hold for arbitrary
direct product of pseudo BL-algebra until mentioned otherwise, let (Ai )i∈I be a non-empty family of pseudo
BL-algebras and A =

∏
i∈I Ai , since pseudo BL-algebra form an equational class, it follows that A becomes a

pseudo BL-algebra with the operations defined canonically that is componentwise. Also, clearly, all elements are
idempotent in A iff in Ai , for each i ∈ I . Throughout this section, unless mentioned otherwise, A will be an
arbitrary pseudo BL-algebra. These are the main sources that inspire the research on pseudo BL-algebra. Section
2 shows theorems that satisfy the semi local condition and consists of previously known concepts about pseudo
BL-algebra which are necessary in the next sections. In Section 3, we define the RBLP (LBLP) for pseudo BL-
algebra and characterization of the RBLP (LBLP). In Section 4, we analyze the RBLP (LBLP) in direct products
of pseudo BL-algebra. In Section 5, we set the RBLP (LBLP) in relation to two new arithmetic conditions. In
Section 6, we establish relationships between the classes of the local, semi local, maximal, quasi-local, pseudo
BL-algebras with RBLP (LBLP) and we obtain representation theorems for semilocal and maximal pseudo BL-
algebras with RBLP (LBLP).

2. Preliminaries

In this section, we recall some basic definitions and results related to pseudo BL-algebra, all of them will be used
in the paper. We shall denote by N the set of the natural numbers and by N∗ the set of nonzero natural numbers.

Definition 2.1 ([4]). A pseudo BL-algebra is an algebra (A, ∨,∧,⊙,→,⇝, 0, 1) of type (2, 2, 2, 2, 2, 0, 0) satisfying
the following

(PSBL1) (A, ∨,∧, 0, 1) is a bounded lattice;
(PSBL2) (A, ⊙, 1) is a monoid;
(PSBL3) a ⊙ b ≤ c iff a ≤ b→ c iff b ≤ a ⇝ c, for all a, b, c ∈ A;
(PSBL4) a ∧ b = (a→ b)⊙ a = a ⊙ (a ⇝ b);
(PSBL5) (a→ b) ∨ (b→ a) = (a ⇝ b) ∨ (b⇝ a) = 1, for all a, b ∈ A.

Example 2.2. Let a, b, c, d ∈ R, where R is the set of all real numbers. We put definition

(a, b) ≤ (c, d)⇐⇒ a < c or (a = c and b ≤ d).

For any a, b ∈ R × R, we define operations ∨ and ∧ as follows: a ∨ b = max{a, b} and a ∧ b = min{a, b}. Let
A = {( 1

2 , b) ∈ R2
: b ≥ 0} ∪ {(a, b) ∈ R2

:
1
2 < a < 1, b ∈ R} ∪

{
(1, b) ∈ R2

: b ≤ 0
}
. For (a, b) , (c, d) ∈ A, we

put:

(a, b)⊙ (c, d) = (
1
2
, 0) ∨ (ac, bc + d),

(a, b)→ (c, d) = (
1
2
, 0) ∨ [(

c
a
,

d − b
a

) ∧ (1, 0)],

(a, b)⇝ (c, d) = (
1
2
, 0) ∨ [(

c
a
,

ad − bc
a

) ∧ (1, 0)].

Then (A,∨,∧,⊙,→,⇝, ( 1
2 , 0), (1, 0)) is a pseudo BL-algebra.

Proposition 2.3 ([3]). If A is a pseudo BL-algebra and a, b, c ∈ A, then
(psbl-c1) a ≤ b iff a→ b = 1 iff a ⇝ b = 1;
(psbl-c2) a ⇝ a = a→ a = 1;
(psbl-c3) 1⇝ a = 1→ a = a;
(psbl-c4) b ≤ a ⇝ b and b ≤ a→ b;
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(psbl-c5) a ⊙ b ≤ a ∧ b and a ⊙ b ≤ a, b;
(psbl-c6) a ≤ b implies b∼ ≤ a∼ and b− ≤ a−;
(psbl-c7) (a ⊙ b)− = a→ b−, (a ⊙ b)∼ = b⇝ a∼;
(psbl-c8) (a ∧ b)∼ = a∼ ∨ b∼, (a ∨ b)∼ = a∼ ∧ b∼;
(psbl-c9) (a ∧ b)− = a− ∨ b−, (a ∨ b)− = a− ∧ b−;
(psbl-c10) 1̃ = 1 = 0, 0̃ = 0 = 1;
(psbl-c11) a ⊙ a∼ = a− ⊙ a = 0;
(psbl-c12) b ≤ a∼ iff a ⊙ b = 0;
(psbl-c13) b ≤ a− iff b ⊙ a = 0;
(psbl-c14) a ≤ a− ⇝ b, a ≤ a∼→ b;
(psbl-c15) a→ a∼ = a ⇝ a−.

Lemma 2.4 ([5]). For all a ∈ A and n ∈ N∗, (a)n ≤ (an)−, (ã)n ≤ (an)∼.

Definition 2.5 ([6]). A non empty subset F ⊆ A is called a filter of A, if the following conditions are satisfied
(F1) If a, b ∈ F , then a ⊙ b ∈ F ;
(F2) if a ∈ F , b ∈ A, a ≤ b, then b ∈ F .

The set of all filters of A is denoted by F(A). Clearly if ⊙ = ∧, then F(A) coincides with the set of filters of the
bounded lattice reduct of A.

Proposition 2.6 ([6]).
(i) If a, b ∈ A, and a ≤ b, then [b) ⊆ [a);
(ii) If a, b ∈ A, then [a ∨ b) = [a) ∩ [b);
(iii) For every a, b ∈ A, [a) ∨ [b) = [a ∧ b) = [a ⊙ b).

Lemma 2.7 ([7]). Let M ∈ Max(A). a ̸∈ M iff there exists m ≥ 1, such that (am)∼ = (am)− = 1.

Definition 2.8 ([8]). The intersection of all of maximal filters of A is called the radical of A and will be denoted by
Rad(A).

It is obvious that Rad(A) is filter of A clearly Rad(A) = A iff A is trivial, and Rad(A) is proper filter of A, iff A
is non-trivial. An element a ∈ A is said to be dense iff ã = a = 0. The set of the dense elements of A is denoted by
D(A), that is D(A) = {a ∈ A | ã = a = 0}, clearly D(A) ̸= ∅ since 1 = 1̃ = 0.

The set of the complemented elements of the bounded lattice reduct of A is called Boolean center of A and is
denoted by B(A). Clearly 0, 1 ∈ B(A). The elements of B(A) are called Boolean elements of A. It is known that B(A)
is a Boolean algebra, with the operation induced by those of A together with the complementation operation given by
the negation in A. Also it is straightforward that B(A) is a subalgebra of the pseudo BL-algebra. Here are some more
properties of the Boolean center of A pseudo BL-algebra.

Remark 2.9. Consider the pseudo BL-algebra (A,∨,∧,⊙,→,⇝, ( 1
2 , 0), (1, 0)) in Example 2.2. Then

D(A) = {(1, 0)}, B(A) = {(1, 0), (
1
2
, 0)},Max(A) = [(1, 0)),Rad(A) = [(1, 0)).

Lemma 2.10 ([3]). Rad(A) = {a ∈ A | (∀n ∈ N), (∃kn ∈ N∗) s.t.
(
(an)−

)kn
= ((an)∼)

kn = 0}.

Corollary 2.11 ([3]). Any element a ∈ Rad(A) has a∼, a− ∈ N (A).
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Proposition 2.12 ([3]). Let A be a pseudo BL-algebra. Then
(i) B(A) ∩ Rad(A) = {1};
(ii) D(A) is a filter of A and D(A) ⊆ Rad(A);
(iii) B(A) ∩ D(A) = {1}.

Remark 2.13 ([9]).
(i) e ∈ B(A) has unique complemented, equal to ẽ = e, and (ẽ)− = (e)∼ = e;
(ii) ẽ, e = 0 iff e = 1.

Proposition 2.14 ([10]). If A is a pseudo BL-algebra, then for e ∈ A, the following conditions are equivalent
(i) e ∈ B(A);
(ii) e ⊙ e = e and (ẽ)− = (e)∼ = e;
(iii) ẽ∨e = 1 and e ∨ e = 1.

Lemma 2.15 ([11]). If e ∈ B(A), a ∈ A then
(i) e ⊙ a = e ∧ a = a ⊙ e;
(ii) e ∧ ě = 0 = e ∧ e;
(iii) e⇝ a = e→ a.

Definition 2.16 ([6]). A is said to be local iff it has exactly one maximal filter.

Definition above is equivalent to the fact that Rad(A) is a maximal filter of A, that is A is local iff Rad(A) ∈
Max(A) [Max(A) = {Rad(A)}].

Proposition 2.17 ([6]). The following conditions are equivalent
(i) A is local;
(ii) A \ N (A) is local;
(iii) A \ N (A) is the only maximal filter of A;
(iv) Rad(A) = A \ N (A);
(v) A = N (A) ∪ Rad(A).

A is said to be semilocal iff Max(A) is finite. Semilocal pseudo BL-algebras include the trivial pseudo BL-algebra,
local pseudo BL-algebra, finite BL-algebra, finite direct product of local or other semi local pseudo BL-algebra. The
pseudo BL-algebra A is said to be simple iff it has exactly two filters. that is iff A is non-trivial and F(A) = {1, A}, A
is simple iff {1} is a maximal filter of A iff {1} is the unique maximal filter of A iff A is local and Rad(A) = {1}.
An element a ∈ A is said to be Archimedean iff an

∈ B(A) for some n ∈ N∗, equivalent with a ∨ (an)− = 1
or a ∨ (an)∼ = 1. A pseudo BL-algebra is called hyper Archimedean iff all elements are Archimedean. Clearly, if
B(A) = A that is if underlying bounded lattice of A is a Boolean algebra, then A is a hyper Archimedean pseudo
BL-algebra.

Lemma 2.18 ([3]).
(i) Any maximal pseudo BL-algebra is semi local;
(ii) If A is local, then B(A) = {0, 1} and A = N (A) ∪ {a ∈ A | ã, a ∈ N (A)};
(iii) A finite direct product of local pseudo BL-algebra has RBLP.

Proposition 2.19 ([12]). The following are equivalent
(i) A is semi local and has RBLP;
(ii) A is semi local and Rad(A) has RBLP;
(iii) There exist n ∈ N∗ and a complete set {e1, . . . , en} ⊆ B(A) such that [e1), . . . , [en) are local pseudo BL-

algebra;
(iv) A is isomorphic to a finite direct product of local pseudo BL-algebra.



150 B. Barani Nia, A. Borumand Saeid / Transactions of A. Razmadze Mathematical Institute 172 (2018) 146–163

Remark 2.20. In Example 2.2, A is a local, hence A = N (A) ∪ {a ∈ A | ã, a ∈ N (A)}.

Definition 2.21 ([3]). A is said to be quasi-local iff for all a ∈ A there exist e ∈ B(A) and n ∈ N∗, such that
an
⊙ e = 0 and e ⊙ (ã)n = 0, (a)n ⊙ ẽ = 0.

Proposition 2.22 ([3]). The following conditions are equivalent
(i) A is quasi-local;
(ii) A has RBLP.

Let us consider a filter F of A. Define two binary relations on A by:
≡L(F): a ≡ L(F)b iff (a→ b ∧ b→ a) ∈ F .
≡R(F): a ≡ R(F)b iff (a ⇝ b) ∧ (b⇝ a) ∈ F .
For a given filter F , the relations ≡L(F) and ≡R(F) are equivalence relations on A, moreover we have F = {a ∈

A, a ≡ L(F)1} = {a ∈ A, a ≡ R(F)1}.
We shall denote by A/L(F) (A/R(F), respectively) the quotient set associated with ≡L(F) (≡R(F), respectively).

a/L(F) (a/R(F), respectively) will denote the equivalence class of a ∈ A with respect to ≡L(F)(≡R(F), respectively).
We shall denote the quotient set A/ ≡ ( mod L(F)), simply by A/L(F), and its elements by a/L(F)) with a ∈ A,

so A/L(F) = {a/L(F) | a ∈ A}, where, for every a ∈ A, a/L(F) = {b ∈ A | a ≡ (mod L(F))}. Also we shall
denote by PL(F): A→ A/L(F) the canonical surjection, PL(F) (a) = a/L(F) for all a ∈ A, and for every X ⊆ A we
shall denote PL(F) (X) = X/L(F) = {a/L(F) | a ∈ A}. In particular x , 1 ∈ L([a)) iff (x → 1) ∧ (1→ x) ∈ [a) iff
x ∧ 1 ∈ [a) iff x ∈ [a).

Lemma 2.23 ([3]). For every a ∈ A, the following conditions are equivalent
(i) there exists e ∈ B(A) such that e↭ a ∈

[
a ∨ ã);

(ii) there exists e ∈ B(A) such that e ∈ [a) and ẽ ∈ [ã).

Remark 2.24 ([3]). For every a ∈ A, the following conditions are equivalent
(i) there exists e ∈ B(A) such that e←→ a ∈ [a ∨ a);
(ii) there exists e ∈ B(A) such that e ∈ [a) and e ∈ [a).

Notation 2.25. We shall denote

S(A) =
{
a ∈ A | (∃ e ∈ B (A)) e ←→ a ∈

[
a ∨ a−

)
, e ↭ a ∈ [a ∨ ã)

}
.

Remark 2.26. According to Remark 2.24 we have

S(A) = {a ∈ A | (∃ e ∈ B (A)) such that e ∈ [a) and e ∈ [a) or ẽ ∈ [ã)} .

Lemma 2.27 ([13]).
(i) B(A) = {a ∈ A | a ∨ a = 1} ;
(ii) B(A)/F =

{
a/F | a ∈ A, a ∨ a− = 1

}
;

(iii) B(A/F) =
{
a/F | a ∈ A a ∨ a− ∈ F

}
;

(iv) B(A)/F ⊆ B(A/F).

Proposition 2.28 ([3]). The following statements are equivalent
(i) A has RBLP;
(ii) For all a ∈ A, there exists e ∈ B (A) such that e←→ a ∈ [a ∨ a);
(iii) For all a ∈ A, there exists e ∈ B (A) such that e↭ a ∈ [a ∨ ã);
(iv) For all a ∈ A, there exists e ∈ B (A) such that e ∈ [a) and e ∈ [a);
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(v) For all a ∈ A, there exists e ∈ B (A) such that e ∈ [a) and ẽ ∈ [ã);
(vi) S(A) = A.

Remark 2.29. Clearly in Example 2.2, S(A) = A, hence A has RBLP.

Example 2.30 ([3]). Consider A = {0, a1, a2, a3, . . . , 1}, with A bounded lattice structure given by the Hasse diagram
below, the implication and ⊙ given by the following tables

then (A ,∨,∧,⊙,→,⇝, 0, 1), is a pseudo BL-algebra.

3. Right (left) Boolean lifting property

Throughout this section unless mentioned otherwise A will be an arbitrary pseudo BL-algebra and F will be an
arbitrary filter of A. The canonical morphism PR(F) : A→ A/R(F) induces a Boolean morphism B(PR(F)) : B(A)→
B (A/R(F)). The range of this Boolean morphism is B(PR(F))(B(A)) = PR(F)(B(A)) = B(A)/R(F).

Definition 3.1. We say that a Boolean element f ∈ B(A/R(F)) can be right lifted iff there exists a Boolean element
e ∈ B(A) such that e/R(F) = f . In other words, f ∈ B(A/R(F)) can be right lifted iff f ∈ B(A)/R(F).

We say that the equivalence relation R(F) has the right Boolean lifting property (RBLP) iff all Boolean elements
of A/R(F) can be right lifted.
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Remark 3.2.
(i) For every filter F of A, R(F) has RBLP iff B(PR(F)) is surjective.
(ii) For any linearly ordered pseudo BL-algebra A, obviously B(A) = {0, 1}.

Proof. (i) R(F) has RBLP iff Boolean morphism B(PR(F)) : B (A) −→ B(A/R(F)) is surjective. In other words,
B(PR(F)) (B (A)) = B(A/R(F)) iff B(A)/R(F) = B(A/R(F)).

(ii) Let ã be a complement of a that means a ≤ ã or a ≥ ã (since ã, a ∈ A, and A is linearly ordered pseudo
BL-algebra). Then a ∨ ã = 1, a ∧ ã = 0, thus a = 0 or a = 1.

We say that pseudo BL-algebra A has the right Boolean lifting property (RBLP) iff all of its right equivalence
relations have RBLP.

For any equivalence relation R(F) of A, the pseudo BL-algebra A/R(F) is also linearly ordered, hence
B(A/R(F)) = {0/R(F), 1/R(F)} hence R(F) has RBLP.

Example 3.3. Let us consider the chain A = {0, b1, b2, . . . , 1}, 0 < b1 < b2 < · · · < 1, organized as a lattice by
a ∨ b = max{a, b}, a ∧ b = min{a, b}, and as in the following tables

then (A ,∨,∧,⊙,→,⇝, 0, 1), is a linearly ordered pseudo BL-algebra.
By Remark 3.2 we have B(A)/R(F) = B (A/R(F)), for any equivalence relation R(F) of A, hence Boolean

elements 0, 1 can be right lifted.

Also in Example 2.2, Boolean elements ( 1
2 , 0), (1, 0)) can be right lifted and for any equivalence relation R(F) of

A, the pseudo BL-algebra A/R(F) is also linearly ordered, hence B(A/R(F)) =
{
( 1

2 , 0)/R(F), (1, 0)/R(F)
}
, thus

R(F) has RBLP, therefore A has RBLP.

Example 3.4 ([3]). Consider pseudo BL-algebra A = {0, a1, a2, b, a3, . . . , 1}, with A bounded lattice structure given
by the Hasse diagram below, the implication and ⊙ given by the following tables
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Example 3.5. Consider the pseudo BL-algebra A = {0, a1, a2, b, a3, . . . , 1} in Example 3.4. Then B(A) = {0, 1}, let
us consider the filter R([b)) = {b, 1}. The element a3 ̸∈ B(A), ã3 = a3 ⇝ 0 = a1. Thus a1 ∨ a3 = 1 ∈ R([b)) (by
Lemma 2.27 (iii)) we have a3/R([b)) ∈ B(A/R([b))). And a3 ̸∈ R([b)) = {b, 1}. Thus a3/R([b)) ̸= b/R([b)) and
0/R([b)) ̸= 1/R([b)), a3 ↭ 0 = (a3 ⇝ 0) ∧ (0 ⇝ a3) = a1 ∧ 1 = a1 ̸∈ R([b)) , a3 ↭ b = (a3 ⇝ b) ∧ (b ⇝
a3) = b ∧ a3 = a3 ̸∈ R([b)), a3 ↭ a1 = (a3 ⇝ a1) ∧ (a1 ⇝ a3) = 1 ∧ a1 = a1 ̸∈ R([b)). Hence a3/R([b)) ̸=
a1/R ([b)) , a3/R ([b)) ̸= b/R ([b)) , a3/R ([b)) ̸= ai/R ([b)), i ∈ N, therefore a3/R([b)) = {a3}. Summarizing the
above we have a3/R([b)) ∈ B(A/R([b))), while a3 ̸∈ B(A) and a3/R([b)) = {a3} hence a3/R([b)) ̸∈ B(A)/R([b))
therefore B(A/R([b))) ̸= B(A)/R([b)) which means that R([b)) does not have RBLP. Hence A does not have RBLP,
notice that the maximal filters of A are R([ai )), i ∈ N, hence Rad(A) = ∩R([ai )) = R([b)), i ∈ N, thus Rad(A) does
not have RBLP.

Proposition 3.6. For every filter F of A, the following conditions are equivalent
(i) B(PR(F)) is injective;
(ii) B(A) ∩ R(F) = {1}.

Proof. We have PR(F) : A→ A/R(F), therefore B(PR(F)) : B(A)→ B(A/R(F)).
(ii) → (i) Assume that B(A) ∩ R(F) = {1}, a, b ∈ B(A) such that B(PR(F))(a) = B(PR(F))(b), that is

PR(F)(a) = PR(F)(b) which means that a/R(F) = b/R(F) iff a←→ b ∈ R(F).
(i) → (ii) 1 ∈ B(A), 1 ∈ R(F), then {1} ⊆ B(A) ∩ R(F). Assume that a ∈ B(A) ∩ R(F), thus a ∈ R(F)

hence a/R(F) = 1/R (F), therefore PR(F) (a) = PR(F) (1) , then B(PR (F)) (a) = B(PR(F)) (1) so a = 1, henceB (A) ∩
R(F) ⊆ {1} .

Corollary 3.7. If B(A) = {0, 1}, then for every proper filter F of A, B(PR(F)) is injective.
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Proof. Since 1 ∈ R(F), therefore B(A) ∩ R(F) = {1}, then B(PR(F)) is injective.

Remark 3.8. If (Fi )i∈I is a non empty family of filters of A, then B
(
P∩R(Fi)

)
i∈I = ∩B

(
PR(Fi)

)
i∈I .

Proof. We have B(PR(Fi )) : B(A) → B (A/R(Fi )), hence B
(
P∩R(Fi)

)
i∈I = ∩B

(
PR(Fi)

)
i∈I iff B

(
P∩R(Fi)

)
i∈I (e) =

∩B
(
PR(Fi)

)
i∈I (e), for all e ∈ B(A) iff e/ ∩ R(Fi ) = ∩e/R(Fi ) iff {a ∈ A|(a ⇝ e) ∧ (e ⇝ a) ∈ ∩Fi } iff

{a ∈ A|(a ⇝ e) ∧ (e⇝ a) ∈ Fi }, for all i ∈ I , iff ∩{a ∈ A|(a ⇝ e) ∧ (e⇝ a) ∈ Fi }.

Remark 3.9. In Example 2.2, B(PR(F)) is injective, for every proper filter F of A, since B(A) ∩ R(F) = {(1, 0)}.

Corollary 3.10. If (Fi )i∈I is a non empty family of filters of A such that B(PR(Fi )), is injective for every i ∈ I , then
B

(
P∩R(Fi)

)
i∈I is injective.

Proof. B(PR(Fi )) is injective by Proposition 3.6, we have B(A) ∩ R(Fi ) = {1} (∀i), then B(A) ∩ (∩R(Fi )) = {1} (for
all i ∈ I ) hence B

(
P∩R(Fi)

)
i∈I is injective.

Corollary 3.11.
(i) Any filter F of A such that F ⊆ Rad(A), then B(PR(F)) injective;
(ii) B(PD(A)) is injective.

Proof. (i) We have R(F) ⊆ Rad(A) therefore R(F)∩ B(A) ⊆ B(A)∩Rad(A) = {1} then R(F)∩ B(A) = {1} hence
(PR(F)) is injective.

(ii) By Proposition 2.12, we have D(A) ⊆ Rad(A), thus D(A) ∩ B(A) ⊆ Rad(A) ∩ B(A) = {1} hence
B(A) ∩ D(A) = {1}, therefore B(PD(A)) is injective.

Remark 3.12. If B(A) = {0, 1}, then, according to Remark 2.26 and Proposition 2.3 (psbl-c10), S(A) formed of the
element a ∈ A which satisfy one of the following conditions. 0 ∈ L([a)) and 0 = 1 ∈ L([a)), that is an

= 0 for some
n ∈ N∗. 1 ∈ L([a)) and 1 = 0 ∈ L([a)), that is (a)n = 0 for some n ∈ N∗. Thus, S(A) contains exactly the element
a ∈ A such that a, a are nilpotent that is S(A) = N (A) ∪ {a ∈ A | a, ã ∈ N (A)}.

In order to prove the main result, we state and prove some lemma and proposition.

4. Right (left) Boolean Lifting property and direct products of pseudo BL-algebra

In this section, we shall prove that a finite direct product pseudo BL-algebra has RBLP (LBLP) iff each pseudo
BL-algebra in the products has RBLP (LBLP). Let (Ai )i∈I be a non-empty family of pseudo BL-algebras and
A =

∏
i∈I Ai , clearly, all of elements of A are idempotent, iff in Ai , for each i ∈ I . It is straightforward, from

Definition 2.8 that Rad(A) ⊆
∏

i∈I Rad(A) and if I is finite, say I = 1, n with n ∈ N∗, then the converse inclusion
holds as well, so that Rad(A) =

∏
i∈I Rad(Ai ). We denote, for each i ∈ I , the canonical projection by Pri : A→ Ai ,

which is obviously, a surjective pseudo BL-algebra morphism. Hence for every filter F of A, Pri (R (F)) is a right
filter of Ai , then clearly R(F) =

∏
i∈I R(Fi ) is a filter of A with Pri (R (F)) = R(Fi ) for all i ∈ I . Generally, main

purpose of this section is to study the behavior of RBLP (LBLP) with respect to direct products of pseudo BL-algebra.

Lemma 4.1. Let (Ai )i∈I be a non-empty family of pseudo BL-algebras and A =
∏

i∈I Ai . Then S(A) = S(
∏

i∈I Ai ) ⊆∏
i∈I S(Ai ).

Proof. By using the fact that B(A) = B(
∏

i∈I Ai ) =
∏

i∈I B(Ai ), along with Remark 2.26 for every a ∈ S(A), then
there exists e ∈ B(A) such that e ∈ [a) and e ∈ [a), ẽ ∈ [ã). But then a = (ai )i∈I and e = (ei )i∈I with ai ∈ Ai ,
ei ∈ B(Ai ) for each i ∈ I immediately that, for all i ∈ I , we have ei ∈ [ai ) and ei ∈ [ai ), ẽi ∈ [ãi ) which mean that
ai ∈ S(Ai ), thus S(A) = S(

∏
i∈I Ai ) ⊆

∏
i∈I S (Ai ).

Lemma 4.2. Let n ∈ N∗, (Ai )
n
i=1 be a family of pseudo BL-algebras and A =

∏n
i=1 Ai.. Then S(A) = S(

∏n
i=1 Ai.) =∏n

i=1S (Ai ) .
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Proof. The fact that S(A) = S(
∏n

i=1 Ai.) ⊆
∏n

i=1S (Ai ) follows from Lemma 4.1. Now, let (a1, . . . , an) ∈
∏n

i=1S (Ai )

that is ai ∈ S(Ai ) for each i ∈ 1, n which means that, for every i ∈ 1, n, there exists an ei ∈ B(Ai ) such that ei ∈ [ai )
and ei ∈ [ai ), ẽ ∈ [ãi ) that is a ji

i ≤ ei , (ai )
ki ≤ ei , (ãi )

ei ≤ ẽi for some ji , ki , ei ∈ N∗. Let J = max{ ji | i ∈ 1, n} ∈ N∗
and k = max{ki | i ∈ 1, n} ∈ N∗, ei = max{ei | i ∈ 1, n} ∈ N∗. By psbl-C5 it follows that, for all i ∈ 1, n, a j

i ≤ ei

and (ai )
k
≤ ei , (ãi )

ei ≤ ẽi . Hence a j
= (a j

1 , . . . , a j
n ) ≤ (e1, . . . , en) and (a)k = ((a1)

k, . . . , (an)
k) ≤ (e1, . . . , en) =

(e1, . . . , en)−, (ã)e = ((ã1)
e, . . . , (ãn)

e) ≤ (ẽ1, . . . , ẽn) = (e1, e2 . . . , en)∼, let e = (e1, . . . , en) ∈ B(A). We have
shown that a j

≤ e and (a)k ≤ e, (ã)e ≤ ẽ, with j, k, e ∈ N∗, which means that e ∈ [a) and e ∈ [a), ẽ ∈ [ã), hence
a ∈ S(A). Therefore

∏n
i=1S (Ai ) ⊆ S(A). Thus S(A) = S(

∏n
i=1 Ai ) =

∏n
i=1S (Ai ) .

Lemma 4.3. Let (Ai )i∈I be a non-empty family of pseudo BL-algebras. If all the elements of A are idempotent, and
A =

∏
i∈I Ai , then, S(A) = S(

∏
i∈I Ai ) =

∏
i∈I S(Ai ).

Proof. The fact that S(A) = S(
∏

i∈I Ai ) ⊆
∏

i∈I S(Ai ) follows from Lemma 4.1. Now, let a = (ai )i∈I ∈
∏

i∈I S(Ai )
that is ai ∈ S(Ai ) for each i ∈ I , there exists an ei ∈ B(Ai ) such that ei ∈ [a) and ei ∈ [ai ), ẽi ∈ [ãi ) that is
ai ≤ ei and ai ≤ ei , ãi ≤ ẽi , since every element of these pseudo BL-algebras is idempotent. Then a ≤ e (since
an

i ≤ ai ≤ ei hence an
= (an

1 , . . . , ak, . . .) ≤ (en
1 , . . .), therefore a = an

≤ (e1, . . .) = e and a ≤ e, ã ≤ ẽ where
e = (ei )i∈I ∈

∏
i∈I B(Ai ) = B(A). Hence e ∈ [a) and e ∈ [a), ẽ ∈ [ã). Therefore a ∈ S(A). So the inclusion∏

i∈I S(Ai ) ⊆ S(A) holds as well, hence S(A) = S(
∏

i∈I Ai ) =
∏

i∈I S(Ai ).

Proposition 4.4. Let n ∈ N∗, (Ai )
n
i=1 be a family of pseudo BL-algebras and A =

∏n
i=1 Ai . Then the following

conditions are equivalent
(i) A has RBLP;
(ii) For every i ∈ 1, n, Ai has RBLP.

Proof. From Lemma 4.2 and Proposition 2.28 we obtain, A has RBLP iff S(Ai ) = Ai iff S(
∏n

i=1 Ai.) =
∏n

i=1 Ai. iff∏n
i=1S (Ai ) =

∏n
i=1 Ai. iff S(Ai ) = Ai for every i ∈ 1, n, iff Ai has RBLP for every i ∈ 1, n.

Proposition 4.5. Let (Ai )i∈I be a non-empty family of pseudo BL-algebras. If all the elements of A are idempotent
and A =

∏
i∈I Ai , then the following are equivalent

(i) A has RBLP;
(ii) For every i ∈ I , Ai has RBLP.

Proof. From Lemma 4.3 and Proposition 2.28 we obtain A has RBLP iff S(A) = A, S(
∏

i=I Ai ) =
∏

i∈I Ai iff∏
i=I S(Ai ) =

∏
i=I Ai iff S(Ai ) = Ai for every i ∈ I iff Ai has RBLP for every i ∈ I .

Proposition 4.6. Let (Ai )i∈I be a non-empty family of pseudo BL-algebras and A =
∏

i∈I Ai . If A has RBLP, then for
every i ∈ I , Ai has RBLP.

Proof. From Lemma 4.1 and Proposition 2.28 we obtain if A has RBLP, then S(A) = A, thus
∏

i∈I Ai = A = S(A) =
S(

∏
i∈I Ai ) ⊆

∏
i=I S (Ai ) ⊆

∏
i∈I Ai , hence

∏
i=I S (Ai ) =

∏
i∈I Ai , therefore S(Ai ) = Ai for every i ∈ I , so Ai

RBLP for every i ∈ I .

Proposition 4.7. Let n ∈ N∗.(Ai )
n
i=1 be a (finite non-empty) family of pseudo BL-algebras. A =

∏n
i=1 Ai for each

i ∈ 1, n, let Pri : A → Ai be the canonical projection F be an arbitrary filter of A and for every i ∈ 1, n, let us
denote by R(Fi ) = Pri (R (F)). Then

(i) For each i ∈ 1, n, Boolean morphism B(Pri ) : B(A)→ B(Ai ) is surjective;
(ii) The pseudo BL-algebra A/R(F) and

∏n
i=1 Ai/R(Fi ) are isomorphic;

(iii) F has RBLP (in A) iff Fi has RBLP (in Ai ) for every i ∈ 1, n;
(iv) Boolean morphism B(PR(F)) is injective iff the Boolean morphism B(PR(Fi )) is injective for every i ∈ 1, n.

Proof. (i) A =
∏n

i=1 Ai , hence B(A) =
∏n

i=1 B(Ai ), thus for each i ∈ 1, n. B(Pri ) is the canonical projection from
the Boolean algebra B(A) to the Boolean algebra B(Ai ) which is a surjective Boolean morphism.
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(ii) For all a ∈A and all i ∈ 1, n, we shall denote ai = Pri (a) ∈ Ai so a= (a1, . . . , an) for all a ∈ A,
define Ψ : A/R(F) →

∏n
i=1 Ai/R(Fi ), for every a ∈ A, Ψ (a/R(F)) = (a1/R(F1), . . . , an/R(Fn)) then, since

R(F) =
∏n

i=1 R(Fi ) and for every a, b ∈ A, a ↭ b = (a1 ↭ b1, . . . , an ↭ bn) it follows that Ψ is well defined
and injective, because, for all a, b ∈ A, these equivalences hold : a/R(F) = b/R(F) iff a ↭ b ∈ R(F) iff (a1 ↭
b1, . . . , an ↭ bn) ∈ R(Fi ) iff, for each i ∈ 1, n, ai ↭ bi ∈ R(Fi ) therefore for each i ∈ 1, n, ai/R(Fi ) = bi/R(Fi )
iff (a1/R(F1), . . . , an/R(Fn)) = (b1/R(F1), . . . , bn/R(Fn)).

Clearly Ψ is a surjective morphism of pseudo BL-algebra. Thus Ψ is pseudo algebra isomorphism.
(iii) According to (ii), Ψ : A/R(F) −→

∏n
i=1 Ai/R(Fi ) is a pseudo BL-algebra isomorphism, hence

B(Ψ ) : B(A/R(F)) −→ B(
∏n

i=1 Ai/R(Fi )) is a Boolean isomorphism. We denote for every k ∈ 1, n, by Pr ′k
:∏n

i=1 Ai/R(Fi ) −→ Ak/R(Fk) the canonical projection, then for every i ∈ 1, n. Pr ′i
oΨ : A/R(F) −→ Ai/R(Fi ) is a

pseudo BL-algebra morphism, hence B(Pr ′i
oΨ ) = B(Pr ′i

) o B(Ψ ) : A/R(F) −→ Ai/R(Fi ) is a Boolean morphism;
moreover, it is a surjective Boolean morphism, because B(Ψ ) is a Boolean isomorphism and B(Pr ′i

) is a surjective
Boolean morphism. Accordingly, (i) is applied to

∏n
j=1 A j/R(F j ) and Ai/R(Fi ) instead of A and Ai , respectively. In

this implication, R(F) has RBLP. Thus B(PR(F}) is a surjective Boolean morphism. Therefore B(Pr ′i
oΨ ) o B(PR(F))

is a surjective Boolean morphism. For any i ∈ 1, n. Let i ∈ 1, n, be arbitrary, we have the following commutative
diagram in the category of Boolean algebra.

So B(PR(Fi )) o B(Pri ) = B(Pr ′i
oΨ ) o B(PR(F)), which is surjective. Hence B(PR(Fi )) is surjective, where Fi has

RBLP. Conversely, let for all i ∈ 1, n, Fi has RBLP, that is B(Ai/R(Fi )) = B(Ai )/R(Fi ). Let a ∈ A, such that
a/R(F) ∈ B(A/R(F)), then keeping all the notations above.

B(Ψ )(a/R(F)) = Ψ (a/R(F))

=

n∏
i=1

ai/R(Fi )

= (a1/R(F1), a2/R(F2), . . . , an/R(Fn))

∈

n∏
i=1

B(Ai/R(Fi ))

=

n∏
i=1

B(Ai )/R(Fi )

thus, for all i ∈ 1, n, ai/R(Fi ) ∈ B(Ai )/R(Fi ) so there exists ei ∈ B(Ai ) such that ai/R(Fi ) = ei/R(Fi ).
Since Ψ is injective then a/R(F) = e/R(F), where e = (e1, . . . , en) ∈

∏n
i=1 B(Ai ) = B(A), therefore

a/R(F) = e/R(F) ∈ B(A)/R(F), hence B(A/R(F)) ⊆ B(A)/R(F), thus B (A/R(F)) = B(A)/R(F) by
Lemma 2.27 (iv), which means that R(F) has RBLP.

(iv) Since B(A) =
∏n

i=1 B(Ai ) and R(F) =
∏n

i=1 R(Fi ), by Proposition 3.6 we get that B(PR(F)) is injective iff
B(A) ∩ R(F) = {1} iff, for all i ∈ 1, n, B(Ai ) ∩ R(Fi ) = {1} iff for all i ∈ 1, n, B(PR(Fi )) is injective.

Remark 4.8. If (Ai )i∈I is a non-empty family of pseudo BL-algebras. A =
∏

i∈I Ai , for all i ∈ I , Pri : A → Ai

is the canonical projection, F is a filter of A, for all i ∈ I , Pri (F) = Fi which is a filter of Ai and we define:
Ψ : A/R(F) →

∏
i∈I Ai/R(Fi ) by for all a = (ai )i∈I ∈ A =

∏
i∈I Ai (which ai ∈ Ai for each i ∈ I ),

ψ(a/R(F)) = (ai/R(Fi ))i∈I , then
(i) For each i ∈ I , the Boolean morphism B(Pri ) : B(A)→ B(Ai ) is surjective.
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(ii) Ψ is a surjective pseudo BL-algebra morphism.
(iii) If for every i ∈ I , Fi has RBLP, then the Boolean morphism B(Ψ ) is surjective.
(iv) If for every i ∈ I , B(PR(Fi )) is injective, then B(PR(F)) is injective.

5. Some results in pseudo BL-algebras with rith (left) Boolean lifting property

Consider
(*) For all x ∈ A, there exist u ∈ Rad(A) and e ∈ B(A) such that [x) = [u) ∨ [e).
(**) For all x ∈ A, there exist u ∈ A and e ∈ B(A) such that u, ũ ∈ N (A) and [x) = [u) ∨ [e).
Clearly, the trivial pseudo BL-algebra satisfies in condition (*). Take x = u = e = 0, then [0) = [0) ∨ [0) =

[0⊙ 0) = [0).
Also pseudo BL-algebra of Example 2.2, satisfies in conditions (*) and (**).

Remark 5.1. Corollary 2.11, shows that condition (*) implies condition (**), that is if pseudo-BL algebra A satisfies
in condition (*), then A satisfies in condition (**).

Remark 5.2. If all of elements of A are idempotent, then conditions (*) and (**) are equivalent in A. That is, A
satisfies in condition (*) iff A satisfies in condition (**).

Proof. By Remark 5.1, condition (*) implies condition (**).

Conversely, since u, ũ ∈ N (A), by Corollary 2.11, u ∈ Rad(A), hence (**) implies (*).

Proposition 5.3.
(i) If A satisfies in condition (*), then A has RBLP;
(ii) If A has RBLP, then A satisfies in condition (**);
(iii) If all of elements of A are idempotent, then (*) iff (**) in A, that is, A satisfies in condition (*) iff A has RBLP

iff A satisfies in condition (**).

Proof. (i) Assume that A satisfies in condition (*) and let x ∈ A be arbitrary. Then there exist u ∈ Rad(A) and
e ∈ B(A) such that [x) = [u) ∨ [e) = [u ⊙ e), thus u ⊙ e ∈ [x) and x ∈ [u ⊙ e), that is there exist m, n ∈ N∗ such
that xm

≤ u ⊙ e and un
⊙ e = un

⊙ en
= (u ⊙ e)n

≤ x (by Proposition 2.14). Since xm
≤ u ⊙ e ≤ e, we have

e ∈ [x). By psbl-C11, psbl-C12, Proposition 2.14 (ii) un
⊙ e < x implies x ≤ (un

⊙ e)− = (e ⊙ un)− = e→ (un)− =
e∼− → (un)− = ẽ ∨ (un)− = e ∨ (un)− = (un)− ∨ e. Since u ∈ Rad(A) by Lemma 2.10 there exists kn ∈ N∗ such
that ((un)−)kn = ((un)∼)kn = 0 therefore by psbl-C12, psbl-C13, Proposition 2.14, Lemma 2.15 and distributivity of ⊙
with respect to ∨, and the choice of kn , we have

(x)kn ⊙ e = e ⊙ (x)kn

≤ e ⊙ (e ∨ (un)−)kn

= e ⊙ [(e)kn ∨ ((e)kn−1
⊙ (un)− ∨ · · · ∨ (e ⊙ ((un)−)k′n−1) ∨ ((u)n)kn ]

= e ⊙ [e ∨ (e ⊙ (un)−) ∨ · · · ∨ (e ⊙ ((un)−)k′n−1) ∨ 0]

= e ⊙ e[1 ∨ (un)− ∨ · · · ∨ ((un)−)k′n−1)] = 0⊙ 1 = 0

hence (x)Kn ≤ e and (x̃)Kn ≤ ẽ so obtain e ∈ [x), e ∈ [x), ẽ ∈ [x̃) and e ∈ B(A). That is A has RBLP (by
Proposition 2.28). (ii) Assume that A has RBLP and let x ∈ A be arbitrary. By Proposition 2.28, it follows that there
exists an e ∈ B(A) such that e ∈ [x) and e ∈ [x), ẽ ∈ [x̃). So there exist m, n, s ∈ N∗ such that xn

≤ e and
(x)m ≤ e, (x̃)s ≤ ẽ thus e ⊙ (x̃)s = 0, (x)m ⊙ e = 0 (by psbl-C12, psbl-C13). Let u = x ∨ ẽ = x ∨ e. Then, by
psbl-C8, psbl-C9, Proposition 2.14. We have ũ = (x ∨ e)∼ = x̃ ∧ e = x̃ ⊙ e, u = (x ∨ ẽ)− = x ∧ e = x ⊙ e hence
(ũ)s = (x̃ ⊙ e)s

= (x̃)s
⊙ (e)s

= (x̃)s
⊙ e = e⊙ (x̃)s

= 0 so ũ ∈ N (A) and similarly u ∈ N (A). By the distributivity
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of ⊙ with respect to ∨ and psbl-C11,

u ⊙ e = (x ∨ ẽ)⊙ e
= (x ∨ e)⊙ e
= (x ⊙ e) ∨ (ẽ ⊙ e)
= (x ⊙ e) ∨ (e ⊙ e)
= (x ⊙ e) ∨ 0
= x ⊙ e

xn
≤ e (see above) and xn

≤ x hence xn
≤ x ∧ e = x ⊙ e = u⊙ e thus xn

≤ u⊙ e so u⊙e ∈ [x), thus [u⊙ e) ⊆ [x).
But by psbl-C5u⊙e = x⊙e ≤ x , hence x ∈ [u⊙e), thus [x) ⊆ [x⊙e) = [x)∨[e). We have obtained, [x) = [u)∨[e),
ũ, u ∈ N (A) and e ∈ B(A), so A satisfies in condition (**).

(iii) By (i), (ii) and Remark 5.2.

Lemma 5.4.
(i) If A = B(A) ∪ Rad(A) ∪ N (A), then A satisfies in condition (*);
(ii) If A = Rad(A)∪ H (A), where H (A) is the set of the Archimedean elements of A, then A satisfies in condition

(*).

Proof. (i) Clearly, any Boolean element is Archimedean and any nilpotent element is Archimedean, that is B(A) ⊆
H (A) and N (A) ⊆ H (A), and so this first statement actually follows from the second, we shall provide here a separate
proof for the first statement of this lemma. So let that A = B(A) ∪ Rad(A) ∪ N (A) and consider an arbitrary element
x ∈ A. If x ∈ B(A), then u = 1 ∈ Rad(A) and e = x ∈ B(A), we have [x) = [1 ∧ x) = [u ∧ e) = [u) ∨ [e). If
x ∈ Rad(A), then u = x ∈ Rad(A) and e = 1 ∈ B(A). We have [x) = [x ∧ 1) = [u ∧ e) = [u) ∨ [e). Finally, if
x ∈ N (A), then [x) = [0) = [1 ∧ 0) = [1) ∨ [0), and we have 1 ∈ Rad(A) and 0 ∈ B(A). Therefore A satisfies in
condition (*). (ii) Assume that A = Rad(A)∪H (A), and let x be an arbitrary element of A. Since the case x ∈ Rad(A)
has been treated above, it remains to treat the case when x ∈ H (A). Assume that x is an Archimedean element of A,
that is u = xn

∈ B(A) for some n ∈ N∗ then [x) = [xn) = [u) = [u ∧ 1) = [u) ∨ [1), and 1 ∈ Rad(A). Thus A
satisfies in condition (*).

Corollary 5.5. Any hyper Archimedean pseudo BL-algebra satisfies in condition (*), but the converse is not true.

Proof. Since all elements of A are Archimedean hence, by above, it is satisfied in condition (*). To show that the
converse implication is not true, Example 3.5 has RBLP and all of elements of A are idempotent, thus it satisfies
in condition (*) (by Proposition 5.3). But it is not hyper Archimedean since all of its elements are idempotent and
B(A) = {0, 1}, which shows that its middle element a is not Archimedean.

Corollary 5.6. Any Boolean algebra induces a pseudo-BL algebra with the property (*).

Proof. For all x ∈ A = B(A) and e = 1 ∈ Rad(A), u = x ∈ B(A) hence [x) = [x ∧ 1) = [x) ∨ [1) = [u) ∨ [e).

Remark 5.7. If (A ,∨,∧, ∗, 0, 1) is a Boolean algebra, then if we define for every x, y ∈ A, x ⊙ y = x ∧ y,
x → y = x∗ ∨ y, x ⇝ y = (x ∧ y∗)∗, then (A ,∨,∧,⊙,→,⇝, 0, 1), is a pseudo BL-algebra.

Remark 5.8. If (A ,∨,∧, ∗, 0, 1) is a Boolean algebra, then it satisfies in condition (*), that is for all a ∈ A = B(A)
and e = 1 ∈ Rad(A), u = a ∈ B(A) hence [a) = [a ∧ 1) = [a) ∨ [1) = [u) ∨ [e).

Proposition 5.9. Any local pseudo BL-algebra satisfies in condition (*), but the converse is not true.

Proof. Let A be a pseudo BL-algebra. Then by Proposition 2.17, A = Rad(A)∪ N (A) now by Lemma 5.4, it follows
that A satisfies in condition (*). To show that the converse implication is not true, Example 3.5 has RBLP and all the
elements of A are idempotent, thus it satisfies in condition (*) (by Proposition 5.3). But it is not local since R([ai ))i∈I
are maximal filters of A.



B. Barani Nia, A. Borumand Saeid / Transactions of A. Razmadze Mathematical Institute 172 (2018) 146–163 159

Lemma 5.10. Any non-trivial linearly ordered pseudo BL-algebra is local, but the converse is not true.

Proof. Let A be a non-trivial linearly ordered pseudo BL-algebra. Assume by absurdum that A has two distinct
maximal filters M and P , then M ̸⊆ P . Thus there exists an element x ∈ M \ P , so, for every y ∈ P , y ̸≤ x . But
since A is a chain this means that every y ∈ P satisfies x < y, hence P = [y) ⊆ [x) ⊆ M , thus P ⊆ M , and this is a
contradiction to the maximality of P . Therefore A has only one maximal filter; that is A is a local pseudo BL-algebra.
But the converse is not true. By using the fact that {1} is a maximal filter of A iff {1} is the unique maximal filter of A
iff A is local and Rad(A) = {1}. In Example 2.30, {1} is the unique maximal filter of A and Rad(A) = {1}, hence, A
is local but non-trivial linearly ordered pseudo BL-algebra.

Corollary 5.11. Any linearly ordered pseudo BL-algebra satisfies in condition (*).

Proposition 5.12.
(i) A satisfies in condition (*) iff A/R(F) satisfies in condition (*) for every filter F of A;
(ii) A satisfies in condition (**) iff A/R(F) satisfies in condition (**) for every filter F of A.

Proof. Let A be satisfied in condition (*) and F be a filter of A. If x ∈ A arbitrary, then there exist u ∈ Rad(A) and
e ∈ B(A) such that [x) = [u)∨ [e) = [u⊙ e), that is x ∈ [u⊙ e) and u⊙ e ∈ [x) that is (u ⊙ e)n ≤ x and xk

≤ u⊙ e
for some n, k ∈ N∗. Then u/R(F) ∈ Rad(A/R(F))= Rad(A)/R(F) and e/R(F) ∈ B(A)/R(F) ⊆ B(A/R(F)) (by
Lemma 2.27 (iv)) (u/R(F)⊙ e/R(F))n ≤ x/R(F) and (x/R(F))k ≤ u/R(F)⊙e/R(F), hence x/R(F) ∈ [u/R(F)⊙
e/R(F)) and u/R(F) ⊙ e/R(F) ∈ [x/R(F)). That is [x/R(F)) = [u/R(F) ⊙ e/R(F)) = [u/R(F)) ∨ [e/R(F)),
therefore A/R(F) satisfies in condition (*).

Conversely, taking R(F) = {1}.
(ii) Same as the proof for (i). But for the direct implication, if u ∈ A such that u, ũ ∈ N(A), then u/R(F),

ũ/R(F) ∈ N (A/R(F)).

Remark 5.13. By Proposition 5.3 (iii) and Proposition 4.5, if (Ai )i∈I is a non empty family of pseudo BL-algebras
and all elements are idempotent, A =

∏
i∈I Ai , then A satisfies in condition (*) iff A has RBLP iff A satisfies in

condition (**) iff each Ai satisfies in condition (*) iff each Ai has RBLP iff each Ai satisfies in condition (**).

Proposition 5.14. Let (Ai )i∈I be a non-empty family of pseudo BL-algebras and A =
∏

i∈I Ai . Then
(i) If A satisfies in condition (*), then Ai satisfies in condition (*) for each i ∈ I ;
(ii) If A satisfies in condition (**), then Ai satisfies in condition (**) for each i ∈ I .

Proof. (i) Assume that A satisfies in condition (*), k ∈ I and xk ∈ Ak , both arbitrary but fixed. For all i ∈ I\{k},
let xi ∈ Ai be arbitrary. Then x = (xi )i∈I ∈ A. Since A satisfies in condition (*), it follows that there exist
u = (ui )i∈I ∈ Rad(A) (ui ∈ Ai for every i ∈ I ) and e = (ei )i∈I ∈ B(A) =

∏
i∈I B(Ai ) (ei ∈ Ai for every

i ∈ I ), such that [x) = [u) ∨ [e) = [u ⊙ e), that is x ∈ [u ⊙ e) and u ⊙ e ∈ [x) so (u ⊙ e)p
≤ x and xq

≤ u ⊙ e for
some p, q ∈ N∗. Thus, for every i ∈ I , (ui ⊙ ei )

p
≤ xi and xq

i ≤ ui⊙ei hence xi ∈ [ui⊙ei ) and ui⊙ei ∈ [xi ), which
means that [xi ) = [ui ⊙ ei ) = [ui ) ∨ [ei ), then for every i ∈ I , ui ∈ Rad(Ai ) and ei ∈ B(Ai ), hence uk ∈ Rad(Ak)
and ek ∈ B(Ak), Also [xk) = [uk) ∨ [ck). Hence Ak satisfies in condition (*).

(ii) Similar to the proof of (i), once we notice that, if u = (ui )i∈I ∈ Rad(A), by Corollary 2.11, has u, ũ ∈ N (A),
then for all i ∈ I , ui , ũi ∈ N (Ai ).

Proposition 5.15. Let n ∈ N∗, (Ai )
n
i=1 be a family of pseudo BL-algebras and A =

∏n
i=1 Ai . Then

(i) A satisfies in condition (*) iff Ai satisfies in condition (*) for each i ∈ 1, n;
(ii) A satisfies in condition (**) iff Ai satisfies in condition (**) for each i ∈ 1, n.

Proof. (i) It follows from Proposition 5.14 (i).
Conversely, assume that each of A1, . . . , An satisfies in condition (*), and let x ∈ A. Then for every i ∈ 1, n, there

exist ui ∈ Rad(Ai ) and ei ∈ B(Ai ), such that [xi ) = [ui ) ∨ [ei ) = [ui ⊙ ei ), that is xi ∈ [ui ⊙ ei ) and ui ⊙ ei ∈ [xi )
so (ui ⊙ ei )

mi
≤ xi and xki

i ≤ ui ⊙ ei for some mi , ki ∈ N∗. Let e = (e1, . . . , en) ∈
∏n

i=1 B(Ai ) = B(A) and
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u = (u1, . . . , un) ∈
∏n

i=1Rad(Ai ). Let m = max{m1, . . . ,mn} ∈ N∗ and k = max{k1, . . ., kn} ∈ N∗. Then we get
that, for all i ∈ 1, n, (ui ⊙ ei )

m
≤ xi and xki

i ≤ ui ⊙ ei that is (u ⊙ e)m ≤ x and xk
≤ u ⊙ e. Hence x ∈ [u ⊙ e) and

u ⊙ e ∈ [x), which means that [x) = [u ⊙ e) = [u) ∨ [e). Therefore A satisfies in condition (*).
(ii) It follows from Proposition 5.14 (ii).
Conversely, the proof goes similar to the one above in (i). Once we notice that, if ũi , ui ∈ N (Ai ) for all i ∈ N∗,

then ũ = (ũ1, ũ2, . . . , ũn) ∈ N (A), u = (u1, . . . , un) ∈ N (A).

Proposition 5.16. The following conditions are equivalent
(i) A satisfies in condition (*);
(ii) A/R(Rad (A)) satisfies in condition (*) and R(Rad(A)) has RBLP (in A).

Proof. (i)H⇒(ii) By Proposition 5.12 (i), and Proposition 5.3 (i), if A satisfies in condition (*), then A/R(Rad (A))
satisfies in condition (*) and A has RBLP, hence R(Rad(A)) has RBLP.

(ii)H⇒(i) Assume that A/R(Rad (A)) satisfies in condition (*) and R(Rad(A)) has RBLP. And let x ∈ A be
arbitrary since A/R(Rad (A)) satisfies in condition (*), it follows that there exists u ∈ A such that

u/R(Rad (A)) ∈ Rad(A/R(Rad (A)))

= {{1} /R(Rad (A))}

and there exists e ∈ A such that

e/R(Rad (A)) ∈ B(A/R(Rad (A)))

= B(A)/R(Rad (A)).

Because R(Rad(A)) has RBLP, with the property that

[x/R(Rad (A))] = [u/R(Rad (A))] ∨ [e/R(Rad (A))]

= [u/R(Rad (A))⊙ e/R(Rad (A))].

But then u/R(Rad (A)) = 1/R(Rad (A)) and there exists f ∈ B(A) such that

e/R(Rad (A)) = f/R(Rad (A)).

Therefore,

[x/R(Rad (A))] = [1/R(Rad (A))⊙ f/R(Rad (A))]

= [ f/R(Rad (A))].

So x/R(Rad (A)) ∈ [ f/R(Rad (A))] and [ f/R(Rad (A))] ∈ [x/R(Rad (A))], that is

f/R(Rad (A)) = f m/R(Rad (A))

≤ x/R(Rad (A))

(since f ∈ B(A) thus f m
= f ) and xn/R(Rad (A)) ≤ f/R(Rad (A)) for some m, n ∈ N∗, so

xn/R(Rad (A)) ≤ f/R(Rad (A))

= f n/R(Rad (A))

≤ xn/R(Rad (A))

thus xn/R(Rad (A)) = f/R(Rad (A)) that is xn ↭ f , xn
↔ f ∈ R(Rad(A)). So xn

↔ f = u, xn ↭ f = u with
u ∈ R(Rad(A)) thus (xn

−→ f )∧ ( f → xn) = u, (xn ⇝ f )∧ ( f ⇝ xn) = u hence u ≤ xn
→ f ; u ≤ f → xn and

u ≤ xn ⇝ f , u ≤ f ⇝ xn , u ⊙ xn
≤ f , f ⊙ u ≤ xn

≤ x and xn
⊙ u ≤ f , f ⊙ u ≤ xn since f ⊙ u ≤ x implies

[x) ⊆ [ f ⊙ u) = [u ⊙ f ) = [u) ∨ [ f ).

This section contains representation theorems for semi local and maximal pseudo BL-algebra with RBLP (LBLP)
and a proof for the fact that local pseudo BL-algebra coincides with quasi-local pseudo-BL algebra whose Boolean
center is equal to {0, 1}.
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6. Pseudo BL-algebras with right (left) Boolean lifting property

Definition 6.1. A subset {x1, . . . , xn} ⊆ A, with n ∈ N∗, is said to complete iff
⋀n

i=1xi = 0 and xi ∨ x j = 1 for all
i, j ∈ 1, n such that i ̸= j . Clearly, if A is non-trivial, then any complete subset of A has at least two elements.

Definition 6.2. Pseudo BL-algebra A is semiperfect iff it satisfies the equivalent conditions from Proposition 2.19.

Corollary 6.3. Any semiperfect pseudo BL-algebra has RBLP.

Corollary 6.4. If Rad(A) has RBLP, then the following are equivalent
(i) A is semilocal;
(ii) A is isomorphic to a finite direct product of local pseudo BL-algebra.

Corollary 6.5. The following conditions are equivalent
(i) A is a semilocal pseudo MV-algebra (respectively a semilocal pseudo BL-algebra);
(ii) A is isomorphic to a finite direct product of local pseudo MV-algebra (respectively pseudo BL-algebra).

Corollary 6.6.
(i) If A is semilocal and Rad(A) has RBLP, then A satisfies in condition (*);
(ii) Any semi perfect pseudo BL-algebra satisfies in condition (*).

Proof. By Corollary 6.4, Propositions 5.9, 5.15 and 2.19 are clear.

Remark 6.7. We show that the converse implication (i) is not true. Example 3.4 has RBLP and all of elements of
A are idempotent, thus it satisfies in condition (*) (by Proposition 5.3). But it is not semi local since R([ai ))i∈I are
maximal filters of A.

Corollary 6.8. Any pseudo BL-algebra A with RBLP which is not satisfied in condition (*) has Max(A) infinite.
Equivalently if a pseudo BL-algebra A is such that Rad(A) has RBLP and A does not satisfy in condition (*), then A
has Max(A) infinite.

Definition 6.9. A is called a maximal pseudo-BL algebra iff, for any index set I , any family (ai )i∈I ⊆ A and any
family (Fi )i∈I ⊆ F(A), if these families have the property that, given any finite subset J of I , there exists x j ∈ A
such that x j/R(Fi ) = ai/R(Fi ) for all i ∈ J , then there exists x ∈ A such that x/R(Fi ) = ai/R(Fi ) for all i ∈ I .

Example 6.10. Any simple pseudo BL-algebra is maximal.

Proposition 6.11. The following conditions are equivalent
(i) A is maximal and has RBLP;
(ii) A is maximal and Rad(A) has RBLP;
(iii) A is isomorphic to a finite direct product of local maximal pseudo BL-algebra.

Proof. (i)H⇒(ii): Trivial.
(ii)H⇒(iii): According to Lemma 2.18(i) if A is maximal and e ∈ B(A), then [e) is maximal pseudo BL-algebra.

Now apply Proposition 2.19.
(iii)H⇒(i): According to Lemma 2.18 (iii) a finite direct product of local pseudo BL-algebra has RBLP.

Corollary 6.12. If Rad(A) has RBLP, then the following conditions are equivalent
(i) A is maximal;
(ii) A is isomorphic to finite direct product of local maximal pseudo BL-algebra.
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Proof. (i)H⇒ (ii) Let A be maximal. Since Rad(A) has RBLP so by Proposition 6.11, A is isomorphic to finite direct
product of local maximal pseudo BL-algebra.

(ii)H⇒(i) By Proposition 6.11 is clear.

Proposition 6.13. The following conditions are equivalent
(i) A is local;
(ii) A is quasi-local and B(A) = {0, 1};
(iii) A has RBLP and B(A) = {0, 1};
(iv) A satisfies (*) and B(A) = {0, 1};
(v) A = N (A) ∪ {x ∈ A|x, x̃ ∈ N (A)} and B(A) = {0, 1}.

Proof. (i) H⇒ (iv): By Proposition 5.9 and Lemma 2.18.
(iv)H⇒(iii): By Proposition 5.3 (i).
(iii)H⇒(v): By Remark 3.12 and Proposition 2.28.
(v)H⇒(iii): By Lemma 5.4.
(iii)⇔(ii): By Proposition 2.22.
(ii)H⇒(i): Assume that A is quasi-local and B(A) = {0, 1}. Let x, y ∈ A, be such that x ⊙ y ∈ N (A). That is

[x)∨ [y) = [x ⊙ y) = A, then according to Proposition 2.22 it follows that there exist e, f ∈ B(A) = {0, 1} such that
e∨F = 1 (thus e = 1 or f = 1) and [x⊙e) = [x)∨[e) = [x⊙F) = [y)∨[ f ) = A. If e = 1, then [x) = [x⊙1) = A,
thus x ∈ N (A): if f = 1, then [y) = [y ⊙ 1) = A. Hence y ∈ N (A), by Proposition 2.17 it follows that A is local.

Corollary 6.14.
(i) If B(A) = {0, 1}, then A satisfies in condition (*) iff A has RBLP iff A is local.
(ii) If all the elements of A are idempotent and B(A) = {0, 1}, then A satisfies in condition (*) iff A has RBLP iff

A satisfies in condition (**) iff A is local.

7. Conclusion

In 1998, Hajek presented BL-algebra; an algebraic semantics of basic fuzzy logic. They are generated by
continuous t-norms on the interval [0, 1] and their residuals. Then Georgescu introduced pseudo BL-algebra as a
non-commutative extension of BL-algebra. The idea of pseudo BL-algebra originates not only in logic and algebra,
but also in algebraic properties that come from the syntax of certain non-classical propositional logics, intuitionistic
logic. Lifting property for Boolean elements appears in the study of maximal MV-algebras and maximal BL-algebra.
The left lifting property for Boolean elements modulo, the radical, plays an essential part in the structure theorem for
maximal pseudo BL-algebra.

We studied the Boolean lifting property on pseudo BL-algebras and it was shown that pseudo BL-algebras with
LBLP (RBLP) are exactly the quasi-local pseudo BL-algebras. We showed that arbitrary pseudo BL-algebra has this
property iff for each arbitrary element x , there exists a Boolean element in the pseudo BL-algebra such that it belongs
to left filter. We consider that our results could contribute to the Boolean lifting theory on pseudo BL-algebras and
more some pseudo BL-algebra such as maximal, semi-perfect and local that equal conditions or left Boolean lifting
property to them is established, are explained.

We studied the behavior of RBLP (LBLP) with respect to direct products of pseudo BL-algebra. Moreover, we
showed that a finite direct product pseudo BL-algebra has RBLP iff each pseudo BL-algebra in the products has
RBLP (LBLP) and this holds for individual filter, as well. Weaker results hold for arbitrary direct product of pseudo
BL-algebra, so surjective mapping roles are studied in the direct product of pseudo BL-algebras.

In our next research, we are going to consider the notions of Congruence Boolean lifting property, and other lifting
properties in particular classes of pseudo BL-algebras.
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Abstract

Picture fuzzy set (PFS) is a recently developed tool to deal with uncertainty which is a direct extension of intuitionistic fuzzy
set (IFS) that can model uncertainty in such situations involving more answers of these types: yes, abstain, no. In this paper,
(α, δ, β)-cut and strong (α, δ, β)-cut of PFS have been defined and decomposition theorems of PFS are proved. Later on extension
principle for PFS has been defined and studied some of its properties. Finally, picture fuzzy arithmetic based on extension principle
has been performed with examples.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fuzzy set theory developed by Zadeh [1], plays an important role in decision making under uncertain environment.
Various direct/indirect extensions of fuzzy set have been made and successfully applied in most of the problems of
real world situation. An important generalization of fuzzy set theory is the theory of intuitionistic fuzzy set (IFS),
introduced by Atanassov [2] ascribing a membership degree and a non-membership degree separately in such a way
that sum of the two degrees must not exceed one. It is observed that fuzzy sets are IFSs but converse is not necessarily
correct. Later IFS has been applied in different areas by various researchers. It is seen that one of the important concept
of neutrality degree is lacking in IFS theory. Concept of neutrality degree can be seen in situations when we face human
opinions involving more answers of type: yes, abstain, no, refusal. For example, in a democratic election station, the
council issues 500 voting papers for a candidate. The voting results are divided into four groups accompanied with
the number of papers namely “vote for” (300), “abstain” (64), “vote against” (115) and “refusal of voting” (21).
Group “abstain” means that the voting paper is a white paper rejecting both “agree” and “disagree” for the candidate
but still takes the vote. Group “refusal of voting” is either invalid voting papers or bypassing the vote. On the other
hand, in medical diagnosis degree of neutrality can be considered. E.g., there may not have effect of the symptoms
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temperature, headache on the diseases stomach and chest problems. Similarly, the symptoms stomach pain and chest
pain have neutral effect on the diseases viral fever, malaria, typhoid etc. In this regards, Cuong and Kreinovich [3]
introduced Picture fuzzy set (PFS) which is a direct extension of fuzzy set and Intuitionistic fuzzy set by incorporating
the concept of positive, negative and neutral membership degree of an element. Cuong [4] studied some properties of
PFSs and suggested distance measures between PFSs. Phong and co-authors [5] studied some compositions of picture
fuzzy relations. Cuong and Hai [6] investigated main fuzzy logic operators: negations, conjunctions, disjunctions and
implications on picture fuzzy sets and also constructed main operations for fuzzy inference processes in picture fuzzy
systems. Cuong and co-workers [7] presented properties of an involutive picture negator and some corresponding De
Morgan fuzzy triples on picture fuzzy sets, Viet and co-authors [8] presented picture fuzzy inference system based
on membership graph, Singh [9] studied correlation coefficients of PFSs. Cuong and colleagues [10] investigated
the classification of representable picture t-norms and picture t-conorms operators for picture fuzzy sets., Son [11]
proposed a new distance measure between PFSs and applied in fuzzy clustering, Son [12] extended basic distance
measures in PFSs and examined some of its properties. Son, Viet and Hai [13] proposed fuzzy inference system
on PFSs. Peng and Dai [14] proposed an algorithm for PFS and applied in decision making based on new distance
measure, Wei [15] presented some process to measure similarity between PFS, Garg [16] studied some picture fuzzy
aggregation operations and their applications to multicriteria decision making.

In this paper, an attempt has been made to define (α, δ, β)-cut and strong (α, δ, β)-cut of PFS, height of PFS, level
set of PFS and special picture fuzzy set study etc. Based on (α, δ, β)-cut and strong (α, δ, β)-cut of PFS decomposition
theorems of PFS will be proved. Then, some properties of (α, δ, β)-cut of PFS will be studied. Further, extension
principle for PFS will be defined and some of its properties and finally picture fuzzy arithmetic based on extension
principle will be carried out.

2. Preliminaries

In this section some basic concept of fuzzy set, intuitionistic fuzzy set and picture fuzzy set has been reviewed.

2.1. Fuzzy set [1]

Fuzzy set is a set in which every element has degree of membership of belonging in it. Mathematically, let X be a
universal set. Then the fuzzy subset A of X is defined by its membership function

µA : X → [0, 1]

which assign a real number µA(x) in the interval [0, 1], to each element x ∈ A, where the value of µA(x) at x shows
the grade of membership of x in A.

2.2. Intuitionistic fuzzy set [2]

A Intuitionistic fuzzy set A on a universe of discourse X is of the form

A = {x, µA(x), νA(x) : x ∈ X},

where µA(x) ∈ [0, 1] is called the “degree of membership of x in A”, νA(x) ∈ [0, 1] is called the “degree of non-
membership of x in A”, and where µA(x) and νA(x) satisfy the following condition:

0 ≤ µA(x) + νA(x) ≤ 1.

The amount πA(x) = 1 − (µA(x) + νA(x)) is called hesitancy of x which is reflection of lack of commitment or
uncertainty associated with the membership or non-membership or both in A.

2.3. Picture fuzzy set [3]

A Picture Fuzzy Set (PFS) A on a universe X is an object of the form

A = {(x, µA (x) , ηA (x) , νA (x)) |x ∈ X}
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where µA (x) ∈ [0, 1] is called the degree of positive membership (PM) of x in A, ηA (x) ∈ [0, 1] is called the degree
of neutral membership (NeuM) of x in A, νA (x) ∈ [0, 1] is called the degree of negative membership (NM) of x
in A.

µA (x) , ηA (x) , νA (x) must satisfy the condition µA (x) + ηA (x) + νA (x) ≤ 1 ∀ x ∈ X .
Then ∀x ∈ X, 1 − (µA (x) + ηA (x) + νA (x)) is called the degree of refusal membership of “x” in A.

2.4. (α, δ, β)-Cut of picture fuzzy set

Let A be a picture fuzzy set of a universe set X . Then (α, δ, β)-cut of A is a crisp subset Cα,δ,β(A) of the IFS A is
given by

Cα,δ,β(A) = {x : x ∈ X such that µA(x) ≥ α, ηA(x) ≤ δ, νA(x) ≤ β},
where α, δ, β ∈ [0, 1] with α + δ + β ≤ 1.

That is, α A+ = {x ∈ X : µA(x) ≥ α}, δ A± = {x ∈ X : ηA(x) ≤ δ} and β A− = {x ∈ X : νA(x) ≤ β} are α, δ and
β-cut of PF, NeuM & NM respectively of a PFS A, where A+, A± & A− indicates positive membership function
(PM), Neutral membership function (NeuM) & negative membership function (NM) respectively.

2.5. Strong (α, δ, β)-Cut of picture fuzzy set

Let A be a picture fuzzy set of a universe set X . Then, strong (α, δ, β)-cut of A is a crisp subset +Cα,δ,β(A) of the
IFS A is given by

+Cα,δ,β(A) = {x : x ∈ X such that µA(x) > α, ηA(x) < δ, νA(x) < β},
where α, δ, β ∈ [0,1] with α + δ + β ≤ 1.

That is, α+ A+ = {x ∈ X : µA(x) > α}, δ+ A± = {x ∈ X : ηA(x) < δ} and β+ A− = {x ∈ X : νA(x) < β} are strong
α, δ and β -cut of PF, NeuM & NM respectively of a PFS A.

2.6. Height of a PFS

Let A be a PFS then height for PM is defined as

Hgt(A+) = Sup{µA(x)}

height for NeuM is defined as

Hgt(A±) = I n f {ηA(x)}

and height for NM is defined as

Hgt(A−) = I n f {νA(x)}.

2.7. Level Set of PFS

Let A be a PFS then level set for PM is defined as

Λ(A+) = {α : µA(x) = α, α ∈ [0, w1]}

level set for NeuM is defined as

Λ(A±) = {δ : ηA(x) = δ, δ ∈ [w2, 1]}

and level set for NM is defined as

Λ(A−) = {β : νA(x) = β, β ∈ [w3, 1]}

where w1, w2 and w3 are heights of PM, NeuM and NM of a PFS A.
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2.8. Special Picture Fuzzy Set

Let A be a PFS defined on the universe of discourse X .
Then, special Picture fuzzy set with respect to (α, δ, β)-cut is defined as

A = (α, δ, γ )C(α,δ,γ )(A).

That is, αA+ = α. α A+, δA± = δ. δ A± and γ A− = γ . γ A− are special picture fuzzy sets of PM, NeuM and NM
respectively.

If x ∈
α A+ then αA+(x) = α. α A+(x) = α, otherwise αA+(x) = α. α A+(x) = 0.

But, if x ∈
δ A± then δA±(x) = δ. δ A±(x) = δ while if x ̸∈

δ A± then δA±(x) = δ. δ A±(x) = 1.
Similarly, if x ∈

γ A− then γ A−(x) = γ.γ A−(x) = γ and if x ̸∈
γ A− then γ A−(x) = γ . γ A−(x) = 1.

In the similar fashion, special picture fuzzy set with respect to strong (α, δ, β)-cut can be defined.

3. Proposition [3]

If A = {(x, µA (x) , ηA (x) , νA (x)) |x ∈ X} and B = {(x, µB (x) , ηB (x) , νB (x)) |x ∈ X} be any two PFS of a
set X then

(1) A ⊆ B iff ∀x ∈ X , µA (x) ≤ µB (x) , ηA (x) ≥ ηB (x) and νA (x) ≥ νB (x).
(2) A = B iff ∀x ∈ X , µA (x) = µB (x) , ηA (x) = ηB (x) and νA (x) = νB (x).
(3) A ∪ B = {(x, max (µA (x) , µB (x)) , min (ηA (x) , ηB (x)) , min (νA (x) , νB (x))) |x ∈ X}

(4) A ∩ B = {(x, min (µA (x) , µB (x)) , max (ηA (x) , ηB (x)) , max (νA (x) , νB (x))) |x ∈ X}.

4. Decomposition theorem for PFS

In this section, decomposition theorems for PFS have been discussed.

Theorem 4.1 (First Decomposition Theorem).
Let X be a universe of discourse. For any PFS A = {(x, µA (x) , ηA (x) , νA (x)) |x ∈ X} in X ,

A =

⋃
α∈[0,w1],
δ∈[w2,1],
γ∈[w3,1]

(α, δ, γ )C(α,δ,γ )(A)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⋃
α∈[0,w1]

αA+ for PM

⋂
α∈[w2,1]

δA± for NeuM

⋂
α∈[w3,1]

γ A− for NM

where A+, A±&A− indicates positive membership function (PM), Neutral membership function (NeuF) & negative
membership function (NF) respectively; αA+ = α. α A+, δA± = δ. δ A± and γ A− = γ . γ A− are special picture fuzzy
sets; ∪ and ∩ are standard fuzzy union and intersection respectively. Also, where w1, w2 and w3 are heights of PM,
NeuM and NM of the PFS A.

Proof. For PM, let for each x ∈ X, µA(x) = a where a ∈ [0, w1] which indicates degree of belonging in A.
Then,⋃

α∈[0,w1]

αA+(x) = Sup
α∈[0,w1]

αα A+(x)

= max

[
Sup

α∈[0,a]
αα A+(x), Sup

α∈(a,w1]
αα A+(x)

]
.

(4.1)

If α ∈ [0, a] then α ≤ a = µA(x)
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i.e., α ∈
α A+ then αα A+ = α.

If α ∈ (a, w1] then α > a = µA(x)

i.e., α ̸∈
α A+ then αα A+ = 0.

Hence from (4.1), we have⋃
α∈[0,w1]

αA+ = max[ Sup
α∈[0,a]

α, 0]

= a
= µA(x).

For NeuM, let for each x ∈ X, ηA(x) = b where b ∈ [w2, 1] which indicates degree of neutrality in A.

∩
δ∈[w2,1]

δA± = I n f
δ∈[w2,1]

δδ A±

= min[ I n f
δ∈[w2,b)

δδ A±, I n f
δ∈[b,1]

δδ A±].
(4.2)

If δ ∈ [w2, b) then δ < b = ηA(x).

i.e., δ ̸∈
δ A± then δδ A± = 1.

If δ ∈ [b, 1] then δ ≥ b = ηA(x)

i.e., δ ∈
δ A± then δδ A± = δ.

Hence from (4.2), we have⋂
δ∈[w2,1]

δA± = min[1, I n f δ
δ∈[b,1]

]

= b
= ηA(x), ∀x ∈ X.

For NM, let for each x ∈ X, νA(x) = b where c ∈ [w3, 1] which indicates degree of non-belonging in A.⋂
γ∈[w3,1]

γ A− = I n f
γ∈[w3,1]

γ γ A−

= min[ I n f
γ∈[w3,c)

γ γ A−, I n f
γ∈[c,1]

γ γ A−]
(4.3)

If γ ∈ [w3, c) then γ < c = νA(x)

i.e., γ ̸∈
γ A− then γ γ A− = 1.

If γ ∈ [c, 1] then α ≥ c = νA(x)

i.e., γ ∈
γ A− then γ γ A− = γ .

Hence from (4.3), we have⋂
γ∈[w3,1]

γ A− = min[1, I n f γ
γ∈[c,1]

]

= c

= νA(x), ∀x ∈ X.

Thus, A =
⋃

α∈[0,w1],
δ∈[w2,1],
γ∈[w3,1]

(α, δ, γ )C(α,δ,γ )(A).
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Theorem 4.2 (Second Decomposition Theorem).
Let X be a universe of discourse. For any PFS A = {(x, µA (x) , ηA (x) , νA (x)) |x ∈ X} in X ,

A =

⋃
α∈[0,w1],
δ∈[w2,1],
γ∈[w3,1]

(α, δ, γ )[+]C(α,δ,γ )(A)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⋃
α∈[0,w1]

(α+)A+ for MP

⋂
α∈[w2,1]

(δ+)A± for NeuM

⋂
α∈[w3,1]

(γ+)A− for NM

where A+, A±&A− indicates positive membership function (PM), Neutral membership function (NeuF) & negative
membership function (NF) respectively; (α+)A+ = α. α+ A+, (δ+)A± = δ. δ+ A± and (γ+)A− = γ . γ+ A− are
special picture fuzzy sets; ∪ and ∩ are standard fuzzy union and intersection respectively. Also, where w1, w2 and w3

are heights of PM, NeuM and NM of a PFS A .

Proof. For PM, let for each x ∈ X , µA(x) = a where a ∈ [0, w1] which indicates degree of belonging in A.
Then,⋃

α∈[0,w1]

(α+)A+ = Sup
α∈[0,w1]

αα+ A+

= max

[
Sup

α∈[0,a)
αα+ A+, Sup

α∈[a,w1]
αα+ A+

]
.

(4.4)

If α ∈ [0, a) then α < a = µA(x)
i.e., α ∈

α+ A+ then αα+ A+ = α.
If α ∈ [a, w1] then α ≥ a = µA(x)
i.e., α ̸∈

α+ A+ then αα+ A+ = 0.

Hence from (4.4), we have⋃
α∈[0,w1]

(α+)A+ = max[ Sup
α∈[0,a)

α, 0]

= a

= µA(x), ∀x ∈ X.

For NeuM, let for each x ∈ X, ηA(x) = b where b ∈ [w2, 1] which indicates degree of neutrality in A.⋂
δ∈[w2,1]

(δ+)A± = I n f
δ∈[w2,1]

δδ+ A±

= min

[
I n f

δ∈[w2,b]
δδ+ A±, I n f

δ∈(b,1]
δδ+ A±

]
.

(4.5)

If δ ∈ [w2, b] then δ ≤ b = ηA(x).
i.e., δ ̸∈

δ+ A± then δδ+ A± = 1.
If δ ∈ (b, 1] then δ > b = ηA(x)
i.e., δ ∈

δ+ A± then δδ+ A± = δ.
Hence from (4.5), we have⋂

δ∈[w2,1]

(δ+)A± = min[1, I n f δ
δ∈[b,1]

]

= b
= ηA(x), ∀x ∈ X.
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For NM, let for each x ∈ X, νA(x) = b where c ∈ [w3, 1] which indicates degree of non-belonging in A.⋂
γ∈[w3,1]

(γ+)A− = I n f
γ∈[w3,1]

γ γ+ A−

= min

[
I n f

γ∈[w3,c]
γ γ+ A−, I n f

γ∈(c,1]
γ γ+ A−

]
.

(4.6)

If γ ∈ [w3, c] then γ ≤ c = νA(x)
i.e., γ ̸∈

γ+ A− then γ γ+ A− = 1.
If γ ∈ (c, 1] then α > c = νA(x)
i.e., γ ∈

γ+ A− then γ γ+ A− = γ .
Hence from (4.6), we have⋂

γ∈[w3,1]

(γ+)A− = min[1, I n f γ
γ∈[c,1]

]

= c
= νA(x), ∀x ∈ X.

A =

⋃
α∈[0,w1],
δ∈[w2,1],
γ∈[w3,1]

(α, δ, γ )[+]C(α,δ,γ )(A)

Theorem 4.3 (Third Decomposition Theorem).
Let X be a universe of discourse. For any PFS A = {(x, µA (x) , ηA (x) , νA (x)) |x ∈ X} in X ,

A = ∪ α∈Λ(A+),
δ∈Λ(A±),
γ∈Λ(A−)

(α, δ, γ )C(α,δ,γ )(A)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋃
α∈Λ(A+)

αA+ for PM⋂
α∈Λ(A±)

δA± for NeuM

∩
α∈Λ(A−)

γ A− for NM

where A+, A±&A− indicates positive membership function (PM), Neutral membership function (NeuF) & non-
membership function (NF) respectively; αA+ = α. α A+, δA± = δ. δ A± and γ A− = γ . γ A− are special picture
fuzzy sets; ∪ and ∩ are standard fuzzy union and intersection respectively and Λ(A+),Λ(A±) and Λ(A−) are the level
sets of PM, NeuM and NM of A.

Proof is straight forward as above.

5. Properties of picture fuzzy set

In this section, some properties of (α, δ, β)-Cut of picture fuzzy set (PFS).

Theorem 5.1. If A and B be two PFS’ of a universe set X , then the following holds

(I) Cα,δ,β(A) ⊆ C??,??,??(A) if α ≥ ??, δ ≤ ??, β ≤ ??
(II) C1−δ−β,δ,β(A) ⊆ Cα,δ,β(A) ⊆ Cα,1−α−β,β(A)

(III) A ⊆ B implies Cα,δ,β(A) ⊆ Cα,δ,β(B)
(IV) Cα,δ,β(A ∩ B) = Cα,δ,β(A) ∩ Cα,δ,β(B)
(V) Cα,δ,β(A ∪ B) ⊇ Cα,δ,β(A) ∪ Cα,δ,β(B)

(VI) Cα,δ,β(∩Ai ) = ∩Cα,δ,β(Ai )
(VII) C1,0,0(A) = X.
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Proof.
(I) Cα,δ,β(A) ⊆ C??,??,??(A) if α ≥ ??, δ ≤ ??, β ≤ ??.

Let x ∈ Cα,δ,β(A)
⇒ µA(x) ≥ α, ηA(x) ≤ δ, νA(x) ≤ β

Since, we have α ≥ ??, δ ≤ ??, β ≤ ??
⇒ µA(x) ≥ α ≥ ??, ηA(x) ≤ δ ≤ ??, νA(x) ≤ β ≤ ??
⇒ µA(x) ≥ ??, ηA(x) ≤ ??, νA(x) ≤ ??
⇒ x ∈ C??,θ,??(A)
⇒ Cα,δ,β(A) ⊆ C??,??(A).

(II) C1−δ−β,δ,β(A) ⊆ Cα,δ,β(A) ⊆ Cα,1−α−β,β(A)

Since α + δ + β ≤ 1 implies that 1 − δ − β ≥ α and δ ≤ δ, β ≤ β.

Therefore, from (I ) we get C1−δ−β,δ,β(A) ⊆ Cα,δ,β(A) (5.1)
Again α ≥ α, δ ≤ 1 − α − β and β ≤ β

Therefore, from (I ) we get Cα,δ,β(A) ⊆ Cα,1−α−β,β(A). (5.2)

From (5.1) and (5.2) we get

C1−δ−β,δ,β(A) ⊆ Cα,δ,β(A) ⊆ Cα,1−α−β,β(A)

(III) A ⊆ B implies Cα,δ,β(A) ⊆ Cα,δ,β(B)

Let x ∈ Cα,δ,β(A)
⇒ µA(x) ≥ α, ηA(x) ≤ δ, νA(x) ≤ β

As B ⊇ A

⇒ µB(x) ≥ µA(x) ≥ α, ηB(x) ≤ ηA(x) ≤ δ, νB(x) ≤ νA(x) ≤ β

⇒ µB(x) ≥ α, ηB(x) ≤ δ, νB(x) ≤ β

⇒ x ∈ Cα,δ,β(B)
⇒ Cα,δ,β(A) ⊆ Cα,δ,β(B)

(IV) Cα,δ,β(A ∩ B) = Cα,δ,β(A) ∩ Cα,δ,β(B)

We have A ∩ B ⊆ A and A ∩ B ⊆ B

Therefore, from (III)
Cα,δ,β(A ∩ B) ⊆ Cα,δ,β(A) and Cα,δ,β(A ∩ B) ⊆ Cα,δ,β(B)

⇒ Cα,δ,β(A ∩ B) ⊆ Cα,δ,β(A) ∩ Cα,δ,β(B). (5.3)

Now, let

x ∈ Cα,δ,β(A) ∩ Cα,δ,β(B)
⇒ x ∈ Cα,δ,β(A) and x ∈ Cα,δ,β(B)
⇒ µA(x) ≥ α; µB(x) ≥ α ⇒ µA(x) ∧ µB(x) ≥ α ⇒ (µA ∩ µB)(x) ≥ α

ηA(x) ≤ δ; ηB(x) ≤ δ ⇒ ηA(x) ∨ ηB(x) ≤ δ ⇒ (ηA ∩ ηB)(x) ≤ δ

νA(x) ≤ β; νB(x) ≤ β ⇒ νA(x) ∨ νB(x) ≤ β ⇒ (νA ∩ νB)(x) ≤ β

⇒ x ∈ Cα,δ,β(A ∩ B)

⇒ Cα,δ,β(A) ∩ Cα,δ,β(B) ⊆ Cα,δ,β(A ∩ B). (5.4)
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From (5.3) and (5.4) we have

Cα,δ,β(A ∩ B) = Cα,δ,β(A) ∩ Cα,δ,β(B).

(V) Cα,δ,β(A ∪ B) ⊇ Cα,δ,β(A) ∪ Cα,δ,β(B)

Again, since A ⊆ A ∪ B and B ⊆ A ∪ B.

Hence from (III) we get
Cα,δ,β(A) ⊆ Cα,δ,β(A ∪ B) and Cα,δ,β(B) ⊆ Cα,δ,β(A ∪ B)
⇒ Cα,δ,β(A) ∪ Cα,δ,β(B) ⊆ Cα,δ,β(A ∪ B)

(VI) Cα,δ,β(∩Ai ) = ∩Cα,δ,β(Ai )

: Let x ∈ Cα,δ,β(∩Ai )
⇒ (∩µAi )(x) ≥ α, (∩ηAi )(x) ≤ δ, (∩νAi )(x) ≤ β

⇒ ∧µAi (x) ≥ α, ∨ηAi (x) ≤ δ, ∨νAi (x) ≤ β

⇒ x ∈ Cα,δ,β(Ai ); for all ‘i’
⇒ x ∈ ∩Cα,δ,β(Ai )

⇒ Cα,δ,β(∩Ai ) ⊆ ∩Cα,δ,β(Ai ) (5.5)

Let x ∈ ∩Cα,δ,β(Ai )
⇒ x ∈ Cα,δ,β(Ai ) ∀i.
⇒ ∧µAi (x) ≥ α, ∨ηAi (x) ≤ δ, ∨νAi (x) ≤ β

⇒ (∩µAi )(x) ≥ α, (∩ηAi )(x) ≤ δ, (∩νAi )(x) ≤ β

⇒ x ∈ Cα,δ,β(∩Ai )

⇒ ∩Cα,δ,β(Ai ) ⊆ Cα,δ,β(∩Ai ). (5.6)

From (5.5) and (5.6) we have

Cα,δ,β(∩Ai ) = ∩Cα,δ,β(Ai ).

(VII) C1,0,0(A) = X

C1,0,0(A) = {x : x ∈ X such that µA(x) ≥ 1, ηA(x) ≤ 0, νA(x) ≤ 0}

= X.

6. Extension principle of PFS

Definition 6.1. Let X and Y be two non empty sets and f : X → Y be a mapping. Let A and B be PFS’ of X and Y
respectively. Then the image of A under the map f is denoted by f (A) and is defined as

f (A)(y) = (µ f (A)(y), η f (A)(y), ν f (A)(y)), where
µ f (A)(y) = ∨{µA(x) : x ∈ f −1(y)};
η f (A)(y) = ∧{ηA(x) : x ∈ f −1(y)};
ν f (A)(y) = ∧{νA(x) : x ∈ f −1(y)};

i.e f (A)(y) = (∨{µA(x) : x ∈ f −1(y)}, ∧{ηA(x) : x ∈ f −1(y)}, ∧{νA(x) : x ∈ f −1(y)}).
Also the pre-image of B under ‘ f ’ is denoted by f −1(B) and is defined as

f −1(B)(x) = (µ f −1(B)(x), η f −1(B)(x), ν f −1(B)(x))

where µ f −1(B)(x) = µB( f (x)), η f −1(B)(x) = ηB( f (x)) and ν f −1(B)(x) = νB( f (x))

i.e f −1(B)(x) = µB( f (x)), ηB( f (x)), νB( f (x)).
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Theorem 6.1. Let f : X → Y be a mapping. Then the following holds
(i) f (Cα,δ,β(A)) ⊆ Cα,δ,β( f (A)), for all A ∈ PFS(X ).
(ii) f −1(Cα,δ,β(B)) = Cα,δ,β( f −1(B)), for all B ∈ PFS(Y ).

Proof. (i) Let y ∈ f (Cα,δ,β(A)) then there exists a x ∈ Cα,δ,β(A) such that

f (x) = y and µA(x) ≥ α, ηA(x) ≤ δ, νA(x) ≤ β

⇒ ∨{µA(x) : x ∈ f −1(y)} ≥ α, ∧{ηA(x) : x ∈ f −1(y)} ≤ δ, ∧{νA(x) : x ∈ f −1(y)} ≤ β

i.e µ f (A)(y) ≥ α, η f (A)(y) ≤ δ, ν f (A)(y) ≤ β

i.e y ∈ Cα,δ,β( f (A)).

Hence f (Cα,δ,β(A)) ⊆ Cα,δ,β( f (A)), for all A ∈ I F S(X ).
(ii) Cα,δ,β( f −1(B))

= {x ∈ X : µ f −1(B)(x) ≥ α, η f −1(B)(x) ≤ δ, ν f −1(B)(x) ≤ β}

= {x ∈ X : µB( f (x)) ≥ α, ηB( f (x)) ≤ δ, νB( f (x)) ≤ β}

= {x ∈ X : f (x) ∈ Cα,δ,β(B)}
= {x ∈ X : x ∈ f −1(Cα,δ,β(B))}
= f −1(Cα,δ,β(B))

Thus, Cα,δ,β( f −1(B)) = f −1(Cα,δ,β(B))

7. Picture fuzzy arithmetic

In this section, picture fuzzy arithmetic operations will be performed based on extension principle with numerical
illustrations.

Let A and B be PFSs. Then, A ∗ B (where ∗ ∈ (+, −, ·, /)) is defined as

A ∗ B = {z, µA∗B(z), ηA∗B(z), νA∗B(z)}

where µA∗B(z) = ∨[µA(x) ∧ µB(y)], ηA∗B(z) = ∧[ηA(x) ∨ ηB(y)], νA∗B(z) = ∧[νA(x) ∨ νB(y)] and x ∗ y = z.
Example: Let A and B be two picture fuzzy sets where

A = {(2, 0.4, 0.2, 0.3), (3, 0.7, 0.1, 0.1), (4, 0.6, 0.2, 0.2)} and B = {(1, 0.6, 0.1, 0.2), (2, 0.5, 0.2, 0.1)}.

7.1. Addition of picture fuzzy sets:

Addition of two picture fuzzy sets A and B can be written as:

A + B = {z, µA+B(z), ηA+B(z), νA+B(z)}

where µA+B(z) = ∨[µA(x) ∧ µB(y)], ηA+B(z) = ∧[ηA(x) ∨ ηB(y)], νA+B(z) = ∧[νA(x) ∨ νB(y)] and x + y = z.
Then, the addition of the picture fuzzy sets A and B is

A + B = {(2 + 1, min(0.4, 0.6), max(0.2, 0.1), max(0.3, 0.2)), (2 + 2, min(0.4, 0.5), max(0.2, 0.2),
max(0.3, 0.1))(3 + 1, min(0.7, 0.6), max(0.1, 0.1), max(0.1, 0.2)), (3 + 2, min(0.7, 0.5),
max(0.1, 0.2), max(0.1, 0.1))(4 + 1, min(0.6, 0.6), max(0.2, 0.1), max(0.2, 0.2)),
(4 + 2, min(0.6, 0.5), max(0.2, 0.2), max(0.2, 0.1))}

= {(3, 0.4, 0.2, 0.3), (4, 0.4, 0.2, 0.3), (4, 0.6, 0.1, 0.2), (5, 0.5, 0.2, 0.1),
(5, 0.6, 0.2, 0.2), (6, 0.5, 0.2, 0.2)}

= {(3, 0.4, 0.2, 0.3), (4, max(0.4, 0.6), min(0.2, 0.1), min(0.3, 0.2)), (5, max(0.5, 0.6), min(0.2, 0.2),
min(0.1, 0.2)), (6, 0.5, 0.2, 0.2)}

= {(3, 0.4, 0.2, 0.3), (4, 0.6, 0.1, 0.2), (5, 0.6, 0.2, 0.1), (6, 0.5, 0.2, 0.2)}
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7.2. Subtraction of picture fuzzy sets:

Subtraction of two picture fuzzy sets A and B can be written as:

A − B = {z, µA−B(z), ηA−B(z), νA−B(z)}

where µA−B(z) = ∨[µA(x) ∧ µB(y)], ηA−B(z) = ∧[ηA(x) ∨ ηB(y)], νA−B(z) = ∧[νA(x) ∨ νB(y)] and x − y = z.
Then, the subtraction of the picture fuzzy sets A and B is

A − B = {(2 − 1, min(0.4, 0.6), max(0.2, 0.1), max(0.3, 0.2)), (2 − 2, min(0.4, 0.5),
max(0.2, 0.2), max(0.3, 0.1)), (3 − 1, min(0.7, 0.6), max(0.1, 0.1),
max(0.1, 0.2)), (3 − 2, min(0.7, 0.5), max(0.1, 0.2), max(0.1, 0.1)), (4 − 1, min(0.6, 0.6),
max(0.2, 0.1), max(0.2, 0.2)), (4 − 2, min(0.6, 0.5), max(0.2, 0.2), max(0.2, 0.1))}

= {(1, 0.4, 0.2, 0.3), (0, 0.4, 0.2, 0.3), (2, 0.6, 0.1, 0.2), (1, 0.5, 0.2, 0.1),
(3, 0.6, 0.2, 0.2), (2, 0.5, 0.2, 0.2)}

= {(0, 0.4, 0.2, 0.3), (1, max(0.4, 0.5), min(0.2, 0.2), min(0.3, 0.1)), (2, max(0.6, 0.5),
min(0.1, 0.2), min(0.2, 0.2)), (3, 0.6, 0.2, 0.2)}

= {(0, 0.4, 0.2, 0.3), (1, 0.5, 0.2, 0.1), (2, 0.6, 0.1, 0.2), (3, 0.6, 0.2, 0.2)}

7.3. Multiplication of Picture fuzzy sets:

Multiplication of two fuzzy sets A and B can be written as:

A × B = {z, µA×B(z), ηA×B(z), νA×B(z)}

where µA×B(z) = ∨[µA(x) ∧ µB(y)], ηA×B(z) = ∧[ηA(x) ∨ ηB(y)], νA×B(z) = ∧[νA(x) ∨ νB(y)] and x × y = z.
Then, the multiplication of the fuzzy sets A and B is

A × B = {(1 × 2, min(0.2, 0.1), max(0.3, 0.3), max(0.1, 0.3)), (1 × 3, min(0.2, 0.2), max(0.3, 0.4),
max(0.1, 0.4))(2 × 2, min(0.1, 0.1), max(0.3, 0.3), max(0.4, 0.3)), (2 × 3, min(0.1, 0.2),
max(0.3, 0.4), max(0.4, 0.4)), (3 × 2, min(0.5, 0.1), max(0.3, 0.3), max(0.1, 0.3)),
(3 × 3, min(0.5, 0.2), max(0.3, 0.4), max(0.1, 0.4))}

= {(2, 0.1, 0.3, 0.3), (3, 0.2, 0.4, 0.4), (4, 0.1, 0.3, 0.4), (6, 0.1, 0.4, 0.4),
(6, 0.1, 0.3, 0.3), (9, 0.2, 0.4, 0.4)}

= {(2, 0.1, 0.3, 0.3), (3, 0.2, 0.4, 0.4), (4, 0.1, 0.3, 0.4), (6, max(0.1, 0.1), min(0.3, 0.4),
min(0.3, 0.4)), (9, 0.2, 0.4, 0.4)}

= {(2, 0.1, 0.3, 0.3), (3, 0.2, 0.4, 0.4), (4, 0.1, 0.3, 0.4), (6, 0.1, 0.3, 0.3), (9, 0.2, 0.4, 0.4)}.

7.4. Division of picture fuzzy sets:

Division of two fuzzy sets A and B can be written as:

A/B = {z, µA/B(z), ηA/B(z), νA/B(z)}

where µA/B(z) = ∨[µA(x) ∧ µB(y)], ηA/B(z) = ∧[ηA(x) ∨ ηB(y)], νA/B(z) = ∧[νA(x) ∨ νB(y)] and x/y = z.
Then, the division of the fuzzy sets A and B is

A/B = {(2/1, min(0.1, .6), max(0.3, 0.2), max(0.2, 0.2)), (2/2, min(0.1, 0.7), max(0.3, 0.1),
max(0.2, 0.2))(4/1, min(0.1, 0.6), max(0.6, 0.2), max(0.2, 0.2)),
(4/2, min(0.1, 0.7), max(0.6, 0.1), max(0.2, 0.2))}

= {(2, 0.1, 0.3, 0.2), (1, 0.1, 0.3, 0.2), (4, 0.1, 0.6, 0.2), (2, 0.1, 0.6, 0.2)}
= {(1, 0.1, 0.3, 0.2), (2, max(0.1, 0.1), min(0.3, 0.6), min(0.2, 0.2)), (4, 0.1, 0.6, 0.2)}
= {(1, 0.1, 0.3, 0.2), (2, 0.1, 0.3, 0.2), (4, 0.1, 0.6, 0.2)}.
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8. Conclusion

In this piece of work, foremost (α, δ, β)-cut and strong (α, δ, β)-cut of PFS, height of PFS, level set of PFS and
special PFS have been defined. Afterwards Decomposition theorems of PFS have been proved. Although some sort
of works on PFSs can be seen in literature but Decomposition theorems or other defined important component of PFS
have not been defined or proved yet which are integral parts of PFS. Especially, Decomposition theorems will the
researches to perform arithmetic operations of continuous PFSs. Later on extension principle for PFS has been defined
and studied some of its properties. Finally, picture fuzzy arithmetic based on extension principle has been performed
with examples.

References
[1] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–356.
[2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
[3] B.C. Cuong, V. Kreinovich, Picture Fuzzy Sets- a new concept for computational intelligence problems, in: Proceedings of the Third World

Congress on Information and Communication Technologies WIICT, 2013, pp. 1–6.
[4] B.C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern. 30 (2014) 409–420.
[5] P.H. Phong, D.T. Hieu, R.T.H. Ngan, P.T. Them, Some compositions of picture fuzzy relations, in: Proceedings of the 7th National Conference

on Fundamental and Applied Information Technology Research, FAIR’7, Thai Nguyen, 2014, pp. 19–20.
[6] B.C. Cuong, P.V. Hai, Some fuzzy logic operators for picture fuzzy sets, in: Seventh International Conference on Knowledge and Systems

Engineering, 2015, pp. 132–137.
[7] B.C. Cuong, R.T. Ngan, B.D. Hai, An involutive picture fuzzy negator on picture fuzzy sets and some De Morgan triples, in: Seventh

International Conference on Knowledge and Systems Engineering, 2015, pp. 126–131.
[8] P.V. Viet, H.T.M. Chau, P.V. Hai, Some extensions of membership graphs for picture inference systems, in: 2015 Seventh International

Conference on Knowledge and Systems Engineering, (KSE), IEEE, 2015, pp. 192–197.
[9] P. Singh, Correlation coefficients for picture fuzzy sets, J. Intell. Fuzzy Syst. 28 (2015) 591–604.

[10] B.C. Cuong, V. Kreinovich, R.T. Ngan, A classification of representable t-norm operators for picture fuzzy sets, in: 2016 Eighth International
Conference on Knowledge and Systems Engineering, (KSE), IEEE, 2016, pp. 19–24.

[11] L.H. Son, Generalized picture distance measure and applications to picture fuzzy clustering, Appl. Soft Comput. J. (2016). http://dx.doi.org/
10.1016/j.asoc.2016.05.009.

[12] L.H. Son, Measuring analogousness in picture fuzzy sets: from picture distance measures to picture association measures, Fuzzy Optim.
Decis. Mak. (2017) 1–20.

[13] L.H. Son, P. Viet, P. Hai, Picture inference system: a new fuzzy inference system on picture fuzzy set, Appl. Intell. 46 (2017) 652–669.
[14] X. Peng, J. Dai, Algorithm for picture fuzzy multiple attribute decision making based on new distance measure, Int. J. Uncertain. Quant. 7

(2017) 177–187.
[15] G.W. Wei, Some similarity measures for picture fuzzy sets and their applications, Iran. J. Fuzzy Syst. (2017). http://ijfs.usb.ac.ir/article_3273.

html.
[16] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng. (2017) 1–16.

http://dx.doi.org/10.1007/s13369-017-2625-9.



Available online at www.sciencedirect.com

ScienceDirect

Transactions of A. Razmadze Mathematical Institute 172 (2018) 176–188
www.elsevier.com/locate/trmi

Original Article

Speeding up the convergence of the Polyak’s Heavy Ball algorithm

Koba Gelashvili∗, Irina Khutsishvili, Luka Gorgadze, Lela Alkhazishvili

Department of Computer Science, Tbilisi State University, TSU Building/Block 11, 13 University Str, 0186 Tbilisi, Georgia

Received 2 January 2018; received in revised form 21 February 2018; accepted 5 March 2018
Available online 12 April 2018

Abstract

In the presented work, some procedures, usually used in modern algorithms of unconstrained optimization, are added to Polyak’s
heavy ball method. Namely, periodical restarts, which guarantees monotonic decrease of the objective function along successive
iterates, while restarts involve updating of the step size on the base of line search method.

For smooth objective functions, the Heavy Ball (briefly HB) and Modified Heavy Ball (briefly MHB) algorithms are described
along with the problem of simplifying the form of used line-search algorithm (without changing its content). MHB and the set of
test functions are implemented in C++. The set of test functions contains 44 functions, taken from Cuter/st. Solver CG_DESCENT-
C-6.8 was used for MHB benchmarking. Test-functions and other materials, related to benchmarking, are uploaded to GitHub: htt
ps://github.com/kobage/.

In case of smooth and convex objective function, the convergence analysis is concentrated on reducing transformations and
their orbits. A concept of reducing transformation allows us to investigate algebraic structure of convergent methods.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Modified heavy ball algorithm; Nonlinear conjugate gradient methods; Nonlinear programming; C++; Visual studio; AMPL; Knitro;
CG_DESCENT-C-6.8

1. Introduction

Motivation. Polyak’s heavy ball method or simply HB (see [1]), in contrast to the modern efficient methods
(see [2,3]) of solving

f (x) → min, x ∈ Rn,

has not been fully studied. At the same time, there exist objective and subjective reasons to develop HB. In
general, different methods of local minimization often converge to distinct minimals. HB behaves in other manner
when minimization problem has many local minimals. Like effective modern algorithms — the Limited-memory
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BFGS (briefly L-BFGS, [2]) and the limited memory conjugate gradient method (briefly lcg, [3]) HB has modest
requirements in terms of the memory usage and is easy to use for sparsely populated data. HB and MHB are easily
programmable in a single and multi-threaded environments.

There are publications, explicitly or implicitly based on heavy ball model, having practical interest. But in this
research we will not focus on them. Subjective factor to further develop HB is based on its effective physical and
geometrical interpretations. For MHB, analogical interpretations are given and the algebraic structure of MHB is
considered as well.

The issue of speeding up the convergence. Tremendous difference in performance between HB and, on the other
hand, L-BFGS and lcg, is the result of a long-time evolution of these latter ones. Evolution was achieved due to the
improvement of the following auxiliary procedures:

1. Periodical restarts;
2. Inexact line search;
3. Preconditioning;
4. Updating search directions.
In [4], the first attempt of speeding up the convergence through implementing periodical restarts every time when

at some iterate the objective function ceases to decrease showed a significant increase in speed for some simple tests,
and persuaded us in the necessity of further research.

Now, at every restart MHB uses best algorithm of inexact line search (see [5]) in order to determine the length of
the step.

The speed of convergence of MHB is evaluated via numerical experiments conducted in C++ using well-known
methodology (see [6]). To apply this approach, two sets — a set of test problems and a set of methods must be chosen
carefully.

As the set of test functions, 45 functions from 145, used in [3] mainly on high dimensions, were chosen. It
is interesting that two of these 45 tests, DQRTIC and QARTC, are identical. The only difference is the number
of variables. All 45 tests were used to produce performance profiles (MHB vs lcg). In order to implement
and debug functions, corresponding to selected tests, we have essentially used the material in other high-tech
languages FORTRAN and AMPL (see [7,8]). To check correctness of implementations, solver knitro with the AMPL
interface was used (see [9,10]). On the set of test-functions, MHB has been compared with well-known solver
CG DESCENT-C-6.8 (see https://www.math.lsu.edu/∼hozhang/SoftArchive/). Test-functions compatible with both
MHB and CG DESCENT-C-6.8, the code of MHB and other materials related to benchmarking, are uploaded to
GitHub. MHB does not take into account the possibility of preconditioning. Nevertheless, the results of benchmarking
persuade us again in the necessity of next research.

Algebro-limiting properties of the convergence. In Section 3, we study the convergence in case of smooth convex
objective function, in terms of reducing transformations and their orbits.

The sequences created from powers of transformations play an important role in functional analysis (e.g. fixed
points), differential equations and other fields. Transformation exponentiation, fast exponentiation and studies of
orbit properties are also the focus points of the modern computer science (see [11,12]). We introduce a concept
of reducing transformation. Iterations of some optimization algorithms, including MHB-algorithm, minimize the
objective function along the orbits of reducing transformations, i.e. iterations have form xk = T k x0, where T is
a reducing transformation specific to algorithm. To facilitate the analysis of these algorithms, we comprehensively
study the algebraic structure of the set of these transformations. It should be noted that Theorem 2 is especially useful,
since it proves both the convergence of gradients towards zero and the convergence of objective function towards a
global minimum along an orbit. We define specific reducing transformations. One of them corresponds to MHB. This
allows us to prove the convergence of MHB algorithm.

2. Description of HB, MHB and line search algorithms. Numerical experiments

2.1. HB method

Let the smallness of supremum norm of the gradient be the stopping condition of the algorithm, x0 be initial iterate,
constants α > 0 and 0 ≤ β < 1 be given. Then the pseudo-code of HB has the form given in Fig. 1.

Calling the swap(u0, u1) means that vectors u0 and u1 are changing their names: former u0 after call becomes u1
and vice versa.

Note two problematic issues related with HB:
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Fig. 1. The heavy ball method.

• The objective function does not decrease monotonically along the iterates.
• General scheme of choosing parameters α and β is not known.

2.2. MHB method

In the modified method, due to restarts, the objective function monotonically decreases along the iterates. Each
restart updates the parameter α on the basis of line search method. In HB, β is responsible for amplitude of oscillation
decreasing along iterates. In MHB, due to restarts, the objective function monotonically decreases along the iterates,
therefore, we have no oscillation and correspondingly no need for existence of parameter β. So we give it a fixed value
β = 1. In more detail, every time when the standard step of HB is done a certain number of times (in our case 10 000
times), or when at some iteration the objective function increases, MHB restarts. Each restart, in order to maintain the
high-speed of the convergence, determines the parameter α on the basis of presented in [3] line-search algorithm. In
contrast with typical interpretation of HB in case of continuous model, MHB sharply changes its direction along its
trajectory in the vicinity of local minimals (turns in the direction of anti-gradient), but with preservation of high-speed
of convergence (using line search).

Let us explain meanings of lines, added in MHB.
Lines 6 and 14 are necessary in order to count HB standard steps (line 12). After 10 000 standard steps, MHB is

calling line search (Line 5), even if objective function was still decreasing. On one hand, this is necessary to maintain
high speed of the convergence. On the other, this is required to guarantee the convergence of the MHB itself. The
number 10 000 gives us the understanding of how badly can high dimensionality test problem be conditioned. In case
of the lower number of repetitions, MHB does not have enough time to accelerate for some tests. Line 1 of MHB
(see Fig. 1) differs from Line 1 of HB (see Fig. 2). To restart, values of the objective function are needed. Therefore,
implementation of the objective function calculates both gradient and function values.

The very first call of line search does the job of the Line 3 of HB’s pseudo-code. Afterwards, at every restart, line
search (Line 5 of MHB) recalculates x1 along the anti-gradient and gradient in x1. This is necessary when at the point
x1 (calculated by Lines 12–13) the value of objective function does not decrease. MHB does not guarantee that at
x1, which is calculated by Line 12, function will decrease. That is why we calculate function’s value and gradient
beforehand at the point x1 — to be ready to run line search in the case of necessity.

2.3. Line search

In our experiments, we use line search, described in [3], which fully met our expectations. Although, the
programming of this variant of the line search procedure is the serious challenge for any researcher. In our opinion,
the following form of the line search procedure, which actively uses Literate Programming style (see [13]), maintains
all features of its old form but is significantly easier to program. Suppose, parameters of line search have the same
default values as in [3]:

δ = 0.1, σ = 0.9, ε = 10−6, γ = 0.66, ρ = 5, ψ0 = 0.01, ψ2 = 2., θ = 0.5.
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Fig. 2. The modified method.

Fig. 3. Line search algorithm.

In C++ language, there exist several different ways of sharing data by different parts of the program. Each of them
implies an implementation, distinct from others. We do not lose generality by fixing the form of implementation.
Instead, we mention only the data, which should be shared to line search at the beginning of its run, and data that
should be shared from line search at the end of its work. Data could be shared using pointers or references, or using
some kind of shared variables.

In order to line search start its work correctly, x0, f0 and direction of (guaranteed) descent d from x0 (in our
case — g0) should be accessible. Line search finishes when it finds the vector x0 + t · d , at which the function
ϕ (t) = f (x0 + td) satisfies the approximate Wolfe condition (2δ − 1) ϕ′ (0) ≥ ϕ′ (t) ≥ σϕ′ (0) and condition
ϕ (t) ≤ ϕ (0) + ε. When it finished, α = t , x1 = x0 + αd , f1, g1 (gradient at the x1) should be accessible from the
main program.

Let us represent line search procedure as the sequence of several macros (see Fig. 3).
Macros are described in Table 1.
In more detail, pseudo-codes of these macros have the following form:

< T: Termination test in t >
Calculate x1 = x0 + t · d , ϕ (t) = f (x1) and g1 at the point t ;
Calculate ϕ′ (t) at t ;
// if the following condition is valid, then f (x1) and f ′ (x1) are accessible from solver
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Table 1
Description of macros.

Macro Description Used in

T < Termination test in t > If at the point t the approximate Wolfe condition (2δ − 1) ϕ′ (0) ≥ ϕ′ (t) ≥ σϕ′ (0)
and ϕ (t) ≤ ϕ (0)+ ε are fulfilled, then algorithm line search terminates and makes:
coefficient α = t , vector x1 = x0 + αd , value f1 = ϕ (α) and gradient g1 (at x1)

B, G, U2, U3

I < Initial guess for b > Determines initial guess for the high endpoint of [a, b] line_search

B < Bisection on [a, b] > At the beginning, [a, b] satisfies conditions ϕ′ (a) < 0, ϕ (a) ≤ ϕ (0)+ ε,
ϕ′ (b) < 0, ϕ (b) > ϕ (0)+ ε. Finishes with [a, b] satisfying ϕ (a) ≤ ϕ (0)+ ε,
ϕ′ (a) < 0, ϕ′ (b) ≥ 0

G, U2, U3

G < Generate initial [a, b] > Generates an initial [a, b], satisfying the opposite slope condition: ϕ (a) ≤ ϕ (0)+ ε,
ϕ′ (a) < 0, ϕ′ (b) ≥ 0

line_search

U3 < Update a, b, c > Starts with secant c and interval [a, b] satisfying the opposite slope condition. If
c ∈ (a, b), then finishes with updated (shrinked) [a, b] satisfying the opposite slope
condition, and generates new secant c

line_search

U2 < Update a, b > Starts with secant c and interval [a, b] satisfying the opposite slope condition. If
c ∈ (a, b), then finishes with updated (shrinked) [a, b] satisfying the opposite slope
condition

line_search

if ((2δ − 1)ϕ′ (0) ≥ ϕ′ (t) ≥ σϕ′ (0) && ϕ (t) ≤ ϕ (0)+ ε)
α = t ;
++lineSearchCounter;
return; // end of line search( )

Remark 1. The main idea behind MHB is to prevent oscillations of the objective function. Therefore, in our case, line
search returns vector, located at the anti-gradient direction, but until the local minimal. Consequently, the termination
condition of MHB has form:

if (0 ≥ ϕ′ (t) ≥ σϕ′ (0) && ϕ (t) ≤ ϕ (0)+ ε).

< I: Initial guess for b >
if (lineSearchCounter > 0)

b = ψ2 · α;
else

if (x0 ̸= 0)
b = (ψ0 · ∥x0∥ ∞) / ∥g0∥ ∞;

else
if ( f (x0) ̸= 0)

b = (ψ0 · | f (x0)|)/(∥g0∥ 2)
2;

else
b = 1;

Remark 2. This procedure here is presented in simplified form.

< B: Bisection on [a, b] >

while (1)
d = (1 − θ) · a + θ · b
< Termination test in d >
if (ϕ′ (d) ≥ 0)

b = d;

break;
if (ϕ (d) < ϕ (0)+ ε)

a = d;
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else
b = d;

< G: Generate initial [a, b] >

a = 0
while (1)

< Termination test in b >;
if (ϕ′ (b) ≥ 0) break;
if (ϕ (b) > ϕ (0)+ ε)
< Bisection on [a, b] >;
break;

a = b
b = b · ρ;

< U3: Update a, b, c >

if (a< c < b)
< Termination test in c >;
if (ϕ′ (c) < 0 && ϕ (c) > ϕ (0)+ ε)

b = c;
< Bisection on [a, b] >;

else
if (ϕ′ (c) ≥ 0);

c1 =
cϕ′ (b)− bϕ′ (c)
ϕ′ (b)− ϕ′ (c)

b = c;
else

c1 =
aϕ′ (c)− cϕ′ (a)
ϕ′ (c)− ϕ′ (a)

a = c;
c = c1;

Remark 3. Even in case when a = b (and we have one more such case), c1 will take certain value due to rounding
errors. Therefore, it is not worthwhile to complicate U3.

< U2: Update a, b >

if (a< c < b)
< Termination test in c >;
if (ϕ′ (c) < 0 && ϕ (c) > ϕ (0)+ ε)

b = c;
< Bisection on [a, b] >;

else
if (ϕ′ (c) ≥ 0);

b = c;
else

a = c;

2.4. Numerical experiments

Testing mathematical software means that different debugged and correctly working products have to be compared.
The main methodology in benchmarking optimization software is considered to be an article by E.D. Dolan, J.J. Moré
titled “Benchmarking optimization software with performance profiles” (see [6]). In order to apply this approach, two
sets — a set of test problems and a set of methods, must be collected. The classical example of such environment
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Fig. 4. Performance profiles for CG_ DESCENT-C-6.8 and MHB based on CPU time.

is CUTEst (see [7]), which allows adding tests as well as methods. However, it is FORTRAN-based, that makes it
uncomfortable for C++ users. To create test collection on C++, we used existing CUTEst (see [7]) and AMPL (see [8])
test collections. Especially AMPL, because its code is easier compared to SIF (see [14]). AMPL gives us additional
opportunity to check correctness of implementation. There is a full collection of test functions on this language,
and via NEOS server (see [15]) it is possible to run them and compare obtained results. This approach, containing
elements of metaprogramming, is very comfortable and allows us to implement algorithms on IDE and platforms we
feel comfortable working with.

For experiments, 45 functions are selected. In performance profiles, all tests are used (in [3], only 79 from 145
were used). On the chosen set of test problems, MHB has been compared with the solver CG DESCENT-C-6.8. For
unconstrained minimization, there exist other efficient algorithms, but because of http://users.clas.ufl.edu/hager/pape
rs/CG/results6.0.txt, there is no need to consider them. MHB, auxiliary algorithms and tests are programmed in C++,
using Visual Studio 2015 environment (see [16]). We have debugged CG DESCENT-C-6.8 in the same environment.

To the files, placed at https://www.math.lsu.edu/∼hozhang/SoftArchive/, only drivers and test functions are added.
From CG DESCENT-C-6.8, we only changed file cg descent.c at line 1677, in order to change termination criterion
to the form shown at Line 9 of Fig. 2.

In the line search used in MHB, we have changed procedure of generation of initial interval. In the general case,
at the very first run of line search, parameter lineSearchCounter takes value 0. At the end of the line search,
lineSearchCounter increases. At every call except first one, the value of parameter b is calculated based on its
previous value. Lines 7–14 (see Fig. 2) are executed sequentially many times and without a call of line search.
Therefore, for MHB < I : Initial guess for b > is implemented without its first 3 lines. In other words, MHB does not
use lineSearchCounter.

As was mentioned in the Introduction, we did not pay much attention to code optimization, because the presented
variant of MHB is yet far from being complete. In contrast to CG DESCENT-C-6.8, MHB uses only inner product
of vectors from Basic Linear Algebra Subprograms (BLAS). Besides, MHB uses only one realization for each test
function, calculating value and gradient. The calculations were executed on a personal computer with the following
parameters: Intel(R) Core(TM) 2 Duo CPU T7500 2.20 GHz, 2.00 GB of RAM. For each test function, MHB was run
10 times. Performance profiles were built based on median results. Smallness of the supremum norm of the gradient
(less then 10e-6) represented the termination criterion for algorithms. Profile presented on Fig. 4 gives us the first
impression about opportunities of the MHB, although the preconditioning techniques are not used here.

At present, it is not clear the importance of preconditioners for MHB. But it is clear for other methods. For example,
CG DESCENT is easily programmable without preconditioning and its importance is easily evaluable. Besides, using
simplest diagonal preconditioner for MHB in tests where it is usable speeds up convergence tens of times.
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3. Convergence analysis of smooth convex objective function

3.1. Reducing transformation and its orbit

Definition 1. Transformation T : Rn
→ Rn is said to be a reducing transformation of functional f : Rn

→ R (or
simply a reducing transformation, when functional is unambiguous), if f (T (x)) ≤ f (x) , ∀x ∈ Rn .

Identity transformation id : Rn
→ Rn, id (x) ≡ x , represents a trivial reducer.

Definition 2. Let T be a reducing transformation of a differentiable functional f : Rn
→ R. We say that

T has a property to reduce proportionally to the gradient square, or that T is a g2p-reducing transformation, if
f (x)− f (T (x)) ≥ β

 f ′ (x)
2 for some positive β and ∀x ∈ Rn .

Definition 3. Let T : Rn
→ Rn be an arbitrary transformation and x ∈ Rn be an arbitrary vector. In this case the

sequence
{
T i (x)

}∞

i=0 is called the orbit of T . Transformation powers are defined according to a recurrent relation:

T i (x) =

{
x, i = 0,
T

(
T i−1 (x)

)
, i > 0.

Let us define the conditions under which any orbit is a minimizing sequence.

Theorem 1. Let the function f : Rn
→ R be bounded below and differentiable, and T be a g2p-reducing

transformation. In this case for every x ∈ Rn we have:

lim
i→∞

 f ′
(
T i (x)

) = 0. (1)

Proof. Let us choose an arbitrary x ∈ Rn and denote:

xi = T i (x) , i = 0, 1, 2 . . . .

According to the condition, for some real number f∗ and ∀x ∈ Rn it is always true that f (x) ≥ f∗. Applying the
definition of a g2p-reducing transformation we have:

f (xi )− β
 f ′ (xi )

2
≥ f (xi+1) , i = 0, 1, 2 . . . .

Suppose (1) does not hold. Then there exist some η > 0 and a subsequence
{

xik

}∞

k=0 of sequence {xi }
∞

i=0, such that f ′
(
xik

) > η, k = 0, 1, 2 . . . . (2)

Since the functional f is decreasing for the elements of the initial sequence, it is clear that

f
(
xik

)
− β

 f ′
(
xik

)2
≥ f

(
xik+1

)
≥ f

(
xik+1

)
, k = 0, 1, 2 . . . . (3)

Combining (2) and (3) we arrive to:

f
(
xi0

)
− f∗ ≥ f

(
xi0

)
− f

(
xik

)
=

(
f
(
xi0

)
− f

(
xi1

))
+ · · · +

(
f
(
xik−1

)
− f

(
xik

))
≥ βkη2

which is impossible, since the right-hand side becomes arbitrarily large due to k,while the left-hand side does not
depend on this factor. □

Theorem 2. Let f : Rn
→ R be bounded below and continuously differentiable convex functional, T be a g2p-

reducing transformation of f and {T i (x0)}∞i=0 be a bounded orbit for some x0 ∈ Rn . Then f has global minimum f∗
and

lim
i→∞

 f ′
(
T i (x0)

) = 0,

lim
i→∞

f
(
T i (x0)

)
= f∗.
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Proof. The first estimate stems from the previous theorem. To prove the second, we need to show the existence of
global minimal. Let us denote xi = T i x0 and take some ε > 0 some. Since the sequence {xi }

∞

i=0 is bounded, there
exists its subsequence

{
xik

}∞

k=0 which converges to some vector x∗ ∈ Rn . f is continuously differentiable, so from
lim

k→∞

 f ′
(
xik

) = 0 and lim
k→∞

xik = x∗ follows
 f ′ (x∗)

 = 0. Making use of convexity of f , we have

f (x)− f (x∗) ≥ f ′ (x∗) (x − x∗) = 0, ∀x ∈ Rn.

Therefore, x∗ ∈ Rn is global minimal and f (x∗) = f∗.
Because of boundedness of

{
T i (x0)

}∞

i=0, there exists a positive distance r > 0, such thatT i (x0)− x∗

 ≤ r, ∀i ∈ N.

Applying the first part of the theorem, for any positive ε we can choose such an index i0 ∈ N that f ′
(
T i (x0)

) ≤
ε

r
, ∀i ≥ i0.

Let us take i ≥ i0 and consider continuously differentiable convex function depending on one variable:

g (t) = f
(
(1 − t) T i (x0)+ t x∗

)
, t ∈ R.

Since the function is convex, it is true that g (1) − g (0) ≥ g′ (0). Since both sides are negative we can rewrite the
inequality as: 0 ≤ g (0)− g (1) ≤

⏐⏐g′ (0)
⏐⏐, i.e.

0 ≤ f
(
T i (x0)

)
− f∗ ≤

 f ′
(
T i (x0)

) ·
x∗ − T i (x0)

 ≤ ε, ∀i ≥ i0. □

Note 1. In order to guarantee boundedness of the sequence
{
T i (x)

}∞

i=0, it is possible to use various sufficient
conditions. For example, one can demand f (x) → ∞ when ∥x∥ → ∞, which is widespread case in applications.
However, checking boundedness is rather convenient during calculations.

As we can see, every bounded orbit of the g2p-reducing transformation represents a minimizing sequence, under
relatively general conditions. In other words, construction of a g2p-reducing transformation is equivalent to defining
a minimizing algorithm, since by virtue of Theorem 2, the objective function along the orbit converges towards
the minimum. Therefore, it is important for us to easily check whether a particular transformation is indeed g2p-
decreasing.

Proposition 1. Let T1, T2 : Rn
→ Rn be two reducing transformations. In such case, T1 ◦ T2 is also a reducing

transformation.

Proof. Clearly stems just from the definition: f (T1 (T2 (x))) ≤ f (T2 (x)) ≤ f (x), ∀x ∈ X0. □

This relatively simple statement proves that the reducing transformations form a monoid with respect to the
composition operation.

Proposition 2. Let T1 : Rn
→ Rn be a reducing transformation, and T2 : Rn

→ Rn be a g2p-reducing
transformation. In this case T1 ◦ T2 is also a g2p-reducing transformation.

Proof. Since T2 is a g2p-reducing transformation, it is true that

f (x)− β
 f ′ (x)

2
≥ f (T2 (x)) (4)

for some positive β and ∀x ∈ Rn . Then, for the right-hand side of (4) the following holds:

f (T2 (x)) ≥ f (T1 (T2 (x))) ,

which together with (4) proves that T1 ◦ T2 is a g2p-reducing transformation. □

Proposition 2 shows that g2p-reducing transformations form the structure of the left-ideal in the monoid of
reducing transformations.

Definition 4. Let us assume that T1, T2 are two reducing transformations of f . We will say that T1
f
≤ T2, if

f (T1 (x)) ≤ f (T2 (x)), ∀x ∈ Rn , i.e. if the first transformation decreases f uniformly better.
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Proposition 3. Let T1 : Rn
→ Rn be reducing transformation, T2 : Rn

→ Rn - g2p-reducing transformation and let

T1
f
≤ T2. In this case T1 is also a g2p-reducing transformation.

Proof. The following inequalities

• f (x)− β
 f ′ (x)

2
≥ f (T2 (x)), for some positive β and ∀x ∈ Rn ,

• f (T1 (x)) ≤ f (T2 (x))

together yield the desirable inequality f (x)− β
 f ′ (x)

2
≥ f (T1 (x)). □

3.2. Gradient descent with fixed step size

Now, we directly construct only one g2p-reducing transformation, corresponding to Gradient descent with fixed
step size. Results of previous section allows us indirectly check that reducing transformation, corresponding to MHB
algorithm also have g2p-property. As a result, we obtain convergence provided by conclusions of Theorems 1 and 2.

Lemma 1. Let f be differentiable, the gradient of f be Lipschitz continuous
 f ′(x0) − f ′(y)

 ≤ L ∥x0 − y∥,
∀x, y ∈ Rn , and 0 < s < 2/L. Then, the transformation Ts : Rn

→ Rn defined by the rule Ts (x) = x − s
(

f ′ (x)
)T

is g2p-reducing with the coefficient β = s
(
1 −

Ls
2

)
, i.e. f (x)− β

 f ′ (x)
2

≥ f (Ts (x)), ∀x ∈ Rn .

Proof. Let us denote g(x) =
(

f ′ (x)
)T and use the formula:

f (x + y) = f (x)+

∫ 1

0
f ′ (x + τ y) · y dτ

which yields:

f (Ts (x)) = f (x − sg (x)) = f (x)+

∫ 1

0

[
f ′ (x + τ (−sg (x)))

]
· (−sg (x)) dτ

= (subtract and add s · f ′ (x) · g (x))

= f (x)− s · f ′ (x) · g (x)+

∫ 1

0

[
f ′ (x + τ (−s · g (x)))− f ′ (x)

]
· (−s · g (x)) dτ

≤ f (x)− s ·
 f ′ (x)

2
+

⏐⏐⏐⏐∫ 1

0

[
f ′ (x + τ (−s · g (x)))− f ′ (x)

]
· (−s · g (x)) dτ

⏐⏐⏐⏐ ≤ f (x)

− s ·
 f ′ (x)

2
+

∫ 1

0

 f ′ (x + τ (−s · g (x)))− f ′ (x)
 · ∥−s · g (x)∥ dτ

≤ f (x)− s ·
 f ′ (x)

2
+

∫ 1

0
L · ∥τ (−s · g (x))∥ · ∥−s · g (x)∥ dτ

≤ f (x)− s ·
 f ′ (x)

2
+

Ls2

2

 f ′ (x)
2

= f (x)− s
(

1 −
Ls
2

)  f ′ (x)
2

so f (Ts (x)) ≤ f (x)− β
 f ′ (x)

2. □

In the conditions of Lemma 1, the g2p-reducing transformation Ts : Rn
→ Rn can be referred to as a fixed step

reducing transformation due to the way it operates.

Theorem 3. Let f be differentiable and bounded below, the gradient of f be Lipschitz continuous with constant L
and 0 < s < 2/L. Then the derivative of the functional f converges to zero along any orbit of the g2p-decreaser Ts .
Besides, if f is convex functional, then values of the functional f converge to the global minimum along any bounded
orbit of the g2p-reducer Ts .
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Proof. Conditions of Lemma 1 are following from conditions of Theorem 3. Therefore Ts is g2p-reducer. This latter
fact together with Theorem 3 conditions guarantees the fulfillment of Theorem 1 conditions. Consequently,

lim
i→∞

 f ′
(
Ts

i (x)
) = 0, ∀x ∈ Rn.

Suppose now that functional is convex. Gradient’s Lipschitz continuity means it’s continuity. Therefore conditions
of Theorem 2 are fulfilled and the second part of Theorem 3 follows from Theorem 2. □

By the definition, Ts(x) = x − sgT (g denotes gradient at x). When f satisfies conditions of Theorem 2, then from
the same theorem follows that along every sequence {xi }

∞

0 defined by the scheme xi+1 = xi − sgi i = 0, 1, 2, . . . (gi -
gradient at xi , initial iterate x0 is taken arbitrarily) gradients converge to zero vector. Besides, if f is convex functional
and above mentioned sequence is bounded, then values of the functional f converges to its global minimum.

3.3. Specifics of the line search algorithm for convex functions

When line search algorithm is used with MHB for convex functions, pseudo-code from sub-Section 2.3 remains
valid, but some macros are subjected to changes. First of all, it concerns to termination test. In case of convex
function, line search must find such vector x0 − αg0, located in the antigradient direction from x0, at which function
ϕ (t) = f (x0 − tg0) satisfies the condition 0 ≥ ϕ′ (t) ≥ σϕ′ (0). As x0 − αg0 is located between x0 and the local
minimal in the antigradient direction, the condition ϕ (α) ≤ ϕ (0) + ε is satisfied automatically by virtue of the
convexity. So, we omit it and termination test has the form:

< T: Termination test in t >
Calculate x1 = x0 + t · d , ϕ (t) = f (x1) and g1 at the point t ;
Calculate ϕ′ (t) at t ;
// if the following condition is valid, then f (x1) and f ′ (x1) are accessible from solver
if (0≥ ϕ′ (t) ≥ σϕ′ (0))

α = t ;
++lineSearchCounter;
return; // end of line search( )

In our notations, from ϕ′(t) < 0 and t > 0 automatically follows ϕ(t) < ϕ(0) + ε, therefore there is no need for
bisection. Consequently, the procedures, where it was used, now have the forms:

< G: Generate initial [a, b] >

a = 0
while (1)

< Termination test in b >;
if (ϕ′ (b) ≥ 0) break;
a = b
b = b · ρ;

< U3: Update a, b, c >

if (a< c < b)
< Termination test in c >;
if (ϕ′(c) ≥ 0)

c1 =
cϕ′ (b)− bϕ′ (c)
ϕ′ (b)− ϕ′ (c)

;

b = c;
else

c1 =
aϕ′ (c)− cϕ′ (a)
ϕ′ (c)− ϕ′ (a)

a = c;
c = c1;
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< U2: Update a, b >

if (a< c < b)
< Termination test in c >;
if (ϕ′ (c) ≥ 0)

b = c;
else

a = c;

3.4. Gradient descent with inexact line search

Consider gradient descent with variable step-size (gi denotes gradient at xi )

xi+1 = xi − αi gi . (5)

Let us define the reducing transformation, one of whose orbits consists of iterates of scheme (5). Let for each
x ∈ Rn α (depended on x) be that value of the parameter t, at which the line search method terminates:

Tα (x) = x − α · g, ∀x ∈ Rn.

Obviously, Tα is reducing transformation. But, to prove convergence of iterates defined by (5), we need to show
that Tα is g2p-reducer as well.

Theorem 4. Let f be differentiable, convex and bounded below, the gradient of f be Lipschitz continuous. Then
Tα is the g2p-reducer, the derivative of f converges to zero along any orbit of Tα and the values of the functional
f converge to the global minimum along any bounded orbit of Tα .

Proof. Suppose ∀x0 ∈ Rn . According to definition, Tα (x) = x0 − αg0. According to termination criterion of line
search, 0 ≥ ϕ′ (α) ≥ σϕ′ (0), i.e. 0 ≥ − f ′ (x0 − αg0) · g0 ≥ −σgT

0 g0. Let us add positive term gT
0 g0 to the right-hand

side inequality:

f ′ (x0) · g0 − f ′ (x0 − αg0) · g0 ≥ gT
0 g0 − σgT

0 g0, i.e.
(

f ′ (x0)− f ′ (x0 − αg0)
)
· g0 ≥ (1 − σ) gT

0 g0.

Left-hand side is positive because right-hand side is positive and we can use the Lipschitz continuity, obtaining
L · α · gT

0 g0 ≥ (1 − σ) gT
0 g0. As a result, α ≥

1−σ
L .

As we can see, for ∀x0 ∈ Rn the value of the step-size, at which the line search method terminates, satisfies
inequality α ≥

1
10·L .

Let us take s =
1

10·L . Obviously s < 2
L , hence by virtue of Lemma 1, Ts is g2p-reducer taking into account

following facts for ∀x0 ∈ Rn:

• α ≥ s,
• let x̃ be local minimal of the objective function in the anti-gradient direction (from x0). Because of convexity of

the objective function, the restriction of the objective function on [x0, x̃] decreases monotonically,

we obtain the following inequality:

f (Tα (x0)) ≤ f (Ts (x0)) , ∀x0 ∈ Rn, i.e. Tα
f
≤ Ts .

The last result means by virtue Proposition 3 that Tα is g2p-reducing transformation as well. Now, from conditions
of Theorem 4 are following conditions of Theorems 1 and 2. Consequently, their conclusions are valid as well. □

By definition of Tα , in the conclusions of the last theorem instead of orbits we can speak about the iterates of
gradient descent. In this case we obtain needed information about convergence of the method.

Note 2. For new conjugate gradient method suggested in [5], it is possible to take analogical results with analogical
approach — on the basis of the relationship between descent direction d and anti-gradient established by the Theorem
1.1 (see [5]).
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3.5. Convergence of MHB

Let us define reducing transformation Thb : Rn
→ Rn to make conclusions about convergence of MHB. Let us take

x0 ∈ Rn arbitrarily. To define Thb (x0), consider several repetitions of lines 4–14 (Fig. 2) without stopping condition
(i.e. without line 10), beginning from counter = 0 and finishing with the last non-zero value of counter (which should
be followed by the call of line search, according the pseudo code). Suppose, the last non-zero value of the counter for
given x0 is equal to k, and let xi denote the vector x0, which corresponds to counter = i (see Fig. 2). Thus, x1 = Tα (x0)

and f (x0) > f (x1) > · · · > f (xk). Now, defining Thb (x0) = xk , we see that:

Thb (x) ≤ Tα (x) , ∀x ∈ Rn,

which means that Thb is g2p-reducing transformation. Correspondingly, Theorems 1 and 2 are valid. However,
because orbits of Thb represent subsequences of the iterates of MHB, we can make weaker conclusion compared
to the previous cases:

Theorem 5. Let f be differentiable, convex and bounded below, the gradient of f be Lipschitz continuous. Then:

• Thb is the g2p-reducer, the derivative of f converges to zero along any orbit of Thb and the values of the
functional f converge to the global minimum along any bounded orbit of Thb.

• ∀x0 ∈ Rn , if {xi }
∞

i=0 denotes sequence of the iterates of MHB (each consecutive value of vector x0, not
considering line 10), then gradients of f converge to zero on some subsequence of {xi }

∞

i=0;
• if {xi }

∞

i=0 is bounded, then f converges to the global minimum on this sequence.

Proof. First part is shown during constructing Thb. The second part is following from the simple fact that the orbit{
T i

hb (x0)
}∞

i=0 represents subsequence of {xi }
∞

i=0 and, by virtue of Theorem 1, gradients of the objective function
converge to zero vector along the orbit. To prove the remaining part, note that from the boundedness of the {xi }

∞

i=0
follows boundedness of the orbit

{
T i

hb (x0)
}∞

i=0. { f (xi )}
∞

i=0 is decreasing sequence, having convergent subsequence
(values of f on the orbit) to the global minimum. As a result, { f (xi )}

∞

i=0 converges to the same limit. □
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Abstract

In this paper, we study certain classes of nested fractional boundary value problems including both of the Riemann–Liouville
and Caputo fractional derivatives. In addition, since we will use the signed-power operators φν z := |z|ν−1z, ν ∈ (0, ∞) in the
governing equations, so our desired boundary value problems possess half-linear nature. Our investigation theoretically reaches so
called Lyapunov inequalities of the considered nested fractional boundary value problems, while in viewpoint of applicability using
the obtained Lyapunov inequalities we establish some qualitative behavior criteria for nested fractional boundary value problems
such as a disconjugacy criterion that will also be used to establish nonexistence results, upper bound estimation for maximum
number of zeros of the nontrivial solutions and distance between consecutive zeros of the oscillatory solutions. Also, considering
corresponding nested fractional eigenvalue problems we find spreading interval of the eigenvalues.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

The cornerstone of Lyapunov inequalities founded in last decade of the nineteenth century. More precisely, the
Russian mathematician A. M. Lyapunov during his investigation about stability of motion considered second order
differential equations with periodic coefficients. In this way, Lyapunov presented the following stability criterion.

Theorem 1.1 ([1], Chapter III, Theorem II). Consider the second order differential equation with ω-periodic
coefficient

y′′
+ q(t)y = 0, −∞ < t < ∞. (1.1)
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If the function q takes only positive or zero values (without being identically zero), and if further it satisfies the
condition

ω

∫ ω

0
q(t) ≤ 4, (1.2)

then roots of the characteristic equation corresponding to (1.1) will always be complex and their modulus is equal to 1.

Indeed, making use of the Floquet theory, one may prove that Theorem 1.1 provides a stability tool to the second
order periodic differential equation (1.1). The counter inequality corresponding to the inequality (1.2), namely∫ ω

0
q(t) >

4
ω

, (1.3)

is known as the Lyapunov inequality in the literature. Nowadays we know that Lyapunov inequalities need not to be
periodic in the sense of (1.3). P. Hartman in [2], shows this fact by the following theorem.

Theorem 1.2. Assume that u(t) is a nontrivial solution of the second order boundary value problem{
u′′

+ q(t)u = 0, t ∈ (a, b),
u(a) = 0 = u(b). (1.4)

where q ∈ C[a, b]. Then the Lyapunov inequality∫ b

a
|q(t)| >

4
b − a

, (1.5)

holds.

Over 125 years investigation on Lyapunov inequalities, nowadays we are able to study qualitative behavior of the
differential/difference equations of arbitrary order and arbitrary structure via their relevant Lyapunov inequalities.
Here we suggest some of the interesting papers and monographs dealing with the Lyapunov inequalities of ordinary
differential/difference equations and their applications and cited bibliography as [3–27]. These research works,
indicate that not only stability but also disconjugacy, nonexistence, maximum number of zeros of the nontrivial
solutions, distance between consecutive zeros of the oscillatory solutions and some spectral properties can be
established by means of the Lyapunov inequalities.

Between this variety, if we restrict ourselves into the fractional order differential/difference equations, we shall turn
to the late 2013 where R. A. C. Ferreira in [9], for first time in literature considered the fractional order Riemann–
Liouville boundary value problem{

(a Dα y) (t) + q(t)y(t) = 0, a < t < a, 1 < α ≤ 2,

y(a) = 0, y(b) = 0,
(1.6)

where q ∈ C[a, b]. Using Green function technique, the author obtained the first Lyapunov inequality for fractional
differential equations corresponding with (1.6) as follows.∫ b

a
|q(t)|dt > Γ (α)

(
4

b − a

)α−1

. (1.7)

As can be observed, the Lyapunov inequality (1.7) generalizes the Lyapunov inequality (1.5), as the boundary value
problem (1.6) generalizes the boundary value problem (1.4). Making use of the Lyapunov inequality (1.7), the author
proved that in the Riemann–Liouville fractional eigenvalue problem{

(a Dα y) (t) + λy(t) = 0, a < t < a, 1 < α ≤ 2,

y(a) = 0, y(b) = 0,

the eigenvalues λ are indeed real zeros of the Mittag-Leffler function Eα(z) provided that

|λ| > Γ (α)
4α−1

(b − a)α
.

In the recent past years, so many researchers in the community of fractional calculus have studied various fractional
order boundary value problems in viewpoint of their Lyapunov inequalities. Generally, these researchers have been
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concentrated on nonexistence criteria and spreading region of the eigenvalues. Some of the selected papers concerning
with the above discussion about Lyapunov inequalities of the fractional boundary value problems are presented
here as [7,28], [9–11], [21,29,30]. Getting focus on these papers, it can be seen that the most attention of the
authors has been devoted on extracting Lyapunov inequalities from considered fractional boundary value problems.
In order to fill this gap and demonstrating more applicability of Lyapunov inequalities of fractional order problems
the authors in papers [12–16], studying a wide class of fractional order problems such as continuous and discrete
linear and half-linear boundary value problems, impulsive and non-impulsive linear differential/difference systems
and boundary value problems over higher dimensional spaces, have obtained corresponding Lyapunov inequalities
and then making use of these inequalities qualitative behavior of the mentioned fractional order problems including
stability, disconjugacy, nonexistence, upper bound estimation for maximum number of zeros of the nontrivial
solutions, distance between consecutive zeros of the oscillatory solutions and spreading regions of the eigenvalues
in corresponding fractional eigenvalue problems have estimated.

Here, we state the main problems of this paper. To this aim, first we consider the following nested third order
half-linear boundary value problems:(

φα2

(
φα1 x ′

)′)′

+ q(t)φα1α2 (x) = 0, −∞ < a < b < +∞, (1.8)(
r2(t)φα2

(
r1(t)φα1 x ′

)′)′

+ q(t)φα1α2 (x) = 0, −∞ < a < b < +∞, (1.9)

where φν(x) := |x |
ν−1x, ν ∈ (0, ∞), α1, α2 > 0, and q, r1, r2 ∈ C(R,R) with ri (t) > 0, i = 1, 2. The authors in [6],

studying the nested differential equations (1.8) and (1.9) subject to the boundary conditions x(a) = 0, x(b) = 0 and
some other appropriate conditions, obtained the following Lyapunov inequalities:∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >

(
2

b − a

)(α1+1)α2

, ξ ∈ [a, b], (1.10)∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2(α1+1)α2(∫ b

a r
−

1
α1

1 (t)dt
)α1α2(∫ b

a r
−

1
α1

1 (t)dt
)α2

, ξ ∈ [a, b], (1.11)

respectively, in which q±(s) :=
q(s)±|q(s)|

2 denote nonnegative and negative parts of q(s). Essentially using the
Lyapunov inequality (1.10), some criteria for maximum number of zeros of the nontrivial solutions, distance between
consecutive zeros of the oscillatory solutions and nonexistence of nontrivial solutions of the nested third order
differential equation (1.8) have presented. Motivated by the above work, we introduce the main problems of this
paper as follows:⎧⎪⎨⎪⎩

cDα
a+

(
φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

))))
− q(t)φβ1β2 x = 0, a ≤ t ≤ b,

x (k)(a) = 0, x (k)(b) = 0, k = 0, 1, . . . , n − 1,

(1.12)

⎧⎪⎨⎪⎩
cDα

a+

(
r2(t)φβ2

(
Dα

b−

(
r1(t)φβ1

(cDα
a+ x

))))
− q(t)φβ1β2 x = 0, a ≤ t ≤ b,

x (k)(a) = 0, x (k)(b) = 0, k = 0, 1, . . . , n − 1,

(1.13)

where cDα
a+ and Dα

b−
stand for the left sided Caputo and right sided Riemann–Liouville fractional derivatives of order

α with n − 1 < α ≤ n, n ∈ N≥2, respectively. Also, φνx := |x |
ν−1x, ν ∈ (0, ∞), q, r1, r2 ∈ C(R,R) such that

ri (t) > 0, i = 1, 2 and r2 is an increasing function on [a, b].
At the end of this section, we state the organization of the paper as follows. Section 2contains those parts

of the fractional calculus that will be needed to obtain the main results. In this section we restrict ourselves to
the left and right sided Riemann–Liouville and Caputo fractional operators, their interactions and fractional order
integration by parts. In Section 3, making use of the presented fractional tools in Section 2, we will obtain main
theoretical results of this paper that are Lyapunov inequalities of the nested fractional half-linear boundary value
problems (1.12) and (1.13) under some relevant conditions. In Section 4, as the applied aspect of this paper using
the obtained Lyapunov inequalities, qualitative behavior of the nested fractional boundary value problems (1.12) and
(1.13) such as disconjugacy, nonexistence, upper bound estimation for maximum number of zeros of the nontrivial
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solutions, distance between consecutive zeros of the oscillatory solutions and spreading region of the eigenvalues in
corresponding nested fractional eigenvalue problems will be established.

2. Preliminaries

This section is started by definitions of the left and right sided Riemann–Liouville fractional integration and
differentiation operators.

Definition 2.1 ([31]). The left and right sided Riemann–Liouville fractional integrals of order α ≥ 0 for function
f ∈ L1[a, b] are given by:

Iα
a+(b−) f (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Iα

a+ f (t) =
1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds; α > 0,

Iα
b−

f (t) =
1

Γ (α)

∫ b

t
(s − t)α−1 f (s)ds; α > 0,

f (t) ; α = 0.

(2.1)

Definition 2.2 ([31]). The left and right sided Riemann–Liouville fractional derivatives of order α ≥ 0 for function
f ∈ ACn(a, b) are defined by:

Dα
a+(b−) f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dα

a+ f (t) :=

(
dn

dtn

)
In−α

a+ f (t) =
1

Γ (n − α)

(
dn

dtn

)∫ t

a
(t − s)n−α−1 f (s)ds; α > 0,

Dα
b−

f (t) :=

(
dn

dtn

)
In−α

b−
f (t) =

(−1)n

Γ (n − α)

(
dn

dtn

)∫ b

t
(s − t)n−α−1 f (s)ds; α > 0,

f (t) ; α = 0,

(2.2)

where n = [α] + 1.

Replacing the affection position of the nth order derivative dn

dtn as follows, gives us the left and right sided Caputo
fractional derivatives

cDα
a+(b−) f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cDα

a+ f (t) := In−α

a+

(
dn

dtn
f
)

(t) =
1

Γ (n − α)

∫ t

a
(t − s)n−α−1

(
dn

dtn
f
)

(s)ds; α > 0,

cDα
b−

f (t) := In−α
b−

(
dn

dtn
f
)

(t) =
(−1)n

Γ (n − α)

∫ b

t
(s − t)n−α−1

(
dn

dtn
f
)

(s)ds; α > 0,

f (t) ; α = 0.

(2.3)

We give interaction between the Riemann–Liouville and Caputo fractional derivatives in the next lemma.

Lemma 2.3 ([31]). Assume x ∈ ACn(a, b) and n − 1 < α ≤ n, n ∈ Z+. Then

cDα
a+ x(t) = Dα

a+ x(t) −

n−1∑
k=0

x (k)(a)
Γ (k − α + 1)

(t − a)k−α, (2.4)

cDα
b−

x(t) = Dα
b−

x(t) −

n−1∑
k=0

x (k)(b)
Γ (k − α + 1)

(b − t)k−α. (2.5)

Next lemma deals with the inverse rules of the left and right sided Caputo fractional derivatives.

Lemma 2.4 ([31]). Assume α > 0.

(i) If x ∈ L1(a, b), then

cDα
a+Iα

a+ x(t) = x(t), cDα
b−
Iα

b−
x(t) = x(t). (2.6)
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(ii) If x ∈ ACn(a, b) and n − 1 < α ≤ n, n ∈ Z+, then

Iα
a+

cDα
a+ x(t) = x(t) −

n−1∑
k=0

x (k)(a)
k!

(t − a)k, (2.7)

Iα
b−

cDα
b−

x(t) = x(t) −

n−1∑
k=0

x (k)(b)
k!

(b − t)k . (2.8)

As will be seen, fractional integration by parts will play a crucial role to obtain Lyapunov inequalities of the nested
fractional boundary value problems (1.12) and (1.13). So, this fractional tool is given in the next lemma.

Lemma 2.5 ([32]). (Fractional integration by parts). Assume f, g ∈ ACn(a, b) and n − 1 < α ≤ n, n ∈ Z+. Then∫ b

a
g(t)

(cDα
a+ f

)
(t)dt =

∫ b

a
f (t)

(
Dα

b−
g
)

(t)dt +

n−1∑
k=0

[
Dα+k−n

b−
g(t). f (n−1−k)(t)

]b

a
, (2.9)

∫ b

a
g(t)

(
cDα

b−
f
)

(t)dt =

∫ b

a
f (t)

(
Dα

a+ g
)

(t)dt +

n−1∑
k=0

[
(−1)n+kDα+k−n

a+ g(t). f (n−1−k)(t)
]b

a . (2.10)

In this position we discuss about half-linearity of the nested fractional boundary value problems (1.12) and
(1.13). We say the fractional boundary value problem (1.12) (or (1.13)) is half-linear, since the solution space of the
aforementioned differential equations has just one half of properties which characterize linearity, that is homogeneity
but not additivity. For more details, we refer to [8].

Remark 2.6. The half-linear signed-power operator φνx := |x |
ν−1x, ν ∈ (0, ∞) is invertible and φ−1

ν := φν−1 .

At the end, we will keep in mind that everywhere needed, by ∥.∥ we mean the standard max norm ∥x∥ :=

max{|x(t)| : t ∈ [a, b]}.

3. Main results

As explained in Section 1, this section is indeed theoretical body of our investigation. So, making use of the
theoretical analysis techniques we shall extract desired Lyapunov inequalities corresponding to the nested fractional
boundary value problems (1.12) and (1.13). To this aim, we first recall here boundary value problem (1.12).⎧⎪⎨⎪⎩

cDα
a+

(
φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

))))
− q(t)φβ1β2 x = 0, a ≤ t ≤ b, n − 1 < α ≤ n, n ∈ N≥2,

x (k)(a) = 0, x (k)(b) = 0, k = 0, 1, . . . , n − 1.

(3.1)

Here we start with Lyapunov inequality of the nested fractional boundary value problem (3.1).

Theorem 3.1. Let −∞ < a < b < +∞. Assume x(t) is a nontrivial solution of the boundary value problem (3.1).
Suppose that there exists ξ ∈ [a, t], t ≤ b such that(

φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

))))(k)
(a) = 0,

∫ ξ

a
(t − s)α−1qφβ1β2 x(s)ds = 0. (3.2)

Then Lyapunov type inequality of the nested fractional boundary value problem (3.1) is as follows:∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) . (3.3)

Proof. Without loss of generality, assume x(t) > 0 on (a, b). Thus there exists d ∈ [a, b] such that m := x(d) = ∥x∥.
Accordingly, we get

m = Iα
a+

cDα
a+ x(d) ≤ Iα

a+

⏐⏐cDα
a+ x

⏐⏐(d) ≤

∫ d

a

(b − s)α−1

Γ (α)

⏐⏐cDα
a+ x(s)

⏐⏐ds.
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On the other hand, using the boundary condition x(b) = 0, one has

x(b) = 0 =

∫ b

a

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds

=

∫ d

a

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds +

∫ b

d

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds

≥

∫ d

a

(d − s)α−1

Γ (α)
cDα

a+ x(s)ds +

∫ b

d

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds

= m +

∫ b

d

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds,

that is

m = −

∫ b

d

(b − s)α−1

Γ (α)
cDα

a+ x(s)ds

≤

∫ b

d

(b − s)α−1

Γ (α)

⏐⏐cDα
a+ x(s)

⏐⏐ds.

Therefore, we get the following⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m ≤

∫ d

a

(b − s)α−1

Γ (α)

⏐⏐cDα
a+ x(s)

⏐⏐ds,

m ≤

∫ b

d

(b − s)α−1

Γ (α)

⏐⏐cDα
a+ x(s)

⏐⏐ds.

(3.4)

Finally, the inequalities (3.4), give us

2m ≤
(b − a)α−1

Γ (α)

∫ b

a

⏐⏐cDα
a+ x(t)

⏐⏐dt. (3.5)

Attempting to the next step requires the Hölder inequality that stands for the real valued measurable functions f and
g, as follows;∫ b

a
| f (t)g(t)|dt ≤

(∫ b

a
| f (t)|pdt

) 1
p
(∫ b

a
|g(t)|qdt

) 1
q

, 1 < p < ∞, p−1
+ q−1

= 1. (3.6)

Choosing the setting f (t) =
cDα

a+ x(t), g(t) = 1, p = β1 + 1 and q = 1 +
1
β1

, we come to conclusion that

∫ b

a

⏐⏐cDα
a+ x(t)

⏐⏐dt ≤ (b − a)
β1

β1+1

(∫ b

a

⏐⏐cDα
a+ x(t)

⏐⏐β1+1dt
) 1

β1+1

. (3.7)

In viewpoint of (3.5), the inequality (3.7) yields

(2mΓ (α))β1+1

(b − a)(α−1)(β1+1)+β1
≤

∫ b

a

⏐⏐cDα
a+ x(t)

⏐⏐β1+1dt =

∫ b

a

cDα
a+ x(t)φβ1

(cDα
a+ x(t)

)
dt. (3.8)

Applying the fractional integration by parts formula (2.9) on the right hand side of the inequality (3.8) and then using
the boundary conditions x (k)(a) = 0 = x (k)(b), k = 0, 1, 2, . . . , n − 1, we reach the following

(2mΓ (α))β1+1

(b − a)(α−1)(β1+1)+β1
≤

∫ b

a
x(t)Dα

b−

(
φβ1

(cDα
a+ x(t)

))
dt. (3.9)

In order to use the inequality (3.9), we shall recall the governing equation (3.1) as follows;

cDα
a+

(
φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

))))
− q(t)φβ1β2 x = 0.
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If we take fractional integration of order α from both sides of the recent equation, so using the inversion rule (2.7) and
the assumptions (3.2), we get that

φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

)))
(t) =

1
Γ (α)

∫ t

ξ

(t − s)α−1q(s)φβ1β2 x(s)ds. (3.10)

In the sequel we define

q∗(s) =

{
−q−(s), a ≤ s ≤ ξ,

q+(s), ξ ≤ s ≤ b.
(3.11)

The definition (3.11), implies that −q−(t) ≤ q(t) ≤ q+(t). So we have

∫ t

ξ

q(s)φβ1β2 x(s)ds ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

ξ

−q−(s)φβ1β2 x(s)ds, t < ξ,

∫ t

ξ

q+(s)φβ1β2 x(s)ds, t ≥ ξ.

(3.12)

Now we use (3.12) to reach

φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

)))
≤

(b − a)α−1

Γ (α)

∫ t

ξ

q∗(s)φβ1β2 x(s)ds. (3.13)

Equivalently, we get that

Dα
b−

(
φβ1

(cDα
a+ x

))
≤

(b − a)
α−1
β2

Γ
1
β2 (α)

φ
β−1

2

(∫ t

ξ

q∗(s)φβ1β2 x(s)ds
)

. (3.14)

Consequently

Dα
b−

(
φβ1

(cDα
a+ x

))
<

(b − a)
α−1
β2

Γ
1
β2 (α)

mβ1φ
β−1

2

(∫ t

ξ

q∗(s)ds
)

. (3.15)

Here we substitute (3.9) into (3.15) to achieve

(2mΓ (α))β1+1

(b − a)(α−1)(β1+1)+β1
<

(b − a)
α−1
β2

Γ
1
β2 (α)

mβ1

∫ b

a
x(t)φ

β−1
2

(∫ t

ξ

q∗(s)ds
)

dt

≤
(b − a)

α−1
β2

Γ
1
β2 (α)

mβ1+1
∫ b

a
φ

β−1
2

(∫ t

ξ

q∗(s)ds
)

dt

≤
(b − a)

α−1
β2

Γ
1
β2 (α)

mβ1+1
{∫ ξ

a
φ

β−1
2

(∫ t

ξ

q∗(s)ds
)

dt +

∫ b

ξ

φ
β−1

2

(∫ t

ξ

q∗(s)ds
)

dt
}
.

(3.16)

Applying the definition (3.11) into the inequality (3.16), gives us the following inequality

2β1+1Γ (α)β1+
1
β2

+1

(b − a)
(α−1)(β2(β1+1)+1)+β1β2

β2

<

∫ ξ

a
φ

β−1
2

(∫ t

ξ

q∗(s)ds
)

dt +

∫ b

ξ

φ
β−1

2

(∫ t

ξ

q∗(s)ds
)

dt

=

∫ ξ

a
φ

β−1
2

(∫ t

ξ

−q−(s)ds
)

dt +

∫ b

ξ

φ
β−1

2

(∫ t

ξ

q+(s)ds
)

dt

=

∫ ξ

a
φ

β−1
2

(∫ ξ

t
q−(s)ds

)
dt +

∫ b

ξ

φ
β−1

2

(∫ t

ξ

q+(s)ds
)

dt

≤

∫ ξ

a
φ

β−1
2

(∫ ξ

a
q−(s)ds

)
dt +

∫ b

ξ

φ
β−1

2

(∫ b

ξ

q+(s)ds
)

dt.
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Hence,

2β1+1Γ (α)β1+
1
β2

+1

(b − a)
(α−1)(β2(β1+1)+1)+β1β2

β2

< (ξ − a)φ
β−1

2

(∫ ξ

a
q−(s)ds

)
+ (b − ξ )φ

β−1
2

(∫ b

ξ

q+(s)ds
)

. (3.17)

Now, we are in such position that using the upcoming discussion desired Lyapunov inequality for the nested fractional
boundary value problem (3.1) can be concluded. To this aim, the last step of the proof is divided into two cases β2 ≥ 1
and 0 < β2 < 1 as follows:

(i) Suppose that β2 ≥ 1. In this case, positivity of second derivative of φβ2 guarantees that φβ2 is a concave-up
function on [0, ∞) in the sense that for any x1, x2 ∈ [0, ∞) and t ∈ [0, 1], we have

φβ2 (t x1 + (1 − t)x2) ≤ tφβ2 (x1) + (1 − t)φβ2 (x2). (3.18)

Dividing both sides of (3.17) by b − a and applying φβ2 gives us

2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) = φβ2

⎛⎝ 2β1+1Γ (α)β1+
1
β2

+1

(b − a)
(α−1)(β2(β1+1)+1)+β2(β1+1)

β2

⎞⎠
< φβ2

((
ξ − a
b − a

)
φ

β−1
2

(∫ ξ

a
q−(s)ds

)
+

(
b − ξ

b − a

)
φ

β−1
2

(∫ b

ξ

q+(s)ds
))

.

Since ξ−a
b−a +

b−ξ

b−a = 1, then taking t =
ξ−a
b−a in the (3.18), desired Lyapunov inequality is obtained as follows:

2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) < φβ2

((
ξ − a
b − a

)
Θ

β−1
2

(∫ ξ

a
q−(s)ds

)
+

(
b − ξ

b − a

)
φ

β−1
2

(∫ b

ξ

q+(s)ds
))

≤

(
ξ − a
b − a

)∫ ξ

a
q−(s)ds +

(
b − ξ

b − a

)∫ b

ξ

q+(s)ds

≤

∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds.

(ii) In second phase of the last step, we assume that 0 < β2 < 1. Because of negativity of second derivative, φβ2 is
a concave-down function on [0, ∞). Therefore for any x1, x2 ∈ [0, ∞), we have

φβ2 (x1 + x2) ≤ φβ2 x1 + φβ2 x2. (3.19)

In this case according to the inequality (3.16), we get that

2β1+1Γ (α)β1+
1
β2

+1

(b − a)
(α−1)(β2(β1+1)+1)+β1β2

β2

< (b − a)
[
φ

β−1
2

(∫ ξ

a
q−(s)ds

)
+ φ

β−1
2

(∫ b

ξ

q+(s)ds
)]

.

To obtain desired result, it is enough to divide both sides of the recent inequality by b − a and take φβ2 from
both sides. Now, applying property (3.19) yields the expected Lyapunov inequality

2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) < φβ2

(
φ

β−1
2

(∫ ξ

a
q−(s)ds

))
+ φβ2

(
φ

β−1
2

(∫ b

ξ

q+(s)ds
))

=

∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds.

Considering the outcomes of the cases (i) and (i i), shows that the proof is complete. □
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It is time to evaluate the nested fractional boundary value problem⎧⎪⎨⎪⎩
cDα

a+

(
r2(t)φβ2

(
Dα

b−

(
r1(t)φβ1

(cDα
a+ x

))))
− q(t)φβ1β2 x = 0, a ≤ t ≤ b, n − 1 < α ≤ n, n ∈ N≥2,

x (k)(a) = 0, x (k)(b) = 0, k = 0, 1, . . . , n − 1.

(3.20)

The next theorem contains an analytic algorithm that its output is Lyapunov inequality of the nested fractional
boundary value problem (3.20).

Theorem 3.2. Let −∞ < a < b < +∞. Assume x(t) is a nontrivial solution of the nested fractional boundary value
problem (3.20). Suppose there exists ξ ∈ [a, t], t ≤ b such that(

r2φβ2

(
Dα

b−

(
r1φβ1

(cDα
a+ x

))))(k)
(a) = 0,

∫ ξ

a
(t − s)α−1 (qφβ1β2 x

)
(s)ds = 0. (3.21)

Then Lyapunov type inequality of the nested fractional boundary value problem (3.20) is as follows:∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1(∫ b

a (r1(t))
−1
β1 dt

)β1β2
(∫ b

a (r2(t))
−1
β2 dt

)β2

(b − a)(α−1)(β2(β1+1)+1)

. (3.22)

Proof. Without loss of generality, suppose that x(t) > 0 on (a, b). Then there exists d ∈ [a, b] such that

m := x(d) = ∥x∥.

Thus, similar to Theorem 3.1, one has

2m ≤
(b − a)α−1

Γ (α)

∫ b

a

⏐⏐cDα
a+ x(t)

⏐⏐dt =
(b − a)α−1

Γ (α)

∫ b

a
(r1(t))−

1
β1+1

(
(r1(t))

1
β1+1

⏐⏐cDα
a+ x(t)

⏐⏐) dt. (3.23)

If we apply the Hölder inequality with parameters p = 1 +
1
β1

and q = β1 + 1 on the inequality (3.23), the following
inequality is obtained:

(2mΓ (α))β1+1

(b − a)(β1+1)(α−1) ≤

(∫ b

a
(r1(t))−

1
β1 dt

)β1 ∫ b

a
r1(t)

⏐⏐cDα
a+ x(t)

⏐⏐β1+1dt

=

(∫ b

a
(r1(t))−

1
β1 dt

)β1 ∫ b

a

cDα
a+ x(t)

(
r1(t)φβ1

(cDα
a+ x(t)

))
dt.

(3.24)

Here is the position that we shall use the fractional integration by parts on the second integral in the right hand side of
(3.24). In this case we have

(2mΓ (α))β1+1

(b − a)(β1+1)(α−1) ≤

(∫ b

a
(r1(t))−

1
β1 dt

)β1 ∫ b

a
x(t)Dα

b−

(
r1(t)φβ1

(cDα
a+ x(t)

))
dt. (3.25)

Now, considering the governing equation (3.20) and having similar argument that led to the inequality (3.15) in
Theorem 3.1, it is easy to obtain the following inequality:

Dα
b−

(
r1(t)φβ1

(cDα
a+ x(t)

))
≤

mβ1 (b − a)
α−1
β2

r2(t)
1
β2 Γ (α)

1
β2

φ
β−1

2

(∫ t

ξ

q∗(s)ds
)

. (3.26)

In this position we need to use increasing nature of the functions r2(t) and φ−1
β2

(x > 0) on [a, b] also the following
well known identity

(b − a)
∫ b

a
f (t)g(t)dt ≤

(∫ b

a
f (t)dt

)(∫ b

a
g(t)dt

)
,
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where f and g are increasing and decreasing integrable functions on [a, b], respectively. In this case, substituting
(3.25) into (3.26), it follows that

2β1+1Γ (α)
β2(β1+1)+1

β2(∫ b
a (r1(t))

−1
β1 dt

)β1
(∫ b

a (r2(t))
−1
β2 dt

)
(b − a)

(α−1)(β2(β1+1)+1)
β2

<

∫ ξ

a
φ

β−1
2

(∫ ξ

a
q−(s)ds

)
dt +

∫ b

ξ

φ
β−1

2

(∫ b

ξ

q+(s)ds
)

dt

≤ (ξ − a)φ
β−1

2

(∫ ξ

a
q−(s)ds

)
+ (b − ξ )φβ−12

(∫ b

ξ

q+(s)ds
)

.

(3.27)

Here we are in such a position that the inequality (3.17) was in Theorem 3.1. Therefore, with a similar estimation we
conclude that∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1(∫ b

a (r1(t))
−1
β1 dt

)β1β2
(∫ b

a (r2(t))
−1
β2 dt

)β2

(b − a)(α−1)(β2(β1+1)+1)

. (3.28)

This completes the proof. □

Remark 3.3. Note that setting r1(t) = r2(t) = 1, reduces the Lyapunov type inequality (3.22) to the Lyapunov
type inequality (3.3). So, we deduce that the nested fractional boundary value problem (3.20) generalizes the nested
fractional boundary value problem (3.1), as the Lyapunov inequality (3.22) generalizes the Lyapunov inequality (3.3).

Remark 3.4. Let us consider the Lyapunov inequalities (3.3) and (3.22). Assume n = 2. If we take α → 1, then these
Lyapunov inequalities reduce to the Lyapunov inequalities (1.10) and (1.11), respectively. Now, there is an interesting
point regarding to this generalization. If we take α → 1, then in the nested fractional boundary value problem (3.1)
we have four boundary conditions x(a) = x ′(a) = 0 and x(b) = x ′(b) = 0, while in the nested ordinary boundary
value problem (1.9), we have just couple of the boundary condition x(a) = 0 and x(b) = 0. So, we conclude that both
of the conditions{

x(a) = 0, x(b) = 0,(
φα1

(
x ′
))′(ξ ) = 0, ξ ∈ [a, b],

(3.29)

and ⎧⎨⎩
x(a) = x ′(a) = 0, x(b) = x ′(b) = 0,

φβ2

(
φβ1

(
x ′
))′(a) = 0,

(
φβ2

(
φβ1

(
x ′
))′)′

(a) = 0,

∫ ξ

a
qφβ1β2 x(s)ds = 0, ξ ∈ [a, b],

(3.30)

give us the Lyapunov inequality (1.10) corresponding to the third order nested boundary value problem (1.8).
Comparing the boundary conditions (3.29) and (3.30), it is clear that if α → 1, then, the Lyapunov inequality (3.3)
reduces into the Lyapunov inequality (1.10) subject to stronger conditions. Interpreting this situation one can state
that if α → 1− i.e. α ∈ (0, 1), in this case the power function (t − s)α−1 is decreasing with respect to the variable t
and increasing with respect to the variable s. Thus, this function cannot reach its finite bounds for each α ∈ (0, 1).
Therefore, we choose n − 1 < α ≤ n, n ∈ N≥2 that consequences the stronger conditions (3.30).

4. Applications

This section can be considered as the applied aspect of this paper. Since, in this section relying on the Lyapunov
inequalities (3.3) and (3.22), we are going to establish qualitative dynamics of nontrivial solutions of the nested
fractional boundary value problems (3.1) and (3.20). In this way, we are interested in the study of disconjugacy,
nonexistence, zero count, distance between consecutive zeros of oscillatory solutions and eigenvalue intervals for
nested fractional eigenvalue problems corresponding to the boundary value problems (3.1) and (3.20). So, we begin
as follows.
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▶ Disconjugacy. In order to establish disconjugacy of the nested fractional boundary value problems (3.1) and
(3.20), we first define it as follows.

Definition 4.1. The nested fractional boundary value problem (3.1) (or (3.20)), is said to be disconjugate on
the interval [a, b], if and only if each of its nontrivial solutions has less then 3n zeros in the interval [a, b].
Otherwise, we have a conjugate nested fractional boundary value problem.

Theorem 4.2. Assume there exists ξ ∈ [s1, s2], a ≤ s1 < s2 ≤ b such that(
φβ2

(
Dα

s2−

(
φβ1

(
cDα

s1+ x
))))(k)

(s1) = 0,
(
Iα

s+

1
(qφβ1β2 x)

)
(ξ ) = 0.

Let x (k)(s1) = 0 and x (k)(s2) = 0 for k = 1, 2, 3, . . . , n − 1. If∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds ≤
2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) , (4.1)

then, the nested fractional boundary value problem (3.1) is disconjugate on [a, b].

Proof. Suppose on the contrary that the nested fractional boundary value problem (3.1) is conjugate on [a, b].
So, in accordance with Definition 4.1, there exists nontrivial solution x with at least 3n, n ∈ N2 zeros in the
interval [a, b]. Suppose that s1, s2 ∈ [a, b] are two distinct zeros of the x . Thus, x(s1) = 0 = x(s2). Now, since
all of the assumptions of Theorem 3.1 hold, then the Lyapunov inequality∫ ξ

s1

q−(s)ds +

∫ s2

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1

(s2 − s1)(α−1)(β2(β1+1)+1)+β2(β1+1) ,

is obtained. Therefore, taking s1 = a and s2 = b,∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) ,

which contradicts the hypothesis (4.1). Thus, the nested fractional boundary value problem (3.1) is disconjugate
on the interval [a, b]. □

Similar to the disconjugacy criterion presented in Theorem 4.2, one may present a disconjugacy criterion for
the nested fractional boundary value problem (3.20).

Lemma 4.3. Assume there exists ξ ∈ [s1, s2], a ≤ s1 < s2 ≤ b such that(
r2φβ2

(
Dα

s2−

(
r1φβ1

(
cDα

s1+ x
))))(k)

(s1) = 0,
(
Iα

s+

1
(qφβ1β2 x)

)
(ξ ) = 0.

Let x (k)(s1) = 0 and x (k)(s2) = 0 for k = 1, 2, 3, . . . , n − 1. If∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds ≤
2β2(β1+1)Γ (α)β2(β1+1)+1(∫ b

a (r1(t))
−1
β1 dt

)β1β2
(∫ b

a (r2(t))
−1
β2 dt

)β2

(b − a)(α−1)(β2(β1+1)+1)

, (4.2)

then, the nested fractional boundary value problem (3.20) is disconjugate on [a, b].

▶ Nonexistence. Here we present a nonexistence criterion for nontrivial solutions of the nested fractional
boundary value problems (3.1) and (3.20). As claimed at the beginning, in fact, we will show that the
disconjugacy criteria in Theorem 4.2 and Lemma 4.3, are also nonexistence criteria for nontrivial solutions
of the boundary value problems (3.1) and (3.20). To this aim, we first state and prove the following theorem.

Theorem 4.4. Assume that the assumptions of Theorem 4.2 hold. Then the nested fractional boundary value
problem (3.1) has no nontrivial solution on [a, b].
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Proof. Assume on contrary that the nested fractional boundary value problem (3.1) has a nontrivial solution
such as x . Thus, there exist consecutive zeros s1, s2 ∈ [a, b] such that x (k)(s1) = 0 and x (k)(s2) = 0 for
k = 0, 1, 2, . . . , n − 1. So, relying on the assumptions of Theorem 4.2 and according to Theorem 3.1 we get
the following Lyapunov inequality:∫ ξ

s1

q−(s)ds +

∫ s2

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1

(t2 − t1)(α−1)(β2(β1+1)+1)+β2(β1+1) .

So, using the setting t1 = a and t2 = b it follows that∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds >
2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) ,

which contradicts the assumption (4.1). Hence, the nested fractional boundary value problem (3.1) has no
nontrivial solution. □

A similar criterion for the nonexistence of nontrivial solutions for the nested fractional boundary value
problem (3.20) is given as follows.

Lemma 4.5. Suppose r1, r2, q ∈ C (R,R) such that r1(t), r2(t) > 0 and r2(t) is an increasing function on [a, b].
If assumptions of Lemma 4.3 hold, then the nested fractional boundary value problem (3.20) has no nontrivial
solution.

From now on, we concentrate only on the Lyapunov inequality (3.3). Since establishing applicability of the
Lyapunov inequality (3.22) in what remains of the expected applications, requires more restrictive assumptions.

▶ Zerocount. Third application of the Lyapunov inequality (3.3), is dealt with the maximum number of zeros
of the nontrivial solutions of the nested fractional boundary value problem (3.1). This zero count estimation is
given in the following theorem.

Theorem 4.6. Suppose that x(t) is a nontrivial solution of the nested fractional boundary value problem (3.1),
with β2 ≥ 1. Let {tk}N

k=1, N ≥ 1 be an increasing sequence of zeros of x (k)(t), k = 0, 1, 2, . . . , n − 1 in a
compact interval I with length l. Then, an upper bound for maximum number of zeros of x(t) is given by:

N <

(
l (α−1)(β2(β1+1)+1)+β2(β1+1)−1

2β2(β1+1)Γ (α)β2(β1+1)+1

N−1∑
k=1

×

× max
ξk∈[tk ,tk+1]

{∫ ξk

tk
q−(s)ds +

∫ tk+1

ξk

q+(s)ds
}) 1

−((α−1)(β2(β1+1)+1)+β2(β1+1)−1)

+ 1.

(4.3)

Proof. Considering intervals [tk, tk+1] ⊂ I for k = 1, 2, . . . , N − 1, Theorem 3.1 gives us the following
Lyapunov inequality:

max
ξk∈[tk ,tk+1]

{∫ ξk

tk
q−(s)ds +

∫ tk+1

ξk

q+(s)ds
}

>
2β2(β1+1)Γ (α)β2(β1+1)+1

(t2k+1 − t2k−1)(α−1)(β2(β1+1)+1)+β2(β1+1) .

Now, taking the sum on both sides of the recent inequality from 1 to N − 1, and by means of inequalities

1
M

M∑
k=1

Ak ≥

(
M∏

k=1

Ak

) 1
M

≥

(
1
M

M∑
k=1

1
Ak

)−1

, Ak > 0, k = 1, 2, . . . , M, (see [22]),



Y. Gholami / Transactions of A. Razmadze Mathematical Institute 172 (2018) 189–204 201

we come to conclusion that
N−1∑
k=1

2β2(β1+1)Γ (α)β2(β1+1)+1

(tk+1 − tk)(α−1)(β2(β1+1)+1)+β2(β1+1)

= (N − 1)

(
1

N − 1

N−1∑
k=1

2β2(β1+1)Γ (α)β2(β1+1)+1

(tk+1 − tk)(α−1)(β2(β1+1)+1)+β2(β1+1)

)

≥ (N − 1)2β2(β1+1)Γ (α)β2(β1+1)+1

(
1

N − 1

N−1∑
k=1

1
tk+1 − tk

)(α−1)(β2(β1+1)+1)+β2(β1+1)

≥
2β2(β1+1)Γ (α)β2(β1+1)+1

(N − 1)(α−1)(β2(β1+1)+1)+β2(β1+1)−1

(
N−1∑
k=1

tk+1 − tk

)−((α−1)(β2(β1+1)+1)+β2(β1+1))

≥
2β2(β1+1)Γ (α)β2(β1+1)+1

(N − 1)(α−1)(β2(β1+1)+1)+β2(β1+1)−1 (tN − t1)−((α−1)(β2(β1+1)+1)+β2(β1+1))

≥
2β2(β1+1)Γ (α)β2(β1+1)+1

((N − 1)l)(α−1)(β2(β1+1)+1)+β2(β1+1)−1 .

So, we have the following upper bound estimation for N

N <

(
l (α−1)(β2(β1+1)+1)+β2(β1+1)−1

2β2(β1+1)Γ (α)β2(β1+1)+1

N−1∑
k=1

×

× max
ξk∈[tk ,tk+1]

{∫ ξk

tk
q−(s)ds +

∫ tk+1

ξk

q+(s)ds
}) 1

−((α−1)(β2(β1+1)+1)+β2(β1+1)−1)

+ 1,

(4.4)

that completes the proof. □

Remark 4.7. Since q−(t), q+(t) ≤ |q(t)| for t ∈ [a, b], so, we get that∫ b

a
|q(t)|dt ≥

∫ ξ

a
q−(s)ds +

∫ b

ξ

q+(s)ds.

Therefore, in what follows we will use the Lyapunov inequality:∫ b

a
|q(t)|dt >

2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) . (4.5)

▶ Distance between consecutive zeros of oscillatory solutions. In this position we examine the Lyapunov
inequality (4.5) from a different viewpoint. Indeed, the Lyapunov inequality (4.5) will help us to demonstrate
that, if given nontrivial solution of the nested fractional boundary value problem (3.1) is also oscillatory, then
it is impossible that distance between consecutive zeros of this solution at infinity be finite. Here we state and
prove this criterion.

Theorem 4.8. Assume x(t) be an oscillatory solution of the nested fractional boundary value problem (3.1). Let
{tn}∞n=1 be an increasing sequence of zeros of x (k)(t), k = 0, 1, 2, . . . , n − 1 in [0, ∞). If there exist a σ ≥ 1,
such that for any positive real constant M, we have∫ t+M

t
|q(s)|σ ds → 0, t → ∞, (4.6)

then, tn+1 − tn → ∞ as n → ∞.
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Proof. At the beginning, we remind this point that the Hölder inequality is playing crucial role to obtain desired
result. Thus, choosing the parameters p = σ and q =

σ
σ−1 , it follows that∫ t+M

t
|q(s)|ds ≤ M

σ
σ−1

(∫ t+M

t
|q(s)|σ ds

) 1
σ

→ 0, t → ∞.

Since our proof is based on the contradiction, suppose on the contrary that there exist a positive real constant
M and a subsequence {tnk }

∞

k=1 of {tn}∞n=1 such that tnk+1 − tnk ≤ M for all large k. Thus, the assumption (4.6)
gives us the following:∫ tnk+1

tnk

|q(t)|dt ≤

∫ tnk +M

tnk

|q(t)|dt → 0 k → ∞.

In the sequel if we apply Theorem 3.1 on the interval [tnk , tnk+1], it follows that∫ tnk+1

tnk

|q(t)|dt >
2β2(β1+1)Γ (α)β2(β1+1)+1

(tnk+1 − tnk )(α−1)(β2(β1+1)+1)+β2(β1+1) .

Equivalently, we have

1 < 2−β2(β1+1)Γ (α)−β2(β1+1)−1(tnk+1 − tnk )(α−1)(β2(β1+1)+1)+β2(β1+1)
∫ tnk+1

tnk

|q(t)|dt

≤ 2−β2(β1+1)Γ (α)−β2(β1+1)−1 M (α−1)(β2(β1+1)+1)+β2(β1+1)
∫ tnk+1

tnk

|q(t)|dt → 0, k → ∞.

This algebraic contradiction completes the proof. □

▶ Eigenvalue interval. This is the last examination to show applicability of the Lyapunov inequality (4.5). To this
aim, we consider the nested fractional eigenvalue problem⎧⎪⎨⎪⎩

cDα
a+

(
φβ2

(
Dα

b−

(
φβ1

(cDα
a+ x

))))
− λφβ1β2 x = 0, a ≤ t ≤ b, λ ∈ R, n − 1 < α ≤ n, n ∈ N≥2,

x (k)(a) = 0, x (k)(b) = 0, k = 0, 1, . . . , n − 1,

(4.7)

corresponding to the nested fractional boundary value problem (3.1). Therefore according to the Lyapunov
inequality (4.5), we conclude that∫ b

a
|λ|dt >

2β2(β1+1)Γ (α)β2(β1+1)+1

(b − a)(α−1)(β2(β1+1)+1)+β2(β1+1) . (4.8)

Equivalently,

|λ| >
1
2

(
2Γ (α)

(b − a)α

)β2(β1+1)+1

. (4.9)

Hence, it follows that for each

λ ∈

[
−

1
2

(
2Γ (α)

(b − a)α

)β2(β1+1)+1

,
1
2

(
2Γ (α)

(b − a)α

)β2(β1+1)+1
]

,

λ is not an eigenvalue of the nested fractional eigenvalue problem (4.7). Also,

LBeigenvalue :=
1
2

(
2Γ (α)

(b − a)α

)β2(β1+1)+1

,

can be considered as a lower bound for the positive eigenvalues of the eigenvalue problem (4.8).

5. Concluding remarks and an open problem

In this paper, two classes of nested half-linear fractional boundary value problems of the form (3.1) and (3.20) have
studied. The main aims of this study can be summarized as follows. First using analytic techniques, the Lyapunov
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inequalities (3.3) and (3.22) corresponding to the boundary value problems (3.1) and (3.20) are obtained, respectively.
Second part of our study has dealt with applicability examination of the Lyapunov inequalities (3.3) and (3.22), that
is in five steps we demonstrated that disconjugacy, nonexistence, zero count for nontrivial solutions, distance between
consecutive zeros of the oscillatory solutions at infinity and eigenvalue intervals for corresponding nested half-linear
fractional eigenvalue problems can be estimated via Lyapunov inequalities.

The end point of our study concerns with an open problem regarding to non-integer linear differential systems.
Actually, if we consider the linear planar Hamiltonian systems of the form

x ′
= a(t)x + b(t)u, u′

= −c(t)x − a(t)u, t ∈ R, (5.1)

the authors in [17], making use of the Leibniz rule obtained the corresponding Lyapunov inequality∫ β

α

|a(t)|dt +

{∫ β

α

b(t)dt.
∫ β

α

c+(t)dt
} 1

2

≥ 2, α, β ∈ R, α < β, (5.2)

for some real-valued piece-wise continuous functions a, b and c. Now, let us replace the first order derivatives d
dt with

Riemann–Liouville fractional derivative Dα , for 0 < α ≤ 1. So, we have the fractional linear differential system

Dαx = a(t)x + b(t)u, Dαu = −c(t)x − a(t)u, t ∈ R. (5.3)

As we know, none of the Riemann–Liouville based fractional differentiation operators satisfy the first order Leibniz
rule in the sense of ordinary differential calculus. Now, we must try to answer this question that can we obtain
Lyapunov inequality of the fractional linear differential system (5.3)? and if the answer is yes, what is the desired
method to reach the appropriate Lyapunov inequality?
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functions using Hilfer fractional derivative and fractional integral operator with generalized Mittag-Leffler function in its kernel.
We also discuss one dimensional cases of our related results. As a special case of our general results we obtain the results of Iqbal
et al. (2017). Moreover, the refinement of Hardy-type inequalities for Hilfer fractional derivative is also included.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Convex function; Kernel; Hilfer fractional derivatives; Fractional integral

1. Introduction

Fractional calculus deals with the study of fractional order integral and derivative operators calculus and have been
of great importance during the last few decades. Oldham and Spanier [1] published their fundamental work in their
book in 1974 and Podlubny [2] publication from 1999, which deals principally with fractional differential equations.
For further details and literature about the fractional calculus we refer to [3–5] and the references cited therein.
Numerous mathematicians obtained new Hardy-type inequalities for different fractional integrals and fractional
derivatives. For details we refer to [6–12].

The general theory for the Hardy-type inequalities has attracted a lot of attention during a long time, see e.g. the
books [13–15] and the reference therein. One reason is that such results are of special interest for technical sciences.
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Especially actions of kernels operators of type (1.2) and (1.3) are important since the kernel k(x, y) represent unit
impulse answers in systems which need not to be time invariant ( f (y) and g(x) represent the “insignals” and
“outsignals” respectively). Some current knowledge can be found in Section 7.5 of the new 2017 book [15] by
Kufner, Persson and Samko, see also the related review article [16]. But still there are many open questions in this
area, see e.g. those pointed out in [15, Section 7.5]. In this paper we present some new results concerning Hardy-type
inequalities not covered by the literature mentioned above.

The following definitions are presented in [17].

Definition 1.1. Let I be an interval in R. A function Φ : I → R is called convex if

Φ(λx + (1 − λ)y) ≤ λΦ(x) + (1 − λ)Φ(y), (1.1)

for all points x, y ∈ I and all λ ∈ [0, 1]. The function Φ is strictly convex if inequality (1.1) holds strictly for all
distinct points in I and λ ∈ (0, 1).

Definition 1.2. Let Φ : I −→ R be a convex function, then the sub-differential of Φ at x , denoted by ∂Φ(x), is
defined as

∂Φ(x) = {α ∈ R : Φ(y) − Φ(x) − α(y − x) ≥ 0, y ∈ I }.

Let (Σ1,Ω1, µ1) and (Σ2,Ω2, µ2) be measure spaces with positive σ -finite measures. Let U ( f ) denote the class of
functions g : Ω1 → R with the representation

g(x) =

∫
Ω2

k(x, y) f (y)dµ2(y), (1.2)

and Ak be an integral operator defined by

(Ak f )(x) :=
g(x)
K (x)

=
1

K (x)

∫
Ω2

k(x, y) f (y)dµ2(y), (1.3)

where k : Ω1 × Ω2 → R is measurable and non-negative kernel, f : Ω2 → R is measurable function and

0 < K (x) :=

∫
Ω2

k(x, y)dµ2(y), x ∈ Ω1. (1.4)

The following theorem was given in [18] and [19] (see also [20]).

Theorem 1.3. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with
σ -finite measures, u be a weight function on Ω1, k be a non-negative measurable function on Ω1 × Ω2, K be defined

on Ω1 by (1.4) and that the function x ↦→ u(x)
(

k(x,y)
K (x)

) q
p

is integrable on Ω1 for each y ∈ Ω2, and that v is defined on
Ω2 by

v(y) :=

( ∫
Ω1

u(x)
(

k(x, y)
K (x)

) q
p

dµ1(x)

) p
q

< ∞.

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality( ∫

Ω2

v(y)Φ ( f (y)) dµ2(y)
) q

p

−

∫
Ω1

u(x)[Φ ((Ak f )(x))]
q
p dµ1(x)

≥
q
p

∫
Ω1

u(x)
K (x)

Φ
q
p −1((Ak f )(x))

∫
Ω2

k(x, y)r (x, y)dµ2(y)dµ1(x) (1.5)

holds for all measurable functions f : Ω2 → I, where Ak is defined by (1.3) and r : Ω1 ×Ω2 → R is a non-negative
function defined by

r (x, y) = | |Φ( f (y)) − Φ((Ak f )(x))|−|ϕ((Ak f )(x))| | f (y) − (Ak f )(x)| |. (1.6)
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If Φ is a non-negative concave function, then the order of terms on the left hand side of (1.5) is reversed. If Φ is a
non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality(∫

Ω2

v(y)Φ ( f (y)) dµ2(y)
) q

p

−

∫
Ω1

u(x)Φ
q
p ((Ak f )(x)) dµ1(x)

≥
q
p

⏐⏐⏐⏐ ∫
Ω1

u(x)
K (x)

Φ
q
p −1

((Ak f )(x))
∫
Ω2

sgn( f (y) − (Ak f )(x))k(x, y)r1(x, y) dµ2(y) dµ1(x)
⏐⏐⏐⏐ (1.7)

holds for all measurable functions f : Ω2 → I, where Ak f is defined by (1.3) and r1 : Ω1×Ω2 → R is a non-negative
function defined by

r1(x, y) = Φ( f (y)) − Φ((Ak f )(x)) − ϕ((Ak f )(x)) · ( f (y) − (Ak f )(x)). (1.8)

If Φ is a non-negative monotone concave function, then the order of terms on the left hand side of (1.7) is reversed.

Remark 1.4. For p = q, Theorem 1.3 becomes [6, Theorem 2.1] (see also [20, Theorem 4.1]) and convex function
Φ need not to be non-negative.

Although the inequalities (1.5) and (1.7) hold for non-negative convex and monotone convex functions some
choices of Φ are of our particular interest. Here, we consider the power weight function i.e. the function Φ : R+ → R
be defined by Φ(x) = x s . It is a non-negative, convex and monotone function. Obviously, ϕ(x) = Φ ′(x) = sx s−1,
x ∈ R+, so Φ is convex for s ∈ R \ [0, 1), concave for s ∈ (0, 1], and affine, that is, both convex and concave for
s = 1.

Corollary 1.5. Let Ω1,Ω2, µ1, µ2, u, k, K , p, q and v be as in Theorem 1.3. Let s ∈ R be such that s ̸= 0,
f : Ω2 → R be a non-negative measurable function (positive for s < 0), Ak f be defined by (1.3) and

rs,k f (x, y) =
⏐⏐ ⏐⏐ f s(y) − ((Ak f )(x))s

⏐⏐− |s| · ((Ak f )(x))s−1
| f (y) − (Ak f )(x)|

⏐⏐ , (1.9)

for x ∈ Ω1, y ∈ Ω2. If s ≥ 1 or s < 0, then the following inequality(∫
Ω2

v(y) f s(y)dµ2(y)
) q

p

−

∫
Ω1

u(x)A
qs
p

k f (x)dµ1(x)

≥
q
p

∫
Ω1

u(x)
K (x)

((Ak f )(x))
(q−p)s

p

∫
Ω2

k(x, y)rs,k f (x, y) dµ2(y) dµ1(x) (1.10)

holds.
Let

Ms,k f (x, y) = f s(y) − A
qs
p

k f (x) − s · ((Ak f )(x))s−1( f (y) − (Ak f )(x)) (1.11)

for x ∈ Ω1, y ∈ Ω2. If s ≥ 1 or s < 0, then the inequality

(∫
Ω2

v(y) f s(y)dµ2(y)
) q

p

−

∫
Ω1

u(x)A
qs
p

k f (x)dµ1(x)

≥
q
p

⏐⏐⏐⏐ ∫
Ω1

u(x)
K (x)

((Ak f )(x))
(q−p)s

p

∫
Ω2

sgn( f (y) − (Ak f )(x))k(x, y)Ms,k f (x, y) dµ2(y) dµ1(x)
⏐⏐⏐⏐ (1.12)

holds. If s ∈ (0, 1), then relations (1.10) and (1.12) hold with∫
Ω1

u(x)A
qs
p

k f (x)dµ1(x) −

(∫
Ω2

v(y) f s(y)dµ2(y)
) q

p

on their left hand sides.

Result for one dimensional settings, with intervals in R and Lebesgue measures was given in the following theorem
(see [18] and c.f. also [20, Theorem 5.7]).
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Theorem 1.6. Let 0 < b ≤ ∞ and k : (0, b) × (0, b) → R, u : (0, b) → R be a non-negative measurable functions
satisfying

K (x) =:

∫ x

0
k(x, y)dy, x ∈ (0, b), (1.13)

and

w(y) = y

(∫ b

y

(
k(x, y)
K (x)

) q
p

u(x)
dx
x

) p
q

< ∞, y ∈ (0, b). (1.14)

If 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R
satisfies that ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the following inequality(∫ b

0
w(y)Φ ( f (y))

dy
y

) q
p

−

∫ b

0
u(x)Φ

q
p ((Ak f )(x))

dx
x

≥
q
p

∫ b

0

u(x)
K (x)

Φ
q
p −1

((Ak f )(x))
∫ x

0
k(x, y) r (x, y)dy

dx
x

(1.15)

holds for all measurable functions f : (0, b) → R with values in I, where r is defined by (1.6 ). If Φ is a non-negative
monotone convex function on the interval I ⊆ R and ϕ : I → R satisfies that ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then
the following inequality

(∫ b

0
w(y)Φ ( f (y))

dy
y

) q
p

−

∫ b

0
u(x)Φ

q
p ((Ak f )(x))

dx
x

≥
q
p

⏐⏐⏐⏐ ∫ b

0

u(x)
K (x)

Φ
q
p −1

((Ak f )(x))
∫ x

0
sgn( f (y) − (Ak f )(x))k(x, y) r1(x, y)dy

dx
x

⏐⏐⏐⏐ (1.16)

holds for all measurable functions f : (0, b) → R, where r1 is defined by (1.8) and Ak f is defined by

(Ak f )(x) :=
1

K (x)

∫ x

0+

k(x, y) f (y)dy, x ∈ (0, b). (1.17)

If 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, and Φ is a non-negative (monotone) concave function, then (1.15) and
(1.16) hold with reverse order integral of their left hand sides.

The paper is organized in the following way: After this introduction, in Section 2 we give the generalized Hardy-
type inequalities involving generalized Mittag-Leffler function appearing in the kernel for convex and monotone
convex functions and Hilfer fractional derivative. We give the related inequalities as an application for the power
function. We also include the results for the one dimensional settings. In addition to this we construct inequalities
in quotient for the generalized fractional integral operator. In Section 3 we derive the results for Hilfer fractional
derivative. Results analogous to those in Section 2 given for Hilfer fractional derivative. We present some new
inequalities of Hardy-type for Hilfer fractional derivative. Moreover, we deduce in particular the results of [21]
and [22] from our general results.

2. Refined Hardy-type inequalities for fractional integral operator with generalized Mittag-Leffler function in
its kernel

In this section, we first give the definition of Mittag-Leffler function [23] and fractional integral operator involving
generalized Mittag-Leffler function appearing in the kernel [24]. Let R(α) be a real part of complex number α.

Definition 2.1. Let α, β, γ, δ ∈ C; min{R(α),R(β),R(γ ),R(δ)} > 0; p, q > 0. Then the generalized Mittag-Leffler
function defined in [24] is given by

Eγ,δ,q
α,β,p(z) =

∞∑
n=0

(γ )qn

Γ (αn + β)
zn

(δ)pn
, (2.1)

where (γ )n represents the Pochhammer symbol, defined by (γ )n = γ (γ − 1)(γ − 2) . . . (γ − n + 1). The function
(2.1) represents all the previous generalizations of Mittag-Leffler function by setting
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• p = q = 1, it reduces to Eγ,δ

α,β(z) =
∑

∞

n=0
(γ )n

Γ (αn+β)
zn

(δ)n
defined by Salim in [25].

• δ = p = 1, it represents Eγ,q
α,β (z) =

∑
∞

n=0
(γ )qn

Γ (αn+β)
zn

n!
, which was introduced by Shukla and Prajapati in [26].

In [27] Srivastava and Tomovski investigated the properties of this function and its existence for a wider set of
parameters.

• δ = p = q = 1, the operator (2.1) was defined by Prabhakar in [28] and was denoted as: Eγ

α,β(z) =∑
∞

n=0
(γ )n

Γ (αn+β)
zn

n!
.

• γ = δ = p = q = 1, it reduces to Wiman’s function presented in [29]. Moreover, if β = 1, then the original
Mittag-Leffler function Eα(z) will be the result (see [23]).

We denote(
eγ,δ,q
α,β,p

)
(x; ω) = xβ−1 Eγ,δ,q

α,β,p (ωxα) .

Definition 2.2. Let α, β, γ, δ, ω ∈ C; min{R(α),R(β),R(γ ),R(δ)} > 0; p, q > 0. For all f ∈ L(a, b) we introduce
an integral operator(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x) =

∫ x

a
eγ,δ,q
α,β,p (x − t; ω) f (t)dt, (2.2)

which contains the generalized Mittag-Leffler function (2.1) in its kernel.

Our first main result is given in the following theorem.

Theorem 2.3. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0 and α, β, γ, δ, p, q be as in Definition (2.2) and let u be
a weight function defined on (a, b). For each y ∈ (a, b), ṽ is defined on (a, b) by

ṽ(y) :=

⎛⎝ ∫ b

y
u(x)

(
eγ,δ,q
α,β,p (x − y; ω)

eγ,δ,q
α,β+1,p (x − a; ω)

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality

( ∫ b

a
ṽ(y)Φ ( f (y)) dy

) q
p

−

∫ b

a
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ dx

≥
q
p

∫ b

a

u(x)

eγ,δ,q
α,β+1,p (x − a; ω)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
×

∫ x

a
eγ,δ,q
α,β,p (x − y; ω) r̃ (x, y)dydx (2.3)

holds for all measurable functions f : (a, b) → R and r̃ : (a, b) × (a, b) → R is a non-negative function defined by

r̃ (x, y) =

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐Φ( f (y)) − Φ

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠⏐⏐⏐⏐⏐⏐
−

⏐⏐⏐⏐⏐⏐ϕ
⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐ . (2.4)
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If Φ is a non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the inequality(∫ b

a
ṽ(y)Φ ( f (y)) dy

) q
p

−

∫ b

a
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ dx

≥
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)

eγ,δ,q
α,β+1,p (x − a; ω)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
×

∫ x

a
sgn

⎛⎝ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ eγ,δ,q
α,β,p (x − y; ω) r̃1(x, y) dy dx

⏐⏐⏐⏐ (2.5)

holds for all measurable functions f : (a, b) → R and r̃1 : (a, b)× (a, b) → R is a non-negative function defined by

r̃1(x, y) = Φ( f (y)) − Φ

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
− ϕ

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ ·

⎛⎝ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ . (2.6)

If Φ is a non-negative (monotone) concave, then the order of terms on the left hand side of inequalities (2.3) and (2.5)
is reversed.

Proof. Applying Theorem 1.3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k̃(x, y) =

{
eγ,δ,q
α,β,p (x − y; ω) , a ≤ y ≤ x ;

0, x < y ≤ b ,
(2.7)

where (see Lemma 3.2 in [30]), and

K̃ (x) =

∫ x

a
eγ,δ,q
α,β,p (x − y; ω) dy = eγ,δ,q

α,β+1,p (x − a; ω) ,

and

(Ak f )(x) =

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

, (2.8)

we get inequalities (2.3) and (2.5). ■

Remark 2.4. Theorem 2.3 generalizes the result of [22], i.e. for p = q, Theorem 2.3 becomes [22, Theorem 3.6] and
convex function Φ need not to be non-negative.

Particular to our interest, we consider the power function Φ : R+ → R defined by Φ(x) = x s . Obviously,
ϕ(x) = Φ ′(x) = sx s−1, x ∈ R+.

Corollary 2.5. Let k̃, K̃ , p, q and ṽ be as in Theorem 2.3. Let s ∈ R be such that s ̸= 0, f : (a, b) → R be a
non-negative measurable function (positive for s < 0) and

r̃s,k f (x, y) =

⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐⏐ f s(y) −

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠s⏐⏐⏐⏐⏐⏐⏐
− |s| ·

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠s−1⏐⏐⏐⏐⏐⏐ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐⏐ , (2.9)
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for x, y ∈ (a, b). If s ≥ 1 or s < 0, then the inequality

(∫ b

a
ṽ(y) f s(y)dy

) q
p

−

∫ b

a
u(x)

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
qs
p

dx

≥
q
p

∫ b

a

u(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
(q−p)s

p

×

∫ x

a
eγ,δ,q
α,β,p (x − y; ω) r̃s,k f (x, y) dy dx (2.10)

holds.
Let

M̃s,k f (x, y) = f s(y) −

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠s

−

s

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠s−1⎛⎝ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ (2.11)

for x, y ∈ (a, b). If s ≥ 1 or s < 0, then the inequality

(∫ b

a
ṽ(y) f s(y)dy

) q
p

−

∫ b

a
u(x)

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
qs
p

dx

≥
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠
(q−p)s

p

×

∫ x

a
sgn

⎛⎝ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x − a; ω)

⎞⎠ eγ,δ,q
α,β,p (x − y; ω) M̃s,k f (x, y) dy dx

⏐⏐⏐⏐ (2.12)

holds. If s ∈ (0, 1), then versions of the inequalities (2.10) and (2.12) hold with reverse order of terms on the left
hand sides.

Here we give the result for one dimensional settings, with intervals in R and Lebesgue measures in next theorem.

Theorem 2.6. Let 0 < b ≤ ∞, α, β, γ, δ, p, q be as Definition (2.2) and u be a weight function. For each y ∈ (0, b)
we let the function w̃ : (0, b) → R be defined by

w̃(y) = y

⎛⎝∫ b

y

(
eγ,δ,q
α,β,p (x − y; ω)

eγ,δ,q
α,β+1,p (x; ω)

) q
p

u(x)
dx
x

⎞⎠
p
q

. (2.13)

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R satisfies that ϕ(x) ∈ ∂Φ(x) for all
x ∈ I nt I, then the following inequality(∫ b

0
w̃(y)Φ ( f (y))

dy
y

) q
p

−

∫ b

0
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x; ω)

⎞⎠ dx
x

≥
q
p

∫ b

0

u(x)

eγ,δ,q
α,β+1,p (x; ω)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x; ω)

⎞⎠∫ x

0
eγ,δ,q
α,β,p (x − y; ω) r̃ (x, y)dy

dx
x

(2.14)
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holds for all measurable functions f : (0, b) → R and r̃ (x, y) is defined by (2.4). If Φ is a non-negative monotone
convex function on the interval I ⊆ R and ϕ : I → R satisfies that ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the following
inequality(∫ b

0
w̃(y)Φ ( f (y))

dy
y

) q
p

−

∫ b

0
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x; ω)

⎞⎠ dx
x

≥
q
p

⏐⏐⏐⏐ ∫ b

0

u(x)

eγ,δ,q
α,β+1,p (x; ω)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω;a+ f

)
(x)

eγ,δ,q
α,β+1,p (x; ω)

⎞⎠
×

∫ x

0
sgn

⎛⎝ f (y) −

(
Eγ,δ,q

α,β,p,ω;a+ f
)

(x)

eγ,δ,q
α,β+1,p (x; ω)

⎞⎠ eγ,δ,q
α,β,p (x − y; ω) r̃1(x, y)dy

dx
x

⏐⏐⏐⏐ (2.15)

holds for all measurable functions f : (0, b) → R and r̃1(x, y) defined by (2.6).

Proof. Applying Theorem 1.6 with k̃(x, t) given by (2.7) and

(Ak f )(x) =
1

eγ,δ,q
α,β+1,p (x; ω)

∫ x

0
eγ,δ,q
α,β,p (x − y; ω) f (y)dy,

then we obtain inequalities (2.14) and (2.15). ■

Remark 2.7. Some special cases of the above results are given below.

• If we take m = k = 1 in Theorem 2.3, Corollary 2.5 and in Theorem 2.6, then the inequalities reduce to the case
Eγ,δ

α,β(z) =
∑

∞

n=0
(γ )n

Γ (αn+β)
zn

(δ)n
.

• If we take δ = m = 1 in Theorem 2.3, Corollary 2.5 and in Theorem 2.6, then the inequalities reduce to the case
Eγ,k

α,β(z) =
∑

∞

n=0
(γ )kn

Γ (αn+β)
zn

n!
.

• If we take δ = m = k = 1 in Theorem 2.3, Corollary 2.5 and in Theorem 2.6, then the inequalities reduce to the
case Eγ

α,β(z) =
∑

∞

n=0
(γ )n

Γ (αn+β)
zn

n!
.

• If we take γ = δ = m = k = 1 in Theorem 2.3, Corollary 2.5 and in Theorem 2.6 then the inequalities reduce
to Wiman’s function. Moreover, if β = 1, then the original Mittag-Leffler function Eα(z) will be the result.

Next we will present some new generalized Hardy-type inequalities in quotient form. For this if we substitute
k(x, y) by k(x, y) f2(y) and f by f1

f2
, where fi : Ω2 → R, (i = 1, 2) are measurable functions in Theorem 1.6 we

obtain the following result.

Theorem 2.8. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with
σ -finite measures. Let fi : Ω2 → R be measurable functions, gi ∈ U ( fi ), (i = 1, 2), where g2(x) > 0 for every
x ∈ Ω1. Let u be a weight function on Ω1, k be a non-negative measurable function on Ω1 × Ω2 and let the function

x ↦→ u(x)
(

k(x,y)
g2(x)

) q
p

be integrable on Ω1. For each y ∈ Ω2 define s = s(y) on Ω2 by

s(y) := f2(y)

( ∫
Ω1

u(x)
(

k(x, y)
g2(x)

) q
p

dµ1(x)

) p
q

< ∞.

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality( ∫

Ω2

s(y)Φ
(

f1(y)
f2(y)

)
dµ2(y)

) q
p

−

∫
Ω1

u(x)Φ
q
p

(
g1(x)
g2(x)

)
dµ1(x)

≥
q
p

∫
Ω1

u(x)
g2(x)

Φ
q
p −1

(
g1(x)
g2(x)

)∫
Ω2

k(x, y) f2(y)d(x, y)dµ2(y)dµ1(x) (2.16)
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holds for all measurable functions fi : Ω2 → I, (i = 1, 2) such that f1(y)
f2(y) ∈ I, for all y ∈ Ω2, and d : Ω1 × Ω2 → R

is a non-negative function defined by

d(x, y) =

⏐⏐⏐⏐ ⏐⏐⏐⏐Φ ( f1(y)
f2(y)

)
− Φ

(
g1(x)
g2(x)

)⏐⏐⏐⏐− ⏐⏐⏐⏐ϕ (g1(x)
g2(x)

)⏐⏐⏐⏐ ⏐⏐⏐⏐ f1(y)
f2(y)

−
g1(x)
g2(x)

⏐⏐⏐⏐ ⏐⏐⏐⏐ .
If Φ is a non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the inequality(∫

Ω2

s(y)Φ
(

f1(y)
f2(y)

)
dµ2(y)

) q
p

−

∫
Ω1

u(x)Φ
q
p

(
g1(x)
g2(x)

)
dµ1(x)

≥
q
p

⏐⏐⏐⏐ ∫
Ω1

u(x)
g2(x)

Φ
q
p −1

(
g1(x)
g2(x)

)∫
Ω2

sgn
(

f1(y)
f2(y)

−
g1(x)
g2(x)

)
k(x, y) f2(y)d1(x, y) dµ2(y) dµ1(x)

⏐⏐⏐⏐ (2.17)

holds for all measurable functions fi : Ω2 → I, (i = 1, 2) such that f1(y)
f2(y) ∈ I, for all y ∈ Ω2 and d1 : Ω1 × Ω2 → R

is a non-negative function defined by

d1(x, y) = Φ

(
f1(y)
f2(y)

)
− Φ

(
g1(x)
g2(x)

)
− ϕ

(
g1(x)
g2(x)

)
·

(
f1(y)
f2(y)

−
g1(x)
g2(x)

)
.

If Φ is a non-negative (monotone) concave function, then the order of terms on the left hand sides of (2.16) and (2.17)
are reversed.

Remark 2.9. For p = q in Theorem 2.8 we get the result in [21, Theorem 1.3].

Our next result reads;

Theorem 2.10. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, α, β, γ, δ, p, q be as in Definition (2.2) and let u be a
weight function defined on (a, b). For each y ∈ (a, b), define a function

s̃(y) := f2(y)

⎛⎜⎝ ∫ b

y
u(x)

⎛⎝ eγ,δ,q
α,β,p (x − y; ω)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠
q
p

dx

⎞⎟⎠
p
q

< ∞.

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality( ∫ b

a
s̃(y)Φ

(
f1(y)
f2(y)

)
dy
) q

p

−

∫ b

a
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ dx

≥
q
p

∫ b

a

u(x)(
Eγ,δ,q

α,β,p,ω,a+ f2

)
(x)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠
×

∫ x

a
eγ,δ,q
α,β,p (x − y; ω) f2(y)d̃(x, y)dydx (2.18)

holds for all measurable functions fi : Ω2 → I, (i = 1, 2) such that f1(y)
f2(y) ∈ I, for all y ∈ (a, b), and

d̃ : (a, b) × (a, b) → R is a non-negative function defined by

d̃(x, y) =

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐Φ
(

f1(y)
f2(y)

)
− Φ

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠⏐⏐⏐⏐⏐⏐
−

⏐⏐⏐⏐⏐⏐ϕ
⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠⏐⏐⏐⏐⏐⏐ ·

⏐⏐⏐⏐⏐⏐ f1(y)
f2(y)

−

(
Eγ,δ,q

α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐ .
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If Φ is a non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the inequality(∫ b

a
s̃(y)Φ

(
f1(y)
f2(y)

)
dy
) q

p

−

∫ b

a
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ dx

≥
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)(
Eγ,δ,q

α,β,p,ω,a+ f2

)
(x)

Φ
q
p −1

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠
×

∫ x

a
sgn

⎛⎝ f1(y)
f2(y)

−

(
Eγ,δ,q

α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ eγ,δ,q
α,β,p (x − y; ω) f2(y)d̃1(x, y) dy dx

⏐⏐⏐⏐ (2.19)

holds for all measurable functions fi : Ω2 → I, (i = 1, 2) such that f1(y)
f2(y) ∈ I, for all y ∈ (a, b) and

d̃1 : (a, b) × (a, b) → R is a non-negative function defined by

d̃1(x, y) = Φ

(
f1(y)
f2(y)

)
− Φ

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠
− ϕ

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ ·

⎛⎝ f1(y)
f2(y)

−

(
Eγ,δ,q

α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ .

If Φ is a non-negative (monotone) concave function, then the order of terms on the left hand sides of (2.18) and (2.19)
are reversed.

Proof. Applying Theorem 2.8 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy, g1(x) = (Eγ,δ,q
α,β,p,ω,a+ f1)(x),

g2(x) = (Eγ,δ,q
α,β,p,ω,a+ f2)(x) and k(x, y) = eγ,δ,q

α,β,p (x − y; ω) , we obtain inequalities (2.18) and (2.19). ■

Remark 2.11. Since the right hand sides of the inequalities (2.18) and (2.19) are non-negative, therefore we obtain
the following inequality∫ b

a
u(x)Φ

q
p

⎛⎝
(

Eγ,δ,q
α,β,p,ω,a+ f1

)
(x)(

Eγ,δ,q
α,β,p,ω,a+ f2

)
(x)

⎞⎠ dx ≤

( ∫ b

a
v(y)Φ

(
f1(y)
f2(y)

)
dy
) q

p

. (2.20)

Particularly for p = q, we obtain the inequality given in [22, Theorem 3.4].

Remark 2.12. If Φ is strictly convex on I and f1(x)
f2(x) is non-constant, then the inequality given in (2.20) is strict.

3. Hardy-type inequalities for Hilfer fractional derivative operator

Let x > a > 0. By L1(a, x) we denote the space of all Lebesgue integrable functions on the interval (a, x). For
any f ∈ L1(a, x) the Riemann–Liouville fractional integral of f of order ν is defined by

(I ν
a+

f )(s) =
1

Γ (α)

∫ s

a
(x − y)ν−1 f (t)dt = ( f ∗ Kν)(s), s ∈ [a, x], (ν > 0), (3.1)

where Kν(s) =
sν−1

Γ (ν) . The integral on the right side of (3.1) exists for almost s ∈ [a, x] and I ν
a+

f ∈ L1(a, x). The
Riemann–Liouville fractional derivative of f ∈ L1(a, x) of order ν is defined by

(Dν
a+

f )(s) =

(
d

dx

)n

(I n−ν
a+

f )(x), (ν > 0, n = [ν + 1]).

By Cm[a, x] we denote the space of all functions on [a, x] which have continuous derivatives up to order m, and
AC[a, x] is the space of all absolutely continuous functions on [a, x]. By ACm[a, x] we denote the space of all
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functions f ∈ Cm[a, x] with f (m−1)
∈ AC[a, x]. By L∞(a, x) we denote the space of all measurable functions

essentially bounded on [a, x]. Let µ > 0, m = [µ] + 1 and f ∈ ACm[a, b]. The Caputo derivative of order µ > 0 is
defined as

(C Dµ
a+

f )(x) =

(
I m−µ
a+

dm

dxm
f
)

(x) =
1

Γ (m − µ)

∫ x

a
(x − s)m−µ−1 dm

dxm
f (s)ds.

Let us recall the definition of Hilfer fractional derivative presented in [31].

Definition 3.1. Let f ∈ L1[a, b], f ∗ K(1−ν)(1−µ) ∈ AC1[a, b]. The fractional derivative operator Dµ,ν
a+ of order

0 < µ < 1 and type 0 < ν ≤ 1 with respect to x ∈ [a, b] is defined by(
Dµ,ν

a+ f
)
(x) := I ν(1−µ)

a+

d
dx

(
I (1−ν)(1−µ)
a+ f (x)

)
, (3.2)

whenever the right hand side exists. The derivative (3.2) is usually called Hilfer fractional derivative.

The more general integral representation of Eq. (3.2) given in [32] is defined by:
Let f ∈ L1 [a, b] , f ∗ K(1−ν)(n−µ) ∈ ACn [a, b] , n − 1 < µ < n, 0 < ν ≤ 1, n ∈ N. Then(

Dµ,ν
a+ f

)
(x) =

(
I ν(n−µ)
a+

dn

dxn

(
I (1−ν)(n−µ)
a+ f (x)

))
, (3.3)

which coincide with (3.2) for n = 1.

Specially for ν = 0, Dµ,0
a+ f = Dµ

a+ f is a Riemann–Liouville fractional derivative of order µ, and for ν = 1 it is
a Caputo fractional derivative Dµ,1

a+ f =
C Dµ

a+ f of order µ. Applying the properties of Riemann–Liouville integral
the relation (3.3) can be rewritten in the form:(

Dµ,ν
a+ f

)
(x) =

(
I ν(n−µ)
a+

((
Dn−(1−ν)(n−µ)

a+ f
)

(x)
))

=
1

Γ (ν (n − µ))

∫ x

a
(x − y)ν(n−µ)−1

((
Dµ+ν(n−µ)

a+ f
)

(t)
)

dt. (3.4)

Our first result of this section is given in next theorem.

Theorem 3.2. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, f ∈ L1[a, b] and the fractional derivative operator Dµ,ν
a+

of order n − 1 < µ < n and type 0 < ν ≤ 1, and let u be a weight function on (a, b). For each y ∈ (a, b), v̂ = v̂(y)
is defined on (a, b) by

v̂(y) := (ν (n − µ))

( ∫ b

y
u(x)

(
(x − y)ν(n−µ)−1

(x − a)ν(n−µ)

) q
p

dx

) p
q

< ∞. (3.5)

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality( ∫ b

a
v̂(y)Φ

((
Dµ+ν(n−µ)

a+ f
)

(y)
)

dy
) q

p

−

∫ b

a
u(x)Φ

q
p

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
dx

≥ (ν (n − µ))
q
p

∫ b

a

u(x)
(x − a)ν(n−µ)

Φ
q
p −1

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
×

∫ x

a
(x − y)ν(n−µ)−1r̂ (x, y)dydx (3.6)
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holds for all measurable functions Dµ+ν(n−µ)
a+ f : (a, b) → R and r̂ : (a, b) × (a, b) → R is a non-negative function

defined by

r̂ (x, y) =

⏐⏐⏐⏐ ⏐⏐⏐⏐Φ (Dµ+ν(n−µ)
a+ f

)
(y) − Φ

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)⏐⏐⏐⏐
−

⏐⏐⏐⏐ϕ (Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)⏐⏐⏐⏐ ⏐⏐⏐⏐ f (y) −
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

⏐⏐⏐⏐ ⏐⏐⏐⏐ . (3.7)

If Φ is a non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the inequality(∫ b

a
v̂(y)Φ

((
Dµ+ν(n−µ)

a+ f
)

(y)
)

dy
) q

p

−

∫ b

a
u(x)Φ

q
p

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
dx

≥ (ν (n − µ))
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)
(x − a)ν(n−µ)

Φ
q
p −1

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
×

∫ x

a
sgn

((
Dµ+ν(n−µ)

a+ f
)

(y) −
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
× (x − y)ν(n−µ)−1r̂1(x, y) dy dx

⏐⏐⏐⏐ (3.8)

holds for all measurable functions Dµ+ν(n−µ)
a+ f : (a, b) → R and r̂1 : (a, b) × (a, b) → R is a non-negative function

defined by

r̂1(x, y) = Φ
((

Dµ+ν(n−µ)
a+ f

)
(y)
)

− Φ

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
− ϕ

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
×

((
Dµ+ν(n−µ)

a+ f
)

(y) −
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
. (3.9)

If Φ is a non-negative (monotone) concave function, then the order of terms on the left hand sides of (3.6) and (3.8)
are reversed.

Proof. Applying Theorem 1.3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(y) = dy,

k̂(x, y) =

⎧⎨⎩
(x − y)ν(n−µ)−1

Γ (ν (n − µ))
, a ≤ y ≤ x ;

0, x < y ≤ b,
(3.10)

we get

K̂ (x) =
(x − a)ν(n−µ)

Γ (ν (n − µ) + 1)
(3.11)

and the integral operator Ak f (x) takes the form

(Ak f )(x) =
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x) (3.12)

and v̂ as in (3.5), we get inequalities (3.6) and (3.8). ■

Remark 3.3. For p = q, Theorem 1.3 becomes [22, Theorem 3.6] and the convex function Φ need not to be
non-negative.
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Especially for the power function we obtain the next corollary.

Corollary 3.4. Let u, k̂, K̂ and v̂ be as in Theorem 3.2. Let s ∈ R be such that s ̸= 0, Dµ+ν(n−µ)
a+ f : (a, b) → R be a

non-negative measurable function (positive for s < 0) and

hs,k f (x, y) =

⏐⏐⏐⏐ ⏐⏐⏐⏐((Dµ+ν(n−µ)
a+ f

)
(y)
)s

−

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)s⏐⏐⏐⏐
− |s| ·

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)s−1⏐⏐⏐⏐ f (y) −
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

⏐⏐⏐⏐
⏐⏐⏐⏐⏐ , (3.13)

for x, y ∈ (a, b). If s ≥ 1 or s < 0, then the inequality(∫ b

a
v̂(y)

((
Dµ+ν(n−µ)

a+ f
)

(y)
)s

dy
) q

p

−

∫ b

a
u(x)

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

) qs
p

dx

≥ (ν (n − µ))
q
p

∫ b

a

u(x)
(x − a)ν(n−µ)

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

) (q−p)s
p

×

∫ x

a
(x − y)ν(n−µ)−1hs,k f (x, y) dy dx (3.14)

holds.
Let

Ns,k f (x, y) =

((
Dµ+ν(n−µ)

a+ f
)

(y)
)s

−

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)s

− s
(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)s−1

×

(((
Dµ+ν(n−µ)

a+ f
)

(y)
)

−
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
(3.15)

for x, y ∈ (a, b). If s ≥ 1 or s < 0, then the inequality(∫ b

a
v(y)

((
Dµ+ν(n−µ)

a+ f
)

(y)
)s

dy
) q

p

−

∫ b

a
u(x)

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

) qs
p

dx

≥ (ν (n − µ))
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)
(x − a)ν(n−µ)

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

) (q−p)s
p

×

∫ x

a
sgn

(((
Dµ+ν(n−µ)

a+ f
)

(y)
)

−
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
× (x − y)ν(n−µ)−1 Ns,k f (x, y) dy dx

⏐⏐⏐⏐ (3.16)

holds. If s ∈ (0, 1), then inequalities corresponding to (3.14) and (3.16) hold with reverse order of terms on the left
hand sides.

Next we give the results for one dimensional settings involving Hilfer fractional derivative.

Theorem 3.5. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, f ∈ L1[a, b] and the fractional derivative operator
Dµ,ν

a+ of order n − 1 < µ < n and type 0 < ν ≤ 1, and let u be a weight function. For each y ∈ (0, b) let the function
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ŵ : (0, b) → R be defined by

ŵ(y) = y (ν (n − µ))

⎛⎝∫ b

y

(
(x − y)ν(n−µ)−1

(x − a)ν(n−µ)

) q
p

u(x)
dx
x

⎞⎠
p
q

. (3.17)

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R satisfies that ϕ(x) ∈ ∂Φ(x) for all
x ∈ I nt I, then the following inequality(∫ b

0
ŵ(y)Φ

((
Dµ+ν(n−µ)

a+ f
)

(y)
) dy

y

) q
p

−

∫ b

0
u(x)Φ

q
p

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
dx
x

≥ (ν (n − µ))
q
p

∫ b

0

u(x)
(x − a)ν(n−µ)

Φ
q
p −1

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
×

∫ x

0
(x − y)ν(n−µ)−1 r̂ (x, y)dy

dx
x

(3.18)

holds for all measurable functions Dµ+ν(n−µ)
a+ f : (0, b) → R and r̂ (x, y) is defined by (3.7). If Φ is a non-negative

monotone convex function on the interval I ⊆ R and ϕ : I → R satisfies that ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then
the following inequality(∫ b

0
ŵ(y)Φ

((
Dµ+ν(n−µ)

a+ f
)

(y)
) dy

y

) q
p

−

∫ b

0
u(x)Φ

q
p

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
dx
x

≥ (ν (n − µ))
q
p

⏐⏐⏐⏐ ∫ b

0

u(x)
(x − a)ν(n−µ)

Φ
q
p −1

(
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
×

∫ x

0
sgn

(((
Dµ+ν(n−µ)

a+ f
)

(y)
)

−
Γ (ν (n − µ) + 1)

(x − a)ν(n−µ)

(
Dµ,ν

a+ f
)
(x)

)
× (x − y)ν(n−µ)−1 r̂1(x, y)dy

dx
x

⏐⏐⏐⏐ (3.19)

holds for all measurable functions Dµ+ν(n−µ)
a+ f : (0, b) → R and r̂1(x, y) is defined by (3.9).

Our next result reads:

Theorem 3.6. Let 0 < p ≤ q < ∞, or −∞ < q ≤ p < 0, α, β, γ, δ, p, q be as in Definition (2.2) and let u be a
weight function defined on (a, b). For each y ∈ (a, b), define a function

ŝ(y) :=
(Dµ+ν(n−µ)

a+
f2)(y)

(ν (n − µ))

⎛⎝ ∫ b

y
u(x)

(
(x − y)ν(n−µ)−1(

Dµ,ν
a+

f2
)

(x)

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on the interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ I nt I, then the inequality( ∫ b

a
ŝ(y)Φ

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)

)
dy

) q
p

−

∫ b

a
u(x)Φ

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

) q
p

dx

≥
q
p

∫ b

a

u(x)(
Dµ,ν

a+
f2
)

(x)
Φ

q
p −1

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)

×

∫ x

a

(x − y)ν(n−µ)−1

Γ (ν (n − µ))
(Dµ+ν(n−µ)

a+
f2)(y)d̂(x, y)dydx (3.20)
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holds for all measurable functions Dµ+ν(n−µ)
a+

fi : (a, b) → R, (i = 1, 2) such that
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
∈ I for all

y ∈ (a, b), and d̂ : (a, b) × (a, b) → R is a non-negative function defined by

d̂(x, y) =

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐Φ
(

(Dµ+ν(n−µ)
a+

f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)

)
− Φ

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)⏐⏐⏐⏐⏐
−

⏐⏐⏐⏐⏐ϕ
((

Dµ,ν
a+

f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ (Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
−

(
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ . (3.21)

If Φ is a non-negative monotone convex function on the interval I ⊆ R, and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ I nt I, then the inequality(∫ b

a
ŝ(y)Φ

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)

)
dy

) q
p

−

∫ b

a
u(x)Φ

q
p

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)
dx

≥
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)(
Dµ,ν

a+
f2
)

(x)
Φ

q
p −1

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)∫ x

a
sgn

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
−

(
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)

×
(x − y)ν(n−µ)−1

Γ (ν (n − µ))
(Dµ+ν(n−µ)

a+
f2)(y)d̂1(x, y) dy dx

⏐⏐⏐⏐ (3.22)

holds for all measurable functions Dµ+ν(n−µ)
a+

fi : (a, b) → R, (i = 1, 2) such that
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
∈ I, for all

y ∈ (a, b) and d̂1 : (a, b) × (a, b) → R is a non-negative function defined by

d̂1(x, y) =

[
Φ

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)

)
− Φ

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)

− ϕ

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)
·

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
−

(
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)]
. (3.23)

If Φ is a non-negative (monotone) concave function, then the order of terms on the left hand sides of (3.20) and (3.22)
are reversed.

Proof. Applying Theorem 2.8 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt, g1(x) =
(
Dµ,ν

a+
f1
)

(x),
g2(x) =

(
Dµ,ν

a+
f2
)

(x), f1(y) = (Dµ+ν(n−µ)
a+

f1)(y), and f2(y) = (Dµ+ν(n−µ)
a+

f2)(y), k(x, y) defined by (3.10), we
obtain inequalities (3.20) and (3.22). ■

Remark 3.7. Since the right hand sides of the inequalities (3.20) and (3.22) are non-negative, we obtain the following
inequality∫ b

a
u(x)Φ

q
p

((
Dµ,ν

a+
f1
)

(x)(
Dµ,ν

a+
f2
)

(x)

)
dx ≤

( ∫ b

a
v(y)Φ

(
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)

)
dy

) q
p

. (3.24)

Particularly for p = q, we obtain the inequality given in [22, Theorem 3.4].

Remark 3.8. If Φ is strictly convex on I and
(Dµ+ν(n−µ)

a+
f1)(y)

(Dµ+ν(n−µ)
a+

f2)(y)
is non-constant, then the inequality given in (3.24) is

strict.

Now we present some Hardy-type inequalities for Hilfer fractional derivative. We continue our analysis about
improvements by taking the non-negative difference of the left hand side and the right hand side of the inequalities



220 S. Iqbal et al. / Transactions of A. Razmadze Mathematical Institute 172 (2018) 205–222

given in (1.10) and (1.12) as:

ρ(s) =

( ∫ b

a
v(y) f s(y)dµ2(y)

) q
p

−

∫ b

a
u(x)((Ak f )(x))

sq
p dµ1(x)

−
q
p

∫ b

a

u(x)
K (x)

((Ak f )(x))s( q
p −1)

∫ b

a
k(x, y)rp,k f (x, y)dydx, (3.25)

where rp,k f (x, y) is defined by (1.9) and

π (s) =

( ∫ b

a
v(y) f s(y)dy

) q
p

−

∫ b

a
u(x) ((Ak f )(x))

sq
p dx

−
q
p

⏐⏐⏐⏐ ∫ b

a

u(x)
K (x)

Φ
q
p −1

((Ak f )(x))
∫ b

a
sgn( f (y) − (Ak f )(x))k(x, y) Mp,k f (x, y) dy dx

⏐⏐⏐⏐, (3.26)

where Mp,k f (x, y) is defined by (1.11).

Theorem 3.9. Let 0 < p ≤ q < ∞, s ≥ 1, ν(n − µ) ≥ 1 −
p
q , f ∈ L1[a, b] and the fractional derivative operator

Dµ,ν
a+ of order n − 1 < µ < n and type 0 < ν ≤ 1. Then for non-negative functions Dµ+ν(n−µ)

a+
f and Dµ,ν

a+ f the
following inequality holds true:

0 ≤ ρ(s) ≤ H (s) − M(s) ≤ H (s),

where

ρ(s) =
(ν (n − µ))

q
p

(ν (n − µ) − 1) q
p + 1

(∫ b

a
(b − y)ν(n−µ)−1+

p
q ((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (Γ (ν (n − µ) + 1))
sq
p

∫ b

a
(x − a)

(ν(n−µ))q(1−s)
p

(
(Dµ,ν

a+ f )(x)
) sq

p dx − M(s),

M(s) =
q(ν (n − µ))(Γ (ν (n − µ) + 1))s( q

p −1)

p

∫ b

a
(x − a)

(ν(n−µ))(q−p)(1−s)
p

(
(Dµ,ν

a+ f )(x)
)s( q

p −1)

×

∫ x

a
h p,k f (x, y)(x − y)ν(n−µ)−1dy dx,

where h p,k f (x, y) is defined by (3.13) and

H (s) = (b − a)(ν(n−µ)) q
p (1−s)

×

⎡⎣ (ν (n − µ))
q
p (b − a)

q((ν(n−µ))s−1)+p
p

(ν (n − µ) − 1) q
p + 1

(∫ b

a
(Dµ+ν(n−µ)

a+
f (y))sdy

) q
p

− (Γ (ν (n − µ) + 1))
sq
p

∫ b

a
(Dµ,ν

a+ f (x))
sq
p dx

]
. (3.27)

Moreover,

0 ≤ π (s) ≤ H (s) − B(s) ≤ H (s),

where

π (s) =
(ν (n − µ))

q
p

(ν (n − µ) − 1) q
p + 1

(∫ b

a
(b − y)ν(n−µ)−1+

p
q ((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (Γ (ν (n − µ) + 1))
sq
p

∫ b

a
(x − a)

(ν(n−µ))q(1−s)
p

(
(Dµ,ν

a+ f )(x)
) sq

p dx − B(s),

B(s) =
q(ν (n − µ))(Γ (ν (n − µ) + 1))s( q

p −1)

p
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×

⏐⏐⏐⏐ ∫ b

a

∫ x

a
sgn

(
(Dµ+ν(n−µ)

a+
f )(y) −

Γ (ν (n − µ) + 1)
(x − a)ν(n−µ)

(Dµ,ν
a+ f )(x)

)
× (x − a)

(ν(n−µ))(q−p)(1−s)
p

(
(Dµ,ν

a+ f )(x)
)s( q

p −1) (x − y)ν(n−µ)−1 Np,k f (x, y)dy dx
⏐⏐⏐⏐

and Np,k f (x, y) is defined by (3.15) and H (s) is defined by (3.27).

Proof. Applying Theorem 1.3 with Ω1 = Ω2 = (a, b), dµ2(x) = dx, dµ2(y) = dy,

k(x, y) =

⎧⎨⎩
(x − y)ν(n−µ)−1

Γ (ν (n − µ))
, a < y ≤ x ;

0, x < y ≤ b,

we get that K (x) =
(x−a)ν(n−µ)

Γ (ν(n−µ)+1) and (Ak f )(x) =
Γ (ν(n−µ)+1)
(x−a)ν(n−µ) (Dµ,ν

a+ f )(x). Replace f by Dµ+ν(n−µ)
a+

f . For the particular

weight function u(x) = (x − a)
(ν(n−µ))q

p , x ∈ (a, b) we get v(y) = ((ν (n − µ))(b − y)ν(n−µ)−1+
p
q )/(((ν (n − µ) −

1) q
p + 1)

p
q ) and then (3.25) takes the form

ρ(s) =
(ν (n − µ))

q
p

(ν (n − µ) − 1) q
p + 1

(∫ b

a
(b − y)ν(n−µ)−1+

p
q ((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (Γ (ν (n − µ) + 1))
sq
p

∫ b

a
(x − a)

(ν(n−µ))q(1−s)
p

(
(Dµ,ν

a+ f )(x)
) sq

p dx − M(s).

Since (ν(n−µ))q
p (1 − s) ≤ 0 and M(s) ≥ 0, we obtain that

ρ(s) ≤
(ν (n − µ))

q
p (b − a)(ν(n−µ)−1) q

p +1

(ν (n − µ) − 1) q
p + 1

(∫ b

a
((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (b − a)
(ν(n−µ))q

p (1−s)(Γ (ν (n − µ) + 1))
sq
p

∫ b

a

(
(Dµ,ν

a+ f )(x)
) sq

p dx − M(s)

= H (s) − M(s)

≤ H (s).

Moreover, (3.26) takes the form

π (s) =
(ν (n − µ))

q
p

(ν (n − µ) − 1) q
p + 1

(∫ b

a
(b − y)ν(n−µ)−1+

p
q ((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (Γ (ν (n − µ) + 1))
sq
p

∫ b

a
(x − a)

(ν(n−µ))q(1−s)
p

(
(Dµ,ν

a+ f )(x)
) sq

p dx − B(s).

Since (ν(n−µ))q
p (1 − s) ≤ 0 and B(s) ≥ 0, we obtain that

π (s) ≤
(ν (n − µ))

q
p (b − a)(ν(n−µ)−1) q

p +1

(ν (n − µ) − 1) q
p + 1

(∫ b

a
((Dµ+ν(n−µ)

a+
f )(y))sdy

) q
p

− (b − a)
(ν(n−µ))q

p (1−s)(Γ (ν (n − µ) + 1))
sq
p

∫ b

a

(
(Dµ,ν

a+ f )(x)
) sq

p dx − B(s)

= H (s) − B(s)

≤ H (s).

The proof is complete. ■

Remark 3.10. Since H (s) > 0 in Theorem 3.9, then after an elementary calculation we get the inequality given
in [30, Remark 2.6].
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[8] S. Iqbal, K. Krulić, J. Pečarić, On an inequality of H. G. Hardy, J. Inequal. Appl. 2010 (2010). Artical ID 264347.
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Abstract

In this paper, we study the iterative method of Aitken type for solving the non-linear equations, in which the interpolation nodes
are controlled by variant of Newton method or by a general method of order p. By combining such methods with a generalized
secant method, it is shown that the order of convergence can be increased to as high as desired and also in the limiting case
efficiency of the method is 2. Several numerical examples are provided in support of the theoretical results.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Non-linear equations; Newton method; Aitken type method; Generalized secant method

1. Introduction

Non-linear equations are encountered in all branch of science and engineering. It is hardly possible to solve such
equations analytically and therefore iterative methods are employed. For a given non-linear equation

f (x) = 0,

a very well known method widely used is the Newton method:

xn+1 = xn −
f (xn)
f ′(xn)

which is quadratically convergent. There have been several ways by which the order of convergence can be increased.
Recently, in [1], Păvăloiu and Cătinaş obtained and studied the following Aitken method:

yn = xn −
f (xn)
f ′(xn)

,

zn = yn −
f (yn)
f ′(yn)

,
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xn+1 = zn −
f (zn)

[yn, zn; f ]
. (1.1)

Along with other considerations, it was proved in [1] that the method (1.1) is of order 6 with efficiency index 1.431
which is higher than the Newton method or the standard Aitken method.

Recently, McDougall and Wotherspoon in [2] gave the following modification of Newton’s method:

x∗

n = xn −
f (xn)

f ′
( 1

2 [xn−1 + x∗

n−1]
)

xn+1 = xn −
f (xn)

f ′
( 1

2 [xn + x∗
n ]
) . (1.2)

They proved that the above method (1.2) has order of convergence 1+
√

2 ≈ 2.4 and requires two functions evaluation
per iteration so that the efficiency becomes 1.5537. In this paper, to begin with, we propose the following method in
which the Newton iterates in (1.1) are replaced by (1.2):

y∗

n = xn −
f (xn)

f ′
( 1

2 [xn−1 + y∗

n−1]
)

yn = xn −
f (xn)

f ′
( 1

2 [xn + y∗
n ]
)

z∗

n = yn −
f (yn)

f ′
( 1

2 [yn−1 + z∗

n−1]
)

zn = yn −
f (yn)

f ′
( 1

2 [yn + z∗
n]
)

xn+1 = zn −
f (zn)

[yn, zn; f ]
. (1.3)

We prove that the order of convergence of the method (1.3) is 6.76137 and efficiency is 1.4655 higher than the method
(1.1). This is done in Section 2.

Also in Section 2, we study a method more general than (1.1) or (1.2). We replace, in (1.1), the Newton iterates by
the iterates of any arbitrary method. Let φ(x) be an iterative function such that the method

xn+1 = φ(xn)

is of order p. We propose the following generalized Aitken-type method:

yn = φ(xn),
zn = φ(yn),

xn+1 = zn −
f (zn)

[yn, zn; f ]
. (1.4)

We prove, in Section 2, that the method (1.4) is of order p2
+ p. This strategy would enable to produce an iterative

method of any desired order. We demonstrate it with the help of certain examples.
There have been several methods which are based on approximations of integrals. In this direction Weerakoon and

Fernando [3] obtained the following third order method:

yn = xn −
f (xn)
f ′(xn)

xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(yn)
. (1.5)

Several authors have obtained similar methods, see, e.g., [3–5]. It is noted that the method (1.5) will not proceed if at
any iterate f ′(xn) = 0. To overcome this problem, on the lines of Wu [6], in [7], the following modification of (1.5)
was proposed and studied:

yn = xn −
f (xn)

f ′(xn) − λ f (xn)
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xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(yn)
. (1.6)

We develop, in Section 3, a method more general than (1.6) and study its convergence. This method is further
generalized to Aitken-type method. In Section 4, we propose and study the Aitken-type methods which are based
on power means.

Next, note that the last iterate in the method (1.1) is, in fact, the secant iterate which uses the previously calculated
nodes yn and zn. In [8] and [9], those authors generalized the secant method which involves arbitrary number of
previously calculated nodes. We exploit this generalized secant method in Section 5. In fact, we replace in (1.1), the
secant iterate by generalized secant iterate. We show that as the number of iterate increases, not only the order but
also the efficiency of the corresponding method increases. Moreover, in the limiting case as the number of iterates
increases to infinity, the efficiency tends to 2. Finally, in Section 6, some numerical examples are provided based on
the methods developed in this paper.

2. Order of convergence of general Aitken method

We begin with the convergence analysis of the method (1.3).

Theorem 2.1. Let f be a sufficiently differentiable function in the neighbourhood of α which is a simple zero of f. If
x0 is sufficiently close to α, the order of convergence of the method (1.3) is 6.76137 with efficiency index 1.4655.

Proof. Let en, dn, and θn be the errors in, respectively, xn, yn, and zn. Using Taylor series, we have

f (xn) = f ′(α)[en + C2e2
n + C3e3

n + O(e4
n)] (2.1)

and

f ′(xn) = f ′(α)[1 + 2C2en + 3C3e2
n + 4C4e3

n + O(e4
n)] (2.2)

where Cn =
1
n!

f n (α)
f ′(α) . Also,

1
2

[xn−1 + y∗

n−1] =
en−1 + d∗

n−1

2
+ α (2.3)

where d∗
n is the error in y∗

n . Using (2.2) and (2.3), we get

f ′

(
1
2

[xn−1 + y∗

n−1]
)

= f ′(α)[1 + 2C2

(
en−1 + d∗

n−1

2

)
+ 3C3

(
en−1 + d∗

n−1

2

)2

+ O(e3
n)]

which on using (2.1) gives
f (xn)

f ′
( 1

2 [xn−1 + y∗

n−1]
) = en − C2en−1en − C2d∗

n−1en + C2e2
n

− C2
2 en−1e2

n − C2d∗

n−1e2
n + C3e3

n.

Consequently, (1.3) gives

d∗

n = en − (en − C2en−1en − C2d∗

n−1en + C2e2
n

− C2
2 en−1e2

n − C2d∗

n−1e2
n + C3e3

n)
≈ C2en−1en. (2.4)

Again by using Taylor series and (2.4), we get

dn ≈ C2d∗

n en = C2
2 en−1e2

n. (2.5)

Similarly, if θ∗
n is the error in zn then by (2.5), we obtain

θ∗

n ≈ C2dn−1dn = C5
2 en−2e3

n−1e2
n. (2.6)
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Now, (2.5) and (2.6), give

θn ≈ θ∗

n dn = C8
2 en−2e4

n−1e4
n. (2.7)

By Taylor series expansion, we have from (1.3)

en+1 ≈ θndn

which by using (2.5) and (2.7) gives

en+1 = C11
2 en−2e5

n−1e6
n. (2.8)

Now, by definition, if the method (1.3) has order of convergence p, then there exists a constant A > 0 such that the
following holds

en+1 = Aep
n , (2.9)

which implies that

en = Aep
n−1 (2.10)

or

en−1 = Aep
n−2. (2.11)

By using (2.9), (2.10) and (2.11) in (2.8), we get

Aep
n = B(e1/p

n )1/pe5/p
n e6

n,

where B = C11
2 A

−
1
p −

1
p2 . On equating the powers of en of both R.H.S and L.H.S, we have

p3
− 6p2

− 5p − 1 = 0. (2.12)

On solving (2.12), we get that its positive root is p = 6.76137 which is the order of convergence of the method (1.3).
Since the method (1.3) requires 5 functions evaluation per iteration, the efficiency follows. □

Next, we study the convergence analysis of the general Aitken method (1.4).

Theorem 2.2. Let f be a sufficiently differentiable function in a neighbourhood of α which is a simple root of
f (x) = 0. If φ(x) is an iterative function such that the method

xn+1 = φ(xn) (2.13)

has order of convergence p, then the method (1.4) has order of convergence p2
+ p.

Proof. Let en , dn , θn denote the errors involved in the iterates xn , yn , zn, respectively. Since the method (2.13) is of
order p, the error equations for the iterates yn and zn in (1.4) are given by

dn = Pep
n + O(ep+1

n ) (2.14)

θn = Qd p
n + O(d p+1

n ), (2.15)

where P and Q are certain constants. Now, using Taylor’s expansion, we have

f (zn) = f (α + θn) = f (α) + f ′(α)θn +
1
2!

f ′′(α)θ2
n +

1
3!

f ′′′(α)θ3
n + O(e4

n)

= f ′(α)
[
θn + C2θ

2
n + C3θ

3
n + O(θ4

n )
]
, (2.16)
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where Cn =
1
n!

f n (α)
f ′(α) and therefore

[yn, zn; f ] =
f (yn) − f (zn)

yn − zn

=
f ′(α)(dn − θn)

[
1 + C2(dn + θn) + C3(d2

n + θ2
n + dnθn) + O(e4

n)
]

(dn − θn)
= f ′(α)

[
1 + C2(dn + θn) + C3(d2

n + θ2
n + dnθn) + O(e4

n)
]
.

Consequently, by (2.16) we get

f (zn)
[yn, zn; f ]

=
f ′(α)

[
θn + C2θ

2
n + C3θ

3
n + O(θ4

n )
]

f ′(α)
[
1 + C2(dn + θn) + C3(d2

n + θ2
n + dnθn) + O(e4

n)
]

=
(
θn + C2θ

2
n + C3θ

3
n

) (
1 − C2(dn + θn) − C3(d2

n + θ2
n + dnθn)

)
= θn − C2dnθn − (C2

2 + C3)θ2
n dn − C3d2

nθn − C2
2θ3

n ,

using which the error equation of the iterate xn+1 in (1.4) is obtained as

en+1 = C2dnθn + (C2
2 + C3)θ2

n dn + C3d2
nθn + C2

2θ3
n

≈ C2dnθn,

so that (2.14) and (2.15) give

en+1 = C2(Pen
p)(Qdn

p)
= C2(Pen

p)(Q(Pen
p)p)

= C2 P p+1 Qep2
+p

n (2.17)

and the assertion follows. □

Below, we apply Theorem 2.2 and obtain certain higher order methods.

Example 2.3. If we consider

φ(xn) = xn −
f (xn)
f ′(xn)

,

then xn+1 = φ(xn) is the Newton method which is of order 2, i.e., in this case p = 2. For this φ, the method (1.4)
becomes (1.1) obtained by Păvăloiu and Cătinaş [1]. The order 6 of the method is confirmed by Theorem 2.2.

Remark 2.4. If we consider

φ(xn) = xn −
f (xn)

f ′(1/2[xn + x∗
n ])

,

where

x∗

n = xn −
f (xn)

f ′
( 1

2 [xn−1 + x∗

n−1]
)

then the method

xn+1 = φ(xn)

is the method (1.2) given by McDougall and Wotherspoon [2] having order of convergence p = 2.414. Consequently,
in view of Theorem 2.2 the order of convergence of the Aitken type method (1.3) is 8.16. This demonstrate the
effectiveness of Theorem 2.2.

Example 2.5. In [10], Wang considered the method

xn+1 = xn −
f (xn)

(1 − β) f ′(xn) + β f ′(xn −
f (xn )

2β f ′(xn ) )
, (2.18)
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where β ̸= 0. is an arbitrary real number. The method (2.18) was proved to be of order 3 for any β ̸= 0. Note that for
β = 1 and β = 1/2, (2.18) becomes the methods, respectively, corresponding to the mid point rule and the trapezoidal
rule, see [10]. Thus, if we consider

φ(xn) = xn −
f (xn)

(1 − β) f ′(xn) + β f ′(xn −
f (xn )

2β f ′(xn ) )
,

then the method (1.4) becomes the following:

yn = xn −
f (xn)

(1 − β) f ′(xn) + β f ′

(
xn −

f (xn )
2β f ′(xn )

) ,

zn = yn −
f (yn)

(1 − β) f ′(yn) + β f ′

(
yn −

f (yn )
2β f ′(yn )

) ,

xn+1 = zn −
f (zn)

[yn, zn; f ]
. (2.19)

In view of Theorem 2.2, the method (2.19) is of order 12.

Remark 2.6. Let φ(x) is an iterative function such that the method (2.13) has order of convergence p and requires
m functions evaluation per iteration. Then the efficiency index of (2.13) is p1/m. Moreover, with this φ, in view of
Theorem 2.2, the efficiency index of the method (1.4) is (p2

+ p)1/(2m+1). Obviously for any p ∈ R+ and m ∈ Z+,

(p2
+ p)1/(2m+1) > p1/m.

This demonstrates that Aitken-type method (1.4) increases the efficiency of any given method.

3. Methods based on approximation of integrals

In [3], Weerakoon and Fernando used Newton’s theorem

f (x) = f (xn) +

∫ x

xn

f ′(t)dt

and approximated the indefinite integral by trapezoidal rule as∫ x

xn

f ′(t)dt ≈
x − xn

2
[ f ′(xn) + f (x)]

and obtained the following method

yn = xn −
f (xn)
f ′(xn)

,

xn+1 = xn −
2 f (xn)

[ f ′(xn) + f ′(yn)]
. (3.1)

Similarly, by approximating the indefinite integral by mid point rule as∫ x

xn

f ′(t)dt ≈ (x − xn) f ′(
xn + x

2
)

(see [11]), one can obtain the following method:

yn = xn −
f (xn)

2 f ′(xn)
,

xn+1 = xn −
f (xn)
f ′(yn)

. (3.2)

Recall that the method (2.18) of Wang [10] contains both the methods (3.1) and (3.2). It is noted that if, in the methods
(3.1), (3.2) or (2.18), f ′(xn) becomes zero at any iterate, then the method cannot proceed further. To overcome this
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problem, method (3.1) can be redefined as follows:

yn = xn −
f (xn)

f ′(xn) − λ f (xn)
,

xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(yn)
. (3.3)

Similarly, method (3.2) can be redefined as

yn = xn −
f (xn)

2[ f ′(xn) − λ f (xn)]
, λ ∈ R

xn+1 = xn −
f (xn)
f ′(yn)

. (3.4)

This type of modification has been used in [7]. We use the similar modification in the method (2.18) and propose the
following method:

yn = xn −
f (xn)

2β[ f ′(xn) − λ f (xn)]
,

xn+1 = xn −
f (xn)

(1 − β) f ′(xn) + β f ′(yn)
. (3.5)

Note that for β = 1, the method (3.5) becomes (3.4) and for β =
1
2 , it becomes (3.3). Below, we prove the convergence

of the method (3.5).

Theorem 3.1. Let f be a sufficiently differentiable function in the neighbourhood of α which is a simple zero of f. If
x0 is sufficiently close to α, the order of convergence of the method (3.5) is three.

Proof. Using the Taylor expansion, it is standard to have

f (xn) = f (α + en)

= f ′(α)
[
en + C2e2

n + C3e3
n + O(e4

n)
]
, (3.6)

and

f ′(xn) = f ′(α + en)

= f ′(α)
[
1 + 2C2en + 3C3e2

n + O(e3
n)
]
, (3.7)

where Cn =
1
n!

f n (α)
f ′(α) . From (3.6) and (3.7) we get,

f ′(xn) − λ f (xn) = f ′(α)
[
1 + (2C2 − λ)en + (3C3 − λC2)e2

n + O(e3
n)
]

(3.8)

which gives that

f (xn)
f ′(xn) − λ f (xn)

=
[en + C2e2

n + C3e3
n + O(e4

n)]
[1 + (2C2 − λ)en + (3C3 − λC2)e2

n + O(e3
n)]

= [en + C2e2
n + C3e3

n + O(e4
n)]

× [1 − (2C2 − λ)en − (3C3 − λC2)e2
n + (2C2 − λ)2e2

n]

= en + (λ − C2)e2
n + (2C2(1 + λ) − 2C3 − 2C2

2 − λ)e3
n.

Therefore
f (xn)

2β( f ′(xn) − λ f (xn))
= (1/2β)en + (1/2β)(λ − C2)e2

n

+ (1/2β)(2C2(1 + λ) − 2C3 − 2C2
2 − λ)e3

n. (3.9)

Let dn be the error involved in yn, so that (3.5) and (3.9) give

dn = (1 − 1/2β)en − (1/2β)(λ − C2)e2
n − (1/2β)[2C2(1 + λ) − 2C3 − 2C2

2 − λ]e3
n + O(e4

n).
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Again by using Taylor expansion we have,

f ′(yn) = f ′(α) + f ′′(α)[(1 − 1/2β)en − (1/2β)(λ − C2)e2
n

− (1/2β)(2C2(1 + λ) − 2C3 − 2C2
2 − λ)e3

n]

= f ′(α)[1 + 2C2(1 − 1/2β)en − (C2/β)(λ − C2)e2
n

− (C2/β)(2C2(1 + λ) − 2C3 − 2C2
2 − λ)e3

n]. (3.10)

Now, by (3.7) and (3.10) we have

(1 − β) f ′(xn) + β f (yn) = f ′(α)
[
1 + C2en + (3C3(1 − β) − C2λ + C2

2 )e2
n + O(e4

n)
]
. (3.11)

Using (3.9) and (3.11) in (3.8) we have,

en+1 = (3C3β − 2C3 + C2λ + C2
2 )e3

n + O(e4
n), (3.12)

which proves that the method (3.5) is of order three. □

Example 3.2. As in Example 2.5, if we consider

φ(xn) = xn −
f (xn)

(1 − β) f ′(xn) + β f ′

(
xn −

f (xn )
2β[ f ′(xn )−λ f (xn )]

)
then the method (1.4) reads as:

yn = xn −
f (xn)

(1 − β) f ′(xn) + β f ′

(
xn −

f (xn )
2β[ f ′(xn )−λ f (xn )]

) ,

zn = yn −
f (yn)

(1 − β) f ′(yn) + β f ′

(
yn −

f (yn )
2β[ f ′(yn )−λ f (yn )]

) ,

xn+1 = zn −
f (zn)

[yn, zn; f ]
, (3.13)

and in view of Theorems 2.2 and 3.1, the method (3.13) is of order 12.

We can rewrite the trapezoidal Newton’s method (3.1) of Weerakoon and Fernando [3] as

yn = xn −
f (xn)
f ′(xn)

,

xn+1 = xn −
f (xn)

[ f ′(xn) + f ′(yn)]/2
. (3.14)

This can be seen as obtained by using arithmetic mean of f ′(xn) and f ′(yn). In [5], Özban, instead of arithmetic mean,
used harmonic mean which leads to the following method:

yn = xn −
f (xn)
f ′(xn)

,

xn+1 = xn −
f (xn)

(
f ′(xn) + f ′(yn)

)
2 f ′(xn) f ′(yn)

. (3.15)

Özban, in [5] proved that this method is of order 3.
We propose the following variant of (3.15):

yn = xn −
f (xn)

f ′(xn) − λ f (xn)
,

xn+1 = xn −
f (xn)

(
f ′(xn) + f ′(yn)

)
2 f ′(xn) f ′(yn)

. (3.16)

The order of convergence of the method (3.16) is given in the following:
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Theorem 3.3. Let f be sufficiently differentiable function in the neighbourhood of α which is a simple zero of f. If
x0 is sufficiently close to α, then the method (3.16) has order of convergence three.

Proof. It can be shown, similar to the proof of Theorem 3.1, that the error equation of (3.16) satisfies

en+1 =
(
(1/2)C3 − λC2 − 2C2

2

)
e3

n + O(e4
n)

and the assertion follows. □

Remark 3.4. Using the iterates of the method (3.15), an Aitken-type method can be proposed which, in view of
Theorems 2.2 and 3.3 will be of order 12.

4. Methods based on power means

Let p be a finite real number. For two non-negative real numbers a and b, their p-power mean, denoted by m p is
defined as

m p =

(
a p

+ bp

2

)1/p

.

For different values of p, in particular for p = 1, −1, 2, −2 and 1/2, we get several cases of well-known means as
given below:

m1 =

(
a + b

2

)
, m−1 =

(
a−1

+ b−1

2

)−1

, m2 =

(
a2

+ b2

2

)1/2

m−2 =

(
a−2

+ b−2

2

)1/−2

, m1/2 =

(√
a +

√
b

2

)2

which, respectively, are called arithmetic mean, harmonic mean, root mean square, inverse root inverse-square mean
and square-mean root of a and b. We also include the case p = 0. In this case, m0(a, b) = limp→0m p(a, b) =

√
ab,

which is standard geometric mean of a and b.
In [12], those authors replaced the arithmetic mean in (3.1) by the power mean and proved the third order

convergence of their general method which now covers several other means as well. We adopt the same strategy
for the method (3.2) and obtain a new class of methods as follows:

yn = xn −
f (xn)
f ′(xn)

,

xn+1 = xn −
f (xn)

f ′

(
x p

n +y p
n

2

)1/p . (4.1)

For the convergence of the method (4.1), we prove the following:

Theorem 4.1. Let f be a sufficiently differentiable function in the neighbourhood of α which is a simple root of
f (x) = 0. Then, the order of convergence of the method (4.1) is 3.

Proof. Let en, dn be the errors in, respectively, xn, yn, i.e.,

xn = en + α,

yn = dn + α. (4.2)

By expanding f (xn) and f ′(xn) using Taylor series about α, we have

f (xn) = f ′(α)[en + C2e2
n + C3e3

n + O(e4
n)] (4.3)

and

f ′(xn) = f ′(α)[1 + 2C2en + 3C3e2
n + 4C4e3

n + O(e4
n)]. (4.4)
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By using (4.3) and (4.4) in (4.1), we get

dn = C2e2
n + (2C3 − 2C2

2 )e3
n + O(e4

n). (4.5)

Now, from (4.2) and (4.5), we have

x p
n = (en + α)p

= α p
(

1 + p
en

α
+

1
2

p(p − 1)
e2

n

α2

)
(4.6)

and

y p
n = (dn + α)p

= α p
(

1 +
p
α

[
C2e2

n + (2C3 − 2C2
2 )e3

n

])
. (4.7)

Therefore, (4.6) and (4.7) give(
x p

n + y p
n

2

)1/p

=
1

21/p

[
α p
(

1 + p
en

α
+

1
2

p(p − 1)
e2

n

α2

)
+ α p

(
1 +

p
α

C2e2
n

)]1/p

= α

[
1 +

1
2α

en +
1
p

(
1

4α2 p(p − 1) +
p

2α
C2 +

1
2

(
1
p

− 1)
p2

4α2

)
e2

n

]
=

[
α +

en

2
+ (

1
8α

(p − 1) +
C2

2
)e2

n

]
. (4.8)

Again expanding f ′

(
x p

n +y p
n

2

)1/p
by Taylor series and using (4.4), we get

f ′

(
x p

n + y p
n

2

)1/p

= f ′(α)
[

1 + 2C2

(
en

2
+ (

1
8α

(p − 1) +
C2

2
)e2

n

)
+ 3C3(

e2
n

4
)
]

= f ′(α)
[

1 + C2en + (2C2(
1

8α
(p − 1) +

C2

2
+

3
4

C3)e2
n)
]

.

Consequently, (4.1) gives

en+1 = en −
[
en + C2e2

n + C3e3
n

] [
1 − C2en −

(
2C2(

1
8α

(p − 1) +
C2

2
)
)

+
3
4

C3 − C2
2 e2

n

]
=

[
2C2

(
1

8α
(p − 1) +

C2

2

)
−

1
4

C3

]
+ O(e4

n)

=

[
1

4α
C2(p − 1) + C2

2 −
1
4

C3

]
e3

n + O(e4
n).

Hence, the method (4.1) has the order of convergence 3. □

Example 4.2. As done in Section 2, if we consider

φ(xn) = xn −
f (xn)

f ′

(
x p

n +(xn−
f (xn )
f ′(xn )

)p

2

)1/p ,

then the following Aitken-type method can be considered:

yn = xn −
f (xn)

f ′

(
x p

n +(xn−
f (xn )
f ′(xn )

)p

2

)1/p ,

zn = yn −
f (yn)

f ′

(
y p

n +(yn−
f (yn )
f ′(yn )

)p

2

)1/p ,
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xn+1 = zn −
f (zn)

[yn, zn; f ]
. (4.9)

In the light of Theorem 2.2, we can easily see that the method (4.9) is of order 12.

5. Increasing the efficiency

Recall that the standard Secant method reads as

xn+1 = xn −
f (xn)(xn − xn−1)
f (xn) − f (xn−1)

,

which, in terms of divided difference, can be written as

xn+1 = xn −
f (xn)

[xn−1, xn; f ]
(5.1)

secant method is a two point method with memory which has order of convergence 1.618. It requires only one function
evaluation per iteration and as a result has efficiency 1.618. In (1.1) or (1.4), the strategy was to use method (5.1) once
the two nodes are calculated from other methods.

Very recently in [8,9] Kogan et al. used the Newton divided difference formula

f (x) = f (xn) + [xn−1, xn; f ](x − xn) + · · · + [x0, xn; f ]
n∏

j=1

(x − x j ) + Rn,

where

Rn = f (x, xn, . . . ., x0)
n∏

j=1

(x − x j )

and generalized the secant method (5.1) as follows:

xn+1 = xn −
f (xn)

[xn−1, xn; f ] +
∑k

i=2[xn−i , xn; f ]
∏i−1

j=1(xn − xn− j )
, n = k, k + 1, . . . (5.2)

where k ≥ 1 is an arbitrary fixed integer and the initial k approximations x0, x1, . . . ..xk are known. Obviously for
k = 2, (5.2) becomes (5.1).

Remark 5.1. For the later use, let us mention that (see [9]) based on k + 1 initial approximations x0, x1, . . . xk, the
error equation corresponding to the method (5.2) is given by

en+1 = Ck

k∏
j=0

en− j + O(
∏

en− j ). (5.3)

In the light of above discussion, we propose a multipoint Aitken method of the type (1.1) as follows:

x (0)
n = xn −

f (xn)
f ′(xn)

x (1)
n = x (0)

n −
f (x (1)

n )

f ′(x (1)
n )

x (2)
n = x (1)

n −
f (x (1)

n )

[x (0)
n , x (1)

n ; f ]
...

xn+1 = x (k)
n −

f (x (k)
n )

[x (k−1)
n , x (k)

n ; f ] +
∑k

i=2[x (k−i)
n , x (k)

n ; f ]
∏i−1

j=1(x (k)
n − x (k− j)

n )
, k = 1, 2, 3, . . . (5.4)
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with the initial approximation x0. Clearly, for k = 1, the method (5.4) becomes (1.1). We shall prove that as
k increases, not only the order of convergence but also the efficiency of (5.4) increases. Precisely, we prove the
following:

Theorem 5.2. Let f be a sufficiently differentiable function in a neighbourhood of α which is a simple root of
f (x) = 0. Let O(k) and EI(k) denote, respectively, the order of convergence and efficiency index of (5.4) for
k = 1, 2, 3, . . . Then

(a) O(k) = 6 × 2k−1

(b) EI(k) = (6 × 2k−2)
1

k+4

(c) EI(k) is strictly increasing
(d) EI(k)→ 2 as k → ∞.

Proof. We only prove (a) and (b). It is straightforward to verify (c) and (d).
(a) Let en, en+1 denote the errors in the iterates xn, xn+1. For the intermediate steps, let en,k denote the errors in

x (k)
n , k = 0, 1, 2, 3, . . . Since x (0)

n and x (1)
n are Newton iterates, it is standard that the corresponding errors are given by

en,0 ≈ A1e2
n (5.5)

en,1 ≈ A2e2
n,0 ≈ A2

1 A2e4
n, (5.6)

where A1 and A2 are appropriate constants. For the intermediate steps, for k = 1, 2, 3, . . . , the corresponding error
equations, in view of (5.3), are given by

en,k+1 ≈ Ck+1

k+1∏
j=1

en,k+1− j (5.7)

and once k = 1, 2, 3, . . . is fixed, we shall write

en+1 = en,k+1.

We shall prove by induction that the order of convergence of the method (5.4) is 6 × 2k−1 for k = 1, 2, 3, . . ..
For k = 1, (5.7) becomes

en,2 ≈ C2en,1.en,0

which by using (5.5) and (5.6) gives

en,3 ≈ C2 A3
1 A2e6

n

i.e.,

en+1 ≈ C2 A3
1 A2e6

n.

Therefore, the assertion holds for k = 1. Assume that it holds for k, i.e.,

en+1 = en,k+1 ≈ Dke6×2k−1

n , (5.8)

where Dk is some constant. Note that by (5.7),

en,k+1 ≈ Ck+1.en,k .en,k−1.en,k−2 . . . en,1.en,0. (5.9)

For k replaced by k + 1, (5.7) gives

en,k+2 ≈ Ck+2

k+2∏
j=1

en,k+2− j
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which using (5.8) and (5.9) gives

en,k+2 ≈ Ck+2.en,k+1.en,k .en,k−1.en,k−2 . . . en,1.en,0

≈
Ck+2

Ck + 1
e2

n,k+1

≈
Ck+2

Ck + 1
Dke6×2k−1

×2
n

=
Ck+2

Ck + 1
Dke6×2k

n

and the assertion follows.
(b) In the method (5.4), first two steps are Newton’s iterates that require two functions evaluation each per iterations.
Thus for these two steps, a total of 4 function evaluations per iteration are required. After third step onwards, the
method requires only one function evaluation per iteration since it uses the previously calculated values. Thus for
k = 1, 2, 3, . . . a total of k + 4 functions need to be evaluated per iteration. Combining this information with the order
of the method, the result follows. □

The method (5.4) can be modified to give rise a more general method by replacing the Newton iterates by any
arbitrary method as was done in (1.4). In this way, the order of convergence of corresponding method will, of course,
depend upon the chosen method, the efficiency still approaches to 2 as k → ∞. We construct the method as follows:

Let φ(x) be an iterative function such that the method

xn+1 = φ(xn)

is of order p. we propose the following method:

x (0)
n = φ(xn)

x (1)
n = φ(x (0)

n )

x (2)
n = x (1)

n −
f (x (1)

n )

[x (0)
n , x (1)

n ; f ]
...

xn+1 = x (k)
n −

f (x (k)
n )

[x (k−1)
n , x (k)

n ; f ] +
∑k

i=2[x (k−i)
n , x (k)

n ; f ]
∏i−1

j=1(x (k)
n − x (k− j)

n )
, k = 1, 2, 3, . . . . (5.10)

We prove the following theorem:

Theorem 5.3. Let f be a sufficiently differentiable function in a neighbourhood of α which is a simple zero of f. If
φ(x) = 0 is an iterative function such that the method

xn+1 = φ(xn) (5.11)

has order of convergence p.Let O(k) and EI(k) denote, respectively, the order of convergence and efficiency index of
(5.10) for k = 1, 2, 3, . . .. Then

(a) O(k)=(p2
+ p) × 2k−1

(b) EI(k)=[(p2
+ p) × 2k−2]

1
k+4

(c) EI(k) is strictly increasing
(d) EI(k)→ 2 as k → ∞.

Proof. It can be shown, similar to the proof of Theorems 5.3 and 2.2 that the error equation of (5.10) satisfies

en,k =
Ck+1

Ck
Dke(p2

+p)×2(k−1)

n

and the assertion follows. □
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Table 1

n xn f (xn) f (xn) − f (xn−1) xn − xn−1

1 1.4072530700 −0.0068699926 −0.7149434109 0.4072530702
2 1.4044916480 −2.4202861940 × 10−13 0.0068699926 −0.0027614220
3 1.4044916480 3.3306690740 × 10−16 2.4236168630 × 10−13

−9.7699626170 × 10−14

4 1.4044916480 3.3306690740 × 10−16 0.0000000000 0.0000000000
5 1.4044916480 3.3306690740 × 10−16 0.0000000000 0.0000000000

Table 2

n xn f (xn) f (xn) − f (xn−1) xn − xn−1

1 0.9023469634 0.0192246037 −2.1544019144 −0.5976530365
2 0.8951770213 −0.0000777429 −0.0193023466 −0.0071699421
3 0.8952060449 −1.2703803564 × 10−9 0.0000777416 0.0000290235
4 0.8952060453 1.1102230246 × 10−16 1.2703804674 × 10−9 4.7426629290 × 10−10

5 0.8952060453 1.1102230246 × 10−16 0.0000000000 0.0000000000
6 0.8952060453 1.1102230246 × 10−16 0.0000000000 0.0000000000

Table 3

n xn f (xn) f (xn) − f (xn−1) xn − xn−1

1 0.8952058992 −3.9138720608 × 10−7
−2.1736269095 −0.6047941007

2 0.8952060453 1.1102230246 × 10−16 3.9138720620 × 10−7 1.4611511678 × 10−7

3 Division by 0 Division by 0 Division by 0 Division by 0
4

Table 4

n xn f (xn) f (xn) − f (xn−1) xn − xn−1

1 2.4788706270 29.8113615300 −23.1886384700 −0.5211293734
2 2.0864736370 16.4966853500 −13.3146761700 −0.3923969897
3 1.8034714550 8.8758448120 −7.6208405420 −0.2830021820
4 1.6064524160 4.4685121220 −4.4073326900 −0.1970190390
5 1.4449994650 1.3692865880 −3.0992255340 −0.1614529510
6 1.5745885450 3.8212395230 2.4519529350 0.1295890801
7 1.3921047750 0.4496602138 −3.3715793090 −0.1824837697
8 1.3465447930 −0.3057365137 −0.7553967275 −0.0455599821
9 1.3621951380 −0.0500415762 0.2556949375 0.0156503445

10 1.3651247990 −0.0017373659 0.0483042103 0.0029296608
11 1.3652298790 −2.2150939110 × 10−6 0.0017351508 0.0001050808
12 1.3652300130 −3.6077807410 × 10−12 2.2150903030 × 10−6 1.3413897640 × 10−7

13 1.3652300130 0.0000000000 3.6077807410 × 10−12 2.1849189120 × 10−13

14 1.3652300130 0.0000000000 0.0000000000 0.0000000000
15 1.3652300130 0.0000000000 0.0000000000 0.0000000000

6. Examples

In this section, we provide numerical examples to demonstrate the order of convergence of the methods proposed
in previous sections.

Example 6.1. We consider the equation

f (x) = sin2x − x2
+ 1

and implement the method (2.19) on this function. Table 1, shows the corresponding iterate. Here, we take the initial
value as x0 = 1.0 and β = 1.0. The method (2.19) is of order 12, which is demonstrated in Table 1.

Example 6.2. Consider the equation

f (x) = x2 sin x − cos x .
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We implement the methods (3.5) and (3.13) on this equation. The corresponding iterates have been tabulated in
Tables 2 and 3, respectively, where the initial value is taken to be x0 = 1.5, λ = 1.5 and β = 0.5. The method (3.5)
is of order 3 where as the method (3.13) is of order 12. Tables 2 and 3 show the higher rate of convergence of the
method (3.13).

Example 6.3. We consider the equation

f (x) = x3
+ 4x2

− 10

and implement the method (3.16) on this function. Table 4, shows the corresponding iterate. Here, we take the initial
value as x0 = 3.0 and λ = −1.5. The method (3.16) is of order 3.
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Abstract

In this paper, the notions of distributive, standard and neutral elements in residuated lattices were introduced and relationships
between them were investigated. Also we study the sets of distributive, standard and neutral elements in residuated lattices.
Then we show that under some conditions, the sets of distributive, standard and neutral elements in residuated lattices become a
MT L-algebra. Finally, special elements of type 2 in residuated lattices were introduced.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction and preliminaries

The concept of residuated lattices was introduced by M. Ward and R. P. Dilworth [1] as a generalization of the
structure of t he set of ideals of a ring. These algebras are a common structure among algebras associated with
logical systems. The residuated lattices have interesting algebraic and logical properties [2–5]. The main example of
residuated lattices related to logic is BL-algebras. A basic logic algebra (BL-algebra for short) is an important class
of logical algebras introduced by H’ajek [6] in order to provide an algebraic proof of the completeness of “Basic
Logic” (BL for short). MV-algebras introduced by Chang [7] in 1958 are the most known classes of BL-algebras.

The concepts of distributive, standard and neutral elements introduced in lattices by O. Ore [8], G. Gratzer [9] and
G. Birkhoff [10], respectively and have been extended to trellises by S. B. Rai in [11].

We decide to generalize this concepts to residuated lattices. In this paper, we introduce the notions of distributive,
standard and neutral elements in residuated lattices and verify relationships between them. Also we study the sets of
Dis(L), St(L) and Neu(L). Then, we study relationships between distributive, standard and neutral elements with
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some other special elements, likeness dense, boolean, node and regular elements in residuated lattices. Finally, we
study image of distributive, standard and neutral elements under a homomorphism.

In this section, we recall some definitions and results about residuated lattices which are used in the sequel.

Definition 1.1 ([6]). A residuated lattice is an algebra (L , ∨, ∧, ⊙, −→, 0, 1) of type (2, 2, 2, 2, 0, 0) such that:
(RL1) (L , ∨, ∧, 0, 1) is a bounded lattice,
(RL2) (L , ⊙, 1) is an abelian monoid,
(RL3) x ⊙ z ≤ y if and only if z ≤ x → y, for all x, y, z ∈ L .

Definition 1.2 ([6,12,13]). Let L be a residuated lattice and a ∈ L ,

(a) a is called idempotent iff a2
= a,

(b) a is called nilpotent iff there exists a natural number n, such that an
= 0,

(c) a is called dense iff a∗
= 0, where x∗

= x → 0,
(d) a is called regular iff a∗∗

= a and x∗
⊙ (x∗

→ x) = 0,
(e) a is called boolean iff there exists b ∈ L such that a ∨ b = 1 and a ∧ b = 0,
( f ) a is called node iff for every filter F of L , [a) ⊆ F or F ⊆ [a).

Theorem 1.3 ([6]). In any residuated lattice (L , ∨, ∧, ⊙, →, 0, 1) the following properties are valid:
(1) 1 → x = x,

(2) x → x = 1,

(3) x ⊙ y ≤ x, y, so x ⊙ y ≤ x ∧ y,

(4) y ≤ x → y,
(5) x ≤ y ⇔ x → y = 1,
(6) if x → y = y → x = 1, then x = y,

(7) x → 1 = 1,
(8) 0 → x = 1,
(9) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z),
for all x, y, z, ∈ L .

Definition 1.4 ([6]). A residuated lattice L is called MT L-algebra if the following property is valid:
(BL5) (x → y) ∨ (y → x) = 1, for all x, y ∈ L .

Definition 1.5 ([6]). A MT L-algebra L is called BL-algebra if the following property is valid:
(BL4) x ⊙ (x → y) = x ∧ y, for all x, y ∈ L .

Definition 1.6 ([6]). A nonempty subset F of residuated lattice L is called a filter of L if F satisfies the following
conditions:

(F1) if x ∈ F , x ≤ y and y ∈ L , then y ∈ F,

(F2) x ⊙ y ∈ F for every x, y ∈ F that is, F is a subsemigroup of L .

Definition 1.7 ([14]). An element a of a lattice L is called
(1) distributive, if a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y),
(2) standard, if x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y),
(3) neutral, if (a ∧ x) ∨ (a ∧ y) ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) ∧ (x ∨ y),
for all x, y ∈ L .
The concepts of dually distributive and dually standard elements are obtained by dualizing (1) and (2) respectively.

The notion of a neutral element is self-dual.

2. On distributive elements in residuated lattices

From now on L = (L , ∨, ∧, ⊙, →, 0, 1) is a residuated lattice unless otherwise specified.
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Definition 2.1. An element a of L is said to be distributive if

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

for all x, y ∈ L .

We denote the set of all distributive elements of L with Dis(L).
Note: In every L , {0, 1} ⊆ Dis(L).

Example 2.2. (a) Let L = {0, a, c, d, m, 1}, with 0 < a < m < 1, 0 < c < d < m < 1, but a incomparable with
c, d. For all x, y ∈ L , define ⊙ and → as follows:

⊙ 0 a c d m 1
0 0 0 0 0 0 0
a 0 a 0 0 a a
c 0 0 c c c c
d 0 0 c c c d
m 0 a c c m m
1 0 a c d m 1

→ 0 a c d m 1
0 1 1 1 1 1 1
a d 1 d d 1 1
c a a 1 1 1 1
d a a m 1 1 1
m 0 a d d 1 1
1 0 a c d m 1

then (L , ∨, ∧, ⊙, →, 0, 1) is a residuated lattice. {0, a, d, m, 1} is the set of all distributive elements of L and c is
not a distributive element of L , because c ∨ (a ∧ d) ̸= (c ∨ a) ∧ (c ∨ d).

(b) Let L = {0, a, b, c, d, m, 1}, with 0 < a < b < m < 1, 0 < c < d < m < 1 and elements {a, c} and {b, d}

are pairwise incomparable. For all x, y ∈ L , define ⊙ and → as follows:

⊙ 0 a b c d m 1
0 0 0 0 0 0 0 0
a 0 a a 0 0 a a
b 0 a a 0 0 a b
c 0 0 0 c c c c
d 0 0 0 c c c d
m 0 a a c c m m
1 0 a b c d m 1

→ 0 a b c d m 1
0 1 1 1 1 1 1 1
a d 1 1 d d 1 1
b d m 1 d d 1 1
c b b b 1 1 1 1
d b b b m 1 1 1
m 0 b b d d 1 1
1 0 a b c d m 1
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then (L , ∨, ∧, ⊙, →, 0, 1) is a residuated lattice. {0, b, d, m, 1} is the set of all distributive elements of L , but a, c are
not distributive elements of L , because c ∨ (a ∧ d) ̸= (c ∨ a) ∧ (c ∨ d) and a ∨ (b ∧ c) ̸= (a ∨ b) ∧ (a ∨ c).

Definition 2.3. An element a of L is said to be distributive type 2, if

a ∧ (x ⊙ y) = (a ∧ x) ⊙ (a ∧ y)

for all x, y ∈ L .

Let Dis2(L) denote the set of all distributive type 2 elements of L .
Note: In every L , 0, 1 ∈ Dis2(L).

Example 2.4. (a) In Example 2.2, (a), {0, a, c, 1} is the set of all distributive type 2 elements of L , but m, d are not
distributive type 2 elements of L , because m ∧ (d ⊙ 1) ̸= (m ∧ d) ⊙ (m ∧ 1) and d ∧ (d ⊙ 1) ̸= (d ∧ d) ⊙ (d ∧ 1).

(b) Let L = {0, a, b, c, 1}, with 0 < a, b < c < 1, but a, b are incomparable. We define ⊙ and → as follows:

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

then (L , ∨, ∧, ⊙, →, 0, 1) is a non-linearly ordered residuated lattice and Dis2(L) = {0, a, b, c, 1}.

(c) Let L = {0, a, b, c, d, e, f, 1} with 0 < c < d < b < a < 1, 0 < d < e < f < a < 1, and elements {b, f }

and {c, e} are pairwise incomparable. We define ⊙ and → as follows:
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⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a 1 1 1 f
c f 1 1 1 f f 0 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 0 a b c d e f 1

then (L , ∨, ∧, ⊙, →, 0, 1) is a non-linearly ordered residuated lattice. We get Dis2(L) = {0, 1} but a, b, c, d, e, f ̸∈

Dis2(L).

With compare Examples 2.2, (a) and 2.4, (a), we get Dis(L) ̸⊆ Dis2(L) and Dis2(L) ̸⊆ Dis(L).

Proposition 2.5. Define ϕ : L → [a) by x ↦→ a ∨ x. If ϕ is a homomorphism, then a becomes a distributive element
of L.

Proof.

a ∨ (x ∧ y) = ϕ(x ∧ y)
= ϕ(x) ∧ ϕ(y)
= (a ∨ x) ∧ (a ∨ y). □

Proposition 2.6. Define ϕ : L → [a) by x ↦→ a ∧ x. If ϕ is a homomorphism, then a is a distributive type 2 element
of L.

Proof.

a ∧ (x ⊙ y) = ϕ(x ⊙ y)
= ϕ(x) ⊙ ϕ(y)
= (a ∧ x) ⊙ (a ∧ y).

So a ∈ Dis2(L). □

Example 2.7. (a) In Example 2.2, (b), b is a distributive element, but the map ϕ : L → [b) by x ↦→ b ∨ x is not a
homomorphism, because

m = ϕ(a → c) ̸= ϕ(a) → ϕ(c) = 1.

(b) In Example 2.4 (b), a is a distributive type 2 element, but the map ϕ : L → [a) by x ↦→ a ∧ x is not a
homomorphism, because

a = ϕ(b → c) ̸= ϕ(b) → ϕ(c) = 1.

Theorem 2.8. Let a be a distributive element of L. Then the map ϕ : L → [a) by x ↦→ a ∨ x, for all x ∈ L , is onto
[a).

Theorem 2.9. Let ≡αa be a congruence relation on L defined as follows

x≡αa y if and only if a ∨ x = a ∨ y.

Then a becomes a distributive element of L .

Proof. Since a∨x = a∨(a∨x) and a∨ y = a∨(a∨ y), so x≡αa a∨x and y≡αa a∨ y, thus x ∧ y≡αa (a∨x)∧(a∨ y).
Therefore a ∨ (x ∧ y) = a ∨ ((a ∨ x) ∧ (a ∨ y)) = (a ∨ x) ∧ (a ∨ y). □

Proposition 2.10. Let a be a boolean element of L. Then a ∈ Disδ(L).
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Proof. Let a ∈ B(L). Then a ∧ x = a ⊙ x , for every x ∈ L . Thus by Theorem 1.3, (9),

a ∧ (x ∨ y) = a ⊙ (x ∨ y)
= (a ⊙ x) ∨ (a ⊙ y)
= (a ∧ x) ∨ (a ∧ y). □

3. On standard elements in residuated lattices

Definition 3.1. An element a of a residuated lattice L is said to be standard element if

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y)

for all x, y ∈ L .

We denote the set of all standard elements of L with St(L).
Note: In every L , {0, 1} ⊆ St(L).

Example 3.2. (a) In Example 2.2, (a), {0, d, m, 1} is the set of all standard elements of L but a, c are not standard
elements of L , because d ∧ (a ∨ c) ̸= (d ∧ a) ∨ (d ∧ c) and d ∧ (c ∨ a) ̸= (d ∧ c) ∨ (d ∧ a).

(b) In Example 2.2, (b), {0, m, 1} is the set of all standard elements of L and the elements of a, b, c, d are not
standard elements of L , because a ∧ (d ∨ c) ̸= (a ∧ d) ∨ (a ∧ c) and b ∧ (a ∨ c) ̸= (b ∧ a) ∨ (b ∧ c).

Definition 3.3. An element a of L is said to be standard type 2, if

x ⊙ (a ∧ y) = (x ⊙ a) ∧ (x ⊙ y)

for all x, y ∈ L .

Let St2(L) denote the set of all standard type 2 elements of L .
Note: In every L , 0, 1 ∈ St2(L).

Example 3.4. (a) In Example 2.2, (a), {0, a, c, d, m, 1} is the set of all standard type 2 elements of L .

(b) In Example 2.4, (b), St2(L) = {0, a, b, c, 1}.

(c) In Example 2.4, (c), e ̸∈ St2(L) because a ⊙ (e ∧ c) ̸= (a ⊙ e) ∧ (a ∧ c).

Problem. Whether in every L , St(L) ⊆ St2(L)

Theorem 3.5. Let a be a distributive element of L and

a ∨ x = a ∨ y and a ∧ x = a ∧ y imply that x = y

for all x, y ∈ L . Then a ∈ St(L).

Proof. Let x, y ∈ L . Define

b = x ∧ (a ∨ y),

c = (x ∧ a) ∨ (x ∧ y).

In order to show b = c, it will be sufficient to prove that

a ∨ b = a ∨ c,

a ∧ b = a ∧ c.

To prove that first, we compute, using the fact that a ∈ Dis(L)

a ∨ b = a ∨ ((x ∧ (a ∨ y)))
= (a ∨ x) ∧ (a ∨ y)
= a ∨ (x ∧ y)
= a ∨ (x ∧ a) ∨ (x ∧ y) = a ∨ c.
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To prove that second,

a ∧ x ≤ a ∧ c

≤ a ∧ b

= a ∧ x ∧ (a ∨ y) = a ∧ x,

and hence a ∧ c = a ∧ b. □

Theorem 3.6. Let ≡αa is defined on L as x≡αa y if (x ∧ y) ∨ a1 = x ∨ y for some a1 ≤ a, be a congruence relation.
Then a ∈ St(L).

Proof. We can show that a ∈ Dis(L) just as in Theorem 2.9. Now let

a ∨ x = a ∨ y,

a ∧ x = a ∧ y.

Since y≡αa a ∨ y, meeting both sides with x and using a ∨ y = a ∨ x, we obtain that

x ∧ y≡αa x ∧ (a ∨ y) = x ∧ (a ∨ x) = x .

Thus x = (x ∧ y) ∨ a1 for some a1 ≤ a. Also a1 ≤ x, hence a1 ≤ a ∧ x = a ∧ y, and so a1 ≤ x ∧ y. We conclude
that x = x ∧ y. Similarly, y = x ∧ y, and so x = y. □

Theorem 3.7. Let a ∈ St(L). Then a ∈ Dis(L).

Proof. Let a ∈ St(L). So for all x, y ∈ L ,

(a ∨ x) ∧ (a ∨ y) = ((a ∨ x) ∧ a) ∨ ((a ∨ x) ∧ y)
= a ∨ ((a ∨ x) ∧ y)
= a ∨ ((y ∧ a) ∨ (y ∧ x))
= (a ∨ (y ∧ a)) ∨ (y ∧ x)
= a ∨ (y ∧ x). □

Proposition 3.8. (a) Let a, b ∈ Dis2(L). Then a ∧ b ∈ Dis2(L).
(b) Let a, b ∈ St2(L). Then a ∧ b ∈ St2(L).

Proof. (a) Let a, b ∈ Dis2(L). Then

(a ∧ b) ∧ (x ⊙ y) = a ∧ (b ∧ (x ⊙ y))
= a ∧ ((b ∧ x) ⊙ (b ∧ y))
= (a ∧ (b ∧ x)) ⊙ (a ∧ (b ∧ y))
= ((a ∧ b) ∧ x) ⊙ ((a ∧ b) ∧ y).

So a ∧ b ∈ Dis2(L).
(b) Let a, b ∈ St2(L). Then

x ⊙ ((a ∧ b) ∧ y) = x ⊙ (a ∧ (b ∧ y))
= (x ⊙ a) ∧ (x ⊙ (b ∧ y))
= (x ⊙ a) ∧ (x ⊙ b) ∧ (x ⊙ y)
= (x ⊙ (a ∧ b)) ∧ (x ⊙ y).

So a ∧ b ∈ St2(L). □

Theorem 3.9. Let L be a BL-algebra. Then St2(L) = L.
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Theorem 3.10. Let L be a residuated lattice. Then
(a) Dis2(L) is a meet-subsemi lattice of L .

(b) St2(L) is a meet-subsemi of L .

4. On neutral elements in residuated lattices

Definition 4.1. An element a of a residuated lattice L is said to be neutral if

(a ∧ x) ∨ (a ∧ y) ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) ∧ (x ∨ y)

for all x, y ∈ L .

Let Neu(L) denote the set of all neutral elements of L .
Note: In every L , {0, 1} ⊆ Neu(L).

Example 4.2. (a) In Example 2.2, (a), {0, d, m, 1} is the set of all neutral elements of L , but a, c are not neutral
elements of L .

(b) In Example 2.2, (b), {0, m, 1} is the set of all neutral elements of L but a, b, c, d are not neutral elements of L .

Definition 4.3. An element a of L is said to be neutral type 2, if

(a ⊙ x) ∧ (a ⊙ y) ∧ (x ⊙ y) = (a ∧ x) ⊙ (a ∧ y) ⊙ (x ∧ y)

for all x, y ∈ L .

Let Neu2(L) denote the set of all neutral type 2 elements of L .
Note: In every L , 0 ∈ Neu2(L).

Example 4.4. In Example 2.2, (a), {0, a, c, m} is the set of all neutral type 2 elements of L , but d, 1 are not neutral
type 2 elements of L , because

(d ⊙ 1) ∧ (d ⊙ 1) ∧ (1 ⊙ 1) ̸= (d ∧ 1) ⊙ (d ∧ 1) ⊙ (1 ∧ 1)

and

(1 ⊙ 1) ∧ (1 ⊙ d) ∧ (1 ⊙ d) ̸= (1 ∧ 1) ⊙ (1 ∧ d) ⊙ (1 ∧ d).

Example 4.5. (a) In Example 2.2, (a), d ∈ St2(L) but d ̸∈ Dis2(L). So in general St2(L) ̸⊆ Dis2(L).
(b) In Example 2.2, (a), m ∈ Neu2(L) but m ̸∈ Dis2(L). So in general Neu2(L) ̸⊆ Dis2(L).
(c) In Example 2.2, (a), 1 ∈ Dis2(L) but 1 ̸∈ Neu2(L). So in general Dis2(L) ̸⊆ Neu2(L).

With compare Examples 4.2, (a) and 4.4, (a), we get Neu(L) ̸⊆ Neu2(L) and Neu2(L) ̸⊆ Neu(L).

Theorem 4.6. Let L be a residuated lattice and a ∈ L. Then the following conditions are equivalent:
(a) a ∈ Neu(L),
(b) a ∈ Dis(L), a ∈ Disδ(L) and

a ∨ x = a ∨ y,

a ∧ x = a ∧ y,

imply that x = y for every x, y ∈ L .

Proof. (a) → (b) Let a ∈ Neu(L). Then for x ≥ a

(a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = a ∨ (x ∧ y)

and

(a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a) = x ∧ (a ∨ y),
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so

a ∨ (x ∧ y) = x ∧ (a ∨ y). (4.1)

To show that a ∈ Dis(L), consider

a ∨ (x ∧ y) = a ∨ ((a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a))
= a ∨ ((a ∨ x) ∧ ((x ∨ y) ∧ (y ∨ a)))

(apply (4.1) to a, a ∨ x, (x ∨ y) ∧ (y ∨ a))

= (a ∨ x) ∧ (a ∨ ((x ∨ y) ∧ (y ∨ a)))

(apply (4.1) to a, y ∨ a, x ∨ y)

= (a ∨ x) ∧ (y ∨ a) ∧ (a ∨ x ∨ y)
= (a ∨ x) ∧ (a ∨ y),

as claimed. By duality, we get that a ∈ Disδ(L).
Finally, let a ∨ x = a ∨ y and a ∧ x = a ∧ y. Then

x = x ∧ (a ∨ x) ∧ (a ∨ y) ∧ (x ∨ y)
= x ∧ ((a ∧ x) ∨ (x ∧ y) ∨ (a ∧ y))
= x ∧ ((a ∧ x) ∨ (x ∧ y))
= (a ∧ x) ∨ (x ∧ y)
= (a ∧ x) ∨ (a ∧ y) ∨ (x ∧ y).

Since the right-hand side is symmetric in x and y, we conclude that x = y.
(b) → (a) since a ∈ Dis(L)

(a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a) = [a ∨ (x ∧ y)] ∧ (x ∨ y)

by (b) and Theorem 2.9, a ∈ St(L)

= [a ∧ (x ∨ y)] ∨ [(x ∧ y) ∧ (x ∨ y)]
= [a ∧ (x ∨ y)] ∨ (x ∧ y)

since a ∈ Disδ(L)

= [(a ∧ x) ∨ (a ∧ y)] ∨ (x ∧ y).

That is, a ∈ Neu(L). □

Theorem 4.7. Let L be a residuated lattice. Then Neu(L) ⊆ St(L) ⊆ Dis(L).

Proof. By Theorems 3.5, 3.7 and 4.6. □

Theorem 4.8. Let L be a residuated lattice. Then
a) Dis(L) is a join-subsemi lattice of L .

(b) St(L) is a sublattice of L .

(c) Neu(L) is a sublattice of L .

Proof. (a) Let a, b ∈ Dis(L). Consider

(a ∨ b) ∨ (x ∧ y) = a ∨ b ∨ (x ∧ y)
= a ∨ ((b ∨ x) ∧ (b ∨ y))
= (a ∨ b ∨ x) ∧ (a ∨ b ∨ y),

so a ∨ b ∈ Dis(L).
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(b) Let a, b ∈ St(L). Consider

x ∧ (a ∨ b ∨ y) = (x ∧ a) ∨ (x ∧ (b ∨ y))
= (x ∧ a) ∨ (x ∧ b) ∨ (x ∧ y)
= (x ∧ (a ∨ b)) ∨ (x ∧ y),

proving that a ∨ b ∈ St(L). Now we verify the formula

αa ∧ αb = αa∧b

where αa, αb and αa∧b are the relation described by Theorem 2.9. Since αa ∧ αb ≤ αa∧b is trivial, let x≡αa∧αb y. Then
x≡αa y, so (x ∧ y) ∨ a1 = x ∨ y for some a1 ≤ a. Also we have x≡αb y, therefore

a1 = a1 ∧ (x ∨ y)≡αb a1 ∧ x ∧ y.

Thus a1 = (a1 ∧ x ∧ y) ∨ b1 for some b1 ≤ b. Now

(x ∧ y) ∨ b1 = (x ∧ y) ∨ (a1 ∧ x ∧ y) ∨ b1 = (x ∧ y) ∨ a1 = x ∨ y,

since b1 ≤ b and b1 ≤ a1 ≤ a, we obtain that b1 ≤ a ∧ b, this verify that x≡αa∧b y.

This formula shows that if a, b ∈ St(L), then the relation αa∧b of Theorem 2.9, is a congruence relation, hence
a ∧ b ∈ St(L) by Theorem 2.9. □

Example 4.9. In Example 2.2, (a),
(a) d, m ∈ Dis(L) but d ⊙ m = c ̸∈ Dis(L).
(b) d, m ∈ St(L) but d ⊙ m = c ̸∈ St(L).
(c) d, m ∈ Neu(L) but d ⊙ m = c ̸∈ Neu(L).

Theorem 4.10. Let L be a MT L-algebra. Then

Neu(L) = St(L) = Dis(L) = L .

Corollary 4.11. Let L be a BL-algebra. Then

Neu(L) = St(L) = Dis(L) = L .

Corollary 4.12. Let L be a MT L-algebra. Then Neu(L), St(L) and Dis(L) are MT L-algebra.

Example 4.13. In Example 2.4, (b), Neu(L) = St(L) = Dis(L) = L , but L is not a MT L-algebra. So the converse
of Corollary 4.12 is not valid, in general.

In the following, we study the relationship between distributive, standard, neutral element and other types of
elements in residuated lattices.

Example 4.14. (a) In Example 2.2, (b), m ∈ Dis(L), St(L), Neu(L) but m ̸∈ Reg(L). Then every distributive,
standard and neutral element is not a regular element.

(b) Every regular element is not a standard or neutral element. In Example 2.2, (b), d ∈ Reg(L) but d ̸∈

St(L), Neu(L).
(c) In Example 2.4, (c), a ∈ Dis(L), St(L), Neu(L) but a ̸∈ I dem(L). So every distributive, standard and neutral

element is not a idempotent element.
(d) Every idempotent element is not a distributive or standard or neutral element. In Example 2.2, (b), c ∈ I dem(L)

but c ̸∈ Dis(L), St(L), Neu(L).
(e) Every distributive, standard and neutral element is not a nilpotent element. In Example 2.4, (c), a ∈

Dis(L), St(L), Neu(L) but a ̸∈ Nil(L).
( f ) Every nilpotent element is not a distributive or standard or neutral element. In Example 2.4, (c), e ∈ Nil(L)

but e ̸∈ Dis(L), St(L), Neu(L).
(g) Every distributive, standard and neutral element is not a element of MV-center of L . In Example 2.2, (b),

m ∈ Dis(L), St(L), Neu(L) but m ̸∈ MV (L).
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(h) Every element of MV-center of L is not a distributive or standard or neutral element. In Example 2.4, (c),
c ∈ MV (L) but c ̸∈ Dis(L), St(L), Neu(L).

(i) Every distributive, standard and neutral element is not a dense element. In Example 2.2, (b), 0 ∈

Dis(L), St(L), Neu(L) but 0 ̸∈ D(L).
( j) Every distributive, standard and neutral element is not a boolean element. In Example 2.2, (b), m ∈

Dis(L), St(L), Neu(L) but m ̸∈ B(L).
(k) Every distributive, standard and neutral element is not a node element. In Example 2.4, (b), a ∈

Dis(L), St(L), Neu(L) but a ̸∈ Nod(L).

Example 4.15. If F is a filter of L , then Dis(L), St(L), Neu(L) are not necessary a filter of L . In Example 2.4, (c),
consider F = {a, b, c, 1}, then F is a filter of L , but Dis(F) = {a, b, 1} and St(F) = Neu(F) = {a, 1} are not filter
of L .

Theorem 4.16. Let f be an epimorphism on L.
(a) If a ∈ Dis(L), then f (a) ∈ Dis(L),
(b) if a ∈ St(L), then f (a) ∈ St(L),
(c) if a ∈ Neu(L), then f (a) ∈ Neu(L).

Proof. Let f be an epimorphism on L and a ∈ Dis(L). Since f is onto, so for every x, y ∈ L , there exist x ′, y′
∈ L

such that f (x ′) = x, f (y′) = y. So (a)

f (a) ∨ (x ∧ y) = f (a) ∨ ( f (x ′) ∧ f (y′))

= f (a ∨ (x ′
∧ y′))

= f ((a ∨ x ′) ∧ (a ∨ y′))

= f (a ∨ x ′) ∧ f (a ∨ y′)

= ( f (a) ∨ f (x ′)) ∧ ( f (a) ∨ f (y′))

= ( f (a) ∨ x) ∧ ( f (a) ∨ y).

(b)

x ∧ ( f (a) ∨ y) = f (x ′) ∧ ( f (a) ∨ f (y′))

= f (x ′
∧ (a ∨ y′))

= f ((x ′
∧ a) ∨ (x ′

∧ y′))

= f (x ′
∧ a) ∨ f (x ′

∧ y′)

= ( f (x ′) ∧ f (a)) ∨ ( f (x ′) ∧ f (y′))

= (x ∧ f (a)) ∨ (x ∧ y).

(c)

( f (a) ∧ x) ∨ ( f (a) ∧ y) ∨ (x ∧ y) = ( f (a) ∧ f (x ′)) ∨ ( f (a) ∧ f (y′)) ∨ ( f (x ′) ∧ f (y′))

= f (a ∧ x ′) ∨ (a ∧ y′) ∨ (x ′
∧ y′)

= f ((a ∨ x ′) ∧ (a ∨ y′) ∧ (x ′
∨ y′))

= ( f (a) ∨ f (x ′)) ∧ ( f (a) ∨ f (y′)) ∧ ( f (x ′) ∨ f (y′))

= ( f (a) ∨ x) ∧ ( f (a) ∨ y) ∧ (x ∨ y). □

In the following, we discuss some different cases of distributive, standard and neutral elements such that, use ⊙

and → instead of ∧ and ∨.

Example 4.17. (a) In Example 2.2, (b), we have b, d, m ∈ Dis(L), but

m → (b ∨ d) ̸= (m → b) ∨ (m → d)
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and

b ⊙ (d → m) ̸= (b ⊙ d) → (b ⊙ m).

(b) In Example 2.2, (b), we have b, d ∈ Dis(L), but

b ∨ (a ⊙ d) ̸= (b ∨ a) ⊙ (b ∨ d).

(c) In Example 2.2, (a, b), if x ∈ Dis(L), then

x ⊙ (y ∧ z) = (x ⊙ y) ∧ (x ⊙ z)

and

x → (y → z) = (x → y) → (x → z).

(d) In Example 2.2, (b), we have d, m ∈ St(L), but

m → (b ∨ d) ̸= (m → b) ∨ (m → d)

(e) Let L = {0, a, b, c, d, 1}, with 0 < a, b < c < 1, 0 < b < d < 1, but a, b and respective c, d are
incomparable. We define ⊙ and → as follows:

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

then (L , ∧, ∨, ⊙, →, 0, 1) is a residuated lattice. d ∈ St(L), but

c ∧ (d ⊙ b) ̸= (c ∧ d) ⊙ (c ∧ b)

.
( f ) In Example 2.2, (a), we have d, m, 1 ∈ Neu(L), but

(1 → d) ∨ (1 → m) ∨ (d → m) ̸= (1 ∨ d) → (1 ∨ m) → (d ∨ m).

(g) In Example 2.2, (a), we have d, m, 1 ∈ Neu(L), but

(d ⊙ m) → (d ⊙ 1) → (m ⊙ 1) ̸= (d → m) ⊙ (d → 1) ⊙ (m → 1).

(h) In Example 2.2, (a), we have d ∈ Neu(L), but

(d → c) ∧ (d → m) ∧ (c → m) ̸= (d ∧ c) → (d ∧ m) → (c ∧ m).

Example 4.18. In Example 2.2,
(a) a, c ∈ Dis2(L) but a ∨ c = m ̸∈ Dis2(L).
(b) a, c ∈ Dis2(L) but a → c = d ̸∈ Dis2(L).
(c) a, c ∈ Neu2(L) but a → c = d ̸∈ Neu2(L).
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Theorem 4.19. Let f be an epimorphism on L.
(a) If a ∈ Dis2(L), then f (a) ∈ Dis2(L),
(b) if a ∈ St2(L), then f (a) ∈ St2(L),
(c) if a ∈ Neu2(L), then f (a) ∈ Neu2(L).

5. Conclusion and future research

Residuation is a fundamental concept of ordered structures and categories. The origin of residuated lattices is in
Mathematical Logic without contraction.

In this paper, we introduced the notions of distributive, standard and neutral elements in residuated lattices and
verified relationships between them. Also we studied the sets of Dis(L), St(L) and Neu(L) and proved that for
MT L-algebra L , Neu(L), St(L) and Dis(L) are MT L-algebra. Finally, we introduced and studied special elements
of type 2 in residuated lattices.

Some important issues for future work are:
(i) developing the properties of distributive, standard and neutral elements in residuated lattices,
(ii) developing the properties of distributive, standard and neutral type 2 elements in residuated lattices,
(iii) finding useful results on other structures,
(iv) constructing the related logical properties of such structures.
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Abstract

In this paper, we investigate long-time behaviour of a stochastic three-species food chain model. By Markov semigroups theory,
we prove that the densities of this model can converge to an invariant density or can converge weakly to a singular measure in L1

under appropriate conditions. Further, several sufficient conditions for the extinction of the three species were obtained. Finally,
numerical simulations are carried out to illustrate our theoretical results.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The dynamical relationship of three species predator–prey systems has long been one of the hot topics in
mathematical biology. To clarify the short-term or long-term behaviour of ecosystems, it is essential to understand
the interacting dynamics of three species food chain models. Since 1970s, there have been some interesting results on
investigating the dynamics of three species predator–prey systems [1–6]. In particular, Krikorian [4] considered the
Volterra predator–prey model in the three species case and to say as much as possible about global properties of its
solution. Zhou [3] investigated the existence and global stability of the positive periodic solutions of delayed discrete
food chains with omnivory. Hsu [5] considered a three species Lotka–Volterra food web model with omnivory which
is defined as feeding on more than one trophic level. A famous three-species food chain model [4] can be expressed
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as follows:⎧⎪⎪⎨⎪⎪⎩
ẋ1(t) = x1(t)[a1 − b11x1(t) − b12x2(t)],

ẋ2(t) = x2(t)[−a2 + b21x1(t) − b22x2(t) − b23x3(t)],

ẋ3(t) = x3(t)[−a3 + b32x2(t) − b33x3(t)],

(1)

where x1(t), x2(t), x3(t) denote the densities of prey, predator and top-predator population at time t respectively. The
parameters a1, a2 and a3 are positive constants that stand for the intrinsic growth rate of the species x1(t), the death
rate of the species x2(t), and the death rate of the species x3(t), respectively. The coefficients b11, b22, b33 are the intra-
specific competition in the resource, b12, b23 represent the rate of consumption and b21, b32 represent the contribution
of prey to the growth of predator.

Actually, the growth of populations in the natural world is always affected by environmental stochastic perturba-
tions which should be taken into consideration in the process of mathematical modelling. In the literatures, many
authors have studied population systems affected by white noise [7–16]. Especially, Takeuchi [9] investigated the
evolution of a system composed of two predator–prey deterministic systems described by Lotka–Volterra equations
in random environment. Ji [11] considered a predator–prey model with modified Leslie–Gower and Holling-type II
schemes with stochastic perturbation. Nguyen [16] investigated a stochastic ratio-dependent predator–prey model.
Inspired by the above literatures, in this paper, we consider the effect of white noise on the three-species food chain.
From model (1) one can derive the following model with stochastic perturbations:⎧⎪⎪⎨⎪⎪⎩

dx1(t) = x1(t)
[(

a1 − b11x1(t) − b12x2(t)
)
dt + σ1d B(t)

]
,

dx2(t) = x2(t)
[(

−a2 + b21x1(t) − b22x2(t) − b23x3(t)
)
dt + σ2d B(t)

]
,

dx3(t) = x3(t)
[(

−a3 + b32x2(t) − b33x3(t)
)
dt + σ3d B(t)

]
,

(2)

where B(t) are white noises, and σi is a positive constant representing the intensity of the white noise. We always
assume that σi is not all equal. The existence, uniqueness and non-extinction property of the solution of system (2)
have been studied in [15]. We replace model (2) by a slightly simpler one. Let u1 = ln x1, u2 = ln x2, u3 = ln x3.

Then, by Itô’s formula, the random variables u1, u2, u3 satisfy⎧⎪⎪⎨⎪⎪⎩
du1(t) =

(
c1 − b11eu1 − b12eu2

)
dt + σ1d B(t),

du2(t) =
(
−c2 + b21eu1 − b22eu2 − b23eu3

)
dt + σ2d B(t),

du3(t) =
(
−c3 + b32eu2 − b33eu3

)
dt + σ3d B(t)

(3)

where c1 = a1 − σ 2
1 /2, c2 = a2 + σ 2

2 /2, c3 = a3 + σ 2
3 /2.

The aim of this paper is to study the long-time behaviour of the solutions. The long-time behaviour of system (3)
depends on the constants b11, b12, b21, b22, b23, b32, b33, c1, c2, c3. The study reveals that the other dynamic scenarios
of system (3) are characterized by those parameters. The main results are listed as follows:

• Under some conditions (see Theorem 3.1), we show that the density of the distribution of system (3) converge to
a stationary density;

• If c1 < 0, then limt→∞ui (t) = −∞, a.e. i = 1, 2, 3 (see Theorem 3.10);
• If c1 > 0, b11c2 > b21c1, then limt→∞ui (t) = −∞, a.e. i = 2, 3, and the distribution of the process u1(t)

converges weakly to the measure which has the density f∗(x) = Cexp{2c1x/σ 2
1 − (2b11/σ

2
1 )ex

} (see Theorem 3.9);
• If c1 > 0, b11c2 < b21c1, b11b22c3 + b11b32c2 > b21b32c1, then limt→∞u3(t) = −∞, a.e, and there exists a

unique density U ∗(x, y) which is a stationary solution of the first two equations of system (3) (see Theorem 3.8).
In this paper we focus on the existence of stationary distribution of system (3). Since the Fokker–Planck equation

corresponding to system (3) is of degenerate type, the approach used in [17] to obtain the existence of stationary
distribution is invalid for system (3). Our new approach comes from Markov semigroup theory which was used
in [18–21].

The rest of the paper is organized as follows: In Section 2, we present some auxiliary results concerning Markov
semigroups. In Section 3, we formulate the main results and its proof. Finally, we illustrate some results through an
example in Section 4.
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2. Preliminaries

Throughout the paper we will need the following notations: R3
+

:= {x = (x1, x2, x3)′ : xi > 0, i = 1, 2, 3};

Id: the identity matrix; Prob{·}: probability of an event; C: constant; L p: p-th integral function space; C∞: Infinitely
differentiable; I[a,b]: indicator function.

In this section, we provide some auxiliary definitions and results concerning Markov semigroups and asymptotic
properties to prove our main results. Let X = R3

+
, Σ be the σ -algebra of Borel subsets of X , and m be the Lebesgue

measure on (X,Σ ), the triple (X,Σ ,m) be a σ -finite measure space. Denote by D = D(X,Σ ,m) the subset of the
space L1

= L1(X,Σ ,m) which contains all densities, i.e.,

D = {g ∈ L1
: g ≥ 0, ∥g∥ = 1},

where ∥ · ∥ stands for the norm in L1. A linear mapping P : L1
→ L1 is called a Markov operator if P(D) ⊂ D.

If k : X × X → [0,∞) is a measurable function such that∫
X

k(x, y)m(dx) = 1 (4)

for almost all y ∈ X, then

Pg(x) =

∫
X

k(x, y)g(y)m(dy) (5)

is an integral Markov operator. The function k is called a kernel of the Markov operator P .
If a family {P(t)}t≥0 of Markov operators satisfies the following conditions:
(a) P(0) = Id,
(b) P(s + t) = P(s)P(t) for s, t ≥ 0,
(c) for each g ∈ L1 the function t ↦→ P(t)g is continuous with respect to the L1 norm, then {P(t)}t≥0 is called a

Markov semigroup.
A Markov semigroup {P(t)}t≥0 is called integral, if for each t > 0, the operator P(t) is an integral Markov

operator, that is, there exists a measurable function k : (0,∞) × X × X → [0,∞) such that

P(t)g(x) =

∫
X

k(t, x, y)g(y)m(dy) (6)

for every density g.
Next we provide two definitions concerning the asymptotic behaviour of a Markov semigroup. A density g∗ is

called invariant under the Markov semigroup {P(t)}t≥0 if P(t)g∗ = g∗ for each t > 0. The Markov semigroup
{P(t)}t≥0 is called asymptotically stable if there is an invariant density g∗ such that

lim
t→∞

∥P(t)g − g∗∥ = 0 (7)

for g ∈ D. If the semigroup {P(t)}t≥0 is generated by some differential equations, then the asymptotic stability means
that all solutions of the equation starting from a density converge to the invariant density.

A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for every g ∈ D

lim
t→∞

∫
A

P(t)g(x)m(dx) = 0. (8)

We need some results concerning asymptotic stability and sweeping which can be found in [18, Corollary 1].

Lemma 2.1. Let {P(t)}t≥0 be an integral Markov semigroup with a continuous kernel k(t, x, y), t > 0, which satisfies
(4) for all y ∈ X. Assume that for every g ∈ D we have∫

∞

0
P(t)g(x)dt > 0.

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P(t)}t≥0 is asymptotically stable or sweeping from a sufficiently large
family of sets (from all compact sets) is called the Foguel alternative.
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For any A ∈ Σ , we denote the transition probability function by P(t, x, y, z, A) for the diffusion process (u1(t),
u2(t), u3(t)), i.e., P(t, x, y, z, A) = Prob{(u1(t), u2(t), u3(t)) ∈ A} with the initial condition (u1(0), u2(0), u3(0)) =

(x, y, z). Assume that (u1(t), u2(t), u3(t)) is a solution of system (3) such that the distribution of (u1(0), u2(0), u3(0))
is absolutely continuous and has the density v(x, y, z). Then (u1(t), u2(t), u3(t)) has also the density U (t, x, y, z) and
U satisfies the Fokker–Planck equation:

∂U
∂t

=
1
2
σ 2

1
∂2U
∂x2 +

1
2
σ 2

2
∂2U
∂y2 +

1
2
σ 2

3
∂2U
∂z2 + σ1σ2

∂2U
∂x∂y

+ σ2σ3
∂2U
∂y∂z

+ σ1σ3
∂2U
∂x∂z

−
∂( f1U )
∂x

−
∂( f2U )
∂y

−
∂( f3U )
∂z

(9)

where f1(x, y, z) = c1 −b11ex
−b12ey, f2(x, y, z) = −c2 +b21ex

−b22ey
−b23ez, f3(x, y, z) = −c3 +b32ey

−b33ez .

Next we introduce a Markov semigroup connected with (9). Let P(t)V (x, y, z) = U (x, y, z) for V ∈ D. Since the
operator P(t) is a contraction on D, it can be extended to a contraction on L1. Thus the operators {P(t)}t≥0 form a
Markov semigroup, i.e.,

AV =
1
2
σ 2

1
∂2V
∂x2 +

1
2
σ 2

2
∂2V
∂y2 +

1
2
σ 2

3
∂2V
∂z2 + σ1σ2

∂2V
∂x∂y

+ σ2σ3
∂2V
∂y∂z

+ σ1σ3
∂2V
∂x∂z

−
∂( f1V )
∂x

−
∂( f2V )
∂y

−
∂( f3V )
∂z

.

The adjoint operator of A is of the form

A∗V =
1
2
σ 2

1
∂2V
∂x2 +

1
2
σ 2

2
∂2V
∂y2 +

1
2
σ 2

3
∂2V
∂z2 + σ1σ2

∂2V
∂x∂y

+ σ2σ3
∂2V
∂y∂z

+ σ1σ3
∂2V
∂x∂z

+ f1
∂(V )
∂x

+ f2
∂(V )
∂y

+ f3
∂(V )
∂z

.

(10)

3. Main results

In this section we present the main conclusions of the paper.

Theorem 3.1. Let (u1(t), u2(t), u3(t)) be a solution of system (3), then for every t > 0 the distribution of
(u1(t), u2(t), u3(t)) has a density U (t, x, y, z). If Ξ > 0, then there exist a unique density U∗(x, y, z) which is a
stationary solution of system (3) and

lim
t→∞

∫∫∫
X
|U (t, x, y, z) − U∗(x, y, z)|dxdydz = 0, (11)

where

Ξ = b21c1 − b12c2 −
b12b23c3

b32
−

∆2
1

4b11b21
−

∆2
2

4b12b21
−

b32∆
2
3

4b12b23
,

∆1 = b21(c1 +
σ 2

1

2
) + b11b21 − b12b21, ∆2 = b12(−c2 +

σ 2
2

2
) + b12b21 + b12b22 − b12b23,

∆3 =
b12b23

b32
(−c3 +

σ 2
3

2
) + b12b23 +

b12b23b33

b32
.

Remark 1. Similar to the literature [18], the support of invariant density u∗ depends on the coefficients σ1, σ2,

σ3, b11, b22. If b12σ2 > b22σ1 or σ2 < σ1, then U∗ > 0, a.e. If b12σ2 ≤ b22σ1, σ2 ≥ σ1, and σ3 ≤ σ1, then

suppU∗ = E(M1,M2) = {(x, y, z) : y ≤
σ2

σ1
x + M1, z ≤

σ3

σ2
y + M2},

where M1 is the smallest number such that f1σ2 − f2σ1 ≥ 0 for all (x, y, z) ̸∈ E(M1,M2),M2 is the smallest number
such that f2σ3 − f3σ2 ≥ 0 for all (x, y, z) ̸∈ E(M1,M2). By the support of a measurable function f = ( f1, f2, f3)
we simply mean the set

supp f = {(x, y, z) ∈ X : f (x, y, z) ̸= 0}.
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The proof of Theorem 3.1 is based on the theory of integral Markov semigroups. The strategy of the proof is the
similar as the literatures [18,19].

Lemma 3.2. For each point (x0, y0, z0) ∈ X and t > 0, the transition probability function P(t, x0, y0, z0, A) has a
continuous density k(t, x, y, z; x0, y0, z0) with respect to the Lebesgue measure.

Proof. In the proof of this lemma, we use the Hörmander theorem [22] on the existence of smooth densities of the
transition probability function for degenerate diffusion process. If a(x) and b(x) are vector fields on Rd , then the Lie
bracket [a, b] is a vector field given by

[a, b] j (x) =

d∑
k=1

(
ak
∂b j

∂xk
(x) − bk

∂a j

∂xk
(x)

)
.

Let

a0(ξ, η, ϑ) =

⎛⎜⎜⎜⎜⎜⎜⎝
a1 −

σ 2
1

2
− b11eξ − b12eη

−a2 −
σ 2

2

2
+ b21eξ − b22eη − b23eϑ

−a3 −
σ 2

3

2
+ b32eη − b33eϑ

⎞⎟⎟⎟⎟⎟⎟⎠ and a1(ξ, η, ϑ) =

⎛⎜⎝σ1

σ2

σ3

⎞⎟⎠ .

Then, by direct calculating, the Lie bracket [a0, a1] is a vector field given by

a2(ξ, η, ϑ) = [a0, a1] =

⎛⎜⎝b11σ1eξ + b12σ2eη

−b21σ1eξ + b22σ2eη + b23σ3eϑ

−b32σ2eη + b33σ3eϑ

⎞⎟⎠
and

a3(ξ, η, ϑ) = [a1, a2] =

⎛⎜⎝b11σ
2
1 eξ + b12σ

2
2 eη

−b21σ
2
1 eξ + b22σ

2
2 eη + b23σ

2
3 eϑ

−b32σ
2
2 eη + b33σ

2
3 eϑ

⎞⎟⎠ .

Consequently, a1, a2, a3 are linearly independent on X. Thus for every (u1, u2, u3) ∈ X, vector a1, a2, a3

span the space X. In view of Hörmander Theorem [22], this is, the Lie algebra generated by vector fields
{a1, a2, a3} is 3 dimensional on X , the transition probability function P(t, x0, y0, z0, A) has a continuous density
k(t, x, y, z; x0, y0, z0), k ∈ C∞((0,∞) × X × X ). □

Next we briefly describe the method based on support theorems [23] which allows us to check where the kernel k
is positive. Fixing a point (x0, y0, z0) ∈ X and a function φ ∈ L2([0, T ]; R), consider the following system of integral
equations:

xφ(t) = x0 +

∫ t

0
(σ1φ + f1(xφ(s), yφ(s), zφ(s)))ds,

yφ(t) = y0 +

∫ t

0
(σ2φ + f2(xφ(s), yφ(s), zφ(s)))ds,

zφ(t) = z0 +

∫ t

0
(σ3φ + f3(xφ(s), yφ(s), zφ(s)))ds,

(12)

where f1(x, y, z), f2(x, y, z), f3(x, y, z) are defined as (9).
Let Dx0,y0,z0;φ be the Fréchet derivative of the function h → xφ+h(T ) from L2([0, T ]; R) to X, where xφ+h =

(xφ+h, yφ+h, zφ+h)T . For some φ ∈ L2([0, T ]; R), the derivative Dx0,y0,z0;φ has rank 3, then

k(T, x, y, z; x0, y0, z0) > 0 for x = xφ(T ), y = yφ(T ), z = zφ(T ).
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Let ψ(t) = f′(xφ(t), yφ(t), zφ(t)), where f′ is the Jacobian of f = ( f1, f2, f3)T . And let Q(t, t0), 0 ≤ t0 ≤ t ≤ T, be a
matrix function such that Q(t0, t0) = Id and ∂Q(t,t0)

∂t = ψ(t)Q(t, t0) and v = (σ1, σ2, σ3)T . Then

Dx0,y0,z0;φh =

∫ T

0
Q(T, s)vh(s)ds. (13)

Lemma 3.3. Let E = X when b12σ2 > b22σ1 or σ2 < σ1, σ3 < σ1, and E = E(M1,M2) when b12σ2 ≤ b22σ1 and
σ3 ≤ σ1 ≤ σ2, for each (x0, y0, z0) ∈ X and (x, y, z) ∈ X, there exists T > 0 such that k(T, x, y, z; x0, y0, z0) > 0.

Proof. We check that the rank of Dx0,y0,z0;φ is 3. Let ε ∈ (0, T ) and h = 1[T −ε,T ]. Since

Q(T, s) = Id + ψ(T )(s − T ) +
1
2
ψ2(T )(s − T )2

+ o((s − T )2),

we obtain

Dx0,y0,z0;φ = εv −
1
2
ε2ψ(T )v +

1
6
ε3ψ2(T )v + o(ε)3, v = (σ1, σ2, σ3)T .

Compute

ψ(T )v =

⎛⎜⎝−b11ex
−b12ey 0

b21ex
−b22ey

−b23ez

0 b32ey
−b33ez

⎞⎟⎠
⎛⎜⎝σ1

σ2

σ3

⎞⎟⎠ =

⎛⎜⎝−b11σ1ex
− b12σ2ey

b21σ1ex
− b22σ2ey

− b23σ3ez

b32σ2ey
− b33σ3ez

⎞⎟⎠ ,

ψ2(T )v =

⎛⎜⎝−b11σ1ex
−b12σ2ey 0

b21σ1ex
−b22σ2ey

−b23σ3ez

0 b32σ2ey
−b33σ3ez

⎞⎟⎠
⎛⎜⎝σ1

σ2

σ3

⎞⎟⎠
=

⎛⎜⎝−b11σ
2
1 ex

− b12σ
2
2 ey

b21σ
2
1 ex

− b22σ
2
2 ey

− b23σ
2
3 ez

b32σ
2
2 ey

− b33σ
2
3 ez

⎞⎟⎠ .

Therefore it follows that v, ψ(T )v, ψ2(T )v are linearly independent and derivative Dx0,y0,z0;φ has rank 3 if σi (i =

1, 2, 3) is not all equal.
Next, we prove that for any two points (x0, y0, z0) ∈ X and (x, y, z) ∈ X, there exists a control function φ and

T > 0 such that xφ(0) = x0, yφ(0) = y0, zφ(0) = z0, xφ(T ) = x, yφ(T ) = y, zφ(T ) = z. The system (12) can be
replaced by the following differential equations:

x ′

φ(t) = σ1φ + f1(xφ, yφ, zφ),

y′

φ(t) = σ2φ + f2(xφ, yφ, zφ),

z′

φ(t) = σ3φ + f3(xφ, yφ, zφ),

(14)

where f1(x, y, z) = c1 −b11ex
−b12ey, f2(x, y, z) = −c2 +b21ex

−b22ey
−b23ez, f3(x, y, z) = −c3 +b32ey

−b33ez .

Let ωφ = yφ −
σ2
σ1

xφ, νφ = zφ −
σ3
σ1

xφ, then (14) become

x ′

φ(t) = σ1φ + g1(xφ, ωφ, νφ),

ω′

φ(t) = g2(xφ, ωφ, νφ),

ν ′

φ(t) = g3(xφ, ωφ, νφ),

(15)

where

g1(xφ, ωφ, νφ) = c1 − b11ex
− b12e

σ2
σ1

x eω,

g2(xφ, ωφ, νφ) = (
σ2b11

σ1
+ b21)ex

+ (
σ2b12

σ1
− b22)e

σ2
σ1

x eω − b23e
σ3
σ1

x eν − (
σ2c1

σ1
+ c2),

g3(xφ, ωφ, νφ) =
σ3b11

σ1
ex

+ (
σ3b12

σ1
+ b32)e

σ2
σ1

x eω − b33e
σ3
σ1

x eν − (
σ3c1

σ1
+ c3).
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For the convenience, let r1 =
σ2
σ1
, α1 =

σ2b11
σ1

+ b21 > 0, α2 =
σ2b12
σ1

− b22, α3 =
σ2c1
σ1

+ c2 > 0, r2 =
σ3
σ1
, β1 =

σ3b11
σ1

>

0, β2 =
σ3b12
σ1

+ b32 > 0, β3 =
σ3c1
σ1

+ c3 > 0, we obtain

g1(xφ, ωφ, νφ) = c1 − b11ex
− b12er1x eω,

g2(xφ, ωφ, νφ) = α1ex
+ α2er1x eω − b23er2x eν − α3,

g3(xφ, ωφ, νφ) = β1ex
+ β2er1x eω − b33er2x eν − β3.

We take five steps to complete the rest of the proof:
(1) For each fixed ν, fix ω0, ω1 ∈ R and ω1 < ω0, there exists x0 ∈ R such that

g2(x0, ω, ν) ≤ −
α3

2
, (16)

or

g3(x0, ω, ν) ≤ −
β3

2
, (17)

for ω ∈ [ω1, ω0]. Consider (15) with xφ ≡ x0 and ωφ(0) = ω0, from the second of (15) and (16) or (17) it follows that
there exist function φ, ωφ satisfying system (15) and ω′

φ ≤ −
α3
2 , ν

′

φ ≤ −
β3
2 . Therefore, we find φ and T > 0 such

that ωφ(T ) = ω1. On the other hand, for each fixed ω, fix ν0, ν1 ∈ R and ν1 < ν0, then there exists x0 ∈ R such that
g2(x0, ω, ν) ≤ −

α3
2 or g3(x0, ω, ν) ≤ −

β3
2 . Analogously, Consider (15) with xφ ≡ x0 and νφ(0) = ν0, we also find φ

and T > 0 such that νφ(T ) = ν1.

(2) Now we assume that α2 ≥ 0, β2 ≥ 0 or 0 < r1 < 1, 0 < r2 < 1. For each fixed ν, every ω0, ω1 ∈ R and
ω0 < ω1 there exists x0 ∈ R such that g2(x0, ω, ν) ≥ 1 or g3(x0, ω, ν) ≥ 1 for ω ∈ [ω0, ω1]. Then we find a control
function φ such that xφ ≡ x0, ωφ(0) = ω0, ωφ(T ) = ω1 for some T > 0. On the other hand, for any ω, fix ν0, ν1 ∈ R
and ν1 < ν0, there exists x0 such that g2(x0, ω, ν) ≥ 1 or g3(x0, ω, ν) ≥ 1 for ν ∈ [ν0, ν1]. Then we also find a control
function φ such that xφ ≡ x0, νφ(0) = ν0, νφ(T ) = ν1 for some T > 0.

(3) Consider the case α2 ≤ 0, β2 ≥ 0 and r1 ≥ 1, 0 < r2 < 1. For each fixed ν, every ε > 0, there exists a δ1 > 0
having the following property, if ω1 − δ ≤ ω0 < ω1 ≤ M1 − ε then there exists x0 such that g2(x0, ω, ν) ≥ δ1 for
ω ∈ [ω0, ω1]. For every ω0, ω1 ∈ R and ω0 < ω1 there exists x0 ∈ R such that g3(x0, ω, ν) ≥ 1 for ω ∈ [ω0, ω1].
Then we find a control function φ such that xφ ≡ x0, ωφ(0) = ω0, ωφ(T ) = ω1 for some T > 0. On the other hand,
for each fixed ω, every ε > 0, there exists a δ2 > 0 having the following property. if ν1 − δ ≤ ν0 < ν1 ≤ M2 − ε then
there exists x0 such that g2(x0, ω, ν) ≥ δ for ν ∈ [ν0, ν1]. For every ν0, ν1 ∈ R and ν0 < ν1, there exists x0 ∈ R such
that g3(x0, ω, ν) ≥ 1 for ν ∈ [ν0, ν1]. Then we find a control function φ such that xφ ≡ x0, νφ(0) = ν0, νφ(T ) = ν1
for some T > 0.

(4) Fix x0 ∈ R, L > 0, A0, A1 > A0 and ε > 0 such that ε < L
4 and ε < A1−A0

4 , Let

M = max
{
|g1(x, ω, ν)| + |g2(x, ω, ν)| + |g3(x, ω, ν)| : x ∈ [x0, x0 + L], ω ∈ [A0, A1], ν ∈ [A0, A1]

}
,

and t0 ∈ εm−1, φ ≡
3M L
4σε . Then for every ν0 ∈ [A0 + ε, A1 − ε], the solution of system (14) with xφ(0) = x0, ωφ(0) =

ω0, νφ(0) = ν0 has the following properties:

xφ(t0) ∈ (x0 + L/2, x0 + L),

ωφ(t) ∈ [ω0 − ε, ω0 + ε], for t ≤ t0,

νφ(t) ∈ [ν0 − ε, ν0 + ε], for t ≤ t0,

(18)

From (18) it follows that for (x1, ω1, ν1) ∈ (x0, x0 + L/2] × [A0 + 2ε, A0 − 2ε] × [A0 + 2ε, A0 − 2ε] there exists
ω0 ∈ [ω1 − ε, ω1 + ε], ν0 ∈ [ν1 − ε, ν1 + ε] and T ∈ (0, t0) such that xφ(T ) = x1, ωφ(T ) = ω1, νφ(T ) = ν1. The
same proof works for x1 ∈ (x0 − L/2, x0].

(5) Let E = X when α2 ≥ 0, β2 ≥ 0 or 0 < r1 < 1, 0 < r2 < 1, and E = E(M1,M2) when α2 ≤ 0, β2 ≥ 0 and
r1 ≥ 1, 0 < r2 < 1. Then from (1)–(4) it follows that for any two points (x0, y0, z0) ∈ E and (x, y, z) ∈ E there exist
a control function φ and T > 0 such that xφ(0) = x0, yφ(0) = y0, zφ(0) = z0, xφ(T ) = x, yφ(T ) = y, zφ(T ) = z.
This completes the proof. □

Remark 2. Lemma 3.3 shows that the density of the transition function is positive on X.
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Lemma 3.4. Assume that b12σ2 ≤ b22σ1, σ3 < σ1 < σ2, and let E = E(M1,M2). Then for every density f we have

lim
t→∞

∫∫∫
E

P(t) f (x, y, z)dxdydz = 1, (19)

Proof. Similar to the proof Lemma 3.3, let ū2(t) = u2 −
σ2
σ1

u1, ū3(t) = u3 −
σ3
σ1

u1, then system (3) can be replaced by⎧⎪⎪⎨⎪⎪⎩
du1(t) = σ1d B(t) + g1(u1, ū2, ū3)dt,

dū2(t) = g2(u1, ū2, ū3)dt,

dū3(t) = g2(u1, ū2, ū3)dt,

(20)

where the functions g1, g2 and g3 are defined in (15). Since for each ε1, ε2 > 0 we have

sup{g2(x, y, z) : y ≥ M1 + ε1, z ≥ M2 + ε1, x ∈ R} < 0, (21)
sup{g3(x, y, z) : y ≥ M1 + ε2, z ≥ M2 + ε2, x ∈ R} < 0, (22)

we obtain lim supt→∞ū2(t) ≤ M1, lim supt→∞ū3(t) ≤ M2. We check that for almost every w there exists t0 = t0(w)
such that ū2(w) < M1, ū3(w) < M2 for t ≥ t0. If σ3 < σ1 < σ2 then there exists C1,C2 ∈ R such that
g2(C1,M1,M2) = 0, g3(C2,M1,M2) = 0. Let C0 = max{C1,C2} and fix κ > 0, τ > 0 and ι > 0. Consider
the solution of system (20) such that u1(0) = C0 + 2κ, ū2(0) = M1 + τ, ū3(0) = M2 + ι. Let

Aκ,τ,ι = [C0,C0 + κ] × [M1,M1 + τ ] × [M2,M2 + ι],
Bκ,τ,ι = [C0,C0 + 2κ] × [M1,M1 + τ ] × [M2,M2 + ι],

Then there exist ε > 0, L > 0 such that g2(x, y, z) < −ε, g3(x, y, z) < −ε for x ≥ C0 + κ, (y, z) ∈

[M1,M1 + τ ] × [M2,M2 + ι], and |g1(x, y, z)| ≤ L for (x, y, z) ∈ Bκ,τ,ι.
Let ū1(t) be a solution of the equation dū1(t) = σd B(t) − Ldt with the initial condition ū1(0) = C0 + 2κ. Then

ū1(t) ≤ u1(t) and ū2(t) < M1 + τ − εt, ū3(t) < M2 + τ − εt as long as (u1(t), ū2(t), ū3(t)) ∈ Bκ,τ,ι \ Aκ,τ,ι. Let
t = τ/ε and Ωτ,ι = {w : ū1(s, w) ≥ C0 + κ, for s ≤ t}, then limτ,ι→0Prob(Ωτ,ι) = 1 and ū2(t, w) < 0, ū3(t, w) < 0
for w ∈ Ωτ,ι.

Now let u1(t), ū2(t), ū3(t) be any solution of system (20). Then from what has already been proved and the
Markov property it follows that if inft>0ū2(t, w) ≥ M1, inft>0ū3(t, w) ≥ M2, then lim supt→∞u1(t, w) ≤ C0.

Analogously, we check that if inft>0ū2(t, w) ≥ M1, inft>0ū3(t, w) ≥ M2, then lim inft→∞u1(t, w) ≥ C0. Thus,
inft>0ū2(t, w) ≥ M1, inft>0ū3(t, w) ≥ M2, then limt→∞u1(t, w) = C0.

Assume that limt→∞u1(t, w) = C0 with probability > p0 > 0. Set γ = g1(C0,M1,M2), then for every ε > 0
there exist t0 > 0 and a set Ω ′ such that Prob(Ω ′) > p0, |u1(t, w) − C0| < ε and

σd B(t) + (γ − ε)dt ≤ du1(t) ≤ σd B(t) + (γ + ε)dt (23)

for w ∈ Ω ′ and t ≥ t0. Then Prob{w ∈ Ω ′
: |u1(t0 + 1) − C0| < ε} ≤ o(ε) which contradicts assumption that p0 > 0.

Consequently, for almost every w there exists t0 = t0(w) such that ū2(w) < M1, ū3(w) < M2 for t ≥ t0 and (19)
holds. □

Remark 3. From Lemmas 3.3 and 3.4, we know if the Fokker–Planck (9) has a stationary solution U∗, then
suppU∗ = E(M1,M2).

Lemma 3.5. The semigroup {P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact sets.

Proof. From Lemma 3.2 it follows that {P(t)}t≥0 is an integral Markov semigroup with a continuous kernel
k(t, x, y, z) for t > 0. Let E = X when b12σ2 ≥ b22σ1 or σ2 < σ1, σ3 < σ1, and E = cl E(M1,M2) when
b12σ2 < b22σ1 and σ2 < σ1 < σ2. Then according to Lemma 3.3, for every f ∈ D we have∫

∞

0
P(t) f dt > 0 a.e. on E . (24)

So from Lemma 2.1 it follows immediately that the semigroup {P(t)t≥0} is asymptotically stable or is sweeping with
respect to compact sets, the desired result follows. □
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Lemma 3.6. If Ξ > 0, then the semigroup {P(t)}t≥0 is asymptotically stable, where

Ξ = b21c1 − b12c2 −
b12b23c3

b32
−

∆2
1

4b11b21
−

∆2
2

4b12b21
−

b32∆
2
3

4b12b23
,

∆1 = b21(c1 +
σ 2

1

2
) + b11b21 − b12b21, ∆2 = b12(−c2 +

σ 2
2

2
) + b12b21 + b12b22 − b12b23,

∆3 =
b12b23

b32
(−c3 +

σ 2
3

2
) + b12b23 +

b12b23b33

b32
.

Proof. According to Lemma 3.5, the semigroup {P(t)}t≥0 satisfies the Foguel alternative. In order to exclude sweeping
it is sufficient to construct a non-negative C2-function V and a closed set O ∈ Σ such that

sup
(u1,u2,u3)∈X\O

A∗V < 0. (25)

Such a function is called a Khasminskiĭ function. By using similar arguments to those in [24], the existence of a
Khasminskiĭ function implies that the semigroup is not sweeping from the set O, which completes the proof. Let

V (u1, u2, u3) = b21(eu1 − 1 − u1) + b12(eu2 − 1 − u2) +
b12b23

b32
(eu3 − 1 − u3). (26)

Then

A∗V = b21(eu1 − 1)(c1 − b11eu1 − b12eu2 ) +
1
2
σ 2

1 b21eu1

+ b12(eu2 − 1)(−c2 + b21eu1 − b22eu2 − b23eu3 ) +
1
2
σ 2

2 b12eu2

+
b12b23

b32
(eu3 − 1)(−c3 + b32eu2 − b33eu3 ) +

σ 2
3 b12b23

2b32

= − b11b21e2u1 − b12b21e2u2 −
b12b23

b32
e2u3 ,

+ b21(c1 +
σ 2

1

2
)eu1 + b12(−c2 +

σ 2
2

2
)eu2 +

b12b23

b32
(−c3 +

σ 2
3

2
)eu3

− b21c1 + b12c2 +
b12b23

b32
c3 + (b11b21 − b12b21)eu1

+ (b12b21 + b12b22 − b12b23)eu2 + (b12b23 +
b12b23b33

b32
)eu3

= − b11b21e2u1 − b12b21e2u2 −
b12b23

b32
e2u3 ,

− b21c1 + b12c2 +
b12b23

b32
c3 + ∆1eu1 + ∆2eu2 + ∆3eu3 .

= − b11b21(eu1 −
∆1

2b11b21
)2

− b12b21(eu2 −
∆2

2b12b21
)2

−
b12b23

b32
(eu3 −

b32∆3

2b12b23
)2

− Ξ ,

where Ξ = b21c1 − b12c2 −
b12b23c3

b32
−

∆2
1

4b11b21
−

∆2
2

4b12b21
−

b32∆
2
3

4b12b23
.

Condition Ξ > 0 implies that there exists a closed set O ∈ Σ such that

sup
(u1,u2,u3)∈X\O

A∗V ≤ −Ξ < 0. □

So far, Theorem 3.1 has been proved completely. Next several properties of population extinction are given.
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Lemma 3.7 (See [15,11]). Let f ∈ C([0,∞)×Ω , (0,∞)) and F ∈ C([0,∞)×Ω , R). If there exist positive constants
λ0, λ such that

log f (t) ≤ λt − λ0

∫ t

0
f (s)ds + F(t), t ≥ 0a.s.,

and limt→∞(F(t)/t) = 0a.s., then

lim sup
t→∞

1
t

∫ t

0
f (s)ds ≤

λ

λ0
, a.s.

Theorem 3.8. If c1 > 0, b11c2 < b21c1 and b11b22c3 +b11b32c2 > b21b32c1 then limt→∞u3(t) = −∞, a.e. and there
exists a unique density U ∗(x, y) which is a stationary solution of the first two equations of system (3) and

lim
t→∞

∫∫
R2

+

|U (t, x, y) − U ∗(x, y)|dxdy = 0.

Proof. Note that

du1(t) ≤ (c1 − b11eu1 )dt + σ1d B(t),

then by the comparison principle [17], we have

lim sup
t→∞

1
t

∫ t

0
eu1(s)ds ≤

c1

b11
, a.s. (27)

Integrating the both sides of the second equation of system (3), we can obtain

u2(t) − u2(0)
t

= −c2 +
b21

t

∫ t

0
eu1(s)ds −

b22

t

∫ t

0
eu2(s)ds −

b23

t

∫ t

0
eu3(s)ds +

σ2 B(t)
t

≤ −c2 +
b21c1

b11
−

b22

t

∫ t

0
eu2(s)ds +

σ2 B(t)
t

.

That is

u2(t) ≤ (−c2 +
b21c1

b11
)t − b22

∫ t

0
eu2(s)ds + σ2 B(t) + u2(0).

By Lemma 3.7, we derive directly

lim sup
t→∞

1
t

∫ t

0
eu2(s)ds ≤

b21c1 − b11c2

b11b22
, a.s. (28)

By integrating the both sides of the third equation of the system (3), we can obtain

u3(t) − u3(0)
t

= −c3 +
b32

t

∫ t

0
eu2(s)ds −

b33

t

∫ t

0
eu3(s)ds +

σ3 B(t)
t

≤ −c3 +
b32

t

∫ t

0
eu2(s)ds +

σ3 B(t)
t

.

Combining (28) and limt→∞
B(t)

t = 0, we have

lim sup
t→∞

u3(t)
t

≤
b32(b21c1 − b11c2)

b11b22
< 0, a.s. (29)

Therefore

lim
t→∞

u3(t) = −∞, a.s.

When limt→∞u3(t) = −∞, system (3) becomes⎧⎪⎪⎨⎪⎪⎩
du1(t) =

(
a1 −

σ 2
1

2
− b11eu1 − b12eu2

)
dt + σ1d B(t),

du2(t) =
(
−a2 −

σ 2
2

2
+ b21eu1 − b22eu2

)
dt + σ2d B(t).

(30)
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For system (30), there exists a unique density U ∗(x, y) which is a stationary solution of system (30). Details are shown
in [18]. The result is confirmed. □

In the following proof we use the property of the solutions of a one-dimensional stochastic equation [26, p. 162].
Consider the following stochastic equation:

dxt = σ (xt )d Bt + b(xt )dt.

Let

s(x) =

∫ x

0
exp{−

∫ y

0

2b(xt )
σ 2(r )

dr}dy.

If s(−∞) > −∞ and s(∞) = ∞ then limt→∞xt = −∞.

Theorem 3.9. If c1 > 0 and b11c2 > b21c1 then limt→∞ui (t) = −∞, a.e. i = 2, 3. and the distribution of the
process u1(t) converges weakly to the measure which has the density f∗(x) = Cexp{2c1x/σ 2

1 − (2b11/σ
2
1 )ex

}.

Proof. By Lemma 7 of the literature [18], we know that the distribution of the process u1(t) converges to the measure
with the density f∗ and limt→∞u2(t) = −∞. Since limt→∞u2(t) = −∞ we have

du3(t) ≤ σ3d B(t) − c3dt. (31)

Since c3 = a3 + σ 2
3 /2 > 0, from (31) it follows that limt→∞u3(t) = −∞. □

Theorem 3.10. If c1 < 0 then limt→∞ui (t) = −∞, a.e. i = 1, 2, 3.

Proof. Similar to lemma 6 in [18], it is omitted in this paper. □

4. Numerical simulations

In this section we will introduce one example and some figures to illustrate our main theorems. For numerical
simulations of the system (3), we use the Milstein method mentioned in [25]. In this way, system (3) can be rewritten
as the following discretized equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1,k+1 = x1,k + x1,k
(
a1 − b11x1,k − b12x2,k

)
∆t + σ1x1,k

√
∆tξk +

1
2
σ 2

1 x1,k(ξ 2
k − 1)∆t,

x2,k+1 = x2,k + x2,k
(
−a2 + b21x1,k − b22x2,k − b23x3,k

)
∆t + σ2x2,k

√
∆tξk +

1
2
σ 2

2 x2,k(ξ 2
k − 1)∆t,

x3,k+1 = x3,k + x3,k
(
−a3 + b32x2,k − b33x3,k

)
∆t + σ3x3,k

√
∆tξk +

1
2
σ 2

3 x3,k(ξ 2
k − 1)∆t,

(32)

where ξk, k = 1, 2, . . . , n are independent Gaussian random variables N (0, 1). The main goal of this section is to
further investigate the correctness of the theoretical results.

For system (2), using the numerical simulation method given out above and the help of Matlab software, we choose
the initial value (x1(0), x2(0), x3(0)) = (1, 0.8, 0.6), time step ∆t = 0.01 and illustrate our main conclusions through
the following example and figures.

Example 4.1. Assume that parameter Settings for system (2) are as follows:
Case 1.

a1 = 0.8, b11 = 0.5, b12 = 0.6, σ1 = 0.15,
a2 = 0.3, b21 = 0.9, b22 = 0.4, b23 = 0.8, σ2 = 0.1,
a3 = 0.2, b32 = 0.8, b33 = 0.3, σ3 = 0.2.

It is easy to know that

∆1 = b21a1 + b11b21 − b12b21 = 0.6300,
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Fig. 1. The paths and Histograms of three-species for the stochastic model (1.3) with (x1(0), x2(0), x3(0)) = (1, 0.8, 0.6), other parameters are
given in case 1. (a) The paths of xi (t); (b) Histogram of the probability density function for x1(t), the curve is probability density function of
x1(t); (c) Histogram of the probability density function for x2(t), the curve is probability density function of x2(t); (d) Histogram of the probability
density function for x3(t), the curve is probability density function of x3(t).

∆2 = b12(−a2) + b12b21 + b12b22 − b12b23 = 0.1200,

∆3 =
b12b23

b32
(−a3) + b12b23 +

b12b23b33

b32
= 0.5400,

Ξ = b21c1 − b12c2 −
b12b23c3

b32
−

∆2
1

4b11b21
−

∆2
2

4b12b21
−

b32∆
2
3

4b12b23
= 0.0462 > 0.

Then it follows from Theorem 3.1 that there exists a unique density U∗(x, y, z) which is a stationary solution of system
(3). We use Fig. 1 to illustrate Case 1.
Case 2.

a1 = 0.8, b11 = 0.2, b12 = 0.6, σ1 = 0.2,
a2 = 0.8, b21 = 0.6, b22 = 0.8, b23 = 0.8, σ2 = 0.2,
a3 = 0.5, b32 = 0.8, b33 = 0.1, σ3 = 0.3.

It is clear that,

c1 = a1 −
1
2
σ 2

1 = 0.7800 > 0,
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Fig. 2. The paths and Histograms of three-species for the stochastic model (1.3) with (x1(0), x2(0), x3(0)) = (1, 0.8, 0.6), other parameters are
given in case 2. (a) The paths of xi (t); (b) Histogram of the probability density function for x1(t), the curve is probability density function of x1(t);
(c) Histogram of the probability density function for x2(t), the curve is probability density function of x2(t); (d) The mean value of log x3/t from
10 000 simulations at t = 10, 20, . . . 100.

b21c1 − b11c2 = 0.3040 > 0,
b21b32c1 − b11b22c3 − b11b32c3 = −0.1560 < 0.

Then it follows from Theorem 3.8 that limt→∞u3(t) = −∞, a.e. and there exists a unique density U ∗(x, y) which is
a stationary solution of the degenerate equations of system (3). We give Fig. 2 to illustrate Case 2.

5. Conclusion

Asymptotic behaviour of stochastic population system have recently been studied by many authors. However, to
the best of our knowledge, there are rare results about the stationary distribution of a stochastic food chain model using
Markov semi-groups. In this paper, we develop and analyse a stochastic food chain model, which takes white noise
into account. We first prove that the distributions of the solutions of system (3) are absolutely continuous. Further,
we prove that the densities can converge in L1 to an invariant density or can converge weakly to a singular measure.
Secondly, several sufficient conditions for the extinction of the three populations were obtained. Moreover, Some
interesting questions deserve further investigation, such as incorporating intervention strategies into the system. We
leave this for future consideration.
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Abstract

Let X be a topological space and F = {Fα} be a direct system of all compact subsets Fα of X , directed by inclusions. For
any homology theory H∗ the groups {H∗(Fα) | Fα ⊂ X} constitute a direct system, and the maps H∗(Fα) → H∗(X ) define a
homomorphism i∗ : lim

−→
H∗(Fα)→ H∗(X ).

As is known (Theorem 4.4.6, Spanier, 1966), for the singular homology, the homomorphism i∗ is an isomorphism

i∗ : lim
−→

H s
∗ (Fα)

∼
−→ H s

∗ (X ). (1)

Using the isomorphism (1), it is proved that for the homologies having compact support H there is the uniqueness theorem on the
category of polyhedral pairs (Theorem 4.8.14, Spanier, 1966).

Since the singular homology theory is a homology theory with compact supports, the uniqueness theorem connects all homology
theories having compact supports with the singular homology theory.

Let H∗ be a cohomology theory. The groups {H∗(Fα) | Fα ⊂ X} constitute an inverse system, and the maps H∗(X )→ H∗(Fα)
define a homomorphism

i∗ : H∗(X )→ lim
←−

H∗(Fα).

Since the homology functor does not commute with inverse limits, it is not true that the singular cohomology of a space is
isomorphic to the inverse limit of the singular cohomology of its compact subsets (that is, there is no general cohomology analogue
of Theorem 4.4.6, Spanier, 1966).

In the present work, it will be shown that there is such connection for a singular cohomology. Namely, there exists a finite exact
sequence

0 −→ lim
←−

(2n−3) H1
s (Fα,G) −→ · · · −→ lim

←−

(1) Hn−1
s (Fα,G) −→ Hn

s (X,G)

−→ lim
←−

Hn
s (Fα,G) −→ lim

←−

(2) Hn−1
s (Fα,G) −→ · · · −→ lim

←−

(2n−2) H1
s (Fα,G) −→ 0. (2)
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The terms the Alexander cohomology with compact supports and the singular cohomology with compact supports used in the
works (Spanier, 1966; Mdzinarishvili, 1984) do not refer to our problem. Therefore, cohomology theory, in particular the singular
cohomology, for which there is a finite exact sequence (2), is called a cohomology with partially compact supports.

In the present work, using a finite exact sequence (2), it is proved the uniqueness theorem for a cohomology having partially
compact supports on the category of polyhedral pairs. Hence, the uniqueness theorem connects all cohomology theories with
partially compact supports with the singular cohomology theory.

c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Singular cohomology; A finite exact sequence; The category of polyhedral pairs

Let C∗ = {Cn} be a chain complex of abelian groups Cn ,

C∗ = C0
∂1
←− C1

∂2
←− · · · ←− Cn−1

∂n
←− Cn

∂n+1
←− · · · . (3)

We denote Zn = Ker ∂n , Bn = Im ∂n+1, Hn = Zn/Bn = Hn(C∗).
Let Hom(−,G) be the contravariant functor, where G is an abelian group. Using the chain complex C∗ from

(3) and the functor Hom(−,G), we have a cochain complex C∗ = Hom(C∗,G), where Cn
= Hom(Cn,G) and

δn
: Cn−1

→ Cn . Denote also Zn
= Ker δn+1, Bn

= Im δn , H n
= Zn/Bn

= H n(C∗).

Lemma 1. If C∗ is a free chain complex, then there is an exact sequence

0 −→ Hom(Bn−1,G) −→ Zn
−→ Hom(Hn,G) −→ 0. (4)

Proof. Since C∗ is a free chain complex, Zn and Bn are free abelian groups for n ∈ Z. Consider the exact sequences

0 −→ Zn
in
−→ Cn

jn
−→ Bn−1 −→ 0

and

0 −→ Bn −→ Zn
tm
−→ Hn −→ 0.

Using the above sequences, the functor Hom(−,G), and also Theorems 3.3.2, 3.3.5 and Lemma 1.5.4 [1], we have,
respectively, the exact sequences

0 −→ Hom(Bn−1,G) −→ Hom(Cn,G) −→ Hom(Zn,G) −→ 0, (5)

0 −→ Hom(Hn,G) −→ Hom(Zn,G) −→ Hom(Bn,G) −→ Ext(Hn,G) −→ 0. (6)

The commutative diagram

0 →→ Bn
kn →→ Zn

in →→ Cn

Cn+1

jn+1

↖↖

∂n+1

↗↗ (7)
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induces a commutative diagram

...

↓↓

0

↓↓
Hom(Cn−1,G)

δn

↓↓

Hom(Hn,G)

tn

↓↓
0 →→ Hom(Bn−1,G)

jn
→→ Hom(Cn,G) in

→→

δn+1

↓↓

Hom(Zn,G) →→

kn

↓↓

0

Hom(Cn+1,G)

↓↓

Hom(Bn,G)
jn+1
←← 0←←

...

(8)

Since jn+1 is a monomorphism, the composition

Zn
= Ker δn+1 in

−→ Hom(Zn,G)
kn
−→ Hom(Bn,G)

is a trivial map. Since Im tn
= Ker kn , there is in Zn

⊂ Im tn . Let ϕ ∈ Hom(Hn,G). As far as in is an epimorphism,

there exists ψ ∈ Hom(Cn,G) such that inψ = tnϕ. Since kntnϕ = 0, jn+1 is a monomorphism and jn+1knin
= δn+1,

we have δn+1ψ = jn+1kninψ = jn+1kntnϕ = 0 and ψ ∈ Zn . Hence there is an epimorphism

in
: Ker δn+1

= Zn
−→ Hom(Hn,G) −→ 0.

We can show that there is the exact sequence (4). Since the homomorphism jn in the diagram (8) is a

monomorphism, δn+1
= jn+1knin and in jn

= 0, it follows that jn Hom(Bn−1,G) ⊂ Zn .

Let ϕ ∈ Zn and inϕ = 0. Since tn is a monomorphism, inϕ = 0 and there is an exact sequence

0 −→ Hom(Bn−1,G)
jn

−→ Hom(Cn,G)
in
−→ Hom(Zn,G) −→ 0,

there exists ψ ∈ Hom(Bn−1,G) such that jnψ = ϕ. □

Lemma 2. If C∗ is a free chain complex, then there is a commutative diagram

0 →→ Hom(Bn−1,G) →→

↓↓

Zn →→

↓↓

Hom(Hn,G) →→ 0

0 →→ Ext(Hn−1,G) →→

↓↓

H n →→

↓↓

Hom(Hn,G) →→ 0

0 0

(9)

with exact rows.
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Proof. The diagram (7) generates a commutative diagram

...

↓↓

0

↓↓
0 Hom(Zn−1,G)

kn−1

↓↓

←← Hom(Cn−1,G)

δn

↓↓

in−1
←← Hom(Hn,G)

tn

↓↓
0 →→ Hom(Bn−1,G)

jn
→→

sn−1

↓↓

Hom(Cn,G) in
→→

δn+1

↓↓

Hom(Zn,G) →→

kn

↓↓

0

Ext(Hn−1,G)

↓↓

Hom(Cn+1G)

↓↓

Hom(Bn,G)
jn+1
←← 0←←

0
...

(10)

Since H n
= Zn/Bn

= Ker δn+1/ Im δn , by Lemma 1 there is an epimorphism

in
: Ker δn+1

→ Hom(Hn,G)→ 0.

Since in is an epimorphism and jn+1 is a monomorphism, there is Ker δn+1
= Ker knin .

Since in−1 is an epimorphism and jn is a monomorphism, there is Im δn
= Im jnkn−1. Hence Ker δn+1/ Im δn

=

Ker knin/ Im jnkn−1 and inδn
= in jnkn−1in−1

= 0. Therefore there exists a homomorphism in the commutative
diagram

0 →→ Bn →→ Zn →→

↓↓

H n →→

α
↙↙

0

Hom(Hn,G)

and α is an epimorphism. There is Kerα = Im jn/ Im jnkn−1. Since jn is a monomorphism, we have

Kerα = Im jn/ Im jnkn−1
≈ Hom(Bn−1,G)/ Im kn−1

≈ Ext(Hn−1,G). (11)

Using the commutative diagram (10) and an isomorphism (11), we have the commutative diagram (9). □

Let {Cα
∗
}α∈Ω be a direct system, where Ω = {α} is a set of indexes of chain complexes Cα

∗
, where Cα

∗
= {Cα

n }, Cα
n

is an abelian group.

Theorem 1 ([2]). If {Cα
∗
} is a direct system of free chain complexes, then for n ∈ Z and i ≥ 2 there is a short exact

sequence

0 −→ lim
←−

(i) Ext(Hα
n−1,G) −→ lim

←−

(i) H n
α −→ lim

←−

(i) Hom(Hα
n ,G) −→ 0, (12)

and this sequence is split.

Proof. Since for each α ∈ Ω there is a free chain complex Cα
∗

, by Lemma 2, there is the commutative diagram (9)
with exact rows. By Theorem 5.4.1 [3] the diagram (9) induces a commutative diagram

· · · →→ lim
←−

(i) Hom(Bαn−1,G) →→

↓↓

lim
←−

(i) Zn
α

→→

↓↓

lim
←−

(i) Hom(Hα
n ,G) →→ lim

←−

(i+1) Hom(Bαn−1,G) →→

↓↓

· · ·

· · · →→ lim
←−

(i) Ext(Hα
n−1,G) →→ lim

←−

(i) Hn
α

→→ lim
←−

(i) Hom(Hα
n ,G) →→ lim

←−

(i+1) Ext(Hα
n−1,G) →→ · · ·

(13)

In [4], for the direct system {Aα} of abelian groups Aα , there is an exact sequence

0 −→ lim
←−

(1) Hom(Aα,G) −→ Ext
(

lim
−→

Aα,G
)
−→ lim

←−
Ext(Aα,G) −→ lim

←−

(2) Hom(Aα,G) −→ 0, (14)



L. Mdzinarishvili / Transactions of A. Razmadze Mathematical Institute 172 (2018) 265–275 269

and for i ≥ 1, there is an isomorphism

lim
←−

(i) Ext(Aα,G) ≈ lim
←−

(i+2) Hom(Aα,G). (15)

If we consider a direct system {Bαn−1} of free abelian groups, then from (14) and (15) for i ≥ 2 one has

lim
←−

(i) Hom(Bαn−1,G) = 0. (16)

Using the commutative diagram (13), the exact sequence (14) and the equality (16), we have the following:
(a) an isomorphism lim

←−

(i) Zn
α ≈ lim

←−

(i) Hom(Hα
n ,G) for i ≥ 2;

(b) an epimorphism lim
←−

(i) H n
α −→ lim

←−

(i) Hom(Hα
n ,G) for i ≥ 1;

(c) a monomorphism lim
←−

(i) Ext(Hα
n−1,G) −→ lim

←−

(i) Hα
n for i ≥ 2;

(d) a trivial homomorphism lim
←−

(i) Hom(Hα
n ,G) −→ lim

←−

(i+1) Ext(Hα
n−1,G) for i ≥ 1.

Using (a)–(d) for i ≥ 2, we have an exact sequence

0 −→ lim
←−

(i) Ext(Hα
n−1,G) −→ lim

←−

(i) H n
α −→ lim

←−

(i) Hom(Hα
n ,G) −→ 0. (17)

For i ≥ 2, define a homomorphism

lim
←−

(i) Hom(Hα
n ,G) ∼

−→ lim
←−

(i) Zn
α −→ lim

←−

(i) H n
α .

We obtain that a composition

lim
←−

(i) Hom(Hα
n ,G) ∼

−→ lim
←−

(i) Zn
α −→ lim

←−

(i) H n
α −→ lim

←−

(i) Hom(Hα
n ,G)

is the identity map. □

Let C∗ = {Cα
∗
} be a direct system of chain complexes Cα

∗
and let C∗ be a chain complex.

Definition 1. A direct system C
∗

of chain complexes Cα
∗

is said to be an association with a chain complex C∗, if there
exists a homomorphism C

∗
→ C∗ such that for all n ∈ Z there is an isomorphism

lim
−→

Hα
n

∼
−→ Hn(C∗),

where Hα
n = Hn(Cα

∗
).

Theorem 2. If a direct system C
∗
= {Cα

∗
} of free chain complexes Cα

∗
is an association with a free chain complex C∗,

then there is an exact sequence

· · · −→ lim
←−

(2i+1) H n−(i+1)
α −→ · · · −→ lim

←−

(1) H n−1
α −→ H n(C∗)

−→ lim
←−

H n
α −→ lim

←−

(2) H n−1
α −→ · · · −→ lim

←−

(2i) H n−i
α −→ · · · , (18)

where H n(C∗) = H n(Hom(C∗,G)), H n
α = H n(Hom(Cα

∗
,G)).

Proof. Using property (d) from the proof of Theorem 1 and the exact sequence (13), we have an exact sequence

0 −→ lim
←−

Ext(Hα
n−1,G) −→ lim

←−
H n
α −→ lim

←−
Hom(Hα

n ,G)

−→ lim
←−

(1) Ext(Hα
n−1,G) −→ lim

←−

(1) H n
α −→ lim

←−

(1) Hom(Hα
n ,G) −→ 0. (19)
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Since a chain complex C∗ is free, a homomorphism C∗→ C∗ induces a commutative diagram

0

↓↓

0

↓↓
Kerψ →→

↓↓

Kerϕn

↓↓
0 →→ Ext(Hn−1(C∗),G) →→

ψ

↓↓

H n(C∗) →→

φn

↓↓

Hom(Hn(C∗),G) →→

λ

↓↓

0

0 →→ lim
←−

Ext(Hα
n−1,G) →→

↓↓

lim
←−

H n
α

→→

↓↓

lim
←−

Hom(Hα
n ,G) →→ · · ·

Cokerψ →→

↓↓

Cokerφn

↓↓
0 0

(20)

Since a system C
∗

is an association with C∗, we have Hom(Hn(C∗),G) ≈ Hom(lim
−→

Hα
n ,G) ≈ lim

←−
Hom(Hα

n ,G)
and hence λ is an isomorphism. Since the diagram (20) is commutative and λ is an isomorphism, we have a

commutative diagram

0

↓↓

0

↓↓
Kerψ ∼ →→

↓↓

Kerφn

↓↓
0 →→ Ext(Hn−1(C∗),G) →→

ψ

↓↓

H n(C∗) →→

φn

↓↓

Hom(Hn(C∗),G) →→

λ≈

↓↓

0

0 →→ lim
←−

Ext(Hα
n−1,G) →→

↓↓

lim
←−

H n
α

→→

↓↓

lim
←−

Hom(Hα
n ,G) →→ 0

Cokerψ

↓↓

∼ →→ Cokerφn

↓↓
0 0

(21)

Using the exact sequence (14), an isomorphism λ and the diagram (21), we have the exact sequences

0 −→ lim
←−

(1) Ext(Hα
n−1,G) −→ lim

←−

(1) H n
α −→ lim

←−

(1) Hom(Hα
n ,G) −→ 0 (22)

and

0 −→ lim
←−

(1) Hom(Hα
n−1,G) −→ H n(C∗) −→ lim

←−
H n
α −→ lim

←−

(2) Hom(Hα
n−1,G) −→ 0. (23)
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Using the exact sequences (12), (22) and (23) for i ≥ 1, the isomorphism (15) and Theorem 1, there is the exact
sequence

...

↓↓
0 →→ lim

←−

(3) Ext(Hα
n−3,G) →→ lim

←−

(3) H n−2
α

→→

↓↓

lim
←−

(3) Hom(Hα
n−2,G) →→

≈

0

0 lim
←−

(1) Hom(Hα
n−1,G)←← lim

←−

(1) H n−1
α

↓↓

←← lim
←−

(1) Ext(Hα
n−2,G)←← 0←←

0 →→ lim
←−

(1) Hom(Hα
n−1,G) →→ H n(C∗)

↓↓
lim
←−

H n
α

→→

↓↓

lim
←−

(2) Hom(Hα
n−1,G) →→ 0

0 lim
←−

(2) Ext(Hα
n−2,G)

≈

←← lim
←−

(2) H n−1
α

↓↓

←← lim
←−

(2) Hom(Hα
n−1,G)←← 0←←

0 →→ lim
←−

(4) Hom(Hα
n−2,G) →→ lim

←−

(4) H n−2
α

→→

↓↓

lim
←−

(4) Ext(Hα
n−2,G) →→ 0

... □

Let X be a topological space. A singular q-simplex of space X is a continuous map ∆q → X , where ∆q is a
standard q-simplex, q ≥ 0 [5]. Denote by Sq (X ) the free abelian group generated by the set of all singular q-simplexes
of space X . For q < 0, there are no singular q-simplexes. Denote by ∂q : Sq X → Sq−1 X a homomorphism, defined
by the formula ∂q (σ ) =

∑q
j=0(−1) j (σqei

q ), where ei
q : ∆q−1 → ∆q .

The sequence

SX = · · · ←− Sq−1 X
∂q
←− Sq X

∂q+1
←− Sq+1 X ←− · · ·

is a free chain complex. Its homology group, denoted by H s
∗

X , is a gradet group {H s
q X = Hq (SX )}, and called the

singular homology group of X .
If f : X → Y is a continuous map and σ : ∆q → X is a singular q-simplex, then a composition f σ : ∆q → Y is

a singular q-simplex of space Y . Hence there is a homomorphism Sq f : Sq X → SqY , (Sq f )(σ ) = f σ . A sequence
of maps Sq f : Sq X → SqY , q ∈ Z, is a chain map and is denoted by S f : SX → SY . A chain map S f induces a
homomorphism f∗ : H s

∗
X → H s

∗
Y .

Since ∆q is compact, every singular σ : ∆q → X maps ∆q into some compact subset of X . Hence, if {Fα} is the
collection of compact subsets of X directed by inclusion, then

SX = lim
−→

SFα. (24)

By Theorem 4.1.7 [6], we have the following result.
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Theorem 3 ([6]). The singular homology group of a space is isomorphic to the direct limit of the singular homology
groups of its compact subsets,

H s
∗

X ≈ lim
−→

H s
∗

Fα.

Since all conditions of Theorem 2 are satisfied, for a singular cohomology we have the following theorem.

Theorem 4. For a singular cohomology of any topological space X there is a finite exact sequence

0 −→ lim
←−

(2n−3) H 1
s Fα −→ · · · −→ lim

←−

(1) H n−1
s Fα −→ H n

s X

−→ lim
←−

H n
s Fα −→ lim

←−

(2) H n−1
s Fα −→ · · · −→ lim

←−

(2n−2) H 1
s Fα −→ 0. (25)

Proof. Since there is an isomorphism (24), using Theorem 2, we have an exact sequence

· · · −→ lim
←−

(2i+1) H n−(i+1)
s Fα −→ · · · −→ lim

←−

(1) H n−1
s Fα −→ H n

s X

−→ lim
←−

H n
s Fα −→ lim

←−

(2) H n−1
s Fα −→ · · · −→ lim

←−

(2i) H n−i
s Fα −→ · · · (26)

(1) n = 0. For q < 0 and any topological space Y , there is HqY = 0 and using the universal coefficients formula
for a singular cohomology, we have

H 0
s Y ≈ Hom(H s

0 Y,G), (27)
H q

s Y = 0, q < 0. (28)

Therefore from the exact sequence (26) it follows that there is an isomorphism

H 0
s X ≈ lim

←−
H 0

s Fα.

(2) n = 1. Using the equality (28) and the exact sequence (26), there are

lim
←−

(3) H−1
s Fα = 0, lim

←−

(4) H−1
s Fα = 0

and a finite exact sequence

0 −→ lim
←−

(1) H 0
s Fα −→ H 1

s X −→ lim
←−

H 1
s Fα −→ lim

←−

(2) H 0
s Fα −→ 0.

Using the isomorphisms H 0
s Fα ≈ Hom(H s

0 Fα,G), lim
←−

(2) H 0
s Fα ≈ lim

←−

(2) Hom(H s
0 Fα,G), the exact sequence (14) and

the equality lim
←−

Ext(H s
0 Fα,G) = 0, since H s

0 Fα is a free abelian group, we have the equality

lim
←−

(2) H 0
s Fα = 0.

Therefore there is an exact sequence

0 −→ lim
←−

(1) H 0
s Fα −→ H 1

s X −→ lim
←−

H 1
s Fα −→ 0.

(3) n = 2. Using the equality (28) and the exact sequence (26), there are

lim
←−

(5) H−1
s Fα = 0, lim

←−

(6) H−1
s Fα = 0.

Using the isomorphism (27), there is

lim
←−

(3) H 0
s Fα ≈ lim

←−

(3) Hom(H s
0 Fα,G). (29)

Using the isomorphisms (15) and (29), there is an isomorphism

lim
←−

(3) H 0
s Fα ≈ lim

←−

(1) Ext(H s
0 Fα,G). (30)

By Corollary 4.8.4 [6], Lemma 1.5.4 and Theorem 3.3.5 [1], there is Ext(H s
0 Fα,G) = 0. Hence, using an

isomorphism (30), we have

lim
←−

(3) H 0
s Fα = 0, lim

←−

(4) H 0
s Fα = 0.
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Therefore there is a finite exact sequence

0 −→ lim
←−

(1) H 1
s Fα −→ H 2

s X −→ lim
←−

H 2
s Fα −→ lim

←−

(2) H 1
s Fα −→ 0.

(4) n ≥ 3. Using the exact sequence (26) and the equality (28), there are

lim
←−

(2n+1) H−1
s Fα = 0, lim

←−

(2n+2) H−1
s Fα = 0.

We have the isomorphism

lim
←−

(2n−1) H 0
s Fα ≈ lim

←−

(2n−1) Hom(H s
0 Fα,G) ≈ lim

←−

(2n−3) Ext(H s
0 Fα,G).

Since H s
0 Fα is a free abelian group, there is Ext(H s

0 Fα,G) = 0. Therefore lim
←−

(2n−1) H 0
s Fα = 0. Analogously,

lim
←−

(2n) H 0
s Fα ≈ lim

←−

(2n) Hom(H s
0 Fα,G) ≈ lim

←−

(2n−2) Ext(H s
0 Fα,G) = 0.

Hence there is an exact sequence (25). □

Definition 2. A cohomology theory H for which there is a finite exact sequence

0 −→ lim
←−

(2n−3) H 1 Fα −→ · · · −→ lim
←−

(1) H n−1 Fα −→ H n X

−→ lim
←−

H n Fα −→ lim
←−

(2) H n−1 Fα −→ · · · −→ lim
←−

(2n−2) H 1 Fα −→ 0,

where {Fα} is a direct system of all compact subsets Fα of X directed by the inclusion, is called a cohomology theory
with partially compact supports.

By Theorem 4, the singular cohomology theory is a cohomology theory with partially compact supports.

Corollary 1. If X is a polyhedron and {Fα} is a system of compact subspaces of X, then for a singular cohomology
there is a short exact sequence

0 −→ lim
←−

(1) H n−1
s Fα −→ H n

s (X,G) −→ lim
←−

H n
s Fα −→ 0, (31)

where H∗s Fα = H∗s (Fα,G).

Proof. For any polyhedral space X , the compact polyhedrals Xλ contained in it are cofinal in the family of all compact
subspaces Fα . Therefore, for i ≥ 0, there is an isomorphism

lim
←−

(i) H∗s Xλ ≈ lim
←−

(i) H∗s Fα. (32)

Since H s
∗

Xλ is finitely generated, using Corollary 1.5 [4], there is the equalities

a′) lim
←−

(i) Hom(H s
∗

Xλ,G) = 0, i ≥ 2, (33)

b′) lim
←−

(i) Ext(H s
∗

Xλ,G) = 0, i ≥ 1. (34)

Using Theorem 1, the isomorphism (32) and the equalities (33), (34), we have

lim
←−

(i) H∗s Fα = 0 for i ≥ 2. (35)

From the finite exact sequence (25) and the equality (35) follows the short exact sequence (31). □

Theorem 5. Let h be a homomorphism from cohomology H to cohomology H ′, that is, an isomorphism for one-point
spaces. If H and H ′ have partially compact supports, h is an isomorphism for any polyhedral pair.

Proof. The uniqueness theorem is valid for cohomology theories (that is, a homomorphism from one cohomology
theory to another, which is an isomorphism for one-point spaces, is an isomorphism for compact polyhedral pairs).
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A homomorphism h induces a commutative diagram

0 →→ lim
←−

(1) H n−1 Xλ
→→

≈

↓↓

H n(X ) →→

hn

↓↓

lim
←−

H n Xλ
→→

≈

↓↓

0

0 →→ lim
←−

(1) H ′n−1 Xλ
→→ H ′n →→ lim

←−
H ′n Xλ

→→ 0.

(36)

Then for all n ∈ Z, there is an isomorphism

hn
: H n(X ) ∼

−→ H ′n(X ). (37)

For any polyhedral pairs (X, A), there is a commutative diagram with exact sequences

· · · →→ H q (X ) →→

≈

↓↓

H q (A) →→

≈

↓↓

H q+1(X, A) →→

h
↓↓

H q+1(X ) →→

≈

↓↓

H q+1(A) →→

≈

↓↓

· · ·

· · · →→ H ′q (X ) →→ H ′q (A) →→ H ′q+1(X, A) →→ H ′q+1(X ) →→ H ′q+1(A) →→ · · ·

Using the five lemma, we have an isomorphism

h : H∗(X, A) ∼
−→ H ′∗(X, A). □

Corollary 2. If X is a manifold, then there is a finite exact sequence

0 −→ lim
←−

(2n−3) H 1
s Fα −→ · · · −→ lim

←−

(1) H q−1
s Fα −→ H

q
X

−→ lim
←−

H q
s Fα −→ lim

←−

(2) H q−1
s Fα −→ · · · −→ lim

←−

(2n−2) H 1
s Fα −→ 0, (38)

where H
q

X = H
q
(X,G) is the Alexander–Spanier cohomology of X, H p

s Fα = H p
s (Fα,G), Fα is a compact subset

of X.
In particular, if a manifold X has a triangulation, then there is an exact sequence

0 −→ lim
←−

(1) H q−1
s Fα −→ H

q
(X ) −→ lim

←−
H q

s Fα −→ 0. (39)

Proof. If X is a manifold, by Corollary 6.8.7 [6], there is an isomorphism

H
∗
(X,G) ≈ H∗s (X,G), (40)

where H
∗
(X,G) is the Alexander–Spanier cohomology. Using the isomorphism (40) and Theorem 4, we have a finite

exact sequence (38). In particular, if manifold X has a triangulation, then, by Corollary 1 and the isomorphism (40),
we have the exact sequence (39). □

Corollary 3. If A is an arbitrary closed subset of the sphere Sn+1, then for 0 < q < n, there is a short exact sequence

0 −→ lim
←−

(1) H s
q+1(U ) −→ H q (A) −→ lim

←−
H s

q (U ) −→ 0, (41)

where H q (A) is the Steenrod homology of A, U = {U } is an inverse system of open subsets U such that
A ⊂ U ⊂ Sn+1.

Proof. Since A is a compact subset of Sn+1, Sn+1
\ A has a triangulation. Using Corollary 2, we have a short exact

sequence

0 −→ lim
←−

(1) H q−1
s (Sn+1

\U ) −→ H
q
(Sn+1

\ A) −→ lim
←−

H q
s (Sn+1

\U ) −→ 0, (42)

where H
q
(Sn+1

\ A) = H
q
(Sn+1

\ A,G) is the Alexander–Spanier cohomology of Sn+1
\ A. By Corollary 6.8.8 [6],

there is an isomorphism Ȟ∗(Sn+1
\ A,G) ≈ H

∗
(Sn+1

\ A,G), where Ȟ∗ is the Čech cohomology.
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Using the Steenrod duality theorem and the Alexander–Pontryagin duality theorem [7,8] and the isomor-
phism 4.8.4 [6], we have the isomorphisms

Ȟ n−q (Sn+1
\ A,G) ≈ H q (A,G) (43)

and

H n−q
s (F) ≈ Ȟ n−q (F) ≈ H s

q (Sn+1
\ F), (44)

where F is a compact polyhedral subset of Sn+1
\ A.

Therefore, using the exact sequence (42), the isomorphisms (37), (43), (44), Corollary 1.1.12 [8], we have a short
exact sequence (41). □
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Abstract

In the present paper the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity is considered. Some
basic results on the solutions of the quasi-static and steady vibrations equations are obtained. Indeed, the fundamental solutions of
the systems of equations of quasi-static and steady vibrations are constructed by elementary functions and their basic properties
are established. Green’s formulae and the integral representation of regular solution in the considered theory are obtained. Finally,
a wide class of the internal boundary value problems of quasi-static and steady vibrations is formulated and on the basis of Green’s
formulae the uniqueness theorems for classical solutions of these problems are proved.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Viscoelasticity; Double porosity; Fundamental solution; Uniqueness theorems; Quasi-static; Steady vibrations

1. Introduction

Poroelasticity is a well-developed theory for the interaction of fluid and solid phases of porous medium. The
mathematical models of single- and multi-porosity media have found applications in many branches of civil and
geotechnical engineering, biomechanics and technology (see e.g. Bai at al. [1], Cowin [2] and Vafai [3]).

The first theory of consolidation for elastic materials with single porosity is presented by Biot [4]. This theory
is developed for double porosity elastic solid by Wilson and Aifantis [5]. More general models of double porosity
materials are introduced by Ieşan and Quintanilla [6], Khalili et al. [7], Masters et al. [8], Gelet et al. [9] and studied
by Ciarletta et al. [10], Straughan [11], Gentile and Straughan [12], Ieşan [13], Tsagareli and Svanadze [14]. An
extensive review of works on the single- and multi-porosity elasticity and thermoelasticity is given in de Boer [15],
Straughan [16–18].

Viscoelastic materials play an important role in many branches of engineering (see Brinson and Brinson [19],
Gutierrez-Lemini [20], Lakes [21]). Various theories of differential and integral types of viscoelastic materials have
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2346-8092/ c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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been proposed by several authors (for details, see Amendola et al. [22], Christensen [23], Fabrizio and Morro [24],
Eringen [25] and references therein).

In the last decade there has been interest in formulation of the theories of differential type for elastic materials with
microstructures. In this connection, the theories of viscoelasticity and thermoviscoelasticity are presented for binary
mixtures by Ieşan [26,27], Ieşan and Nappa [28], Ieşan and Quintanilla [29], Ieşan and Scalia [30]. The mathematical
models for Kelvin–Voigt materials with single and double porosity are introduced in [31] and [32], respectively. The
basic properties of plane waves are established and some boundary value problems of steady vibrations of the theories
of viscoelasticity and thermoviscoelasticity for Kelvin–Voigt materials with double porosity are considered in [33,34].

In this paper the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity is considered. This
work is articulated as follows. The next section is based on the governing field equations of quasi-statics and steady
vibrations of the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity. In Section 3 the
fundamental solutions of the systems of equations of quasi-static and steady vibrations are constructed by elementary
functions and their basic properties are established. In Section 4 Green’s formulae and the integral representation of
regular solution in the considered theory are obtained. Finally, in Section 5 a wide class of the internal boundary value
problems is formulated and on the basis of Green’s formulae the uniqueness theorems for regular (classical) solutions
of these problems are proved.

2. Basic equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R3, let t denote the time variable, t ≥ 0.
We assume that subscripts preceded by a comma denote partial differentiation with respect to the corresponding
Cartesian coordinate, repeated indices are summed over the range (1,2,3), and the dot denotes differentiation with
respect to t .

In what follows we consider an isotropic and homogeneous viscoelastic Kelvin–Voigt material with double porosity
that occupies the region Ω of R3. Let û(x, t) be the displacement vector, û = (û1, û2, û3); p̂ 1(x, t) and p̂ 2(x, t) are
the pore and fissure fluid pressures, respectively.

The system of dynamical equations in the linear theory of viscoelasticity for Kelvin–Voigt material with double
porosity consists of the following equations [32]:

(a) The equations of motion

tl j, j = ρ( ¨̂ul − F̂l), l = 1, 2, 3, (1)

where tl j are the components of the total stress tensor, ρ is the reference mass density, ρ > 0, F̂ = (F̂1, F̂2, F̂3) is the
body force per unit mass.

(b) The equations of fluid mass conservation

div v(1)
+ ζ̇1 + β1ėrr + γ ( p̂ 1 − p̂ 2) = 0,

div v(2)
+ ζ̇2 + β2ėrr − γ ( p̂ 1 − p̂ 2) = 0,

(2)

where v(1) and v(2) are the fluid flux vectors for the pores and fissures, respectively; el j are the components of the strain
tensor,

el j =
1
2

(
ûl, j + û j,l

)
, l, j = 1, 2, 3, (3)

β1 and β2 are the effective stress parameters, γ is the internal transport coefficient (leakage parameter) and corresponds
to a fluid transfer rate respecting the intensity of flow between the pores and fissures, γ ≥ 0; ζ1 and ζ2 are the
increments of fluid (volumetric strain) in the pores and fissures, respectively, and defined by

ζ1 = α1 p̂1 + α3 p̂2, ζ1 = α3 p̂1 + α2 p̂2, (4)

α1 and α2 measure the compressibilities of the pore and fissure systems, respectively; α3 is the cross-coupling
compressibility for fluid flow at the interface between the two pore systems at a microscopic level (see Khalili et al. [7],
Masters et al. [8]).

(c) The equations of effective stress concept

tl j = t ′

l j −
(
β1 p̂ 1 + β2 p̂ 2

)
δl j , l, j = 1, 2, 3, (5)
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where

t ′

l j = 2µel j + λerrδl j + 2µ∗ėl j + λ∗ėrrδl j

are the components of effective stress tensor, λ,µ, λ∗ and µ∗ are the constitutive coefficients, δl j is the Kronecker’s
delta.

(d) The Darcy’s law for materials with double porosity

v(1)
= −

1
µ̂

(
k̂1 ∇ p̂1 + k̂3 ∇ p̂2

)
− ρ1 s(1),

v(2)
= −

1
µ̂

(
k̂3 ∇ p̂1 + k̂2 ∇ p̂2

)
− ρ2 s(2),

(6)

where µ̂ is the fluid viscosity, k̂1 and k̂2 are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity, respectively; k̂3 is the cross-coupling permeability for fluid flow at the interface between the matrix and
fissure phases; ρ1, s(1) and ρ2, s(2) are the densities of fluid and the external forces (such as gravity) for the pore and
fissure phases, respectively.

In the following we assume that β2
1 + β2

2 > 0 (the case β1 = β2 = 0 is too simple to be considered).
Substituting Eqs. (3)–(6) into (1) and (2), we obtain the following system of equations of motion in the linear theory

of viscoelasticity for Kelvin–Voigt materials with double porosity expressed in terms of the displacement vector û and
pressures p̂ 1 and p̂ 2:

µ∆û + (λ+ µ) ∇div û + µ∗∆ ˙̂u + (λ∗
+ µ∗) ∇div ˙̂u

−β1 ∇ p̂ 1 − β2 ∇ p̂ 2 = ρ ( ¨̂u − F̂),
(k1∆ − γ ) p̂ 1 + (k3∆ + γ ) p̂ 2 − α1

˙̂p 1 − α3
˙̂p 2 − β1div ˙̂u = −ρ1div s(1),

(k3∆ + γ ) p̂ 1 + (k2∆ − γ ) p̂ 2 − α3
˙̂p 1 − α2

˙̂p 2 − β2div ˙̂u = −ρ2div s(2),

(7)

where ∆ is the Laplacian operator, k j =
k̂ j
µ̂

( j = 1, 2, 3).
If the body force F̂ and the external forces s(1) and s(2) are assumed to be absent, and the displacement vector û and

the pressures p̂ 1 and p̂ 2 are postulated to have a harmonic time variation, that is,{
û, p̂ 1, p̂ 2

}
(x, t) = Re

[
{u, p 1, p 2} (x) e−iωt] ,

then from the system (7) we obtain the following system of steady vibrations in the linear theory of viscoelasticity for
Kelvin–Voigt materials with double porosity

µ1∆u + (λ1 + µ1)∇div u − β1∇ p 1 − β2∇ p 2 + ρω2 u = 0,
(k1∆ + a1)p 1 + (k3∆ + a3)p 2 + β ′

1div u = 0,
(k3∆ + a3)p 1 + (k2∆ + a2)p 2 + β ′

2div u = 0,
(8)

where λ1 = λ− iωλ∗, µ1 = µ− iωµ∗, a j = iω α j −γ, a3 = iω α3 +γ , β ′

j = iω β j ( j = 1, 2); ω is the oscillation
frequency, ω > 0.

Obviously, neglecting inertial effect (ρ ¨̂u) in the first equation of (7), from (8) we obtain the following system
of homogeneous equations of steady vibrations in the linear quasi-static theory of viscoelasticity for Kelvin–Voigt
materials with double porosity:

µ1∆u + (λ1 + µ1)∇div u − β1∇ p 1 − β2∇ p 2 = 0,
(k1∆ + a1)p 1 + (k3∆ + a3)p 2 + β ′

1div u = 0,
(k3∆ + a3)p 1 + (k2∆ + a2)p 2 + β ′

2div u = 0.
(9)

We introduce the second order matrix differential operators with constant coefficients:

A(Dx) =
(

Al j (Dx)
)

5×5, B(Dx) =
(
Bl j (Dx)

)
5×5,
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where

Al j (Dx) = µ1∆δl j + (λ1 + µ1)
∂2

∂xl∂x j
,

Bl j (Dx) = Al j (Dx) + ρω2δl j ,

Al;m+3(Dx) = Bl;m+3(Dx) = −βm
∂

∂xl
,

Am+3;l(Dx) = Bm+3;l(Dx) = β ′

m
∂

∂xl
,

A44(Dx) = B44(Dx) = k1∆ + a1,

A45(Dx) = A54(Dx) = B45(Dx) = B54(Dx) = k3∆ + a3,

A55(Dx) = B55(Dx) = k2∆ + a2,

Dx =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, m = 1, 2, l, j = 1, 2, 3.

It is easily seen that the systems (9) and (8) can be written as

A(Dx)U(x) = 0 (10)

and

B(Dx)U(x) = 0, (11)

respectively, where U = (u, p 1, p 2) is a five-component vector function and x ∈ R3.
Obviously, A(Dx) and B(Dx) are elliptic differential operators if and only if

µ1 µ0 k ̸= 0 (12)

where µ0 = λ1 + 2µ1, k = k1k2 − k2
3 .

3. Fundamental solutions

3.1. Fundamental solution of system of equations of quasi-static theory

The fundamental solution of system (9) (the fundamental matrix of operator A(Dx)) is the matrix Γ(x) =(
Γl j (x)

)
5×5 satisfying condition in the class of generalized functions (for example, see Hörmander [35])

A(Dx)Γ(x) = δ(x)J, (13)

where δ(x) is the Dirac delta, J =
(
δl j

)
5×5 is the unit matrix, x ∈ R3.

In this section the matrix Γ is constructed in terms of elementary functions and some of its basic properties are
established.

We consider the system of nonhomogeneous equations

µ1 ∆u + (λ1 + µ1) ∇div u + β ′

1 ∇ p 1 + β ′

2 ∇ p 2 = F′,

(k1 ∆ + a1)p 1 + (k3 ∆ + a3)p 2 − β1 div u = F4,

(k3 ∆ + a3)p 1 + (k2 ∆ + a2)p 2 − β2 div u = F5,

(14)

where F′
= (F1, F2, F3) is a three-component vector function, F4 and F5 are scalar functions on R3. As one may

easily verify, the system (14) may be written in the form

A⊤(Dx)U(x) = F(x), (15)

where A⊤ is the transpose of matrix A, F = (F′, F4, F5) is a five-component vector function and x ∈ R3.
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Applying the operator div to the first equation of (14) from system (14) we obtain

µ0∆ div u + β ′

1 ∆ p 1 + β ′

2 ∆ p 2 = div F′,

(k1∆ + a1)p 1 + (k3∆ + a3)p 2 − β1 div u = F4,

(k3∆ + a3)p 1 + (k2∆ + a2)p 2 − β2 div u = F5.

(16)

From (16) we have

C(∆)V (x) = ψ (x) , (17)

where V = (div u, p 1, p 2), ψ = (ψ1, ψ2, ψ3) = (div F′, F4, F5) and

C(∆) =
(
Cl j (∆)

)
3×3 =

⎛⎜⎜⎝µ0∆ β ′

1 ∆ β ′

2 ∆

−β1 k1∆ + a1 k3∆ + a3

−β2 k3∆ + a3 k2∆ + a2

⎞⎟⎟⎠
3×3

.

We introduce the notation

C′(∆) =
(
C ′

l j (∆)
)

3×3
=

⎛⎜⎜⎝ µ0 β ′

1 β ′

2

−β1 k1∆ + a1 k3∆ + a3

−β2 k3∆ + a3 k2∆ + a2

⎞⎟⎟⎠
3×3

,

Λ1(∆) =
1

kµ0
det C′ (∆) .

It is easily seen that Λ1(−τ ) = 0 is a quadratic equation and there exist two roots τ 2
1 and τ 2

2 (with respect to τ ). Then
we have

Λ1(∆) = (∆ + τ 2
1 )(∆ + τ 2

2 ).

The system (17) implies

Λ1(∆) V = Φ, (18)

where

Φ = (Φ1,Φ2,Φ3), Φ j =
1

kµ0

3∑
l=1

C∗

l j ψl , j = 1, 2, 3 (19)

and C∗

l j is the cofactor of element Cl j of the matrix C.
Now applying the operator Λ1(∆) to the first equation of (12) and taking into account (18), we obtain

Λ1(∆)(∆ + τ 2
3 )u = F′′, (20)

where τ 2
3 =

ρω2

µ1
and

F′′
=

1
µ1

[
Λ1(∆)F′

− (λ1 + µ1)∇ Φ1 − β ′

1∇ Φ2 − β ′

2∇ Φ3
]
. (21)

On the basis of (18) and (20) we get

Λ(∆)U(x) = Φ′(x), (22)

where Φ′
=

(
F′′,Φ2,Φ3

)
is a five-component vector and

Λ(∆) =
(
Λl j (∆)

)
5×5, Λ11(∆) = Λ22(∆) = Λ33(∆) = Λ1(∆)(∆ + τ 2

3 ),

Λ44(∆) = Λ55(∆) = Λ1(∆), Λl j (∆) = 0, l, j = 1, 2, . . . , 5, l ̸= j.
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We introduce the notations

n j1(∆) = −
1

kµ1µ0

[
(λ1 + µ1)C∗

j1(∆) + β ′

1C∗

j2(∆) + β ′

2C∗

j3(∆)
]
,

n jl(∆) =
1

kµ0
C∗

jl(∆), j = 1, 2, 3, l = 2, 3.
(23)

In view of (19) and (23), from (21) it follows that

F′′
=

[
1
µ1

Λ1(∆)I + n11(∆) ∇div
]

F′
+ n21(∆) ∇F4 + n31(∆) ∇F5,

Φm = n1m(∆) div F + n2m(∆)F4 + n3m(∆)F5, m = 2, 3,
(24)

where I =
(
δl j

)
3×3 is the unit matrix.

Thus, from (24) we have

Φ′ (x) = L⊤ (Dx)F (x) , (25)

where

L (Dx) =
(
L l j (Dx)

)
5×5, L l j (Dx) =

1
µ1

Λ1(∆) δl j + n11(∆)
∂2

∂xl∂x j
,

L l;m+2 (Dx) = n1m(∆)
∂

∂xl
, Lm+2;l (Dx) = nm1(∆)

∂

∂xl
,

Lm+2;r+2 (Dx) = nmr (∆), l, j = 1, 2, 3, m, r = 2, 3.

(26)

By virtue of (15) and (25), from (22) it follows that ΛU = L⊤A⊤U. It is obvious that L⊤A⊤
= Λ and, hence,

A(Dx)L(Dx) = Λ(∆). (27)

We assume that τ 2
1 ̸= τ 2

2 and τ j ̸= 0 ( j = 1, 2). Let

Y(x) = (Ylm(x))5×5, Y11(x) = Y22(x) = Y33(x) =

4∑
j=1

η jγ j (x),

Y44(x) = Y55(x) =

2∑
j=1

η j+4γ j (x) + η4γ3(x), Ylm(x) = 0,

l ̸= m, l,m = 1, 2, . . . , 5,

(28)

where

γ j (x) = −
eiτ j |x|

4π |x|
, γ3(x) = −

1
4π |x|

, γ4(x) = −
|x|

8π
,

η1 =
1

τ 4
1 (τ 2

2 − τ 2
1 )
, η2 =

1
τ 4

2 (τ 2
1 − τ 2

2 )
, η3 = −

τ 2
1 + τ 2

2

τ 4
1 τ

4
2
,

η4 =
1
τ 2

1 τ
2
2
, η5 =

1
τ 4

1 (τ 2
1 − τ 2

2 )
, η6 =

1
τ 4

2 (τ 2
2 − τ 2

1 )
, j = 1, 2.

Lemma 1. The matrix Y is the fundamental solution of operator Λ(∆), that is,

Λ(∆)Y (x) = δ (x) J, (29)

where x ∈ R3.

Lemma 1 is proved by virtue of (28) and equalities

(∆ + τ 2
j )γ j (x) = δ (x) , ∆γ3(x) = δ (x) , ∆2γ4(x) = δ (x) .

We introduce the matrix

Γ(x) = L (Dx)Y (x) . (30)
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Using identities (27) and (29) from (30) we get

A (Dx)Γ(x) = A (Dx)L (Dx)Y (x) = Λ (∆)Y (x) = δ (x) J.

Hence, Γ(x) is the solution of (13). We have thereby proved the following

Theorem 1. If the condition (12) is satisfied, then the matrix Γ (x) defined by (30) is the fundamental solution of
system (9), where the matrices L (Dx) and Y (x) are given by (26) and (28), respectively.

Remark 1. The matrix Γ (x) is constructed by harmonic (γ3), biharmonic (γ4) and metaharmonic (γ1 and γ2)
functions.

3.2. Fundamental solution of system of equations of steady vibrations

In a quite similar manner as in the previous subsection we can construct the fundamental solution of system (8).
The fundamental solution of system (8) (the fundamental matrix of operator B(Dx)) is the matrix Θ(x) =(

Θl j (x)
)

5×5 satisfying condition in the class of generalized functions

B(Dx)Θ(x) = δ(x)J, (31)

where x ∈ R3.
We introduce the notation:

(1)

Ĉ(∆) =

(
Ĉl j (∆)

)
3×3

=

⎛⎜⎜⎝µ0∆ + ρω2 β ′

1 ∆ β ′

2 ∆

−β1 k1∆ + a1 k3∆ + a3

−β2 k3∆ + a3 k2∆ + a2

⎞⎟⎟⎠
3×3

.

(2)

Λ̂1(∆) =
1

kµ0
det Ĉ (∆) = (∆ + ξ 2

1 )(∆ + ξ 2
2 )(∆ + ξ 2

3 ),

where ξ 2
1 , ξ

2
2 and ξ 2

3 are the roots of equation Λ1(−ξ ) = 0 (with respect to ξ ).
(3)

Λ̂(∆) =

(
Λ̂l j (∆)

)
5×5
, Λ̂11(∆) = Λ̂22(∆) = Λ̂33(∆) = Λ̂1(∆)(∆ + ξ 2

4 ),

Λ̂44(∆) = Λ̂55(∆) = Λ̂1(∆), Λ̂l j (∆) = 0, l, j = 1, 2, . . . , 5, l ̸= j

where ξ 2
4 = τ 2

3 . We assume that ξ 2
l ̸= ξ 2

j , where l, j = 1, 2, 3, 4 and l ̸= j.
(4)

n̂ j1(∆) = −
1

kµ1µ0

[
(λ1 + µ1)Ĉ∗

j1(∆) + iωβ1Ĉ∗

j2(∆) + iωβ2Ĉ∗

j3(∆)
]
,

n̂ jl(∆) =
1

kµ0
Ĉ∗

jl(∆), j = 1, 2, 3, l = 2, 3

where Ĉ∗

l j is the cofactor of element Ĉl j of the matrix Ĉ.
(5)

L̂ (Dx) =

(
L̂ l j (Dx)

)
5×5
, L̂ l j (Dx) =

1
µ1

Λ1(∆) δl j + n̂11(∆)
∂2

∂xl∂x j
,

L̂ l;m+2 (Dx) = n̂1m(∆)
∂

∂xl
, L̂m+2;l (Dx) = n̂m1(∆)

∂

∂xl
,

L̂m+2;4 (Dx) = n̂m2(∆), L̂m+2;5 (Dx) = n̂m3(∆),
l, j = 1, 2, 3, m = 2, 3.

(32)
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(6)

Ŷ(x) =

(
Ŷlm(x)

)
5×5
, Ŷ11(x) = Ŷ22(x) = Ŷ33(x) =

4∑
j=1

η2 j γ̂ j (x),

Ŷ44(x) = Ŷ55(x) =

3∑
j=1

η1 j γ̂ j (x), Ŷlm(x) = 0,

l ̸= m, l,m = 1, 2, . . . , 5,

(33)

where

γ̂ j (x) = −
eiξ j |x|

4π |x|
(34)

and

η1m =

3∏
l=1, l ̸=m

(ξ 2
l − ξ 2

m)−1, η2 j =

4∏
l=1, l ̸= j

(ξ 2
l − ξ 2

j )−1,

m = 1, 2, 3, j = 1, 2, 3, 4.

Quite similarly as in the previous subsection we can prove the following identities

B(Dx)L̂(Dx) = Λ̂(∆). (35)

and

Λ̂(∆)Ŷ (x) = δ (x) J, (36)

where x ∈ R3.

We introduce the matrix

Θ (x) = L̂ (Dx) Ŷ (x) . (37)

Using (35) and (36) from (37) we get

B (Dx)Θ (x) = B (Dx) L̂ (Dx) Ŷ (x) = Λ̂ (∆) Ŷ (x) = δ (x) J.

Hence, Θ (x) is the solution of (31). We have the following

Theorem 2. If the condition (12) is satisfied, then the matrix Θ(x) defined by (37) is the fundamental solution of
system (8), where the matrices L̂ (Dx) and Ŷ (x) are given by (32) and (33), respectively.

Remark 2. The fundamental solution of the system (8) is constructed by four metaharmonic functions γ̂ j , where
j = 1, 2, 3, 4 (see (34)). Obviously, the matrix Γ (x) is not possible to obtain from Θ(x) by replacing ρ = 0.

3.3. Basic properties of fundamental solutions

Theorems 1 and 2 lead to the following results.

Theorem 3. Each column of the matrices Γ (x) and Θ (x) is a solution of homogeneous equations (11) and (10),
respectively, at every point x ∈ R3 except the origin.

Theorem 4. The relations

Γl j (x) = O
(
|x|

−1) , Γmq (x) = O
(
|x|

−1) ,
Γmj (x) = O (1) , Γ jm (x) = O (1) ,
Θl j (x) = O

(
|x|

−1) , Θmq (x) = O
(
|x|

−1) ,
Θmj (x) = O (1) , Θ jm (x) = O (1)

hold in the neighborhood of the origin, where l, j = 1, 2, 3, m, q = 4, 5.
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Corollary 1. If condition (12) is satisfied, then the fundamental solution of the system

µ1∆u + (λ1 + µ1)∇div u = 0,

k1∆p 1 + k3∆p 2 = 0,

k3∆p 1 + k2∆p 2 = 0

is the matrix Ψ (x) =
(
Ψl j (x)

)
5×5, where

Ψl j (x) = λ′
δl j

|x|
+ µ′

xl x j

|x|
3 , Ψ44 (x) =

k2

k
γ1(x),

Ψ45 (x) = Ψ54 (x) = −
k3

k
γ1(x), Ψ55(x) =

k1

k
γ1(x),

Ψlm = Ψml = 0, λ′
= −

λ1 + 3µ1

8πµ1µ0
, µ′

= −
λ1 + µ1

8πµ1µ0
,

l, j = 1, 2, 3, m = 4, 5.

Corollary 2. The relations

Ψl j (x) = O
(
|x|

−1) , Ψmn (x) = O
(
|x|

−1)
hold in the neighborhood of the origin, where l, j = 1, 2, 3 and m, n = 4, 5.

Now we can establish the singular part of the matrices Γ (x) and Θ (x) in the neighborhood of the origin.

Theorem 5. The relations

Γl j (x)− Ψl j (x) = const + O (|x|) ,

Θl j (x)− Ψl j (x) = const + O (|x|)

hold in the neighborhood of the origin, where l, j = 1, 2, . . . , 5.

Thus, on the basis of Theorems 4 and 5 and Corollary 2 the matrix Ψ(x) is the singular part of the fundamental
solutions Γ(x) and Θ (x) in the neighborhood of the origin.

4. Greens formulae

In this section Green’s formulae of the linear theory of viscoelasticity for Kelvin–Voigt materials with double
porosity are obtained. In what follows we assume that the constitutive coefficients satisfy the conditions

µ∗ > 0, k1 > 0, k > 0, α1 > 0, α1α2 − α2
3 > 0 (38)

and

3λ∗
+ 2µ∗ > 0. (39)

Let S be the closed surface surrounding the finite domain Ω+ in R3, S ∈ C1,ν, 0 < ν ≤ 1, Ω+ = Ω+
∪ S. The

scalar product of two vectors U = (u1, u2, . . . , u5) and V = (v1, v2, . . . , v5) is denoted by U · V =
∑5

j=1u j v̄ j , where
v̄ j is the complex conjugate of v j .

Definition 1. A vector function U = (u, p 1, p 2) = (u1, u2, . . . , u5) is called regular in Ω+ if u j ∈ C2(Ω+)∩C1(Ω+)
for j = 1, 2, . . . , 5.

In the sequel, we use the matrix differential operator

P(Dx,n) = (Pl j (Dx,n))5×5,
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where

Pl j (Dx,n) = µ1δl j
∂

∂n
+ µ1n j

∂

∂xl
+ λ1nl

∂

∂x j
, Pl;m+3(Dx,n) = −βm nl ,

Pm+3;l(Dx,n) = 0, P44(Dx,n) = k1
∂

∂n
,

P45(Dx,n) = P54(Dx,n) = k3
∂

∂n
, P55(Dx,n) = k2

∂

∂n
,

m = 1, 2, l, j = 1, 2, 3,

n = (n1, n2, n3) is the unit vector, ∂
∂n is the derivative along the vector n.

Let U = (u, p1, p2) and U′
= (u′, p ′

1, p ′

2) be five-component complex vector fields in Ω+, u′
= (u′

1, u′

2, u′

3).

4.1. Greens formulae in the quasi-static theory

We introduce the notation

A(0)(Dx) =

(
A(0)

l j (Dx)
)

3×3
, A(0)

l j (Dx) = Al j (Dx),

P(0)(Dx,n) =

(
P (0)

l j (Dx,n)
)

3×3
, P (0)

l j (Dx,n) = Pl j (Dx,n),

W (0)(u,u′) =
1
3

(3λ1 + 2µ1)div u div ū′

+µ1

⎡⎣1
2

3∑
l, j=1; l ̸= j

(
∂u j

∂xl
+
∂ul

∂x j

) (
∂ ū′

j

∂xl
+
∂ ū′

l

∂x j

)
+

1
3

3∑
l, j=1

(
∂ul

∂xl
−
∂u j

∂x j

) (
∂ ū′

l

∂xl
−
∂ ū′

j

∂x j

)⎤⎦ .
(40)

P(0)(Dx,n)u is the stress vector in the classical theory of viscoelasticity (see Svanadze [36]).

Lemma 2. Let U = (u, p1, p2) and U′
= (u′, p ′

1, p ′

2) be the regular vectors in Ω+, then∫
Ω+

[
A(0)(Dx) − β1∇ p1 − β2∇ p2

]
U(x) · u′(x) dx

+

∫
Ω+

[
W (0)(u,u′) − (β1 p1 + β2 p2) div ū′(x)

]
dx

=

∫
S

[
P(0)(Dz,n(z))u(z) − (β1 p1 + β2 p2) n(z)

]
· u′(z) dzS,

(41)

∫
Ω+

[
(k1∆ + a1)p 1 + (k3∆ + a3)p 2 + β ′

1div u
]

p̄′

1(x) dx

+

∫
Ω+

[
(k3∆ + a3)p 1 + (k2∆ + a2)p 2 + β ′

2div u
]

p̄′

2(x) dx

+

∫
Ω+

[
(k1∇ p 1 + k3∇ p 2) · ∇ p′

1 + (k3∇ p 1 + k2∇ p 2) · ∇ p′

2

]
dx

−

∫
Ω+

[
a1 p 1 p̄′

1 + a3
(

p 1 p̄′

2 + p 2 p̄′

1

)
+ a2 p 2 p̄′

2 + div u(β ′

1 p̄′

1 + β ′

2 p̄′

2)
]

dx

=

∫
S

[(
k1
∂p 1

∂n
+ k3

∂p 2

∂n

)
p̄′

1 +

(
k3
∂p 1

∂n
+ k2

∂p 2

∂n

)
p̄′

2

]
· u′(z) dzS.

(42)

Proof. By virtue of Green’s first formula of the classical theory of elasticity (see, e.g. Kupradze et al. [37])∫
Ω+

[
A(0)(Dx)u(x) · u′(x) + W (0)(u,u′)

]
dx =

∫
S

P(0)(Dz,n(z))u(z) · u′(z) dzS
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and identities∫
Ω+

[
∇ p j (x) · u(x) + p j (x) div ū(x)

]
dx =

∫
S

p j (z) n(z) · U(z) dzS,∫
Ω+

[
∆p j (x) p̄l(x) + ∇ p j (x) · ∇ p̄l(x)

]
dx =

∫
S

∂p j (z)
∂n(z)

p̄l(z) dzS, j = 1, 2

we obtain (41) and (42). □

It is easy to see that Lemma 2 leads to the following result.

Theorem 6. Let U = (u, p1, p2) be regular vector field in Ω+ and U′
= (u′, p ′

1, p ′

2) ∈ C1(Ω+), then∫
Ω+

[
A(Dx) U(x) · U′(x) + W (U,U′)

]
dx =

∫
S

P(Dz,n(z))U(z) · U′(z) dzS, (43)

where

W (U,U′) = W (0)(u,u′) + k1∇ p1 · ∇ p ′

1 + k3(∇ p1 · ∇ p ′

2 + ∇ p2 · ∇ p ′

1)

+ k2∇ p2 · ∇ p ′

2 −
[
a1 p1 p̄ ′

1 + a3(p1 p̄ ′

2 + p2 p̄ ′

1) + a2 p2 p̄ ′

2

]
− (β1 p1 + β2 p2) div ū′

− div u(β ′

1 p̄ ′

1 + β ′

2 p̄ ′

2).

The formula (43) is Green’s first identity in the linear quasi-static theory of viscoelasticity for Kelvin–Voigt
materials with double porosity.

The matrix differential operator Ã(Dx) =

(
Ãl j (Dx)

)
5×5

is the associate operator of A(Dx), where Ã(Dx) =

A⊤(−Dx). It is easy to verify that the operator Ã(Dx) may be obtained from the operator A(Dx) by replacing β j

by β ′

j ( j = 1, 2) and vice versa. Obviously, the associated system of equations is

µ1∆ũ + (λ1 + µ1)∇div ũ − β ′

1∇ p̃ 1 − β ′

2∇ p̃ 2 = 0,

(k1∆ + a1) p̃ 1 + (k3∆ + a3) p̃ 2 + β1 div ũ = 0,

(k3∆ + a3) p̃ 1 + (k2 ∆ + a2) p̃ 2 + β2 div ũ = 0,

(44)

where ũ is a three-component vector function, p̃ 1 and p̃ 2 are functions on Ω+.

Let U = (u, p1, p2) = (U1,U2, . . . ,U5), the vector Ũ j is the j th column of the matrix Ũ = (Ũl j )5×5, ũ j =

(Ũ1 j , Ũ2 j , Ũ3 j )⊤, p̃1 j = Ũ4 j , p̃2 j = Ũ5 j , j = 1, 2, . . . , 5.

Theorem 7. If U and Ũ j ( j = 1, 2, . . . , 5) are regular vectors in Ω+, then∫
Ω+

{
[Ã(Dy)Ũ(y)]⊤U(y) − [Ũ(y)]⊤A(Dy)U(y)

}
dy

=

∫
S
{[P̃(Dz,n)Ũ(z)]⊤U(z) − [Ũ(z)]⊤P(Dz,n)U(z)}dzS,

(45)

where

P̃(Dx,n) = (P̃l j (Dx,n))5×5, P̃l j (Dx,n) = Pl j (Dx,n),

P̃l;m+3(Dx,n) = −β ′

m nl , P̃m+3;l(Dx,n) = 0,

P̃m+3;r+3(Dx,n) = Pm+3;r+3(Dx,n), l, j = 1, 2, 3, m, r = 1, 2.

Theorem 7 is proved by direct calculation. The formula (45) is Green’s second identity in the linear quasi-static
theory of viscoelasticity for Kelvin–Voigt materials with double porosity.

In what follows we shall use the notation

Γ̃ (x) = Γ⊤ (−x) .

Obviously, the matrix Γ̃ (x) is the fundamental solution of systems (44) (the fundamental matrix of operator Ã(Dx)).
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Theorem 7 leads to the following

Theorem 8. If U is a regular vector in Ω+, then

U(x) =

∫
S

{[
P̃(Dz,n)Γ̃(z − x)

]⊤

U(z) − Γ(x − z)P(Dz,n)U(z)
}

dzS

+

∫
Ω+

Γ(x − y)A(Dy)U(y)dy f or x ∈ Ω+.

(46)

The formula (46) is Green’s third identity for integral representation of regular vector (or Somigliana type
representation) in the quasi-static linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity.

Obviously, Theorem 8 leads to the following

Corollary 3. If U is a regular solution of (10) in Ω+, then

U(x) =

∫
S

{[
P̃(Dz,n)Γ̃(z − x)

]⊤

U(z) − Γ(x − z)P(Dz,n)U(z)
}

dzS (47)

The formula (47) is the integral representation of regular solution of the homogeneous Eq. (10) in the considered
quasi-static theory.

4.2. Green’s formulae of equations of steady vibrations

Quite similarly as in the previous subsection we can obtain the Green’s formulae for equations of steady vibrations
(11).

Theorem 9. Let U = (u, p1, p2) be regular vector field in Ω+ and U′
= (u′, p ′

1, p ′

2) ∈ C1(Ω+), then∫
Ω+

[
B(Dx) U(x) · U′(x) + Ŵ (U,U′)

]
dx =

∫
S

P(Dz,n(z))U(z) · U′(z) dzS, (48)

where

Ŵ (U,U′) = W (0)(u,u′) − ρω2u · u′.

Let B̃(Dx) =

(
B̃l j (Dx)

)
5×5

be the associated operator of B(Dx), where B̃(Dx) = B⊤(−Dx). It is easy to verify that

the operator B̃(Dx) may be obtained from the operator B(Dx) by replacing β j by β ′

j ( j = 1, 2) and vice versa.
Let Ũ j be the j th column of the matrix Ũ = (Ũl j )5×5, j = 1, 2, . . . , 5, U = (u, p1, p2) = (U1,U2, . . . ,U5).

Theorem 10. If U and Ũ j ( j = 1, 2, . . . , 5) are regular vectors in Ω+, then∫
Ω+

{
[B̃(Dy)Ũ(y)]⊤U(y) − [Ũ(y)]⊤B(Dy)U(y)

}
dy

=

∫
S
{[P̃(Dz,n)Ũ(z)]⊤U(z) − [Ũ(z)]⊤P(Dz,n)U(z)}dzS.

(49)

In what follows we shall use the notation

Θ̃ (x) = Θ⊤ (−x) .

Obviously, the matrix Θ̃ (x) is the fundamental matrix of operator B̃(Dx).
Theorem 10 leads to the following

Theorem 11. If U is a regular vector in Ω+, then

U(x) =

∫
S

{[
P̃(Dz,n)Θ̃(z − x)

]⊤

U(z) − Θ(x − z)P(Dz,n)U(z)
}

dzS

+

∫
Ω+

Θ(x − y)B(Dy)U(y)dy f or x ∈ Ω+.

(50)
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Obviously, Theorem 8 leads to the following

Corollary 4. If U is a regular solution of (11) in Ω+, then

U(x) =

∫
S

{[
P̃(Dz,n)Γ̃(z − x)

]⊤

U(z) − Γ(x − z)P(Dz,n)U(z)
}

dzS. (51)

The formulae (48), (49) and (50) are Green’s first, second and third identities in the linear theory of viscoelasticity
of steady vibrations for Kelvin–Voigt materials with double porosity. The formula (51) is the integral representation
of regular solution of the homogeneous equation (11) in this theory.

5. Uniqueness of solutions of BVPs

In the sequel, we use the matrix differential operators

P(1) (Dx,n) =

(
P (1)

l j (Dx,n)
)

3×5
, P(m)(Dx,n) = (P (m)

1r (Dx,n))1×2,

where

P (1)
l j (Dx,n) = Pl j (Dx,n), P (m)

1r (Dx,n) = Pm+2;r+3(Dx,n),
l = 1, 2, 3, j = 1, 2, . . . , 5, m = 2, 3, r = 1, 2.

The basic internal BVPs in the quasi-static theory of viscoelasticity for Kelvin–Voigt materials with double porosity
are formulated as follows.

Find a regular (classical) solution U = (u, p1, p2) to system

A(Dx)U(x) = F(x) for x ∈ Ω+

satisfying the boundary condition

lim
Ω±∋x→ z∈S

U(x) ≡ {U(z)}+ = f(z)

in the Problem (I )(q)
F,f,

lim
Ω±∋x→ z∈S

P(Dx,n(z))U(x) ≡ {P(Dz,n(z))U(z)}+ = f(z)

in the Problem (I I )(q)
F,f,

{U(z)}+ = f(1)(z), {P(m)(Dx,n)p(z)}+ = fm+2(z)

in the Problem (I I I )(q)
F,f,

{U(z)}+ = f(1)(z), {P(2)(Dx,n)p(z)}+ = f4(z), {p2(z)}+ = f5(z)

in the Problem (I V )(q)
F,f,

{U(z)}± = f(1)(z), {p1(z)}+ = f4(z), {P(3)(Dx,n)p(z)}+ = f5(z)

in the Problem (V )(q)
F,f,

{P(1)(Dx,n)U(z)}+ = f(1)(z), {p1(z)}+ = f4(z), {p2(z)}+ = f5(z)

in the Problem (V I )(q)
F,f,

{P(1)(Dx,n)U(z)}+ = f(1)(z), {p1(z)}+ = f4(z),
{P(3)(Dx,n)p(z)}+ = f5(z)

in the Problem (V I I )(q)
F,f, and

{P(1)(Dx,n)U(z)}+ = f(1)(z), {P(2)(Dx,n)U(z)}+ = f4(z),
{p2(z)}+ = f5(z)
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in the Problem (V I I I )(q)
F,f, where F, f = (f(1), f4, f5) and f(1)

= ( f1, f2, f3) are known six- and three-component
smooth vector functions, respectively; p = (p1, p2), n(z) is the external unit normal vector to S at z, m = 2, 3.

Quite similarly, the basic internal BVP (K )(s)
F,f of steady vibrations in the theory of viscoelasticity for Kelvin–Voigt

materials with double porosity are formulated as follows: find a regular (classical) solution U = (u, p1, p2) to system

B(Dx)U(x) = F(x) for x ∈ Ω+

satisfying the boundary condition of BVP (K )(q)
F,f, where K = I, I I, . . . , V I I I .

We are now in a position to study the uniqueness of regular solutions of the BVPs (K )(q)
F,f and (K )(s)

F,f, where
K = I, I I, . . . , V I I I . We have the following results.

Theorem 12. If the conditions (38) and (39) are satisfied, then
(a) the internal BVP (K )(q)

F,f admits at most one regular solution for
K = I, I I I, I V, V ;

(b) any two regular solutions of the internal BVP (K )(q)
F,f may differ only for an additive vector U = (u, p1, p2), for

K = I I, V I, V I I, V I I I , where u is the rigid displacement vector

U(x) = a + [b × x] (52)

and

p1(x) = p2(x) = 0 (53)

for x ∈ Ω+, a and b are arbitrary three-component vectors and [b × x] is the vector product of b and x.

Proof. Suppose that there are two regular solutions of problem (K )(q)
F,f, where K = I, I I, . . . , V I I I . Then their

difference U corresponds to zero data (F = f = 0), i.e. U is a regular solution of problem (K )(q)
0,0. Hence, the vector

U is a regular (classical) solution to system of homogeneous Eq. (10) in the domain Ω+ satisfying the homogeneous
boundary condition

{P(Dz,n(z))U(z) · U(z)}+ = 0 for z ∈ S. (54)

Taking into account (10), (40) and (54) from the identities (41) and (42) (for U = U′) we obtain∫
Ω+

[
W (0)(u,u) − (β1 p1 + β2 p2) div ū(x)

]
dx = 0, (55)

∫
Ω+

[
k1|∇ p 1|

2
+ 2k3Re (∇ p 1 · ∇ p 2)+ k2|∇ p 2|

2] dx

−

∫
Ω+

[
a1|p 1|

2
+ 2a3Re (p 1 p̄ 2)+ a2|p 2|

2
+ iωdiv u(β1 p̄1 + β2 p̄2)

]
dx = 0,

(56)

where

W (0)(u,u) =
1
3

(3λ1 + 2µ1)|div u|
2

+µ1

⎡⎣1
2

3∑
l, j=1; l ̸= j

⏐⏐⏐⏐∂u j

∂xl
+
∂ul

∂x j

⏐⏐⏐⏐2

+
1
3

3∑
l, j=1

⏐⏐⏐⏐∂ul

∂xl
−
∂u j

∂x j

⏐⏐⏐⏐2
⎤⎦ . (57)

Hence, on the basis of (57) the imaginary part of (55) has the following form

ω

∫
Ω+

W (1)(u,u)dx + Im
∫
Ω+

(β1 p1 + β2 p2) div ū dx = 0. (58)

where

W (1)(u,u) =
1
3

(3λ∗
+ 2µ∗)|div u|

2

+µ∗

⎡⎣1
2

3∑
l, j=1; l ̸= j

⏐⏐⏐⏐∂u j

∂xl
+
∂ul

∂x j

⏐⏐⏐⏐2

+
1
3

3∑
l, j=1

⏐⏐⏐⏐∂ul

∂xl
−
∂u j

∂x j

⏐⏐⏐⏐2
⎤⎦ .
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By conditions (38) and (39) it follows that

W (1)(u,u) ≥ 0. (59)

On the other hand, by virtue of (38) the real part of (56) can be written as∫
Ω+

[
k1|∇ p 1|

2
+ 2k3Re (∇ p 1 · ∇ p 2)+ k2|∇ p 2|

2
+ γ |p1 − p2|

2] dx

+ωIm
∫
Ω+

div u(β1 p̄1 + β2 p̄2)dx = 0.
(60)

Taking into account the identity

Im
∫
Ω+

div u(β1 p̄1 + β2 p̄2)dx = −Im
∫
Ω+

(β1 p1 + β2 p2) div ū dx

from (58) and (60) we have

ω2
∫
Ω+

W (1)(u,u)dx

+

∫
Ω+

[
k1|∇ p 1|

2
+ 2k3Re (∇ p 1 · ∇ p 2)+ k2|∇ p 2|

2
+ γ |p1 − p2|

2] dx = 0.
(61)

Obviously, on the basis of (38), (39) and (59) from (61) we get

W (1)(u,u) = 0, p1(x) = p′

1 = const, p2(x) = p′

2 = const (62)

for x ∈ Ω+. As in the classical theory of elasticity (see Kupradze et al. [34]) the first equation of (62) implies (52) and
div u(x) = 0. By virtue of (62) the second and third equations of (9) have the following form

a1 p′

1 + a3 p′

2 = 0, a3 p′

1 + a2 p′

2 = 0. (63)

On account of (38) we have a1a2 − a2
3 ̸= 0 and the system (63) implies (53). Hence, theorem is proved for

K = I I, V I, V I I, V I I I .
In addition, if K = I, I I I, I V, V , then on the basis of homogeneous boundary condition {U(z)}+ = 0 from (52)

it follows that U(x) ≡ 0. Hence, U(x) ≡ 0 for x ∈ Ω+. □

Theorem 13. If the conditions (38) and (39) are satisfied, then the internal BVP (K )(s)
F,f admits at most one regular

solution, where K = I, I I, . . . , V I I I .

Proof. Suppose that there are two regular solutions of problem (K )(s)
F,f, where K = I, I I, . . . , V I I I . Then their

difference U corresponds to zero data (F = f = 0), i.e. U is a regular solution of problem (K )(s)
0,0. Hence, the vector U is

a regular (classical) solution to system of homogeneous equations (11) in the domain Ω+ satisfying the homogeneous
boundary condition (54).

Taking into account (11), (40) and (54) from the identities (41) and (42) (for U = U′) we obtain (56) and∫
Ω+

[
W (0)(u,u) − ρω2

|u|
2
− (β1 p1 + β2 p2) div ū(x)

]
dx = 0, (64)

where W (0)(u,u) is given by (57). Quite similarly, from (56) and (64) we have (52) and (53). It is easy to see that (52)
implies W (0)(u,u) ≡ 0 and from (64) we get U(x) ≡ 0 for x ∈ Ω+. □

As in the classical theory of elasticity (see, Knops and Payne [38]) we can prove the uniqueness of regular solutions
of the problems (K )(q)

F,f and (K )(s)
F,f under weaker conditions than (39), where K = I, I I I, I V, V . We have the

following

Theorem 14. If the conditions (38) and λ∗
+ 2µ∗ > 0 are satisfied, then the internal BVP (K )(r )

F,f admits at most one
regular solution, where K = I, I I I, I V, V and r = q, s.
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6. Concluding remarks

1. In this paper the following results are obtained:
(i) the fundamental solutions of the systems of equations of quasi-static and steady vibrations in the linear theory of
viscoelasticity for Kelvin–Voigt materials with double porosity are constructed by elementary functions;
(ii) Green’s formulae and the integral representation of regular solution in the considered theory are established;
(iii) the uniqueness theorems for regular solutions of the internal boundary value problems of quasi-static and steady
vibrations are proved.

2. On the basis of Theorems 1 to 14 are possible:
(i) to construct the surface (single-layer and double-layer) and volume potentials and to establish their basic properties;
(ii) to prove the existence theorems for the boundary value problems of quasi-statics and steady vibrations in the linear
theory of viscoelasticity for Kelvin–Voigt materials with double porosity by means of the potential method and the
theory of singular integral equations.

3. An extensive review of the works on the potential method in the classical theory of elasticity is given in the
book [37] and the review paper [39].
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