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Introduction

In the present work, the problem on the existence, uniqueness, and sign
properties of a bounded on [a,+0o0[ solution to the functional differential
equation

' (t) = F(u)(t) (0.1)
is studied.

In Chapter 1 (Sections 1-5) we consider a linear equation, i.e., the
equation

uw'(t) = L(u)(t) + q(t), (0.2)

with a “boundary” condition
w(u) =c.

Here ¢ : Cioc([a, +00[; R) — Lioc(a, +00[; R) is a linear continuous op-
erator, w : Ciec([a,+o0[; R) — R is a linear bounded functional, ¢ € R,
q € Lipe([a, +0[; R), and

sup{’/tq(s)ds :

Main results of this chapter are contained in Section 3. In Subsection 3.1,
theorems on “Fredholmity” of above mentioned problem are presented (The-
orems 3.1 and 3.2). Optimal (unimprovable) sufficient conditions of exis-
tence and uniqueness of a bounded solution to (0.2) satisfying one of the
conditions

tZa}<+oo.

u(a) = ¢,
u(+00) = ¢,
u(a) —u(4+o00) =¢
are presented in Subsection 3.2. Sign properties of those solutions are dis-
cussed in Subsection 3.3.

In Section 4, the results of Section 3 are concretized for a special case
of the equation (0.2), for the equation with deviating arguments

W (1) = Y (pr®u(r(®) = g Oulue(®)) + a(t),

k=1

3
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where p, gr € L([a, +oo[; R+) and 7y, pg, : [a, +00[ — [a, +00[ are measur-
able functions.

Chapter 2 is devoted to the nonlinear equation (0.1) with a boundary
condition

w(u) = h(u).

Here h : Cioc([a, +o0[; R) — R is (in general) a nonlinear functional. In
Section 7 we establish so—called principle of existence of a bounded solu-
tion, which is our main technical tool to investigate the nonlinear problem.
Optimal sufficient conditions for existence and uniqueness of a bounded so-
lution to (0.1) are established in Section 8. In Section 10 we concretize
results obtained in Section 8 for the equation with deviating arguments of
the form

W/ (6) = 3 (puBulni(t) = gr(Hulu(®) )+
k=1
+ f(t, u(t),u(ri(t)),... ,u(un(t))),

where pg, gr € L([a, +0o[; Ry), Tk, ks : [a, +00] — [a, +o00[ are measurab-
le functions, and f : [a,+oo[ xR™"! — R is a function satisfying local
Carathéodory conditions.



Notation

N is a set of all natural numbers.
R is a set of all real numbers, R, = [0, +o0|.

C([a, b]; R) is a Banach space of continuous functions u : [a,b] — R with a
norm |lu|l¢ = max{|u(t)|: a <t <b}.

C(la,b]; Ry) = {u € C([a,b]; R) : u(t) >0 for t € [a,b]}.

Cloc([a, +00[; D), with D C R, is a set of continuous functions v : [a, +oo[ —
D with a topology of uniform convergence on every compact subin-
terval of [a, +00f.

If u € Cipe(la, +o0[; R), then

Jull = sup {ut)| : ¢ > a}.

Co([a, +0[; R) is a set of functions u € Cioe([a, +00[; R) (with a topology
of uniform convergence on every compact subinterval of [a, +00[), for
each of which there exists a finite limit

u(+00) “ Yim u(t).

t——+oo

C([a,b]; D), where D C R, is a set of absolutely continuous functions w :
[a,b] — D.

@OC([CL,—l—oo[;D)7 where D C R, is a set of functions u : [a,+oo[— D,
absolutely continuous on every compact subinterval of [a, +00][.

Co(la, +00[; D) = Cloc([a, +o0[; D) N Co([a, +0]; R), where D C R.

L([a,b]; R) is a Banach space of Lebesgue integrable functions p : [a,b] — R
with a norm

b
Mh=/WM%-

L([a,b); Ry) = {p € L([a,b]; R) : p(t) > 0 for almost all ¢ € [a,b]}.

5
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L(Ja,+oo[; D), where D C R, is a set of Lebesgue integrable functions
p:la,+oo[— D.

Lioe([a,+o0[; D), where D C R, is a set of locally Lebesgue integrable
functions p : [a, 400 — D with a topology of convergence in a mean
on every compact subinterval of [a, +00].

ch is a set of nontrivial linear bounded functionals w : Cjoc([a, +00[; R) — R.
W) is a set of nontrivial linear bounded functionals w : Cy([a, +00[; R) — R.

H is a set of continuous functionals h : Cjc([a, +o0[; R) — R with the
following property: for every r > 0 there exists M, € R, such that

|h(v)] < M, for |jv]| <.
Loy is a set of linear bounded operators £ : C([a,b]; R) — L([a,b]; R), for
each of them there exists n € L([a, b]; R+) such that
[4(v)(t)] < n(t)|lv|lc for almost all ¢ € [a,b], v e C([a,b];R).
Py is a set of operators ¢ € L, transforming a set C([a,b]; R+) into a set
L([a7 b]7 R+)
My is a set of measurable functions 7 : [a, b] — [a, b].

Kab is a set of continuous operators F' : C([a,b]; R) — L([a,b]; R) satis-
fying Carathéodory conditions, i.e., for every r > 0 there exists ¢, €
L([a,b]; R4) such that

|F'(v)(t)| < gr(t) for almost all t € [a,b], ||v]c <7

P is a set of linear operators £ : Cioc([a, +0[; R) — Lioc([a,+00[; R)
which are continuous, transform a set Cjoc([a, +00[; Ry) into a set
Lioc(a, +o0[; R+), and such that £(1) € L([a, +oo[; R+).

L is a set of linear operators £ : Cjoe([a, +00[; R) — Lioc([a, +00[; R) which

are continuous and for which there exists an operator £ € P such that

[0(v) ()] < €(|v])(t) for almost all t € [a,+00[, v € Cloe([a, +0o[; R).

M is a set of locally measurable functions 7 : [a, +oo[ — [a, +00].

KC is a set of continuous operators F' : Cloc([a, +00[; R) — Lioc([a, +00[; R)
satisfying local Carathéodory conditions, i.e., for every r > 0 there
exists ¢, € Lioe([a, +00[; Ry) such that

|F(v)(t)] < g-(t) for almost all ¢ € [a,+oo], |v| <.
Kloc([a,Jroo[ xA;B), where A C R"™ (n € N), B C R, is a set of functions

f i [a,+oo[ xA — B satisfying local Carathéodory conditions, i.e.,
for all x € A, the function f(-,z) : [a,+oco[— B is measurable on
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every compact subinterval of [a, +00[, f(t,-) : A — B is a continuous
function for almost all ¢ € [a, +oo[, and for every r > 0 there exists
gr € Lioe([a, +00[; R1) such that

|f(t,z)| < g-(t) for almost all t € [a,+o0], z € A, |z| <.

K ([a,+00] xA; B), where A C R™ (n € N), B C R, is a set of functions
f i ]a,+oo[ xA — B satisfying Carathéodory conditions, i.e., for all
x € A, the function f(-,z) : [a,+0o[— B is measurable on every
compact subinterval of [a,+o0[, f(t,-) : A — B is a continuous

function for almost all ¢ € [a, +oo[, and for every r > 0 there exists
¢r € L([a, +o0o[; Ry) such that

|f(t,2)] < g-(t) for almost all t € [a,+o0[, z € A, || <

Xab 18 & characteristic function of the interval [a, b], i.e.,

)1 for t€a,b],
Xan() = {0 for t & [a,b].

0y : Cioc([a, +0[; R) — Co([a, +00[; R), where b € |a, +00[, is an operator
defined by

Op(w)(t) = xap(O)u(t) + (1 — xan(t))u(d) for t € [a,+o0].
If ¢ € Lipe([a, +o0[; R) and b € ]a, 4+00[, then
av(t) = Xap(t)q(t) for almost all t € [a, +o0].

If £ € £ and b € ]a, +00[, then
Oo(u) () = xab()€(6,(w))(t) for almost all ¢ € [a, +oo[ .
If FeKandb e la,+oo[, then
Fy(u)(t) = xap(t)F(0(w))(t) for almost all ¢ € [a, 400].
If w € ch, resp. w € Wy, and b € Ja, +oo[, then
wp(u) = w(Bs(u)).
If h € H and b € Ja, +00[, then
Ty (u) = h(0y(u)).

We will say that ¢ € L, is a to—Volterra operator, where ¢y € [a,b], if
for arbitrary a; € [a,to], b1 € [to,b], a1 # b1, and v € C([a,d]; R),
satisfying the equality

v(t) =0 for ¢ € [ay,b1],
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we have

L(v)(t) = 0 for almost all ¢ € [aq, by].

We will say that ¢ € £ is an a—Volterra operator if for arbitrary b € [a, +o00]
and v € Cpe([a, +00[; R), satisfying the equality

v(t) =0 for t € [a,b)],
we have
L(v)(t) =0 for almost all ¢ € [a,b].
We will say that ¢ € L is an anti-Volterra operator, if for arbitrary b €
[a, +oo[ and v € Clpe([a, +00[; R), satisfying the equality
v(t) =0 for t € [b,+o0[,
we have

L(v)(t) =0 for almost all ¢ € [b,4+00].
If x € R, then
(2] — ).

N | =

(lzl + ), [z]- =

N =

2]+ =
The uniform convergence in [a, +00[ is meant as a uniform convergence on
every compact subinterval of [a, +00].

The equalities and inequalities between measurable functions are under-
stood almost everywhere in an appropriate interval.



CHAPTER 1

Linear Problem

1. Statement of the Problem

In this chapter, we will consider the problem on the existence, unique-
ness, and nonnegativity of a bounded solution to the equation

u'(t) = L(u)(t) + q(t) (1.1)
satisfying the condition
w(u) =ec. (1.2)
Here (€L, g € Lipe([a, +0[; R), w € ch, resp. w € Wy, and ¢ € R.

By a solution to (1.1) we understand a function u € Cjo.([a, +00[; R)
satisfying the equality (1.1) almost everywhere in [a,+oo[. By a solution
to the problem (1.1),(1.2) we understand a solution to (1.1) which belongs
to the domain of w and satisfies (1.2).

Along with the problem (1.1),(1.2) we will consider the corresponding
homogeneous problem

(1) = () 1), (110)
w(u) = 0. (1.20)

Note that the particular cases of conditions (1.2), resp. (1.29), are the
following conditions:

u(a) = ¢, (1.3)
u(+00) = ¢, (14
u(a) — u(4+o00) = ¢, (1.5
resp.
u(a) =0, (1.30)
u(+o00) =0, (1.40)
u(a) — u(+o00) = 0. (1.59)

Let b > a be arbitrary but fixed. Define the operators ¢ : C([a, b]; R) —
Co([a,+0[; R) and ¢ : L([a, +oo[; R) — L([a,b]; R) by
def

p(v)(t) = v(v(t)) for t € [a,+ool, (1.6)
w(u) (@) (:__;‘32 w1 (8)) for t€ [a,b], (1.7)
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where
b—a

1+t—a
and v~! is the inverse function to v, i.e.,

v(t)=>b— for t € [a,+oo[, (1.8)

V_l(t):a—&—b_—a—l for t € [a,b].

b—t
Introduce the operator £ : C(la,b]; R) — L([a,b]; R) by
L)1) “ y(epw)))(t) for t € [a,b]. (1.9)

On account of the assumption ¢ € L it is clear that the operator 7 is well de-
fined. Moreover, it can be easily verified that /¢ is a linear bounded operator.
Analogously, the functional @ : C([a, b]; R) — R, defined by

~ def
w(v) = wep(v)), (1.10)
is a linear bounded functional (in both cases, when w € ch and w € W).
Now assume that

q € L([a, +o0[; R), (1.11)
~de
< ¥(a), (1.12)
and consider the problem (on the interval [a, b))
V(1) = L)) +q(t), B(v) =c (1.13)
and the corresponding homogeneous problem
V() = L(v)(t), Bv)=0. (1.13¢)

By a direct calculation, it is easy to verify that if v is a solution™ to
the problem (1.13) then u =4 ©(v) is a bounded solution to (1.1), (1.2),
and vice versa, if u is a bounded solution to the problem (1.1),(1.2), then
u € Cy([a, +oo[; R), and the function v defined by

v o Yu), wv(b) = u(+00)

is a solution to (1.13). Therefore, the following proposition holds:
Proposition 1.1. Let (1.11) be fulfilled. Then the problem (1.1), (1.2)
has a unique bounded solution w if and only if the problem (1.13) has a

unique solution v. Moreover, u € Co([a,+00[; R), v(v) = u, and v(b) =
u(+00).

A particular case of Proposition 1.1 is the following

Proposition 1.2. The only bounded solution of the problem (1.1y),
(1.2¢) is a trivial solution if and only if the problem (1.13¢) has only a
trivial solution.

*Solutions are understood in the sense of Carathéodory, i.e., as absolutely continuous
functions which satisfy the differential equality almost everywhere in [a, b].
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Furthermore, the following assertion is well-known from the general
theory of boundary value problems for functional differential equations (see,
e.g., [1,2,10,15,19)).

Proposition 1.3. The problem (1.13) is uniquely solvable if and only if
the corresponding homogeneous problem (1.13¢) has only a trivial solution.

Consequently, from Propositions 1.1-1.3, it immediately follows

Proposition 1.4. Let (1.11) be fulfilled. Then the problem (1.1), (1.2)
has a unique bounded solution if and only if the only bounded solution of
the homogeneous problem (1.1g), (1.2¢) is a trivial solution.

Therefore, the question on the existence and uniqueness of a bounded
solution to (1.1),(1.2) is equivalent (under the assumption (1.11)) to the
question on the unique solvability of the homogeneous boundary value prob-
lem (1.13¢) (on a finite interval [a, b]).

Remark 1.1. Tt follows from the Riesz—Schauder theory that if the prob-
lem (1.13¢) has a nontrivial solution, then for every ¢ € R there exists
q € L([a,b]; R) such that the problem (1.13) has no solution.

Below we will study the problem (1.1),(1.2) under the less than (1.11)
restricted condition, when

sup {\ /tq(s) ds‘ > a} < 400 (1.14)

is fulfilled.

The chapter is organized as follows: Main results are presented in Sec-
tion 3. First, the analogy of Proposition 1.4 is proved in Subsection 3.1 (see
Theorems 3.1 and 3.2). In Subsection 3.2, sufficient conditions for the exis-
tence and uniqueness of a bounded solution to the equation (1.1) satisfying
one of the conditions (1.3), (1.4), or (1.5) are established. The question
on sign constant solutions to the problems (1.1),(1.k) (k = 3,4,5) is dis-
cussed in Subsection 3.3. In Section 4 we concretize results of Section 3
for particular cases of the equation (1.1) — for the equations with deviating
arguments:

m

(1) = 3 pr(ulm(t) + q(t), (1.15)
k=1
(1) = = geOulun(®) + qlb), (1.16)
k=1

and

W)= 3 (mu(r(t) = g Oulu(®)) + o), (117)
k

=1
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where p, gr € L([a,+oo[; Ry), Tk, € M (k=1,...,m). Last section of
the chapter — Section 5 —is devoted to the examples verifying the optimality
of obtained results.

Auxiliary propositions contained in Section 2 play a crucial role in prov-
ing the main results. Namely Lemmas 2.1 and 2.2 (see p. 12 and p. 13) state
that the unique bounded solution to (1.1), resp. (1.1p), is a uniform limit
of a suitable sequence {up}p~q of solutions to the problem

/() = by(w)(t) + Go(b), (1.18)
wp(u) = ¢, (1.19)
resp.
u(t) = by (u)(t), (1.18)
Dy(u) = 0 (1.190)

(for the definition of Zb, Wy, and g see p. 7). N

As it was mentioned above, we suppose that £ € £ and the condition
(1.14) is fulfilled. If £(v)(t) < p(t)u(t), ie., if the equation (1.1) is of the
form

u'(t) = p(t)u(t) + q(t), (1.20)
the assumption £ € £ means that
p € L([a, +oo[; R). (1.21)

The equation (1.20) is a suitable type of the equation (1.1) to verify that
both conditions ¢ € £ (i.e., (1.21)) and (1.14) are essential for boundedness
of its solutions.

2. Auxiliary Propositions

2.1. Lemma on Existence of a Bounded Solution.

Lemma 2.1. Let the condition (1.14) be satisfied and let there exist
po > 0 and by € Ja, +o0[, such that for every b > by the equation (1.18) has
a solution uy satisfying the inequality

[[us]| < po- (2.1)

Then the equation (1.1) has at least one bounded solution u. Moreover,
there exists a sequence {up, }1° C {up}p>p, such that

lir_irrl up, (t) = u(t) uniformly in [a,+ool. (2.2)

Proof. In view of (2.1) and the condition £ € £, from (1.18) with u = u; we
get

uy (£) — wn(3)] < po / T(1)(€) de + / 9(6)|dé for a<s<t.
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Hence, the set {up}p>p, is uniformly bounded and equicontinuous on ev-
ery compact subinterval of [a, +0o[. Therefore, according to Arzela—Ascoli
lemma, there exist a sequence {up, };°7 C {up}o>p, and a function u €
Cloc([a, +00[; R) such that nErJrrlOO by, = +oo0 and (2.2) is fulfilled.

Obviously,
Op, (up, )(t) = up, (t) for t >a, n€ N,
and therefore the integration of (1.18) (with u = wuy,,) from a to t yields

up, (t) = up,, /E (up, d§+/ (&) d¢ for t € [a,by], n € N.
Consequently, with respect to (2.2) and the assumption ¢ € L,

/E d{—l—/ (&)d¢ for t > a,

ie., u€ éloc([a, +oo[; R) and it is a solution to the equation (1.1). More-
over, from (2.1) and (2.2) we have |Ju|| < po. O

2.2. Lemmas on A Priori Estimates.

Lemma 2.2. Let the only bounded solution to the problem (1.1p), (1.29)
be a trivial solution. Let, moreover, the condition (1.14) be fulfilled. Then
there exist by € |a,+oo[ and rg > 0 such that for every b > by, the problem
(1.18), (1.19) has a unique solution up, and this solution admits the estimate

[up|l < ro(lel +¢7),

q =sup{‘ jQ(S) dS‘ rt2> a}~ (2:3)

To prove this lemma we need some auxiliary propositions.

where

Proposition 2.1. Let the problem (1.13g) have only a trivial solution.
Then there exists ro > 0 such that for every ¢ € L([a,b]; R) and ¢ € R, the
solution' v to the problem (1.13) admits the estimate

ol < ro (1l +sup / d@as|: cewn}). e
Proof. Let

R x L([a,b]; R) = {(c,é\) :ceR, qe L([a,b];R)}

*The existence and uniqueness of such a solution is guaranteed by Proposition 1.3.
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be a linear space with the norm

t

(e @)l rxz = Ic] +sup{’/a(s) ds|: te [a,b]},
and let ) be an operator, which assigns to every (¢,q) € R x L([a,b]; R)
the solution v to the problem (1.13). According to Proposition 1.3, the
operator €2 is defined correctly. Moreover, according to Theorem 1.4 in
[15], @ : R x L([a,b]; R) — C([a,b]; R) is a linear bounded operator (see
also [10, Theorem 3.2]). Denote by rg the norm of Q. Then, clearly, for any
(¢,q) € R x L([a,b]; R), the inequality

[1€2(c, @)l < roll(c. @) rxc
holds. Consequently, the solution v = (¢, q) to the problem (1.13) admits
the estimate (2.4). O
From Proposition 2.1 it immediately follows

Proposition 2.2. Let b € ]a,+oo[ be such that the problem (1.18y),
(1.199) has only a trivial solution. Then there exists 1, > 0 such that
for every q¢ € Lioe([a,+o0[; R) satisfying (1.14) and ¢ € R the problem
(1.18), (1.19) has a unique solution up, and this solution admits the estimate

Jup|l < ro(lel +q7), (2.5)
where ¢* is defined by (2.3).

Proposition 2.3. Let the only bounded solution to the problem (1.1p),
(1.29) be a trivial solution. Then there exists by € |a,+oo[ such that for
every b > by, the problem (1.18p), (1.199) has only a trivial solution.

Proof. Assume on the contrary that there exists an increasing sequence
{bi 32, klim by, = +o00, such that, for every k € N, the problem
— 400

(1) = by (u)(t), Dy (u) =0 (2.6)
has a nontrivial solution ug. Obviously,
ug = Op, (ug) (2.7)
and, without loss of generality, we can assume that
|lug] =1 for ke N. (2.8)

Furthermore, according to (2.6)—(2.8), and the assumption ¢ € £, we have

|ur(t) — u(s)] S/|U§c(€)|d€Z/Izbk(w)(ff)\dﬁS

§/|€(uk)(§)\d§§/2(l)(f)d§ for a<s<t, keN.
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Consequently, the sequence of functions {uk}:i‘i is uniformly bounded and
equicontinuous on every compact subinterval of [a,+o00[. According to
Arzela—Ascoli lemma we can assume, without loss of generality, that there
exists ug € Cloc([a, +00[; R) such that

lm g (t) = uo(t) uniformly in [a, +oo]. (2.9)

k——+o00
Moreover, on account of (2.8) we have
[[uoll < 1. (2.10)
On the other hand, since uy (k € N) are solutions to (2.6), we obtain

ug(t) = ug(a) + /Zbk(uk)(s) ds for t >a, k€N, (2.11)

(:)bk (uk) =0, ke N. (212)
From (2.11), in view of (2.9), we get

uo(t) = ugp(a) + /E(uo)(s) ds for t > a. (2.13)
Thus gy € Coc([a, +00[; R) and
o () — o (s)| = \ [t ds\ < ol [ A1) (©)de for a<s <t

The last inequality (together with (2.10)) and the fact that ¢ € P, ensures
that there exists a finite limit ug(+00). Consequently, from (2.12), in view
of (2.9), we obtain

w(up) = 0. (2.14)
Now (2.13) and (2.14) imply that ug is a bounded solution to the problem
(1.1p), (1.29). Therefore,

ug = 0. (2.15)
Since £ € L, we can choose b, € ]a, +oo| such that
+o0
/ 0(1)(s)ds < % (2.16)
b
According to (2.9) and (2.15) there exists kg € N such that
()] < % for ¢ € [a,ba], k > ko. (2.17)

On the other hand, from (2.11), in view of (2.8), we have
t +oo

g () — ug(by)] §/|Zbk(uk)(s)|ds§ /Z(l)(s)ds for t > b,, ke N.

b b
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Hence, on account of (2.16) and (2.17), we obtain

2
luk(t)] < 3 for t > a, k> ko,

which contradicts (2.8). O
Proof of Lemma 2.2. Since the only bounded solution to the problem
(1.1p), (1.29) is a trivial solution, then according to Proposition 2.3 there
exists b, € Ja,+oo[ such that for every b > b, the problem (1.18¢), (1.19¢)
has only a trivial solution. Consequently, according to Proposition 2.2 there
exists r, > 0 such that the solution u; to (1.18), (1.19) admits the estimate
(2.5).

If |c|4+¢* = 0 then the conclusion of the lemma is evident. Let, therefore,
lc|4+¢* # 0 and assume on the contrary that there exists a sequence {b,, },;>3
such that b, > b, forn € N, lim b, = +oo, and

n—-+o0o
[lus, || > n(lc] + ¢*) for n € N. (2.18)
Put
t
v (t) = w, (&) gy >a, neN. (2.19)
s, |
Then
lonll=1 for ne N (2.20)
and, in view of (1.18), (1.19), and (2.19), we have
~ qv,, (t
vl (t) = Ly, (vn)(t) + ﬁ:b( |)| for t >a, ne N, (2.21)
Wp, () = Ton T for n € N. (2.22)

Obviously, 65, (v,) = v,. From (2.21), on account of (2.18), (2.20), and the
assumption £ € L, we obtain

[on(t) — va(3)] < / 01 (6) | de <

t t
S/Z(l)(é)df—l—M%q*/M(fﬂdg for a <s<t, neN. (2.23)

From (2.20) and (2.23) it follows that the sequence of functions {v,}>9
is uniformly bounded and equicontinuous on every compact subinterval of
[a,+00[. According to Arzela—Ascoli lemma we can assume, without loss
of generality, that there exists vg € Cjoc([a, +00[; R) such that

klil}_l vg(t) = vo(t) uniformly in [a, +o0[. (2.24)

Moreover, on account of (2.20), we have

[[voll < 1. (2.25)
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On the other hand, the integration of (2.21) from a to t yields

vp (t) :Un(a)—i—/z,n(vn)(s) d8+||ull7||/ab"(s)d8 for n e N.

Hence, in view of (2.18) and (2.24), we get
t

vo(t) = vo(a) + /E(vo)(s) ds for t > a. (2.26)

a

Thus vg € 5506([a, +o0[; R) and
0(®) = w0(6) = | [ o) ae] < ol [F0) @) tor a5 <

The last inequality, together with (2.25) and the fact that ¢ € 75, ensures
that there exists a finite limit vy(+00). Consequently, from (2.18), (2.22),
and (2.24) we also obtain

w(vp) = 0. (2.27)

Now (2.26) and (2.27) imply that vy is a bounded solution to the problem
(1.1p), (1.29). Therefore,

v = 0. (2.28)
Since £ € L, we can choose ag € ]a, +oo[ such that
+o0
/ £(1)(s)ds < % (2.29)
ao
According to (2.24) and (2.28) there exists ng € N such that
on(®)] < £ for ¢ € [a.a0), > mo (2.30)

On the other hand, from (2.21), in view of (2.18) and (2.20), we have

[un(t) — vn(ao)| <
/|£b7L Un

Hence, on account of (2.29) and (2.30), we obtain

4
lon(t)] < = for t > a, n>max{ng,5}

”_/Z ds+ffort>a0

ot

which contradicts (2.20). O
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2.3. Boundary Value Problems on Finite Interval. The following
assertions are results from [9], formulated in a suitable for us form.

Lemma 2.3 ([9, Theorem 4.4, p. 83]). Let{ = EAO—Zl with E),Zl € Pap,
and let there exist a function 5 € C([a,bl; |0, +00]) such that

() > L)) + L (1)(t) for t € [a,b],
A(b) = A(a) < 3.
Then the problem
V() = L(v)(t), wv(a)=0 (2.31)

has only a trivial solution.

Lemma 2.4 ([9, Theorem 4.2, p. 82]). Let{ = 20—21 with Z(),Zl € Pab,
and let

/61 d8<1—|—2 1—/60 dS

Then the problem (2.31) has only a trivial solution.

Lemma 2.5 (|9, Theorem 4.10, p. 86]). Let 0 = by—{y with Uy, & € Pap,
and let there exist a function 5 € C([a,bl; |0, +00]) such that

—F(t) = HA) )+ Lo(L)(t) for t € [a,b],
A(a) —7(b) < 3.
Then the problem
o' (t) = L) (1), o) =0 (2.32)

has only a trivial solution.

Lemma 2.6 ([9, Theorem 4.8, p. 86]). Let{ = EAO—Zl with 20,21 € Pav,

and let
/él dS <1,

/fo d8<1—|—2 1—/[1 dS

Then the problem (2.32) has only a trivial solution.
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Lemma 2.7 ([9, Theorem 4.1, p. 80]). Let 0 = Zofl?l with ?0,21 € Pab,
and let either

b
/“o<1><s>ds <1,
Jao(1)(s)d a
o(1)(s)ds b b
@ </1?1(1)(s)ds<2+2 1—/3(1)(5)615,
1—f€0(1)(8)d8 a a
b
/:(l)(s)ds< 1,

has only a trivial solution.

Lemma 2.8 ([9, Theorem 2.1, p. 17]). Let U € Py, and let there exist
7 € C([a,b]; 10, +00[) such that

o~

A'(t) = LA)(t) for t € [a,b].
Then every function v € C([a,b]; R), satisfying
V' (t) > E(v)(t) for t € [a,b], v(a) >0, (2.33)
18 monnegative.

Lemma 2.9 ([9, Theorem 2.5, p. 22]). Let{ = Z()—Zl with E),Zl € Pab,
and let {1 be an a— Volterra operator. Let, moreover,

b b
/%(1)(5)@ <1, /21(1)(3) ds < 1.

Then every function v € 5([@, bl; R) satisfying (2.33) is nonnegative.

Remark 2.1. Note that under the conditions of Lemma 2.8 or Lem-
ma 2.9, the problem

o~

V() = L)1) + (1), wv(a)=c
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is uniquely solvable for any ¢ € L([a,b]; R) and ¢ € R. Moreover, the
solution is nonnegative whenever ¢ € L([a,b]; R4+) and ¢ € R;.

Indeed, let the assumptions of Lemma 2.8 or Lemma 2.9 be fulfilled
and let v be a solution to (2.31). Then, obviously, —v is also a solution to
(2.31), and so both v and —v are nonnegative functions. Therefore, v = 0.
Thus the assertion follows from Proposition 1.3 and Lemmas 2.8 and 2.9.

Lemma 2.10 ([9, Theorem 2.12, p. 26]). Let —0 € Py, and let there
exist 4 € C([a,bl; |0, +00]) such that

o~

V() < L@)(E) for t € [a,b].

Then every function v € C([a,b; R) satisfying

~

V'(t) < L(v)(t) for t € [a,b], wv(b)>0 (2.34)
18 monnegative.

Lemma 2.11 ([9, Theorem 2.16, p. 28]). Let 0 =1y — 1y with by, €
Pab, and let £y be a b— Volterra operator. Let, moreover,

/50 d3<1 /€1 d8<1

Then every function v € 6’([(1, bl; R) satisfying (2.34) is nonnegative.

Remark 2.2. Analogously to Remark 2.1 it can be shown that under
the conditions of Lemma 2.10 or Lemma 2.11, the problem

~

v'(t) = L(v)(t) + (1), vb)=c

is uniquely solvable for any ¢ € L([a,b]; R) and ¢ € R. Moreover, the
solution is nonnegative whenever —q € L([a,b]; R+) and ¢ € R.

Lemma 2.12 ([9, Theorem 2.4, p. 21]). Let ! = 20—21 with ZO,Zl € Pab,
and let

b
/fo d8<1 b / d8<1.

Then every function v € 5([(1, bl; R) satisfying

-~

V'(t) > L(v)(t) for t €la,b], wv(a)—v(b) >0 (2.35)

18 nonnegative.
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Lemma 2.13 ([9, Theorem 2.15, p. 28]). Let U =10y — 0y with by, ly €
Pab, and let

b (1(1)(s) ds b
/Zl(l)(s)ds <1 < /20(1)(5) ds < 1.
a 1-— ffl(l)(s) ds a

a

8 —o

Then every function v € 5([@, bl; R) satisfying (2.35) is nonpositive.

Remark 2.3. Analogously to Remark 2.1 it can be shown that under
the conditions of Lemma 2.12 or Lemma 2.13, the problem

o' (1) = L)) +7(), v(a) —v(d) =c
is uniquely solvable for any ¢ € L([a,b]; R) and ¢ € R. Moreover, the
solution is nonnegative, resp. nonpositive, whenever ¢ € L([a,b]; Ry) and
cE R_;,_.

2.4. Nonnegative Solutions to a Certain Differential Inequali-
ty.

Lemma 2.14. Let £ € P and let there exist v € Cioc([a, +00[; 0, +00])
such that

Y (t) = L(7)(t) for t > a, (2.36)
i y(t) = +oo. (2.37)

Then every bounded function u € éloc([a, +oo[; R), satisfying
' (t) > (u)(t) for t >a, wu(a)>0, (2.38)
18 nonnegative.

Proof. Assume on the contrary that there exist a bounded function u €
Cloc([a, +00[; R) and to > a such that u satisfies (2.38) and

u(to) < 0. (2.39)
Put .
/\sup{:gt;: tza}. (2.40)

Obviously, by virtue of (2.39),
A > 0. (2.41)

Moreover, in view of (2.37) and the assumption that  is a bounded function,
there exists t; > a such that

(2.42)

Further, put
w(t) = Ay(t) + u(t) for t > a.
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Then, on account of (2.36), (2.38), (2.40)—(2.42), we have
w'(t) > L(w)(t) for t > a,

(2.43)
w(t) >0 for t >a, w(a)>0, (2.44)
w(ty) =0 (2.45)
Now, due to (2.44) and the assumption £ € P, from (2.43) we get w'(t) >

0
for t > a. Consequently, w(t) > 0 for ¢t > a, which contradicts (2.45). O

Remark 2.4. Under the conditions of Lemma 2.14, the only bounded
solution to the problem (1.1p), (1.3p) is a trivial solution. Indeed, let u be
a bounded solution to (1.1p), (1.3g). Then, obviously, —u is also a bounded
solution to (1.1p), (1.3p), and both u and —u are nonnegative functions.
Therefore, u = 0.

3. Main Results
3.1. Necessary and Sufficient Conditions.

Theorem 3.1. Let w € ch and the condition (1.14) be fulfilled. Then
the problem (1.1), (1.2) has a unique bounded solution if and only if the only
bounded solution to the problem (1.1g),(1.29) is a trivial solution.

Proof. Evidently, if the problem (1.1),(1.2) has a unique bounded solution
for arbitrary ¢ € R and ¢ € Ljoc([a, +00[; R) satisfying (1.14), then the only
bounded solution to the problem (1.1p), (1.2¢) is a trivial solution.

If the only bounded solution to the problem (1.1p),(1.2g) is a trivial
solution, then, according to Lemmas 2.1 and 2.2, the equation (1.1) has
at least one bounded solution u and there exists a sequence of functions
{up, }:129 € Co([a, +00[; R) such that w(up,) = ¢ (n € N), and (2.2) holds.
Consequently, since w € ch, we also have w(u) = ¢, i.e., u is a bounded
solution to the problem (1.1),(1.2). The uniqueness of u is evident. O

Theorem 3.2. Let w € Wy and the condition (1.14) be satisfied. Let,
furthermore, the only bounded solution to the problem (1.1p),(1.29) be a
trivial solution. Then the equation (1.1) has at least one bounded solution.
If, moreover, there exists a finite limit

¢
lim [ q(s)ds, (3.1)

t——+o0
a

then the problem (1.1),(1.2) has a unique bounded solution.

Proof. If the assumptions of theorem are fulfilled, then, according to Lem-
mas 2.1 and 2.2, the equation (1.1) has at least one bounded solution u. Fur-
thermore, there exist a sequence of functions {us, }:729 € Cy([a, +oo[; R)

such that w(up,) = ¢ (n € N), and (2.2) holds. Thus, if there exists
a finite limit (3.1), there also exists a finite limit u(400). Consequently,
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u € Cy([a,+oo[; R) and since w € Wy, we also have w(u) = ¢, i.e., u is a
bounded solution to the problem (1.1),(1.2). In this case, the uniqueness
of w is evident. O

3.2. Bounded Solutions. In the first part of this subsection, there
are formulated theorems dealing with the existence and uniqueness of a
bounded solution to the problems (1.1), (1.k) (k = 3,4,5). The proofs of
those theorems can be found in the second part of this subsection.

Theorem 3.3. Let £ = {y — {1, £y, l1 € ﬁ, and let the condition (1.14)
be satisfied. Let, moreover, there exist v € Cy([a,+00[; |0, +00[) such that

Y (t) > Lo(y)(t) + 1 (1)(t) for t > a, (3.2)
v(+00) —v(a) < 3. (3.3)

Then the problem (1.1), (1.3) has a unique bounded solution.

Remark 3.1. Theorem 3.3 is unimprovable in the sense that the strict
inequality (3.3) cannot be replaced by the nonstrict one (see Example 5.1,
p. 40).

Theorem 3.4. Let { = by — {1, £y, ¥ty € ﬁ, and let the condition (1.14)
be satisfied. Let, moreover,

+oo

/edn@yu<1, (3.4)

a

+o0 +oo
/am@¢<ua1_/%m@¢. (3.5)

Then the problem (1.1), (1.3) has a unique bounded solution.
Remark 3.2. Denote by G, the set of pairs (x,y) € R+ X Ry such that

r<l, y<l+2V1l—=x

(see Figure 3.1).
Theorem 3.4 states that if the condition (1.14) is fulfilled, £ = ¢y — ¢4,

where £y, {1 € ﬁ, and

+oo +o0
( [ o as. [ e1<1><s>ds) € G,

then the problem (1.1), (1.3) has a unique bounded solution.
Below we will show (see On Remark 3.2, p. 40) that for every zo,yo €

Ry, (z0,y0) & G, there exist £y, 1 € P, qc Lipe([a,+0[; R), and ¢ € R
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such that (1.14) holds,
+oo +oo
/ to(1)(5) ds = o, / (1) (s) ds = yo,

and the problem (1.1), (1.3) with £ = ¢y — ¢; has no solution. In particular,
the strict inequalities (3.4) and (3.5) cannot be replaced by the nonstrict
ones.

Theorem 3.5. Let £ = {y — {1, £y, {1 6~ﬁ, and let the condition (1.14)
be satisfied. Let, moreover, there exist v € Cy([a, +0o0[; ]0, +00[) such that

= (t) > L (7)(t) + Lo(1)(t) for t > a, (3.6)
v(+00) >0,
v(a) — y(+o0) < 3.

Then the equation (1.1) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then the problem (1.1),(1.4) has a unique
solution.

Remark 3.3. Theorem 3.5 is unimprovable in the sense that neither one
of the strict inequalities (3.7) and (3.8) can be replaced by the nonstrict one
(see Example 5.2 on p. 41 and Example 5.3 on p. 42).
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Theorem 3.6. Let £ = £y — {1, o, 01 € 75, and let the condition (1.14)
be satisfied. Let, moreover,
+o00

/ 0(1)(s)ds < 1, (3.9)

a

/fo d8<1+2 1-— /fl dS (310)

Then the equation (1.1) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then the problem (1.1),(1.4) has a unique
solution.

Remark 3.4. Denote by G, the set of pairs (z,y) € Ry X Ry such

that
y<1l, z<1+2/1—y
(see Figure 3.2).

Y
—_———————— — —
~
~
N e=1+2/T—y
G AN
+0o0 N
\
AN
3 3
Figure 3.2

Theorem 3.6 states that if there exists a finite limit (3.1), ¢ = £y — ¢4,
where £y, {1 € P, and

+o0 +oo
([ aweas [ a0 i) e

then the problem (1.1),(1.4) has a unique bounded solution.

Below we will show (see On Remark 3.4, p. 43) that for every xg,yo €
Ry, (z0,Y0) € Gioo there exist £y, 41 € P, q € Lie([a, +00[; R), and ¢ € R
such that there exists a finite limit (3.1),

/ f() dS—,To, / fl ClS—yQ7

and the problem (1.1), (1.4) with ¢ = ¢y — ¢; has no solution. In particular,
the strict inequalities (3.9) and (3.10) cannot be replaced by the nonstrict
ones.



26 Robert Hakl, Alexander Lomtatidze, and Ioannis P. Stavroulakis

Theorem 3.7. Let £ = £y — {1, o, 01 € 75, and let the condition (1.14)
be satisfied. Let, moreover, either

/ lo(1)(s)ds < 1, (3.11)

fgo

1- f lo(1)(s

/61 d8<2+2 1—/&) )dS, (312)

or
+oo

/ £1(1)(s)ds < 1, (3.13)

a

ffl

1—N1

/eo s)ds < 2+2 1—/61 s)ds. (3.14)

Then the equation (1.1) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then the problem (1.1),(1.5) has a unique
solution.

Remark 3.5. Put
G;:{(x,y)€R+><R+: x <1, %<y<2+2\/1—$},

G;:{(.’I},y)ER+XR+Z y<1, %<I<2+2\/1—y}

(see Figure 3.3).
Theorem 3.7 states that if there exists a finite limit (3.1), £ = £y — ¢4,
where £y, 41 € P, and

( 7060(1)(5) ds, 70&(1)(3) ds) cGruas,

then the problem (1.1),(1.5) has a unique bounded solution.

Below we will show (see On Remark 3.5, p. 44) that for every xg,yo €
Ry, (z0,50) & G} UG, there exist lo, () € P, qe Lioe([a, +o0[; R), and
¢ € R such that there exists a finite limit (3.1),

+oo +oo
/ Lo(1)(s) ds = xg, / £1(1)(s) ds = yo,



Bounded Solutions to the First Order Scalar Functional Differential Equations 27

\\y:2+2m

\

\| /
G\

// Ty - [

/=TT N z=2+2/T"7
—~ G- N

4 N

Figure 3.3

and the problem (1.1), (1.5) with £ = £y — ¢; has no solution. In particular,
neither of the strict inequalities in (3.11)—(3.14) can be replaced by the
nonstrict one.

Remark 3.6. In Theorems 3.1-3.7, the condition (1.14) is essential and
it cannot be omitted. Indeed, let ¢ € Lioc([a, +o0[; R), p € L([a, +oo[; Ry)

be such that
—+o0

0 # /p(s)ds<17

a

and consider the equation

u'(t) = p(t)ula) + q(t). (3.15)
Put
L(v)(t) = p(t)v(a) for t > a.
Then the assumptions imposed on the operator ¢ (with ¢y = ¢ and ¢; = 0)

in Theorems 3.3-3.7 are fulfilled.
On the other hand, every solution w to (3.15) is of the form

t t

u(t) =c0<1+ / (s) ds) + / o(s)ds for 1> a,

where ¢y € R. However, u is bounded if and only if the condition (1.14) is
fulfilled.

Remark 3.7. Tt is clear that if the problem (1.1), (1.4), resp. (1.1), (1.5),
has a solution for some ¢ € R, then there exists a finite limit (3.1). Thus
the condition (3.1) in Theorems 3.5-3.7 is also a necessary condition for the
unique solvability of the mentioned problems.
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Remark 3.8. Obviously, if £ is an a—Volterra operator and the assump-
tions of either Theorem 3.3 or Theorem 3.4 are fulfilled, then all solutions
to the equation (1.1) are bounded.

In the proofs listed below, whenever ¢ € Z, then the operator 7is defined
by (1.9) with ¢ and ¢ given by (1.6)—(1.8).

Proof of Theorem 3.3. Let b € ]a, +oo| and

. {@‘1(7)(75) for t € [a,],

3.16
~¥(+00) for t =b, (3.16)

where ¢ is given by (1.6) and (1.8). Then the assumptions of Lemma 2.3
are fulfilled. Consequently, according to Theorem 3.1 and Proposition 1.2,
the theorem is valid. ]

Proof of Theorem 3.4. All the assumptions of Lemma 2.4 are fulfilled.
Consequently, according to Theorem 3.1 and Proposition 1.2, the theorem
is valid. ]

Proof of Theorem 3.5. Let b € ]a,+oo[ and define function ¥ by (3.16),
where ¢ is given by (1.6) and (1.8). Then the assumptions of Lemma 2.5
are fulfilled. Consequently, according to Theorem 3.2 and Proposition 1.2,
the theorem is valid. (]

Proof of Theorem 3.6. All the assumptions of Lemma 2.6 are fulfilled.
Consequently, according to Theorem 3.2 and Proposition 1.2, the theorem
is valid. ]

Proof of Theorem 3.7. All the assumptions of Lemma 2.7 are fulfilled.
Consequently, according to Theorem 3.2 and Proposition 1.2, the theorem
is valid. (]

3.3. Sign Constant Solutions. As in the previous section, first we
formulate theorems dealing with the existence and uniqueness of a sign
constant bounded solution to the problems (1.1),(1.k) (k = 3,4,5). The
proofs of those theorems can be found at the end of this subsection.

Theorem 3.8. Let { € P. Then for every q € L([a,+o0o[; Ry) and
¢ € Ry the problem (1.1),(1.3) has a unique bounded solution and this
solution is nonnegative if and only if there exists vy € égoc([a, +0o0[; 10, +00[)
satisfying (2.36).

Theorem 3.9. Let { = {y — {1, where £y, {1 € P. Let, moreover, €1 be
an a— Volterra operator and

+o00 +o0
/zoa)(s)ds <1, /41(1)(5) ds < 1. (3.17)

Then for every q € L([a, +oo[; Ry) and ¢ € Ry the problem (1.1),(1.3) has
a unique bounded solution and this solution is nonnegative.
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Remark 3.9. Theorem 3.9 is unimprovable in the sense that the condi-
tion (3.17) can be replaced neither by the condition

/60 d8<1+80, /61 )dSSl,

nor by the condition

/EO d$<1 /61 dS<1+€

no matter how small g > 0 and € > 0 would be. More precisely, if the con-
dition (3.17) is violated, then either the problem (1.1),(1.3) is not uniquely
solvable for some ¢ € L([a,+oo[; R4+) and ¢ € Ry (see On Remark 3.2,
p. 40) or there exist ¢ € L([a, +oo[; R+) and ¢ € Ry such that the problem
(1.1), (1.3) has a unique bounded solution, but this solution is not nonneg-
ative (see Example 5.4 on p. 47 and Example 5.5 on p. 48).

Theorem 3.10. Let —¢ € P. Then for every —q € L([a, +oo[; Ry) and
¢ € Ry the problem (1.1),(1.4) has a unique solution and this solution is
nonnegative if and only if there exists v € Cy([a, +0o0[; ]0, +00[) satisfying
(3.7) and

v (t) < L(Y)(t) for t > a. (3.18)

Theorem 3.11. Let { = {y — {1 with £y, 41 € P. Let, moreover, £y be
an anti-Volterra operator and

/ fo dS <1, / 61 dS < 1. (319)

Then for every —q € L([a,+oo[; Ry) and ¢ € Ry the problem (1.1),(1.4)
has a unique solution and this solution is nonnegative.

Remark 3.10. Theorem 3.11 is unimprovable in the sense that the con-
dition (3.19) can be replaced neither by the condition

+o0 +o0
/ Lo(1)(s)ds < 1+e, / 21(1)(s)ds < 1,

nor by the condition

/E() d8<1 /61 d8<1+€(],

no matter how small € > 0 and ¢y > 0 would be. More precisely, if the con-
dition (3.19) is violated, then either the problem (1.1),(1.4) is not uniquely
solvable for some —q € L([a,+o0o[; Ry) and ¢ € R} (see On Remark 3.4,
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p. 43) or there exist —¢ € L([a, +oo[; R4+) and ¢ € R4 such that the prob-
lem (1.1),(1.4) has a unique solution, but this solution is not nonnegative
(see Example 5.4 on p. 47 and Example 5.5 on p. 48).

Theorem 3.12. Let { = fy — {1, where by, 01 € P. Let, moreover,
k.j € {0.1}, k # . and

+oo
“+o0 f Ek(l

Joyds
/ le(1)(s)ds < 1, s < / l;(1)(s)ds <1. (3.20)
(1)(s)ds &

Then for every q € L([a,+00[; R4) and ¢ € Ry the problem (1.1), (1.5) has
a unique solution u, and this solution satisfies the inequality

(=1)*u(t) >0 for t > a.
Remark 3.11. Put
H+:{(x,y)€R+><R+: x <1, %<y§l},
H*:{(x,y)ER_FxR_F: y <1, $<m§1}

(see Figures 3.4 and 3.5)

y
/
/
—
/ )
//?/: =
HT /
/ T
—
/ / ~7 g
/ p .
/ - m
x 1 z
Figure 3.4 Figure 3.5

Theorem 3.12 states, that if £ = ¢y — ¢, where £, ¢, € P, and

+00 +oo
(/%umm&/aummﬁth
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resp.
—+o0

</eo(1)(s) ds, 7061(1)(5) ds) cH,

then for every ¢ € L([a, +oo[; R+) and ¢ € R4, the problem (1.1), (1.5) has
a unique solution wu, and this solution is nonnegative, resp. nonpositive.
Below we will show (see On Remark 3.11, p. 50) that for every (zg, yo) &

HT, resp. for every (wo,y0) € H™, zo,y0 € Ry, there exist £y, ¢ € P,
q € L([a,4+o00[; R+), and ¢ € Ry such that

+oo +oo
/ Lo(1)(s) ds = xg, / £1(1)(s) ds = yo,

and the problem (1.1),(1.5) with £ = £, — ¢; has a solution, which is not
nonnegative, resp. mnonpositive. In particular, neither one of the strict
inequalities in (3.20) can be replaced by the nonstrict one. Furthermore,
the nonstrict inequality in (3.20) cannot be replaced by the inequality

+oo
/ li(1)(s)ds <1+e¢,

no matter how small € > 0 would be.

In the proofs listed below, whenever £ € £ and w € ch (w € Wp), then
the operators / and & are defined by (1.9) and (1.10), respectively, with ¢
and ¢ given by (1.6)—(1.8).

Proof of Theorem 3.8. First suppose that for every ¢ € L([a, +oo[; R4+) and
¢ € Ry the problem (1.1),(1.3) has a unique bounded solution and this
solution is nonnegative. Then, since £ € 75, the problem

u'(t) = (u)(t), wu(a)=1
has a positive bounded solution u and we can put v = u.

Now suppose that there exists a function v € Cioe([a, +00[; ]0, +00])
satisfying (2.36). Obviously, v is nondecreasing. Therefore, there exists a
finite or infinite limit

r < lim ~(t).
t—+o00

If r = +o00, then by virtue of Remark 2.4 (see p. 22), the only bounded
solution to (1.1p), (1.3¢) is a trivial solution. Now, according to Theorem 3.1
and Lemma 2.14, there is a unique bounded solution ug to the problem

u/(t) = E(u)(t)v u(a) =1,
and wug is nonnegative. Taking into account the condition ¢ € 75, we get

that

0 < wug(t) for ¢t > a, . 119_[1 uo(t) = up(+00) < +00.
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Put
) ~v(t)  for t € [a,4o0[ if r < o0,
« =
uo(t) for t € [a,+oo| if r = +4o0.

Obviously, o € Co([a, +00[; |0, +00]) and
o' (t) > (a)(t) for t € [a,+oo]. (3.21)

Let now b € |a, +oo[ and

e Ha)(t) for t € [a,b],
() = {a(+oo) for t =10,

where ¢ is given by (1.6) and (1.8). Then by virtue of (3.21), the as-
sumptions of Lemma 2.8 hold. Consequently, according to Remark 2.1 and
Proposition 1.1, the theorem is valid. (I

Proof of Theorem 3.9. Let b € ]a,+oo[. Then all the assumptions of
Lemma 2.9 are fulfilled. Consequently, according to Remark 2.1 and Propo-
sition 1.1, the theorem is valid. O

Proof of Theorem 3.10. First suppose that for every ¢ € Ry and —q €
L([a,4+o0[; R4+) the problem (1.1),(1.4) has a unique solution and this so-
lution is nonnegative. Then, since —¢ € P, the problem

u'(t) = L(u)(t), u(to0)=1

has a positive solution u and we can put v = u.

Now suppose that there exists a function v € Co([a,+o0[; ]0, +00[)
satisfying (3.7) and (3.18). Let b € Ja,+oo[. Then the assumptions of
Lemma 2.10 are fulfilled. Consequently, according to Remark 2.2 and
Proposition 1.1, the theorem is valid. O

Proof of Theorem 3.11. Let b € Ja,+oo[. Then the assumptions of Lem-
ma 2.11 are fulfilled. Consequently, according to Remark 2.2 and Proposi-
tion 1.1, the theorem is valid. O

Proof of Theorem 3.12. Let b € |a,+oo[. If K =0 (resp. k = 1), then the
assumptions of Lemma 2.12 (resp. Lemma 2.13) are fulfilled. Consequently,
according to Remark 2.3 and Proposition 1.1, the theorem is valid. O

4. Equations with Deviating Arguments

In this section we will present some consequences of the main results
from Section 3 for the equations with deviating arguments (1.15), (1.16),
and (1.17), respectively.

In what follows we will use the notation

po(t) =Y i), go(t) =D gr(t) for t>a
k=1 k=1
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4.1. Bounded Solutions.

Corollary 4.1. Let the condition (1.14) be satisfied and let at least one
of the following items be fulfilled:

a) 7(t) <t for t>a(k=1,...,m),

+00 400
[ e ([ miyac) as < (1)
b)
+00 +00 400
/ po(s)ds < 1, / go(s)ds <142 [1— / po(s)ds. (4.2)

Then for every ¢ € R the problem (1.17),(1.3) has a unique bounded solu-
tion.

Remark 4.1. Corollary 4.1 is unimprovable. More precisely, neither one
of the strict inequalities in (4.1) and (4.2) can be replaced by the nonstrict
one (see Example 5.1 on p. 40 and On Remark 3.2 on p. 40).

Remark 4.2. Tf 7(t) < t, up(t) < tfort > a (k =1,...,m), (1.14)
is satisfied, and at least one of the conditions a) and b) in Corollary 4.1 is
fulfilled, then every solution of the equation (1.17) is bounded.

Corollary 4.2. Let the condition (1.14) be satisfied and let at least one
of the following items be fulfilled:

a) pup(t) >t fort>a (k=1,...,m),

+/oopo<s> exp ( / 90(€) dﬁ) ds < 3; (4.3)
b)
+oo +oo +o0
/ go(s)ds < 1, / po(s)ds<1+2 |1— / go(s)ds. (4.4)

Then the equation (1.17) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then for every ¢ € R the problem (1.17), (1.4)
has a unique solution.

Remark 4.3. Corollary 4.2 is unimprovable. More precisely, neither one
of the strict inequalities in (4.3) and (4.4) can be replaced by the nonstrict
one (see Example 5.3 on p. 42 and On Remark 3.4 on p. 43).



34 Robert Hakl, Alexander Lomtatidze, and Ioannis P. Stavroulakis

Corollary 4.3. Let the condition (1.14) be satisfied and let either

+oo

/ po(s)ds <1, (4.5)

a

+oo

J pols)ds +oo

a+oo < /go(s)ds<2+2
1— [ po(s)ds &

or
+oo
/ go(s)ds < 1, (4.7)
+oo
[ go(s)ds +o0
a+oo </p0(s)ds<2—|—2
1— [ go(s)ds &

Then the equation (1.17) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then for every ¢ € R the problem (1.17), (1.5)
has a unique solution.

Remark 4.4. Corollary 4.3 is unimprovable in the sense that neither one
of the strict inequalities in (4.5)—(4.8) can be replaced by the nonstrict one
(see On Remark 3.5, p. 44).

4.2. Sign Constant Solutions.

Corollary 4.4. Let the condition (1.14) be satisfied, ux(t) <t fort > a
(k=1,...,m), and

+oo “+oo
/ po(s)ds < 1, / go(s)ds < 1. (4.9)

Then for every ¢ € R the problem (1.17),(1.3) has a unique bounded so-
lution. If, moreover, q(t) > 0 for t > a and ¢ > 0, then this solution is
nonnegative.

Remark 4.5. Corollary 4.4 is unimprovable in the sense that the condi-
tion (4.9) can be replaced neither by the condition

400 400

/po(S)dsﬁlJrfo, /go(s)dsgl,

a a
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nor by the condition

“+oo +oo

/pg(s) ds < 1, / go(s)ds <1+e¢,

a a

no matter how small g > 0 and € > 0 would be. More precisely, if the con-
dition (4.9) is violated, then either the problem (1.17), (1.3) has no solution
(see On Remark 3.2, p. 40) or this problem has a unique bounded solution
which is not nonnegative (see Example 5.4 on p. 47 and Example 5.5 on
p. 48).

X

p
Corollary 4.5. Let the condition (1.14) be satisfied, | po(§)dE # 0
(k=1,...,m), and let there exist x > 0 such that

Tk (t)

esssup{ /po(s)ds: tza}<nk(x) (k=1,...,m), (4.10)

t

where

nk(x)zéln <a:-|- - T >’
exp (z [ po(€)dE) —1

i =ess sup {7, (t) : t > a}.

Then for every ¢ € R the problem (1.15),(1.3) has a unique bounded so-
lution. If, moreover, q(t) > 0 fort > a and ¢ > 0, then this solution is
nonnegative.

Corollary 4.6. Let the condition (1.14) be satisfied, Ti.(t) >t fort > a
(k=1,...,m), and

+o0 +oo
/ po(s)ds <1, / go(s)ds < 1. (4.11)

Then the equation (1.17) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then for every ¢ € R the problem (1.17), (1.4)
has a unique solution. Furthermore, if q(t) < 0 for t > a and ¢ > 0, then
this solution is nonnegative.

Remark 4.6. Corollary 4.6 is unimprovable in the sense that the condi-
tion (4.11) can be replaced neither by the condition

“+o00 400

/po(S)d8S1+€, /go(S)dS<L

a a
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nor by the condition

+oo “+oo
/ po(s)ds <1, / go(s)ds <1+ e,

no matter how small € > 0 and g9 > 0 would be. More precisely, if the
condition (4.11) is violated, then either the problem (1.17),(1.4) has no
solution (see On Remark 3.4, p. 43) or this problem has a unique bounded
solution which is not nonnegative (see Example 5.4 on p. 47 and Example 5.5
on p. 48).

+o00
Corollary 4.7. Let the condition (1.14) be satisfied, [ go(§)dE # 0
M
(k=1,...,m), and let there exist x > 0 such that

¢
ess sup{ / go(s)ds: t > a} <Ig(z) (k
pe (t)

where

ﬂk(x):%hl <x+ +Oox >’
exp (z f go(§)dg) —1

i = ess inf {p(t) : t > a}.

Then the equation (1.16) has at least one bounded solution. If, moreover,
there exists a finite limit (3.1), then for every ¢ € R the problem (1.16), (1.4)
has a unique solution. Furthermore, if q(t) < 0 for t > a and ¢ > 0, then
this solution is nonnegative.

Corollary 4.8. Let g € L([a,+oo[; R+) and

+00 +foop0(s) ds +oo

/ po(s)ds <1, ————< / go(s)ds <1, (4.12)
a 1— [ po(s)ds &

resp.
+oo

+o0 J go(s)ds +o0

/ go(s)ds < 1, ‘IJFOO— < /po(s) ds < 1. (4.13)
a 1— [ go(s)ds &

Then for every ¢ € Ry the problem (1.17),(1.5) has a unique solution wu,
and this solution satisfies the inequality

u(t) >0 for t > a,
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resp.
u(t) <0 for t > a.

Remark 4.7. Corollary 4.8 is unimprovable in the sense that neither

one of the strict inequalities in (4.12) and (4.13) can be replaced by the

nonstrict one. Furthermore, the nonstrict inequalities in (4.12) and (4.13)
cannot be replaced by the inequalities

+0o0 +oo
/ go(s)ds <1+¢, resp. /pg(s)dsglJre,

no matter how small € > 0 would be (see On Remark 3.11, p. 50).

4.3. Proofs. Define operators ¢y and ¢; by

o)) Z S petyo(n(t)) for t>a,

i (4.14)
GO LY 9o ®) for ¢ a.

k=1

Then Corollary 4.3 follows from Theorem 3.7, Corollary 4.4 follows from
Theorems 3.4 and 3.9, Corollary 4.6 follows from Theorems 3.6 and 3.11,
and Corollary 4.8 follows from Theorem 3.12.

Therefore we will prove only Corollaries 4.1, 4.2, 4.5, and 4.7.

Proof of Corollary 4.1. a) Choose € > 0 such that

400 400 +o0
€exp ( / po(s) d8> + /go(S)exp ( / Po(§) d§> ds <3,

a a S

and put
t t s

Y(t) = exp (/po(S) dS) (6 + /go(S) exp (— /po(é) d§) ds)

a a a

for t > a.

It can be easily verified that v satisfies the inequalities (3.2) and (3.3) with
¢y and ¢; defined by (4.14). Consequently, the assumptions of Theorem 3.3
are fulfilled.

b) Obviously, the assumptions of Theorem 3.4 are satisfied, where £
and ¢y are defined by (4.14). O

Proof of Corollary 4.2. a) Choose € > 0 such that

£ exp ( 7090(5) dS) + 70170(5) exp (/sgo(f) d£> ds <3,

a a a
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and put
Y(t) = exp < 7090(8) dS) <6 + 70;00(5) exp ( 7090(6) d§> dS)
for ¢t > a.

It can be easily verified that « satisfies the inequalities (3.6), (3.7), and
(3.8) with ¢y and ¢; defined by (4.14). Consequently, the assumptions of
Theorem 3.5 are fulfilled.

b) Obviously, the assumptions of Theorem 3.6 are satisfied, where £
and ¢; are defined by (4.14). O

Proof of Corollary 4.5. Choose € > 0 such that

T (t)

ess sup{ /po(s)ds: tza}<

<iln<x—|— T*x(l—ﬁ) > (k=1,...,m),
exp (z [ po(€)dE) — (1 —¢)

and put
¢
exp (z [ po(s)ds) — (1 —¢)
~(t) = 2 for t > a.

+oo
exp (z [ po(s)ds) —1

It can be easily verified that -y satisfies the assumptions of Theorem 3.3 with
£y defined by (4.14) and ¢; = 0, as well as the assumptions of Theorem 3.8
with

() (t) E S prltyo(ni(t)) for ¢ > a
k=1

This complete the proof. O
Proof of Corollary 4.7. Choose € > 0 such that

t

esssup{ /go(s)ds: tZa}<

Hk(t)

<aljln<x+ +Dox(1_5) ) (k=1,...,m),
exp (z [ go(&)dE) — (1 —¢)

*

My
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and put
“+o0
exp (z [ go(s)ds) — (1 —¢)
y(t) = d T for t > a.
exp (z [ go(s)ds) —1
It can be easily verified that -y satisfies the assumptions of Theorem 3.5 with

{1 defined by (4.14) and ¢g = 0, as well as the assumptions of Theorem 3.10
with

m

()0 =3 glyolunt) for ¢ > a,
k=1
This complete the proof. O

5. Examples

Remark 5.1. Let functions p,g € L([a,b]; Ry) and 7,4 € Mg be such
that on the segment [a, b] the problem

W' (t) = p(t)u(r(t)) — g(H)u(p(t), ula) =0, (5.1)

resp.
W'(t) = pt)u(r(t)) — g(H)u(u), ud) =0, (5.2)

resp.
u'(t) = pt)u(r(t)) — g(O)u(u(t)), wula)—u(d) =0, (5.3)

has a nontrivial solution. Then, according to Remark 1.1 (see p. 11), there
exist ¢o € L([a,b]; R) and ¢ € R such that on the segment [a, b] the problem

W' (t) = p(t)u(r(t)) — g()u(n(t)) + ao(t), ula)=rc, (5.4)

resp.
() = p(t)u(r(t)) — g(t)ulu()) + q(t), u(d) =c, (5.5)

resp.
W' (t) = p(t)u(r(t)) — g(t)u(u(t)) + a(t), ula) —u(b) =c, (5.6)

has no solution.
Further, if we put

def | p(t)v(r(t)) for t € [a,b],
bo(v)(t) = {o for t> b, (5.7)
def | g(t)o(u(t)) for t € [a,b],
L(v)(t) = {O for > b, (5.8)
def Jqo(t) for t € [a,b],
at) = {O for t > b, (5.9)

then, obviously, the condition (1.14) is satisfied, there exists a finite limit
(3.1), and the problem (1.1), (1.3), resp. (1.1),(1.4), resp. (1.1), (1.5), with
{ = fy — 1 has no solution.
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Example 5.1. Let ¢y € |a,b[ and choose g € L([a, b]; R4 ) such that

to

/9(8) ds =1, /bg(s)ds =2.

a

Put

a to for t € [to,b],

) = {b for ¢ € [a,to],

and
t

1—|—/g(s)ds for t € [a,b],

4 for t > b.

v(t) =

Then ~ satisfies all the assumptions of Theorem 3.3, where £, = 0 and ¢, is
defined by (5.8), except of the condition (3.3), instead of which we have
v(+00) = (a) = 3.
On the other hand, the problem (5.1) with p = 0 has a nontrivial solution
t
/g(s) ds for ¢ € [a,to],
u(t) =49 t
1—/g(s)ds for t € [to,b].
to

Consequently, according to Remark 5.1 (see p. 39), we have shown that
in Theorem 3.3, resp. in Corollary 4.1 a), the strict inequality (3.3), resp.
the strict inequality (4.1), cannot be replaced by the nonstrict one.

On Remark 3.2. According to Remark 5.1 (see p. 39), for every (zo,yo) &
G, it is sufficient to construct functions p, g € L([a,b]; Ry) and T, ;1 € My
in such a way that

b b
/p(s) ds = xg, /g(s) ds =y (5.10)

and such that the problem (5.1) has a nontrivial solution.
It is clear that if xg,y0 € R+ and (zo,y0) € Ga, then (xg,yo) belongs
to one of the following sets:

Giz{(x,y)ER+xR+: le},

GZ:{(a?,y)ER+><R+: x<1,y21+2\/E}~
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Let (z0,v0) € GL, to € [a,b], and choose p,g € L([a,b]; Ry) such that

to b b
/p(s) ds =1, /p(s) ds =z — 1, /g(s) ds = yq.
a to a

Put 7 =tg and p = a. Then (5.10) is satisfied and the problem (5.1) has a
nontrivial solution

u(t) = /p(s) ds for t € [a,b].

Let (z0,y0) € G2, a < t; <ty < t3 < b, and choose p,g € L([a,b]; Ry)
such that

ip(s)ds:xo, /bp(s)dSZQ /tlg(s)dszm,
]29(8”‘9:1’ 79<5>d§:%_(1+2m>, /bg<s>ds=m.

Put 7 =¢; and

b for t€la,tq],
wu(t) =<ty for t € [t1,ta[U]ts,b],
a for t € [ta,t3].

Then (5.10) is satisfied and the problem (5.1) has a nontrivial solution

¢ ¢
/p(s)ds—l—\/l—xo/g(s)ds for t € [a,t1],
a : a
1—/g(s) ds for ¢ € [t1,t2],
uy=1""J
0 for t € [tz,tg[,
¢
—/g(s) ds for ¢ € [ts,b].
ts

Example 5.2. Let ¢>0, —q€ L([a, +oo[; R+), and g€ L([a, +00[; R4)
be such that

400 + oo

/g(s)ds:l, /g(s)ds>0 for t > a.

a t
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Put
+oo

~(t) = / g(s)ds for t > a.

t
Then v € Co([a, +00[; 0, 400]), satisfies the differential inequality (3.18)
with

(w)(0) < —g(t)v(a) for t & fa, +ool,
and (3.6) with ¢, = —¢ and ¢y = 0.
On the other hand,
v(+00) =0,

the condition (3.8) holds and every solution to (1.1) can be written in the

form
u(t) = ug (1 - /g(s) ds) + /q(s) ds for t > a,

a a

where ug € R. Moreover,

) <01 [ 90)) =) o 130

Consequently,
u(+00) <0,
and so the problem (1.1), (1.4) has no solution.

Therefore, the condition (3.7) in Theorem 3.5 is essential and it cannot
be omitted.

Example 5.3. Let ¢y € [a,b] and choose p € L([a, b]; Ry) such that

to b
/p(s) ds =2, /p(s) ds =1.
a to
Put
() = {to for [a,to[,
a for [to,b)],
and

b
1+/p(s)ds for ¢ € [a,b],

t
1 for t > b.

v(t) =

Then ~ satisfies all the assumptions of Theorem 3.5, where ¢; = 0 and { is
defined by (5.7), except of the condition (3.8), instead of which we have

(@) =~(+00) = 3.
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On the other hand, the problem (5.2) with g = 0 has a nontrivial solution

to

1—/p(s) ds for [a,tol,

£
—~
~
~—
Il
o
-

/p(s) ds for [to,b].

Consequently, according to Remark 5.1 (see p. 39), we have shown that
in Theorem 3.5, resp. in Corollary 4.2 a), the strict inequality (3.8), resp.
(4.3) cannot be replaced by the nonstrict one.

On Remark 3.4. According to Remark 5.1 (see p. 39), for every (o, o) &
G 4 oo, it is sufficient to costruct functions p, g € L([a,b]; Ry) and 7, 1 € My
in such a way that (5.10) holds and such that the problem (5.2) has a
nontrivial solution.

It is clear that if 2o, yo € R+ and (29, o) € G40, then (zo,yo) belongs
to one of the following sets:

G}koo:{(xay)ER+XR+: yZl}a
Gioo:{(xay)eR-i-xR-i-: y<]~a Z'Z].‘FQM}

Let (20, y0) € Gloo, to € [a,b], and let p,g € L([a,b]; R+) be such that

to b b
[o@ds=un-1 [ads=1. [ps)ds =
a to a

Put 7 = b and pu = ty. Then (5.10) is satisfied and the problem (5.2) has a
nontrivial solution

b
u(t) = /g(s) ds for t € [a,b].

Now suppose (xg,y0) € Gioo, a < t; <ty < tg < b Let pg €
L(Ja, b]; R4+) be such that

ts b t1

[oas=o. [ords=m. [ pts)ds=vT=om,
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Put p = t5 and

ts for t € [a,t1[U [t2, t3[,
T(t)=<b for t€ty,ta],
a for t € [ts,b].

Then (5.10) is satisfied and the problem (5.2) has a nontrivial solution

f/p(s)ds for t € [a,t1],
i
0 for t € [t1,ta],
t3
t) =
u(®) 1-— /p(s) ds for t € [to, 3],
i
b b
/g(s)ds+ V1 —yo/p(s) ds for t € [ts,b].
i i

On Remark 3.5. According to Remark 5.1 (see p. 39), for every (zo,yo) &
G} UG, , it is sufficient to costruct functions p,g € L([a,b]; Ry) and 7, 1 €
Mp in such a way that (5.10) holds and such that the problem (5.3) has a
nontrivial solution.

It is clear that if zg,yo € Ry and (zo,y0) & G;," UG, then (xo,y0)
belongs at least to one of the following sets:

G1:{(:v,y)€R+><R+; x21,y21},

G2:{($,y)€R+XR+: x<1,y22+2ﬂ},
G3:{($,y)ER+><R+: y<17x22+2\/H}7
G4:{(Jc,y)€R+xR+: y<17y§33§1yy}7
G5={(x,y)eR+><R+: O<x<1,x§y§1x }
—x

Let (z9,y0) € G1, to € [a,b], and choose p,g € L([a,b]; R+) such that

to b to b
/p(s)ds:xo—l, /p(s)ds: 1, /g(s)ds: 1, /g(s)ds:yo—l.
a to a to

Put

to for ¢ t for ¢ t
o(t) = o for t€a,tof, u(t) = a for t € [a,tol,
b for t € [to, b], to for t € [to, b]
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Then (5.10) is satisfied and the problem (5.3) has a nontrivial solution

to

/g(s) ds for t € [a,to],
u(t) = tt
/p(s) ds for t € [to,b].

Let (zo,y0) € G2, a < &1 < ty < t3 < t4 < b, and choose p,g €
L([a,b]; R+) such that

?P(s)dszfo, /bP(S)dSZO, /tlg(s)ds:\/m7 -t/Qg(s)dS:l,
79(‘9”8:?/0‘(2*2@), ]49<s>ds=m, /bg(s)ds:l.

Put 7 =¢; and

ty for t € la,t1[U[ts, ],
,u(t) =<t for te [tl,tQ[U [tg,t4[,
a for te [tg,tg[.

Then (5.10) is satisfied and the problem (5.3) has a nontrivial solution

¢ ¢
/p(s)ds—l—\/l—xo/g(s)ds for t € [a,t1],
a : a
1—/g(s) ds for t € [t1,t2],
t1
u(t) =140 for ¢ € [to,t3],
t
—/g(s)ds for t € [ta ta],
ts
b
-1 —xo/g(s) ds for ¢ € [t4,0].
t

Let (zo,y0) € Gs, a < t1 < ty < tz3 < t4 < b, and choose p,g €
L(Ja, b]; R+) such that

ta ty [2)

[osras=o, /bg<s>ds=yo, /p<s>ds:1, /p<s>ds=ﬂ,

a a t1
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t3 ty b
/p(s)ds:xo—(Q—i—Z\/l—yo), /p(s)ds:l7 /p(s)ds:\/l—yo.

Put p =t4 and

ty for te [tl,tQ[U[t3,t4[,
T(t) =<¢b for te [tz,tg[,
t; for t € a,t1[U[ta,b].

Then (5.10) is satisfied and the problem (5.3) has a nontrivial solution

t
—m/p(s)ds for t € [a,t1],

2}
—/p(S)dS for t € [tl,tQ[,
t
u(t) =<0 for t € [t27t3[7
ta
1 —/p(s) ds for ¢ € [ts,t4],
t

b

b
/g(s)ds—i—\/l—yo/p(s)ds for t € [tq,].

t

Let (z9,y0) € G4. If 29 = 0 and yo = 0, then we put p =0, g = 0,
T = a, and g = a. Consequently, (5.10) is satisfied and every nonzero
constant function is a nontrivial solution to the problem (5.3).

Assume that g # 0 and yg # 0. Let a < t; < ta < b, and choose
p,9 € L([a,b]; R+) such that

tl b tl
[o@as=w, [ads=0. [nsds=o.
a t1 a

to b
/p(s)dSZxo—@—&—l, /p(s)ds:@—l.
; Yo ; Yo

1 2

Put 7 =ty and g = b. Then (5.10) is satisfied and the problem (5.3) has a
nontrivial solution

t
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Let (z0,y0) € G5, a < t; < ty < b, and choose p,g € L([a,b]; Ry) such
that

to b t
/p(S) ds =0, /p(s) ds = xg, /g(s) ds = 20 _ 1,
x

a t2 a 0

to b

Yo
/g(s)ds:yo—x—+1’ /g(s)ds:o.
t1 0 i

Put 7 = b and g =t;. Then (5.10) is satisfied and the problem (5.3) has a
nontrivial solution

t
Lo

1——/g(s)ds for t € [a, o],

Yo
u(t) = p *

1 —/p(s) ds for t € [t2,b].
t

Example 5.4. Let b € Ja,+[, ¢ > 0, T = b, p = a, and choose
p,g € L([a,b]; Ry) such that

b b

/P(S)d8=1+€, /g(s)ds<1.

a a

Note that the problem (5.1), resp. (5.2), has only the trivial solution. In-
deed, the integration of (5.1), resp. (5.2) from a to b yields

u(b) = (1 +e)u(b), resp. wu(a)=u(a) /g(s) ds,

whence we get u(b) = 0, resp. wu(a) = 0. Consequently, v'(¢t) = 0 for
t € [a,b], which together with u(a) = 0, resp. u(b) = 0, results in u = 0.
Therefore, according to Proposition 1.3 (see p. 11), the problem

u'(t) = ptu(r(t)) — g(t)u(p(t)), u(a)=1, (5.11)
resp.

u'(t) = pt)u(r(t) — g(t)uu(t)), u(b) =1, (5.12)
has a unique solution u.

On the other hand, the integration of (5.11), resp. (5.12), from a to b
yields

b
w(B) — 1= u(B)(1+¢) - /g(s) ds,
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resp.

b
1 - u(a) = (1+¢) — u(a) / o(s) ds,

whence we get
b b

culb) = /g(s) ds—1<0, resp. u(a) (1 _ /g(s) ds) — c<0,

a a

ie, u(b) < 0, resp. u(a) < 0. Therefore, the problem (1.1p),(1.3), resp.
(1.1p), (1.4), with £ = £y — ¢, where £y and ¢; are defined by (5.7) and (5.8),
and ¢ = 1 has a unique solution

u(t) for t € |a,bl,
ity [0 0,8
u(b) for t > b,
which assumes both positive and negative values.
Example 5.5. Let b € Ja,4+o00[, € > 0, 7 = b, p = a, and choose
p,g € L([a,b]; Ry) such that
b b
/p(s)ds<1, /g(s)ds:l—i—g.

Analogously to Example 5.4 one can verify that the problem (5.1), resp.
(5.2), has only the trivial solution. Therefore, the problem (5.11), resp.
(5.12), has a unique solution u.

On the other hand, the integration of (5.11), resp. (5.12), from a to b
yields

b
u(b) — 1 = u(b) / p(s)ds — (1+¢),

resp.

b
1 - u(a) = /p<s> ds — u(a)(1 +¢),

whence we get

u(b) <1 - /b p(s)ds) = —e<0, resp. eu(a)= /b p(s)ds —1 <0,

a a

ie, u(b) < 0, resp. u(a) < 0. Therefore, the problem (1.1p),(1.3), resp.
(1.1p), (1.4), with £ = £y — ¢, where £y and ¢; are defined by (5.7) and (5.8),

and ¢ = 1 has a unique solution

_ Ju(t) for t€la,b],
uo(t) = {u(b) for ¢t > b,
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which assumes both positive and negative values.

Examples 5.4 and 5.5 show that the condition (3.17) in Theorem 3.9,
resp. the condition (4.9) in Corollary 4.4, can be replaced neither by the
condition

+0oo +oo
/%@@ﬁéHﬁ /&m@@SL
resp.
—+oo +oo
/po(s)d8§1+5, /go(s)dsgl,
a a

nor by the condition

/EO s)ds < 1, /51 s)ds <1+e¢,

resp.
+oo +o00
/po(s)d3<1’ /90(5)d5S1+57

no matter how small € > 0 would be.

Further these examples also show that the condition (3.19) in Theo-
rem 3.11, resp. the condition (4.11) in Corollary 4.6, can be replaced neither
by the condition

/fo d8<1+5 /61 d8<1

resp.
—+o0 +o0
/po(S)d5§1+€, /90(8)d5<1,

nor by the condition

+oo +o00
/ fo(1)(s)ds < 1, / ((1)(s)ds < 1+,
resp.
“+o00 +o00
[mds<t [ aeds<ite

no matter how small € > 0 would be.
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On Remark 3.11. In what follows, for every (xo,y0) &€ H™, resp. for
every (zo,y0) € H ™, xo,y0 € Ry, the functions p, g,qo € L([a,b]; R+) and
7,1t € M are chosen in such a way that the equalities (5.10) are fulfilled
and such that the problem (5.6) with ¢ = 0 has a solution u, which is not
nonnegative, resp. nonpositive. Consequently, if we define ¢y, {1, and g by
(5.7)—(5.9), then the problem (1.1), (1.5¢) with ¢ = £y — ¢; has a solution

~Ju(t) for t€la,b],
uo(t) = {u(b) for ¢t > b,

which is not nonnegative, resp. nonpositive.
It is clear that if zg,90 € Ry and (zg,%0) € HT, resp. (xo,%0) & H™,
then (xg,yo) belongs to one of the following sets:

Hf:{(x,y)GRerRJr: y>1},

Y
Hf ={(z,y) e Ry xR, : y<1, —Y— <uzy,
2 {( Y) + + Y= Tty = }

resp.

Hf:{(a:,y)ER+><R+: ar:>1}7

X
H, = R R,:z<1 —<
2 {(x,y)e + X + > 1, 1+£E _y}7

Let (z0,90) € H{, a < t; <ty < b, and choose p, g,qo € L([a,b]; Ry)
such that

to b t b
/p(s) ds =0, /p(s) ds = x, /g(s) ds = yo, /g(s) ds =0,
a to a t1

t b b

/qo(s) ds =0, /qo(s) ds = yo, /qo(s) ds = xo(yo — 1).

a t1 to

Put 7 = ¢1, p = a. Then (5.10) is satisfied and the problem (5.6) has a
solution
¢

1—/g(s)ds for t € [a,tq],

a
t

u(t) =<1 —y0+/qo(s)ds for t € [ty1,t2],

t1
t

14+ (1 —yo)/p(s) ds—l—/qo(s)ds for t € [t2,b]

to ta

with u(t;) =1 —1yo < 0.
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Let (wo,y0) € Hy, a < t; <ty < b, and choose p,g,q € L([a,b]; R})
such that

t1 to b
Yo Yo
ds = , ds = x¢ — , ds =0,
[reras= 2 [pe)ds —a - 2o [ p(s)as
a t1 2
to b ty
[owas=o. [o)ds=um. [atsds=o.
a to a
to b
Yo
ds = xp — , ds =0
/qo(s) s =1 Tt v /qo(s) s
t1 t2
Put p=a,

(t) = ty for ¢ € a,ta],
a for t € [ta,b].

Then (5.10) is satisfied and the problem (5.6) has a solution

t
—1—(1+y0)/p(s)ds for t € [a,t1],
¢ t
u(t) =< =1 —yo f/p(s)der/qo(s)ds for t € [t1,ta],
2 t
—1—yo+ /g(s) ds for t € [ta,b]
to

with u(a) = —1.
Let (zo,y0) € Hy, a < t1 < t2 < b, and choose p,g,q0 € L([a,b]; Ry)
such that
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Put 7 = t2, p = a. Then (5.10) is satisfied and the problem (5.6) has a
solution

t ¢
1= (9 — 1)/g(s)d8+/q0(s)ds for ¢ € [a,t1],
, a a
u(t) = —1—|—/q0(s) ds for t € [t1,ta],
"
xo— 1+ /p(s) ds for t € [t2,b]
2

with u(tg) =x9—1>0.
Let (z0,v0) € Hy, a < t; <ty < b, and choose p, g,qo € L([a,b]; Ry)
such that

ty to b
X0 Zo
ds =0 ds = yg — ds =
/9(8) s =0, /9(8) 5=V~ T o /9(8) S = oo
a t1 ta
t1 b t1
/p(s) ds = xg, /p(s) ds =0, /qo(s) ds =0,
a t1 a
to b
/ (s)ds =yo — 0 / (s)ds=0
q0 =%o 1+ 20 qo0 =U.
tl t2
Put 7 = aq,

u(t) = {a for ¢ € [a,ta],

t1 for t e [tg,b].
Then (5.10) is satisfied and the problem (5.6) has a solution
¢

1+/p(s)ds for t € [a,t1],

a
t t

u(t) = 1+x07/g(s)ds+/q0(s)ds for t € [t1,t2],

t1 t1
t

1+ xzo— (14 x0) /g(s) ds for t € [t2,b]
to

with u(a) = 1.
We have shown that in Theorem 3.12 and Corollary 4.8 neither one
of the strict inequalities in (3.20), (4.12) and (4.13) can be replaced by
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the nonstrict one. Furthermore, the nonstrict inequalities in (3.20) and in
(4.12), resp. (4.13), cannot be replaced by the inequalities

+oo
/ i(1)(s)ds <1+¢

and
+0o0 +oo
/ go(s)ds <1+¢, resp. / po(s)ds <1+e¢,

no matter how small € > 0 would be.



CHAPTER 2

Nonlinear Problem

6. Statement of the Problem

In this chapter, we will consider the problem on the existence and
uniqueness of a bounded solution to the equation

u'(t) = F(u)(t) (6.1)
satisfying the condition
w(u) = h(u). (6.2)
Here, F' € K, w € ch, resp. w € Wy, and h € H.

By a solution to (6.1) we understand a function u € Cjoc([a, +00[; R)
satisfying the equality (6.1) almost everywhere in [a, +00[. By a solution
to the problem (6.1), (6.2) we understand a solution to (6.1) which belongs
to the domain of w and satisfies (6.2).

The particular cases of the condition (6.2) are:

u(a) = h(u), (6.3)
u(400) = h(u), (6.4)
u(a) — u(+o00) = h(u). (6.5)

The chapter is organized as follows: Main results are presented in Sec-
tion 8, where sufficient conditions for the existence and uniqueness of a
bounded solution to the equation (6.1) satisfying one of the conditions (6.3),
(6.4), or (6.5) are established. The proofs of the main results are contained
in Section 9. In Section 10 we concretize results of Section 8 for particular
cases of the equation (6.1) — for the equation with deviating arguments:

W' () = Y (Pe®u(re(®) = ge(ulu(®) )+

k=1
+ f(tu(t), u(vr (1), ..., ulvy(t)), (6.1)

where f € Kjoe([a, +0o[ x R R), pr, gx € L([a, +ool; Ry), T, ix € M
(k=1,....m), v; € M (j = 1,...,n), myn € N. Last section of the
chapter — Section 11 — is devoted to the examples verifying the optimality
of obtained results.

The general principle of the existence of a bounded solution contained in
Section 7 play a crucial role in proving the main results. Namely Lemmas 7.2
and 7.3 (see p. 60 and p. 60) state a bounded solution to (6.1) can be

54
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represented as a uniform limit of a suitable sequence {up}psq 0f solutions
to the problem

u'(t) = Fy(u)(t), (6.6)
By(w) = o) (6.7)
(for the definition of ﬁb, wp, and Ty, see p. 7).

7. The Principle of Existence of Bounded Solutions
7.1. Main Results.

Theorem 7.1. Let w € ch, and let there exist £ € L such that the
only bounded solution to the problem (1.1¢), (1.2¢) is a trivial solution. Let,
moreover, there exist a continuous function ¢ : Ry — Ry such that

[h(@)] < c([lvll) for v e Col[a, +00[; R), (7.1)
and let on the set {v € Cy([a, +oo[; R) : |w(v)| < c(||v]])} the inequalities

\/ (0)(s)] ds ]/ loll ds

[E(v)(8) = @) (@)] <n(@)l[vl| for t >a, |lv]| = (7.3)

be fulfilled, where q € Kjpe([a, +00[ XR4; R), 1 € Lioe(la,+o0[; Ry), and
p1 > 0. Assume also, that the functions ¢ and q satisfy

for t > a, (7.2)

Sup{‘/ $,) ds : } < 400 for every x € Ry, (7.4)

xll»rfoo;c< +sup{‘/ 8,) ds Dt > }):O. (7.5)

Then the problem (6.1), (6.2) has at least one bounded solution.

Theorem 7.2. Let w € Wy, and let there exist { € L such that
the only bounded solution to the problem (1.1p),(1.2¢) is a trivial solu-
tion. Let, moreover, there exist a continuous function ¢ : Ry — Ry such
that the inequality (7.1) holds, and let on the set {v € Cy([a,+o0[; R) :
lw(@)| < e(|v]l)} the inequalities (7.2) and (7.3) be fulfilled, where p1 > 0,
q € Kipe([a,+o0[ XR4; R), and n € Lipe([a, +00[; Ry). Assume also, that
the functions ¢ and q satisfy (7.4) and (7.5). Then the equation (6.1) has
at least one bounded solution. If, moreover, for every v € Coc([a, +00|; R)
with ||v]] < +oo, there exists a finite limit

¢
lim [ F(v)(s)ds, (7.6)

t——+o0
a

then the problem (6.1),(6.2) has at least one bounded solution.



56 Robert Hakl, Alexander Lomtatidze, and Ioannis P. Stavroulakis

Remark 7.1. From Theorems 7.1 and 7.2, together with the results from
Chapter 1, we immediately get several criteria guaranteeing the existence of
a bounded solution to the equation (6.1), resp. to the problem (6.1), (6.2).

Definition 7.1. We will say that an operator ¢ € L belongs to the
set A(w), if there exists r > 0 such that for any ¢* € L([a,+o0o[; R+) and
¢* € Ry, every function u € Cy([a, +oo[; R) satisfying the inequalities

w(u)sgnu(a) < c*, (7.7)
[u/(t) — £(u)(t)] sgnu(t) < ¢*(t) for t > a, (7.8)
admits the estimate
+oo

ol <r(e+ [ aeas). (7.9)

a

Definition 7.2. We will say that an operator ¢ € L belongs to the
set B(w), if there exists r > 0 such that for any ¢* € L([a,+oo[; R1) and
¢* € Ry, every function u € Cy([a, +oo[; R) satisfying the inequalities

w(u) sgnu(+o00) < ¢*, (7.10)
[u/(t) — £(u)(t)] sgnu(t) > —¢*(t) for t > a, (7.11)
admits the estimate (7.9).

Theorem 7.3. Let w € ch, and let there exist a continuous function
c: Ry — Ry such that
h(v)sgnv(a) < c(||v|]) for v € Cy([a,+c[; R). (7.12)
Let, moreover, there exist an operator £ € A(w) such that on the set {v €
Co([a,+0[; R) : w(v)sgnv(a) < c(||v]])} the inequality
[F(u)(t) = L(v)(®)] sgnu(t) < q(t, [[o]]) for t > a (7.13)

is fulfilled, where ¢ € K([a,+o0o] xRy; Ry). Assume also, that the functions
c and q satisfy

+o0

lim L <c(x)+ / o(s,2) ds> 0. (7.14)

rx——4o0 I
a

Then the problem (6.1), (6.2) has at least one bounded solution.

Theorem 7.4. Let w € Wy, and let there exist a continuous function
c: Ry — Ry such that

h(v)sgnuv(4o00) < ¢(||v]]) for v € Cy([a, +oo[; R). (7.15)

Let, moreover, there exist an operator { € B(w) such that on the set {v €
Co([a,+oo[; R) : w(v)sgnv(+oo) < c(|lv]|)} the inequality

[F(v)(t) — £(v)(t)] sgnv(t) = —q(t, [v])) for t > a (7.16)
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is fulfilled, where q¢ € K([a,+0o] xRy; Ry). Assume also, that the functions
¢ and q satisfy (7.14). Then the equation (6.1) has at least one bounded

solution. If, moreover, for every v € Cioe([a, +o0[; R) with |jv] < +oo,
there exists a finite limit (7.6), then the problem (6.1), (6.2) has at least one
bounded solution.

Theorem 7.5. Let w € ch, F(0) € L([a, +oo[; R),

[h(v) — h(w)] sgn(v(a) —w(a)) <0 for v,w € Cy([a,+oo[; R), (7.17)
and let there exist £ € A(w) such that on the set {v € Cqy([a,+oo[; R) :
w(v)sgnov(a) < |h(0)|} the inequality

[F(v)(t) — F(w)(t) — (v —w)(t)] sgn(v(t) — w(t)) <0 for t >a (7.18)
is fulfilled. Then the problem (6.1),(6.2) has a unique bounded solution.

Theorem 7.6. Let w € Wy, F(0) € L([a,+o0[; R),

[h(v)—h(w)] sgn(v(+00)—w(+00)) <0 for v,w € Cy([a,+oo[; R), (7.19)
and let there exist £ € B(w) such that on the set {v € Co([a,+oo[; R) :
w(v) sgnv(+00) < |h(0)|} the inequality

[F(v)(t) — F(w)(t) — (v —w)(t)] sgn(v(t) — w(t)) =0 for t >a (7.20)
is fulfilled. Let, moreover, for every v € Cioc([a, +00[; R) with ||v]| < +oo,

there exist a finite limit (7.6). Then the problem (6.1),(6.2) has a unique
bounded solution.

7.2. Auxiliary Propositions. To prove Theorems 7.1-7.6 we will
need some auxiliary propositions established in this subsection.
In what follows, we will also consider on the interval [a, b] the problem

v'(t) = F(v)(t), (7.21)
B(v) = h(v), (7.22)

where F € Kap, @ : C([a,b]; R) — R is a linear bounded functional, and
h: C([a,b]; R) — R is a continuous functional satisfying that for every r > 0
there exists M, > 0 such that

(h(v)| < M, for |v]lc <

By a solution to the problem (7.21),(7.22) we understand a function v €
C([a, b); R), which satisfies the equality (7.21) almost everywhere in [a, b]
and the condition (7.22) is fulfilled.

Now let us formulate the result from [16, Theorem 1] in a suitable for

us form.

Lemma 7.1. Let there exist a positive number p and an operator Ve
Lap such that the homogeneous problem

~

V'(t) = L(v)(t), ©)=0 (7.23)
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has only a trz’gz’al solution, and let for every § € 10,1] and for an arbitrary
function v € C([a,b]; R) satisfying

V'(t) = £(v)(t) + S[F(v)(t) — £(v)(t)] for t € [a,b], (7.24)

B(v) = 6h(v), (7.25)

the estimate
[vlle <p (7.26)

hold. Then the problem (7.21),(7.22) has at least one solution v, which
satisfies (7.26).

Proof. Since ¢ € Lo, and F € Kup, there exist 1,19 € L(Ja,b]; R+) and
o € Ry such that

L)) < n®)llylle for ¢ € [a,b], y e C(la,b); R),

|F(y)(t)] < mo(t) for t €[ab], |yllc <2p,
[h(y)| < a for [lyc < 2p.

Put
de
At) E mo(t) + 2on(t) for ¢ € [a,),
1 for 0 < s < p,
def S
o(s) = {2- ; for p < s < 2p, (7.27)
0 for 2p < s,
w0@)(t) < o(lyllc) [F( Uy)(1)] for t € [a,b],
s (7.28)
co(y) = o(llyllc)hly
Then for every y € C([a,b]; R) and almost all ¢ € [a, b, the inequalities

lqo@)(B)] < (1), leo(y) < a
hold.
For arbitrarily fixed u € C([a, b]; R), let us consider the problem
V'(t) = Z(v)(t) + qo(u)(t), @(v)=colu). (7.29)
According to Proposition 1.3 (see p. 11), the problem (7.29) has a unique

solution v and, moreover, by virtue of Proposition 2.1 (see p. 13), there
exists 0 > 0 such that

lvlle < B(leo(u)] + llgo(w)]l).-

Therefore, for arbitrarily fixed u € C([a, b]; R), the solution v to the problem
(7.29) admits the estimates

lvllc < po, [V (#)] <~*(t) for t € [a,b], (7.30)
where pg = B(|[7][z + @) and v*(t) = pon(t) + (t) for ¢t € [a, b].
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Let Q : C([a,b]; R) — C([a,b]; R) be an operator which to every u €
C([a, b]; R) assigns the solution v to the problem (7.29). Due to Theorem 1.4
from [15], the operator €2 is continuous (see also [10, Theorem 3.2]). On
the other hand, by virtue of (7.30), for every u € C([a,b]; R) we have

12@u)lle < po,  |Qu)(t) = Qu)(s)| < ‘/7*(5) dé‘ for s,t € [a,b].

Thus the operator Q continuously maps the Banach space C([a,b]; R) into
its relatively compact subset. Therefore, using the Schauder’s principle,
there exists u € C([a, b]; R) such that
Q(u)(t) = u(t) for t € [a,b].
By the equalities (7.28), u is obviously a solution to the problem (7.24), (7.25)
with
6 = o([Julle)- (7.31)
Now we will show that u admits the estimate (7.26). Suppose the contrary.
Then either
p<|ullc <2p (7.32)
or
lulle > 2p. (7.33)
If we assume that the inequalities (7.32) are fulfilled, then, on account
of (7.27) and (7.31), we have § € ]0,1[. However, by the assumptions of the
lemma, in this case we have the estimate (7.26), which contradicts (7.32).
Suppose now that (7.33) is satisfied. Then by (7.27) and (7.31), we
have 6 = 0. Hence u is a solution to the problem (7.23). But this is
impossible because the problem (7.23) has only a trivial solution. Thus,
above-obtained contradiction proves the validity of the estimate (7.26).
By virtue of (7.26), (7.27), and (7.31), it is clear that § = 1 and thus,
u is a solution to the problem (7.21),(7.22). O

From Lemma 7.1 it immediately follows
Proposition 7.1. Let b € |a,+oo[, and let there exist p > Oand an

operator £ € L such that the homogeneous problem (1.18¢), (1.19¢) has only
a trivial solution, and let for every § € 10,1 and for an arbitrary function

u € Cy([a, +oo[; R) satisfying
(1) = Bo()(t) + 5 [Fo(w)(t) — Bp(u)(8)] for t>a,  (7.34)
@p(s) = 6hy(u), (7.35)
the estimate
[ull <p (7.36)

hold. Then the problem (6.6), (6.7) has at least one solution u, which satis-
fies (7.36).
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Lemma 7.2. Let there exist p > 0 and by € ]a, +oo| such that for every
b > by, the equation (6.6) has a solution uy satisfying
e (7.37)
Then the equation (6.1) has at least one bounded solution w. Moreover,
there eists a sequence {upy, }125 C {up}p>p, such that

hr—? up, (t) = uo(t) uniformly in [a,+o0]. (7.38)

Proof. Since F € K, there exists ¢ € Ljo.([a, +00[; Ry) such that
FOO] < alt) for t2 0, ©€ Cuoella, +o0[i B), ol < p.

Therefore, since 0 (up)(t) = up(t) for ¢ > a, in view of (6.6) we have

fun(£) — wy(5)] < / By () (6)] dé <

t

¢
< [1F@)@lde < [ a@de tor a<s<t
Consequently, the set of functions {up}p>p, is uniformly bounded and equi-
continuous on every compact subinterval of [a, +o0o[. According to Arzela—
Ascoli lemma, there exist a sequence {u;, }:727 C {up}p>p, and a function
u € Cloe([a, +00[; R) such that lirf b, = +oo and (7.38) is fulfilled.
Obviously,
Op, (up, )(t) = up, (t) for t >a, n €N,
and from (7.37) it follows that ||u|| < p. Moreover, the integration of (6.6)
from a to t (with u = up, ) yields
¢

wp, (£) = up, (@) + / Flu, )(s)ds for € [a,by], n e N.

a

Consequently, with respect to (7.38) and the assumption F' € K we have
t
u(t) ZU(a)Jr/F(u)(s) ds for t > a,

ie., u € Coe([a,+00[; R) and it is a bounded solution to the equation
(6.1). O

Lemma 7.3. Let { € £ and let the only bounded solution to the problem
(1.1p), (1.20) be a trivial solution. Let, moreover, there exist a continuous
function ¢ : Ry — Ry such that the inequality (7.1) holds, and let on
the set {v € Cop([a,+oo[; R) : |w(v)| < ¢(||v]])} the inequalities (7.2) and
(7.3) be fulfilled, where q € Kjoe([a,+00[ XR4;R), n € Lipe([a, +oo[; Ry),
and p1 > 0. Assume also, that the functions ¢ and q satisfy (7.4) and
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(7.5). Then there exist p > 0 and by € |a,+oo[ such that for every b > by,
an arbitrary function u € Cy([a,+o00[; R) satisfying (7.34) and (7.35) with
some ¢ € 0,1, admits the estimate (7.36).

Proof. By virtue of Proposition 2.3 (see p. 14) there exists b, € ]a,+oo|
such that for every b > b, the problem (1.18p),(1.19¢) has only a trivial
solution. We will show that there exist p > 0 and by > b, such that for
every b > bg, an arbitrary function u € Cy([a, +00[; R) satisfying (7.34) and
(7.35) with some § € ]0,1[, admits the estimate (7.36).

Assume on the contrary that for every n € N there exist b, > by,
dn € 10,1, and up, € Co([a, +oo[; R) satisfying (7.34) and (7.35) with
b=b, and § = J,, such that lim b, = +oc and

n—-+oo
up,, || > n.
Obviously,
lin lup, || = +oo. (7.39)
Put
t
vp(t) = w, (t) for t >a, n € N. (7.40)
[[us, |
Then
|lvn]l =1 for ne N (7.41)
and, in view of (7.34), (7.35), and (7.40), we have
~ 5~ ~
U (t) = Lo, (0n) (1) + Hu: ” [Py, (un, ) () = by, (up,)(t)] for t>a, (7.42)
b, (vn) = = P, (u,). (7.43)
[, |

Obviously, 0y, (vn) = vy, and 0y, (up, ) = up,, . Therefore, on account of (7.3),
(7.39), (7.41), and the assumption ¢ € L, from (7.42) it follows that there
exists ng € N such that

[on(t) — va(s)] < / o (6] dé <

< /Z(l)(f) d¢ + /77(5) d¢ for a <s<t, n>mng. (7.44)

S S

Therefore, the sequence {v,},};2, ~is uniformly bounded and equicontinu-
ous on every compact subinterval of [a,+o00o[. According to Arzela—Ascoli
lemma we can assume, without loss of generality, that there exists vy €
Cloc([a, +00o[; R) such that

lim v, (t) = vo(t) uniformly in [a, +oo]. (7.45)

n—-+4oo
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Moreover, on account of (7.41), we have
voll <1, (7.46)
and the integration of (7.42) from a to ¢ yields

Un(t) = vn(a) + / Oy, (v3)(s) ds+

On

Jr
v,

/ [Fy, (up, ) (s) — Lo, (up, )(5)] ds for n€ N. (7.47)

a

On the other hand, by virtue of (7.1) and (7.2) we have

<

| o )6) B, G, 0]

¢
1
< st | [ als,lu,
[,
a

On ~ 1
Hub || hbn (ubn) S ”TZ)H C(”ubn”) (749)

Now, from (7.47), in view of (7.5), (7.39), (7.45), and (7.48), we get

)ds‘ : fza} for t >a, (7.48)

vo(t) = vola) + /E(vo)(s) ds for t > a. (7.50)
Thus vg € Clee([a, +00[; R) and
on(t) = en(s) = | [ eon)(€)de| < anl] [ F)(E) e or a < s <

The last inequality, together with (7.46) and the fact that ¢ € ﬁ, ensures
that there exists a finite limit vg(400). Consequently, from (7.43), in view
of (7.5), (7.39), (7.45), and (7.49) we also obtain

w(vg) = 0. (7.51)

Now (7.46), (7.50), and (7.51) imply that vy is a bounded solution to the
problem (1.1p), (1.2g). Therefore,

v = 0. (7.52)

Since £ € L, we can choose ag € Ja, +oo] such that

/ 71)(s) ds < % (7.53)

ao
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According to (7.5), (7.39), (7.45), and (7.52) there exists ny € N such that
1

lun ()] < 5 for t € [a,a0], n>mnq, (7.54)
1 1
Tao T sup {)/ ‘ £E> a} < s for n > n;. (7.55)

On the other hand, from (7.47), in view of (7.41) and (7.48), we have

[un(t) — vn(ao)| <
3

/E ds—|— Sup{ / s, 1) ds’: fza} for ¢t > ap.

Hence, on account of (7.53)—(7.55), we obtain

S

o (t)] < = for t >a, n>mn

ot

which contradicts (7.41). O

Lemma 7.4. Let w € ch, ¢ € Ry, and let v € Cipe([a, +o0[; R) be a
function satisfying
w(v)sgno(a) <ec.
Then there exists a sequence of functions {v,}>5 C Co([a, +0oo[; R) such
that
w(vp)sgnop(a) < ¢ for n e N (7.56)
and
lim v, (t) =v(t) uniformly in [a,+o0[. (7.57)

n—-+oo

Proof. Let {b}{25 be a sequence of numbers such that by > a for k € N,
lim b, = +oo. If for every n € N there exists k, € N such that k, > n

k——4o00
and

w(bs,, (v)) sgn by, (v)(a) <c,
then we put
v (t) = Oy, (v)(t) for t >a, n€N.
If there exists kg € N such that
w(Bp, (v)) sgn by, (v)(a) > ¢ for k> ko,

then for every n € N there exists k,, > kg such that
1
w(ebkn (U» sgn ebkn (’U)((l) - E <eg,
because

G w(Bs, (v) sgnbs, (v)(a) = w(v)sgnuv(a) < c.
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Put
. Ob, (v)(E)
Un(t) = 0y, (v)(t) — u
0= 000 OO = G, @) 500, ()(a)
Obviously, there exists ng € N such that

for t > a, n € N.

sgn v, (a) = sgnv(a) for n > ng.
Thus we can put
Un(t) = Upgny () for t >a, n € N.
Consequently, in both cases we have that (7.56) and (7.57) hold. O

Lemma 7.5. Let w € ch, ¢ € Ry, and let there exist £ € L such that
on the set {v € Cy([a,+oo[; R) : w(v)sgnv(a) < ¢} the inequality (7.18)
is fulfilled. Then on the set {v € Cioe([a, +o0[; R) : w(v)sgnv(a) < c} the
inequality (7.18) holds, as well.

Proof. Assume on the contrary that there exist vg,wg € Cioe([a, +00[; R)
satisfying w(vg) sgnvp(a) < ¢ and w(wg) sgnwp(a) < ¢ such that

[F(vo)(t) — F(wo)(t) — £(vo — wo)(t)] x
x sgn(vo(t) — wo(t)) >0 for t € M, (7.58)

where M C [a,+o00[ is a measurable set with measM > 0. Accord-
ing to Lemma 7.4 there exist sequences of functions {v,}72, {w,}125 C
Co([a, +o0[; R) such that

w(vp)sgnop(a) < e, wl(wy)sgnwy(a) <c for n € N, (7.59)

and lim wv,(t) =vo(t), lm wy(t) = wo(t) uniformly in [a, +oo[. Put
n—-+400 n—-+o00

M, =la,a+n]NM for n € N, (7.60)

Gn(t) = [F(vn)(t) = F(wn)(t) — £(vn — wn)(t)] ¥
X sgn(v, (t) — wy(t)) for t >a, n€ N, (7.61)

qo(t) = [F(vo)(t) — F(wo)(t) — £(vo — wo)(t)] %
x sgn(vg(t) —wp(t)) for ¢ >a. (7.62)
Obviously, there exists ng € N such that
meas My, > 0. (7.63)

Furthermore, let
1
K, = {t € My, |vo(t) —wo(t)] > } for n e N.
n

Then, in view of (7.58), (7.60), and (7.63), there exists n; € N such that
meas I, > 0.
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Put

e / qo(s) ds. (7.64)
Kny

Obviously, € > 0 and there exists no € N such that
sgn(vp, (t) — wn(t)) = sgn(ve(t) — wo(t)) for t € K,,, n > no.

Since F' € K and £ € E, there exists ng > no such that

/ lgn(s) — qo(s)|ds < e for n > ns, (7.65)

Knl

where ¢ is defined by (7.64). Moreover, because we assume that (7.18) is
fulfilled on the set {v € Cy([a,+o0[;R) : w(v)sgnv(a) < ¢}, in view of
(7.59) and (7.61) we get

/ qn(s)ds <0 for n € N. (7.66)

Kn

On the other hand, on account of (7.65) and (7.66), we have

[ a@ds< [ andst [ ) - au6)lds <<
K

K, Kny -

which contradicts (7.64). O

7.3. Proofs of Theorems 7.1-7.6. Proof of Theorem 7.1. According
to Lemmas 7.2 and 7.3, and Propositions 2.3 and 7.1, there exist a bounded
solution ug to the equation (6.1) and a sequence of functions {u,} > C

Co(Ja, +o0[; R) such that
w(uy) = h(uy,) for n € N, (7.67)

and
lm w,(t) = up(t) uniformly in [a,+oo[. (7.68)

n—-—4o0o
Hence, in view of the fact that w and h are continuous functionals on
Cloc([a, +o0[; R), we get w(ug) = h(ug), i-e., up is a bounded solution to
the problem (6.1), (6.2). O

Proof of Theorem 7.2. According to Lemmas 7.2 and 7.3, and Propositi-
ons 2.3 and 7.1, there exist a bounded solution ug to the equation (6.1)
and a sequence of functions {u,} > C Cy([a,400[; R) such that (7.67)
and (7.68) hold. If, moreover, there exists a finite limit (7.6) for every
v € Coe([a, +00[; R) with ||v]| < 400, then there exists a finite limit u(+oc0),
ie., ug € Co([a,+oo[; R). Hence, in view of the fact that w and h are
continuous functionals on Cy([a, +oo[; R), we get w(ug) = h(up), i.e., ug is
a bounded solution to the problem (6.1), (6.2). O
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Proof of Theorem 7.3. First note that due to the assumption ¢ € A(w),
the only bounded solution to the problem (1.1p), (1.29) is a trivial solution.
Therefore, according to Proposition 2.3 (see p. 14), there exists by € Ja, +00]
such that for every b > by, the problem (1.18y),(1.19¢) has only a trivial
solution.

Let r be the number appearing in Definition 7.1. According to (7.14),
there exists p > 0 such that

—+o0
1

- (c(x) + / q(s,x) ds> < % for = > p. (7.69)

Let now b > by be arbitrary but fixed and assume that a function u €
Co([a, +o0[; R) satisfies (7.34) and (7.35) with some § € ]0,1[. Then, ob-
viously, 0,(u) = u, and, according to (7.12), u satisfies the inequality (7.7)
with ¢* = c(||ul]), i.e., u € {v € Co([a,+o0[; R) : w(v)sgnv(a) < c(||v])}
By virtue of (7.13) we have that u satisfies also the inequality (7.8) with
q*(t) = q(t, ||u||]) for t > a. Hence, by the assumption ¢ € A(w) and the
definition of the number p we get the estimate (7.36).

Since p depends neither on u nor on ¢, it follows from Proposition 7.1
that the problem (6.6),(6.7) has at least one solution u. Obviously, this
solution admits the estimate (7.36). Furthermore, since b > by was chosen
arbitrarily, according to Lemma 7.2, the equation (6.1) has a bounded solu-
tion uo, and there exist a sequence of functions {u,};> C Co([a, +00[; R)
such that (7.67) and (7.68) hold. Hence, since w and h are continuous
functionals on Cjye([a, +00[; R), we get w(ug) = h(up). Therefore, ug is a
bounded solution to the problem (6.1), (6.2). O

Proof of Theorem 7.4. First note that due to the assumption ¢ € B(w),
the only bounded solution to the problem (1.1p), (1.2¢) is a trivial solution.
Therefore, according to Proposition 2.3 (see p. 14), there exists by € ]a, +00]
such that for every b > by, the problem (1.18y),(1.19¢) has only a trivial
solution.

Let r be the number appearing in Definition 7.2. According to (7.14),
there exists p > 0 such that (7.69) holds. Let now b > by be arbitrary but
fixed and assume that a function u € Cp([a,+00[; R) satisfies (7.34) and
(7.35) with some § € ]0,1]. Then, obviously, ,(u) = u, and, according
to (7.15), u satisfies the inequality (7.10) with ¢* = c(||ul]), i.e., v € {v €
Co([a,+<[; R) : w(v)sgnv(+oo) < ¢(||v]])}. By virtue of (7.16) we have
that wu satisfies also the inequality (7.11) with ¢*(¢) = ¢(¢, ||u||) for t > a.
Hence, by the assumption ¢ € B(w) and the definition of the number p we
get the estimate (7.36).

Since p depends neither on u nor on ¢, it follows from Proposition 7.1
that the problem (6.6),(6.7) has at least one solution u. Obviously, this
solution admits the estimate (7.36). Furthermore, since b > by was chosen
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arbitrarily, according to Lemma 7.2, the equation (6.1) has a bounded solu-

tion wo, and there exist a sequence of functions {u,}7> € Co([a, +00[; R)
such that (7.67) and (7.68) hold. If, moreover, there exists a finite limit
(7.6) for every v € Cioe([a, +00[; R) with [v|| < +o0, then there exists a
finite limit u(+00), ie., ug € Co([a, +00[; R). Hence, since w and h are con-
tinuous functionals on Cy([a, +00[; R), we get w(ug) = h(ug). Therefore,
up is a bounded solution to the problem (6.1), (6.2). O

Proof of Theorem 7.5. It follows from (7.17) that the condition (7.12) is
fulfilled with ¢ = |h(0)|. By virtue of (7.18) we see that on the set {v €
Co([a,+0[; R) : w(v)sgnv(a) < |h(0)|} the inequality (7.13) holds, where
q = |F(0)|. Consequently, the assumptions of Theorem 7.3 are fulfilled and
so the problem (6.1), (6.2) has at least one bounded solution. It remains to
show that the problem (6.1), (6.2) has at most one bounded solution.

Let w1, ug be bounded solutions to the problem (6.1),(6.2), and let
b € Ja, +00[ be arbitrary but fixed. Since 0,(u;) € Co([a, +oo[; R) (i = 1,2),
on account of (7.17) we get

[1(0s(u1)) — h(0s(uz2))] sgn(ui(a) — uz(a)) <0,
h(0p(u;)) sgnu;(a) < |h(0)| for i =1,2.

Consequently, in view of (6.2), we have

w(u;)sgnu;(a) = h(u;)sgnu;(a) =

= bhlf_l h(ab(ui))sgnui(a) < |h(0)| for i = 1a25

[h(u1) — h(uz)] sgn(ui(a) — uz(a)) < 0. (7.70)
Thus, according to Lemma 7.5 and (7.18), we obtain
[F () () — Fua)(t) — s — w2)(8)] %
x sgn(ug (t) —ua(t)) <0 for t >a. (7.71)
Therefore, from (6.1) and (6.2), on account of (7.70) and (7.71) we obtain
w(uy — uz) sgn(u(a) — uz(a)) <0, (7.72)
[t} (t) — uh(t) — €(uy — uz)(t)] sgn(ui (t) — uz(t)) <0 for t >a. (7.73)
Furthermore, from (7.73) it follows that
lug (t) — uz(t)|” < [€(ur — ug)(t)| for t > a,

whence, on account of the assumption ¢ € Z, we get
¢
[[w(®)] = [w(s)]| < [lw] /Z(l)(ﬁ) d¢ for a<s<t,

where w(t) = u; (t) — uy(t) for t > a. Consequently, w € Co([a,+o0; R),
and by virtue of (7.72), (7.73), and the assumption ¢ € A(w), we have
lw|| =0, i.e., u1 = us. O
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Proof of Theorem 7.6. It follows from (7.19) that the condition (7.15)
is fulfilled with ¢ = |h(0)]. By virtue of (7.20) we see that on the set
{v € Cy([a,+0[;R) : w(v)sgnv(+oo) < |h(0)]} the inequality (7.16)
holds, where ¢ = |F(0)|. Consequently, the assumptions of Theorem 7.4 are
fulfilled and so the problem (6.1),(6.2) has at least one bounded solution.
It remains to show that the problem (6.1),(6.2) has at most one bounded
solution.

Let uy, us be bounded solutions to the problem (6.1),(6.2). Then, ob-
viously, uy,us € Co([a,+00[; R). Consequently, by virtue of (7.19) and
(7.20), we have

w(uy — ug)sgn(ui(+00) — uz(+00)) <0, (7.74)
[u) (t) — ubh(t) — €(ur — u2)(t)] sgn(uq (t) — us(t)) >0 for t >a. (7.75)

Now, since u; — uz € Co([a, +oo[; R) and £ € B(w), by virtue of (7.74) and
(7.75) we obtain |lu; — uz|| =0, i.e., uy = us. O

8. Existence and Uniqueness of Bounded Solutions

In what follows, we will always assume that ¢ € K([a,+oo[ XR4; R4),
c: Ry — R, is a continuous function, and

+oo

i L (c(x)+ / o(5,7) ds) o,

a

Theorem 8.1. Let the inequality (7.12) hold, and let there exist £y, {1 €
P such that on the set {v € Cy([a,+oo[; R) : |v(a)| < c(||lv||)} the inequality

[F(0)(t) = Lo(v)(t) + La(v)(t)] sgno(t) < q(t, [[v]]) for t=a  (8.1)
18 fulfilled. If, moreover, there exists v € 6’0([a,+m[; 10, +00[) satisfying

V() = Lo(7)(t) + L (1)(t) for t > a, (8.2)
Y(+00) —(a) <2,

then the problem (6.1), (6.3) has at least one bounded solution.

Remark 8.1. Theorem 8.1 is unimprovable in the sense that the in-
equality (8.3) cannot be replaced by the nonstrict one (see On Remark 8.1,
p. 89).

Theorem 8.2. Let the inequality (7.12) hold, and let there exist £y, {1 €
P such that on the set {v € Cy([a,+oo[; R) : |v(a)| < c(||lv||)} the inequality
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(8.1) is fulfilled. If, moreover,

+oo

/ Lo(1)(s)ds < 1, (8.4)
+00 +oo
/El(l)(s)ds<2 1- /50(1)(5)d5, (8.5)

then the problem (6.1), (6.3) has at least one bounded solution.
Remark 8.2. Denote by D, the set of pairs (z,y) € Ry x R4 such that
r<l, y<2vl-—=z

(see Figure 8.1).

Figure 8.1

According to Theorem 8.2, if (7.12) holds, there exist £y, ¢; € P such
that the inequality (8.1) is satisfied on the set {v € Cy([a,+oo[;R) :
[v(a)] < c([lv]])}, and

+o0 +o0
</Eo(l)(s)ds,/fl(l)(s)ds) € D,

then the problem (6.1),(6.3) has at least one bounded solution. Below we
will show (see On Remark 8.2, p. 90) that for every zo,yo € R+, (z0,0)
D, there exist F' € K and ¢y, ¢; € P such that (7.12) (with h = 0) and (8.1)
hold,

+oo +oo
/ Lo(1)(s) ds = xg, / £1(1)(s) ds = yo,
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and the problem (6.1), (6.3) (with A = 0) has no solution. In particular, the
strict inequalities (8.4) and (8.5) cannot be replaced by the nonstrict ones.
Theorem 8.3. Let the inequality (7.15) hold, and let there exist £y, €1 €
P such that on the set {v € Cy([a,+o0[; R) : |v(+00)| < c(||v]|)} the
inequality
[F(v)(t) = Lo(v)(t) + L(v)(t)] sgnov(t) = —q(t, [|v]]) for t >a  (8.6)

is fulfilled. If, moreover, there exists v € Co([a, +o00[; 10, +00]) satisfying

—Y'(t) > Li()(t) + Lo(1)(t) for t > a, (8.7)
Y(+00) >0, (8.8)
v(a) —v(+00) < 2, (8.9)

then the equation (6.1) has at least one bounded solution. If, moreover, for
every v € Choe([a, +00[; R) with ||v|| < +oo, there exist a finite limit (7.6),
then the problem (6.1), (6.4) has at least one bounded solution.

Remark 8.3. The Example 5.2 (see p. 41) shows that the condition (8.8)
is essential and it cannot be omitted even in the linear case. Furthermore,
Theorem 8.1 is unimprovable in the sense that the inequality (8.9) cannot
be replaced by the nonstrict one (see On Remark 8.3, p. 92).

Theorem 8.4. Let the inequality (7.15) hold, and let there exist £y, {1 €
P such that on the set {v € Co(la,+00[; R) : |v(+00)| < ¢(||v])} the
inequality (8.6) is fulfilled. If, moreover,

+o0
/ 6(1)(s)ds < 1, (8.10)

+oo +oo
/fo(l)(s)d5<2 1- /El(l)(s)ds, (8.11)

then the equation (6.1) has at least one bounded solution. If, moreover, for
every v € Cioc([a, +0o[; R) with ||v|| < 400, there exist a finite limit (7.6),
then the problem (6.1),(6.4) has at least one bounded solution.

Remark 8.4. Denote by D, the set of pairs (x,y) € Ry x R4 such

that
y<l, z<2/1—y
(see Figure 8.2).
According to Theorem 8.4, if (7.15) holds, there exist £y, ¢ € P such

that the inequality (8.6) is satisfied on the set {v € Cy([a,+0[;R) :
[o(+00) < c([[v])}, and

+oo +oo
( [ weras. [ £1<1><s>ds) € Dim,
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and for every v € Cioe([a, +00[; R) with [|v]| < oo, there exist a finite
limit (7.6), then the problem (6.1), (6.4) has at least one bounded solution.
Below we will show (see On Remark 8.4, p. 93) that for every g, yo € R4,
(20,50) & Doso, there exist F € K and £y, ¢, € P such that (7.15) (with
h =0) and (8.6) hold,

/ 60 dS = xg, / El dS = Yo,

and the problem (6.1),(6.4) (with h = 0) has no solution. In particular,
the strict inequalities (8.10) and (8.11) cannot be replaced by the nonstrict
ones.

_ Theorem 8.5. Let the inequality (7.12) hold, and let there exist £y, {1 €
P such that on the set {v € Cy([a,+c[; R) : (v(a) — v(4+00))sgnv(a) <
c(||v]])} the inequality (8.1) is fulfilled. If, moreover,

/ f() ds <1, (812)

“+o0

J (1)

a /61 dS <2 |1-— /@0 ds, (813)

1—f€0

then the equation (6.1) has at least one bounded solution. If, moreover, for

every v € Cloo([a, +00[; R) with ||v]| < 400, there exist a finite limit (7.6),
then the problem (6.1), (6.5) has at least one bounded solution.

Remark 8.5. Denote by D;i" the set of pairs (x,y) € Ry x Ry such that

T <1, 1—=x

x
1—
(see Figure 8.3).
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Figure 8.3

According to Theorem 8.5, if (7.12) holds, there exist £y, ¢; € P such
that the inequality (8.1) is satisfied on the set {v € Cy([a, +oo[; R) : (v(a)—
v(+00))sgnv(a) < c(|lv]])}, and

+o0 oo
(/E(](l)(s)ds,/fl(l)(s)%) € Dy,

and for every v € Cioe([a, +00[; R) with [|v|| < oo, there exist a finite
limit (7.6), then the problem (6.1), (6.5) has at least one bounded solution.
Below we will show (see On Remark 8.5, p. 94) that for every zg, 0 € R4,
(z0,40) & Dy there exist F' € K and lo, ¢ € P such that (7.12) (with h = 0)
and (8.1) hold,

—+oo —+o0

/ 60(1)(8) dS = Xy, / 61(1)(5) dS = Yo,

a a

and the problem (6.1), (6.5) (with h = 0) has no solution. In particular,
the strict inequalities (8.12) and (8.13) cannot be replaced by the nonstrict
ones.

Theorem 8.6. Let the inequality (7.15) hold, and let there exist £y, {1 €
P such that on the set {v € Cy([a, +oo[; R) : (v(a) —v(+00)) sgnv(+o00) <
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c(||v]])} the inequality (8.6) is fulfilled. If, moreover,

+oo
/41(1)(3) ds < 1, (8.14)
T aye) a
1 s)ds +oo +00
2 - /e0(1)(s)ds<z - /41(1)(s)d5, (8.15)
1— [ ti(1)(s)ds @ a

then the equation (6.1) has at least one bounded solution. If, moreover, for
every v € Cioc([a, +00[; R) with ||v|| < 400, there exist a finite limit (7.6),
then the problem (6.1),(6.5) has at least one bounded solution.

Remark 8.6. Denote by D, the set of pairs (z,y) € Ry x Ry such that
y<l1, li<x<2\/1—y
-y

(see Figure 8.4).

y A
~
™~
T = 15 — -,
//y/ \\x:2\/1—y
s D N\
s 2 \
AN
2 T
Figure 8.4.

According to Theorem 8.6, if (7.15) holds, there exist £y, 41 € P such
that the inequality (8.6) is satisfied on the set {v € Cy([a, +o[; R) : (v(a)—
v(+00)) sgnv(+00) < c([|v]))}, and

+0o0 oo
</£0(1)(s)ds,/51(1)(8)d8> €D,

and for every v € Cloe([a, +00[; R) with ||[v]] < +oo, there exist a finite
limit (7.6), then the problem (6.1), (6.5) has at least one bounded solution.
Below we will show (see On Remark 8.6, p. 97) that for every zg, 0 € R4,
(zo,90) & D, , there exist ' € K and fo,{; € P such that (7.15) (with
h =0) and (8.6) hold,

+oo +oo
/ Lo(1)(s) ds = xg, / £1(1)(s) ds = yo,
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and the problem (6.1), (6.5) (with A = 0) has no solution. In particular,
the strict inequalities (8.14) and (8.15) cannot be replaced by the nonstrict
ones.

In Theorems 8.7-8.12, the conditions guaranteeing the existence of a
unique bounded solution to the problems (6.1), (6.k) (k = 3,4, 5) are estab-
lished.

Theorem 8.7. Let the inequality (7.17) hold, F(0) € L([a,+oo[; R),
and let there exist £y, {1 € P such that on the set {v € Cy([a,+oo[; R) :
[v(a)| < |h(0)|} the inequality

[F(v)(t) = F(w)(t) — Lo(v —w)(t) + lr(v — w)(t)] x
x sgn(v(t) —w(t)) <0 for t >a (8.16)

18 fulfilled. If, moreover, there exists v € 50([a, +oo[; ]0,+00[) satisfying
(8.2) and (8.3), then the problem (6.1), (6.3) has a unique bounded solution.

Remark 8.7. The example constructed in Section 11 (see On Remark 8.1,
p- 89) also shows that the strict inequality (8.3) cannot be replaced by the
nonstrict one.

Theorem 8.8. Let the inequality (7.17) hold, F(0) € L([a,+oo[; R),
and let there exist ly, 0y € P such that on the set {v € Co([a, +oo[; R) :
|v(a)| < |h(0)|} the inequality (8.16) is fulfilled. If, moreover, the inequali-
ties (8.4) and (8.5) hold, then the problem (6.1), (6.3) has a unique bounded
solution.

Remark 8.8. Examples constructed in Section 11 (see On Remark 8.2,
p. 90) also show that neither one of the strict inequalities (8.4) and (8.5)
can be replaced by the nonstrict one.

Theorem 8.9. Let (7.19) hold, F(0) € L([a,+oo[; R), and let there
exist Lo, 01 € P such that on the set {v € Cy(la,+oo[; R) : |v(4+00)| <

|h(0)|} the inequality

[F(v)(t) = F(w)(t) — Lo(v — w)() + €1 (v — w)(t)] x
x sgn(v(t) —w(t)) >0 for t >a (8.17)

is fulfilled. If, moreover, there exists v € Co([a,+00[; ]0,+00]) satisfying
(8.7)-(8.9), and for every v € Cioe([a, +o0[; R) with ||v| < +oo, there ex-
ists a finite limit (7.6), then the problem (6.1),(6.4) has a unique bounded
solution.

Remark 8.9. The Example 5.2 (see p. 41) shows that the condition (8.8)
is essential and it cannot be omitted even in the linear case. Furthermore,
the example constructed in Section 11 (see On Remark 8.3, p. 92) also shows
that the strict inequality (8.9) cannot be replaced by the nonstrict one.
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Theorem 8.10. Let the inequality (7.19) hold, F(0) € L([a, +oo[; R),
and let there exist ly, 0y € P such that on the set {v € Co([a,+oo[;R) :
[v(+00)| < |h(0)|} the inequality (8.17) is fulfilled. If, moreover, the in-
equalities (8.10) and (8.11) hold, and for every v € Cioe([a, +00[; R) with
[lv]] < 400, there exists a finite limit (7.6), then the problem (6.1), (6.4) has
a unique bounded solution.

Remark 8.10. The examples constructed in Section 11 (see On Re-
mark 8.4, p. 93) also show that neither one of the strict inequalities (8.10)
and (8.11) can be replaced by the nonstrict one.

Theorem 8.11. Let the inequality (7.17) hold, F(0) € L([a,+oo[; R),
and let there exist ly, 0y € P such that on the set {v € Co([a, +oo[; R) :
(v(a) —v(+00))sgnw(a) < |h(0)|} the inequality (8.16) is fulfilled. If, more-
over, the inequalities (8.12) and (8.13) hold, and for every v €
Cloc([a, +00[; R) with ||v|| < +oo, there exists a finite limit (7.6), then
the problem (6.1), (6.5) has a unique bounded solution.

Remark 8.11. The examples constructed in Section 11 (see On Re-
mark 8.5, p. 94) also show that neither one of the strict inequalities in
(8.12) and (8.13) can be replaced by the nonstrict one.

Theorem 8.12. Let the inequality (7.19) hold, F(0) € L([a, +o0[; R),
and let there exist £y, 01 € P such that on the set {v € Cy([a,+0[;R) :
(v(a) — v(+00))sgnv(+o0) < |h(0)|} the inequality (8.17) is fulfilled. If,

moreover, (8.14) and (8.15) hold, and for every v € Cloe([a, +00[; R) with
[lv]] < 400, there ezists a finite limit (7.6), then the problem (6.1), (6.5) has
a unique bounded solution.

Remark 8.12. The examples constructed in Section 11 (see On Re-
mark 8.6, p. 97) also show that neither one of the strict inequalities in
(8.14) and (8.15) can be replaced by the nonstrict one.

9. Proofs of Theorems 8.1-8.12

Definition 9.1. Let & : C([a,b]; R) — R be a linear bounded func-

tional. We will say that an operator = Lqp belongs to the set Ag, (D), if
there exists r > 0 such that for every ¢* € L([a,b]; R4+) and ¢* € R4, an
arbitrary function u € C([a, b]; R) satisfying the inequalities

O(u)sgnu(a) < c*, (9.1)
[/ () — (u)(t)] sgnu(t) < ¢*(t) for t € [a,b], (9.2)

admits the estimate

ulle < 7‘(6* + /bq*(S) dS)- (9.3)
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Definition 9.2. Let & : C([a,b]; R) — R be a linear bounded func-
tional. We will say that an operator £ € L, belongs to the set By, (@), if
there exists r > 0 such that for every ¢* € L([a,b]; R1) and ¢* € Ry, an
arbitrary function u € C([a, b]; R) satisfying the inequalities

O(u)sgnu(b) < c*, (9.4)
[/ (t) — A(u)(t)] sgnu(t) > —q*(t) for ¢ € [a,b], (9.5)
admits the estimate (9.3).

Remark 9.1. Let b > a, £ € £~7 w € ch, resp. w € Wy, and let the

operators ¢ and © be defined by (1.9) and (1.10), respectively, with ¢ and
1 given by (1.6)—(1.8). Then it is not difficult to verify that ¢ € A(w)

(¢ € B(w)) if and only if 7 € Ag(®) (¢ € Bup(@)).

To prove Theorems 8.1-8.12, we will need some auxiliary propositions.
First we formulate several assertions from [9] in a suitable for us form.

Lemma 9.1 ([9, Lemma 12.4, p. 228]). Let the operator le Lap admit
the representation =40y — L1, where £y, €1 € Puy. If there exists a function
7 € C([a,b]; ]0,400[) satisfying the inequalities

(1) > b@)(t) + 6()() for t € [a,b], (9-6)
Y(b) —7(a) <2, (9.7)
then 1 € Aqp(@), where (v) = v(a).

Lemma 9.2. Let the operator v € Lqp admit the regresentation 7 =
by — £, where Lo, b1 € Pap. If there exists a function 5 € C([a,b]; |0, +00[)
satisfying the inequalities

then [ € Bay(&), where &(v) = v(b).

Proof. The assertion follows from Remark 2.16 and Lemma 12.4 in [9] (see
pp. 28 and 228 therein). |

Lemma 9.3 ([9, Lemma 12.1, p. 211]). Let the operator { € Lq;, admit
the representation £ = fo — €1, where £y, €1 € Pyy. If

/}(1)(8) ds < 1, (9.8)
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then € € A (@), where ©(v) = v(a) — v(b).

Lemma 9.4 ([9 Lemma 12.2, p. 219]) Let the operator { € Lqp admit
the representation V= Eo — Zl,where ﬁo, 51 € Pup. If

b
/Z1(1)(s) ds <1,

then U € Bap(@), where ©(v) = v(b) — v(a).

Lemma 9.5. Let the operator le Lap admit the representation v =
EO - 61, where 60,61 € Pup. If

/ To(1)(s)ds < 1, (9.10)

/41( )(s) ds < 2 1_/50 9.11)

then € € A (@), where ©(v) = v(a).

Proof. Let ¢* € L([a,b]; Ry), ¢ € Ry, and u € C([a,b]; R) satisfy (9.1),
(9.2) with &(u) = u(a). We will show that (9.3) holds with

1 14+ |16,(1
n + 141D

— ~ - _ (9.12)
L=JlloMlz 1=z — eIl
Obviously, u satisfies
(1) = o(u)(t) — Ly (u)(t) +q(t) for t € [a,b], (9.13)
where
a(t) =/ (t) — L(u)(t) for t € [a,b). (9.14)
Obviously,
q(t)sgnu(t) < g*(t) for t € [a,b], (9.15)
and
lu(a)| < c*. (9.16)

First suppose that u does not assume both positive and negative values
(u is still nonnegative or still nonpositive). Put

M =max {|u(t)| : t € [a,b]}, (9.17)
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and choose ¢y € [a, b] such that
lu(to)] = M. (9.18)
Obviously, M > 0. Due to (9.15), (9.17), and the assumptions Zo,lz € Pub,
the equality (9.13) implies
lu(t)] < Mo(1)(t) + ¢*(t) for t € [a,b]. (9.19)

Now the integration of (9.19) from a to tp, in view of (9.16) and (9.18),

results in
to

Mng%m@@+&+/mgm

a

The last inequality, by virtue of (9.10), (9.17), and the assumptions Zo €
Pabv q* € L([a’v b}a RJr)a 1mphes

fulle < (1- / fo(1)(s) d)( ¥ / 0 (s)ds ).

a a

i.e., the estimate (9.3) holds with r defined by (9.12).
Now suppose that v assumes both positive and negative values. Put

M =max {u(t) : t € [a,b]}, m=—min{u(t): t€ a,b]}, (9.20)
and choose ¢, ty, € [a,b] such that
ulty) =M, u(ty)=—m. (9.21)
Obviously, M > 0, m > 0, and either
tm < tar (9.22)

or
tm > tM- (923)

First assume that (9.22) is fulfilled. It is clear that there exists ay €
Jtm, tar| such that

u(t) >0 for ag <t <tp, wul(az)=0. (9.24)
Let
oy = inf {t € la,tm]: u(s) <0 fort <s < tm}. (9.25)
Obviously,
u(t) <0 for ay <t <ty (9.26)
and

if o >a, then wu(a;)=0. (9.27)
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The integration of (9.13) from «; to ¢, and from «s to ¢y, in view of (9.15),
(9.20), (9.21), (9.24), and (9.26), yields

tm

(a1)+m<M/€1 ds—i—m/&) ds+/ “(s)ds,  (9.28)

Qg

M<M/% %+m/& w+/ *(s)ds.  (9.29)

Q2

It follows from (9.28) and (9.29), on account of (9.16) and (9.27), that
b

m(l—Cy) < MA, —l—c*—l—/q*(s)ds7

1 (9.30)

M(1— Dy) SmBl—Fc*—i—/q*(s)ds,

where

A = /21(1)(5) ds, B;= /21(1)(3) ds
clz/Zou)(s)ds, Dlz/Zo(l)(s)ds

Due to (9.10), C; < 1, D; < 1. Consequently, (9.30) implies
0<m(l—C)(1—Dy) <A (mBy+c*+|¢*||L) + ¢ + [l <
<mABy+ (14 |18 D)]) (¢ + llg"ll2),

(9.31)
0.< M(1—C1)(1 - Dy) < Bu(MAL + ¢ + g 1) + ¢ + la"]l <
< MA B+ (1+ [GQ)L) (¢ + gl
Obviously,
(1-C)(A—=D1) 21— (Ci+Dy) ZAl — (D) >0, (0.32)
4A1By < (A1 + By)? < |6 (D)]f7.
By (9.32) and (9.11), from (9.31) we get
1+ 601 o
S T, iR I
- (9.33)
M < 1+ 6@ (¢ + ¢ I12).

T @)l - LAz
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The inequalities (9.33), on account of (9.20) and (9.12), imply the estimate
(9.3).

Now suppose that (9.23) is fulfilled. It is clear that there exists as €
Jtar, tm| such that

u(t) <0 for a5 <t <tp, ulas)=0. (9.34)
Let
a4:inf{t€ [a,tp]: u(s) >0 fortgsgtM}. (9.35)
Obviously,
u(t) >0 for ay <t <ty (9.36)
and
if a4 >a, then wu(as)=0. (9.37)

The integration of (9.13) from ay to tj; and from as to t,,, in view of (9.15),
(9.20), (9.21), (9.34), and (9.36), yields

M

M — u(ay) <M/£0 ds-i—m/ﬁl ds+/ *(s)ds, (9.38)

(e %]

m<M/€1 ds—i—m/ﬁo ds+/ “(s)ds.  (9.39)

a5

It follows from (9.38) and (9.39), on account (9.16) and (9.37), that
b

M1 —Cs) <mAy+c* —|—/q*(s) ds,

“ , (9.40)

m(1l— Ds) < MBs +c* + /q*(s) ds,

where

tm

tym
Cy = /Zo(l)(s) ds, D= /50
ay

Due to (9.10), Cy < 1, Dy < 1. Consequently, (9.40) implies
0<M(1—=Co)(1—D2) < Ay(MBy+ ¢+ |lg*||) + ¢ + |l¢* || <
< MA B+ (14 [6(1)]) (¢ + llgl|),
0 <m(l—Co)(1—Dy) < By(mAs+ ¢ +l¢*||L) + ¢ + |lg*]lL <
<mAs By + (141G (D)][L) (e + g |1n)-

(9.41)
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Obviously,
(1= Ca)(1 = D2) > 1~ (Ca+ D2) > 1~ [[l(1)]z > 0,
44,8, < (A3 + By)? < |G| 3.

By (9.42) and (9.11), from (9.41) we get the inequalities (9.33), which, on
account of (9.20) and (9.12), imply the estimate (9.3). O

(9.42)

Analogously one can prove the following assertion.

Lemma 9.6. Let the operator le Lap admit the representation ! =
by — L1, where £y, 01 € Pyp. If, moreover,

b
/MD®@<L

b

b
/Mn@@<21f/1m@@,

then U € Bay(@), where B(v) = v(b).

In the proofs listed below, whenever £ € /3, then the operator 7 is defined
by (1.9) with ¢ and v given by (1.6)—(1.8).
Proof of Theorem 8.1. Let b € Ja,+oo[, and define function 5 by (3.16),
where ¢ is given by (1.6) and (1.8). Then the assumptions of Lemma 9.1 are
satisfied. Consequently, by virtue of Remark 9.1, we get {y—¢; € A(w) (with
w(v) =wv(a)). Now the validity of theorem follows from Theorem 7.3. [

Proof of Theorem 8.2. All the assumptions of Lemma 9.5 are satisfied.
Consequently, by virtue of Remark 9.1, we get £y — {1 € A(w) (with w(v) =
v(a)). Now the validity of theorem follows from Theorem 7.3. O

Proof of Theorem 8.3. Let b € Ja,+oo[, and define function 4 by (3.16),
where ¢ is given by (1.6) and (1.8). Then the assumptions of Lemma 9.2 are
satisfied. Consequently, by virtue of Remark 9.1, we get y—¢; € B(w) (with
w(v) = v(400)). Now the validity of theorem follows from Theorem 7.4. O

Proof of Theorem 8.4. All the assumptions of Lemma 9.6 are satisfied.
Consequently, by virtue of Remark 9.1, we get £y — {1 € B(w) (with w(v) =
v(400)). Now the validity of theorem follows from Theorem 7.4.

Proof of Theorem 8.5. All the assumptions of Lemma 9.3 are satisfied.
Consequently, by virtue of Remark 9.1, we get £y — {1 € A(w) (with w(v) =
v(a) — v(400)). Now the validity of theorem follows from Theorem 7.3. O

Proof of Theorem 8.6. All the assumptions of Lemma 9.4 are satisfied.
Consequently, by virtue of Remark 9.1, we get £y — {1 € B(w) (with w(v) =
v(+00) —v(a)). Now the validity of theorem follows from Theorem 7.4. O
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Theorems 8.7-8.12 can be proven analogously to Theorems 8.1-8.6, just
Theorem 7.5 (Theorem 7.6) should to be used instead of Theorem 7.3 (The-
orem 7.4).

10. Equations with Deviating Arguments

In this section we will establish some consequences of the main results
from Section 8 for the equation with deviating arguments (6.1").
In what follows we will use the notation

po(t) = p(t), go(t) =D gu(t) for t>a
k=1 k=1

and we will assume that ¢ € K([a,+o00o[ xRy; Ry) is nondecreasing in the
second argument, ¢: Ry — R, is a continuous function, and

+oo
. 1
mginoo - (c(x) + / q(s,x) ds) =0.

a

10.1. Bounded Solutions.

Corollary 10.1. Let the condition (7.12) be fulfilled and let on the set
R the inequality

ft,z ey, ... xn)sgne < q(t, |z|) for t>a (10.1)

hold. Let, moreover, at least one of the following items be fulfilled:
a) Tp(t) <t fort>a(k=1,...,m),

400 4o
[ ants)ex ( [ df) ds <2 (102

s
b) go =0, [po(§)dé #0 (k= 1,...,m), and let there exist y > 0
such tha;

7k ()
esssup{ /po(s)ds: t>a}<nk(y) (k=1,...,m), (10.3)
[

where

m@=;me+ T;y )
exp (y | po(€) d¢) — 1

i =esssup {7, (t) : t >a}.
Then the problem (6.1),(6.3) has at least one bounded solution.
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Remark 10.1. Corollary 10.1 is unimprovable in that sense that the
strict inequality (10.2) cannot be replaced by the nonstrict one (see On
Remark 8.1, p. 89).

Corollary 10.2. Let the condition (7.12) be fulfilled and let on the set
R the inequality (10.1) hold. If, moreover,

+oo +o00 +oo
/po(s)ds <1, /go(s) ds <2 |1— /po(s) ds, (10.4)

then the problem (6.1'),(6.3) has at least one bounded solution.

Remark 10.2. Corollary 10.2 is unimprovable in that sense that neither
one of the strict inequalities in (10.4) can be replaced by the nonstrict one
(see On Remark 8.2, p. 90).

Corollary 10.3. Let the condition (7.15) be fulfilled and let on the set
R the inequality

f(t,mal'lv"'axn)sgnxz —q(t, |SU|) fO’f‘ tza (105)

hold. Let, moreover, at least one of the following items be fulfilled:
a) up(t) >t fort>a (k=1,...,m),

700100(3) exp (/Sgo(f) d«S) ds < 2; (10.6)

“+o0
b) po =0, [ go(€)dé #0 (k=1,...,m), and let there exist y > 0
i
such that
¢

ess sup{ / go(s)ds : t>a}<19k(y) (k=1,...,m),
b ()

where

ﬁk(y)=§ln <y+ my )
exp(y [ go(¢)d€) —1

M,
pi = ess inf {pp(t) : t > a}.
Then the equation (6.1") has at least one bounded solution. If, moreover,
f € K(la+oo[xR"; R), (10.7)
then the problem (6.1'),(6.4) has at least one bounded solution.

Remark 10.3. Corollary 10.3 is unimprovable in that sense that the
strict inequality (10.6) cannot be replaced by the nonstrict one (see On
Remark 8.3, p. 92).
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Corollary 10.4. Let the condition (7.15) be fulfilled and let on the set
R the inequality (10.5) hold. If, moreover,

+o00 +oo o0

/go(s) ds < 1, /po(s)ds <2 |1- /go(s)ds, (10.8)

a a a

then the equation (6.1') has at least one bounded solution. If, moreover,
the inclusion (10.7) holds, then the problem (6.1'),(6.4) has at least one
bounded solution.

Remark 10.4. Corollary 10.4 is unimprovable in that sense that neither
one of the strict inequalities in (10.8) can be replaced by the nonstrict one
(see On Remark 8.4, p. 93).

Corollary 10.5. Let the condition (7.12) be fulfilled and let on the set
R the inequality (10.1) hold. If, moreover,

+oo

/ po(s)ds < 1, (10.9)

a

+oo

Foo(syds >
— < /go(s)ds<2 1-— /po(s)ds, (10.10)
1— [ po(s)ds a a

then the equation (6.1') has at least one bounded solution. If, moreover,
the inclusion (10.7) holds, then the problem (6.1'),(6.5) has at least one
bounded solution.

Remark 10.5. Corollary 10.5 is unimprovable in that sense that nei-
ther one of the strict inequalities (10.9) and (10.10) can be replaced by the
nonstrict one (see On Remark 8.5, p. 94).

Corollary 10.6. Let the condition (7.15) be fulfilled and let on the set
R the inequality (10.5) hold. If, moreover,

—+oo

/ go(s)ds < 1, (10.11)

a

+oo

[ go(s)ds +oo +o0

e < /po(s)ds<2 1-— /go(s)ds, (10.12)
1— [ go(s)ds @ a

then the equation (6.1') has at least one bounded solution. If, moreover,
the inclusion (10.7) holds, then the problem (6.1'),(6.5) has at least one
bounded solution.
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Remark 10.6. Corollary 10.6 is unimprovable in that sense that neither
one of the strict inequalities (10.11) and (10.12) can be replaced by the
nonstrict one (see On Remark 8.6, p. 97).

In Corollaries 10.7-10.12, the conditions guaranteeing the existence of
a unique bounded solution to the problems (6.1'), (6.k) (k = 3,4,5) are
established.

Corollary 10.7. Let (7.17) be fulfilled, f(-,0) € L([a,+oo[; R), and
let on the set R™1 the inequality

[f(tax,xla cee 7xn) - f(tayvyla cee ayn)] Sgn(x - y) S 0 fO?” t 2 a (1013)
hold. If, moreover, at least one of the conditions a) or b) in Corollary 10.1
is fulfilled, then the problem (6.1"),(6.3) has a unique bounded solution.

Remark 10.7. Corollary 10.7 is unimprovable in that sense that the
strict inequality (10.2) cannot be replaced by the nonstrict one (see On
Remark 8.1, p. 89).

Corollary 10.8. Let (7.17) be fulfilled, f(-,0) € L([a,+oo[; R), and let
on the set R""! the inequality (10.13) hold. If, moreover, the inequalities
(10.4) hold, then the problem (6.1"), (6.3) has a unique bounded solution.

Remark 10.8. Corollary 10.8 is unimprovable in that sense that neither
one of the strict inequalities in (10.4) can be replaced by the nonstrict one
(see On Remark 8.2, p. 90).

Corollary 10.9. Let the condition (7.19) be fulfilled, and let on the set
R™L the inequality

I:f(ta Ly X1y ?xn) - f(t7y7yla ceey yn)] Sgn(x - y) > 0 fO’/’ t>a (1014)
hold. If, moreover, at least one of the conditions a) or b) in Corollary 10.3
is fulfilled and the inclusion (10.7) holds, then the problem (6.1'),(6.4) has

a unique bounded solution.

Remark 10.9. Corollary 10.9 is unimprovable in that sense that the
strict inequality (10.6) cannot be replaced by the nonstrict one (see On
Remark 8.3, p. 92).

Corollary 10.10. Let the condition (7.19) be fulfilled and let on the set
R™ 1 the inequality (10.14) hold. If, moreover, the inequalities (10.8) are
satisfied and the inclusion (10.7) holds, then the problem (6.1"), (6.4) has a
unique bounded solution.

Remark 10.10. Corollary 10.10 is unimprovable in that sense that nei-
ther one of the strict inequalities in (10.8) can be replaced by the nonstrict
one (see On Remark 8.4, p. 93).

Corollary 10.11. Let the condition (7.17) be fulfilled and let on the
set R the inequality (10.13) hold. If, moreover, the inequalities (10.9)
and (10.10) are satisfied and the inclusion (10.7) holds, then the problem
(6.1"), (6.5) has a unique bounded solution.
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Remark 10.11. Corollary 10.11 is unimprovable in that sense that nei-
ther one of the strict inequalities (10.9) and (10.10) can be replaced by the
nonstrict one (see On Remark 8.5, p. 94).

Corollary 10.12. Let the condition (7.19) be fulfilled and let on the
set R™*1 the inequality (10.14) hold. If, moreover, the inequalities (10.11)
and (10.12) are satisfied and the inclusion (10.7) holds, then the problem
(6.1"), (6.5) has a unique bounded solution.

Remark 10.12. Corollary 10.12 is unimprovable in that sense that nei-
ther one of the strict inequalities (10.11) and (10.12) can be replaced by the
nonstrict one (see On Remark 8.6, p. 97).

10.2. Proofs. Proof of Corollary 10.1. Put

Fo)t) < Y (pku)vm(t» - gk<t>v<uk<t>>)+
k=

+ f(t,v(t),v(v1(t)),...,v(vn(t))) for t > a, (10.15)
to(0)(t) E S putyo(ri(t)) for ¢ > a, (10.16)
k=1
G0 ST ge(o(un(t)) for t> a. (10.17)
k=1

Then, obviously, (10.1) implies (8.1).
a) Choose € > 0 such that
“+o0o —+o0

£exp ( / Po(s) d8> + / go(s) exp ( 701?0(5) d£> ds <2

S

and put
t

7(t) = exp (/Po(s) d8> X

a

S

e+ fatorom (- [ mierie) ) o 13

b) Choose € > 0 such that
& (1)
ess sup / po(s)ds: t > a} <

t

=
T

<;1n<y+ y(l—e) ) (k=1,...,m),
exp (y [ po(€) dé) — (1 —¢)
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and put

exp (yjpo(s) ds) —(1-¢)

~(t) = e for ¢ > a.

exp(y [ po(§)d§) —1

Then, in both cases a) and b), it can be easily verified that « satisfies
(8.2) and (8.3). Consequently, the assumptions of Theorem 8.1 are fulfil-
led. O

Proof of Corollary 10.2. Let the operators F, {y, and ¢; be defined by
(10.15)—(10.17). Then (10.1) implies (8.1) and the condition (10.4) results
in (8.4) and (8.5). Consequently, the assumptions of Theorem 8.2 are ful-
filled. O

Proof of Corollary 10.3. Let the operators F, ¢y, and ¢; be defined by
(10.15)—(10.17). Then, obviously, (10.5) and (10.7) imply (8.6) and (7.6),
respectively.

a) Choose € > 0 such that

€exp ( 7090(8) d8> + +/Oopo(S)exp </sgo(§) d£> ds <2

and put
“+oo
) =exo ([ an(e)as )

t
+oo +oo

« (e—i— /po(s)exp(— /go(g)dg> ds) for t> a.

S

b) Choose € > 0 such that

t
esssup{ /go(s)ds: tza}<

B (t)
<z/ln<y+ +Ooy(1_6) > (k=1,...,m),
exp (y | go(§)d€) — (1 —¢)
and put
+o00
exp (y [ go(s)ds) —(1—¢)
y(t) = : for ¢ > a.

exp (y +foogo(ﬁ) d¢) —1
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Then, in both cases a) and b), it can be easily verified that + satisfies
(8.7)—(8.9). Consequently, the assumptions of Theorem 8.3 are fulfilled. O

Proof of Corollary 10.4. Let the operators F', {y, and ¢; be defined by
(10.15)—(10.17). Then (10.5) and (10.7) imply (8.6) and (7.6), respectively,
and the condition (10.8) results in (8.10) and (8.11). Consequently, the
assumptions of Theorem 8.4 are fulfilled. O

Proof of Corollary 10.5. Let the operators F', £y, and ¢; be defined by
(10.15)—(10.17). Then (10.1) and (10.7) imply (8.1) and (7.6), respectively,
and the conditions (10.9) and (10.10) result in (8.12) and (8.13). Conse-
quently, the assumptions of Theorem 8.5 are fulfilled. ([l

Proof of Corollary 10.6. Let the operators F, fy, and ¢; be defined by
(10.15)—(10.17). Then (10.5) and (10.7) imply (8.6) and (7.6), respectively,
and the conditions (10.11) and (10.12) result in (8.14) and (8.15). Conse-
quently, the assumptions of Theorem 8.6 are fulfilled. O

In a similar manner as in the proofs of Corollaries 10.1-10.6 one can
show that Corollaries 10.7-10.12 follow from Theorems 8.7-8.12.
11. Comments

Remark 11.1. Let the functions p,g € L([a,b]; Ry), 7,1 € Mgp, and
the operator G € K be such that the inequality

[G(u)(t) — G(v)(t)] sgn(u(t) — v(t)) <0 for t € [a,b], u,v€ C([a,b];R),
resp.
[G(u)(t) — G(v)(t)] sgn(u(t) — v(t)) = 0 for t € [a,b], u,v€ C([a,b];R),
is fulfilled, and such that on the segment [a,b] the problem
W () = pO)u(r(t) — g(Bu(u(t) + G@)(®), u(@ =0,  (111)
resp.
' (t) = p(t)u(r(t)) — g(H)u(p(t)) + G(u)(t), u(b) =0, (11.2)
resp.
u'(t) = p(t)u(r(t)) — g(t)u(pu(t) + G(u)(®), ula) —u(d) =0, (11.3)
has no solution. If we put, for v € Cjyc([a, +o0[; R),

to(v) () = {g(t)”(T(t)) g Zi[b“ ol (11.4)
r () (t) = {g(t)v(u(t)) for ii[bb] aL5)
Flo)(®) = {g(t)v@(t))g(t)v(u(t»m(vb)(t) orteluth
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h(v) =0, (11.7)

where vy, is a restriction of v to the segment [a, b], then there exists a finite
limit (7.6) for every v € Cioc([a, +00[; R), the inequalities (7.12), (7.15),
(7.17), (7.19), (8.1), (8.6), (8.16), and (8.17) are fulfilled, respectively, with
c=0 and

£(t.3) {|G(0)(t) for t € [a,b], = € Ry, 118)

0 for t > b, z € Ry,

and the problem (6.1),(6.3), resp. (6.1), (6.4), resp. (6.1), (6.5) has no
solution.

On Remark 8.1. Let a < t; <ty <b, p=0, 7 € My, be arbitrary,

b for t € [a,tsf,
t =
’u( ) {t1 for t € [tg,b],

and choose g € L([a,b]; Ry) such that

t ts b
/g(s) ds =1, /g(s) ds =0, /g(s) ds =1.
a i ta
Further, let
0 for t € [a,t1],
G)(t) = § —v(t)|v(t)] for ¢ € [t1,t2],
qo(t) for t € [t2, ],

where gy € L([a, b]; R) is such that

b
1
/qo (s)ds >
ta

to — 11

Put
t

1+/g(s) ds for t € [a,b],
V(t) = “
1+/g(s)ds for ¢ > b.

a

Then the assumptions of Theorems 8.1 and 8.7 are fulfilled (with £y, ¢1, F,
h, and ¢ defined by (11.4)—(11.8), ¢ = 0) except (8.3), instead of which we
have

v(+00) —y(a) = 2.
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Moreover, the problem (11.1) has no solution. Indeed, assume on the con-
trary that (11.1) has a solution u. Then from (11.1) we get

u(ty) = —u(b),
ults) = 77 |u(:;1()t|1(12 )
u(b) = ults) — u(ty) + /b do(s) ds.
Hence we obtain :
:
fworis =1 |u<i”fff<12 —) 1+ u!i‘fffél < h

to

a contradiction.

Consequently, according to Remark 11.1 (see p. 88), we have shown that
the strict inequality (8.3) in Theorems 8.1 and 8.7 (the inequality (10.2) in
Corollaries 10.1 and 10.7) cannot be replaced by the nonstrict one.

On Remark 8.2. According to Remark 11.1 (see p. 88), for every point
(z0,Y0) & D, it is sufficient to costruct functions p,g € L([a,b]; R+), T, €
Mp, and a suitable operator G € Kyp in such a way that
b b
/p(s) ds = xg, /g(s) ds =y (11.9)
and such that the problem (11.1) has no solution.

It is clear that if zg,y0 € R4 and (2o, y0) € Da, then (xg,yo) belongs
to one of the following sets:

D! {(x,y) ER.XRy: x> 1},

D=!(z,y)eR. xRy :x<1,y>2V/1—x}.
a + +

Let (z0,y0) € D!, to € [a,b], and choose p,g € L([a,b]; Ry) and qg €
L([a,b]; R) such that

to b b to

[rerds=1 [pe)ds=a-1 [o)as =, [mlds 20

a to a a
Put 7 = to, 0 = a, G = qo. Then the problem (11.1) has no solution.
Indeed, assuming that w is a solution to (11.1), the integration of (11.1)
from a to tg yields

to to to
u(to) = u(a) + ulta) [ p(s)ds — ula) [ g(s)ds+ [ ans)ds

a a a
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which, together with the initial condition in (11.1) results in a contradiction

to

/QO(S) ds

a

=0.

Let (xo,y0) € D2, a < t1 < ta < b, and choose p,g € L([a,b]; R} ) such

that
to b
/ p(s)ds =
a ta
ta
[ otshas =0 - 20Tz,
t1
Put 7 =9,
b for
u(t)=<a for
t; for
and
0
G(0)(#) = { ~o()]o(t)
qo()
where qo € L([a, b]; R) is such that
b

t1

0. [ots)ds=zo, [ gs)ds =vI=.

a

b
/g(s)ds:\/lf:co.
ta

te [(I7t1[,
te [tl,tg[,
te [tg,b],

for t € [a,t1],
for t € [tl,tQ[,
for t € [t2,b],

1
ds > .
/QO(S) S Z ty— 1

to

Then the problem (11.1) has no solution. Indeed, assume on the contrary
that (11.1) has a solution uw. Then from (11.1) we get

u(ty) = —u(b)v1 — xo,

_ u(t1)
) = T a6 — 1)

b
u(b) = u(ta) + u(b)xg — u(t1)vV1 — xo + /qo(s) ds.

Hence we obtain

b
u(t1)

|u(ty) 1

/ &) s = (6 — 1) =

to

a contradiction.

< )
L+ fut)|(ta —t1)  t2—t
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Consequently, we have shown that the strict inequalities (8.4) and (8.5)
in Theorems 8.2 and 8.8 (the inequalities (10.4) in Corollaries 10.2 and 10.8)
cannot be replaced by the nonstrict ones.

On Remark 8.3. Let a < t; <ty <b, g =0, u € My, be arbitrary,

(1) = to for ¢ € la,t1],
a for t € [t1,b],

and choose p € L([a,b]; R+) such that

t t b
/p(s) ds =1, /p(s) ds =0, /p(s) ds = 1.
a i ta
Further, let
qo(t) for t € [a,t1],
Gv)(t) = S v(t)|v(t)| for ¢ € [t1,ta],
0 for t € [to, ],

where g9 € L([a, b]; R) is such that

t1

1
ds > .
/QO(S) S_tg—tl

a

Put
b

1 +/p(s) ds for t € [a,b],
t
1 for ¢ > b.

Then the assumptions of Theorems 8.3 and 8.9 are fulfilled (with £y, ¢4, F,
h, and q defined by (11.4)—(11.8), ¢ = 0) except (8.9), instead of which we
have

v(t) =

(@) = y(+00) = 2.
Moreover, the problem (11.2) has no solution. Indeed, assume on the con-
trary that (11.2) has a solution u. Then from (11.2) we get

t1

u(t1) = u(a) + u(te) + /qo(s) ds,

a

- u(ts)
“) = T G =a)
0 = u(ts) + u(a).

Hence we obtain
ty
u(tz) ju(ts)] |
s)ds = < < ,
J 0 = e < T = <

a
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a contradiction.

Consequently, according to Remark 11.1 (see p. 88), we have shown that
the strict inequality (8.9) in Theorems 8.3 and 8.9 (the inequality (10.6) in
Corollaries 10.3 and 10.9) cannot be replaced by the nonstrict one.

On Remark 8.4. According to Remark 11.1 (see p. 88), for every point
(z0,Y0) € Dioo, it is sufficient to costruct functions p,g € L([a,b]; Ry),
T, € Mgy, and a suitable operator G € K, in such a way that (11.9)
holds and such that the problem (11.2) has no solution.

It is clear that if zg, yo € Ry and (20, y0) € D40, then (zg, yo) belongs
to one of the following sets:

Dioo:{(fvy)63+ X Ry - yZl},
Dioo:{(x,y)eRer}h: y <1, x22\/1—y}.

Let (zo,y0) € Dl to € [a,b], and choose p,g € L([a,b]; R;) and
qo € L([a,b]; R) such that

b to b b
p(s)ds = xo, g(s)ds =yo — 1, g(s)ds =1, qo(s)ds # 0.
[rowmee | Jro= |

Put 7 = b, p = to, G = qo. Then the problem (11.2) has no solution.
Indeed, assuming that u is a solution to (11.2), the integration of (11.2)
from tg to b yields

b

b b
u(b) = u(to) + u(b) /p(s) ds — u(to) /g(s) ds + /qo(s) ds,

to to to
which, together with the initial condition in (11.2) results in a contradiction

b

/qo(s) ds =0.

to
Let (zo,y0) € Diow a < t; <ty < b, and choose p,g € L([a,b]; R+)
such that
ty

/p(S)d8=\/1—yo, /p(S)d8=wo—2\/1—y07

a

t1

/bP(S)dSZ V1=, /g(s)ds=yo, /bg(S)d8=0-
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Put p=a,
ty for t € la,ty],
T(t)=<b for t e[ty ta],
a for t € [tg, ],
and
qo(t) for t € [a,tq],
G)(t) = S v()|v(t)| for t e [t1,ta],
0 for t € [tg, ],
where gy € L([a, b]; R) is such that
t1
1
/qo(s)ds > hof

a

Then the problem (11.2) has no solution. Indeed, assume on the contrary
that (11.2) has a solution uw. Then from (11.2) we get

ty

uUﬂ:uwﬂﬂwﬁwl—m—umwm+/%@ﬁm

a

_ u(t2)
) = T a6 — 1)

0=wu(t2) +ula)v/1—yo.

Hence we obtain
t1

[ants)as

a

) ju(ta)] 1
T ) —h) I )l ) - f

a contradiction.

Consequently, we have shown that the strict inequalities (8.10) and
(8.11) in Theorems 8.4 and 8.10 (the inequalities (10.8) in Corollaries 10.4
and 10.10) cannot be replaced by the nonstrict ones.

On Remark 8.5. According to Remark 11.1 (see p. 88), for every point
(z0,90) & D, it is sufficient to costruct functions p,g € L([a,b]; Ry ), 7,1 €
My, and a suitable operator G € Iy, in such a way that (11.9) holds and
such that the problem (11.3) has no solution.

It is clear that if zg,yo € R4+ and (x0,y0) & D;, then (x0, o) belongs
at least to one of the following sets:

Dlz{(x,y)€R+xR+: le},

Dgz{(x7y)€R+><R+: x<17y<1fx},

D3:{(x’y>€R+XR+Z $<1,yZ2M}.
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Let (z0,y0) € D1, a < t; < ta < b, and choose p,g € L([a,b]; Ry) such
that

t1 t2 b
/p(s) ds =0, /p(s) ds = xg, /p(s) ds =0,
a tl t2

i b
[o@ds=u. [ gs)as=o.
Put 7=b, u=t1, and
0 for t € [a, o],
2(t) =9 zo(1 + o) — Yo
(b—t2)(1 +yo) + (w0(1 +yo) — yo)(b—1)
Then the problem
u'(t) = pt)u(r(t)) — g()u(u(t)) + z(H)u(t), wu(a) —u(d) =0 (11.10)

has a nontrivial solution

for t € [ta,b].

t
1+yo—/g(s)ds for t € [a,t1],
t o
ult) = 1+(1+y0)/p(s)d5 for t € [t1,ta],
1 _
1+y0+x°(b+_—y°tzy0(b—t) for t € [t2,b].

According to Remark 1.1 (see p. 11) there exists go € L([a, b]; R) such that
the problem

u'(t) = p(t)u(r(t)) — g(t)u(u(t)) + 2(t)u(t) + qo(t),

11.11
u(a) —u(d) =0 ( )

has no solution. Now, if we put
G)(t) Y 2(t)o(t) + qo(t) for t € [a,b], (11.12)

then the problem (11.3) has no solution.
Let (zg,y0) € D2, a < t; < t2 < b, and choose p, g € L([a,b]; R+ ) such
that
t b t

/a@@:%,/a@@:%,/aﬁwza

a t1 a
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Put r=t1, p=a, and
0 for ¢ € [a,ta],

2(t) = _ xo — yo(l — o)
(b—t2)(1 —m0) + (zo — yo(1 — 20))(b— 1)

Then the problem (11.10) has a nontrivial solution

for t € [t2,b].

t

1—x0+/p(s)ds for t € [a,t1],

t L
u(t) = 17(17:v0)/g(s)ds for ¢ € [t1,to],
17$0+%(1t;%)(b7t) for t € [to,b].

According to Remark 1.1 (see p. 11) there exists ¢o € L([a, b]; R) such that
the problem (11.11) has no solution. Now, if we define the operator G by
(11.12), then the problem (11.3) has no solution.

Let (zo,y0) € D3, a < t1 < ta < t3 < t4 < b, and choose p,g €
L([a,b]; R+) such that

t3 ty b t1
/p(s) ds =0, /p(s) ds = zo, /p(s) ds =0, /g(s) ds =0,
a t3 tq @
to t3 ty
/g(s)ds:\/l—xo, /g(s)ds:O, /g(s)ds:\/l—xo,
t1 to t3
b
/g(s)ds =1y —2v1—xg.
ta
Put 7 =0,
b for t € [a,tsf,
/J,(t) =<ty for te [tg,t4[,
t1 for t € [t4,b],
and
—v(t)|v(t)| for t € [a,t1[U[t2, 3],
G(U)(t) =<0 for t € [tl,tQ[U [tg,t4[,
qo(t) for t € [t4,0],
where gy € L([a, b]; R) is such that
—+v1- 1
qo(s)ds > Yo 70 4 .
tl —a t3 — t2
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Then the problem (11.3) has no solution. Indeed, assume on the contrary
that (11.3) has a solution u. Then from (11.3) we get

_ u(a)
u(t) = 7 POICEDE (11.13)
u(te) = u(ty) — u(b)v1 — xq, (11.14)
_ u(t2)
ults) = 7 OICEDE (11.15)
u(ts) = u(ts) — u(t2)v'1 — zo + u(b)zo, (11.16)
b
u(b) = u(ts) — u(tr)(yo — 2v1 — 9 ) + /qo(s) ds. (11.17)

The equalities (11.14), (11.16), and (11.17) imply
b
/qo(s) ds = u(t1)(yo — V1 —zo ) — ults).
2
Hence, by virtue of (11.13) and (11.15), we get
b

o VTw)ul) )
t4/q0<3> o T @t —a) T4 Julte)|(fs )

< (Yo — VI —x0)|u(a)| n lu(t2)|
= 1+ [u(a)|(ti —a) L+ |u(ta)|(ts —t2)
Yo — V1 —xg n 1

tl—a t3—t2’

<

<

a contradiction.

Consequently, we have shown that the strict inequalities (8.12) and
(8.13) in Theorems 8.5 and 8.11 (the inequalities (10.9) and (10.10) in Corol-
laries 10.5 and 10.11) cannot be replaced by the nonstrict ones.

On Remark 8.6. According to Remark 11.1 (see p. 88), for every point
(z0,90) & D, , it is sufficient to costruct functions p, g € L([a,b]; Ry ), T, €
My, and a suitable operator G € Iy, in such a way that (11.9) holds and
such that the problem (11.3) has no solution.

It is clear that if z9,y0 € Ry and (zo,y0) € D, , then (xo,y0) belongs
at least to one of the following sets:

D4:{(’I’,y)€R+XR+S yzl}a
D5:{(x,y)€R+><R+ : y<1,x<13y},

D6:{(x,y)€R+><R+ Ty <1, mZQ\/l—y}.
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Let (z0,y0) € D4, a < t; < ta < b, and choose p,g € L([a,b]; Ry) such
that

to b t1
/p(s) ds =0, /p(s) ds = xy, /g(s) ds =0,
a 2 a
to b
/g(s) ds = yo, /g(s) ds=0
t1 to

Put 7 =ts, p=a, and

yo(1+ x0) — xo
2(t) =< (t1 —a)(T+20) + (Yo (1 + z0) — x0)(t — a)
0 for t € [tl,b].

for ¢ € [a,t1],

Then the problem (11.10) has a nontrivial solution

yo(1 + xo) — o (

1+ 20+ t—a) for t€la,tyi],
tl—a
b
1+(1+x0)/g(s)ds for t € [t1,ta],
u(t) = /
, ¢
1+x0—/p(s) ds for t € [ta,b].
t

According to Remark 1.1 (see p. 11) there exists qo € L([a, b]; R) such that
the problem (11.11) has no solution. Now, if we define the operator G by
(11.12), then the problem (11.3) has no solution.

Let (z0,y0) € D5, a < t; < ta < b, and choose p,g € L([a,b]; Ry) such
that

Put =6, u =ty, and

Yo — Zo(1 — yo)
2(t) = q (1 —a)(1 — o) + (Yo — zo(1 — ¥0))(t — @)
0 for t € [tl,b].

for t € [a,t1],
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Then the problem (11.10) has a nontrivial solution

— 1—
=gt =P =80) (o e ot
tlfa
b
1—-(1- f
wooliiew oo et
b
1—yo+/g(8)ds for t € [t2,0)].
t

According to Remark 1.1 (see p. 11) there exists ¢o € L([a, b]; R) such that
the problem (11.11) has no solution. Now, if we define the operator G by
(11.12), then the problem (11.3) has no solution.

Let (zo,y0) € D, a < t1 < ta < t3 < t4 < b, and choose p,g €
L(Ja,b]; R+) such that

t1 to t3
[pe)ds=ao—2yT=m.  [pe)ds= Vi, [ps)ds=o,
a t1 ta
t4 b tl
[rerds= vz, [seds=0. [gs)ds=o.
t3 ta a
to b
g(s)ds = yo, /g(s) ds =0
tl t2
Put p=a,
ty for te [a7t1[,
T(t) =<{t3 for te [tl, tg[,
a for t e [ts,b],
and
qo(t) for t € [a,t1],
G(v)(t) =<0 for t € [tl,tQ[U[tg,t4[,

v()|u(t)| for t € [t, t3[U[ts, b,

where gy € L([a,b]; R) is such that

— 1 - 1
/qo(smsz“ Vi=yo .

b—t4 ts —ty

a
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Then the problem (11.3) has no solution. Indeed, assume on the contrary
that (11.3) has a solution u. Then from (11.3) we get

u(ty) = u(a) + u(ts) (xo — 2/T =y ) + / qo(s) ds, (11.18)
ulta) = u(tr) + ults)v/1 — yo — u(a)yo, (11.19)
_ u(ts)
u(ts) = 77 |u(t3)|?’(t3 — (11.20)
u(ts) = u(ts) + u(a)\/1 —yo, (11.21)
u(b)

ult) = T =i (11.22)

The equalities (11.18), (11.19), and (11.21) imply
ty
/qo(s) ds = u(ta) — u(ts) (zo — /1 =40 ).
Hence, by virtue of (11.20) and (11.22), we get
ty

) (o— VT
a/ D) = T ) L b))
fults) (@0~ VT=30)lu®)| _
S T Taa)l(s — 1) T LT @] 1)
1 o — 1 —yo
< b
t3 — 1o b—ty

a contradiction.

Consequently, we have shown that the strict inequalities (8.14) and
(8.15) in Theorems 8.6 and 8.12 (the inequalities (10.11) and (10.12) in
Corollaries 10.6 and 10.12) cannot be replaced by the nonstrict ones.
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Short Communications

MALKHAZ ASHORDIA

ON CONDITIONS FOR THE WELL-POSEDNESS
OF NONLOCAL PROBLEMS FOR A CLASS OF SYSTEMS
OF LINEAR GENERALIZED
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Dedicated to the blessed memory of Professor Levan Magnaradze

Abstract. The conditions for the so called conditionally well-posedness
of a class of a linear generalized boundary value problems are given in the
case when the generalized differential system has singularities.
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Key words and phrases: Systems of linear generalized ordinary differ-
ential equations, the Lebesgue—Stiltjes integral, boundary value problems,
singularities, conditionally well-posedness.

In the paper we give conditions for the well-posedness for the following
linear system of generalized ordinary differential equations with singularities

dml(t) = xinai(t) for t € [a,b] (Z =1,...,n— 1),

- 1
dzx, (t) = Z hi(t)z;(t)db;(t) + df (t) for t € [a,b], S
i=1
with the nonlocal boundary value condition
bi(z1,...,2,) =0 (i=1,...,n), (2)
where n is a natural number, a; € BV([a,b],R) (i = 1,...,n—1), f €

BV([a,b],R), b; € BV([a,b],R) (i =1,...,n), h; : [a,b] — R is a function
measurable with respect to the measures p(b;1) and p(bs2), corresponding,

\t/(bl) and bzg(t) =

respectively, to the nondecreasing functions b;1(t) =
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bi(t) — b1 (t) for every i € {1,...,n}, and ¢; : BV,([a,b],R") — R (i =
1,...,n) are linear bounded functionals.

The general differential system of the form (1) represents in a defined
sense the analogy of the nth order linear ordinary differential equation of
the form

u™ = "hi(t)ulD + h(t) for t € [a,b]. (3)
1=1

Note that the ordinary differential equation of the form (3) is a particular
¢
case of the system (1), where a;(t) =t (i =1,...,n), and f(t) = [ h(7)dr.

It is well known that in the regular case, where the coefﬁcieﬁts of the
system (1) are Lebesgue—Stieltjes integrable on [a,b] with respect the cor-
responding measures, problem (1),(2) has the Fredholm property in the
defined conditions, and the unique solvability of that problem ensures its
well-posedness (see [3]-[6], [13], [14], [22], [25]).

We are interested in the case, where the system (1) is singular, i.e., when
some of the coefficients h; (i = 1,...,n) are not, in general, Lebesgue—
Stieltjes integrable on [a,b] with respect to the corresponding measures,
having singularities at some boundary or interior points of the interval [a, b].
Some questions dealing with the singular boundary value problems of the
form (1), (2), e.g., those dealing with the Fredholm property and the solv-
ability have been investigated in [8]-[10]. As we know, in this case, the
question on the well-posedness of the generalized problem (1), (2) remains
still unstudied. In the present paper, an attempt is made to fill up the
existing gaps.

As for the question of the solvability and well-posedness for singular
boundary value problems for ordinary differential equations, i.e., for the
singular (3), (2) problem, it is investigated in [19] for the general case, and
in [1], [15-17], [20], [21], [23] for some important particular cases. Note that
the questions for the regular case of the ordinary differential equations are
investigated sufficiently well for the linear and nonlinear cases (see, e.g., [2],
[11], [12], [17], [18] and the references therein).

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see, e.g., [7], [24], [25] and the
references therein).

Throughout the paper, the following notation and definitions will be used.

R =] — 00, +00[, Ry = [0,+00]; [a,b] (a,b € R) is a closed segment.

R"™™ is the space of all real n x m-matrices X = (;;); /., with the
norm

n
X[ = max > |al;
j=1,....m pt
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R"™ = R™*! is the space of all real column n-vectors z = (x;)™;.

b
V(X) is the total variation of the matrix-function X : [a,b] — R™*™
a

i.e., the sum of total variations of the latter components x;; (i = 1,...,n;
J=1...,m); V(X)(t) = (v(zi)(t);jZ,, where v(z)(a) = 0, v(wi;)(t) =

\t/(wij) for a <t < b;
a

X (t—) and X (t+) are the left and the right limits of the matrix-function
X : [a,b] = R™ ™ at the point ¢t (we will assume X (t) = X(a) for t < a
and X (t) = X (b) for t > b, if necessary);

A X(t) = X() — X(t—), daX(t) = X(t+) — X(t);
1X|[s = sup {[IX ()] : t € [a,b]}, [ X[ = llz(a)] + g(X);

BV ([a, b], R™*™) is the set of all matrix-functions of bounded variation
b

X :[a,b] — R™ ™ (i.e., such that V(X) < 400);

BV([a, b], R™) is the normed space (BV([a, b], R™), ||-||s); BV, ([a,b], R™)
is the Banach space (BV([a,b],R™),]| - [|+)-

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

sj : BV([a,b],R) — BV([a,b],R) (j = 0,1,2) are the operators defined,
respectively, by

s1(z)(a) = s2(z)(a) =0,
s1(z)(t) = Z diz(r) and so(x)(t) = Z dax(T) for a <t <b,

a<t<t a<lt<t

and
so(z)(t) = x(t) — s1(x)(t) — s2(x)(¢) for t € [a,b].

If g : [a,b] — R is a nondecreasing function, z : [a,b] — R and a < s <
t < b, then
t

[atrydg(n =

S

= [andsalo)n+ Y a(ndigr)+ 3 ardag(r),
ot s<T<t s<T<t

where [ z(7)dso(g)(7) is the Lebesgue-Stieltjes integral over the open

interva]187]7:=[s,t[ with respect to the measure po(so(g)) corresponding to the

function so(g); if @ = b, then we assume jlzx(t) dg(t) = 0;

L([a,b],R;g) is a set of all functions = : [a,b] — R measurable and
integrable with respect to the measure u(g).
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If g(t) = g1(t) — g2(t), where g1 and g2 are nondecreasing functions, then
t ¢ ¢
/{E(T) dg(T) = /x(T) dg1 (1) — /x(T) dga(7) for s<t.

IfG = (gzk)izzl : [a,b] — R™™ is a nondecreasing matrix-function
and D C R"™™, then L([a,b], D;G) is the set of all matrix-functions X =
(Tj)kj=1 * la,b] — D such that xx; € L([a,b],Rygix) (i = 1,....0 k =
1,...,n;5=1,...,m);

¢ n 1 Lm
/dG(T) - X(r) = (Z/xkj(r) dgik(7)> for a < s<t<b,
) =17 ij=1
l,n .
SJ(G)(t) = (sj(gik)(t))i7k=1 (.7 = Oa 172)
If Gj : [a,b] — R>™ (j = 1,2) are nondecreasing matrix-functions,
G =G; — Gy and X : [a,b] — R™™™ then
¢ ¢ ¢
/dG(T) - X(1) = /dGl(T) - X(1) - /ng(T) - X(1) for s <t,

S(G) = (1) = Su(Co) (k=012

L([a, Gj),

K([a b]XDl,DQ, ab XDl,DQ,G)

9= ()
rfw

A vector-function z = (z;)I; € BV([a, b],R™) is said to be a solution of
the system (1) if the function h,;z; belongs to L([a,b], b;1) N L([a, b], bi2) and
t
x;(t) = x;(s) —l—/mi(r)dai(T) for a<s<t<b (i=1,...,n—1),

S

+Z/ (1) for a <s<t<hb.

A solution of the system (1) satisfying the boundary conditions (2) is
called a solution of the problem (1),(2).

Along with the system (1), we will need to consider, respectively, the
corresponding homogeneous and perturbed systems

dz;(t) = ziy1da;(t) for t € [a,b] (i=1,...,n—1),

dan (t Zh J(t) for t € [a,b], (1o)
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and
dl‘l(t) = xi+1dai(t) for t € [a,b] (’L =1,...,n— 1),

mmu)zﬁihmumxn@4a+dﬂw for t € [a,b], @

with the inhomogeneous boundary conditions
bi(x1,...,xp) =¢; (i=1,...,n), (5)
where f € BV([a,b],R), and ¢; ER (i = 1,...,n).
Definition 1. The problem (1),(2) is said to be well-posed if for an
arbitrary f € BV([a,b],R) and ¢; € R (i =1,...,n) the problem (4), (5) is

uniquely solvable, and there exists a positive constant r independent of f
and c such that

13 = alls < (3 eall + 1F = £1),
i=1

where z = (z;)7, and T = (Z;), are, respectively, the solutions of the
problems (1), (2) and (4), (5).

Definition 2. The problem (1), (2) is said to be conditionally well-posed
if for an arbitrary f € BV([a, b], R) the problem (1), (2) is uniquely solvable

and there exists a positive constant r, independent of f and ¢, such that

& —alls <7rllf =1l

where x = (z;), and Z = (z;)]_, are, respectively, the solutions of the
problems (1), (2) and (1p), (2).

Note that if the coefficients of the system (1y) are integrable on [a, b] with
corresponding measures, then the conditional well-posedness of the problem
(1), (2) implies its well-posedness. If, however,

n b
3 / 1R ()] dobi) () = +oo,
=1 a

then the conditional well-posedness of the problem (1), (2) does not guar-
antee its well-posedness.

Definition 3. Let ¢; : BV,([a,b],R") — R (i = 1,...,n) be linear
bounded functionals. We say that the vector function (¢1,...,¢n) : [a,b] —
R"™ belongs to the set &, . 0, if:
(i) for an arbitrary ¢ € {1,...,n}, the function ¢; : [a,b] — R is
continuous and ¢;(t) > 0 for p(v(b;))-almost all ¢ € [a, b];
(ii) an arbitrary vector function (x;)"_; € BV([a,b],R™), satisfying the
boundary conditions (2), admits the estimate

[2i(t)] < V(wn) - pi(t) for t€[ab] (i=1,....n).
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Note that the set &, .. ¢, is nonempty if and only if the system
dz;(t) = zipa1da;(t) (i=1,...,n—1), dz,(t) =0 for t € [a,b

under the condition (2) has only the trivial solution.

Theorem 1. Let there exist a vector function (p1,...,¢n) : [a,b] — R™
such that
(9017"'7@71) € gfhmln (6)
and

n b
Z/api(t)mi(t)\dv(bi)(t) <400 (i=1,...,n).
=1

Then the problem (1), (2) is conditionally well-posed if and only if the cor-
responding homogeneous problem (1p), (2) has only the trivial solution.

Theorem 2. Let there exist a vector function (p1,...,pn) : [a,b] — R™
such that conditions (6) and

n b
> / i) B (D) do(b)() <1 (i=1,...,n) (7)

hold. Then the problem (1), (2) is conditionally well-posed.

Theorem 3. Let there exist a vector function (@1,...,pn) : [a,b] — R™
such that the conditions (6) and (7) hold and

b

[ eim@ldoon) o) = +oc.

Then the problem (1), (2) is conditionally well-posed but not well-posed.

Basing on the above results, we can establish the effective conditions
for the problem (1),(2) to have the well-posed and conditionally well-posed
properties for some concrete type of linear bounded functionals ¢; (i =
1,...,n).

ACKNOWLEDGEMENT

This work is supported by the Shota Rustaveli National Science Founda-
tion (Project No. GNSF/ST09_175_3-101).

REFERENCES

1. R. P. AGARWAL AND I. KIGURADZE, On multi-point boundary value problems for
linear ordinary differential equations with singularities. J. Math. Anal. Appl. 297
(2004), No. 1, 131-151.

2. M. AsHORDIA, On the stability of solutions of linear boundary value problems for
the system of ordinary differential equations. Georgian Math. J. 1 (1994), No. 2,
115-126.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

111

. M. ASHORDIA, On the correctness of linear boundary value problems for systems

of generalized ordinary differential equations. Georgian Math. J. 1 (1994), No. 4,
343-351.

. M. ASHORDIA, On the correctness of nonlinear boundary value problems for systems

of generalized ordinary differential equations. Georgian Math. J. 3 (1996), No. 6,
501-524.

. M. AsHORDIA, On the stability of solutions of the multipoint boundary value prob-

lem for the system of generalized ordinary differential equations. Mem. Differential
Equations Math. Phys. 6 (1995), 1-57.

. M. ASHORDIA, Criteria of correctness of linear boundary value problems for systems

of generalized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996),
No. 3, 385-404.

. M. AsHORDIA, On the general and multipoint boundary value problems for linear

systems of generalized ordinary differential equations, linear impulse and linear dif-
ference systems. Mem. Differential Equations Math. Phys. 36 (2005), 1-80.

. M. T. AsHORDIA, On boundary value problems for systems of linear generalized

ordinary differential equations with singularities. (Russian) Differ. Uravn. 42 (2006),
No. 3, 291-301; English transl.: Differ. Equ. 42 (2006), No. 3, 307-319.

. M. T. AsHORDIA, On some boundary value problems for linear generalized differen-

tial systems with singularities. (Russian) Differ. Uravn. 46 (2010), No. 2, 163-177;
English transl.: Differ. Equ. 46 (2010), No. 2, 167-181.

M. ASHORDIA, On two-point singular boundary value problems for systems of linear
generalized ordinary differential equations. Mem. Differential Equations Math. Phys.
56 (2012), 9-35.

R. ConTi, Problemes linéaires pour les équations différentielles ordinaires. Math.
Nachr. 23 (1961), 161-178.

P. HARTMAN, Ordinary differential equations. John Wiley € Sons, Inc., New York—
London—Sydney, 1964.

Z. HALAs, G. A. MONTEIRO, AND M. TVRDY, Emphatic convergence and sequential
solutions of generalized linear differential equations. Mem. Differential Equations
Math. Phys. 54 (2011), 27-49.

7. HaLas AND M. TVRDY, Continuous dependence of solutions of generalized linear
differential equations on a parameter. Funct. Differ. Equ. 16 (2009), No. 2, 299-313.
I. T. KIGURADZE, On a singular problem of Cauchy—Nicoletti. Ann. Mat. Pura Appl.
(4) 104 (1975), 151-175.

I. T. KIGURADZE, Some singular boundary value problems for ordinary differential
equations. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.

I. KIGURADZE, The initial value problem and boundary value problems for systems
of ordinary differential equations. Vol. I. Linear theory. (Russian) “Metsniereba”,
Thilisi, 1997.

I. T. KIGURADZE, Boundary value problems for systems of ordinary differential equa-
tions. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259-2339. Itogi
Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Rus-
sian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1987.

I. KicuraDZE AND T. KIGURADZE, Conditions for the well-posedness of nonlocal
problems for higher order linear differential equations with singularities. Georgian
Math. J. 18 (2011), No. 4, 735-760.

T. KIGURADZE, On some nonlocal boundary value problems for linear singular differ-
ential equations of higher order. Mem. Differential Equations Math. Phys. 47 (2009),
169-173.

T. I. KIGURADZE, On conditions for the well-posedness of linear singular boundary
value problems. (Russian) Differ. Uravn. 46 (2010), No. 2, 183-190; English transl.:
Differ. Equ. 46 (2010), No. 2, 187-194.



112

22. J. KurRzweIL, Generalized ordinary differential equations and continuous dependence
on a parameter. (Russian) Czechoslovak Math. J. 7 (82) (1957), 418-449.

23. N. PARTSVANIA, On solvability and well-posedness of two-point weighted singular
boundary value problems. Mem. Differential Equations Math. Phys. 54 (2011), 139—
146.

24. S. SCHWABIK, Generalized ordinary differential equations. Series in Real Analysis, 5.
World Scientific Publishing Co., Inc., River Edge, NJ, 1992.

25. S. ScHWABIK, M. TVRDY, AND O. VEJvoDA, Differential and integral equations.
Boundary value problems and adjoints. D. Reidel Publishing Co., Dordrecht—Boston,
Mass.—London, 1979.

(Received 27.03.2012)

Author’s addresses:

1. A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State
University, 6 Tamarashvili St., Thilisi 0177, Georgia.

2. Sukhumi State University, 12 Politkovskaia St., Thilisi 0186, Georgia.

E-mail: ashord@rmi.ge



Mem. Differential Equations Math. Phys. 59 (2013), 113-119

IvaAN KIGURADZE

ON NONLOCAL PROBLEMS WITH NONLINEAR
BOUNDARY CONDITIONS FOR SINGULAR ORDINARY
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Abstract. For higher order singular ordinary differential equations, suf-
ficient conditions for the solvability and unique solvability of nonlinear
nonlocal boundary value problems are established.
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Let n > 2 be an arbitrary natural number, —oco < a < b < oo, and let
f :]a, b xR™ — R be a measurable in the first and continuous in the last n
arguments function. The differential equation

u™ = f(t,u,...,u*D) (1)

is said to be singular if the function f with respect to the first argument
is nonintegrable on [a,b], having singularities at one or at several points
of that segment. For the singular equation (1), the two-point boundary
value problems and the multi-point problems of Valée-Poisson and Cauchy—
Nicoletti type are thoroughly investigated (see [2]-[7], [11], [12], [20], [21]
and the references therein).

As for the problems with nonlocal conditions, i.e., with the conditions
connecting the values of an unknown solution and those of their derivatives
at different points of the segment [a,b], they are well-studied for the sec-
ond order equations (see, e.g., [9], [10], [13], [14], [16]-][19]). Some nonlocal
problems are studied for higher order linear singular differential equations
as well (see [1], [15]). However, nonlocal problems with nonlinear bound-
ary conditions both for linear and nonlinear singular differential equations
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remain still little studied. The present paper is devoted to the study of
one of such problems. More precisely, for the equation (1) we consider the
boundary value problem

U(lil)(a)zo (1:177’”71)7 @(U):Oa (2)

where ¢ is some, generally speaking, nonlinear functional, defined in the
space of (n — 1)-times continuously differentiable functions, satisfying the
initial conditions

uwHa)=0 (i=1,...,n—1). (20)

Throughout the paper, the use will be made of the following notation.
R =] — 00, +o0[, Ry = [0, 400].
R" is the n-dimensional real Euclidean space,

D:{(xl,...wn)ER”: xkﬂc1>0(k3:1,...,n)}.

L is the space of Lebesgue integrable on [a, b] real functions.
Cg~' is the Banach space of (n — 1)-times continuously differentiable
functions u : [a,b] — R, satisfying the initial conditions (2¢), with the norm

g+ = mas {[u V(0] o < v <0}

Mé”l — {u c Cgfl : u(”_l)(t) #0fora<t< b}.

C™! is the space of (n — 1)-times continuously differentiable functions
u : [a,b] — R with an absolutely continuous (n — 1)-th derivative.

Everywhere in the sequel, it is assumed that ¢ : Cg_l — R is a continu-
ous functional, bounded on every bounded set of the space Cgil.

Along with (1), (2), we consider the boundary value problem

ut™ = (1= En:pk(t)u“*l) +Af (o u ), (3)
k=1
uV@)=0 (i=1,....,n—1), (1=Nu"Y(a)+rp(u)=0, (4)

and the initial problem
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where A is a parameter, and py, :]a,b[— R (k=1,...,n) and g :]a,b[ — R
(k=1,...,n) are measurable functions such that
b
/(t—a)”*k|pk(t)|dt<+oo (k=1,...,n), (7
’ b
/(t—a)”_kgk(t)dt<+oo (k=1,....n). (8)

a

A function u € C™ 1 is said to be a solution of the differential equa-
tion (3) (of the differential inequality (5)) if it almost everywhere on
Ja, b] satisfies that equation (that inequality). If, moreover, this function
satisfies the boundary conditions (4) (the initial conditions (6)), then it is
called a solution of the problem (3), (4) (of the problem (5), (6)).

Theorem 1 (The Principle of a Priori Boundedness). Let for every p €
R, the function

fp(t) = HlaX{|f(t,Il, s 7xn)| : |xk| < p(t - a)nik (k = 13 s 777’)}
be integrable on [a,b]. Let, moreover, there exist measurable functions py :
la,b[— R (k =1,...,n), satisfying the conditions (7), and a positive num-

ber po such that for any A €10, 1[ an arbitrary solution of the problem (3), (4)
admits the estimate

lullgp-s < po-
Then the problem (1), (2) has at least one solution.
This theorem is proved on the basis of Theorem 1 appearing in [8].

Relying on the above-formulated theorem, we prove theorems below which
contain effective sufficient conditions for the solvability of the problem (1),

(2).

Introduce the following definition.

Definition. We say that the vector function (g1, ..., gn) with the mea-
surable components g, :]a,b[— R4 (k = 1,...,n) belongs to the set V if
the conditions (8) hold and an arbitrary solution of the problem (5), (6)
satisfies the inequality

u("_l)(t) >0 for a <t<hb.

Theorem 2. Let on the set |a,b[ xD the inequality
fltan,. . wa)sgn(@1) = =Y gu(t)|zal = h(t) 9)
k=1

be fulfilled, and let on the set |a,b[ xR™ the inequality

n

[ft oy, @) <Y he()|zn| + h(t) (10)

k=1
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hold, where
(915 9n) €V, (11)
h € L and hy, :]a,b[— Ry (k=1,...,n) are measurable functions such that
b
/(t —a)" Fhp(t)dt < +oo (k=1,...,n). (12)
If, moreover,
e(w)uV(a) >0 for ue MJ ", (13)

then the problem (1), (2) has at least one solution.

Corollary 1. Let on the sets |a,b] xD and |a,b] xR™ be satisfied respec-
tively the inequalities (9) and (10), where h € L and gy, :]a,b[— Ry and
hi :]a,b[— Ry (k=1,...,n) are measurable functions. Let, moreover,

n

b
> ﬁ /(t —a)"Fg(t)dt <1 (14)
k=1 o

and the conditions (12) and (13) hold. Then the problem (1),(2) has at
least one solution.

Corollary 2. Let on the set |a,b] XD the inequality

Ui |x
flt,x1,...,x,)sgn(zy) Z _k|nk|k T — lxn| — h(t)
k=1
be fulfilled and on the set ]a,b] xR™ the inequality (10) hold, where h € L,
l1,...,ln_1, £ are nonnegative numbers such that
/L>b—a g_ni:lgik (15)
o + s + 52 T k-
A —
and hy :]a,b[— Ry (k = 1,...,n) are measurable functions satisfying the

conditions (12). If, moreover, the functional ¢ satisfies the condition (13),
then the problem (1), (2) has at least one solution.

As an example, we consider the boundary value problem

n
u™ = Zpk(t, U, ... ,u("_l))u(k_l) +pol(t,u,..., u("_l)), (16)

uV(@)=0 (i=1,...,n—1),
b

i ( / )~k uF(s) dﬂk(s)> R

k=1



117

Here, pi :]a,b[ xR™ — R (k = 0,...,n) are functions, measurable in the
first and continuous in the last n arguments,
ar €10,n—k] (k=1,...,n), every my, is an odd number;  (18)
B i la,b] =R (k=1,..., n) are nondecreasing functions, (19)
and .
tim 3 (B4(6) — Bi(s)) > 0. (20)
k=1

Moreover, by the values of the functions s — (s — a)~**u*=D(s) (k =
1,...,n) at the point a are meant their limits as s — a.
From Corollaries 1 and 2 it follows

Corollary 3. Let the conditions (18)—(20) be fulfilled and the functions
k (k=0,...,n) on the set ]a,b[ xR™ satisfy the inequalities
—gk(t) < pe(ta1, .. an) < hg(t) (k=1,...,n),
’po(twrh e 71‘71)’ S h(t>7
where g and hy, :]a,b[— Ry (k=1,..., ) are measurable functions and
h € L. Let, moreover, the functions hk ( ..., n) satisfy the conditions

(12), and as for the functions g (k 1,. n), they either satisfy the
condition (14), or

gt =Lt —a)* 1" (k=1,...,n—1), g.(t) =1, (21)

where £1,...,0,_1, £ are nonnegative numbers, satisfying the inequality
(15). Then the problem (16), (17) has at least one solution.

Theorem 3 below and its corollaries deal with the case, where the function

f for an arbitrary ¢ €]a,b] in the last n arguments has continuous in R™
Ofeltmrntn) (=1 . p),

partial derivatives o

Theorem 3. Let on the set |a,b] xR™ the inequalities

of(t,xq, ..
_gk(t) f(Tk) < hi(t) ( =1,... ,n) (22)
be fulfilled, where g and hy :la,b[— Ry (k = 1,...,n) are measurable

functions, satisfying the conditions (11) and (12). If, moreover,

b
/|f(t,0,...,0)|dt<+oo, (23)

»(0)=0 and (go(u+v)—<p(u))v("_1)(a)>0 for ue Gy, veMy ™, (24)
then the problem (1), (2) has one and only one solution.

Corollary 4. Let the conditions (22)—(24) be fulfilled, where gy and
hi :]a,b[— Ry (k=1,...,n) are measurable functions. Let, moreover, the
functions by, (k=1,..., ) satisfy the conditions (12), and the functions gy
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(k=1,...,n) either satisfy the inequality (14), or admit the representations
(21), where lq,...,0,_1, £ are nonnegative numbers satisfying the condition
(15). Then the problem (1),(2) has one and only one solution.
Finally, as an example, we consider the linear differential equation
u™ = Zpk(t)u(kfl) + po(t) (25)
k=1

with the nonlinear boundary conditions (17), where py :]a,b[— R (k =
0,...,n) are measurable functions such that

b b
/(t—a)”’k|pk(t)\dt<+oo (k=1,...,n), /|p0(t)|dt< +oo.  (26)

a

From Corollary 4, for the problem (25), (17) we have

Corollary 5. Let the conditions (18)—(20) and (26) be fulfilled. Let,
moreover, either

n b

; ﬁ /(t —a)" *(|pr(t)| — pr(t)) dt <2,

a

or there exist nonnegative constants {1, ..., 0,1, £, satisfying the condition
(15), such that on ]a,b[ the inequalities

pe(t) > —lp(t —a)* 1" (k=1,....,n—1), pu(t)>—t
are fulfilled. Then the problem (25), (17) has one and only one solution.
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ON A NONLOCAL BOUNDARY VALUE PROBLEM FOR
TWO-DIMENSIONAL NONLINEAR SINGULAR
DIFFERENTIAL SYSTEMS

Dedicated to the blessed memory of Professor Levan Magnaradze

Abstract. For two-dimensional nonlinear differential systems with strong
singularities with respect to a time variable, unimprovable sufficient con-
ditions for solvability and well-posedness of the Nicoletti type nonlocal
boundary value problem are established.
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Let —oo < a < b < 400, C(]a,b]) be the space of continuous functions
u :]a, b[ — R with finite right and left limits u(a+) and u(b—) at the points a
and b and with the norm ||ul|¢ = sup {|u(t)| : a <t < b}, and let L?(]a, b])
be the space of square integrable functions  : |a,b[ — R with the norm

lullzz = ( / 2 dt)m.

By Cy*(Ja, b[; R?) we denote the space of vector functions (u1,us) :]a, b —
R? with continuously differentiable components u; and us, satisfying the
conditions

u(a+) =0, /b (uy(t) 4+ u3(t)) dt < +oo.

We consider the nonlinear differential system
dU1

W= hltw) 2= ) o

with the Nicoletti type nonlocal boundary conditions

ur(a+) =0, ua(b—) = p(u1,us). (2)
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Here f1 :]a,b[ xR — R and f3 :]a,b] x R — R are continuous functions,
and ¢ : C(]a,b]) x L?(Ja,b]) — R is a continuous functional.

A vector function (u,us) :]a,b[— R? is said to be a solution of the
problem (1), (2) if:

(i) u; and ug are continuously differentiable and satisfy the system (1)
at every point of the interval ]a, b;

(ii) u1 € C(]a,b]), ua € L?(Ja,b]), and the equalities (2) are satisfied.

In the present paper, unimprovable in a certain sense conditions are es-
tablished guaranteeing, respectively, the solvability of (1), (2) in the space
Cy*(Ja,b[; R?) and the stability of its solution with respect to small per-
turbations of right-hand sides of (1) and the functional ¢. In contrast to
the results from [2]-[6], concerning the solvability and well-posedness of the
Nicoletti type problems, the theorems below cover the case, where the sys-
tem (1) with respect to a time variable has a strong singularity at the point
a in the Agarwal-Kiguradze sense [1], i.e., the case, where

b
/a (t— a)(|f2(t,x)| — fa(t, ) Sgn(a?)) dt = 400 for x # 0.

Along with the problem (1), (2) we consider the auxiliary problem

duy dus
i Afi(t, uz), o AO(t) f2(t, ur), (3)
ui(a+) =0, wua(b—) = Ap(u,us), (4)

dependent on a parameter A € [0,1] and an arbitrary continuous function
d:[a,b] —[0,1].
Theorem 1 (A principle of a priori boundedness). Let there exist
a nonnegative function g € L*(Ja,b]) and a positive constant p such that
|fit,2)] < g(t)(1+|z|]) for a<t<b, z€R,

and for any number X\ € [0,1] and an arbitrary continuous function § :
[a,b] — [0,1] every solution (u1,us) of the problem (3),(4) admits the esti-
mate

luillzz + [luzllLz < p.
Then the problem (1), (2) has at least one solution in the space Cy'¥]a, b[;R?).

Consider now the case, where
p(u1, uz) sgn(uy (b—)) <
< ag + ar||uil| 2 + asllug|| 2 for (u1,us) € Cy*(la,b[; R®),  (5)
and in the domain ]a, b[ X R the inequalities

lolz] < [fr(t,x) = f1(t,0)] sgn(z) < f1]z], (6)
[fg(t,x) — fz(t70)] sgn(z) > _(15—6(1)2 || (7)
are fulfilled.
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On the basis of Theorem 1, the following theorem can be proved.

Theorem 2. Let

/f1 (t,0) dt < 400, / a)Y2| f5(t,0)| dt < 400, (8)

and let the conditions (5)—(7) hold, where a; > 0 (i = 0,1,2), ¢ > 0
(k=0,1), and £ > 0 are constants such that

(b—a)? (arly + ag) £y + 4630 < Ly, (9)
Then the problem (1), (2) has at least one solution in the space Cy'¥]a, b[;R?).

Particular case of the boundary conditions (2) are the multi-point bound-
ary conditions

n—1
ur(at) =0, ua(b=)=>_ Brur(te) + Bour(b—) + fo,  (10)
k=1
where S, € R (k=0,...,n).
Suppose
1
nls = 5 (18] + B2).

From Theorem 2 it follows

Corollary 1. Let the conditions (6)—(8) be satisfied, where £y, > 0 (k =
0,1) and £ > 0 are constants such that

I/Q(Zm a)'/? + [ﬂn]+(b—a)1/2>e§+4e§e<eo. (11)

Then the problem (1), (10) has at least one solution in the space Cy™(|a,b[;R?).

Now we consider the perturbed problem

dv dv
o = hite) @), =2 = faton) + (), (12)
vi(a+) =0, va(b—) = p(v1,v2) + o, (13)
and we introduce the following

Definition. The problem (1), (2) is said to be well-posed in the space
Cy?(Ja,b[; R?) if it has a unique solution (uy,us) in that space and there
exists a positive constant r such that for any continuous functions g¢; |a, b[ —
R (i = 1,2), satisfying the condition

v(q,q2) = (/abqf(t) dt>1/2+/ab(t—a)l/2qz(t)dt < +o0,

and for any real number «, the problem (12), (13) has at least one solution
(v1,v2) € Ca*(Ja,b; R?), and every such solution admits the estimate

W) = willze + llva — uz]lze < r(v(q1,q2) + o).
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Theorem 3. Let

P(u1, ug) sgn(uy (b—)) <
< ay||[uf |2 4 aslluglle for (ur,u) € Cy*(Ja,bl; R?),
and let in the domain |a,b] xR the conditions
bolz| < f1(t, z)sgn(z) < £1]zf, (14)
1
fa(t,z)sgn(z) > a2 ||

be fulfilled, where a; > 0 (i = 1,2), £ > 0 (k = 0,1), and £ > 0 are
constants, satisfying the inequality (9). Then the problem (1), (2) is well-
posed in the space Cy*(Ja, b ; R2).

(15)

In the case, where the boundary conditions (2) have the form

n—1

ur(at) =0, uz(b=) =Y Brua(ty) + Buur (b-), (16)

k=1
Theorem 3 yields

Corollary 2. Let in the domain |a,b] xR the conditions (14) and (15)
be satisfied, where £, > 0 (k = 0,1) and £ > 0 are constants, satisfying
the inequality (11). Then the problem (1), (16) is well-posed in the space
Co*(Ja, b[; B?).

As an example, we consider the differential system

% % _ D2 (t> ul) "
dt dt ~ (t—a)2 "

where p; :]a,b[ xR — R and p; :]a,b] x R — R are continuous functions.
For this system from Corollary 2 it follows

= p1(t, uz)uz, (17)

Corollary 3. Let in the domain ]a,b] X R the conditions
60 g pl(t7x) S El) p2(t7'r) Z _E

be satisfied, where £; > 0 (i = 0,1) and £ > 0 are constants, satisfying the
inequality (11). Then the problem (17), (16) is well-posed.

Remark 1. If the conditions of Corollary 3 are satisfied and in the domain
la, b[ x R the inequality

p2 (t7x) S _‘€

holds, where £ is a positive constant, then the system (17) with respect

to a time variable has a strong singularity at the point a in the Agarwal—
Kiguradze sense.

Remark 2. The condition (9) in Theorems 2 and 3 is unimprovable and
it cannot be replaced by the condition

(b - a)l/Q(alﬁl + Oég)ﬁl + 46%[ < Y.
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Also, the strict inequality (11) in Corollaries 1-3 cannot be replaced by the
non-strict one

n—1
2 (- a)”Q(Z 1Bkl (tk — @)% + [Bu] 4 (b — a)l/Q)e% +4030 < by,
k=1

™
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