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ON (CO)HOMOLOGICAL PROPERTIES OF REMAINDERS OF STONE-ČECH

COMPACTIFICATIONS

V. BALADZE

Abstract. In the paper are defined the Čech border homology and cohomology groups of closed

pairs of normal spaces and showed that they give intrinsic characterizations of Čech (co)homology

groups based on finite open coverings, cohomological coefficients of cyclicity, small and large coho-
mological dimensions of remainders of Stone-Čech compactifications of metrizable spaces.

Introduction

The investigation and discussion presented in this paper are centered around the following problem:
Find necessary and sufficient conditions under which a space of given class has a compactification

whose remainder has the given topological property (cf. [35], Problem I, p. 332, and Problem II, p.
334).

This problem for different topological invariants and properties was studied by several authors
(see [1–3,5–8,11–14,19–25,27,30–36]).

The present paper is motivated by this general problem. Specifically, we study this problem for
the properties: Čech (co)homology groups based on finite open covers, cohomological coefficients of
cyclicity and cohomological dimensions of remainders of Stone-Čech compactifications of metrizable
spaces are given groups and given numbers, respectively.

In the paper we define the Čech type covariant and contravariant functors which coefficients in an
abelian group G,

Ȟ∞n (−,−;G) : N 2
p → A b

and

Ĥn
∞(−,−;G) : N 2

p → A b,

from the category N 2
p of closed pairs of normal spaces and proper maps to the category A b of abelian

groups and homomorphisms. The construction of these functors is based on all border open covers of
pairs (X,A) ∈ ob(N 2

p ) (see Definition 1.1 and Definition 1.2).

One of our main results of the paper is the following theorem (see Theorem 2.1). Let M 2
p be the

category of closed pairs of metrizable spaces and proper maps. For each closed pair (X,A) ∈ ob(M 2
p ),

one has

Ȟf
n(βX \X,βA \A;G) = Ȟ∞n (X,A;G)

and

Ĥn
f (βX \X,βA \A;G) = Ĥn

∞(X,A;G),

where Ȟf
n(βX \X,βA\A;G) and Ĥn

f (βX \X,βA\A;G) are Čech homology and cohomology groups

based on all finite open covers of (βX \X,βA \A), respectively (see [17, Ch. IX, p. 237]).
We also investigate the border cohomological coefficient of cyclicity η∞G , border small and large co-

homological dimensions df∞(X;G) and Df
∞(X;G) and prove the following relations (see Theorem 2.3,

2010 Mathematics Subject Classification. 55N05, 55M10.

Key words and phrases. Čech homology; Čech cohomology; Stone-Čech compactification; Remainder; Cohomological
dimension; Coefficient of cyclicity.
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Theorem 3.2 and Theorem 3.6):

η∞G (X,A) = ηG(βX \X,βA \A),

df∞(X;G) = df (βX \X;G),

Df
∞(X;G) = Df (βX \X;G),

where ηG(βX\X,βA\A), df (βX\X;G) andDf (βX\X;G) are well known cohomological coefficient of
cyclicity [10,29], small cohomological dimension and large cohomological dimension [28] of remainders
(βX \X,βA \A) and βX \X, respectively.

Without any further reference we will use definitions and results from the monographs General
Topology [18], Algebraic Topology [17] and Dimension Theory [28].

1. On Čech Border (Co)homology Groups

In this section we give an outline of a generalization of Čech homology theory by replacing the set
of all finite open coverings in the definition of Čech (co)homology group (Ĥn

f (X,A;G)) Ȟf
n(X,A;G)

(see [17, Ch. IX, p. 237]) by a set of all finite open families with compact enclosures. For this aim
we give the following definitions.

An indexed family of subsets of set X is a function α from an indexed set Vα to the set 2X of
subsets of X. The image α(v) of index v ∈ Vα is denoted by αv. Thus the indexed family α is the
family α = {αv}v∈Vα . If |Vα| < ℵ0, then we say that α family is a finite family.

Let V
′

α be a subset of set Vα. A family {αv}v∈V ′α is called a subfamily of family {αv}v∈Vα .

By α = {αv}v∈(Vα,V
′
α) we denote the family consisting of family {αv}v∈Vα and its subfamily

{αv}v∈V ′α .

Definition 1.1. (see [33]). A finite family α = {αv}v∈Vα of open subsets of normal space X is called
a border cover of X if its enclosure Kα = X \

⋃
v∈Vα

αv is a compact subset of X.

Definition 1.2. (cf. [33]). A finite open family α = {αv}v∈(Vα,V Aα ) is called a border cover of closed

pair (X,A) ∈ N 2 if there exists a compact subset Kα of X such that X \ Kα =
⋃

v∈Vα
αv and

A \Kα ⊆
⋃

v∈V Aα
αv.

The set of all border covers of (X,A) is denoted by cov∞(X,A). Let KA
α = Kα ∩ A. Then the

family {αv ∩A}v∈V Aα is a border cover of subspace A.

Definition 1.3. Let α, β ∈ cov∞(X,A) be two border covers of (X,A) with indexing pairs (Vα, V
A
α )

and (Vβ , V
A
β ), respectively. We say that the border cover β is a refinement of border cover α if there

exists a refinement projection function p : (Vβ , V
A
β ) → (Vα, V

A
α ) such that for each index v ∈ Vβ

(v ∈ V Aβ ) βv ⊂ αp(v).

It is clear that cov∞(X,A) becomes a directed set with the relation α ≤ β whenever β is a refinement
of α.

Note that for each α ∈ cov∞(X,A), α ≤ α, and if for each α, β, γ ∈ cov∞(X,A), α ≤ β and β ≤ γ,
then α ≤ γ.

Let α, β ∈ cov∞(X,A) be two border covers with indexing pairs (Vα, V
A
α ) and (Vβ , V

A
β ), respectively.

Consider a family γ = {γv}v∈(Vγ ,V Aγ ), where Vγ = Vα × Vβ and V Aγ = V Aα × V Aβ . Let v = (v1, v2),

where v1 ∈ Vα, v2 ∈ Vβ . Assume that γv = αv1 ∩ βv2 . The family γ = {γv}v∈(Vγ ,V Aγ ) is a border cover

of (X,A) and γ ≥ α, β.
For each border cover α ∈ cov∞(X,A) with indexing pair (Vα, V

A
α ), by (Xα, Aα) denote the nerve

α, where Aα is the subcomplex of simplexes s of complex Xα with vertices of V Aα such that Carα(s)∩
A 6= ∅, where Carα(s) is the carrier of simplex s (see [17, pp. 234]). The pair (Xα, Aα) is a simplicial
pair. Moreover, any two refinement projection functions p, q : β → α induce contiguous simplicial
maps of simplicial pairs pβα, q

β
α : (Xβ , Aβ)→ (Xα, Aα) (see [17, pp. 234–235]).



ON (CO)HOMOLOGICAL PROPERTIES OF REMAINDERS OF STONE-ČECH COMPACTIFICATIONS 3

Using the construction of formal homology theory of simplicial complexes [17, Ch. VI] we can define
the unique homomorphisms

pβα∗ : Hn(Xβ , Aβ : G)→ Hn(Xα, Aα;G)

and

pβ∗α : Hn(Xα, Aα : G)→ Hn(Xβ , Aβ ;G),

where G is any abelian coefficient group.
Note that pαα∗ = 1Hn(Xα,Aα:G) and pα∗α = 1Hn(Xα,Aα:G). If γ ≥ β ≥ α than

pγα∗ = pβα∗ · p
γ
β∗

and

pγ∗α = pγ∗β · p
β∗
α .

Thus, the families

{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}
and

{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}
form inverse and direct systems of groups.

The inverse and direct limit groups of above defined inverse and direct systems are denoted by
symbols

Ȟ∞n (X,A;G) = lim
←−
{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}

and

Ĥn
∞(X,A;G) = lim

−→
{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}

and called n-dimensional Čech border homology group and n-dimensional Čech border cohomology
group of pair (X,A) with coefficients in abelian group G, respectively.

For a pair (X,A) ∈ ob(N 2
p ) and a proper map f : (X,A)→ (Y,B) of pairs, the induced homomor-

phisms

f∞∗ : Ȟ∞n (X,A;G)→ Ȟ∞n (Y,B;G)

and

f∗∞ : Ĥn
∞(X,A;G)→ Ĥn

∞(Y,B;G),

and the boundary and coboundary homomorphisms

∂∞n : Ȟ∞n (X,A;G)→ Ȟ∞n−1(A;G)

and

δn∞ : Ĥn−1
∞ (A;G)→ Ĥn

∞(X,A;G)

are defined. For details of these definitions, see Eilenberg and Steenrod [17].
We have the following theorems.

Theorem 1.4. There exist the covariant and contravariant functors

Ȟ∞∗ (−,−;G) : N 2
p → A b

and

Ĥ∗∞(−,−;G) : N 2
p → A b

given by formulas

Ȟ∞∗ (−,−;G)(X,A) = Ȟ∞∗ (X,A;G), (X,A) ∈ ob(N 2
p )

Ȟ∞∗ (−,−;G)(f) = f∞∗ , f ∈ MorN 2
p

((X,A), (Y,B))

and

Ĥ∗∞(−,−;G)(X,A) = Ĥ∗∞(X,A;G), (X,A) ∈ ob(N 2
p )

Ĥ∗∞(−,−;G)(f) = f∗∞, f ∈ MorN 2
p

((X,A), (Y,B)).
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Theorem 1.5. Let f : (X,A)→ (Y,B) be a proper map. Then hold the following equalities

(f|A)∞∗ · ∂∞n = ∂∞n · f∞∗
and

δn−1
∞ · (f|A)∗∞ = f∗∞ · δn−1

∞ .

Theorem 1.6. Let (X,A) ∈ ob(N 2
p ) and let i : A → X and j : X → (X,A) be the inclusion maps.

Then the Čech border cohomology sequence

· · · // Ȟn−1
∞ (A;G)

δn−1
∞ // Ȟn

∞(X,A;G)
j∗∞ // Ȟn

∞(X;G)
i∗∞ // Ȟn

∞(A;G) // · · ·

is exact while the Čech border homology sequence

· · · Ĥ∞n−1(A;G)oo Ĥ∞n (X,A;G)
∂∞noo Ĥ∞n (X;G)

j∞∗oo Ĥ∞n (A;G)
i∞∗oo · · ·oo

is partially exact.

Theorem 1.7. Let (X,A) ∈ ob(N 2
p ) and G be an abelian group. If U is open in X and Ū ⊂ intA,

then the inclusion map i : (X \ U,A \ U)→ (X,A) induces isomorphisms

i∞∗ : Ȟ∞n (X \ U,A \ U)→ Ȟ∞n (X,A;G)

and

j∗∞ : Ĥn
∞(X,A;G)→ Ĥn

∞(X \ U,A \ U)

Theorem 1.8. If X is a compact space, then for each n 6= 0,

Ȟ∞n (X;G) = 0 = Ȟn
∞(X;G)

and

Ĥ∞0 (X;G) = G = Ĥ0
∞(X;G).

Theorem 1.9. Let (X,A,B) be a triple of normal space X and its closed subsets A and B with
B ⊂ A. Then the Čech border homology sequence

· · · Ȟ∞n−1(A,B;G)oo Ȟ∞n (X,A;G)
∂̄∞noo Ȟ∞n (X,B;G)

j̄∞∗oo Ȟ∞n (A,B;G)
ī∞∗oo · · ·oo

and the Čech border cohomology sequence

· · · // Ĥn−1
∞ (A,B;G)

δ̄n∞ // Ĥn
∞(X,A;G)

j̄∗∞ // Ĥn
∞(X,B;G)

ī∗∞ // Ĥn
∞(A,B;G) // · · ·

are partially exact and exact, respectively. Here ∂̄∞n = j
′∞
n−1 ·∂∞n , δ̄n∞ = δn∞ ·j

′n−1
∞ and j

′∞
n−1, j

′n−1
∞ , j̄∗∞,

j̄∞∗ , and ī∗∞, ī∞∗ are the homomorphisms induced by the inclusion maps j
′

: A→ (A,B), ī : (A,B)→
(X,B), j̄ : (X,B)→ (X,A).

The proofs of formulated theorems are similar to the proofs of corresponding theorems of Eilenberg
and Steenrod (see [17], Ch. IX, Theorem 3.4, Theorem 4.3, Theorem 4.4, Theorem 5.1, Theorem 6.1,
Theorem 7.6) and hence they will be omitted.

2. On Čech (Co)homology Groups and Coefficients of Cyclicity of Remainders of
Stone-Čech Compactifications

Now we are mainly interested in the following problem: how to characterize the Čech homology
and cohomology groups, and coefficients of cyclicity of remainders of Stone-Čech compactifications of
metrizable spaces.

Our main result about the connection between Čech (co)homology groups of remainders and Čech
border (co)homology groups of spaces is the following theorem:
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Theorem 2.1. Let (X,A) ∈ ob(M 2
p ) and let (βX, βA) be the pair of Stone-Čech compactifications of

X and A. Then
Ȟf
n(βX \X,βA \A;G) = Ȟ∞n (X,A;G)

and
Ĥn
f (βX \X,βA \A;G) = Ĥn

∞(X,A;G).

Proof. Let α = {αv}v∈(Vα,V
βA\A
α )

and α
′

= {α′w}w∈(W
α
′ ,W

βA\A
α
′ )

be the closed covers of pairs

(βX\X,βA\A) and α ≥ α′ . By Lemma 4 of [33] there exist open swellings β1 = {β1
v}v∈(Vα,V

βA\A
α )

and

β
′

= {β′w}w∈(W
α
′ ,W

βA\A
α
′ )

of α and α
′

in βX, respectively. Assume that αv ⊆ α
′

wk
, k = 1, 2, . . . ,mv.

Let

βv = β1
v ∩

( mv⋂
k=1

β
′

wk

)
, v ∈ Vα.

Note that αv ⊂ βv ⊂ β1
v for each v ∈ Vα. It is clear that β = {βv}v∈(Vα,V Aα ) is a swelling of

α = {αv}v∈(Vα,V
βA\A
α )

and β ≥ β′ .
The swelling in βX of closed cover α of (βX \X,βA \ A) is denoted by s(α). Let S be the set of

all swellings of such kind.
Now define an order ≥′ in S. By definition,

s(α
′
) ≥

′
s(α)⇔ s(α

′
) ≥ s(α) ∧ α

′
≥ α.

It is clear that S is directed by ≥′ . Let ((βX \X)s(α), (βA \A)s(α)) be the nerve of s(α) ∈ S and

ps(α)s(α′ ) be the projection simplicial map induced by the refinement α
′ ≥ α. Consider an inverse

system

{Hn((βX \X)s(α), (βA \A)s(α);G), p
s(α
′
)

s(α)∗, S}
and a direct system

{Hn((βX \X)s(α), (βA \A)s(α);G), p
s(α
′
)∗

s(α) , S}.
Let ϕ : S → covcl

f (βX \ X, βA \ A) be the function in the set of closed finite covers of pair
(βX \X,βA \A) given by formula

ϕ(s(α)) = α, s(α) ∈ S.
Note that ϕ is an increasing function and

ϕ(S) = covcl
f (βX \X, βA \A).

For each index s(α) ∈ S, we have

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn((βX \X)α, (βA \A)α;G)

and
Hn((βX \X)s(α), (βA \A)s(α);G) = Hn((βX \X)α, (βA \A)α;G).

It is known that for normal spaces the Čech (co)homology groups based on finite open covers and
on finite closed covers are isomorphic. By Theorems 3.14 and 4.13 of [17, Ch. VIII] we have

Ȟf
n(βX \X,βA \A;G) ≈ lim

←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (2.1)

and

Ĥn
f (βX \X,βA \A;G) ≈ lim

−→
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}. (2.2)

For each swelling s(α) = {s(α)v}v∈(Vα,V
βA\A
α )

∈ S, the family

s(α) ∧X = {s(α)v ∩X}v∈(Vα,V
βA\A
α )

is a border cover of (X,A).
Let ψ : S → cov∞(X,A) be the function defined by formula

ψ(s(α)) = s(α) ∧X, s(α) ∈ S.
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The function ψ increases and ψ(S) is a cofinal subset of cov∞(X,A). Note that the correspondence

((βX \X)s(α), (βA \A)s(α))→ (Xs(α)∧X , As(α)∧X) : s(α)v → s(α)v ∩X, v ∈ Vα
induces an isomorphism of pairs of simplicial complexes. Thus, for each s(α) ∈ S, we have the
isomorphisms

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G)

and

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G).

By Theorems 3.15 and 4.13 of [17, Ch.VIII], we have

Ȟ∞n (X,A;G) = lim
←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (2.3)

and

Ĥn
∞(X,A;G) = lim

−→
{Hn((βX\X,βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}. (2.4)

From (2.1), (2.2), (2.3) and (2.4) it follows that

Ȟ∞n (X,A;G) = Ȟf
n(βX \X,βA \A;G)

and

Ĥn
∞(X,A;G) = Ĥn

f (βX \X,βA \A;G). �

The cohomological coefficient of cyclicity ηG(X,A) of pair (X,A) was defined and investigated by
S. Novak [29] and M. F. Bokstein [10].

Now give the following definition and result.

Definition 2.2. Let G be an abelian group and n nonnegative integer. A border cohomological
coefficient of cyclicity of pair (X,A) ∈ ob(M 2

p ) with respect to G denoted by η∞G (X,A) is n, if

Ĥm
∞(X,A;G) = 0 for all m > n and Ĥn

∞(X,A;G) 6= 0.

Finally, η∞G (X,A) = +∞ if for every m there is n ≥ m with Ĥn
∞(X,A;G) 6= 0.

Theorem 2.3. For each pair (X,A) ∈ ob(M 2
p ),

η∞G (X,A) = ηG(βX \X,βA \A).

Proof. This is an immediate consequence of Theorem 2.1. Indeed, let ηG(βX \X,βA \A) = n. Then

for each m > n, Ĥm
f (βX \X,βA \A;G) = 0 and Ĥn

f (βX \X,βA \A;G) 6= 0. From the isomorphism

Ĥk
f (βX \X,βA \A;G) = Ĥk

f (X,A;G)

it follows that Ĥm
∞(X,A;G) = 0 for each m > n, and Ĥn

∞(X,A;G) 6= 0. Thus, η∞G (X,A) = n =
ηG(βX \X,βA \A). �

3. On Cohomological Dimensions of Remainders of Stone-Čech Compactifications

The theory of cohomological dimension has become an important branch of dimension theory since
A. Dranishnikov solved P. S. Alexandrov’s problem [16] and he and other authors developed the theory
of extension dimension.

Our next aim is to study some questions of theory of cohomological dimension. In particular, we in
this section give a description of cohomological dimension of remainder of Stone-Čech compactification
of metrizable space.

Following Y. Kodama (see the appendix of [28]) and T. Miyata [26] we give the following definition.

Definition 3.1. The border small cohomological dimension df∞(X;G) of normal space X with respect
to group G is defined to be the smallest integer n such that, whenever m ≥ n and A is closed in X, the
homomorphism i∗A,∞ : Ĥm

∞(X;G)→ Ĥm
∞(A;G) induced by the inclusion i : A→ X is an epimorphism.

The border small cohomological dimension of X with coefficient group G is a function df∞ : N →
N ∪ {0,+∞} : X → n, where df∞(X;G) = n and N is the set of all positive integers.



ON (CO)HOMOLOGICAL PROPERTIES OF REMAINDERS OF STONE-ČECH COMPACTIFICATIONS 7

Theorem 3.2. Let X be a metrizable space. Then the following equality

df∞(X;G) = df (βX \X;G)

holds, where df (βX \X;G) is the small cohomological dimension of βX \X (see [28], p. 199).

Proof. Let A be a closed subset of X. Assume that df (βX \ X;G) = n. Then for each m ≥ n

the homomorphism i∗βX\X,∞ : Ĥm
f (βX \ X;G) → Ĥm

f (βA \ A;G) is an epimorphim. Consider the

following commutative diagram

Ĥm
∞(X;G)

i∗A,∞
��

≈ Ĥm
f (βX \X;G)

i∗βA\A

��
Ĥm
∞(A;G) ≈ Ĥm

f (βA \A;G)

(3.1)

It is clear that the homomorphim

i∗A,∞ : Ĥm
f (X;G)→ Ĥm

f (A;G)

also is an epimorphim for each m ≥ n. Thus,

df∞(X;G) ≤ n = df (βX \X;G). (3.2)

Let df∞(X;G) = n. To see the reverse inequality, let B be a closed subset of βX \X and let m ≥ n.
Consider an open in βX \X neighbourhood U of B. There exists an open neighbourhood V of B

in βX \X such that V̄ βX\X ⊂ U . By Lemma 5 of [33] we can find an open set W in βX such that
W ∩ (βX \X) = V and W̄ βX ∩ (βX \X) ⊆ U . Let A = W̄ βX ∩X. It is clear that βA = ĀβX .

We have

W̄ βX = W ∩XβX ⊂ W̄ βX ∩X
βX
⊂ W̄ βX

βX
= W̄ βX .

Consequently, βA = W̄ βX ∩X
βX

= W̄ βX . This shows that

B ⊂ βA ∩ (βX \X) ⊂ U.
Hence, we have

B ⊂ βA \A ⊂ U.
Thus, for each closed set B of βX \ X and its open neighbourhood U in βX \ X there exists a

closed subset A in X such that B ⊂ βA \A ⊂ U .
Let a ∈ Hn

f (B;G). There is a closed finite cover α of B such that an element aα ∈ Hm(N(α);G)
represents the element a.

Using Lemma 4 of [33] we can find the swellings α̃ and ˜̃α of α in B and βX \X, respectively, such

that ˜̃α|B = α̃. Let U be the union of elements of ˜̃α. There is a closed set A of X with B ⊂ βA\A ⊂ U .

The nerves N(α), N(α̃) and N( ˜̃α|βA\A) are isomorphic. We can assume that

Hn(N(α);G) = Hn(N(α̃);G) = Hn(N( ˜̃α|βA\A);G).

Hence, the element aα also belongs to the group Hn(N( ˜̃α|βA\A);G). Consequently, it represents some

element b of Ĥn(βA \A;G).

The inclusion iA : A→ X induces an epimorphism i∗A,∞ : Ĥm
∞(X;G)→ Ĥm(A;G). From diagram

(3.1) it follows that the homomorphism i∗βA\A : Ĥm(βX \X;G)→ Ĥm(βA\A;G) is an epimorphism.

Consequently, there is an element c ∈ Ĥm(βX \X;G) such that i∗βA\A(c) = b. The homomorphism

j∗B : Ĥm(βA \ A;G) → Ȟm(B;G) induced by the inclusion jB : B → βA \ A satisfies the condition
j∗B(b) = a. From equality iβA\A · jB = iB it follows that i∗B(c) = a.

Thus the inclusion iB : B → βX\X also induces an epimorphism i∗B : Ȟm(βX\X;G)→ Ȟm(B;G).
Hence, we obtaine

df (βX \X;G) ≤ n = df∞(X;G). (3.3)

From the inequalities (3.2) and (3.3) it follows that

df∞(X;G) = df (βX \X;G). �
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Theorem 3.3. Let A be a closed subspace of a normal space X. Then

df∞(A;G) ≤ df∞(X;G).

Proof. Let B be an arbitrary closed subset of A and jB : B → A, iA : A → X and kB : B → X
be the inclusion maps. Note that kB = iA · jB . The induced homomorphisms k∗B,∞ : Ĥn

∞(X;G) →
Ĥn
∞(B;G), i∗A,∞ : Ĥn

∞(X;G) → Ĥn
∞(A;G) and j∗B,∞ : Ĥn

∞(A;G) → Ĥn
∞(B;G) satisfy the equality

k∗B,∞ = j∗B,∞ · i∗A,∞.

Let n = d∞f (X;G). For each m ≥ n, the homomorphisms k∗B,∞ : Ĥm
∞(X;G) → Ĥm

∞(B;G) and

i∗A,∞ : Ĥm
∞(X;G) → Ĥm

∞(A;G) are epimorphisms. Hence, the homomorphism j∗B,∞ : Ĥm
∞(A;G) →

Ĥm
∞(B;G) is also an ephimorphism for each m ≥ n. Thus, d∞f (A;G) ≤ n = d∞f (X;G). �

Corollary 3.4. For each closed subspace A of a metrizable space X,

df∞(A;G) ≤ df (βX \X;G).

Definition 3.5. The border large cohomological dimension Df
∞(X;G) of normal space X with respect

to group G is defined to be the largest integer n such that Ĥn
∞(X,A;G) 6= 0 for some closed set A

of X.
The border large cohomological dimension of X with coefficient group G is a function Df

∞ : N →
N ∪ {0,+∞} : X → n, where Df

∞(X;G) = n and N is the set of all positive integers.

Theorem 3.6. For each metrizable space X, one has

Df
∞(X;G) = Df (βX \X;G),

where Df (βX \X;G) is the large cohomological dimension of βX \X (see [28], p. 199).

Proof. Let Df (βX \X;G) = n. Consider an arbitrary closed subspace A of X. The remainder βA\A
is a closed subset of βX \X. By the assumption, we have Ĥm(βX \X,βA\A;G) = 0 for each m > n.

Theorem 2.1 implies that Ĥm
∞(X,A;G) = 0 for each m > n and A ⊂ X. Thus,

Df
∞(X;G) ≤ n = Df (βX \X;G). (3.4)

Let Df
∞(X;G) = n. Assume that Df (βX \X;G) = n1 > n. Then there is a closed set B in βX \X

such that Ĥn1(βX \X,B;G) 6= 0. Using Lemma 4 of [33] and the proof of Theorem 3.2 we can show

that there is a closed set A of X such that B ⊂ βA\A, and Ĥn1(βX \X,βA\A;G) 6= 0. By Theorem

2.1 Ĥn1
∞ (X,A;G) 6= 0. But it is not possible because D∞f (X;G) = n. Therefore, n1 ≤ n. Thus,

Df (βX \X;G) ≤ n = Df
∞(X;G). (3.5)

The inequalities (3.4) and (3.5) imply

Df
∞(X;G) = Df (βX \X;G). �

Theorem 3.7. If A is a closed subset of normal space X, then

Df
∞(A;G) ≤ Df

∞(X;G).

Proof. By Theorem 1.9, for each closed set B of A, there is the exact Čech border cohomological
sequence

· · · // Ĥm−1
∞ (A;G)

δ̄m∞ // Ĥm
∞(X,A;G)

j̄∗∞ // Ĥm
∞(X,B;G)

ī∗∞ // Ĥm
∞(A,B;G) // · · ·

It is clear that, if m > Df
∞(X;G), then Ĥm

∞(X,A;G) = Ĥm
∞(X,B;G) = 0. Consequently,

Ĥm
∞(A,B;G) = 0. Thus, we have

Df
∞(A;G) ≤ Df

∞(X;G). �

Corollary 3.8. For each closed subspace A of metrizable space X, one has

Df
∞(A;G) ≤ Df (βX \X;G).
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Theorem 3.9. If X is a normal space then

df∞(X;G) ≤ Df
∞(X;G).

Proof. Let A be a closed subset of normal space X. Consider the exact Čech border cohomological
sequence of pair (X,A)

· · · // Ĥm−1
∞ (A,B;G)

δm∞ // Ĥm
∞(X,A;G)

j∗∞ // Ĥm
∞(X;G)

i∗∞ // Ĥm
∞(A;G) // · · ·

Let m > Df
∞(X;G). Note that j∗∞ : Ĥm−1

∞ (X;G)→ Ĥm−1
∞ (A;G) is an epimorphism. Hence,

df∞(X;G) ≤ Df
∞(X;G). �

Corollary 3.10. For each metrizable space X, one has

df (βX \X;G) ≤ Df
∞(X;G)

and
df∞(X;G) ≤ Df (βX \X;G).

Remark 3.11. The results of this paper also hold for spaces satisfying the compact axiom of count-
ability. Recall that a space X satisfies the compact axiom of countability if for each compact subset
B ⊂ X there exists a compact subset B

′ ⊂ X such that B ⊂ B
′

and B
′

has a countable or finite
fundamental systems of neighbourhoods (see Definition 4 of [33], p.143). A space X is complete in
the sense of Čech if and only if it is Gδ type set in some compact extension. Each locally metrizable
spaces, complete in the seance of Čech spaces [15] and locally compact spaces satisfy the compact
axiom of countability.
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RINGS WHOSE ELEMENTS ARE LINEAR EXPRESSIONS OF THREE

COMMUTING IDEMPOTENTS

P. DANCHEV

Abstract. We classify up to isomorphism those rings in which all elements are linear expressions
over the ring of integers Z of at most three commuting idempotents. Our results substantially

improve on recent publications by the author in Albanian J. Math. (2018), Gulf J. Math. (2018),

Mat. Stud. (2018), Bull. Iran. Math. Soc. (2018) and Lobachev. J. Math. (2019) as well as on
publications due to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988), Ying et al. in Can.

Math. Bull. (2016) and Tang et al. in Lin. & Multilin. Algebra (2019).

1. Introduction and Background

Throughout the text of the paper, all rings R are assumed to be associative, containing the identity
element 1 which differs from the zero element 0 of R. The standard terminology and notations are
mainly in close agreement with [8]. For instance, U(R) denotes the group of units in R, Id(R) the set
of idempotents in R, Nil(R) the set of nilpotents in R and J(R) the Jacobson radical of R. As usual,
Z stands for the ring of integers, and Zk

∼= Z/kZ is its quotient modulo the principal ideal (k) = kZ,
where k ∈ N is the set of naturals.

About the specific notions, they will be explained below in detail.
The aim of the present work is to describe the isomorphic structure of the following class of rings.

Definition 1.1. We shall say that the ring R is from the class R3 if, for any r ∈ R, there exist
commuting each to other e1, e2, e3 ∈ Id(R) such that r = e1 + e2 − e3 or r = e1 − e2 − e3.

It is worthwhile to mention that by substituting r → −r and an eventual re-numeration of the
idempotents, the first equality will yield the second equality, and reversible.

Obvious examples of such rings are the rings Zk, where k = 2, 3, 4, 5, 6. Contrasting with that, the
ring Z7 need not be so.

The most important principally known achievements concerning the subject are as follows: Clas-
sically, a ring is said to be boolean if each its element is an idempotent – such a ring is known to be
a subdirect product of a family of copies of the two element field F2. A very successful attempt to
generalize that concept was made in [7] to the rings whose elements are the sum of two commuting
idempotents – in fact, these rings are known to be commutative being a subdirect product of a family
of copies of the two and three element fields F2 and F3, respectively. In particular, if every element of
a ring is an idempotent or minus an idempotent, then this ring is either boolean, or F3, or the direct
product of two such rings.

Further expansions of these notions, in terms of linear expressions over Z of at most three commuting
idempotents, are subsequently given below as follows:
• ∀r ∈ R, r = e1 + e2 or r = e1 − e2 for some two commuting e1, e2 ∈ Id(R) (see [10]).
• ∀r ∈ R, r = e1 + e2 or r = −e1 − e2 for some two commuting e1, e2 ∈ Id(R) (see [5]).
• ∀r ∈ R, r = e1 + e2 + e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [4] and [9]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 for some three commuting e1, e2, e3 ∈ Id(R) (see [2]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = e1 − e2 for some three commuting e1, e2, e3 ∈ Id(R) (see [4])
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 − e2 for some three commuting e1, e2, e3 ∈ Id(R) (see [1]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 − e2 − e3 for some three commuting e1, e2, e3 ∈ Id(R)

(see [3]).

2010 Mathematics Subject Classification. 16U99, 16E50, 13B99.
Key words and phrases. Boolean rings; Fields; Idempotents; Linear expressions; Nilpotents.
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• ∀r ∈ R, r = e1 +e2 +e3 or r = e1 +e2−e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [6]).
• ∀r ∈ R, r = e1 +e2 +e3 or r = e1−e2−e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [6]).
Actually, the rings from the last two bullets are rings lying in the classes R1 and R2, respectively.
In all of the aforementioned variations, the ring is of necessity commutative, which suggest us to

state at the end of the article two conjectures which are of some interest and importance.
Our working tactic is somewhat to develop the techniques utilized in [1–6] as well as to build some

new methods inspired by the specification of the ring structure. Especially, we shall careful study the
rings from the class R3, stated above in Definitions 1.1, by characterizing them up to an isomorphism.

2. Main Results

We start here with the following useful technicality.

Proposition 2.1. Any ring R from the class R3 decomposes as R1 ×R2 ×R3, where R1, R2, R3 are
either zero rings or rings belonging to the class R3 such that 4 = 0 in R1, 3 = 0 in R2 and 5 = 0
in R3.

Proof. Let us write 3 = e1 + e2 − e3. Observing that e1 − e3 = e1(1− e3)− e3(1− e1) is a difference
of two orthogonal commuting idempotents, we can assume with no harm in generality that e1e3 = 0.
Moreover, since e3(1− e1) remains an idempotent, we may also assume that e2e3 = 0.

Thus, squaring the equality for 3, one infers that 6 = 2e1e2 + 2e3 which multiplying by e3 gives
that 4e3 = 0. Furthermore, a multiplication of the same equality by e1e2 ensures that 4e1e2 = 0 and,
finally, the multiplication of the same by 2 riches us that 12 = 0.

Writing next 3 = e1−e2−e3, as above demonstrated, we can assume without loss of generality that
e1e2 = e1e3 = 0. Multiplying the equality of 3 by e1 leads to 2e1 = 0. On the other side, squaring the
equality for 3 assures that 12 = 2e2e3 and the multiplication of this with e2e3 forces that 10e2e3 = 0.
Therefore, 12.5 = 60 = 4.3.5 = 0, as wanted.

Consequently, the Chinese Remainder Theorem now applies to conclude that R ∼= R1 × R2 × R3,
where R1, R2, R3 are either zero or rings again from the class R3 with characteristics ≤ 4, 3 and 5,
respectively. �

The following assertion is pivotal, strengthening [1, Proposition 2.2].

Lemma 2.2. Suppose that R is a ring of characteristic 5. Then the following four conditions are
equivalent:

(i) x3 = x or x4 = 1, ∀x ∈ R.
(ii) x3 = −x or x4 = 1, ∀x ∈ R.
(iii) x3 = x or x3 = −x, ∀x ∈ R.
(iv) R is isomorphic to the field Z5.

Proof. (i)⇒ (iii). For an arbitrary y ∈ R satisfying y4 = 1 but y3 6= y, considering the element y2−1,
it must be that (y2 − 1)4 = 1 or (y2 − 1)3 = y2 − 1. In the first case we receive y2 = −1 and thus
y3 = −y, as required, while in the second one we arrive at y2 = 1 and so y3 = y which is against our
initial assumption.

(ii) ⇒ (iii). The same trick as that in the previous implication will work, assuming now that
y3 6= −y.

(iii) ⇐⇒ (iv). Let P be the subring of R generated by 1, and thus note that P ∼= Z5. We claim
that P = R, so we assume in a way of contradiction that there exists b ∈ R \ P . With no loss of
generality, we shall also assume that b3 = b since b3 = −b obviously implies that (2b)3 = 2b as 5 = 0
and b 6∈ P ⇐⇒ 2b 6∈ P .

Let us now (1+b)3 = −(1+b). Hence b = b3 along with 5 = 0 enable us that b2 = 1. This allows us
to conclude that (1 + 2b)3 6= ±(1 + 2b), however. In fact, if (1 + 2b)3 = 1 + 2b, then one deduces that
2b = 3 ∈ P which is manifestly untrue. If now (1 + 2b)3 = −1 − 2b, then one infers that 2b = 2 ∈ P
which is obviously false. That is why, only (1 + b)3 = 1 + b holds. This, in turn, guarantees that
b2 = −b. Moreover, b3 = b is equivalent to (−b)3 = −b as well as b3 = −b to (−b)3 = −(−b) and
thus, by what we have proved so far applied to −b 6∈ P , it follows that −b = b2 = (−b)2 = −(−b) = b.
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Consequently, 2b = 0 = 6b = b ∈ P because 5 = 0, which is the wanted contradiction. We thus
conclude that P = R, as expected.

Conversely, it is trivial that the elements of Z5 = {0, 1, 2, 3, 4 | 5 = 0} are solutions of one of the
equations x3 = x or x3 = −x.

(iv) ⇒ (i), (ii). It is self-evident that all elements of Z5 = {0, 1, 2, 3, 4 | 5 = 0} satisfy one of the
equations x3 = x or x4 = 1 as well as one of x3 = −x or x4 = 1. �

We now come to the following.

Theorem 2.3. A ring R lies in the class R3 if, and only if, it is commutative and R ∼= R1×R2×R3,
where R1, R2, R3 are rings for which

(1) R1 = {0}, or R1/J(R1) is a boolean factor-ring with nil J(R1) = 2 Id(R1) such that 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of a family of copies of the fields Z2 and Z3;
(3) R3 = {0}, or R3

∼= Z5.

Proof. Necessity. Appealing to Proposition 2.1, there is a decomposition R ∼= R1×R2×R3, where the
direct factors R1, R2 and R3 still belong to the class R3. What we need to do is to describe explicitly
these three rings.

Describing R1: Here 4 = 0. Since 2 ∈ J(R1), we elementarily observe that the quotient-ring R1/J(R1)
is of characteristic 2 ring from the class R3. Thus it has to be a boolean ring. What it needs to show is
the equality J(R1) = 2 Id(R1). In fact, given z ∈ J(R1), we write z = e1+e2−e3 with e1e3 = e2e3 = 0,
or z = e1 − e2 − e3 with e1e2 = e1e3 = 0, for some three commuting idempotents e1, e2, e3 in R1.
In the first case, ze3 = −e3 still lies in J(R1), so that e3 = 0. Hence z = e1 + e2 implying that
z(1 − e2) = e1(1 − e2) ∈ J(R1) ∩ Id(R1) = {0} and thus that e1 = e1e2. By a reason of symmetry,
e2 = e1e2 whence e1 = e2 giving up that z = 2e1 ∈ 2 Id(R1), as needed.

In the second case, ze1 = e1 ∈ J(R1) ∩ Id(R1) = {0} and hence z = −e2 − e3 = −(e2 + e3).
Similarly, as in the previous case, z = −2e2 = 2e2 ∈ 2 Id(R1) because 4 = 0, as required.

Describing R2: Here 3 = 0. In fact, by the same token as in the preceding situation for R1, we
have that J(R2) = 2 Id(R2) or J(R2) = −2 Id(R2). If for any j ∈ J(R2) we write j = 2i for some
i ∈ Id(R2), then −j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} whence i = 0 = j. Symmetrically, if j = −2i,
then j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} and hence i = 0 = j, as required. Furthermore, since 3 = 0,
it easily follows that x3 = x for all x ∈ R2 and thus [7] is applicable to get the wanted description
of R2.

Describing R3: Here 5 = 0. For any x ∈ R3 we write that x = e1 + e2 − e3 with e1e3 = e2e3 = 0,
or x = e1 − e2 − e3 with e1e2 = e1e3 = 0. In the first case, squaring the equality for x gives that
x2−x = 2(e1e2+e3) which allows us to deduce that (x2−x)2 = 2(x2−x) since e1e2+e3 is obviously an
idempotent as e1e2 and e3 are orthogonal idempotents. We, therefore, have that x4−2x3−x2+2x = 0.
In the second case, again by squaring the equality for x, one derives that x2 + x = 2(e1 + e2e3) which
enables us that (x2 +x)2 = 2(x2 +x) because e1 + e2e3 is obviously an idempotent as e1 and e2e3 are
orthogonal idempotents. We, consequently, have that x4 + 2x3 − x2 − 2x = 0. One also observes that
by the substitution x→ −x the first equation will imply the second equation, and vice versa.

Furthermore, replacing x → 2x and x → 3x in the equation x4 − 2x3 − x2 + 2x = 0, we derive
that x4 − x3 + x2 − x = 0 and that x4 + x3 + x2 + x = 0, respectively. The same replacements in the
equation x4 + 2x3 − x2 − 2x = 0 lead respectively to x4 + x3 + x2 + x = 0 and x4 − x3 + x2 − x = 0,
which are definitely the same equations in a rotating way, arising from the map x→ −x.

The next four main combinations must be considered:

Combination 1. x4 − x3 + x2 − x = 0 with x4 + x3 + x2 + x = 0 implies that 2x3 = −2x, which
multiplying it by 3 implies that x3 = −x because 5 = 0.

Combination 2. x4 − 2x3 − x2 + 2x = 0 with x4 + x3 + x2 + x = 0 implies that 3x3 + 2x2 − x = 0.

Combination 3. x4 − 2x3 − x2 + 2x = 0 with x4 − x3 + x2 − x = 0 implies that x3 + 2x2 − 3x = 0.

Now, combining 3x3 + 2x2 − x = 0 and x3 + 2x2 − 3x = 0, we get once again that 2x3 = −2x, i.e.,
x3 = −x.
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Similar arguments work for the other initial equation x4 + 2x3 − x2 − 2x = 0 getting also that
x3 = −x which as noticed above arisen from x→ −x.

Combination 4. x4 + 2x3 − x2 − 2x = 0 with x4 − 2x3 − x2 + 2x = 0 implies that 4x3 = 4x, that is,
x3 = x since 5 = 0.

After taking into account these four possibilities, one concludes that it must be x3 = x or x3 = −x
after all. That is why, Lemma 2.2 (iii) finally tells us to obtain the wanted description of R3 as being
isomorphic to Z5.

Concerning the commutativity of the whole ring R, since R2 and R3 are obviously commutative,
what remains to show is that this property holds for R1. This, however, follows by the usage of
[4, Theorem 2.2].
Sufficiency. A direct consultation with [7] informs us that every element of R2 is a sum of two
idempotents. Likewise, as in [1, 4] or [5], each element in R1 is a sum of three idempotents. Since R3

has only five elements, we are, therefore, in a position to exploit the same manipulation as that in the
corresponding results from [1,4] and [5] getting that the direct product R1 ×R2 ×R3 belongs to the
class R3, as expected. �

It will definitely be somewhat interesting to examine now the equalities r = e1 + e2 − e3 and
r = e1− e2− e3 in an arbitrary ring R separately, comparing them with the equation r = e1 + e2 + e3
in R which was independently explored in [4] and [9], respectively. Specifically, the latter rings were
defined in [4] to be members from the class K. Inspired by this, let we define the rings R for which
r = e1 + e2 − e3 to lie in the class K1, and the rings for which r = e1 − e2 − e3 in the class K2.

Proposition 2.4. Any ring R either from the class K1 or K2 decomposes as R1 ×R2, where R1, R2

are rings again from the same ring class such that 2 = 0 in R1 and 3 = 0 in R2.

Proof. Firstly, writing 3 = e1 + e2 − e3, we obtain as in the first part of Proposition 2.1 that 12 =
4.3 = 0, as asked for.

Secondly, writing 2 = e1 − e2 − e3, we may assume as in the second part of Proposition 2.1 that
e1e2 = e1e3 = 0. Thus 2e1 = e1 yields that e1 = 0. Therefore, 2 = −e2 − e3 implies by squaring
that 6 = 2e2e3. As a final step, 2e2e3 = −e2e3 − e2e3, i.e., 4e2e3 = 0 insuring that 12 = 4.3 = 0, as
pursued.

Furthermore, the Chinese Remainder Theorem is applicable to get the desired decomposition. �

So, we now arrive at the following.

Theorem 2.5. A ring R is either from the class K1 or K2 if, and only if, it is commutative and
R ∼= R1 ×R2, where R1, R2 are rings for which

(1) R1 = {0}, or R1/J(R1) is a boolean quotient-ring with nil J(R1) = 2 Id(R1) such that 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of copies of the fields Z2 and Z3.

Proof. Necessity. According to Proposition 2.4, there is a decomposition R ∼= R1 × R2, where the
direct factors R1 and R2 still belong to either of classes K1 or K2. What we need to do is to describe
in an explicit form these two rings.

Describing R1: Here 4 = 0. Since 2 ∈ J(R1), we routinely see that the factor-ring R1/J(R1) is of
characteristic 2 ring from one of the classes K1 or K2. Thus it has to be a boolean ring. What suffices
to prove is the equality J(R1) = 2 Id(R1) which can be handled analogously to the corresponding part
of Theorem 2.3.

Describing R2: Here 3 = 0. We claim that J(R2) = {0}. In fact, as in the preceding case, we
have that J(R2) = 2 Id(R2) or J(R2) = −2 Id(R2). If for any j ∈ J(R2) we write j = 2i for some
i ∈ Id(R2), then −j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} whence i = 0 = j. Symmetrically, if j = −2i,
then j + 3i = i ∈ J(R2)∩ Id(R2) = {0} and hence i = 0 = j, as required. Furthermore, since 3 = 0, it
easily follows that x3 = x for all x ∈ R2 and thus [7] is working to get the wanted description of R2.

The commutativity of the former ring R follows in the same way as in Theorem 2.3 above.
Sufficiency. It follows by adapting the same idea as in the “sufficiency part” of Theorem 2.3. �
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Now, to close all possible variations of equalities which depend on idempotents, we shall say that
the ring R belongs to the class P, provided that for any r from R the equalities r = e1 + e2 − e3 or
r = −e1 − e2 are valid for some commuting idempotents e1, e2, e3 ∈ Id(R). This is tantamount to
r = e1 − e2 − e3 or r = e1 + e2 via the substitution r → −r and re-numerating.

One sees that the direct product Z4×Z5 6∈ P by considering the element (1, 3), where 1 = 1+0−0 =
1 + 1− 1 whereas 3 = −1− 1. Contrastingly, for the element (2, 3) we have 2 = 1 + 1 = −1− 1 and
3 = −1− 1. However, the ring Z4 × Z5 ∈ R3 which shows that these two classes are different.

What is currently offer by us is the following slight enlargement of the preceding Theorem 2.5 and
of results from [2,5] and [10].

Theorem 2.6. The ring R lies in the class P if, and only if, R ∼= R1 ×R2 ×R3, where
(1) R1 = {0}, or R1/J(R1) is a boolean ring such that J(R1) = 2 Id(R1) with 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of a family of copies of the fields Z2 and Z3;
(3) R3 = {0} which must be fulfilled when J(R1) 6= {0}, or R3

∼= Z5.

Proof. Necessity. We claim that 60 = 4.3.5 = 0 in R, and thus the Chinese Remainder Theorem
applies to infer the wanted decomposition of R into R1×R2×R3 with R1, R2, R3 ∈ P such that 4 = 0
in R1, 3 = 0 in R2 and 5 = 0 in R3.

In fact, write 3 = e1 + e2 − e3 with e1e3 = e2e3 = 0. Therefore, 3e3 = −e3 yields that 4e3 = 0.
Also, 3e1e2 = e1e2 + e1e2 gives e1e2 = 0. On the other hand, squaring the equality for 3 forces that
6 = 2(e1e2 + e3) = 2e3. Finally, 6.2 = 4.3 = 0, as expected. Writing now 3 = −e1 − e2, we obtain
3e1e2 = −e1e2−e1e2 amounts to 5e1e2 = 0. The squaring of the equality for 3 ensures that 12 = 2e1e2
whence 12.5 = 4.3.5 = 0, as promised.

Furthermore, describing separately these three direct factors, one has that:

About R1: Here 4 = 0. Since 2 ∈ J(R1), it is self-evident that the quotient R1/J(R1) is a ring of
characteristic 2 also belonging to the class P, and thus it is necessarily a boolean ring. As for the
equality concerning J(R1), given z ∈ J(R1), we may write that z = e1+e2−e3 or that z = −e1−e2 for
some three commuting idempotents e1, e2, e3 ∈ R1. In the first case, as above demonstrated, we may
assume with no harm of generality that e1.e3 = e2.e3 = 0. Hence −ze3 = e3 ∈ J(R1)∩ Id(R1) = {0},
that is, e3 = 0. Thus the record z = e1+e2 riches us that z(1−e2) = e1(1−e2) ∈ J(R1)∩ Id(R1) = {0},
i.e., e1 = e1e2. In a way of similarity e2 = e1e2 and, finally, e1 = e2. Consequently, z = 2e1 ∈ 2 Id(R1),
as pursued. In the second case, z = −(e1 + e2) and processing by the same token as in the former
case, one concludes that z ∈ −2 Id(R1) = 2 Id(R1) since 4 = 0. This substantiates the desired equality
after all.

About R2: Here 3 = 0. So, as R2 ∈ P, it is plainly checked that each element x in R2 satisfies the
equation x3 = x. Furthermore, a simple consultation with [7] assures that R is a subdirect product
of copies of the fields Z2 and Z3, as stated.

About R3: Here 5 = 0. Writing x = e1+e2−e3 or x = −e1−e2 for some three commuting idempotents
e1, e2, e3 ∈ R3. In the first case, additionally assuming without loss of generality that e1.e3 = e2.e3 = 0,
one deduces that x2 − x = 2(e1e2 + e3). But since the expression in the brackets is obviously an
idempotent too being the sum of two orthogonal idempotents, we derive that (x2 − x)2 = 2(x2 − x).
This, in turn, yields that x4 − 2x3 − x2 + 2x = 0. In the second case, one obtains x2 + x = 2e1e2
enabling us that (x2 + x)2 = 2(x2 + x). This, in turn, implies that x4 + 2x3 − x2 − 2x = 0. Actually,
one easily sees that these two equations arise one from other via the substitution x→ −x. Since the
equations are the same as in the corresponding part of Theorem 2.3, we may process analogically to
finish the conclusion that R3 is the simple five element field, as formulated.
Sufficiency. Identical arguments to these from the “sufficiency part” of Theorem 2.3 work to deduce
the wanted assertion. �

As a concluding discussion, we state:

Remark 2.7. Comparing the results established above with these from [6], it seems that the rela-
tionships

R1 ≡ R2 ≡ R3,
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showing the equivalences between the three ring classes R1, R2 and R3, hold. Likewise, these three
classes surprisingly coincide with the class of rings from [3] for which each element is the sum or the
minus sum of three commuting idempotents.

Besides, concerning the classes K, K1 and K2, it seems also by comparison of the already established
results with these from [4] that these three classes curiously do coincide.

We close our comments by observing that in the proof of [3, Proposition 2.3], the ring P [b] with
b4 = b is the quotient ring of the ring P [t]/〈t(t− 1)(t− 2)(t− 4)〉 which, in its turn, is the direct sum
of four copies of the field P . It follows immediately that if P [b] 6= P , then the requirements of this
proposition do not hold. The same idea can be successfully applied to Case 3 and especially to Case
4 in the proof of necessity of Theorem 2.4 from [3]. Nevertheless, the methodology illustrated in [3],
although somewhat elusive, is rather more transparent.

On the other vein, in ‘Sufficiency’ of the proof of [5, Theorem 2.4] on line 2 the phrase is also a
ring should be written and read as in the presence of points (1), (2) and (3) is also a ring, which is,
definitely, an involuntarily omission.

In ending, we pose the following two conjectures:

Conjecture 1. If every element of a ring is a sum of (a fixed number of) commuting idempotents,
then this ring is commutative itself.

Conjecture 2. If each element of a ring is expressed as a linear combination over Z of (a fixed number
of) commuting idempotents, then that ring is necessarily commutative.
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EXISTENCE RESULTS FOR IMPULSIVE STOCHASTIC NEUTRAL

INTEGRODIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

M. DIOP1∗, A. GBAGUIDI AMOUSSOU2, C. OGOUYANDJOU2, AND M. MOHAMED1

Abstract. In this article, we investigate the existence of mild solutions for a class of impulsive
neutral stochastic integro-differential equations with state-dependent delay. The results are obtained

by using the Krasnoselskii-Schaefer type fixed point theorem combined with theories of resolvent

operators. In the end as an application, an example has been presented to illustrate the results
obtained.

1. Introduction

The investigation of stochastic differential equations has been picking up much importance and
attention of researchers due to its wide applicability in science and engineering. Since arbitrary
fluctuations are regular in the real world, scientific (mathematical) models for complex systems are
frequently subject to instabilities, for example, indeterminate parameters, fluctuating powers, or ran-
dom boundary conditions. Also, uncertainties may be created by the absence of knowledge of some
chemical, physical or biological systems that are not well known, and in this manner are not suitably
represented (or missed totally) in the scientific models. Despite the fact that these fluctuations and
unrepresented systems may be extremely little or quick, their long-term effect on the system evolution
may be delicate or even meaningful. This kind of delicate effects on the general evolution of dynamical
systems has been seen in, for instance, stochastic resonance, stochastic bifurcation and noise-induced
pattern development. In this way considering stochastic impacts is of central significance for mathe-
matical modeling of complex systems under uncertainty. Thus, a large number of these systems can be
modeled by stochastic differential equations, for example, price processes, exchange rates, and interest
rates, among others in finance.

The existence and uniqueness of the mild solutions of stochastic differential equations have been
studied by many authors. In [19], author has obtained sufficient conditions for the existence and
uniqueness of solution of stochastic differential equations under uniform Lipschitz and the linear
growth condition. In [17], author has shown that there exists the unique solution for neutral sto-
chastic functional differential equation under uniform Lipschitz and the linear growth condition. The
approximate controllability of nonlocal neutral stochastic fractional differential equations is studied
by authors in [7]. In [1], authors have considered an impulsive stochastic semilinear neutral functional
differential equations with infinite delays and discussed the existence, uniqueness and stability of mild
solutions of considered stochastic differential equations with a Lipschitz condition and without a Lips-
chitz condition by utilizing the technique of successive approximations. In [35], authors have discussed
the existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclu-
sions with state-dependent delay. The asymptotic stability of fractional impulsive neutral stochastic
partial integrodifferential equations with state-dependent delay is studied by the authors in [36]. The
existence and uniqueness of square-mean almost automorphic solutions for some stochastic differential
equations have been studied by authors in [8] in which the asymptotic stability of the unique square-
mean almost automorphic solution in the square-mean sense has been discussed. In [11], authors have
considered an impulsive neutral stochastic functional integro-differential equation with infinite delays
in a separable real Hilbert space and established the existence results. In [32],the existence of the mild

2010 Mathematics Subject Classification. 34A60, 34K40, 60H10, 34F05.
Key words and phrases. Impulsive partial stochastic integrodifferential equations; State-dependent delays; C0-

semigroup; Resolvent operator; Fixed point.
∗Corresponding author.
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solution nonlinear fractional stochastic differential equation has been studied by the authors by using
fixed point theorems and α-resolvent family. For more study on stochastic differential equation, we
refer to papers [5, 8, 11,14,20,22,23,25,29–32,34–36].

Impulsive effects likewise exist in a wide variety of evolutionary processes in which states are
changed abruptly at certain moments of time, involving such fields as medicine and biology, economics,
mechanics, electronics and telecommunications, etc. Recently, many interesting and important results
on impulsive differential equations have been derived in [2, 33] and the references therein. More
recently, in [16, 17], Sakthivel and Luo have discussed the asymptotic stability for mild solution of
impulsive stochastic partial differential equations by employing the fixed point theorem; by establishing
an impulsive-integral inequality, the exponential stability for mild solution of impulsive stochastic
partial differential equations with delays was considered in [6]. Besides, there are some results about
the existence and uniqueness for mild solution of impulsive stochastic partial functional differential
equations, see [10,15,24] and references therein.

On the other hand, there has been intense interest in the study of impulsive neutral stochastic
partial differential equations with memory (e.g. delay) and integrodifferential equations with resolvent
operators. Since many control systems arising for realistic models depends heavily on histories (that
is, effect of infinite delay on the state equations), there is real need to discuss the existence results for
impulsive partial stochastic neutral integrodifferential equations with sate-dependent delay. Recently,
the problem of the existence of solutions for partial impulsive functional differential equations with
state-dependent delay has been investigated in many publications such as [18, 26] and the references
therein.

As the motivation of above discussed works, we consider the following neutral stochastic impulsive
integrodifferential functional equations with state-dependent



d

[
x(t)−G

(
t, xt,

t∫
0

g(t, s, xs)ds

)]
= A

[
x(t)−G

(
t, xt,

t∫
0

g(t, s, xs)ds

)]
dt

+

( t∫
0

B(t− s)
[
x(s)−G

(
s, xs,

s∫
0

g(s, u, xu)du

)]
ds

)
dt+ F

(
t, xρ(t,xt)

)
dw(t),

t ∈ J, J = [0, b],

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), k = 1, 2, . . . ,m . . .

x0(·) = ϕ(·) ∈ B,

(1)

where the state x(.) takes values in a separable real Hilbert space H with inner product 〈·, ·〉 and
norm ‖ · ‖, and A : D(A) ⊂ H → H is a the infinitesimal generator of a C0-semigroup (T (t))t≥0 on
H, for t ≥ 0, B(t) is a closed linear operator with domain D(A) ⊂ D(B(t)); 0 < t1 < · · · < tm < b,
are prefixed points and the symbol ∆x(tk) = x(t+k ) − x(t−k ), where x(t+k ) and x(t−k ) represent the
right and left limits of x(t) at t = tk , respectively. Let K be another separable Hilbert space with
inner product 〈·, ·〉K and norm ‖ · ‖K . Suppose {w(t) : t ≥ 0} is a given K-valued Brownian motion or
Wiener process with a finite trace nuclear covariance operator Q > 0 defined on a complete probability
space (Ω,F ,P) equipped with a normal filtration {Ft}t≥0, which is generated by the Wiener process
w. We are also employing the same notation ‖ · ‖ for the norm L(K;H), where L(K;H) denotes the
space of all bounded linear operators from K into H. The history xt : (−∞, 0]→ H, xt(θ) = x(t+ θ),
belongs to some abstract phase space B defined axiomatically; the initial data {ϕ(t) : −∞ < t ≤ 0}
is an F0-adapted, B-valued random variable independent of the Wiener process w with finite second
moment, and F,G, g, ρ, Ik; (k = 1, . . . ,m), are given functions to be specified later.

To the best of the authors’s knowledge, there is no results about the existence of mild solutions im-
pulsive neutral partial stochastic functional integrodifferential equations with state-dependent, which
is expressed in the form (1). The aim of our paper main is to establish some existence results for the
system (1). Our main results concerning (1) rely essentially on techniques using strongly continuous
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family of operators {R(t), t ≥ 0}, defined on the Hilbert space H and called their resolvent. The resol-
vent operator is similar to the semigroup operator for abstract differential equations in Banach spaces.
There is a rich theory for analytic semigroups and we wish to develop theories for (1) which yield
analytic resolvent and fractional Brownian motion. However, the resolvent operator does not satisfy
semigroup properties (see, for instance [4, 14]) and our objective in the present paper is to apply the
theory developed by Grimmer [5], because it is valid for generators of strongly continuous semigroup,
not necessarily analytic. The main contribution of this manuscript is that it proposes a framework
for studying the mild solution to stochastic integro-differential equation with state-dependent and
impulsive conditions.

The structure of this paper is as follows. In Section 2, we recall some necessary preliminaries
on stochastic integral and resolvent operator. In Section 3, we discuss the results on existence and
uniqueness of mild solutions. Finally in Section 4, an example is presented which illustrates the main
results for equation (1).

2. Preliminaries

2.1. Wiener process. Throughout this paper, let H and K be tow real separabl Hilbert spaces. We
denote by 〈·, ·〉H, 〈·, ·〉K their inner products and by ‖ · ‖H, ‖ · ‖K their vecteur norms, respectively.
L(K,H) denote the space of all bounded linear operators from K into H , equipped with the usual
operator norm ‖ · ‖ and we abbreviate this notation to L(H) when H = K.

In the sequel, we always use the same symbol ‖ · ‖ to denote norms of operators regardless of the
spaces potentially involved when no confusion possibly arises.

Moreover, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a normal filtration {Ft}t≥0

satisfying the usual condition (i.e. it is increasing and right-continuous while F0 contains all P-null
sets).

Lets {w(t) : t ≥ 0} denote a K-valued Wiener process difined on the probability space (Ω,F ,
{Ft}t≥0,P), with covariance operatorQ; that is E〈w(t), x〉K〈w(t), y〉K = (t∧s)〈Qx, y〉K, for all x, y ∈ K,
where Q is a positive, self-adjoint, trace class operator on K. In particular,we denote W a K-valued
Q-wener pocess with respect to {Ft}t≥0. To define stochastic integrals with respect to the Q-Wiener

process with w,we introduce the subspace K0 = Q1/2K of K endowed with the inner product 〈u, v〉K0
=

〈Q1/2u,Q1/2v〉K as a Hilbert space. We assume that there exists a complete orthonormal system {ei}
in K, a bounded sequence of positive real numbers λi such that Qei = λiei, i = 1, 2, . . . , and a sequence

{βi(t)}i≥1 of independent standard Brownian motions such that w(t) =

+∞∑
i=1

√
λiβi(t)ei for t ≥ 0 and

Ft = Fwt , where Fwt is the σ-algebra generated by {w(s) : 0 ≥ s ≥ t}. Let L0
2 = L2(K0,H) be the

space of all Hilbert-Schmidt operators from K0 to H. It turns out to be a separable Hilbert space
equipped whith the norm ‖v‖2L0

2
= tr((vQ1/2)(vQ1/2)∗) for any v ∈ L0

2. Obviously, for any bounded

operator v ∈ L0
2, this norm reduces to ‖v‖2L0

2
= tr(vQv∗).

2.2. Deterministic integrodifferential equations. In the present section, we recall some defini-
tions, notations and properties needed in the sequel.

In what follows, H will denote a Banach space, A and B(t) are closed linear operators on H. Y
represents the Banach space D(A), the domain of operator A, equipped with the graph norm

‖y‖Y = ‖Ay‖+ ‖y‖, y ∈ Y.

The notation C([0,+∞[;Y ) stands for the space of all continuous functions from [0,+∞[ into Y . We
then consider the following Cauchy problem

v′(t) = Av(t) +

t∫
0

B(t− s)v(s)ds, for t ≥ 0,

v(0) = v0 ∈ H.

(2)
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Definition 1 ([5]). A resolvent operator of the Eq. (2) is a bounded linear operator valued function
R(t) ∈ L(H) for t ≥ 0, having the following properties:

(1) R(0) = I and ‖R(t)‖ ≤ ηeδt for some constants η and δ.
(2) For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.
(3) R(t) ∈ L(H). For x ∈ Y , R(·)x ∈ C1([0,+∞;H) ∩ C([0,+∞[;Y ) and

R′(t)x = AR(t)x+

t∫
0

B(t− s)R(s)xds = R(t)Ax+

t∫
0

R(t− s)B(s)xds, for t ≥ 0.

For additional detail on resolvent operators, we refer the reader to [5] and [21]. The resolvent
operator plays an important role to study the existence of solutions and to establish a variation of
constants formula for non-linear systems. For this reason, we need to know when the linear system
(2) possesses a resolvent operator. Theorem (1) below provides a satisfactory answer to this problem.

In what follows we suppose the following assumptions:

(H1) A generates a strongly semigroup in Banach space H
(H2) For all t ≥ 0, t 7→ B(t) is continuous linear operator from (Y, ‖ · ‖Y ) into (H, ‖ · ‖H). Moreover,

there exists an integrable function c : [0,+∞[→ R+ such that for any y ∈ Y , t 7→ B(t)y
belongs to W 1,1([0,+∞[;H) and∥∥∥∥ ddtB(t)y

∥∥∥∥
H
≤ c(t)‖y‖Y , for y ∈ Y, and t ≥ 0.

We recall that W k,p(Ω) = {w̃ ∈ Lp(Ω) : Dαw̃ ∈ Lp(Ω), ∀|α| ≤ k}, where Dαw̃ is the weak
α-th partial derivative of w̃.

The following theorem gives sufficient conditions of ensuring the existence of resolvent operator for
Eq.(2)

Theorem 1 ([5]). Assume that (H1) and (H2) hold. Then there exists a unique resolvent operator
for (2).

In the sequel, we recall some results on the existence of solutions for the following integrodifferential
equation: 

v′(t) = Av(t) +

t∫
0

B(t− s)v(s)ds+ q(t), for t ≥ 0,

v(0) = v0 ∈ H.

(3)

where q : [0,+∞[→ H is a continuous function.

Definition 2 ([5]). A continuous function v : [0,+∞[→ H is said to be a strict solution of equation
(3) if

(1) v ∈ C1([0,+∞[,H) ∩ C([0,+∞[, Y ),
(2) v satisfies equation Eq. (3) for t ≥ 0.

Remark 2.1. From this definition we deduce that v(t) ∈ D(A), the function B(t−s)v(s) is integrable,
for all t > 0 and s ∈ [0, t[.

Theorem 2 ([5]). Assume that (H1), (H2) hold. If v is a strict solution of the Eq. (3), then the
following variation of constants formula holds

v(t) = R(t)v0 +

t∫
0

R(t− s)q(s)ds, for t ≥ 0. (4)

Accordingly, we can establish the following definition.

Definition 3 ([5]). A function v : [0,+∞[→ H is called a mild solution of equation (3) for v0 ∈ H, if
v satisfies the variation of constants formula (4).
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Theorem 3 ([5]). Let q ∈ C1([0,+∞[;H) and v be defined by (4). If v0 ∈ D(A), then v is a strict
solution of the equation (3).

Lemma 2.1 ([14]). Assume that (H1) and (H2) hold. Then, there exists a constant L = L(T ) such
that ‖R(t+ ε)−R(t)R(ε)‖ ≤ Lε for 0 < ε ≤ t ≤ T .

Theorem 4 ([14]). Assume that (H1) and (H2) hold. Let T (t) be a compact for t > 0. Then the
corresponding resolvent operator R(t) of (2) is also compact for t > 0.

In this work, we will employ an axiomatic definition of the phase space B introduced by Hale and
Kato [9].

Definition 4. The phase space B(] − ∞, 0],H) (denoted by B simply) is the space of continuous
functions from ]−∞, 0] to H endowed with seminorm ‖ · ‖B, and B satisfies the following axioms:

(A1) If x :]−∞, T ]→ H is continuous on [t0, T ], 0 ≤ t0 ≤ T and xt0 ∈ B, then, for every t ∈ [t0, T ],
the following conditions hold:
(1) xt ∈ B;

(2) ‖xt‖B ≤ M̃(t − t0) sup
0≤s≤t

‖x(s)‖H + N(t − t0)‖x0‖B, where M̃,N : [0,+∞[→ [1,+∞[, M̃

is continuous and N1 is locally bounded, M̃ , N are independent of x(·).
(3) ‖x(t)‖H ≤ H̃‖xt‖B, where H̃ > 0 such that H̃ are independent of x(·) .

(A2) For the fonction x(·) in (A1), the function t 7→ xt is continuous from [t0, T ] into B.
(A3) The space B is complete.

The B-valued stochastic process xt : Ω → B, t ∈ J is defined by setting xt = {x(t + θ)(w) : θ ∈
]−∞, 0]}.

The collection of all strongly measurable, square integrable, H-valued random variables, denoted
by L2(Ω,H) is a Banach space equipped with norm ‖x(·)‖L2

= (E‖x(·, w)‖2)
1
2 , where the expectation,

E is defined by Ex =
∫

Ω
x(w)dP . Let C(J, L2(Ω,H)) be the Banach space of all continuous maps from

J into L2(Ω,H) satisfying the condition sup0≤t≤T E‖x(t)‖2 < ∞. Let L0
2(Ω,H) denote the family of

all F0-measurable, H-valued random variables.
We say that a function x : [µ, τ ] → H is a normalized piecewise continous function on [µ, τ ], if x

is piecewise continuous and left continuous on (µ, τ ]. We denote by PC([µ, τ ],H) the space formed
by the normalized piecewise continuous, Ft-adapted measurable processes from [µ, τ ] into H. In
particular, we introduce the space PC formed by all Ft-adapted measurable, H-valued stochastic
processes {x(t) : t ∈ [0, T ]} such that x is continuous at t 6= tk, x(tk) = x(t−k ) and x(t+k ) exists for
k = 1, 2, . . . ,m. In this paper, we always assume that PC is endowed with the norm

‖x‖PC =
(

sup
0≤t≤T

E‖x(t)‖2
) 1

2

.

Then (PC, ‖.‖PC) is a Banch space.
To simplify the notations, we put t0 = 0, tm+1 = b and for x ∈ PC, we denote by x̂k ∈

C([tk, tk+1];L2(Ω,H)), k = 0, 1, . . . ,m, the function given by

x̂k(t) :=

{
x(t) for t ∈ (tk, tk+1],
x(t+k ) for t = tk.

Moreover, for B ⊂ PC we denote by B̂k, k = 0, 1, . . . ,m, the set B̂k = {x̂k : x ∈ B}. The notation
Br(x,H) stands for the closed ball with center at x and radius r > 0 in H.
Now, we give the definition of mild solution for (1).

Definition 5. An Ft-adapted stochastic process x : (−∞, b]→ H is said to be a mild solution of the
system (1) if x0 = ϕ(t), xρ(s,xs) ∈ B satisfying x0 ∈ L0

2(Ω,H), x |J∈ PC, and ∆x(tk) = Ik(x(tk)),
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k = 1, . . . ,m, such that

x(t) = R(t)[ϕ(0)−G(0, ϕ, 0)] +G

(
t, xt,

t∫
0

g(t, s, xs)ds

)

+

t∫
0

R(t− s)F
(
s, xρ(s,xs)

)
dw(s) +

∑
0<tk<t

R(t− tk)Ik(x(tk)).

Lemma 2.2. A set B ⊂ PC is relatively compact in PC if, and only if, the set B̂k is relatively compact
in C([tk, tk+1];L2(Ω,H)), for every k = 0, 1, . . . ,m.

The next result is a consequence of the phase space axioms.

Lemma 2.3. Let x : (−∞, b] → H be an Ft-adapted measurable process such that the F0-adapted
process x0 = ϕ(·) ∈ L0

2(Ω,B) and x |J∈ PC(J,H), then

‖xs‖B ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖,

where Kb = sup{K(t) : 0 ≤ t ≤ b}, Mb = sup{M̃(t) : 0 ≤ t ≤ b}.

Finally, we end this section by stating the following Krasnoselskii-Schaefer type fixed point theorem
appeared in [3] which is our main tool.

Lemma 2.4 ([3]). Let Φ1,Φ2 be two operators such that :

(a) Φ1 is a contraction, and
(b) Φ2 is completely continuous.

Then either:

(i) the operator equation x = Φ1x+ Φ2x has a solution, or
(ii) the set Λ = {x ∈ X : λΦ1(xλ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

In the following section, we establish the existence theorem of the mild solution.

3. Main Results

Throughout this paper, for the existence and uniqueness of the mild solution to (1), we shall impose
the following assumptions:

(H3) The resolvent operator R(t), t ≥ 0 is compact and there exists constant M such that
‖R(t)‖2 ≤ M , t ∈ J.

(H4) The function t 7→ ϕt is continous from R(ρ−) =
{
ρ(s, ψ) ≤ 0, (s, ψ) ∈ J×B

}
into B and there

exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖φt‖ ≤ Jϕ(t)‖φ‖B
for each t ∈ R(ρ−).

(H5) The function F : J × B → L0
2(K,H), for each t ∈ J , the function F (t, .) : B → L0

2(K,H) is
continuous and for each ψ ∈ B, the function F (., ψ) : J → L0

2(K,H) is strongly measurable.
(H6) For each positive number r > 0, there exists a positive function l(r) dependent on r such that

sup
‖ψ‖2B≤r

E‖F (t, ψ)‖2 ≤ l(r),

and there exists a constant d such that

0 ≤ lim sup
‖ψ‖2B→∞

(
sup
t∈J

E‖F (t, φ)‖2

‖ψ‖2B

)
≤ d.

(H7) There exists a constant L1 > 0 such that

E
∥∥∥∥

t∫
0

[g(t, s, ψ)− g(t, s, φ)]ds

∥∥∥∥2

≤ L1‖ψ − φ‖2B

for t, s ∈ J, ψ, φ ∈ B.
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(H8) The function G : J×B×H→ H is continous and satisfies the Lipschitz condition, that is, there
exists a constant L2 > 0 such that

E‖G(t1, ψ1, φ1)−G(t2, ψ2, φ2)]‖2 ≤ L2[|t1 − t2|+ ‖ψ1 − ψ2‖2B + E‖φ1 − φ2‖2]

for 0 ≤ t1, t2 ≤ b, ψi ∈ B, φi ∈ H, i = 1, 2, . . . ,m
with

L0 = L2(1 + L1)K2
b < 1.

(H9) Ik ∈ C(H,H), k = 1, 2, . . . ,m, are completely continuous and there exists constants ck,
k = 1, 2, . . . ,m, such that

0 ≤ lim sup
‖x‖2→∞

‖Ik(x)‖2

‖x‖2
≤ ck, x ∈ H.

Lemma 3.1 ( [12]). Let x : (−∞, b] → H such that x0 = ϕ. If (H4) is satisfied, then ‖xs‖B ≤
(Mb + Jφ0 )‖φ‖B +Kb sup{‖x(θ)‖; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J , where Jφ0 = supt∈R(ρ−) J

φ(t).

Remark 3.1 ([12, 13]). Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function defined by
ϕt = ϕ(t + θ). Consequently, if the function x(·) in axiom (A1) is such that x0 = ϕ, then xt = ϕt.
We observe that ϕt is well-defined for t < 0 since the domain of ϕ is (−∞, 0].

Theorem 5. Let ϕ ∈ L0
2(Ω,H). If the assumptions (H1) − (H8) hold and ρ(t, ψ) ≤ t, for every

(t, ψ) ∈ J × B, then there exists a mild solution of equation Eq. (1) provided that

8

[
L2(1 + L1)K2

b +Mm

m∑
k=1

ck

]
≤ 1. (5)

Proof. Consider the space Y = {x ∈ PC : x(0) = ϕ(0) = 0} endowed with the uniform convergence
topology (‖ · ‖∞) and define the mapping Φ on Y by

Φ(x)(t) =



0, t ∈]−∞, 0],

R(t)[ϕ(0)−G(0, ϕ, 0)] +G
(
t, x̄t,

∫ t
0
g(t, s, x̄s)ds

)
+

t∫
0

R(t− s)F
(
s, xρ(s,x̄s)

)
dw(s)

+
∑

0<tk<t

R(t− tk)Ik(x̄(tk)) for t ∈ J,

where x̄ : (−∞, 0]→ H is such that x̄0 = ϕ and x̄ = x on J .
Then it is clear that to prove the existence of mild solutions of the problem (1) is equivalent to find

a fixed point for the operator Φ. First we show that Φ(PC) ⊂ PC.
From (H5), (H7) and (H8), it follows that the function G,F and Ik, k = 1, 2, . . . ,m are continu-

ous,which enables us to conclude that Φ is well-defined operator from Y into Y. We show that Φ has
a fixed point, which in turn is a mild solution of the problem (1).

Let ϕ̄ : (−∞, T ) → H be the extension of (−∞, 0] such that ϕ̄(θ) = ϕ(0) = 0 on J and Jϕ0 =
sup{Jϕ(s) : s ∈ R(ρ−)}. Now, we decompose Φ as Φ1 + Φ2, where

(Φ1x)(t) = −R(t)G(0, ϕ, 0) +G

(
t, x̄t,

t∫
0

g(t, s, x̄s)ds

)
, t ∈ J

(Φ2x)(t) = R(t)ϕ(0) +

t∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s) +

∑
0<tk<t

R(t− tk)Ik(x̄(tk)), t ∈ J.

The proof is divided into the following five steps.
Step 1. Φ1 is a contraction on Y.
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Let t ∈ J and y1, y2 ∈ Y. Then, by using (H7) and (H8), we have

E‖(Φ1y1)(t)− (Φ1y2)(t)‖2 ≤ E
∥∥∥∥G(t, y1

t,

t∫
0

g(t, τ, y1
τ )dτ

)
−G

(
t, y2

t,

t∫
0

g(t, τ, y2
τ )dτ

)∥∥∥∥2

≤ L2

(
‖y1

t − y2
t‖2B + L1‖y1

t − y2
t‖2B
)

≤ L2(1 + L1)‖y1
t − y2

t‖2B
≤ L2(1 + L1)K2

b sup
s∈J

E‖y1(s)− y2(s)‖2B

by using y = y on J .
Taking supremum over t,

‖Φ1y
1 − Φ1y

2‖2PC ≤ L0 ‖y1 − y2‖2PC ,
where L0 = L2(1 + L1)K2

b < 1. Thus Φ1 is a contraction on Y.

Step 2. Φ2 maps bounded sets into bounded sets in Y.
For each r > 0, let

Br(0,Y) := {x ∈ Y : E‖x‖2 ≤ r}.
Then, for each r,Br(0,Y) is a bounded closed convex subset in Y. Indeed, it is enough to show that
there exists a positive constant L such that for each x ∈ Br(0,Y) one has E‖Φ2x‖2 ≤ L. Now, for
t ∈ J we have

(Φ2x)(t) = R(t)ϕ(0) +

t∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s) +

∑
0<tk<t

R(t− tk)Ik(x̄(tk)), t ∈ J. (6)

In view of (H6) and (H9), there exist positive constants ε, εk (k = 1, . . . ,m), γ and γ̄ such that, for
all ‖ψ‖2B > γ, ‖φ‖2 > γ̄,

‖F (t, ψ)‖2 ≤ (d+ ε)‖ψ‖2B,
‖Ik(φ)‖2 ≤ (ck + εk)‖φ‖2,

and

8[L2(1 + L1)K2
b +Mm

m∑
k=1

(εk + ck)] ≤ 1. (7)

Let

F1 = {ψ : ‖ψ‖2B ≤ γ}, F2 = {ψ : ‖ψ‖2B > γ},
G1 = {φ : ‖φ‖2 ≤ γ̄}, G2 = {φ : ‖φ‖2 > γ̄},
C1 = max{‖Ik(φ)‖2, φ ∈ G1}.

Thus

‖F (t, ψ)‖2 ≤ l(γ) + (d+ ε)‖ψ‖2B, (8)

‖Ik(φ)‖2 ≤ C1 + (ck + εk)‖φ‖2. (9)

If x ∈ Br(0,Y), from Lemma 2.3 and 3.1, it follows that

‖x̄ρ(s,x̄s)‖2B ≤ 2
[
(Mb + J̄ϕ0 )‖ϕ‖B

]2
+ 2K2

b r := r∗.

By (8), (9), from (6) we have for t ∈ J

E‖(Φ2x)(t)‖2 ≤ 3E‖R(t)ϕ(0)‖2 + 3E
∥∥∥∥

t∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2
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+ 3E
∥∥∥∥ ∑

0<tk<t

R(t− tk)Ik(x̄(tk))

∥∥∥∥ ≤ 3ME‖ϕ(0)‖2 + 3Tr(Q)M

×
t∫

0

[
l(γ) + (d+ ε)‖x̄ρ(s,x̄s)‖2B

]
ds

+ 3Mm

m∑
k=1

[
C1 + (ck + εk)E‖x̄(tk)‖2

]
≤ 3MH̃2‖ϕ‖2B + 3Tr(Q)MT [l(γ) + (d+ ε)r∗]

+ 3Mm

m∑
k=1

[
C1 + (ck + εk)r

]
:= L.

Then for each x ∈ Br(0,Y), we have E‖Φ2x‖2 ≤ L.
Step 3. We show that the operator Φ2 is completely continuous.
For this purpose, we decompose Φ2 as Ψ1 + Ψ2, Ψ1,Ψ2 are the operators on Br(0,Y) defined respec-
tively by

(Ψ1x)(t) = R(t)ϕ(0) +

t∫
0

R(t− s)F [s, x̄ρ(s,x̄s)]dw(s), t ∈ J,

(Ψ2x)(t) =
∑

0<tk<t

R(t− tk)Ik(x̄(tk)) t ∈ J.

We first show that Ψ1 is completely continuous.
(i) Ψ1(Br(0,Y)) is equicontinuous.
Let 0 < τ1 < τ2 ≤ T and ε > 0 be small. For each x ∈ Br(0,Y), we have

E
∥∥∥∥(Ψ1x)(τ2)− (Ψ1x)(τ1)

∥∥∥∥2

≤ 4E
∥∥∥∥[R(τ2)−R(τ1)]ϕ(0)

∥∥∥∥2

+ 4E
∥∥∥∥
τ1−ε∫
0

[
R(τ2 − s)−R(τ1 − s)

]
F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

+ 4E
∥∥∥∥

τ1∫
τ1−ε

[
R(τ2 − s)−R(τ1 − s)

]
F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

+ 4E
∥∥∥∥

τ2∫
τ1

R(τ2 − s)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

≤ 4E
∥∥∥∥[R(τ2)−R(τ1)]ϕ(0)

∥∥∥∥2

+ 4Tr(Q)
[
l(γ) + (d+ ε)r∗

] τ1−ε∫
0

‖R(τ2 − s)−R(τ1 − s)‖2L(H)ds

+ 4Tr(Q)
[
l(γ) + (d+ ε)r∗

] τ1∫
τ1−ε

‖R(τ2 − s)−R(τ1 − s)‖2L(H)ds

+ 4Tr(Q)
[
l(γ) + (d+ ε)r∗

] τ2∫
τ1

‖R(τ2 − s)‖2L(H)ds.
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From the above inequalities, we see that the right-hand side of E‖(Ψ1x)(τ2)− (Ψ1x)(τ1)‖2 tends to
zero independent of x ∈ Br(0,Y) as τ2−τ1 → 0 with ε sufficiently small, since the compactness of R(t)
forb t > 0 implies the continuity in the uniform operator topology. Thus the set {Ψ1x : x ∈ Br(0,Y)}
is equicontinuous. The equicontinuities for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ T are very
simple.

(ii) The set Ψ1(Br(0,Y))(t) is precompact in H for each t ∈ J .
Let 0 < t ≤ s ≤ b fixed and let ε be a real number satisfying ε ∈ (0, t). For x ∈ Br(0,Y), we define
the operators

(Ψ∗ε1 x)(t) = R(t)ϕ(0) +R(ε)

t−ε∫
0

R(t− s− ε)F
(
s, x̄ρ(s,x̄s)

)
dw(s),

(Ψ̃ε
1x)(t) = R(t)ϕ(0) +

t−ε∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s).

By the compactness of the operators R(t), the set V ∗ε (t) = {(Ψ∗ε1 x)(t);x ∈ Br(0,Y)} is relatively
compact in H, for every ε, ε ∈ (0, t).

Moreover, also by Lemma 2.1 and assumption (H6) we have

E‖(Ψ∗ε1 x)(t)− (Ψ̃ε
1x)(t)‖2 ≤ E

∥∥∥∥
t−ε∫
0

R(ε)R(t− s− ε)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

−
t−ε∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

≤ E‖
t−ε∫
0

[
R(ε)R(t− s− ε)−R(t− s)

]
F
(
s, x̄ρ(s,x̄s)

)
dw(s)‖2

≤ Tr(Q)M
[
l(γ) + (d+ ε)r∗

] t−ε∫
0

‖R(ε)R(t− s− ε)−R(t− s)‖2ds.

The right-hand side of the above inequality tends to zero as ε → 0. So the set Ṽε(t) = {(Ψ̃ε
1x)(t);

x ∈ Br(0,Y)} is precompact in H by using the total Boundedness.
Applying the idea again, we obtain

E‖(Ψ1x)(t)− (Ψ̃ε
1x)(t)‖2 ≤ E

∥∥∥∥
t∫

t−ε

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

≤ Tr(Q)M

t∫
t−ε

[
l(γ) + (d+ ε)r∗

]
ds

≤ Tr(Q)M
[
l(γ) + (d+ ε)r∗

]
ε.

The right hand side of the above inequality tends to zero as ε → 0. Since there are precompact
sets arbitrarily close to the set U(t) = {(Ψ1x)(t) : x ∈ Br(0,Y)}. Hence the set U(t) is precompact in
H. By Arzelá-Ascoli theorem, we conclude that Ψ1 maps Br(0,Y) into a precompact set in H.

Next, it remains to verify that Ψ2(Br(0,Y)) is also completely continuous.
We begin by showing Ψ2(Br(0,Y)) is equicontinuous. For any ε > 0 and 0 < t < b. Since the

functions Ik, k = 1, 2, . . . ,m, are completely continuous in H, we can choose ξ > 0 such that

E‖[R(t+ h)−R(t)]Ik(x)‖2 < ε

Mm
; E‖x‖2 ≤ r
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when |h| < ξ. For each x ∈ Br(0,Y), t ∈ (0, T ] be fixed, t ∈ [ti, ti+1], and t+ ξ ∈ [ti, ti+1], such that[
(Ψ̂2x)

]
i
(t) =

∑
0<tk<t

R(t− tk)Ik(x̄(tk)),

then we have

E‖
[
(Ψ̂2x)

]
i
(t+ h)−

[
(Ψ̂2x)

]
i
(t)‖2 ≤ E‖

∑
0<tk<t

[
R(t+ h− tk)−R(t− tk)

]
Ik(x̄(tk))‖2

≤ m
m∑
k=1

E‖
[
R(t+ h− tk)−R(t− tk)

]
Ik(x̄(tk))‖2.

As h → 0 and ε sufficiently small, the right-hand side of the above inequality tends to zero indepen-

dently of x, so [Ψ2
̂(Br(0,Y)]i i = 1, 2, . . . ,m, are equicontinuous.

Now we prove that [Ψ2
̂(Br(0,Y))]i(t) i = 1, 2, . . . ,m, is precompact for every t ∈ J .

From the following relations[
(Ψ̂2x)

]
i
(t) =

∑
0<tk<t

R(t− tk)Ik(x̄(tk)) ∈
m∑
k=1

R(t− tk)Ik(Br(0,H)).

We conclude that [Ψ2
̂(Br(0,Y))]i(t) i = 1, 2, . . . ,m, is precompact for every t ∈ [ti; ti+1]. By

Lemma 2.2, we infer that Ψ2(Br(0,Y)) is precompact. As an application of the Arzelá-Ascoli theorem,
Ψ2 is completely continuous.

Step 4. Φ2 : Y→ Y is continuous.
Let {xn} ⊆ Br(0,Y) with xn → x(n → ∞) in Y. From Axiom (A1), (A2) and (A3), it is easy to

see that (xns)→ (x̄s) uniformly for s ∈ (−∞, b] as n→∞. By assumption (H4)–(H5), we have

F
(
s, xnρ(s,(xn)s)

)
→ F

(
s, x̄ρ(s,x̄s)

)
as n→∞

for each s ∈ [0, t], and since

‖F
(
s, (xn)ρ(s,(xn)s)

)
− F

(
s, x̄ρ(s,x̄s)

)
‖ ≤ 2[l(γ) + (d+ ε)r∗].

Then by the continuity of Ik (k = 1, 2, . . . ,m) and the dominated convergence theorem we have

‖Φ2x
n − Φ2x‖2PC ≤ sup

t∈[0,T ]

∥∥∥∥
t∫

0

R(t− s)
[
F
(
s, xnρ(s,(xn)s)

)
− F

(
s, x̄ρ(s,x̄s

)
)]
ds

+
∑

0<tk<t

R(t− tk)
[
Ik(xn(tk))− Ik(x̄(tk))

]∥∥∥∥2

≤ 2Tr(Q)M

t∫
0

E‖F
(
s, (xn)ρ(s,(xn)s)

)
− F

(
s, x̄ρ(s,x̄s)

)
‖2ds

+ 2Mm
∑

0<tk<t

‖Ik(xn(tk))− Ik(x̄(tk))‖2 → 0 as n→∞.

Therefore, Φ2 is continuous.

Step 5. We shall show the set Λ = {x ∈ Y : λΦ1(xλ ) +λΦ2(x) = x, for some λ ∈ (0, 1)} is bounded
on J .
To do this, we consider the following nonlinear operator equation

x(t) = λΦx(t), 0 < λ < 1, (10)

where Φ is already defined. Next we gives a priori estimate for the solution of the above equation.
Indeed, let x ∈ Y be a possible solution of x = λΦ(x) for some 0 < λ < 1. This implies by (10) that
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for each t ∈ J we have

x(t) = λR(t)
[
ϕ(0)−G(0, ϕ, 0)

]
+ λG

(
t, x̄t,

t∫
0

g(t, s, x̄s)ds

)

+ λ

t∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
ds+ λ

∑
0<tk<t

R(t− tk)Ik(x̄(tk)), t ∈ J. (11)

By (H6), (8), (9), from (11) we have for t ∈ J

E‖x(t)‖2 ≤ 4E‖R(t)
[
ϕ(0)−G(0, ϕ, 0)

]
‖2 + 4E

∥∥∥∥G(t, x̄t,
t∫

0

g(t, s, x̄s)ds

)∥∥∥∥2

+ 4E
∥∥∥∥

t∫
0

R(t− s)F
(
s, x̄ρ(s,x̄s)

)
dw(s)

∥∥∥∥2

+ 4E
∥∥∥∥ ∑

0<tk<t

R(t− tk)Ik(x̄(tk))

∥∥∥∥2

≤ 4M
[
H̃2‖ϕ‖2B + (L2(MT + Jϕ0 )2‖ϕ‖2B + l2)

]
+ 4M

[
L2(‖x̄t‖2B + L1‖x̄t‖2B + l1) + l2

]
+ 4Tr(Q)M

t∫
0

[
l(λ) + (d+ ε)‖x̄ρ(s,x̄s)‖2B

]
ds+Mm

m∑
k=1

[
C1 + (ck + εk)E‖x̄(tk)‖2

]
,

where l1 = sup
t0≤t≤T

‖G(t, 0, 0)‖2 and l2 = sup
t0≤s≤t≤b

‖g(t, s, 0)‖2. By Lemmas 2.3 and 2.4, it follows that

ρ(s, x̄s) ≤ s, s ∈ [0, t], t ∈ J and

‖x̄ρ(s,x̄s)‖2B ≤ 2
[
(Mb + Jϕ0 )‖ϕ‖B

]2
+ 2K2

b sup
0≤s≤T

E‖x(s)‖2.

For each t ∈ J , we have

E‖x(t)‖2 ≤M∗ + 8L2(1 + L1)K2
b sup
t∈J

E‖x(t)‖2

+ 8Tr(Q)M(d+ ε)K2
b

t∫
0

sup
τ∈[0,s]

E‖x(τ)‖2ds+ 8Mm

m∑
k=1

(ck + εk) sup
t∈J

E‖x(t)‖2,

where

M∗ = 8M [H̃2‖ϕ‖2B + (L2c
∗
1 + l2)] + 8× {L2[(1 + L1)c∗1 + l1] + l2}

+ 8Tr(Q)MT [l(λ) + (d+ ε)c∗1] + 10Mm2C1,

c∗1 =
[
(Mb + Jϕ0 )‖ϕ‖B

]2
.

Since L∗ = 8L2(1 + L1)K2
T + 8Mm

∑m
k=1(ck + εk) < 1, we have

sup
t∈[0,T ]

E‖x(t)‖2 ≤ M∗
1− L∗

+ P2

b∫
0

sup
τ∈[0,s]

E‖x(τ)‖2ds,

where P2 = 1
1−L∗ 8Tr(Q)M(d+ ε)K2

T .
Applying Gronwall’s inequality in the above expression, we obtain

sup
t∈[0,T ]

E‖x(t)‖2 ≤ M∗
1− L∗

exp{P2T} := K̄.

Then for any x ∈ Λ(Φ), we get that ‖x‖2PC ≤ K̄. This implies that Λ is bounded on J . Consequently,
by Lemma 2.4, we deduce that Λ has a fixed point x ∈ Y, which is a mild solution of problem (1).
The proof is complete. �
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4. Application

Consider the following impulsive neutral stochastic partial integrodifferential equations of the form

∂
∂t

[
z(t, x)− µ1

(
t, z(t− τ, x),

∫ s
0
µ2(t, s, z(s− τ, x))ds

)]
= − ∂2

∂x2 [z(t, x)

µ1

(
t, z(t− τ, x),

∫ s
0
µ2(t, s, z(s− τ, x))ds

)]
+
∫ t

0
b(t− s) ∂

2

∂ξ2

[
z(s, x)− µ1

(
s, z(s− τ, x),

∫ s
0
µ2(s, u, z(u− τ, x))du

)]
ds

+µ3[t, z(s− ρ1(τ)ρ2(‖z(τ)‖), x)]dw(t), 0 ≤ t ≤ b; τ > 0, 0 ≤ x ≤ π
z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T,
z(t+k , x)− z(t−k , x) = Ik(z(tk, x)), k = 1, . . . ,m,

z(t, x) = ϕ(t, x), −∞ ≤ t ≤ 0, 0 ≤ x ≤ π,

(12)

where ϕ is continuous and Ik ∈ C(R,R), w(t) denotes a standard cylindrical Wiener process in H
defined on a stochastic space (Ω,F , P ) and H = L2([0, π]) with the norm ‖.‖ and define the operators

A : H→ H by Aw = w
′′

with the domain
D(A) := {w ∈ H : w,w

′
are absolutely continuous, w

′′ ∈ H, w(0) = w(π) = 0}.
Then

Aw =

∞∑
n=1

n2〈w,wn〉wn, w ∈ D(A),

where wn(x) =
√

2
π sin(nx), n = 1, 2, . . . is the orthogonal set eigenvectors of A. It is well known that

A is the infintesimal generator of an analytic semigroup T (t), t ≥ 0 in H and is given by

T (t)w =

∞∑
n=1

exp(−n2t)(w,wn)wn, w ∈ H.

Let B : D(A) ⊂ H→ H be the operator defined by

B(t)(y) = b(t)Ay t ≥ 0 y ∈ D(A).

Let σ > 0, define the phase space

B = {φ ∈ C((−∞, 0],H) : lim
θ→∞

eσθφ(θ) exists in H},

and let ‖φ‖B = sup−∞<θ<0{eσθ‖φ(θ)‖}. Then (B, ‖φ‖B) is a Banach space which satisfies (A1)–(A3)

with H̃ = 1, K(t) = max{1, e−σt}, M(t) = e−σt. Hence for (t, φ) ∈ [0, T ]×B, where φ(θ)(x) = φ(θ, x),
(θ, x) ∈ (−∞, 0]× [0, π], let z(t)(x) = z(t, x),

G

(
t, φ,

s∫
0

µ1(t, s, φ)ds

)
(x) = µ2

(
t, φ(θ, x),

s∫
0

µ2(t, s, φ)ds

)
,

g(t, s, φ)(x) = µ2 − t, s, φ(θ, x)),

F (t, φ)(x) = µ3(t, φ(θ, x)),

ρ(t, φ) = ρ1(t)ρ2(‖φ(0)‖).

Then the problem (12) can be writen as (1). Moreover, if b is bounded and C1 function such that b′ is
bounded and uniformly continuous, then (H1) and (H2) are satisfied, and hence, by Theorem 1, 2.1
has a resolvent operator (R(t))t≥0 on H. Thus, under appropriate conditions on the functions G, g, F ,
and Ik as those in (H1)–(H7), the problem (12) has a mild solution on J .

5. Conclusion

In this paper, we have studied the existence results for impulsive stochastic neutral integrodifferen-
tial systems with state-dependent delay conditions in a Hilbert space by utilizing the stochastic analysis
theory, resolvent operator, and the Krasnoselskii fixed point theorem. To validate the obtained theo-
retical results, we analyze one example. The impulsive stochastic neutral integrodifferential systems
with state-dependent delay are very efficient to describe the real-life phenomena; thus, it is essential to
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extend the present study to establish the other qualitative and quantitative properties such as stability
and controllability. There are two direct issues that require further study. First, we will investigate
the controllability of neutral stochastic integrodifferential systems with state-dependent delay in the
case of nonlocal conditions. Second, we will study the approximate controllability of a new class of
impulsive stochastic integrodifferential equations with state-dependent delay and noninstantaneous
impulses.
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supplement by S. I. Trofimchuk. Translated from the Russian by Y. Chapovsky. World Scientific Series on Nonlinear
Science. Series A: Monographs and Treatises, 14. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.

34. Y. Xu, S. Hu, The existence and uniqueness of the solution for neutral stochastic functional differential equations

with infinite delay in abstract space. Acta Appl. Math. 110 (2010), no. 2, 627–638.
35. Z. Yan, H. Zhang, Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclu-

sions with state-dependent delay. Electron. J. Differential Equations, 2013, no. 81, 1–21.

36. Z. Yan, H. Zhang, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations
with state-dependent delay. Electron. J. Differential Equations, 2013, no. 206, 1–29.

(Received 10.09.2018)

1Université Gaston Berger de Saint-Louis, UFR SAT, Département de Mathématiques, 234, Saint-Louis,
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ON THE DOUBLE LIMIT ASSOCIATED WITH RIEMANN’S SUMMATION

METHOD

O. DZAGNIDZE1 AND I. TSIVTSIVADZE2

Abstract. By Riemann’s first theorem the convergence of any series
∞∑

k=0
ak to a finite value s

implies the existence of the limit lim
h→0

∞∑
k=0

ak

(
sin kh
kh

)2
, i.e. the existence of the repeated limit

lim
h→0

lim
n→∞

n∑
k=0

ak

(
sin kh
kh

)2
with the value s, but the converse statement does not hold. In the article

it is proved the following theorem: A numerical series
∞∑

k=0
ak converges to a finite number s if and

only if there exists the double limit lim
h→0
n→∞

n∑
k=0

ak

(
sin kh
kh

)2
and the limit is equal to s. The proof is

based on Toeplitz’s condition on the uniform boundedness for summation (see, relation (12) in the
article) and Moore–Osgood’s double limit theorem. An application of the theorem to trigonometric

Fourier series is given.

Along with an arbitrary series
∞∑
k=0

ak, (1)

no matter whether it is converging or not, we will consider the series
∞∑
k=0

ak

( sin kh

kh

)2
(2)

which depends on the variable h under the assumption that this series converges for sufficiently small

h 6= 0 and
sin 0

0
= 1.

In particular, the series (2) will be converging for any h 6= 0 if the sequence |ak|, k = 0, 1, . . . is
bounded by some number M > 0. Indeed, we have∣∣∣∣ ∞∑

k=0

ak

( sin kh

kh

)2∣∣∣∣ ≤ |a0|+Mh−2
∞∑
k=1

1

k2
.

If under the above assumption the finite limit

lim
h→0

∞∑
k=0

ak

( sin kh

kh

)2
= σ (3)

exists, then the series (1) is called Riemann-summable (or, briefly, R-summable) to the value σ.
It is obvious that the equality (3) can be written in the following form

lim
h→0

lim
n→∞

n∑
k=0

ak

( sin kh

kh

)2
= σ,

i.e. in the form of the repeated limit

lim
h→0

lim
n→∞

An(h) = σ, (4)
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where it is assumed that

An(h) =

n∑
k=0

ak

( sin kh

kh

)2
.

Therefore the fulfillment of the equality (4) is equivalent to the R-summability of the series (1) to
the value σ.

The existence of another repeated limit with the finite value ω

lim
n→∞

lim
h→0

An(h) = ω, (5)

implies the equality
∞∑
k=0

ak = ω (6)

and vice versa: from the equality (6) there follows the equality (5). Hence we have the following

Proposition. The convergence of the series (1) to the value ω is the necessary and sufficient condition
for the fulfillment of the equality (5).

We establish the relationship between the convergence of the series (1) and the existence of the
double limit

lim
h→0
n→∞

An(h). (7)

As to this relationship we have the following statement.

Theorem. The convergence of the series (1) to the finite value s
∞∑
k=0

ak = s (8)

is the necessary and sufficient condition for the fulfillment of the equality

lim
h→0
n→∞

An(h) = s. (9)

Sufficiency. By virtue of the above Proposition, from the equality (8) we obtain the equality (5) where
ω is replaced by s. Therefore the limit

lim
h→0

An(h) (10)

is finite for any n.
Furthermore, from the equality (8) there follows the equality

lim
h→0

lim
n→∞

An(h) = s (11)

by virtue of Riemann’s first theorem [5, p. 319].
Along with this, during the proof of this Riemann’s first theorem an important fact is established

that consists in that the series
∞∑
k=0

ak

( sin kh

kh

)2
converges uniformly with respect to h, i.e. the limit

lim
n→∞

An(h) (12)

exists uniformly with respect to h ([3, Ch. XIII, §13.8.2], [4, Ch. 9, §9.62], [5, Ch. IX, §2, inequality
(2.6), which holds uniformly with respect to the family {(hi)} of all sequences (hi) tending to zero as
i→∞]).

Therefore by virtue of the Moore–Osgood Double Limit Theorem [2, p. 180] modified for the
continuous parameter h, the equalities

lim
n→∞

lim
h→0

An(h) = lim
h→0

lim
n→∞

An(h) = lim
h→0
n→∞

An(h) = s
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are fulfilled.
Thus the convergence of the series (1) to the value s implies the existence of the limit (7) and the

equality (9).

Necessity. If the double limit
lim
h→0
n→∞

An(h) = s

exists, then there exists the partial limit s equal to lim
n→∞

An(0). But lim
n→∞

An(0) =
∞∑
k=0

ak.

Therefore the equality (8) is fulfilled. The theorem is proved.
Finally, we give an application of the above theorem to trigonometric Fourier series. It is well

known that there is the summable Kolmogorov function K(x) on [−π, π], whose Fourier series

K ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) (13)

diverges at every point x ∈ [−π, π] [5, p. 310].
However, the series (13) is R-summable at almost all points x ∈ [−π, π] to values K(x) [1, Ch. I,

paragraph 69]. From the theorem that is proved above it follows.

Corollary. For the series (13) the following statements are true:
1. The equality

lim
h→0

lim
n→∞

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)
( sin kh

kh

)2]
= K(x)

is fulfilled for almost all points x ∈ [−π, π];
2. There is not a point x ∈ [−π, π] at which the double limit

lim
h→0
n→∞

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)
( sin kh

kh

)2]
would exist.
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NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF

THE GEGENBAUER–RIESZ POTENTIAL IN MODIFIED MORREY SPACES

V. S. GULIYEV1 AND E. J. IBRAHIMOV2

Abstract. In this paper we study the Gegenbauer–Riesz potential IαG (G-Riesz potential) generated

by Gegenbauer differential operator Gλ = (x2 − 1)1/2−λ d
dx

(x2 − 1)λ+1/2 d
dx

. We prove that the

operator IαG is bounded from the modified Morrey space L̃1,λ,γ(R+) to the weak modified Morrey

space WL̃q,λ,γ(R+) if and only if α
2λ+1

≤ 1− 1
q
≤ α

2λ+1−γ for 1 < q <∞ and from L̃p,λ,γ(R+) to

L̃q,λ,γ(R+) if and only if α
2λ+1

≤ 1
p
− 1

q
≤ α

2λ+1−γ for 1 < p < q < ∞. Obtained results are the

analogue of the results taken in [6].

1. Definitions and Auxiliary Results

The study of boundedness of the Riesz potential, singular integrals and commutators were studied
by lots of researchers in the last decades. Morrey estimates of such kind of operators is a more recent
problem and is still very popular. Just as an example we recall the study made in [1,2,8,12]. Our aim
is to continue this research focusing in necessary and sufficient conditions in suitable Morrey estimates
of some kind of Riesz potential. The Gegenbauer differential operator was introduced in [3]. About
properties of Gegenbauer differential operator we reference detail in [7].

In this paper, we consider the following generalized shift operator

Ach tf(ch x) =
Γ(λ+ 1

2 )

Γ(λ)Γ
(
1
2

) π∫
0

f(ch xch t− sh xsh t cosϕ)(sinϕ)2λ−1dϕ

generated by the Gegenbauer differential operator

Gλ = (x2 − 1)1/2−λ
d

dx
(x2 − 1)λ+1/2 d

dx
, x ∈ (1,∞), λ ∈

(
0, 1/2

)
.

Let H(x, r) = (x−r, x+r)∩ [0,∞), r ∈ (0,∞), x ∈ [0,∞). For all measurable set E ⊂ [0,∞), µE ≡
|E|λ =

∫
E
sh2λ tdt. In [10] the Gegenbaur maximal function (G-maximal function) is defined as

follows:

M
G
f(ch x) = sup

r>0

1

|(0, r)|λ

r∫
0

Ach t|f(ch x)|sh2λtdt.

Also we consider the following maximal function

Mµf(ch x) = sup
r>0

1

|H(x, r)|λ

∫
H(x,r)

|f(ch t)|sh2λtdt.

Symbol A . B denote that there exists a constant C > 0 with that 0 < A ≤ CB and C can
depends of some parameters. If A . B and B . A we write A ≈ B.

Note that, the following inequality is valid (see [10, Theorem 2.1]):

M
G
f(ch x) .Mµf(ch x). (1.1)

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.
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In what follows we need the following theorems to prove our main results (see [11, Theorem 2.1
and Theorem 2.2]).

Theorem A ([11, Theorem 2.1]). For all non-negative function g ∈ Lloc1,λ(R+) and 1 ≤ p < ∞ the
inequality ∫

H(x,r)

(Mµf(ch y))pg(ch y)sh2λydy ≤
∫

H(x,r)

|f(ch y)|pMµ(g(ch y))sh2λydy

is valid.

Theorem B ([11, Theorem 2.2]). For all α > 0 the following Chebyshev type inequality

|{y ∈ H(x, r) : Mµf(ch y) > α}|γ .
1

α

∫
H(x,r)

Mµf(ch y)sh2λydy

is valid.

For 1 ≤ p ≤ ∞ let Lp([0,∞), G) ≡ Lp,λ[0,∞) be the space of functions measurable on [0,∞) with
the finite norm

‖f‖Lp,λ =

( ∞∫
0

|f(ch t)|psh2λ tdt
) 1
p

, 1 ≤ p <∞,

‖f‖∞,λ = ess sup
t∈[0,∞)

|f(ch t)|, p =∞.

The following theorem was proved in [10].

Theorem C. a) If f ∈ L1,λ[0,∞), then for all α > 0 the inequality

|{x : Mµf(ch x) > α}|λ ≤
cλ
α
‖f‖L1,λ[0,∞)

holds, where cλ > 0 depends only on λ.
b) If f ∈ Lp,λ[0,∞), 1 < p ≤ ∞, then Mµf(ch x) ∈ Lp,λ[0,∞) and

‖Mµf‖Lp,λ[0,∞) ≤ cp,λ‖f‖Lp,λ[0,∞).

Corollary A. If f ∈ Lp,λ[0,∞), 1 ≤ p ≤ ∞, then

lim
r→0

1

|(0, r)|λ

∫
(0,r)

Aλch tf(ch x)sh2λ tdt = f(ch x)

for a.e., x ∈ [0,∞).

2. Some Embeddings into the G-Morrey and Modified G-Morrey Spaces

We introduce the following notation analogously in [4–6].

Definition 2.1. Let 1 ≤ p < ∞, 0 < λ < 1
2 , 0 ≤ γ ≤ 2λ + 1, [r]1 = min{1, r}. We denote by

Lp,λ,γ(R+, G), R+ = [0,∞), the G-Morrey space, and by L̃p,λ,γ(R+, G) the modified G-Morrey space,
as the set of locally integrable functions f(ch x), x ∈ R+ = [0,∞), with the finite norms

‖f‖Lp,λ,γ = sup
x∈R+,r>0

(
r−γ

∫
H(x,r)

|f(ch t)|psh2λtdt
) 1
p

,

‖f‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|f(ch t)|psh2λtdt
) 1
p

,

respectively.
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Note that L̃p,λ,0(R+, G) = Lp,λ,0(R+, G) = Lp,λ(R+, G). L̃p,λ,γ(R+, G) ⊂ Lp,λ,γ(R+, G)
∩Lp,λ(R+, G) and max{‖f‖Lp,λ,γ , ‖f‖Lp,λ} ≤ ‖f‖L̃p,λ,γ and if γ < 0 or γ > 2λ+1, then Lp,λ,γ(R+, G) =

L̃p,λ,γ(R+, G) = Θ, where Θ is the set of all functions equivalent to 0 on R+.

Definition 2.2. Let 1 ≤ p < ∞, 0 < λ < 1
2 , 0 ≤ γ ≤ 1 + 2λ. We denote by WLp,λ,γ(R+, G) the

weak G-Morrey space and by WL̃p,λ,γ(R+, G) the modified weak G-Morrey space as the set of locally
integrable functions f(ch x), x ∈ R+ with finite norms

‖f‖WLp,λ,γ = sup
r>0

r sup
t>0, x∈R+

(
t−γ |{y ∈ H(x, t) : |f(ch y)| > r}|γ

) 1
p ,

‖f‖WL̃p,λ,γ
= sup
r>0

r sup
t>0, x∈R+

(
[t]−γ1 |{y ∈ H(x, t) : |f(ch y)| > r}|γ

) 1
p

respectively.

Note that WLp,λ(R+, G) = WLp,λ,0(R+, G) = WL̃p,λ,0(R+, G), Lp,λ,γ(R+, G) ⊂ WLp,λ,γ(R+, G)

and ‖f‖WLp,λ,γ ≤ ‖f‖Lp,λ,γ , L̃p,λ,γ(R+, G) ⊂WLp,λ,γ(R+, G) and ‖f‖WL̃p,λ,γ
≤ ‖f‖L̃p,λ,γ .

We note that
Lp,λ,0(R+, G) = Lp,λ(R+, G),

and if γ < 0 or γ > 1 + 2λ, then Lp,λ,γ(R+, G) = Θ, where Θ is the set of all functions equivalent to
0 on R+.

Lemma 2.1. Let 1 ≤ p <∞, 0 < λ < 1
2 . Then

Lp,λ,1+2λ(R+, G) = L∞(R+)

and
c
−1/p
λ ‖f‖L∞ ≤ ‖f‖Lp,λ,1+2λ

≤ ‖f‖L∞ ,

where cλ = 2
1
2
−λ

(1+2λ)(1+ch 1)
1
2
−λ .

Proof. Let f ∈ L∞(R+). Then(
1

|(0, r)|λ

∫
(0,r)

Aλch tf(ch x)sh2λ tdt

)1/p

≤ ‖f‖L∞ .

Therefore f ∈ Lp,λ,1+2λ(R+, G) and

‖f‖Lp,λ,1+2λ
≤ ‖f‖L∞ .

Let f ∈ Lp,λ,1+2λ(R+, G). By the Lebesgue’s Theorem we have (see Section 1, Corollary A)

lim
r→0

1

|(0, r)|λ

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt = |f(ch x)|p.

Then

|f(ch x)| =
(

lim
r→0

1

|(0, r)|λ

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

≤ sup
0<r<1

( r1+2λ

|(0, r)|λ

)1/p
‖f‖Lp,λ,1+2λ

.

From the proof of the Lemma 1.1 in [10] for 0 < r < 1 we have

|(0, r)|λ ≥
2λ+

3
2

(1 + 2λ)(1 + ch 1)
1
2−λ

(
sh

r

2

)1+2λ

≥ 2
1
2−λ

(1 + 2λ)(1 + ch 1)
1
2−λ

r1+2λ.

Therefore f ∈ L∞(R+) and

‖f‖L∞ ≤ c
1/p
λ ‖f‖Lp,λ,1+2λ

. �
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Lemma 2.2. Let 1 ≤ p <∞, 0 < λ < 1
2 , 0 ≤ γ ≤ 1 + 2λ. Then

L̃p,λ,γ(R+, G) = Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G)

and

‖f‖L̃p,λ,γ = max
{
‖f‖Lp,λ,γ , ‖f‖Lp,λ

}
.

Proof. Let f ∈ L̃p,λ,γ(R+, G). Then

‖f‖Lp,λ = sup
x∈R+,r>0

( ∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

≤ sup
x∈R+,r>0

(
[r]−γ1

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

= ‖f‖L̃p,λ,γ

and

‖f‖Lp,λ,γ = sup
x∈R+,r>0

(
r−γ

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

≤ sup
x∈R+,r>0

(
[r]−γ1

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

= ‖f‖L̃p,λ,γ .

Therefore, f ∈ Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G) and the embedding

L̃p,λ,γ(R+, G) ⊂� Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G)

is valid.
Let f ∈ Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G). Then

‖f‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

= max

{
sup

x∈R+,0<r≤1

(
r−γ

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

,

sup
x∈R+,r>1

( ∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p}

≤ max
{
‖f‖Lp,λ,γ , ‖f‖Lp,λ

}
.

Therefore, f ∈ L̃p,λ,γ(R+, G) and the embedding Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G) ⊂� L̃p,λ,γ(R+, G) is
valid.

Thus L̃p,λ,γ(R+, G) = Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G).
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Let now f ∈ L̃p,λ,γ(R+, G). Then

‖f‖Lp,λ,γ = sup
x∈R+,r>0

(
r−γ

∫
(0,r)

Aγch t|f(ch x)|psh2λ tdt
)1/p

= sup
x∈R+,r>0

(
r−1[r]1

) γ
p

(
[r]−γ1

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

= sup
x∈R+,r>0

(
[r]−γ1

∫
(0,r)

Aλch t|f(ch x)|psh2λ tdt
)1/p

= ‖f‖L̃p,λ,γ . �

3. Hardy-Littlewood-Sobolev Inequality in Modified G-Morrey Spaces

In this section we study the L̃p,λ,γ-boundedness of the G-maximal operator Mµ.

Theorem 3.1. 1) If f ∈ L̃1,λ,γ(R+, G), 0 ≤ γ < 1 + 2λ, then Mµf ∈WL̃1,λ,γ and

‖Mµf‖WL̃1,λ,γ
. ‖f‖L̃1,λ,γ

.

2) If f ∈ L̃p,λ,γ , 1 < p <∞, 0 ≤ γ < 1 + 2λ, then Mµf ∈ L̃p,λ,γ(R+, G) and

‖Mµf‖L̃p,λ,γ . ‖f‖L̃p,λ,γ .

Proof. 1) From the definition of weak modified Morrey spaces

‖Mµf‖WL̃1,λ,γ
= sup

r>0
r sup
t>0, x∈R+

(
[t]−γ1 |{y ∈ H(x, t) : Mµf(ch y) > r}|γ

) 1
p .

Using the Theorem B and also Theorem A at p = 1 and g(ch y) ≡ 1 we obtain

‖Mµf‖WL̃1,λ,γ
. sup
t>0, x∈R+

(
[t]−γ1

∫
H(x,t)

|f(ch y)|sh2λydy
)

= ‖f‖L̃1,λ,γ
.

Assertion 2) follows from Theorem A at g(ch y) ≡ 1. �

We consider of the Gegenbauer–Riesz potential (G - Riesz potential) (see [10])

IαGf(ch x) =
1

Γ
(
α
2

) ∞∫
0

( ∞∫
0

r
α
2−1hr(ch t)dr

)
Ach tf(ch x)sh2λtdt,

where

hr(ch t) =

∞∫
1

e−γ(γ+2λ)rPλγ (ch t)(γ2 − 1)λ−
1
2 dγ

and Pλγ is eigenfunction of operator Gλ.
The following Hardy–Littlewood–Sobolev inequality in modified G-Morrey spaces is valid.

Theorem 3.2. Let 0 ≤ α < 1 + 2λ, 0 ≤ γ < 2λ+ 1− α and 1 ≤ p < 2λ+1−γ
α .

1) If 1 < p < 2λ+1−γ
α , then the condition α

2λ+1 ≤
1
p −

1
q ≤

α
2λ+1−γ is necessary and sufficient for

the boundedness of the operator IαG from L̃p,λ,γ(R+, G) to L̃q,λ,γ(R+, G).

2) If p = 1 < 2λ+1−γ
α , then the condition α

2λ+1 ≤ 1 − 1
q ≤

α
2λ+1−γ is necessary and sufficient for

the boundedness of the operator IαG from L̃1,λ,γ(R+, G) to WL̃q,λ,γ(R+, G).
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Proof. 1) Sufficiency. Let 0 ≤ α < 1+2λ, 0 ≤ γ < 2λ+1−γ, f ∈ L̃p,λ,γ(R+, G) and 1 < p < 2λ+1−γ
α .

For IαG take place the following estimate (see [10, the proof of Corollary 3.1])

|IαGf(ch x)| .
∞∫
0

Ach t|f(ch x)| (sh x)α−2λ−1 sh2λtdt

=

∞∫
0

Ach t(sh x)α−2λ−1|f(ch t)|sh2λtdt. (3.1)

From (3.1) we have

|IαGf(ch x)| .
( r∫

0

+

∞∫
r

)
Ach t(sh x)α−2λ−1|f(ch t)|sh2λtdt

= A1(x, r) +A2(x, r).

We consider A1(x, r). Let 0 < r < 2, then by (1.1) we obtain

|A1(x, r)| .
r∫

0

Ach t|f(ch x)|sh2λt
(sh t)2λ+1−α dt .

∞∑
j=0

2−jr∫
2−j−1r

Ach t|f(ch x)|sh2λt
(sh t)2λ+1−α dt

.
∞∑
j=0

(
sh

r

2j+1

)α(
sh

r

2j+1

)−2λ−1 2−jr∫
0

Ach t|f(ch x)|sh2λtdt

. (sh r)αM
G
f(ch x)

( ∞∑
j=0

2−(j+1)α
)
. (sh r)αMµf(ch x). (3.2)

Let 2 ≤ r <∞ and 0 < α < 4λ. Then (see [10, the proof of Corollary 3.1])

A1(x, r) .

r∫
0

Aλch t|f(ch x)|sh2λtdt
(ch t)2λ+1−α

≤
r∫

0

Aλch t|f(ch x)|sh2λtdt
(ch t)4λ−α

≤
r∫

0

Aλch t|f(ch x)|sh2λtdt
(sh t)4λ−α

≤
∞∑
j=0

2−jr∫
2−j−1r

Aλch t|f(ch x)|sh2λtdt
(sh t)4λ−α

≤
∞∑
j=0

(
sh

r

2j+1

)α(
sh

r

2j+1

)−4λ 2−jr∫
0

Aλch t|f(ch x)|sh2λtdt

.M
G
f(ch x)

∞∑
j=0

(
sh

r

2j+1

)α
≤ (sh r)αMµf(ch x)

∞∑
j=0

2−(j+1)α

. (sh r)αMµf(ch x), 0 < α < 4λ.
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Now let 4λ ≤ α < 2λ+ 1. From the proof of Corollary 3.1 and [10] it follows that |IαGf(ch x)| . 1,
then we have

|A1(x, r)| .
r∫

0

Aλch t|f(ch x)|sh2λtdt =

(
sh r2

)4λ
(
sh r2

)4λ
r∫

0

Aλch t|f(ch x)|sh2λtdt

≤
(
sh
r

2

)4λ
M

G
f(ch x) . (sh r)αMµf(ch x), 4λ ≤ α < 2λ+ 1.

Thus for 0 < r <∞ we have

A1(x, r) . (sh r)αMµf(ch x), 0 < α < 2λ+ 1. (3.3)

We consider A2(x, r). From (3.1) and Hölder’s inequality we get

A2(x, r) .

( ∞∫
r

(Ach t|f(ch x)|)p(sh t)−βsh2λtdt
) 1
p

×
( ∞∫
r

(sh t)

(
β
p+α−2λ−1

)
p′

sh2λtdt

) 1
p′

= A21 ·A22. (3.4)

Let γ < β < 2λ+ 1− pα. Taking into account the inequality (see [9, Lemma 2])

‖Ach tf‖L̃p,λ,γ ≤ ‖f‖L̃p,λ,γ

we obtain

A21 .
( ∞∑
j=0

2j+1r∫
2jr

(Ach t|f(ch x)|)p(sh t)−βsh2λtdt
) 1
p

. ‖Ach tf‖L̃p,λ,γ
( ∞∑
j=0

[2j+1r]γ1
(sh 2jr)β

) 1
p

. ‖f‖L̃p,λ,γ



(
(2r)γ

[
log2

1
2r

]
∑
j=0

2(γ−β)j +
∞∑

j=

[
log2

1
2r

]
+1

2−βj
) 1
p

, 0 < r < 1
2 ,

( ∞∑
j=0

2−βj
) 1
p

, r ≥ 1
2

. (sh r)−
β
p ‖f‖L̃p,λ,γ

{
(rγ + rβ), 0 < r < 1

2 ,

1, r ≥ 1
2

. ‖f‖L̃p,λ,γ

{
(r

γ
p (sh r)−

β
p , 0 < r < 1

2 ,

(sh r)−β , r ≥ 1
2

. [2r]
γ
p

1 (sh r)−
β
p ‖f‖L̃p,λ,γ . (3.5)
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For A22 we have

A22 =

( ∞∫
r

(sh t)

(
β
p+α−2λ−1

)
p′sh2λtdt

) 1
p′

≤
( ∞∫
r

(sh t)

(
β
p+α−2λ−1

)
p′sh2λtd(sh t)

) 1
p′

. (sh r)
β
p+α−2λ−1+

2λ+1
p′ . (sh r)

β
p+α−2λ−1+(2λ+1)(1− 1

p )

. (sh r)
β
p+α−

2λ+1
p . (3.6)

Taking into account (3.5) and (3.6) on (3.4) we obtain

A2(x, r) . [2r]
γ
p

1 (sh r)α−
2λ+1
p ‖f‖L̃p,λ,γ . (3.7)

Thus from (3.3) and (3.7) we get

|IαGf(ch x)| .
(

[r]
γ
p

1 (sh r)α−
2λ+1
p ‖f‖L̃p,λ,γ + (sh r)αMµf(ch x)

)
. min

{
(sh r)α+

γ−2λ−1
p ‖f‖L̃p,λ,γ + (sh r)αMµf(ch x),

(sh r)α−
2λ+1
p ‖f‖L̃p,λ,γ + (sh r)αMµf(ch x)

}
, r > 0. (3.8)

The right-hand side attains its minimum at

sh r =
(2λ+ 1− pα

pα

‖f‖L̃p,λ,γ
Mµf(ch x)

) p
2λ+1

(3.9)

and

sh r =
(2λ+ 1− γ − pα

pα

‖f‖L̃p,λ,γ
Mµf(ch x)

) p
2λ+1−γ

. (3.10)

Taking into account (3.9) and (3.10) in (3.8) we obtain

|IαGf(ch x)| . min

{(Mµf(ch x)

‖f‖L̃p,λ,γ

)1− pα
2λ+1

,
(Mµf(ch x)

‖f‖L̃p,λ,γ

)1− pα
2λ+1−γ

}
‖f‖L̃p,λ,γ .

Then

|IαGf(ch x)| . (Mµf(ch x))
p
q ‖f‖1−

p
q

L̃p,λ,γ
.

Hence, by Theorem 3.1, we have∫
H(x,r)

|IαGf(ch x)|qsh2λtdt . ‖f‖q−p
L̃p,λ,γ

∫
H(x,r)

(Mµf(ch t))psh2λtdt

. [r]γ1‖f‖
q

L̃p,λ,γ
.

From this it follows that

‖IαGf‖L̃q,λ,γ . ‖f‖L̃p,λ,γ ,

i.e., IαG is bounded from L̃p,λ,γ(R+, G) to L̃q,λ,γ(R+, G).

Necessity. Let 1 < p < 2λ+1−γ
α , f ∈ L̃p,λ,γ(R+, G) and IαG be bounded from L̃p,λ,γ(R+, G) to

L̃q,λ,γ(R+, G).
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Let the function f(ch x) be non-negative and monotonically increasing on R+. The delates function
ft(ch x) is defined as follows{

f(ch(th t)x) ≤ ft(ch x) ≤ f(ch(cth t)x), 0 < t < 1,

f(ch(th t)x) ≤ ft(ch x) ≤ f(ch(sh t)x), 1 ≤ t <∞.
(3.11)

We suppose [t]1,+ = max{1, t}.
From (3.11) we have at 0 < t < 1

‖ft‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|ft(ch y)|psh2λydy
) 1
p

≤ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|f(ch(cth t) y)|psh2λydy
) 1
p

[(cth t)y = u, dy = (th t)du]

= (th t)
1
p sup
x∈R+,r>0

(
[r]−γ1

∫
H(xcth t,rcth t)

|f(ch u)|psh2λ(th t)udu

) 1
p

≤ (th t)
2λ+1
p sup

x∈R+,r>0

(
[r]−γ1

∫
H(xcth t,rcth t)

|f(ch u)|psh2λudu
) 1
p

= (sh t)
2λ+1
p sup

r>0

(
[r cth t]1

[r]1

) γ
p

sup
x∈R+,r>0

(
[r cth t]−γ1

∫
H(xcth t,rcth t)

|f(ch u)|psh2λudu
) 1
p

= (th t)
2λ+1
p [cth t]

γ
p

1,+‖f‖L̃p,λ,γ ≤ (th t)
2λ+1−γ

p ‖f‖L̃p,λ,γ

=
(sh t
ch t

) 2λ+1−γ
p ‖f‖L̃p,λ,γ .

1

(ch t)
2λ+1−γ

p −α
‖f‖L̃p,λ,γ

. (sh t)α+
γ−2λ−1

p ‖f‖L̃p,λ,γ . (3.12)

On the other hand

‖ft‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|ft(ch y)|psh2λydy
) 1
p

≥ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|f(ch(th t)y)|psh2λydy
) 1
p

[(th t)y = u, dy = (cth t)du]

= (cth t)
1
p sup
x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|f(ch u)|psh2λ(cth t)udu

) 1
p

≥ (cth t)
2λ+1
p sup

x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|f(ch u)|psh2λudu
) 1
p

= (cth t)
2λ+1
p

(
sup
r>0

[rth t]1
[r]1

) γ
p

‖f‖L̃p,λ,γ

= (cth t)
2λ+1
p [th t]

γ
p

1 ‖f‖L̃p,λ,γ ≥ (cth t)
2λ+1
p −

γ
p−α‖f‖L̃p,λ,γ

= (cth t)
2λ+1−γ

p −α‖f‖L̃p,λ,γ ≥ (sh t)α+
γ−2λ−1

p ‖f‖L̃p,λ,γ . (3.13)
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Now, let 1 ≤ t <∞, then from (3.11) we obtain

‖ft‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|ft(ch y)|psh2λydy
) 1
p

≥ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|f(ch(cth t) y)|psh2λydy
) 1
p

[(th t)y = u, dy = (cth t)du]

= (cth t)
1
p sup
x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|f(ch u)|psh2λ(cth t)udu

) 1
p

≥ (cth t)
2λ+1
p sup

x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|f(ch u)|psh2λudu
) 1
p

= (cth t)
2λ+1
p sup

r>0

(
[rth t]1

[r]1

) γ
p

‖f‖L̃p,λ,γ

= (cth t)
2λ+1
p [th t]γ1‖f‖L̃p,λ,γ ≥ (cth t)

2λ+1−γ
p −α‖f‖L̃p,λ,γ

≥ (sh t)α+
γ−2λ−1

p ‖f‖L̃p,λ,γ . (3.14)

On the other hand

‖ft‖L̃p,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|ft(ch y)|psh2λydy
) 1
p

≤ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|f(ch(sh t)y)|psh2λydy
) 1
p [

(sh t)y = u, dy =
du

sh t

]

= (sh t)−
1
p sup
x∈R+,r>0

(
[r]−γ1

∫
H(xsh t,rsh t)

|f(ch u)|psh2λ u

sh t
du

) 1
p

≤ (sh t)−
2λ+1
p sup

x∈R+,r>0

(
[r]−γ1

∫
H(xsh t,rsh t)

|f(ch u)|psh2λudu
) 1
p

= (sh t)−
2λ+1
p

(
sup
r>0

[rsh t]1
[r]1

) γ
p

‖f‖L̃p,λ,γ

= (sh t)−
2λ+1
p [sh t]

γ
p

1,+‖f‖L̃p,λ,γ ≤ (sh t)α+
γ−2λ−1

p ‖f‖L̃p,λ,γ . (3.15)

From (3.12)–(3.15) for all 0 < t <∞ we obtain

‖ft‖L̃p,λ,γ ≈ (sh t)α+
γ−2λ−1

p ‖f‖L̃p,λ,γ . (3.16)

According to the define of G-potential we can write

IαGft(ch x) =
1

Γ
(
α
2

) ∞∫
0

( ∞∫
0

u
α
2−1hu(chv)du

)
Achvft(ch x)sh2λvdv.

From this and (3.11) for 0 < t < 1 we have

‖IαGft‖L̃q,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGft(ch y)|qsh2λydy
) 1
q
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≤ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGf(ch(cth t) y)|qsh2λydy
) 1
q

[(cth t)y = z, dy = (th t)dz]

= (th t)
1
q sup
x∈R+,r>0

(
[r]−γ1

∫
H(xcth t,rcth t)

|IαGf(ch z)|qsh2λ(th t)zdz

) 1
q

≤ (th t)
2λ+1
q sup

x∈R+,r>0

(
[r]−γ1

∫
H(xcth t,rcth t)

|IαGf(ch z)|qsh2λzdz
) 1
q

= (th t)
2λ+1
q

(
sup
r>0

[rcth t]1
[r]1

) γ
q

‖IαGf‖L̃q,λ,γ

= (th t)
2λ+1
q [cth t]

γ
q

1 ‖IαGf‖L̃q,λ,γ
≤ (cth t)

γ−2λ−1
q ‖IαGf‖L̃q,λ,γ ≤ (sh t)

γ−2λ−1
q ‖IαGf‖L̃q,λ,γ . (3.17)

On the other hand

‖IαGft‖L̃q,λ,γ = sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGft(ch y)|qsh2λydy
) 1
q

≥ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGf(ch(th t)y)|qsh2λydy
) 1
q

[(th t)y = z, dy = (cth t)dz]

= (cth t)
1
q sup
x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|IαGf(ch z)|qsh2λ(cth t)zdz

) 1
q

≥ (cth t)
2λ+1
q

(
sup
r>0

[rth t]1
[r]1

) γ
q

‖IαGf‖L̃q,λ,γ

≥ (cth t)
2λ+1
q [th t]γ1‖IαGf‖L̃q,λ,γ

≥
( ch t
sh t

) 2λ+1−γ
q ‖IαGf‖L̃q,λ,γ ≥ (sh t)

γ−2λ−1
q ‖IαGf‖L̃q,λ,γ . (3.18)

Combining (3.17) and (3.18) we obtain

‖IαGft‖L̃q,λ,γ ≈ (sh t)
γ−2λ−1

q ‖IαGf‖L̃q,λ,γ , 0 < t < 1. (3.19)

Now we consider the case, then 1 ≤ t <∞. From (3.11) we have

‖IαGft‖L̃q,λ,γ ≥ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGf(ch((th t)y))|qsh2λydy
) 1
q

[(th t)y = z, dy = (cth t)dz]

= (cth t)
1
q sup
x∈R+,r>0

(
[r]−γ1

∫
H(xth t,rth t)

|IαGf(ch z)|qsh2λ(cth t)zdz

) 1
q

≥ (cth t)
2λ+1
q

(
sup
r>0

[r th t]1
[r]1

) γ
q

‖IαGf‖L̃q,λ,γ

≥ (cth t)
2λ+1
q [th t]γ1‖IαGf‖L̃q,λ,γ
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≥
( ch t
sh t

) 2λ+1−γ
q ‖IαGf‖L̃q,λ,γ ≥ (sh t)

γ−2λ−1
q ‖IαGf‖L̃q,λ,γ . (3.20)

On the other hand

‖IαGft‖L̃q,λ,γ ≤ sup
x∈R+,r>0

(
[r]−γ1

∫
H(x,r)

|IαGf(ch(sh t)y)|qsh2λydy
) 1
q

[
(sh t)y = z, dy =

dz

sh t

]
= (sh t)−

1
q sup
x∈R+,r>0

(
[r]−γ1

∫
H(xsh t,rsh t)

|IαGf(ch z)|qsh2λ
( z

sh t

)
dz

) 1
q

= (sh t)−
2λ+1
q sup

x∈R+,r>0

(
[r]−γ1

∫
H(xsh t,r sh t)

|IαGf(ch z)|qsh2λdz
) 1
q

= (sh t)−
2λ+1
q

(
sup
r>0

[r sh t]1
[r]1

) γ
q

‖IαGf‖L̃q,λ,γ

≤ (sh t)−
2λ+1
q [th t]γ1,+‖IαGf‖L̃q,λ,γ

≤ (sh t)−
2λ+1
q ‖IαGf‖L̃q,λ,γ ≤ (sh t)

γ−2λ−1
q ‖IαGf‖L̃q,λ,γ . (3.21)

From (3.20) and (3.21) it follows that

‖IαGft‖L̃q,λ,γ ≈ (sh t)
γ−2λ−1

q ‖IαGf‖L̃q,λ,γ , 1 ≤ t <∞. (3.22)

Now from (3.19) and (3.22) we have

‖IαGft‖L̃q,λ,γ ≈ (sh t)
γ−2λ−1

q ‖IαGf‖L̃q,λ,γ , 0 < t <∞. (3.23)

Since IαG is bounded from L̃p,λ,γ(R+, G) to L̃q,λ,γ(R+, G), i.e.

‖IαGf‖L̃q,λ,γ . ‖f‖L̃p,λ,γ ,

then taking into account (3.23) and (3.16) we obtain

‖IαGf‖L̃q,λ,γ ≈ (sh t)
2λ+1−γ

q ‖IαGft‖L̃q,λ,γ . (sh t)
2λ+1−γ

q ‖ft‖L̃p,λ,γ
. (sh t)α+(γ−2λ−1)( 1

p−
1
q )‖ft‖L̃p,λ,γ

.

{
(sh t)α−(2λ+1)( 1

p−
1
q ), 0 < t < 1,

(sh t)α+(γ−2λ−1)( 1
p−

1
q ), 0 ≤ t <∞.

If 1
p −

1
q <

α
2λ+1 , then in the case t→ 0 we have ‖IαGf‖L̃q,λ,γ = 0 for all f ∈ L̃q,λ,γ(R+, G).

As well as if 1
p −

1
q >

α
2λ+1−γ , then t→∞ we obtain ‖IαGf‖L̃p,λ,γ = 0 for all f ∈ L̃p,λ,γ(R+, G).

Therefore α
2λ+1 ≤

1
p −

1
q ≤

α
2λ+1−γ .

2) Sufficiency. Let f ∈ L̃1,λ,γ(R+, G), then

|{y ∈ H(x, r) : |IαGf(ch y)| > 2β}|γ
≤ |{y ∈ H(x, r) : A1(y, r) > β}|γ + |{y ∈ H(x, r) : A2(y, r) > β}|γ .

Also

A2(y, r) =

∞∫
r

Ach t(sh x)α−2λ−1|f(ch t)|sh2λtdt
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=

∞∑
j=0

2j+1r∫
2jr

(Ach t|f(ch x)|)(sh t)α−2λ−1sh2λtdt

≤ ‖Ach tf‖L̃1,λ,γ

∞∑
j=0

[2j+1r]γ1
(2jr)2λ+1−α

= rα−2λ−1‖f‖L̃1,λ,γ


(2r)γ

[
log2

1
2r

]∑
j=0

2(α+γ−2λ−1)j +
∞∑

j=
[
log2

1
2r

]
+1

2(α−2λ−1)j , 0 < r < 1
2 ,

∞∑
j=0

2(α−2λ−1)j , r ≥ 1
2

. rα−2λ−1‖f‖L̃1,λ,γ

{
rγ + r2λ+1−α, 0 < r < 1

2 ,

1, r ≥ 1
2

. ‖f‖L̃1,λ,γ

{
rα+γ−2λ−1, 0 < r < 1

2 ,

rα−2λ−1, r ≥ 1
2 .

. [2r]γ‖f‖L̃1,λ,γ
. (3.24)

Taking into account the inequality (3.2) and Theorem B we obtain at 0 < r < 1∣∣∣{y ∈ H(x, r) : A1(y, r) > β
}∣∣∣
γ

.
∣∣∣{y ∈ H(x, r) : Mµf(ch y) >

β

C shαr

}∣∣∣
γ
.
shαr

β
[r]γ1‖f‖L̃1,λ,γ

. (3.25)

And from (3.3) and Theorem B we have at 1 ≤ r <∞∣∣∣{y ∈ H(x, r) : A1(y, r) > β
}∣∣∣
γ

.
∣∣∣{y ∈ H(x, r) : Mµf(ch y) >

β

C(sh r)α

}∣∣∣
γ
.

(sh r)α

β
[r]γ1‖f‖L̃1,λ,γ

. (3.26)

From (3.25) and (3.26) we obtain, that for all 0 < r <∞∣∣∣{y ∈ H(x, r) : A1(y, r) > β
}∣∣∣
γ
.

(sh r)α

β
[r]γ1‖f‖L̃1,λ,γ

. (3.27)

If [2r]γ1(sh r)α−2λ−1‖f‖L̃1,λ,γ
= β, then from (3.24) we obtain that |A2(y, r)| . β and consequently,

|{y ∈ H(x, r) : A2(y, r) > β}|γ = 0. Then by 2r < 1, β = (sh r)γ+α−2λ−1‖f‖L̃1,λ,γ
and from (3.27) we

have ∣∣∣{y ∈ H(x, r) : |IαGf(ch y)| > 2β
}∣∣∣
γ
.

(sh r)α

β
[r]γ1‖f‖L̃1,λ,γ

= (sh r)2λ−1−γ [r]γ1 =
(
β−1‖f‖L̃1,λ,γ

) 2λ+1−γ
2λ+1−γ−α

[r]γ1 . (3.28)

And for 2r ≥ 1, β = (sh r)α−2λ−1‖f‖L̃1,λ,γ
and from (3.26) we have∣∣∣{y ∈ H(x, r) : |IαGf(ch y)| > 2β

}∣∣∣
γ
.

(sh r)α

β
[r]γ1‖f‖L̃1,λ,γ

= [r]γ1(sh r)2λ+1 =
(
β−1‖f‖L̃1,λ,γ

) 2λ+1
2λ+1−α

[r]γ1 . (3.29)

Finally from (3.28) and (3.29) we have∣∣∣{y ∈ H(x, r) : |IαGf(ch y)| > 2β
}∣∣∣
γ

. [r]γ1 min
{(
β−1‖f‖L̃1,λ,γ

) 2λ+1
2λ+1−α

,
(
β−1‖f‖L̃1,λ,γ

) 2λ+1−γ
2λ+1−γ−α

}
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. [r]γ1

(
β−1‖f‖L̃1,λ,γ

)q
,

where by condition of the theorem

2λ+ 1

2λ+ 1− α
≤ q ≤ 2λ+ 1− γ

2λ+ 1− γ − α
⇔ α

2λ+ 1
≤ 1− 1

q
≤ α

2λ+ 1− γ
.

Necessity. Preliminarily we established the estimates for ‖IαGf‖WL̃q,λ,γ
. From (3.11) for 0 < t < 1 we

have

‖IαGft‖WL̃q,λ,γ
≥ sup

r>0
r sup
x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x,u):|IαGf(ch(th t)y)|>r}

sh2λzdz
) 1
q

[(th t)y = z, dy = (cth t)dz]

= (cth t)
1
q sup
r>0

r sup
x∈R+,u>0

(
[u]−γ1

∫
{y∈H(xth t,uth t):|IαGf(ch z)|>rth t}

sh2λ(cth t)zdz
) 1
q

= (cth t)
1
q sup
u>0

( [uth t]1
[u]1

) γ
q

sup
r>0

rth t

× sup
x∈R+,u>0

(
[uth t]−γ1

∫
{y∈H(xth t,uth t):|IαGf(ch z)|>rth t}

sh2λ(cth t)zdz
) 1
q

≥ (cth t)
2λ+1
q [th t]

γ
q

1

× sup
r>0

rth t sup
x∈R+,u>0

(
[uth t]1−γ−2λ1

∫
{y∈H(xth t,uth t):|IαGf(ch z)|>rth t}

sh2λsh2λzdz
) 1
q

≥ (th t)−
2λ+1
q [th t]

γ
q

1 ‖IαGf‖WL̃q,λ,γ

≥ (th t)
γ−2λ−1

q ‖IαGf‖WL̃q,λ,γ
≥ (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

.

On the other hand from (3.11) we have

‖IαGft‖WL̃q,λ,γ
≤ sup

r>0
sup

x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x,u):|IαGf(ch(cth t) y)|>r}

sh2λydy
) 1
q

[(cth t)y = z, dy = (th t)dz]

= (th t)
1
q sup
r>0

sup
x∈R+,u>0

(
[u]−γ1

∫
{y∈H(xcth t,u cth t):|IαGf(ch z)|>r}

sh2λ(th t)zdz
) 1
q

≤ (th t)
2λ+1
q sup

u>0

( [u cth t]1
[u]1

) γ
q ‖IαGf‖WL̃q,λ,γ

= (th t)
2λ+1
q [cth t]

γ
q

1,+‖IαGf‖WL̃q,λ,γ

≤ (th t)
2λ+1−γ

q ‖IαGf‖WL̃q,λ,γ
≤ (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

. (3.30)

From (3.34) and (3.30) it follows that

‖IαGft‖WL̃q,λ,γ
. (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

. (3.31)

Now we consider the case then 1 ≤ t <∞. From (3.11) we have

‖IαGft‖WL̃q,λ,γ
≥ sup

r>0
r sup
x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x,u):|IαGf(ch(th t)y)|>r}

sh2λydy

) 1
q

[(th t)y = z, dy = (cth t)dz]
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= (cth t)
1
q sup
r>0

sup
x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x th t,u th t):|IαGf(ch z)|>r}

sh2λ(cth t)zdz

) 1
q

= (cth t)
2λ+1
q sup

r>0
r th t sup

x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x th t,u th t):|IαGf(ch z)|>r th t}

sh2λzdz

) 1
q

= (cth t)
2λ+1
q sup

r>0

( [u th t]1
[u]1

) γ
q ‖IαGf‖WL̃q,λ,γ

= (cth t)
2λ+1
q [th t]

γ
q

1 ‖IαGf‖WL̃q,λ,γ

≥ (th t)
γ−2λ−1

q ‖IαGf‖WL̃q,λ,γ
≥ (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

.

On the other hand from (3.11) we get

‖IαGft‖WL̃q,λ,γ
≤ sup

r>0
sup

x∈R+,u>0

(
[u]−γ1

∫
{y∈H(x,u):|IαGf(ch(sh t)y)|>r}

sh2λydy

) 1
q

[
(sh t)y = z, dy =

dz

sh t

]
= (sh t)−

1
q sup
r>0

r sup
x∈R+,u>0

(
[u]1−γ−2λ1

∫
{y∈H(xsh t,ush t):|IαGf(ch z)|>r}

sh2λ
z

sh t
dz

) 1
q

≤ (sh t)−
2λ+1
q sup

r>0
r sh t sup

x∈R+,u>0

(
[u]1−γ−2λ1

∫
{y∈H(xsh t,ush t):|IαGf(ch z)|>r sh t}

sh2λzdz

) 1
q

= (sh t)−
2λ+1
q sup

u>0

( [ush t]1
[u]1

) γ+2λ−1
q ‖IαGf‖WL̃q,λ,γ

≤ (sh t)−
2λ+1
q [sh t]

γ
q

1,+‖IαGf‖WL̃q,λ,γ

≤ (sh t)
γ−2λ−1

q ‖IαGf‖WL̃q,λ,γ
. (3.32)

From (3.31) and (3.32) for 1 ≤ t <∞ we have

‖IαGft‖WL̃q,λ,γ
. (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

. (3.33)

Combining (3.31) and (3.33) for all 0 < t <∞ we obtain

‖IαGft‖WL̃q,λ,γ
≈ (sh t)

γ−2λ−1
q ‖IαGf‖WL̃q,λ,γ

. (3.34)

From the boundedness IαG from L̃1,λ,γ(R+, G) to WL̃1,λ,γ(R+, G) and from (3.16) and (3.34) we have

‖IαGf‖WL̃q,λ,γ
. (sh t)

2λ+1−γ
q (sh t)α+γ−2λ−1‖f‖L̃1,λ,γ

. (sh t)α+(2λ−1)(1− 1
q )(sh t)γ(1−

1
q )‖f‖L̃1,λ,γ

. ‖f‖L̃1,λ,γ

{
(sh t)α−(2λ+1)(1− 1

q ), 0 < t < 1,

(sh t)α+(γ−2λ−1)(1− 1
q ), 1 ≤ t <∞.

If 1− 1
q <

α
2λ+1 , then for t→ 0 we have ‖IαGf‖WL̃q,λ,γ

= 0 for all f ∈ L̃1,λ,γ(R+, G).

Similarly, if 1− 1
q >

α
2λ+1 , then for t→∞ we obtain ‖IαGf‖WL̃q,λ,γ

= 0 for all f ∈ L̃1,λ,γ(R+, G).

Therefore, α
2λ+1 ≤ 1− 1

q ≤
α

2λ+1−γ . �
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ASYMPTOTIC AND QUALITATIVE ANALYSIS OF THE MULTIDIMENSIONAL

GKP AND 3-DNLS EQUATION SOLUTIONS FOR THEIR CLASSIFICATION

O. A. KHARSHILADZE1 AND V. YU. BELASHOV2

Abstract. In this paper, basing on our results obtained by us earlier, we consider an approach
to study of structure of possible multidimensional solutions of the Belashov-Karpman (BK) system

which includes as partial cases the generalized Kadomtsev–Petviashvili (GKP) equation and the 3D

derivative nonlinear Schrödinger (3-DNLS) equation. For the GKP equation with due account of the
arbitrary nonlinearity exponent we study the solutions asymptotes along the direction of the wave

propagation. The problem of the asymptotic behavior of the solutions of the 3-DNLS equation along
the direction of the wave propagation is more simple one because we can write at once its exact

solutions in the explicit form in one-dimensional approximation on the basis of the results known

earlier. We also present some considerations on constructing of the phase-plane portraits in the
8-dimensional phase space for the GKP equation on the basis of the results of qualitatively analysis

of the generalized equations of the KdV-class.

1. Basic Equations

In this paper we study the types and structure of possible multidimensional solitary waves forming
on the low-frequency branch of oscillations in fluids and plasma which are described by the Belashov-
Karpman (BK) class of equations [4]

∂tu+A(t, u)u = f, f = κ

x∫
−∞

∆⊥udx, ∆⊥ = ∂2
y + ∂2

z (1)

which with the operator

A(t, u) = αu∂x − ∂2
x(µ− β∂x − δ∂2

x − γ∂3
x) (2)

turns into the generalized Kadomtsev-Petviashvili (GKP) equation [10], and in the case, when operator

A(t, u) = 3s|p|2u2∂x − ∂2
x(iλ+ ν) (3)

eq. (1) turns into the 3-dimensional derivative nonlinear Schrödinger (3-DNLS) equation, where
p = (1 + ie), and e is “an eccentricity” of the polarization ellipse of the wave [4, 10]. The upper and
lower signs of λ = ±1 correspond to the right and left circularly polarized wave, respectively; sign of
nonlinearity is accounted by coefficient s = sgn(1− p) = ±1 in nonlinear term.

The sets of equations (1), (2) and (1), (3) are not completely integrable ones, and a problem of ex-
istence of multidimensional stable soliton solutions and their structure requires especial investigation.
In [6] we studied the problem of stability of possible multidimensional solutions for two particular
cases of the BK system mentioned above. Here, we investigate the structure of possible solutions
of the sets of equations (1), (2) and (1), (3) using the methods of both qualitative and asymptotic
analysis basing on the results for the generalized equations of the KdV-class obtained in [9].

Consider at first the GKP equation and then discuss the analogous problem for the 3-DNLS equa-
tion. Let us write the GKP equation in form [10]:

∂η(∂tu+ αu∂ηu− µ∂2
ηu+ β∂3

ηu+ δ∂4
ηu+ γ∂5

ηu) = κ∆⊥u (4)

∆⊥ = ∂2
ζ1 + ∂2

ζ2 ,

2010 Mathematics Subject Classification. 34C05, 35B40, 35K40.
Key words and phrases. Multidimensional nonlinear waves; Multidimensional solitons; Generalized KP and 3-DNLS

equations; Asymptotic analysis; Qualitative analysis; Multidimensional phase space; Classification of solutions.
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where ζ1 and ζ2 are the transverse coordinates. At µ = δ = γ = 0 equation (4) is the classic
KP equation which is the completely integrable Hamiltonian system and has in case ∆⊥ = ∂2

ζ1
the

solutions in form of the 1-dimensional (for βκ < 0) or 2-dimensional (for βκ > 0) solitons (see [10]).
The structure and the dynamics of the solutions of model (4) nonintegrable analytically in case δ = 0
has been investigated in detail in [2, 7] where it was shown that at µ = 0 in dependence on the
signs of coefficients β, γ and κ the 2-dimensional and 3-dimensional soliton type solutions with the
monotonous or oscillatory asymptotics can take place which at the presence of the “viscous-type”
dissipation in the medium (µ > 0) lose their symmetry and damp with evolution (see [10] for details).
In [9] with use of the methods of the both asymptotic and qualitative analysis the asymptotics of
the one-dimensional analogue of equation (4) were studied in detail and the sufficiently complete
classification of its solutions including the solutions of the both soliton and non-soliton type were
constructed.

Now, our purpose is the generalization of the results obtained in [9] with due account of the results
presented in [5, 7, 8] to the multidimensional cases.

For the avoidance of the unhandiness of obtaining expressions let us consider the equation (4) in
the 2-dimensional form supposing that ∆⊥ = δ2

ζ1
. Generalization of using technique and the results

obtaining at that to a case ∆⊥ = δ2
ζ1

+ δ2
ζ2

is rather trivial [3]. Let us assume that ζ1 ≡ ζ and take for

the distinctness that α = 6 (that can be obtained easily using the scaling transformation u→ (6/α)u
in the equation).

Let us introduce new variables, η̄ = η + ζ, ζ̄ = η − ζ. As a result, changing the variables η and
ζ in equation (4) at first by way of η̄ and then by way of ζ̄, we obtain the pair of one-dimensional
equations:

∂η̄(∂tu+ 6u∂η̄u− µ∂2
η̄u+ β∂3

η̄u+ δ∂4
η̄u+ γ∂5

η̄u) = κ∂2
η̄u,

∂ζ̄(∂tu+ 6u∂ζ̄u− µ∂2
ζ̄u+ β∂3

ζ̄u+ δ∂4
ζ̄u+ γ∂5

ζ̄u) = κ∂2
ζ̄u

(5)

writing in the co-ordinates with axes η̄ and −ζ̄ rotated relative to axes η and ζ at the angle +45◦.
Representation (5) means in fact that the starting equation (4) admit two types of the 1-dimensional
solutions, u(η̄, t) and u(ζ̄, t), satisfying the first and second equations of set (5), respectively. But, at
this, it is necessary to have in view that “1-dimensionality” of these solutions nevertheless implicity
assumes the linear dependence of each either of the new variables η̄ and ζ̄ on both coordinates, η
and ζ.

Integrating equations (5) on η̄, −ζ̄, respectively, we obtain two equiform the generalized KdV
equations

∂tu+ (−κ+ 6u)∂η̄u− µ∂2
η̄u+ β∂3

η̄u+ δ∂4
η̄u+ γ∂5

η̄u = 0,

∂tu+ (−κ+ 6u)∂ζ̄u− µ∂2
ζ̄u+ β∂3

ζ̄u+ δ∂4
ζ̄u+ γ∂5

ζ̄u = 0
(6)

connected with each other by way of the change of the coordinates made above. Now, passing into the
coordinates moving along the corresponding axis with velocity −k, i.e. making the change η′ = η̄+κt,
ζ ′ = ζ̄ + κt in equations (6) and leaving out the strokes, let us write equations (6) in the standard
form:

∂tu+ 6u∂ηu− µ∂2
ηu+ β∂3

ηu+ δ∂4
ηu+ γ∂5

ηu = 0,

∂tu+ 6u∂ζu− µ∂2
ζu+ β∂3

ζu+ δ∂4
ζu+ γ∂5

ζu = 0.
(7)

So, we can now conduct the analysis for only one generalized equation of the set (6), and then,
fulfilling the inverse change of the variables, extend the results to the 2-dimensional solutions u(η, ζ, t)
of equation (4) with ∆⊥ = ∂2

ζ .
As to the 3-DNLS equation, write it, at first, in the differential form:

∂η[∂th+ s∂η(|h|2h)− iλ∂2
ηh− ν∂2

ηh] = σ∆⊥h, ∆⊥ = ∂2
ζ1 + ∂2

ζ2 , (8)

then supposing for simplification of the statement that ∆⊥ = ∂2
ζ (it is clear that generalization to

3-dimensional case is trivial) and introducing, by analogy with the GKP equation, new variables
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η̄ = η + ζ, ζ̄ = η − ζ, we also obtain the pair of one-dimensional equations:

∂η̄[∂th+ s∂η̄(|h|2h)− iλ∂2
η̄h− ν∂2

η̄h] = σ∂2
η̄h,

∂ζ̄ [∂th+ s∂ζ̄(|h|2h)− iλ∂2
η̄h− ν∂2

ζ̄h] = σ∂2
ζ̄h

writtten in the coordinates with axes η̄ and −ζ̄ rotated relative to axes η and ζ at the angle +45◦.
Further transformations give us the set

∂th+ s∂η′(|h|2h)− iλ∂2
η′h− ν∂2

η′h = 0,

∂th+ s∂ζ′(|h|2h)− iλ∂2
ζ′h− ν∂2

ζ′h = 0
(9)

written in the coordinates η′ = η̄ + σt, ζ ′ = ζ̄ + σt i.e. moving along the corresponding axis with
velocity −σ.

So, as in case of the GKP equation, we can conduct the analysis for only one equation of the set
(9) and then, fulfilling the inverse change of the variables, extend the results to the 2-dimensional
solutions h(η, ζ, t) of equation (8) with ∆⊥ = ∂2

ζ .

2. Generalization of Earlier Obtained Results to Multidimensional Cases

At first, let us consider the generalization of the results obtained in [10] to the equations of the GKP
class (4). Following the results presented in ref. [5], consider more general case when the equations
(7) were expended by introducing of the arbitrary positive nonlinearity exponent p and, for example,
first equation of the set (7) takes the form

∂tu+ 6up∂ηu− µ∂2
ηu+ β∂3

ηu+ δ∂4
ηu+ γ∂5

ηu = 0 (10)

(see [10] for detail). Remind that in case µ = δ = γ = 0 it is the known KdV equation if p = 1,
and the modified KdV equation (the MKdV equation) if p = 2. Note also that, analogously to the
1-dimensional case, the cases, when in equation (4) with the nonlinear term 6up∂ηu the nonlinearity
exponent p = 1, 2, are interesting from physical point of view, and the applications with p > 2 are
unknown today. But, similarly to the generalized KdV equation considered in [9], in view of that the
equations with arbitrary integer p > 0 display very largely similar mathematical characteristics, for
the elucidation of dependence of the solution parameters on the value of the nonlinearity exponent we
will consider the general case for p > 0.

With due account of the coefficients’ signs, µ > 0, δ > 0 (in accordance with the physical sense of
proper terms - see [4, 10] for detail), assuming without a loss of generality as in [5, 7, 8] that γ > 0,
β = ±1 and making substitution u = V w (where V is a velocity of the wave propagation relatively
coordinate axis η and ζ for the first and second equation of set (7), respectively), we can generalize the
results obtained in [9] for different signs of V and β to the equations (5) and, accordingly, to equation
(4) with p ≥ 1 in the following way.

1. The value of the nonlinearity exponent p defines a character of dependence V = f(u), namely: for
p > 1 such dependence for equation (4), as in the 1-dimensional case (see ref. [9]), becomes nonlinear
unlike of the known linear one for p = 1 (for example, in case of the KP equation). Moreover, for even
p the solutions of equation (4) may have both positive and negative pulse direction (u ≷ 0 for either
sign of V ).

2. In case of the conservative equations of class (4) (the cases when µ = δ = 0) the solutions
asymptotics are defined by the following relations:

a) for the cases V > 0, β = −1 and V < 0, β = −1 (upper and lower signs, respectively):

w = A1 exp
{

(2γ)−1/2
[
C2 +

√
C4 ± 4γ

]1/2
χ
}
, (11)

b) for case V < 0, β = 1:

w = A2 exp{(2C−1γ−1/2)−1(2C−2γ1/2 − 1)1/2χ}

× cos{(2C−1γ−1/2)−1(2C−2γ1/2 + 1)χ+ Θ}, (12)
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where A1, A2 and Θ are the arbitrary constants, C = |V |−1/4, χ = (η ± ζ + (κ− V )t) (here the signs
plus and minus relate to the first and second equations of the set (5), respectively). As one can see
from expressions (11), (12)1, in the solutions u(η, ζ, t) of equation (4) at µ = δ = 0 the solitons with
both monotonous and oscillating asymptotics can take a place dependently on the signs of V and β.
(Note that at β = 0 and any value of γ > 0 the solutions of the equations (5) with µ = δ = 0 have form
w = (A1 + A2C

−1χ) exp(γ−1/4C−1χ) and, consequently, also describe the soliton with monotonous
asymptotics [7].) Fig. 1 shows the results of numerical simulation of equation (4) for µ = δ = 0 with
the initial condition u = u0 exp(−x2/l21 − y2/l22), that confirm the results of our asymptotic analysis.

Figure 1. General view of a 2-dimensional soliton of eq. (4) with ∆⊥ = ∂2
y for

µ = δ = 0, p = 1, γ = 1, β = −0.8 at t = 0.2.

3. In case of the dissipative equations of class (4) with the instability (the cases when β = γ = 0)
the solutions asymptotics are defined by the following relations:

a) for δ > (4/27)µ3C8

w = A1 exp[(2δC)−1/3Q+
1 χ] + exp[−(16δC)−1/3Q+

1 χ]

×
{
A2 cos[

√
3(16δC)−1/3Q−1 χ+ Θ1] +A3 sin[

√
3(16δC)−1/3Q−1 χ+ Θ2]

}
, (13)

b) for δ = (4/27)µ3C8

w = A1 exp[(δC/4)−1/3χ] +A2(1 +A3χ) exp[−(2δC)−1/3χ], (14)

c) for δ < (4/27)µ3C8

w = A1 exp[(δC/4)−1/3 Re(Q±)χ]

+A2 exp
{
− (2δC)−1/3χ

[
Re(Q±)−

√
3| Im(Q±)|

]}
+A3 exp

{
− (2δC)−1/3χ

[
Re(Q±) +

√
3| Im(Q±)|

]}
(15)

where A1, A2, A3, Θ1 and Θ2 are the arbitrary constants, Q±1 = Q+ ±Q−,

Q± =
[
1±

√
1− 4µ3C8/27δ

]1/3
and Q± is real in the cases (a) and (b) and complex in case (c).

It is easy to see from formulae (13) – (15) that the solutions u(η, ζ, t) of equation (4) have the
oscillating asymptotics in case (a) and the exponential ones in the cases (b) and (c). Fig. 2 shows the
numerical solutions of equation (4) corresponding to the cases (c) and (a), respectively, obtained for
the initial condition u = u0 exp(−x2/l21 − y2/l22).

4. As to the proper transformation of the phase portraits and “binding” them for the 2-dimensional
equation, as here, the fact is that in case µ = δ = 0 the phase space is 8-dimensional, and in
case β = γ = 0 it is 6-dimensional, we are obliged to the results obtained in ref. [5] binding the
characteristics of each singular point of each equation of set (5) accordingly in the 8-dimensional

1The cases of another correlation of signs of V and β are not realized (see ref. [5]).
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Figure 2. General view of a 2-dimensional soliton described by eq. (4) with ∆⊥ = δ2
y

for β = γ = 0, V > 0 at t = 0.3 : (a) µ = 1, δ = 1× 10−6 [δ ≤ (4/27)µ3C8-case (c)];
(b) µ = 1, δ = 1 [δ > (4/27)µ3C8-case (a)].

and 6-dimensional spaces. Thus the type of singularities in either of 4-dimensional or 3-dimensional
subspaces (see ref. [5]) under the inverse transform of the coordinates, η = (η̄ + ζ̄)/2, ζ = (η̄ − ζ̄)/2,
will not be changed, and only those parameters of the phase portraits change which correspond for
the solutions of the same class to changing of such parameters as the amplitude, the fronts steepness,
frequency of the oscillations etc.

Now, let us make some our observations concerning the 3-DNLS equation (8) with ∆⊥ = ∂2
ζ .

Because, as it was shown in [10], equation (8) may be represented in form of set (9) , and, as it is
known from [4,11], exact solution of the 1-dimensional DNLS equation may be represented in form

h(x, t) = (A/2)1/2[exp(−Ax) + i exp(Ax)] exp(−iA2t)cosh−2(2Ax), (16)

where A is the amplitude of the wave (see [4,10] for detail), we can fulfilling the inverse change of the
variables, η = (η̄+ ζ̄)/2, ζ = (η̄− ζ̄)/2 and extending solution (16) to the 2-dimensional case (equation
(8) with ∆⊥ = ∂2

ζ ) write at once for ν = 0

h(η, ζ, t) = (A/2)1/2[exp(−Aχ) + i exp(Aχ)] exp(−iA2t)cosh−2(2Aχ), (17)

where, as for the GKP equation, χ = (η ± ζ + (σ − V )t), and V is a velocity of the wave propagation
relatively coordinate axis η and ζ for the first and second equations of set (9), respectively. Fig. 3
shows a character of solution for the first equation of set (9) with ν = 0.

The dependence of the form of solution on dissipation and its dynamical characteristics for ν > 0
have considered in [4, 10] in detail.

We think that there is no need to discuss here the problem of the qualitative analysis of solutions
of the 3-DNLS equation, because unlike the GKP equation (4) and the corresponding set (7) the
exact solution of either equation of set (9) is known, and there is no need to construct any special
classification of its solutions in phase space.

3. Concluding Remarks

In conclusion, note that in this chapter for the GKP equation we have considered the special cases
when µ = δ = 0 and β = γ = 0 in equation (4), and for other values of the coefficients more
complicated wave structures resulting from the presence of all considered effects in the whole may
be observed. So, the results obtained numerically in [1] (see also [4, 10]) show that for β, µ, δ 6= 0
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Figure 3. General view of solution |h2| of the first equation of set (9) for A = 1, t = 0.

at the time evolution in the presence of the Gaussian random fluctuations of the wave field for the
harmonic initial conditions and the initial conditions in form of the solitary pulse the stable wave
structures of the soliton type can be formed too. Furthermore, the stable soliton structures may be
formed also at γ 6= 0. However, the analytical study of such cases is highly complicate, though the
approach considered above can be also used. Note also that the results obtained in [5] and presented
here for the GKP equation may be highly useful when studying the solutions and interpreting the
multidimensional phase portraits of more complicated multidimensional model equations (see, for
example, [8]).
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ON ONE CLASS OF ELLIPTIC EQUATIONS CONNECTED WITH THE

NONLINEAR WAVES

N. KHATIASHVILI

Abstract. Nonlinear elliptic equation connected with the nonlinear waves in the infinite area is
considered. The non-smooth effective solutions exponentially vanishing at infinity are obtained. By

means of such solutions the exact and approximate solutions of different nonlinear elliptic equations

are derived. The profiles of nonlinear waves and symmetric solitary waves connected with those
solutions are plotted by using “Maple”.

1. Introduction

Nonlinear elliptic equations describe wide range of physical phenomena and those equations with
the different kind of nonlinearity were considered by numerous authors [4–6,8,10,14,23,24,28–31,36–
45,47–49,52,53].

In this paper we focus on the nonlinear elliptic equation connected with the different nonlinear
waves. Particular case of this equation is the cubic nonlinear Schrödinger equation (cNLS).

The equation is considered in the infinite area. The effective solutions exponentially vanishing at
infinity and having peaks at some lines are obtained. Non-smooth solitary waves connected with those
solutions in a specific class of functions are constructed. Also the bounded solutions are given.

2. Statement of the Problem

In R3 let us consider the following equation

P1(ψ)∆ψ + P2(ψ)(∇ψ)2 + P3(ψ) = 0, (1)

where ψ(x, y, z) is unknown function, P1(ξ), P2(ξ), P3(ξ) are the polynomials with respect to ξ,

P1(ξ) =
n∑
i=0

aiξ
i, P2(ξ) =

n∑
i=0

biξ
i, P3(ξ) =

n+2∑
i=1

ciξ
i, a0, b0, ai, bi, ci, cn+1, cn+2, n, i = 1, . . . , n; are

some constants.
The particular case of the equation (1) is the following equation(

1− ψ2
2

2

)
∆ψ2 − ψ2

(
∇ψ2

)2
+ λ0R

2ψ3
2 −A0

(
ψ2 −

ψ3
2

6

)
= 0, (2)

where λ0, R, A0 are the definite constants, ψ2 is unknown function. When the function ψ2 has
negligible fifth degree value, the equation (2) is the approximation of the cubic nonlinear Schrödinger
equation [27]. The solution of this equation was obtained in [27] in the specific class of functions.

Let us consider the following problem

Problem 1. In the space R3 to find piecewise smooth continuous function ψ vanishing at infinity

exponentially, satisfying the equation (1), having second order continuous derivatives ∂2ψ
∂x2 , ∂2ψ

∂y2 , ∂2ψ
∂z2

2010 Mathematics Subject Classification. 35R10, 47J05, 81Q05.
Key words and phrases. Nonlinear elliptic partial differential equation; Solitary waves; Nonlinear Schrödinger

equation.
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and first order derivatives with the jump planes x = 0, y = 0, z = 0 satisfying the conditions(
∂ψ

∂x

)− ∣∣∣
x=0

= −
(∂ψ
∂x

)+∣∣∣
x=0

,(∂ψ
∂y

)−∣∣∣
y=0

= −
(∂ψ
∂y

)+∣∣∣
y=0

, (3)(∂ψ
∂z

)−∣∣∣
z=0

= −
(∂ψ
∂z

)+∣∣∣
z=0

.

Note 1. Here
(
∂ψ
∂x

)− ∣∣
x=0

and
(
∂ψ
∂x

)+ ∣∣
x=0

means

lim
x−→0−

∂ψ

∂x
, lim

x−→0+

∂ψ

∂x

respectively.

3. Solution of the Problem

Let us consider the function

ψ0 = exp[−α|x| − β|y| − γ|z| −D], α, β, γ > 0, (4)

where α, β, γ are some non-negative constants, D is an arbitrary parameter.
The function (4) vanishes at infinity exponentially and satisfies the conditions (3). By direct

verification we obtain, that it will be the solution of the equation (1) if the constants a0, b0, ai, bi, ci,
cn+1, cn+2, i = 1, . . . , n; satisfy the following conditions

d2a0 + c1 = 0,

d2(a1 + b0) + c2 = 0,

d2(a2 + b1) + c3 = 0,

d2(a3 + b2) + c4 = 0,

. . . . . . . . . . . . . . . . . . . . .

d2(an−1 + bn−2) + cn = 0,

d2(an + bn−1) + cn+1 = 0,

d2bn + cn+2 = 0,

(5)

where α2 + β2 + γ2 = d2.
Hence, we conclude, that the following theorem is valid

Thoerem 1. If the coefficients a0, b0, ai, bi, ci, cn+1, cn+2, i = 1, . . . , n; of the equation (1) satisfy
the system (5), then the function given by the formula (4) is the solution of the Problem 1.

Also, it is easy to see, that the following theorem is true

Thoerem 2. If the coefficients a0, b0, ai, bi, ci, cn+1, cn+2, i = 1, . . . , n; of the equation (1) satisfy
the system (5) and α = 0 ∨ β = 0, ∨ γ = 0 then the function given by the formula (4) is the solution
of the equation (1) bounded in R3 and satisfying the condition (3).

Note 2. Here we do not discuss the uniqueness of the solutions of the Problem 1, as the function (4)
depends on an arbitrary parameters α, β, γ, D.

In the next chapter we consider some particular cases of (1). By means of the function (4) we will
construct exact and approximate solutions of these equations.
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4. Examples

Let us consider several cases.
1) In case of a0 = c1 = 0, a1 = 1, b0 = −1, b1 = ai = bi = ci = cn+1 = cn+2 = 0, i = 2, . . . , n, the

equation (1) takes the form
ψ∆ψ − (∇ψ)2 = 0. (6)

According to the Theorem 1 the solution of the equation (6) satisfies the conditions (3) will be
given by the formula

ψ = Rψ0, (7)

where R is an arbitrary constant and ψ0 is given by (4).
In Figure 1 the graphic of (7) vanishing at infinity is given for some parameters and in Figure 2

the graphic of (7) bounded at infinity is given. The graphics are constructed by using “Maple”.

Note 3. The Dirichlet problem for the equation (6) was studied in [5, 6].

Figure 1. The graphic of (7) in case of D = 1; R = 1; α = β = γ = 1; z = 0;

Figure 2. The graphic of (7) in case of D = 1; R = 1; α = 0.1; β = 1; γ = 0;

2) In case of a0 = 1, c1 = −A0 + λ0, a1 = b1 = ai = bi = ci = cn+1 = cn+2 = 0, i = 2, . . . , n, the
equation (1) represents the well-known Helmholtz equation

∆ψ − (A0 − λ0)ψ = 0, (8)
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Figure 3. The linear wave. The graphic of (9) in case of m = 1; D1 = 4; R1 = 100; α = 1;

β = γ = 0; A0 − λ0 = 1.

Figure 4. Superposition of linear waves. The graphic of (9) in case of m = 2; D1 = D2 = 5;

R1 = R2 = 1; z = 1; α1 = β2 = 0.1; A0 − λ0 = 2.01; β1 = α2 = γ1 = γ2 = 1.

By the Theorem 1, the solution of the equation (8) for the Problem 1 is given by (7), where R is an
arbitrary constant, α, β, γ satisfy the conditions

α2 + β2 + γ2 = A0 − λ0, A0 > λ0.

The function (7) represents some class of stationary non-smooth linear waves. Their superposition
is also the solution of (8) and is given by the sum

ψ =

m∑
1

Rk exp
[
− αk|x| − βk|y| − γk|z| −Dk

]
, Dk > 0, (9)

where Rk are an arbitrary constants and α2
k + β2

k + γ2k = A0 − λ0, A0 > λ0, m is an arbitrary natural
number.

The graphics of (9) are given in Figures 3, 4 for the different parameters.
In case of A0 = λ0 the equation (8) will be reduced to the Laplace equation

∆ψ = 0. (10)
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Figure 5. The linear wave. The graphic of (11) in case of D = 5; R1 = 1; a = 1; R2 = R3 =

R4 = R5 = R6 = 0.

Figure 6. Superposition of linear waves. The graphic of (11) in case of D = 5; a = 1; z = 1;

R1 = R2 = R3 = 100; R4 = R5 = R6 = 0.

Using well-known Poisson formula [5,6,8,33], we obtain the non-smooth solution of the Problem 1
for the equation (10)

ψ0 = R1
|y|
π

∞∫
−∞

f(t)dt

(t− x)2 + y2
+R2

|y|
π

∞∫
−∞

f(t)dt

(t− z)2 + y2

+R3
|x|
π

∞∫
−∞

f(t)dt

(t− z)2 + x2
+R4

|x|
π

∞∫
−∞

f(t)dt

(t− y)2 + x2

+R5
|z|
π

∞∫
−∞

f(t)dt

(t− x)2 + z2
+R6

|z|
π

∞∫
−∞

f(t)dt

(t− y)2 + z2
, (11)

f(t) (−∞ < t < +∞), is the function vanishing at infinity, having second order continues derivatives
and first order continues derivatives except the point t = 0, where the following conditions are satisfied

(f ′)+(0) = −(f ′)−(0), (f ′′)+(0) = (f ′′)−(0), |f(t)| ≤ e−D, D ≥ 5,

R1, R2, R3, R4, R5, R6, |R1|+ |R2|+ |R3|+ |R4|+ |R5|+ |R6| 6= 0 are non-negative constants.
The graphics of (11) are given in Figures 5, 6 in the case f(t) = e−a|t|−D, a > 0.
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3) Now, let us consider the equation

∆ψ + c1ψ + c2ψ
2 = 0. (12)

The equation (12) represents (1) in case of a0 = 1, a1 = a2 = b0 = b1 = b2 = ai = bi = ci = cn+1 =
cn+2 = 0, i = 3, . . . , n;

The function (4) will be the solution of (12) only in the case c2 = 0 (see Example 2), but by means
of the function (4) we can construct approximate solutions of the equation (12) vanishing at infinity
for which c2 6= 0.

Let us introduce the notation

ψ = R sin2 ψ1, (13)

where ψ1 is a function having negligible fifth degree value, R is some parameter.
Taking into account

sinψ1 ≈ ψ1 − ψ3
1/6; sin2 ψ1 ≈ ψ2

1 − ψ4
1/3; (14)

and putting (13) into (12) we obtain the following equation

2

(
ψ1 −

2

3
ψ3
1

)
∆ψ1 + 2

(
1− 2ψ2

1 +
2

3
ψ4
1

)
(∇ψ1)2

+ c1

(
ψ2
1 −

1

3
ψ4
1

)
+ c2Rψ

4
1 = 0, (15)

The equation (15) is the approximation of the equation (12) with the accuracy 8|R|d2
3 ψ6

1 .
If

c1 = −4d2 = −c2R (16)

the function given by (4) will be the approximate solution of the equation (15) with the accuracy
8|R|d2

3 exp(−6D), i. e. this function is the exact solution of the equation

2

(
ψ1 −

2

3
ψ3
1

)
∆ψ1 + 2

(
1− 2ψ2

1

)
(∇ψ1)2 + c1

(
ψ2
1 −

1

3
ψ4
1

)
+ c2Rψ

4
1 = 0.

According to (13), (14), (15), (16) the approximate solution of the equation (12) will be given by

ψ = R sin2 {exp[−α|x| − β|y| − γ|z| −D]} , (17)

where

4(α2 + β2 + γ2) = c2R = −c1, c1 < 0,

and the parameter D is chosen accordingly for the desired accuracy in such a way, that the quantity
e−5D is negligible (for example for D = 3, e−15 ≈ 10−7).

It is obvious

|ψ| ≤ R exp (−2D).

The graphics of (17) for some parameters are given in Figures 7, 8 in case of D = 4.

Note 4. The equation (12) is connected with the crystal growth [23,24].

4) Now, let us consider the case a0 = 1; c1 = −A0; c3 = λ0; c2 = a1 = a2 = a3 = b0 = b1 = b2 =
b3 = ai = bi = ci = cn+1 = cn+2 = 0, i = 4, . . . , n; then the equation (1) takes the form

∆ψ + λ0ψ
3 −A0ψ = 0, (18)

The function (4) will be the solution of (18) only in the case λ0 = 0.
By means of the function (4) we will construct approximate solutions of the equation (18) vanishing

at infinity for which λ0 6= 0.
Let us introduce the following notation

ψ = R sinψ2, (19)

where ψ2 is a function having negligible fifth degree value, R > 0 is some parameter.
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Figure 7. The graphic of (17) in case of R = 100; α = β = γ = 1; z = 0;

Figure 8. The graphic of (17) in case of R = 1; α = β = γ = 0.01; z = 0;

Putting (19) into the left hand side of (18) and taking into the account (14) one obtains(
1− ψ2

2

2
+
ψ4
2

24

)
∆ψ2 −

(
ψ2 −

ψ3
2

6

)
(∇ψ2)2

+ λ0R
2

(
ψ2 −

ψ3
2

6

)3

−A0

(
ψ2 −

ψ3
2

6

)
= 0. (20)

As ψ5
2 is negligible,the function (4) will be the solution of the equation (20) with the accuracy

A0
exp(−5D)

2 and the exact solution of the equation (2). Hence, the function ψ given by the formula

(19) is the solution of the equation (18) with the accuracy A0
exp(−5D)

2 .
According to (4), (5), (19) the approximate solution of (18) will be given by the formula

ψ = R sin {exp[−α|x| − β|y| − γ|z| −D]} , (21)

where

α2 + β2 + γ2 = A0, λ0R
2 = 4A0/3; A0 > 0, (22)

and the constant D is chosen for the desired accuracy in such a way, that e−5D is negligible (for
example for D = 4, e−20 ≈ 2× 10−9).
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The equation (18) is the cubic nonlinear Schrödinger type equation (cNLS). By the formulaes (21),
(22) the modulus r of some class of solitary waves is given [25, 27]. The different classes of solitary
waves are obtained in [1–3,7, 9–13,15–21,26,28–36,40,42–53].

In Figures 9, 10 the graphics of (21) are plotted for different parameters for the case R = 10 and
D = 4 by using “Maple”.

Figure 9. The modulus of the solitary wave. The graphic of (21) in case of α = 10; β = γ = 1;
z = 0; A0 = 102; λ0 = 1.36.

Figure 10. The modulus of the solitary wave. The graphic of (21) in case of α = 1; β = γ = 0;
A0 = 1; λ0 = 0.013333.

Note 5. In the works [21, 22] the equation (18) is equivalently reduced to the nonlinear integral
equation.

Note 6. The equation (1) was considered in 3D, but the results of the current paper are valid in any
dimensions.
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EIGENOSCILLATIONS AND STABILITY OF ORTHOTROPIC SHELLS, CLOSE

TO CYLINDRICAL ONES, WITH AN ELASTIC FILLER AND UNDER THE

ACTION OF MERIDIONAL FORCES, NORMAL PRESSURE AND

TEMPERATURE

S. KUKUDZHANOV

Abstract. Eigenoscillations and stability of closed orthotropic shells of revolution, close by their

form to cylindrical ones, with an elastic filler and under the action of meridional forces, external
pressure and temperature are investigated. The shells of positive and negative Gaussian curvature

are studied. Formulas and universal curves of dependence of the least frequency on orthotropy

parameters, meridional loading, external pressure, temperature, rigidity of an elastic filler, as well as
on the amplitude of shell deviation from the cylinder, are obtained. Critical values of outer effects

are defined.

We study eigenoscillations and stability of closed orthotropic shells of revolution, close by their forms
to cylindrical ones, with an elastic filler and under the action of meridional forces uniformly distributed
over the end-walls of the shell, external pressure and temperature. We consider a light filler for which
the influence of tangential stresses on the contact surface and the inertia forces may be neglected.
The shell is considered to be thin and elastic. Temperature in a shell body is uniformly distributed.
An elastic filler is modelled by the Winkler’s base, its extension by heating is not taken into account.
We investigate the shells of middle length whose form of midsurface generatrix is expressed by a
parabolic function. We consider the shells of positive and negative Gaussian curvature. The boundary
conditions on the end-walls correspond to a free support admitting certain radial displacement in the
initial state. Formulas and universal curves of dependance of the least frequency on the orthotropy
parameters, meridional loading, external pressure, temperature, rigidity of the elastic filler, as well
as on the deviation amplitude of the shell from the cylinder are obtained. It is shown that the
elastic orthotropy parameters affect significantly the least frequency and the corresponding form of
the waveformation. A degree of influence of orthotropy parameters under separate and joint action of
the above-mentioned outer factors on the lower frequencies is revealed. Critical values of outer effects
are defined.

We consider the shell whose middle surface is formed by the rotation of a square parabola around
the z-axis of the rectangular system of coordinates x, y, z with the origin in the middle of the segment
of the axis of rotation. It is assumed that the cross-section radius R of the middle surface is defined
by the equality R = r + δ0

[
1 − ξ2(r/`)2

]
, where r is the end-wall section radius, δ0 is the maximal

deviation from the cylindrical form (for δ0 > 0, the shell is convex, and for δ0 < 0, it is concave),
L = 2` is the shell length, ξ = z/r. We consider the shells of middle length [9], and it is assumed that

(δ0/r)
2 � 1, (δ0/`)

2 � 1. (1)

As the basic equations of oscillations we have taken those of the theory of shallow orthotropic
shells [8]. For the shells of middle length, the forms of oscillations that correspond to the least
frequencies have weak variability in longitudinal direction as compared with the circumferential one,
therefore the correlation

∂2f

∂ξ2
� ∂2f

∂ϕ2
(f = w,ψ) (2)

is valid, where w and ψ are, respectively, the functions of radial displacement and stress. As a result,
the system of equations for the shells under consideration is reduced to the following resolving equation

2010 Mathematics Subject Classification. 35j60.
Key words and phrases. Shell; Thermostability; Gaussian curvature; Temperature; Function; Condition.
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(due to the adopted assumption, temperature terms are equal to zero [7]):

ε
∂8w

∂ϕ8
+
E1

E2

(
∂4w

∂ξ4
+ 4 δ

∂4w

∂ξ2 ∂ϕ2
+ 4 δ2

∂4w

∂ϕ4
− t01

∂6w

∂ξ2 ∂ϕ4

)
− t02

∂6w

∂ϕ6
− 2 s0

∂6w

∂ξ ∂ϕ5
+ γ

∂4w

∂ϕ4
+
ρ r2

E2

∂2

∂t2

(
∂4w

∂ϕ4

)
= 0, (3)

ε = h2/12 r2(1− ν1ν2), δ = δ0r/`
2, τi = T 0

i /E2h (i = 1, 2), s0 = S0/E2h, γ = βr2/E2h, E1, E2, ν1, ν2
are, respectively, the E1, E2, ν1, ν2 moduli of elasticity and Poisson coefficients in the axial and cir-
cumferential directions (E1ν2 = E2ν1); T 0

1 , T
0
2 are meridional and circumferential normal forces of

the initial state; S0 is the shearing stress of the initial state; h the shell thickness; ρ is the material
density of the shell; β is the “bed” coefficient of the elastic filler (characterizing elastic rigidity); ϕ is
an angular coordinate; t is time.

The initial state is assumed to be momentless. On the basis of the corresponding solution, taking
into account the reaction of the filler and also inequalities (1), we obtain the following approximate
expressions

T 0
1 = P1

[
1 +

δ0
r

(
ξ2(r/`)2 − 1

)]
+ qδ0

[
ξ2(r/`)2 − 1

]
,

T 0
2 = −2P1δ0r/`

2 − qr + β0rw0, S0 = 0,
(4)

where w0 and β0 are, respectively, deflection and a “bed” coefficient of the filler in the initial state;
P1 is meridional stress; q is external pressure.

Taking into account (2), we get∣∣ξ2(r/`)2 − 1
∣∣ ∂2w
∂ξ2

� 2(r/`)2
∂2w

∂ϕ2
,

δ0
2

∣∣ξ2(r/`)2 − 1
∣∣ ∂2w
∂ξ2

� ∂2w

∂ϕ2
.

Therefore expressions (4), after substitution into equation (3), can be simplified and written in the
following form:

T 0
1 = P1, T 0

2 = −2P1δ0r/`
2 − qr + w0β0r, T 0

i = σ0
i h (i = 1, 2). (4′)

Taking into account the fact that in the initial state the shell deformation ε0ϕ in the circumferential
direction is defined by the equalities

ε0ϕ =
σ0
2 − ν1σ0

1

E2
+ α2T, ε0ϕ = −w0

r
,

where α2 is the coefficient of linear extension in the circumferential direction and T is temperature,
we have

w0 =
(
− σ0

2 + ν1σ
0
1

) r
E2
− α2T2. (5)

Substituting expression (5) into (4′), we obtain

T 0
2

E2h
=
σ0
2

E2
= − qr

E2h
− 2

P1

E2h
δ + ν1

σ0
1

E2

β0r
2

E2h
− α2T

β0r
2

E2h
− σ0

2

E2

β0r
2

E2h
.

Introduce the notation

E1 = e1E, E2 = e2E,

qr

Eh
= q,

P1

Eh
= −p, β0r

2

Eh
= γ0, 1 + γ0e

−1
2 = g.

Then expressions (4′) take the form

− σ
0
1

E2
= −e−12 p, − σ

0
2

E2
=
(
q − 2pδ + ν1pγ0 + α2Tγ0

)
e−12 g−1. (5′)

Note that since R is close to r, in the expressions for stresses (5′) we adopted R ≈ r.
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As a result, equation (3) takes the form

ε
∂8w

∂ϕ8
+
e1
e2

[
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4
(
δ2 + γ/4e1

) ∂4w
∂ϕ4

]
+
(
q − 2pδ + ν1pγ0 + α2Tγ0

)
e−12 g−1

∂6w

∂ϕ6
+ p

∂6w

∂ξ2 ∂ϕ4
e−12 +

∂2

∂t2

(∂4w
∂ϕ4

)
e−12 = 0. (6)

We consider the harmonic oscillations. For the given boundary conditions of free support and for
equation (6) the solution

w = Amn cosλmξ sinnϕ cosωmnt, λm = mπr/2` (7)

(m = 2i+ 1, i = 0, 1, 2, . . . )

is satisfied.
Substituting expression (7) into (6), for finding eigenfrequencies, we obtain the following equality

(in the sequel, the indices ωmn will be omitted):

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4

(
δ2 + γ/4e1

)
− p
(
λ2m − 2 δ̃n2

)
−
(
q + d2Tγ0

)
g−1n2

)]
.

Introduce the notation

δ
2

= δ2 + γ/4e1 , δ̃ =
(
δ − 1

2
ν1γ0

)
g−1, q̃ =

(
q + αTγ0

)
g−1,

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4 δ

2 − p
(
λ2m − 2 δ̃n2

)
− q̃n2

)]
.

(8)

It is not difficult to see that for p = 0, δ > 0, to the least frequency there corresponds m = 1. It
can also be shown that this condition takes place for δ < 0, bearing in mind inequalities (1) and the
fact that ω2 > 0. Therefore, first of all, we consider the forms of oscillations under which there arises
one half-wave (m = 1) over the whole length of the shell and n waves in the circumferential direction.
For the compression p > 0, and for the tension p < 0; q is a normal pressure which is assumed to be
positive if it is external.

To present expression in a dimensionless form, we introduce the dimensionless values

θ = (e2/e1)1/4N, N = n2/n20, P = P/
√
e1e2, P = p/p∗,

Q̃ = q̃/q0∗, q̃ = (q + αTγ0)g−1, n2
0 = λ1ε

1/4, p∗ = 2ε1/2,

q0∗ = 0, 855(1− ν1ν2)−3/4
(h
r

)3/2 r
L
, δν∗ = (e1/e2)δ∗ ,

δ∗ = δε
−1/2
∗ , δ̃ ν = (e1/e2)1/4

(
δ − 1

2
ν1γ0

)
ε
−1/2
∗ g−1,

δ
ν2

= (e1/e2)1/2(δ2∗ + γ∗/4e1) = δ
ν2

+ e1e2)−1/2
γ∗
4
, γ∗ = γε−1∗ ,

ω2
∗ = 2λ21ε

1/2E/3r2 , ε = (1− ν2)−1/2
h

2

( r
L

)2
,

(9)

where p∗, q0∗, ω∗ are, respectively, critical loading of compression, critical pressure and the least fre-
quency for the cylindrical isotropic shell of middle length [1, 9]. Thus equality (8) can be written in
the following dimensionless form:

ω2(θ)/ω2
∗ = 0, 5

√
e1e2

(
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 4045 δ
ν2

∗
)

− 1, 755 e
−1/4
1 e

−3/4
2 θQ− 2P

(
1− 1, 185 δ̃ ν∗ θ

)
. (10)

The least frequency (for ω2(θ) > 0) is defined by the condition [ω2(θ)]′ = 0. As a result, we obtain

0, 8775 e
−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃ νP = θ − 1, 185 δν∗θ

−2 − θ−3 (11)
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or

θ4 −
(
0, 8775 e

−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃ νP

)
θ3 − 1, 185 δν∗θ − 1 = 0. (12)

This implies that for Q̃ = P = 0, we get

θ4 − 1, 185 δν∗θ − 1 = 0. (12′)

The above equation for an isotropic shell has been considered in [3]. Investigation of the roots of
the above equation, similar to that carried out in [3], leads to

θ =
√

1− 0, 0876 δ2∗(e1/e2)1/2 + 0, 2962 δ∗(e1/e2)1/4 (δ∗ > 0),

θ =
√

1− 0, 0876 δ2∗(e1/e2)1/2 − 0, 2962 δ∗(e1/e2)1/4 (δ∗ < 0).

(13)

In particular, for δ∗ = 0, we get the known formula for the cylindrical orthotropic shell of middle
length (n2 = (e1/e2)1/4λ1ε

−1/4) [5].
By θ0 we denote the value of θ which is defined by virtue of (13).
Defining thus the value of θ0 (for fixed e1, e2, δ∗) and substituting it into expression (10) (for

P = Q̃ = 0), we obtain the least frequency of a free shell ω(θ0). For clearness, we will now proceed to
considering the value N = θ(e1, e2)1/4.

Figure 1

Figure 2
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In Figures 1 and 2 we can see the graphs of dependencies N0 = n2/n20 and ω(N0)/ω∗ on the
parameter δ∗ for the cases e1 = e2 = 1(0), e1 = 1, e2 = 2(1); e1 = 2, e2 = 1(2); the corresponding
curves are denoted by N0(i) and (i) i = 0, 1, 2. It can be easily seen that for the convex shells (δ > 0)
the importance of the elastic parameter is greater in the axial direction than in the circumferential
one, whereas for the concave shells (δ < 0), the situation is inverse.

For ω = 0, P = 0 from equality (10), we have

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = θ + θ−3 + 2, 37 δν∗θ

−2 + 1, 404 δ
ν2

θ−1. (14)

The least value Q̃ > 0 depending on θ is realized for Q̃′θ. Thus we obtain

θ4 − 1, 404 δ
ν2

θ2 − 4, 74 δν∗θ − 3 = 0. (15)

Figure 3

The positive root of that equation θ = θ∗ (N = N∗) corresponds to the number of wave in the

transverse direction under which is realized the critical loading of stability loss Q̃∗. This equation
for an isotropic shell is considered in [3], where the expression of the positive root is given explicitly.
Generalizing this result to the orthotropic case, we present the roots of dependence of N∗ on δ∗ for
the cases i = 0, 1, 2 considered above. In Figure 1, these curves are denoted, respectively, by N∗(i).

The graphs of dependence of Q̃∗ on δ∗ for those cases are given in Figure 3.
Note that expression (14) for finding the critical loading can be simplified on the basis of (15).

From this equation implies that

2, 37 δν∗θ
−2 + 1, 404 δ

ν2

∗ θ−1 = −
(
2, 37 δν∗θ

−2 + 3 θ−3 − θ
)
. (16)

Substituting equality (16) into (14), we get

Q̃∗ = 1, 15 e
1/4
1 e

3/4
2

(
θ∗ − θ−3∗ − 1, 185 δν∗θ

−2
∗
)
. (17)

From the condition of minimality of frequency (11) for P = 0, we obtain the following dependence

between Q̃ and θ:

Q̃ = 1, 15 e
1/4
1 e

3/4
2

(
θ − θ−3 − 1, 185 δν∗θ

−2
∗
)
. (18)

It is not difficult to notice that from the above equality we have also the relation (17). On the

basis of equality (18), for Q̃ = 0, we obtain equation (12′), whose root θ = θ0 corresponds to the

least frequency of the unloaded shell ω(θ0); while for Q̃ = Q̃∗, we obtain equation (17), whose root θ∗
corresponds to the critical loading, and ω = 0.
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Thus, when Q̃ varies in the interval

0 ≤ Q̃ ≤ Q̃∗ (19)

the least frequency ω(θ, Q̃) varies in the interval ω(θ0, Q̃ = 0) ≥ ω(θ, Q̃) ≥ 0. Relying on the reasoning

similar to that cited in [2], we can show that as Q̃ varies in the interval (19), the value θ, realizing the

least frequency ω(θ, Q̃) and connected with Q̃ by the relation (18), lies in the interval

θ0 ≤ θ ≤ θ∗ . (20)

Let us pass now to the value N = θ(e1/e2)1/4. In particular, for δ = γ = 0, inequalities (19) and (20)
take the form

0 ≤ Q̃ ≤ e1/41 e
3/4
2 , (e1/e2)1/4 ≤ N ≤ 1, 315 (e1/e2)1/4. (21)

For an isotropic case, inequalities (21) coincide with those presented in [2], 0 ≤ Q̃ ≤ 1,
1 ≤ N ≤ 1, 315.

Figure 4

By virtue of equality (18) it is not difficult to construct the curves N(Q̃) realizing the least frequency
for different values e1, e2, δ∗ , γ∗ , T . Towards this end, we fix these parameters and having the value θ,

from the interval (20), we define the corresponding value Q̃ by formula (18). Substituting these values
in formula (10), we obtain (for the case P = 0 under considertion) the corresponding value of the

least frequency. In Figure 4, we can see the curves of dependence of the least frequency ω/ω∗ on Q̃
(for γ = 0) for δ∗ = 0, 4 and δ∗ = −0, 4 for the cases i = 0, 1, 2. The curves are denoted by (0)+, (1)+,
(2)+, and (0)−, (1)−, (2)−, respectively.

On the basis of the given curves and the results obtained in [1], it is easy to notice that if for the
cylindrical shell in the absence of prestress the influence of orthotropy parameters is practically the

same, then for the convex shells this effect occurs only for Q̃ ≈ 0, 9 and, in addition, on the interval

0 ≤ Q̃ ≤ 0, 9, the leading role belongs to the elastic parameter in the axial direction as compared with

the circumferential one, whereas on the interval 0, 9 ≤ Q̃ ≤ 1, 6 the situation is inverse.

Consider now the case P 6= 0, Q̃ = 0 (q = 0, γ = 0) with δ
ν2

∗ = δν
2

∗ , δ̃ ν∗ = δν∗ . On the basis of (10)
and (11), we have

ω2/ω2
∗ = 0, 5

√
e1e2

[
θ2 + θ−2 + 2, 375 δν∗θ

−1 + 1, 404 δν
2

∗ − 2P (1− 1, 185 δν∗θ)
]
, (22)

− 1, 185 δν∗P = Q− 1, 185 δν∗θ
−2 − θ−3 (23)

or

θ4 + 1, 185 δν∗Pθ
3 − 1, 185 δν∗θ − 1 = 0. (24)

From equation (24), for δ∗ = 0, we obtain the equation θ4 − 1 = 0 whose positive root θ = 1
(N = (e1/e2)1/4). Consequently, for the orthotropic cylindrical shell of middle length the least
frequency is realized for N = (e1/e2)1/4, independently of P . For the isotropic case, all the above-said
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is in a full agreement with [6]. Moreover, from (24), for P = 1, we find that the positive root of that
equation does not depend on δν∗ .

For ω = 0, equation (22) takes the form

P =
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗
2(1− 1, 185 δν∗θ)

. (25)

As is known, the least value of P is called a critical loading. In particular, for δ∗ = 0, θ = 1, from
(25), we get the known formula of the critical contracting force for the cylindrical orthotropic shell

P = 1 [9]. The least value P (P > 0), depending on θ, realizes for P
′
θ = 0. Thus we get

2
(
θ − θ−3 − 1, 185 δν∗θ

−2)(1− 1, 185 δν∗θ
)

= −1, 185 δν∗
(
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗
)
. (26)

In a simpler form, (26) is the fifth degree equation, so it is impossible to define its roots exactly.
Therefore we have suggested somewhat different way of finding the positive root of that equation.
We denote the positive root of that equation by θ∗p. The value θ = θ∗p corresponds to a number of

waves in the transversal direction under which is realized the critical loading of the stability loss P ∗.
Substituting equality (26) into (25), we obtain

−1, 185 δν∗P ∗ = θ∗p − 1, 185 δν∗θ
−2
∗p − θ−3∗p . (27)

It is not difficult to notice that equality (27) is likewise follows from equality (23) for ω = 0.
Consequently, the values P , θ satisfying equality (23) for which expression (22) vanishes, are the

critical values of P ∗, θ∗p.

By virtue of equality (24), for P = 0, we obtain equation (12′) whose positive root is denoted, as
above, by θ0 and corresponds to the least frequency of the unloaded shell, whereas for P = P ∗, we
obtain equation (27) whose positive root θ = θ∗p corresponds to ω = 0.

Thus, for P , varying in the interval

0 ≤ P ≤ P ∗ (28)

the least frequency varies in the interval [ω(θ0, P = 0), 0].
Analogously to the investigation carried out in [2], we can show that when P varies in the interval

(28) for δ∗ ≥ 0, the value of θ realizing the least frequency ω(θ, P ) lies in the interval

θ0 ≤ θ ≤ θ∗. (29)

In particular for δ∗ = 0 inequalities (28) and (29) take the form 0 ≤ P ≤ 1, θ0 = θ∗ = 1

(or 0 ≤ P ≤ e1/21 e
1/2
2 , N0 = N∗ = (e1/e2)1/4).

Figure 5
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Dependencies N∗ = n2∗/n
2
0 and P = p∗/p

2
0 on the parameter δ ≤ 0 for the cases i = 0, 1, 2 are given

in Figure 5. The corresponding curves are denoted by N∗(i) and (i). It is not difficult to see that for
the concave shells of importance is the elastic parameter in the circumferential direction as compared
with the axial one.

By virtue of equation (27), we can construct the dependence N(P ) which realizes the least frequency
of the prestressed shell for various values of δ∗. To this end, we fix the parameters e1, e2, δ∗ and having
the value of θ from the interval (29), we find P ∗ by formula (27).

Figure 6

Figure 7

In Figure 6, we can see the values N(P ) for the cases i = 0, 1, 2 (for δ∗ = 0, 4 and δ∗ = −0, 4) which
are denoted by i1 and i2. Figure 7, gives the curves of dependence of dimensionless least frequencies
ω(N,P )/ω∗ on P for the above-mentioned cases which are likewise denoted by i1 and i2. Moreover, in
Figure 7, we see the graph of dependence of ω/ω∗ on P for the cylindrical shell (δ∗ = 0) in the cases
i = 0, 1, 2 denoted, respectively, by 0, 1, 2. On the basis of these graphs, it is not difficult to notice
that if the influence of the ortotropy parameters for the cylindrical shell is practically the same, then
for the concave shell, the influence of an elastic parameter in the circumferential direction is much
more greater as compared with the axial elastic parameter, whereas the situation is opposite for the
convex shells.

In the case of tensile forces P < 0, equations (22) and (23) take the form

ω2/ω2
∗ = 0, 5 e

1/2
1 e

1/2
2

[
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗ + 2|P |(1− 1, 185 δν∗θ)
]
, (30)

1, 185 δν∗ |P | = θ − 1, 185 δν∗θ
−2 − θ−3. (31)
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Analogously to the above-said, on the basis of formulas (30) and (31), we can construct the corre-
sponding dependencies. In Figure 7, on the left of the Oy-axis we can see the graphs of dependence
of ω/ω∗ on P < 0 for the cases i = 0, 1, 2 (for δ∗ = 0, 4 and δ∗ = −0, 4).

Consider now a general case P 6= 0, Q̃ 6= 0. Just as above, the frequency is defined by equality
(10). For ω = 0, by virtue of (10), we obtain

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = θ + θ−3 + 2, 37 δν∗θ

−2 + 1, 404 δ
ν2

∗ θ−1 − 2P (θ−1 − 1, 185 δ
ν

∗ ). (32)

The least value Q̃ > 0 depending on θ is realized for Q′θ = 0. Thus we have

θ4 + cθ2 + dθ + e = 0, c = 2P − 1, 404 δ
ν2

∗ ,

d = −4, 74 δν∗ , e = −3.
(33)

The roots of the last equation coincide with those of the two square equations

θ2 +
A1,2

2
θ +

(
y − d

A1,2

)
= 0, A1,2 = ±

√
8α,

θ1,2 = −
√
α

2
±

√
d√
8α
− α1

2
, θ3,4 = −

√
α

2
±

√
− d√

8α
− α1

2
,

α = y1 − c/2, α1 = y1 + c/2,

(34)

where y1 is any real root of the cubic equation

y3 − c

2
y2 − ey +

(ce
2
− d2

8

)
= 0 (35)

or

z3 + 3 pz + 2 q = 0 (z = y − c/6), (36)

p = 1−
(

2P − 1, 404 δ
ν2

∗

)2/
36,

q = −1

2

(
2P + 1, 404 δ

ν

∗

)2 [
1−

(
2P − 1, 404 δ

ν2

∗
)3

108 (2P + 1, 404 δ
2

∗)

]
.

(37)

If we assume that (
2P − 1, 404 δ

ν2

∗

)2/
36� 1,

then expressions (37) take the form p = 1, q = − 1
2 (2P+1, 404 δ

ν2

∗ ). Since the discriminant of equation

(36) is D = q2 + p3 > 0, we have only one real root

z =
(
− q +

√
q2 + p3

)1/3
+
(
− q −

√
q2 + p3

)1/3
(38)

If we assume that (
2P + 1, 404 δ

ν2

∗
)/

36� 1 (38′)

and expand the expressions appearing in (38) in series, omitting all values of the second order of

smallness, we arrive at z =
[
2P + 1, 404 (δ

ν2

∗ − γ∗/4)
]
/3. Then on the basis of (34), (36) and (33),

we obtain

α = z − c/3 = 2 · 1, 404 δν
2

∗ ,

α1 = z +
2

3
c = 2P − 1, 404

(
δν

2

∗ +
3

4
γ∗

)/
3.

(39)

Taking into account that y1 is the root of equation (35), we have

d2

8(y1 − c/2)
= y21 − e,
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whence we get

|d|√
8α

=
√
y21 − e > y1 =

y1
2

+
y1
2

+
c

4
− c

4
=

1

2

(
y1 −

c

2

)
+

1

2

(
y1 +

c

2

)
.

Consequently,

|d|√
8α
− α1

2
>
α

2
. (40)

Since N2 = n2/n20, of our interest are only positive roots of equation (33). Taking into account
inequality (40), we find that for δ∗ < 0 (d > 0), positive is only the root θ1, and for δ∗ > 0 (d < 0),
positive is the root θ3. Substituting the values d, α, α1, according to equalities (33) and (39), into
(34), we obtain

θ1,2 =

√√
3 + 0, 234

(
δν2

∗ +
3

4 e1
γν∗

)
− P ± 0, 684 |δν∗ |, (41)

where the indices “1” and “2” correspond to δ∗ > 0 and δ∗ < 0, respectively. It should be noted that
the above formula is, according to inequality (38′), valid for comparatively not large values of rigidity
of the elastic filler γν∗ . Taking into account that θ in an expanded form is θ= (e1/e2)1/4n2/λ1ε

−14,
we have

n21,2 = (e1/e2)1/4
{(√

3 + 0, 270(e1/e2)1/2ε−1/2
[(δ0

`

)2
+

3

4

γ

e1

( `
r

)2]
− P

)1/2

± 0, 735
(e1
e2

)1/4
ϕ−1/4

|δ0|
`

}
λ1ε
−1/4. (42)

In particular, for δ0 = γ = p = 0, we obtain the well-known formula for a critical number of waves
of the cylindrical shell of middle length: n2 = (e1/e2)1/4

√
3λ1ε

−1/4 [5].
From formula (42), it is not difficult to notice that under the action of contracting forces a number of

critical circumferential waves decreases, while under the action of tensile forces this number increases.
Formula (39), as it has been mentioned above, takes place if condition (38′) is fulfilled. In the case

if this condition is not fulfilled we have to proceed from full expressions (37). Defining thus the values
θ∗ (for fixed δν∗ , γ

ν
∗ , P , e1, e2) and substituting into (32), we obtain the corresponding critical value of

Q̃∗. In an expanded form, formula (32) for a critical pressure has the form

qkp = 0, 570 e
1/4
1 e

3/4
2 g

[
θ∗ + θ−3∗ + 2, 37 δν∗θ

−2
∗

+ 1, 404
(
δν

2

∗ + γν∗/4e1
)
θ−1∗ − 2P

(
θ−1∗ − 1, 185 δ̃ ν∗

)]
q0∗ − γ0α2T.

Note that the obtained value of Q̃∗ on the basis of formula (32) for the isotropic cylindrical shell
coincides for (δ∗ = 0, γ∗ = 0) P > 0 practically with the results obtained in [4].

Consider now equation (12) and write it in the form

θ4 + bθ3 + dθ + e = 0, b = 1, 185 δν∗P − 0, 8775 Q̃ ν ,

Q̃ ν = e
−1/4
1 e

3/4
2 Q̃, d = −1, 185 δν∗ , e = −1.

(43)

The roots of this equation coincide with those of the following two equations

θ2 + (b+B1,2)
θ

2
+
(
y1 +

by1 − d
B1,2

)
= 0, B1,2 = ±

√
8
(
y1 − b2/8

)
. (44)

Introduce the notation

γ1 = y1 + b2/8, γ2 = y1 − b2/4. (45)
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Then the roots of these equations will take the form

θ1,2 = −
√

8 γ1 + b

4
±

√
−by1 − d√

8 γ1
+
b
√

8 γ1 − 4 γ2
8

, (46)

θ3,4 =

√
8 γ1 + b

4
±

√
by1 − d√

8 γ1
− b
√

8 γ1 + 4 γ2
8

, (47)

where y1 is any real root of the cubic equation

y3 + 3 py + 2q = 0, 3 p = 1− 1, 1852δ̃ ν
2

∗ PM

4
,

2 q = −1, 1852δ̃ ν
2

∗ (1− P 2
M2)

8
, M = 1− 0, 7405 Q̃/δ̃ ν∗ P

for
1, 1852δ̃ ν

2 |PM |
4

� 1
(
δ̃ ν∗ ≤ 0, 5, |PM | ≤ 0, 5

)
,

p =
1

3
, q = −1, 1852 δ̃ ν

2

∗
(
1− P ν

M2
)
/16.

(48)

Since the discriminant of this equation D > 0, we have one real root

y1 =
(
− q +

√
D
)1/3

+
(
− q −

√
D
)1/3

,

√
D =

√
1 + 0, 208 δ̃ ν4

∗
(
1− P 2

M2
)
/33/2.

If we assume

0, 208 δ̃ ν
4

∗
(
1− P 2

M2
)
� 1 (49)

then in a full analogy with the above-said, we obtain y1 = 0, 1755 δ̃ ν
2

∗
(
1 − P

2
M2
)
. Under the

restrictions (48), inequality (49) is all the more fulfilled. Substituting the values y1, b, d, e1, e2 into
expressions (46) and (47) and also taking into account inequality (48), we find that for d > 0 (δν∗ < 0),
positive is only the root θ1, whereas for d < 0 (δν∗ > 0), positive is the root θ3. As a result, we have

θ1 =
[
1 + 0, 1755 δ̃ ν

2

∗ PM1

(
1− P 2

M2
1

)
− 0, 0877 δ̃ ν

2

∗
(
1 + 2PM1

− 2P
2
M2

1

)]1/2
+ 0, 2962 δ̃ ν∗

(
1− PM1

)
(δν∗ > 0), (50)

θ2 =
[
1 + 0, 1755 δ̃ ν

2

∗ PM2

(
1− P 2

M2
2

)
− 0, 0877 δ̃ ν

2

∗
(
1 + 2PM2

− 2PM2

)]1/2
− 0, 2962 δ̃ ν∗

(
1− PM1

)
(δν∗ < 0) (51)

M1 = 1− 0, 7405 Q̃ν/δνP , M1 = 1 + 0, 7405 Q̃ν/|δν |P .

For δ̃ ν∗ > 0, P/Q̃ > 0 the value M1 = 0, if δν∗ = 0, 7405P/Q̃ ν ; for δν∗ < 0, P/Q̃ ν < 0, the value

M2 = 0, if |δν∗ | = −0, 7405P/Q̃ ν , and formulas (50), (51) take the form

θ =

√
1− 0, 0877 δ̃ ν2

∗ + 0, 2962 δ̃ ν∗ (δν∗ > 0),

θ =

√
1− 0, 0877 δ̃ ν2

∗ − 0, 2962
∣∣δ̃ ν∗ ∣∣ (δν∗ < 0).

Note that this case of the certain values δ̃ ν∗ corresponds to the cases for which the normal circum-
ferential stresses due to meridional loading, external pressure and also temperature effect neutralise
mutually each other.

For γ0 = 0, e1 = e2 = 1 we have δ̃ν∗ = δ∗, q̃ = q and for θ, we obtain the formula given in [3].

Substituting the obtained expression for θ (for fixed δν∗ , P , Q̃, γν) into formula (10), we obtain the
corresponding least value of the dimensionless frequency ω/ω∗.
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The above obtained formulas and graphs show how much substantially vary critical loading, the
least frequency and the forms of wave formation depending on the orthotropy parameters, shell shape
and external effects.
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ON MEIR–KEELER CONTRACTION IN BRANCIARI b-METRIC SPACES

Z. MITROVIĆ1 AND S. RADENOVIĆ2

Abstract. In this paper we consider Meir–Keeler type results in the context of Branciari b-metric

spaces. Our results generalize, improve and complement several ones in the existing literature.

1. Introduction and Preliminaries

In the paper [14] the authors introduced the concept of bv(s)-metric space as follows.

Definition 1.1 ([14]). Let X be a set, let d be a function from X×X into [0,∞) and let v ∈ N. Then
(X, d) is said to be a bv(s)-metric space if for all x, y ∈ X and for all distinct points u1, u2, . . . , uv ∈ X,
each of them different from x and y the following hold:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(Bv3(s)) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)].

Note that:

• b1(1)-metric space is usual metric space,
• b1(s)-metric space is b-metric space with coefficient s of Czerwik [3, 4],
• b2(1)-metric space is rectangular metric space or Branciari metric space [2],
• b2(s)-metric space is rectangular b-metric space with coefficient s of George et al [8] or Bran-

ciari b-metric space [9],
• bv(1)-metric space is v-generalized metric space of Branciari [2],
• Let (X, dK) be a N -polygonal K-metric space over an ordered Banach space (V, || · ||,K)

(see [7]) such that K is a closed normal cone with normal constant λ and the function D :
X ×X → [0,∞) defined by D(x, y) = ||dK(x, y)||. Then (X,D) is bN (λ)-metric space.

Definition 1.2 ([14]). Let (X, d) be a bv(s)-metric space, {xn} be a sequence in X and x ∈ X. Then
(a) The sequence {xn} is said to be convergent in (X, d) and converges to x, if for every ε > 0 there

exists n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact is represented by lim
n→∞

xn = x or
xn → x as n→∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0 there exists n0 ∈ N
such that d(xn, xn+p) < ε for all n > n0, p > 0.

(c) (X, d) is said to be a complete bv(s)-metric space if every Cauchy sequence in X converges to
some x ∈ X.

Definition 1.3 ([11]). Let (X, d) be a metric space. A mapping T : X → X is called Meir–Keeler
contraction if for every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε for all x, y ∈ X.
Definition 1.4 ([16]). A mapping T : X → X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1,

where α : X ×X → [0,∞) is a given function. A function α is transitive if, given x, y, z ∈ X,

α(x, y) ≥ 1, α(y, z) ≥ 1⇒ α(x, z) ≥ 1.

2010 Mathematics Subject Classification. 47H10.
Key words and phrases. Fixed points; Rectangular b-metric space.
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Lemma 1.1 ([1]). Let T : X → X be an α-admissible mapping and let {xn} be a Picard sequence
of T based on a point x0 ∈ X. If x0 satisfies α(x0, Tx0) ≥ 1, then α(xn, xn+1) ≥ 1 for all n ∈ N.
Additionally, if α is transitive, then α(xn, xm) ≥ 1 for all n,m ∈ N such that n < m.

One generalization on Meir–Keeler mappings was given by Gülyaz et al in the paper [9].

Definition 1.5 ([9]). Let (X, d) be a Branciari b-metric space with a constant s ≥ 1. Let T : X → X
be an α-admissible mapping. If for every ε > 0 there exists δ > 0 such that

ε ≤M(x, y) < ε+ δ implies α(x, y)d(Tx, Ty) <
ε

s
, (1)

where
M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}

for all x, y ∈ X, then T is called generalized α-Meir–Keeler contraction.

Definition 1.6 ([9]). A Branciari b-metric space (X, d) is called α-regular if for any sequence {xn}
such that lim d(xn, x) = 0 and satisfying α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all
n ∈ N.

We note that Gülyaz et al in the paper [9] define Brancari b-metric spaces, but this class of space
has already been defined by George et al in the paper [8] and others called them rectangular b-metric
spaces. Also in the paper [9] Gülyaz et al prove Lemma 2. 5 (see [9, p. 5449]).

Lemma 1.2 (Lemma 2. 5. in [9]). Let (X, d) be a Branciari b-metric space with a constant s ≥ 1.
Let {xn} be a sequence in X satisfying

1. xm 6= xn for all m 6= n,m, n ∈ N,
2. d(xn, xn+1) ≤ 1

sd(xn−1, xn), for all n ∈ N,
3. limn→∞ d(xn, xn+2) = 0. Then {xn} is a Cauchy sequence in (X, d).

Unfortunately, the Lemma 1.2 is not correct, as shown in the following example.

Example 1.1. Put X = R, d(x, y) = |x − y|, x, y ∈ X and xn = 1 + 1
2 + · · · + 1

n . Then (X, d) is
Branciari b-metric space with coefficient s = 1 and sequence {xn} fulfills the conditions of Lemma 1.2
but not the Cauchy sequence.

Of course, then main result in the [9] is not correct, because its proof is needed by Lemma 2. 5.
Here we prove the new version of Lemma 2. 5. in [9], also we show that continuity of function T is
not necessary. Also, note that condition (1) follows the following condition

α(x, y)d(Tx, Ty) ≤ λM(x, y),

for all x, y ∈ X, where λ ∈ (0, 1
s ). In addition, the authors in [9] use that is the next result.

Proposition 1.1 (Proposition 1.6. in [9]). Let {xn} be a Cauchy sequence in a Branciari metric
space (X, d) such that lim d(xn, x) = 0, where x ∈ X. Then lim d(xn, y) = d(x, y), for all y ∈ X. In
particular, the sequence {xn} does not converge to y if y 6= x.

For proof of the main result in [9] (Theorem 2.6) authors used that the Proposition 1.1 is valid if
replace Branciari metric space by a Branciari b-metric space.

Unfortunately, Proposition 1.1 is not true in Branciari b-metric space (see Example 1.7. in [8]).

2. Main Results

Lemma 2.1. Let (X, d) be a complete b2(s)-metric space and let {xn} be a sequence in X such that
xn (n ≥ 0) are all different. Suppose that exists λ ∈ [0, 1√

s
) such that

(1) d(xn, xn+1) ≤ λd(xn−1, xn),
(2) d(xn, xn+2) ≤ λd(xn−1, xn+1),

for all n ≥ 1. Then {xn} is a convergent sequence in (X, d). Additionally, if d is continuous, then for
x∗ for which x∗ = limxn the next estimate holds

d(xn, x
∗) ≤ 2sλn

1− sλ2
d(x0, x1) + 3λn[d(x0, x1) + d(x0, x2)]. (2)



ON MEIR–KEELER CONTRACTION IN BRANCIARI b-METRIC SPACES 85

Proof. First, we note that from conditions 1 and 2 we follow

d(xn, xn+1) ≤ λnd(x0, x1), (3)

and

d(xn, xn+2) ≤ λnd(x0, x2), (4)

for all n ≥ 1.
Let n,m ∈ N and m > n.

1. Case: m− n = 2k for any k ∈ N.
From condition (B23(s)) we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xm)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)]

...

+ sk−2[d(xn+2k−6, xn+2k−5) + d(xn+2k−5, xn+2k−4)]

+ sk−1[d(xn+2k−4, xn+2k−3) + d(xn+2k−3, xn+2k−2)]

+ sk−1d(xn+2k−2, xn+2k)

From conditions (3) and (4) we obtain

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

+ s2λn+2(1 + λ)d(x0, x1)

+ s3λn+4(1 + λ)d(x0, x1)

...

+ skλn+2k−2(1 + λ)d(x0, x1)

+ skλn+2k−2d(x0, x2).

So,

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)[1 + sλ2 + · · ·+ (sλ2)k−1]

+ (sλ2)k−1λnd(x0, x2).

How is it 0 ≤ sλ2 < 1, we obtain

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2
+ λnd(x0, x2). (5)

Now from (5), we conclude that {xn} is Cauchy.
2. Case: m − n = 2k + 1 for any k ∈ N. Similar to the previous case from condition B23(s) we

have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xm)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)]

...

+ sk−2[d(xn+2k−6, xn+2k−5) + d(xn+2k−5, xn+2k−4)]

+ sk−1[d(xn+2k−4, xn+2k−3) + d(xn+2k−3, xn+2k−2)]

+ sk[d(xn+2k−2, xn+2k−1) + d(xn+2k−1, xn+2k)

+ d(xn+2k, xn+2k+1)],
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and from here again using the inequalities (3) and (4) we get

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

+ s2λn+2(1 + λ)d(x0, x1)

+ s3λn+4(1 + λ)d(x0, x1)

...

+ skλn+2k−2(1 + λ)d(x0, x1)

+ skλn+2k−2(1 + λ+ λ2)d(x0, x1).

So we have

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2

+ sλn(sλ2)k−1(1 + λ+ λ2)d(x0, x1)

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2
+ λn(1 + λ+ λ2)d(x0, x1). (6)

So, {xn} is Cauchy. The estimate (2) follows from (5) and (6) when we let us m run infinitely. �

Lemma 2.2. Let T : X → X be an α-admissible mapping and let {xn} be a Picard sequence of T
based on a point x0 ∈ X. If α is transitive, x0 satisfies α(x0, Tx0) ≥ 1 and

α(x, y)d(Tx, Ty) ≤ λd(x, y), (7)

for all x, y ∈ X, where λ ∈ (0, 1), then it is

d(xm+k, xn+k) ≤ λkd(xm, xn),

for all m,n, k ∈ N, n < m.

Proof. Using Lemma 1.1 we get

α(xm, xn) ≥ 1 for all n < m.

From condition (7) follows

d(xm+k, xn+k) ≤ λ

α(xm+k−1, xn+k−1)
d(xm+k−1, xn+k−1)

≤ λd(xm+k−1, xn+k−1)

...

≤ λkd(xm, xn). �

Lemma 2.3. Let (X, d) be a bv(s)-metric space, T : X → X be a mapping and let {xn} be a sequence
in X such that x0 ∈ X and xn+1 = Txn. If there exists λ ∈ [0, 1) and such that

d(xn, xn+1) ≤ λd(xn−1, xn) for all n ≥ 1, (8)

then T has a fixed point or xn 6= xm for all n 6= m.

Proof. If xn = xn+1 then xn is fixed point of T and proof is hold. So, suppose that xn 6= xn+1 for all
n ≥ 0. Then xn 6= xn+k for all n ≥ 0, k ≥ 1. Namely, if xn = xn+k for some n ≥ 0 and k ≥ 1 we have
that Txn = Txn+k and xn+1 = xn+k+1. Then (8) implies that

d(xn+1, xn) = d(xn+k+1, xn+k) ≤ λkd(xn+1, xn) < d(xn+1, xn)

is a contradiction. Thus we assume that xn 6= xm for all distinct n,m ∈ N. �



ON MEIR–KEELER CONTRACTION IN BRANCIARI b-METRIC SPACES 87

Theorem 2.1. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ (0, 1). If α(x0, Tx0) ≥ 1 for some x0 ∈ X and α transitive then T has a
fixed point in X.

Proof. Let λ ∈ [0, 1). Since lim
n→∞

λn = 0, there exists a natural number N such that

0 < λk · s < 1, (9)

for all k ≥ N.
Let x0 ∈ X such that α(x0, Tx0) ≥ 1. From Lemma 1.1 we have that

α(xn, xn+1) ≥ 1 for all n ∈ N.

Define the sequence {xn} by xn+1 = Txn for all n ≥ 0. If xn = xn+1 then xn is fixed point of T and
proof is hold. So, suppose that xn 6= xn+1 for all n ≥ 0. Then xn 6= xm for all n < m. Since, (X, d) is
b2(s)-metric space, from condition (B2(s)) we have

d(xm, xn) ≤ s[d(xm, xm+k) + d(xm+k, xn+k) + d(xn+k, xn)].

Using Lemma 2.2 we get

d(xm, xn) ≤ s[λmd(x0, xk) + λkd(xm, xn) + λnd(x0, xk)]

(1− sλk)d(xm, xn) ≤ s(λm + λn)d(x0, xk).

From this, together with (9), we obtain

d(xm, xn) ≤ s(λm + λn)

1− sλk
d(x0, xk).

Thus {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

Now we obtain that x∗ is a fixed point of T . Namely, for any n ∈ N we have

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s
[
d(x∗, xn) + d(xn, xn+1) +

λd(xn, x
∗)

α(xn, x∗)

]
≤ s[d(x∗, xn) + d(xn, xn+1) + λd(xn, x

∗)].

Since, lim
n→∞

d(x∗, xn) = 0 and lim
n→∞

d(xn, xn+1) = 0, we have d(x∗, Tx∗) = 0 i. e., Tx∗ = x∗. �

Remark 2.1. We note that the previous Theorem is an improvement in the results in [13] (Theorem
2.1).

In the next Theorem we do not assume that the function α is transitive.

Theorem 2.2. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λM(x, y), (10)

for all x, y ∈ X, where λ ∈ (0, 1
s ). If min{α(x0, Tx0), α(x0, T

2x0)} ≥ 1 for some x0 ∈ X, then T has
a fixed point in X.
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Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
2x0) ≥ 1 and xn+1 = Txn, n = 1, 2, . . . .

Since T is a α-admissible, from Lemma 1.1 we obtain

α(xn, xn+1) ≥ 1 for all n ∈ N. (11)

Similarly, from α(x0, T
2x0) ≥ 1 follows

α(xn, xn+2) ≥ 1 for all n ∈ N. (12)

From conditions (10) and (11) we have

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ α(xn, xn+1)d(Txn, Txn+1)

≤ λM(xn, xn+1),

since

M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)}
and

d(xn+1, xn+2) ≤ λd(xn+1, xn+2)

not possible, we conclude that it is

d(xn+1, xn+2) ≤ λd(xn, xn+1), (13)

so, we obtain

d(xn+1, xn+2) ≤ λnd(x1, x0).

Similarly, from conditions (10) and (12) we obtain

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ α(xn−1, xn+1)d(Txn−1, Txn+1)

≤ λM(xn−1, xn+1),

since

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}
and

d(xn+1, xn+2) ≤ λ2d(xn−1, xn),

we conclude that it is

d(xn, xn+2) ≤ λmax{d(xn−1, xn+1), d(xn−1, xn)}. (14)

From conditions (13) and (14) we obtain

d(xn, xn+2) ≤ λn max{d(x1, x0), d(x0, x2)}. (15)

From (13) and (15) and Lemma 2.1 we conclude that {xn} is Cauchy, so it converges to a limit x∗ ∈ X.
How is (X, d) α-regular b2(s)-metric space, from (11) we get that α(xn, x

∗) ≥ 1 for all n ∈ N. From
Lemma 2.3 we conclude that xn 6= xm for all n 6= m. Now we obtain that x∗ is the fixed point of T .
Namely, for any n ∈ N we have

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s
[
d(x∗, xn) + d(xn, xn+1) +

λM(xn, x
∗)

α(xn, x∗)

]
≤ s[d(x∗, xn) + d(xn, xn+1)

+ λmax{d(xn, x
∗), d(xn, xn+1), d(x∗, Tx∗)}].

Since, {xn} converges to x∗ and λ < 1
s , we have Tx∗ = x∗. �
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Remark 2.2. We note that in the previous Theorem 2.2, for the proof of the convergence of the
sequence {xn}, a sufficient condition is that it is λ ∈ (0, 1√

s
). Also, if M(x, y) = d(x, y), we get that

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s[d(x∗, xn) + d(xn, xn+1) +
λd(xn, x

∗)

α(xn, x∗)
]

≤ s[d(x∗, xn) + d(xn, xn+1) + λd(xn, x
∗)].

So, Tx∗ = x∗.

Thus, the following result follows from the Theorem 2.2 and Remark 2.2.

Theorem 2.3. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ (0, 1√
s
). If min{α(x0, Tx0), α(x0, T

2x0)} ≥ 1 for some x0 ∈ X, then T

has a fixed point in X.

Remark 2.3. If α(x, y) = 1, for all x, y ∈ X then T has unique fixed point. Let y∗ be another
fixed point of T. Then it follows from (8) that d(x∗, y∗) = d(Tx∗, T y∗) ≤ λd(x∗, y∗) < d(x∗, y∗), is a
contradiction. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗.

We note that from Theorem 2.3 we obtain the following result (Theorem 2.1. in [8]).

Theorem 2.4 ([8]). Let (X, d) be a complete rectangular b-metric space with coefficient s > 1 and
T : X → X be a mapping satisfying:

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X, where λ ∈ [0, 1
s ]. Then T has a unique fixed point.

Remark 2.4. As 1
s < 1√

s
, (s > 1), using the Lemma 2.1, the following results can be improved

Theorem 2.1. in [6], Theorem 2. 1. in [5], Theorem 1. in [15], Theorem 2.1. in [18].

The following result is known for b1(s)-metric space (see R. Miculescu and A. Mihail [12, Lemma
2.2] and T. Suzuki [17, Lemma 6]).

Lemma 2.4 ([12, 17]). Every sequence (xn)n∈N of elements from a b-metric space (X, d, s), having
the property that there exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N, is Cauchy.

It is therefore natural to ask the following question.
Question. Does the conclusion of Lemma 2.1 hold if 1√

s
is replaced by 1?
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CHARACTERIZATION OF SETS OF SINGULAR ROTATIONS FOR A CLASS

OF DIFFERENTIATION BASES

G. ONIANI AND K. CHUBINIDZE

Abstract. We study the dependence of differential properties of an indefinite integral on rotations
of the coordinate system. Namely, the following problem is studied: For a summable function f

of what kind can be the set of rotations γ for which
∫
f is not differentiable with respect to the

γ-rotation of a given basis B? The result obtained in the paper implies a solution of the problem for
any homothecy invariant differentiation basis B of two-dimensional intervals which has symmetric

structure.

1. Definitions and Notation

A collection B of open bounded and non-empty subsets of Rn is called a differentiation basis (briefly:
basis) if for every x ∈ Rn there exists a sequence (Rk) of sets from B such that x ∈ Rk (k ∈ N) and
lim
k→∞

diamRk = 0.

For a basis B by B(x) (x ∈ Rn) it will be denoted the collection of all sets from B containing the
point x.

Let B be a basis. For f ∈ L(Rn) and x ∈ Rn, the upper and lower limits of the integral means
1
|R|
∫
R
f , where R is an arbitrary set from B(x) and diamR → 0, are called the upper and the lower

derivatives with respect to B of the integral of f at the point x, and are denoted by DB(
∫
f, x) and

DB(
∫
f, x), respectively. If the upper and the lower derivatives coincide, then their common value is

called the derivative of
∫
f at the point x and denoted by DB(

∫
f, x). We say that B differentiates

∫
f

(or
∫
f is differentiable with respect to B) if DB(

∫
f, x) = D B(

∫
f, x) = f(x) for almost all x ∈ Rn.

If this is true for each f in the class of functions F ⊂ L(Rn) we say that B differentiates F . By FB
denote the class of all functions f ∈ L(Rn) the integrals of which are differentiable with respect to B.
The maximal operator MB corresponding to B is defined as follows: MB(f)(x) = supR∈B(x)

1
|R|
∫
R
|f |,

where f ∈ L(Rn) and x ∈ Rn.
A basis B is called translation invariant (homothecy invariant) if for any set R from B and any

translation (homothecy) M : Rn → Rn the set M(R) also belongs to B. It is easy to check that each
homothecy invariant basis is translation invariant also. Let us call a basis B convex if each set R ∈ B
is convex.

Denote by I = I(Rn) the basis consisting of all n-dimensional intervals. Differentiation with respect
to I is called strong differentiation.

Let us call a basis B non-standard if there exists a function f ∈ L(Rn) the integral of which is not
differentiable with respect to B (i.e. if B does not differentiate L(Rn)).

The basis I is non-standard (see, e.g., [3, Ch. IV, §1]). Note that (see, [3, Appendix III]) a homothecy
invariant basis B of multi-dimensional intervals is non-standard if and only if sup{I ∈ B : lI/lI} =∞,
where lI and lI are the lengthes of the biggest and of the smallest edges of an interval I, respec-
tively. Moreover, a clear geometrical criterion for the non-standartness it is known also for translation
invariant bases of multi-dimensional intervals (see [14,16]).

By Γ(Rn) denote the collection of all rotations in Rn.
Let B be a basis in Rn and γ ∈ Γ(Rn). The γ-rotated basis B is defined as follows: B(γ) = {γ(R) :

R ∈ B}.
Denote by ρk (k = 0, 1, 2, 3) the rotation of the plane by the angle πk/2.

2010 Mathematics Subject Classification. 28A15.
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Let us call a set E ⊂ Γ(R2) symmetric if for any γ ∈ E the rotations ρ1 ◦ γ, ρ2 ◦ γ and ρ3 ◦ γ also
belong to the set E.

Let us call a translation invariant basis B of two-dimensional intervals symmetric if the bases
B(ρ1), B(ρ2) and B(ρ3) are equal to B. Obviously, the basis I(R2) is symmetric.

The set of two-dimensional rotations Γ(R2) can be identified with the circumference T = {(x1, x2) ∈
R2 : x2

1 + x2
2 = 1}, if to a rotation γ we put into correspondence the point γ((1, 0)). The distance

d(γ, σ) between rotations γ, σ ∈ Γ(R2) is assumed to be equal to the length of the smallest arch of
the circumference T connecting the points γ((1, 0)) and σ((1, 0)).

A class of functions F is called invariant with respect to a class of transformations of a variable Λ
if (f ∈ F, λ ∈ Λ)⇒ f ◦ λ ∈ F.

2. Introduction

The dependence of properties of functions of several variables on rotations of the system of coor-
dinates (that is, on a transformation of the variables that is a rotation) has been studied by various
authors.

Zygmund posed the following problem (see, [3, Ch. IV, §2]): Is it possible to improve an arbitrary
function f ∈ L(R2) by means of a rotation of the coordinate system to achieve strong differentiability
of the integral of f? In [7] Marstrand gave a negative answer to this problem by constructing a
non-negative function f ∈ L(R2) such that DI

(∫
f ◦ γ, x

)
= ∞ a.e. for every γ ∈ Γ(R2). In the

works [6, 10,13] and [11] the result of Marstrand was extended to bases of quite general type.
As established by Lepsveridze [5], Oniani [8] and Stokolos [15], the property of strong differentiabil-

ity (that is, the class FI) is not invariant with respect to linear changes of variables and, in particular,
to rotations. A similar result was proved by Dragoshanskii [2] for the class of continuous functions of
two variables whose Fourier series (Fourier integral) is Pringsheim convergent almost everywhere.

In [11] non-invariance of a class FB with respect to rotations was proved for any non-standard
translation invariant basis B of multi-dimensional intervals.

Suppose B is a translation invariant basis. Then it is easy to verify that the differentiation of the
integral of a “rotated” function f ◦γ with respect to B at a point x is equivalent to the differentiation
of the integral of f with respect to the “rotated” basis B(γ−1) at the point γ−1(x). Consequently,
we can reduce the study of the behavior of functions f ◦ γ (γ ∈ Γ(Rn)) with respect to the basis B to
the study of the behavior of f with respect to the rotated bases B(γ) (γ ∈ Γ(Rn)). Below we will use
this approach.

If for a translation invariant basis B the class FB is not invariant with respect to the rotations then
there exists a function f ∈ L(Rn) having non-homogeneous behaviour with respect to rotated bases
B(γ) (γ ∈ Γ(Rn)), more exactly,

∫
f is not differentiable with respect to B(γ) for some rotations and∫

f is differentiable with respect B(γ) for some other rotations. Thus, for f some rotations γ are
“singular” and some other rotations γ are “regular”. In this connection naturally arises the problem:
Of what kind can be the sets of singular and of regular rotations for a fixed function? Note that by
duality argument we can restrict ourselves by studying sets of singular rotations.

In connection to the posed problem let us formulate rigor definition of a set of singular rotations:
Suppose B is a translation invariant basis in Rn and E ⊂ Γ(Rn). Let us call E a WB-set if there exists
a function f ∈ L(Rn) with the following two properties: 1) f /∈ FB(γ) for every γ ∈ E; 2) f ∈ FB(γ)

for every γ /∈ E.
Let us formulate also the definition of a set of “strongly” singular rotations: Suppose B is a

translation invariant basis in Rn and E ⊂ Γ(Rn). Let us call E an RB-set if there exists a function
f ∈ L(Rn) with the following two properties: 1) DB(γ)

(∫
f, x
)

=∞ a.e. for every γ ∈ E; 2) f ∈ FB(γ)

for every γ /∈ E.
Now the problem can be formulated as follows: For a given translation invariant basis B what kind

of sets are WB-sets(RB-sets)?
Note that for a standard basis B, i.e. for a basis B differentiating L(Rn), the problem is trivial.

Here note also that if a translation invariant basis B of two-dimensional intervals is symmetric then
every WB-set and every RB-set is symmetric.
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In [1] for an arbitrary translation invariant basis B in R2 it was established the following three
structural properties of sets of singular rotations: 1) Each WB-set is of type Gδσ; 2) Each RB-set is
of type Gδ; 3) At most countable union of RB-sets is a WB-set.

Sets of singular rotations for the case of strong differentiability process on the plane (i.e., for the
case B = I(R2)) was characterized by G. Karagulyan [4] proving that: 1) a set E ⊂ Γ(R2) is a
WI(R2)-set if and only if E is symmetric and of type Gδσ; 2) a set E ⊂ Γ(R2) is an RI(R2)-set if and
only if E is symmetric and of type Gδ.

Our purpose is to show that the idea in Karagulyan’s construction works for bases of two-dimensional
intervals of quite general type.

3. Result

For a translation invariant convex basisB let us define the following function σB(λ)= lim
ε→0
|{MB(χVε)

> λ}|/|Vε| (0 < λ < 1), where Vε is the ball with the centre at the origin and with the radius ε. Here
and below everywhere χE denotes the characteristic function of a set E. We call σB a spherical halo
function of B. It is easy to check that if B is homothecy invariant, then σB(λ) = |{MB(χV ) > λ}|,
where V is the unit ball.

We say that a translation invariant convex basis B has the non-regular spherical halo function if
lim
λ→0

λσB(λ) =∞.

Theorem 1. Let B be a non-standard translation invariant basis of two-dimensional intervals which
is symmetric and has the non-regular spherical halo function. Then:

• a set E ⊂ Γ(R2) is a WB-set if and only if E is symmetric and of type Gδσ;
• a set E ⊂ Γ(R2) is an RB-set if and only if E is symmetric and of type Gδ.

In [11] (see Lemma 2.4) it was shown that every non-standard homothecy invariant convex basis B
has the non-regular spherical halo function. Taking into account this fact, we obtain from Theorem 1
the following corollary.

Corollary 1. Let B be a non-standard homothecy invariant basis of two-dimensional intervals which is
symmetric. Then for WB-sets and RB-sets characterizations analogous to the ones given in Theorem 1
are true.

4. Auxiliary Propositions

By BTI and BHI we will denote the classes of all translation invariant and homothecy invariant
bases in R2, respectively. By BI it will be denoted the class of all bases consisting of two-dimensional
intervals. The lower left vertex of an interval I ⊂ R2 denote by a(I). For a set A ⊂ Rn with the
centre of symmetry at a point x and for a number α > 0 we denote by αA the dilation of A with the
coefficient α, i.e. the set αA = {x+ α(y − x) : y ∈ A}.

Let B ∈ BI. For a square interval Q and λ ∈ (0, 1) by ΩB(Q,λ) denote the collection of all intervals
I ∈ B with the properties: a(I) = a(Q), I ⊃ Q and |Q|/|I| > λ. The set EB(Q,λ) will be defined as
the union of all intervals from the collection ΩB(Q,λ). Obviously, 1

|I|
∫
I
χQ > λ for each I ∈ ΩB(Q,λ)

and EB(Q,λ) ⊂ {MB(χQ) > λ}.

Lemma 1. Let B ∈ BTI ∩ BI, Q be a square interval and 0 < λ < 1. Then |EB(Q,λ)| ≥
c(|{MB(χQ) > λ}| − 18|Q|/λ), where c is a positive absolute constant.

Proof. Without loss of generality let us assume that Q is a square interval of the type (−ε, ε)2. Let Θ
be the collection of all intervals I ∈ B such that 1

|I|
∫
I
χQ > λ. Obviously, {MB(χQ) > λ} =

⋃
I∈Θ I.

Denote by Θ0 the collection of all intervals I ∈ Θ having at least one side with the length smaller
than 2ε. It is easy to check that every I ∈ Θ0 is contained in the union of the intervals (−3ε, 3ε) ×
(−ε− 2ε/λ, ε+ 2ε/λ) and (−ε− 2ε/λ, ε+ 2ε/λ)× (−3ε, 3ε). Consequently, |

⋃
I∈Θ0

I| < 18|Q|/λ.
Let R2

k (k ∈ 1, 4) be the k-th coordinate quarter. Denote by Θk (k ∈ 1, 4) the collection of all

intervals I ∈ Θ \ Θ0 for which |I ∩ R2
k| = max{|I ∩ R2

m| : m ∈ 1, 4}. Obviously, Θ =
⋃4
k=0 Θk. The

unions
⋃
I∈Θk

I and
⋃
I∈Θm

I are symmetric with respect to Ox2 if k = 1,m = 2 or k = 3,m = 4 and
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are symmetric with respect to Ox1 if k = 2,m = 3 or k = 4,m = 1. Hence, the sets
⋃
I∈Θk

I (k ∈ 1, 4)
have one and the same measure. Consequently,∣∣∣ ⋃

I∈Θ1

I
∣∣∣ ≥ 1

4

(∣∣∣ ⋃
I∈Θ

I
∣∣∣− ∣∣∣ ⋃

I∈Θ0

I
∣∣∣) ≥ 1

4

(
|{MB(χQ) > λ}| − 18|Q|

λ

)
. (1)

For arbitrary I ∈ Θ1 let us consider the translation T for which T (I) ∈ ΩB(Q,λ). It is clear that I ⊂
2T (I). Consequently,

⋃
I∈Θ1

I ⊂
⋃
I∈ΩB(Q,λ) 2I. Therefore, by (1): |

⋃
I∈ΩB(Q,λ)

2I| ≥ 1
4 (|{MB(χQ) >

λ}| − 18|Q|/λ). On the other hand, by virtue of the inclusion
⋃
I∈ΩB(Q,λ) 2I ⊂ {MI(R2)(χA) ≥ 1/4},

where A =
⋃
I∈ΩB(Q,λ) I, and the strong maximal inequality (see, e.g., [3, Ch. II, §3]), we have:

|
⋃
I∈ΩB(Q,λ) 2I| ≤ C|

⋃
I∈ΩB(Q,λ) I|, where C is a positive absolute constant. From the last two

estimations it follows the validity of the lemma. �

Lemma 2. Let B ∈ BTI ∩BI and 0 < λ < 1. If σB(λ) > 144/λ, then for every ε > 0 there is a
square interval Q such that diamQ < ε and |EB(Q,λ)| ≥ cσB(λ)|Q|/8, where c is the constant from
Lemma 1.

Proof. Taking into account the definition of the spherical halo function σB , we can find a ball Vδ =
{x ∈ R2 : dist(x,O) < δ} such that δ < ε/4 and |{MB(χVδ) > λ}|/|Vδ| > σB(λ)/2. Let us consider the
square interval Q superscribed around Vδ, i.e. Q = (−δ, δ)2. Then diamQ < ε and |{MB(χQ) > λ}| ≥
|{MB(χVδ) > λ}| > σB(λ)|Vδ|/2 > σB(λ)|Q|/4. Now, taking into account the estimation σB(λ) >
144/λ, by virtue of Lemma 1, we write: |EB(Q,λ)| ≥ c(σB(λ)|Q|/4 − 18|Q|/λ) ≥ cσB(λ)|Q|/8. This
proves the lemma. �

Suppose, S = (0, ε) × (0, ε), 0 < α ≤ π/4 and n ∈ N. For each k ∈ 1, n let us define the points
P+
k (S, α), P−k (S, α) and the balls V +

k (S, α, n), V −k (S, α, n) as follows:

P+
k (S, α) =

( ε
2k
,
ε

2k
tan(α)

)
, P−k (S, α) =

( ε
2k
,− ε

2k
tan(α)

)
,

V +
k (S, α, n) =

{
x ∈ R2 : dist(x, P+

k (S, α)) <
ε

4n
tan(α)

}
,

V −k (S, α, n) =
{
x ∈ R2 : dist(x, P−k (S, α)) <

ε

4n
tan(α)

}
.

Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 0 < α ≤ π/4
and n ∈ N. Let ξ = ξQ,h,S,α,n be the function which is proportional to the function

∑n
k=1 χV +

k (S,α,n)−∑n
k=1 χV −k (S,α,n), and satisfies the following conditions: {ξ > 0} =

⋃n
k=1 V

+
k (S, α, n), {ξ < 0} =⋃n

k=1 V
−
k (S, α, n) and ‖ξ‖L = 2‖hχQ‖L. The function ξQ,h,S,α,n we will call (S, α, n)-oscillator corre-

sponding to the function hχQ. It is easy to see that:
1) the balls V +

k (S, α, n) are disjoint and contained in the square S;

2) the balls V −k (S, α, n) are disjoint and contained in the square S− = (0, ε)× (−ε, 0);
3)
∫
V +
k (S,α,n)

ξ = −
∫
V −k (S,α,n)

ξ = h|Q|/n for each k ∈ 1, n.

For γ ∈ Γ(R2) and ε > 0 denote V [γ, ε] = {ρ ∈ Γ(R2) : dist(ρ, γ) ≤ ε}.
For a basis B by MB denote the following type maximal operator: MB(f)(x) = supR∈B(x)

1
|R|
∫
R
f

(f ∈ L(Rn), x ∈ Rn).

Lemma 3. Let B ∈ BTI ∩ BI. Suppose Q and S are square intervals with Q ⊃ S and a(Q) =
a(S) = (0, 0), h > 1, 0 < α ≤ π/4 and n ∈ N. Then for the oscillator ξ = ξQ,h,S,α,n it is valid the
following estimation: 1

|γ(I)|
∫
γ(I)

ξ > 1 for every I ∈ ΩB(Q, 1/h) and γ ∈ V [ρ0, α/2]; consequently,

{MB(γ)(ξ) > 1} ⊃ γ(EB(Q, 1/h)) for every γ ∈ V [ρ0, α/2].

Proof. Let I ∈ ΩB(Q, 1/h) and γ ∈ V [ρ0, α/2]. Using simple geometry it is easy to see that γ(I) ⊃
{ξ > 0} and γ(I) ∩ {ξ < 0} = ∅. Consequently, taking into account the properties of the oscillator ξ,
we write: 1

|γ(I)|
∫
γ(I)

ξ = 1
|I|
∫
{ξ>0} ξ = ‖hχQ‖L/|I| = h|Q|/|I| > 1. The lemma is proved. �
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Remark 1. On the basis of Lemmas 1 and 3 the oscillator ξ = ξQ,h,S,α,n may be interpreted as the
transformation of the function hχQ that conserves values of integral means with respect to the bases
B(γ) for rotations γ belonging to the neighbourhood V [ρ0, α/2]. In particular, if it is known that the
set {MB(hχQ) > 1} has a big measure, then the sets {MB(γ)(ξ) > 1} have big measures of the same
order for every γ ∈ V [ρ0, α/2].

The following Lemma was shown in [4] (see Lemma 2) and plays an essential role in achieving
differentiation effect for desired rotations.

Lemma A. Let S be a square interval, 0 < α < π/12 and n ∈ N. Then for arbitrary rectangle R the
sides of which compose with the line Ox1 angles greater than 3α it is valid the estimation |ν+−ν−| ≤ 2,
where ν+ is a number of all points P+

k (S, α) (k ∈ 1, n) belonging to R and ν− is a number of all points

P−k (S, α) (k ∈ 1, n) belonging to R.

For a square S = (0, ε)2 by ∆(S) denote the union of the strips (−7ε, 7ε)× R and R× (−7ε, 7ε).

For a basis B let M̂B be the following type maximal operator: M̂B(f)(x) = supR∈B(x)
1
|R|
∣∣ ∫
R
f
∣∣

(f ∈ L(Rn), x ∈ Rn).
For a non-empty set E ⊂ Γ(R2) and a number ε > 0 denote V [E, ε] = {γ ∈ Γ(R2) : dist(γ,E) ≤ ε}.
Below the set of the rotations ρ0, ρ1, ρ2 and ρ3 will be denoted by Π.

Lemma 4. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
square interval S ⊂ Q with a(S) = (0, 0) and every ε > 0 there is n ∈ N such that for the oscillator

ξ = ξQ,h,S,α,n it is valid the following inclusion: {M̂I(γ)(ξ) ≥ ε} ⊂ γ(∆(S)) for every γ /∈ V [Π, 3α].

Proof. Suppose x /∈ γ(∆(S)), γ /∈ V [Π, 3α], R ∈ I(γ)(x) and R ∩ supp ξ 6= ∅. For n ∈ N denote by
N+, N−, N

∗
+, N

∗
−, N

∗∗
+ and N∗∗− the sets of indexes k ∈ 1, n satisfying conditions V +

k (S, α, n) ∩R 6= ∅,
V −k (S, α, n)∩R 6= ∅, P+

k (S, α) ∈ R, P−k (S, α) ∈ R, V +
k (S, α, n) ⊂ R and V −k (S, α, n) ⊂ R, respectively.

It is easy to see that if n is big enough, then every line l composing an angle with the axis Ox1

greater than 3α may intersect at most one among balls V +
k (S, α, n)(V −k (S, α, n)). Below we will assume

that n has the just mentioned property. Consequently, the boundary of the rectangle R may intersect
at most 4 among balls V +

k (S, α, n)(V −k (S, α, n)). Thus, there are true the following estimations:
card(N+ \N∗+) + card(N∗+ \N∗∗+ ) ≤ 4 and card(N− \N∗−) + card(N∗− \N∗∗− ) ≤ 4. Herewith, by virtue
of Lemma A: | cardN∗+ − cardN∗−| ≤ 2.

Let us estimate |
∫
R
ξ|. We have∣∣∣ ∫

R

ξ
∣∣∣ =

∣∣∣ ∑
k∈N+

∫
V +
k (S,α,n)∩R

ξ +
∑
k∈N−

∫
V −k (S,α,n)∩R

ξ
∣∣∣

≤
∣∣∣ ∑
k∈N∗+

∫
V +
k (S,α,n)∩R

ξ +
∑
k∈N∗−

∫
V −k (S,α,n)∩R

ξ
∣∣∣

+
∣∣∣ ∑
k∈N+

∫
V +
k (S,α,n)∩R

ξ −
∑
k∈N∗+

∫
V +
k (S,α,n)∩R

ξ
∣∣∣

+
∣∣∣ ∑
k∈N−

∫
V +
k (S,α,n)∩R

ξ −
∑
k∈N∗−

∫
V +
k (S,α,n)∩R

ξ
∣∣∣ = a1 + a2 + a3.

The term a1 can be estimated as follows

a1 ≤
∣∣∣ ∑
k∈N∗+

∫
V +
k (S,α,n)

ξ +
∑
k∈N∗−

∫
V −k (S,α,n)

ξ
∣∣∣

≤
∑

k∈N∗+\N∗∗+

∫
V +
k (S,α,n)

ξ +
∑

k∈N∗−\N∗∗−

∫
V −k (S,α,n)

|ξ| = a1,1 + a1,2 + a1,3.
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By virtue of equalities
∫
V +
k (S,α,n)

ξ = −
∫
V −k (S,α,n)

ξ = h|Q|/n (k ∈ 1, n), we write:

a1,1 = | cardN∗+ − cardN∗−|
h|Q|
n

,

a1,2 ≤
∑

k∈N∗+\N∗∗+

∫
V +
k (S,α,n)

ξ = card(N∗+ \N∗∗+ )
h|Q|
n

,

a1,3 ≤
∑

k∈N∗−\N∗∗−

∫
V −k (S,α,n)

|ξ| = card(N∗− \N∗∗− )
h|Q|
n

,

a2 ≤
∑

k∈N+\N∗+

∫
V +
k (S,α,n)

ξ = card(N+ \N∗+)
h|Q|
n

,

a3 ≤
∑

k∈N−\N∗−

∫
V −k (S,α,n)

|ξ| = card(N− \N∗−)
h|Q|
n

.

Consequently, ∣∣∣ ∫
R

ξ
∣∣∣ ≤ a1,1 + a1,2 + a1,3 + a2 + a3 ≤

10h|Q|
n

.

Since x /∈ γ(∆(S)), R ∈ I(γ)(x) and R ∩ supp ξ 6= ∅, it is easy to check that the side lengths of R are
not less than the length of the sides of S. Therefore, |R| ≥ |S|. Hence,

1

|R|

∣∣∣ ∫
R

ξ
∣∣∣ ≤ 10h|Q|

n|S|
.

The last estimation implies that if n is big enough, then for every γ /∈ V [Π, 3α] it is valid the needed

inclusion: {M̂I(γ)(ξ) ≥ ε} ⊂ γ(∆(S)). The lemma is proved. �

Remark 2. On the basis of Lemma 4 the oscillator ξ = ξQ,h,S,α,n may be considered as the transfor-
mation of the function hχQ that decreases values of integral means with respect to the bases I(γ) for
rotations γ not belonging to the neighbourhood V [Π, 3α].

Let us define an oscillator for more general parameters. Suppose, Q and S are square intervals with
Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 0 < α ≤ π/4, n ∈ N, γ ∈ Γ(R2) and x ∈ R2. Denote by T the
translation: T (y) = y − x. The oscillator ξQ,h,S,α,n,γ,x define as the function (ξQ,h,S,α,n ◦ γ−1) ◦ T.

For γ ∈ Γ(R2) the set of the rotations γ, ρ1 ◦ γ, ρ2 ◦ γ and ρ3 ◦ γ will be denoted by Πγ .
From Lemmas 3 and 4 we can easily obtain the following two assertions.

Lemma 5. Let B ∈ BTI∩BI. Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) =
(0, 0), h > 1, 0 < α ≤ π/4, n ∈ N, γ ∈ Γ(R2) and x ∈ R2. Then for the oscillator ξ = ξQ,h,S,α,n,γ,x it
is valid the following condition: 1

|γ∗(I)+x|
∫
γ∗(I)+x

ξ > 1 for every I ∈ ΩB(Q, 1/h) and γ∗ ∈ V [γ, α/2];

consequently, {MB(γ∗)(ξ) > 1} ⊃ γ∗(EB(Q, 1/h)) + x for every γ∗ ∈ V [γ, α/2].

Lemma 6. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
square interval S ⊂ Q with a(S) = (0, 0) and every ε > 0 there is n ∈ N such that for every γ ∈ Γ(R2)
and x ∈ R2 the oscillator ξ = ξQ,h,S,α,n,γ,x satisfies the following inclusion:

{M̂I(γ∗)(ξ) ≥ ε} ⊂ γ∗(∆(S)) + x for every γ∗ /∈ V [Πγ , 3α].

Recall that a one-dimensional interval I is called dyadic if it has the form (k/2m, (k+1)/2m), where
k,m ∈ Z. A square interval Q is called dyadic if it is a product of two dyadic intervals.

The length of the sides of a square Q denote by d(Q). If d(Q) = 1/2m, then let us call the number
m an order of a dyadic square Q.
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Suppose Q and S are square intervals with Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 6hd(Q) ≤
1, 0 < α < π/12, n ∈ N and γ ∈ Γ(R2). For this parameters we will define the function fQ,h,S,α,n,γ
below.

Let W (Q, h) be the smallest square interval concentric with Q containing the square 6hQ and
having d(W ) of the type 1/2j (j ∈ Z). Note that by virtue of the condition 6hd(Q) ≤ 1, we have:
d(W ) ≤ 1. Let us decompose the unit square (0, 1)2 into pair-wise non-overlapping square intervals
congruent to W (Q, h) and the obtained squares denote by W1, . . . ,Wk. By x1, . . . , xk denote the
centres of W1, . . . ,Wk, respectively. The order of the dyadic squares W1, . . . ,Wk denote by m(Q, h).

The function fQ,h,S,α,n,γ define as follows: fQ,h,S,α,n,γ =
∑k
j=1 ξQ,h,S,α,n,γ,xj . It is clear that

supp fQ,h,S,α,n,γ ⊂ (0, 1)2.

Let Θ be a some collection of rectangles and ∆ be a subinterval of (0,∞). Then by Θ∆ denote the
collection of all rectangles R ∈ Θ the side lengths of which belong to the interval ∆.

Let B be a some basis consisting of rectangles and ∆ be a subinterval of (0,∞). Then by M∆
B

and M
∆

B denote the following type operators: M∆
B (f)(x) = supR∈B(x)∆

1
|R|
∫
R
|f | and M

∆

B(f)(x) =

supR∈B(x)∆

1
|R|
∫
R
f , where f ∈ L(Rn) and x ∈ Rn.

Let B ∈ BI ∩ BTI and Q be a square interval. By σB,Q denote the function defined as follows:
σB,Q(λ) = |EB(Q,λ)|/|Q| (0 < λ < 1).

By P it will be denoted the basis of all two-dimensional rectangles.

Lemma 7. Let B ∈ BTI∩BI. Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) =
(0, 0), h > 1, 6hd(Q) ≤ 1, 0 < α < π/12, n ∈ N, γ ∈ Γ(R2), W = W (Q, h) and m = m(Q, h). Then
the function f = fQ,h,S,α,n,γ has the following properties:

1) ‖f‖L < 1/h;

2) for every γ∗ ∈ V [γ, α/2] there is a set A(γ∗) such that:

(a) A(γ∗) ⊂ {M [d(Q),d(W )]

B(γ∗) (f) > 1};
(b) |A(γ∗)| ≥ σB,Q(1/h)/(300h2);
(c) A(γ∗) is uniformly distributed in the dyadic squares of order m contained in (0, 1)2, i.e. if

W1, . . . ,Wk are all dyadic squares of order m contained in (0, 1)2, then the sets A(γ∗) ∩ Wk are
congruent;

(d) A(γ∗) is a union of dyadic squares of the fixed order, moreover, the order is one and the same
for every γ∗ ∈ V [γ, α/2];

3) |{M (0,d(Q))
P (f) > 0}| < 1/h2;

4) M
(d(W ),∞)
P (f)(x) < 2/h for every x ∈ R2.

Proof. Let Wj , xj and ξQ,h,S,α,n,γ,xj (j ∈ 1, k) be parameters from the definition of the function

fQ,h,S,α,n,γ . Denote ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k).

Using the inclusion 6hQ ⊂W it is easy to see that ‖f‖L =
∑k
j=1 ‖ξj‖L =

∑k
j=1 2h|Q| = 2h|Q|k =

2h |Q||W |k|W | ≤ 2h · 1
36h2 · 1 < 1/h.

Let I ∈ ΩB(Q, 1/h), j ∈ 1, k and γ∗ ∈ V [γ, α/2]. It is easy to check that the side lengthes of I
belong to the interval [d(Q), hd(Q)]. Consequently, taking into account the inclusion 6hQ ⊂ W , we
have: γ∗(I) + xj ⊂ Wj . Thus, the rectangle γ∗(I) + xj does not intersect supports of functions ξν
with ν 6= j. Therefore, by virtue of Lemma 5, 1

|γ∗(I)+xj |
∫
γ∗(I)+xj

f = 1
|γ∗(I)+xj |

∫
γ∗(I)+xj

ξj > 1. Now

taking into account estimation 6hd(Q) ≤ d(W ), we conclude that for every γ∗ ∈ V [γ, α/2],

k⋃
j=1

⋃
I∈ΩB(Q,1/h)

(γ∗(I) + xj) ⊂ {M
[d(Q),d(W )]

B(γ∗) (f) > 1}. (2)

For a set E ⊂ R2 by E(ν) (ν ∈ Z) let us denote the union of all dyadic squares of order ν contained
in E.
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Since the set EB(Q, 1/h) is open and the sets γ∗(EB(Q, 1/h)) (γ∗ ∈ V [γ, α/2]) are congruent, then
it is possible to find a number ν > m (see, e.g., [10, Lemma 7] for details) for which

|γ∗(EB(Q, 1/h))(ν)| ≥ |γ∗(EB(Q, 1/h))|/2 = |EB(Q, 1/h)|/2 (3)

for every γ∗ ∈ V [γ, α/2].
Let us define the set A(γ∗) (γ∗ ∈ V [γ, α/2]) as the union of the translations: γ∗(EB(Q, 1/h))(ν)+xj

(j ∈ 1, k). By virtue of the inclusions γ∗(I) + xj ⊂Wj we obtain:

γ∗(EB(Q, 1/h))(ν) + xj ⊂ γ∗(EB(Q, 1/h)) + xj ⊂Wj , (4)

for every γ∗ ∈ V [γ, α/2] and j ∈ 1, k.
From (3), (4) and the obvious inclusion W ⊂ 12hQ, for arbitrary γ∗ ∈ V [γ, α/2] we write

|A(γ∗)| =
k∑
j=1

|γ∗(EB(Q, 1/h))(ν) + xj | ≥ k
|EB(Q, 1/h)|

2

= k|I| |Q|
|I|
|EB(Q, 1/h)|

2|Q|
≥ 1 · 1

144h2
· σB,Q(1/h)

2
≥ σB,Q(1/h)

300h2
.

This proves the property (b) of the sets A(γ∗). The properties (a), (c) and (d) directly follow from
the definition of the sets γ∗(EB(Q, 1/h))(ν) and the relations (2) and (4).

Let x /∈
⋃k
j=1 5(γ(Q)+xj). Then it is easy to see that dist(x, supp f) ≥ 2d(Q). Therefore, for every

R ∈ P(x)(0,d(Q)) we have:
∫
R
f = 0, and consequently, M

(0,d(Q))
P (f)(x) = 0. Thus, {M (0,d(Q))

P (f) > 0}
⊂
⋃k
j=1 5(γ(Q) + xj). By virtue of the last inclusion,

|{M (0,d(Q))
P (f) > 0}| ≤ 25k|Q| = 25k|W | |Q|

|W |
< 25 · 1 · 1

36h2
<

1

h2
.

Let x ∈ R2 and R ∈ P(x)(d(W ),∞). By N denote the set of all numbers j ∈ 1, k for which Wj∩R 6= ∅.
It is easy to check that

⋃
j∈N Wj ⊂ 5R. This inclusion implies that (cardN)|I| =

∑
j∈N |Ij | ≤ 25|R|.

Thus, cardN ≤ 25|R|/|I|. Now we can write,∫
R

|f | ≤
∑
j∈N

∫
Wj

|f | =
∑
j∈N

∫
Wj

|ξj | =
∑
j∈N

2h|Q|

= (cardN)2h|Q| ≤ 50h
|R||Q|
|W |

= 50h|R| 1

36h2
<

3

2h
|R|.

The obtained estimation implies that M
(d(W ),∞)
P (f)(x) < 2/h for every x ∈ R2. The lemma is

proved. �

Lemma 8. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
ε > 0 and k ∈ N there are a square interval S ⊂ Q with a(S) = (0, 0) and a number n ∈ N such
that for every γ ∈ Γ(R2) and x1, . . . , xk ∈ R2 the functions ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k) satisfy the
following estimation:∣∣∣{M̂I(γ∗)

( k∑
j=1

ξj

)
≥ ε
}
∩ (0, 1)2

∣∣∣ < ε for every γ∗ /∈ V [Πγ , 3α].

Proof. Let us choose a square interval S ⊂ Q with a(S) = (0, 0) so that 28
√

2 diamS < ε/k, and
using Lemma 6 let us choose a number n ∈ N so that for every γ ∈ Γ(R2) and x ∈ R2 the oscillator

ξ = ξQ,h,S,α,n,γ,x satisfies the following condition: {M̂I(γ∗)(ξ) ≥ ε/k} ⊂ γ∗(∆(S)) + x for every
γ∗ /∈ V [Πγ , 3α].

Suppose, γ ∈ Γ(R2), x1, . . . , xk ∈ R2 and ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k). Let us consider an arbitrary

γ∗ /∈ V [Πγ , 3α]. Then taking into account the estimation M̂I(γ∗)

(∑k
j=1 ξj

)
≤
∑k
j=1 M̂I(γ∗)(ξj), we
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have {
M̂I(γ∗)

( k∑
j=1

ξj

)
≥ ε
}
⊂

k⋃
j=1

{M̂I(γ∗)(ξj) ≥ ε/k} ⊂
k⋃
j=1

(γ∗(∆(S)) + xj). (5)

Note that: 1) For any strip ∆ it is true the estimation: |∆ ∩ (0, 1)2| ≤
√

2 (width of ∆); 2)
γ∗(∆(S)) + xj (j ∈ 1, k) is a union of two strips with the widthes less than 14 diamS. Consequently,

on the basis of choosing of S, for each j we write: |(γ∗(∆(S))+xj)∩(0, 1)2| ≤ 2(
√

2 14 diamS) < ε/k.

Hence, using (5) we obtain that |{M̂I(γ∗)(
∑k
j=1 ξj) ≥ ε} ∩ (0, 1)2| < ε. The lemma is proved. �

Lemma 9. Let I ⊂ R be an open interval. For every s > 1 and ε ∈ (0, 1) there are pairwise non-
overlapping closed intervals Ik ⊂ I (k ∈ N) such that I =

⋃∞
k=1 Ik, |Ik| < ε|I| (k ∈ N), sIk ⊂ I

(k ∈ N) and
∑∞
k=1 χsIk(x) ≤ c(s) (x ∈ I), where c(s) is a constant depending only on the parameter s.

Proof. Let x0 be a midpoint of I and for a number t ∈ (0, 1) let us consider the points xm =
sup I − tm|I|/2, x−m = inf I + tm|I|/2 (m ∈ N). It is easy to check that if t is quite close to 1 then
the intervals [xm, xm+1] (m ∈ Z) generate the needed decomposition of I. �

Lemma 10. For an arbitrary non-empty symmetric set E ⊂ Γ(R2) of type Gδ there are sequences of
rotations (γk) and numbers (αk) from the interval (0, π/12) such that lim

k→∞
V [γk, αk/2] = lim

k→∞
V [Πγk ,

3αk] = E.

Proof. For an interval I ⊂ [0, 2π) denote IT = {(cos(t), sin(t)) : t ∈ I} and ΓI = {γ ∈ Γ(R2) :
γ((1, 0)) ∈ IT}.

First let us prove the following statement: For an arbitrary non-empty set W ⊂ Γ[0,π/2) of Gδ
type there are sequences of rotations (σm) and numbers (βm) from the interval (0, π/12) such that
lim
m→∞

V [σm, βm/2] = lim
m→∞

V [σm, 3βm] = W.

Without loss of generality we can assume that ρ0 /∈ W , i.e. W ⊂ Γ(0,π/2). Using identification
of Γ(0,π/2) with the interval (0, π/2) by the mapping Γ(0,π/2) 3 γ 7→ dist(γ, ρ0) ∈ (0, π/2) we can
formulate our statement in the following equivalent way: For an arbitrary non-empty set V ⊂ (0, π/2)
of Gδ type there exists a sequence of closed intervals Im ⊂ (0, π/2) such that |Im| < π/12 and
lim
m→∞

Im = lim
m→∞

(6Im) = V.

Consider a sequence of open sets Gn ⊂ (0, π/2) with G1 ⊃ G2 ⊃ · · · and
⋂∞
n=1Gn = V. Let {I(n)

p }
be the collection of open intervals decomposing Gn. For each n and p let us consider a sequence of

closed intervals (I
(n)
p,q )q∈N corresponding to the parameters s = 6, ε = 1/12 and I = I

(n)
p according

to Lemma 9. If we enumerate the intervals I
(n)
p,q by one index m ∈ N, then it is easy to see that the

obtained sequence of intervals (Im) will satisfy the needed conditions. This proves the statement.
Now let us consider an arbitrary non-empty symmetric set E ⊂ Γ(R2) of Gδ type. Let (σm) and

(βm) be sequences corresponding to the set E ∩Γ[0,π/2) according to the above proved statement. By
dxe (x ∈ R) denote the number min{n ∈ Z : x ≤ n}. Then it is easy to check that the sequences:
γk = ρ(k−1)(mod 4) ◦ σdk/4e, αk = βdk/4e (k ∈ N), will satisfy the needed conditions. �

5. Proof of Theorem 1

Let B be a basis satisfying the conditions of the theorem. In the introduction it was mentioned
that the following three statements are true: 1) Each WB-set is of type Gδσ and each RB-set is of type
Gδ; 2) Every WB-set and every RB-set is symmetric; 3) Not more than countable union of RB-sets is
a WB-set.

Taking into account three statements above it suffices to prove that an arbitrary symmetric set
E ⊂ Γ(R2) of type Gδ is an RB-set. If E is empty, then the statement is trivial. Thus let us consider
the case of a non-empty set E.

By virtue of Lemma 10 there are sequences γk ∈ Γ(R2) and αk ∈ (0, π/12) such that lim
k→∞

V [γk,

αk/2] = lim
k→∞

V [Πγk , 3αk] = E.
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Taking into account non-regularity of the spherical halo function σB and the estimation σB(1/h) ≤
Ch lnh (h ≥ 2) (which is valid by virtue of strong maximal inequality (see, e.g., [3, Ch. II, §3]) it is
not difficult to choose sequences (hj) and (ηj) with the properties: hj ≥ 2, 0 < ηj < hj , lim

j→∞
hj = ∞,

lim
j→∞

ηj =∞, σB(1/hj) > 144hj , σB(1/hj)/h
2
j < 1,

∑∞
j=1 σB(1/hj)/h

2
j =∞ and

∑∞
j=1 ηj/hj <∞.

On the basis of divergence of the series
∑
j σB(1/hj)/h

2
j we can choose numbers 1 = j0 < j1 <

j2 < · · · so that
∏jk−1
j=jk−1

(
1 − c

2400
σB(1/hj)

h2
j

)
< 1

2k
for every k ∈ N. Here c is the constant from

Lemma 1.
Denote Jk = {j ∈ N : jk−1 ≤ j ≤ jk − 1} (k ∈ N).
Using Lemmas 7 and 8 we can find sequences of square intervals (Qj) and (Sj) with a(Qj) = a(Sj) =

(0, 0) and a sequence of natural numbers (nj) for which the functions fj = fQj ,hj ,Sj ,αj ,nj ,γj , gj =
ηjfj (j ∈ N) satisfy the following conditions:

1) ‖gj‖ = ηj‖fj‖ < ηj/hj ;

2) d(W1) > d(Q1) > d(W2) > d(Q2) > · · · . Here Wj = W (Qj , hj) is a square interval from the
definition of the function fQ,h,S,α,n,γ ;

3) there are sets Aj(γ) (k ∈ N, γ ∈ V [γk, αk/2], j ∈ Jk) such that:

(a) Aj(γ) ⊂ {M [d(Qj),d(Wj)]

B(γ) (fj) > 1} = {M [d(Qj),d(Wj)]

B(γ) (gj) > ηj};
(b) |Aj(γ)| ≥ cσB(1/hj)/(2400h2

j );

(c) Aj(γ) is uniformly distributed in the dyadic squares of ordermj = m(Qj , hj) contained in (0, 1)2,
i.e. if W1, . . . ,Wν are all dyadic squares of order mj contained in (0, 1)2, then the sets Aj(γ) ∩Wi

(i ∈ 1, ν) are congruent. Here m(Qj , hj) is the number from the definition of the function fQ,h,S,α,n,γ ;
(d) Aj(γ) is an union of dyadic squares of the order m∗j > mj , where m∗j does not depend on

γ ∈ V [γk, αk/2];

4) the numbers mj and m∗j from the conditions 3)–(c) and 3)–(d) satisfy inequalities: m1 < m∗1 <
m2 < m∗2 < · · · ;

5) |{M (0,d(Qj))
P (gj) > 0}| = |{M (0,d(Qj))

P (fj) > 0}| < 1/h2
j for every j ∈ N;

6) M
(d(Wj),∞)
P (gj)(x) = ηjM

(d(Wj),∞)
P (fj)(x) < 2ηj/hj for every j ∈ N and x ∈ R2;

7) |{M̂I(γ)(fj) ≥ 1/(ηj2
j)} ∩ (0, 1)2| < 1/(ηj2

j) for every k ∈ N, γ /∈ V [Πγk , 3αk] and j ∈ Jk.

Consequently, |{M̂I(γ)(gj) ≥ 1/2j} ∩ (0, 1)2| < 1/2j for every k ∈ N, γ /∈ V [Πγk , 3αk] and j ∈ Jk.

Set g =
∑∞
j=1 gj . First note that ‖g‖L ≤

∑∞
j=1 ‖gj‖L <

∑∞
j=1 ηj/hj < ∞. Thus, g is a summable

function. Suppose γ /∈ E. Let us prove that I(γ) differentiates
∫
g. Since supp g ⊂ (0, 1)2, then I(γ)

differentiates
∫
g at every point x /∈ [0, 1]2. Further, denote

Tj = {M̂I(γ)(gj) ≥ 1/2j} ∩ (0, 1)2, T = lim
j→∞

Tj .

We have that γ /∈ lim
k→∞

V [Πγk , 3αk]. Consequently, there is k0 ∈ N for which γ /∈ V [Πγk , 3αk] for

every k ≥ k0. The last condition on the basis of the estimation 7) implies: |Tj | < 1/2j for every
j ≥ jk0 . Now taking into account that |Tj | ≤ 1 (j ∈ N) we have:

∑∞
j=1 |Tj | < ∞. Consequently,

|T | = 0. Thus, for arbitrary given point x ∈ (0, 1)2 \ T there is j∗ ∈ N for which M̂I(γ)(gj)(x) < 1/2j

for every j > j∗. Now taking into account boundedness of the functions gj we write: M̂I(γ)(g)(x) ≤∑∞
j=1 M̂I(γ)(gj)(x) ≤

∑j∗

j=1 M̂I(γ)(gj)(x) +
∑∞
j=j∗+1 1/2j < ∞. Thus, (0, 1)2 \ T ⊂ {M̂I(γ)(g) < ∞}.

Note that by virtue of the result of Besicovitch (see, e.g., [3, Ch. IV, §3]) the sets {g < DB(
∫
g, ·) <∞}

and {−∞ < DB(
∫
g, ·) < g} have zero measure. Therefore, taking into account the last inclusion, we

conclude that I(γ) differentiates
∫
g.

Suppose γ ∈ E. Then γ ∈ lim
k→∞

V [γk, αk/2]. Thus, the set N = {k ∈ N : γ ∈ V [γk, αk/2]} is

infinite. Let k ∈ N . Taking into account the properties 3)–(c), 3)–(d) and 4) it is easy to see that the
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sets Aj(γ) (j ∈ Jk) are probabilistically independent. Therefore,∣∣∣ ⋃
j∈Jk

Aj(γ)
∣∣∣ = 1−

∣∣∣ ⋂
j∈Jk

((0, 1)2 \Aj(γ))
∣∣∣ = 1−

∏
j∈Jk

(1− |Aj(γ)|).

Now using 3)–(b) and taking into account the choice of the numbers jk, we obtain: |
⋃
j∈Jk Aj(γ)| >

1− 1/2k. From this estimation we conclude: if A denotes the upper limit of the sequence of the sets⋃
j∈Jk Aj(γ) (k ∈ N), then A is of full measure in (0, 1)2, i.e. |(0, 1)2 \A| = 0.

Let F be the upper limit of the sequence of the sets {M (0,d(Qj))
P (gj) > 0} (j ∈ N). By virtue of

the property 5),
∑∞
j=1 |{M

(0,d(Qj))
P (gj) > 0}| <∞. Therefore the set F is of zero measure.

For any x ∈ A \ F let us prove the equality DB(γ)(
∫
g, x) = +∞. It will imply that the equality is

valid for almost every point from (0, 1)2.
We can find an infinite set N∗ ⊂ N , a sequence j(k) ∈ Jk (k ∈ N∗) and a number j(0) ∈ N with

the properties: i) x ∈ Aj(k)(γ) for every k ∈ N∗; ii) x /∈ {M (0,d(Qj))
P (gj) > 0} for every j > j(0). We

can assume that j(k) > j(0) (k ∈ N∗).
For every k ∈ N∗ we can find a rectangle Rk ∈ B(γ)(x)[d(Qj(k)),d(Wj(k))] for which 1

|Rk|
∫
Rk
gj(k) >

ηj(k). Let us estimate the integral means on Rk of the functions gj with j 6= j(k). Taking into account

the property 2), we have: 1
|Rk|

∫
Rk
gj = 0 if j(0) < j < j(k) and 1

|Rk|
∫
Rk
gj < ηj/hj if j > j(k).

Consequently,

1

|Rk|

∫
Rk

g =
1

|Rk|

∫
Rk

gj(k) −
j(0)∑
j=1

1

|Rk|

∫
Rk

gj −
j(k)−1∑
j=j(0)+1

1

|Rk|

∫
Rk

gj

−
∞∑

j=j(k)+1

1

|Rk|

∫
Rk

gj > ηj(k) −
j(0)∑
j=1

‖gj‖L∞ −
∞∑

j=j(k)+1

ηj
hj
.

Thus, the rectangles Rk (k ∈ N∗) satisfy conditions: Rk ∈ B(γ)(x) (k ∈ N∗), diamRk → 0
(N∗ 3 k →∞) and 1

|Rk|
∫
Rk
g → +∞ (N∗ 3 k →∞). Therefore, DB(γ)

( ∫
g, x
)

= +∞.
Summarizing above established properties of the function g we have: i) g ∈ L(R2) and

supp g ⊂ (0, 1)2; ii) DB(γ)

( ∫
g, x
)

= +∞ a.e. on (0, 1)2 for every γ ∈ E; iii) I(γ) differentiates∫
g for every γ /∈ E.
Set f(x1, x2) =

∑
i,j∈Z g(x1 + i, x2 + j)/2i+j ((x1, x2) ∈ R2). Then we can easily check that f

satisfies the conditions providing E to be an RB-set. The theorem is proved.

Remark 3. The function f constructed in the proof of Theorem 1 for any rotation γ /∈ E satisfies
stronger condition than it is required. Namely,

∫
f is differentiable with respect to the basis I(γ)

which is broader than the basis B(γ).

Remark 4. The function f constructed in the proof of Theorem 1 takes values of both signs. For
non-negative summable functions the problem of characterization of singular rotation’s sets is open
even for the case of the basis I(R2). Some partial results in this direction are obtained in [8] and [12].

Remark 5. For the multidimensional case the problem of characterization of WI(Rn)-sets and RI(Rn)-
sets is open. Note that a class of RI(Rn)-sets is found in [9].
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ABOUT ONE CONTACT PROBLEM FOR A VISCOELASTIC HALFPLATE

N. SHAVLAKADZE, G. KAPANADZE, AND L. GOGOLAURI

Abstract. Exact solutions of two-dimensional singular integro-differential equations related to the

problems of interaction of an elastic thin infinite homogeneous inclusion with a plate for the Kelvin-
Voigt linear model are considered. The Kolosov-Muskhelishvili’s type formulas are obtained, and

the problem is reduced to the Volterra type integral equations. Using the method of integral trans-

formation, the boundary value problem of the theory of analytic functions is obtained. The solution
of the problem is represented explicitly and asymptotic analysis is carried out.

Introduction

The theories of viscoelasticity including the Maxwell model, the Kelvin-Voigt model and the stan-
dard linear solid model were used to predict response of a material under the action of different loading
conditions. Viscoelastic materials play an important role in many branches of civil and geotechnical
engineering, technology and biomechanics.

Significant development of hereditary Bolzano–Volterra mechanics is determined by many technical
applications in the theory of polymers, metals, plastics, concrete and in the mining engineering. The
fundamentals of the theory of viscoelasticity, the methods for solving linear and nonlinear problems
of the creep theory, the problems of mechanics of inhomogeneous ageing viscoelastic materials, some
boundary value problems of the theory of growing solids, the contact and mixed problems of the theory
of viscoelasticity for composite inhomogeneously ageing and nonlinearly ageing bodies are considered
in [1, 5, 7, 11,12,14,15,20].

A complete study of various possible forms of viscoelastic relations and some aspects of the general
theory of viscoelasicity are studied in [8, 9, 13, 19]. The research dealing with the material creep can
be found in [2–4,17].

In [6,21], we have considered integro-differential equations with a variable coefficient related to the
interaction of an elastic thin inclusion and a plate, when the inclusion and plate materials possess a
creep property. Using the investigation of different boundary value problems of the theory of analytic
functions, we have got solutions of those integro-differential equations and established asymptotics of
unknown contact stresses.

1. Kolosov-Muskhelishvili’s Type Formulas for One Model of the Plane Theory of
Viscoelasticity

For viscoelastic bodies, following the Kelvin–Voigt model [20], the Hook’s law has the form

Xx = λθ + 2µexx + λ∗θ̇ + 2µ∗ėxx,

Yy = λθ + 2µeyy + λ∗θ̇ + 2µ∗ėyy, (1.1)

Xy = µ
(∂v
∂x

+
∂u

∂y

)
+ µ∗

(∂v̇
∂x

+
∂u̇

∂y

)
,

where Xx, Yy, Xy, u, v, θ = exx + eyy, exx, eyy, exy are the functions of variables x, y, t. The points in

the expressions θ̇, ėxx, ėyy,
∂v̇

∂x
,
∂u̇

∂y
denote derivatives with respect to the time t; λ, µ are the elastic

and λ∗, µ∗ are viscoelastic constants.

2010 Mathematics Subject Classification. 45J05, 74B05, 74K20, 74D05, 45D05.
Key words and phrases. Kelvin-Voigt model; Contact problem; Integro-differential equation; Fourier transform;

Boundary value problem.
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The components of stresses Xx, Yy, Xy defined by the relations (1.1), when body forces are absent,
just as in the classical case, must satisfy the equilibrium equations and the compatibility condition in
the plane theory of elasticity [18].

∂Xx

∂x
+
∂Xy

∂y
= 0,

∂Yx
∂x

+
∂Yy
∂y

= 0, ∆ (Xx + Yy) = 0.

Moreover, Xx, Yy, Xy should be single-valued and continuous functions up to the boundary, together
with their second derivatives with respect to the variables x, y. If these conditions are fulfilled, there
exists a function U (x, y, t) satisfying the biharmonic equation with respect to the variables x, y,

∆∆U = 0, (1.2)

through which the stresses are expressed as follows:

Xx =
∂2U

∂y2
, Yy =

∂2U

∂x2
, Xy = − ∂2U

∂x∂y
. (1.3)

In view of formula (1.3), we write the first two equations of the relations (1.1) in the form

λθ + 2µexx + λ∗θ̇ + 2µ∗ėxx =
∂2U

∂y2
,

λθ + 2µeyy + λ∗θ̇ + 2µ∗ėyy =
∂2U

∂x2
.

(1.4)

Summing up the above equations, we obtain the following equality

2 (λ+ µ) θ + 2 (λ∗ + µ∗) θ̇ =
∂2U

∂x2
+
∂2U

∂y2
≡ ∆U,

which we write as

θ̇ + kθ =
∆U

2 (λ∗ + µ∗)
, (1.5)

where k =
λ+ µ

λ∗ + µ∗
.

Assuming that at the moment of time t0 (i.e., at the moment when the body is under the action of
loading) exx (x, y, t0) = 0 and eyy (x, y, t0) = 0, a solution of the linear first order differential equation
(1.5) takes the form

θ (x, y, t) = e−k(t−t0)
t∫

t0

∆U (x, y, τ)

2 (λ∗ + µ∗)
ek(τ−t0)dτ. (1.6)

Equations (1.4) are given the form

ėxx +mexx =
1

2µ∗

[
∂2U

∂y2
− λθ − λ∗θ̇

]
≡ Ψ1,

ėyy +meyy =
1

2µ∗

[
∂2U

∂x2
− λθ − λ∗θ̇

]
≡ Ψ2,

(1.7)

where m =
µ

µ∗
.

It follows from (1.7) that

∂u

∂x
= e−m(t−t0)

t∫
t0

Ψ1 (x, y, τ)em(τ−t0)dτ,

∂v

∂y
= e−m(t−t0)

t∫
t0

Ψ2 (x, y, τ)em(τ−t0)dτ.

(1.8)

The functions Ψ1,Ψ2 introduced by the relations (1.7), in view of equation (1.5) and formula (1.6),
after some transformations are reprsented as follows:
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Ψ1 (x, y, t) =
1

2µ∗

[
− ∂2U

∂x2
+ ∆U +

n2e
−k(t−t0)

4

t∫
t0

ek(τ−t0)∆Udτ − λ∗∆U

2 (λ∗ + µ∗)

]
,

Ψ2 (x, y, t) =
1

2µ∗

[
− ∂2U

∂y2
+ ∆U +

n2e
−k(t−t0)

4

t∫
t0

ek(τ−t0)∆Udτ − λ∗∆U

2 (λ∗ + µ∗)

] (1.9)

where n2 =
2(µλ∗ − λµ∗)

(λ∗ + µ∗)
2 .

Following [18], we introduce the notation ∆U = P , where P is a harmonic function of variables x,
y, according to equation (1.2). Let Q be a conjugate to it function. Introduce the function ϕ (z, t) in
such a way that

ϕ (z, t) = p+ iq =
1

4

∫
(P + iQ) dz, (1.10)

from which it follows that

P = 4
∂p

∂x
= 4

∂q

∂y
. (1.11)

Substituting into equations (1.8) the values of the functions Ψ1, Ψ2 from (1.9) and taking into

account equalities (1.11), we can represent the expressions
∂u

∂x
,
∂v

∂y
as

2µ∗
∂u

∂x
=

∂

∂x

{
−

t∫
t0

em(τ−t0)
(∂U
∂x
− n1p

)
dτ + n2

t∫
t0

en(τ−t0)
( τ∫
t0

ek(s−t0)pds

)
dτ

}
e−m(t−t0)

2µ∗
∂v

∂y
=

∂

∂y

{
−

t∫
t0

em(τ−t0)
(∂U
∂y
− n1q

)
dτ + n2

t∫
t0

en(τ−t0)
( τ∫
t0

ek(s−t0)qds

)
dτ

}
e−m(t−t0),

where n1 =
2(λ∗ + 2µ∗)

(λ∗ + µ∗)
, n = m− k =

µλ∗ − λµ∗

µ∗(λ∗ + µ∗)
.

Integrating the last expressions, we obtain

2µ∗u =

{
−

t∫
t0

em(τ−t0)
(∂U
∂x
− n1p

)
dτ

+n2

t∫
t0

en(τ−t0)
( τ∫
t0

ek(s−t0)pds

)
dτ

}
e−m(t−t0) + f1(y, t), (1.12)

2µ∗v =

{
−

t∫
t0

em(τ−t0)
(∂U
∂y
− n1q

)
dτ

+n2

t∫
t0

en(τ−t0)
( τ∫
t0

ek(s−t0)qds

)
dτ

}
e−m(t−t0) + f2(x, t). (1.13)

Omitting the functions f1 (y, t), f2 (x, t) due to the fact that they provide only rigid displacement
at any fixed moment of time t and taking into account (1.10), it follows from equalities (1.12) and
(1.13) that

2µ∗(u+ iv)=

{
−

t∫
t0

em(τ−t0)
(∂U
∂x

+ i
∂U

∂y
− n1ϕ(z, τ)

)
dτ
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+n2

t∫
t0

en(τ−t0)
( τ∫
t0

ek(s−t0)ϕ(z, s)ds

)
dτ

}
e−m(t−t0).

Taking into account that [18]

∂U

∂x
+ i

∂U

∂y
= ϕ (z, t) + zϕ′ (z, t) + ψ (z, t), (1.14)

from (1.14), after some transformations, we obtain

2µ∗(u+ iv) =

t∫
t0

em(τ−t)
(
ϕ(z, τ)− zϕ′(z, τ)− ψ(z, τ)

)
dτ + ω

t∫
t0

ek(τ−t)ϕ(z, τ)dτ, (1.15)

where ω =
2µ∗

λ∗ + µ∗
(here “prime” means the derivative with respect to a variable z).

Thus formulas (1.14) and (1.15) are generalize Kolosov-Muskhelishvili’s formulas for a viscoelastic
material.

2. Statement of the Problem and Reduction to the Integral Equation

Consider now the contact problem of interaction of a semi-infinite stringer of constant rigidity
(constant cross-section) and an infinite viscoelastic plate occupying the lower half-plane, when the
stringer is under the action of tangential stresses T0(x)H(t− t0) (H(t− t0) is the Heaviside function)
and free from normal stresses. We have to find tangential contact stresses T (x, t) along the contact
line.

From equation (1.15), we get

2µ∗
∂u (x, y, t)

∂x
= Re

{ t∫
t0

em(τ−t)
[
Φ (z, τ)− Φ (z, τ)− zΦ′ (z, τ)−Ψ (z, τ)

]
dτ

}

+ωRe

t∫
t0

ek(τ−t)Φ(z, τ)dτ. (2.1)

Since normal stresses in our case are absent, the complex potentials Φ, Ψ will have the form [18]:

Φ (z, t) =
1

2π

∞∫
0

T (σ, t)

σ − z
dσ, (2.2)

Ψ (z, t) = − 1

2π

∞∫
0

T (σ, t)

σ − z
dσ − 1

2π

∞∫
0

T (σ, t)

(σ − z)2
σdσ. (2.3)

If we substitute into equation (2.1) the values of the functions Φ,Ψ from formulas (2.2) and (2.3)
and pass to the real values, then after some transformations we get

2µ∗
∂u(x, 0, t)

∂x
=

t∫
t0

em(τ−t)Φ(x, τ)dτ + ω

t∫
t0

ek(τ−t)Φ(x, τ)dτ. (2.4)

Introducing a time operator

LΦ(x, t) =

t∫
t0

emτΦ(x, τ)dτ + ω

t∫
t0

ent+kτΦ(x, τ)dτ, (2.5)

(2.4) will have the form

2µ∗
∂u(x, 0, t)

∂x
= e−mtLΦ(x, t). (2.6)
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On the other hand, for deformations of the stringer points we have

∂u0(x, t)

∂x
=

1

E

x∫
0

[T (y, t)− T0(y)H(t− t0)]dy, (2.7)

and the condition for the principal vector to be equal to zero yields
∞∫
0

[T (y, t)− T0(y)H(t− t0)]dy = 0.

From the condition of the stringer and plate contact

∂u(x, 0, t)

∂x
=
∂u0(x, t)

∂x
,

in view of the relations (2.6), (2.7) and (2.2), we obtain

e−mtL

( ∞∫
0

T (σ, t)dσ

σ − x

)
=

4πµ∗

E

x∫
0

[T (y, t)− T0(y)H(t− t0)] dy. (2.8)

Introducing the notation
x∫

0

[T (y, t)− T0(y)H(t− t0)] dy ≡ K(x, t), K(0, t) = K(∞, t) = 0,

we write the relation (2.8) in the form

L

∞∫
0

K ′(σ, t)dσ

σ − x
= αemtK(x, t)− F (x)B(t), (2.9)

where

B(t) = LH(t− t0) =
1

m
(emt − emt0)) +

ω

k
ent(ekt − ekt0)), α =

4πµ∗

E
, F (x) =

∞∫
0

T0(σ)dσ

σ − x
.

After transformation of variables

σ = eζ , x = eξ,

the integral differential equation (2.9) takes the form

−L
∞∫
−∞

K ′0(ζ, t)dζ

1− e−(ξ−ζ)
= αeξemtK0(ξ, t)−B(t)eξF0(ξ), |ξ| <∞ (2.10)

K0(−∞, t) = K0(∞, t) = 0,

where
K0(ζ, t) = K(eζ , t), F0(ξ) = F (eξ).

Performing the generalized Fourier transformation [10] of both parts of equation (2.10), we obtain

π s cthπsLK̂0(s, t) = −αemtK̂0(s− i, t) +B(t)F̂ (s), (2.11)

where

F̂(s) =
1√
2π

∞∫
−∞

F0(ξ)eξeiξsdξ, K̂0(s, t) =
1√
2π

∞∫
−∞

K0(ξ, t)eξeiξsdξ.

The problem can be formulated as follows: Find the function K̂0(z, t), analytic in the strip −1 <
Im z < 1, (with the exception of a finite number of points lying in the strip 0 < Im z < 1 in which
it may have poles), vanishing at infinity and satisfying condition (2.11). obviously, if we will be

able to find the function K̂−0 (z, t), holomorphic in the strip −1 < Im z < 0, vanishing at infinity,
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continuously extendable on the strip boundary, by the boundary condition (2.11), then the solution
of the above-formulated problem is

K̂0(z, t) =


LK̂−0 (z, t), −1 < Im z < 0

−αemtK̂−0 (z − i, t) +B(t)F̂ (t)

πzcthπz
, 0 < Im z < 1

(2.11.1)

To factorize the coefficient of problem (2.11), we represent the function M(s) = s cthπs as follows:

M(s) = iscthπs · thπ
2
s ·

sh
π

2
(s− i)

shπ2 s
.

Owing to the fact that the index of the functionM0(s) = cthπs th
π

2
s equals zero and ln

[
cthπs th

π

2
s
]

is integrable on the real axis, we can represent the function M0(s) in the form

M0(s) =
X0(s− i)

X0(s)
,

where X0(z) = exp

(
− 1

2i

∞∫
−∞

ln
[
cthπs th

π

2
s
]
cthπ(t− z)dz

)
.

Then introducing the notation

K̃(s, t) =
isK̂0(s, t)

shπ2 s ·X0(s)
,

the relation (2.11) can rewritten as

1 + is

α0
L K̃(s, t) + K̃(s− i, t)emt = G(s)B(t), (2.12)

where

G(s) =
1

π

(1 + is)F̂0(s)

α0sh
π
2 (s− i) ·X0(s− i)

.

Using the known representation [16]

1 + is

α0
=

X1(s− i)
X1(s)

, X1(z) = exp(−iz lnα0)Γ(1 + iz)

the condition (2.12) takes the form

LA(s, t) +A(s− i, t)emt = G1(s)B(t), (2.13)

where

A(s, t) =
K̃(s, t)

X1(s)
G1(s) =

G(s)

X1(s− i)
.

Performing the generalized Fourier transformation of both sides of equation (2.13), we obtain the
Volterra second kind integral equation

LÂ(u, t) + e−uÂ(u, t)emt = Ĝ1(u)B(t). (2.14)

Taking into account the form of the operator L, from the last equation, we have

Â(u, t0) = 0. (2.15)

Having differentiated the relation (2.14) by using the notation (2.5), and get

(ω + 1)emtÂ(u, t) + ωn

t∫
t0

ent+kτ Â(u, τ)dτ + e−u
˙̂
A(u, t)emt

+me−uÂ(u, t)emt = Ĝ1(u)Ḃ(t). (2.16)

At the point t = t0 the previous expression yields

˙̂
A(u, t0) = (1 + ω)Ĝ1(u)eu. (2.17)
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Multiplying both parts of equation (2.16) by e−mt and differentiating with respect to the variable t,
after some transformations, we obtain

¨̂
A(u, t) + a(u)

˙̂
A(u, t) + b(u)Â(u, t) = γĜ1(u)eu, (2.18)

where

a(u) = (ω + 1)eu +m+ k, b(u) = γeu +mk, γ =
λ+ 3µ

λ∗ + µ∗
.

The discriminant of the corresponding characteristic equation will have the form

D = [(ω + 1)eu + n]
2 − 4nωeu.

It is not difficult to show that the above discriminant is always positive, and a generalized solution of
the inhomogeneous differential equation (2.18) has the form

Â(u, t) =
¯̂
A(u, t) +

˜̂
A(u, t), (2.19)

where
¯̂
A(u, t) = c1(u)e−p1(u)t + c2(u)e−p2(u)t, p1(u), p2(u) > 0

is a general solution of the homogeneous equation corresponding to equation (2.18), and
˜̂
A(u, t) =

γĜ1(u)eu

γeu +mk
is a particular solution of that equation.

From (2.19), using initial conditions (2.15) and (2.17) and defining coefficients c1(u) and c2(u), we
obtain the solution of the differential equation (2.18) in the form

Â(u, t) = Ĝ1(u)G2(u, t) +
Ĝ1(u)

1 + δe−u
,

where

G2(u, t) =

[
(γp2(u)− (1 + ω)b(u))e−p1(u)(t−t0) + ((1 + ω)b(u)− γp1(u))e−p2(u)(t−t0)

(p1(u)− p2(u))b(u)

]
eu, (2.20)

δ =
mk

γ
=

µ(λ+ µ)

γµ∗(λ∗ + µ∗)
.

Using Parceval’s generalized formula, the inverse Fourier transformation [10] yields

A(s, t) =
1√
2π

∞∫
−∞

G1(y)Ĝ2(y − s, t)dy +
i

2

∞∫
−∞

G1(y)ei(y−s) ln δdy

shπ(y − s)
,

where A(s, t) is the boundary value on the real axis of the function A(z, t), (z = s+ iy) holomorphic

on the strip −1 < Im z < 1, with the exception of the point z =
i

2
, at which it has the first order pole

continuously extendable in the strip boundary and vanishing at infinity (see formula (2.11.1)).
Respectively,

K̂0(z, t) = A(z, t)X(z),

where X(z) =
X0(z)X1(z)

iz
sh
π

2
z.

Performing again the inverse Fourier generalized transformation and getting back to our variables,
we obtain

K ′(x, t) = T (x, t)− T0(x)H(t− t0) =
x−1√

2π

∞∫
−∞

A(s, t)X(s)e−is ln xds.

Using Cauchy’s formula and residue theorem for the holomorphic in the strip −1 < Im z < 1 function
A(z, t), we obtain the following asymptotic estimates for the unknown tangential contact stress

K ′(x, t) = O(x−1/2 ), x→ 0−
K ′(x, t) = O(x−2), x→∞.
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As for the behaviour of the tangential contact stress and other mechanical values concerning time
t ≥ t0, it is clearly seen from the expression (2.20).
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ROUGH STATISTICAL CONVERGENCE ON TRIPLE SEQUENCE OF

RANDOM VARIABLES IN PROBABILITY

N. SUBRAMANIAN1 AND A. ESI2

Abstract. This paper aims a further improvement from the works of Phu [9], Aytar [1] and

Ghosal [7]. We propose a new apporach to extend the application area of rough statistical con-

vergence usually used in triple sequence of real numbers to the theory of probability distributions.
The introduction of this concept in probability of rough statistical convergence, rough strong Cesàro

summable, rough lacunary statistical convergence, rough Nθ− convergence, rouugh λ− statistical

convergence and rough strong (V, λ)− summable generalize the convergence analysis to accommo-
date any form of distribution of random variables. Among these six concepts in probability only three

convergences are distinct rough statistical convergence, rough lacunary statistical convergence and

rough λ− statistical convergence where rough strong Cesàro summable is equivalent to rough sta-
tistical convergence, rough Nθ− convergence is equivalent to rough lacunary statistical convergence,

rough strong (V, λ)− summable is equivalent to rough λ− statistical convergence. Basic properties
and interrelations of above mentioned three distinct convergences are investigated and some obser-

vations are made in these classes and in this way we show that rough statistical convergence in

probability is the more generalized concept compared to the usual rough statistical convergence.

1. Introduction

In probability theory, a new type of convergence called statistical convergence in probability was
introduced in Ghosal [7]. Let (Xmnk)m,n,k∈N be a triple sequence of random variables where each

Xmnk is defined on the same sample spaces W (for each (m,n, k)) with respect to a given class of
events ∆ and a given probability function P : ∆→ R3. Then the triple sequence (Xmnk) is said to be
statistical convergent in probability to a random variable X : W → R3 if for any ε, δ > 0

lim
uvw→∞

1

uvw

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − l ≥ δ

)}∣∣∣ = 0.

In this case we write Xmnk →SP l. The class of all triple sequences of random variables which are
statistical convergence in probability is denoted by SP .

In this paper we introduce new notions namely rough statistical convergence in probability, rough
strong Cesàro summable in probability rough lacunary statistical convergence in probability, rough
Nθ− convergence in probability rough strong (V, λ)− summable in probability and rough λ− statis-
tical convergence in probability. Among these six concepts in probability only three convergences are
distinct-rough statistical convergence in probability, rough lacunary statistical convergence in prob-
ability and rough λ− statistical convergence in probability, rough Nθ− convergence in probability is
equivalent to rough lacunary statistical convergence in probability, rough strong (V, λ)− summable in
probability is equivalent to rough λ− statistical convergence in probability. Basic properties and inter-
relations of above mentioned three distinct convergences are investigated and make some observations
about these classes.

The idea of statistical convergence was introduced by H. Steinhaus and also independently by H.
Fast for real or complex sequences. Statistical convergence is a generalization of the usual notion of
convergence, which parallels the theory of ordinary convergence. Later on the notion was investigated
by Tripathy ([13], [15]), Tripathy and Sen [14], Tripathy and Baruah [16], Tripathy and Goswami
([17–20]) and others.

2010 Mathematics Subject Classification. 40A35, 40G15, 60B10.
Key words and phrases. Rough statistical convergence; Rough strong Cesàro summable; Rough lacunary statistical

convergence; Rough Nθ− convergence; Rough λ− statistical convergence; Rough strong (V, λ)− summable.
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LetK be a subset of the set N×N×N, and let us denote the set {(m,n, k)∈K : m ≤ u, n ≤ v, k ≤ w}
by Kuvw. Then the natural density of K is given by δ (K) = lim

uvw→∞
|Kuvw|
uvw , where |Kuvw| denotes

the number of elements in Kuvw. Clearly, every finite subset has natural density zero, and we have
δ (Kc) = 1− δ (K), where Kc = N−K is the complement of K. If K1 ⊆ K2, then δ (K1) ≤ δ (K2) .

Throughout the paper, R denotes the real of three dimensional space with metric (X, d) . Consider
a triple sequence x = (xmnk) such that xmnk ∈ R, m,n, k ∈ N.

A triple sequence x = (xmnk) is said to be statistically convergent to 0 ∈ R, written as st−lim x = 0,
provided that the set {

(m,n, k) ∈ N3 : |xmnk| ≥ ε
}

has natural density zero for any ε > 0. In this case, 0 is called the statistical limit of the triple
sequence x.

If a triple sequence is statistically convergent, then for every ∈> 0, infinitely many terms of the
sequence may remain outside the ∈ − neighbourhood of the statistical limit, provided that the natural
density of the set consisting of the indices of these terms is zero. This is an important property that
distinguishes statistical convergence from ordinary convergence. Because the natural density of a finite
set is zero, we can say that every ordinary convergent sequence is statistically convergent.

If a triple sequence x = (xmnk) satisfies some property P for all m,n, k except a set of natural
density zero, then we say that the triple sequence x satisfies P for almost all (m,n, k) and we abbreviate
this by a.a. (m,n, k).

Let
(
xminjk`

)
be a sub sequence of x = (xmnk). If the natural density of the set K = {(mi, nj , k`) ∈

N3 : (i, j, `) ∈ N3} is different from zero, then
(
xminjk`

)
is called a non-thin subsequence of a triple

sequence x.
c ∈ R is called a statistical cluster point of a triple sequence x = (xmnk) provided that the natural

density of the set {
(m,n, k) ∈ N3 : |xmnk − c| < ε

}
is different from zero for every ∈> 0. We denote the set of all statistical cluster points of the sequence x
by Γx.

A triple sequence x = (xmnk) is said to be statistically analytic if there exists a positive number M
such that

δ
({

(m,n, k) ∈ N3 : |xmnk|1/m+n+k ≥M
})

= 0.

The theory of statistical convergence has been discussed in trigonometric series, summability theory,
measure theory, turnpike theory, approximation theory, fuzzy set theory and so on.

The idea of rough convergence was introduced by Phu [9], who introduced the concepts of rough
limit points and roughness degree. The idea of rough convergence occurs very naturally in numerical
analysis and has interesting applications. Aytar [1] extended the idea of rough convergence into rough
statistical convergence using the notion of natural density just as usual convergence was extended
to statistical convergence. Pal et al. [8] extended the notion of rough convergence using the concept
of ideals which automatically extends the earlier notions of rough convergence and rough statistical
convergence.

A triple sequence (real or complex) can be defined as a function x : N × N × N → R (C) , where
N,R and C denote the set of natural numbers, real numbers and complex numbers respectively.
Different types of notions of triple sequence were introduced and investigated at the initial by Sahiner
et al. [10, 11], Esi et al. [2–4], Dutta et al. [5], Subramanian et al. [12], Debnath et al. [6] and many
others.

Throughout the paper let r be a nonnegative real number.

2. Triple Rough Statistical Convergence in Probability

Definition 2.1. Let r be a non-negative real number. A triple sequence (xmnk) is said to be rough
convergent to l with respect to the roughness degree r (or shortly: r− convergent to x) if for every
∈> 0, there exist some numbers u, v and w such that∣∣xmnk − l∣∣ < r+ ∈ for all m ≥ u, n ≥ v, k ≥ w
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and denoted by xmnk →r l. if we take r = 0, then we obtain the ordinary convergence.

Definition 2.2. Let r be a non-negative real number. A triple sequence (xmnk) is said to be rough
statistically convergent to l with respect to the roughness of degree r (or shortly: r− statistically
convergent to l) if for every ε > 0, the set{

(m,n, k) ∈ N3 : |xmnk − l| ≥ r+ ∈
}

has asymptotic density zero or equivalently, if the condition S− lim
mnk→∞

sup |xmnk − l| ≤ r is satisfied

and we denote by xmnk →SP

r l.
If we take r = 0, then we obtain the ordinary statistical convergence.

Definition 2.3. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough statistically convergent in probability to a random variable X : W → R3 with
respect to the roughness of degree r (or shortly: r− statistically convergent in probability to l) if for
each ∈, δ > 0,

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − l| ≥ r+ ∈

)
≥ δ
}∣∣∣ = 0,

or, equivalently,

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : 1− P
(
|Xmnk − l| < r+ ∈

)
≥ δ
}∣∣∣ = 0,

and we write Xmnk →SP

r l. The class of all r− statistically convergent triple squences of random
variables in probability will be simply denoted by rSP .

Theorem 2.4. If Xmnk →SP

r l1 and Ymnk →SP

r l2 then P {|l1 − l2| ≥ r} = 0.

Proof. Let ε, δ be any two positive real numbers and let

(u, v, w) ∈
{

(m,n, k) ∈ N3 : P
(
|Xmnk − l1| ≥ r +

ε

2

)
<
δ

2

}
⋂{

(m,n, k) ∈ N3 : P
(
|Xmnk − l2| ≥ r +

ε

2

)
<
δ

2

}
(existence of (u, v, w)

is guaranteed since asymptotic density of both the sets is equal to 1. Then

P
(∣∣l1 − l2∣∣ ≥ r + ε

)
≤ P

(∣∣Xmnk − l1
∣∣ ≥ r +

ε

2

)
+ P

(∣∣Xmnk − l2
∣∣ ≥ r +

ε

2

)
< δ.

This implies P (|l1 − l2| ≥ r) = 0. �

Remark 2.5.
(i) If Xmnk →SP

r l1 and Xmnk →SP

r l2, then P {l1 = l2} = 1 (here r = 0).

(ii) If Xmnk →SP

r l1 and Xmnk →SP

r l2, then {P {l1 − l2} < r} = 1.

Definition 2.6. A discrete random variable X is said to be one-point distribution at the point c if
the spectrum consists of a single point c and P (X = c) = 1. Here c is a parameter of the one point
distribution.

Theorem 2.7. If a triple sequence of constants xmnk →S
r l then xmnk →SP

r l.

Proof. Here for every (u, v, w) , xmnk can be regarded as a random variable with one element Xmnk

in the corresponding spectrum. Let ∈ be a positive real number. Since xmnk →S
r l then

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∣∣Xmnk − l

∣∣ ≥ r+ ∈ }∣∣∣ = 0,

=⇒ lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w :
∣∣Xmnk − l

∣∣ < r+ ∈
}∣∣∣ = 1.
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Now the event {w : w ∈W and |Xmnk (w)− l (w)| < r+ ∈} is the same as the event |xmnk − l| <
r+ ∈ which is here the certain event W for all

(u, v, w) ∈
{

(m,n, k) ∈ N3 :
∣∣xmnk − l∣∣ < r+ ∈

}
.

So P
({
w : w ∈W and |Xmnk (w)− l (w)| < r+ ∈

})
= P (|xmnk − l| < r+ ∈) = P (W ) = 1 for all

(u, v, w) ∈
{

(m,n, k) ∈ N3 : |xmnk − l| < r+ ∈
}
. Thus for any δ > 0,{

(u, v, w) ∈ N3 : 1− P
(
|xuvw − l| < r+ ∈

)}
⊂ N3

∖{
m ≤ u, n ≤ v, k ≤ w : |xmnk − l| < r+ ∈

}
=
{
m ≤ u, n ≤ v, k ≤ w :

∣∣xmnk − l∣∣ ≥ r+ ∈ }.
In general converse is not true, i.e., if a triple sequence of random variables (xmnk) is a rough

statistical convergence in probability to a real number l then each of Xmnk may not have one point
distribution so each Xmnk can not be treated as a constant which is rough statistical convergence to
l i.e., rough statistical convergence in probability is the more generalized concept than usual rough
statistical convergence. �

Example. Let a triple sequence of random variables (Xmnk) be defined by,

Xmnk∈


{−10, 10} with probability P (Xmnk = −10) = P (Xmnk = 10) ,

if (m,n, k) = (u, v, w)
2

for some (u, v, w) ∈ N3

{0, 1} with probability P (Xmnk = 0) = P (Xmnk = 1) ,

if (m,n, k) 6= (u, v, w)
2

for any (u, v, w) ∈ N3.

Let 0 <∈< 1 be given. Then

P
(∣∣Xmnk − 1

∣∣ ≥ 2+ ∈
)

=

{
1 if (m,n, k) = (u, v, w)

2
for some (u, v, w) ∈ N3

0 if (m,n, k) 6= (u, v, w)
2

for any (u, v, w) ∈ N3.

This implies Xmnk →SP

2 1. But it is not ordinary rough statistical convergence of a triple sequence of
numbers to 1.

Theorem 2.8.

(i) Xmnk →SP

r l⇐⇒ Xmnk − l→SP

r 0,

(ii) Xmnk →SP

r l =⇒ cXmnk →SP

|c|r c where c ∈ R,
(iii) Xmnk →SP

r l1 and Ymnk →SP

r l2 =⇒ Xmnk + Ymnk →SP

r l1 + l2,

(iv) Xmnk →SP

r l1 and Ymnk →SP

r l2 =⇒ Xmnk − Ymnk →SP

r l1 − l2,
(v) Xmnk →SP

r 0 =⇒ X2
mnk →SP

r2 0,

(vi) Xmnk →SP

r l =⇒ X2
mnk →SP

r2+2|x|r l
2,

(vii) Xmnk →SP

r l1 and Ymnk →SP

r l2 =⇒ Xmnk · Ymnk →SP

r
2+

r(|l1+l2|+|l1−l2|)
2

l1 · l2,

(viii) If 0 ≤ Xmnk ≤ Ymnk and Ymnk →SP

r 0 =⇒ Xmnk →SP

r 0,

(ix) Xmnk→SP

r l, then for each ∈> 0 there exists (uvw) ∈ N3 such that for any δ > 0

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − luvw| ≥ 2r+ ∈

)
≥ δ
}∣∣∣ = 0,

which is called rough statistical Cauchy condition in probability.

Proof. Let ∈, δ be any positive real numbers. Then for

(i) proof is straight forward hence omitted.
(ii) If c = 0 then the claim is obvious. So suppose assuming c 6= 0, then{

(m,n, k) ∈ N3 : P
(
|c Xmnk − c l| ≥ |c| r + ε

)
≥ δ
}

=
{

(m,n, k) ∈ N3 : P
(
|Xmnk − l| ≥ r +

ε

|c|

)
≥ δ
}
.
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Hence, cXmnk →SP

|c|r cX.

(iii) P
(∣∣∣ (Xmnk + Ymnk)− (l1 + l2)

∣∣∣ ≥ r + ε
)

= P
(∣∣∣ (Xmnk − l1) + (Ymnk − l2)

∣∣∣ ≥ r + ε
)
≤

P
(∣∣Xmnk − l1

∣∣ ≥ r + ε
2

)
+ P

(
|Ymnk − l2| ≥ r + ε

2

)
.

This implies{
(m,n, k) ∈ N3 : P

(∣∣ (Xmnk + Ymnk)− (l1 + l2)
∣∣ ≥ r + ε

)
≥ δ
}
⊆{

(m,n, k) ∈ N3 : P
(
|(Xmnk − l1)| ≥ r +

ε

2

)
≥ δ

2

}⋃
{

(m,n, k) ∈ N3 : P
(
|(Ymnk − l2)| ≥ r +

ε

2

)
≥ δ

2

}
.

Hence Xmnk + Ymnk →SP

r l1 + l2.
(iv) Similar to the proof of (iii) and therefore omitted.

(v)
{

(m,n, k) ∈ N3 : P
( ∣∣X2

mnk

∣∣ ≥ r2 + δ
)}

=
{

(m,n, k) ∈ N3 : P
( ∣∣X2

mnk

∣∣ ≥ r2 + 2rη + η2
)}

(where η=−r+
√
r2 + δ > 0)=

{
(m,n, k) ∈ N3 : P

( ∣∣X2
mnk

∣∣ ≥ r+η
)}

. Hence, X2
mnk →SP

r2 0.

(vi) X2
mnk = (Xmnk − l)2 + 2l (Xmnk − l) + l2, so X2

mnk →SP

2r2+2|l|r l
2.

(vii) (Xmnk + Ymnk)
2 →SP

r2+2r|l1+l2| (l1 + l2)
2

and (Xmnk − Ymnk)
2 →SP

r2+2r|l1−l2| (l1 − l2)
2

=⇒ Xmnk · Ymnk = 1
4

{{
(Xmnk + Ymnk)

2 − (Xmnk − Ymnk)
2
}}
→SP r

2

2 +
r(|l1+l2|+|l1−l2|)

2

1
4

{
(l1 + l2)

2 − (l1 − l2)
2
}

= l1 · l2.
(viii) Proof is straight forward hence omitted.

(ix) Choose (u, v, w) ∈ N3 be such that P
(
|Xuvw −X| ≥ r + ∈

2

)
< δ

2 . Then the claim is obvious
from the inequality

P
(
|Xmnk −Xuvw| ≥ 2r+ ∈

)
≤ P

(
|Xmnk −X| ≥ r +

∈
2

)
+ P

(
|Xuvw −X| ≥ r +

∈
2

)
≤ δ

2
+ P

(
|Xmnk −X| ≥ r +

∈
2

)
. �

Theorem 2.9. Let (Xmnk) be a triple sequence of random variables then there exists a triple sequence

of real numbers (xmnk) with the property that Xmnk−xmnk →SP

r 0. If m (Xmnk) is a median of Xmnk

then Xmnk −m (Xmnk)→SP

r 0 and xmnk −m (Xmnk)→SP

r 0.

Proof. Proof is straight forward hence omitted. �

Theorem 2.10. Let r > 0. Then Xmnk →SP

r l⇐⇒ there exists a triple sequence of random variables

(Ymnk) such that Ymnk →SP

r l and S − limmnk→∞ P (|Xmnk − Ymnk| > r) = 0.

Proof. Let Xmnk →SP

r l and A =
{

(m,n, k) ∈ N3 : P (|Xmnk − l| ≥ r + ε) ≥ δ
}
. Then δ (A) = 0.

Now we define

Ymnk =

{
l if (m,n, k) ∈ N3\A
Xmnk + Z otherwise

,

where X is a random variable and Z∈ (−r, r) with probability P (Xmnk = −r) = P (Xmnk = r) . Then
it is very obvious that

d
({

(m,n, k) ∈ N3 : P
(
|Ymnk − l| ≥∈

)
≥ δ
})

= 0 and

d
({

(m,n, k) ∈ N3 : P
(
|Xmnk − Ymnk| ≥ r+ ∈

)
≥ δ
})

≤ d
({

(m,n, k) ∈ N3 : P
(
|Xmnk − l| ≥ r +

∈
2

)
≥ δ

2

})
+ d
({

(m,n, k) ∈ N3 : P
(
|Ymnk − l| ≥

∈
2

)
≥ δ

2

})
= 0.



116 N. SUBRAMANIAN AND A. ESI

Conversely, let Ymnk →SP

r l and S − lim
mnk→∞

P
(
|Xmnk − Ymnk| > r

)
= 0. Then for each ∈, δ > 0,

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Ymnk − l| ≥

∈
2

)
≥ δ

2

}∣∣∣ = 0 and

lim
uvw→∞

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − Ymnk| ≥ r +

∈
2

)
≥ δ

2

}∣∣∣ = 0.

We know the inequality

P
(
|Xmnk − l| ≥ r+ ∈

)
≤ P

(
|Ymnk − l| >

∈
2

)
+ P

(
|Xmnk − Ymnk| ≥ r +

∈
2

)
.

=⇒
{

(m,n, k) ∈ N3 : P
(
|Xmnk − l| ≥ r+ ∈

)
≥ δ
}

⊆
{

(m,n, k) ∈ N3 : P
(
|Ymnk − l| ≥

∈
2

)
≥ δ

2

}⋃
{

(m,n, k) ∈ N3 : P
(
|Xmnk − Ymnk| ≥ r +

∈
2

)
≥ δ

2

}
.

Hence Xmnk →SP

r l. �

Theorem 2.11. If Xmnk →SP

r l and g : R3 → R3 is a continuous function on R3, then there exists

a triple sequence of random variables (Ymnk) such that g (Ymnk) →SP

r g (l) and g
(
P (|Xmnk − Ymnk|

> r)
)
→SP

r 0.

Proof. The proof is similar to Theorem 2.4 in [7] and hence omitted. �

3. Strong CesÀro Summable of a Triple Sequence of Real Numbers

Definition 3.1. A triple sequence (xmnk) is said to be strong Cesàro summable to l if

lim
uvw→∞

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1

|xmnk − l| = 0.

In this case we write xmnk →[C,1,1] l. The set of all strong Cesàro summable triple squences is
denoted by either |C, 1| or |C, 1, 1| .
Definition 3.2. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough strong Cesàro summable in probability to a random variable X : W → R3 with
respect to the roughness of degree r (or shortly: r− strong Cesàro summable in probability to l) of
for each ε > 0,

lim
uvw→∞

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1

P (|Xmnk − l| ≥ r + ε) = 0.

In this case we write Xmnk →[C,1,1]P

r l.
The class of all r− strong Cesàro summable triple sequences of random variables in probability will

be simply denoted by r [C, 1, 1]
P
.

Theorem 3.3. The followings are equivalent: (i) Xmnk →SP

r l (ii) Xmnk →[C,1,1]P

r l.

Proof. (i) =⇒ (ii). First suppose that Xmnk →SP

r l. Then we can write

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1

P
(
|Xmnk − l| ≥ r+ ∈

)
=

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1,P (|Xmnk−l|≥r+ε)≥ δ2

P
(
|Xmnk − l| ≥ r+ ∈

)
+

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1,P (|Xmnk−l|≥r+ε)< δ

2

P
(
|Xmnk − l| ≥ r+ ∈

)
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≤ 1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − l| ≥ r + ε

)
>
δ

2

}∣∣∣+
δ

2
.

(ii) =⇒ (i). Next suppose that condition (ii) holds. Then
u∑

m=1

v∑
n=1

w∑
k=1

P
(
|Xmnk − l| ≥ r + ε

)
≥

u∑
m=1

v∑
n=1

w∑
k=1,P (|Xmnk−l|≥r+ε)≥δ

P
(
|Xmnk − l| ≥ r+ ∈

)
≥ δ
∣∣∣{m ≤ u, n ≤ v, k ≤ w : P

(
|Xmnk − l| ≥ r+ ∈

)
> δ
}∣∣.

Therefore

1

(uvw)

u∑
m=1

v∑
n=1

w∑
k=1

P
(
|Xmnk − l| ≥ r+ ∈

)
≥ 1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − l| ≥ r+ ∈

)
> δ
}∣∣∣.

Hence Xmnk →SP

r l. �

4. Triple Rough Lacunary Statistical Convergence in Probability

Definition 4.1. The triple sequence θi,`,j = {(mi, n`, kj)} is called triple lacunary if there exist three
increasing sequences of integers such that

m0 =0, ];hi = mi −mr−1 →∞ as i→∞ and

n0 =0, h` = n` − n`−1 →∞ as `→∞,
k0 =0, hj = kj − kj−1 →∞ as j →∞.

Let mi,`,j = min`kj , hi,`,j = hih`hj and θi,`,j is determine by Ii,`,j =
{

(m,n, k) : mi−1 < m < mi

and n`−1 < n ≤ n` and kj−1 < k ≤ kj
}

, qi = mi
mi−1

, q` = n`
n`−1

, qj =
kj
kj−1

.

Definition 4.2. Let θ = {mrnskt}(rst)∈N⋃
0 be the triple lacunary sequence. A number triple se-

quence (Xmnk) is said to be triple lacunary statistically convergent to a real number l (or shortly:
Sθ− convergent to l) if for any ∈> 0,

lim
rst→∞

1

hrst

∣∣∣{ (m,n, k) ∈ Irst : |Xmnk − l| ≥ ε
}∣∣∣ = 0

and it is denoted by Xmnk →Sθ l, where Ir,s,t =
{

(m,n, k) : mr−1 < m < mr and ns−1 < n ≤ ns and

kt−1 < k ≤ kt
}

, qr = mr
mr−1

, qs = ns
ns−1

, qt = kt
kt−1

.

Definition 4.3. Let θ = {mrnskt} be the triple lacunary sequence. A number triple seqeunce (xmnk)
is said to be Nθ− convergent to a real number l if for any ∈> 0,

lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

|xmnk − l| = 0.

In this case we write xmnk →Nθ l.

Definition 4.4. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough lacunary statistically convergent in probability to X : W → R3 with respect to the
roughness of degree r (or shortly: r− lacunary statistically convergent in probability to l) if for any
ε, δ > 0

lim
rst→∞

1

hrst

∣∣∣{ (m,n, k) ∈ Irst : P
(∣∣Xmnk − l

∣∣ ≥ r + ε
)
≥ δ
}∣∣∣ = 0,

and we write Xmnk →
SPθ
r l. The class of all r− triple lacunary statistically convergent sequences of

random variables in probability will be denoted simply by rSPθ .
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Definition 4.5. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough Nθ− convergent in probability to X : W → R3 with respect to the roughness of
degree r (or shortly: r −Nθ− convergent in probability to l) if for any ε > 0,

lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

P
(
|xmnk − l| ≥ r + ε

)
= 0

and we write Xmnk →
NPθ
r l. The class of all r −Nθ− convergent triple sequence of random variables

in probability will be denoted simply by rNP
θ .

Theorem 4.6. Let θ = {mr, ns, kt} be a triple lacunary sequence. Then the followings are equivalent:
(i) (Xmnk) is a r− triple lacunary statistically convergent in probability to l.
(ii) (Xmnk) is r −Nθ− convergent in probability to l.

Proof. (i) =⇒ (ii) First suppose that Xmnk →
SPθ
r l. Then we can write

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

P
(
|xmnk − l| ≥ r + ε

)
=

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P (|xmnk−l|≥r+ε)≥ δ2

P
(
|xmnk − l| ≥ r + ε

)
+

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It,P (|xmnk−l|≥r+ε)< δ

2

P
(
|xmnk − l| ≥ r + ε

)
≤ 1

hrst

∣∣∣{ (m,n, k) ∈ Irst : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ

2

}∣∣∣.
(ii) =⇒ (i) Next suppose that condition (ii) holds. Then∑

m∈Ir

∑
n∈Is

∑
k∈It

P
(
|xmnk − l| ≥ r + ε

)
≥
∑
m∈Ir

∑
n∈Is

∑
k∈It,P (|xmnk−l|≥r+ε)≥δ

P
(
|xmnk − l| ≥ r + ε

)
≥ δ
∣∣∣{ (m,n, k) ∈ Irst : P

(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣.

Therefore
1

δ hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

P
(
|xmnk − l| ≥ r + ε

)
≥ 1

hrst

∣∣∣{ (m,n, k) ∈ Irst : P
(
|xmnk − l| ≥ r + ε

)}∣∣∣.
Hence Xmnk →

SPθ
r l. �

Theorem 4.7. If Xmnk →
SPθ
r l1 and Xmnk →

SPθ
r l2 then P (|l1 − l2| ≥ r) = 0.

Proof. Similar to the proof of the Theorem 2.4 and therefore omitted. �

5. Triple Rough-λ−statistical Convergence in Probability

Let λ = (λuvw) be a non-decreasing triple sequence of positive numbers tending to ∞ such that
λuvw+1 ≤ λuvw + 1, λ111 = 1. The collection of all such triple sequence λ is denoted by D.

The generalized De la valeé− Pousin mean is defined for the triple sequence (xmnk) of real numbers
by tuvw (x) = 1

λuvw

∑
(m,n,k)∈Quvw xmnk, where Quvw = [(uvw)− λuvw + 1, (uvw)] . A triple sequence

(xmnk) of real numbers is said to be [V, λ]− summable to l, if lim tuvw (x) = l.

Definition 5.1. A triple sequence (xmnk) is said to be strong [V, λ]− summable (or shortly: [V, λ]−
convergent) to l, if lim

uvw→∞
1

λuvw

∑
(m,n,k)∈Quvw

|xmnk − l| = 0. In this case we write xmnk →[V,λ] l.
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Definition 5.2. A triple sequence (xmnk) is said to be λ− statistically convergent (or shortly: Sλ−
convergent) to l if for any ε > 0,

lim
uvw→∞

1

λuvw

∣∣∣{ (m,n, k) ∈ Quvw : |xmnk − l| ≥ ε
}∣∣∣ = 0.

In this case we write Sλ − limxmnk = l or by xmnk →Sλ l.

Definition 5.3. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough [V, λ]− summable in probability to X : W → R3 with respect to the roughness
degree r (or shortly: r − [V, λ]− summable in probability to l) if for any ε > 0,

lim
uvw→∞

1

λuvw

∑
(m,n,k)∈Quvw

: P
(
|Xmnk − l| ≥ r + ε

)
= 0.

In this case we write Xmnk →[V,λ]P

r l. The class all rough [V, λ]− summable sequences of random

variables in probability will be denoted by r [V, λ]
P
.

Definition 5.4. Let r be a non-negative real number. A triple sequence of random variables (Xmnk)
is said to be rough λ− statistically convergent in probability to X : W → R3 with respect to the
roughness degree r (or shortly: r − λ− statistically convergent in probability to l) if for any ε, δ > 0,

lim
uvw→∞

1

λuvw

∣∣∣{ (m,n, k) ∈ Quvw : P (|xmnk − l| ≥ r + ε) ≥ δ
}∣∣∣ = 0.

In this case we write Xmnk →
SPλ
r l. The class of all r − λ− statistically convergent triple sequence

of random variables in probability will be denoted simply by rSPλ .

Theorem 5.5. For any triple sequence of random variables (Xmnk) the following are equivalent:
(i) (Xmnk) is r − [V, λ]− summable in probability to l.
(ii) (Xmnk) is r − λ− statistically convergent in probability to l.

Proof. It can be established using the technique of Theorem 4.6, so omitted. �

Theorem 5.6. If Xmnk →
SPλ
r l1 and Xmnk →

SPλ
r l2 then P (|l1 − l2| ≥ r) = 0.

Proof. It can be established using the technique of Theorem 2.4, so omitted. �

Theorem 5.7. If λ ∈ D is such that lim
(
λuvw
uvw

)
= 1, then rSPλ ⊂ rSP .

Proof. Let 0 < η < 1 be given. Since lim
(
λuvw
uvw

)
= 1, we can choose (r, s, t) ∈ N3 such that∣∣λuvw

uvw − 1
∣∣ < η

2 for all u ≥ r, v ≥ s, w ≥ t. Now observe that for ε, δ > 0

1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

=
1

(uvw)

∣∣∣{m ≤ u, n ≤ v, k ≤ w − λuvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

+
1

(uvw)

∣∣∣{Big| (m,n, k) ∈ Quvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

≤ (uvw)− λuvw
(uvw)

+
1

(uvw)

∣∣∣{ (m,n, k) ∈ Quvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

≤ 1−
(

1− η

2

)
+

1

(uvw)

∣∣∣{ (m,n, k) ∈ Quvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

=
η

2
+

λuvw
(uvw)

· 1

λuvw

∣∣∣{ (m,n, k) ∈ Quvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

<
η

2
+

2

λuvw

∣∣∣{ (m,n, k) ∈ Quvw : P
(
|Xmnk − l| ≥ r + ε

)
≥ δ
}∣∣∣

hold for all u ≥ r, v ≥ s, w ≥ t. �
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