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Eightieth Birthday Anniversary of Kusano Takasi

On December 30, 2012 Kusano Takasi, member of the Editorial Board of
our journal, Professor Emeritus at Hiroshima University, Doctor of Science,
became 80 years of age.

T. Kusano was born in a small town Shimabara, Nagasaki Prefecture,
in Kyushu which is one of the four main islands forming the archipelago of
Japan. In 1936 his family moved to Manchuria which was then a puppet
nation made up by the Japanese Government in 1932 as his father took a job
(assistant professor of mathematics) with Changchun Technical University.

His family lived in Changchun for ten years until they were repatriated
to Japan in 1946 after World War II apart from his father who in the end of
1945 was arrested (by mistake) by the Soviet Army as a war criminal and
was taken to Kazakhstan in USSR for forced labor.

In 1951 he left the Shimabara high school with honors and in 1955 he
graduated from the Faculty of Science of the University of Tokyo, majoring
in pure mathematics. Then he was admitted to its Graduate School by



recommendation and began to study differential equations under the super-
vision of Professor Masuo Hukuhara. He remembers quite well that at the
first meeting with his supervisor Professor Hukuhara said to him “We are
now at the dawn of the era of nonlinear differential equations. Don’t forget
that fixed point theorems are one of the most important and useful tools in
the analysis of nonlinear problems”. His research subject was the qualita-
tive theory of second order nonlinear partial differential equations of elliptic
and parabolic types. After having obtained the Master’s degree in 1957 he
went to the Doctor’s course, but in 1958 he had to leave the course halfway
as he was offered the job of lecturer at Ibaraki University. It was in 1965
when he defended his doctoral dissertation submitted to the University of
Tokyo.

After having taught at Ibaraki University (1958-1960), Nagasaki Uni-
versity (1960-1962), Chuo University (1962-1967) and Waseda University
(1967-1969), he was appointed to be Full Professor of Hiroshima Univer-
sity in 1969 and served in Department of Mathematics, Faculty of Science,
for twenty five years since then. In 1970 he changed his research subject
from partial differential equations to ordinary differential equations under
the influence of the oscillation theory created by Professor Ivan Kiguradze,
and organized the seminar on oscillation of nonlinear ordinary differential
equations with or without functional arguments. The seminar encouraged a
number of graduate students to be active specialists in oscillation theory of
differential equations, ordinary or partial. In 1994 he transferred to Fukuoka
University to work for Department of Applied Mathematics, Faculty of Sci-
ence for the last nine years of his career as a university professor. Since
2000, motivated by the work of Professor Vojislav Mari¢, he has been en-
thusiastic about the asymptotic analysis of positive solutions of differential
equations by means of Karamata functions (or regular variation).

His scientific activities during his academic life include invited speeches at
many international conferences on differential equations held in Europe and
the Unites States, services as a member of the editorial board of the journals:
Memoirs of Differential Equations and Mathematical Physics, Funkcialaj
Ekvacioj, Hiroshima Mathematical Journal, Applied Mathematics E-Notes,
and Studies of the University of Zilina (Mathematical Series), and super-
vision of nineteen students who successfully defended their Ph. D theses.
Besides he is a permanent visiting professor of Northeast Normal University.

The main areas of T. Kusano’s scientific investigations are broadly clas-
sified into the following four categories.

(I) Qualitative study of second order elliptic and parabolic par-
tial differential equations:

(i) The construction of entire solutions (solutions defined in the entire

space RN ) and the solvability of exterior boundary value problems

for a class of second order quasilinear elliptic equations. See e.g. [5],

(6], [8]-
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(ii) The study of time change of solutions as functions of the space
variable of the Cauchy problem for a class of second order linear
parabolic equations and systems with unbounded coefficients. See
e.g. [14], [17], [21].

(IT) Oscillation theory of differential equations:

Since 1970 he has studied oscillation properties of differential equations
in hopes of proceeding in the mainstream of oscillation theory created by
F. V. Atkinson and I. T. Kiguradze. The equations considered by him in-
clude both ordinary and partial differential equations with or without func-
tional arguments which can be regarded as generalizations of the Emden—
Fowler equation. Various kinds of equations have been the objects of his
investigations in this direction as listed below.

(i) Ordinary differential equations of generalized Emden—Fowler type in
which the principal parts involve higher order linear differential op-
erators such as (p(t)z™ ")) "™ and (p,,_1 () - -(p1(t) (po(t)x)")- - ).
See e.g. [39], [61], [68].

(ii) Ordinary differential equations of generalized Emden—Fowler type in
which the principal parts involve second order nonlinear differential
operators such as (p(t)|2’|*12’)’.

(a) Half-linear equations [160], [165], [171].

(b) Non-half-linear equations [140], [151], [164].

(iii) Nonoscillatory ordinary differential equations which can be turned
into oscillating systems as a result of introduction of functional ar-
guments. See e.g. [72], [85], [159].

(iv) Ordinary differential equations of neutral type.

(a) First order equations having difference operators of degree 1

[132], [137], [142];
(b) Higher order equations having difference operators of degree 1
[120], [131], [143];

(c¢) Higher order equations having difference operators of higher
degree [148], [163], [166].
(v) Partial differential equations.
(a) Nonlinear harmonic and metaharmonic equations [56], [63],
[120];
(b) Non-elliptic equations [87], [100], [212].

(III) Existence and asymptotic behavior of positive solutions of
nonlinear differential equations:

The following is a record of what he has done in his attempts at acquiring
detailed and precise information about the asymptotic behavior of positive
solutions of differential equations in mathematical physics.



(i) Positive solutions of ordinary differential equations of generalized
Emden-Fowler type. See e.g. [83], [99], [104], [124], [125].

(ii) Positive solutions of second order semilinear elliptic equations in
exterior domains. See e.g. [81], [98], [102].

(iii) Positive entire solutions of second order semilinear and quasilinear
elliptic equations. See e.g. [107], [111], [157].

(iv) Positive entire solutions of higher order semilinear and quasilinear
elliptic equations. See e.g. [117], [156], [172].

(v) Positive entire solutions of Monge-Ampere equations. See e.g. [135],
[139], [141].

(IV) Asymptotic analysis of positive solutions in the framework
of regular variation:

Inspired by the book of V. Mari¢ entitled “Regular Variation and Differ-
ential Equations” published in 2000, he started studying theory of regular
variation in the sense of Karamata and came before long to find a num-
ber of problems on differential equations that could be solved by means of
regularly varying functions. What he has done in this regard is as follows.

(i) The construction of regularly varying solutions for various types of
linear and nonlinear ordinary differential equations with or without
functional arguments. See e.g. [218], [229], [235].

(ii) The introduction of the concept of generalized regularly varying
functions and its application to the analysis of asymptotic behavior
of positive solutions of more complicated differential equations than
those considered in (i). See e.g. [223], [225].

(iii) The detection of the fact that if one’s attention is restricted to gener-
alized Emden—Fowler equations with regularly varying coefficients,
then thorough and complete information can be obtained about the
existence and asymptotic behavior of all possible regularly varying
solutions of the equations under consideration. See e.g. [237]- [239)].

We cordially wish Professor Kusano Takas8i good health, long life and
new successes in his scientific activities.

R. P. Agarwal, N. Izobov, I. Kiguradze,
T. Kiguradze, A. Lomtatidze, N. Partsvania,
M. Perestyuk, N. Rozov, M. Tvrdy, N. Yoshida
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1. INTRODUCTION

Since the paper by Szep [32], the theory on the existence of weak solutions
to differential equations in Banach spaces has become popular. We quote
the contributions of Cramer, Lakshmikantham and Mitchell [6] in 1978 and
more recently by Bugajewski [5], Cichon [9], [11], Cichon and Kubiaczyk
[10], Mitchell and Smith [23], and O’Regan [24], [25], [26]. Motivated by
the paper of Cichon [9], D. O’'Regan [30] investigated the existence of weak
solutions to the following inclusion which was modelled off a first order
differential inclusion [7], [8], [9]

x(t) € xo + /G(s,x(s)) ds, te€0,T]; (1.1)
0

here G: [0,T] x E — 2F and zy € E with E a real reflexive Banach space.
The proofs involve a Arino-Gautier—Penot type fixed point theorem for
multivalued mappings and the applications depend heavily upon the re-
flexiveness of the space E. In this paper, we establish existence results for
the Volterra integral equation (1.1) in the case where E is nonreflexive.
Our approach relies on the concept of convex-power condensing operators
with respect to a measure of weak noncompactness. We note that Sun and
Zhang [31] introduced the definition of a convex-power condensing operator
with respect to the Kuratowski measure of noncompactness for single valued
mappings and proved a fixed point theorem which extended the well-known
Sadovskii’s fixed point theorem and a fixed point theorem in Liu et al. [22].
[35], G. Zhang et al. established some fixed point theorems of Rothe and
Altman types about convex-power condensing single valued operators with
respect to the Kuratowski measure of noncompactness. These results were
applied to a differential equation of first order with integral boundary condi-
tions. In this paper we introduce the concept of a convex-power condensing
multivalued operator with respect to a measure of weak noncompactness.
We also prove some fixed point principles for this type of operator. Our
fixed point results are not only of theoretical interest, but we discuss new
applications, namely the existence of solutions to integral inclusions with
lack of weak compactness. We illustrate this fact by deriving an existence
theory for (1.1) in the case where E is nonreflexive.

For the remainder of this section we gather some notations and prelim-
inary facts. Let X be a Banach space, let B(X) denote the collection of
all nonempty bounded subsets of X and W(X) the subset of B(X) consist-
ing of all weakly compact subsets of X. Also, let B, denote the closed ball
centered at 0 with radius r.

In our considerations the following definition will play an important role.

Definition 1.1 ([2]). A function ¢: B(X) — R is said to be a measure
of weak noncompactness if it satisfies the following conditions:
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(1) The family ker(¢p) = {M € B(X) : (M) = 0} is nonempty and
ker () is contained in the set of relatively weakly compact sets of X.

(2) My € My = (My) < ¢p(Ma).

(3) v¥(co(M)) = (M), where ¢o(M) is the closed convex hull of M.
(4) v(AMy + (1 — AN Ms) < Mp(Mq) + (1 — M)p(My) for A € [0,1].
(5) If

) (My)n>1 is a sequence of nonempty weakly closed subsets of X
with M; bounded and M; D My D --- D M, DO --- such that

lim ¥(M,) =0, then M, := (| M, is nonempty.
n—oo n=1

The family ker described in (1) is said to be the kernel of the measure
of weak noncompactness 1. Note that the intersection set M, from (5)
belongs to ker v since (M) < (M) for every n and lim (M,) = 0.

Also, it can be easily verified that the measure 1 satisfies
(MY) = (M),

where M"Y is the weak closure of M.
A measure of weak noncompactness v is said to be regular if

(M) =0 if and only if M is relatively weakly compact.
subadditive if

Y(My + Ma) < (My) + p(Ma), (1.2)
homogeneous if
YAM) = [A[p(M), AER, (1.3)
set additive (or have the mazimum property) if
(M1 U Mz) = max(¢(My), (Mz)). (1.4)

The first important example of a measure of weak noncompactness has
been defined by De Blasi [13] as follows:

w(M) = inf{r > 0: there exists W € W(X) with M C T/V+BT}7

for each M € B(X).

Notice that w(.) is regular, homogeneous, subadditive and set additive
(see [13)).

The following results are crucial for our purposes. We first state a theo-
rem of Ambrosetti type (see [23, 20] for a proof).

Theorem 1.1. Let E be a Banach space and let H C C([0,T],E) be
bounded and equicontinuous. Then the map t — w(H(t)) is continuous on
[0,T] and

w(H) = sup w(H(t)) =w(HI[0,T)),
te[0,T]
where H(t) ={h(t): h€ H} and H[0,T]= | {h(t): h€ H}.
te(0,T]

The following auxiliary result will also be needed.
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Lemma 1.1 ([31]). If H C C([0,T], E) is equicontinuous and xo €
C([0,T], E), then co(H U{xo}) is likewise equicontinuous in C([0,T], E).

In what follows, we shall recall some classical definitions and results re-
garding multivalued mappings. Let X and Y be topological spaces. A multi-
valued map F': X — 2Y is a point to a set function if for each x € X, F(x) is
a nonempty subset of Y. For a subset M of X we write F(M) = |J F(x)

zeM
and F~Y (M) = {z € X : F(z) N M # @}. The graph of F is the set
Gr(F)={(z,y) € X xY : y € F(x)}. We say that F is upper semicontin-
uous (uw.s.c. for short) at x € X if for every neighborhood V of F(z) there
exists a neighborhood U of z with F(U) C V (equivalently, F : X — 2Y is
w.s.c. if for any net {z,} in X and any closed set B in Y with z, — z¢g € X
and F(z,) N B # @ for all a, we have F(z9) N B # &). We say that
F: X — 2V is upper semicontinuous if it is upper semicontinuous at every
x € X. The function F is lower semicontinuous (l.s.c.) if the set F~1(B) is
open for any open set Bin Y . If F'is l.s.c. and u.s.c., then F' is continuous.

If Y is compact, and the images F(z) are closed, then F' is upper semi-
continuous if and only if F' has a closed graph. In this case, if Y is compact,
we find that F' is upper semicontinuous if z,, — z, y, — vy, and y,, € F(z,),
together imply that y € F(z). When X is a Banach space we say that
F: X — 2% is weakly upper semicontinuous if F' is upper semicontinuous
in X endowed with the weak topology. Also, F': X — 2% is said to have
weakly sequentially closed graph if the graph of F' is sequentially closed
w.r.t. the weak topology of X. In Section 4 we present fixed point theorems
for multivalued convex-power maps with respect to a measure of noncom-
pactness.

Now, we recall the following extension of the Arino—Gautier—Penot fixed
point theorem for multivalued mappings. For a proof we refer the reader to
[30, Theorem 2.2.].

Theorem 1.2. Let X be a metrizable locally convex linear topological
space and let C be a weakly compact, convex subset of X. Suppose F: C —
C(C) has a weakly sequentially closed graph. Then F has a fized point; here
C(C) denotes the family of nonempty, closed, convex subsets of C.

In what follows, let X be a Banach space, C' a nonempty closed convex
subset of X, F': C — 2¢ a multivalued mapping and zo € C. For any
M C C we set

PO (M) = F(), FO5)(31)=F (5 (F0=50 (3) U {z} ) )
forn=2,3,....

Definition 1.2. Let X be a Banach space, C' a nonempty closed convex
subset of X and ¢ a measure of weak noncompactness on X. Let F': C —
2¢ be a bounded multivalued mapping (that is it takes bounded sets into
bounded ones) and xg € C. We say that F is a - convex-power condensing
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operator about zg and ng if for any bounded set M C C with ¢(M) > 0
we have

G(FTo (M) < (M) (1.5)
Obviously, F': C' — 2¢ is 1/-condensing if and only if it is 1- convex-power
condensing operator about zy and 1.

2. FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS RELATIVE
TO THE WEAK TOPOLOGY

Theorem 2.1. Let X be a Banach space and v be a regular and set addi-
tive measure of weak noncompactness on X. Let C' be a nonempty closed con-
vex subset of X, xg € C and ng be a positive integer. Suppose F': C — C(C)
is W -convezr-power condensing about xo and ng. If F' has weakly sequentially
closed graph and F(C) is bounded, then F has a fized point in C.

Proof. Let
F={ACC, co(A)=A, zg€ Aand F(z) € C(A) for allz € A}.

The set F is nonempty since C € F. Set M = (| A. Now we show that
AeF
for any positive integer n we have

P(n) M= (F("””O)(M) U {330}) .

To see this, we proceed by induction. Clearly, M is a closed convex subset
of C and F(M) C M. Thus M € F. This implies ¢o(F (M) U {zo}) C M.
Hence F(co(F(M) U {xzo})) C F(M) C co(F(M) U {z0}). Consequently,
co(F(M)U{xo}) € F. Hence M C co(F(M)U{zo}). As a result co(F(M)U
{z0}) = M. This shows that P(1) holds. Let n be fixed and suppose P(n)
holds. This implies F("+120)(M) = F(eo (F™=0) (M) U {zo}) = F(M).
Consequently,

@ (F("“’””O)(M) U {zo}) = o (F(M) U {zo}) = M. (2.1)
As a result
@ (F““Wo)(M) U {xo}) =M. (2.2)

Using the properties of the measure of weak noncompactness, we get
(M) = (7 (F ) (M) U fo} ) ) = w(F0=) (1)),

which yields that M is weakly compact. Since F': M — 2™ has weakly
sequentially closed graph, the result follows from Theorem 1.2. (]

As an easy consequence of Theorem 2.1 we obtain the following sharp-
ening of [30, Theorem 2.3].

Corollary 2.1. Let X be a Banach space and b be a regular and set
additive measure of weak noncompactness on X. Let C be a nonempty closed
convezx subset of X. Assume that F: C — C(C) has weakly sequentially
closed graph with F(C) bounded. If F is 1p-condensing, i.e. (F(M)) <
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(M), whenever M is a bounded non-weakly compact subset of C, the F
has a fized point.

Remark 2.1. Theorem 2.1 is also an extension of its corresponding results
n [28], [29].

Lemma 2.1. Let F: X — 2% be convex-power condensing about xo and
ng (no s a positive integer) with respect to a regular and set additive measure
of weak moncompactness 1. Let F: X — 2X be the operator defined on X
by F(z) = F(z+z0) — 0. Then, F is convez-power condensing about 0 and
ng with respect to . Moreover, F has a fixed point zfﬁ does.

Proof. Let M be a bounded subset of X with ¢/(M) > 0. We claim that for
all integer n > 1, we have

F®O (M) € FO520) (M + 9) — @o. (2.3)
To see this, we shall proceed by induction. Clearly,
FEO(M) = F(M) = F(M + x0) — 20 = FO%) (M 4 30) — xo. (2.4)
Fix an integer n > 1 and suppose (2.3) holds. Then

FrO (M) U {0} C e (FW%)(M +20) U {xo}) —zo.  (2.5)
Hence
@ (F(” (M) U {o}) ( F00) (M + 20) U {xo}) a0 (2.6)
As a result
FO10 () = F (2o (FOO () {0}) )

D

v
|

(
( (F(" #0) (M + ) U {xo})
=F (co (F(" 20) (M 4 x0) U {x0}>
FOHL20) (M 4 20) — .

v
|

This proves our claim. Consequently,

P(FMO (M) < p(FMom0) (M + zo) — 2) <
< ((Fomo) (M + 20) < (M + x0) < p(M).

This proves the first statement. The second statement is straightfor-
ward. O

Theorem 2.2. Let X be a Banach space and let 1 be a reqular and set
additive measure of weak noncompactness on X. Let @ and C be closed,
convex subsets of X with Q C C. In addition, let U be a weakly open subset
of Q with F(UY) bounded and xo € U. Suppose F: X — 2% is 1p-power-
conver condensing map about xy and ng (ng s a positive integer). If F has



24 Ravi P. Agarwal, Donal O’Regan, and Mohamed-Aziz Taoudi

a weakly sequentially closed graph and F(x) € C(C) for all x € UY, then
either
F has a fized point, (2.7)

or
there is a point v € 0QU and X € (0,1) with u € AFy; (2.8)

here OqU is the weak boundary of U in Q.

Proof. By replacing F,Q,C and U by ﬁ7Q — x9,C — 29 and U — xqg re-
spectively and using Lemma 2.1, we may assume that 0 € U and F is
-power-convex condensing about 0 and ng. Now suppose (2.8) does not
occur and F' does not have a fixed point on U (otherwise we are finished
since (2.7) occurs). Let

M:{J;EW: a:e)\Fxforsome)\E[O,l}}.

The set M is nonempty since 0 € U. Also, M is weakly sequentially closed.
Indeed, let (z,) be the sequence of M which converges weakly to some
x € U¥ and let (\,) be a sequence of [0, 1] satistying ,, € A, F'z,,. Then for
each n there is a z, € Fz, with x,, = \,z,. By passing to a subsequence
if necessary, we may assume that (\,) converges to some A € [0,1] and
An # 0 for all n. This implies that the sequence (z,) converges to some
z € UV with = Az. Since F has a weakly sequentially closed graph,
then z € F(z). Hence © € AFz and therefore € M. Thus M is weakly
sequentially closed. We now claim that M is relatively weakly compact.
Suppose (M) > 0. Clearly,

M C co(F(M)U{0}). (2.9)
By induction, note for all positive integers n we have
M C co (FUO (M) U {0}). (2.10)
Indeed, fix an integer n > 1 and suppose (2.10) holds. Then
F(M)CF (w (F("’O)(M) U {0})) = F(n 1.0 (pp). (2.11)
Hence
co(F(M)U{0}) C co (F<"+1»0>(M) U {0}) . (2.12)

Combining (2.9) and (2.12), we arrive at

M C co (FU 10 (a1) U {0}).
This proves (2.10). In particular, we have

M C co (F(”O’O)(M) U {o}) .
Thus

)

() < ¢ (o (FO M) U{0}) ) = w(F(D) < $(0),  (2.13)
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which is a contradiction. Hence ¢(M) = 0 and therefore M* is weakly
compact. This proves our claim. Let now 2 € M¥. Since M is weakly
compact, then there is a sequence (x,) in M which converges weakly to
x. Since M is weakly sequentially closed, we have 2 € M. Thus Mv =
M. Hence M is weakly closed and therefore weakly compact. From our
assumptions we have M N JdoU = @. Since X endowed with the weak
topology is a locally convex space, then there exists a weakly continuous
mapping p: U — [0, 1] with p(M) =1 and p(dqU) = 0 (see [15]). Let

F v
Ty {POF@), 2eT7
0, reX\Uv.
Clearly, T: X — 2% has a weakly sequentially closed graph since I does.
Moreover, for any S C C we have
T(S) C co(F(S) U{0}).
This implies that

T20(8) = T(ea(T(5) U {0})) € T(ea(F(S) U {0})) <
C E(F(@(F(S) u{oh) U {o})) = 2o(F0(S) U {0}).

By induction,
700 (5) =T (ca(T" 9 (8) U {0})) € T (eo(F"~0(S) U {0})) €
C o (F (co(F" 10 ($) U {0}) U {0}) ) = ao(F™O(S) U {0}),

for each integer n > 1. Using the properties of the measure of weak non-
compactness, we get

YT (8)) < (ca(FT0(S)U{0})) = p(Fo0(89)) < (S), (2.14)

if 1(S) > 0. Thus T: X — 2% has a weakly sequentially closed graph and
T(x) C C(C) for all z € C. Moreover, T is 1)-power-convex condensing
about 0 and ng. By Theorem 2.1 there exists z € C such that w € Tx. Now
x € U since 0 € U. Consequently, z € p(x)F(x) and so x € M. This implies
p(z) =1 and so x € F(x). O

Now we present a fixed point theorem of Furi—Pera type for power-convex
condensing multivalued mappings with weakly sequentially closed graph.

Theorem 2.3. Let X be a Banach space and let i) be a regular and set
additive measure of weak noncompactness on X. Let C be a closed convex
subset of X and Q a closed convexr subset of C with F(Q) bounded and
0 € Q. Also, assume F: X — 2% has a weakly sequentially closed graph
and is Y-power-convex condensing about 0 and ng (ng is a positive integer)
and F(z) € C(C) for all x € Q. In addition, assume that the following
conditions are satisfied:
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(i) there exists a weakly continuous retraction r: X — @Q, with r(D) C
co(D U {0}) for any bounded subset D of X and r(z) = z for all
rE€Q;

(i) there exists a § > 0 and a weakly compact set Qs with Qs = {x €
X d(z,Q) <0} € Qs; here d(x,y) = [lz —y|;

(iii) for any Q. = {z € X : d(2,Q) < €, 0 < e < &}, if {(z5,2))}52,
is a sequence in Q x [0,1] with x; — x € 0, Q, A\j — A and = €
AF(2),0 < X < 1, then \jF(z;) C Q for j su]ﬁcz’ently large; here
O0q, Q is the weak boundary of Q relative to .

Then F has a fized point in Q.

Proof. Consider B = {z € X : z € Fr(z)}. We first show that B # .
To see this, consider Fr: C — C(C). Clearly Fr has a weakly sequentially
closed graph, since F' has a weakly sequentially closed graph and r is weakly
continuous. Now we show that F'r is 1-power-convex condensing map about
0 and ng. To see this, let A be a bounded subset of C' and set A’ = ¢o(A U
{0}). Then, using assumption (i) we obtain

(Fr)t0(4) € F(A),

(Fr)9(4) = Fr (e ()19 () U {0}) ) <
C Fr(co(F (A’)U{O})) F(co(F(A)u{0})) =
= F0(4)),

and by induction,
(Fr)™0(4) = Fr (e ((Fr)"= 10 (4) U{0}) ) €
C Fr (@ (F(”O*LO) (A) U {0})) c
C F (e (Fro 194y ufo})) =
= Fo0 (4%,
Thus
b ()0 (4)) < g (P (4)) < p(A) = h(A),

whenever ¥(A) # 0. Invoking Theorem 2.1 we infer that there exists y € C
withy € Fr(y). Thusy € B and B # &. In addition B is weakly sequentially
closed, since F'r has a weakly sequentially closed graph. Moreover, we claim
that B is weakly compact. To see this, first notice

BC Fr(B) C F(B) = F"9(B),
where B’ =¢o(B U {0}). Thus
B C Fr(B) C Fr(F(B")) C F(c3 (F(B') U{0}) = F29(B),
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and by induction
B C Fr(B) C Fr (F("O*LO)(B’)) c
C F (a0 (FI=20(B) U{0})) = F0(B),
Now if ¢)(B) # 0, then

W(B) < Y(FMO(B) < (B') = v(B),

which is a contradiction. Thus, ¢(B) = 0 and so B is relatively weakly
compact and therefore F'r(B) is relatively weakly compact, since r is weakly
continuous and F' has a sequentially closed graph. Now let z € B*. Since
Bv is weakly compact then there is a sequence (,,) of elements of B which
converges weakly to some z. Since B is weakly sequentially closed then
x € B. Thus, B¥ = B. This implies that B is weakly compact. We now
show that BNQ # &. Suppose BNQ = &. Then, since B is weakly compact
and @ is weakly closed we have from [16] that d(B, Q) > 0. Thus there exists
€, 0 <e<d, with Q. N B =0; here Q. = {x € X : d(z,Q) < ¢}. Now Q.
is closed convex and 2. C @s. From our assumptions it follows that . is
weakly compact. Also since X is separable then the weak topology on €.
is metrizable [14], [34], let d* denote the metric. For ¢ € {0,1...}, let

U = {x €. d"(z,Q) < ;}

For each ¢ € {0,1...} fixed, U; is open with respect to d and so U; is weakly
open in Q.. Also, UX=Uf= {xEQE s d*(z,Q) Se/i} and 0q U; = {xEQE :
d*(z,Q) :e/i}. Keeping in mind that Q. N B = @&, Theorem 2.2 guarantees
that there exists y; € 9o U; and \; € (0,1) with y; € A\ Fr(y;). We now
consider D = {z € X : x € AFr(z) for some X € [0,1]}.

First notice

D C Fr(D) U {o}.
Thus
D C Fr(D)U {0} C Fr (@ (Fr(D)U {0})) U{0} = (Fr)9 U {0},
and by induction
D C Fr(D)U{0} C

C Fr (w ((Fr)(”‘)_l’o)(D) U {o}) ) U {0} = (Fr)™9 U {0},

Consequently,
(D) < ((Fr)"e 0 U {0}) <o ((Br)o0).

Since Fr is 1-convex-power condensing about 0 and ng then ¢(D) = 0 and
so D is relatively weakly compact.

The same reasoning as above implies that D is weakly compact. Then, up
to a subsequence, we may assume that A; — A\* € [0,1] and y; — y* € 9q.U;.
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Since F' has a weakly sequentially closed graph then y* € A*Fr(y*). Notice
NFr(y*) € Q since y* € 9o U;. Thus \* # 1 since BN Q = &. From
assumption (iii) it follows that A\;Fr(y;) C Q for j sufficiently large, which
is a contradiction. Thus B N Q # &, so there exists € Q with x € Fr(x),
ie. z € Fux. O

Remark 2.2. In Theorem 2.3, we need F': X — 2% 1/-convex-power con-
densing about 0 and ng. However, the condition F': X — 2% has weakly
sequentially closed graph can be replaced by F: Q — 2% has weakly se-
quentially closed graph.

3. EXISTENCE RESULTS

In this section we shall discuss the existence of weak solutions to the
Volterra integral inclusion

x(t) € xo + /G(s,x(s))ds, t€[0,T]; (3.1)
0

here G: [0,7] x E — C(FE) and zo € E with E is a real Banach space.
The integral in (3.1) is understood to be the Pettis integral and solutions
to (3.1) will be sought in C([0,T], E).

This equation will be studied under the following assumptions:

(i) for each continuous function z: [0,T] — FE there exists a scalarly
measurable function v: [0,T] — E with v(¢t) € G(t,z(t)) a.e. on
[0,T] and v is Pettis integrable on [0, T7;

(ii) for any r > 0 there exists 6, € L'[0,7] with |G(t,u)| < 0,.(t) for
a.e. t € [0,T] and all uw € E with |z| < r; here |G(t,u)| = sup{|w]| :
we G(t,u)};

(iii) there exists a € L'[0,T] and @: [0, +00) — (0, +00) a nondecreasing
continuous function such that |G(s,u)| < a(s)f(|u|) for a.e. s €
[0,t], and all © € E, with

oo

a(s)ds</9‘fjj);

St~

|zo|

(iv) there is a constant 7 > 0 such that for any bounded subset S of E
and for any t € [0,T] we have

w(G([0,t] x S)) < Tw(S);

(v) if (zy,) is a sequence of continuous functions from [0, 7] into E which
converges weakly to z and if (v,) is a sequence of Pettis integrable
functions from [0,7] into E such that v,(s) converges weakly to
v(s) and v,(s) € G(s,zn(s)) for a.e. s € [0,T], then v is Pettis
integrable with v(s) € G(s,z(s)) for a.e. s € [0,T].
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Theorem 3.1. Let E be a Banach space and suppose (1)—(iv) hold. Then
(3.1) has a solution in C([0,T], E).

Proof. Define a multivalued operator
F:C([0,T],E) — C(C([0,T], E)). (3.2)
by letting
t

Fx(t) = {:co + /v(s) ds: v: [0,T] — E Pettis integrable with
0

u(t) € G(t,z(t)) ace. t € [O,T]}. (3.3)

We first show that (3.2)—(3.3) make sense. To see this, let z € C([0,T], E).

In view of our assumptions there exists a Pettis integrable v: [0,T] — E

with v(t) € G(t,z(t)) for a.e. t € [0,7]. Thus F is well defined. Let
t

u(t) = z9 + [v(s)ds. To see that u € C([0,T], E) first notice that there

0
exists r > 0 with |y| = sup |z(t)] < r. From assumption (iii) it readily

follows that there exists 6, € L'[0,T] with
|G(t,z(t))] < 6,.(t) for a.e. t €[0,T]. (3.4)

Let ¢, t' € [0,T] with ¢t < ¢. Without loss of generality assume u(t) —
u(t') # 0. Invoking the Hahn-Banach theorem we deduce that there exists
¢ € E* (the topological dual of F) with |¢| = 1 and |u(t) — u(t')| = ¢(u(t) —
u(t")). Thus

/ #

ult) — u(t')] = ¢< [ ds) < / 0, (s) ds.

Consequently, u € C([0,T], E). Our next task is to show that F' has closed
(in C([0,T], E)) values (note F' has automatically convex values). Let z €
C([0,T),E). Suppose w, € Fz, n = 1,2,.... Then there exists Pettis
integrable v,,: [0,T] — E, n = 1,2,... with v,(s) € G(s,z(s)) ae. s €
[0,T]. Suppose

wn () — w0 + / o(s)ds = w(t) in C(0,T], E). (3.5)

Fix t € (0,7) and ¢ € E*. Then ¢(v,,) — ¢(v) in L[0,#] s0 ¢(v,,) — ¢(v)
in measure. Thus there exists a subsequence S of integers with

d(vn(s)) — ¢(v(s)) for a.e. s€[0,t] (as n— oo in 5). (3.6)
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Now since vy, (s) € G(s,z(s)) for a.e. s € [0,¢] and since the values of G
are closed and convex (so weakly closed) we have v(s) € G(s,x(s)) for a.e.
s € [0,t]. Thus w € Fz and so F has closed (in C([0,T], E)) values. Now let

C = {x € O([0,T],E) : |a(t)] < b(t) for t € [0,T) and
() — 2(s)| < |b(t) — b(s)| for ¢, s € [o,T]},

where

b(t):I_1<ja(s)ds> and I(z) = Z %
0

Notice C is a closed, convex, bounded, equicontinuous subset of C([0,T7], E)
with 0 € C. Let F be as defined in (3.2)-(3.3). We claim that F(C) C C.
To see this take uw € F(C). Then there exists y € C with v € Fy and

[zol

¢
there exists a Pettis integrable v: [0,T] — E with u(t) = zo + [v(s)ds
0

and v(t) € G(t,y(t)) for a.e. ¢t € [0,T]. Without loss of generality, assume
u(s) # 0 for all s € [0,7]. Then there exists ¢5 € E* with |¢s] = 1 and
¢s(u(s)) = |u(s)|. Consequently, for each fixed ¢t € [0, 7], we have

[u(®)] = ¢e(u(t)) < |wol + /a(S)f)(ly(S)\)ds <
0

< |wo| +/a(s)9(b(s)) ds = |zo| + /b’(s) ds = b(t),
0 0
since » ) )
o) = /a(x) dx.
o 0

Next suppose t, t’ € [0,T] with ¢ > ¢'. Without loss of generality, assume
u(t) —u(t’) # 0. Then there exists ¢ € E* with |¢| = 1 and ¢(u(t) —u(t')) =
|u(t) — u(t')|. Consequently,

Ju(t) — u(t')| < / a(s)0(Jy(s)) ds <

t t
< / a(s)0(|b(s)|) ds = / V(s)ds = b(t) — b(t').
t t

Thus, u € C. This proves our claim. Our next task is to show that F' has
a weakly sequentially closed graph. To see this, let (z,,y,) be a sequence



Fized Point Theory for Multivalued Weakly Convex-Power Condensing Mappings . . . 31

in C x C with z,, — z, y, — y and y,, € Fx,. Then for each t € [0,T] we
have

Yn(t) = zo + /vn(S) ds (3.7)
0

with v,: [0,T] — E, n = 1,2,... Pettis integrable and v,(s) € G(s,z,(s))
a.e. s € [0,T]. Recall [23], since C is equicontinuous, that z, — =z if
and only if x,(¢t) — x(¢) for each t € [0,7] and y, — y if and only if
yn(t) — y(t) for each t € [0,T). Fix ¢t € [0,T]. Since x,(s) — z(s) for each
s € [0,¢t], then S := {x,(s) : n € N} is a relatively weakly compact subset
of E for each s € [0,¢]. Using the fact that the De Blasi measure of weak
noncompactness is regular we get w(S) = 0. From assumption (iv) it follows
that w(G([0,¢] x S) = 0. Keeping in mind that v,(s) € G(s,z,(s)) for a.e.
s € [0,t] we obtain

{vn(s) : ne N} C G([0,¢] x S)

for a.e. s € [0,t]. Hence w({vn(s) : n € N}) = 0 for a.e. s € [0,¢].
This implies that the set {v,(s) : n € N} is relatively weakly compact
for a.e. s € [0,t]. Hence, by passing to a subsequence if necessary, we
may assume that the sequence v,(s) is weakly convergent in E for a.e.
s € ]0,¢t]. Let v(s) be its weak limit. From our assumptions it follows that
v: [0,T] — E is Pettis integrable and v(s) € G(s,z(s)) for a. e. s € [0,¢].
The Lebesguev Dominated Convergence Theorem for the Pettis integral [18,

¢
Corollary 4] implies for each ¢ € E* that ¢(y,(t)) — ¢(zo + [v(s)ds) i.e.
0
¢
yn(t) = xo + [ v(s)ds. We can do this for each ¢ € [0,T]. Consequently,
0

t
y(t) = zo + [v(s)ds € Fu(t) for each ¢ € [0,T], i.e. y € Fx. Now we show
0
that there is an integer ng such that F' is w-power-convex condensing about
0 and ng. To see this notice, for each bounded set H C C and for each
t € [0,T], that
F(H)(t) C a9+ tco(G([0,t] x H[0,1])). (3.8)

Using the properties of the weak measure of noncompactness we get

w(FSO(H)(1) = w(F(H)(1) <
< tw (@ (G ([0, 1] x H[0,1)))) < tw(G([0,1] x H[0,]) < trw(H[0,1]).

Theorem 1.1 implies (since H is equicontinuous) that

w(FYO (H)(t)) < trw(H). (3.9)
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Since F19) (H) is equicontinuous, it follows from Lemma 1.1 that F'(:9) (H)
is equicontinuous. Using (3.9) we get

w(FO(H)(t) =

= w({xo + /tv(s) ds: v(s) € G(s,z(s)), « € co(FO(H) U {0})}> <
0

<w | v(s)ds: v(s) € G(s,a(s)), x € o(FEI(H)U{0}) ¢ ) =
() )

_ w({ O/U(s) ds: v(s) € G(s,2(s)), @ € v})

where V = co(F0 (H) U {0}). Fix t € [0,T]. We divide the interval [0, ¢]
intom parts 0 = tg < t; < --- < t,, = t in such a way that At; =¢;,—t;_1 =

L i=1,...,m. For each x € V and for each v(s) € G(s,z(s)) we have
/ dS*Z/ dsEZAtco{v ti_ 1,ti]}g
0 =1,
c ZAti@<G([ti,1, ] % V([tior, ]))).
i=1
Using again Theorem 1.1 we infer that for each ¢ = 2,...,m there is a
8; € [ti—1,t;] such that
sup  w(V(s)) = w(V[ti—1,t:]) = w(V(s;)). (3.10)
s€[ti—1,t:]
Consequently,

w{ jv(s)ds: z e v} < iAtiw(co(G([ti_l, ti] x V([tie1, ]))) <
0 =1

<7y Atw(@(V([tioi,ti])) < TZAt w(

=1
On the other hand, if m — oo then
m t
S Atw(V((s:) — / w(V(s)) ds. (3.11)
=1 0

Using the regularity, the set additivity, the convex closure invariance of the
De Blasi measure of weak noncompactness together with (3.9) we obtain

w(V(s)) = w(FYO(H)(s)) < stw(H) (3.12)
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and therefore

t
2
/w(V(s)) ds < STo w(H). (3.13)
0
As a result
2,0 (1t)*
w(FEO(H)(t)) < 5~ w(H). (3.14)
By induction we get
0) (rt)"
w(FTO(H)(t)) < ~——w(H). (3.15)
n!
Invoking Theorem 1.1 we obtain
T n
w(FTO () < (Tn,) w(H). (3.16)
Since nlirgo (Tz!)n = 0, then there is a ng with % < 1. This implies
w(F"0(H)) < w(H). (3.17)
Consequently, F' is w-power-convex condensing about 0 and ng. The result
follows from Theorem 2.1. O

4. MULTIVALUED CONVEX-POWER MAPS WITH RESPECT TO A
MEASURE OF NONCOMPACTNESS

In this section we shall prove some fixed point theorems for multivalued
mappings relative to the strong topology on a Banach space. By a measure
of noncompactness on a Banach space X we mean a map a: B(X) — R,
which satisfies conditions (1)—(5) in Definition 1.1 relative to the strong
topology instead of the weak topology. The concept of a measure of non-
compactness was initiated by the fundamental papers of Kuratowski [21]
and Darbo [12]. Measures of noncompactness play a very important role in
nonlinear analysis, namely in the theories of differential and integral equa-
tions. Specifically, the so-called Kuratowski measure of noncompactness
[21] and Hausdorfl (or ball) measure of noncompactness [3] are frequently
used. We say that a bounded multivalued mapping F': C — 2¢, defined on
a nonempty closed convex subset C' of X, is a a-convex-power condensing
operator about zy and ng if for any bounded set M C C with a(M) > 0
we have

a(FMo20) (M) < a M). (4.1)
Clearly, F: C — 2¢ is a-condensing if and only if it is a- convex-power
condensing operator about zy and 1. We first state the following result:

Theorem 4.1. Let X be a Banach space and o be a reqular and set
additive measure of noncompactness on X. Let C be a nonempty closed
convex subset of X, xg € C' and ng be a positive integer. Suppose F': C —
C(C) is a-conver-power condensing about o and ng. If F has a closed graph
with F(C) bounded then F has a fized point in C.
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Proof. Let
F= {A C C, @(A) = A, x9 € Aand F(z) € C(A) for all z € A}.
The set F is nonempty since C' € F. Set M = [\ A. The reasoning in

AeF
Theorem 2.1 shows that for all integer n > 1 we have:
M =zo(FM™™) (M) U {zo}) (4.2)

Using the properties of the measure of noncompactness we get
a(M) = a(@(F(no,wo)(M) U {mo})) =« (F(no,zo)(M)> ’

which yields that M is compact. Since F': M — 2M has a closed graph
then F' is upper semi-continuous. The result follows from the Bohnenblust—
Karlin fixed point theorem [4]. O

As an easy consequence of Theorem 4.1 we obtain the following result.

Corollary 4.1. Let X be a Banach space and o be a reqular and set
additive measure of moncompactness on X. Let C be a nonempty closed
convex subset of X. Assume that F: C — C(C) has a closed graph with
F(C) bounded. If F is a-condensing, i.e. a(F(M)) < a(M), whenever M
is a bounded non-compact subset of C, then F' has a fized point.

Lemma 4.1. Let F': X — 2% be a-convez-power condensing about x
and ng (ng is a positive integer), where « is a regular and set additive
measure of noncompactness. Let F': X — 2X be the operator defined on X
by F(z) = F(x + x9) — xo. Then, F is a-convez-power condensing about 0
and ng. Moreover, F has a fixed point if F' does.

Proof. Let M be a bounded subset of X with a(M) > 0. The reasoning in
Lemma 2.1 yields that for all integer n > 1, we have
ﬁ(nyo)(M) C F(”’xO)(M + z0) — 0.

Hence
o (Fr0(a))) < o (FU) (M + o) — o) <

<a ((F("O’””O)(M + xo)) < a(M + zo) < a(M).

This proves the first statement. The second statement is straightfor-
ward. O

Theorem 4.2. Let X be a Banach space and let o be a regular and set
additive measure of noncompactness on X. Let QQ and C be closed, convex
subsets of X with Q C C. In addition, let U be an open subset of Q with
F(U) bounded and xo € U. Suppose F: X — 2% is a-power-convex con-
densing map about xy and ng (ng is a positive integer). If F' has a closed

graph and F(z) € C(C) for all z € U, then either
F has a fized point, (4.3)
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or
there is a point u € OQU and A € (0,1) withu € AFy; (4.4)

here OqU s the boundary of U in Q.

Proof. By replacing F,Q,C and U by ﬁ,Q — 29,C — xg and U — xg re-
spectively and using Lemma 4.1 we may assume that 0 € U and F is
a-power-convex condensing about 0 and ng. Now suppose (4.4) does not
occur and F' does not have a fixed point on U (otherwise we are finished
since (4.3) occurs). Let M = {z € U : x € AFx for some X € [0,1]}.
The set M is nonempty since 0 € U. Also M is closed. Indeed let (z,) be
sequence of M which converges to some z € U and let (\,,) be a sequence
of [0,1] satisfying x,, € A, Fx,. Then for each n there is a z, € Fx,, with
Ty = AnZn. By passing to a subsequence if necessary, we may assume that
(An) converges to some A € [0,1] and A, # 0 for all n. This implies that
the sequence (z,) converges to some z € U with z = Az. Since F has a
closed graph then z € F(x). Hence x € AFz and therefore x € M. Thus M
is closed. We now claim that M is relatively compact. Suppose a(M) > 0.
Clearly,

M C co(F(M) U{0}).

Arguing by induction as in the proof of Theorem 2.2, we can prove that for
all integer n > 1 we have

M C co(F™ (M) U {0}).
This implies

a(M) < a(co(F(”O’O)(M) U {o})) — o(F(M)) < (M),  (4.5)

which is a contradiction. Hence a(M) = 0 and therefore M is compact,
since M is closed. From our assumptions we have M N doU = @. By

Urysohn Lemma [15] there exists a continuous mapping p: U — [0, 1] with
p(M) =1 and p(0qU) = 0. Let

1oy {POF@), 2 €T
0, reX\U.

Clearly, T: X — 2% has a closed graph since F' does. Moreover, for any
S C C we have

T(8) € co(F(S) U{0}).
This implies that
T0(S) =T (ea(T(S) U {0})) € T (@a(F(S) U{0})) C
C w(F(eo(F(S) U {0}) U{0})) = ca(FE0(8) U {0}).
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By induction
700 (5) =T (ca(T" 9 (8) U {0})) € T (eo(F"10(S) U {0})) €
C e (F(@(F"19(8) U{0}) U{0})) = ao(F"0)(s) U {0}),

for each integer n > 1. Using the properties of the measure of noncompact-
ness we get

(T (8)) < a(a(F0($) U{0h)) = a(F™0(S)) < a(S), (46)

if a(S) > 0. Thus T: X — 2% has a closed graph and T'(z) C C(C) for
all x € C. Moreover, T is a-power-convex condensing about 0 and ng. By
Theorem 4.1 there exists € C such that x € Tx. Now x € U since 0 € U.
Consequently, z € p(x)F(z) and so x € M. This implies p(z) = 1 and so
x € F(z). O

Theorem 4.3. Let X be a Banach space and « a regular set additive
measure of noncompactness on X. Let Q) be a closed convex subset of X with
0 € Q and ng a positive integer. Assume F: X — 2% has a sequentially
closed graph with F(Q) bounded and F(z) € C(X) for all x € Q. Also
assume F' is a-convex-power condensing about 0 and ng and

if {(xj,A;)} is a sequence in 0Q x [0, 1]
converging to (x,\) with x € AF(z) and 0 < A < 1, (4.7)
then \;F(z;) C Q for j sufficiently large

holding. Also suppose the following condition holds:

there exists a continuous retraction r: X — Q
with r(z) € 0Q for z € X \ Q and r(D) C co(D U {0}) (4.8)
for any bounded subset D of X.

Then, F has a fized point.

Proof. Let r: X — @ be as described in (4.8). Consider B={z € X : z =

We first show that B # @. To see this, consider Fr: X — C(X). Clearly
Fr has a sequentially closed graph, since F' has a sequentially closed graph
and r is continuous. Now we show that F'r is a-power-convex condensing
map about 0 and ng. To see this, let A be a bounded subset of X and set
A’ =2o(AU{0}). Then, using (4.8) we obtain

(Fr)10(4) C F(A),

(Fr)@0)(4) = Fr (e (Fr)* 0 (4) u{0}))
C Fr(co(F(A") U{0})) C F (co (F(A)U{0}) =
_ }7(2,0)(141)7
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and by induction,
(Fr)™0(4) = Fr (e (Fr)" 10 (4) U {0}) ) €
C Fr (@ (F("O‘l’o) (A') U {o})) c

C F (e (Fro19 () u{o})) =
= Fo 04",
Thus
a ((Fr)("mo)(A)) <a (F(”O’O)(A’)> < a(A) = a(A),

whenever a(A) # 0. Invoking Theorem 4.1 we infer that there exists y € X
with y € Fr(y). Thus y € B and B # &. In addition B is closed, since F'r
has a sequentially closed graph. Moreover, we claim that B is compact. To
see this, first notice

BC Fr(B)C F(B)=F"9(B),
where B’ = zo(B U {0}). Thus
B C Fr(B) C Fr(F(B') C F (co(F(B") u{0})) = F*9(B’),
and by induction
B C Fr(B) C Fr (F(”O*LO)(B’)) c
C F (e (FUo19(B) U{0})) = FOo 0 (),
Now if a(B) # 0, then
a(B) < a(F"(B') < a(B') = a(B),

which is a contradiction. Thus, a(B) = 0 and so B is relatively compact.
Consequently, B = B is compact. We now show that BN Q # @. To do
this, we argue by contradiction. Suppose BN @ = &. Then since B is
compact and @ is closed there exists ¢ > 0 with dist(B,Q) > 6. Choose
N € {1,2,...} such that N > 1. Define

Uy={zeX: dQ)<1/i} for ie {N,N+1,...};

here d(z,Q) = inf{]|lz —y|| : y € Q}. Fix i € {N,N + 1,...}. Since
dist(B, Q) > § then BNU; = @. Applying Theorem 4.2 to F'r: U; — C(X)
we may deduce that there exists (y;, \;) € OU; x (0,1) with y; = X\ Fr(y;).
Notice in particular since y; € OU; x (0,1) that

MNiFr(y;) ¢ Q for i € {N,N+1,...}. (4.9)
We now consider

D= {;z: € X : x = AFr(x) for some A € [0, 1]}
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Clearly D is closed since F' has a sequentially closed graph and r is
continuous. Now we claim that D is compact. To see this, first notice

D C Fr(D)U{0}.
Thus
D C Fr(D)U {0} C Fr (@ (Fr(D)U {o})) U{0} = (Fr)®9 U {0},
and by induction
DC Fr(D)U{0}C Fr (@ ((Fr)mo*lvO)(D) U {0})) u{0} = (Fr)mo0 u{o},
Consequently,
a(D) < a ((Fr)(”o’o) U {0}) <a ((Fr)(”o’o)) .

Since Fr is a-convex-power condensing about 0 and ng then a(D) = 0
and so D is relatively weakly compact. Consequently, D = D is compact.
Then, up to a subsequence, we may assume that A\; — A\* € [0,1] and
y; — y* € 0U;. Hence \;Fr(y;) — N Fr(y*) and therefore y* = A*Fr(y*).
Notice AX*Fr(y*) ¢ @Q since y* € 0U;. Thus A* # 1 since BN Q = @. From
assumption (4.7) it follows that A\;Fr(y;) € @ for j sufficiently large, which
is a contradiction. Thus BN Q # @, so there exists € @ with x = Fr(x),
ie. x = Fux. ]

Remark 4.1. Tf 0 € int(Q) then we can choose r: X — @ in the statement
of Theorem 4.3 as
x

") = (L, p @)}
here p is the Minkowski functional [33] defined by
pw(x) =inf {A>0: z € AQ},

for all z € X. Clearly r is continuous, r(X) C Q and r(z) = z for all z € Q.
Also, for any subset A of X we have r(A4) C co(AU {0}).

for x € X;

Remark 4.2. In Theorem 4.3, we need F: X — 2% a-convex-power con-
densing about 0 and ngy. However, the condition F': X — 2% has sequen-
tially closed graph can be replaced by F: Q — 2% has sequentially closed
graph.
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Abstract. A Picone-type identity and the Sturm-type comparison the-
orems are established for ordinary differential equations of the form

(p()p (™)™ 4 g(t)p(u) = 0

and
(P (™)™ 1+ Q(t)p(v) = 0,

where m>1, p, P € C*"([a, b], (0,0)), ¢,Q € C([a,b],R), p(s) := |s|*sgn s
and o > 0.
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1. INTRODUCTION

In the classical Sturm comparison theory for linear self-adjoint differential
equations of the second order a fundamental role plays by the so-called Pi-
cone’s formula (see [14]). Tt states that if x, pz’, y and Py’ are continuously
differentiable functions on an interval I with y(¢) # 0, then

jt{x(pxy ny)]
x2 N N 2 I
zfz(Py)Jrz(px)wL(pr)z +P(I*§y)~ (1.1)

If, in addition, z and y solve in I the equations

—(p(t)') +q(t)u=0 (1.2)

and

—(P( t)v’)/ tv =0, (1.3)
respectively, where 0 < P(t) < p(¢) and Q(t) < q(t) in I, and z have
consecutive zeros at a and b (a < b), then integrating (1.1) between a and

b, we obtain

a

b
0= / {(q(t) = Q1) + (p(t) - P()a” + P(t)(2/ — ;y)z] dt (14)

and the Sturmian conclusion about the existence of a zero in [a, b] for any
solution y of the majorant equation (1.3) readily follows from (1.4).

Generalizations and extensions of the Sturm’s comparison principle and
underlying Picone-type identities to nonlinear equations and higher-order
(ordinary and partial) differential operators have been obtained by various
authors. We refer, in particular, to the papers [1]-[17] and the references
cited therein.

The purpose of the present paper is to extend (1.1) to half-linear ordinary
differential operators of the form

lal2] = (po(®™)) ™ 4 gp(2) (1.5)
and

Laly) = (Pe(y®™)) "™ + Qe). (L.6)
where m > 1, p, P € C?™([a,b],(0,00)), ¢,Q € C([a,b],R) and ¢(s) :=
|s|*~1s for s # 0, a > 0, and (0) = 0. Next, in Section 3, we illustrate the
usefulness of the obtained identity by deriving Sturm’s comparison theorems
and other qualitative results concerning half-linear differential equations of
the order 4m.

In the linear case, i.e. if (1.5) and (1.6) reduce to a pair of 4mth-order
self-adjoint operators of the form I1[z] = (pz*™)®™ + gz and Li[y] =
(Py2m™))(2m) 1 Qy, respectively, two different kinds of Picone-type identities
are known in the literature. The first one which can be found in Kusano
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et al. [12] says (when specialized to (1.5) and (1.6)), that if = € Dy, (1),
y € Dr,,(I), and none of y,y/,...,y*™ Y vanishes in I, then

2m—1
d (k) i o o
dt{ Z (—1)kW [x(k)<py(2 n))(Zm k 1)_y(k)(px(2m))(2m k 1)}} _

k=0
a? 2 (2m)]2
:;Ll[y]*xll[x]ﬂqf@)x +(p—P)[z™] "+
(2m—1) 2 (2m—1) (2m—2)12
(2m)_ T (2m)| . (2m—1) (2m)\/| ¥ _Zz
+P{x yem-1 Y } Yy (Py™™) y@m=1) y(zm—z)]' (1.7)

A typical comparison result based on the above formula is the following
theorem (see [12]).

Theorem A. Suppose there exists a nontrivial real-valued function u €

Dy, ([a, b]) which satisfies
b

/ull[u] dt <0,

and

If v € D, ([a,b]) satisfies
vLy[v] >0 in (a,b), where P(t) >0,

o™ [P(t)v™)] Cm=h) > 0 in (a,b), 1<k<2m-1,
and
[P(t)v@m)}(zm_y) #0 in (a,b) for some v, 1 <v<2m—1,
then at least one of v,v',...,v®™= Y has a zero in (a,b).

Recently, Kusano—Yoshida’s formula (1.7) was generalized to half-linear
ordinary differential operators of an arbitrary even order (see [5]).

The second Picone type identity applied to (1.5) and (1.6) has been
obtained by N. Yoshida [16]. The specialization to the one-dimensional case
studied here says that if 2 € D;, (I), y€ Dy, (I) and none of y,%/, ..., y>™ =2
vanishes in I, then

m—1 m—2k—
d p(2m=2k=2) [x(Qm—Qk—Q) (P (2m))(2k+1)_
di y@m—2k=2) Y

k=0

2k )y (2k+1
_y(z 2k 2)(px(2 ))( )%_
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m—1 (2m—2k—2)\2\ /
2m)\ (2m—2k—2) 2k+1 2m)\ (2k) (l‘ ) —
+ {(m‘( ) 2D — (Pym) <y<2m_2k_2> =
k=0
x2 2
Ty Lily] = zhfa] + (p = P)[z®™]" + (¢ - Q)2*+
(2m—2) 2
@em) _ T (2m>}
+ P[:v CTm) Y +
= (Py(gm))(%) emzy _ T o]
T2 T e {x ~yem Y } -
k=1
m—1 m (2k) —2k—
_9 Py )) [x(Zm—2k—1) _ p(2m—2k=2) (zm—zk—l)r (1.8)
y@m—2k=2) y@m—2k=2) y -
k=0

The following comparison theorem can be easily obtained with the help
of the identity (1.8) (see [16]).

Theorem B. Assume that there exists a nontrivial function u € Dy, ([a, b])
which satisfies

b

/ull[u] dt <0,

b
Viul / [(p(t) = P()) (u®™)? + (q(t) — Q(t))u?] dt > 0.

If v e Dyr,([a,b]) satisfies
Li[v] >0 in (a,b),

(=1)k0R)(t) > 0 at some point t € (a,b), 0 <k <m—1,
(=1)m+R) (Pv(Zm))(Qk) >0 in (a,b), 0<k<m-—2,
(Pv™)Cm=2) <0 in (a,b),
then at least one of the functions v,v',...,v®"™2) must vanish at some

point of [a,b].
2. THE GENERALIZED PICONE’S IDENTITY

Let p, P € C?™([a,b], (0,00)), m > 1 and ¢,Q € C([a,b],R). For a fixed
a > 0 we define the function ¢ : R — R by ¢(s) = |s|* s for s # 0 and
©(0) = 0, and consider ordinary differential operators of the form

lalz] = (p())p(x®™)) ™ 1 g(t)p(x)
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and

Lalyl = (P(0)2(y®™)) ™ + Q(1)e(w)
with the domains D;_(a,b) (resp., Dy, (a,b)) defined to be the sets of all
functions x (resp., y) of the class C?™([a, b], R) such that pp(2(>™) (resp.,
Py(y*™)) are in C*™((a,b),R) N C([a,b],R).
Also, by ®, we denote the form defined for X, Y € R and a > 0 by

0o(X,Y) = [X|*F 4+ o]V = (a + 1)Xp(Y).

According to the Young inequality, it follows that ®,(X,Y) > 0 for all
X,Y € R and the equality holds if and only if X =Y.

We begin with the following lemma which can be verified by a routine
computation.

Lemma 2.1. Ifz € C*"([a,b],R), y € Dr,,((a,b)) and none of y,y/, ..
y@™=2) yanishes in (a,b), then

m—1
d ‘x(2m72k72)|a+1 (2k+1)
< S Py @) P4
dt { kZ:O [ p(y(m—2k=2)) ( )

|(2m=2k=2) ja+1\ / o (2)
+ ( o (y2m—2k=2)) (Pe(y®™)) =
x|+l (2m—2)

« m) | m :L. m
= L+ Qlal ™ Pl P (o), T e )

o(y)

= (Po(yem))

o Z (p(y(2m—2k))
1

)

£ (2m—2k=2)

o, (x(szzk) y(szzk)> T

) (2m—2k—2)
k=1 ye

= (Pe(y@m)) Y

~ w(y(2m72k72))
L (2m—2k—2)

—2k— a—1
2m—2k 2)| %

+ala+1) |JL‘(

2
(2m—2k—1) _ (2m—2k—1)
X [x eI y } . (2.1)
We now establish a stronger form of Picone’s identity in which the rela-
tively weak hypothesis from Lemma 2.1 that z is any 2m-times continuously
differentiable function is replaced by the assumption that x is from the do-

main D;_ of the operator .

Lemma 2.2. Ifz € Dy, ((a,))), y € D, ((a,b)) and none of y,y', ...
y™=2) wanishes in (a,b), then

m—1
d |:|x(2m2k2)|a+1 (2k+1)
fhal 1 (Py( (2m))) —
> sz (Dely
dt { = | oy ))

)

(2m—2k—2)|a+1 s
. (2m)y) (2K) @ |
(Pe(y™™)) ( o(y(2m—2k=2)) ) T
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+ (pcp(l,@m)))(2m72k—2)x(2k+1) _ p(2m—2k-2) (p(p(z(zm)))(ZkJrl)] } _

™ ) wlale] + (0 )™ 4 (g — Qa4
ply) :

(2m—2)
om) & 2m
+ P(I)a (CU( )7 y(2m72) y( )>+

(2k)
ml (P%O( (2m)y) (2m—2k—2)
AN, (2m—2k) T 2m—2k)\ _
+ Z o (yEm—2k)) ®a< " 1 yCm—2k=2) yer ))
-1

= (2m)))(2k) (2m—2k—2)|@—1
ala+1) Z 2m72k72)) |‘T | X
k=0
(2m—2k—2) 2
9ok x 9ok
% |:x(2m 2%k—1) _ e y(2m 2k 1)} . (2.2)

3. APPLICATIONS
As the first application of the identity (2.1) we obtain the following result.

Theorem 3.1. If there exists a nontrivial function u € C*™([a,b],R)
such that

ula) =u'(a) =---=u®" V@) =ulb)=---=u®" VB =0 (3.1

and
b

Mafu] = / [PORC™ P+ Q)] dr <, (3.2)

a

then there does not exist a v € Dy, ([a,b]) satisfying
Lov] >0 in (a,b), (3.3)
v(a) >0, wv(b) >0, (3.4)
(—1)*0®) >0 in [a,b], 1<k <m-—1, (3.5)
(=)™ (P > 0 in (a,b), 0<k<m—2,  (3.6)
and
(Po(0®™) ™2 <0 in (a,b). (3.7)

Proof. Suppose to the contrary that there exists a v € Dy, ([a, b]) satisfying
(3.3)-(3.7). Since v(a) > 0, v(b) > 0 and v”(t) < 0 in (a,b), it follows that
v(t) > 0 on [a,b]. Integrating the identity (2.1) on [a,b], we obtain

|u|a+1

0> M,] v] dt >
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b

P (2m)\\(2m—2)
z—a(a+1)/( pv=™))
It follows that v’ — wv’/v = 0 in (a,b) and therefore u/v = k in [a,b] for
some nonzero constant k. Since u(a) = u(b) = 0 and v(a) > 0,v(b) > 0, we
have a contradiction. Hence there can exist no v satisfying (3.3)-(3.7). O

2
||~ (u’ Y v’) dt > 0.
v

/UOl

Theorem 3.2. If there exists a nontrivial u € C*™([a,b],R) satisfying
(3.1) and (3.2), then every solution v € Dr_((a,b)) of the inequality (3.3)
satisfying (3.5)—(3.7) and

v(to) > 0 for some ty € (a,b) (3.8)
has zero in [a,b].
Proof. If the function v satisfies (3.3), (3.5)—(3.7) and (3.8), then either
v(a) < 0, and hence v, must vanish somewhere in (a,b), or v(a) > 0. In the

latter case, however, Theorem 3.1 implies that v(a) = 0 or v(b) = 0, and
thus the proof is complete. (Il

As an application of the identity (2.2), we derive the Sturm-type com-
parison theorem. It belongs to weak comparison results in the sense that
the conclusion regarding to v applies to [a, b] rather than (a,b).

Theorem 3.3. If there exists a nontrivial u € Dy ((a,b)) such that

b
/ wlo[u] dt <0, (3.9)

a

u(a) =u'(a) = =u® V) =u®d) = =u® V) =0, (3.10)

Valu = [ [(o(6) = POt 1"+ (gft) = Q) el dt 2 0, (3.10)

a

and if v € D ((a,b)) satisfies

L,[v] >0 in (a,b), (3.12)
(=D)FuR) () > 0 at some point ty, € (a,b), 0<k<m—1, (3.13)
(1) (P > 0 in (a,b), 0<k<m—2, (3.14)
and
(Po™) ™2 <0 in (a,b), (3.15)
then at least one of v,v", ..., v =2) vanishes somewhere in [a,b].
Proof. Suppose that none of v,v’,...,v™=2) vanishes in [a,b]. From the

identity (2.2) integrated on [a, b] we obtain, in view of the the conditions of
the theorem, that
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b b ) u(2m—2)

a

b
|u‘a+1

u)+ v(2m>> dt+

/UDL

b

moly (zm)))(%) o (2m—2k—2)
(2m—2k) (2m—2k) _
+ /{ Z ,U(2m Qk)) Pq (u 7 p(2m—2k—2) v )}dt

k=1

b m—1 (Qk)
(Pp(v™))
_ o\ ), @2m—2k—2)ja—1
a(o‘+1)/{ Z o (v@m—2k-2)) |u U
pA

(2m—2k—2)
% {uszqu) _u

U(2m72k71)} 2} dt >
(@m—2k—2) =

F (Po(um)) @2 u N2
ala+1) / |u|”‘71(u'— fvl) dt > 0.
v

Consequently, v’ — uv’/v = 0 in (a,b), that is, u/v = k in (a,b), and hence
on [a, b] by continuity, for some nonzero constant k. However, this is not the
case since u(a) = u(b) = 0, whereas v(t) > 0 on [a,b]. This contradiction
shows that at least one of v,7/,...,v?™~2) must vanish in [a, b]. O

Finally, we use the identity (2.2) to obtain a lower bound for the first
eigenvalue of the nonlinear eigenvalue problem

lalu] = Ap(u) in (a,d), (3.16)
u(a) =u'(a) = =u®™ V(@) =u®d) = - =u®"V(b)=0. (3.17)
Theorem 3.4. Let A\ be the first eigenvalue of the problem (3.16)—(3.17)

and u; € Dy ((a,b)) be the corresponding eigenfunction. If there exists a
function v € Dr, ((a,b)) such that

(=1)*0®®) >0 in [a,b], 0 <k <m—1,
(—1)m** (P(p(v@m)))(%) >0 in (a,b), 0<k<m-—1,

and if Vo [u1] > 0, then Ay > tei(%f,b) [Lgic[!v}]

Proof. The identity (2.2) in view of the above hypotheses implies that

b b
La
)\1/‘U1|a+1dt—/|ul|a+l#dt20,
v

from which the conclusion follows readily. O

REFERENCES

1. D. R. DUNNINGER, A Picone integral identity for a class of fourth order elliptic
differential inequalities. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)
50 (1971), 630-641.



50

10.

11.

12.

13.

14.

15.

16.

17.

A

Jaroslav Jaros§

. M. S. P. EAsTHAM, The Picone identity for self-adjoint differential equations of even
order. Mathematika 20 (1973), 197-200.

. A. ELBERT, A half-linear second order differential equation. Qualitative theory of
differential equations, Vol. I, II (Szeged, 1979), pp. 153-180, Colloq. Math. Soc.
Jdanos Bolyai, 30, North-Holland, Amsterdam—New York, 1981.

. J. JAROS, Comparison theorems for half-linear equations of fourth order. Equadiff 9 —
Conference on Differential Equations and Their Applications (Brno, Czech Republic,
August 25-29, 1997). Abstracts and Enlarged Abstracts (Ed. by Z. Dosld, J. Kalas,
J. Vosmansky), Masaryk University, Brno, p. 233.

. J. JAROS, The higher-order Picone identity and comparison of half-linear differential
equations of even order. Nonlinear Anal. 74 (2011), No. 18, 7513-7518.

. J. JAROS AND T. KUSANO, Second-order semilinear differential equations with ex-
ternal forcing terms. (Japanese) Structure of functional equations and mathematical
methods (Japanese) (Kyoto, 1996). Surikaisekikenkyusho Kokyuroku No. 984 (1997),
191-197.

. J. JArROS AND T. KusaNO, A Picone type identity for second order half-linear differ-
ential equations. Acta Math. Univ. Comenian. (N.S.) 68 (1999), No. 1, 137-151.

. K. KREITH, A comparison theorem for fourth order differential equations. Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 46 (1969), 664—666.

. K. KRrREITH, A Picone identity for fourth order differential equations. Atti Accad. Naz.

Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 455-456.

K. KrEITH, Oscillation theory. Lecture Notes in Mathematics. 324. Springer- Verlag,

Berlin—Heidelberg—New York, 1973.

K. KREITH, Picone’s identity and generalizations. Collection of articles dedicated to

Mauro Picone on the occasion of his ninetieth birthday. Rend. Mat. (6) 8 (1975),

251-262.

T. Kusano AND N. YOSHIDA, Picone’s identity for ordinary differential operators of

even order. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975),

No. 4, 524-530.

W. LEIGHTON AND Z. NEHARI, On the oscillation of solutions of self-adjoint linear

differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325—

377.

M. PICONE, Sui valori eccezionali di un parametro da cui dipende un’equazione dif-

ferenziale lineare ordinaria del second’ordine. Ann. Scuola Norm. Sup. Pisa Cl. Sci.

11 (1910), 1-144.

T. TANIGAWA AND N. YOSHIDA, Picone identities for ordinary differential equations

of fourth order. Math. J. Toyama Univ. 27 (2004), 91-99.

N. YosHIDA, A Picone identity for elliptic differential operators of order 4m with

applications. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975),

No. 3, 306-317.

N. YosHIDA, Nonoscillation criteria for fourth order elliptic equations. Hiroshima

Math. J. 5 (1975), 23-31.

(Received 03.06.2012)

uthor’s address:

Department of Mathematical Analysis and Numerical Mathematics, Fac-

ulty of Mathematics, Physics and Informatics, Comenius University, 842 48
Bratislava, Slovakia.

e-mail: jaros@fmph.uniba.sk



Memoirs on Differential Equations and Mathematical Physics
VOLUME 57, 2012, 51-74

Liliya Koltsova and Alexander Kostin

THE ASYMPTOTIC BEHAVIOR

OF SOLUTIONS OF MONOTONE TYPE
OF FIRST-ORDER NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS,
UNRESOLVED FOR THE DERIVATIVE



Abstract. For the first-order nonlinear ordinary differential equation

n
Fty,y') = pr()y™*(y)™* =0,
k=1
unresolved for the derivative, asymptotic behavior of solutions of monotone
type is established for t — +o0.
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This article describes a first-order real ordinary differential equation:

Ft,y.y) =Y pr(t)y™()* =0, (1)

(t,y,y') € D, D = A(a) x Ry x Ry, A(a) = [a;4o0[, a > 0, Ry = Ry,
Ry = R VRy; pr(t) € Ca) (K =1,n, n > 2); ag, B >0
n
> B #0.
k=1
Further, we assume that all the expressions, appearing in the equation,
make sense; and all functions we consider in the present paper are real.
We investigate the question on the existence and on the asymptotic be-
havior (as ¢ — +o00) of unboundedly continuable to the right solutions

(R-solutions) y(t) of equation (1) and derivatives y/(¢) of these solutions
which possess the following properties:

A) 0<yt) e CA(t y» A(t1) C A(a), where t; is defined in the course
of proving each theorem:;

B) among the summands py(t)(y(t))** (y/'(t))?* (k = 1,n), the terms
with numbers i = 1,s (2 < s < n) are asymptotically principal for

s
i.e., there exist:

the given R-solution y(t), i
) () -
S e @y 7 e (=1,
G0 L0 S —
N ORI AR

Lemma 1. Let the equation

F(t,&n) =0, (2)
(t,&m) € D1, D1 = A(a) x [=hi; ha] X [=ha; ho], by, € Ry (k= 1,2), satisfy
the conditions:

1) ﬁ(t 5 77)60?22?73(1)1)7 817527836{()’1;2,---}7 82217 53221

2) EIF(+oo 0,0) = 0;
3) 3F(+00,0,0) = Ay € R\ {0};
4) SUP|F/7;/n(ta§a77)| = A2 € R+'

Then in some domain Dy = A(ty) x [—ﬁl;ﬁl] X [_EQ;EQ], where ty > a,
0 < 711 < hy, 0 < 712 < min{h2; LA—Q}, the equation (2) defines a unique
function n =17)(t,€), such that 7(t,€) € C7*¢*(D3), D3 = A(to) x [—ha; hal,
37(400,0) =0, F(t,&,7(t, &) = 0. Moreover, for £ =0, the function 7(t, &)
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has the property

F(t,0,0)

(t,0) ~ — e
F1.(t,0,0)

3)

Proof. Let us expand the function F (t,&,m) with respect to the variable n
for t € A(a), & € [—hy;h1] by using the Maclaurin’s formula. Then the
equation (2) can be written as:
F(t,6,n) = F(£.€,0) + F/, (16,00 + R(t.&,1) = 0. (4)
Obviously,
R(t,£,0) = 0.

The equation (4) is equivalent to the implicit equation

—F(t,£,0) — R(t,&,1(t,€))

)= 1 (1.€,0)

; ()

where _ N N
R(ta fa 77) = F(t7 fa 77) - F(tv €7 O) - F;y(t7 fa 0)777
and, therefore,

R{r](tagy’r]) = F;y(tfﬂ?) - Ffr](tvgao)
Applying the Lagrange’s theorem with respect to the variable n to the
right-hand side of the above equation, we get:

ﬁ%(tva,rh) - ﬁ;(tafﬂh) = ﬁgn(tagvn*)(WQ - 771)7 77* 6]771;772[7
sup |F o (t,&m) — F o (t,&m)| <
1

< sup |F (6 m)| In2 — ml = Azlnz —ml.
1
Assuming 1 = 0, 2 = 1, we obtain:
sgp!Ri,(t,&n)! < Asn).
1

We consider and evaluate also the difference R(t,&,m2) — R(t,&,m),
(t,&,m;) € Dy (i = 1,2), applying the Lagrange’s theorem with respect
to the variable 7:

R(ta§7n2) - R(taganl) = R;(tagan**)(nQ - nl)a 77** 6]771;772[’
sup |R(t,& n2) = R(t,&,m)| <sup |y, (t,&,m)| In2—m | < Al —m|*.
1 1
Assuming n; = 0, 2 =1, we get
sup [R(t, &,n)| < As|n[*.
Dy
Consider the domain Dy C Dy in which

1) sup |F(t,&,0)| < h2lal
Dy
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. o A
2) inf | (t,€,0)] > 15
8) sup | R(t,€,n)| < Asln|? < Agh3.
2

The fulfilment of conditions 1), 2) can be achieved by increasing tg and

reducing hy (by virtue of the conditions of the Lemma). The fulfilment of
condition 3) is obvious.
To the equation (5) we put into the correspondence the operator

ﬁ(ta§7(,)v) _ R(t7£a ﬁ(tvg))
F(t,€,0)

where ﬁ(tag) €BC Ba B = {ﬁ(tag) : ﬁ(t7§) € C?g? (D3)7 77(+OO’0) =0,

7, Ol = Sgplﬁ(t, ¢)|} is the Banach space, B1 = {7(t,&) : 7(t,§) € B,

77(t7 g) = T(tv 3 ﬁ(t’ 5)) =—

)

l7(t, &) < 712} is a closed subset of the Banach space B.

We apply here the principle of contractive mappings.

1) Let us prove that if 7(¢,&) € By, then n(t,§) = T(¢,£,7(t,£)) € By:
n(t,€) € C*¢* (D3) and 7)(+00,0) = 0, then by virtue of the structure of the
operator, we get

n(t,§) € C7*¢*(Ds), n(+00,0) = 0;

I, )|l sﬁz = |In(t, &)l = ||T(t, &, 7(t, )| =
_H— F(t,€,0) — R(t,&,7(t,€)) H
F’ (t,£,0) N
1

< iy (su It € 0)] + sup |R(t, €70 €))]) <

o To
< = — <
< |(sup|F(t§O)|+A2h2) <2+ Too.

2) Let us check the condition of contraction:

’ﬁl(t7§)7772(tv§) € Bl - H"b(t 5 —771 t f H =

; E
F;(t,g,m
Ay _ N ,
= iy ) RN <
7A oy -~ ~ ~
= \2A2| (It )1+ 1 (O IRt ) — (o) <

4A2 hQ

|| T2 t 5 ﬁl(t,g)H = 7”772(1575) 7ﬁ1(t>£)||a
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As a result, we have found that by the contractive mapping principle the
equation (5) admits a unique solution n = 7(¢,£) € By.

Since F(t,&,1) € C'g%2(D1), then by a local theorem on the differen-
tiability of an implicit function, it can be stated that 7(t,£) € C;*¢* (D).

Let us prove that 7j(t, £) has the property (3) for £ = 0.

The function 7j(¢,£) € D3 satisfies the equation (4), which can be writ-
ten as

F(t,0,0) 4+ F,(,0,0)7(t,0) + O(7%) = 0, (6)

assuming & = 0.

As O(7%) = O(1)772 = o(1)7, then the equation (6) is equivalent to the
equation

F(t,0,0) 4+ F (t,0,0)7(t,0) + o(1)7(t,0) = 0.

Hence, taking into account that 13;7(4—00,0,0) = A; € R\ {0}, we can
write

- 1 F(¢,0,0
7)(t,0)(1+ ~,O( ) - _~/( )| (7)
F1.(t,0,0) F.(t,0,0)
The property (3) follows from the equality (7). O

Lemma 2 ([2]). Let the differential equation

¢ =alt)f(t,9), (8)
(t,€) € D3, D3 = A(tg) x [—h1:h1] (hy € Ry), satisfy the conditions:
+oo

1) 0# a(t) € C(A(to)), [ «ft)dt = +oo;

to
2) f(t,€§) € CP(Ds), 3 f(+00,0) =0, 3 f{(+00,0) # 0;
3) fi(t,€) = f¢(t,0) under & — 0 uniformly with respect to t € A(to).

Then there exists t1 > to, such that the equation (8) has a non-empty set
of o-solutions

Q= {{(t) € Chpy) + &(+00) =0},
where
a) if sign(afé(—f—oq())) = —1, then Q is a one-parametric family of
o-solutions of the equation (8);

b) if sign(afi(+00,0)) = 1, then Q contains a unique element.

THE EXISTENCE AND ASYMPTOTICS OF R-SOLUTIONS OF THE
EQUATION (1) WITH THE CONDITION y(+00) = 0V +00

The supposed asymptotics (to within a constant factor) of R-solution
y(t) with the condition y(+o00) = 0V +00 can be found from the ratio of
the first two summands (we consider all possible cases with respect to the
values of parameters oy, ag, 81, f2). Taking into account that p;(t), p2(t) #0
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(t € A(a)), we find that y(t) ~v(t) > 0* (v € {v;}, ¢ = 1,4) under the
condition that v(+00) = 0V +o0:
D= DS (a1 # az, Bi = B2), moreover, pi(t),pa(t) €
Ca)-
In all the rest asymptotics is used the function

@y, fa (e teo) = +o0),
“‘“)A/ pol A{+oo (Ha, o) € E U {0}).

2) vy = |[I(A,t)] (1 = a2, B1 # [).

8) va=|I(A D] BT (a7 az, Bi# B, a1+Bi £ az+h).
4) vy = efoll@bl (75 € R\ {0} and satisfies the conditions (13), (14),
(16); 1 # g, B1 # Ba, a1 + B = aa + f2 # 0; I(a, +00) = +00).

A solution is sought in the form
y(t) = v(t) (£ +£(1)), (9)

where £ € Ry; £(t) € ClA(a), E(+o0) = 0; v(t) = vi(t) € ClA(a) (k is fixed,
k=1,4).
Differentiating the equation (9), we obtain:

V(0 = O+ €0) + o0 ) = 0 O£+ €0 + S ).
Having denoted
e+ 2D (1) = o), (10)
(1)
n(t) € Ca(a), we get
Y1) = ()¢ + n(t)). (11)

The condition y’(t) ~ £v'(t) requires the assumption that n(+oo) = 0.
Substituting (9) and (11) into the equation (1), we obtain the equality

Ft,v(l+€),v' (L +1n)) =

=D pr(O)(©)™ (€ + ™ (v) (L + )P =0, (12)
k=1

which is satisfied by the functions &(¢), n(t) and (v'(¢))% : A(a) — Ry
(k=1,n).

“fi~ f; (i # j) means that 3 lim L # 0, +oo.
t—Foo fj
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According to the condition B), indicated in the statement of the problem,
we assume that

pi(t)(0(8))* (v (1) _
p1()(v(£) (v'(2))

= +eilt), ¢ ER\{O}, mi(+00) =0 (i=T3);  (13)
. v o ,U/ Bj -
iigggvgg;oqgvlggigl = Ej(t), Ej(-i-OO) =0 (j =S5+ 1,71). (14)

Then, after the division by py (t)(v(t))** (v/(t))”*, the equation (12) takes
the form

S

F(t,&m) =Y (¢ + &)+ (+n)+

i=1

+ Z ;M +E¥ (L +n)fi =0. (15)
j=s+1

Obviously, the condition F (+00,0,0) = 0 is necessary for the existence
of a solution and of its derivative of the form (9), (11), respectively.
Thus, for v = vg(¢) (k = 1,4) it takes the form

S
> eethi=o. (16)
i=1
For v = vy(t) : sign(v') = sign(o), ¢ = ¢t (L), Lo, L5 € R\{0} (i = 1,s).
By virtue of its structure, the functions ﬁ(t,f,n) € Cg‘g";"(Dl), 855,
%, gg:a:]fz (n = 1,00, m = 1,00) are bounded in D;, where Dy =
A(a) X [—hl;hl] X [—hg;hg], 0< hp<? (k = 1,2).
Next, we will need expressions for the first and second order derivatives
of the function F(t,&,n) with respect to the variables £ and n:

et.6m) Z% (E+€ M e+ )P+
+Zak€k (€+ )™ 1(L + )

a(b&m) = Zﬁz (C+ ™ (C+n)* 'y
+Z/6k5k 00+ €)% (0 + )1,

et &m) Zal a; = 16 (E+ %2+ )+
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+ Z ag(ag — Deg(t) (£ + €)™ 2L + 1)
Fey(t6m = Fglt,&m) = EZ%m (+ M+

+Zakﬁk€k )+ &)X e+ )Pt
k=1

t§7 Zﬁz i g"‘&)ab(f—i—n)ﬁi 2+

+ Z Br(Bx — Der(t)(€ + &)™ (£ +n)Pe =2
as well as the following notation:

Yoo(t) Zﬁak+5k5k
l/}lo Zak o — ]. : (Otk -1+ 1)€k(t)£ak+ﬁk’
bl 31 a0

Yim(t) = aplag —1) - (ap =14+ 1)x
X BB — 1)+ (B — m + L)y (t) 020k,

Sio = Zai(ai — 1) (= L+ 1)t
Som = Z@'(ﬂi — 1) (B — m A+ 1) eith

Slm—zaz a;— 1) (a; =14+ 1)x

X Bi(B; —1) - (B — m A+ D)Lt
510, Som> Sim €R (I, m € N),  §=157)S02—2510501 511+ 55, S20,
253, 252,02
R, A=—77—
g &% e s
Theorem 1. Let a function v(t) = vg(t) (k =1,4) be a possible asymp-
totics of an R-solution of the equation (1), which satisfies the conditions

v(400) =0V 400, (13), and (14). Let, moreover, there exist £ € R, satis-
fying the condition (16).

AL = € R.
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Then in order for the R-solution y(t) € ClA(tl) of the differential equation
(1) with the asymptotic properties

y(t) ~ fo(t), Y (8) ~ (1), (17)
to exist, it is sufficient that the two following conditions
So1 # 0, (18)
S10 + So1 # 0. (19)
be fulfilled. Moreover, if sign (“/(31507::301)) = 1, then there exists a one-

parameter set of R-solutions with the asymptotic properties (17); if

sign (1}/(51507(:3‘”)) = —1, then R-solution with the asymptotic (17) is unique.

Proof. For the proof we will need the following properties of the function
F(t,&m):
~ S10
F! (+00,0 0):&7&0
n ) ) e

by virtue of the condition (18).
Owing to the conditions (16), (18) and to the properties of the function
F(t,&,n), in some domain Dy C Dy, Dy = A(tg) x [—hi;h1] X [—ha; ha],

to > a,0< hy < hy, 0 < hs < min {hg; 4€sup|lsm‘ }, for the equation
Dy

Fu (t,6m)]

(15) the conditions of Lemma 1 are satisfied. Consequently, there exists a

unique function n = 7(¢t,§) € C??(Dg), D3 = A(tg) x [—h1; h1], sup ’%| <
D3

+o0 (n = T,50), such that F(t,&,7i(t,€)) = 0, ii(++00,0) = 0, [[7(t,€)] < ha.
Moreover, we can write

oi(t.e) _ FLt.&m

o¢ F(t,6,7)
Thus, in view of the replacement (10), we obtain the differential equation
with respect to &:

v _
A L ) (20)
The question on the existence of solutions of the form (9) reduces to the
study of the differential equation (20).
Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the

equation (20). In this case we have: a(t) = 1;/((5)) , f(6,8) ==+ n(t,6).
Obviously, the conditions 1) and 2) are satisfied.
1) Since 0 < v(t) € CY(A(a)), therefore

+oo +oo

0% a(t) € C(A(to), /a(t) dt — /

to to
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2) Since 7(t, &) € C?‘?(Dg), then
f(t.0) € CYE(Ds). 3/ (+00,0) =(+00,0) =0,

_ Fe(t,6m
fe@t,8) = —1+7¢(t,€) =
¢ ¢ CFytem
F'.(+00,0,7j(+00,0
fé(—i—oo,O):—l— g( n( )):_510+5017é0
F! n(400,0,7(+00,0)) So1
by virtue of the condition (19).
Let us check that the condition 3) is satisfied, that is,
FL(t.67(t,€)  FL(t,0,7(t,0)
0.9 - e = |5 - =% |=o

Fi(8,6,7(t,€)  F1(t,0,7(t,0))
as & — 0 uniformly with respect to t € A(tg).

Towards this end, it suffices to verify that the following properties are
satisfied:

31) (L, §) = 1(t,0) 1f§ — 0 uniformly with respect to t € A(tg),

32) FL(t,&,1(t,£) = Fg(t,0,7(t,0)) as € — 0 uniformly with respect to
te A(to)
33) F,(t,&,1n(t,6) = (t70,77(t,0)), as & — 0 uniformly with respect

tote A(to) with regard for the fact that Fy(+o00,0,71(+00,0)) = So1 # 0.
Let us estimate the differences n(t, &) — 1(t,0), ﬁé(t,& n(t,&)) —

ﬁé(t,O,ﬁ(LO)) w(,&,0(t,€)) — F1(t,0,7(t,0)), applying the Lagrange’s
theorem to the ﬁrst difference with respect to the variable &:

() —(t,0) = qe(t,£7)¢, € €]05¢].

As the functions e (t) (k = 1,n) are bounded in A(a) and ||7(¢,€)|| < h
in D3, then we get the estimates in the form:

|n(t, €) — t0|—| (t, &) €] =
-|- Fi(t, 5*~t§
F/(tf*N

as £ — 0 uniformly with respect to t € A(tp);
3,) taking into account that (£+£)%~1 — (%=L as¢& — 0, (¢4+7(t, €))P —
(€+7(t,0))? as € — 0 uniformly with respect to t € A(ty) (i = 1, 5), we get

|F4(t,6,77(t,€)) — FL(¢,0,7(t,0))| =
Z% [“f )T+ (€))7 éai’1(€+ﬁ(t,0))ﬁi]+

\m (1]l = 0(¢) — 0

— 0

+Zam )| (€ O (@ €)% — e (€47, 0))




62 Liliya Koltsova and Alexander Kostin

as £ — 0 uniformly with respect to t € A(tp);
33) analogously to 32), we get:

‘F/(ta€7ﬁ(t7§))7ﬁ,(t70’ﬁ(t70)) =

[0+ (4 ©)7 7 — e (041, 0) 7+

— 0

+§:ﬁwk )[(€+ e 0+t €)% — (¢ 4+ 7(t,0) ]

as & — 0 uniformly with respect to t € A(tg).

Since 7)(+00,0) = 0, therefore F} (400, 0,7(+00,0)) = So1 # 0 by virtue
of the condition (18).

Consequently, condition 3) is satisfied.
Then if sign (l’l(slsoiots‘”)) = 1, then there exists a one-parameter set of
o-solutions of the equation (20) in A(¢1) C A(to).

If sign (e t5))

in A(t1) contains the unique element.

Finally, having the dimension of a set of o-solutions of the equation (20),
we have obtained the dimension of a set of R-solutions of the equation (1)
with the asymptotic properties (17) in A(ty). O

= —1, then a set of o-solutions of the equation (20)

Theorem 2. Let the conditions of Theorem 1, except for (19), be satis-
fied, and

S 0, (21)
Yoo (t) In® v(t) = o(1), (22)
(¥10(t) + Yo1(t)) Inv(t) = o(1). (23)

Then there exists a one-parameter set of R-solutions y(t) € ClA(tl) of the
differential equation (1) with the asymptotic properties

y(t) =o)L+ E(1)), y'(t) ~ ' (1), (24)

where &(t) ~ ln’\;é)

Proof. To prove the theorem, we will need the following properties and
expressions of the function F(t,&,n) :

F(t,0,0) = ¢oo(t),
(t 0,0) Zal A i+hi 4 Z ()zkfak+’6k8k(t)

510

F/
5(-1-00 0,0) = >

(t 0, O Z Z ﬁzc*ga i+Bi + = Z /Bkgak+ﬁk€k( )
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F! 0,0) = 22 2 by virtue of condition (18);
n(+00,0, )——7& y virtue of condition (18);

" i+Bi
F(t,0,0) = EQZOQ (o — 1)ceitPig

32 Zazﬁz *gal-‘rﬁz + = 52 Z akﬁkgak-l-ﬁkgk(t)

=1
~ S
F{(+00,0,0) = F/(+00,0,0) = 7121;

o+ 65
F7.(t,0,0) 522@1 ety
+ Z Br(Br — D)L+ ey (1),
k=1
S,

F! (+00,0,0) = g‘f.

By virtue of the condition (18) and owing to the properties of the function
F(t,&,7n), in some domain Dy C Dy, Dy = A(ty) X [—hi;hi] X [—ha; ha),

- ! _ o
to>a,0<hi <h 0<h2<m1n{hg'+
) ’ ’4(5]:1)113|F",,](t,€,17)|

(15) the conditions of Lemma 1 are fulﬁlled. Consequently, there exists a
unique function n = 7(t,€), 7(t,€) € (Dg) Ds = A(tg) x [—h1; ],
suplﬁfnl < 400 (n = 1,00), such that F(t &1t €) =0, 7(4+00,0) = 0,

, for the equation

||n(t,§)|| < hsy. Moreover, we can write:

_ _ F(t,0,0)
(6,0) F1(t,0,0)
N FL(t,&,7)
! t,g :_,\,67/\1,
T =T e

2i(t.e) _(FQ*Fly,— 2P LFyF Y, + (FL)F

o (F1)
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Thus, taking into account the replacement (10), we obtain the differential

equation with respect to &:

U/

€ = 2 (=€ +ii(t,©)) (20)

The question of the existence of solutions of the type (9) reduces to the
study of the differential equation (20).
Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the

equation (20). In this case we have: a(t) = 1;/((:))7 f(t,8) ==+ n(t,8).
1) Since 0 < v(t) € C*(A(a)), therefore

—+oo +oo

04 alt) € C(A(to)), /a(t) dt = / 1;'((3 dt = o0

to to
2) Since 7j(t,€) € C)F(D3), therefore
f(t,€) € CYFE(D3), 3 f(+00,0) = 7j(+00,0) = 0,
Fi(t.€,7)

CFL&T)

Taking into account the properties of the functions e (t) (k = 1,n) and
also the conditions of the theorem, we obtain:

fet € = —1+7¢(t,&) = —1

F . (4+00,0,7(4+00,0 S S
fi(+00,0) = —1— ng( 71( )):_ 1OS+ o _ .
F 1 (+00,0,7(+00,0)) 01
Thus, condition 2) is not satisfied, and we cannot apply Lemma 2 to the
equation (20).
Since fie(t, &) = 1¢e(t, &), therefore

_ S 2
Jée(+00,0) = 77¢e (+00,0) = TS T TN
Consider the auxiliary differential equation with respect to &;:
/
I v (t) 2
fl - Alﬁv(t) é-l'
and find one of its non-trivial solutions:
Al 1
&= o)’ 0#&(t)1 € Caqyy (1 =t0), &1(+00) =0.

We consider the question on the existence in the equation (20) of solutions

of the form § = & (1+¢), where {(t) € CR,,, £(+00) = 0. For the unknown

function E we obtain the following differential equation:

SovE (1 w1 v s ﬁ(t,£1(1+§))>
<= v( & v’§%+( & v’éf)£+ &

(£:€) € Da, Dy = Alta) x [~hai ha] (0 < ha < I), H5%0

o (25)

Al

1
1
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Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the
equation (25). In this case we have:

CUWE | M)
o)== @ T s meD’

t
~ 11 L1z dit&(1+9)
_ (- Lo e He8028)
Using the properties of functions v(¢), (t 5) &1(t), we obtain:
+oo
1) 0#£ a(t) € C(A(tr)), [ alt)dt= M/ f ng(t)dt:m

ty1
2) f(t.8) € CU (D)

1 i ﬁ(t7 51)

om 1 L Tt &1+ 9))
f&(tf) - 51 + )\ 51 9
7 L i ﬁé(ta’gl)
f4t,0) = & et e

Let us expand the functions n(t,ﬁl) and 7¢(t,&§1) with respect to the
variable &; in Dy using the Maclaurin’s formula

_ _ _ 1_
At &) = (t,0) +7g, (1,06 + 5 71 (1 0)E7 + O(E1),
Te(t,€1) = Ne(t,0) + 77, (8, 0)& + O(&]).
Using Lemma 1, we obtain:

Lipoo(t)
501 + (1) ’
7%, (5,0) = 74(t,0) =
5 i L+, 0)5 + 3 aner(t)e 1 (€ +if(t, 0))%
_ =1 k=1
S B los (04 7i(t, 0051 + 3 Brer(t)lon (€ + 7f(t, 0))% 1

i=1 k=1
ﬁl (—‘rO0,0) = ﬁl (+0070) = _@ )
&1 13 So1

ﬁ(t’ O) ~ =

)

~ 2
77/5/2(+OO 0) =7 gg, (+00,0) = ¢2(+00,0) = WA

Then
_a(t0) e, (50) =1 1 5 1
ft,0) = Fa— 3716 (50) + 5 +0(&),

0
2.0 = "D 0+ 1 o),
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From the conditions (22), (23) and S1p + So1 = 0 it follows that

. 7(t,0) . oo(t) In® o(t)
lim 2~ — gy 2R Y
=400 €2 =t LSgI A2 0
£,0 7L(t,0) —
lim 777 e, (£0) = lim 7776( ) =
t—+oo fl t—+oo 51

—lm Inwv(t) (Z Stk + Sokt1 7R (2, 0)+

t—>+0<> )\1801 klok+1

n Z Y1k + Yora1 a0 0)> 0,

TR
. 1_, 1
S (2”52@ 0+5 £> 0
, 1, 1y 1
Jim (57 (10)+ M) W

As a result, we have found that f(+o0,0) =0, fé(—i—oo, 0) = —)\%Z # 0.

3) Since

fé; (tvg) = 7715/2 (t7€1(1 + g))v fgz (t,O) = ﬁg2 (tvgl) = 7722 (t’ 0) + O(fl)a

~ 2
f§2(+00,0) = 77/5/2(+00a0) = 7@ 7é 07

the condition 3) of Lemma 2 is automatically satisfied.

Then the differential equation (25) satisfies the conditions of Lemma 2,
‘¢
;\)161}

of o-solutions of the equation (25) in A(ty).
Finally, having the dimension of the set of o-solutions of the equation
(25), we have likewise obtained the dimension of a set of R-solutions of the

equation (1) with the asymptotic properties (24) in A(t1). O

where since sign ( ) = 1, there exists for the fixed ¢ a one-parameter set

Consider now separately the exponential asymptotics vy = efol/(a:t)] (the
values of the constants and functions we used, have been identified pre-
viously). We proceed from the assumption that of principal importance
remain the first s terms, and also the fact that

1) ap+ B =a1+ 51 #0 (k=2,5);
2) ap + B =01+ 01 #0 (k=5+1,51);
3) ap + B £+ B (k=s1+1,n).

The possibility that the summands with powers of type 2) or 3) are absent
is not excluded.
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The assumptions 1)-3) and the condition (18) imply that the condition
(19) is not satisfied, as

S s
S1o + So1 = Zaicfﬁa”‘ﬁi + Zﬂicff‘li‘i‘ﬁi _
i=1 i=1

S S
_ Z(al + ﬂi)c;_kgaﬂrﬁi — (041 + 51) ZC?KQHF& =0.
i=1 =1
Therefore, Theorem 1 cannot be applied to the given asymptotics. If Theo-
rem 2 is likewise not satisfied, then under certain conditions we can achieve
fulfilment of the conditions of Theorem 2 by defining the asymptotics v4(t)
more exactly.
Consider the more precise asymptotics

éoftlé(a7t)<1+z<t))dt
’U41(t) =€ ) (26)

where

)2

Ii(a,t) = P1(t), 5o
@) |p2 t)’
z(t) € Ca(a) 2(4+00) = 0 = v41(4+00) = v4(+00) =0V F00.

—~

A solution will be sought in the form

y(t) = var (£)(€ + £(1)), (27)
where £(¢) € Ci\(a), &(+00) =0.
Differentiating the equation (27), we obtain:

y'(t) = vin () +n(t), (28)
V41 t
10 =)+ 228 ¢0), (r) € Cay
vy (£)
The condition y’(t) ~ fv)j; (t) requires the assumption that n(+o00) = 0.
Substituting (27) and (28) into the equation (1), we obtain the equality:

D k() (var (£)** (v (£) 74 (€ + )™ (£ + ) = 0. (29)
k=1
In the equation (29) we put £ =0, n = 0 and get
D Brpy () (van (1)) (v ()™ = 0. (30)
k=1

In accordance with the condition B), indicated in the statement of the
problem, we consider the relations of the functions:

. Va1 a; ’Ull Bi . - .
2CUOR DT _ (4 )1+ 200 =i +eald), G

gin(+00) =0 (i=1,s);
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j V41 & 'U/1 Bi o

gj1(+00) =0 (j=s+1,s1);

ColontBi) | Ti(at)(142(1)) dt

= X
p1(t) (var (1)) (v (1)) to(ar+81) | Il (ast)(1+2(1)) dt
e a
x(L+2(1) P =g (t) (k=351 +1L,n), (33)
where
Zo(ak-i-ﬁk)ftl,;(a,t) dt
tlir+n c - =0= ¢ep1(+00) =0 (k=s1+1,n).

Lo(ar+B1) [ I;(a,t)dt
e a

Then, after the division by py(t)(va1(£))®* (vh; (£))P, the equation (30)
takes the form:

galwl(zc (1+ 2(0)%- 61+Z€J 1+ 2(t ﬁl>+

i=1

n eo(ak"rﬁk)f I} (a,t)(1+2(t)) dt

+ Z € t (1+ Z(t))ﬁk—ﬁlgak+ﬁk -0
k=s1+1 foloa+pr) [ I[(a,t)(1+2(t)) dt

or

F(t,z) —€a1+61(20 1+ZBZ+ZEJ )(1+ 2)? )—i—

n Lo(ak+Pr) f Ii(a,t)(1+2(t)) dt
n < (14 2)P o8 =0, (34)

t
k=s1+1 Lo(ar+p1) [ Ii(a;t)(1+2(t)) dt
e a

We introduce into consideration the domain D = A(a) x [—h; h]. The func-
tion F(t,2) € CY°(D).

We consider in D a part of the function F(¢, 2):

F(t,z £a1+ﬂl<zc 1+zf3t+zej (1+2) ) (35)

Taking into account the conditions (16), (18), we get:
F(+00,0) = 0;
F,(+00,0) = So1 # 0;
F",(400,0) = Sps.
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Then, by Lemma 1, the equation (35) determines a unique function z =
Z(t,€), such that z(t) € C(A(a1)) (a1 > a), zZ(+00) = 0.
As Z(t) we take an approximate solution of the equation (35):

(01 e 5(1)

() = — = . (36)

Sou + 60480 Y Biej(t)
j=1

Next, we will need the following functions:

n

Yoo(t) = Z ey (t),

k=1

bio(t) = Y aep (D)L,
k=1

Yor(t) =Y Brera (£,
k=1

We express Joo(t), Jlo(t) + 1:/;01(75) through the previously introduced

functions:
n

doo(t) = D £ Pey (t) =
k=1
- o) s+ voalt) + 0)] = OO

3

Uro(t) + Yor(t) = Y (g + Bi)er ()0 =

k=1
(a1 +51)Z3(t) 2
11207 [So2+102(t)+O0(Z)] (¥ao(t))
Thus, using Theorem 2, we formulate a theorem for the more precise
asymptotics

Lo f I/ (a,t)(14+Z(t)) dt

Vg1 — € @ (37)

Theorem 3. Let for the function v = v41(t) of the form (37) the condi-
tions of Theorem 1, except for (19), be fulfilled, and

S #0, (21)
So2 # 0, (38)
’L/Joo(t) ln ’U41(t) = 0(1) (39)

Then there exists a one-parameter set of R-solutions y(t) € ClA(tl) of the
differential equation (1) with the asymptotic properties

y(t) = va (L +E(1), y'(t) ~ Loy (1), (40)
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where £(t) AL

~ Inwvgq (t) :

THE EXISTENCE AND ASYMPTOTICS OF R-SOLUTIONS OF THE
EQUATION (1) WITH THE CONDITION y(400) = € R4

Since y(4+00) = v € R4, a supposed asymptotics will be sought for the
derivative of n-solutions y'(¢) to within a constant factor of the ratio of
the first two summands. Taking into account p;(t), p2(t) # 0 (t € A(a)),
we get:
p1(t)
pa(t)

BBy £ Ba),

Y () w(t) = |

where 0 < w(t) € Ca(q)-
In the sequel, we will need the assumption that

+oo
/ w(t) dt < +o0. (41)
Let
y'(t) = wt) (€ +n(t)), (42)

where £, 0% € R\ {0} (k =T,n); n(t) € Ca(a), n(+00) = 0.
Integrating (42), we obtain:
400
vt) =7~ [ w0
t
where v € Ry. Next, we show that the constants ¢ and 7 are related to

each other by the equation (49).

Denoting
—+o0

- / w(r)(£+ n(r)) dr = £(2), (43)
&) € Cl\(a), &(+00) = 0, we obtain:

y(t) = v +£@). (44)
We substitute (42) and (44) into the equation (1) and obtain the equality:

n

F(t,y+&w+m) =Y pe)(y+ O™ w (@ +n =0, (45)
k=1

which is satisfied by the functions £(¢) and n(t).
In accordance with the condition B), indicated in the statement of the
problem, we assume that:

pi(t) (w(t))”

@)~ T, eil+o0)=0, GERA{0} (i=L.5);  (46)
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p; () (w(t))%
pi(t)(w(t)?

Then, after the division by pi (t)(w(t))?, the equation (45) takes the form:

= (), £;(+00) =0 (j =5F L n). (47)

S

F(t,&n) =Y @ +ea®)) v+ (€+n)+

i=1
n
+ > M+ U+ =0, (48)
j=s+1
Obviously, the condition
F(+00,0,0) Z yilt =0 (49)
=1

is necessary for the existence of a solution of the form (44) and of its deriv-
ative of the form (42).

Theorem 4. Let a function w(t) be a possible asymptotics of the deriv-
ative of R-solution of the equation (1), which satisfies the conditions (41),
(46), (47). Moreover, let there exist v € Ry, £ € R\ {0}, satisfying the
condition (49).

Then for the existence of R-solution y(t) € ClA(tl) of the differential
equation (1) with the asymptotic properties

y(t) ~v, () ~ Lw(t), (50)

it is sufficient that the condition
> Biey i’ #£0 (51)
i=1

be satisfied.
In this connection, for each pair (v, £) the differential equation (1) admits
a unique R-solution y(t) with the asymptotic properties (50).

Proof. Owing to its structure, the functions ﬁ(t,{,n) € Cg?’n"o( 1), %,
‘?9%57 % (n = 1,00, m = 1,00) are bounded in D, where D; =

A(a) X [—hl,hﬂ X [—hg;hg], 0< h < v, 0 < hy < |€|

To prove the above theorem, we will need expressions of the derivatives
of the function F (t,&,m) of first and order with respect to the variables &,
1 and also some of their properties:

Fe(t,&n) =Y ai(y+ &% (0 +n) "+
=1

+Zak€k (v + & +n),
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1<
Fé +00, 0, O Zalc ,yocl 1@31 — ,Zaicivai@@i;

(&) Zm (Y +O* (L+n)"

=1

+ Zﬁm (v + O +m™Y

~ it U o,
F)(+00,0,0) = Zﬂm L= 2D By % £ 0
i=1 i=1
by virtue of condition (51);

(. Em) = Zﬁu )& (v + €)™ (£ + )% 2+

+ Zﬂk(ﬁk — Dep(t) (v + &)™ (€ +n) 2.

k=1

Owing to the conditions (49), (51) and the properties of the function
F(t,&,7n), in some domain Dy C Dy, Dy = A(ty) X [—hi;hi] X [—ha; ha),
| Z Biciy i P

4£sup ’Fm(t f,'r])’

to >a,0< El <hy,0< Eg < min {hg, }, the equation (48)

satisfies the conditions of Lemma 1. Consequently, there exists a unique
8’7l~ [
function n = 7(t,£), 7(t,€) € CY¥(Ds), S}Dlp |W’Z\ < 400 (n=1,00), such
3

that F(t,¢, n(t,£)) =0, n(+00,0)=0, (¢, & < hs. Moreover, we can write

on(tg) _ _ Felt&n
o6 = F”(t&n),sup| | M > 0.
In view of the replacement (43), we obtain the integral equation:
+oo
- [ wmle+ e ar =, (52)

i

The solution of the equation (52) will be sought in the class £(t) € ClA(tl)
(t1 > to).

Next, we consider and estimate the difference 7(t, &) — 7(¢, &1), (8,&) €
D3 (i = 1,2), applying the Lagrange’s theorem with respect to the vari-
able &:

(t,&2) —n(t, &) =Ne(t,€) (&2 — &), & €838

|7(t, &) —(t, &1)| < Slljlp| et ))& — &i| = M[& — &

Assuming &1 =0, & = &, we get:
(&) < MI¢].
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To the equation (49) we out into the correspondence the operator

+oo
€0 =TwE0) =~ [ v+ )] an
t
where £(t) € By € B, B={€(t) : £(t) e CX m» E(+00) = 0, [IE@)] =
bup £(t )|} is the Banach space, By = {f )€ B, |lE@)] < hi}is a
A(ty
closed subset of the Banach space B.
Using the contraction mapping principle, we: N
1) prove that if £(t) € Bj, then £(t) = T(t,£(t)) € By: &(t) € ClA(t )

and g(+oo) = 0, and by virtue of the structure of the operator, we get
§(t) € CLy ), E(+00) = 0;

DN < by = 10 = 1T @) =

H/ )[€+ii(r,6(7))] dr

+oo
< /w(T)(\eHﬁz) dr < hi,

t1

if ¢1 is sufficiently large.
2) check the condition of contraction:

E1(1),&2(t) € Br = ||éa(t) — &u(t)]| =
+oo

[ w@)litr &) ~ G e

+oo
gM/ﬁwmd@w—éwuzwém—évm

+oo
where v = M [ w(r)dr <1, if ¢, is sufficiently large.
t1
Thus, t; should necessarily be such that

+oo

o1
w(7)d7<min{ = ,}.
/ 0| + hy M

t1

As a result, we have found that by the contractive mapping principle the
equation (52) admits a unique solution £ = £(t) € By.

Thus, we have obtained that for each pair of constants (v, ¢), satisfying
the condition (49), the differential equation (1) admits a unique R-solution
y(t) with the asymptotic properties (50) in A(#;). Thus the Theorem is
complete. O
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1. INTRODUCTION

The present paper is devoted to the existence and the asymptotic analysis
of positive solutions of nonlinear ordinary differential equations of Thomas—
Ferma type

2" = q(t)¢(x) (A)

assuming that ¢ : [a,00) — (0,00), a > 0, is a continuous function which is
regularly varying at infinity of index ¢ € R and ¢(z) is a positive, continuous
function which is regularly varying at zero or at oo of index v € (0,1).

We begin by stating some obvious but important facts valid for all pos-
itive solutions of equation (A): Let x(t) be a positive solution of (A) on
[a,00), a > 0. Since all positive solutions are convex, it follows that z'(t)
is increasing, and hence either z'(¢) < 0 on [a,00) or 2/(t) > 0 on [tg, c0)
for some ty > a. In the former case, z/(t) tends to 0 as ¢t — oco. In
fact, if 2/(t) tends to some negative constant wi, we have z(t) < w; ¢, for
t > t; > to, which contradicts positivity of x(¢). Moreover, x(t) is positive
and decreasing, so that it tends either to a positive constant or to 0 as
t — oo. In the latter case, z’(t) is positive and increasing, so it tends either
to oo or to some positive constant as t — oco. Thus, 2/(t) > k for some
positive constant k£ and for ¢ > ¢; > ty. Accordingly, by integration we get
x(t) > x(t1) + k(t — t1) which implies that z(t) — oo as t — oo.

On the basis of the above observations all possible positive decreasing
solutions of (A) fall into the following two types:

lim z(t) = const >0, lim 2/(t) =0, (1.1)
t—o0 t—o0
lim z(t) =0, lim 2'(t) =0, (1.2)
t—oo t—o0

while all possible positive increasing solutions of (A) fall into the following
two types:

x(t)

tlim x(t) = oo, tlim = const > 0, (1.3)
tlim x(t) = oo, tlim 2 (t) = oo. (1.4)

In our analysis we shall extensively use the class of regularly varying
functions introduced by J. Karamata in 1930 by the following

Definition 1.1. A measurable function f : [a,00) — (0,00), a > 0, is
said to be regularly varying at infinity of index p € R if
lim w =X forall A>0.
t—oo f(t)
A measurable function f : (0,a) — (0, 00) is said to be regularly varying at
zero of index p € R if f(1) is regularly varying at oo i.e. if

m F) =X forall A>0. (1.5)

0
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By RV (p) and RV (p) we denote, respectively, the set of regularly varying
functions of index p at infinity and at zero. If, in particular, p = 0, the
function f is called slowly varying at infinity or at zero. By SV and SV we
denote, respectively, the set of slowly varying functions at infinity and at
zero. Saying only regularly or slowly varying function, we mean regularity
at infinity.

It follows from Definition 1.1 that any function f(¢) € RV(p) is written as

F(t) =tPg(t) with g(t) € SV. (1.6)

If, in particular, the function g(t) — k > 0 as t — oo, it is called a trivial
slowly varying one denoted by ¢(t) € tr-SV, the function f(t) € RV(p) is
called a trivial regularly varying of index p, denoted by f(t) € tr-RV(p).
Otherwise g¢(t) is called a nontrivial slowly varying function denoted by
g(t) € ntr-SV and f(t) is called a nontrivial RV(p) function, denoted by
f(t) € ntr-RV(p). Similarly for the set RV(p).

Comprehensive treatises on regular variation are given in
N. H. Bingham et al. [2] and by E. Seneta [15]. To help the reader, we
present here a fundamental result which will be used throughout the paper.

Proposition 1.1 (Karamata’s integration theorem). Let L(t) € SV.
Then

(i) if a > —1,
/ 1
/saL(s) ds ~ ——t*T1L(t), t — oo;
a+1
(i) if a < —1,
/SO‘L(S) ds ~ — L t*TLL(t), t — oo;
o+ 1 ) 9
t
(iii) if a = —1,
t 00
L L
ma (t) :/%ds € SV, ma(t) :/gds
a t
and
L
i ®) =0, i=1,2.
t—o0 mz(t)
The symbol ~ denotes the asymptotic equivalence
- f@)
ft) ~g(t), t— o00<= lim —= = 1.
(t) ~ g(t) Jim

Also, f(t) < ¢(t) means that there exist constants 0 < m < M such that
mg(t) < f(t) < Mg(t), t > to.
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Throughout the text, “t > to” means that t is sufficiently large, so that #g
need not to be the same at each occurrence.
We shall also use the following results:

Proposition 1.2. Let ¢;(t) € RV(01), ¢2(t) € RV(01), g3(t) € RV(03).
Then

(i) g1(t) + g2(t) € RV(0), 0 = max(o1,02);
(ii) g1(t)g2(t) € RV(01 4 02), (¢1(t))* € RV(aoy) for any a € R;
(i) q1(g2(t)) € RV(0102) if ¢2(t) — o0, as t — oo;
73(q2(t)) € RV(0302) if g2(t) — 0, as t — oo;
(iv) for any € >0 and L(t) € SV, one has t°L(t) — oo, t °L(t) — 0, as
t — oo.
Proposition 1.3. If f(t) ~ t*l(t) as t — oo with I(t) € SV, then f(t)
is a regularly varying function of index « i.e. f(t) = t*I*(t), I*(t) € SV,
where, in general, I*(t) # I(t), but I*(t) ~ I(t) as t — oo.

)
g

— —

Proposition 1.4. A positive measurable function f(t) belongs to SV if
and only if for every a > 0, there exist a non-decreasing function ¥ and a
non-increasing function v with

EF(E) ~ W (E), and £OF () ~ (D), t— oo,

Proposition 1.5. For the function f(t) € RV(a), a > 0, there exists
g(t) € RV(1/a) such that

f(g(t) ~g(f(t)) ~t as t — oo.

Here, g is an asymptotic inverse of f (and it is determined uniquely to
within asymptotic equivalence).
Note, the same result holds for ¢ — 0 i.e. when f(t) € RV(«a), a > 0:

Proposition 1.6. For the function f(t) € RV(«a), a > 0, there exists
f(t) e RV(1/a) such that

flg(t) ~g(f(t)) ~t as t — 0.

This follows from Proposition 1.5, since by Definition 1.1 the assump-
tion is equivalent to the saying that f(1/t) € RV(—«). Thus, one applies
Proposition 1.5 to the function 1/f(1/t) € RV(«).

The assumptions on ¢ and ¢, using notation (1.6), imply that equation
(A) can be written in the form

2" (t)=t°1(t)x " L(z), I(t)€SV, L(z)eSV or L(z)eSV. (1.7)

If in (1.7), v € (0,1) or v > 1, equation is called sublinear or superlinear,
respectively.

The study of nonlinear differential equations of the form (A) in the frame-
work of regular variation was initiated by Avakumovié [1] (as the very first
attempt of the kind in the theory of differential equations), followed by
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Mari¢ and Tomi¢ [12]-[14] and some more recent results [4], [5], [7], [8],
[10]. See also Marié [11, Chapter3]. These papers and some closely related
ones [16], [17] are concerned exclusively with decreasing positive solutions
of superlinear Thomas—Fermi type equations. No analysis from the view-
point of regular variation, until recently in [9], seems to have been made
of positive solutions of sublinear type of equations. There positive increas-
ing solutions of the both types (1.3), (1.4) of the equation (A) (or (1.7))
with v € (0,1) were analyzed. Very recently a paper [6] by Evtukhov and
Samoilenko appeared. A more general equation (™) = aq(t)z(t) is studied
and the existence and the asymptotics of solutions is obtained covering a
subclass of regularly varying solutions. Here @ may be +1 (Thomas—Fermi
type), or —1 (Emden—Fowler one).

Our purpose here is to proceed further in studying positive solutions of
sublinear equation (A) by establishing the sharp conditions for the existence
and constructing the precise asymptotic forms of these. Besides regular
variation, the main tools employed in the proof of our main results are the
Schauder—Tychonoff fixed point theorem in locally convex spaces and the
following generalized L’Hospital’s rule (see [3]):

Lemma 1.1. Let f,g € C[T, ) and
tlim g(t) =00 and ¢'(t) >0 for all large t
or
lim f(¢t) = lim g(t) =0 and ¢'(t) <0 for all large t.
t—o0 t—o0
Then
(t) (t)

!/
< liminf —= < limsup —= < lim sup f/ ®) .
t—oo  g(t) t—oo g(t) t—oo g'(1)

I
lim inf 40
t—o0 gl(t)
2. RESULTS

To avoid repetitions, we state here basic conditions imposed on the func-
tions g and ¢ in all theorems which follows:

q(t) € RV(o), o€R, (2.1)
a) é(z) € RV(y), v€(0,1);
b) ¢(x) € RV(y), v € (0,1).

First, observe that in either of two cases a) or b) in (2.2), by Propositions
1.5 and 1.6 there exists an asymptotic inverse () of the function z/¢(z).
In addition, in some of the theorems it is required that either

d(x) € RV(y) satisfies ¢(t u(t)) ~ ¢p(tM)u(t)?, as t — oo,
for each A € R™ and u(t) € SV N C*(R),

(2.2)

(2.3)
' d(x) € RV(y) satisfies ¢(t u(t)) ~ o(tMu(t)?, t — oo,

2.4
for each A € RT and u(t) € SV N CY(R); 24
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In other words, the slowly varying part L(z) of ¢(z) must satisfy L(t*u(t)) ~
L(t*), t — oo, for each slowly varying u(t) € C1(R). It is easy to check that
this is satisfied by for e.g.

=

L(t) = | | (logg )™, ax € R,

k

I
—

but not by

=

L(t) = exp ( (logy, t)ﬂk>, O € (0,1),

k=1

where log,. t = loglog,._; t.
For the future analysis we need the following preparatory

Lemma 2.1. Put

t2q(t)
Y = —_— 2.5

o) =w(-05) (2:5)

and
I(t) = q(r)¢(Yo(r)) drds, (2.6)

/]
where () is an asymptotic inverse of the function x/¢(x) and p is given by
o+2

P=1T e (2.7)

If (2.2) a) and (2.1) with o < —2 hold, then as t — oo

(i) Yo(t) € RV(§£2) and Yo(t) — 0;

(i) 1) ~ Yo (t).
Proof. Since t2q(t) — 0, t — 0o, by Proposition 1.2-(iii), we conclude that
Yo(t) € RV (p), with p given by (2.7). Thus, Yy(t) is expressed as Yy(t) =

tPn(t), n(t) € SV and Yy(t) — 0, t — oo, because p < 0. Moreover, in view
of (2.5), there follows

Yolt) gt
¢(Yo(t))  plp—1)’
Hence, by writing I(¢) in the form

RN 1) SR
Hﬂ—/!ﬂ)ﬁw)%ﬁdd

— 00. (2.8)

~p(p—1)//7"”_277(7“) drds, t— oo,
t s

and applying Karamata’s theorem twice on the last integral (Propositi-
on 1.1-(ii)), one obtains the desired result. O
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To prove the existence and determine the exact asymptotic behavior of
solutions z(t) € RV(p), p € R we shall consider the following three cases
separately:

(i) p<Oorp>1,
(i) p=0,
(iii) p=1.
Note, the case p € (0,1) does not exist due to (1.1)—(1.4).
(i) Regularly varying solution of index p < 0 or p > 1.

Theorem 2.1. Suppose that (2.1), (2.2) a) and (2.3) hold. Then equa-
tion (A) possesses a decreasing regqularly varying solution x(t) of index p < 0
if and only if

o< 2. (2.9)
Also, x(t) satisfies (1.2).

If, on the other hand, (2.1), (2.2) b) and (2.4) hold, then equation (A)
possesses an increasing reqularly varying solution x(t) of index p > 1 if and
only if

o> —vy—1. (2.10)
Also, x(t) satisfies (1.4).
In either case any such solution x(t) has for t — oo the exact asymptotic

behavior )
t%q(t)
m@)Nw( ) (2.11)
p(p—1)
where @ and p are as in Lemma 2.1.

Proof. We begin with the proof of the first part of Theorem 2.1, where
p < 0. Let (2.1), (2.2) a) and (2.3) hold.

The “only if” part: Let x(t) € RV(p), p < 0, be a decreasing solution
of (A) on [tg,00). We express it as z(t) = tP£(t), £(t) € SV. To avoid
ambiguity, notice that p € R and has to be determined. Due to Proposition
1.2-(iv) z(t) — 0 as t — oo, and as is pointed out in the Introduction,
2'(t) — 0 as t — co. Integrating (A) over (¢,00) and using (1.7), we get for
t > to

—f@)::/QQWN$@»dS:1/50HWM@§@YUK¢5@»d& (2.12)

The convergence of the last integral implies that o + py < —1. However,
the possibility o + py = —1 is excluded. In fact, if this were the case, then
(2.12) reduces to

o0

~a'(t) = [ s L) ds

t
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and since due to Proposition 1.1-(iii) the last integral is slowly varying, an
integration over [t, 00) gives
x(t) ~t /s_ll(s)ﬁ(s)"’L(spf(s)) ds € RV(1), t — oo,
t

contradicting p < 0. Thus, we have 0 + py < —1. Then, by Karamata’s
integration theorem from (2.12), we obtain

7)€ () L(tPE(t))

—(o+py+1)

—x'(t) , t— oo. (2.13)

Since z(t) — 0 as t — oo, by integration we further get
/ 7 ()E(8) Y L(tPE(t))
—(c+py+1)
and hence o+ py+1 < —1ie o+ py < —2. If 0+ py = —2, then (2.13)
reduces to

dt < oo,

@' (t) ~ =t H)E)L(EPE(1)), T — oo,
and integration over [t, 00) yields
o(0) ~ |5 L () ds €SV, - ox,

which leads to an impossibility that p = 0. Therefore, we must have o+py <
—2, in which case, integrating (2.13) over [t, c0), we get for t — co

o(t) ~ t7 P2 (1) E(H)YL(tPE(1)) _
[—(e+py+D][=(o+py+2)]
t2q(t)p(t7E(t))

T+ DI[(0 +py + 2)]

implying, in view of Proposition 1.3, that the regularity index of x(¢) is
p=0c+py+2 ie p= ‘1’%'3/ . Then, since p < 0, we conclude that o < —2.
Since, (o + py+ 1)(c + py+2) = p(p — 1), (2.14), due to (2.8), becomes

z(t) Pqt) Yo (2.15)

o(x(t)  plp=1)  o(Yo(t)’
Because Yy(t) — 0 and z(t) — 0 as t — oo, (2.15) is, in view of Proposi-
tion 1.6, equivalent to (2.11).

(2.14)

The “if” part: Note that any solution z(t) of the integral equation

2(t) = / / ()b (r)) drds, (2.16)
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(if it exists) satisfies (A) and is obviously positive, decreasing and (1.2)
holds. We shall prove that it indeed exists and possesses the properties
stated in the Theorem.

Applying Proposition 1.4 to the function ¢(z) € RV(y) with v > 0, we
see that there exists a constant A > 1 such that

o(x) < Ap(y) for each a >y >x > 0. (2.17)
Due to Lemma 2.1, there exists tg > a so that
Yo(t
%0 < 10y < 2vo(t), 13 to. (2.18)

In addition, since Yj(t) — 0 as ¢ — oo and (1.5) holds uniformly on each
compact A-set on (0,00) ([2, Theorem 1.2.1]) there exists ¢y > a such that

A7
- d(Yo(t)) < d(AYo(t)) < 2X7¢(Yo(¢)) for t > to. (2.19)
Choose 0 < k < 1 and K > 1 such that
k7 < i and K'™7 > 4A, (2.20)

which is possible due to 0 < v < 1.
Now we choose ty such that (2.18) and (2.19) both hold and define the
set X to be the set of continuous functions z(t) on [tg, 00) satisfying

EYo(t) < z(t) < KYy(t) for ¢ > to. (2.21)

It is clear that X is a closed convex subset of the locally convex space
Clto, 00) equipped with the topology of uniform convergence on compact
subintervals of [tg,00). We shall show that the integral operator F de-

fined by
// )drds, t>tg,

is a continuous self-map on X and that F(X) is a relatively compact subset
of Cftg,o0) and then apply the Schauder—Tychonoff fixed point theorem.
Notice that, in view of Lemma 2.1, the above integral converges on the set
X under consideration.

Let x(t) € X. By using successively (2.17), (2.19) with A = K and A = k,
(2.20) and (2.18), one obtains

t) < // d(KYy(r)) drds <
<2AK7// )drds <

< 4AK“’Y0( ) < KYy(t), t=to,
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A// d(kYo(r)) drds >
// ) drds >

kY
2 7 Yo(t) 2 kYo(t),  t=to.

Therefore, Fx(t) € X, that is, F maps X into itself.

Furthermore, it can be verified that F is a continuous map and F(X)
is relatively compact in C[tg,c0). Therefore, by the Schauder—Tychonoff
fixed point theorem, there exists a fixed point x(¢) of F which satisfies the
integral equation (2.16) and hence equation (A).

Now we prove that any such solution z(t) has the asymptotic behavior
(2.11). Because of (2.21), x(t) satisfies

x(t) x(t)
0 < lim inf < limsu
125 Yo(t) = i’ Yo(t)

or in view of Lemma 2.1, we have
0< hrglogf IEt; < h?iigp :;E:; < 0.

Put Yp(t) = tPn(t), n(t) € SV. An application of Lemma 1.1, in view of
assumption (2.3), yields
o(t) ') qa(t)(x(t))
——= < limsu =limsup ———F~—+5 =

D= e T a6 (%)
o(t°€(t)) §)o(t?) _ . ((t)/t")7
=1 =1 = - L =] -~ =

T G(ten(0) et n(076(7) et (Ya(£)/80)7
(e EON (30N
= (maw ) = (imaw ) = 2

Since v < 1, from the above we conclude that

and

| \/

< o0,

L = limsup

(
t—o0 I(
(
(

0<L<1 (2.22)
Similarly, we can see that [ = lim inf ﬂ satisfies
0]
1<l < o0 (2.23)

From (2.22) and (2.23) we obtain that [ = L = 1, which means that z(t) ~
I(t) ~ Yo(t), t — o0, i.e. (2.11) holds. This also shows, due to Propositi-
on 1.3, that x(t) is a regularly varying solution of (A) with the requested
regularity index.

We now turn our attention to the second part of Theorem 2.1, where
p> 1. Let (2.1), (2.2) b) and (2.4) hold.
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The “only if” part: Suppose that (A) has solution of the form z(t) =
tPE(t) on [tp,00) with p > 1 and &(¢t) € SV. Note that z'(¢) — oo and
x(t) — oo as t — oo. Integrating (A) on [to, t], we have

t t
2 (t) ~ /q(s)gb(;v(s)) ds = /s‘”””l(s){(s)”L(s”f(s)) ds, t— o00. (2.24)
to to
The divergence of the last integral as t — oo means that o + py > —1. But
the possibility ¢ + py = —1 is precluded, because if this was the case, then
t
/sfll(s)f(s)VL(spﬁ(s)) ds € SV,
to
and hence integration of (2.24) on [tg, t] shows that
¢
x(t) ~ t/sill(s)ﬁ(s)vL(s"g(s)) ds € RV(1),
to
which contradicts the condition p > 1. Thus, 0 + py > —1. In this case,

applying Karamata’s integration theorem to the last integral in (2.24), we
have

t7EH()E(4) L€ ()
o+py+1
and integrating the above relation on [tg, t], we obtain

sty TTPEDED L)

(c+py+ Do+ py+2)
which, in view of Proposition 1.3, shows that the regularity index of x(¢) is
p= ‘1%3 From the requirement p > 1 it follows that o > —y — 1. Exactly
as when p < 0, (2.25) leads to the asymptotic formula (2.11).

The “if” part: Tt is proved in [9, Lemma 2.1, Theorem 2.1] that if the
regularity index o of ¢(t) satisfies 0 > —vy — 1, then the function Y5(t) €
RV (p) satisfies the relation

' (t) , t— o0,

€ERV(c+py+2), t— o0, (2.25)

n@~//wwmm»wwtew,

and there exists a positive increasing solution z(t) of equation (A) which
satisfies (1.4) and (2.21). Then, proceeding exactly as when p < 0, with
application of Lemma 1.1 and using (2.4), we conclude that z(t) ~ Yy(t) as
t — oo. This implies z(t) € RV(p), with p given by (2.7), as before. O

(ii) Regularly varying solutions of index p = 0.

We distinguish two subcases: x(t) € tr-SV and z(t) € ntr-SV.
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Observe that slowly varying solutions must decrease. For otherwise (1.3)
and (1.4) would hold contradicting Proposition 1.2-(iv).

Theorem 2.2. Suppose that (2.1) and (2.2) a) hold. Equation (A) pos-
sesses a (decreasing) trivial slowly varying solution if and only if

oo

/sq(s) ds < oo. (2.26)

to

Proof. The “only if” part: Suppose that (A) has a decreasing tr-SV-solution
z(t) on [tp,00) i.e. satisfying z(t) — ¢, t — 0o, ¢ > 0. Integrating (A) over
[t,00) and observing (1.1), one gets

o0

_2/(t) = / 7U(s)(x(s)) ds, ¢ > to, (2.27)

t

implying 0 < —1. But the case ¢ = —1 is impossible since then, by Propo-
sition 1.1-(iii), the integral in (2.27) is an SV function, and another integra-
tion on [t, 00) would give p = 1. Thus p < —1 and by Karamata’s theorem,
(2.27) leads to

/ 7 () p(x(t))
—x'(t) ~ T+ t — oo, (2.28)
which together with z(t) — ¢, t — oo yields
[ W)
/ P 1) < 00,

implying (2.26).

The “if” part: Suppose that (2.26) holds. Then there exists ty > a such
that
c
tq(t)dt < t>t 2.29
/q() _2A¢(C)> = L0, ( )
to
where A > 1 is a constant such that (2.17) holds. Let us now define the
integral operator

and the set
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If x(t) € X, then clearly, Fx(t) > ¢/2. Also, due to (2.29), we obtain

// )) drds < Ag(c // ) dr ds =

— Ad(0) / (r — H)q(r)dr <
t

and hence Fz(t) < ¢ for t > to. This shows that Fz(t) € X, and hence F
is a self-map of the closed convex set X'. Moreover, we can verify that F
is continuous and F(X) is relatively compact in the topology of the locally
convex space C[tg,o0). Therefore, by the Schauder—Tychonoff fixed point
theorem, F has a fixed point z((t) € X, which gives birth to a solution of
equation (A) tending to a positive constant as ¢t — oo. O

) tZth

N O

Remark 2.1. Tt is clear that (2.26) implies ¢ < —2, or ¢ = —2 and
(oo}
Ik @ ds < oo.
t

Theorem 2.3. Suppose that (2.1) and (2.2) a) hold. Equation (A) pos-
sesses a (decreasing) nontrivial slowly varying solution if and only if

)
oc=-2 and /tq(t) dt < o0, (2.30)
and any such solution x(t) has the exact asymptotic behavior
z(t) ~ d7HQ(1)), t — oo, (2.31)
where
Q) = /sq(s) ds, t>a, and ®(x)= q;é:j)’ x> 0. (2.32)
t 0

Proof. The “only if” part: Suppose that (A) has a nontrivial SV-solution
x(t) on [tg,00), so it has to satisfy (1.2). Then, as in the proof of Theo-
rem 2.2, we get (2.28) and conclude that o must satisfy o +1 < —1. If
o < —2, integrating (2.28) over [t,00) and applying Karamata’s integration

theorem, we obtain
72t ((t))
"0~ G o +2)

which is impossible because for the regularity index of x(t) we would get
p =0+2 < 0. Thus, one has 0 = —2 and so, integration of (2.28) over
[t,00) gives

€RV(c +2), t— o0,

oo

2(t) ~ / s~ UU(s)p(x(s)) ds, t— 0. (2.33)

t
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Let the integral in (2.33) be denoted by x(¢). Then, x(t) — 0, t — oo and
satisfies

X' (t) = =t () g(x(t) ~ =t~ H(H)(x(t)), t— oo,

that is
X'(#)
~ —tq(t), t— oo.
sy ~ 1

An integration of the last relation over [t, 00) results in

x(t) oo

[ S = e~ [sas)ds = Q). t—oo. (230

/ o) t e '

or

x(t) ~ 27HQ(t)), t— oo,
which is equivalent to (2.31) since by (2.33), x(t) ~ x(t) as t — oo.
Observe that because of (2.2) a) and Proposition 1.2-(iv), the left-hand
side integral in (2.34) converges at 0 and the same holds for the right-hand
side one at co. Thus, the second condition in (2.30) also holds. In addition,
since @ is continuous and increasing and ¢(z) € RV(1 — ), its inverse
function exists and
1
P! RV(—). 2.35
(@) € RV (== (235)
The “if” part: Suppose that (2.30) holds, so that q(t) = t=2I(t), I(t) €
SV. We show that Y;(¢) defined by

Yi(t) =d! <7sq(s) ds), t>a,

satisfies the integral asymptotic relation

77q<r>¢<m<r>> drds ~ Yi(t), t— oc.

Notice that, in view of (2.30), Q(t) € SV and Q(t) — 0, t — o0, so that
Proposition 1.2-(iii) and (2.35) show that Y3(¢) € SV. Also, Y1(¢t) — 0 as
t — o0, so that ¢(Y1(t)) € SV. Since ®(Y1(t)) = Q(t), we get
Yi(t)
tq(t) = —®' (Y1 (1))Y{(t) = ——+—~,

implying that Y7 (¢) is a solution of the differential equation

Y{(t) + ta(t)p(Y1(t)) = 0.
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Thus, applying Karamata’s integration theorem, we have, due to the pre-
ceding differential equation,

// ) dr ds =

7 7 PUB(Y() drds~7 “U()0(Yi(s)) ds =

S

=/ a(s)9(Yi(s)) ds = — /Y1 )ds = Yi(t), ¢ — oc.

t

Then, by replacing in the proof of Theorem 2.1 the function Yy(t) by Y7 (¢),
an application of the Schauder—Tychonoff fixed point theorem provides the
existence of a decreasing solution z(t) of equation (A) satisfying

z(t) < Y1 (¢). (2.36)

We show that the obtained solution z(t) of (A) is slowly varying and hence
satisfies (2.31). Using (2.36) and (2.17), from equation (A) we get

2" (t) < q(t)o(Yi(t)) = tU(t) (V1 (1))
Integrating over [t,00), we get
2 () = BN (1), w(t) = / s UU()o(Yi (s)) ds.

Then

o0

=1(t)¢(Y1(t)) [/5_11(8)¢(Y1(5)) dS} _1- (2.37)

Application of Karamata’s integration theorem gives

lim 1(£)6(Ya (1)) [7s1Z<s>¢<Y1<s>> s T

t—o0o
t

which implies with (2.37) that tz'(¢)/z(t) — 0 as t — oo. Therefore, by [11,
Proposition 10], z(¢) is slowly varying and so enjoys the precise asymptotic
behavior (2.31). This completes the proof of Theorem 2.3. O

Remark 2.2. If specially ¢(x) = 27, then formulas (2.11) and (2.31) read,
respectively,

x(t) ~ (pi)qft)l))l_lw, x(t) ~ (]Osq(s) ds> ﬁ7 t — oo.
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(iii) Regularly varying solutions of index p = 1.

This case is completely resolved by Theorems 3.2 and 3.3 in [9] and we
present it here for the sake of completeness.

Theorem 2.4. Suppose that (2.1) and (2.2) b) hold. Equation (A) pos-
sesses a trivial RV (1) solution if and only if
o<y—1, or o=—y—1 and /q(t)(b(t)dt< 00.
to

If, in addition, (2.4) holds for A = 1, equation (A) possesses a nontrivial
RV(1) solution if and only if

o0
oc=—-—y—1 and /q(t)qb(t) dt = o0,
to
and any such solution has the exact asymptotic behavior
t

stt) ~ o] =) [ aspots) s e

Remark 2.3. Tt is worthwhile mentioning that, due to Proposition 1.3,
our results apply to a very wide class of equations (see Examples 2.1, 2.2).

Example 2.1. Consider differential equation (A) with
3r(t)t"z (logt) =
4log(t=1/2(logt)1/2 + 1)’

t — oo,

¢(x) ~ 27 log(z + 1) and ¢(t) ~ (2.38)

where 0 < v < 1 and r(¢) is a continuous function on [e,00) such that
tlim r(t) =1.
— 00

The function ¢(t) is a regularly varying function of index o = WT_E’,

which satisfies ¢ < —2, while ¢(x) € RV(y) fulfills the condition (2.3).
Then p = —1/2 and it is easy to check that

£2q(1) 7 (logt) =
plo—1) " log(t—(log)/” +1)
Therefore, it follows from Theorem 2.1 that the equation possesses de-

t — o0.

creasing regularly varying solutions z(t) of index p = —1/2, satisfying
x(t) ~ Yy(t), t — oo ie.
1—y
W0 el ),

log(x(t) +1)  ¢(z(t))  o(Yo(t)’

In view of (2.8), we have

sty ~ () s () )] e
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1
x(t) ~ E, t— oo
4

Observe that if in (2.38) instead of “~” one has “=" and
4 1
rit)=1

~ 3logt 3(logt)?’
then, z(t) = (lngt)% € RV(—1/2) is an exact solution.

implying that

Example 2.2. Consider equation (A) with
d(z) ~ 27 log(2® + 1) and
0 (2.39)

(t) ~ 35 , t— 00,
2t2(logt) = log((logt)=9/2 4+ 1)
where v € (0,1), 6 > 0 and f(¢) is a continuous function on [e,00) such
that lim; o f(t) = 1. Clearly, ¢(t) is a regularly varying function of index
o = —2 and satisfies

oo

1
ws t/sq(S) B S os) T ogliogy
t — 0.
Also, ¢(z) € RV(y) and
O(z) dv ! z— 0. (2.41)

~ ) é(v) T 61 —)arTlogx’
0

By Theorems 2.2 and 2.3, equation (A) has, along with a trivial slowly
varying solution, a nontrivial SV-solution z(t) whose asymptotic behavior
is given by (2.31) or equivalently
B(a(t)) ~ Q(F) = / sq(s)ds, t— oo. (2.42)
t

Using (2.40) and (2.41), (2.42) is reduced to
(1 —7)z(t) " logz(t) ~ 6(1 — ) ((log ) ~/2)" " log(log ) ~*/2,
t — oo,

implying that 2(t) ~ (logt)~/? as t — oco. If in (2.39) instead of “~” one
has “=" and, in particular, f(¢t) = 1+ 3/2logt, then (A) possesses an exact
nontrivial SV-solution z(t) = (logt).

Example 2.3. Consider equation (A) with

o(z) =27 log(z+ 1), qt) = (t7+1(log t)7 log(tlogt + 1))_1



An Asymptotic Analysis of Positive Solutions . .. 93

with v € (0,1). Note that ¢ fulfills the condition (2.4) with A = 1. Also,
q(t) € RV(—y — 1) and satisfies

q(t)p(t) ~ t(logt)”, ¢ — oo

which for ¢ — oo gives

t

[ats)o(s)ds ~

to

(logt)!
_— =
1—v

Thus, by Theorem 2.4, the above-considered equation possesses nontrivial

RV(1) solutions all of which have the same asymptotic behavior x(t) ~
tlogt, t — oo. In fact, an exact solution is z(t) = tlogt.
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