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Revaz Bantsuri

Georgian science has suffered a grievous loss. Revaz Bantsuri, a promi-
nent Georgian mathematician, corresponding member of the Georgian Na-
tional Academy of Sciences, Doctor of physical and mathematical sciences,
Professor, passed away.

He was born on June 10, 1936 in the village of Bantsurtkari (Dusheti
region). Upon graduation from I. Javakhishvili Thilisi State University,
starting from 1960 up to the end of his life he worked at A. Razmadze
Mathematical Institute holding different positions. In 1966 he defended his
Candidate’s thesis and in 1982 Doctoral thesis at the Institute of Problems
of Mechanics of the Russian Academy of Sciences. From 1983 he headed
the department of mathematical theory of elasticity.

In 1997, Revaz Bantsuri was elected a corresponding member of the Geor-
gian National Academy of Sciences. He was a member of Russian National
Committee in Theoretical and Applied Mechanics.

Revaz Bantsuri was Niko Muskhelishvili’s pupil and worthy successor of
his scientific ideas.

All his works he devoted to: boundary and contact problems of the plane
theory of elasticity, mixed boundary value problems of the theory of ana-
lytic functions, problems of elasticity for domains with partially unknown
boundaries, systems of convolution type integral equations and infinite al-
gebraic equations. He essentially developed the well-known Muskhelishvili’s
research area, having appreciably enriched with new trends a range of ap-
plication of methods of the theory of analytic functions.

Using integral transformations, R. Bantsuri reduced contact problems
of certain classes to new type boundary value problems of the theory of
analytic functions and called them the Carleman type problems for a strip.
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He elaborated a new type method of factorization and solved the Carleman
type problem in a rather general case. Applying this method, he solved very
important contact problems of various types for isotropic and anisotropic
bodies.

This method, besides the theory of elasticity, can be used in the theory of
convolution type integral equations and in the theory of systems of the same
type infinite algebraic equations, in problems of heat distribution with third
kind boundary conditions, in problems of electromagnetic wave diffraction,
etc. The method for the above-mentioned problems is of the same impor-
tance as that developed by Muskhelishvili in the 40th of the past century
for investigation of classical contact problems. The method is known as
R. Bantsuri’s method of canonical solutions, and presently is a unique gen-
eral method successfully used for effective solution of the above-mentioned
contact problems.

The problems for domains with partially unknown boundaries deal with
optimal distribution of stresses in a body. They belong to mathematically
complicated and very important problems of optimal projecting. In a gen-
eral case, these problems are reduced to nonlinear problems.

Revaz Bantsuri formulated the problems of the plane theory of elastic-
ity and plate bending for some classes of problems with partially unknown
boundaries and reduced them first to linear problems and then to the prob-
lems of the theory of analytic functions with shifts and called them the Car-
leman type problems for a circular ring. He elaborated the second method
of factorization whose application allowed us to get a completed theory of
solvability for that class of problems.

Applying the methods of Muskhelishvili and Wiener-Hopf, R. Bantsuri
reduced statical problems of cracks, when the crack comes to the boundary
or to the interface of a piecewise homogeneous medium, to the problem of
linear conjugation with a Wiener class coefficient. He constructed effective
solutions and studied the question on the stress concentration at the crack
ends. Thus he has obtained significant results in fracture mechanics. The
above-mentioned R. Bantsuri’s result is recognized by specialists as one of
the best results.

The problems of crack distribution in a body with constant or varying
velocity belong to such a class of mixed problems when the points of change
of boundary conditions displace in time. R. Bantsuri considered the prob-
lems when semi-infinite cracks in a plane spread linearly with constant or
varying velocity. The problems of crack distribution with constant veloc-
ity were reduced by means of variable transformations to the problem of
classical dynamics, while in the problem of crack distribution with varying
velocity we get by means of Fourier-Laplace transformation the generalized
Wiener-Hopf problem. An effective solution of that problem is obtained.
The above method is used in contact problems when a semi-infinite rigid
punch moves with varying velocity at the boundary of a half-plane or a
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strip. Very interesting and significant results were obtained in this group of
problems, as well.

The apparatus of the Cauchy type integral turned out to be insufficient
for solving the Carleman type problems for a strip and a circular ring,
hence Revaz Bantsuri constructed new integral representations which in this
case have played the same role as the Cauchy type integrals in problems of
linear conjugation. Using the obtained results, R. Bantsuri constructed for
a circular ring a solution for the Riemann-Hilbert problem and for the mixed
problem of the theory of analytic functions, he obtained effective solutions
of a system of infinite convolution type algebraic equations.

R. Bantsuri together with G. Janashiya proved the invariance of Wiener
functions algebra on the axis with respect to Hilbert transformations. This
allowed him to reduce a solution of convolution type integral equations on
the semi-axis for a summable kernel to the problem of linear conjugation in
a class of Wiener functions.

Relying on the above-said, we can conclude that Revaz Bantsuri has made
an internationally recognized contribution to the development of the theory
of elasticity. He improved N. Muskhelishvili’s method and largely extended
an area of application of methods of the theory of analytic functions in the
plane theory of elasticity.

A special mention should be made of Revaz Bantsuri’s contribution to
the cause of education of the young generation. For many years he worked
at the Chair of Theoretical Mechanics of Thilisi State University, delivered
lectures in the theory of elasticity and brought up many candidates and
doctors of sciences.

Revaz Bantsuri, a great researcher, remarkable citizen, excellent family
man, modest and responsive, has passed away. He made a major contri-
bution to the science, but there remained a lot of unrealizable thoughts
and ideas. Editorial Board of our journal expresses sincerest condolences in
connection with the death of a prominent scientist and dear colleague. His
bright personality will leave the trace in our memory forever.

1. Kiguradze, V. Kokilashvili,
V. Paatashvili, N. Shavlakadze
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Abstract. The problem on the stability of second order linear homoge-
neous differential equation

y' +pt)y +aq(t)y =0
is investigated in the case where the roots A;(t) (i = 1, 2) of the characteristic
equation
A+ p(t)A+q(t) =0

are such that

+oo

)\i(t) < 0 for t > to, / )\i(t)dt:—oo (22172)
to

and there exist finite or infinite limits lim A;(¢) (i = 1,2).
t—4o00

)
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1. INTRODUCTION

In the theory of stability of linear homogeneous on-line systems (LHS)
of ordinary differential equations

%;szﬂﬁtGHm+W):L

where P(t) is, in general, complex matrix, the interest is focused on the
investigation of stability of LHS depending on the roots A;(¢) (i = 1,n) of
the characteristic equation
det(P(t) — AE) = 0.
L. Cesaro [1] considered a system of n-th order differential equations

dy
o [A+ B(t) + C(1)]Y,

where A is a constant matrix, the roots \; (i = 1,n) of characteristic equa-
tion are different and satisfy the condition

Re); <0 (i =1,n);

“+o0
dB(t
B(t) -0 as t — +o0, / H%Hdt<+oo;
to

+oo
/Hcmmu<+m;
to

the roots of characteristic equation of the matrix A+ B(t) have nonpositive
real parts.

C. P. Persidsky’s article [2] deals with the case, where elements of the
matrix P(t) are the functions with weak variation, that is, each such function
can be represented as

f(@) = f1(t) + f2(t),
where f1(t) € Cr and there exists il}rﬁ fi(t) € R, but fa(t) is such that

t li ') =
sup|fo(t)| < oo, T (1) =0,

and the condition Re \;(t) < a € R_ (i = 1,n) is fulfilled.
N. Y. Lyashchenko [3] considered a case Re\;(t) < a € R_ (i = 1,n),
tel,

sup [|[A"(1)]| < e.
tel

The case n = 2 is thoroughly studied by N. I. Izobov.
I. K. Hale [4] studied the asymptotic behavior of LHS comparing the
roots of the characteristic equation with exponential functions

Re\i(t) < —gt?, g>0, B> —1 (i=T1,n).
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Then there exist the constants K > 0 and 0 < p < 1 such that for solving
the system
dy
— = A(t
o = Aty
the estimate
_pa 4148
ly@)[] < Kem 1557 ly(0)]
is fulfilled.
The present paper considers the problem of stability of a second order
real linear homogeneous differential equation (LHDE)
y'+pt)y +at)y=0 (t€) (1)
provided that the roots A;(¢) (i = 1,2) of the characteristic equation
N+ pt)A+q(t)=0
are such that
“+oo
M) <0 (te ), /)\i(t)dt:—oo (i=1,2) @)
to
and there are finite or infinite limits . 1i$1 Ai(t) (i = 1,2). We have not
—+oo
encountered with such a statement of the problem even in the well-known
works. The case where at least one of the roots satisfies the condition

0< / INi(8)]dt < o0 (i=1,2)

should be considered separately.
Under the term “almost triangular LHS” we understand each LHS

dy; .
y szk Yk Z = 1777’)7 (3)

where p;(t) € Cr (i,k = 1,n), which differs little from a linear triangular
system

dyz :
szk yk Z = 17”)7 (4)

and the conditions of either Theorem 0.1 or Theorem 0.2 due to A. V. Kostin
[5] are fulfilled.
Theorem 1. Let the following conditions hold:

1) LHS (4) is stable fort e I;

2) for a particular solution o;(t) (i = 1,n) of a linear inhomogeneous
tm’angular system

dal

Z |sz | +pu Jz Z |p2k ‘Uk (Z = ]-7 n) (5)

k=i+1
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with the initial conditions o;(tg) = 0 (i = 1,n) the estimate of the
form

0<oit)<1—v (i=1,n), v=const, v€(0,1)
holds for allt € I.

Then the zero solution of the system (3) is a fortiori stable fort € I.
Theorem 2. Suppose the system (3) satisfies all conditions of Theorem 1
and, moreover,

1) the triangular linear system (4) is asymptotically stable fort € I;

2) t£+mmai(t) =0(i=1n).
Then the zero solution of the system (3) is asymptotically stable for t € I.
Theorem 3. Suppose the system (3) satisfies all conditions of Theorem 1
and, moreover,

1) none of the functions

i—1
Pi(t) = Z lpik(t)] (1=2,n)#£0 for tel,
k=1

2) lim o;(t) =0 (i=1,n).

t——+oo

Then the zero solution of the system (3) is stable fort € I.
We will also use the following lemma [5]:

Lemma 1. If the functions p(t),q(t) € Cr, p(t) <0, t € I,

400

/ p(r) dr = —o0,

to

o 9O
t——+o00 Rep(t) ’

then

ftp(T)dT / - jP(Tl)dTl
e'o /q(T)e o dr =o(1), t— +o0.

to

Further, all limits and symbols o, O are assumed to be considered when
t — +o0.

2. THE MAIN RESULTS

2.1. Reduction of equation (1) to the system of the type (5). Con-
sider the real second order LHDE (1)

Y +pt)y +qt)y=0 (tel)
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where p(t),q(t) € C}. Let y = y1, ¥ = yo. We reduce the equation to an
equivalent system

y1=0-y1+1-ys,
{ _ (6)
Yo=—4 Y1 =P Y2.
Consider the characteristic equation of LHS (6):
0—A 1 2
=0 or M+pA+q=0, 7
’ v e /\‘ pPA+q (7)

and assume that % —q>0in I or % — ¢ = 0in I. Then this equation
has two roots: A1(t) and \a(t), \;(t) € C} (i = 1,2), \i(t) are real functions
(i=1,2).

There arises the question on the sufficient conditions for stability of a
trivial solution of system (6).

We write the system (6) in vector form

Y = A(t)Y,

Y= (52) - Al = (Oq 1p> '

To reduce this system to almost triangular form, we use a linear trans-
formation of the form

where

Y = B(t)Z,

s0= (o 1) 7= (20)

where z;(t) are new unknown functions (i = 1,2). We obtain
B'Z+ BZ' = ABZ

or, after obvious transformations,

BAAB:(Q@)? (% z)(hb)? :(ﬁ@ xhﬂ'
1

The system with respect to new unknowns z;(t) (i =
looks as

,2) in scalar form

{%@yzkapdﬂ+@ah (8)

() = =1 ()21 (t) + Az (t)22(2)-

I\
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In accordance with Theorem 1, let us write an auxiliary system of differ-
ential equations:

a1(t) = M(D)a1(t) + o2(t), (9)
ah(t) = M ()] + Ao (t)oa(t)

and consider its particular solution with the initial conditions o;(tg) = 0
(i = 1,2). This solution has the form

j)\Q(T 7]’)\2(7‘1)(17’1
oa(t) = /|X 70 dr,

f/\l(r dr — [ M) dn
a1(t) = e /52(7')6 7o dr.

to

2.2. Various cases of behavior of the roots \;(t) (i = 1,2). Consider
the following cases of behavior of the roots of the characteristic equation,
assuming that the condition (2) is satisfied:

1) Ai(4o0) € R_ (i =1,2);
2) Mi(+00) € R, Aao(t) = o(1);
3) Aift) = o(1) (i = 1,2);
) A1(+00) € R_, Aa(+00) = —o0;
5) A1(t) = o(1), Az(+00) = —o0;
6) Ai(+o0) = —c0 (i =1,2).
Theorems 4-9 correspond to the above-indicated cases 1)-6).

>~

Theorem 4. In case 1), a trivial solution of the equation (1) is asymptot-
ically stable. Here it is sufficient to assume that p(t),q(t) € Cy.

This case is well-known. The validity of this theorem follows from the
results obtained by A. M. Lyapunov.
Theorem 5. Let the condition (2) for i =2 and the conditions
1) )\1(+OO) eR_, )\Q(t) = 0(1),‘
N
2) 3 = o)
be fulfilled. Then a trivial solution of equation (1) is asymptotically stable.

Proof. We apply Theorem 3. Condition 1) of Theorem 3 is obviously sat-
isfied: ®(t) = |Aj(t)] £ 0 for t € I. Therefore, it suffices to show that
condition 2) of Theorem 3 also holds. By assumption 2)

[M(0)]
o (1)

= o(1).
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Therefore, by virtue of Lemma 1, 55(t) = o(1). By condition 1) of this
theorem,

+oo
() _ ), / M (t) dt = —oo,

)\1(t)

and hence 71 (t) = o(1) by Lemma 1. This implies that Theorem 5 is valid
if we take into consideration that the transformation B(¢) is restricted in I.
To obtain the estimate of solutions y;(t) (i = 1,2), we make in the system
(8) the following change:

Sft/\z(r)d‘r
zi(t)=e ' n(t) (1=1,2), 6 €(0,1).

Then the system (8) takes the form

m(t) = (Ar(t) = 62 (8))m(t) + n2(2),
() = =X (E)m () + (1= 0) Az (t)m2(t)

and the system (9) takes the form

{aa (1) = (A (t) — 6Xa(£) oo (£) + ora(2),
L(t) = N (O] + (1= 8)Aa(t)oa(t).

Next, consider a particular solution of this system with the initial conditions
oilto) = 0 (i = 1,2);

B JO=oaryar [ [a-)a(m)dn
Fa(t) = e [acole ar,
to
t

_ - ](A1(T1)75)\2(T1))d71

o1(t) = e oa(T)e ™ dr.

S a(r)=oxa (7)) dr /
to
In our case,
. (A1)
lim — 21\
t5 00 (1 — 0)Aa(t)
Thus, by Lemma 1, 55(t) = o(1). Further,

lim _ o) ®) = lim —&Q(t) = lim 72(t)
t—+o00 )\1(75) — (5)\2(t> t—+oo /\1(t)(1 _ 5??8)) t—+o00 )\1(75)

=0.

=0

N

and hence 71 (t) = o(1), by Lemma 1. Thus the validity of Theorem 5 is not
violated. So,

8 ft Ao (1) dT

() = o(e io ) (i=1,2).
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Taking into account the transformation B(t),

y1(t) = z1(1),
y2(t) = M(t)z1(t) + 22(1);

6ft)\2('r)d7
(o)

j(é)\g(T)-‘r)\ @y ar 5 [ Aa(r)dr
= of Y (L0

t / t
22 (1) (4 5085y dr 5 [ Aa(r)dr
ya(t) o(etO ) —|—o<e fo ),

f)\Q(T)(éJro(l))dT §ft/\2(‘r) dr
y2(t) = o(et0 ) + o(e fo )

yi(t) =o

Therefore,

5f)x2(7')d7'
yi(t):0<e i ) (i=1,2), 5€(0,1). O

Theorem 6. Let the condition (2) and the conditions
1) Ai(t) = o(1) (i =1,2);
N A
2) 3Hi = o(1) (or 335 = o(1)), 32 = O(1)
be fulfilled. Then a trivial solution of equation (1) is asymptotically stable.

Proof. We apply Theorems 3 and 2. We make in the system (8) the following
change:

z1(t) = &i(b), = &a(). (11)

Then
A(t) =&, 25(t) = M) (t) + A ()& (1)
Substituting these expressions into the system (8), we have
€1(t) = M ()€(t) + M(t)€(t),

(0 = -3Hpa + () - 117,

At
To obtain the estimate of solutions y;(t) (i = 1,2) we make in system (12)
the following change:

N (t (12)

5ftA1(T)d
gz(t) =e' 771(75) (Z = 1a2)a de (071)

Then the system (12) takes the form

{fi(t) = (1= )M ()& (t) + M(DE(1),

(0 =347 0+ (ralt) ~ on(0) -
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Let us denote

0=

In accordance with Theorem 1, we write an auxiliary system of differential
equations:

L(5)= (1 - DM Wor(D) + M(Dloa)
{ - 13

()] + (A2(t) = oM (1) — p(t)) o2(t).

Let us consider its particular solution with the initial conditions o;(¢9) = 0
(i=1,2):

ga(t) = e'o dr,

N J Qa(r) =67 () —p(r) dr [ — T Aa(r)=6Ai(r)—u(n)) dry
/ wu(T)le ™

to

- Ja-on(nydr [ = Ja-onm)dn
o1(t) = e /|)\1(7')|02(7')6 o dr.

Condition 1) of Theorem 3 is obviously satisfied:

W(t) = |u(t)| £0 for tel.

In our case,

ety
lim |u(t)] . X2 (%)

im 5 =
R R () B e Rl 5 N

If

A1 (1)

then interchanging the elements A1 (t) and A2 (t), we obtain

bwal , kol

im N T Am o . v =V
ot A1(t) = 0Aa(t) — Aigg t_>+ ,\;( —0 - A28
Consequently, by Lemma 1, 72(t) = o(1). Then
MO~ 02(t)
==t 775=0

li —_
ttee (1— oM (1) 2

Hence o1(t) = o(1), by Lemma 1. This implies that Theorem 6 is valid.
Then, taking into account the change (11), we have

§ j A (7)dT

zl(t)zo(e fo ),
0o ( f(zsAl(r)w(r))dr)

e'o
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t A () t
f)\l(‘r)(6+/\1 - 5 [ A(r)dr

2(t) = 0(6tD i ))dT> = 25(t) = o(e fo )

Then,

8 j Ai(r)dr

ui(t) =ofe ).

U (t) = O<et£(6,\1(r)+u(r)) dr) . 0(€t{j o(Al(T)) dT);

I a6+ ”1(:) 5 [ aa(r)dr

ya(t) = 0(6*0 M ))dT) = yo(t) = o(e ‘0 )

Consequently,

5 ft Ai(7)dr
yi(t) = 0(6 fo ) (:=1,2), 6€(0,1). O
Theorem 7. Let the condition (2) for i =2 and the conditions
].) )\1(4’00) € R_, /\Q(t) — —0Q, )\Q(t) <0 at I,’
2) XN\ (t) is bounded at t — +o00

be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

Proof. In system (8) we make the following change:

t
§ [ A(r)dr
to

zi(t)=e ni(t) (i=1,2), §€(0,1).

Then the system (8) takes the form
mt) = (1= 0) () (t) +n2(t),
() = =M (B (1) + (A2(t) — SA1 () m2(t).

In accordance with Theorem 1, we write an auxiliary system of differential
equations

{oi(t) = (1= )M ()or(t) + oa(t),
ab(t) = M (0] + (a(t) — A (8)) o2 (b).

Its particular solution with the initial conditions o;(tg) = 0 (i = 1,2)
has the form

_ f(AQ(T)—axl(T))dT : —fT(Az(n)—éx\l(n))dn

Falt) = € [icole = ar,
to

N fa-xnmdr [ = [1-8)x(n)dn

o1(t) = e /02(7')6 70 dr.

to
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Since

S V1 I V1) R 1))
t=+oo Ag(t) — OA1(t)  t=+oo Ny (£)(1 — 5%) t—+oo Ag(t)

207

by Lemma 1, 02(t) = o(1). As
aa(t)
2 (1),
—om@ Y
it is obvious that o1 (¢t) = o(1). This implies that Theorem 7 is valid. Thus,
n:(t) = 0o(1) (i =1,2) and

6}A1(T)d'r
zi(t)zo(e i0 ) (i=1,2), 6¢(0,1).

Moreover,
6f;>\1(7') dr
yl(t)zo(e to )7
F M) +a(r) ar 5 M(rydr
=Y 0,
and hence

niy=ofcn Y,

J M@)o+ 3D ar 5 [ 2a(r)dr
ya(t) = 0(6‘0 ! ) —|—0(e to ),

Theorem 8. Let the condition (2) for i =1 and the conditions
1) A(t) = o(1), Aa(+00) = —o0;
A/
) M = o
be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

§€(0,1). O

Proof. In system (8) we make the following change:
M(t)z1(t) = (1), z2(t) = &(1). (14)
Then
_ S@OM(#) =& ()M @) Loy ()

/ t _ / 71 t ,
z5(t) = ().
After such a change, system (8) takes the form

§1(t) = (Ai(t) + p(t)&a(t) + M(t)&2(2), (15)
§a(t) = —p(t)&1(t) + A2(t)&2(t).
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Now we make change in the system (15):

6jt‘>\1(7—)d
ity =e mi(t) (i=1,2), §€(0,1).

After that the system (15) takes the form

)= (1= O+ Lm0 + Moo

(1) = —p()m (t) + (A () O (8))72(1)-

According to Theorem 1, for the obtained system we write an auxiliary
system of differential equations

{Ui(t)((l )M (t) + u(t)) o1 (t) + (A (t)]o2(t),

o3(t) = ()] + (A2(t) = 91 (1))oa ().

Condition 1) of Theorem 3 is obviously satisfied: (t) = |u(t)| £ 0
for t € I. Consider a particular solution of that system with the initial
conditions o;(tp) =0 (i = 1,2):

ft(AZ(T)—(”\l(T))dT t - f(/\z(Tl)—5>\1(Tl))d"’1
/ u(r)

oo(t) = e e ™ dr,

~ (=8 (r)+a( r))dr - f((ké)h(rl)w(n))dn
o1(t) = e /| 1(1)|o2(T)e ™o dr.

According to condition 2) of the above theorem,

pu(t) = o(A1 (1)),
and, all the more,

1) = o(Az(t))-

Then
1
@l MO mm
t=+00 Ag(t) — OA1(t) t—do0 1 _§ ilg? )
2

Consequently, by Lemma 1, 72(t) = o(1). Further, we have

S U] 1 N 1) B
oo (L=0)Aa(t) +p(t)  emoe 51 — 21
1

and thus, o1(¢t) = o(1).



18 Tatiyana Barinova and Alexander Kostin

Then
5 ( ) 6j')\1(7')d'r ( )
. o (7)) . e m(t)
Jm () =l MO () -
 Jenm—arydr [ au(r)(6- 242 ar
= to = i to =
o ()= lim_e )
] 8 ft A1 (7)dr
= to = 1 =
,m e m(t) = lim &()m(t)=0.
This implies that Theorem 8 is valid. Moreover,
10 J (@31 (r)—u(r) dr
(1) = 342, z1(t) = of ),
/\1(t) — t -
— § [ A(r)dr
Z2(t> 52(75) Zz(t) — 0(6 to )
=50
a1(t) = of e ),
— + —
5 [ Ai(r)dr
z9(t) = o(e fo )
é f Ai(r)dr
:>zi(t):o<e i ) i=1,2);
t) = z1(t
yl( ) Zl( )7 —

yi(t) = z1(b),
{y2(t) = A1(t)z1(t) + 22(t) - {yz(t) = &1(t) + 22(t)

6})\1(7’)(17’
:>yi(t):o(e to )

Theorem 9. Let the conditions
1) Xi(+o0) = -0 (1 =1,2);
bV N,
2) S = o(1) (or 3 = o(1)), 323 = O(1)

be fulfilled. Then a trivial solution of the equation (1) is asymptotically
stable.

Proof. The condition (2) is obviously fulfilled. In the system (8) we make
the substitution (14) and obtain the system (15). Next, we make the sub-
stitution
f v(T)dr ]
§i(t) = e ni(t), v(t) =o(Ni(t) (i=1,2).
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Then the system (15) takes the form

{ni(t) = (A 0) = v(®) + p(O)m (0) + M (O)ma(t),
my(t) = —p()m(t) + (Aa(t) — v (t))n2(2).
In accordance with Theorem 1, we write an auxiliary system
{Ui(t) = ((M(t) = v(t) + p(t)) o1 (t) + M (t)o2(t),
o3(t) = [p(®)] + (A2(t) — v(t))o2(2).

According to conditions 1) and 2) of the given theorem,

MOIEYO!
ol Nel%e

t—+o0 )\Q(t) — y(t) t—+oo 1 _ v(t)

A2 (t)

If :\\18 is unbounded as t — +00, then we interchange A1 (¢) and A2(¢) and

get

brol 1501 245
. >\2 t . t 1
lim ———*—— =— lim =0.
t—+o00 \1 (t) — y(t) t—foo 1 _ /\Vl((tt))
Consequently, by Lemma 1, o2(t) = o(1). Further, we have
MOB0 s
oo — S v(t) AL() ’
oo Ma(t) = v(t) + p(t) el - NG T Az(t)

Then o1 (t) = o(1). This implies that Theorem 9 is valid. Moreover,

f 2 ()
&(t) B t{(”(T)—W) dr
21 (t) = )\11(75) . z1(t) = 0(6 t ),
ZQ(t) = fg(t) Zz(t) _ O(et{ v(T) dT) .

t ’
I Al(r)(M—M) dr

T 2+
2 (t) = O<et0 M T ) —

[v(r)dr
— 2(t) = o(efo ) v(t) = o(Ni(t)) (i =1,2);

y1(t) = z1(t),
Y2 (t) = )\1 (t)Zl (t) + z9 (t)

(SR
3
—
<9
3
——
<
~—~
~
~—
I
)
—~
>
<
~—~
~
~
~
—
~
I
—
\Y]
—

= y;(t) =o ¢

Note that the condition ;;((?) = o(1) is fulfilled for a sufficiently wide

+oo
class of functions for which [ A(t) dt = —oc. O
to
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CONCLUSION

The paper reveals the sufficient conditions for asymptotic stability and
gives evaluation of solutions of the homogeneous linear nonautonomous se-
cond order differential equation depending on the behavior of roots of the
corresponding characteristic equation in the case of real roots. The results
of the work allow one to proceed to considering higher order equations and
the questions connected with a simple stability and instability. The case of
complex-conjugate roots has been considered by us and will be published
in a separate article.
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1. INTRODUCTION

The purpose of this paper is to prove the existence of mild solutions
defined on the positive semi-infinite real interval .J := [0, +00), for functional
integro-differential equations with state-dependent delay of the form

t

Y () = Ay(t) + f(t,ypu,y,,), [ ettss. ) ds), ae. ted, (1)
0
Yo = ¢ S B7 (2)

where A : D(A) C E — F is the infinitesimal generator of an analytic
semigroup of bounded linear operators, (T'(t)¢>0) on a Banach space (E, | - |)
and f: JxBxFE—>FE e:JxJxB—FE, p:JxB—Rand¢e€ B are
the given function. For any continuous function y defined on (—oo, +00)
and any ¢ > 0, we denote by y; the element of B defined by y:(0) = y(t +0)
for 6 € (—o00,0]. Here y:(-) represents the history of the state from each
time 0 € (—o00,0] up to the present time t. We assume that the histories y;
belong to some abstract phase space B to be specified later.

Integro-differential equations have attracted great interest due to their
applications in characterizing many problems in physics, fluid dynamics,
biological models and chemical kinetics. Qualitative properties such as the
existence, uniqueness and stability for various functional integro-differential
equations have been extensively studied by many researchers (see, for in-
stance, [3,4,7,18,21,23,25]. Likewise, the functional differential equations
with state-dependent delay appear frequently in applications as model of
equations and for this reason the study of this type of equation has received
a significant amount of attention in the last years (we refer to [2,5,6,8,13-15]
and the references therein).

In the literature, the problem (1)—(2) has been studied by several au-
thors without delay or with delay depending only on time. A method to
reduce integro-differential equations with unbounded memory to systems
of functional differential equations with bounded memory without integrals
and analysis of stability of partial functional integro-differential equations on
this basis was presented in [1]. An important study of functional differential
equations with state dependent delay was presented in [11]. Herndndez [12]
has discussed the existence of mild solutions of partial neutral integro-
differential equations with an infinite delay. Ravichandran and Mallika [21]
investigated the fractional problem. Gunasekar et al. [19] have discussed
the existence of mild solutions for an impulsive semilinear neutral func-
tional integro-differential equations with infinite delay in Banach spaces by
using the Hausdorff measure of noncompactness. When A depends on time,
Marcos et al. [22] have discussed the case of the existence of solutions for a
class of impulsive differential equations by using the fixed point theory of
compact and condensing operators. Yan [26] investigated the existence of so-
lutions for semilinear evolution integro-differential equations with nonlocal
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conditions. Recently, Hong-Kun [17] studied the existence of strong solu-
tions of a nonlinear neutral integro-differential problem on an unbounded
interval.

The main purpose of the paper is to establish a global uniqueness of
solutions for the problem (1)—(2). Our approach here is based on a re-
cent Frigon—Granas nonlinear alternative of Leray—Schauder type in Fréchet
spaces [9] combined with the semigroup theory.

2. PRELIMINARIES

We introduce notations, definitions and theorems which are used through-
out this paper.

Let C([0,+0); E) be the space of continuous functions from
[0,400) into E and B(F) be the space of all bounded linear operators from
FE into F, with the usual supremum norm

N € B(E), |N|pm =sup {IN()|: |yl =1}.

A measurable function y : [0, +00) — F is Bochner integrable if and only
if |y| is Lebesgue integrable. For the Bochner integral properties, see the
classical monograph of Yosida [24].

Let L'(]0,+c0), E) denote the Banach space of measurable functions
y : [0,+00) — E which are Bochner integrable normed by

“+o0
Iyl = / ly(®)] dt.
0

In this paper, we will employ an axiomatic definition of the phase space B
introduced by Hale and Kato in [10] and follow the terminology used in [16].
Thus, (B, | - ||g) will be a seminormed linear space of functions mapping
(—00,0] into E, and satisfying the following axioms:

(A1) Ify : (—o0,b) — E,b > 0, is continuous on [0,b] and yg € B, then

for every t € [0,b) the following conditions hold:
(i) w€B;
(ii) there exists a positive constant H such that |y(¢)| < H ||yl 5;
(iii) there exist two functions K(-), M(-): Ry — R, independent
of y with K continuous and M locally bounded such that

lyells < K (t)sup {ly(s)] - 0 <s <t} + M()|yols-
(Az2) For the function y in (A;), y; is a B-valued continuous function on
[0, ].
(A3) The space B is complete.
Denote Kp, = sup{K(t): t € [0,b]} and M, =sup{M(¢t): t € [0,b]}.



Functional Integro-differential Equations 25

Remark 2.1.
1. (ii) is equivalent to |¢(0)| < H||¢| 5 for every ¢ € B.
2. Since || - || is a seminorm, two elements ¢, € B can verify ||¢ —

Y|l = 0 without necessarily ¢(0) = (0) for all § < 0.

3. From the equivalence in the first remark, we can see that for all
¢, € B such that ||¢ — ¢||p = 0: We necessarily have that ¢(0) =

$(0).

We now indicate some examples of phase spaces. For other details we
refer, for instance, to the book due to Hino et al. [16].

Example 2.2. Let:

BC' be the space of bounded continuous functions defined from (—o0, 0]
to E;

BUC' be the space of bounded uniformly continuous functions defined
from (—o0,0] to E;

C™> = {qzﬁ € BC: Olim @(0) exist in E};
——co

0._ . : _
00 = {¢ €BC: lim_9(0) = o},
be endowed with the uniform norm

¢l = sup {|$(0)| - 6 <0}.

We have that the spaces BUC, C* and C° satisfy conditions (A;)—(As3).
However, BC satisfies (A1), (A3) but does not satisfy (Asz).

Example 2.3. The spaces Cy, UC,, Cg° and C’S.
Let g be a positive continuous function on (—oo,0]. We define:

Cy = {QS € C((—00,0], E) : z:((z; is bounded on (—oo,()]};
- oL 00)
endowed with the uniform norm
_ [9(0)] |
ol = SUP{W : < 0}.

Then we have that the spaces Cy and C satisfy conditions (A3). We con-
sider the following condition on the function g.

(91) For all a > 0,
t+60
sup sup{M T oo << —t} < 00.
0<t<a 9(9)

They satisfy conditions (A7) and (Asz) if (g1) holds.
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Example 2.4. The space C,.
For any real positive constant v, we define the functional space C by

o . . . ~0 . .
Cy = {¢ € C((—o0,0], E) : egrzlooe ¢(0) exists in E}
endowed with the norm
)l = sup {e™?l6(0)] - 6 < 0}.
Then in the space C,, the axioms (A4;) — (As) are satisfied.

Definition 2.5. A function f : J x B x E — FE is said to be an L!
-Carathéodory function if it satisfies:

(i) for each t € J, the function f(¢, -, -) : B x E — E is continuous;

(ii) for each (y,z) € B x E, the function f(-,y,z):J — E is measur-
able;

(iii) for every positive integer k, there exists hy, € L'(J;R™) such that

|f(t,y,2’)| < hk(t)
for all ||yllg <k, |z2| <k and almost every t € J.

Let E be a Banach space and B(E) be the Banach space of linear bounded
operators.

Definition 2.6. A one parameter family {T'(¢) | t > 0} C B(F) of bounded
linear operators from E — F is a semigroup of bounded linear operator on
F if satisfying the conditions:

(i) T(t)T(s) =T(t + s), for t,s > 0;

(ii) T(0) = 1.
Definition 2.7. Let T'(t) be a semigroup defined on E. A linear operator
A defined by

D(A) = {:c € E| hlirgl+ % exists in E},
—

and T(h)

) T -

Az) = hlingr — for z € D(A),

is the infinitesimal generator of the semigroup T'(¢t). D(A) is called the

domain of A.

Let X be a Fréchet space with a family of semi-norms {|| - [|5}nen. We
assume that the family of semi-norms {|| - ||,,} verifies:

ol < llalls < Jlalls < -+ for every = € X.
Let Y C X, we say that Y is bounded if for every n € N, there exists

M,, > 0 such that
lylln < M, forall y€Y.
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To X we associate a sequence of Banach spaces {(X™, || - ||»)} as follows:
For every n € N, we consider the equivalence relation ~,, defined by: = ~,, y
if and only if ||z — yl|, = 0 for 2,y € X. We denote

X" = (X]vs |l In)

the quotient space, the completion of X™ with respect to || « |l,,. To every
Y C X, we associate a sequence {Y"} of subsets Y C X™ as follows: For
every x € X, we denote by [z],, the equivalence class of x of the subset X™
and we define Y™ = {[z],, : = € Y}. We denote by Y™, int,(Y™) and 9, Y™,
respectively, the closure, the interior and the boundary of Y™ with respect
to ||+ ||n in X™.

The following definition is the appropriate concept of contraction in X.
Definition 2.8 (]9]). A function f: X — X is said to be a contraction if
for each n € N there exists k,, € [0,1) such that

1 (@) = FW)lln < knlle = ylln for all z,y € X.

The corresponding nonlinear alternative result is the following

Theorem 2.9 (Nonlinear Alternative of Granas—Frigon, [9]). Let X be a

Fréchet space andY C X a closed subset and let N :' Y — X be a contraction

such that N(Y') is bounded. Then one of the following statements holds:
(C1) N has a unique fized point;

(C2) there exists A € [0,1), n € N and = € 9,Y"™ such that ||z —
AN (2)]] = 0.

3. EXISTENCE RESULTS

3.1. Mild solutions.

Definition 3.1. We say that the function y : (—o00,4+00) — FE is a mild
solution of (1)—(2) if y(t) = ¢(¢) for all t < 0 and y satisfies the following
integral equation:

t

0 = TO60) + [T0-1 (510 el 7 7 ds - @
0 0
for each ¢ > 0.
Set
R(p™) = {p(s.0): (s,0) € T x B, pls,0) <0}.
For each b € (0,00), we assume that p : J x B — (—o0,b] is continuous.

Additionally, we introduce the following hypothesis:

(Hy) The function ¢ — ¢, is continuous from R(p~) into B and there
exists a continuous and bounded function L? : R(p~) — (0,00)
such that

bells < LO(t)]|0||s for every t € R(p™).



28 M. Benchohra and S. Litimein
Remark 3.2. The condition (Hy) is frequently verified by the functions
continuous and bounded. For more details, see for instance, [16].

Lemma 3.3 ([15, Lemma 2.4]). Ify: (—o0,b] = E is a function such that
Yo = d); then

lysllis < (M + L) 6]l + K sup { y(6)] = 0 € [0, max{0, s}]},
sER(p)U,
where L? = sup,ex - Lo(t).
We introduce the following hypotheses:
(H1) There exists a constant M > 1 such that
1T ()| BE) < M for every t > 0.

(Hf) (i) There exist a function p € L}, .(J;Ry) and a continuous non-
decreasing function 1 : [0, 00) — (0, 00) such that:

£t 6.w)] < p(t)96 (18]l + [wll) for every (¢,6,2) € J x B x E.
(ii) For all R > 0, there exists (g € L}, .(J;Ry) such that
(1, 61,w) = 72,6, 05)] < 1a(0) (181~ Balls + s — ]

where (t,0;,w;) € I x Bx E,i=1,2.

(H.) (i) There exist a function m € L, .(J;R;) and a continuous non-
decreasing function Q : Ry — (0, 00) such that:

le(t, s,8)] < m(s)Q([|6]g) for all (t,s,6) € JxJxB.

(ii) There exists a constant C; > 0 such that

t
‘/ (t,s,x) —e(t,s,y)] ds| < Cillz — y||5
0

for (t,s) € J, (x,y) € B.
Consider the space
Bio = {y c:R—=E: yho 7 continuous forT' > 0and yo € B},

where y|[o,7 is the restriction of y to the real compact interval [0, 77.
Let us fix 7 > 1. For every n € N, we define in B, the semi-norms by

Iyl = sup {e=™ 2 Oly(t)|: t € 0,n]},

where
t

L;;(t):/zn(s) ds, 1n(t) = (1+ Cy)K, Ml (1)

0
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and [,, is the function from (H)(3).
Then B, is a Fréchet space with this family of semi-norms || - ||,en-

Theorem 3.4. Assume that (H1),(Hy), (He) and (Hy) hold, and suppose
that for n € N,

—+oo n
ds
> [ Y(s)ds. (4)
(/.) Y(s) + Q(s) 0/

Then the problem (1)—(2) has a unique mild solution on (—o0,400).

Proof. We transform the problem (1)—(2) into a fixed-point problem. Con-
sider the operator N : By — By defined by

N(y)(t) =
o(t), if t <0,

t

- T(t)(;ﬁ(O)—i—/T(t—s)f(s7 yp((ws),/e(s, Ty Yp(r,yr)) dT) ds, (5)
0 0
if teJ.

Clearly, fixed points of the operator N are mild solutions of the problem

(1)-(2).
For ¢ € B, we define the function z(-) : (=00, +00) — F by
o), if ¢ <0,
2(t) = {T(t)¢>(0), if teJ

Then xg = ¢. For each function z € B, with zy = 0, we denote by Z the

function defined by
if t<
CORE S
z(t), if teld

If y(-) satisfies (3), we can decompose it as y(t) = Z(t) + «(¢), t > 0, which
implies that y; = Z; + x4, for every ¢t € J and the function z(-) satisfies

t

Z(t) = /T(t - S)f(sv Zp(s,z54Ts) + Lp(s,2s+xs)

0

o,

6(877'7 Zp(r,2r+ar) T gcp(ﬂzrﬂr)) dT) ds for t € J.

Let
Bl ={2€Bix: 2=0¢B}.
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For any z € BY , we have
12l s0 = loolls + sup {2(s)] : 0 < 5 < oo} =
=sup {|z(s)]: 0< s <400},
Thus (BY ., - [[+) is a Banach space. We define the operator F : B} _ —
BE_OO by
t

F(Z)(t) = /T(t - 8)f<87 2p(s,2s4s) + Tp(s,ze+xs)s
0

/6(577', Zp(1,20+ar) +xp(7',zf+:rr)) dT) ds for t € J.

Obviously, the operator N has a fixed point is equivalent to F' has one,
so it turns to prove that F' has a fixed point. Let z € B?roo be such that
z = AF(z) for some X € [0,1). By the hypotheses (H1), (H¢(i)) and (Hc(7)),
for each ¢ € [0, n], we have

f(s, Zp(s,zatwa) T Lp(s,zatas)

/6(37 Ty Zp(T,27+x7) + xl’(TvZT"‘xT)) dT)

0

O < [T = 9)lBm
/

ds <

t
< 37 [ 90600 (Voo ) + Tt I+

0
B) dT) ds <

t
< ﬂ/p(s)w(f{np(sﬂ + (M + L + K, MH) | ¢|| 5+
0

+ /m(T)Q(||zp(sA,zs+ms) + Tp(s,z04as)
0

+/m(T)Q(Kn\z(s)|+(Mn+L¢+KnMH)|\¢>||B) d7> ds.
0
Set

¢n = (M, + K, +L® + K,MH)||¢||5.
Then we have

=) < M / p(sw(mv(sn Fent / () UEnl=(5)] + ) dr) ds.
0 0



Functional Integro-differential Equations 31

Thus

Kplz()| +en <
< Cn—FKnM\/p(S)%/J(KMZ(S)+Cn+/m(T)Q(an(s)|+cn) dT) ds.
0 0

We consider the function u defined by
wu(t) == sup{Kn|z(s)| +cp: 0<s< t}, 0<t< +o0.

Let t* € [0,t] be such that u(t) = K,|z(t*)| + cu||¢|lg. By the previous
inequality, we have

S

u(t) < en + Knﬁ/tp(sm (u(S) + /m(T)Q(u(T)) dT) ds
i 0 for ¢ € [0, n].

Let us take the right-hand side of the above inequality as v(t). Then we
have u(t) < v(t) for all ¢t € [0,n]. This leads us to the following inequality:

o(t) < en + KoM j p(s) <U($) + / m(1)Q(v(r) dr) ds) for t € [0,n],
0 0

whence

o~

V'(t) < M K, p(t)y <v(t) + /tm(T)Q(v(T) dr)).
0

Next, we consider the function

w(t) = v(t) + / m(r)Qv(r)) dr,

0
thus we have that v(0) = w(0) and v(t) < w(t) for all t € [0,n].
Using the nondecreasing character of ¢, we get
w'(t) =v'(t) + p(t)2v(t) <
< Z\?Knp(t)w(w(t)) +m(t)Qw(t)) a.e. t€[0,n].
We define the function 9(¢) = max {M\Knp(t), m(t)}, t € [0,n], which im-
plies that
w'(t)
P(w' (1) + Qw(t))

< I(2).
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From condition (4), we have

w(t) t +o00
ds ds
/mw@+9@>§/ﬁ@d“5/nw@+ﬂwr
w(0) 0 w(0)

Thus, for every t € [0,n], there exists a constant A,, such that w(t) < A,
and hence, u(t) < A,,. Since ||z||, < p(t), we have |||, < Ayp.
Set

7 = {z €Bl.: sup |z(t)| <A, +1,Vne N}.

0<t<n

Clearly, Z is a closed subset of BY .
We shall show that F' : Z — Bgoo is a contraction operator. Indeed,
consider z,Z € Z, thus using (H1) and (H3) for each t € [0,n] and n € N,

PO - FEO] < [ 17 = 9] 5
0

f <S7 Zp(s,zs—',-ms) +xp(s,zs+:vs) 7/e (87 T, Zp(T,zT-i-:ET) +(L.p(7—727'+m7')) dT) -
0

X

f<572p(s,zs+zs) t Zp(szotaa)

S

/6(87 7 EP(T1ET+ZET) + :Ep(T,ET+z.,-)) dT>
0

ds <

+

t
S/ J/\Zln(s)<Hzp(szs+IS) _Ep(s,35+a:s) B
0

+Cl”zp(5’zs+935) - EP(57ES+935) B) ds.

Using (Hg) and Lemma 3.3, we obtain
[F(2)(t) = F(2)(t)] <

< O/Mzn(s)(f(n|z(s) —2(5)| + C1 (Kn2(s) —z(s)|)) ds <

t

< /Mzn(s)[l + Cy)Kp|2(s) — 2(s)| ds <

0
t
S;/’
0

[Zn(s) eTL:(s)} {e—rL’;(s”Z(s) _ 5(5)” ds <
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3

t
eTL:L(S) / . 1 . .
g/[ "2 ds e =z <~ O] 3
0

Therefore,
_ 1 _
1F(z) = E@E)lln < —~ llz = Zlln-

So, the operator F' is a contraction for all n € N. By the choice of Z, there
is no z € 9Z™ such that z = AF(z), A € (0,1). Then the statement (C2)
in Theorem 2.9 does not hold. The nonlinear alternative due to Frigon and
Granas shows that (C1) holds. Thus, we conclude that the operator F' has
a unique fixed-point z*. Then y*(t) = z*(t) + z(t), t € (—o00,+00) is a fixed
point of the operator N, which is the unique mild solution of the problem
(1)—(2). O

4. AN EXAMPLE

To apply our results, we consider the following partial differential equa-
tion:

ov 0%v
GO =5 tO+

+m<t,v(t o(v O/ntsvs o(v (s,O)),§))ds),
€[0,00), §€0,7],

(6)

v(t,0) =v(t,m) =0, ¢ € [0,00),
v(0,8) =v9(6,¢), 0 € (—,0], £€l0,n],

where vg and o € C(R, [0, 00)) are continuous. Take E = L?[0, 7] and define
A:D(A) C E— E by Aw = w"” with the domain

D(A) = {w € E, w,w’ are absolutely continuous,
w” € E, w(0) = w(r) = O}.
Then
Z (w, wp)wy,, w € D(A),

where w,(s) = \/g sinns, n =1,2,..., is the orthogonal set of eigenvalues

of A. Tt is well known (see [20]) that A is the infinitesimal generator of an
analytic semigroup T'(t), ¢ > 0 in E and is given by

w—g e wwnwn,wEE.

Since the analytic semigroup T'(¢ ( ) is compact for ¢ > 0, there exists a con-
stant M > 1 such that | T(¢)|| < M.
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Theorem 4.1. Let B = BUC(R_,E) and ¢ € B. Assume that condition
(Hg) holds. The function m : J x J x [0,7] = [0,7], ¢ : R — R¥,

n:

J x J x [0,7] = [0, 7] are continuous. Then there exists a unique mild

solution of (6).

Proof. From the above assumptions, we have that the functions

ft, o, x)(§) =m <,<p0€ jnt3¢0€)) )
0

e(t, s,0)(&) = n(t,s,0(0,)),
p(t, p) =t —0o(4(0,0))

are well defined, permitting to transform system (6) into the abstract system
(1)—(2). Moreover, the function f is a bounded linear operator. Now the
existence of mild solutions can be deduced from a direct application of
Theorem 3.4. From Remark 3.2, we have the following result. (]

Corollary 4.2. Let ¢ € B be continuous and bounded. Then there exists a
unique mild solution of (6) on (—oo,400).
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1. INTRODUCTION

The theory of regularly varying functions created by J. Karamata in 1930
has been later (see, for example, monographs [1], [2]) extensively developed
and widely used in various mathematical researches. Particularly, the last
decades of the past century is mentioned by a great interest in studying
regularly and slowly varying solutions of various differential equations and
in equations of the type

y" = aop(t)e(y),

where o € {—1,1}, p : [a,+00[—]0,400[ is a continuous function and
¢ : Ay, — 10, +0o0[ is a regularly varying continuous function of order o # 1
as y — Yp; here Yy equals either zero or oo, and Ay, is a one-sided
neighborhood of Y. Among the researches carried out within that period
and dedicated to determination of asymptotics as t — +oco0 of monotonic
solutions for such equations, of special mention are the works [3], [4] and
the monograph [5].

Here, according to the definition of regularly varying function (see E. Se-
neta [1, Ch. 1, Sect. 1.1, pp. 9-10)),

o(y) = |yl” L(y),

where L is slowly varying as y — Y| function, i.e., the condition

LA
fim ZY) ) ith any A >0
v=Yo  L(y)
yeAyU

is satisfied. Considering such representation for ¢, such class of equations is
a natural extension of the class of generalized second order Emden—Fowler
equations
y" = aop(t)|yl signy.

The basic results dealing with asymptotic properties of solutions for the
second- and n-th order Emden—Fowler equations, obtained before 1990, can
be found in the monograph due to I.T. Kiguradze and T.A. Chanturiya [6,
Ch. IV, V| pp. 309-401]. The works [7]-[16], dedicated to the determination
of asymptotics of monotonic differential equations of second and higher
orders with power nonlinearities are also worth mentioning.

For the last decade, the results obtained in [17]-[22] and also those ob-
tained in [12]-[16] were applied to differential equations

v = aop()poW)er(y), ¥ = arpr(t)ero(v)er (v,
k=1

y™ = agp(t)e(y) (n>2)

with nonlinearities, regularly varying as y — Yy and y' — Y7, where Y; €
{0; £oo} (1 =0, 1), and with some additional restrictions to nonlinearity for
the first two equations.
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In the present paper we consider the following differential equation:

m n—1
yt" = Zakpk(t) H i (), (1.1)
k=1 §=0

where n > 2, ap € {—1;1} (k = 1,m), px : [a,w][—]0,+oc0] (k = 1,m)
are continuous functions, ¢r; : Ay, —]0,+o00[ (k = 1,m; j = 0,n—1)
are continuous and regularly varying as y/) — Y; functions of orders oy;,
—00 < a<w< 400, Ay, is one-sided neighborhood of Y}, Y; equal either
to 0 or to £oo. It is assumed that numbers v; (j = 0,n — 1) determined by

1, if either Y; = 400, or Y; =0
and Ay, -right neighborhood of 0,

Vj = . . (12)
—1, if either Y; = —o0, or ¥; =0
and Ay, -left neighborhood of 0,
are such that
vivjt1 >0 with Y; =400 and
vivjz1 <0 with Y; =0 (j=0,n—2). (1.3)

Such conditions for v; (j = 0,n — 1) are necessary for the equation (1.1)
to have solutions defined in the left neighborhood of w, each of which sat-
isfying the conditions

yU(t) € Ay, with t € [to,w], %myU)(t):Y} (Gj=0,n—1). (14)

Among strictly monotonic, with derivatives up to the n — 1 order inclusive,
in some left neighborhood of w, solutions of equation (1.1) these ones are
of special academic interest, because each of the rest ones admits only one
representation of the type

y(t) = 7o (O)]er—1 +o(1)] (k= T,n),

where ¢,_1 (k= 1,n) are the non-zero real constants and

) t, if w=+4o0, (15)
7w, (t) = .
t—w, if w<4oo.

The question on the existence of solutions of (1.1) with similar represen-
tations may be solved, in a whole, in a rather simple way by applying, for
example, Corollary 8.2 for w = 400 from the monograph of I. T. Kiguradze
and T. A. Chanturiya [1, Ch. II, p. 8, p. 207] and the schemes from the
works [10], [12] as w < 4o00. As for the solutions with properties (1.4),
for lack of particular representations for them, there arises the necessity to
single out a class of solutions admitting one to get such representations.

*ifa>l,thenw:—i—oo,andw—l<a<wifw<+oo.
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One of such rather wide classes of solutions has been introduced in [14]-[16]
dedicated to generalized Emden—Fowler type equations of n-th order,

y™ = agpl(t H ly ).

For the equation (1.1), this class is determlned as follows.

Definition 1.1. A solution y of the equation (1.1) defined on the interval

[to,w[ C [a,w][, is called a P, (Yo, ..., Y,_1, Ag)-solution, where —oco < Mg <
+00, if along with (1.4) the condition
(n—1) t 2
lim W (1.6)

ttw y(”*z) (t)y(")
is satisfied.

If y is a solution of the differential equation (1.1) with properties (1.4)
and the functions In |y~ (¢)| and In |m,(t)| are comparable with order one
(see [23, Ch. 5, Sect. 4,5, pp. 296-301]) as t T w, then it is easy to check that
this solution is the P, (Yp,...,Y,—1, Ao)-solution for some \g depending on
the value of ltlTIB %m

Moreover, using assertions 1, 2, 5 and 9 (on the properties of regularly
varying functions) from the monograph [5, Appendix, pp. 115-117], it can
be verified that in the case of regularly varying as ¢ 1 w coefficients py
(k = 1,m) of the equation (1.1), each of its regularly varying as t 1 w
solutions with properties (1.4) is a P, (Yo, ..., Yn—1,Ag)-solution for some
final or equal to +o00 value \g.

The aim of this note is to determine the conditions for existence of
P,(Yo,...,Yn_1,Ag)-solutions of (1.1) in special cases, where \g = ”;7:1
asi € {1,...,n — 1}, and also asymptotic representations as ¢ 1 w for such
solutions and their derivatives up to and including n — 1 order.

By virtues of the results from [16], these solutions of the equation (1.1)
possess the following a priori asymptotic properties.

Lemma 1.1. Let y : [to,w[— Ay, be an arbitrary P,(Yo,...,Yn_1,N0)-
solution of the equation (1.1). Then:

(1) ifn>2and N = ”;:1 for some i € {1,...,n—2}, then fortt w,

y(kfl)(t) -~ [’/T(:(_t)]];)'k y(ifl)(t) (k=1,...,i— 1)*,

, (1.7)
) (i—1)
y () = O(ym(tgt))’
y B () ~ (—1)F (k —2)! y D) (k=i+1,...,n); (1.8)

[ (8)]

*At i = 1 these relationships do not exist.
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(2) if n>2 and Ao =0, then fort T w,

g n—k—1 *
y(k—l)(t) ~ [(;:85)]]{_1)' y(n—Q) t) (k=1,...,n—2),

w0 =o( )

and, in the case of existence of (finite or equal to +o00) limit

)
lim ==

(1.9)

-1

with t 1T w. (1.10)

2. STATEMENT OF THE MAIN RESULTS

In order to formulate the theorems, we will need some auxiliary notation
and one definition.

By virtue of the definition of regularly varying function, the nonlinearity
in (1.1) is representable in the form

(YD) = [y D Ly (yD) (k=T,m; j=0,n—1),  (2.1)

where Ly; : Ay, —]0,+00[ are continuous and slowly varying as Y = Y;
functions, for which with any A > 0

LY o
y(j)gij

It is also known (see [1, Ch. 1, Sect. 1.2, pp. 10-15]) that the limits (2.2)
are uniformly fulfilled with respect to A on any interval [¢,d] C]0,+o0]
(property M7) and there exist continuously differentiable slowly varying as
y\9) — Y, functions Log; : Ay, — )0, +o00[ (property M) such that

Lo () DI (@
im M =1 and lim % =0 (2.3)
vy Lok; (yD) WO=v; Lok (YD)
y(j)eij y(j)eij

(k=1,m; j=0,n—1).

Definition 2.1. We say that a slowly varying as z — Zy function L :
Az, — 10,400, where Z; either equals zero, or £00, and Ay, is one-sided
neighborhood of Zj, satisfies condition Sy, if

L(velttoMImizly = 1(2)[1 + o(1)] with 2z — Zy (2 € Ag,),

where v = sign z.

*At n = 2 these relationships do not exist.
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Remark 2.1. If the slowly varying as z — Zp function L : Az, —]0,4o00[
satisfies the condition Sy, then for every slowly varying as z — Z; function
l: AZO —)]074-00[,

L(zl(z)) = L(2)[1 + o(1)] when z — Zy (2 € Ag,).

The validity of this statement follows from the theorem of representation
(see [1, Ch. 1, Sect. 1.2, p. 10]) of slowly varying function ! and property
M, of function L.

Remark 2.2 (see [22]). If slowly varying as z — Z function L : Az, —
10, +o0[ satisfies condition Sp, then the function y : [tg, w[— Ay, is contin-
uously differentiable and such that

oy €w
v =Y. =

where r is the non-zero real constant, £ is continuously differentiable in some
left neighborhood of w real function, for which &’(t) # 0, then

L(y(t)) = L(v[€®)]")[L + o(1)] when t 1w,
where v = signy(t) in the left neighborhood of w.

[r +0(1)] when ¢ 71w,

Remark 2.3. If slowly varying as z — Zp function L : Az, —]0,+o0|
satisfies condition Sy and the function r : Az, x K — R, where K is
compact in R™, is such that

lirg r(z,v) = 0 unifornly with respect to v € K,
z—r 0

NS
then
1’ [147r(z,v)]In |z|
lim L )y
z—Zg L(Z)
zeAz,

uniformly with respect to v € K, where v = sign z.

Indeed, if it shouldn’t be true, then there would exist a sequence {v,} € K
and a sequence {z,} € Az, converging to Zy such that the inequality
L(vell+7(zn,vn)]In |20
lim inf (ve )
n—-+oo L(Zn)

—-1/>0 (2.5)

is fulfilled.
Thus it is clear that there is the function v : Az, — K such that v(z,) =

vp,. For this function it is obvious that lim -~z, 7(z,v(z)) =0 and hence
zeAZO

[147r(z,v(2))] In |z|
lim L(ve ) =1,
z—Zy L(Z)

zEAZO

which contradicts the inequality (2.5).



44 V. M. Evtukhov and A. M. Klopot

Finally, let us introduce auxiliary definitions assuming

i—2 n—1
pri=n—i—14Y ow(i—j—1)= > ox(i—i) (k=T,m; i=1,n),
§=0 j=it1
n—1 n—1
Vi _1—ZUk;j7 Wkizl—ZUkj (k=1,m; i=1,n-1),

7=0 Jj=t
— n—1

Ckz ] 1 Tk H [(]72)'}Ukj (k:]-vmv Z:Lnf 1);
j=0 j=it1

t
Tult /pk ) WHLM vlmu(s)[~I Y ds (k=T,m; i=T,n),
j=0
#71

Jrai (t / | Jri(s "*lw ds (k=1,m; i=1,n),
Agii
where each of the limits of integration Agy,, Agmm (m € {0,1}) is chosen
equal to the point ag € [a,w[ (on the right of which, i.e., as t € [ag,w][, the
integrand function is continuous) if under this value of limits of integration
the corresponding integral tends to oo as ¢t T w, and equal to w if at such
value of limits of integration it tends to zero as t T w.

Theorem 2.1. Letn > 2, i€ {1,...,n—2} and for some s € {1,...,m}
the inequalities

lim sup Inpg(t) — Inps(t)
tTw 5 In |7Tw (t)l
n—1

<B Z (0sj —0okj)(i—3—1) atall k€ {1,...,m}\ {s}, (2.6))

be fulfilled, where 8 = signm,(t) fort € [a,w[. Moreover, let ysvs; # 0 and
the functions Ls; for all j € {0,...,n — 1} \ {i — 1} satisfy condition Sp.

Then for the existence of P, (Yo, ..., Yn_1, ";:1 )-solutions of the equation
(1.1) it is necessary, and z'f algebraic equation
n—1 _
Z G=0 H (m — p) +051= (2.7)
= (j—1)
j=i+1

has no roots with zero real part it is sufficient that (along with (1.3)) the
inequalities

vivj—1(i — j)m,(t) >0 at all j€{1,...,n—1}\{i},
Vili—1Ys7Vsidsii(t) > 0,
Vias(—l)n_i_l’ﬂ'g_i_l(t)’ysiJsi(t) >0 (291)

(2.8;)
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be fulfilled in some left neighborhood of w, as well as the conditions

Vi1 ltiTm T ()| =Y,;_1 atall j€{1,...,n}\ {i},

2.10;)
Vi—1 lim |Jsii(t) 15 = Y;—lv (
tTw
()L () T () Ty (1)
lim Te\Wsilt) e Mol 2.11;
e Jsi(t) T e Jsii () (210

Moreover, each solution of that kind admits as t T w the asymptotic repre-
sentations

()
=]
Gy vii G =D vsiG(t)
A S e O ERem ey

yi=D(1) = YD +0(1)] G=1,...,0i—1),  (212)

y DL+ o(D)] (2.13:)

(G=i,...,n—1),
Vs

")
Ly (yt=1 (1))

and in case w = 400 there is i + l-parameter family of solutions if the
inequality viv;_17vsvVs; > 0 is valid, and i — 1 + l-parameter family if the
inequality v;v;_17vs7Vsi < 0 s valid, in case w < +00, there is r+ 1-parameter
family if the inequality v;v;_17sVsi > 0 is valid, and r-parameter family if
the inequality v;v;_1vsvsi < 0 is valid, where | is a number of roots of the
equation (2.7) with negative real part and r is a number of its roots with
positive real part.

Vsi

1+ 0(1)] with ttw, (2.14;)

== h/szcm|

817

Vs
—Jgi(t
S (t)

Remark 2.4. Algebraic equation (2.7) has a fortiori no roots with zero real

n—2
part, if Z losi| < |1 —0ogn—1]
j=t

In Theorem 2.1, asymptotic representation for y*~1) is written implicitly.

The following theorem shows an additional restriction under which this
representation may be presented explicitly.

Theorem 2.2. If the conditions of Theorem 2.1 are fulfilled and a slowly
varying at y(—1 — Yi_1 function L1 satisfies condition Sy, then for each
P,(Yo,...,Y, 1, ";:1 )-solution of the equation (1.1), asymptotic represen-

tations (2.12;), (2.13;) and

1
s
X

YU (t) = vy

Ysi
V5iCsiLsi—1 (z/i_l\an(t) Ve )
Tsi

1+ o0(1)] (2.15;)

k Jsii (t)

S

X

hold when t T w.
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3. PROOF OF THEOREMS

Proof of Theorem 2.1. Necessity. Let y : [to,w[— Ay, be an arbitrary
P,(Yy,...,Y, 1, ";Zl—solution of the equation (1.1). Then the conditions
(1.4) are satisfied, there is t; € [a,w[ such that v;y)(t) >0 (j = 0,n — 1)
for t € [t1,w[ and by Lemma 1.1, the asymptotic relations (1.7), (1.8) hold.
From (1.7) and (1.8) we obtain the relations

= (j=1,n) when ttw (3.1;)

and therefore
In|yY=Y ) = [i—j+o(1)] In|m,(t)] (j=T,n) when ttw. (3.2

By virtue of (3.1;), the first of inequalities (2.8;) are fulfilled, and by virtue
of (3.2;), the first of conditions (2.10;) are satisfied.
Taking into account (3.2;), the representations (2.1) and the conditions

In L. (v
e A kj((y.) )
vy Infyl)|
v(Deay,

=0 (k=1,m, 7=0,n—1), (3.3)

which are satisfied due to the properties of slowly varying functions (see [1,
Ch. 1, p. 1.5, p. 24]), we find that

In ok (¥ (1)) = or; In [y (¢)| + In Li; (v (1) =
= o +o(1)] In |y (t)] = [onj(i — j — 1) + o(1)] In |7 (1)
(k=1,m, j=0,n—1) when ¢ 1 w.

That is why for each k € {1,...,m} \ {s},

n0 Loty s | |
In l - ] =In I;k@) +> {lnwkj(y”(t)*ln (Y9 ( )} =
20 oo @)1 70 =0
— 0 288 (0] 3 [(ony = 025)(i == 1)+ o(1)] =
s =0
n—1
= stufm, (0] 22D =R 5 3 (o - 0ui =~ 1)+ ol1)]

as t1Tw.

Since the expression, appearing on the right of this correlation, by virtue of
(2.6;) and the type of the function m, from (1.5), tends to —oo when ¢ 1 w,
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therefore

lim ——2= =0 atall ke{l,...,m}\{s} (3.4)

Then from (1.1) it follows that this solution implies asymptotic relation

n—1

Y™ (1) = asps(t)[1 + o(1)] H 05 (Y9 (t)) when t 1 w. (3.5)

Jj=0

Here, for all j € {0,...,n — 1} \ {7 — 1}, the functions L,; in the represen-
tations (2.1) of functions ,; satisfy the condition Sy. Therefore, by virtue
of (3.1;) and Remark 2.2, for them we have

Lgj(y D (1) = Lyj (vjlm (®) 7711 + 0(1)] when ¢ 1 w.

Taking into account (2.1) and the above representations, we can rewrite
(3.5) in the form

Y™ (t) = aups )y ()| L1 (y 0 () x

(H|y

J#z 1

7% L, (VJ |7 (t )|1J1)) [1+40(1)] at t 1T w.

Hence, using (1.7), (1.8) and bearing in mind the fact that according to
(3'1i)a

™)(t) () (41
Yy = yz(Jn—l)(t) ' y(z+1)( )y( W ~
N (=)= (n —4)!

()

and the notation introduced before formulation of theorems, we get the
following relation:

YOO @
PO

y () at ¢ 1w,

Yoi=¥s L1 (y=1(t))
=as(—1>"*"*1(sign[ (O] ) Caip(t) ()

Hesi o

H i (Vilme 7T 1 +0(1)] at ttw. (3.6)
By virtue of property M, of slowly varying functions, there is a con-
tinuously differentiated function Losi—1 : Ay, , —]0,+oo[ satisfying the
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conditions (2.3) for k = s and j = ¢ — 1. Using these conditions and (3.1;),
we find that

. P o
[y (t)[7si =7 Logi—1 (= (1)) |y =D ()75 Logi—1 (y = 1(¢))
(i) (1)
_ N A O A O]
X <731 - (’Ys - ’YSZ)y(iJrl)(t) ’ y(ifl) (t) B
P 9w YV Lh, V(1)
gD () =D (1) Losi—1(y=(1))
= yU @)y ()=t
|y =1 (t)|7si =7 Losi—1 (y 1 (t))

Therefore (3.6) can be rewritten in the form

X

[Vi'ysi + 0(1)] at t T w.

y(i)(t)"‘/si '
(|y(i*1)(t) ’Ysi*%-LOSZ- 1(y(i*1)(t))) -
= Vzae n - 1781( n iil)ceip( )|7TUJ( ) Heix
H s (ilma O L +o(1)] at ¢ w.

J#T

Integrating this relation on the interval between ¢; and ¢ and taking into
account that the fraction under the derivative sign due to the condition
vs; 7 0 tends either to zero, or to oo as t T w, we get

yO(t) _
|y(i*1)(t) 'YSi*'YsLosifl(y(ifl)(t)) -
= v (—1)" " Ty (signfm, ()] ) Coildsi(t)[L 4+ o(1)] at ¢ 1 w.

Vsi

From here first of all follows that the inequality (2.9;) is fulfilled. Moreover,
from this and (3.6), due to the equivalence of functions Ly;—1 and Log;—1 as
y(i_l) — Y;_1, we have

y ) Ju@)
y(i)(t) B ’Ysz']w(t)

whence, according to (3.1;) for j =i + 1, it follows that the first condition
of (2.11;) is valid.
From the obtained relation we also have

y(“( ) _
LW“ L (yD())

=V |Csi’YsiJsi(t)

[1+o0(1)] at t T w,

=D (1)

i1+ o(1)] at ¢ 1 w. (3.7)
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( [y D@ )
Lizioa (4 (1))

0

By virtue of the fact that

_ vy D@y @ = [7 1 y“‘”(t)%si(y“‘”(t))] _
a % i s st L 51 (i-1) t B
Loz (yi=D (1) v v 0si (Y (t))

iy D)y () 22

- 1

+o(1)} at t 1w,

Lgsi—a (=0 (2)) T
from (3.7) it follows
(iil) t % !/ Ui 1
(0 = S [Comidi() 1+ 0(1)] when ¢ .

L .
Losi 21 (=1 (1)

Here the fraction appearing under the derivative sign tends either to zero
or to o0 as t T w, since by virtue of (1.4) and properties of slowly varying
functions (see (3.3)),

=1 () [7e:
In Ly Ul
Loz (yi=D (1))
_ (i—1) Vs
=In |y ()] o +0(1)| = £o00 at ¢ 71 w.

81

i— Vs 1 InL s1— y(iil) t
= 1n|y( 1)(t)| [ - : (11'(71) 2
Vsi Vsi In |y (t)|

That is why, by integrating this correlation on the interval from ¢; to ¢, we
get
s

Ysi VilVi—17s

(i—-1)

Y t

L () = Voi |’YsiCsi
Lozi_1(yi=D (1)) .

From here it follows the validity of the second inequality of (2.8;) and also,
in view of the equivalence of functions Lg;_1 and Los_1 as y@~1 — Y;_q,
the validity of the asymptotic representation (2.14;). Besides, (3.7) and
(3.8) yield

T L[ +o(1)] at ttw. (3.8)

y (1) _ VsiJgii (1)
yoo)  vsdsilt)
By virtue of the last relation and Lemma 1.1, the second conditions of

(2.10;) and (2.11;) are fulfilled, and asymptotic representations (2.12;) and
(2.13;) hold.

Sufficiency. Let the conditions (2.8;)—(2.11;) be satisfied, and the alge-
braic equation (2.7) have no roots with zero real part. Let us show that

in this case the equation (1.1) has solutions admitting asymptotic relations
(2.12;)—(2.14;) as t 1 w.

[1+0(1)] at ¢t T w. (3.9;)
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Towards this end, we consider first the relation

s

Y |vsi s
|1% = |75iCsi| 75 %an‘(t)‘[l + vnl, (3.10)
Lgsi1(Y) s

where Log; : Ay, — |0, +oo[ are continuously differentiated slowly varying as
Y — Y,_, functions, satisfying the conditions (2.3) (for k = sand j =i—1)
and existing due to the property Ms of slowly varying functions.

Having chosen an arbitrary number d €]0, |2=][, let us show that for

s

some to € Ja,w] the relation (3.10) defined uniquely, on the set [to, w[ xRy,
where Ri = {v € R: [v] < 1}, a continuously differentiated implicit
function Y = Y (¢, v,,) of the type

Y (t,vn) = vi|Jsi(t)] 55 T2, (3.11)

where z is the function such that
|2(t,vn)| < d for (t,vn) € [to,w[ xRy and ltiTrBz(t,vn) =0
uniformly with respect to v, € R%. (3.12)
Assuming in (3.10)

Y = v | Ja(t)| 55 (3.13)
and then taking the logarithm of the obtained relation, after elementary
manipulations, we find that

z = a(t) +b(t,vn) + Z(t, 2), (3.14)
where
CIn |22 | + L n |y Cl ; In[l1
a(t):h' |’y“| s | | ) b(tvvn):h'm’
Vs In |J5” (t)| vs In |J8”(t)|
1 InLosi—1(vi—1|Jsii(t) g )
Z(t,z) = — -
ha)= In [y ()

Here, by virtue of the second condition of (2.10;), by the choice of the limit
of integration in Jy; and by the property (3.3) of slowly varying functions,

Yis

Vi1 1t1TIUIJ1 | Jsii(8)| s T2 = Yiy
uniformly with respect to z € [—d, d], %IB a(t) =0, (3.15)
ltlTIS b(t,vn) =0 uniformly with respect to v, € Ry, 16)
ltITIB Z(t,z) =0 uniformly with respect to z € [—d,d]. ’
Since
0Z(t,z) 1 wvi-a|Jui(t) L i | T (D] 5 )

Tsi
0z Vs Losi—1(vi—1|Jsii(8)| 7= %)
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by virtue of (2.3) and the first of the above-stated conditions, we likewise

have o7
t
lim 7( %)

= 0 uniformly with respect to z € [—d, d].
tTw 0z

According to these conditions, there is a number ¢; € [a,w[ such that
Ve[ Jai@)] 5T € Ay, at (¢,2) € [t1,w[ xRy,
where Rg = {z € R: |z| < d}, (3.17)
|la(t) + b(t,v1,v2) + Z(t,z)‘ <d at (t,vn,z) € [t1,w] xR1 x Ry

and
1
|Z(t,21) — Z(t, 22)| < B |z1 — 22| at t € [t1,w] and 21,22 € Ry, (3.18)

Having chosen in this way the number t;, we denote by B the Banach
space of continuous and bounded on set Q = [tq, w] xRy functions z : @ — R
with the norm

Izl = sup{|z(t,vn)| 2 (tyu,) € Q}
We distinguish from it the subspace By of those functions from B, for
which ||z|| < d, and consider on By, choosing a fortiori an arbitrary number
v € (0,1), the operator

®(2)(t, vn) = 2(t,vn) — v]2(t,vy) — alt) — b(t,vn) — Z(t, 2(t,v,)]. (3.19)
By virtue of (3.17) and (3.18), for any z € By and z1, 22 € By, we have
|P(2)(t, vn)| < (L —v)|z(t,vn)| + vd < d and (t,v,) € Q

and

[©(21) (¢, 0n) = D(22) (¢, vn)| <
< (I =v)|z1(t,vn) — za(t,vn)| + V| Z(t, 21 (L, vp)) — Z (¢, 22(t, vp,)| <

1%
< (T =v)|z1(t, vn) — 22(t, vn)| + §|Zl (t,vn) — z2(t,vn)] <
< (1 _ g) 21 — 2|l at (t,v,) € .

This implies that ®(Bg) C B and [|®(21) — ®(22)|| < (1 — 5)[|21 — 22]|.

It means that the operator ® maps the space By into itself and is a
contractor operator on it. Then, by the contraction mapping principle,
there is a unique function z € By such that z = ®(z). By virtue of (3.19),
this continuous on set €2 function is a unique solution of the equation (3.14)
satisfying the condition ||z|| < d. From (3.14), with regard for (3.15), (3.16),
it follows that the given solution tends to zero as t 1 w uniformly with
respect to v, € R 1 Continuous differentiability of this solution on the set
[to,w[ xRy, where to is some number from [t;,w], follows directly from the
well-known local theorem on the existence of an implicit function defined by
the relation (3.14). In virtue of replacement (3.13), the obtained function z
corresponds to a continuously differentiated on set [to, w[ xRy function Y of
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type (3.11), where z possesses the properties (3.12) and which is a solution
of the equation (3.10) and satisfies the conditions

Y(t,vn) € Ay,_, for (t,vn) € [to,w[ xRy,

ltiTm Y (t,v,) = Y;—1 uniformly with respect to v, € R%.
w

(3.20)

Now, applying to differential equation (1.1) the transformation

V900 = O O+ ()] (=i =)

0= 7 s SO )

G=1i....,n—1),
y U () = Y (t,0a(7)), 7(t) = Bln|m,(t)],
where [ is defined in (2.6;), and bearing in mind that the function
y=(t) = Y(t, vn (7)) for t € [to,w] and v, (1) € R satisfies equation
=1t 1| Ys
Ly () — |’75iCSi|’YSi 3
Losi_1(yt=1(1))

with the use of sign conditions (2.8;), (2.9;), we get a system of differential
equations of the form

v = B[ = )egr =) = ZE @A+ o)L w)] (=100 2),

S

Vs
Vsi

Jmuﬂu+v4ﬂL

vy = B[ =i = P M)+ )14,

S

V] 5[(]’ —)(14v)—G+1-9)1+vj41) — Wi hao(T)(1 +v;)+

S

+1hmﬂu+wx%—7m—%wﬂ G=iron—2),

Vs
i—2 n—1
. [T 11 +vj40]7 TT [1 4 0507
, n—i j=0 j=i
V1 = ho(T G(T,v1,...,0,)+
n—1 5[ Vi 2( ) ‘1+Un i ( 1 n)

+(n—i—1)(14vp_1)— i ho(T)(1 4+ vp—1)+

S

1
+ — hi (7)) (14 vn—1) (Vs — Vsi — Vsii)

S

)

U;L - 5h1(7—) |:(1 T ’Un)(]_ + vl)i(l + vn)iis H(T7 'Un)(]- + Un)(l + ’Ui) )
in which
ha(r) = ha(r () = "D

Jsii(t)

T (£) 5 (1)

ha(r) = ha(r(t)) = "2
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H LSJ( (t Uj7vj+17vn))
= Leia(Y(t,0n))  s3i- %

X
Losi,1(Y(t7’Un)) n—1 .
I Lo (vlma (=771
J#L 1
m n—1 .
> awp(®eri-1(Y (tva)) TT ori (Yt 05,0501, 00)
B 501
x 7
asps (1) psi—1 (Y (¢, 0n)) H @5 (YUI(t, 05,0511, vn))
J#t 1
Y(tvvﬂ)L() -_1(Y(t, Un))
H(r(t),v,) = 5 ,
(), 0n) Losi—1(Y (¢, vn))
Y[j] (t,Uj,Uj+1,Un) =
ﬂ.i—j—l() v .
Zo " Y (¢, 0,)(1 + v | =0,i—2,
_ (27]71) (7v )( +U]+1) when j ?
B (j —)! Tsi J5(t) . —
. SIS Y (t,v,)(1 +v;) when j=14,n— 1.
RL(0) e dant) | o) !
Here, the function 7(t) = 81n|m,(t)| possesses the properties
7'(t) >0 at t € [to,w], %iTmT(t) = +o00
w
and that is why, according to conditions (2.11;),
i ha(r) =l (r(6) =0,
lim h =limh t) = ; (3:22)
im ha(7) = lim ho(7(t) = —7ai.

By virtue of (3.20) and (2.3) (for k¥ = s and j = ¢ — 1) the function H
tends to zero as 7 — +oo uniformly with respect to v, € R 1 and first
fraction in the representation of the function G tends to unity as 7 — +o0
uniformly with respect to v,, € R 1

Let us show that the second and third fractions in the representation of
function G likewise tends to unity as 7 — 4oo uniformly with respect to
(V1,-..,0,) € ]Rg.

By virtue of (2.11;) and using the 'Hospital’s rule, we have

.. /
im In |Jsu(t)| _ hm ( )Jsu( ) — 0’
thw 1n|7rw( ) e Je(t)

Jais t)|| Ww(t)‘];z(t) B 7Tw( )Jéu( )

su(t

1rn im =—1.
tTw 1n|7rw( )l tT“’ ’Ysi']si(t) Jsu(t)
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Taking into account the type of functions Y and YU (j =0,n — 1, j #i—1),
we find

In|Y(t,v, s I | S (¢
1mM = lim [l + z(t,v,) | lim ] (0] =0
ttw  1n |7, ()] thw Lygs ttw In|my, (t)]

uniformly with respect to v, € R 1

lIl|Y[j] (t,vj,vj+1,vn)|
tw In |7, (t)] B

[1+v;41]
In|Y In G==
P PPt 1 G| B Nt o o S

e In|mu(t)] | the In|m(t)]

uniformly with respect to  (vj41,vn) € R% for j=0,i—2
2

and
im n YUt v, 041, vn)| :Z-_Hhmw
e I 7o (t)] o T o (0)]
'7.2711:(’5)| In G=D!ysi(A4o;)]
4 lim — =0 4y s | =i—j—1

ttw In|m,(t)]  ttw In |7, (¢)]

uniformly with respect to (vj,v,) € R3 for j=14,n — L.
2

In view of these marginal ratios and using inequalities (2.6;) we find, repeat-
ing the reasoning in proving the necessity, that for any k € {1,...,m}\ {s}

n—1 .
Pre()pri—1(Y(t,vn)) HO e (YU (t, 05,0541, 0n0))

j=

lim e =0
ttw n—1 .
Ps(D)psi1 (Yt vn)) T 0o (YUI(E 05,0541, 0n))
i
uniformly with respect to (v1,...,v,) € Rg.

Owing to these conditions, the last fraction in the representation of function
G tends to unity as 7 — 400 uniformly with respect to (v1,...,v,) € R%.

Moreover, taking into account marginal ratios stated above, we obt;in
the following representations:

i In YU (0,041,000
Y[J](t,vj,vj-}-hvn) - l/jen‘ (tv5,0541,0n)]

= pjelltritos o)l lmaOI0 ag 5 e {0, n — 13\ {i — 1},
where

ltiTm 7i(t,v5,vj41,v,) = 0 uniformly with respect to (vj,vji1,v,) € RY
w 2

forall j€{0,...,n—1}\{i —1}.

Since the functions Ly; (j = 1,n—1, j # i — 1) satisfy the condition Sp,
by Remark 2.3, it follows that
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n—1 i
[[0 sz (Y[J] (ta Vg, Vj+1, vn))

. -1 .
lim =1
ttw n—1 L
I Lm0
ji1
uniformly with respect to (v1,...,v,) € RY.
2

Therefore, the second fraction in the representation of function G tends to
unity as 7 — +oo uniformly with respect to (vy,...,v,) € R%.

Due to above stated, the obtained system of differential eqiations can be
written in form

’U; = ﬂ{fi(T,vh .. .,’Un) + ijkvk} (k =1,n-— 2)7
k=1
n
/!
vn_lzﬁ{fnﬂ(r,vl,...,vn)—l—an_lkvk—i—Vn_l(vl,...,vn)}, (3.23,)
k=1

vy, = Bhy(7) {fn(T, ViyennyUn) + ankvk + Vo (v, .. ,’Un)},
k=1

where the functions f; (i = 1,n) are continuous on a set |1, +oo[ xR%} for
2

some 11 > Bln|m,(tg)| and are such that

lim fi(Tﬂvlv"'avn) =0 (l :m)

oo
uniformly with respect to (v1,...,v,) € ]Rg, (3.24)
pjj =J =% Pjjy1=1-7]
jp=0at ke{l..op\{j,j+1} (G=Ti-2)
Pi—ti-1=—-1, pi1x=0at ke{l,...,n}\{i -1},
pjj=J—1+1Ll, pr=i-—j—1,
pie=0at ke{l,....n}\{j,j+1} (j=1in-2),
pno1k = —(n—i)ogk—1 (k=1,i—-1),
Pk =—(n—i)osk (k=1,1-2), pp1n1=n—1)(1—-0s 1),
Dn-1n = (N —)Ysi, Pni=1 D=0 at ke {l,...,n}\{i},

Va(vi, ..oy 0n) = 0iUn,

i—2 n—1
[T 11+ w7 T [1+v;]7=
) i=0 -
Vn_l(vl,...,vn):(zfn)J = +

|1 + fUn|'Ysi
i—1 n—1

+ (’I’L - Z) [1 + Z Osk—1Vk + Z OskVk — Vsivn} .

k=1 k=1
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Since conditions (3.24) are satisfied and

lim a‘/j(’l)l,...,’l)n)
|v1 ]+ +|vn =0 ovy,

=0 (j=n—-1,n; k=1n),

this system belongs to the class of systems of differential equations, for which
the criteria for the existence of vanishing at infinity solutions were obtained
in [24]. Let us show that for this system the conditions of Theorem 2.6 are
fulfilled (based on this paper).

First of all, taking into account the conditions (3.22) and the type of
integral Jg;; (), we notice that the function h; possesses the properties

lim ha(7) =0, /hl(r) dTZﬂ/ J:Z(t) dt =
t1

:ﬁh’l‘Js“(t)“:l = +00 (7’1 :ﬁln‘ﬂw(t1)|)7
k() L ()
1 i
oo T (1) the T/ (8)h (7 (1))
Mo (D) Jgii (1) | 1 mu(t) S5 (1) mo(t) S5 () mw(t) i (H) V2] _
+ ( Jsii (1) ) =0
Next, consider the matrices P, = (pj;g);-‘,kzl and P,_1 = (pjk)?’;il, for
which we have

= [lim
/6 ttw an (t) Vsi Jsi (t) an (t)

det P, 1 = (=1)" (i — )!(n —i)lye, det P, = (=1)"(i — 1)!(n — i)y,

det[nl pEnl :_ ZlHk‘FP[H _p)_
m=1
n—1
—(n—i)'z ]_Z'H —(n—1)log|,
Jj=t1+1

where E,,_1 is the unit matrix of dimension (n — 1) x (n — 1).

Since algebraic equation (2.7), according to the conditions of Theorem,
has no roots with zero real part, the characteristic equation of the matrix
P,,_1 has likewise no such roots, and the given characteristic equation has
i — 1 roots (if i > 1) of the type pp = —k (k=1,i—1).

Thus, for the system (3.23;), all the conditions of Theorem 2.6 of [24]
are satisfied. According to this theorem, the system (3.23;) has at least one
solution (v;)j_; : [12, +oo[ = R™ (12 > 71) tending to zero as 7 — +ooc.

Moreover, if { is a number of roots of the equation (2.7) with negative
real part, and r is a number of roots with positive real part, then according
to the same Theorem, in case § = 1, this system has 7 + 1 - parametric
family of such solutions if the inequality v;v;_17s7s; > 0 is fulfilled, and
has i — 1 4 [- parametric family if the inequality v;v;_17vs7s; < 0 is fulfilled,
whereas, in case § = —1, there is r + 1 - parameter family of such solutions
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if there is the inequality v;1;_17s7s; > 0 and 7 - parametric family if there
is the inequality v;v;_17s7si < 0.

To every such solution of the system (3.23;) there corresponds, due to the
replacements (3.21;) and the first condition of (2.3), the solution y : [t2, w[—
R (t2 € [a,w]) of the equation (1.1) admitting as ¢t 1 w asymptotic represen-
tations (2.12;)—(2.14;). Using these representations and conditions (2.6;),
(2.8;)(2.11;), it can be easily seen that it is a P, (Yo, ..., Y, 1, 2=1)-s0-

-1, 75

lution. O

Proof of Theorem 2.2. Let the equation (1.1) have P, (Yp,...,Y,_1, ";:1)—
solution y : [tg,w[— Ay,. Then, according to Theorem 2.1, the conditions
(2.8;)—(2.11;) are satisfied and for this solution the asymptotic representa-
tions (2.12;)—(2.14;) hold as ¢ T w. Furthermore, from the proof of necessity
of that theorem it is clear that the condition (3.9;) is satisfied. Since the

functions L, satisfy the condition Sy, by virtue of (3.9;) and Remark 2.2,

Lei—1(y"™(t)) = Ly, (vie1|Jsii(t)
Therefore it follows from (2.14;) that

Jsi

s )[1 +0o(1)] at ¢t 1 w.

P =

Vsi s
= [75iCsil Lsi—1 (vi-1]Jsii ()| 7%) ;L Jsii(t)

st

%i[l +o(1)] at ¢ttw,

which results in the presentation (2.15;). O

4. EXAMPLE OF EQUATION WITH REGULARLY VARYING AS t T w
COEFFICIENTS

Suppose that in the differential equation (1.1), the continuous functions
pi : [a,w[—]0,+0o[ (k = 1,m) are regularly varying, as ¢t T w, of orders g,
(k =1,m), and, moreover, the conditions of Theorem 2.1 asi € {1,...,n—
2} are satisfied. In this case

. Inpp(t)
D @]~ % (41)

and the conditions (2.6;) take the form

n—1

Blok—0s) <B Y (055 —0ony)(i—j—1)
P

atall ke {1,...,m}\ {s}. (4.2;)

Since as t T w the functions Lg; (vj|m,(£)[7 1) (j € {0,...,n—1}\{i—1})
are slowly varying, and the function p, is regularly varying of order gs,
therefore the function Jg; is regularly varying of order 1+ o5 + ps;, and the
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function |Jg;(¢)| is regularly varying of order 1 + %(1 + 05 + psi) as t T w.
This implies that

(b))

lim —>222 =1+ 0, + fisi,

tTw Jsz(t) @ H
()T (t) 1
lim —2 7St T (1 4 g ).
ttw  Jgii(t) ’Ysi( 0s F tsi)

Therefore the conditions (2.11;) will be of the following form:
1+ 0s + Vsi + Hsi = 0. (431)

Taking into account this condition, the function Jg;(t) should be slowly
varying as t T w. In order to get asymptotic representation for this integral
we have to know the type of a slowly varying component of the integrand
equation.

Suppose that the functions ps and ¢,; (j = 0,n — 1) are of the form

ps(t) = [m(0)]% | [ I [ (8)]]
, A N . (4.4)
s (D) =y [ [y D™ (j = 0,n =T).
In this case, L;(y")) = ’1n |39 Aed (j = 0,n— 1) and hence all of them

satisfy the conditions of Sy. Additionally, we get as t T w the following
asymptotic relations

n—1

B n—1 rs+ Zo Asj
. . . A I
Jsi(t) ~ —— H li —j — 1% |m, ()] I |my (8)]] %7, (4.5:)
Vsi J=0
jFi—1
n—1 \
v 11 Ji=g 1P o
J;TEI 1+'Ysi (Ts“l’vj;[)l)\s])
1 n—1 |ln |7Tw(t)‘| . )
I’Ysi Vet (Ts+z )\sj+’7$i)
1;731
n—1
if rs 4+ )\sj 7é —Vsi»
Jsis (t) ~ ; (461)

J#i—1
n—1
p .
1 H ‘.7 —i—1

[Vsil =i 5o
J#i-1

Asiln | In \ﬂ'w(t)||,

n—1
if ry+ Z )\sj = —Vsi,
=0

jFAI—1
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n—1
st Z /\3j+7(si
3=0 n—1
J#i-1 )
’ lf Ts‘i’ )\5'7&_781'5
J4ii(t) N Vil () In |7y, (2)] ; j -
Jsii(t) jAi—1 . T
1
if 7 Ao = —~er.
O] T 2 A
jFAi—1

From the above relations it, in particular, follows that the inequalities
(2.8;), (2.9;) and the conditions (2.10;) take the form

vivi—1(i— j)m,(t) >0 atall je{l,...,n—1}\{i},
via(—1)" T (E) > 0,

w

(4.8;)

n—1
1
v > 0/(<0), i 1+ (7’3 + As]-) >0(<0), (4.9
5 j=0
JHi—1

z/j,lltiTm|7rw(t)|i_j =Y;_1 at je€{l,...,n}\{i}, (4.10;)

n—1
ViaYior =00 (=0), i 7 (re+ 0 A7) 20(<0). (411
v
By virtue of above-said, from Theorem 2.2 follows the following state-
ment.

Corollary 4.1. Let in the equation (1.1) n > 2, the functions p; (k =
1,m) be regularly varying of orders o att tw, i € {1,...,n —2} and for
some s € {1,...,m}, the inequalities (4.2;) be fulfilled. Let, moreover, the
equation vsys; 7 0 be fulfilled and the representations (4.4) hold. Then for
the equation (1.1) to have P, (Yo, ..., Yn_1, ";:1 )-solutions, it is necessary,
and if algebraic equation (2.7) has no roots with zero real part, then it is
sufficient that the conditions (4.3;), (4.8;)—(4.11;) (along with (1.3)) are
satisfied. Moreover, for each such solution there exist, ast 1 w, the following
asymptotic representations:

[m "7 i1
i v
, =D AT .
9 0) = (-1t o Dl Do) 13,
(G=1...,n—1),

YD (1) = O +o01)] G=1,...,i—1), (412

. oi |Msim1—Vsi %
Yy (t) = vi1 |76 Ci e X
Vs
Yai Asi—1
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where the functions Js;;(t) and ?Eg are defined by (4.6;) and (4.7;), respec-
tively, and for such solutions in case w = +oo there exists an i+1-parametric
family if the inequality v;v;_17vsys; > 0 is fulfilled, and an i—1+I[-parameter
family if there is the inequality v;v;_17vsYsi < 0, while in case w < 400
there exists an r + l-parametric family of such solutions if the inequality
ViVi—17sVsi > 0 is fulfilled, and an r- parametric family if there is the in-
equality viv;—17svsi < 0, where | is a number of roots of the equation (2.7)
with negative real part and r is a number of its roots with positive real part.
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Abstract. We consider the stationary oscillation case of the theory of
linear thermoelasticity of materials with microtemperatures. The represen-
tation formula of a general solution of the homogeneous system of differen-
tial equations obtained in the paper is expressed by means of seven meta-
harmonic functions. This formula is very convenient and useful in many
particular problems for domains with concrete geometry. Here we demon-
strate an application of this formulas to the Dirichlet and Neumann type
boundary value problem for a ball. The uniqueness theorems are proved.
An explicit solutions in the form of absolutely and uniformly convergent
series are constructed.
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1. INTRODUCTION

Mathematical model describing the chiral properties of the linear ther-
moelasticity of materials with microtemperatures have been proposed by
Iesan [6], [8] and recently it has been extended to a more general case, when
the material points admit micropolar structure [7].

The Dirichlet, Neumann and mixed type boundary value problems corre-
sponding to this model are well investigated for general domains of arbitrary
shape, the uniqueness and existence theorems are proved, and regularity
results for solutions are established by potential and variational methods
(see [1,10,14,15] and the references therein).

The main goal of this paper is to derive general representation formulas
for the displacement vector of microtemperatures and temperature function
by means of metaharmonic functions. That is, we can represent solutions to
a very complicated coupled system of simultaneous differential equations of
thermoelasticity with the help of solutions of simpler canonical equations.

In particular, here we apply these representation formulas to construct
explicit solutions to the Dirichlet and Neumann type boundary value prob-
lems for a ball. We represent the solution in the form of Fourier—Laplace
series and show their absolute and uniform convergence along with their
derivatives of the first order if the boundary data satisfy appropriate smooth-
ness conditions. One of the methods to satisfy the boundary conditions is
given in A. Ulitko [17], F. Mors and G Feshbah [12], L. Giorgashvili [2,3], L.
Giorgashvili, D. Natroshvili [4], L. Giorgashvili, A. Jaghmaidze, K. Skhvi-
taridze [5], D. Natroshvili, L. Giorgashvili, I. Stratis [13] and other papers.

2. BASIC EQUATIONS AND AUXILIARY THEOREMS

A system of homogeneous differential equations of the stationary os-
cillation of the thermoelasticity with microtemperatures is written in the
form [7]

pAu(x) + (A + p) grad divu(z) — v grad 6(x) + po’u(x) =0, (2.1)
g Aw(x) 4+ (55 + s24) grad divw(z) — sz grad 0(x) + Tw(z) =0, (2.2)
#AB(x) + ioyTy divu(z) + 30 divw(z) + icaTpb(z) =0, (2.3)

where A is the three-dimensional Laplace operator, u = (uy,us,u3) " is the
displacement vector, w = (wy,ws,w3) " is the microtemperature vector, 6
is the temperature measured from the constant absolute temperature Ty
(To > 0), T is the transposition symbol, X, u, 7, 3, 3, j = 1,2,...,6, are
constitutive coefficients, satisfying the conditions [7]

w>0, 3X+2u>0, 56>0, 32¢4+ 305 + 366 >0, 36+ 35 >0,
g — 5 > 0, (%1 +T0%3)2<4T0%%2, v>0, a>0,

T = —35 4140, § > 0, p > 0 is the mass density of the elastic material. In
the sequel we assume that o = o1 + 109, 02 > 0, 01 € R.
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Let U = (u,w,0)". The stress vector, which we denote by the symbol
P(9,n)U, has the form

.
P(9,n)U = (P<1>(a,n)U', P9, n)U", P(3)(8,n)U”) ,

where U’ = (u,0)", U" = (w,0) ", n = (ny,n9,n3) " is the unit vector,

P9, n)U" = TN (d,n)u — ynb,
PP (9, n)U" =T (d,n)w — s3nb,

o0
(3) n__ Yv .
PY (9, n)U —%an + (51 + 353) (0 - w), (2.4)

T (0, n)u = QM% + Andivu + p[n x rot u],

TP (D, n)w = (36 + %5)(2—: + syndivw + s5[n X rot w].

Definition. The vector U = (u,w,0) T is said to be regular in a domain
QCR3ifU € C*HQ) N CHQ).

Theorem 2.1. A wector U = (u,w,0)" is a regular solution of system
(2.1)~(2.3) in a domain Q C R3, if and only if it is represented in the form

3
u(z) = Z grad ®@;(z) + rotrot(z®4(x)) + rot(z®s(x)),
3
w(z) = Z a; grad @;(z) + rot rot(x®g(z)) + rot(zP7(z)), (2.5)
3
0(z) == Biki®;(x),
j=1

where

(A+E)®;(x) =0, j=1,2,3, (A+k3)P;(z)=0, j=4,5,
(A+k2)Pj(x) =0, j=6,T,

k3 = po?/u, k¥ = 7/ s, —ka, j=1,2,3, are the roots of the equation

Bt a2 +asz+a3=0 (2.6)
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with

1
a, = AL {l [i0To (a(A+20)+~2) + 5¢p0 > |+ (A+2p) (iaaTO%T—l—%l%g)},

1

as {p02 (se15e3+io0aTol+ 1) +7 [iUTO'yQ +iocaTo(A+ 2u)] } ,

T A
; (2.7)
a3:A7aT0po'37', Ay =AM +2u)l >0, 1=+ 35+ 56 >0,
1
s3lpo? — (A + 2u)k?] toyTy + sy . 1923
J (r —1k2) C T Sa Zigaty T T

Proof. Assume that a vector U = (u,w,f) " is a solution of system (2.1)-
(2.3). From equations (2.1)—(2.2) we have

u() = (@) + (@), w(z) = (@) + (@),
where

o' (z) = # grad [ — (A + 2p) divu(z) + v6(z)],

] (2.8)
w'(z) = - grad [ — ldivw(z) + s30(z)];
u'(x) = LQ rot rot u(x),
o (2.9)
w'(x) = s rot rot w(x).

If we apply the operator div to both parts of equalities (2.1) and (2.2),
and take into account equalities (2.3), then we obtain

(A +20)A + po?] divu(z) — yAl(z)
(IA + 7) divw(z) — »3A6(x)
ioyTy div u(x) + s divw(x) + (3cA + icaTp)(x)

)

0
0,
0

From these equations we get
(A + E2) (A + E2)(A + k2)(divu, divw, 0) T =0, (2.10)
where —k?-, j =1,2,3, are the roots of equation (2.6).
In view of equalities (2.8) and (2.10), we obtain
(A+EDA+ED(A+E) (W, w')T =0, rotu' =0, rotw =0. (2.11)
We represent the vectors u/(z), w’(z) and the function 6(z) as:
3

3 3
u(z) = u(x), w'(z)=> w(z), 0@)=>Y 0D(@). (212
j=1 j=1

j=1
Naturally,

3 2
) . . A+Ek
@9, w?, 60T = [ T] 5|0 o/ 97, j=123 (213

j#g=1"9 7
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From (2.10)—(2.11) and (2.13) we derive
(A+ k?)u(j)(a:) =0, rotu(z) =0, j=1,2,3,
(A+EHwP(z) =0, rotw(z) =0, j=1,2,3, (2.14)
(A+ k0D (2) =0, j=1,2,3.

Since divu = divu/, divw = divw’, rot v’ = 0, rot w’ = 0, with the help
of (2.14) and the identity

graddivu’ = Au’ 4+ rotrotuw’ = Av’, graddivw’ = Aw’,
from (2.8) and (2.3) we get

[po® — (A + 2u)kﬂu(j)($) —ygrad 09 (z) =0, (2.15)
(1 — 1k w (z) — s grad 09 (z) =0,  (2.16)
ioyTy divu'? (z) + 3 divw? (z) + (icaTp — %kf)G(j)(aj) =0, (2.17)
j=1,2,3.
From (2.15) and (2.16) we have
w9 (z) = aju?(z), j=1,2,3, (2.18)
where X )
If we substitute the expressions of w()(z) from (2.18) into (2.17), we get
00 (z) = B, divuD(z), j=1,2,3, (2.19)
where
B; = ioyTo + a0y j=1,2,3.

%ka. —ioaTy’

Substitute the expressions of w) (z) and V) (z), j = 1,2, 3, given by (2.18)~
(2.19) into (2.12) to obtain

3

3
W(@) =Y @), wla) =Y au @)

, (2.20)
0(x) = Zﬁj divu(z), rotu(z) =0, j=1,2,3.
j=1

On the other hand, since rotu = rotu”, rotw = rotw”, divu” = 0,

divw” = 0 and rotrot u” = —Au”, rotrot w” = —Aw”, from (2.9) we get
A+ EHu"(z) =0, divu’(z) =0,
( 24) H( ) N( ) (2.21)
(A+EHw"(x) =0, divw”(z) =0,

where k2 = po?/p, k¥ = 7/ .
The following lemmas are valid [3,12].
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Lemma 2.2. If a vector v = (vi,va,v3) " in the domain Q C R® satisfies
the following system of differential equations

(A+k*)v(x) =0, rotu(x) =0,
then v can be represented as
v(x) = grad ®(x),

where ®(z) is a solution of the Helmholtz equation (A + k?)®(z) = 0; here
k is an arbitrary constant.

Lemma 2.3. If a vector v = (vi,va,v3) " in the domain Q C R® satisfies
the following system of differential equations

(A+E*)v(z) =0, dive(z) =0,
then v can be represented as
v(x) = rotrot(xWq(z)) + rot(xWq(x)),

where ¥;(x), j=1,2, are solutions of the Helmholtz equation (A+k*)¥;(x) =
0, 7 =1,2; here k is an arbitrary constant.

Due to Lemma 2.2 and Lemma 2.3, a solution of systems (2.14) and
(2.21) can be represented as

u'(z) = grad ®;(z), j=1,2,3,
u”(z) = rotrot(z®4(z)) + rot(zP5(z)), (2.22)
w”(z) = rot rot (2P (x)) + rot(z®7(x)),
where
(A+E)®j(x) =0, j=1,2,3, (A+Ek)®;(x) =0, j=4,5,
(A+k3)®;(x) =0, j=6,T.
Substitution of the expressions (2.22) into (2.20) proves the first part
of the theorem. As to the second part, it is proved by a straightforward

verification that the vector U = (u,w,f) " represented in the form (2.5) is
a solution of system (2.1)—(2.3). O

Remark 2.4. Hereinafter, we will assume that k; # k,, j # p, Sk; > 0,
j=1,2,3,4,5.

Let QF = B(R) C R? be a ball with center at the origin, of radius R,
and X p = 0Q. We denote Q™ := R?\ QF.

Theorem 2.5. A vector U = (u,w,0)" represented by (2.5) will be uniquely
defined in the area Ut by the functions ®;(x), j = 1,2,...,7, if the following
conditions are fulfilled:

/tbj(x) d¥,. =0, j=4,5,6,7, r=|z| < R. (2.23)

5,
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Proof. From formulas (2.5) we get

3
Z ) = —divuy, Za] z) = —divw,

3

Zﬁjk?q’j(fﬂ) = —0(v),

2% 20 |
(87‘ + = 8 +k3+j)®3+2]() .(61jrotu+§2jrotw)7 ]:172’
2% 29
(3 2 T3 r or +k3+]>@2+2j( )=
1
= ——— - (01, 10t ot U + d9; TOt TOt W), j = 1,2,
3+j

015 is the Kronecker function.
If u(z) =0, w(z) =0, 0(z) =0, z € QF, we have ®;(x) =0, j =1,2,3,
€N,

82

2
7’(8 +26+k4) Oi(x) =0, j=4,5, ze€Qt,
ror (2.24)
2 9 '

02
2 _ s +
T<82+ o +k5) i(x)=0, j=6,7, z€Q".

Thus it remains to show that ®;(z) =0, j =4,5,6,7. Applying the well
known representation of metaharmonic functions in the form of series, we
can write

k
@) =3 gllr) AV, (@, 0), j=4,5,6,7, z QT
k=0m=—k

where A(] L are constants, Y(m) (9, ) is a spherical function

2 1 —m)! .
Yk(m)(ﬂ,w)=\/ il (k—m) P,gm)(cosﬁ)e"’w7

dr (k+m)!

P,gm) (cos) is the associated Legendre polinomial of the first kind of degree
k and order m,

k47 .] :4557

far) = r—1/2 far), k=
gr(kir) =172 Teya 2 (ki) 1 {ks7 =67,

Jit1/2(kir) are the Bessel functions.
With the help of the equality

k(k + 1)

d? 2d
( + kK )gk(kﬂ") Tgk(kl'r'),

a2 v ar
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from (2.24) we get

Z Z 1)gi (ki) ALY, (0, 0) =0, j =4,5,6,7,
k=0m=—k

whence the equations A(j ) =0 follow for k >1and j =4,5,6,7. Therefore

Q;(z) = 2\Fgo(klr)AOO, j=4,5,6,T.
Further, from (2.23) we easily conclude AE)%) =0 for j = 4,5,6,7, which
completes the proof. (I

3. ORTHONORMAL SYSTEM OF SPHERICAL VECTORS

Let 7, 9, ¢ (0 <7 < 400, 0 < ¥ <7, 0 < ¢ < 27m) be the spherical
coordinates of x € R3. Denote by ¥; the unit sphere.

In the space L2(3) consider the following complete orthonormal vectors
system (see [2,12,17])

ka(ﬂa QD) = e'r'Yk(M) (197 gO), k>0,

1 0 e 0
Yor (U = — — £ Y(m) 9, k>1
k(0,) R+ 1) (eﬂaﬁ Y &p) W) k21, (3.1)
1 ey O 0 (m)
Z’m 9 = . a . aq Y ) ’ Z 17
k(0 9) E(k+1) (511119 dp e 819) po (0he), K

where |m| <k, e,, ey, e, are the orthonormal vectors in R?,
e, = (cos psin ¥, sin p sin ¥, cos 19)T,
ey = (cos @ cos?d, sin g cos ¥, —sin ) T,
e, = (—sing,cos g, 0)7,

2k +1 (k- m)!P(m)

(m) _
Yo W) =\—¢ (k+m) *

P,gm) (cos 1) is the adjoint Legendre function.

Let us assume that a vector-function fU) = (fl(j), fQ(j), féj))T and a
function f4 are represented as

k=0m=—k
k(k+1) [5g;ymw, @)+ v Zme@,9)] ) (32)
o k
f4(19’ 90) = Z Z O‘kakm(ﬁv 90)7 (33)

k=0m=—k
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where

T

dcp/f(j)(ﬁ,tp)~Ymk(19,g0)sin19dz9, k>0,
0

Q
3IQ
=

I
O\§

5(7')_7/ /f (0, ¢) - Vi (9, ) sind dd, k > 1,

(3.4)
(4)

1 . _
= [d (D, p) - Zmi (9, ) sind dd, k> 1,
YV k(k+1)0/ wo/f (¥, ) k(V, 0) >

27 ™
- :/dgp/ﬂl(ﬂ,@) Y@, ) singdd, k>0,
0

The symbol @ - b denotes the scalar product of two vectors, b is complex
conjugate of b.

Note that in formula (3.2) and, in the sequel, in the summands of analo-
gous series, which contain the vectors Y,,x (¢, ¢), Zmi (9, ¢), the summation
index k varies from 1 to +o0.

Let us introduce a few important lemmas [3,11].

Lemma 3.1. Let fU) e CY(%1), I > 1; then the coefficients ozmk, /Br(il)w (])
defined by (3.4) admit the following estimates

ally =0k, Bl =0k, A5 =0k,

Lemma 3.2. Let fy € CY(X1), | > 1; then the coefficients . defined by
(3.4) admit the following estimates

AUmk — O(k_l)

Lemma 3.3. The vectors X,k (9, ¢), Yk (9, ©), Zmk (9, @) defined by equal-
ities (3.1) admit the estimates:

12k +1
‘ka:(,ﬂ7@)’ < 4:(_— ) k207

k(k+1
s <\ T k21

k(k+1
}ka(19790)| < 2(1457—'—1)’ kZ 17

Hereinafter we make use the following equalities [6]

e Xa(0,0) = Y™ (9,0), e - Your(9,0) = 0,
er Zmi(V,¢) =0,
er X Xk (9,0) =0, er X Y (9, 9) = —Znk (9, 9),
er X Zmi(0,9) = Yo (U, 9);

(3.5)
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grad [a(r)Yk(m)(ﬂ, @)} =

- d‘;gf) Xoi (0, ) + M a(r)Yomk (9, ¢),

rot [ma(T)Yk(m)(ﬂ, ©)| = VEk(k+1)a(r) Zni(9, ¢), (3.6)

rot rot [ma(r)Yk(m)(ﬁ, 9)] =
- M a(r) Xmr (9, @) + VE(k +1) (di'i + %)Q(T)Ymk(ﬁ7 ®),
div [a(r)ka(ﬁ, ‘P)} = (% + %)G(T)Yk(m)(ﬁ, ®),
div [a(r)Ymk(ﬁ, @)} = —M G(T)Yk(m)(ﬁy ®),
div [a(r)ka(ﬁ, cp)} =0,
rot [a(r)ka(ﬂ, 90)} = k(li * 1) a(T)ka(ﬂ7 50)3 (37)
rot [a(r) Yk (9, ¢)] = *(d%l“ + %)G(T)ka(ﬁa ©),
k(k+1)

rot [a(r) Zmk (¥, ¢)] = a(r) Xmk (7, @)+

+ (dif" + %)G(T)Ymk(ﬁ7 ©).

4. STATEMENT OF THE PROBLEM. THE UNIQUENESS THEOREM

Problem. Find, in the domain Q% a regular vector U = (u,w,f) " satisfying

in this domain the system of differential equations (2.1)—(2.3) and, on the
boundary 0f2, one of the following boundary conditions:

(1¢©))* (the Dirichlet problem)
{u(z)}t = 1), {w@)}t =1P), {6(x)}" = fa(2);
(I1¢°))* (the Neumann problem)
{PO@,mU ()} = fD(z), {PP@,mU"(2)}" = (),
{PP@,n)U"(2)}" = fal2),

where the vectors fU) = (fl(j), 2(j), ?Ej)), j = 1,2, and the function f; are
given on the boundary 99, n(z) is the outward normal unit vector at the
point z € 99.

(4.1)

Theorem 4.1. Problems (I')* and (TI(U))‘Ir have, in the domain QF, a
unique solution in the class of reqular functions.

Proof. The theorem will be proved if we show that the homogeneous prob-
lems (fU) =0, j = 1,2, f4 = 0) have only the trivial solution.
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Let the vector U = (u,w, )" be a solution of the homogeneous problem
either (I(9)* or (II”))*. We multiply both sides of (2.1) by the vector
i Ty W, (2.2) by w and the complex-conjugate of (2.3) by the function 6.
The integration of these expressions over the domain Q7 and summation
give

/ [ Tya(z) - PO@, U (2)+

o0
+(2) - PA(0,m)U"(2) + 0(2) - PO (@,mT" (2)] " ds—

- / (7T B (u,7) — ipololu(@)? + B (w,@) - rlw(@)*+
O+
+3¢| grad 0(x) >+ (3e1 +5¢3)w(z) - grad 9(w)+iEaTo|9(x)|2} dz=0, (4.2)

where [9,15]
3\ + u 8u;~C ou,;
ED 2, P ‘ ouy
(u,7) = vul? + £ Z o, axk
Z ‘8u;€ Ou; |2
k=1 aJTk 8xj
E(2)(w,@) 3y + x5 + 5 |di |2 Mg — %5|r0tw\2—|—
3 2
3
%5—1—%6 ‘8wk %‘2 5+ 2 ‘awk_%r
Z (3'13] al’k + 2:1 (9I]€ 317]‘ '

Since U = (u,w,0)" is a solution of the homogeneous problem, equality
(4.2) implies
/ [ B0 (u,7) — ipoloPlu(e) P + E) (w,) — 7luw(2) ]+
QO+
+ 5| grad 0(2)|? + (301 + s3)W(x) - grad O(z) + izaTy|0(z)|*| dz = 0.
If in this equality we separate the real part, we will get

/ {U2TOE(”(U’H) + EP (w0, ) + poa|o]*|u(@)[* + o20w(@) P+

o+
d3erey — (361 + 323)?

Jw(x)*+

1
T | (31 + se3)w(x) + 25c grad G(w)ﬂ dz = 0.

+ G,T002|9(£E)|2 —+

Hence it follows that u(z) =0, w(z) =0, 8(z) =0, z € Q7. O
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5. SOLUTION OF THE BOUNDARY VALUE PROBLEMS

We seek a solution of the Dirichlet and Neumann Problems by formulas
(2.5), where

o) k
®i(x) = > gk (9, 0)AY), j=1,2,3,
k=0m=—%k
e’} k
i) =D > ge(kar)V\ " (9, 0) A%, i =14,5, (5.1)
k=0m=—k
o k
0i(x) = > glksn)Y™ (9. 0)AY), j=6.7.

Here A;ﬁg, j = 1,7, are the sought constants, Yk(m) (9, ) is a spherical

function and
i) IR jk+%(kj7")
k(KiT) =\ — 775>
! r jk+%(ij)

Tr+1(x) is a Bessel function.

Substituting the expressions of ®;(x) j = 4,5,6,7, from (5.1), into (2.23),
we get A(()%) =0, 7 = 4,5,6,7. If we substitute the expressions of the
functions ®;(z) j = 1,7, from (2.5) and take into account equalities (3.6),
we obtain

Z Z { ) Xk (9, )+

k=0m=—k

k(i + 1) [v;,u Vo (8, 9) + w0l (1) Zni (9, 9)] }-

-3 Z (a0 Xk (9, 9)+ (52)

k=0m=—k

KOs 1) [020) Yo (90, 0) + w2 (1) Zos (9, 0)]

0o k
D=3 > unk()Y" 0. 0).

k=0m=—k
where
u£n3<<r) = ; o gk(kjr)Af’igc L gr(kar )Agn;ca k>0,
) =1 ) d 1 (
1 — - ) J el - >
vmk(r) ; r gk(kJT)Amk + (d’f' + T>gk(k4T)Amk7 k = 17
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u® (r Zajd gk (k) A9 + Lk:’ ) gu(ksr)A©,, k>0,

d 1
vffbk Zaj gr(k; T)A?(ngc + (d + ;)gk(k‘w)AfSL, k>1,
Jj=1
w?) (r) = (kg)AfZ?c, k>1,
Uk (T Zﬂjkjgk k; r)Agngc, k> 0.

j=1

If we substitute the expressions of the vectors u(z), w(z) and the function
f(x) into (2.4) and use equalities (3.5) and (3.7), we get

0o k

PY(d Z Z { ) Xk (9, 0) + VE(k+1)x

k=0m=—k

x [b“’( VYo (0, 0) + ek (1) Zini (9,9)| }.

P&, n)U" (2 Z Z { @) () Xk (9,0) + VEE+1)x  (5.3)

k=0m=—k
% [BEL ) Yok (9, 0) + €24 r) Zunk (0, 0)] },

o0 k

P(g) 6 n UN Z Z a?rLk 119 QO)

k=0m=—k

where

3
ab(r Z[2ud2 (485 = Nk | gw (k) A+

j=

—

D (L )i 2,
3
b (r Z % (— - *)gk(k r)Ag+

+u{ d(jr—f— )+k4}g;€(k47“) 5:26, kE>1,

d 1
ek r) = (2 = ~)arlkar)AT), k=1,
2

r
3
L Z [ 5 + 36) Qv s + (5385 — ra05)k; }gk(k’ r)A m;c—i_

(%5 + %G)k(k + 1) d 1 (6)
42 >
+ T (dr r)gk(k5T)Amk’ k20,
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Za] 5 + 56) (di — 1)g;.c(k: T)A(J)

d
dr

d 1
(%6 P f)gk(ksr)AfnL, k>1,

+ {(%5 + 36) — (jr + 1) + %5k5}gk(k5r)A£2€, k>1,

) (r)

3
Ak (T Z a;j(se1 + s23) — 2Bk ) g (k; T)A(J)
Jj=1

gr(ksm) ALY k> 0.

Let us first consider the Neumann problem.

Assume that the vectors fU) (0, ), j = 1,2, and the function f4(1, @)
can be represented in the form (3.2) and (3.3).

Passing to the limit on both sides of (5.3) as  — z € 92 and using both
the Neumann boundary conditions (4.1) and equalities (3.2)—(3.3), for the

sought constants Aiﬁc , 7 = 1,7, we obtain the following system of linear
algebraic equations:

(1) for k = 0, m = 0 (three simultaneous equations with the three
unknowns A(()]o)’ j=1,2,3),

alg (R) = aly), aly (R)=aly), ac(R) = amp; (5.4)

(2) for k>1, —k<m<k
(a)

d
i = 7 )or(kaR)AS) =2,

d
d " 1 M _ @ )
(%6 R E)gk(ki’) Ak = Yk
(b) (five simultaneous equations with the five unknowns Agﬁc, j =
1,2,3,4,6)

apk(B) = apg, BL(R)=BL, § =12 ank(R) = ok  (5.6)
Due to Theorems 4.1 and 2.5, system (5.4)—(5.6) is uniquely solvable

with respect to the unknowns A(j ) , j = 1,7. Thus we can construct ex-
plicitly a formal solution of the Neumann problem in the form of series.
Further we have to investigate the convergence of these formal series and
their derivatives.

The asymptotic representations

glhir) ~ (1) dhlr = (L), r <R (57)

are valid for k — 400 [16].
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If x € QT (r < R), then by asymptotics (5.7), the series (5.2)—(5.3)
converge absolutely and uniformly.

If x € 09 (r = R), then by Lemmas 3.1-3.3 and asymptotics (5.7), series
(5.2)—(5.3) will be absolutely and uniformly convergent provided that the
majorized series

e} 2
> K23 (labh] + k1B + k2 + lama) (5.8)
k=kqo j=1
are convergent. Series (5.8) will be convergent if the coefficients afﬁc, ,6’7(21)6,

722, Qmk, j = 1,2, admit the following estimates

ol =0(k™®), B =0k, (5.9)
79— O(k™), i = O(k™3), j=1,2. '

According to Lemmas 3.1 and 3.2, estimates (5.9) will hold if we require
that
O (2) e C3(00), j=1,2, fi(z) e C3ON). (5.10)
Therefore if the boundary vector-functions satisfy conditions (5.10), then
the vector U = (u,w,f) " represented by equalities (5.2) will be a regular
solution of Problem (IT(7))*,
Problem (7(®))* can be treated analogously.

6. APPENDIX: PROPERTIES OF THE CHARACTERISTIC ROOTS AND

WAVE NUMBERS

Let us introduce the blockwise 7 x 7 matrix differential operator corre-
sponding to system (2.1)—(2.3)
LM 9,0) LA (0,0) LB, 0)
L(9,0) == | LB®)9,0) LW(,0) LO(9,0) )
LMd,0) L®(,0) LY, 0) .
where

LM(0,0) := [nA + po®]Is + (A + 1) Q(0),
L®(8,0) := L'®(8,0) = [Ol3x3,
LD, 0) = [e6A + 7|13 + (524 + 35)Q(I),
LO)(,0) = V", L90,0):= V', L7 0):=ioyT,V,
L®8,0) =V, L0, 0):=xV +icaly, Q9)= [0k05]3%3,
V =V(0) = [0h,02,05], 0; = 0/0z;, j = 1,2,3, I3 stands for the 3 x 3 unit

matrix.
Due to the above notation, system (2.1)—(2.3) can be rewritten in matrix
form as

L(3,0)U(z) =0, U= (uw,0)". (6.1)
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Denote by §;—¢ the Fourier transforms

Somelf] = / f(@)e™€ de = F(e),
R3

where z = ($17x27:173)7 g = (61762753)'
The Fourier transform has the following property:

L(0%f) = (=i§)*31f], (6.2)
where o = (a1, az,a3) is a multi-index, |a| = a1 + az + a3 and £* =
(a5} Qg (6 %:1
1 S27 837

Let us perform Fourier transforms of (6.1) and take into consideration
(6.2); we obtain

L(~i&,0)U(£) =0, (6.3)
where
LI (=i, 0) == (= ple]? + po®) Is — (A + w)Q(&),
L®(—i¢,0) := LO) (=€, 0) = [O]axs,
LW (=i, 0) == (= s|é]> + 7) Is — (3 + 55)Q(8),
L (—ig,0) = ing", LO(=i€,0) =ixs¢", LO(=i&,0) = ovTyE,
L(S)(—if, o) = —i &, L(g)(—if, o) = —%|§\2 + ioaTy,

Q&) = [&k &laxs-

The determinant of system (6.3) reads as
det L(—i€, o) =

= i+ 200) 566 (€[ = po?) Gl = T2 (1E1° = arlé]* + anlé]? - ag),

where a1, as, as are given by (2.7), | = s¢4 + 35 + 5.
The numbers k‘?, j = 1,5, are the roots of the equation det L(—i&, o) =0
with respect to |].

Lemma 6.1. Let us assume that o = o1 + ioo is a complex parameter,
where o1 € R and o5 > 0. Then

det L(—i&,0) #£0
for arbitrary ¢ € R3.

Proof. We prove the lemma by contradiction. Let det L(—i&,0) = 0, £ €
R3. Then the system of equations L(—if,0)X = 0 has a nontrivial so-
lution. Denote this solution by X = (XM, X@) XGNHT " where XU =
(Xl(j)7X§j),X§j))T € C?j=1,2,and X® e C. Taking into consideration
(6.3), the system L(—i&, o) = 0 can be rewritten as follows:

[(po? = ul€) s = A+ QO XD + i XD =0, (6.4)

(7= l¢") I = Gea + 55)QO) | XD + i XD =0, (6.5)
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oy To(€ - XMWY — iz (€ - XP) 4 (—3¢]? +ioaTy) X P = 0. (6.6)

Assume that [£] # 0.
Let us multiply equation (6.4) by the vector icTp X (1), equation (6.5) by

X® and the complex-conjugate of equation (6.6) by the function X ) and
add the obtained results. After simplification, we obtain

iwTy(po® — plé]?) XV —iaTo(A + w)l€ - XD P+
+(7 = 526 l6P) X PP = G+ 05)[€ - XD P
Hi(sa + 5)(E - XX 4 (= sle]? — imaTy)| X B2 = 0.,

Recall that the central dot denotes the scalar product, a - b = i a;b; for
the vectors a and b. Let us separate the real part: o~
Toors [ (plo + ) X VP + (A + g - XD+
+(020 + 356 |E) | X P2 + (e + 5255)[€ - X PP + 09aTp| X @2+
dsetg — (3014 223)°

43¢
Here we have used the following relation:

1 2
XD+ e+ 520) X =206 XD =0, (6.7)

ALPIXDP — (a1 + 320) Re [i(€ - X)X D] 456 XD =
Aoy — (50 + 23)
N 4
From equation (6.7) we obtain that XU) =0, j = 1,2,3. For £ = 0 equation
(6.7) recasts as
plo2oaTo| X V) + (56 4 026)| X P2 + 02aTp| X P2 = 0,

hence, XU) =0, j =1,2,3.
Thus, we obtain that the system L(—i&,0)X = 0 has only the trivial
solution for arbitrary ¢ € R3. This contradiction proves the lemma. (]

2 1 2
XD+ — ‘(%1 +on)X® - 2mgX<3>‘ > 0.
4

Corollary 6.2. Let 0 = 01 + io2 be a complex parameter with 01 € R and
o9 > 0. Consider the equation

det L(—i&,0) =0 (6.8)

with respect to |§|. The roots +kj, j = 1,5, of equation (6.8) are complex
with Sk; >0, j =1,5.
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1. INTRODUCTION

This paper is devoted to the study of the existence of homoclinic orbits
for the first-order time-dependent Hamiltonian system

i=JH.(t,2), (1.1)
where z = (p,q) € RY x RY. Here H has the form

H(t,z) = %B(t)z cz+ G(t, z) + h(t)z, (1.2)

where G € C(RxR2?V,R) is T-periodic in , B(t) is a continuous T-periodic
and symmetric 2N x 2N matrix function, h : R — R2" is a continuous and
bounded function and J is the standard 2N x 2N symplectic matrix

0 —In
J= (IN ! )
In recent years several authors studied homoclinic orbits for Hamiltonian
systems via the critical point theory. For the second order Hamiltonian
systems we refer the reader to [1,2,7,8,10-13] and for for the first order
to [3-6,9,14-17] (and the references therein).
Throughout this paper, we always assume the following:

Hy) G(t,z) >0, for all (¢,2) € R x R?V;

Hy) G(t,z) = o(|z])?) as |z| — 0 uniformly in ¢,

(

(H2)

(H3) G(t 2 5 400 as |z| — 400 uniformly in ¢
(Hy)

H,) There exist constants 5> 1, 1 < A <1+ 8= 821 4y >0, ap > 0 and
7€ LY(R,R") such that
2-G.(t,2) —2G(t, 2) > a1]z|® —7(t), (t,2) € R x RN (1.3)
and
|G.(t,2)| < asl2*, V(t,z) € R x R, (1.4)

(Hs) there exist constants ag > 0 and n > 0 such that

/M|ﬂ<%,</M|MQ <
20

(WWWM) £ ¢
Tgl, as <mln{2 29)\+1}

where ¢ and £ are two positive constants which will be defined in
Proposition 3.1 and in (3.13) later.
A solution z(t) of (1.1) is said to be homoclinic (to 0) if z(t) — 0 as
t — £oo. In addition, if z(t) # 0, then z(t) is called a nontrivial homoclinic
solution.

Theorem 1.1. Let (Hy) — (Hs) be satisfied. Then (1.1) possesses a non-
trivial homoclinic solution such that z(t) — 0 as t — £oo.
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This paper is motivated by the work of Rabinowitz [12] in which the
existence of nontrivial homoclinic solutions for the second order Hamiltonian
system

G+ Vy(t,q) =0
was established.

The paper is organized as follows. In Section 2, we establish a variational
structure for (1.1) with a periodic boundary value condition. Our main
result (Theorem 1.1) will be proved in Section 3.

2. VARIATIONAL STRUCTURE
Let A = —(J(d/dt+B(t)) be a self-adjoint operator acting on L?(R,R2N)
with the domain D(4) = HY(R,R2N). If E := D(|A|2), then E is a Hilbert
space with the inner product

(z,v) = (z,v)2 + (|A|%z, |A|%v) z,v € FE,

L2’
1 1
and £ = Hz(R,R*). Let By, := H2 (R, R?") for each k € N. Then Ej,
is a Hilbert space with the norm || - ||g, given by (here z € Ey)
kT L 12
Izlle, = < / (||A\fz| +\z|2) dt> . (2.1)
—kT

Furthermore, let L3S, (R, R?Y) denote a space of 2kT-periodic essentially
bounded (measurable) functions from R into R*" equipped with the norm
= esssup {|z(t)] : t € [-kT,kT]}.

As in [10], a homoclinic solution of (1.1) will be obtained as a limit, as
k — 400, of a certain sequence of functions zp € FEj. We consider a
sequence of systems of differential equations

L= J(B(t)z + GL(t, 2) + hi(t)), (2.2)

where for each k € N, hj, : R — R is a 2kT-periodic extension of the
restriction of h to the interval [—kT, kT and z, a 2kT-periodic solution of
(2.1), will be obtained via a linking theorem.

2]lLge

We define
kT p
(Au,v) = / (f (J%+B)u,v> dt, Yu,v e Ey (2.3)
—kT
and

kT kT
In(z) = % (Az, z) — / G(t, z)dt — / hi(t) - z(t) dt. (2.4)

—kT —kT

We have from (2.3) that A has a sequence of eigenvalues

---fé_m)ﬁ-“ﬁfé_mﬁfé_l)<0<§,(€1)§f,(€2)§---§§,(€m)-“
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with 5,(€m) — oo and 5(_m) — —ocoasm —» 0o. Let gpi be the eigenvector
of A corresponding to 5,(5), j=41,£2,...,&m,.... Set

Ej) = ker(A), E, = the negative eigenspace of A
and

E,j = the positive eigenspace of A.

Hence there exists an orthogonal decomposition Ej = Eg OE, @ Elj with
dim(EY) < oo
Lemma 2.1 ( [11]). Let E be a real Hilbert space with E = EM @ E®?) and
EM = (E@)L. Suppose I € C1(E,R) satisfies the (PS) condition, and

(C1) I(u) = % (Lu,u) + b(u), where Lu = LiPyu+ LyPou, L; : E® —s
EW s bounded and self-adjoint, P; is the projector of E onto E(®,
i=1,2;

(Co) V' is compact;

(Cs) there exist a subspace E C E, the sets S C E, Q C E and constants
a > w such that

(i) Sc EW and I|s > @;
(i) Q is bounded and I|pg < w;
(iii) S and 0Q are linked .
Then I possesses a critical value ¢ > a given by

c=inf sup I(g(1,u)),
inf sup £(g(1, )

where
r= {g € C([0,1] x E, E)|g satisfies (I'1) — (I‘g)},
(T1) 9(0,u) = u;
(T2) g(t,u) =u for u € 0Q;
(T'3) g(t,u) = P @y 1+ x(t,u), where O(t,u) € C([0,1] x E,R), and x
is compact.

3. PROOF OF THE MAIN RESULT
The following result in [11, p. 36, Proposition 6.6] will be used.

Proposition 3.1. There is a positive constant c,, such that for each k € N
and z € Ey the following inequality holds:

< cullzll g (3.1)

where p € [1,400). For notational purposes let cx41 = 0.

Izl s,

Lemma 3.1. Under the conditions of Theorem 1.1, I}, satisfies the (PS)
condition.
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Proof. Assume that {zx, }nen in Ej is a sequence such that {Ix(zx,)}neN
is bounded and I} (zx,) — 0 as n — +oo. Then there exists a constant
di > 0 such that

|Ie(zr,)| < dv,  I(2k,) — 0 as n — oo. (3.2)

We first prove that {zx, }nen is bounded. Let z, = 2} + z,jn + 2z, €
EY® Ef @ E, . From (1.3) of (Hy), (Hs), (2.4) and (3.1), there exists a
constant ¢z > 0 such that (here % + % =1)

2d1 Z QIk(an) — <I,/€(an), an> =
kT kT

= / [zkn-szn(t,zkn)—za(t,zkn)] dt — / hi(t) - zp, dt >
—kT —kT
kT kT kT
> / a1|zkn|ﬁdt7/m(t)dt7 / |hie (8| |2k, | dt >
—kT —kT —kT

> alHanHing ~lmelley,, —eallbnll 5 llzr,llz, =

> aleknlligw —lIrller = esliPllpallzna e =

> alHZ’%”ing =Tl = eseallhllorllzen s =

> al\lzknlligw —lIlley = escgaslizr, Il s s (3.3)

where for each k € N, 7, : R — R” is a 2kT-periodic extension of the
restriction of 7(¢) to the interval [—kT, kT.

Since 8 > 1, this implies that there exists a constant MO > 0 with
< M. .
2k, g < Mo (3.4)

Consider {||z) ||z, }nen. Note dim(E}) < +oco, and this implies that there
are the constants by and by such that

bl s < I llee <bollzl s <bollzwllps - (35)

By (3.4) and (3.5), there exists a constant M; > 0 such that

128, 11, < M. (3.6)
Let a = %, then
1 (3.7
)\a—l:a—B7 a>1
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If0 < |zlLg, <1for z € Ek, we have from (1.4) of (Hy) that
kT kT
/ G (t, ()| dt < az / 12(8)] dt. (3.8)
—kT —kT

By using (3.1) and (3.8), we have (here L + 1 =1)

Iz N > (Ih(zh,), 2 ) =

kT kT
= (Az,;:l,z,jn> - / [z,jn -G, (t2k,)] dt — / hi(t) ~z;rn dt =
—kT —kT

kT
=<Az,:f”,z,j”>—</ T /)[z,j”-szn(t,zkn)]dt—/hk(t)-z,jndtz
—kT

|26, 121 |2k, <1

ZM%%M‘%W%M—L/@MM%WF

—( / G, (12,

|2y, |21

|z, <1

1 kT 1
adt) ( / z,:rn|"dt> >
—kT

n
> (Azf 2] ) - 2 1712 = az||zr, ||, 12, I 2~

n

1

_( / ‘szn (tvzkn)|a dt) CU”anHEk (39)

|2k, |21

and

2, 15 = —(Ti(2r, ) 2, ) =
kT kT

= (Anp g+ / [ - Gy (t.2,)] b — / hi(t) - 2f. di =

—kT —kT

:—<Azkn,zkn>—( / + / )[zkn-szn(t7zkn)]dt—

|zkn |Zl |zkn |<1
kT

- / hilt) - 2 dt >

—kT

_ _ n _
> (A5, 57) = gl I - / aalz, | 2p | dt—

|z, [<1
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1 kT 1
_( / ’szn(t7zkn)|adt> (/zkn|”dt> >
kT

[2k, |21

_ _ n _
> —(Az 2 ) — % 2k, || B — azll2k, || |2, |2 —

_( / szkn(t,zkn)Pdt) collze |, (3.10)

|2, [21

By using (1.4) of (Hy) and (3.1), there exists a constant ¢sia-1) > 0 such
B—1
that

/ G (1 25,)

“dt < / ag |z, M dt <

|2k, [21 |2k, [21
}
<a§( / |zkn|ﬁdt) ( / |an|(>\a_l)ﬁgldt> <
|2k, [21 |2k, |21
1
B
<aleaen ([ i) i @0

|2k, |21
Combining (3.4) with (3.9)—(3.11), we find that
12, 15 + N2,

> (Az 50 ) = (Az 2 ) — azllzk,

E, =

g (12 e + N1z, l20) —
1

77 (o3
Derlle = o [ 16 )" ) (ol + o) 2

‘Zk‘n [>1

- n
> &z %, — -1l B, - o Iwallme = 2az |2, |55, —

1_1

o Aa—1 3 Bl a (Aa—1)
[y (O B I B P R P

[2ky |21

> &ill=f 15, — &-allz, |

2 n
B — EHanHEk—

9 - (Aa—1D+4a
—2as |2k, &, —2¢oDo(llzr, ) = 5 (3.12)

where Dy = [a$((cs0a-1) ) 2 Mo]=, and & is the smallest positive eigen-
B—1

value, £_1 is the largest negative eigenvalue of the operator A, respectively.

From (3.6) and (3.12), there exists a positive constant D; > 0 such that

D (1127, 1, + 127, 1, + 1126, 1, ) =

> |l2f .+ 2, |2 +60Mll2, o > 2] s+l s €2k, 1, >
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> &illef, B, — E-1llzg, I, + €Nk, B, —

7 L 2, 5 ()\a—al)+a>
QHanHEk a2k, %, — 2¢6Do (|12, || £,)

> € (1157, 1%, + 2, I, + 128, 1%, ) -

(Aa—1D+a

—g lzn, I = 2a2ll2w, 5, = 2¢0Do(l2kallmn) =+ (3.13)
where £ = min{&;, —£_1}. This implies that
~ n ~ Qa-1)
Dit 2 (€ = 2a2)lzk, |5, — 2¢o Do(ll2e, l20) =, (3.14)
where 0 < 22=D 1 Since & — 2ay > 0, we have that {2k, | B, fren is

bounded. Going if necessary to a subsequence, we can assume that there
exists z € Ej such that 2z, — z, as n — +o00, in Ej, which implies
2k, — z uniformly on [—kT,kT|. Hence (I} (zy,) — I;(2))(zk, — 2) — 0

and ||zg, — Z||L[2—kT,kT] — 0. Set
kT
= / (G, (120, (1)) = Gty (1)) 21, — 2) .
—kT

It is easy to check that & — 0 as n — +00. Moreover, an easy computation
shows that

(Tk (2, ) = Ii(2)) (2, = 2) = (A(2k, = 2), (2, — 2)) — 2.
This implies ||zx,, — ||z, — 0. O
Lemma 3.2. Under the conditions of Theorem 1.1, for every k € N the

system (2.2) possesses a 2kT -periodic solution.

Proof. The proof will be divided into three steps.

Step 1: Assume that 0 < ||z||g, <1 for z € E,(Cl) = E;". From (1.3) of (Hy)
and (3.1), we have

Z G(t,2(t))dt < % {Z z-GL(t, 2(t) dt +Z (1) dt} <

kT
1 1
<5 la [ IOF s ] < g fae R+ ] <
—kT

< 5 a2 21, + 17l . (3.15)

NN
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From (2.4) and (3.15), for z € E,(;) = E; and 0 < ||z]|g, < 1, we have

kT kT

1
In(2) = 3 (Az, z) — / G(t,z)dt — / z - hg(t)dt >
—kT —kT
&1 1 n
> 5 el — 5 [o20 el + Irlas] = g lells, >
I ¢ (2 + )
> (€= 20N 2lh, + 3 a0, — 5 (3.16)

Note from (Hs) that & — 2az0™* > 0. Set

2(% +I7llzr)N 3 & —2ap0M!
= <7) and ¢ = >———.
13 4
Let B, denote the open ball in Ej, with radius p about 0 and let 95, denote
4, 1
its boundary. Let Sy = 0B, N E}f. If 2 € Sy, then ||z||p, = (W) 2
(note that ||z||g, <1 from (Hs)) and thus (3.16) gives

In(z) > a z € S.
Then (C3)(i) of Lemma 2.1 holds.
Step 2: Let e € E; with |e||g, =1 and Ep = E, ® E) ® span{e}. Let now
Or={z€Ey: |2l =1},

W= inf |<Azf,zf>|, n:(

zEE;,Hz* HEk:l

2||Af[\ /2
)
For z € Oy, we write z = 2z~ + 29 4 2F.

D) If |27 ||g, > k|2t + 2% g, then for any v > %tff) > 0, we have
from (Hy) that

1 o
IL(yz) = 5 (Ayz",727) + 5 (A2 y27) -

kT kT
— / G(t,vz)dt — /’yz-hk(t)dtg
kT kT
B 2y —2 ||A|| 20 4112 Ui
§—§7 [E4 ||Ek+77 [E4 ||Ek+2*97§
< B, + oz o, 4 2 <
=79 Ty DY
B oy —p2 ||A|| o 1 -2 n
§—§7 [E ||Ek+77 EHZ ||Ek+§7=
K oy _—2 Ui .
= LI, + Lo <0 (3.17)
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note ||z~ [|3, > J% since
,

_ (1+rK%), _
L=, + e+ 2, < S,
Let

Ae={z 00 15, < rll=t + 0,

) If |27 ||, < kllzt + 2% &, , we have

1= el = 171, + 127+ 2°l%, < @+ )]z +200%,  (3.18)
i.e.,
1
+ 012
|z + = ||Ek > m > 0. (3.19)

The argument in [6, pp. 6-7] guarantees that there exists e¥ > 0 such that,
Vuée Ak,

meas{t € [0,2kT) : |u(t)| > s’f} > ek, (3.20)
For z =2t + 294+ 27 € Ay, let
P={te0,2kT]: |2(t)| > f ).

By (Hs), for M}, = AL~ 0, there exists Ly, such that

(eh)?

G(t,z) > My|z|?>, V|z| > L, uniformly in t. (3.21)
Let
Yr = max {L—:, L}
et ol Al
For v > 7, we have from (3.20) and (3.21) that
G(t,v2) > My|yz|*> > Mpy%(e)?, Vit e QF. (3.22)
From (H,) and (3.22), for v > -, we have for z € Ay, that
Iy(vyz) = %72<AZ+72+> + %72<A2_»Z_>—
kT kT
— /G(t,'yz) dt— /'yz “hg(t) dt < % ||A||’72—/G(t,’yz) dt + %’y <
—kT —kT Qz
< 5 IAI® = M) + oy = = S 1Al + Ly < 0. (329)
Therefore we have shown that
Ix(yz) <0 for any z € Ap and v > 4. (3.24)

Let
B =B o B,
Qr="{re: 0<v<2ule{ze B |zl <2wu}
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By (H2), (3.16)—(3.17) and (3.24) we have Ii|ag, < O, ie., Ij satisfies
(C2)(it) of the Lemma 2.1.
Step 3: (C3) (i) (i.e. Sk links Q) holds from the definition of S and Qy
and [11, p. 32]. Thus (C3)(#4¢) holds.

From (Hs)—(Hs) and (2.3), (Cy) and (C3) of Lemma 2.1 are true, so by
Lemma 2.1, I, possesses a critical value ¢ given by

cp = inf sup Ip(gr(1,uk)), (3.25)
9:€Tk upeQy,

where T}, satisfies (I'1) — (I's). Hence, for every k € N, there is z; € Ej
such that

Ie(zp) = ek, Ii(z) = 0. (3.26)
The function z; is a desired classical 2kT-periodic solution of (2.2). Since
cL > a= % > 0, z; is a nontrivial solution. O

Lemma 3.3. Let {z}}ren be the sequence given by Lemma 3.3. There
ezists a zg € C(R,R*Y) such that 2} — 2 in Cioe(R,R*Y) as k — +oc.

Proof. The first step in the proof is to show that the sequences {cj}ren
and {||z;]| g, }ken are bounded. There exists 2} € Ey with z7(£7") = 0 such
that
¢ <Ii(z7) = inf sup Ii(g1(1,ur)). (3.27)
91E€T1 4y €Qq,ur (£T)=0
For every k € N, let

(3.28)

0 for T < |t| < kT

and g : [0,1] x Ex, — E}) be a curve given by gx(t,z) = z, where z € Ej.
Then gr € Ty and I;(gx(1,2;)) = Li(g1(1, 27)) = I1(%f) for all k € N.
Therefore, from (3.25), (3.27) and (3.28),

cr < Ik(ﬁk(l,EZ)) =10 (51(1,2’1")) = I(2}) = M. (3.29)

We now prove that {2} }xen is bounded.
Let z; = (21)°+ (25)T + (2})” € EY @ Ef @ E;_. From (1.3) of (Ha),

1 1 _
1+3=1)
2My > 21y (25;) — (L (23), 21)
kT kT
- / {zZ-Gzz(t,z}:) —2G(t7z;)} dt — / hio(t) - 2 dt >
—kT —kT
kT kT kT

> /aﬂzZ\Bdtf /Tk(t)dtf / |h (1) |25 | dt >

—kT —kT —kT
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> ailll, Iy

kT Cﬁ”hk”LEkT HZZHLS}CT =

> ailll9, ~ vl - ezl ol g, >
13 -~ *
> aill i, Il = eadaslailyg,, (330)
Since B > 1, this implies that there exists a constant 1\75 > with
* < N*. .
lzxllLe . < Mg (3.31)
Note dim(EY) < +o0, therefore there exists a constant Ml* > 0 such that
1(0)°] | < M- (3.32)
By using (3.1) and (3.8), we have (here L + 1 =1)

1Gz2) " e = (T (20, (20)T) =

kT kT
— (4G e - [ [0 Gala]d— [ o 6" =
—kT —kT

e @ - ([ [ et e a

lzxl21 Jzl<1

kT
- / hilt) - (1) dt >

—kT
* * n * * *
> (AT G — 2 el — [ sl ) de-
[zx]<1
1 kT 1
—( / |ng<t,z;;>|adt) ( / |zkt|f'dt) >
2z |>1 —kT
E3 * "7 * * *
> (A %) = 2 el — aslztle ) s~
1
—( / |Gz,;<t,zz>|adt) . (3.33)
5121

and

1(z0) " e = (Tr(z8), (20)7)
kT kT

= (A=) (2)) — / [(25)" - Gus (£, 2)] dt / hi(t) - ()" dt =

—kT —kT
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—ac @@= ([ - [ ) Gatan] a

[zz]>1  |zpl<1

kT
- / ha(t) - (1) dt >
—kT
*\ — *\ — n * * *\ —
> (A G — 2 el — [ skl G0
\z;|<1
1 kT 1
—( / |ng<t,zz>|adt) ( / |z;n|f’dt) >
2 |>1 —kT
*\ — *\ — n * * *\ —
> (4G 67— 2 el — aalle ) e~
( / |GZ;<t,zz>adt> ol (3.34)
|zp]>1

Combining (3.11), (3.31) with (3.33)—(3.34), we have

1Gz0) " Nl + 1(z0) Nl >

- U
> &l (=) "I, — &-all (=), — o Izlle =

Aa—1)

= 22|21, — 2¢oD5 |12, "

Ikl e, (3-35)
where
1
g « Aa—177,
DO = |:a2 (Cs(giIl)) M0:|
From (3.32) and (3.35), there exists a positive constant D} > 0 such that

Di(lGzi) e + 1)~ s, + 1(5)°lz,) =
> [(z0) * s, + 11z0) " 1 + EMTNI(2) B >
> [1(z0) ¥l + 1z) ™ Ml + €Ml (20)° N, =

> (11, + 1) 1B, +1:0)°0%, ) -
Aa—1)4a

n * * Nk * o
- E Izl 2 — 2a2||zk||?3k - 2CUDO(||Zk||Ek) - (3.36)

This implies that

Aa—1

N n * T * %
Dy + % > (€= 2a2)l1z || By — 2¢6 D5 (1241 1) : (3.37)
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where 0 < % < 1. Since & — 2az > 0, we have that {||zy, ||, }nen is
bounded. Hence (3.37) shows that there exists a constant M; > 0 such that

2kl < M. (3.38)
We now show that for a large enough £,
125l g, < Ma. (3.39)

2ET —
If not (note (2.1) and (3.38)), by passing to a subsequence, without loss of
generality, for each k € N, there exist 2}, £ and ¢}, such that |25 (l)| = M,
125 (0)| =1 and 1 < |25(t)| < My for t € (g, 0x) C [T, kT (and M} — oo
as k—00). Hence, we have from (1.3) of (Ha), (Hs) and (3.31) that
o, p
My =1 = [z5(C)| — |2 (be)| = /@lZZ(S)ldS =

Ly

Ly

Ly
:/z;;(s). Z§(S§|dsg/|z,:<s>|ds

A

J |2 (s

Ly
Ly,

0 0
§/’Gzz(t,zlj(s))|ds+/|B(s)z;§(s)‘ds—|—/|hk(s)|ds§

Ly Li Li
Ly

< (as + 1Bl / 2 (5) s+ [illoy <

2kT )

Ly,

4
-1
)/|z;(s)|ﬂ ds+||h||pr < (since 1<)\<1+L<ﬁ)

< (az+|Bllrg 3

2kT

Ly
< (az + | Bllg

2kT

Y(Mg)? + as, (3.40)

where as, as, ||B||Lg, and Mg are k-independent constants. However, we
have M} — oo as k — oo, which leads to a contradiction. Hence there

exists a constant My > 0 such that

I2illgs, < (a2 + 1Bllog, ) (Mg)® +ag +1 = Mo, (3.41)

2kT — 2kT
This shows that (3.39) holds.

It remains now to show that {z}}ren is equicontinuous. It suffices to
prove that the sequence satisfies a Lipschitz condition with a constant, in-
dependent of k.

From (1.1) and (3.39), there exists a constant M3 > 0, independent of k
such that

|2 ()] = [J(G2; (L, 2 (1) + B(t)z (1) + hie(1))] <
< Mj (since ||z}||pse.. < Ms)

2T —
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which implies
12k llLgs, < Ms. (3.42)
Let k € N and t,tg € R, then

|zk zkt0|‘/ s)ds

Since {2} }ren is bounded in LS, (R, R*V) and equicontinuous, we obtain
that the sequence {2} }ren converges to a certain zg € Cjoo(R,R?*Y) by
using the Arzela—Ascoli theorem. O

/\zk )l ds < Mt — to).

Lemma 3.4. The function zy determined by Lemma 3.4 is the desired
homoclinic solution of (1.1).

Proof. The proof will be divided into three steps.
Step 1: We prove that zo(t) — 0 as t — +oo.

‘We have
+oo 3T iT
2 2 5, . * 2
[laop = tim [ o@Pde= tm tm [ e, 0P d
—00 —j7T —iT

Clearly, by (2.1) and (3.38), for every j € N there exists n; € N such that
for all k& > n; we have

3T
[ ra <0, < M2
—iT

and now, letting j — +o0, we have

/ |o(t)? dt < 72,

and hence
lzo(t)|*dt — 0 as m — +oo0. (3.43)

[t|>m
Then (3.43) shows that our claim holds.

Step 2: We show that zg #Z 0 when h(t) =
Now, up to a subsequence, we have either

400
/|z0(t)|2dt lim /|z0 ()2 dt =

,JT

3T
o . 2 g _
—tmtim [ @Pd=0, (340
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or there exist & > 0 such that

+oo JjT
/|zo(t)|2dt: lim /|zo(t)|2dt:
Jj—+oo
—o00 —3T
iT
= i i . 2dt>a . .
jgrfoo kgrfoo / |z, (D)7 dt > a >0 (3.45)
—3T

In the first case we shall say that z is vanishing and in the second that zq
is nonvanishing.
By assumptions (Hs), (Hs) and (1.4) of (Hy), for any £ > 0 there exists
C. > 0 such that
|G(t, z;‘bkﬂ <elzp, |+ C’E|zzk|)‘+1. (3.46)
Hence, we have from (1.4) of (Hy4) and (3.46) that

/! ()G, (20| i <
—kT
< EHan ||L2kTH(Z;klk)i||L§kT + CLQH’Zn;c H/\)\_Ha (347)
kT
[ Gty <z By, + IR
2T
—kT

Arguing indirectly, we suppose that {z; }72, is bounded and vanishing.
We have from (3.44) and (3.47) that
kT kT
Jim (z0)F - G (t, 25) dt = Jim G(t,z;)dt = 0. (3.48)
—00 —00
—kT —kT
Since (I},(z;,), (z5,)%) = 0, for some positive constant C, using (3.1) and
(3.47), we find that

kT
a5 5, < (A3 (h)h) = / (52,0 G (123, e <
—kT
and
kT
~ellGa) 75, < (A ) == [ i G (a0 di <
—kT

|/\+1
8

+ C||znk||’\+1. (3.50)

< E||Z7Lk||EkH nk _HEI‘ +CHan|
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Note that dim(EY) < +oo, there exist two positive constants 51, and 32
such that

Bl < Il <TGl <Rl G50
From (3.44) and (3.51) we have

* 2 T *
€l Ga 2, < i)l —0as k—o0. (352
Now (3.52) implies that there exists a positive constant b.(0 < b, < %) such
that
* 2 *
&l ()" g, < bellzm, I, - (3.53)
Hence, from (3.49), (3.50) and (3.53) we obtain that

e(llGm ) I, + G I, + G2, ) <
<&l by, + el I, el I, <

£ = A
< 3 Ml + 2G5, s

and ||z ||g, > ¢ for some ¢ > 0.
On the other hand, from (3.44), (3.48) and (3.53), we have

H(z* )iH2Ek — 0 and H(z*k)onk —0 as k — oo.

Nk n

This means that ||z}, ||z, — 0 as k — oo, which leads to a contradiction.
Hence {z;} is nonvanishing, so (3.45) holds, and this shows that our claim
holds.

Step 3: We show that zo(t) is a nontrivial homoclinic solution of (1.1).
Proof. According to step 2, zo(t) #Z 0, it suffices to prove that for any
¢ € C3°(R,R*Y),

+oo
/ Golt) — JH., (t, 20(1))) - p(t) dt = 0. (3.54)

— 00

By step 1, we can choose kg such that supp ¢ C [—k;T, k; T for all k; > ko,
and we have for k; > kg

+o00o

[ {0 = I[BO= 0 + 62 157,60 + 0] } - o) dt =0 (355)
By (3.43) and (3.55), letting k; — oo we get (3.54), which shows zy(t) is a
nontrivial homoclinic solution of (1.1). O

Proof of Theorem 1.1. The result follows from Lemma 3.4. (]



The Ezistence of Homoclinic Orbits. . . 101

ACKNOWLEDGEMENTS

This project is supported by National Natural Science Foundation of
China (No. 51275094), by China postdoctoral science foundation
(No. 20110490893) and by Natural Science Foundation of Guangdong Pro-
vince (No. 10151009001000032).

REFERENCES

1. V. Coti ZeLaTl, I. EKELAND, AND E. SERE, A variational approach to homoclinic
orbits in Hamiltonian systems. Math. Ann. 288 (1990), No. 1, 133-160.

2. V. CotI ZELATI AND P. H. RABINOWITZ, Homoclinic orbits for second order Hamil-
tonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991),
No. 4, 693-727.

3. Y. H. DiNgG, Existence and multiplicity results for homoclinic solutions to a class of
Hamiltonian systems. Nonlinear Anal. 25 (1995), No. 11, 1095-1113.

4. Y. H. DING AND M. GIRARDI, Periodic and homoclinic solutions to a class of Hamil-
tonian systems with the potentials changing sign. Dynam. Systems Appl. 2 (1993),
No. 1, 131-145.

5. Y. H. DiINnG AND L. JEANJEAN, Homoclinic orbits for a nonperiodic Hamiltonian
system. J. Differential Equations 237 (2007), No. 2, 473-490.

6. G. FEI, On periodic solutions of superquadratic Hamiltonian systems. Electron. J.
Differential Equations 2002, No. 8, 12 pp. (electronic).

7. CH. Guo, D. O’REGAN, YUu. XU, AND R. P. AGARWAL, Homoclinic orbits for a
singular second-order neutral differential equation. J. Math. Anal. Appl. 366 (2010),
No. 2, 550-560.

8. CH. Guo, D. O’REGAN, Yu. Xu, AND R. P. AGARWAL, Existence of subharmonic
solutions and homoclinic orbits for a class of even higher order differential equations.
Appl. Anal. 90 (2011), No. 7, 1169-1183.

9. H. HOoFERr AND K. Wysocki, First order elliptic systems and the existence of homo-
clinic orbits in Hamiltonian systems. Math. Ann. 288 (1990), No. 3, 483-503.

10. M. IZYDOREK AND J. JANCZEWSKA, Homoclinic solutions for a class of the second
order Hamiltonian systems. J. Differential Equations 219 (2005), No. 2, 375-389.

11. P. H. RABINOWITZ, Minimax methods in critical point theory with applications to
differential equations. CBMS Regional Conference Series in Mathematics, 65. Pub-
lished for the Conference Board of the Mathematical Sciences, Washington, DC; by
the American Mathematical Society, Providence, RI, 1986.

12. P. H. RaBINOWITZ, Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy.
Soc. Edinburgh Sect. A 114 (1990), No. 1-2, 33-38.

13. P. H. RABINOWITZ AND K. TANAKA, Some results on connecting orbits for a class of
Hamiltonian systems. Math. Z. 206 (1991), No. 3, 473-499.

14. E. SERE, Looking for the Bernoulli shift. Ann. Inst. H. Poincaré Anal. Non Linéaire
10 (1993), No. 5, 561-590.

15. C. A. STUART, Bifurcation into spectral gaps. Bull. Belg. Math. Soc. Simon Stevin
1995, suppl., 59 pp.

16. A. SzZULKIN AND W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian
systems. J. Funct. Anal. 187 (2001), No. 1, 25-41.

17. X. Xu, Sub-harmonics of first order Hamiltonian systems and their asymptotic be-
haviors. Nonlinear differential equations, mechanics and bifurcation (Durham, NC,
2002). Discrete Contin. Dyn. Syst. Ser. B 3 (2003), No. 4, 643-654.

18. X. Xu, Homoclinic orbits for first order Hamiltonian systems with convex potentials.
Adv. Nonlinear Stud. 6 (2006), No. 3, 399-410.

(October 29, 2013)



102 Chengjun Guo et al.

Authors’ addresses:

Chengjun Guo and Chengjiang Wang
School of Applied Mathematics, Guangdong University of Technology,
Guangzhou, 510006, China.

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National
University of Ireland, Galway, Ireland.

E-mail: donal.oregan@uuigalway.ie

Ravi P. Agarwal

Department of Mathematics, Texas A and M University-Kingsville, Texas,
78363, USA.

E-mail: Ravi.Agarwal@tamuk.edu



Memoirs on Differential Equations and Mathematical Physics
VoLUME 61, 2014, 103—-145

Vakhtang Paatashvili

THE RIEMANN PROBLEM AND

LINEAR SINGULAR INTEGRAL EQUATIONS
WITH MEASURABLE COEFFICIENTS

IN LEBESGUE TYPE SPACES

WITH A VARIABLE EXPONENT



Abstract. In the present work the Riemann problem for analysis func-
tions ¢t (t) = G(t)¢~(t) + g(t) is considered in a class of Cauchy type
integrals with density from LP®) and a singular integral equation

b(t T
et + 2 [ 25 i = g0

™ T—1
r

in the space £P(Y) whose norm defined by the Lebesgue summation with a
variable exponent. In both takes an integration curve is taken from a set
containing non-smooth curves. The functions G and (a — b)(a + b)~! are
take from a set of measurable functions A(p(t),T") which is generalization of
the class A(p) of I. B. Simonenko. For the Riemann problem the necessary
condition of solvability and the sufficient condition are pointed out, and
solutions (if any) are constructed. For the singular integral equation the
necessary Noetherity condition and one sufficient Noetherity condition are
established; the index is calculated and solutions are constructed.

2010 Mathematics Subject Classification. 47B35, 30E20, 45P95,
47B38, 30E25.

Key words and phrases. Riemann’s boundary value problem, measur-
able coefficient, factorization of functions, Lebesgue space with a variable
exponent, Cauchy type integrals, Noetherian operator, Smirnov class of ana-
lytic functions with variable exponents, Cauchy singular integral equations.
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1. INTRODUCTION

The boundary value problems of the theory of analytic functions and
tightly connected with them linear singular integral equations with Cauchy
kernel are well-studied (see, e.g., [1]-[8]).

If the domain DT is bounded by a simple, rectifiable, closed curve I,
D~ =C\ EJF, G(t), g(t) are the given on T' functions and we seek for
a function ¢ representable by the Cauchy type integral with density from
LP(T") whose angular boundary values ¢ from DT and ¢~ from D~ satisfy
almost everywhere on I' the condition

¢t (t) = G(t)g™ (1) +9(t), (1)

then this problem is called the Riemann problem in the class K?(T").
When T is a Carleson curve, inf|G(t)| > 0, p > 1, and

1
o) = (Kro)(e) = 5 [ A e rOm), po1,
r
S=5r:¢p— Srp, (Sre)(t)= %/f(—j)tdﬂ
r

then the problem (1) reduces equivalently to the equation

(1= G@®)p(t) + (1 + G@)(Sre)(t) = g(t)- (2)

in LP(T) ([5, p. 134]).
Conversely, the considered in LP(T") equation

Mg := a(t)p(t) + b(t)(Srp)(t) = f(t) 3)
for
0 < essinf|a®(t) — b*(t)| < esssup |a®(t) — b*(t)] < o0

is equivalent to the problem

(4)

in KP(T).

The interest of researches in the Lebesgue spaces LP(Y)(T') with a variable
exponent and in their applications to the boundary value problems has
appreciably increased in the recent years (see, e.g., [9]-[20]). A great number
of problems of the theory of analytic functions have been investigated ([16]—
[21]). Of importance are the works due to V. Kokilashvili and S. Samko
in which they have revealed wide classes of curves for which the Cauchy
singular operator is continuous in classes LP(*)(I"), when p(t) is Log-Holder
continuous and infp(t) = p > 1. A more general result is presented in [10].
It is proved there that for the operator S to be continuous in LP(*) (I, it is
necessary and sufficient that I' is a Carleson curve. Further, in the case of
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the above-mentioned curves, it is stated that S is continuous in the space
n

LPCND,w), w= [ |t —tr|*, tr €T, ax € R, if and only if
k=1

~[pt)) ™ < an <g(tx)] ", a(t) = p(t)[p(t) - 17"

When p(t) = const > 1, the problem (1) in the class K?(T") is thoroughly
studied (see, e.g. [5]). The case, in which G is a measurable, oscillating
function, has been investigated by I. Simonenko ([22]). He has introduced a
class of functions A(p) and showed that when I" is the Lyapunov curve and
G € A(p), then a picture of solvability inherent in such curves remains the
same for continuous G. In [23], this result has been generalized to wider
classes of coefficients and boundary curves.

In Sections 3-7 of the present work we investigate the problem (1) in the
class KP(')(T"), when T belongs to a wide class of curves and G(t) belongs
to a class A(p(t),T') introduced in Section 3. Sections 8-12 we consider
equation (3) with measurable coefficients in the space £P(®)(T') which is
defined in Section 9. The norm of the element ¢ in that space is defined by
equality

P1

lellescr = el + 1Tl + | & NG

Hp( °) p(+)
where Tp = XTS5 &, 01 =3 (0 +T¢), p2 = 1 (—p+Ty), and X is the
function defined by means of G (see below (26)).

It should be noted that if I' has singularities such, for example, as cusps,
vorticities, or the coefficient G is “badly measurable”; then all these facts
should be taken into account on selecting the class of solutions. In [24],
for instance, for a constant p, a space in which we are required to find a
solution is chosen in such a way that the norm contains power weights of
different growth on different sides from cusps. In our case, oscillation of the
coefficient GG has made a major contribution to that norm.

For investigation of the problem (1) we have used the method of factor-
ization which this time met with an obstacle. The matter is that for the
solvability of the problem (1) in KP()(T), it is necessary that the function
Tg belong to LP)(T"). When I has cusps and G € A(p(t),T), we have failed
to prove or disprove that Tg satisfies this condition for any g from LP()(T").
However, we have managed both to show that if ind G > 0, then (1) has so-
lutions from the set () KP®)~%(I') and to construct all such solutions. If,

0<e<p

in addition, g € (J LP("*¢(T), then the problem (1) is solvable in KP()(T),
e>0
too. When ind G < 0, for the solvability of the problem there take place the

conditions of orthogonality of the function g to solutions of a homogeneous
conjugate problem (inherent in the problem (1) in classical assumptions).
We have succeeded in revealing such a picture of solvability (although not
entirely complete, but rather informative) by reducing the problem (1) to
a series of problems of the same type, but with a coefficient, different from

e
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a constant one in the neighborhood of some point. One of such methods,
known for p = const as the “local method” (]25]), or “local principle” ([4,
pp. 353-363)) is valid for a variable p, as well (the proof is obtained by the
method indicated in [4] with the use of results from [21]). Application of that
method allows one in the best case to investigate the problem qualitatively,
leaving the question of a solution construction in quadratures open.

Our approach is somewhat different from the “local method”; it provides
us with opportunity to construct solutions (if any) in quadratures. But in
this connection we have to require that Tg € LP(Y)(T"). This circumstance
did not allow us to get, on the basis of investigations of the Riemann prob-
lem, its traditional application, i.e., to prove the Noetherity of equation (3)
in LP(T).

However, our wish to possess Noether theorems for equation (3) is quite
natural, if not in LP(*)(T), but although for some space of type LP®) i.e.,
with the norm defined by the Lebesgue integration with a variable exponent.

Towards this end, we distinguish from LP()(T) a subset £P(*)(T") and
endow it with the norm (5) with respect to which this subset is the Banach
space.

In the space £P()(T'), for equation (3) it is stated that: the operator M
maps £P()(T) into itself; the necessary and sufficient conditions of solvabil-
ity are established; solutions (if any) are constructed; the space, conjugate
to £PC)(T), is found; one necessary Noetherian condition is pointed out;
the Noether theorems are proved and the index is calculated.

In this connection, of significance turned out to be the finding of prop-
erties of the operator T' (in the spaces LP()(T") and £P(*)(T)).

In the final Section 13 we present a number of properties of the oper-
ator T" which in the framework of the present paper are not applied, but
have independent interest and will, in all probability, be applied to further
investigations of the Riemann problem and singular integral equations of

type (3).

2. PRELIMINARIES

2.1. Curves. Throughout the paper, the use will be made of the following
notation.

(a) C! is the set of Jordan smooth curves;
(b) CHL is the set of the same Lyapunov curves;
(¢) R is the set of regular (Carleson) simple, rectifiable, closed curves

of T" for which

sup  p~ (¢, p) < o0,
p>0, Cel

where ¢(C, p) is a linear measure of some part of I' falling into a
circle with center (, of radius p;
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(d) Ais the set of Lavrentiev curves , i.e., curves I' for which s(t1, t2)|t;1 —
ta] 7! < M < oo for any t1,ty € I', where s(t,t5) is the length of
the smallest arc lying on I" and connecting the points ¢; and ts.

(e) Jo is the set of curves with the equation ¢ = #(s), 0 < s < [, such
that there exists a smooth curve v with the equation u = u(s),
0 < s <, such that

l
t'(o) (o)
oii%(o/ ‘tw) —1(s) ﬂ(;; —u(s)

(f) J* is the set of those closed Jordan curves from A which are a union
of a finite number of curves from Jy having tangents at the ends.

da) < Q.

(g) CH(Ay,...,Ap;vr, ..., vy) is the set of piecewise-smooth curves T
with angular points Ai,..., A, at which angle sizes, inner with
respect to the domain bounded by T', are equal to wv(Ag), 0 <
v(Ag) < 2;

(h) CYE(Ay,. .., Ap;ve,. .., vy) is the set of piecewise-Lyapunov curves
for which the condition of item (g) is fulfilled.

Obviously, C' C J*. The class J* contains curves of bounded variation
(Radon’s curves) ([6, pp. 20 and 146-7]), piecewise-smooth curves, free
from cusps and, moreover, J* C R ([8, p. 23]).

2.2. The class of functions P(I"). Let I" be a simple rectifiable curve. We
say that the given on I' function p = p(t) belongs to the class P(T') if:

(1) there exists a number B(p) such that for any ¢, and ¢y from I" we
have
B(p)

t1) — p(ta)] < ——
|p( 1) p( 2)| |ln|t—t0||

(2) 1 <p=inflp(t)] < sup|p(t)] =P < oc.
2.3. Lebesgue spaces with a variable exponent.

2.3.1. By Lp(t)(F; w) we denote the weight Banach space of measurable on
I" function f such that ||f]|,(.). < 0o, where

/‘W e 1}.

I llp(yw = inf{)\ >0:
0
Here, t = t(s), 0 < s <, is the equation of the curve I with respect to the

arc abscissa s.
Assume LPU(T) := LPAI(T, 1).
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2.3.2. For p € P(I'), a space, conjugate to LP()(I';w), is L¢®)(I'; 1), where
q(t) = pg()tll . In particular,

[Lp(t)(p)]* - Lq(t)(p)7
(see [9)).
2.4. Some properties of spaces L"(")(T';w).

2.4.1. If p e P(I'), u € LPC) (T w), v € L2C)(I; 1), then the inequality

1 1
’/ T)dr

< KJullpeywlvllg )L k—1+ +f (6)
is valid. Moreover,

F/ F0(t) dt|.

2.4.2. If p(t) and p;(t) belong to P(I'), and p(t) < py(t), then
1fllocy = @+ Ol fllpi ), €= [T = mesI. (7)

2.4.3. If p € P(T'), then LP(')(I‘) C L2(T).
(For the proofs of statements 2.3.2, 2.4.1 and 2.4.2 see, e.g., [9]).

[fllp(-y ~  sup
lallac)<1

2.5. Classes of functions IN(I’(')(F) and K?()(T). Assume
KPO(I,w) = {¢(Z) = (Krp)(2) + Py(2) =

2m/§— dC+ Py(2), 2 €T, 9 € LP(T W)}»

where Py is a polynomial;

KPCO)(T,w) = {¢ . ¢ e KPC)(T,w), Py = 0}.
Denote
KPC)(T) .= KPC)(D,1), KPC)(D) := KPC)(D,1).

(
Since LP()(T) C L ( ) C LY(T), the Cauchy type integral ¢ = (Kt¢)(z),
when o € LPC)(T), p € P(T), almost for all ¢ € T has angular boundary
value ¢ (t) (¢~ (t)), as the point z tends nontangentially to the point ¢,
lying to the left (to the right) from the chosen on I' positive direction (see,
g., [26]), and the Plemelj—Sokhotskii’s equalities

§H(0) = %5 0(0) + 5 (Se)1) (®)

are valid.
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2.6. Classes of functions EP(Y)(D). Let D be a simply-connected domain
with the boundary I'. By z = z(w) we denote conformal mapping of the
circle U = {w : |w| < 1} onto D.

We say that an analytic in D function ¢ belongs to the class EP)(D) if

2
. (e .
sup /|¢>(z(r6“9))|p( ( ))|z’(re“9)|d19 < 0.
0<r<10

For p = const, this class coincides with Smirnov class EP(D). Some
properties of functions from EP(*) (D) can be found in [16] and [20] (see also
[21, Ch. 3]).

For the constant p, the classes EP(D) are defined for any p > 0. Their
properties are treated in different books. We restrict ourselves to the refe-
rence [27].

If the operator S is continuous from LP(I") to L*(I"), then the Cauchy type
integral (Kr)(z) belongs to E*(D) when o € LPC)(T) ([8, pp. 29-30]).

When I' € R, the operator Sr is continuous in the classes LP(I") for any
p € (1,00) ([28]). Therefore, if I' € R, ¢ € LP(I"), p > 1, then Kry €
EP(D). Moreover, if ¢ € L'(T), then Kr¢ € [[ E°(D).

6<1

IfT' € R, p € P(I), then EP®) (D) c KPM (D) ([16], [20]). If, however, T
is a piecewise-smooth curve without cusps, then EP(Y)(D) = K*") (D) ([21,
Ch. 3]).

3. CLassEs OF FuncTioNs A(p(t),T)
3.1. Definition of the classes A(p(¢),T).

Definition 1. Let I" be a simple, closed, rectifiable curve, and p € P(I").
We say that the given on I' function G belongs to the class A(p(t),T) if:

(i) 0 < m =essinf|G(t)| = esssup |G(t)| = M < oo;

(ii) for every point 7 € I', there exists the arc I'; C I' containing the
point r at which almost all values of the function G lie inside the
angle with vertex at the origin of coordinates and opening

o = 27| sup max(p(t), q(t))} _1.

ter,
It follows from the definition that
A(p(t),T') = A(q(t), T). (9)
Let us consider the covering of the curve of I' by the arcs I';. From that
covering we can select a finite covering by the arcs I'y =1',, k=1,..., .

It follows from the definition of the class A(p(¢),T") that there exist numbers
e > 0 such that all values of G(t) on I'y lie inside the angle of the opening

e, = (2m —€p,) [fgﬁ max(p(t), q(t))} _1.
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Without loss of generality, we may reckon that no arc of I'y is contained

n

in the union of two adjacent arcs. Thus, I' = |J Iy, and every arc of T'y,
k=1

intersects with two adjacent arcs. Suppose

IV =1y nTyy, T® =TTy, TP =T, — P ur®),

then I'y = I‘,(Cl) U I’,(f) U I‘,(f). We renumerate the arcs I’,(C])7 denote them
by 71,...,7» and assume that they follow one after another. Let I';_; and
I'j+1 be the arcs intersecting with -y;; then there exists the number m > 0
such that if ?k = Fj_l U Fj+1 U vk, then

dist(ve, I\ k) >m >0, k=1,...,n. (10)

Since every arc I'y is, in fact, a neighborhood of some point, therefore
all values of G(t) (on I'y) lie in the angle of size less than a,,. Assume
€ = mineg. Then by this time, for every point 7 € T', there exists the
arc (denoted by I';) whose values G(¢) lie in the angle of size a, = (27 —
e)[ sup max(p(t), q(t))~*]. Thus, when defining the class A(p(-),T), we can

tel

-

replace « in condition (ii) by the number «..

3.2. One property of functions of the class A(p(t),I"). From the state-
ment proven in Subsection 3.1, from the continuity of p(t) and equality (9) it
easily follows that for every function G € A(p(t),T") there exists the number
ne > 0 such that G(t) € A(p(t) + n.,I'). Consequently,

Alp(t),T) < | Alp(t) +n,T). (11)

n>0

3.3. The class A(p(t),v) for v C I', and one its property. Let v be the
arc lying on the closed curve I'; 7 be its closure and, moreover, let a and b
be end points of ~.

If neighborhoods of the points a and b are, respectively, the sets of the
type [a,c] and [c,b], ¢ € 7, then the class A(p(t),7) is defined analogously
to A(p(+),T).

Suppose

. ~ /
p, = lfp(t), p,=max(p .(p))-

Theorem 1. LetT'e R, v CT', p e P(') and G € A(p(t),~y). For every
point T € 7y, there exists the arc neighborhood . C v such that all values of
G on v, lie in the angle of size (2m — 5)[max(g7, (]7)7)’)]71. Thus,

A(p(-).7) S AGy), By =max(p_.(p.)). (12)

Proof. We consider the cases: 1) p(7) > 2, 2) p(7) < 2, 3) p(1) = 2.
1) p(7) > 2. Owing to the continuity of p(¢) on ~,, there is the neigh-
borhood of the point 7 at which p(¢) > 2. Then

sup max(p(t), q(t)) = sup p(t) > max (p_,(p_)) =p
tery, ter, 7 My ¥
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and hence,
2r — ¢ 2r — ¢
o S 7 = — = a’y~
max(p_,(p_)) Dy

2) p(7) < 2. In this case, ¢(7) > 2, and there exists the arc «, in which
q(t) > 2; therefore,

sup max(p(t), q(t)) = sup q(t) = (p_)" = Py-
ter, teys
Consequently, o < a,.
3) (1) = 2. Having some small number 1 > 0, we find neighborhood ~.
in which values p(¢) lie on the segment (2 — 1,2 + ). Then

e 0 (p,)) = max (27, (2 0)) = max (205 7) =

n n /o~
:a2,27>:27: — 5
mX( +1n +1_77 +1_77 (gv) Dy
Hence, again, o < a,.
Thus, the point 7 in all three cases possesses the neighborhood ~, with
values G(t) lying in the opening angle 22— . Since 7 is arbitrary, this implies

P
that the relations (12) are valid. ’ O

3.4. The index of the function of the class A(p(-),I'). The class
A(p(-),T). We choose the point ¢ € I' and fix the value of argG(c) =
[arg G(c)]~ from the interval [0,27]. Following along I', we can define a
branch of the function arg G(t) so as to have |arg G(t1) — arg G(t2)| < «
for t1,ts € . Going around I'; we reach the arc, containing ¢, with a new
value arg G(c) = [arg G(c)]*. The difference [arg G(c)]t — [arg G(c)]~ does
not depend on the covering choice and on the point ¢. The integer

indG = »(G) = »= % [(arg G(c)) T — (arg G(c)) ]

is called an index of the function G in the class K?()(I).
A subset of the functions G from A(p(-),T") for which sup|arg G(t)| <
/2 we denote by A(p(-),I"). Obviously, if G € A(p(-),T), then ind G = 0.

4. ON FACTORIZATION OF THE FUNCTION FROM A(p(t),T") IN THE
Crass KPM(T)
4.1. Definition of factor-function.

Definition 2. Let I' the closed, rectifiable Jordan curve bounding the
domains DT and D~ (z =00 € D7).

We say that the function X (z) = X(2), analytic on the plane, cut along
I, is a factor-function of the function G in the class K?(Y)(T), if the following
conditions are fulfilled:

(1) X € KPO(T);
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(2) [X(2)] " € K1O(D);
(3) almost everywhere on I'; X (¢)[X~(t)]7! = G(¢t);
(4) X+ € Wwr(T), i.e., the operator

+
T=1T5 5 90) = (o), (1o = 2 [
N

™

is continuous in LP®)(T).
4.2. Some properties of factor-functions.

4.2.1. The Case of Constant p. If I' € C%F and G € A(p,I'), then G is
factorable in KP(T") ([22]). The same result is valid when I" € J*, and G is

taken from a wider than A(p,T") class A which, in particular, contains all
admissible piecewise-continuous functions, not fallen in A(p,I") ([8, p. 192]).

4.2.2. The Case when G € A(p(t),T) and is equal to the constant on T \ 7,

where v C T. Let G € A(p(¢t),T), 7 € T, and v = v, = - be the arc

mentioned in Theorem 1. Assuming p € P(T'), we put p,= tilelfp(t) and
= ¥

Consider the function

G (1) = {G(“’ e, (14)

By = max(p_, (p,)").

G(a), teT\n.

By virtue of Theorem 1 we can easily conclude that G, € A(py,I"). There-
fore, assuming In G (7) = In|G,(t)| + iarg G(r) and
1 InG
X(2) = Xa, (2) = exp {27” InG,(©) dg}, (15)

(—=z
r

[){(z)]il belongs to KP7(T'), and the operator T = T¢ is continuous in
LP+(T), i.e.,

1Te, fliz, < I1Te, Iy, 117,
([22]).

In the sequel, frequently, if it does not give rise to misunderstanding, the
subscript in our writings Xq, Xq., Tg, T, will be omitted and we write

A(p(-)) instead of A(p(-),T).

4.2.3. The class of functions B(p(-),I'). By B(p(-),I') we denote a set of
those functions G(t) with a finite number of points of discontinuity ¢, for
which essinf |G| > 0 and

—[p(tr)] " <k (mod 27) < [q(tx)] .

The branch of arg G(¢) and index for the functions from B(p(-),T') are
defined in the same manner as in [8, pp. 92-93]. For p = const, this class
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covers all those piecewise-continuous functions which are admissible in the
condition (1) when its solutions are sought in the class KP(T').

The functions of the class B(p,T") for p > 1 and I' C J* are factorable
in KP(T"). Moreover, there exists the number 6 > 0 such that the factor-
function X¢ of the function G € B(p,T") possesses the property

XE € K{(I), p=max(p,q), (16)
(18, p. 115]).

4.2.4. On the factorization of the function G.(t) in the classes KPC)(T).

Let G € A(p(-),I') and 4 = ~g be the arc mentioned in Theorem 1.
Without loss of generality, we may assume that G(¢) is defined at the point
a and G(a) lies in the corresponding to the point a angle of size a. Suppose

@, e,
G,(t) = { G(a) (17)
1, tel\n.

Theorem 2. Let I' € J* be a closed, simple, rectifiable curve bounding
the domains D" and D™, and G € A(p(-),I'). Then the function G,
defined by equality (17) is factorable in the class KPv(T').

Proof. Let us show that G, € A(p,,T"). By virtue of Theorem 1 and conti-
nuity of G-, on I'\ 7, only behavior of G, in the neighborhood of the points
a and b needs testing. Let 1, C I' be the arc containing a point. By 711
and 712 we denote intersection of v1, with v and I' \ 7. Since 11 lies on 7,
all values of the function G, on it lie in the angle with vertex at the point
z =0, of size 8 = 2%—:6 . As far as number 1 is in that angle, and G, (t) on
712 equals 1, therefore the values of G, on 71, lie in the above-mentioned
angle.

Consider now the neighborhood of the point b. The point G,(b) lies in
the angle of size 3 together with the point G (a) = 1. Therefore the values
of G, on the arc (c,a), where e C I'\ v, lie in the angle of size 8. Thus it
is proved that G, € A(p,,T).

According to the statement in item 4.2.3, we can conclude that G, is
factorable in KP7(T), and its factor-function X, is given by the equality

1 InG,(¢)
Xa (z) =exp { — dC}. (18)
271'21_/ (—=z

The theorem is proved. O

Corollary. If G € A(p(-),T), then the function

~.n_ JG({), ten,
q”‘{Gmxter\%
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where the arc vy defined in Theorem 1 is factorable in KP(T'), and its factor-
function is
1
~ X D+
Xz = ar ¥ 2D
Xa, (2), z€ D™,
where

M = esssup |G(t)| + sup |arg G(t)].
ter ter

Proof. 1t suffices to show that X*! € K77 (I'). In view of Subsection 4.2.2
and (11), we have (Xg,)¥!' € EPP(DT), (Xa,)*! € EP+ (D), where
EX(DY) is Smirnov class in D, and E#(D~) = {¢ : F + const, F &
E*(D7)}. Therefore ngl and Xa} — 1 are representable by the Cauchy

integral in Dt and D~ respectively. Consequently,

)= L /()”ﬁ)ﬂ—()?)ﬂ Gl -

21 t—z
r

4.2.5. Auziliary estimates. Let I' € J*, G € ﬁ(p(~),l"), and let 7, and
i be subsets of I' defined in Subsection 3.1. Let, further, v& = 7Ya,bs,
Gi(t) = G4, (t) and

1
—— Xg,(2), 2€ DT,
() = | Glag) o) , (19)
X, (2), ze D™,
where
B 1 In G+, (Q)
XGk(z)—eXP{Qm. (-2 dC}
r
Suppose

I xo. (20)

=1, j7#k

Lemma 1. There exist the constants c; > 0, j = 1,2, such that for all
k,k=1,2,...,n, we have

sup |Yi(t)| < ec1, inf |Yi(t)| > co. (21)
tEVE 1€k
Proof. We have
1 1 '
V()] < exp |—— / n|G(¢)| +iarg G(¢) acl <
27 (—t
M\ vk
< exp— / Sup|ln|GH e ||, t € vk,

F\Wk
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where 1 = sup|arg G(¢)|. At the last step here we have taken in account
that G(¢) = 1 for ¢ € Y \ V.

The closed sets 7, and I' \ 7% do not intersect, hence according to (10),
we have dist(yg; T\ 7%) = mg > 0, whence it follows that

el < exp ("2 ), (22)

where
M =sup |In|GQ)||+p, m= min my. (23)
¢er k=

=1,2,...,n
To estimate |Y%(¢)|, we note that if Y3 (¢) = exp fx(t), we have shown that
lexp fi| < exp 2 |T'|. But |exp fi| > exp(—sup|fx|), and therefore
nM
Yi(®)] = exp (- =) I (24)

It follows from (22) and (24) that inequalities (21), where

M M
v = exp (TEIT). 2 = exp (= )

are valid, and the numbers M and m in these equalities are defined according
to (23). O

5. SOME PROPERTIES OF THE FUNCTION X (%)
As regards the data in the condition (1), we assume that either
e J*a pe P(F)7 G e A(p(),F),
or (25)
T is a piecewise-smooth curve, G € B(p(-),T"), p € P(I).
Let the conditions (25) are fulfilled, s = ind G(¢) and zp € D*. Put
Go(t) = (t = 20)"*G(?)

and
X(z) =
_Jexp{KrInGpy}, z € DT, (26)
| (2= 20) Fexp(KrInGo)(z), ze D

5.1. On the summability of the function g|x+.

Lemma 2. If the conditions (25) are fulfilled, then there exists the num-
ber n > 0 such that

_ g g = _
gIX T e L), Ko< e BYI(DT), Kr(<) € BYDO).
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Proof. Let 7y be that arc on I' for which G € A(py, ), then the function

_JG{), ten,
Gv(t)_{G(a)7 tel\n,

belongs to Z(ﬁy, I'), and hence, X,Yil € LP(I") (see item 4.2.3). Assuming

~ Ja®),ten,
gv(t>—{0’ teT\ 7,

we have g, € L?+(I), and hence, we obtain

I a _ -1
X e L*(D), « gﬁ/(gﬁ/ + 6)(137 +p + 0)
Let us consider two possible cases: 1) p, = P 2)py = (]37)’.

1) py = P This is possible when p, > 2. Denote A = P then we have

— A+ 6)(2N+8)2 = (% + g) (1 n %)71.

Since A > 2, then a > 1 and therefore
gy (X))t e L(T), n<a<l.

2) py = @7)/7 then
= AN +)A+X +8) 7 = (1+ 5)(1+i)_1 > 1
N AN
and, hence, again g/ X+ € L*1(T).
Since I' = Uy, and on v;, we have gr/ X+ = g, /(XFY.1), (9 == gv)s
taking into account Lemmas 1 and 2, we obtain

g 1+’I’] 1+77
/‘F’ Z/‘X*Y* § <
r
gr |17
< — /‘— ds < oo.
c;—H] Z% X;—

Statement of the lemma regarding Kt <% follows from the results given
in Subsections 2.6 and in item 2.4.3. a

5.2. On the summability of the function Xg.
Theorem 3. When the conditions (25) are fulfilled, we have Xég €
LGN and (XJ)~t € LAO(T).

Proof. Let v be the arc mentioned in Theorem 1. Then G € A(p,,v),
and the function G, belongs to A(p,,T"). Since I' € J*, therefore X €

KP*3(I') ([8, p. 29]) and, hence X, € LP(I).
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n
Represent now I' in the form I' = J ~yx, where the curves ~y; satisfy the
k=1
condition of Theorem 1. Then, according to the above-said,

Xy = X, € LP*(D), pip =Dy, Xi=exp{Kr(In(G,,)}.

n

We have X¢ = ] XiYi. Then

k=1
/\ng’(t(s))ds < sup Z/IXJI”“(S”CZS <
7 teEyk, k=1,2,....,n k:=1,y
k
<c¢(1+10) / | X TP (s, (27)

Y

On 7y, we have P, <p(t) <D, k=12,...,n
Due to the uniform continuity of p(¢) on T', there exists for § > 0 the
number /5 such that for any arc v, € T’ such that |y;| < ls, we have

_ _ D
Py~ <0, (py,) = —E

. (28)
Py, — 1

For some ~;, the condition |yx| < ls may violate. In this case we consider
a new covering of I' reducing the arcs 7 to those of lesser length than Is.
For the sake of simplicity, we denote again the arcs forming a new covering
by k. Then, according to (28), on -y, we have P P, < J. Moreover, on
the above-mentioned arc,

p. <p(t) <P,

Vi

whence p(t) — p-, <P, -p, < d, i.e., on v, we have p(t) < P, < 0. By
virtue of inequalities (8) and (27), we now obtain

/|X+(t)|”(t) ds < 3 Z/|X,j|’im+5 ds < o0.
T k:l,y

Thus, the first statement of the theorem is proved.
The second statement follows from Lemma 2 according to which for an
arbitrary function g € LPC)(T'), we have g(t) - X%(t) € LY(T). This means

that % belongs to the class L), O

Corollary. The function X¢ in the conditions (25) belongs to LP(*)+0
for some § > 0.

This follows from the inclusions (12), (16) and Theorem 3.
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6. ON THE OPERATOR Ty FOR G € A(p(t),T)
6.1. The operator Ty acts from LP(') to L* for some ) > 0.

Lemma 3. If the conditions (25) are fulfilled, then the operator T acts
from LPC) to the space LNT), A € (0, %), where 1 is the number defined
in Lemma 2.

Proof. From the condition G € A(p(-),T) it follows that G(t) € A(2,T),
therefore Xg € E?(D*) and, hence, Xt € L? (see Subsection 4.2). Assum-
ing 0 < A < 2, we have

_ A g. +1A g *
If/|Tg| dsf/|X | }SF‘ ds <
T T

% 22 %
+12 g |2=x
T T

from which it can be easily seen that I < oo, if 2X\(2 — A\)™t < 1+, i.e.,

2+2n
A< e O

6.2. On the operator T2 = T¢(1¢g).
Theorem 4. Under the conditions (25), we have
T%g = g. (29)
Proof. We have

T(Tg) = X*+Sr (% X+Sp %) — X*Sp (Sp %) (30)

Since I' € R, the operator St is continuous in the Lebesgue spaces L (T'),
A > 1. Consequently, since 52+ € L**(y) (see Lemma 2), we have Sp <&
L**(T), whence (Kt % )(2) € EY1(D*) C E'(D*) (see Subsection 2.6).
But if Krp € EY(DT), then Sr(Sre) = ¢ ([8, p. 30]).

In the case under consideration, ¢ = <%, and hence, Sr(St ) = <& .
Substituting this value into (30), we get equality (29). O

6.3. The continuity of the operator T from LP(')(T) to the space
of convergence in measure.

Definition 3. By M(I") we denote the space of measurable on I" func-

tions with metric
|f — ¢l
p(fse :/7&9.
Fo= ) Tl

The convergence of the sequence {f,,} to fo in the space M (T") is equiv-
alent to the convergence of {f,} in measure to fj.
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Lemma 4. If g, € L’T),0< A < 1, and

I, :/|gnfgo\>‘ds%0, (31)
T

then gp, converges to gy in M(T), as well.

It is not difficult to get the proof by estimating the integral I,, for large
n on the set £, » = {s: |gn — 90| > 0}
Lemmas 3 and 4 lead to

Statement 1. The operator Tg is continuous from LPC)(T') to M(T).

6.4. Closure of the operator Ty from LP()(T') to LP(')(T). Remind
the notion of a closed operator. Let A be the linear operator defined in the
Banach space X (i.e., the operator defined on some lineal from X and is
linear in it) with the domain of definition D(A) and acting to the Banach
space Y. The operator A is called closed from X to Y if it possesses the
following property:

if ||z, — zol|x — 0 and ||Azy, — yolly — 0, then zp € D(A) and Azg = yo.

Theorem 5. If the conditions (25) are fulfilled, the operator T = T¢ is
closed from Lp(‘)(F) to Lp(')(F).

Proof. The domain of definition of the operator T' = T will be assumed to
be a linear set

D(T) = {g . ge L"), Tg e Lp<->(r)}.

Let g, € D(T), n € N, [|lgn — gollp-) = 0, T9n — follp(.y — 0. Then
9o, fo € LPC)(T), and owing to Statement 1, ||Tg, — T'gollarry — 0. It
follows from the condition || T'gn — follpc.y — 0 that [T, — follarry — 0,
whence we conclude that fy = Tgg, by virtue of the limit uniqueness in
measure. Thus, we have

go € LPCND), Tgo = fo € LPC)(D).

This implies that go € D(T'), and since ||T'g,, — T'gol|,(.) — 0, the operator
T is closed from LP(C)(T') to LPC)(T). O

7. THE RIEMANN PROBLEM IN THE Crass K?()(T)

7.1. Statement of the problem. Let I' be the simple, rectifiable, closed
curve, bounding the domains Dt and D~ (z = oo € D7), g € LPC)()
and the conditions (25) are fulfilled. We are required to find the functions
¢ € KPC)(T) whose angular boundary values ¢t (¢) and ¢~ (t) almost ev-
erywhere on I" satisfy the boundary condition (1).
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7.2. Reduction of the problem (1) to the jump problem, when
#(G) =0. Let

Xa(z) = X(2) =exp {217” / hé?(g) dg}.

T
By Theorem 3, we have ﬁ € KPC)(I') and X (o) = 1. Since G(t) =
X+(#)[X~(t)]71, the condition (1) can be written in the form

Nt _ (o2 _ 9
(¥) (%) =5+
Putting ¢1(2) = ¢(2)[X (2)] 7}, we get ¢1 € K1(I') and ¢f — ] € g[XT] 1.
By Lemma 2, we have g[X "]~ € L'™(T), n > 0. Therefore, the solution

of the last problem is unique, and ¢1(z) = (Kr 5% )(z). Consequently, the
solution of the problem (1) may be only the function

6(=) = X () (Kr 527 ) (2); (32)

and we have to elucidate the conditions under which this function belongs
to the class LP().

7.3. Criterion of solvability of the problem (1) when G(t) € A(p(-),T)
and indG = 0. If the conditions (25) are fulfilled, then K[g(XT)™}!] €
EY(D*) (see Lemma 2). Therefore the function ¢ given by equality (32)
is representable by the Cauchy type integral with density ¢ = ¢ — ¢~
Hence ¢ € KP()(T), if and only if

o(t) = [oT(t) — ¢~ ()] € L. (33)

Using formulas (8) and taking into account the fact that G = ﬁ—f,

obtain

we

1 1
+_ - -—_ = (_
¢ =50+Tg), ¢~ =55 (-9+Tg)
It now follows from (33) that
_GH+1 G-1

p(t) = TR g(t) + a (T'g)(t).

Obviously, if G = 1, then ¢ € LPC)(T"). However, if G # 1, then for the
condition (33) to be fulfilled, it is necessary and sufficient that the function
Tg belong to LPC)(T).

Thus we have proved

Theorem 6. If the conditions (25) are fulfilled and G(t) = 1, then the
problem (1) is uniquely solvable in the class KPC)(T'). If, however, G # 1
and ind G = 0, then for its solvability it is necessary and sufficient that
Tg € LPC)(T). In case this condition is fulfilled, a solution is unique and
given by the equality

G+1 G-1

6(2) = Kr| 55 9+ 5 To) (2). (34)
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7.4. Problem (1) in the class K?(')(I') when G € A(p(-),I') and
2#(G) = > 0. Let the conditions (25) be fulfilled and T'g € LPC)(T").

As usually (see [5, p. 118]), we fix the point zg € DT and write the
condition (1) in the form

(1) = ¢~ ()(t — 20)*G(t)(t — 20) ™" + g(1). (35)
Assume
R L OF z € DT,
Flz) = {(b(z)(z —20)*%, z€D™. (36)

Then F(z) has at the point z = co the pole of order s — 1. Hence, there
is the polynomial §2,,_1 of order s — 1 such that

P(z) = (F(2) — Qei(z)] € KPC(D). (37)
The condition (35) yields
¥ (2) = Go(t)y™ () + go(1), (38)

where
Go(t) — |G(t)|ei[arg G(t)—%arg(t—zo)]|t _ ZO|_%7
9o(t) = g(t) — Qse—1(t) + Go(1)2s—1(1).

It can be easily shown that v € KP()(T'), and Gy € A(p(t),T). Using
Theorem 6, we can conclude that the problem (38) is solvable if go and T'go
belong to LP()(T).
Since Gy and Go€,,_; are bounded functions, therefore gy € LP()(T).
Let us show that Tgo = Tg — TQ,.—1 + T(Go2,.—1) belongs to et )(I‘).
By our assumption, Tg € LP()(T). Putting Xo(2) = Xg,(2) for TQ,, 1,
we have

UKy Xtsp el g Xg Xo(o0) =a #0
»x—1 = T+ = _> X)) =a .
1 0 Or X7 0 X, 0
Since 2,,_1 is polynomial and ﬁ € EY1(D™), it follows that Q;;(IZ()Z) €
EY(DT), and consequently, Sr Q;jrl = % . Therefore TQ,,_1 = Q,._1.
0 0
Next,
Q%—lGO Q%—l
T(GoQ1) = X Sr ———— = X S ——.
Xo X5
The function 2,,_; is constant if 2 = 1; then assuming )y = b, we have
Q b Q b b b 20
SF%ZSFfZSF<%—*)+ r—-=——w-+—,
X, X, X, a X, a
that is, for ¢ = 1, we have T % = —bGy + % XS', and this function by
0

Theorem 6 belongs to LP()(T).
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If 2 — 1 > 1, then there exists the polynomial P,,_5 of order s — 2 such
that the function 2;‘—(’;) — P,._5(2) in the domain D~ belongs to E'(D™).

Therefore

Q%*l

T(GoQyer) = ng[ - H} +XFSP, =

0

D
- (= (%2 o))+ P -
0 XO_ 2 0 2

= _Goﬂxfl + X()+P%71 + X()+Pj472 = —G()Q,{,1 + 2X(;FP%72'

From the above, we can easily see that T(Go2,.—1) likewise belongs to
LPCN(I). Thus go and Tgy belong to LP()(T'), and the problem (38) is
solvable in KP()(T"). Having solved it and getting back to ¢(z), we succes-
sively get

$(2) = Xo(2)Kr (5 ) (2), Xo(2) = exp { Kr(ln Go) (=) },

0
g 1 Q,,,,l(t) dt + 1 /Qxfl(t) dt

S .
P xf 2ni ] XS(0) =2 2mi) Xp () t-2

9
Xo

Kr

The last summands can be easily calculated:

Q%_l(z)
= ¢ Xo(2)

0, z€ D7,
1 [Q.1(t) dt

21 Xo(t) t—=2
r

:%/[Q%_l(t)_gn_l(ﬂ] dt 1 [ Q(t)

L [Q () dt
2mi ) XJS(t) t—=z
T

,z € DT,

i Xy (1) t—z  2mi t—2z
T T
Q%—I(Z)7 Z€D+a
= Q%_l(z)
—— 4+ Q,_ D—.
Xo(2) Theala), 2 €
Putting
Xo(z), z€ DT,
X(z) = X = KrinG , (39
) {(z_zo)_hxo(z% o p Xolo)=e(KenGo)(z), (39)

and take into (37) and (38), we obtain

#(2) = —’;(:;) / ;it()t) t‘itz X (2) 1 (2).
r
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7.5. The case for s < 0. In this case, the function F(2) given by equality

(36) belongs to KP()(T), and F* = GoF~ +g. Consequently, F(z) =

Xo(2)Kr(55)(2). For the function ¢(z) = (2 — 20) 7*F(2) in the domain
0

D~ to belong to E*(D™) (the fulfilment of this condition is necessary for

$(z) € KPC)(T)), it is necessary that

t
/ gp thdt =0, k=01,... |5 —1. (40)
Xy (1)
r
If these conditions are fulfilled, then ¢ € E'(D~), and since ¢~ € LP()(T),
therefore
1 o
= | 2 D™,
W2 =—o5 | 75 =€
r
Hence
¢(z) = Kr(¢" — ¢7)(2) € K*0)(D).

Now we are ready to state the theorem on the solvability of the problem

(1) in the class KP()(T") when

ge PN, Tge LPC)(D). (41)

But first we present one simple sufficient condition with respect to g which
ensures belonging of the function T'g to the class LPC)(T).

Theorem 7. Let the conditions (25) be fulfilled and indG = 0. If
ge U LPCIH(T), then Tg € LPC)(T).
6>0

Proof. Since g € |J LPC)H(T), there exists the number 7 > 0 such that
6>0

g€ LPCIT(T),
We divide T into the arcs 74 so as to fulfil simultaneously the condition
of the theorem and

Pp —Dp, <mn, where p, = sup p(t), p, = inf p(¢).
—k tevk =k tem

Then for ¢t € v, we have p;, < P, and hence,
p(t) +n>p, +n> Dy

Consequently, g € LP+ (). In addition, since

sup max(p(t),q(t)) = sup maxp(t) = Py,

teEVE tEVk
we find that G € A(P,vx). Owing to this fact, the functions X(z) given by
equalities (19) belong to LP()(T) (see Subsection 5.2) and moreover, ind G
in KPx(T") equals zero. Consequently, the function ¢(z) given by equality

(32) belongs to classes LP(*)(y;) from which it follows that ¢ € K?()(T),
that is, ¢+ € LP()(T'). But ¢+ = 1 (g + Tg). Hence, Tg € LPC)(T). O

From the above theorem follows
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Statement 2. If g € LP()(T) and the conditions (25) are fulfilled, then

the function
g(r) dr
XG(r)T—2

o(2) = Xe(2) / (42)

belongs to the class K*()=9(T') for any & € (0, p).

To prove this, it suffices to notice that for g € LPC)(T') we have g €
L(p(')—5)+5(r)_

7.6. The theorem below is a summation of results stated in Sub-
sections 7.1-7.5.

Theorem 8. If the conditions (25) are fulfilled and g € LPC)(T), then
the Riemann problem has a solution ¢ (given by equality (42)), satisfying
the condition ¢ € (| KPC)=9(T).

3€(0,p)

If, however, G € A(p(-),T"), then for the Riemann problem to be solvable
in the class KPC)(T) for 3(G) > 0, it is necessary and sufficient that the
condition

Tg e LPC)(D) (43)
is fulfilled.

When s < 0, for the solvability of the problem it is necessary and suffi-
cient that the conditions (43) and

g(t) .k
= =0,1... -1
/X"'(t)t dt =0, k=0, ,|% |
T

are fulfilled.

If the above-mentioned conditions are fulfilled, then the problem for » <0
is uniquely solvable, but for » > 0 it is solvable unconditional. In all cases
the solution is given by the equality

o) = 52 [ AL X (@00, (14)
r

where ,,_1(z) is an arbitrary polynomial of order »x —1 (,._1(2) =0 for
»x < 1), and X (2) given by (26).

8. ON THE NOETHERITY OF THE OPERATOR My = ap + bSrp IN THE
Space LPC)(T)

The results of Sections 3—7 do not allow us to establish Noetherity of the
operator M in the space LPC)(T'), when G = (a —b)(a+b)~t € A(p(-),T).

We intend to construct a space £°(®) in which under sufficiently general
assumptions with respect to I', p and G the operator M will be Noetherian.

As concerns the space LP(*)(T), we can point out one necessary condition
for the operator M to be Noetherian in LP(*)(T'). This condition for p €
P(T') will be the same as for the constant p. We start with this result.
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Theorem 9. LetT' € R, p € P(T'), a(t), and b(t) be measurable bounded
on I' functions. For the operator My = ap + bSry to be Noetherian in
LPC)(T), it is necessary that the conditions

inf inf — 4
ess in la(t) + b(t)| > 0, essin la(t) — b(t)] >0 (45)
are fulfilled.
Proof. Let us consider in LP(*)(T") the equation
Mp=f, feL' (). (46)

Let ¢(z) = (Kry)(z), where ¢ is a solution of equation (46). By the Sokhot-
skii-Plemelj formulas, ¢ = ¢+ — ¢, Spp = ¢T + ¢~. Therefore, (46) can
be written in the form

(a+b)pt +(b—a)p” = f.
Assuming ¢ = a + b, d = b — a, we obtain
cot +dom = f. (47)
Assume now to the contrary that M is Noetherian in LP(*)(T") and, for
example,
essinf|a 4+ b| = essinf|c| = 0. (48)
Since the operator under small perturbations preserves Noetherity
([4, p. 144]), there exists the number & > 0 such that: if the operator
My = c1p + d1Sryp is Noetherian and ||[M — Ml[,(.) < &, then M; is
likewise Noetherian.

Let n < W . Consider the functions
c(t) if |e(t)] > n,
A CORE A EOIEY
0 if |e(t)] <m, (49)
d(t) if |d(t)] >mn,
W COR S CEY
0 it Je(t)] <.
Obviously,

[Mp = Miollpy < nllellpcy + 2nl[Sellp.y <
<20(1+ 15]lp( ) lellpc-y < ellellp-ys

therefore the operator M is Noetherian in LP(*)(T). Let us show that the
equation

My =0 (50)
has only a zero solution. Towards this end, we notice that |d;| > 0 on T,
and ¢; = 0 on the set e of positive measure, where mese < mesI'. Indeed,

if mese = mesI', then di¢ = 0 on I', hence ¢~ = 0 on I'. Then any
function of the type [ F:_(:) dr, where F' € E'(D*) with a boundary value
r

F+ ¢ LPC)(T) will be a solution of equation (50). Sets of such functions
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are of infinite dimension, hence M; is not Noetherian. Thus mese < mesT,
and hence mes(T"\ e) > 0.

On e, we now have di¢p~ = 0, and then ¢~ = 0 on e. By the theorem
on the uniqueness of analytic functions (see, e.g., [27, p. 232]), ¢~ = 0
on I Consequently, on T'\ e we have ¢; # 0 and 16t = 0. Again,
by the uniqueness theorem, we conclude that ¢t = 0 on I'. Finally, we
obtain that on I' both ¢~ and ¢T are equal to zero. This implies that
@ = ¢t — ¢~ = 0. Thereby, equation (50) has only a zero solution. Hence
Mip = 0 has only a zero solution and the operator M; is Noetherian one.
Since |di| > n > 0, the operator M = ci(d;) 1¢T + ¢~ together with
c16f 4+ di1¢~ is likewise Noetherian, and M ¢ has only a zero solution. In
addition, the coefficient ¢; /d; on e equals zero and is different from zero on
I"\ e; both sets are of positive measure. Therefore, also for the operator
(M)* we have dim N((M)*) = 0 (this case for a variable p(¢) is proved in the
same way as Lemma 4.1 in [4] on pages 292-3 for a constant p). Since the
operators M and M* are Noetherian, this implies that they are invertible.
Owing to this fact, the equation Z- ¢T + ¢~ = g should have a solution in
LPC)(T) for any function g € LPC)(T).

Let us show that this is not true.

Let f = 1, then c1¢" + di¢™ = di, t € I'. But for t € e, we get
0+ di¢p~ =dy, ie., ¢~ (t) = 1. If F(2) = ¢(z) — 1, then F € KPC)(T).
Hence F(z) belongs to E*(D~), and F~(t) = 0, t € e, whence it follows
that ¢(z) = 1, z € D7, and ¢(c0) = 1, as well. But this is impossible due
to ¢ € KP(:)(T), and for such functions we have ¢(cc) = 0.

The obtained contradiction shows that the assumption (48) is invalid,
hence essinf|a(t) + b(t)| > 0.

The validity of the second inequality in (48) can be proved analogous-
ly. O

As a conclusion, it should be noted that in proving the lemma we have
followed the method suggested in [4, pp. 256-8].

9. THE Space £P()
9.1. Definition of £P("); its Banachity. Let

T eR, peP(T), GeAlp(-). (51)
Assume
geL’), Tge P, T(gké)eﬂ’(‘), k=1,2, (52)
where
g1= % (9+Tg), g2= %(—9+T9)- (53)

It follows from (52) that
g€ LPU)) k=12 (54)
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Let
() — {g: ge P Tge ), T(gk é) eme}_ (55)
For the elements from £P(*) we introduce the norm as follows:

+] ngH . (56)

1
lgll e = llgllocy + 1Tgllpc-) + ([ Tor )

GHp( )

The set £P() together with the above-introduced norm, i.e.,

V={g: lgllrr < oo}

turns into a linear normalized space.

Lemma 5. If the conditions (51) are fulfilled, than L£P() is a complete
space.

Proof. Let {g"} be the fundamental sequence in £P(*), then it follows from
(55) that the sequences {g"}, {Tg"}, {T'(9) &)}, k = 1,2, are fundamental
in LP() . Let u, A, e, ¥ be the functions from LP(*) to which these sequences
converge, respectively, i.e.,

19" = pllpc-y = 0, [ITg" = Allpc.y = 0,
Ir(org) —<l, =0 r(ag) -], ~0

Since T is continuous from LP(") to the space M(T), Tg™ converges in
measure to Ty, and hence

(57)

A=Tu (58)

Next, since g = 3 (¢" + Tg"), {g7'} converges in LP(*) and in measure
to % (u+ ), and owing to the fact that é is bounded, we conclude that the
sequences {gk G} k = 1,2, converge in LP(*) respectively, to % (n+ M) é
and to 2(—p+ A) This implies that

1
a-
1 1 1
(u+Tu+T ulG)+T(u2G)>, (59)
pr=p+ A pe=—pt A,
st 7 1)+T< l) (60)
B) K B = /~b1 e M2 al)

and from (56)—(59) we conclude that

g™ — pllzoc) — 0. O

9.2. The necessary condition for the operator M to be Noetherian
in £P(), Let us show that the analogue of Theorem 9 is valid for the
operator M to be Noetherian in £P().
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Theorem 10. LetT' € R, p € P(T'), and let a and b be bounded measur-
able on T' functions, then for the operator M = ap + bSy to be Noetherian
in LPC) | it is necessary that the conditions (45) or, what comes to the same
thing, the condition

essinf|a? — b%| > 0
is fulfilled.

Proof. We proceed from the proof of Theorem 9. Tracing its proof, we
conclude that we have used the following facts:

(1) LP(*) is the Banach space;

(2) the set of Noetherian operators in the Banach space (and hence in
LPC)(I)), is open;

(3) equation (50) in LP(*) has only a zero solution;

(4) if two analytic functions have in the domain G the same angular
boundary values on the set of positive measure, then they are equal
everywhere in G;

(5) the function f =1 belongs to LP(*).

In the case under consideration:

(1) £P() is the Banach space;

(2') since £P(*) is the Banach space, the set of Noetherian operators is
open;

(3") equation (50) has in £P(") only a zero solution, since in a wider
space LP(") it has only a zero solution;

(4") the theorem on the uniqueness of analytic functions is applicable;

(5") the function f = 1 belongs to £P(");

By virtue of statements (1')—(5), repeating the same arguments as in
proving Theorem 9, we find that Theorem 10 is likewise valid. ([l
10. SOLUTION OF EQUATION My = f IN THE SPACE £P()

10.1. The case » = 0. Assume that the conditions (51)—(52) with
a—b

= A(p(- 1
G =] e Ap(-) (61)
and
essinfla® — b% > 0 (62)
are fulfilled, and consider the equation
Moy =ap+bSp=f, fla+b)~terrl), (63)
This equation is equivalent to the following Riemann problem:
t)
() =G)o (1) + g(t), t:L 64
67 = G (1) +9(0). 9) = e (64)

in the class K£P('), i.e., in the class of Cauchy type integrals with density
from £P(*).
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Indeed, if ¢ = K1¢ (where ¢ € £P(")) is a solution of the problem (64),
then it can be easily verified that ¢ is a solution of equation (63) of the
class £P(),

Conversely, if ¢ is a solution of equation (63) of the class £P(*), then
¢ = Krp € K£P() | and it satisfies the condition (64).

Lemma 6. If for T, p and G the conditions (25) are fulfilled and the
functions g1 and g2 are defined by equalities (53), then the equalities
Tor =91, Tg2=—9g2 (65)
are valid.

Proof. Follows immediately from the equality T(Tg) = g, valid due to the
conditions (25) (see Theorem 4). O

Lemma 7. If there take place the inclusions (51)—(52) and ind G =

ind Z—_T_Z =0, then equation (63) is uniquely solvable in the class £PC) | and

a solution is given by the equality

_ 92
@_gl Ga
where
1 1 f
91=§(9+T9), 92=§(—9+T9)7 9= (66)

Proof. By virtue of Theorem 8, the problem (64) in LP(*) has a unique
solution

g
o) = X(2) | Kr (55 ) | 2). (67)
By the Sokhotskii—Plemelj formulas, we obtain

1 1
of =S (g+Tg) =g ¢ =5 (-g+Te)=F5.  (63)

Since ind G = 0, therefore ¢ € E*(D¥), and hence
1 fetm—e ), 1 [a-%
H(2) = 5 / =20 gy / dt. (69)
r

_% t—z
r

Thereby, the only possible solution of equation (63) is the function

p=q-Z. (70)
Let us prove that ¢ € £P() ie., that
e P, Tpe L), T(%)ELP(’), k=12 (71)
From the assumptions g € LP(), Tg e LP(*), é € L™, it follows that
e P, (72)

Further, due to (65) and (70),

T -T2 = (g —=T%) e 1r)
Ty =Tg -T2 <91 TG)eL . (73)
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To study T' %%, we first note that

%01:%(90+T90)=%<91—%2+T91—T%) =
:%(91+T91)—%<%+T%2)zgl—%(%+T%), (74)
@2—%(_¢+T@):%(_gl+%+T‘gl +T9—C§) =
-3(G+7%) )
It follows from (52) and (70) that ¢y € LPC).

Now, we have

1 orgod (e d)-
(g bt g

r2-d(rs b (2
40842 ”

Taking into account (70), relying on (76) and (77), we conclude that

P P2 ()

T—,T=—=¢cLP). 78

o€ (78)

The inclusions (72), (73) and (78) imply that the inclusion (71) is valid,
and hence ¢ € £P("), |

10.2. The case » > 0. Since Tg € LP(*) all possible solutions of the
problem (64) lie in the set

6() = X(2)(Kr 525 ) (2) + Paca (2) X (2)

(see item 7.4). The first summand here belongs to K£P(*) (see item 7.3).
Let us show that the second summand likewise belongs to K £P().

Since X (t) has at infinity zero of order s, P,._1(2)X(2) is representable
by the Cauchy integral in the domains Dt and D~.

Lemma 8. The function
o(t) = [XT(t) — X~ Proa(2)
satisfies the conditions (52), and hence ¢ € LP().

Proof. Since X+, X~ € L? (see Theorem 3), ¢ € LP(").
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Further,
XtP X~ P
_pyt -p_ y+ + _
To=TXTP-TX P=X"5p X+ — XTS5t X+ =
P
:X+P—X+Sp5. (79)

Here, for the multiplier Sr g , we have

P [ P(r) dr 1 P(r)—P(t) 1
SFE‘/G(T)Z_/G(T) ¢ T PWSE. (80)
T T

By virtue of the inclusion (11), we find that X+ € LP()*" (see Corollary
of Theorem 3). Next, the first summand in equality (80) is a bounded
function; moreover, since I' € R and é € L°°, we have S é € () L*. Then
s>1
PS é e LP() and since Xt € LP()+7 therefore X*Spé e LP() | as well.
By virtue of (80), we can conclude from (79) that T'p € LP().
Further,

P P
201 =+ Te=2XTP-X"P+X"Sr—, 2p=X P+X"Sr—

G’ G
and hence
P _oy-p X P v g P o (op P P
S =2X P-4+ X Sp =X (2P G+SFG),
Y2 _ P P
2 _x— (2 +85-—
G (g+5¢)
from which we get
Y1 n 1 P P
T -=X — (2P —
e] St [G( ctsrg)) s
Y2 + 1 P P
T2 =X — (= —
€] SF[G(G+SFG)

It can be easily seen that 7'+ € LP(*) if the function XTSp (22 — & +
é Sr g) belongs to LP(*). Since g , % belong to L>* and I' € R we have

Sr £ and Sp & belong to the set () L”. Moreover, XT € LPC)+e (see
v>1
Corollary of Theorem 3). These two facts allow us to conclude that

T%eLPU. (82)

Analogously, we can prove that T 2> ¢ (),
Thus we have proved that for ¢ the conditions (52) are fulfilled, and
hence ¢ € £P(). ]
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10.3. The case » < 0.

Lemma 9. If the conditions (45), (51)—(52) are fulfilled, and » < 0,
then for equation (63) to be solvable in the class £PC) it is necessary and
sufficient that

)

dr=0, E=0,1,...,| —»| — 1. 83
/ahj+bﬁ)X+h)T » B=01, = (83)
r

Proof. In the case under consideration, X (z) has at infinity a pole of order

||, therefore the only possible solution of equation (62) may be only the

function (t) = ¢*(t) — ¢~ (), where ¢(2) = X(2)(Kr 5%)(2), g(t) =

a(tJ)CS:I)J(t)' But the function o(t) belongs to KLP(), if and only if ¢(2) €

EY(D%), i.e., when the function (Kt a%rb)(z) at the point z = oo has zero
of order |»|. Thus it is necessary and sufficient that equalities (83) are
fulfilled. And if this condition is fulfilled, the solution is unique and given
by the equality

<p:%(a—{—b+Ta—{—b>_%<_a—{—b+Ta—J:—b)' (84)

O

10.4. Summation of results stated in items 10.1-10.3.

Theorem 11. Let I' be a simple, closed, rectifiable curve p € P(I'), and
let a(t) and b(t) be bounded measurable on T’ functions such that

ess inf|a2(t) — b2(t)| >0

and G(t) = (a(t) — b(t))(a(t) + b(t))". If for T, p and G the conditions
(25) are fulfilled.
Then the equation

f(t)

Mﬂ+mﬂ€£m»

Mo = a(t)e(t) + b(t)(Sre)(t) = f(1),
for 3 = »(G) > 0 is solvable in the class LPC)(T); for s = 0, it is unique and
for 3¢ > 0, the homogeneous equation has » linearly independent solutions.
If 52 < 0, for the equation My = f to be solvable in the class LPC)(T), it is
necessary and sufficient that the conditions (83) are fulfilled.

In all cases when a solution exists, it is given by the equality

1l f / 1 / /
9O(t)ii(a—&—bJrTa—l—b)7ﬁ<7UL—&-bJrTa—i-b)jL
+ (Xt -X7)P (85)

(P,=0,ifv<0).
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11. THE SPACES LP() AND (LP())*

11.1. Definition and some properties of the space £P(C), Let P €
LP() and X be the function given by equality (26). Assume

. 1
rr() — {v: e LPC), fweLp(-)}.

(86)

For the functions ¢ € £P() we introduce the norm
[Pl zocy = 18llpc) + 1Tl (87)

Due to the continuity of the operator T' from £P(") to the space of con-
vergence in measure, we can easily prove

Lemma 10. IfT' € J*, p e P(I), G € A(p(-)), then the operator T is
continuous from LPC) to the space of convergence in measure.

Lemma 11. £7() s the complete, linear, normalized space.
Proof runs in the same way as that of Lemma 5.
11.2. The spaces ¢; and /5. Assume
b={y: et Ty =y}, Il = 1¥lly.),
lo={v: €L, Ty =y}, [[¥]* = [[$lly.)-

Lemma 12. (), k = 1,2, are closed subspaces of the space LP(").

(83)

Proof. Let ¢, € £, and {1} be the fundamental sequence in LP("), then
there exists ¢ € LP(*) such that ||/, — ¥g||,(.) — 0. Let us prove that
Py € ly.

Assuming for the definiteness that £ = 1, then T, = 1, and hence
{Tpr} converges in LP() to vhy. By statement 1, {T4y} converges in mea-
sure to T1)g. Hence 1)y = Ty € ¢1. Consequently, ¢; is closed in LP(*).

The closure of ¢ in LP(*) is proved analogously. O

Lemma 13.

LPC) =0y & 4. (89)
Proof. Let ) € £P(); obviously,
1 1
¢=§(¢+T¢)+§(¢—T¢)=¢1+¢2, (90)

where 1 = (¢ 4+ T%) and ¢ = § (= + T¢). We have

Ty = 5 (To+9) =, Ty = 3 (D6 ) =~

This implies that ¢y € ¢j.

If v = p1 + pr, pe € Ly, then 1 — p1 = P2 — po, where ¥y, — g € L.
Thereby, (¢ — i) € €1N¥y. But it can be easily verified that £; N¢s = {0}.
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Indeed, if ¢ € €1 N{y, then T =1 and T = —, i.e., » = —), and hence

P =0.
Thus, for any v € £P(*)| the unique representation of type (90) with
Yy € £, is valid. This means that equality (89) is valid. (]

11.3. The space (£P())*. Since £P(*) = ¢, @{, then following [30, p. 103],
we have
(LPO)y =17 @ 6.
Lemma 14. Every linear continuous functional A € (LPC))* generates

the linear continuous functional A from (LPC Y=,

Proof. We denote the narrowing of the functional A on ¢ by Ay (i.e., A f =
Af, when f € {(y).

Since £}, is the closed subspace of the space LP(*), there exists the linear,
continuous functional Ay on LP(*) such that ka = Af when f € £ (see
e.g., [31, p. 72]).

Assume

A=A, + A,
By the continuity of functionals Kk, we conclude that A is the linear, con-
tinuous functional on LP(),

If fe£PC) then f = fi + fa, fi € Ly, therefore
Af =Mf+RAaf =M(fi+ f2) +Aa(fi + fo) =
Z/A\1f+/A\1f2+K2f1 +1A\2f2- (91)
Before going further, we need the following
Lemma 15. The equalities
Mfa=0, f2€ls, Aofi=, fiel, (92)
are valid.

PTOOf. Let f = fl + f2, then Kfl = Klfl tKQfl’ ng = X/lfQ + //igfg.
By the definition of functionals Ak, we have Ay f; = Af; and Ao fo = Afs.
By virtue of the above-said, from the last equalities we arrive at equalities
(92). (]

We can now complete the proof of Lemma 14. Equalities (91) yield
Af=Mfi+Rofo = Afi+Afa = A(fi + f2) = Af,

ie., A is an extension of the functional A on £P(*) to the functional on
r().

For the functional A from Lemma 14, we have

Af = /fu dt, (93)
N

where € LP' (") (since (LP())* = LP'(*) | (see item 2.3.2). O
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Lemma 16. The function p in equality (93) belongs to LP'(*) .
Proof. We have

/A\wzr/(?/h +¢2)/~Ldt:leﬂdt+r/¢2#dt211+f2- (94)

Here,

o1, — /zpl,udt _ /(1/) b T dt = /wudt + /det. (95)
r r r r
Transforming the second summand in (95) and applying the Riesz equal-
ities

/fSpgdt:—/gSpfdt, ferrt) gerr) (96)
r r
([17]), we have

/Twudt:/XJ“Sp%udt:
r T
— + ¢ _ ¢ +

r r

Assuming for the present that u = u,, and 1) = v, are rational functions,
we can apply formula (96). Thus we obtain

/ Tty i dt = — / ;é’i SpX T pu, dt = — / U, Ty, dt. (97)
T T T

For the fixed p,, in right-hand side of equality (97) we can pass to the
limit with respect to v. We get

lim [ Ty dt = — / VT, dt, € LPC).

V—00
r r

As far as {T4, } converges in measure to T, we select a subsequence
converging almost everywhere to 7% and, by the Fatou lemma, we find that

/ Topp, dt = — F/ Wy, dt.

r

In the above equality, we can pass to the limit in left-hand side and as a
result, we have

/ Tyudt = lim / UT py, dt.
r

r
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According to Lemma 10, {Tu,} converges in measure to Tyu. Just as
above, we apply Fatou’s lemma and obtain

/ Tppdt = / T dt, (98)

where p € LP' () ¢ € LP(*). From (98) we can conclude that Ty € LP'().
Consequently, p € LP'() Ty e LP'(). O

It follows from equalities (93), (95) and (98) that if x € £7'(*)| then

Aw=/¢mda;u:—TueE“”

is the linear continuous functional in £P('). This and the statement of
Lemma 14 allow us to conclude that the following theorem is valid.

Theorem 12. If the conditions of Theorem 3 are fulfilled, then

p(t)

POy = £90) - g(t) = PR

12. ON THE NOETHERITY OF OPERATOR M IN THE SPACE £P(*)

12.1. The operator, conjugate to the operator M. If the operator M
acts from the Banach space X to Y, then the operator M* acts from Y* to
X* which to the linear functional A from Y™* to C puts into correspondence
the functional A* defined by the equality A*z = A(Mz), z € X.
In the case under consideration, X =Y = £P(") and Y* = X* = £90),
Let f € £P(), then

Af = [ fydt, e L1,
/

xf = [untsde= [ v (aor) + bo(SH)0) dt =

=/a(t)1/1(t)f(t) dt+/w(t)b(t)(5f)(t) dt =

r

=/a()¢( ) dt — /f (Sby) (1) dt

/ 0 — (Sby) (1) dt

Consequently, the conjugate to the operator M : £P(C) — £P() is the

operator M* : £I0) — Lat ) given by the equality
M*tp = ap — Sby. (99)
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12.2. About the equation M*i) = u. The equation
M*y = p. (100)

considered in £(*) is equivalent to the problem of conjugation

| 1%
Ut = _ v i 101
c¥ taow (101)
considered in the class K£4(). In addition,
L [b(m)(7)
U(z) = — [ ———=dr. 102
(2) 27 / T—Z g (102)
r
Since
L1 1
VT =5 (g +Shy), T =g (b +Shy),
therefore

Ut -0 =by, TF 4T = Sk

If 4 = 0, then ¢p = Sbyp) = ¥T — U~ and hence ayp = U+ + I~ by =
U — ¥~ This implies that (a + b)) =2V, ie.,

.
v(z) = j\ib

(103)

Since & € A(q(+)), for s = %(G) > 0 we have ind & < 0, therefore the

equation
ap — Sbyp =0 (104)

has only a zero solution.
When »#(G) < 0, it is not difficult to verify that a general solution of the
problem (101) for x = 0 will have the form

U= X ()P (2)

and from (73) we find that the set of functions

_ Bag-alz)
 Xt(a+b)

provides us with a general solution of equation M*i = 0. The base of a
general solution for that equation is

1 T rlxl=1

X*t(a+b) Xt(a+b) T Xt(atb)
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12.3. On the Noetherity of the operator M. The conditions (54) des-
ignate that equation (63) for » < 0 is normal solvability.
If 5 > 0, then N(M*) = {0}, and the equation My = f is solvable for
any ai—i-b e £°0) i.e., the condition of normal solvability is fulfilled again.
This and the fact that £ = N(M) = max(0,s) and ¢/ = N(M*) =
max(0, —3) allow us to conclude that the theorem below is valid.

Theorem 13. Let T' be the simple, closed, rectifiable curve and let a(t)
and b(t) be measurable bounded functions such that

ess inf‘aQ(t) - bz(t)‘ > 0,

and G(t) = (a(t) — b(t))(a(t) + b(t)) =t . If the conditions (25) are fulfilled,
then the equation

Mo = a(t)p(t) + b(t)(Se)(t) = f(t)
is Noetherian in the space £LPC), where
M*y = arp — Sbip, M* = £9C) — L£9C),
ind(M; £P0)) = 2(G) = » = ind ((a=b)(a+b)7h).
In all cases where a solution exists, it is given by equality (85).

Corollary. If V is a compact operator from LPC) to £P() and the
conditions (25) are fulfilled, then the operator M + V is Noetherian in

£r0) and ind(M +V, £P0)) = ind M = ind 47 .

This statement is a consequence of the result obtained in [29] according to
which it follows that the addition of a compact operator to the Noetherian
one does not change its Noetherity and index.

13. SOME PROPERTIES OF THE OPERATOR T = Tz, WHEN G € A(p(-))

Above we frequently applied properties of the operator Tz proven in
Section 6. Remind these properties.

(1) Under the assumptions (25), we have T(Tg) = g.
(2) The operator T is continuous from LP®) to the space of convergence

in measure.
(3) The operator T is closed from LP(*) to LP(").

Moreover, when proving Lemma 6, we have used equality (66) which will
be proved in Subsection 13.1.

Below, we will present some other properties of the operator T. We
start with Lemma 17 which will be highly useful in establishing operator
properties which will be treated in Subsections 13.3-13.5.

All curves considered in Section 13 are assumed (except requirements
made by the theorem) to be simple, rectifiable and closed.
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13.1. Lemma about S(ab).

Lemma 17. IfT € R, p € P(I'), a € LPC), b € L), then almost
everywhere on I' the equality

S(ab) = bSa + aSb— S(Sa - Sb) (105)
is valid.

Proof. Assume that the point z = 0 lies in the inner domain bounded by I'.
Then rational functions of the type

-1 n
> at +) " art® = m(t) + h(t)
k=0

k=—m

form a complete set both in LP(*) and in L%). We denote it by Q.

Let us show that if a(t) = m(t) + h(t), b(t) = r(t) + s(t), then equality
(105) is valid.

We have

S(ab) = S((m+ h)(r +s)) = S(mr + hr + ms + hs) =

= S(mr + hs) + S(ms + hr) = mr — hs + S(ms + hs). (106)
Here we have used the equalities

(SP)(t) = P(t), S(P(%)) _ _p(l),

t

where P is the polynomial of its own argument.
Further,

bSa + aSb — S(Sa - Sb) =
=(r+s)(m—"~)+(m+h)(r—s)—Simr—ms—hr+hs) =
= rm—rh+sm—sh+mr—ms+hr—hs—S(mr—ms—hr+hs) =
= 2rm — 2h — (mr — hs) — S(ms + hr) =

=mr — hs + S(ms + hr). (107)
From equalities (106) and (107) we obtain (105) in the form
S(RyQm) = SRy - Qm + RySQm — S(SRy, - SQum), (108)

where R,, and @,, belong to Q.

Let now a € L) and b € L") be arbitrary functions, and let ||R, —
CLHp(.) — 0, ||Qm - qu(.) — 0.

Since I € R and p € P(I), by the boundedness of the operator S in LP(*)
([10]), we admit in equality (108) the passage to the limit which allows us
to conclude that equality (105) is valid in a general case. (]

Corollary. IfT € R, pe P(T'), m € LPC), n € L) then
T(mn)=Tm-n+m-Sn—T(Tm- Sn).
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Proof. According to (105), we get
_ yt+tg( ™ — y+ m m + m -
T(mn) =X S(F”)_X (nSF—i—FSn)—X S(SFSn)—

1 m
_ + + + _
=Tm-n+m-Sn—T(Tm- Sn). O

13.2. Value of sup ||T'||o when o € [p,p].
Lemma 18. IfT e R, pe P(I), p= tinlip(t), p = supp(t), and for any
- € tel
a € 1= [p,p| we have |T|lo < co, then

sup || Tl < o0.
[

Proof. Assume the contrary; then there exists the sequence {a,}, o, € I,
such that

1T, — oo
Note that if p and p; belong to P(I'), and p(t) < pi1(t), then

[fllpy < (14 mesT)[fllp, )
(see item 2.4.2).

Let ag = sup «y,, then oy € I. Taking into account the last inequality,
we obtain

1

Tlao = sup [[T¢lla, > sup || Te| T FmesT

llellag <1 llellag <1

(109)

Qn

But [l¢llay > et [1¢lla,» hence [[plla, < (14 mesT)|¢lla,-
Consequently,

sup [T ¢lla, = (1+mesT) sup [[T¢lla, = (1 +mesD)||T]aq,-
lellop <1 lellan <1

This together with the estimate (109) result in ||T||o, = co. But this con-
tradicts the assumptions of the lemma by which ||T|4, should be finite,
since ag € 1. O

13.3. On the operator T/, when G € A(p(-)).

Lemma 19. IfT' € R, p € P(I") and the operator Tz, G € A(p(-)), is

continuous in LPC), then the operator
1 Xt () f(r
Tya: f—Tiyaf, (Tyaf)(t) ()

- 2mi X +(t) T—1
r

dt

is continuous in L),

Conversely, if Ty;q is continuous in L9C) | then Te is continuous in
().
Moreover,

1Tellp) < ElTycllac), 1Tyl < klTellp), (110)
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where k =1+ % + % is the constant from inequality (6).

o
(see item 2.4.1).

Assuming for the present that f and g are rational functions of the class
Q, we get

Proof. We proceed from the relation

[l fllpc.y ~  sup
llgllqcH<1

1T1/Ggllqc) ~

/le/G dt‘ sup

Hf”p(-)gl

/fSX+gdt’.

\f\lp( )<1

Using the Riesz equality (see formula (66)), we obtain

f g
ITy/cgllgcy = sup /gX+S <5 = suwp gTcfdt| <
[fllpH<1 2 I fllpc <t 2
<k- sup Algllo)IITafllpc) < Ellglla ITallo 1 fllnc-) =
fllpcH<1
=kl Tcllpc- ) lgllgc)-
Thus
||T1/G9||q(-) < kHTGHp(')Hqu(')’ f9eQ. (111)
Analogously we can prove that
1Tefllpc) < BTGl 1 o) (112)

By the passage to the limit (which is admissible due to T" € R), we find
that inequalities (111) and (112) are valid for any f € LP("), g € L90) i,
inequalities (110) are valid in a general case. O

13.4. On the operator ST.
Theorem 14. LetT € R, pe P(T), G € A(p(-)), g € LP(), then
S5(Tg)=g+Tg—Sg.

Proof. First of all, we note that T'g € LP(")=¢ € L' (see Theorem 7).

Since T'g € L', almost everywhere on I' there exists the integral Sr -,
and hence g(X*)~! € L'. This implies that (Kt 5% )(z) belongs to the set
N E%(D*) (see Subsection 2.6). Since
s<1

T X~ ( “a [ RS dT)'

I'e Rand G € A(p(-)), and hence In @ is the bounded function, therefore
X (z) and 1/X(z) belong to E”(D") for some v > 0 ([8, pp. 96-98]). Thus
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the function

P = X [ 00 0 (ke L),
T

being a product of two Smirnov class functions, belongs to some class
E"DT), n > 0. Moreover, F* = 1(g+ Tg). Here, g € LP("), while
Tg € L(I"). Thereby, F* € L(T'). Thus, according to Smirnov’s theorem
(see, e.g., [27, p. 254]), we find that F' € E1(D*). But then SpF'+ = FT.
This results in

1 1

5 l9+Tg) = 5(Sg+5Tg)
from which we obtain the provable equality. O

13.5. On the operator 7'S. As it has been shown in proving Theorem 14,
the function F(z) given by equality (113) belongs to E'(DT). This fact
allows us to prove that the following theorem is valid.

Theorem 15. In the assumptions of Theorem 14, the equality

(T'S)(9) =Sg+g—Tg (114)
is valid.
Proof. Let
¥ =

then ¥(z) € EY(DT), therefore
S[(Krg)X " = (Krg)t (X)),

that is,
g g+Sg g+ Sy
X+ Xt
from which we successively obtain
+o9+59 _
XTS x+ 9 +Sg,
T(g+Sg) =g+ 99,
Tg+TSg=g9+ Syg.
Indeed, the last equalities show that equality (114) is valid. (Il
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are established for the well-posedness of these problems.
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1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

In the present paper, we consider the system of nonlinear impulsive equa-
tions with a finite number of impulses points

dx

i f(t,z) almost everywhere on [a,b] \ {71,..., Tmg }» (1.1)
z(n+) —x(n—) =L(z(n)) (=1,...,m) (1.2)

with the general boundary value problem
h(z) =0, (1.3)
where a < 71 < -+ < Ty < b (we will assume 79 = a and T,y41 = b,

if necessary), —oco < a < b < 400, mg is a natural number, f = (f;)i,
belongs to Carathéodory class Car([a,b] x R",R"), I; = (I};)1~, : R* - R"
(I =1,...,mgp) are continuous operators, and h : C([a, b], R™;71,...,Tm,) —
R™ is a continuous, nonlinear in general, vector-functional.
Let z¢ be a solution of the problem (1.1),(1.2); (1.3).
147
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Consider a sequence of vector-functions fx € Car([a,b] x R*,R") (k =
1,2,...), the sequences of continuous operators I; : R* - R" (k=1,2,...;
Il =1,...,mp), the sequences 7, (k = 1,2,...; 1 = 1,...,myp) of points
a < Tk < < Tmek < band the sequence of continuous vector-functionals
hi 2 C([a, b, R™; T1gy e ooy Tior) = R™ (K =1,2,...).

In this paper the sufficient conditions are given guaranteing both the
solvability of the impulsive boundary value problems

Z—j = fr(t,x) almost everywhere on [a,b] \ {T1k,---, Tmok}, (1.1)
x(mﬁ—) —J}(le—) ZIlk(.’L‘(le)) (l = 1,...,m0); (I.Qk)
hi(z) =0 (1.3x)

(k=1,2,...) for any sufficient large k and the convergence of its solutions
to a solution of the problem (1.1),(1.2);(1.3) as k — +oc.

As is known, the question of the well-possedness for the nonlinear impul-
sive boundary value problems was not investigated in earlier works. So the
statement of the problems under consideration is actual.

The obtained results are analogous to ones given in [12] (see also the
references therein) for the general nonlinear boundary value problems for
systems of ordinary differential equations. Some results obtained in the pa-
per are more general than already known ones even for ordinary differential
case.

The analogous question is investigated in [4], [8] for linear boundary
value problems for systems with impulses, and in [1]-[3], [12]-[15] for linear
and nonlinear boundary value problems for systems of ordinary differential
equations. Notice that the necessary and sufficient conditions are obtained
for the well-possedness of the linear boundary value problem in [8] for im-
pulsive, and in [1]-[3] for ordinary differential systems.

Quite a number of issues of the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for a survey of the results on impulsive systems see, e.g.,
[5]-[7], [9]-[11], [16], [17] and the references therein).

Throughout the paper, the following notation and definitions will be used.

R =] —o00,+00[, Ry =[0,4+00[; [a,b] (a,b € R) is a closed segment.
R™*™ is the space of all real n x m-matrices X = (2;);j, with the
norms

_ X+ X
= 5 :
Rixm: {(.TU)Z’JZI Tij >0(i=1,...,n; j= 1,...,m)};

R(AXM)Xm _ pnxn o ROX7N (m-times).

X1 = (D)2, X1+
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R™ = R™*! is the space of all real column n-vectors z = (z;)/_; R} =
RnX1.

If X € R™" then X! det X and r(X) are, respectively, the matrix
inverse to X, the determinant of X and the spectral radius of X; I, «,, is
the identity n x n-matrix.

b
V(X) is the total variation of the matrix-function X : [a,b] — R™*™,
i.e.,, the sum of total variations of the latters’ components; V(X)(t) =
t
(v(@ij) (1)), where v(zi;)(a) = 0, v(z;;)(t) = \/(acij) for a <t < b;

t);,

X (t—) and X (t+) are the left and the right hmlt of the matrix-function

: [a,b] = R™ ™ at the point ¢ (we will assume X (t) = X(a) for t < a
)=

and X(t) = X(b) for t > b, if necessary);

IX1[s = sup {[|IX(®)[| : ¢ € [a,]}.
BV ([a, b], R"*™) is the set of all matrix-functions of bounded variation
b
X :[a,b] = R™™™ (i.e., such that V(X) < +00);

C([a,b],D), where D C R™ ™, is the set of all continuous matrix-
functions X : [a,b] — D;

C(la,b], D;T1,...,Tm,) is the set of all matrix-functions X : [a,b] —
D, having the one—51ded limits X(m—) (I = 1,...,mp) and X(n+) (I =
1,...,mg), whose restrictions to an arbitrary closed mterval [e, d] from [a, b]\

{71y, Tmy } belong to C([c,d], D);

Cs([a,b],R™*™; 7y, ... Ty, ) is the Banach space of all X € C([a, b], R™*™;
Tl -y Tmo) With the norm || X||s.

If y € Cs([a,b],R; 71, ..., Tm,) and r €]0, +00[, then

U(y;r) - {x € Cs([aab]an;Tla cee 77'm0) : Hx — st < 7’};

D(y,r) is the set of all x € R™ such that inf{||x — y(t)|| : t € [a,b]} < r.
C([a,b], D), where D C R™ ™, is the set of all absolutely continuous
matrix-functions X : [a,b] = D;

C(la,b), D; 14, . .. ,Tmo) 1s the set of all matrix-functions X : [a,b] —
D, having the one-sided limits X (r;—) (I = 1,...,mg) and X(7+) (I =
1,...,mg), whose restrictions to an arbitrary closed interval [c, d] from [a, b]\

{Tk}m belong to C([c, d], D).

If B; and Bs are the normed spaces, then an operator g : By — Bs
(nonlinear, in general) is positive homogeneous if g(Ax) = Ag(z) for every
A€ Ry and z € By.

The inequalities between the matrices are understood component wise.

An operator ¢ : C([a,b], R™;7y,...,Tm,) = R™ is called nondecreasing if
for every x,y € C([a,b],R™; 71, ..., Tm,) such that z(t) < y(t) for ¢ € [a, b
the inequality ¢(z)(t) < ¢(y)(t) holds for ¢ € [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.
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L([a,b], D), where D C R™ "™ _ is the set of all measurable and integrable
matrix-functions X : [a,b] — D.

If Dy C R™ and Dy C R™*™, then Car([a,b] x D1, Ds) is the Carathé-
odory class, i.e., the set of all mappings F' = (fi;),j~, : [a,b] x D1 — D>
such that for each i € {1,...,{}, j € {l,...,m}and k € {1,...,n}:

(a) the function fi;(-,) : [a,b] — D5 is measurable for every x € Dy;

(b) the function fy;(¢,-) : D1 — Dy is continuous for almost every
t € [a,b], and

sup {|fi;(-,2)| : @ € Do} € L([a,b], R; g;1,) for every compact Dy C D.

Car®([a,b] x Dy, Dy) is the set of all mappings F = (frj)iimy + la,b] %
Dy — Ds such that the functions fi,;(-,z(-)) (j=1,....m;k=1,...,n)
are measurable for every vector-function z : [a,b] — R™ with the bounded
total variation.

M (Ja,b] x Ry, Ry) is the set of all functions w € Car([a,b] x R4, Ry)
such that the function w(¢, -) is nondecreasing, and w(t,0) = 0.

By a solution of the impulsive system (1.1),(1.2) we understand a con-
tinuous from the left vector-function @ € C([a, b], R 71, ..., Tm, ) satisfying
both the system (1.1) for a.e. on [a,b] \ {71 ..., Tm, } and the relation (1.2)
for every € {1,...,mq}.

Definition 1.1. Let [ : Cs([a,b],R™;71,...,Tm,) — R™ be a linear con-
tinuous operator, and let Iy : Cs([a,b],R";71,...,Tm,) — R} be a positive
homogeneous operator. We say that a pair (P, {J;};"%), consisting of a
matrix-function P € Car([a, b] x R™,R"*™) and a finite sequence of contin-
uous operators J; = (J;)"; : R — R™ (I = 1,...,myg), satisfy the Opial
condition with respect to the pair (I,1p) if:

(a) there exist a matrix-function ® € L([a,b],R"}) and constant matri-

ces Uy € R™*™ (I =1,...,myp) such that

|P(t,z)| < ®(t) a.e. on [a,b], z € R"
and

[Ji(z)| < ¥, for z e R™ (I=1,...,mp);

det(Inxn +G)) #0 (I=1,...,mp) (1.4)

and the problem
Z—? = A(t)z a.e. on [a,b] \ {71, Tmo }+ (1.5)
z(n+) —xz(n—) =Guz(n) (I=1,...,mo); (1.6)

[[(@)] < lo(2) (1.7)
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has only the trivial solution for every matrix-function A €

L(Ja,b],R™*™) and constant matrices G; (I = 1,...,mg) for which
there exists a sequence yi € C([a, b, R™; 71, ..., Tm,) (k=1,2,...)
such that
¢ ¢
lim /P(T, ye(7))dr = /A(T)dT uniformly on [a, b]
k—+o00
and

lim Jl(yk(Tl)):Gl (l:].,...,mO).

k——+oo

Remark 1.1. In particular, the condition (1.4) holds if
[l <1 (1=1,...,mp).

Below we will assume that f = (f;), € Car([a,b] x R",R™) and, in
addition, f(7,x) is arbitrary for z € R™® (I=1,...,myg).

Let 2° be a solution of the problem (1.1), (1.2); (1.3), and 7 be a positive
number. Let us introduce the following definition.

Definition 1.2. The solution z° is said to be strongly isolated in the radius
r if there exist, respectively, the matrix— and the vector-functions P €
Car([a,b] x R",R"*") and ¢ € Car([a,b] x R" R™), a finite sequence of

continuous operators J; : R" - R" (I =1,...,mg) and h; : R" - R" (I =
1,...,mg), a linear continuous operator [ : Cs([a,b], R™; 71, ...,Tm,) — R,
a positive homogeneous operator Iy : Cs([a,b],R™;T1,...,Tm,) — R}, and
a continuous operator ! : Cy([a,b],R™; 71, ..., Tm,) — R™ such that

(a) the equalities

flt,z) = P(t,x)x + q(t,x) for t € [a,b]\ {71, ,Tmo}» |z — @) <,
I(x) = Jy(x)x + hy(z) for ||z —2°(m)|| <r (I1=1,...,mq);

and
h(z) = I(z) + (z) for z € U r)

are valid;
(b) the functions

a(t, p) = max {{lq(t,2)] : |lz]l < p},
Bi(p) = max {{|hu(2)] : [zl < p} (I=1,...,mo)

and

Y(p) = sup { [[{(@)| ~ to(@)], + llalls < p}
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satisfy the condition

b
. 1 <
imsup (1) + [attpdie Y a) <1
portoo P s =1
(c) the problem
dx
i P(t,z)x + q(t,z) a.e. on [a,b]\ {71,. ., Tmo},

x(n+) —x(n—) = Ji(z(n)) + h(z(r)) I=1,...,mp);

I(2) +1(z) =0

has no solution different from x°.

(d) the pair (P, {J;};") satisfy the Opial condition with respect to the
pair (I,1p).

Definition 1.3. We say that a sequence (fi,{lix};"%:hx) (F = 1,2,...)
belongs to the set W,.(f, {I;}]"9, h; 2°) if

(a) the equalities

k——+oo

¢ ¢
lim /fk(T,ZL') dT:/f(T,ZL')dT uniformly on [a, b

and

lim Ip(z) =IL(x) (I=1,...,m9)

k— 400

are valid for every x € D(z%r);
(b)

lim hg(x) = h(z) uniformly on U(z%;7);

k—-+o0

(c) there exist a sequence of functions wy € M([a,b] x Ry, Ry) (k =
1,2,...) and sequences of nondecreasing functions wy;, € C(R4,R;),
wik(0) =0, (k=1,2,...;1=1,...,mp) such that

b
sup{/wk(t,r)dt: k:l,?,...} < +00, (1.8)

wir(r) - k:172,...} < +oo; (1.9)

b
Sl_l>r(r)1+sup{/wk(t,s)dt: k= 1,2,...} =0, (1.10)
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Sl_l}r&_ sup { ;wlk(s) ck=1,2,... } =0 (1.11)
and
ka(t,l') - fk(tvy)H < Wk(tv H$ - y”)
for t € [a,b] \ {71, Tme}, T,y € D7) (k=1,2,...),
ik (2) = T (y) || < wir (= — yll)
for z,y € D(z%7r) (I1=1,...,mg; k=1,2,...).

Remark 1.2. If for every natural m there exists a positive number v, such
that

wi (£, md) < vpwi(t, d)
for § >0, t€a,b\{m1,...,Tme} (k=1,2,...),
then the estimate (1.8) follows from the condition (1.10); analogously, if
wik(md) < vpwi(d) for §>0 (I=1,...,mg; k=1,2,...),

then the estimate (1.9) follows from the condition (1.11). In particular, the
sequences of the functions

on(t,0)=mase | fult. )~ Fut.9)]| : 2y €U, a0 + 1), ey <5)
for t € {a, b))\ {m1,..., Tmo} (k=1,2,...)

and

con(8) = maox { [T (@) = ()| + 2y € U, |2 +7), o = y]| <6}

(l=1,....,mo; k=1,2,...)

have, respectively, the latters’ properties.
Definition 1.4. The problem (1.1), (1.2); (1.3) is said to be (z°;r)-correct
if for every ¢ €10, r[ and ((fx, {Lx}]2%; hk))z:i € W.(f, {Li};29, h; 2°) there
exists a natural number kg such that the problem (1, 1;), (1.2x); (1.3%) has

at least a solution contained in U(z%r) and any such solution belongs to
the ball U(z;) for every k > k.

Definition 1.5. The problem (1.1), (1.2); (1.3) is said to be correct if it has
the unique solution z° and it is (2°;r)-correct for every r > 0.

Theorem 1.1. If the problem (1.1),(1.2);(1.3) has a solution z°, strongly

isolated in the radius r > 0, then it is (z";r)-correct.

Theorem 1.2. Let the conditions
| f(t,2) = P(t,z)z|| < ot |l])
a.e. on [a,b)\{m1,...sTmo}, x€R", (1.12)

HIl(x) - Jl(x)xH < Bi(llzl]) for z € R™ (I=1,...,mp) (1.13)
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and
|h(z) = U(z)] <lo(z) + L ([|z]ls) for = € BV([a,b],R") (1.14)
hold, where £ : Cs([a, b, R™; 71, ..., Tm,) = R™ and £y : Cs([a,b],R™; 71, ...,

Tmo) — R} are, respectively, linear continuous and positive homogeneous
continuous operators, the pair (P, {J;}]"%) satisfies the Opial condition with
respect to the pair (¢,0y); o € Car([a,b] x Ry, Ry) is a function nonde-
creasing in the second variable, and B, € C([a,b],Ry) (I =1,...,mgp) and
01 € C(R,RY) are, respectively, nondecreasing functions and vector-function
such that

b
1 <
limsup —( [l1(p)|| + [ alt,p)dt+ > Bi(p) | < 1. (1.15)
p ( p / p ; zp>

p—+oo P
a

Then one-valued solvability of the problem (1.1),(1.2);(1.3) guarantees its
correctness.

Theorem 1.3. Let the conditions (1.12)—(1.14),
Pi(t) < P(t,x) < Py(t) ae. on [a,b]\{71,...,Tme}, * €R",
and
Ju <Ip(x) < Jy for xeR™ (I=1,...,mp)

hold, where P € Car”([a,b] xR"™,R"*"), P; € L([a,b],R™ ") (i = 1,2), Jy €
R™™ (1=1,2;1=1,...,mg), I : Cs([a,b],R™™; 71, ...,Tm,) = R™ andlp :
Cs([a, b, R ™ 71, .., Timy) — R} are, respectively, the linear continuous
and the positive homogeneous continuous operators; o € Car([a,b] xRy, Ry)
is a function nondecreasing in the second variable, and B; € C([a,b],R;)
(I=1,...,mg) and {; € C(R,R?) are, respectively, nondecreasing functions
and vector-function such that the condition (1.15) holds. Let, moreover, the
condition (1.4) hold and the problem (1.5),(1.6);(1.7) have only the trivial
solution for every matriz-function A € L([a,b],R™"*™) and the constant
matrices Gy € R"*"™(l =1,...,mg) such that

Pi(t) < A(t) < Pa(t) a.e. on [a,b]\{m1,...,Tmo}, ©€R"
and
Ju <G <Jy for zeR™ (I=1,...,myp).

Then one-valued solvability of the problem (1.1),(1.2);(1.3) guarantees its
correctness.

Remark 1.3. Theorem 1.3 is interesting only in the case where P ¢ Car([a, b] x
R™ R™*™) because the theorem immediately follows from Theorem 1.2 in
the case where P € Car([a,b] x R, R"*"™).
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Theorem 1.4. Let the conditions (1.14),

|f(t,z) = Po(t)z| < Q)|z| +q(t, [lz]]) ae. on [a,b]\ {71, .. Ty},
r eR",

and
\Ii(z) — Juz| < Hi|z| + b (|z]) for z € R™ (I=1,...,mp)

hold, where Py € L([a,b],R"*™), Q € L([a,b],R*™), Jo and H; € R"*"
(I =1,...,mp) are constant matrices, | : Cs([a,b],R™;71,...,Tm,) — R”
and ly = Cy([a,b],R™;71,...,Tm,) — R are, respectively, the linear con-
tinuous and positive homogeneous continuous operators; q¢ € Car([a,b] X
R, R%) is a wvector-function nondecreasing in the second variable, and
hy € C([a,b],Ry) (I =1,...,mp) and ¢y € C(R,R%) are, respectively, the
nondecreasing functions and vector-function such that the condition (1.15)
holds. Let, moreover, the conditions

det(Ian—i-JOl) #0 (l = 1,...7m0) (116)
and
[H - || (Tnsen + Jo) 7| <1 (1=1,...,mq) (1.17)
hold, and the system of impulsive inequalities
d
d—f — Po(t)a:‘ < Qt)x ae. on [a,b]\ {71, ., Tmo} (1.18)
\z(n4) — a(n—) — Jox(n)| < Hix(n) ((=1,...,mq) (1.19)

have only the trivial solution under the condition (1.7). Then one-valued
solvability of the problem (1.1),(1.2);(1.3) guarantees its correctness.

Corollary 1.1. Let the conditions (1.16)
|f(t,2)—Po(t)x|<q(t, ||z]) a.e. on [a,b]\{T1,... ,Tm,}, ®ER™, (1.20)
and
|Ii(x) — Juz| < hi(|lz]]) for 2 € R™ (I=1,...,my) (1.21)

hold, where Py € L([a,b],R™*™), Joy € R™™"™ (I =1,...,myg) are the con-
stant matrices, £ : Cs([a,b],R™;71,...,Tm,) — R and £y : Cs([a,b],R™;
Ty . s Tmo) — R are, respectively, the linear continuous and positive homo-
geneous continuous operators; q € Car([a,b] x R+,Rﬁ) s a vector-function
nondecreasing in the second variable, and h; € C([a,b],Ry) (I=1,...,mq)
and ¢1 € C(R,R%) are, respectively, the nondecreasing functions and a
vector-function such that the condition (1.15) holds. Let, moreover,

\h(z) — l(2)] < (||z]s) for = € BV([a,b],R™) (1.22)
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and the impulsive system

%:Po(t)x a.e. on [a,b)\ {71, Tmo }s

z(n+) —z(n—) = Juz(n) (=1,...,mg)

have only the trivial solution under the condition (1.7). Then one-valued
solvability of the problem (1.1),(1.2);(1.3) guarantees its correctness.

For every matrix-function X € L([a, b], R"*™) and a sequence of constant

matrices Y, € R"*™ (k. =1,...,mg) we introduce the operators
(X, Y1,..., mo)(t)] =1, for a<t<b,
[(X Yi,..., mo)(a)] =Opxn (1=1,2,...),
t
[(X,Yh... 1+1 / X Y17...,Ym0)(7')]1.d7'+

+ ) Y [(X Y, Y ) ()], for a<t<b (i=1,2,...). (1.23)

a<t <t

Corollary 1.2. Let the conditions (1.16), (1.20)—~(1.22) hold, where

Py € L([a,b],R™*™), Jo € R™™™ (I = 1,...,mq) are constant matrices,
K € L([a,b],R™™™), £y : Cs([a,b],R™;71,...,Tm,) — R} are the positive
homogeneous continuous operators; q € Car([a,b] x Ry, R") is a vector-
function nondecreasing in the second variable, and hy € C([a,b],Ry) (I =
1,...,mg) and {1 € C(R,R") are, respectively, the nondecreasing functions
and a vector-function such that the condition (1.15) holds. Let, moreover,
there exist natural numbers k and m such that the matrix

k-1 b

My = —Z/dK(t) (P, G, .. Gy (1)

i=0 7,

is nonsingular and

T(Mkm) < ].7

)
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where the operators [(Po,G1,...,Gmy)(t)]i (i = 0,1,...) are defined by
(1.23), and

Mim = [(IPo, G, |G ) )] +
m—1
+ 3 [(IBLIGA] - |G ) ()]
=0

b

< [V E)O - [(RLIG, .G ) 0],

Then one-valued solvability of the problem (1.1),(1.2);(1.3) guarantees its
correctness.

Theorem 1.5. Let the conditions (1.16), (1.17),
|f(t,(E) - f(ta y) - PO(t)('r - y)| < Q(t)|$ - y|

a.e. on [a, b))\ {71,. ., Tmo}, ®,y €R",
\Li(2) = Ii(y) — Jou - (= y)| < Hy - |z —y|
for x,y e R™ (k=1,...,mp)
and
|h(z) = h(y) — Uz — y)| < Lo(x —y) for z,y € BV([a,b],R")

hold, where Py € L([a,b],R™*"), Q € L([a,b],R}*"™), Jor and H, € R"*"
(I =1,...,mg) are the constant matrices, £ : Cs([a,b], R™;71,...,Tmy) —
R™ and £y : Cs([a, b], R™; 71, ..., Tm,) — R} are, respectively, linear contin-
uous and positive homogeneous continuous operators. Let, moreover, the
system of impulsive inequalities (1.18), (1.19) have only the trivial solution
under the condition (1.7). Then the problem (1.1),(1.2);(1.3) is correct.

Corollary 1.3. Let the system (1.1),(1.2);(1.3) have a unique solution

20 defined on the whole closed interval [a,b], where h(x) = z(to) — co,
and ty € [a,b] and ¢y € R™ are such that Il(co) =0 if tg = 7, for some
le{l,...,mo}. Let, moreover,

i sup (int {le+ L - el > . ol = p}) > 1oL, (129
for every l € {1,...,mo} such that 7, > tg. Then the problem (1.1),(1.2);
(1.24) is correct.

Remark 1.4. Tt is evident that the condition (1.24) is valid if I;(y) = 0 for
every | € {1,...,mg} such that 7; > to. If the last condition is not fulfilled,
i.e., Ij(y) # 0 for some [ € {1,...,mp}, then the strict inequality (1.24)
cannot be replaced by a non-strict one for this [. Below, we will give the
corresponding example.
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Example. Let n = 1, mg > 2 be an arbitrary natural number, 7; €]a, b|
(I=1,...,mgp), h(z) = x(ty) — co, to = b, co = 0; h(x) = x(tg) — cx (k =

1,2,...), tx = b (k= +00) and ¢ — ¢ (k — +00); f(t,z) = fr(t,z) =0

(k=1,2,...); i(x) =Ip(x)=0(1=1,....mp—1; k=1,2,...);
0 for £ <0,
Imo(x) = . . .. .
I4+cy1—c)i—x)—i—¢ for ze€li,i+1] (i=0,1,...)
and
Ikmo(‘r) =
Iy, () for x €] — 00,k — 1[U]k + 1, +00],
=¢(1—cpo1—cx)k—z)+cp—k for zelk—1K[,
(14 cpy1+ep)k—x)+cp—k for z €[k k+1]
(k=1,2,...).
Then z%(t) = 0, ((fk,{flk}ﬁol;hk))zz € W.(f,{Li}]29, h; 2°). Moreover,

the problem (1.1;), (1.2x); (1.3x) has the unique solution

¢, for a <t <1y,

t:
ze(t) k for 7,,<t<b

for every natural k. As to the condition (1.24), it is transformed into the
equality for ¢t = 7,,,, only.
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