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Abstract. For the quasi-linear neutral functional differential equation
the continuous dependence of a solution of the Cauchy problem on the ini-
tial data and on the nonlinear term in the right-hand side of that equation is
investigated, where the perturbation nonlinear term in the right-hand side
and initial data are small in the integral and standard sense, respectively.
Variation formulas of a solution are derived, in which the effect of pertur-
bations of the initial moment and the delay function, and also that of the
discontinuous initial condition are detected. For initial data optimization
problems the necessary conditions of optimality are obtained. The existence
theorem for optimal initial data is proved.
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ÒÄÆÉÖÌÄ. ÊÅÀÆÉßÒ×ÉÅÉ ÍÄÉÔÒÀËÖÒÉ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉ-
ÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÀÈÅÉÓ ÂÀÌÏÊÅËÄÖËÉÀ ÊÏÛÉÓ ÀÌÏÝÀÍÉÓ ÀÌÏ-
ÍÀáÓÍÉÓ ÖßÚÅÄÔÏÁÀ ÓÀßÚÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÃÀ ÂÀÍÔÏËÄÁÉÓ ÌÀÒãÅÄÍÀ
ÌáÀÒÉÓ ÀÒÀßÒ×ÉÅÉ ÛÄÓÀÊÒÄÁÉÓ ÛÄÛ×ÏÈÄÁÄÁÉÓ ÌÉÌÀÒÈ, ÓÀÃÀÝ ÌÀÒãÅÄ-
ÍÀ ÌáÀÒÉÓ ÀÒÀßÒ×ÉÅÉ ÛÄÓÀÊÒÄÁÉÓ ÃÀ ÓÀßÚÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÛÄÛ×ÏÈÄ-
ÁÄÁÉ, ÛÄÓÀÁÀÌÉÓÀÃ, ÌÝÉÒÄÀ ÉÍÔÄÂÒÀËÖÒÉ ÃÀ ÓÔÀÍÃÀÒÔÖËÉ ÀÆÒÉÈ.
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ×ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀ-
ÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓ ÃÀ ÃÀÂÅÉÀÍÄÁÉÓ ×ÖÍØÝÉÉÓ ÛÄÛ×ÏÈÄ-
ÁÄÁÉÓ Ä×ÄØÔÄÁÉ, ßÚÅÄÔÉËÉ ÓÀßÚÉÓÉ ÐÉÒÏÁÉÓ Ä×ÄØÔÉ. ÓÀßÚÉÓÉ ÌÏÍÀ-
ÝÄÌÄÁÉÓ ÏÐÔÉÌÉÆÀÝÉÉÓ ÀÌÏÝÀÍÄÁÉÓÈÅÉÓ ÌÉÙÄÁÖËÉÀ ÏÐÔÉÌÀËÖÒÏÁÉÓ
ÀÖÝÉËÄÁÄËÉ ÐÉÒÏÁÄÁÉ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÏÐÔÉÌÀËÖÒÉ ÓÀßÚÉÓÉ ÌÏÍÀ-
ÝÄÌÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÈÄÏÒÄÌÀ.
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Introduction

Neutral functional differential equation (briefly-neutral equation) is a
mathematical model of such dynamical system whose behavior depends on
the prehistory of the state of the system and on its velocity (derivative of
trajectory) at a given moment of time. Such mathematical models arise in
different areas of natural sciences as electrodynamics, economics, etc. (see
e.g. [1, 2, 4–6, 12, 13, 16]). To illustrate this, we consider a simple model of
economic growth. Let N(t) be a quantity of a product produced at the
moment t which is expressed in money units. The fundamental principle of
the economic growth has the form

N(t) = C(t) + I(t), (0.1)

where C(t) is the so-called an apply function and I(t) is a quantity of
induced investment. We consider the case where the functions C(t) and
I(t) are of the form

C(t) = αN(t), α ∈ (0, 1), (0.2)

and
I(t) = α1N(t−θ)+α2Ṅ(t)+α3Ṅ(t−θ)+α0N̈(t)+α4N̈(t−θ), θ > 0. (0.3)

From formulas (0.1)–(0.3) we get the equation

N̈(t) =
1− α

α0
N(t)− α1

α0
N(t− θ)− α2

α0
Ṅ(t)− α3

α0
Ṅ(t− θ)− α4

α0
N̈(t− θ)

which is equivalent to the following neutral equation:
ẋ1(t) = x2(t),

ẋ2(t) =
1− α

α0
x1(t)− α1

α0
x1(t− θ)− α2

α0
x2(t)−

−α3

α0
x2(t− θ)− α4

α0
ẋ2(t− θ),

here x1(t) = N(t).
Many works are devoted to the investigation of neutral equations, includ-

ing [1–7,12–14,17,19,25,28].
We note that the Cauchy problem for the nonlinear with respect to the

prehistory of velocity neutral equations is, in general, ill-posed when per-
turbation of the right-hand side of equation is small in the integral sense.
Indeed, on the interval [0, 2] we consider the system{

ẋ1(t) = 0,

ẋ2(t) =
[
x1(t− 1)

]2 (0.4)

with the initial condition
ẋ1(t) = 0, t ∈ [−1, 0), x1(0) = x2(0) = 0. (0.5)

The solution of the system (0.4) is
x10(t) = x20(t) ≡ 0.
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We now consider the perturbed system{
ẋ1k(t) = pk(t),

ẋ2k(t) =
[
x1k(t− 1)

]2
with the initial condition (0.5). Here,

pk(t) =

{
ςk(t), t ∈ [0, 1],

0, t ∈ (1, 2].

The function ςk(t) is defined as follows: for the given k = 2, 3, . . . , we divide
the interval [0, 1] into the subintervals li, i = 1, . . . , k, of the length 1/k;
then we define ςk(t) = 1, t ∈ l1, ςk(t) = −1, t ∈ l2 and so on. It is easy to
see that

lim
k→∞

max
s1,s2∈[0,1]

∣∣∣∣
s2∫

s1

ςk(t) dt

∣∣∣∣ = 0.

Taking into consideration the initial condition (0.5) and the structure of the
function ςk(t), we get

x1k(t) =

t∫
0

ςk(s) ds for t ∈ [0, 1], x1k(t) = x1k(1) for t ∈ (1, 2]

and

x2k(t) =

t∫
0

[
ẋ1k(s− 1)

]2
ds = 0 for t ∈ [0, 1],

x2k(t) =

t∫
1

[
ẋ1k(s− 1)

]2
ds =

t∫
1

ς2k(s− 1) ds =

=

t∫
1

1 ds = t− 1 for t ∈ (1, 2].

It is clear that
lim
k→∞

max
t∈[0,2]

∣∣x1k(t)− x10(t)
∣∣ = 0, lim

k→∞
max
t∈[0,2]

∣∣x2k(t)− x20(t)
∣∣ ̸= 0.

Thus, the Cauchy problem (0.4)–(0.5) is ill-posed.
The present work consists of two parts, naturally interconnected in their

meaning.
Part I concerns the following quasi-linear neutral equation:

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t))

)
(0.6)

with the discontinuous initial condition
x(t) = φ(t), ẋ(t) = v(t), t < t0, x(t0) = x0. (0.7)
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We note that the symbol ẋ(t) for t < t0 is not connected with the derivative
of the function φ(t). The condition (0.7) is called the discontinuous initial
condition, since, in general, x(t0) ̸= φ(t0).

In the same part we study the continuous dependence of a solution of
the problem (0.6)–(0.7) on the initial data and on the nonlinear term in the
right-hand side of the equation (0.6). Here, under initial data we mean the
collection of an initial moment, delay function appearing in the phase coor-
dinates, initial vector and initial functions. Moreover, we derive variation
formulas of a solution.

In Part II we consider the control neutral equation
ẋ(t) = A(t)ẋ(σ(t)) + f

(
t, x(t), x

(
τ(t), u(t)

))
with the initial condition (0.7). Here under initial data we understand the
collection of the initial moment t0, delay function τ(t), initial vector x0,
initial functions φ(t) and v(t), and the control function u(t). In the same
part, the continuous dependence of a solution and variation formulas are
used in proving both the necessary optimality conditions for the initial data
optimization problem and the existence of optimal initial data.

In Section 1 we prove the theorem on the continuous dependence of a
solution in the case where the perturbation of f is small in the integral
sense and initial data are small in the standard sense. Analogous theorems
without perturbation of a delay function are given [17, 28] for quasi-linear
neutral equations. Theorems on the continuous dependence of a solution
of the Cauchy and boundary value problems for various classes of ordinary
differential equations and delay functional differential equations when per-
turbations of the right-hand side are small in the integral sense are given
in [10,11,15,18,20,21,23,26].

In Section 2 we prove derive variation formulas which show the effect of
perturbations of the initial moment and the delay function appearing in the
phase coordinates and also that of the discontinuous initial condition. Vari-
ation formulas for various classes of neutral equations without perturbation
of delay can be found in [16, 24]. The variation formula of a solution plays
the basic role in proving the necessary conditions of optimality [11,15] and
in sensitivity analysis of mathematical models [1,2,22]. Moreover, the varia-
tion formula allows one to obtain an approximate solution of the perturbed
equation.

In Section 3 we consider initial data optimization problem with a general
functional and under the boundary conditions. The necessary conditions are
obtained for: the initial moment in the form of inequalities and equalities,
the initial vector in the form of equality, and the initial functions and control
function in the form of linearized integral maximum principle.

Finally, in Section 4 the existence theorem for an optimal initial data is
proved.
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1. Continuous Dependence of a Solution

1.1. Formulation of main results. Let I = [a, b] be a finite interval and
Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T , where
T is the sign of transposition. Suppose that O ⊂ Rn is an open set and
let Ef be the set of functions f : I × O2 → Rn satisfying the following
conditions: for each fixed (x1, x2) ∈ O2 the function f( · , x1, x2) : I → Rn

is measurable; for each f ∈ Ef and compact set K ⊂ O there exist the
functions mf,K(t), Lf,K(t) ∈ L(I,R+), where R+ = [0,∞), such that for
almost all t ∈ I

|f(t, x1, x2)| ≤ mf,K(t), ∀ (x1, x2) ∈ K2,∣∣f(t, x1, x2)− f(t, y1, y2)
∣∣ ≤

≤ Lf,K(t)

2∑
i=1

|xi − yi|, ∀ (x1, x2) ∈ K2, ∀ (y1, y2) ∈ K2.

We introduce the topology in Ef by the following basis of neighborhoods of
zero:{

VK,δ : K ⊂ O is a compact set and δ > 0 is an arbitrary number
}
,

where

VK,δ =
{
δf ∈ Ef : ∆(δf ;K) ≤ δ

}
,

∆(δf ;K) = sup
{∣∣∣∣

t′′∫
t′

δf(t, x1, x2) dt

∣∣∣∣ : t′, t′′ ∈ I, xi ∈ K, i = 1, 2

}
.

Let D be the set of continuously differentiable scalar functions (delay
functions) τ(t), t ∈ R, satisfying the conditions

τ(t) < t, τ̇(t) > 0, t ∈ R; inf
{
τ(a) : τ ∈ D

}
:= τ̂ > −∞,

sup
{
τ−1(b) : τ ∈ D

}
:= γ̂ < +∞,

where τ−1(t) is the inverse function of τ(t).
Let Eφ be the space of bounded piecewise-continuous functions φ(t) ∈

Rn, t ∈ I1 = [τ̂ , b], with finitely many discontinuities, equipped with the
norm ∥φ∥I1 = sup{|φ(t)| : t ∈ I1}. By Φ1 = {φ ∈ Eφ : clφ(I1) ⊂ O} we
denote the set of initial functions of trajectories, where φ(I1) = {φ(t) : t ∈
I1}; by Ev we denote the set of bounded measurable functions v : I1 → Rn,
v(t) is called the initial function of trajectory derivative.

By µ we denote the collection of initial data (t0, τ, x0, φ, v) ∈ [a, b)×D×
O × Φ1 × Ev and the function f ∈ Ef .

To each element µ = (t0, τ, x0, φ, v, f) ∈ Λ = [a, b)×D×O×Φ1×Ev×Ef

we assign the quasi-linear neutral equation

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t))

)
(1.1)
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with the initial condition

x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0. (1.2)

Here A(t) is a given continuous n× n matrix function and σ ∈ D is a fixed
delay function in the phase velocity. We note that the symbol ẋ(t) for t < t0
is not connected with a derivative of the function φ(t). The condition (1.2)
is called the discontinuous initial condition, since x(t0) ̸= φ(t0), in general.

Definition 1.1. Let µ = (t0, τ, x0, φ, v, f) ∈ Λ. A function x(t) = x(t;µ) ∈
O, t ∈ [τ̂ , t1], t1 ∈ (t0, b], is called a solution of the equation (1.1) with
the initial condition (1.2) or a solution corresponding to the element µ
and defined on the interval [τ̂ , t1] if it satisfies the condition (1.2) and is
absolutely continuous on the interval [t0, t1] and satisfies the equation (1.1)
almost everywhere (a.e.) on [t0, t1].

To formulate the main results, we introduce the following sets:

W (K;α) =
{
δf ∈ Ef : ∃mδf,K(t), Lδf,K(t) ∈ L(I,R+),∫

I

[
mδf,K(t) + Lδf,K(t)

]
dt ≤ α

}
,

where K ⊂ O is a compact set and α > 0 is a fixed number independent of
δf ;

B(t00; δ) = {t0 ∈ I : |t0 − t00| < δ},
B1(x00; δ) = {x0 ∈ O : |x0 − x00| < δ},
V (τ0; δ) = {τ ∈ D : ||τ − τ0||I2 < δ},
V1(φ0; δ) = {φ ∈ Φ1 : ||φ− φ0||I1 < δ},
V2(v0; δ) = {v ∈ Ev : ||v − v0||I1 < δ},

where t00 ∈ [a, b) and x00 ∈ O are the fixed points; τ0 ∈ D, φ0 ∈ Φ1,
v0 ∈ Ev are the fixed functions, δ > 0 is the fixed number, I2 = [a, γ̂].

Theorem 1.1. Let x0(t) be a solution corresponding to µ0 = (t00, τ0, x00,
φ0, v0, f0) ∈ Λ, t10 < b, and defined on [τ̂ , t10]. Let K1 ⊂ O be a compact set
containing a certain neighborhood of the set clφ0(I1) ∪ x0([t00, t10]). Then
the following assertions hold:

1.1. there exist numbers δi > 0, i = 0, 1 such that to each element

µ = (t0, τ, x0, φ, v, f0 + δf) ∈ V (µ0;K1, δ0, α) =

= B(t00; δ0)× V (τ0; δ0)×B1(x00; δ0)× V1(φ0; δ0)× V2(v0; δ0)×
×
[
f0 +W (K1;α) ∩ VK1,δ0

]
there corresponds the solution x(t;µ) defined on the interval [τ̂ , t10+
δ1] ⊂ I1 and satisfying the condition x(t;µ) ∈ K1;
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1.2. for an arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0] such
that the following inequality holds for any µ ∈ V (µ0;K1, δ2, α):∣∣x(t;µ)− x(t;µ0)| ≤ ε, ∀ t ∈ [t̂, t10 + δ1], t̂ = max{t00, t0};

1.3. for an arbitrary ε > 0 there exists a number δ3 = δ3(ε) ∈ (0, δ0] such
that the following inequality holds for any µ ∈ V (µ0;K1, δ3, α):

t10+δ1∫
τ̂

|x(t;µ)− x(t;µ0)| dt ≤ ε.

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1].

In the space Eµ − µ0, where Eµ = R × D × Rn × Eφ × Ev × Ef , we
introduce the set of variations:

ℑ =
{
δµ = (δt0, δτ, δx0, δφ, δv, δf) ∈ Eµ − µ0 : |δt0| ≤ β, ∥δτ∥I2 ≤ β,

|δx0| ≤ β, ∥δφ∥I1 ≤ β, ∥δv∥I1 ≤ β, δf =

k∑
i=1

λiδfi,

|λi| ≤ β, i = 1, . . . , k
}
,

where β > 0 is a fixed number and δfi ∈ Ef − f0, i = i = 1, . . . , k, are fixed
functions.

Theorem 1.2. Let x0(t) be a solution corresponding to µ0 = (t00, τ0, x00,
φ0, v0, f0) ∈ Λ and defined on [τ̂ , t10], ti0 ∈ (a, b), i = 0, 1. Let K1 ⊂ O
be a compact set containing a certain neighborhood of the set clφ0(I1) ∪
x0([t00, t10]). Then the following conditions hold:

1.4. there exist the numbers ε1 > 0, δ1 > 0 such that for an arbitrary
(ε, δµ) ∈ [0, ε1]×ℑ we have µ0+ εδµ ∈ Λ and the solution x(t;µ0+
εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 corresponds to that
element. Moreover, x(t;µ0 + εδµ) ∈ K1;

1.5. lim
ε→0

sup
{
|x(t;µ0 + εδµ)− x(t;µ0)| : t ∈ [t̂, t10 + δ1]

}
= 0,

lim
ε→0

t10+δ1∫
τ̂

∣∣x(t;µ0 + εδµ)− x(t;µ0)
∣∣ dt = 0

uniformly for δµ ∈ ℑ, where t̂ = max{t0, t0 + εδt0}.

Theorem 1.2 is the corollary of Theorem 1.1.
Let Eu be the space of bounded measurable functions u(t) ∈ Rr, t ∈ I.

Let U0 ⊂ Rr be an open set and Ω = {u ∈ Eu : clu(I) ⊂ U0}. Let Φ11 be
the set of bounded measurable functions φ(t) ∈ O, t ∈ I1, with clφ(I1) ⊂ O.
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To each element w = (t0, τ, x0, φ, v, u) ∈ Λ1 = [a, b)×D×O×Φ11×Ev×Ω
we assign the controlled neutral equation

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t)), u(t)

)
(1.3)

with the initial condition (1.2). Here, the function f(t, x1, x2, u) is de-
fined on I × O2 × U0 and satisfies the following conditions: for each fixed
(x1, x2, u) ∈ O2 × U0, the function f( · , x1, x2, u) : I → Rn is measur-
able; for each compact sets K ⊂ O and U ⊂ U0 there exist the functions
mK,U (t), LK,U (t) ∈ L(I,R+) such that for almost all t ∈ I,∣∣f(t, x1, x2, u)∣∣ ≤ mK,U (t), ∀ (x1, x2, u) ∈ K2 × U,∣∣f(t, x1, x2, u1)− f(t, y1, y2, u2)

∣∣ ≤ Lf,K(t)
[ 2∑

i=1

|xi − yi|+ |u1 − u2|
]
,

∀ (x1, x2) ∈ K2, ∀ (y1, y2) ∈ K2, (u1, u2) ∈ U2.

Definition 1.2. Let w = (t0, τ, x0, φ, v, u) ∈ Λ1. A function x(t) =
x(t;w) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b], is called a solution of the equation
(1.3) with the initial condition (1.2), or a solution corresponding to the el-
ement w and defined on the interval [τ̂ , t1] if it satisfies the condition (1.2)
and is absolutely continuous on the interval [t0, t1] and satisfies the equation
(1.3) a. e. on [t0, t1].

Theorem 1.3. Let x0(t) be a solution corresponding to w0 = (t00, τ0, x00,
φ0, v0, u0) ∈ Λ1 and defined on [τ̂ , t10], t10 < b. Let K1 ⊂ O be a compact set
containing a certain neighborhood of the set clφ0(I1) ∪ x0([t00, t10]). Then
the following conditions hold:

1.6. there exist the numbers δi > 0, i = 0, 1 such that to each element

w = (t0, τ, x0, φ, v, u) ∈ V̂ (w0; δ0) =

= B(t00; δ0)×V (τ0; δ0)×B1(x00; δ0)×V1(φ0; δ0)×V2(v0; δ0)×V3(u0; δ0)

there corresponds the solution x(t;w) defined on the interval [τ̂ , t10+
δ1] ⊂ I1 and satisfying the condition x(t;w)∈K1, where V3(u0; δ0)=
{u ∈ Ω : ∥u− u0∥I < δ0};

1.7. for an arbitrary ε > 0, there exists the number δ2 = δ2(ε) ∈ (0, δ0)

such that the following inequality holds for any w ∈ V̂ (w0; δ2):∣∣x(t;w)− x(t;w0)
∣∣ ≤ ε, ∀ t ∈ [t̂, t10 + δ1], t̂ = max{t0, t00};

1.8. for an arbitrary ε > 0, there exists the number δ3 = δ3(ε) ∈ (0, δ0)

such that the following inequality holds for any w ∈ V̂ (w0; δ3):
t10+δ1∫
τ̂

∣∣x(t;w)− x(t;w0)
∣∣ dt ≤ ε.
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In the space Ew − w0, where Ew = R × D × Rn × Φ11 × Ev × Eu, we
introduce the set of variations

ℑ1 =
{
δw = (δt0, δτ, δx0, δφ, δv, δu) ∈ Ew − w0 : |δt0| ≤ β, ∥δτ∥I2 ≤ β,

|δx0| ≤ β, ∥δφ∥I1 ≤ β, ∥δv∥I1 ≤ β, ∥δu∥I ≤ β
}
.

Theorem 1.4. Let x0(t) be a solution corresponding to w0 = (t00, τ0, x00,
φ0, v0, u0) ∈ Λ1 and defined on [τ̂ , t10], ti0 ∈ (a, b), i = 0, 1. Let K1 ⊂ O
be a compact set containing a certain neighborhood of the set clφ0(I1) ∪
x0([t00, t10]). Then the following conditions hold:

1.9. there exist numbers ε1 > 0, δ1 > 0 such that for an arbitrary
(ε, δw) ∈ [0, ε1] × ℑ1 we have w0 + εδw ∈ Λ1, and the solution
x(t;w0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 corresponds
to that element. Moreover, x(t;w0 + εδw) ∈ K1;

1.10. lim
ε→0

sup
{
|x(t;w0 + εδw)− x(t;w0)| : t ∈ [ t̂, t10 + δ1]

}
= 0,

lim
ε→0

t10+δ1∫
τ̂

∣∣x(t;w0 + εδw)− x(t;w0)
∣∣ dt = 0

uniformly for δw ∈ ℑ1.

Theorem 1.4 is the corollary of Theorem 1.3.

1.2. Preliminaries. Consider the linear neutral equation
ẋ(t) = A(t)ẋ(σ(t)) +B(t)x(t) + C(t)x(τ(t)) + g(t), t ∈ [t0, b], (1.4)

with the initial condition
x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0, (1.5)

where B(t), C(t) and g(t) are the integrable on I matrix- and vector-
functions.

Theorem 1.5 (Cauchy formula). The solution of the problem (1.4)–(1.5)
can be represented on the interval [t0, b] in the following form:

x(t) = Ψ(t0; t)x0 +

t0∫
σ(t0)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)v(ξ) dξ+

+

t0∫
τ(t0)

Y (γ(ξ); t)C(γ(ξ))γ̇(ξ)φ(ξ) dξ +

t∫
t0

Y (ξ; t)g(ξ) dξ, (1.6)

where ν(t) = σ−1(t), γ(t) = τ−1(t); Ψ(ξ; t) and Y (ξ; t) are the matrix-
functions satisfying the system{

Ψξ(ξ; t) = −Y (ξ; t)B(ξ)− Y (γ(ξ); t)C(γ(ξ))γ̇(ξ),

Y (ξ; t) = Ψ(ξ; t) + Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)
(1.7)
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on (a, t) for any fixed t ∈ (a, b] and the condition

Ψ(ξ; t) = Y (ξ; t) =

{
H, ξ = t,

Θ, ξ > t.
(1.8)

Here, H is the identity matrix and Θ is the zero matrix.

This theorem is proved in a standard way [3, 9, 15]. The existence of a
unique solution of the system (1.7) with the initial condition (1.8) can be
easily proved by using the step method from right to left.

Theorem 1.6. Let q be the minimal natural number for which the inequality
σq+1(b) = σq(σ(b)) < a

holds. Then for each fixed instant t ∈ (t0, b], the matrix function Y (ξ; t) on
the interval [t0, t] can be represented in the form

Y (ξ; t) = Ψ(ξ; t) +

q∑
i=1

Ψ(νi(ξ); t)
1∏

m=i

A(νm(ξ))
d

dξ
νm(ξ). (1.9)

Proof. It is easy to see that as a result of a multiple substitution of the
corresponding expression for the matrix functions Y (ξ; t), using the second
equation of the system (1.7), we obtain

Y (ξ; t)=Ψ(ξ; t)+
[
Ψ(ν(ξ); t)+Y (ν2(ξ); t)A(ν2(ξ))ν̇(ν(ξ))

]
A(ν(ξ))ν̇(ξ) =

= Ψ(ξ; t)+Ψ(ν(ξ); t)A(ν(ξ))ν̇(ξ)+Y (ν2(ξ); t)A(ν2(ξ))A(ν(ξ))
d

dξ
ν2(ξ) =

= Ψ(ξ; t) + Ψ(ν(ξ); t)A(ν(ξ))ν̇(ξ)+

+
[
Ψ(ν2(ξ); t) + Y (ν3(ξ); t)A(ν3(ξ))ν̇(ν2(ξ))

]
A(ν2(ξ))A(ν(ξ))

d

dξ
ν2(ξ) =

= Ψ(ξ; t) + Ψ(ν(ξ); t)A(ν(ξ))ν̇(ξ) + Ψ(ν2(ξ); t)A(ν2(ξ))A(ν(ξ))
d

dξ
ν2(ξ)+

+ Y (ν3(ξ); t)A(ν3(ξ))A(ν2(ξ))A(ν(ξ))
d

dξ
ν3(ξ).

Continuing this process and taking into account (1.8), we obtain (1.9). �

Theorem 1.7. The solution x(t) of the equation
ẋ(t) = A(t)ẋ(σ(t)) + g(t), t ∈ [t0, b]

with the initial condition
ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0,

on the interval [t0, b] can be represented in the form

x(t) = x0 +

t0∫
σ(t0)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)v(ξ) dξ +

t∫
t0

Y (ξ; t)g(ξ) dξ, (1.10)
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where

Y (ξ; t) = α(ξ; t)H +

q∑
i=1

α(νi(ξ); t)
1∏

m=i

A(νm(ξ))
d

dξ
νm(ξ), (1.11)

α(ξ; t) =

{
1, ξ < t,

0, ξ > t.

Proof. In the above-considered case, B(t) = C(t) = Θ, therefore the first
equation of the system (1.7) is of the form

Ψξ(ξ; t) = 0, ξ ∈ [t0, t].

Hence, taking into account (1.8), we have Ψ(ξ; t) = α(ξ; t)H. From (1.6)
and (1.9), we obtain (1.10) and (1.11), respectively. �

Theorem 1.8. Let the function g : I ×Rn ×Rn → Rn satisfy the following
conditions: for each fixed (x1, x2) ∈ Rn×Rn, the function g( · , x1, x2) : I →
Rn is measurable; there exist the functions m(t), L(t) ∈ L(I,R+) such that
for almost all t ∈ I,∣∣g(t, x1, x2)∣∣ ≤ m(t), ∀ (x1, x2) ∈ Rn × Rn,∣∣g(t, x1, x2)− g(t, y1, y2)

∣∣ ≤
≤ L(t)

2∑
i=1

|xi − yi|, ∀ (x1, x2) ∈ Rn × Rn, ∀ (y1, y2) ∈ Rn × Rn.

Then the equation
ẋ(t) = A(t)ẋ(σ(t)) + g

(
t, x(t), x(τ(t))

)
(1.12)

with the initial condition
x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0. (1.13)

has the unique solution x(t) ∈ Rn defined on the interval [τ̂ , b] (see Definition
1.1).

Proof. The existence of a global solution will be proved by the step method
with respect to the function ν(t). We divide the interval [t0, b] into the
subintervals [ξi, ξi+1], i = 0, . . . , l, where ξ0 = t0, ξi = νi(t0), i = 1, . . . , l,
ξl+1 = b, ν1(t0) = ν(t0), ν2(t0) = ν(ν(t0)), . . . .

It is clear that on the interval [ξ0, ξ1] we have the delay differential equa-
tion

ẋ(t) = g
(
t, x(t), x(τ(t))

)
+A(t)v(σ(t)) (1.14)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , ξ0), x(ξ0) = x0. (1.15)

The problem (1.14)–(1.15) has the unique solution z1(t) defined on the in-
terval [τ̂ , ξ1], i.e. the function z1(t) satisfies the condition (1.13) and on the
interval [ξ0, ξ1)] is absolutely continuous and satisfies the equation (1.12)
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a.e. on [ξ0, ξ1]. Thus, x(t) = z1(t) is the solution of the problem (1.12)–(1.13)
defined on the interval [τ̂ , ξ1].

Further, on the interval [ξ1, ξ2] we have the equation
ẋ(t) = g

(
t, x(t), x(τ(t))

)
+A(t)ż(σ(t)) (1.16)

with the initial condition
x(t) = z1(t), t ∈ [τ̂ , ξ1]. (1.17)

Here,

ż(t) =

{
v(t), t ∈ [τ̂ , ξ0),

ż1(t), t ∈ [ξ0, ξ1].

The problem (1.16)–(1.17) has the unique solution z2(t) defined on the in-
terval [τ̂ , ξ2]. Thus, the function x(t) = z2(t) is the solution of the problem
(1.12)–(1.13) defined on the interval [τ̂ , ξ2].

Continuing this process, we can construct a solution of the problem
(1.12)–(1.13) defined on the interval [τ̂ , b]. �

Theorem 1.9. Let x(t), t ∈ [τ̂ , b], be a solution of the problem (1.12)–(1.13),
then it is a solution of the integral equation

x(t) = x0 +

t0∫
σ(t0)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)v(ξ) dξ+

+

t∫
t0

Y (ξ; t)g(t, x(ξ), x(τ(ξ))) dξ, t ∈ [t0, b], (1.18)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0), (1.19)

where Y (ξ; t) has the form (1.11).

This theorem is a simple corollary of Theorem 1.5.

Theorem 1.10. If the integral equation (1.18) with the initial condition
(1.19) has a solution, then it is unique.

Proof. Let x1(t) and x2(t) be two solutions of the problem (1.18)–(1.19).
We have ∣∣x1(t)− x2(t)

∣∣ ≤
≤ ∥Y ∥

t∫
t0

L(ξ)
{∣∣x1(ξ)− x2(ξ)

∣∣+ ∣∣x1(τ(ξ))− x2(τ(ξ))
∣∣} dξ ≤

≤ ∥Y ∥
{ t∫

t0

[
L(ξ) + L(γ(ξ))γ̇(ξ)

] ∣∣x1(ξ)− x2(ξ)
∣∣ dξ},
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where
∥Y ∥ = sup

{
|Y (ξ; t)| : (ξ, t) ∈ I × I

}
.

By virtue of Gronwall’s inequality, we have x1(t) = x2(t), t ∈ [t0, b]. �

Theorem 1.11. The solution of the problem (1.18)–(1.19) is the solution
of the problem (1.12)–(1.13).

This theorem is a simple corollary of Theorems 1.7–1.9.

Theorem 1.12 ( [24]). Let x(t) ∈ K1, t ∈ I1, be a piecewise-continuous
function, where K1 ⊂ O is a compact set, and let a sequence δfi ∈W (K1;α),
i = 1, 2, . . ., satisfy the condition

lim
i→∞

∆(δfi;K1) = 0.

Then

lim
i→∞

sup
{∣∣∣∣

s2∫
s1

Y (ξ; t)δfi
(
ξ, x(ξ), x(τ(ξ))

)
dξ

∣∣∣∣ : s1, s2 ∈ I

}
= 0

uniformly in t ∈ I.

Theorem 1.13 ( [24]). The matrix functions Ψ(ξ; t) and Y (ξ; t) have the
following properties:

1.11. Ψ(ξ; t) is continuous on the set Π = {(ξ, t) : a ≤ ξ ≤ t ≤ b};
1.12. for any fixed t ∈ (a, b), the function Y (ξ; t), ξ ∈ [a, t], has first order

discontinuity at the points of the set

I(t0; t) =
{
σi(t) = σ(σi−1(t)) ∈ [a, t], i = 1, 2, . . . , σ0(t) = t

}
;

1.13. lim
θ→ξ−

Y (θ; t) = Y (ξ−; t), lim
θ→ξ+

Y (θ; t) = Y (ξ+; t) uniformly with
respect to (ξ, t) ∈ Π;

1.14. Let ξi ∈ (a, b), i = 0, 1, ξ0 < ξ1 and ξ0 ̸= I(ξ0; ξ1). Then there exist
numbers δi, i = 0, 1, such that the function Y (ξ; t) is continuous on
the set [ξ0 − δ0, ξ0 + δ0]× [ξ1 − δ1, ξ1 − δ1] ⊂ Π.

1.3. Proof of Theorem 1.1. On the continuous dependence of a solution
for a class of neutral equation. To each element µ = (t0, τ, x0, φ, v, f) ∈ Λ
we assign the functional differential equation

ẏ(t) = A(t)h(t0, v, ẏ)(σ(t)) + f(t0, τ, φ, y)(t) (1.20)
with the initial condition

y(t0) = x0, (1.21)
where f(t0, τ, φ, y)(t) = f(t, y(t), h(t0, φ, y)(τ(t))) and h( · ) is the operator
given by the formula

h(t0, φ, y)(t) =

{
φ(t) for t ∈ [τ̂ , t0),

y(t) for t ∈ [t0, b].
(1.22)
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Definition 1.3. An absolutely continuous function y(t) = y(t;µ) ∈ O,
t ∈ [r1, r2] ⊂ I, is called a solution of the equation (1.20) with the initial
condition (1.21), or a solution corresponding to the element µ ∈ Λ and
defined on [r1, r2] if t0 ∈ [r1, r2], y(t0) = x0 and satisfies the equation (1.20)
a.e. on the interval [r1, r2].

Remark 1.1. Let y(t;µ), t ∈ [r1, r2] be the solution of the problem (1.20)–
(1.21). Then the function

x(t;µ) = h
(
t0, φ, y( · ;µ)

)
(t), t ∈ [τ̂ , r2]

is the solution of the equation (1.1) with the initial condition (1.2).

Theorem 1.14. Let y0(t) be a solution corresponding to µ0 ∈ Λ defined
on [r1, r2] ⊂ (a, b). Let K1 ⊂ O be a compact set containing a certain
neighborhood of the set K0 = clφ0(I1) ∪ y0([r1, r2]). Then the following
conditions hold:

1.15. there exist numbers δi > 0, i = 0, 1 such that a solution y(t;µ)
defined on [r1 − δ1, r2 + δ1] ⊂ I corresponds to each element

µ = (t0, τ, x0, φ, v, f0 + δf) ∈ V (µ0;K1, δ0, α).

Moreover,
φ(t) ∈ K1, t ∈ I1; y(t;µ) ∈ K1, t ∈ [r1 − δ1, r2 + δ1],

for arbitrary µ ∈ V (µ0;K1, δ0, α);
1.16. for an arbitrary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0]

such that the following inequality holds for any µ ∈ V (µ0;K1, δ0, α):∣∣y(t;µ)− y(t;µ0)
∣∣ ≤ ε, ∀ t ∈ [r1 − δ1, r2 + δ1]. (1.23)

Proof. Let ε0 > 0 be so small that a closed ε0-neighborhood of the set K0:

K(ε0) =
{
x ∈ Rn : ∃ x̂ ∈ K0 |x− x̂| ≤ ε0

}
lies in intK1. There exist a compact set Q: K2

0 (ε0) ⊂ Q ⊂ K2
1 and a

continuously differentiable function χ : R2n → [0, 1] such that

χ(x1, x2) =

{
1 for (x1, x2) ∈ Q,

0 for (x1, x2) ̸∈ K2
1

(1.24)

(see Assertion 3.2 in [11, p. 60]).
To each element µ ∈ Λ, we assign the functional differential equation

ż(t) = A(t)h(t0, v, ż)(σ(t)) + g(t0, τ, φ, z)(t) (1.25)
with the initial condition

z(t0) = x0, (1.26)
where g(t0, τ, φ, z)(t) = g(t, z(t), h(t0, φ, z)(τ(t))) and g = χf . The function
g(t, x1, x2) satisfies the conditions

|g(t, x1, x2)| ≤ mf,K1(t), ∀xi ∈ Rn, i = 1, 2, (1.27)



16 Tamaz Tadumadze and Nika Gorgodze

for ∀x′i, x′′i ∈ Rn, i = 1, 2, and for almost all t ∈ I∣∣g(t, x′1, x′2)− g(t, x′′1 , x
′′
2)
∣∣ ≤ Lf (t)

2∑
i=1

|x′i − x′′i |, (1.28)

where
Lf (t) = Lf,K1(t) + α1mf,K1(t),

α1 = sup
{ 2∑

i=1

|χxi
(x1, x2)| : xi ∈ Rn, i = 1, 2

} (1.29)

(see [15]).
By the definition of the operator h( · ), the equation (1.25) for t ∈ [a, t0]

can be considered as the ordinary differential equation
ż1(t) = A(t)v(σ(t)) + g

(
t, z1(t), φ(τ(t))

)
(1.30)

with the initial condition
z1(t0) = x0, (1.31)

and for t ∈ [t0, b], it can be considered as the neutral equation
ż2(t) = A(t)ż2(σ(t)) + g

(
t, z2(t), z2(τ(t))

)
(1.32)

with the initial condition
z2(t) = φ(t), ż2(t) = v(t), t ∈ [τ̂ , t0), z2(t0) = x0. (1.33)

Obviously, if z1(t), t ∈ [a, t0], is a solution of problem (1.30)–(1.31) and
z2(t), t ∈ [t0, b], is a solution of problem (1.32)–(1.33), then the function

z(t) =

{
z1(t), t ∈ [a, t0),

z2(t), t ∈ [t0, b]

is a solution of the equation (1.25) with the initial condition (1.26) defined
on the interval I.

We rewrite the equation (1.30) with the initial condition (1.31) in the
integral form

z1(t) = x0 +

t∫
t0

[
A(ξ)v(σ(ξ)) + g

(
ξ, z1(ξ), φ(τ(ξ))

)]
dξ, t ∈ [a, t0], (1.34)

and the equation (1.32) with the initial condition (1.33) we write in the
equivalent form

z2(t) = x0 +

ν(t0)∫
t0

Y (ξ; t)A(ξ)v(σ(ξ)) dξ+

+

t∫
t0

Y (ξ; t)g(ξ, z2(ξ), z2(τ(ξ))) dξ, t ∈ [t0, b], (1.35)



Variation Formulas of Solution and Initial Data Optimization Problems . . . 17

where

z2(t) = φ(t), t ∈ [τ̂ , t0)

(see Theorem 1.9 and (1.11)).
Introduce the following notation:

Y0(ξ; t, t0) =

{
H, t ∈ [a, t0),

Y (ξ; t), t ∈ [t0, b],
(1.36)

Y (ξ; t, t0) =


H, t ∈ [a, t0),

Y (ξ; t), t0 ≤ t ≤ min{ν(t0), b},
Θ, min{ν(t0), b} < t ≤ b.

(1.37)

Using this notation and taking into account (1.34) and (1.35), we can rewrite
the equation (1.25) in the form of the equivalent integral equation

z(t) = x0 +

t∫
t0

Y (ξ; t, t0)A(ξ)v(σ(ξ)) dξ+

+

t∫
t0

Y0(ξ; t, t0)g(t0, τ, φ, z)(ξ) dξ, t ∈ I. (1.38)

A solution of the equation (1.38) depends on the parameter

µ ∈ Λ0 = I ×D ×O × Φ1 × Ev ×
(
f0 +W (K1;α)

)
⊂ Eµ

The topology in Λ0 is induced by the topology of the vector space Eµ.
Denote by C(I,Rn) the space of continuous functions y : I → Rn with the
distance d(y1, y2) = ∥y1 − y2∥I .

On the complete metric space C(I,Rn), we define a family of mappings

F ( · ;µ) : C(I,Rn) → C(I,Rn) (1.39)

depending on the parameter µ by the formula

ζ(t) = ζ(t; z, µ) =

= x0 +

t∫
t0

Y (ξ; t, t0)A(ξ)v(σ(ξ)) dξ +

t∫
t0

Y0(ξ; t, t0)g(t0, τ, φ, z)(ξ) dξ.

Clearly, every fixed point z(t;µ), t ∈ I, of the mapping (1.39) is a solution
of the equation (1.25) with the initial condition (1.26).
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Define the kth iteration F k(z;µ) by

ζk(t) = x0 +

t∫
t0

Y (ξ; t, t0)A(ξ)v(σ(ξ)) dξ+

+

t∫
t0

Y0(ξ; t, t0)g(t0, τ, φ, ζk−1)(ξ) dξ, k = 1, 2, . . . ,

ζ0(t) = z(t).

Let us now prove that for a sufficiently large k, the family of mappings
F k(z;µ) is uniformly contractive. Towards this end, we estimate the differ-
ence∣∣ζ ′k(t)− ζ ′′k (t)

∣∣ = ∣∣ζk(t; z′, µ)− ζk(t; z
′′, µ)

∣∣ ≤
≤

t∫
a

∣∣Y0(ξ; t, t0)∣∣ ∣∣∣g(t0, τ, φ, ζ ′k−1)(ξ)− g(t0, τ, φ, ζ
′′
k−1)(ξ)

∣∣∣ dξ ≤
≤

t∫
a

Lf (ξ)
[∣∣ζ ′k−1(ξ)− ζ ′′k−1(ξ)

∣∣+
+
∣∣h(t0, φ, ζ ′k−1)(τ(ξ))− h(t0, φ, ζ

′′
k−1)(τ(ξ))

∣∣ ] dξ, k = 1, 2, . . . , (1.40)

(see (1.28)), where the function Lf (ξ) is of the form (1.29). Here, it is
assumed that ζ ′0(ξ) = z′(ξ) and ζ ′′0 (ξ) = z′′(ξ).

It follows from the definition of the operator h( · ) that
h(t0, φ, ζ

′
k−1)(τ(ξ))− h(t0, φ, ζ

′′
k−1)(τ(ξ)) = h(t0, 0, ζ

′
k−1 − ζ ′′k−1)(τ(ξ)).

Therefore, for ξ ∈ [a, γ(t0)], we have
h(t0, 0, ζ

′
k−1 − ζ ′′k−1)(τ(ξ)) = 0. (1.41)

Let γ(t0) < b; then for ξ ∈ [γ(t0), b], we obtain∣∣h(t0, 0, ζ ′k−1 − ζ ′′k−1)(τ(ξ))
∣∣ = ∣∣ζ ′k−1(τ(ξ))− ζ ′′k−1)(τ(ξ))

∣∣,
sup

{∣∣ζ ′k−1(τ(t))− ζ ′′k−1(τ(t))| : t ∈ [γ(t0), ξ]
}
≤

≤ sup
{∣∣ζ ′k−1(t)− ζ ′′k−1(t)

∣∣ : t ∈ [a, ξ]
}
. (1.42)

If γ(t0) > b, then (1.41) holds on the whole interval I. The relation (1.40),
together with (1.41) and (1.42), imply that∣∣ζ ′k(t)− ζ ′′k (t)

∣∣ ≤ sup
{∣∣ζ ′k(ξ)− ζ ′′k (ξ)

∣∣ : ξ ∈ [a, t]
}
≤

≤ 2∥Y0∥
t∫

a

Lf (ξ1) sup
{∣∣ζ ′k−1(ξ)− ζ ′′k−1(ξ)

∣∣ : ξ ∈ [a, ξ1]
}
dξ1, k = 1, 2, . . . .
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Therefore, ∣∣ζ ′k(t)− ζ ′′k (t)
∣∣ ≤

≤ 22∥Y0∥2
t∫

a

Lf (ξ1) dξ1

ξ1∫
a

Lf (ξ2) sup
{∣∣ζ ′k−2(ξ)−ζ ′′k−2(ξ)

∣∣ : ξ ∈ [a, ξ2]
}
dξ2.

By continuing this procedure, we obtain∣∣ζ ′k(t)− ζ ′′k (t)
∣∣ ≤ (

2∥Y0∥
)k
αk(t)∥z′ − z′′∥I ,

where

αk(t) =

t∫
a

Lf (ξ1) dξ1

ξ1∫
a

Lf (ξ2) dξ2 · · ·
ξk−1∫
a

Lf (ξk) dξk.

By the induction, one can readily show that

αk(t) =
1

k!

( t∫
a

Lf (ξ) dξ

)k

.

Thus,

d
(
F k(z′;µ), F k(z′′;µ)

)
=

= ∥ζ ′k − ζ ′′k ∥I ≤
(
2∥Y0∥

)k
αk(b)∥z′ − z′′∥I = α̂k∥z′ − z′′∥I .

Let us prove the existence of the number α2 > 0 such that∫
I

Lf (t) dt ≤ α2, ∀ f ∈ f0 +W (K1;α).

Indeed, let (x1, x2) ∈ K2
1 and let f ∈ f0 +W (K1;α), then∣∣f(t, x1, x2)∣∣ ≤ mf0,K1(t) +mδf,K1(t) := mf,K1(t), t ∈ I.

Further, let x′i, xi′′ ∈ K1, i = 1, 2 then∣∣f(t, x′1, x′2)− f(t, x′′1 , x
′′
2)
∣∣ ≤

≤
∣∣f0(t, x′1, x′2)− f0(t, x

′′
1 , x

′′
2)
∣∣+ ∣∣δf(t, x′1, x′2)− δf(t, x′′1 , x

′′
2)
∣∣ ≤

≤
(
Lf0,K1(t) + Lδf,K1(t)

) 2∑
i=1

|x′i − x′′i | = Lf,K1(t)
2∑

i=1

|x′i − x′′i |,
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where Lf,K1(t) = Lf0,K1(t) + Lδf,K1(t). By (1.29),∫
I

Lf (t) dt =

∫
I

(
Lf,K1(t) + α1mf,K1(t)

)
dt =

=

∫
I

[
Lf0,K1(t) + Lδf,K1(t) + α1

(
mf0,K1(t) +mδf,K1(t)

)]
dt ≤

≤ α(α1 + 1) +

∫
I

[
Lf0,K1(t) + α1mf0,K1(t)

]
dt = α2.

Taking into account this estimate, we obtain α̂k ≤ (2∥Y0∥α2)
k/k!. Conse-

quently, there exists a positive integer k1 such that α̂k1 < 1. Therefore, the
k1st iteration of the family (1.39) is contracting. By the fixed point theorem
for contraction mappings (see [11, p. 90], [27, p. 110]), the mapping (1.39)
has a unique fixed point for each µ. Hence it follows that the equation (1.25)
with the initial condition (1.26) has a unique solution z(t;µ), t ∈ I.

Let us prove that the mapping F k(z( · ;µ0); · ) : Λ0 → C(I,Rn) is contin-
uous at the point µ = µ0 for an arbitrary k = 1, 2, . . . . To his end, it suffices
to show that if the sequence µi = (t0i, τi, x0i, φi, vi, fi) ∈ Λ0, i = 1, 2, . . . ,
where fi = f0 + δfi, converges to µ0 = (t00, τ0, x00, φ0, v0, f0), i.e. if

lim
i→∞

(
|t0i − t00|+ ∥τi − τ0∥I2+

+ |x0i − x00|+ ∥φi − φ0∥11 + ∥vi − v0∥11 +∆(δfi;K1)
)
= 0,

then

lim
i→∞

F k
(
z( · ;µ0);µi

)
= F k

(
z( · ;µ0);µ0

)
= z( · ;µ0). (1.43)

We prove the relation (1.43) by induction. Let k = 1, then we have∣∣ζi1(t)− z0(t)
∣∣ ≤ |x0i − x00|+

+

∣∣∣∣
t∫

t0i

Y (ξ; t, t0i)A(ξ)vi(σ(ξ)) dξ −
t∫

t00

Y (ξ; t, t00)A(ξ)v0(σ(ξ)) dξ

∣∣∣∣+
+

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)gi(t0i, τi, φi, z0)(ξ) dξ−

−
t∫

t00

Y0(ξ; t, t00)g0(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣ =
= |x0i − x00|+ ai(t) + bi(t), (1.44)
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where
ζi1(t) = ζ1(t; z0, µi), z0(t) = z(t;µ0),

gi = χfi = g0 + δgi, g0 = χf0, δgi = χδfi;

ai(t) =

∣∣∣∣
t∫

t0i

Y (ξ; t, t0i)A(ξ)vi(σ(ξ)) dξ −
t∫

t00

Y (ξ; t, t00)A(ξ)v0(σ(ξ)) dξ

∣∣∣∣;
bi(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)gi(t0i, τ1i, φi, z0)(ξ) dξ−

−
t∫

t00

Y0(ξ; t, t00)g0(t00, τ10, φ0, z0)(ξ) dξ

∣∣∣∣.
First of all, let us estimate ai(t). We have

ai(t) ≤
∣∣∣∣

t00∫
t0i

Y (ξ; t, t00)A(ξ)v0(σ(ξ)) dξ

∣∣∣∣+
+

∫
I

∣∣∣Y (ξ; t, t0i)A(ξ)vi(σ(ξ))− Y (ξ; t, t00)A(ξ)v0(σ(ξ))
∣∣∣ dξ =

= ai1(t) + ai2(t). (1.45)
Obviously,

lim
i→∞

ai1(t) = 0 uniformly in t ∈ I. (1.46)

Furthermore,

ai2(t) ≤
∫
I

∣∣Y (ξ; t, t0i)− Y (ξ; t, t00)
∣∣ ∣∣A(ξ)vi(σ(ξ))∣∣ dξ+

+

∫
I

∣∣Y (ξ; t, t0)A(ξ)
∣∣ ∣∣vi(σ(ξ))− v0(σ(ξ))

∣∣ dξ ≤
≤ ∥A∥ ∥vi∥I1ai3(t) + ∥Y A∥ ∥vi − v0∥I1 , (1.47)

where
ai3(t) =

∫
I

∣∣Y (ξ; t, t0i)− Y (ξ; t, t00)
∣∣ dξ.

Let t0i < t00, and let a number i0 be so large that ν(t0i) > t00 for i ≥ i0.
Then taking into account (1.37), we have

ai3(t) =

t00∫
t0i

|Y (ξ; t)−H| dξ +
ν(t00)∫

ν(t0i)

|Y (ξ; t)| dξ ≤

≤ ∥Y −H∥(t00 − t0i) + ∥Y ∥
(
ν(t00)− ν(t0i)

)
,
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therefore,

lim
i→∞

ai3(t) = 0 uniformly in I. (1.48)

Let t0i > t00. Choose a number i0 so large that ν(t00) > t0i for i ≥ i0. Then

ai3(t) =

t0i∫
t00

|H − Y (ξ; t)| dξ +
ν(t0i)∫

ν(t00)

|Y (ξ; t)| dξ.

This implies (1.48). Taking into account (1.46)–(1.48), we obtain from
(1.45) that

lim
i→∞

ai(t) = 0 uniformly in I. (1.49)

Now, let us estimate the summand bi(t). We have

bi(t) ≤
∣∣∣∣

t00∫
t0i

Y0(ξ; t, t0i)g0(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣+
+

∣∣∣∣
t∫

t0i

[
Y0(ξ; t, t0i)gi(t0i, τi, φi, z0)(ξ)−

− Y0(ξ; t, t00)g0(t00, τ0, φ0, z0)(ξ)
]
dξ = bi1(t) + bi2(t). (1.50)

Obviously,

lim
i→∞

bi1(t) = 0 uniformly in I. (1.51)

Furthermore,

bi2(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)
[
gi(t0i, τi, φi, z0)(ξ)− g0(t0i, τi, φi, z0)(ξ)

]
dξ+

+

t∫
t0i

Y0(ξ; t, t0i)
[
g0(t0i, τi, φi, z0)(ξ)−g0(t00, τ0, φ0, z0)(ξ)

]
dξ+

+

t∫
t0i

[
Y0(ξ; t, t0i)− Y0(ξ; t, t00)

]
g0(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣ ≤
≤

3∑
j=1

bji2(t), (1.52)
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where

b1i2(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)δgi(t0i, τi, φi, z0)(ξ) dξ

∣∣∣∣,
b2i2(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)
[
g0(t0i, τi, φi, z0)(ξ)− g0(t00, τ0, φ0, z0)(ξ)

]
dξ

∣∣∣∣,
b3i2(t) =

∣∣∣∣
t∫

t0i

[
Y0(ξ; t, t0i)− Y0(ξ; t, t00)

]
g0(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣.
Now, let us estimate the expressions b1i2(t). We have

b1i2(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)
[
δgi(t0i, τi, φi, z0)(ξ)− δgi(t0i, τi, φ0, z0)(ξ)

]
dξ+

+

t∫
t0i

Y0(ξ; t, t0i)δgi(t0i, τi, φ0, z0)(ξ) dξ

∣∣∣∣ ≤
≤ ∥Y0∥

∫
I

Lδgi,K1(ξ)
∣∣∣h(t0i, φi, z0)(τi(ξ))−h(t0i, φ0, z0)(τi(ξ))

∣∣∣ dξ+
+ max

t′,t′′∈I

∣∣∣∣
t′′∫
t′

Y0(ξ; t, t0i)δgi(t0i, τi, φ0, z0)(ξ) dξ

∣∣∣∣ =
= b4i2 + b5i2(t). (1.53)

It is easy to see that

b4i2 ≤ ∥Y0∥
∫
I

Lδgi,K1
(ξ)

∣∣φi(τi(ξ))− φ0(τi(ξ))
∣∣ dξ ≤

≤ ∥φi − φ0∥I1
∫
I

Lδgi,K1(ξ) dξ.

The sequence ∫
I

Lδgi,K1(ξ) dξ, i = 1, 2, . . . ,

is bounded, therefore

lim
i→∞

b4i2 = 0.
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Furthermore,

b5i2(t) ≤ max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
ξ, z0(ξ), φ0(τi(ξ))

)
dξ

∣∣∣∣+
+ max

t′,t′′∈I

∣∣∣ t′′∫
t′

Y (ξ; t)δgi(t0i, τi, φ0, z0)(ξ) dξ

∣∣∣∣ = b6i2 + b7i2(t).

The function φ0(ξ), ξ ∈ I1, is piecewise-continuous with a finite number of
discontinuity points of the first kind, i.e. there exist subintervals (θq, θq+1),
q = 1, . . . ,m, where the function φ0(t) is continuous, with

θ1 = τ̂ , θm+1 = b, I1 =

m−1∪
q=1

[θq, θq+1) ∪ [θm, θm+1].

We define on the interval I1 the continuous functions zi(t), i = 1, . . . ,m+1,
as follows:

z1(t) = φ01(t), . . . , zm(t) = φ0m(t),

zm+1(t) =

{
z0(a), t ∈ [τ̂ , a),

z0(t), t ∈ I,

where

φ0q(t) =


φ0(θq+), t ∈ [τ̂ , θq],

φ0(t), t ∈ (θq, θq+1),

φ0(θq+1−), t ∈ [θq+1, b]

q = 1, . . . ,m.

One can readily see that b6i2 satisfies the estimation

b6i2 ≤
m∑

m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
t, z0(t), zm1(τi(t))

)
dt

∣∣∣∣ ≤
≤

m∑
m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
t, z0(t), zm1(τ0(t))

)
dt

∣∣∣∣+
+

m∑
m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

∣∣∣δgi(t, z0(t), zm1(τi(t))
)
−δgi

(
t, z0(t), zm1(τ0(t))

)∣∣∣ dt∣∣∣∣ ≤
≤

m∑
m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
t, z0(t), zm1(τ0(t))

)
dt

∣∣∣∣+
+

m∑
m1=1

∫
I

Lδfi,K1(t)
∣∣zm1(τi(t))− zm1(τ0(t))

∣∣ dt ≤



Variation Formulas of Solution and Initial Data Optimization Problems . . . 25

≤
m∑

m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
t, z0(t), zm1(τ0(t))

)
dt

∣∣∣∣+
+

m∑
m1=1

max
t∈I

∣∣zm1(τi(t))− zm1(τ0(t))
∣∣ ∫
I

Lδgi,K1(t) dt. (1.54)

Obviously,
∆(δgi;K1) = ∆(χδfi;K1) ≤ ∆(δfi;K1)

(see (1.24)). Since ∆(δfi;K1) → 0 as i→ ∞, we have
lim
i→∞

∆(δgi,K1) = 0.

This allows us to use Theorem 1.12, which in turn, implies that

lim
i→∞

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

δgi
(
t, z0(t), zm1(τ0(t))

)
dt

∣∣∣∣ = 0, ∀m1 = 1, . . . ,m.

Moreover, it is clear that
lim
i→∞

max
t∈I

∣∣zm1(τi(t))− zm1(τ0(t))
∣∣ = 0.

The right-hand side of inequality (1.54) consists of finitely many summands,
and therefore

lim
i→∞

b6i2 = 0.

For b712(t), in the analogous manner, we get

b712(t) ≤
m+1∑
m1=1

max
t′,t′′∈I

∣∣∣∣
t′′∫
t′

Y (ξ; t)δgi
(
ξ, z0(ξ), zm1(τ0(ξ))

)
dξ

∣∣∣∣+
+ ∥Y ∥

m+1∑
m1=1

max
t∈I

∣∣zm1(τi(t))− zm1(τ0(t))
∣∣ ∫
I

Lδgi,K1(t) dt,

from which we have
lim
i→∞

b7i2(t) = 0 uniformly in I

(see Theorem 1.12).
Thus,

lim
i→∞

b5i2(t) = 0 uniformly in I.

Consequently,
lim
i→∞

b1i2(t) = 0 uniformly in I. (1.55)

Next,

b2i2(t) ≤ ∥Y ∥
∫
I

Lf0(t)
∣∣∣h(t0i, φi, z0)(τi(t))− h(t00, φ0, z0)(τ0(t))

∣∣∣ dt ≤
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≤ ∥Y ∥
{∫

I

Lf0(t)
∣∣∣h(t0i, φi, z0)(τi(t))− h(t0i, φ0, z0)(τi(t))

∣∣∣ dt+
+

∫
I

Lf0(t)
∣∣∣h(t0i, φ0, z0)(τi(t))− h(t00, φ0, z0)(τ0(t))

∣∣∣ dt} ≤

≤ ∥Y ∥
{∫

I

Lf0(t)
∣∣∣h(t0i, φi − φ0)(τi(t))

∣∣∣ dt+
+

∫
I

Lf0(t)
∣∣∣h(t0i, φ0, z0)(τi(t))− h(t00, φ0, z0)(τi(t))

∣∣∣+
+

∫
I

Lf0(t)
∣∣∣h(t00, φ0, z0)(τi(t))− h(t00, φ0, z0)(τ0(t))

∣∣∣}×
× ∥Y ∥

{
∥φi − φ0∥I1

∫
I

Lf0(t) dt+ b2i21 + b2i22

}
(see (1.22) and (1.36)). Introduce the notation

ρ0i = min
{
γi(t00), γi(t0i)

}
, θ0i = max

{
γi(t00), γi(t0i)

}
.

We prove that
lim
i→∞

γi(t00) = lim
i→∞

γi(t0i) = γ0(t00).

The sequences {γi(t00)} and γi(t0i) are bounded. Without less of generality,
we assume that

lim
i→∞

γi(t00) = γ0, lim
i→∞

γi(t0i) = γ1.

We have
t00 = τi(γi(t00)) = τi(γi(t00))− τ0(γi(t00)) + τ0(γi(t00)).

Clearly,

lim
i→∞

∣∣∣τi(γi(t00))− τ0(γi(t00))
∣∣∣ ≤ lim

i→∞
∥τi − τ0∥I2 = 0.

Passing to the limit, we obtain t00 = τ0(γ0). The equation τ0(t) = t00 has
a unique solution γ0(t00), i.e. γ0 = γ0(t00).

Further,
t0i = τi(γi(t0i)) = τi(γi(t0i))− τ0(γi(t0i)) + τ0(γi(t0i)).

Hence we obtain t00 = τ0(γ1), i.e. γ1 = γ0(t00).
Thus,

lim
i→∞

(ρ0i − θ0i) = 0.

Consequently,

b2i21 =

θ0i∫
ρ0i

Lf0(t)
∣∣∣h(t0i, φ0, z0)(τi(t))− h(t00, φ0, z0)(τi(t))

∣∣∣ dt −→ 0.
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Introduce the notation
ρ1i = min

{
γi(t00), γ0(t00)

}
, θ1i = max

{
γi(t00), γ0(t00)

}
.

For b2i22, we have

b2i22 =

θ1i∫
ρ1i

Lf0(t)
∣∣∣h(t00, φ0, z0)(τi(t))− h(t00, φ0, z0)(τ0(t))

∣∣∣ dt.
Analogously, it can be proved that

lim
i→∞

(ρ1i − θ1i) = 0.

Thus, b2i22 → 0. Consequently,
b2i2(t) → 0. (1.56)

Finally, we have

b312(t) ≤
∣∣∣∣

t00∫
t0i

|Y (ξ; t)−H|mf0,K1(ξ) dξ

∣∣∣∣ ≤ ∥Y −H∥
∣∣∣∣

t00∫
t0i

mf0,K1(ξ) dξ

∣∣∣∣
i.e.

lim
i→∞

b3i2(t) = 0 uniformly in I.

Therefore,
lim
i→∞

|ζi1(t)− z0(t)| = 0 uniformly in I

(see (1.44), (1.45), (1.49)–(1.52), (1.55), (1.56)). Assume that the relation
(1.43) holds for a certain k > 1. Let us prove its fulfilment for k + 1.
Elementary transformations yield∣∣ζik+1(t)− z0(t)

∣∣ ≤ |x0i − x00|+ ai(t) + bik(t), (1.57)
where

bik(t) =

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)gi(t0i, τi, φi, ζ
i
k)(ξ) dξ−

−
t∫

t00

Y0(ξ; t, t00)gi(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣
(see (1.44)). The quantity ai(t) has been estimated above, it remains to
estimate bik(t). We have

bik(t) ≤ ∥Y0∥
∫
I

∣∣∣gi(t0i, τi, φi, ζ
i
k)(ξ)− gi(t0i, τi, φi, z0)(ξ)

∣∣∣ dξ+
+

∣∣∣∣
t∫

t0i

Y0(ξ; t, t0i)gi(t0i, τi, φi, z0)(ξ) dξ−
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−
t∫

t0i

Y0(ξ; t, t00)gi(t00, τ0, φ0, z0)(ξ) dξ

∣∣∣∣ = b1ik(t) + bi(t).

The function bi(t) has been estimated above. It is not difficult to see that
the following inequality holds for bik(t):

bik(t) ≤ 2∥Y0∥ ∥ζik − z0∥
∫
I

Lfi(t) dt.

By the assumptions,
lim
i→∞

∥ζik − z0∥ = 0.

Therefore,
lim
i→∞

bik(t) = 0 uniformly in I.

Thus, we obtain from (1.57) that
lim
i→∞

∥ζik+1 − z0∥ = 0.

We have proved (1.43) for every k = 1, 2, . . . . Let the number δ1 > 0 be
so small that [r1 − δ1, r2 + δ1] ⊂ I and |z(t;µ0) − z(r1;µ0)| ≤ ε0/2 for
t ∈ [r1 − δ1, r1] and |z(t;µ0)− z(r2;µ0)| ≤ ε0/2 for t ∈ [r2, r2 + δ1].

From the uniqueness of the solution z(t;µ0), we can conclude that
z(t;µ0) = y0(t) for t ∈ [r1, r2]. Taking into account the above inequali-
ties, we have(
z(t;µ0), h

(
t00, φ0, z( · ;µ0)(τ0(t))

))
∈ K2(ε0/2) ⊂ Q, t ∈ [r1− δ1, r2+ δ1].

Hence,

χ
(
z(t;µ0), h

(
t00, φ0, z( · ;µ0)(τ0(t))

))
= 1, t ∈ [r1 − δ1, r2 + δ1],

and the function z(t;µ0) satisfies the equation (1.20) and the condition
(1.21).

Therefore,
y(t;µ0) = z(t;µ0), t ∈ [r1 − δ1, r2 + δ1].

According to the fixed point theorem, for ε0/2 there exists a number δ0 ∈
(0, ε0) such that a solution z(t;µ) satisfying the condition∣∣z(t;µ)− z(t;µ0)

∣∣ ≤ ε0
2
, t ∈ I,

corresponds to each element µ ∈ V (µ0;K1, δ0, α).
Therefore, for t ∈ [r1 − δ1, r2 + δ1]

z(t;µ) ∈ K(ε0), ∀µ ∈ V (µ0;K1, δ0, α).

Taking into account the fact that φ(t) ∈ K(ε0), we can see that for t ∈
[r1 − δ1, r2 + δ1], this implies

χ
(
z(t;µ), h

(
t0, φ, z( · ;µ)(τ(t))

))
= 1, ∀µ ∈ V (µ0;K1, δ0, α).
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Hence the function z(t;µ) satisfies the equation (1.20) and the condition
(1.21), i.e.
y(t;µ) = z(t;µ)∈ intK1, t ∈ [r1− δ1, r2+ δ1], µ∈V (µ0;K1, δ0, α). (1.58)

The first part of Theorem 1.14 is proved. By the fixed point theorem, for
an arbitrary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that for
each µ ∈ V (µ0;K1, δ2, α),∣∣z(t;µ)− z(t;µ0)

∣∣ ≤ ε, t ∈ I,

whence using (1.58), we obtain (1.23). �

Proof of Theorem 1.1. In Theorem 1.14, let r1 = t00 and r2 = t00. Ob-
viously, the solution x0(t) satisfies on the interval [t00, t10] the following
equation:

ẏ(t) = A(t)h(t00, v0, ẏ)(σ(t)) + f0(t00, τ0, φ0, y)(t).

Therefore, in Theorem 1.14, as the solution y0(t) we can take the function
x0(t), t ∈ [t00, t10].

By Theorem 1.14, there exist numbers δi > 0, i = 0, 1, and for an arbi-
trary ε > 0, there exists a number δ2 = δ2(ε) ∈ (0, δ0] such that the solution
y(t;µ), t ∈ [t00 − δ1, t10 + δ1], corresponds to each µ ∈ V (µ0;K1, δ0, α).
Moreover, the following conditions hold:

φ(t) ∈ K1, t ∈ I1; y(t;µ) ∈ K1,∣∣y(t;µ)− y(t;µ0)
∣∣ ≤ ε, t ∈ [t00 − δ1, t10 + δ1],

µ ∈ V (µ0;K1, δ2, α).

(1.59)

For an arbitrary µ ∈ V (µ0;K1, δ0, α), the function

x(t;µ) =

{
φ(t), t ∈ [τ̂ , t0),

y(t;µ), t ∈ [t0, t1 + δ1].

is the solution corresponding to µ. Moreover, if t ∈ [t̂, t10 + δ1], then
x(t;µ0) = y(t;µ0) and x(t;µ) = y(t;µ). Taking into account (1.59), we
can see that this implies 1.1 and 1.2. It is easy to notice that for an arbi-
trary µ ∈ V (µ0;K1, δ0, α), we have

t10+δ1∫
τ̂

∣∣x(t;µ)− x(t;µ0)
∣∣ dt = t∫

τ̂

∣∣φ(t)− φ0(t)
∣∣ dt+

+

t̂∫
t

∣∣x(t;µ)− x(t;µ0)
∣∣ dt+ t10+δ1∫

t̂

|x(t;µ)− x(t;µ0)| dt ≤

≤ ∥φ− φ0∥I1(b− τ̂) +N |t0 − t00|+ max
t∈[ t̂,t10+δ1]

∣∣x(t;µ)− x(t;µ0

∣∣(b− τ̂),

where
t = min{t0, t00}, N = sup

{
|x′ − x′′| : x′, x′′ ∈ K1

}
.
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By 1.1 and 1.2, this inequality implies 1.3. �

1.4. Proof of Theorem 1.3. To each element w ∈ Λ1 we correspond the
equation

ẏ(t) = A(t)h(t0, v, ẏ)(σ(t)) + f(t0, τ, φ, y, u)(t)

with the initial condition (1.21).

Theorem 1.15. Let y0(t) be a solution corresponding to w0 = (t0, τ0, x00,
φ0, v0, u0) ∈ Λ1 and defined on [r1, r2] ⊂ (a, b). Let K2 ⊂ O be a compact
set containing a certain neighborhood of the set clφ0(I1)∪y0([r1, r2]). Then
the following conditions hold:

1.17. there exist numbers δi > 0, i = 0, 1 such that to each element

w = (t0, τ, x0, φ, v, u) ∈ V̂ (w0; δ0)

there corresponds the solution y(t;w) defined on the interval [r1 −
δ1, r2 + δ1] ⊂ I and satisfying the condition y(t;w) ∈ K2;

1.18. for an arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0]

such that the following inequality holds for any w ∈ V̂ (w0; δ0∣∣y(t;w)− y(t;w0)
∣∣ ≤ ε, ∀ t ∈ [r1 − δ1, r2 + δ1].

Theorem 1.15 is proved analogously to Theorem 1.14.

Proof of Theorem 1.3. In Theorem 1.15, let r1 = t00 and r2 = t10. Ob-
viously, the solution x0(t) satisfies on the interval [t00, t10] the following
equation:

ẏ(t) = A(t)h(t00, v0, ẏ)(σ(t)) + f(t00, τ0, φ0, y, u0)(t).

Therefore, in Theorem 1.15, as the solution y0(t) we can take the function
x0(t), t ∈ [t00, t10]. Then the proof of the theorem completely coincides with
that of Theorem 1.1; for this purpose, it suffices to replace the element µ by
the element w and the set V (µ0;K1, δ0, α) by the set V̂ (w0; δ0) everywhere.

�

2. Variation Formulas of a Solution

Let D1 = {τ ∈ D : τ̇(t) ≥ e = const > 0, t ∈ R} and let E(1)
f be the

set of functions f : I × O2 → Rn satisfying the following conditions: the
function f(t, · ) : O2 → Rn is continuously differentiable for almost all t ∈ I;
the functions f(t, x1, x2), fx1(t, x1, x2) and fx2(t, x1, x2) are measurable on
I for any (x1, x2) ∈ O2; for each f ∈ E

(1)
f and compact set K ⊂ O, there

exists a function mf,K(t) ∈ L(I,R+), such that∣∣f(t, x1, x2)∣∣+ ∣∣fx1(t, x1, x2)
∣∣+ ∣∣fx2(t, x1, x2)

∣∣ ≤ mf,K(t)

for all (x1, x2) ∈ K2 and almost all t ∈ I.
To each element

µ = (t0, τ, x0, φ, v, f) ∈ Λ2 = [a, b)×D1 ×O × Φ1 × Ev × E
(1)
f



Variation Formulas of Solution and Initial Data Optimization Problems . . . 31

we assign the neutral equation

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t))

)
with the discontinuous initial condition

x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0.

Let µ0 = (t00, τ0, x00, φ0, v0, f0) ∈ Λ2 be a given element and x0(t) be the
solution corresponding to µ0 and defined on [τ̂ , t10], with a < t00 < t10 < b.

In the space E(1)
µ − µ0, where E(1)

µ = R×D1 ×Rn ×Eφ ×Ev ×E
(1)
f , we

introduce the set of variations:

ℑ2 =
{
δµ = (δt0, δτ, δx0, δφ, δv, δf) ∈ E(1)

µ − µ0 :

|δt0| ≤ β, ∥δτ∥I2 ≤ β, |δx0| ≤ β, δφ =

k∑
i=1

λiδφi,

∥δv∥I1 ≤ β, δf =
k∑

i=1

λiδfi, |λi| ≤ β, i = 1, . . . , k
}
,

where δφi ∈ Eφ − φ0, δfi ∈ E
(1)
f − f0, i = 1, . . . , k, are fixed functions.

The inclusion E(1)
f ⊂ Ef holds (see [15, Lemma 2.1.2]), therefore, accord-

ing to Theorem 1.2, there exist numbers δ1 > 0 and ε1 > 0 such that for
arbitrary (ε, δµ) ∈ (0, ε1)×ℑ2 the element µ0 + εδµ ∈ Λ2, and there corre-
sponds the solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1.

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0) :

∆x(t; εδµ)=x(t;µ0+εδµ)−x0(t), ∀ (t, ε, δµ)∈ [τ̂ , t10+δ1]×(0, ε1)×ℑ2.

Theorem 2.1. Let the following conditions hold:
2.1. γ0(t00) < t10, where γ0(t) is the inverse function to τ0(t);
2.2. the functions v0(σ(t)) and v0(t) are continuous at the point t00; the

function φ0(t) is absolutely continuous and the function φ̇0(t) is
bounded;

2.3. for each compact set K ⊂ O there exists a number mK > 0 such
that

|f0(z)| ≤ mK , ∀ z = (t, x, y) ∈ I ×K2;

2.4. there exist the limits

lim
z→z0

f0(z) = f−0 , z ∈ (a, t00]×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f−01, zi ∈ (t00, γ0(t00)]×O2, i = 1, 2,
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where

z0 = (t00, x00, φ0(τ0(t00))
)
, z10 =

(
γ0(t00), x0(γ0(t00)), x00

)
,

z20 =
(
γ0(t00), x0(γ0(t00)), φ0(t00)

)
.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for
arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)×ℑ−
2 ,

where

ℑ−
2 =

{
δµ ∈ ℑ2 : δt0 ≤ 0, δτ(γ0(t00)) > 0

}
we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ), (2.1)

where

δx(t; δµ) =
{
Y (t00−; t)

[
v0(t00)−A(t00)v0(σ(t00))− f−0

]
−

− Y (γ0(t00)−; t)f−01γ̇0(t00)
}
δt0+

+ Y (γ0(t00)−; t)f−01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)δf [s] ds+ β(t; δµ), (2.2)

and

β(t; δµ) = Ψ(t00; t)
[
δx0 − v0(t00)δt0

]
+

+

γ0(t00)∫
t00

Y (s; t)f0x2 [s]φ̇0(τ0(s))δτ(s) ds+

+

t∫
γ(t00)

Y (s; t)f0x2
[s]ẋ0(τ0(s))δτ(s) ds+

+

t00∫
τ0(t00)

Y (γ0(s); t)f0x2 [γ0(s)]γ̇0(s)δφ(s) ds+

+

t00∫
σ(t00)

Y (ν(s); t)A(ν(s))ν̇(s)δv(s) ds (2.3)
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Here, Ψ(s; t) and Y (s; t) are n × n matrix functions satisfying the
system
Ψs(s; t) = −Y (s; t)f0x1 [t]− Y (γ0(s); t)f0x2 [γ0(s)]γ̇0(s),

Y (s; t) = Ψ(s; t) + Y (ν(s); t)A(ν(s))ν̇(s),

s ∈ [t00 − δ2, t], t ∈ [t00, t10 + δ2]

and the condition

Ψ(s; t) = Y (s; t) =

{
H, s = t,

Θ, s > t;

H is the identity matrix and Θ is the zero matrix, ν(s) is the inverse
function to σ(s),

f0x1 [s] = f0x1

(
s, x0(s), x0(τ0(s))

)
, δf [s] = δf

(
s, x0(s), x0(τ0(s))

)
.

Some Comments. The function δx(t; δµ) is called the variation of the
solution x0(t), t ∈ [t10 − δ2, t10 + δ2], and the expression (2.2) is called the
variation formula.

Theorem 2.1 corresponds to the case where the variation at the point t00
is performed on the left.

The expression
−Y (γ0(t00)−; t)f−01γ̇0(t00)δt0

is the effect of the discontinuous initial condition and perturbation of the
initial moment t00.

The expression

Y (γ0(t00)−; t)f−01γ̇0(t00)δτ(γ0(t00))+

+

γ0(t00)∫
t00

Y (s; t)f0x2 [s]φ̇0(τ0(s))δτ(s) ds+

t∫
γ0(t00)

Y (s; t)f0x2 [s]ẋ0(τ0(s))δτ(s) ds

is the effect of perturbation of the delay function τ0(t) (see (2.2) and (2.3)).
The addend
Y (t00−; t)

[
v0(t00)−A(t00)v0(σ(t00))−f−0

]
δt0+Ψ(t00; t)

[
δx0−v0(t00)δt0

]
is the effect of perturbations of the initial moment t00 and the initial vec-
tor x00.

The expression
t00∫

τ0(t00)

Y (γ0(s); t)f0x2 [γ0(s)]γ̇0(s)δφ(s) ds+

+

t00∫
σ(t00)

Y (ν(s); t)A(ν(s))ν̇(s)v(s) ds+

t∫
t00

Y (s; t)δf [s] ds
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is the effect of perturbations of the initial functions φ0(t) and v0(s) and the
function f0(t, x, y).

If φ0(t00) = x00, then f−01 = 0. If γ0(t00) = t10, then Theorem 2.1 is valid
on the interval [t10, t10+δ2]. If γ0(t00) > t10, then Theorem 2.1 is valid, with
δ2 ∈ (0, δ1) such that t10 + δ2 < γ0(t00); in this case Y (γ0(t00)−; t) = Θ.

Finally, we note that the variation formula allows us to obtain an ap-
proximate solution of the perturbed equation

ẋ(t) = A(t)ẋ(σ(t)) + f0
(
t, x(t), x(τ0(t) + εδτ(t))

)
+

+ εδf
(
t, x(t), x(τ0(t) + εδτ(t))

)
with the perturbed initial condition

x(t) = φ0(t) + εδφ(t), ẋ(t) = v0(t) + εδv(t), t ∈ [τ̂ , t00 + εδt0),

x(t00 + εδt0) = x00 + εδx0.

In fact, for a sufficiently small ε ∈ (0, ε2) it follows from (2.1) that
x(t;µ0 + εδµ) ≈ x0(t) + εδx(t; δµ).

The matrix function Y (ξ; t) for any fixed t ∈ [t10 − δ2, t10 + δ2] has first
order discontinuity at the points of the set{

σ(t), σ2(t), . . . , σi(t), . . .
}
,

where σi(t) = σ(σi−1(t)), i = 1, 2, . . . ; σ0(t) = t, σ1(t) = σ(t) (see Theo-
rem 1.13).

Theorem 2.2. Let the conditions 2.1–2.3 of Theorem 2.1 hold. Moreover,
there exist the limits

lim
z→z0

f0(z) = f+0 , z ∈ [t00, γ0(t00))×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f+01, zi ∈ [γ0(t00), b)×O2, i = 1, 2.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)×ℑ+
2 ,

where
ℑ+

2 =
{
δµ ∈ ℑ2 : δt0 ≥ 0, δτ(γ0(t00)) < 0

}
,

formula (2.1) is valid, where

δx(t; δµ) =
{
Y (t00+; t)

[
v0(t00)−A(t00)v0(σ(t00))− f+0

]
−

− Y (γ0(t00)+; t)f+01γ̇0(t00)
}
δt0+

+ Y (γ0(t00)+; t)f+01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)δf [s] ds+ β(t; δµ).
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Theorem 2.2 corresponds to the case where the variation at the point t00
is performed on the right.

Theorem 2.3. Let the assumptions of Theorems 2.1 and 2.2 be fulfilled.
Moreover,

f−0 = f+0 := f̂0, f−01 = f+01 := f̂01

and

t00, γ0(t00) ̸∈
{
σ(t10), σ

2(t10), . . .
}
.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2]×ℑ2 formula (2.1) holds, where

δx(t; δµ) =
{
Y (t00; t)

[
v0(t00)−A(t00)v0(σ(t00))− f̂0

]
−

− Y (γ0(t00); t)f̂01γ̇0(t00)
}
δt0+

+ Y (γ0(t00); t)f01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)δf [s] ds+ β(t; δµ).

Theorem 2.3 corresponds to the case where the variation at the point t00
two-sided is performed. If the function f0(t, x, y) is continuous, then

f̂0 = f0
(
t00, φ0(t00), φ0(τ0(t00))

)
and

f̂01 = f0
(
γ0(t00), x0(γ0(t00)), x00

)
− f0

(
γ0(t00), x0(γ0(t00)), φ0(t00)

)
.

Let the function f(t, x1, x2, u) be defined on I × O2 × U0 and satisfy
the conditions: for almost all t ∈ I the function f(t, x, y, u) is continuously
differentiable with respect to (x1, x2, u) ∈ O2×U0; for any fixed (x1, x2, u) ∈
O2 × U0 the functions f(t, x1, x2, u), fx1(t, x1, x2, u), fx2(t, x1, x2, u),
fu(t, x1, x2, u) are measurable, for any compacts K ⊂ O and U ⊂ U0 there
exists mK,U (t) ∈ L(I,R+) such that∣∣f(t, x1, x2, u)∣∣+∣∣fx1(t, x1, x2, u)

∣∣+∣∣fx2(t, x1, x2, u)
∣∣+∣∣fu(t, x1, x2, u)∣∣ ≤

≤ mf (t)

for all (x1, x2, u) ∈ K2 × U and almost all t ∈ I.
Let w0 = (t00, τ0, x00, φ0, v0, u0) ∈ Λ1 be the given element and x0(t) be

the solution corresponding to w0 and defined on [τ̂ , t10], with a < t00 <
t10 < b.
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In the space Ew − w0 we introduce the set of variations

ℑ3 =
{
δw = (δt0, δτ, δx0, δφ, δv, δu) ∈ Ew − w0 :

|δt0| ≤ β, ∥δτ∥I2 ≤ β, |δx0| ≤ β, δφ =

k∑
1

λiδφi,

|λi| ≤ β, i = 1, . . . , k, ∥δv∥I1 ≤ β, ∥δu∥I ≤ β
}
.

There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δw) ∈
(0, ε1)×ℑ3 the element w0 + εδw ∈ Λ1 and there corresponds the solution
x(t;w0 + εδw) defined on the interval [τ̂ , t10 + δ1] ⊂ I1.

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;w0) :

∆x(t; εδw)=x(t;w0+εδw)−x0(t), ∀ (t, ε, δw)∈ [τ̂ , t10+δ1]×(0, ε1)×ℑ3.

Theorem 2.4. Let the following conditions hold:
2.5. γ0(t00) < t10, where γ0(t) is the inverse function to τ0(t);
2.6. the functions v0(σ(t)) and v0(t) are continuous at the point t00; the

function φ0(t) is absolutely continuous and the function φ̇0(t) is
bounded;

2.7. for each compact sets K ⊂ O and U ⊂ U0 there exists a number
mK,U > 0 such that

|f0(z)| ≤ mK,U , ∀ z = (t, x, y, u) ∈ I ×K2 × U ;

2.8. there exist the limits

lim
z→z0

f0(z) = f−0 , z ∈ (a, t00]×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f−01, zi ∈ (t00, γ0(t00)]×O2, i = 1, 2,

where

z0 =
(
t00, x00, φ0(τ0(t00))

)
, z10 =

(
γ0(t00), x0(γ0(t00)), x00

)
,

z20 =
(
γ0(t00), x0(γ0(t00)), φ0(t00)

)
, f0(z) = f(z, u0(t)).

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for
arbitrary (t, ε, δw) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)×ℑ−

3 , where

ℑ−
3 =

{
δw ∈ ℑ3 : δt0 ≤ 0, δτ(γ0(t00)) > 0

}
we have

∆x(t; εδw) = εδx(t; δw) + o(t; εδw), (2.4)
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where

δx(t; δw) =
{
Y (t00−; t)

[
v0(t00)−A(t00)v0(σ(t00))− f−0

]
−

− Y (γ0(t00)−; t)f−01γ̇0(t00)
}
δt0+

+ Y (γ0(t00)−; t)f−01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)f0u[s]δu(s) ds+ β(t; δw),

and
β(t; δw) = β(t; δµ).

Theorem 2.5. Let the conditions 2.5–2.7 of Theorem 2.4 hold. Moreover,
there exist the limits

lim
z→z0

f0(z) = f+0 , z ∈ [t00, γ0(t00))×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f+01, zi ∈ [γ0(t00), b)×O2, i = 1, 2,

where f0(z) = f(z, u0(t)). Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈
(0, δ1) such that for arbitrary

(t, ε, δw) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)×ℑ+
3 ,

where
ℑ+

3 =
{
δw ∈ ℑ3 : δt0 ≥ 0, δτ(γ0(t00)) < 0

}
,

formula (2.4) is valid, where

δx(t; δw) =
{
Y (t00+; t)

[
v0(t00)−A(t00)v0(σ(t00))− f+0

]
−

− Y (γ0(t00)+; t)f+01γ̇0(t00)
}
δt0+

+ Y (γ0(t00)+; t)f+01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)f0u[s] ds+ β(t; δµ).

Theorem 2.6. Let the assumptions of Theorems 2.4 and 2.5 be fulfilled.
Moreover,

f−0 = f+0 := f̂0, f−01 = f+01 := f̂01

and
t00, γ0(t00) ̸∈

{
σ(t10), σ

2(t10), . . .
}
.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary

(t, ε, δw) ∈ [t10 − δ2, t10 + δ2]× (0, ε2]×ℑ3
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formula (2.4) holds, where

δx(t; δw) =
{
Y (t00; t)

[
v0(t00)−A(t00)v0(σ(t00))− f̂0

]
−

− Y (γ0(t00); t)f̂01γ̇0(t00)
}
δt0+

+ Y (γ0(t00); t)f01γ̇0(t00)δτ(γ0(t00))+

+

t∫
t00

Y (s; t)f0u[s]δu(s) ds+ β(t; δw).

2.1. Proof of Theorem 2.1. First of all, we note that Lemma 2.1 formu-
lated below is a consequence of Theorem 1.14.

Lemma 2.1. Let y0(t) be a solution corresponding to µ0 ∈ Λ and defined
on [r1, r2] ⊂ (a, b). Let K1 ⊂ O be a compact set containing a certain
neighborhood of the set clφ0(I1) ∪ y0([r1, r2]). Then there exist numbers
ε1 > 0 and δ1 > 0 such that for an arbitrary (t, δµ) ∈ (0, ε1)×ℑ2, we have
µ0+εδµ ∈ Λ, and the solution y(t;µ0+εδµ) defined on [r1−δ1, r2+δ1] ⊂ I
corresponds to this element. Moreover,

φ(t) ∈ K1, t ∈ I1; y(t;µ0 + εδµ) ∈ K1, t ∈ [r1 − δ1, r2 + δ1];

lim
ε→0

y(t;µ0 + εδµ) = y(t;µ0),

uniformly in (t, δµ) ∈ [r1 − δ1, r2 + δ1]×ℑ2.

The solution y(t;µ0) on the interval [r1 − δ1, r2 + δ1] is a continuation
of the solution y0(t). Therefore, in what follows, we can assume that the
solution y0(t) is defined on the whole interval [r1 − δ1, r2 + δ1].

Let us define the increment of the solution y0(t) = y(t;µ0) :

∆y(t) = ∆y(t; εδµ) = y(t;µ0 + εδµ)− y0(t),

∀ (t, ε, δµ) ∈ [r1 − δ1, r2 + δ1]× (0, ε1)×ℑ2.

Obviously,
lim
ε→∞

∆y(t; εδµ) = 0, (2.5)

uniformly in (t, δµ) ∈ [r1 − δ1, r2 + δ1]×ℑ2.

Lemma 2.2. Let γ0(t00) < r2 and let the conditions of Theorem 2.1 be
fulfilled. Then there exists a number ε2 ∈ (0, ε1) such that for any (t, δµ) ∈
(0, ε2)×ℑ−

2 the inequality

max
t∈[t00,r2+δ1]

|∆y(t)| ≤ O(εδµ) (2.6)

is valid. Moreover,

∆y(t00) = ε
{
δx0 −

[
A(t00)v0(σ(t00)) + f−0

]
δt0

}
+ o(εδµ). (2.7)
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Proof. Let ε2 ∈ (0, ε1) be so small that for any (ε, δµ) ∈ (0, ε2) × ℑ−
2 the

following relations are fulfilled:

τ(t) := τ0(t) + εδτ(t) < t0 := t00 + εδt0, ∀ t ∈ [t0, t00]. (2.8)

The function ∆y(t) on the interval [t00, r2 + δ1] satisfies the equation

∆̇y(t) = A(t)h(t00, εδv, ∆̇y)(σ(t)) +

3∑
i=1

Wi(t; εδµ),

where

W1(t; εδµ) = A(t)
[
h(t0, v, ẏ0 + ∆̇y)(σ(t))− h(t00, v, ẏ0 + ∆̇y)(σ(t))

]
,

W2(t; εδµ) = f0(t0, τ, φ, y0 +∆y)(t)− f0(t00, τ0, φ0, y0)(t),

W3(t; εδµ) = εδf(t0, τ, φ, y0 +∆y)(t),

v := v0 + εδv, φ := φ0 + εδφ.

We now consider the linear nonhomogeneous neutral equation

ż(t) = A(t)ż(σ(t)) +
3∑

i=1

Wi(t; εδµ) (2.9)

with the initial condition

ż(t) = εδv(t), t ∈ [τ̂ , t0), z(t0) = ∆y(t0).

Due to the uniqueness it is easily seen that z(t) = ∆y(t), t ∈ [t00, r2 + δ1].
According to Theorem 1.7, the solution of the equation (2.9) can be written
in the form

∆y(t) = ∆y(t00) + ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ+

+
3∑

i=1

t∫
t00

Y (ξ; t)Wi(ξ; εδµ) dξ,

where Y (ξ; t) has the form (1.11). Hence

|∆y(t)| ≤ |∆y(t00)|+ ε∥Y ∥ ∥A∥α
[
ν(t00)− t00

]
+ ∥Y ∥

3∑
i=1

Wi(εδµ), (2.10)
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where

W1(εδµ) =

r2+δ2∫
t00

|W1(t; εδµ)| dt, W2(t; t00, εδµ) =

t∫
t00

|W2(ξ; εδµ)| dξ,

W3(εδµ) =

r2+δ2∫
t00

|W1(t; εδµ)| dt, ∥A∥ = sup
{
|A(t)| : t ∈ I

}
,

∥Y ∥ = sup
{
|Y (ξ; t)| : (ξ, t) ∈ [t00, r2 + δ1]× [t00, r2 + δ1]

}
.

Let us prove equality (2.7). We have

∆y(t00) = y(t00;µ0 + εδµ)− x00 =

= x00 + εδx0 +

t00∫
t0

A(t)[v0(σ(t)) + εδv(σ(t))] dt+

+

t00∫
t0

f0(t, y(t;µ0 + εδµ), φ(τ(t))) dt+

+ ε

t00∫
t0

δf(t, y(t;µ0 + εδµ), φ(τ(t))) dt− x00 =

= ε
[
δx0 −A(t00)v0(σ(t00))δt0

]
+ o(εδµ)+

+

t00∫
t0

f0(t, y0(t) + ∆y(t), φ(τ(t))) dt+

+ ε

k∑
i=1

λi

t00∫
t0

δfi(t, y0(t) + ∆y(t), φ(τ(t))) dt. (2.11)

It is clear that if t ∈ [t0, t00], then

lim
ε→0

(t, y0(t) + ∆y(t), φ(t)) = z0

(see (2.5)). Consequently,

lim
ε→0

sup
t∈[t0,t00]

∣∣∣f0(t, y0(t) + ∆y(t), φ(τ(t))
)
− f−0

∣∣∣ = 0.
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This relation implies that

t00∫
t0

f0
(
t, y0(t) + ∆y(t), φ(τ(t))

)
dt =

= −εf−0 δt0 +
t00∫
t0

[f0(t, y0(t) + ∆y(t), φ(τ(t)))− f−0 ] dt =

= −εf−0 δt0 + o(εδµ). (2.12)

Further, we have

|λi|
t00∫
t0

∣∣∣δfi(t, y0(t) + ∆y(t), φ(τ(t))
)∣∣∣ dt ≤ α

t00∫
t0

mδfi,K1(t) dt. (2.13)

From (2.11), by virtue of (2.12) and (2.13), we obtain (2.7).
Now, let us prove inequality (2.6). To this end, we have to estimate the

expressions W1(εδµ),W2(t; t00, εδµ) and W3(εδµ). We have

W1(εδµ) ≤ ∥A∥
ν(t00)∫
ν(t0)

∣∣∣ẏ(σ(t);µ0 + εδµ)− v0(σ(t))− εδv(σ(t))
∣∣∣ dt.

Using the step method, we can prove the boundedness of |ẏ(t;µ0+εδµ)∥, t ∈
[r1 − δ1, r2 + δ1] uniformly in δµ ∈ ℑ−

2 i.e. there exist M > 0 such that∣∣∣ẏ(σ(t);µ0 + εδµ
)
− v0(σ(t))− εδv(σ(t))

∣∣∣ ≤M,

t ∈ [ν(t0), ν(t00)], ∀ δµ ∈ ℑ2.

Moreover,

ν(t00)− ν(t0) =

t00∫
t0

ν̇(t) dt = O(εδµ).

Thus,

W1(εδµ) = O(εδµ). (2.14)

Let us estimate W2(t; t00, εδµ). It is clear that

γ0(t0)− γ(t0) =

t0∫
τ0(γ(t0))

γ̇0(ξ) dξ =

t0∫
t0−εδτ(γ(t0))

γ̇0(ξ) dξ > 0
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and γ(t0) > t00 (see (2.8)). For t ∈ [t00, γ(t0)], we have τ(t) < t0 and
τ0(t) < t00, therefore we get

W2(t; t00, εδµ) ≤
t∫

t00

Lf0,K1(ξ)
[
|∆y(ξ)|+ |φ(τ(ξ))− φ0(τ0(ξ))|

]
dξ ≤

≤
t∫

t00

Lf0,K1(ξ)∆y(ξ) dξ +

∣∣∣∣
τ(ξ)∫

τ0(ξ)

|φ̇0(s)| ds
∣∣∣∣+O(εδµ) =

=

t∫
t00

Lf0,K1
(ξ)∆y(ξ) dξ +O(εδµ). (2.15)

For t ∈ [γ(t0), γ0(t00)], we have

W2(t; t00, εδµ) =W2(γ(t0); t00, εδµ) +

t∫
γ(t0)

W2(ξ; εδµ) dξ ≤

≤ O(εδµ) +

γ0(t00)∫
γ(t0)

W2(ξ; εδµ) dξ ≤ O(εδµ) + 2mK1 |γ0(t00)− γ(t0)|.

Next,

∣∣γ0(t00)− γ(t0)
∣∣ = t00∫

τ0(γ(t0))

γ̇0(ξ) dξ =

t00∫
τ0(γ(t0))+εδτ(γ(t0))−εδτ(γ(t0))

γ̇0(ξ) dξ =

=

t00∫
t0−εδτ(γ(t0))

γ̇0(ξ) dξ = O(εδµ, )

Consequently,

W2(t; t00, εδµ) = O(εδµ), t ∈ [γ(t0), γ0(t00)]. (2.16)

For t ∈ (γ0(t00), r1 + δ1], we have

W2(t; t0, εδµ) =W2

(
γ0(t00); t0, εδµ

)
+

t∫
γ0(t00)

W2(ξ; εδµ) dξ ≤

≤ O(εδµ) +

∣∣∣∣
γ(t00)∫

γ0(t00)

W2(ξ; εδµ) dξ

∣∣∣∣+
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+

∣∣∣∣
t∫

γ(t00)

χ(ξ)Lf0,K1(ξ)|∆y(τ(ξ))| dξ
∣∣∣∣+∣∣∣∣

t∫
γ(t00)

∣∣y0(τ(ξ))−y0(τ0(ξ))∣∣ dξ∣∣∣∣ ≤
≤ O(εδµ) + 2mK1 |γ0(t00)− γ(t00)|+

+

t∫
t00

χ(γ(ξ))Lf0,K1(γ(ξ))γ̇(ξ)|∆y(ξ)| dξ +
r1+δ1∫
t00

∣∣∣∣
τ(ξ)∫

τ0(ξ)

|ẏ0(s)| ds
∣∣∣∣ dξ =

= O(εδµ) + 2mK1

[∣∣γ(t00)− γ(t0)
∣∣+ ∣∣γ(t00)− γ0(t00)

∣∣ ]+
+

t∫
t00

χ(γ(ξ))Lf0,K1(γ(ξ))γ̇(ξ)|∆y(ξ)| dξ

where χ(ξ) is the characteristic function of I. Next,

γ(t00)− γ(t0) =

t00∫
t0

γ̇(ξ) dξ ≤ 1

e
(t00 − t0) = O(εδµ)

and

∣∣γ(t00)− γ0(t00)
∣∣ = ∣∣∣∣

τ0(γ(t00))∫
t00

γ̇0(t) dt

∣∣∣∣ =
=

∣∣∣∣
τ(γ(t00))−εδ(γ(t00))∫

t00

γ̇0(t) dt

∣∣∣∣ = O(εδµ).

Thus,

W2(t; t0, εδµ) = O(εδµ) +

t∫
t00

χ(γ(ξ))Lf0,K1(γ(ξ))γ̇(ξ)|∆y(ξ)| dξ. (2.17)

Finally, we note that

W3(t; εδµ) = O(εδµ), t ∈ [t00, r2 + δ1] (2.18)

(see (2.12)).
According to (2.7), (2.14)–(2.18), inequality (2.10) directly implies that

|∆y(t)| ≤ O(εδµ) +

t∫
t00

[
Lf0,K1(ξ) + χ(γ(ξ))Lf0,K1(γ(ξ))γ̇(ξ)

]
∆y(ξ)| dξ
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By virtue of Grounwall’s lemma, we obtain

|∆y(t)| ≤

≤ O(εδµ) exp
{ t∫
t00

Lf0,K1(ξ) dξ +

t∫
t00

χ(γ(ξ))Lf0,K1(γ(ξ))γ̇(ξ) dξ

}
≤

≤ exp
{
2

∫
I

Lf0,K1(ξ) dξ

}
.

The following assertion can be proved by analogy with Lemma 2.2. �

Lemma 2.3. Let γ0(t00) < r2 and let the conditions of Theorem 2.2 be
fulfilled. Then there exists the number ε2 ∈ (0, ε1) such that for any (t, δµ) ∈
(0, ε2)×ℑ+

2 the inequality

max
t∈[t0,r2+δ1]

|∆y(t)| ≤ O(εδµ)

is valid. Moreover,

∆y(t00) = ε
{
δx0 −

[
A(t00)v0(σ(t00)) + f+0

]
δt0

}
+ o(εδµ).

Proof of Theorem 2.1. Let r1 = t00 and r2 = t10 in Lemma 2.1. Then

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

y0(t), t ∈ [t00, t10],

and for arbitrary (ε, δµ) ∈ (0, ε1)×ℑ−
2

x(t;µ0 + εδµ) =

{
φ(t) = φ0(t) + εδφ(t), t ∈ [τ̂ , t0),

y(t;µ0 + εδµ), t ∈ [t0, t10 + δ1]

(see Remark 1.1). We note that δµ ∈ ℑ−
2 , i.e. t0 < t00, therefore

∆x(t) =


εδφ(t), t ∈ [τ̂ , t0),

y(t;µ0 + εδµ)− φ0(t), t ∈ [t0, t00),

∆y(t), t ∈ [t00, t10 + δ1].

∆̇x(t) =


εδv(t), t ∈ [τ̂ , t0),

ẏ(t;µ0 + εδµ)− v0(t), t ∈ [t0, t00),

∆̇y(t), t ∈ [t00, t10 + δ1].

By Lemma 2.2, we have

|∆x(t)| ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [t00, t10 + δ1]× (0, ε1)×ℑ−
2 , (2.19)

∆x(t00) = ε
{
δx0 −

[
A(t00)v0(σ(t00)) + f−0

]
δt0

}
+ o(εδµ). (2.20)
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The function ∆x(t) satisfies the equation

∆̇x(t) = A(t)∆̇x(σ(t))+

+ f0x[t]∆x(t) + f0y[t]∆x(τ0(t)) + εδf [t] +R1[t] +R2[t], (2.21)

where

R1[t] = f0
(
t, x0(t) + ∆x(t), x0(τ(t))

)
+∆x(τ(t))−

− f0[t]− f0x1 [t]∆x(t)− f0x2 [t]∆x(τ0(t)),

R2[t] = ε
[
δf

(
t, x0(t) + ∆x(t), x0(τ(t)) + ∆x(τ(t)

))
− δf [t]

]
.

By using the Cauchy formula, one can represent the solution of the equation
(2.21) in the form

∆x(t) = Ψ(t00; t)∆x(t00)+

+ ε

t∫
t00

Y (ξ; t)δf [ξ] dξ +

2∑
i=−1

Ri[t; t00], t ∈ [t00, t10 + δ1], (2.22)

where

R−1[t; t00] =

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)∆̇x(ξ) dξ,

R0[t; t00] =

t00∫
τ0(t00)

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ,

Ri[t; t00] =

t∫
t00

Y (ξ; t)Ri[ξ] dξ, i = 1, 2,

By Theorem 1.13, we get

Φ(t00; t)∆x(t00) =

= εΦ(t00; t)
{
δx0 −

[
A(t00)v0(σ(t00)) + f−0

]
δt0

}
+ o(t; δµ) (2.23)

(see (2.20)).
Now, let us transform R−1[t; t00]. We have

R−1[t; t00] = ε

t0∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ+

+

t00∫
t0

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)∆̇x(ξ) dξ =
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= ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ + o(t; εδµ)+

+

t00∫
t0

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)×

×
[
A(ξ)

(
v0(σ(ξ)) + εδv(σ(ξ))

)
+ f0(t0, τ, φ, y0 +∆y)(ξ)+

+ εδf(t0, τ, φ, y0 +∆y)(ξ)− v0(ξ)
]
dξ =

+ ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ − εY (ν(t00)−; t)A(ν(t00))×

× ν̇(t00)
[
A(t00)v0(σ(t00)) + f−0 − v0(t00)

]
δt0 + o(t; εδµ) =

= ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ + ε
[
Y (t00−; t)− Φ(t00; t)

]
×

×
[
v0(t00)−A(t00)v0(σ(t00))− f−0

]
δt0 + o(εδµ) (2.24)

(see (1.7)).
For R0[t; t00], we have

R0[t; t00] = ε

t0∫
τ0(t00)

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)δφ(ξ) dξ+

+

t00∫
t0

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ =

= ε

t00∫
τ0(t00)

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)δφ(ξ) dξ + o(t; εδµ)+

+

t00∫
t0

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ. (2.25)

Let a number δ2 ∈ (0, δ1) be so small that γ0(t00) < t10 − δ2. Since
γ0(t00) > γ(t0), therefore for t ∈ [t10 − δ2, t10 + δ2], we have

R1[t; t00] =

3∑
i=1

αi[t],
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where

α1[t] =

γ(t0)∫
t00

r[ξ; t] dξ, α2[t] =

γ0(t00)∫
γ(t0)

r[ξ; t] dξ,

α3[t] =

t∫
γ0(t00)

r[ξ; t] dξ, r[ξ; t] = Y (ξ; t)R1[ξ].

Introducing the notation,

f0[ξ; s] =

= f0
(
ξ, x0(ξ)+s∆x(ξ), x0(τ0(ξ))+s

(
x0(τ(ξ))−x0(τ0(ξ))+∆x(τ(ξ))

))
,

θ[ξ; s] = f0x1 [ξ; s]− f0x1 [ξ], ρ[ξ; s] = f0x2 [ξ; s]− f0x2 [ξ],

Then we have

R1[ξ] =

1∫
0

d

ds
f0[ξ; s] ds =

=

1∫
0

{
f0x1 [ξ; s]∆x(ξ)+f0x2 [ξ; s]

(
x0(τ(ξ))−x0(τ0(ξ))+∆x(τ(ξ))

)}
ds−

− f0x1 [ξ]∆x(ξ)− f0x2 [ξ]∆x(τ0(ξ)) =

[ 1∫
0

θ[ξ; s] ds

]
∆x(ξ)+

+

[ 1∫
0

ρ[ξ; s] ds

](
x0(τ(ξ))− x0(τ0(ξ)) + ∆x(τ(ξ))

)
+

+ f0x2 [ξ]
{[
x0(τ(ξ))− x0(τ0(ξ))

]
+
[
∆x(τ(ξ))−∆x(τ0(ξ))

]}
.

Taking into account the latter relation, we have

α1[t] =

4∑
i=1

α1i[t],

where

α11[t] =

γ(t0)∫
t00

Y (ξ; t)θ1[ξ]∆x(ξ) dξ, θ1[ξ] =

1∫
0

θ[ξ; s] ds,

α12[t] =

γ(t0)∫
t00

Y (ξ; t)ρ1[ξ]
[
x0(τ(ξ))− x0(τ0(ξ)) + ∆x(τ(ξ))

]
dξ,
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ρ1[ξ] =

1∫
0

ρ[ξ; s] ds,

α13[t] =

γ(t0)∫
t00

Y (ξ; t)f0x2 [ξ]
[
∆x(τ(ξ))−∆x(τ0(ξ))

]
dξ,

α14[t] =

γ(t0)∫
t00

Y (ξ; t)f0x2 [ξ]
[
x0(τ(ξ))− x0(τ0(ξ))

]
dξ.

Further,

γ0(t0)− γ(t0) =

t0∫
τ0(γ(t0))

γ̇0(ξ) dξ =

t0∫
t0−εδτ(γ(t0))

γ̇0(ξ) dξ > 0.

Therefore. for ξ ∈ (t00, γ(t0)), we have τ(ξ) < t0, τ0(ξ) < t0. Thus,
x0(τ(ξ))− x0(τ0(ξ)) = φ0(τ(ξ))− φ0(τ0(ξ))

and
∆x(τ(ξ))−∆x(τ0(ξ)) = ε

[
δφ(τ(ξ))− δφ(τ0(ξ))

]
.

The function φ0(t), t ∈ I1 is absolutely continuous, therefore for each fixed
Lebesgue point τ0(ξ) ∈ I1 we get

φ0(τ(ξ))− φ0(τ0(ξ)) =

τ(ξ)∫
τ0(ξ)

φ̇0(s) ds = εφ̇0(τ0(ξ))δτ(ξ) + γ(ξ; εδµ), (2.26)

where
lim
ε→0

γ(ξ; εδµ)

ε
= 0 uniformly for δµ ∈ ℑ−

2 . (2.27)

Thus, (2.26) is valid for almost all points of the interval (t00, γ(t0)). From
(2.26), taking into account the boundedness of the function φ̇0(t), we have∣∣φ0(τ(ξ))− φ0(τ0(ξ))

∣∣ ≤ O(εδµ) and
∣∣∣γ(ξ; εδµ)

ε

∣∣∣ ≤ const. (2.28)

According to (2.19) and (2.26)–(2.28). for the expressions α1i[t], i = 1, . . . , 4,
we have∣∣α11[t]

∣∣ ≤ ∥Y ∥O(εδµ)θ2(εδµ), |α12[t]| ≤ ∥Y ∥O(εδµ)ρ2(εδµ),∣∣α13[t]
∣∣ ≤ o(εδµ), α14[t] = ε

ρε∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ,

where

θ2(εδµ) =

b∫
t00

1∫
0

∣∣∣f0x1

(
ξ, x0(ξ) + s∆x(ξ), φ0(τ0(ξ))

)
+
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+s
(
φ0(τ(ξ))− φ0(τ0(ξ))− εδφ(τ0(ξ))

)
− f0x1

(
ξ, x0(ξ), φ0(τ0(ξ))

)∣∣∣ ds dξ,
ρ2(εδµ) =

b∫
t00

1∫
0

∣∣∣f0x2

(
ξ, x0(ξ) + s∆x(ξ), φ0(τ0(ξ))

)
+

+ s
(
φ0(τ(ξ))− φ0(τ0(ξ))− εδφ(τ0(ξ))

)
−

− f0x2

(
ξ, x0(ξ), φ0(τ0(ξ))

)∣∣∣ ds dξ,
γ1(t; εδµ) =

t∫
t00

Y (ξ; t)f0x2 [ξ]γ(ξ; εδµ) dξ.

Obviously,

∣∣∣γ(t; εδµ)
ε

∣∣∣ ≤ ∥Y ∥
γ0(t00)∫
t00

∣∣f0x2 [ξ]
∣∣ ∣∣∣γ(ξ; εδµ)

ε

∣∣∣ dξ.
By the Lebesgue theorem on the passage under the integral sign, we have

lim
ε→0

θ(εδµ) = lim
ε→0

ρ(εδµ) =
∣∣∣γ1(t; εδµ)

ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [t00, γ0(t00)]×ℑ−
2 (see (2.26)).

Thus,

α1i[t] = o(εδµ), i = 1, 2, 3; (2.29)

α14[t] = ε

γ(t0)∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ).

It is clear that

ε

γ0(t00)∫
γ(t0)

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ = o(t; εδµ),

i.e.

α14[t] = ε

γ0(t00)∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ). (2.30)

On the basis of (2.28) and (2.29), we obtain

α1[t] = ε

γ0(t00)∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ). (2.31)
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Let us now transform α2[t]. We have

α2[t] =
3∑

i=1

α2i(t; εδµ),

where

α21[t] =

γ0(t00)∫
γ(t0)

Y (ξ; t)
[
f0

(
ξ, x0(ξ) + ∆x(ξ), x0(τ(ξ)) + ∆x(τ(ξ))

)
−f0[ξ]

]
dξ,

α22[t] = −
γ0(t00)∫
γ(t0)

Y (ξ; t)f0x1 [ξ]∆x(ξ) dξ,

α23[t] = −
γ0(t00)∫
γ(t0)

Y (ξ; t)f0x2 [ξ]∆x(τ0(ξ)) dξ.

If ξ ∈ (γ(t0), γ0(t00)), then
|∆x(ξ)| ≤ O(εδµ),

x0(τ(ξ)) + ∆x(τ(ξ)) = y(τ(ξ); εδµ) = y0(τ(ξ)) + ∆y(τ(ξ); εδµ),

x0(τ0(ξ)) = φ0(τ0(ξ)),

therefore,
α22[t] = o(t; εδµ),

lim
ε→0

(
ξ, x0(ξ) + ∆x(ξ), x0(τ(ξ)) + ∆x(τ(ξ))

)
=

= lim
ξ→γ0(t00)−

(
ξ, x0(ξ), y0(τ0(ξ))

)
= z10,

lim
ε→0

(
ξ, x0(ξ), x0(τ0(ξ))

)
= lim

ξ→γ0(t00)−

(
ξ, x0(ξ), φ0(τ0(ξ))

)
= z20,

i.e.

lim
ε→0

sup
ξ∈[γ(t0),γ0(t00)]

[
f0

(
ξ, x0(ξ) + ∆x(ξ), x0(τ(ξ)) + ∆x(τ(ξ))

)
−

− f0
(
ξ, x0(ξ), x0(τ0(ξ))

)]
= f−01.

It is clear that

γ0(t00)− γ(t0) =

t00∫
τ0(γ(t0))

γ̇0(ξ) dξ =

=

t00∫
τ(γ(t0))−εδτ(γ(t0))

γ̇0(ξ) dξ =

t00∫
t0−εδτ(γ(t0))

γ̇0(ξ) dξ = O(εδµ) > 0.
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It is not difficult to see that

α21[t] =

γ0(t00)∫
γ(t0)

Y (ξ; t)f−01 dξ + o(t; εδµ) =

=

t00∫
τ0(γ(t0))

Y (γ0(ξ); t)f
−
01γ̇0(ξ) dξ + o(t; εδµ) =

=

t00∫
t00−ε(δτ(γ0(t00))−δt0)+o(εδµ)

Y (γ0(ξ); t)f
−
01γ̇0(ξ) dξ + o(t; εδµ) =

= εY (γ(t00)−; t)f−01γ̇0(t00)
(
δτ(γ0(t00))− δt0

)
+ o(t; εδµ).

For ξ ∈ [γ(t0), γ0(t00)], we have ∆x(τ0(ξ)) = εδφ(τ0(ξ)), therefore

α23[t] = −ε
γ0(t0)∫
γ(t0)

Y (ξ; t)f0x2 [ξ]δφ(τ0(ξ)) dξ−

−
γ0(t00)∫
γ0(t0)

Y (ξ; t)f0x2 [ξ]∆x(τ0(ξ)) dξ =

= −
t00∫
t0

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ + o(t; εδµ).

Consequently,
α2[t] = εY (γ0(t00)−; t)f−01γ̇0(t00)

(
δτ(γ0(t00))− δt0

)
=

−
t00∫
t0

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ + o(t; εδµ). (2.32)

Transforming the expression α3[t] for t ∈ [t10 − δ2, t10 + δ2], we have

α3[t] =
4∑

i=1

α3i[t],

where

α31[t] =

t∫
γ0(t00)

Y (ξ; t)θ1[ξ]∆x(ξ)dξ,

α32[t] =

t∫
γ0(t00)

Y (ξ; t)ρ1[ξ]
[
x0(τ(ξ))− x0(τ0(ξ)) + ∆x(τ(ξ))

]
dξ,
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α33[t] =

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]
[
∆x(τ(ξ))−∆x(τ0(ξ))

]
dξ,

α34[t] =

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]
[
x0(τ(ξ))− x0(τ0(ξ))

]
dξ.

For each Lebesgue point τ0(ξ) of the function ẋ0(t), t ∈ [t00, t10+δ2], we get

x0(τ(ξ))− x0(τ0(ξ)) =

τ(ξ)∫
τ0(ξ)

ẋ0(ξ) dξ = εẋ0(τ0(ξ))δτ(ξ) + γ̂(ξ; εδµ), (2.33)

where
lim
ε→0

γ̂(ξ; εδµ)

ε
= 0 uniformly for δµ ∈ ℑ−

2 . (2.34)

From (2.32), taking into account the boundedness of the function ẋ0(t), we
have ∣∣x0(τ(ξ))− x0(τ0(ξ))

∣∣ ≤ O(εδµ) and
∣∣∣γ(ξ; εδµ)

ε

∣∣∣ ≤ const. (2.35)

Further,

∣∣∆x(τ(ξ))−∆x(τ0(ξ))
∣∣ ≤ τ(ξ)∫

τ0(ξ)

|∆̇(x(s))| ds ≤

≤
τ(ξ)∫

τ0(ξ)

|A(s)|
∣∣∆̇x(σ(s))∣∣ ds ≤

≤
τ(ξ)∫

τ0(ξ)

Lf0,K1(s)
(
|∆x(s)|+

∣∣x0(τ(s))− x0(τ0(s))
∣∣+ ∣∣∆x(τ(s))∣∣) ds ≤

≤ ∥A∥
τ(ξ)∫

τ(ξ)

∣∣∆̇x(σ(s))∣∣ ds+ o(ξ; εδµ).

If [σ(τ0(ξ)), σ(τ(ξ))] ⊂ [t0, ν(t0)], then

∆̇x(σ(s)) = εδv(σ(s)).

Thus, in this case we have∣∣∆x(τ(ξ))−∆x(τ0(ξ))
∣∣ = o(ξ; εδµ).

If [σ(τ0(ξ)), σ(τ(ξ))] ⊂ [ν(t0), ν(t00)], then∣∣∆̇x(σ(s))∣∣ = ∣∣ẋ(σ(s);µ0 + εδµ)− v0(σ(s))
∣∣
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and ∣∣∆x(τ(ξ))−∆x(τ0(ξ))
∣∣ = O(ξ; εδµ).

It is clear that if ξ ∈ [γ0(ν(t0)), γ(ν(t00))], then[
σ(τ0(ξ)), σ(τ(ξ))

]
⊂

[
ν(t0), ν(t00)

]
with

lim
ε→0

[
γ0(ν(t0))− γ(ν(t00))

]
= 0,

therefore
γ(ν(t00))∫

γ0(ν(t0))

Y (ξ; t)f0y
[
∆x(τ(ξ))−∆x(τ0)(ξ)

]
dξ = o(εδµ).

Continuing this process analogously for a33[t], we get

α33[t] = o(t; εδµ).

According to (2.32) and (2.34), for the above expressions we have∣∣α31[t]
∣∣ ≤ ∥Y ∥O(εδµ)θ3(εδµ),

∣∣α32[t]
∣∣ ≤ ∥Y ∥O(εδµ)ρ3(εδµ),

α34[t] = γ̂1(t; εδµ) + ε

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]ẋ0(τ0(ξ))δτ(ξ) dξ,

where

θ3(εδµ) =

t10+δ2∫
γ0(t00)

∣∣∣f0x1(ξ, x0(ξ) + s∆x(ξ), x0(τ0(ξ))
)
+

+ s
(
x0(τ(ξ))− x0(τ0(ξ)) + ∆x(τ(ξ))

)
−

− f0x1

(
ξ, x0(ξ), x0(ξ)

)∣∣∣ dξ,
ρ3(εδµ) =

t10+δ2∫
γ0(t00)

∣∣∣f0x2(ξ, x0(ξ) + s∆x(ξ), x0(τ0(ξ))
)
+

+ s
(
x0(τ(ξ))− x0(τ0(ξ)) + ∆x(τ(ξ))

)
−

− f0x2

(
ξ, x0(ξ), x0(ξ)

)∣∣∣ dξ,
γ̂1(t; εδµ) =

t10+δ2∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]γ̂(ξ; εδµ) dξ.
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Obviously,

∣∣∣ γ̂(t; εδµ)
ε

∣∣∣ ≤ ∥Y ∥
t10+δ2∫
γ0(t00

∣∣f0x2 [ξ]
∣∣ ∣∣∣ γ̂(ξ; εδµ)

ε

∣∣∣ dξ.
By the Lebesgue theorem on the passage under the integral sign, we have

lim
ε→0

θ3(εδµ) = lim
ε→0

ρεδµ = 0

and

lim
ε→0

∣∣∣ γ̂(ξ; εδµ)
ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [γ0(t00), t10 + δ2] (see (2.33)).
Thus,

α3i[t] = o(t; εδµ), i = 1, 2,

α34[t] = ε

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]ẋ0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ).

Consequently,

α3[t] = ε

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]ẋ0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ). (2.36)

On the basis of (2.31), (2.32) and (2.36),

R1[t; t00] = ε

γ0(t00)∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ+

+ εY (γ0(t00)−; t)f−01γ̇0(t00)
(
δτ(γ0(t00))− δt0

)
−

−
t00∫
t0

Y (γ0(ξ); t)f0x2
[γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ×

× ε

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]ẋ0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ). (2.37)

Finally, let us estimate R2[t; t00]. We have

∣∣R2[t; t00]
∣∣ ≤ εα∥Y ∥

k∑
i=1

βi(εδµ),
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where
βi(εδµ) =

=

t10+δ2∫
t00

Lδfi,K1(ξ)
[ ∣∣∆x(ξ)∣∣+ ∣∣x0(τ(ξ))− x(τ0(ξ))

∣∣+ ∣∣∆x(τ(ξ))∣∣ ] dξ.
It is clear that

βi(εδµ) ≤

≤
γ(t0)∫
t00

Lδfi,K1(ξ)
[
O(εδµ) +

∣∣φ0(τ(ξ))− φ0(τ0(ξ))
∣∣+ ε

∣∣φ(τ(ξ))∣∣ ] dξ+
+

γ0(t00)∫
γ(t0)

Lδfi,K1(ξ)
[
O(εδµ) +

∣∣x0(τ(ξ))− x0(τ0(ξ))
∣∣+ ∣∣∆x(τ(ξ))∣∣ ] dξ+

+

t10+δ2∫
γ0(t00)

Lδfi,K1(ξ)
[
O(εδµ) +

∣∣x0(τ(ξ))− x0(τ0(ξ))
∣∣+O(εδµ)

]
dξ.

Obviously,
lim
ε→0

β(εδµ) = 0.

Thus,
R2[t; t00] = o(t; εδµ) (2.38)

From (2.22), by virtue of (2.23)–(2.25), (2.37) and (2.38), we obtain (2.1),
where δx(t; δµ) has the form (2.2). �
2.2. Proof of Theorem 2.2. Let r1 = t00 and r2 = t10 in Lemma 2.3.
Then

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

y0(t), t ∈ [t00, t10],

and for arbitrary (ε, δµ) ∈ (0, ε1)×ℑ+
2 ,

x(t;µ0 + εδµ) =

{
φ(t) = φ0(t) + εδφ(t), t ∈ [τ̂ , t0),

y(t;µ0 + εδµ), t ∈ [t0, t10 + δ1].

We note that δµ ∈ ℑ+
2 , i.e. t0 > t00, therefore

∆x(t) =


εδφ(t), t ∈ [τ̂ , t00),

φ(t)− x0(t), t ∈ [t00, t0),

∆y(t), t ∈ [t0, t10 + δ1],

∆̇x(t) =


εδv(t), t ∈ [τ̂ , t00),

v0(t) + εδv(t)− ẋ0(t), t ∈ [t00, t0),

∆̇y(t), t ∈ [t0, t10 + δ1].
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By Lemma 2.3, we have∣∣∆x(t)∣∣ ≤ O(εδµ), ∀ (t, ε, δµ) ∈ [t0, t10 + δ1]× (0, ε1)×ℑ+
2 , (2.39)

∆x(t0) = ε
{
δx0 −

[
A(t00)v0(σ(t00)) + f+0

]
δt0

}
+ o(εδµ). (2.40)

The function ∆x(t) satisfies the equation (2.21) on the interval [t0, t10+δ1; ]
therefore, by using the Cauchy formula, we can represent it in the form

∆x(t) = Ψ(t0; t)∆x(t0) + ε

t∫
t0

Y (ξ; t)δf [ξ] dξ +

2∑
i=−1

Ri[t; t0], (2.41)

t ∈ [t0, t10 + δ1].

Let δ2 ∈ (0, δ2) be so small that γ0(t00) < t10−δ2. The matrix function is
continuous on [t00, γ0(t00)]× [t10−δ2, t10+δ2] (see Theorem 1.13), therefore

Φ(t0; t)∆x(t0) =

= εΦ(t00; t)
{
δx0 −

[
A(t00)v0(σ(t00)) + f+0

]
δt0

}
+ o(t; δµ) (2.42)

(see (2.40)).
Let us now transform R−1[t; t0]. We have

R−1[t; t0] = ε

t00∫
σ(t0)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ+

+

t0∫
t00

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)∆̇x(ξ) dξ =

= ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ + o(t; εδµ)+

+

t0∫
t00

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)×

×
[
A(ξ)

(
v0(σ(ξ)) + εδv(σ(ξ))

)
+ f0

(
ξ, x0(ξ), x0(τ0(ξ))

)]
dξ =

= ε

t00∫
σ(t00)

Y (ν(ξ); t)A(ν(ξ))ν̇(ξ)δv(ξ) dξ + ε
[
Y (t00+; t)− Φ(t00; t)

]
×

×
[
v0(t00)−A(t00)v0(σ(t00))− f+0

]
δt0 + o(εδµ). (2.43)
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For R0[t; t0], we have

R0[t; t0] = ε

t00∫
τ0(t0)

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)δφ(ξ) dξ+

+

t0∫
t00

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ =

= ε

t00∫
τ0(t00)

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)δφ(ξ) dξ + o(t; εδµ)+

+

t0∫
t00

Y (γ0(ξ); t)f0x2 [γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ. (2.44)

In a similar way, with inessential changes one can prove

R1[t; t0] = ε

γ0(t00)∫
t00

Y (ξ; t)f0x2 [ξ]φ̇0(τ0(ξ))δτ(ξ) dξ+

+ εY (γ0(t00)−; t)f+01γ̇0(t00)
(
δτ(γ0(t00))− δt0

)
−

−
t0∫

t00

Y (γ0(ξ); t)f0x2
[γ0(ξ)]γ̇0(ξ)∆x(ξ) dξ×

× ε

t∫
γ0(t00)

Y (ξ; t)f0x2 [ξ]ẋ0(τ0(ξ))δτ(ξ) dξ + o(t; εδµ) (2.45)

and
R2(t; t0) = o(t; εδµ). (2.46)

Obviously,

ε

t∫
t0

Y (ξ; t)δf [ξ] dξ = ε

t∫
t00

Y (ξ; t)δf [ξ] dξ + o(t; εδµ). (2.47)

Bearing in mind (2.42)–(2.47), from (2.41), we obtain (2.1) and the variation
formula.

In the conclusion we note that the Theorems 2.3–2.6 can be proved by
the scheme using in the proof of Theorems 2.1 and 2.2.

3. Initial Data Optimization Problem

3.1. The Necessary conditions of optimality. Let t01, t02, t1 ∈ (a, b) be
the given numbers with t01 < t02 < t1 and let X0 ⊂ O, K0 ⊂ O, K1 ⊂ O,
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U ⊂ U0 be compact and convex sets. Then

D2 =
{
τ ∈ D : e2 > τ̇(t) > e1 > 0

}
,

Φ1=
{
φ∈Eφ : φ(t)∈K0, t∈I1

}
, Φ2=

{
v∈Ev : v(t)∈K1, t∈I1

}
,

Ω1 =
{
u ∈ Ω : u(t) ∈ U, t ∈ I

}
.

Consider the initial data optimization problem

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t)), u(t)

)
, t ∈ [t0, t1],

x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0,

qi
(
t0, x0, x(t1)

)
= 0, i = 1, . . . , l,

q0
(
t0, x0, x(t1)

)
−→ min,

where

w = (t0, τ, x0, φ, v, u) ∈W1 = [t01, t02)×D2 ×X0 × Φ1 × Φ2 × Ω1

and x(t) = x(t;w); qi(t0, x0, x), i = 0, . . . , l, are the continuously differen-
tiable functions on the set I ×O2.

Definition 3.1. The initial data w = (t0, τ, x0, φ, v, u) ∈ W1 are said to
be admissible, if the corresponding solution x(t) = x(t;w) is defined on the
interval [τ̂ , t1] and the conditions hold

qi
(
t0, x0, x(t1)

)
= 0, i = 1, . . . , l,

hold.

The set of admissible initial data will be denoted by W10.

Definition 3.2. The initial data w0 = (t00, τ0, x00, φ0, v0, u0) ∈ W10 are
said to be optimal, if for any w = (t0, τ, x0, φ, v, u) ∈W10 we have

q0
(
t00, x00, x0(t1)

)
≤ q0

(
t0, x0, x(t1)

)
,

where x0(t) = x(t;w0), x(t) = x(t;w).

The initial data optimization problem consists in finding optimal initial
data w0.

Theorem 3.1. Let w0 ∈ W10 be optimal initial data and t00 ∈ [t01, t02).
Let the following conditions hold:

(a) γ0(t00) < t1;
(b) the functions v0(σ(t)) and v0(t) are continuous at the point t00; the

function φ0(t) is absolutely continuous and the function φ̇0(t) is
bounded;

(c) for each compact sets K ⊂ O and U ⊂ U0 there exists a number
mK,U > 0 such that

|f0(z)| ≤ mK,U , ∀ z = (t, x1, x2, u) ∈ I ×K2 × U ;
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(d) there exist the limits
lim
z→z0

f0(z) = f+0 , z ∈ [t00, t02)×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f+01, zi ∈ [γ0(t00), t1)×O2, i = 1, 2,

where
z0 =

(
t00, x00, φ0(τ0(t00))

)
, z10 =

(
γ0(t00), x0(γ0(t00)), x00

)
,

z20 =
(
γ0(t00), x0(γ0(t00)), φ0(t00)

)
, f0(z) = f(z, u0(t)).

Then there exist a vector π = (π0, . . . , πl) ̸= 0, π0 ≤ 0, and a
solution (χ(t), ψ(t)) of the system

χ̇(t) = −ψ(t)f0x1 [t]− ψ(γ0(t))f0x2 [γ0(t)]γ̇0(t),

ψ(t) = χ(t) + ψ(ν(t))A(ν(t))ν̇(t), t ∈ [t00, t1],

χ(t) = ψ(t) = 0, t > t1

(3.1)

such that the conditions listed below hold:
3.1. the condition for χ(t) and ψ(t)

χ(t1) = ψ(t1) = πQ0x,

where
Q = (q0, . . . , ql)T , Q0x = Qx

(
t00, x00, x0(t1)

)
;

3.2. the condition for the optimal initial moment t00
πQ0t0 +

(
ψ(t00+)− χ(t00)

)
v0(t00)−

−ψ(t00+)
(
A(t00)v0(σ(t00)) + f+0

)
− ψ(γ0(t00+))f+01γ̇(t00) ≤ 0;

3.3. the condition for the optimal initial vector x00(
πQ0x0 + ψ(t00)

)
x00 ≥

(
πQ0x0 + ψ(t00)

)
x0, ∀x0 ∈ X0;

3.4. the condition for the optimal delay function τ0(t)

ψ
(
γ0(t00+)

)
f+01t00 +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ0(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ0(t) dt ≥

≥ ψ(γ0(t00+))f+01τ(γ0(t00)) +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ(t) dt, ∀ τ ∈ D21=
{
τ ∈ D2 : τ(γ0(t00)) < t00

}
;
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3.5. the condition for the optimal initial function φ0(t)

t00∫
τ0(t00)

ψ(γ0(t))f0x2 [γ0(t)]γ̇0(t)φ0(t) dt ≥

≥
t00∫

τ0(t00)

ψ(γ0(t))f0x2 [γ0(t)]γ̇0(t)φ(t) dt, ∀φ ∈ Φ1;

3.6. the condition for the optimal initial function v0(t)

t00∫
σ(t00)

ψ(ν(t))A(ν(t))ν̇(t)v0(t) dt ≥

≥
t00∫

σ(t00)

ψ(ν(t))A(ν(t))ν̇(t)v(t) dt, ∀ v ∈ Φ2;

3.7. the condition for the optimal control function u0(t)

t1∫
t0

ψ(t)f0u[t]u0(t) dt ≥
t1∫

t0

ψ(t)f0u[t]u(t) dt, ∀u ∈ Ω1.

Here
f0x[t] = fx

(
t, x0(t), x0(τ0(t)), u0(t)

)
,

Theorem 3.2. Let w0 ∈ W10 be optimal initial data and t00 ∈ (t01, t02).
Let the conditions (a), (b), (c) hold. Moreover, there exist the limits

lim
z→z0

f0(z) = f−0 , z ∈ (t01, t00]×O2,

lim
(z1,z2)→(z10,z20)

[
f0(z1)− f0(z2)

]
= f−01, zi ∈ (t00, γ0(t00)]×O2, i = 1, 2,

Then there exist a vector π = (π0, . . . , πl) ̸= 0, π0 ≤ 0, and a solution
(χ(t), ψ(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5–3.7
are fulfilled. Moreover,
πQ0t0 +

(
ψ(t00−)− χ(t00)

)
v0(t00)− ψ(t00−)

(
A(t00)v0(σ(t00) + f−0

)
−

−ψ(γ0(t00−))f−01γ̇(t00) ≥ 0,

ψ(γ0(t00−))f−01t00 +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ0(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ0(t) dt ≥
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≥ ψ(γ0(t00−))f−01τ(γ0(t00)) +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ(t) dt, ∀ τ ∈D22=
{
τ ∈D2 : τ(γ0(t00))>t00

}
.

Theorem 3.3. Let w0 ∈ W10 be optimal initial data and t00 ∈ (t01, t02).
Let the conditions of Theorems 3.1 and 3.2 hold. Moreover,

f−0 = f+0 := f̂0, f−01 = f+01 := f̂01

and
t00, γ0(t00) ̸∈

{
σ(t1), σ

2(t1), . . .
}
.

Then there exist a vector π = (π0, . . . , πl) ̸= 0, π0 ≤ 0, and a solution
(χ(t), ψ(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5–3.7
are fulfilled, Moreover,

πQ0t0 +
(
ψ(t00)− χ(t00)

)
v0(t00)− ψ(t00)

(
A(t00)v0(σ(t00)) + f̂0

)
−

−ψ(γ0(t00))f̂01γ̇(t00) = 0,

ψ(γ0(t00))f̂01t00 +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ0(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ0(t) dt ≥

≥ ψ(γ0(t00))f̂01τ(γ0(t00)) +

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ0(t))τ(t) dt+

+

t1∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ0(t))τ(t) dt, ∀ τ ∈ D2.

3.2. Proof of Theorem 3.1. Denote by G0 the set of such elements w ∈
W+

1 = [t00, t02) × D21 × X0 × Φ1 × Φ2 × Ω1 to which there corresponds
the solution x(t;w), t ∈ [τ̂ , t1]. On the basis of Theorem 3.3, there exist
V̂ (w0; δ0) such that

V̂0(w0; δ0) = V̂ (w0; δ0) ∩W+
1 ⊂ G0.

On the set V̂01(z0; δ0) = [0, δ0) × V̂0(w0; δ0), where z0 = (0, w0)), we define
the mapping

P : V̂01(z0; δ0) −→ R1+l
p (3.2)
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by the formula

P (z) = Q(t0, x0, x(t1;w)) + (s, 0 . . . , 0)T =

=
(
q0
(
t1, x0, x(t1;w)

)
+ s, q1

(
t1, x0, x(t1;w)

)
, . . . , ql

(
t1, x0, x(t1;w)

))T

,

z = (s, w).

Lemma 3.1. The mapping P is differentiable at the point z0 = (0, w0) and

dPz0(δz) =
{
Q0t0 +Q0x

[
Y (t00+; t1)−Ψ(t00; t1)

]
v0(t00)−

−Q0xY (t00+; t1)
[
A(t00)v0(σ(t00)) + f+0

]
−

−Q0xY (γ0(t00)+; t1)f
+
01γ̇0(t00)

}
δt0 +

{
Q0x0 +Q0xΨ(t00; t1)

}
δx0+

+Q0x

{
Y (γ0(t00)+; t1)f

+
01γ̇0(t00)δτ(γ0(t00))+

+

γ0(t00)∫
t00

Y (t; t1)f0x2 [t]φ̇0(τ(t))δτ(t) dt+

t00∫
γ0(t00)

Y (t; t1)f0x2 [t]ẋ0(τ(t))δτ(t) dt

}
+

+Q0x

{ t00∫
τ0(t00)

Y (γ0(t); t1)f0x2 [γ0(t)]γ̇0(t)δφ(t) dt+

+

t00∫
σ0(t00)

Y (ν(t); t1)f0x2 [ν(t)]ν̇0(t)δv(t) dt

}
+

+Q0x

t1∫
t00

Y (t; t1)f0u[t]δu(t) dt+ (δs, 0, . . . , 0). (3.3)

Proof. Obviously, for arbitrary (ε, δz) ∈ (0, δ0)× [V̂01(z0; δ0)− z0], we have

z0 + εδz ∈ V̂01(z0; δ0).

Now we transform the difference

P (z0 + εδz)− P (z0) =

= Q
(
t00 + εδt0, x00 + εδx0, x(t1;w0 + εδw)

)
−Q0 + ε(δs, 0, . . . , 0)T .
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It is easy to see that

Q(t00 + εδt00, x00 + εδx0, x(t1;w0 + εδw))−Q0

=

1∫
0

d

dξ
Q
(
t0+εξδt0, x00+εξδx0, x0(t1)+ξ

(
x(t1;w0+εδw)−x0(t1)

))
dξ =

= ε
[
Q0t0δt0 +Q0x0δx0 +Q0xδx(t1; δw)

]
+ α(εδw),

where

α(εδw) = ε

1∫
0

[
Qt0(ε; ξ)−Q0t0

]
δt0 dξ + ε

1∫
0

[
Qx0(ε; ξ)−Q0x0

]
δx0 dξ+

+ε

1∫
0

[
Qx(ε; t)−Q0x

]
δx(t1; δw) dξ + o(εδw)

1∫
0

Q0x(ε; ξ) dξ,

Qt0(ε; ξ) =

= Qt0

(
t00 + εξδt0, x00 + εξδx0, x0(t1) + ξ

(
x(t1;w0 + εδw)− x0(t1)

))
.

Clearly, α(εδw) = o(εδw). Thus

P (z0 + εδz)− P (z0) =

= ε
[
Q0t0δt0 +Q0x0δx0 +Q0xδx(t1; δw) + (δs, 0, . . . , 0)⊤

]
+ o(εδw).

On the basis of Theorem 2.5, we have (3.3).
The set V̂01(z0; δ0) is convex and the mapping (3.2) is continuous and

differentiable. In a standard way we can prove the criticality of point z0
with respect to the mapping (3.2), i.e. P (z0) ∈ ∂P (V̂01(z0; δ0)) [10, 15].
These conditions guarantee fulfilment of the necessary condition of critical-
ity [10,15]. Thus, there exists the vector π = (π0, . . . , πl) ̸= 0 such that the
inequality

πdPz0(δz) ≤ 0, δz ∈ Cone
(
V̂01(z0; δ0)− z0

)
, (3.4)

is valid, where dPz0(δz) has the form (3.3).
Let us introduce the functions

χ(t) = πQ0xΨ(t; t1), ψ(t) = πQ0xY (t; t1). (3.5)

It is clear that the functions χ(t) and ψ(t) satisfy the system (3.1) and the
conditions

χ(t1) = ψ(t1) = πQ0x, χ(t1) = ψ(t1) = 0, t > t1. (3.6)
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Taking into consideration (3.3))–(3.5) and (3.6), from (3.4) we have{
πQ0t0 +

[
ψ(t00+)− χ(t00)

]
v0(t00)−

− ψ(t00+)
[
A(t00)v00(σ(t00)) + f+0

]
− ψ(γ0(t00+))f+01γ̇0(t00)

}
δt0+

+
{
πQ0x0 + χ(t00)

}
δx0 + ψ(γ0(t00)+)f+01γ̇0(t00)δτ(γ0(t00))+

+

γ0(t00)∫
t00

ψ(t)f0x2 [t]φ̇0(τ(t))δτ(t) dt+

t00∫
γ0(t00)

ψ(t)f0x2 [t]ẋ0(τ(t))δτ(t) dt+

+

t00∫
τ0(t00)

ψ(γ0(t))f0x2 [γ(t)]γ̇0(t)δφ(t) dt+

t00∫
σ(t00)

ψ(ν(t))f0x2 [ν(t)]ν̇(t)δv(t) dt+

+

t1∫
t00

ψ(t)f0u[t]δu(t) dt+ π0δs, ∀ δz ∈ Cone
(
V̂01(z0; δ0)− z0

)
. (3.7)

The condition δz ∈ Cone(V̂01(z0; δ0) − z0) is equivalent to δs ∈ [0,∞),
δt0 ∈ [0,∞),

δx0 ∈ Cone
(
B(x00; δ0) ∩X0 − x00

)
⊃ X0 − x00,

δτ ∈ Cone
(
V (τ0 : δ0) ∩D21 − τ0

)
⊃ D21 − τ0,

δφ ∈ Cone
(
V1(φ0; δ0) ∩ Φ1 − φ0

)
⊃ Φ1 − φ0,

δv ∈ Cone
(
V2(v0; δ0) ∩ Φ2 − v0

)
⊃ Φ2 − v0,

δu ∈ Cone
(
V3(u0; δ0) ∩ Ω1 − u0

)
⊃ Ω1 − u0.

Let δt0 = 0, δτ = 0, δx0 = 0, δφ = δv = 0, δu = 0, then from (3.7) we
have πδs ≤ 0, ∀ δs ∈ [0,∞), thus π0 ≤ 0.

Let δs = 0, δτ = 0, δx0 = 0, δφ = δv = 0, δu = 0, then we have{
πQ0t0+

[
ψ(t00+)−χ(t00)

]
v0(t00)−ψ(t00+)

[
A(t00)v00(σ(t00))+f

+
0

]
−

− ψ(γ0(t00+))f+01γ̇0(t00)
}
δt0 ≤ 0, ∀ δt0 ∈ [0,∞).

From this we obtain the condition for t00.
If δs = 0, δt0 = 0, δτ = 0, δφ = δv = 0, δu = 0, then we obtain the

condition for x00. Let δs = 0, δt0 = 0, δx0 = 0, δφ = δv = 0, δu = 0, then
we have the condition for the optimal delay function τ0(t) (see 3.4). Let
δs = 0, δt0 = 0, δτ = 0, δx0 = 0, δv = 0, δu = 0, then from (3.7) follows the
condition for the initial function φ0(t). If δs = 0, δt0 = 0, δτ = 0, δx0 = 0,
δφ = 0, δu = 0, then we obtain the condition for v0(t). Finally, we consider
the case, where δs = 0, δt0 = 0, δτ = 0, δx0 = 0, δφ = 0, δv = 0, then
we have the condition for the optimal control u0(t). Theorem 3.1 is proved
completely. �
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In the conclusion we note that the Theorems 3.2 and 3.3 are proved
analogously by using the corresponding variation formulas.

4. The Existence Theorem of Optimal Initial Data

4.1. Formulation of the main result. Let t01, t02, t1 ∈ (a, b) be the given
numbers with t01 < t02 < t1 and let X0 ⊂ O, K0 ⊂ O, U ⊂ U0 be compact
sets. Then Φ11 is the set of measurable initial functions φ(t) ∈ K0, t ∈ I1,
Ω2 = {u ∈ Ω : u(t) ∈ U, t ∈ I}.

Consider the initial data optimization problem
ẋ(t) = A(t)ẋ(σ(t)) + f

(
t, x(t), x(τ(t)), u(t)

)
, t ∈ [t0, t1],

x(t) = φ(t), ẋ(t) = v(t), t ∈ [τ̂ , t0), x(t0) = x0,

qi
(
t0, x0, x(t1)

)
= 0, i = 1, . . . , l,

J(w) = q0
(
t0, x0, x(t1)

)
−→ min,

where
w = (t0, τ, x0, φ, v, u) ∈W2 = [t01, t02]×D2 ×X0 × Φ12 × Φ2 × Ω2

and x(t) = x(t;w). The set of admissible elements we denote by W20.

Theorem 4.1. There exists an optimal element w0 if the following condi-
tions hold:

4.1. W20 ̸= ∅;
4.2. there exists a compact set K2 ⊂ O such that for an arbitrary w ∈

W20,
x(t;w) ∈ K2, t ∈ [τ̂ , t1];

4.3. the sets
P (t, x1) =

{
f(t, x1, x2, u) : (x2, u) ∈ K0 × U

}
, (t, x1) ∈ I ×O

and
P1(t, x1, x2) =

{
f(t, x1, x2, u) : u ∈ U

}
, (t, x1, x2) ∈ I ×O2

are convex.

Remark 4.1. Let K0 and U be convex sets, and
f(t, x1, x2, u) = B(t, x1)x2 + C(t, x1)u.

Then the condition 4.3 of Theorem 4.1 holds.

4.2. Auxiliary assertions. To each element w = (t0, τ, x0, φ, v, u) ∈ W2

we correspond the functional differential equation
q̇(t) = A(t)h(t0, v, q̇)(σ(t)) + f

(
t, q(t), h(t0, φ, q)(τ(t)), u(t)

)
(4.1)

with the initial condition
q(t0) = x0. (4.2)

Let Ki ⊂ O, i = 3, 4 be compact sets and let K4 contain a certain neigh-
borhood of the set K3.
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Theorem 4.2. Let qi(t) ∈ K3, i = 1, 2, . . ., be a solution corresponding to
the element wi = (t0i, τi, x0i, φi, vi, ui) ∈ W2, i = 1, 2, . . ., defined on the
interval [t0i, t1]. Moreover,

lim
i→∞

t0i = t00, lim
i→∞

∥τi − τ0∥I2 = 0, lim
i→∞

x0i = x00. (4.3)

Then there exist numbers δ > 0 and M > 0 such that for a sufficiently large
i0 the solution ψi(t), i ≥ i0, corresponding to the element wi, i ≥ i0, is
defined on the interval [t00 − δ, t1] ⊂ I. Moreover,

ψi(t) ∈ K4,
∣∣ψ̇i(t)

∣∣ ≤M, t ∈ [t00 − δ, t1]

and
ψi(t) = qi(t), t ∈ [t0i, t1] ⊂ [t00 − δ, t1].

Proof. Let ε > 0 be so small that a closed ε-neighborhood of the set K3 :
K3(ε) = {x ∈ O : ∃ x̂ ∈ K3, |x − x̂| ≤ ε} is contained intK4. There
exist a compact set Q ⊂ Rn×Rn and a continuously differentiable function
χ : Rn × Rn → [0, 1] such that

χ(x1, x2) =

{
1, (x1, x2) ∈ Q,

0, (x1, x2) ̸∈ K4 × [K0 ∪K4]
(4.4)

and
K3(ε)× [K0 ∪K3(ε)] ⊂ Q ⊂ K4 × [K0 ∪K4].

For each i = 1, 2, . . ., the differential equation

ψ̇(t) = A(t)h(t0i, vi, ψ̇)(σ(t)) + ϕ
(
t, ψ(t), h(t0i, φi, ψ)(τi(t)), ui(t)

)
,

where
ϕ(t, x1, x2, u) = χ(x1, x2)f(t, x1, x2, u),

with the initial condition
ψ(t0i) = x0i,

has the solution ψi(t) defined on the interval I (see Theorem 1.15). Since(
qi(t), h(t0i, φi, qi)(τi(t))

)
∈ K3 × [K0 ∪K3] ⊂ Q, t ∈ [t0i, t1],

therefore
χ
(
qi(t), h(t0i, φi, qi)(τi(t))

)
= 1, t ∈ [t0i, t1i],

(see (4.6)), i.e.

ϕ
(
t, qi(t), h(t0i, φi, qi)(τi(t)), ui(t)

)
=

= f
(
t, qi(t), h(t0i, φi, qi)(τi(t)), ui(t)

)
, t ∈ [t0i, t1].

By the uniqueness,
ψi(t) = qi(t), t ∈ [t0i, t1]. (4.5)

There exists a number M > 0 such that∣∣ψ̇i(t)
∣∣ ≤M, t ∈ I, i = 1, 2, . . . . (4.6)
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Indeed, first of all we note that∣∣∣ϕ(t, ψi(t), h(t0i, φi, ψi)(τi(t)), ui(t)
)∣∣∣ ≤

≤ sup
{∣∣ϕ(t, x1, x2, u)∣∣ : t ∈ I, x1 ∈ K4, x2 ∈ K4 ∪K0, u ∈ U

}
= N1,

i = 1, 2, . . . .

It is not difficult to see that if t ∈ [a, ν(t0i)), then∣∣ψ̇i(t)
∣∣ = ∣∣∣A(t)vi(σi(t)) + ϕ

(
t, ψi(t), h(t0i, φi, ψi)(τi(t)), ui(t)

)∣∣∣ ≤
≤ ∥A∥N2 +N1 =M1,

where
N2 = sup

{
|x| : x ∈ K1

}
.

Let t ∈ [σ(t0i), σ
2(t0i)), then∣∣ψ̇i(t)
∣∣ ≤ ∥A∥

∣∣ψ̇i(σ(t))
∣∣+N1 ≤ ∥A∥M1 +N1 =M2.

Continuing this process, we obtain (4.6). Further, there exists a number
δ0 > 0 such that for an arbitrary i = 1, 2, . . ., [t0i − δ0, t1] ⊂ I, and the
following conditions hold:

∣∣ψi(t0i)− ψi(t)
∣∣ ≤ t0i∫

t

[ ∣∣A(s)h(t0i, vi, ψ̇i)(σ(s))
∣∣+

+
∣∣∣ϕ(s, ψi(s), h(t0i, φi, ψi)(τi(ξ)), ui(s)

)∣∣∣ ] ds ≤ ε, t ∈ [t0i − δ0, t0i],

This inequality, with regard for ψi(t0i) ∈ K3 (see (4.5)), yields(
ψi(t), h(t0i, φi, ψi)(τi(t))

)
∈ K3(ε)× [K0 ∪K3(ε)], t ∈ [t0i − δ0, t1],

i.e.

χ
(
ψi(t), h(t0i, φi, ψi)(τi(t))

)
= 1, t ∈ [t0i − δ0, t1], i = 1, 2, . . . ,

Thus, ψi(t) satisfies the equation (4.1) and the conditions ψi(t0i) = x0i,
ψi(t) ∈ K4, t ∈ [t0i − δ0, t1], i.e. ψi(t) is the solution corresponding to the
element wi and defined on the interval [t0i − δ0, t1] ⊂ I. Let δ ∈ (0, δ0),
according to (4.3), for a sufficiently large i0, we have

[t0i − δ0, t1] ⊃ [t00 − δ, t1] ⊃ [t0i, t1], i ≥ i0.

Consequently, ψi(t), i ≥ i0 are the solutions defined on the interval [t00 −
δ, t1] and satisfy the conditions ψi(t) ∈ K4,∣∣ψ̇i(t)

∣∣ ≤M, t ∈ [t00 − δ, t1],

ψi(t) = qi(t), t ∈ [t0i, t1]. �
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Theorem 4.3 ( [8]). Let p(t, u) ∈ Rn be a continuous function on the set
I × U and let

P (t) =
{
p(t, u) : u ∈ U

}
be the convex set and

pi ∈ L(I,Rn), pi(t) ∈ P (t) a.e. on I, i = 1, 2, . . . .

Moreover,
lim
i→∞

pi(t) = p(t) weakly on I.

Then
p(t) ∈ P (t) a.e. on I

and there exists a measurable function u(t) ∈ U , t ∈ I such that

p(t, u(t)) = p(t) a.e. on I.

4.3. Proof of Theorem 4.1. Let wi = (t0i, τi, x0i, φi, vi, ui) ∈ W20, i =
1, 2, . . ., be a minimizing sequence, i.e.

lim
i→∞

J(wi) = Ĵ = inf
w∈W20

J(w).

Without loss of generality, we assume that

lim
i→∞

t0i = t00, lim
i→∞

x0i = x00.

The set D2 ⊂ C(I2,Rn) is compact and the set Φ2 ⊂ L(I1,Rn) is weakly
compact (see Theorem 4.3), therefore we assume that

lim
i→∞

τi(t) = τ0(t) uniformly in t ∈ I2 = [a, γ̂],

and
lim
i→∞

vi(t) = v0(t) weakly in t ∈ I1,

the solution xi(t) = x(t;wi) ∈ K3 is defined on the interval [t0i, t1]. In
a similar way (see proof of Theorem 4.2) we prove that |ẋi(t)| ≤ N3, t ∈
[t0i, t1], i = 1, 2, . . ., N3 > 0. By Theorem 4.2, there exists a number δ > 0
such that for a sufficiently large i0 the solutions xi(t), i ≥ i0, are defined on
the interval [t00 − δ, t1] ⊂ I. The sequence xi(t), t ∈ [t00 − δ, t1], i ≥ i0, is
uniformly bounded and equicontinuous. By the Arzèla–Ascoli lemma, from
this sequence we can extract a subsequence which will again be denoted by
xi(t), i ≥ i0, such that

lim
i→∞

xi(t) = x0(t) uniformly in [t00 − δ, t1].

Further, from the sequence ẋi(t), i ≥ i0, we can extract a subsequence which
will again be denoted by ẋi(t), i ≥ i0, such that

lim
i→∞

ẋi(t) = ϱ(t) weakly in [t00 − δ, t1].
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Obviously,

x0(t) = lim
i→∞

xi(t) =

= lim
i→∞

[
xi(t00 − δ) +

t∫
t00−δ

ẋi(s) ds

]
= x0(t00 − δ) +

t∫
t00−δ

ϱ(s) ds.

Thus, ẋ0(t) = ϱ(t), i.e.
lim
i→∞

ẋi(t) = ẋ0(t) weakly in [t00 − δ, t1].

Further, we have
xi(t) = x0i+

+

t∫
t0i

[
A(s)h(t0i, vi, ẋi)(σ(s))+f

(
s, xi(s), h(t0i, φi, xi)(τi(s)), ui(s)

)]
ds =

= x0i + ϑ1i(t) + ϑ2i + θ1i(t) + θ2i, t ∈ [t00, t1], i ≥ i0,

where

ϑ1i(t) =

t∫
t00

A(s)h(t0i, vi, ẋi)(σ(s)) ds,

θ1i(t) =

t∫
t00

f
(
s, xi(s), h(t0i, φi, xi)(τi(s)), ui(s)

)
ds,

ϑ2i =

t00∫
t0i

A(s)h(t0i, vi, ẋi)(σ(s)) ds,

θ2i =

t00∫
t0i

f
(
s, xi(s), h(t0i, φi, xi)(τi(s)), ui(s)

)
ds.

Obviously, ϑ2i → 0 and θ2i → 0 as i→ ∞.
First of all, we transform the expression ϑ1i(t) for t ∈ [t00, t1]. For this

purpose, we consider two cases. Let t ∈ [t00, ν(t00)], we have

ϑ1i(t) = ϑ
(1)
1i (t) + ϑ

(2)
1i (t),

where

ϑ
(1)
1i (t) =

t∫
t00

A(s)h(t00, vi, ẋi)(σ(s)) ds,

ϑ
(2)
1i (t) =

t∫
t00

ϑ
(3)
1i (s) ds,
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ϑ
(3)
1i (s) = A(s)

[
h(t0i, vi, ẋi)(σ(s))− h(t00, vi, ẋi)(σ(s))

]
.

It is clear that

∣∣ϑ(2)1i (t)
∣∣ ≤ t1∫

t00

∣∣ϑ(3)1i (s)
∣∣ ds, t ∈ [t00, t1]. (4.7)

Suppose that ν(t0i) > t00 for i ≥ i0, then

ϑ
(3)
1i (s) = 0, s ∈ [t00, t

(1)
0i ) ∪ (t

(2)
0i , t1],

where

t
(1)
0i = min

{
ν(t0i), ν(t00)

}
, t

(2)
0i = max

{
ν(t0i), ν(t00)

}
.

Since
lim
i→∞

(t
(2)
0i − t

(1)
0i ) = 0,

therefore
lim
i→∞

ϑ
(2)
1i (t) = 0 uniformly in t ∈ [t00, t1] (4.8)

(see (4.7)).
For ϑ(1)1i (t), t ∈ [t00, ν(t00)], we get

ϑ
(1)
1i (t) =

σ(t)∫
σ(t00)

A(ν(s))h(t00, vi, v̇i)(s)ν̇(s) ds =

=

σ(t)∫
σ(t00)

A(ν(s))ν̇(s)vi(s) ds.

Obviously,

lim
i→∞

ϑ1i(t) =

σ(t)∫
σ(t00)

A(ν(s)ν̇(s)v0(s) ds =

t∫
t00

A(s)v0(σ(s)) ds, (4.9)

t ∈ [t00, σ(t00)]

(see (4.8)).
Let t ∈ [ν(t00), t1], then

ϑ
(1)
1i (t) = ϑ

(1)
1i (ν(t00)) + ϑ

(4)
1i (t),

where

ϑ
(4)
1i (t) =

t∫
ν(t00)

A(s)h(t0i, vi, ẋi)(σ(s)) ds.
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Further,

ϑ
(4)
1i (t) =

t∫
ν(t00)

A(s)h(t00, vi, ẋi)(σ(s)) ds =

σ(t)∫
t00

A(ν(s))ν̇(t)ẋi(s) ds.

Thus, for t ∈ [ν(t00), t1], we have

lim
i→∞

ϑ
(1)
1i (t) =

ν(t00)∫
t00

A(t)v0(σ(t)) dt+

t∫
ν(t00)

A(s)ẋ0(σ(s)) ds. (4.10)

Now we transform the expression θ1i(t) for t ∈ [t00, t1]. We consider two
cases again. Letting t ∈ [t00, γ0(t00)], we have

θ1i(t) = θ
(1)
1i (t) + θ

(2)
1i (t),

θ
(1)
1i (t) =

t∫
t00

f
(
s, xi(s), h(t00, φi, xi)(τi(s)), ui(s)

)
ds,

θ
(2)
1i (t) =

t∫
t00

θ
(3)
1i (s) ds,

θ
(3)
1i (s) = f

(
s, xi(s), h(t0i, φi, xi)(τi(s)), ui(s)

)
−

− f
(
s, xi(s), h(t00, φi, xi)(τi(s)), ui(s)

)
.

It is clear that

∣∣θ(2)1i (t)
∣∣ ≤ t10∫

t00

∣∣θ(3)1i (s)
∣∣ ds, t ∈ [t00, t1].

Suppose that γi(t0i) > t00 for i ≥ i0, then

θ
(3)
1i (s) = 0, s ∈ [t00, t

(3)
0i ) ∪ (t

(4)
0i , t1],

where

t
(3)
1i = min

{
γi(t0i), γi(t00)

}
, t

(4)
1i = max

{
γi(t0i), γi(t00)

}
.

Since
lim
i→∞

(t
(4)
0i − t

(3)
0i ) = 0

therefore
lim
i→∞

θ
(2)
1i (t) = 0 uniformly in t ∈ [t00, t10].
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For θ(1)1i (t), t ∈ [t00, γ0(t00)], we have

θ
(1)
1i (t) =

τi(t)∫
τi(t00)

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds =

= θ
(4)
1i (t) + θ

(5)
1i (t), i ≥ i0,

where

θ
(4)
1i (t) =

τ0(t)∫
τ0(t00)

f
(
γ0(s), x0(γ0(s)), φi(s), ui(γi(s))

)
γ̇0(s) ds,

θ
(5)
1i (t) =

τi(t)∫
τi(t00)

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds−

−
τ0(t)∫

τ0(t00)

f
(
γ0(s), x0(γ0(s)), φi(s), ui(γi(s))

)
γ̇0(s) ds.

For t ∈ [t00, γ0(t00)], we obtain

θ
(5)
1i (t) =

τ0(t00)∫
τi(t00)

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds+

+

τ0(t)∫
τ0(t00)

[
f
(
γi(s), xi(γi(s)), φi(s), ui(γi(s))

)
−

− f
(
γ0(s), x0(γ0(s)), φi(s), ui(γi(s))

)]
γ̇i(s) ds+

+

τi(t)∫
τ0(t)

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds.

Suppose that ∥τi − τ0∥ ≤ δ as i ≥ i0, then

lim
i→∞

f
(
γi(s), xi(γi(s)), x2, u

)
= f

(
γ0(s), x0(γ0(s)), x2, u

)
uniformly in (s, x2, u) ∈ [τ0(t00), t00]×K0 × U , we have

lim
i→∞

θ
(5)
1i (t) = 0 uniformly in t ∈ [t00, γ0(t00)].

From the sequence

fi(s) = f
(
γ0(s), x0(γ0(s)), φi(s), ui(γi(s))

)
, i ≥ i0, t ∈ [τ0(t00), t00],
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we extract a subsequence which will again be denoted by fi(s), i ≥ i0, such
that

lim
i→∞

fi(s) = f0(s) weakly in the space L
(
[τ0(t00), t00],Rn

)
.

It is not difficult to see that

fi(s) ∈ P (γ0(s), x0(γ0(s))), s ∈ [τ0(t00), t00].

By Theorem 4.3,

f0(s) ∈ P (γ0(s), x0(γ0(s))) a.e. s ∈ [τ0(t00), t00]

and on the interval [τ0(t00), t00] there exist measurable functions φ01(s) ∈
K0, u01(s) ∈ U such that

f0(s) = f
(
γ0(s), x0(γ0(s)), φ01(s), u01(s)

)
a.e. s ∈ [τ0(t00), t00].

Thus,

lim
i→∞

θ
(1)
1i = lim

i→∞
θ
(4)
1i (t) =

τ0(t)∫
τ0(t00)

f0(s)γ̇0(s) ds =

=

τ0(t)∫
τ0(t00)

f
(
γ0(s), x0(γ0(s)), φ01(s), u01(s)

)
γ̇0(s) ds =

=

t∫
t00

f
(
s, x0(s), φ01(τ0(s)), u01(τ0(s))

)
ds, t ∈ [t00, γ0(t00)]. (4.11)

Let t ∈ [γ0(t00), t1], then

θ
(1)
1i (t) = θ

(1)
1i (γ0(t00)) + θ

(6)
1i (t),

where

θ
(6)
1i (t) =

t∫
γ0(t00)

f
(
s, xi(s), h(t00, φi, xi)(τi(s)), ui(s)

)
ds.

It is clear that

θ
(6)
1i (t) =

τi(t)∫
τi(γ0(t00))

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds =

= θ
(7)
1i (t) + θ

(8)
1i (t), i ≥ i0,
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where

θ
(7)
1i (t) =

τ0(t)∫
t00

f
(
γ0(t), x0(γ0(s)), x0(s), ui(γi(s))

)
γ̇0(s) ds,

θ
(8)
1i (t) =

τi(t)∫
τi(γ0(t00))

f
(
γi(t), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds−

−
τ0(t)∫
t00

f
(
γ0(s), x0(γ0(s)), x0(s), ui(γi(s))

)
γ̇0(s) ds.

For t ∈ [γ0(t00), t1], we have

θ
(8)
1i (t) =

t00∫
τi(γ0(t00))

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds+

+

τ0(t)∫
t00

[
f
(
γi(s), xi(γi(s)), xi(s), ui(γi(s))

)
γ̇i(s)−

− f
(
γ0(s), x0(s+ γ0(s)), v0(s), ui(γi(s))

)
γ̇0(s)

]
ds+

+

τi(t)∫
τ0(t)

f
(
γi(s), xi(γi(s)), h(t00, φi, xi)(s), ui(γi(s))

)
γ̇i(s) ds.

Thus,
θ
(8)
1i (t) = 0 uniformly in t ∈ [γ0(t00), t1].

From the sequence
fi(s) = f

(
γ0(s), x0(γ0(s)), x0(s), ui(τi(s))

)
, i ≥ i0, t ∈ [t00, τ0(t1)],

we extract a subsequence which will again be denoted by Fi(s), i ≥ i0, such
that

lim
i→∞

fi(s) = f0(s) weakly in the space L
(
[t00, τ0(t1)],Rn

)
.

It is not difficult to see that
fi(s) ∈ P1

(
γ0(s), x0(γ0(s)), x0(s)

)
, s ∈ [t00, τ0(t1)].

By Theorem 4.3,
f0(s) ∈ P1

(
γ0(s), x0(γ0(s)), x0(s)

)
a.e. s ∈ [t00, τ0(t1)]

and on the interval [t00, τ0(t1)] there exists a measurable function u02(s) ∈ U
such that

f0(s) = f
(
γ0(s), x0(γ0(s)), x0(s), u02(s)

)
a.e. s ∈ [t00, τ0(t1)].
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Thus, for t ∈ [γ0(t00), t1], we have

lim
i→∞

θ
(1)
1i (t) = lim

i→∞
θ
(1)
1i (γ0(t00)) + lim

i→∞
θ
(7)
1i (t) =

=

γ0(t00)∫
t00

f
(
s, x0(s), x0(τ0(s)), u02(s)

)
ds+

+

t∫
γ0(t00)

f
(
s, x0(s), x0(τ0(s)), u02(τ0(s))

)
ds, t ∈ [γ0(t00), t1]. (4.12)

We introduce the following notation:

φ0(s) =

{
φ̂, s ∈ [τ̂ , τ0(t00)) ∪ (t00, t02],

φ01(s), s ∈ [τ0(t00), t00],

u0(s) =


û, s ∈ [a, t00) ∪ (t1, b],

u01(τ0(s)), s ∈ [t00, τ0(t00)],

u02(τ0(s)), s ∈ (γ0(t00), t1],

where φ̂ ∈ K0 and û ∈ U are the fixed points

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

v0(t), t ∈ [t00, t1];

ẋ0(t) = v0(t), t ∈ [τ̂ , t00),

Clearly, w0=(t00, τ0, x00, φ0, v0, u0)∈W2. Taking into account (4.9)–(4.12),
we obtain

x0(t) = x00 +

t∫
t00

[
A(s)ẋ0(σ0(t)) + f

(
s, x0(s), x0(τ0(s)), u0(s)

)]
ds,

t ∈ [t00, t10],

and
0 = lim

i→∞
qi
(
t0i, x0i, xi(t1)

)
= qi

(
t00, x00, x0(t1)

)
, i = 1, . . . , l,

i.e. the element w0 is admissible and x0(t) = x(t;w0), t ∈ [τ̂ , t1].
Further, we have

Ĵ = lim
i→∞

q0
(
t0i, x0i, xi(t1)

)
= q0

(
t00, x00, x0(t1)

)
= J(w0).

Thus, w0 is an optimal element.
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ON ASYMPTOTIC STABILITY OF SOLUTIONS
OF SECOND ORDER LINEAR NONAUTONOMOUS
DIFFERENTIAL EQUATIONS



Abstract. The sufficient conditions for asymptotic stability of solutions
of second order linear differential equation

y′′ + p(t)y′ + q(t)y = 0

with continuously differentiable coefficients p : [0,+∞) → R and q : [0,+∞)
→ R are established in the case where the roots of the characteristic equation

λ2 + p(t)λ+ q(t) = 0

satisfy conditions

Reλi(t) < 0 for t ≥ 0,

+∞∫
t0

Reλi(t) dt = −∞ (i = 1, 2).
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ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÀ-
ÈÅÉÓ

y′′ + p(t)y′ + q(t)y = 0

ÖßÚÅÄÔÀÃ ßÀÒÌÏÄÁÀÃÉ p : [0,+∞) → R ÃÀ q : [0,+∞) → R ÊÏÄ×ÉÝÉÄÍ-
ÔÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÌÀ-
ÒÉÓÉ ÐÉÒÏÁÄÁÉ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ ÌÀáÀÓÉÀÈÄÁÄËÉ

λ2 + p(t)λ+ q(t) = 0

ÂÀÍÔÏËÄÁÉÓ ×ÄÓÅÄÁÉ ÀÊÌÀÚÏ×ÉËÄÁÄÍ ÐÉÒÏÁÄÁÓ

Reλi(t) < 0, ÒÏÝÀ t ≥ 0,

+∞∫
t0

Reλi(t) dt = −∞ (i = 1, 2).
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1. Introduction

This present paper is a continuation of the article Sufficiency conditions
for asymptotic stability of solutions of a linear homogeneous nonautonomous
differential equation of second-order.

In the theory of stability of linear homogeneous on-line systems (LHS)
of ordinary differential equations

dY

dt
= P (t)Y, t ∈ [t0; +∞) = I,

where the matrix P (t) is, in a general case, complex, of great importance
is the study of the LHS stability depending on the roots λi(t) (i = 1, n) of
the characteristic equation

det(P (t)− λE) = 0.

L. Cesáro [1] has considered the system of differential equations of n-th
order

dY

dt
=

[
A+B(t) + C(t)

]
Y,

where A is a constant matrix, whose roots of the characteristic equation
λi (i = 1, n) are distinct and satisfy the condition Reλi ≤ 0 (i = 1, n);
B(t) → 0 as t→ +∞,

+∞∫
t0

∥∥∥dB(t)

dt

∥∥∥ dt < +∞,

+∞∫
t0

∥C(t)∥ dt < +∞,

the roots of the characteristic equation of the matrix A + B(t) have non-
positive material parts.

In his work, C. P. Persidsky [2] considers the case in which elements of
the matrix P (t) are the functions of weak variation, that is, every function
can be represented in the form

f(t) = f1(t) + f2(t),

where f1(t) ∈ CI , and there exists lim
t→+∞

f1(t) ∈ R, and f2(t) is such that

sup
t∈I

|f2(t)| < +∞, lim
t→+∞

f ′2(t) = 0,

and the condition Reλi(t) ≤ a ∈ R− (i = 1, n) is fulfilled.
N. Y. Lyaschenko [3] has considered the case Reλi(t) < a ∈ R− (i = 1, n),

t ∈ I,
sup
t∈I

∥A′(t)∥ ≤ ε.

The case n = 2 is thoroughly studied by N. I. Izobov.
I. K. Hale [4] investigated asymptotic behavior of LHS by comparing the

roots of the characteristic equation with exponential functions
Reλi(t) ≤ −gtβ , g > 0, β > −1 (i = 1, n).
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Then there are the constants K > 0 and 0 < ρ < 1 such that for solving
the system

dy

dt
= A(t)y

the estimate
∥y(t)∥ ≤ Ke−

ρg
1+β t1+β

∥y(0)∥
is fulfilled.

In this paper we consider the problem of stability of a real linear homo-
geneous differential equation (LHDE) of second order

y′′ + p(t)y′ + q(t)y = 0 t ∈ I (1)
provided the roots λi(t) (i = 1, 2) of the characteristic equation

λ2 + p(t)λ+ q(t) = 0

are such that

Reλi(t) < 0, t ∈ I,

+∞∫
t0

Reλi(t) dt = −∞ (i = 1, 2) (2)

and there exist finite or infinite limits lim
t→+∞

λi(t) (i = 1, 2). We have not
yet encountered with the problems in such a formulation. The case where
at least one of the roots satisfies the condition

0 <

+∞∫
t0

∣∣Reλi(t)
∣∣ dt < +∞ (i = 1, 2)

should be considered separately.
Under the term “almost triangular LHS” we agree to understand each

LHS
dyi(t)

dt
=

n∑
k=1

pik(t)yk (i = 1, n) (3)

with pik(t) ∈ CI (i, k = 1, n), which differs little from a linear triangular
system

dy∗i (t)

dt
=

n∑
k=1

pik(t)y
∗
k (i = 1, n), (4)

and the conditions either of Theorem 0.1 or of Theorem 0.2 due to A. V. Kos-
tin [5] are fulfilled.

Theorem 1. Let the conditions
1) LHS (4) is stable when t ∈ I;
2) for a partial solution σi(t) (i = 1, n) of a linear inhomogeneous

triangular system

dσi(t)

dt
=

i−1∑
k=1

|pik(t)|+ Re pii(t)σi(t) +
n∑

k=i+1

|pik(t)|σk(t) (i = 1, n) (5)
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with the initial conditions σi(t0) = 0 (i = 1, n) the estimate of the
form 0 < σi(t) < 1− γ (i = 1, n), γ = const, γ ∈ (0, 1) holds for all
t ∈ I.

Then the zero solution of the system (3) is a fortiori stable for t ∈ I.

Theorem 2. Let the system (3) satisfy all the conditions of Theorem 1 and,
moreover,

1) triangular linear system (4) is asymptotically stable for t ∈ I;
2) lim

t→+∞
σi(t) = 0 (i = 1, n).

Then the zero solution of the system (3) is asymptotically stable for t ∈ I.

Theorem 3. Let the system (3) satisfy all the conditions of Theorem 1 and,
moreover,

1) none of the functions

ψi(t) =

i−1∑
k=1

|pik(t)| (i = 2, n) ̸≡ 0 for t ∈ I;

2) lim
t→+∞

σi(t) = 0 (i = 1, n).

Then the zero solution of the system (3) is stable for t ∈ I.

We will also use the following lemma [5]:

Lemma 1. If the functions p(t), q(t) ∈ CI , Re p(t) < 0, t ∈ I,
+∞∫
t0

Re p(τ) dτ = −∞, lim
t→+∞

q(t)

Re p(t) = 0,

then

e

t∫
t0

Re p(τ) dτ
t∫

t0

q(τ)e
−

τ∫
τ0

Re p(τ1) dτ1

dτ = o(1), t→ +∞.

Further, it will be assumed that all limits and characters o, O are consi-
dered as t→ +∞.

In case equation (1) has the form
y′′ + p(t)y = 0, (6)

where p(t) ∈ C2
I , p(t) > 0 in I, λ1(t) = −i√p, λ2(t) = i

√
p, p = p(t), there

is the well-known I. T. Kiguradze’s theorem [6]:

Theorem 4. Let equation (6) be such that

p(+∞) = +∞, p′p−
3
2 = o(1), (ln p)−1

t∫
a

∣∣(p′p− 3
2 )′

∣∣ dτ = o(1), t→ t0.

Then there take place the property of asymptotic stability.
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2. The Main Results

2.1. Reduction of equation (1) to the system of the form (5). Con-
sider the real second order LHDE (1):

y′′ + p(t)y′ + q(t)y = 0, t ∈ I,

where p(t), q(t) ∈ C1
I . Let y = y1, y′ = y2. We reduce the equation to an

equivalent system {
y′1 = 0 · y1 + 1 · y2,
y′2 = −q · y1 − p · y2.

(7)

Consider the characteristic equation of LHS (6):∣∣∣∣0− λ 1
−q −p− λ

∣∣∣∣ = 0 or λ2 + pλ+ q = 0, (8)

and assume that p2

2 − q < 0 at I. Then this equation has two complex-
conjugate roots:

λ1 = α− iβ, λ2 = α+ iβ,

where λi = λi(t) (i = 1, 2), α = α(t) ∈ C1
I , β = β(t) ∈ C1

I . Given (2), we
will consider the case

α(t) < 0,

+∞∫
t0

α(t) dt = −∞. (9)

There is the question on the sufficient conditions for stability of the trivial
solution of the system (7). Consider the following transformation for the
system (7):

Y = C(t)Z, C(t) =

(
1 1

λ1(t) λ2(t)

)
, Z =

(
z1(t)
z2(t)

)
,

where zi(t) are new unknown functions (i = 1, 2).

Z ′ = (C−1AC − C−1C ′)Z,

detC(t) = λ2(t)− λ1(1),

C−1(t) =
1

λ2(t)− λ1(1)

(
λ2(t) −1
−λ1(t) 1

)
,

C ′(t) =

(
0 0

λ′1(t) λ′2(t)

)
, C−1C ′ =

1

λ2(t)− λ1(1)

(
−λ′1(t) −λ′2(t)
λ′1(t) λ′2(t)

)
,

C−1AC =

(
λ1(t) 0
0 λ2(t)

)
.
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The system withe respect to new unknowns zi(t) (i = 1, 2) in a scalar
form is

z′1(t) =
(
λ1(t) +

λ′1(t)

λ2(t)− λ1(t)

)
z1(t) +

λ′2(t)

λ2(t)− λ1(t)
z2(t),

z′2(t) = − λ′1(t)

λ2(t)− λ1(t)
z1(t) +

(
λ2(t)−

λ′2(t)

λ2(t)− λ1(t)

)
z2(t).

(10)

It is not difficult to see that

Re λ′1(t)

λ2(t)− λ1(t)
= −1

2

β′

β
, Re λ′2(t)

λ2(t)− λ1(t)
=

1

2

β′

β
,

h(t) =
∣∣∣ λ′1(t)

λ2(t)− λ1(t)

∣∣∣ = ∣∣∣ λ′2(t)

λ2(t)− λ1(t)

∣∣∣ = 1

2

√(β′

β

)2

+
(α′

β

)2

.

In accordance with Theorem 1 we write an auxiliary system of differential
equations: 

σ′
1(t) =

(
α− 1

2

β′

β

)
σ1(t) + h(t)σ2(t),

σ′
2(t) = h(t) +

(
α− 1

2

β′

β

)
σ2(t).

(11)

Consider a particular solution with initial conditions σi(t0) = 0 (i = 1, 2).
This solution has the form

σ̃2(t) = e

t∫
t0

(α− 1
2

β′
β ) dτ

t∫
t0

h(τ)e
−

τ∫
τ0

(α− 1
2

β′
β ) dτ1

dτ,

σ̃1(t) = e

t∫
t0

(α− 1
2

β′
β ) dτ

t∫
t0

h(τ)σ̃2(τ)e
−

τ∫
τ0

(α− 1
2

β′
β ) dτ1

dτ.

(12)

Assume also that there exists a finite or an infinite limit
lim

t→+∞

α

β
.

2.2. Various cases of behavior of the roots λi(t) (i = 1, 2). We consider
the following cases of behavior of the roots of the characteristic equation,
assuming that the condition (9) is fulfilled:

1) α(+∞) ∈ R−, β(+∞) ∈ R;
2) α = o(1), β = o(1), α

β → const ̸= 0;
3) α = o(1), β = o(1), α

β → ∞;
4) α = o(1), β(+∞) ∈ R \ {0};
5) α = o(1), β = o(1), α

β → 0;
6) α(+∞) = −∞, β(+∞) = ∞, α

β → ∞;
7) α(+∞) = −∞, β(+∞) ∈ R \ {0};
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8) α(+∞) = −∞, β = o(1);
9) α(+∞) = −∞, β(+∞) = ∞, α

β → const ̸= 0;
10) α = o(1), β(+∞) = ∞;
11) α(+∞) ∈ R−, β(+∞) = ∞;
12) α(+∞) = −∞, β(+∞) = ∞, α

β → 0.

Theorems 5–16 correspond to the above cases 1)–12).

Theorem 5. Let the condition (9) be fulfilled and

α(+∞) ∈ R−, β(+∞) ∈ R.

Then the trivial solution of equation (1) is asymptotically stable.

This case is well known.

Theorem 6. Let the condition (9) and the following conditions

α = o(1), β = o(1),
α

β
→ const ̸= 0,

α′

α2
= o(1),

β′

β2
= o(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. We consider the system (10), auxiliary system of differential equa-
tions (11) and its particular solution (12).

In this case

lim
t→+∞

h(t)

α− 1
2

β′

β

=
1

2
lim

t→+∞

√
( β′

β2 )2 + ( α
′

β2 )2

α
β − 1

2
β′

β2

=

=
1

2
lim

t→+∞

∣∣∣α′

β2

∣∣∣ β
α

=
1

2
lim

t→+∞

|α′|
α2

α

β
= 0.

Consequently, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

α− 1
2

β′

β

σ̃2(t) = 0.

Then σ̃1(t) = o(1). Obviously, ψ(t) = h(t) ̸≡ 0 for t ∈ I. All the conditions
of Theorem 3 are fulfilled and thus Theorem 6 is complete. To obtain the
estimate of solutions yi(t) (i = 1, 2) we make in the system (10) the following
substitution:

zi(t) = e
δ

t∫
t0

αdτ

ηi(t) (i = 1, 2), δ ∈ (0, 1). (13)
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Then the system (10) takes the form
η′1(t) =

(
λ1(t) +

λ′1(t)

λ2(t)−λ1(t)
− δα

)
η1(t) +

λ′2(t)

λ2(t)−λ1(t)
η2(t),

η′2(t) = − λ′1(t)

λ2(t)−λ1(t)
η1(t) +

(
λ2(t)−

λ′2(t)

λ2(t)−λ1(t)
− δα

)
η2(t).

(14)

In accordance with Theorem 1, we write an auxiliary system of differential
equations: 

σ′
1(t) =

(
(1− δ)α− 1

2

β′

β

)
σ1(t) + h(t)σ2(t),

σ′
2(t) = h(t) +

(
(1− δ)α− 1

2

β′

β

)
σ2(t).

(15)

It’s particular solution with the initial conditions σi(t0) = 0 (i = 1, 2) has
the form

σ̃2(t) = e

t∫
t0

(
(1−δ)α− 1

2
β′
β

)
dτ

t∫
t0

h(τ)e
−

τ∫
τ0

(
(1−δ)α− 1

2
β′
β

)
dτ1

dτ,

σ̃1(t) = e

t∫
t0

(
(1−δ)α− 1

2
β′
β

)
dτ

t∫
t0

h(τ)σ̃2(τ)e
−

τ∫
τ0

(
(1−δ)α− 1

2
β′
β

)
dτ1

dτ.

(16)

It is not difficult to see that the replacement (13) does not affect the as-
ymptotic stability. Taking into account the transformation C(t),{

y1(t) = z1(t) + z2(t),

y2(t) = λ1(t)z1(t) + λ2(t)z2(t).
=⇒

=⇒


y1(t) = o

(
e
δ

t∫
t0

αdτ)
,

y2(t) = o
(
λ1(t)e

δ
t∫

t0

αdτ

+ λ2(t)e
δ

t∫
t0

αdτ)
.

y2(t) = o
(
e

t∫
t0

(
δα+

λ′
1(t)

λ1(t)

)
dτ

+ e

t∫
t0

(
δα+

λ′
2(t)

λ2(t)

)
dτ)

,

y2(t) = o
(
e

t∫
t0

α
(
δ+ 1

α

λ′
1(t)

λ1(t)

)
dτ

+ e

t∫
t0

α
(
δ+ 1

α

λ′
2(t)

λ2(t)

)
dτ)

.

It is easy to see that

R(t) = Re λ
′
1(t)

λ1(t)
= Re λ

′
2(t)

λ2(t)
=
α′α+ β′β

α2 + β2
,

I(t) = Im λ′1(t)

λ1(t)
= − Im λ′2(t)

λ2(t)
=
α′β − αβ′

α2 + β2
.
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Then

lim
t→+∞

1

α
Re λ

′
1(t)

λ1(t)
= lim

t→+∞

α′α+ β′β

α(α2 + β2)
=

= lim
t→+∞

( α′

α2

1 + (βα )
2
+

β′

β2

(αβ )
3 + α

β

)
= 0,

lim
t→+∞

1

α
Im λ′1(t)

λ1(t)
= lim

t→+∞

α′β − αβ′

α(α2 + β2)
=

= lim
t→+∞

( α′

α2

α
β + β

α

−
β′

β2

(αβ )
2 + 1

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2).

Therefore,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 7. Let the condition (9) and the following conditions

α = o(1), β = o(1),
α

β
→ ∞,

α′

α
= o(β),

β′

β2
= O(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replace (13). We obtain the system
(14), an auxiliary system of differential equations (15) and its particular
solution (16).

In this case,

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β

=
1

2
lim

t→+∞

√
(β

′

β )2 + (α
′

β )2

α(1− δ − 1
2

β′

αβ )
=

=
1

2
lim

t→+∞

√√√√( β′

αβ

1− δ − 1
2

β′

αβ

)2

+
( α′

αβ

1− δ − 1
2

β′

αβ

)2

=

=
1

2
lim

t→+∞

√√√√( β′

β2
β
α

1− δ − 1
2

β′

β2
β
α

)2

+
( α′

αβ

1− δ − 1
2

β′

β2
β
α

)2

= 0.

Consequently, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β

σ̃2(t) = 0.
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Then σ̃1(t) = o(1). This implies that Theorem 7 is valid. Moreover,

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Next,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

αβ

α
β + β

α

+

β′

β2

(αβ )
3 + α

β

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

αβ

(αβ )
2 + 1

−
β′

β2

(αβ )
2 + 1

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2).

Therefore, just as in Theorem 6:

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 8. Let the condition (9) and the following conditions
α = o(1), β(+∞) ∈ R \ {0},

α′

α
= o(1),

β′

β
= o(α)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (13). We obtain the
system (14), an auxiliary system of differential equations (15) and its par-
ticular solution (16).

In this case,

lim
t→+∞

h(t)

α− 1
2

β′

β

=
1

2
lim

t→+∞

√
(β

′

β )2 + (α
′

β )2

α(1− δ − 1
2

β′

αβ )
=

=
1

2
lim

t→+∞

√
( β′

αβ )
2 + ( α′

αβ )
2

1− δ − 1
2

β′

αβ

=
1

2(1− δ)
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β

σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 8 is valid. Moreover,

zi(t) = o
(
e
δ

t∫
t0

α τ)
(i = 1, 2), δ ∈ (0, 1).
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Then

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

α+ β
α β

+

β′

αβ

(αβ )
2 + 1

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α
α
β α+ β

−
β′

αβ

α
β + β

α

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2).

Therefore, just as in Theorem 6,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 9. Let the condition (9) and the following conditions

α = o(1), β = o(1),
α

β
→ 0,

α′

α2
= O(1),

β′

β
= o(α)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (13). We obtain the
system (14), an auxiliary system of differential equations (15) and its par-
ticular solution (16).

In this case,

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β

=
1

2
lim

t→+∞

√
( β′

αβ )
2 + ( α′

αβ )
2

1− δ − 1
2

β′

αβ

=

=
1

2(1− δ)
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 1

2(1− δ)
lim

t→+∞

∣∣∣ α′

α2

α

β

∣∣∣ = 0.

Consequently, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β

σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 9 is valid. Moreover,

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).
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Then

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α2

1 + (βα )
2
+

β′

αβ

(αβ )
2 + 1

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α2

α
β + β

α

−
β′

αβ

α
β + β

α

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2).

Therefore, just as in Theorem 6,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 10. Let the condition (9) and the following conditions

α(+∞) = −∞, β(+∞) = ∞,
α

β
→ ∞,

α′

α
= O(1),

β′

β2
= O(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the following replacement:

z1(t)λ1(t) = ξ1(t), z2(t)λ2(t) = ξ2(t). (17)

Then the system (10) takes the form

ξ′1(t) =
(
λ1(t) +

λ′1(t)

λ2(t)− λ1(t)
− λ′1(t)

λ1(t)

)
ξ1(t)+

+
λ′2(t)

λ2(t)− λ1(t)

λ1(t)

λ2(t)
ξ2(t),

ξ′2(t) = − λ′1(t)

λ2(t)− λ1(t)

λ2(t)

λ1(t)
ξ1(t)+

+
(
λ2(t)−

λ′2(t)

λ2(t)− λ1(t)
− λ′2(t)

λ2(t)

)
ξ2(t).

(18)

In accordance with Theorem 1, we write an auxiliary system of differential
equations: 

σ′
1(t) =

(
α− 1

2

β′

β
−R(t)

)
σ1(t) + h(t)σ2(t),

σ′
2(t) = h(t) +

(
α− 1

2

β′

β
−R(t)

)
σ2(t).
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Consider a particular solution with the initial conditions σi(t0) = 0 (i =
1, 2):

σ̃2(t) = e

t∫
t0

(
α− 1

2
β′
β −R(t)

)
dτ

t∫
t0

h(τ)e
−

τ∫
τ0

(
α− 1

2
β′
β −R(t)

)
dτ1

dτ,

σ̃1(t) = e

t∫
t0

(
α− 1

2
β′
β −R(t)

)
dτ

t∫
t0

h(τ)σ̃2(τ)e
−

τ∫
τ0

(
α− 1

2
β′
β −R(t)

)
dτ1

dτ.

In this case,

lim
t→+∞

1

β
R(t) = lim

t→+∞

( α′

α

β(1 + (βα )
2)

+

β′

β2

(αβ )
2 + 1

)
= 0.

Then

lim
t→+∞

h(t)

α− 1
2

β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

β2 )2 + ( α
′

β2 )2

α
β − 1

2
β′

β2 − 1
β R(t)

=

=
1

2
lim

t→+∞

√( β′

β2

β

α

)2

+
( α′

αβ

)2

=
1

2
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Next,

lim
t→+∞

h(t)

α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 10 is valid. To obtain
the estimate of solutions yi(t) (i = 1, 2), we make in the system (18) the
following replacement:

ξi(t) = e
δ

t∫
t0

αdτ

ηi(t) (i = 1, 2), δ ∈ (0, 1). (19)

Then system (18) takes the form

η′1(t) =
(
λ1(t) +

λ′1(t)

λ2(t)− λ1(t)
− λ′1(t)

λ1(t)
− δα

)
η1(t)+

+
λ′2(t)

λ2(t)− λ1(t)

λ1(t)

λ2(t)
η2(t),

η′2(t) = − λ′1(t)

λ2(t)− λ1(t)

λ2(t)

λ1(t)
η1(t)+

+
(
λ2(t)−

λ′2(t)

λ2(t)− λ1(t)
− λ′2(t)

λ2(t)
− δα

)
η2(t).

(20)
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In accordance with Theorem 1, we write an auxiliary system of differential
equations:

σ′
1(t) =

(
(1− δ)α− 1

2

β′

β
−R(t)

)
σ1(t) + h(t)σ2(t),

σ′
2(t) = h(t) +

(
(1− δ)α− 1

2

β′

β
−R(t)

)
σ2(t).

(21)

Let us consider a particular solution with the initial conditions σi(t0) = 0
(i = 1, 2):

σ̃2(t) = e

t∫
t0

(
(1−δ)α− 1

2
β′
β −R(t)

)
dτ

×

×
t∫

t0

h(τ)e
−

τ∫
τ0

(
(1−δ)α− 1

2
β′
β −R(t)

)
dτ1

dτ,

σ̃1(t) = e

t∫
t0

(
(1−δ)α− 1

2
β′
β −R(t)

)
dτ

×

×
t∫

t0

h(τ)σ̃2(τ)e
−

τ∫
τ0

(
(1−δ)α− 1

2
β′
β −R(t)

)
dτ1

dτ.

(22)

It is not difficult to see that the replacement (19) does not affect the stability.
At the same time,

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

Further,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

α(1 + ( βα )
2)

+

β′

β2

(αβ )
3 + α

β

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α

α(αβ + β
α )

−
β′

β2

(αβ )
2 + 1

)
= 0.

Consequently,
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).
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Then{
y1(t) = z1(t) + z2(t),

y2(t) = λ1(t)z1(t) + λ2(t)z2(t)
=⇒

{
y1(t) = z1(t) + z2(t),

y2(t) = ξ1(t) + ξ2(t)
=⇒

=⇒ yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 11. Let the condition (9) and the following conditions

α(+∞) = −∞, β(+∞) ∈ R \ {0},
α′

α
= o(1),

β′

β2
= O(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

β
R(t) = lim

t→+∞

( α′

α

β(1 + (βα )
2)

+

β′

β2

(αβ )
2 + 1

)
= 0.

Then

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

β2 )2 + ( α
′

β2 )2

(1− δ) α
β − 1

2
β′

β2 − 1
β R(t)

=

=
1

2(1− δ)
lim

t→+∞

√( β′

β2

β

α

)2

+
( α′

αβ

)2

=
1

2(1− δ)
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Next,

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 11 is valid. Thus

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).
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Further,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

α(1 + ( βα )
2)

+

β′

β2

(αβ )
3 + α

β

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α

α(αβ + β
α )

−
β′

β2

(αβ )
2 + 1

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 12. Let the condition (9) and the following conditions

α(+∞) = −∞, β = o(1),

α′

α
= o(β),

β′

β2
= O(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

β
R(t) = lim

t→+∞

( α′

αβ

1 + (βα )
2
+

β′

β2

(αβ )
2 + 1

)
= 0.

Then

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

β2 )2 + ( α
′

β2 )2

(1− δ) α
β − 1

2
β′

β2 − 1
β R(t)

=

=
1

2(1− δ)
lim

t→+∞

√( β′

β2

β

α

)2

+
( α′

αβ

)2

=
1

2(1− δ)
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Next,

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.
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Then σ̃1(t) = o(1). This implies that Theorem 12 is valid. Thus

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

Then

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

αβ

α
β + β

α

+

β′

β2

(αβ )
3 + α

β

)
= 0,

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

αβ

(αβ )
2 + 1

−
β′

β2

(αβ )
2 + 1

)
= 0.

Hence
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 13. Let the condition (9) and thr following conditions

α(+∞) = −∞, β(+∞) = ∞,
α

β
→ const ̸= 0,

α′

α
= O(1),

β′

β2
= o(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

β(αβ + β
α )

+

β′

β2

(αβ )
3 + α

β

)
= 0.
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Then

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
= lim

t→+∞

h(t)

α(1− δ − 1
2

β′

αβ − 1
αR(t))

=

=
1

2
lim

t→+∞

√√√√( β′

β2
β
α

1− δ − 1
2

β′

β2
β
α

)2

+
( α′

αβ

1− δ − 1
2

β′

β2
β
α

)2

=

=
1

2(1− δ)
lim

t→+∞

∣∣∣ α′

αβ

∣∣∣ = 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 13 is valid. Thus

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

As is shown above,
lim

t→+∞

1

α
R(t) = 0.

Then

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α

α(αβ + β
α )

−
β′

β2

(αβ )
2 + 1

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 14. Let the condition (9) and the following conditions
α = o(1), β(+∞) = ∞,

α′

α
= O(1),

β′

β
= o(α)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.
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Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

β(αβ + β
α )

+

β′

αβ

(αβ )
2 + 1

)
= 0.

Then

lim
t→+∞

h(t)

(1− δ)α− 1
2
β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

αβ )
2 + ( α′

αβ )
2

(1− δ − 1
2

β′

αβ − 1
α R(t))

= 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 14 is valid. Moreover,

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

As is shown above,

lim
t→+∞

1

α
R(t) = 0.

Then

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α
α
β α+ β

−
β′

αβ

α
β + β

α

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �
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Theorem 15. Let the condition (9) and the following conditions
α(+∞) ∈ R−, β(+∞) = ∞,

α′

α
= O(1),

β′

β
= o(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α

β(αβ + β
α )

+

β′

β

α((αβ )
2 + 1)

)
= 0.

Then

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

αβ )
2 + ( α′

αβ )
2

(1− δ − 1
2

β′

αβ − 1
α R(t))

= 0.

Therefore, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 15 is valid. Hence

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

As is shown above,
lim

t→+∞

1

α
R(t) = 0.

Then

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α

α(αβ + β
α )

−
β′

β

α(αβ + β
α )

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2)

and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).
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Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

Theorem 16. Let the condition (9) and the following conditions

α(+∞) = −∞, β(+∞) = ∞,
α

β
→ 0,

α′

α2
= O(1),

β′

β
= O(1)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

lim
t→+∞

1

α
R(t) = lim

t→+∞

( α′

α2

1 + (βα )
2
+

β′

β

α((αβ )
2 + 1)

)
= 0.

Then

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
=

1

2
lim

t→+∞

√
( β′

αβ )
2 + ( α′

αβ )
2

(1− δ − 1
2

β′

αβ − 1
α R(t))

= 0.

Consequently, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

h(t)

(1− δ)α− 1
2

β′

β −R(t)
σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 16 is valid. Moreover,

ξi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, according to (17),

zi(t) = o
(
e

t∫
t0

(δα−λ′
1(t)

λ1(t)
) dτ)

(i = 1, 2), δ ∈ (0, 1).

As is shown above,
lim

t→+∞

1

α
R(t) = 0.

Then

lim
t→+∞

1

α
I(t) = lim

t→+∞

( α′

α2

α
β + β

α

−
β′

β

α(αβ + β
α )

)
= 0.

Thus
λ′i(t)

λi(t)
= o(α) (i = 1, 2)
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and

zi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1).

Then, just as in Theorem 10,

yi(t) = o
(
e
δ

t∫
t0

αdτ)
(i = 1, 2), δ ∈ (0, 1). �

2.3. The case of purely imaginary roots λi(t) (i = 1, 2). Let us analyze
equation (6):

y′′ + p(t)y = 0

where p(t) ∈ C2
I , p(t) > 0 in I. Then λ1(t) = −i√p, λ2(t) = i

√
p, p = p(t).

Theorem 17. Let the conditions

β(+∞) = +∞,
β′

β2
= o(1),

( β′

β2 )
′

β′

β

= o(1)

be fulfilled. Then the trivial solution of equation (6) is asymptotically stable.
Proof. In this case the system (10) takes the form

z′1(t) =
(
− 1

2

β′

β
− iβ

)
z1(t) +

1

2

β′

β
z2(t),

z′2(t) =
1

2

β′

β
z1(t) +

(
− 1

2

β′

β
+ iβ

)
z2(t).

In this system we make the following replacement:

zi(t) = e
δ

t∫
t0

(− 1
2

β′
β ) dτ

φi(t) (i = 1, 2), δ ∈ (0, 1).

As a result, we obtain the following system:
φ′
1(t) =

(
− 1− δ

2

β′

β
− iβ

)
φ1(t) +

1

2

β′

β
φ2(t),

φ′
2(t) =

1

2

β′

β
φ1(t) +

(
− 1− δ

2

β′

β
+ iβ

)
φ2(t).

(23)

Then in the system (23) we make the following replacement:(
φ1(t)
φ2(t)

)
=

(
1 0
r(t) 1

)(
η1(t)
η2(t)

)
,

where ηi(t) are the new unknown functions (i = 1, 2). Then the system (23)
takes the form

η′1(t) =
(
− 1− δ

2

β′

β
+

1

2

β′

β
r(t)− iβ

)
η1(t) +

1

2

β′

β
η2(t),

η′2(t) =
(1
2

β′

β
+ 2iβr(t)− 1

2

β′

β
r2(t)− r′(t)

)
η1(t)+

+
(
− 1− δ

2

β′

β
− 1

2

β′

β
r(t) + iβ

)
η2(t).

(24)
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Suppose
1

2

β′

β
+ 2iβr(t) = 0.

Then

r(t) =
1

4

β′

β2
i = o(1).

Then the system (24) takes the form

η′1(t) =
(
− 1− δ

2

β′

β
+

1

8

β′

β

β′

β2
i− iβ

)
η1(t) +

1

2

β′

β
η2(t),

η′2(t) =
(
− 1

4

( β′

β2

)′
i+

1

8

β′

β

( β′

β2

)2)
η1(t)+

+
(
− 1− δ

2

β′

β
− 1

8

β′

β

β′

β2
i+ iβ

)
η2(t).

(25)

In accordance with Theorem 1, for the system (25) we write an auxiliary
system of differential equations:

σ′
1(t) = −1− δ

2

β′

β
σ1(t) +

1

2

∣∣∣β′

β

∣∣∣σ2(t),
σ′
2(t) =

1

8

√
4
(( β′

β2

)′)2

+
(β′

β

)2( β′

β2

)4

− 1− δ

2

β′

β
σ2(t).

(26)

We denote

g(t) =
1

8

√
4
(( β′

β2

)′)2

+
(β′

β

)2( β′

β2

)4

.

Consider a particular solution of the system (26) with the initial conditions
σi(t0) = 0 (i = 1, 2):

σ̃2(t) = e

t∫
t0

(− 1−δ
2

β′
β ) dτ

t∫
t0

g(τ)e
−

τ∫
τ0

(− 1−δ
2

β′
β ) dτ1

dτ,

σ̃1(t) = e

t∫
t0

(− 1−δ
2

β′
β ) dτ

t∫
t0

1

2

∣∣∣β′

β

∣∣∣σ̃2(τ)e− τ∫
τ0

(− 1−δ
2

β′
β ) dτ1

dτ.

In this case,

lim
t→+∞

g(t)

−1−δ
2

β′

β

= − 1

4(1− δ)
lim

t→+∞

√√√√4
( ( β′

β2 )′

β′

β

)2

+
( β′

β2

)4

=

= − 1

1− δ
lim

t→+∞

∣∣∣ ( β′

β2 )
′

β′

β

∣∣∣ = 0.
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Therefore, σ̃2(t) = o(1), by Lemma 1. Further, we have

lim
t→+∞

1
2 |

β′

β |
− 1−δ

2
β′

β

σ̃2(t) = 0.

Then σ̃1(t) = o(1). This implies that Theorem 17 is valid. Moreover,
ηi(t) = o(1) (i = 1, 2). Then φi(t) = o(1) (i = 1, 2). Then we have obtained

zi(t) = o
(
e
δ

t∫
t0

(− 1
2

β′
β ) dτ)

(i = 1, 2), δ ∈ (0, 1).

Then

{
y1(t) = z1(t) + z2(t),

y2(t) = −iβz1(t) + iβz2(t)
=⇒

y1(t) = o
(
e
δ

t∫
t0

(− 1
2

β′
β ) dτ)

,

y2(t) = −iβz1(t) + iβz2(t)

=⇒

=⇒ |y2(t)| = o
(
e

t∫
t0

(− 1
2 δ β′

β + β′

β2 ) dτ)
=⇒

=⇒


|y1(t)| = o

(
e
δ

t∫
t0

(− 1
2

β′
β ) dτ)

,

|y2(t)| = o
(
e

t∫
t0

δ(− 1
2

β′
β +o(1)) dτ)

,

δ ∈ (0, 1). �

Remark 1. The condition

( β′

β2 )
′

β′

β

= o(1)

is satisfied if there exists the corresponding limit.

Proof.

lim
t→+∞

( β′

β2 )
′

β′

β

=
[
we use the inverse de L’Hospital’s rule

]
=

= −1

2
lim

t→+∞

β′

β2 lnβ = 0. �

Remark 2. The conditions of I. T. Kiguradze’s Theorem 4 are equivalent
to those of Theorem 17. But, in addition to Theorem 17, we have obtained
the estimate of solutions of equation (6).
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Proof.

lim
t→+∞

p′p−
3
2 = lim

t→+∞
(β2)′β−3 = lim

t→+∞

2ββ′

β3
= 2 lim

t→+∞

β′

β2
= 0,

lim
t→+∞

(ln p)−1

t∫
a

∣∣(p′p− 3
2 )′

∣∣ dτ =
[
we use de L’Hospital’s rule

]
=

= lim
t→+∞

|(p′p− 3
2 )′|

p′

p

= lim
t→+∞

|(2ββ′β−3)′|
2ββ′

β2

= lim
t→+∞

|( β′

β2 )
′|

β′

β

= 0. �

Conclusion

In the present paper we have revealed the sufficient conditions for asymp-
totic stability, as well as the estimate of solutions of the homogeneous linear
non-autonomous second order differential equation in terms of the behavior
of roots of the characteristic equation in the case of complex roots. The
results of the work allow one to proceed both to investigating equations
of higher order and to considering the problems on a simple stability and
instability.
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ÒÄÆÉÖÌÄ. ×ÀÆÖÒÉ ÝÅËÀÃÄÁÉÓ ÌÉÌÀÒÈ ÓÉÍÂÖËÀÒÖËÉ ÌÀÙÀËÉ ÒÉ-
ÂÉÓ ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÖÔÏËÏÁÄÁÉÓÀ ÃÀ ÀÒÀßÒ×ÉÅ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒ ÖÔÏËÏÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÀÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÉÌ ÀÌÏÍÀá-
ÓÍÄÁÉÓ ÀÐÒÉÏÒÖËÉ ÛÄ×ÀÓÄÁÄÁÉ, ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÓÀáÉÓ ÀÒÀ-
ßÒ×ÉÅ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÓ ÀÊÌÀÚÏ×ÉËÄÁÄÍ.
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Introduction

The boundary value problems for singular in phase variables second order
differential equations attract attention of many mathematicians and are
the subject of various investigations (see, e.g., [1–4, 6, 10, 12–14, 16, 17] and
references therein). As for the singular in phase variables higher order
differential equations and differential systems, for them only the initial and
two-point problems [7,9], the Nikoletti perturbed problem [8] and the Kneser
type problem [15] are studied.

The construction of the theory of boundary value problems for singu-
lar in phase variables differential equations and systems requires a priori
estimates of solutions of singular in phase variables higher order differen-
tial inequalities and systems of differential inequalities, satisfying different
nonlinear boundary conditions. The present paper contains such estimates.

We have used the following notation.
x = (xi)

n
i=1 and X = (xik)

n
i,k=1 are the n-dimensional vector column and

the n× n-matrix with the components xi and xik (i, k = 1, . . . , n) and the
norms

∥x∥ =
n∑

i=1

|xi|, ∥X∥ =
n∑

i,k=1

|xik|;

r(X) is the spectral radius of the matrix X;
R+ = [0,+∞[ , R0+ = ]0,+∞[ ;
Rn is the n-dimensional real Euclidean space;
Rn

0+ =
{
(xi)

n
i=1 ∈ Rn : x1 > 0, . . . , xn > 0};

C̃([a, b];R) is the space of absolutely continuous functions u : [a, b] → R;
C̃m([a, b];R) is the space of m-times continuously differentiable functions

u : [a, b] → R whose derivative of m-th order is absolutely continuous;
C̃m([a, b];Rn

0+) is the set of vector functions (ui)
n
i=1 : [a, b] → Rn

0+ with
absolutely continuous components ui : [a, b] → R0+ (i = 1, . . . , n).

1. Higher Order Differential Inequalities

In a finite interval [a, b] we consider the n-th order differential inequality

g0
(
t, u(t), . . . , u(n−1)(t)

)
≤ u(n)(t) ≤

≤
n∑

k=1

gk
(
t, u(t), . . . , u(n−1)(t)

)
u(k−1)(t) (1.1)

with the boundary conditions
αiu

(i−1)(b) ≤ u(i−1)(a) ≤ βiu
(i−1)(b) + β0 (i = 1, . . . , n). (1.2)

Here gk : [a, b] × Rn
0+ → R+ (k = 0, . . . , n) are integrable in the first argu-

ment and continuous and nonincreasing in the last n arguments functions,
αi (i = 1, . . . , n) and βi (i = 0, . . . , n) are constants such that

0 < αi ≤ βi < 1 (i = 1, . . . , n), β0 > 0. (1.3)
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We are mainly interested in the case where the differential inequality
(1.1) is singular in phase variables, i.e., in the case when there exists a set
of positive measure I ⊂ [a, b] such that

lim
x1+···+xn→0

gk(t, x1, . . . , xn) = +∞ for t ∈ I (k = 0, . . . , n).

A function u ∈ C̃n−1([a, b];R) is said to be a solution of the differen-
tial inequality (1.1) if

u(i−1)(t) > 0 for a ≤ t ≤ b (i = 1, . . . , n)

and almost everywhere on [a, b] the inequality (1.1) is fulfilled.
A solution of the differential inequality (1.1) satisfying the boundary

conditions (1.2) is called a solution of the problem (1.1), (1.2).
Before we give a theorem containing a priori estimates of solutions of the

above-mentioned problem, we prove a simple lemma dealing with estimates
of solutions of the differential inequality

u(n)(t) ≥ 0, (1.4)

satisfying the boundary conditions (1.2).

Lemma 1.1. An arbitrary solution u of the problem (1.4), (1.2) admits the
estimates

γ0kℓ ≤ u(k−1)(t) ≤ γk(ℓ+ β0) for a ≤ t ≤ b (k = 1, . . . , n), (1.5)

where

γk = (b− a)n−k
n∏

i=k

(1− βi)
−1 (k = 1, . . . , n), (1.6)

γ0k = (b− a)n−k
n∏

i=k

αi

1− αi
(k = 1, . . . , n), (1.7)

and

ℓ =

b∫
a

u(n)(s) ds. (1.8)

Proof. In view of (1.2), (1.8), we have

u(n−1)(b) = u(n−1)(a) + ℓ ≥ αnu
(n−1)(b) + ℓ,

u(n−1)(b) ≤ βnu
(n−1)(b) + β0 + ℓ,

and hence

u(n−1)(b) ≥ 1

1− αn
ℓ, u(n−1)(b) ≤ 1

1− βn
(β0 + ℓ).
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If along with this we take into account the inequality (1.4), it becomes
obvious that

u(n−1)(t) ≥ u(n−1)(a) ≥ αnu
(n−1)(b) ≥

≥ γ0nℓ, u(n−1)(t) ≤ u(n−1)(b) ≤ γn(β0 + ℓ) for a ≤ t ≤ b.

This, according to the induction law and notations (1.6) and (1.7), results
in the estimate (1.5). �
Theorem 1.1. If along with (1.3) the conditions

b∫
a

g0(s, x, . . . , x) ds > 0 for x > 0, (1.9)

lim
x→+∞

n∑
k=1

γk

b∫
a

gk(s, x, . . . , x) ds < 1 (1.10)

are fulfilled, then there exist positive constants δ and ρ such that an arbitrary
solution of the problem (1.1), (1.2) admits the estimates

δ ≤ u(k−1)(t) ≤ ρ for a ≤ t ≤ b (k = 1, . . . , n). (1.11)

Proof. By the inequality (1.10), there exists a positive number x0 such that(
1 +

β0

x0

) n∑
k=1

γk

b∫
a

gk(s, x0, . . . , x0) ds < 1. (1.12)

Suppose
γ0 = min

{
1, γ01, . . . , γ0n

}
, γ = max

{
γ1, . . . , γn

}
,

ρ =
(x0

γ0
+ β0

)
γ,

and

δ = γ0

b∫
a

g0(s, ρ, . . . , ρ) ds.

Owing to (1.9), it is clear that δ > 0.
Let u be an arbitrary solution of the problem (1.1), (1.2), and let ℓ be the

number given by the equality (1.8). Then by Lemma 1.1, the inequalities
(1.5) are valid. On the other hand, it follows from (1.1) and (1.5) that

ℓ ≤ (ℓ+ β0)
n∑

k=1

γk

b∫
a

gk
(
s, ℓγ0, . . . , ℓγ0

)
ds (1.13)

and

ℓ ≥
b∫

a

g0
(
s, (ℓ+ β0)γ, . . . , (ℓ+ β0)γ

)
ds, (1.14)
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since gk (k = 0, . . . , n) are nonincreasing in the last n arguments functions.
Our aim is to prove that u admits the estimates (1.11). Let us first show

that
ℓ <

x0

γ0
. (1.15)

Assume the contrary that
ℓ ≥ x0

γ0
.

Then ℓ ≥ x0. Thus taking into account the inequality (1.12), from the
inequality (1.13) we find

ℓ ≤ ℓ
(
1 +

β0

x0

) n∑
k=1

γk

b∫
a

gk(s, x0, . . . , x0) ds < ℓ.

The obtained contradiction proves the validity of the estimate (1.15).
According to (1.5), (1.14) and (1.15), we have

u(k−1)(t) <
(x0

γ0
+ β0

)
γ = ρ for a ≤ t ≤ b (k = 1, . . . , n)

and

u(k−1)(t) ≥ ℓγ0 ≥ γ0

b∫
a

g0(s, ρ, . . . , ρ) ds = δ for a ≤ t ≤ b.

Consequently, the estimates (1.11) are valid. �
As an example, we consider the differential inequality

p0(t)q0
(
u(t), . . . , u(n−1)(t)

)
≤ u(n)(t) ≤

≤ p(t)q
(
u(t), . . . , u(n−1)(t)

)
+

n∑
k=1

pk(t)u
(k−1)(t), (1.16)

where pk : [a, b] → R+ (k = 0, . . . , n), p : [a, b] → R+ are integrable
functions, and q0 : Rn

0+ → R0+, q : Rn
0+ → R0+ are continuous and nonin-

creasing in all variables functions.

Corollary 1.1. If
b∫

a

p0(s) ds > 0,
n∑

k=1

γk

b∫
a

pk(s) ds < 1, (1.17)

then there exist positive constants δ and ρ such that an arbitrary solution of
the problem (1.16), (1.2) admits the estimates (1.11).

Proof. Let
g0(t, x1, . . . , xn) = p0(t)q0(x1, . . . , xn),

gk(t, x1, . . . , xn) =
p(t)

nxk
q(x1, . . . , xn) + pk(t) (k = 1, . . . , n).
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Then the differential inequality (1.16) takes the form (1.1). On the other
hand, by virtue of (1.17), the functions gk : [a, b]×Rn

0+ → R+ (k = 0, . . . , n)
satisfy the conditions (1.9) and (1.10). If now we apply Theorem 1.1, then
validity of Corollary 1.1 becomes evident. �

Note that in the conditions of Theorem 1.1 or Corollary 1.1, the dif-
ferential inequality under consideration may have singularities of arbitrary
orders in phase variables. For example, In Corollary 1.1 as q0 and q we can
take the functions

q0(x1, . . . , xn) = ℓ01

n∏
i=1

x−λ0i
i exp

(
ℓ02

n∏
j=1

x
−µ0j

j

)
,

q(x1, . . . , xn) = q0(x1, . . . , xn) + ℓ1

n∏
i=1

x−λi
i exp

(
ℓ2

n∏
j=1

x
−µj

j

)
,

where λ0i, λi, µ0i, µi (i = 1, . . . , n), ℓ0k, ℓk (k = 1, 2) are positive constants.

2. First Order Differential Inequalities

Let us consider the differential inequality
σ
(
u′(t)− p(t)u(t)− q

(
t, u(t)

))
≥ 0 (2.1)

with the boundary condition
σ
(
u(a)− αu(b)− α0

)
≥ 0, (2.2)

where p : [a, b] → R is an integrable function, q : [a, b] × R0+ → R+ is an
integrable in the first argument and continuous and nonincreasing in the
second argument function, σ ∈ {−1, 1}, α > 0 and α0 ≥ 0 are constants.

An absolutely continuous function u : [a, b] → R0+ is said to be a so-
lution of the problem (2.1), (2.2) if it satisfies the condition (2.2) and
almost everywhere on [a, b] satisfies the differential inequality (2.1).

Along with (2.1), (2.2), we consider the boundary value problem of peri-
odic type:

v′(t) = p(t)v(t) + q
(
t, v(t)

)
, (2.3)

v(a) = αv(b) + α0. (2.4)
The following theorem holds.

Theorem 2.1. If

α exp
( b∫

a

p(s) ds

)
< 1 (2.5)

and
b∫

a

q(s, x) ds > 0 for x > 0, (2.6)
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then the problem (2.3), (2.4) has a unique solution v, and an arbitrary solu-
tion u of the problem (2.1), (2.2) admits the estimate

σ
(
u(t)− v(t)

)
≥ 0 for a ≤ t ≤ b. (2.7)

To prove the theorem, we need the following simple lemma.

Lemma 2.1. Let t0 ∈ [a, b[ and c > 0. Then the differential equation (2.1)
under the initial condition

v(t0) = c (2.8)
has a unique solution v in the interval [t0, b], and an arbitrary solution u of
the differential inequality (2.1), satisfying the condition

σ
(
u(t0)− c

)
≥ 0,

admits the estimate

σ
(
u(t)− v(t)

)
≥ 0 for t0 ≤ t ≤ b. (2.9)

Proof. The unique solvability of the problem (2.1), (2.8) in the interval [t0, b]
follows from the fact that c > 0 and the function q : [a, b] × R0+ → R+ is
nonincreasing in the second argument.

Applying now Lemma 4.3 from [5], the validity of the estimate (2.9)
becomes evident. �

Proof of Theorem 2.1. For the sake of definiteness we assume that σ = 1
since the case where σ = −1 is considered analogously.

If q : [a, b]× R0+ → R+ is a continuous and nonincreasing in the second
argument function, then by Theorem 7 of [11], the conditions (2.5) and (2.6)
guarantee the unique solvability of the problem (2.3), (2.4). If, however, q
is integrable in the first and continuous and nonincreasing in the second
argument, then using the method of proving of the above-mentioned theo-
rem, we can show that the conditions (2.5) and (2.6) again guarantee the
existence of a unique solution v of the problem (2.3), (2.4).

Let u be an arbitrary solution of the problem (2.1), (2.2). If

u(a) ≥ v(a),

then by Lemma 2.1, the estimate (2.7) is valid.
To prove the theorem, it remains to show that the inequality

u(a) < v(a) (2.10)

cannot take place.
Assume the contrary that the inequality (2.10) is valid. Then either

u(t) < v(t) for a < t < b, (2.11)

or there exists t0 ∈ ]a, b[ such that

u(t0) ≥ v(t0). (2.12)
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Let the inequality (2.11) be fulfilled. Then in view of (2.1), almost ev-
erywhere on [a, b] the inequality

u′(t) ≥ p(t)u(t) + q
(
t, v(t)

)
(2.13)

is fulfilled since q is the nonincreasing in the second argument function.
Put

w(t) = v(t)− u(t).

Then in view of the conditions (2.2), (2.4), (2.10) and (2.13),we have

0 < w(a) ≤ αw(b)

and
w′(t) ≤ p(t)w(t) for almost all t ∈ [a, b].

From these inequalities with regard for the condition (2.5) we find

w(b) ≤ exp
( b∫

a

p(s) ds

)
w(a) ≤ α exp

( b∫
a

p(s) ds

)
w(b) < w(b).

The obtained contradiction proves that the inequality (2.11) cannot take
place. Consequently, for some t0 ∈ ]a, b[ the inequality (2.12) is fulfilled.

By Lemma 2.1, the function u admits the estimate (2.9). From (2.4),
(2.9) and (2.10), we find

u(a) < v(a) = αv(b) + α0 ≤ αu(b) + α0,

which contradicts the inequality (2.2). The obtained contradiction proves
that the inequality (2.10) cannot take place. Thus the theorem is pro-
ved. �

In conclusion of this section we consider the problem

σ
(
u′(t)− p(t)u(t) + q

(
t, u(t)

))
≤ 0, (2.14)

σ
(
u(a)− αu(b) + α0

)
≤ 0, (2.15)

and the differential equation

v′(t) = p(t)v(t)− q
(
t, v(t)

)
(2.16)

with the boundary condition

v(a) = αv(b)− α0. (2.17)

As above we assume that p : [a, b] → R is an integrable function, and
q : [a, b] × R0+ → R+ is an integrable in the first and continuous and
nonincreasing in the second argument function, σ ∈ {−1, 1}, α > 0 and
α0 ≥ 0.

On the basis of Theorem 2.1, the following statement can be proved.
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Theorem 2.2. If along with (2.6) the inequality

α exp
( b∫

a

p(s) ds

)
> 1 (2.18)

is fulfilled, then the problem (2.16), (2.17) has a unique solution v, and an
arbitrary solution u of the problem (2.14), (2.15) admits the estimate (2.7).

If q(t, x) ≡ q(t), then the differential inequalities (2.1), (2.14) and the
differential equations (2.3) and (2.16) have the following forms

σ
(
u′(t)− p(t)u(t)− q(t)

)
≥ 0, (2.19)

σ
(
u′(t)− p(t)u(t) + q(t)

)
≤ 0, (2.20)

v′(t) = p(t)v(t) + q(t), (2.21)
v′(t) = p(t)v(t)− q(t). (2.22)

It is easy to see that for the unique solvability of the problem (2.21), (2.4)
(of the problem (2.22), (2.17)) it is necessary and sufficient the inequality

1− α exp
( b∫

a

p(s) ds

)
̸= 0 (2.23)

to be fulfilled.
Let the inequality (2.23) hold. Put

∆(p, α) = 1− α exp
( b∫

a

p(s) ds

)
, (2.24)

g(p, α)(t, s) =

=



1

∆(p, α)
exp

( t∫
s

p(τ) dτ

)
for a ≤ s ≤ t ≤ b,

α

∆(p, α)
exp

( b∫
a

p(τ) dτ +

t∫
s

p(τ) dτ

)
for a ≤ t < s ≤ b.

(2.25)

Then the solution of the problem (2.21), (2.22) admits the representation

v(t) =
α0

∆(p, α)
exp

( t∫
a

p(τ) dτ

)
+

b∫
a

g(p, α)(t, s)q(s) ds,

and the solution of the problem (2.22), (2.17) admits the representation

v(t) = − α0

∆(p, α)
exp

( t∫
a

p(s) ds

)
−

b∫
a

g(p, α)(t, s)q(s) ds.
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On the other hand, in view of the fact that the number α is positive, (2.24)
and (2.25) imply

∆(p, α)g(p, α)(t, s) > 0 for a ≤ s ≤ t ≤ b. (2.26)
If along with this we take into account the fact that the function q is nonneg-
ative, then it becomes evident that Theorems 2.1 and 2.2 yield the following
propositions.

Corollary 2.1. If the inequality (2.5) (the inequality (2.18)) is fulfilled,
then an arbitrary solution of the problem (2.19), (2.2) (of the problem
(2.20), (2.15)) admits the estimate (2.7), where

v(t) =
α0

|∆(p, α)|
exp

( t∫
a

p(s) ds

)
+

b∫
a

∣∣g(p, α)(t, s)∣∣q(s) ds for a ≤ t ≤ b.

Lemma 2.2. Let p be a constant sign function, satisfying the condition
(2.23). Then

b∫
a

∣∣g(p, α)(t, s)p(s)∣∣ ds ≤ α+ 1 + |α− 1|
2

∣∣∣∆(p, 1)

∆(p, α)

∣∣∣ for a ≤ t ≤ b, (2.27)

b∫
a

∣∣g(p, α)(t, s)p(s)∣∣ ds ≥ α+ 1− |α− 1|
2

∣∣∣∆(p, 1)

∆(p, α)

∣∣∣ for a ≤ t ≤ b. (2.28)

Proof. Due to the fact that p is of constant sign and the condition (2.26),
there exists a number σ0 ∈ {−1, 1} such that

b∫
a

∣∣g(p, α)(t, s)p(s)∣∣ ds = σ0w(t) for a ≤ t ≤ b, (2.29)

where

w(t) =

b∫
a

g(p, α)(t, s)p(s) ds.

On the other hand, in view of the equalities (2.24) and (2.25), we find

w(t) =
1− α

∆(p, α)
exp

( t∫
a

p(s) ds

)
− 1.

Hence it is clear that
min

{
|w(a)|, |w(b)|

}
≤ |w(t)| ≤ max

{
|w(a)|, |w(b)|

}
.

However,

w(a) = −α∆(p, 1)

∆(p, α)
, w(b) = −∆(p, 1)

∆(p, α)
.
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Thus,

min{α, 1}
∣∣∣∆(p, 1)

∆(p, α)

∣∣∣ ≤ |w(t)| ≤ max{α, 1}
∣∣∣∆(p, 1)

∆(p, α)

∣∣∣ for a ≤ t ≤ b,

according to which from the equality (2.29) it follows the estimates (2.27)
and (2.28). �

3. Systems of Differential Inequalities

In this section, we establish a priori estimates of solutions of the system
of differential inequalities

qi
(
t, ui(t)

)
≤ σi

(
u′
i(t)− pi(t)ui(t)

)
≤

≤
n∑

k=1

pik
(
t, u1(t) + · · ·+ un(t)

)
uk(t)+

+ q0
(
t, u1(t), . . . , un(t)

)
(i = 1, . . . , n), (3.1)

satisfying the boundary conditions

σi

(
ui(a)− αiui(b)

)
≥ 0, σi

(
ui(a)− βiui(b)

)
≤ β0 (i = 1, . . . , n). (3.2)

Here
σi ∈ {−1, 1}, αi > 0, βi > 0,

σi(βi − αi) > 0 (i = 1, . . . , n), β0 > 0,
(3.3)

pi : [a, b] → R (i = 1, . . . , n) are integrable functions, qi : [a, b]×R0+ → R+

and pik : [a, b] × R0+ → R+ (i, k = 1, . . . , n) are integrable in the first
and continuous and nonincreasing in the second argument functions, and
q0 : [a, b] × Rn

0+ → R+ is an integrable in the first and continuous and
nonincreasing in the last n arguments function.

A vector function (ui)
n
i=1 : [a, b] → Rn

0+ with absolutely continuous com-
ponents ui : [a, b] → R0+ (i = 1, . . . , n) is said to be a solution of the
system (3.1) if it satisfies that system almost everywhere on [a, b].

A solution of the system (3.1), satisfying the boundary conditions (3.2),
is said to be a solution of the problem (3.1), (3.2).

We investigate the problem (3.1), (3.2) in the case, where
b∫

a

qi(s, x) ds > 0 for x > 0 (i = 1, . . . , n) (3.4)

and

σi

(
βi exp

( b∫
a

pi(s) ds

)
− 1

)
< 0 (i = 1, . . . , n). (3.5)
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Let g be the operator given by the equalities (2.24) and (2.25). Suppose
hik(x) =

= max
{ b∫

a

∣∣g(pi, βi)(t, s)
∣∣pik(s, x) ds : a ≤ t ≤ b

}
(i, k = 1, . . . , n) (3.6)

and
H(x) =

(
hik(x)

)n
i,k=1

for x > 0. (3.7)

Theorem 3.1. Let along with (3.3)–(3.5) the condition
lim

x→+∞
r(H(x)) < 1 (3.8)

be fulfilled. Then there exist positive constants δ and ρ such that an arbitrary
solution (ui)

n
i=1 of the problem (3.1), (3.2) admits the estimates

δ ≤ ui(t) ≤ ρ for a ≤ t ≤ b (i = 1, . . . , n). (3.9)

To prove this theorem, along with the results from Section 2 we need the
following lemma.

Lemma 3.1. Let hik : R0+ → R+ (i, k = 1, . . . , n) be nonincreasing func-
tions, and hi (i = 1, . . . , n) be nonnegative constants. Let, moreover, there
exist a positive number x0 such that

r(H(x0)) < 1, (3.10)
where H is a matrix function given by the equality (3.7). Then arbitrary
positive numbers x1, . . . , xn, satisfying the system of inequalities

xi ≤
n∑

k=1

hik(x1 + · · ·+ xn)xk + hi (i = 1, . . . , n), (3.11)

satisfy the inequality
n∑

i=1

xi ≤ x0 +
∥∥(E −H(x0))

−1
∥∥ n∑

i=1

hi (3.12)

as well, where E is a unit n × n-matrix, and (E − H(x0))
−1 is a matrix,

inverse to the matrix E −H(x0).

Proof. Assume the contrary that
n∑

i=1

xi > x0 +
∥∥(E −H(x0))

−1
∥∥ n∑

i=1

hi. (3.13)

Then from (3.10) we have

xi ≤
n∑

k=1

hik(x0)xk + hi (i = 1, . . . , n)

since hik (i, k = 1, . . . , n) are nonincreasing functions. Consequently,
(E −H(x0))x ≤ h, (3.14)
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where
x = (xi)

n
i=1, h = (hi)

n
i=1.

The nonnegativeness of the matrix H(x0) and the condition (3.10) guar-
antee the nondegeneracy of the matrix E −H(x0) and the nonnegativeness
of the matrix (E −H(x0))

−1.
If we multiply both sides of the inequality (3.14) by (E −H(x0))

−1, we
obtain

x ≤ (E −H(x0))
−1h.

Thus
n∑

i=1

xi ≤ (E −H(x0))
−1

n∑
i=1

hi,

which contradicts the inequality (3.13). The obtained contradiction proves
the validity of the estimate (3.12). �

Proof of Theorem 3.1. According to the condition (3.8), there exists a pos-
itive number x0 such that the inequality (3.10) holds.

(3.3) and (3.5) imply

σi

(
αi exp

( b∫
a

pi(s) ds

)
− 1

)
< 0 (i = 1, . . . , n). (3.15)

On the other hand, by virtue of Theorems 2.1, 2.2 and the conditions (3.4)
and (3.15) for any i ∈ {1, . . . , n} the problem

v′i(t) = pi(t)v(t) + σiqi(t, vi(t)),

vi(a) = αivi(b)

has a unique solution vi.
Put

δi = min
{
vi(t) : a ≤ t ≤ b

}
(i = 1, . . . , n),

hi =
β0

|∆(pi, βi)|
exp

( b∫
a

|pi(s)| ds
)
+ (3.16)

+ max
{ b∫
a

∣∣g(pi, βi)(t, s)
∣∣q0(s, δ1, . . . , δn) ds : a≤ t≤b

}
(i=1, . . . , n),

δ = min{δ1, . . . , δn}, ρ = x0 +
∥∥(E −H(x0))

−1
∥∥ n∑

i=1

hi. (3.17)

Let (ui)
n
i=1 be a solution of the problem (3.1), (3.2). Our aim is to prove

that this solution admits the estimates (3.9).
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For each i ∈ {1, . . . , n} the function ui is a solution of the problem

σi

(
u′
i(t)− pi(t)ui(t)

)
≥ qi(t, ui(t)),

σi

(
ui(a)− αiui(b)

)
≥ 0.

Hence by virtue of the conditions (3.4), (3.15) and Theorems 2.1 and 2.2 it
follows that

ui(t) ≥ vi(t) for a ≤ t ≤ b

and, consequently,

ui(t) ≥ δi for a ≤ t ≤ b (i = 1, . . . , n). (3.18)

According to (3.1), (3.2), and (3.18), for each i ∈ {1, . . . , n} the function
ui is a solution of the problem

σi

(
u′
i(t)− pi(t)ui(t)

)
≤

n∑
k=1

pik(t, x1 + · · ·+ xn)xk + q0(t, δ1, . . . , δn),

σi

(
ui(a)− βi(t)ui(b)

)
≤ β0,

where
xk = max

{
uk(t) : a ≤ t ≤ b

}
(k = 1, . . . , n). (3.19)

Hence by virtue of the condition (3.5) and Corollary 2.1 it follows that

ui(t) ≤
n∑

k=1

( b∫
a

∣∣g(pi, βi)(t, s)
∣∣pik(s, x1 + · · ·+ xn) ds

)
xk+

+
β0

|∆(pi, βi)|
exp

( t∫
a

pi(s) ds

)
+

+

b∫
a

∣∣g(pi, βi)(t, s)
∣∣q0(s, δ1, . . . , δn) ds for a ≤ t ≤ b.

If along with this estimate we take into account the notations (3.6) and
(3.16), then it becomes clear that the numbers x1, . . . , xn satisfy the system
of inequalities (3.11). By Lemma 3.1 these numbers satisfy the inequality
(3.12) as well.

Due to (3.17) and (3.19), the estimates (3.12) and (3.18) result in the
estimates (3.9). �

Corollary 3.1. Let the functions pi (i = 1, . . . , n) are of constant sign,

pik(t, x) ≡ |pi(t)|p0ik(x) (i, k = 1, . . . , n), (3.20)

and let along with (3.3)–(3.5) the condition

lim
x→+∞

r(H0(x)) < 1 (3.21)
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be fulfilled, where p0ik : R0+ → R+ (i, k = 1, . . . , n) are nonincreasing
functions and

H0(x) =

(
βi + 1 + |βi − 1|

2

∣∣∣ ∆(pi, 1)

∆(pi, βi)

∣∣∣p0ik(x))n

i,k=1

, (3.22)

and ∆ is a functional, given by the equality (2.24). Then there exist positive
constants δ and ρ such that an arbitrary solution (ui)

n
i=1 of the problem

(3.1), (3.2) admits the estimates (3.9).

Proof. By Lemma 2.2, the estimates
b∫

a

∣∣g(pi, βi)(t, s)pi(s)
∣∣ ds ≤

≤ βi + 1 + |βi − 1|
2

∣∣∣ ∆(pi, 1)

∆(pi, βi)

∣∣∣ for a ≤ t ≤ b (i = 1, . . . , n)

are valid, according to which (3.6) and (3.20) result in the inequalities

hik(x) ≤
βi + 1 + |βi − 1|

2

∣∣∣ ∆(pi, 1)

∆(pi, βi)

∣∣∣p0ik(x) for x > 0 (i, k = 1, . . . , n).

Hence in view of (3.7) and (3.22) it is obvious that
H(x) ≤ H0(x) for x > 0

and, consequently,
r(H(x)) ≤ r(H0(x)) for x > 0.

Thus the inequalities (3.21) yield the inequality (3.8).
If now we apply Theorem 3.1, then the validity of Corollary 3.1 becomes

evident. �
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WITH OSCILLATING COEFFICIENTS
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Abstract. For the linear homogeneous differential system with oscillat-
ing coefficients the sufficient conditions of existence of linear transformation
reducing this system to a block-diagonal form in a resonance case are ob-
tained.
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ÒÄÆÉÖÌÄ. ßÒ×ÉÅÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÓÉÓÔÄÌÉÓÀÈÅÉÓ
ÒáÄÅÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÉÓÄÈÉ ßÒ×ÉÅÉ ÂÀÒÃÀØÌÍÉÓ
ÀÒÓÄÁÏÁÉÓ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÉÝ ÌÀÓ ÌÉÉÚÅÀÍÓ ÖãÒÖË-ÃÉ-
ÀÂÏÍÀËÖÒ ÓÀáÄÆÄ ÒÄÆÏÍÀÍÓÖË ÛÄÌÈáÅÄÅÀÛÉ.
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1. Introduction

In the theory of differential equations of great importance is the problem
of separation of a linear homogeneous n-th order differential system into k
independent systems of orders n1, n2, . . . , nk (n1 + n2 + · · · + nk = n), in
particular, separation of this system into n independent first-order differ-
ential equations (full separation). This problem has been considered, for
example, in [1–8]. Obviously, it is impossible in a general case to construct
transformations explicitly, leading to a separated system. Such a construc-
tion assumes for the initial system to be integrable. Therefore, in these
studies there was no attempt to construct such a transformation explicitly;
these works established only the conditions of its existence, investigated its
properties and possibility for its approximate construction, particularly, in
the form of asymptotic series. Of importance is also the question on the be-
longing of elements of a transforming matrix to the same classes as elements
of the matrix of the original system.

In his articles [9–12], the author considers the problem of full separation
of the system of the kind

dx

dt
= (Λ(t, ε) + µB(t, ε, θ))x, (1)

where Λ(t, ε) = diag (λ1(t, ε), . . . , λn(t, ε)), and the functions λj(t, ε) (j =
1, n) are, in a definite sense, slowly varying, µ is a small positive param-
eter, elements of the matrix B(t, ε, θ) are represented by absolutely and
uniformly convergent Fourier series with slowly varying coefficients and fre-
quency φ(t, ε) = dθ

dt . At the same time, the cases of resonance absence
and presence of resonance, including the special case, have been investi-
gated. For each of these cases the conditions were obtained under which
the transforming matrix elements have a structure similar to that of the
matrix B(t, ε, θ). In this article we study the possibility of block separation
of the system (1) into two independent systems of smaller dimensions in
a resonance case. Such a statement of the problem has some features as
compared with the problems considered in [9–12].

2. Basic Notation and Definitions

Let G = {t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+}.

Definition 1. We say that the function p(t, ε) is in general complex-valued,
belongs to the class S(m; ε0), m ∈ N ∪ {0}, if t, ε ∈ G and

(1) p(t, ε) ∈ Cm(G) with respect to t;
(2) dkp(t, ε)/dtk = εkp∗k(t, ε), sup

G
|p∗k(t, ε)| < +∞ (0 ≤ k ≤ m).

Slow variation of a function is understood here in a sense of its belonging
to the class S(m; ε0). As examples of this class of functions may serve in a
general case complex-valued bounded together with their derivatives up to
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the m-th order, inclusive, functions depending on the “slow time” τ = εt:
sin τ , arctg τ , etc.

Definition 2. We say that the function f(t, ε, θ(t, ε)) belongs to the
class F (m; ε0; θ), m ∈ N ∪ {0}, if this function can be represented as

f(t, ε, θ(t, ε)) =
∞∑

n=−∞
fn(t, ε) exp

(
inθ(t, ε)

)
,

where
(1) fn(t, ε) ∈ S(m; ε0), dkfn(t, ε)/dtk = εkfnk(t, ε) (n ∈ Z, 0 ≤ k ≤ m),

(2) ∥f∥F (m;ε0;θ)
def
=

m∑
k=0

∞∑
n=−∞

sup
G

|fnk(t, ε)| < +∞,

(3) θ(t, ε)=
t∫
0

φ(τ, ε) dτ , φ(t, ε)∈R+, φ(t, ε)∈S(m; ε0), inf
G

φ(t, ε)> 0.

In particular, if ε = 0: φ = const, θ = φt, fn = const, then func-
tions of the class F (m; ε0; θ) are transformed into 2π/φ-periodic functions
of variable t,

f(t) =

∞∑
n=−∞

fne
inφt,

such that
∞∑

n=−∞
|fn| < +∞.

A set of functions of the class F (m; ε0; θ) forms a linear space which
transforms into a full normed space by means of the norm ∥ · ∥F (m;ε0,θ).
The following chain of inclusions

F (0; ε0; θ) ⊃ F (1; ε0; θ) ⊃ · · · ⊃ F (m; ε0; θ)

is valid.
Let there be given two functions of the class F (m; ε0; θ):

u(t, ε, θ(t, ε)) =
∞∑

n=−∞
un(t, ε) exp(inθ(t, ε)),

v(t, ε, θ(t, ε)) =

∞∑
n=−∞

vn(t, ε) exp(inθ(t, ε)).

We define product of those functions by the formula [13]:

(uv)(t, ε, θ(t, ε)) =

∞∑
n=−∞

∞∑
s=−∞

un−s(t, ε)vs(t, ε) exp(inθ(t, ε)).

Obviously, uv ∈ F (m; ε0; θ). We state some properties of the norm
∥ · ∥F (m;ε0;θ). Let u, v ∈ F (m; ε0; θ), k = const. Then

(1) ∥ku∥F (m;ε0;θ) = |k|∥u∥F (m;ε0;θ);
(2) ∥u+ v∥F (m;ε0;θ) ≤ ∥u∥F (m;ε0;θ) + ∥v∥F (m;ε0;θ);
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(3) ∥uv∥F (m;ε0;θ) ≤ 2m∥u∥F (m;ε0;θ)∥v∥F (m;ε0;θ).
For any f(t, ε, θ) ∈ F (m; ε0; θ), we denote:

Γn(f) =
1

2π

2π∫
0

f(t, ε, u) exp(−inu) du.

Let A(t, ε, θ) = (ajk(t, ε, θ)) – (M ×K) be the matrix with elements of
the class F (m; ε0; θ). We denote:

(A)jk = ajk (j = 1,M, k = 1,K),

∥A∥∗F (m;ε0;θ)
= max

1≤j≤M

K∑
k=1

∥(A)jk∥F (m;ε0;θ).

3. Statement of the Problem

Consider the following system of differential equations:
dx1

dt
= H1(φ)x1 + µ(B11(t, ε, θ)x1 +B12(t, ε, θ)x2),

dx2

dt
= H2(φ)x2 + µ(B21(t, ε, θ)x1 +B22(t, ε, θ)x2),

(2)

where x1 = colon (x11, . . . , x1N1), x2 = colon (x21, . . . , x2N2),

H1(φ) =


ipφ 0 . . . 0 0
1 ipφ . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 ipφ

 ,

H2(φ) =


irφ 0 . . . 0 0
1 irφ . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 irφ


are the Jordan blocks of dimensions N1 and N2, respectively (N1+N2 = N);
p, r ∈ Z; Bjk(t, ε, θ) are the (Nj × Nk) matrices with elements of the
class F (m; ε; θ); φ(t, ε) is the function appearing in the definition of class
F (m; ε; θ); µ ∈ (0, 1). In this sense, we deal with a resonance case.

We study the problem of existence and properties of the transformation
of kind:

xj = Lj1(t, ε, θ, µ)x̃1 + Lj2(t, ε, θ, µ)x̃2, j = 1, 2, (3)

where the elements of (Nj × Nk)-matrices Ljk (j, k = 1, 2) belong to the
class F (m− 1; ε1; θ) (0 < ε1 ≤ ε0), reducing the system (2) to the form:

dx̃1

dt
= DN1(t, ε, θ, µ)x̃1,

dx̃2

dt
= DN2(t, ε, θ, µ)x̃2, (4)
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where the elements of (Nj ×Nj)-matrices DNj (j = 1, 2) likewise belong to
the class F (m− 1; ε1; θ).

4. Auxiliary Results

Lemma 1. Let there be given a matrix differential equation

dX

dt
=

(
JM +

q∑
l=1

Pl(t, ε, θ)µ
l
)
X −X

(
JK +

q∑
l=1

Ql(t, ε, θ)µ
l
)
, (5)

where X is (M ×K)-matrix, Pl(t, ε, θ), Ql(t, ε, θ) (l = 1, q) are matrices of
dimensions (M ×M) and (K×K) respectively with elements from the class
F (m; ε; θ),

JM =


0 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0

 , JK =


0 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0


are Jordan blocks of dimensions M and K, respectively, whose diagonal
elements are equal to zero, µ ∈ (0, 1).

Then there exists µ0 ∈ (0, 1) such that for any µ ∈ (0, µ0) there exists
transformation of the kind

X =
(
EM +

q∑
l=1

Φl(t, ε, θ)µ
l
)
Y
(
EK +

q∑
l=1

Ψl(t, ε, θ)µ
l
)
, (6)

where Y is the (M×K)-matrix, EM , EK are identity matrices of dimensions
M and K respectively, the elements of (M × M)-matrices Φl and those
of (K × K)-matrices Ψl (l = 1, q) belong to the class F (m; ε; θ) reducing
equation (5) to the form:

dY

dt
=

(
JM +

q∑
l=1

Ul(t, ε)µ
l + ε

q∑
l=1

Ũl(t, ε, θ)µ
l + µq+1W1(t, ε, θ, µ)

)
Y−

− Y
(
JK +

q∑
l=1

Vl(t, ε)µ
l + ε

q∑
l=1

Ṽl(t, ε, θ)µ
l + µq+1W2(t, ε, θ, µ)

)
, (7)

where Ul(t, ε), Vl(t, ε) (l = 1, q) are the matrices of dimensions (M × M)

and (K × K), respectively, with elements from the class S(m; ε0), Ũl(t, ε)

and Ṽl(t, ε) (l = 1, q) are the matrices of dimensions (M×M) and (K×K),
respectively, with elements from the class F (m − 1; ε0; θ), W1, W2 are the
matrices of dimensions (M ×M) and (K ×K), respectively, with elements
from the class F (m− 1; ε0; θ).

Proof. We substitute (6) into the system (5) and require for the transformed
system to have the form (7). Then for the matrices Φl, Ψl (l = 1, q) we
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obtain the following differential equations:

dΦ1

dt
= JMΦ1 − Φ1JM + P1(t, ε, θ)− U1(t, ε)− εŨ1(t, ε, θ), (8)

dΨ1

dt
= JKΨ1 −Ψ1JK −Q1(t, ε, θ) + V1(t, ε) + εṼ1(t, ε, θ), (9)

dΦl

dt
= JMΦl − ΦlJM + Pl(t, ε, θ) +

l−1∑
ν=1

Pν(t, ε, θ)Φl−ν−

−
l−1∑
ν=1

ΦνUl−ν(t, ε)− ε

l−1∑
ν=1

ΦνŨl−ν(t, ε, θ)−

− Ul(t, ε)− εŨl(t, ε, θ), l = 2, q, (10)

dΨl

dt
= JKΨl −ΨlJK −Ql(t, ε, θ)−

l−1∑
ν=1

ΨνQl−ν(t, ε, θ)+

+
l−1∑
ν=1

Vν(t, ε)Ψl−ν + ε
l−1∑
ν=1

Ṽν(t, ε, θ)Ψl−ν+

+ Vl(t, ε) + εṼl(t, ε, θ), l = 2, q. (11)

The matrices W1, W2 are defined from the equations(
EM +

q∑
l=1

Φl(t, ε, θ)µ
l
)
W1 =

=

q−1∑
s=0

[ ∑
σ+δ=s+q+1

(PσΦδ − ΦδUσ)
]
µs − ε

q−1∑
s=0

( ∑
σ+δ=s+q+1

ΦσŨδ

)
µs, (12)

W2

(
EK +

q∑
l=1

Ψl(t, ε, θ)µ
l
)
=

=

q−1∑
s=0

[ ∑
σ+δ=s+q+1

(−ΨσQδ + VσΨδ)
]
µs + ε

q−1∑
s=0

( ∑
σ+δ=s+q+1̃

VσΨδ

)
µs, (13)

Based on the equations (8)–(11), we set

(Ul)sM = Γ0((Tl)sM ),

(Φl)sM =

∞∑
n=−∞
(n ̸=0)

Γn((Φl)s−1,M + (Tl)sM )

inφ
einθ,

(Ũl)sM = −1

ε

∞∑
n=−∞
(n ̸=0)

d

dt

(Γn((Φl)s−1,M + (Tl)sM )

inφ

)
einθ−

( l−1∑
ν=1

ΦνŨl−ν

)
sM

,

(Ul)s,M−j = Γ0((Tl)s,M−j),
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(Φl)s,M−j =
∞∑

n=−∞
(n ̸=0)

Γn((Φl)s−1,M−j − (Φl)s,M−j+1 + (Tl)s,M−j)

inφ
einθ,

(Ũl)s,M−j =−1

ε

∞∑
n=−∞
(n ̸=0)

d

dt

(Γn((Φl)s−1,M−j−(Φl)s,M−j+1+(Tl)s,M−j)

inφ

)
einθ−

−
( l−1∑

ν=1

ΦνŨl−ν

)
s,M−j

(s = 1,M ; j = 1,M − 1),

where

Tl = Pl +
l−1∑
ν=1

PνΦl−ν −
l−1∑
ν=1

ΦνUl−ν (l = 1, q).

(if l = 1, then we assume
l−1∑
ν=1

to be equal to zero; if s = 1, then we assume

(Φ)s−1,j to be equal to zero),
(Vl)sK = Γ0((Rl)sK),

(Ψl)sK =

∞∑
n=−∞
(n ̸=0)

Γn((Ψl)s−1,K + (Rl)sK)

inφ
einθ,

(Ṽl)sK = −1

ε

∞∑
n=−∞
(n ̸=0)

d

dt

(Γn((Ψl)s−1,K + (Rl)sK)

inφ

)
einθ−

−
( l−1∑

ν=1

ṼνΨl−ν

)
sK

,

(Vl)s,K−j = Γ0((Rl)s,K−j),

(Ψl)s,K−j =
∞∑

n=−∞
(n ̸=0)

Γn((Ψl)s−1,K−j − (Ψl)s,K−j+1 + (Rl)s,K−j)

inφ
einθ,

(Ṽl)s,K−j =−1

ε

∞∑
n=−∞
(n ̸=0)

d

dt

(Γn((Ψl)s−1,K−j−(Ψl)s,K−j+1+(Rl)s,K−j)

inφ

)
einθ−

−
( l−1∑

ν=1

ṼνΨl−ν

)
s,K−j

(s = 1,K; j = 1,K − 1),

where

Rl = −Ql −
l−1∑
ν=1

ΨνQl−ν +
l−1∑
ν=1

VνΨl−ν (l = 1, q).

(if l = 1, then we set
l−1∑
ν=1

to be equal to zero; if s = 1, then we set (Ψ)s−1,j

to be equal to zero).
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Then for sufficiently small values µ, the matrices W1, W2 are uniquely
defined from equations (12), (13). �

Consider now the matrix differential equation
dX

dt
= JMX −XJK + F (t, ε, θ) + µ(A(t, ε, θ)X−

−XB(t, ε, θ))− µ2XR(t, ε, θ)X, (14)

where X is the (M × K)-matrix, F , A, B, R are matrices of dimensions
(M ×K), (M ×M), (K ×K), (K ×M), respectively, whose all elements
belong to the class F (m; ε; θ).

Lemma 2. Let equation (14) satisfy one of the sets of conditions I, II, III:
I. (1) M < K,

(2)
j∑

s=1
Γ0((F )s,K−j+s) ≡ 0, j = 1,M ,

(3) inf
G

|Γ0((B)1K)| > 0;

II. (1) M = K,

(2)
j∑

s=1
Γ0((F )s,K−j+s) ≡ 0, j = 1,M ,

(3) inf
G

|Γ0((A)1M − (B)1M )| > 0;

III. (1) M > K,

(2)
j∑

s=1
Γ0((F )s,K−j+s) ≡ 0, j = 1,K,

(3) inf
G

|Γ0((A)1M )| > 0.

Then there exists µ1 ∈ ]0, 1[ such that for any µ ∈ ]0, µ1[ there exists the
transformation of the kind

X =

2q−1∑
s=0

Ξs(t, ε, θ)µ
s +Φ(t, ε, θ, µ)YΨ(t, ε, θ, µ), (15)

where the elements of (M ×K)-matrices Ξs (s = 0, 2q − 1), of (M ×M)-
matrix Φ and of (K × K)-matrix Ψ belong to the class F (m; ε0, θ) ∀µ ∈
(0, µ1), reducing the equation (14) to the form

dY

dt
= JMY − Y JK +

( q∑
l=1

Ul(t, ε)µ
l
)
Y − Y

( q∑
l=1

Vl(t, ε)µ
l
)
+

+ ε
(
Ũ(t, ε, θ, µ)Y − Y Ṽ (t, ε, θ, µ)

)
+

+ µq+1
(
W̃1(t, ε, θ, µ)Y − Y W̃2(t, ε, θ, µ)

)
+

+ εG(t, ε, θ, µ) + µ2qH(t, ε, θ, µ) + µY R1(t, ε, θ, µ)Y, (16)
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where the elements of matrices Ul, Vl (l = 1, q) belong to the class S(m; ε0),
and the elements of matrices Ũ , Ṽ , W̃1, W̃2, G, H, R1 of the corresponding
dimensions belong to the class F (m− 1; ε0; θ).

Proof. Along with the equation (14), we consider an auxiliary matrix equa-
tion

φ(t, ε)
dΞ

dθ
= JMΞ− ΞJK + F (t, ε, θ)+

+ µ(A(t, ε, θ)Ξ− ΞB(t, ε, θ))− µ2ΞR(t, ε, θ)Ξ, (17)

where t, φ are considered as constants. The matrices-functions F (t, ε, θ),
A(t, ε, θ), B(t, ε, θ), R(t, ε, θ) are 2π-periodic with respect to θ. We con-
struct, according to the Poincare method of small parameter [14], an ap-
proximate 2π-periodic with respect to θ solution of the equation (17) in the
form of a sum:

Ξ =

2q−1∑
s=o

Ξs(t, ε, θ)µ
s. (18)

The coefficients Ξs are determined from the following chain of linear non-
homogeneous matrix differential equations:

φ(t, ε)
dΞ0

dθ
= JMΞ0 − Ξ0JK + F (t, ε, θ), (19)

φ(t, ε)
dΞ1

dθ
= JMΞ1 − Ξ1JK +A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ), (20)

φ(t, ε)
dΞ2

dθ
= JMΞ2 − Ξ2JK +A(t, ε, θ)Ξ1 − Ξ1B(t, ε, θ)−

− Ξ0R(t, ε, θ)Ξ0, (21)

φ(t, ε)
dΞs

dθ
= JMΞs − ΞsJK +A(t, ε, θ)Ξs−1 − Ξs−1B(t, ε, θ)−

−
s−2∑
l=0

ΞlR(t, ε, θ)Ξs−2−l, s = 3, 2q − 1. (22)

First consider the case M < K. The condition I.(2) ensures the existence
of a 2π-periodic with respect to θ solution Ξ0(t, ε, θ) of the equation (19)
having the form

Ξ0(t, ε, θ) = C0(t, ε) + Ξ̃0(t, ε, θ), (23)

where Ξ̃0(t, ε, θ) is the known matrix whose elements belong to the class
F (m; ε0; θ), and (M ×K)-matrix C0(t, ε) has the form

C0(t, ε) =


c01(t, ε) 0 . . . 0 0 . . . 0
c02(t, ε) c01(t, ε) . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c0M (t, ε) c0,M−1(t, ε) . . . c01(t, ε) 0 . . . 0

 ,
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where the scalar functions c01, . . . , c0M are determined from the following
system of equations:

j∑
s=1

Γ0

(
(AΞ0 − Ξ0B)s,K−j+s

)
= 0, j = 1,M. (24)

We represent the matrices A and B in the form

A(t, ε, θ) = A0(t, ε) +
∞∑

n=−∞
(n ̸=0)

An(t, ε)e
inθ,

B(t, ε, θ) = B0(t, ε) +
∞∑

n=−∞
(n ̸=0)

Bn(t, ε)e
inθ.

Then it is easy to verify that the system (24) is a system of M linear
algebraic equations with respect to the functions c01, . . . , c0M :

j∑
s=1

(
A0(t, ε)C0 − C0B0(t, ε)

)
s,K−j+s

= h∗
0j(t, ε), j = 1,M, (25)

where h∗
01, . . . , h

∗
0M are the known functions of the class S(m; ε0). Deter-

minant of this system has a triangular form, and absolute values of all its
diagonal elements are equal to |(B0(t, ε))1K |. Therefore, the condition I.(3)
ensures the existence of a unique solution c∗01(t, ε), . . . , c

∗
0M (t, ε) of the sys-

tem (25), and this solution belongs to the class S(m; ε0).
Using the above found 2π-periodic with respect to θ solution (23) of the

equation (19), we construct a 2π-periodic with respect to θ solution of the
equation (20) of the form

Ξ1(t, ε, θ) = C1(t, ε) + Ξ̃1(t, ε, θ), (26)

where Ξ̃1(t, ε, θ) is the known matrix, whose elements belong to the class
F (m; ε0; θ), and the (M ×K)-matrix C1(t, ε) has the form

C1(t, ε) =


c11(t, ε) 0 . . . 0 0 . . . 0
c12(t, ε) c11(t, ε) . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1M (t, ε) c1,M−1(t, ε) . . . c11(t, ε) 0 . . . 0

 .

The scalar functions c11, . . . , c1M are determined from the system of linear
algebraic equations

j∑
s=1

(
A0(t, ε)C1 − C1B0(t, ε)

)
s,K−j+s

= h∗
1j(t, ε), j = 1,M, (27)

where h∗
11, . . . , h

∗
1M are the known functions of the class S(m; ε0). Therefore

the condition I.(3) ensures the existence of a unique solution of the system
(27), as well. Proceeding just as above, we find a 2π-periodic with respect
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to θ solutions of the equations (21), (22). The elements of all these solutions
belong to the class F (m; ε0, θ).

Consider now the case M = K. The condition II.(2) ensures the existence
of a 2π-periodic with respect to θ solution of the equation (19) having the
form (23), where the (M ×M)-matrix C0(t, ε) takes the form

C0(t, ε) =


c01(t, ε) 0 . . . 0
c02(t, ε) c01(t, ε) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c0M (t, ε) c0,M−1(t, ε) . . . c01(t, ε)

 .

The scalar functions c01(t, ε), . . . , c0M (t, ε) are determined from the follow-
ing system of linear algebraic equations:

j∑
s=1

(
A0(t, ε)C0 − C0B0(t, ε)

)
s,K−j+s

= g∗0j(t, ε), j = 1,M, (28)

where g∗01, . . . , g
∗
0M are the known functions of the class S(m; ε0). Determi-

nant of this system has a triangular form, and absolute values of all its diag-
onal elements are equal to |(A0(t, ε)1M −(B0(t, ε))1M |. Therefore the condi-
tion II.(3) ensures the existence of a unique solution c∗01(t, ε), . . . , c

∗
0M (t, ε)

of the system (28), and this solution belongs to the class S(m; ε0).
Thus we have fully determined the 2π-periodic with respect to θ solution

of the equation (19). Next, in a full analogy with the case M < K, we
determined 2π-periodic with respect to θ solutions of the equations (20),
(21), (22).

In case M > K, the matrix C0(t, ε) in (23) is of the form

C0(t, ε) =



0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0
c01(t, ε) 0 . . . 0
c02(t, ε) c01(t, ε) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c0K(t, ε) c0,K−1(t, ε) . . . c01(t, ε)


.

The scalar functions c01(t, ε), . . . , c0K(t, ε) are determined from the follow-
ing system of linear algebraic equations:

j∑
s=1

(
A0(t, ε)C0 − C0B0(t, ε)

)
s,K−j+s

= f∗
0j(t, ε), j = 1,K, (29)

where f∗
01, . . . , f

∗
0M are the known functions of the class S(m; ε0). Deter-

minant of this system has a triangular form, and absolute values of all its
diagonal elements are equal to |(A0(t, ε)1M |. Therefore the condition III.(3)
ensures the existence of a unique solution c∗01(t, ε), . . . , c

∗
0K(t, ε) of the sys-

tem (29), and this solution belongs to the class S(m; ε0). Next, analogously
to the case M < K, we determine a 2π-periodic with respect to θ solutions
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of the equations (20), (21), (22). The elements of all these solutions belong
to the class F (m; ε0; θ).

Substituting in (14)

X =

2q−1∑
s=0

Ξs(t, ε, θ)µ
s + X̃, (30)

where X̃ is a new unknown matrix, we obtain

dX̃

dt
= JM X̃ − X̃JK + εG1(t, ε, θ, µ) + µ2qH1(t, ε, θ, µ)+

+
( q∑

l=1

Pl(t, ε, θ)µ
l
)
X̃ − X̃

( q∑
l=1

Ql(t, ε, θ)µ
l
)
+

+ µq+1
(
W ∗

1 (t, ε, θ, µ)X̃ − X̃W ∗
2 (t, ε, θ, µ)

)
+ µ2X̃R(t, ε, θ)X̃. (31)

By Lemma 1, using the substitution of the kind

X̃ =
(
EM +

q∑
l=1

Φl(t, ε, θ)µ
l
)
Y
(
EK +

q∑
l=1

Ψl(t, ε, θ)µ
l
)
,

we reduce the equation (31) to the form (16). �

We introduce the matrices

U(t, ε, µ) =

q∑
l=1

Ul(t, ε)µ
l, V (t, ε, µ) =

q∑
l=1

Vl(t, ε)µ
l,

where Ul and Vl (l = 1, q) are defined in Lemma 2.

Lemma 3. Let the equation (16) satisfy the following conditions:
(1) eigenvalues λ1j(t, ε, µ) (j = 1,M) of the matrix JM +U(t, ε, µ) and

λ2s(t, ε, µ) (s = 1,K) of the matrix JK + V (t, ε, µ) are such that

inf
G

∣∣∣Re
(
λ1j(t, ε, µ)− λ2s(t, ε, µ)

)∣∣∣ ≥ γ0µ
q0

(γ0 > 0, 0 < q0 ≤ q; j = 1,M, s = 1,K);

(2) there exist the (M ×M)-matrix L1(t, ε, µ) and the (K ×K)-matrix
L2(t, ε, µ) such that
(a) all elements of these matrices belong to the class S(m; ε0) ⊂

F (m; ε0; θ);
(b) ∥L−1

j (t, ε, µ)∥∗F (mε0,θ)
≤ M1µ

−α, M1 ∈ (0,+∞), α ∈ [0, q],
j = 1, 2;

(c) L−1
1 (JM + U)L1 = Λ1(t, ε, µ), L2(JK + V )L−1

2 = Λ2(t, ε, µ),
where Λ1 = diag (λ11, . . . , λ1M ), Λ2 = diag (λ21, . . . , λ2K);

(3) q > q0 + α− 1/2.
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Then there exist µ2 ∈ (0, 1) and K∗ ∈ (0,+∞) such that for any µ ∈ (0, µ2)
the matrix differential equation (16) has a particular solution Y (t, ε, θ, µ)
such that all its elements belong to the class F (m−1; ε1(µ); θ), where ε1(µ) =
min(ε0,K∗µ2q0+2α−1).

Proof. In the equation (16), we perform the substitution

Y =
ε+ µ2q

µq0+2α
L1(t, ε, µ)ZL2(t, ε, µ), (32)

where Z is a new unknown (M ×K)-matrix. We obtain

dZ

dt
= Λ1(t, ε, µ)Z − ZΛ2(t, ε, µ) + ε

(
Ũ1(t, ε, θ, µ)Z − ZṼ1(t, ε, θ, µ)

)
+

+ µq+1
(
W̃3(t, ε, θ, µ)Z − ZW̃4(t, ε, θ, µ)

)
+

+
εµq0+2α

ε+ µ2q
G2(t, ε, θ, µ) +

µ2q+2α+q0

ε+ µ2q
H2(t, ε, θ, µ)+

+
ε+ µ2q

µq0+2α−1
ZR2(t, ε, θ, µ)Z, (33)

where

G2 = L−1
1 G1L

−1
2 , H2 = L−1

1 H1L
−1
2 ,

Ũ1 = L−1
1 ŨL1 − ε−1L−1

1 (dL1/dt), Ṽ1 = L2ŨL−1
2 + ε−1(dL2/dt)L

−1
2 ,

W̃3 = L−1
1 W̃1L1, W̃4 = L2W̃2L

−1
2 , R2 = L2R1L1.

All elements of these matrices belong to the class F (m− 1; ε0; θ).
Owing to the formulas for matrices G2, H2, Ũ1, Ṽ1, W̃3, W̃4 and the

condition 2(b) of the lemma, there exists K2 ∈ (0,+∞) such that

∥G2∥F (m−1;ε;θ) ≤
K2

µ2α
, ∥H2∥F (m−1;ε;θ) ≤

K2

µ2α
,

∥Ũ1∥F (m−1;ε;θ) ≤
K2

µα
, ∥Ṽ1∥F (m−1;ε;θ) ≤

K2

µα
,

∥W̃3∥F (m−1;ε;θ) ≤
K2

µα
, ∥W̃4∥F (m−1;ε;θ) ≤

K2

µα
, ∥R2∥F (m−1;ε;θ) ≤ K2.

Along with the equation (33), we consider the matrix linear differential
equation

dZ0

dt
= Λ1(t, ε, µ)Z0 − Z0Λ2(t, ε, µ)+

+
εµq0+2α

ε+ µ2q
G2(t, ε, θ, µ) +

µ2q+2α+q0

ε+ µ2q
H2(t, ε, θ, µ). (34)
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It is easy to see that this equation is a system of MK independent scalar
first-order differential equations

d(Z0)js
dt

=
(
λ1j(t, ε, µ)− λ2s(t, ε, µ)

)
d(Z0)js+

+
εµq0+2α

ε+ µ2q

(
G2(t, ε, θ, µ)

)
js

+
µ2q+2α+q0

ε+ µ2q

(
H2(t, ε, θ, µ)

)
js
, (35)

j = 1,M, s = 1,K.

In [13], it has been shown that the conditions of the lemma provide us with
the existence of a unique particular solution (Z0(t, ε, θ, µ))js (j = 1,M ,
s = 1,K) of the system (35), which belongs to the class F (m−1; ε0; θ), and
in addition, there exists K0 ∈ (0,+∞) such that

∥(Z0)js∥F (m−1;ε0;θ) ≤

≤ K0

µq0

(εµq0+2α

ε+ µ2q
∥(G2)js∥F (m−1;ε0;θ) +

µ2q+2α+q0

ε+ µ2q
∥(H2)js∥F (m−1;ε0;θ)

)
.

Hence the equation (34) has a particular solution Z0(t, ε, θ, µ) all elements
of which belong to the class F (m − 1; ε0; θ) and, in addition, there exists
K1 ∈ (0,+∞) such that

∥Z0∥∗F (m−1;ε0;θ)
≤

≤ K1

µq0

(εµq0+2α

ε+ µ2q
∥G2∥∗F (m−1;ε0;θ)

+
µ2q+2α+q0

ε+ µ2q
∥H2∥∗F (m−1;ε0;θ)

)
. (36)

We seek for a solution of the equation (33) all elements of which be-
long to the class F (m− 1; ε1; θ), by using the iterative method, identifying
Z0(t, ε, θ, µ) as an initial approximation, and subsequent iterations are de-
fined as a solutions all elements of which belong to the class F (m− 1; ε1; θ)
of linear inhomogeneous matrix differential equations

dZν+1

dt
= Λ1(t, ε, µ)Zν+1 − Zν+1Λ2(t, ε, µ)+

+
εµq0+2α

ε+ µ2q
G2(t, ε, θ, µ) +

µ2q+2α+q0

ε+ µ2q
H2(t, ε, θ, µ)+

+ ε
(
Ũ1(t, ε, θ, µ)Zν − Zν Ṽ1(t, ε, θ, µ)

)
+

+ µq+1
(
W̃3(t, ε, θ, µ)Zν − ZνW̃4(t, ε, θ, µ)

)
+

+
ε+ µ2q

µq0+2α−1
ZνR2(t, ε, θ, µ)Zν , ν = 0, 1, 2, . . . . (37)

Denote

Ω =
{
Z ∈ F (m− 1; ε0; θ) : ∥Z − Z0∥∗F (m−1;ε0;θ)

≤ d
}
.
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Using a technique known as contraction mapping principle [15], it is not
difficult to show that if

K1K2

(ε+ µq+1

µq0+α
2m

(
∥Z0∥∗F (m−1;ε0;θ)

+ d
)
+

+
ε+ µ2q

µ2q0+2α−1
22m−2

(
∥Z0∥∗F (m−1;ε0;θ)

+ d
)2) ≤ d0 < d, (38)

all iterations (37) belong to Ω. And if

K1K2

(ε+ µq+1

µq0+α
2m +

ε+ µ2q

µ2q0+2α−1
22m−1

(
∥Z0∥∗F (m−1;ε0;θ)

+ d
))

< 1, (39)

then the process (37) converges to a solution of the equation (33) all elements
of which belong to class the F (m − 1; ε1; θ). The inequalities (38), (39)
hold due to the conditions (3) of lemma for sufficiently small µ and ε/
µ2q0+2α−1. Therefore ε1(µ) = K∗µ2q0+2α−1, where K∗ is a sufficiently
small constant. �

The following lemma is an immediate consequence of the above one.

Lemma 4. Let the equation (14) satisfy all conditions of Lemma 2, and the
equation (16) obtained from (14) by means of the transformation (15) satisfy
the conditions of Lemma 3. Then there exists µ3 ∈ (0, 1), K3 ∈ (0,+∞)
such that for any µ ∈ (0, µ3) the equation (14) has a particular solution
which belongs to the class F (m − 1; ε2(µ); θ), where ε2(µ) = K2µ

2q0+2α−1,
and q0, α are defined in Lemma 2.

5. The Basic Results

Getting back to the system (2), we make transformation

x1 = eipθy1, x2 = eirθy2. (39)

We obtain
dy1
dt

= JN1y1 + µ
(
B̃11(t, ε, θ)y1 + B̃12(t, ε, θ)y2

)
,

dy2
dt

= JN2y2 + µ
(
B̃21(t, ε, θ)y1 + B̃22(t, ε, θ)y2

)
,

(40)

where

JN1 =


0 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0

 , JN2 =


0 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0


are the Jordan blocks of dimensions N1 and N2, respectively, whose diagonal
elements are equal to zero, and all elements of matrices B̃jk(t, ε, θ) belong
to the class F (m; ε0; θ).
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In the system (40) we make the transformation
y1 = z1 + µQ12(t, ε, θ, µ)z2, y2 = µQ21(t, ε, θ, µ)z1 + z2. (41)

Having required for the conditions of block diagonality for the above trans-
formed system, we obtain for (Nj ×Nk)-matrices Qjk the following system
of the form

dQjk

dt
= JNjQjk −QjkJNk

+ B̃jk(t, ε, θ)+

+ µ
(
B̃jj(t, ε, θ)Qjk −QjkB̃kk(t, ε, θ)

)
− µ2QjkB̃kjQjk, (42)

j, k = 1, 2 (j ̸= k).

Then for the N1-vector z1 and N2-vector z2 we obtain the system
dz1
dt

= DN1(t, ε, θ, µ)z1,
dz2
dt

= DN2(t, ε, θ, µ)z2, (43)

where
DN1 = JN1 + µB̃11(t, ε, θ) + µ2B̃12(t, ε, θ)Q21(t, ε, θ, µ),

DN2 = JN1 + µB̃22(t, ε, θ) + µ2B̃21(t, ε, θ)Q12(t, ε, θ, µ)
(44)

are matrices of dimensions (N1 ×N1) and (N2 ×N2), respectively.
It is easy to see that the system (42) is divided into two independent

equations, each of which has the form (14). Therefore, by Lemma 4, the
following theorem is true.

Theorem. Let each of the equations (42) satisfy all conditions of Lemma 4.
Then there exists µ4 ∈ (0, 1), K4 ∈ (0,+∞) such that for any µ ∈ (0, µ4)
there exists the transformation of kind (3) with coefficients from the class
F (m−1; ε4(µ); θ), where ε4(µ) = K4µ

2q0+2α−1 (q0 and α are defined in Lem-
ma 2), reducing the system (2) to a block-diagonal form (4). The matrices
DN1 , DN2 are defined in terms of the expressions (44).
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Short Communications

Malkhaz Ashordia

ON THE NONLOCAL NONLINEAR
BOUNDARY VALUE PROBLEMS FOR SYSTEMS
OF GENERALIZED DIFFERENTIAL EQUATIONS

WITH SINGULARITIES

Abstract. The general nonlocal boundary value problem is considered for
systems of nonlinear generalized differential equations with singularities on
a non-closed interval. Singularity is understood in a sense that the vector-
function corresponding to the system may have unbounded variation with
respect to the time variable on the whole interval. The sufficient conditions
for the solvability of this problem are given.
ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ÀÒÀßÒ×ÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄ-
ÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÓÉÍÂÖËÀÒÏÁÄÁÉÈ ÀÒÀÜÀÊÄÔÉË ÉÍÔÄÒÅÀËÆÄ
ÂÀÍáÉËÖËÉÀ ÆÏÂÀÃÉ ÓÀáÉÓ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ.
ÓÉÍÂÖËÀÒÏÁÀ ÂÀÉÂÄÁÀ ÉÌ ÀÆÒÉÈ, ÒÏÌ ÓÉÓÔÄÌÉÓ ÛÄÓÀÁÀÌÉÓ ÅÄØÔÏÒÖË
×ÖÍØÝÉÀÓ ÃÒÏÉÈÉ ÀÒÂÖÌÄÍÔÉÓ ÌÉÌÀÒÈ ÛÄÉÞËÄÁÀ äØÏÍÃÄÓ ÖÓÀÓÒÖËÏ
ÅÀÒÉÀÝÉÀ ÌÈÄË ÉÍÔÄÒÅÀËÆÄ. ÌÏÝÄÌÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ
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1. Statement of the Problem and Basic Notations

In the paper we investigate the question on the solvability of the system
of generalized nonlinear differential equations

dx = dA(t) · f(t, x) (1.1)

under the general nonlinear boundary value problem

h(Hx) = 0, (1.2)

where A and H : ]a, b[→ Rn×n are the matrix-functions with components of
bounded variation on every closed interval from ]a, b[ , in addition, detH(t) ̸=
0 for t ∈ ]a, b[ ; f ∈ Carloc(]a, b[×Rn,Rn;A), and h : BVs([a, b];Rn) → Rn

is a continuous operator.
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The same question for the linear general and two-point boundary value
problems for systems of generalized linear differential equations are investi-
gated in [5]–[7].

The question on the existence of a solution of the problem (1.1), (1.2)
when the matrixA and vector-function f are regular, i.e. A∈BV([a, b],Rn×n)
and f ∈ Car([a, b]× Rn,Rn;A), is investigated in [1]–[3], where the Conti–
Opial type theorems for the solvability of the problem (1.1), (1.2) are ob-
tained.

Analogous and related questions are investigated in [11] (see also the
references therein) for the singular boundary value problems for ordinary
differential systems, and in [8], [12]–[14], [16] (see also the references therein)
for the regular boundary value problems for ordinary differential systems
and for functional differential equations.

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see e.g. [4], [9], [10], [15], [17],
[18] and the references therein).

Throughout the paper the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ ; [a, b] and ]a, b[ (a, b ∈ R) are the closed

and open intervals, respectively.
Rn×m is the space of all real n×m-matrices X = (xil)

n,m
i,l=1 with the norm

∥X∥ =

n,m∑
i,l=1

|xil|;

Rn×m
+ =

{
(xil)

n,m
i,l=1 : xil ≥ 0 (i = 1, . . . , n; l = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m-matrix.
If X = (xil)

n,m
i,l=1 ∈ Rn×m, then |X| =

(
|xil|

)n,m
i,l=1

.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
If X ∈ Rn×n, then detX and X−1 are, respectively, the determinant of

X and the matrix inverse to X; In is the identity n× n-matrix.
d
∨
c
(X), where a < c < d < b, is the variation of the matrix-function

X : ]a, b[→ Rn×m on the closed interval [c, d], i.e., the sum of total variations
of the latter components xil (i = 1, . . . , n; l = 1, . . . ,m) on this interval; if
d < c, then

d
∨
c
(X) = −

c
∨
d
(X); V (X)(t) = (v(xil)(t))

n,m
i,l=1, where v(xil)(t0) =

0, v(xil)(t) =
t
∨
t0
(xil) for a < t < b, and t0 = (a+ b)/2.

X(t−) and X(t+) are, respectively, the left and the right limits of the
matrix-function X : ]a, b[→ Rn×m at the point t ∈ ]a, b[ (we assume X(t) =
X(a+) for t ≤ a and X(t) = X(b−) for t ≥ b, if necessary).
d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
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BV([a, b],Rn×m) is the set of all matrix-functions of the bounded varia-
tion X : [a, b] → Rn×m (i.e.,

b
∨
a
(X) < +∞).

∥X∥s = sup
{
∥X(t)∥ : t ∈ [a, b]

}
.

BVs([a, b],Rn×m) is the normed space (BV([a, b],Rn×m), ∥ · ∥s).
BVloc(]a, b[ ,Rn×m) is the set of all matrix-functions X : ]a, b[→ Rn×m

such that
d
∨
c
(X) < +∞ for every a < c < d < b.

If a < α < β < b and X∈BV([α, β],Rn×m), then Xα,β∈BV([a, b],Rn×m)
is a matrix-function defined by

Xα,β(t) =


X(α−) for a ≤ t < α,

X(t) for α ≤ t ≤ β,

X(β+) for β < t ≤ b.

Let G ∈ BVloc(]a, b[ ,Rn×n). By BVG([a, b],Rn) we denote the set of all
vector-functions x ∈ BVloc(]a, b[ ,Rn) for which there exist the finite limits
lim

t→a+
G(t)x(t) and lim

t→b−
G(t)x(t). It is evident that xG ∈ BV([a, b],Rn) for

every x ∈ BVloc(]a, b[ ,Rn), where the vector-function xG : [a, b] → Rn is
defined by

xG(t) =


G(t)x(t) for a < t < b,

lim
t→a+

G(t)x(t) for t = a,

lim
t→b−

G(t)x(t) for t = b.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If I ⊂ R is an interval, then C(I,Rn×m) is the set of all continuous
matrix-functions X : I → Rn×m.

If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlin-
ear, in general) is positive homogeneous if

g(λx) = λg(x)

for every λ ∈ R+ and x ∈ B1.
s1, s2, sc : BV([a, b],R) → BV([a, b],R) are the operators defined, respec-

tively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and

sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].
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If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <
t ≤ b, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open in-

terval ]s, t[ with respect to the measure µ(sc(g)) corresponding to the func-

tion sc(g). If a = b, then we assume
b∫
a

x(t) dg(t) = 0; so that
t∫
s

x(τ) dg(τ)

is the Kurzweil–Stieltjes integral (see [20], [22], [24]). Moreover, we put
t∫

s+

x(τ) dg(τ) = lim
ε→0, ε>0

t∫
s+ε

x(τ) dg(τ)

and
t−∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t−ε∫
s

x(τ) dg(τ).

L([a, b],R; g) is the space of all functions x : [a, b] → R, measurable and
integrable with respect to the measure µ(gc(g)) for which∑

a<τ≤b

|x(t)|d1g(τ) +
∑

a≤τ<b

|x(t)|d2g(t) < +∞,

with the norm

∥x∥L,g =

b∫
a

|x(t)| dg(t).

If gj : [a, b] → R (j = 1, 2) are nondecreasing functions, g(t) ≡ g1(t) −
g2(t), and x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for a ≤ s ≤ t ≤ b.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D;G) is the set of all matrix-functions X =
(xkj)

n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2) and Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

.
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If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b]×D1, D2;G) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}:
(i) the function fkj( · , x) : [a, b] → D2 is µ(sc(gik))-measurable for

every x ∈ D1;
(ii) the function fkj(t, · ) : D1 → D2 is continuous for µ(sc(gik))-almost

every t ∈ [a, b] and for every t ∈ Dgik , and

sup
{
|fkj( · , x)| : x ∈ D0

}
∈ L([a, b], R; gik)

for every compact D0 ⊂ D1;
Carloc(]a, b[×D1, D2;G) is the local Carathéodory class, i.e., the set of

all mappings F = (fkj)
n,m
k,j=1 : ]a, b[×D1 → D2 the restriction of which

on every closed interval [α, β] belongs to Car([α, β] × D1, D2;G) for every
a < α < β < b.

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions,
G(t) ≡ G1(t)−G2(t), and X : [a, b] → Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for a ≤ s ≤ t ≤ b,

Sk(G)(t) ≡ Sk(G1)(t)− Sk(G2)(t) (k = 1, 2),

Sc(G)(t) ≡ Sc(G1)(t)− Sc(G2)(t).

If G1(t) ≡ V (G)(t) and G2(t) ≡ V (G)(t)−G(t), then

L([a, b], D;G) =
2∩

j=1

L([a, b], D;Gj),

Car([a, b]×D1, D2;G) =
2∩

j=1

Car([a, b]×D1, D2;Gj),

Carloc(]a, b[×D1, D2;G) =
2∩

j=1

Carloc(]a, b[×D1, D2;Gj).

If G ∈ BV([a, b];Rn×n) and X : [a, b] → Rn×m), then

B(G,X)(t) ≡ G(t)X(t)−G(a)X(a)−
t∫

t0

dG(τ) ·X(τ).

The inequalities between the matrices are understood componentwise.
Below we assume that

A1(t) ≡ V (A)(t) and A2(t) ≡ V (A)(t)−A(t).
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A vector-function x ∈ BVloc(]a, b[ ,Rn) is said to be a solution of the
system (1.1) if

x(t) = x(s) +

t∫
s

dA(τ) · f(τ, x(τ)) for a < s ≤ t < b.

Under a solution of the problem (1.1), (1.2) we mean solutions x of the
system (1.1) such that x ∈ BVH([a, b],Rn) and the equality h(xH) = 0
holds.

We say that the operator g : BVloc(]a, b[ ,Rn) → Rn) has some prop-
erty in the set BVloc(]a, b[ ,Rn) if the operator gα,β : BV([α, β],Rn) → Rn,
defined by gα,β(x) = g(xα,β), has the same property for every α, β ∈ ]a, b[
(α < β); If, moreover, B ∈ BVloc(]a, b[ ,Rn×n), then we say that the prob-
lem

dx = dB(t) · x for t ∈ ]a, b[ , g(x) ≤ 0

has some property in BVloc(]a, b[ ,Rn), if the problem
dx = dBα,β(t) · x for t ∈ [α, β], gα,β(x) ≤ 0

has the same property for every α, β ∈ ]a, b[ (α < β).
In particular, we say that the operator g : BVloc(]a, b[ ,Rn) → Rn) is

continuous in the set BVloc(]a, b[ ,Rn) if
lim

k→+∞
g(xk;α,β) = g(x0;α,β) for every a < α < β < b,

where x0 ∈ BVloc(]a, b[ ,Rn) and xk ∈ BVloc(]a, b[ ,Rn) (k = 1, 2, . . . ) is an
arbitrary sequence such that

lim
k→+∞

xk;α,β(t) = x0(t) uniformly on [α, β] for a < α < β < b.

Definition 1.1. Let a matrix-function H ∈ BVloc(]a, b[ ,Rn×n) be such
that detH(t) ̸= 0 for t ∈ ]a, b[ . Let, moreover, l : BVloc(]a, b[ ,Rn) →
Rn and l0 : BVloc(]a, b[ ,Rn) → Rn

+ be, respectively, linear continuous
and positive homogeneous continuous operators in the set BVloc(]a, b[ ,Rn).
Then by O(]a, b[ , l, l0;A,H) we denote the set of all matrix-functions P ∈
Carloc(]a, b[×Rn,Rn×n) satisfying the Opial condition with respect to the
set of four (l, l0;A;H), i.e.,

(i) there exists Φ ∈ Lloc(]a, b[ ,Rn×n
+ ;A) such that

|P (t, x)| ≤ Φ(t) on the set ]a, b[×Rn;

(ii) det
(
In + (−1)j

(
djB(t) + djH(t) ·H−1(t)

))
̸= 0 (1.3)

for a < t < b (j = 1, 2)

and the problem
dx =

(
dB(t) + dH(t) ·H−1(t)

)
· x, |l(x)| ≤ l0(x)
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has only the trivial solution in ]a, b[ for every B∈BVloc(]a, b[ ,Rn×n)
for which there exists a sequence zk ∈ BVloc(]a, b[ ,Rn (k = 1, 2, . . . )
such that

lim
k→+∞

t∫
c

dB(H,A)(τ) · P (τ, zk(τ)) = B(t) uniformly into ]a, b[ .

Remark 1.1. In particular, the condition (1.4) holds if∥∥djB(H,A)(t) · Φ(t)∥∥ < 1 for t ∈ ]a, b[ (j = 1, 2).

guarantees the condition (1.3).

Remark 1.2. If H(t) ≡ In, then Definition 1.1 coincides with the Opial class
definition for the regular case on every closed interval [α, β] (see [2]).

We will assume that H ∈ BVloc(]a, b[ ,Rn×n) is a matrix-function such
that detH(t) ̸= 0 for t ∈ ]a, b[ . Note that we can consider the case in which
the matrix function H is regular only in the right and left neighborhood of
the points a and b, respectively. In this case we assume that H(t) = In if
the point t does not belong to these neighborhoods.

2. Formulation of the Main Results

Theorem 2.1. Let f = (fl)
n
l=1 and fk = (fkl)

n
l=1∈ Carloc(]a, b[×Rn,Rn;A)

(k = 1, 2, . . . ),∣∣fkl(t, x)| ≤ f0l(t, x) for µ(v(ail))− for almost all t ∈ ]a, b[ , x ∈ Rn

(i, l = 1, . . . , n; k = 1, 2, . . . )

and
lim

k→+∞
fkl(t, x) = fl(t, x) for µ(v(ajil)) for almost all t ∈ ]a, b[ , x ∈ Rn

(j = 1, 2; i, l = 1, . . . , n; k = 1, 2, . . . ),

where fl ∈ Carloc(]a, b[×Rn,Rn; ail) (i, l = 1, . . . , n). Let, moreover, for
every natural k, the system

dx = dA(t) · fk(t, x)
under the condition (1.2) has a solution xk such that

lim
t→a+

sup
{∥∥xk,H(a+)− xk,H(t)

∥∥ : k = 1, 2, . . .
}
= 0,

lim
t→b−

sup
{∥∥xk,H(b−)− xk,H(t)

∥∥ : k = 1, 2, . . .
}
= 0

and
sup

{
∥xk(t)∥ : k = 1, 2, . . .

}
≤ ψ(t) for a < t < b,

where ψ ∈ BVG([a, b],Rn). Then the sequence xk (k = 1, 2, . . . ) contains a
subsequence, convergent in the open interval ]a, b[ , and its limit is a solution
of the problem (1.1), (1.2).
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Theorem 2.2. Let the conditions∣∣f(t,H−1(t)x)− P (t, x)x
∣∣ ≤ α

(
t, ∥x∥

)
for t ∈ ]a, b[ , x ∈ Rn,

and ∣∣h(x)− l(x)
∣∣ ≤ l0(x) + l1

(
∥x∥v

)
in BVloc(]a, b[ ,Rn)

be fulfilled, where l : BVloc(]a, b[ ,Rn) → Rn and l0 : BVloc(]a, b[ ,Rn) → Rn
+

are, respectively, linear continuous and positive homogeneous continuous
operators in BVloc(]a, b[ ,Rn); P ∈ O(]a, b[ , l, l0;A,H) and a nondecreas-
ing in the second variable matrix– and vector-functions, respectively, α ∈
Carloc(]a, b[×R+,Rn

+;A) and l1 ∈ C(R,Rn
+) are such that

lim
ρ→+∞

1

ρ

b−∫
a+

dV (A)(t) · α(t, ρ) < 1 for a < α < β < b,

and

lim
ρ→+∞

l1(ρ)

ρ
< 1.

Then the problem (1.1), (1.2) is solvable.
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Nino Partsvania and Bedřich P
◦
uža

ON POSITIVE SOLUTIONS OF
NONLINEAR BOUNDARY VALUE PROBLEMS FOR

SINGULAR IN PHASE VARIABLES
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

Abstract. For the singular in phase variables differential system
ui = fi(t, u1, u2) (i = 1, 2),

sufficient conditions are found for the existence of a positive on ]0, a[ solu-
tion satisfying the nonlinear boundary conditions

φ(u1) = 0, u2(a) = ψ(u1(a)),

where φ : C([0, a];R+) → R is a continuous functional, while ψ : R+ → R+

is a continuous function.
ÒÄÆÉÖÌÄ. ×ÀÆÖÒÉ ÝÅËÀÃÄÁÉÓ ÌÉÌÀÒÈ ÓÉÍÂÖËÀÒÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÓÉÓÔÄÌÉÓÀÈÅÉÓ

ui = fi(t, u1, u2) (i = 1, 2)

ÍÀÐÏÅÍÉÀ ]0, a[ ÛÖÀËÄÃÛÉ ÉÓÄÈÉ ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ
ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÉÝ ÀÊÌÀÚÏ×ÉËÄÁÓ ÀÒÀßÒ×ÉÅ ÓÀÓÀÆÙÅÒÏ
ÐÉÒÏÁÄÁÓ

φ(u1) = 0, u2(a) = ψ(u1(a)),

ÓÀÃÀÝ φ : C([0, a];R+) → R ÀÒÉÓ ÖßÚÅÄÔÉ ×ÖÍØÝÉÏÍÀËÉ, áÏËÏ ψ :
R+ → R+ ÀÒÉÓ ÖßÚÅÄÔÉ ×ÖÍØÝÉÀ.

2010 Mathematics Subject Classification: 34B16, 34B18.
Key words and phrases: Two-dimensional differential system, nonlin-
ear, singularity, positive solution.

Let a > 0, R− = ]−∞, 0], R+ = [0,+∞[ , R0+ = ]0,+∞[ , C([0, a];R) be
the Banach space of continuous functions u : [0, a] → R with the norm

∥u∥ = max
{
∥u(t)∥ : a ≤ t ≤ b

}
,

and C([0, a];R+) be the set of all non-negative functions from C([0, a];R).
Consider the two-dimensional differential system

dui
dt

= fi(t, u1, u2) (i = 1, 2) (1)

with the nonlinear boundary conditions

φ(u1) = 0, u2(a) = ψ(u1(a)), (2)
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where fi : ]0, a[×R2
0+ → R− (i = 1, 2) and ψ : R+ → R+ are continuous

functions, while φ : C([0, a];R+) → R+ is a continuous functional.
A continuous vector function (u1, u2) : [0, a] → R2

+ is said to be a po-
sitive solution of the differential system (1) if it is continuously dif-
ferentiable on an open interval ]0, a[ and in this interval along with the
inequalities

ui(t) > 0 (i = 1, 2) (3)
satisfies the system (1).

A positive solution of the system (1) satisfying the conditions (2) is said
to be a positive solution of the problem (1), (2).

We investigate the problem (1), (2) in the case where the functions fi
(i = 1, 2) on the set ]0, a[×R2

0+ admit the estimates

g10(t) ≤ −xλ1y−µ1f1(t, x, y) ≤ g1(t),

g20(t) ≤ −xλ2yµ2f2(t, x, y) ≤ g2(t),
(4)

where λi and µi (i = 1, 2) are non-negative constants, and gi0 : ]0, a[→ R0+

(i = 1, 2), gi : ]0, a[→ R0+ (i = 1, 2) are continuous functions such that∫ a

0

gi0(t) dt < +∞,

∫ a

0

gi(t) dt < +∞ (i = 1, 2).

If λi > 0 for some i ∈ {1, 2}, then in view of (4) we have

lim
x→0

fi(t, x, y) = +∞ for x > 0, 0 < t < a.

And if µ2 > 0, then
lim
y→0

f2(t, x, y) = +∞.

Consequently, in both cases the system (1) has the singularity in at least
one phase variable.

Boundary value problems for singular in phase variables second order
nonlinear differential equations arise in different fields of natural science and
are the subject of numerous studies (see e.g. [1–4, 7–14] and the references
therein). In the recent paper by I. Kiguradze [5], optimal conditions are
obtained for the solvability of the Cauchy–Nicoletti type nonlinear problems
for singular in phase variables differential systems. As for the problems of
the type (1), (2), they still remain unstudied in the above-mentioned singular
cases. In the present paper, the attempt is made to fill this gap.

Along with the system (1) we consider the systems of differential inequal-
ities

−uλ1
1 (t)u−µ1

2 (t)u′1(t) ≥ g10(t),

−uλ2
1 (t)uµ2

2 (t)u′2(t) ≥ g20(t),
(5)

and
g10(t) ≤ −uλ1

1 (t)u−µ1

2 (t)u′1(t) ≤ g1(t),

g20(t) ≤ −uλ2
1 (t)uµ2

2 (t)u′2(t) ≤ g2(t).
(6)



153

Let
ν0 =

µ1

1 + µ2
, ν = 1 + λ1 + λ2ν0.

On the set
{
(t, x, y) : 0 ≤ t ≤ a, x ≥ 0, y ≥ 0

}
we introduce the functions

w10(t, x, y) =

[
xν+ν

∫ a

t

g10(s)

(
xλ2y1+µ2+(1+µ2)

∫ a

s

g20(τ) dτ

)ν0

ds

] 1
ν

,

w2(t, x, y) =

[
y1+µ2 + (1 + µ2)

∫ a

t

w−λ2
10 (s, x, y)g2(s) ds

] 1
1+µ2

,

w1(t, x, y) =

[
x1+λ1 + (1 + λ1)

∫ a

t

wµ1

2 (s, x, y)g1(s) ds

] 1
1+λ1

,

w20(t, x, y) =

[
y1+µ2 + (1 + µ2)

∫ a

t

w−λ2
1 (s, x, y)g20(s) ds

] 1
1+λ2

.

Note that the functions w1, w2, and w20 are defined on the set{
(t, 0, y) : 0 ≤ t ≤ a, y ≥ 0

}
only in the case, where∫ a

0

w−λ2
10 (s, 0, 0)g2(s) ds < +∞. (7)

A continuous vector function (u1, u2) : [0, a] → R2
+ is said to be a po-

sitive solution of the system of differential inequalities (5) (of the
system of differential inequalities (6)) if it is continuously differentiable
on an open interval ]0, a[ and in this interval along with the inequalities (3)
satisfies the system (5) (the system (6)).

The following statements are valid.

Lemma 1. If the system of differential inequalities (5) has a positive
solution (u1, u2), then

u1(t) > w10(t, x, y) for 0 ≤ t ≤ a,

where
x = u1(a), y = u2(a). (8)

Lemma 2. If the system of differential inequalities (6) has a positive
solution (u1, u2), then

wi0(t, x, y) < ui(t) < wi(t, x, y) for 0 ≤ t ≤ a (i = 1, 2),

where x and y are numbers given by the equalities (8).

On the basis of these lemmas we establish conditions guaranteeing, re-
spectively, the existence or non-existence of at least one positive solution of
problem (1), (2).

As this has already been said above, the theorems proven by us concern
the case where the functions fi (i = 1, 2) admit the estimates (4). Moreover,
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everywhere below it is assumed that the functional φ is non-decreasing, i.e.
for any u ∈ C([0, a];R+) and u0 ∈ C([0, a];R+), it satisfies the inequality

φ(u+ u0) ≥ φ(u).

For any non-negative constant x, we put φ(x) = φ(u), where u(t) ≡ x.

Theorem 1. Let
lim

x→+∞
φ(x) = +∞,

and let for some δ > 0 the inequality
φ
(
w1( · , δ, ψ(δ))

)
≤ 0

hold. Then the problem (1), (2) has at least one positive solution.

Theorem 2. If
φ
(
w10( · , 0, 0)

)
> 0,

then the problem (1), (2) has no positive solution.

The particular cases of (2) are the nonlocal boundary conditions∫ a

0

ψ0(u(s)) dσ(s) = c, u2(a) = ψ(u1(a)), (9)

where c ∈ R, ψ0 : R+ → R+ is a continuous, nondecreasing function,
ψ : R+ → R+ is a continuous function, and σ : [0, a] → R is a nondecreasing
function such that

σ(a)− σ(0) = 1. (10)
Theorems 1 and 2 imply the following corollary.

Corollary 1. If
lim

x→+∞
ψ0(x) = +∞

and for some δ > 0 the inequality

c ≥
∫ a

0

ψ0

(
w1(s, δ, ψ(δ))

)
dσ(s) (11)

holds, then the problem (1), (9) has at least one positive solution. And if

c <

∫ a

0

ψ0

(
w10(s, 0, 0)

)
dσ(s),

then the problem (1), (9) has no positive solution.

Note that due to the condition (10), for the inequality (11) to be fulfilled
it is sufficient that

c ≥ ψ0

(
w1(0, δ, ψ(δ))

)
.

Corollary 2. For an arbitrary c > 0, the differential system (1) has at
least one positive solution satisfying the conditions

u1(a) = c, u2(0) = 0. (12)
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For c = 0, the problem (1), (12) becomes much more complicated, and to
guarantee its solvability we have to impose additional restrictions of func-
tions gi0 and gi. More precisely, the following theorem is valid.

Theorem 3. If ∫ a

0

w−λ2
10 (s, 0, 0)g2(s) ds < +∞, (13)

then the differential system (1) has at least one positive solution satisfying
the conditions

u1(a) = 0, u2(a) = 0. (14)

The condition (13) in Theorem 3 is unimprovable in a certain sense.
Moreover, the following theorem is true.

Theorem 4. If

sup
{
gi(t)/gi0(t) : 0 < t < a

}
< +∞ (i = 1, 2),

then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the condition (13) to be fulfilled.

Corollary 3. Let

inf
{
t−αi(a− t)−βigi0(t) : 0 < t < a

}
> 0 (i = 1, 2)

and
sup

{
t−αi(a− t)−βigi(t) : 0 < t < a

}
< +∞ (i = 1, 2).

Then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the inequalities

αi > −1, βi > −1 (i = 1, 2), (α2 + 1)(1 + λ1) > (α1 + 1)λ2

to be satisfied.

Theorems 3, 4 and Corollary 2 are analogs of the theorems by I. Kigu-
radze [6] for two-dimensional differential systems.
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