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Vladimir Aleksandrovich Kondrat’ev

(Obituary)

On March 11, 2010, Vladimir Aleksandrovich Kondrat’ev, a prominent
mathematician, Professor of Moscow M. V. Lomonosov State University,
Doctor of Physical and Mathematical Sciences, suddenly passed away at
the age of 75.

V. A. Kondrat’ev was born on July 2, 1935, in the city of Samara (Kuy-
byshev). His father, Aleksandr Sergeyevich Kondrat’ev was a professor
of mechanics at the Kuybyshev Industrial Institute, while his mother Ev-
geniya Vasil’evna was a teacher of mathematics at a secondary school. In
1952 V. A. Kondrat’ev graduated from the school No. 6 of Kuybyshev with
Golden Medal and entered the Faculty of Mechanics and Mathematics of
Moscow M. V. Lomonosov State University which he graduated in 1957.
In 1959, under supervision of S. A. Gal’pern, V. A. Kondrat’ev defended
his Candidate of Science Thesis “On Zeros of Solutions of Linear Differen-
tial Equations of Order Higher than Two”, while in 1965 he defended his
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Doctor of Science Thesis “Boundary Value Problems for Elliptic and Para-
bolic Equations with Singularities at the Boundary”. V. A. Kondrat’ev was
deeply influenced by I. G. Petrovskĭı in choosing the area of his scientific
interests. Since 1961, V. A. Kondrat’ev had been working at the Chair of
Differential Equations of the Faculty of Mechanics and Mathematics of the
Moscow State University.

V. A. Kondrat’ev obtained first scientific results in his undergraduate
years, and they dealt with investigation of oscillation of solutions of linear
ordinary differential equations. He obtained a nonoscillation criterion for
second order linear differential equations which easily implied all nonoscilla-
tion criteria known by that time. The papers of V. A. Kondrat’ev which laid
the basis of his Candidate thesis include elegant proofs of Sturm-type theo-
rems on separation of zeros, as well as oscillation and nonoscillation criteria
for solutions of third and fourth order linear differential equations. Later
on, he generalized these results for the case of linear differential equations
of arbitrary order and obtained a depending on equations’ order estimate
of number of zeros of a solution as the right end of the interval tends to
infinity.

V. A. Kondrat’ev initiated a systematic investigation of elliptic and
parabolic problems in domains with nonsmooth boundaries. The first re-
sult he obtained in this direction concerned parabolic equations in a non-
cylindrical domain with characteristic points at the boundary. V. A. Kon-
drat’ev obtained a solvability criterion for boundary value problems in
weighted Sobolev spaces and found the asymptotics of solutions in the vicin-
ity of a characteristic point. A theory of elliptic equations in domains with
conic points at the boundary is another important achievement of V. A.
Kondrat’ev in this direction. In his papers devoted to this theory a univer-
sal method is developed which is applicable to a wide range of equations in
domains with isolated singularities at the boundary. These results provided
a basis for his doctoral thesis. In a series of papers that have already become
classical, V. A. Kondrat’ev introduced and studied the notion of capacity
for higher order elliptic equations. His results have served as a starting
point for many investigations. Due to those works the notion of capacity
was widely applied to Sobolev’s imbedding theorems as well as to the theory
of higher order elliptic equations - the issues of the unique solvability of the
first boundary value problem, smoothness of solutions near the boundary,
removable singularities of solutions.

V. A. Kondrat’ev (jointly with O. A. Olĕınik and I. Kopaček) investigated
the regularity of solutions of elliptic equations in the vicinity of a boundary
point, and established best values of the Holder exponents for second order
elliptic equations.

In sixties, while dealing with asymptotic behavior of solutions of elliptic
equations at angular points, V. A. Kondrat’ev decided to use a product of
polynomials by logarithms of polynomials for transformation of variables
for linearization of a system of ordinary differential equation in the vicinity
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of a singular point. This approach gave rise to a series of investigations
which resulted in elaboration of the theory of finitely smooth equivalence
and linearization of systems of ordinary differential equations in vicinity of
a non-degenerate singular point.

V.A. Kondrat’ev (jointly with Yu. V. Egorov) obtained fundamental re-
sults dedicated to the boundary value problem with oblique derivative for
elliptic equations.

V. A. Kondrat’ev (jointly with E. M. Landis) obtained a series of impor-
tant results for divergent and non-divergent second order elliptic equations
with nonsmooth coefficients. In their famous work a theorem on removable
character of isolated singularity of solutions was obtained. Besides, the au-
thors found sufficient conditions for each entire nonnegative solution to be
trivial. Earlier similar results were known only in the case where the left
hand side of the equation is the Laplace operator.

Jointly with L. Veron, V. A. Kondrat’ev obtained results on asymptotic
properties of solutions of nonlinear elliptic and parabolic equations in un-
bounded domains.

V. A. Kondrat’ev investigated the problem on completeness of the system
of eigen- and adjoint functions of elliptic operators. He found conditions
to be imposed on the principal part of the operator for guaranteeing the
completeness of eigen- and adjoint functions of the Dirichlet problem for
second order elliptic operator of divergent type in the spaces

◦
W 1

p, p ≥ 1,
and weighted Sobolev spaces.

V. A. Kondrat’ev (jointly with Yu. V. Egorov and B. Schultze) estab-
lished completeness of systems of eigen- and adjoint functions of boundary
value problems for 2mth order elliptic operators in the space W 2m

2 (Ω) with
Lopatinskĭı type boundary conditions in a bounded domain whose bound-
ary is everywhere smooth except for neighborhoods of a finite number of
points where it is a conic surface.

V. A. Kondrat’ev, jointly with V. G. Maz’ya and M.A. Shubin, extended
A.M Molchanov’s discrete spectrum criterion to the case of an operator of
more general type than the Schrodinger operator.

In the last years of his life, V. A. Kondrat’ev fruitfully worked in the
sphere of the theory of nonlinear problems for equations of mathematical
physics. He developed (jointly with L. Veron) methods enabling one to
obtain asymptotic expansions of solutions of such problems. These methods
initiated many scientific investigations both in Russia and abroad.

V. A. Kondrat’ev was actively engaged in the blow-up problem, that is,
the problem of absence of nontrivial global solutions of nonlinear equations
(jointly with V. A. Galaktionov, Yu. V. Egorov and S. I. Pokhozhaev).

The last remarkable work of V. A. Kondrat’ev “On positive solutions of
the heat conduction equation satisfying a nonlinear boundary condition”
will appear in the journal “Differentsial’nye Uravneniya”, v. 46, 2010.
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V. A. Kondrat’ev devoted much attention to the work with his pupils.
He created a scientific school on qualitative theory of differential equations.
The investigations in the sphere of qualitative theory of ordinary differential
equations and partial differential equations whose basis was laid by V. A.
Kondrat’ev were continued in the works of his pupils. Among his pupils
there are 6 Doctors and 35 Candidates of Science.

The name of Vladimir Aleksandrovich Kondrat’ev will always remain in
the history of mathematics, while his memory will live in our hearts.

I. V. Astashova, I. Kiguradze, T. Kiguradze,
G. Kvinikadze, A. Lomtatidze, N. Kh. Rozov
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Abstract. We deal with an Euler-Case for a class of third-order differ-
ential equation. A theorem on asymptotic behaviour at the infinity of three
linearly independent solutions is proved. This theorem coveres different
class of coefficients.
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îâäæñéâ. êŽöîëéöæ àŽêæýæèâĲŽ âæèâîæï öâéåýãâãŽ éâïŽéâ îæàæï áæòâîâê-
ùæŽèñîæ àŽêðëèâĲâĲæï âîåæ çèŽïæïåãæï. áŽéðçæùâĲñèæŽ âîåæ åâëîâéŽ
ïŽéæ ûîòæãŽá áŽéëñçæáâĲâèæ ŽéëêŽýïêæï Žïæéìðëðñîæ õëòŽóùâãæï öâïŽýâĲ.
âï åâëîâéŽ éëæùŽãï çëâòæùæâêðâĲæï ïýãŽáŽïýãŽ çèŽïâĲï.
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1. Introduction

In this paper we investigate the form of three linearly independent solu-
tions for a class of the third-order differential equation

(q(qy′)′)′ − (py′)′ − ry = 0 (1)

as x → ∞, where x is the independent variable and the prime denotes
d/dx. The functions q, p and r are defined on the interval [a,∞), are not
necessarily real-valued and continuously differentiable, and all are non-zero
everywhere in this interval. In this situation where p is sufficiently small
compared to q and r as x → ∞, (1) can be considered as a perturbation
of the equation investigated by Eastham. In this paper,we consider the
opposite situation where p is large compared to q and r. In this situation,
we identify the Euler case:

(pr)′

pr
∼ const.× p

q2
,

(pq−1)′

pq−1
∼ const.× p

q2

(2)

as x → ∞. The various conditions imposed on the coefficients will be
introduced when they are required in the development of the method. Al-
Hammadi [1] considers (1) in the case where the solutions all have a similar
exponential factor. A third-order equation similar to (1) has been considered
previously by Unsworth [11] and Pfeiffer[10]. Eastham [6] considered the
Euler case for a fourth-order differential equation and showed that this
case represents a border line between situations where all solutions have a
certain exponential character as x →∞ and where only two solutions have
this character. The case (2) will appear in the method in Sections 4–6,
where we use the recent asymptotic theorem of Eastham [4, Section 2] to
obtain the solutions of (1). Two examples are considered in Section 6.

2. The General Method

We write (1) in the standard way [8] as a first order system

Y ′ = AY, (3)

where the first component of Y is y and

A =




0 q−1 0
0 pq−2 q−1

r 0 0


 . (4)

As in [2], we express A in its diagonal form

T−1AT = Λ (5)

and we therefore require the eigenvalues λj and eigenvectors νj (1 ≤ j ≤
3) of A, with the eigenvalues λj are chosen as continuously differentiable
function.
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Writing
q2 = s, (6)

we obtain the characteristic equation of A as

sλ3 − pλ2 − r = 0. (7)

An eigenvector νj of A corresponding to λj is

νj =
(
1, s

1
2 λj , rλ

−1
j

)t
, (8)

where the superscript denotes the transpose. We assume at this stage that
the λj are distinct, and we define the matrix T in (5) by

T =
(
m−1

1 v1 m−1
2 v2 m−1

3 v3

)
, (9)

where the mj (1 ≤ j ≤ 3) are scalar factors to be specified according to the
following procedure. Now from (4), we note that EA is symmetric, where

E =




0 0 1
0 1 0
1 0 0


 . (10)

Hence, by [7, Section 2(i)], the vj have the orthogonality property

(Evk)tvj = 0 (k 6= j). (11)

We then define the scalars

mj = (Evj)tvj (12)

and the row vectors
rj = (Evj)t. (13)

Hence by [7, Section 2]

T−1 =




r1

r2

r3


 , (14)

mj = 3sλ2
j − 2pλj = sλ2

j + 2rλ−1
j . (15)

By (5), the transformation
Y = TZ (16)

takes (3) into
Z ′ = (Λ− T−1T ′)Z, (17)

where
Λ = dg(λ1, λ2, λ3). (18)

From (8)–(12), we obtain T−1T ′ = (tjk), where

tjj = −1
2

m′
j

mj
(19)

and, for j 6= k,

tjk =
1
2

m′
k

mk
+

λj − λk

mk

(
sλ′k +

1
2

λks′
)
− m′

k

m2
k

(
rλ−1

j + sλjλk + rλ−1
k

)
. (20)
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Now we need to work out (19) and (20) in some detail in terms of s, p and
r in order to determine the form of (17).

3. The Matrices Λ and T−1T ′

In our analysis, we impose a basic condition on the coefficients as follows:
(I) p, r and s are all nowhere zero in some interval [a,∞), and

(r

p

) 1
2

= o
(p

s

)
(x →∞), (21)

If we write

δ =
sr

1
2

p
3
2

, (22)

then by (21)
δ = o(1) (x →∞). (23)

Now as in [1,2], we can solve the characteristic equation (7) asymptotically
as x →∞. Using (21) and (23), we obtain the distinct eigenvalues λj as

λ1 = i
(r

p

) 1
2
(1 + δ1), (24)

λ2 = −i
(r

p

) 1
2
(1 + δ2), (25)

λ3 =
(p

s

)
(1 + δ3), (26)

where
δ1 = O(δ), δ2 = O(δ), δ3 = O(δ2). (27)

By(21), the ordering of λj is such that

λj = o(λ3) (x →∞, j = 1, 2). (28)

Now substituting (24)–(26) into (7) and differentiating, we obtain

λ′1 =
1
2

i
(r

p

) 1
2
{r′

r
− p′

p
+ O(ε)

}
, (29)

λ′2 = −1
2

i
(r

p

) 1
2
{r′

r
− p′

p
+ O(ε)

}
, (30)

λ′3 =
(p

s

){p′

p
− s′

s
+ O(δε)

}
. (31)

Now we work out mj (1 ≤ j ≤ 3) asymptotically as x → ∞; hence by
(24)–(27), (15) gives,

m1 = −2i(pr)
1
2
{
1 + O(δ)

}
, (32)

m2 = 2i(pr)
1
2
{
1 + O(δ)

}
, (33)

m3 =
(p2

s

){
1 + O(δ2)

}
. (34)
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Also by substituting λj (j = 1, 2, 3) into (15) and using (24), (25) and (26)
respectively, and differentiating, we obtain

m′
1 = −i(rp)

1
2

{r′

r
+

p′

p
+ O(ε)

}
, (35)

m′
2 = i(rp)

1
2

{r′

r
+

p′

p
+ O(ε)

}
, (36)

m′
3 =

(p2

s

){
2
p′

p
− s′

s
+ O(δε)

}
, (37)

where

ε =
∣∣∣r
′

r
δ
∣∣∣ +

∣∣∣s
′

s
δ
∣∣∣ +

∣∣∣p
′

p
δ
∣∣∣. (38)

At this stage we also require the following condition:
(II)

δ
r′

r
, δ

s′

s
, δ

p′

p
are all L(a,∞). (39)

Now by (22)

δ′ = O
(r′

r
δ
)

+ O
(s′

s
δ
)

+ O
(p′

p
δ
)
. (40)

Also by substituting (24)–(25) into (7) and differentiating, we obtain

δ′j = O
(r′

r
δ
)

+ O
(s′

s
δ
)

+ O
(p′

p
δ
)

(j = 1, 2) (41)

and

δ′3 = O
(r′

r
δ2

)
+ O

(s′

s
δ2

)
+ O

(p′

p
δ2

)
. (42)

Hence by (38), (40), (41), (42) and (39)

ε, δ′, δ′j ∈ L(a,∞). (43)

We can now substitute the estimates (24)–(27), (32)–(37) and (29)–(31)
into (19) and (20) as in [1], we obtain the following expressions for tjk,

t11 = −ρ + O(ε), t22 = −ρ + O(ε),

t33 = −η + O(δε), t12 = ρ + O(ε),

t21 = ρ + O(ε), t13 = O(ε), t23 = O(ε)

t31 =
1
2

η + O(ε), t32 =
1
2

η + O(ε)

(44)

with

ρ =
1
4

(rp)′

rp
, η =

(ps−1/2)′

ps−1/2
. (45)

It follows from (43) the O-terms in (44) are L(a,∞), and we can therefore
write (17)

Z ′ = (Λ + R + S)Z, (46)
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where

R =




ρ −ρ 0
−ρ ρ 0

−1
2

η −1
2

η η


 (47)

and S ∈ L(a,∞) by (43).

4. The Euler Case

Now we deal with (2) more generally. So we write (2) as

(pr)′

pr
= 4σ

p

s
(1 + φ), (48)

(ps−1/2)′

ps−1/2
= w

p

s
(1 + ψ), (49)

where σ and w are non zero constants, and φ(x) → 0, ψ(x) → 0 (x →∞).
At this stage we let

φ′, ψ′ ∈ L(a,∞). (50)
We note that by (48) and (49), the matrix Λ no longer dominates the matrix
R and so Eastham’s theorem [4, Section 2] is not satisfied which means that
we have to carry out a second diagnolization of the system(46). First we
write

Λ + R = λ3{S1 + S2} (51)
and we need to work out the two matrices S1 = const. with the matrix
S2(x) = o(1) as x →∞ using (24), (25), (26) and Euler case (48) and (49).
Hence after some calculations, we obtain

S1 =




σ −σ 0
−σ σ 0

−1
2

ω −1
2

ω 1 + ω


 , (52)

S2(x) =




u1 u2 0
u2 u3 0
u4 u4 u5


 , (53)

where
u1 = λ1λ

−1
3 − u2, u2 = −σ(1 + δ3)−1(φ− δ3),

u3 = λ2λ
−1
3 − u2, u4 = −1

2
ω(1 + δ3)−1(ψ − δ3), u5 = −2u4.

(54)

It is clear that by (28) and (27), S2(x) → 0 as x →∞. Hence we diagonalize
the constant matrix S1. Now the eigenvalues αj(1 ≤ j ≤ 3) of the matrix
S1 are given by

α1 = 0, α2 = 2σ, α3 = 1 + ω. (55)
Let

ω 6= −1 and 2σ − ω 6= 1. (56)
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Hence by (56), the eigenvalues αj are distinct. Thus we use the transfor-
mation

Z = T1W (57)
in (46), where T1 diagonalizes the constant matrix S1. Then (46) trans-
forms to

W ′ = (Λ1 + M + T−1
1 ST1)W, (58)

where
Λ1 = λ3T

−1
1 S1T1 = dg(v1, v2, v3) = λ3dg(α1, α2, α3),

M = λ3T
−1
1 S2T1, T−1

1 ST1 ∈ L(a,∞).
(59)

Now we can apply the asymptotic theorem of Eastham [4, Section 2] to (58)
provided only that Λ1 and M satisfy the conditions in [4, Section 2]. We
first require that the vj (1 ≤ j ≤ 3) are distinct, and this holds because αj

(1 ≤ j ≤ 3) are distinct. Second, we need to show that

M

vi − vj
→ 0 (x →∞) (60)

for i 6= j and 1 ≤ i, j ≤ 3. Now
M

vi − vj
= (αi − αj)−1T−1

1 S2T1 = o(1) (x →∞). (61)

Thus (60) holds. Third, we need to show that

S′2 ∈ L(a,∞). (62)

Thus it suffices to show that

u′i(x) ∈ L(a,∞) (1 ≤ i ≤ 5). (63)

Now by (24), (25), (26) and (54)

u′1 = O(δ′) + O(δ′1δ) + O(δ′3) + O(φ′),

u′2 = O(δ′3) + O(φ′),

u′3 = O(δ′) + O(δ′2δ) + O(δ′3) + O(φ′),

u′4 = O(δ′3) + O(ψ′),

u′5 = O(δ′3) + O(ψ′).

(64)

Thus, by (64), (43) and (50), we see that (63) holds and consequently (62)
holds. Now we state our main theorem for (1).

5. The Main Result

Theorem 5.1. Let the coefficients p, r and s are C(2)[a,∞). Let (21),
(38), (48), (49) and (55) hold. Let

Re I(x), (65)

Re
[
λ3 + η − 1

2
(2ρ + λ1 + λ2 ± I)

]
(66)
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be of one sign in [a,∞), where

I(x) =
[
4ρ2 + (λ1 − λ2)2

] 1
2 . (67)

Then (1) has the solutions

y1(x) = o

{
(r(x)p(x))

−1
4 exp

(
1
2

x∫

a

[
λ1(t) + λ2(t)− I(t)

]
dt

)}
,

y2(x) = [−i + o(1)](r(x)p(x))
−1
4 ×

× exp
(

1
2

x∫

a

[
λ1(t) + λ2(t) + I(t)

]
dt

)
,

y3(x) = o

{
(r(x)s(x))

−1
2 p1/2(x) exp

( x∫

a

λ3(t) dt

)}
.

(68)

Proof. Before applying the theorem in [4, Section 2], we show that the
eigenvalues µk (1 ≤ k ≤ 3) of Λ1 + M satisfy the dichotomy condition [9].
As in [2], the dichotomy condition holds if

Re(νj − νk) = f + g (j 6= k, 1 ≤ k ≤ 3), (69)

where f has one sign in [a,∞) and g belongs to L(a,∞) [4, (1.5)]. Now
since the eigenvalues of Λ1 + M are the same as the eigenvalues of Λ + R,
by (18) and (47) we have

µk =
1
2

[
2ρ + λ1 + λ2 + (−1)kI

]
(k = 1, 2),

µ3 = λ3 + η.
(70)

Thus by (70) and (66), we see that (69) holds. Since (58) satisfies all the
conditions for the asymptotic result [4, Section 2], it follows that, as x →∞,
(58) has three linearly independent solutions

Wk(x) = {ek + o(1)} exp
( x∫

a

µk(t) dt

)
, (71)

where µk are given by (70) and ek are the coordinate vectors with kth
component unity and other components zero. Now we transform back to Y
by means of (16) and (57), where T1 in (57) is given by

T1 =




1 −1 0
1 1 0
ω

1 + ω
0 1


 . (72)

We obtain
Yk(x) = T (x)T1Wk(x) (1 ≤ k ≤ 3). (73)
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Now using (9), (32), (33), (34), (71), (72) and (45) in (73) and carrying out

the integration of (ps
−1
2 )′

ps
−1
2

and ( 1
4 ) (rp)′

rp , for 1 ≤ k ≤ 3, we obtain (68). ¤

6. Discussion

(1) In a familiar case, the coefficients covered by Theorem 5.1 are

s(x) = Axα, p(x) = Bxβ , r(x) = Cxγ , (74)

where α, β, γ, A(6= 0), B(6= 0) and C( 6= 0) are real constants. Then
the Euler case (48)–(49) is given by

α− β = 1. (75)

The values of σ and ω are given by

σ =
1
4

(B + γ)A
B

, ω =
(β − 1

2 α)A
B

. (76)

Also in this example φ(x) = ψ(x) = 0 in (48) and (49).
(2) Theorem 5.1 coveres also the following class of coefficients

s = Axαexb

, p = Bxβexb

, r = Cxγe
1
2 xb

, (77)

where α, β, γ, A( 6= 0), B(6= 0), C(6= 0) and b(> 0) are real con-
stants. Then the Euler case (48)–(49) is given by

b− 1 = β − α. (78)

The values of σ and ω are given by

σ =
3
8

bA

B
, ω =

1
2

bA

B
. (79)

Also

φ(x) =
2
3

b−1(β + γ)x−b, (80)

ψ(x) = 2b−1
(
β − 1

2
α
)
x−b. (81)
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Introduction

In the present paper the differential equation

ẋ(t) = f
(
t, y(τ1(t)), . . . , y(τs(t)), z(σ1(t)), . . . , z(σm(t)), u(t)

)
(1)

with the mixed initial condition

x(t) =
(
y(t), z(t)

)T =
(
ϕ(t), g(t)

)T
, t ∈ [τ, t0), x(t0) =

(
y0, g(t0)

)T (2)

is considered.
The condition (2) is called the mixed initial condition. It consists of

two parts: the first one is the discontinuous part, y(t) = ϕ(t), t ∈ [τ, t0),
y(t0) = y0, because in general ϕ(t0) 6= y0; the second part is the continuous
part z(t) = g(t), t ∈ [τ, t0] because, always z(t0) = g(t0).

The local formula of variation of solution, that is, a linear representation
of variation of the solution of the problem (1)–(2) in a neighborhood of the
right end of the main interval with respect to initial data and perturbation
of control u(t) is proved by the scheme given in [1].

An analogous formula for the equation

ẋ(t) = f
(
t, y(τ1(t)), . . . , y(τs(t)), z(σ1(t)), . . . , z(σm(t))

)
(3)

with the initial condition (2) when variation of initial data and right-hand
side of equation occurs is proved in [1].

It is important to note that the formula of variation which is proved in
the present work doesn’t follow from the formula proved in [1].

Formulas of variation for differential equations with delays for concrete
cases of continuous and discontinuous initial conditions are obtained in [2]–
[6].

Formulas of variation for controlled differential equations with delays,
with continuous and discontinuous initial conditions are proved in [7], [8].

Formulas of variation of solution play an important role in the proof of
necessary conditions of optimality [6], [9]–[12].

1. Formulation of Main Results

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , T

means transpose; O1 ⊂ Rk
y , O2 ⊂ Re

z, G ⊂ Rr
u be open sets, x = (y, z)T ,

n = k + e; τi(t), i = 1, s, σj(t), j = 1,m, t ∈ R1
t be absolutely continuous

scalar-valued functions and satisfy the following conditions:

τi(t) ≤ t, τ̇i(t) > 0; σj(t) ≤ t, σ̇j(t) > 0.

Let f(t, y1, . . . , ys, z1, . . . , zm, u) be an n-dimensional function satisfying
the following conditions: for almost all t ∈ I = [a, b] the function f(t, ·) :
Os

1 ×Om
2 ×G → Rn

x is continuously differentiable; for any

(y1, . . . , ys, z1, . . . , zm, u) ∈ Os
1 ×Om

2 ×G

the functions f , fyi , i = 1, s, fzj , j = 1,m, fu, are measurable on I; for
any compacts K ⊂ Os

1 ×Om
2 and M ⊂ G there exists a function m

K,M
(·) ∈
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L(I, R+), R+ = [0,∞), such that for any (y1, . . . , ys, z1, . . . , zm, u) ∈ K×M
and for almost all t ∈ I we have

∣∣f(t, y1, . . . , ys, z1, . . . , zm, u)
∣∣+

+
s∑

i=1

∣∣fyi( · )
∣∣ +

m∑

j=1

∣∣fzj ( · )
∣∣ +

∣∣fu( · )∣∣ ≤ m
K,M

(t).

Let E
(k)
ϕ = Eϕ(I1, R

k
y) be the space of piecewise continuous functions

ϕ : I1 = [τ, b] → Rk
y with a finite number of discontinuity points of

the first kind, equipped with the norm ‖ϕ‖ = sup{|ϕ(t)| : t ∈ I1},
τ = min{τ1(a), . . . , τs(a), σ1(a), . . . , σm(a)}.

Next, ∆1 = {ϕ ∈ E
(k)
ϕ : cl ϕ(I1) ⊂ O1}, ∆2 = {g ∈ E

(e)
g = E

(e)
g (I1; Re

z) :
cl g(I1) ⊂ O2} are sets of initial functions, where ϕ(I1) = {ϕ(t), t ∈ I1}; let
Eu be the space of measurable functions u : I → Rr

u, satisfying the following
condition: the set cl u(I) is compact in Rr

u, ‖u‖ = sup{|u(t)| : t ∈ I},
Ω = {u ∈ Eu : cl u(I) ⊂ G} is the set of controls.

To any element µ = (t0, y0, ϕ, g, u) ∈ A = I ×O1 ×∆1 ×∆2 × Ω we put
in correspondence the differential equation

ẋ(t) = f
(
t, y(τ1(t)), . . . , y(τs(t)), z(σ1(t)), . . . , z(σm(t)), u(t)

)
(1.1)

with the mixed initial condition

x(t)=
(
y(t), z(t)

)T =
(
ϕ(t), g(t)

)T
, t∈ [τ, t0), x(t0)=

(
y0, g(t0)

)T
. (1.2)

Definition 1.1. Let µ = (t0, y0, ϕ, g, u) ∈ A, t0 < b. A function x(t;µ) =(
y(t; µ), z(t; µ)

)T , t ∈ [τ, t1], t1 ∈ (t0, b], where y(t, µ) ∈ O1, z(t, µ) ∈ O2,
is called a solution, corresponding to the element µ, and defined on the
interval [τ, t1], if it satisfies the condition (1.2) on the interval [τ, t0] , it
is absolutely continuous on the interval [t0, t1] and almost everywhere on
[t0, t1] satisfies the equation (1.1).

In the space Eµ = R × Rk
y × E

(k)
ϕ × E

(e)
g × Eu we introduce the set of

variations

V =
{

δµ = (δt0, δy0, δϕ, δg, δu) ∈ Eµ : |δt0| ≤ c, |δy0| ≤ c, ‖δϕ‖ ≤ c,

δg =
l∑

i=1

λiδgi, |λi| ≤ c, i = 1, l, ‖δu‖ ≤ c
}

,

where c > 0 is a fixed number and δgi ∈ E
(e)
g , i = 1, l are fixed points.

Lemma 1.1. Let x0(t) be the solution corresponding to the element µ0 =
(t00, y00, ϕ0, g0, u0) ∈ A, and defined on the interval [τ, t10], t00, t10 ∈ (a, b).
There exist numbers ε1 > 0 and δ1 > 0, such that for any (ε, δµ) ∈ [0, ε1]×V
we have µ0 + εδµ ∈ A. In addition, to this element corresponds a solution
x(t; µ0 + εδµ), defined on the interval [τ, t10 + δ1] ⊂ I1.



Local Variation Formulas 21

This lemma follows from Theorem 1.3.2 (see [6, p. 17]).
Due to uniqueness, the solution x(t; µ0), which is defined on [τ, t10 + δ1]

is a continuation of the solution x0(t). Therefore we can assume that the
solution x0(t) is defined on the whole interval [τ, t10 + δ1].

Lemma 1.1 allows us to introduce the increment of the solution x0(t) =
x(t; µ0):

∆x(t) = ∆x(t; εδµ) = x(t; µ0 + εδµ)− x0(t),

(t, ε, δµ) ∈ [τ, t10 + δ1]× [0, ε1]× V.

In order to formulate main results, consider the following notation:

ω−0i =
(
t00, y00, . . . , y00︸ ︷︷ ︸

i

, ϕ0(t00−), . . . , ϕ0(t00−)︸ ︷︷ ︸
p−i

, ϕ0(τp+1(t00−)), . . . ,

ϕ0(τs(t00−)), g0(σ1(t00−)), . . . , g0(σm(t00−))
)
, i = 0, p,

ω−0i =
(
γi, y0(τ1(γi)), . . . , y0(τi−1(γi)), y00, ϕ0(τi+1(γi−)), . . . , ϕ0(τs(γi−)),

z0(σ1(γi−)), . . . , z0(σm(γi−))
)
,

ω−1i =
(
γi, y0(τ1(γi)), . . . , y0(τi−1(γi)), ϕ0(t00−), ϕ0(τi+1(γi−)), . . . ,

ϕ0(τs(γi−)), z0(σ1(γi−)), . . . , z0(σm(γi−))
)
, i = p + 1, s,

γi(t) = τ−1
i (t), γi = γi(t00), ρj(t) = σ−1

j (t), γ̇−i = γ̇i(t00−);

ω = (t, y1, . . . , ys, z1, . . . , zm),

f0[t] = f
(
t, y0(τ1(t)), . . . , y0(τs(t)), z0(σ1(t)), . . . , z0(σm(t))u0(t)

)
;

f0(ω) = f
(
ω, u0(t)

)
.

lim
ω→ω−0i

f0(ω) = f−i , ω ∈ (t00 − δ, t00]×Os
1 ×Om

2 , i = 0, p, δ > 0,

lim
(ω1,ω2)→(ω−0i,ω

−
1i)

[
f0(ω1)− f0(ω2)

]
= f−i ,

ω1, ω2 ∈ (γi − δ, γi]×Os
1 ×Om

2 , i = p + 1, s.

Similarly we can define ω+
0i, ω+

1i, γ̇+
i , f+

i . In this case we have t00+, γi+,
and the right semi-intervals of points t00, γi.

Theorem 1.1. Let the following conditions hold:

(1) γi = t00, i = 1, p, γp+1 < · · · < γs < t10;
(2) there exists a number δ > 0 such that γ1(t) ≤ · · · ≤ γp(t), t ∈

(t00 − δ, t00];
(3) the quantities γ̇−i , f−i ,i = 1, s are finite;
(4) the function g0(t) is absolutely continuous on the interval (t00 −

δ, t00] and there exists a finite limit ġ−0 .

Then there exist numbers ε2 ∈ (0, ε1), δ2 ∈ (0, δ1) such that for any

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× [0, ε2]× V −,
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where V − = {δµ ∈ V : δt0 ≤ 0}, we have

∆x(t) = εδx(t; δµ) + o(t; εδµ), (1.3)

where

δx(t; δµ) = Y (t00; t)
[
Y0δy0 + Y1δg(t00−)

]
+

+
{

Y (t00; t)
[
Y1ġ0

− +
p∑

i=0

(
γ̂ −i+1 − γ̂ −i

)
f−i

]
−

−
s∑

i=p+1

Y (γi; t)f−i γ̇ −i

}
δt0 + β(t; δµ), (1.4)

β(t; δµ) =
s∑

i=p+1

t00∫

τi(t00)

Y (γi(ξ); t)f0yi
[γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ+

+
m∑

j=1

t00∫

σj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ+

+

t∫

t00

Y (ξ; t)f0u[ξ]δu(ξ) dξ, (1.5)

γ̂ −0 = 1, γ̂ −i = γ̇ −i , i = 1, p, γ̂ −p+1 = 0; next, lim
ε→0

o(t;εδµ)
ε = 0 uniformly

with respect to (t, δµ) ∈ [t10 − δ2, t10 + δ2]× V −;

f0yi [t]=fyi

(
t, y0(τ1(t)), . . . , y0(τs(t)), z0(σ1(t)), . . . , z0(σm(t)), u0(t)

)
;

Y (ξ; t) is an n× n matrix-valued function satisfying the equation

Yξ(ξ; t) =−
s∑

i=1

Y (γi(ξ); t)Fyi [γi(ξ)]γ̇i(ξ)−

−
m∑

j=1

Y (ρj(ξ); t)Fzj [ρj(ξ)]ρ̇j(ξ), ξ ∈ [t00, t], (1.6)

and the condition

Y (ξ, t) =

{
In×n, ξ = t,

Θn×n, ξ > t,
(1.7)

where In×n and Θn×n are the identity and zero n × n matrices, Fyi =
(f0yi , Θn×e), Fzj = (Θn×k, f0zj ), Y0 = (Ik×k, Θe×k)T , Y1 = (Θk×e, Ie×e)T .

The function δx(t; δµ) is called the variation of the solution x0(t), t ∈
[t10 − δ2, t10 + δ2] and the formula (1.4) is called the variation formula.

Theorem 1.2. Let the condition (1) and the following conditions hold:
(5) there exists a number δ > 0 such that γ1(t) ≤ · · · ≤ γp(t), t ∈

[t00, t00 + δ);
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(6) the quantities γ̇ +
i , f+

i , i = 1, s are finite
(7) the function g0(t) is absolutely continuous on the interval [t00, t00 +

δ) and there exists a finite limit ġ0
+.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for any
(t, ε, δµ) ∈ [t10− δ2, t10 + δ2]× [0, ε2]×V +, where V + = {δµ ∈ V : δt0 ≥ 0},
the formula (1.3) holds, where

δx(t; δµ) = Y (t00; t)
[
Y0δy0 + Y1δg(t00+)

]
+

+
{

Y (t00; t)
[
Y1ġ0

+ +
p∑

i=0

(γ̂ +
i+1 − γ̂ +

i )f+
i

]
−

−
s∑

i=p+1

Y (γi; t)f+
i γ̇ +

i

}
δt0 + β(t; δµ), (1.8)

γ̂ +
0 = 1, γ̂ +

i = γ̇ +
i , i = 1, p, γ̂ +

p+1 = 0.

Theorems 1.1 and 1.2 immediately imply the following assertion.

Theorem 1.3. Let the conditions (1)–(7) and the following conditions
hold:

(8)
p∑

i=0

(γ̂ −i+1 − γ̂ −i )f−i + Y1ġ0
− =

p∑

i=0

(γ̂ +
i+1 − γ̂ +

i )f+
i + Y1ġ0

+ =: f0,

f−i γ̇ −i = f+
i γ̇ +

i =: fi, i = p + 1, s;

(9) the functions δgi(t), i = 1, l are continuous at the point t00.
Then there exist numbers ε2 > 0, δ2 > 0 such that for any (t, ε, δµ) ∈
[t10 − δ2, t10 + δ2]× [0, ε2]× V the formula (1.3) holds, where

δx(t; δµ) = Y (t00; t)
[
Y0δy0 + Y1δg(t00)

]
+

+
{

Y (t00; t)f0 −
s∑

i=p+1

Y (γi; t)fi

}
δt0 + β(t; δµ).

Some comments: Theorems 1.1 and 1.2 correspond to the case where at
the point t00 right-hand and left-hand variations, respectively, take place.
Theorem 1.3 corresponds to the case where at the point t00 double-sided
variation takes place.

In the formula of variation proved in [1], for the equation (3) instead of
the expression

t∫

t00

Y (ξ; t)f0u[ξ]δu(ξ) dξ

(see (1.5)), we have
t∫

t00

Y (ξ; t)δf [ξ] dξ.
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The formula (1.4) follows from the formula of variation obtained in [1]
if the function f additionally satisfies the condition: fu(t, y1, . . . , ys, z1, . . . ,
zm, u) is continuously differentiable with respect to the variables yi ∈ O1,
i = 1, s and zj ∈ O2, j = 1, m.

In the present work formulas of variation are proved without of these
conditions.

2. Auxiliary Lemmas

To any element µ = (t0, y0, ϕ, g, u) ∈ A, let us correspond the functional-
differential equation

ω̇(t) = f
(
t, h(t0, ϕ, q)(τ1(t)), . . . , h(t0, ϕ, q)(τs(t)),

h(t0, g, v)(σ1(t)), . . . , h0(t0, g, v)(σm(t)), u(t)
)

(2.1)

with the initial condition

ω(t0) =
(
q(t0), v(t0)

)T = x0 =
(
y0, g(t0)

)T
, (2.2)

where the operator h(·) is defined by the formula

h(t0, ϕ, q)(t) =

{
ϕ(t), t ∈ [τ, t0),
q(t), t ∈ [t0, b].

(2.3)

Definition 2.1. Let µ = (t0, y0, ϕ, g, u) ∈ A. An absolutely continuous
function ω(t) = ω(t;µ) = (q(t;µ), v(t; µ))T ∈ (O1, O2)T , t ∈ [r1, r2] ⊂ I,
where (O1, O2)T =

{
x = (y, z)T ∈ Rn

x : y ∈ O1, z ∈ O2

}
, is called

a solution corresponding to the element µ ∈ A, defined on the interval
[r1, r2], if t0 ∈ [r1, r2], the function ω(t) satisfies the condition (2.2) and the
equation (2.1) almost everywhere on [r1, r2].

Remark 2.1. Let ω(t; µ), t ∈ [r1, r2] be the solution corresponding to the
element µ ∈ A. Then the function

x(t; µ) =
(
y(t;µ), z(t; µ)

)T =

=
(
h(t0, ϕ, q(· ; µ))(t), h(t0, g, v(· ; µ))(t)

)T
, t ∈ [τ, r2] (2.4)

is a solution of the equation (1.1) with the initial condition (1.2) (see (2.3)).

Lemma 2.1. Let ω0(t), t ∈ [r1, r2] ⊂ (a, b) be the solution corresponding
to the element µ0 ∈ A; let K ⊂ (O1, O2)T be a compact set containing
some neighborhood of the set ((ϕ0(I1)∪ q0([r1, r2])), (g0(I1)∪ v0([r1, r2])))T

and let M ⊂ G be a compact set containing some neighborhood of the set
clu0(I). Then there exist numbers ε1 > 0, δ1 > 0 such that for an arbitrary
(ε, δµ) ∈ [0, ε1]×V to the element µ0+εδµ ∈ A there corresponds a solution
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ω(t; µ0 + εδµ) defined on [r1 − δ1, r2 + δ1] ⊂ I. Moreover,
(
ϕ(t), g(t)

)
=

(
ϕ0(t) + εδϕ(t), g0(t) + εg(t)

) ∈ K, t ∈ I1,

u(t) = u0(t) + εδu(t) ∈ M, t ∈ I,

ω(t; µ0 + εδµ) ∈ K, t ∈ [r1 − δ1, r2 + δ1],

lim
ε→0

ω(t;µ + εδµ) = ω(t, µ0)

uniformly for (t, δµ) ∈ [r1 − δ1, r2 + δ1]× V.

(2.5)

This lemma follows from Lemma 1.3.2 (see [6, p. 18]).
Due to uniqueness, the solution ω(t; µ0) on the interval [r1 − δ1, r2 + δ1]

is a continuation of the solution ω(t;µ0), therefore the solution ω0(t) is
assumed to be defined on the whole interval [r1 − δ1, r2 + δ1].

Let us define the increment of the solution ω0(t) = ω(t;µ0),

∆ω(t) =
(
∆q(t), ∆v(t)

)T = ∆ω(t; εδµ) = ω(t; µ0 + εδµ)− ω0(t), (2.6)

(t, ε, δµ) ∈ [r1 − δ1, r2 + δ1]× [0, ε1]× V.

It is obvious that

lim
ε→0

∆ω(t; εδµ) = 0 (2.7)

uniformly with respect to (t, δµ) ∈ [r1 − δ1, r2 + δ1]× V.

Lemma 2.2. Let γi = t00, i = 1, p, γp+1 < · · · < γs ≤ r2 and let the
conditions 2)–4) of Theorem 1.1 hold. Then there exist numbers ε2 > 0 and
δ2 > 0 such that for any (ε, δµ) ∈ [0, ε2]× V − we have

max
t∈[t00,r2+δ2]

|∆ω(t)| = O(εδµ). (2.8)

Moreover,

∆ω(t00) = ε
[
Y0δy0 + Y1δg(t 00−)

]
+

+ ε
[
Y1ġ0

− +
p∑

i=0

(γ̂ −i+1 − γ̂i)f−i
]
δt0 + o(εδµ). (2.9)

Lemma 2.3. Let γi = t00, i = 1, p; γp+1 < · · · < γs ≤ r2, and let

conditions (5)–(7) of Theorem 1.2 hold. Then there exist numbers ε2 > 0
and δ2 > 0 such that for any (ε, δµ) ∈ [0, ε2]× V + we have

max
t∈[t0,r2+δ2]

|∆ω(t)| = O(εδµ). (2.10)

In addition,

∆ω(t0) = ε
[
Y0δy0 + Y1δg(t00+) + (Y1ġ

+
0 − f+

p )δt0
]
+ o(εδµ). (2.11)

Lemmas 2.2 and 2.3 are proved in analogue way as Lemmas 2.2 and 3.1,
respectively (see [1]).
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3. Proof of Theorem 1.1

Let r1 = t00, r2 = t10. Then for an arbitrary element (ε, δµ) ∈ [0, ε1]×V −

the corresponding solution ω(t; µ0 + εδµ) is defined on the interval [t00 −
δ1, t10 +δ1] and the solution x(t;µ0 +εδµ) is defined on the interval [τ, t10 +
δ1]. Moreover,

ω(t; µ0 + εδµ) = x(t, µ0 + εδµ), t ∈ [t00, t10 + δ1]

(see Lemma 1.1 , 2.1 and Remark 2.1).
Therefore

∆y(t) =





εδϕ(t), t ∈ [τ, t0),
q(t;µ0 + εδµ)− ϕ0(t), t ∈ [t0, t00),
∆q(t), t ∈ [t00, t00 + δ1],

(3.1)

∆z(t) =





εδg(t), t ∈ [τ, t0),
v(t;µ0 + εδµ)− g0(t), t ∈ [t0, t00),
∆v(t), t ∈ [t00, t00 + δ1]

(3.2)

(see(2.6)).
By Lemma 2.2, there exist numbers

ε2 ∈ (0, ε1), δ2 ∈
(
0, min(δ1, t10 − γs)

)
(3.3)

such that the following inequalities hold

|∆y(t)| ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [t00, t10 + δ2]× [0, ε2]× V −, (3.4)

|∆z(t)| ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [τ, t10 + δ2]× [0, ε2]× V − (3.5)

(see (2.8), (3.1), (3.2)),

∆x(t00) = ∆ω(t00) = ε

(
Y0δy0 + Y1δg(t00−)+

+
[
Y1 ġ −0 +

p∑

i=0

(
γ̂ −i+1 − γ̂ −i

)
f−i

]
δt0

)
+ o(εδµ) (3.6)

(see (2.9)).
The function ∆x(t) on the interval [t00, t10 + δ2] satisfies the equation

d

dt
∆x(t) =

s∑

i=1

f0yi [t]∆y(τi(t))+

m∑

j=1

f0zj [t]∆z(σj(t)) + εf0u[t]δu(t) + R(t; εδµ), (3.7)

where

R(t; εδµ) = f
(
t, y0(τ1(t)) + ∆y(τ1(t)), . . . , y0(τs(t)) + ∆y(τs(t)),

z0(σ1(t)) + ∆z(σ1(t)), . . . , z0(σm(t)) + ∆z(σm(t)), u0(t)
)
−
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f0[t]−
s∑

i=1

f0yi [t]∆y(τi(t))−
m∑

j=1

f0zj [t]∆z(σj(t))− εf0u[t]δu(t). (3.8)

We can represent the solution of (3.7) by the Cauchy formula in the following
form:

∆x(t) = Y (t00; t)∆x(t00) + ε

t∫

t00

Y (ξ; t)f0u[t]δu(ξ) dξ+

+
2∑

i=0

hi(t; t0, εδµ), t ∈ [t00, t10 + δ2], (3.9)

where




h0 =
s∑

i=p+1

t00∫

τi(t00)

Y (γi(ξ); t)f0yi
[γi(ξ)]γ̇i(ξ)∆y(ξ) dξ,

h1 =
m∑

j=1

t00∫

τi(t00)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ,

h2 =

t∫

t00

Y (ξ; t)R(ξ; εδµ) dξ.

(3.10)

Y (ξ, t) is a matrix-valued function satisfying (1.6) and the condition (1.7).
The function Y (ξ, t) is continuous on the set Π = {(ξ, t) : a ≤ ξ ≤ t ≤ b}.

Therefore

Y (t00, t)∆x(t00) = εY (t00; t)
{

Y0δy0 + Y1δg(t 00−)+

+
[
Y1 ġ0

− +
p∑

i=0

(
γ̂ −i+1 − γ̂ −i

)
f−i

]
δt0

}
+ o(t; εδµ) (3.11)

(see (3.6)).
For h0(t; t0, εδµ) we have

h0(t; t0, εδµ) =
s∑

i=p+1

[
ε

t0∫

τi(t00)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ+

+

t00∫

t0

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)∆y(ξ) dξ

]
=

= ε

s∑

i=p+1

t00∫

τi(t00)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ+
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+
s∑

i=p+1

γi∫

γi(t0)

Y (ξ; t)f0yi
[ξ]∆y(τi(ξ)) dξ+o(t; εδµ), (3.12)

where

o(t; εδµ) = −ε

s∑

i=p+1

t00∫

t0

Y (γi(ξ); t)f0yi
[γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ.

Further, for h1(t; t0, εδµ) we have

h1(t; t0, εδµ) =
∑

j∈I1∪I2

t00∫

τj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ =

=
∑

j∈I1∪I2

[
ε

t0∫

τj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ+

+

t00∫

t0

Y (ρi(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ

]
=

=
∑

j∈I1∪I2

[
εαj(t) + βj(t)

]
,

where

αj(t) =

t0∫

σj(t00)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ,

βj(t) =

t00∫

t0

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ.

It is easy to see that

αj(t) =

t00∫

σj(t00)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ−

−
t00∫

t0

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ,

βj(t) = o(t; εδµ)
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(see (3.5)). Therefore

h1(t; t0, εδµ) = ε

m∑

i=1

t00∫

σj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ+

+ o(t; εδµ). (3.13)

For t ∈ [t10 − δ2, t10 + δ2] we have

h2(t; t0, εδµ) =
4∑

k=1

αk(t; εδµ), (3.14)

where

α1(t; εδµ) =

γp+1(t0)∫

t00

ω(ξ; t, εδµ) dξ, α2(t; εδµ) =
s∑

i=p+1

γi∫

γi(t0)

ω(ξ; t, εδµ) dξ,

α3(t; εδµ) =
s−1∑

i=p+1

γi+1(t0)∫

γi(t0)

ω(ξ; t, εδµ) dξ, α4(t; εδµ) =

t∫

γs

ω(ξ; t, εδµ) dξ

(see (3.10)),

ω(ξ; t, εδµ) = Y (ξ; t)R(ξ; εδµ).

Let us estimate α1(t; εδµ)

∣∣α1(t; εδµ)
∣∣ ≤ ‖Y ‖

γp+1(t0)∫

t00

[∣∣∣f
(
t, y0(τ1(t)) + ∆y(τ1(t)), . . . ,

y0(τp(t)) + ∆y(τp(t)), ϕ(τp+1(t)), . . . , ϕ(τs(t)),

z0(σ1(t)) + ∆z(σ1(t)), . . . , z0(σm(t)) + ∆z(σm(t)), u0(t) + εδu(t)
)
−

− f
(
t, y0(τ1(t)), . . . , y0(τp(t)), ϕ0(τp+1(t)), . . . , ϕ0(τs(t)),

z0(σ1(t)), . . . , z0(σm(t)), u0(t)
)
−

−
p∑

i=1

f0yi [t]∆y(τi(t))− ε

s∑

i=p+1

f0yi [t]δϕ(τi(t))−

−
m∑

j=1

f0zj [t]∆z(σj(t))− εf0u[t]
∣∣∣∣
]

dt ≤

≤ ‖Y ‖
t10+δ2∫

t00

{ 1∫

0

∣∣∣ d

dξ
f
(
t, y0(τ1(t))+ξ∆y(τ1(t)), . . . , y0(τp(t))+ξ∆y(τp(t)),

ϕ(τp+1(t)) + ξεδϕ0(τp+1(t)), . . . , ϕ0(τs(t)) + ξεδϕ(τs(t)),
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z0(σ1(t)) + ξ∆z(σ1(t)), . . . , z0(σs(t)) + ξ∆z(σs(ξ)), u0(t) + ξεδu(t)
)∣∣∣−

−
p∑

i=1

f0yi
[t]∆y(τi(t))− ε

s∑

i=p+1

f0yi
[t]δϕ(τi(t))−

−
m∑

j=1

f0zj
[t]∆z(σj(t))− εf0u[t]δu(t)

∣∣∣∣
]

dξ

}
dt ≤

≤ ‖Y ‖
t10+δ2∫

t00

{ 1∫

0

[ p∑

i=1

∣∣∣fyi

(
t, y0(τ1(t))+ξ∆y(τ1(t)), . . .

)−f0yi
[t]

∣∣∣
∣∣∆y(τi(t))

∣∣+

+ ε

s∑

i=p+1

∣∣∣fyi

(
t, y0(τ1(t)) + ξ∆y(τ1(t)), . . .

)− f0yi
[t]

∣∣∣
∣∣δϕ(τi(t))

∣∣+

+
m∑

j=1

∣∣∣fzj

(
t, y0(τ1(t)) + ξ∆y(τ1(t)), . . .

)− f0zj
[t]

∣∣∣
∣∣δz(σj(t))

∣∣+

+ ε
∣∣∣fu

(
t, y0(τ1(t)) + ξ∆y(τ1(t)), . . .

)− f0u[t]
∣∣∣
∣∣δu(t)

∣∣
]
dξ

}
dt ≤

≤ ‖Y ‖
[
O(εδµ)

p∑

i=1

ϑi(t00; εδµ) + εc

s∑

i=p+1

ϑi(t00; εδµ)+

+ O(εδµ)
m∑

j=1

ηj(t00; εδµ) + εcδ(t00; εδµ)
]
, (3.15)

where

‖Y ‖ = sup
(ξ,t)∈Π

|Y (ξ, t)|,

ϑi(t00; εδµ) =

t10+δ2∫

t00

[ 1∫

0

∣∣∣fyi

(
t, y0(τ1(t)) + ξ∆y(τ1(t)), . . .

)− f0yi [t]
∣∣∣ dξ

]
dt,

i = 1, s,

ηj(t00; εδµ) =

t10+δ2∫

t00

[ 1∫

0

∣∣∣fzj

(
t, y0(τ1(t))+ξδy(τ1(t)), . . .

)−f0zj [t]
∣∣∣ dξ

]
dt,

j = 1, . . . , m,

δ(t00; εδµ) =

t10+δ2∫

t00

[ 1∫

0

∣∣∣fu

(
t, y0(τ1(t)) + ξ∆y(τ1(t)), . . .

)− f0u[t]
∣∣∣ dξ

]
dt.

We have

ϕ(t) = ϕ0(t) + εδϕ(t) → ϕ0(t); ∆y(τi(t)) → 0, i = 1, p,

∆z(σj(t)) → 0, j = 1,m;
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u0(t) + ξεδu(t) → u0(t)

as ε → 0 uniformly with respect to

(ξ, t, δµ) ∈ [0, 1]× [t00, t10 + δ2]× V −.

By the Lebesque theorem we obtain that

lim
ε→0

ϑi(t00; εδµ) = 0, i = 1, s, lim
ε→0

ηj(t00; εδµ) = 0, j = 1,m,

lim
ε→0

δ(t00; εδµ) = 0

uniformly with respect to δµ ∈ V −.
Therefore

α1(t; εδµ) = o(t; εδµ).

Consider α2(t; εδµ). It is easy to see that for i ∈ p + 1, . . . , s and t ∈
[γi(t0), γi] we have

∣∣∆y(τj(t))
∣∣ ≤ O(εδµ), j = 1, i− 1;

∆y(τj(t)) = εδϕ(τj(t)), j = i + 1, s
(3.16)

(see (3.1), (3.4)). Therefore

γi∫

γi(t0)

ω(ξ; t, εδµ) dξ =

γi∫

γi(t0)

Y (ξ; t)βi(ξ) dξ−

−
γi∫

γi(t0)

Y (ξ; t)f0yi [ξ]∆y(τi(ξ)) dξ + o(t; εδµ),

where

βi(ξ) = f
(
ξ, y0(τ1(ξ)) + ∆y(τ1(ξ)), . . . , y0(τi(ξ)) + ∆y(τi(ξ)),

ϕ(τi+1(ξ)), . . . , ϕ(τs(ξ)), z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . ,

z0(σm(ξ)) + ∆z(σm(ξ)), u0(ξ) + δu(ξ)
)
− f0[ξ],

o(t; εδµ) = −
i−1∑

j=1

γi∫

γi(t0)

Y (ξ; t)f0yj [ξ]∆y(τj(ξ)) dξ−

− ε

s∑

j=i+1

γi∫

γi(t0)

Y (ξ; t)f0yj [ξ]δϕ(τj(ξ)) dξ−

−
m∑

j=1

γi∫

γi(t0)

Y (ξ; t)f0zj [ξ]∆z(σj(ξ)) dξ − ε

γi∫

γi(t0)

f0u[ξ]δu(ξ) dξ
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(see (3.5), (3.16)). Clearly,
γi∫

γi(t0)

Y (ξ; t)βi(ξ) dξ = α5(t; εδµ) + α6(t; εδµ),

where

α5(t; εδµ) =

γi∫

γi(t0)

Y (ξ; t)[βi(ξ)− f−i ] dξ, α6(t; εδµ) =

γi∫

γi(t0)

Y (ξ; t)f−i dξ.

Further, if i ∈ {p+1, . . . , s} and ξ ∈ [γi(t0), γi], then τj(ξ) ≥ t00, j = 1, i− 1.
Hence

lim
ε→0

(
y0(τj(ξ)) + ∆y(τj(ξ))

)
= lim

ξ∈γi−
y0(τj(ξ)) = y0(τj(γi)), j = 1, i− 1.

We have τi(ξ) ∈ [t0, t00] for ξ ∈ [γi(t0), γi]. Therefore

y0(τi(ξ)) + ∆y(τi(ξ)) = y(τi(ξ), µ0 + εδµ) = q0(τi(ξ)) + ∆q(τi(ξ))

(see (2.4), (2.5)).
Therefore, taking into account the continuity of the function q0(t), t ∈

[t00 − δ2, t10 + δ2], (2.6), and the condition q0(t00) = y00, we have

lim
ε→0

(
y0(τi(ξ)) + ∆y(τi(ξ))

)
= lim

ξ∈γi−
q0(τi(ξ)) = y00.

Hence, we see that for ε → 0, i ∈ {p + 1, . . . , s} and ξ ∈ [γi(t0), γi], we have

lim
ε→0

(
ξ, y0(τ1(ξ)) + ∆y(τ1(ξ)), . . . , y0(τi(ξ)) + ∆y(τi(ξ)), ϕ(τi+1(ξ)), . . . ,

ϕ(τs(ξ)), z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . , z0(σm(ξ)) + ∆z(σm(ξ))
)

= ω−0i.

On the other hand,

lim
ε→0

(
ξ, y0(τ1(ξ)), . . . , y0(τi−1(ξ)),

ϕ0(τi(ξ)), . . . , ϕ0(τs(ξ)), z0(σ1(ξ)), . . . , z0(σm(ξ))
)

= ω−1i.

Therefore,
lim
ε→0

sup
ξ∈[γi(t0),γi]

|βi(ξ)− f−i | = 0

uniformly with respect to δµ ∈ V −.
The function Y (ξ; t) is continuous on the set

[γi(t0), γi]× [t10 − δ2, t10 + δ2] ⊂ Π

and, moreover
γi − γi(t0) = −εγ̇ −i δt0 + o(εδµ).

Therefore α5(t; εδµ) = o(t; δµ) and

α6(t; εδµ) = −ε

s∑

i=p+1

Y (γi; t)f−i γ̇ −i δt0 + o(t; εδµ).
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Finally,

α2(t; εδµ) =− ε

s∑

i=p+1

Y (γi; t)f−i γ̇ −i δt0−

−
s∑

i=p+1

γi∫

γi(t0)

Y (γi; t)f0yi [ξ]∆y(τi(ξ)) dξ + o(t; εδµ).

Similarly, we can prove the relations

αi(t; εδµ) = o(t; εδµ), i = 3, 4

(see (3.15)).
For h2(t; t00, εδµ) we have the final formula

h2(t; t00, εδµ) =− ε

s∑

i=p+1

Y (γi; t)f−i γ̇ −i δt0−

−
s∑

i=p+1

γi∫

γi(t0)

Y (ξ; t)f0yi [ξ]∆y(τi(ξ)) dξ + o(t; εδµ) (3.17)

(see (3.14)).
Taking into account (3.9)–(3.13) and (3.17), we obtain (1.3), where

δx(t; εδµ) has the form (1.4).

4. Proof of Theorem 1.2

Assume that in Lemma 2.3 r1 = t00 and r2 = t10. Then for any element
(ε, δµ) ∈ [0, ε1] × V +, the corresponding solution ω(t;µ0 + εδµ) is defined
on [t10 − δ1, t10 + δ1]. The solution x(t; µ0 + εδµ) is defined on [τ, t10 + δ1]
and

ω(t;µ0 + εδµ) = x(t; µ0 + εδµ), t ∈ [t0, t10 + δ1]
(see Lemma 1.1 and 2.1). It is easy to see that

∆y(t) =





εδϕ(t), t ∈ [τ, t00],
ϕ(t)− y0(t), t ∈ [t00, t0),
∆q(t), t ∈ [t0, t10 + δ1],

(4.1)

∆z(t) =





εδg(t), t ∈ [τ, t00],
g(t)− v0(t), t ∈ [t00, t0),
∆v(t), t ∈ [t0, t10 + δ1].

(4.2)

Let numbers δ2 ∈ (0, δ1) and ε2 ∈ (0, ε1) be sufficiently small so that for
an arbitrary (ε, δµ) ∈ [0, ε2]×V + the inequality γs(t0) < t10− δ2 holds. By
Lemma 3.1 we have

|∆y(t)| ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [t0, t10 + δ1]× [0, ε2]× V +, (4.3)

|∆z(t)| ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [τ, t10 + δ1]× [0, ε2]× V + (4.4)
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(see (4.1), (4.2), (2.10)). Moreover,

∆x(t0) = ∆ω(t0) = ε
[
Y0δy0+Y1δg(t00+)+(Y1ġ0

+−f+
p )δt0

]
+o(εδµ) (4.5)

(see (2.11)).
The function ∆x(t) on the interval [t0, t10 + δ2] satisfies (3.7) and hence

it can be represented by the Cauchy formula

∆x(t)=Y (t00, t)∆x(t0)+ε

t∫

t0

Y (ξ; t)f0u[t]δu(ξ) dξ+
2∑

i=0

hi(t; t0, εδµ), (4.6)

where

h0(t; t0, εδµ) =
s∑

i=1

t0∫

τi(t0)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)∆y(ξ) dξ

and the functions hi(t; t0, εδµ), i = 1, 2 are defined by the formulas (3.10).
The function Y (ξ; t) is continuous on the set [t00, τs(t10 − δ2)] × [t10 −

δ2, t10 + δ2]. Since t0 ∈ [t00, τs(t10 − δ2)], we have

Y (t00; t)∆x(t0) = εY (t00; t)
[
Y0δy0 + Y1δg(t00+) + (Y1ġ

+
0 − f+

p )δt0
]
+

+ o(t; εδµ). (4.7)

(see(4.5)).
Consider h0(t; t0, εδµ). We have

h0(t; t0, εδµ) =
p∑

i=1

t0∫

τi(t0)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)∆y(ξ) dξ+

+
s∑

i=p+1

[
ε

t00∫

τi(t0)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ+

+

t0∫

t00

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)∆y(ξ) dξ

]
=

=
p∑

i=1

γi(t0)∫

t0

Y (ξ; t)f0yi [ξ]∆y(τi(ξ)) dξ+

+ ε

s∑

i=p+1

t00∫

τi(t00)

Y (γi(ξ); t)f0yi [γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ+

+
s∑

i=p+1

γi(t0)∫

γi

Y (ξ; t)f0yi [ξ]∆y(τi(ξ)) dξ + o(t; εδµ), (4.8)
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where

o(t; εδµ) = −ε

s∑

i=1

τi(t0)∫

τi(t00)

Y (γi(ξ); t)f0yi
[γi(ξ)]γ̇i(ξ)δϕ(ξ) dξ.

This implies

p∑

i=1

γi(t0)∫

t0

Y (ξ; t)f0yi
[ξ]∆y(τi(ξ)) dξ =

=
p∑

i=1

i−1∑

j=0

γj+1(t0)∫

γj(t0)

Y (ξ; t)f0yi
[ξ]∆y(τi(ξ)) dξ =

=
p−1∑

i=0

p∑

j=i+1

γi−1(t0)∫

γi(t0)

Y (ξ; t)f0yj
[ξ]∆y(τj(ξ)) dξ, γ0(t0) = t0. (4.9)

Further,

h1(t; t0, εδµ) =
∑

j∈I1∪I2

[
ε

t00∫

σj(t0)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ+

+

t0∫

t00

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ

]
+

+
∑

j∈I3

t0∫

σj(t0)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ =

=
∑

j∈I1∪I2

(εαj(t) + βj(t)) +
∑

j∈I3

ηj(t),

where

αj(t) =

t00∫

σj(t0)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ,

βj(t) =

t0∫

t00

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ,

ηj(t) =

t0∫

σj(t0)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)∆z(ξ) dξ.
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Obviously βj(t) = o(t; εδµ), ηj(t) = o(t; εδµ), so we have

αj(t) =

t00∫

σj(t00)

Y (ρj(ξ); t)f0zj [ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ−

−
σj(t0)∫

σj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ.

Therefore

h1(t; t0, εδµ) = ε

s∑

j=1

t00∫

σj(t00)

Y (ρj(ξ); t)f0zj
[ρj(ξ)]ρ̇j(ξ)δg(ξ) dξ+

+ o(t; εδµ). (4.10)

h2(t; t0, εδµ) for t ∈ [t10 − δ2, t10 + δ2] can be represented by the form

h2(t; t0, εδµ) =
5∑

i=1

βi(t; εδµ), (4.11)

where

β1(t; εδµ) =
p−1∑

i=1

γi+1(t0)∫

γi(t0)

ω(ξ; t, εδµ) dξ,

β2(t; εδµ) =

γp+1∫

γp(t0)

ω(ξ; t, εδµ) dξ,

β3(t; εδµ) =
s∑

i=p+1

γi(t0)∫

γi

ω(ξ; t, εδµ) dξ,

β4(t; εδµ) =
s∑

i=p+1

γi+1∫

γi(t0)

ω(ξ; t, εδµ) dξ,

β5(t; εδµ) =

t∫

γs(t0)

ω(ξ; t, εδµ) dξ.

For β1(t; εδµ) we have

β1(t; εδµ) = β11(t; εδµ)− β12(t; εδµ), (4.12)
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where

β11(t; εδµ) =
p−1∑

i=0

γi+1(t0)∫

γi(t0)

Y (ξ; t)
[
f
(
ξ, y0(τ1(ξ)) + ∆y(τ1(ξ)), . . . ,

y0(τi(ξ)) + ∆y(τi(ξ)), ϕ(τi+1(ξ)), . . . , ϕ(τs(ξ)),

z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . , z0(σm(ξ)) + ∆z(σm(ξ)),

u0(ξ) + εδu(ξ)
)
−

− f
(
ξ, y0(τ1(ξ)), . . . , y0(τp(ξ)), ϕ0(τp+1(ξ)), . . . , ϕ0(τs(ξ)),

z0(σ1(ξ)), . . . , z0(σm(ξ)), u0(ξ)
)]

dξ,

β12(t; εδµ) =
p−1∑

i=0

γi+1(t0)∫

γi(t0)

Y (ξ; t)
[ s∑

j=1

f0yj
[ξ]∆y(τj(ξ))+

+
m∑

j=1

f0zj [ξ]∆z(τj(ξ))
]
dξ.

Let ξ ∈ [γi(t0), γi+1(t0)]. Then

τj(ξ) ≥ t0, j = 1, i, τj(ξ) ≤ t0, j = i + 1, p, τj(ξ) < t00, j = p + 1, s,

and hence ∣∣∆y(τj(ξ))
∣∣ ≤ O(εδµ), j = 1, i,

∆y(τj(ξ)) = εδϕ(τj(ξ)), j = p + 1, s,
(4.13)

(see (4.1), (4.3)).
For any i ∈ {0, . . . , p− 1}, the function γi+1(t0)− γi(t0) tends to zero as

ε → 0. Therefore, taking into account (4.13) and (4.4) we have

β12(t; εδµ) =
p−1∑

i=0

p∑

j=i+1

γi+1(t0)∫

γi(t0)

Y (ξ; t)f0yi [ξ]∆y(τj(ξ)) dξ + o(t; εδµ). (4.14)

Further

lim
ε→0

sup
ξ∈[γi(t0),γi+1(t0)]

∣∣∣f
(
ξ, y0(τ1(ξ))+∆y(τ1(ξ)), . . . , y0(τi(ξ))+∆y(τi(ξ)),

ϕ(τi+1(ξ)), . . . , ϕ(τs(ξ)),

z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . , z0(σm(ξ)) + ∆z(σm(ξ)), u0(ξ) + εδu(ξ)
)

− f+
i + f+

p − f
(
ξ, y0(τ1(ξ)), . . . , y0(τp(ξ)), ϕ0(τp+1(ξ)), . . . , ϕ0(τs(ξ)),

z0(σ1(ξ)), . . . , z0(σm(ξ)), u0(ξ)
)∣∣∣ = 0, i = 0, p− 1, (4.15)

uniformly with respect of to δµ ∈ V +.



38 L. Alkhazishvili and M. Iordanishvili

The properties of the functions Y (ξ; t) and γi(t), i = 1, p imply that

lim
ε→0

sup
ξ∈[γi(t0),γi+1(t0)]

∣∣Y (ξ; t)− Y (t00; t)
∣∣ = 0, i = 0, p− 1 (4.16)

uniformly with respect to t ∈ [t10 − δ2, t10 + δ2] and

γi+1(t0)−γi(t0)=ε
(
γ̇ +

i+1−γ̇ +
i

)
δt0+o(εδµ), i=0, p− 1, γ̇0 =1. (4.17)

From (4.13)–(4.15) we have

β11(t; εδµ) = εY (t00, t)
p∑

i=0

(f+
i − f+

p )(γ̇ +
i+1 − γ̇ +

i )δt0 + o(t; εδµ). (4.18)

From (4.12), (4.14) and (4.18) we have

β1(t; εδµ) = εY (t00, t)
[ p∑

i=0

(γ̇ +
i+1 − γ̇ +

i )f+
i + f+

p

]
δt0−

−
p−1∑

i=0

p∑

j=i+1

γi+1(t0)∫

γi(t0)

Y (ξ; t)f0yj [ξ]∆y(τj(ξ)) dξ + o(t; εδµ). (4.19)

It is easy to see that

β2(t; εδµ)=

γp+1∫

γp(t0)

Y (ξ; t)
[
f
(
ξ, y0(τ1(ξ))+∆y(τ1(ξ)), . . . , y0(τp(ξ))+∆y(τp(ξ)),

ϕ(τp+1(ξ)), . . . , ϕ(τs(ξ)), z0(σ1(ξ))+∆z(σ1(ξ)), . . . , z0(σm(ξ))+∆z(σm(ξ)),

u0(ξ) + εδu(ξ)
)
−

− f
(
ξ, y0(τ1(ξ)), . . . , y0(τp(ξ)), ϕ0(τp+1(ξ)), . . . , ϕ0(τs(ξ)),

z0(σ1(ξ)), . . . , z0(σm(ξ)), u0(ξ)
)
−

−
p∑

j=1

f0yj [ξ]∆y(τj(ξ))− ε

s∑

j=p+1

f0yj [ξ]δϕ(τj(ξ))−

−
m∑

j=1

f0zj [ξ]∆z(σj(ξ))− εf0u[ξ]δu(ξ)
]
dξ.

It is easy to prove that

β2(t; εδµ) = o(t; εδµ) (4.20)

(see (4.3) and (4.4)).
Consider the other terms of (4.11). We have

β3(t; εδµ) =
s∑

i=p+1

γi(t0)∫

γi

Y (ξ; t)
[
f
(
ξ, y0(τ1(ξ)) + ∆y(τ1(ξ)), . . . ,
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y0(τi−1(ξ)) + ∆y(τi−1(ξ)), ϕ(τi(ξ)), . . . , ϕ(τs(ξ)),

z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . , z0(σm(ξ)) + ∆z(σm(ξ)), u0(ξ) + εδu(ξ)
)
−

− f
(
ξ, y0(τ1(ξ)), . . . , y0(τi(ξ)), ϕ(τi+1(ξ)), . . . , ϕ(τs(ξ)),

z0(σ1(ξ)), . . . , z0(σm(ξ)), u0(ξ)
)]

dξ−

−
s∑

i=p+1

[ i−1∑

j=1

γi(t0)∫

γi

Y (ξ; t)f0yj [ξ]∆y(τj(ξ)) dξ+

+

γi(t0)∫

γi

Y (ξ; t)f0yi
[ξ]∆y(τi(ξ)) dξ + ε

s∑

j=i+1

γi(t0)∫

γi

Y (ξ; t)f0yj
[ξ]δϕ(τj(ξ)) dξ

]
−

−
s∑

i=p+1

γi(t0)∫

γi

Y (ξ; t)
m∑

j=1

f0zj
[ξ]∆z(σj(ξ)) dξ.

By the condition (6) we have

lim
ε→0

sup
ξ∈[γi,γi(t0)]

∣∣∣f
(
ξ, y0(τ1(ξ))+∆y(τ1(ξ)), . . . , y0(τi−1(ξ))+∆y(τi−1(ξ)),

ϕ(τi(ξ)), . . . , ϕ(τs(ξ)), z0(σ1(ξ)) + ∆z(σ1(ξ)), . . . ,

z0(σm(ξ)) + ∆z(σm(ξ)), u0(ξ) + εδu(ξ)
)
−

− f
(
ξ, y0(τ1(ξ)), . . . , y0(τi(ξ)), ϕ(τi+1(ξ)), . . . , ϕ(τs(ξ)),

z0(σ1(ξ)), . . . , z0(σm(ξ)), u0(ξ)
)

+ f+
i

∣∣∣ = 0, i = p + 1, s

uniformly with respect to δµ ∈ V +.
Further,

∣∣∆y(τj(ξ))
∣∣ ≤ O(εδµ), j = 1, i− 1, ξ ∈ [γi, γi(t0)],

lim
ε→0

sup
ξ∈[γi,γi(t0)]

∣∣Y (ξ; t)− Y (γi; t)
∣∣ = 0, i = p + 1, s

uniformly with respect to t ∈ [t10 − δ2, t10 + δ2].
Now, we obtain for the function β3(t; εδµ) the representation

β3(t; εδµ) =− ε

s∑

i=p+1

Y (γi; t)f+
i δt0−

−
s∑

i=p+1

γi(t0)∫

γi

Y (ξ; t)f0yi [ξ]∆y(τj(ξ)) dξ + o(t; εδµ). (4.21)
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Similarly we can prove (see (3.16)) that

βi(t; εδµ) = o(εδµ), i = 4, 5. (4.22)

Taking into account (4.19)–(4.22), we obtain

h1(t; t0, εδµ) = ε

{
Y (t00, t)

p∑

i=0

(γ̇ +
i+1 − γ̇ +

i )−
s∑

i=p+1

Y (γi; t)f+
i

}
δt0−

−
p−1∑

i=0

p∑

j=i+1

γi+1(t0)∫

γi(t0)

Y (ξ; t)f0yi [ξ]∆y(τj(ξ)) dξ−

−
s∑

i=p+1

γi(t0)∫

γi

Y (ξ; t)f0yi
[ξ]∆y(τi(ξ)) dξ + o(t; εδµ) (4.23)

(see (4.11)).
From (4.6), taking into account (4.7)–(4.10) and (4.23), we obtain (1.3),

where δx(t; δµ) has the form (1.8).
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with double porosity. Using the fundamental matrix we construct the simple
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theorem of solution for the finite and infinite domains.
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îâäæñéâ. êŽöîëéæï éæäŽêæŽ àŽêãæýæèëå ŽæòŽêðæï çãŽäæïðŽðæçæï àŽê-
ðëèâĲâĲæ ëîàãŽîæ òëîëãêëĲæï éóëêâ ëîàŽêäëéæèâĲæŽêæ ïýâñèâĲæïŽåãæï.
áŽéðçæùâĲñèæŽ úæîæåŽáæ ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëêŽýïêæï âîåŽáâîåëĲæï
åâëîâéâĲæ çãŽäæïðŽðæçæï àŽêðëèâĲâĲæïŽåãæï ëîàãŽîæ òëîëãêâĲæï àŽåãŽ-
èæïûæêâĲæå. ŽàâĲñèæŽ ŽéëêŽýïêåŽ òñêáŽéâêðñîæ áŽ ïýãŽ éŽðîæùâĲæ âèâ-
éâêðŽîñèæ òñêóùæâĲæï ïŽöñŽèâĲæå. Žé éŽðîæùâĲæï ïŽöñŽèâĲæå öâáàâêæèæŽ
éŽîðæãæ áŽ ëîéŽàæ òâêæï ìëðâêùæŽèâĲæ áŽ öâïûŽãèæèæŽ éŽåæ åãæïâĲâĲæ.
Žé ìëðâêùæŽèâĲæï àŽéëõâêâĲæå ìæîãâèæ ïŽïŽäôãîë ŽéëùŽêæïŽåãæï ŽàâĲñèæŽ
òîâáßëèéæï éâëîâ àãŽîæï æêðâàîŽèñîæ àŽêðëèâĲâĲæ áŽ áŽéðçæùâĲñèæŽ
éæïæ ŽéëêŽýïêæï ŽîïâĲëĲæï åâëîâéŽ îëàëîù ïŽïîñèæ, æïâ ñïŽïîñèë Žîæ-
ïŽåãæï.
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Introduction

A theory of consolidation with double porosity has been proposed by
Aifantis. This theory unifies a model proposed by Biot for the consolida-
tion of deformable single porosity media with a model proposed by Baren-
blatt for seepage in undeformable media with two degrees of porosity. In
a material with two degrees of porosity, there are two pore systems, the
primary and the secondary. For example, in a fissured rock (i.e. a mass
of porous blocks separated from each other by an interconnected and con-
tinuously distributed system of fissures) most of the porosity is provided
by the pores of the blocks or primary porosity, while most of permeability
is provided by the fissures or the secondary porosity. When fluid flow and
deformations processes occur simultaneously, three coupled partial differen-
tial equations can be derived [1], [2] to describe the relationships governing
pressure in the primary and secondary pores (and therefore the mass ex-
change between them) and the displacement of the solid. Inertia effects are
neglected as they are in Biot’s theory.

The physical and mathematical foundations of the theory of double poros-
ity were considered in the papers [1]–[3]. In part I of a series of papers on
the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical in-
terpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value
problems. In part II of this series, uniqueness and variational principles
were established by D. E. Beskos and E. C. Aifantis [2] for the equations of
double porosity, while in part III Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equa-
tions of double porosoty (see [1]–[3] and the references cited therein). The
basic results and the historical information on the theory of porous media
were summarized by Boer [4].

The purpose of this paper is to consider a two-dimensional version of
quasistatic Aifantis’ equation of the theory of consolidation with double
porosity and to study the uniqueness and existence of solutions of basic
boundary value problems (BVPs). The fundamental and some other ma-
trices of singular solutions are constructed in terms of elementary functions
for the steady-state quasistatic equations of the theory of consolidation with
double porosity. Using the fundamental matrix, we construct the simple and
double layer potentials and study their properties near the boundary. Using
these potentials, for solving the first basic BVP we construct a Fredholm
type integral equation of the second kind and prove the existence theorem
of solution for the finite and infinite domains.

1. Basic Equations, Boundary Value Problems and Uniqueness
Theorems

The basic steady-state quasistatic Aifantis’ equations of the theory of
consolidation with double porosity in the case of plane deformation are
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given by partial differential equations of the form [1], [2]

µ∆u + (λ + µ) grad div u− grad (β1p1 + β2p2) = 0,

iωβ1

m1
div u +

(
∆ +

α3

m1

)
p1 +

k

m1
p2 = 0,

iωβ2

m2
div u +

k

m2
p1 +

(
∆ +

α4

m2

)
p2 = 0,

(1.1)

where u = (u1, u2) is the displacement vector, p1 is the fluid pressure within
the primary pores and p2 is the fluid pressure within the secondary pores.
α3 = iωα1 − k, α4 = iωα2 − k, mj = kj

µ∗ , j = 1, 2. The constant λ is
the Lame modulus, µ is the shear modulus and the constants β1 and β2

measure the change of porosities due to an applied volumetric strain. The
constants α1 and α2 measure the compressibilities of primary and secondary
pores filled with pore fluid.The constants k1 and k2 are the permeabilities
of the primary and secondary systems of pores, the constant µ∗ denotes the
viscosity of the pore fluid and the constant k measures the transfer of fluid
from the secondary pores to the primary pores. The quantities λ, µ, αj ,
βj , kj (j = 1, 2) and µ∗ are all positive constants. 4 = ∂2

∂x2
1

+ ∂2

∂x2
2

is the
two-dimensional Laplace operator, ω is the oscilation frequency (ω > 0).

We also rewrite the equation (1.1) in the matrix form

B(∂x)U = 0, (1.2)

where

B(∂x) =‖ Bpq(∂x) ‖4x4, p, q = 1, 2, 3, 4,

Bjj(∂x) = µ∆ + (λ + µ)
∂2

∂x2
j

, j = 1, 2,

B12(∂x) = B21(∂x) = (λ + µ)
∂2

∂x1∂x2
,

Bj3(∂x) = −β1
∂

∂xj
, Bj4(∂x) = −β2

∂

∂xj
, j = 1, 2,

B3j(∂x) =
iωβ1

m1

∂

∂xj
, B4j(∂x) =

iωβ2

m2

∂

∂xj
, j = 1, 2,

B33(∂x) = ∆ +
α3

m1
, B34(∂x) =

k

m1
, B43(∂x) =

k

m2
,

B44(∂x) = ∆ +
α4

m2
, U(u1, u2, p1, p2).

The conjugate system of the equation (2) is

B̃(∂x)U = BT (−∂x)U = 0.

Throughout this paper “T” denotes transposition.
Now we write the expressions for the components of the stress vector,

which acts on elements of the arc with the normal n = (n1, n2). Denoting
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the stress vector by P (∂x, n)u, we have

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.3)

where [9]

T (∂x, n) =‖ Tkj(∂x, n) ‖2x2,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj
+ µnj

∂

∂xk
, k, j = 1, 2.

(1.4)

Let D+(D−) be a finite (an infinite) two-dimensional region bounded by
the contour S. Suppose that S ∈ C1,β , 0 < β ≤ 1, i.e., S is a Lyapunov
curve.

Introduce the definition of a regular vector-function.

Definition 1. A vector-function U(x) = (u1, u2, p1, p2) defined in the
domain D+(D−) is called regular if it has integrable continuous second
derivatives in D+ (D−), and U itself and its first order derivatives are
continuously extendable at every point of the boundary of D+(D−), i.e.,
U ∈ C2(D+)∩C1(D+), (U ∈ C2(D+)∩C1(D+)). Note that for the infinite
domain D− the vector U(x) additionally satisfies the following conditions
at infinity:

U(x) = O(1),
∂Uk

∂xj
= O(|x|−2), |x|2 = x2

1 + x2
2, j = 1, 2, (1.5)

where O(1) denotes a bounded function.

For the equation (1.1) we pose the following boundary value problems:
Find a regular vector U satisfying in D+ (D−) the equation (1.1), and

on the boundary S one of the following conditions:

Problem 1. The displacement vector and the fluid pressures are given
in the form

u±(z) = f(z)±, p±1 (z) = f±3 , p±2 (z) = f±4 (z), z ∈ S;

Problem 2. The stress vector and the normal derivatives of the preasure
functions ∂pj

∂n are given in the form

(Pu)± = f(z)±,
(∂p1(z)

∂n

)±
= f±3 ,

(∂p2(z)
∂n

)±
= f±4 (z), z ∈ S;

Problem 3.

u±(z) = f(z)±,
(∂p1(z)

∂n

)±
= f±3 (z),

(∂p2(z)
∂n

)±
= f±4 (z), z ∈ S;

Problem 4.

(Pu(z))± = f(z)±, p±1 (z) = f±3 (z), p±2 (z) = f±4 (z), z ∈ S,

where ( · )± denotes the limiting values on S from D± and f = (f1, f2), f3,
f4 are given functions.
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Generalized Green’s Formulas. Let u and u be two regular solutions
of the equation (1.1) in D+. Multiply the first equation of (1.1) by u, the
second one by p1 and the third one by p2, where u, p1 and p2 are the
complex conjugate functions of u, p1 and p2 respectively, integrate over
D+ and sum to obtain

∫

D+

[
E(u, ū) + α1|p1|2 + α2|p2|2+

+
k

iω
|p1 − p2|2 +

m1

iω
| grad p1|2 +

m2

iω
| grad p2|2

]
dx =

=
∫

S

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds, (1.6)

where

E(u, u) = (λ + µ)(div u)2 + µ
(∂u1

∂x1
− ∂u2

∂x2

)2

+ µ
(∂u2

∂x1
+

∂u1

∂x2

)2

.

For positive definiteness of the potential energy the inequalities λ+µ > 0,
µ > 0 are necessary and sufficient.

One can generalize the formula (1.6) to the infinite domain D−, provided
the condition

lim
R→∞

∫

S(0,R)

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds = 0 (1.7)

is fulfilled, where S(0, R) is a circumference of radius R with center at the
point O lying inside D+. The radius R is taken so large that the region D+

lies entirely inside the circumference S(0, R).
Obviously, the condition (1.7) is fulfilled if the vector u and u satisfy the

conditions (1.5).
If (1.7) is fulfilled, then Green’s formula for the domain D− takes the

form
∫

D−

[
E(u, u) + α1|p1|2 + α2|p2|2+

+
k

iω
|p1 − p2|2 +

m1

iω
| grad p1|2 +

m2

iω
| grad p2|2

]
dx =

= −
∫

S

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds. (1.8)

The Uniqueness Theorems. In this subsection we investigate the
question of uniqueness of solutions of the above-mentioned problems.

Now let us prove the following theorems.
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Theorem 1. The first boundary value problem has at most one regular
solution in the finite domain D+.

Proof. Let the first BVP have in the domain D+ two regular solutions U (1)

and U (2). Denote u = U (1) − U (2). Evidently, the vector u satisfies (1.1)
and the boundary condition u+ = 0 on S. Note that if u is a regular
solution of the equation (1.1), we have Green’s formula (1.6). Using (1.6)
and taking into account the fact that the potential energy is positive definite,
we conclude that U = C, x ∈ D+, where C = const. Since U+ = 0, we have
C = 0 and U(x) = 0, x ∈ D+. ¤

Theorem 2. The first boundary value problem has at most one regular
solution in the infinite domain D−.

Proof. The vectors U (1) and U (2) in the domain D− must satisfy the con-
dition (1.5). In this case the formula (1.8) is valid and U(x) = C, x ∈ D−,
where C is again a constant vector. But U on the boundary satisfies the
condition U− = 0, which implies that C = 0 and U(x) = 0, x ∈ D−. ¤

Theorem 3. A regular solution of the second boundary value problem
is not unique in the domain D+. Two regular solutions may differ by the
vector (u, p1, p2), where u is a rigid displacement vector and pj = 0, j = 1, 2.

Proof. Let

(P (∂x, n)u)+ = 0,
(∂p1

∂n

)+

= 0,
(∂p2

∂n

)+

= 0, x ∈ S.

The positive definiteness of the potential energy implies

u1 = c1 − εx2, u2 = c2 + εx1, p1 = 0, p2 = 0, x ∈ D+. ¤

Theorem 4. Two regular solutions of the second boundary value problem
in the domain D− may differ by the vector (u, p1, p2), where u is a constant
vector and pj = 0, j = 1, 2.

Proof. For the exterior second homogeneous boundary value problem the
vector u must satisfy the condition at infinity (1.5). In this case, the formula
(1.8) is valid for a regular u. Using this formula, we obtain

u1 = c1 − εx2, u2 = c2 + εx1, p1 = 0, p2 = 0, x ∈ D−.

Bearing in mind (1.5), we have ε = 0 and

u1 = c1, u2 = c2, p1 = 0, p2 = 0, x ∈ D−. ¤

Analogously, the following theorems are valid:

Theorem 5. The boundary value problems (III)± have in the domains
D± at most one regular solution.
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Theorem 6. Two regular solutions of the boundary value problem (IV )+

may differ by the vector U(u, p1, p2), where u is a rigid displacement and
pj = 0, j = 1, 2. Two regular solutions of the boundary value problem (IV )−

may differ by the vector (u, p1, p2), where u is a constant vector and pj = 0,
j = 1, 2.

2. Matrix of Fundamental Solutions

Here we construct the matrix of fundamental solutions for the system
(1.1).

Let

B∗ =
1
aµ




B∗
11 −B∗

12ξ
2
1 −B∗

12ξ1ξ2 µB∗
13ξ1 µB∗

14ξ1

−B∗
12ξ1ξ2 B∗

11 −B∗
12ξ

2
2 µB∗

13ξ2 µB∗
14ξ2

−ιωµB∗
31ξ1 −ιωµB∗

31ξ2 µB∗
33∆∆ −µB∗

34∆∆

−ιωµB∗
41ξ1 −ιωµB∗

41ξ2 −µB∗
43∆∆ µB∗

44∆∆




,

where

B∗
11 = a∆(∆ + λ2

1)(∆ + λ2
2),

B∗
12 = a(∆ + λ2

1)(∆ + λ2
2)− µ

[
∆∆ +

( α4

m2
+

α3

m1

)
∆ +

α3α4 − k2

m1m2

]
,

B∗
13 = β1∆∆ + ∆

α4β1 − kβ2

m2
, B∗

14 = β2∆∆ + ∆
α3β2 − kβ1

m1
,

B∗
31 =

β1

m1
∆∆ + ∆

α4β1 − kβ2

m1m2
, B∗

41 =
β2

m2
∆∆ + ∆

α3β2 − kβ1

m1m2
,

B∗
33 = a

(
∆ +

α4

m2

)
+

iωβ2
2

m2
, B∗

34 =
ka + iωβ2β1

m1
,

B∗
43 =

ka + iωβ2β1

m2
, B∗

44 = a
(
∆ +

α3

m1

)
+

iωβ2
1

m1
.

Supposing
U(x) = B∗(∂x)Ψ, (2.1)

where Ψ = (Ψ1, Ψ2, Ψ3,Ψ4) is a four-dimensional vector function, we can
write the equation (1.1) as

µa∆∆(∆ + λ2
1)(∆ + λ2

2)Ψ = 0; (2.2)

here λ2
j , j = 1, 2 are the roots of the characteristic equation

x2 −
[

α4

m2
+

α3

m1
+

iω

a

( β2
2

m2
+

β2
1

m1

)]
x +

α3α4 − k2

m1m2
+

+
iω

am1m2

(
α4β

2
1 + α3β

2
2 − 2kβ1β2

)
= 0, a = λ + 2µ. (2.3)

We assume that λ2
1 6= λ2

2. Without loss of generality we assume that Imλj >
0, j = 1, 2.
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From (2.2) it follows that

Ψ(x)=−2i

π

λ2
1+λ2

2

λ4
1λ

4
2

ln r+
2i

π

r2(ln r−1)
4λ2

1λ
2
2

− H
(1)
0 (λ1r)

λ4
1(λ

2
1−λ2

2)
+

H
(1)
0 (λ2r)

λ4
2(λ

2
1−λ2

2)
, (2.4)

H
(1)
0 (λr) is the first kind Hankel function of zero order [5]

H
(1)
0 (λr) =

2i

π
ln r +

2i

π

[
J0(λr)− 1

]
ln r+

+
2i

π
J0(λr)

(
ln

λ

2
+ C − iπ

2

)
−

− 2i

π

∞∑

k=1

(−1)k

(k!)2
(λr

2

)2k(1
k

+
1

k − 1
+ · · ·+ 1

)
,

J0(λr) =
∞∑

k=0

(−1)k

(k!)2
(λr

2

)2k

.

(2.5)

Substituting Ψ(x) in (2.1), after some calculations we obtain the fun-
damental matrix of solutions for the equation (1.1) which is denoted by
Γ(x− y)

Γ(x−y)=




2i

πµ
ln r+

∂2Ψ11

∂x2
1

∂2Ψ11

∂x1∂x2

∂Ψ13

∂x1

∂Ψ14

∂x1

∂2Ψ11

∂x1∂x2

2i

πµ
ln r+

∂2Ψ11

∂x2
2

∂Ψ13

∂x2

∂Ψ14

∂x2

− iω

m1

∂Ψ13

∂x1
− iω

m1

∂Ψ13

∂x2
Ψ33 Ψ34

− iω

m2

∂Ψ14

∂x1
− iω

m2

∂Ψ14

∂x2

m1

m2
Ψ34 Ψ44




, (2.6)

where

Ψ11 = α11 ln r + α12
r2(ln r − 1)

4
+ α21H

(1)
0 (λ1r) + α22H

(1)
0 (λ2r),

Ψ13 = β11 ln r + β12H
(1)
0 (λ1r) + β13H

(1)
0 (λ2r),

Ψ14 = γ11 ln r + γ12H
(1)
0 (λ1r) + γ13H

(1)
0 (λ2r),

Ψ31 =
1

m1
Ψ13, Ψ33 = δ11H

(1)
0 (λ1r) + δ12H

(1)
0 (λ2r),

Ψ41 =
1

m2
Ψ14, Ψ34 = δ34

[
H

(1)
0 (λ2r)−H

(1)
0 (λ1r)

]
,

Ψ43 =
m1

m2
Ψ34, Ψ44 = δ41H

(1)
0 (λ1r) + δ42H

(1)
0 (λ2r),

(2.7)

α11 =
2i

πaλ2
1λ

2
2

[
α3

m1
+

α4

m2
− (λ2

1 + λ2
2)(α3α4 − k2)

m1m2λ2
1λ

2
2

]
,
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α12 =
2i

π

[
α3α4 − k2

am1m2λ2
1λ

2
2

− 1
µ

]
, δ34 = − ka + iωβ1β2

m1a(λ2
1 − λ2

2)
,

α2k =
(−1)k

a(λ2
1 − λ2

2)

[
1− 1

λ2
k

( α3

m1
+

α4

m2

)
+

α3α4 − k2

m1m2λ4
k

]
, k = 1, 2,

β11 =
2i(α4β1 − kβ2)

πm2aλ2
1λ

2
2

, γ11 =
2i(α3β2 − kβ1)

πm1aλ2
1λ

2
2

,

β1k =
(−1)k

a(λ2
1 − λ2

2)

[
− β1 +

α4β1 − kβ2

m2λ2
k−1

]
, k = 2, 3,

γ1k =
(−1)k

a(λ2
1 − λ2

2)

[
− β2 +

α3β2 − kβ1

m1λ2
k−1

]
, k = 2, 3,

δ1k =
1

λ2
1 − λ2

2

[
− λ2

k +
α4a + iωβ2

2

m2a

]
, k = 1, 2,

δ4k =
1

λ2
1 − λ2

2

[
− λ2

k +
α3a + iωβ2

1

m2a

]
, k = 1, 2,

α11 +
2i

π

[
α21 + α22

]
= 0, β11 +

2i

π

[
β12 + β13

]
= 0,

γ11 +
2i

π

[
γ12 + γ13

]
= 0,

δ11 + δ33 = 1, δ22 + δ44 = 1, r2 = (x1 − y1)2 + (x2 − y2)2.

Moreover, on the basis of the identity

H
(1)
0 (λr) =

2i

π
ln r − 2i

4π
r2 ln r + const + O(r2)

we easily conclude that Γ(x − y) has a logarithmic singularity. It can be
shown that the columns of the matrix Γ(x−y) are solutions to the equation
(1.1) with respect to x for any x 6= y.

Denote Γ̃(x) = ΓT (−x). Hence we have proved the following
Theorem. The matrix Γ(x) is a solution of the system (1.1) and the

matrix Γ̃(x) is a solution of the adjoint system B̃(∂x)U = 0.

3. Matrix of Singular Solutions

In solving boundary value problems of the theory of consolidation with
double porosity by the method of potential theory, the fundamental ma-
trix and some other matrices of singular solutions to the equation (1.1)
are of great importance. These matrices will be constructed explicitly in
the present section with the help of elementary functions. Using the ba-
sic fundamental matrix, we will construct the so-called singular matrices
of solutions. For simplicity, we will introduce the special generalized stress
vector.

Write now the expressions for the components of the generalized stress
vector, which acts on elements of the arc with the normal n = (n1, n2).
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Denoting the generalized stress vector by
κ

P(∂x, n)u, where κ is an arbitrary
constant, we have

κ

P(∂x, n)u =
κ

T(∂x, n)u− n(β1p1 + β2p2), (3.1)

where

κ

T(∂x, n)u =




µ
∂

∂n
+ (λ + µ)n1

∂

∂x1
(λ + µ)n1

∂

∂x2
− κ

∂

∂s

(λ + µ)n2
∂

∂x1
+ κ

∂

∂s
µ

∂

∂n
+ (λ + µ)n2

∂

∂x2


 u,

∂

∂s
= n1

∂

∂x2
− n2

∂

∂x1
.

If κ = µ, then we have the stress vector P (∂x, n)u. The operator which

will be obtained from
κ

P(∂x, n) for κ = κn = µ(λ+µ)
λ+3µ will be called the

operator N(∂x, n), and the vector N(∂x, n)u will be called the pseudo-stress
vector. The pseudo-stress operator succeeded in obtaining the Fredholm
integral equation of the second kind for the first boundary value problem.

We introduce the following notation
κ

R(∂x, n), R̃
κ
(∂x, n)

κ

R(∂x, n) =




κ

T(∂x, n)11
κ

T(∂x, n)12 −β1n1 −β1n1

κ

T(∂x, n)21
κ

T(∂x, n)22 −β1n2 −β2n2

0 0
∂

∂n
0

0 0 0
∂

∂n




,

R̃
κ
(∂x, n) =




κ

T(∂x, n)11
κ

T(∂x, n)12 −iωn1
β1

m1
−iωn1

β2

m2

κ

T(∂x, n)21
κ

T(∂x, n)22 −iωn2
β1

m1
−iωn2

β2

m2

0 0
∂

∂n
0

0 0 0
∂

∂n




.

By Applying the operator
κ

R(∂x, n) to the matrix Γ(x), we will con-
struct the so-called singular matrix of solutions. Let us consider the matrix
[
κ

R(∂y, n)Γ(y − x)]∗ which is obtained from
κ

R(∂x, n)Γ(x − y) = (
κ

Rpq)4x4

by transposition of the columns and rows and the variables x and y. We
can easily prove that every column of the matrix [

κ

R(∂y, n)Γ(y − x)]∗ is a
solution of the system B̃(∂x)U = 0 with respect to the point x, if x 6= y.

The elements
κ

Rpq are as follows:

κ

Rpp =
2i

π

∂

∂n
ln r + (−1)p(κ + µ)

∂

∂s

∂2Ψ11

∂x1∂x2
, p = 1, 2,
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κ

R12 = − ∂

∂s

[
2i

π

κ

µ
ln r + (κ + µ)

∂2Ψ11

∂x2
2

]
,

κ

R21 =
∂

∂s

[
2i

π

κ

µ
ln r + (κ + µ)

∂2Ψ11

∂x2
1

]
,

κ

R13 = −(κ + µ)
∂

∂s

∂Ψ13

∂x2
,

κ

R14 = −(κ + µ)
∂

∂s

∂Ψ14

∂x2
, (3.2)

κ

R23 = (κ + µ)
∂

∂s

∂Ψ13

∂x1
,

κ

R24 = (κ + µ)
∂

∂s

∂Ψ14

∂x1
,

κ

R3j = − iω

m1

∂

∂n

∂Ψ13

∂xj
,

κ

R4j = − iω

m2

∂

∂n

∂Ψ14

∂xj
, j = 1, 2,

κ

R33 =
∂Ψ33

∂n
,

κ

R34 =
∂Ψ34

∂n
,

κ

R43 =
m1

m2

∂Ψ34

∂n
,

κ

R44 =
∂Ψ44

∂n
,

Analogously, we obtain the matrix

R̃
κ
(∂y, n)Γ̃(y − x) =

(
[R̃

κ
Γ̃]pq

)
4x4

,

where
[
R̃

κ
Γ̃
]
pq

=
κ

Rpp, p = 1, 2,
[
R̃

κ
Γ̃
]
12

=
κ

R12,
[
R̃

κ
Γ̃
]
21

=
κ

R21,

[
R̃

κ
Γ̃
]
13

=
iω

m1

κ

R13,
[
R̃

κ
Γ̃
]
14

=
iω

m2

κ

R14,
[
R̃

κ
Γ̃
]
23

=
iω

m1

κ

R23,

[
R̃

κ
Γ̃
]
24

=
iω

m2

κ

R24,
[
R̃

κ
Γ̃
]
3j

= − ∂

∂n

∂Ψ13

∂xj
,

[
R̃

κ
Γ̃
]
4j

= − ∂

∂n

∂Ψ14

∂xj
, j = 1, 2,

[
R̃

κ
Γ̃
]
33

=
∂

∂n
Ψ33,

[
R̃

κ
Γ̃
]
34

=
m1

m2

∂

∂n
Ψ34,

[
R̃

κ
Γ̃
]
43

=
∂

∂n
Ψ34,

[
R̃

κ
Γ̃
]
44

=
∂

∂n
Ψ44,

The matrix
[
R̃

κ
(∂y, n)Γ̃(y−x)

]∗ is a solution of the system (1.1). It shows,

that the matrices
[
R̃

κ
(∂x, n)Γ̃

]∗ and
[ κ

R(∂x, n)Γ
]∗ contain a singular part,

which is integrable in the sense of the principal Cauchy value.

4. Potentials and Their Properties

Introduce the following definitions:

Definition 2. The vector-functions defined by the equalities

V (1)(x) =
1
4i

∫

S

Γ(y − x)h(y) dy,

V (2)(x) =
1
4i

∫

S

Γ̂(x− y)h(y) ds,

(4.1)
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where Γ(x, y) is the fundamental matrix, Γ̃(x) = ΓT (−x), h is a continuous
(or Holder continuous) vector and S is a closed Lyapunov curve, will be
called simple layer potentials.

Definition 3. The vector-function defined by the equalities

U (1)(x) =
1
4i

∫

S

[Ñ(∂y, n)Γ̃(y − x)]∗h(y) dy,

U (2)(x) =
1
4i

∫

S

[N(∂y, n)Γ(y − x)]∗h(y) dy,

(4.2)

will be called double layer potentials.

The potentials V (1), U (1) are solutions of the system (1.1) and the poten-
tials V (2), U (2) are solutions of the system B̃(∂x)U = 0 both in the domains
D+ and D−. When the point x tends to a point z ∈ S, the potential (4.2)
has the discontinuity as the harmonic double layer potential

U (1)± = ±h(z) +
1
4i

∫

S

[Ñ(∂y, n)Γ̃(y − z)]∗h(y) dy,

U (2)± = ±h(z) +
1
4i

∫

S

[N(∂y, n)Γ(y − z)]∗h(y) dy.

(4.3)

Now let us investigate properties of the operation
κ

R(∂x, n) acting on a
simple layer potential. We obtain

κ

R(∂x, n)V (x) =
1
4i

∫

S

κ

R(∂x, n)Γ(y − x)h(y) dy. (4.4)

When κ = κn we obtain

[
N(∂y, n)V (1)(z)

]∓ = ∓h(z) +
1
4i

∫

S

N(∂y, n)Γ(z − y)h(y) dy,

[
Ñ(∂y, n)V (2)(z)

]∓ = ∓h(z) +
1
4i

∫

S

Ñ(∂y, n)Γ̂(z − y)h(y) dy.

(4.5)

It is well-known ([8]) that in the case of a Lyapunov curve S ∈ C1,α the
function ∂ ln r

∂n for x, y ∈ S has a week singularity and ∂ ln r
∂n is integrable in

the sense of the principal Cauchy value. Consequently, ∂ ln r
∂n is a singular

kernel on S.
It is obvious that

[ κ

R(∂y, n)Γ(y − x)
]∗ is a singular kernel (in the sense

of Cauchy). Note that if κ = κn = µ(λ+µ)
λ+3µ , then

[ κ

R(∂x, n)Γ(x − y)
]∗ is a

weakly singular kernel.
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5. Solution of the First Boundary Value Problem

Problem (I)+. Let us first prove the existence of solution of the first
boundary value problem in the domain D+. A solution is sought in the
form of the double layer potential

U(x) =
1
4i

∫

S

[
Ñ(∂y, n)Γ̃(y − x)

]∗
h(y) dy. (5.1)

Then for determining the unknown real vector function h we obtain the
following Fredholm integral equation of the second kind

−h(z) +
1
4i

∫

S

[
Ñ(∂y, n)Γ̃(y − z)

]∗
h(y) dy = f+. (5.2)

Let us prove that the equation (5.2) is solvable for any continuous right-
hand side. Consider the associated to (5.2) homogeneous equation

−h(z) +
1
4i

∫

S

N(∂y, n)Γ(y − z)h(y) dy = 0 (5.3)

and prove that it has only the trivial solution.Assume the contrary and de-
note by ϕ(z) a nonzero solution of (5.3). Compose the simple layer potential

V (x) =
1
4i

∫

S

Γ(y − x)ϕ(y) dy. (5.4)

It is obvious from (5.3), that

[N(∂z, n)V (z)]− = 0,

∫

S

ϕ(y) ds = 0.

Using the formula (1.8) for κ = κn in D−, we obtain V (x) = 0, x ∈ D−.
Now taking into account the continuity of the simple layer potential and

using the uniqueness theorem for the solution of the first boundary value
problem, we have V (x) = 0, x ∈ D+.

Note that [NV ]+− [NV ]− = 2ϕ(x) = 0 and hence the equation (5.3) has
only the trivial solution. This implies that the associated to (5.3) homoge-
neous equation also has only the trivial solution, and the equation( 5.2) is
solvable for any continuous right-hand side (according to the first Fredholm
theorem).

For the regularity of the double layer potential in the domain D+ it is
sufficient to assume that S ∈ C2,β , (0 < β < 1) and ∂f

∂s is Holder continuous
f ∈ C1,α(S) (0 < α < β).

Problem (I)−. Consider now the first boundary value problem in the
domain D−. Its solution is sought in the form

U(x) =
1
4i

∫

S

([
Ñ(∂y, n)Γ̃(y − x)

]∗ − [
Ñ(∂y, n)Γ̃(y)

]∗)
ψ(y) dy. (5.5)
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Then for determining the unknown real valued vector function ψ we obtain
the following Fredholm integral equation of the second kind

ψ(z) +
1
4i

∫

S

([
Ñ(∂y, n)Γ̃(y− z)

]∗− [
Ñ(∂y, n)Γ̃(y)

]∗)
ψ(y) dy = f−. (5.6)

Prove that the equation (5.6) is solvable for any continuous right-hand
side. We consider the associated to (5.6) homogeneous equation

h(z) +
1
4i

∫

S

[
N(∂y, n)Γ(z − y) + N(∂y, n)Γ(y)

]
h(y) dy = 0. (5.7)

Let us prove that (5.7) has only the trivial solution. Suppose that it has
a nonzero solution h(z). From (5.7) by integration we obtain∫

S

h ds = 0.

In this case the equation (5.7) corresponds to the boundary condition
[N(∂x, n)V ]+ = 0, where

V (x) =
1
4i

∫

S

Γ(y − x)h(y) dy. (5.8)

We find that V = C, x ∈ D+, where C is a constant vector.
Taking into account the equation

∫
S

h ds = 0 and the fact that the single

layer potential is continuous while passing through the boundary, and using
Green’s formula for κ = κn, we obtain V = 0, x ∈ D−. Since [NV ]+ −
[NV ]− = 2h(x) = 0, and [NV ]+ = 0, [NV ]− = 0, we get h(x) = 0.

Thus we conclude that the associated to (5.7) homogeneous equation has
only the trivial solution, and the equation (5.6) is solvable for any continuous
right-hand side.

To prove the regularity of the potential (5.5) in the domain D−, it is
sufficient to assume that S∈C2,β (0<β<1) and f ∈C1,α(S) (0<α<β).
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WITH MONOTONIC NONLINEARITY



Abstract. We prove the existence of a nonnegative and bounded so-
lution of a type of homogeneous integral equations with monotonic non-
linearity. Under certain assumptions on the kernel, the properties of the
obtained solutions are investigated. Some particular examples which arise
in applications are demonstrated.
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îâäæñéâ. êŽöîëéöæ áŽéðçæùâĲñèæŽ éëêëðëêñîæ ŽîŽûîòæãëĲæï
öâéùãâèæ âîåàãŽîëãŽêæ æêðâàîŽèñîæ àŽêðëèâĲæï âîåæ ðæìæïåãæï
ŽîŽñŽîõëòæåæ áŽ öâéëïŽäôãîñèæ ŽéëêŽýïêæï ŽîïâĲëĲŽ. àŽêðëèâĲæï
àñèäâ áŽáâĲñè àŽîçãâñè ìæîëĲâĲöæ àŽéëçãèâñèæŽ éæôâĲñèæ ŽéëêŽýï-
êâĲæï ŽïæéìðëðæçŽ. àŽêýæèñèæŽ îŽéáâêæéâ çâîúë éŽàŽèæåæ, îëéèâĲæù
àŽéëõâêâĲŽöæ àãýãáâĲŽ.
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1. Introduction

We consider the following nonlinear integral equation:

ϕp(x) =

∞∫

0

K(x, t)ϕ(t) dt, x > 0, (1)

in regard to unknown function ϕ(x) ≥ 0. Here p > 1 is a real number,
0 ≤ K(x, t) is a measurable function defined on (0, +∞)×(0, +∞) satisfying
the condition

sup
x>0

∞∫

0

K(x, t) dt = 1. (2)

We will also consider the general integral equation of Hammerstein type:

f(x) =

∞∫

0

K(x, t)Q(f(t)) dt, (1∗)

where the function Q(x) is defined on (−∞,+∞) and satisfies some addi-
tional conditions (see Theorem 6).

The problems (1), (2) and (1∗), (2) are of considerable interest not only
in mathematics, but also in the theory of nonlocal interactions, string filed
theory, cosmology, kinetic theory of gases (see [1]–[6]).

In the present paper, under certain assumptions on the kernel K(x, t)
we prove the existence of a nontrivial, nonnegative and bounded solution
of nonlinear homogenous equations (1) and (1∗). The properties of the ob-
tained solutions are investigated (see Theorems 1–3, 6). We also undertake
mathematical investigation of a special case which arises in applications,
particularly in the dynamics of P -adic closed string field theory (see Theo-
rems 4–5). Some particular examples of the function Q(x) are listed.

2. Convolution type nonlinear integral equation

2.1. Symmetric kernel. First, we consider the equation (1), in particular,
the case where

K(x, t) = k0(x− t); 0 ≤ k0 ∈ L1(−∞, +∞).

We have

ψp(x) =

∞∫

0

k0(x− t)ψ(t) dt, x > 0, p > 1. (3)

The condition (2) takes the form of
+∞∫

−∞
k0(x) dx = 1. (4)
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We also assume that

k0(−x) = k0(x), ∀x > 0. (5)

Denoting f(x) = ψp(x), we have

f(x) =

∞∫

0

k0(x− t) p
√

f(t) dt, x > 0, p > 1. (6)

We will consider the following iteration process

f (n+1)(x) =

∞∫

0

k0(x− t) p

√
f (n)(t) dt, f (0)(x) ≡ 1, n = 0, 1, 2 . . . . (7)

The following statements are valid.

Statement 1. The sequence of functions {f (n)(x)}∞0 is monotonously
decreasing as n increases.

Proof. Indeed, for n = 0 we have

f (1)(x) ≤
+∞∫

−∞
k0(t)dt = 1 ≡ f (0)(x).

Assuming that the analogous inequality holds for n and using the mono-
tonicity of the function y = p

√
x on (0, +∞), from (7) we obtain

f (n+1)(x) ≤ f (n)(x). ¤

Statement 2. The following inequality is valid

f (n)(x) ≥
(

1
2

) p
p−1

, n = 0, 1, 2, . . . . (8)

Proof. For n = 0 this estimate is obvious. Let f (n)(x) ≥ ( 1
2 )

p
p−1 be true.

Taking into account (4) and (5), from (7) we get

f (n+1)(x)≥
(

1
2

) 1
p−1

x∫

−∞
k0(t) dt≥

(
1
2

) 1
p−1

0∫

−∞
k(t) dt=

(
1
2

) p
p−1

. (9)

The statement is proved. ¤

Statements 1 and 2 imply that almost everywhere the limit of the se-
quence of functions {f (n)(x)}∞0 exists:

lim
n→∞

f (n)(x) = f(x). (10)

Furthermore, (
1
2

) p
p−1

≤ f(x) ≤ 1. (11)
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Using Levi’s limit theorems, we conclude that f(x) is a solution of the
equation (6).

Statement 3. The solution f(x) of the equation (6) is monotonously
increasing as x increases.

Proof. First, we prove that the sequence of functions {f (n)(x)}∞n=0 is in-
creasing in x. Indeed, for n = 0 this is obvious. Suppose that f (n−1)(x) ↑
as x increases. Let x1, x2 ∈ (0,+∞), x1 > x2, are two arbitrary numbers.
We have

f (n)(x1)− f (n)(x2) =

=

x1∫

−∞
k0(t)[

p

√
f (n−1)(x1 − t) dt−

x2∫

−∞
k0(t)

p

√
f (n−1)(x2 − t)] dt ≥

≥
x2∫

−∞
k0(t)

[
p

√
f (n−1)(x1 − t)− p

√
f (n−1)(x2 − t)

]
dt ≥ 0.

Therefore f (n)(x1) ≥ f (n)(x2), which implies that f(x1) ≥ f(x2). ¤

Statement 4. The limit of the function f(x) exists:

lim
x→+∞

f(x) = 1. (12)

Proof. Denote lim
x→+∞

f(x) = δ.

It is easy to check that

lim
x→+∞

p
√

f(x) = lim
x→+∞

ψ(x) = p
√

δ. (13)

We show that

lim
x→+∞

∞∫

0

k0(x− t) p
√

f(t) dt = p
√

δ. (14)

Indeed,
∣∣∣∣∣∣

∞∫

0

k0(x− t) p
√

f(t) dt− p
√

δ

+∞∫

−∞
k0(t) dt

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

x∫

−∞
k0(t) p

√
f(x− t) dt− p

√
δ

x∫

−∞
k0(t)dt−

∞∫

x

p
√

δk0(t)dt

∣∣∣∣∣∣
≤

≤
x∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt + p

√
δ

∞∫

x

k0(t) dt = J1 + J2.
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It is obvious that lim
x→+∞

J2 = 0. We have

J1 =

x∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt ≤

≤
x
2∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt +

x∫

x
2

k0(t)
∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt =

= J3 + J4,

J3 =

∞∫

x
2

k0(x− t)
∣∣∣ p
√

f(t)− p
√

δ
∣∣∣ dt ≤ sup

t≥ x
2

∣∣∣ p
√

f(t)− p
√

δ
∣∣∣ dt

+∞∫

−∞
k0(t) dt → 0

as x → +∞.

J4 = (1 + p
√

δ)

x∫

x
2

k0(t) dt → 0

as x tends to ∞. Thus the formula (13) holds. Passing in (6) to limit, we
obtain δ = p

√
δ ⇒ δ = 1. From (14) it follows that

lim
x→+∞

ψ(x) = 1. (15)

The statement is proved. ¤

Statement 5. Let f1(x) and f2(x) be the constructed solutions of the
equation (6) for the integers p1 and p2, respectively. If p1 > p2, then f1(x) ≥
f2(x).

Proof. We consider the iterations for p = p1 and p = p2 separately.

f
(n+1)
i (x)=

∞∫

0

k0(x−t) pi

√
f

(n)
i (t) dt, f

(0)
i ≡1, i=1, 2, n=0, 1, 2, . . . . (16)

We will prove that
f

(n)
1 (x) ≥ f

(n)
2 (x). (17)

Indeed, for n = 0 the inequality (17) is obvious. Assuming that (17) holds
for n, we check it for n+1. Taking into account the estimates 0<f (n)(x) ≤ 1,
from (16) we get

f
(n+1)
1 (x) ≥

∞∫

0

k0(x− t) p1

√
f

(n)
2 (t) dt ≥

≥
∞∫

0

k0(x− t) p2

√
f

(n)
2 (t) dt = f

(n+1)
2 (x), (18)
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which implies that
f1(x) ≥ f2(x). (19)

Thus we have proved the statement. ¤

Theorem 1. Under the conditions (4), (5) the equation (3) has a positive
and bounded solution ψ(x) which possesses the following properties:

a) ψ(x) ↑ in x;
b) the estimates ( 1

2 )
1

p−1 ≤ ψ(x) ≤ 1 are valid;
c) there exists the limit lim

x→+∞
ψ(x) = 1.

Remark 1. The linear equation (3)–(5) (p = 1) represents the well-known
homogeneous conservative Wiener–Hopf equation. Many works are devoted
to the investigation of the corresponding linear equation (3) (see [7]–[9] and
the literature therein). It is known (see [7]) that the corresponding linear
equation in the symmetric case k0(−x) = k0(x) has a positive solution,
possessing the asymptotic O(x) at x → +∞. Thus we confirm that there is
a quantitative difference between solutions of nonlinear (p > 1) and linear
(p = 1) equations.

2.2. Nonsymmetric kernel. We will assume that

ν(k0) =

+∞∫

−∞
xk0(x) dx < 0. (20)

The convergence of the integral (20) is understood in the Cauchy v.p. sense.
Together with the equation (3) we consider the corresponding linear equa-
tion

S(x) =

∞∫

0

k0(x− t)S(t) dt, x > 0. (21)

It is well–known that if the function k0(x) satisfies the conditions (4), (20),
then the equation (21) has a positive monotonously increasing and bounded
solution S(x) (see [8,9]). We denote C = sup

x>0
S(x). Due to the linearity of

(21), the function S∗ =
1
C

S(x) will also satisfy the equation (21). Further-

more, S∗(x) ↑ 1 as x → +∞. We consider the equation (7) with the kernel
(4), (20).

Analogously, it is easy to verify that f (n)(x) ↓ as n increases. We prove
f (n)(x) ≥ S∗(x). For n = 0 this is obvious. Taking into account (21) and
0 < S∗(x) ≤ 1, from (7) we obtain

f (n+1)(x) ≥
∞∫

0

k0(x− t) p
√

S∗(t)dt ≥
∞∫

0

k0(x− t)S∗(t) dt = S∗(x).
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Thus, there exists f(x) = lim
x→+∞

f (n)(x). Moreover,

S∗(x) ≤ f(x) ≤ 1. (22)

From Levi’s theorem it follows that the limit function f(x) satisfies the
equation (3).

Acting analogously as in Theorem 1, we obtain that f(x) ↑ as x increases.
Since S∗(x) → 1 as x → +∞, it follows from (22) that

lim
x→∞

f(x) = 1.

Thus the following theorem holds.

Theorem 2. Under the conditions (4), (20) the equation (3) has a pos-
itive monotonically increasing and bounded solution ψ(x). Moreover,

lim
x→∞

ψ(x) = 1, S∗(x) ≤ ψ(x) ≤ 1.

Acting analogously we will be able to prove the following general theorem.

Theorem 3. Let there exist k0(x), k0(x) ≥ 0,
+∞∫
−∞

k0(x) dx = 1, such

that K(x, t) ≥ k0(x− t) ∀x, t ∈ R+ ×R+.
1) if k0(−x) = k0(x), then the equation (1) has a positive and bounded

solution ϕ(x):
(

1
2

) 1
p−1

≤ ψ(x) ≤ ϕ(x) ≤ 1; lim
x→+∞

ϕ(x) = 1;

2) if ν(k0) < 0, then the equation (1) has a positive and bounded solu-
tion ϕ(x):

S∗(x) ≤ ψ(x) ≤ ϕ(x) ≤ 1; lim
x→+∞

ϕ(x) = 1.

2.3. Examples. We bring two particular examples of the equation (1) sat-
isfying the conditions of Theorem 3:

1) ϕp(x) =

∞∫

0

k0(x− t)ϕ(t) dt +

∞∫

0

k1(x + t)ϕ(t) dt, where

0 ≤ k1 ∈ L1(0, +∞),

∞∫

x

k1(t) dt ≤
∞∫

x

k0(t) dt, ∀x > 0;

(23)

2) ϕp(x) = µ(x)

∞∫

0

k0(x− t)ϕ(t) dt, (24)

where µ(x) is a measurable function on (0, +∞) satisfying the condition
1 ≤ µ(x) ≤ 1

x∫
−∞

k0(t) dt
.
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3. On a Special Case Arising in Applications

We consider the equation (1) in the case where

K(x, t) = k0(x− t)− k1(x + t) ≥ 0. (25)

It should be noted that the condition K(x, t) ≥ k0(x − t) doesn’t work for
the kernel (25) and it is necessary to develop a new approach for studying
the problem of solvability of the equation (1), (25). We should also note
that the nonlinear equation (1) with the kernel

K(x, t) =
1√
π

(e−(x−t)2 − e−(x+t)2) (26)

describes the dynamics (rolling) of P−adic closed strings for a scalar tachyon
field (see [2], [3]).

First we consider the corresponding linear equation (p = 1)

η(x) =

∞∫

0

k0(x− t)η(t) dt−
∞∫

0

k1(x + t)η(t) dt, x > 0, (27)

where η(x) is the unknown function.
We rewrite the equation (27) in the operator form

(I − K̂0 + K̂1)η = 0, (28)

where I is the unit operator, K̂0 is a Wiener–Hopf integral operator, and
K̂1 is a Henkel operator. Let E be one of the following Banach spaces:
Lp(0, +∞), 1≤p≤∞, M(0, +∞), Cu(0, +∞), C0(0,+∞), where Cu(0,+∞)
is the space of continuous functions having a finite limit at infinity.

It is known (see [10]) that if ν(k0) ≤ 0 and m2(k1) =
∞∫
0

x2k1(x) dx < +∞,

then the operator I − K̂0 + K̂1 admits the following three factor decompo-
sition

I − K̂0 + K̂1 = (I − V̂−)(I + Ŵ )(I − V̂+), (29)

where V̂± are Volterra operators:

(V̂−f)(x) =

∞∫

x

v−(t− x)f(t) dt, f ∈ E, (30)

(V̂+f)(x) =

x∫

0

v+(x− t)f(t) dt, f ∈ E, (31)

0 ≤ v± ∈ L1(0, +∞), γ± =
∞∫
0

v±(x) dx ≤ 1, and Ŵ is a Henkel type integral

operator

(Ŵf)(x) =

∞∫

0

W (x + t)f(t)dt, f ∈ E, (32)
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0 ≤ W ∈ L1(0, +∞). It should be noted that (see [8])
i) if ν(k0) < 0, then γ− = 1, γ+ < 1;
ii) if ν(k0) = 0, then γ± = 1.

At the same time, if the functions k0 and k1 are bounded, then W ∈
M(0, +∞), v± ∈ M(0,+∞).

It is well known that Ŵ is a compact operator in the spaces L1(0,+∞)
and Cu(0, +∞) (and in other natural functional spaces).

Taking into account the factorization (29), we rewrite the equation (28)
in the form

(I − V̂−)(I + Ŵ )(I − V̂+)η = 0. (33)
Solving the equation (33) is equivalent to solving the following three coupled
equations

(I − V̂−)η1 = 0, (34)

(I + Ŵ )η2 = η1, (35)

(I − V̂+)η = η2. (36)

Statement 6. Let ν(k0) < 0. Then the equation (27) has a nontrivial
solution η(x) ∈ Cu(0, +∞).

Proof. Let us consider the following possibilities:

a) ε = −1 is an eigenvalue for the operator Ŵ ;
b) ε = −1 is not an eigenvalue for the operator Ŵ .

a) We choose the trivial solution of the equation (34). Inserting it in
(35), we obtain

η2(x) = −
∞∫

0

W (x + t)η2(t) dt. (37)

Since ε = −1 is an eigenvalue for the operator Ŵ , the equation (37) has a
nontrivial solution η2 ∈ Cu(0,+∞). Furthermore, from the estimate

|η2(x)| ≤ sup
t>0

|η2(t)|
∞∫

x

W (τ) dτ

it follows that η2 ∈ C0(0,+∞).
Now we consider the equation (36)

η(x) = η2(x) +

x∫

0

v+(x− t)η(t) dt. (38)

Since γ+ < 1, the equation (38) in the space C0(0, +∞) has a unique solution
(see [9]).

b) It is easy to check that η1(x) = const 6= 0 satisfies the equation (34)
because γ− = 1.
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We choose η1(x) ≡ 1 as η1. Substituting it in (35), using the fact that
ε = −1 is not an eigenvalue for Ŵ and taking into account that Ŵ is
completely continuous (in Cu(0,+∞)), we conclude that the equation (35)
has a bounded solution η2 ∈ Cu(0, +∞). Since γ+ < 1, the equation (38)
has a solution belonging to Cu(0, +∞). ¤

Statement 7. Let ν(k0) = 0, k0 ∈ L1(−∞,+∞) ∩M(−∞, +∞), k1 ∈
L1(0,+∞)∩M(0,+∞). If ε = −1 is an eigenvalue for the operator Ŵ , then
the equation (27) has a nontrivial bounded solution.

Proof. First we note that under the above-mentioned conditions and from
the results of [9], [10] it follows that W ∈ M(0, +∞) ∩ L1(0,+∞), v± ∈
M(0, +∞) ∩ L1(0,+∞). Choosing the trivial solution of the equation (34)
and taking into account that ε = −1 is an eigenvalue for the completely
compact operator Ŵ (in L1(0,+∞)), we conclude that the equation (35)
in L1(0,+∞) has a nontrivial solution. Since W ∈ M(0,+∞)∩L1(0,+∞),
from the inequality

|η2(x)| ≤ sup
x>0

|W (x)|
∞∫

0

|η2(t)| dt

it follows that η2 ∈ M(0, +∞). Thus we have proved that η2 ∈ L1(0, +∞)∩
M(0, +∞). Now we consider the equation (36) in the conservative case
(when γ+ = 1). Using the results of the work [11], we conclude that the
equation (36) has a bounded solution η(x). Below we assume that one of the
conditions of Statements 6 or 7 is fulfilled. Denote C = sup

x>0
|η(x)|. Due to

the linearity of the equation (27), the function η̃ = 1
C η will be a nontrivial

solution of the equation (27). Furthermore,

sup
x>0

|η̃(x)| = 1. (39)

Let us consider the following iteration

f (n+1)(x) =

∞∫

0

K(x, t) p

√
f (n)(t) dt, f (n)(x) ≡ 1, n = 0, 1, 2, . . . , (40)

where K(x, t) is given by the formula (25).
It is easy to check that for arbitrary n = 0, 1, 2, . . . the inequality

f (n)(x) ≥ |η̃(x)| (41)

holds. Indeed, for n = 0 it is obvious (see (39)). Assuming that the in-
equality (41) holds for some n, we will prove that it is true for n + 1. Since
|η̃(x)| ≤ 1, we have

f (n+1)(x) ≥
∞∫

0

K(x, t) p
√
|η̃(t)|dt ≥

∞∫

0

K(x, t)|η̃(t)|dt ≥ |η̃(x)|.
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Hence the sequence of functions {f (n)(x)}∞0 has a limit as n → +∞,

lim
n→∞

f (n)(x) = f(x). (42)

At the same time,
|η̃(x)| ≤ f(x) ≤ 1. (43)

Using Levi’s theorem, we conclude that f(x) is a solution of the equation

f(x) =

∞∫

0

K(x, t) p
√

f(t) dt. ¤

Statement 8. f(x) ↑ as x increases.

Proof. Let x1, x2 ∈ (0, +∞), x1 < x2, be arbitrary numbers and consider
the following iteration process

f (n+1)(x) =

x∫

−∞
k0(t)

p

√
f (n)(x− t) dt−

∞∫

x

k1(t)
p

√
f (n)(t− x) dt.

We have

f (n+1)(x1)− f (n+1)(x2) =

=

x1∫

−∞
k0(t)

p

√
f (n)(x1 − t) dt−

∞∫

x1

k1(t)
p

√
f (n)(t− x1) dt−

−
x2∫

−∞
k0(t)

p

√
f (n)(x2 − t) dt +

∞∫

x2

k1(t)
p

√
f (n)(t− x2) dt ≥

≥
x2∫

−∞
k0(t)

[
p

√
f (n)(x1 − t)− p

√
f (n)(x2 − t)

]
dt+

+

∞∫

x2

k1(t)
[

p

√
f (n)(t− x2)− p

√
f (n)(t− x1)

]
dt ≥ 0.

Therefore f(x) ↑ as x increases. From (39) and (43) it follows that
lim

x→∞
f(x) = 1. ¤

Thus the following theorems are valid.

Theorem 4. Let

1) 0 ≤ k0 ∈ L1(−∞; +∞),
+∞∫
−∞

k0(t) dt = 1, K(x, t) = k0(x − t) −

k1(x + t) ≥ 0, 0 ≤ k1 ∈ L1(0, +∞), m2(k1) =
∞∫
0

x2k1(x) dx < +∞;

2) ν(k0) < 0.
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Then the equation (1) has a nontrivial nonnegative solution ϕ(x) and
lim

x→∞
ϕ(x)= 1.

Theorem 5. Let
1) the condition 1) of Theorem 4 be fulfilled;
2) if ν(k0) = 0 and ε = −1 is an eigenvalue for the operator Ŵ ,

and k0 ∈ M(−∞, +∞)∩L1(−∞,+∞), then the equation (1) has a
nontrivial, nonnegative solution ϕ(x) and lim

x→∞
ϕ(x) = 1.

Remark 2. We note that Theorems 4, 5 are true for the kernels K(x, t)
satisfying the condition K(x, t) ≥ k0(x− t)− k1(x + t).

4. General Equation

We consider the general nonlinear equation (1∗). Acting analogously as
in Theorem 1 and leaving out the details, we will formulate the following
theorem.

Theorem 6. Let the following conditions be fulfilled:

1) there exists k0(x) : k0(−x) = k0(x),
+∞∫
−∞

k0(x) dx = 1, such that

K(x, t) ≥ k0(x− t) ∀x, t ∈ R+ ×R+; (44)

2) there exist η, ζ, η > 2ζ, such that Q(η) = η, Q(ζ) = 2ζ, Q(x) ↑ on
[ζ, η], Q ∈ C[ζ, η],

where η is the first positive root of the equation Q(x) = x. (45)

Then the equation (1∗) has a nonnegative and bounded solution f(x) :

lim
x→∞

f(x) = η.

Moreover, if K(x, t) ≡ k0(x − t), then the solution possesses the following
properties:

i) ζ ≤ f(x) ≤ η;
ii) f(x) ↑ as x increases.

Examples. We bring some particular examples of the function Q(x)
(see below) which arise in applications:

(1) Q(x) = x
1
p , x > 0, ζ = ( 1

2 )
p

p−1 , η = 1;
(2) Q(x) = sinx + x + 1, x > 0, ζ ∈ (0, 3

4π), η = 3
2π;

(3) Q(x) = ae−(x−a)2 , x > 0, ζ ∈ (0, η
2 ), where η is the first positive

root of the equation ae−(x−a)2 = x;
(4) Q(x) = ex−1, x > 0, ζ ∈ (0, 1

4 ), η = 1.

Summarizing, let us demonstrate one sample example. So, let K(x, t) =
k0(x− t), k0(x) = 1

2e−|x|, Q(x) = ex−1, η = 1, ζ be the solution of equation
ex−1 = 2x.
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From (1∗) we obtain

f ′′(x)− f(x) + ef(x)−1 = 0. (46)

In spite of the fact that it is impossible to solve the obtained nonlinear dif-
ferential equation analytically, the equation (46) has a positive and bounded
solution f(x) 6≡ 1 which has the following properties:

i) ζ ≤ f(x) ≤ 1;
ii) lim

x→∞
f(x) = 1;

iii) f(x) ↑ as x increases.
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Abstract. Zaremba’s problem is studied in weighted Smirnov classes of
harmonic functions in domains bounded by arbitrary simple smooth curves
as well as in some domains with piecewise-smooth boundaries. The condi-
tions of solvability are obtained and the solutions are written in quadratures.
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îâäæñéâ. äŽîâéĲŽï ïŽïŽäôãîë ŽéëùŽêŽ öâïûŽãèæèæŽ ßŽîéëêæñè òñêóùæ-
ŽåŽ ïéæîêëãæï ûëêæŽê çèŽïâĲöæ àèñãæ ûæîâĲæå öâéëïŽäôãîñè ŽîââĲöæ áŽ
Žàîâåãâ äëàæâîå ñĲŽê-ñĲŽê àèñã ïŽäôãîæŽê ŽîââĲöæ. áŽáàâêæèæŽ ŽéëýïêŽ-
áëĲæï ìæîëĲâĲæ áŽ ŽàâĲñèæŽ ŽéëêŽýïêâĲæ çãŽáîŽðñîâĲöæ.
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Boundary value problems for harmonic functions of two variables are
well-studied under various assumptions regarding the unknown functions
and the domains in which they are considered. In particular, problems are
studied for harmonic functions of the class ep(D) being real parts of analytic
in a simlpy connected domain D functions of the Smirnov class Ep(D) (for
their definition see, e.g., [1, Ch. IX–X], or [2]). In these classes the Dirich-
let, Neumann and Riemann–Hilbert problems are investigeted in domains
with piecewise-smooth boundaries (see, e.g., [3]–[7]). The boundary value
problems are considered in some analogous classes, as well ([7]–[9]).

Of special interest is the investigation of a mixed boundary value problem
of Smirnov type, when values of unknown functions are prescribed on a
part L1 of the boundary L of the domain D, while the values of its normal
derivative are given on the supplementary part L2 = L \ L1.

S. Zaremba was the first who studied this problem ([10]) and hence in
literature it frequently is called Zaremba’s problem (see, e.g., [11]).

In [12] we have introduced the weighted Smirnov classes of harmonic func-
tions e(L1p(ρ1), L′2q(ρ2)) and investigated Zaremba’s problem in the above-
mentioned classes when D is a bounded domain with Lyapunov boundary L,
and ρ1 and ρ2 are power functions. The same problem has been considered
in [13] for some domains with piecewise-Lyapunov boundaries. However,
we did not succeed in covering the case of domains with smooth boundaries
because when reducing, by means of a conformal mapping, the problem to
the case of a circle, we obtain a problem in the class e(L1p(ω1), L′2q(ω2)),
where ω1 and ω2 are not power functions, and hence the emerged Smirnov
classes need further investigation.

In the present work we show that the method of investigation of Zarem-
ba’s problem suggested by us in [12] and [13] allows us to obtain a picture
of solvability of the problem in domains with arbitrary smooth boundaries
and also in some domains with piecewise-smooth boundaries. Towards this
end, we use properties of the conformal mapping of a unit circle onto the
domain with a piecewise-smooth boundary and of its derivative (see, e.g.,
[14] and [5, Ch. III]). On the basis of these properties we manage to show
that the functions of the class e(Γ1p(ω1), Γ′2q(ω2)) for p > 1, q > 1, are rep-
resentable by the Poisson integral. We also succeed in extending to the case
of the emerged nonpower weights ω1 and ω2 some needed for investigation
properties of the Smirnov class stated in [12] for power weights. Next, using
Stein’s interpolation theorem on weight functions ([15]) for singular inte-
grals with Cauchy kernel, we reveal such properties of the functions ω1 and
ω2 which allow us to solve the characteristic Cauchy singular integral equa-
tion in the weighted Lebesgue classes with the weight ω2, rather important
for investigation of Zaremba’s problem.

10. Definitions, Notation and Some Auxiliary Statements

Let D be a simply connected domain with Jordan smooth oriented bound-
ary L. Let Lk = [Ak, Bk], k = 1, n, be arcs lying separately on L (the points
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A1, B1, A2, B2, . . . , AmBm lie separately on L following each other in the
positive direction), and let [A′k, B′

k] be the arcs lying on Lk. Assume

L1 =
m⋃

k=1

Lk, L̃ =
m⋃

k=1

(
[Ak, A′k] ∪ [B′

k, Bk]
)
, L2 = L \ L1. (1)

Let z = z(w) be a conformal mapping of the circle ∪ = {w : |w| < 1}
onto the domain D, and w = w(z) be the inverse mapping. Assume

Γ1 = w(L1), Γ̃ = w(L̃), Γ2 = w(L2), γ = {w : |w| = 1}, (2)

Θ(E) =
{
ϑ : 0 ≤ ϑ ≤ 2π, eiϑ ∈ E, E ⊂ γ

}
,

Γj(r) =
{
w : w = reiϑ, ϑ ∈ Θ(Γj)

}
, j = 1, 2, Lj(r) = z(Γj(r)).

Let C1, C2, . . . , C2m be the points A1, A2, . . . , Am, B1, B2, . . . , Bm taken
arbitrarily, and D1, D2, . . . , Dn be points on L \ L̃, different from Ck. Note
that the points D1, D2, . . . , Dn1 lie on L1 and the points Dn1+1, . . . , Dn lie
on L2.

Let p and q be numbers from the interval (1,∞), and we assume that

ρ1(z) =
n1∏

k=1

(z −Dk)αk , −1
p

< αk <
1
p′

, p′ =
p

p− 1
, (3)

ρ2(z) =
m1∏

k=1

(z − Ck)νk

2m∏

k=m1+1

(z − Ck)λk

n∏

k=n1+1

(z −Dk)βk , (4)

−1
q

< νk ≤ 0, 0 ≤ λk <
1
q′

, −1
q

< βk <
1
q′

, q′ =
q

q − 1
.

Definition 1 ([12]). Let r1(z), r2(z) be analytic functions given in D.
We say that the function u(z), z = x + iy, harmonic in the domain D,
belongs to the class e(L1p(r1), L′2q(r2)), if

sup
r

[ ∫

L1(r)

∣∣u(z)r1(z)
∣∣p |dz|+

∫

L2(r)

(∣∣∣∂u

∂x

∣∣∣
q

+
∂u

∂y

∣∣∣
q)
|r2(z)|q |dz|

]
< ∞. (5)

Assume e(L1p, L
′
2q(r2)) ≡ e(L1p(1), L′2q(r2)). If L = L1 = γ = γ1, then

the class e(γ1p(1)) coincides with the class of harmonic functions hp. For
p > 1, the functions of that class are representable by the Poisson integral
(see, e.g., [1, Ch. IX]).

Definition 2. Let E be a finite union of closed intervals lying on the
real straight line. By A(E) we denote the set of functions f(t) absolutely
continuous on E, that is, the functions f for which for an arbitrary ε > 0
there is a number τ > 0 such that if ∪(αk, βk) is an arbitrary finite union
of nonintersecting intervals from E such that

∑
(βk − αk) < δ, then the

inequality
∑ |f(βk)− f(αk)| < ε is fulfilled.

If f(z) is a function defined on the subset E of the curve L and z = z(s)
is the equation of the curve L with respect to the arc coordinate, then we
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say that f(z) is absolutely continuous on E and write f ∈ A(E), if the
function f(z(s)) is absolutely continuous on the set {s : z(s) ∈ E}.

Statement 1 ([12, Lemma 9]). If f(t) ∈ A(L2 ∪ L̃), then the function
f(z(τ)), where z(τ) is the restriction on γ of the conformal mapping of
∪ onto D, belongs to A(Γ2 ∪ Γ̃), and vice versa, if ϕ ∈ A(Γ2 ∪ Γ̃), then
ϕ(w(t)) ∈ A(L2 ∪ L̃).

Statement 2 ([12, Lemma 8]). If U(z) = U(x, y) belongs to the class
e(L1p(ρ1), L′2q(ρ2)), then the function u(w) = U(z(w)) = U(x(ξ, η), y(ξ, η))
belongs to the class e

(
Γ1p(ρ1(z(w)) p

√
z′(w)), Γ′2q(ρ2(z(w)) q

√
z′(w))

)
.

Thus by means of substitution z = z(w), where z = z(w) is the conformal
mapping of ∪ onto D, the function U(z) of the class e(L1p(ρ1), L′2q(ρ2))
transforms into the function u(w) of the class e(Γ1p(ω1), Γ′2q(ω2)), where

ω1(w) = ρ1(z(w)) p
√

z′(w), (6)

ω2(w) = ρ2(z(w)) q
√

z′(w). (7)

20. Formulation of a Mixed Problem and Its Reduction to
a Problem in the Circle

Consider the following mixed problem (Zaremba’s problem in Smirnov
class of harmonic functions): Find a function U(z) satisfying the conditions





∆U = 0, U ∈ e(L1p(ρ1), L′2q(ρ2)), p > 1, q > 1,

U+
∣∣
L1\L̃ = F, F ∈ Lp(L1 \ L̃, ρ1), U+ ∈ A(L2 ∪ L̃),

U+
∣∣
L̃

= Ψ, Ψ′ ∈ Lq(L̃, ρ2),
(∂U

∂n

)+
∣∣∣∣
L2

= G, G ∈ Lq(L2, ρ2).
(8)

Relying on Statements 1 and 2, the following theorem is valid.

Theorem 1. Let ρ1, ρ2, ω1, ω2 be the functions given by the equalities
(3)–(4) and (6)–(7).

If U = U(z) is a solution of the problem (8) and

f(τ) = F (z(τ)), ψ(τ) = Ψ(z(τ)), g(τ) = G(z(τ)), (9)

then the function u(w) = U(z(w)) is a solution of the problem




∆u = 0, u ∈ e(Γ1p(ω1), Γ′2q(ω2)),
u+

∣∣
Γ1\Γ̃ = f, f ∈ Lp(Γ1 \ Γ̃, ω1), u+ ∈ A(Γ2 ∪ Γ̃),

u+
∣∣
Γ̃

= ψ, ψ′ ∈ Lq(L̃, ρ2),
(∂u

∂u

)+
∣∣∣∣
Γ2

= g, g ∈ Lq(Γ2; ω2).
(10)

Conversely, if u = u(w) is a solution of the problem (10), then U(z) =
u(w(z)) is a solution of the problem (8).
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30. The Weight Properties of the Functions ω1 and ω2

By W p(Γ) we denote the set of all functions r(t) given on the set Γ which
is a finite union of simple rectifiable curves for which the operator

T : f → Tf, (Tf)(t) =
r(t)
πi

∫

Γ

1
r(ζ)

f(ζ)
ζ − t

dζ, t ∈ Γ,

is bounded in Lp(Γ). Assume that W p = W p(γ). Obviously, if Γ is a finite
union of nonintersecting closed arcs on Γ and r ∈ W p, then the restriction
on Γ of the functions r (i.e., χΓ(t)r(t)) belongs to W p(Γ).

We will need the following results.

Statement 3 (see, e.g., [5, p. 104]). If G(t) is a continuous on γ function
such that [ind G]γ = 1

2π [arg G(t)]γ = 0, then the function

r(τ) = exp
{

1
2πi

∫

γ

ln G(ζ)
ζ − τ

dζ

}
, τ ∈ γ, (11)

belongs to the set
⋂

δ>1

W δ.

Corollary 1. For any real number a we have

ra(τ) ∈
⋂

δ>1

W δ. (12)

Corollary 2. If µ is a real continuous on γ function, then

exp
{

1
2π

∫

γ

µ(ζ)
ζ − τ

dζ

}
= r(τ) ∈

⋂

δ>1

W δ. (13)

Statement 4. If the domain D is bounded by a simple closed smooth
curve L and z(w) is a conformal mapping of U onto D, then:

(a) z′(τ) ∈ ⋂
δ>1

W δ, and [z′(w)]±1 ∈ ⋂
δ>1

Hδ, where Hδ is the class of

Hardy;
(b) if c ∈ γ, then z(w)− z(c) = (w − c)zc(w), [zc(w)]±1 ∈ ⋂

δ>1

Hδ and

z(τ)− z(c) = (τ − c)zc(τ), where zc(τ) ∈
⋂

δ>1

W δ. (14)

Statements (a) and (b) are particular cases of theorems stated in [14]
(see also [5, Ch. III]). In particular, Statement (a) can be found in [5,
Ch. III, Theorem 1.1, Corollary 1], and Statement (b) is also therein, Ch. III,
Theorem 3.1. In this connection, as it follows from the proofs, both z′(τ)
and zc(τ) are representable by equalities of the type (11) (see, respectively,
[5, p. 139, the equality (1.14) and p. 154, the equalities (3.16) and (3.18)]).
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By virtue of Corollaries 1 and 2 of Statement 3, for any a ∈ R we have

[z′(τ)]a, [zc(τ)]a, z0(τ) =
n∏

k=1

[zck
(τ)]a ∈

⋂

δ>1

W δ, (15)

ck ∈ γ, cj 6= ck, j 6= k.

Consequently, we also have

[ p
√

z′(τ)]a, [ q
√

z′(τ)]a ∈
⋂

δ>1

W δ. (16)

Theorem 2. If the functions ρ1 and ρ2 are given by the equalities (3)
and (4), then the functions ω1 and ω2 defined by the equalities (6) and (7)
belong, respectively, to W p and W q.

Proof. We have

ρ1(z(τ)) =
n∏

k=1

(
z(τ)− z(dk)

)αk ,

where dk = w(Dk), − 1
p < αk < 1

p′ . From the equalities (14) it follows that

ρ1(z(τ)) =
n1∏

k=1

(τ − dk)αk

n1∏

k=1

zdk
(τ) = r1(τ)r2(τ).

By means of the above assumptions regarding αk, we can find numbers
a, b ∈ (0, 1) such that

r
1

(1−a)(1−b)
1 =

[ n1∏

k=1

(z − dk)αk

] 1
(1−a)(1−b)

∈ W p.

Moreover, by virtue of (15) we have r
1

a(1−b)
2 ∈ ⋂

δ>1

W δ.

Here we use the following Stein’s theorem ([15]).
Let M be a linear operator acting from one space of measurable functions

to the other,

1 ≤ l1, l2, s1, s2 ≤ ∞, l−1 = (1− a)l−1
1 + al−1

2 ,

s−1 = (1− a)s−1
1 + as−1

2 , 0 ≤ a ≤ 1,∥∥(Mf)ki

∥∥
si
≤ Ci‖fui‖li .

Then
‖(Mf)k‖s ≤ C‖fu‖l,

where
k = k1−a

1 ka
2 , u = u1−a

1 ua
2 , C = C1−a

1 Ca
2 .

Assuming in this theorem

k1(τ)=u1(τ) =
[ n1∏

k=1

(τ−dk)αk

] 1
(1−a)(1−b)

, k2(τ)=u2(τ)=
n1∏

k=1

[zdk
(τ)]

1
a(1−b) ,

s1 = s2 = s = p > 1,
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we find that the function

r1−a
1 ra

2 =
[ n1∏

k=1

(τ − dk)αk

n1∏

k=1

zdk

] 1
1−b (

= ρ
1

1−b

1 (z(τ))
)

belongs to W p.
Further, taking in the above theorem

k1(τ) = u1(τ) = ρ
1

1−b

1 (z(τ)), k2(τ) = u2(τ) =
(

p
√

z′
) 1

b , s1 = s2 = s = p,

we find that
([

ρ1(z(τ))
] 1

1−b

)1−b([
p
√

z′
] 1

b

)b

= ρ1(z(τ)) p
√

z′(τ) = ω1(τ) ∈ W p.

Taking into account that − 1
q < βk < 1

q′ , − 1
q < νk ≤ 0, 0 ≤ λk < 1

q′ , we
analogously see that ω2(τ) ∈ W q. ¤

40. One Property of Functions of the Class e(Γ1p(ω1),Γ′2q(ω2))
for p > 1, q > 1

Theorem 3. If u ∈ e(Γ1p,Γ′2q(ω2)), where p > 1, q > 1, then:

(i) if p < q, then u ∈ hp;
(ii) if p > q, then u ∈ hq1 for any q1 ∈ [0, q];
(iii) if p = q, then u ∈ hp1 for any p1 ∈ (0, p).

Proof. (i) Let

I(r) =

2π∫

0

∣∣u(reiϑ)
∣∣p dϑ.

We have

I(r) =
∫

Θ(Γ1)

∣∣u(reiϑ)
∣∣p dϑ +

∫

Θ(Γ2)

∣∣u(reiϑ)
∣∣p dϑ ≤

≤ sup
r

∫

Θ(Γ1)

∣∣u(reiϑ)
∣∣p dϑ +

∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u

∂r
dr − u(0)

∣∣∣∣
p

dϑ ≤

≤ M1 + 2p

( ∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u

∂r
dr

∣∣∣∣
p

dϑ + |u(0)|p 2π

)
=

= M2 + 2p

∫

Θ(Γ2)

( r∫

0

∣∣∣∂u

∂r

∣∣∣ dr

)p

dϑ =

= M2 + 2pI1(r). (17)
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Since
∣∣∂u

∂r

∣∣ ≤
∣∣∂u
∂x

∣∣ +
∣∣∂u

∂y

∣∣, we have

I1(r) =
∫

Θ(Γ2)

∣∣∣∣
r∫

0

∣∣∣∂u

∂r

∣∣∣ dr

∣∣∣∣
p

dϑ ≤
∫

Θ(Γ2)

[ r∫

0

∣∣∣(∂u

∂x

∣∣∣ +
∣∣∣∂u

∂y

∣∣∣
)

dr

]p

dϑ =

=
∫

Θ(Γ2)

[ r∫

0

(∣∣∣∂u

∂x

∣∣∣ +
∣∣∣∂u

∂y

∣∣∣
)
|ω2| 1

|ω2| dr

]p

dϑ ≤

≤
∫

Θ(Γ2)

[( r∫

0

(∣∣∣∂u

∂x

∣∣∣ +
∣∣∣∂u

∂y

∣∣∣
)q

|ω2|q dr

) p
q
( r∫

0

dr

|ω2|q′
) p

q′
]

dϑ ≤

≤ (2q)
p
q

∫

Θ(Γ2)

( r∫

0

(∣∣∣∂u

∂x

∣∣∣
q

+
∣∣∣∂u

∂y

∣∣∣
q)
|ω2|q dr

) p
q
( r∫

0

dr

|ω2|q′
) p

q′
dϑ =

= 2p

∫

Θ(Γ2)

( r∫

0

(∣∣∣∂u

∂x

∣∣∣
q

+
∣∣∣∂u

∂y

∣∣∣
q)
|ω2|q dr

) p
q

(J(ϑ))
p
q′ dϑ, (18)

where we have put

J(ϑ) =

r∫

0

dr

|ω2(reiϑ)|q′ .

Estimate the value sup
Θ(Γ2)

J(ϑ). We have

1
|ω2(reiϑ)|q′ ≤

M3

2m∏
k=m1+1

|reiϑ − ck|λkq′
∏

βk>0

|reiϑ − dk|βkq′ |z0(reiϑ)|q′

(for definition of z0, see (15)).
Assume that α = sup

k
(λkq′, βkq′). By virtue of the inequalities (7), we

have 0 ≤ α < 1. Since |reiϑ − ck| ≥ 1 − r, |reiϑ − dk| ≥ 1 − r, Θ(Γ2) =⋃m
k=1(βk, αk+1) with αm+1 = α1, and on every interval (βk, αk+1) there are

no more than three points from the set ∪{zk} = ∪{ck}∪∪{dk}, then dividing
the corresponding intervals into three or two parts, we will represent Θ(Γ2)
as the union of no more than 6m intervals, and on every interval

1
|ω2(reiϑ)|q′ ≤

M4

(1− r)α|z0(reiϑ)|q′ , M4 = max
k 6=j

3
|zk − zj | .

Thus

sup
Θ(Γ2)

J(ϑ) ≤ (6m)M4 sup
Θ(Γ2)

r∫

0

dr

(1− r)α|z0(reiϑ)|q′ =
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= M5 sup
Θ(Γ2)

r∫

0

dr

(1− r)α|z0(reiϑ)|q′ . (19)

Applying in the last integral Hölder’s inequality with exponent 1+α
2α , we

obtain

(J(ϑ))
p
q′ ≤ M6

( r∫

0

dr

(1− r)
1+α

2

) p
q′

2α
1+α

( r∫

0

dr

|z0(reiϑ)|q′ 1+α
1−α

) p
q′

1−α
1+α

≤

≤ M7

( r∫

0

dr

|z0(reiϑ)|q′ 1+α
1−α

) p
q′

1−α
1+α

. (20)

Show that the integral

J1(ϑ) =
( r∫

0

dr

|z0(reiϑ)|q′ 1+α
1−α

) p
q′

1−α
1+α

is a function integrable in any degree on γ and hence on Θ(Γ2).
Towards this end, we note that if p

q′
1−α
1+α ≤ 1, then

J1(ϑ) ≤ 1 +

r∫

0

dr

|z0(reiϑ)|q′ 1+α
1−α

.

If, however, p
q′

1−α
1+α > 1, then using Hölder’s inequality with the above

exponent, we have

J1(ϑ) ≤
r∫

0

dr

|z0(reiϑ)|p .

From the above estimates we can see that J1(ϑ) ∈ ⋂
δ>1

Lδ([0, 2π]) if we

prove that for arbitrary δ > 1 the function
r∫
0

dr
|z0(reiϑ)|µ is integrable in the

δ-th degree for any µ.
We have
2π∫

0

( r∫

0

dr

|z0(reiϑ)|µ
)δ

dϑ ≤
2π∫

0

r∫

0

dr

|z0(reiϑ)|µδ
dϑ ≤

≤
1∫

0

2π∫

0

dϑ

|z0(reiϑ)|µδ
dr = M8 < ∞.

This inequality is valid since 1
z0
∈ ⋂

δ>1

Hδ (see Statement 4). Thus we have

proved that J(ϑ) ∈ ⋂
δ>1

Lδ[0, 2π].
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Applying now to the right-hand side of (18) Hölder’s inequality with
exponent q

p > 1, we obtain

I1(r) ≤ 2p

∫

Θ(Γ2)

[ r∫

0

(∣∣∣∂u

∂x

∣∣∣
q

+
∣∣∣∂u

∂y

∣∣∣
q)
|ω2|q dr

]
dϑ

( ∫

Θ(Γ2)

|J(ϑ)| p
q′

q
q−p

) q−p
q

.

But u ∈ e(Γ1p,Γ′2q(ω2)), whence it follows that sup
r

I1(r) < ∞, and from

(17) we can conclude that sup
r

I(r) < ∞ and hence u ∈ hp.

(ii) It can be easily verified that if p1 < p2, then u ∈ e(Γ1p2 , Γ
′
2q(ω2)) ⊂

u ∈ e(Γ1p1 ,Γ
′
2q(ω2)). Therefore if p > q > q1 and u ∈ e(Γ1p,Γ′2q(ω2)), then

u ∈ e(Γ1q1 , Γ
′
2q(ω2)) and u ∈ hq1 .

(iii) If u ∈ e(Γ1p,Γ′2p(ω2)), then for any 1 < p1 < p, we have u ∈
e(Γ1p1 , Γ

′
2q(ω2)), and hence u ∈ hp1 . ¤

Let now u ∈ e(Γ1p(ω1),Γ′2q(ω2)), p > 1, q > 1. Since 1
ω1

∈ Hp′+ε,
ε > 0, there exists η > 0 such that u ∈ e(L1+η, L′2q(ω2)), and therefore
sup

r

∫
Θ(Γ1)

|u(reiϑ)|1+η dϑ < ∞. Assuming 1 + η < q, by Theorem 3 we

can conclude that u ∈ h1+η. As far as the functions of the class h1+η are
representable by the Poisson integral, we state the following

Theorem 4. If u ∈ e(Γ1p(ω1),Γ′2q(ω2)), p > 1, q > 1, then u is likewise
representable by the Poisson integral.

50. Reduction of the Problem (10) to a Singular Integral
Equation

If w(Ak) = ak, w(Bk) = bk, w(A′k) = a′k, w(B′
k) = b′k, we have

Γ1 = w(L1) =
m⋃

k=1

(ak, bk), Γ̃ =
⋃

[ak, a′k] ∪ [b′k, bk], Γ2 = γ \ Γ1.

Following the way of investigation of the problem (10) carried out in
Section 30 of [12], we can state that if u is a solution of the problem (10)
and u+(eiϑ) is its boundary function, then the function ∂u+

∂ϑ is a solution of
the integral equation

1
2π

∫

Θ(Γ2)

∂u+

∂ϑ
ctg

ϑ− ϕ

2
dϑ = µ(ϕ), eiϕ ∈ Γ2, (21)

where

µ(ϕ) = −g(ϕ)− 1
2π

∫

Θ(Γ1\Γ̃)

f(ϑ)
dϑ

sin2 ϑ−ϕ
2

− 1
2π

∫

Θ(Γ2)

ψ(ϑ)
dϑ

sin2 ϑ−ϕ
2

+

+
m∑

k=1

[
ψ(a′k) ctg

α′k − ϕ

2
− ψ(b′k) ctg

β′k − ϕ

2

]
− ψ̃(ϕ), (22)
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ψ̃(ϕ) =
1
2π

∫

γ

χ
Γ̃
(ϑ)

∂ψ

∂ϑ
ctg

ϑ− ϕ

2
dϑ. (23)

Here χ
Γ̃

is the characteristic function of the set Γ̃, we write f(ϑ), ψ(ϑ),
g(ϕ) instead of f(eiϑ), ψ(eiϑ), g(eiϕ) and put a′k = eiαk , b′k = eiβ′k .

Let us show that under the adopted assumptions the functions ∂u+

∂ϑ and
µ belong to the class Lq(Γ2;ω2).

We start with the function ∂u+

∂ϑ . Tracing the proof of Lemma 1 in [12],
we establish that the condition u ∈ e(Γ1p(ω1),Γ′2q(ω2)) is equivalent to the
condition

sup
r

[ ∫

Θ(Γ1)

∣∣u(reiϑ)ω1(reiϑ)
∣∣p dϑ+

+
∫

Θ(Γ2)

∣∣∣∣

√(∂u

∂x
(reiϑ)

)2

+
(∂u

∂y
(reiϑ)

)2

ω2(riϑ)
∣∣∣∣
q

dϑ

]
< ∞ (24)

for the functions ω1, ω2, as well (and not only for the power functions). It
is now not difficult to see that the statement below is valid.

Statement 5. If u ∈ e(Γ1p(ω1),Γ′2q(ω2)), p > 1, q > 1, and u+ ∈ A(Γ2)
(in particular, if u is a solution of the problem (10)), then

(
∂u
∂ϑ

)+ and ∂u+

∂ϑ
belong to Lq(Γ2;ω2).

The proof of the above statement is analogous to that of Lemma 5 in [12]
if in the appropriate place we take advantage of the fact that the condition
(5) is equivalent to the condition (24).

For the function µ to belong to Lq(Γ2; ω2), as is seen from the equality
(22), it suffices to show that ψ̃ ∈ Lq(Γ2; ω2). This follows from Theorem 2
since λ(ϑ) = χ

Γ̃
(ϑ) ∂ψ

∂ϑ ∈ Lq(γ, ω2) (because ∂ψ
∂ϑ ∈ Lq(Γ2;ω2)), while the

operator

λ → λ̃, λ̃(ϕ) =
1
π

2π∫

0

λ(ϑ) ctg
ϑ− ϕ

2
dϑ

is bounded in Lq(γ, ω2) if the singular Cauchy operator is bounded in it,
and latter is bounded in Lq(γ, ω2) since ω2 ∈ W q by Theorem 2.

60. The Solution of the Equation (21) in the Space Lq(Γ2; ω2)

Assuming τ = eiϑ, t = eiϕ and taking into account that

dτ

τ − t
=

(1
2

ctg
ϑ− ϕ

2
+

i

2

)
dϑ,
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the equation (21) can be written in the form

1
πi

∫

Γ2

∂u+

∂ϑ

dτ

τ − eiϕ
= iµ(ϕ) + a, a =

1
2π

∫

Γ2

∂u+

∂ϑ
dϑ. (25)

Since u+ is a boundary value of a solution of the problem (10), we see

a =
1
2π

m∑

k=1

(
u(ak+1)− u(bk)

)
=

1
2π

m∑

k=1

[
ψ(ak+1)− ψ(bk)

]
, am+1 = a1.

Thus the function ∂u+

∂ϑ is a solution of the singular integral equation

1
πi

∫

Γ2

∂u+

∂ϑ

dτ

τ − eiϕ
= iµ(ϕ) +

1
2π

m∑

k=1

[
ψ(ak+1)− ψ(bk)

]
(26)

belonging to Lq(Γ2; ω2).
Let Γ be a finite union of arcs [ak, bk] ⊂ γ, ρ be a weight function from

W q and

SΓ : ϕ → SΓϕ, (SΓϕ)(t) =
1
πi

∫

Γ

ϕ(τ)
τ − t

dτ , t ∈ Γ.

Let λ ∈ Lq(Γ; ρ). Consider the singular integral equation

SΓϕ = λ (27)

in the class Lq(Γ; ρ).
This equation has been investigated in different classes of functions by

many authors. In our formulation, when ρ is a power function of definite
type, it is solved in [16] (see also [17, Ch. III, § 7, pp. 103–109]; a history
of the question can be found therein). In connection with investigation
of Zaremba’s problem, in [12] we showed that this result from [17] was
generalized to a general case of power weight functions. We will now show
that the property of solvability of the equation (27) in the classes Lq(Γ; ρ)
for power weights preserves for wider classes of weights, as well.

The points a1a2, . . . , am; b1, b2, . . . , bm taken arbitrarily are denoted be-
low by c1, c2, . . . , c2m. Let

Π1(z) =

√√√√
m1∏

k=1

(z − ck), Π2(z) =

√√√√
2m∏

k=m1+1

(z − ck), R(z) =
Π1(z)
Π2(z)

,

where the branch of the first function is taken arbitrarily and that of the sec-
ond one is selected in such a way that the function R(z) in the neighborhood
of z = ∞ expands in the series zm−m1 + A1z

m−m1−1 + · · · .
Assume

R(τ) =
Π1(τ)
Π2(τ)

, τ ∈ Γ. (28)
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Let

ρ(τ) =
m1∏

k=1

(τ − ck)νk

2m∏

k=m1+1

(τ − ck)λk ,−1
q

< νk ≤ 0, 0 ≤ λk <
1
q′

. (29)

Moreover, we assume that − 1
q < 1

2 + νk < 1
q′ , − 1

q < λk − 1
2 < 1

q′ , i.e.,

−1
q

< νk < min
(
0;

1
q′
− 1

2

)
, max

(
0;

1
2
− 1

q

)
≤ λk <

1
q′

. (30)

Finally, let
ω(τ) = ρ(z(τ))ρ0(τ), (31)

where ρ0 ∈
⋂

δ>1

W δ.

Suppose

UΓϕ = RSΓ
1
R

ϕ. (32)

If ϕ(τ) ≡ q(τ) is an arbitrary polynomial, then q ∈ Lp(Γ;Π−1
1 Πp−1

2 ), and
by Lemma 1 of [17, p. 105] we obtain

(UΓSΓq)(τ) = q(τ), when m1 ≥ m. (33)

However, if m > m1, then

(UΓSΓq)(τ) = q(τ) + R(τ)Qr−1(τ), (34)

where Qr−1(τ) is a polynomial of degree not higher than r − 1, r = m −
m1 − 1.

Since ω(τ) = ρ(z(τ))ρ0(τ), according to Theorem 2 ω ∈ W q. Moreover,
since the conditions (30) are fulfilled, the function ω̃(τ) = R(τ)ω(τ) belongs
to W q. Since the set of polynomials {qn} is dense in Lq(Γ; ω̃) for any
ω̃ ∈ W q, passing in the equalities (33) and (34) to the limit as q = qn →
ϕ ∈ Lq(Γ; ω), we find that

(UΓSΓϕ)=ϕ for m≤m1, and (UΓSϕ)=ϕ+RQr−1 for m>m1. (35)

On the basis of the above equalities, just as in [17, pp. 107–108] (see also
[12, p. 46]) we prove

Theorem 5. Let for the weight ρ given by the equality (29) the conditions
(30) be fulfilled, and ω(τ) = ρ(z(τ)) q

√
z′(τ), where z = z(w) is a conformal

mapping of the circle ∪ onto a simply connected domain bounded by a simple
closed smooth curve L, and let Γ be a finite union of arcs from γ. Then the
equation

SΓϕ = λ

(i) is solvable for m1 ≤ m and all its solutions are given by the equality

ϕ(τ) = (UΓλ)(τ) + RQr−1(τ), (36)

where Qr−1(τ) is an arbitrary polynomial of order r−1, r = m−m1

(Q−1(τ) ≡ 0).
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(ii) for m1 > m, the equality is solvable if and only if
∫

Γ

τkR(τ)λ(τ) dτ = 0, k = 0, l − 1, l = m1 −m, (37)

and if these conditions are fulfilled it is uniquely solvable and the
solution is given by the equality (36), where Qr−1(τ) ≡ 0.

70. The Solution of the Problem (8)

Having at hand Theorem 5, we are able to investigate the equation (21):
find the conditions of its solvability and write out all solutions. By virtue
of the same theorem, solving the equation (26) and hence (21), we can find
the function ∂u+

∂ϑ on Γ2; integrating it, we find u+(τ) on Γ2. There appear
arbitrary constants which (or a part of which) are defined by the conditions
of absolute continuity of u+ on Γ2 ∪ Γ̃ (see (10)). Having found the values
u+ on Γ2, we will have u+ on the entire neighborhood, because it was given
on Γ1 beforehand. By virtue of Theorem 4, all the above-said allows us
to find u(w) by using the Poisson formula with density u+(eiϑ). Having
known u(w), by Theorem 1 we find a solution U(z) = u(w(z)), z ∈ D, of
the problem (8).

Detailed calculations are analogous to those carried out in [12] (Secti-
ons 50–70). Omitting them, we can formulate the final result.

Theorem 6. Let:

(a) the domain D, the curve L, and its parts L1, L̃, L2 be defined ac-
cording to Section 10 and the equalities (1), while the weight func-
tions ρ1(z), ρ2(z) be defined by the conditions (3)–(4);

(b) z = z(w) be a conformal mapping of the unit circle ∪ onto D;
w = w(z) be the inverse mapping; the sets Γ1, Γ̃, Γ2 be defined by
(2) and the functions ω1, ω2 by the equalities (6)–(7);

(c) ak = w(Ak) = eiαk , bk = w(Bk) = eiβk , a′k = w(A′k) = eiα′k ,
b′k = w(B′

k) = eiβ′k , 0 ≤ m1 ≤ 2m, ck = w(Ck), dk = w(Dk);
(d) the function R(τ) be defined by the equality (28).

If the problem (8) is considered in the class e(L1p(ρ1), L′2q(ρ2)), p > 1,
q > 1, the functions f , ψ, g are defined by the equalities (9) and we assume
that for the exponents of the weights the conditions (30) are fulfilled, then:

I. If m1 ≤ m, then for the solvability of the problem (8) it is necessary
and sufficient that the conditions

αk+1∫

βk

Re
[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)(τ)(τ − eiα)
dτ

]
dα =

= ψ(eiαk+1)− ψ(eiβk), k = 1,m, (38)
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be fulfilled, where

µ(τ) = µ(eiϕ) ≡ µ(ϕ) =

= −g(ϕ) +
1
2π

m∑

k=1

[
ψ(eiαk+1) ctg

αk+1 − ϕ

2
− ψ(eiαk) ctg

βk − ϕ

2

]
−

− 1
2π

∫

Θ(Γ\Γ̃)

f(ϑ)
dϑ

2 sin2 ϑ−ϕ
2

− 1
2π

∫

Θ(Γ̃)

ψ(ϑ)
dϑ

2 sin2 ϑ−ϕ
2

, (39)

a =
1
2π

m∑

k=1

[
ψ(eiαk+1)− ψ(eiβk)

]
, αm+1 = α1. (40)

II. If m1 > m, then for the solvabilty of the problem (8) it is necessary
and sufficient that the conditions (38) and

∫

Γ2

iµ(τ) + a

R(τ)
τk dτ = 0, k = 0, l − 1, l = m1 −m, (41)

be fulfilled.
III. If the above conditions are fulfilled, then a solution of the problem

(8) is given by the equality

U(z) = u∗(w(z)) + u0(w(z)), (42)

where

u∗(w) = u(reiϑ) =
1
2π

∫

Θ(Γ̃)

ψ(ϑ)P (r, ϑ− ϕ) dϑ+

+
1
2π

∫

Θ(Γ1\Γ̃)

f(ϑ)P (r, ϑ− ϕ) dϑ +
1
2π

∫

Θ(Γ2)

WΓ2(ϑ)P (r, ϑ− ϕ) dϑ (43)

in which

P (r, x) =
1− r2

1 + r2 − 2r cos x
,

WΓ2(ϑ) =

ϑ∫

β1

χΘ(Γ2)(α)
[

Re
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα + Bk,

Θ(E) = {ϑ : eiϑ ∈ E}, and χ
E

denotes characteristic function of
the set E,

Bk = ψ(eiαk+1)−
αk+1∫

βi

χΘ(Γ2)(α)Re
[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα, (44)
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and

u0(reiϑ) =





0, when m1 > m,

1
2π

2π∫

0

W ∗
Γ2

(ϑ)P (r, ϑ− ϕ) dϑ,

W ∗
Γ2

(ϑ)=

ϑ∫

β1

χΘ(Γ2)(α)Re
[
R(eiα)Qr−1(eiα)

]
dα+Ak,

eiϑ ∈ (bk, ak+1),

(45)

Ak = −
αk+1∫

βk

Re
[
R(eiα)Qr−1(eiα)

]
dα, (46)

Qr−1(τ) ≡ 0, and for m1 < m,

Qr−1(eiϑ) =
r−1∑

j=0

(xj + iyj)eijϑ, (47)

where the coefficients xj, yj, j = 0, r − 1, are defined from the sys-
tem




r−1∑

j=0

αk+1∫

βk

[
xjR1(eiϑ) cos jϑ− yjR2(eiϑ) sin jϑ

]
dϑ = 0,

r−1∑

j=0

αk+1∫

βk

[
xjR2(eiϑ) cos jϑ + yjR1(eiϑ) sin jϑ

]
dϑ = 0

(48)

and we put R1(eiϑ) = Re R(eiϑ), R2(eiϑ) = Im R(ϑ).
If the rank of the matrix composed by the coefficients of the system (48)

is equal to ν, then among the numbers x0, x1, . . . , xr−1, y0, y1, . . . , yr−1 there
are 2(m−m1)−ν arbitrary constants, and hence the general solution of the
problem (8) contains 2(m−m1)− ν arbitrary real parameters.

80. On a Mixed Problem in Domains with Piecewise-Smooth
Boundaries

In [13], the problem (8) is investigated in domains with piecewise-Lyapu-
nov boundaries. For curves with arbitrary nonzero angles there is Theorem
1 in [13] which shows relations between the values p, q, αk, βk, νk, λk, and
if they are fulfilled, the statements of type I–III in Theorem 6 of the present
work remain valid. A detailed analysis of cases where the above relations are
realized is given. When investigating the problem we have used the results
obtained by S. Warschawskǐı ([18]) on conformal mappings of a circle on a
domain with piecewise-Lyapunov boundary.
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Consider the case where L is a piecewise-smooth curve. Assume that on
L there are angular points t1, t2, . . . , ts with the values µkπ, 0 < µk ≤ 2,
k = 1, s of the interior angles at these points. In this case, for conformal
mapping we use some results from [14] (see also [5, Ch. III]) according to
which

z′(w) =
s∏

k=1

(w − τk)µk−1z1(w), τk = w(tk),

z(w) =
s∏

k=1

(w − τk)µkz2(w),

where [z1(w)]±1, [z2(w)]±1 belong to
⋂

δ>0

Hδ, while the functions z1(τ), z2(τ)

have the form (11) and hence belong to
⋂

δ>1

W δ.

On the basis of the above-said, taking into account the results of Sections
30 and 40 of the present work and following the reasoning from [13], we can
see that the basic result obtained in [13, Theorem 1] for the problem (8),
when L is a piecewise-smooth curve, remains valid.

This work was supported by the Grant GNSF/ST09-23.3-100.
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INVARIANT REGIONS AND
THE GLOBAL EXISTENCE
FOR REACTION-DIFFUSION SYSTEMS
WITH A TRIDIAGONAL MATRIX
OF DIFFUSION COEFFICIENTS



Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffu-
sion coefficients and nonhomogeneous boundary conditions. In so doing, we
make use of the appropriate techniques which are based on invariant do-
mains and Lyapunov functional methods. The nonlinear reaction term has
been supposed to be of polynomial growth. This result is a continuation of
that by Kouachi [12].
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îâäæñéâ. êŽöîëéæï éæäŽêæŽ áŽéðçæùâĲñè æóêâï ŽîŽâîåàãŽîëãŽêæ ïŽïŽä-

ôãîë ŽéëùŽêâĲæï ŽéëêŽýïêåŽ àèëĲŽèñîæ ŽîïâĲëĲŽ æïâåæ îâŽóùæñè-áæòñ-
äæñîæ ïæïðâéâĲæïŽåãæï, îëéâèåŽ áæòñäææï çëâòæùæâêðâĲæ óéêæŽê ðîæáæ-
ŽàëêŽèñî (æŽçëĲæï) éŽðîæùï. ŽéæïŽåãæï àŽéëõâêâĲñèæŽ öâïŽĲŽéæïæ ðâóêæçŽ,
îëéâèæù âòñúêâĲŽ æêãŽîæŽêðñèæ ŽîââĲæï áŽ èæŽìñêëãæï òñêóùæëêŽèæï éâ-
åëáâĲï. ŽîŽûîòæãæ îâŽóùææï ûâãîäâ áŽáâĲñèæŽ ìëèæêëéæŽèñîæ äîáæï
ìæîëĲŽ. êŽöîëéöæ éëõãŽêæèæ öâáâàæ ûŽîéëŽáàâêï çñŽöæï [12] âîåæ öâáâàæï
àŽêãîùëĲŽï.
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1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v − a23∆w = f(u, v, w) in R+ × Ω, (1.1)

∂v

∂t
− a21∆u− a22∆v − a23∆w = g(u, v, w) in R+ × Ω, (1.2)

∂w

∂t
− a21∆u− a32∆v − a11∆w = h(u, v, w) in R+ × Ω, (1.3)

with the boundary conditions

λu + (1− λ)
∂u

∂η
= β1,

λv + (1− λ)
∂v

∂η
= β2

λw + (1− λ)
∂w

∂η
= β3,

on R+ × ∂Ω, (1.4)

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) in Ω, (1.5)

where:

(i) 0 < λ < 1 and βi ∈ R, i = 1, 2, 3, for nonhomogeneous Robin
boundary conditions.

(ii) λ = βi = 0, i = 1, 2, 3, for homogeneous Neumann boundary condi-
tions.

(iii) 1 − λ = βi = 0, i = 1, 2, 3, for homogeneous Dirichlet boundary
conditions.

Ω is an open bounded domain of the class C1 in RN with boundary ∂Ω, and
∂
∂η denotes the outward normal derivative on ∂Ω. The diffusion terms aij

(i, j = 1, 2, 3 and (i, j) 6= (1, 3), (3, 1)) are supposed to be positive constants
with a11 = a33 and (a12 + a21)2 + (a23 + a32)2 < 4a11a22, which reflects the
parabolicity of the system and implies at the same time that the matrix of
diffusion

A =




a11 a12 0
a21 a22 a23

0 a32 a11




is positive definite. The eigenvalues λ1, λ2 and λ3 (λ1 < λ2, λ3 = a11) of A
are positive. If we put

a = min {a11, a22} and a = max {a11, a22} ,

then the positivity of aij ’s implies that

λ1 < a ≤ λ3 ≤ a < λ2.
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The initial data are assumed to be in the domain

Σ =





{
(u0, v0, w0) ∈ R3 : µ2v0 ≤ a21u0 + a23w0 ≤ µ1v0, a32u0 ≤ a12w0

}

if µ2β2 ≤ a21β1 + a23β3 ≤ µ1β2, a32β1 ≤ a12β3,{
(u0, v0, w0) ∈ R3 : µ2v0 ≤ a21u0 + a23w0 ≤ µ1v0, a12w0 ≤ a32u0

}

if µ2β2 ≤ a21β1 + a23β3 ≤ µ1β2, a12β3 ≤ a32β1,



(u0, v0, w0) ∈ R3 :
1
µ2

(a21u0+a23w0)≤v0≤ 1
µ1

(a21u0+a23w0) , a32u0≤a12w0





if
1
µ2

(a21β1+a23β3)≤β2≤ 1
µ1

(a21β1+a23β3) , a32β1≤a12β3,



(u0, v0, w0) ∈ R3 :
1
µ2

(a21u0+a23w0)≤v0≤ 1
µ1

(a21u0+a23w0) , a32u0≥a12w0





if
1
µ2

(a21β1+a23β3)≤β2≤ 1
µ1

(a21β1+a23β3) , a32β1≥a12β3,

where
µ1 = a− λ1 > 0 > µ2 = a− λ2.

Since we use the same methods to treat all the cases, we will tackle only
with the first one. We suppose that the reaction terms f, g and h are
continuously differentiable, polynomially bounded on Σ,

(
f (r1, r2, r3) , g (r1, r2, r3) , h (r1, r2, r3)

)

is in Σ for all (r1, r2, r3) in ∂Σ (we say that (f, g, h) points into Σ on ∂Σ),
i.e.,

a21f (r1, r2, r3) + a23h (r1, r2, r3) ≤ µ1g (r1, r2, r3) (1.6)

for all r1, r2 and r3 such that µ2r2 ≤ a21r1+a23r3 = µ1r2 and a32r1 ≤ a12r3,
and

µ2g (r1, r2, r3) ≤ a21f (r1, r2, r3) + a23h (r1, r2, r3) (1.6a)

for all r1, r2 and r3 such that µ2r2 = a21r1+a23r3 ≤ µ1r2 and a32r1 ≤ a12r3,
and

a32f (r1, r2, r3) ≤ a12h (r1, r2, r3) (1.6b)

for all r1, r2 and r3 such that µ2r2 ≤ a21r1+a23r3 ≤ µ1r2 and a32r1 = a12r3,
and for positive constants E and D, we have

(Ef + Dg + h) (u, v, w) ≤ C1(u + v + w + 1), (1.7)

for all (u, v, w) in Σ, where C1 is a positive constant.
In the two-component case, where a12 = 0, Kouachi and Youkana [13]

generalized the method of Haraux and Youkana [4] with the reaction terms
f (u, v) = −λF (u, v) and g (u, v) = µF (u, v) with F (u, v) ≥ 0, requiring
the condition

lim
s→+∞

[
ln (1 + F (r, s))

s

]
< α∗ for any r ≥ 0,
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with

α∗ =
2a11a22

n (a11 − a22)
2 ‖u0‖∞

min
{

λ

µ
,
a11 − a22

a21

}
,

where the positive diffusion coefficients a11, a22 satisfy a11 > a22, and a21,
λ, µ are positive constants. This condition reflects the weak exponential
growth of the reaction term F . Kanel and Kirane [6] proved the global
existence in the case where g (u, v) = −f (u, v) = uvn and n is an odd
integer, under the embarrassing condition

|a12 − a21| < Cp,

where Cp contains a constant from Solonnikov’s estimate [18]. Later they
improved their results in [7] to obtain the global existence under the restric-
tions

H1. a22 < a11 + a21,

H2. a12 < ε0 =
a11a22 (a11 + a21 − a22)

a11a22 + a21 (a11 + a21 − a22)
if a11 ≤ a22 < a11 + a21,

H3. a12 < min
{

1
2

(a11 + a21) , ε0

}
if a22 < a11,

and

|F (v)| ≤ CF

(
1 + |v|1−ε

)
, vF (v) ≥ 0 for all v ∈ R,

where ε and CF are positive constants with ε < 1 and

g (u, v) = −f (u, v) = uF (v) .

Kouachi [12] has proved global existence for solutions of two-component
reaction-diffusion systems with a general full matrix of diffusion coefficients
and nonhomgeneous boundary conditions.

Many chemical and biological operations are described by reaction-dif-
fusion systems with a tridiagonal matrix of diffusion coefficients. The com-
ponents u (t, x), v (t, x) and w (t, x) can represent either chemical concen-
trations or biological population densities (see, e.g., Cussler [1] and [2]).

We note that the case of strongly coupled systems which are not triangu-
lar in the diffusion part is more difficult. As a consequence of the blow-up
of the solutions found in [16], we can indeed prove that there is a blow-up of
the solutions in finite time for such nontriangular systems even though the
initial data are regular, the solutions are positive and the nonlinear terms
are negative, a structure that ensured the global existence in the diagonal
case. For this purpose, we construct invariant domains in which we can
demonstrate that for any initial data in these domains, the problem (1.1)–
(1.5) is equivalent to the problem for which the global existence follows
from the usual techniques based on Lyapunov functionals (see Kirane and
Kouachi [8], Kouachi and Youkana [13] and Kouachi [12]).
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2. Local Existence and Invariant Regions

This section is devoted to proving that if (f, g, h) points into Σ on ∂Σ,
then Σ is an invariant domain for the problem (1.1)–(1.5), i.e., the solution
remains in Σ for any initial data in Σ. Once the invariant domains are
constructed, both problems of the local and global existence become easier
to be established. For the first problem we demonstrate that the system
(1.1)–(1.3) with the boundary conditions (1.4) and the initial data in Σ is
equivalent to a problem for which the local existence throughout the time
interval [0, T ∗[ can be obtained by the known procedure, and for the second
one we need invariant domains as explained in the preceeding section.

The main result of this section is

Proposition 1. Suppose that (f, g, h) points into Σ on ∂Σ. Then for any
(u0, v0, w0) in Σ the solution (u, v, w) of the problem (1.1)–(1.5) remains in
Σ for all t’s in [0, T ∗[ .

Proof. Let (xi1, xi2, xi3)
t, i = 1, 2, 3, be the eigenvectors of the matrix At

associated with its eigenvalues λi, i = 1, 2, 3 (λ1 < λ3 < λ2). Multiplying
the equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by
xi1, xi2 and xi3, respectively, and summing the resulting equations, we get

∂

∂t
z1 − λ1∆z1 = F1 (z1, z2, z3) in ]0, T ∗[× Ω, (2.1)

∂

∂t
z2 − λ2∆z2 = F2 (z1, z2, z3) in ]0, T ∗[× Ω, (2.2)

∂

∂t
z3 − λ3∆z3 = F3 (z1, z2, z3) in ]0, T ∗[× Ω, (2.3)

with the boundary conditions

λzi + (1− λ)
∂zi

∂η
= ρi, i = 1, 2, 3, on ]0, T ∗[× ∂Ω, (2.4)

and the initial data

zi(0, x) = z0
i (x), i = 1, 2, 3, in Ω, (2.5)

where

zi = xi1u + xi2v + xi3w, i = 1, 2, 3, in ]0, T ∗[× Ω, (2.6)
ρi = xi1β1 + xi2β2 + xi3β3, i = 1, 2, 3,

and

Fi (z1, z2, z3) = xi1f + xi2g + xi3h, i = 1, 2, 3, (2.7)

for all (u, v, w) in Σ.
First, as has been mentioned above, note that the condition of the para-

bolicity of the system (1.1)–(1.3) implies the parabolicity of the system
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(2.1)–(2.3) since

(a12 + a21)
2 + (a23 + a32)

2
< 4a11a22 =⇒
=⇒ (detA > 0 and a11a22 − a23a32 > 0).

Since λ1, λ2 and λ3 (λ1 < λ3 < λ2) are the eigenvalues of the matrix At, the
problem (1.1)–(1.5) is equivalent to the problem (2.1)–(2.5) and to prove
that Σ is an invariant domain for the system (1.1)–(1.3) it suffices to prove
that the domain{ (

z0
1 , z0

2 , z0
3

) ∈ R3 : z0
i ≥ 0, i = 1, 2, 3

}
=

(
R+

)3 (2.8)

is invariant for the system (2.1)–(2.3) and that

Σ=
{

(u0, v0, w0)∈R3 : z0
i =xi1u0+xi2v0+xi3w0≥0, i=1, 2, 3

}
. (2.9)

Since (xi1, xi2, xi3)
t is an eigenvector of the matrix At associated to the

eigenvalue λi, i = 1, 2, 3, we have
(a11 − λi) xi1 + a21xi2 = 0,

a12xi1 + (a22 − λi) xi2 + a32xi3 = 0

a23xi2 + (a11 − λi)xi3 = 0.

, i = 1, 2, 3,

If we assume, without loss of generality, that a11 ≤ a22 and choose x12 = µ1,
x22 = −µ2 and x33 = a12, then we have

xi1u0+xi2v0+xi3w0≥0, i=1, 2, 3 ⇐⇒





−a21u0+µ1v0−a23w0≥0,

a21u0−µ2v0+a23w0≥0,

−a32u0 + a12w0 ≥ 0.

⇐⇒

⇐⇒ µ2v0 ≤ a21u0 + a23w0 ≤ µ1v0, a32u0 ≤ a12w0.

Thus (2.9) is proved and (2.6) can be written as



z1 = −a21u + µ1v − a23w,

z2 = a21u− µ2v + a23w,

z3 = −a32u + a12w.

(2.6a)

Now, to prove that the domain (R+)3 is invariant for the system (2.1)–(2.3),
it suffices to show that Fi (z1, z2, z3) ≥ 0 for all (z1, z2, z3) such that zi = 0
and zj ≥ 0, j = 1, 2, 3 (j 6= i) , i = 1, 2, 3, thanks to the invariant domain
method (see Smoller [17]). Using the expressions (2.7), we get




F1 = −a21f + µ1g − a23h,

F2 = a21f − µ2g + a23h,

F3 = −a32f + a12h

(2.7a)

for all (u, v, w) in Σ. Since from (1.6), (1.6a) and (1.6b) we have Fi (z1, z2, z3)
≥ 0 for all (z1, z2, z3) such that zi = 0 and zj ≥ 0, j = 1, 2, 3 (j 6= i) ,
i = 1, 2, 3, we obtain zi (t, x) ≥ 0, i = 1, 2, 3, for all (t, x) ∈ [0, T ∗[ × Ω.
Then Σ is an invariant domain for the system (1.1)–(1.3). ¤
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In addition, the system (1.1)–(1.3) with the boundary conditions (1.4)
and initial data in Σ is equivalent to the system (2.1)–(2.3) with the bound-
ary conditions (2.4) and positive initial data (2.5). As has been mentioned
at the beginning of this section and since ρi, i = 1, 2, 3, given by





ρ1 = −a21β1 + µ1β2 − a23β3,

ρ2 = a21β1 − µ2β2 + a23β3,

ρ3 = −a32β1 + a12β3,

are positive, we have for any initial data in C
(
Ω

)
or Lp (Ω), p ∈ ]1,+∞] ,

the local existence and uniqueness of solutions to the initial value problem
(2.1)–(2.5) and consequently those of the problem (1.1)–(1.5) follow from
the basic existence theory for abstract semilinear differential equations (see
Friedman [3], Henry [5] and Pazy [15]). These solutions are classical on
[0, T ∗[×Ω, where T ∗ denotes the eventual blow up time in L∞ (Ω). A local
solution is continued globally by a priori estimates.

Once invariant domains are constructed, one can apply the Lyapunov
technique and establish the global existence of unique solutions for (1.1)–
(1.5).

3. Global Existence

As the determinant of the linear algebraic system (2.6), with respect to
the variables u, v and w, is different from zero, to prove the global existence
of solutions of the problem (1.1)–(1.5) one needs to prove it for the problem
(2.1)–(2.5). To this end, it suffices (see Henry [5]) to derive a uniform
estimate of ‖Fi (z1, z2, z3)‖p , i = 1, 2, 3 on [0, T ], T < T ∗, for some p > N/2,
where ‖ · ‖p denotes the usual norms in spaces Lp (Ω) defined by

‖u‖p
p =

1
|Ω|

∫

Ω

|u(x)|p dx, 1 ≤ p < ∞, and ‖u‖∞ = esssup
x∈Ω

|u(x)| .

Let θ and σ be two positive constants such that

θ > A12, (3.1)
(
θ2 −A2

12

) (
σ2 −A2

23

)
> (A13 −A12A23)

2
, (3.2)

where

Aij =
λi + λj

2
√

λiλj

, i, j = 1, 2, 3 (i < j) ,

and let

θq =θ(p−q+1)2 and σp =σp2
, for q=0, 1, . . . , p and p=0, 1, . . . , n, (3.3)

where n is a positive integer. The main result of this section is
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Theorem 1. Let (z1 (t, ·) , z2 (t, ·) , z3 (t, ·)) be any positive solution of
(2.1)–(2.5). Introduce the functional

t 7−→ L(t) =
∫

Ω

Hn

(
z1 (t, x) , z2 (t, x) , z3 (t, x)

)
dx, (3.4)

where

Hn (z1, z2, z3) =
n∑

p=0

p∑
q=0

Cp
nCq

pθqσpz
q
1zp−q

2 zn−p
3 , (3.5)

with n being a positive integer and Cp
n = n!

(n−p)!p! .

Then the functional L is uniformly bounded on the interval [0, T ], T < T ∗.

For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let Hn be the homogeneous polynomial defined by (3.5).
Then

∂Hn

∂z1
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.6)

∂Hn

∂z2
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.7)

∂Hn

∂z3
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−1)−p
3 . (3.8)

Proof. Differentiating Hn with respect to z1 and using the fact that

qCq
p = pCq−1

p−1 and pCp
n = nCp−1

n−1 (3.9)

for q = 1, 2, . . . , p, p = 1, 2, . . . , n, we get

∂Hn

∂z1
= n

n∑
p=1

p∑
q=1

Cp−1
n−1C

q−1
p−1θqσpz

q−1
1 zp−q

2 zn−p
3 .

Replacing in the sums the indexes q − 1 by q and p − 1 by p, we deduce
(3.6). For the formula (3.7), differentiating Hn with respect to z2, taking
into account

Cq
p = Cp−q

p , q = 0, 1, . . . , p− 1 and p = 1, 2, . . . , n, (3.10)

using (3.9) and replacing the index p− 1 by p, we get (3.7).
Finally, we have

∂Hn

∂z3
=

n−1∑
p=0

p∑
q=0

(n− p)Cp
nCq

pθqσpz
q
1zp−q

2 zn−p−1
3 .

Since (n− p)Cp
n = (n− p)Cn−p

n = nCn−p−1
n−1 = nCp

n−1, we get (3.8). ¤
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Lemma 2. The second partial derivatives of Hn are given by

∂2Hn

∂z2
1

= n (n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+2σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.11)

∂2Hn

∂z1∂z2
= n (n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.12)

∂2Hn

∂z1∂z3
= n (n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.13)

∂2Hn

∂z2
2

= n (n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.14)

∂2Hn

∂z2∂z3
= n (n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.15)

∂2Hn

∂z2
3

= n (n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 . (3.16)

Proof. Differentiating
∂Hn

∂z1
given by (3.6) with respect to z1 yields

∂2Hn

∂z2
1

= n

n−1∑
p=1

p∑
q=1

qCp
n−1C

q
pθq+1σq+1z

q−1
1 zp−q

2 z
(n−1)−p
3 .

Using (3.9), we get (3.11).

∂2Hn

∂z1∂z2
= n

n−1∑
p=1

p−1∑
q=0

(p− q)Cp
n−1C

q
pθq+1σp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

Applying (3.10) and then (3.9), we get (3.12).

∂2Hn

∂z1∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p) Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 .

Applying successively (3.10), (3.9) and (3.10) for the second time, we deduce
(3.13).

∂2Hn

∂z2
2

= n

n−1∑
p=1

p−1∑
q=0

(p− q) Cp
n−1C

q
pθqσp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

The application of (3.10) and then of (3.9) yields (3.14).

∂2Hn

∂z2∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p)Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 .
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Applying (3.10) and then (3.9) yields (3.15). Finally we get (3.16) by dif-

ferentiating
∂Hn

∂z3
with respect to z3 and applying successively (3.10), (3.9)

and (3.10) for the second time. ¤

Proof of Theorem 1. Differentiating L with respect to t yields

L′(t) =
∫

Ω

(
∂Hn

∂z1

∂z1

∂t
+

∂Hn

∂z2

∂z2

∂t
+

∂Hn

∂z3

∂z3

∂t

)
dx =

=
∫

Ω

(
λ1

∂Hn

∂z1
∆z1 + λ2

∂Hn

∂z2
∆z2 + λ3

∂Hn

∂z3
∆z3

)
dx+

+
∫

Ω

(
∂Hn

∂z1
F1 +

∂Hn

∂z2
F2 +

∂Hn

∂z3
F3

)
dx =

=: I + J.

Using Green’s formula in I, we get I = I1 + I2, where

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1

∂z1

∂η
+ λ2

∂Hn

∂z2

∂z2

∂η
+ λ3

∂Hn

∂z3

∂z3

∂η

)
ds,

where ds denotes the (n− 1)-dimensional surface element, and

I2 = −
∫

Ω

[
λ1

∂2Hn

∂z2
1

|∇z1|2 + (λ1 + λ2)
∂2Hn

∂z1∂z2
∇z1∇z2

+(λ1 + λ3)
∂2Hn

∂z1∂z3
∇z1∇z3 + λ2

∂2Hn

∂z2
2

|∇z2|2

+(λ2 + λ3)
∂2Hn

∂z2∂z3
∇z2∇z3 + λ3

∂2Hn

∂z2
3

|∇z3|2
]

dx.

We prove that there exists a positive constant C2 independent of t ∈ [0, T ∗[
such that

I1 ≤ C2 for all t ∈ [0, T ∗[ , (3.17)
and that

I2 ≤ 0. (3.18)
To see this, we follow the same reasoning as in [11].

(i) If 0 < λ < 1, using the boundary conditions (2.4) we get

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1
(γ1−αz1)+λ2

∂Hn

∂z2
(γ2−αz2)+λ3

∂Hn

∂z3
(γ3−αz3)

)
ds,

where α = λ
1−λ and γi = ρi

1−λ , i = 1, 2, 3. Since

H (z1, z2, z3) = λ1
∂Hn

∂z1
(γ1−αz1)+λ2

∂Hn

∂z2
(γ2−αz2)+λ3

∂Hn

∂z3
(γ3−αz3)

= Pn−1 (z1, z2, z3)−Qn (z1, z2, z3) ,
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where Pn−1 and Qn are polynomials with positive coefficients and respective
degrees n− 1 and n, and since the solution is positive, we obtain

lim sup
(|z1|+|z2|+|z3|)→+∞

H (z1, z2, z3) = −∞, (3.19)

which proves that H is uniformly bounded on (R+)3, and consequently
(3.17).

(ii) If λ = 0, then I1 = 0 on [0, T ∗[ .
(iii) The case of the homogeneous Dirichlet conditions is trivial since the

positivity of the solution on [0, T ∗[×Ω implies ∂z1
∂η ≤ 0, ∂z2

∂η ≤ 0 and ∂z3
∂η ≤ 0

on [0, T ∗[× ∂Ω. Consequently, one again gets (3.17) with C2 = 0.
Now, we prove (3.18). Applying Lemma 1 and Lemma 2, we get

I2 = −n (n− 1)
∫

Ω

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
p

[
(Bpqz) · z]

dx,

where

Bpq =




λ1θq+2σp+2
λ1 + λ2

2
θq+1σp+2

λ1 + λ3

2
θq+1σp+1

λ1 + λ2

2
θq+1σp+2 λ2θqσp+2

λ2 + λ3

2
θqσp+1

λ1 + λ3

2
θq+1σp+1

λ2 + λ3

2
θqσp+1 λ3θqσp




,

for q = 0, 1, . . . , p, p = 0, 1, . . . , n− 2 and z = (∇z1,∇z2,∇z3)
t
.

The quadratic forms (with respect to ∇z1,∇z2 and ∇z3) associated with
the matrices Bpq, q = 0, 1, . . . , p, p = 0, 1, . . . , n − 2, are positive since
their main determinants ∆1, ∆2 and ∆3 are positive too, according to the
Sylvester criterion. To see this, we have

1. ∆1 = λ1θq+2σp+2 > 0 for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.

2. ∆2 =

∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1 + λ2

2
θq+1σp+2

λ1 + λ2

2
θq+1σp+2 λ2θqσp+2

∣∣∣∣∣∣∣
= λ1λ2θ

2
q+1σ

2
p+2

(
θ2 −A2

12

)
,

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.

Using (3.1), we get ∆2 > 0.

3. ∆3 =

∣∣∣∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1 + λ2

2
θq+1σp+2

λ1 + λ3

2
θq+1σp+1

λ1 + λ2

2
θq+1σp+2 λ2θqσp+2

λ2 + λ3

2
θqσp+1

λ1 + λ3

2
θq+1σp+1

λ2 + λ3

2
θqσp+1 λ3θqσp

∣∣∣∣∣∣∣∣∣∣
=λ1λ2λ3θ

2
q+1θqσp+2σ

2
p+1

[
(θ2−A2

12)(σ
2−A2

23)−(A13−A12A23)2
]
,

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.
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Using (3.2), we get ∆3 > 0. Consequently we have (3.18).
Substitution of the expressions of the partial derivatives given by Lemma

1 in the second integral yields

J =
∫

Ω

[
n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3

]
×

× (θq+1σp+1F1 + θqσp+1F2 + θqσpF3) dx.

Using the expressions (2.7a), we get

θq+1σp+1F1 + θqσp+1F2 + θqσpF3 =

=
(− θq+1σp+1a21+a21θqσp+1−a32θqσp

)
f+(θq+1σp+1µ1 − µ2θqσp+1) g+

+
(− θq+1σp+1a23 + a23θqσp+1 + a12θqσp

)
h =

=
(
a23(θqσp+1−θq+1σp+1)+a12θqσp

)(
a21 (θqσp+1−θq+1σp+1)−a32θqσp

a23(θqσp+1−θq+1σp+1)+a12θqσp
f +

+
θq+1σp+1µ1 − µ2θqσp+1

a23 (θqσp+1 − θq+1σp+1) + a12θqσp
g + h

)
=

= θq+1σp

(
a23

σp+1

σp

(
θq

θq+1
−1

)
+a12

θq

θq+1

)
×

×

a21

σp+1
σp

( θq

θq+1
− 1

)−a32
θq

θq+1

a23
σp+1
σp

( θq

θq+1
− 1

)
+a12

θq

θq+1

f +
µ1

σp+1
σp

− µ2
θq

θq+1

σp+1
σp

a23
σp+1
σp

( θq

θq+1
− 1

)
+ a12

θq

θq+1

g + h


 .

Since θq

θq+1
and σp+1

σp
are sufficiently large if we choose θ and σ sufficiently

large, using the condition (1.7) and the relation (2.6a) successively we get,
for an appropriate constant C3,

J ≤ C3

∫

Ω

[
n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1) Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3

]
dx.

To prove that the functional L is uniformly bounded on the interval [0, T ],
we first write

n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1) Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3 =

= Rn (z1, z2, z3) + Sn−1 (z1, z2, z3) ,

where Rn (z1, z2, z3) and Sn−1 (z1, z2, z3) are two homogeneous polynomials
of degrees n and n − 1, respectively. First, since the polynomials Hn and
Rn are of degree n, there exists a positive constant C4 such that∫

Ω

Rn (z1, z2, z3) dx ≤ C4

∫

Ω

Hn (z1, z2, z3) dx.
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Applying Hölder’s inequality to the integral
∫
Ω

Sn−1 (z1, z2, z3) dx, one gets

∫

Ω

Sn−1 (z1, z2, z3) dx ≤ (meas Ω)
1
n




∫

Ω

(Sn−1 (z1, z2, z3))
n

n−1 dx




n−1
n

.

Since for all z1 ≥ 0 and z2, z3 > 0

(Sn−1 (z1, z2, z3))
n

n−1

Hn (z1, z2, z3)
=

(Sn−1 (ξ1, ξ2, 1))
n

n−1

Hn (ξ1, ξ2, 1)
,

where ξ1 = z1
z2

, ξ2 = z2
z3

and

lim
ξ1→+∞
ξ2→+∞

(Sn−1 (ξ1, ξ2, 1))
n

n−1

Hn (ξ1, ξ2, 1)
< +∞,

one asserts that there exists a positive constant C5 such that

(Sn−1 (z1, z2, z3))
n

n−1

Hn (z1, z2, z3)
≤ C5 for all z1, z2, z3 ≥ 0.

Hence the functional L satisfies the differential inequality

L′ (t) ≤ C6L (t) + C7L
n−1

n (t) ,

which for Z = L
1
n can be written as

nZ ′ ≤ C6Z + C7.

A simple integration gives a uniform bound of the functional L on the
interval [0, T ]. This completes the proof of Theorem 1. ¤

Corollary 1. Suppose that the functions f (r1, r2, r3), g (r1, r2, r3) and
h (r1, r2, r3) are continuously differentiable on Σ, point into Σ on ∂Σ and
satisfy the condition (1.7). Then all uniformly bounded on Ω solutions of
(1.1)–(1.5) with the initial data in Σ are in L∞ (0, T ; Lp (Ω)) for all p ≥ 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality

∫

Ω

(z1 + z2 + z3)
p
dx ≤ L (t) on [0, T ∗[ ,

and (2.6a). ¤

Proposition 2. Under the hypothesis of Corollary 1, if f (r1, r2, r3),
g (r1, r2, r3) and h (r1, r2, r3) are polynomially bounded, then all uniformly
bounded on Ω solutions of (1.1)–(1.4) with the initial data in Σ are global
in time.
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Proof. As has been mentioned above, it suffices to derive a uniform estimate
of ‖F1(z1, z2, z3)‖p, ‖F2(z1, z2, z3)‖p and ‖F3(z1, z2, z3)‖p on [0, T ], T < T ∗

for some p > N
2 . Since the reactions f (u, v, w), g (u, v, w) and h (u, v, w) are

polynomially bounded on Σ, by using relations (2.6a) and (2.7a) we get that
so are F1(z1, z2, z3), F2(z1, z2, z3) and F3(z1, z2, z3), and the proof becomes
an immediate consequence of Corollary 1. ¤
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Abstract. In this paper, sufficient conditions have been obtained for
the existence of at least two positive periodic solutions of the Nicholson’s
Blowflies model

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t)).

The Leggett–Williams multiple fixed point theorem has been used to prove
our results.
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îâäæñéâ. êŽöîëéöæ éæôâĲñèæŽ ïŽçéŽîæïæ ìæîëĲâĲæ æéæïŽåãæï, îëé êæ-
çëèïëêæï éëáâèï

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t))

ßóëêáâï ïñè éùæîâ ëîæ áŽáâĲæåæ ìâîæëáñèæ ŽéëêŽýïêæ. öâáâàâĲæï áŽ-
ïŽéðçæùâĲèŽá àŽéëõâêâĲñèæŽ èâóâð{ãæèæŽéïæï éîŽãŽèæ ñúîŽãæ ûâîðæèæï
åâëîâéŽ.
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1. Introduction

In this paper, we study the existence of two positive periodic solutions
of a nonlinear functional differential equation of the form

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t)), (1)

where a, p, γ and τ ∈ C(R, R+) are T -periodic functions, m > 1 and n > 0
are reals and T is a positive constant.

If m = 1 and n = 1, then (1) yields the Nicholson’s Blowflies model

x′(t) = −a(t)x(t) + p(t)x(t− τ(t))e−γ(t)x(t−τ(t)). (2)

When all the parameters are positive constants, (2) reduces to an original
model developed by Gurney et al. [6] to describe the population of Aus-
tralian sheep-blowfly that agrees well with the experimental data of Nichol-
son [11]. One may note that the equation explains Nicholson’s data of
blowfly quite accurately and hence we refer (2) as the Nicholson’s Blowflies
model.

The variation of the environment plays an important role in many biolog-
ical and ecological dynamical systems. In particular, the effects of a period-
ically varying environment are important for evolutionary theories, as the
selective forces on systems in a fluctuating environment differ from those in
a stable environment. Thus, the assumption of periodicity of parameters
of the system (in a way) incorporates the periodicity of the environment
(e.g., seasonal effects of weather, food supplies, mating habits, etc.). In
fact, it has been suggested by Nicholson [12] that any periodic change of
climate tends to improve it’s periodicity upon oscillations of internal origin
or to cause such oscillations to have a harmonic relation to periodic climate
changes. In view of the above fact, it is realistic to assume the periodicity
on the parameters or on the coefficient functions of (1) and (2). Thus, the
existence of periodic solutions of (1) or (2) are naturally expected.

Many authors have studied the existence of at least one positive periodic
solution of (2). For this, one may refer the papers in [5], [7], [16], [23], [24],
[27]–[29]. Krasnoselskǐı fixed point theorem [3] have been used to prove the
results. Although the existence of at least one periodic solution of (2) is
largely studied in the literature, studies on the existence of at least two
periodic solutions of (1) and (2) are relatively scarce.

In this paper, we have made an attempt to study the existence of at
least two positive periodic solutions of (1). We have used Leggett–Williams
multiple fixed point theorem [10] to prove our theorem. This theorem have
been used by the authors in [19]–[22] to study the existence of three periodic
solution of the following differential equations:

x′(t) = −a(t)x(t) + λf(t, x(h(t))),

and
x′(t) = a(t)x(t)− λf(t, x(h(t))),
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where λ is a positive parameter. The results obtained for the above equa-
tions were applied to (1) with constant coefficients of the form

x′(t) = −ax(t) + pxm(t− τ)e−γxn(t−τ), (3)

We state the results obtained in [20], [21] in the form of theorems.

Theorem 1.1 ([20]). Let m > 1 and 2e(δ−1)δm−1γ
(m−1)

n ≤ 1. Then the
equation (3) has at least three positive T -periodic solutions for 1

2T < p < 1
T .

Theorem 1.2 ([21]). Assume that m > 1 and that
T∫

0

p(t) dt > δ(δ − 1)
( γδ2e

m− 1

)m−1

. (4)

Then the equation

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γx(t−τ(t)) (5)

has at least three nonnegative T -periodic solutions, where γ > 0 is a constant

and δ = exp
( T∫

0

a(s) ds
)
.

For the last two decades, there has been a rich literature on the use of
fixed point theorems on the existence of positive solutions of boundary value
problems. The existence of periodic solutions of this type equation is closely
related to the existence of solutions of general boundary value problems.
The ideas in this paper have come from those for general boundary value
problem.

In the next section, we will state the well known Leggett–Williams mul-
tiple fixed point theorem [10] and then we will apply the theorem to the
model (1). The obtained result improves our previous result.

2. Main Results

From the periodicity of the solution and the assumption that x is known
on the nonlinear parts of (1), one can construct a Green’s Kernel. In fact,
(1) is equivalent to

x(t) =

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds,

where G(t, s) = e

s∫
t

a(θ) dθ

e

T∫
0

a(θ) dθ

−1

is Green’s Kernel, which is bounded by

α =
1

δ − 1
≤ G(t, s) ≤ δ

δ − 1
= β, δ = e

T∫
0

a(θ) dθ
.

The following concept from the Leggett–Williams multiple fixed point
theorem [10] is needed. Let X be a Banach space and K be a cone in X.
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For a > 0, define Ka = {x ∈ K; ‖x‖ < a}. A mapping ψ is said to be
a concave nonnegative continuous functional on K if ψ : K → [0,∞) is
continuous and

ψ(µx + (1− µ)y) ≥ µψ(x) + (1− µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let b, c > 0 be constants with K and X as defined above. Define

K(ψ, b, c) =
{
x ∈ K; ψ(x) ≥ b, ‖x‖ ≤ c

}
.

Theorem 2.1 (Leggett–Williams multiple fixed point theorem [10, The-
orem 3.3]). Let X = (X, ‖ · ‖) be a Banach space and K ⊂ X a cone, and
c4 > 0 a constant. Suppose there exists a concave nonnegative continuous
functional ψ on K with ψ(u) ≤ ‖u‖ for u ∈ Kc4 and let A : Kc4 → Kc4 be
a continuous compact map. Assume that there are numbers c1, c2 and c3

with 0 < c1 < c2 < c3 ≤ c4 such that

(i)
{
u ∈ K(ψ, c2, c3); ψ(u) > c2

} 6= φ and ψ(Au) > c2 for all u ∈
K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ Kc1 ;
(iii) ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.

Then A has at least three fixed points u1, u2 and u3 in Kc4 . Further-
more, we have u1 ∈ Kc1 , u2 ∈ {u ∈ K(ψ, c2, c4); ψ(u) > c2}, u3 ∈
Kc4 \ {K(ψ, c2, c4) ∪Kc1}.

In this article, X will denote the set of continuous T -periodic functions,
which forms a Banach space under the norm ‖x‖ = sup

0≤t≤T
|x(t)|. Define an

operator A on X by

(Ax)(t) =

t+T∫

t

G(t, s)p(s)x(s− τ(s))e−γ(s)x(s−τ(s)) ds

and a cone K on X by

K =
{

x ∈ X; x(t) ≥ 1
δ
‖x‖

}
.

It is easy to verify that A(K) ⊂ K and A is a completely continuous op-
erator on K. Further, the existence of a positive periodic solution of (1) is
equivalent to the existence of a fixed point of A in K.

According to the localization of the fixed points in Theorem 2.1, one of
them is possibly a zero (namely u1 ∈ Kc1). Thus, the operator A has at least
two positive fixed points and a zero fixed point as can be easily observed.
Accordingly, (1) has two positive T -periodic solutions and a possible trivial
solution (if the conditions of Theorem 1 are satisfied).

On the cone K, we define a nonnegative concave functional ψ as

ψ(x) = inf
0≤t≤T

x(t)
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and let
γ = max

0≤t≤T
γ(t).

Now, we are ready to prove our main results in this paper.

Theorem 2.2. Let m > 1, a(t) > 0 and γ(t) > 0 for t ∈ R, and
T∫

0

p(t) dt > e(δ − 1)δm−1γ
m−1

n (6)

hold. Then (1) has at least two positive T -periodic solutions.

Proof. From

lim sup
x→∞

max
0≤t≤T

p(t)xm−1e−γ(t)xn

a(t)
= 0

it follows that there exist constants 0 < µ1 < 1 and η > 0 such that

p(t)xme−γ(t)xn

a(t)
< µ1x for 0 ≤ t ≤ T, x ≥ η.

Let

µ2 = max
0≤t≤T,0≤x≤η

p(t)xme−γ(t)xn

a(t)
.

Then

p(t)xme−γ(t)xn

a(t)
< µ1x + µ2, for x ≥ 0 and 0 ≤ t ≤ T.

Choose c4 > 0 such that

c4 > max
{ µ2

1− µ1
,

1
γ

1
n

}
.

Then for x ∈ Kc4 , we have

‖Ax‖ ≤ sup
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds ≤

≤ sup
0≤t≤T

t+T∫

t

G(t, s)a(s)(µ1x(s− τ(s)) + µ2) ds ≤

≤ sup
0≤t≤T

t+T∫

t

G(t, s)a(s)(µ1‖x‖+ µ2) ds ≤

≤ µ1c4 + µ2 ≤ c4.

Hence A : Kc4 → Kc4 . Set c2 = 1

δγ
1
n

and c3 = 1

γ
1
n

. Clearly c2 <

δc2 = c3 ≤ c4. Setting φ0(t) = φ0 = c2+c3
2 , we have that φ0 ∈ {x; x ∈
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K(ψ, c2, c3), ψ(x) > c2} 6= φ. Now, for x ∈ K(ψ, c2, c3) we obtain

ψ(Ax) = min
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ≥

≥ 1
δ − 1

cm
2 e−γδncn

2

T∫

0

p(s) ds > c2.

Hence the condition (i) of Theorem 2.1 is satisfied. Since m > 1, we have
that

lim sup
x→0

max
0≤t≤T

p(t)xme−γ(t)xn

a(t)x
= 0

implies that there exists a constant c1 ∈ (0, c2) small enough such that

p(t)xme−γ(t)xn

a(t)x
< 1 for 0 ≤ x ≤ c1.

Thus for x ∈ Kc1 , we have

‖Ax‖ ≤ sup
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds <

< sup
0≤t≤T

t+T∫

t

G(t, s)a(s)‖x‖ ds ≤ c1,

that is, A : Kc1 → Kc1 . Thus the property (ii) of Theorem 2.1 is satisfied.
Finally, for x ∈ K(ψ, c2, c4) with ‖Ax‖ > c3,

c3 < ‖Ax‖ ≤ δ

δ − 1

T∫

0

p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds

implies that

ψ(Ax) ≥ 1
δ − 1

T∫

0

p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds >

>
1
δ

c3 = c2.

This shows that the condition (iii) of Theorem 2.1 is satisfied. By The-
orem 2.1, the equation (1) has at least two positive T -periodic solutions.
This completes the proof of the theorem. ¤

The following corollary can be obtained as an immediate consequence of
Theorem 2.2.
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Corollary 2.3. If m > 1, a > 0, γ > 0 and

pT > e(δ − 1)δm−1γ
m−1

n (7)

hold, then (3) has at least two positive T -periodic solutions, where δ = eaT .

Remark 2.4. The conditions of Theorem 1.1 imply the conditions of
Corollary 2.3. However, Corollary 2.3 gives two positive T -periodic solutions
where as Theorem 1.1 yields three positive T -periodic solutions. Although
the range on p defined in Theorem 1.1 forces us to assume that pT < 1 and
2e(δ− 1)δm−1γ

m−1
n ≤ 1 must hold. On the other hand, the condition (7) is

sufficient in corollary 2.3 for the existence of two positive periodic solutions
of (1).

In what follows, we prove another theorem on the existence of two positive
periodic solutions of (1).

Theorem 2.5. Let m > 1, a(t) > 0 and γ(t) > 0 for t ∈ R, and

min
0≤t≤T

{p(t)
a(t)

}
> eδm−1γ

m−1
n (8)

hold. Then (1) has at least two positive T -periodic solutions.

Proof. Set c2 = 1

δγ
1
n

and c3 = 1

γ
1
n

. Choose c4 > 0 as in Theorem 2.2. One

may proceed as in Theorem 2.2 to prove that A : Kc4 → Kc4 . Clearly, φ0 =
φ0(t) = c2+c3

2 ∈ {x, x ∈ K(ψ, c2, c3), ψ(x) > c2} 6= 0. For x ∈ K(ψ, c2, c3),
we have

ψ(Ax) > min
0≤t≤T

{p(t)
a(t)

}
cm
2 e−γδncn

2

t+T∫

t

G(t, s)a(s) ds > c2.

Choose c1 = 1

max{ p(t)
a(t)}

1
m−1

. Using (8) we have c1 < c2. Now, for x ∈ Kc1

we obtain

‖Ax‖ < max
0≤t≤T

{p(t)
a(t)

}
cm
1 = c1.

The third condition of Theorem 2.1 is easy to verify and hence we omit it.
The theorem is proved. ¤

The following corollary follows from Theorem 2.5 as a direct application
to equation (3).

Corollary 2.6. Let m > 1, a > 0, γ > 0 and

p > ae1+(m−1)aT γ
m−1

n (9)

hold. Then (3) has at least two positive T -periodic solutions.

Remark 2.7. Since aT < eaT − 1, Corollary 2.6 gives a better sufficient
condition than the one in Corollary 2.3.
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3. Conclusion

In this paper, we have been able to find sufficient conditions for the
existence of multiple periodic solutions of (1) when m > 1. We have not
obtained any result concerning the existence of multiple periodic solutions of
(1) when 0 ≤ m ≤ 1. As mentioned earlier, many authors [5], [7], [16], [23],
[24], [27]–[29] have used Krasnoselskǐı and other fixed point theorems for the
existence of one periodic solution of (1) when m = 1, that is, of equation (2).
From the literature, it seems that no results have been obtained regarding
the existence of multiple periodic solutions of (1) with 0 ≤ m ≤ 1. Thus,
it would be interesting to obtain sufficient conditions for the existence of
multiple periodic solutions of (1) when 0 ≤ m ≤ 1. This is left as an open
problem.
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ON FUNDAMENTAL SOLUTION OF STEADY
STATE OSCILLATION EQUATIONS



Abstract. The system of differential equations of steady state oscilla-
tions of anisotropic elasticity are considered. By the generalized Fourier
transform technique and with the help of the limiting absorbtion principle,
we construct maximally decaying at infinity matrices of fundamental solu-
tions explicitly. Their expressions contain surface integral over a certain
semi-sphere and a line integral along the edge boundary of the semi-sphere.
We investigate near field and far field properties of the fundamental matri-
ces and show that they satisfy the generalized Sommerfeld–Kupradze type
radiation conditions at infinity.
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îâäæñéâ. àŽêæýæèâĲŽ Žêæäëðîëìñèæ áîâçŽáëĲæï åâëîææï éáàîŽ-
áæ áîâçŽáæ îýâãâĲæï àŽêðëèâĲŽåŽ ïæïðâéŽ. àŽêäëàŽáâĲñèæ òñîæâï
àŽîáŽóéêæïŽ áŽ äôãîñèæ óîëĲæï ìîæêùæìæï àŽéëõâêâĲæå ùýŽáæ ïŽýæå
ŽàâĲñèæŽ òñêáŽéâêðñî ŽéëêŽýïêåŽ éŽðîæùŽ, îëéèæï âèâéâêðâĲæï ûŽî-
éëáàâêŽöæ öâáæï äâáŽìæîñèæ æêðâàîŽèæ âîåâñèëãŽê êŽýâãŽîïòâîëäâ
áŽ éîñáûæîñèæ æêðâàîŽèæ Žé êŽýâãŽîïòâîëï ïŽäôãŽîäâ, ýëèë ïŽæê-
ðâàîë òñêóùæâĲæ øŽûâîæèæŽ ùýŽáæ ïŽýæå âèâéâêðŽîñèæ òñêóùæâĲæå,
îëéèâĲæù áŽçŽãöæîâĲñèæŽ ïæéĲëèñî éŽðîæùŽïåŽê.

áŽáàâêæèæŽ òñêáŽéâêðñî ŽéëêŽýïêåŽ ŽïæéìðëðæçŽ. êŽøãâêâĲæŽ, îëé
òñêáŽéâêðñîæ ŽéëêŽýïêâĲæ ŽçéŽõëòæèâĲï äëéâîòâèá-çñìîŽúæï àŽêäë-
àŽáâĲñèæ ïŽýæï àŽéëïýæãâĲæï ìæîëĲâĲï.
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1. Introduction

Fundamental solutions play an important role in investigation of bound-
ary value problems for partial differential equations.

For isotropic bodies the matrix of fundamental solutions of steady state
oscillation equations satisfying the so-called Sommerfeld–Kupradze radia-
tion conditions at infinity is constructed in [5], where it is written explicitly
in terms of standard functions.

In the paper, using the generalized Fourier transform method and the
limiting absorbtion principle (see [1]), we represent the fundamental solu-
tion of steady state oscillation equations of anisotropic elasticity under the
assumption that the characteristic surfaces satisfy some specific restrictions.

The fundamental solution is constructed by means of surface and curvi-
linear integrals. In the surface integral the integration manifold is a hemi-
sphere, while in the curvilinear integral the integration line is a unit cir-
cumference. On the basis of these representations we define the generalized
Sommerfeld–Kupradze radiation conditions in anisotropic elasticity. Similar
results can be found in the references [2], [3], [6]–[9].

2. Representation of the Fundamental Solution

2.1. Equations. The homogeneous system of differential equations of
steady state oscillations of anisotropic elasticity reads as follows (see, e.g.,
[6], [7])

C(∂, ω)u := C(∂)u + ω2u = ckjpq∂j∂qup + ω2u = 0, (2.1)

where u = (u1, u2, u3)> is the displacement vector (amplitude), ω > 0 is
the oscillation (frequency) parameter,

C(∂, ω) := C(∂) + ω2I3 =
[
ckjpq∂j∂q + δkpω

2
]
3×3

,

C(∂) = [ckjpq∂j∂q]3×3 .

Here ∂j = ∂
∂xj

, I3 stands for the unit 3×3 matrix, δkp is the Kroneker delta,
the superscript (·)> denotes transposition, ckjpq are elastic constants

ckjpq = cjkpq = cpqkj , k, j, p, q = 1, 2, 3.

Let Fx→ξ and F−1
ξ→x denote the direct and inverse generalized Fourier

transform in the space of tempered distributions (Schwartz space S′(R3))
which for regular summable functions f and g read as follows

Fx→ξ[f ] =
∫

R3

f(x)eix·ξdx, F−1
ξ→x[g] =

1
(2π)3

∫

R3

g(ξ)e−ix·ξdξ,

where x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3) and x · ξ = xkξk. Note that for an
arbitrary multi-index α = (α1, α2, α3) and f ∈ S′(R3)

F [∂αf ] = (−iξ)αF [f ], F−1[ξαg] = (i∂)αF−1[g].
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Denote by Ψ(x.ω) the matrix of fundamental solutions of the operator
C(∂, ω)

C(∂, ω)Ψ(x, ω) = I3δ(x).
Here δ(·) is the Dirac’s delta distribution. By standard arguments we can
show that

Ψ(x, ω) = F−1[C−1(−iξ, ω)] = F−1

[
C∗(−iξ, ω)

H(ξ, ω)

]
=

= N(∂x, ω)F−1

[
1

H(ξ, ω)

]
= N(∂x, ω)Γ(x, ω), (2.2)

where C−1(−iξ, ω) is the inverse to the symbol matrix C(−iξ, ω), C∗(−iξ, ω)
is the corresponding matrix of cofactors, H(ξ, ω) := detC(−iξ, ω),
N(∂x, ω) = [Nkj(∂x, ω)]3×3 is the formally adjoint matrix to the matrix
C(∂, ω), i.e.,

N(∂x, ω)C(∂, ω) = C(∂, ω)N(∂x, ω) = H(x, ω)I3.

It is clear that Nkj is a nonhomogeneous differential operator of order 4
containing 0th, 2nd and 4th order differential operators.

Assume that for any η ∈ Σ1, where

Σ1 = {η ∈ R3 | |η| = 1},
the equation H(ξ, ω) = 0 written in spherical coordinates

ξ1 = ρ cosϕ sin θ,

ξ2 = ρ sin ϕ sin θ,

ξ3 = ρ cos θ, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, ρ =
√

ξ2
1 + ξ2

2 + ξ2
3 = |ξ|,

has three different roots t1, t2, t3 with respect to t = ρ2

ω2 , so

H(ξ, ω) = −a(η)
3∏

j=1

(ρ2 − ω2µ2
j (η)),

where tj = µ2
j (η), j = 1, 2, 3, and

a(η) = [µ2
1(η)µ2

2(η)µ2
3(η)]−1, η ∈ Σ1; µj(−η) = µj(η), a(−η) = a(η).

It is clear that
C(−iξ, ω) = −C(ξ) + I3ω

2,

where C(ξ) = [ckjpqξkξj ]3×3 and C(ξ) is a positive definite matrix, which
means that there exists δ > 0 such that

C(ξ)a · a ≥ δ|a|2|ξ|2 for all a ∈ C3.

Note that a(η) = det C(η) ≥ δ1 > 0, η ∈ Σ1, and H(−ξ, ω) = H(ξ, ω).

Lemma 2.1. Let τ = ω + iε with ε 6= 0 and ω > 0. Then

H(ξ, τ) = det(−iξ, τ) 6= 0 for all ξ ∈ R3 \ {0}.
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Proof. Assume that H(ξ, τ) = 0 for some ξ ∈ R3 \ {0} and a complex τ .
There exists a0 ∈ C3, a0 6= 0, such that

C(−iξ, τ)a0 = −C(ξ)a0 + τ2a0 = 0.

Multiplying the last equation by a0 (in scalar sense) we have

τ2|a0|2 = C(ξ)a0 · a0,

or
τ2 =

1
|a0|2 C(ξ)a0 · a0 > 0

due to the positive definiteness of C(ξ). But τ is a complex number. This
contradiction completes the proof. ¤
2.2. Fundamental solution of pseudooscillation. First we consider the
situation of complex τ = ω + iε, ε 6= 0 instead of ω > 0 and construct the
fundamental solution of the corresponding system of pseudooscillation.

Theorem 2.2. The fundamental solution of (2.1) for a complex τ =
ω + iε have the following form:

Ψ(x, τ)
(ε > 0)

= N(∂x, τ)

[
− i

16π2τ3

∫

Σ1

{ 3∑
q=1

ei|(x·η)|τµqµq

3∏
j=1, j 6=q

(µ2
q − µ2

j )

}
dΣ1

a(η)

]
, (2.3)

or

Ψ(x, τ)
(ε < 0)

= N(∂x, τ)

[
i

16π2τ3

∫

Σ1

{ 3∑
q=1

e−i|(x·η)|τµqµq

3∏
j=1, j 6=q

(µ2
q − µ2

j )

}
dΣ1

a(η)

]
. (2.4)

Proof. Taking a complex τ = ω + iε, ε 6= 0, we have H(ξ, τ) 6= 0 due to
Lemma 2.1 and

Γ(x, τ) = F−1[H−1(ξ, τ)] =
1

(2π)3

∫

R3

e−ix·ξ

H(ξ, τ)
dξ (cf. (2.2)).

It is easy to check that

Γ(x, τ) =
1

(2π)3

∫

R3

e−ix·ξ

H(ξ, τ)
dξ =

1
(2π)3

∫

R3

eix·ξ

H(−ξ, τ)
dξ =

=
1

(2π)3

∫

R3

eix·ξ

H(ξ, τ)
dξ.

Taking into account that x · ξ = |x| · ρ cos γ = (x · η)ρ, cos γ =
(

x
|x| · η

)
=(

x
|x| · ξ

|ξ|
)
, we have

Γ(x, τ) = (2π)−3

∫

Σ1

∞∫

0

{
e−i|x|ρ cos γρ2dρ dΣ1

−a(η)
3∏

j=1

[ρ− τµj(η)][ρ + τµj(η)]

}
=
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= (2π)−3

∫

Σ1

∞∫

0

{
ei|x|ρ cos γρ2dρ dΣ1

−a(η)
3∏

j=1

[ρ− τµj(η)][ρ + τµj(η)]

}
=

= −(2π)−3

∫

Σ1

dΣ1

a(η)

{ ∞∫

0

e±i|x|ρ cos γ

3∏
j=1

[ρ− τµj(η)][ρ + τµj(η)]
ρ2 dρ

}
. (2.5)

From (2.5) we can write that

Γ(x, τ) = − 1
2(2π)3

∫

Σ1

dΣ1

a(η)

{ ∞∫

0

ei(x·η)ρ

3∏
j=1

[ρ2 − τ2µ2
j (η)]

ρ2 dρ+

+

∞∫

0

e−i(x·η)ρ

3∏
j=1

[ρ2 − τ2µ2
j (η)]

ρ2 dρ

}
. (2.6)

Taking into account

∞∫

0

e−i(x·η)ρ

3∏
j=1

[ρ2 − τ2µ2
j (η)]

ρ2 dρ =
[

ρ = −r
dρ = −dr

]
=

=

−∞∫

0

ei(x·η)r

3∏
j=1

[r2 − τ2µ2
j (η)]

r2 (−dr) =

0∫

−∞

ei(x·η)r

3∏
j=1

[r2 − τ2µ2
j (η)]

r2 dr,

(2.6) can be rewritten as

Γ(x, τ) = − 1
2(2π)3

∫

Σ1

dΣ1

a(η)

∞∫

−∞

ei(x·η)ρρ2 dρ
3∏

j=1

[ρ− τµj(η)][ρ + τµj(η)]
. (2.7)

Assume that ρ is a complex variable ρ = ρ′ + iρ′′, τµj(η) = ωµj(η) +
iεµj(η), ε 6= 0, j = 1, 2, 3.

In (2.7) the integrand is an analytic function with respect to ρ and (see
Fig. 2.1)

∞∫

−∞

{
ei(x·η)ρρ2

3∏
j=1

[ρ−τµj(η)][ρ+τµj(η)]

}
dρ =

∫

`ε

{
ei(x·η)ρρ2

3∏
j=1

[ρ−τµj(η)][ρ+τµj(η)]

}
dρ,
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Figure 2.1.

or

Γ(x, τ) = − 1
2(2π)3

∫

Σ1

dΣ1

a(η)

∫

`ε

ei(x·η)ρρ2 dρ
3∏

j=1

[ρ− τµj(η)][ρ + τµj(η)]
. (2.8)

Let us denote by C+
R and C−R the upper and the lower half-part of the

circumference with radius R À 1 on the plane 0ρ′ρ′′. If (x · η) ≥ 0, then
i(x · η)ρ = i(x · η)ρ′ − (x · η)ρ′′ and in this case Re{i(x · η)ρ} ≤ 0.

Clearly, for (x · η) ≥ 0
∫

C+
R

ei(x·η)ρρ2

3∏
j=1

[ρ2 − τ2µ2
j (η)]

dρ → 0 as R → +∞,

because the integrand is O(ρ−4).
Similarly, if (x · η) ≤ 0, then Re

{
i(x · η)ρ

}
ρ∈C−R

≤ 0 and

∫

C−R

ei(x·η)ρρ2

3∏
j=1

[ρ2 − τ2µ2
j (η)]

dρ → 0 as R → +∞.

We have the following situations:
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a) (x · η) ≥ 0, ε > 0; ∫

`3,R

+
∫

C+
R

+
∫

Cj,δ

= 0.

Figure 2.2.

Choosing δ > 0 sufficiently small and taking limit as R → +∞, we get
∫

`ε

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ =
3∑

q=1

∫

Cq,δ(τµq)

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ. (2.9)

b) (x · η) ≤ 0, ε > 0;

Figure 2.3.

∫

`ε

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ = −
3∑

q=1

∫

Cq,δ(−τµq)

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ. (2.10)

c) (x · η) ≥ 0, ε < 0;

∫

`ε

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ =
3∑

q=1

∫

Cq,δ(−τµq)

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ. (2.11)
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Figure 2.4.

d) (x · η) ≤ 0, ε < 0;

Figure 2.5.

∫

`ε

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ = −
3∑

q=1

∫

Cq,δ(τµq)

ei(x·η)ρρ2

3∏
j=1

(ρ2 − τ2µ2
j )

dρ. (2.12)

In what follows, we use the following notation (see Fig. 2.6)

Σ+
x = {η ∈ Σ1 : (x · η) ≥ 0} ,

Σ−x = {η ∈ Σ1 : (x · η) ≤ 0} .

From the relations (2.9)–(2.12) and (2.8) we conclude that for ε > 0

Γ(x, τ) = − 1
2(2π)3

[ ∫

Σ+
x

{
3∑

q=1

∫

Cq,δ(τµq)

ei(x·η)ρρ2 dρ
3∏

j=1

(ρ2 − τ2µ2
j )

}
dΣ1

a(η)
−

−
∫

Σ−x

{
3∑

q=1

∫

Cq,δ(−τµq)

ei(x·η)ρρ2 dρ
3∏

j=1

(ρ2 − τ2µ2
j )

}
dΣ1

a(η)

]
, (2.13)
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Figure 2.6.

and for ε < 0

Γ(x, τ) = − 1
2(2π)3

[ ∫

Σ+
x

{
3∑

q=1

∫

Cq,δ(−τµq)

ei(x·η)ρρ2 dρ
3∏

j=1

(ρ2 − τ2µ2
j )

}
dΣ1

a(η)

]
. (2.14)

Using the Cauchy integral formula, we can write
∫

Cq,δ(τµq)

ei(x·η)ρρ2 dρ
3∏

j=1

(ρ2 − τ2µ2
j )

= 2πi
ei(x·η)τµqτ2 µ2

q

3∏
j=1

[τµq + τµj ]
3∏

j=1, j 6=q

[τµq − τµj ]
;

∫

Cq,δ(−τµq)

ei(x·η)ρρ2 dρ
3∏

j=1

(ρ2 − τ2µ2
j )

= 2πi
e−i(x·η)τµqτ2 µ2

q

3∏
j=1

[−τµq − τµj ]
3∏

j=1, j 6=q

[−τµq + τµj ]
.

Due to these relations, we can rewrite (2.13) and (2.14) as follows

Γ(x, τ)
ε > 0

= − i

8π2

[ ∫

Σ+
x

{
3∑

q=1

ei(x·η)τµq (τ2 µ2
q)

3∏
j=1

[µq + µj ]
3∏

j=1, j 6=q

[µq − µj ]τ5

}
dΣ1

a(η)
−

−
∫

Σ−x

{
3∑

q=1

e−i(x·η)τµq (τ2 µ2
q)

3∏
j=1

[−µq − µj ]
3∏

j=1, j 6=q

[−µq + µj ]τ5

}
dΣ1

a(η)

]
(2.15)

and

Γ(x, τ)
ε < 0

= − i

8π2

[ ∫

Σ+
x

{
3∑

q=1

e−i(x·η)τµq (τ2 µ2
q)

3∏
j=1

[−µq − µj ]
3∏

j=1, j 6=q

[−µq + µj ]τ5

}
dΣ1

a(η)
−
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−
∫

Σ−x

{
3∑

q=1

ei(x·η)τµq (τ2 µ2
q)

3∏
j=1

[µq + µj ]
3∏

j=1, j 6=q

[µq − µj ]τ5

}
dΣ1

a(η)

]
. (2.16)

Clearly, (2.15) and (2.16) decay at infinity faster than any negative power
of |x|.

Taking into account (2.15) and (2.16), we get

Γ(x, τ)
ε > 0

= − i

8π2

∫

Σ1

{
3∑

q=1

ei|(x·η)|τµq (τ2 µ2
q)

3∏
j=1

[µq + µj ]
3∏

j=1, j 6=q

[µq − µj ]τ5

}
dΣ1

a(η)
(2.17)

and

Γ(x, τ)
ε < 0

=
i

8π2

∫

Σ1

{
3∑

q=1

e−i|(x·η)|τµq (τ2 µ2
q)

3∏
j=1

[µq + µj ]
3∏

j=1, j 6=q

[µq − µj ]τ5

}
dΣ1

a(η)
. (2.18)

Finally, from (2.17) and (2.18) we obtain (2.3) and (2.4). ¤
2.3. Fundamental solution of steady state oscillation. Using Theo-
rem 2.2 and limiting procedure, we can prove

Theorem 2.3. The fundamental solution of (2.1) has the following form

Ψ(x, ω, 1) = N(∂x, ω)
∫

Σ+
x

3∑
q=1

Fq(η)ei(x·η)ρq(η)dΣ1, (2.19)

or

Ψ(x, ω, 2) = −N(∂x, ω)
∫

Σ+
x

3∑
q=1

Fq(η)e−i(x·η)ρq(η)dΣ1, (2.20)

where

Fq(η) = − i

8π2

ρq(η)
{ 3∏

j=1, j 6=q

[ρ2
q(η)− ρ2

j (η)]
}

a(η)
. (2.21)

Proof. Taking limit in (2.17) and (2.18) as |ε| → 0, we get

lim
ε→0+

Γ(x, τ) = − i

16π2ω3

∫

Σ1

3∑
q=1

ei|(x·η)|ωµq(η)µq(η)
3∏

j=1 j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)
=

=: Γ(x, ω, 1); (2.22)

lim
ε→0−

Γ(x, τ) = − i

16π2ω3

∫

Σ1

3∑
q=1

e−i|(x·η)|ωµq(η)µq(η)
3∏

j=1, j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)
=

=: Γ(x, ω, 2). (2.23)
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Clearly, Γ(x, ω, 2) = Γ(x, ω, 1).
(2.22) and (2.23) are the formulae similar to those in [4], but they are not

identical. Another difference is that (2.22) and (2.23) satisfy the radiation
conditions.

We can rewrite (2.22) as

Γ(x, ω, 1) = − i

16π2ω3

{ ∫

Σ+
x

3∑
q=1

ei(x·η)ωµq(η)µq(η)
3∏

j=1 j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)
+

+
∫

Σ−x

3∑
q=1

e−i(x·η)ωµq(η)µq(η)
3∏

j=1 j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)

}
. (2.24)

Using the substitution η = −η̃ in the second integral of (2.24), we obtain
(µq(−η) = µq(η), dΣ1η = dΣ1η̃, Σ−x → Σ+

x , a(−η) = a(η))

Γ(x, ω, 1) = − i

8π2ω3

∫

Σ+
x

3∑
q=1

ei(x·η)ωµq(η)µq(η)
3∏

j=1 j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)
.

Γ(x, ω, 2) can be written in a similar form

Γ(x, ω, 2) =
i

8π2ω3

∫

Σ+
x

3∑
q=1

e−i(x·η)ωµq(η)µq(η)
3∏

j=1 j 6=q

[µ2
q(η)− µ2

j (η)]

dΣ1

a(η)
.

Taking into account the notation (2.21) and the fact that ρη(η) = ωµq(η),
q = 1, 2, 3, we get

Γ(x, ω, 1) =
∫

Σ+
x

3∑
q=1

Fq(η)ei(x·η)ρq dΣ1 (2.25)

and

Γ(x, ω, 2) =
∫

Σ+
x

3∑
q=1

(−Fq(η))e−i(x·η)ρq dΣ1. (2.26)

Evidently, (2.25) and (2.26) imply (2.19) and (2.20). ¤

Denote by Sq the characteristic surface given by the equation ρ = ρq(η),
η ∈ Σ1 (q = 1, 2, 3). We assume that Sq is a star-shaped surface with respect
to the origin and it is convex; it means that ξ ·η(ξ) ≥ 0 for all ξ ∈ Sq, where
n(ξ) is the outward unit normal vector at ξ ∈ Sq.

Note that ηρq(η) = ξ ∈ Sq and

ρ2
qdΣ1 =

(
ξ

|ξ| · n(ξ)
)

dSq =
1
ρq

(ξ · n(ξ))dSq.
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Figure 2.7.

Therefore we can rewrite (2.19) and (2.20) in the equivalent form

Ψ(x, ω, 1) = N(∂x, ω)
3∑

q=1

∫

S+
q (x̂)

Fq(η)ei(x·ξ)(ξ · n(ξ))
ρ3

q(η)
dSq;

Ψ(x, ω, 2) = −N(∂x, ω)
3∑

q=1

∫

S+
q (x̂)

Fq(η)e−i(x·ξ)(ξ · n(ξ))
ρ3

q(η)
dSq.

3. Asymptotics

3.1. Singularity in Vicinity of the Origin. Let S be a regular surface
in R3. Then

∂

∂Sk(ξ)
= ∂k(n,∇ξ) = [n×∇ξ]k, k = 1, 2, 3,

i.e.,

∂

∂S1(ξ)
= ∂1(n,∇ξ) = n2

∂

∂ξ3
− n3

∂

∂ξ2
,

∂

∂S2(ξ)
= ∂2(n,∇ξ) = n3

∂

∂ξ1
− n1

∂

∂ξ3
,

∂

∂S3(ξ)
= ∂3(n,∇ξ) = n1

∂

∂ξ2
− n2

∂

∂ξ1
,

where ∇ξ =
(

∂
∂ξ1

, ∂
∂ξ2

, ∂
∂ξ3

)
, n(ξ) is the outward unit normal vector at ξ ∈ S

and × denotes the vector product.



132 I. Sigua and Z. Tediashvili

If S is a closed regular surface and f , g are smooth functions, then by
the Stokes theorem∫

S

[∂k(n,∇ξ)f(ξ)] f(ξ) dS = −
∫

S

f(ξ) [∂k(n,∇ξ)g(ξ)] dS.

Let us consider a special type of the function ψ∗(ξ) = ψ
(

ξ
r

)
, where r = |ξ|

and ξ
r = η ∈ Σ1. We have

[∇ξψ∗(ξ)]j =
[
∇ξψ

(
ξ

r

)]

j

= [∇ξψ(η)]j =
∂

∂ξj
ψ∗(ξ) =

∂

ξj
ψ(η) =

=
3∑

p=1

∂ψ(η)
∂ηp

· ∂ηp

∂ξj
=

3∑
p=1

∂ψ(η)
∂ηp

∂

∂ξj

[
ξp

r

]
=

=
3∑

p=1

∂ψ(η)
∂ηp

[
δjp

r
− ξpξj

r3

]
=

1
r

[
∂ψ(η)
∂ηj

− ηj(η · ∇ηψ(η))
]

,

i.e.,

∇ξψ∗(ξ) = ∇ξψ(η) = ∇ξψ

(
ξ

r

)
=

1
r

[∇ηψ(η)− η(η · ∇ηψ(η))] . (3.1)

It follows from (3.1) that for the case of Σ1 (η = n)

∂k(n,∇ξ)ψ(η) = ∂k(n,∇ξ)ψ
(

ξ

r

)
= ∂k(η,∇ξ)ψ(η) =

=
1
r

[η ×∇ηψ(η)]k =
1
r

∂k(η,∇η)ψ(η),

or
[η ×∇ηψ(η)]k = ∂k(η,∇η)ψ(η).

Hence

∂1(η,∇η)η=




0
−η3

η2


 , ∂2(η,∇η)η=




η3

0
−η1


 , ∂3(η,∇η)η=



−η2

η1

0


 . (3.2)

Let us consider ψ(η) = eiλ(x̂·η)ρ(η) with x
|x| = x̂ ∈ Σ1, η ∈ Σ1, λ = const

and ρ(η) = ρk(η), k = 1, 2, 3. We easily derive

∂k(η,∇η)eiλ(x̂·η)ρ(η) =

= iλeiλ(x̂·η)ρ(η) [(x̂ · ∂k(η,∇η)η)ρ(η) + (x̂ · η)∂k(η,∇η)ρ(η)] . (3.3)

It is evident from (3.2) that

x̂ · ∂1(η,∇η)η =




x̂1

x̂2

x̂3


 ·




0
−η3

η2


 = x̂3η2 − x̂2η3 = [η × x̂]1,
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x̂ · ∂2(η,∇η)η =




x̂1

x̂2

x̂3


 ·




η3

0
−η1


 = x̂1η3 − x̂3η1 = [η × x̂]2,

x̂ · ∂3(η,∇η)η =




x̂1

x̂2

x̂3


 ·



−η2

η1

0


 = x̂2η1 − x̂1η2 = [η × x̂]3,

i.e.,
(x̂ · ∂k(η,∇η)η) = [η × x̂]k, k = 1, 2, 3. (3.4)

Denoting

Φk(x̂, η) = [η × x̂]kρ(η) + (x̂ · η)∂k(η,∇η)ρ(η) =

= η × (x̂ρ(η) + (x̂ · η)∇ηρ(η)), k = 1, 2, 3, (3.5)

we can rewrite (3.3) as

∂k(η,∇η)eiλ(x̂·η)ρ(η) = iλeiλ(x̂·η)ρ(η)Φk(x̂, η), k = 1, 2, 3. (3.6)

Lemma 3.1. The following conditions are equivalent:
i) Φ(x̂, η) = η × [x̂ρ(η) + (x̂ · η)∇ηρ(η)] 6= 0;
ii) x̂ρ(η) + (x̂ · η)∇ηρ(η) ∦ η;
iii) η × Φ(x̂, η) = −x̂ρ(η)− (x̂ · η)∇ηρ(η) 6= 0.

Proof. Since
3∑

k=1

ηk∂k(η,∇η) ≡ 0, from (3.5) and (3.6) we obtain

3∑

k=1

ηkΦk(x̂, η) ≡ 0, i.e., η · Φ(x̂, η) ≡ 0, η ∈ Σ1,

where Φ(x̂, η) = (Φ1(x̂, η), Φ2(x̂, η), Φ1(x̂, η)) and η = (η1, η2, η3).
If Φ(x̂, η) 6= 0, then this condition is equivalent to [η × Φ(x̂, η)] 6= 0.
On the other hand,

Φ(x̂, η) 6= 0 ⇐⇒ Φ(x̂, η) = η × (x̂ρ(η) + (x̂ · η)∇ηρ(η)) 6= 0,

i.e., the vector ρ(η)x̂ + (x̂ · η)∇2ρ(η) is not parallel to η. Thus, i)⇔ii).
In the particular case under consideration it is clear that

ρq(tη) = ωµq(tη) =
1
t

ωµq(η) =
1
t

ρq(η), t > 0.

The functions ρq(η), q = 1, 2, 3, are homogeneous functions of order (−1)
for η ∈ Σ1. Ttherefore

(η · ∇ηρ(η)) = −ρ(η). (3.7)

Taking into account (3.7) and the fact that for arbitrary vectors a, b and c,
a× [b× c] = b(a · c)− c(a · b), we have

η×Φ(x̂, η) = η × {η × (x̂ρ(η) + (x̂ · η)∇ηρ(η))} =

= η {(η · x̂)ρ(η) + (x̂ · η)(η · ∇ηρ(η))} − (x̂ρ(η) + (x̂ · η)∇ηρ(η)) =

= (η · x̂){ρ(η)− ρ(η)}η − {x̂ρ(η) + (x̂ · η)∇ηρ(η)} =
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= −x̂ρ(η)− (x̂ · η)∇ηρ(η),

hence
ηΦ(x̂, η) = −x̂ρ(η)− (x̂, η)∇ηρ(η).

Using (3.4), we conclude that i)⇔iii). ¤

Note that if (x̂ · η) = 0, then x̂ ⊥ η, |x̂× η| = 1 and

|Φ(x̂, η)| = |η × x̂|ρ(η) = ρ(η) > 0,

i.e., if (x̂ · η) = 0, then Φ(x̂, η) 6= 0.
From Lemma 3.1 we conclude that

Φ(x̂, η) = η × [x̂ρ(η) + (x̂ · η)∇ηρ(η)] = 0 ⇐⇒
⇐⇒ x̂ρ(η) + (x̂ · η)∇ηρ(η) = 0. (3.8)

Since

η · (x̂ρ(η) + (x̂ · η)∇ηρ(η)) = (η · x̂)ρ(η) + (x̂ · η)(η · ∇ηρ(η)) =

= (η · x̂)ρ(η)− (x̂ · η)ρ(η) = 0,

this means that {x̂ρ(η) + (x̂ · η)∇ηρ(η)} ⊥ η and

|Φ(x̂, η)| = |x̂ρ(η) + (x̂ · η)∇ηρ(η)|.
The points η ∈ Σ1 satisfying the equation (3.8) will be called critical

points on Σ1 corresponding to the direction x̂.
Denote by S̃ the surface defined by the equation ρ = ρ(η). Clearly,

ρ(η) : Σ1 → S̃.

Figure 3.1.

Lemma 3.2. η0 ∈ Σ1 is a critical point corresponding to the direction
x̂ ∈ Σ1 if and only if η(ξ0) = ±x̂, where ξ0 = ρ(η0)η0 ∈ S̃.
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Proof. Let us consider the function

F (ξ) = |ξ| − ρ

(
ξ

|ξ|
)

, ξ ∈ R3 \ {0},

where ρ(η) is a positive function defined on Σ1 as a function of η, is differ-
entiable with respect to η and homogeneous of order −1.

It is evident that F (ξ) = 0 is an equation for S̃, i.e., S̃ is a level surface
for the function F . Therefore ∇ξF (ξ) defines the field of outward normal

directions on S̃: n(ξ) =
∇ξF (ξ)
|∇ξF (ξ)|

∣∣∣∣
ξ∈S̃

is the outward unit normal vector to

S̃ at the point ξ ∈ S̃.
Elementary calculations show

∇ξF (ξ) =
ξ

|ξ| − ∇ξρ

(
ξ

|ξ|
)

=

=
ξ

|ξ| −
1
|ξ| [∇ξρ(η)− η(η · ∇ηρ(η))] = η − 1

|ξ| [∇ηρ(η) + ηρ(η)].

Therefore

∇ξF (ξ)
∣∣
ξ∈S̃

= η − 1
ρ(η)

[∇ηρ(η) + ηρ(η)] = − 1
ρ(η)

∇ηρ(η).

Note that the surface S̃ = Sq, q = 1, 2, 3, are star shape with respect to
the origin point 0, i.e., if n(ξ) is the outward unit normal vector to S̃ at
ξ ∈ S̃, then (η · n(ξ)) ≥ 0.

Since (η · n(ξ)) = − 1
∇ηρ(η)

(η · ∇ηρ(η)) =
ρ(η)

|∇ηρ(η)| > 0, we conclude

that

n(ξ) = − ∇ηρ(η)
|∇ηρ(η)| for ξ ∈ S̃ (3.9)

defines the outward unit normal vector.
If η0 ∈ Σ1 is a critical point corresponding to x̂ ∈ Σ1, then using (3.8)

and (3.9) we conclude that η(ξ0) = ±x̂, where ξ0 = ρ(η0)η0 ∈ S̃.
On the other hand, let n(ξ0)‖x̂, i.e., n(ξ0) = ±x̂, or due to (3.9) x̂ =

± ∇ηρ(η0)
|∇ηρ(η0)| .
Let us write (3.8) for η0

x̂ρ(η0) + (x̂ · η0)∇ηρ(η0) =

= ± 1
|∇ηρ(η0)| {(∇ηρ(η0))ρ(η0) + (∇ηρ(η0) · η0)∇ηρ(η0)} =

= ± 1
|∇ηρ(η0)| {ρ(η0)∇ηρ(η0)− ρ(η0)∇ηρ(η0)} = 0.

Therefore we get that Φ(x̂, η0) = 0, i.e., η0 is a critical point. ¤
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Remark 3.3. If the surface S̃ does not contain a plane two-dimensional
part (i.e., curvature of the surface S̃ does not vanish on a subset of S̃ of
positive 2-dimensional measure), then the set of critical points consists of
isolated points or lines on S̃.

Using Lemmas 3.1 and 3.2, one can easily prove the following

Theorem 3.4. i) If η0 ∈ Σ1 is not a critical point corresponding to the
direction x̂ ∈ Σ1, then

Φ(x̂, η) = η × [ρ(η)x̂ + (x̂ · η)∇ηρ(η)] 6= 0

and
|Φ(x̂, η)| = |ρ(η)x̂ + (x̂, η)∇ηρ(η)| > 0.

ii) If (x̂ · η) = 0, then |Φ(x̂, η)| = ρ(η) > 0.
iii) Φ(x̂, η) = 0 only at critical points.

From ii) of Theorem 3.4 it follows

Corollary 3.5. There exists a neighborhood U(δ, ∂Σ±x ) of the circumfer-
ence ∂Σ±x with |Φ(x̂, η)| ≥ δ > 0 for η ∈ U(δ, ∂Σ±x ).

Using the Stokes theorem for f ∈ C1(Σ1), we can write
∫

Σ∗

∂k(η,∇η)f(η) dΣ1 =
∫

γ

f(η)`k(η) dγ, (3.10)

where Σ∗ ⊂ Σ1, ∂Σ∗ = γ, n = η on Σ1 and ` = (`1, `2, `3) is the unit
tangent vector to γ.

Figure 3.2.

As a result, from (3.10) we have
∫

Σ∗

[∂k(η,∇η)f(η)]g(η) dΣ1 =

= −
∫

Σ∗

f(η)[∂k(η,∇η)g(η)] dΣ1 +
∫

γ

f(η)g(η)`k(η) dγ. (3.11)
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If either f |γ = 0 or g|γ = 0, then
∫

Σ∗

[∂k(η,∇η)f(η)]g(η) dΣ1 = −
∫

Σ∗

f(η)[∂k(η,∇η)g(η)] dΣ1.

Lemma 3.6. If η ∈ Σ1 is not a critical point corresponding to the direc-
tion x̂ ∈ Σ1, then

eiλ(x̂·η)ρ(η) =
1
iλ

3∑

k=1

Φk(x̂, η)
|Φk(x̂, η)|

[
∂k(η,∇η)eiλ(x̂·η)ρ(η)

]
. (3.12)

Proof. Multiplying both sides of the formula (3.6) by Φk(x̂, η) and summing,
we obtain the equation

3∑

k=1

Φk(x̂, η)
[
∂k(η,∇η)eiλ(x̂·η)ρ(η)

]
= iλeiλ(x̂·η)ρ(η)|Φ(x̂, η)|2 (3.13)

(for ρ(η) = ρq(η) we will use the notation Φ(q)
k (x̂, η) and Φ(q)(x̂, η)).

If η is not a critical point, then Φ(x̂, η) 6= 0, and (3.13) can be rewritten
in the form (3.12). ¤

In what follows, we essentially use the following

Lemma 3.7. If Φ(x) =
∫

Σ+
x

ϕ(x, η)dηΣ1 and ϕ(·, η) ∈ C1(R3), Σ+
x =

{η ∈ Σ1 : (x · η) ≥ 0}, then

∂Φ(x)
∂xk

=
∫

Σ+
x

∂ϕ(x, η)
∂xk

dηΣ1 +
1
|x|

∫

γx

ϕ(x, η)ηkdηγx, (3.14)

where γx = ∂Σ+
x .

Proof. First let us calculate the derivative of Φ(x) in the direction e0 =
(e01, e02, e03), |e0| = 1,

∂Φ(x)
∂e0

= lim
t→0

Φ(x + te0)− Φ(x)
t

.

It is clear that

Φ(x + te0)− Φ(x) =
∫

Σ+
x+te0

ϕ(x + te0, η)dηΣ1 −
∫

Σ+
x

ϕ(x, η)dηΣ1 =

=
∫

Σ+
x

[ϕ(x + te0, η)− ϕ(x, η)]dηΣ1 +
∫

Σ+
x+te0

ϕ(x + te0, η)dηΣ1−

−
∫

Σ+
x

ϕ(x + te0, η)dηΣ1 =
∫

Σ+
x

[ϕ(x + te0, η)− ϕ(x, η)]dηΣ1+
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Figure 3.3.

+
∫

Σ2(t)

ϕ(x + te0, η)dηΣ1 −
∫

Σ1(t)

ϕ(x + te0, η)dηΣ1. (3.15)

Figure 3.4.

e3 = − x̂× e0

|x̂× e0| =
e0 × x̂

|x̂× e0| ; e2 = x̂; e1 = −e3 × x̂ = e2 × e3.
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From (3.15) we get

1
t

[Φ(x + te0)− Φ(x)] =
∫

Σ+
x

ϕ(x + te0, η)− ϕ(x, η)
t

dηΣ1+

+
1
t

∫

Σ2(t)

ϕ(x + te0, η) dΣ1 − 1
t

∫

Σ1(t)

ϕ(x + te0, η) dΣ1 =

= Φ1(x, t) + Φ2(x, t) + Φ3(x, t), (3.16)

where

Φ1(x, t) =
∫

Σ+
x

ϕ(x + te0, η)− ϕ(x, t)
t

dηΣ1,

Φ2(x, t) =
1
t

∫

Σ2(t)

ϕ(x + te0, η) dΣ1, Φ3(x, t) = −1
t

∫

Σ1(t)

ϕ(x + te0, η) dΣ1.

Evidently,

lim
t→0

Φ1(x, t) =
∫

Σ+
x

∂ϕ(x, η)
∂e0(x)

dΣ1. (3.17)

Let us make an orthogonal transform of the initial system such that 0ξ1

coincides with e1, 0ξ2 with e2 and 0ξ3 with e3 (see Fig. 3.4). Denote by
B := B(x, e) the orthogonal matrix of this transform (Bξ = η)

B =




e11 e21 e31

e12 e22 e32

e13 e23 e33


 , ek =




ek1

ek2

ek3


 , k = 1, 2, 3.

Using the spherical coordinates, we have

Figure 3.5

ξ1 = |ξ| cosψ sin θ,

ξ2 = |ξ| sin ψ sin θ,

ξ3 = |ξ| cos θ,

0 ≤ θ ≤ π and
0 ≤ ψ < 2π.
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As it is seen from Fig. 3.4, 2π − ν(t) < ψ < 2π for Σ2(t) and π − ν(t) <
ψ < π for Σ1(t), i.e., for both surfaces 0 < θ < π. Let us estimate the angle
ν(t) (ν(t) ≥ 0 is sufficiently small)

cos ν(t) = x̂ · x + te0

|x + te0| =
x · (x + te0)
|x| |x + te0| =

=
|x|2 + t(e0 · x)
|x| |x + te0| = 1 +

|x|2 + t(e0 · x)− |x| |x + e0t|
|x| |x + e0t| =

= 1 +
|x|4 + 2t|x|2(e0 · x)2 + t2(e0 · x)2 − |x|2[|x|2 + 2t(e0 · x) + t2]

|x| |x + e0t|[|x|2 + t(e0 · x) + |x| |x + e0t|] =

= 1− t2[|x|2 − (e0 · x)2]
|x| |x + e0t|[|x|2 + t(e0 · x) + |x| |x + e0t|] ,

i.e.,

2 sin2 ν(t)
2

= t2
|x|2 − (e0 · x)2

|x| |x + e0t|[|x|2 + t(e0 · x) + |x| |x + e0t|] =

= t2
{ |x|2 − (e0 · x)2

2|x|4
}

+ O(t3).

Hence

lim
t→0

ν(t)
t

=

√
|x|2 − (e0 · x)2

|x|4 . (3.18)

If BΣ2(t) = Σ̃2(t), then

Φ2(x, t) =
1
t

∫

Σ2(t)

ϕ(x + te0, η) dΣ1 =
1
t

∫

Σ̃2(t)

ϕ(x + te0, Bξ) dΣ1 =

=
1
t

2π∫

2π−ν(t)

dψ

π∫

0

ϕ(x + te0, Bξ) sin θ dθ. (3.19)

Using the mean value theorem in (3.19), we obtain

Φ2(x, t) =
1
t

ν(t)

π∫

0

ϕ(x + te0, Bξ′) sin θ dθ, (3.20)

where
ξ′ = (ξ′1, ξ

′
2, ξ

′
3) : ξ′1 = cos ψ′ sin θ,

ξ′2 = sinψ′ sin θ,

ξ′3 = cos θ and

2π − ν(t) ≤ ψ′ < 2π.

(3.21)
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Similarly, if BΣ1(t) = Σ̃1(t), then

Φ1(x, t) = −1
t

∫

Σ1(t)

ϕ(x + te0, η) dΣ1 = −1
t

∫

Σ̃1(t)

ϕ(x + te0, Bξ) dΣ1 =

= −1
t

π∫

π−ν(t)

dψ

π∫

0

ϕ(x + te0, Bξ) sin θ dθ =

= −ν(t)
t

π∫

0

ϕ(x + te0, Bξ′′) sin θ dθ, (3.22)

where
ξ′′ = (ξ′′1 , ξ′′2 , ξ′′3 ) : ξ′′1 = cos ψ′′ sin θ,

ξ′′2 = sin ψ′′ sin θ,

ξ′′3 = cos θ,

2π − ν(t) ≤ ψ′′ < 2π.

(3.23)

Due to (3.18)–(3.23) we find

lim
t→0

Φ2(x, t) =

√
|x|2 − (x · e0)2

|x|2
π∫

0

ϕ(x,Bξ′0) sin θ dθ, (3.24)

where ξ′0 =




sin θ
0

cos θ


, and

lim
t→0

Φ3(x, t) = −
√
|x|2 − (x · e0)2

|x|2
π∫

0

ϕ(x,Bξ′′0 ) sin θ dθ, (3.25)

where ξ′′0 =



− sin θ

0
cos θ


.

The substitution θ = π − θ̃ in (3.25) leads to

π∫

0

ϕ(x,Bξ′′0 ) sin θ dθ = −
0∫

π

ϕ(x,B(−ξ′0)) sin θ dθ =

π∫

0

ϕ(x,Bξ′0) sin θ dθ.

If θ = θ̃−π, then sin θ = sin(θ̃−π) = − sin θ̃, cos θ = cos(θ̃−π) = − cos θ̃,
0 ≤ θ ≤ π, π ≤ θ̃ ≤ 2π,

−Bξ′0 = −B




sin θ
0

cos θ


 = B




sin θ
0

cos θ


 = Bξ′0
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and
π∫

0

ϕ(x,−Bξ′0) sin θ dθ =

2π∫

π

ϕ(x,−Bξ′0) sin θ dθ =

2π∫

π

ϕ(x, Bξ′0) sin θ dθ.

Hence from (3.24) and (3.25)

lim
t→0

Φ2(x, t) =

√
|x|2 − (x · e0)2

|x|2
π∫

0

ϕ


x,B




sin θ
0

cos θ





 sin θ dθ, (3.26)

lim
t→0

Φ3(x, t) = −
√
|x|2 − (x · e0)2

|x|2
π∫

0

ϕ


x,−B




sin θ
0

cos θ





 sin θ dθ =

=

√
|x|2 − (x · e0)2

|x|2
2π∫

π

ϕ


x, B




sin θ
0

cos θ





 sin θ dθ. (3.27)

Note that

B




sin θ
0

cos θ


 = e1 sin θ + e3 cos θ =




e11

e12

e13


 sin θ +




e31

e32

e33


 cos θ = ζ,

i.e., ζ = e1 sin θ + e3 cos θ.
Clearly, ζ ∈ γx = ∂Σ±x , and when θ varies from 0 to 2π, then ζ moves on

γx in positive direction. Moreover,

sin θ = (e1 · ζ). (3.28)

Figure 3.6.

Taking into account (3.26)–(3.28), we get

lim
t→0

Φ2(x, t) =

√
|x|2 − (x · e0)2

|x|2
π∫

0

ϕ(x, ζ)(e1 · ζ) dθ, (3.29)
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lim
t→0

Φ3(x, t) =

√
|x|2 − (x · e0)2

|x|2
2π∫

π

ϕ(x, ζ)(e1 · ζ) dθ. (3.30)

dθ = dγx on γx = ∂Σ±x (see Fig. 3.6), and hence

π∫

0

ϕ(x, ζ)(e1 · ζ) dθ =
∫

γ+
x

ϕ(x, ζ)(e1 · ζ) dζγx (3.31)

2π∫

π

ϕ(x, ζ)(e1 · ζ) dθ =
∫

γ−x

ϕ(x, ζ)(e1 · ζ) dζγx. (3.32)

Using (3.16), (3.17) and (3.29)–(3.32), we get

∂Φ
∂e0

= lim
t→0

1
t
[Φ(x + te0)− Φ(x)] =

∫

Σ+
x

∂ϕ(x, η)
∂e0

dηΣ1+

+

√
|x|2 − (x · e0)2

|x|2
∫

γ+
x

ϕ(x, ζ)(e1 · ζ) dζγx. (3.33)

Note that the vector e0 = (δ1k, δ2k, δ3k) corresponds to ∂
∂xk

:
I) If e0 = (1, 0, 0) ∼ ∂

∂x1
, then

[e0 × x̂] =

∣∣∣∣∣∣

i j k
1 0 0
x̂1 x̂2 x̂3

∣∣∣∣∣∣
= (0,−x̂3, x̂2)>, r1 =

√
x̂2

2 + x̂2
3,

e
(1)
2 = (x̂1, x̂2, x̂3), e

(1)
3 =

e0 × x̂

|e0 × x̂| = e
(1)
3 =

1
r1

(0,−x̂3, x̂2),

e
(1)
1 = [e(i)

2 × e
(1)
3 ] =

∣∣∣∣∣∣

i j k
x̂1 x̂2 x̂3

0 − x̂3
r1

− x̂2
r1

∣∣∣∣∣∣
=

(
r1,− x̂1x̂2

r1
,− x̂1x̂3

r1

)
=

=
1
r1

(x̂2
2 + x̂2

3 + x2
1 − x̂2

1;−x̂1x̂2,−x̂1x̂3)> =
1
r1
{(1, 0, 0)> − x̂1x̂};

II) If e0 = (0, 1, 0) ∼ ∂
∂x2

, then

[e0 × x̂] =

∣∣∣∣∣∣

i j k
0 1 0
x̂1 x̂2 x̂3

∣∣∣∣∣∣
= (x̂3, 0,−x̂2)>, r2 =

√
x̂2

1 + x̂2
3,

e
(2)
3 =

1
r2

(x̂3, 0,−x̂2)>, e
(2)
2 = x̂ and e

(2)
1 =

1
r2
{(0, 1, 0)> − x̂2x̂};
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III) If e0 = (0, 0, 1) ∼ ∂
∂x3

, then

[e0 × x̂] =

∣∣∣∣∣∣

i j k
0 1 1
x̂1 x̂2 x̂3

∣∣∣∣∣∣
= (−x̂2, x̂1, 0)>, r3 =

√
x̂2

1 + x̂2
2,

e
(3)
3 =

1
r3

(−x̂2, x̂1, 0)>, e
(3)
2 = x̂ and e

(3)
1 =

1
r3
{(0, 0, 1)> − x̂3x̂}.

The parametric equation of γx = ∂Σ±x is

ζ = e
(k)
1 sin θ + e

(k)
3 cos θ, k = 1, 2, 3.

Figure 3.7.

Here the coordinates of ζ = (ζ1, ζ2, ζ3) correspond to the initial system.
Applying (3.33), we have

∂Φ
∂xk

=
∫

Σ+
x

∂ϕ(x, η)
∂xk

dηΣ1 +

√
|x|2 − x2

k

|x|2
∫

γx

ϕ(x, ζ)(e(k)
1 · ζ)dζγx.

Clearly,
√
|x|2 − x2

k

|x|2 =
√

1− x̂2

|x| =
rk

|x| , ζ · x̂ = 0, and rk(e(k)
1 · ζ) = ζk,

so
∂Φ
∂xk

=
∫

Σ+
x

∂ϕ(x, η)
∂xk

dηΣ1 +
1
|x|

∫

γx

ϕ(x, ζ)ζkdζγx. (3.34)

We can write η and ηk instead of ζ and ζk in (3.34) to get (3.14). ¤

Now we can prove the following

Theorem 3.8. The fundamental solution Ψ(x, ω, 1) of the equation (2.1)
is represented as

Ψ(x, ω, 1) = Ψ(1)(x) + Ψ(0)(x), (3.35)
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where

Ψ(1)(x) =
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)ei(x·η)ρqdΣ1, (3.36)

Ψ(0)(x) = − 1
8π2|x|

∫

γx

C−1(η) dγ. (3.37)

Here C−1(η)is the inverse matrix of C(η) (see (2.1)), dγ = dηγx, Fq(η) is
defined by (2.21).

Moreover, if |x| → 0, then

∂

∂xk
[Ψ(1)(x)] = O(1);

∂2

∂xk∂xj
[Ψ(1)] = O

(
1
|x|

)
(3.38)

and

lim
t→0

Ψ(1)(x) =
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω) dΣ1. (3.39)

Proof. Note that a(η) > 0 and ρq(η) > 0, η ∈ Σq, are even functions.
Therefore

Fq(−η) = Fq(η).

It is easy to check that

3∑
q=1

Fq(η)ρ±1
q (η) = 0. (3.40)

Due to Lemma 3.7, we have

∂

∂xk
Γ(x, ω, 1) =

∫

Σ+
x

3∑
q=1

Fq(η)ei(x·η)ρq(η)iηkρq(η) dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)ei(x·η)ρq(η)ηk dγ. (3.41)

We know that Fq(η) is an even function and (x · η) = 0 on γx. Therefore

∫

γx

3∑
q=1

Fq(η)ei(x·η)ρq(η)ηk dγ =
∫

γx

3∑
q=1

Fq(η)ηk dγ =

=
∫

γx

3∑
q=1

Fq(−η)(−ηk) dγ = −
∫

γx

3∑
q=1

Fq(η)ηk dγ = 0.
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Now we can rewrite (3.41) as

∂

∂xk
Γ(x, ω, 1) =

∫

Σ+
x

3∑
q=1

Fq(η)iηkρq(η)ei(x·η)ρq(η) dΣ1. (3.42)

With the help of (3.14) and (3.40) we have

∂2

∂xk∂xj
Γ(x, ω, 1) =

∫

Σ+
x

3∑
q=1

Fq(η)(iηk)(iηj)ρ2
q(η)ei(x·η)ρq(η) dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)iηkρq(η)ηj dγ =

=
∫

Σ+
x

3∑
q=1

Fq(η)i2ηkηjρ
2
q(η)ei(x·η)ρq(η) dΣ1. (3.43)

Similarly,

∂3

∂xk∂xj∂xm
Γ(x, ω, 1) =

∫

Σ+
x

3∑
q=1

Fq(η)i3ηkηjηmρ3
q(η)ei(x·η)ρq(η) dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)i2ηkηjρ
2
q(η)ηm dγ. (3.44)

The curvilinear integral in (3.44) vanishes since the integrand is an odd
function, i.e.

∂3

∂xk∂xj∂xm
Γ(x, ω, 1) =

∫

Σ+
x

3∑
q=1

Fq(η)i3ηkηjηmρ3
q(η)ei(x·η)ρq(η) dΣ1. (3.45)

Another use of (3.14) gives

∂4

∂xk∂xj∂xm∂xp
Γ(x, ω, 1)=

∫

Σ+
x

3∑
q=1

Fq(η)i4ηkηjηmηpρ
4
q(η)ei(x·η)ρq(η) dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)i3ηkηjηmρ3
q(η)ηp dγ =

= i4
∫

Σ+
x

3∑
q=1

Fq(η)ηkηjηmηpe
i(x·η)ρq(η) dΣ1+

+
i3

|x|
∫

γx

3∑
q=1

Fq(η)ηkηjηmρ3
q(η) dγ, (3.46)
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where the curvilinear integral does not vanish, it is a homogeneous function
of order −1. Clearly, the first integral in (3.46) is bounded in a vicinity of
the origin.

Using (3.42)–(3.46), we can write

Ψ(x, ω, 1) = N(∂x, ω)
∫

Σ+
x

3∑
q=1

Fq(η)ei(x·η)ρq(η)dΣ1 =

=
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)ei(x·η)ρq(η)dΣ1+

+
i3

|x|
∫

γx

3∑
q=1

Fq(η)ρ3
q(η)N0(η) dγ, (3.47)

where N0(η) is the principle part of the matrix N(η, ω).
Let us calculate
3∑

q=1

Fq(η)ρ3
q(η) = − i

8π2a(η)

{
ρ4
1

(ρ2
1 − ρ2

2)(ρ
2
1 − ρ2

3)
+

+
ρ4
2

(ρ2
2 − ρ2

1)(ρ
2
2 − ρ2

3)
+

ρ4
3

(ρ2
3 − ρ2

1)(ρ
2
3 − ρ2

2)

}
=

= − i

8π2a(η)

{
ρ4
1(ρ

2
2 − ρ2

3)− ρ4
2(ρ

2
1 − ρ2

3)− ρ4
3(ρ

2
1 − ρ2

3)
(ρ2

1 − ρ2
2)(ρ

2
1 − ρ2

3)(ρ
2
2 − ρ2

3)

}
= − i

8π2a(η)
.

Now we can rewrite (3.47) as

Ψ(x, ω, 1) =
∫

Σ+
x

Fq(η)N(iηρq, ω)ei(x·η)ρq(η)dΣ1 − 1
8π2|x|

∫

γx

C−1(η) dγ,

where C−1(η) =
1

a(η)
N0(η) is the matrix inverse to C(η).

Using the notation (3.36) and (3.37), we arrive to (3.35). Note that Ψ0(x)
is the fundamental solution of the static equation (ω = 0)

C(∂)Ψ(0)(x) = δ(x)I3.

We know that

N(∂x, ω) = [Nkj(∂x, ω)]3×3 and

Nkj(iηρq, ω) = N0
kj(η)i4ρ4

q −N1
kj(η)ρ2

qω
2 + ω4δkj ,

where N0
kj(η) is a 4th order polynomial with respect to η, N1

kl(η) is a second
order polynomial,

Ψ(1)(x) =
∫

Σ+
x

3∑
q=1

N0(η)Fq(η)ρ4
q(η)ei(x·η)ρq(η)dΣ1−
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−
∫

Σ+
x

3∑
q=1

N1(η)Fq(η)ρ2
q(η)ei(x·η)ρq(η)dΣ1+

+
∫

Σ+
x

3∑
q=1

I3Fq(η)ω4ei(x·η)ρq(η)dΣ1 =

=
∫

Σ+
x

3∑
q=1

ρ5
q(η)

3∏
j=1 j 6=q

[ρ2
q(η)− ρ2

j (η)]
N0(η)ei(x·η)ρq(η)dΣ1+

−
∫

Σ+
x

ω2
3∑

q=1

ρ3
q(η)

3∏
j=1 j 6=q

[ρ2
q(η)− ρ2

j (η)]
N1(η)ei(x·η)ρq(η)dΣ1+

+
∫

Σ+
x

ω4
3∑

q=1

ρq(η)
3∏

j=1 j 6=q

[ρ2
q(η)− ρ2

j (η)]
I3e

i(x·η)ρq(η)dΣ1

= O(ω) → 0 as ω → 0,

i.e., for any x ∈ R3 \ {0}
lim
ω→0

Ψ(x, ω, 1) = Ψ(0)(x)

uniformly for all |x| > δ > 0.
Clearly, Ψ0(x) = O(1) as |x| → 0,
Using (3.14) and the fact that Fq(−η) = Fq(η), we obtain

∂Ψ(1)(x)
∂xk

=
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)[iηkρq(η)]ei(x·η)ρq(η)dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)N(iηρq, ω)ηk dγ =

=
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)[iηkρq(η)]ei(x·η)ρq(η)dΣ1 = O(1)

and

∂2Ψ(1)(x)
∂xk∂xj

=
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)[i2ηkηj ]ρ2
q(η)ei(x·η)ρq(η)dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)N(iηρq, ω)iηkρq(η)ηj dγ = O

(
1
|x|

)
.
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Taking into account that Fq(η)N(iηρq, ω) is an even function, we derive
(3.39). ¤

3.2. Asymptotics at infinity and the radiation conditions. Using
Lemma 3.7, we can prove

Theorem 3.9. For |x| → +∞
∂5

∂xk∂xj∂xm∂xp∂xn
Γ(x, ω, 1) =

= i5
∫

Σ+
x

3∑
q=1

Fq(η)ηkηjηmηpηnρ5
q(η)ei(x·η)ρq(η)dΣ1 + O(|x|−2), (3.48)

∂4

∂xk∂xj∂xm∂xp
Γ(x, ω, 1) =

= i4
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)ηkηjηmηpe
i(x·η)ρq(η)dΣ1 + O(|x|−2), (3.49)

where ψ1 ∈ C∞(Σ1), ψ1(η) = 0 for η ∈ γx.

Proof. Due to (3.14) and (3.46), we get

∂5

∂xk∂xj∂xm∂xp∂xn
Γ(x, ω, 1) =

=
∫

Σ+
x

3∑
q=1

Fq(η)i5ηkηjηmηpηnρ5
q(η)ei(x·η)ρq(η)dΣ1+

+ i4
∫

γx

3∑
q=1

Fq(η)ρ4
q(η)ηkηjηmηpηndγ+

+
∂

∂xn

[
i3

|x|
∫

γx

3∑
q=1

Fq(η)ηkηjηmηpρ
3
q(η)dγ

]
. (3.50)

The second integral in(3.50) vanishes since the integrand is an odd func-
tion. The third integral in(3.50) is O(|x|−2) as |x| → ∞ (or |x| → 0), more
precisely, it is a homogeneous function of order −2. Hence we can rewrite
(3.50) as (3.48).

Let us consider the function

Φ(x) =
∫

Σ+
x

ϕ(η)ei(x·η)ρ(η)dΣ1, ϕ ∈ C1(Σ1). (3.51)

Due to Theorem 3.4 and Corollary 3.3, there exists ε > 0 such that there
is no critical point in Σ+

x (ε) (see Fig. 3.8).
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Figure 3.8.

Let us rewrite (3.51) as

Φ(x) =
∫

Σ+
x

(ψ0(η) + ψ1(η))ϕ(η)ei(x·η)ρ(η)dΣ1 = Φ∗(x) + Φ∗∗(x),

where

Φ∗(x) =
∫

Σ+
x

ψ0(η)ϕ(η)ei(x·η)ρ(η)dΣ1,

Φ∗∗(x) =
∫

Σ+
x

ψ1(η)ϕ(η)ei(x·η)ρ(η)dΣ1;

here ψ0(η) + ψ1(η) = 0, η ∈ Σ1, ψ0, ψ1 ∈ C∞(Σ1), ψ0 ≥ 0, ψ0(η) = 0 in
vicinity of γx, supp ψ0 ⊂ Σ+

x (ε), ψ1(η) = 1 − ψ0(η) vanishes on γx and in
Σ+

x (ε).
Applying (3.11) and (3.12), we have

Φ∗(x) =
∫

Σ+
x

ψ0(η)ϕ(η)ei|x|(x̂·η)ρ(η)dΣ1 =

=
∫

Σ+
x

ψ0(η)ϕ(η)
[

1
i|x|

3∑

k=1

Φk(x̂, η)
|Φ(x̂, η)|2 ∂k(η,∇η)ei|x|(x̂·η)ρ(η)

]
dΣ1 =

=
1

i|x|

{
−

∫

Σ+
x

( 3∑

k=1

∂k(η,∇η)
[
ψ0(η)ϕ(η)

Φk(x̂, η)
|Φ(x̂, η)|2

])
ei|x|(x̂·η)ρ(η)dΣ1+

+
∫

γx

ψ0(η)ϕ(η)
3∑

k=1

Φk(x̂, η)
|Φ(x̂, η)|2 `k(η)ei|x|(x̂·η)ρ(η)dγ

}
. (3.52)
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Applying the same procedure in the first integral of (3.52), we see that
it is O(|x|−2).

On the other hand, (x̂ · η) = 0, η ∈ γx,

Φ(x̂, η) = [η × x̂]ρ(η) = −`(η)ρ(η), Φk(x̂, η) = −ρ(η)`k(η)

(here `(η) is the tangent vector to γx), so

Φ∗(x) = − 1
i|x|

∫

γx

ϕ(η)
3∑

k=1

ρ(η)`k(η)
ρ2(η)

`k dγ + O(|x|−2) =

= − 1
i|x|

∫

γx

ϕ(η)
1

ρ(η)
dγ + O(|x|−2).

For x À 1

Φ(x) =
∫

Σ+
x

ϕ(η)ei(x̂·η)ρ(η)dΣ1 =

= − 1
i|x|

∫

γx

ϕ(η)
1

ρ(η)
dγ + Φ∗∗(x) + O(|x|−2). (3.53)

Using (3.53) in (3.46), we can write

∂4

∂xk∂xj∂xm∂xp
Γ(x, ω, 1) = − i4

i|x|
∫

γx

3∑
q=1

Fq(η)ρ4
q(η)ηkηjηmηp

1
ρq(η)

dγ+

+ O(|x|−2) +
i3

|x|
∫

γx

3∑
q=1

Fq(η)ρ3
q(η)ηkηjηmηp dγ+

+ i4
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)ηkηjηmηpρ
4
q(η)ei(x·η)ρq(η) dΣ1.

From this relation we obtain (3.49). ¤

Theorem 3.10. For |x| À 1

Ψ(x, ω, 1) =
3∑

q=1

(q)

Ψ(x, ω, 1),
(q)

Ψ(x, ω, 1) = O(|x|−1), (3.54)

∂
(q)

Ψ(x, ω, 1)
∂xk

− iξ
(q)
k

(q)

Ψ(x, ω, 1) = O(|x|−2), (3.55)

where ξ
(q)
k ∈ Sq and η(ξ(q)

k ) = x
|x| .

These conditions are called the generalized Sommerfeld–Kupradze type
radiation conditions.
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Proof. Taking into account the form of Nkj , we can write

Ψ(x, ω, 1) =
∫

Σ+
x

(ψ0(η) + ψ1(η))
3∑

q=1

Fq(η)[N0(η)i4ρ4
q(η)−

−N1(η)ρ2
q(η)ω2 + ω2I]ei(x·η)ρq(η)dΣ1 +

i3

|x|
∫

γx

3∑
q=1

Fq(η)ρ3
q(η)N0 dγ =

=
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)N(iηρq, ω)ei(x·η)ρq(η)dΣ1−

− 1
i|x|

∫

γx

3∑
q=1

[
Fq(η)i4ρ4

q(η)N0 1
ρ1(η)

−

− Fq(η)N1(η)ρ2
q(η)ω2 1

ρq(η)
+ Fq(η)ω2 1

ρq(η)

]
dγ+

+
i3

|x|
∫

γx

3∑
q=1

Fq(η)ρ3
q(η)N0dγ + O(|x|−2). (3.56)

Here ψ0 and ψ1 are the same as in the previous theorem.
Due to (3.40)

Ψ(x, ω, 1) =
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)N(iηρq, ω)ei(x·η)ρq(η)dΣ1+

+ O(|x|−2), |x| À 1. (3.57)

Let us calculate
∂Ψ(x, ω, 1)

∂xk
with the help of (3.46) and (3.35)–(3.37)

∂Ψ(x, ω, 1)
∂xk

=
∫

Σ+
x

3∑
q=1

Fq(η)N(iηρq, ω)[ηkρq(η)]ei(x·η)ρq(η)dΣ1+

+
1
|x|

∫

γx

3∑
q=1

Fq(η)N(iηρq, ω)ηk dγ +
∂

∂xk
Ψ(0)(x). (3.58)

The last term in (3.58) is O(|x|−2). If we apply (3.53) in (3.58), we have

∂Ψ(x, ω, 1)
∂xk

= − 1
i|x|

∫

γx

3∑
q=1

Fq(η)N(iηρq, ω)[ηkρq(η)]
1

ρq(η)
dγ+

+
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)N(iηρq, ω)[ηkρq(η)]ei(x·η)ρq(η)dΣ1 + O(|x|−2) =
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=
∫

Σ+
x

ψ1(η)
3∑

q=1

Fq(η)N(iηρq, ω)[ηkρq(η)]ei(x·η)ρq(η)dΣ1 + O(|x|−2). (3.59)

Note that

ρ2
qdΣ1 = cos γ dSq = (η · η(ξ)) dSq =

(
η · −∇ηρq(η)

|∇ηρq(η)|
)

dSq =
ρq(η)

|∇ηρq(η)| dSq,

so we can rewrite (3.57) as follows

Ψ(x, ω, 1) =
3∑

q=1

∫

S+
q (x)

ψ1(η)Fq(η)N(iξ, ω)ei(x·ξ) 1
ρq(η)|∇ηρq(η)| dSq+

+ O(|x|−2) =

=
3∑

q=1

{
− 1

8π2

∫

S+
q (x)

ψ1(η)
N(iξ, ω)

a(η)
3∏

j=1, j 6=q

[ρ2
q(η)− ρ2

j (η)]
· ei(x·ξ)

|∇ηρq(η)| dSq

}
+

+ O(|x|−2);

here η = ξ
|ξ| = ξ

ρq(η) .
Now we can apply the results obtained in [8] and [9] to get

Ψ(x, ω, 1) =
3∑

q=1

{
− i

8π2

N(iξ(q), ω)e−i π
4 · 2π

a(η(q))
3∏

j=1, j 6=q

[ρ2
q(η(q))− ρ2

j (η(q))]
×

× ei(x·ξ(q))

|∇ηρq(η(q))|
√

Kq(ξ(q))

}
+ O(|x|−2),

i.e.

Ψ(x, ω, 1) =
3∑

q=1

{
− 1

4π

N(iξ(q), ω)

a(η(q))
3∏

j=1, j 6=q

[ρ2
q(η(q))− ρ2

j (η(q))]
×

× ei(x·ξ(q))

|∇ηρq(η(q))|
√

kq(ξ(q))

}
+ O(|x|−2), (3.60)

where η(q) =
ξ(q)

|ξ(q)| , ηkρq(η(q)) = ξ
(q)
k and kq is the Gaussian curvature of Sq.

With the help of (3.60), (3.56) and (3.59) we obtain the radiation condi-
tions (3.54), (3.55). ¤
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Short Communications

Nino Partsvania

ON TWO-POINT BOUNDARY VALUE PROBLEMS FOR
TWO-DIMENSIONAL LINEAR DIFFERENTIAL SYSTEMS

WITH SINGULAR COEFFICIENTS

Abstract. Two-point boundary value problems for two-dimensional sys-
tems of linear differential equations with singular coefficients are conside-
red. The cases are optimally described when the above-mentioned prob-
lems have the Fredholm property, and unimprovable in a certain sense con-
ditions are established guaranteeing the unique solvability of those prob-
lems.

îâäæñéâ. àŽêýæèñèæŽ ëîûâîðæèëãŽêæ ïŽïŽäôãîë ŽéëùŽêâĲæ
ûîòæã áæòâîâêùæŽèñî àŽêðëèâĲŽåŽ ëîàŽêäëéæèâĲæŽêæ ïæïðâéâ-
ĲæïŽåãæï ïæêàñèŽîñèæ çëâòæùæâêðâĲæå. ëìðæéŽèñîŽáŽŽ Žôûâîæèæ
öâéåýãâãâĲæ, îëùŽ Žôêæöêñè ŽéëùŽêâĲï àŽŽøêæŽå òîâáßëèéæï åãæïâ-
ĲŽ, áŽ áŽáàâêæèæŽ àŽîçãâñèæ Žäîæå ŽîŽàŽñéþëĲâïâĲŽáæ ìæîëĲâĲæ,
îëéèâĲæù ñäîñêãâèõëòâê Žé ŽéëùŽêâĲæï ùŽèïŽýŽá ŽéëýïêŽáëĲŽï.

2010 Mathematics Subject Classification. 34B05.
Key words and phrases. Two-dimensional linear differential system,
two-point boundary value problem, singularity, the Fredholm property,
unique solvability.

Boundary value problems for second and higher order linear differential
equations, whose coefficients have nonintegrable singularities at the points
bearing the boundary data, are investigated in full detail (see, e.g., [1], [2],
[5]–[7], [9]–[16] and the references therein).

From the theorems proven by R. P. Agarwal and I. Kiguradze [10] for
the second order differential equation

u′′ = p(t)u + q(t),

it follow unimprovable in a certain sense results on the unique solvability of
the boundary value problems

u(a) = 0, u(b) = 0,

b∫

a

u′2(t) dt < +∞

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
June 28, 2010.
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and

u(a) = 0, u′(b) = 0,

b∫

a

u′2(t) dt < +∞.

These results cover the cases where the concerned differential equation is
strongly singular, more precisely, when the order of singularity of the func-
tion t → (|p(t)| − p(t))/2 at the points a and b is equal to 2. In the present
paper, the above-mentioned results are generalized for two-dimensional lin-
ear differential systems.

By Lloc(]a, b[) we denote the space of functions p : ]a, b[→ R Lebesgue
integrable in the interval [a+ε, b−ε] for arbitrarily small ε > 0. Analogously,
by Lloc(]a, b]) we denote the space of functions p : ]a, b] → R Lebesgue
integrable in the interval [a + ε, b] for arbitrarily small ε > 0.

It is clear that the functions from the space Lloc(]a, b[) may have non-
integrable singularities at the points a and b. As for the functions from
the space Lloc(]a, b]), they may have nonintegrable singularities only at the
point a.

For an arbitrary number x we set

[x]− =
|x| − x

2
.

We consider the two-dimensional linear differential system

u′i = pi1(t)u1 + pi2(t)u2 + pi0(t) (i = 1, 2) (1)

with locally integrable coefficients pik ∈ Lloc(]a, b[) (i = 1, 2; k = 0, 1, 2).
We do not exclude from consideration the cases where some (or all) of the

coefficients of that system are not integrable on [a, b], having singularities
at the points a and b. In that sense the system (1) is singular.

It is naturally admitted the possibility that the functions p12 and p21 be
equal to zero on the sets of positive measure. This is the most interesting
case since in that case the system (1) cannot be reduced to a second order
linear differential equation.

Denote

a0 =
a + b

2
, ri(t) = exp

( t∫

a0

pii(s) ds

)
(i = 1, 2), r(t) =

|p12(t)|
r1(t)r2(t)

;

p1(t) =
p12(t)r2(t)

r1(t)
, p2(t) =

p21(t)r1(t)
r2(t)

; qi(t) =
pi0(t)
ri(t)

(i = 1, 2).

For the system (1) we consider the boundary value problems

lim
t→a

u1(t)
r1(t)

= 0, lim
t→b

u1(t)
r1(t)

= 0,

b∫

a

r(t)u2
2(t) dt < +∞ (2)
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and

lim
t→a

u1(t)
r1(t)

= 0, lim
t→b

u2(t)
r2(t)

= 0,

b∫

a

r(t)u2
2(t) dt < +∞. (3)

Note that if the functions p11 and p22 are integrable on [a, b], then the
conditions (2) and (3), respectively, are equivalent to the conditions

u1(a) = 0, u1(b) = 0,

b∫

a

|p12(t)|u2
2(t) dt < +∞

and

u1(a) = 0, u2(b) = 0,

b∫

a

|p12(t)|u2
2(t) dt < +∞,

where by ui(a) and ui(b) it is understood, respectively, the right and the
left limits of the function ui at the points a and b.

Both the problems (1), (2) and (1), (3) we investigate in the case where
the condition

0 ≤ σp1(t) ≤ `0 for a < t < b,

b∫

a

|p1(t)| dt > 0 (4)

is satisfied. Here σ ∈ {−1, 1} and `0 is a positive number.
Along with (1) we consider the corresponding homogeneous differential

system

u′i = pi1(t)u1 + pi2(t)u2 (i = 1, 2), (10)

and we introduce

Definition 1. We say that the problem (1), (2) has the Fredholm pro-
perty if the unique solvability of the corresponding homogeneous problem
(10), (2) guarantees the unique solvability of the problem (1), (2) for any
pi0 ∈ Lloc(]a, b[) (i = 1, 2) satisfying the conditions

q1 ∈ L([a, b]),

b∫

a

(t−a)(b−t)
(

p2(t)

t∫

a

|q1(s)| ds

b∫

t

|q1(s)| ds

)2

dt<+∞; (5)

b∫

a

|p1(t)|
∣∣∣∣

t∫

a0

q2(s) ds

∣∣∣∣
2

dt < +∞. (6)

The following theorem is valid.
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Theorem 1. If along with (4) the inequalities

lim sup
t→a

(
(t− a)

a0∫

t

[σp2(s)]− ds

)
<

1
4`0

,

lim sup
t→b

(
(b− t)

t∫

a0

[σp2(s)]− ds

)
<

1
4`0

(7)

are fulfilled, then the problem (1), (2) has the Fredholm property.

From this theorem it follows

Corollary 1. If along with (4) the inequalities

lim inf
t→a

(
σ(t− a)2p2(t)

)
> − 1

4`0
, lim inf

t→b

(
σ(b− t)2p2(t)

)
> − 1

4`0
(8)

are fulfilled, then the problem (1), (2) has the Fredholm property.

On the basis of Theorem 1 the following theorem can be proved.

Theorem 2. Let along with (4) the inequality

∣∣∣∣
t∫

a0

[σp2(s)]− ds

∣∣∣∣ ≤
`(b− a)

(t− a)(b− t)
for a < t < b

be fulfilled, where ` is a non-negative constant such that

` <
1

4`0
. (9)

If, moreover, the conditions (5) and (6) are satisfied, then the problem
(1), (2) has a unique solution.

Theorem 2 yields

Corollary 2. Let along with (4) the inequality

σp2(t) ≥ −`
( 1

(t− a)2
+

1
(b− t)2

)
for a < t < b

be fulfilled, where ` is a non-negative constant, satisfying the inequality
(9). If, moreover, the conditions (5) and (6) are satisfied, then the problem
(1), (2) has a unique solution.

Note that the conditions of Theorems 1 and 2 as well as the conditions
of Corollary 1 and 2 are unimprovable. More precisely, none of the strict
inequalities (7) and (8) can be replaced by the non-strict ones, and the
inequality (9) cannot be replaced by the equality

` =
1

4`0
.
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As an example, we consider the differential system

u′1 = g1(t)u2 + (t− a)α(b− t)αg10(t),

u′2 =
( g2(t)

(t− a)β(b− t)β
− `

(t− a)2
− `

(b− t)2
)
u1 +

g20(t)
(t− a)γ(b− t)γ

,
(10)

where gi : [a, b] → [0, +∞[ and gi0 : [a, b] → R (i = 1, 2) are continuous
functions, and α, β, γ, and ` are positive constants. Moreover, g1(t) 6≡ 0
and

0 ≤ g1(t) ≤
( t− a

b− a

)λ( b− t

b− a

)λ

for a < t < b,

where λ > 0.
The system (10), generally speaking, cannot be reduced to a second order

linear differential equation since the restrictions, imposed on the functions
g1 and g2, do not exclude, for example, the cases where

g1(t) = g2(t) = 0 for t ∈ I =

=
∞⋃

k=1

[
a +

b− a

4k + 1
, a +

b− a

4k

] ⋃[
b− b− a

4k
, b− b− a

4k + 1

]
,

and g1(t) > 0, g2(t) > 0 for t ∈ [a, b] \ I.

From Corollary 2 it follows

Corollary 3. If

` <
1
4

, α > 0, β < 2 + α, and γ <
3 + λ

2
, (11)

then the system (10) has a unique solution satisfying the conditions

u1(a) = 0, u1(b) = 0,

b∫

a

g1(t)u2
2(t) dt < +∞.

According to Corollary 3, the second equation in the system (10) may
have the singularity of an arbitrary order. More precisely, β and γ may be
arbitrarily large numbers if α and λ are also large.

Note that Corollary 3 does not follow from the previous well-known re-
sults on the unique solvability of two-point boundary value problems for
linear differential systems (see [3], [4], [8], [17]).

Now we consider the problem (1), (3). First of all we introduce

Definition 2. We say that the problem (1), (3) has the Fredholm pro-
perty if the unique solvability of the corresponding homogeneous problem
(10), (3) guarantees the unique solvability of the problem (1), (3) for any



160

pi0 ∈ Lloc(]a, b[) (i = 1, 2) satisfying the conditions

q1 ∈ L([a, b]),

b∫

a

(t− a)
(

p2(t)

t∫

a

|q1(s)| ds

)2

dt < +∞, (12)

q2 ∈ Lloc(]a, b]),

b∫

a

|p1(t)|
∣∣∣∣

b∫

t

q2(s) ds

∣∣∣∣
2

dt < +∞. (13)

The following theorem is valid.

Theorem 3. Let p2 ∈ Lloc(]a, b]), and let along with (4) the inequality

lim sup
t→a

(
σ(t− a)

b∫

t

[σp2(s)]− ds

)
<

1
4`0

(14)

be fulfilled. Then the problem (1), (3) has the Fredholm property.

Corollary 4. Let p2 ∈ Lloc(]a, b]), and let along with (4) the inequality

lim inf
t→a

(
σ(t− a)2p2(t)

)
> − 1

4`0
(15)

be fulfilled. Then the problem (1), (3) has the Fredholm property.

Theorem 4. Let p2 ∈ Lloc(]a, b]), and let along with (4) the inequality
b∫

t

[σp2(s)]− ds ≤ `

t− a
for a < t < b, where ` <

1
4`0

, (16)

be fulfilled. If, moreover, the conditions (12) and (13) are satisfied, then the
problem (1), (3) has a unique solution.

Corollary 5. Let p2 ∈ Lloc(]a, b]), and let along with (4) the inequality

σp2(t) ≥ − `

(t− a)2
for a < t < b, where ` <

1
4`0

, (17)

be fulfilled. If, moreover, the conditions (12) and (13) are satisfied, then the
problem (1), (3) has a unique solution.

Note that the conditions (14)–(17) in Theorems 3, 4 and Corollaries 4, 5
are unimprovable.

As an example, we consider the differential system
u′1 = g1(t)u2 + (t− a)αg10(t),

u′2 =
( g2(t)

(t− a)β
− `

(t− a)2
)
u1 +

g20(t)
(t− a)γ

,
(18)

where gi : [a, b] → [0, +∞[ and gi0 : [a, b] → R (i = 1, 2) are continuous
functions, α, β, γ, and ` are positive constants. Moreover, g1(t) 6≡ 0 and

0 ≤ g1(t) ≤
( t− a

b− a

)λ

for a < t < b,
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where λ > 0.
From Corollary 5 it follows

Corollary 6. If the condition (11) is fulfilled, then the system (18) has
a unique solution satisfying the conditions

u1(a) = 0, u2(b) = 0,

b∫

a

g1(t)u2
2(t) dt < +∞.
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Zaza Sokhadze

ON PERTURBED MULTI-POINT PROBLEMS FOR
NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For nonlinear functional differential systems unimprovable con-
ditions of solvability of perturbed multi-point boundary value problems are
established.

îâäæñéâ. ŽîŽûîòæãæ òñêóùæëêŽèñî áæòâîâêùæŽèñîæ ïæïðâéâĲæïŽ-
åãæï áŽáàâêæèæŽ öâöòëåâĲñèæ éîŽãŽûâîðæèëãŽêæ ïŽïŽäôãîë Žéë-
ùŽêâĲæï ŽéëýïêŽáëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ìæîëĲâĲæ.
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Consider the boundary value problem

dxi(t)
dt

= fi(x1, . . . , xn)(t) (i = 1, . . . , n), (1)

xi(ti) = ϕi(x1, . . . , xn)(t) (i = 1, . . . , n), (2)

where t1, . . . , tn are points from the segment I = [a, b], while fi : C(I;Rn) →
L(I;R) (i = 1, . . . , n) and ϕi : C(I;Rn) → R (i = 1, . . . , n) are, respectively,
continuous operators and functionals.

A vector function (xi)n
i=1 : I → Rn with absolutely continuous compo-

nents xi : I → R (i = 1, . . . , n) is said to be a solution of the system (1) if
it satisfies this system almost everywhere on I.

A solution of the system (1), satisfying the boundary conditions (2), is
said to be a solution of the problem (1),(2).

Particular cases of (1) are systems of ordinary differential equations

dxi(t)
dt

= f0i

(
t, x1(t), . . . , xn(t)

)
(i = 1, . . . , n) (3)

and systems of differential equations with deviated arguments

dxi(t)
dt

= gi

(
t, x1(τi(t)), . . . , xn(τn(t)), xi(t)

)
(i = 1, . . . , n), (4)

where f0i : I × Rn → R and gi : I × Rn+1 → R (i = 1, . . . , n) are functions
from the Carathéodory class, and τi : I → I (i = 1, . . . , n) are measurable
functions.

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
June 14, 2010.
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Particular cases of (2) are the boundary conditions of periodic type

xi(a) = αixi(b) (i = 1, . . . , n) (21)

and the multi-point boundary conditions

xi(ti) =
n∑

k=1

m∑

j=1

`ijkxk(tijk) + ci (i = 1, . . . , n). (22)

Boundary value problems for systems of the type (1) have been investi-
gating intensively and are the subject of numerous works (see, e.g., [1]–[5],
[12] and the references therein).

In the case where ϕi = ci = const (i = 1, . . . , n), the problem (3), (2),
i.e. the system (3) with the boundary conditions

xi(ti) = ci (i = 1, . . . , n)

is called the Cauchy–Nicoletti problem. Optimal, in a certain sense, suffi-
cient conditions for the solvability and unique solvability of that problem
are contained in the papers [6], [7], [14].

In the paper [8] I. Kiguradze proposed a new method of investigation
of boundary value problems of the type (3), (2) which is based on a priori
estimates of solutions of systems of one-sided differential inequalities. This
method allows us to study from the unified viewpoint a sufficiently large
class of perturbed multi-point boundary value problems and the periodic
problem (see [8] and [10]).

In our paper, new sufficient conditions for the solvability of boundary
value problems of the type (1), (2) are given, which, in contrast to previous
results, cover the cases where the system (1) is superlinear or sublinear or
some equations of this system are superlinear, while others are sublinear.

Throughout the paper, the use will be made of the following notation:
R = ]−∞,+∞[ , R+ = [0, +∞[ ;
Rn is the n-dimensional real Euclidian space;
y = (yi)n

i=1 and Y = (yik)n
i,k=1 are an n-dimensional column vector and

an n× n-matrix with elements yi and yik ∈ R (i = 1, . . . , n);
Y −1 is the inverse matrix to Y ; r(Y ) is the spectral radius of Y ;
E is the unit matrix;
C(I;Rn) is the space of n-dimensional continuous vector functions x =

(xi)n
i=1 : I → Rn with the norm

‖x‖C = max
{ n∑

i=1

|xi(t)| : t ∈ I
}

;

L(I;R) is the space of Lebesgue integrable functions x : I → R with the

norm ‖x‖L =
b∫

a

|x(s)| ds;

L(I;R+) is the set all nonnegative functions from L(I;R).
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We will say that the operator p : C(I;Rn) → L(I;R) belongs to the
Carathéodory class if it is continuous and

sup
{
|p(x)(·)| : x ∈ C(I;Rn), ‖x‖C ≤ ρ

}
∈ L(I;R+) for ρ ∈ R+.

Everywhere below, when we discuss the boundary value problem (1), (2),
it is supposed that the operators fi : C(I;Rn) → L(I;R) (i = 1, . . . , n)
belong to the Carathéodory class, and the functionals ϕi : C(I;Rn) → R
(i = 1, . . . , n) are continuous.

We will consider the case where for arbitrary (xi)n
i=1 ∈ C(I;Rn) and for

almost all t ∈ I the inequalities

fi(x1, . . . , xn)(t) sgn
(
(t− ti)xi(t)

) ≤

≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

n∑

k=1

hik‖xk‖C + hi

)
+

+δi(x1, . . . , xn)
( n∑

k=1

qik(t)‖xk‖C + qi(t)
)

(i = 1, . . . , n), (5)

∣∣ϕi(x1, . . . , xn)
∣∣ ≤

≤ ϕ0i(|xi|) + δi(x1, . . . , xn)
( n∑

k=1

`ik‖xk‖C + `i

)
(i = 1, . . . , n) (6)

are satisfied, where pi : C(I;Rn) → L(I;R+) (i = 1, . . . , n), δi : C(I;Rn) →
R+ are any nonlinear operators and functionals; ϕ0i : C(I;R) → R (i =
1, . . . , n) are linear non-negative functionals; hik, hi, `ik and `i are non-
negative constants;

qik ∈ L(I;R+), qi ∈ L(I;R+) (i, k = 1, . . . , n).

Suppose

p̃i(x1, . . . , xn)(t) = exp
(
−

∣∣∣∣
t∫

ti

pi(x1, . . . , xn)(s) ds

∣∣∣∣
)

(i = 1, . . . , n), (7)

H =
(
hik + (1 + ϕ0i(1))‖qik‖L + `ik

)n

i,k=1
. (8)

Theorem 1. Let along with (5) and (6) the conditions

ϕ0i(1) ≤ 1, 1− ϕ0i

(
p̃i(x1, . . . , xn)

) ≥ δi(x1, . . . , xn) (i = 1, . . . , n), (9)

r(H) < 1 (10)

be fulfilled, where p̃i (i=1, . . . , n) and H are operators and a matrix, given by
the equalities (7) and (8). Then the problem (1), (2) has at least one solution.

Consider now the boundary value problem of periodic type (1), (21),
where α1, . . . , αn are arbitrary real constants. In particular, if α1 = · · · =
αn = 1, then (1), (21) is a periodic problem.

The following theorem is valid.
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Theorem 2. Let there exist operators pi : C(I;Rn) → L(I;R+) (i =
1, . . . , n) and numbers σi ∈ {−1, 1}, hik ≥ 0, hi ≥ 0 such that for any
(xi)n

i=1 ∈ C(I;Rn) and for almost all t ∈ I the inequalities

fi(x1, . . . , xn) sgn(σixi(t)) ≤

≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

n∑

k=1

hik‖xk‖C + hi

)
(i = 1, . . . , n),

b∫

a

pi(x1, . . . , xn)(s) ds > 0 (i = 1, . . . , n)

hold. If, moreover, the numbers αi, σi satisfy the inequalities

(1− |αi|)σi ≥ 0 (i = 1, . . . , n),

and the matrix H = (hik)n
i,k=1 satisfies the condition (10), then the problem

(1), (21) has at least one solution.

Note that in both Theorems 1 and 2 the condition (10) is unimprovable
in the sense that it cannot be replaced by the non-strict inequality

r(H) ≤ 1. (10′)

Indeed, it is clear that the periodic problem
dxi(t)

dt
= −σixi(t) + ‖xi‖C + 1, xi(a) = xi(b) (i = 1, . . . , n)

has no solution, though for this problem all the conditions of Theorem 2
are satisfied except the condition (10), instead of which the inequality (10′)
holds, since in that case H = E, r(H) = 1.

Let us now consider the boundary value problem (4), (21).
For this problem from Theorem 2 we get

Corollary 1. Let on the set I × Rn+1 the inequalities

gi(t, y1, . . . , yn, yn+1) sgn(σiyn+1) ≤

≤ pi(t, y1, . . . , yn, yn+1)
(
− |yn+1|+

n∑

k=1

hik|yk|+ hi

)
(i = 1, . . . , n)

hold, where pi : I × Rn+1 → ] − ∞, [ (i = 1, . . . , n) are functions from
the Carathéodory class, hik and hi are non-negative constants, and σi ∈
{−1, 1}. If, moreover, the inequalities

(1− |αi|)σi ≥ 0 (i = 1, . . . , n), r(H) < 1

are satisfied, where H = (hik)n
i,k=1, then the problem (4), (21) has at least

one solution.

As it is noted above, the theorems proven by us cover the cases where the
system (1) is superlinear or sublinear or some of equations of these systems
are superlinear, and others are sublinear.
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Indeed, suppose the equalities

gi(t, y1, . . . , yn, yn+1) =

= pi(t) exp
(
βi

n+1∑

k=1

|yk|
)(− σiyn+1 + g0i(t, y1, . . . , yn, yn+1)

)
(i = 1, . . . , n)

hold, where βi ∈ R, σi ∈ {−1, 1}, pi ∈ L(I; R+) (i = 1, . . . , n), and
g0i : I × Rn+1 → R (i = 1, . . . , n) are continuous bounded functions. If,
moreover, σi(1 − |αi|≥0 (i = 1, . . . , n), then according to Corollary 1 the
problem (4), (21) has at least one solution. On the other hand, the i-th
equation of the system (1) is superlinear if βi > 0, and sublinear if βi < 0.
Note that in these cases the problem (4), (21), generally speaking, is a prob-
lem at resonance since if αi = 1 for some i ∈ {1, . . . , n}, then the linear
homogeneous problem dxi(t)

dt = 0, xi(a) = αixi(b) (i = 1, . . . , n) has an
infinite set of solutions.

Finally, consider the problem (1),(22), where tijk∈I, `ij ∈R, ci∈R. Put

`ik =
n∑

j=1

|`ijk|.

For this problem Theorem 1 takes the form

Theorem 3. Let there exist operators pi : C(I;Rn) → L(I;R+) (i =
1, . . . , n), non-negative numbers hik, hi (i = 1, . . . , n), and functions qik

and qi ∈ L(I;R+) (i, k = 1, . . . , n) such that for any (xk)n
k=1 ∈ C(I;Rn)

almost everywhere on I, the inequalities

fi(x1, . . . , xn) sgn(σixi(t)) ≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

+
n∑

k=1

hik‖xk‖C + hi

)
+

n∑

k=1

qik(t)‖xk‖C + qi(t) (i = 1, . . . , n)

hold. If, moreover, the matrix H = (hik + ‖qik‖L + `ik)n
i,k=1 satisfies the

condition (10), then the problem (1), (22) has at least one solution.

For the boundary value problem (4), (22) this theorem yields

Corollary 2. Let on the set I × Rn the inequalities

gi(t, y1, . . . , yn, yn+1) sgn
(
(t−ti)yn+1

) ≤ pi(t, y1, . . . , yn, yn+1)
(
−|yn+1|+

+
n∑

k=1

hik‖yk‖+ hi

)
+

n∑

k=1

qik(t)‖yk‖+ qi(t) (i = 1, . . . , n)

be fulfilled, where pi : I × Rn → ] −∞, 0[ (i = 1, . . . , n) are functions from
the Carathéodory class, hik and hi are non-negative constants, qik and qi ∈
L(I;R+). If, moreover, the matrix H = (hik + ‖qik‖L + `ik)n

i,k=1 satisfies
the condition (10), then the problem (1), (22) has at least one solution.



168

The above-formulated theorems are a generalization of I. Kiguradze’s
results [10] for the system (1). They are proved using the results of the
papers [9], [11], [13].

Acknowledgement

This paper was supported by the Georgian National Science Foundation
(Project # GNSF/ST09-175-3-101).

References

1. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the
theory of functional-differential equations. (Russian) “Nauka”, Moscow, 1991.

2. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the
theory of functional differential equations: methods and applications. Contemporary
Mathematics and Its Applications, 3. Hindawi Publishing Corporation, Cairo, 2007.

3. Sh. Gelashvili and I. Kiguradze, On multi-point boundary value problems for sys-
tems of functional differential and difference equations. Mem. Differential Equations
Math. Phys. 5 (1995), 1–113.
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