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Revaz Bantsuri

Georgian science has suffered a grievous loss. Revaz Bantsuri, a promi-
nent Georgian mathematician, corresponding member of the Georgian Na-
tional Academy of Sciences, Doctor of physical and mathematical sciences,
Professor, passed away.

He was born on June 10, 1936 in the village of Bantsurtkari (Dusheti
region). Upon graduation from I. Javakhishvili Tbilisi State University,
starting from 1960 up to the end of his life he worked at A. Razmadze
Mathematical Institute holding different positions. In 1966 he defended his
Candidate’s thesis and in 1982 Doctoral thesis at the Institute of Problems
of Mechanics of the Russian Academy of Sciences. From 1983 he headed
the department of mathematical theory of elasticity.

In 1997, Revaz Bantsuri was elected a corresponding member of the Geor-
gian National Academy of Sciences. He was a member of Russian National
Committee in Theoretical and Applied Mechanics.

Revaz Bantsuri was Niko Muskhelishvili’s pupil and worthy successor of
his scientific ideas.

All his works he devoted to: boundary and contact problems of the plane
theory of elasticity, mixed boundary value problems of the theory of ana-
lytic functions, problems of elasticity for domains with partially unknown
boundaries, systems of convolution type integral equations and infinite al-
gebraic equations. He essentially developed the well-known Muskhelishvili’s
research area, having appreciably enriched with new trends a range of ap-
plication of methods of the theory of analytic functions.

Using integral transformations, R. Bantsuri reduced contact problems
of certain classes to new type boundary value problems of the theory of
analytic functions and called them the Carleman type problems for a strip.
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He elaborated a new type method of factorization and solved the Carleman
type problem in a rather general case. Applying this method, he solved very
important contact problems of various types for isotropic and anisotropic
bodies.

This method, besides the theory of elasticity, can be used in the theory of
convolution type integral equations and in the theory of systems of the same
type infinite algebraic equations, in problems of heat distribution with third
kind boundary conditions, in problems of electromagnetic wave diffraction,
etc. The method for the above-mentioned problems is of the same impor-
tance as that developed by Muskhelishvili in the 40th of the past century
for investigation of classical contact problems. The method is known as
R. Bantsuri’s method of canonical solutions, and presently is a unique gen-
eral method successfully used for effective solution of the above-mentioned
contact problems.

The problems for domains with partially unknown boundaries deal with
optimal distribution of stresses in a body. They belong to mathematically
complicated and very important problems of optimal projecting. In a gen-
eral case, these problems are reduced to nonlinear problems.

Revaz Bantsuri formulated the problems of the plane theory of elastic-
ity and plate bending for some classes of problems with partially unknown
boundaries and reduced them first to linear problems and then to the prob-
lems of the theory of analytic functions with shifts and called them the Car-
leman type problems for a circular ring. He elaborated the second method
of factorization whose application allowed us to get a completed theory of
solvability for that class of problems.

Applying the methods of Muskhelishvili and Wiener-Hopf, R. Bantsuri
reduced statical problems of cracks, when the crack comes to the boundary
or to the interface of a piecewise homogeneous medium, to the problem of
linear conjugation with a Wiener class coefficient. He constructed effective
solutions and studied the question on the stress concentration at the crack
ends. Thus he has obtained significant results in fracture mechanics. The
above-mentioned R. Bantsuri’s result is recognized by specialists as one of
the best results.

The problems of crack distribution in a body with constant or varying
velocity belong to such a class of mixed problems when the points of change
of boundary conditions displace in time. R. Bantsuri considered the prob-
lems when semi-infinite cracks in a plane spread linearly with constant or
varying velocity. The problems of crack distribution with constant veloc-
ity were reduced by means of variable transformations to the problem of
classical dynamics, while in the problem of crack distribution with varying
velocity we get by means of Fourier-Laplace transformation the generalized
Wiener-Hopf problem. An effective solution of that problem is obtained.
The above method is used in contact problems when a semi-infinite rigid
punch moves with varying velocity at the boundary of a half-plane or a
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strip. Very interesting and significant results were obtained in this group of
problems, as well.

The apparatus of the Cauchy type integral turned out to be insufficient
for solving the Carleman type problems for a strip and a circular ring,
hence Revaz Bantsuri constructed new integral representations which in this
case have played the same role as the Cauchy type integrals in problems of
linear conjugation. Using the obtained results, R. Bantsuri constructed for
a circular ring a solution for the Riemann-Hilbert problem and for the mixed
problem of the theory of analytic functions, he obtained effective solutions
of a system of infinite convolution type algebraic equations.

R. Bantsuri together with G. Janashiya proved the invariance of Wiener
functions algebra on the axis with respect to Hilbert transformations. This
allowed him to reduce a solution of convolution type integral equations on
the semi-axis for a summable kernel to the problem of linear conjugation in
a class of Wiener functions.

Relying on the above-said, we can conclude that Revaz Bantsuri has made
an internationally recognized contribution to the development of the theory
of elasticity. He improved N. Muskhelishvili’s method and largely extended
an area of application of methods of the theory of analytic functions in the
plane theory of elasticity.

A special mention should be made of Revaz Bantsuri’s contribution to
the cause of education of the young generation. For many years he worked
at the Chair of Theoretical Mechanics of Tbilisi State University, delivered
lectures in the theory of elasticity and brought up many candidates and
doctors of sciences.

Revaz Bantsuri, a great researcher, remarkable citizen, excellent family
man, modest and responsive, has passed away. He made a major contri-
bution to the science, but there remained a lot of unrealizable thoughts
and ideas. Editorial Board of our journal expresses sincerest condolences in
connection with the death of a prominent scientist and dear colleague. His
bright personality will leave the trace in our memory forever.

I. Kiguradze, V. Kokilashvili,
V. Paatashvili, N. Shavlakadze
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Abstract. The problem on the stability of second order linear homoge-
neous differential equation

y′′ + p(t)y′ + q(t)y = 0

is investigated in the case where the roots λi(t) (i = 1, 2) of the characteristic
equation

λ2 + p(t)λ+ q(t) = 0

are such that

λi(t) < 0 for t ≥ t0,

+∞∫
t0

λi(t) dt = −∞ (i = 1, 2)

and there exist finite or infinite limits lim
t→+∞

λi(t) (i = 1, 2).
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ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÌÄÏÒÄ ÒÉÂÉÓ ßÒ×ÉÅÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÃÉ-
×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓ

y′′ + p(t)y′ + q(t)y = 0

ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉÈáÉ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ ÌÀáÀÓÉÀÈÄÁÄËÉ ÂÀÍÔÏ-
ËÄÁÉÓ

λ2 + p(t)λ+ q(t) = 0

×ÄÓÅÄÁÓ λi(t) (i = 1, 2) ÂÀÀÜÍÉÀÈ ÓÀÓÒÖËÉ ÀÍ ÖÓÀÓÒÖËÏ ÆÙÅÒÄÁÉ,
ÒÏÝÀ t→ +∞, ÀÌÀÓÈÀÍ

λi(t) < 0, ÒÏÝÀ t ≥ t0,

+∞∫
t0

λi(t) dt = −∞ (i = 1, 2).

.
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1. Introduction

In the theory of stability of linear homogeneous on-line systems (LHS)
of ordinary differential equations

dY

dt
= P (t)Y, t ∈ [t0; +∞) = I,

where P (t) is, in general, complex matrix, the interest is focused on the
investigation of stability of LHS depending on the roots λi(t) (i = 1, n) of
the characteristic equation

det(P (t)− λE) = 0.

L. Cesàro [1] considered a system of n-th order differential equations
dY

dt
= [A+B(t) + C(t)]Y,

where A is a constant matrix, the roots λi (i = 1, n) of characteristic equa-
tion are different and satisfy the condition

Reλi ≤ 0 (i = 1, n);

B(t) → 0 as t→ +∞,

+∞∫
t0

∥∥∥dB(t)

dt

∥∥∥ dt < +∞;

+∞∫
t0

∥C(t)∥ dt < +∞;

the roots of characteristic equation of the matrix A+B(t) have nonpositive
real parts.

C. P. Persidsky’s article [2] deals with the case, where elements of the
matrix P (t) are the functions with weak variation, that is, each such function
can be represented as

f(t) = f1(t) + f2(t),

where f1(t) ∈ CI and there exists lim
t→+∞

f1(t) ∈ R, but f2(t) is such that

sup
t∈I

|f2(t)| < +∞, lim
t→+∞

f ′2(t) = 0,

and the condition Reλi(t) ≤ a ∈ R− (i = 1, n) is fulfilled.
N. Y. Lyashchenko [3] considered a case Reλi(t) < a ∈ R− (i = 1, n),

t ∈ I,
sup
t∈I

∥A′(t)∥ ≤ ε.

The case n = 2 is thoroughly studied by N. I. Izobov.
I. K. Hale [4] studied the asymptotic behavior of LHS comparing the

roots of the characteristic equation with exponential functions
Reλi(t) ≤ −gtβ , g > 0, β > −1 (i = 1, n).
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Then there exist the constants K > 0 and 0 < ρ < 1 such that for solving
the system

dy

dt
= A(t)y

the estimate
∥y(t)∥ ≤ Ke−

ρg
1+β t1+β

∥y(0)∥
is fulfilled.

The present paper considers the problem of stability of a second order
real linear homogeneous differential equation (LHDE)

y′′ + p(t)y′ + q(t)y = 0 (t ∈ I) (1)
provided that the roots λi(t) (i = 1, 2) of the characteristic equation

λ2 + p(t)λ+ q(t) = 0

are such that

λi(t) < 0 (t ∈ I),

+∞∫
t0

λi(t) dt = −∞ (i = 1, 2) (2)

and there are finite or infinite limits lim
t→+∞

λi(t) (i = 1, 2). We have not
encountered with such a statement of the problem even in the well-known
works. The case where at least one of the roots satisfies the condition

0 <

+∞∫
t0

|λi(t)| dt < +∞ (i = 1, 2)

should be considered separately.
Under the term “almost triangular LHS” we understand each LHS

dyi(t)

dt
=

n∑
k=1

pik(t)yk (i = 1, n), (3)

where pik(t) ∈ CI (i, k = 1, n), which differs little from a linear triangular
system

dy∗i (t)

dt
=

n∑
k=1

pik(t)y
∗
k (i = 1, n), (4)

and the conditions of either Theorem 0.1 or Theorem 0.2 due to A. V. Kostin
[5] are fulfilled.

Theorem 1. Let the following conditions hold:
1) LHS (4) is stable for t ∈ I;
2) for a particular solution σi(t) (i = 1, n) of a linear inhomogeneous

triangular system

dσi(t)

dt
=

i−1∑
k=1

|pik(t)|+ pii(t)σi(t) +

n∑
k=i+1

|pik(t)|σk(t) (i = 1, n) (5)
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with the initial conditions σi(t0) = 0 (i = 1, n) the estimate of the
form

0 < σi(t) < 1− γ (i = 1, n), γ = const, γ ∈ (0, 1)

holds for all t ∈ I.
Then the zero solution of the system (3) is a fortiori stable for t ∈ I.

Theorem 2. Suppose the system (3) satisfies all conditions of Theorem 1
and, moreover,

1) the triangular linear system (4) is asymptotically stable for t ∈ I;
2) lim

t→+∞
σi(t) = 0 (i = 1, n).

Then the zero solution of the system (3) is asymptotically stable for t ∈ I.

Theorem 3. Suppose the system (3) satisfies all conditions of Theorem 1
and, moreover,

1) none of the functions

ψi(t) =
i−1∑
k=1

|pik(t)| (i = 2, n) ̸≡ 0 for t ∈ I;

2) lim
t→+∞

σi(t) = 0 (i = 1, n).

Then the zero solution of the system (3) is stable for t ∈ I.

We will also use the following lemma [5]:

Lemma 1. If the functions p(t), q(t) ∈ CI , p(t) < 0, t ∈ I,
+∞∫
t0

p(τ) dτ = −∞, lim
t→+∞

q(t)

Re p(t) = 0,

then

e

t∫
t0

p(τ) dτ
t∫

t0

q(τ)e
−

τ∫
τ0

p(τ1) dτ1

dτ = o(1), t→ +∞.

Further, all limits and symbols o, O are assumed to be considered when
t→ +∞.

2. The Main Results

2.1. Reduction of equation (1) to the system of the type (5). Con-
sider the real second order LHDE (1)

y′′ + p(t)y′ + q(t)y = 0 (t ∈ I)
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where p(t), q(t) ∈ C1
I . Let y = y1, y′ = y2. We reduce the equation to an

equivalent system {
y′1 = 0 · y1 + 1 · y2,
y′2 = −q · y1 − p · y2.

(6)

Consider the characteristic equation of LHS (6):∣∣∣∣0− λ 1
−q −p− λ

∣∣∣∣ = 0 or λ2 + pλ+ q = 0, (7)

and assume that p2

2 − q > 0 in I or p2

2 − q ≡ 0 in I. Then this equation
has two roots: λ1(t) and λ2(t), λi(t) ∈ C1

I (i = 1, 2), λi(t) are real functions
(i = 1, 2).

There arises the question on the sufficient conditions for stability of a
trivial solution of system (6).

We write the system (6) in vector form

Y ′ = A(t)Y,

where

Y =

(
y1
y2

)
, A(t) =

(
0 1
−q −p

)
.

To reduce this system to almost triangular form, we use a linear trans-
formation of the form

Y = B(t)Z,

B(t) =

(
1 0

λ1(t) 1

)
, Z =

(
z1(t)
z2(t)

)
where zi(t) are new unknown functions (i = 1, 2). We obtain

B′Z +BZ ′ = ABZ

or, after obvious transformations,

Z ′ = (B−1AB −B−1B′)Z,

detB(t) = 1, B−1(t) =

(
1 0

−λ1(t) 1

)
,

B′(t) =

(
0 0

λ′1(t) 0

)
, B−1B′ =

(
0 0

λ′1(t) 0

)
,

B−1AB =

(
1 0

−λ1(t) 1

)(
0 1
−q −p

)(
1 0

λ1(t) 1

)
=

(
λ1(t) 1
0 λ2(t)

)
.

The system with respect to new unknowns zi(t) (i = 1, 2) in scalar form
looks as {

z′1(t) = λ1(t)z1(t) + z2(t),

z′2(t) = −λ′1(t)z1(t) + λ2(t)z2(t).
(8)
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In accordance with Theorem 1, let us write an auxiliary system of differ-
ential equations: {

σ′
1(t) = λ1(t)σ1(t) + σ2(t),

σ′
2(t) = |λ′1(t)|+ λ2(t)σ2(t)

(9)

and consider its particular solution with the initial conditions σi(t0) = 0
(i = 1, 2). This solution has the form

σ̃2(t) = e

t∫
t0

λ2(τ) dτ
t∫

t0

|λ′1(t)|e
−

τ∫
τ0

λ2(τ1) dτ1

dτ,

σ̃1(t) = e

t∫
t0

λ1(τ) dτ
t∫

t0

σ̃2(τ)e
−

τ∫
τ0

λ1(τ1) dτ1

dτ.

(10)

2.2. Various cases of behavior of the roots λi(t) (i = 1, 2). Consider
the following cases of behavior of the roots of the characteristic equation,
assuming that the condition (2) is satisfied:

1) λi(+∞) ∈ R− (i = 1, 2);
2) λ1(+∞) ∈ R−, λ2(t) = o(1);
3) λi(t) = o(1) (i = 1, 2);
4) λ1(+∞) ∈ R−, λ2(+∞) = −∞;
5) λ1(t) = o(1), λ2(+∞) = −∞;
6) λi(+∞) = −∞ (i = 1, 2).

Theorems 4–9 correspond to the above-indicated cases 1)–6).

Theorem 4. In case 1), a trivial solution of the equation (1) is asymptot-
ically stable. Here it is sufficient to assume that p(t), q(t) ∈ CI .

This case is well-known. The validity of this theorem follows from the
results obtained by A. M. Lyapunov.

Theorem 5. Let the condition (2) for i = 2 and the conditions
1) λ1(+∞) ∈ R−, λ2(t) = o(1);

2)
λ′
1(t)

λ2(t)
= o(1)

be fulfilled. Then a trivial solution of equation (1) is asymptotically stable.

Proof. We apply Theorem 3. Condition 1) of Theorem 3 is obviously sat-
isfied: ψ(t) = |λ′1(t)| ̸≡ 0 for t ∈ I. Therefore, it suffices to show that
condition 2) of Theorem 3 also holds. By assumption 2)

|λ′1(t)|
λ2(t)

= o(1).
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Therefore, by virtue of Lemma 1, σ̃2(t) = o(1). By condition 1) of this
theorem,

σ̃2(t)

λ1(t)
= o(1),

+∞∫
t0

λ1(t) dt = −∞,

and hence σ̃1(t) = o(1) by Lemma 1. This implies that Theorem 5 is valid
if we take into consideration that the transformation B(t) is restricted in I.
To obtain the estimate of solutions yi(t) (i = 1, 2), we make in the system
(8) the following change:

zi(t) = e
δ

t∫
t0

λ2(τ) dτ

ηi(t) (i = 1, 2), δ ∈ (0, 1).

Then the system (8) takes the form{
η′1(t) = (λ1(t)− δλ2(t))η1(t) + η2(t),

η′2(t) = −λ′1(t)η1(t) + (1− δ)λ2(t)η2(t)

and the system (9) takes the form{
σ′
1(t) = (λ1(t)− δλ2(t))σ1(t) + σ2(t),

σ′
2(t) = |λ′1(t)|+ (1− δ)λ2(t)σ2(t).

Next, consider a particular solution of this system with the initial conditions
σi(t0) = 0 (i = 1, 2):

σ̃2(t) = e

t∫
t0

(1−δ)λ2(τ) dτ
t∫

t0

|λ′1(t)|e
−

τ∫
τ0

(1−δ)λ2(τ1) dτ1

dτ,

σ̃1(t) = e

t∫
t0

(λ1(τ)−δλ2(τ)) dτ
t∫

t0

σ̃2(τ)e
−

τ∫
τ0

(λ1(τ1)−δλ2(τ1)) dτ1

dτ.

In our case,

lim
t→+∞

|λ′1(t)|
(1− δ)λ2(t)

= 0.

Thus, by Lemma 1, σ̃2(t) = o(1). Further,

lim
t→+∞

σ̃2(t)

λ1(t)− δλ2(t)
= lim

t→+∞

σ̃2(t)

λ1(t)(1− δ λ2(t)
λ1(t)

)
= lim

t→+∞

σ̃2(t)

λ1(t)
= 0

and hence σ̃1(t) = o(1), by Lemma 1. Thus the validity of Theorem 5 is not
violated. So,

zi(t) = o
(
e
δ

t∫
t0

λ2(τ) dτ)
(i = 1, 2).
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Taking into account the transformation B(t),{
y1(t) = z1(t),

y2(t) = λ1(t)z1(t) + z2(t);
y1(t) = o

(
e
δ

t∫
t0

λ2(τ) dτ)
,

y2(t) = o
(
e

t∫
t0

(δλ2(τ)+
λ′
1(t)

λ1(t)
) dτ)

+ o
(
e
δ

t∫
t0

λ2(τ) dτ)
;

y2(t) = o
(
e

t∫
t0

λ2(τ)(δ+
λ′
1(τ)

λ1(τ)λ2(τ)
) dτ)

+ o
(
e
δ

t∫
t0

λ2(τ) dτ)
,

y2(t) = o
(
e

t∫
t0

λ2(τ)(δ+o(1)) dτ)
+ o

(
e
δ

t∫
t0

λ2(τ) dτ)
.

Therefore,

yi(t) = o
(
e
δ

t∫
t0

λ2(τ) dτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 6. Let the condition (2) and the conditions
1) λi(t) = o(1) (i = 1, 2);

2)
λ′
1(t)

λ2
1(t)

= o(1) (or λ′
2(t)

λ2
2(t)

= o(1)), λ1(t)
λ2(t)

= O(1)

be fulfilled. Then a trivial solution of equation (1) is asymptotically stable.

Proof. We apply Theorems 3 and 2. We make in the system (8) the following
change:

z1(t) = ξ1(t),
z2(t)

λ1(t)
= ξ2(t). (11)

Then
z′1(t) = ξ′1(t), z′2(t) = λ′1(t)ξ2(t) + λ1(t)ξ

′
2(t).

Substituting these expressions into the system (8), we haveξ
′
1(t) = λ1(t)ξ1(t) + λ1(t)ξ2(t),

ξ′2(t) = −λ
′
1(t)

λ1(t)
ξ1(t) +

(
λ2(t)−

λ′1(t)

λ1(t)

)
ξ2(t).

(12)

To obtain the estimate of solutions yi(t) (i = 1, 2) we make in system (12)
the following change:

ξi(t) = e
δ

t∫
t0

λ1(τ) dτ

ηi(t) (i = 1, 2), δ ∈ (0, 1).

Then the system (12) takes the formξ
′
1(t) = (1− δ)λ1(t)ξ1(t) + λ1(t)ξ2(t),

ξ′2(t) = −λ
′
1(t)

λ1(t)
ξ1(t) +

(
λ2(t)− δλ1(t)−

λ′1(t)

λ1(t)

)
ξ2(t).



14 Tatiyana Barinova and Alexander Kostin

Let us denote
µ(t) =

λ′1(t)

λ1(t)
.

In accordance with Theorem 1, we write an auxiliary system of differential
equations: {

σ′
1(t) = (1− δ)λ1(t)σ1(t) + |λ1(t)|σ2(t),
σ′
2(t) = |µ(t)|+

(
λ2(t)− δλ1(t)− µ(t)

)
σ2(t).

(13)

Let us consider its particular solution with the initial conditions σi(t0) = 0
(i = 1, 2):
σ̃2(t) = e

t∫
t0

(λ2(τ)−δλ1(τ)−µ(τ)) dτ
t∫

t0

|µ(τ)|e
−

τ∫
τ0

λ2(τ1)−δλ1(τ1)−µ(τ1)) dτ1

dτ,

σ̃1(t) = e

t∫
t0

(1−δ)λ1(τ) dτ
t∫

t0

|λ1(τ)|σ̃2(τ)e
−

τ∫
τ0

(1−δ)λ1(τ1) dτ1

dτ.

Condition 1) of Theorem 3 is obviously satisfied:

ψ(t) = |µ(t)| ̸≡ 0 for t ∈ I.

In our case,

lim
t→+∞

|µ(t)|
λ2(t)− δλ1(t)− µ(t)

= − lim
t→+∞

|λ
′
1(t)

λ2
1(t)

|
λ2(t)
λ1(t)

− δ − λ′
1(t)

λ2
1(t)

= 0.

If
λ′1(t)

λ21(t)
̸= o(1),

then interchanging the elements λ1(t) and λ2(t), we obtain

lim
t→+∞

|λ
′
2(t)

λ2(t)
|

λ1(t)− δλ2(t)− λ′
2(t)

λ2(t)

= − lim
t→+∞

|λ
′
2(t)

λ2
2(t)

|
λ1(t)
λ2(t)

− δ − λ′
2(t)

λ2
2(t)

= 0.

Consequently, by Lemma 1, σ̃2(t) = o(1). Then

lim
t→+∞

|λ1(t)|
(1− δ)λ1(t)

σ̃2(t) = − lim
t→+∞

σ̃2(t)

1− δ
= 0.

Hence σ̃1(t) = o(1), by Lemma 1. This implies that Theorem 6 is valid.
Then, taking into account the change (11), we have

z1(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
,

z2(t) = o
(
e

t∫
t0

(δλ1(τ)+µ(τ)) dτ)
.
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z2(t) = o
(
e

t∫
t0

λ1(τ)(δ+
λ′
1(τ)

λ2
1(τ)

) dτ)
=⇒ z2(t) = o

(
e
δ

t∫
t0

λ1(τ) dτ)
.

Then, 
y1(t) = o

(
e
δ

t∫
t0

λ1(τ) dτ)
,

y2(t) = o
(
e

t∫
t0

(δλ1(τ)+µ(τ)) dτ)
+ o

(
e

t∫
t0

o(λ1(τ)
)
dτ)

;

y2(t) = o
(
e

t∫
t0

λ1(τ)(δ+
λ′
1(τ)

λ2
1(τ)

)
dτ)

=⇒ y2(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
.

Consequently,

yi(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 7. Let the condition (2) for i = 2 and the conditions
1) λ1(+∞) ∈ R−, λ2(t) → −∞, λ2(t) < 0 at I;
2) λ′1(t) is bounded at t→ +∞

be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

Proof. In system (8) we make the following change:

zi(t) = e
δ

t∫
t0

λ1(τ) dτ

ηi(t) (i = 1, 2), δ ∈ (0, 1).

Then the system (8) takes the form{
η′1(t) = (1− δ)λ1(t)η1(t) + η2(t),

η′2(t) = −λ′1(t)η1(t) +
(
λ2(t)− δλ1(t)

)
η2(t).

In accordance with Theorem 1, we write an auxiliary system of differential
equations {

σ′
1(t) = (1− δ)λ1(t)σ1(t) + σ2(t),

σ′
2(t) = |λ′1(t)|+

(
λ2(t)− δλ1(t)

)
σ2(t).

Its particular solution with the initial conditions σi(t0) = 0 (i = 1, 2)
has the form

σ̃2(t) = e

t∫
t0

(λ2(τ)−δλ1(τ)) dτ
t∫

t0

|λ′1(t)|e
−

τ∫
τ0

(λ2(τ1)−δλ1(τ1)) dτ1

dτ,

σ̃1(t) = e

t∫
t0

(1−δ)λ1(τ) dτ
t∫

t0

σ̃2(τ)e
−

τ∫
τ0

(1−δ)λ1(τ1) dτ1

dτ.
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Since

lim
t→+∞

|λ′1(t)|
λ2(t)− δλ1(t)

= lim
t→+∞

|λ′1(t)|
λ2(t)(1− δ λ1(t)

λ2(t)
)

lim
t→+∞

|λ′1(t)|
λ2(t)

= 0,

by Lemma 1, σ̃2(t) = o(1). As
σ̃2(t)

(1− δ)λ1(t)
= o(1),

it is obvious that σ̃1(t) = o(1). This implies that Theorem 7 is valid. Thus,
ηi(t) = o(1) (i = 1, 2) and

zi(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
(i = 1, 2), δ ∈ (0, 1).

Moreover, 
y1(t) = o

(
e
δ

t∫
t0

λ1(τ) dτ)
,

y2(t) = o
(
e

t∫
t0

(δλ1(τ)+µ(τ)) dτ)
+ o

(
e
δ

t∫
t0

λ1(τ) dτ)
.

and hence
y1(t) = o

(
e
δ

t∫
t0

λ1(τ) dτ)
,

y2(t) = o
(
e

t∫
t0

λ1(τ)δ+
λ′
1(t)

λ2
1(t)

) dτ)
+ o

(
e
δ

t∫
t0

λ1(τ) dτ)
,

δ ∈ (0, 1). �

Theorem 8. Let the condition (2) for i = 1 and the conditions
1) λ1(t) = o(1), λ2(+∞) = −∞;

2)
λ′
1(t)

λ2
1(t)

= o(1)

be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

Proof. In system (8) we make the following change:

λ1(t)z1(t) = ξ1(t), z2(t) = ξ2(t). (14)

Then

z′1(t) =
ξ′1(t)λ1(t)− ξ1(t)λ

′
1(t)

λ21(t)
=

1

λ1(t)
ξ′1(t)−

λ′1(t)

λ21(t)
ξ1(t),

z′2(t) = ξ′2(t).

After such a change, system (8) takes the form{
ξ′1(t) = (λ1(t) + µ(t))ξ1(t) + λ1(t)ξ2(t),

ξ′2(t) = −µ(t)ξ1(t) + λ2(t)ξ2(t).
(15)
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Now we make change in the system (15):

ξi(t) = e
δ

t∫
t0

λ1(τ) dτ

ηi(t) (i = 1, 2), δ ∈ (0, 1).

After that the system (15) takes the formη′1(t) =
(
(1− δ)λ1(t) +

λ′1(t)

λ1(t)

)
η1(t) + λ1(t)η2(t),

η′2(t) = −µ(t)η1(t) + (λ2(t)− δλ1(t))η2(t).

According to Theorem 1, for the obtained system we write an auxiliary
system of differential equations{

σ′
1(t) =

(
(1− δ)λ1(t) + µ(t)

)
σ1(t) + |λ1(t)|σ2(t),

σ′
2(t) = |µ(t)|+ (λ2(t)− δλ1(t))σ2(t).

Condition 1) of Theorem 3 is obviously satisfied: ψ(t) = |µ(t)| ̸≡ 0
for t ∈ I. Consider a particular solution of that system with the initial
conditions σi(t0) = 0 (i = 1, 2):
σ̃2(t) = e

t∫
t0

(λ2(τ)−δλ1(τ)) dτ
t∫

t0

|µ(τ)|e
−

τ∫
τ0

(λ2(τ1)−δλ1(τ1)) dτ1

dτ,

σ̃1(t) = e

t∫
t0

((1−δ)λ1(τ)+µ(τ)) dτ
t∫

t0

|λ1(τ)|σ̃2(τ)e
−

τ∫
τ0

((1−δ)λ1(τ1)+µ(τ1)) dτ1

dτ.

According to condition 2) of the above theorem,

µ(t) = o(λ1(t)),

and, all the more,

µ(t) = o(λ2(t)).

Then

lim
t→+∞

|µ(t)|
λ2(t)− δλ1(t)

= lim
t→+∞

|µ(t)| 1
λ2(t)

1− δ λ1(t)
λ2(t)

= o(1).

Consequently, by Lemma 1, σ̃2(t) = o(1). Further, we have

lim
t→+∞

|λ1(t)|σ̃2(t)
(1− δ)λ1(t) + µ(t)

= lim
t→+∞

σ̃2(t)

δ − 1− λ′
1(t)

λ2
1(t)

= 0

and thus, σ̃1(t) = o(1).
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Then

lim
t→+∞

z1(t) = lim
t→+∞

ξ1(t)

λ1(t)
= lim

t→+∞

e
δ

t∫
t0

λ1(τ) dτ

η1(t)

λ1(t)
=

= lim
t→+∞

e

t∫
t0

(δλ1(τ)−µ(τ)) dτ

η1(t) = lim
t→+∞

e

t∫
t0

λ1(τ)(δ−
λ′
1(τ)

λ2
1(τ)

) dτ

η1(t) =

= lim
t→+∞

e
δ

t∫
t0

λ1(τ) dτ

η1(t) = lim
t→+∞

ξ1(t)η1(t) = 0.

This implies that Theorem 8 is valid. Moreover,

z1(t) =
ξ1(t)

λ1(t)
,

z2(t) = ξ2(t)
=⇒


z1(t) = o

(
e

t∫
t0

(δλ1(τ)−µ(τ)) dτ)
,

z2(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ) =⇒

=⇒


z1(t) = o

(
e

t∫
t0

λ1(τ)(δ−
λ′
1(τ)

λ2
1(τ)

) dτ)
,

z2(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ) =⇒

=⇒ zi(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
(i = 1, 2);

{
y1(t) = z1(t),

y2(t) = λ1(t)z1(t) + z2(t)
=⇒

{
y1(t) = z1(t),

y2(t) = ξ1(t) + z2(t)
=⇒

=⇒ yi(t) = o
(
e
δ

t∫
t0

λ1(τ) dτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 9. Let the conditions
1) λi(+∞) = −∞ (i = 1, 2);

2)
λ′
1(t)

λ2
1(t)

= o(1) (or λ′
2(t)

λ2
2(t)

= o(1)), λ1(t)
λ2(t)

= O(1)

be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

Proof. The condition (2) is obviously fulfilled. In the system (8) we make
the substitution (14) and obtain the system (15). Next, we make the sub-
stitution

ξi(t) = e

t∫
t0

ν(τ) dτ

ηi(t), ν(t) = o(λi(t)) (i = 1, 2).
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Then the system (15) takes the form{
η′1(t) =

(
(λ1(t)− ν(t) + µ(t)

)
η1(t) + λ1(t)η2(t),

η′2(t) = −µ(t)η1(t) + (λ2(t)− ν(t))η2(t).

In accordance with Theorem 1, we write an auxiliary system{
σ′
1(t) =

(
(λ1(t)− ν(t) + µ(t)

)
σ1(t) + λ1(t)σ2(t),

σ′
2(t) = |µ(t)|+ (λ2(t)− ν(t))σ2(t).

According to conditions 1) and 2) of the given theorem,

lim
t→+∞

|µ(t)|
λ2(t)− ν(t)

= − lim
t→+∞

|λ
′
1(t)

λ2
1(t)

| λ1(t)
λ2(t)

1− ν(t)
λ2(t)

= 0.

If λ1(t)
λ2(t)

is unbounded as t→ +∞, then we interchange λ1(t) and λ2(t) and
get

lim
t→+∞

|λ
′
2(t)

λ2(t)
|

λ1(t)− ν(t)
= − lim

t→+∞

|λ
′
2(t)

λ2
2(t)

| λ2(t)
λ1(t)

1− ν(t)
λ1(t)

= 0.

Consequently, by Lemma 1, σ̃2(t) = o(1). Further, we have

lim
t→+∞

|λ1(t)|σ̃2(t)
λ1(t)− ν(t) + µ(t)

= − lim
t→+∞

σ̃2(t)

1− ν(t)
λ1(t)

+
λ′
1(t)

λ2
1(t)

= 0.

Then σ̃1(t) = o(1). This implies that Theorem 9 is valid. Moreover,

z1(t) =
ξ1(t)

λ1(t)

z2(t) = ξ2(t)
=⇒


z1(t) = o

(
e

t∫
t0

(ν(τ)−λ′
1(τ)

λ1(τ)
) dτ)

,

z2(t) = o
(
e

t∫
t0

ν(τ) dτ)
;

z1(t) = o
(
e

t∫
t0

λ1(τ)(
ν(τ)
λ1(τ)

−λ′
1(τ)

λ2
1(τ)

) dτ)
=⇒

=⇒ zi(t) = o
(
e

t∫
t0

ν(τ) dτ)
, ν(t) = o(λi(t)) (i = 1, 2);{

y1(t) = z1(t),

y2(t) = λ1(t)z1(t) + z2(t).
=⇒

=⇒ yi(t) = o
(
e

t∫
t0

ν(τ) dτ)
, ν(t) = o(λi(t)) (i = 1, 2).

Note that the condition λ′(t)
λ2(t) = o(1) is fulfilled for a sufficiently wide

class of functions for which
+∞∫
t0

λ(t) dt = −∞. �
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Conclusion

The paper reveals the sufficient conditions for asymptotic stability and
gives evaluation of solutions of the homogeneous linear nonautonomous se-
cond order differential equation depending on the behavior of roots of the
corresponding characteristic equation in the case of real roots. The results
of the work allow one to proceed to considering higher order equations and
the questions connected with a simple stability and instability. The case of
complex-conjugate roots has been considered by us and will be published
in a separate article.
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ÒÄÆÉÖÌÄ. ×ÖÍØÝÉÏÍÀËÖÒÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄ-
ÁÄÁÉÓÀÈÅÉÓ ÌÃÂÏÌÀÒÄÏÁÉÓÀÂÀÍ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ ÃÀÃÂÄ-
ÍÉËÉÀ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÓÀÊÌÀÒÉÓÉ
ÐÉÒÏÁÄÁÉ ÍÀáÄÅÒÀÃ ÖÓÀÓÒÖËÏ ÛÖÀËÄÃÛÉ.
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1. Introduction

The purpose of this paper is to prove the existence of mild solutions
defined on the positive semi-infinite real interval J := [0,+∞), for functional
integro-differential equations with state-dependent delay of the form

y′(t) = Ay(t) + f

(
t, yρ(t,yt),

t∫
0

e(t, s, yρ(s,ys)) ds

)
, a.e. t ∈ J, (1)

y0 = ϕ ∈ B, (2)

where A : D(A) ⊂ E → E is the infinitesimal generator of an analytic
semigroup of bounded linear operators, (T (t)t≥0) on a Banach space (E, | · |)
and f : J × B × E → E, e : J × J × B → E , ρ : J × B → R and ϕ ∈ B are
the given function. For any continuous function y defined on (−∞,+∞)
and any t ≥ 0, we denote by yt the element of B defined by yt(θ) = y(t+ θ)
for θ ∈ (−∞, 0]. Here yt( · ) represents the history of the state from each
time θ ∈ (−∞, 0] up to the present time t. We assume that the histories yt
belong to some abstract phase space B to be specified later.

Integro-differential equations have attracted great interest due to their
applications in characterizing many problems in physics, fluid dynamics,
biological models and chemical kinetics. Qualitative properties such as the
existence, uniqueness and stability for various functional integro-differential
equations have been extensively studied by many researchers (see, for in-
stance, [3, 4, 7, 18, 21, 23, 25]. Likewise, the functional differential equations
with state-dependent delay appear frequently in applications as model of
equations and for this reason the study of this type of equation has received
a significant amount of attention in the last years (we refer to [2,5,6,8,13–15]
and the references therein).

In the literature, the problem (1)–(2) has been studied by several au-
thors without delay or with delay depending only on time. A method to
reduce integro-differential equations with unbounded memory to systems
of functional differential equations with bounded memory without integrals
and analysis of stability of partial functional integro-differential equations on
this basis was presented in [1]. An important study of functional differential
equations with state dependent delay was presented in [11]. Hernández [12]
has discussed the existence of mild solutions of partial neutral integro-
differential equations with an infinite delay. Ravichandran and Mallika [21]
investigated the fractional problem. Gunasekar et al. [19] have discussed
the existence of mild solutions for an impulsive semilinear neutral func-
tional integro-differential equations with infinite delay in Banach spaces by
using the Hausdorff measure of noncompactness. When A depends on time,
Marcos et al. [22] have discussed the case of the existence of solutions for a
class of impulsive differential equations by using the fixed point theory of
compact and condensing operators. Yan [26] investigated the existence of so-
lutions for semilinear evolution integro-differential equations with nonlocal
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conditions. Recently, Hong-Kun [17] studied the existence of strong solu-
tions of a nonlinear neutral integro-differential problem on an unbounded
interval.

The main purpose of the paper is to establish a global uniqueness of
solutions for the problem (1)–(2). Our approach here is based on a re-
cent Frigon–Granas nonlinear alternative of Leray–Schauder type in Fréchet
spaces [9] combined with the semigroup theory.

2. Preliminaries

We introduce notations, definitions and theorems which are used through-
out this paper.

Let C([0,+∞);E) be the space of continuous functions from
[0,+∞) into E and B(E) be the space of all bounded linear operators from
E into E, with the usual supremum norm

N ∈ B(E), ∥N∥B(E) = sup
{
|N(y)| : |y| = 1

}
.

A measurable function y : [0,+∞) → E is Bochner integrable if and only
if |y| is Lebesgue integrable. For the Bochner integral properties, see the
classical monograph of Yosida [24].

Let L1([0,+∞), E) denote the Banach space of measurable functions
y : [0,+∞) → E which are Bochner integrable normed by

∥y∥L1 =

+∞∫
0

|y(t)| dt.

In this paper, we will employ an axiomatic definition of the phase space B
introduced by Hale and Kato in [10] and follow the terminology used in [16].
Thus, (B, ∥ · ∥B) will be a seminormed linear space of functions mapping
(−∞, 0] into E, and satisfying the following axioms:

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then
for every t ∈ [0, b) the following conditions hold:
(i) yt ∈ B;
(ii) there exists a positive constant H such that |y(t)| ≤ H∥yt∥B;
(iii) there exist two functions K( · ),M( · ) : R+ → R+ independent

of y with K continuous and M locally bounded such that

∥yt∥B ≤ K(t) sup
{
|y(s)| : 0 ≤ s ≤ t

}
+M(t)∥y0∥B.

(A2) For the function y in (A1), yt is a B-valued continuous function on
[0, b].

(A3) The space B is complete.
Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.
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Remark 2.1.
1. (ii) is equivalent to |ϕ(0)| ≤ H∥ϕ∥B for every ϕ ∈ B.
2. Since ∥ · ∥B is a seminorm, two elements ϕ, ψ ∈ B can verify ∥ϕ −
ψ∥B = 0 without necessarily ϕ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in the first remark, we can see that for all
ϕ, ψ ∈ B such that ∥ϕ− ψ∥B = 0: We necessarily have that ϕ(0) =
ψ(0).

We now indicate some examples of phase spaces. For other details we
refer, for instance, to the book due to Hino et al. [16].

Example 2.2. Let:
BC be the space of bounded continuous functions defined from (−∞, 0]

to E;
BUC be the space of bounded uniformly continuous functions defined

from (−∞, 0] to E;

C∞ :=
{
ϕ ∈ BC : lim

θ→−∞
ϕ(θ) exist in E

}
;

C0 :=
{
ϕ ∈ BC : lim

θ→−∞
ϕ(θ) = 0

}
,

be endowed with the uniform norm
∥ϕ∥ = sup

{
|ϕ(θ)| : θ ≤ 0

}
.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)–(A3).
However, BC satisfies (A1), (A3) but does not satisfy (A2).

Example 2.3. The spaces Cg, UCg, C∞
g and C0

g .
Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=
{
ϕ ∈ C((−∞, 0], E) :

ϕ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
ϕ ∈ Cg : lim

θ→−∞

ϕ(θ)

g(θ)
= 0

}
,

endowed with the uniform norm

∥ϕ∥ = sup
{ |ϕ(θ)|
g(θ)

: θ ≤ 0
}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). We con-

sider the following condition on the function g.
(g1) For all a > 0,

sup
0≤t≤a

sup
{g(t+ θ)

g(θ)
: −∞ < θ ≤ −t

}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.
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Example 2.4. The space Cγ .
For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{
ϕ ∈ C

(
(−∞, 0], E

)
: lim

θ→−∞
eγθϕ(θ) exists in E

}
endowed with the norm

∥ϕ∥ = sup
{
eγθ|ϕ(θ)| : θ ≤ 0

}
.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

Definition 2.5. A function f : J × B × E → E is said to be an L1

-Carathéodory function if it satisfies:
(i) for each t ∈ J, the function f(t, · , · ) : B × E → E is continuous;
(ii) for each (y, z) ∈ B × E, the function f( · , y, z) : J → E is measur-

able;
(iii) for every positive integer k, there exists hk ∈ L1(J ;R+) such that

|f(t, y, z)| ≤ hk(t)

for all ∥y∥B ≤ k, |z| ≤ k and almost every t ∈ J.

Let E be a Banach space andB(E) be the Banach space of linear bounded
operators.

Definition 2.6. A one parameter family {T (t) | t ≥ 0} ⊂ B(E) of bounded
linear operators from E → E is a semigroup of bounded linear operator on
E if satisfying the conditions:

(i) T (t)T (s) = T (t+ s), for t, s ≥ 0;
(ii) T (0) = I.

Definition 2.7. Let T (t) be a semigroup defined on E. A linear operator
A defined by

D(A) =

{
x ∈ E| lim

h→0+

T (h)(x)− x

h
exists in E

}
,

and
A(x) = lim

h→0+

T (h)x− x

h
for x ∈ D(A),

is the infinitesimal generator of the semigroup T (t). D(A) is called the
domain of A.

Let X be a Fréchet space with a family of semi-norms {∥ · ∥n}n∈N. We
assume that the family of semi-norms {∥ · ∥n} verifies:

∥x∥1 ≤ ∥x∥2 ≤ ∥x∥3 ≤ · · · for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists
Mn > 0 such that

∥y∥n ≤Mn for all y ∈ Y.



Functional Integro-differential Equations 27

To X we associate a sequence of Banach spaces {(Xn, ∥ · ∥n)} as follows:
For every n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y
if and only if ∥x− y∥n = 0 for x, y ∈ X. We denote

Xn =
(
X|∼n , ∥ · ∥n

)
the quotient space, the completion of Xn with respect to ∥ · ∥n. To every
Y ⊂ X, we associate a sequence {Y n} of subsets Y n ⊂ Xn as follows: For
every x ∈ X, we denote by [x]n the equivalence class of x of the subset Xn

and we define Y n = {[x]n : x ∈ Y }. We denote by Y n, intn(Y n) and ∂nY n,
respectively, the closure, the interior and the boundary of Y n with respect
to ∥ · ∥n in Xn.

The following definition is the appropriate concept of contraction in X.

Definition 2.8 ([9]). A function f : X → X is said to be a contraction if
for each n ∈ N there exists kn ∈ [0, 1) such that

∥f(x)− f(y)∥n ≤ kn∥x− y∥n for all x, y ∈ X.

The corresponding nonlinear alternative result is the following

Theorem 2.9 (Nonlinear Alternative of Granas–Frigon, [9]). Let X be a
Fréchet space and Y ⊂ X a closed subset and let N : Y → X be a contraction
such that N(Y ) is bounded. Then one of the following statements holds:
(C1) N has a unique fixed point;
(C2) there exists λ ∈ [0, 1), n ∈ N and x ∈ ∂nY

n such that ∥x −
λN(x)∥n = 0.

3. Existence results

3.1. Mild solutions.
Definition 3.1. We say that the function y : (−∞,+∞) → E is a mild
solution of (1)–(2) if y(t) = ϕ(t) for all t ≤ 0 and y satisfies the following
integral equation:

y(t) = T (t)ϕ(0) +

t∫
0

T (t−s)f
(
s, yρ(s,ys),

s∫
0

e(s, τ, yρ(τ,yτ )) dτ

)
ds (3)

for each t ≥ 0.

Set
R(ρ−) =

{
ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0

}
.

For each b ∈ (0,∞), we assume that ρ : J × B → (−∞, b] is continuous.
Additionally, we introduce the following hypothesis:
(Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there

exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞)
such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).
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Remark 3.2. The condition (Hϕ) is frequently verified by the functions
continuous and bounded. For more details, see for instance, [16].

Lemma 3.3 ([15, Lemma 2.4]). If y : (−∞, b] → E is a function such that
y0 = ϕ, then

∥ys∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb sup
{
|y(θ)| : θ ∈ [0,max{0, s}]

}
,

s ∈ R(ρ−) ∪ J,

where Lϕ = supt∈R(ρ−) L
ϕ(t).

We introduce the following hypotheses:
(H1) There exists a constant M̂ ≥ 1 such that

∥T (t)∥B(E) ≤ M̂ for every t ≥ 0.

(Hf ) (i) There exist a function p ∈ L1
loc(J ;R+) and a continuous non-

decreasing function ψ : [0,∞) → (0,∞) such that:
|f(t, δ, w)| ≤ p(t)ψ

(
∥δ∥B + ∥w∥

)
for every (t, δ, x) ∈ J × B × E.

(ii) For all R > 0, there exists lR ∈ L1
loc(J ;R+) such that∣∣f(t, δ1, w1)− f(t, δ2, w2)

∣∣ ≤ lR(t)
(
∥δ1 − δ2∥B + ∥w1 − w2∥

)
where (t, δi, wi) ∈ J × B × E, i = 1, 2.

(He) (i) There exist a function m ∈ L1
loc(J ;R+) and a continuous non-

decreasing function Ω : R+ → (0,∞) such that:
|e(t, s, δ)| ≤ m(s)Ω

(
∥δ∥B

)
for all (t, s, δ) ∈ J × J × B.

(ii) There exists a constant C1 > 0 such that∣∣∣∣
t∫

0

[
e(t, s, x)− e(t, s, y)

]
ds

∣∣∣∣ ≤ C1∥x− y∥B

for (t, s) ∈ J, (x, y) ∈ B.
Consider the space

B+∞ =
{
y : R → E : y

∣∣
[0,T ]

continuous for T > 0 and y0 ∈ B
}
,

where y|[0,T ] is the restriction of y to the real compact interval [0, T ].
Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms by

∥y∥n := sup
{
e−τ L∗

n(t)|y(t)| : t ∈ [0, n]
}
,

where

L∗
n(t) =

t∫
0

ln(s) ds, ln(t) = (1 + C1)KnM̂ln(t)
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and ln is the function from (Hf )(ii).
Then B+∞ is a Fréchet space with this family of semi-norms ∥ · ∥n∈N.

Theorem 3.4. Assume that (H1), (Hf ), (He) and (Hϕ) hold, and suppose
that for n ∈ N,

+∞∫
w(0)

ds

ψ(s) + Ω(s)
>

n∫
0

ϑ(s) ds. (4)

Then the problem (1)–(2) has a unique mild solution on (−∞,+∞).

Proof. We transform the problem (1)–(2) into a fixed-point problem. Con-
sider the operator N : B+∞ → B+∞ defined by

N(y)(t) =

=



ϕ(t), if t ≤ 0,

T (t)ϕ(0)+

t∫
0

T (t−s)f
(
s, yρ(s,ys),

s∫
0

e(s, τ, yρ(τ,yτ )) dτ

)
ds,

if t ∈ J.

(5)

Clearly, fixed points of the operator N are mild solutions of the problem
(1)–(2).

For ϕ ∈ B, we define the function x( · ) : (−∞,+∞) → E by

x(t) =

{
ϕ(t), if t ≤ 0,

T (t)ϕ(0), if t ∈ J.

Then x0 = ϕ. For each function z ∈ B+∞ with z0 = 0, we denote by z the
function defined by

z(t) =

{
0, if t ≤ 0,

z(t), if t ∈ J.

If y( · ) satisfies (3), we can decompose it as y(t) = z(t) + x(t), t ≥ 0, which
implies that yt = zt + xt, for every t ∈ J and the function z( · ) satisfies

z(t) =

t∫
0

T (t− s)f

(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)
ds for t ∈ J.

Let
B0

+∞ =
{
z ∈ B+∞ : z0 = 0 ∈ B

}
.
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For any z ∈ B0
+∞, we have

∥z∥+∞ = ∥z0∥B + sup
{
|z(s)| : 0 ≤ s < +∞

}
=

= sup
{
|z(s)| : 0 ≤ s < +∞

}
.

Thus (B0
+∞, ∥ · ∥+∞) is a Banach space. We define the operator F : B0

+∞ →
B0

+∞ by

F (z)(t) =

t∫
0

T (t− s)f

(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)
ds for t ∈ J.

Obviously, the operator N has a fixed point is equivalent to F has one,
so it turns to prove that F has a fixed point. Let z ∈ B0

+∞ be such that
z = λF (z) for some λ ∈ [0, 1). By the hypotheses (H1), (Hf (i)) and (He(i)),
for each t ∈ [0, n], we have

|z(t)| ≤
t∫

0

∥T (t− s)∥B(E)

∣∣∣∣f(s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)∣∣∣∣ ds ≤
≤ M̂

t∫
0

p(s)ψ

(
∥zρ(s,zs+xs) + xρ(s,zs+xs)∥B+

+

s∫
0

m(τ)Ω
(
∥zρ(s,zs+xs) + xρ(s,zs+xs)∥B

)
dτ

)
ds ≤

≤ M̂

t∫
0

p(s)ψ

(
Kn|z(s)|+

(
Mn + Lϕ +KnMH

)
∥ϕ∥B+

+

s∫
0

m(τ)Ω
(
Kn|z(s)|+

(
Mn+L

ϕ+KnMH
)
∥ϕ∥B

)
dτ

)
ds.

Set
cn :=

(
Mn +Kn + Lϕ +KnMH

)
∥ϕ∥B.

Then we have

|z(t)| ≤M

t∫
0

p(s)ψ

(
Kn|z(s)|+ cn +

s∫
0

m(τ)Ω(Kn|z(s)|+ cn) dτ

)
ds.
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Thus

Kn|z(t)|+ cn ≤

≤ cn+KnM̂

t∫
0

p(s)ψ

(
Kn|z(s)|+cn+

s∫
0

m(τ)Ω(Kn|z(s)|+cn) dτ
)
ds.

We consider the function µ defined by

µ(t) := sup
{
Kn|z(s)|+ cn : 0 ≤ s ≤ t

}
, 0 ≤ t < +∞.

Let t⋆ ∈ [0, t] be such that µ(t) = Kn|z(t⋆)| + cn∥ϕ∥B. By the previous
inequality, we have

µ(t) ≤ cn +KnM̂

t∫
0

p(s)ψ

(
µ(s) +

s∫
0

m(τ)Ω(µ(τ)) dτ

)
ds

for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then we
have µ(t) ≤ v(t) for all t ∈ [0, n]. This leads us to the following inequality:

v(t) ≤ cn +KnM̂

t∫
0

p(s)ψ

(
v(s) +

s∫
0

m(τ)Ω
(
v(τ) dτ

)
ds

)
for t ∈ [0, n],

whence

v′(t) ≤ M̂ Kn p(t)ψ

(
v(t) +

t∫
0

m(τ)Ω
(
v(τ) dτ

))
.

Next, we consider the function

w(t) = v(t) +

t∫
0

m(τ)Ω(v(τ)) dτ,

thus we have that v(0) = w(0) and v(t) ≤ w(t) for all t ∈ [0, n].
Using the nondecreasing character of ψ, we get

w′(t) = v′(t) + p(t)Ω(v(t)) ≤

≤ M̂Knp(t)ψ(w(t)) +m(t)Ω(w(t)) a.e. t ∈ [0, n].

We define the function ϑ(t) = max
{
M̂Knp(t),m(t)

}
, t ∈ [0, n], which im-

plies that
w′(t)

ψ(w′(t)) + Ω(w(t))
≤ ϑ(t).
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From condition (4), we have
w(t)∫

w(0)

ds

ψ(s) + Ω(s)
≤

t∫
0

ϑ(s) ds ≤
+∞∫

w(0)

ds

ψ(s) + Ω(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that w(t) ≤ Λn

and hence, µ(t) ≤ Λn. Since ∥z∥n ≤ µ(t), we have ∥z∥n ≤ Λn.
Set

Z =
{
z ∈ B0

+∞ : sup
0≤t≤n

|z(t)| ≤ Λn + 1, ∀n ∈ N
}
.

Clearly, Z is a closed subset of B0
+∞.

We shall show that F : Z → B0
+∞ is a contraction operator. Indeed,

consider z, z ∈ Z, thus using (H1) and (H3) for each t ∈ [0, n] and n ∈ N,

∣∣F (z)(t)− F (z)(t)
∣∣ ≤ t∫

0

∥∥T (t− s)
∥∥
B(E)

×

×
∣∣∣∣f(s, zρ(s,zs+xs)+xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ )+xρ(τ,zτ+xτ )

)
dτ

)
−

−f
(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)∣∣∣∣ ds ≤
≤

t∫
0

M̂ln(s)
(∥∥zρ(s,zs+xs) − zρ(s,zs+xs)

∥∥
B+

+C1

∥∥zρ(s,zs+xs) − zρ(s,zs+xs)

∥∥
B

)
ds.

Using (Hϕ) and Lemma 3.3, we obtain∣∣F (z)(t)− F (z)(t)
∣∣ ≤

≤
t∫

0

M̂ln(s)
(
Kn|z(s)− z(s)|+ C1

(
Kn|z(s)− z(s)|

))
ds ≤

≤
t∫

0

M̂ln(s)[1 + C1]Kn|z(s)− z(s)| ds ≤

≤
t∫

0

[
ln(s) e

τL∗
n(s)

] [
e−τL∗

n(s)
∣∣z(s)− z(s)

∣∣] ds ≤
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≤
t∫

0

[eτL∗
n(s)

τ

]′
ds ∥z − z∥n ≤ 1

τ
eτL

∗
n(t)∥z − z∥n.

Therefore,
∥F (z)− F (z)∥n ≤ 1

τ
∥z − z∥n.

So, the operator F is a contraction for all n ∈ N. By the choice of Z, there
is no z ∈ ∂Zn such that z = λF (z), λ ∈ (0, 1). Then the statement (C2)
in Theorem 2.9 does not hold. The nonlinear alternative due to Frigon and
Granas shows that (C1) holds. Thus, we conclude that the operator F has
a unique fixed-point z⋆. Then y⋆(t) = z⋆(t)+x(t), t ∈ (−∞,+∞) is a fixed
point of the operator N , which is the unique mild solution of the problem
(1)–(2). �

4. An Example

To apply our results, we consider the following partial differential equa-
tion:

∂v

∂t
(t, ξ) =

∂2v

∂ξ2
(t, ξ)+

+m

(
t, v

(
t−σ(v(t, 0)), ξ

)
,

t∫
0

η
(
t, s, v

(
s−σ(v(s, 0)), ξ

))
ds

)
,

t ∈ [0,∞), ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0,∞),

v(θ, ξ) = v0(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

(6)

where v0 and σ ∈ C(R, [0,∞)) are continuous. Take E = L2[0, π] and define
A : D(A) ⊂ E → E by Aw = w′′ with the domain

D(A) =
{
w ∈ E, w,w′ are absolutely continuous,

w′′ ∈ E, w(0) = w(π) = 0
}
.

Then

Aw =
∞∑

n=1

−n2(w,wn)wn, w ∈ D(A),

where wn(s) =
√

2
π sinns, n = 1, 2, . . . , is the orthogonal set of eigenvalues

of A. It is well known (see [20]) that A is the infinitesimal generator of an
analytic semigroup T (t), t ≥ 0 in E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

Since the analytic semigroup T (t) is compact for t > 0, there exists a con-
stant M ≥ 1 such that ∥T (t)∥ ≤M .
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Theorem 4.1. Let B = BUC(R−, E) and ϕ ∈ B. Assume that condition
(Hϕ) holds. The function m : J × J × [0, π] → [0, π], σ : R → R+,
η : J × J × [0, π] → [0, π] are continuous. Then there exists a unique mild
solution of (6).

Proof. From the above assumptions, we have that the functions

f(t, φ, x)(ξ) = m

(
t, φ(0, ξ),

t∫
0

η
(
t, s, φ(0, ξ)

)
ds

)
,

e(t, s, φ)(ξ) = η
(
t, s, φ(0, ξ)

)
,

ρ(t, φ) = t− σ(φ(0, 0))

are well defined, permitting to transform system (6) into the abstract system
(1)–(2). Moreover, the function f is a bounded linear operator. Now the
existence of mild solutions can be deduced from a direct application of
Theorem 3.4. From Remark 3.2, we have the following result. �

Corollary 4.2. Let φ ∈ B be continuous and bounded. Then there exists a
unique mild solution of (6) on (−∞,+∞).
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+∞) representations of one class of monotonic solutions of n-th order dif-
ferential equations containing in the right-hand side a sum of terms with
regularly varying nonlinearities, are established.
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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏ-
ËÄÁÄÁÉÓÀÈÅÉÓ, ÒÏÌÄËÈÀ ÌÀÒãÅÄÍÀ ÌáÀÒÄÄÁÉ ßÀÒÌÏÀÃÂÄÍÄÍ ÒÄÂÖËÀ-
ÒÖËÀÃ ÝÅÀËÄÁÀÃÉ ÀÒÀßÒ×ÉÅÏÁÉÓ ÌØÏÍÄ ßÄÅÒÈÀ ãÀÌÓ, ÃÀÃÂÄÍÉËÉÀ
ÂÀÒÊÅÄÖËÉ ÊËÀÓÉÓ ÌÏÍÏÔÏÍÖÒ ÀÌÏÍÀáÓÍÈÀ ÀÒÓÄÁÏÁÉÓ ÓÀÊÌÀÒÉÓÉ
ÐÉÒÏÁÄÁÉ ÃÀ ÌÉÙÄÁÖËÉ ÌÀÈÉ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1. Introduction

The theory of regularly varying functions created by J. Karamata in 1930
has been later (see, for example, monographs [1], [2]) extensively developed
and widely used in various mathematical researches. Particularly, the last
decades of the past century is mentioned by a great interest in studying
regularly and slowly varying solutions of various differential equations and
in equations of the type

y′′ = α0p(t)φ(y),

where α0 ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function and
φ : ∆Y0 → ]0,+∞[ is a regularly varying continuous function of order σ ̸= 1
as y → Y0; here Y0 equals either zero or ±∞, and ∆Y0

is a one-sided
neighborhood of Y0. Among the researches carried out within that period
and dedicated to determination of asymptotics as t → +∞ of monotonic
solutions for such equations, of special mention are the works [3], [4] and
the monograph [5].

Here, according to the definition of regularly varying function (see E. Se-
neta [1, Ch. 1, Sect. 1.1, pp. 9–10]),

φ(y) = |y|σL(y),

where L is slowly varying as y → Y0 function, i.e., the condition

lim
y→Y0
y∈∆Y0

L(λy)

L(y)
= 1 with any λ > 0

is satisfied. Considering such representation for φ, such class of equations is
a natural extension of the class of generalized second order Emden–Fowler
equations

y′′ = α0p(t)|y|σ sign y.

The basic results dealing with asymptotic properties of solutions for the
second- and n-th order Emden–Fowler equations, obtained before 1990, can
be found in the monograph due to I.T. Kiguradze and T.A. Chanturiya [6,
Ch. IV, V, pp. 309–401]. The works [7]–[16], dedicated to the determination
of asymptotics of monotonic differential equations of second and higher
orders with power nonlinearities are also worth mentioning.

For the last decade, the results obtained in [17]–[22] and also those ob-
tained in [12]–[16] were applied to differential equations

y′′ = α0p(t)φ0(y)φ1(y
′), y′′ =

m∑
k=1

αkpk(t)φk0(y)φk1(y
′),

y(n) = α0p(t)φ(y) (n ≥ 2)

with nonlinearities, regularly varying as y → Y0 and y′ → Y1, where Yi ∈
{0;±∞} (i = 0, 1), and with some additional restrictions to nonlinearity for
the first two equations.
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In the present paper we consider the following differential equation:

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

φkj(y
(j)), (1.1)

where n ≥ 2, αk ∈ {−1; 1} (k = 1,m), pk : [a, ω[→ ]0,+∞[ (k = 1,m)
are continuous functions, φkj : △Yj → ]0,+∞[ (k = 1,m; j = 0, n− 1)

are continuous and regularly varying as y(j) → Yj functions of orders σkj ,
−∞ < a < ω ≤ +∞,* △Yj is one-sided neighborhood of Yj , Yj equal either
to 0 or to ±∞. It is assumed that numbers νj (j = 0, n− 1) determined by

νj =


1, if either Yj = +∞, or Yj = 0

and ∆Yj -right neighborhood of 0,
−1, if either Yj = −∞, or Yj = 0

and ∆Yj -left neighborhood of 0,

(1.2)

are such that

νjνj+1 > 0 with Yj = ±∞ and
νjνj+1 < 0 with Yj = 0 (j = 0, n− 2). (1.3)

Such conditions for νj (j = 0, n− 1) are necessary for the equation (1.1)
to have solutions defined in the left neighborhood of ω, each of which sat-
isfying the conditions

y(j)(t) ∈ ∆Yj
with t ∈ [t0, ω[ , lim

t↑ω
y(j)(t) = Yj (j = 0, n− 1). (1.4)

Among strictly monotonic, with derivatives up to the n− 1 order inclusive,
in some left neighborhood of ω, solutions of equation (1.1) these ones are
of special academic interest, because each of the rest ones admits only one
representation of the type

y(t) = πk−1
ω (t)[ck−1 + o(1)] (k = 1, n),

where ck−1 (k = 1, n) are the non-zero real constants and

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞.
(1.5)

The question on the existence of solutions of (1.1) with similar represen-
tations may be solved, in a whole, in a rather simple way by applying, for
example, Corollary 8.2 for ω = +∞ from the monograph of I. T. Kiguradze
and T. A. Chanturiya [1, Ch. II, p. 8, p. 207] and the schemes from the
works [10], [12] as ω ≤ +∞. As for the solutions with properties (1.4),
for lack of particular representations for them, there arises the necessity to
single out a class of solutions admitting one to get such representations.

*if a > 1, then ω = +∞, and ω − 1 < a < ω if ω < +∞.
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One of such rather wide classes of solutions has been introduced in [14]–[16]
dedicated to generalized Emden–Fowler type equations of n-th order,

y(n) = α0p(t)
n−1∏
j=0

|y(j)|σj .

For the equation (1.1), this class is determined as follows.
Definition 1.1. A solution y of the equation (1.1) defined on the interval
[t0, ω[⊂ [a, ω[ , is called a Pω(Y0, . . . , Yn−1, λ0)-solution, where −∞ ≤ λ0 ≤
+∞, if along with (1.4) the condition

lim
t↑ω

[y(n−1)(t)]2

y(n−2)(t)y(n)
= λ0 (1.6)

is satisfied.
If y is a solution of the differential equation (1.1) with properties (1.4)

and the functions ln |y(n−1)(t)| and ln |πω(t)| are comparable with order one
(see [23, Ch. 5, Sect. 4,5, pp. 296–301]) as t ↑ ω, then it is easy to check that
this solution is the Pω(Y0, . . . , Yn−1, λ0)-solution for some λ0 depending on
the value of lim

t↑ω
πω(t)y(n)(t)
y(n−1)(t)

.

Moreover, using assertions 1, 2, 5 and 9 (on the properties of regularly
varying functions) from the monograph [5, Appendix, pp. 115–117], it can
be verified that in the case of regularly varying as t ↑ ω coefficients pk
(k = 1,m) of the equation (1.1), each of its regularly varying as t ↑ ω
solutions with properties (1.4) is a Pω(Y0, . . . , Yn−1, λ0)-solution for some
final or equal to ±∞ value λ0.

The aim of this note is to determine the conditions for existence of
Pω(Y0, . . . , Yn−1, λ0)-solutions of (1.1) in special cases, where λ0 = n−i−1

n−i

as i ∈ {1, . . . , n− 1}, and also asymptotic representations as t ↑ ω for such
solutions and their derivatives up to and including n− 1 order.

By virtues of the results from [16], these solutions of the equation (1.1)
possess the following a priori asymptotic properties.
Lemma 1.1. Let y : [t0, ω[→ ∆Y0 be an arbitrary Pω(Y0, . . . , Yn−1, λ0)-
solution of the equation (1.1). Then:

(1) if n > 2 and λ0 = n−i−1
n−i for some i ∈ {1, . . . , n−2}, then for t ↑ ω,

y(k−1)(t) ∼ [πω(t)]
i−k

(i− k)!
y(i−1)(t) (k = 1, . . . , i− 1)*,

y(i)(t) = o
(y(i−1)(t)

πω(t)

)
,

(1.7)

y(k)(t) ∼ (−1)k−i (k − i)!

[πω(t)]k−i
y(i)(t) (k = i+ 1, . . . , n); (1.8)

∗At i = 1 these relationships do not exist.
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(2) if n ≥ 2 and λ0 = 0, then for t ↑ ω,

y(k−1)(t) ∼ [πω(t)]
n−k−1

(n− k − 1)!
y(n−2)(t) (k = 1, . . . , n− 2)*,

y(n−1)(t) = o
(y(n−2)(t)

πω(t)

) (1.9)

and, in the case of existence of (finite or equal to ±∞) limit
lim
t↑ω

πω(t)y(n)(t)
y(n−1)(t)

,

y(n)(t) ∼ −1

πω(t) y(n−1)(t)
with t ↑ ω. (1.10)

2. Statement of the Main Results

In order to formulate the theorems, we will need some auxiliary notation
and one definition.

By virtue of the definition of regularly varying function, the nonlinearity
in (1.1) is representable in the form

φkj(y
(j)) = |y(j)|σkjLkj(y

(j)) (k = 1,m; j = 0, n− 1), (2.1)

where Lkj : ∆Yj → ]0,+∞[ are continuous and slowly varying as yj → Yj

functions, for which with any λ > 0

lim
y(j)→Yj

y(j)∈∆Yj

Lkj(λy
(j))

Lkj(y(j))
= 1 (k = 1,m; j = 0, n− 1). (2.2)

It is also known (see [1, Ch. 1, Sect. 1.2, pp. 10–15]) that the limits (2.2)
are uniformly fulfilled with respect to λ on any interval [c, d] ⊂ ]0,+∞[
(property M1) and there exist continuously differentiable slowly varying as
y(j) → Yj functions L0kj : ∆Yj → ]0,+∞[ (property M2) such that

lim
y(j)→Yj

y(j)∈∆Yj

Lkj(y
(j))

L0kj(y(j))
= 1 and lim

y(j)→Yj

y(j)∈∆Yj

y(j)L′
0kj(y

(j))

L0kj(y(j))
= 0 (2.3)

(k = 1,m; j = 0, n− 1).

Definition 2.1. We say that a slowly varying as z → Z0 function L :
∆Z0 → ]0,+∞[, where Z0 either equals zero, or ±∞, and ∆Z0 is one-sided
neighborhood of Z0, satisfies condition S0, if

L
(
νe[1+o(1)] ln |z|) = L(z)[1 + o(1)] with z → Z0 (z ∈ ∆Z0),

where ν = sign z.

∗At n = 2 these relationships do not exist.
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Remark 2.1. If the slowly varying as z → Z0 function L : ∆Z0 → ]0,+∞[
satisfies the condition S0, then for every slowly varying as z → Z0 function
l : ∆Z0 → ]0,+∞[,

L(zl(z)) = L(z)[1 + o(1)] when z → Z0 (z ∈ ∆Z0).

The validity of this statement follows from the theorem of representation
(see [1, Ch. 1, Sect. 1.2, p. 10]) of slowly varying function l and property
M1 of function L.

Remark 2.2 (see [22]). If slowly varying as z → Z0 function L : ∆Z0 →
]0,+∞[ satisfies condition S0, then the function y : [t0, ω[→ ∆Y0 is contin-
uously differentiable and such that

lim
t↑ω

y(t) = Y0,
y′(t)

y(t)
=

ξ′(t)

ξ(t)
[r + o(1)] when t ↑ ω,

where r is the non-zero real constant, ξ is continuously differentiable in some
left neighborhood of ω real function, for which ξ′(t) ̸= 0, then

L(y(t)) = L
(
ν|ξ(t)|r

)
[1 + o(1)] when t ↑ ω,

where ν = sign y(t) in the left neighborhood of ω.

Remark 2.3. If slowly varying as z → Z0 function L : ∆Z0 → ]0,+∞[
satisfies condition S0 and the function r : ∆Z0 × K → R, where K is
compact in Rm, is such that

lim
z→Z0
z∈∆Z0

r(z, v) = 0 unifornly with respect to v ∈ K,

then

lim
z→Z0
z∈∆Z0

L(νe[1+r(z,v)] ln |z|)

L(z)
= 1

uniformly with respect to v ∈ K, where ν = sign z.

Indeed, if it shouldn’t be true, then there would exist a sequence {vn} ∈ K
and a sequence {zn} ∈ ∆Z0 converging to Z0 such that the inequality

lim inf
n→+∞

∣∣∣L(νe[1+r(zn,vn)] ln |zn|)

L(zn)
− 1

∣∣∣ > 0 (2.5)

is fulfilled.
Thus it is clear that there is the function v : ∆Z0 → K such that v(zn) =

vn. For this function it is obvious that lim z→Z0
z∈∆Z0

r(z, v(z)) = 0 and hence

lim
z→Z0
z∈∆Z0

L(νe[1+r(z,v(z))] ln |z|)

L(z)
= 1,

which contradicts the inequality (2.5).
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Finally, let us introduce auxiliary definitions assuming

µki=n−i−1+

i−2∑
j=0

σkj(i−j−1)−
n−1∑

j=i+1

σkj(j−i) (k=1,m; i=1, n),

γk = 1−
n−1∑
j=0

σkj , γki = 1−
n−1∑
j=i

σkj (k = 1,m; i = 1, n− 1),

Cki=
1

(n−i)!

i−1∏
j=0

[(i−j−1)!]−σkj

n−1∏
j=i+1

[(j−i)!]σkj (k=1,m; i=1, n− 1),

Jki(t)=

t∫
Aki

pk(s)|πω(s)|µki

n−1∏
j=0

j ̸=i−1

Lkj

(
νj |πω(s)|i−j−1

)
ds (k=1,m; i=1, n),

Jkii(t) =

t∫
Akii

|Jki(s)|
1

γki ds (k = 1,m; i = 1, n),

where each of the limits of integration Akm, Akmm (m ∈ {0, 1}) is chosen
equal to the point a0 ∈ [a, ω[ (on the right of which, i.e., as t ∈ [a0, ω[ , the
integrand function is continuous) if under this value of limits of integration
the corresponding integral tends to ±∞ as t ↑ ω, and equal to ω if at such
value of limits of integration it tends to zero as t ↑ ω.

Theorem 2.1. Let n > 2, i ∈ {1, . . . , n − 2} and for some s ∈ {1, . . . ,m}
the inequalities

lim sup
t↑ω

ln pk(t)− ln ps(t)

β ln |πω(t)|
<

< β
n−1∑
j=0

j ̸=i−1

(σsj − σkj)(i− j − 1) at all k ∈ {1, . . . ,m} \ {s}, (2.6i)

be fulfilled, where β = signπω(t) for t ∈ [a, ω[ . Moreover, let γsγsi ̸= 0 and
the functions Lsj for all j ∈ {0, . . . , n − 1} \ {i − 1} satisfy condition S0.
Then for the existence of Pω(Y0, . . . , Yn−1,

n−i−1
n−i )-solutions of the equation

(1.1) it is necessary, and if algebraic equation
n−1∑

j=i+1

σsj

(j − i)!

j−i∏
m=1

(m− ρ) + σsi =
1

(n− i)!

n−i∏
m=1

(m− ρ) (2.7)

has no roots with zero real part it is sufficient that (along with (1.3)) the
inequalities

νjνj−1(i− j)πω(t) > 0 at all j ∈ {1, . . . , n− 1} \ {i},
νiνi−1γsγsiJsii(t) > 0,

(2.8i)

νiαs(−1)n−i−1πn−i−1
ω (t)γsiJsi(t) > 0 (2.9i)
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be fulfilled in some left neighborhood of ω, as well as the conditions

νj−1 lim
t↑ω

|πω(t)|i−j = Yj−1 at all j ∈ {1, . . . , n} \ {i},

νi−1 lim
t↑ω

|Jsii(t)|
γsi
γs = Yi−1,

(2.10i)

lim
t↑ω

πω(t)J
′
si(t)

Jsi(t)
= −γsi, lim

t↑ω

πω(t)J
′
sii(t)

Jsii(t)
= 0. (2.11i)

Moreover, each solution of that kind admits as t ↑ ω the asymptotic repre-
sentations

y(j−1)(t) =
[πω(t)]

i−j

(i− j)!
y(i−1)(t)[1 + o(1)] (j = 1, . . . , i− 1), (2.12i)

y(j)(t) = (−1)j−i (j − i)!

[πω(t)]j−i
· γsiJ

′
sii(t)

γsJsii(t)
y(i−1)(t)[1 + o(1)] (2.13i)

(j = i, . . . , n− 1),

|y(i−1)(t)|γs

Lsi−1(y(i−1)(t))
= |γsiCsi|

∣∣∣ γs
γsi

Jsii(t)
∣∣∣γsi

[1 + o(1)] with t ↑ ω, (2.14i)

and in case ω = +∞ there is i + 1-parameter family of solutions if the
inequality νiνi−1γsγsi > 0 is valid, and i − 1 + l-parameter family if the
inequality νiνi−1γsγsi < 0 is valid, in case ω < +∞, there is r+1-parameter
family if the inequality νiνi−1γsγsi > 0 is valid, and r-parameter family if
the inequality νiνi−1γsγsi < 0 is valid, where l is a number of roots of the
equation (2.7) with negative real part and r is a number of its roots with
positive real part.

Remark 2.4. Algebraic equation (2.7) has a fortiori no roots with zero real

part, if
n−2∑
j=i

|σsj | < |1− σsn−1|.

In Theorem 2.1, asymptotic representation for y(i−1) is written implicitly.
The following theorem shows an additional restriction under which this
representation may be presented explicitly.

Theorem 2.2. If the conditions of Theorem 2.1 are fulfilled and a slowly
varying at y(i−1) → Yi−1 function Lsi−1 satisfies condition S0, then for each
Pω(Y0, . . . , Yn−1,

n−i−1
n−i )-solution of the equation (1.1), asymptotic represen-

tations (2.12i), (2.13i) and

y(i−1)(t) = νi−1

∣∣∣γsiCsiLsi−1

(
νi−1|Jsii(t)|

γsi
γs

)∣∣∣ 1
γs ×

×
∣∣∣ γs
γsi

Jsii(t)
∣∣∣ γsi

γs
[1 + o(1)] (2.15i)

hold when t ↑ ω.
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3. Proof of Theorems

Proof of Theorem 2.1. Necessity. Let y : [t0, ω[→ ∆Y0 be an arbitrary
Pω(Y0, . . . , Yn−1,

n−i−1
n−i -solution of the equation (1.1). Then the conditions

(1.4) are satisfied, there is t1 ∈ [a, ω[ such that νjy
(j)(t) > 0 (j = 0, n− 1)

for t ∈ [t1, ω[ and by Lemma 1.1, the asymptotic relations (1.7), (1.8) hold.
From (1.7) and (1.8) we obtain the relations

y(j)(t)

y(j−1)(t)
=

i− j + o(1)

πω(t)
(j = 1, n) when t ↑ ω (3.1i)

and therefore

ln |y(j−1)(t)| =
[
i− j + o(1)

]
ln |πω(t)| (j = 1, n) when t ↑ ω. (3.2i)

By virtue of (3.1i), the first of inequalities (2.8i) are fulfilled, and by virtue
of (3.2i), the first of conditions (2.10i) are satisfied.

Taking into account (3.2i), the representations (2.1) and the conditions

lim
y(j)→Yj

y(j)∈∆yj

lnLkj(y
(j))

ln |y(j)|
= 0 (k = 1,m, j = 0, n− 1), (3.3)

which are satisfied due to the properties of slowly varying functions (see [1,
Ch. 1, p. 1.5, p. 24]), we find that

lnφkj(y
(j)(t)) = σkj ln |y(j)(t)|+ lnLkj(y

(j)(t)) =

=
[
σkj + o(1)

]
ln |y(j)(t)| =

[
σkj(i− j − 1) + o(1)

]
ln |πω(t)|

(k = 1,m, j = 0, n− 1) when t ↑ ω.

That is why for each k ∈ {1, . . . ,m} \ {s},

ln
[pk(t)n−1∏

j=0

φkj(y
(j)(t))

ps(t)
n−1∏
j=0

φsj(y(j)(t))

]
= ln pk(t)

ps(t)
+
n−1∑
j=0

[
lnφkj(y

j)(t)−lnφsj(y
(j)(t)

]
=

= ln pk(t)

ps(t)
+ ln |πω(t)|

n−1∑
j=0

[
(σkj − σsj)(i− j − 1) + o(1)

]
=

= β ln |πω(t)|
[

ln pk(t)− ln ps(t)

β ln |πω(t)|
+ β

n−1∑
j=0

j ̸=i−1

(σkj − σsj)(i− j − 1) + o(1)

]
as t ↑ ω.

Since the expression, appearing on the right of this correlation, by virtue of
(2.6i) and the type of the function πω from (1.5), tends to −∞ when t ↑ ω,
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therefore

lim
t↑ω

pk(t)
n−1∏
j=0

φkj(y
(j)(t))

ps(t)
n−1∏
j=0

φsj(y(j)(t))

= 0 at all k ∈ {1, . . . ,m} \ {s}. (3.4)

Then from (1.1) it follows that this solution implies asymptotic relation

y(n)(t) = αsps(t)[1 + o(1)]

n−1∏
j=0

φsj(y
(j)(t)) when t ↑ ω. (3.5)

Here, for all j ∈ {0, . . . , n− 1} \ {i− 1}, the functions Lsj in the represen-
tations (2.1) of functions φsj satisfy the condition S0. Therefore, by virtue
of (3.1i) and Remark 2.2, for them we have

Lsj(y
(j)(t)) = Lsj

(
νj |πω(t)|i−j−1

)
[1 + o(1)] when t ↑ ω.

Taking into account (2.1) and the above representations, we can rewrite
(3.5) in the form

y(n)(t) = αsps(t)y
(i−1)(t)|σsi−1Lsi−1(y

(i−1)(t))×

×
( n−1∏

j=0
j ̸=i−1

|y(j)(t)|σsjLsj

(
νj |πω(t)|i−j−1

))
[1 + o(1)] at t ↑ ω.

Hence, using (1.7), (1.8) and bearing in mind the fact that according to
(3.1i),

y(n)(t) =
y(n)(t)

y(n−1)(t)
· · · y

(i+2)(t)

y(i+1)(t)
y(i+1)(t) ∼

∼ (−1)n−i−1(n− i)!

πn−i−1
ω (t)

y(i+1)(t) at t ↑ ω,

and the notation introduced before formulation of theorems, we get the
following relation:

y(i+1)(t)|y(i)(t)|γsi−1

|y(i−1)(t)|γsi−γsLsi−1(y(i−1)(t))
=

= αs(−1)n−i−1
(

sign[πω(t)]
n−i−1

)
Csip(t)|πω(t)|µsi×

×
n−1∏
j=0

j ̸=i−1

Lsj

(
νj |πω(t)|i−j−1

)
[1 + o(1)] at t ↑ ω. (3.6)

By virtue of property M2 of slowly varying functions, there is a con-
tinuously differentiated function L0si−1 : ∆Yi−1 → ]0,+∞[ satisfying the
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conditions (2.3) for k = s and j = i− 1. Using these conditions and (3.1i),
we find that( |y(i)(t)|γsi

|y(i−1)(t)|γsi−γsL0si−1(y(i−1)(t))

)′
=

νiy
(i+1)(t)|y(i)(t)|γsi−1

|y(i−1)(t)|γsi−γsL0si−1(y(i−1)(t))
×

×
(
γsi − (γs − γsi)

y(i)(t)

y(i+1)(t)
· y(i)(t)

y(i−1)(t)
−

− y(i)(t)

y(i+1)(t)
· y(i)(t)

y(i−1)(t)
·
y(i−1)(t)L′

0si−1(y
(i−1)(t))

L0si−1(y(i−1)(t))

)
=

=
y(i+1)(t)|y(i)(t)|γsi−1

|y(i−1)(t)|γsi−γsL0si−1(y(i−1)(t))

[
νiγsi + o(1)

]
at t ↑ ω.

Therefore (3.6) can be rewritten in the form

( |y(i)(t)|γsi

|y(i−1)(t)|γsi−γsL0si−1(y(i−1)(t))

)′
=

= νiαs(−1)n−i−1γsi
(

sign[πω(t)]
n−i−1

)
Csip(t)|πω(t)|µsi×

×
n−1∏
j=0

j ̸=i−1

Lsj

(
νj |πω(t)|i−j−1

)
[1 + o(1)] at t ↑ ω.

Integrating this relation on the interval between t1 and t and taking into
account that the fraction under the derivative sign due to the condition
γsi ̸= 0 tends either to zero, or to ±∞ as t ↑ ω, we get

|y(i)(t)|γsi

|y(i−1)(t)|γsi−γsL0si−1(y(i−1)(t))
=

= νiαs(−1)n−i−1γsi
(

sign[πω(t)]
n−i−1

)
CsiJsi(t)[1 + o(1)] at t ↑ ω.

From here first of all follows that the inequality (2.9i) is fulfilled. Moreover,
from this and (3.6), due to the equivalence of functions Lsi−1 and L0si−1 as
y(i−1) → Yi−1, we have

y(i+1)(t)

y(i)(t)
=

J ′
si(t)

γsiJsi(t)
[1 + o(1)] at t ↑ ω,

whence, according to (3.1i) for j = i+ 1, it follows that the first condition
of (2.11i) is valid.

From the obtained relation we also have

y(i)(t)

|y(i−1)(t)|
γsi−γs

γsi L
1

γsi
0si−1(y

(i−1)(t))
=

= νi
∣∣CsiγsiJsi(t)

∣∣ 1
γsi [1 + o(1)] at t ↑ ω. (3.7)
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By virtue of the fact that(
|y(i−1)(t)|

γs
γsi

L
1

γsi
0si−1(y

(i−1)(t))

)′

=

=
νi−1y

(i)(t)|y(i−1)(t)|
γs−γsi

γsi

L
1

γsi
0si−1(y

(i−1)(t))

[
γs
γsi

− 1

γsi

y(i−1)(t)L′
0si(y

(i−1)(t))

L0si(y(i−1)(t))

]
=

=
νi−1y

(i)(t)|y(i−1)(t)|
γs−γsi

γsi

L
1

γsi
0si−1(y

(i−1)(t))

[ γs
γsi

+ o(1)
]

at t ↑ ω,

from (3.7) it follows( |y(i−1)(t)|
γs
γsi

L
1

γsi
0si−1(y

(i−1)(t))

)′
=

νiνi−1γs
γsi

∣∣CsiγsiJsi(t)
∣∣ 1
γsi [1 + o(1)] when t ↑ ω.

Here the fraction appearing under the derivative sign tends either to zero
or to ±∞ as t ↑ ω, since by virtue of (1.4) and properties of slowly varying
functions (see (3.3)),

ln |y(i−1)(t)|
γs
γsi

L
1

γsi
0si−1(y

(i−1)(t))
= ln |y(i−1)(t)|

[
γs
γsi

− 1

γsi

lnL0si−1(y
(i−1)(t))

ln |y(i−1)(t)|

]
=

= ln |y(i−1)(t)|
[ γs
γsi

+ o(1)
]
→ ±∞ at t ↑ ω.

That is why, by integrating this correlation on the interval from t1 to t, we
get

|y(i−1)(t)|
γs
γsi

L
1

γsi
0si−1(y

(i−1)(t))
=

νiνi−1γs
γsi

|γsiCsi|
1

γsi Jsii(t)[1 + o(1)] at t ↑ ω. (3.8)

From here it follows the validity of the second inequality of (2.8i) and also,
in view of the equivalence of functions Lsi−1 and L0si−1 as y(i−1) → Yi−1,
the validity of the asymptotic representation (2.14i). Besides, (3.7) and
(3.8) yield

y(i)(t)

y(i−1)(t)
=

γsiJ
′
sii(t)

γsJsii(t)
[1 + o(1)] at t ↑ ω. (3.9i)

By virtue of the last relation and Lemma 1.1, the second conditions of
(2.10i) and (2.11i) are fulfilled, and asymptotic representations (2.12i) and
(2.13i) hold.

Sufficiency. Let the conditions (2.8i)–(2.11i) be satisfied, and the alge-
braic equation (2.7) have no roots with zero real part. Let us show that
in this case the equation (1.1) has solutions admitting asymptotic relations
(2.12i)–(2.14i) as t ↑ ω.
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Towards this end, we consider first the relation

|Y |
γs
γsi

L
1

γsi
0si−1(Y )

= |γsiCsi|
1

γsi

∣∣∣ γs
γsi

Jsii(t)
∣∣∣[1 + vn], (3.10)

where L0si : ∆Yi → ]0,+∞[ are continuously differentiated slowly varying as
Y → Yi−1 functions, satisfying the conditions (2.3) (for k = s and j = i−1)
and existing due to the property M2 of slowly varying functions.

Having chosen an arbitrary number d ∈ ]0, |γsi

γs
|[ , let us show that for

some t0 ∈ ]a, ω[ the relation (3.10) defined uniquely, on the set [t0, ω[×R 1
2
,

where R 1
2

= {v ∈ R : |v| ≤ 1
2}, a continuously differentiated implicit

function Y = Y (t, vn) of the type

Y (t, vn) = νi−1|Jsii(t)|
γsi
γs

+z(t,vn), (3.11)
where z is the function such that

|z(t, vn)| ≤ d for (t, vn) ∈ [t0, ω[×R 1
2

and lim
t↑ω

z(t, vn) = 0

uniformly with respect to vn ∈ R 1
2
. (3.12)

Assuming in (3.10)
Y = νi−1|Jsii(t)|

γsi
γs

+z (3.13)
and then taking the logarithm of the obtained relation, after elementary
manipulations, we find that

z = a(t) + b(t, vn) + Z(t, z), (3.14)
where

a(t) =
γsi
γs

·
ln | γs

γsi
|+ 1

γsi
ln |γsiCsi|

ln |Jsii(t)|
, b(t, vn) =

γsi
γs

· ln[1 + vn]

ln |Jsii(t)|
,

Z(t, z) =
1

γs
· lnL0si−1(νi−1|Jsii(t)|

γsi
γs

+z)

ln |Jsii(t)|
.

Here, by virtue of the second condition of (2.10i), by the choice of the limit
of integration in Jsii and by the property (3.3) of slowly varying functions,

νi−1 lim
t↑ω

|Jsii(t)|
γis
γs

+z = Yi−1

uniformly with respect to z ∈ [−d, d], lim
t↑ω

a(t) = 0, (3.15)

lim
t↑ω

b(t, vn) = 0 uniformly with respect to vn ∈ R 1
2
,

lim
t↑ω

Z(t, z) = 0 uniformly with respect to z ∈ [−d, d].
(3.16)

Since
∂Z(t, z)

∂z
=

1

γs
·
νi−1|Jsii(t)|

γsi
γs

+zL′
osi−1(νi−1|Jsii(t)|

γsi
γs

+z)

L0si−1(νi−1|Jsii(t)|
γsi
γs

+z)
,
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by virtue of (2.3) and the first of the above-stated conditions, we likewise
have

lim
t↑ω

∂Z(t, z)

∂z
= 0 uniformly with respect to z ∈ [−d, d].

According to these conditions, there is a number t1 ∈ [a, ω[ such that

νi−1|Jsii(t)|
γis
γs

+z ∈ ∆Yi−1 at (t, z) ∈ [t1, ω[×Rd,

where Rd =
{
z ∈ R : |z| ≤ d

}
,∣∣a(t) + b(t, v1, v2) + Z(t, z)

∣∣ ≤ d at (t, vn, z) ∈ [t1, ω[×R 1
2
× Rd

(3.17)

and∣∣Z(t, z1)− Z(t, z2)
∣∣ ≤ 1

2
|z1 − z2| at t ∈ [t1, ω[ and z1, z2 ∈ Rd. (3.18)

Having chosen in this way the number t1, we denote by B the Banach
space of continuous and bounded on set Ω = [t1, ω[×R 1

2
functions z : Ω → R

with the norm
∥z∥ = sup

{
|z(t, vn)| : (t, vn) ∈ Ω

}
.

We distinguish from it the subspace B0 of those functions from B, for
which ∥z∥ ≤ d, and consider on B0, choosing a fortiori an arbitrary number
ν ∈ (0, 1), the operator
Φ(z)(t, vn) = z(t, vn)− ν

[
z(t, vn)− a(t)− b(t, vn)− Z(t, z(t, vn)

]
. (3.19)

By virtue of (3.17) and (3.18), for any z ∈ B0 and z1, z2 ∈ B0, we have
|Φ(z)(t, vn)| ≤ (1− ν)|z(t, vn)|+ νd ≤ d and (t, vn) ∈ Ω

and

|Φ(z1)(t, vn)− Φ(z2)(t, vn)| ≤
≤ (1− ν)|z1(t, vn)− z2(t, vn)|+ ν|Z(t, z1(t, vn))− Z(t, z2(t, vn)| ≤

≤ (1− ν)|z1(t, vn)− z2(t, vn)|+
ν

2
|z1(t, vn)− z2(t, vn)| ≤

≤
(
1− ν

2

)
∥z1 − z2∥ at (t, vn) ∈ Ω.

This implies that Φ(B0) ⊂ B0 and ∥Φ(z1)− Φ(z2)∥ ≤ (1− ν
2 )∥z1 − z2∥.

It means that the operator Φ maps the space B0 into itself and is a
contractor operator on it. Then, by the contraction mapping principle,
there is a unique function z ∈ B0 such that z = Φ(z). By virtue of (3.19),
this continuous on set Ω function is a unique solution of the equation (3.14)
satisfying the condition ∥z∥ ≤ d. From (3.14), with regard for (3.15), (3.16),
it follows that the given solution tends to zero as t ↑ ω uniformly with
respect to vn ∈ R 1

2
. Continuous differentiability of this solution on the set

[t0, ω[×R 1
2
, where t0 is some number from [t1, ω[ , follows directly from the

well-known local theorem on the existence of an implicit function defined by
the relation (3.14). In virtue of replacement (3.13), the obtained function z
corresponds to a continuously differentiated on set [t0, ω[×R 1

2
function Y of
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type (3.11), where z possesses the properties (3.12) and which is a solution
of the equation (3.10) and satisfies the conditions

Y (t, vn) ∈ ∆Yi−1 for (t, vn) ∈ [t0, ω[×R 1
2
,

lim
t↑ω

Y (t, vn) = Yi−1 uniformly with respect to vn ∈ R 1
2
. (3.20)

Now, applying to differential equation (1.1) the transformation

y(j−1)(t) =
[πω(t)]

i−j

(i− j)!
y(i−1)(t)[1 + vj(τ)] (j = 1, . . . , i− 1),

y(j)(t) = (−1)j−i (j − i)!

[πω(t)]j−i
· γsiJ

′
sii(t)

γsJsii(t)
y(i−1)(t)[1 + vj(τ)]

(j = i, . . . , n− 1),

y(i−1)(t) = Y (t, vn(τ)), τ(t) = β ln |πω(t)|,

(3.21i)

where β is defined in (2.6i), and bearing in mind that the function
y(i−1)(t) = Y (t, vn(τ)) for t ∈ [t0, ω[ and vn(τ) ∈ R 1

2 satisfies equation

|y(i−1)(t)|
γs
γsi

L
1

γsi
0si−1(y

(i−1)(t))
= |γsiCsi|

1
γsi

∣∣∣ γs
γsi

Jsii(t)
∣∣∣[1 + vn(τ)],

with the use of sign conditions (2.8i), (2.9i), we get a system of differential
equations of the form

v′j = β
[
(i− j)(vj+1 − vj)−

γsi
γs

h1(τ)(1 + vj)(1 + vi)
]

(j=1, . . . , i− 2),

v′i−1 = β
[
− vi−1 −

γsi
γs

h1(τ)(1 + vi−1)(1 + vi)
]
,

v′j = β

[
(j − i)(1 + vj)− (j + 1− i)(1 + vj+1)−

1

γsi
h2(τ)(1 + vj)+

+
1

γs
h1(τ)(1 + vj)(γs − γsi − γsivi)

]
(j = i, . . . , n− 2),

v′n−1 = β

[
n− i

γsi
h2(τ)

i−2∏
j=0

|1 + vj+1|σsj

n−1∏
j=i

|1 + vj |σsj

|1 + vn|γsi
G(τ, v1, . . . , vn)+

+ (n− i− 1)(1 + vn−1)−
1

γsi
h2(τ)(1 + vn−1)+

+
1

γs
h1(τ)(1 + vn−1)(γs − γsi − γsivi)

]
,

v′n = βh1(τ)
[
(1 + vn)(1 + vi)−(1 + vn)−

1

γs
H(τ, vn)(1 + vn)(1 + vi)

]
,

in which

h1(τ) = h1(τ(t)) =
πω(t)J

′
sii(t)

Jsii(t)
, h2(τ) = h2(τ(t)) =

πω(t)J
′
si(t)

Jsi(t)
,
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G(τ(t), v1, . . . , vn) =
Lsi−1(Y (t, vn))

L0si−1(Y (t, vn))
·

n−1∏
j=0

j ̸=i−1

Lsj(Y
[j](t, vj , vj+1, vn))

n−1∏
j=0

j ̸=i−1

Lsj(νj |πω(t)|i−j−1)

×

×

m∑
k=1

αkpk(t)φki−1(Y (t, vn))
n−1∏
j=0

j ̸=i−1

φkj(Y
[j](t, vj , vj+1, vn)

αsps(t)φsi−1(Y (t, vn))
n−1∏
j=0

j ̸=i−1

φsj(Y [j](t, vj , vj+1, vn))

,

H(τ(t), vn) =
Y (t, vn)L

′
0si−1(Y (t, vn))

L0si−1(Y (t, vn))
,

Y [j](t, vj , vj+1, vn) =

=


πi−j−1
ω (t)

(i− j − 1)!
Y (t, vn)(1 + vj+1) when j = 0, i− 2,

(j − i)!

πj−i
ω (t)

γsi
γs

J ′
sii(t)

Jsii(t)
Y (t, vn)(1 + vj) when j = i, n− 1.

Here, the function τ(t) = β ln |πω(t)| possesses the properties

τ ′(t) > 0 at t ∈ [t0, ω[ , lim
t↑ω

τ(t) = +∞

and that is why, according to conditions (2.11i),

lim
τ→+∞

h1(τ) = lim
t↑ω

h1(τ(t)) = 0,

lim
τ→+∞

h2(τ) = lim
t↑ω

h2(τ(t)) = −γsi.
(3.22)

By virtue of (3.20) and (2.3) (for k = s and j = i − 1) the function H
tends to zero as τ → +∞ uniformly with respect to vn ∈ R 1

2
, and first

fraction in the representation of the function G tends to unity as τ → +∞
uniformly with respect to vn ∈ R 1

2
.

Let us show that the second and third fractions in the representation of
function G likewise tends to unity as τ → +∞ uniformly with respect to
(v1, . . . , vn) ∈ Rn

1
2

.
By virtue of (2.11i) and using the l’Hospital’s rule, we have

lim
t↑ω

ln |Jsii(t)|
ln |πω(t)|

= lim
t↑ω

πω(t)J
′
sii(t)

Jsii(t)
= 0,

lim
t↑ω

ln |J
′
sii(t)|
Jsii(t)

|
ln |πω(t)|

= lim
t↑ω

[πω(t)J
′
si(t)

γsiJsi(t)
− πω(t)J

′
sii(t)

Jsii(t)

]
= −1.
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Taking into account the type of functions Y and Y [j] (j = 0, n− 1, j ̸= i−1),
we find

lim
t↑ω

ln |Y (t, vn)|
ln |πω(t)|

= lim
t↑ω

[ γs
γsi

+ z(t, vn)
]

lim
t↑ω

ln |Jsii(t)|
ln |πω(t)|

= 0

uniformly with respect to vn ∈ R 1
2
,

lim
t↑ω

ln |Y [j](t, vj , vj+1, vn)|
ln |πω(t)|

=

= i− j − 1 + lim
t↑ω

ln |Y (t, vn)|
ln |πω(t)|

+ lim
t↑ω

ln |1+vj+1|
(i−j−1)!

ln |πω(t)|
= i− j − 1

uniformly with respect to (vj+1, vn) ∈ R2
1
2

for j = 0, i− 2

and

lim
t↑ω

ln |Y [j](t, vj , vj+1, vn)|
ln |πω(t)|

= i− j + lim
t↑ω

ln |Y (t, vn)|
ln |πω(t)|

+

+ lim
t↑ω

ln |J
′
sii(t)

Jsii(t)
|

ln |πω(t)|
+ lim

t↑ω

ln (j−i)!|γsi(1+vj)|
|γs|

ln |πω(t)|
= i− j − 1

uniformly with respect to (vj , vn) ∈ R2
1
2

for j = i, n− 1.

In view of these marginal ratios and using inequalities (2.6i) we find, repeat-
ing the reasoning in proving the necessity, that for any k ∈ {1, . . . ,m} \ {s}

lim
t↑ω

pk(t)φki−1(Y (t, vn))
n−1∏
j=0

j ̸=i−1

φkj(Y
[j](t, vj , vj+1, vn))

ps(t)φsi−1(Y (t, vn))
n−1∏
j=0

j ̸=i−1

φsj(Y [j](t, vj , vj+1, vn))

= 0

uniformly with respect to (v1, . . . , vn) ∈ Rn
1
2
.

Owing to these conditions, the last fraction in the representation of function
G tends to unity as τ → +∞ uniformly with respect to (v1, . . . , vn) ∈ Rn

1
2

.
Moreover, taking into account marginal ratios stated above, we obtain

the following representations:

Y [j](t, vj , vj+1, vn) = νje
ln |Y [j](t,vj ,vj+1,vn)| =

= νje
[1+rj(t,vj ,vj+1,vn)] ln |πω(t)|i−j−1

as j ∈ {0, . . . , n− 1} \ {i− 1},
where

lim
t↑ω

rj(t, vj , vj+1, vn) = 0 uniformly with respect to (vj , vj+1, vn) ∈ R3
1
2

for all j ∈ {0, . . . , n− 1} \ {i− 1}.

Since the functions Lsj (j = 1, n− 1, j ̸= i− 1) satisfy the condition S0,
by Remark 2.3, it follows that
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lim
t↑ω

n−1∏
j=0

j ̸=i−1

Lsj(Y
[j](t, vj , vj+1, vn))

n−1∏
j=0

j ̸=i−1

Lsj(νj |πω(t)|i−j−1)

= 1

uniformly with respect to (v1, . . . , vn) ∈ Rn
1
2
.

Therefore, the second fraction in the representation of function G tends to
unity as τ → +∞ uniformly with respect to (v1, . . . , vn) ∈ Rn

1
2

.
Due to above stated, the obtained system of differential equations can be

written in form

v′j = β
[
fi(τ, v1, . . . , vn) +

n∑
k=1

pjkvk

]
(k = 1, n− 2),

v′n−1=β
[
fn−1(τ, v1, . . . , vn)+

n∑
k=1

pn−1kvk+Vn−1(v1, . . . , vn)
]
,

v′n = βh1(τ)
[
fn(τ, v1, . . . , vn) +

n∑
k=1

pnkvk + Vn(v1, . . . , vn)
]
,

(3.23i)

where the functions fi (i = 1, n) are continuous on a set [τ1,+∞[×Rn
1
2

for
some τ1 ≥ β ln |πω(t0)| and are such that

lim
τ→+∞

fi(τ, v1, . . . , vn) = 0 (i = 1, n)

uniformly with respect to (v1, . . . , vn) ∈ Rn
1
2
, (3.24)

pjj = j − i, pjj+1 = i− j,

jk = 0 at k ∈ {1, . . . , n} \ {j, j + 1} (j = 1, i− 2), *

pi−1i−1 = −1, pi−1k = 0 at k ∈ {1, . . . , n} \ {i− 1},
pjj = j − i+ 1, pjj+1 = i− j − 1,

pjk = 0 at k ∈ {1, . . . , n} \ {j, j + 1} (j = i, n− 2),

pn−1k = −(n− i)σsk−1 (k = 1, i− 1),

pn−1k = −(n− i)σsk (k = i, n− 2), pn−1n−1 = (n− i)(1− σsn−1),

pn−1n = (n− i)γsi, pni = i, pnk = 0 at k ∈ {1, . . . , n} \ {i},
Vn(v1, . . . , vn) = vivn,

Vn−1(v1, . . . , vn) = (i− n)

i−2∏
j=0

|1 + vj+1|σsj

n−1∏
j=i

|1 + vj |σsj

|1 + vn|γsi
+

+ (n− i)
[
1 +

i−1∑
k=1

σsk−1vk +
n−1∑
k=i

σskvk − γsivn

]
.
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Since conditions (3.24) are satisfied and

lim
|v1|+···+|vn|→0

∂Vj(v1, . . . , vn)

∂vk
= 0 (j = n− 1, n; k = 1, n),

this system belongs to the class of systems of differential equations, for which
the criteria for the existence of vanishing at infinity solutions were obtained
in [24]. Let us show that for this system the conditions of Theorem 2.6 are
fulfilled (based on this paper).

First of all, taking into account the conditions (3.22) and the type of
integral Jsii(t), we notice that the function h1 possesses the properties

lim
τ→+∞

h1(τ) = 0,

+∞∫
τ1

h1(τ) dτ = β

ω∫
t1

J ′
sii(t)

Jsii(t)
dt =

= β ln |Jsii(t)|ωt1 = ±∞ (τ1 = β ln |πω(t1)|),

lim
τ→+∞

h′
1(τ)

h1(τ)
= lim

t↑ω

(h1(τ(t)))
′
t

τ ′(t)h1(τ(t))
=

= β lim
t↑ω

[
πω(t)J

′
sii(t)

Jsii(t)
+

1

γsi

πω(t)J
′
si(t)

Jsi(t)

πω(t)J
′
sii(t)

Jsii(t)
−
(πω(t)J

′
sii(t)

Jsii(t)

)2
]
=0.

Next, consider the matrices Pn = (pjk)
n
j,k=1 and Pn−1 = (pjk)

n−1
j,k=1, for

which we have

detPn−1 = (−1)i−1(i− 1)!(n− i)!γsi, detPn = (−1)i(i− 1)!(n− i)!γsi,

det
[
Pn−1 − ρEn−1

]
= (−1)i−1

i−1∏
k=1

(k + ρ)

[ n−i∏
m=1

(m− ρ)−

−(n− i)!
n−1∑

j=i+1

σsj

(j − i)!

j−i∏
m=1

(m− ρ)− (n− i)!σsi

]
,

where En−1 is the unit matrix of dimension (n− 1)× (n− 1).
Since algebraic equation (2.7), according to the conditions of Theorem,

has no roots with zero real part, the characteristic equation of the matrix
Pn−1 has likewise no such roots, and the given characteristic equation has
i− 1 roots (if i > 1) of the type ρk = −k (k = 1, i− 1).

Thus, for the system (3.23i), all the conditions of Theorem 2.6 of [24]
are satisfied. According to this theorem, the system (3.23i) has at least one
solution (vj)

n
j=1 : [τ2,+∞[→ Rn (τ2 ≥ τ1) tending to zero as τ → +∞.

Moreover, if l is a number of roots of the equation (2.7) with negative
real part, and r is a number of roots with positive real part, then according
to the same Theorem, in case β = 1, this system has i + 1 - parametric
family of such solutions if the inequality νiνi−1γsγsi > 0 is fulfilled, and
has i− 1+ l- parametric family if the inequality νiνi−1γsγsi < 0 is fulfilled,
whereas, in case β = −1, there is r+1 - parameter family of such solutions
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if there is the inequality νiνi−1γsγsi > 0 and r - parametric family if there
is the inequality νiνi−1γsγsi < 0.

To every such solution of the system (3.23i) there corresponds, due to the
replacements (3.21i) and the first condition of (2.3), the solution y : [t2, ω[→
R (t2 ∈ [a, ω[) of the equation (1.1) admitting as t ↑ ω asymptotic represen-
tations (2.12i)–(2.14i). Using these representations and conditions (2.6i),
(2.8i)–(2.11i), it can be easily seen that it is a Pω(Y0, . . . , Yn−1,

n−i−1
n−i )-so-

lution. �

Proof of Theorem 2.2. Let the equation (1.1) have Pω(Y0, . . . , Yn−1,
n−i−1
n−i )-

solution y : [t0, ω[→ ∆Y0
. Then, according to Theorem 2.1, the conditions

(2.8i)–(2.11i) are satisfied and for this solution the asymptotic representa-
tions (2.12i)–(2.14i) hold as t ↑ ω. Furthermore, from the proof of necessity
of that theorem it is clear that the condition (3.9i) is satisfied. Since the
functions Lsi−1 satisfy the condition S0, by virtue of (3.9i) and Remark 2.2,

Lsi−1(y
(i−1)(t)) = Lsj

(
νi−1|Jsii(t)|

γsi
γs

)
[1 + o(1)] at t ↑ ω.

Therefore it follows from (2.14i) that

|y(i−1)(t)|γs =

= |γsiCsi|Lsi−1

(
νi−1|Jsii(t)|

γsi
γs

)∣∣∣ γs
γsi

Jsii(t)
∣∣∣γsi

[1 + o(1)] at t ↑ ω,

which results in the presentation (2.15i). �

4. Example of Equation with Regularly Varying as t ↑ ω
Coefficients

Suppose that in the differential equation (1.1), the continuous functions
pk : [a, ω[→ ]0,+∞[ (k = 1,m) are regularly varying, as t ↑ ω, of orders ϱk
(k = 1,m), and, moreover, the conditions of Theorem 2.1 as i ∈ {1, . . . , n−
2} are satisfied. In this case

lim
t↑ω

ln pk(t)

ln |πω(t)|
= ϱk (4.1)

and the conditions (2.6i) take the form

β(ϱk − ϱs) < β
n−1∑
j=0

j ̸=i−1

(σsj − σkj)(i− j − 1)

at all k ∈ {1, . . . ,m} \ {s}. (4.2i)

Since as t ↑ ω the functions Lsj(νj |πω(t)|i−j−1) (j ∈ {0, . . . , n−1}\{i−1})
are slowly varying, and the function ps is regularly varying of order ϱs,
therefore the function Jsi is regularly varying of order 1+ ϱs +µsi, and the
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function |Jsii(t)| is regularly varying of order 1 + 1
γsi

(1 + ϱs + µsi) as t ↑ ω.
This implies that

lim
t↑ω

πω(t)J
′
si(t)

Jsi(t)
= 1 + ϱs + µsi,

lim
t↑ω

πω(t)J
′
sii(t)

Jsii(t)
= 1 +

1

γsi
(1 + ϱs + µsi).

Therefore the conditions (2.11i) will be of the following form:

1 + ϱs + γsi + µsi = 0. (4.3i)

Taking into account this condition, the function Jsii(t) should be slowly
varying as t ↑ ω. In order to get asymptotic representation for this integral
we have to know the type of a slowly varying component of the integrand
equation.

Suppose that the functions ps and φsj (j = 0, n− 1) are of the form

ps(t) = |πω(t)|ϱs |
∣∣ ln |πω(t)|

∣∣rs ,
φsj(y

(j)) = |y(j)|σsj
∣∣ ln |y(j)|

∣∣λsj
(j = 0, n− 1).

(4.4)

In this case, Lsj(y
(j)) =

∣∣ ln |y(j)|
∣∣λsj

(j = 0, n− 1) and hence all of them
satisfy the conditions of S0. Additionally, we get as t ↑ ω the following
asymptotic relations

Jsi(t) ∼ − β

γsi

n−1∏
j=0

j ̸=i−1

|i− j − 1|λsj |πω(t)|−γsi
∣∣ ln |πω(t)|

∣∣rs+
n−1∑
j=0

j ̸=i−1

λsj

, (4.5i)

Jsii(t)∼



γsi
n−1∏
j=0

j ̸=i−1

|i− j − 1|λsj

|γsi|
1

γsi

(
rs+

n−1∑
j=0

j ̸=i−1

λsj+γsi
) ∣∣ ln |πω(t)|

∣∣1+ 1
γsi

(
rs+

n−1∑
j=0

j ̸=i−1

λsj

)
,

if rs +

n−1∑
j=0

j ̸=i−1

λsj ̸= −γsi,

β

|γsi|
1

γsi

n−1∏
j=0

j ̸=i−1

|j − i− 1|λsj ln
∣∣ ln |πω(t)|

∣∣,
if rs +

n−1∑
j=0

j ̸=i−1

λsj = −γsi,

(4.6i)
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J ′
sii(t)

Jsii(t)
∼



rs+
n−1∑
j=0

j ̸=i−1

λsj+γsi

γsiπω(t) ln |πω(t)|
, if rs+

n−1∑
j=0

j ̸=i−1

λsj ̸=−γsi,

1

πω(t) ln |πω(t)| ln | ln |πω(t)||
, if rs+

n−1∑
j=0

j ̸=i−1

λsj=−γsi.

(4.7i)

From the above relations it, in particular, follows that the inequalities
(2.8i), (2.9i) and the conditions (2.10i) take the form

νjνj−1(i− j)πω(t) > 0 at all j ∈ {1, . . . , n− 1} \ {i},
νiαs(−1)n−iπn−i

ω (t) > 0,
(4.8i)

νiνi−1γsγsi > 0 (< 0), if 1 +
1

γsi

(
rs +

n−1∑
j=0

j ̸=i−1

λsj

)
≥ 0 (< 0), (4.9i)

νj−1 lim
t↑ω

|πω(t)|i−j = Yj−1 at j ∈ {1, . . . , n} \ {i}, (4.10i)

νi−1Yi−1 = ∞ (= 0), if γs

(
rs +

n−1∑
j=0

j ̸=i−1

λsj + γsi

)
≥ 0 (< 0). (4.11i)

By virtue of above-said, from Theorem 2.2 follows the following state-
ment.

Corollary 4.1. Let in the equation (1.1) n > 2, the functions pk (k =
1,m) be regularly varying of orders ϱk at t ↑ ω, i ∈ {1, . . . , n − 2} and for
some s ∈ {1, . . . ,m}, the inequalities (4.2i) be fulfilled. Let, moreover, the
equation γsγsi ̸= 0 be fulfilled and the representations (4.4) hold. Then for
the equation (1.1) to have Pω(Y0, . . . , Yn−1,

n−i−1
n−i )-solutions, it is necessary,

and if algebraic equation (2.7) has no roots with zero real part, then it is
sufficient that the conditions (4.3i), (4.8i)–(4.11i) (along with (1.3)) are
satisfied. Moreover, for each such solution there exist, as t ↑ ω, the following
asymptotic representations:

y(j−1)(t) =
[πω(t)]

i−j

(i− j)!
y(i−1)(t)[1 + o(1)] (j = 1, . . . , i− 1), (4.12i)

y(j)(t) = (−1)j−i (j − i)!

[πω(t)]j−i
· γsiJ

′
sii(t)

γsJsii(t)
y(i−1)(t)[1 + o(1)] (4.13i)

(j = i, . . . , n− 1),

y(i−1)(t) = νi−1

∣∣∣γsiCsi

∣∣∣γsi
γs

∣∣∣λsi−1−γsi
∣∣∣ 1
γs ×

× |Jsii(t)|
γsi
γs

∣∣ ln |Jsii(t)|
∣∣λsi−1

γs [1 + o(1)], (2.15i)
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where the functions Jsii(t) and J ′
sii(t)

Jsii(t)
are defined by (4.6i) and (4.7i), respec-

tively, and for such solutions in case ω = +∞ there exists an i+1-parametric
family if the inequality νiνi−1γsγsi > 0 is fulfilled, and an i−1+ l-parameter
family if there is the inequality νiνi−1γsγsi < 0, while in case ω < +∞
there exists an r + 1-parametric family of such solutions if the inequality
νiνi−1γsγsi > 0 is fulfilled, and an r- parametric family if there is the in-
equality νiνi−1γsγsi < 0, where l is a number of roots of the equation (2.7)
with negative real part and r is a number of its roots with positive real part.
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Abstract. We consider the stationary oscillation case of the theory of
linear thermoelasticity of materials with microtemperatures. The represen-
tation formula of a general solution of the homogeneous system of differen-
tial equations obtained in the paper is expressed by means of seven meta-
harmonic functions. This formula is very convenient and useful in many
particular problems for domains with concrete geometry. Here we demon-
strate an application of this formulas to the Dirichlet and Neumann type
boundary value problem for a ball. The uniqueness theorems are proved.
An explicit solutions in the form of absolutely and uniformly convergent
series are constructed.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÈÄÒÌÏÃÒÄÊÀÃÏÁÉÓ ßÒ×ÉÅÉ ÈÄÏ-
ÒÉÉÓ ÓÔÀÝÉÏÍÀÒÖËÉ ÒáÄÅÉÓ ÀÌÏÝÀÍÄÁÉ ÌÉÊÒÏÔÄÌÐÄÒÀÔÖÒÉÓ ÂÀÈÅÀ-
ËÉÓßÉÍÄÁÉÈ. ÌÉÙÄÁÖËÉÀ ÄÒÈÂÅÀÒÏÅÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀ-
ÈÀ ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÉÓ ÆÏÂÀÃÉ ßÀÒÌÏÃÂÄÍÉÓ ×ÏÒÌÖËÀ ÂÀÌÏÓÀáÖËÉ
ÛÅÉÃÉ ÌÄÔÀäÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÉÓ ÓÀÛÖÀËÄÁÉÈ. ÌÉÙÄÁÖËÉ ßÀÒÌÏÃ-
ÂÄÍÀ ÀÒÉÓ ÌÄÔÀÃ ÌÏáÄÒáÄÁÖËÉ ÊÏÍÊÒÄÔÖËÉ ÂÄÏÌÄÔÒÉÉÓ ÌØÏÍÄ ÀÒÄ-
ÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÓÀáÓÍÄËÀÃ. ÀÌ ÍÀÛÒÏÌ-
ÛÉ ÛÄÓßÀÅËÉËÉÀ ÃÉÒÉáËÄÓÀ ÃÀ ÍÄÉÌÀÍÉÓ ÔÉÐÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀ-
ÍÄÁÉ ÁÉÒÈÅÉÓÀÈÅÉÓ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÈÄÏÒÄÌÄÁÉ.
ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÄÁÉ ÌÉÙÄÁÖËÉÀ ÀÁÓÏËÖÔÖÒÀÃ ÃÀ ÈÀÍÀÁÒÀÃ ÊÒÄ-
ÁÀÃÉ ÌßÊÒÉÅÄÁÉÓ ÓÀáÉÈ.
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1. Introduction

Mathematical model describing the chiral properties of the linear ther-
moelasticity of materials with microtemperatures have been proposed by
Iesan [6], [8] and recently it has been extended to a more general case, when
the material points admit micropolar structure [7].

The Dirichlet, Neumann and mixed type boundary value problems corre-
sponding to this model are well investigated for general domains of arbitrary
shape, the uniqueness and existence theorems are proved, and regularity
results for solutions are established by potential and variational methods
(see [1, 10,14,15] and the references therein).

The main goal of this paper is to derive general representation formulas
for the displacement vector of microtemperatures and temperature function
by means of metaharmonic functions. That is, we can represent solutions to
a very complicated coupled system of simultaneous differential equations of
thermoelasticity with the help of solutions of simpler canonical equations.

In particular, here we apply these representation formulas to construct
explicit solutions to the Dirichlet and Neumann type boundary value prob-
lems for a ball. We represent the solution in the form of Fourier–Laplace
series and show their absolute and uniform convergence along with their
derivatives of the first order if the boundary data satisfy appropriate smooth-
ness conditions. One of the methods to satisfy the boundary conditions is
given in A. Ulitko [17], F. Mors and G Feshbah [12], L. Giorgashvili [2,3], L.
Giorgashvili, D. Natroshvili [4], L. Giorgashvili, A. Jaghmaidze, K. Skhvi-
taridze [5], D. Natroshvili, L. Giorgashvili, I. Stratis [13] and other papers.

2. Basic Equations and Auxiliary Theorems

A system of homogeneous differential equations of the stationary os-
cillation of the thermoelasticity with microtemperatures is written in the
form [7]

µ∆u(x) + (λ+ µ) grad divu(x)− γ grad θ(x) + ρσ2u(x) = 0, (2.1)
κ6∆w(x) + (κ5 + κ4) grad divw(x)− κ3 grad θ(x) + τw(x) = 0, (2.2)

κ∆θ(x) + iσγT0 divu(x) + κ1 divw(x) + iσaT0θ(x) = 0, (2.3)

where ∆ is the three-dimensional Laplace operator, u = (u1, u2, u3)
⊤ is the

displacement vector, w = (w1, w2, w3)
⊤ is the microtemperature vector, θ

is the temperature measured from the constant absolute temperature T0

(T0 > 0), ⊤ is the transposition symbol, λ, µ, γ, κ, κj , j = 1, 2, . . . , 6, are
constitutive coefficients, satisfying the conditions [7]

µ > 0, 3λ+ 2µ > 0, κ > 0, 3κ4 + κ5 + κ6 > 0, κ6 + κ5 > 0,

κ6 − κ5 > 0, (κ1 + T0κ3)
2 < 4T0κκ2, γ > 0, a > 0,

τ = −κ2 + iσδ, δ > 0, ρ > 0 is the mass density of the elastic material. In
the sequel we assume that σ = σ1 + iσ2, σ2 > 0, σ1 ∈ R.
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Let U = (u,w, θ)⊤. The stress vector, which we denote by the symbol
P (∂, n)U , has the form

P (∂, n)U =
(
P (1)(∂, n)U ′, P (2)(∂, n)U ′′, P (3)(∂, n)U ′′

)⊤
,

where U ′ = (u, θ)⊤, U ′′ = (w, θ)⊤, n = (n1, n2, n3)
⊤ is the unit vector,

P (1)(∂, n)U ′ = T (1)(∂, n)u− γnθ,

P (2)(∂, n)U ′′ = T (2)(∂, n)w − κ3nθ,

P (3)(∂, n)U ′′ = κ
∂θ

∂n
+ (κ1 + κ3)(n · w),

T (1)(∂, n)u = 2µ
∂u

∂n
+ λndivu+ µ[n× rotu],

T (2)(∂, n)w = (κ6 + κ5)
∂w

∂n
+ κ4ndivw + κ5[n× rotw].

(2.4)

Definition. The vector U = (u,w, θ)⊤ is said to be regular in a domain
Ω ⊂ R3 if U ∈ C2(Ω) ∩ C1(Ω).

Theorem 2.1. A vector U = (u,w, θ)⊤ is a regular solution of system
(2.1)–(2.3) in a domain Ω ⊂ R3, if and only if it is represented in the form

u(x) =
3∑

j=1

gradΦj(x) + rot rot(xΦ4(x)) + rot(xΦ5(x)),

w(x) =

3∑
j=1

αj gradΦj(x) + rot rot(xΦ6(x)) + rot(xΦ7(x)),

θ(x) = −
3∑

j=1

βjk
2
jΦj(x),

(2.5)

where

(∆ + k2j )Φj(x) = 0, j = 1, 2, 3, (∆ + k24)Φj(x) = 0, j = 4, 5,

(∆ + k25)Φj(x) = 0, j = 6, 7,

k24 = ρσ2/µ, k25 = τ/κ6, −k2j , j = 1, 2, 3, are the roots of the equation

z3 + a1z
2 + a2z + a3 = 0 (2.6)
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with

a1=
1

∆1

{
l
[
iσT0(a(λ+2µ)+γ2)+κρσ2

]
+(λ+2µ)(iσaT0κτ+κ1κ3)

}
,

a2=
1

∆1

{
ρσ2(κ1κ3+iσaT0l+κτ)+τ

[
iσT0γ

2+iσaT0(λ+2µ)
]}

,

a3=
i

∆1
aT0ρσ

3τ, ∆1 = κ(λ+ 2µ)l > 0, l = κ4 + κ5 + κ6 > 0,

αj=
κ3[ρσ

2 − (λ+ 2µ)k2j ]

γ(τ − lk2j )
, βj =

iσγT0 + κ1αj

κk2j − iσaT0
, j = 1, 2, 3.

(2.7)

Proof. Assume that a vector U = (u,w, θ)⊤ is a solution of system (2.1)–
(2.3). From equations (2.1)–(2.2) we have

u(x) = u′(x) + u′′(x), w(x) = w′(x) + w′′(x),

where

u′(x) =
1

ρσ2
grad

[
− (λ+ 2µ) divu(x) + γθ(x)

]
,

w′(x) =
1

τ
grad

[
− l divw(x) + κ3θ(x)

]
;

(2.8)

u′′(x) =
µ

ρσ2
rot rotu(x),

w′′(x) =
κ6

ρ
rot rotw(x).

(2.9)

If we apply the operator div to both parts of equalities (2.1) and (2.2),
and take into account equalities (2.3), then we obtain[

(λ+ 2µ)∆ + ρσ2
]

divu(x)− γ∆θ(x) = 0,

(l∆+ τ)divw(x)− κ3∆θ(x) = 0,

iσγT0 divu(x) + κ1 divw(x) + (κ∆+ iσaT0)θ(x) = 0.

From these equations we get
(∆ + k21)(∆ + k22)(∆ + k23)(divu,divw, θ)⊤ = 0, (2.10)

where −k2j , j = 1, 2, 3, are the roots of equation (2.6).
In view of equalities (2.8) and (2.10), we obtain
(∆ + k21)(∆ + k22)(∆ + k23)(u

′, w′)⊤ = 0, rotu′ = 0, rotw′ = 0. (2.11)
We represent the vectors u′(x), w′(x) and the function θ(x) as:

u′(x) =
3∑

j=1

u(j)(x), w′(x) =
3∑

j=1

w(j)(x), θ(x) =
3∑

j=1

θ(j)(x). (2.12)

Naturally,

(u(j), w(j), θ(j))⊤ =
[ 3∏
j ̸=q=1

∆+ k2q
k2q − k2j

]
(u′, w′, θ)⊤, j = 1, 2, 3. (2.13)
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From (2.10)–(2.11) and (2.13) we derive

(∆ + k2j )u
(j)(x) = 0, rotu(j)(x) = 0, j = 1, 2, 3,

(∆ + k2j )w
(j)(x) = 0, rotw(j)(x) = 0, j = 1, 2, 3,

(∆ + k2j )θ
(j)(x) = 0, j = 1, 2, 3.

(2.14)

Since divu = divu′, divw = divw′, rotu′ = 0, rotw′ = 0, with the help
of (2.14) and the identity

grad divu′ = ∆u′ + rot rotu′ = ∆u′, grad divw′ = ∆w′,

from (2.8) and (2.3) we get[
ρσ2 − (λ+ 2µ)k2j

]
u(j)(x)− γ grad θ(j)(x) = 0, (2.15)

(τ − lk2j )w
(j)(x)− κ3 grad θ(j)(x) = 0, (2.16)

iσγT0 divu(j)(x) + κ1 divw(j)(x) + (iσaT0 − κk2j )θ(j)(x) = 0, (2.17)
j = 1, 2, 3.

From (2.15) and (2.16) we have

w(j)(x) = αju
(j)(x), j = 1, 2, 3, (2.18)

where

αj =
κ3[ρσ

2 − (λ+ 2µ)k2j ]

γ(τ − lk2j )
, j = 1, 2, 3.

If we substitute the expressions of w(j)(x) from (2.18) into (2.17), we get

θ(j)(x) = βj divu(j)(x), j = 1, 2, 3, (2.19)
where

βj =
iσγT0 + κ1αj

κk2j − iσaT0
, j = 1, 2, 3.

Substitute the expressions of w(j)(x) and θ(j)(x), j = 1, 2, 3, given by (2.18)–
(2.19) into (2.12) to obtain

u′(x) =
3∑

j=1

u(j)(x), w′(x) =
3∑

j=1

αju
(j)(x),

θ(x) =

3∑
j=1

βj divu(j)(x), rotu(j)(x) = 0, j = 1, 2, 3.

(2.20)

On the other hand, since rotu = rotu′′, rotw = rotw′′, divu′′ = 0,
divw′′ = 0 and rot rotu′′ = −∆u′′, rot rotw′′ = −∆w′′, from (2.9) we get

(∆ + k24)u
′′(x) = 0, divu′′(x) = 0,

(∆ + k25)w
′′(x) = 0, divw′′(x) = 0,

(2.21)

where k24 = ρσ2/µ, k25 = τ/κ6.
The following lemmas are valid [3, 12].
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Lemma 2.2. If a vector v = (v1, v2, v3)
⊤ in the domain Ω ⊂ R3 satisfies

the following system of differential equations

(∆ + k2)v(x) = 0, rot v(x) = 0,

then v can be represented as

v(x) = gradΦ(x),

where Φ(x) is a solution of the Helmholtz equation (∆ + k2)Φ(x) = 0; here
k is an arbitrary constant.

Lemma 2.3. If a vector v = (v1, v2, v3)
⊤ in the domain Ω ⊂ R3 satisfies

the following system of differential equations

(∆ + k2)v(x) = 0, div v(x) = 0,

then v can be represented as

v(x) = rot rot(xΨ1(x)) + rot(xΨ2(x)),

where Ψj(x), j=1, 2, are solutions of the Helmholtz equation (∆+k2)Ψj(x)=
0, j = 1, 2; here k is an arbitrary constant.

Due to Lemma 2.2 and Lemma 2.3, a solution of systems (2.14) and
(2.21) can be represented as

u′(x) = gradΦj(x), j = 1, 2, 3,

u′′(x) = rot rot(xΦ4(x)) + rot(xΦ5(x)),

w′′(x) = rot rot(xΦ6(x)) + rot(xΦ7(x)),

(2.22)

where

(∆ + k2j )Φj(x) = 0, j = 1, 2, 3, (∆ + k24)Φj(x) = 0, j = 4, 5,

(∆ + k25)Φj(x) = 0, j = 6, 7.

Substitution of the expressions (2.22) into (2.20) proves the first part
of the theorem. As to the second part, it is proved by a straightforward
verification that the vector U = (u,w, θ)⊤ represented in the form (2.5) is
a solution of system (2.1)–(2.3). �

Remark 2.4. Hereinafter, we will assume that kj ̸= kp, j ̸= p, ℑkj > 0,
j = 1, 2, 3, 4, 5.

Let Ω+ = B(R) ⊂ R3 be a ball with center at the origin, of radius R,
and ΣR = ∂Ω. We denote Ω− := R3 \ Ω+.

Theorem 2.5. A vector U = (u,w, θ)⊤ represented by (2.5) will be uniquely
defined in the area Ω+ by the functions Φj(x), j = 1, 2, . . . , 7, if the following
conditions are fulfilled:∫

Σr

Φj(x) dΣr = 0, j = 4, 5, 6, 7, r = |x| < R. (2.23)
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Proof. From formulas (2.5) we get
3∑

j=1

k2jΦj(x) = −divu,
3∑

j=1

αjk
2
jΦj(x) = −divw,

3∑
j=1

βjk
2
jΦj(x) = −θ(x),

r2
( ∂2

∂r2
+

2

r

∂

∂r
+ k23+j

)
Φ3+2j(x) = x · (δ1j rotu+ δ2j rotw), j = 1, 2,

r2
( ∂2

∂r2
+

2

r

∂

∂r
+ k23+j

)
Φ2+2j(x) =

= − 1

k23+j

x · (δ1j rot rotu+ δ2j rot rotw), j = 1, 2,

δlj is the Kronecker function.
If u(x) = 0, w(x) = 0, θ(x) = 0, x ∈ Ω+, we have Φj(x) = 0, j = 1, 2, 3,

x ∈ Ω+,

r2
( ∂2

∂r2
+

2

r

∂

∂r
+ k24

)
Φj(x) = 0, j = 4, 5, x ∈ Ω+,

r2
( ∂2

∂r2
+

2

r

∂

∂r
+ k25

)
Φj(x) = 0, j = 6, 7, x ∈ Ω+.

(2.24)

Thus it remains to show that Φj(x) = 0, j = 4, 5, 6, 7. Applying the well
known representation of metaharmonic functions in the form of series, we
can write

Φj(x) =

∞∑
k=0

k∑
m=−k

gk(klr)A
(j)
mkY

(m)
k (ϑ, φ), j = 4, 5, 6, 7, x ∈ Ω+,

where A
(j)
mk are constants, Y (m)

k (ϑ, φ) is a spherical function

Y
(m)
k (ϑ, φ) =

√
2k + 1

4π
· (k −m)!

(k +m)!
P

(m)
k (cosϑ)eimφ,

P
(m)
k (cosϑ) is the associated Legendre polinomial of the first kind of degree

k and order m,

gk(klr) = r−1/2Jk+1/2(klr), kl =

{
k4, j = 4, 5,

k5, j = 6, 7,

Jk+1/2(klr) are the Bessel functions.
With the help of the equality( d2

dr2
+

2

r

d

dr
+ k2l

)
gk(klr) =

k(k + 1)

r2
gk(klr),
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from (2.24) we get
∞∑
k=0

k∑
m=−k

k(k + 1)gk(klr)A
(j)
mkY

(m)
k (ϑ, φ) = 0, j = 4, 5, 6, 7,

whence the equations A
(j)
mk = 0 follow for k ≥ 1 and j = 4, 5, 6, 7. Therefore

Φj(x) =
1

2
√
π
g0(klr)A

(j)
00 , j = 4, 5, 6, 7.

Further, from (2.23) we easily conclude A
(j)
00 = 0 for j = 4, 5, 6, 7, which

completes the proof. �

3. Orthonormal System of Spherical Vectors

Let r, ϑ, φ (0 ≤ r < +∞, 0 ≤ ϑ ≤ π, 0 ≤ φ < 2π) be the spherical
coordinates of x ∈ R3. Denote by Σ1 the unit sphere.

In the space L2(Σ1) consider the following complete orthonormal vectors
system (see [2, 12,17])

Xmk(ϑ, φ) = erY
(m)
k (ϑ, φ), k ≥ 0,

Ymk(ϑ, φ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eφ
sinϑ

∂

∂φ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

Zmk(ϑ, φ) =
1√

k(k + 1)

( eϑ
sinϑ

∂

∂φ
− eφ

∂

∂ϑ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

(3.1)

where |m| ≤ k, er, eϑ, eφ are the orthonormal vectors in R3,

er = (cosφ sinϑ, sinφ sinϑ, cosϑ)⊤,
eϑ = (cosφ cosϑ, sinφ cosϑ,− sinϑ)⊤,

eφ = (− sinφ, cosφ, 0)⊤,

Y
(m)
k (ϑ, φ) =

√
2k + 1

4π

(k −m)!

(k +m)!
P

(m)
k (cos θ)eimφ,

P
(m)
k (cosϑ) is the adjoint Legendre function.
Let us assume that a vector-function f (j) = (f

(j)
1 , f

(j)
2 , f

(j)
3 )⊤ and a

function f4 are represented as

f (j)(ϑ, φ) =

∞∑
k=0

k∑
m=−k

{
αmkXmk(ϑ, φ)+

+
√

k(k + 1)
[
β
(j)
mkYmk(ϑ, φ) + γ

(j)
mkZmk(ϑ, φ)

]}
, (3.2)

f4(ϑ, φ) =
∞∑
k=0

k∑
m=−k

αmkY
m
k (ϑ, φ), (3.3)
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where

α
(j)
mk =

2π∫
0

dφ

π∫
0

f (j)(ϑ, φ) ·Xmk(ϑ, φ) sinϑdϑ, k ≥ 0,

β
(j)
mk =

1√
k(k + 1)

2π∫
0

dφ

π∫
0

f (j)(ϑ, φ) · Y mk(ϑ, φ) sinϑdϑ, k ≥ 1,

γ
(j)
mk =

1√
k(k + 1)

2π∫
0

dφ

π∫
0

f (j)(ϑ, φ) · Zmk(ϑ, φ) sinϑdϑ, k ≥ 1,

αmk =

2π∫
0

dφ

π∫
0

f4(ϑ, φ) · Y
(m)

k (ϑ, φ) sinϑdϑ, k ≥ 0.

(3.4)

The symbol a · b denotes the scalar product of two vectors, b is complex
conjugate of b.

Note that in formula (3.2) and, in the sequel, in the summands of analo-
gous series, which contain the vectors Ymk(ϑ, φ), Zmk(ϑ, φ), the summation
index k varies from 1 to +∞.

Let us introduce a few important lemmas [3, 11].

Lemma 3.1. Let f (j) ∈ Cl(Σ1), l ≥ 1; then the coefficients α
(j)
mk, β(j)

mk, γ(j)
mk

defined by (3.4) admit the following estimates

α
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1), γ

(j)
mk = O(k−l−1).

Lemma 3.2. Let f4 ∈ Cl(Σ1), l ≥ 1; then the coefficients αmk defined by
(3.4) admit the following estimates

αmk = O(k−l).

Lemma 3.3. The vectors Xmk(ϑ, φ), Ymk(ϑ, φ), Zmk(ϑ, φ) defined by equal-
ities (3.1) admit the estimates:∣∣Xmk(ϑ, φ)

∣∣ ≤ √
2k + 1

4π
, k ≥ 0,

∣∣Ymk(ϑ, φ)
∣∣ < √

k(k + 1)

2k + 1
, k ≥ 1,

∣∣Zmk(ϑ, φ)
∣∣ < √

k(k + 1)

2k + 1
, k ≥ 1,

Hereinafter we make use the following equalities [6]

er ·Xmk(ϑ, φ) = Y
(m)
k (ϑ, φ), er · Ymk(ϑ, φ) = 0,

er · Zmk(ϑ, φ) = 0,

er ×Xmk(ϑ, φ) = 0, er × Ymk(ϑ, φ) = −Zmk(ϑ, φ),

er × Zmk(ϑ, φ) = Ymk(ϑ, φ);

(3.5)
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grad
[
a(r)Y

(m)
k (ϑ, φ)

]
=

=
da(r)

dr
Xmk(ϑ, φ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, φ),

rot
[
xa(r)Y

(m)
k (ϑ, φ)

]
=

√
k(k + 1) a(r)Zmk(ϑ, φ),

rot rot
[
xa(r)Y

(m)
k (ϑ, φ)

]
=

=
k(k + 1)

r
a(r)Xmk(ϑ, φ) +

√
k(k + 1)

( d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

(3.6)

div
[
a(r)Xmk(ϑ, φ)

]
=

( d

dr
+

2

r

)
a(r)Y

(m)
k (ϑ, φ),

div
[
a(r)Ymk(ϑ, φ)

]
= −

√
k(k + 1)

r
a(r)Y

(m)
k (ϑ, φ),

div
[
a(r)Zmk(ϑ, φ)

]
= 0,

rot
[
a(r)Xmk(ϑ, φ)

]
=

√
k(k + 1)

r
a(r)Zmk(ϑ, φ),

rot
[
a(r)Ymk(ϑ, φ)

]
= −

( d

dr
+

1

r

)
a(r)Zmk(ϑ, φ),

rot
[
a(r)Zmk(ϑ, φ)

]
=

√
k(k + 1)

r
a(r)Xmk(ϑ, φ)+

+
( d

dr
+

1

r

)
a(r)Ymk(ϑ, φ).

(3.7)

4. Statement of the Problem. The Uniqueness Theorem

Problem. Find, in the domain Ω+, a regular vector U = (u,w, θ)⊤ satisfying
in this domain the system of differential equations (2.1)–(2.3) and, on the
boundary ∂Ω, one of the following boundary conditions:
(I(σ))+ (the Dirichlet problem)

{u(z)}+ = f (1)(z), {w(z)}+ = f (2)(z), {θ(z)}+ = f4(z);

(II(σ))+ (the Neumann problem){
P (1)(∂, n)U ′(z)

}+
= f (1)(z),

{
P (2)(∂, n)U ′′(z)

}+
= f (2)(z),{

P (3)(∂, n)U ′′(z)
}+

= f4(z),
(4.1)

where the vectors f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 ), j = 1, 2, and the function f4 are

given on the boundary ∂Ω, n(z) is the outward normal unit vector at the
point z ∈ ∂Ω.

Theorem 4.1. Problems (I(σ))+ and (ÎI(σ))+ have, in the domain Ω+, a
unique solution in the class of regular functions.

Proof. The theorem will be proved if we show that the homogeneous prob-
lems (f (j) = 0, j = 1, 2, f4 = 0) have only the trivial solution.
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Let the vector U = (u,w, θ)⊤ be a solution of the homogeneous problem
either (I(σ))+ or (II(σ))+. We multiply both sides of (2.1) by the vector
i σ T0 u, (2.2) by w and the complex-conjugate of (2.3) by the function θ.
The integration of these expressions over the domain Ω+ and summation
give∫

∂Ω

[
iσT0u(z) · P (1)(∂, n)U ′(z)+

+ w(z) · P (2)(∂, n)U ′′(z) + θ(z) · P (3)(∂, n)U
′′
(z)

]+
ds−

−
∫
Ω+

[
iσT0E

(1)(u, u)− iρσ|σ|2|u(x)|2 + E(2)(w,w)− τ |w(x)|2+

+κ| grad θ(x)|2+(κ1+κ3)w(x) · grad θ(x)+iσaT0|θ(x)|2
]
dx=0, (4.2)

where [9, 15]

E(1)(u, u) =
3λ+ 2µ

3
| divu|2 + µ

2

3∑
k ̸=j=1

∣∣∣∂uk

∂xj
+

∂uj

∂xk

∣∣∣2+
+

µ

3

3∑
k,j=1

∣∣∣∂uk

∂xk
− ∂uj

∂xj

∣∣∣2,
E(2)(w,w) =

3κ4 + κ5 + κ6

3
| divw|2 + κ6 − κ5

2
| rotw|2+

+
κ5+κ6

4

3∑
k ̸=j=1

∣∣∣∂wk

∂xj
+
∂wj

∂xk

∣∣∣2+κ5+κ6

6

3∑
k,j=1

∣∣∣∂wk

∂xk
− ∂wj

∂xj

∣∣∣2.
Since U = (u,w, θ)⊤ is a solution of the homogeneous problem, equality
(4.2) implies∫

Ω+

[
iσT0E

(1)(u, u)− iρσ|σ|2|u(x)|2 + E(2)(w,w)− τ |w(x)|2+

+ κ| grad θ(x)|2 + (κ1 + κ3)w(x) · grad θ(x) + iσaT0|θ(x)|2
]
dx = 0.

If in this equality we separate the real part, we will get∫
Ω+

[
σ2T0E

(1)(u, u) + E(2)(w,w) + ρσ2|σ|2|u(x)|2 + σ2δ|w(x)|2+

+ aT0σ2|θ(x)|2 +
4κκ2 − (κ1 + κ3)

2

4κ
|w(x)|2+

+
1

4κ
∣∣(κ1 + κ3)w(x) + 2κ grad θ(x)

∣∣2] dx = 0.

Hence it follows that u(x) = 0, w(x) = 0, θ(x) = 0, x ∈ Ω+. �
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5. Solution of the Boundary Value Problems

We seek a solution of the Dirichlet and Neumann Problems by formulas
(2.5), where

Φj(x) =
∞∑
k=0

k∑
m=−k

gk(kjr)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 1, 2, 3,

Φj(x) =
∞∑
k=0

k∑
m=−k

gk(k4r)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 4, 5,

Φj(x) =

∞∑
k=0

k∑
m=−k

gk(k5r)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 6, 7.

(5.1)

Here A
(j)
mk, j = 1, 7, are the sought constants, Y

(m)
k (ϑ, φ) is a spherical

function and

gk(kjr) =

√
R

r

Jk+ 1
2
(kjr)

Jk+ 1
2
(kjR)

,

Jk+ 1
2
(x) is a Bessel function.

Substituting the expressions of Φj(x) j = 4, 5, 6, 7, from (5.1), into (2.23),
we get A

(j)
00 = 0, j = 4, 5, 6, 7. If we substitute the expressions of the

functions Φj(x) j = 1, 7, from (2.5) and take into account equalities (3.6),
we obtain

u(x) =
∞∑
k=0

k∑
m=−k

{
u
(1)
mk(r)Xmk(ϑ, φ)+

+
√
k(k + 1)

[
v
(1)
mk(r)Ymk(ϑ, φ) + w

(1)
mk(r)Zmk(ϑ, φ)

]}
,

w(x) =

∞∑
k=0

k∑
m=−k

{
u
(2)
mk(r)Xmk(ϑ, φ)+

+
√
k(k + 1)

[
v
(2)
mk(r)Ymk(ϑ, φ) + w

(2)
mk(r)Zmk(ϑ, φ)

]}
,

θ(x) =
∞∑
k=0

k∑
m=−k

umk(r)Y
(m)
k (ϑ, φ),

(5.2)

where

u
(1)
mk(r) =

3∑
j=1

d

dr
gk(kjr)A

(j)
mk +

k(k + 1)

r
gk(k4r)A

(4)
mk, k ≥ 0,

v
(1)
mk(r) =

3∑
j=1

1

r
gk(kjr)A

(j)
mk +

( d

dr
+

1

r

)
gk(k4r)A

(4)
mk, k ≥ 1,

w
(1)
mk(r) = gk(k4r)A

(5)
mk, k ≥ 1,
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u
(2)
mk(r) =

3∑
j=1

αj
d

dr
gk(kjr)A

(j)
mk +

k(k + 1)

r
gk(k5r)A

(6)
mk, k ≥ 0,

v
(2)
mk(r) =

3∑
j=1

αj
1

r
gk(kjr)A

(j)
mk +

( d

dr
+

1

r

)
gk(k5r)A

(6)
mk, k ≥ 1,

w
(2)
mk(r) = gk(k5r)A

(7)
mk, k ≥ 1,

umk(r) = −
3∑

j=1

βjk
2
j gk(kjr)A

(j)
mk, k ≥ 0.

If we substitute the expressions of the vectors u(x), w(x) and the function
θ(x) into (2.4) and use equalities (3.5) and (3.7), we get

P (1)(∂, n)U ′(x) =

∞∑
k=0

k∑
m=−k

{
a
(1)
mk(r)Xmk(ϑ, φ) +

√
k(k + 1)×

×
[
b
(1)
mk(r)Ymk(ϑ, φ) + c

(1)
mk(r)Zmk(ϑ, φ)

]}
,

P (2)(∂, n)U ′′(x) =
∞∑
k=0

k∑
m=−k

{
a
(2)
mk(r)Xmk(ϑ, φ) +

√
k(k + 1)×

×
[
b
(2)
mk(r)Ymk(ϑ, φ) + c

(2)
mk(r)Zmk(ϑ, φ)

]}
,

P (3)(∂, n)U ′′(x) =

∞∑
k=0

k∑
m=−k

amk(r)Y
(m)
k (ϑ, φ),

(5.3)

where

a
(1)
mk(r) =

3∑
j=1

[
2µ

d2

dr2
+ (γβj − λ)k2j

]
gk(kjr)A

(j)
mk+

+
2µk(k + 1)

r

( d

dr
− 1

r

)
gk(k4r)A

(4)
mk, k ≥ 0,

b
(1)
mk(r) =

3∑
j=1

2µ
1

r

( d

dr
− 1

r

)
gk(kjr)A

(j)
mk+

+ µ
[
2
d

r

( d

dr
+

1

r

)
+ k24

]
gk(k4r)A

(4)
mk, k ≥ 1,

c
(1)
mk(r) = µ

( d

dr
− 1

r

)
gk(k4r)A

(5)
mk, k ≥ 1,

a
(2)
mk(r) =

3∑
j=1

[
(κ5 + κ6)αj

d2

dr2
+ (κ3βj − κ4αj)k

2
j

]
gk(kjr)A

(j)
mk+

+
(κ5 + κ6)k(k + 1)

r

( d

dr
− 1

r

)
gk(k5r)A

(6)
mk, k ≥ 0,



Boundary Value Problems of the Theory of Thermoelasticity. . . 77

b
(2)
mk(r) =

3∑
j=1

αj(κ5 + κ6)
1

r

( d

dr
− 1

r

)
gk(kjr)A

(j)
mk+

+
[
(κ5 + κ6)

d

dr

( d

dr
+

1

r

)
+ κ5k

2
5

]
gk(k5r)A

(6)
mk, k ≥ 1,

c
(2)
mk(r) =

(
κ6

d

dr
− κ5

1

r

)
gk(k5r)A

(7)
mk, k ≥ 1,

amk(r) =
3∑

j=1

(
αj(κ1 + κ3)− κβjk

2
j

) d

dr
gk(kjr)A

(j)
mk+

+
(κ1 + κ3)k(k + 1)

r
gk(k5r)A

(6)
mk, k ≥ 0.

Let us first consider the Neumann problem.
Assume that the vectors f (j)(ϑ, φ), j = 1, 2, and the function f4(ϑ, φ)

can be represented in the form (3.2) and (3.3).
Passing to the limit on both sides of (5.3) as x → z ∈ ∂Ω and using both

the Neumann boundary conditions (4.1) and equalities (3.2)–(3.3), for the
sought constants A

(j)
mk , j = 1, 7, we obtain the following system of linear

algebraic equations:
(1) for k = 0, m = 0 (three simultaneous equations with the three

unknowns A
(j)
00 , j = 1, 2, 3),

a
(1)
00 (R) = α

(1)
00 , a

(2)
00 (R) = α

(2)
00 , a00(R) = α00; (5.4)

(2) for k ≥ 1, −k ≤ m ≤ k
(a)

µ
( d

dR
− 1

R

)
gk(k4R)A

(5)
mk = γ

(1)
mk,(

κ6
d

dR
− κ5

1

R

)
gk(k5R)A

(7)
mk = γ

(2)
mk;

(5.5)

(b) (five simultaneous equations with the five unknowns A
(j)
mk, j =

1, 2, 3, 4, 6)

a
(j)
mk(R) = α

(1)
mk, b

(j)
mk(R) = β

(j)
mk, j = 1, 2, amk(R) = αmk. (5.6)

Due to Theorems 4.1 and 2.5, system (5.4)–(5.6) is uniquely solvable
with respect to the unknowns A

(j)
mk, j = 1, 7. Thus we can construct ex-

plicitly a formal solution of the Neumann problem in the form of series.
Further we have to investigate the convergence of these formal series and
their derivatives.

The asymptotic representations

gk(kjr) ≈
( r

R

)k

, g′k(kjr) ≈
k

r

( r

R

)k

, r < R (5.7)

are valid for k → +∞ [16].
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If x ∈ Ω+ (r < R), then by asymptotics (5.7), the series (5.2)–(5.3)
converge absolutely and uniformly.

If x ∈ ∂Ω (r = R), then by Lemmas 3.1–3.3 and asymptotics (5.7), series
(5.2)–(5.3) will be absolutely and uniformly convergent provided that the
majorized series

∞∑
k=k0

k3/2
2∑

j=1

(
|α(j)

mk|+ k|β(j)
mk|+ k|γ(j)

mk|+ |αmk|
)

(5.8)

are convergent. Series (5.8) will be convergent if the coefficients α
(j)
mk, β(j)

mk,
γ
(j)
mk, αmk, j = 1, 2, admit the following estimates

α
(j)
mk = O(k−3), β

(j)
mk = O(k−4),

γ
(j)
mk = O(k−4), αmk = O(k−3), j = 1, 2.

(5.9)

According to Lemmas 3.1 and 3.2, estimates (5.9) will hold if we require
that

f (j)(z) ∈ C3(∂Ω), j = 1, 2, f4(z) ∈ C3(∂Ω). (5.10)
Therefore if the boundary vector-functions satisfy conditions (5.10), then

the vector U = (u,w, θ)⊤ represented by equalities (5.2) will be a regular
solution of Problem (II(σ))+.

Problem (I(σ))+ can be treated analogously.

6. Appendix: Properties of the Characteristic Roots and
Wave Numbers

Let us introduce the blockwise 7 × 7 matrix differential operator corre-
sponding to system (2.1)–(2.3)

L(∂, σ) :=


L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ)

L(3)(∂, σ) L(4)(∂, σ) L(6)(∂, σ)

L(7)(∂, σ) L(8)(∂, σ) L(9)(∂, σ)


7×7

,

where
L(1)(∂, σ) := [µ∆+ ρσ2]I3 + (λ+ µ)Q(∂),

L(2)(∂, σ) := L(3)(∂, σ) = [O]3×3,

L(4)(∂, σ) := [κ6∆+ τ ]I3 + (κ4 + κ5)Q(∂),

L(5)(∂, σ) := −γ∇⊤, L(6)(∂, σ) := −κ3∇⊤, L(7)(∂, σ) := iσγT0∇,

L(8)(∂, σ) := κ1∇, L(9)(∂, σ) := κ∇+ iσaT0, Q(∂) = [∂k∂j ]3×3,

∇ = ∇(∂) = [∂1, ∂2, ∂3], ∂j = ∂/∂xj , j = 1, 2, 3, I3 stands for the 3× 3 unit
matrix.

Due to the above notation, system (2.1)–(2.3) can be rewritten in matrix
form as

L(∂, σ)U(x) = 0, U = (u,w, θ)⊤. (6.1)
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Denote by Fx→ξ the Fourier transforms

Fx→ξ[f ] =

∫
R3

f(x)eix·ξ dx = f̂(ξ),

where x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3).
The Fourier transform has the following property:

L(∂αf) = (−iξ)αF[f ], (6.2)
where α = (α1, α2, α3) is a multi-index, |α| = α1 + α2 + α3 and ξα =
ξα1
1 ξα2

2 ξα3
3 .

Let us perform Fourier transforms of (6.1) and take into consideration
(6.2); we obtain

L(−iξ, σ)Û(ξ) = 0, (6.3)
where

L(1)(−iξ, σ) :=
(
− µ|ξ|2 + ρσ2

)
I3 − (λ+ µ)Q(ξ),

L(2)(−iξ, σ) := L(3)(−iξ, σ) = [O]3×3,

L(4)(−iξ, σ) :=
(
− κ6|ξ|2 + τ

)
I3 − (κ4 + κ5)Q(ξ),

L(5)(−iξ, σ) := iγξ⊤, L(6)(−iξ, σ) := iκ3ξ
⊤, L(7)(−iξ, σ) := σγT0ξ,

L(8)(−iξ, σ) := −iκ1ξ, L(9)(−iξ, σ) := −κ|ξ|2 + iσaT0,

Q(ξ) = [ξk ξj ]3×3.

The determinant of system (6.3) reads as
detL(−iξ, σ) =

= µ(λ+ 2µ)lκ6

(
µ|ξ|2 − ρσ2

)2
(κ6|ξ|2 − τ)2

(
|ξ|6 − a1|ξ|4 + a2|ξ|2 − a3

)
,

where a1, a2, a3 are given by (2.7), l = κ4 + κ5 + κ6.
The numbers k2j , j = 1, 5, are the roots of the equation detL(−iξ, σ) = 0

with respect to |ξ|.

Lemma 6.1. Let us assume that σ = σ1 + iσ2 is a complex parameter,
where σ1 ∈ R and σ2 > 0. Then

detL(−iξ, σ) ̸= 0

for arbitrary ξ ∈ R3.

Proof. We prove the lemma by contradiction. Let detL(−iξ, σ) = 0, ξ ∈
R3. Then the system of equations L(−iξ, σ)X = 0 has a nontrivial so-
lution. Denote this solution by X = (X(1), X(2), X(3))⊤, where X(j) =

(X
(j)
1 , X

(j)
2 , X

(j)
3 )⊤ ∈ C3 j = 1, 2, and X(3) ∈ C. Taking into consideration

(6.3), the system L(−iξ, σ) = 0 can be rewritten as follows:[(
ρσ2 − µ|ξ|2

)
I3 − (λ+ µ)Q(ξ)

]
X(1) + iγξ⊤X(3) = 0, (6.4)[(

τ − κ6|ξ|2
)
I3 − (κ4 + κ5)Q(ξ)

]
X(2) + iκ3ξ

⊤X(3) = 0, (6.5)
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σγT0(ξ ·X(1))− iκ1(ξ ·X(2)) + (−κ|ξ|2 + iσaT0)X
(3) = 0. (6.6)

Assume that |ξ| ̸= 0.

Let us multiply equation (6.4) by the vector iσT0X(1), equation (6.5) by
X

(2) and the complex-conjugate of equation (6.6) by the function X(3) and
add the obtained results. After simplification, we obtain

iσT0

(
ρσ2 − µ|ξ|2

)
|X(1)|2 − iσT0(λ+ µ)|ξ ·X(1)|2+

+
(
τ − κ6|ξ|2

)
|X(2)|2 − (κ4 + κ5)|ξ ·X(2)|2+

+i(κ1 + κ3)(ξ ·X
(2)

)X(3) +
(
− κ|ξ|2 − iσaT0

)
|X(3)|2 = 0.

Recall that the central dot denotes the scalar product, a · b =
3∑

j=1

ajbj for

the vectors a and b. Let us separate the real part:

T0σ2

[(
ρ|σ|2 + µ|ξ|2

)
|X(1)|2 + (λ+ µ)|ξ ·X(1)|2

]
+

+
(
σ2δ + κ6|ξ|2

)
|X(2)|2 + (κ4 + κ5)|ξ ·X(2)|2 + σ2aT0|X(3)|2+

+
4κκ2−(κ1+κ3)

2

4κ
|X(2)|2+ 1

4κ

∣∣∣(κ1+κ3)X
(2)−2iκξX(3)

∣∣∣2=0. (6.7)

Here we have used the following relation:

κ|ξ|2|X(3)|2 − (κ1 + κ3)Re
[
i(ξ ·X(2)

)X(3)
]
+ κ2|X(2)|2 =

=
4κκ2 − (κ1 + κ3)

2

4κ
|X(2)|2 + 1

4κ

∣∣∣(κ1 + κ3)X
(2) − 2iκξX(3)

∣∣∣2 ≥ 0.

From equation (6.7) we obtain that X(j) = 0, j = 1, 2, 3. For ξ = 0 equation
(6.7) recasts as

ρ|σ|2σ2T0|X(1)|2 + (κ2 + σ2δ)|X(2)|2 + σ2aT0|X(3)|2 = 0,

hence, X(j) = 0, j = 1, 2, 3.
Thus, we obtain that the system L(−iξ, σ)X = 0 has only the trivial

solution for arbitrary ξ ∈ R3. This contradiction proves the lemma. �

Corollary 6.2. Let σ = σ1 + iσ2 be a complex parameter with σ1 ∈ R and
σ2 > 0. Consider the equation

detL(−iξ, σ) = 0 (6.8)

with respect to |ξ|. The roots ±kj, j = 1, 5, of equation (6.8) are complex
with ℑkj > 0, j = 1, 5.
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Abstract. Using critical point theory, we study the existence of homo-
clinic orbits for the first-order superquadratic Hamiltonian system

ż = JHz(t, z),
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ÒÄÆÉÖÌÄ. ÐÉÒÅÄËÉ ÒÉÂÉÓ ÓÖÐÄÒÊÅÀÃÒÀÔÖËÉ äÀÌÉËÔÏÍÖÒÉ ÓÉÓ-
ÔÄÌÉÓÀÈÅÉÓ

ż = JHz(t, z),

ÓÀÃÀÝ H(t, z) ÀÒÉÓ ÓÖÐÄÒÊÅÀÃÒÀÔÖËÉ ÃÀ t-Ó ÌÉÌÀÒÈ ÐÄÒÉÏÃÖËÉ,
ÊÒÉÔÉÊÖËÉ ßÄÒÔÉËÉÓ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÂÀÌÏÊÅËÄÖËÉÀ äÏÌÏ-
ÊËÉÍÉÊÖÒÉ ÏÒÁÉÔÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÓÀÊÉÈáÉ.
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1. Introduction

This paper is devoted to the study of the existence of homoclinic orbits
for the first-order time-dependent Hamiltonian system

ż = JHz(t, z), (1.1)
where z = (p, q) ∈ RN × RN . Here H has the form

H(t, z) =
1

2
B(t)z · z +G(t, z) + h(t)z, (1.2)

where G ∈ C(R×R2N ,R) is T -periodic in t, B(t) is a continuous T -periodic
and symmetric 2N ×2N matrix function, h : R → R2N is a continuous and
bounded function and J is the standard 2N × 2N symplectic matrix

J =

(
0 −IN
IN 0

)
.

In recent years several authors studied homoclinic orbits for Hamiltonian
systems via the critical point theory. For the second order Hamiltonian
systems we refer the reader to [1, 2, 7, 8, 10–13] and for for the first order
to [3–6,9, 14–17] (and the references therein).

Throughout this paper, we always assume the following:
(H1) G(t, z) ≥ 0, for all (t, z) ∈ R × R2N ;
(H2) G(t, z) = o(|z|2) as |z| −→ 0 uniformly in t;

(H3)
G(t,z)
|z|2 −→ +∞ as |z| −→ +∞ uniformly in t;

(H4) There exist constants β > 1, 1 < λ < 1 + β−1
β , a1 > 0, a2 > 0 and

τ ∈ L1(R,R+) such that
z ·Gz(t, z)− 2G(t, z) ≥ a1|z|β − τ(t), (t, z) ∈ R × R2N (1.3)

and
|Gz(t, z)| ≤ a2|z|λ, ∀ (t, z) ∈ R × R2N ; (1.4)

(H5) there exist constants a3 > 0 and η > 0 such that∫
R

|h(t)| dt ≤ a3,

(∫
R

|h(t)|2 dt
) 1

2

≤ η

2ϱ
,

2(η + ϱ∥τ∥L1)

ϱξ
≤ 1, a2 < min

{ξ

2
,

ξ

2ϱλ+1

}
,

where ϱ and ξ are two positive constants which will be defined in
Proposition 3.1 and in (3.13) later.

A solution z(t) of (1.1) is said to be homoclinic (to 0) if z(t) → 0 as
t → ±∞. In addition, if z(t) ̸≡ 0, then z(t) is called a nontrivial homoclinic
solution.

Theorem 1.1. Let (H1) − (H5) be satisfied. Then (1.1) possesses a non-
trivial homoclinic solution such that z(t) → 0 as t → ±∞.
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This paper is motivated by the work of Rabinowitz [12] in which the
existence of nontrivial homoclinic solutions for the second order Hamiltonian
system

q̈ + Vq(t, q) = 0

was established.
The paper is organized as follows. In Section 2, we establish a variational

structure for (1.1) with a periodic boundary value condition. Our main
result (Theorem 1.1) will be proved in Section 3.

2. Variational Structure

Let A = −(J(d/dt+B(t)) be a self-adjoint operator acting on L2(R,R2N )

with the domain D̃(A) = H1(R,R2N ). If E := D̃(|A| 12 ), then E is a Hilbert
space with the inner product

⟨z, v⟩ = (z, v)L2 +
(
|A| 12 z, |A| 12 v

)
L2 , z, v ∈ E,

and E = H
1
2 (R,R2N ). Let Ek := H

1
2

2kT (R,R2N ) for each k ∈ N. Then Ek

is a Hilbert space with the norm ∥ · ∥Ek
given by (here z ∈ Ek)

∥z∥Ek
=

( kT∫
−kT

(∣∣|A| 12 z∣∣2 + |z|2
)
dt

)1/2

. (2.1)

Furthermore, let L∞
2kT (R,R2N ) denote a space of 2kT -periodic essentially

bounded (measurable) functions from R into R2N equipped with the norm
∥z∥L∞

2kT
:= ess sup

{
|z(t)| : t ∈ [−kT, kT ]

}
.

As in [10], a homoclinic solution of (1.1) will be obtained as a limit, as
k → ±∞, of a certain sequence of functions zk ∈ Ek. We consider a
sequence of systems of differential equations

ż = J(B(t)z +Gz(t, z) + hk(t)), (2.2)
where for each k ∈ N, hk : R → RN is a 2kT -periodic extension of the
restriction of h to the interval [−kT, kT ] and zk, a 2kT -periodic solution of
(2.1), will be obtained via a linking theorem.

We define

⟨Au, v⟩ =
kT∫

−kT

(
−
(
J

d

dt
+B

)
u, v

)
dt, ∀u, v ∈ Ek (2.3)

and

Ik(z) =
1

2
⟨Az, z⟩ −

kT∫
−kT

G(t, z) dt−
kT∫

−kT

hk(t) · z(t) dt. (2.4)

We have from (2.3) that A has a sequence of eigenvalues

· · · ξ(−m)
k ≤ · · · ≤ ξ

(−2)
k ≤ ξ

(−1)
k < 0 < ξ

(1)
k ≤ ξ

(2)
k ≤ · · · ≤ ξ

(m)
k · · ·
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with ξ
(m)
k −→ ∞ and ξ

(−m)
k −→ −∞ as m −→ ∞. Let φj

k be the eigenvector
of A corresponding to ξ

(j)
k , j = ±1,±2, . . . ,±m, . . . . Set

E0
k = ker(A), E−

k = the negative eigenspace of A
and

E+
k = the positive eigenspace of A.

Hence there exists an orthogonal decomposition Ek = E0
k ⊕E−

k ⊕E+
k with

dim(E0
k) < ∞.

Lemma 2.1 ( [11]). Let E be a real Hilbert space with E = E(1)⊕E(2) and
E(1) = (E(2))⊥. Suppose I ∈ C1(E,R) satisfies the (PS) condition, and

(C1) I(u) = 1
2 (Lu, u) + b(u), where Lu = L1P1u+ L2P2u, Li : E

(i) 7−→
E(i) is bounded and self-adjoint, Pi is the projector of E onto E(i),
i = 1, 2;

(C2) b′ is compact;
(C3) there exist a subspace Ẽ ⊂ E, the sets S ⊂ E, Q ⊂ Ẽ and constants

α̃ > ω such that
(i) S ⊂ E(1) and I|S ≥ α̃;
(ii) Q is bounded and I|∂Q ≤ ω;
(iii) S and ∂Q are linked .

Then I possesses a critical value c ≥ α̃ given by
c = inf

g∈Γ
sup
u∈Q

I(g(1, u)),

where
Γ ≡

{
g ∈ C([0, 1]× E,E)|g satisfies (Γ1)− (Γ3)

}
,

(Γ1) g(0, u) = u;
(Γ2) g(t, u) = u for u ∈ ∂Q;
(Γ3) g(t, u) = eθ(t,u)Lu+ χ(t, u), where θ(t, u) ∈ C([0, 1]× E,R), and χ

is compact.

3. Proof of the Main Result

The following result in [11, p. 36, Proposition 6.6] will be used.

Proposition 3.1. There is a positive constant cµ such that for each k ∈ N
and z ∈ Ek the following inequality holds:

∥z∥Lµ
2kT

≤ cµ∥z∥Ek
, (3.1)

where µ ∈ [1,+∞). For notational purposes let cλ+1 = ϱ.

Lemma 3.1. Under the conditions of Theorem 1.1, Ik satisfies the (PS)
condition.
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Proof. Assume that {zkn}n∈N in Ek is a sequence such that {Ik(zkn)}n∈N
is bounded and I ′k(zkn) → 0 as n → +∞. Then there exists a constant
d1 > 0 such that

|Ik(zkn)| ≤ d1, I ′k(zkn) → 0 as n → ∞. (3.2)

We first prove that {zkn}n∈N is bounded. Let zkn = z0kn
+ z+kn

+ z−kn
∈

E0
k ⊕ E+

k ⊕ E−
k . From (1.3) of (H4), (H5), (2.4) and (3.1), there exists a

constant c̃β̂ > 0 such that (here 1

β̂
+ 1

β = 1)

2d1 ≥ 2Ik(zkn)−
⟨
I ′k(zkn), zkn

⟩
=

=

kT∫
−kT

[
zkn ·Gzkn

(t, zkn)− 2G(t, zkn)
]
dt−

kT∫
−kT

hk(t) · zkn dt ≥

≥
kT∫

−kT

a1|zkn |β dt−
kT∫

−kT

τk(t) dt−
kT∫

−kT

|hk(t)| |zkn | dt ≥

≥ a1∥zkn∥
β

Lβ
2kT

− ∥τk∥L1
2kT

− cβ∥hk∥Lβ̂
2kT

∥zkn∥Lβ
2kT

≥

≥ a1∥zkn∥
β

Lβ
2kT

− ∥τ∥L1 − cβ∥h∥Lβ̂∥zkn∥Lβ
2kT

≥

≥ a1∥zkn∥
β

Lβ
2kT

− ∥τ∥L1 − cβ c̃β̂∥h∥L1∥zkn∥Lβ
2kT

≥

≥ a1∥zkn∥
β

Lβ
2kT

− ∥τ∥L1 − cβ c̃β̂a3∥zkn∥Lβ
2kT

, (3.3)

where for each k ∈ N, τk : R → RN is a 2kT -periodic extension of the
restriction of τ(t) to the interval [−kT, kT ].

Since β > 1, this implies that there exists a constant M̃0 > 0 with

∥zkn∥Lβ
2kT

≤ M̃0. (3.4)

Consider {∥z0kn
∥Ek

}n∈N. Note dim(E0
k) < +∞, and this implies that there

are the constants b1 and b2 such that

b1∥z0kn
∥Lβ

2kT
≤ ∥z0kn

||Ek
≤ b2∥z0kn

∥Lβ
2kT

≤ b2∥zkn∥Lβ
2kT

. (3.5)

By (3.4) and (3.5), there exists a constant M̃1 > 0 such that

∥z0kn
||Ek

≤ M̃1. (3.6)

Let α = β−1
β(λ−1) , then

1 < λ < 1 +
β − 1

β
, 0 <

(λα− 1)

α
< 1,

λα− 1 = α− 1

β
, α > 1.

(3.7)
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If 0 < ∥z∥L∞
2kT

≤ 1 for z ∈ Ek, we have from (1.4) of (H4) that

kT∫
−kT

∣∣Gz(t, z(t))
∣∣ dt ≤ a2

kT∫
−kT

|z(t)| dt. (3.8)

By using (3.1) and (3.8), we have (here 1
α + 1

σ = 1)

∥z+kn
∥Ek

≥
⟨
I ′k(zkn), z

+
kn

⟩
=

= ⟨Az+kn
, z+kn

⟩ −
kT∫

−kT

[
z+kn

·Gzkn
(t, zkn)

]
dt−

kT∫
−kT

hk(t) · z+kn
dt =

=⟨Az+kn
, z+kn

⟩−
( ∫
|zkn |≥1

+

∫
|zkn |<1

)[
z+kn

·Gzkn
(t, zkn)

]
dt−

kT∫
−kT

hk(t) · z+kn
dt ≥

≥ ⟨Az+kn
, z+kn

⟩ − η

2ϱ
∥zkn∥Ek

−
∫

|zkn |<1

a2|zkn | |z+kn
| dt−

−
( ∫
|zkn |≥1

∣∣Gzkn
(t, zkn)

∣∣α dt

) 1
α
( kT∫
−kT

|z+kn
|σ dt

) 1
σ

≥

≥ ⟨Az+kn
, z+kn

⟩ − η

2ϱ
∥zkn∥Ek

− a2∥zkn∥Ek
∥z+kn

∥Ek
−

−
( ∫
|zkn |≥1

∣∣Gzkn
(t, zkn)

∣∣α dt

) 1
α

cσ∥zkn∥Ek
(3.9)

and

∥z−kn
∥Ek

≥ −
⟨
I ′k(zkn), z

−
kn

⟩
=

= −⟨Az−kn
, z−kn

⟩+
kT∫

−kT

[
z−kn

·Gzkn
(t, zkn)

]
dt−

kT∫
−kT

hk(t) · z−kn
dt =

= −⟨Az−kn
, z−kn

⟩−
( ∫
|zkn |≥1

+

∫
|zkn |<1

)[
z−kn

·Gzkn
(t, zkn)

]
dt−

−
kT∫

−kT

hk(t) · z−kn
dt ≥

≥ −⟨Az−kn
, z−kn

⟩ − η

2ϱ
∥zkn∥Ek

−
∫

|zkn |<1

a2|zkn | |z−kn
| dt−
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−
( ∫
|zkn |≥1

∣∣Gzkn
(t, zkn)

∣∣α dt

) 1
α
( kT∫
−kT

|z−kn
|σ dt

) 1
σ

≥

≥ −⟨Az−kn
, z−kn

⟩ − η

2ϱ
∥zkn∥Ek

− a2∥zkn∥Ek
∥z−kn

∥Ek
−

−
( ∫
|zkn |≥1

∣∣Gzkn
(t, zkn)

∣∣α dt

) 1
α

cσ∥zkn∥Ek
. (3.10)

By using (1.4) of (H4) and (3.1), there exists a constant c β(λα−1)
β−1

> 0 such
that ∫

|zkn |≥1

∣∣Gzkn
(t, zkn)

∣∣α dt ≤
∫

|zkn |≥1

aα2 |zkn |λα dt ≤

≤ aα2

( ∫
|zkn |≥1

|zkn |β dt
) 1

β
( ∫
|zkn |≥1

|zkn |
(λα−1) β

β−1 dt

)1− 1
β

≤

≤ aα2 (c β(λα−1)
β−1

)λα−1

( ∫
|zkn |≥1

|zkn |β dt
) 1

β

∥zkn∥λα−1
Ek

. (3.11)

Combining (3.4) with (3.9)–(3.11), we find that
∥z+kn

∥Ek
+ ∥z−kn

∥Ek
≥

≥ ⟨Az+kn
, z+kn

⟩ − ⟨Az−kn
, z−kn

⟩ − a2∥zkn
∥Ek

(
∥z+kn

∥Ek
+ ∥z−kn

∥Ek

)
−

−η

ϱ
∥zkn

∥Ek
− cσ

( ∫
|zkn |≥1

∣∣Gzkn
(t, zkn

)
∣∣α dt

) 1
α (

∥zkn
∥Ek

+ ∥zkn
∥Ek

)
≥

≥ ξ1∥z+kn
∥2Ek

− ξ−1∥z−kn
∥2Ek

− η

ϱ
∥zkn∥Ek

− 2a2∥zkn∥2Ek
−

−2cσ(a
α
2

[(
c β(λα−1)

β−1

)λα−1
( ∫
|zkn |≥1

|zkn |β dt
) 1

β
] 1

α

∥zkn∥
(λα−1)

α

Ek
∥zkn∥Ek

≥

≥ ξ1∥z+kn
∥2Ek

− ξ−1∥z−kn
∥2Ek

− η

ϱ
∥zkn∥Ek

−

−2a2∥zkn∥2Ek
− 2cσD̃0

(
∥zkn∥Ek

) (λα−1)+α
α , (3.12)

where D̃0 = [aα2 ((c β(λα−1)
β−1

)λα−1M̃0]
1
α , and ξ1 is the smallest positive eigen-

value, ξ−1 is the largest negative eigenvalue of the operator A, respectively.
From (3.6) and (3.12), there exists a positive constant D̃1 > 0 such that

D̃1

(
∥z+kn

∥Ek
+ ∥z−kn

∥Ek
+ ∥z0kn

∥Ek

)
≥

≥ ∥z+kn
∥Ek

+∥z−kn
∥Ek

+ξM̃1∥z0kn
∥Ek

≥∥z+kn
∥Ek

+∥z−kn
∥Ek

+ξ∥z0kn
∥2Ek

≥
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≥ ξ1∥z+kn
∥2Ek

− ξ−1∥z−kn
∥2Ek

+ ξ∥z0kn
∥2Ek

−

−η

ϱ
∥zkn∥Ek

− 2a2∥zkn∥2Ek
− 2cσD̃0

(
∥zkn∥Ek

) (λα−1)+α
α ≥

≥ ξ
(
∥z+kn

∥2Ek
+ ∥z−kn

∥2Ek
+ ∥z0kn

∥2Ek

)
−

−η

ϱ
∥zkn∥Ek

− 2a2∥zkn∥2Ek
− 2cσD̃0

(
∥zkn∥Ek

) (λα−1)+α
α , (3.13)

where ξ = min{ξ1,−ξ−1}. This implies that

D̃1 +
η

ϱ
≥ (ξ − 2a2)∥zkn∥Ek

− 2cσD̃0

(
∥zkn∥Ek

) (λα−1)
α , (3.14)

where 0 < (λα−1)
α < 1. Since ξ1 − 2a2 > 0, we have that {∥zkn∥Ek

}n∈N is
bounded. Going if necessary to a subsequence, we can assume that there
exists z ∈ Ek such that zkn ⇀ z, as n −→ +∞, in Ek, which implies
zkn

−→ z uniformly on [−kT, kT ]. Hence (I ′k(zkn
) − I ′k(z))(zkn

− z) → 0
and ∥zkn − z∥L2

[−kT,kT ]
→ 0. Set

Φ =

kT∫
−kT

(
Gzkn

(t, zkn(t))−Gz(t, z(t)), zkn − z
)
dt.

It is easy to check that Φ → 0 as n → +∞. Moreover, an easy computation
shows that(

I ′k(zkn
)− I ′k(z)

)
(zkn

− z) =
⟨
A(zkn

− z), (zkn
− z)

⟩
− Φ.

This implies ∥zkn − z∥Ek
→ 0. �

Lemma 3.2. Under the conditions of Theorem 1.1, for every k ∈ N the
system (2.2) possesses a 2kT -periodic solution.

Proof. The proof will be divided into three steps.

Step 1: Assume that 0 < ∥z∥Ek
≤ 1 for z ∈ E

(1)
k = E+

k . From (1.3) of (H4)
and (3.1), we have

kT∫
−kT

G(t, z(t)) dt ≤ 1

2

[ kT∫
−kT

z ·Gz(t, z(t)) dt+

kT∫
−kT

τk(t) dt

]
≤

≤ 1

2

[
a2

kT∫
−kT

|z(t)|λ+1 dt+ ∥τ∥L1

]
≤ 1

2

[
a2ϱ

λ+1∥z∥λ+1
Ek

+ ∥τ∥L1

]
≤

≤ 1

2

[
a2ϱ

λ+1∥z∥2Ek
+ ∥τ∥L1

]
. (3.15)
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From (2.4) and (3.15), for z ∈ E
(1)
k = E+

k and 0 < ∥z∥Ek
≤ 1, we have

Ik(z) =
1

2
⟨Az, z⟩ −

kT∫
−kT

G(t, z) dt−
kT∫

−kT

z · hk(t) dt ≥

≥ ξ1
2
∥z∥2Ek

− 1

2

[
a2ϱ

λ+1∥z∥2Ek
+ ∥τ∥L1

]
− η

2ϱ
∥z∥Ek

≥

≥ 1

4
(ξ − 2a2ϱ

λ+1)∥z∥2Ek
+

ξ

4
∥z∥2Ek

−
(ηϱ + ∥τ∥L1)

2
. (3.16)

Note from (H5) that ξ − 2a2ϱ
λ+1 > 0. Set

ρ =
(2(ηϱ + ∥τ∥L1)

ξ

) 1
2 and α̃ =

ξ − 2a2ϱ
λ+1

4
.

Let Bρ denote the open ball in Ek with radius ρ about 0 and let ∂Bρ denote
its boundary. Let Sk = ∂Bρ ∩ E+

k . If z ∈ Sk, then ∥z∥Ek
=

( 2( η
ϱ+∥τ∥L1 )

ξ

) 1
2

(note that ||z||Ek
≤ 1 from (H5)) and thus (3.16) gives

Ik(z) ≥ α̃ z ∈ Sk.

Then (C3)(i) of Lemma 2.1 holds.
Step 2: Let e ∈ E+

k with ∥e∥Ek
= 1 and Ẽk = E−

k ⊕E0
k ⊕ span{e}. Let now

Θk =
{
z ∈ Ẽk : ∥z∥Ẽk

= 1
}
,

µ = inf
z∈E−

k ,∥z−∥Ek
=1

∣∣⟨Az−, z−⟩
∣∣, κ =

(2∥A∥
µ

)1/2

.

For z ∈ Θk, we write z = z− + z0 + z+.

I) If ∥z−∥Ek
> κ∥z+ + z0∥Ek

, then for any γ ≥ 2η(1+κ2)
ϱµκ2 > 0, we have

from (H1) that

Ik(γz) =
1

2
⟨Aγz−, γz−⟩+ 1

2
⟨Aγz+, γz+⟩−

−
kT∫

−kT

G(t, γz) dt−
kT∫

−kT

γz · hk(t) dt ≤

≤ −µ

2
γ2∥z−∥2Ek

+
∥A∥
2

γ2∥z+∥2Ek
+

η

2ϱ
γ ≤

≤ −µ

2
γ2∥z−∥2Ek

+
∥A∥
2

γ2∥z+ + z0∥2Ek
+

η

2ϱ
γ ≤

≤ −µ

2
γ2∥z−∥2Ek

+
∥A∥
2

γ2 1

κ2
∥z−∥2Ek

+
η

2
γ =

= −µ

4
γ2∥z−∥2Ek

+
η

2ϱ
γ ≤ 0; (3.17)
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note ∥z−∥2Ek
> κ2

1+κ2, since

1 = ∥z−∥2Ek
+ ∥z+ + z0∥2Ek

<
(1 + κ2)

κ2
∥z−∥2Ek

.

Let
∆k =

{
z ∈ Θk : ∥z−∥Ek

≤ κ∥z+ + z0∥Ek

}
.

II) If ∥z−∥Ek
≤ κ∥z+ + z0∥Ek

, we have
1 = ∥z∥2Ek

= ∥z−∥2Ek
+ ∥z+ + z0∥2Ek

≤ (1 + κ2)∥z+ + z0∥2Ek
, (3.18)

i.e.,
∥z+ + z0∥2Ek

≥ 1

(1 + κ2)
> 0. (3.19)

The argument in [6, pp. 6–7] guarantees that there exists εk1 > 0 such that,
∀u ∈ ∆k,

meas
{
t ∈ [0, 2kT ] : |u(t)| ≥ εk1

}
≥ εk1 . (3.20)

For z = z+ + z0 + z− ∈ ∆k, let
Ωz

k =
{
t ∈ [0, 2kT ] : |z(t)| ≥ εk1

}
.

By (H3), for Mk = ∥A∥
(εk1 )

3 > 0, there exists Lk such that

G(t, z) ≥ Mk|z|2, ∀ |z| ≥ Lk, uniformly in t. (3.21)
Let

γk ≥ max
{Lk

εk1
,

η

ϱ∥A∥

}
.

For γ ≥ γk, we have from (3.20) and (3.21) that
G(t, γz) ≥ Mk|γz|2 ≥ Mkγ

2(εk1)
2, ∀ t ∈ Ωz

k. (3.22)
From (H1) and (3.22), for γ ≥ γk we have for z ∈ ∆k that

Ik(γz) =
1

2
γ2⟨Az+, z+⟩+ 1

2
γ2⟨Az−, z−⟩−

−
kT∫

−kT

G(t, γz) dt−
kT∫

−kT

γz · hk(t) dt ≤
1

2
∥A∥γ2−

∫
Ωz

k

G(t, γz) dt+
η

2ϱ
γ ≤

≤ 1

2
∥A∥γ2 −Mkγ

2(εk1)
3 +

η

2ϱ
γ = − 1

2
∥A∥γ2 +

η

2ϱ
γ ≤ 0. (3.23)

Therefore we have shown that
Ik(γz) ≤ 0 for any z ∈ ∆k and γ ≥ γk. (3.24)

Let
E

(2)
k = E−

k ⊕ E0
k,

Qk =
{
γe : 0 ≤ γ ≤ 2γk

}
⊕
{
z ∈ E

(2)
k : ∥z∥Ek

≤ 2γk
}
.



94 Chengjun Guo et al.

By (H2), (3.16)–(3.17) and (3.24) we have Ik|∂Qk
≤ 0, i.e., Ik satisfies

(C2)(ii) of the Lemma 2.1.
Step 3: (C3)(iii) (i.e. Sk links ∂Qk) holds from the definition of Sk and Qk

and [11, p. 32]. Thus (C3)(iii) holds.
From (H2)–(H5) and (2.3), (C1) and (C2) of Lemma 2.1 are true, so by

Lemma 2.1, Ik possesses a critical value ck given by
ck = inf

gk∈Υk

sup
uk∈Qk

Ik(gk(1, uk)), (3.25)

where Υk satisfies (Γ1) − (Γ3). Hence, for every k ∈ N, there is z∗k ∈ Ek

such that
Ik(z

∗
k) = ck, I ′k(z

∗
k) = 0. (3.26)

The function z∗k is a desired classical 2kT -periodic solution of (2.2). Since
ck ≥ α̃ = ξ−2a2ϱ

λ+1

4 > 0, z∗k is a nontrivial solution. �

Lemma 3.3. Let {z∗k}k∈N be the sequence given by Lemma 3.3. There
exists a z0 ∈ C(R,R2N ) such that z∗k → z0 in Cloc(R,R2N ) as k → +∞.

Proof. The first step in the proof is to show that the sequences {ck}k∈N
and {∥z∗k∥Ek

}k∈N are bounded. There exists ẑ∗1 ∈ E1 with ẑ∗1(±T ) = 0 such
that

c1 ≤ I1(ẑ
∗
1) = inf

g1∈Υ1

sup
u1∈Q1,u1(±T )=0

I1(g1(1, u1)). (3.27)

For every k ∈ N, let

ẑ∗k(t) =

{
ẑ∗1(t) for |t| ≤ T

0 for T < |t| ≤ kT
(3.28)

and g̃k : [0, 1]× Ek −→ Ek be a curve given by g̃k(t, z) ≡ z, where z ∈ Ek.
Then g̃k ∈ Υk and Ik(g̃k(1, ẑ

∗
k)) = I1(g̃1(1, z

∗
1)) = I1(z

∗
1) for all k ∈ N.

Therefore, from (3.25), (3.27) and (3.28),
ck ≤ Ik

(
g̃k(1, ẑ

∗
k)
)
= I1

(
g̃1(1, z

∗
1)
)
= I1(z

∗
1) ≡ M0. (3.29)

We now prove that {z∗k}k∈N is bounded.
Let z∗k = (z∗k)

0 + (z∗k)
+ + (z∗k)

− ∈ E0
k ⊕ E+

k ⊕ E−
k . From (1.3) of (H4),

(H5), (2.4), (3.1) and (3.29), there exists a constant ĉβ̂ > 0 such that (here
1

β̂
+ 1

β = 1)

2M0 ≥ 2Ik(z
∗
k)− ⟨I ′k(z∗k), z∗k⟩

=

kT∫
−kT

[
z∗k ·Gz∗

k
(t, z∗k)− 2G(t, z∗k)

]
dt−

kT∫
−kT

hk(t) · z∗k dt ≥

≥
kT∫

−kT

a1|z∗k|β dt−
kT∫

−kT

τk(t) dt−
kT∫

−kT

|hk(t)| |z∗k| dt ≥
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≥ a1∥z∗k∥
β

Lβ
2kT

− ∥τk∥L1
2kT

− cβ∥hk∥Lβ̂
2kT

∥z∗k∥Lβ
2kT

≥

≥ a1∥z∗k∥
β

Lβ
2kT

− ∥τ∥L1 − cβ ĉβ̂∥h∥L1∥z∗k∥Lβ
2kT

≥

≥ a1∥z∗k∥
β

Lβ
2kT

− ∥τ∥L1 − cβ ĉβ̂a3∥z
∗
k∥Lβ

2kT
. (3.30)

Since β > 1, this implies that there exists a constant M̃∗
0 > with

∥z∗k∥Lβ
2kT

≤ M̃∗
0 . (3.31)

Note dim(E0
k) < +∞, therefore there exists a constant M̃∗

1 > 0 such that

∥(z∗k)0||Ek
≤ M̃∗

1 . (3.32)

By using (3.1) and (3.8), we have (here 1
α + 1

σ = 1)

∥(z∗k)+∥Ek
≥

⟨
I ′k(z

∗
k), (z

∗
k)

+
⟩
=

= ⟨A(z∗k)+, (z∗k)+⟩ −
kT∫

−kT

[
(z∗k)

+ ·Gz∗
k
(t, z∗k)

]
dt−

kT∫
−kT

hk(t) · (z∗k)+ dt =

= ⟨A(z∗k)+, (z∗k)+⟩ −
( ∫
|z∗

k|≥1

+

∫
|z∗

k|<1

)[
(z∗k)

+ ·Gz∗
k
(t, z∗k)

]
dt−

−
kT∫

−kT

hk(t) · (z∗k)+ dt ≥

≥ ⟨A(z∗k)+, (z∗k)+⟩ −
η

2ϱ
∥z∗k∥Ek

−
∫

|z∗
k|<1

a2|z∗k| |(z∗k)+| dt−

−
( ∫
|z∗

k|≥1

|Gz∗
k
(t, z∗k)|α dt

) 1
α
( kT∫
−kT

|z+kn
|σ dt

) 1
σ

≥

≥ ⟨A(z∗k)+, (z∗k)+⟩ −
η

2ϱ
∥z∗k∥Ek

− a2∥z∗k∥Ek
∥(z∗k)+∥Ek

−

−
( ∫
|z∗

k|≥1

|Gz∗
k
(t, z∗k)|α dt

) 1
α

cσ∥z∗k∥Ek
(3.33)

and

∥(z∗k)−∥Ek
≥ ⟨I ′k(z∗k), (z∗k)−⟩

= ⟨A(z∗k)−, (z∗k)−⟩ −
kT∫

−kT

[
(z∗k)

− ·Gz∗
k
(t, z∗k)

]
dt−

kT∫
−kT

hk(t) · (z∗k)− dt =
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= ⟨A(z∗k)−, (z∗k)−⟩ −
( ∫
|z∗

k|≥1

+

∫
|z∗

k|<1

)[
(z∗k)

− ·Gz∗
k
(t, z∗k)

]
dt−

−
kT∫

−kT

hk(t) · (z∗k)− dt ≥

≥ ⟨A(z∗k)−, (z∗k)−⟩ −
η

2ϱ
∥z∗k∥Ek

−
∫

|z∗
k|<1

a2|z∗k| |(z∗k)−| dt−

−
( ∫
|z∗

k|≥1

|Gz∗
k
(t, z∗k)|α dt

) 1
α
( kT∫
−kT

|z−kn
|σ dt

) 1
σ

≥

≥ ⟨A(z∗k)−, (z∗k)−⟩ −
η

2ϱ
∥z∗k∥Ek

− a2∥z∗k∥Ek
∥(z∗k)−∥Ek

−

−
( ∫
|z∗

k|≥1

|Gz∗
k
(t, z∗k)|α dt

) 1
α

cσ∥z∗k∥Ek
. (3.34)

Combining (3.11), (3.31) with (3.33)–(3.34), we have

∥(z∗k)−∥Ek
+ ∥(z∗k)+∥Ek

≥

≥ ξ1∥(z∗k)+∥2Ek
− ξ−1∥(z∗k)−∥2Ek

− η

ϱ
∥z∗k∥Ek

−

− 2a2∥z∗k∥2Ek
− 2cσD̃

∗
0∥z∗k∥

(λα−1)
α

Ek
∥z∗k∥Ek

, (3.35)

where

D̃∗
0 =

[
aα2

(
c β(λα−1)

β−1

)λα−1
M̃∗

0

] 1
α

.

From (3.32) and (3.35), there exists a positive constant D̃∗
1 > 0 such that

D̃∗
1(∥(z∗k)+∥Ek

+ ∥(z∗k)−∥Ek
+ ∥(z∗k)0∥Ek

) ≥

≥ ∥(z∗k)+∥Ek
+ ∥(z∗k)−∥Ek

+ ξM̃∗
1 ∥(z∗k)0∥Ek

≥
≥ ∥(z∗k)+∥Ek

+ ∥(z∗k)−∥Ek
+ ξ∥(z∗k)0∥2Ek

≥

≥ ξ
(
∥(z∗k)+∥2Ek

+ ∥(z∗k)−∥2Ek
+ |(z∗k)0∥2Ek

)
−

− η

ϱ
∥z∗k∥Ek

− 2a2∥z∗k∥2Ek
− 2cσD̃

∗
0

(
∥z∗k∥Ek

) (λα−1)+α
α . (3.36)

This implies that

D̃∗
1 +

η

ϱ
≥ (ξ − 2a2)∥z∗k∥Ek

− 2cσD̃
∗
0

(
∥z∗k∥Ek

) (λα−1)
α , (3.37)
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where 0 < (λα−1)
α < 1. Since ξ − 2a2 > 0, we have that {∥zkn∥Ek

}n∈N is
bounded. Hence (3.37) shows that there exists a constant M1 > 0 such that

∥z∗k∥Ek
≤ M1. (3.38)

We now show that for a large enough k,
∥z∗k∥L∞

2kT
≤ M2. (3.39)

If not (note (2.1) and (3.38)), by passing to a subsequence, without loss of
generality, for each k ∈ N , there exist z∗k, ℓk and ℓ̃k such that |z∗k(ℓk)| = M∗

k ,
|z∗k(ℓ̃k)|=1 and 1 ≤ |z∗k(t)| ≤M∗

k for t∈ (ℓ̃k, ℓk)⊆ [−kT, kT ] (and M∗
k →∞

as k→∞). Hence, we have from (1.3) of (H4), (H5) and (3.31) that

M∗
k − 1 = |z∗k(ℓk)| − |z∗k(ℓ̃k)| =

ℓk∫
ℓ̃k

d

ds
|z∗k(s)| ds =

=

ℓk∫
ℓ̃k

z∗k(s) ·
ż∗k(s)

|z∗k(s)|
ds ≤

ℓk∫
ℓ̃k

|ż∗k(s)| ds

≤
ℓk∫

ℓ̃k

∣∣Gz∗
k
(t, z∗k(s))

∣∣ ds+ ℓk∫
ℓ̃k

∣∣B(s)z∗k(s)
∣∣ ds+ ℓk∫

ℓ̃k

|hk(s)| ds ≤

≤
(
a2 + ∥B∥L∞

2kT

) ℓk∫
ℓ̃k

|z∗k(s)|λ ds+ ∥hk∥L1
2kT

≤

≤
(
a2+∥B∥L∞

2kT

) ℓk∫
ℓ̃k

|z∗k(s)|β ds+∥h∥L1 ≤ (since 1<λ<1+
β−1

β
<β)

≤
(
a2 + ∥B∥L∞

2kT

)
(M̃∗

0 )
β + a3, (3.40)

where a2, a3, ∥B∥L∞
2kT

and M̃∗
0 are k-independent constants. However, we

have M∗
k → ∞ as k → ∞, which leads to a contradiction. Hence there

exists a constant M2 > 0 such that
∥z∗k∥L∞

2kT
≤ (a2 + ∥B∥L∞

2kT
)(M̃∗

0 )
β + a3 + 1 = M2. (3.41)

This shows that (3.39) holds.
It remains now to show that {z∗k}k∈N is equicontinuous. It suffices to

prove that the sequence satisfies a Lipschitz condition with a constant, in-
dependent of k.

From (1.1) and (3.39), there exists a constant M3 > 0, independent of k
such that

|ż∗k(t)| = |J(Gz∗
k
(t, z∗k(t)) +B(t)z∗k(t) + hk(t))| ≤

≤ M3 (since ∥z∗k∥L∞
2kT

≤ M2)
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which implies
∥ż∗k∥L∞

2kT
≤ M3. (3.42)

Let k ∈ N and t, t0 ∈ R, then

∣∣z∗k(t)− z∗k(t0)
∣∣ = ∣∣∣∣

t∫
t0

ż∗k(s) ds

∣∣∣∣ ≤
t∫

t0

|ż∗k(s)| ds ≤ M3(t− t0).

Since {z∗k}k∈N is bounded in L∞
2kT (R,R2N ) and equicontinuous, we obtain

that the sequence {z∗k}k∈N converges to a certain z0 ∈ Cloc(R,R2N ) by
using the Arzelà–Ascoli theorem. �
Lemma 3.4. The function z0 determined by Lemma 3.4 is the desired
homoclinic solution of (1.1).

Proof. The proof will be divided into three steps.
Step 1: We prove that z0(t) → 0 as t → ±∞.

We have
+∞∫

−∞

|z0(t)|2 dt = lim
j→+∞

jT∫
−jT

|z0(t)|2 dt = lim
j→+∞

lim
k→+∞

jT∫
−jT

|z∗nk
(t)|2 dt.

Clearly, by (2.1) and (3.38), for every j ∈ N there exists nj ∈ N such that
for all k ≥ nj we have

jT∫
−jT

|z∗nk
(t)|2 dt ≤ ∥z∗nk

∥2Ek
≤ M2

1 ,

and now, letting j → +∞, we have
+∞∫

−∞

|z0(t)|2 dt ≤ M̃2
1 ,

and hence ∫
|t|≥m

|z0(t)|2 dt → 0 as m → +∞. (3.43)

Then (3.43) shows that our claim holds.
Step 2: We show that z0 ̸≡ 0 when h(t) ≡ 0.

Now, up to a subsequence, we have either
+∞∫

−∞

|z0(t)|2 dt = lim
j→+∞

jT∫
−jT

|z0(t)|2 dt =

= lim
j→+∞

lim
k→+∞

jT∫
−jT

|z∗nk
(t)|2 dt = 0, (3.44)
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or there exist α̂ > 0 such that
+∞∫

−∞

|z0(t)|2 dt = lim
j→+∞

jT∫
−jT

|z0(t)|2 dt =

= lim
j→+∞

lim
k→+∞

jT∫
−jT

|z∗nk
(t)|2 dt ≥ α̂ > 0. (3.45)

In the first case we shall say that z0 is vanishing and in the second that z0
is nonvanishing.

By assumptions (H2), (H3) and (1.4) of (H4), for any ε > 0 there exists
Cε > 0 such that ∣∣G(t, z∗nk

)
∣∣ ≤ ε|z∗nk

|2 + Cε|z∗nk
|λ+1. (3.46)

Hence, we have from (1.4) of (H4) and (3.46) that

kT∫
−kT

∣∣(z∗nk
)±

∣∣ ∣∣Gz∗
nk
(t, z∗nk

)
∣∣ dt ≤

≤ ε∥z∗nk
∥L2

2kT

∥∥(z∗nk
)±

∥∥
L2

2kT

+ a2∥z∗nk
∥λ+1

L
λ+1
2kT

,

kT∫
−kT

G(t, z∗nk
) dt ≤ ε∥z∗nk

∥2L2
2kT

+ Cε∥z∗nk
∥λ+1

L
λ+1
2kT

.

(3.47)

Arguing indirectly, we suppose that {z∗nk
}∞k=1 is bounded and vanishing.

We have from (3.44) and (3.47) that

lim
k→∞

kT∫
−kT

(z∗k)
± ·Gz∗

k
(t, z∗k) dt = lim

k→∞

kT∫
−kT

G(t, z∗k) dt = 0. (3.48)

Since ⟨I ′k(z∗nk
), (z∗nk

)±⟩ = 0, for some positive constant C̃, using (3.1) and
(3.47), we find that

ξ1
∥∥(z∗nk

)+
∥∥2
Ek

≤
⟨
A(z∗nk

)+, (z∗nk
)+

⟩
=

kT∫
−kT

(z∗nk
)+ ·Gz∗

nk
(t, z∗nk

) dt ≤

≤ ε∥z∗nk
∥Ek

∥∥(z∗nk
)+

∥∥
Ek

+ C̃∥z∗nk
∥λ+1
Ek

≤ ξ

8
∥z∗nk

∥2Ek
+ C̃∥z∗nk

∥λ+1
Ek

(3.49)

and

−ξ−1

∥∥(z∗nk
)−

∥∥2
Ek

≤−
⟨
A(z∗nk

)−, (z∗nk
)−

⟩
=−

kT∫
−kT

(z∗nk
)−k ·Gz∗

nk
(t, z∗nk

) dt ≤

≤ ε∥z∗nk
∥Ek

∥∥(z∗nk
)−

∥∥
Ek

+ C̃∥z∗nk
∥λ+1
Ek

≤ ξ

8

∥∥z∗nk

∥∥2
Ek

+ C̃∥z∗nk
∥λ+1
Ek

. (3.50)
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Note that dim(E0
k) < +∞, there exist two positive constants b̃1, and b̃2

such that

b̃1
∥∥(z∗nk

)0
∥∥
L2

2kT

≤
∥∥(z∗nk

)0
∥∥
Ek

≤ b̃2
∥∥(z∗nk

)0
∥∥
L2

2kT

≤ b̃2∥z∗nk
∥L2

2kT
. (3.51)

From (3.44) and (3.51) we have

ξ
∥∥(z∗nk

)0
∥∥2
Ek

≤ ξb̃2
∥∥(z∗nk

)0
∥∥
L2

2kT

−→ 0 as k −→ ∞. (3.52)

Now (3.52) implies that there exists a positive constant bε(0 < bε ≤ ξ
4 ) such

that
ξ
∥∥(z∗nk

)0
∥∥2
Ek

≤ bε∥z∗nk
∥2Ek

. (3.53)

Hence, from (3.49), (3.50) and (3.53) we obtain that

ξ
(∥∥(z∗nk

)+
∥∥2
Ek

+
∥∥(z∗nk

)−
∥∥2
Ek

+
∥∥(z∗nk

)0
∥∥2
Ek

)
≤

≤ ξ1
∥∥(z∗nk

)+
∥∥2
Ek

+ ξ−1

∥∥(z∗nk
)−

∥∥2
Ek

+ ξ
∥∥(z∗nk

)0
∥∥2
Ek

≤

≤ ξ

2
∥z∗nk

∥2Ek
+ 2C̃∥z∗nk

∥λ+1
Ek

,

and ∥z∗nk
∥Ek

≥ ζ̃ for some ζ̃ > 0.
On the other hand, from (3.44), (3.48) and (3.53), we have∥∥(z∗nk

)±
∥∥2
Ek

→ 0 and
∥∥(z∗nk

)0
∥∥2
Ek

→ 0 as k → ∞.

This means that ∥z∗nk
∥Ek

→ 0 as k → ∞, which leads to a contradiction.
Hence {z∗k} is nonvanishing, so (3.45) holds, and this shows that our claim
holds.
Step 3: We show that z0(t) is a nontrivial homoclinic solution of (1.1).
Proof. According to step 2, z0(t) ̸≡ 0, it suffices to prove that for any
φ ∈ C∞

0 (R,R2N ),

+∞∫
−∞

(ż0(t)− JHz0(t, z0(t))) · φ(t) dt = 0. (3.54)

By step 1, we can choose k0 such that suppφ ⊆ [−kiT, kiT ] for all ki ≥ k0,
and we have for ki ≥ k0

+∞∫
−∞

{
ż∗ki

(t)− J
[
B(t)z∗ki

(t) +Gz∗
ki
(t, z∗ki

(t)) + hki
(t)

]}
· φ(t) dt = 0. (3.55)

By (3.43) and (3.55), letting ki → ∞ we get (3.54), which shows z0(t) is a
nontrivial homoclinic solution of (1.1). �

Proof of Theorem 1.1. The result follows from Lemma 3.4. �
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LINEAR SINGULAR INTEGRAL EQUATIONS
WITH MEASURABLE COEFFICIENTS
IN LEBESGUE TYPE SPACES
WITH A VARIABLE EXPONENT



Abstract. In the present work the Riemann problem for analysis func-
tions ϕ+(t) = G(t)ϕ−(t) + g(t) is considered in a class of Cauchy type
integrals with density from Lp(t) and a singular integral equation

a(t)φ(t) +
b(t)

πi

∫
Γ

φ(τ)

τ − t
dτ = f(t)

in the space Lp(t) whose norm defined by the Lebesgue summation with a
variable exponent. In both takes an integration curve is taken from a set
containing non-smooth curves. The functions G and (a − b)(a + b)−1 are
take from a set of measurable functions A(p(t),Γ) which is generalization of
the class A(p) of I. B. Simonenko. For the Riemann problem the necessary
condition of solvability and the sufficient condition are pointed out, and
solutions (if any) are constructed. For the singular integral equation the
necessary Noetherity condition and one sufficient Noetherity condition are
established; the index is calculated and solutions are constructed.

2010 Mathematics Subject Classification. 47B35, 30E20, 45P95,
47B38, 30E25.

Key words and phrases. Riemann’s boundary value problem, measur-
able coefficient, factorization of functions, Lebesgue space with a variable
exponent, Cauchy type integrals, Noetherian operator, Smirnov class of ana-
lytic functions with variable exponents, Cauchy singular integral equations.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÌÏÊÅËÄÖËÉÀ ÀÍÀËÉÆÖÒ ×ÖÍØÝÉÀÈÀ ÈÄÏ-
ÒÉÀÛÉ ÒÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ ϕ+(t) = G(t)ϕ−(t) + g(t) ÊÏÛÉÓ
ÔÉÐÉÓ ÉÍÔÄÂÒÀËÉÈ ßÀÒÌÏÃÂÄÍÀÃ ÉÌ ×ÖÍØÝÉÀÈÀ ÊËÀÓÛÉ, ÒÏÌÄËÈÀ
ÓÉÌÊÅÒÉÅÄ ÄÊÖÈÅÍÉÓ ËÄÁÄÂÉÓ Lp(t) ÓÉÅÒÝÄÓ ÃÀ ÓÉÍÂÖËÀÒÖËÉ ÉÍ-
ÔÄÂÒÀËÖÒÉ ÂÀÍÔÏËÄÁÀ

a(t)φ(t) +
b(t)

πi

∫
Γ

φ(τ)

τ − t
dτ = f(t)

ÁÀÍÀáÉÓ Lp(t) ÓÉÅÒÝÄÛÉ, ÒÏÌÄËÉÝ ÛÄÌÏÙÄÁÖËÉÀ ÝÅËÀÃÉ ÌÀÜÅÄÍÄÁËÉÈ
ÉÍÔÄÂÒÄÁÉÓ ÌÏÛÅÄËÉÄÁÉÈ. G ÃÀ (a − b)(a + b)−1 ×ÖÍØÝÉÄÁÉ ÀÉÙÄÁÀ
ÆÏÌÀÃ ×ÖÍØÝÉÀÈÀ A(p(t),Γ) ÊËÀÓÉÃÀÍ, ÒÏÌÄËÉÝ ßÀÒÌÏÀÃÂÄÍÓ É. ÓÉ-
ÌÏÍÄÍÊÏÓ A(p) ÊËÀÓÉÓ ÂÀÍÆÏÂÀÃÄÁÀÓ. ÒÉÌÀÍÉÓ ÀÌÏÝÀÍÉÓÈÅÉÓ ÃÀÃÂÄ-
ÍÉËÉÀ ÀÌÏáÓÍÀÃÏÁÉÓ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÀ ÃÀ ÀÂÒÄÈÅÄ
ÆÏÂÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÀ. ÀÂÄÁÖËÉÀ ÀÌÏÍÀáÓÍÄÁÉ ÊÅÀÃÒÀÔÖÒÄÁÛÉ.
ÓÉÍÂÖËÀÒÖËÉ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÊÉ ÂÀÌÏÊÅËÄÖËÉÀ ÍÄÔÄÒÉÓÄÖËÏÁÉÓ
ÓÀÊÉÈáÄÁÉ ÃÀ ÃÀÈÅËÉËÉÀ ÉÍÃÄØÓÉ. ÀÂÄÁÖËÉÀ ÀÌÏÍÀáÓÍÄÁÉ.
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1. Introduction

The boundary value problems of the theory of analytic functions and
tightly connected with them linear singular integral equations with Cauchy
kernel are well-studied (see, e.g., [1]–[8]).

If the domain D+ is bounded by a simple, rectifiable, closed curve Γ,
D− = C \ D+, G(t), g(t) are the given on Γ functions and we seek for
a function ϕ representable by the Cauchy type integral with density from
Lp(Γ) whose angular boundary values ϕ+ from D+ and ϕ− from D− satisfy
almost everywhere on Γ the condition

ϕ+(t) = G(t)ϕ−(t) + g(t), (1)

then this problem is called the Riemann problem in the class Kp(Γ).
When Γ is a Carleson curve, inf |G(t)| > 0, p > 1, and

ϕ(z) = (KΓφ)(z) =
1

2πi

∫
Γ

φ(τ)

τ − z
dτ, φ ∈ Lp( · )(Γ), p > 1,

S = SΓ : φ→ SΓφ, (SΓφ)(t) =
1

πi

∫
Γ

φ(τ)

τ − t
dτ,

then the problem (1) reduces equivalently to the equation

(1−G(t))φ(t) + (1 +G(t))(SΓφ)(t) = g(t). (2)

in Lp(Γ) ([5, p. 134]).
Conversely, the considered in Lp(Γ) equation

Mφ := a(t)φ(t) + b(t)(SΓφ)(t) = f(t) (3)

for
0 < ess inf

∣∣a2(t)− b2(t)
∣∣ ≤ ess sup

∣∣a2(t)− b2(t)
∣∣ <∞

is equivalent to the problem

ϕ+(t) =
a(t)− b(t)

a(t) + b(t)
ϕ−(t) +

f(t)

a(t) + b(t)
(4)

in Kp(Γ).
The interest of researches in the Lebesgue spaces Lp(t)(Γ) with a variable

exponent and in their applications to the boundary value problems has
appreciably increased in the recent years (see, e.g., [9]–[20]). A great number
of problems of the theory of analytic functions have been investigated ([16]–
[21]). Of importance are the works due to V. Kokilashvili and S. Samko
in which they have revealed wide classes of curves for which the Cauchy
singular operator is continuous in classes Lp(t)(Γ), when p(t) is Log–Hölder
continuous and inf p(t) = p > 1. A more general result is presented in [10].
It is proved there that for the operator S to be continuous in Lp(t)(Γ), it is
necessary and sufficient that Γ is a Carleson curve. Further, in the case of
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the above-mentioned curves, it is stated that S is continuous in the space
Lp( · )(Γ, ω), ω =

n∏
k=1

|t− tk|αk , tk ∈ Γ, αk ∈ R, if and only if

−[p(tk)]
−1 < αk < [q(tk)]

−1, q(t) = p(t)[p(t)− 1]−1.

When p(t) = const > 1, the problem (1) in the class Kp(Γ) is thoroughly
studied (see, e.g. [5]). The case, in which G is a measurable, oscillating
function, has been investigated by I. Simonenko ([22]). He has introduced a
class of functions A(p) and showed that when Γ is the Lyapunov curve and
G ∈ A(p), then a picture of solvability inherent in such curves remains the
same for continuous G. In [23], this result has been generalized to wider
classes of coefficients and boundary curves.

In Sections 3–7 of the present work we investigate the problem (1) in the
class Kp( · )(Γ), when Γ belongs to a wide class of curves and G(t) belongs
to a class A(p(t),Γ) introduced in Section 3. Sections 8–12 we consider
equation (3) with measurable coefficients in the space Lp(t)(Γ) which is
defined in Section 9. The norm of the element φ in that space is defined by
equality

∥φ∥Lp( · ) = ∥φ∥p( · ) + ∥Tφ∥p( · ) +
∥∥∥φ1

G

∥∥∥
p( · )

+
∥∥∥φ2

G

∥∥∥
p( · )

, (5)

where Tφ = X+S φ
X+ , φ1 = 1

2 (φ+Tφ), φ2 = 1
2 (−φ+Tφ), and X+ is the

function defined by means of G (see below (26)).
It should be noted that if Γ has singularities such, for example, as cusps,

vorticities, or the coefficient G is “badly measurable”, then all these facts
should be taken into account on selecting the class of solutions. In [24],
for instance, for a constant p, a space in which we are required to find a
solution is chosen in such a way that the norm contains power weights of
different growth on different sides from cusps. In our case, oscillation of the
coefficient G has made a major contribution to that norm.

For investigation of the problem (1) we have used the method of factor-
ization which this time met with an obstacle. The matter is that for the
solvability of the problem (1) in Kp(t)(Γ), it is necessary that the function
Tg belong to Lp(t)(Γ). When Γ has cusps and G ∈ A(p(t),Γ), we have failed
to prove or disprove that Tg satisfies this condition for any g from Lp(t)(Γ).
However, we have managed both to show that if indG ≥ 0, then (1) has so-
lutions from the set

∩
0<ε<p

Kp(t)−ε(Γ) and to construct all such solutions. If,

in addition, g ∈
∪
ε>0

Lp(t)+ε(Γ), then the problem (1) is solvable in Kp(t)(Γ),

too. When indG < 0, for the solvability of the problem there take place the
conditions of orthogonality of the function g to solutions of a homogeneous
conjugate problem (inherent in the problem (1) in classical assumptions).

We have succeeded in revealing such a picture of solvability (although not
entirely complete, but rather informative) by reducing the problem (1) to
a series of problems of the same type, but with a coefficient, different from
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a constant one in the neighborhood of some point. One of such methods,
known for p = const as the “local method” ([25]), or “local principle” ([4,
pp. 353–363]) is valid for a variable p, as well (the proof is obtained by the
method indicated in [4] with the use of results from [21]). Application of that
method allows one in the best case to investigate the problem qualitatively,
leaving the question of a solution construction in quadratures open.

Our approach is somewhat different from the “local method”; it provides
us with opportunity to construct solutions (if any) in quadratures. But in
this connection we have to require that Tg ∈ Lp(t)(Γ). This circumstance
did not allow us to get, on the basis of investigations of the Riemann prob-
lem, its traditional application, i.e., to prove the Noetherity of equation (3)
in Lp(t)(Γ).

However, our wish to possess Noether theorems for equation (3) is quite
natural, if not in Lp( · )(Γ), but although for some space of type L(p(t), i.e.,
with the norm defined by the Lebesgue integration with a variable exponent.

Towards this end, we distinguish from Lp(t)(Γ) a subset Lp(t)(Γ) and
endow it with the norm (5) with respect to which this subset is the Banach
space.

In the space Lp(t)(Γ), for equation (3) it is stated that: the operator M
maps Lp(t)(Γ) into itself; the necessary and sufficient conditions of solvabil-
ity are established; solutions (if any) are constructed; the space, conjugate
to L(p( · )(Γ), is found; one necessary Noetherian condition is pointed out;
the Noether theorems are proved and the index is calculated.

In this connection, of significance turned out to be the finding of prop-
erties of the operator T (in the spaces Lp(t)(Γ) and Lp(t)(Γ)).

In the final Section 13 we present a number of properties of the oper-
ator T which in the framework of the present paper are not applied, but
have independent interest and will, in all probability, be applied to further
investigations of the Riemann problem and singular integral equations of
type (3).

2. Preliminaries

2.1. Curves. Throughout the paper, the use will be made of the following
notation.

(a) C1 is the set of Jordan smooth curves;
(b) C1,L is the set of the same Lyapunov curves;
(c) R is the set of regular (Carleson) simple, rectifiable, closed curves

of Γ for which

sup
ρ>0, ζ∈Γ

ρ−1ℓ(ζ, ρ) <∞,

where ℓ(ζ, ρ) is a linear measure of some part of Γ falling into a
circle with center ζ, of radius ρ;
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(d) Λ is the set of Lavrentiev curves , i.e., curves Γ for which s(t1, t2)|t1−
t2|−1 < M < ∞ for any t1, t2 ∈ Γ, where s(t1, t2) is the length of
the smallest arc lying on Γ and connecting the points t1 and t2.

(e) J0 is the set of curves with the equation t = t(s), 0 ≤ s ≤ l, such
that there exists a smooth curve γ with the equation µ = µ(s),
0 ≤ s ≤ l, such that

exp
0≤s≤l

( l∫
0

∣∣∣ t′(σ)

t(σ)− t(s)
− µ′(σ)

µ(σ)− µ(s)

∣∣∣ dσ) <∞.

.
(f) J∗ is the set of those closed Jordan curves from Λ which are a union

of a finite number of curves from J0 having tangents at the ends.
(g) C1(A1, . . . , An; ν1, . . . , νn) is the set of piecewise-smooth curves Γ

with angular points A1, . . . , An at which angle sizes, inner with
respect to the domain bounded by Γ, are equal to πν(Ak), 0 ≤
ν(Ak) ≤ 2;

(h) C1,L(A1, . . . , An; ν1, . . . , νn) is the set of piecewise-Lyapunov curves
for which the condition of item (g) is fulfilled.

Obviously, C1 ⊂ J∗. The class J∗ contains curves of bounded variation
(Radon’s curves) ([6, pp. 20 and 146–7]), piecewise-smooth curves, free
from cusps and, moreover, J∗ ⊂ R ([8, p. 23]).

2.2. The class of functions P(Γ). Let Γ be a simple rectifiable curve. We
say that the given on Γ function p = p(t) belongs to the class P(Γ) if:

(1) there exists a number B(p) such that for any t1 and t2 from Γ we
have

|p(t1)− p(t2)| <
B(p)

| ln |t− t0||
;

(2) 1 < p = inf |p(t)| ≤ sup |p(t)| = p <∞.

2.3. Lebesgue spaces with a variable exponent.

2.3.1. By Lp(t)(Γ;ω) we denote the weight Banach space of measurable on
Γ function f such that ∥f∥p( · ),ω <∞, where

∥f∥p( · ),ω = inf
{
λ > 0 :

l∫
0

∣∣∣f(t(s))ω(t(s))
λ

∣∣∣p(t(s)) ds ≤ 1

}
.

Here, t = t(s), 0 ≤ s ≤ l, is the equation of the curve Γ with respect to the
arc abscissa s.

Assume Lp(t)(Γ) := Lp(t)(Γ, 1).
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2.3.2. For p ∈ P(Γ), a space, conjugate to Lp( · )(Γ;ω), is Lq(t)(Γ; 1
ω ), where

q(t) = p(t)
p(t)−1 . In particular,

[Lp(t)(Γ)]∗ = Lq(t)(Γ),

(see [9]).

2.4. Some properties of spaces Lp( · )(Γ;ω).

2.4.1. If p ∈ P(Γ), u ∈ Lp( · )(Γ;ω), v ∈ Lq( · )(Γ; 1
ω ), then the inequality∣∣∣∣ ∫

Γ

u(τ)v(τ) dτ

∣∣∣∣ ≤ K∥u∥p( · ),ω∥v∥q( · ), 1
ω
, k = 1 +

1

p
+

1

p
(6)

is valid. Moreover,

∥f∥p( · ) ∼ sup
∥g∥q( · )≤1

∣∣∣∣ ∫
Γ

f(t)g(t) dt

∣∣∣∣.
2.4.2. If p(t) and p1(t) belong to P(Γ), and p(t) ≤ p1(t), then

∥f∥p( · ) ≤ (1 + ℓ)∥f∥p1( · ), ℓ = |Γ| = mesΓ.. (7)

2.4.3. If p ∈ P(Γ), then Lp( · )(Γ) ⊂ Lp(Γ).
(For the proofs of statements 2.3.2, 2.4.1 and 2.4.2 see, e.g., [9]).

2.5. Classes of functions K̃p( · )(Γ) and Kp( · )(Γ). Assume

K̃p( · )(Γ, ω) =

{
ϕ(z) = (KΓφ)(z) + Pϕ(z) =

=
1

2πi

∫
Γ

φ(ζ)

ζ − z
dζ + Pϕ(z), z ̸∈ Γ, φ ∈ Lp( · )(Γ;ω)

}
,

where Pϕ is a polynomial;

Kp( · )(Γ, ω) =
{
ϕ : ϕ ∈ K̃p( · )(Γ, ω), Pϕ = 0

}
.

Denote
K̃p( · )(Γ) := K̃p( · )(Γ, 1), Kp( · )(Γ) := Kp( · )(Γ, 1).

Since Lp( · )(Γ) ⊆ Lp(Γ) ⊂ L1(Γ), the Cauchy type integral ϕ = (KΓφ)(z),
when φ ∈ Lp( · )(Γ), p ∈ P(Γ), almost for all t ∈ Γ has angular boundary
value ϕ+(t) (ϕ−(t)), as the point z tends nontangentially to the point t,
lying to the left (to the right) from the chosen on Γ positive direction (see,
e.g., [26]), and the Plemelj–Sokhotskii’s equalities

ϕ±(t) = ±1

2
φ(t) +

1

2
(Sφ)(t) (8)

are valid.
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2.6. Classes of functions Ep(t)(D). Let D be a simply-connected domain
with the boundary Γ. By z = z(w) we denote conformal mapping of the
circle U = {w : |w| < 1} onto D.

We say that an analytic in D function ϕ belongs to the class Ep(t)(D) if

sup
0<r<1

2π∫
0

∣∣ϕ(z(reiϑ))∣∣p(z(eiϑ))|z′(reiϑ)| dϑ <∞.

For p = const, this class coincides with Smirnov class Ep(D). Some
properties of functions from Ep(t)(D) can be found in [16] and [20] (see also
[21, Ch. 3]).

For the constant p, the classes Ep(D) are defined for any p > 0. Their
properties are treated in different books. We restrict ourselves to the refe-
rence [27].

If the operator S is continuous from Lp(Γ) to Ls(Γ), then the Cauchy type
integral (KΓφ)(z) belongs to Es(D) when φ ∈ Lp( · )(Γ) ([8, pp. 29–30]).

When Γ ∈ R, the operator SΓ is continuous in the classes Lp(Γ) for any
p ∈ (1,∞) ([28]). Therefore, if Γ ∈ R, φ ∈ Lp(Γ), p > 1, then KΓφ ∈
Ep(D). Moreover, if φ ∈ L1(Γ), then KΓφ ∈

∏
δ<1

Eδ(D).

If Γ ∈ R, p ∈ P(Γ), then Ep(t)(D) ⊂ Kp(t)(D) ([16], [20]). If, however, Γ
is a piecewise-smooth curve without cusps, then Ep(t)(D) = Kp(t)(D) ([21,
Ch. 3]).

3. Classes of Functions A(p(t),Γ)

3.1. Definition of the classes A(p(t),Γ).

Definition 1. Let Γ be a simple, closed, rectifiable curve, and p ∈ P(Γ).
We say that the given on Γ function G belongs to the class A(p(t),Γ) if:

(i) 0 < m = ess inf |G(t)| = ess sup |G(t)| =M <∞;
(ii) for every point τ ∈ Γ, there exists the arc Γτ ⊂ Γ containing the

point r at which almost all values of the function G lie inside the
angle with vertex at the origin of coordinates and opening

α = 2π
[

sup
t∈Γτ

max(p(t), q(t))
]−1

.

It follows from the definition that
A(p(t),Γ) = A(q(t),Γ). (9)

Let us consider the covering of the curve of Γ by the arcs Γτ . From that
covering we can select a finite covering by the arcs Γk = Γτk , k = 1, . . . , µ.
It follows from the definition of the class A(p(t),Γ) that there exist numbers
εk > 0 such that all values of G(t) on Γk lie inside the angle of the opening

αεk = (2π − εk)
[

sup
t∈Γk

max(p(t), q(t))
]−1

.
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Without loss of generality, we may reckon that no arc of Γk is contained
in the union of two adjacent arcs. Thus, Γ =

µ∪
k=1

Γk, and every arc of Γk

intersects with two adjacent arcs. Suppose

Γ
(1)
k = Γk ∩ Γk−1, Γ

(3)
k = Γk ∩ Γk+1, Γ

(2)
k = Γk − (Γ

(1)
k ∪ Γ

(3)
k ),

then Γk = Γ
(1)
k ∪ Γ

(2)
k ∪ Γ

(3)
k . We renumerate the arcs Γ

(j)
k , denote them

by γ1, . . . , γn and assume that they follow one after another. Let Γj−1 and
Γj+1 be the arcs intersecting with γk; then there exists the number m > 0
such that if γ̃k = Γj−1 ∪ Γj+1 ∪ γk, then

dist(γk,Γ \ γ̃k) > m > 0, k = 1, . . . , n. (10)
Since every arc Γk is, in fact, a neighborhood of some point, therefore

all values of G(t) (on Γk) lie in the angle of size less than αεk . Assume
ε = min εk. Then by this time, for every point τ ∈ Γ, there exists the
arc (denoted by Γτ ) whose values G(t) lie in the angle of size αε = (2π −
ε)
[

sup
t∈Γτ

max(p(t), q(t))−1
]
. Thus, when defining the class A(p( · ),Γ), we can

replace α in condition (ii) by the number αε.

3.2. One property of functions of the class A(p(t),Γ). From the state-
ment proven in Subsection 3.1, from the continuity of p(t) and equality (9) it
easily follows that for every function G ∈ A(p(t),Γ) there exists the number
ηε > 0 such that G(t) ∈ A(p(t) + ηε,Γ). Consequently,

A(p(t),Γ) ⊂
∪
η>0

A(p(t) + η,Γ). (11)

3.3. The class A(p(t), γ) for γ ⊂ Γ, and one its property. Let γ be the
arc lying on the closed curve Γ, γ be its closure and, moreover, let a and b
be end points of γ.

If neighborhoods of the points a and b are, respectively, the sets of the
type [a, c] and [c, b], c ∈ γ, then the class A(p(t), γ) is defined analogously
to A(p( · ),Γ).

Suppose
p
γ
= inf

t∈γ
p(t), p̃γ = max

(
p
γ
, (p

γ
)′
)
.

Theorem 1. Let Γ ∈ R, γ ⊂ Γ, p ∈ P(Γ) and G ∈ A(p(t), γ). For every
point τ ∈ γ, there exists the arc neighborhood γτ ⊂ γ such that all values of
G on γτ lie in the angle of size (2π − ε)

[
max(p

γ
, (p

γ
)′)

]−1. Thus,

A(p( · ), γ) ⊆ A(p̃γ), p̃γ = max
(
p
γ
, (p

γ
)′
)
. (12)

Proof. We consider the cases: 1) p(τ) > 2, 2) p(τ) < 2, 3) p(τ) = 2.
1) p(τ) > 2. Owing to the continuity of p(t) on γτ , there is the neigh-

borhood of the point τ at which p(t) > 2. Then
sup
t∈γτ

max(p(t), q(t)) = sup
t∈γτ

p(t) ≥ max
(
p
γ
, (p

γ
)′
)
= p

γ
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and hence,
α ≤ 2π − ε

max(p
γ
, (p

γ
)′)

=
2π − ε

p̃γ
= αγ .

2) p(τ) < 2. In this case, q(τ) > 2, and there exists the arc γτ in which
q(t) > 2; therefore,

sup
t∈Γτ

max(p(t), q(t)) = sup
t∈γτ

q(t) = (p
γ
)′ = p̃γ .

Consequently, α < αγ .
3) (τ) = 2. Having some small number η > 0, we find neighborhood γτ

in which values p(t) lie on the segment (2− η, 2 + η). Then

max
(
p
γ
, (p

γ
)′
)
= max

(
2 + η, (2− η)′

)
= max

(
2 + η,

2− η

1− η

)
=

= max
(
2 + η, 2 +

η

1− η

)
= 2 +

η

1− η
= (p

γ
)′ = p̃γ .

Hence, again, α < αγ .
Thus, the point τ in all three cases possesses the neighborhood γτ with

valuesG(t) lying in the opening angle 2π−ε
p̃γ

. Since τ is arbitrary, this implies
that the relations (12) are valid. �

3.4. The index of the function of the class A(p( · ),Γ). The class
Ã(p( · ),Γ). We choose the point c ∈ Γ and fix the value of argG(c) =
[argG(c)]− from the interval [0, 2π]. Following along Γ, we can define a
branch of the function argG(t) so as to have | argG(t1) − argG(t2)| < α
for t1, t2 ∈ γk. Going around Γ, we reach the arc, containing c, with a new
value argG(c) = [argG(c)]+. The difference [argG(c)]+ − [argG(c)]− does
not depend on the covering choice and on the point c. The integer

indG = κ(G) = κ =
1

2π

[
(argG(c))+ − (argG(c))−

]
is called an index of the function G in the class Kp( · )(Γ).

A subset of the functions G from A(p( · ),Γ) for which sup | argG(t)| <
π/2 we denote by Ã(p( · ),Γ). Obviously, if G ∈ Ã(p( · ),Γ), then indG = 0.

4. On Factorization of the Function from A(p(t),Γ) in the
Class Kp(t)(Γ)

4.1. Definition of factor-function.

Definition 2. Let Γ the closed, rectifiable Jordan curve bounding the
domains D+ and D− (z = ∞ ∈ D−).

We say that the function XG(z) = X(z), analytic on the plane, cut along
Γ, is a factor-function of the function G in the class Kp(t)(Γ), if the following
conditions are fulfilled:

(1) X ∈ K̃p(t)(Γ);
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(2) [X(z)]−1 ∈ K̃q(t)(Γ);
(3) almost everywhere on Γ, X+(t)[X−(t)]−1 = G(t);
(4) X+ ∈W p(t)(Γ), i.e., the operator

T = TG : g(t) → (Tg)(t), (Tg)(t) =
X+

G (t)

πi

∫
Γ

g(ζ)

X+
G (ζ)

dζ

ζ − t
, t ∈ Γ, (13)

is continuous in Lp(t)(Γ).

4.2. Some properties of factor-functions.

4.2.1. The Case of Constant p. If Γ ∈ C1,L and G ∈ A(p,Γ), then G is
factorable in Kp(Γ) ([22]). The same result is valid when Γ ∈ J∗, and G is
taken from a wider than A(p,Γ) class Ã which, in particular, contains all
admissible piecewise-continuous functions, not fallen in A(p,Γ) ([8, p. 192]).

4.2.2. The Case when G ∈ Ã(p(t),Γ) and is equal to the constant on Γ \ γ,
where γ ⊂ Γ. Let G ∈ Ã(p(t),Γ), τ ∈ Γ, and γ = γab = γτ be the arc
mentioned in Theorem 1. Assuming p ∈ P(Γ), we put p

γ
= inf

t∈γ
p(t) and

p̃ γ = max(p
γ
, (p

γ
)′).

Consider the function

Gγ(t) =

{
G(t), t ∈ γ,

G(a), t ∈ Γ \ γ.
(14)

By virtue of Theorem 1 we can easily conclude that Gγ ∈ A(p̃γ ,Γ). There-
fore, assuming lnGγ(τ) = ln |Gγ(t)|+ i argG(τ) and

X(z) = XGγ (z) = exp
{

1

2πi

∫
Γ

lnGγ(ζ)

ζ − z
dζ

}
, (15)

[X(z)]±1 belongs to K̃ p̃γ (Γ), and the operator T = TG is continuous in
Lp̃γ (Γ), i.e.,

∥TGγf∥p̃γ
≤ ∥TGγ∥p̃γ

∥f∥p̃γ

([22]).
In the sequel, frequently, if it does not give rise to misunderstanding, the

subscript in our writings XG, XGγ
, TG, TGγ

will be omitted and we write
A(p( · )) instead of A(p( · ),Γ).

4.2.3. The class of functions B(p( · ),Γ). By B(p( · ),Γ) we denote a set of
those functions G(t) with a finite number of points of discontinuity tk for
which ess inf |G| > 0 and

−
[
p(tk)

]−1
< αk (mod 2π) <

[
q(tk)

]−1
.

The branch of argG(t) and index for the functions from B(p( · ),Γ) are
defined in the same manner as in [8, pp. 92–93]. For p = const, this class
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covers all those piecewise-continuous functions which are admissible in the
condition (1) when its solutions are sought in the class Kp(Γ).

The functions of the class B(p,Γ) for p > 1 and Γ ⊂ J∗ are factorable
in Kp(Γ). Moreover, there exists the number δ > 0 such that the factor-
function XG of the function G ∈ B(p,Γ) possesses the property

X±
G ∈ K̃µ+δ

Γ (Γ), µ = max(p, q), (16)

([8, p. 115]).

4.2.4. On the factorization of the function Gγ(t) in the classes Kp( · )(Γ).
Let G ∈ Ã(p( · ),Γ) and γ = γab be the arc mentioned in Theorem 1.
Without loss of generality, we may assume that G(t) is defined at the point
a and G(a) lies in the corresponding to the point a angle of size α. Suppose

Gγ(t) =


G(t)

G(a)
, t ∈ γ,

1, t ∈ Γ \ γ.
(17)

Theorem 2. Let Γ ∈ J∗ be a closed, simple, rectifiable curve bounding
the domains D+ and D−, and G ∈ Ã(p( · ),Γ). Then the function Gγ

defined by equality (17) is factorable in the class K p̃γ (Γ).

Proof. Let us show that Gγ ∈ A(p̃γ ,Γ). By virtue of Theorem 1 and conti-
nuity of Gγ on Γ \ γ, only behavior of Gγ in the neighborhood of the points
a and b needs testing. Let γ1a ⊂ Γ be the arc containing a point. By γ11
and γ12 we denote intersection of γ1a with γ and Γ \ γ. Since γ11 lies on γ,
all values of the function Gγ on it lie in the angle with vertex at the point
z = 0, of size β = 2π−ε

p̃γ
. As far as number 1 is in that angle, and Gγ(t) on

γ12 equals 1, therefore the values of Gγ on γ1a lie in the above-mentioned
angle.

Consider now the neighborhood of the point b. The point Gγ(b) lies in
the angle of size β together with the point Gγ(a) = 1. Therefore the values
of Gγ on the arc (c, a), where e ⊂ Γ \ γ, lie in the angle of size β. Thus it
is proved that Gγ ∈ A(p̃γ ,Γ).

According to the statement in item 4.2.3, we can conclude that Gγ is
factorable in K p̃γ (Γ), and its factor-function XGγ is given by the equality

XGγ (z) = exp
{

1

2πi

∫
Γ

lnGγ(ζ)

ζ − z
dζ

}
. (18)

The theorem is proved. �

Corollary. If G ∈ Ã(p( · ),Γ), then the function

G̃(t) =

{
G(t), t ∈ γ,

G(a), t ∈ Γ \ γ,
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where the arc γ defined in Theorem 1 is factorable in K p̃γ (Γ), and its factor-
function is

X̃(z) =


1

M
XGγ (z), z ∈ D+,

XGγ (z), z ∈ D−,

where
M = ess sup

t∈Γ
|G(t)|+ sup

t∈Γ
| argG(t)|.

Proof. It suffices to show that X±1 ∈ K̃ p̃γ (Γ). In view of Subsection 4.2.2
and (11), we have (XGγ )

±1 ∈ Ep̃γ+δ(D+), (XGγ )
±1 ∈ Ẽp̃γ (D−), where

Eµ(D+) is Smirnov class in D+, and Ẽµ(D−) = {ϕ : F + const, F ∈
Eµ(D−)}. Therefore X±1

Gγ
and X±1

Gγ
− 1 are representable by the Cauchy

integral in D+ and D−, respectively. Consequently,

X̃±1(z) =
1

2πi

∫
Γ

(X̃+)±1 − (X̃−)±1

t− z
dt+ 1. �

4.2.5. Auxiliary estimates. Let Γ ∈ J∗, G ∈ Ã(p( · ),Γ), and let γk and
γ̃k be subsets of Γ defined in Subsection 3.1. Let, further, γk = γakbk ,
Gk(t) = Gγk

(t) and

Xk(z) =


1

G(ak)
XGk

(z), z ∈ D+,

XGk
(z), z ∈ D−,

, (19)

where

XGk
(z) = exp

{
1

2πi

∫
Γ

lnGγk
(ζ)

ζ − z
dζ

}
.

Suppose

Yk(t) =
n∏

j=1, j ̸=k

Xj(t). (20)

Lemma 1. There exist the constants cj > 0, j = 1, 2, such that for all
k, k = 1, 2, . . . , n, we have

sup
t∈γk

|Yk(t)| < c1, inf
t∈γk

|Yk(t)| > c2. (21)

Proof. We have

|Yk(t)| ≤ exp
∣∣∣∣ 1

2πi

∫
Γ\γk

ln |G(ζ)|+ i argG(ζ)
ζ − t

dζ

∣∣∣∣ ≤
≤ exp 1

2π

∫
Γ\γk

sup | ln |G||+ µ

|ζ − t|
|dζ|, t ∈ γk,
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where µ = sup | argG(ζ)|. At the last step here we have taken in account
that G(ζ) = 1 for ζ ∈ γ̃k \ γk.

The closed sets γk and Γ \ γ̃k do not intersect, hence according to (10),
we have dist(γk; Γ \ γk) = mk > 0, whence it follows that

|Yk(t)| ≤ exp
(nM
m

|Γ|
)
, (22)

where
M = sup

ζ∈Γ

∣∣ ln |G(ζ)|
∣∣+ µ, m = min

k=1,2,...,n
mk. (23)

To estimate |Yk(t)|, we note that if Yk(t) = exp fk(t), we have shown that
| exp fk| < exp nM

m |Γ|. But | exp fk| ≥ exp(− sup |fk|), and therefore

|Yk(t)| ≥ exp
(
− nM

m

)
|Γ|. (24)

It follows from (22) and (24) that inequalities (21), where

c1 = exp
(nM
m

|Γ|
)
, c2 = exp

(
− nM

m
|Γ|

)
are valid, and the numbersM andm in these equalities are defined according
to (23). �

5. Some Properties of the Function XG(z)

As regards the data in the condition (1), we assume that either

Γ ∈ J∗, p ∈ P(Γ), G ∈ A(p( · ),Γ),
or

Γ is a piecewise-smooth curve, G ∈ B(p( · ),Γ), p ∈ P(Γ).

(25)

Let the conditions (25) are fulfilled, κ = indG(t) and z0 ∈ D+. Put

G0(t) = (t− z0)
−κG(t)

and

X(z) =

=

{
exp{KΓ lnG0}, z ∈ D+,

(z − z0)
−κ exp(KΓ lnG0)(z), z ∈ D−.

(26)

5.1. On the summability of the function g|X+ .

Lemma 2. If the conditions (25) are fulfilled, then there exists the num-
ber η > 0 such that

g[X+]−1 ∈ L1+η(Γ), KΓ
g

X+
∈ E1+η(D+), KΓ

( g

X+

)
∈ Ẽ1+η(D−).
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Proof. Let γ be that arc on Γ for which G ∈ A(p̃γ , γ), then the function

Gγ(t) =

{
G(t), t ∈ γ,

G(a), t ∈ Γ \ γ,

belongs to Ã(p̃γ ,Γ), and hence, X±1
γ ∈ Lp̃γ (Γ) (see item 4.2.3). Assuming

gγ(t) =

{
g(t), t ∈ γ,

0, t ∈ Γ \ γ,

we have gγ ∈ L
p

γ (Γ), and hence, we obtain
gγ

X+
γ

∈ Lα(Γ), α = p
γ
(p

γ
+ δ)(p

γ
+ p

γ
+ δ)−1.

Let us consider two possible cases: 1) p̃γ = p
γ
, 2) p̃γ = (p

γ
)′.

1) p̃γ = p
γ
. This is possible when pγ ≥ 2. Denote λ = p

γ
, then we have

α = λ(λ+ δ)(2λ+ δ)−2 =
(λ
2
+
δ

2

)(
1 +

δ

2λ

)−1

.

Since λ ≥ 2, then α > 1 and therefore

gγ(X
+
γ )−1 ∈ L1+η(Γ), η < α < 1.

2) p̃γ = (p
γ
)′, then

α = λ(λ′ + δ)(λ+ λ′ + δ)−1 =
(
1 +

δ

λ′

)(
1 +

δ

λλ′

)−1

> 1

and, hence, again g/X+ ∈ L1+η(Γ).
Since Γ = ∪γk, and on γk we have gk/X+ = gk/(X

+
k Y

+
k ), (gk := gγk

),
taking into account Lemmas 1 and 2, we obtain∫

Γ

∣∣∣ g

X+

∣∣∣1+η

ds =
∑∫

γk

∣∣∣ gk

X+
k Y

+
k

∣∣∣1+η

ds ≤

≤ 1

c1+η
2

∑∫
γk

∣∣∣ gk
X+

k

∣∣∣1+η

ds <∞.

Statement of the lemma regarding KΓ
g

X+ follows from the results given
in Subsections 2.6 and in item 2.4.3. �

5.2. On the summability of the function XG.

Theorem 3. When the conditions (25) are fulfilled, we have X+
G ∈

Lp( · )(Γ) and (X+
G )−1 ∈ Lq(t)(Γ).

Proof. Let γ be the arc mentioned in Theorem 1. Then G ∈ A(p̃γ , γ),
and the function Gγ belongs to A(p̃γ ,Γ). Since Γ ∈ J∗, therefore XG ∈
K̃ p̃γ+δ(Γ) ([8, p. 29]) and, hence X+

Gγ
∈ Lp̃γ (Γ).
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Represent now Γ in the form Γ =
n∪

k=1

γk, where the curves γk satisfy the

condition of Theorem 1. Then, according to the above-said,

Xk = Xγk
∈ Lpk+δ(Γ), pk = p̃γn , Xk = exp

{
KΓ(ln(Gγk

)
}
.

We have XG =
n∏

k=1

XkYk. Then

∫
Γ

|X+
G |p(t(s)) ds ≤ sup

t∈γk, k=1,2,...,n

n∑
k=1

∫
γk

|X+
k |p(t(s)) ds ≤

≤ c1(1 + Γ)

∫
γ

|X+|p(t(s)) ds. (27)

On γk, we have p
γk

≤ p(t) ≤ pγk
, k = 1, 2, . . . , n.

Due to the uniform continuity of p(t) on Γ, there exists for δ > 0 the
number lδ such that for any arc γk ∈ Γ such that |γk| < lδ, we have

pγk
− p

γk
< δ, (pγk

)′ =
pγk

pγk
− 1

. (28)

For some γk, the condition |γk| < lδ may violate. In this case we consider
a new covering of Γ reducing the arcs γk to those of lesser length than lδ.
For the sake of simplicity, we denote again the arcs forming a new covering
by γk. Then, according to (28), on γk we have pγk

− p
γk
< δ. Moreover, on

the above-mentioned arc,

p
γk

≤ p(t) ≤ pγk
,

whence p(t)− pγk
≤ pγk

− p
γk
< δ, i.e., on γk, we have p(t) < p

γk
< δ. By

virtue of inequalities (8) and (27), we now obtain∫
Γ

|X+(t)|p(t) ds ≤ c3

n∑
k=1

∫
γk

|X+
k |p γk

+δ
ds <∞.

Thus, the first statement of the theorem is proved.
The second statement follows from Lemma 2 according to which for an

arbitrary function g ∈ Lp( · )(Γ), we have g(t) · 1
X+(t) ∈ L1(Γ). This means

that 1
X+ belongs to the class Lq( · ). �

Corollary. The function XG in the conditions (25) belongs to Lp( · )+δ

for some δ > 0.

This follows from the inclusions (12), (16) and Theorem 3.
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6. On the Operator TG for G ∈ Ã(p(t),Γ)

6.1. The operator TG acts from Lp( · ) to Lλ for some λ > 0.

Lemma 3. If the conditions (25) are fulfilled, then the operator TG acts
from Lp( · ) to the space Lλ(Γ), λ ∈ (0, 2+2η

3+η ), where η is the number defined
in Lemma 2.

Proof. From the condition G ∈ Ã(p( · ),Γ) it follows that G(t) ∈ A(2,Γ),
therefore X±

G ∈ E2(D±) and, hence, X+ ∈ L2 (see Subsection 4.2). Assum-
ing 0 < λ < 2, we have

I =

∫
Γ

|Tg|λ ds =
∫
Γ

|X+|λ
∣∣∣S g

X+

∣∣∣λ ds ≤
≤

(∫
Γ

|X+|2 ds
)λ

2
(∫

Γ

∣∣∣S g

X+

∣∣∣ 2λ
2−λ

ds

) 2−λ
2

.

from which it can be easily seen that I < ∞, if 2λ(2 − λ)−1 < 1 + η, i.e.,
λ < 2+2η

ζ+η . �

6.2. On the operator T 2
G = TG(TG).

Theorem 4. Under the conditions (25), we have

T 2g = g. (29)

Proof. We have

T (Tg) = X+SΓ

( 1

X+
·X+SΓ

g

X+

)
= X+SΓ

(
SΓ

g

X+

)
. (30)

Since Γ ∈ R, the operator SΓ is continuous in the Lebesgue spaces Lλ(Γ),
λ > 1. Consequently, since g

X+ ∈ L1+η(γ) (see Lemma 2), we have SΓ
g

X+ ∈
L1+η(Γ), whence (KΓ

g
X+ )(z) ∈ E1+η(D+) ⊂ E1(D+) (see Subsection 2.6).

But if KΓφ ∈ E1(D+), then SΓ(SΓφ) = φ ([8, p. 30]).
In the case under consideration, φ = g

X+ , and hence, SΓ(SΓ
g

X+ ) =
g

X+ .
Substituting this value into (30), we get equality (29). �

6.3. The continuity of the operator TG from Lp( · )(Γ) to the space
of convergence in measure.

Definition 3. By M(Γ) we denote the space of measurable on Γ func-
tions with metric

ρ(f, φ) =

∫
Γ

|f − φ|
1 + |f − φ|

ds.

The convergence of the sequence {fn} to f0 in the space M(Γ) is equiv-
alent to the convergence of {fn} in measure to f0.
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Lemma 4. If gn ∈ Lλ(Γ), 0 < λ < 1, and

In =

∫
Γ

|gn − g0|λ ds→ 0, (31)

then gn converges to g0 in M(Γ), as well.

It is not difficult to get the proof by estimating the integral In for large
n on the set ℓn,σ = {s : |gn − g0| > σ}.

Lemmas 3 and 4 lead to

Statement 1. The operator TG is continuous from Lp( · )(Γ) to M(Γ).

6.4. Closure of the operator TG from Lp( · )(Γ) to Lp( · )(Γ). Remind
the notion of a closed operator. Let A be the linear operator defined in the
Banach space X (i.e., the operator defined on some lineal from X and is
linear in it) with the domain of definition D(A) and acting to the Banach
space Y . The operator A is called closed from X to Y if it possesses the
following property:

if ∥xn − x0∥X → 0 and ∥Axn − y0∥Y → 0, then x0 ∈ D(A) and Ax0 = y0.

Theorem 5. If the conditions (25) are fulfilled, the operator T = TG is
closed from Lp( · )(Γ) to Lp( · )(Γ).

Proof. The domain of definition of the operator T = TG will be assumed to
be a linear set

D(T ) =
{
g : g ∈ Lp( · )(Γ), T g ∈ Lp( · )(Γ)

}
.

Let gn ∈ D(T ), n ∈ N, ∥gn − g0∥p( · ) → 0, ∥Tgn − f0∥p( · ) → 0. Then
g0, f0 ∈ Lp( · )(Γ), and owing to Statement 1, ∥Tgn − Tg0∥M(Γ) → 0. It
follows from the condition ∥Tgn − f0∥p( · ) → 0 that ∥Tgn − f0∥M(Γ) → 0,
whence we conclude that f0 = Tg0, by virtue of the limit uniqueness in
measure. Thus, we have

g0 ∈ Lp( · )(Γ), T g0 = f0 ∈ Lp( · )(Γ).

This implies that g0 ∈ D(T ), and since ∥Tgn − Tg0∥p( · ) → 0, the operator
T is closed from Lp( · )(Γ) to Lp( · )(Γ). �

7. The Riemann Problem in the Class Kp( · )(Γ)

7.1. Statement of the problem. Let Γ be the simple, rectifiable, closed
curve, bounding the domains D+ and D− (z = ∞ ∈ D−), g ∈ Lp( · )(Γ)
and the conditions (25) are fulfilled. We are required to find the functions
ϕ ∈ Kp( · )(Γ) whose angular boundary values ϕ+(t) and ϕ−(t) almost ev-
erywhere on Γ satisfy the boundary condition (1).
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7.2. Reduction of the problem (1) to the jump problem, when
κ(G) = 0. Let

XG(z) = X(z) = exp
{

1

2πi

∫
Γ

lnG(ζ)
ζ − z

dζ

}
.

By Theorem 3, we have 1
X(z) ∈ K̃p( · )(Γ) and X(∞) = 1. Since G(t) =

X+(t)[X−(t)]−1, the condition (1) can be written in the form( ϕ
X

)+

−
( ϕ
X

)−
=

g

X+
.

Putting ϕ1(z) = ϕ(z)[X(z)]−1, we get ϕ1 ∈ K1(Γ) and ϕ+1 −ϕ−1 ∈ g[X+]−1.
By Lemma 2, we have g[X+]−1 ∈ L1+η(Γ), η > 0. Therefore, the solution
of the last problem is unique, and ϕ1(z) = (KΓ

g
X+ )(z). Consequently, the

solution of the problem (1) may be only the function

ϕ(z) = X(z)
(
KΓ

g

X+

)
(z), (32)

and we have to elucidate the conditions under which this function belongs
to the class Lp( · ).

7.3. Criterion of solvability of the problem (1) when G(t) ∈ A(p( · ),Γ)
and indG = 0. If the conditions (25) are fulfilled, then K[g(X+)−1] ∈
E1+η(D±) (see Lemma 2). Therefore the function ϕ given by equality (32)
is representable by the Cauchy type integral with density φ = ϕ+ − ϕ−.
Hence ϕ ∈ Kp( · )(Γ), if and only if

φ(t) =
[
ϕ+(t)− ϕ−(t)

]
∈ Lp( · ). (33)

Using formulas (8) and taking into account the fact that G = X+

X− , we
obtain

ϕ+ =
1

2
(g + Tg), ϕ− =

1

2G
(−g + Tg).

It now follows from (33) that

φ(t) =
G+ 1

2G
g(t) +

G− 1

2G
(Tg)(t).

Obviously, if G ≡ 1, then φ ∈ Lp( · )(Γ). However, if G ̸= 1, then for the
condition (33) to be fulfilled, it is necessary and sufficient that the function
Tg belong to Lp( · )(Γ).

Thus we have proved

Theorem 6. If the conditions (25) are fulfilled and G(t) ≡ 1, then the
problem (1) is uniquely solvable in the class Kp( · )(Γ). If, however, G ̸≡ 1
and indG = 0, then for its solvability it is necessary and sufficient that
Tg ∈ Lp( · )(Γ). In case this condition is fulfilled, a solution is unique and
given by the equality

ϕ(z) = KΓ

[G+ 1

2G
g +

G− 1

2G
Tg

]
(z). (34)
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7.4. Problem (1) in the class Kp( · )(Γ) when G ∈ A(p( · ),Γ) and
κ(G) = κ > 0. Let the conditions (25) be fulfilled and Tg ∈ Lp( · )(Γ).

As usually (see [5, p. 118]), we fix the point z0 ∈ D+ and write the
condition (1) in the form

ϕ+(t) = ϕ−(t)(t− z0)
κG(t)(t− z0)

−κ + g(t). (35)

Assume

F (z) =

{
ϕ(z), z ∈ D+,

ϕ(z)(z − z0)
κ , z ∈ D−.

(36)

Then F (z) has at the point z = ∞ the pole of order κ− 1. Hence, there
is the polynomial Ωκ−1 of order κ − 1 such that

ψ(z) =
(
F (z)− Ωκ−1(z)

]
∈ Kp( · )(Γ). (37)

The condition (35) yields

ψ+(z) = G0(t)ψ
−(t) + g0(t), (38)

where

G0(t) = |G(t)|ei[argG(t)−κ arg(t−z0)]|t− z0|−κ ,

g0(t) = g(t)− Ωκ−1(t) +G0(t)Ωκ−1(t).

It can be easily shown that ψ ∈ Kp( · )(Γ), and G0 ∈ Ã(p(t),Γ). Using
Theorem 6, we can conclude that the problem (38) is solvable if g0 and Tg0
belong to Lp( · )(Γ).

Since G0 and G0Ωκ−1 are bounded functions, therefore g0 ∈ Lp( · )(Γ).
Let us show that Tg0 = Tg − TΩκ−1 + T (G0Ωκ−1) belongs to Lp( · )(Γ).

By our assumption, Tg ∈ Lp( · )(Γ). Putting X0(z) = XG0(z) for TΩκ−1,
we have

TΩκ−1 = X+
0 SΓ

Ωκ−1

X+
0

, G0 =
X+

0

X−
0

, X0(∞) = a ̸= 0.

Since Ωκ−1 is polynomial and 1
X(z) ∈ E1+η(D−), it follows that Ωκ−1(z)

X0(z)
∈

E1(D+), and consequently, SΓ
Ωκ−1

X+
0

= Ωκ−1

X+
0

. Therefore TΩκ−1 = Ωκ−1.
Next,

T (G0Ωκ−1) = X+
0 SΓ

Ωκ−1G0

X+
0

= X+
0 S

Ωκ−1

X−
0

.

The function Ωκ−1 is constant if κ = 1; then assuming Ω0 = b, we have

SΓ
Ω0

X−
0

= SΓ
b

X−
0

= SΓ

( Ω0

X−
0

− b

a

)
+ SΓ

b

a
= − b

X−
0

+
2b

a
,

that is, for κ = 1, we have T Ωκ−1

X+
0

= −bG0 +
2b
a X

+
0 , and this function by

Theorem 6 belongs to Lp( · )(Γ).
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If κ − 1 ≥ 1, then there exists the polynomial Pκ−2 of order κ − 2 such
that the function Ωκ−1

X0(z)
− Pκ−2(z) in the domain D− belongs to E1(D−).

Therefore

T (G0Ωκ−1) = X+
0 S

[Ωκ−1

X−
0

− Pκ−2

]
+X+

0 SPκ−2 =

= X+
0

(
−

(Ωκ−1

X−
0

− Pκ−2

))
+X+

0 Pκ−2 =

= −G0Ωκ−1 +X+
0 Pκ−1 +X+

0 Pκ−2 = −G0Ωκ−1 + 2X+
0 Pκ−2.

From the above, we can easily see that T (G0Ωκ−1) likewise belongs to
Lp( · )(Γ). Thus g0 and Tg0 belong to Lp( · )(Γ), and the problem (38) is
solvable in Kp( · )(Γ). Having solved it and getting back to ϕ(z), we succes-
sively get

ψ(z) = X0(z)KΓ

( g0

X+
0

)
(z), X0(z) = exp

{
KΓ(lnG0)(z)

}
,

KΓ
g0

X+
0

= KΓ
g

X+
0

− 1

2πi

∫
Γ

Ωκ−1(t)

X+
0 (t)

dt

t− z
+

1

2πi

∫
Γ

Ωκ−1(t)

X−
0 (t)

dt

t− z
.

The last summands can be easily calculated:

1

2πi

∫
Γ

Ωκ−1(t)

X+
0 (t)

dt

t− z
=


Ωκ−1(z)

X0(z)
, z ∈ D+,

0, z ∈ D−,

1

2πi

∫
Γ

Ωκ−1(t)

X−
0 (t)

dt

t− z
=

=
1

2πi

∫
Γ

[Ωκ−1(t)

X−
0 (t)

− Ωκ−1(t)
] dt

t− z
+

1

2πi

∫
Γ

Ωκ−1(t)

t− z
dt =

=

Ωκ−1(z), z ∈ D+,

−Ωκ−1(z)

X0(z)
+ Ωκ−1(z), z ∈ D−.

Putting

X(z) =

{
X0(z), z ∈ D+,

(z − z0)
−κX0(z), z ∈ D−,

X0(z) = exp(KΓ lnG0)(z), (39)

and take into (37) and (38), we obtain

ϕ(z) =
X(z)

2πi

∫
Γ

g(t)

X+(t)

dt

t− z
+X(z)Ωκ−1(z).
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7.5. The case for κ < 0. In this case, the function F (z) given by equality
(36) belongs to Kp( · )(Γ), and F+ = G0F

− + g. Consequently, F (z) =
X0(z)KΓ(

g

X+
0

)(z). For the function ϕ(z) = (z − z0)
−κF (z) in the domain

D− to belong to E1(D−) (the fulfilment of this condition is necessary for
ϕ(z) ∈ Kp( · )(Γ)), it is necessary that∫

Γ

g(t)

X+
0 (t)

tk dt = 0, k = 0, 1, . . . , |κ| − 1. (40)

If these conditions are fulfilled, then ϕ ∈ E1(D−), and since ϕ− ∈ Lp( · )(Γ),
therefore

ϕ(z) = − 1

2πi

∫
Γ

ϕ−

t− z
dt, z ∈ D−.

Hence
ϕ(z) = KΓ(ϕ

+ − ϕ−)(z) ∈ Kp( · )(Γ).

Now we are ready to state the theorem on the solvability of the problem
(1) in the class Kp( · )(Γ) when

g ∈ Lp( · )(Γ), T g ∈ Lp( · )(Γ). (41)
But first we present one simple sufficient condition with respect to g which
ensures belonging of the function Tg to the class Lp( · )(Γ).

Theorem 7. Let the conditions (25) be fulfilled and indG = 0. If
g ∈

∪
δ>0

Lp( · )+δ(Γ), then Tg ∈ Lp( · )(Γ).

Proof. Since g ∈
∪
δ>0

Lp( · )+δ(Γ), there exists the number η > 0 such that

g ∈ Lp( · )+η(Γ).
We divide Γ into the arcs γk so as to fulfil simultaneously the condition

of the theorem and
pk − p

k
< η, where pk = sup

t∈γk

p(t), p
k
= inf

t∈γk

p(t).

Then for t ∈ γk we have pk < p
k
+ η, and hence,

p(t) + η > p
k
+ η > pk.

Consequently, g ∈ Lpk(γk). In addition, since
sup
t∈γk

max(p(t), q(t)) ≥ sup
t∈γk

max p(t) = pk,

we find that G ∈ A(pk, γk). Owing to this fact, the functions Xk(z) given by
equalities (19) belong to Lp( · )(Γ) (see Subsection 5.2) and moreover, indG
in Kpk(Γ) equals zero. Consequently, the function ϕ(z) given by equality
(32) belongs to classes Lp( · )(γk) from which it follows that ϕ ∈ Kp( · )(Γ),
that is, ϕ+ ∈ Lp( · )(Γ). But ϕ+ = 1

2 (g + Tg). Hence, Tg ∈ Lp( · )(Γ). �

From the above theorem follows
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Statement 2. If g ∈ Lp( · )(Γ) and the conditions (25) are fulfilled, then
the function

ϕ(z) = XG(z)

∫
Γ

g(τ)

X+
G (τ)

dτ

τ − z
(42)

belongs to the class Kp( · )−δ(Γ) for any δ ∈ (0, p).

To prove this, it suffices to notice that for g ∈ Lp( · )(Γ) we have g ∈
L(p( · )−δ)+δ(Γ).

7.6. The theorem below is a summation of results stated in Sub-
sections 7.1–7.5.

Theorem 8. If the conditions (25) are fulfilled and g ∈ Lp( · )(Γ), then
the Riemann problem has a solution ϕ (given by equality (42)), satisfying
the condition ϕ ∈

∩
δ∈(0,p)

Kp( · )−δ(Γ).

If, however, G ∈ A(p( · ),Γ), then for the Riemann problem to be solvable
in the class Kp( · )(Γ) for κ(G) ≥ 0, it is necessary and sufficient that the
condition

Tg ∈ Lp( · )(Γ) (43)
is fulfilled.

When κ < 0, for the solvability of the problem it is necessary and suffi-
cient that the conditions (43) and∫

Γ

g(t)

X+(t)
tk dt = 0, k = 0, 1 . . . , |κ − 1|

are fulfilled.
If the above-mentioned conditions are fulfilled, then the problem for κ ≤ 0

is uniquely solvable, but for κ > 0 it is solvable unconditional. In all cases
the solution is given by the equality

ϕ(z) =
X(z)

2πi

∫
Γ

g(t)

X+(t)

dt

t− z
+X(z)Ωκ−1(z), (44)

where Ωκ−1(z) is an arbitrary polynomial of order κ − 1 (Ωκ−1(z) ≡ 0 for
κ ≤ 1), and X(z) given by (26).

8. On the Noetherity of the Operator Mφ = aφ+ bSΓφ in the
Space Lp( · )(Γ)

The results of Sections 3–7 do not allow us to establish Noetherity of the
operator M in the space Lp( · )(Γ), when G = (a− b)(a+ b)−1 ∈ A(p( · ),Γ).

We intend to construct a space Lp(t) in which under sufficiently general
assumptions with respect to Γ, p and G the operator M will be Noetherian.

As concerns the space Lp( · )(Γ), we can point out one necessary condition
for the operator M to be Noetherian in Lp( · )(Γ). This condition for p ∈
P(Γ) will be the same as for the constant p. We start with this result.
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Theorem 9. Let Γ ∈ R, p ∈ P(Γ), a(t), and b(t) be measurable bounded
on Γ functions. For the operator Mφ = aφ + bSΓφ to be Noetherian in
Lp( · )(Γ), it is necessary that the conditions

ess inf
t∈Γ

|a(t) + b(t)| > 0, ess inf
t∈Γ

|a(t)− b(t)| > 0 (45)

are fulfilled.

Proof. Let us consider in Lp( · )(Γ) the equation
Mφ = f, f ∈ Lp( · )(Γ). (46)

Let ϕ(z) = (KΓφ)(z), where φ is a solution of equation (46). By the Sokhot-
skii–Plemelj formulas, φ = ϕ+ − ϕ−, SΓφ = ϕ+ + ϕ−. Therefore, (46) can
be written in the form

(a+ b)ϕ+ + (b− a)ϕ− = f.

Assuming c = a+ b, d = b− a, we obtain
cϕ+ + dϕ− = f. (47)

Assume now to the contrary that M is Noetherian in Lp( · )(Γ) and, for
example,

ess inf |a+ b| = ess inf |c| = 0. (48)
Since the operator under small perturbations preserves Noetherity
([4, p. 144]), there exists the number ε > 0 such that: if the operator
M1φ = c1φ + d1SΓφ is Noetherian and ∥M − M1∥p( · ) < ε, then M1 is
likewise Noetherian.

Let η < ε
1+∥SΓ∥p( · )

. Consider the functions

c1(t) =

{
c(t) if |c(t)| ≥ η,

0 if |c(t)| < η,

d1(t) =

{
d(t) if |d(t)| ≥ η,

0 if |c(t)| < η.

(49)

Obviously,

∥Mφ−M1φ∥p( · ) ≤ η∥φ∥p( · ) + 2η∥Sφ∥p( · ) <
< 2η

(
1 + ∥S∥p( · )

)
∥φ∥p( · ) < ε∥φ∥p( · ),

therefore the operator M1 is Noetherian in Lp( · )(Γ). Let us show that the
equation

M1φ = 0 (50)
has only a zero solution. Towards this end, we notice that |d1| > 0 on Γ,
and c1 = 0 on the set e of positive measure, where mes e < mesΓ. Indeed,
if mes e = mesΓ, then d1ϕ ≡ 0 on Γ, hence ϕ− ≡ 0 on Γ. Then any
function of the type

∫
Γ

F+(τ)
τ−t dτ , where F ∈ E1(D+) with a boundary value

F+ ∈ Lp( · )(Γ) will be a solution of equation (50). Sets of such functions
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are of infinite dimension, hence M1 is not Noetherian. Thus mes e < mesΓ,
and hence mes(Γ \ e) > 0.

On e, we now have d1ϕ− = 0, and then ϕ− = 0 on e. By the theorem
on the uniqueness of analytic functions (see, e.g., [27, p. 232]), ϕ− = 0
on Γ. Consequently, on Γ \ e we have c1 ̸= 0 and c1ϕ

+ = 0. Again,
by the uniqueness theorem, we conclude that ϕ+ = 0 on Γ. Finally, we
obtain that on Γ both ϕ− and ϕ+ are equal to zero. This implies that
φ = ϕ+ − ϕ− = 0. Thereby, equation (50) has only a zero solution. Hence
M1φ = 0 has only a zero solution and the operator M1 is Noetherian one.
Since |d1| > η > 0, the operator M̃ = c1(d1)

−1ϕ+ + ϕ− together with
c1ϕ

+
1 + d1ϕ

− is likewise Noetherian, and M̃φ has only a zero solution. In
addition, the coefficient c1/d1 on e equals zero and is different from zero on
Γ \ e; both sets are of positive measure. Therefore, also for the operator
(M̃)∗ we have dimN((M̃)∗) = 0 (this case for a variable p(t) is proved in the
same way as Lemma 4.1 in [4] on pages 292-3 for a constant p). Since the
operators M̃ and M̃∗ are Noetherian, this implies that they are invertible.
Owing to this fact, the equation c1

d1
ϕ+ + ϕ− = g should have a solution in

Lp( · )(Γ) for any function g ∈ Lp( · )(Γ).
Let us show that this is not true.
Let f = 1, then c1ϕ

+ + d1ϕ
− = d1, t ∈ Γ. But for t ∈ e, we get

0 + d1ϕ
− = d1, i.e., ϕ−(t) ≡ 1. If F (z) = ϕ(z) − 1, then F ∈ Kp( · )(Γ).

Hence F (z) belongs to E1(D−), and F−(t) = 0, t ∈ e, whence it follows
that ϕ(z) = 1, z ∈ D−, and ϕ(∞) = 1, as well. But this is impossible due
to ϕ ∈ Kp( · )(Γ), and for such functions we have ϕ(∞) = 0.

The obtained contradiction shows that the assumption (48) is invalid,
hence ess inf |a(t) + b(t)| > 0.

The validity of the second inequality in (48) can be proved analogous-
ly. �

As a conclusion, it should be noted that in proving the lemma we have
followed the method suggested in [4, pp. 256-8].

9. The Space Lp( · )

9.1. Definition of Lp( · ); its Banachity. Let
Γ ∈ R, p ∈ P(Γ), G ∈ A(p( · )). (51)

Assume

g ∈ Lp( · ), T g ∈ Lp( · ), T
(
gk

1

G

)
∈ Lp( · ), k = 1, 2, (52)

where
g1 =

1

2
(g + Tg), g2 =

1

2
(−g + Tg). (53)

It follows from (52) that

gk ∈ Lp( · ), k = 1, 2. (54)
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Let

Lp( · ) =
{
g : g ∈ Lp( · ), T g ∈ Lp( · ), T

(
gk

1

G

)
∈ Lp( · )

}
. (55)

For the elements from Lp( · ) we introduce the norm as follows:

∥g∥Lp( · ) = ∥g∥p( · ) + ∥Tg∥p( · ) +
∥∥Tg1 1

G

∥∥∥
p( · )

+
∥∥Tg2 1

G

∥∥∥
p( · )

. (56)

The set Lp( · ) together with the above-introduced norm, i.e.,

Lp( · ) =
{
g : ∥g∥Lp( · ) <∞

}
turns into a linear normalized space.

Lemma 5. If the conditions (51) are fulfilled, than Lp( · ) is a complete
space.

Proof. Let {gn} be the fundamental sequence in Lp( · ), then it follows from
(55) that the sequences {gn}, {Tgn},

{
T (gnk

1
G )

}
, k = 1, 2, are fundamental

in Lp( · ). Let µ, λ, e, ψ be the functions from Lp( · ) to which these sequences
converge, respectively, i.e.,

∥gn − µ∥p( · ) → 0, ∥Tgn − λ∥p( · ) → 0,∥∥∥T(gn1 1

G

)
− e

∥∥∥
p( · )

→ 0,
∥∥∥T(gn2 1

G

)
− ψ

∥∥∥
p( · )

→ 0.
(57)

Since T is continuous from Lp( · ) to the space M(Γ), Tgn converges in
measure to Tµ, and hence

λ = Tµ (58)
Next, since gn1 = 1

2 (g
n + Tgn), {gn1 } converges in Lp( · ) and in measure

to 1
2 (µ+λ), and owing to the fact that 1

G is bounded, we conclude that the
sequences

{
gnk

1
G

}
, k = 1, 2, converge in Lp( · ), respectively, to 1

2 (µ + λ) 1
G

and to 1
2 (−µ+ λ) 1

G . This implies that

e =
1

2

(
µ+ Tµ+ T

(
µ1

1

G

)
+ T

(
µ2

1

G

))
, (59)

µ1 = µ+ λ, µ2 = −µ+ λ,

ψ =
1

2

(
µ+ Tµ− T

(
µ1

1

G

)
+ T

(
µ2

1

G

))
, (60)

and from (56)–(59) we conclude that

∥gn − µ∥Lp( · ) → 0. �

9.2. The necessary condition for the operator M to be Noetherian
in Lp( · ). Let us show that the analogue of Theorem 9 is valid for the
operator M to be Noetherian in Lp( · ).
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Theorem 10. Let Γ ∈ R, p ∈ P(Γ), and let a and b be bounded measur-
able on Γ functions, then for the operator M = aφ+ bSφ to be Noetherian
in Lp( · ), it is necessary that the conditions (45) or, what comes to the same
thing, the condition

ess inf |a2 − b2| > 0

is fulfilled.

Proof. We proceed from the proof of Theorem 9. Tracing its proof, we
conclude that we have used the following facts:

(1) Lp( · ) is the Banach space;
(2) the set of Noetherian operators in the Banach space (and hence in

Lp( · )(Γ)), is open;
(3) equation (50) in Lp( · ) has only a zero solution;
(4) if two analytic functions have in the domain G the same angular

boundary values on the set of positive measure, then they are equal
everywhere in G;

(5) the function f ≡ 1 belongs to Lp( · ).
In the case under consideration:
(1′) Lp( · ) is the Banach space;
(2′) since Lp( · ) is the Banach space, the set of Noetherian operators is

open;
(3′) equation (50) has in Lp( · ) only a zero solution, since in a wider

space Lp( · ) it has only a zero solution;
(4′) the theorem on the uniqueness of analytic functions is applicable;
(5′) the function f ≡ 1 belongs to Lp( · );
By virtue of statements (1′)–(5′), repeating the same arguments as in

proving Theorem 9, we find that Theorem 10 is likewise valid. �

10. Solution of Equation Mφ = f in the Space Lp( · )

10.1. The case κ = 0. Assume that the conditions (51)–(52) with

G =
a− b

a+ b
∈ A(p( · )) (61)

and
ess inf |a2 − b2| > 0 (62)

are fulfilled, and consider the equation
Mφ = aφ+ bSφ = f, f(a+ b)−1 ∈ Lp( · ). (63)

This equation is equivalent to the following Riemann problem:

ϕ+(t) = G(t)ϕ−(t) + g(t), g(t) =
f(t)

a(t) + b(t)
(64)

in the class KLp( · ), i.e., in the class of Cauchy type integrals with density
from Lp( · ).
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Indeed, if ϕ = KΓφ (where φ ∈ Lp( · )) is a solution of the problem (64),
then it can be easily verified that φ is a solution of equation (63) of the
class Lp( · ).

Conversely, if φ is a solution of equation (63) of the class Lp( · ), then
ϕ = KΓφ ∈ KLp( · ), and it satisfies the condition (64).

Lemma 6. If for Γ, p and G the conditions (25) are fulfilled and the
functions g1 and g2 are defined by equalities (53), then the equalities

Tg1 = g1, T g2 = −g2 (65)
are valid.

Proof. Follows immediately from the equality T (Tg) = g, valid due to the
conditions (25) (see Theorem 4). �

Lemma 7. If there take place the inclusions (51)–(52) and indG =
ind a−b

a+b = 0, then equation (63) is uniquely solvable in the class Lp( · ), and
a solution is given by the equality

φ = g1 −
g2
G
,

where
g1 =

1

2
(g + Tg), g2 =

1

2
(−g + Tg), g =

f

a+ b
. (66)

Proof. By virtue of Theorem 8, the problem (64) in Lp( · ) has a unique
solution

ϕ(z) = X(z)
[
KΓ

( g

X+

)]
(z). (67)

By the Sokhotskii–Plemelj formulas, we obtain

ϕ+ =
1

2
(g + Tg) = g1, ϕ− =

1

2G
(−g + Tg) =

g2
G
. (68)

Since indG = 0, therefore ϕ ∈ E1(D±), and hence

ϕ(z) =
1

2πi

∫
Γ

ϕ+(t)− ϕ−(t)

t− z
dt =

1

2πi

∫
Γ

g1 − g2
G

t− z
dt. (69)

Thereby, the only possible solution of equation (63) is the function

φ = g1 −
g2
G
. (70)

Let us prove that φ ∈ Lp( · ), i.e., that

φ ∈ Lp( · ), Tφ ∈ Lp( · ), T
(φk

G

)
∈ Lp( · ), k = 1, 2. (71)

From the assumptions g ∈ Lp( · ), Tg ∈ Lp( · ), 1
G ∈ L∞, it follows that

φ ∈ Lp( · ). (72)
Further, due to (65) and (70),

Tφ = Tg1 − T
g2
G

=
(
g1 − T

g2
G

)
∈ Lp( · ). (73)
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To study T φk

G , we first note that

φ1 =
1

2
(φ+ Tφ) =

1

2

(
g1 −

g2
G

+ Tg1 − T
g2
G

)
=

=
1

2
(g1 + Tg1)−

1

2

(g2
G

+ T
g2
G

)
= g1 −

1

2

(g2
G

+ T
g2
G

)
, (74)

φ2 =
1

2
(−φ+ Tφ) =

1

2

(
− g1 +

g2
G

+ Tg1 + T
g2
G

)
=

=
1

2

(g2
G

+ T
g2
G

)
. (75)

It follows from (52) and (70) that φk ∈ Lp( · ).
Now, we have

T
φ1

G
= T

g1
G

− 1

2

(
T
g2
G

· 1

G
+ T

(
T
g2
G

) 1

G

)
=

= T
g1
G

− 1

2

(
T
g1
G

· 1

G
+
g2
G

· 1

G

)
, (76)

T
φ2

G
=

1

2

(
T
g2
G

· 1

G
+
(
T
g2
G

) 1

G

)
=

=
1

2

(
T
g2
G

· 1

G
+
g2
G

· 1

G

)
. (77)

Taking into account (70), relying on (76) and (77), we conclude that

T
φ1

G
,T

φ2

G
∈ Lp( · ). (78)

The inclusions (72), (73) and (78) imply that the inclusion (71) is valid,
and hence φ ∈ Lp( · ). �

10.2. The case κ > 0. Since Tg ∈ Lp( · ), all possible solutions of the
problem (64) lie in the set

ϕ(z) = X(z)
(
KΓ

g

X+

)
(z) + Pκ−1(z)X(z)

(see item 7.4). The first summand here belongs to KLp( · ) (see item 7.3).
Let us show that the second summand likewise belongs to KLp( · ).

Since X(t) has at infinity zero of order κ, Pκ−1(z)X(z) is representable
by the Cauchy integral in the domains D+ and D−.

Lemma 8. The function

φ(t) =
[
X+(t)−X−]Pκ−1(t)

satisfies the conditions (52), and hence φ ∈ Lp( · ).

Proof. Since X+, X− ∈ Lp (see Theorem 3), φ ∈ Lp( · ).
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Further,

Tφ = TX+P − TX−P = X+SΓ
X+P

X+
−X+SΓ

X−P

X+
=

= X+P −X+SΓ
P

G
. (79)

Here, for the multiplier SΓ
P
G , we have

SΓ
P

G
=

∫
Γ

P (τ)

G(τ)

dτ

τ − t
=

∫
Γ

1

G(τ)

P (τ)− P (t)

τ − t
dτ + P (t)S

1

G
. (80)

By virtue of the inclusion (11), we find that X+ ∈ Lp( · )+η (see Corollary
of Theorem 3). Next, the first summand in equality (80) is a bounded
function; moreover, since Γ ∈ R and 1

G ∈ L∞, we have S 1
G ∈

∩
s>1

Ls. Then

PS 1
G ∈ Lp( · ), and since X+ ∈ Lp( · )+η, therefore X+SΓ

1
G ∈ Lp( · ), as well.

By virtue of (80), we can conclude from (79) that Tφ ∈ Lp( · ).
Further,

2φ1 = φ+ Tφ = 2X+P −X−P +X+SΓ
P

G
, 2φ2 = X−P +X+SΓ

P

G

and hence

φ1

G
= 2X−P − X−P

G
+X−SΓ

P

G
= X−

(
2P − P

G
+ SΓ

P

G

)
,

φ2

G
= X−

(P
G

+ SΓ
P

G

)
from which we get

T
φ1

G
= X+SΓ

[
1

G

(
2P − P

G
+ SΓ

P

G

)]
,

T
φ2

G
= X+SΓ

[
1

G

(P
G

+ SΓ
P

G

)]
.

(81)

It can be easily seen that T φ1

G ∈ Lp( · ) if the function X+SΓ (
2P
G − P

G2 +
1
G SΓ

P
G ) belongs to Lp( · ). Since P

G , P
G2 belong to L∞ and Γ ∈ R we have

SΓ
P
G and SΓ

P
G2 belong to the set

∩
ν>1

Lν . Moreover, X+ ∈ Lp( · )+ε (see

Corollary of Theorem 3). These two facts allow us to conclude that

T
φ1

G
∈ Lp( · ). (82)

Analogously, we can prove that T φ2

G ∈ Lp( · ).
Thus we have proved that for φ the conditions (52) are fulfilled, and

hence φ ∈ Lp( · ). �
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10.3. The case κ < 0.

Lemma 9. If the conditions (45), (51)–(52) are fulfilled, and κ < 0,
then for equation (63) to be solvable in the class Lp( · ), it is necessary and
sufficient that∫

Γ

f(τ)

a(τ) + b(τ)

τk

X+(τ)
dτ = 0, k = 0, 1, . . . , | − κ| − 1. (83)

Proof. In the case under consideration, X(z) has at infinity a pole of order
|κ|, therefore the only possible solution of equation (62) may be only the
function φ(t) = ϕ+(t) − ϕ−(t), where ϕ(z) = X(z)(KΓ

g
X+ )(z), g(t) =

f(t)
a(t)+b(t) . But the function φ(t) belongs to KLp( · ), if and only if ϕ(z) ∈
E1(D±), i.e., when the function (KΓ

f
a+b )(z) at the point z = ∞ has zero

of order |κ|. Thus it is necessary and sufficient that equalities (83) are
fulfilled. And if this condition is fulfilled, the solution is unique and given
by the equality

φ =
1

2

( f

a+ b
+ T

f

a+ b

)
− 1

2G

(
− f

a+ b
+ T

f

a+ b

)
. (84)

�

10.4. Summation of results stated in items 10.1–10.3.

Theorem 11. Let Γ be a simple, closed, rectifiable curve p ∈ P(Γ), and
let a(t) and b(t) be bounded measurable on Γ functions such that

ess inf
∣∣a2(t)− b2(t)

∣∣ > 0

and G(t) = (a(t) − b(t))(a(t) + b(t))−1. If for Γ, p and G the conditions
(25) are fulfilled.

Then the equation

Mφ = a(t)φ(t) + b(t)(SΓφ)(t) = f(t),
f(t)

a(t) + b(t)
∈ Lp( · )

for κ = κ(G) ≥ 0 is solvable in the class Lp( · )(Γ); for κ = 0, it is unique and
for κ > 0, the homogeneous equation has κ linearly independent solutions.
If κ < 0, for the equation Mφ = f to be solvable in the class Lp( · )(Γ), it is
necessary and sufficient that the conditions (83) are fulfilled.

In all cases when a solution exists, it is given by the equality

φ(t) =
1

2

( f

a+ b
+ T

f

a+ b

)
− 1

2G

(
− f

a+ b
+ T

f

a+ b

)
+

+ (X+ −X−)Pκ−1 (85)

(Pν ≡ 0, if ν < 0).
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11. The Spaces L̃p(t) and (Lp(t))∗

11.1. Definition and some properties of the space L̃p( · ). Let ψ ∈
Lp( · ), and X be the function given by equality (26). Assume

T̃ψ =
1

X+
S(X+ψ),

L̃p( · ) =
{
ψ : ψ ∈ Lp( · ), T̃ψ ∈ Lp( · )}. (86)

For the functions ψ ∈ L̃p( · ) we introduce the norm
∥ψ∥L̃p( · ) = ∥ψ∥p( · ) + ∥T̃ψ∥p( · ). (87)

Due to the continuity of the operator T from Lp( · ) to the space of con-
vergence in measure, we can easily prove

Lemma 10. If Γ ∈ J∗, p ∈ P(Γ), G ∈ Ã(p( · )), then the operator T̃ is
continuous from L̃p( · ) to the space of convergence in measure.

Lemma 11. L̃p( · ) is the complete, linear, normalized space.

Proof runs in the same way as that of Lemma 5.

11.2. The spaces ℓ1 and ℓ2. Assume
ℓ1 =

{
ψ : ψ ∈ Lp( · ), Tψ = ψ

}
, ∥ψ∥1 = ∥ψ∥p( · ),

ℓ2 =
{
ψ : ψ ∈ Lp( · ), Tψ = −ψ

}
, ∥ψ∥2 = ∥ψ∥p( · ).

(88)

Lemma 12. ℓk, k = 1, 2, are closed subspaces of the space Lp( · ).

Proof. Let ψn ∈ ℓk and {ψn} be the fundamental sequence in Lp( · ), then
there exists ψ0 ∈ Lp( · ) such that ∥ψn − ψ0∥p( · ) → 0. Let us prove that
ψ0 ∈ ℓk.

Assuming for the definiteness that k = 1, then Tψk = ψk, and hence
{Tψk} converges in Lp( · ) to ψ0. By statement 1, {Tψk} converges in mea-
sure to Tψ0. Hence ψ0 = Tψ0 ∈ ℓ1. Consequently, ℓ1 is closed in Lp( · ).

The closure of ℓ2 in Lp( · ) is proved analogously. �

Lemma 13.
Lp( · ) = ℓ1 ⊕ ℓ2. (89)

Proof. Let ψ ∈ Lp( · ); obviously,

ψ =
1

2
(ψ + Tψ) +

1

2
(ψ − Tψ) = ψ1 + ψ2, (90)

where ψ1 = 1
2 (ψ + Tψ) and ψ2 = 1

2 (−ψ + Tψ). We have

Tψ1 =
1

2
(Tψ + ψ) = ψ1, Tψ2 =

1

2
(Tψ − ψ) = −ψ2.

This implies that ψk ∈ ℓk.
If ψ = µ1 + µ1, µk ∈ ℓk, then ψ1 − µ1 = ψ2 − µ2, where ψk − µk ∈ ℓk.

Thereby, (ψk−µk) ∈ ℓ1∩ℓ2. But it can be easily verified that ℓ1∩ℓ2 = {0}.
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Indeed, if ψ ∈ ℓ1 ∩ ℓ2, then Tψ = ψ and Tψ = −ψ, i.e., ψ = −ψ, and hence
ψ = 0.

Thus, for any ψ ∈ Lp( · ), the unique representation of type (90) with
ψk ∈ ℓk is valid. This means that equality (89) is valid. �

11.3. The space (Lp( · ))∗. Since Lp( · ) = ℓ1⊕ℓ2, then following [30, p. 103],
we have

(Lp( · ))∗ = ℓ∗1 ⊕ ℓ∗2.

Lemma 14. Every linear continuous functional Λ ∈ (Lp( · ))∗ generates
the linear continuous functional Λ̂ from (Lp( · ))∗.

Proof. We denote the narrowing of the functional Λ on ℓk by Λk (i.e., Λkf =
Λf , when f ∈ ℓk).

Since ℓk is the closed subspace of the space Lp( · ), there exists the linear,
continuous functional Λk on Lp( · ) such that Λ̂kf = Λf when f ∈ ℓk (see
e.g., [31, p. 72]).

Assume
Λ̂ = Λ̂1 + Λ̂2.

By the continuity of functionals Λ̂k, we conclude that Λ̂ is the linear, con-
tinuous functional on Lp( · ).

If f ∈ Lp( · ), then f = f1 + f2, fk ∈ ℓk, therefore
Λ̂f = Λ̂1f + Λ̂2f = Λ̂1(f1 + f2) + Λ̂2(f1 + f2) =

= Λ̂1f + Λ̂1f2 + Λ̂2f1 + Λ̂2f2. (91)
Before going further, we need the following

Lemma 15. The equalities
Λ̂1f2 = 0, f2 ∈ ℓ2, Λ̂2f1 =, f1 ∈ ℓ1, (92)

are valid.

Proof. Let f = f1 + f2, then Λ̂f1 = Λ̂1f1 + Λ̂2f1, Λ̂f2 = Λ̂1f2 + Λ̂2f2.
By the definition of functionals Λk, we have Λ̂1f1 = Λf1 and Λ̂2f2 = Λf2.
By virtue of the above-said, from the last equalities we arrive at equalities
(92). �

We can now complete the proof of Lemma 14. Equalities (91) yield

Λ̂f = Λ̂1f1 + Λ̂2f2 = Λf1 + Λf2 = Λ(f1 + f2) = Λf,

i.e., Λ̂ is an extension of the functional Λ on Lp( · ) to the functional on
Lp( · ).

For the functional Λ̂ from Lemma 14, we have

Λ̂f =

∫
Γ

fµ dt, (93)

where µ ∈ Lp′( · ) (since (Lp( · ))∗ = Lp′( · ), (see item 2.3.2). �
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Lemma 16. The function µ in equality (93) belongs to Lp′( · ).

Proof. We have

Λ̂ψ =

∫
Γ

(ψ1 + ψ2)µdt =

∫
Γ

ψ1µdt+

∫
Γ

ψ2µdt = I1 + I2. (94)

Here,

2I1 =

∫
Γ

ψ1µdt =

∫
Γ

(ψ + Tψ)µdt =

∫
Γ

ψµdt+

∫
Γ

Tψµdt. (95)

Transforming the second summand in (95) and applying the Riesz equal-
ities ∫

Γ

fSΓg dt = −
∫
Γ

gSΓf dt, f ∈ Lp( · ), g ∈ Lp′( · ) (96)

([17]), we have∫
Γ

Tψµdt =

∫
Γ

X+SΓ
ψ

X+
µdt =

=

∫
Γ

µX+SΓ
ψ

X+
dt = −

∫
Γ

ψ

X+
SΓX

+ dt.

Assuming for the present that µ = µn and ψ = ψν are rational functions,
we can apply formula (96). Thus we obtain∫

Γ

Tψνµn dt = −
∫
Γ

ψν

X+
SΓX

+µn dt = −
∫
Γ

ψν T̃ µn dt. (97)

For the fixed µn, in right-hand side of equality (97) we can pass to the
limit with respect to ν. We get

lim
ν→∞

∫
Γ

Tψνµn dt = −
∫
Γ

ψT̃µn dt, ψ ∈ Lp( · ).

As far as {Tψν} converges in measure to Tψ, we select a subsequence
converging almost everywhere to Tψ and, by the Fatou lemma, we find that∫

Γ

Tψµn dt = −
∫
Γ

ψT̃µn dt.

In the above equality, we can pass to the limit in left-hand side and as a
result, we have ∫

Γ

Tψµdt = lim
n→∞

∫
Γ

ψT̃µn dt.
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According to Lemma 10, {T̃ µn} converges in measure to T̃ µ. Just as
above, we apply Fatou’s lemma and obtain∫

Γ

Tψµdt = −
∫
Γ

ψT̃µ dt, (98)

where µ ∈ Lp′( · ), ψ ∈ Lp( · ). From (98) we can conclude that T̃ µ ∈ Lp′( · ).
Consequently, µ ∈ Lp′( · ), T̃ µ ∈ Lp′( · ). �

It follows from equalities (93), (95) and (98) that if µ ∈ Lp′( · ), then

Λψ =

∫
Γ

ψµ1 dt, µ1 = −Tµ ∈ L̃ p′( · )

is the linear continuous functional in Lp( · ). This and the statement of
Lemma 14 allow us to conclude that the following theorem is valid.

Theorem 12. If the conditions of Theorem 3 are fulfilled, then

(Lp( · ))∗ = L̃q( · ), q(t) =
p(t)

p(t)− 1
.

12. On the Noetherity of Operator M in the Space Lp( · )

12.1. The operator, conjugate to the operator M . If the operator M
acts from the Banach space X to Y , then the operator M∗ acts from Y ∗ to
X∗ which to the linear functional Λ from Y ∗ to C puts into correspondence
the functional Λ∗ defined by the equality Λ∗x = Λ(Mx), x ∈ X.

In the case under consideration, X = Y = Lp( · ) and Y ∗ = X∗ = L̃q( · ).
Let f ∈ Lp( · ), then

Λf =

∫
Γ

fψ dt, ψ ∈ L̃q( · ),

Λ∗f =

∫
Γ

ψMf dt =

∫
Γ

ψ(t)
(
a(t)f(t) + b(t)(Sf)(t)

)
dt =

=

∫
Γ

a(t)ψ(t)f(t) dt+

∫
Γ

ψ(t)b(t)(Sf)(t) dt =

=

∫
Γ

a(t)ψ(t)f(t) dt−
∫
Γ

f(t)(Sbψ)(t) dt =

=

∫
Γ

f(t)
(
a(t)ψ(t)− (Sbψ)(t)

)
dt.

Consequently, the conjugate to the operator M : Lp( · ) → Lp( · ) is the
operator M∗ : L̃q( · ) → L̃q( · ) given by the equality

M∗ψ = aψ − Sbψ. (99)
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12.2. About the equation M∗ψ = µ. The equation

M∗ψ = µ. (100)

considered in L̃q( · ) is equivalent to the problem of conjugation

Ψ+ =
1

G
Ψ− +

µ

a− b
, (101)

considered in the class KL̃q( · ). In addition,

Ψ(z) =
1

2πi

∫
Γ

b(τ)ψ(τ)

τ − z
dτ. (102)

Since

Ψ+ =
1

2
(bψ + Sbψ), Ψ− =

1

2
(−bψ + Sbψ),

therefore
Ψ+ −Ψ− = bψ, Ψ+ +Ψ− = Sbψ.

If µ = 0, then ψ = Sbψ = Ψ+ − Ψ−, and hence aψ = Ψ+ + Ψ−, bψ =
Ψ+ −Ψ−. This implies that (a+ b)ψ = 2Ψ+, i.e.,

ψ(z) =
2Ψ+

a+ b
. (103)

Since 1
G ∈ A(q( · )), for κ = κ(G) ≥ 0 we have ind 1

G ≤ 0, therefore the
equation

aψ − Sbψ = 0 (104)

has only a zero solution.
When κ(G) < 0, it is not difficult to verify that a general solution of the

problem (101) for µ ≡ 0 will have the form

Ψ =
1

2
X(z)P|κ|−1(z)

and from (73) we find that the set of functions

Ψ =
P|κ|−1(z)

X+(a+ b)

provides us with a general solution of equation M∗ψ = 0. The base of a
general solution for that equation is

1

X+(a+ b)
,

τ

X+(a+ b)
, . . . ,

τ |κ|−1

X+(a+ b)
.
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12.3. On the Noetherity of the operator M . The conditions (54) des-
ignate that equation (63) for κ < 0 is normal solvability.

If κ ≥ 0, then N(M∗) = {0}, and the equation Mφ = f is solvable for
any f

a+b ∈ Lp( · ), i.e., the condition of normal solvability is fulfilled again.
This and the fact that ℓ = N(M) = max(0,κ) and ℓ′ = N(M∗) =

max(0,−κ) allow us to conclude that the theorem below is valid.

Theorem 13. Let Γ be the simple, closed, rectifiable curve and let a(t)
and b(t) be measurable bounded functions such that

ess inf
∣∣a2(t)− b2(t)

∣∣ > 0,

and G(t) = (a(t)− b(t))(a(t) + b(t))−1 . If the conditions (25) are fulfilled,
then the equation

Mφ := a(t)φ(t) + b(t)(Sφ)(t) = f(t)

is Noetherian in the space Lp( · ), where

M∗ψ = aψ − Sbψ,M∗ : L̃q( · ) → L̃q( · ),

ind(M ;Lp( · )) = κ(G) = κ = ind
(
(a− b)(a+ b)−1

)
.

In all cases where a solution exists, it is given by equality (85).

Corollary. If V is a compact operator from Lp( · ) to Lp( · ) and the
conditions (25) are fulfilled, then the operator M + V is Noetherian in
Lp( · ), and ind(M + V,Lp( · )) = indM = ind a−b

a+b .

This statement is a consequence of the result obtained in [29] according to
which it follows that the addition of a compact operator to the Noetherian
one does not change its Noetherity and index.

13. Some Properties of the Operator T = TG, when G ∈ A(p( · ))

Above we frequently applied properties of the operator TG proven in
Section 6. Remind these properties.

(1) Under the assumptions (25), we have T (Tg) = g.
(2) The operator T is continuous from Lp(t) to the space of convergence

in measure.
(3) The operator T is closed from Lp( · ) to Lp( · ).

Moreover, when proving Lemma 6, we have used equality (66) which will
be proved in Subsection 13.1.

Below, we will present some other properties of the operator T . We
start with Lemma 17 which will be highly useful in establishing operator
properties which will be treated in Subsections 13.3–13.5.

All curves considered in Section 13 are assumed (except requirements
made by the theorem) to be simple, rectifiable and closed.
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13.1. Lemma about S(ab).

Lemma 17. If Γ ∈ R, p ∈ P(Γ), a ∈ Lp( · ), b ∈ Lq( · ), then almost
everywhere on Γ the equality

S(ab) = bSa+ aSb− S(Sa · Sb) (105)
is valid.

Proof. Assume that the point z = 0 lies in the inner domain bounded by Γ.
Then rational functions of the type

−1∑
k=−m

akt
k +

n∑
k=0

akt
k = m(t) + h(t)

form a complete set both in Lp( · ) and in Lq( · ). We denote it by Q.
Let us show that if a(t) = m(t) + h(t), b(t) = r(t) + s(t), then equality

(105) is valid.
We have

S(ab) = S
(
(m+ h)(r + s)

)
= S(mr + hr +ms+ hs) =

= S(mr + hs) + S(ms+ hr) = mr − hs+ S(ms+ hs). (106)
Here we have used the equalities

(SP )(t) = P (t), S
(
P
(1
t

))
= −P

(1
t

)
,

where P is the polynomial of its own argument.
Further,

bSa+ aSb− S(Sa · Sb) =
= (r + s)(m− h) + (m+ h)(r − s)− S(mr −ms− hr + hs) =

= rm−rh+sm−sh+mr−ms+hr−hs−S(mr−ms−hr+hs) =
= 2rm− 2h− (mr − hs)− S(ms+ hr) =

= mr − hs+ S(ms+ hr). (107)

From equalities (106) and (107) we obtain (105) in the form
S(RnQm) = SRn ·Qm +RnSQm − S(SRn · SQm), (108)

where Rn and Qm belong to Q.
Let now a ∈ Lp( · ) and b ∈ Lq( · ) be arbitrary functions, and let ∥Rn −

a∥p( · ) → 0, ∥Qm − b∥q( · ) → 0.
Since Γ ∈ R and p ∈ P(Γ), by the boundedness of the operator S in Lp( · )

([10]), we admit in equality (108) the passage to the limit which allows us
to conclude that equality (105) is valid in a general case. �

Corollary. If Γ ∈ R, p ∈ P(Γ), m ∈ Lp( · ), n ∈ Lq( · ), then
T (mn) = Tm · n+m · Sn− T (Tm · Sn).
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Proof. According to (105), we get

T (mn) = X+S
( m

X+
n
)
= X+

(
nS

m

X+
+

m

X+
Sn

)
−X+S

(
S

m

X+
Sn

)
=

= Tm · n+m · Sn+X+ −X+S
( 1

X+
X+S

m

X+
Sn

)
=

= Tm · n+m · Sn− T (Tm · Sn). �

13.2. Value of sup ∥T∥α when α ∈ [p, p].

Lemma 18. If Γ ∈ R, p ∈ P(Γ), p = inf
t∈Γ

p(t), p = sup
t∈Γ

p(t), and for any

α ∈ I = [p, p] we have ∥T∥α <∞, then
sup
α

∥T∥α <∞.

Proof. Assume the contrary; then there exists the sequence {αn}, αn ∈ I,
such that

∥T∥αn → ∞.

Note that if p and p1 belong to P(Γ), and p(t) ≤ p1(t), then
∥f∥p( · ) ≤ (1 + mesΓ)∥f∥p1( · )

(see item 2.4.2).
Let α0 = supαn, then α0 ∈ I. Taking into account the last inequality,

we obtain

∥T∥α0 = sup
∥φ∥α0≤1

∥Tφ∥α0 ≥ sup
∥φ∥α0≤1

∥Tφ∥αn · 1

1 + mesΓ . (109)

But ∥φ∥α0 ≥ 1
1+mesΓ ∥φ∥αn , hence ∥φ∥αn ≤ (1 + mesΓ)∥φ∥α0 .

Consequently,
sup

∥φ∥α0≤1

∥Tφ∥αn = (1 + mesΓ) sup
∥φ∥αn≤1

∥Tφ∥αn = (1 + mesΓ)∥T∥αn .

This together with the estimate (109) result in ∥T∥α0 = ∞. But this con-
tradicts the assumptions of the lemma by which ∥T∥α0 should be finite,
since α0 ∈ I. �
13.3. On the operator T1/G, when G ∈ A(p( · )).

Lemma 19. If Γ ∈ R, p ∈ P(Γ) and the operator TG, G ∈ A(p( · )), is
continuous in Lp( · ), then the operator

T1/G : f → T1/Gf, (T1/Gf)(t) =
1

2πiX+(t)

∫
Γ

X+(τ)f(τ)

τ − t
dt

is continuous in Lq( · ).
Conversely, if T1/G is continuous in Lq( · ), then TG is continuous in

Lp( · ).
Moreover,

∥TG∥p( · ) ≤ k∥T1/G∥q( · ), ∥T1/G∥ ≤ k∥TG∥p( · ), (110)



142 Vakhtang Paatashvili

where k = 1 + 1
p + 1

p is the constant from inequality (6).

Proof. We proceed from the relation

∥f∥p( · ) ∼ sup
∥g∥q( · )≤1

∣∣∣∣ ∫
Γ

fg dt

∣∣∣∣
(see item 2.4.1).

Assuming for the present that f and g are rational functions of the class
Q, we get

∥T1/Gg∥q( · ) ∼ sup
∥f∥p( · )≤1

∣∣∣∣ ∫
Γ

fT1/G dt

∣∣∣∣ = sup
∥f∥p( · )≤1

∣∣∣∣ ∫
Γ

f
1

X+
SX+g dt

∣∣∣∣.
Using the Riesz equality (see formula (66)), we obtain

∥T1/Gg∥q( · ) = sup
∥f∥p( · )≤1

∣∣∣∣ ∫
Γ

gX+S
f

X+
dt

∣∣∣∣ = sup
∥f∥p( · )≤1

∣∣∣∣ ∫
Γ

gTGf dt

∣∣∣∣ ≤
≤ k · sup

∥f∥p( · )≤1

∥g∥q( · )∥TGf∥p( · ) ≤ k∥g∥q( · )∥TG∥p( · )∥f∥p( · ) =

= k∥TG∥p( · )∥g∥q( · ).

Thus
∥T1/Gg∥q( · ) ≤ k∥TG∥p( · )∥g∥q( · ), f, g ∈ Q. (111)

Analogously we can prove that

∥TGf∥p( · ) ≤ k∥T1/G∥q( · )∥f∥p( · ). (112)

By the passage to the limit (which is admissible due to Γ ∈ R), we find
that inequalities (111) and (112) are valid for any f ∈ Lp( · ), g ∈ Lq( · ), i.e.,
inequalities (110) are valid in a general case. �

13.4. On the operator ST .

Theorem 14. Let Γ ∈ R, p ∈ P(Γ), G ∈ A(p( · )), g ∈ Lp( · ), then

S(Tg) = g + Tg − Sg.

Proof. First of all, we note that Tg ∈ Lp( · )−ε ∈ L1 (see Theorem 7).
Since Tg ∈ L1, almost everywhere on Γ there exists the integral SΓ

g
X+ ,

and hence g(X+)−1 ∈ L1. This implies that (KΓ
g

X+ )(z) belongs to the set∩
δ<1

Eδ(D+) (see Subsection 2.6). Since

1

X(z)
=

1

XG(z)
= exp

(
− 1

2πi

∫
Γ

ln |G(τ)|+ i argG(t)
τ − z

dτ

)
.

Γ ∈ R and G ∈ Ã(p( · )), and hence lnG is the bounded function, therefore
X(z) and 1/X(z) belong to Eν(D+) for some ν > 0 ([8, pp. 96–98]). Thus
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the function

F (z) =
X(z)

2πi

∫
Γ

g(τ)

X+(τ)

dτ

τ − z
= X(z)

(
KΓ

g

X+

)
(z), (113)

being a product of two Smirnov class functions, belongs to some class
Eη(D+), η > 0. Moreover, F+ = 1

2 (g + Tg). Here, g ∈ Lp( · ), while
Tg ∈ L(Γ). Thereby, F+ ∈ L(Γ). Thus, according to Smirnov’s theorem
(see, e.g., [27, p. 254]), we find that F ∈ E1(D+). But then SΓF

+ = F+.
This results in

1

2
(g + Tg) =

1

2
(Sg + STg)

from which we obtain the provable equality. �

13.5. On the operator TS. As it has been shown in proving Theorem 14,
the function F (z) given by equality (113) belongs to E1(D+). This fact
allows us to prove that the following theorem is valid.

Theorem 15. In the assumptions of Theorem 14, the equality

(TS)(g) = Sg + g − Tg (114)

is valid.

Proof. Let

Ψ(z) =
(KΓg)(z)

X(z)
,

then Ψ(z) ∈ E1(D+), therefore

S
[
(KΓg)X

−1
]+

= (KΓg)
+(X+)−1,

that is,

S
g + Sg

X+
=
g + Sg

X+

from which we successively obtain

X+S
g + Sg

X+
= g + Sg,

T (g + Sg) = g + Sg,

Tg + TSg = g + Sg.

Indeed, the last equalities show that equality (114) is valid. �
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Short Communication

Malkhaz Ashordia, Goderdzi Ekhvaia and Nestan Kekelia

ON THE WELL-POSSEDNESS OF GENERAL NONLINEAR
BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF

DIFFERENTIAL EQUATIONS WITH FINITE AND
FIXED POINTS OF IMPULSES

Abstract. The general nonlocal boundary value problems are considered
for systems of differential equations with finite and fixed points of im-
pulses. The sufficient conditions, among which are effective spectral ones,
are established for the well-posedness of these problems.
ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÆÏÂÀÃÉ ÓÀáÉÓ ÀÒÀßÒ×ÉÅÉ ÓÀÓÀÆÙÅÒÏ
ÀÌÏÝÀÍÄÁÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ
ÓÀÓÒÖËÉ ÃÀ ×ÉØÓÉÒÄÁÖËÉ ÉÌÐÖËÓÄÁÉÓ ßÄÒÔÉËÄÁÉÈ.
ÃÀÃÂÄÍÉËÉÀ ÀÌ ÀÌÏÝÀÍÄÁÉÓ ÊÏÒÄØÔÖËÏÁÉÓ ÓÀÊÌÀÒÉÓÉ, ÌÀÈ
ÛÏÒÉÓ Ä×ÄØÔÖÒÉ ÓÐÄØÔÒÀËÖÒÉ ÐÉÒÏÁÄÁÉ.

2000 Mathematics Subject Classification: 34K10, 34K45.
Key words and phrases: Nonlocal boundary value problems, nonlin-
ear systems, impulsive equations, solvability, unique solvability, effective
conditions.

1. Statement of the Problem and Basic Notation

In the present paper, we consider the system of nonlinear impulsive equa-
tions with a finite number of impulses points

dx

dt
= f(t, x) almost everywhere on [a, b] \ {τ1, . . . , τm0}, (1.1)

x(τl+)− x(τl−) = Il(x(τl)) (l = 1, . . . ,m0) (1.2)

with the general boundary value problem

h(x) = 0, (1.3)

where a < τ1 < · · · < τm0 ≤ b (we will assume τ0 = a and τm0+1 = b,
if necessary), −∞ < a < b < +∞, m0 is a natural number, f = (fi)

n
i=1

belongs to Carathéodory class Car([a, b]×Rn,Rn), Il = (Ili)
n
i=1 : Rn → Rn

(l = 1, . . . ,m0) are continuous operators, and h : C([a, b],Rn; τ1, . . . , τm0) →
Rn is a continuous, nonlinear in general, vector-functional.

Let x0 be a solution of the problem (1.1), (1.2); (1.3).
147
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Consider a sequence of vector-functions fk ∈ Car([a, b] × Rn,Rn) (k =
1, 2, . . . ), the sequences of continuous operators Ilk : Rn → Rn (k = 1, 2, . . . ;
l = 1, . . . ,m0), the sequences τlk (k = 1, 2, . . . ; l = 1, . . . ,m0) of points
a < τ1k < · · · < τm0k ≤ b and the sequence of continuous vector-functionals
hk : C([a, b],Rn; τ1k, . . . , τm0k) → Rn (k = 1, 2, . . . ).

In this paper the sufficient conditions are given guaranteing both the
solvability of the impulsive boundary value problems

dx

dt
= fk(t, x) almost everywhere on [a, b] \ {τ1k, . . . , τm0k}, (1.1k)

x(τlk+)− x(τlk−) = Ilk(x(τlk)) (l = 1, . . . ,m0); (1.2k)
hk(x) = 0 (1.3k)

(k = 1, 2, . . . ) for any sufficient large k and the convergence of its solutions
to a solution of the problem (1.1), (1.2); (1.3) as k → +∞.

As is known, the question of the well-possedness for the nonlinear impul-
sive boundary value problems was not investigated in earlier works. So the
statement of the problems under consideration is actual.

The obtained results are analogous to ones given in [12] (see also the
references therein) for the general nonlinear boundary value problems for
systems of ordinary differential equations. Some results obtained in the pa-
per are more general than already known ones even for ordinary differential
case.

The analogous question is investigated in [4], [8] for linear boundary
value problems for systems with impulses, and in [1]–[3], [12]–[15] for linear
and nonlinear boundary value problems for systems of ordinary differential
equations. Notice that the necessary and sufficient conditions are obtained
for the well-possedness of the linear boundary value problem in [8] for im-
pulsive, and in [1]–[3] for ordinary differential systems.

Quite a number of issues of the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for a survey of the results on impulsive systems see, e.g.,
[5]–[7], [9]–[11], [16], [17] and the references therein).

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norms

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |;

|X| = (|xij |)n,mi,j=1, [X]+ =
|X|+X

2
;

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
;

R(n×n)×m = Rn×n × · · · × Rn×n (m-times).
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Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix

inverse to X, the determinant of X and the spectral radius of X; In×n is
the identity n× n-matrix.

b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latters’ components; V (X)(t) =

(v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t
∨
a
(xij) for a < t ≤ b;

X(t−) and X(t+) are the left and the right limit of the matrix-function
X : [a, b] → Rn×m at the point t (we will assume X(t) = X(a) for t ≤ a
and X(t) = X(b) for t ≥ b, if necessary);

∥X∥s = sup
{
∥X(t)∥ : t ∈ [a, b]

}
.

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation
X : [a, b] → Rn×m (i.e., such that

b
∨
a
(X) < +∞);

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-
functions X : [a, b] → D;

C([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →
D, having the one-sided limits X(τl−) (l = 1, . . . ,m0) and X(τl+) (l =
1, . . . ,m0), whose restrictions to an arbitrary closed interval [c, d] from [a, b]\
{τ1, . . . , τm0} belong to C([c, d], D);

Cs([a, b],Rn×m; τ1, . . . , τm0
) is the Banach space of all X ∈ C([a, b],Rn×m;

τ1, . . . , τm0) with the norm ∥X∥s.
If y ∈ Cs([a, b],R; τ1, . . . , τm0) and r ∈ ]0,+∞[ , then

U(y; r) =
{
x ∈ Cs([a, b],Rn; τ1, . . . , τm0) : ∥x− y∥s < r

}
;

D(y, r) is the set of all x ∈ Rn such that inf{∥x− y(t)∥ : t ∈ [a, b]} < r.
C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous

matrix-functions X : [a, b] → D;
C̃([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →

D, having the one-sided limits X(τl−) (l = 1, . . . ,m0) and X(τl+) (l =
1, . . . ,m0), whose restrictions to an arbitrary closed interval [c, d] from [a, b]\
{τk}mk=1 belong to C̃([c, d], D).

If B1 and B2 are the normed spaces, then an operator g : B1 → B2

(nonlinear, in general) is positive homogeneous if g(λx) = λg(x) for every
λ ∈ R+ and x ∈ B1.

The inequalities between the matrices are understood component wise.
An operator φ : C([a, b],Rn; τ1, . . . , τm0) → Rn is called nondecreasing if

for every x, y ∈ C([a, b],Rn; τ1, . . . , τm0) such that x(t) ≤ y(t) for t ∈ [a, b]
the inequality φ(x)(t) ≤ φ(y)(t) holds for t ∈ [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.
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L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable
matrix-functions X : [a, b] → D.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] × D1, D2) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}:
(a) the function fkj(·, x) : [a, b] → D2 is measurable for every x ∈ D1;
(b) the function fkj(t, · ) : D1 → D2 is continuous for almost every

t ∈ [a, b], and

sup
{
|fkj(·, x)| : x ∈ D0

}
∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] × D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] ×

D1 → D2 such that the functions fkj( · , x( · )) (j = 1, . . . ,m; k = 1, . . . , n)
are measurable for every vector-function x : [a, b] → Rn with the bounded
total variation.

M([a, b] × R+,R+) is the set of all functions ω ∈ Car([a, b] × R+,R+)
such that the function ω(t, · ) is nondecreasing, and ω(t, 0) ≡ 0.

By a solution of the impulsive system (1.1), (1.2) we understand a con-
tinuous from the left vector-function x∈ C̃([a, b],Rn; τ1, . . . , τm0) satisfying
both the system (1.1) for a.e. on [a, b] \ {τ1 . . . , τm0

} and the relation (1.2)
for every l ∈ {1, . . . ,m0}.

Definition 1.1. Let l : Cs([a, b],Rn; τ1, . . . , τm0) → Rn be a linear con-
tinuous operator, and let l0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ be a positive
homogeneous operator. We say that a pair (P, {Jl}m0

l=1), consisting of a
matrix-function P ∈ Car([a, b]×Rn,Rn×n) and a finite sequence of contin-
uous operators Jl = (Jli)

n
i=1 : Rn → Rn (l = 1, . . . ,m0), satisfy the Opial

condition with respect to the pair (l, l0) if:
(a) there exist a matrix-function Φ ∈ L([a, b],Rn

+) and constant matri-
ces Ψl ∈ Rn×n (l = 1, . . . ,m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [a, b], x ∈ Rn

and

|Jl(x)| ≤ Ψl for x ∈ Rn (l = 1, . . . ,m0);

(b)

det(In×n +Gl) ̸= 0 (l = 1, . . . ,m0) (1.4)

and the problem
dx

dt
= A(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (1.5)

x(τl+)− x(τl−) = Glx(τl) (l = 1, . . . ,m0); (1.6)
|l(x)| ≤ l0(x) (1.7)
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has only the trivial solution for every matrix-function A ∈
L([a, b],Rn×n) and constant matrices Gl (l = 1, . . . ,m0) for which
there exists a sequence yk ∈ C̃([a, b],Rn; τ1, . . . , τm0) (k = 1, 2, . . . )
such that

lim
k→+∞

t∫
a

P (τ, yk(τ))dτ =

t∫
a

A(τ)dτ uniformly on [a, b]

and

lim
k→+∞

Jl(yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1.1. In particular, the condition (1.4) holds if

∥Ψl∥ < 1 (l = 1, . . . ,m0).

Below we will assume that f = (fi)
n
i=1 ∈ Car([a, b] × Rn,Rn) and, in

addition, f(τl, x) is arbitrary for x ∈ Rn (l = 1, . . . ,m0).
Let x0 be a solution of the problem (1.1), (1.2); (1.3), and r be a positive

number. Let us introduce the following definition.

Definition 1.2. The solution x0 is said to be strongly isolated in the radius
r if there exist, respectively, the matrix– and the vector-functions P ∈
Car([a, b] × Rn,Rn×n) and q ∈ Car([a, b] × Rn,Rn), a finite sequence of
continuous operators Jl : Rn → Rn (l = 1, . . . ,m0) and hl : Rn → Rn (l =
1, . . . ,m0), a linear continuous operator l : Cs([a, b],Rn; τ1, . . . , τm0) → Rn,
a positive homogeneous operator l0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+, and
a continuous operator l̃ : Cs([a, b],Rn; τ1, . . . , τm0) → Rn such that

(a) the equalities

f(t, x) = P (t, x)x+ q(t, x) for t ∈ [a, b] \ {τ1, . . . , τm0}, ∥x− x0(t)∥ < r,

Il(x) = Jl(x)x+ hl(x) for ∥x− x0(τl)∥ < r (l = 1, . . . ,m0);

and

h(x) = l(x) + l̃(x) for x ∈ U(x0; r)

are valid;
(b) the functions

α(t, ρ) = max
{
∥q(t, x)∥ : ∥x∥ ≤ ρ

}
,

βl(ρ) = max
{
∥hl(x)∥ : ∥x∥ ≤ ρ

}
(l = 1, . . . ,m0)

and

γ(ρ) = sup
{[

|l̃(x)| − l0(x)
]
+
: ∥x∥s ≤ ρ

}
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satisfy the condition

lim sup
ρ→+∞

1

ρ

(
γ(ρ) +

b∫
a

α(t, ρ) dt+

m0∑
l=1

βl(ρ)

)
< 1;

(c) the problem
dx

dt
= P (t, x)x+ q(t, x) a.e. on [a, b] \ {τ1, . . . , τm0},

x(τl+)− x(τl−) = Jl(x(τl)) + hl(x(τl)) (l = 1, . . . ,m0);

l(x) + l̃(x) = 0

has no solution different from x0.
(d) the pair (P, {Jl}m0

l=1) satisfy the Opial condition with respect to the
pair (l, l0).

Definition 1.3. We say that a sequence (fk, {Ilk}m0

l=1;hk) (k = 1, 2, . . . )
belongs to the set Wr(f, {Il}m0

l=1, h;x
0) if

(a) the equalities

lim
k→+∞

t∫
a

fk(τ, x) dτ =

t∫
a

f(τ, x)dτ uniformly on [a, b]

and

lim
k→+∞

Ilk(x) = Il(x) (l = 1, . . . ,m0)

are valid for every x ∈ D(x0; r);
(b)

lim
k→+∞

hk(x) = h(x) uniformly on U(x0; r);

(c) there exist a sequence of functions ωk ∈ M([a, b] × R+,R+) (k =
1, 2, . . . ) and sequences of nondecreasing functions ωlk ∈ C(R+,R+),
ωlk(0) = 0, (k = 1, 2, . . . ; l = 1, . . . ,m0) such that

sup
{ b∫

a

ωk(t, r) dt : k = 1, 2, . . .

}
< +∞, (1.8)

sup
{ m0∑

l=1

ωlk(r) : k = 1, 2, . . .

}
< +∞; (1.9)

lim
s→0+

sup
{ b∫

a

ωk(t, s) dt : k = 1, 2, . . .

}
= 0, (1.10)
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lim
s→0+

sup
{ m0∑

l=1

ωlk(s) : k = 1, 2, . . .

}
= 0; (1.11)

and ∥∥fk(t, x)− fk(t, y)
∥∥ ≤ ωk

(
t, ∥x− y∥

)
for t ∈ [a, b] \ {τ1, . . . , τm0}, x, y ∈ D(x0; r) (k = 1, 2, . . . ),∥∥Ilk(x)− Ilk(y)

∥∥ ≤ ωlk

(
∥x− y∥

)
for x, y ∈ D(x0; r) (l = 1, . . . ,m0; k = 1, 2, . . . ).

Remark 1.2. If for every natural m there exists a positive number νm such
that

ωk(t,mδ) ≤ νmωk(t, δ)

for δ > 0, t ∈ [a, b] \ {τ1, . . . , τm0} (k = 1, 2, . . . ),

then the estimate (1.8) follows from the condition (1.10); analogously, if
ωlk(mδ) ≤ νmωlk(δ) for δ > 0 (l = 1, . . . ,m0; k = 1, 2, . . . ),

then the estimate (1.9) follows from the condition (1.11). In particular, the
sequences of the functions

ωk(t, δ)=max
{∥∥fk(t, x)−fk(t, y)

∥∥ : x, y∈U(0, ∥x0∥+ r), ∥x−y∥≤δ
}

for t ∈ [a, b] \ {τ1, . . . , τm0} (k = 1, 2, . . . )

and
ωlk(δ) = max

{∥∥Ilk(x)− Ilk(y)
∥∥ : x, y ∈ U(0, ∥x0∥+ r), ∥x− y∥ ≤ δ

}
(l = 1, . . . ,m0; k = 1, 2, . . . )

have, respectively, the latters’ properties.

Definition 1.4. The problem (1.1), (1.2); (1.3) is said to be (x0; r)-correct
if for every ε ∈ ]0, r[ and

(
(fk, {Ilk}m0

l=1;hk)
)+∞
k=1

∈ Wr(f, {Il}m0

l=1, h;x
0) there

exists a natural number k0 such that the problem (1, 1k), (1.2k); (1.3k) has
at least a solution contained in U(x0; r) and any such solution belongs to
the ball U(x0; ) for every k ≥ k0.

Definition 1.5. The problem (1.1), (1.2); (1.3) is said to be correct if it has
the unique solution x0 and it is (x0; r)-correct for every r > 0.

Theorem 1.1. If the problem (1.1), (1.2); (1.3) has a solution x0, strongly
isolated in the radius r > 0, then it is (x0; r)-correct.

Theorem 1.2. Let the conditions∥∥f(t, x)− P (t, x)x
∥∥ ≤ α

(
t, ∥x∥

)
a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn, (1.12)∥∥Il(x)− Jl(x)x

∥∥ ≤ βl

(
∥x∥

)
for x ∈ Rn (l = 1, . . . ,m0) (1.13)
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and

|h(x)− l(x)| ≤ l0(x) + l1
(
∥x∥s

)
for x ∈ BV([a, b],Rn) (1.14)

hold, where ℓ : Cs([a, b],Rn; τ1, . . . , τm0)→Rn and ℓ0 : Cs([a, b],Rn; τ1, . . . ,
τm0) → Rn

+ are, respectively, linear continuous and positive homogeneous
continuous operators, the pair (P, {Jl}m0

l=1) satisfies the Opial condition with
respect to the pair (ℓ, ℓ0); α ∈ Car([a, b] × R+,R+) is a function nonde-
creasing in the second variable, and βl ∈ C([a, b],R+) (l = 1, . . . ,m0) and
ℓ1 ∈ C(R,Rn

+) are, respectively, nondecreasing functions and vector-function
such that

lim sup
ρ→+∞

1

ρ

(
∥l1(ρ)∥+

b∫
a

α(t, ρ) dt+

m0∑
l=1

βl(ρ)

)
< 1. (1.15)

Then one-valued solvability of the problem (1.1), (1.2); (1.3) guarantees its
correctness.

Theorem 1.3. Let the conditions (1.12)–(1.14),

P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn,

and

J1l ≤ Ik(x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0)

hold, where P ∈ Car0([a, b]×Rn,Rn×n), Pi ∈ L([a, b],Rn×n) (i = 1, 2), Jil ∈
Rn×n (i = 1, 2; l = 1, . . . ,m0), l : Cs([a, b],Rn×n; τ1, . . . , τm0) → Rn and l0 :
Cs([a, b],Rn×m; τ1, . . . , τm0) → Rn

+ are, respectively, the linear continuous
and the positive homogeneous continuous operators; α ∈ Car([a, b]×R+,R+)
is a function nondecreasing in the second variable, and βl ∈ C([a, b],R+)
(l = 1, . . . ,m0) and ℓ1 ∈ C(R,Rn

+) are, respectively, nondecreasing functions
and vector-function such that the condition (1.15) holds. Let, moreover, the
condition (1.4) hold and the problem (1.5), (1.6); (1.7) have only the trivial
solution for every matrix-function A ∈ L([a, b],Rn×n) and the constant
matrices Gl ∈ Rn×n(l = 1, . . . ,m0) such that

P1(t) ≤ A(t) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn

and

J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . ,m0).

Then one-valued solvability of the problem (1.1), (1.2); (1.3) guarantees its
correctness.

Remark 1.3. Theorem 1.3 is interesting only in the case where P /∈Car([a, b]×
Rn,Rn×n), because the theorem immediately follows from Theorem 1.2 in
the case where P ∈ Car([a, b]× Rn,Rn×n).
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Theorem 1.4. Let the conditions (1.14),∣∣f(t, x)− P0(t)x
∣∣ ≤ Q(t)|x|+ q

(
t, ∥x∥

)
a.e. on [a, b] \ {τ1, . . . , τm0},

x ∈ Rn,

and ∣∣Il(x)− J0lx
∣∣ ≤ Hl|x|+ hl

(
∥x∥

)
for x ∈ Rn (l = 1, . . . ,m0)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0l and Hl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices, l : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

and l0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn
+ are, respectively, the linear con-

tinuous and positive homogeneous continuous operators; q ∈ Car([a, b] ×
R+,Rn

+) is a vector-function nondecreasing in the second variable, and
hl ∈ C([a, b],R+) (l = 1, . . . ,m0) and ℓ1 ∈ C(R,Rn

+) are, respectively, the
nondecreasing functions and vector-function such that the condition (1.15)
holds. Let, moreover, the conditions

det(In×n + J0l) ̸= 0 (l = 1, . . . ,m0) (1.16)

and

∥Hl∥ ·
∥∥(In×n + J0l)

−1
∥∥ < 1 (l = 1, . . . ,m0) (1.17)

hold, and the system of impulsive inequalities∣∣∣dx
dt

− P0(t)x
∣∣∣ ≤ Q(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (1.18)

∣∣x(τl+)− x(τl−)− J0lx(τl)
∣∣ ≤ Hlx(τl) (l = 1, . . . ,m0) (1.19)

have only the trivial solution under the condition (1.7). Then one-valued
solvability of the problem (1.1), (1.2); (1.3) guarantees its correctness.

Corollary 1.1. Let the conditions (1.16)∣∣f(t, x)−P0(t)x
∣∣≤q

(
t, ∥x∥

)
a.e. on [a, b]\{τ1, . . . , τm0}, x∈Rn, (1.20)

and ∣∣Il(x)− J0lx
∣∣ ≤ hl

(
∥x∥

)
for x ∈ Rn (l = 1, . . . ,m0) (1.21)

hold, where P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . ,m0) are the con-
stant matrices, ℓ : Cs([a, b],Rn; τ1, . . . , τm0) → Rn and ℓ0 : Cs([a, b],Rn;
τ1, . . . , τm0)→Rn

+ are, respectively, the linear continuous and positive homo-
geneous continuous operators; q ∈ Car([a, b]× R+,Rn

+) is a vector-function
nondecreasing in the second variable, and hl ∈ C([a, b],R+) (l = 1, . . . ,m0)
and ℓ1 ∈ C(R,Rn

+) are, respectively, the nondecreasing functions and a
vector-function such that the condition (1.15) holds. Let, moreover,

|h(x)− ℓ(x)| ≤ ℓ1
(
∥x∥s

)
for x ∈ BV([a, b],Rn) (1.22)
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and the impulsive system

dx

dt
= P0(t)x a.e. on [a, b] \ {τ1, . . . , τm0

},

x(τl+)− x(τl−) = J0lx(τl) (l = 1, . . . ,m0)

have only the trivial solution under the condition (1.7). Then one-valued
solvability of the problem (1.1), (1.2); (1.3) guarantees its correctness.

For every matrix-function X ∈ L([a, b],Rn×n) and a sequence of constant
matrices Yk ∈ Rn×n (k = 1, . . . ,m0) we introduce the operators

[
(X,Y1, . . . , Ym0)(t)

]
0
= In for a ≤ t ≤ b,[

(X,Y1, . . . , Ym0)(a)
]
i
= On×n (i = 1, 2, . . . ),

[
(X,Y1, . . . , Ym0)(t)

]
i+1

=

t∫
a

X(τ) ·
[
(X,Y1, . . . , Ym0)(τ)

]
i
dτ+

+
∑

a≤τl<t

Yl ·
[
(X,Y1, . . . , Ym0)(τl)

]
i

for a < t ≤ b (i = 1, 2, . . . ). (1.23)

Corollary 1.2. Let the conditions (1.16), (1.20)–(1.22) hold, where

ℓ(x) ≡
b∫

a

dK(t) · x(t),

P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . ,m0) are constant matrices,
K ∈ L([a, b],Rn×n), ℓ0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are the positive
homogeneous continuous operators; q ∈ Car([a, b] × R+,Rn

+) is a vector-
function nondecreasing in the second variable, and hl ∈ C([a, b],R+) (l =
1, . . . ,m0) and ℓ1 ∈ C(R,Rn

+) are, respectively, the nondecreasing functions
and a vector-function such that the condition (1.15) holds. Let, moreover,
there exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

b∫
a

dK(t) ·
[
(P0, Gl, . . . , Gm0)(t)

]
i

is nonsingular and

r(Mk,m) < 1,
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where the operators [(P0, G1, . . . , Gm0)(t)]i (i = 0, 1, . . . ) are defined by
(1.23), and

Mk,m =
[(
|P0|, |G1|, . . . , |Gm0 |

)
(b)

]
m
+

+
m−1∑
i=0

[(
|P0|, |G1|, . . . , |Gm0 |

)
(b)

]
i
×

×
b∫

a

dV (M−1
k K)(t) ·

[(
|P0|, |G1|, . . . , |Gm0 |

)
(t)

]
k
.

Then one-valued solvability of the problem (1.1), (1.2); (1.3) guarantees its
correctness.

Theorem 1.5. Let the conditions (1.16), (1.17),∣∣f(t, x)− f(t, y)− P0(t)(x− y)
∣∣ ≤ Q(t)|x− y|

a.e. on [a, b] \ {τ1, . . . , τm0}, x, y ∈ Rn,∣∣Il(x)− Il(y)− J0l · (x− y)
∣∣ ≤ Hk · |x− y|

for x, y ∈ Rn (k = l, . . . ,m0)

and ∣∣h(x)− h(y)− ℓ(x− y)
∣∣ ≤ ℓ0(x− y) for x, y ∈ BV([a, b],Rn)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0k and Hl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices, ℓ : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn and ℓ0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are, respectively, linear contin-
uous and positive homogeneous continuous operators. Let, moreover, the
system of impulsive inequalities (1.18), (1.19) have only the trivial solution
under the condition (1.7). Then the problem (1.1), (1.2); (1.3) is correct.

Corollary 1.3. Let the system (1.1), (1.2); (1.3) have a unique solution
x0 defined on the whole closed interval [a, b], where h(x) ≡ x(t0) − c0,
and t0 ∈ [a, b] and c0 ∈ Rn are such that Il(c0) = 0 if t0 = τl for some
l ∈ {1, . . . ,m0}. Let, moreover,

lim
ρ→+∞

sup
(

inf
{
∥x+ Il(y)∥ : ∥x∥ ≥ ρ, ∥y∥ = ρ

})
> ∥x0∥s (1.24)

for every l ∈ {1, . . . ,m0} such that τl > t0. Then the problem (1.1), (1.2);
(1.24) is correct.

Remark 1.4. It is evident that the condition (1.24) is valid if Il(y) ≡ 0 for
every l ∈ {1, . . . ,m0} such that τl > t0. If the last condition is not fulfilled,
i.e., Il(y) ̸≡ 0 for some l ∈ {1, . . . ,m0}, then the strict inequality (1.24)
cannot be replaced by a non-strict one for this l. Below, we will give the
corresponding example.
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Example. Let n = 1, m0 > 2 be an arbitrary natural number, τl ∈ ]a, b[
(l = 1, . . . ,m0), h(x) ≡ x(t0) − c0, t0 = b, c0 = 0; hk(x) ≡ x(tk) − ck (k =
1, 2, . . . ), tk → b (k → +∞) and ck → c0 (k → +∞); f(t, x) = fk(t, x) ≡ 0
(k = 1, 2, . . . ); Il(x) = Ikl(x) ≡ 0 (l = 1, . . . ,m0 − 1; k = 1, 2, . . . );

Im0(x) =

{
0 for x < 0,

(1 + ci+1 − ci)(i− x)− i− ci for x ∈ [i, i+ 1[ (i = 0, 1, . . . )

and

Ikm0(x) =

=


Im0(x) for x ∈ ]−∞, k − 1[∪ ]k + 1,+∞[ ,

(1− ck−1 − ck)(k − x) + ck − k for x ∈ [k − 1, k[ ,

(1 + ck+1 + ck)(k − x) + ck − k for x ∈ [k, k + 1[

(k = 1, 2, . . . ).

Then x0(t) ≡ 0,
(
(fk, {Ilk}m0

l=1;hk)
)+∞
k=1

∈ Wr(f, {Il}m0

l=1, h;x
0). Moreover,

the problem (1.1k), (1.2k); (1.3k) has the unique solution

xk(t) =

{
ck for a ≤ t ≤ τm0 ,

k for τm0 < t ≤ b

for every natural k. As to the condition (1.24), it is transformed into the
equality for t = τm0 only.
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