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Abstract. For the quasi-linear neutral functional differential equation
the continuous dependence of a solution of the Cauchy problem on the ini-
tial data and on the nonlinear term in the right-hand side of that equation is
investigated, where the perturbation nonlinear term in the right-hand side
and initial data are small in the integral and standard sense, respectively.
Variation formulas of a solution are derived, in which the effect of pertur-
bations of the initial moment and the delay function, and also that of the
discontinuous initial condition are detected. For initial data optimization
problems the necessary conditions of optimality are obtained. The existence
theorem for optimal initial data is proved.
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INTRODUCTION

Neutral functional differential equation (briefly-neutral equation) is a
mathematical model of such dynamical system whose behavior depends on
the prehistory of the state of the system and on its velocity (derivative of
trajectory) at a given moment of time. Such mathematical models arise in
different areas of natural sciences as electrodynamics, economics, etc. (see
e.g. [1,2,4-6,12,13,16]). To illustrate this, we consider a simple model of
economic growth. Let N(t) be a quantity of a product produced at the
moment ¢ which is expressed in money units. The fundamental principle of
the economic growth has the form

N = (1) + 1), (0.1)
where C(t) is the so-called an apply function and I(t) is a quantity of
induced investment. We consider the case where the functions C(t) and
1(t) are of the form
C(t) =aN(t), ac(0,1), (0.2)

and

I(t) = oy N(t—0)+agN(t)+asN(t—0)+agN(t)+ayN(t—0), 6 >0. (0.3)
From formulas (0.1)—(0.3) we get the equation

l—«a

(&3] Qo - a3z - Qg
Nt)— —=N{t—0)— —=N@t)— —=N({t—-60)— —=N(t-—
SN = SEN(E = 0) = SN — NG 6) - St N (- 6)

which is equivalent to the following neutral equation:

#(t) = 23(t),

N(t) =

1—
#2(t) = axl(t)—%xl(t—Q)—%xQ(t)—
0 0 0
ag o Ay .o
— B2t —0) — L%t —0
"2t = 6) ~ it~ 6),

here 2! (t) = N(t).

Many works are devoted to the investigation of neutral equations, includ-
ing [1-7,12-14,17,19,25,28].

We note that the Cauchy problem for the nonlinear with respect to the
prehistory of velocity neutral equations is, in general, ill-posed when per-
turbation of the right-hand side of equation is small in the integral sense.
Indeed, on the interval [0, 2] we consider the system

' (t) =0,
{n'cQEt; = [#'(t—1)]? 0
with the initial condition
() =0, te€[-1,0), z'(0)=2%0)=0. (0.5)
The solution of the system (0.4) is
x5(t) = x3(t) = 0.
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We now consider the perturbed system

4 (t) = pi(t), ,
#(0) = [sh(t— 1)
with the initial condition (0.5). Here,

), tefo],
Pr() = {0, te(1,2).

The function ¢ (t) is defined as follows: for the given k = 2,3, ..., we divide
the interval [0,1] into the subintervals l;, ¢ = 1,...,k, of the length 1/k;
then we define ¢ (t) = 1, t € I, k(t) = —1, ¢t € ls and so on. It is easy to
see that

52

/gk(t) dt‘ = 0.

S1

lim max
k—oo 51,526[0,1]

Taking into consideration the initial condition (0.5) and the structure of the
function ¢ (t), we get

t

Ti(t) = /gk(s) ds for t €[0,1], zp(t) =xp(1) for t € (1,2]

0
and
23(t) = [ [ih(s —1)] ds =0 for t € [0,1],
/
ot = [ [ibts = 1)) ds = [ ts - s =

1

. TS

= [ lds=t—1 for te(1,2].

—

It is clear that

li Ly —zit) =0, 1 2(t) — x2(t)| £ 0.
Jm mex |z (t) — zp(t)| =0, lim max [c}(t) - 55()] #

Thus, the Cauchy problem (0.4)—(0.5) is ill-posed.

The present work consists of two parts, naturally interconnected in their
meaning.

Part I concerns the following quasi-linear neutral equation:

@(t) = A(t)i(o(t) + f(t,2(t), z(r(t))) (0.6)
with the discontinuous initial condition

z(t) = o(t), ©(t) =v(t), t <to, x(to) = wo. (0.7)
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We note that the symbol @(t) for ¢ < ¢ is not connected with the derivative
of the function ¢(t). The condition (0.7) is called the discontinuous initial
condition, since, in general, z(ty) # ¢(to).

In the same part we study the continuous dependence of a solution of
the problem (0.6)—(0.7) on the initial data and on the nonlinear term in the
right-hand side of the equation (0.6). Here, under initial data we mean the
collection of an initial moment, delay function appearing in the phase coor-
dinates, initial vector and initial functions. Moreover, we derive variation
formulas of a solution.

In Part II we consider the control neutral equation

i(t) = At)a(o(t) + f(t,z(t),z(7(t),u(t)))
with the initial condition (0.7). Here under initial data we understand the
collection of the initial moment tg, delay function 7(¢), initial vector z,
initial functions ¢(t) and v(t), and the control function u(¢). In the same
part, the continuous dependence of a solution and variation formulas are
used in proving both the necessary optimality conditions for the initial data
optimization problem and the existence of optimal initial data.

In Section 1 we prove the theorem on the continuous dependence of a
solution in the case where the perturbation of f is small in the integral
sense and initial data are small in the standard sense. Analogous theorems
without perturbation of a delay function are given [17,28] for quasi-linear
neutral equations. Theorems on the continuous dependence of a solution
of the Cauchy and boundary value problems for various classes of ordinary
differential equations and delay functional differential equations when per-
turbations of the right-hand side are small in the integral sense are given
in [10,11,15,18,20,21,23,26].

In Section 2 we prove derive variation formulas which show the effect of
perturbations of the initial moment and the delay function appearing in the
phase coordinates and also that of the discontinuous initial condition. Vari-
ation formulas for various classes of neutral equations without perturbation
of delay can be found in [16,24]. The variation formula of a solution plays
the basic role in proving the necessary conditions of optimality [11,15] and
in sensitivity analysis of mathematical models [1,2,22]. Moreover, the varia-
tion formula allows one to obtain an approximate solution of the perturbed
equation.

In Section 3 we consider initial data optimization problem with a general
functional and under the boundary conditions. The necessary conditions are
obtained for: the initial moment in the form of inequalities and equalities,
the initial vector in the form of equality, and the initial functions and control
function in the form of linearized integral maximum principle.

Finally, in Section 4 the existence theorem for an optimal initial data is
proved.
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1. CONTINUOUS DEPENDENCE OF A SOLUTION

1.1. Formulation of main results. Let I = [a, ] be a finite interval and
R™ be the n-dimensional vector space of points x = (x!,...,2™)T, where
T is the sign of transposition. Suppose that O C R™ is an open set and
let E; be the set of functions f : I x O? — R" satisfying the following
conditions: for each fixed (x1,72) € O? the function f(-,zy,22): [ — R"
is measurable; for each f € Ey and compact set K C O there exist the
functions my g (t), Ly k(t) € L(I,Ry), where Ry = [0,00), such that for
almost allt € I

|f<t,$1,$2>| S mf,K(t)a V(l’],.I'Q) S K27
‘f(t,xl,l‘g) _f(taylayQ)’ S

2
< Lf,K(t)Z|xi —yil, V(z1,22) € K?, V(y1,92) € K.
i=1

We introduce the topology in E; by the following basis of neighborhoods of
Zero:

{VK’(; : K C O is a compact set and § > 0 is an arbitrary number},

where

Vs = {5f €E;: A(Uf;K) < (5}7
t//

A((Sf;K):sup{’/éf(t,ml,xg)dt‘: tt"el, z; €K, i:1,2}.
t/

Let D be the set of continuously differentiable scalar functions (delay
functions) 7(t), t € R, satisfying the conditions

T(t) <t, 7(t)>0, teR; inf{r(a): T€D}:=7> —o0,
sup {7 (b): 7€ D} :=7 < +o0,

where 771(t) is the inverse function of 7(t).

Let E, be the space of bounded piecewise-continuous functions ¢(t) €
R™ t € I = [7,b], with finitely many discontinuities, equipped with the
norm |¢|lr, = sup{lp(t)|: t € 1}. By &1 ={p € E, : clo(l1) C O} we
denote the set of initial functions of trajectories, where p(I1) = {p(t) : t €
I,}; by E, we denote the set of bounded measurable functions v : I; — R™,
v(t) is called the initial function of trajectory derivative.

By 1 we denote the collection of initial data (to, 7,20, ¢, v) € [a,b) x D x
O x ®; x E, and the function f € Ey.

To each element 1 = (to, T, z0, 0,0, f) € A =[a,b) x DX O x P x E, x Ey
we assign the quasi-linear neutral equation

#(t) = A()a(o(1) + f(t,2(t), (7 (t))) (1.1)
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with the initial condition

z(t) = (t), &(t) =v(t), t€[T,t0), x(to) = xo. (1.2)

Here A(t) is a given continuous n X n matrix function and ¢ € D is a fixed
delay function in the phase velocity. We note that the symbol &(t) for t < ¢o
is not connected with a derivative of the function ¢(t). The condition (1.2)
is called the discontinuous initial condition, since x(tg) # ¢(to), in general.

Definition 1.1. Let pu = (to, 7, o, p,v, f) € A. A function x(t) = z(t; u) €
O, t € [T,t1], t1 € (to,b], is called a solution of the equation (1.1) with
the initial condition (1.2) or a solution corresponding to the element u
and defined on the interval [7,¢;] if it satisfies the condition (1.2) and is
absolutely continuous on the interval [to,?;1] and satisfies the equation (1.1)
almost everywhere (a.e.) on [tg, t1].

To formulate the main results, we introduce the following sets:
W(K;a) = {65 € By s 3mspi(t), Lagc(t) € LULRy),

/ [msg,w(t) + Lsgxc(t)] dt < a},

T
where K C O is a compact set and « > 0 is a fixed number independent of
of;
Bltoo;0) = {to € I : |to — too| < 0},
Bi(xg0;0) = {xo € O : |zg — zoo| < 0},
V(r0;0) ={r €D : ||t —70ll1, <},
Vi(po; ) = {p € @1 : [l — wollr, <0},
Va(vo;8) ={v € Ey : ||v —vpl|r, < 6},

where too € [a,b) and zgy € O are the fixed points; 79 € D, pg € Py,
vg € F, are the fixed functions, § > 0 is the fixed number, Ir = [a,7].

Theorem 1.1. Let z((t) be a solution corresponding to po = (too, 70, Too,
©0, V0, fo) € A, t10 < b, and defined on [T, t1p]. Let K1 C O be a compact set
containing a certain neighborhood of the set cloo(I1) U zo([too, t10]). Then
the following assertions hold:

1.1. there exist numbers §; > 0, i = 0,1 such that to each element
H = (t(),T71'0,§0,/U, fO + 5f) € V(N0§K1»5070‘) =
= B(too; d0) x V(705 00) X B1(z00;d0) X Vi(wo;d0) x Va(vo;dg)x
X [fo+ W (K1) N Vi, )

there corresponds the solution x(t; u) defined on the interval [T, t10+
81) € I and satisfying the condition x(t;p) € Ky;
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1.2. for an arbitrary e > 0 there exists a number 62 = d2(e) € (0, §o] such
that the following inequality holds for any p € V(uo; K1, 92, a):

|2(t; ) — x(t; po)| < &, Vit € [ttio+61), &= max{too, to};

1.3. for an arbitrary e > 0 there exists a number §3 = d3(e) € (0, do] such
that the following inequality holds for any p € V(uo; K1, 93, a):

t104+01
|w(t; 1) — 2(t; po)| dt < e.
Due to the uniqueness, the solution z(t; t) is a continuation of the so-
lution zq(t) on the interval [T,t109 + d1].

In the space E,, — po, where £, = Rx D xR" x E, x E, X E;, we
introduce the set of variations:

S = {cm = (8to, 07, 80,09, 60,8f) € By — o+ |0to] < B, 16711, < B,

k
|(5£L’0| < Ba ||530||11 < ﬂv ||5’U||]1 < Bv 5f: Z)‘Z(Sfu

i=1
‘)\1|Sﬂa izlv"'ak}7

where 8 > 0 is a fixed number and 0 f; € Ey — fo, i =¢=1,...,k, are fixed
functions.

Theorem 1.2. Let z((t) be a solution corresponding to po = (too, 7o, Too,
©0, 0, fo) € A and defined on [T,t10], tio € (a,b), i = 0,1. Let K1 C O
be a compact set containing a certain neighborhood of the set clyg(I1) U
xo([too, t10]). Then the following conditions hold:

1.4. there exist the numbers €1 > 0, 61 > 0 such that for an arbitrary
(e,0u) € [0,e1] x S we have po+edp € A and the solution x(t; up +
edp) defined on the interval [T,t10 + 61] C I corresponds to that
element. Moreover, x(t; ug + edp) € Ky;

1.5. 12% sup {|x(t; po 4 €0u) — x(t; o) = t € [,t10 + 51]} =0,
g

t10+61
lim |(t; o + £6p) — @ (t; po)| dt =0

e—0
5_\

uniformly for Su € S, where t = max{to,to + €dto}.
Theorem 1.2 is the corollary of Theorem 1.1.
Let E, be the space of bounded measurable functions u(t) € R", t € I.

Let Uy C R” be an open set and Q = {u € E,, : clu(l) C Up}. Let @15 be
the set of bounded measurable functions p(t) € O, t € I, with clp(I;) C O.
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To each element w = (tg, 7, xg, p,v,u) € Ay = [a,b) x DXO x P11 X E, xQ
we assign the controlled neutral equation

i(t) = A@t)i(o(t) + f(t, z(t),z(7(t)), u(t)) (1.3)

with the initial condition (1.2). Here, the function f(t,z1,22,u) is de-
fined on I x O? x Uy and satisfies the following conditions: for each fixed
(71,22,u) € O% x Uy, the function f(-,z1,79,u) : I — R™ is measur-
able; for each compact sets K C O and U C Uy there exist the functions
mg,u(t), Lxu(t) € L(I, Ry ) such that for almost all ¢ € I,

|f(t,m1,:c2,u)’ S mK,U(t)a V($1,$27U) S K2 X Uv

2
|f(t, 1, @2,u1) = Ft g1, y2,u2)| < Lf,K(t)[Z i — il + w1 — ual|,
i=1

Y (21, 22) € K2, Y (y1,y2) € K2 (u1,usz) € U2

Definition 1.2. Let w = (to,7,x0,0,v,u) € Aj. A function x(t)
z(t;w) € O, t € [T,t1], t1 € (to,b], is called a solution of the equation
(1.3) with the initial condition (1.2), or a solution corresponding to the el-
ement w and defined on the interval [7,¢1] if it satisfies the condition (1.2)
and is absolutely continuous on the interval [to, ¢;] and satisfies the equation
(1.3) a. e. on [tg, 1]

Theorem 1.3. Let xo(t) be a solution corresponding to wo = (too, 70, Too,
©0, Vo, uo) € A1 and defined on [T, t10], t10 < b. Let K1 C O be a compact set
containing a certain neighborhood of the set clyo(I1) U zo([too, t10])- Then
the following conditions hold:

1.6. there exist the numbers 6; > 0,i = 0,1 such that to each element

w = (to, T, To, @, v,u) € v(wo;éo) =
= B(too; 60) X V (70; d0) x B1(z00; d0) X V1 (03 d0) X Va(vo; do) x V3 (uo; do)

there corresponds the solution x(t; w) defined on the interval [T, t10+
81) C I and satisfying the condition x(t; w) € K, where V3(ug; dp) =
{ueQ: |lu—uglr <do};

1.7. for an arbitrary € > 0, there exists the number d3 = d(g) € (0, do)
such that the following inequality holds for any w € \A/(wo; d2):

|’I,’(t,w) — ’I(t, w0)| <eg Vte rt\;t10 + 51], ?: maX{to,too};

1.8. for an arbitrary e > 0, there exists the number d3 = d3(¢) € (0,dp)
such that the following inequality holds for any w € V (wo; 03):

t10+d1
|z (t; w) — x(t;wo)| dt < e.

)
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In the space E,, — wg, where F,, = R x D x R" x ®y; x F, x F,, we
introduce the set of variations

- {(5w = (5to, 07, 620, 8, 00, 8u) € By — wo : |dto] < B, |67, < B

6ol < 8, I8¢l < B, 16vr, < B8, llsull: < 8.

Theorem 1.4. Let xo(t) be a solution corresponding to wo = (too, 70, Too,
©0, Vo, u0) € A1 and defined on [T,t10], tio € (a,b), i = 0,1. Let K3 C O
be a compact set containing a certain neighborhood of the set clygy(I) U
20([too, t10]). Then the following conditions hold:

1.9. there exist numbers e > 0, 01 > 0 such that for an arbitrary
(e,0w) € [0,e1] X 1 we have wy + edw € Ay, and the solution
x(t;wo + edu) defined on the interval [T,t10 + 61] C I1 corresponds
to that element. Moreover, x(t;wy + edw) € Kq;

1.10. liII(l]Sllp {|x(t; wo 4 edw) — z(t;wo)| = t € [t t10 + (51]} =0
e—

t10+061
lim / |z (t; wo + edw) — @ (t; wo)| dt =0

7

uniformly for dw € 3.
Theorem 1.4 is the corollary of Theorem 1.3.

1.2. Preliminaries. Consider the linear neutral equation

&(t) = A(t)z(o(t)) + B(t)x(t) + C(t)z(1(t)) + g(t), t € [to,b], (1.4)
with the initial condition

a(t) = @(t), @(t) =v(t), t €T t), x(to) = o, (1.5)

where B(t), C(t) and g¢(t) are the integrable on I matrix- and vector-

functions.

Theorem 1.5 (Cauchy formula). The solution of the problem (1.4)—(1.5)
can be represented on the interval [tg,b] in the following form:
to
o(t) = ltoitzo + [ YAERDAMO(E) de+

a(to)

L/Y OO &+ [ Y(EDg©ds,  (10)
7(to0) to
where v(t) = o~ 1(t), v(t) = 77(t); V(&) and Y (E;t) are the matriz-
functions satisfying the system

{‘1’5(5;75) ==Y (&1)B(§) — Y (7(8): )C(v(£))7(8),

t (1.7)
Y(&:t) =W (&) + Y (v (€):t)Av(E))r(€)
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on (a,t) for any fized t € (a,b] and the condition

H, §=t,

0, &>t (18)

W@U=Y@ﬂ={

Here, H is the identity matriz and © is the zero matriz.

This theorem is proved in a standard way [3,9,15]. The existence of a
unique solution of the system (1.7) with the initial condition (1.8) can be
easily proved by using the step method from right to left.

Theorem 1.6. Let q be the minimal natural number for which the inequality
o (b) = 0l(o(b)) < a

holds. Then for each fixed instant t € (tg,b], the matriz function Y (§;t) on

the interval [to,t] can be represented in the form

q 1
W&ﬂ=w®ﬂ+§:Wf@%ﬂIIAWWOE%VWO- (1.9)

Proof. Tt is easy to see that as a result of a multiple substitution of the
corresponding expression for the matrix functions Y (£;¢), using the second
equation of the system (1.7), we obtain

Y(66)=U(E 0+ L€ )+Y (A€ DA €))7 ((€) | Aw() (&) =

= W(& 1)+ T ((E); ) AW (€)p(€) +Y (V(£): ) A(* () A(v(€)) i1/2(5):
= U(&1) + W (§); ) AW (E)r(§)+

+Y (1(€); ) A(r* (€) AW (€) A(W(€)) - v (€)
Continuing this process and taking into account (1.8), we obtain (1.9). O

Theorem 1.7. The solution x(t) of the equation

i(t) = At)a(o(t) +9(t), t € [to, 0]
with the initial condition

i(t) =v(t), telrto), x(to)=wo,

on the interval [to,b] can be represented in the form

£(t) = w0 + / Y ((€); ) AW(€))9(€)u(€) dé + / Y(€1)g(€)de,  (1.10)

a(to)
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where
Y(&st) = alg)H + Yt ©:0) [[ A0m @) om©. )
i=1 m=i
o(€:t) = {(1) Sy

Proof. In the above-considered case, B(t) = C(t) = ©, therefore the first
equation of the system (1.7) is of the form

We(&5t) =0, €€ [to,t].

Hence, taking into account (1.8), we have U(&;t) = a(&;t)H. From (1.6)
and (1.9), we obtain (1.10) and (1.11), respectively. O

Theorem 1.8. Let the function g : I x R™ x R™ — R"™ satisfy the following
conditions: for each fized (x1,22) € R™ xR"™, the function g( -, x1,x2) : [ —
R™ is measurable; there exist the functions m(t), L(t) € L(I,Ry) such that
for almost all t € I,

|g(t, 21, 22)| < m(t), V(x1,22) € R™ x R™,
|g(t,$1,1'2) 7g(t7y17y2)| <

2
< L(t)z IJJZ‘ —yi\, V(Jﬁl,a?g) e R" x Rn, V(yl,yg) € R™ x R".
1=1

Then the equation

i(t) = At)a(o(t) + g(t,z(t), z(1(1))) (1.12)
with the initial condition
x(t) = Qﬁ(t), ‘T(t) = U(t)v te [,7:7 tO)v x(tO) = Zo. (113)

has the unique solution x(t) € R™ defined on the interval [T, b] (see Definition
1.1).

Proof. The existence of a global solution will be proved by the step method
with respect to the function v(t). We divide the interval [tg,b] into the
subintervals [;,&41], i = 0,...,1, where & = to,& = vi(tg), i = 1,...,1,
£l+1 = b, l/l(to) = l/(to)7 Vz(to) = I/(l/(to)), SN

It is clear that on the interval [£y, &1] we have the delay differential equa-
tion

&(t) = g(t, x(t), z(7(t))) + A(t)v(o(t)) (1.14)
with the initial condition
z(t) = ¢(t), t€[7,%), () = zo. (1.15)

The problem (1.14)—(1.15) has the unique solution z;(t) defined on the in-
terval [T, 1], i.e. the function z;(¢) satisfies the condition (1.13) and on the
interval [£g,&1)] is absolutely continuous and satisfies the equation (1.12)
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a.e. on [£y, &1]. Thus, 2(t) = 21 (¢) is the solution of the problem (1.12)—(1.13)
defined on the interval [T, &;].
Further, on the interval [¢1, &) we have the equation

#(t) = g(t,2(t),x(7(t))) + A(t)2(o(t)) (1.16)
with the initial condition
z(t) = z1(t), t € [T, &) (1.17)
Here,
Z(t) _ ’U(t), te [7750)7
Z1(t), te [, &l
The problem (1.16)—(1.17) has the unique solution z5(t) defined on the in-
terval [T, &2]. Thus, the function z(t) = 2z2(¢) is the solution of the problem
(1.12)—(1.13) defined on the interval [T, &2].

Continuing this process, we can construct a solution of the problem
(1.12)—(1.13) defined on the interval [T, b]. O

Theorem 1.9. Let x(t), t € [T,b], be a solution of the problem (1.12)—(1.13),
then it is a solution of the integral equation

x(t) = zo + / Y ((€); ) AW(€)9(€)v(€) de+

o(to)
" / Y (€ 0)gt, 2(E), 2(r(€))) dE, ¢ € [to, 1), (1.18)

with the initial condition
z(t) = p(t), t €T, to), (1.19)
where Y (&;t) has the form (1.11).
This theorem is a simple corollary of Theorem 1.5.

Theorem 1.10. If the integral equation (1.18) with the initial condition
(1.19) has a solution, then it is unique.

Proof. Let x1(t) and z2(t) be two solutions of the problem (1.18)—(1.19).
We have

|ﬂ?1(t) — CEQ(t)| §

<Y1 [ 2©)J21(9) ~ aa@)] + [ (7)) - malr(©)|} dé <

t

< ||Y||{ 110+ L6© ] | - 22(6)| ds}7

to
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where
V]l =sup {[Y(& )]« (&1) € IxT}.
By virtue of Gronwall’s inequality, we have x1(t) = x2(t), ¢ € [to, b]. O

Theorem 1.11. The solution of the problem (1.18)—(1.19) is the solution
of the problem (1.12)—(1.13).

This theorem is a simple corollary of Theorems 1.7-1.9.

Theorem 1.12 ( [24]). Let x(t) € Ki, t € I, be a piecewise-continuous
function, where K1 C O is a compact set, and let a sequence 6 f; € W(K71; ),
1=1,2,..., satisfy the condition

71— 00
Then

17— 00

hmmm{L7Y@wWﬁ@w@LMﬂa»d4:sh@ef}o

uniformly int € I.

Theorem 1.13 ( [24]). The matriz functions ¥(§;t) and Y (&;t) have the
following properties:

1.11. W(&;t) is continuous on the set I = {(,t): a <& <t <b};
1.12. for any fized t € (a,b), the function Y (&;t), € € [a,t], has first order
discontinuity at the points of the set

Itoit) = {o'(t) = o(0" (1) € [a,], i = 1,2, 0%(t) = t};
1.13. elirg_Y(G;t) = Y(£—;t), eliI?JrY(H;t) = Y (&+;t) uniformly with

respect to (§,t) € 1I;

1.14. Let &; € (a,b), i =0,1, & < & and & # 1(€0;&1). Then there exist
numbers §;, i = 0,1, such that the function Y (&;t) is continuous on
the set [50 - 50,50 + 50] X [El — 51,51 — 51] c 1II.

1.3. Proof of Theorem 1.1. On the continuous dependence of a solution
for a class of neutral equation. To each element p = (to, T, zo, @, v, f) € A
we assign the functional differential equation

y(t) = A(t)h(to,v,5)(a(t)) + f(to, 7, ¢, y)(t) (1.20)
with the initial condition
y(to) = o, (1.21)
where f(to, 7, ¢,9)(t) = f(t,y(t), h(to, v, y)(7(t))) and h(-) is the operator
given by the formula
p(t) fort e [T,to),

y(t) fort € [to,b)]. (1.22)

h(to, ¢,y)(t) = {
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Definition 1.3. An absolutely continuous function y(t) = y(t;u) € O,
t € [r1,m2) C I, is called a solution of the equation (1.20) with the initial
condition (1.21), or a solution corresponding to the element p € A and
defined on [r1, ro] if to € [r1,72], y(to) = xo and satisfies the equation (1.20)
a.e. on the interval [ry,7s].

Remark 1.1. Let y(t;u),t € [r1,72] be the solution of the problem (1.20)-
(1.21). Then the function

w(t; 1) = h(to, 0, y(+5 1)) (1), t € [F,ra]
is the solution of the equation (1.1) with the initial condition (1.2).
Theorem 1.14. Let yo(t) be a solution corresponding to po € A defined
on [r1,r2] C (a,b). Let K1 C O be a compact set containing a certain

neighborhood of the set Ko = cloo(l1) U yo([r1,72]). Then the following
conditions hold:

1.15. there exist numbers 6; > 0,4 = 0,1 such that a solution y(t;u)
defined on [rq — 01,72 + 61] C I corresponds to each element

= (to, 7, o, ,v, fo + ) € V(io; K1, do, ).
Moreover,
p(t) € Kyi,t € I1; y(t;u) € Ky, t € [ry —61,r2+ 1],
for arbitrary p € V(uo; Ky, 00, a);
1.16. for an arbitrary € > 0, there exists a number 02 = da2(e) € (0, o]
such that the following inequality holds for any p € V(uo; K1, 0o, @):
ly(t; w) — y(t; po)| < e, YVt € [r1—61,m2+61). (1.23)
Proof. Let €y > 0 be so small that a closed ep-neighborhood of the set Kj:
K(s) = {xER”: 3% € Ko |z — 7 gso}

lies in intK;. There exist a compact set Q: KZ(go) C Q C K? and a
continuously differentiable function y : R?" — [0, 1] such that

1 for (z1,22) € Q,

1.24
0 for (x1,72) & K? (1.24)

X(l"l,fﬂz) = {

(see Assertion 3.2 in [11, p. 60]).
To each element € A, we assign the functional differential equation
£(t) = A()h(to, v, 2)(a (1)) + g(to, 7,0, 2)(t) (1.25)
with the initial condition
2(to) = xo, (1.26)
where g(to, 7, @, 2)(t) = g(t, 2(t), h(to, v, 2)(7(t))) and g = xf. The function

g(t, x1, x2) satisfies the conditions

lg(t,z1, 22)| < My, (), Vo, € R™, i=1,2, (1.27)
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for Va!, 2/ € R™, i = 1,2, and for almost all t € T

2
|9(t, 2, @) — g(t, 27, 2%)| < Ly(t) Y |o; — a7, (1.28)
i=1

where
Lf<t) = Lf1K1 (t) +oumpy i, (t)a

2
1.29
ar=sup{ I (on o)l e R i=1,2) (1.29)

i=1
(see [15]).
By the definition of the operator h(-), the equation (1.25) for ¢ € [a, to]
can be considered as the ordinary differential equation

a(t) = A(t)v(a(t) +g(t, 21 (1), o(7(1))) (1.30)

with the initial condition

z1(to) = o, (1.31)
and for ¢ € [tg, b], it can be considered as the neutral equation
Za(t) = At)22(a(t) + g(t, z2(t), z2(7(1))) (1.32)
with the initial condition
zo(t) = p(t), 22(t) =v(t), t € [T,t0), 22(to) = xo. (1.33)

Obviously, if z1(t), t € [a,to], is a solution of problem (1.30)—(1.31) and
zo(t),t € [to,b], is a solution of problem (1.32)—(1.33), then the function

5 = Zl(t), t e [a,to),
Zg(t), te [to,b]

is a solution of the equation (1.25) with the initial condition (1.26) defined
on the interval I.
We rewrite the equation (1.30) with the initial condition (1.31) in the
integral form
¢

a)=a0+ [ [A©u(©) + 9(6 2 r©)] de. t€ latl, (130
to
and the equation (1.32) with the initial condition (1.33) we write in the
equivalent form
v(to)
) =wot [ YEDAEQ0(©) dst

to
t

+ / Y (€ 0)g(€ 22(E), 22(r(€)) dé, € [to,b],  (1.35)

to
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where
ZQ(t) = @(t)v te [?7 tO)

(see Theorem 1.9 and (1.11)).
Introduce the following notation:

H a
H, te [a,to),

Y (&t to) =Y (EE), to<t<min{v(ty),b}, (1.37)
o, min{v(tp),b} <t <b.

Using this notation and taking into account (1.34) and (1.35), we can rewrite
the equation (1.25) in the form of the equivalent integral equation

2(t) = w0 + / Y (&t 1) A(€)(o(£)) dé+

t
+ / Yo(€t.to)g(to, 0, 2)(€)de, te L. (1.38)
to

A solution of the equation (1.38) depends on the parameter
pehg=IxDx0x® xE,x (fo+W(Ki;a)) CE,

The topology in Ag is induced by the topology of the vector space E,,.
Denote by C(I,R™) the space of continuous functions y : I — R"™ with the

distance d(y1,y2) = |ly1 — y2|l1-
On the complete metric space C(I,R™), we define a family of mappings

F(-;p):CI,R") — C(I,R") (1.39)
depending on the parameter p by the formula

Ct) =((tz,p) =

t t

:xo—f—/Y(f,t,to)A(f)’U(O’(f))df-F/Yo(f,t,to)g(to,T,QD,Z)(f)dg

to tO

Clearly, every fixed point z(t; u),t € I, of the mapping (1.39) is a solution
of the equation (1.25) with the initial condition (1.26).



18 Tamaz Tadumadze and Nika Gorgodze

Define the kth iteration F*(z; 1) by

Golt) = o + / Y (€t to) A(€)(0(£)) dé+

t
+/}/b(f;t7t0)g(t0a7_7§07<k71)(€) dé? k= 1727"'7
to

Co(t) = 2(t).
Let us now prove that for a sufficiently large k, the family of mappings
F¥(2; ) is uniformly contractive. Towards this end, we estimate the differ-
ence

|G (t) = GL(t)| = |Ce(ts 2/, ) — Gl 2", )| <

t
< [ Valest.t0) ko, 0,Gio1)(€) = gt 0, G (0| d <

t

< [L©[G© - G ©l+

a

+ [ hlto, ¢, Ge—1)(7(€)) —h(to,%él’c’_ﬁ(f(ﬁ))” g, k=1,2,..., (1.40)

(see (1.28)), where the function L;(€) is of the form (1.29). Here, it is

assumed that ¢{(§) = 2/(€) and /(&) = 2" (€).
It follows from the definition of the operator h(-) that

h(to, #, C1)(T(€)) = hlto, @, -1 (7(€)) = hlto, 0, Gy = GH-1)(7(€))-
Therefore, for £ € [a,7y(to)], we have

B(to, 0, Gy = G1)(7(€)) = 0. (1.41)
Let y(to) < b; then for & € [y(to), b], we obtain
[1(t0,0, Gy = G (F(O)] = [Gia (7(9)) = GL(F(O)],
sup { |G (7(8) = G (r(8)] : ¢ € [y(to). €]} <
<sup {[¢ioa(t) = G (0] + e fagl}. (1.42)

If 4(to) > b, then (1.41) holds on the whole interval I. The relation (1.40),
together with (1.41) and (1.42), imply that

[Gh&) = )] < sup {[Gh(&) = ()] + €€ fot]} <

t
<20l [ Lyeysup {|6i 16 - (@) €€ ot} der, k=12,....
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Therefore,
|Ge(t) = G ()] <
t &1
< 20l [ L6 dés [ Lo sup {[G (-G o) - € € 6} den

By continuing this procedure, we obtain

Gt — ()] < @IIYol) arn®)l2 = 2",

where
t &1 1
axlt) = [ Loteder [Li@)dea [ Ly de

By the induction, one can readily show that

%@=;(/M@%Y.

a

Thus,
d(F* (25 ), F* (2" ) =
k ~
=16 = ¢l < @2IIYol)) " ar®))12 = 2"[Ir = axll2" = 2" |I1-
Let us prove the existence of the number as > 0 such that

/Lf(t) dt <ag, Vfefot+rW(Kp;a).
T

Indeed, let (z1,72) € K? and let f € fo + W(K1; ), then
|f(t,m1,x2)| <myy i, (1) + msf i, (1) :=my i, (t), t €l
Further, let 2}, z;,” € K1, i = 1,2 then
|f(t, 2, 23) = f(t,27,23)
< |folt, 2, 25) = fo(t, 2, a5)| + [0 (t, 2, x5) — 6 f(t, 27, 23)] <

2 2

< (Lfo,Kl (t) + Lss .k, (t)) Z |£U; - l‘;/ =Ly k, (t) Z |:L‘; - JJ“,
i=1 =1

| <
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where Ly g, (t) = Ly K, (t) + Lsy K, (t). By (1.29),

[ @t = [ (L ® + caampse, 0) de =

I

I
- / [Lf"’Kl (8) + Lo,y (8) + aa (mgo, i, (1) + Mg, 16, (t))} dt <
I

<ala; +1) +/ (Lo, (1) + army, i, (t)] dt = as.
T

Taking into account this estimate, we obtain @y < (2||Yo|a2)¥/k!. Conse-
quently, there exists a positive integer k1 such that ax, < 1. Therefore, the
k1st iteration of the family (1.39) is contracting. By the fixed point theorem
for contraction mappings (see [11, p. 90], [27, p. 110]), the mapping (1.39)
has a unique fixed point for each p. Hence it follows that the equation (1.25)
with the initial condition (1.26) has a unique solution z(t; i), ¢t € I.

Let us prove that the mapping F*(z(-; uo); - ) : Ao — C(I,R™) is contin-
uous at the point u = o for an arbitrary £ = 1,2,.... To his end, it suffices
to show that if the sequence p; = (toi, Ti, Toi, Pi, Vi, fi) € Mo, @ = 1,2,. ..,
where f; = fo + df;, converges to uo = (too, 70, Zoo, Yo, Vo, fo), i.e. if

lim (|t0i —too| + I7i — 7ol +
11— 00
+ |l‘0i - Qfoo| + ||<Pz - <P0||11 + ||Ui - U0||11 + A(df“Kl)> =0,

then

lim F*(2(-5p0); i) = F¥(2(-5 p0); o) = 2(+; o). (1.43)

i—>00
We prove the relation (1.43) by induction. Let &k = 1, then we have

|¢H(t) = 20(8)| < |zoi — woo|+
t

n ] [y €t a@ute©)ds — [ ¥(Estiton) A€un(o() df]+

toi

t
+’/Y0(§§t>t0i)gi(t0i77'i7802’720)(5) dg—

toi

t
/Yo(f;tatoo)go(tooﬁm900,2’0)(5)d€‘ =
too

= |zo; — woo| + ai(t) + bi(t), (1.44)
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where

CHt) = Gt 20, ), 20(t) = 2(t; po),

9i = Xfi = 90 +6gi;, go=xfo, d9; = xfs;
t

a;(t) = ‘ /Y(ﬁ;t,tOi)A(E)vi(U(f))dé— /Y(é;t,too)A(ﬁ)vo(U(é))dé‘;

toi
t

bi(t) = ‘/Yo(f;t,tm)gi(touTu,%‘,Zo)(f) dg—

toi

t
- /Yo(f;t,too)go(t()o,ﬁo, ©o,20)(€) df‘-

too

First of all, let us estimate a;(t). We have

a; (t) S

/ Y<s;t,too>A<§>vo<a<s>>ds\+

+ [ ¥t t0)A©)0(0(©) - Y€t too) A€ un(o(€))| de =
I

= a; (1) + aiz(t). (1.45)
Obviously,
lim a;1(t) =0 uniformly in ¢ € I. (1.46)
1—> 00
Furthermore,
aip(t) < / Y (&t toi) — Y (&t too)| |A(E)vi(a(€))] dé+
T

+ / V(€1 10)A©)| [vi(0(€)) — vo(o(€))] dé <
I
< Al sl s (8) + Y A] s — wollr,. (1.47)

where

aiz(t) = / [Y(&t,t0i) — Y (& ¢, too) | dé.
T

Let to; < too, and let a number iy be so large that v(tg;) > too for i > ig.
Then taking into account (1.37), we have

too v(too)
ais(t) = / V(6 t) — Hde + / V(&) de <
toi v(to:)

<|IY = H||(too — to:) + [IY || (v(to0) — v(t0s)),
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therefore,

lim a;3(t) = 0 uniformly in 1. (1.48)

1— 00

Let tg; > top. Choose a number i so large that v(tgg) > to; for i > ig. Then

to: v(toi)
ais(t) = / H - Y(&:1)]de + / V(&) de.
too v(too)

This implies (1.48). Taking into account (1.46)—(1.48), we obtain from
(1.45) that

lim a;(t) =0 uniformly in 1. (1.49)

17— 00

Now, let us estimate the summand b;(t). We have

bi(t) <

too
/Y()(§§tat0i)go(t0077'074)00’30)(5) d§‘+
toq

t
+’/[YO(S;t;tOi)gi(tOi;Ti7@i720)(£)_

toi

— Yo (&: ¢, t00)g0(too, To, @o, Zo)(f)] d€ = bi1(t) + bia(t).  (1.50)

Obviously,
lim b;1(t) = 0 uniformly in 1. (1.51)

1—> 00

Furthermore,

t
bia(t) = ‘/Yo(f;t, toi) [gi(tomﬁ,sﬁiazo)(f) - Qo(tOi,Tm%Zo)(f)} dg+

toq

¢
+ [ Yo(&; L, toi) [go(tomm ©i, 20)(&) —g0(too, To, o, Zo)(f)} d§+

toi
t

+/ [Yo(f;t,tm) — Yo(&:t,t0o) | 9o(too, 70, ¥0, 20) (€) df‘ <

toq

3
< bh(), (1.52)
j=1
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where

)

¢
bip(t) = /%(5?1571501)5%@0@,%%‘720)(5) dg§
toq

t
b, (t) = /Yo(ﬁ;tﬂfm) {go(toum%,zo)(f) - go(too,TmsOo,Zo)(f)] d€'7

toq
t

bih(t) = /[Yo(ﬁ;t,tm) —Yo(f;t,too)}go(tooﬁo,900720)(5) d§‘~

toi

Now, let us estimate the expressions b, (t). We have

t
biy(t) = ’/Yo(&t,tm) {591‘(?501‘,71',%,20)(5) - 6gi(t0i77i7900720)(§)] dé+
to;

t
+/Yo(ﬁ;t7t0¢)59i(touﬂ',sﬁo,Zo)(f) df‘ <

toq

< 11 Log s ()]s, 3, 20) (1€)~ hto, , 20) (1) de-+

/Y0(53t,tm)(Sgi(touTiv@0720)(5) dﬁ‘ =
t/

+ max
t,,t” el

= biy + bip(t). (1.53)

It is easy to see that

b, < Yol / Lo 16, (6)] 0:(m:(£)) — olmi(€))| dé <
I

< i — eolln / Lig. 1, (€) dE.

1
The sequence
[t e i=12....
1
is bounded, therefore

zliglo biz = 0.
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Furthermore,

B2, (1) <
zz()_t;gggl

JR GRS d5‘+

+ max ’/Y(f;t)(;gi(tomﬁa@o,Zo)(f)df‘ = b%, + by (t).
t/

t el

The function ¢g(§), £ € I, is piecewise-continuous with a finite number of
discontinuity points of the first kind, i.e. there exist subintervals (6,,04+1),
qg=1,...,m, where the function ¢q(t) is continuous, with

m—1

h =7, Opy1 =0, I1 = U [eq’9q+1) U 0, O]

g=1

We define on the interval I the continuous functions z;(t), ¢ =1,...,m+1,
as follows:

21(t) = po1(t), -, 2m(t) = pom (),
zo(a), telr,a),
R W
where
Po(fg+), t € [T, 0q],
@Oq(t) = ‘PO(t)v te (queq-‘rl)v g=1,...,m
©0(0g+1—), T € [Og41,0]
One can readily see that bY, satisfies the estimation

"

bs, < Z Joax, /59i(f720(t)’2m1 (7:(1))) dt‘ <

mi=1 1

!

/ 51 (£, 20(8), zams (0(1))) dt’+

m

< max
) t el

"
m t
+ max

Joex, /‘(Sgi(t,ZO(t),ZmI(Ti(t))>—(Sgi(t,Zo(t)72m1(’7'0(t)))‘dt’ <

mi1= t

!’

/591- (t, 20(t), 2m, (10(1))) dt‘—i—

+30 [ Lapra®)lam, (7)) = 2y (o0 de <
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g

[ 0200,z (o (0) dt\+

m

< max
t el
mi=1

43 ma [z (5(0) 2, (0(®)] [ Loy ()t (150

mi=1 7
Obviously,
A(0gi;s K1) = A(x0fi; K1) < A(3fi; K1)
(see (1.24)). Since A(df;; K1) — 0 as i — oo, we have
lim A(dg;, K1) = 0.

i—00
This allows us to use Theorem 1.12; which in turn, implies that
t//

/égi(t,zo(t),zml(m(t))) dt| =0, Vmi=1,...,m.
t/

lim max
i—oot/ tel

Moreover, it is clear that

Jim max |20, (7i(£)) = 2, (T0(£))| = 0.

The right-hand side of inequality (1.54) consists of finitely many summands,
and therefore
lim b%, = 0.
1— 00
For b{,(t), in the analogous manner, we get
m+1

b, (1) <
12(t) < 1t,1}t15;t§1

mi1=

/ Y(£7 t)591 (57 20 (5)7 Zmy (TO (f))) d€’+

m—+1

IV ma amy (550)) = 2, (0] [ Loy (8t
mi=1 T

from which we have

lim bl (¢) = 0 uniformly in I
71— 00

(see Theorem 1.12).

Thus,
Zlirgo b2 (t) = 0 uniformly in 1.
Consequently,
Zlggo bl (t) = 0 uniformly in I. (1.55)
Next,

bin(t) < ||V /Lfo(t)‘h(ton%‘aZO)(Ti(t)) — h(too, ¥0, 20)(10(t))| dt <
I
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< ||Y|{ [ B30 (O]t s 20) ((0) = ltos o, 20) 70| e+
+

Ly, (t ‘htoZ,wo,ZO)(ﬂ(ﬁ)) h(too, po, 20) (T ())‘dt}

< [I¥]]

f—/H~\

Lfo (t)‘h(tom i — o) (T (t))| dt+

+ /Lfo (t)‘h(tou ®0, 20)(Ti(t)) — h(too, ¥o, 20)(Ti(t))’+
I

+ [ L1u(0]Btta0 o0, 0) ) = o, s 20) o)

I

¥ llos = ol [ L o)+t + 05}

(see (1.22) and (1.36)). Introduce the notation
poi = min {7 (too), vi(toi) },  6oi = max {7;(too), vi(to:)}-
We prove that
hIIl ’Yi(tOO) = hm ")/l(toz) = ’}/O(too).
1— 00 1— 00
The sequences {7;(to0)} and 7;(to;) are bounded. Without less of generality,
we assume that
lim v;(to0) =70, lim i (to:) = 7.
11— 00 11— 00
We have

too = 7i(7i(too)) = 7i(7i(too)) — To(7i(too)) + 7o (7vi(too))-
Clearly,

lim | 7;(7i(to0)) — To(7i(too))| < lim [|7; — 79|z, = 0.
71— 00 1—> 00

Passing to the limit, we obtain tgg = 79(70). The equation 74(t) = too has
a unique solution 7o (t00), i-e. Yo = vYo(too)-
Further,
to; = Tl(’)/?(toz)) = 7}('71@01)) - 7_0(71(7507)) + To(ryi(t()i))'
Hence we obtain tgg = 70(71), i-e. v1 = Yo (too)-
Thus,
lim (po; — Ooi) = 0.

71— 00
Consequently,

004
br = [ Ly (0]t 50, 20) (0 ~ it 0, 20) (0| e — 0.

PO
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Introduce the notation

p1; = min {7;(to0),Y0(too) }, 61, = max {7;(too), vo(too) }-
For b?,,, we have
01;

s = [ Lso(8)]htos 90, 20) (1) = it o0, 20) ()| .
Pli
Analogously, it can be proved that

1—»00

Thus, b%, — 0. Consequently,

b2, (t) — 0. (1.56)
Finally, we have
too too
wl0) < | [ IV(€60) -~ Hhs (€ de| < 1Y 1| [ (@)
tos toi
i.e.
lim b3,(t) = 0 uniformly in I.
1— 00
Therefore,

lim |¢}(t) — 20(t)| = 0 uniformly in T
1— 00

(see (1.44), (1.45), (1.49)—(1.52), (1.55), (1.56)). Assume that the relation
(1.43) holds for a certain k > 1. Let us prove its fulfilment for k + 1.
Elementary transformations yield

|Chra(8) = 20(8)] < |woi — wool + ai(t) + bir (1), (1.57)

where

t
bir(t) = ’/Yo(5;t,tm)gi(tomﬂ‘,%Kii)(f) d§—
to;

t
- /Yo(fst,too)gi(tooﬁo, ©o0,20) (&) df’

too

(see (1.44)). The quantity a;(t) has been estimated above, it remains to
estimate b;x(t). We have

ba(t) < Yol /

I
t

+’/Y<)(§;t,tOi)gi(tOi,Ti,901‘730)(5) d§—

toq

9i(toi Ti, i, Cb)(€) — gi(tonﬂ,%,zo)(f)‘ d§+
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t
/Yo(ﬁ;tﬂfoo)gi(too,707%00720)(5) dﬁ’ = b}, () + bi(2).

toi
The function b;(t) has been estimated above. It is not difficult to see that
the following inequality holds for b;x(¢):

bar(t) < 2|¥o] 116G — =0l / Ly (t)dt.
I

By the assumptions,
lim /¢ — =0l = 0.
1—00

Therefore,
lim b;(t) = 0 uniformly in 1.
1—> 00

Thus, we obtain from (1.57) that

T lchy: — 20l =0
We have proved (1.43) for every k = 1,2,.... Let the number é; > 0 be

so small that [r; — d1,72 + 01] C I and |2(¢; uo) — 2(r1; p0)| < €0/2 for
t € [ry — 1,71 and |z(t; po) — 2(r2; o)| < e9/2 for t € [ra, 79 + 01].

From the uniqueness of the solution z(¢; ), we can conclude that
z(t; po) = yo(t) for t € [r1,r2]. Taking into account the above inequali-
ties, we have

(Z(t; 110), b (too, o, 2 (- ;Mo)(%(ﬂ))) € K*(20/2) CQ, t€[r1—61,r2401).

Hence,

X(Z(t;ﬂo)ah(toovsﬁmz(';#0)(70(15)))) =1, te[r1—6b1,m2+ 0],

and the function z(¢; o) satisfies the equation (1.20) and the condition
(1.21).
Therefore,

y(t; po) = 2(t; o), t € [r1 — 01,72 + 01].

According to the fixed point theorem, for e¢/2 there exists a number d§y €
(0,£0) such that a solution z(t; 1) satisfying the condition

|2(t; ) — 2(t; po) | < %0 tel,

corresponds to each element pu € V' (uo; K1, do, @).
Therefore, for t € [ry — 01,72 + 01]
z(t;p) € K (o), V€ V(po; K1, 0do,).
Taking into account the fact that ¢(t) € K(eg), we can see that for ¢t €
[r1 — 01,72 + d1], this implies

X(Z(t;/z)ﬁ(to,%Z(-;u)(T(t)))) =1, Yp € V(uo; Ki,d0,0q).
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Hence the function z(¢; i) satisfies the equation (1.20) and the condition
(1.21), ie.

y(t;p) = 2(t; p)eint Ky, ¢ € [r1—d1,r2+61], peV(uo; K1,00, ). (1.58)
The first part of Theorem 1.14 is proved. By the fixed point theorem, for
an arbitrary € > 0, there exists a number do = d2(¢) € (0, dp) such that for
cach p € V(po; K1, 02, a),
whence using (1.58), we obtain (1.23). O

Proof of Theorem 1.1. In Theorem 1.14, let 71 = tgg and r9 = tgg. Ob-
viously, the solution xo(t) satisfies on the interval [tgg,t10] the following
equation:

y(t) = A(t)h(too, vo, 9)(a(t)) + foltoo, 7o, po, y)(¢).
Therefore, in Theorem 1.14, as the solution yo(t) we can take the function
zo(t),t € [too, t1o)-

By Theorem 1.14, there exist numbers §; > 0,7 = 0,1, and for an arbi-
trary € > 0, there exists a number d; = d2(e) € (0, o] such that the solution
y(t;pu), t € [too — 1,t10 + 1], corresponds to each p € V(uo; K1, dp, ).
Moreover, the following conditions hold:

p(t) € Ky, te iy y(tip) € Ky,
ly(t: 1) — y(t; pmo)| <&, t € [too — 01, t10 + 6], (1.59)
€ Vug; K1, 62, ).
For an arbitrary p € V(po; K1, do, ), the function

e, t €7, to),
w(t;p) = {y(t;u), t € [to,t1 + 61].

is the solution corresponding to u. Moreover, if ¢t € [tA7 ti0 + d1], then
x(t; po) = y(t; o) and x(t; u) = y(t;p). Taking into account (1.59), we
can see that this implies 1.1 and 1.2. It is easy to notice that for an arbi-
trary p € V(po; K1, 6o, ), we have

t10+61 t
ot ) = ot o) e = [ [o(®) = o(t)] e+

t10+01
et 1) — a(t: o) dt + / (@ (ts 1) — (s o) dt <
t

<lle = ollr, (b —7) + Nlto — too| + max |z(t; p) — x(t; po|(b—7),
te[t,ti0+01]

+

w\\ﬂ)

where
t =min{to,too}, N =sup{|z’ —2"|: 2’,2" € K1}.
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By 1.1 and 1.2, this inequality implies 1.3. O

1.4. Proof of Theorem 1.3. To each element w € Ay we correspond the
equation

y(t) = A(t)h(to, v, 9)(o(t)) + f(to, 7, 0,9, u)(t)
with the initial condition (1.21).

Theorem 1.15. Let yo(t) be a solution corresponding to wo = (to, 70, Too,
©0, V0, ug) € A1 and defined on [r1,rs] C (a,b). Let Ko C O be a compact
set containing a certain neighborhood of the set cloo(I1) Uyo([r1,r2]). Then
the following conditions hold:

1.17. there exist numbers §; > 0, i = 0,1 such that to each element
w = (th T,T0, P, , ’LL) € ‘7(1110, 60)
there corresponds the solution y(t;w) defined on the interval [ry —
01,72+ 61] C I and satisfying the condition y(t;w) € Ks;
1.18. for an arbitrary € > 0 there exists a number d3 = d2(g) € (0, o]
such that the following inequality holds for any w € V(wq;dp

|ly(t;w) — y(t;wo)| <&, Vi€ [ry—b1,ma+ 1)
Theorem 1.15 is proved analogously to Theorem 1.14.

Proof of Theorem 1.3. In Theorem 1.15, let ry = tg9 and ro = t19. Ob-
viously, the solution xo(t) satisfies on the interval [tog,t10] the following
equation:

§(t) = A(t)h(too, vo, §) (0 (8)) + f (t00, T0s %0, Y5 o) (¢)-

Therefore, in Theorem 1.15, as the solution yo(¢) we can take the function
xo(t),t € [too,t10]. Then the proof of the theorem completely coincides with
that of Theorem 1.1; for this purpose, it suffices to replace the element p by

the element w and the set V(uo; K1, 09, @) by the set V(wo; dp) everywhere.
O

2. VARIATION FORMULAS OF A SOLUTION

Let Dy ={r € D: 7(t) > e =const >0, t € R} and let E}l) be the
set of functions f : I x O? — R™ satisfying the following conditions: the
function f(¢, -) : O? — R™ is continuously differentiable for almost all ¢ € I;
the functions f(t,z1,z2), fz, (t,21,22) and fy, (¢, 21, 22) are measurable on

I for any (z1,2) € O?; for each f € E](cl) and compact set K C O, there
exists a function my i (t) € L(I,R,), such that
‘f(tamth)’ + ‘fw1<t,$1,l‘2)‘ + |f$2(t7x17$2)| S mf,K(t)

for all (z1,72) € K? and almost all t € I.
To each element

= (to, 7,0, 0,0, f) € Ao = [a,b) Xx D1 x O X &1 x E, xEJ(cl)
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we assign the neutral equation

#(t) = A(t)a(o(t)) + £ (t,=(t), 2(7(t)))

with the discontinuous initial condition

z(t) = ¢(t), &(t) =o(t), t€T,to), x(to) = zo.

Let Mo = (too,To,JL‘oo, ©o, Vo, fo) € Ay be a given element and l‘o(t) be the
solution corresponding to pg and defined on [7, t10], with a < too < t19 < b.

In the space Eﬁl) — o, Where E,(}) =RxD; xR" x E, x E, x Ej(cl), we
introduce the set of variations:

Sy = $0u = (dto, 07, 60, 6, 00,8 f) € BV — g -
I3

k
[6to] < B, 167I|1, < B, [6z0] < B, 5o =Y A\ibps,
1=1

k
18ullr, < B, 8F =D Nidfi, NI < B, i=1,... .k},

i=1

where dp; € E, — o, 0f; € E](cl) — fo,1=1,...,k, are fixed functions.

The inclusion Ej(tl) C Ey holds (see [15, Lemma 2.1.2]), therefore, accord-
ing to Theorem 1.2, there exist numbers 6; > 0 and €; > 0 such that for
arbitrary (e,d0u) € (0,e1) x Qo the element g + edp € A, and there corre-
sponds the solution x(t; o + €dp) defined on the interval [T, ¢19 + 01] C 1.

Due to the uniqueness, the solution z(t; to) is a continuation of the so-
lution zo(¢) on the interval [7,t19 + d1]. Therefore, the solution zo(t) is
assumed to be defined on the interval [T, %19 + d1].

Let us define the increment of the solution xo(t) = x(t; o) :

Ax(t;edp) =x(t; po+edp) —xo(t), V(t,e,du) €T, t1o+1]%x(0,e1) xS,

Theorem 2.1. Let the following conditions hold:

2.1. vo(too) < tio, where yo(t) is the inverse function to 1o(t);

2.2. the functions vo(o(t)) and vo(t) are continuous at the point too; the
function o(t) is absolutely continuous and the function $o(t) is
bounded;

2.3. for each compact set K C O there exists a number mg > 0 such
that

1fo(2)| < mk, Vz=(t,x,y) € I x K*

2.4. there exist the limits

lim fo(2) = fy, z € (a,too] x 0?,

Z—Z20

[fo(z1) = fo(22)] = fo1, 2i € (toosY0(too)] x O%, i=1,2,

(21,22)—(210,220)



32 Tamaz Tadumadze and Nika Gorgodze
where
20 = (t00: Zoo, ¢0(10(t00))), 210 = (70(f00), Zo(70(t00))s Too),
220 = (70(t00), Zo(v0(t00)), o (too))-

Then there exist numbers €5 € (0,¢1) and d2 € (0,91) such that for
arbitrary

(t,2,61) € [t10 — G2, t10 + 6] X (0,€2) x 5,
where

Sy ={op € Sy 6ty <0, 67(10(teo)) > 0}
we have

Ac(t; e8p) = eda(t; 6n) + o(t; £6p), (2.1)
where
6a(t;811) = {¥ (too—:1) [voton) — Altoo)vo(or(ton)) — f5 | -
— Y (70(too) = t)fo_l%(too)}&oJr
+Y (0(t00) =5 1) fo170(f00)07 (70 (t00))+

—|—/Y(s;t)5f[s] ds + B(t;0p), (2.2)

t

and

B(t; 1) = W(too; ) [d0 — vo(too)dto]+
Yo (too)
[ Y0 onalslin(ro(s)or(s) dst

too

n / Y (5: ) foy [s]0 (70(5))57(5) ds+

v(too)

+ / Y (0(5):£) fors 0 (80 ()50(s) dst

To(too)

+ / Y(v(s);t)A(v(s))v(s)ov(s)ds (2.3)

a(too)
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Here, U(s;t) and Y (s;t) are n x n matriz functions satisfying the
system
Ws(s;t) = =Y (s:t) for, [] — Y (70(5); 1) fows [10(5)]F0(s),
Y(sit) = W(s;t) + Y (v(s); 1) A(v(s))v(s),
s € [too — 02,t], t € [too,t10 + J2]
and the condition
H, s=t
U(s;t) =Y (s;t) = ’ ’
(5:1) = ¥ >{&s>m
H is the identity matriz and © is the zero matriz, v(s) is the inverse
function to o(s),

foa, 8] = fou, (5. 20(s), 20(70(s))), 0f[s] =0 (s,70(s), z0(70(5)))-

Some Comments. The function dx(¢;du) is called the variation of the
solution xq(t), t € [t10 — 02, t10 + 2], and the expression (2.2) is called the
variation formula.

Theorem 2.1 corresponds to the case where the variation at the point tgg
is performed on the left.

The expression

—Y (70(too)—; t) fo1¥0(too)dto
is the effect of the discontinuous initial condition and perturbation of the
initial moment tgg.

The expression

Y (70(too)—3t) fo170(too) T (o0 (too))+

70 (t00)
+/(MWMWWMMﬁdH/YsHmHMMDM)

too ~o(too)

is the effect of perturbation of the delay function 74(t) (see (2.2) and (2.3)).
The addend

Y (too—;t) {Uo(too) —A(too)vo(o(too)) *fo_} to+ T (too; t) [6z0—vo(too)dto]

is the effect of perturbations of the initial moment tgp and the initial vec-
tor xgg.
The expression

too

Y (70(5);t) foxa [70(8)]70(5)dp(s) ds+

7o(too)
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is the effect of perturbations of the initial functions ¢g(t) and vg(s) and the
function fo(t, z,y).

If @0 (t()o) = 200, then fO_l =0.1If Yo (too) = tlo, then Theorem 2.1 is valid
on the interval [t19, t10+02]. If v0(too) > t10, then Theorem 2.1 is valid, with
02 € (0,071) such that t19 + d2 < Yo (teo); in this case Y (yo(too)—;t) = O.

Finally, we note that the variation formula allows us to obtain an ap-
proximate solution of the perturbed equation

i(t) = A(t)i(o(t) + fo(t, z(t), x(7o(t) + €7 (t)))+
+edf (t, x(t), z(1o(t) + 5(57’(75)))
with the perturbed initial condition
z(t) = oo(t) +edp(t), x(t) =wvo(t) +edv(t), t € [T,too + &dto),
x(too + €dto) = o + £0xp.
In fact, for a sufficiently small € € (0, e3) it follows from (2.1) that
x(t; po + edp) = xo(t) + edx(t; o).

The matrix function Y (§;t) for any fixed t € [t19 — d2,¢10 + d2] has first
order discontinuity at the points of the set

{0(t),02(t), oL at(t), . },
where o'(t) = o(0'=1(t)), i = 1,2,...; 0°(t) = t,0'(t) = o(t) (see Theo-
rem 1.13).

Theorem 2.2. Let the conditions 2.1-2.3 of Theorem 2.1 hold. Moreover,
there exist the limits

lim fo(2) = fo, z € [too,Y0(too)) x O,

zZ—r 20

lim [fO(Zl) - fO(ZQ)] = f(;i_la zZi € [PYO(tOO)J)) X 023 1=1,2.

(21,22)—(210,220)
Then there exist numbers g5 € (0,e1) and d2 € (0,01) such that for arbitrary
(t,&‘,(SM) S [tlo — (527t10 + 52] X (0,52) X %;_,

where
S5 = {6 e Syt dtg >0, 67(70(too)) < 0},

formula (2.1) is valid, where
5.13(t; 5/.L) = {Y(t00+; t) |:’U0(t00) - A(tOO)UO(U(tOO)) - fa_} —
— Y ((too)+: 1) oo (too) fato+

+ Y (0(too)+;t) for Y0 (t00) 67 (Y0 (o)) +

+/Y(s;t)5f[s] ds+ B(t;0p).

too
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Theorem 2.2 corresponds to the case where the variation at the point tgg
is performed on the right.

Theorem 2.3. Let the assumptions of Theorems 2.1 and 2.2 be fulfilled.
Moreover,

fo =15 = Jo» for =15 = fon
and

t0o,Y0(too) € {o(t10), 0 (t10), - .- }-

Then there exist numbers eo € (0,e1) and d2 € (0,01) such that for arbitrary
(t,e,0u) € [t10 — d2,t10 + 02] X (0,£2] X o formula (2.1) holds, where

2 (t: 61) = { ¥ (t00 ) [v0 too) — Altoo)o(o (to0)) — fo -

=Y (70(too); t)foﬂ"o(too)}&o-i-
+ Y (70(t00); t) forYo(too)dT (Yo (too) )+

+ /Y(s;t)éf[s] ds+ B(t;0p).

too

Theorem 2.3 corresponds to the case where the variation at the point tgg
two-sided is performed. If the function fy(¢,x,y) is continuous, then

fo=fo (too, ¢o(too), po(To(too)))

and

for = fo (70(to0), zo(v0(ta0)), Zoo) — fo (70 (too), Zo(70(t0o)), o (too))-

Let the function f(t,x1,72,u) be defined on I x O? x Uy and satisfy
the conditions: for almost all ¢ € T the function f(¢,z,y,u) is continuously
differentiable with respect to (x1, z2,u) € O? x Uy; for any fixed (21, x2,u) €
Os x Uy the functions f(t,x1,29,u), fo,(t,21,29,u), fo,(t,21,22,u),
fu(t, 1, 22, u) are measurable, for any compacts K C O and U C Uy there
exists mg,y(t) € L(I, R4+) such that

‘f(t,$1,$2,u)|+’fxl (t,{L’l,x2,u)|+|fm2(t,$17$2,U)|+|fu(t,‘T17$2,U)| S
<my(t)

for all (w1, 72,u) € K2 x U and almost all t € I.

Let wo = (too, 70, Zoo, Yo, Vo, uo) € A1 be the given element and z((t) be
the solution corresponding to wp and defined on [7,¢10], with a < tgg <
t19 < .
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In the space E,, — wg we introduce the set of variations

Sy = {5w — (8to, 07, 00, 8¢p, 8, 511) € By — 1w -
k
‘5t0| é ﬁv ”57—”12 S 57 \5330\ S Bv 6‘)0 = Z)\z(s%a
1

Nl < B i =1k, (60, < B, foulr < 8}

There exist numbers §; > 0 and €1 > 0 such that for arbitrary (e, dw) €
(0,e1) X 3 the element wy + edw € Ay and there corresponds the solution
x(t; wo + edw) defined on the interval [T, t19 + §1] C I4.

Due to the uniqueness, the solution z(t; ) is a continuation of the so-
lution xo(t) on the interval [7,t19 + 81]. Therefore, the solution z((t) is
assumed to be defined on the interval [7,t19 + d1].

Let us define the increment of the solution xo(t) = x(t; wy) :

Ax(t;edw) =z (t; wo+edw) —xo(t), V(¢ e, 0w) €T, t10+01]%x(0,e1) % 3.

Theorem 2.4. Let the following conditions hold:

2.5. vo(too) < tio, where yo(t) is the inverse function to 1o(t);

2.6. the functions vo(o(t)) and vo(t) are continuous at the point too; the
function po(t) is absolutely continuous and the function ¢o(t) is
bounded;

2.7. for each compact sets K C O and U C Uy there exists a number
mg,u > 0 such that

|fo(z)| <miu, Vz=(t,z,y,u) €I x K> x U;
2.8. there exist the limits

lim fo(2) = fy, 2z € (a,too] x 0?,

Z—r20

[fo(z1) = fo(22)] = fo1. 2 € (too, yo(too)] x O, i=1,2,

1m
(21,22)—=(210,220)
where
20 = (too, 00, Po(10(t00))), 210 = (70(t00), To(v0(t00)), Zoo),
220 = (Y0(to0), zo(Y0(t00)), o (teo)),  fo(z) = f(z, uo(t)).

Then there exist numbers €5 € (0,e1) and 02 € (0,91) such that for
arbitrary (t,e,0w) € [t19 — d2,t10 + 2] X (0,e2) x I3, where

(3; = {(5w € &30 0ty <0, (ST(’}/Q(too)) > 0}
we have

Ax(t;edw) = edx(t; dw) + o(t; edw), (2.4)
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where
Sz (t; ow) = {Y(too—; £) [vo(too) — A(too)vo(o(teo)) — fg] _

— Y (y0(too)—; t)f&ﬁo(too)}5to+
+ Y (70(too)—;t) fo170(t00)d7 (Y0 (t00))+

+ [ Y(sit)oulslduts) ds + 5(tsow),

and
B(t; dw) = B(t; p).
Theorem 2.5. Let the conditions 2.5-2.7 of Theorem 2.4 hold. Moreover,
there exist the limits

lim fo(2) = fif, 2 € [too,Y0(too)) x O,

zZ—r 20

lim [fo(z1) = fo(z2)] = fdis 2 € [o(teo), b) x O, i

(21,22)—(210,220)

1,2,

where fo(z) = f(z,uo(t)). Then there exist numbers eo € (0,e1) and Ja €
(0,01) such that for arbitrary

(t,s,éw) S [tlo — (52,t10 + (52} X (0,52) X %;,
where
%; = {5’11) € &g 1 Oty > 0, 5T<’70(t00>) < 0},

formula (2.4) is valid, where
s (t: 6w) = {¥ (too+:1) w0 (ton) — Altoo)uo(or(too)) — fif | -

— Y (o(too)+: 1) oo (too) foto+
+ Y (70(too)+;t) for Y0 (to0) 67 (Y0 (too)) +

+ /Y(S;t)fou[S] ds + B(t; 0p).

too

Theorem 2.6. Let the assumptions of Theorems 2.4 and 2.5 be fulfilled.
Moreover,

o =1 =T, fo=1Ffh=7In
and

t0o,Y0(too) € {o(t10), 0 (t10), - .- }-
Then there exist numbers o2 € (0,e1) and 02 € (0,061) such that for arbitrary

(t75,5w) € [tlo — (52,t10 + (52] X (0762] X %3
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formula (2.4) holds, where
2 (t; 5w) = {¥ (to0; ) [v0(ton) — Altoo)vo (o (too)) — Jo| -

=Y (70(too); t)f()ﬁ"o(too)}&o-i-
+ Y (70(t00); t) forYo(too)dT (Yo (too) )+

t
+ [ Y(si0) faulslou(s) ds-+ (6 6w).
too
2.1. Proof of Theorem 2.1. First of all, we note that Lemma 2.1 formu-

lated below is a consequence of Theorem 1.14.

Lemma 2.1. Let yo(t) be a solution corresponding to po € A and defined
on [r1,r2] C (a,b). Let K1 C O be a compact set containing a certain
neighborhood of the set clyo(I1) U yo([r1,r2]). Then there exist numbers
g1 > 0 and 61 > 0 such that for an arbitrary (t,0u) € (0,e1) X S, we have
to+edp € A, and the solution y(t; po +edu) defined on [ry —d1,m2+01) C I
corresponds to this element. Moreover,

gO(t) S Kl, te .[1; y(t;,uo + 8(5/1,) S Kl, te [7‘1 — 5177'2 + (51];

li . — .
lim y(#; o + £6p1) = y(; o),
uniformly in (t,0p) € [r1 — 01,72 + 1] X Se.

The solution y(¢; uo) on the interval [ry — 01,72 + 61] is a continuation
of the solution yo(t). Therefore, in what follows, we can assume that the
solution yo(t) is defined on the whole interval [r1 — d1, 72 + 01].

Let us define the increment of the solution yo(t) = y(t; o) :

Ay(t) = Ay(t;edp) = y(t; po + £0p) — yo(t),
V(t,e,0p) € [r1 — d1,r2 + 01] x (0,€1) X .
Obviously,
ILm Ay(t;edp) =0, (2.5)
uniformly in (¢,0p) € [r1 — 01,72 + 1] X So.

Lemma 2.2. Let vo(too) < r2 and let the conditions of Theorem 2.1 be
fulfilled. Then there exists a number o € (0,e1) such that for any (¢,6u) €
(0,e2) x S5 the inequality

max  |Ay(t)| < O(edp) (2.6)

t€(too,r2+01]

is valid. Moreover,

Ay(toy) = 5{5350 — [Altoo)vo (o (tao)) + fo_]éto} + o(ebp). (2.7)



Variation Formulas of Solution and Initial Data Optimization Problems . .. 39

Proof. Let €5 € (0,e1) be so small that for any (¢,d0u) € (0,e2) x S, the
following relations are fulfilled:

T(t) = T()(t) + €5T(t> < tg:=toyg + edty, VtE [to,too]. (28)

The function Ay(t) on the interval [tog, 72 + 01] satisfies the equation

3
Ay(t) = A(t)h(too, e6v, Ay) (o () + Y Wilt; dp),

i=1
where

Wi (t;eop) = A(t) [h(tm v, 90 + Ay)(a(t)) — h(too, v, 50 + Ay)(U(t))},
Wa(t;edu) = folto, 7,0, y0 + Ay)(t) — foltoo; 7o, o, yo)(t),

WB(t; 56”) = E(Sf(t(% T, ¥ Y0 + Ay)(t)a
vi=vg +edv, @ :i= o+ edp.

We now consider the linear nonhomogeneous neutral equation

3
5(t) = Ao (0) + 3 Wilt: edp) (2.9)

i=1
with the initial condition
2(t) = edv(t), t€[7,to), =z(to) = Ay(to).

Due to the uniqueness it is easily seen that z(t) = Ay(t), t € [too, r2 + 91]-
According to Theorem 1.7, the solution of the equation (2.9) can be written
in the form

Ay(t) = Ay(too) + ¢ / Y (1(€); 1) A(w(€))(€)F0(€) dE+

a(too)
3
+3° [ YiEowile o de
=1
where Y (§;t) has the form (1.11). Hence
3

|Ay(#)] < [Ay(too)| + el Y] [ Alla[v(too) — too] + Y[ Wiledu), (2.10)

i=1
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where
ro+ds t
Wi(edp) = / |Wi(t;edp)|dt, W2(t;t00755ﬂ):/|W2(§;€5M)|df,
too tDO

ro+d2
Walesu) = [ Waltieomlde, A =sup {|A()] s t< 1},
too

Y]] = sup {|Y(§§t)| t (€,1) € [too, 2 + 61] X [too, T2 + 51]}-
Let us prove equality (2.7). We have

Ay(too) = y(too; to + €6p) — xoo =
too

— 200 + £820 + / AWD)[o(o (1)) + 0(0(8))] di+

to
too

+/f0(t,y(t§uo+65u),g0(7'(t)))dt+

e / 51 (t,y(t: o + £81), o(7(8))) dt — 00 =
= 5[51’0 — A(too)vo(a'(too))(sto] + 0(65/1,)+
4 / Jolt,uo(t) + Ay(t), o(r(t))) di+
k too

+eYon [ 8t + Ay, oG ®) . 211

=1
It is clear that if t € [tg, too], then
lim (¢, y0(t) + Ay(t), ¢(t)) = 2o
e—0

(see (2.5)). Consequently,

lim sup
€20 ¢ty too]

folt0(8) + Ay(), 9(7(1)) — fi | = 0.
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This relation implies that

too

[ foltwo(®) + By(e), plr(e)) di =

! too
— ety to+ [ foltsan(®) + By(t),plr(e)) - fi ) dt =

to
= —efy dto + o(edp). (2.12)
Further, we have

too too

Il [ (65t on(e) + a0, o)) dt < o [msge ®de. (213)

From (2.11), by virtue of (2.12) and (2.13), we obtain (2.7).
Now, let us prove inequality (2.6). To this end, we have to estimate the
expressions Wy (edu), Wa(t; too, edp) and Wz(edp). We have

v(too)
Wi (ebu) < || A L/)‘Q(U(U;Mo—Feéu)-‘UOQTU))“€5U(U(U) d.

v(to)

Using the step method, we can prove the boundedness of |y (¢; o +edp)||,t €
[r1 — 01,72 + 61] uniformly in dp € Q5 i.e. there exist M > 0 such that

‘y(a(t); o+ 261) — vo (0 (t)) — 2dv(a(t))] < M,
t € [v(to),v(teo)], Vou € .

Moreover,
too
v(too) — v(to) = /ﬂ(t) dt = O(gdp).
to
Thus,
Wi(edu) = O(edp). (2.14)

Let us estimate Wa(t; tog, £6). It is clear that

to

To(to) — (to) = / $0(€) de = / $0(€)dé > 0

7o (v (to)) to—edT(v(to))
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and vy(tg) > too (see (2.8)). For t € [tog,7(t0)], we have 7(t) < to and
To(t) < too, therefore we get

Wl too, £0p0) < / Ly 16, (€)[|A5(€)] + 19 (7(€)) — ol (€)]] de <

7()

S/Lfo K (€ )der‘ / |oo(s)| ds| + O(edp) =
70(§)

::/mexa y(€) dé + O(ep). (2.15)

For ¢ € [y(t0), Y0(too)], we have

t
Wa(t; oo, €6p) = Wa(7y(to); too, 0pt) + / Wa(&;e0p) d§ <

~(to)
~o(too)
<Ot + [ Walgiedn)de < O(edp) + 2, olton) — 1 (t0).
~(to)
Next,
too too
o) = 1tta) = [ 50l de = / S0(6) de =
T0(v(t0)) 7o (7 (t0))+ed7(v(to))—edT(v(t0))
too
- / $0(€) d€ = O(edp,)
to—ed7(v(to))
Consequently,

Wg(t;too,E(S/J) = O(E(S,u), te [’y(to),’}/()(too)]. (2.16)

For t € (’Yo(too),Tl + 51], we have

Wa(t; to, e61) = Wa(v0(too); to, o) + / Wa(&;edu) d€ <
Yo (too)
v(too)

§0(65u)+’ / Wz(ﬁ;eéu)d€'+

Yo(too)
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t
/ O Lo 12 ()| Ay (r |d£’

+ /‘yo yo(To(ﬁ))’di‘S
v(too) 7(too)
O(edp) + 2mx, [v0(too) — v(too)|+
t ri+d T(€)
# [ XL @ ©N8w@N e+ [ | [ linte)las] e =
too too  710(§)

= O(e0p) + 2mus, | [y(too) = 7(to)]| + [ (too) = 0(too)| | +

t

+ [ X)L A BY(O) | de

too
where x(&) is the characteristic function of I. Next,

o) = () = [ 4(6) ¢ < - tan o) = O(eB10)

to

and
70(v(too))
|7(to0) — 70(too)| = ‘ / Yo(t) dt‘ =
too
7(7(t00))—6(v(t00))
. ‘ [ a0 dt\ — O(etp).
too

Thus,

Wa(t; to, €0 p) :O(E(SM)+/X(’Y(g))LfoJﬁ(7(5));7(5)|Ay(£)‘dg' (2.17)

too

Finally, we note that
Wg(t;aé,u) = O(E(S,u), te [too,?"g + (51] (2.18)

(see (2.12)).
According to (2.7), (2.14)—-(2.18), inequality (2.10) directly implies that

|Ay(t)] < Oebu) + / Lo 1er (6) + X(1E) Lo 1 (1()3(6)] Au(e)] d
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By virtue of Grounwall’s lemma, we obtain

|Ay(t)] <

t t

< O(eon)exp { [ @de+ [xGE@L0x0@5E dg} <

t()() tOD

< exp {2/Lf0,K1(f) df}-
T

The following assertion can be proved by analogy with Lemma 2.2. (I

Lemma 2.3. Let vo(too) < 12 and let the conditions of Theorem 2.2 be
fulfilled. Then there exists the number eq € (0,21) such that for any (t,6u) €
(0,29) x ST the inequality

max  |Ay(1)] < O(=in)
te(to,r2+61]

is valid. Moreover,
Ay(too) = E{(Sl‘o — [A(too)’l)o(O’(too)) + fg_] 5t0} + O(€(5u).
Proof of Theorem 2.1. Let r; = tgg and ro = t19 in Lemma 2.1. Then

_Jwol(t), telT too),
mo(t) = {yo(t)» t € [too, t10],

and for arbitrary (g,0u) € (0,e1) x S5

o(t) = po(t) +edp(t), te[T,to),

x(t; po +edp) =
(tipo #) {y(t;uo+€5u)’ t € [to,t10 + 01]

(see Remark 1.1). We note that du € S5, i.e. to < too, therefore

edp(t), t €T, to),

Az(t) = S y(t; po +€dp) — @o(t), t € [to,too),
Ay(t), t € [too, t10 + 01
edv(t), t €T, to),

Ax(t) = §(t; po + edp) — vo(t), t € [to, too),
Ay(t), t € [too, t1o + d1].

By Lemma 2.2, we have
\Ax(t)| < O(E(SM), V(t,e,éu) S [too,tlo + 51] X (0761) X %2_, (2.19)
Az(too) = 5{5x0 — [A(too)vo(o(too)) + f(;]éto} Vo(sdp).  (2:20)
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The function Axz(t) satisfies the equation
Az(t) = At)Az(o(t)+
+ fou[t]Az(t) + foy[t]Ax(mo(t)) + €0 f[t] + Ralt] + Ro[t], (2.21)
where
Ra[t] = fo(t,zo(t) + Ax(t), zo(7(1))) + Ax(r(t))—
— Jolt] = fou, [t]Az(E) = fox, [t] Az (7o (1)),
Ralt) = 2 [ (1 w0 (t) + Ax(t), wo(r(t)) + Aa(r(1)) ) — 3£1]].

By using the Cauchy formula, one can represent the solution of the equation
(2.21) in the form

Ax(t) = U(too; t) Az(too)+

t

2
+5/Y(f;t)5f[f] dé + Z Ri[t;too], t € [too, t10 +01],  (2.22)

too i=—1
where
Roaftitoo] = [ Y0(©:0A((€)iAe) B de
a(too)
Ro[t;too] = / Y (70(€); 1) fows [10(€)]70(§) Az (€) d8,
To(too)

t

Rift: too] = / Y(EORIE dE, i = 1,2,
too

By Theorem 1.13, we get
®(too; t) Ax(too) =
= e®(too; t){5$0 — [A(too)vo(o(too)) + f()_]5to} + o(t; op) (2.23)

(see (2.20)).
Now, let us transform R_;[t;too]. We have

Royltstoo] = ¢ / Y ((€): ) AW (€))iA€)Su(€) de+

a(too)

+ / Y (u(€); 1) A(€)(€) Ax(€) de =
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too

o / Y (1(€); ) A(w(€))i(€)50(€) dE + o{t; o) +
o(too)

too

" / Y (1(€): 1) A())i(€) x

to

x [A4(©) (v(0(€)) + £0v(0(€))) + folto, 7.2, 50 + Ay)(E)+
28 f(to, 7, 0,0 + Ay)(E) — vo(€)] dt =

+e / Y (v(8); 1) A(w(£))2(§)0v(§) d§ — Y (v(too) =3 1) A(v(ton)) X
a(too)
x U(too) [A(too)vo(o(too)) + fo — volteo)]6to + o(t;edp) =

o / Y (v DIA€)50(€) dé + £[¥ (too—: ) — B(too: £)] x
o(too)

X [Uo(too) A(too)vo((f(t()o)) — f(j]éto + 0(5(5/1) (224)

(see (1.7)).
For Ry[t;too], we have

Rolt: too] = / Y (30(6): £) fous 110 () 50(€)00(€) de+

7o(too)

too

+ / Y (10(E):£) fors 10 (€)Fo(€) A (€) dé =

to

too

—c / Y (0(E): 1) fors 010 (E)8i0(€) d€ + olt: 1)+

7o (too)

too

+ / Y (0(6): £)fosa 10 () Ho(€) Aa(€) de. (2.25)

to

Let a number d; € (0,01) be so small that vo(too) < t10 — d2. Since
Yo (too) > 7(to), therefore for t € [t19 — d2,t10 + J2], we have

1[t; too] = Z ot
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where
~(to) Yo (too)
al = [ rlgtde asll= [ rignae,
too v(to)

t

aslt] = / rlEtde, it = Y(E DR
~Yo(too)

Introducing the notation,

folé;s] =
= fo(& z0(&)+sAx(€), mo(10(§)) +5(20(T(€)) —z0(T0(£))+A2(7(£)))),
9[5, S] = f0m1[£;8] - fOzl[g]a P[f%s} = fOzQ[é—; S] - fOxg [5]7

Then we have

1

&W—/iﬁw}
— [{Foas[655180(€) + fons 5] (0 (€) ~20(m() + A(r(€))) } -
0
- f 11[5]A$(£) — [ :62 Afﬂ T 0 dS A.’t
0 0 O |:0/ :|

n [ [ s ds] (20(7(€)) — zo(ro(€)) + Aa(r(€))+
0

+ fous [€1{ [20(7(6)) = 20(r0(€))] + [Aa(7(&)) — Aa(ro(€))] }-

Taking into account the latter relation, we have

[t] = Zau[tL

where
~(to) 1
o t] = / Y (& D)0 A(E) de, 0r]¢ / ole
too 0
~(to)

anlt] = [ Y(&0m1E[2o(r(€) ~ 2a(r(©) + Aa(r()] de

too

47
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e = / plé; s] ds,

v (%o)

anlt] = [ V{60l [Bo(r(6) - Au(ro(e))] e,
’)('tho)
analt] = / Y (€:1) fon [€] [0 (7(€)) — 20(ro(€))] d.
Further, :
Yo(to) — y(to) = / Fo(§) d€ = / Fo(§) d§ > 0.
70 (v(to)) to—edT(v(to))

Therefore. for & € (too,¥(to)), we have 7(€) < to, 70(§) < to. Thus,
20(7(£)) — zo(10(€)) = o(7(£)) = ¢o(10(E))

and
Az(7(€)) — Ax(10(€)) = e[dp(7(£)) — (70 (€))]-
The function ¢o(t),t € I is absolutely continuous, therefore for each fixed
Lebesgue point 19(§) € I we get
7(8)
eo(7(£)) — wo(70(8)) = / Po(s) ds = eo(10(£))07(8) +v(&;€6p), (2.26)
70(§)

i Y (&5 €01)

e—0 S
Thus, (2.26) is valid for almost all points of the interval (tgg,¥(to)). From
(2.26), taking into account the boundedness of the function ¢g(t), we have

where

= 0 uniformly for dp € 35 . (2.27)

[o(r(€)) ~ po(rol€))] < Oty and | TS| < const. (29

According to (2.19) and (2.26)—(2.28). for the expressions ay;[t], i =1,...,4,
we have

o [t]] < IVI0(e0m)a(ebp), lonslt]] < [V [O(e0m)pa(ebn),

pe
lasft]| < o(edp), onalt] = 5/Y(§;t)f0x2 [€]po(10(€))07 () dE,

too

where

b1
Os(edp) = // fozy (& 20(€) + sAz(E), o(T0(€)))+
0

too
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+5(ip0((€)) = #0(m0(6)) = 28(70(€))) = fous (€ 20(E), w0 (ro(©))) | ds

P2(€5ﬂ)—/b/1

too O

Jows (& 20(€) + sAz(E), o(70(8))) +

+ 5(0(7()) = w0l () = Bip(70(€))) -
— foas (€ 70(8), p0(70(€))) | ds de,

t

Y1(t;ep) = /Y(ﬁ;t)fo;cz[ﬁh(f;ew) d€.

too
Obviously,
(t: 260 Yo (too) (& o)
ZEZ <y [ ol [T e
too

By the Lebesgue theorem on the passage under the integral sign, we have

i 0t = fg o) = 2522 <o
uniformly for (¢,du) € [too, Yo(too)] X S5 (see (2.26)).
Thus,
aqi[t] = o(edp), i=1,2,3; (2.29)
7(to)
arlt) =¢ [ Y(&0) forsn(no(€)d(€) d + ofticon).
too
It is clear that
Yo (too)
o [ V(@0 nl0(m(€)57(9) de = olt et
7 (to)
i.e.
Yo (too)
aull=c [ V(&0 forlElinlr(©)5r(€) de +oltizon).  (230)
too

On the basis of (2.28) and (2.29), we obtain

Yo(too)

oalt] = ¢ / Y (€:1) fors [€]60(r0()7(€) dE + olt;ebp).  (2.31)

too
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Let us now transform as[t]. We have

where

Oégl[t] =

agg[t]

agg[t]

3
= Zazi(t;55u)7
~Yo(too)
Y (&) [fo (g, x0(&) + Ax(§), zo(7(8)) + Al‘@'(f))) — folé] ] dg,
v(to)
Yo (too)
—— [ Y(&nhmgac©d,
v(to)
Yo(too)
—— [ V(€D sl Balro(e)) e

(o)

If € € (7(f0),70(too)), then

|Az(§)] < O(edp),

2o(7(€)) + Ax(r(§)) = y(7(§); £0p) = yo(7(€)) + Ay(7(£); 2dp),

(€
z0(70(§)) = wo(70(£)),

therefore,

ie.

lim

ag[t] = o(t;edp),
lim (& 20(¢) + Ax (), 2o(7(©) + Aa(r(€))) =
= lim (& 20(8),y0(70())) = 210,

5—>’Yo(t00)—

lim (& xo(€),z0(r0(€)) = lm (& x0(§),00(0(€))) = 220,

&—70(too)—

sup | fo(& wo(€) + Aa(€),wo(r(€)) + Aa(r(€))) -

€0 ¢e[v(to) 0 (t00))

— fo(&:70(€), w0(0(©)))] = for-

It is clear that

too

7o(ton) — 7(te) = / 50(6) dé =
To(v(to))

too tOO

50(€) de = / 50(€) de = O(ebp) > 0

T(v(to))—ed7(v(t0)) to—edT(y(to))
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It is not difficult to see that
~o(too)
ao[t] = / Y (&) fo1 dE + o(t;edp) =

v(to)

too

= [ YO0l Sarin(€) de +ofticon) =

7o (v(to))

too
= / Y (70(8)s ) for190 (&) d€ + oft; edp) =
too—e(67 (70 (t0o0))—dto)+o(edp)
= Y (7(too)—; 1) fo170(too) (7 (Y0 (too)) — Sto) + o(t; edp).
For & € [y(to),v0(too)], we have Ax(79(&)) = edp(10(€)), therefore

~o(to)
asll === [ V(&0 fonlebolnl) de-
~(to)
~o(too)
- / Y (€1) fom [€] Ao (£)) dE =
~Yo(to)
_ / Y (10(6): £)fowa 10 (€)H0(€) A (€) de + oft: 1),
Consequently,
as[t] = €Y (v0(too)—; t) fo170 (too) (67 (0 (t0o)) — 0to) =
= [ Y003 ) fors b @0 2a() de + ofticon). (232

Transforming the expression aslt] for t € [t19 — d2,t10 + 2], we have

4
asft] = Z asilt],

where
t

anlt] = / Y (€ 6)61 [ Ax(€)de,

~Yo(too)
t

aslt] = [ Y& OmlE][zo(r(©)) ~ mo(r(©) + Ax(r(e)] e,

Yo(too)
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asslt] = / Y (€:1) fou [€] [ Aa(r(€)) — Ax(ro(€))] de,

Yo(too)
t

asall) = [ V(&S l8an(r(©)) — zo(r(©)] de.
Yo (too)
For each Lebesgue point 79(&) of the function & (t),¢ € [too, t10 + 02], we get
7(£)
20(7(§)) — 2o(70(£)) = / o (£) d§ = eio(10(£))07(€) +7(&;€0p), (2.33)
70(£)

where
iy 1(&5€0K)
e—0 £
From (2.32), taking into account the boundedness of the function zg(t), we
have

= 0 uniformly for du € Q3. (2.34)

|20(7(€)) — z0(r0(€))| < O(ebp1) and \@\ <const.  (2.35)
Further,
T(€)
[An(r(©) = Ax(r(©)] < [ AGa(s)]ds <
T0(§)
T(§)
< [ 146 |Aslo(s)]ds <
T0(&)
T(§)
< / Lot (5) (182(5)| + [o(r(5) = wo(ro(s))] + [Aa(r(s))]) ds <
T0(&)
7(&)
< 1Al [ As(o(s)|ds -+ ofé; <t
7(§)

If [o(m0(£)), o(T(£))] C [to, ¥(to)], then
Ax(o(s)) = edv(o(s)).
Thus, in this case we have
|Aa(7(€)) — Ax(ro(€))] = ol&; =0p).
It [o(r0(€)), o(7(€))] € [v(to), v{tn)), then
|Aa(o(5))] = [io(s); o + 201) — vo(a(s))|
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and
|Az(7(€)) — Ax(19(€))] = O(& ebp).
It is clear that if £ € [vo(v(t0)), v(¥(too))], then

[0(70(€)), a(7(€))] C [v(to), v(too)]

with
gig% [Yo(¥(to)) — v(¥(too))] = 0,
therefore
¥(v(too))
Y (§:1) foy [Ax(7(€)) — Ax(ro)(€)] d§ = o(edp).
Yo (v(t0))

Continuing this process analogously for az3[t], we get
asslt] = o(t;edu).
According to (2.32) and (2.34), for the above expressions we have

lasi[f]] < [V 10(e61)8s(e0m),  |asalt]] < 1Y O(e511)pa(edp),

aalt] =Taltiedn) += [ V(6D on[€lin(ra(€)67() de
Yo (too)
where
t10402
O3(edp) =

Yo (too)

wal (57 -'L'O(f) + SALU(&)? x0(70(§>))+

+5(20(r(€)) — 20(0(€)) + Aa(r(€)) ) -
= foun (€ 20(€) 20(9)) | e,

t10+02
p3(edp) =

Yo (too)

Joua (& 20(€) + sA(€), w0(70(€))) +

+ 5 (20(7(€)) — wo(r0(©)) + Aa(r(€)) ) -
= foua (&:20(6), 20(8)) |

t10+02
5t 2op) = / Y (€:1) foma [€17(6: 25) de.

Yo (too)
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Obviously,
3t <o) e 3(E: cm)
t;e ;€
[ 22 <y / [ FouslE] | F2 e
~o(too

By the Lebesgue theorem on the passage under the integral sign, we have

lim 03(e0p) = lim pesy = 0

and
lim ’M‘ -0
e—0 £
uniformly for (¢,8u) € [vo(too),t10 + d2] (see (2.33)).
Thus,
%) [t] = O(t; 55#)3 L= ]-7 23
t
calt] ¢ [ Y(&t)fon io(rol€)3(€) d + ofti ).
Yo (too)
Consequently,

aslf] = ¢ / Y€1) fom [€li0 (70 (€))07(€) dé + o(t:e0p).  (2.36)

~Yo(too)

On the basis of (2.31), (2.32) and (2.36),

Yo (too)

Raftitoo] =2 [ Y(EOfons[6100(ro(€))67(6) de+
+ Y (70(too)—; t) fo1 70 (t00) (67 (70 (o)) — dto) —
- / Y (0(E):£) fors 0 (€)1 0 (€) A (€) dE X

x e / Y (€:1) fora [€)i0 (r0(€))57(€) d + o(t:01).  (2.37)

Yo (too)

Finally, let us estimate Rs[t;too]. We have

k
| Ra[t; tool| < eal[Y[| D Bi(edp),

i=1
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where
Bi(edp) =
t10+02
= [ Losri(©[182(©)] + faolr(©) - ara©)] + |Aa(r©)] ] de.
It is cleoaor that
Biedp) <
y(to)
< [ Logoa(©][OC0) + ol (€) — ool ©)] + elilr(©)] ] de+
’Yoo(ioo)
b [ L O[O0 + an(r(€) — aolml€)] + | Ba(r(©))]] de+
v(to)
ti0+02
b [ Lo (©[0C0) + [s0(r(9) — mu(r(€)] + O(etno)] e
Yo(too)
Obviously,
lim §(edy) = 0.
Thus,
Ralt; too] = o(t;edp) (2.38)
From (2.22), by virtue of (2.23)—(2.25), (2.37) and (2.38), we obtain (2.1),
where dz(t; ) has the form (2.2). O

2.2. Proof of Theorem 2.2. Let vy = tgp and ro = t19 in Lemma 2.3.

Then
{%w,mﬁmm
yo(t), t € [too, t10],
and for arbitrary (g,0u) € (0,e1) X &

@(t) = po(t) +edp(t), te [T, to),

x(t; po +edp) =
( ’ ) {y(t§MO + 5(5//6)7 te [to,tlo + 51].

We note that du € %;, i.e. tg > tgg, therefore

E(S(p(t), te [7/:, too),

Az(t) =  @(t) —zo(t), t € [toosto),
Ay(t), te [to,tlo + 51],
sév(t), te [7/'\, too),

Az(t) = { vo(t) + edu(t) — do(t), t € [too,to),
Ay(t), t € [to,t10 + d1].
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By Lemma 2.3, we have
|Az(t)] < O(edp), V(t,e,0p) € [to, tro + 61] x (0,e1) x ST, (2.39)
Az(to) = {—:{&EO — [A(too)vo (o (too)) + f0+]5t0} + o(=6p). (2.40)
The function Az(t) satisfies the equation (2.21) on the interval [tg, t10+1;]
therefore, by using the Cauchy formula, we can represent it in the form

t

Az(t) = U(to; t) Ax(to) +€/Y(€;t)5f[€] dé+ ) Riltito],  (2.41)

to i=—1

t e [to,tlo + (51]

Let 5 € (0, d2) be so small that vo(tgo) < t10—J2. The matrix function is
continuous on [tog, Yo (too)] X [t10 — d2, t10 + 2] (see Theorem 1.13), therefore

D (t; 1) Az (o) =
= e (too; ) {60 — [A(too)vo(o(ton)) + fi |0t} + olt:00)  (242)

(see (2.40)).
Let us now transform R_;[t;to]. We have

too

Roltsto] = / Y (1(€); ) A((€))i(€)Fu(€) de-+

a(to)
+ / Y (u(€): 1) A((€)(€) A(€) d =

= [ Y00 040()()60() de +olt b+

o(too)
+ / Y (1(€); ) A(w(£))i(€) x

X [A(ﬁ)(vo(a(ﬁ)) +edv(a(§))) + fo(f,xo(f)ﬂo(m(f)))} d§ =
=€ / Y(l/(f), t)A(V(&))Z/(f)(S’U(f) d§ + E[Y(t00+; t) - (b(too; t)} X
o (too)

X [Uo(too) — A(too)'l}o(a'(t()o)) — f0+:| 5t0 + 0(65/1) (243)
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For Rylt; to], we have

too

Rolt:to] = ¢ / Y (40(6): ) foma 1o ()0 (€) 50 €) dé +

To(to)
to

+ / Y (10(6): ) fosa 110 (€) o) A (€) d =

too

too

oy / Y (0(6): ) foms 110 (E)F0(€)50(€) dé + olts 2671) +

70 (too)
+ / Y (0(E): 1) fors o ()0 (€) A (€) de. (2.44)

In a similar way, with inessential changes one can prove
Yo (too)
Raftito] == [ Y€1) onal€lin(m(€)dm(€) dé+
too

+ Y (70(too)—; ) fo1 70 (too) (37 (Yo (ton)) — o) —

- / Y (0(6):£) fors 10 (€) 0 (€) A (€) dE x

x e / Y (€:1) fom [€)i0 (r0(€))57(€) dE + o(t:26)  (2.45)

Yo(too)
and
Ra(t;tg) = o(t;edp). (2.46)
Obviously,
t t
 [Yioorigas == [vignorigas +ottieon).  (2a1)
to too

Bearing in mind (2.42)—(2.47), from (2.41), we obtain (2.1) and the variation
formula.

In the conclusion we note that the Theorems 2.3-2.6 can be proved by
the scheme using in the proof of Theorems 2.1 and 2.2.

3. INiTIAL DATA OPTIMIZATION PROBLEM

3.1. The Necessary conditions of optimality. Let tg1, to2,t1 € (a,b) be
the given numbers with tg; < tge < t1 and let Xg C O, Kg C O, K; C O,
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U C Uy be compact and convex sets. Then
DQZ{TGD: 62>7"(t)>61>0},
®1={peE,: p(t)EKy, tel,}, Py={veEE,: v(t)€K;, tel},
O ={ueQ: ult)el, tel}.
Consider the initial data optimization problem
#(t) = A(t)a(o(t) + f(t, 2(t), z(7(1)), u(t), t € [to, t],
z(t) = p(t), () =v(t), t€[T,to), z(to)= w0,
qi(to,xo,x(tl)) =0, i=1,...,1,
¢ (to,xo,z(tl)) — min,
where
w = (to, T, To, P, v,u) € Wi = [to1,t02) X Da x Xg x &1 X &g X
and z(t) = z(t;w); ¢*(to,xo, ), i = 0,...,l, are the continuously differen-
tiable functions on the set I x O2.

Definition 3.1. The initial data w = (to, 7, 2o, @, v,u) € Wp are said to
be admissible, if the corresponding solution x(t) = x(t; w) is defined on the
interval [7,¢1] and the conditions hold

qi(to,.’bo,x(tl)) = 0, 1= ]., ceey l,
hold.

The set of admissible initial data will be denoted by W7g.

Definition 3.2. The initial data wg = (teo, 70, Zoo, Yo, Vo, uo) € Wip are
said to be optimal, if for any w = (to, 7, o, @, v,u) € Wio we have

°(too, oo, zo(t1)) < ¢°(to, zo, x(t1)),
where zo(t) = z(t;wo), z(t) = z(t; w).

The initial data optimization problem consists in finding optimal initial
data wq.

Theorem 3.1. Let wy € Wig be optimal initial data and too € [to1,t02).
Let the following conditions hold:

(a) Y0(too) < ta;

(b) the functions vo(o(t)) and vo(t) are continuous at the point too; the
function po(t) is absolutely continuous and the function ¢o(t) is
bounded;

(c) for each compact sets K C O and U C Uy there exists a number
mg,u > 0 such that

lfo(2)| <mgu, Vz=(t,z1,12,u) € I x K* x U;
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(d) there exist the limits
lim fo(z) = fi", 2z € [too, toz) x O?,

zZ—r 20

lim [fo(z1) = fo(22)] = foh, 2 € o(too),t1) x O%, i=1,2,

(21,22)—=(210,220)
where
20 = (o0, Zoos po(To(te0))), 210 = (Y0(too), To(Y0(te0)); oo),
220 = (70(t0o), 2o(Y0(t00)), wo(too)),  fo(z) = f(2,uo(t)).

Then there exist a vector m = (mp,...,m) # 0, mo < 0, and a
solution (x(t),¥(t)) of the system

P(t) = x(t) + (v () Al (1)) (1), t € ftoo, 1], (3.1)
X(t) = ¢(t) = 07 t> 1t

such that the conditions listed below hold:
3.1. the condition for x(t) and ¥(t)

x(t1) = ¥(t1) = mQoq,
where
Q=1("...,d"", Qos = Qz(too, w00, 0(t1));
3.2. the condition for the optimal initial moment tyg
TQot, + (¥ (too+) — X (too))vo(too)—
= (too+) (Altoo)vo(a(teo)) + fof ) — ¥ (v0(too+)) foi¥(too) < 0;
3.3. the condition for the optimal initial vector xog
(TQoao + ¥(tao)) w00 > (TQozy + ¥ (t0o)) o, Vo € Xoj
3.4. the condition for the optimal delay function 1o(t)
Yo (too)

wnltoo ) fitoo + [ 900 fonaltlnlmo(®)r®) e+

too
ty

+ / D(t) fous [0 (T0(t))T0(t) dt >
7o (too)

7o (too)

> (0(toot)) fii (0 (foo)) + / () foua )00 (ro(6))7 (1) dit+

too
ty

+ / U (t) fous [HlE0(To(t))7(t) dt, V7 € Doy ={7 € Da: 7(70(to0)) < too};

Yo(too)
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3.5. the condition for the optimal initial function g (t)

Y(70(t)) fows [Y0 () F0(t) o (t) dt >
To(too)
> [ 6O o boOo(0pt) b, Vo € s
70(too)

3.6. the condition for the optimal initial function vy(t)

/ P (1) AW ()i (Yo () di >

o(too)
> / D) A () p(t)o(t) dt, Yo e o;
o(too)

3.7. the condition for the optimal control function ug(t)

/w(t)f()u[t}uo(t) dt > /¢(t)f0u[t]u(t) dt, Yu € Q.
Here

foult] = fu(t,20(t), 2o (10(t)), uo (1)),

Theorem 3.2. Let wy € Wig be optimal initial data and tog € (to1,to2)-
Let the conditions (a), (b), (c) hold. Moreover, there exist the limits

lim fo(z) = fy, 2 € (to1,too] x O,
zZ—r2z0

lim [fo(z1) = fo(22)] = fo1, i € (too,Y0(too)] X O?, i =1,2,

(21,22)—(210,220)
Then there exist a vector m = (mo,...,m) # 0, mo < 0, and a solution
(x(t),¥(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5-3.7
are fulfilled. Moreover,
TQote + (¥ (too—) — X (t0o))vo(too) — ¥ (too—) (A(teo)vo(o(too) + fo ) —
—¥(v0(too—)) fo17(foo) = 0,
Yo (too)
wlnltoo-fiitoo+ [ 00 for loo(r(t)mo(t) der

too
t1

[ O ol 0)rale) de 2

Yo (too)
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~Yo(too)

> Y(v0(too—)) for7(v0(to0)) + / Y(t) fou, [t)Po(10(2))7(t) dt+

+ / w(t)f()zg [t]xo(To(t))T(t) dt, V’TGDQQ:{’TGDQ : ’T(’Y()(too))>t00}.
Yo(too)

Theorem 3.3. Let wy € Wig be optimal initial data and tog € (to1,to2)-
Let the conditions of Theorems 3.1 and 3.2 hold. Moreover,

fo=1="F fa="1f5="Ian
and

too, vo(too) & {U(tl),OQ(tl), )

Then there exist a vector m = (wg,...,m) # 0, 1o < 0, and a solution
(x(t),9¥(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5-3.7
are fulfilled, Moreover,

~

7Qoty + (¥ (too) — x(too))vo(too) — ¥ (too) (A(too)vo(o(too)) + fo)—

~

= (v0(too)) for¥(too) = 0,

Yo (too)

b(v0(too)) fortoo + / Y(t) fou, [tlPo(T0(t))T0(t) dt+

too

+ / () foua [0 (ro (1) o (1) dit >

~o(too)
o (too)
> (0(t00)) For 7 (o foo)) + / () fous [0 (7o) (1) di+

t1
+ / 'I/J(t)foxz [ﬂ.’bo(’l’o(t))’r(t) dt, V7€ Ds.
Yo (too)
3.2. Proof of Theorem 3.1. Denote by G the set of such elements w €

W1+ = [too,tog) X D21 X Xo X (1)1 X (I)Q X Ql to which there COI‘I‘GSpODdS
the solution z(t;w), t € [7,t1]. On the basis of Theorem 3.3, there exist

~

V(wo; dp) such that
‘70(’11)0; (50) = ‘7(100; (50) n W1+ C Go.

On the set ‘701(20;50) =1[0,dp) X ‘70(11)0;50), where zg = (0, wy)), we define
the mapping

P: ‘701(20; 50) — R;;—H (32)
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by the formula

P(2) = Q(to, zo, z(t;w)) + (5,0...,0)" =
= (qo (t1,xo, x(h;w)) +5,¢" (t1,xo, x(ty; w))7 L (thxo,x(tl;w)))T,

z = (s,w).

Lemma 3.1. The mapping P is differentiable at the point zog = (0,wq) and

dP,,(0z) = {QOtO + Qoz [Y (too+;t1) — ¥ (too; t1)]vo(too)—
— QuaY (too+ t1) [Altoo) o o (too)) + fif | -

— QozY (Y0 (too)+; tl)f(ﬁ%(too)}&o + {QOxo + Qo2 ¥ (too; tl)}5$0+

+ QOz{Y(’Yo(too)+; t1) foi 0 (too )07 (o (too)) +

o (too) too
+/YwhmmM%ﬁ®ﬁﬂﬂﬁ+/YmhMmM%ﬁﬁﬁﬂﬂﬁ}%

too Yo(too)

too

+Qm{/’n%mmmmmmmmwwﬁ+

7o (too)

too

+ / Y(z/(t);t1)f012[1/(t)]1)0(t)5v(t)dt}+

a0(too)

+Q0x/Y(t;t1)f0u[t]5u(t) dt + (ds,0,...,0). (3.3)

too

Proof. Obviously, for arbitrary (z,6z) € (0,80) X [Vo1(20;60) — 2o], we have
20 +€dz € ‘701(20; 00)-
Now we transform the difference

P(zp +edz) — P(z9) =

= Q(too +ebto, woo + €0z, 2(t1; wo + 5571))) — Qo +¢(8s,0,...,0)7.
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It is easy to see that

Q(too + dtoo, Too + 0o, x(t1; wo + dw)) — Qo

& Q(to+5§6t0, o0 +££070, o (1) +& (2(tr; w0+55w)—x0(t1))> de =

I
O\H
Sl

—c [Q%ato + Qouy 70 + Qoo (ty; 6w)} + aledw),

where

1 1

aedw) = E/ [Q1,(£5€) — Qo | Sto dE + E/ [Quo(8;€) — Qoao | 0o dE+

0 0
1

te [ [Qulest) — Qoslda(ti; 6w) d + ofebw) | Qos(e;€) dE,
/i /

Qto( &, é‘) -
= Q4 (too + e€btg, xoo + €€dxg, xo(t1) + €($(t1; wp + edw) — Jio(tl))) .
Clearly, a(edw) = o(edw). Thus
P(z0+¢€dz) — P(2) =
— [ Quia6to + Qury 60 + Qoad(t; dw) + (35,0,...,0)T| + of=8w).
On the basis of Theorem 2.5, we have (3.3).

The set Vo1(z0;00) is convex and the mapping (3.2) is continuous and
differentiable. In a standard way we can prove the criticality of point zq
with respect to the mapping (3.2), i.e. P(z9) € 9P (Vp1(20;d0)) [10, 15].
These conditions guarantee fulfilment of the necessary condition of critical-

ity [10,15]. Thus, there exists the vector m = (o, ..., ) # 0 such that the
inequality

mdP,,(dz) <0, dz € Cone (‘701(20; 80) — 20), (3.4)

is valid, where dP,,(dz) has the form (3.3).
Let us introduce the functions

X(t) =7mQoz Y (t;t1), ¥(t) = 7QosY (t;t1). (3.5)

It is clear that the functions x(¢) and ¥ (¢) satisfy the system (3.1) and the
conditions

X(t1) = Y(t1) = 1Qox, X(t1) =(t1) =0, t>t;. (3.6)
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Taking into consideration (3.3))—(3.5) and (3.6), from (3.4) we have

{ﬂ'QOto + [¢(too+) — x(too)]vo(too)—

— ¢(too+) [A(too)voo (o (too)) + fo | — ¢(70(t00+))f(ﬁ70(t00)}5t0+
+ {7Qoa, + X(too) }6z0 + 1 (70 (tao)+) fei %0 (t00) 07 (Y0 (o)) +

Yo(too) too

+/¢(t)f0m[t]' (7(t))or(t) dt+/¢(t)f0m[t]iﬂo(T(t))fST(t) di+
Yo(too)

/ $00(8) fara OO8R(0) dt + [ 0000 fara OO0 (0) do+

o(too) a(too)

+ /Q/J(t)fOU[t](Su(t) dt + mpds, Vdz € Cone (‘701(20; do) — Zo). (3.7)

too

The condition 6z € Cone(Vo1(z0;80) — 20) is equivalent to ds € [0, 00),
Oty € [0,00),

dxg € Cone B 3200,(50 NXo— .’1300) D Xo — X0,

67 € Cone (V (79 : 60) N D2y — 79) D Da1 — To,

(
(V(
dp € Cone <V1(<Po,5o )N @1 — ) D Py — ¢,
ov € Cone (Vg(vo do) N Py — vo) D ®y — vy,

ou € Cone (Vg(u0,5 )Ny — uo) D 01 — up.

Let 0ty = 0,67 = 0,0x9 = 0,09 = dv = 0,0u = 0, then from (3.7) we
have wds < 0, Vds € [0, 00), thus my < 0.
Let 6s = 0,67 = 0,dz9 = 0,dp = dv = 0, Ju = 0, then we have

{WQOtO + [1(too+) =X (t00)] vo(too) =¥ (too+) [A(too)voo (o (too)) + fo ] —

- 1/J(70(t00+))f$%(too)}5to <0, Yty € [0,00).

From this we obtain the condition for tqg.

If s =0, 6tg = 0, 7 = 0, dp = dv = 0, du = 0, then we obtain the
condition for xgg. Let ds =0, dtg =0, dzg =0, dp = dv = 0, du = 0, then
we have the condition for the optimal delay function 7o(t) (see 3.4). Let
0s =0, 0tg =0, =0, dzg =0, dv =0, ju = 0, then from (3.7) follows the
condition for the initial function o(t). If §s = 0, §tg =0, 67 = 0, dzg = 0,
0 =0, du = 0, then we obtain the condition for vy(¢). Finally, we consider
the case, where ds = 0, dtg = 0, 67 = 0, dxg = 0, dp = 0, v = 0, then
we have the condition for the optimal control ug(¢). Theorem 3.1 is proved
completely. O
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In the conclusion we note that the Theorems 3.2 and 3.3 are proved
analogously by using the corresponding variation formulas.

4. THE EXISTENCE THEOREM OF OPTIMAL INITIAL DATA

4.1. Formulation of the main result. Let ¢g1, tp2,t1 € (a,b) be the given
numbers with ty; < tg2 < t1 and let Xy C O, Ky C O, U C Uy be compact

sets. Then @ is the set of measurable initial functions ¢(t) € Ky, t € Iy,
D={ueQ: ul)el, tel}.
Consider the initial data optimization problem

(t) = A()a(o(t) + f(t, (), 2(r(t)), u(t)), t € [to,t],
z(t) = o(t), (t) = v(t)v t€[r,to), x(to) = o,
¢ (to, w0, 2(t1)) =0, i=1,...,1,
J(w) = (to,ato, (t1)) — min,
where
w = (to, T, To, P, v,u) € Wa = [to1,to2] X Da X X X P12 X Pg X Q9
and z(t) = z(t; w). The set of admissible elements we denote by Wag.

Theorem 4.1. There exists an optimal element wq if the following condi-
tions hold:

4.1. W20 7é @,’
4.2. there exists a compact set Ko C O such that for an arbitrary w €
Wao,
x(t;w) € Ko, t € [T, 1];
4.3. the sets
P(t7x1) = {f(t7$17x27u) : (I27u) € KO X U}a (tvxl) €Ix0
and
Pi(t,xy,29) = {f(t,xl,xg,u) T u € U}, (t,z1,29) € I X 0?
are convex.

Remark 4.1. Let Ky and U be convex sets, and
[t 1, 22,u) = B(t,z1)z2 + C(t, 21)u.
Then the condition 4.3 of Theorem 4.1 holds.

4.2. Auxiliary assertions. To each element w = (to, 7, o, p,v,u) € Wh
we correspond the functional differential equation

q(t) = A(t)h(to, v, 4)(o(t) + f (£ a(t), h(to, 0. q)(7(1)), () (4.1)
with the initial condition
q(to) = wo. (4.2)
Let K; C O, @ = 3,4 be compact sets and let K4 contain a certain neigh-
borhood of the set K3.
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Theorem 4.2. Let g;(t) € K3,i = 1,2,..., be a solution corresponding to
the element w; = (to;, Ti, Toi, Pi, Vi, wi) € Wo, i = 1,2,..., defined on the
interval [to;,t1]. Moreover,

hm tOi = too, hm ||7—7, — ’7'0”[2 = 0, hm Toi = Zo0- (43)
i—00 i—00 i—00

Then there exist numbers § > 0 and M > 0 such that for a sufficiently large
ig the solution ;(t), i > ig, corresponding to the element w;, © > ig, s
defined on the interval [too — d,t1] C I. Moreover,

Uilt) € Ka, [dhi(t)] < M, t € [too — 6, 11]
and

Yi(t) = qi(t), t € [toi,t1] C [too — 6, t1].

Proof. Let € > 0 be so small that a closed e-neighborhood of the set K3 :
Ki(e) ={r € O: 37 € K3, |x —Z| < €} is contained int K4. There
exist a compact set Q C R™ x R™ and a continuously differentiable function
X : R x R™ — [0, 1] such that

X(x1,22) = {17 (z1,72) € @, (4.4)
0, (z1,22) ¢ K4 X [KoU Ky]

and

Ks(e) x [KoUK3(e)] € Q C Ky x [KoU Ky.
For each ¢ = 1,2, ..., the differential equation

h(t) = A(t)h(tos, vi, ) (0 () + G (8, (1), hltoi, i, ) (7:(t)), wi(1)),
where
o(t, 1, x2,u) = x(z1, 22) f(E, 21, T2, 1),
with the initial condition
Y(toi) = oi,
has the solution v;(¢) defined on the interval I (see Theorem 1.15). Since
(qi(t), h(toi, i, a:)(13(1))) € K3 x [Kog U K3] C Q,t € [to;, t1],

therefore

x(¢i (), h(toi, i i) (T:(t)) =1, t € [toi, ta),
(see (4.6)), i.e.

o (t, qi(t), h(tos, pi, ¢i) (i (1)), ui(t)) =
= f(t,qi(t), h(toi, pi, @) (Ti(t)), wi(t)), t € [tos, t1].
By the uniqueness,
P (t) = qi(t), t € [toi,t1]- (4.5)
There exists a number M > 0 such that

i) <M, tel, i=1,2,.... (4.6)
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Indeed, first of all we note that

62, 0ilt), hltor, i ) (1), wa(0) | <
< sup {|@(t, z1,22,u)| : t €1, 21 € Ky, 33 € K4 UKy, UEU} = Ny,
i=1,2,....

It is not difficult to see that if ¢ € [a,v(to;)), then

|[vbi(t)] = ‘A(t)vi(ai(t)) + ¢(t7¢z‘(t)ah(tou<Pi,1/1i)(7'z‘(t)),ui(t))‘ <
< ||A[[N2 + N1 = M;y,
where
Ny =sup{|z|: z € K1 }.
Let t € [o(to;), 02(to;)), then
()] < Al [¢a(o(®)] + N1 < [[A| My + Ny = M.

Continuing this process, we obtain (4.6). Further, there exists a number
09 > 0 such that for an arbitrary ¢ = 1,2,..., [to; — do,t1] C I, and the
following conditions hold:

toi

[itto) = 0500 < [ [|AGICtorvi i) o (o)) +

t

+ ‘¢(87¢i(5),h(f0¢7%,%)(Ti(f))aui(s)) H ds <€, t € [toi — do, toi];
This inequality, with regard for ¥;(to;) € K3 (see (4.5)), yields

(i(t), h(tos, i, 1i) (1:(t))) € Ks(e) x [Ko U K3(e)], t € [to; — o, 1],
i.e.

X(wl(t)a h(tOia ¢l7wl)(Tl(t))) = 17 te [tOl - 607t1]a 1= 1a 27 ety
Thus, 1;(t) satisfies the equation (4.1) and the conditions ;(to;) = o,
P;i(t) € Ky, t € [to; — do,t1], 1.e. ;(¢) is the solution corresponding to the
element w; and defined on the interval [to; — dg,t1] C I. Let § € (0,6),
according to (4.3), for a sufficiently large ig, we have

[toi — do0,t1] D [too — 6, t1] D [tos, t1], @ > io.
Consequently, ;(t),7 > ig are the solutions defined on the interval [too —
d,t1] and satisfy the conditions ;(t) € Ky,
|9hi(t)| < M, t € [too — 6, 1],
Yi(t) = qi(t), t € [tos, t1]. U
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Theorem 4.3 ( [8]). Let p(t,u) € R™ be a continuous function on the set
I xU and let

P(t) = {p(t,u) : ueU}
be the convex set and
p; € L(I,R™), pi(t) € P(t) a.e. onlI, i=1,2,....

Moreover,

lim p;(t) = p(t) weakly on I.

i—00
Then
p(t) € P(t) a.e. on I

and there exists a measurable function u(t) € U, t € I such that

p(t,u(t)) = p(t) a.e. on I.
4.3. Proof of Theorem 4.1. Let w; = (toi, T3, Toi, Vi, Vi, U;) € Wag, i =
1,2,..., be a minimizing sequence, i.e.

lim J(w;) = J= inf J(w).

71— 00 weWso

Without loss of generality, we assume that

hm t()i = too, hm To; = Too-

1—> 00 11— 00
The set Dy C C(I2,R™) is compact and the set ®2 C L(I;,R™) is weakly
compact (see Theorem 4.3), therefore we assume that

lim 7;(t) = 70(¢t) uniformly in ¢t € Iz = [a,7],
71— 00

and
lim v;(t) = vo(t) weakly in ¢t € I,
1— 00
the solution z;(t) = z(t;w;) € Kj is defined on the interval [to;,t1]. In
a similar way (see proof of Theorem 4.2) we prove that |#;(t)] < N3, t €
[toi, t1], @ = 1,2,..., N3 > 0. By Theorem 4.2, there exists a number § > 0
such that for a sufficiently large ig the solutions x;(t), i > ip, are defined on
the interval [tgg — J,¢1] C I. The sequence z;(t), t € [too — J,t1], ¢ > o, is
uniformly bounded and equicontinuous. By the Arzela—Ascoli lemma, from
this sequence we can extract a subsequence which will again be denoted by
x;(t), © > ig, such that
lim x;(t) = z¢(t) uniformly in [tgg — 0, t1].
71— 00
Further, from the sequence &;(t), i > ip, we can extract a subsequence which
will again be denoted by ;(¢), i > ig, such that

lim @;(t) = o(t) weakly in [too — 9, t1].
1—> 00
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Obviously,

xo(t) = lm x;(¢) =
1—> 00
¢

t
= hm |:£L'i(t00 — 5) + / .’L'Z(S) d8:| = xo(too — (5) + / Q(S) ds.
1—00

too—0 too—9

Thus, ©o(t) = o(t), i.e.
E}m xl(t) = l’o(t) Weakly in [tgo — (S, tﬂ.
Further, we have
zi(t) = oit
—&-/{A(s)h(t()i,vi,gbi)(a(s))—&-f(s,xi(s), h(toi, @i,xi)(n(s))mi(s))} ds =

= x0; + V1 (t) + Vai + 014(t) + 024, t € [too,t1], @ > o,

where

D14 (t /A h(toi,vi, ;)(0(s)) ds,

0t / F(s,2:(5), h(tor, 0 20) (7:(s), ws(5)) ds,

o= [ 10,05, Mo ) o). ) s

Obviously, ¥9; — 0 and #3; — 0 as i — co.
First of all, we transform the expression 14;(t) for t € [too, t1]. For this
purpose, we consider two cases. Let t € [tog, ¥(f00)], we have

D1(t) = 93 (1) + 012 (1),

where
t

2D (t) = / A($)h(ton, vi, ) (0 () ds,

2
92 (1) / 9
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99(5) = A(3) [Btor, vi, ) (0(5)) = hltoo, vis ) (o(5))] -

It is clear that

t1
102 (1)) < / 10 (s)] ds, t € [too, ta]. (47)
too

Suppose that v(tg;) > too for ¢ > i, then

957 (5) =0, s € [too, 1)) U (867, 1],

where
t(()i) = min {V(tOi)a V(tOO)}, téi) = max {V(t()i), l/(too)}.
Since
: (2) _ (1) _
ilggo(tm to; ) =0,
therefore
lim ﬁg) (t) = 0 uniformly in ¢ € [too, t1] (4.8)
11— 00
(see (4.7)).
For 0942 (1), t € [too, v(too)], we get
o(t)
90 (1) = / A(v(s))h(too, vi, 0:)(s)0(s) ds =
O’(too)
o(t)
= / A(v(s))v(s)vi(s) ds.
a(too)
Obviously,
o(t) t
lim ¥4;(t) = / A(v(s)v(s)vo(s) ds = /A(s)vo(a(s))ds, (4.9)
11— 00
a(too) too
t € [too, o(too)]
(see (4.8)).

Let t € [Z/(too), t1], then
90 (8) = 00 (v(too)) + 9\ (8),

where

o~

9D (1) = / A($)h(tos, vi, 1) (0(s)) ds.
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Further,
a(t)
9D (1) / A()h(too, vi, i) (0(5)) ds = / A((s))i(t)is(5) ds
tog) too
Thus, for t € [v(too), t1], we have
v(too)
lim 9 (4) = /A() ) dt + / A(s)ig(o(s))ds.  (4.10)
11— 00
too too

Now we transform the expression 60y;(t) for t € [too,t1]. We consider two
cases again. Letting t € [too, Yo(too)], we have

emw=%ﬂw+%ﬂm

o) (1) t/fsxz Btoo, i, 2:)(7a(s)), us(s)) ds,

042 (1) / 6

%?@)=f@:WG)MMn@mMMn@unwﬂ—
— f(s,2:(5), h(too, pi, ) (1:(5)), ui(s)).

It is clear that

tio

1052 (t))| g/|e§§>(s)|ds, t € [too, ta].
too

Suppose that v;(tg;) > too for ¢ > ig, then

0 (s) =0, s € [ton, t5)) U (t57, ta],

where
3) _ . (4 A (4) _ (4 A
ty;; = min {’Yz(tOz)a %(too)}, 1y, = max {%(tOZ)v Vl(tOO)}'
Since
lim (t(4) t(()?)) =0
i—00
therefore

lim 9(2)( t) = 0 uniformly in ¢ € [too, t10]-

71— 00
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For 651 (1), t € [too, Y0 (too)], we have
7i (t)
01 () = / F(u(s),2s(7i(5)), Bltoos @i, 23)(5), ws(i(5)) ) ¥i(s) ds =
7i(too)

=08 (1) + 67 (t), i > i,

where
70 (t)
017 (t) = / F(v0(5), 20 (70(9)), @i(8), i ((5))) Fo(s) ds,
70 (too)
7i (t)
00(0) = [ 10050505, Alton. ) 5), s 5)) ) s~
7i(too)
70(t)
- / F(v0(s), mo(Y0(s)), wi(s), ui(7i(s))) o (s) ds.
7o (too)

For t € [too, Yo (too)], we obtain

017 (1) = 7700)f(w<s>,xi<w<s>>,h(too,%xi><s>,ui<%<s>>)%<s> ds+
"
+ [ [, eits) uitts)) -
7o (too)
= F(0(),20(10(5)): (), s (3()) |3 5) s
- ﬂ/(t)f(vi<s>,xi<vi<s>>,h(tomgoz-,xn(s),ui(%(s)))ws) ds.
7o (t)

Suppose that ||7; — 70|| < & as i > ig, then
Jim £ (7i(s), 2i (7)), w2, u) = £ (q0(5), 70(70(5)), 72, u)
uniformly in (s, 22, u) € [T0(too), too] X Ko x U, we have
Z11}11010 GS) (t) = 0 uniformly in ¢ € [too, Yo(too0)]-
From the sequence

fi(s) = f(70(s),20(10(s)), i(s), ui(7i(s))), i >0, t€ [ro(ton),tool;
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we extract a subsequence which will again be denoted by f;(s),i > ig, such
that

lim f;(s) = fo(s) weakly in the space L([r0(to0), too], R").

1— 00

It is not difficult to see that
fi(s) € P(y0(s),20(70(5))), s € [70(too), too]-
By Theorem 4.3,
fo(s) € P(70(s),z0(70(s))) a-e. s € [7o(too), oo

and on the interval [19(f00), too] there exist measurable functions ¢g1(s) €
Ko, up1(s) € U such that

fo(s) = f(70(5),20(70(5)), po1(s), uo1(s)) a.e. s € [1o(ton), too)-
Thus,

To(t)
lim 0 = Tim 0 (1) = / fols)io(s) ds =
71— 00 12— 00
70(too)
T()(t)
- / £ (0(8), 20(r0(5)), 9o1(5), o () 3o (s) ds =
70 (too)

= /f(S,l‘o(S),(,001(T0(8)),U01(7’0(8))) dS, te [too,’)/()(too)]. (411)

too

Let t € [’)/()(too),tl], then

650 (8) = 6% (0 (to0)) + 69 (1),

where

t

09 (1) = / £ (5 24(5), hltoo, o, 22) (7a(s)), us(s)) ds.

Yo (too)
It is clear that
7i(t)
0% (1) = / £ (i(5)s @i (33(5)), Altoos 0, 2:) (5), wilya(s)))Fa(s) ds =
7i(7v0(too))

=00 (1) + 60 (t), i >,
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where

To(t)
000 = [ £((0) z0(r0(5), (s) ws(5) o) d,

/OOTi(t)
0 (t) = / F (), 23 (5(9)), Moo, 1 ) (), wi (i (5))) 3 () ds—

7i (Yo (t00))

70(t)
- / £ (10(), 0(v0(5)), 2o(), i (3:(5)))F0 (5) ds.

For t € [v0(too), t1], we have

01 () = / F(n(8),2i(3(5)), htoo, i ) (), i (7i(5))) i (s) ds+
[ [70us)mitn(s)mis) ustits) o)
o 7 (0(5), ol +70(5)), vo(5), wi(3:(5))) o (s) | ds+
+ Ti/()f(%(s),fﬁi(%(S»ah(toov%axi)(s)vUi(%‘(s)))%(s) ds.
7o(t)

Thus,
609 (t) = 0 uniformly in ¢ € [yo(too), t1]-
From the sequence
fi(s) = f(70(5), 20 (70(5)), zo(s), ui(7i(s))), @ > o, t € [too,To(t1)],

we extract a subsequence which will again be denoted by F;(s), i > i, such
that

Zlggo fi(s) = fo(s) weakly in the space L([too,To(t1)],R").
It is not difficult to see that
fi(s) € Pi(70(s),z0(70(5)), 2o(s)), s € [too, To(t1)]-
By Theorem 4.3,
fo(s) € P (’70(8),3;‘0(’)/0(3)),330(5)) a.e. s € [too, T0(t1)]

and on the interval [tog, 7o (¢1)] there exists a measurable function ugs(s) € U
such that

fo(s) = f(vO(s),xo('yO(s)),xo(s),uog(s)) a.e. s € [too, T0(t1)]-
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Thus, for t € [vo(too), £1], we have
lim 6} (t) = lim 6} (v0(too)) + lim 67 (t) =
1—>00 1—00 1—>00
Yo (too)
= / f(s, xo(s), zo(10(s)), uoz(s)) ds+

too
t

+ / f(s,xo(s),xo(m(s)),u02(7'0(s))) ds, t € [v(too), t1]. (4.12)
Yo(too)
We introduce the following notation:
0o(s) = P, s € [T, 7o(too)) U (too, toz],
wo1(s), s € [10(too), too),
ﬂ, S € [a,too) U (th b],
ug(s) = € uo1(10(s)), s € [too, To(too)]s
ug2(70(s)), s € (y0(too), 1),
where p € Ky and & € U are the fixed points
1), t€F to),
xo(t) _ 900( ) [ OO)
vo(t), t € [too,t1];
l‘o(t) = ’Uo(t), t c [?, too),

Clearly, wo= (to0, T0, 00, ©0, Vo, to) € Wa. Taking into account (4.9)—(4.12),
we obtain

20(t) =70 + [ [A()0(00(6) + £ (5,20(5). (o (5)), wo() ] s,

t € [too, t1o],
and
0= lim ¢'(toi, woi, z:(t1)) = ¢" (too, oo, To(t1)), i=1,...,1,
1—> 00

i.e. the element wy is admissible and z¢(t) = z(t; wp), t € [T, t1].
Further, we have

J= Zlggo ¢ (toi, zoi» zi(t1)) = ¢° (too, woo, zo(t1)) = J(wy).

Thus, wy is an optimal element.
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ON ASYMPTOTIC STABILITY OF SOLUTIONS
OF SECOND ORDER LINEAR NONAUTONOMOUS
DIFFERENTIAL EQUATIONS



Abstract. The sufficient conditions for asymptotic stability of solutions
of second order linear differential equation

y' +pt)y +q(t)y =0
with continuously differentiable coefficients p : [0, +00) — R and ¢ : [0, +00)
— R are established in the case where the roots of the characteristic equation

AN+ pON+q(t) =0

satisfy conditions

—+oo
ReA;(t) <0 for t >0, / ReAi(t)dt = —oc0 (i =1,2).

to

2010 Mathematics Subject Classification. 34D05, 34E10.
Key words and phrases. Second order differential equation, linear,
nonautonomous, asymptotic stability.

09bomdg.  Igo@g Gogol FOgogo ©oggmgbEosmyg@o gobGmmgdols-
0ngol
y' +pt)y +at)y =0
9¥Y390°0 Fo®@dmgdswo p: [0, +00) - R @s ¢:[0,+00) = R 3mggoiogh-
Bgdom oEygbogmos 5dmbsblbgdols sLod3FmE M0 Fpydomdol Lsgds-
@olo do®mdgdo 0d Fgdmbgggsdo, MmEs dobsbosmgdgmo
M+ pt)A+qt) =0

356@mEgdols 53gbggdo s3dsymuzomgdgh JoMmdgdls

+oo
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1. INTRODUCTION

This present paper is a continuation of the article Sufficiency conditions
for asymptotic stability of solutions of a linear homogeneous nonautonomous
differential equation of second-order.

In the theory of stability of linear homogeneous on-line systems (LHS)
of ordinary differential equations

% = P(t)Y, te€ [to;+00) =1,

where the matrix P(t) is, in a general case, complex, of great importance
is the study of the LHS stability depending on the roots \;(t) (i = 1,n) of
the characteristic equation

det(P(t) — AE) = 0.

L. Ceséro [1] has considered the system of differential equations of n-th

order

dy

o= [A+ B(t) + C(1)]Y,
where A is a constant matrix, whose roots of the characteristic equation
Ai (i = 1,n) are distinct and satisfy the condition Re); < 0 (i = 1,n);
B(t) —» 0 as t — 400,

+o0 1Bt oo
/ H%Hdt<+00a / HC(t)Hdt< +00,
to 1o

the roots of the characteristic equation of the matrix A + B(t) have non-
positive material parts.

In his work, C. P. Persidsky [2] considers the case in which elements of
the matrix P(t) are the functions of weak variation, that is, every function
can be represented in the form

f(t) = f1(t) + f2(2),
where fi(t) € Cr, and there exists tliin fi(t) € R, and fa(t) is such that
— T 0o

¢ li (1) =
sup|fo(t)] < +oo,  Tim fo(t) =0,
and the condition Re \;(t) < a € R_ (i = 1,n) is fulfilled.

N.Y. Lyaschenko [3] has considered the case Re \;(t) < a € R_ (i = 1,n),
tel,

sup [[A"(1)]| < e.
tel

The case n = 2 is thoroughly studied by N. I. Izobov.
I. K. Hale [4] investigated asymptotic behavior of LHS by comparing the
roots of the characteristic equation with exponential functions

Re\i(t) < —gt?, ¢g>0, >—1 (i=1,n).
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Then there are the constants K > 0 and 0 < p < 1 such that for solving

the system
dy
— = At
o = Aty
the estimate "
ly()|] < Ke™ 155"y (0)]|

is fulfilled.
In this paper we consider the problem of stability of a real linear homo-
geneous differential equation (LHDE) of second order

v +p)y +qt)y=0 tel (1)
provided the roots \;(t) (i = 1,2) of the characteristic equation
A+ p(HA+q(t) =0
are such that
+o0
ReAi(t) <0, teT, / ReAs(t) dt = —o0 (i = 1,2) @)
to
and there exist finite or infinite limits tliinm Ai(t) (i = 1,2). We have not
yet encountered with the problems in such a formulation. The case where

at least one of the roots satisfies the condition
“+o0

< / |Re)\¢(t)|dt <400 (1=1,2)
to
should be considered separately.

Under the term “almost triangular LHS” we agree to understand each
LHS

dz
y szk Yy (i =T,n) (3)

with pi(t) € Cr (i,k = 1,7), wh1ch differs little from a linear triangular
system

d
yz szk yr (1 =1,n), (4)

and the conditions either of Theorem 0.1 or of Theorem 0.2 due to A. V. Kos-
tin [5] are fulfilled.
Theorem 1. Let the conditions

1) LHS (4) is stable when t € I;

2) for a partial solution o;(t) (i = 1,n) of a linear inhomogeneous
triangular system

i—1
dUl(t) .
o kzlmk )| + Repii(t)oi(t Elmk Nlok(t) (i=Tn) (5)
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with the initial conditions o;(tg) = 0 (i = 1,n) the estimate of the
form 0 < o;(t) <1—~ (i=1,n), v = const, v € (0,1) holds for all
tel.

Then the zero solution of the system (3) is a fortiori stable fort € I.

Theorem 2. Let the system (3) satisfy all the conditions of Theorem 1 and,
moreover,

1) triangular linear system (4) is asymptotically stable fort € I;
2) t_l}glooai(t) =0(i=1n).
Then the zero solution of the system (3) is asymptotically stable for t € I.

Theorem 3. Let the system (3) satisfy all the conditions of Theorem 1 and,
moreover,

1) none of the functions

i—1
Uit) = lpn®) (=Zn)£0 for tel;
k=1

2) t_13+mooai(t) =0 (i=1,n).

Then the zero solution of the system (3) is stable fort € I.

We will also use the following lemma [5]:

Lemma 1. If the functions p(t),q(t) € Cr, Rep(t) <0, t €I,

“+o0o
B oa(t)
/ Rep(r)dr = —o0, tilgrnoo Rep(t) 0,

to
then
t t T
f Rep(r) dr — f Rep(71)dn
e'o /q T)e "o dr =0(1), t— +o0.

to

Further, it will be assumed that all limits and characters o, O are consi-
dered as t — +oc.
In case equation (1) has the form

y" +p(t)y =0, (6)

where p(t) € C%, p(t) > 0in I, A\ (t) = —i\/p, Xa(t) = iy/P, p = p(t), there
is the well-known I. T. Kiguradze’s theorem [6]:

Theorem 4. Let equation (6) be such that

t
p(+00) = +o0, p'p 2 =o(1), (Inp)~* / |(p'p~2)|dr = 0(1), t— to.
a

Then there take place the property of asymptotic stability.
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2. THE MAIN RESULTS

2.1. Reduction of equation (1) to the system of the form (5). Con-
sider the real second order LHDE (1):

y' +pt)y +qt)y=0, tel,

where p(t),q(t) € Ct. Let y = y1, y' = ya. We reduce the equation to an
equivalent system

y1=0-y1+ 14, )
Yo=—¢ Y1 = D" Y.
Consider the characteristic equation of LHS (6):
0 - )\ ]. 2
—0 or M4prtq=0, 8
’ - /\‘ PA+q (8)

2
and assume that & — ¢ < 0 at I. Then this equation has two complex-
conjugate roots:

)\120[—2.5, )\2:a+7;5,
where \; = \;(t) (i = 1,2), a = a(t) € C}, B = B(t) € Ct. Given (2), we
will consider the case

+oo

a(t) <0, / at)dt = —occ. (9)

to

There is the question on the sufficient conditions for stability of the trivial
solution of the system (7). Consider the following transformation for the
system (7):

y=0c@z cl= (All(t) )\21(t)> s <28> 7

where z;(t) are new unknown functions (i = 1,2).
Z'=(CtACc -c70)z,
det C'(¢) = A2(t) — A1(1),
I 1 Ao(t) -1
0= s (R 1)
iy (0 0 1 1 —Ai(t) =Xa(t)
0= (o xtn): = manw Gty u )

. M) 0
c ACz( 0 )
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The system withe respect to new unknowns z;(¢) (i = 1,2) in a scalar
form is

40 = (M0 + 1 )0+ Al

iy A(t) M (t)
40 =~ O (ha(t) - m)zz(t).
It is not difficult to see that
MO
Re )\Q(t)l— N 2

(10)

ﬁ/ /(t) B 1
E’ Re )\Q(t)Q— N2

A (t 5(t 1 '\ 2 '\ 2
0= xwl = e wwl =2y (3) + (5)
A2(t) — At )\2 —M@) 2 g B
In accordance with Theorem 1 we write an auxiliary system of differential
equations:

!

15
o1 = (a—3 E) o1(t) + h(t)os(t),
5/
o(t) = h(t) + (a = 5) 2 (t).
Consider a particular solution with initial conditions o;(t9) = 0 (i = 1,2).
This solution has the form

(11)

t ’ t
[(a—1% B ydr 7f (a—1 B ydr
aa(t) = et *7 /h(T)e 2 dr,
0 (12)
_ ‘]E(a—% B—/)dr ! _ f(oz—i—)d‘rl
o1(t) = e /h(r)og(r)e dr.
to

Assume also that there exists a finite or an infinite limit

2.2. Various cases of behavior of the roots \;(¢) (i = 1,2). We consider
the following cases of behavior of the roots of the characteristic equation,
assuming that the condition (9) is fulfilled:

1) a(+) € R_, B(+00) € R;

2) a=o(1), B=o(1), § — const # 0;
3 a=o(1), 5= ol1), § - o

4) a=o(1), B(+o0) € R\ {0};

5) a=o(1), B=0(1), 5 —0;

6) a(+00) = —o0, B(+o0) = 00, § = o0
7) a(4+00) = —o0, B(+0) € R\ {0};
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a(+o00) = —o0, B =o(1);
a(+00) = —o00, f(+00) = oo,
a =o(1), B(+00) = o0;
a(+0) € R_, B(+00) = oo;
12) a(+00) = —o0, B(+00) =00, 5 — 0.

) =
) =

— const # 0;

™IQ

~ —

Theorems 5-16 correspond to the above cases 1)-12).
Theorem 5. Let the condition (9) be fulfilled and
a(+oo0) e R, B(+) € R.
Then the trivial solution of equation (1) is asymptotically stable.
This case is well known.

Theorem 6. Let the condition (9) and the following conditions
a=o(l), B=o(1), % — const # 0,

& =0l G =ol)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. We consider the system (10), auxiliary system of differential equa-
tions (11) and its particular solution (12).
In this case

h(t) V() + )
lim == lim Y——— =
t—)+ooa_%% 2 t—4o0 %_%%
_11, ‘o/ﬁ_l lo/|
_2t—g-noo 32 a_2t—:1-i¥loo a? ﬂ_

Consequently, o2(t) = o(1), by Lemma 1. Further, we have

h(t
lim (1) E o2(t) =0
t—+o0 o 5 F

Then ¢4 (t) = o(1). Obviously, 1(t) = h(t) # 0 for ¢ € I. All the conditions
of Theorem 3 are fulfilled and thus Theorem 6 is complete. To obtain the
estimate of solutions y;(t) (i = 1,2) we make in the system (10) the following
substitution:

6ftosz
zi(t)=e ' mi(t) (i=1,2), 6€(0,1). (13)
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Then the system (10) takes the form
A (t)
1) = (M) + —21 — 2o,
OR COR ey o
(1) ()
) = —— 1 t Ao(t) — — 22 _§ t).
7]2( ) )\Q(t)_)\l(t) 771( )+< 2( ) )\Q(t)_)\l(t) a)772( )

In accordance with Theorem 1, we write an auxiliary system of differential
equations:

Csa)min) + 20
(14)

A0 = (1=8)a =3 2)or() + byt
, (15)
oh(t) = h(t) + (1 = 8)a — % %)02(7&)

It’s particular solution with the initial conditions o;(t9) = 0 (i = 1,2) has
the form

_ f ((1—5)04—% %’) dr / h(T)e—Ti ((1—6)(1—% %/) dry

oa(t) = e dr,
i
t b : , (16)
_ S ((175)047% %) dr ! _ - f ((176)047% %) dry
o1(t) = e /h(T)O'Q(T)e 7o dr

It is not difficult to see that the replacement (13) does not affect the as-
ymptotic stability. Taking into account the transformation C(t),

yi(t) = z1(t) + 22(¢),
{yz(t) —MO)al) £ reO(l).
thadr
. yi(t) = ofe % ) ,

t ’ t ’
f (5a+ /\1(?) dr f (6a+/\2(2>) dr
pa(t) =ofeo T wen T
ta s+1 Al(z) dr fa s+1 2(t) dr
yg(t):o<et0 ( m)) 4 oo ( Az()) )
It is easy to see that
A1 (t) Ap(t) _o'a+p'B
R(t) =R =R =
O =Re3 ) " ®Ne = w@rp
A (1) M) oB—af
It)=Im 2 =—-Im 2~ =
O=TH =" M50~ @15
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Then
/ / !/
lim 1 Re/\l(t) = lim 7aa—|—ﬂﬁ =
totoo v A (t)  to+oo aa? + 52?)
s &
= lim CLE—— ) =0,
t—-+o00 (1 4 (g)z (%)3 +5
1 A (1) o'B—apf
lim — Im~22 = lim ————— =
t—bo o A1(t) t— b0 ala? + 52)
—lim<d2 —aﬁ >—O.
t—+o0 %+ g (3)24—1
Thus
Ai(t) :
YOI o(a) (i=1,2)
Therefore,
6ftad'r
yi(t):o(e i0 ) (i=1,2), 6¢(0,1). O

Theorem 7. Let the condition (9) and the following conditions
a=o(l), p=o0(1), N 00,

B

O/ /8/

— = — =01

" —ol8), =0
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.
Proof. In the system (10) we make the replace (13). We obtain the system
(14), an auxiliary system of differential equations (15) and its particular
solution (16).

In this case,

Wy 1 Gr (57
ot (1—b)a— 35 2to+oa(l-0-§ 5
B’ a’
1 £ 2 o 2
L) (-
oo _5— 18 _5— 1B
2 t—+ 1-6—-57 1-0-35 7
BB !
1 =E 2 a 2
= — lim ( ﬁa, )—|—( b ; ):O
O R
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Then 71 (t) = o(1). This implies that Theorem 7 is valid. Moreover,

t
S [ adr

zi(t):o<e i ) (i=1,2), 6€(0,1).

Next,
t—1>15-noo ER(t) - tl}I-ipoo <(g + g + (%)3 + g) =0,
lim —1(t) = lim (o )=
Jm G0 =l Ge+1 (@e+1) 70
Thus
AL(t)
2 = ) —= 1 2
T = o) (=12
Therefore, just as in Theorem 6:
5ftad7-
yi() :o(e i0 ) (i=1,2), 6¢(0,1). O

Theorem 8. Let the condition (9) and the following conditions
a=o0(1), PB(+x)eR\ {0},
a/ /8/

— =o(1), 5

«

o(a)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (13). We obtain the
system (14), an auxiliary system of differential equations (15) and its par-

ticular solution (16).
In this case,

B'y2 4 ()2
SR O N S () +(5)” _
t—>+ooa_%% 2t—>+ooa(1_6_%%>
. (25)2 + (25)? L 19,
T 2ot 1o _%(Té T2 _0) toielagl T

Therefore, g2(t) = o(1), by Lemma 1. Further, we have
h(t ~
1m ®) 15 a2(t) = 0.
t—4-o0 (1 — (S)Oé ) F

Then ¢ (t) = o(1). This implies that Theorem 8 is valid. Moreover,

zi(t)zo(eﬁtiaT) (i=1,2), 6¢(0,1).
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Then
lim ~ R(t) = lim ( £ + a3 ):0
t—=+oo t=+o0 a+§ﬁ ()2 +1 ’
lim = I(t) = lim ( $ & )—0
t=+oo (v  totoo Fa+p %4_% -
Thus

Therefore, just as in Theorem 6,

§jad‘r
yi(t)zo(e io ) (i=1,2), 6¢(0,1). O

Theorem 9. Let the condition (9) and the following conditions

a=o0(1), B=o(1), N 0,

B
a p =o(a)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (13). We obtain the
system (14), an auxiliary system of differential equations (15) and its par-
ticular solution (16).

In this case,

. (552 +(%5)?
—_ m — =
B 00 _§5_ 18
2 t—+ 1 3 op
1

. 1 B
20 —0) i lagl T 20 —9) H+oo‘a2 5‘

Consequently, o2(t) = o(1), by Lemma 1. Further, we have

h(t ~
Then 71 (t) = o(1). This implies that Theorem 9 is valid. Moreover,

t
5fo¢d'r

zi(t)zo(e io ) (i=1,2), 5€(0,1).
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Then
1 o 2
lim — R(t) = lim (—22 ) =0,
tiglooaR() tﬁlgloo 1+(§)2+<%)2+1 0
1 o 2
lim - I(t)= lim ( ol _a ):0
tFoo o totoo\a 4 B a8
B « B «@
Thus
AL(t) .
S =1,2
i =ole) (=12
Therefore, just as in Theorem 6,
6f;o¢d7'
yi(t)zo(e i ) (i=1,2), 6¢(0,1). O

Theorem 10. Let the condition (9) and the following conditions

a(+00) = —00,  B(+00) = o0, % — 00,
O/ _ /8/ B
E - O(l)a E - O(1>

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.
Proof. In the system (10) we make the following replacement:

21 (t) = &1(t),  z2(B)Aa(t) = &2(2). (17)

Then the system (10) takes the form

6= (M0 + 55
/\’() A1

X ) = M(t)
) — - MO Xl
SO EPHOPY0)

(1) N (#)
(20 - WORSWOR /\z(t))&(t)'

In accordance with Theorem 1, we write an auxiliary system of differential
equations:

_|_

)
N0 )\1(15)>£1(t)+
36 0)

(18)

At
(t
(t
Ao
N &)+

ol (t) = (a - % %’ - R(t))al(t) + h(t)oa(t),
o (t) = h(t) + (a _1 Bﬁ’ - R(t))ag(t)
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Consider a particular solution with the initial conditions o;(tg) = 0 (i =
1,2):

t ’ t ’
J a—12 B _R(t)) dr — [ la—1 B _R(t)) dn
= ) / hr)e i,

to
B [ (o=t &—Rr@w)ar | ~ — ] (a=1 5 —R) an
o1(t) = e /h(T)O’Q(T)e o dr.
to
In this case,
1 o 5
lim — R(t) = lim (=4 ) =0
ti+mm I (t) Hl?oo B(1+ (5)2) (%)2 +1
Then
(1)2 + (25)?
: h(t) I 5 3
lim 3 = — lim A1 =
t—>+ooa_%i_R(t) 2t—>+oo%_§F_ER(t)

(D) () - |5

Therefore, go(t) = o(1), by Lemma 1. Next,

h(t
lim %GQ(t) =0.
Then &1(t) = o(1). This implies that Theorem 10 is valid. To obtain
the estimate of solutions y;(t) (i = 1,2), we make in the system (18) the

following replacement:

Jfadr
&G)=e' p(t) (i=1,2), 6€(0,1). (19)
Then system (18) takes the form

X0 )
3 — (D) Al 20

X ()
C () = M) M)

(20~ 55 S~ a0

+
(20)

ma(t) = m(t)+
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In accordance with Theorem 1, we write an auxiliary system of differential
equations:

(0 = (1=0)a =3 5 - RO)or(0) + b)),
, (21)
oh(t) = h(t) + ((1 5)04*%%—1%()) 2(t).

Let us consider a particular solution with the initial conditions o;(tg) = 0
(i=1,2):

h (1-8)a—1 B —R(t)) dr

52(t) = ¢'o X
" ~ [ (=8)a-1 Z—R)) dn
X fh(T)e *0( °r dr,
(22)
B K ((1 Sa—1 & R(1)) dr
Ul(t) = ¢'o X
" [ (a=8)a-1 & _R@)) dn
X fh(T)&g(T 0 ( °7 ) dr.
to

It is not difficult to see that the replacement (19) does not affect the stability.
At the same time,

t
§fad7'

fi(t)zo(e io ) (i=1,2), 6¢(0,1).

Then, according to (17),

Further,
1 @ s
lim —R(t) = 1 ( e + )=07
tJ+mooa (t) t~3+moo a(1+(§)2) (%)3+%
lim (£ = lim ( = )70
t—+oo (v T ttoo a(%+§) (%)2+1 =0u.
Consequently,
N (t) .
=o(a) (2=1,2
T =ele) (=12)
and
5fto¢d'r
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Then

y1(t) = z1(t) + 22(2), y1(t) = 2z1(t) + 22(1),
mezAwwmw+&w@a> :ﬁ{m®=ﬁﬂw+&® =

6ftad7'
:>yi(t):0(e to ) (t=1,2), 6 €(0,1). O

Theorem 11. Let the condition (9) and the following conditions

a(4+00) = —o0, B(+00) € R\ {0},
a/ ﬂ/
& —o(t), 5 =00)
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

o B

1 e« 2
1 — = 1 = =0.
1o Ié; R(?) 1 oo (5(1 + (%)2) + (%)2 + 1) 0

Then
8 o’ y2
lim h(t) = 1 lim (B i (ﬁ ) =
oo (1—6)a— 3 & —R(t) 2t=>+o (1-6)2 -1 5 - L R()

=0.

~ g (52 (25 = g [

Therefore, g2(t) = o(1), by Lemma 1. Next,

. h(t) o
A (1-0)a— 55 — R(t) () =0.

Then 71 (t) = o(1). This implies that Theorem 11 is valid. Thus

t
5fo¢d7'

§i(t):o(e io ) (i=1,2), 6¢(0,1).

Then, according to (17),

fGa=3E) ar
zi(t) = 0<et0 ) (i=1,2), 6 €(0,1).
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Further,
1 o 5
lim = R(t) = lim ( a + ):07
t—+oco v () t——+o00 a(1+(§)2) (%)3+%
1 w oy
t—lginooal()_t—liinoo(a(g+§) (g)2+1) 0
Thus
A1)
C = ,=1,2
i =ole) (=12)
and
5ftozd7'

%(t) = o(e i0 ) (i=1,2), §€(0,1).
Then, just as in Theorem 10,

5ftadr
yi(t):o(e io ) (i=1,2), 6¢(0,1). O

Theorem 12. Let the condition (9) and the following conditions
Oé(+OO) = =00, ﬂ = 0(1)7

a/ /8/
— = — =01
"= o(3). 5 =0
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

1 a
lim — R(t) = lim ( CE—L ) =0
t—+o0 [‘3 t—+oo \ 1

Then

. 1
tlgmoo — _lg_ itlgmoo — Q_lﬂ_l
too (1 =d)a—35 5 — R(t) oo (1-19) R(t)

/

sy (G ) () = s |5 =0

Therefore, g2(t) = o(1), by Lemma 1. Next,

t—lg-&-moo — _ 1 g —
(1-6)a R(t)
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Then 71 (t) = o(1). This implies that Theorem 12 is valid. Thus

t
5fad7'

@(t)zo(e ) (i=1,2), 6¢(0,1).

Then, according to (17),

j‘(éaf All(t/))d'r
zi(t)zo(eto e )(i:1,2)7 5 € (0,1).
Then
1 o 5
lim —R(t) = lim (2254 ) =0,
t—+oo (v t—+oo B+§ (E) —1—5
1 % i
lim —I(t)= 1 ( o _ )—
Jim -~ I(t) = lim @2+l (5)2+1 0
Hence
Aj(t)
A —1,2
(D) o) (1=1,2)
and

t
§ [ adr

zi(t) = 0(6 K ) (1=1,2), 6§€(0,1).

Then, just as in Theorem 10,

5jad‘r
yi(t)zo(e io ) (i=1,2), 6¢(0,1). O

Theorem 13. Let the condition (9) and thr following conditions

a(4o00) = —o0, [B(+00) = oo, % — const # 0,
/ ﬁ/
o =0, Z=o)

be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

.
St ) =0
B

1
lim — R(¢t) = lim (
t—4o0c0 (v t—4o00 ﬁ(

_"_
Q[
~
—~
IR
~—
_|_
IR
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Then
h(t) B h(t) _
t5F (1—8)a— 3 5 —R(t) to+ea(l—6- 52 - LR(t)
& B 2 of 2
_ 15 5% a aB _
=250 (1_5_56;5) +<1_5_§g'§)

— 1' a/
T 21— 5) triee ‘075

Therefore, g2(t) = o(1), by Lemma 1. Further, we have

=0.

. h(t) o
N T v TR 72(t) =0

Then ¢;(t) = o(1). This implies that Theorem 13 is valid. Thus

5ftad7'
&Gy =o(e™ ) (=12, §¢(0.1).
Then, according to (17),

A @

J(ba— 1t)d7’
zi(t)zo(eto o )(1:1,2), 5 € (0,1).

As is shown above,

1
lim —R(t)=0
t——+o0
Then
1 o %;
1 —I(t)= 1 & =
Jm g t0= 2 (s mr) O
Thus )
(¢
Ll = =1,2
i =ole) (=12)
and
5ftozd7'

%(t) = o(e i0 ) (i=1,2), € (0,1).
Then, just as in Theorem 10,

§ ft adr
yi(t) = o(e i0 ) (i=1,2), 6¢(0,1). O
Theorem 14. Let the condition (9) and the following conditions
a=o(1), p(+o0) = o0,
al ﬁl
—=0(1), ==
S=ow. 5
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

o(a)
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Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

o B
1 &
lim = R(t) = lim (—_= ) =0
A B0 = A Bet et Ep
Then
B’ o
i h(t) 1 (55)7+(53)? .
400 (1—0)a— 1B _R(f) 2tteo(1_g_108 _ T -
too (1 —0d)a— 35 — R(t) o (1-0—5455— o R(Y)
Therefore, o2(t) = o(1), by Lemma 1. Further, we have
h(t ~
( ) O'Q(t) =0.

t—lgknoo — _ 1 g _
(1-d)a— %5 —R(t)

Then 71 (t) = o(1). This implies that Theorem 14 is valid. Moreover,

t
§fad7'

fi(t)zo(e ) (i=1,2), de(0,1).

Then, according to (17),

t

J (ba-310) ar
%(t) :o(eto ) (i=1,2), 5€(0,1).
As is shown above,
1
lim —R(t)=0
t—+oo (v
Then
1 o B
lim —I(t) = lim (ao‘ ST >:O
t—+oo (v t—+oo Ea—}-ﬁ %4_%
Thus
Ai(t)
s = =1,2
g = ole) (i=12)
and
) j adr

5(t) = o(e 0 ) (i=1,2), € (0,1).
Then, just as in Theorem 10,

5jt‘ad7'
y;(t) = o(e fo ) (1=1,2), 6€(0,1). O
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Theorem 15. Let the condition (9) and the following conditions
a(+o0) ER_, B(400) = o0,
! !
& 2~ o)

—=0(1
a ( )7 /3
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

o B8
1 o g
lim —R(t) = lm (= ) =0
A 0= Gt e
Then
6/ ol
y h(t) 1 () + (&)
im W —§thm T 1 =0.
Therefore, g2(t) = o(1), by Lemma 1. Further, we have
h(t ~
lim (1) - Fa(t) = 0

Then ¢ (t) = o(1). This implies that Theorem 15 is valid. Hence

t
5 [ adr

&(t) :0(6 io ) (i=1,2), 6¢(0,1).
Then, according to (17),

A

J (ba— 21t
zi(t) = O(eto ®

As is shown above,

)dr
) (i=1,2), 5€(0,1).

1
lim —R(t)=0
t——+o00 (¢
Then
1 o 8
lim —I():hm( aﬁ— BB>:O
t—+o0o (v t——+oo a(% + E) 05(% + E)
Thus "0
No(t
L = =1,2
i = ol (=12
and
5fto¢d'r
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Then, just as in Theorem 10,

§fto¢d‘r
yi(t)zo(e i0 ) (i=1,2), 6¢(0,1). O

Theorem 16. Let the condition (9) and the following conditions
a(+o00) = —00, f(+o0) = 00, SN 0,

5
a/ ﬁ/
— =0(1 = =0(1
% =o). 5 =oq)
be fulfilled. Then the trivial solution of equation (1) is asymptotically stable.

Proof. In the system (10) we make the replacement (17). We get the sys-
tem (18). In the system (18) we make the replacement (19). We obtain
the system (20), an auxiliary system of differential equations (21) and its
particular solution (22).

In this case,

1 o Z
lim = R(t) = lim (—2 )=o.
Ao B = B e e ) =
Then
y h(t) 1 G2+ (2
5900 (1 _8)a — LB _R(t) 2totee(l_g_1B 1 =0
to (1-0)a—35 —R(t) o (1-0—5 55— 2 R()
Consequently, o5(t) = o(1), by Lemma 1. Further, we have
h(t -
lim (1)ﬁ' O'2(t) =0

Then 71 (t) = o(1). This implies that Theorem 16 is valid. Moreover,

t
§ [ adr

&Gy =ole™ ) (=12, §¢(0.1).
Then, according to (17),

j‘(éa—iigg)dr
2%(t) :o(eto ) (i=1,2), 5€(0,1).
As is shown above,
1
lim — R(t)=0
t—+oo (v
Then
1 & g
lim —I(¢t) = lim (ao‘zﬁ— a’B /3):0
t—+oo (x t——+o00 5 + = a(ﬁ + E)
Thus
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and )
5fo¢d'r
%(t) = o(e io ) (i=1,2), 5€(0,1).

Then, just as in Theorem 10,

5ftad7-
yi(t)zo(e i0 ) (i=1,2), 6¢(0,1). O

2.3. The case of purely imaginary roots \;(t) (i = 1,2). Let us analyze
equation (6):
1

y' +p(t)y =0
where p(t) € C7, p(t) > 0 in I. Then A (t) = —i\/p, A2(t) =i/p, p = p(2).
Theorem 17. Let the conditions
g (5=)
7=
be fulfilled. Then the trivial solution of equation (6) is asymptotically stable.
Proof. In this case the system (10) takes the form

B(+00) = +oo,

40 = (-3 5 -8)a0+3 5 20,
24(t) = %% a) + (- §%+25)22()

In this system we make the following replacement:
5 (=3 %yar .
zi(t)y=e€ " wi(t) (1=1,2), 6 €(0,1).
As a result, we obtain the following system:

A0 = (-2 5 -i8)er0+ 3 2 eato)
1) =5 Lo+ (-1 5 +is)ea

Then in the system (23) we make the following replacement:

(20) = (o ) G0)

where () are the new unknown functions (i = 1,2). Then the system (23)
takes the form

(23)

n0 = (-5 545 50 - 8)mo + 55 m
) = (55 + 28000 - 3 220~ 0)m(+ (21)
S-S0+ is)m



102 Tatiyana Barinova and Alexander Kostin

Suppose
18 , B
35 +2iBr(t) =0
Then
1 /
r(t) = 1 %z =o(1)
Then the system (24) takes the form
1-68 188 14
)= (-5 T4 T im0+ 5 5 m),
1 AN 1 / /2
)= (-1 (5)i+55 (5) Jmo+ (25)
1-68 188
+(_ T % - g % %Z"Flﬂ)ng(ﬂ

In accordance with Theorem 1, for the system (25) we write an auxiliary
system of differential equations:

JQ(t)a

=2 (5)) + (5 (G) - 5 L e

We denote

1 B\ 2 BIN2 /B4

=3 1((%)) + (5) (5)"

Consider a particular solution of the system (26) with the initial conditions
O’i(to) =0 (Z = 1,2):

f12 gyar 0 - f-1 Eyan
(1) = ¢ [ote » -
to
t ’ t ’
S5 5)dr 18 - [ F)dn
O 1 A
to
In this case,
B’ \r
9(t) 1 (=)\2 B\
i 20 = () (2
tJErHW 1%% 4(1-9) Hlffloo % + 32
LY,
1 3z
S L
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Therefore, 2(t) = o(1), by Lemma 1. Further, we have

Then &1(t) = o(1). This implies that Theorem 17 is valid. Moreover,
n:(t) = o(1) (i = 1,2). Then ¢;(t) = o(1) (¢ = 1,2). Then we have obtained

5 J(~3%)ar
zi(t):0<e o *7 )(i:1,2), 5 € (0,1).

Then
yi(t) = z1(t) + 2(1), ) =0 e‘i{“%%’)‘” |
{92(t):—iﬂzl(t)+iﬁzz(t) - Z:(t)Z—(iﬁm(t)—i-iﬁzg)(t) -

5[ (-4 %yar
(0] = ofe )

)

. , 0 €(0,1). O
[ 8(=% Frto(1)) dr
()] = o€ ).
Remark 1. The condition
()
o =o(1)
B
is satisfied if there exists the corresponding limit.
Proof.
(B | .
lim — = |we use the inverse de L’Hospital’s rule| =
t—+oo B
1 !
_ p 0

—_—— 1. — T
2 totoe B21n 3

Remark 2. The conditions of I. T. Kiguradze’s Theorem 4 are equivalent
to those of Theorem 17. But, in addition to Theorem 17, we have obtained
the estimate of solutions of equation (6).
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Proof.

!
B _0,

: =3 4 2\ p—=3 _ 1; 255/_ . P
t—lginoopp t= t—1>15-noo<ﬁ ) 5 o t—lg-noo ﬂ3 o 2t—1:£-noo ﬂ2

¢
lim (Inp)~* / |(p’p_%)" dr = [We use de L’Hospital’s rule} =

t—4o0
_3 _ B’ \r
SOV 7 N (¢ - RN (.. R
t—+4oo P t—+4oco 288" t—+o0 B ’
P 62 [¢]
CONCLUSION

In the present paper we have revealed the sufficient conditions for asymp-
totic stability, as well as the estimate of solutions of the homogeneous linear
non-autonomous second order differential equation in terms of the behavior
of roots of the characteristic equation in the case of complex roots. The
results of the work allow one to proceed both to investigating equations
of higher order and to considering the problems on a simple stability and
instability.
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INTRODUCTION

The boundary value problems for singular in phase variables second order
differential equations attract attention of many mathematicians and are
the subject of various investigations (see, e.g., [1-4,6,10,12-14,16,17] and
references therein). As for the singular in phase variables higher order
differential equations and differential systems, for them only the initial and
two-point problems [7,9], the Nikoletti perturbed problem [8] and the Kneser
type problem [15] are studied.

The construction of the theory of boundary value problems for singu-
lar in phase variables differential equations and systems requires a priori
estimates of solutions of singular in phase variables higher order differen-
tial inequalities and systems of differential inequalities, satisfying different
nonlinear boundary conditions. The present paper contains such estimates.

We have used the following notation.

x = (z;)f_; and X = (z1)},—, are the n-dimensional vector column and

the n x n-matrix with the components x; and z;; (i,k = 1,...,n) and the
norms
n n
loll =S Jail, X0 = Y fwanl;
i=1 ik=1

r(X) is the spectral radius of the matrix X;
Ry = [0, +oo[, Rot =]0, 4o00[;

R"™ is the n-dimensional real Euclidean space;
Ry, = {(z)y €R™: 21 >0,...,2, >0}

C([a, b]; R) is the space of absolutely continuous functions u : [a,b] — R;
C™([a, b]; R) is the space of m-times continuously differentiable functions
u : [a,b] = R whose derivative of m-th order is absolutely continuous;
C™([a,b]; RE, ) is the set of vector functions (u;)j, : [a,b] — Rf, with
absolutely continuous components u; : [a,b] = Roy (i =1,...,n).
1. HIGHER ORDER DIFFERENTIAL INEQUALITIES

In a finite interval [a, b] we consider the n-th order differential inequality

go(t,u(t),...,u" V(1)) <ul(t) <
< igk (tou(t), ..., u™ D)) u* D) (1.1)
k=1

with the boundary conditions
au V() < ulY(a) < BuVB) + By (i=1,...,n). 1.2
% > = Mi 0 ; y

Here gy, : [a,b] x Rf, — Ry (k= 0,...,n) are integrable in the first argu-
ment and continuous and nonincreasing in the last n arguments functions,
a; (i=1,...,n)and 5; (i =0,...,n) are constants such that

0<ai§5i<1(i:1,...,n)7 ﬁ0>0. (].3)
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We are mainly interested in the case where the differential inequality
(1.1) is singular in phase variables, i.e., in the case when there exists a set
of positive measure I C [a, b] such that

x1+--1-1finaogk(t’xl’ coyxp) =400 for tel (k=0,...,n).

A function u € C"~1([a, b]; R) is said to be a solution of the differen-

tial inequality (1.1) if

u V() >0 for a<t<b (i=1,...,n)

and almost everywhere on [a, b] the inequality (1.1) is fulfilled.

A solution of the differential inequality (1.1) satisfying the boundary
conditions (1.2) is called a solution of the problem (1.1),(1.2).

Before we give a theorem containing a priori estimates of solutions of the
above-mentioned problem, we prove a simple lemma dealing with estimates
of solutions of the differential inequality

u™(t) >0, (1.4)
satisfying the boundary conditions (1.2).

Lemma 1.1. An arbitrary solution u of the problem (1.4), (1.2) admits the
estimates

Yol < uF V@) < (0 + Bo) for a<t<b (k=1,...,n), (1.5)
where
w=0b-a)" " [JA-8)" (k=1,...,n), (1.6)
i=k
o0 = (b—a)" F[[ == (k=1....m), (1.7)
i=k ¢

and
b

(= / u™(s) ds. (1.8)

a

Proof. In view of (1.2), (1.8), we have
u™ (b)) = u Y (a) + € > apu™V(b) + £,
u™ D (b) < Buu™ D (b) + Bo + £,
and hence

1
1_671

u" =V (b) > ¢, uH0) < (Bo +£).

1—a,
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If along with this we take into account the inequality (1.4), it becomes
obvious that
u™ V() > u Y (a) > apu™Y(b) >
> qonl,  uTV() <uTY(b) < 4 (Bo + ) for a <t <b.

This, according to the induction law and notations (1.6) and (1.7), results
in the estimate (1.5). O

Theorem 1.1. If along with (1.3) the conditions
b

/go(s,x,...,m)ds>0 for x>0, (1.9)
" b
xkﬂ_noo’;%/gk(s,x,...,x) ds <1 (1.10)

are fulfilled, then there exist positive constants § and p such that an arbitrary
solution of the problem (1.1),(1.2) admits the estimates

§<uF V)< p for a<t<b (k=1,...,n). (1.11)

Proof. By the inequality (1.10), there exists a positive number z such that
n b
(14—@)Z'yk/gk(s,xo,...,xo)ds< 1. (1.12)
T3

Suppose
Yo :min{l,’yOlw"?’VOn}v Wzmax{71,'~'a’7n}v
p= (@ +/80)’7a
70

and
b

5:70/90(53p7"'7p)d5'

Owing to (1.9), it is clear that § > 0.

Let u be an arbitrary solution of the problem (1.1), (1.2), and let £ be the
number given by the equality (1.8). Then by Lemma 1.1, the inequalities
(1.5) are valid. On the other hand, it follows from (1.1) and (1.5) that

n b
(< (£+5O)Z’Yk/gk(s7€'yo,...,KVO) ds (1.13)
k=1 Y

and

b
{> /go(s,(f—i—ﬁo)%...,(Z—i—,@o)'y) ds, (1.14)
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since g (k =0,...,n) are nonincreasing in the last n arguments functions.
Our aim is to prove that v admits the estimates (1.11). Let us first show
that .
(<=2, (1.15)
70
Assume the contrary that
>0
Yo
Then ¢ > xg. Thus taking into account the inequality (1.12), from the

inequality (1.13) we find

£<€(1+ )i /gksxo,...,azo)ds<€.

The obtained contradiction proves the validity of the estimate (1.15).
According to (1.5), (1.14) and (1.15), we have

G (ﬂ)%—ﬁo)v:p for a<t<b (k=1,...,n)
7o

and
b
uF () > by > yo/go(s,p,...,p)ds =0 for a <t <b.
Consequently, the estimates (1.11) are valid. O

As an example, we consider the differential inequality
Po(t)qo (u(t), . ..,u™(t)) <ul™(t) <
< p)q(ut), .., u™D (@) + Zpk W (t), (1.16)

where p : [a,0] = Ry (K = 0,...,n), p : [a,b] — R, are integrable
functions, and qo : Rf, — Roy, ¢ : Rf, — Roy are continuous and nonin-
creasing in all variables functions.

Corollary 1.1. If
b

/ s)ds > 0, Z'yk/ s)ds < 1, (1.17)

a

then there exist positive constants § and p such that an arbitrary solution of
the problem (1.16), (1.2) admits the estimates (1.11).

Proof. Let
go(t, 1, .., 2n) = po(t)qo(z1,. .., 2n),
p(t
gk (L, 21, .., xp) = Qq(zl, o) o) (E=1,...,n).
nxy
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Then the differential inequality (1.16) takes the form (1.1). On the other
hand, by virtue of (1.17), the functions gy, : [a,b] xRf, — Ry (k=0,...,n)
satisfy the conditions (1.9) and (1.10). If now we apply Theorem 1.1, then
validity of Corollary 1.1 becomes evident. O

Note that in the conditions of Theorem 1.1 or Corollary 1.1, the dif-
ferential inequality under consideration may have singularities of arbitrary
orders in phase variables. For example, In Corollary 1.1 as gy and g we can
take the functions

n

n
Qo(21,- -, 2n) = lo1 HCE;/\(” exp (402 H xj_“()j>7
i=1 j=1
n n
q(x1,. . xn) = qo(T1,. .., 2p) +€1Haci_>‘i exp (Eg 1_[36]._“’)7
i=1 j=1

where Ao, Ai, poi, i (1= 1,...,n), Lok, £k (k= 1,2) are positive constants.

2. FIRST ORDER DIFFERENTIAL INEQUALITIES

Let us consider the differential inequality

o(u'(t) — p(t)u(t) — q(t,u(t))) >0 (2.1)
with the boundary condition
o(u(a) — au(b) — ag) >0, (2.2)

where p : [a,b] — R is an integrable function, ¢ : [a,b] X Rg; — R4 is an
integrable in the first argument and continuous and nonincreasing in the
second argument function, o € {—1,1}, @ > 0 and ag > 0 are constants.

An absolutely continuous function u : [a,b] — R4 is said to be a so-
lution of the problem (2.1),(2.2) if it satisfies the condition (2.2) and
almost everywhere on [a, b] satisfies the differential inequality (2.1).

Along with (2.1), (2.2), we consider the boundary value problem of peri-
odic type:

v'(t) = p(t)u(t) + q(t, v(t)), (2.3)
v(a) = av(d) + ap. 2.4
The following theorem holds.

aexp < /b (s) ds> <1 (2.5)

b
/q(s,m) ds >0 for x>0, (2.6)

Theorem 2.1. If

and
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then the problem (2.3),(2.4) has a unique solution v, and an arbitrary solu-
tion u of the problem (2.1),(2.2) admits the estimate

o(u(t) —v(t)) >0 for a<t<b. (2.7)
To prove the theorem, we need the following simple lemma.

Lemma 2.1. Let ty € [a,b] and ¢ > 0. Then the differential equation (2.1)
under the initial condition

v(tg) = ¢ (2.8)

has a unique solution v in the interval [tg,b], and an arbitrary solution u of
the differential inequality (2.1), satisfying the condition

U(u(to) — c) >0,
admits the estimate
o(u(t) —v(t)) >0 for to <t <b. (2.9)

Proof. The unique solvability of the problem (2.1), (2.8) in the interval [¢g, b]
follows from the fact that ¢ > 0 and the function ¢ : [a,b] x Roy — Ry is
nonincreasing in the second argument.

Applying now Lemma 4.3 from [5], the validity of the estimate (2.9)
becomes evident. O

Proof of Theorem 2.1. For the sake of definiteness we assume that o = 1
since the case where 0 = —1 is considered analogously.

If ¢ : [a,b] x Ro; — R is a continuous and nonincreasing in the second
argument function, then by Theorem 7 of [11], the conditions (2.5) and (2.6)
guarantee the unique solvability of the problem (2.3), (2.4). If, however, ¢
is integrable in the first and continuous and nonincreasing in the second
argument, then using the method of proving of the above-mentioned theo-
rem, we can show that the conditions (2.5) and (2.6) again guarantee the
existence of a unique solution v of the problem (2.3), (2.4).

Let u be an arbitrary solution of the problem (2.1), (2.2). If

u(a) > v(a),

then by Lemma 2.1, the estimate (2.7) is valid.
To prove the theorem, it remains to show that the inequality

u(a) < v(a) (2.10)

cannot take place.
Assume the contrary that the inequality (2.10) is valid. Then either

u(t) <wv(t) for a <t <b, (2.11)
or there exists to € ]a, b[ such that
u(to) > v(to). (2.12)
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Let the inequality (2.11) be fulfilled. Then in view of (2.1), almost ev-
erywhere on [a, b] the inequality

u'(t) > p(t)ult) + q(t, v(t)) (2.13)

is fulfilled since q is the nonincreasing in the second argument function.
Put

w(t) = v(t) —u(t).
Then in view of the conditions (2.2), (2.4), (2.10) and (2.13),we have
0 < w(a) < aw(b)
and
w'(t) < p(t)w(t) for almost all ¢ € [a, b].

From these inequalities with regard for the condition (2.5) we find

w@%ﬁﬂp(iMQd%wm)Sawp<;ﬂﬁdaw@)<w@)

The obtained contradiction proves that the inequality (2.11) cannot take
place. Consequently, for some ty € ]a, b] the inequality (2.12) is fulfilled.

By Lemma 2.1, the function v admits the estimate (2.9). From (2.4),
(2.9) and (2.10), we find

u(a) < v(a) = av(b) + ag < au(b) + ag,

which contradicts the inequality (2.2). The obtained contradiction proves
that the inequality (2.10) cannot take place. Thus the theorem is pro-
ved. ]

In conclusion of this section we consider the problem
o(u/'(t) — p(t)u(t) + q(t u(t))) <0, (2.14)
o(u(a) — au(b) + ag) <0, (2.15)
and the differential equation
V(1) = p(t)u(t) — a(t. (1)) (2.16)
with the boundary condition
v(a) = av(b) — ap. (2.17)

As above we assume that p : [a,b] — R is an integrable function, and
q : [a,b] x Rox — Ry is an integrable in the first and continuous and
nonincreasing in the second argument function, o € {—1,1}, @ > 0 and
Q) > 0.

On the basis of Theorem 2.1, the following statement can be proved.
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Theorem 2.2. If along with (2.6) the inequality
b

aexp (/p(s) ds) >1 (2.18)
is fulfilled, then the problem (2.16), (2.17) has a unique solution v, and an
arbitrary solution u of the problem (2.14), (2.15) admits the estimate (2.7).

If q(t,z) = q(t), then the differential inequalities (2.1), (2.14) and the
differential equations (2.3) and (2.16) have the following forms

o(u'(t) = pt)u(t) — q(t)) =0, (2.19)

o(u'(t) — p(t)u(t) + q(t)) <0, (2.20)

V() = p(t)o(t) +q(t), (2.21)

V(1) = p(t)o(t) — (). (2.22)

It is easy to see that for the unique solvability of the problem (2.21), (2.4)

(of the problem (2.22),(2.17)) it is necessary and sufficient the inequality
b

1~ aexp ( / p(s) ds) £0 (2.23)

to be fulfilled.
Let the inequality (2.23) hold. Put

b
A(p,a) =1— aexp </p(s) 0ls>7 (2.24)
9(p, a)(t, s) =
. t
ex T)dT for a <s<t<hb,
xom = ([ ror) seetE
= s , (2.25)
e
ex TdT+/ TdT) for a<t<s<hb.
Ap.a) p(/p() p(7)
Then the solution of the problem (2.21), (2.22) admits the representation
t b
Qo
v(t) = exp(/p7d7>+/ p,a)(t,s)q(s)ds,
0= (r) o(p, 0)(t, )a(s)

a a

and the solution of the problem (2.22),(2.17) admits the representation

Mﬂ=—A$Mew(jﬂﬁﬁ)—jmn®@$ﬂ$%

a
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On the other hand, in view of the fact that the number « is positive, (2.24)
and (2.25) imply

A(p,a)g(p,a)(t,s) >0 for a <s<t<b. (2.26)
If along with this we take into account the fact that the function ¢ is nonneg-

ative, then it becomes evident that Theorems 2.1 and 2.2 yield the following
propositions.

Corollary 2.1. If the inequality (2.5) (the inequality (2.18)) is fulfilled,
then an arbitrary solution of the problem (2.19),(2.2) (of the problem
(2.20), (2.15)) admits the estimate (2.7), where

(07

u(t) = m exp (a/tp(S) d8> + a/b |9(p, @)(t, )]a(s)ds for a <t <b.

Lemma 2.2. Let p be a constant sign function, satisfying the condition
(2.23). Then

b
/ ’g(p,a)(t7s)p(s)| ds < atl —|—2|a — 1 ‘2((5’;))‘ for a <t <b, (2.27)

a+1l—]a—1]
2

b
A(p, 1)
a/lg(p,oz)(t7s)p(s)|ds > ‘A(p, a)‘ for a <t<b. (2.28)

Proof. Due to the fact that p is of constant sign and the condition (2.26),
there exists a number o¢ € {—1,1} such that

b
/ |g(p, a)(t, s)p(s)} ds = oqw(t) for a <t <b, (2.29)

where
b

w(t) = / o(p, ) (t, $)p(s) ds.

On the other hand, in view of the equalities (2.24) and (2.25), we find
t

w(t) = Al(;’z) exp (/p(s) ds) 1

a

Hence it is clear that
min {w(a)|, [w(d)[} < [w(t)] < max {|w(a)], w(b)]}.
However,
_ozA(p,l) w(b) = —
Alp,a) A(p,a)

w(a) =
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Thus,

min{a, 1}\ ;))‘ < |w(t)| < max{a, 1}’

A A(p,1

(p (p’)‘foragtgb,
Alp, A(p,a)
according to which from the equality (2.29) it follows the estimates (2.27)
and (2.28). O

3. SYSTEMS OF DIFFERENTIAL INEQUALITIES

In this section, we establish a priori estimates of solutions of the system
of differential inequalities

qi (t,ui(t)) < oi(ui(t) — pi(t)ui(t)) <

n

< Zpik (t,ur(t) + - 4 un () ) up(t)+
k=1

+q0(t,u1(t),...,un(t)) (i=1,...,n), (3.1)
satisfying the boundary conditions
o (ul(a) - aluZ(b)) 2 0, g; ('LLZ((L) - 51’&1({))) S 50 (Z = ]., ‘e ,n). (32)

Here
o; € {—1,1}, a; >0, ﬁz > 0,

ai(ﬁi—ai)>0 (izl,...,n), 50>0, (33)

p; : [a,b) = R (i =1,...,n) are integrable functions, ¢; : [a,b] X Roy — R
and pi @ [a,b] X Roy — Ry (i,k = 1,...,n) are integrable in the first
and continuous and nonincreasing in the second argument functions, and
q : [a,b] x Rf, — Ry is an integrable in the first and continuous and
nonincreasing in the last n arguments function.

A vector function (u;)j-; : [a,b] — Rf, with absolutely continuous com-
ponents u; : [a,b] = Roy (i =1,...,n) is said to be a solution of the
system (3.1) if it satisfies that system almost everywhere on [a, b].

A solution of the system (3.1), satisfying the boundary conditions (3.2),
is said to be a solution of the problem (3.1), (3.2).

We investigate the problem (3.1), (3.2) in the case, where

b
/qi(s7x)ds>0 for >0 (i=1,...,n) (3.4)

and

(o ([ra) 1) <0 6=t 63
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Let g be the operator given by the equalities (2.24) and (2.25). Suppose

hzk(ac) =
b

:max{/|g(pi,ﬁi)(t,S)|pik(s,x)ds: aStSb} (i,k=1,...,n) (3.6)

a

and
H(z) = (hin(x));,_, for > 0. (3.7)
Theorem 3.1. Let along with (3.3)—(3.5) the condition
xgrfoor(H(ac)) <1 (3.8)

be fulfilled. Then there exist positive constants § and p such that an arbitrary
solution (u;)?_; of the problem (3.1), (3.2) admits the estimates

0<wu(t)y<p for a<t<b (i=1,...,n). (3.9)

To prove this theorem, along with the results from Section 2 we need the
following lemma.

Lemma 3.1. Let hj, : Roy — Ry (4,k = 1,...,n) be nonincreasing func-
tions, and h; (i =1,...,n) be nonnegative constants. Let, moreover, there
exist a positive number xy such that
r(H(z0)) < 1, (3.10)
where H is a matriz function given by the equality (3.7). Then arbitrary
positive numbers x1,...,T,, satisfying the system of inequalities
n
2 <3 hap(wr+ -+ an)zi +h (i=1,...,n), (3.11)
k=1

satisfy the inequality

le<x0+||E H(zo)) 1”2/1 (3.12)
i=1

as well, where E is a unit n X n-matriz, and (E — H(:ro))’1

inverse to the matrizc E — H(xg).

is a matriz,

Proof. Assume the contrary that

le>xo+HE H(xo)) 1HZh (3.13)

i=1
Then from (3.10) we have

x; < Zhik(xo)fﬂk +hi (i=1,...,n)
k=1

since h; (i,k =1,...,n) are nonincreasing functions. Consequently,

(E — H(x))Z < h, (3.14)
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where
T=(2)j—y, h=(h)i,.

The nonnegativeness of the matrix H(xg) and the condition (3.10) guar-
antee the nondegeneracy of the matrix £ — H(xg) and the nonnegativeness
of the matrix (E — H(xq)) " .

If we multiply both sides of the inequality (3.14) by (E — H(zo))™!, we
obtain

Z < (E — H(xg)) 'h.
Thus

Z.’L‘i S (E — H(l‘o))_l Zh“

which contradicts the inequality (3.13). The obtained contradiction proves
the validity of the estimate (3.12). O

Proof of Theorem 3.1. According to the condition (3.8), there exists a pos-
itive number z( such that the inequality (3.10) holds.
(3.3) and (3.5) imply

oi(oven ([ nore) 1) <0 =1em. a9

On the other hand, by virtue of Theorems 2.1, 2.2 and the conditions (3.4)
and (3.15) for any ¢ € {1,...,n} the problem

vi(t) = pi(t)o(t) + oigi(t, vi 1)),

vi(a) = a;v;(b)

has a unique solution v;.
Put

A 760 ex i\S S
b= s e (a/m( s + (3.16)
b
+ max {/}g(pi,ﬂi)(t,s)|q0(5,51, vy 0p)ds agtgb} (i=1,...,n),
§ = min{éy,...,0,}, p:x0+||(EfH(xo))71HZhi. (3.17)

Let (u;); be a solution of the problem (3.1), (3.2). Our aim is to prove
that this solution admits the estimates (3.9).
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For each ¢ € {1,...,n} the function w; is a solution of the problem
o (uj(t) — pi(t)ui(t)) > qi(t, wi(t)),
ag; ('U/Z(CL) - azul(b)) 2 0.

Hence by virtue of the conditions (3.4), (3.15) and Theorems 2.1 and 2.2 it
follows that

ui(t) > vi(t) for a <t <b
and, consequently,
ui(t) > 9; for a <t <b (i=1,...,n). (3.18)
According to (3.1), (3.2), and (3.18), for each ¢ € {1,...,n} the function
u; is a solution of the problem

g; (u;(t) 7pz(t)uz(t)) S Zpik(tywl +-+ l’n)fﬂk + QO(ta 51; AR 5n)7
k=1

oi(ui(a) — Bi(t)ui(b)) < Po,
where
zp =max{u,(t):a <t <b} (k=1,...,n). (3.19)
Hence by virtue of the condition (3.5) and Corollary 2.1 it follows that

" b
ui(t) < (i, Bi)(t, 8) | pik (s, 21 + - -+ ) ds |xp+
;(/!gp |pi (s, 1 ) k

a

M(lf'(jﬁiﬂ exp </pl(s) ds)+

a

_|_

b
+/‘g(pi,ﬁi)(t,s)‘qo(s,él,...,6n)d5 for a <t <b.

If along with this estimate we take into account the notations (3.6) and
(3.16), then it becomes clear that the numbers z1, . .., x, satisfy the system
of inequalities (3.11). By Lemma 3.1 these numbers satisfy the inequality
(3.12) as well.

Due to (3.17) and (3.19), the estimates (3.12) and (3.18) result in the
estimates (3.9). O

Corollary 3.1. Let the functions p; (i =1,...,n) are of constant sign,
pi(t,2) = [pi®)lpoie(@) G,k =1,...,), (3.20)
and let along with (3.3)—~(3.5) the condition
wgrfoor(Ho(x)) <1 (3.21)
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be fulfilled, where poir : Rox — Ry (i,k = 1,...,n) are nonincreasing
functions and

i 1+ i 1 1)
by = (B LB B )
2 A(pi, Bi)
and A is a functional, given by the equality (2.24). Then there exist positive

constants 6 and p such that an arbitrary solution (u;)?_, of the problem
(3.1), (3.2) admits the estimates (3.9).

ik=1

Proof. By Lemma 2.2, the estimates

b

/’ (pi, Bi)(t, s)pi(s)| ds <

a

<ﬁi+1+|ﬂz_1“ pm)
- 2 A(pi, Bi)
are valid, according to which (3.6) and (3.20) result in the inequalities

ﬂz+1+|6z_1| pzv)
hik(@) < 2 ’A (vis )

Hence in view of (3.7) and (3.22) it is obvious that
H(z) < Hy(x) for x>0

for a<t<b (i=1,...,n)

poir(x) for x>0 (i,k=1,...,n).

and, consequently,
r(H(z)) <r(Hy(z)) for > 0.

Thus the inequalities (3.21) yield the inequality (3.8).
If now we apply Theorem 3.1, then the validity of Corollary 3.1 becomes
evident. ]
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1. INTRODUCTION

In the theory of differential equations of great importance is the problem
of separation of a linear homogeneous n-th order differential system into k
independent systems of orders ny,ng,...,ng (n1 +n2 + -+ +np = n), in
particular, separation of this system into n independent first-order differ-
ential equations (full separation). This problem has been considered, for
example, in [1-8]. Obviously, it is impossible in a general case to construct
transformations explicitly, leading to a separated system. Such a construc-
tion assumes for the initial system to be integrable. Therefore, in these
studies there was no attempt to construct such a transformation explicitly;
these works established only the conditions of its existence, investigated its
properties and possibility for its approximate construction, particularly, in
the form of asymptotic series. Of importance is also the question on the be-
longing of elements of a transforming matrix to the same classes as elements
of the matrix of the original system.

In his articles [9-12], the author considers the problem of full separation
of the system of the kind

X — (A2) + Bt ), (1)
where A(t,e) = diag (M (¢,¢),..., An(t,€)), and the functions \;(t,¢) (§ =
1,n) are, in a definite sense, slowly varying, u is a small positive param-
eter, elements of the matrix B(t,e,0) are represented by absolutely and
uniformly convergent Fourier series with slowly varying coefficients and fre-
quency ¢(t,e) = %. At the same time, the cases of resonance absence
and presence of resonance, including the special case, have been investi-
gated. For each of these cases the conditions were obtained under which
the transforming matrix elements have a structure similar to that of the
matrix B(t,e,60). In this article we study the possibility of block separation
of the system (1) into two independent systems of smaller dimensions in
a resonance case. Such a statement of the problem has some features as

compared with the problems considered in [9-12].

2. BAsic NOTATION AND DEFINITIONS
Let G={t,e: teR, e€[0,5], e € RT}.
Definition 1. We say that the function p(t, €) is in general complex-valued,
belongs to the class S(m;eq), m € NU{0}, if t,e € G and
(1) p(t,e) € C™(G) with respect to t;
(2) d*p(t,e)/dt" = rpi(t,e), sup [pi(t,€)] < +oo (0 < k < m).
Slow variation of a function is understood here in a sense of its belonging

to the class S(m;ep). As examples of this class of functions may serve in a
general case complex-valued bounded together with their derivatives up to
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the m-th order, inclusive, functions depending on the “slow time” 7 = &t:
sin T, arctg 7, etc.

Definition 2. We say that the function f(¢,¢€,0(t,e)) belongs to the
class F(m;eo;6), m € N U {0}, if this function can be represented as

f(te,0(te)) = Y falt,e)exp (inb(t <)),

where
(1) fu(t,e) € S(mseq), d* fo(t,e)/dt* = * fur(t,e) (n € Z,0 < k < m),
de m o0
@) Iflrmeon ™ S 5 up | ok (1,)| < +o0,

k=0n=-—o00
t
(3) O(t,e)=[o(r,e)dr, o(t,e) eRT, ¢(t,e) € S(m;ep), igf(p(t,s) > 0.
0

In particular, if ¢ = 0: ¢ = const, 8 = ¢t, f, = const, then func-
tions of the class F(m;ep;0) are transformed into 27/p-periodic functions
of variable t,

)= Y fae™

n=—oo
such that
o0
> Ifal < oo
n=—oo
A set of functions of the class F(m;ep;6) forms a linear space which
transforms into a full normed space by means of the norm || - || p(m:c,,6)-

The following chain of inclusions
F(0;20;6) D F(1;60;0) D -+ D F(m;e0;0)

is valid.
Let there be given two functions of the class F(m;eq;0):
ut,e,0(t,€)) = > up(t,e)exp(ind(t,c)),
v(t,e,0(t,e)) = Z vn(t,€) exp(inb(t, €)).

We define product of those functions by the formula [13]:

(wv)(t,e,0(t,€)) = Z Z Un—s(t,€)vs(t, €) exp(ind(t, €)).

nN=—00 §=—00

Obviously, uv € F(m;ep;0). We state some properties of the norm
Il - |7 (mieo:0)- Let u,v € F(m;e0;0), k = const. Then

(1) Hku”F(nL;Eo;@) = |k|Hu||F(7n;Eo;9);

(2) Hu + 'UHF(m;Eo;G) < ”uHF(m;so;9) + ||U||F(m;so;9);
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(3) HUUHF(m;Eo;O) < 2mH’(‘L||F(1ﬂ;fso;9)||UHF(m;Eo;t9)'
For any f(t,e,0) € F(m;ep;0), we denote:

2

r.(f) = i/f(?f,e,u) exp(—inu) du.

2m
0
Let A(t,e,0) = (a;r(t,e,0)) — (M x K) be the matrix with elements of
the class F(m;eq;6). We denote:
(A)je =aze (j=1LM, k=1K),
K

|‘A||?(m;€0;0) =  nax

B 2 (A) ikl 7 (mseo:0)-

I
=1

3. STATEMENT OF THE PROBLEM

Consider the following system of differential equations:

dx
7; = Hi(p)r1 + p(Bui(t,e,0)x1 + Bia(t, g, 0)z2),
(2)
dx
(T; = Ha(p)x2 + p(Bai(t. €, 0)21 + Baa(t, €,0)2),
where x1 = colon (211, ...,Z1n,), 2 = colon (za1, ..., T2N,),
ipp 0 0 0
1 dpp ... 0 O
Hl(@) el R I S s
0 0 ... 0 0
0 0 1 app
ireg 0 0 O
1 dre ... 0 O
Hg((p) e R
0 0 ... 0 0
0 0 ... 1 ire

are the Jordan blocks of dimensions Ny and Ny, respectively (N1+Ng = N);
p,r € Z; Bji(t,e,0) are the (N; x Ni) matrices with elements of the
class F(m;e;0); o(t,e) is the function appearing in the definition of class
F(m;e;0); p € (0,1). In this sense, we deal with a resonance case.

We study the problem of existence and properties of the transformation
of kind:

Tj = le(tvgaenu')gl +Lj2(t7519mu')§2’ J=12, (3)
where the elements of (N; x Ny)-matrices L;; (j,k = 1,2) belong to the
class Fi(m — 1;e1;0) (0 < g1 < &9), reducing the system (2) to the form:

% = Dy, (t,&,0, p)z1, % = Dn,(t,&,0, p)2, (4)
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where the elements of (NV; x N;)-matrices Dy, (j = 1,2) likewise belong to
the class Fi(m — 1;e1;6).

4. AUXILIARY RESULTS

Lemma 1. Let there be given a matrixz differential equation

ax . l : l
==+ ;Pz@,e,em )X =X (i + ;czxt,e,em ) ©)
where X is (M x K)-matriz, Pj(t,e,0), Qi(t,e,0) (I =1,q) are matrices of
dimensions (M x M) and (K x K) respectively with elements from the class
F(m;e;0),

0 0 0 0 0 0 0 0
10 00 10 0 0
Ju= | s Tk = e
0 0 0 0 0 0 0 0
0 0 10 0 0 1 0

are Jordan blocks of dimensions M and K, respectively, whose diagonal
elements are equal to zero, u € (0,1).

Then there exists po € (0,1) such that for any p € (0, o) there exists
transformation of the kind

X = (EM + zq: O,(t, e, G)ul)Y<EK + zq: Uyt e, a)ul), (6)
=1 =1

whereY is the (M x K)-matriz, Ey, Ex are identity matrices of dimensions
M and K respectively, the elements of (M x M)-matrices ®; and those
of (K x K)-matrices ¥; (I = 1,q) belong to the class F(m;e;0) reducing
equation (5) to the form:

dY

q q
- l 7 l +1
% - (JM +;Ul(t?€)/’[’ +€;Ul(ta€79)/’[’ +:uq Wl(t75797u))y_

q q
- Y(JK + 3 Vit e + 2 Vit e, )l + uI Walt, 2,6, u)), (7)

1=1 1=1
where U (t,e), Vi(t,e) (I = 1,q) are the matrices of dimensions (M x M)
and (K x K), respectively, with elements from the class S(m;eg), Ui(t,¢)
and Vi(t,e) (I =1, q) are the matrices of dimensions (M x M) and (K x K),
respectively, with elements from the class F(m — 1;e9;0), Wy, Wo are the

matrices of dimensions (M x M) and (K x K), respectively, with elements
from the class F(m — 1;¢0;0).

Proof. We substitute (6) into the system (5) and require for the transformed
system to have the form (7). Then for the matrices ®;, ¥; (I = 1,q) we



On the Block Separation. ..

obtain the following differential equations:

d® -
7; =Juy® — O Jy +P1(t,6,9) — Ul(t,&?) — EUl(t,E,g),
dv ~
7; = JK\Ill - \Ille - Ql(tvgaa) + Vl(tag) +EV1(t,€,9),
dd A
!
e Ty, — @ Pi(t,e,0 P,(t,e,0)®,_,—
i Ju P 1+ 1(767)4"; (t,e,0)®;
-1 -1
=Y B UL (te) —e> O,Ui_y(t e, 0)-
v=1 v=1
—Ui(t,e) —eUy(t,e,0), 1=2,q,
qT -1
!
=Jg¥; - U - t, e, 0) — U,Q_,(te, 0
q =Jr¥ — U Jx — Qi(t,e,0) I; Qi—v(t,e,0)+
-1 -1
+Y Vot o)W, +e Y V(te,0)¥_+
v=1 v=1

+ Vilt,e) +eVi(t,e,0), 1=2,q.

The matrices Wy, Wy are defined from the equations

(EM + zq:q’l(tﬁa@)ul)wl =
=1
- Z [ Z (P, ®s5 — <1>5Ua)] e — sqzl( Z <I>aﬁ5)us,

+d=s+q+1 s=0 o+d=s+q+1

Wy (EK + zq: U, (t, e, H)ul) =

=1

[

qg—1

- z_: { Y (—T,Qs+ ngg)}us +€Z( > ‘70@5)#5,

s=0 o+4+d=s+q+1 s=0 o+d=s+q+1

Based on the equations (8)—(11), we set

(U)sm = Lo((Th)sm)s

o0
Fn((q)l)s—l,M + (Tl)sM) ind
(®1)smr = n;oo ing e,
(n+0)

o0

129

(8)
(9)

(10)

(11)

(13)

(ﬁz)sMZ—% Z %(I‘ n((P)s—1,00 + (T1) st ) ind (ZCI) . V) ’

me

n=-—o0
(n#0)

(U)s,m—5 =To((T1) s,p1—5),
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oo

Lo ((P0)s—1,m—5 — (Ro)s,mr—j11 + (T)s,1—5) ino
(®1)s,n1—j = n;m g e
(n#0)
~ T d (Tol((®) s — (@) snr—jir (T si—3)\ ing
U, = 7( £ ’ J S5 J S, J)zn_
(Ut)s, J 5n;mdt 0%) €
(n#0)
-1
(Y 00) (=T M; j=TM-1),
= s, M—j
where
-1 -1
Li=P+)Y Po_,—Y ®U_, (I=T4).
v=1 v=1
-1
(if I = 1, then we assume Y, to be equal to zero; if s = 1, then we assume

v=1

(®)s—1,; to be equal to zero),
V)skx = To((Ri)sk ),

oo

Fn((‘l/l)S—l,K + (Rl)sK) inf
(\Ill)sK = ngoo ano € )
(n+0)
S s d Ta((W)so1k + (Rl)sK)) in6
(Vi)sxe = e HZOO dt ( %) °
(n#0)

-1 N
(S,

V)s,x—j = Lo((Ri)s,—3),

o0
Ln((W)s—1,6—5 — (U1)s,k—j1 + (Ri)s,k—5) ino
\P s = ) : 3y 3y m ,
( l) K =3 n;m ing €
(n£0)

~ 100 d F \IJ s— _,_\Ij . . +Rs . in
(Vl)s’K_j:_,Z %( n((We)s—1,k—j ('l)s,K g1t (R)s i ]))e o

— me
(n+0)
-1
—(ZWIJH) (s=T,K; j=1,K 1),
1 s, K—j
where
-1 1-1
Rl = 7Ql - Z \IIUQlfu + Z Vu\plfu (l = 13 Q)
v=1 v=1
-1
(if I = 1, then we set > to be equal to zero; if s =1, then we set (¥)s_1;
v=1

to be equal to zero).
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Then for sufficiently small values p, the matrices Wy, Wy are uniquely
defined from equations (12), (13). O

Consider now the matrix differential equation

dX
— =JuX — XJg + F(t,e,0) + u(A(t,e,0) X —

dt
— XB(t,e,0)) — > XR(t,¢,0)X, (14)

where X is the (M x K)-matrix, F', A, B, R are matrices of dimensions
(M x K), (M x M), (K xK), (K x M), respectively, whose all elements
belong to the class F'(m;e;0).

Lemma 2. Let equation (14) satisfy one of the sets of conditions 1, I, II1:

I (1) M<K,

©) 3 To((F)ok—i1) =0, 5 =T,
) inf To(B)ix)| > 0

L (1) M=K,
() £ Tol(Phuk—s4) =0, 5 =07,

(3) nf[To((A)1ar = (B)iar)| > 0;
. (1) M>K,

@) 3 To((Flok-50) =0, 5 =T K.

(3) inf|To((A)1ar)[ > 0.
Then there exists py €10,1[ such that for any p €]0, pu1| there exists the
transformation of the kind
2q—1
X = Z Es(t, e, Op’ + O(t,e,0, )Y V(t, 2,0, 1), (15)
s=0

where the elements of (M x K)-matrices E5 (s = 0,2¢ — 1), of (M x M)-
matriz ® and of (K x K)-matriz U belong to the class F(m;ep,0) Yu €
(0, p1), reducing the equation (14) to the form

dy

= JuY — Y+ (iUz(t,s)ul)Y ~¥ (vt o)+

=1 =1
+e(U(t,e,0,n)Y =YV (t,e,0, 1))+
+ luqul (/V\[//vl (t7 g, 97 H’)Y - Y/V\V/Q(t, g, 0, ‘u))—|—
+eG(t,e,0, 1) + > H(te,0, 1) + pY Rt e, 0, p)Y, (16)
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where the elements of matrices Uy, Vi (I =1,q) belong to the class S(m;eq),

and the elements of matrices U, V., W1, Ws, G, H, Ry of the corresponding
dimensions belong to the class F(m — 1;£¢;0).

Proof. Along with the equation (14), we consider an auxiliary matrix equa-
tion

d=
go(t,e)@ = JyE - ZJg + F(t,e,0)+

+ M(A(tv g, 0)5 - EB(t7 g, 9)) - :U‘ZER(tv g, 0)57 (17)

where t, ¢ are considered as constants. The matrices-functions F(t,¢,6),
A(t,e,0), B(t,e,0), R(t,e,0) are 2m-periodic with respect to §. We con-
struct, according to the Poincare method of small parameter [14], an ap-
proximate 27-periodic with respect to 6 solution of the equation (17) in the
form of a sum:

(1]

2q—1
=Y Eilt,e,0)p’ (18)

The coefficients =5 are determined from the following chain of linear non-
homogeneous matrix differential equations:

—_
=0

o(t, E)W = JuEo — EoJk + F(t,¢,0), (19)
o(t, E)d;; = JuE1 — E1Jix + A(t,€,0)20 — E0B(t,¢,0), (20)
olt, 5)%; = JuZs — EaJk + A(t,e,0)21 — E1B(t,e,0)—
- EoR(t,{:‘,o)Eo, (21)
P(t,e) = = JuE, — i + Alt,,0)Z01 — Eo1 Bt 2, 6)-
s5—2
— Y EiR(t,£,0)Zs 21, 5=3,2¢— 1. (22)
=0

First consider the case M < K. The condition I.(2) ensures the existence
of a 2m-periodic with respect to 8 solution Ey(t,¢,6) of the equation (19)
having the form

EO(t7579) = Co(t,€) + E0(757679)7 (23)

where Eo(t,E, ) is the known matrix whose elements belong to the class
F(m;ep;0), and (M x K)-matrix Cy(t,e) has the form

COl(t,E) 0 0 0o ... 0

CQM(t,E) COyM_l(tﬂf) COl(t,E) 0o ... 0
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where the scalar functions cg1, ..., con are determined from the following
system of equations:

J
> To((AZo — EoB)s.k—jts) =0, j=1,M. (24)
s=1

We represent the matrices A and B in the form

A(t,e,0) = Ag(t,e) + Z Ay (t,e)e™?,

n=—oo
(n0)

B(t,e,0) = By(t,e) + Z B (t,e)e™.

n=—oo
(n#0)

Then it is easy to verify that the system (24) is a system of M linear

algebraic equations with respect to the functions cg1, ..., coa:
j [
> (Aot,e)Co = CoBo(t,e)), oy = his(tie), =T, M, (25)
s=1
where hf;, ..., h{,, are the known functions of the class S(m;eg). Deter-

minant of this system has a triangular form, and absolute values of all its
diagonal elements are equal to |(Bo(t,€))1k|. Therefore, the condition I.(3)
ensures the existence of a unique solution ¢, (¢,¢),. .., gy (t, €) of the sys-
tem (25), and this solution belongs to the class S(m;eg).

Using the above found 2m-periodic with respect to 6 solution (23) of the
equation (19), we construct a 2w-periodic with respect to 6 solution of the
equation (20) of the form

El(t7€79) = Cl(t7€) + E1(t7€79)7 (26)

where Z; (t,e,0) is the known matrix, whose elements belong to the class
F(m;ep;0), and the (M x K)-matrix C;(t,¢) has the form

Cll(t,E) 0 0 0 ... 0
Ci(te) = c12(t, €) c11(t, €) 0 0 ... 0
ClM(t,E) CLM_l(t,E) 011(t,€) 0o ... 0
The scalar functions c11, ..., ¢ are determined from the system of linear
algebraic equations
j [
Z (AO(t75)01 *ClBO(t,S))SyK_j_;,_S = hi}-(t,&), ] = 17Ma (27)
s=1
where hi,, ..., h],, are the known functions of the class S(m;¢e¢). Therefore

the condition I.(3) ensures the existence of a unique solution of the system
(27), as well. Proceeding just as above, we find a 27-periodic with respect
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to 0 solutions of the equations (21), (22). The elements of all these solutions
belong to the class F'(m;eg,0).

Consider now the case M = K. The condition II.(2) ensures the existence
of a 2m-periodic with respect to € solution of the equation (19) having the
form (23), where the (M x M)-matrix Cy(t,e) takes the form

co1(t, €) 0 - 0
Co(t,c‘?) _ Cog(t,{f) COl(t, 5) 0
CON[(t, 8) Co’Mfl(t,E) e 001(t,€>
The scalar functions co1 (¢, €), - .., con (¢, €) are determined from the follow-

ing system of linear algebraic equations:

J
> (Aot,e)Co = CoBo(ts€)), oy = 96;(t,€), j =T, M, (28)
s=1
where g§1, ..., g5y are the known functions of the class S(m;¢eg). Determi-

nant of this system has a triangular form, and absolute values of all its diag-
onal elements are equal to |(Ag(t,€)1a — (Bo(t, €))1am]|- Therefore the condi-
tion II.(3) ensures the existence of a unique solution cf; (¢, €),...,c5p (¢, €)
of the system (28), and this solution belongs to the class S(m;ep).

Thus we have fully determined the 27-periodic with respect to 6 solution
of the equation (19). Next, in a full analogy with the case M < K, we
determined 2m-periodic with respect to 6 solutions of the equations (20),
(21), (22).

In case M > K, the matrix Cy(t,€) in (23) is of the form

0 0 o 0
0 0 0
C()(t,E) = COl(t,é‘) 0 0
Co2 (t, €> COl(t, 8) 0
COK(t, 8) Co’Kfl(LE) Col(t, E)
The scalar functions co1(t,€), ..., cox (t,€) are determined from the follow-

ing system of linear algebraic equations:

J

> (Ao(t,e)Co — CoBo(t:€)), s jps = fii(t8)s G=TK, (29

s=1
where f31,..., fiy; are the known functions of the class S(m;eg). Deter-
minant of this system has a triangular form, and absolute values of all its
diagonal elements are equal to |(Ag(t,€)1as|.- Therefore the condition III.(3)
ensures the existence of a unique solution ¢ (¢,¢), ..., ¢k (¢, €) of the sys-
tem (29), and this solution belongs to the class S(m;eg). Next, analogously
to the case M < K, we determine a 2m-periodic with respect to 6 solutions
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of the equations (20), (21), (22). The elements of all these solutions belong

to the class F(m;eg;0).
Substituting in (14)
2q—1
X = Z Hs(t,e,)p’ + X,
s=0
where X is a new unknown matrix, we obtain

dX S <
E = JMX - XJK +5G1(ta€797u) + ,U/2qu(t757€7/’(‘)+

N (iﬂ(t,é‘,@)ﬂl)g 7)}<zq:Ql(t,5,0)Ml)+
— =1

+ uI T (Wi (te,0, 1) X — XW5(t,e,0,p)) + 1 X R(t,¢,0)X.

By Lemma 1, using the substitution of the kind

X = (EM + zq: ®y(t,e, G)ul)Y<EK + zq: U (t, e, 9)#),

=1 =1

we reduce the equation (31) to the form (16).

We introduce the matrices
q q
Ult,e,p) =Y Uit o', Vite,p) =Y Vi(t,e)ul,
=1 1=1

where U; and V; (I =1, q) are defined in Lemma 2.

Lemma 3. Let the equation (16) satisfy the following conditions:

(31)

(1) eigenvalues A\ (t,e, 1) (j =1, M) of the matriz Jy +U(t, e, 1) and
Aos(t,e, 1) (s =1, K) of the matriz Jx + V(t,e, 1) are such that

lgf ‘Re ()\1j (ta &, /J) — Aas (ta & M)) ‘ > ’YOMqU

(’70>07 0<(]O§q, j:17M7 3:17K),

(2) there exist the (M x M)-matriz L1(t,e, u) and the (K x K)-matriz

Lo(t,e, ) such that

(a) all elements of these matrices belong to the class S(m;eq) C

F(m;eo;0);

(b) |!L;1(t757/1)||*F(m50,0) < Myp™®, My € (07+OO); o € [07Q]’

j=12

(C) Ll_l(JM + U)Ll - Al(t,E,M), L2(JK + V)L2_1 = AQ(tagaM)7

where Ay = diag (A11,..., A1), As = diag (Aa1, ..., Aok );

3) ¢g>q+a-—1/2.
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Then there exist po € (0,1) and K* € (0, +00) such that for any p € (0, o)
the matriz differential equation (16) has a particular solution Y (t,e,0, u)
such that allits elements belong to the class F(m—1;e1(n);0), whereei(pn) =
min(gg, K*p2e+2e-1),

Proof. In the equation (16), we perform the substitution

e+ p*

Y ,u‘10+2°‘ L1(t,€,p)ZL2(t,€7ﬂ), (32)

where Z is a new unknown (M x K)-matrix. We obtain

dz

i A (tye,u)Z — ZAo(t, e, 1) + s(ﬁl(tﬁ,e,u)Z — Z‘Nfl(t,z—:, 0,u))+
+ patt (Wg(t,E,G,M)Z — ZW;;(t,s,@,u))-i—
5ILL¢10+204
€+ p2a

€+ p
+ quTéL;—lZRQ(t’s’e"u)Z’ (33)

,uQQ+2a+qo
€+ p2e

Gz(t’E?H’#)Jr Hz(t’€707/“’l’)+

where

Go=L7'GiLy"', Hy=L7'H\L;",
Uy = L7'ULy — e 'L7Y(dLy /dt), Vi = LyULy' + e Y (dLy/dt) L5,
Wi =L7'WiLy, Wy = LoWyLy', Ry = LoR, L.

All elements of these matrices belong to the class F'(m — 1;¢¢;6).

Owing to the formulas for matrices Gy, Hsy, Uy, ‘71, W3, W4 and the
condition 2(b) of the lemma, there exists Ko € (0, +00) such that

K2 K2
||G2||F(m71;5;0) < ﬁ7 HHQHF(mfl;s;O) < —
7 K2 7 K2
1IF(m—1;&0) =~ ~ > HF(m=15e50) S — s
U]l < e Al < 22
7. K2 Tir K2
||W3||F(m—1;s;6) < Mioé7 ||W4||F(m—1;s;9) < qua, ||R2||F(m—1;5;0) < K.

Along with the equation (33), we consider the matrix linear differential
equation

dZ,
7; =N (t,e, ) Zo — ZoMa(t, e, )+
6,uqo+2a ‘u2q+2a+qo
o Gz(t7€,97u)+WHQ(’”&’H’“)' (34)
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It is easy to see that this equation is a system of M K independent scalar
first-order differential equations

d(Zy)is
% = ()\lj(t7 g, /1') - )‘2S(t7 €, M))d(ZO)js+
Euqo+2a M2q+2a+qo
My (Galt,e,0,p)) ,, + T A (Ha(t.e,0,1));,, (35)

j=1,M, s=1K.

In [13], it has been shown that the conditions of the lemma provide us with
the existence of a unique particular solution (Zy(t,e,0,n));s (j = 1, M,
s = 1, K) of the system (35), which belongs to the class F(m — 1;0; ), and
in addition, there exists Ky € (0,400) such that

1(Z0) sl F(m—-15e0:0) <
KO 6u‘10+20¢ ﬂ2q+2a+q0
< E (5 + u2q ||(G2)js||F(m*1§€0§9) + -+ qu |‘(H2)js||F(m71;ao;9))~
Hence the equation (34) has a particular solution Zy(t,e,0, u) all elements
of which belong to the class F(m — 1;g¢;6) and, in addition, there exists
K, € (0,400) such that

||ZOH*F(m—1;so;0) <
- & (5uqo+2a M2q+2a+qo

*
= oo \o g p20 G2l (m—15e050) + -

Fm el (360

We seek for a solution of the equation (33) all elements of which be-
long to the class F'(m — 1;¢1;6), by using the iterative method, identifying
Zy(t,e,0, 1) as an initial approximation, and subsequent iterations are de-
fined as a solutions all elements of which belong to the class F(m — 1;1;0)
of linear inhomogeneous matrix differential equations

dz,
dt+1 = Al(t, £, M)ZV-H — Zys1ho (t7 g :u)+
gptot2a p2at2atao
P Ga(t,e,0,1) + et 21 Halt.e,6, 1)+

+e(Ui(t,e,0,1) 2, — Z,Vi(t,e,0, 1)+
+ Tt (Walt,e, 0, 1) Z, — Z,Wa(t,e,0, 1))+

e+ pa

WZVRQ(t,&—,a,,U/)ZV, 1/2071,2,... . (37)

Denote

Q= {Z € F(m—1;20;0) : |12 = Zollp(n-1,c00) < d}~
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Using a technique known as contraction mapping principle [15], it is not
difficult to show that if

e+ pitt .
K1K2(W2 (1Zoll 7 (m—152050) + )+
€+ 1P o ) 2
t otz 2 (120l bnoricon T 4)) S do < d (39)

all iterations (37) belong to Q. And if

€+ Mq-‘rl m €+ MQq 2m—1 *
KlKQ( uq0+a 2"+ M2q0+2a—1 2 (”ZO”F(m*l;Eo;@) +d)) < 1’ (39)

then the process (37) converges to a solution of the equation (33) all elements
of which belong to class the F(m — 1;¢1;60). The inequalities (38), (39)
hold due to the conditions (3) of lemma for sufficiently small p and ¢/
p2ao+2a=1 " Therefore e1(u) = K*p?®+t2071 where K* is a sufficiently
small constant. O

The following lemma is an immediate consequence of the above one.

Lemma 4. Let the equation (14) satisfy all conditions of Lemma 2, and the
equation (16) obtained from (14) by means of the transformation (15) satisfy
the conditions of Lemma 3. Then there exists uz € (0,1), K3 € (0,+00)
such that for any p € (0,pu3) the equation (14) has a particular solution
which belongs to the class F(m — 1;e2(u);0), where eo(p) = Kou?® 201,
and qo, a are defined in Lemma 2.

5. THE BAsic RESULTS

Getting back to the system (2), we make transformation

Ty = eipeyh T2 = 6"%/2- (39)
We obtain
d ~ ~
% = Jny1 + pu(Bui(t,e,0)y1 + Bia(t, e, 0)y2),
(40)
d - -
% = Jnyy2 + p(Bai(t,€,0)y1 + Baa(t, e, 0)y2),
where
0 0 0 0 0 0 0 O
1 0 0 0 1 0 0 O
Tne = | oo R
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0

are the Jordan blocks of dimensions N7 and N, respectively, whose diagonal
elements are equal to zero, and all elements of matrices Bjx (¢, ¢, 6) belong
to the class F(m;eg;0).
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In the system (40) we make the transformation

Y1 =21+ MQIQ(t’ 2 9’ M)Z27 Y2 = HQQI (t’ 25 97 /’L)Zl + 2a. (41)
Having required for the conditions of block diagonality for the above trans-
formed system, we obtain for (N; x Nj)-matrices @, the following system
of the form
dQji
dt

= JN,Qjr — QjrIN, + Ejk(t7579)+

+ u(Bj(t,e,0)Qjx — QjrBri(t,e,0)) — 1 Q;x Brj Qi (42)
k=12 (j#k).
Then for the Ni-vector z; and Na-vector zo we obtain the system
le

E = DN1 (t,E, 97.“)217

d
©2 = Dy, (te.0, 1)z, (43)
dt
where
DN1 - JNl + Méll(t7 g, 9) + ,U/2B12(ta g, 9)@21(ta g, 9, M)v
Dy, = Jn, + puBas(t,,0) + 1 Bai (t,£,0)Qua(t, £, 0, )

are matrices of dimensions (N7 X N7) and (Na X Na), respectively.

It is easy to see that the system (42) is divided into two independent
equations, each of which has the form (14). Therefore, by Lemma 4, the
following theorem is true.

Theorem. Let each of the equations (42) satisfy all conditions of Lemma 4.
Then there exists py € (0,1), K4 € (0,400) such that for any p € (0, pa)
there exists the transformation of kind (3) with coefficients from the class
F(m—1;e4(1); 0), where e4(p) = Kqpu?9+22=1 (qo and o are defined in Lem-
ma 2), reducing the system (2) to a block-diagonal form (4). The matrices
Dy, Dy, are defined in terms of the expressions (44).
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MALKHAZ ASHORDIA

ON THE NONLOCAL NONLINEAR
BOUNDARY VALUE PROBLEMS FOR SYSTEMS
OF GENERALIZED DIFFERENTIAL EQUATIONS

WITH SINGULARITIES

Abstract. The general nonlocal boundary value problem is considered for
systems of nonlinear generalized differential equations with singularities on
a non-closed interval. Singularity is understood in a sense that the vector-
function corresponding to the system may have unbounded variation with
respect to the time variable on the whole interval. The sufficient conditions
for the solvability of this problem are given.
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1. STATEMENT OF THE PROBLEM AND BASIC NOTATIONS

In the paper we investigate the question on the solvability of the system
of generalized nonlinear differential equations

dx = dA(t) - f(t,x) (1.1)
under the general nonlinear boundary value problem
h(Hz) =0, (1.2)

where A and H :]a, b[— R™*™ are the matrix-functions with components of
bounded variation on every closed interval from |a, b[, in addition, det H (t) #
0 for t €]a,b[; f € Carjpe(Ja, b xR™, R™; A), and h : BV4([a,b]; R™) — R”
is a continuous operator.
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The same question for the linear general and two-point boundary value
problems for systems of generalized linear differential equations are investi-
gated in [5]-[7].

The question on the existence of a solution of the problem (1.1),(1.2)
when the matrix A and vector-function f are regular, i.e. A€ BV(]a, b],R"*™)
and f € Car([a,b] x R™",R™; A), is investigated in [1]-[3], where the Conti-
Opial type theorems for the solvability of the problem (1.1),(1.2) are ob-
tained.

Analogous and related questions are investigated in [11] (see also the
references therein) for the singular boundary value problems for ordinary
differential systems, and in [8], [12]-[14], [16] (see also the references therein)
for the regular boundary value problems for ordinary differential systems
and for functional differential equations.

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see e.g. [4], [9], [10], [15], [17],
[18] and the references therein).

Throughout the paper the following notation and definitions will be used.

R =] —o00,+o0[, Ry = [0,4+00[; [a,b] and ]a, b[ (a,b € R) are the closed
and open intervals, respectively.

R"™"™ is the space of all real n x m-matrices X = (x);;"; with the norm

n,m
1X1 =3 leal

il=1
R*™ = {(Ill)lel cxg >0 (i=1,...,n 1= 1,...,m)}.

Opnxm (or O) is the zero n X m-matrix.
n,m
If X = (za);;2) € R™™, then |X| = (‘mi”)i,l:l'
R™ = R™*! is the space of all real column n-vectors z = (z;)/_; R} =
Rnxl
gl
If X € R"*", then det X and X! are, respectively, the determinant of
X and the matrix inverse to X; I,, is the identity n x n-matrix.
d
V(X), where ¢ < ¢ < d < b, is the variation of the matrix-function
C

X :]a,b[— R™ ™ on the closed interval [c, d], i.e., the sum of total variations
of the latter components z;; (i = 1,...,n; 1 =1,...,m) on this interval; if

d < ¢, then \?(X) =— \2 (X)) V(X)) = (U(fil)(t))Z}Zp where v(z;)(to) =

0, v()(t) = V() for a <t < b, and tg = (a +b)/2.
0
X(t—) and X (t+) are, respectively, the left and the right limits of the
matrix-function X :]a, b — R™*™ at the point ¢ € ]a, b[ (we assume X (t) =
X(a+) for t < a and X(t) = X(b—) for t > b, if necessary).
X)) =X(t)— X({t-), d2X(t) = X(t+) — X (2).
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BV ([a, b], R™*™) is the set of all matrix-functions of the bounded varia-
b
tion X : [a,b] — R™™ (ie., V(X) < 400).
1X1[s = sup {||X(®)[| : ¢ € [a,]}.
BV([a, b], R"*™) is the normed space (BV([a,b], R™>™),|| - ||s)-
BVioc(]a, b[,R™*™) is the set of all matrix-functions X :]a,b[— R™*™
d
such that V(X) < +oo for every a < ¢ < d < b.

Ifa<a< B <band X €BV(|e, ],R"*™), then X, g € BV([a, b], R**™)
is a matrix-function defined by

X(a=) for a<t<a,
Xap(t)=¢ X(t) for a <t < B,
X(B+) for p<t<b.

Let G € BVp(]a,b[,R"*™). By BVg([a,b], R™) we denote the set of all
vector-functions x € BV,.(]a, b[,R™) for which there exist the finite limits
tlierG(t)x(t) and tlirgl G(t)x(t). It is evident that z¢ € BV([a,b],R™) for

—a —b—
every € BVs.(Ja,b[,R™), where the vector-function z¢g : [a,b] — R" is
defined by

G(t)z(t) for a <t <b,

zo(t) = { Jim G)z(t) for t=a,
lim G(t)z(t) for t=b.
t—b—

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If I C R is an interval, then C(I,R™*™) is the set of all continuous
matrix-functions X : I — R™*™,

If By and By are normed spaces, then an operator g : By — By (nonlin-
ear, in general) is positive homogeneous if

g(A\x) = Ag(z)

for every A € Ry and x € Bj.
1, 82, 8¢ : BV([a, b],R) — BV([a, b],R) are the operators defined, respec-
tively, by

s1(z)(a) = s2(z)(a) =0,
s1(z)(t) = Z diz(r) and so(z)(t) = Z dox(T) for a <t <b,

a<t<t a<lT<t

and

se(x)(t) = z(t) — s1(x)(t) — s2(x)(t) for t € [a,b)].
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If g : [a,b] — R is a nondecreasing function, z : [a,0] > Rand a < s <
t < b, then
¢

/ £(r) dg(r) = / 27 dse()) + 3 2(Ddig(r) + 3 a(r)dag(r),

S 1.t s<t<t s<T<t

where [ x(7)dsc(g)(7) is the Lebesgue-Stieltjes integral over the open in-
st
terval |s, t[ with respect to the measure p(s.(g)) corresponding to the func-

b ¢
tion s.(g). If a = b, then we assume [ z(t)dg(t) = 0; so that [z(7)dg(7)
a s

is the Kurzweil-Stieltjes integral (see [20], [22], [24]). Moreover, we put

[amrdsr) =t [ ardgtr)
s+ 7 s+e

and
[atrrdgn =t [ atrydgtr)

L([a,b],R; g) is the space of all functions z : [a,b] — R, measurable and
integrable with respect to the measure u(g.(g)) for which

Y le@®ldig(r) + Y la()ldzg(t) < +oo,

a<t<b a<t<b

with the norm
b
lellzg = / l2(t)] dg(2).

If g; : [a,b] = R (j = 1,2) are nondecreasing functions, g(t) = g¢:1(t) —
g2(t), and z : [a,b] — R, then

¢ ¢ ¢
/x(T) dg(t) = /x(r) dgi(7) — /x(r) dga(7) for a <s<t<h.
If G = (gm)izzl : [a,b] — R¥™™ is a nondecreasing matrix-function

and D C R™ ™ then L([a,b], D;G) is the set of all matrix-functions X =
(Tj)pj=1 * la,b] — D such that zy; € L([a,b], Rygix) (1 = 1,....0 k =
1,...,n;5=1,...,m);

lm

/th(T) X (r) = (zn:/txkj(T)dgik(T)> for a<s<t<b,
k=1"

ij=1
S

SH(G)(t) = (s(g) (D)1, (G =1.2) and S.(G)(t) = (selgar) ()} f_,-
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If Dy C R™ and Dy C R™*™ then Car([a, b] X D1, Ds; G) is the Carathé-
odory class, i.e., the set of all mappings F' = (fx;)j~, : [a,b] x D1 — D>
such that for each i € {1,...,1},j€{1,...,m}and k € {1,...,n}:

(i) the function fi;(-,x) : [a,b] — D2 is p(sc(gix))-measurable for
every x € Dy;

(ii) the function fy;(t, -) : D1 — Do is continuous for p(s.(gix))-almost
every t € [a,b] and for every t € Dg,, , and

sup {|fi;(-,2)|: @ € Do} € L([a,b], R; gir)
for every compact Dy C Dq;
Caroc(]a, b[ x D1, Do; G) is the local Carathéodory class, i.e., the set of

,m

all mappings F' = (fi;);72, ]a,b[xD1 — Ds the restriction of which
on every closed interval [a, 8] belongs to Car([a, 8] X D1, Da; G) for every
a<a<f<hb.

If G; : [a,b] — R>™ (j = 1,2) are nondecreasing matrix-functions,
G(t) = G1(t) — Ga(t), and X : [a,b] — R™™™ then

t t t

/dG(T)'X(T) :/dGl(r)~X(r)—/dG2(r).X(T) for a <s<t<b,

2
Carjoe(]a, b x D1, Da; G) = ﬂ Caroc(]a, b x D1, Da; G5).

If G € BV([a, b; R"*") and X : [a,b] — R"*™), then
B(G, X)(t) = G()X(t) — G(a)X (a) — /dG(T) X (7).

The inequalities between the matrices are understood componentwise.
Below we assume that

Aq(t)

V(A)(t) and As(t) = V(A) () — A(1).
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A vector-function = € BV,.(]a,b[,R™) is said to be a solution of the
system (1.1) if

z(t) = x(s) + /dA(T) < f(rx(1)) for a <s<t<b.

Under a solution of the problem (1.1),(1.2) we mean solutions x of the
system (1.1) such that z € BVy([a,b],R™) and the equality h(zg) = 0
holds.

We say that the operator g : BVi,.(]a,b[,R™) — R™) has some prop-
erty in the set BVioc(]a, b[,R™) if the operator g, s : BV([a, 5], R") — R™,
defined by gq,g(x) = g(za,3), has the same property for every o, 8 €la, b|
(a < B); If, moreover, B € BV,,.(]a, b[, R"*™), then we say that the prob-
lem

dx = dB(t) -z for t €la,b[, g(z) <0
has some property in BV,.(]a, b[,R™), if the problem
dx = dByg(t) -z for t € (o, f], ga,p(z) <0

has the same property for every a, 8 €a, b (a < ).
In particular, we say that the operator g : BV;,.(Ja,b[,R™) — R") is
continuous in the set BV, (]a, b[,R") if

lim g(xka,p) = 9(z0,a,8) forevery a < a < <b,
k—+o0

where 29 € BVioc(]a,b[,R™) and z € BVioc(]a,b[,R™") (k=1,2,...) is an
arbitrary sequence such that

kll;r—&I-loo Thio,8(t) = xo(t) uniformly on [o, ] for e < a < g <b.
Definition 1.1. Let a matrix-function H € BV,,.(Ja, b[,R™"*™) be such
that det H(t) # 0 for ¢ €]a,b[. Let, moreover, | : BVj,.(]a,b[,R") —
R™ and ly : BVie(]a,b[,R") — R} be, respectively, linear continuous
and positive homogeneous continuous operators in the set BVy,.(]a, b[, R™).
Then by O(Ja,b[,1,lo; A, H) we denote the set of all matrix-functions P €

Carjpe(Ja, b xR™, R™*™) satisfying the Opial condition with respect to the
set of four (I,1p; A; H), i.e.,

(i) there exists ® € Ljoc(]a, b[,R}™"; A) such that
|P(t,x)] < ®(¢) on the set ]a,b] xR™;

(ii) det (In + (—1)7 (d; B(t) + d;H(t) - H*l(t))) £0 (1.3)
for a<t<b (j=1,2)

and the problem
de = (dB(t)+dH(t)- H'(t)) -z, [l(z)] < lo(z)
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has only the trivial solution in ]a, b[ for every BEBV,.(]a, b[ ,R™"*™)
for which there exists a sequence z € BVo(Ja,b[,R" (k=1,2,...)
such that

¢

i lilf dB(H,A)(T) - P(7,z(7)) = B(t) uniformly into ]a,b[.
—+o0

Remark 1.1. In particular, the condition (1.4) holds if
|d;B(H, A)(t) - ®(t)|| <1 for t €la,b] (j=1,2).
guarantees the condition (1.3).

Remark 1.2. If H(t) = I,,, then Definition 1.1 coincides with the Opial class
definition for the regular case on every closed interval [a, 8] (see [2]).

We will assume that H € BV,.(Ja, b, R"*"™) is a matrix-function such
that det H(t) # 0 for t €]a, b[. Note that we can consider the case in which
the matrix function H is regular only in the right and left neighborhood of
the points a and b, respectively. In this case we assume that H(t) = I,, if
the point ¢ does not belong to these neighborhoods.

2. FORMULATION OF THE MAIN RESULTS

Theorem 2.1. Let f = (f;)], and fi = (fr1)]-1 € Caroc(]a, [ xR™, R"; A)
(k=1,2,...),

| fru(t, @) < fou(t,@) for p(v(ay)) — for almost all t €]a,b[, = €R"
(i=1,....,n; k=1,2,...)
and
kll\rfoo fu(t,z) = fi(t,x) for p(v(ajiu)) for almost all t €la,bl, x € R"
(j=1,2; i,l=1,....,n; k=1,2,...),

where f; € Carje(Ja, b xR™, R";ay) (i,1 = 1,...,n). Let, moreover, for
every natural k, the system

dx = dA(t) - fr(t,x)

under the condition (1.2) has a solution xy, such that

tgrgl+sup{||xk7H(a—|—) — th(t)H ck=1,2,... } =0,
lim sup{”x;ﬁ’H(bf) —apu(t)||: k= 1,2,...} =0
t—b—

and

sup {|lz(t)]|: k=1,2,...} <o(t) for a<t<b,
where ¢ € BVg([a,b],R™). Then the sequence zy (k =1,2,...) contains a
subsequence, convergent in the open interval |a,b[, and its limit is a solution
of the problem (1.1), (1.2).



148

Theorem 2.2. Let the conditions
|f(t,H*1(t)x) — P(t,z)z| < a(t,||z]]) for t €la,b], = € R,
and
(@) — 1@)] < lo(@) + L (le]l) in BViee(la,b[,R")

be fulfilled, where I : BVioc(la, b[,R™) = R™ and ly : BVioc(Ja, b, R™) — R
are, respectively, linear continuous and positive homogeneous continuous
operators in BVie.(Ja,b[,R™); P € O(la,b[,l,lp; A, H) and a nondecreas-
ing in the second variable matriz— and vector-functions, respectively, o €

Carjoc(la, b xRy, R A) and I} € C(R,R) are such that

b—
. 1
pETw;/dV(A)(t) ca(t,p) <1 for a<a< B <b,
a+
and
lim M < 1.
p—r+oo P

Then the problem (1.1), (1.2) is solvable.
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NINO PARTSVANIA AND BEDRICH PuzA

ON POSITIVE SOLUTIONS OF
NONLINEAR BOUNDARY VALUE PROBLEMS FOR
SINGULAR IN PHASE VARIABLES
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

Abstract. For the singular in phase variables differential system
u; = fi(t,ur,u2) (1= 1,2),

sufficient conditions are found for the existence of a positive on |0, a[ solu-
tion satisfying the nonlinear boundary conditions

p(u1) =0, wusz(a) =P(u(a)),
where ¢ : C([0, a]; R4+) — R is a continuous functional, while ¢ : R; — R4
is a continuous function.

®9%ogdy. BobYH0 (3gmoEgo0l dododm Lobygmsdgmo oggMIbEosmY@O
LobEgdobomgols

u; = fi(t,u,u2) (i=1,2)
bo3mgbos ]0,a[ FgomgeTo olgmo @ogdomo sdmbsblbol s@lgdmdols
Logdsmobo 3oMmdgdo, @mdgmoz sgdogmaomgol s@sfdgog baolbobmgam
30Mmbgdls

p(u1) =0, wuz(a) =¢P(u(a)),
bops ¢ @ C([0,al; Ry) — R sd0l 9fy3900 B96Jcombsgo, bomm 1) :
Ry — Ry @0l 9Fy3900 836d300.

2010 Mathematics Subject Classification: 34B16, 34B18.
Key words and phrases: Two-dimensional differential system, nonlin-
ear, singularity, positive solution.

Let a > 0, R_ =] —00,0], Ry =[0,+00[, Roy =]0,+00[, C([0, a];R) be
the Banach space of continuous functions u : [0,a] — R with the norm

ull = max {||u(t)] : a<t<b},

and C([0,a];R4) be the set of all non-negative functions from C(][0, a]; R).
Consider the two-dimensional differential system
dui
dt

with the nonlinear boundary conditions

o(ur) =0, wuz(a)=v(ui(a)), (2)

= fi(t7U17’U,2) (Z = 1,2) (1)
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where f; :]0,a[ xR, — R_ (i = 1,2) and ¥ : R — R4 are continuous
functions, while ¢ : C([0, a];R;) — R4 is a continuous functional.

A continuous vector function (u1,us) : [0,a] — R2 is said to be a po-
sitive solution of the differential system (1) if it is continuously dif-
ferentiable on an open interval ]0,a[ and in this interval along with the
inequalities

u;(t) >0 (i =1,2) (3)

satisfies the system (1).
A positive solution of the system (1) satisfying the conditions (2) is said
to be a positive solution of the problem (1), (2).
We investigate the problem (1),(2) in the case where the functions f;
(i =1,2) on the set ]0,a[ xR3, admit the estimates
g0(t) < =My~ fi(t a,y) < gu(t),
g20(t) < —a?2y2 fo(t, x,y) < ga(t),

where \; and p; (i = 1,2) are non-negative constants, and g;o :]0, a] — Ro
(1=1,2), g; :]0,a] = Ro4+ (i = 1,2) are continuous functions such that

/gio(t)dt<+oo, /gi(t)dt<+00 (i=1,2).
0 0

If A; > 0 for some ¢ € {1,2}, then in view of (4) we have

(4)

lim f;(t,z,y) = +oo for >0, 0<t<a.
z—0

And if ps > 0, then
;1_% fQ(tvxay) = +00.

Consequently, in both cases the system (1) has the singularity in at least
one phase variable.

Boundary value problems for singular in phase variables second order
nonlinear differential equations arise in different fields of natural science and
are the subject of numerous studies (see e.g. [1-4,7-14] and the references
therein). In the recent paper by I. Kiguradze [5], optimal conditions are
obtained for the solvability of the Cauchy—Nicoletti type nonlinear problems
for singular in phase variables differential systems. As for the problems of
the type (1), (2), they still remain unstudied in the above-mentioned singular
cases. In the present paper, the attempt is made to fill this gap.

Along with the system (1) we consider the systems of differential inequal-
ities

— (Bug " () (1) > grolh), 5
—uy* (E)uy” (£)u(t) > gao(t),
and
g10(t) <~ (yuz™ (Bl (1) < g (2),

g20(t) < —uq® ()uy? (tus(t) < ga(t).



Let
M1

— 71 + MZ
On the set {(t,x,y) :0<t<a,z>0,y> 0} we introduce the functions

140 5 V:1+/\1—|—)\21/0.

v

a a Vo
wio(t, z,y) = SU”‘H// g10(s) <$A2y1+“2+(1+ﬂ2)/ 920(7) d7> ds} ;
L t s

_ 1
a TFpug
waltir) = [0 () [0 o as]
L ¢
_ " 1
_ 1+ A1 M1 t
wy(t,z,y) = |z + (14 M) wh' (s, z,y)g1(s) ds ,
L t

1
T+ rg

wanltr,9) = 5+ (0 ) [ gl ds]
t

Note that the functions wy, we, and weg are defined on the set
{(t,0,9): 0<t<a,y>0}

only in the case, where
/ waAZ (5,0,0)92(s) ds < +o0. (7)
0

A continuous vector function (u1,us) : [0,a] — R3 is said to be a po-
sitive solution of the system of differential inequalities (5) (of the
system of differential inequalities (6)) if it is continuously differentiable
on an open interval 0, a[ and in this interval along with the inequalities (3)
satisfies the system (5) (the system (6)).

The following statements are valid.

Lemma 1. If the system of differential inequalities (5) has a positive
solution (uy,us), then

up(t) > wio(t, z,y) for 0 <t <a,
where
r=ui(a), y=uza). (8)

Lemma 2. If the system of differential inequalities (6) has a positive
solution (u1,us), then

in(taxay) < U,(t) < wl(t7xay) fO?” 0 <t<a (Z = 1’2)5
where x and y are numbers given by the equalities (8).
On the basis of these lemmas we establish conditions guaranteeing, re-
spectively, the existence or non-existence of at least one positive solution of
problem (1), (2).

As this has already been said above, the theorems proven by us concern
the case where the functions f; (¢ = 1,2) admit the estimates (4). Moreover,
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everywhere below it is assumed that the functional ¢ is non-decreasing, i.e.
for any u € C([0,a];Ry) and ug € C([0, a];Ry), it satisfies the inequality
p(u+uo) = o(u).
For any non-negative constant z, we put p(z) = ¢(u), where u(t) = x.

Theorem 1. Let
lim o(z) = 400,

r—r+00

and let for some § > 0 the inequality

hold. Then the problem (1), (2) has at least one positive solution.

Theorem 2. If
(,O(wlo( -, 0, O)) >0,
then the problem (1), (2) has no positive solution.

The particular cases of (2) are the nonlocal boundary conditions

A%wm»w@=a us(a) = (s (a), (9)

where ¢ € R, ¢ : Ry — R, is a continuous, nondecreasing function,
1 : Ry — Ry is a continuous function, and o : [0, a] — R is a nondecreasing
function such that

o(a) —o(0) = 1. (10)

Theorems 1 and 2 imply the following corollary.

Corollary 1. If
lim ¢o(z) = +o0

r—+o0

and for some 6 > 0 the inequality

cz/Umm@&med@ (11)
0

holds, then the problem (1), (9) has at least one positive solution. And if

c </ wo(wlo(s,0,0)) do(s),
0
then the problem (1), (9) has no positive solution.

Note that due to the condition (10), for the inequality (11) to be fulfilled
it is sufficient that

¢ > o (w1(0,6,%(9))).

Corollary 2. For an arbitrary ¢ > 0, the differential system (1) has at
least one positive solution satisfying the conditions

ui(a) =c¢, wug(0)=0. (12)
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For ¢ = 0, the problem (1), (12) becomes much more complicated, and to
guarantee its solvability we have to impose additional restrictions of func-
tions g;o and g;. More precisely, the following theorem is valid.

Theorem 3. If

/ wig?(s,0,0)g2(s) ds < +oo, (13)
0

then the differential system (1) has at least one positive solution satisfying
the conditions

ui(a) =0, us(a) = 0. (14)

The condition (13) in Theorem 3 is unimprovable in a certain sense.
Moreover, the following theorem is true.

Theorem 4. If
sup {gi(t)/gio(t) P 0<t< a} <400 (i=1,2),

then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the condition (13) to be fulfilled.

Corollary 3. Let
inf {0 — ) Pigo(t): 0<t<af>0 (i=172)
and
sup {t’o"'(a —t)Pigi(t): 0<t< a} <400 (1=1,2).
Then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the inequalities
a; > —1, 51 > —1 (Z = ].,2), (042 + ].)(1 + )\1) > (Oél + ].))\2
to be satisfied.

Theorems 3, 4 and Corollary 2 are analogs of the theorems by I. Kigu-
radze [6] for two-dimensional differential systems.
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