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1. Statement of the Problem and Auxiliary Designations

We consider the system of differential equations

y′i = αipi(t)ϕi+1(yi+1) (i = 1, n), ∗ (1.1)

where αi ∈ {−1, 1} (i = 1, n), pi : [a, ω[→ ]0, +∞[ (i = 1, n) are continuous
functions, −∞ < a < ω ≤ +∞,† ϕi : ∆(Y 0

i ) → ]0;+∞[ (i = 1, n) are
continuously differentiable functions satisfying the conditions

lim
yi→Y 0

i

yi∈∆(Y 0
i )

yiϕ
′
i(yi)

ϕi(yi)
= σi (i = 1, n),

n∏

i=1

σi 6= 1, (1.2)

where Y 0
i (i ∈ {1, . . . , n}) is equal either to 0, or to ±∞, ∆(Y 0

i ) (i ∈
{1, . . . , n}) is a one-sided neighborhood of Y 0

i .
It follows from the conditions (1.2) that ϕi (i = 1, n) are regularly varying

functions of orders σi as yi → Y 0
i , hence (see [1]) these functions admit the

representation
ϕi(yi) = |yi|σiθi(yi) (i = 1, n), (1.3)

where θi (i = 1, n) are slowly varying functions as yi → Y 0
i . According to

the definition and properties of slowly varying functions and also in view of
(1.2),

lim
yi→Y 0

i

θi(λyi)
θi(yi)

= 1 for any λ > 0, lim
yi→Y 0

i

yiθ
′
i(yi)

θi(yi)
= 0 (i = 1, n), (1.4)

and the first limits are uniform with respect to λ on any segment [c, d] ∈
]0, +∞[ .

If θi(yi) ≡ 1 (i = 1, n), then the system (1.1) is called an Emden–Fowler
system. In case n = 2, the asymptotic behavior of its nonoscillating solu-
tions is thoroughly investigated in [2–6].

In the present paper (as distinct from [2–6]), the system (1.1) is con-
sidered in the case where the functions ϕi(yi) (i = 1, n) are close to the
power functions in the neighborhoods of Y 0

i in the sense of the definition of
regularly varying functions.

In T. A. Chanturia’s paper [7], for systems of differential equations that
are close to (1.1) in a certain sense the criteria for the existence of A and
B-properties are established.

A solution (yi)n
i=1 of the system (1.1) is called Pω(Λ1, . . . , Λn−1)-solution,

if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following con-
ditions:

yi(t) ∈ ∆(Y 0
i ) while t ∈ [t0, ω[ , lim

t↑ω
yi(t) = Y 0

i ,

lim
t↑ω

yi(t)y′i+1(t)
y′i(t)yi+1(t)

= Λi (i = 1, n− 1).
(1.5)

∗ Here and in the sequel, all functions and parameters with the index n + 1 will be
equivalent to the corresponding values with index 1.

† While ω = +∞ we consider a > 0.
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The aim of this work is to establish sufficient and necessary conditions for
the existence of Pω(Λ1, . . . , Λn−1)-solutions for the system (1.1), and also
to provide the asymptotic representation (when t ↑ ω) for these solutions,
when Λi (i = 1, n− 1) are real numbers, including those equal to zero, and
Λn−1σn = 1.

Remark 1.1. The definition of Pω(Λ1, . . . , Λn−1)-solution does not give
the direct connection between the first and the n-th components of the
solution, which appear in the n-th equation of the system. To establish this
connection, we define the following functions:

λi(t) =
yi(t)y′i+1(t)
y′i(t)yi+1(t)

(i = 1, n). (1.6)

We have

λn(t) =
yn(t)y′1(t)
y′n(t)y1(t)

=
yn(t)y′n−1(t)
y′n(t)yn−1(t)

· yn−1(t)y′n−2(t)
y′n−1(t)yn−2(t)

· · · y2(t)y′1(t)
y′2(t)y1(t)

=

=
1

λ1(t) . . . λn−1(t)
. (1.7)

It follows from (1.5) that lim
t↑ω

λi(t) = Λi (i = 1, n− 1). Therefore, if there

are zeroes among Λi (i = 1, n− 1), taking into account (1.7), we obtain

Λn = lim
t↑ω

λn(t) = ±∞.

In particular, it is evident that the case in which among all Λi (i = 1, . . . , n−
1) there is a single ±∞, while all others are real different from zero numbers,
can be transformed into the case described in this work. This transformation
is carried out by cyclic redesignation of variables, functions and constants.
For instance, if Λl = ±∞ (l ∈ {1, . . . , n − 1}), the indices are redesignated
as follows:

l → n, l + 1 → 1, . . . , n → n− l, 1 → n− l + 1, . . . , l − 1 → n− 1.

It is obvious that Λi = 0, if i = n− l.

Further, we introduce some auxiliary notation.
First, if

µi =





1, as Y 0
i = +∞,

or Y 0
i = 0 and ∆(Y 0

i ) is right neighborhood of 0,

−1, as Y 0
i = −∞,

or Y 0
i = 0 and ∆(Y 0

i ) is left neighboorhood of 0,

it is obvious that µi (i = 1, n) determine the signs of the components of
Pω(Λ1, . . . , Λn−1)-solution in some left neighborhood of ω.

Further, we denote the sets

I = {i ∈ {1, . . . , n− 1} : 1− Λiσi+1 6= 1} , I = {1, . . . , n− 1} \ I
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and suppose that
r = max I < n− 1.

Taking into account the fact that r < n−1, we denote auxiliary functions
Ii, Qi (i = 1, . . . , n) and none-zero constants βi (i = 1, . . . , n), supposing
that

Ii(t) =





t∫

Ai

pi(τ) dτ for i ∈ I,

t∫

Ai

pi(τ)Ii+1(τ) dτ for i ∈ I,

t∫

An

pn(τ)qr+1(τ) dτ for i = n,

βi =





1− Λiσi+1, for i ∈ I,

βi+1Λi, for i ∈ I,

1−
n∏

k=1

σk for i = n,

Qi(t) =





αiβiIi(t) for i ∈ I ∪ {n},
αiβiIi(t)
Ii+1(t)

for i ∈ I,

where limits of integration Ai ∈ {ω, a} (i ∈ {1, . . . , n − 1}), An ∈ {ω, b}
(b ∈ [a, ω[) are chosen in such a way that the corresponding integral Ii

tends either to zero, or to ∞ as t ↑ ω,

qr+1(t) = θ1

(
µ1|I1(t)|

1
β1

)
|Qr(t)|

r∏
k=1

σk×

×
r−1∏

k=1

∣∣∣Qk(t)θk+1

(
µk+1|Ik+1(t)|

1
βk+1

)∣∣∣
k∏

i=1
σi

.

In addition, we introduce the numbers

A∗i =

{
1, if Ai = a,

−1, if Ai = ω
(i = 1, . . . , n− 1),

A∗n =

{
1, if An = b,

−1, if An = ω.

(1.8)

These numbers enable us to define the signs of the functions Ii (i =
1, . . . , n − 1) on the interval ]a, ω[ and the sign of the function In on the
interval ]b, ω[ .

We will define that the function ϕk (k ∈ {1, . . . , n}) satisfies the condition
S, if for any continuously differentiable function l : ∆(Y 0

k ) → ]0, +∞[ with
the property

lim
z→Y 0

k

z∈∆(Y 0
k )

z l′(z)
l(z)

= 0,
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the function θk admits the asymptotic representation

θk(zl(z)) = θ(z)[1 + o(1)] as z → Y 0
k (z ∈ ∆(Y 0

k )). (1.9)

For instance, the S-condition is, obviously, satisfied by the functions ϕk

of the type

ϕk(yk) = |yk|σk | ln yk|γ1 , ϕk(yk) = |yk|σk | ln yk|γ1 | ln | ln yk||γ2 ,

where γ1, γ2 6= 0. The S-condition is also satisfied by the functions ϕk

which include the functions θk that have the eventual limit as yk → Y 0
k .

The S-condition is also satisfied by many other functions.

Remark 1.2. If ϕk (k ∈ {1, . . . , n}) satisfies the S-condition and yk :
[t0, ω[→ ∆(Y 0

k ) is a continuously differentiable function with the property

lim
t↑ω

yk(t) = Y 0
k ,

y′k(t)
yk(t)

=
ξ′(t)
ξ(t)

[r + o(1)] as t ↑ ω,

where r is a non-zero real constant, ξ is a continuously differentiable in some
left neighborhood of ω real function with ξ′(t) 6= 0, then

θk(yk(t)) = θk (µk|ξ(t)|r) [1 + o(1)] as t ↑ ω,

since in this case

yk(t) = z(t)l(z(t)), where z(t) = µk|ξ(t)|r,
and

lim
z→Y0
z∈∆Y0

z l′(z)
l(z)

= lim
t↑ω

z(t) l′(z(t))
l(z(t))

=

= lim
t↑ω

z(t)
(

yk(t)
z(t)

)′
(

yk(t)
z(t)

)
z′(t)

= lim
t↑ω

[
ξ(t)y′k(t)

rξ′(t)yk(t)
− 1

]
= 0.

2. Main Results

Theorem 2.1. Let Λi ∈ R (i = 1, n− 1) include those equal to zero, m =
max{i ∈ I : Λi = 0} and r = max I < n−1. Let also the functions ϕk (k =
1, r) satisfy the S-condition. Then for the existence of Pω(Λ1, . . . , Λn−1)-
solutions of (1.1) it is necessary and, if the algebraic equation

( n∏

j=1

σj − 1− λ
) n−1∏

j=m+1

(Mj + λ) =

=
( n∏

j=1

σj

)( r∑

k=m

k∏

j=m+1

(Mj + λ)
n−1∏

s=k+2

Ms

)
λ, ∗ (2.1)

∗ Here and in what follows, we assume that
l∏

j=s
= 1,

l∑
j=s

= 0 if l < s.
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where

Mj =
( n−1∏

i=j

Λi

)−1

(j = m + 1, n− 1),

have no roots with a zero real part, it is also sufficient that

lim
t↑ω

Ii(t)I ′i+1(t)
I ′i(t)Ii+1(t)

= Λi
βi+1

βi
(i = 1, n− 1) (2.2)

and for each i ∈ {1, . . . , n} the following conditions be satisfied:

A∗i βi > 0 if Y 0
i = ±∞, A∗i βi < 0 if Y 0

i = 0, (2.3)

sign [αiA
∗
i βi] = µi. (2.4)

Moreover, the components of each solution of that type admit asymptotic
representation when t ↑ ω,

yi(t)
ϕi+1(yi+1(t))

= Qi(t)[1 + o(1)] (i = 1, n− 1), (2.5)

yn(t)

[ϕr+1(yr+1(t))]
r∏

i=1
σi

= Qn(t)[1 + o(1)], (2.6)

and there exists the whole k-parametric family of these solutions if there are
k positive roots among the solutions of the following algebraic equation:

γi =





βiA
∗
i if i ∈ I \ {m + 1, . . . , n− 1},

βiA
∗
i A

∗
i+1 if i ∈ I \ {m + 1, . . . , n− 1},

A∗n
( n−1∏

j=1

σj − 1
)
Reλ0

i−m if i ∈ {m + 1, . . . , n},
(2.7)

where λ0
j (j = 1, n−m) are the roots of the algebraic equation (2.1) (along

with multiple).

Remark 2.1. The algebraic equation (2.1) has, obviously, no roots with
zero real part, if

( r+1∑

k=m+1

n−1∏

j=k

|Λj |
) n∏

k=1

|σk| <
∣∣∣1−

n∏

j=1

σj

∣∣∣.

Proof of Theorem 2.1. Necessity. Let yi : [t0, ω[→ ∆(Y 0
i ) (i = 1, n) be an

arbitrary Pω(Λ1, . . . , Λn−1)-solution of (1.1). Then by virtue of (1.1), we
obtain

y′i(t)
ϕi+1(yi+1(t))

= αipi(t) (i = 1, n) as t ∈ [t0, ω[ . (2.8)
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When i ∈ I, integrating (2.8) over the interval from Bi to t, where
Bi = ω, if Ai = ω, or Bi = t0, if Ai = a, we get

t∫

Bi

y′i(τ)
ϕi+1(yi+1(τ))

dτ = αiIi(t)[1 + o(1)] as t ↑ ω. (2.9)

In virtue of de L’Hospital’s rule in the form of Stoltz, we get

lim
t↑ω

yi(t)
ϕi+1(yi+1(t))

t∫
Bi

y′i(τ)

ϕi+1(yi+1(τ)) dτ

= lim
t↑ω

y′i(t)
ϕi+1(yi+1(t))

− yi(t)ϕ
′
i+1(yi+1(t))y

′
i+1(t)

ϕ2
i+1(yi+1(t))

y′i(t)
ϕi+1(yi+1(t))

=

= 1− lim
t↑ω

yi+1(t)ϕ′i+1(yi+1(t))
ϕi+1(yi+1(t))

lim
t↑ω

yi(t)y′i+1(t)
y′i(t)yi+1(t)

= 1− Λiσi+1 = βi 6= 0.

Therefore, in view of (2.9), we have

yi(t)
ϕi+1(yi+1(t))

= αiβiIi(t)[1 + o(1)] as t ↑ ω. (2.10)

Consequently, when i ∈ I, the asymptotic representation (2.5) is valid and,
in virtue of (2.8) and (2.10),

y′i(t)
yi(t)

=
I ′i(t)

βiIi(t)
[1 + o(1)] as t ↑ ω. (2.11)

Further, taking into account that r = max I < n − 1, we consider the
relations (2.8) consistently starting with the maximum i ∈ I, that is lower
than r, since i ∈ I \ {r + 1, . . . , n − 1}. We consider these relations taking
into account that the relations (2.11) are valid for bigger values of i ≤ r.
Multiplying (2.8) by Ii+1(t) and integrating over the interval from Bi to t,
where Bi are chosen in the above way, we get

t∫

Bi

y′i(τ)Ii+1(τ)
ϕi+1(yi+1(τ))

dτ = αiIi(t)[1 + o(1)] as t ↑ ω. (2.12)

In virtue of de L’Hospital’s rule in the form of Stoltz, using (2.11) and the
definition of Pω(Λ1, . . . , Λn−1)- solution, we obtain

lim
t↑ω

yi(t)Ii+1(t)
ϕi+1(yi+1(t))

t∫
Ai

y′i(τ)Ii+1(τ)

ϕi+1(yi+1(τ)) dτ

=

= lim
t↑ω

y′i(t)Ii+1(t)
ϕi+1(yi+1(t))

+ yi(t)I
′
i+1(t)

ϕi+1(yi+1(t))
− yi(t)Ii+1(t)ϕ

′
i+1(yi+1(t))y

′
i+1(t)

ϕ2
i+1(yi+1(t))

y′i(t)Ii+1(t)

ϕi+1(yi+1(t))

=

= 1 + lim
t↑ω

yi(t)I ′i+1(t)
y′i(t)Ii+1(t)

− lim
t↑ω

yi+1(t)ϕ′i+1(yi+1(t))
ϕi+1(yi+1(t))

lim
t↑ω

yi(t)y′i+1(t)
y′i(t)yi+1(t)

=
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= 1− Λiσi+1 + βi+1 lim
t↑ω

yi(t)y′i+1(t)
y′i(t)yi+1(t)

=

= βi+1 lim
t↑ω

[
yi(t)y′i+1(t)
y′i(t)yi+1(t)

]
= βi+1Λi = βi.

Hence, with regard for (2.12), we get

yi(t)
ϕi(yi+1(t))

=
αiβiIi(t)
Ii+1(t)

[1 + o(1)] as t ↑ ω. (2.13)

Therefore, with regard for (2.8), the asymptotic formula (2.11) is valid.
Consequently, the asymptotic representations (2.5) and (2.11) are admitted
for all i ∈ I \ {r + 1, . . . , n− 1}.

Taking into account that ϕi satisfy the S-condition for all i ∈ {1, . . . , r}
and asymptotic representations (2.11) are valid, in virtue of Remark 1.2, we
get

ϕi(yi(t)) = |yi(t)|σiθi

(
µi|Ii(t)|

1
βi

)
[1 + o(1)] (i = 1, r) as t ↑ ω.

According to these representations and the asymptotic representations (2.5)
for i = 1, r, we have

ϕ1(y1(t)) = |y1(t)|σ1θ1

(
µ1|I1(t)|

1
β1

)
[1 + o(1)] =

= θ1

(
µ1|I1(t)|

1
β1

) ∣∣∣|y2(t)|σ2Q1(t)θ2

(
µ2|I2(t)|

1
β2

)∣∣∣
σ1

[1 + o(1)] =

= θ1

(
µ1|I1(t)|

1
β1

) ∣∣∣Q1(t)θ2

(
µ2|I2(t)|

1
β2

)∣∣∣
σ1 ×

×
∣∣∣|y3(t)|σ3Q2(t)θ3

(
µ3|I3(t)|

1
β3

)∣∣∣
σ1σ2

[1 + o(1)] = · · · =

= qr+1(t) [ϕr+1(yr+1(t))]
r∏

i=1
σi

[1 + o(1)] as t ↑ ω.

From this and the last formula in (2.8), we conclude that

y′n(t)

[ϕr+1(yr+1(t))]
r∏

k=1
σk

= αnpn(t)qr+1(t)[1 + o(1)] as t ↑ ω. (2.14)

Integrating (2.14) over the interval from Bn to t, where Bn = ω, if An = ω,
and Bn = t0, if An = b, we obtain

t∫

Bn

y′n(τ)

[ϕr+1(yr+1(τ))]
r∏

k=1
σk

dτ = αnIn(t)[1 + o(1)] as t ↑ ω.

Using de L’Hospital’s rule, with regard for (1.2), (1.5) and the conditions
1− Λjσj+1 = 0 as j = r + 1, n− 1, we get
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lim
t↑ω

yn(t)

[ϕr+1(yr+1(t))]

r∏
k=1

σk

t∫
Bn

y′n(τ)

[ϕr+1(yr+1(τ))]

r∏
k=1

σk

dτ

=

= lim
t↑ω

y′n(t)

[ϕr+1(yr+1(t))]

r∏
k=1

σk

[
1−

( r∏
k=1

σk

)
yr+1(t)ϕ

′
r+1(yr+1(t))

ϕr+1(yr+1(t))

y′r+1(t)yn(t)

yr+1(t)y′n(t)

]

y′n(t)

[ϕn(yn(t))]

n−1∏
k=1

σk

=

= 1−
( r+1∏

j=1

σj

)
lim
t↑ω

y′r+1(t)yr+2(t)
yr+1(t)y′r+2(t)

· · · y
′
n−1(t)yn(t)

yn−1(t)y′n(t)
=

= 1−

r+1∏
j=1

σj

Λr+1 . . . Λn−1
= 1−

n∏

j=1

σj = βn.

The previous asymptotic representation yields

yn(t)

[ϕr+1(yr+1(t))]
r∏

k=1
σk

= αnβnIn(t)[1 + o(1)] as t ↑ ω.

Hence, the representation (2.6) is valid and, in virtue of (2.14), (2.11), it
takes place when i = n.

Taking into account that the asymptotic representation (2.11) is valid
for i = n, by the same reasoning (multiplying (2.8) by Ii+1(t) and further
integrating over the interval from Bi to t), we conclude that the asymptotic
representations (2.5) and (2.11) are valid for all i = r + 1, n− 1 starting with
i = r + 1, n− 1. The relations (2.11) are valid for i = 1, n and the solution
under consideration satisfies the last limiting condition from the definition
of Pω(Λ1, . . . , Λn−1)-solution. Consequently, for all i ∈ {1, . . . , n − 1}, the
conditions (2.2) are valid. Moreover, from (2.11) it follows that

|yi(t)| = |Ii(t)|
1

βi
+o(1) (i = 1, n) as t ↑ ω.

On the basis of the above fact, from the condition lim
t↑ω

yi(t) = Y 0
i in the def-

inition of the Pω(Λ1, . . . , Λn−1)-solution and from the definition of numbers
A∗i , there follow the sign conditions (2.3).

The validity of the sign conditions (2.4) follows immediately from (2.5),
(2.6), if we consider the signs of the functions yi and Ii (i = 1, n) over the
interval [t0, ω[ .

Sufficiency. Assume that the conditions (2.2)–(2.4) are satisfied and the
algebraic equation (2.1) has no roots with zero real part. We will prove that
the system (1.1) has at least one Pω(Λ1, . . . , Λn−1)- solution that admits
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the asymptotic representation (2.5), (2.6) as t ↑ ω. We will also study the
question about the quantity of such solutions.

First, consider the system of the following relations:





yi

ϕi+1(yi+1)
= Qi(t)(1 + vi) (i = 1, n− 1),

yn

[ϕr+1(yr+1)]
r∏

k=1
σk

= Qn(t)(1 + vn).
(2.15)

We will establish that this system on the sets D = [t0, ω[×Rn
1
2
, where t0 ∈

[a, ω[ and Rn
1
2

= {x ≡ (xi, . . . , xn) ∈ Rn : |xk| ≤ 1/2 (k = 1, n)}, defines

uniquely continuously differential functions yi = Yi(t, v) (i = 1, n) of the
type

Yi(t, v) = µi|Ii(t)|
1

βi
[1+zi(t,v)] (i = 1, n), (2.16)

where zi (i = 1, n) are the following functions

|zi(t, v)| ≤ 1
2

as (t, v) ∈ D

and

lim
t↑ω

zi(t, v) = 0 uniformly over v ∈ Rn
1
2
.

Setting in (2.15)

yi = µi|Ii(t)|
1

βi
(1+zi) (i = 1, n), (2.17)

and taking into account (1.3), we obtain the following system of relations:





|Ii(t)|
1

βi
(1+zi)

|Ii+1(t)|
σi+1
βi+1

(1+zi+1)
=

= µiQi(t)θi+1

(
µi+1|Ii+1(t)|

1
βi+1

(1+zi+1)
)

(1+vi) (i=1, n−1),

|In(t)| 1
βn

(1+zn)

|Ir+1(t)|
r+1∏
k=1

σk

βr+1
(1+zr+1)

=

= µnQn(t)
[
θr+1

(
µr+1|Ir+1(t)|

1
βr+1

(1+zr)
)] r∏

k=1
σk

(1+vn),

With regard to sign conditions (2.3), (2.4), the system is defined for all
|vi| ≤ 1

2 , |zi| ≤ 1
2 (i = 1, n) and t from some left neighborhood of ω.
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Hence, taking the logarithm, we get




1
βi

(1 + zi) ln |Ii(t)| − σi+1

βi+1
(1 + zi+1) ln |Ii+1(t)| =

= ln |Qi(t)|+ ln θi+1

(
µi+1|Ii+1(t)|

1
βi+1

(1+zi+1)
)

+ ln |1 + vi|
(i = 1, n− 1),

1
βn

(1 + zn) ln |In(t)| −

r+1∏
k=1

σk

βr+1
(1 + zr+1) ln |Ir+1(t)| =

= ln |Qn(t)|+
( r∏

k=1

σk

)
ln θr+1

(
µr+1|Ir+1(t)|

1
βr+1

(1+zr+1)
)

+

+ ln |1 + vn|.
Therefore





1 + zi − βiσi+1

βi+1

ln |Ii+1(t)|
ln |Ii(t)| (1 + zi+1) =

=
βi ln |Qi(t)|

ln |Ii(t)| +
βi ln θi+1

(
µi+1|Ii+1(t)|

1
βi+1

(1+zi+1)
)

ln |Ii(t)| +

+
βi ln |1 + vi|

ln |Ii(t)| (i = 1, n− 1),

1 + zn −
βn

r+1∏
k=1

σk

βr+1

ln |Ir+1(t)|
ln |In(t)| (1 + zr+1) =

=
βn ln |Qn(t)|

ln |In(t)| +

+
βn

( r∏
k=1

σk

)
ln θr+1

(
µr+1|Ir+1(t)|

1
βr+1

(1+zr+1)
)

ln |In(t)| +

+
βn ln |1 + vn|

ln |In(t)| .

Solving partly this system (as a system of nonhomogeneous linear equa-
tions with variables 1 + zi (i = 1, n)), we obtain

zi = ai(t) + bi(t, v) + Zi(t, z) (i = 1, n), (2.18)

where the functions ai, bi, Zi (i = 1, n) are defined by the following recurrent
relations:

ar+1(t) = −1 +

[
1−

( r+1∏

k=1

σk

)βn ln |Ir+1(t)|
βr+1 ln |In(t)|

n−1∏

k=r

σk+1βk ln |Ik+1(t)|
βk+1 ln |Ik(t)|

]−1

×
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×
n∑

k=r+1

βk ln |Qk(t)|
ln |Ik(t)|

k−1∏

j=r+1

βjσj+1 ln |Ij+1(t)|
βj+1 ln |Ij(t)| ,

br+1(t, v) =

[
1−

( r+1∏

k=1

σk

)βn ln |Ir+1(t)|
βr+1 ln |In(t)|

n−1∏

k=r

σk+1βk ln |Ik+1(t)|
βk+1 ln |Ik(t)|

]−1

×

×
n∑

k=r+1

βk ln |1 + vk|
ln |Ik(t)|

k−1∏

j=r+1

βjσj+1 ln |Ij+1(t)|
βj+1 ln |Ij(t)| ,

Zr+1(t, z) =

[
1−

( r+1∏

k=1

σk

)βn ln |Ir+1(t)|
βr+1 ln |In(t)|

n−1∏

k=r

σk+1βk ln |Ik+1(t)|
βk+1 ln |Ik(t)|

]−1

×

×



n−1∑

k=r+1

βk ln θk+1

(
µk+1|Ik+1(t)|

1
βk+1

(1+zk+1)
)

ln |Ik(t)|
k−1∏

j=r+1

βjσj+1 ln |Ij+1(t)|
βj+1 ln |Ij(t)| +

+
βn

( r∏
k=1

σk

)
ln θr+1

(
µr+1|Ir+1(t)|

1
βr+1

(1+zr+1)
)

ln |In(t)| ×

×
n−1∏

j=r+1

βjσj+1 ln |Ij+1(t)|
βj+1 ln |Ij(t)|


 ,

an(t) = −1 +
βn

r+1∏
k=1

σk

βr+1

ln |Ir+1(t)|
ln |In(t)| [1 + ar+1(t)] +

βn ln |Qn(t)|
ln |In(t)| ,

bn(t, v) =
βn

r+1∏
k=1

σk

βr+1

ln |Ir+1(t)|
ln |In(t)| br+1(t, v) +

βn ln |1 + vn|
ln |In(t)| ,

Zn(t, z) =
βn

r+1∏
k=1

σk

βr+1

ln |Ir+1(t)|
ln |In(t)| Zr+1(t, z)+

+
βn

( r∏
k=1

σk

)
ln θr+1

(
µr+1|Ir+1(t)|

1
βr+1

(1+zr+1)
)

ln |In(t)| ,

ai(t) = −1 +
βiσi+1

βi+1

ln |Ii+1(t)|
ln |Ii(t)| [1 + ai+1(t)] +

βi ln |Qi(t)|
ln |Ii(t)|

if i ∈ {1, . . . , n− 1} \ {r + 1},

bi(t, v) =
βiσi+1

βi+1

ln |Ii+1(t)|
ln |Ii(t)| bi+1(t, v) +

βi ln |1 + vi|
ln |Ii(t)|

if i ∈ {1, . . . , n− 1} \ {r + 1},
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Zi(t, z) =
βiσi+1

βi+1

ln |Ii+1(t)|
ln |Ii(t)| Zi+1(t, z)+

+
βi ln θi+1

(
µi+1|Ii+1(t)|

1
βi+1

(1+zi+1)
)

ln |Ii(t)|
as i ∈ {1, . . . , n− 1} \ {r + 1}.

Here lim
t↑ω

Ii(t) (i = 1, n) is equal either to zero, or to ±∞. Moreover, by

de L’Hospital’s rule, (2.2), (1.4) and by the above-introduced notation βi

(i = 1, n), we get

lim
t↑ω

βi ln |Ii+1(t)|
βi+1 ln |Ii(t)| = lim

t↑ω
βiIi(t)I ′i+1(t)

βi+1I ′i(t)Ii+1(t)
= Λi (i = 1, n− 1),

lim
t↑ω

βn ln |Ir+1(t)|
βr+1 ln |In(t)| = lim

t↑ω
βnI ′r+1(t)In(t)

βr+1Ir+1(t)I ′n(t)
= (Λr+1 · · ·Λn−1)

−1 =
n∏

k=r+2

σk,

lim
t↑ω

βi ln |Qi(t)|
ln |Ii(t)| =





βi = 1− Λiσi+1 if i ∈ I,

βn = 1−
n∏

k=1

σk if i = n,

lim
t↑ω

βi ln |Qi(t)|
ln |Ii(t)| = βi lim

t↑ω

(
1− Ii(t)I ′i+1(t)

I ′i(t)Ii+1(t)

)
= βi(1− βi+1

βi
Λi) = 0 if i ∈ I,

lim
t↑ω

ln θi

(
µi|Ii(t)|

1
βi

(1+zi)
)

ln |Ii(t)| =
1
βi

(1 + zi) lim
t↑ω

ln θi

(
µi|Ii(t)|

1
βi

(1+zi)
)

ln |µi|Ii(t)||
1

βi
(1+zi)

=

=
1
βi

(1 + zi) lim
y→Y 0

i

ln θi(y)
ln |y| =

=
1
βi

(1 + zi) lim
y→Y 0

i

yθ′i(y)
θi(y)

= 0 uniformly over |zi| ≤ 1
2

.

From these limiting relations, starting with i = r + 1, and further for
i = r, r − 1, . . . , 1 and i = r + 2, . . . , n, we obtain

lim
t↑ω

ai(t) = 0 (i = 1, n), (2.19)

lim
t↑ω

bi(t, v) = 0 (i = 1, n) uniformly over v ∈ Rn
1
2

, (2.20)

lim
t↑ω

Zi(t, z) = 0 (i = 1, n) uniformly over dz ∈ Rn
1
2

. (2.21)
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Moreover, for each i ∈ {1, . . . , n}

1
ln |Ii(t)|

∂
[
ln θi

(
µi|Ii(t)|

1
βi

(1+zi)
)]

∂zi
=

=
1
βi

µi|Ii(t)|
1

βi
(1+zi)θ′i

(
µi|Ii(t)|

1
βi

(1+zi)
)

θi

(
µi|Ii(t)|

1
βi

(1+zi)
)

and, therefore, this relation because of (1.4), tends to zero as t ↑ ω uniformly
over |zi| ≤ 1

2 . Taking this fact into account, starting with i = r + 1 (by the
same method), we obtain

lim
t↑ω

∂Zi(t, z)
∂zk

= 0 (i, k = 1, n) uniformly over z ∈ Rn
1
2

. (2.22)

By conditions (2.19)–(2.22), there exists a number t0 ∈ [a, ω[ such that
the following inequalities are valid:

∣∣ai(t) + bi(t, v) + Zi(t, z)
∣∣ ≤ 1

2n
(i = 1, n) (2.23)

as (t, v, z) ∈ [t0, ω[×Rn
1
2
× Rn

1
2

and Lipschitz conditions are valid

∣∣Zi(t, z1)− Zi(t, z2)
∣∣ ≤ 1

n + 1

n∑

k=1

|z1
k − z2

k| (i = 1, n) (2.24)

as (t, z1), (t, z2) ∈ [t0, ω[×Rn
1
2
.

Choosing the number t0 by this method, let B denote the Banach space
of vector-functions z = (zi)n

i=1; each its component, zi (i ∈ {1, . . . , n}), is
defined, continuous and bounded on the set D = [t0, ω[×Rn

1
2
, with the norm

‖z‖ = sup
{ n∑

i=1

|zi(t, v)| : (t, v) ∈ D (i = 1, n)
}

.

Let us select from this space the subspace B0 of the functions from B with
the property ‖z‖ ≤ 1

2 , and consider its elements, arbitrarily choosing the
number ν ∈ (0, 1) and the operator Φ = (Φi)n

i=1, defined by the relations

Φi(z)(t, v) = zi(t, v)−

−ν [zi(t, v)− ai(t)− bi(t, v)− Zi(t, z1(t, v), . . . zn(t, v))] (i = 1, n), (2.25)

For each z ∈ B0, by the conditions (2.23) we get

|Φi(z)(t, v)| ≤ (1− ν)|zi(t, v)|+ ν

2n
(i = 1, n) as (t, v) ∈ D.



16 V. M. Evtukhov and O. S. Vladova

Therefore, if (t, v) ∈ D,

n∑

i=1

|Φi(z)(t, v)| ≤ (1− ν)
n∑

i=1

|zi(t, v)|+ 1
2
ν ≤

≤ (1− ν)‖z‖+
1
2

ν ≤ (1− ν)
1
2

+ ν
1
2

=
1
2

.

This yields that ‖Φ(z)‖ ≤ 1
2 , i.e., Φ(B0) ⊂ B0.

Suppose z, z̃ ∈ B0. Then, from (2.24), if (t, v) ∈ D,
∣∣Φi(z)(t, v)− Φi(z̃)(t, v)

∣∣ ≤ (1− ν)|zi(t, v)− z̃i(t, v)|+
+ ν

∣∣∣Zi(t, z1(t, v), . . . , zn(t, v)− Zi(t, z̃1(t, v), . . . , z̃n(t, v)
∣∣∣ ≤

≤ (1− ν)|zi(t, vi)− z̃i(t, vi)|+ ν

n + 1

n∑

k=1

|zk(t, v)− z̃k(t, v)| (i = 1, n).

Thus, if (t, v) ∈ D (i = 1, n),

n∑

i=1

|Φi(z)(t, vi)− Φi(z̃)(t, vi)| ≤

≤
(

1− ν

n + 1

) n∑

i=1

|zi(t, v)− z̃i(t, v)| ≤
(

1− ν

n + 1

)
‖z − z̃‖,

consequently,

‖Φ(z)− Φ(z̃)‖ ≤
(

1− ν

n + 1

)
‖z − z̃‖.

Thus, the operator Φ maps the space B0 into itself and is a contraction op-
erator on this space. Then, according to the contraction mapping principle,
there exists a unique vector-function z ∈ B0 such that z = Φ(z). By (2.25),
this vector-function with continuous components zi : D → R (i = 1, n) is
the only solution of the system (2.18) that satisfies the conditions ‖z‖ ≤ 1

2 .
From (2.18) together with the above condition, and from (2.19)–(2.21) it
follows that the components zi(t, v) (i = 1, n) of this solution tend to zero
when t ↑ ω uniformly over v ∈ Rn

1
2
. Continuous differentiability of these

components on some set [t1, ω[×Rn
1
2
, where t1 ∈ [t0, ω[, follows immediately

from the well-known local theorem about the existence of implicit functions
defined by the system of relations. According to the transformation (2.17),
the obtained vector-function z = (zi)n

i=1 corresponds to the continuously
differentiable vector-function (Yi)n

i=1 : [t1, ω[×Rn
1
2

with components of the
type (2.16). This vector-function is a solution of the system (2.15). More-
over, according to (2.16) and the sign conditions (2.3), (2.4),

lim
t↑ω

Yi(t, v) = Y 0
i uniformly over v ∈ Rn

1
2

(i = 1, n). (2.26)
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Moreover, from (2.15) it follows




(Yi(t, v))′t
Yi(t, v)

=
O′i(t)
Qi(t)

+
Yi+1(t, v)ϕ′i+1(Yi+1(t, v))

ϕi+1(Yi+1(t, v))
(Yi+1(t, v))′t
Yi+1(t, v)

(i = 1, n− 1),
(Yn(t, v))′t
Yn(t, v)

=
O′

n(t)
Qn(t)

+

+
( r∏

k=1

σk

)Yr+1(t, v)ϕ′r+1(Yr+1(t, v))
ϕr+1(Yr+1(t, v))

(Yr+1(t, v))′t
Yr+1(t, v)

.

(2.27)

Here by virtue of (2.26) and (1.2),

lim
t↑ω

Yi(t, vi)ϕ′i (Yi(t, vi))
ϕi (Yi(t, vi))

= σi (i = 1, n) uniformly over v ∈ Rn
1
2
, (2.28)

and according to the form of the functions Qi (i = 1, n),

Q′i(t)
Qi(t)

=





I ′i(t)
Ii(t)

as i ∈ I ∪ {n},

I ′i(t)
Ii(t)

− I ′i+1(t)
Ii+1(t)

as i ∈ I.

(2.29)

First, from (2.27) we obtain

(Yr+1(t, v))′t
Yr+1(t, v)

=
[
1−

( r∏

k=1

σk

) n∏

k=r+1

Yk(t, v)ϕ′k (Yk(t, v))
ϕk (Yk(t, v))

]−1

×

×
( n∑

k=r+1

Q′k(t)
Qk(t)

k−1∏

j=r+1

Yj+1(t, v)ϕ′j+1 (Yj+1(t, v))
ϕj (Yj(t, v))

)
.

Hence, according to (2.28), (2.29) and (2.2), we get

lim
t↑ω

Ir+1(t) (Yr+1(t, v))′t
I ′r+1(t)Yr+1(t, v)

=
1
β r+1

uniformly over v ∈ Rn
1
2
.

Further, by virtue of this limiting condition, from (2.27), consistently, start-
ing from i = n to i = r + 2, and then, starting from i = r to i = 1, we get,
(using (2.28), (2.29), (2.2))

lim
t↑ω

Ii(t) (Yi(t, v))′t
I ′i(t)Yi(t, v)

=
1
β i

uniformly over v ∈ Rn
1
2
. (2.30).

Applying now to the system of differential equations (1.1) the transfor-
mation

yi(t) = Yi(t, vi(t)) (i = 1, n) (2.31)
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and taking into consideration that the vector-function (Yi(t, v(t)))n
i=1 with

t ∈ [t1, ω[ and v(t) ∈ Rn
1
2

is a solution of the system





yi(t)
ϕi+1(yi+1(t))

= Qi(t)[1 + vi(t)] (i = 1, n− 1),

yn(t)

[ϕr+1(yr+1(t))]
r∏

k=1
σk

= Qn(t)[1 + vn(t)],
(2.32)

we obtain the system of differential equations of the type




v′i =
I ′i(t)

βiIi(t)
− Q′

i(t)
Qi(t)

(1 + vi)−

− I ′i+1(t)
βi+1Ii+1(t)

· 1 + vi

1 + vi+1
Hi+1(t, v) (i = 1, n− 2),

v′n−1 =
I ′n−1(t)

βn−1In−1(t)
− Q′

n−1(t)
Qn−1(t)

(1 + vn−1)−

−1 + vn−1

1 + vn
Hn(t, v)

H(t, v)
Qn(t)

,

v′n =
H(t, v)
Qn(t)

− Q′
n(t)

Qn(t)
(1 + vn)−

−
( r∏

k=1

σk

) 1 + vn

1 + vr+1
Hr+1(t, v)

I ′r+1(t)
βr+1Ir+1(t)

,

(2.33)

where

Hi(t, v) =
Yi(t, v)ϕ′i(Yi(t, v))

ϕi(Yi(t, v))
(i = 1, n),

H(t, v1) =
αnpn(t)ϕ1(Y1(t, v))

[ϕr+1(Yr+1(t, v))]
r∏

k=1
σk

.

Since the conditions (2.28), (2.30) are valid and the functions ϕi (i =
1, . . . , r) satisfy the S - condition, by virtue of Remark (2.2), we obtain

Hi(t, v) = σi + Ri(t, v) (i = 1, n),

H(t, v) = αnpn(t)qr+1(t)
r∏

k=1

|1 + vk|
∏k

j=1 σj [1 + R(t, v)],

where

lim
t↑ω

Ri(t, v) = 0 uniformly over v ∈ Rn
1
2

(i = 1, n),

lim
t↑ω

R(t, v) = 0 uniformly over v ∈ Rn
1
2
.
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By virtue of these representations and the conditions (2.2), the system
(2.33) can be rewritten in the form





v′i = hi(t) [fi(t, v)− vi + Λiσi+1vi+1 + Vi(v)] (i = 1, n− 2),

v′n−1 =hn−1(t)

[
fn−1(t, v)−

r∑

k=1

a0kvk−vn−1+vn+Vn−1(v)

]
,

v′n = hn(t)

[
fn(t, v) +

r∑

k=1

a0kvk + a0nvr+1 − vn + Vn(v)

]
,

(2.34)

where

hi(t) =
I ′i(t)

βiIi(t)
(i = 1, n),

a0k =
k∏

j=1

σj (k = 1, n),

lim
t↑ω

fi(t, v) = 0 uniformly over v ∈ Rn
1
2

(i = 1, n),

Vi(v) = −Λiσi+1

[
1 + vi

1 + vi+1
− 1− vi + vi+1

]
(i = 1, n− 2),

Vn−1(v) = −
[

1 + vn−1

1 + vn

r∏

k=1

|1 + vk|a0k − 1−
r∑

k=1

a0kvk − vn−1 + vn

]
,

Vn(v) =
r∏

k=1

|1 + vk|a0k − a0n
1 + vn

1 + vr+1
− 1 + a0n−

−
r∑

k=1

a0kvk − aonvr+1 + a0nvn.

Here

lim
|v1|+···+|vn|→0

∂Vi(v)
∂vk

= 0 (i, k = 1, n),

and, taking into consideration that lim
t↑ω

Ii(t) (i = 1, n) is equal either to zero,

or to ±∞, the following conditions are satisfied:

ω∫

t1

hi(t) dt = ±∞ (i = 1, n).
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Since m = max{i ∈ I : Λi = 0} < n − 1 and the conditions (2.2) are
valid, when i = m + 1, n− 1, we have

hi(t) = hn(t)
hi(t)
hn(t)

= hn(t)
βnIn(t)I ′i(t)
βiIi(t)I ′n(t)

=

= hn(t)
βi+1I

′
i(t)Ii+1(t)

βiIi(t)I ′i+1(t)
βi+2I

′
i+1(t)Ii+2(t)

βi+1Ii+1(t)I ′i+2(t)
· · · βnI ′n−1(t)In(t)

βn−1In−1(t)I ′n(t)
=

=
hn(t)[1 + o(1)]
ΛiΛi+1 . . . Λn−1

as t ↑ ω.

Therefore, the system (2.34) can be rewritten in the form





v′i = hi(t)
[
fi(t, v)− vi + Λiσi+1vi+1 + Vi(v)

]
(i = 1,m− 1),

v′m = hm(t)
[
fm(t, v)− vm

]
,

v′i = hn(t)
[
f̃i(t, v)− vi

Λi · · ·Λn−1
+

+
σi+1

Λi+1 · · ·Λn−1
vi+1 +

Vi(v)
Λi · · ·Λn−1

]
(i = m + 1, n− 2),

v′n−1 = hn(t)
[
fn−1(t, v)− σn

r∑

k=1

a0kvk − σnvn−1+

+σnvn + σnVn−1(v)
]
,

v′n = hn(t)

[
fn(t, v) +

r∑

k=1

a0kvk + a0nvr+1 − vn + Vn(v)

]
,

(2.35)

where the functions f i (i = m + 1, n− 1) have the same properties as the
functions fi (i = m + 1, n− 1) in the system (2.34).

The important peculiarity of the system is that the coefficient at vm+1

is equal to zero.
Suppose that Bm+1 is a constant matrix of order (n − m) × (n − m).

This matrix consists of the coefficients at vm+1, . . . , vn in the last standing
in brakets n−m equations of the system (2.35). Its characteristic equation
is det[Bm+1 − λEn−m] = 0, where En−m is the unit matrix of order (n −
m) × (n − m) and is represented by (2.1). Taking into consideration the
conditions of the theorem, it is evident that this equation has no roots
with zero real part. Therefore, using the proof of Theorem 2.1 in [8], we
conclude that there exists a nonsingular constant matrix Dm+1 of order
(n−m)× (n−m) and there exists a nonsingular continuously differentiable
and bounded (together with its inverse matrix) on the interval [t0, ω[ matrix
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Lm+1(t) such that

L−1
m+1(t)D

−1
m+1Bm+1Dm+1Lm+1(t)− 1

hn(t)
L−1(t)L′(t) = Cm+1,

where Cm+1 is the upper triangular matrix of the form

Cm+1 =




Re λ0
1 cm+1m+2 . . . cm+1n−1 cm+1n

0 Re λ0
2 . . . cm+2n−1 cm+2n

...
...

. . .
...

...

0 0 . . . Re λ0
n−m−1 cn−1n

0 0 . . . 0 Re λ0
n−m




,

where λ0
i (i = 1, n−m) are all roots (with multipliciting) of the algebraic

equation (2.1), all cik (k = i + 1, n) as i ∈ {m + 1, . . . , n} are equal to zero,
except for a single one that equals 1.

In virtue of this fact, by means of the transformation



v1

...
vn


 =

(
Em O1

O2 Dm+1Lm+1(t)

) 


w1

...
wn


 , (2.36)

where O1, O2 are zero-matrices of orders m × (n − m) and (n − m) ×
m (respectively), Em is the unit matrix of order m × m, the system of
differential equations (2.35) takes the form




w′i =hi(t) [f1i(t, w)−wi+Λiσi+1wi+1+f2i(w)] (i=1,m−1),

w′m = hm(t)[f1m(t, w)− wm],

w′i = hn(t)
[
f1i(t, w) +

m∑

k=1

cik(t)wk +
(
Re λ0

i−m

)
wi+

+
n∑

k=i+1

cikwk + f2i(t, w)
]

(i = m + 1, n− 1),

w′n=hn(t)
[
f1n(t, w)+

m∑

k=1

cnk(t)wk+
(
Re λ0

n−m

)
wn+f2n(t, w)

]
,

(2.37)

where the functions cik (i = m + 1, n, k ∈ {1, . . . , m}) are continuous and
bounded on the interval [t1, ω[ , the functions f1i : [t1, ω[×Rn

δ → R (i =
1, n), f2i : Rn

δ → R (i = 1,m− 1), the functions f2i : [t1, ω[×Rn
δ → R

(i = m + 1, n) are continuous, where Rk
δ = {(x1, . . . , xk) ∈ Rk : |xj | ≤ δ},
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δ > 0 is sufficiently small and satisfy the conditions

lim
t↑ω

f1i(t, w) = 0 (i = 1,m) uniformly over w ∈ Rn
δ ,

lim
|w1|+···+|wi+1|→0

f2i(w)
|w1‘ + · · ·+ |wn| = 0 (i = 1,m− 1),

lim
|w1|+···+|wn|→0

f2i(t, w)
|w1|+ · · ·+ |wn| = 0 (i = m + 1, n)

uniformly over t ∈ [t1, ω[ .

Since the functions cik (i = m + 1, n, k ∈ {1, . . . ,m}) are bounded on
the interval [t1, ω[ , there exists a number ε > 0 such that the constants B0

i

(i = m + 1, n), defined (starting with i = n) by the recurrent relations

B0
n =

ε

|Reλ0
n−m|

m∑

k=1

c0
nk,

B0
i =

1
|Re λ0

i−m|
(

ε

m∑

k=1

c0
ik +

n∑

i+1

|cik|B0
k

)
(i = m + 1, n− 1),

where
c0
ik = lim sup

t↑ω
|cik(t)| (i = m + 1, n, k ∈ {1, . . . , m}),

satisfy the inequalities B0
i < 1 (i = m + 1, n).

With this choice of the constant ε > 0, the system (2.37) by means of
the transformation

wi = εzi (i = 1,m), wi = zi (i = m + 1, n) (2.38)

is reduced to a system of differential equations that satisfies all the condi-
tions of Theorem 1.2 in [7]. According to this theorem, this system has at
least one solution (zi)n

i=1 : [t2, ω[Rn (t2 ∈ [t1, ω[), which tends to zero when
t ↑ ω. Moreover, there exists the whole k-parametric family of solutions,
if there are k positive numbers among the numbers (2.7). In virtue of the
transformations (2.38), (2.36) and (2.31), each of these solutions corresponds
to the solution of the system (1.1), satisfying (as t ↑ ω) the asymptotic rep-
resentations (2.5), (2.6). Furthermore, taking into consideration the form
of functions (2.31) and conditions (2.2)–(2.4), it is easy to see that all these
solutions are the Pω(Λ1, . . . , Λn−1)-solutions of the system (1.1). Thus the
theorem is proved. ¤

Consider now the conditions that give an opportunity to rewrite the
asymptotic representations (2.5), (2.6) in an explicit form.

Theorem 2.2. Let Λi ∈ R (i = 1, n− 1) include those equal zero,
m = max{i ∈ I : Λi = 0} and r = max I < n−1. Moreover, let all the func-
tions ϕk (k = 1, n) satisfy the S-condition. Then each Pω(Λ1, . . . , Λn−1)-
solution (in case it exists) of the system (1.1) admits for t ↑ ω asymptotic
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representations

yr+1(t) = µr+1

n−1∏

k=r+1

∣∣∣qk(t)θk+1

(
µk+1|Ik+1(t)|

1
βk+1

)∣∣∣

k∏
j=r+2

σj

1−
n∏

j=1
σj ×

×
∣∣∣∣∣∣
Qn(t)

[
θr+1

(
µr+1|Ir+1(t)|

1
βr+1

)] r∏
j=1

σj

∣∣∣∣∣∣

n∏
j=r+2

σj

1−
n∏

j=1
σj

[1 + o(1)],

yi(t) = µi

r∏

k=i

∣∣∣Qk(t)θk+1

(
µk+1|Ik+1(t)|

1
βk+1

)∣∣∣
k∏

j=i+1
σj

×

×|yr+1(t)|
r+1∏

j=i+1
σj

[1 + o(1)] (i = 1, r), (2.39)

yi(t) = µi

n−1∏

k=i

∣∣∣Qk(t)θk+1

(
µk+1|Ik+1(t)|

1
βk+1

)∣∣∣
k∏

j=i+1
σj

×

×
∣∣∣∣∣∣
Qn(t)

[
θr+1

(
µr+1|Ir+1(t)|

1
βr+1

)] r∏
j=1

σj

∣∣∣∣∣∣

n∏
j=i+1

σj

×

× |yr+1(t)|
r+1∏
j=1

σj

n∏
j=i+1

σj

[1 + o(1)] (i = r + 2, n).

Proof. In Theorem 2.1, it is proved, that for the existence of
Pω(Λ1, . . . , Λn−1)-solutions in (1.1), it is necessary that the conditions (2.2)–
(2.4) valid, and each solution of that type admit for t ↑ ω the asymptotic
representations (2.5), (2.6). Moreover, the asymptotic representation (2.11)
for these solutions was obtained. Since all functions ϕi (i = 1, n) satisfy the
S-condition, in virtue of (2.11) and Remark 1.2, we get

θi(yi(t)) = θi

(
µi |Ii(t)|

1
βi

)
[1 + o(1)] (i = 1, n) as t ↑ ω.

That is why the asymptotic representations (2.5), (2.6) can be rewritten in
the form

yi(t)
|yi+1(t)|σi+1 =

= Qi(t)θi+1

(
µi+1 |Ii+1(t)|

1
βi+1

)
[1 + o(1)] (i = 1, n− 1) as t ↑ ω,
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yn(t)

|yr+1(t)|
r+1∏
j=1

σj

=

= Qn(t)
[
θr+1

(
µr+1|Ir+1(t)|

1
βr+1

)] r∏
j=1

σj

[1 + o(1)] as t ↑ ω.

Hence, consistently, starting with i = n, we obtain the asymptotic repre-
sentations (2.39). The theorem is proved. ¤

3. Conclusions

In this paper, for cyclic system (1.1) with regularly varying non-linearities,
the class of the so-called Pω(Λ1, . . . , Λn−1)-solutions is introduced and the
question of the existence of such solutions in special case (when Λi ∈ R
(i = 1, n− 1) include zeroes) is discovered. Peculiarity of this case demands
both the validity of the additional S -condition for all nonlinearities of the
system, except one, and the assumption that Λn−1 ∈ I. As a result, the
necessary and sufficient conditions for the existence of Pω(Λ1, . . . , Λn−1)-
solutions for (1.1) are obtained. Implicit asymptotic formulas for compo-
nents of these solutions (when t ↑ ω (ω ≤ +∞)) are established. Explicit
asymptotic formulas for components of these solutions are established, pro-
vided all nonlinearities satisfy the S-condition.

The results may be used, for instance, to establish the asymptotics of
solutions for sufficiently nonlinear differential equations of the type

y′′ = p(t)ϕ1(y)ϕ2(y′) and y(n) = p(t)ϕ(y),

where p : [a, ω[→ R \ {0} is a continuous function and ϕ,ϕ1 : ∆(Y 0
0 ) →

]0, +∞[ , ϕ2 : ∆(Y 0
1 ) → ]0, +∞[ , ∆(Y 0

i ) is a one-sided neighborhood, Y 0
i are

continuously differentiable and regularly varying functions of certain orders
(when y → Y 0

0 and y′ → Y 0
1 ).
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Abstract. This contribution deals with systems of generalized linear
differential equations of the form

xk(t) = x̃k +
∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N,

where −∞ < a < b < ∞, X is a Banach space, L(X) is the Banach space of
linear bounded operators on X, x̃k ∈ X, Ak : [a, b] → L(X) have bounded
variations on [a, b], fk : [a, b] → X are regulated on [a, b] and the integrals
are understood in the Kurzweil–Stieltjes sense.

Our aim is to present new results on continuous dependence of solutions
to generalized linear differential equations on the parameter k. We continue
our research from [18], where we were assuming that Ak tends uniformly to
A and fk tends uniformly to f on [a, b]. Here we are interested in the cases
when these assumptions are violated.

Furthermore, we introduce a notion of a sequential solution to generalized
linear differential equations as the limit of solutions of a properly chosen
sequence of ODE’s obtained by piecewise linear approximations of functions
A and f. Theorems on the existence and uniqueness of sequential solutions
are proved and a comparison of solutions and sequential solutions is given,
as well.

The convergence effects occurring in our contribution are, in some sense,
very close to those described by Kurzweil and called by him emphatic con-
vergence.

2010 Mathematics Subject Classification. 34A37, 45A05, 34A30.
Key words and phrases. Generalized linear differential equation, se-

quential solution, emphatic convergence.

îâäæñéâ. àŽêýæèñèæŽ àŽêäëàŽáâĲñè ûîòæã áæòâîâêùæŽèñî àŽêðëèâ-
ĲŽåŽ ïæïðâéŽ

xk(t) = x̃k +
∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N,

ïŽáŽù −∞ < a < b < ∞, X Žîæï ĲŽêŽýæï ïæãîùâ, L(X) Žîæï X-æï öâñô-
èâĲñèæ ïæãîùâ, x̃k ∈ X, Ak : [a, b] → L(X) -ï Žóãï öâéëïŽäôãîñèæ ãŽîæ-
ŽùæŽ, fk : [a, b] → X îâàñèæîâĲŽáæŽ, ýëèë æêðâàîŽèæ àŽæàâĲŽ çñîùãâæè{
ïðæèðæâïæï Žäîæå.

éæôâĲñèæŽ ŽýŽèæ öâáâàâĲæ ŽéëêŽýïêâĲæï êŽðñîŽèñîæ k ìŽîŽéâðîæïŽàŽê
ñûõãâðŽá áŽéëçæáâĲñèâĲæï öâïŽýâĲ, îëùŽ k → ∞. öâéëôâĲñèæŽ àŽêäë-
àŽáâĲñèæ ûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲæï ïâçãâêùæŽèñîæ ŽéëêŽýïêæï
ùêâĲŽ áŽ áŽéðçæùâĲñèæŽ åâëîâéâĲæ Žïâåæ ŽéëêŽýïêæï ŽîïâĲëĲæïŽ áŽ âîåŽáâ-
îåëĲæï öâïŽýâĲ.

êŽöîëéöæ áŽáàâêæèæ ŽéëêŽýïêåŽ éæéáâãîëĲæï çîâĲŽáëĲŽ àŽîçãâñèæ Žä-
îæå Žýèëï Žîæï æ. çñîùãâæèæï éæâî Žôûâîæè çîâĲŽáëĲŽïåŽê, îëéâèïŽù
æàæ âéòŽðæçñîï ñûëáâĲï.
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1. Introduction

Generalized differential equations were introduced in 1957 by J. Kurzweil
in [14]. Since then they were studied by many authors. (See e.g. the mono-
graphs by Schwabik, Tvrdý and Vejvoda [29], [25], [32] or the papers by
Ashordia [2], [3] or Fraňková [7] and the references therein). Closely related
and fundamental is also the contribution by Hildebrandt [10]. Furthermore,
during the recent decades, the interest in their special cases like equations
with impulses or discrete systems increased considerably (cf. e.g. the mono-
graphs [21], [33], [4], [24] or [1]).

Concerning integral equations in a general Banach space, it is worth to
highlight the monograph by Hönig [11] having as a background the interior
(Dushnik) integral. On the other hand, dealing with the Kurzweil–Stieltjes
integral, the contributions by Schwabik in [27] and [28] are essential for this
paper. It is well-known that the theory of generalized differential equa-
tions in Banach spaces enables the investigation of continuous and discrete
systems, including the equations on time scales and the functional differen-
tial equations with impulses, from the common standpoint. This fact can
be observed in several papers related to special kinds of equations, such
as e.g. those by Imaz and Vorel [12], Oliva and Vorel [19], Federson and
Schwabik [6].

In this paper we consider linear generalized differential equations of the
form

xk(t) = x̃k +

t∫

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N, (1.1)

and

x(t) = x̃ +

t∫

a

d[A(s)] x(s) + f(t)− f(a), t ∈ [a, b]. (1.2)

In particular, we are interested in finding conditions ensuring the conver-
gence of the solutions xk of (1.1) to the solution x of (1.2). We continue our
research from [9] and [18], where we supposed a.o. that Ak tends uniformly
to A and fk tends uniformly to f on [a, b]. Here we will deal, similarly to
[31] and [8], with the situation when this assumption is not satisfied.

In the paper we use the following notation:
N = {1, 2, . . . } is the set of natural numbers and R stands for the space

of real numbers. If −∞ < a < b < ∞, then [a, b] and (a, b) denote the
corresponding closed and open intervals, respectively. Furthermore, [a, b)
and (a, b] are the corresponding half-open intervals.

X is a Banach space equipped with the norm ‖ · ‖X and L(X) is the
Banach space of linear bounded operators on X equipped with the usual
operator norm. For an arbitrary function f : [a, b] → X, we set

‖f‖∞ = sup
{‖f(t)‖X ; t ∈ [a, b]

}
.
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If fk : [a, b] → X for k ∈ N and f : [a, b] → X are such that

lim
k→∞

‖fk − f‖∞ = 0,

we say that fk tends to f uniformly on [a, b] and write fk ⇒ f on [a, b].
If J ⊂ R and fk ⇒ f on [a, b] for each [a, b]⊂J, we say that fk tends to f
locally uniformly on J and write fk ⇒ f locally on J.

If for each t ∈ [a, b) and s ∈ (a, b], the function f : [a, b] → X possesses
the limits

f(t+) := lim
τ→t+

f(τ), f(s−) := lim
τ→s−

f(τ),

we say that f is regulated on [a, b]. The set of all functions with values in X
which are regulated on [a, b] is denoted by G([a, b], X). Furthermore,

∆+f(t) = f(t+)− f(t) for t ∈ [a, b), ∆+f(b) = 0,

∆−f(s) = f(s)− f(s−) for s ∈ (a, b], ∆−f(a) = 0
and

∆f(t) = f(t+)− f(t−) for t ∈ (a, b).

Clearly, each function, regulated on [a, b], is bounded on [a, b].
The set D = {α0, α1, . . . , αm} ⊂ [a, b], where m ∈ N, is called a division

of the interval [a, b], if a = α0 < α1 < · · · < αm = b. The set of all divisions
of the interval [a, b] is denoted by D[a, b]. For a function f : [a, b] → X and
a division D = {α0, α1, . . . , αm} ∈ D[a, b], we put

ν(D):=m, |D| = max
{
αi − αi−1; i = 1, 2, . . . , m

}
,

v(f, D) :=
m∑

j=1

‖f(αj)− f(αj−1)‖X

and
varb

a f := sup
{
v(f, D); D ∈ D[a, b]

}

is the variation of f over [a, b]. We say that f has a bounded variation on
[a, b] if varb

a f < ∞. The set of X-valued functions of bounded variation on
[a, b] is denoted by BV ([a, b], X) and ‖f‖BV = ‖f(a)‖X + varb

a f. Finally,
C([a, b], X) is the set of functions f : [a, b] → X which are continuous on
[a, b]. Obviously,

BV ([a, b], X) ⊂ G([a, b], X) and C([a, b], X) ⊂ G([a, b], X).

The integral which occurs in this paper is the abstract Kurzweil–Stieltjes
integral (in short the KS-integral) as defined by Schwabik in [26]. (For
its further properties see also our previous paper [17]). For the reader’s
convenience, let us recall the definition of the KS-integral.

Let −∞ < a < b < ∞, m ∈ N,

D = {α0, α1, . . . , αm} ∈ D[a, b] and ξ = (ξ1, ξ2, . . . , ξm) ∈ [a, b]m.

Then the couple P = (D, ξ) is called a partition of [a, b] if

αj−1 ≤ ξj ≤ αj for j = 1, 2, . . . , m.
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The set of all partitions of the interval [a, b] is denoted by P[a, b]. An arbi-
trary function δ : [a, b] → (0,∞) is called a gauge on [a, b]. Given a gauge δ
on [a, b], the partition

P = (D, ξ) =
({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)

) ∈ P [a, b]

is said to be δ-fine, if

[αj−1, αj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , m.

The set of all δ-fine partitions of [a, b] is denoted by A(δ; [a, b]).
For the functions f : [a, b] → X, G : [a, b] → L(X) and a partition

P ∈ P[a, b],

P = ({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)) ,

we define

Σ(∆Gf ;P ) =
m∑

j=1

[
G(αj)−G(αj−1)

]
f(ξj).

We say that q ∈ X is the KS-integral of f with respect to G from a to b if




for each ε > 0 there is a gauge δ on [a, b] such that
∥∥q − Σ(∆Gf ; P )

∥∥
X

< ε for all P ∈ A(δ; [a, b]).

In such a case we write

q =

b∫

a

d[G(t)]f(t) or, more briefly, q =

b∫

a

d[G]f.

Analogously we define the integral
b∫

a

F d[g] for F : [a, b] → L(X) and

g : [a, b] → X.
The following assertion summarizes the properties of the KS-integral

needed later. (For the proofs, see [26] and [17].)

Theorem 1.1. Let f ∈ G([a, b], X), G ∈ G([a, b], L(X)) and let at least
one of the functions f, G have a bounded variation on [a, b]. Then there

exists the integral
b∫

a

d[G]f . Furthermore,

∥∥∥∥
b∫

a

d[G]f
∥∥∥∥

X

≤ 2‖G‖∞
(‖f(a)‖X + varb

a f
)

if f ∈ BV ([a, b], X), (1.3)

∥∥∥∥
b∫

a

d[G]f
∥∥∥∥

X

≤ (varb
a G)‖f‖∞ if G ∈ BV ([a, b], L(X)), (1.4)
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t∫

a

d[G]fk ⇒
t∫

a

d[G]f on [a, b]

if G∈BV ([a, b], L(X)), fk∈G([a, b], X) for k∈N and fk ⇒f,





(1.5)

t∫

a

d[Gk]f ⇒
t∫

a

d[G]f on [a, b]

if f ∈BV ([a, b], X), Gk∈G([a, b], L(X)) for k∈N and gk ⇒g,





(1.6)

t∫

a

d[Gk]fk ⇒
t∫

a

d[G]f

if Gk ∈ BV ([a, b], L(X)), fk ∈ G([a, b], X) for k ∈ N,

sup{varb
a Gk; k ∈ N} < ∞ and fk ⇒ f, Gk ⇒ G on [a, b].





(1.7)

Remark 1.2. An assertion analogous to that of Theorem 1.1 holds also
for the integrals

b∫

a

F d[g],

b∫

a

Fkd[g],

b∫

a

F d[gk],

b∫

a

Fkd[gk], k ∈ N,

where F, Fk : [a, b] → L(X) and g, fk : [a, b] → X.

2. Generalized Differential Equations

Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and x̃ ∈ X. Consider the
generalized linear differential equation (1.2). We say that a function x :

[a, b] → X is a solution of (1.2) on the interval [a, b] if the integral
b∫

a

d[A]x

has a sense and equality (1.2) is satisfied for all t ∈ [a, b].
Obviously, the generalized differential equation (1.2) is equivalent to the

equation

x(t) = x̃ +

t∫

a

d[B]x + g(t)− g(a)

whenever B −A and g− f are constant on [a, b]. Therefore, without loss of
generality we may assume that

A(a) = Ak(a) = 0 and f(a) = fk(a) = 0 for k ∈ N.

For our purposes the following property is crucial:
[
I −∆−A(t)

]−1 ∈ L(X) for each t ∈ (a, b]. (2.1)

Its importance is well illustrated by the following assertion which summa-
rizes some of the basic properties of generalized linear differential equations
in abstract spaces. (For the proof see [18, Lemma 3.2].)
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Theorem 2.1. Let A ∈ BV ([a, b], L(X)) satisfy (2.1). Then for each
x̃ ∈ X and each f ∈ G([a, b], X) the equation (1.2) has a unique solution x
on [a, b] and x ∈ G([a, b], X). Moreover, x− f ∈ BV ([a, b], X)

0 < cA := sup
{ ∥∥[I −∆−A(t)]−1

∥∥
L(X)

; t ∈ (a, b]
}

< ∞, (2.2)

‖x(t)‖X≤cA (‖x̃‖X +‖f(a)‖X + ‖f‖∞) exp(cA vart
a A) for t∈ [a, b] (2.3)

and
varb

a(x− f) ≤ cA(varb
a A)

(‖x̃‖X + 2‖f‖∞
)
exp(cA varb

a A). (2.4)

The following result was proved in [18, Theorem 3.4].

Theorem 2.2. Let A,Ak ∈ BV ([a, b], L(X)) f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1),

α∗ := sup{varb
a Ak; k ∈ N} < ∞, (2.5)

Ak ⇒ A on [a, b], (2.6)

fk ⇒ f on [a, b] (2.7)
and

lim
k→∞

x̃k = x̃. (2.8)

Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for each
k ∈ N sufficiently large, there exists a unique solution xk on [a, b] for the
equation (1.1) and

xk ⇒ x on [a, b]. (2.9)

Remark 2.3. If (2.5) is not true, but (2.6) is replaced by a stronger notion
of convergence in the sense of Opial ([20, Theorem 1]) (cf. [13, Theorem
1.4.1] for extension to functional differential equations), the conclusion of
Theorem 2.2 remains true (see [18, Theorem 4.2]). If (2.6) or (2.7) does not
hold, the situation becomes rather more difficult (see [7], [8] and [31]). The
next section deals with such a case.

3. Emphatic Convergence

The proofs of the next two lemmas follow the ideas of the proof of [8,
Theorem 2.2].

Lemma 3.1. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8),

[I −∆−Ak(t)]−1 ∈ L(X)

for all t ∈ (a, b] and k ∈ N sufficiently large,

}
(3.1)

Ak ⇒ A and fk ⇒ f locally on (a, b]. (3.2)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N,
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).
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Moreover, let (2.5) and

∀ ε > 0 ∃ δ > 0 such that ∀ t ∈ (a, a + δ) ∃ k0 = k0(t) ∈ N
such that ‖xk(t)− x̃k −∆+A(a)x̃−∆+f(a)‖X < ε
for all k ≥ k0





(3.3)

hold. Then
lim

k→∞
xk(t) = x(t) (3.4)

is true for t ∈ [a, b], while xk ⇒ x locally on (a, b].

Proof. By (3.1), the solutions xk of (1.1) exist on [a, b] for all k sufficiently
large. Let ε > 0 be given and let δ > 0 and k1 ∈ N be such that

‖x(t)− x(a+)‖X < ε for t ∈ (a, a + δ) and ‖x̃k − x̃‖X < ε for k ≥ k1.

We may choose δ in such way that (3.3) holds. In view of this, for t ∈
(a, a + δ), let k0 ∈ N, k0 ≥ k1, be such that

‖xk(t)− x̃k −∆+A(a)x̃−∆+f(a)‖X < ε for k ≥ k0.

Then, taking into account the relations

x(a+) = x(a) + ∆+A(a)x(a) + ∆+f(a) and x(a) = x̃,

we get

‖xk(t)− x(t)‖X =

= ‖(xk(t)− x̃k) + (x̃k − x̃) + (x̃− x(a+)) + (x(a+)− x(t))‖X ≤
≤ ‖xk(t)− x̃k − x(a+) + x̃‖X + ‖x̃− x̃k‖X + ‖x(t)− x(a+)‖X =

= ‖xk(t)− x̃k −∆+A(a)x̃−∆−f(a)‖X+

+ ‖x̃− x̃k‖X + ‖x(t)− x(a+)‖X < 3ε.

This means that (3.4) holds for t ∈ [a, a + δ).
Now, let an arbitrary c ∈ (a, a+ δ) be given. We can use Theorem 2.2 to

show that the solutions xk to

xk(t) = xk(c) +

t∫

c

d[Ak]xk + fk(t)− f(t)

exist on [c, b] and xk ⇒ x on [c, b]. The assertion of the lemma follows
easily. ¤

Lemma 3.2. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8), (3.1) and

Ak ⇒ A and fk ⇒ f locally on [a, b). (3.5)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N
sufficiently large, there exists a unique solution xk on [a, b] to the equa-
tion (1.1).
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Moreover, let (2.5) and

∀ ε > 0, δ > 0 ∃ τ ∈ (b− δ, b), k0 ∈ N such that
∣∣∣xk(b)− xk(τ)−∆−A(b) [I −∆−A(b)]−1

x(b−)−
− [I −∆−A(b)]−1 ∆−f(b)

∣∣∣ < ε for all k ≥ k0





(3.6)

hold. Then (3.4) is true, while xk ⇒ x locally on [a, b).

Proof. Due to (2.1) and (3.1), there exists a unique solution x of (1.2) on
[a, b], there exists k1 ∈ N such that (1.1) has a unique solution xk on [a, b]
for each k ≥ k1. Furthermore, by Theorem 2.2, xk ⇒ x locally on [a, b). It
remains to show that

lim
k→∞

xk(b) = x(b) (3.7)

is true, as well. Let ε > 0, δ ∈ (0, b− a) be given and let τ ∈ (b− δ, b) and
k0 ≥ k1 be such that (3.6) is true. We have

‖xk(b)− x(b)‖X =

= ‖(xk(b)−xk(τ))+(xk(τ)−x(τ))+(x(τ)−x(b−))+(x(b−)−x(b))‖X ≤
≤ ‖xk(b)−xk(τ)−x(b)+x(b−)‖X +‖x(τ)−x(b−)‖X +‖xk(τ)−x(τ)‖X ,

wherefrom, having in mind that x(b) = x(b−)+∆−A(b)x(b)+∆−f(b), i.e.,

x(b) = [I −∆−A(b)]−1x(b−) + [I −∆−A(b)]−1∆−f(b)
and

x(b)− x(b−) = ∆−A(b)[I −∆−A(b)]−1x(b−)+

+
[
I + ∆−A(b)[I −∆−A(b)]−1

]
∆−f(b),

we deduce that

‖xk(b)− x(b)‖X ≤ ‖xk(b)− x(τ)−∆−A(b)[I −∆−A(b)]−1x(b−)−
− [

I + ∆−A(b)[I −∆−A(b)]−1
]
∆−f(b)‖X+

+ ‖x(τ)− x(b−)‖X + ‖xk(τ)− x(τ)‖X .

We can choose δ and k0 in such a way that ‖x(t) − x(b−)‖X < ε for each
t ∈ (b − δ, b) and ‖xk(τ) − x(τ)‖X < ε for k ≥ k0, as well. Furthermore,
notice that if B ∈ L(X) is such that [I − B]−1 ∈ L(X), then [I − B]−1 =
I + B[I −B]−1. Thus, using (3.6), we get

‖xk(b)− x(b)‖X ≤ ‖xk(b)− x(τ)−∆−A(b)[I −∆−A(b)]−1x(b−)−
− [I −∆−A(b)]−1∆−f(b)‖X + ‖x(τ)−x(b−)‖X + ‖xk(τ)−x(τ)‖X < 3ε.

It follows that (3.7) is true and this completes the proof. ¤

The assertion below may be deduced from Lemmas 3.1 and 3.2
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Theorem 3.3. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8) and (3.1). Furthermore, let there exist
a division D = {s0, s2, . . . , sm} of the interval [a, b] such that

Ak ⇒ A, fk ⇒ f locally on each (si−1, si), i = 1, 2, . . . ,m. (3.8)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).

Moreover, assume (2.5) and let

∀ ε > 0 ∃ δi ∈ (0, si − si−1) such that ∀ t ∈ (si−1, si−1 + δi)

∃ ki = ki(t) ∈ N such that

‖xk(t)−xk(si−1)−∆+A(si−1)x(si−1)−∆+f(si−1)‖X <ε

for all k ≥ ki





(3.9)

and

∀ ε > 0, δ ∈ (0, si − si−1)∃ τi ∈ (si − δ, si), `i ∈ N such that

‖xk(si)− xk(τi)−∆−A(si) [I −∆−A(si)]
−1

x(si−)−
− [I −∆−A(si)]

−1 ∆−f(si)‖X < ε for all k ≥ `i





(3.10)

hold for each i = 1, 2, . . . , m.
Then (3.4) is true for all t ∈ [a, b], while xk ⇒ x locally on each (si−1, si),

i = 1, 2, . . . ,m.

Proof. Obviously, there is a division D = {α0, α1, . . . , αr} of [a, b] such that
for each subinterval [αj−1, αj ], j = 1, 2, . . ., r, either the assumptions of Lem-
ma 3.1 or the assumptions of Lemma 3.2 are satisfied with αj−1 in place of
a and αk in place of b. Hence the proof follows by Lemmas 3.1 and 3.2. ¤

4. Sequential Solutions

The aim of this section is to disclose the relationship between the so-
lutions of generalized linear differential equation and limits of solutions of
approximating sequences of linear ordinary differential equations generated
by piecewise linear approximations of the coefficients A, f.

Let us introduce the following notation.

Notation 4.1. For A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and

D = {α0, α1, . . ., αm} ∈ D[a, b],
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we define

AD(t) =





A(t) if t ∈ D,

A(αi−1) +
A(αi)−A(αi−1)

αi − αi−1
(t− αi−1)

if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . , m},

(4.1)

and

fD(t) =





f(t) if t ∈ D,

f(αi−1) +
f(αi)− f(αi−1)

αi − αi−1
(t− αi−1)

if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . , m}.

(4.2)

The following lemma presents some direct properties for the functions
defined in (4.1) and (4.2).

Lemma 4.2. Assume that A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X). Fur-
thermore, let D ∈ D[a, b], D = {α0, α1, . . . , αm}, and let AD and fD be
defined by (4.1) and (4.2), respectively. Then AD and fD are strongly ab-
solutely continuous on [a, b] and

varb
a AD ≤ varb

a A and ‖fD‖∞ ≤ ‖f‖∞.

Proof. It is clear that AD and fD are strongly absolutely continuous on
(αi−1, αi), for each i = 1, . . . , m. Since both functions are continuous on
[a, b], the absolute continuity holds on the closed intervals [αi−1, αi], i =
1, . . . , m (cf. [30, Theorem 7.1.10]).

Let ε > 0 be given. For each i = 1, . . . , m, there exists ηi > 0 such that

p∑

j=1

‖AD(bj)−AD(aj)‖L(X) <
ε

m
, whenever

p∑

j=1

(bj − aj) < ηi,

where [aj , bj ], j = 1, . . . , p, are non-overlapping subintervals of [αi−1, αi].
Let η < min{ηi; i = 1, . . . ,m}. Consider F = {[cj , dj ]; j = 1, . . . , p}, a

collection of non-overlapping subintervals of [a, b], such that

p∑

j=1

(dj − cj) < η.

Without loss of generality, we may assume that for each j = 1, . . . , p,
[cj , dj ] ⊂ [αkj−1, αkj ], for some kj ∈ {1, . . . , m}. Thus

F =
m⋃

i=1

Fi, with Fi =
{

[c, d] ∈ F ; [c, d] ∩ [αi−1, αi] 6= ∅
}

,
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and
∑

[c,d]∈Fi

(d− c) < ηi, i = 1, . . . ,m. In view of this, we get

p∑

j=1

‖AD(dj)−AD(cj)‖L(X) ≤

≤
m∑

i=1

∑

[c,d]∈Fi

‖AD(d)−AD(c)‖L(X) <

m∑

i=1

ε

m
= ε,

which shows that AD is strongly absolutely continuous on [a, b]. Similarly
we prove for fD.

Furthermore, for each ` = 1, 2, . . . , m and each t ∈ [α`−1, α`] we have

varα`
α`−1

AD = ‖A(α`)−A(α`−1)‖L(X) ≤ varα`
α`−1

A

and

‖fD(t)‖X =
∥∥∥f(α`−1) +

f(α`)− f(α`−1)
α` − α`−1

(t− α`−1)
∥∥∥

X
=

=
∥∥∥f(α`−1)

α` − t

α` − α`−1
+ f(α`)

t− α`−1

α` − α`−1

∥∥∥
X
≤ ‖f‖∞.

Therefore,

varb
a AD =

m∑

`=1

varα`
α`−1

AD ≤

≤
m∑

`=1

varα`
α`−1

A = varb
a A and ‖fD‖∞ ≤ ‖f‖∞. ¤

Remark 4.3. Notice that the functions AD, fD, defined in (4.1) and (4.2),
respectively, are differentiable on (αi−1, αi), i = 1, . . . , m, and their deriva-
tives are given by

A′D(t) =
A(αi)−A(αi−1)

αi − αi−1
if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . ,m},

f ′D(t) =
f(αi)− f(αi−1)

αi − αi−1
if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . ,m}.

By Lemma 4.2, recalling that AD and fD are strongly absolutely continuous
on [a, b], the Bochner integral (cf. [30, Definition 7.4.16]) exists and hence
also the strong McShane and the strong Kurzweil-Henstock integrals (cf.
[30, Theorem 5.1.4] and [30, Proposition 3.6.3]). Moreover,

AD(t) =

t∫

a

A′D(s)ds, fD(t) =

t∫

a

f ′D(s)ds for t ∈ [a, b],
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(cf. [30, Theorem 7.3.10]). Consequently,
t∫

a

d[AD(s)]x(s) =

t∫

a

A′D(s)x(s)ds

holds for each x ∈ G([a, b], X) and t ∈ [a, b]. Hence, the generalized differ-
ential equation

x(t) = x̃ +

t∫

a

d[AD(s)]x(s) + fD(t)− fD(a)

is equivalent to the initial value problem for the ordinary differential equa-
tion (in the Banach space X)

x′(t) = A′D(t)x + f ′D(t), x(a) = x̃.

Theorem 4.4. Let A∈BV ([a, b], L(X))∩C([a, b], L(X)), f ∈C([a, b], X)
and x̃ ∈ X. Furthermore, let {Dk} be a sequence of divisions of the interval
[a, b] such that

Dk+1 ⊃ Dk for k ∈ N and lim
k→∞

|Dk| = 0. (4.3)

Finally, let the sequences {Ak} and {fk} be given by

Ak = ADk
and fk = fDk

for k ∈ N, (4.4)

where ADk
and fDk

are defined as in (4.1) and (4.2).
Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for

each k ∈ N, equation (1.1) has a solution xk on [a, b] and (2.9) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have

for each ε>0 there is a δ>0 such that ‖A(t)−A(s)‖L(X) <
ε

2
holds for all t, s ∈ [a, b] such that |t− s| < δ.

}
(4.5)

By (4.3), we can choose k0 ∈ N such that |Dk| < δ, for every k ≥ k0.
Given t ∈ [a, b] and k ≥ k0, let α`−1, α` ∈ Dk be such that t ∈ [α`−1, α`).

Notice that |α` − α`−1| < δ. So, according to (4.1), (4.4) and (4.5), we get

‖Ak(t)−A(t)‖L(X) ≤ ‖A(α`)−A(α`−1)‖L(X)

[ t− α`−1

α` − α`−1

]
+

+ ‖A(α`−1)−A(t)‖L(X) ≤
ε

2
+

ε

2
= ε.

As k0 was chosen independently of t, we can conclude that (2.6) is true.

Step 2. Analogously we can show that (2.7) is true, as well.

Step 3. By Lemma 4.2, (2.5) holds. Moreover, as A and Ak, k ∈ N, are con-
tinuous, the equations (1.2) and (1.1) have unique solutions by Theorem 2.1
and we can complete the proof by using Theorem 2.2. ¤
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Notation 4.5. For the given f ∈ G([a, b], X) and k ∈ N, we denote

U+
k (f) =

{
t ∈ [a, b] : ‖∆+f(t)‖X ≥ 1

k

}
,

U−k (f) =
{

t ∈ [a, b] : ‖∆−f(t)‖X ≥ 1
k

}
,

Uk(f) = U+
k (f) ∪ U−k (f) and U(f) =

∞⋃

k=1

Uk(f).

(Thus U(f) is a set of points of discontinuity of the function f in [a, b].)
Analogous symbols are used also for the operator valued function.

Definition 4.6. Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and let {Pk}
be a sequence of divisions of [a, b] such that

|Pk| = (1/2)k for k ∈ N. (4.6)

We say that the sequence {Ak, fk} is a piecewise linear approximation (PL-
approximation) of (A, f) if there exists a sequence {Dk} ⊂ D[a, b] of divi-
sions of the interval [a, b] such that

Dk ⊃ Pk∪Uk(A)∪Uk(f) for k ∈ N (4.7)

and Ak, fk are for k ∈ N defined by (4.1), (4.2) and (4.4).

Remark 4.7. Consider the case where dim X < ∞ and let {Ak, fk} be
a PL-approximation of (A, f). Then by Lemma 4.2,

varb
a Ak ≤ varb

a A and ‖fk‖∞ ≤ ‖f‖∞.

Furthermore, as Ak are continuous, due to (2.2), we have cAk
= 1 for all

k ∈ N. Hence, (2.4) yields

varb
a(xk − fk) ≤ varb

a A (‖x̃‖X + 2‖f‖∞) exp(varb
a A) < ∞ for all k ∈ N

and, by Helly’s theorem, there is a subsequence {k`} of N and w∈G([a, b], X)
such that

lim
`→∞

(xk`
(t)− fk`

(t)) = w(t)− f(t) for t ∈ [a, b].

In particular, lim
`→∞

xk`
(t) = w(t) for all t ∈ [a, b] such that lim

`→∞
fk`

(t) = f(t).

In this context, it is worth mentioning that if the set U(f) has at most
a finite number of elements, then

lim
k→∞

fk(t) = f(t) for all t ∈ [a, b].

Definition 4.8. Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and x̃ ∈ X.
We say that x∗ : [a, b] → X is a sequential solution to equation (1.2) on the
interval [a, b] if there is a PL-approximation {Ak, fk} of (A, f) such that

lim
k→∞

xk(t) = x∗(t) for t ∈ [a, b] (4.8)
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holds for solutions xk, k ∈ N, of the corresponding approximating initial
value problems

x′k = A′k(t)xk + f ′k(t), xk(a) = x̃, k ∈ N. (4.9)

Remark 4.9. Notice that using the language of Definitions 4.6 and 4.8,
we can translate Theorem 4.4 into the following form:
Let A ∈ BV ([a, b], L(X)) ∩ C([a, b], L(X)), f ∈ C([a, b], X) and x̃ ∈ X.
Then equation (1.2) has a unique sequential solution x∗ on [a, b] and x∗

coincides on [a, b] with the solution of (1.2).

In the rest of this paper we consider the case where the set U(A) ∪ U(f)
of discontinuities of A, f is non-empty. We will start with the simplest case
U(A) ∪ U(f) = {b}.

The following natural assertion will be useful for our purposes and, in
our opinion, it is not available in literature.

Lemma 4.10. Let A ∈ BV ([a, b], L(X)). Then

lim
s→t−

1
t− s

( t∫

s

exp
(
[A(t)−A(s)]

t− r

t− s

)
dr

)
=

=

1∫

0

exp
(
∆−A(t)(1− σ)

)
dσ if t ∈ (a, b]





(4.10)

and

lim
s→t+

1
s− t

( s∫

t

exp
(

[A(s)−A(t)]
s− r

s− t

)
dr

)
=

=

1∫

0

exp
(
∆+A(t)(1− σ)

)
dσ if t ∈ [a, b).





(4.11)

where the integrals are the Bochner ones.

Proof. (i) Let t ∈ (a, b] and ε ∈ (0, 1) be given. Then there is a δ > 0 such
that

‖A(t−)−A(s)‖L(X) < ε whenever t− δ < s < t.

Taking now into account that∥∥ exp(Cτ)− exp(Dτ)
∥∥

L(X)
≤ ‖C −D‖L(X) exp

(
(‖C‖L(X) + ‖D‖L(X))τ

)

holds for all C, D ∈ L(X), τ ∈ R, (cf. [22, Corollary 3.1.3]), we get

∥∥∥∥
1

t− s

t∫

s

[
exp

(
[A(t)−A(s)]

t− r

t− s

)
− exp

(
∆−A(t)

t− r

t− s

)]
dr

∥∥∥∥
X

≤

≤ 1
t− s

‖A(t−)−A(s)‖L(X)

t∫

s

exp
(
ε + 2‖∆−A(t)‖L(X)

)
dr =
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= ‖A(t−)−A(s)‖L(X) exp
(
ε + 2‖∆−A(t)‖L(X)

) ≤

≤ ε exp
(
1 + 2‖∆−A(t)‖L(X)

)
for t− δ < s < t.

Therefore,

lim
s→t−

1
t− s

( t∫

s

exp
(
[A(t)−A(s)]

t− r

t− s

)
dr

)
=

= lim
s→t−

1
t− s

( t∫

s

exp
(
∆−A(t)

t− r

t− s

)
dr

)
for t ∈ (a, b].

It is now easy to see that the substitution σ = 1 − t−r
t−s into the second

integral yields (4.10).
(ii) The relation (4.11) can be justified similarly. ¤

Lemma 4.11. Let A ∈ BV ([a, b], L(X)) and f ∈ G([a, b], X) be contin-
uous on [a, b). Let x̃ ∈ X and let x be a solution of (1.2) on [a, b).

Then equation (1.2) has a unique sequential solution x∗ on [a, b].
Moreover, x∗ is continuous on [a, b), x∗ = x on [a, b) and x∗(b) = v(1),

where v is a solution on [0, 1] of the initial value problem

v′ = [∆−A(b)]v + [∆−f(b)], v(0) = x(b−). (4.12)

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let
{Dk} be the corresponding sequence of divisions of [a, b] fulfilling (4.6) and
(4.7). Notice that under our assumptions, Dk = Pk for k ∈ N. For k ∈ N,
we put

τk = max{t ∈ Pk; t < b}.
By (4.3), we have b− b−a

2k ≤ τk < b for k ∈ N, and hence

lim
k→∞

τk = b. (4.13)

Now, for k ∈ N and t ∈ [a, b], let us define

Ãk(t) =





Ak(t) if t ∈ [a, τk],

A(τk) +
A(b−)−A(τk)

b− τk
(t− τk) if t ∈ (τk, b],

f̃k(t) =





fk(t) if t ∈ [a, τk],

f(τk) +
f(b−)− f(τk)

b− τk
(t− τk) if t ∈ (τk, b].

Furthermore, let

Ã(t) =





A(t) if t ∈ [a, b),

A(b−) if t = b,
f̃(t) =





f(t) if t ∈ [a, b),

f(b−) if t = b.
(4.14)
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It is easy to see that for k ∈ N, Ãk f̃k are strongly absolutely continuous
and differentiable a.e. on [a, b], Ã ∈ BV ([a, b], L(X))∩C([a, b], L(X)) and
f̃ ∈ C([a, b], X).

Step 1. Consider the problems

y′k = Ã′k(t)yk + f̃ ′k(t), yk(a) = x̃, k ∈ N, (4.15)
and

y(t) = x̃ +

t∫

a

d[Ã]y + f̃(t)− f̃(a). (4.16)

Taking into account Theorem 4.4 and Remark 4.9, we find that the equation
(4.16) possesses a unique solution y on [a, b] and

lim
k→∞

‖yk − y‖∞ = 0. (4.17)

where for each k ∈ N, yk is the solution on [a, b] of (4.15).
Note that y is continuous on [a, b] and y = x on [a, b). Let {xk} be a

sequence of solutions of the problems (4.9) on [a, b]. We can see that xk = yk

on [a, τk] for each k ∈ N, and, due to (4.13), we have

lim
k→∞

xk(t) = lim
k→∞

yk(t) = y(t) = x(t) for t ∈ [a, b). (4.18)

Step 2. Next, we prove that

lim
k→∞

xk(τk) = y(b). (4.19)

Indeed, let ε > 0 be given and let δ > 0 be such that

‖y(t)− y(b)‖X <
ε

2
for t ∈ [b− δ, b].

Further, by (4.17), there is a k0 ∈ N such that

τk ∈ [b− δ, b) and ‖yk − y‖∞ <
ε

2
whenever k ≥ k0.

Consequently,

‖xk(τk)− y(b)‖X ≤ ‖xk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X =

= ‖yk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X <
ε

2
+

ε

2
= ε.

holds for k ≥ k0. This completes the proof of (4.19).

Step 3. On the intervals [τk, b], the equations from (4.9) reduce to the
equations with constant coefficients

x′k = Bkxk + ek, (4.20)
where

Bk =
A(b)−A(τk)

b− τk
and ek =

f(b)− f(τk)
b− τk

.
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Their solutions xk are on [τk, b] given by

xk(t) = exp (Bk(t− τk))xk(τk) +
( t∫

τk

exp (Bk(t− r)) dr

)
ek,

(cf. [5, Chapter II]). In particular,

xk(b) = exp (A(b)−A(τk)) xk(τk)+

+
1

b− τk

( b∫

τk

exp
(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[fk(b)− fk(τk)].

By Lemma 4.10, we have

lim
k→∞

1
b− τk

( b∫

τk

exp
(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[f(b)− f(τk)] =

= lim
k→∞

1
b− τk

( b∫

τk

exp
(
∆−A(b)

b− r

b− τk

)
dr

)
[f(b)− f(τk)] =

=
( 1∫

0

exp
(
∆−A(b)(1− s)

)
ds

)
∆−f(b).

To summarize,

lim
k→∞

xk(b) = exp
(
∆−A(b)

)
y(b) +

( 1∫

0

exp
(
∆−A(b)(1− s)

)
ds

)
∆−f(b),

i.e.,
lim

k→∞
xk(b) = v(1), (4.21)

where v is a solution of (4.12) on [0, 1].

Step 4. Define

x∗(t) =





y(t) if t ∈ [a, b),

v(1) if t = b.

Then x∗(t) = lim
k→∞

xk(t) for t ∈ [a, b] due to (4.19) and (4.21). Therefore,

x∗ is a sequential solution of (1.2). Since it does not depend on the choice of
the approximating sequence {Ak, fk}, we can see that x∗ is also the unique
sequential solution of (1.2). This completes the proof. ¤

The following assertion concerns a situation, symmetric to that treated
by Lemma 4.11. Similarly to the proof of Lemma 4.11, we will deal with



Emphatic Convergence and Sequential Solutions . . . 45

the modified equation

y(t) = ỹ +

t∫

a

d[Ã]y + f̃(t)− f̃(a), (4.22)

where ỹ ∈ X and

Ã(t) =





A(a+) if t = a,

A(t) if t ∈ (a, b]
and f̃(t) =





f(a+) if t = a,

f(t) if t ∈ (a, b].
(4.23)

Lemma 4.12. Let A ∈ BV ([a, b], L(X)) and f ∈ G([a, b], X) be contin-
uous on (a, b]. Then for each x̃ ∈ X, equation (1.2) has a unique sequential
solution x∗ on [a, b] which is continuous on (a, b].

Furthermore, let w be a solution of the initial value problem

w′ = [∆+A(a)]w + [∆+f(a)], w(0) = x̃ (4.24)

and let y be a solution on [a, b] of equation (4.22), where ỹ = w(1). Then
x∗ coincides with y on (a, b].

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let
{Dk} be the corresponding sequence of divisions of [a, b] fulfilling (4.1) and
(4.2). Just as in the previous proof, Dk = Pk for k ∈ N.

For k ∈ N, we put

τk = min{t ∈ Pk : t > a}.
By (4.3), we have a + b−a

2k ≥ τk > a for k ∈ N, and hence

lim
k→∞

τk = a.

Let {xk} be a sequence of solutions of the approximating initial value prob-
lems (4.9) on [a, b].

Step 1. On the intervals [a, τk], the equations from (4.9) reduce to the
equations (4.20) with the coefficients

Bk =
A(τk)−A(a)

τk − a
, ek =

f(τk)− f(a)
τk − a

.

Their solutions xk are on [a, τk] given by

xk(t) = exp(Bk(t− a))x̃ +
( t∫

a

exp (Bk(t− r)) dr

)
ek,

(cf. [5, Chapter II]). In particular,

xk(τk) = exp (A(τk)−A(a)) x̃+

+
1

τk − a

( τk∫

a

exp
(
[A(τk)−A(a)]

τk − r

τk − a

)
dr

)
[f(τk)− f(τk)].



46 Zdeněk Halas, Giselle A. Monteiro, and Milan Tvrdý

By Lemma 4.10, we have

lim
k→∞

1
τk − a

( τk∫

a

exp
(
[A(τk)−A(a)]

τk − r

τk − a

)
dr

)
[f(τk)− f(a)] =

=
( 1∫

0

exp(∆+A(a)(1− s))ds

)
∆+f(a).

Thus, lim
k→∞

xk(τk) = w(1), where w is the solution of (4.24) on [0, 1].

Step 2. Consider equation (4.22) with ỹ = w(1). By Theorem 2.1, it has
a unique solution y on [a, b], y is continuous on [a, b] and, by an argument
analogous to that used in Step 1 of the proof of Lemma 4.11, we can show
that the relation

lim
k→∞

xk(t) = y(t) for t ∈ (a, b]

is true.

Step 3. Analogously to Step 4 of the proof of Lemma 4.11, we can complete
the proof by showing that the function

x∗(t) =

{
x̃ if t = a,

y(t) if t ∈ (a, b],

is the unique sequential solution of (1.2). ¤

Remark 4.13. Notice that if a < c < b and the functions x∗1 and x∗2 are,
respectively, the sequential solutions to

x(t) = x̃1 +

t∫

a

d[A]x + f(t)− f(a), t ∈ [a, c],

and

x(t) = x̃2 +

t∫

c

d[A]x + f(t)− f(c), t ∈ [c, b],

where x̃2 = x∗1(c), then the function

x∗(t) =

{
x∗1(t) if t ∈ [a, c],

x∗2(t) if t ∈ (c, b]

is a sequential solution to (1.2).

Theorem 4.14. Assume that A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and

U(A)∪U(f) = {s1, s2, . . . , sm} ⊂ [a, b].

Then for each x̃ ∈ X, there is exactly one sequential solution x∗ of equation
(1.2) on [a, b].
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Moreover,

x∗(t) = w`(1)+

t∫

s`

d[Ã`]x∗+f̃`(t)−f̃`(s`) for t∈ [s`, s`+1), `∈N∩[0,m],

x∗(t) = v`(1) for t = s`, ` ∈ N∩[1,m + 1],

where s0 = a, sm+1 = b, w0(1) = x̃ and, for ` ∈ N∩[0,m],

Ã`(t) =

{
A(s`+) if t = s`,

A(t) if t ∈ (s`, s`+1],
f̃`(t) =

{
f(s`+) if t = s`,

f(t) if t ∈ (s`, s`+1]

and v` and w` denote, respectively, the solutions on [0, 1] of the initial value
problems

v′` = [∆−A(s`)]v` + [∆−f(s`)], v`(0) = x∗(s`−)
and

w′` = [∆+A(s`)]w` + [∆+f(s`)], w`(0) = x∗(s`).

Proof. Having in mind Remark 4.13, we deduce the assertion of Theo-
rem 4.14 by a successive use of Lemmas 4.11 and 4.12. Towards this end, it
suffices to choose a division D = {α0, α1, . . . , αr} of [a, b] such that for each
subinterval [αk−1, αk], k = 1, 2, . . . , r, either the assumptions of Lemma 4.11
or those of Lemma 4.12 are satisfied with αk−1 in place of a and αk in place
of b. ¤
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32. textscM. Tvrdý, Differential and integral equations in the space of regulated func-
tions. Mem. Differential Equations Math. Phys. 25 (2002), 1–104.

33. S. G. Zavalishchin and A. N. Sesekin, Dynamic impulse systems. Theory and
applications. Mathematics and its Applications, 394. Kluwer Academic Publishers
Group, Dordrecht, 1997.

(Received 13.09.2011)

Authors’ addresses:
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îâäæñéâ. éâëåýâ îæàæï ûîòæãæ ßæìâîĲëèñîæ àŽêðëèâĲâĲæïŽåãæï ïæêàñ-
èŽîñèæ çëâòæùæâêðâĲæå áŽáàâêæèæŽ ŽîŽèëçŽèñî ŽéëùŽêŽåŽ ìæîëĲæåŽá
çëîâóðñèëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽçéŽîæïæ ìæîëĲâĲæ.
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1. Formulation of the Main Results

1.1. Statement of the problem. In the rectangle Ω = [0, a] × [0, b]
consider the linear hyperbolic equation

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1) + h(x, y) (1.1)

with the nonlocal boundary conditions
a∫

0

u(s, y) dαi(s) = 0 for 0 ≤ y ≤ b (i = 1, 2),

b∫

0

u(x, t) dβk(t) = 0 for 0 ≤ x ≤ a (k = 1, 2).

(1.2)

Here

u(i,k)(x, y) =
∂i+ku(x, y)

∂xi∂yk
(i, k = 0, 1, 2),

hik : Ω → R (i, k = 1, 2) are measurable functions, h ∈ L(Ω), and αi :
[0, a] → R and βi : [0, b] → R (i = 1, 2) are functions of bounded variation.

We will use the following notation.
L(Ω) is the Banach space of Lebesgue integrable functions v : Ω → R

with the norm

‖v‖L =

a∫

0

b∫

0

|v(x, y)| dx dy.

C1,1(Ω) is the space of functions u : Ω → R, continuous together with
u(i−1,k−1) (i, k = 1, 2), with the norm

‖u‖C1,1 = max
{ 2∑

i=1

2∑

k=1

∣∣u(i−1,k−1)(x, y)
∣∣ : (x, y) ∈ Ω

}
.

C̃1,1(Ω) is the space of functions u ∈ C1,1(Ω) for which u(1,1) is absolutely
continuous (see, e.g., [1,4]).

The function u ∈ C̃1,1(Ω) is said to be a solution of equation (1.1) if it
satisfies that equation almost everywhere on Ω.

A solution of equation (1.1) satisfying boundary conditions (1.2) is called
a solution of problem (1.1), (1.2).

Along with the equation (1.1) consider the corresponding homogeneous
and perturbed equations

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1), (1.10)

u(2,2) =
2∑

i=1

2∑

k=1

hik(x, y)u(i−1,k−1) + h̃(x, y), (1.1′)
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with the nonhomogeneous boundary conditions
a∫

0

u(s, y) dαi(s) =

a∫

0

c(s, y) dαi(s) for 0 ≤ y ≤ b (i = 1, 2),

b∫

0

u(x, t) dβk(t) =

b∫

0

c(x, t) dβk(t) for 0 ≤ x ≤ a (k = 1, 2).

(1.2′)

Following [2], introduce the definitions.

Definition 1.1. Problem (1.1), (1.2) is said to be well-posed if for arbi-
trary h̃ ∈ L(Ω) and c ∈ C̃1,1(Ω) problem (1.1′), (1.2′) is uniquely solvable,
and there exists a positive constant r independent of h̃ and c such that

‖ũ− u‖C1,1 ≤ r
(‖c‖C1,1 + ‖h̃− h‖L

)
,

where u and ũ, respectively, are solutions of problems (1.1), (1.2) and (1.1′),
(1.2′).

Definition 1.2. Problem (1.1), (1.2) is said to be conditionally well-posed
if for an arbitrary h̃ ∈ L(Ω) problem (1.1′), (1.2) is uniquely solvable, and
the exists a positive constant r independent of h̃ such that

‖ũ− u‖C1,1 ≤ r‖h̃− h‖L,

where u and ũ, respectively, are solutions of problems (1.1), (1.2) and (1.1′),
(1.2).

In the case where the coefficients of equation (1.1) are continuous func-
tions sufficient conditions of well-posedness of problems of type (1.1), (1.2)
are established in [3–7]. We are interested in the singular case, where some
of the coefficients hik (i, k = 1, 2) are nonintegrable on Ω. Until recently,
for singular equations only the Dirichlet problem has been studied [8].

General theorems on conditional well-posedness of nonlocal problems for
higher order linear hyperbolic equations with singular coefficients are proved
in [2]. In the present paper effective and unimprovable in a sense conditions,
guaranteeing conditional well-posedness of the singular problem (1.1), (1.2),
are established on the basis of those results.

The following boundary conditions are the particular cases of (1.2):
u(0, y) = 0, u(a, y) = 0 for 0 ≤ y ≤ b,

u(x, 0) = 0, u(x, b) = 0 for 0 ≤ x ≤ a
(1.21)

and

u(0, y) = 0,

a∫

0

u(s, y) dα(s) = 0 for 0 ≤ y ≤ b,

u(x, 0) = 0,

b∫

0

u(x, t) dβ(t) = 0 for 0 ≤ x ≤ a,

(1.22)
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where α : [0, a] → R and β : [0, b] → R are functions of bounded variation.
The theorems proved below imply new sufficient conditions of conditional

well-posedness of problems (1.1), (1.21) and (1.1), (1.22).

1.2. Theorems on the Conditional Well-Posedness of Problem
(1.1), (1.2). Let

∆1(x) = α2(a)

a∫

x

α1(s) ds− α1(a)

a∫

x

α2(s) ds,

∆2(y) = β2(b)

b∫

y

β1(t) dt− β1(b)

b∫

y

β2(t) dt.

(1.3)

We study problem (1.1), (1.2) in the case, where

αi(0) = 0, βi(0) = 0, ∆i(0) 6= 0 (i = 1, 2). (1.4)

Introduce the functions

χ(t, s) =

{
1 for s ≤ t,

0 for s > t,
(1.5)

g1(x, s) =
1

∆1(0)

[ a∫

0

α1(τ) dτ

a∫

s

α2(τ) dτ −
a∫

s

α1(τ) dτ

a∫

0

α2(τ) dτ+

+(s− a)∆1(0) + (a− x)∆1(s)
]

+ χ(x, s)(x− s) for 0 ≤ x, s ≤ a, (1.6)

g2(y, t) =
1

∆2(0)

[ b∫

0

β1(τ) dτ

b∫

t

β2(τ) dτ −
b∫

t

β1(τ) dτ

b∫

0

β2(τ) dτ+

+(t− b)∆2(0) + (b− y)∆1(t)
]

+ χ(y, t)(y − t) for 0 ≤ y, t ≤ b, (1.7)

ϕ11(x) = max
{|g1(x, s)| : 0 ≤ s ≤ a

}
,

ϕ12(x) = sup
{∣∣g(1,0)

1 (x, s)
∣∣ : 0 ≤ s ≤ a, s 6= x

}
,

(1.8)

ϕ21(y) = max
{|g2(y, t)| : 0 ≤ t ≤ b

}
,

ϕ22(y) = sup
{∣∣g(1,0)

2 (y, t)
∣∣ : 0 ≤ t ≤ b, t 6= y

}
.

(1.9)

Theorem 1.1. If along with (1.4) the inequalities
b∫

0

a∫

0

ϕ1i(x)ϕ2k(y)|hik(x, y)| dx dy < +∞ (i, k = 1, 2) (1.10)

hold, then problem (1.1), (1.2) is conditionally well-posed if and only if the
corresponding homogeneous problem (1.10), (1.2) has only the trivial solu-
tion.
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Theorem 1.2. If along with (1.4) the condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ϕi(x)ψk(y)|hik(x, y)| dx dy < 1 (1.11)

holds, then problem (1.1), (1.2) is conditionally well-posed. Moreover, if

hik ∈ L(Ω) (i, k = 1, 2), (1.12)

then problem (1.1), (1.2) is well-posed.

Theorem 1.3. If conditions (1.4) and (1.11) hold, and

b∫

0

a∫

0

|h11(x, y)| dx dy = +∞, (1.13)

then problem (1.1), (1.2) is conditionally well-posed but not well-posed.

1.3. Corollaries for problem (1.1), (1.21).

Corollary 1.1. If

b∫

0

a∫

0

[
x
(
1−x

a

)]2−i[
y
(
1−y

b

)]2−k

|hik(x, y)| dx dy<+∞ (i, k=1, 2) (1.14)

hold, then problem (1.1), (1.21) is conditionally well-posed if and only if
the corresponding homogeneous problem (1.10), (1.21) has only the trivial
solution.

Corollary 1.2. Let either

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| dx dy < 1, (1.15)

or

ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| : (x, y) ∈ Ω
}

<

<
4
ab

. (1.16)

Then problem (1.1), (1.21) is conditionally well-posed. Moreover, if along
with (1.15) (along with (1.16)) condition (1.12) holds, then problem (1.1),
(1.21) is well-posed.

Corollary 1.3. Let along with condition (1.13) either of conditions (1.15)
and (1.16) hold. Then problem (1.1), (1.21) is conditionally well-posed but
not well-posed.



Conditional Well–Posedness of Nonlocal Problems . . . 57

1.4. Corollaries for problem (1.1), (1.22). We study problem (1.1),
(1.22) in the case, where

α(0) = 0, α(x) ≤ α(a) a.e. on [0, a],

a∫

0

α(x) dx < aα(a),

β(0) = 0, β(y) ≤ β(b) a.e. on [0, b],

b∫

0

β(y) dy < bβ(b).

(1.17)

Corollary 1.4. If along with (1.17) the condition
b∫

0

a∫

0

x2−iy2−k|hik(x, y)| dx dy < +∞ (i, k = 1, 2) (1.18)

holds, then problem (1.1), (1.22) is conditionally well-posed if and only if
the corresponding homogeneous problem (1.10), (1.22) has only the trivial
solution.

Corollary 1.5. If along with (1.17) the condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

x2−iy2−k|hik(x, y)| dx dy < 1 (1.19)

holds, then problem (1.1), (1.22) is conditionally well-posed. Moreover, if
along with (1.17) and (1.19) condition (1.12) holds, then problem (1.1), (1.22)
is well-posed.

Corollary 1.6. If along with (1.17) and (1.19) condition (1.13) holds,
then problem (1.1), (1.22) is conditionally well-posed but not well-posed.

1.5. Examples. The examples below demonstrate that in Theorem 1.2
(in Corollary 1.2) condition (1.11) (condition (1.15), as well as condition
(1.16)) is unimprovable in a sense.

Example 1.1. Let ε be an arbitrary positive number and γ > 1 be
sufficiently large number such that

(
γ + 1
γ − 1

)2

< 1 + ε. (1.20)

Set

h0(t) =

{
(γ + 1)tγ−2 − t2γ−2 for 0 ≤ t ≤ 1,

(γ + 1)(2− t)γ−2 − (2− t)2γ−2 for 1 < t ≤ 2,
(1.21)

w0(t) =





t exp
(
− tγ

γ

)
for 0 ≤ t ≤ 1,

(2− t) exp
(
− (2− t)γ

γ

)
for 1 < t ≤ 2,
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and consider the differential equation (1.1), where h ∈ L(Ω) and

h11(x, y) =
16

a2b2
h0

(2x

a

)
h0

(2y

b

)
, hik(x, y) = 0

for (x, y) ∈ Ω, i + k 6= 2. (1.22)

Then problem (1.1), (1.21) is not conditionally well-posed since the corre-
sponding homogeneous problem (1.10), (1.21) has the nontrivial solution

u(x, y) = w0

(2x

a

)
w0

(2y

b

)
.

On the other hand, according to (1.21) and (1.22) we have

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x

(
1− x

a

)]2−i[
y

(
1− y

b

)]2−k

|hik(x, y)| dx dy =

=
16

a2b2

a∫

0

x
(
1− x

a

)
h0

(2x

a

)
dx

b∫

0

y
(
1− y

b

)
h0

(2y

b

)
dy ≤

≤ 1
ab

a∫

0

h0

(2x

a

)
dx

b∫

0

h0

(2y

b

)
dy =

1
4

2∫

0

h0(t) dt =

=
( 1∫

0

h0(t) dt

)2

<

(
γ + 1
γ − 1

)2

.

Hence, by (1.20) it follows that

2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x

(
1− x

a

)]2−i[
y

(
1− y

b

)]2−k

|hik(x, y)| dx dy < 1+ε. (1.23)

Consequently, in Corollary 1.2 condition (1.15) cannot be replaced by the
condition

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ϕ1i(x)ϕ2k(y)|hik(x, y)| dx dy < 1 + ε

no matter how small ε > 0 might be.

Example 1.2. Let

h11(x, y) =
4

x(a− x)y(b− y)
, hik(x, y) = 0 for (x, y) ∈ Ω, i + k > 2.
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Then

ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

|hik(x, y)| : (x, y) ∈ Ω
}

=

=
4
ab

. (1.24)

On the other hand, problem (1.1), (1.21) is not conditionally well-posed,
since its corresponding homogeneous problem (1.10), 1.21() has the nontriv-
ial solution

u(x, y) = x(x− a)y(y − b).

Consequently, in Corollary 1.2 inequality (1.16) cannot be replaced by equal-
ity (1.24).

2. Auxiliary Statements

By L([0, T ]) we denote the space of Lebesgue integrable functions v :
[0, T ] → R endowed with the norm

‖v‖L =

T∫

0

|v(t)| dt,

and by C̃1([0, T ]) we denote the space of continuously differentiable func-
tions u : [0, T ] → R for which u′ is absolutely continuous.

Also, we will need to consider the second order ordinary differential equa-
tion

u′′ = q(t) (2.1)

with the nonlocal boundary conditions

T∫

0

u(t) d γi(t) = 0 (i = 1, 2), (2.2)

where q ∈ L([0, T ]), and γi : [0, T ] → R (i = 1, 2) are functions of bounded
variation such that

γi(0) = 0 (i = 1, 2). (2.3)

A solution of problem (2.1), (2.2) will be sought in the space C̃1([0, T ]).

2.1. Lemmas on estimates of solutions to problems of type
(2.1), (2.2). Let

∆(t) = γ2(T )

T∫

t

γ1(s) ds− γ1(T )

T∫

t

γ2(s) ds for 0 ≤ t ≤ T. (2.4)
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If ∆(0) 6= 0, then set

g(t, s) =
1

∆(0)

[ T∫

0

γ1(τ) dτ

T∫

s

γ2(τ) dτ −
T∫

s

γ1(τ) dτ

T∫

0

γ2(τ) dτ

]
+

+
1

∆(0)
[
(s−T )∆(0)+(T−t)∆(s)

]
+χ(t, s)(t−s) for 0≤ t, s≤T, (2.5)

where χ is the function given by equality (1.5).

Lemma 2.1. Problem (2.1) is uniquely solvable if and only if

∆(0) 6= 0. (2.6)

Moreover, is condition (2.6) holds, then the function g given equality (2.5)
is the Green’s function of the boundary value problem

u′′ = 0;

T∫

0

u(t) dγi(t) = 0 (i = 1, 2), (2.7)

and a solution u of problem (2.1), (2.2) admits the estimates

|u(i−1)(t)| ≤ ϕi(t)‖h‖L for 0 ≤ t ≤ T (i = 1, 2), (2.8)

where
ϕ1(t) = max

{|g(t, s)| : 0 ≤ s ≤ T
}
,

ϕ2(t) = sup
{
|g(1,0)(t, s)| : 0 ≤ s ≤ T, s 6= t

}
.

(2.9)

Proof. An arbitrary solution of equation (2.1) admits the representation

u(t) = c1 + c2t +

t∫

0

(t− s)q(s) ds for 0 ≤ t ≤ T. (2.10)

In view of (2.3) the function u is a solution of problem (2.1), (2.2) if and
only if (c1, c2) is a solution of the system of linear algebraic equation

γi(T )c1+
( T∫

0

τ dγi(τ)
)

c2 =

T∫

0

( s∫

0

(τ−s)q(τ) dτ

)
dγi(s) (i=1, 2). (2.11)

However,
T∫

0

τ dγi(τ) = Tγi(T )−
T∫

0

γi(τ) dτ (i = 1, 2),

T∫

0

( s∫

0

(τ − s)q(τ) dτ

)
dγi(s) =
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= γi(T )

T∫

0

(s− T )q(s) ds +

T∫

0

( s∫

0

q(τ) dτ

)
γi(s) ds =

= γi(T )

T∫

0

(s− T )q(s) ds +

T∫

0

( T∫

s

γi(τ) dτ

)
q(s) ds =

=

T∫

0

( T∫

s

γi(τ) dτ − γi(T )(T − s)
)

q(s) ds (i = 1, 2).

Therefore system (2.11) is equivalent to system

γi(T )c1 +
(

Tγi(T )−
T∫

0

γi(τ) dτ

)
c2 =

=

T∫

0

( T∫

s

γi(τ) dτ − γi(T )(T − s)
)

q(s) ds (i = 1, 2).

In view of notation (2.4) the latter system is uniquely solvable if and only
if inequality (2.6) holds. Besides, if this inequality holds, then

c1 =
1

∆(0)

T∫

0

[ T∫

0

γ1(τ) dτ

T∫

s

γ2(τ) dτ −
T∫

s

γ1(τ) dτ

T∫

0

γ2(τ) dτ

]
q(s) ds+

+
1

∆(0)

T∫

0

[T∆(s) + (s− T )∆(0)]q(s) ds, c2 = −
T∫

0

∆(s)
∆(0)

q(s) ds.

Substituting c1 and c2 in (2.10) and taking into account (2.5), we get

u(t) =

T∫

0

g(t, s)q(s) ds for 0 ≤ t ≤ T.

Consequently g is the Green’s function of problem (2.7). On the other
hand, the obtained representation of a solution of problem (2.1), (2.2) im-
plies estimates (2.8), where ϕi (i = 1, 2) are the functions given by equalities
(2.9). ¤

Lemma 2.2. If inequality (2.6) holds, then the functions ϕ1 and ϕ2,
given by equalities (2.9), are continuous on [0, T ]. Moreover, ϕ1 has at
most two zeros, and ϕ2 is positive in [0, T ].

Proof. According to equalities (2.4) and (2.5) the function g : [0, T ] ×
[0, T ] → R is continuous, that guarantees continuity of function ϕ1. On the
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other hand

g(1,0)(t, s) =





1− ∆(s)
∆(0)

for 0 ≤ s < t ≤ T,

−∆(s)
∆(0)

for 0 ≤ t < s ≤ T.
(2.12)

Therefore

ϕ2(t) =
1
2
(ϕ21(t) + ϕ22(t) + |ϕ22(t)− ϕ21(t)|) for 0 ≤ t ≤ T,

where

ϕ21(t)=max
{∣∣∣1−∆(s)

∆(0)

∣∣∣ : 0≤s≤ t

}
, ϕ22(t)=max

{∣∣∣∆(s)
∆(0)

∣∣∣ : t≤s≤T

}
.

Consequently, in view of continuity if the function ∆, the functions ϕ21, ϕ22

and ϕ2 are continuous. Besides,

ϕ2(t)≥ 1
2
(ϕ21(t)+ϕ22(t))≥ 1

2

(∣∣∣1−∆(t)
∆(0)

∣∣∣+
∣∣∣ ∆(t)
∆(0)

∣∣∣
)
≥ 1

2
for 0≤ t≤T.

To complete the proof it remains to show that the function ϕ1 has at
most two zeros in [0, T ]. Assume the contrary that ϕ1 has at least three
zeros t1, t2 and t3, where 0 ≤ t1 < t2 < t3 ≤ T . Let s0 ∈ (t1, t2) be
arbitrarily fixed and set

v(t) = g(t, s0) for 0 ≤ t ≤ T.

Then, in view of the equalities ϕ1(ti) = 0 (i = 1, 2, 3), we have v(ti) = 0 (i =
1, 2, 3). Hence, in view of equality (2.12), it follows that v′(t) = 1−∆(s0)

∆(0) = 0
for t2 ≤ t ≤ t3. Consequently,

v′(t) =

{
−1 for t1 ≤ t < s0,

0 for s0 < t ≤ t2.

But this is impossible since v(t1) = v(t2) = 0. The obtained contradiction
proves the lemma. ¤

If

γ1(t) =

{
0 for t = 0
1 for 0 < t ≤ T

, γ2(t) = γ(t) for 0 ≤ t ≤ T, (2.13)

where γ : [0, T ] → R is a function of bounded variation, then boundary
condition (2.2) receives the form

u(0) = 0,

T∫

0

u(s) dγ(s) = 0. (2.14)
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Lemma 2.3. If

γ(0) = 0, γ(t) ≤ γ(T ) a.e. on [0, T ],

T∫

0

γ(s) ds < Tγ(T ), (2.15)

then problem (2.1), (2.14) is uniquely solvable and the Green’s function of
the problem

u′′ = 0; u(0) = 0,

T∫

0

u(s) dγ(s) = 0

admits the estimates

max
{|g(t, s)| : 0 ≤ s ≤ T

} ≤ t,

sup
{
|g(1,0)(t, s)| : 0 ≤ s ≤ T, s 6= t

}
≤ 1 for 0 ≤ t ≤ T. (2.16)

Proof. According to conditions (2.13) and (2.15) from inequalities (2.4) and
(2.5) we find

∆(0) = Tγ(T )−
T∫

0

γ(s) ds > 0, (2.17)

0 ≤ ∆(t) = (T − t)γ(T )−
T∫

t

γ(s) ds ≤ ∆(0) for 0 ≤ t ≤ T, (2.18)

g(t, s) = −∆(s)
∆(0)

t + χ(t, s)(t− s) for 0 ≤ t, s,≤ T. (2.19)

By Lemma 2.1, inequality (2.17) guarantees unique solvability of problem
(2.1), (2.14). On the other hand, by virtue of inequalities (2.17) and (2.18),
estimates (2.16) follow from representation (2.19). ¤

In conclusion of this subsection consider equation (2.1) with the Dirichlet
boundary conditions

u(0) = 0, u(T ) = 0. (2.20)

Lemma 2.4. Problem (2.1), (2.20) is uniquely solvable and the Green’s
function of the problem

u′′ = 0; u(0) = 0, u(T ) = 0

admits the estimates

max
{|g(t, s)| : 0 ≤ s ≤ T

} ≤ t
(
1− t

T

)
,

sup
{∣∣g(1,0)(t, s)

∣∣ : 0 ≤ s ≤ T, s 6= t
}
≤ 1 for 0 ≤ t ≤ T,

(2.21)
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T∫

0

∣∣g(i−1,0)(t, s)
∣∣ ds ≤ T

2

[
t
(
1− t

T

)]2−i

for 0 ≤ t ≤ T (i = 1, 2). (2.22)

Proof. Boundary condition (2.20) follow from conditions (2.2) in the case
where

γ1(t) =

{
0 for t = 0
1 for 0 < t ≤ T

, γ2(t) =

{
0 for 0 ≤ t < T

1 for t = T
. (2.23)

Therefore equalities (2.4) and (2.5) imply

∆(t) = T − t for 0 ≤ t ≤ T, ∆(0) = T > 0

and

g(t, s) =





s
( t

T
− 1

)
for 0 ≤ s ≤ t ≤ T

t
( s

T
− 1

)
for 0 ≤ t < s ≤ T

. (2.24)

By Lemma 2.1 problem (2.1), (2.2) is uniquely solvable. On the other
hand, estimates (2.21) and (2.22) immediately follow from representation
(2.24).

2.2. Lemma on estimates of functions satisfying conditions (1.21).

Lemma 2.5. Let u ∈ C̃1,1(Ω) be a function satisfying boundary condi-
tions (1.21). Then

|u(i−1,k−1)(x, y)| ≤

≤‖u(2,2)‖L

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

for (x, y)∈Ω (i, k=1, 2). (2.25)

Moreover, if

ρ = ess sup{|u(2,2)(x, y)| : (x, y) ∈ Ω} < +∞, (2.26)

then

|u(i−1,k−1)(x, y)| ≤

≤ ab

4

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

ρ for (x, y) ∈ Ω (i, k = 1, 2). (2.27)

Proof. By Lemma 2.6 from [2], the function u satisfies inequality (2.25) and
admits the representation

u(x, y) =

b∫

0

a∫

0

g2(y, t)g1(x, s)u(2,2)(s, t) ds dt for (x, y) ∈ Ω, (2.28)

where g1 : [0, a]× [0, a] → R and g2 : [0, b]× [0, b] → R, respectively, are the
Green’s functions of the boundary value problems

v′′ = 0; v(0) = 0, v(a) = 0 (2.29)
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and
w′′ = 0; w(0) = 0, w(b) = 0. (2.30)

On the other hand, according to Lemma 2.4, the functions g1 and g2 admit
the estimates

∣∣g(i−1,0)
1 (x, s)

∣∣≤
[
x
(
1− x

a

)]2−i

for 0≤x, s≤a, x 6=s (i=1, 2), (2.31)

∣∣g(0,k−1)
2 (y, t)

∣∣≤
[
y
(
1− y

b

)]2−k

for 0≤y, t≤b, y 6= t (k=1, 2), (2.32)

and
a∫

0

∣∣g(i−1,0)
1 (x, s)

∣∣ ds ≤ a

2

[
x
(
1− x

a

)]2−i

for 0 ≤ x ≤ a (i = 1, 2), (2.33)

b∫

0

∣∣g(0,k−1)
2 (y, t)

∣∣ dt ≤ b

2

[
y
(
1− y

b

)]2−k

for 0 ≤ y ≤ b (k = 1, 2). (2.34)

In view of estimates (2.31) and (2.32), estimates (2.25) follow from (2.28).
Now assume that the function u satisfies condition (2.26). Then repre-

sentation (2.28) yields

∣∣u(i−1,k−1)(x, y)
∣∣ ≤

( a∫

0

|g(i−1,0)
1 (x, s)| ds

)( b∫

0

|g(0,k−1)
2 (y, t)| dt

)
ρ

for (x, y) ∈ Ω (i, k = 1, 2),

whence, by inequalities (2.33) and (2.34), estimates (2.27) follow. ¤

2.3. Lemmas on conditional well-posedness of problem (1.1),
(1.2). Let there exist continuous functions ψ1i : [0, a] → [0,∞), ψ2i :
[0, b] → [0, +∞) (i = 1, 2) such that

ψ1i(x) > 0 a.e. on [0, a], ψ2i(y) > 0 a.e. on [0, b], (2.35)

and arbitrary functions v ∈ C̃1([0, a]) and w ∈ C̃1([0, b]), satisfying the
boundary conditions

a∫

0

v(x) dαi(x) = 0,

b∫

0

w(y) dβi(y) = 0 (i = 1, 2) (2.36)

admit the estimates

|v(i−1)(x)| ≤ ψ1i(x)‖v′′‖L for 0 ≤ x ≤ a (i = 1, 2),

|w(i−1)(y)| ≤ ψ2i(y)‖w′′‖L for 0 ≤ y ≤ b (i = 1, 2).
(2.37)

Then Theorems 1.4, 1.5 and 1.10 from [2] imply the following lemmas.



66 Tariel Kiguradze

Lemma 2.6. If
b∫

0

a∫

0

ψ1i(x)ψ2k(y)|hik(x, y)| dx dy < +∞ (i, k = 1, 2), (2.38)

then problem (1.1), (1.2) is conditionally well-posed if and only if the homo-
geneous problem (1.10), (1.2) has only the trivial solution.

Lemma 2.7. If

2∑

i=1

2∑

k=1

b∫

0

a∫

0

ψ1i(x)ψ2k(y)|hik(x, y)| dx dy < 1, (2.39)

then problem (1.1), (1.2) is conditionally well-posed. Moreover, if along with
(2.39) condition (1.12) holds, then problem (1.1), (1.2) is well-posed.

Lemma 2.8. If conditions (1.13) and (2.39) hold, then problem (1.1),
(1.2) is conditionally well-posed but not well-posed.

3. Proofs of the Main Results

Proof of Theorem 1.1. Set

ψ1i(x)=ϕ1i(x) for 0≤x≤a, ψ2i(y)=ϕ2i(y) for 0≤y≤b (i=1, 2).

Then by conditions (1.4), (1.10) and Lemma 2.2, the functions ψ1i and ψ2i

(i = 1, 2) are continuous and satisfy conditions (2.35) and (2.38). On
the other hand, according to Lemma 2.1, functions v ∈ C̃1([0, a]) and
w ∈ C̃1([0, b]) satisfying boundary conditions (2.36) admit estimates (2.37).
Therefore Theorem 1.1 immediately follows from Lemma 2.6. ¤

Theorem 1.2 follows from Lemmas 2.1, 2.2 and 2.7, while Theorem 1.3
follows from Lemmas 2.1, 2.2 and 2.8.

Proof of Corollary 1.1. Boundary conditions (1.21) follow from the condi-
tions (1.2), where

α1(x) =

{
0 for x = 0
1 for 0 < x ≤ a

, α2(x) =

{
0 for 0 ≤ x < a

1 for x = a
,

β1(y) =

{
0 for y = 0
1 for 0 < y ≤ b

, β2(y) =

{
0 for 0 ≤ y < b

1 for y = b
.

In this case, by Lemmas 2.1 and 2.4, the functions g1 and g2, given by equal-
ities (1.6) and (1.7), are Green’s functions of problems (2.29) and (2.30),
respectively, and the functions ϕik (i, k = 1, 2), given by equalities (1.8) and
(1.9), admit the estimates

ϕ1i(x) ≤
[
x
(
1− x

a

)]2−i

for 0 ≤ x ≤ a (i = 1, 2),
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ϕ2i(y) ≤
[
y
(
1− y

b

)]2−k

for 0 ≤ y ≤ b (k = 1, 2).

According to those estimates, inequalities (1.10) follow from inequalities
(1.14). Now applying Theorem 1.1, the validity of Corollary 1.1 becomes
evident. ¤
Proof of Corollary 1.2. In view of Corollary 1.1, in order to prove Corollary
1.2 it is sufficient to show that problem (1.10), (1.21) has only the trivial
solution provided that inequality (1.15) (inequality (1.16)) holds.

Let u be an arbitrary solution of problem (1.10), (1.2). Then, in view of
Lemma 2.5, estimates (2.25) are valid. Therefore from (1.10) we deduce

‖u(2,2)‖L ≤
( 2∑

i=1

2∑

k=1

b∫

0

a∫

0

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

×

× |hik(x, y)| dx dy

)
‖u(2,2)‖L. (3.1)

If inequality (1.15) holds, then (3.1) and (2.25) imply that ‖u(2,2)‖L = 0
and u(x, y) ≡ 0.

To complete the proof it remains to consider the case, where inequality
(1.16) holds. In that case according to estimates (2.25) we have

ρ = ess sup{|u(2,2)(x, y)| : (x, y) ∈ Ω} ≤ l‖u(2,2)‖L < +∞, (3.2)

where

l = ess sup
{ 2∑

i=1

2∑

k=1

[
x
(
1− x

a

)]2−i[
y
(
1− y

b

)]2−k

×

× |hik(x, y)| : (x, y) ∈ Ω
}

<
4
ab

. (3.3)

But, by Lemma 2.5, condition (3.2) guarantees the validity of estimates
(2.27). Taking in account those estimates from (1.10) we obtain

ρ ≤ ab

4
l ρ. (3.4)

In view of inequality (3.3), (3.4) and (2.27) imply that ρ = 0 and
u(x, y) ≡ 0. ¤

Corollary 1.3 follows from Theorem 1.3 and Lemmas 2.1 and 2.4.
Corollaries 1.4 and 1.5 can be proved in the same manner as Corollar-

ies 1.1 and 1.2. The only difference between the proofs is that instead of
Lemma 2.4 one should use Lemma 2.3.

Corollary 1.6 follows from Theorem 1.3 and Lemmas 2.1 and 2.3.
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îâäæñéâ. éâëîâ îæàæï ûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï èë-
çŽèñîŽá æêðâàîâĲŽáæ çëâòæùæâêðâĲæå áŽáàâêæèæŽ îýâãŽáëĲæï ŽýŽèæ ïŽç-
éŽîæïæ ìæîëĲâĲæ. êŽøãâêâĲæŽ Žàîâåãâ, îëé éæôâĲñèæ öâáâàæáŽê àŽéëéáæ-
êŽîâëĲï ßŽîðéŽê{ãæêðêâîæï åâëîâéæï àŽîçãâñèæ àŽêäëàŽáâĲŽ.
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1. Introduction

In the present paper we consider the second-order linear differential equa-
tion

u′′ = −p(t)u + g(t)u′, (1.1)

where p, g : R+ → R are locally integrable functions such that

+∞∫

0

exp
( s∫

0

g(ξ) dξ

)
ds = +∞. (1.2)

As usual, in the Carathéodory case, a function u : R+ → R is said to be
a solution to equation (1.1) if it is absolutely continuous together with the
first derivative on every compact interval contained in R+ and satisfies

u′′(t) = −p(t)u(t) + g(t)u′(t) for a. e. t ≥ 0.

Equation (1.1) is said to be oscillatory if every solution of this equation has
a sequence of zeros tending to infinity.

In [7], the following oscillation criterion is proved for the equation

u′′ = −p(t)u. (1.3)

Theorem 1.1 ([7]). Let the condition

lim sup
t→+∞

1
tα

t∫

0

(t− s)αp(s) ds = +∞ (1.4)

hold for some α > 1. Then equation (1.3) is oscillatory.

It is also mentioned therein that the well-known Wintner criterion (see
[10])

lim
t→+∞

1
t

t∫

0

( s∫

0

p(ξ) dξ

)
ds = +∞ (1.5)

follows from this result, because equality (1.5) guarantees the validity of
relation (1.4) with α = 2. Theorem 1.1 has been then generalized for
the second-order equations, e. g., in [8, 9] (see also references therein). For
higher-order equations, the integral oscillation criteria have been proved in
[2–4].

The aim of the present paper is to establish a new oscillation criterion,
which is applicable to the case where the ”Kamenev-type” upper limit (1.4)
is finite. The main result (namely, Theorem 2.1) and some further remarks
are given in Section 2, and the proofs are given in Section 3. Moreover,
a certain generalization of the Hartman–Wintner theorem (namely, Corol-
lary 2.1) is derived in Section 2.
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2. Main Results

Let

σ(g)(t) := exp
( t∫

0

g(s) ds

)
, f(t) :=

t∫

0

σ(g)(s) ds for t ≥ 0. (2.1)

For any α > 1, β > 0, and λ < 1, we put

k(t; α, β, λ) :=
1

fαβ(t)

t∫

0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds for t > 0 (2.2)

and

c(t; λ) :=
1− λ

f1−λ(t)

t∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds for t > 0. (2.3)

We are now in a position to formulate our main result.

Theorem 2.1. Let α > 1, β > 0, λ < 1, condition (1.2) hold, and either

lim sup
t→+∞

k(t; α, β, λ) = +∞ (2.4)

or

−∞ < lim sup
t→+∞

k(t; α, β, λ) < +∞, (2.5)

the function c(· ; λ) does not possess a finite limit as t → +∞. (2.6)

Then equation (1.1) is oscillatory.

Observe that condition (2.4) with β = 1, λ = 0, and g ≡ 0 reduces to
the Kamenev condition (1.4). Therefore, Theorem 2.1 can be regarded as
an extension of Theorem 1.1 to the case where condition (1.4) is violated.

It is well-known that oscillatory properties of equation (1.1) can be also
described in terms of lower and upper limits of the function c. We mention,
in particular, the following Hartman–Wintner theorem (see A. Wintner [10]
and P. Hartman [5,6] for λ = 0 and g ≡ 0).

Theorem 2.2 (Hartman–Wintner). Let λ < 1, condition (1.2) hold, and
either

lim
t→+∞

c(t; λ) = +∞,

or
−∞ < lim inf

t→+∞
c(t; λ) < lim sup

t→+∞
c(t;λ)

be satisfied. Then equation (1.1) is oscillatory.

It is clear that for the given λ < 1, the following two cases remain un-
covered in the previous theorem:

there exists a finite limit lim
t→+∞

c(t; λ) (2.7)
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and
lim inf
t→+∞

c(t; λ) = −∞. (2.8)

The case, where (2.7) holds, is already studied in literature (see, e. g., [1]
and references therein), but the authors know that there is still a broad field
for further investigation if (2.8) is satisfied. Corollary 2.1 below gives a new
oscillation criterion which is applicable also to the case where (2.8) holds.

For any λ < 1, we put

h(t;λ) :=
2(1− λ)

f2(1−λ)(t)

t∫

0

σ(g)(s)f1−2λ(s)c(s;λ) ds for t > 0.

Theorem 2.1 yields

Corollary 2.1. Let λ < 1, condition (1.2) hold, and either

lim sup
t→+∞

h(t; λ) = +∞
or

−∞ < lim sup
t→+∞

h(t; λ) < +∞,

the function c(· ; λ) does not possess a finite limit as t → +∞.

Then equation (1.1) is oscillatory.

This statement can be regarded as a generalization of Theorem 2.2. In-
deed, it is not difficult to verify that if there exists a (finite or infinite) limit
limt→+∞ c(t; λ), then there exists also a limit limt→+∞ h(t; λ) and both
limits coincide. Moreover, if

lim inf
t→+∞

c(t; λ) > −∞ (2.9)

then
lim inf
t→+∞

h(t; λ) > −∞.

Therefore, if the assumptions of Theorem 2.2 are satisfied then the assump-
tions of Corollary 2.1 hold, as well. Note also that the assumptions of
Theorem 2.2 require necessarily the validity of inequality (2.9). The follow-
ing example shows that in some cases can be applied Corollary 2.1, while
condition (2.9) is violated (i. e., (2.8) holds).

Example 2.1. Let g ≡ 0 and p(t) = (2− t2) cos(t)− 4t sin(t) for t ≥ 0.
Then

c(t; 0) = t cos(t), h(t; 0) = 2 sin(t) +
4
t

cos(t)− 4
t2

sin(t) for t ≥ 0,

and thus

lim inf
t→+∞

c(t; 0) = −∞, lim sup
t→+∞

c(t; 0) = +∞,

lim inf
t→+∞

h(t; 0) = −2, lim sup
t→+∞

h(t; 0) = 2.
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Consequently, Theorem 2.2 with λ = 0 cannot be applied in this case.
However, Corollary 2.1 yields that equation (1.1) is oscillatory.

3. Proofs

In order to prove Theorem 2.1, we need the following two lemmas.

Lemma 3.1. Let α > 1, β > 0, λ < 1, condition (1.2) hold, and u be
a solution to equation (1.1) satisfying the relation

u(t) 6= 0 for t ≥ t0 (3.1)

with t0 > 0. Then
lim sup
t→+∞

k(t; α, β, λ) < +∞. (3.2)

If, in addition, the inequality

lim sup
t→+∞

k(t; α, β, λ) > −∞ (3.3)

is satisfied, then
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds < +∞, (3.4)

where

%(t) :=
u′(t)

u(t)σ(g)(t)
for t ≥ t0. (3.5)

Proof. In view of (1.1), relation (3.5) yields that

%′(t) = − p(t)
σ(g)(t)

− σ(g)(t)%2(t) for a. e. t ≥ t0, (3.6)

whence we get

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)%′(s) ds =

= −
t∫

t0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds−

−
t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds for t ≥ t0.

Integration by parts on the left-hand side of the latter equality results in

− (
fβ(t)− fβ(t0)

)α
fλ(t0)%(t0)+

+ αβ

t∫

t0

(
fβ(t)− fβ(s)

)α−1
fβ−1(s)fλ(s)σ(g)(s)%(s) ds−
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− λ

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f1−λ(s)

%(s) ds =

= −
t∫

t0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds−

−
t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds for t ≥ t0. (3.7)

We now point out that

−1
2

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds+

+ λ

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f1−λ(s)

%(s) ds =

= −1
2

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds+

+
λ2

2

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f2−λ(s)

ds for t ≥ t0

and

− 1
2

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds−

− αβ

t∫

t0

(
fβ(t)− fβ(s)

)α−1
fβ−1(s)fλ(s)σ(g)(s)%(s) ds =

= −1
2

t∫

t0

fλ(s)
(
fβ(t)− fβ(s)

)α−2×

× σ(g)(s)
[(

fβ(t)− fβ(s)
)
%(t) + αβfβ−1(s)

]2
ds+

+
α2β2

2

t∫

t0

fλ(s)
(
fβ(t)− fβ(s)

)α−2
f2(β−1)(s)σ(g)(s) ds for t ≥ t0.
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Therefore relation (3.7) yields

k(t; α, β, λ) ≤− 1
2

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds+

+
λ2

2

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

ds+

+
α2β2

2fαβ(t)

t∫

t0

(
fβ(t)−fβ(s)

)α−2
f2(β−1)+λ(s)σ(g)(s) ds+

+

t0∫

0

(
1−

[
f(s)
f(t)

]β
)α

fλ(s)p(s)
σ(g)(s)

ds+

+

(
1−

[
f(t0)
f(t)

]β
)α

fλ(t0)%(t0) for t ≥ t0. (3.8)

Since assumption (1.2) and notation (2.1) guarantee that

lim
t→+∞

f(t) = +∞, (3.9)

it is easy to get

lim
t→+∞

t0∫

0

(
1−

[
f(s)
f(t)

]β
)α

fλ(s)p(s)
σ(g)(s)

ds =

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds (3.10)

and

lim
t→+∞

(
1−

[
f(t0)
f(t)

]β
)α

fλ(t0)%(t0) = fλ(t0)%(t0). (3.11)

On the other hand, we have

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

ds ≤

≤
t∫

t0

σ(g)(s)
f2−λ(s)

ds ≤ 1
(1− λ)f1−λ(t0)

for t ≥ t0 (3.12)

and

1
fαβ(t)

t∫

t0

(
fβ(t)− fβ(s)

)α−2
f2(β−1)+λ(s)σ(g)(s) ds ≤
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≤ 1
fβ(α−1)(t)f1−λ(t0)

t∫

t0

fβ−1(s)
(
fβ(t)− fβ(s)

)α−2
σ(g)(s) ds =

=
1

β(α− 1)f1−λ(t0)

(
1−

[
f(t0)
f(t)

]β
)α−1

≤

≤ 1
β(α− 1)f1−λ(t0)

for t ≥ t0. (3.13)

Consequently, in view of (3.10)–(3.13), relation (3.8) implies that

lim sup
t→+∞

k(t;α, β, λ) ≤ 1
2

(
λ2

1− λ
+

α2β

α− 1

)
1

f1−λ(t0)
+

+

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds + fλ(t0)%(t0),

and thus inequality (3.2) is satisfied.
Assume now that, in addition, relation (3.3) holds. We will show that

inequality (3.4) is satisfied. It is obvious that either

+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

]2 ds = +∞, (3.14)

or
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

]2 ds < +∞. (3.15)

Suppose that (3.14) holds. For any τ ≥ a we have

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds ≥

≥
τ∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds for t ≥ τ

and thus

lim inf
t→+∞

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds ≥

≥
τ∫

a

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds for τ ≥ t0.
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The last relation, by virtue of equality (3.14), guarantees that

lim
t→+∞

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds = +∞.

Therefore inequality (3.8), together with (3.10)–(3.13), yields

lim sup
t→+∞

k(t; λ) = −∞,

which contradicts assumption (3.3). The obtained contradiction proves that

inequality (3.15) holds. Since the function
√

σ(g)(·)
f2−λ(·) is quadratically inte-

grable on [t0, +∞[, relation (3.4) is fulfilled, as well. ¤

The next lemma belongs to P. Hartman in the case where λ = 0 and
g ≡ 0 (see, e. g., [5, 6]).

Lemma 3.2. Let λ < 1, condition (1.2) hold, and u be a solution to
equation (1.1) satisfying relation (3.1) with t0 > 0. Moreover, let condition
(3.4) be fulfilled, where the function % is defined by formula (3.5). Then
there exists a finite limit

lim
t→+∞

c(t;λ). (3.16)

Proof. In view of (1.1), from relation (3.5) we easily obtain equality (3.6).
Multiplying both sides of (3.6) by the expression fλ(t) and integrating it
by parts from t0 to t, we arrive at

fλ(t)%(t)− fλ(t0)%(t0)− λ

t∫

t0

σ(g)(s)
f1−λ(s)

%(s) ds =

= −
t∫

t0

fλ(s)p(s)
σ(g)(s)

ds−
t∫

t0

fλ(s)σ(g)(s)%2(s) ds for t ≥ t0,

whence we get

1
f1−λ(t)

[
f(t)%(t)− λ

2

]
= %1 − λ(2− λ)

4(1− λ)
1

f1−λ(t)
−

t∫

0

fλ(s)p(s)
σ(g)(s)

ds+

+

+∞∫

t

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds for t ≥ t0, (3.17)



On Oscillation of Second-Order ODEs 79

where

%1 := fλ(t0)%(t0) +
λ2

4(1− λ)f1−λ(t0)
+

+

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds−
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds.

We now multiply both sides of equality (3.17) by the expression
f−λ(t)σ(g)(t), integrate them by parts from t0 to t and thus we get

t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds = −

t∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds+

+

t∫

t0

σ(g)(s)
fλ(s)

( +∞∫

s

σ(g)(ξ)
f2−λ(ξ)

[
f(ξ)%(ξ)− λ

2

]2

dξ

)
ds+

+
%1

1− λ
f1−λ(t)− λ(2− λ)

4(1− λ)
ln

f(t)
f(t0)

+ %3 for t ≥ t0, (3.18)

where

%3 :=

t0∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds− %1

1− λ
f1−λ(t0).

Since assumption (1.2) and notation (1.3) guarantee that relation (3.9)
holds, by using the l’Hospital rule, it is easy to get

lim
t→+∞

1
f1−λ(t)

ln
f(t)
f(t0)

ds = 0 (3.19)

and

lim
t→+∞

1
f1−λ(t)

t∫

t0

σ(g)(s)
fλ(s)

( +∞∫

s

σ(g)(ξ)
f2−λ(ξ)

[
f(ξ)%(ξ)− λ

2

]2

dξ

)
ds=0. (3.20)

On the other hand, by using the Hölder inequality, we obtain
( t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds

)2

≤

≤
t∫

t0

σ(g)(s)
fλ(s)

ds

t∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds ≤

≤ f1−λ(t)
1− λ

t∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds for t ≥ t0
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and thus, by virtue of relations (3.4) and (3.9), we have

lim
t→+∞

1
f1−λ(t)

t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds = 0. (3.21)

Consequently, in view of relations (3.9) and (3.19)–(3.21), it follows from
equality (3.18) that

lim
t→+∞

c(t; λ) = %1.

¤

Proof of Theorem 2.1. Assume, to the contrary, that there exists a solution
u to equation (1.1) fulfilling relation (3.1) with t0 > 0.

Then, according to Lemma 3.1, assumption (2.4) of Theorem 2.1 cannot
be satisfied and thus assumptions (2.5) and (2.6) hold. By using Lemma 3.1,
we obtain the validity of inequality (3.4) in which the function % is defined
by formula (3.5). However, Lemma 3.2 then guarantees that there exists
a finite limit (3.16) which contradicts assumption (2.6). ¤

Proof of Corollary 2.1. By direct calculation we can check that

k(t; 2, 1− λ, λ) =
1

f2(1−λ)(t)

t∫

0

(
f1−λ(t)− f1−λ(s)

)2 fλ(s)p(s)
σ(g)(s)

ds =

=
2(1− λ)

f2(1−λ)(t)

t∫

0

(
f1−λ(t)− f1−λ(s)

) σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds =

=
2(1− λ)2

f2(1−λ)(t)

t∫

0

σ(g)(s)
fλ(s)

[ s∫

0

σ(g)(ξ)
fλ(ξ)

( ξ∫

0

fλ(η)p(η)
σ(g)(η)

dη

)
dξ

]
ds = h(t; λ)

for t ≥ 0 and thus the validity of the corollary follows immediately from
Theorem 2.1 with α = 2 and β = 1− λ. ¤
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Abstract. We investigate an asymptotic behaviour of homoclinic solu-
tions of the singular differential equation (p(t)u′)′ = p(t)f(u). Here f is
Lipschitz continuous on R and has at least two zeros 0 and L > 0. The
function p is continuous on [0,∞), has a positive continuous derivative on
(0,∞) and p(0) = 0.
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îâäæñéâ. àŽéëçãèâñèæŽ (p(t)u′)′ = p(t)f(u) ïæêàñèŽîñèæ áæòâîâê-
ùæŽèñîæ àŽêðëèâĲæï ßëéëçèæêæçñîæ ŽéëêŽýïêâĲæï Žïæéìðëðñîæ åãæïâĲâĲæ.
Žó f : R → R èæìöæùñîŽá ñûõãâðæ, ýëèë p : [0,∞) → [0,∞) ñûõãâðæ áŽ
(0,∞) öñŽèâáöæ ûŽîéëâĲŽáæ òñêóùæŽŽ. ŽéŽïåŽê f(0) = f(L) = 0, ïŽáŽù
L > 0, p(0) = 0 áŽ p′(t) > 0, îëùŽ t > 0.
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1. Introduction

We investigate the differential equation

(p(t)u′)′ = p(t)f(u), t ∈ (0,∞), (1)

and throughout the paper it will be assumed that f satisfies

f ∈ Liploc(R), ∃L ∈ (0,∞) : f(L) = 0, (2)

∃L0 ∈ [−∞, 0) : xf(x) < 0, x ∈ (L0, 0) ∪ (0, L), (3)

∃B̄∈(L0, 0) : F (B̄)=F (L), where F (x)=−
x∫

0

f(z) dz, x∈R, (4)

and p fulfils
p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (5)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (6)

Due to p(0) = 0, equation (1) has a singularity at t = 0.

Definition 1. A function u ∈ C1[0,∞)∩C2(0,∞) which satisfies equa-
tion (1) for all t ∈ (0,∞) is called a solution of equation (1).

Consider a solution u of equation (1). Since u ∈ C1[0,∞), we have
u(0), u′(0) ∈ R, and the assumption p(0) = 0 yields p(0)u′(0) = 0. We
can find that M > 0 and δ > 0 such that |f(u(t))| ≤ M for t ∈ (0, δ).
Integrating equation (1) and using the fact that p is increasing, we get

|u′(t)| =
∣∣∣∣∣∣

1
p(t)

t∫

0

p(s)f(u(s)) ds

∣∣∣∣∣∣
≤ M

p(t)

t∫

0

p(s) ds ≤ Mt, t ∈ (0, δ).

Consequently, the condition u′(0) = 0 is necessary for each solution u of
equation (1). Therefore the set of all solutions of equation (1) forms a
one-parameter system of functions u satisfying u(0) = A, A ∈ R.

Definition 2. Let u be a solution of equation (1) and let L be of (2)
and (3). Denote usup = sup{u(t) : t ∈ [0,∞)}. If usup = L (usup < L or
usup > L), then u is called a homoclinic solution (a damped solution or an
escape solution).

The existence and properties of these three types of solutions have been
investigated in [19]–[23]. In particular, we have proved that if u(0) ∈ (0, L),
than u is a damped solution ([22], Theorem 2.3). Clearly, for u(0) = 0 and
u(0) = L, equation (1) has a unique solution u ≡ 0 and u ≡ L, respectively.

In this paper we focus our attention on homoclinic solutions. Accord-
ing to the above considerations, such solutions have to satisfy the initial
conditions

u(0) = B, u′(0) = 0, B < 0. (7)
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Note that if we extend the function p(t) in equation (1) from the half–line
onto R (as an even function), then a homoclinic solution of (1) has the same
limit L as t → −∞ and t →∞. This is a motivation for Definition 2.

We have proved in [21], Lemma 3.5, that a solution u of equation (1)
is homoclinic if and only if u is strictly increasing and lim

t→∞
u(t) = L. If

such homoclinic solution exists, then many important physical properties of
corresponding models (see below) can be obtained. In particular, equation
(1) is a generalization of the equation

u′′ +
k − 1

t
u′ = f(u), t ∈ (0,∞), (8)

and we can find in [16] that equation (8) with k > 1 and special forms of f
arise in many areas, for example, in the study of phase transitions of Van
der Waals fluids [3], [10], [24], in the population genetics, where it serves as a
model for the spatial distribution of the genetic composition of a population
[8], [9], in the homogeneous nucleation theory [1], in relativistic cosmology
for description of particles which can be treated as domains in the universe
[18], in the nonlinear field theory, in particular, when describing bubbles
generated by scalar fields of the Higgs type in the Minkowski spaces [7].
Numerical simulations of solutions of (8), where f is a polynomial with
three zeros, have been presented in [6], [14], [17]. Close problems on the
existence of positive solutions are investigated in [2], [4], [5].

The main result of the present paper is contained in Section 3, Theorem
12, where we deduce an asymptotic formula for homoclinic solutions of
equation (1). Note that many important results dealing with asymptotic
properties of various types of differential equations can be found in the
monograph by I. Kiguradze and T. Chanturia [12].

2. The Existence of Homoclinic Solutions

Here we cite theorems on the existence of homoclinic solutions. Remind
that assumptions (2)–(6) are common for all these theorems. For a given
B < 0, we denote the solution of problem (1), (7) by uB .

Theorem 3. Assume that problem (1), (7) has an escape solution and
let B̄ be of (4). Then there exists B∗ < B̄ such that uB∗ is a homoclinic
solution of problem (1), (7) with B = B∗.

Proof. Theorem 2.3 in [22] shows that for any B ∈ [B̄, 0) there exists a
unique solution uB of problem (1), (7) and uB is damped. Thus, if we denote
by Md a set of all B < 0 such that uB is a damped solution of problem
(1), (7), then we obtain Md 6= ∅. Moreover, Md is open in (−∞, 0), due
to Theorem 14 in [19]. Further, denote by Me a set of all B < 0 such that
uB is an escape solution of problem (1), (7). By our assumption, we have
Me 6= ∅ and, by Theorem 20 in [19], the set Me is open in (−∞, 0), as
well. Therefore, the set Mh = (−∞, 0) \ (Md ∪Me) is non-empty. Let
us choose B∗ ∈ Mh. Then B∗ < B̄, and by virtue of Definition 2, the
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supremum of the solution uB∗ on (0,∞) cannot be less than L and cannot
be greater than L. Consequently, this supremum is equal to L, and uB∗ is
a homoclinic solution of problem (1), (7) with B = B∗. ¤

Theorem 4. Assume that L0 of (3) satisfies

L0 ∈ (−∞, 0), f(L0) = 0. (9)

Then there exists B∗ ∈ (L0, B̄) such that uB∗ is a homoclinic solution of
problem (1), (7) with B = B∗.

Proof. Define

f̃(x) =
{

f(x) for x ≤ L,
0 for x > L,

and consider the auxiliary equation

(p(t)u′)′ = p(t)f̃(u), t ∈ (0,∞). (10)

By Theorem 10 and Lemma 9 in [20], there exists B ∈ (L0, B̄) such that
uB is an escape solution of problem (10), (7). If we modify the proof of
Theorem 3 working on (L0, 0) instead of on (−∞, 0), we get a homoclinic
solution uB∗ of problem (10), (7) having its starting value B∗ in (L0, B̄).
Since uB∗ is increasing on (0,∞) (see e.g., Lemma 3.5 in [21]), we have

B∗ ≤ uB∗(t) < L, t ∈ [0,∞), (11)

and uB∗ is likewise a solution of equation (1). ¤

Theorem 4 assumes that f has the negative finite zero L0. The following
two theorems concern the case that L0 = −∞ and f is positive on (−∞, 0).
Then a behavior of f near −∞ plays an important role. Equations with f
having sublinear or linear behavior near −∞ are discussed in the following
theorem.

Theorem 5. Assume that f(x) > 0 for x ∈ (−∞, 0) and

0 ≤ lim sup
x→−∞

f(x)
|x| < ∞. (12)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. In the linear case, that is if we assume

0 < lim sup
x→−∞

f(x)
|x| < ∞,

the assertion follows from Theorem 5.1 in [21]. Consider the sublinear case
in which we work with the condition

lim sup
x→−∞

f(x)
|x| = 0.
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Assumption f > 0 on (−∞, 0) provides us with

lim
x→−∞

f(x)
|x| = 0,

and Theorem 19 in [19] guarantees the existence of B < B̄ such that uB is
an escape solution of problem (10), (7). Theorem 3 and estimate (11) yield
B∗ < B̄ such that uB∗ is a homoclinic solution of problem (1), (7) with
B = B∗. ¤

Theorem 6. Assume that f(x) > 0 for x ∈ (−∞, 0) and there exists
k ≥ 2 such that

lim
t→0+

p′(t)
tk−2

∈ (0,∞). (13)

Further, let r ∈ (1, k+2
k−2 ) be such that f fulfils

lim
x→−∞

f(x)
|x|r ∈ (0,∞). (14)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. Theorem 2.10 in [23] guarantees the existence of B < B̄ such that
uB is an escape solution of problem (10), (7) . Theorem 3 and estimate
(11) yield B∗ < B̄ such that uB∗ is a homoclinic solution of problem (1),
(7) with B = B∗. ¤

Theorem 6 discusses a superlinear behavior of f near −∞. Note that if
k = 2, we can take arbitrary r ∈ (0,∞). The last existence theorem imposes
an additional assumption on p only.

Theorem 7. Assume that p satisfies
1∫

0

ds

p(s)
< ∞. (15)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. Using Theorem 18 in [19] instead of Theorem 2.10 in [23], we argue
just as in the proof of Theorem 6. ¤

In the next section, the use will be made of the generalized Matell’s the-
orem which can be found as Theorem 6.5 in the monograph by I. Kiguradze
[11]. For our purpose we provide its following special case.

Consider an interval J ⊂ R. We write AC(J) for the set of functions,
absolutely continuous on J , and ACloc(J) for the set of functions belonging
to AC(I) for each compact interval I ⊂ J . Choose T > 0 and a function



Asymptotic Properties of Homoclinic Solutions . . . 89

matrix A(t) = (ai,j(t))i,j≤2 which is defined on (T,∞). Denote by λ(t) and
µ(t) the eigenvalues of A(t), t ∈ (T,∞). Further, suppose that

λ = lim
t→∞

λ(t) and µ = lim
t→∞

µ(t)

are different eigenvalues of the matrix A = lim
t→∞

A(t) and let l and m be
eigenvectors of A corresponding to λ and µ, respectively.

Theorem 8 ([11]). Assume that

ai,j ∈ ACloc(T,∞),

∣∣∣∣∣∣

∞∫

T

a′i,j(t) dt

∣∣∣∣∣∣
< ∞, i, j = 1, 2, (16)

and there exists c0 > 0 such that
t∫

s

Re(λ(τ)− µ(τ)) dτ ≤ c0, T ≤ s < t, (17)

or
∞∫

T

Re(λ(τ)− µ(τ)) dτ = ∞,

t∫

s

Re(λ(τ)− µ(τ)) dτ ≥ −c0, T ≤ s < t.

(18)

Then the differential system

x′(t) = A(t)x(t) (19)

has a fundamental system of solutions x(t), y(t) such that

lim
t→∞

x(t)e−
∫ t

T
λ(τ) dτ = l, lim

t→∞
y(t)e−

∫ t
T

µ(τ) dτ = m. (20)

3. Asymptotic Behavior of Homoclinic Solutions

In this section we assume that B < B̄ is such that the corresponding
solution u of the initial problem (1), (7) is homoclinic. Hence u fulfils

u(0) = B, u′(0) = 0, u′(t) > 0, t ∈ (0,∞), lim
t→∞

u(t) = L. (21)

Moreover, due to (1),

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (22)

and, by multiplication and integration over [0, t],

u′2(t)
2

+

t∫

0

p′(s)
p(s)

u′2(s) ds = F (u(0))− F (u(t)), t > 0. (23)
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Therefore

0 ≤ lim
t→∞

t∫

0

p′(s)
p(s)

u′2(s) ds ≤ F (B)− F (L) < ∞,

and hence there exists

lim
t→∞

t∫

0

p′(s)
p(s)

u′2(s) ds.

Consequently, according to (23), lim
t→∞

u′2(t) exists, as well. Since u is

bounded on [0,∞), we get

lim
t→∞

u′2(t) = lim
t→∞

u′(t) = 0. (24)

In order to derive an asymptotic formula for u we have to characterize a
behavior of p in ∞ and that of f near L more precisely. In particular, we
put

h(x) :=
f(x)
x− L

, x < L,

and work with the following assumptions:

∃c, η > 0 : h ∈ C1[L− η, L], lim
x→L−

h(x) = h(L) = c, (25)

p′ ∈ ACloc(0,∞), ∃n ≥ 2 : lim
t→∞

p′(t)
tn−2

∈ (0,∞). (26)

For the sake of simplicity we transform L to the origin by the substitution

z(t) = L− u(t), t ∈ [0,∞), (27)

and put
g(y) = −f(L− y), y > 0. (28)

Then the function z given by (27) is a solution of the equation

(p(t)z′)′ = p(t)g(z), t ∈ (0,∞), (29)

satisfies

z(0) = L + |B|, z′(0) = 0, z′(t) < 0, t ∈ (0,∞), (30)

lim
t→∞

z(t) = 0, lim
t→∞

z′(t) = 0. (31)

Lemma 9. Assume the above condition (25) holds and let z be given by
(27). Then there exists T > 0 such that

|z′(t)| >
√

c

2
z(t), t ≥ T. (32)
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Proof. According to (29), the function z fulfils the following equation:

z′′(t) = −p′(t)
p(t)

z′(t) + g(z(t)), t ∈ (0,∞). (33)

Define the Lyapunov function V by

V (t) =
z′2(t)

2
+ G(z(t)), (34)

where

G(x) = −
x∫

0

g(s) ds.

Owing to (3), (4) and B < B̄, the function G fulfils

G(L + |B|) = −
L+|B|∫

0

g(s) ds =

L∫

B

f(s) ds = F (B)− F (L) > 0.

Thus V (0) = G(L + |B|) > 0. Further, using (33), we have

V ′(t) = z′(t)z′′(t)− g(z(t))z′(t) = −p′(t)
p(t)

z′2(t) < 0, t > 0.

Hence V is decreasing on (0,∞) and, by (31), (34), we get lim
t→∞

V (t) = 0.

Consequently, V (t) > 0 for t ∈ [0,∞) which implies that

z′2(t)
2

> −G(z(t)), t > 0. (35)

Let y = L− x. Then, using (25) and (28), we deduce

− lim
y→0+

G(y)
y2

= lim
y→0+

g(y)
2y

=
1
2

lim
x→L−

f(x)
x− L

=
c

2
.

Hence by virtue of (31), there exists T > 0 such that

−G(z(t))
z2(t)

>
c

4
, t ≥ T.

This, together with (35), results in

z′2(t)
2

>
c

4
z2(t), t ≥ T.

Consequently, we get (32). ¤

Lemma 10. Assume that the condition (25) holds and let z and g be
given by (27) and (28), respectively. Then

∞∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ < ∞. (36)
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Proof. Let us put

h̃(y) =
g(y)
y

, y > 0. (37)

By (25) and (28), we have

h(L− y) = h̃(y), y > 0, h̃ ∈ C1[0, η], lim
y→0+

h̃(y) = h̃(0) = c, (38)

and there exists M0 ∈ (0,∞) such that
∣∣∣∣∣
dh̃(y)

dy

∣∣∣∣∣ ≤ M0, y ∈ [0, η].

The Mean Value Theorem guarantees the existence of θ ∈ (0, 1) such that

h̃(y) = c + y
dh̃(θy)

dy
, y ∈ (0, η].

By (31), there exists T ≥ 1 such that 0 < z(t) ≤ η for t ≥ T and hence,
according to (37),

∣∣∣∣
g(z(t))
z(t)

− c

∣∣∣∣ ≤ M0z(t), t ≥ T. (39)

Using (2), (28) and z > 0 on [1, T ], we can find M1 ∈ (0,∞) such that

T∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ ≤ M1,

and, without loss of generality, we may assume that T is chosen in such a
way that (32) is valid, as well. Therefore, using (32) and (39), we get

t∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ ≤ M1 + M0

t∫

T

z(τ) dτ <

< M1 +

√
2
c
M0

t∫

T

|z′(τ)| dτ = M1 −
√

2
c
M0

t∫

T

z′(τ) dτ =

= M1 +
√

2cM0(z(T )− z(t)), t ≥ T.

Letting t →∞ and using (31), we obtain (36). ¤

Lemma 11. Assume that the condition (26) holds. Then
∞∫

1

(
p′(τ)
p(τ)

)2

dτ < ∞. (40)
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Proof. The condition (26) implies that there exists c0 ∈ (0,∞) such that

lim
t→∞

p′(t)
tn−2

= c0, lim
t→∞

p(t)
tn−1

=
c0

n− 1
.

Therefore

lim
t→∞

t2
(

p′(t)
p(t)

)2

= (n− 1)2.

Hence we can find T ≥ 1 such that
(

p′(t)
p(t)

)2

<
n2

t2
, t ≥ T, (41)

and due to (5) and (6), we can find M3 ∈ (0,∞) such that
T∫

1

(
p′(τ)
p(τ)

)2

dτ ≤ M3.

Consequently,
t∫

1

(
p′(τ)
p(τ)

)2

dτ < M3 + n2

t∫

T

dτ

τ2
= n2

(
1
T
− 1

t

)
, t ≥ T.

Letting t →∞, we get (40). ¤

The main result on the asymptotic behavior of homoclinic solutions is
contained in the following theorem.

Theorem 12. Assume that (25) and (26) hold. Let B < B̄ be such that
the corresponding solution u of the initial problem (1), (7) is homoclinic.
Then u fulfils the equation

lim
t→∞

(L− u(t))e
√

ct
√

p(t) ∈ (0,∞). (42)

Remark 13. A similar asymptotic formula for positive solutions of equa-
tion (8), where k > 1 and f(x) = x− |x|rsign x, r > 1, has been derived in
[13], Theorem 6.1.

Proof. Step 1. Construction of an auxiliary linear differential system. Con-
sider the function z given by (27). According to (29), z satisfies

z′′ +
p′(t)
p(t)

z′ =
g(z(t))
z(t)

z(t), t ∈ (0,∞). (43)

Having z at hand, we introduce the linear differential equation

v′′ +
p′(t)
p(t)

v′ =
g(z(t))
z(t)

v, (44)

and the corresponding linear differential system

x′1 = x2, x′2 =
g(z(t))
z(t)

x1 − p′(t)
p(t)

x2. (45)
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Denote

A(t) = (ai,j(t))i,j≤2 =

(
0 1

g(z(t))
z(t) −p′(t)

p(t)

)
, A =

(
0 1
c 0

)
.

By (6), (31), (37) and (38),

A = lim
t→∞

A(t).

Eigenvalues of A are the numbers λ =
√

c and µ = −√c, eigenvectors of A
are l = (1,

√
c) and m = (1,−√c), respectively. Denote

D(t) =
(

p′(t)
2p(t)

)2

+
g(z(t))
z(t)

, t ∈ (0,∞). (46)

Then eigenvalues of A(t) have the form

λ(t) = − p′(t)
2p(t)

+
√

D(t), µ(t) = − p′(t)
2p(t)

−
√

D(t), t ∈ (0,∞). (47)

We can see that
lim

t→∞
λ(t) = λ, lim

t→∞
µ(t) = µ.

Step 2. Verification of the Assumptions of Theorem 8. Due to (31) and
(38), we can find T ≥ 1 such that

0 < z(t) ≤ η, D(t) > 0, t ∈ (T,∞). (48)

Therefore, by (37) and (38),

a21(t) =
g(z(t))
z(t)

∈ ACloc(T,∞),

and hence∣∣∣∣∣∣

∞∫

T

(
g(z(t))
z(t)

)′
dt

∣∣∣∣∣∣
=

∣∣∣∣ lim
t→∞

g(z(t))
z(t)

− g(z(T ))
z(T )

∣∣∣∣ =
∣∣∣∣c−

g(z(T ))
z(T )

∣∣∣∣ < ∞.

Further, by (26), a22(t) = −p′(t)
p(t) ∈ ACloc(T,∞). Hence due to (6),

∣∣∣∣∣∣

∞∫

T

(
p′(t)
p(t)

)′
dt

∣∣∣∣∣∣
=

∣∣∣∣ lim
t→∞

p′(t)
p(t)

− p′(T )
p(T )

∣∣∣∣ =
p′(T )
p(T )

< ∞.

Since a11(t) ≡ 0 and a12(t) ≡ 1, it is not difficult to see that (16) is satisfied.
Using (47), we get Re(λ(t) − µ(t)) = 2

√
D(t) > 0 for t ∈ (T,∞). Since

lim
t→∞

√
D(t) =

√
c > 0, we have

∞∫

T

Re(λ(τ)− µ(τ)) dτ = ∞,

t∫

s

Re(λ(τ)− µ(τ)) dτ > 0, T ≤ s < t.

Consequently, (18) is valid.
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Step 3. Application of Theorem 8. By Theorem 8, there exists a funda-
mental system x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)) of solutions of (45)
such that (20) is valid. Hence

lim
t→∞

x1(t)e−
∫ t

T
λ(τ) dτ = 1, lim

t→∞
y1(t)e−

∫ t
T

µ(τ) dτ = 1. (49)

Using (47), for t ≥ T we get

exp
(
−

t∫

T

λ(τ) dτ

)
= exp

( t∫

T

(
p′(τ)
2p(τ)

−
√

D(τ)
)

dτ

)
=

= exp
(

1
2

ln
p(t)
p(T )

)
exp

(
−

t∫

T

√
D(τ) dτ

)
=

=

√
p(t)
p(T )

exp
(
−

t∫

T

√
D(τ) dτ

)
,

and

exp
(
−

t∫

T

µ(τ) dτ

)
= exp

( t∫

T

(
p′(τ)
2p(τ)

+
√

D(τ)
)

dτ

)
=

= exp
(

1
2

ln
p(t)
p(T )

)
exp

( t∫

T

√
D(τ) dτ

)
=

=

√
p(t)
p(T )

exp
( t∫

T

√
D(τ) dτ

)
.

Further,
t∫

T

√
D(τ) dτ = E0(t) +

√
c(t− T ),

where

E0(t) =

t∫

T

D(τ)− c√
D(τ) +

√
c

dτ, t ≥ T. (50)

Hence

exp
(
−

t∫

T

λ(τ) dτ

)
=

√
p(t)
p(T )

e−E0(t)e−
√

c(t−T ), t ≥ T, (51)

exp
(
−

t∫

T

µ(τ) dτ

)
=

√
p(t)
p(T )

eE0(t)e
√

c(t−T ), t ≥ T. (52)
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Using (36), (40) and (46), we can find K0 ∈ (0,∞) such that for t ≥ T ,

t∫

T

∣∣∣∣∣
D(τ)− c√
D(τ) +

√
c

∣∣∣∣∣ dτ ≤

≤ 1√
c




t∫

T

(
p′(τ)
2p(τ)

)2

dτ +

t∫

T

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ


 ≤ K0.

Consequently, due to (50),

lim
t→∞

E0(t) = E0 ∈ R.

Therefore (49), (51) and (52) imply

1 = lim
t→∞

x1(t)

√
p(t)
p(T )

e−E0e−
√

c(t−T ),

1 = lim
t→∞

y1(t)

√
p(t)
p(T )

eE0e
√

c(t−T ).

Since by (26),

lim
t→∞

√
p(t)e−

√
ct = lim

t→∞

√
p(t)
tn−1

t(n−1)/2e−
√

ct = 0,

lim
t→∞

√
p(t)e

√
ct = ∞,

we obtain

lim
t→∞

x1(t) = ∞, lim
t→∞

y1(t) = 0. (53)

Step 4. Asymptotic Formula. According to (43), z is likewise a solution
of (44). Therefore there are c1, c2 ∈ R such that z(t) = c1x1(t) + c2y1(t),
t ∈ (0,∞). Having in mind (30), (31), (49) and (53), we get c1 = 0,
c2y1(t) > 0 on (0,∞), and c2 ∈ (0,∞). Consequently, z(t) = c2y1(t) and

1 = lim
t→∞

1
c2

z(t)

√
p(t)
p(T )

eE0e
√

c(t−T ),

which together with (27) yields (42). ¤
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Abstract. We present the existence principle which can be used for
a large class of nonlocal fractional boundary value problems of the form
(cDαx)(t) = f(t, x(t), x′(t), (cDµx)(t)), Λ(x) = 0, Φ(x) = 0, where cD is
the Caputo fractional derivative. Here, α ∈ (1, 2), µ ∈ (0, 1), f is a Lq-
Carathéodory function, q > 1

α−1 , and Λ, Φ : C1[0, T ] → R are continuous
and bounded ones. The proofs are based on the Leray–Schauder degree
theory. Applications of our existence principle are given.

2010 Mathematics Subject Classification. 26A33, 34B16.
Key words and phrases. Fractional differential equation, Caputo frac-

tional derivative, nonlocal boundary condition, existence principle, Leray–
Schauder degree.

îâäæñéâ. öâéëåŽãŽäâĲñèæŽ ŽéëýïêŽáëĲæï ìîæêùæìæ ûæèŽáñî ïŽïŽäôãîë
ŽéëùŽêŽåŽ òŽîåë çèŽïæïŽåãæï, îëéâèåŽù Žóãå öâéáâàæ ïŽýâ (cDαx)(t) =
f(t, x(t), x′(t), (cDµx)(t)), Λ(x) = 0, Φ(x) = 0, ïŽáŽù cD Žîæï çŽìñðëï
ûæèŽáñîæ ûŽîéëâĲñèæ, α ∈ (1, 2), µ ∈ (0, 1), f Žîæï Lq-çŽîŽåâëáëîæï
òñêóùæŽ, q > 1

α−1 , ýëèë Λ, Φ : C1[0, T ] → R ñûõãâðæ, öâéëïŽäôãîñèæ òñê-
óùæëêŽèâĲæŽ. éëõãŽêæèæŽ, Žàîâåãâ, Žôêæöêñèæ ìîæêùæìæï àŽéëõâêâĲâĲæ. áŽé-
ðçæùâĲâĲæ âòñúêâĲŽ èâîâ{öŽñáâîæï åâëîæŽï ŽïŽýãŽåŽ ýŽîæïýâĲæï öâïŽýâĲ.
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1. Introduction

Let T > 0 and R+ = [0,∞). As usual, Lq (q ≥ 1) is the set of functions
whose qth powers of modulus are integrable on [0, T ] equipped with the

norm ‖x‖q =
(∫ T

0
|x(t)|q dt

) 1
q

. C[0, T ] is equipped with the norm ‖x‖ =
max{|x(t)| : t ∈ [0, T ]}.
Let A be a set of functionals Λ : C1[0, T ] → R, which are

(a) continuous,
(b) bounded, that is, Λ(Ω) is bounded for any bounded Ω ⊂ C1[0, T ].

We say that Λ,Φ ∈ A satisfy the compatibility condition if for each ν ∈ [0, 1]
there exists a solution of the problem

x′′ = 0, Λ(x)− νΛ(−x) = 0, Φ(x)− νΦ(−x) = 0.

This is true if and only if the system

Φ(a + bt)− νΦ(−a− bt) = 0,

Ψ(a + bt)− νΨ(−a− bt) = 0
(1.1)

has a solution (a, b) ∈ R2 for each ν ∈ [0, 1].
We say that the functionals Φ, Ψ ∈ A satisfy the admissible compatibility

condition if ΦandΨ satisfy the compatibility condition and there exists a
positive constant L = L(Φ, Ψ) such that |a| ≤ L and |b| ≤ L for each
ν ∈ [0, 1] and each solution (a, b) ∈ R2 of system (1.1).

Remark 1.1. If the functionals Φ, Ψ : C1[0, T ] → R are linear and con-
tinuous, then Φ,Ψ ∈ A and satisfy the compatibility condition. Indeed,
system (1.1) is of the form

aΦ(1) + bΦ(t) = 0,

aΨ(1) + bΨ(t) = 0

for each ν ∈ [0, 1], and we see that it is always solvable in R2. The set
of all its solutions (a, b) is bounded (that is, Φ,Ψ satisfy the admissible
compatibility condition) if and only if Φ(1)Ψ(t)− Φ(t)Ψ(1) 6= 0.

We investigate the fractional boundary value problem

(cDαx)(t) = f(t, x(t), x′(t), (cDµx)(t)), (1.2)

Φ(x) = 0, Ψ(x) = 0, (1.3)

where α ∈ (1, 2), µ ∈ (0, 1), f is an Lq-Carathéodory function on [0, T ]×R3,
q > 1

α−1 , and where Φ, Ψ ∈ A satisfy the admissible compatibility condition.
We say that a function x ∈ C1[0, T ] is a solution of problem (1.2), (1.3) if

cDαx ∈ Lq[0, T ], x satisfies the boundary conditions (1.3), and (1.2) holds
for a.e. t ∈ [0, T ].

Note that if x is a solution of problem (1.2), (1.3), then cDµx ∈ C[0, T ]
(see Lemma 2.5).
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The Caputo fractional derivative cDγv of order γ > 0, γ 6∈ N, of a function
v : [0, T ] → R is defined by the formula [10, 15, 18]

(cDγv)(t) =
1

Γ(n− γ)
dn

dtn

t∫

0

(t− s)n−γ−1

(
v(s)−

n−1∑

k=0

v(k)(0)
k!

sk

)
ds,

where n = [γ] + 1 and [γ] denotes the integral part of γ, and Γ is the Euler
gamma function.

We recall that a function f : [0, T ] × R3 → R is an Lq-Carathéodory
function on [0, T ]× R3 if

(i) for each (x, y, z) ∈ R3, the function f(·, x, y, z) : [0, T ] → R is measur-
able,

(ii) for a.e. t ∈ [0, T ], the function f(t, ·, ·, ·) : R3 → R is continuous,
(iii) for each compact set U ⊂ R3, there exists wU ∈ Lq[0, T ] such that

|f(t, x, y, z)| ≤ wU (t) for a.e. t ∈ [0, T ] and all (x, y, z) ∈ U .

Differential equations of fractional order have recently proved to be valu-
able tools in the modeling of many phenomena in various fields of science and
engineering. We can find numerous applications in porous media, electro-
magnetic, fluid mechanics, viskoelasticity, edge detection, and so on. (For
examples and details, see [7, 8, 10, 13, 14, 15, 18, 23, 27] and references
therein). There has been a significant development in the study of frac-
tional differential equations in recent years. The authors discuss regular
(see, e.g., [4, 6, 11, 12, 17]) and singular (see, e.g., [2, 5, 19, 26, 28]) frac-
tional boundary value problems. These problems are usually investigated
with the two-point boundary conditions, multipoint boundary conditions
and also with nonlocal boundary conditions (see, e.g., [3, 6]). Paper [3]
deals with the integral boundary conditions

ax(0) + bx′(0) =

1∫

0

q1(x(s)) ds, ax(1) + bx′(1) =

1∫

0

q2(x(s)) ds,

while that of [6] with the conditions

x(0) = Θ(x), x(T ) = xT ,

where Θ : C[0, T ] → R is a continuous functional and xT ∈ R. The ex-
istence results are proved by: the Banach, Schauder, Krasnosel’skii and
Leggett-Williams fixed point theorems, fixed point theorems on cones, a
mixed monotone method, the Leray–Schauder nonlinear alternative, the
lower and upper solution method and by fixed point index theory.

The aim of the present paper is to give the existence principle for solving
the problem (1.2), (1.3) and to show its applications. We note that unlike the
paper dealing with fractional differential equations for 1 < α < 2 (with the
exception of [2, 16]), the nonlinearity f in (1.2) depends on the derivative
of x. Due to this fact, we have to assume that f is an Lq-Carathéodory
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function with q > 1
α−1 . The existence principle is proved by the Leray–

Schauder degree theory (see, e.g., [9]). Note that our existence principle
is closely related to that given in [24] for n-order differential equations, in
[1, 20, 21, 22] for second-order differential equations and in [25] for second-
order differential systems.

From now on, we assume that

(P ) µ ∈ (0, 1), α ∈ (1, 2), q >
1

α− 1
and p =

q

q − 1
.

Then 1
p + 1

q = 1 and (α− 2)p + 1 > 0.
The paper is organized as follows. Section 2 contains technical lemmas

that are used in the subsequent sections. Section 3 presents the existence
principle for solving the problem (1.2), (1.3). It is shown that the solvability
of this problem is reduced to the existence of a fixed point of an integral
operator. The existence of its fixed point is proved by the Leray–Schauder
degree theory. In Section 4, we apply the existence principle for two sets of
admissible boundary conditions. Examples demonstrate our results.

2. Preliminaries

In this section we state technical lemmas and results which are used in
the subsequent sections. Lemmas 2.1, 2.2 and 2.4–2.6 are proved in [2].
Note that condition (P ) holds in this and in the next sections.

Lemma 2.1. Suppose γ ∈ Lq[0, T ]. Then

(a)

t∫

0

(t− s)α−2γ(s) ds is continuous on [0, T ],

(b)
d
dt

t∫

0

(t− s)α−1γ(s) ds = (α− 1)

t∫

0

(t− s)α−2γ(s) ds for t ∈ [0, T ].

Lemma 2.2. Let {ρn} ⊂ Lq[0, T ] be Lq-convergent and let limn→∞ ρn =
ρ. Then

lim
n→∞

t∫

0

(t− s)α−2ρn(s) ds =

t∫

0

(t− s)α−2ρ(s) ds uniformly on [0, T ].

Corollary 2.3. Suppose the assumptions of Lemma 2.2 are satisfied. Let
{λn} ⊂ [0, 1] be convergent and limn→∞ λn = λ. Then

lim
n→∞

λn

t∫

0

(t− s)α−2ρn(s) ds = λ

t∫

0

(t− s)α−2ρ(s) ds uniformly on [0, T ].

Proof. The result follows from Lemma 2.2, where ρn is replaced by λnρn

(note that limn→∞ λnρn = λρ in Lq[0, T ]). ¤
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Lemma 2.4. Let γ ∈ Lq[0, T ]. Then solutions of the fractional differen-
tial equation

cDαx(t) = γ(t) (2.1)
belong to the class C1[0, T ], and

x(t) =
1

Γ(α)

t∫

0

(t− s)α−1γ(s) + x(0) + x′(0)t

are all solutions of (2.1).

Lemma 2.5. Let x ∈ C1[0, T ]. Then

cDµx(t) =
1

Γ(1− µ)

t∫

0

(t− s)−µx′(s) ds for t ∈ [0, T ]

and cDµx ∈ C[0, T ].

Lemma 2.6. Suppose that η ∈ Lq[0, T ] and 0 ≤ t1 < t2 ≤ T . Then
∣∣∣∣∣∣

t2∫

0

(t2 − s)α−2η(s) ds−
t1∫

0

(t1 − s)α−2η(s) ds

∣∣∣∣∣∣
≤

≤
(

td1 + (t2 − t1)d − td2
d

) 1
p

‖η‖q +
(

(t2 − t1)d

d

) 1
p

‖η‖q,

where d = (α− 2)p + 1.

3. An Existence Principle

Suppose

f is a Lq-Carathéodory function on [0, T ]× R3. (3.1)

If x ∈ C1[0, T ], then cDµx ∈ C[0, T ] by Lemma 2.5. Therefore the function
f(t, x(t), x′(t), (cDµx)(t)) belongs to the set Lq[0, T ]. Hence by Lemma 2.4,
x ∈ C1[0, T ] is a solution of (1.2) if and only if

x(t) =
1

Γ(α)

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds + a + bt, (3.2)

t ∈ [0, T ],

where a, b ∈ R. Let Φ,Ψ ∈ A. Define an operator S : C1[0, T ] → C1[0, T ]
by the formula

(Sx)(t) =
1

Γ(α)

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds+

+ x(0)− Φ(x) + (x′(0)−Ψ(x))t.
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It is easy to check that if x is a fixed point of the operator S, then equality
(3.2) is fulfilled with a = x(0) − Φ(x), b = x′(0) − Ψ(x), and Φ(x) = 0,
Ψ(x) = 0. Consequently, any fixed point x of S is a solution of problem
(1.2), (1.3).

The following result is the existence principle for solving the problem
(1.2), (1.3).

Theorem 3.1. Let Φ,Ψ ∈ A satisfy the admissible compatibility condi-
tion. Suppose that (3.1) holds and there exists a positive constant S such
that

‖x‖ < S, ‖x′‖ < S

for each λ ∈ [0, 1] and each solution x of the problem

(cDαx)(t) = λf(t, x(t), x′(t), (cDµx)(t)),

Φ(x) = 0, Ψ(x) = 0.

}
(3.3)

Then problem (1.2), (1.3) has a solution.

Proof. We first note that since Φ, Ψ ∈ A satisfy the admissible compatibility
condition, system (1.1) has a solution for each ν ∈ [0, 1] and there is a
positive constant K such that |a| ≤ K and |b| ≤ K for each ν ∈ [0, 1] and
each solution (a, b) ∈ R2 of (1.1). Set

Ω = {x ∈ C1[0, T ] : ‖x‖ < S + (1 + T )K, ‖x′‖ < S + K}.
Then Ω is an open, bounded and symmetric with respect to 0 ∈ C1[0, T ]
subset of the Banach space C1[0, T ]. We know that any fixed point of S is
a solution of problem (1.2), (1.3). If

D(I − S,Ω, 0) 6= 0, (3.4)

where ”D” stands for the Leray–Schauder degree and I is the identical
operator on C1[0, T ], then S has a fixed point by the Leray–Schauder degree
method. Hence to prove our theorem we need to show that (3.4) holds. To
this end, define an operator K : [0, 1]× Ω → C1[0, T ] by the formula

K(λ, x)(t) =
λ

Γ(α)

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds+

+ x(0)− Φ(x) + (x′(0)−Ψ(x))t.

Then K(1, ·) = S. We prove that K is a compact operator. We start with the
proof that K is continuous. Let {λn} ⊂ [0, 1] and {xn} ⊂ Ω be convergent
and let limn→∞ λn = λ, limn→∞ xn = x. Let us put

γn(t) = f(t, xn(t), x′n(t), (cDµxn)(t)), γ(t) = f(t, x(t), x′(t), (cDµx)(t)),

zn(t) =
λn

Γ(α)

t∫

0

(t− s)α−1γn(s) ds, z(t) =
λ

Γ(α)

t∫

0

(t− s)α−1γ(s) ds.
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We conclude from Lemma 2.5 that limn→∞ cDµxn =cDµx in C[0, T ] and

‖cDµxn‖ ≤ ‖x′n‖
Γ(1− µ)

max
{ t∫

0

(t− s)−µ ds : t ∈ [0, T ]
}
≤

≤ (S + K)T 1−µ

Γ(2− µ)
(3.5)

for n ∈ N. Hence

lim
n→∞

γn(t) = γ(t) for a.e. t ∈ [0, T ], (3.6)

and since f fulfils (3.1), {xn} is bounded in C1[0, T ] and {cDµxn} is bounded
in C[0, T ], there exists w ∈ Lq[0, T ] such that

|γn(t)| ≤ w(t) for a.e. t ∈ [0, T ] and all n ∈ N. (3.7)

Therefore, limn→∞ ‖γn − γ‖q = 0 by the dominated convergence theorem
in Lq[0, T ]. Consequently, by Corollary 2.3 and Lemma 2.1(b),

lim
n→∞

z′n(t) = lim
n→∞

λn

Γ(α− 1)

t∫

0

(t− s)α−2γn(s) ds =

=
λ

Γ(α− 1)

t∫

0

(t− s)α−2γ(s) ds =

= z′(t) uniformly on [0, T ].

As a result, limn→∞ zn = z in C1[0, T ] since zn(0) = z(0) = 0. The conti-
nuity of K follows now from the equalities K(λn, xn)(t) = zn(t) + xn(0) −
Φ(xn) + (x′n(0)−Ψ(xn))t, K(λ, x)(t) = z(t) + x(0)−Φ(x) + (x′(0)−Ψ(x))t
and from

lim
n→∞

(xn(0)− Φ(xn)) = x(0)− Φ(x), lim
n→∞

(xn(0)−Ψ(xn)) = x(0)−Ψ(x).

We now prove that the set K([0, 1] × Ω) is relatively compact in C1[0, T ].
Since the set {x(0)− Φ(x) + (x′(0)−Ψ(x))t : x ∈ Ω} is relatively compact
in R, which immediately follows from the properties of Φ and Ψ, it suffices
to show that the set

B =

{
λ

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds : λ ∈ [0, 1], x ∈ Ω

}

is relatively compact in C1[0, T ]. Since cDµx ∈ C[0, T ] for x ∈ C1[0, T ] and
(cf. (3.5)) ‖cDµx‖ ≤ T 1−µ‖x′‖

Γ(2−µ) for x ∈ Ω, there exists ρ ∈ Lq[0, T ] such that

|f(t, x(t), x′(t), (cDµx)(t))| ≤ ρ(t) for a.e. t ∈ [0, T ] and all x ∈ Ω. (3.8)
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The boundedness of B in C1[0, T ] follows from the relations (for t ∈ [0, T ]
and x ∈ Ω)

∣∣∣∣∣∣

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds

∣∣∣∣∣∣
≤ Tα−1‖ρ‖1

and ∣∣∣∣∣∣
d
dt

t∫

0

(t− s)α−1f(s, x(s), x′(s), (cDµx)(s)) ds

∣∣∣∣∣∣
=

= (α− 1)

∣∣∣∣∣∣

t∫

0

(t− s)α−2f(s, x(s), x′(s), (cDµx)(s)) ds

∣∣∣∣∣∣
≤

≤ (α− 1)

t∫

0

(t− s)α−2ρ(s) ds ≤

≤ (α− 1)




t∫

0

(t− s)(α−2)p ds




1
p




t∫

0

ρq(s) ds




1
q

≤

≤ (α− 1)
(

T (α−2)p+1

(α− 2)p + 1

) 1
p

‖ρ‖q,

where the Hölder inequality is used. Furthermore, for 0 ≤ t1 < t2 ≤ T and
x ∈ Ω, Lemma 2.6 (for η(t) = f(t, x(t), x′(t), (cDµx)(t))) gives

∣∣∣∣∣∣

t2∫

0

(t2 − s)α−2f(s, x(s), x′(s), (cDµx)(s)) ds −

−
t1∫

0

(t1 − s)α−2f(s, x(s), x′(s), (cDµx)(s)) ds

∣∣∣∣∣∣
≤

≤
(

td1 + (t2 − t1)d − td2
d

) 1
p

‖ρ‖q +
(

(t2 − t1)d

d

) 1
p

‖ρ‖q

since ‖η‖q ≤ ‖ρ‖q. Here d = (α − 2)p + 1. Hence the set {y′ : y ∈ B} is
equicontinuous on [0, T ], and thus B is relatively compact in C1[0, T ] by the
Arzelà-Ascoli theorem. To summarize, K is a compact operator.

Suppose now that K(λ∗, x∗) = x∗ for some λ∗ ∈ [0, T ] and some x∗ ∈ Ω.
Let γ∗(t) = f(t, x∗(t), x′∗(t), (

cDµx∗)(t)) for a.e. t ∈ [0, T ]. Then γ∗ ∈
Lq[0, T ] and the equality

x∗(t) =
λ∗

Γ(α)

t∫

0

(t−s)α−1γ∗(s) ds+x∗(0)−Φ(x∗)+(x′∗(0)−Ψ(x∗))t (3.9)
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holds for t ∈ [0, T ]. Hence Φ(x∗) = 0, Ψ(x∗) = 0 and, by Lemma 2.4,

(cDαx∗)(t) = λ∗γ∗(t) for a.e. t ∈ [0, T ].

Hence x∗ is a solution of problem (3.3) with λ = λ∗, and ‖x∗‖ < S, ‖x′∗‖ < S
by the assumptions. As a result, K(λ, x) 6= x for each λ ∈ [0, 1] and each
x ∈ ∂Ω. Therefore, by the homotopy property,

D(I − K(0, ·), Ω, 0) = D(I − K(1, ·),Ω, 0). (3.10)

We will now proceed to showing that

D(I − K(0, ·), Ω, 0) 6= 0. (3.11)

Let us define a compact operator L : [0, 1]× Ω → C1[0, T ] as

L(ν, x) = x(0) + Φ(x)− νΦ(−x) + (x′(0) + Ψ(x)− νΨ(−x))t.

Then L(1, ·) is odd (i.e., L(1,−x) = −L(1, x) for x ∈ Ω) and

L(0, ·) = K(0, ·). (3.12)

If L(ν1, x1) = x1 for some (ν1, x1) ∈ [0, 1]× Ω, then

x1(t) = x1(0) + Φ(x1)− ν1Φ(−x1) + (x′1(0) + Ψ(x1)− ν1Ψ(−x1))t, (3.13)

and therefore x1(t) = a + bt for t ∈ [0, T ], where a = x1(0) + Φ(x1) −
ν1Φ(−x1) and b = (x′1(0) + Ψ(x1) − ν1Ψ(−x1))t. Let t = 0 in x1(t) and
x′1(t), where x1 is given in (3.13), and have

Φ(x1)− ν1Φ(−x1) = 0, Ψ(x1)− ν1Ψ(−x1) = 0,

which is system (1.1) with ν = ν1. Hence due to the first part of the
proof, the inequalities |a| ≤ K and |b| ≤ K are fulfilled. Consequently,
‖x1‖ ≤ (1+T )K and ‖x′1‖ ≤ K, and thus x1 6∈ ∂Ω. Next, by the homotopy
property and the Borsuk antipodal theorem,

D(I − L(0, ·),Ω, 0) = D(I − L(1, ·), Ω, 0) and D(I − L(1, ·),Ω, 0) 6= 0.

The last relations together with (3.12) give that (3.11) holds. Finally, we
conclude that from (3.10) and (3.11) follows (3.4). ¤

4. Applications of the Existence Principle

4.1. Functionals satisfying the admissible complementary condi-
tion. We give two sets of nonlinear functionals Λ, Φ ∈ A satisfying the ad-
missible complementary condition. Such functionals in the nonlocal bound-
ary conditions (1.3) will be used in the next subsection for solving problem
(1.2), (1.3) by means of our existence principle.

For j = 0, 1, let Bj be the set of functionals Λ ∈ A for which there exists
a positive constant K = K(Λ) such that

x ∈ C1[0, T ], |x(j)| ≥ K on [0, T ] ⇒ Λ(x) sign(x(j)) > 0

Remark 4.1. The functionals from the set Bj have the following impor-
tant property: If Λ ∈ Bj and Λ(x) = 0 for some x ∈ C1[0, T ] and j ∈ {0, 1},
then there exists ξ ∈ [0, T ] such that |x(j)(ξ)| < K(Λ).
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Example 4.2. Let 0 ≤ a < b ≤ T , j ∈ {0, 1}, Θ : C1[0, T ] → R be
continuous and sup{|Θ(x)| : x ∈ C1[0, T ]} < ∞. Then the functionals

Λ1(x) = min{x(j)(t) : a ≤ t ≤ b}+ Θ(x),

Λ2(x) = max{x(j)(t) : a ≤ t ≤ b}+ Θ(x),

Λ3(x) =

b∫

a

max{x(j)(s) : a ≤ s ≤ t}dt + Θ(x)

belong to the set Bj . If 0 ≤ t1 < t2 < · · · < tn ≤ T , bi > 0, g, fi ∈ C(R) and
limu→±∞ g(u) = limu→±∞ fi(u) = ±∞, i = 1, 2, . . . , n, then the functionals

Λ4(x) =
n∑

i=1

big(x(j)(ti)) + Θ(x),

Λ5(x) =

b∫

a

(
n∑

i=1

bifi(x(j)(s))

)
ds + Θ(x),

Λ6(x) =

b∫

a




s∫

a

(
n∑

i=1

bifi(x(j)(ξ))

)
dξ


 ds + Θ(x)

also belong to Bj .

Lemma 4.3. Let Φ ∈ B0 and Ψ ∈ B1. Then Φ,Ψ satisfy the admissible
compatibility condition.

Proof. Since Φ ∈ B0 and Ψ ∈ B1, there exists a positive constant K such
that for each ν ∈ [0, 1] we have [Φ(a + bt)− νΦ(−a− bt)]sign(a + bt) > 0 if
|a+bt| ≥ K for t ∈ [0, T ] and [Ψ(a+bt)−νΨ(−a−bt)]sign(b) > 0 if |b| ≥ K.
Hence if (a0, b0) ∈ R2 is a solution of system (1.1) for some ν ∈ [0, 1], then
(see Remark 4.1) |b0| < K and |a0 + b0ξ| < K for some ξ ∈ [0, T ]. From the
inequality |a0| ≤ |a0 +b0ξ|+ |b0ξ| < (1+K)T we see that for each ν ∈ [0, 1],
any solution (a, b) ∈ R2 of (1.1) satisfies the estimate

|a| < (1 + K)T, |b| < K. (4.1)

Let M = {(a, b) ∈ R2 : |a| < (1+K)T, |b| < K} and F : [0, 1]×M → R2

be defined as

F(ν, a, b) = (Φ(a + bt)− νΦ(−a− bt), Ψ(a + bt)− νΨ(−a− bt)) .

Then F is a continuous operator and M is an open, bounded and symmetric
with respect to (0, 0) ∈ R2 subset of R2. We have also F(ν, a, b) 6= (0, 0)
for ν ∈ [0, 1] and (a, b) ∈ ∂M , and F(1, ·, ·) is an odd operator (that is,
F(1,−a,−b) = −F(1, a, b) for (a, b) ∈ M). Hence by the Borsuk antipodal
theorem and the homotopy property,

deg(F(1, ·, ·),M, 0) 6= 0,

deg(F(1, ·, ·), M, 0) = deg(F(ν, ·, ·),M, 0) for ν ∈ [0, 1],



110 Svatoslav Staněk

where ”deg” stands for the Brower degree. Consequently, the operator
equation F(ν, a, b) = (0, 0) has a solution for each ν ∈ [0, 1]. Hence for each
ν ∈ [0, 1] system (1.1) has a solution and any its solution (a, b) satisfies (4.1),
and therefore Φ, Ψ satisfy the admissible complementary condition. ¤

Remark 4.4. The special cases of the boundary conditions (1.3) are:
(a) the Dirichlet conditions x(0) = A, x(T ) = B (for Φ(x) = x(0) − A,

Ψ(x) =
∫ T

0
x′(s) ds + A−B),

(b) the mixed conditions x(0) = A, x′(T ) = B (for Φ(x) = x(0) − A,
Ψ(x) = x′(T ) − B) and x′(0) = A, x(T ) = B (for Φ(x) = x(T ) − B,
Ψ(x) = x′(0)−A),

(c) the antiperiodic conditions x(0) + x(T ) = 0, x′(0) + x′(T ) = 0 (for
Φ(x) = x(0) + x(T ), Ψ(x) = x′(0) + x′(T )),

(d) the initial conditions x(ξ) = A, x′(ξ) = B, where ξ ∈ [0, T ] (for
Φ(x) = x(ξ)−A, Ψ(x) = x′(ξ)−B),

(e) the multipoint conditions
n∑

j=0

ajx
2lj−1(tj) = A,

m∑
i=0

bi (x′(si))
2ki−1 =

B, where aj , bi ∈ (0,∞), lj , ki ∈ N (j = 0, . . . , n, i = 0, . . . ,m), 0 ≤
t0 < t1 < · · · < tn ≤ T , 0 ≤ s0 < s1 < · · · < sm ≤ T (for Φ(x) =
n∑

j=0

ajx
2lj−1(tj)−A, Ψ(x) =

m∑
i=0

bi(x′(si))2ki−1 −B).

Let C be the set of functionals Λ ∈ A such that sup{|Λ(x)| : x ∈
C1[0, T ]} < ∞.

Lemma 4.5. Let 0 ≤ ξ < η ≤ T , Λ1,Λ2 ∈ C and

Φ(x) = x(ξ) + Λ1(x), Ψ(x) = x(η) + Λ2(x) for x ∈ C1[0, T ].

Then Φ, Ψ satisfy the admissible compatibility condition.

Proof. Since Λ1, Λ2 ∈ C, there is a positive constant S such that |Λ1(x)| < S
and |Λ1(x)| < S for x ∈ C1[0, T ]. System (1.1) has the form

(1 + ν)(a + bξ) + Λ1(a + bt)− νΛ1(−a− bt) = 0,

(1 + ν)(a + bη) + Λ2(a + bt)− νΛ2(−a− bt) = 0.
(4.2)

Suppose that (a0, b0) ∈ R2 is a solution of (4.2) for some ν ∈ [0, 1]. Then

(1+ν)(η−ξ)b0 = Λ1(a0+b0t)−νΛ1(−a0−b0t)−Λ2(a0+b0t)+νΛ2(−a0−b0t),

and consequently, |b0| < 2S
η−ξ . Since

a0 = −b0ξ +
1

1 + ν
[νΛ1(−a0 − b0t)− Λ1(a0 + b0t)],

we have

|a0| < 2ST

η − ξ
+ S = S

(
1 +

2T

η − ξ

)
.
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As a result, for each ν ∈ [0, 1], any solution (a, b) ∈ R2 of (4.2) satisfies the
estimate

|a| < S

(
1 +

2T

η − ξ

)
, |b| < 2S

η − ξ
. (4.3)

Put M =
{
(a, b) ∈ R2 : |a| < S

(
1 + 2T

η−ξ

)
, |b| < 2S

η−ξ

}
. In order to prove

that Φ,Ψ satisfy the admissible compatibility condition we define a contin-
uous operator F : [0, 1]×M → R2 by

F(ν, a, b) =
(
(1 + ν)(a + bξ) + Λ1(a + bt)− νΛ1(−a− bt),

(1 + ν)(a + bη) + Λ2(a + bt)− νΛ2(−a− bt)
)
.

Then F(1, ·, ·) is an odd operator and F(ν, a, b) 6= (0, 0) for all ν ∈ [0, 1]
and (a, b) ∈ ∂M. By the Borsuk antipodal theorem and by the homotopy
property, we can prove just as in the proof of Lemma 4.3 that for each
ν ∈ [0, 1], the equation F(ν, a, b) = (0, 0) has a solution. Consequently,
system (4.2) has a solution for each ν ∈ [0, 1] and all its solutions (a, b)
satisfy (4.3). Hence Φ,Ψ satisfy the admissible compatibility condition. ¤

4.2. Existence results for nonlocal fractional BVPs. Bearing in mind
Section 4.1, we work with the boundary conditions

Φ(x) = 0, Ψ(x) = 0, Φ ∈ B0, Ψ ∈ B1, (4.4)

and

x(ξ) + Λ1(x) = 0, x(η) + Λ2(x) = 0, 0 ≤ ξ < η ≤ T, Λ1, Λ2 ∈ C. (4.5)

Lemmas 4.3 and 4.5 show that the functionals Φ,Ψ in (4.4) and the function-
als x(ξ) + Λ1(x), x(η) + Λ2(x) in (4.5) satisfy the admissible compatibility
condition. We discuss the solvability of problems (1.2), (4.4) and (1.2), (4.5)
by the existence principle (Theorem 3.1).

Theorem 4.6. Let (3.1) hold. Suppose that the estimate

|f(t, x, y, z)| ≤ ρ(t)p(|x|, |y|, |z|)
for a.e. t ∈ [0, T ] and all (x, y, z) ∈ R3 (4.6)

is fulfilled, where ρ ∈ Lq[0, T ] and p ∈ C(R3
+) are nonnegative, p is nonde-

creasing in all its arguments and

lim
u→∞

p(u, u, u)
u

= 0. (4.7)

Then problems (1.2), (4.4) and (1.2), (4.5) are solvable.

Proof. By Theorem 3.1, we have to prove that there exists a positive con-
stant S such that

‖x‖ < S, ‖x′‖ < S (4.8)
for each λ ∈ [0, 1] and each solution x of the problems

(cDαx)(t) = λf(t, x(t), x′(t), (cDµx)(t)), (4.4), (4.9)
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and
(cDαx)(t) = λf(t, x(t), x′(t), (cDµx)(t)), (4.5). (4.10)

We start with problem (4.9). Let x ∈ C1[0, T ] be a solution of (4.9). Since
Φ ∈ B0 and Ψ ∈ B1, there exists a positive constant K such that (cf.
Remark 4.1) |x(ξ0)| < K, |x′(ξ1)| < K for some ξ0, ξ1 ∈ [0, T ]. Furthermore,
by Lemma 2.5, cDµx ∈ C[0, T ] and

‖cDµx‖ ≤ ‖x′‖
Γ(1− µ)

∥∥∥∥∥

t∫

0

(t− s)−µ ds

∥∥∥∥∥ ≤ V ‖x′‖,

where V = T 1−µ

Γ(1−µ) . From the equality x(t) = x(ξ0) +
∫ t

ξ0
x′(s) ds we get

‖x‖ < K + T‖x′‖. (4.11)

From estimate (4.6) it follows now that

|f(t, x(t), x′(t), (cDµx)(t))| ≤ ρ(t)p(K + T‖x′‖, ‖x′‖, V ‖x′‖) (4.12)

for a.e. t ∈ [0, T ]. Since x is a solution of the equation in (4.9), we have (cf.
(3.2) and Lemma 2.1)

x′(t) =
λ

Γ(α− 1)

t∫

0

(t− s)α−2f(s, x(s), x′(s), (cDµx)(s)) ds + b (4.13)

for t ∈ [0, T ],

where b ∈ R. From |x′(ξ1)| < K, we obtain

|b| < K +

∣∣∣∣∣
λ

Γ(α− 1)

ξ1∫

0

(ξ1 − s)α−2f(s, x(s), x′(s), (cDµx)(s)) ds

∣∣∣∣∣. (4.14)

By Lemma 2.6 (with η = ρ, t2 = t and t1 = 0),
t∫

0

(t− s)α−2ρ(s) ds ≤
(

T (α−2)p+1

(α− 2)p + 1

) 1
p

‖ρ‖q =: W.

We conclude from the last inequality and from (4.12), (4.13) and (4.14) that

‖x′‖ ≤ 2W

Γ(α− 1)
p(K + T‖x′‖, ‖x′‖, V ‖x′‖) + K. (4.15)

In view of (4.7), there is a positive constant S1 such that the inequality
2W

Γ(α− 1)
p(K + Tv, v, V v) + K < v

is fulfilled for all v ≥ S1. Hence (4.15) yields ‖x′‖ < S1, and hence ‖x‖ <
K + TS1 by (4.11). Put S = max{S1,K + TS1}. Then (4.8) holds for each
λ ∈ [0, 1] and each solution x of problem (4.9).

We proceed now to discussing problem (4.10). Let x be a solution
of(4.10). Due to Λ1,Λ2 ∈ C there is L > 0 such that |Λ1(x)| ≤ L and
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|Λ1(x)| ≤ L for x ∈ C1[0, T ]. Therefore |x(ξ)| ≤ L and |x(η)| ≤ L. It
follows from x(ξ)−x(η) = x′(τ)(η− ξ), where τ ∈ (ξ, η) that |x′(τ)| ≤ 2L

η−ξ .
We have proved that for each λ ∈ [0, 1] and any solution x of problem (4.10)
there exists τ = τ(λ, x) ∈ (ξ, η) such that |x(ξ)| ≤ L and |x′(τ)| ≤ 2L

η−ξ .
Essentially the same reasoning as in the first part of the proof

(
with K >

max
{

L, 2L
η−ξ

})
yields that there is a positive constant S such that (4.8)

holds for each λ ∈ [0, 1] and each solution x of problem (4.10). ¤

Example 4.7. Let γi ∈ Lq[0, T ] (i = 0, 1, 2, 3), h ∈ C([0, T ] × R3) be
bounded and gj ∈ C(R), limu→±∞

gj(u)
u = 0 (j = 1, 2, 3). Then the function

f(t, x, y, z) = γ0(t)h(t, x, y, z) + γ1(t)g1(x) + γ2(t)g2(y) + γ2(t)g3(z)

satisfies the conditions of Theorem 4.6 with ρ(t) =
∑3

i=0 |γi(t)| and

p(u1, u2, u3) =
3∑

j=1

max
{
|gj(s)| : |s| ≤ uj

}
+ K for (u1, u2, u3) ∈ R3

+,

where K = sup{|h(t, x, y, z)| : (t, x, y, z) ∈ [0, T ]×R3}. Hence Theorem 4.6
can be applied to problems (1.2), (4.4) and (1.2), (4.5).

In particular, equation (1.2) has solutions u1 and u2, where u1 satisfies
the boundary conditions

min{u(t) : t ∈ [0, T ]} = A, max{u′(t) : t ∈ [0, T ]} = B, A,B ∈ R,

and u2 satisfies the boundary conditions

u(ξ) = arctan(‖u‖ − ‖u′‖) + A, u(η) =

T∫

0

sin(u′(t)) dt + B, A, B ∈ R.

where 0 ≤ ξ < η ≤ 1.
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Short Communications

Malkhaz Ashordia

ON THE FREDHOLM PROPERTY FOR GENERAL
LINEAR BOUNDARY VALUE PROBLEMS FOR
IMPULSIVE SYSTEMS WITH SINGULARITIES

Dedicated to the blessed memory of Professor T. Chanturia

Abstract. A general linear singular boundary value problem

dxi

dt
= Pi(t) · x3−i + qi(t) (i = 1, 2),

xi(τk+)− xi(τk−) = Gi(k) · x3−i(τk) + hi(k) (i = 1, 2; k = 1, 2, . . .);

li(x1, x2) = ci (i = 1, 2)

is considered, where Pi ∈ Lloc(]a, b[ ,Rni×n3−i), qi ∈ Lloc(]a, b[ ,Rni), Gi :
{1, 2, . . .} → Rni×n3−i , hi : {1, 2, . . .} → Rni , ci ∈ Rni , and li is a linear
bounded operator (i = 1, 2).

The singularity is understood in the sense that Pi 6∈ L([a, b],Rni×n3−i),

qj 6∈ L([a, b],Rnj ) or
∞∑

k=1

(‖Gi(k)‖+ ‖hj(k)‖) = +∞ for some i, j ∈ {1, 2}.
The conditions are established under which this problem is uniquely solv-

able if and only if the corresponding homogeneous boundary value problem
has only the trivial solution.

Analogous problems for similar impulsive systems with small parameters
are also considered.

îâäæñéâ. àŽêýæèñèæŽ äëàŽáæ ïŽýæï ûîòæãæ æéìñèïñîæ ïŽïŽäôãîë
ŽéëùŽêŽ

dxi

dt
= Pi(t) · x3−i + qi(t) (i = 1, 2),

xi(τk+)− xi(τk−) = Gi(k) · x3−i(τk) + hi(k) (i=1, 2; k = 1, 2, . . .);
li(x1, x2) = ci (i = 1, 2),

ïŽáŽù Pi ∈ Lloc(]a, b[ ,Rni×n3−i), qi ∈ Lloc(]a, b[ ,Rni), Gi :
{1, 2, . . .} → Rni×n3−i , hi : {1, 2, . . .} → Rni , ci ∈ Rni , ýëèë li
(i = 1, 2) ûîòæãæ öâéëïŽäôãîñèæ ëìâîŽðëîæŽ.

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
December 13, 2010.
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ïæêàñèŽîëĲŽ àŽæàâĲŽ æé Žäîæå, îëé Pi 6∈ L([a, b],Rni×n3−i),

qj 6∈ L([a, b],Rnj ) Žê
∞∑

k=1

(‖Gi(k)‖ + ‖hj(k)‖) = +∞ àŽîçãâñèæ

i, j ∈ {1, 2}-åãæï.
éæôâĲñèæŽ ìæîëĲâĲæ, îëéâèåŽ öâïîñèâĲæï öâéåýãâãŽöæ Žôêæöêñ-

èæ ŽéëùŽêŽ ùŽèïŽýŽá ŽéëýïêŽáæŽ éŽöæê áŽ éýëèëá éŽöæê, îëáâïŽù
âîåàãŽîëãŽê ïŽïŽäôãîë ŽéëùŽêŽï àŽŽøêæŽ éýëèëá ðîæãæŽèñîæ Žéë-
êŽýïêæ.

Žàîâåãâ àŽêýæèñèæŽ ŽêŽèëàæñîæ ŽéëùŽêâĲæ ìŽîŽéâðîæŽêæ ûîòæãæ
æéìñèïñîæ ïæïðâéâĲæïŽåãæï.

2010 Mathematics Subject Classification. 34B37.
Key words and phrases. Linear impulsive systems, singularities,
systems with small parameters, general linear boundary value prob-
lems, Fredholm property.

1. Statement of the Problem and Basic Notation

Let n1 and n2 be natural numbers; −∞ < a < b < +∞, a < τ1 < τ2 <
· · · < b and lim

k→∞
τk = b.

On the interval ]a, b[ we consider the linear system of impulsive systems
with singularities

dxi

dt
= Pi(t) · x3−i + qi(t) (i = 1, 2), (1)

xi(τk+)− xi(τk−) = Gi(k) · x3−i(τk) + hi(k) (i = 1, 2; k = 1, 2, . . .) (2)

under the following two-point boundary value conditions:

li(x1, x2) = ci (i = 1, 2), (3)

where Pi ∈ Lloc(]a, b[ ;Rni×n3−i), qi ∈ Lloc(]a, b[ ;Rni), Gi : {1, 2, . . .} →
Rni×n3−i , hi : {1, 2, . . .} → Rni , ci ∈ Rni (i = 1, 2), li : BV([a1, b1],Rn1) ×
BV([a2, b2],Rn2) → Rni (i = 1, 2) are linear bounded operators and [ai, bi]
(i = 1, 2) are some closed intervals from [a, b].

In the case, where Pi (i = 1, 2) and qi (i = 1, 2) are the integrable

on [a, b] matrix- and vector-functions and
∞∑

k=1

(‖Gi(k)‖ + ‖hi(k)‖) < ∞
(i = 1, 2), in [1, 5, 11, 12], the conditions are established for as wether the
problem (1), (2); (3) is Fredholm, i.e., the conditions under which the prob-
lem (1), (2); (3) is uniquely solvable if and only if the corresponding homo-
geneous system

dxi

dt
= Pi(t) · x3−i (i = 1, 2), (10)

xi(τk+)− xi(τk−) = Gi(k) · x3−i(τk) (i = 1, 2; k = 1, 2, . . .) (20)

under the conditions
li(x1, x2) = 0 (i = 1, 2) (30)
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has only trivial solutions. In the case, where the system (1), (2) has singu-
larities at the points a and b, i.e.,

b∫

a

‖Pi(t)‖ dt +
∞∑

k=1

‖Gi(k)‖ = +∞,

b∫

a

‖qj(t)‖ dt +
∞∑

k=1

‖hj(k)‖ = +∞

for some i, j ∈ {1, 2}, the question as to wether the problem (1), (2); (3) is
Fredholm remains open. The present paper fills in this gap.

The results obtained in the paper are improved for the case, where the
boundary condition (3) has the form

m∑

k=1

[
B1ikx1(t1ik) + B2ikx2(t2ik)

]
= ci (i = 1, 2), (4)

where Bjik ∈ Rni×nj tjik ∈ R (i, j = 1, 2; k = 1, . . . ,m).
The impulsive system (1), (2) is a particular case of the so-called gen-

eralized ordinary differential system (see, e.g., [1–5, 10, 11] and the refer-
ences therein). The analogous questions and some singular boundary value
problems are investigated in [2], [3] for the generalized ordinary differential
systems, and in [6, 8, 9] for ordinary differential systems.

In the present paper, on the basis of the results presented in [2, 3], we
obtain tests for the Fredholm property for the above impulsive problem.
Similar tests are obtained for every of the two linear singular impulsive
systems with a small parameter ε > 0,

dxi(t)
dt

= εi−1Pi(t) · x3−i(t) + qi(t) (i = 1, 2), (5ε)

xi(τk+)− xi(τk−) =

= εi−1Gi(k) · x3−i(τk) + hi(k) (i = 1, 2; k = 1, 2, . . .) (6ε)

and

dxi(t)
dt

= ε2−iPi(t) · x3−i(t) + qi(t) (i = 1, 2), (7ε)

xi(τk+)− xi(τk−) =

= ε2−iGi(k) · x3−i(τk) + hi(k) (i = 1, 2; k = 1, 2, . . .) (8ε)

under the condition (3).
Throughout the paper, the use will be made of the following notation

and definitions.
N = {1, 2, . . . }, R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] and ]a, b[ (a, b ∈ R)

are, respectively, the closed and open intervals.
I is an arbitrary closed or open interval from R.
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Rn×m is the space of all real n × m matrices X = (xij)
n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |.

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,m

i,j=1.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)n

i=1; Rn
+ =

Rn×1
+ .
If X ∈ Rn×n, then X−1, det X and r(X) are, respectively, the inverse

to X matrix, the determinant of X and the spectral radius of X; In is the
identity n× n-matrix.

A matrix-function is said to be continuous, integrable, nondecreasing,
etc., if each of its components is such.

If X : [a, b] → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of

total variations on [a, b] of its components xij (i = 1, . . . , n; j = 1, . . . ,m);

V (X)(t) = (V (xij)(t))
n,m
i,j=1, where V (xij)(a) = 0, V (xij)(t) =

t∨
a
(xij) for

a < t ≤ b; X(t−) and X(t+) are, respectively, the left and the right limits
of X at the point t (X(a−) = X(a), X(b+) = X(b)).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the set of all bounded variation matrix-functions X :

[a, b] → Rn×m (i.e., such that
b∨
a
(X) < ∞).

BVloc(I;Rn×m) is the set of all matrix-functions X : I → Rn×m such

that
b∨
a
(X) < +∞ for a, b ∈ I.

L([a, b];Rn×m) is the set of all matrix-functions X : [a, b] → Rn×m,
measurable and integrable in the Lebesgue sense on the closed interval [a, b].

Lloc(I;Rn×m) is the set of all matrix-functions X : I→Rn×m whose res-
trictions to an arbitrary closed interval [a, b] from I belong to L([a, b];Rn×m).

C̃([a, b],Rn×m) is the set of all absolutely continuous matrix-functions
X : [a, b] → Rn×m.

C̃loc(I,Rn×m) is the set of all matrix-functions X : I→Rn×m whose res-
trictions to an arbitrary closed interval [a, b] from I belong to C̃([a, b],Rn×m).

C̃loc(I \ {τk}∞k=1,Rn×m) is the set of all matrix-functions X : I→ Rn×m

whose restrictions to an arbitrary closed interval [a, b] from I\{τk}∞k=1 belong
to C̃([a, b],Rn×m).

If X ∈ Lloc(]a, b[ ;Rl×n), G : N → Rl×n, Y ∈ Lloc(]a, b[ ;Rn×m) and
Q : N→ Rn×m, then

F1(X, G;Y, Q)(s, t) =

t∫

s

dA(X, G)(τ) · (A(Y, Q)(t)−A(Y,Q)(τ)
)
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and
F2(X, G;Y, Q)(s, t) = F1(X, G;Y, Q)(t, s) for s, t ∈ ]a, b[ ,

where

A(Y,Q)(t) =





t∫

c

Y (τ) dτ +
∑

c≤τk<t

Q(k) for c ≤ t < b,

t∫

c

Y (τ) dτ −
∑

t<τk≤c

Q(k) for a < t < c,

On×m for t = c,

(9)

and c = (a + τ1)/2.
Using the formulae of integration-by-parts, formula I.4.33 and Lemma

I.4.23 from [10], it is not difficult to verify that

F1(X,G; Y,Q)(s, t) =

t∫

s

τ∫

s

X(r)dr · Y (τ) dτ+

+
∑

s≤τk<t

(
G(k)

t∫

τk

Y (τ) dτ +

τk∫

s

X(τ) dτ ·Q(k) +
k∑

l=1

G(l) ·Q(k)
)

(10)

for a < s < t < b.

Moreover, we introduce the operator

F0(X,G; Y,Q)(s, t) =

=

t∫

s

( τ∫

s

X(r) dr +
∑

s<τk<τ

G(k)
)
·
( t∫

τ

X(r) dr +
∑

τ<τk<t

G(k)
)

Y (τ) dτ+

+
∑

s<τk<t

( τk∫

s

X(r) dr +
∑

s<τl<τk

G(l)
)
·
( t∫

τk

X(r) dr +
∑

τk<τl<t

G(l)
)
·Q(k) (11)

for a < s < t < b.

Under a solution of the impulsive system (1), (2) we understand a contin-
uous from the left vector-function (xi)2i=1, xi ∈ C̃loc(]a, b[ \{τk}∞k=1,Rni) ∩
BVloc(]a, b[ ,Rni) (i = 1, 2), satisfying both the system

dxi(t)
dt

= Pi(t)x3−i(t) + qi(t) for a.e. t ∈]a, b[ \{τk}∞k=1 (12)

and the relation (2) for every k ∈ {1, 2, . . .}. If the component xi has a right
(respectively, left) limit at the point a (respectively, at the point b), then
this limit is assumed to be equal to xi(a) (respectively, to xi(b)). Thus xi

is assumed to be continues at this point.
A solution of the impulsive system (1), (2) is said to be a solution of

the problem (1), (2); (3) if there exist one-sided limits xi(ai+) and xi(bi−)
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(i = 1, 2) and the function x = (xi)2i=1 defined at the endpoints of the closed
intervals [ai, bi] (i = 1, 2) by the continuity, satisfy the relation (3).

Consider now the general linear impulsive system

dzi(t)
dt

= Pi1(t) · z1(t) + Pi2(t) · z2(t) + q̃i(t) (i = 1, 2), (13)

zi(τk+)− xi(τk−) =

= Gi1(k) · z1(τk) + Gi2(k) · z2(τk) + h̃i(k) (i = 1, 2; k = 1, 2, . . .), (14)

for the boundary value problem

l̃i(z1, z2) = ci (i = 1, 2), (15)

where Pij ∈ Lloc(]a, b[ ;Rni×nj ), q̃i ∈ Lloc(]a, b[ ;Rni), Gi,j : N → Rni×nj ,
h̃i : N→ Rni , and l̃i is the linear bounded operator (i = 1, 2).

For the general system (13), (14), we assume that

det(In + Gii(τk)) 6= 0 (i = 1, 2; k = 1, 2, . . .).

Under this condition, there exists the fundamental matrix Yi of the ho-
mogeneous system

dyi(t)
dt

= Pi1(t) · y1(t) + Pi2(t) · y2(t) (i = 1, 2),

yi(τk+)− yi(τk−) =

= Gi1(k) · y1(τk) + Gi2(k) · y2(τk) (i = 1, 2; k = 1, 2, . . .),

satisfying the condition Yi(c) = Ini for every i ∈ {1, 2} (see, for example,
[10]).

Then it is not difficult to verify that the substitution zi(t) = Yi(t)xi(t)
(i = 1, 2) reduces the problem (13), (14); (15) to the problem (1), (2); (3),
where

Pi(t) ≡ Y −1
i (t)Pi3−i(t)Y3−i(t), qi(t) ≡ Y −1

i (t)q̃i(t) (i = 1, 2);

Gi(k) ≡ Y −1
i (τk)(Ini + Gii(k))−1Gi3−i(k)Y3−i(τk) (i = 1, 2),

hi(k) ≡ Y −1
i (τk)(Ini + Gii(k))−1h̃i(k) (i = 1, 2)

and

li(x1, x2) ≡ l̃i(Y1x1, Y2x2) (i = 1, 2).

2. Statement of the Main Results

Theorem 1. Let a0 ∈]a, b[ and b0 ∈ ]a0, b[ , and let

li : BV([a, b],Rn1)× BV([a0, b0],Rn2) → Rni (i = 1, 2)

be linear bounded operators. (16)
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In addition, suppose that

b∫

a

(‖P1(t)‖+ ‖q1(t)‖
)
dt +

∞∑

k=1

(‖G1(k)‖+ ‖h1(k)‖) < +∞, (17)

‖F0(|P1|, |G1|; |P2|, |G2|)(a+, b−)‖ < +∞, (18)

‖F0(|P1|, |G1|; |q2|, |h2|)(a+, b−)‖ < +∞. (19)

Then the problem (1), (2); (3) is the Fredholm one, i.e., it is uniquely solvable
if and only if the corresponding homogeneous problem (10), (20); (30) has
only a trivial solution.

Theorem 2. Let b0 ∈]a, b[ and a0 ∈ ]a, b0[ and let

li : BV([a, b0],Rn1)× BV([a0, b],Rn2) → Rni (i = 1, 2)

be linear bounded operators. (20)

In addition, suppose that

a0∫

a

(‖P1(t)‖+ ‖q1(t)‖
)
dt +

∑
a<τk<a0

(‖G1(k)‖+ ‖h1(k)‖) < +∞,

b∫

a0

(‖P2(t)‖+ ‖q2(t)‖
)
dt +

∑

a0<τk<b

(‖G2(k)‖+ ‖h2(k)‖) < +∞;

(21)

∥∥∥F1(|P1|, |G1|; |P2|, |G2|)(a+, a0)‖+

+‖F1(|P1|, |G1|; |q2|, |h2|)(a+, a0)
∥∥∥ < ∞, (22)

∥∥∥F2(|P2|, |G2|; |P1|, |G1|)(a0, b−)‖+

+‖F2(|P2|, |G2|; |q1|, |h1|)(a0, b−)
∥∥∥ < ∞. (23)

Then the assertion of Theorem 1 is valid.

Corollary 1. Let either t1ik ∈ [a, b], t2ik ∈ ]a, b[ (i = 1, 2; k = 1, . . . , m)
and the conditions (17)–(19) be satisfied, or t1ik ∈ [a, b[ , t2ik ∈ ]a, b] (i =
1, 2; k = 1, . . . ,m) and the conditions (21)–(23) be satisfied for some a0 ∈
]a, b[ . Then for the unique solvability of the problem (1), (2); (4) it is neces-
sary and sufficient that the system (1), (2) under the homogeneous boundary
condition

m∑

k=1

[
B1ikx1(t1ik) + B2ikx2(t2ik)

]
= 0 (i = 1, 2) (40)

has only a trivial solution.
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Corollary 2. Let Pi ∈ L([a, b];Rni×n3−i), qi ∈ L([a, b];Rni) and
∞∑

k=1

(‖Gi(k)‖+ ‖hi(k)‖) < +∞ (i = 1, 2).

Let, moreover, either the condition (17) or the condition (21) be fulfilled
for, respectively, some a0 ∈]a, b[ and b0 ∈]a0, b[ or for some b0 ∈ ]a, b[ and
a0 ∈ ]a, b0[ . Then the problem (1), (2); (3) is the Fredholm one.

Theorem 3. Let the conditions (16)–(19) hold for some a0 ∈ ]a, b[ and
b0 ∈ ]a0, b[ . Let, moreover, ∆ 6= 0, where ∆ is the determinant of the system
li(c1 + A(P1, G1)c2, c2) = 0 (i = 1, 2), and the matrix-function is defined by
(1.9). Then there exists a positive number ε0, independent of Pi, Gi, qi, hi

and ci (i = 1, 2), such that the problem (5ε), (6ε); (3) has one and only one
solution for each ε ∈ [0, ε0].

Theorem 4. Let the conditions (20)–(23) hold for some b0 ∈ ]a, b[ and
a0 ∈ ]a, b0[ . Let, moreover, ∆0 6= 0, where ∆0 is the determinant of the
system li(c1, c2) = 0 (i = 1, 2). Then there exists a positive number ε0 inde-
pendent of Pi, Gi, qi, hi and ci (i = 1, 2) such that the problem (7ε), (8ε); (3)
has one and only one solution for each ε ∈ [0, ε0].

Finally, it should be noted that the vector-function x = (xi)2i=1, with
components xi ∈ C̃loc(]a, b[ \{τk}∞k=1,Rn

i ) ∩ BV([a, b];Rn
i ), is a solution of

the impulsive system (1), (2) if and only if it is a solution of the generalized
ordinary differential system

dxi(t) = dAi(t) · x3−i(t) + dfi(t) (i = 1, 2),

where Ai(t) ≡ A(Pi, Gi)(t) and fi(t) ≡ A(qi, hi)(t) (i = 1, 2), and the
matrix- and vector-functions A(Pi, Gi) (i = 1, 2) and A(qi, hi) (i = 1, 2) are
defined by (9).
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Ivan Kiguradze

THE DIRICHLET AND FOCAL BOUNDARY VALUE
PROBLEMS FOR HIGHER ORDER QUASI-HALFLINEAR

SINGULAR DIFFERENTIAL EQUATIONS

Dedicated to the blessed memory of
my dear friend, Professor T. Chanturia

Abstract. For higher order quasi-halflinear singular differential equa-
tions, the Dirichlet and focal boundary value problems are considered.
Analogues of the Fredholm first theorem are proved and on the basis of
these results optimal in some sense sufficient conditions of solvability of
the above-mentioned problems are found.

îâäæñéâ. éŽôŽèæ îæàæï çãŽäæ êŽýâãîŽáûîòæãæ ïæêàñèŽîñèæ áæòâ-
îâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï àŽêýæèñèæŽ áæîæýèâïŽ áŽ òëçŽèñ-
îæ ïŽïŽäôãîë ŽéëùŽêâĲæ. áŽéðçæùâĲñèæŽ òîâáßëèéæï ìæîãâèæ åâ-
ëîâéæï ŽêŽèëàâĲæ, îæï ïŽòñúãâèäâù áŽáàâêæèæŽ Žôêæöêñèæ ŽéëùŽêâ-
Ĳæï ŽéëýïêŽáëĲæï ëìðæéŽèñîæ ïŽçéŽîæïæ ìæîëĲâĲæ.

2010 Mathematics Subject Classification. 34B16, 34B18.
Key words and phrases. Quasi-halflinear singular differential equation,
strong singularity, the Dirichlet problem, focal problem, Fredholm type
theorem, positive solution.

1. Statement of the Problem and the Main Notation. In the interval
]a, b[ , we consider the differential equation

u(2m) =
k∑

i=1

pi(t)
( m∏

j=1

|u(j−1)|αij

)
sgn u + q(t, u, . . . , u(m−1)) (1)

with the Dirichlet boundary conditions

u(i−1)(a) = 0, u(i−1)(b) = 0 (i = 1, . . . ,m) (2)

and with the focal boundary conditions

u(i−1)(a) = 0, u(m+i−1)(b) = 0 (i = 1, . . . , m). (3)

Here, m and k are arbitrary natural numbers, αij (i = 1, . . . , k; j =
1, . . . , m) are nonnegative constants such that

αi1 > 0,

m∑

j=1

αij = 1 (i = 1, . . . , m), (4)

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
March 28, 2011.
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−∞ < a < b < +∞, the functions pi : ]a, b[→ R (i = 1, . . . , n) are integrable
on every compact interval contained in ]a, b[ , and q : ]a, b[×Rm → R is the
function, satisfying the local Carathéodory conditions.

The equation (1) is said to be singular if at least one of the coefficients
pi (i = 1, . . . ,m), or the function q(· , x1, . . . , xn), is not integrable on [a, b],
having singularity at one or at both boundary points of that interval. We
say that the equation (1) has a strong singularity at the point a (at the
point b) if for some i ∈ {1, . . . , k} the condition

t∫

a

(s− a)
2m−

m∑
j=1

jαij |pi(s)| ds = +∞

( b∫

t

(b− s)
2m−

m∑
j=1

jαij |pi(s)| ds = +∞
)

for a < t < b

is fulfilled.
In the case, when if (1) is a linear equation with strong singularities at

the points a and b (at the point a), i.e., when k = 1, α11 = 1, α1i = 0 for
i > 1 and

t∫

a

(s− a)2m−1|p1(s)| ds = +∞,

b∫

t

(b− s)2m−1|p1(s)| ds = +∞ for a < t < b

( t∫

a

(s− a)2m−1|p1(s)| ds = +∞,

b∫

t

|p1(s)| ds < +∞ for a < t < b

)
,

the problem (1), (2) (the problem (1), (3)) is thoroughly investigated in [1].

As for the case, when
m∑

j=2

αij = 1− αij > 0 (i = 1, . . . , k) and the equation

(1) has strong singularities at the points a and b, the above-mentioned
problems remain 4n studied. The present paper is devoted to fill up this
gap.

Throughout the paper, we use the following notation.
L([a, b]) is the space of Lebesgue integrable functions y : [a, b] → R.
Lloc( ]a, b[) (Lloc( ]a, b])) is the space of functions y : ]a, b[→ R which are

integrable on [a + ε, b− ε] (on [a + ε, b]) for arbitrarily small ε > 0.
C̃2m−1

loc ( ]a, b[) (C̃2m−1
loc ( ]a, b])) is the space of functions u : ]a, b[→ R which

are absolutely continuous together with u′, . . . , u2(m−1) on [a + ε, b− ε] (on
[a + ε, b]) for arbitrarily small ε > 0.
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C̃2m−1,m( ]a, b[) (C̃2m−1,m( ]a, b])) is the space of functions u ∈
C̃2m−1

loc ( ]a, b[) (C̃2m−1
loc ( ]a, b])) such that

b∫

a

|u(m)(s)|2 ds < +∞.

αi = 2m + 1−
m∑

j=1

jαij (i = 1, . . . , k); (5)

γ1i =
2m

(2m− 1)!!

m∏

j=1

( 2m−j+1

(2m− 2j + 1)!!

)αij

,

γ2i =
1

(m− 1)!
√

2m− 1

m∏

j=1

( 1
(m− j)!

√
2m− 2j + 1

)αij

(i = 1, . . . , k);

(6)

ϕ1i(t) =

=
(
(t−a)−2m+(b−t)−2m

) 1
2

m∏

j=1

(
(t−a)2j−2m−2+(b−t)2j−2m−2

)αij
2

,

ϕ2i(t) =

=
(
(t−a)1−2m+(b−t)1−2m

) 1
2

m∏

j=1

(
(t−a)2j−2m−1+(b−t)2j−2m−1

)αij
2

(i=1, . . . , k).

(7)

As it has been said above, we assume that the function q : ]a, b[×Rm → R
satisfies the local Carathéodory conditions, i.e., q(t, ·, . . . , ·) : Rm → R is
continuous for almost all t ∈ ]a, b[ , q(· , x1, . . . , xm) : ]a, b[→ R is measurable
for any (x1, . . . , xm), and

q∗(· , y1, . . . , ym) ∈ Lloc( ]a, b[) for y1 > 0, . . . , ym > 0,

where

q∗(t, y1, . . . , ym)=max
{∣∣q(t, x1, . . . , xm)

∣∣ : |x1|≤y1, . . . , |xm|≤ym

}
. (8)

We investigate the problem (1), (2) in the case, when

pi ∈ Lloc( ]a, b[) (i = 1, . . . , k),

lim
ρ→∞

b∫

a

ψ1(t)
q∗

(
t, ψ1(t)ρ, . . . , ψm(t)ρ

)

ρ
dt = 0,

(9)
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where ψj(t) = (t − a)m−j+ 1
2 (b − t)m−j+ 1

2 (j = 1, . . . , m), and the problem
(1), (3) in the case, when

pi ∈ Lloc( ]a, b]) (i = 1, . . . , k),

lim
ρ→+∞

b∫

a

(t− a)m− 1
2

q∗
(
t, (t− a)m− 1

2 ρ, . . . , (t− a)
1
2 ρ

)

ρ
dt = 0.

(10)

In both cases the function q is sublinear with respect to the phase variables
and, consequently, the equation (1) is quasi-halflinear.

In theorems on the existence of positive negative solutions of the problems
(1), (2) and (1), (3), on the function q we impose either the restriction

lim
ρ>0, ρ→0

b∫

a

(t− a)m(b− t)m q∗
(
t, ρ(t− a)m(b− t)m

)

ρ
dt = +∞, (11)

or the restriction

lim
ρ>0, ρ→0

b∫

a

(t− a)m q∗
(
t, ρ(t− a)m

)

ρ
dt = +∞, (12)

where

q∗(t, y) = inf
{∣∣q(t, x1, . . . , xm)

∣∣ : (x1, . . . , xm) ∈ Rm, |x1| ≥ y
}

. (13)

A function u ∈ C̃2m−1
loc ( ]a, b[) is said to be a solution of the equation (1)

if it satisfies this equation almost everywhere on ]a, b[ . A solution of the
equation (1) is said to be a solution of the problem (1), (2) (of the problem
(1), (3)) if it satisfies the boundary conditions (2) (the boundary conditions
(3)), where by u(i−1)(a) (by u(j−1)(b)) it is understood the right (the left)
limit of the function u(i−1) (of the function u(j−1)) at the point a (at the
point b).

For the problems (1), (2) and (1), (3) we have proved the analogues of
Fredholm first theorem (see Theorems 1–4) on the basis of which the suffi-
cient conditions of solvability of these problems are established in the spaces
C̃2m−1,m( ]a, b[) and C̃2m−1,m( ]a, b]) (Theorems 5 and 6). The conditions
are also found under which the problem (1), (2) (the problem (1), (3)) along
with the trivial has a positive and negative on ]a, b[ solutions (Theorems 7
and 8). All the above-mentioned theorems cover the case for which equation
(1) has strong singularities at the points a and b. These theorems are new
not only for a singular case, but also for a regular one, i.e for the case, where

pi ∈ L([a, b]) (i = 1, . . . , k),

q∗(·, ρ1, . . . , ρm) ∈ L([a, b]) for ρ1 > 0, . . . , ρm > 0

(see [2]–[11] and the references therein).
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2. Fredholm Type Theorems. Along with (1), let us consider the half-
linear homogeneous differential equation

u(n) = λ

k∑

i=1

pi(t)
( m∏

j=1

|u(j−1)|αij

)
sgnu, (14)

depending on the parameter λ ∈ [0, 1].

Theorem 1. Let the condition (9) be fulfilled and almost everywhere on
]a, b[ the inequalities

(−1)mpi(t) ≤ liϕ1i(t) + p0i(t)ϕ2i(t) (i = 1, . . . , k) (15)

be satisfied, where li (i = 1, . . . , m) are nonnegative constants, and p0i :
[a, b] → [0,+∞[ (i = 1, . . . , k) are integrable functions. If, moreover,

k∑

i=1

γ1ili < 1 (16)

and for an arbitrary λ ∈ [0, 1] the problem (14), (2) has only the trivial
solution in the space C̃2m−1,m( ]a, b[), then the problem (1), (2) has at leat
one solution in the same space.

Theorem 2. Let the conditions of Theorem 1 and the condition (11) be
fulfilled. If, moreover,

(−1)mpi(t) ≥ 0 (i = 1, . . . ,m),

(−1)mq(t, x1, . . . , xn)x1 ≥ 0 for t ∈ ]a, b[ , (x1, . . . , xm) ∈ Rm,
(17)

then the problem (1), (2) in the space C̃2m−1,m( ]a, b[) along with the trivial
solution has a positive and a negative on ]a, b[ solutions.

Theorem 3. Let the condition (10) be fulfilled and almost everywhere
on ]a, b[ the inequalities

(−1)mpi(t) ≤ li(t− a)−αi + p0i(t)(t− a)1−αi (i = 1, . . . , k) (18)

be satisfied, where p0i : [a, b] → [0, +∞[ (i = 1, . . . ,m) are integrable func-
tions, and li (i = 1, . . . ,m) are nonnegative constants, satisfying the in-
equality (16). If, moreover, for an arbitrary λ ∈ [0, 1] the problem (14), (3)
has only the trivial solution in the space C̃2m−1,m( ]a, b]), then the problem
(1), (3) in the same space has at least one solution.

Theorem 4. If along with the conditions of Theorem 3 the conditions
(12) and (17) are fulfilled, then the problem (1), (3) in the space
C̃2m−1,m( ]a, b]) along with trivial solution has a positive and a negative
on ]a, b[ solutions.

Remark 1. The condition (16) in Theorems 1 and 3 is unimprovable and
it cannot be replaced by the condition

k∑

i=1

γ1ili ≤ 1. (16′)
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Indeed, if

k = 1, α11 = 1, α1j = 0 for j 6= 1, l1 = (−1)m4−m
(
(2m− 1)!!

)2
,

p1(t) ≡ l1(t− a)−m,

q(t, x1, . . . , xm) ≡
( 2m∏

i=1

(ν − i + 1)− l1

)
(t− a)ν−2m, ν > m,

then all the conditions of Theorems 1 and 3 are fulfilled, except (16), instead
of which the condition (16′) is fulfilled, but nevertheless, as is shown in [1],
the problem (1), (2) (the problem (1), (3)) in the case under consideration
has no solution in the space C̃2m−1,m( ]a, b[) (in the space C̃2m−1,m( ]a, b])).

3. Existence Theorems. On the basis of Theorems 1 and 3 we prove
Theorems 5 and 6 below which contain effective conditions for solvability of
the problems (1), (2) and (1), (3).

Theorem 5. Let the condition (9) be fulfilled and almost everywhere
on ]a, b[ the inequalities (15) be satisfied, where li (i = 1, . . . , m) and p0i :
]a, b[→ [0, +∞[ (i = 1, . . . ,m) are, respectively, nonnegative numbers and
integrable functions, satisfying the inequality

k∑

i=1

(
γ1ili + γ2i

b∫

a

p0i(t) dt

)
< 1. (19)

Then the problem (1), (2) in the space C̃2m−1,m( ]a, b[) has at least one so-
lution.

Theorem 6. Let the condition (10) be fulfilled and almost everywhere
on ]a, b[ the inequalities (18) be satisfied, where li (i = 1, . . . , m) and p0i :
]a, b[→ [0, +∞[ (i = 1, . . . ,m) are, respectively, nonnegative numbers and
integrable functions, satisfying the inequality (19). Then the problem (1), (3)
in the space C̃2m−1,m( ]a, b[) has at least one solution.

Remark 2. If we use the example given in Remark 1, then it will become
clear that the strict inequality (19) in Theorems 4 and 5 cannot be replaced
by the nonstrict inequality

k∑

i=1

(
γ1ili + γ2i

b∫

a

p0i(t) dt

)
≤ 1.

4. Theorems on the Non-Unique Solvability of the Problems (1), (2)
and (1), (3).

Theorem 7. If along with the conditions of Theorem 5 the conditions
(11) and (17) are fulfilled, then the problem (1), (2) in the space
C̃2m−1,m( ]a, b[) along with the trivial solution has a positive and a nega-
tive solutions on ]a, b[.
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Theorem 8. If along with the conditions of Theorem 6 are fulfilled the
conditions (12) and (17), then the problem (1), (3) in the space
C̃2m−1,m( ]a, b]) along with a trivial solution has a positive and a negative
on ]a, b[ solutions.

As examples, we consider the differential equations

u(2m) = (−1)m
k∏

i=1

liϕ1i(t)
( m∏

j=1

|u(j−1)|αij

)
sgn u+

+ (−1)m(t− a)−µ(b− t)−µq0(t)|u|λ sgnu (20)

and

u(2m) = (−1)m
k∏

i=1

li(t− a)−αi

( m∏

j=1

|u(j−1)|αij

)
sgnu+

+ (−1)m(t− a)−µq0(t)|u|λ sgn u, (21)

where q0 : ]a, b[→ ]0, +∞[ is an integrable function,

0 < λ < 1, µ =
(
m− 1

2

)
(λ + 1),

and li (i = 1, . . . , m) are the nonnegative constants, satisfying the inequal-
ity (16). According to Theorem 7 (Theorem 8), the problem (20), (2) (the
problem (21), (2)) in the space C̃2m−1,m(]a, b[) (in the space C̃2m−1,m(]a, b]))
along with the trivial solution has a positive and a negative on ]a, b[ solu-
tions.
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10. I. Rach̊unková, S. Staněk, and M. Tvrdý, Singularities and Laplacians in bound-
ary value problems for nonlinear ordinary differential equations. Handbook of differ-
ential equations: ordinary differential equations. Vol. III, 607–722, Handb. Differ.
Equ., Elsevier/North-Holland, Amsterdam, 2006.
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ON TWO–POINT BOUNDARY VALUE PROBLEMS FOR
HIGHER ORDER FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH STRONG SINGULARITIES
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Abstract. For higher order linear singular functional differential equa-
tions, the Agarwal–Kiguradze type theorems on the unique solvability of
two-point boundary value problems are proved.

îâäæñéâ. éŽôŽèæ îæàæï ûîòæãæ ïæêàñèŽîñèæ òñêóùæëêŽèñî-
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çæôñîŽúæï ðæìæï åâëîâéâĲæ ëîûâîðæèëãŽêæ ïŽïŽäôãîë ŽéëùŽêâĲæï
ùŽèïŽýŽá ŽéëýïêŽáëĲæï öâïŽýâĲ.
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Key words and phrases: Functional differential equation, linear, higher
order, strong singularity,two-point boundary value problem.

Consider the functional differential equation

u(2m)(t) = p(t)u(τ(t)) + q(t) (1)

with the boundary conditions

u(i−1)(a) = 0, u(i−1)(b) = 0 (i = 1, . . . ,m),

b∫

a

|u(m)(s)|2ds < +∞ (2)

or

u(i−1)(a) = 0, u(m+i−1)(b) = 0 (i = 1, . . . , m),

b∫

a

|u(m)(s)|2ds < +∞. (3)

Here m is a natural number, −∞ < a < b < +∞, τ : [a, b] → [a, b] is
a measurable function, and the functions p and q :]a, b[→ R are Lebesgue
integrable on [a + ε, b − ε] for arbitrarily small ε > 0. However, these
functions may be non-integrable on [a, b], having singularities at the end-
points of that interval. In that sense, the equation (1) is singular.

For τ ≡ t, the equation (1) has the form

u(n)(t) = p(t)u(t) + q(t). (4)

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
December 20, 2010.
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From the results of the monographs [1, 4] and the papers [3, 5, 7–15]
it follow rather delicate conditions guaranteeing the existence of a unique
solution of the singular differential equation (4), satisfying the boundary
conditions

u(i−1)(a) = 0, u(i−1)(b) = 0 (i = 1, . . . ,m) (5)

or
u(i−1)(a) = 0, u(m+i−1)(b) = 0 (i = 1, . . . , m). (6)

However, all these results concern the cases, where the function p satisfies
either the condition

b∫

a

(t− a)2m−1(b− t)2m−1
(|p(t)|+ (−1)mp(t)

)
dt < +∞, (7)

or the condition
b∫

a

(t− a)2m−1
(|p(t)|+ (−1)mp(t)

)
dt < +∞. (8)

Note that if the condition (7) (the condition (8)) is satisfied, then (1), (2)
and (4), (5) ((1), (3) and (4), (6)) are equivalent problems. However, if

b∫

a

(t− a)2m−1(b− t)2m−1
(|p(t)|+ (−1)mp(t)

)
dt = +∞ (9)

or
b∫

a

(t− a)2m−1
(|p(t)|+ (−1)mp(t)

)
dt = +∞, (10)

then the above-mentioned problems are not equivalent. More precisely,
from the unique solvability of the problem (1), (2) (of the problem (1), (3)) it
does not follow the unique solvability of the problem (4), (5) (of the problem
(4), (6)). In that case we will say that the function p has strong singularities.

By I. Kiguradze and R. P. Agarwal [2, 6], unimprovable sufficient con-
ditions are found for the unique solvability of the problem (4), (2) (of the
problem (4), (3)), which cover the cases when the function p has strong sin-
gularities. In the present paper, the Agarwal–Kiguradze type results are
established for the equation (1).

Throughout the paper we use the following notation.
[x]+ is the positive part of a number x, i.e.,

[x]+ =
x + |x|

2
.

Lloc( ]a, b[) (Lloc( ]a, b])) is the space of functions y :]a, b[→ R which are
integrable on [a + ε, b− ε] (on [a + ε, b]) for arbitrarily small ε > 0.
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Lα,β( ]a, b[) is the space of integrable with the weight (t − a)α(b − t)β

functions y :]a, b[→ R with the norm

‖y‖Lα,β
=

b∫

a

(t− a)α(b− t)β |y(t)|dt.

h1(p)(t) = (2m− 1)
∣∣∣

t∫

c

[(−1)mp(s)]+ds
∣∣∣ for a < t < b, c =

a + b

2
,

h2(p)(t) = (2m− 1)

b∫

t

[(−1)mp(s)]+ds for a < t < b,

(2m−1)!! =
2m∏

i=1

(2i−1), µm =
( 2m

(2m−1)!!

)2

, νm = 2
(
(m−1)!(2m−1)

)− 1
2 .

Theorem 1. Let p ∈ Lloc( ]a, b[) and let there exist a nonnegative constant
` such that

(t− a)2m−1h1(p)(t) ≤ ` for a < t < c

and
(b− t)2m−1h1(p)(t) ≤ ` for c < t < b.

Let, moreover,

µm` +
(b− a

π

)m−1

νm

( c∫

a

(s− a)m− 1
2 |τ(s)− s| 12 |p(s)|ds+

+

b∫

c

(b− s)m− 1
2 |τ(s)− s| 12 |p(s)|ds

)
< 1. (11)

Then for every q ∈ Lm− 1
2 ,m− 1

2
( ]a, b[) the problem (1), (2) has one and only

one solution.

Corollary 1. Let p ∈ Lloc( ]a, b[) and let there exist a nonnegative
constant ` such that

(−1)mp(t) ≤ `(t− a)−2m for a < t < c

and
(−1)mp(t) ≤ `(b− t)−2m for c < t < b.

If, moreover, the inequality (11) holds, then for every q ∈ Lm− 1
2 ,m− 1

2
( ]a, b[)

the problem (1), (2) has one and only one solution.

Theorem 2. Let p ∈ Lloc( ]a, b]) and let there exist a nonnegative constant
` such that

(t− a)2m−1h2(p)(t) ≤ ` for a < t < b.
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Let, moreover,

µm` + 2m−1
(b− a

π

)m−1

νm

b∫

a

(s− a)m− 1
2 |τ(s)− s| 12 |p(s)|ds < 1. (12)

Then for every q ∈ Lm− 1
2 ,0( ]a, b[) the problem (1), (3) has one and only one

solution.

Corollary 2. Let p ∈ Lloc( ]a, b]) and let there exist a nonnegative
constant ` such that

(−1)mp(t) ≤ `(t− a)−2m for a < t < b.

If, moreover, the inequality (12) holds, then for every q ∈ Lm− 1
2 ,0( ]a, b[) the

problem (1), (3) has one and only one solution.
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Nino Partsvania

ON SOLVABILITY AND WELL-POSEDNESS
OF TWO-POINT WEIGHTED SINGULAR

BOUNDARY VALUE PROBLEMS

Abstract. For second order nonlinear ordinary differential equations with
strong singularities, unimprovable in a certain sense sufficient conditions
for the solvability and well-posedness of two-point weighted boundary value
problems are established.

îâäæñéâ. éâëîâ îæàæï ŽîŽûîòæãæ øãâñèâĲîæãæ áæòâîâêùæŽèñîæ
àŽêðëèâĲâĲæïŽåãæï úèæâîæ ïæêàñèŽîëĲâĲæå áŽáàâêæèæŽ ëîûâîðæ-
èëãŽêæ ûëêæŽêæ ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëýïêŽáëĲæïŽ áŽ çëîâóðñ-
èëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽçéŽîæïæ ìæîëĲâĲæ.
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In an open interval ]a, b[ , we consider the second order nonlinear differ-
ential equation

u′′ = f(t, u) (1)

with two-point weighted boundary conditions of one of the following two
types:

lim sup
t→a

|u(t)|
(t− a)α

< +∞, lim sup
t→b

|u(t)|
(b− t)β

< +∞ (2)

and

lim sup
t→a

|u(t)|
(t− a)α

< +∞, lim
t→b

u′(t) = 0. (3)

Here f : ]a, b[×R → R is a continuous function, α ∈ ]0, 1[ , and β ∈ ]0, 1[ .
Eq. (1) is said to be regular if

b∫

a

f∗(t, x)dt < +∞ for x > 0,

where

f∗(t, x) = max
{|f(t, y)| : 0 ≤ y ≤ x

}
for a < t < b, x ≥ 0. (4)
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And if
t0∫

a

f∗(t, x)dt = +∞
( b∫

t0

f∗(t, x)dt = +∞
)

for a < t0 < b, x > 0,

then it is said that Eq. (1) with respect to the time variable has a singularity
at the point a (at the point b). In that case Eq. (1) is called singular, and
boundary value problems for such equations are called singular boundary
value problems.

Following R. P. Agarwal and I. Kiguradze [2, 8] we say that Eq. (1) with
respect to the time variable has a strong singularity at the point a (at the
point b) if for any t0 ∈ ]a, b[ and x > 0 the condition

t0∫

a

(t− a)
[|f(t, x)| − f(t, x) sgn x

]
dt = +∞

( b∫

t0

(b− t)
[|f(t, x)| − f(t, x) sgn x

]
dt = +∞

)

is satisfied.
The boundary conditions (2) and (3), respectively, yield the conditions

lim
t→a

u(t) = 0, lim
t→b

u(t) = 0, (20)

and
lim
t→a

u(t) = 0, lim
t→b

u′(t) = 0. (30)

On the other hand, if α = β = 1
2 , then the conditions

lim
t→a

u(t) = 0, lim
t→b

u(t) = 0,

b∫

a

u′2(t)dt < +∞, (2′)

and

lim
t→a

u(t) = 0, lim
t→b

u′(t) = 0,

b∫

a

u′2(t)dt < +∞ (3′)

imply the conditions (2) and (3), respectively.
In the case, where Eq. (1) is regular, the problems (1),(2); (1),(20), and

(1),(2′) (the problems (1),(3); (1),(30), and (1),(3′)) are equivalent to each
other. However, if Eq. (1) is singular, then the above-mentioned problems
are not equivalent. Precisely, if Eq. (1) with respect to the time variable
has singularities at the points a and b (has a singularity at the point a),
then from the solvability of the problem (1),(20) (of the problem (1),(30)),
generally speaking, it does not follow the solvability of the problem (1),(2)
or the problem (1),(2′) (of the problem (1),(3) or the problem (1),(3′)).
On the other hand, in the above-mentioned cases the unique solvability
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of the problem (1),(2) or the problem (1),(2′) (of the problem (1),(3) or
the problem (1),(3′)) does not imply the unique solvability of the problem
(1),(20) (of the problem (1),(30)).

The investigation of two-point boundary value problems for second order
singular ordinary differential equations was initiated by I. Kiguradze [4,5].
Nowadays the singular problems (1),(20) and (1),(30) are studied in full
detail (see, e.g., [1,3–7,10–17,19,20], and the references therein).

The problems (1),(2′) and (1),(3′) and the analogous problems for higher
order differential equations with strong singularities are studied in [2, 8,
9, 18].

As for the singular problems (1),(2) and (1),(3), they remain still unstud-
ied. In the present paper, an attempt is made to fill this gap. Theorems 1
and 2 (Theorems 3 and 4) below contain unimprovable in a certain sense
sufficient conditions for the solvability and well-posedness of the problem
(1),(2) (of the problem (1),(3)), at that these theorems, unlike the results
from the above-mentioned works [1, 2–7, 10–17, 19, 20], cover the case,
where Eq. (1) with respect to the time variable has strong singularities at
the points a and b (has a strong singularity at the point a).

Before passing to the formulation of the main results, we introduce some
definitions and notation.

By G0 and G1 we denote the Green functions of the problems

u′′ = 0; u(a) = u(b) = 0

and
u′′ = 0; u(a) = u′(b) = 0,

respectively, i.e.,

G0(t, s) =





(s− a)(t− b)
b− a

for a ≤ s ≤ t ≤ b,

(t− a)(s− b)
b− a

for a ≤ t < s ≤ b,

and

G1(t, s) =

{
a− s for a ≤ s ≤ t ≤ b,

a− t for a ≤ t < s ≤ b.

For any continuous function h : ]a, b[→ R, we assume

να,β(h) = sup
{

(t− a)−α(b− t)−β

b∫

a

|G0(t, s)h(s)|ds : a < t < b
}

,

να(h) = sup
{

(t− a)−α

b∫

a

|G1(t, s)h(s)|ds : a < t < b
}

.

Definition 1. A function u : ]a, b[→ R is said to be a solution of Eq.
(1) if it is twice continuously differentiable and satisfies that equation at
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each point of the interval ]a, b[ . A solution of Eq. (1), satisfying the bound-
ary conditions (2) (the boundary conditions (3)), is said to be a solution
of the problem (1),(2) (of the problem (1),(3)).

Definition 2. The problem (1),(2) (the problem (1),(3)) is said to be
well-posed if for any continuous function h : ]a, b[→ R, satisfying the
condition

να,β(h) < +∞ (
να(h) < +∞)

, (5)
the perturbed differential equation

v′′ = f(t, v) + h(t) (6)

has a unique solution, satisfying the boundary conditions (2) (the boundary
conditions (3)), and there exists a positive constant r, independent of the
function h, such that in the interval ]a, b[ the inequality

|u(t)− v(t)| ≤ rνα,β(h)(t− a)α(b− t)β
(
|u(t)− v(t)| ≤ rνα(h)(t− a)α

)

is satisfied, where u and v are the solutions of the problems (1),(2) and
(6),(2) (of the problems (1),(3) and (6),(3)), respectively.

It is clear that

να,β(h) ≤ (b− a)−1

b∫

a

(s− a)1−α(b− s)1−β |h(s)|ds,

να(h) ≤
b∫

a

(s− a)1−α|h(s)|ds.

Thus for the condition (5) to be fulfilled it is sufficient that
b∫

a

(s− a)1−α(b− s)1−β |h(s)|ds < +∞
( b∫

a

(s− a)1−α|h(s)|ds < +∞
)

.

Now we formulate the main results. First we consider the problem (1),(2).

Theorem 1. Let there exist continuous functions p and q : ]a, b[→ [0, +∞[
such that

f(t, x) sgn x ≥ −(t− a)−α(b− t)−βp(t)|x| − q(t) for a < t < b, x ∈ R,

να,β(p) < 1, να,β(q) < +∞. (7)
Then the problem (1),(2) has at least one solution.

Corollary 1. Let there exist a constant ` ∈ [0, 1[ and a continuous
function q : ]a, b[→ R such that

f(t, x) sgn x ≥ −`

(
α(1− α)
(t− a)2

+
2αβ

(t− a)(b− t)
+

β(1− β)
(b− t)2

)
|x| − q(t)

for a < t < b, x ∈ R,
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and να,β(q) < +∞. Then the problem (1),(2) has at least one solution.

Theorem 2. Let there exist a continuous function p : ]a, b[→ [0, +∞[
such that

f(t, x)− f(t, y) ≥ −(t− a)−α(b− t)−βp(t)(x− y) for a < t < b, x > y.

If, moreover, the condition (7) holds, where q(t) ≡ f(t, 0), then the problem
(1),(2) is well-posed.

Corollary 2. Let there exist a constant ` ∈ [0, 1[ such that

f(t, x)− f(t, y) ≥ −`

(
α(1− α)
(t− a)2

+
2αβ

(t− a)(b− t)
+

β(1− β)
(b− t)2

)
(x− y)

for a < t < b, x > y,

and να,β(f(·, 0)) < +∞. Then the problem (1),(2) is well-posed.

A particular case of (1) is the differential equation

u′′ = f1(t)u + f2(t)|u|µ sgnu + f0(t), (8)

where fi : ]a, b[→ R (i = 0, 1, 2) are continuous functions, and µ > 0.
Corollary 2 yields

Corollary 3. Let there exist a constant ` ∈ [0, 1[ such that

f1(t) ≥ −`

(
α(1− α)
(t− a)2

+
2αβ

(t− a)(b− t)
+

β(1− β)
(b− t)2

)
for a < t < b.

If, moreover, f2(t) ≥ 0 for a < t < b, and να,β(f0) < +∞, then the problem
(8),(2) is well-posed.

Example 1. Let us consider the differential equation

u′′ = −
(

α(1−α)
(t−a)2

+
2αβ

(t−a)(b−t)
+

β(1−β)
(b−t)2

)(
`|u|+ (s−a)α(b−s)β

)
, (9)

where ` is a nonnegative constant. If ` < 1, then by virtue of Corollary 2
the problem (9),(2) is well-posed. Let us show that if ` ≥ 1, then that
problem has no solution. Assume the contrary that the problem (9),(2) has
a solution u. If we suppose

δ = inf

{
|u(t)|

(t− a)α(b− t)β
: a < t < b

}
,

then from the representation

u(t) =

=

b∫

a

|G0(t, s)|
(

α(1−α)
(s−a)2

+
2αβ

(s−a)(b−s)
+

β(1−β)
(b−s)2

)(
`|u(s)|+(s−a)α(b−s)β

)
ds
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we get

u(t) ≥ (1 + δ)×

×
b∫

a

|G0(t, s)|
(

α(1− α)
(s− a)2

+
2αβ

(s− a)(b− s)
+

β(1− β)
(b− s)2

)
(s−a)α(b−s)βds =

= (1 + δ)(t− a)α(b− t)β for a < t < b.

Hence we obtain the contradiction δ ≥ 1+ δ. Thus we have proved that the
problem (9),(2) has no solution.

The above-constructed example shows that the condition να,β(p) < 1
in Theorems 1 and 2 is unimprovable and it cannot be replaced by the
condition να,β(p) ≤ 1. Moreover, the strict inequality ` < 1 in Corollaries
1–3 cannot be replaced by the non-strict one ` ≤ 1.

Now we consider the problem (1),(3).

Theorem 3. Let
b∫

t

f∗(s, x)ds < +∞ for a < t < b, x > 0, (10)

and let the condition

f(t, x) sgn x ≥ −(t− a)−αp(t)|x| − q(t) for a < t < b, x ∈ R

be fulfilled, where f∗ is a function, given by the equality (4), and p, q : ]a, b[→
[0, +∞[ are continuous functions such that

να(p) < 1, να(q) < +∞. (11)

Then the problem (1),(3) has at least one solution.

Corollary 4. Let there exist a constant ` < α(1− α) and a continuous
function q : ]a, b[→ [0, +∞[ such that

f(t, x) sgn x ≥ − `

(t− a)2
|x| − q(t) for a < t < b, x ∈ R

and να(q) < +∞. If, moreover, the condition (10) holds, then the problem
(1),(3) has at least one solution.

Theorem 4. Let there exist a continuous function p : ]a, b[→ [0, +∞[
such that

f(t, x)− f(t, y) ≥ −(t− a)−αp(t)(x− y) for a < t < b, x > y,

and the conditions (11) are satisfied, where q(t) ≡ f(t, 0). If, moreover, the
condition (10) holds, then the problem (1),(3) is well-posed.

Corollary 5. Let there exist a constant ` < α(1− α) such that

f(t, x)− f(t, y) ≥ − `

(t− a)2
(x− y) for a < t < b, x > y.
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If, moreover, να(f(·, 0)) < +∞ and the condition (10) holds, then the prob-
lem (1),(3) is well-posed.

For the Eq. (8), Corollary 5 yields

Corollary 6. Let there exist a constant ` < α(1− α) such that

f1(t) ≥ − `

(t− a)2
for a < t < b.

If, moreover, f2(t) ≥ 0 for a < t < b, and να(f0) < +∞, then the problem
(8),(3) is well-posed.

Example 2. Let us consider the differential equation

u′′ = − `

(t− a)2
|u| − (t− a)α−2, (12)

where α ∈ ]0, 1[ and ` is a nonnegative constant. If ` < α(1 − α), then
according to Corollary 5 the problem (12),(3) is well-posed. On the other
hand, it is easy to show that if ` ≥ α/(1 − α), then the problem (12),(3)
has no solution.

The above-constructed example shows that the condition να(p) < 1 in
Theorems 3 and 4 is unimprovable and it cannot be replaced by the condition
να(p) = 1 + ε no matter how small ε > 0 would be. Analogously, the
condition ` < α(1−α) in Corollaries 4–6 cannot be replaced by the condition
` = α(1− α)(1 + ε).
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B. Půža and Z. Sokhadze

OPTIMAL SOLVABILITY CONDITIONS OF THE
CAUCHY–NICOLETTI PROBLEM FOR SINGULAR

FUNCTIONAL DIFFERENTIAL SYSTEMS

Dedicated to the blessed memory of Professor T. Chanturia

Abstract. For the systems of singular functional differential equations the
unimprovable sufficient conditions of solvability of the Cauchy–Nicoletti
problem are established.

îâäæñéâ. ïæêàñèŽîñèæ òñêóùæëêŽèñî-áæòâîâêùæŽèñî àŽêðëèâ-
ĲŽåŽ ïæïðâéâĲæïŽåãæï áŽáàâêæèæŽ çëöæ{êæçëèâðæï ŽéëùŽêæï ŽéëýïêŽ-
áëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽçéŽîæïæ ìæîëĲâĲæ.

2010 Mathematics Subject Classification:
Key words and phrases: Singular functional differential system, the
Cauchy–Nicoletti problem, principle of a priori boundedness, solvability.

Let −∞ < a < b < +∞,

I = [a, b], ti ∈ I, Ii = I \ {ti} (i = 1, . . . , n).

In the interval I we consider a system of functional differential equations
dxi(t)

dt
= fi(x1, . . . , xn)(t) (i = 1, . . . , n) (1)

with the boundary conditions

xi(ti) = 0 (i = 1, . . . , n). (2)

Here every fi is the operator acting from the space of continuous on I n-
dimensional vector functions to the space of functions, Lebesgue integrable
on every closed interval contained in Ii. We are, in the main, interested in
a singular case, in which there exist i ∈ {1, . . . , n} and continuous functions
xk : I → R (k = 1, . . . , n), such that

b∫

a

∣∣fi(x1, . . . , xn)(t)
∣∣ dt = +∞.

(2) are called the boundary conditions of Cauchy–Nicoletti. In the case,
where t1 = · · · = tn, these conditions represent the initial, i.e. the Cauchy
conditions.

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
November 22, 2010.
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I. Kiguradze [4]–[8] has developed technique for a priori estimates of
solutions of one-sided differential inequalities allowing one to investigate the
Cauchy and Cauchy–Nicoletti problems for a singular differential system

dxi(t)
dt

= f0i

(
t, x1(t), . . . , xn(t)

)
(i = 1, . . . , n) (3)

which is a particular case of system (1). The singular problem (3), (2) is
investigated also in [19].

I. Kiguradze and Z. Sokhadze [12], [13], [21] have found the sufficient
conditions of local and global solvability of the Cauchy problem for evolu-
tion singular functional differential systems of type (1) and proved Kneser
type theorem on the structure of a set of solutions of the above-mentioned
problem [14].

Optimal sufficient conditions of solvability of two-point problems of Cau-
chy–Nicoletti type for singular differential equations of second and higher
orders and for linear singular differential systems can be found in [1]–[3],
[9], [11], [15]–[18], [20].

In the case, where fi (i = 1, . . . , n) are not evolution operators, for the
singular functional differential system (1) not only the Cauchy–Nicoletti
problem, but also the Cauchy problem remain little studied. Just that very
case our work is devored to.

Throughout the paper, we adopt the following notation:
R = ]−∞,+∞[ , R+ = [0, +∞[ .
Rn is n-dimensional real Euclidean space.
x = (xi)n

i=1 and X = (xik)n
i,k=1 are the n-dimensional column vector and

n× n-matrix with elements xi and xik ∈ R (i = 1, . . . , n).
r(X) is the spectral radius of the matrix X.
C(I;Rn) is the Banach space of the n-dimensional continuous vector

functions x = (xi)n
i=1 : I → Rn with the norm

‖x‖C = max
{ n∑

i=1

|xi(t)| : t ∈ I
}

.

L(I;R) is the Banach space of the Lebesgue integrable functions y : I →
R with the norm

‖y‖L =

b∫

a

|y(s)| ds.

Lloc(Ii;R) is the space of functions y : Ii → R, Lebesgue integrable on
every closed interval contained in Ii.
Kloc(I × Rm;R) is the set of functions g : I × Rm → R satisfying the

local Carathéodory conditions, i.e., such that g(·, x1, . . . , xn) : I → R is
measurable for any (xk)m

k=1 ∈ Rm, g(t, ·, . . . , ·) : Rm → R, continuous almost
for all t ∈ I and

g∗ρ ∈ L(I;R) for ρ ∈ R+,
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where

g∗ρ(t) = max
{∣∣g(t, x1, . . . , xn)

∣∣ :
m∑

k=1

|xk| ≤ ρ
}

. (4)

Kloc(Ii × Rm;R) is the set of functions g : Ii × Rm → R, such that
g(·, x1, . . . , xm) : I → R is measurable for any (xk)m

k=1 ∈ Rm, g(t, ·, . . . , ·) :
Rm → R, continuous for almost all t ∈ I and

g∗ρ ∈ Lloc(Ii;R) for ρ ∈ R+,

where g∗ρ is the function defined by the equality (4).
Kloc(C(I;Rn); L(I;R)) is the set of continuous operators f : C(I;Rn) →

L(I;R), such that
g∗ρ ∈ L(I;R) for ρ ∈ R+,

where

g∗ρ(t) = sup
{∣∣f(x1, . . . , xn)(t)

∣∣ :
n∑

k=1

∥∥xk

∥∥
C
≤ ρ

}
.

Kloc(C(I;Rn); Lloc(Ii;R)) is the set of operators f : C(I;Rn) →
Lloc(Ii;R), such that

f ∈ Kloc(C(I;Rn); Lloc(J ;R))

for an arbitrary closed interval J contained in Ii.
We investigate the problem (1), (2) in the case, where

fi ∈ Kloc(C(I;Rn); Lloc(Ii;R)) (i = 1, . . . , n). (5)

A vector function (xk)n
k=1 : I → Rn with absolutely continuous compo-

nents xk : I → R (k = 1, . . . , n) is said to be a solution of the system (1) if
it satisfies this system almost everywhere on I. The solution of the system
(1), satisfying the boundary conditions (2), is said to be a solution of the
problem (1), (2).

For an arbitrary δ > 0, we put

χi(t, δ) =

{
0 for t ∈ [ti − δ, ti + δ]
1 for t 6∈ [ti − δ, ti + δ]

and along with (1) consider the functional differential system

dxi(t)
dt

= λχi(t, δ)fi(x1, . . . , xn)(t) (i = 1, . . . , n) (6)

depending on the parameters λ ∈ ]0, 1] and δ > 0.
The following propositions hold.

Theorem 1 (Principle of a Priori Boundedness). Let the condition (5)
be fulfilled and there exist a positive number δ0 and continuous functions
ρi : I → R+ (i = 1, . . . , n), such that

ρi(ti) = 0 (i = 1, . . . , n)
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and for arbitrary δ ∈ ]0, δ0[ and λ ∈ ]0, 1] every solution (xi)n
i=1 of the prob-

lem (6), (2) admits the estimates

|xi(t)| ≤ ρi(t) for a ≤ t ≤ b (i = 1, . . . , n).

Then the problem (1), (2) has at least one solution.

Theorem 2. Let the condition (5) be fulfilled and there exist nonnegative
operators

pi ∈ Kloc(C(I;Rn);Lloc(I;R)) (i = 1, . . . , n),

nonnegative numbers hik, hi (i, k = 1, . . . , n) and nonnegative functions
qik ∈ L(I;R), qi ∈ L(I;R) (i, k = 1, . . . , n), such that for any (xk)n

k=1 ∈
C(I;Rn), almost everywhere on I the inequalities

fi(x1, . . . , xn)(t) sgn
(
(t− ti)xi(t)

) ≤

≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

n∑

k=1

hik‖xk‖C + hi

)
+

+
n∑

k=1

qik(t)‖xk‖C + qi(t) (i = 1, . . . , n)

hold. If, moreover, the matrix H = (hik+‖qik‖L)n
i,k=1 satisfies the condition

r(H) < 1, (7)

then the problem (1), (2) has at least one solution.

For regular systems (1) and (3), the results analogous to Theorem 2 are
contained in [10] and [22].

An important particular case (1) is the differential system with deviating
arguments

dxi(t)
dt

= gi

(
t, x1(τ1(t)), . . . , xn(τn(t)), xi(t)

)
(i = 1, . . . , n), (8)

where

gi ∈ Kloc(Ii × Rn+1;R) (i = 1, . . . , n), (9)

and τi : I → I (i = 1, . . . , n) are measurable functions.
If

fi(x1, . . . , xn)(t) ≡ gi

(
t, x1(τ1(t)), . . . , xn(τn(t)), xi(t)

)
(i = 1, . . . , n),

then the condition (9) ensures the fulfilment of the condition (5). Thus from
Theorem 2 we arrive at the following proposition.

Corollary 1. Let the condition (9) be fulfilled and there exist nonnegative
numbers hik, hi (i, k = 1, . . . , n) and nonnegative functions qik ∈ L(I;R),



151

qi ∈ L(I;R), g0i ∈ Kloc(I × Rn+1;R) (i, k = 1, . . . , n), such that for every
i ∈ {1, . . . , n} the inequality

gi(t, y1, . . . , yn+1) sgn
(
(t− ti)yn+1

) ≤

≤g0i(t, y1, . . . , yn+1)
(
−|yn+1|+

n∑

k=1

hik|yk|+hi

)
+

n∑

k=1

qik(t)|yk|+qi(t) (10)

holds on the set Ii × Rn. If, moreover, the matrix H = (hik + ‖qik‖L)n
i,k=1

satisfies the condition (7), then the problem (8), (2) has at least one solution.

Example 1. Let

µi = max
{
ti − a, b− ti

}
, τi =

{
a for µi = ti − a

b for µi = ti − b
, (11)

hik = 0 for k < i, hik > 0 for k ≥ i. (12)

Consider the differential system

dxi(t)
dt

=
1 + |xi(τi)|

µi
×

×
(
− µixi(t)
|t− ti| +

n∑

k=1

hik|xk(τi)|+ 2
)

sgn(t− ti) (i = 1, . . . , n). (13)

Clearly, for every i ∈ {1, . . . , n} the function

gi(t, y1, . . . , yn+1) ≡ 1 + |yi|
µi

(
− µiyn+1

|t− ti| +
n∑

k=1

hik|yk|+ 2
)

sgn(t− ti)

on Ii × Rn+1 satisfies the inequality (10), where

g0i(t, y1, . . . , yn+1) ≡ 1 + |yi|
µi

, hi = 2,

qik(t) ≡ 0, qi(t) ≡ 0 (i, k = 1, . . . , n).

Moreover, taking into account (12), we have

H =
(
hik + ‖qik‖L

)n

i,k=1
= (hik)n

i,k=1, r(H) = max{h11, . . . , hnn}. (14)

If the inequality (7) is fulfilled, then according to Corollary 1, the problem
(13), (2) has at least one solution. Consider now the case, where inequality
(7) is violated. Then in view of (14), there exists i ∈ {1, . . . , n}, such that

r(H) = hii ≥ 1. (15)

Assume that the problem (13), (2) has in this case a solution (xk)n
k=1, as

well. Then

xi(t) =
1 + |xi(τi)|

µi(2 + |xi(τi)|)
(
2 +

n∑

k=1

hik|xk(τi)|
)
|t− ti| for a ≤ t ≤ b.
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Taking into account (11), (12) and (15), the above equality results in

xi(τi) =
1 + |xi(τi)|
2 + |xi(τi)|

(
2 +

n∑

k=1

hik|xk(τi)|
)
≥ 1 + |xi(τi)|.

The obtained contradiction proves that the problem (13), (2) is solvable iff
the inequality (7) is fulfilled. Consequently, the condition (7) in Theorem 2
and in Corollary 1 is optimal and it cannot be replaced by the condition

r(H) ≤ 1.

Example 2. Consider the differential system

dxi(t)
dt

=−
[

exp
(
|t− ti|−1 +

n∑

k=1

|xk(τk(t))|+ |xi(t)|
)

sgn(t− ti)
]
xi(t)+

+ g1i

(
t, x1(τ1(t)), . . . , xn(τn(t)), xi(t)

)
, (16)

where τk : I → I (k = 1, . . . , n) are measurable functions, and g1i ∈ Kloc(I×
Rn;R) (i = 1, . . . , n) are the functions satisfying the inequality

n∑

i=1

∣∣g1i(t, y1, . . . , yn+1)
∣∣ ≤ ` exp

( n+1∑

k=1

|yk|
)
,

where l = const > 0. Then for any i ∈ {1, . . . , n}, the function

gi(t, y1, . . . , yn+1) ≡

≡ −
[

exp
(
|t− ti|−1 +

n+1∑

k=1

|yk|
)

sgn(t− ti)
]
yn+1 + g1i(t, y1, . . . , yn+1)

on the set Ii × Rn admits the estimate (10), where

g0i(t, y1, . . . , yn+1) ≡ exp
( n+1∑

k=1

|yk|
)
, hik = 0, hi = `,

qik(t) ≡ 0, qi(t) ≡ 0 (i = 1, . . . , n).

Moreover, H = (hik + ‖qik‖L)n
i,k=1 is a zero matrix, and hence r(H) =

0. Thus according to Corollary 1, it follows that the problem (16), (2) is
solvable. On the other hand, it is evident that the system (16) in the case
under consideration is superlinear, and the order of singularity for every
function gi(·, y1, . . . , yn) : I → R at the point ti is equal to infinity, or more
exactly, for an arbitrary natural m we have

b∫

a

|t− ti|m
∣∣gi(t, y1, . . . , yn+1)

∣∣ dt = +∞

if only yn+1 6= 0.
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