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Abstract. The monograph is dedicated to the theoretical investigation of basic, mixed, and crack
type three-dimensional initial-boundary value problems of the generalized thermo-electro-magneto-
elasticity theory associated with Green–Lindsay’s model. The essential feature of the generalized
model under consideration is that heat propagation has a finite speed. We investigate the uniqueness
of solutions to the dynamical initial-boundary value problems and analyse the corresponding boundary
value problems of pseudo-oscillations which are obtained form the dynamical problems by the Laplace
transform. The solvability of the boundary value problems under consideration are analyzed by the
potential method in appropriate Sobolev–Slobodetskii (W s

p ), Bessel potential (Hs
p), and Besov (Bs

p,q)
spaces. The smoothness properties and singularities of thermo-mechanical and electro-magnetic fields
are investigated near the crack edges and the curves where the different types of boundary conditions
collide.
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ÒÄÆÉÖÌÄ. ÌÏÍÏÂÒÀ×ÉÀ ÄÞÙÅÍÄÁÀ ÂÒÉÍ−ËÉÍÃÓÄÉÓ ÌÏÃÄËÈÀÍ ÀÓÏÝÉÒÄÁÖËÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ
ÈÄÒÌÏ-ÄËÄØÔÒÏ-ÌÀÂÍÉÔÏ-ÃÒÄÊÀÃÏÁÉÓ ÞÉÒÉÈÀÃÉ, ÛÄÒÄÖËÉ ÃÀ ÁÆÀÒÉÓ ÔÉÐÉÓ ÓÀÌÂÀÍÆÏÌÉËÄ-
ÁÉÀÍÉ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÂÀÌÏÊÅËÄÅÀÓ. ÂÀÍáÉËÖËÉ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÌÏÃÄËÉÓ
ÀÒÓÄÁÉÈ ÈÀÅÉÓÄÁÖÒÄÁÀÓ ßÀÒÌÏÀÃÂÄÍÓ ÓÉÈÁÏÓ ÂÀÅÒÝÄËÄÁÉÓ ÓÀÓÒÖËÉ ÓÉÜØÀÒÄ. ÍÀÛÒÏÌÛÉ
ÛÄÓßÀÅËÉËÉÀ ÃÉÍÀÌÉÊÉÓ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÄÒÈÀÃÄÒÈÏÁÀ ÃÀ ÜÀÔÀÒÄÁÖËÉÀ
ÃÉÍÀÌÉÊÉÓ ÀÌÏÝÀÍÄÁÉÃÀÍ ËÀÐËÀÓÉÓ ÂÀÒÃÀØÌÍÉÈ ÌÉÙÄÁÖËÉ ×ÓÄÅÃÏ-ÒáÄÅÉÓ ÛÄÓÀÁÀÌÉÓÉ ÓÀÓÀÆ-
ÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÍÀËÉÆÉ. ÂÀÍáÉËÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÀÃÏÁÀ ÛÄÓßÀÅËÉËÉÀ
ÐÏÔÄÍÝÉÀËÈÀ ÌÄÈÏÃÉÈ ÛÄÓÀÁÀÌÉÓ ÓÏÁÏËÄÅ−ÓËÏÁÏÃÄÝÊÉÓ (W s

p ), ÁÄÓÄËÉÓ ÐÏÔÄÍÝÉÀËÈÀ
(Hs

p) ÃÀ ÁÄÓÏÅÉÓ (Bs
p,q) ÓÉÅÒÝÄÄÁÛÉ. ÂÀÌÏÊÅËÄÖËÉÀ ÈÄÒÌÏ-ÌÄØÀÍÉÊÖÒÉ ÃÀ ÄËÄØÔÒÏÌÀÂÍÉ-

ÔÖÒÉ ÅÄËÄÁÉÓ ÓÉÂËÖÅÉÓ ÈÅÉÓÄÁÄÁÉ ÃÀ ÓÉÍÂÖËÀÒÏÁÄÁÉ ÁÆÀÒÉÓ ÊÉÃÄÄÁÉÓÀ ÃÀ ÉÌ ßÉÒÄÁÉÓ
ÌÀáËÏÁËÏÁÀÛÉ, ÒÏÌÄËÈÀ ÓáÅÀÃÀÓáÅÀ ÌáÀÒÄÓ ÃÀÓÌÖËÉÀ ÂÀÍÓáÅÀÅÄÁÖËÉ ÔÉÐÉÓ ÓÀÓÀÆÙÅÒÏ
ÐÉÒÏÁÄÁÉ.
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1. Introduction

Modern industrial and technological processes apply widely, on the one hand, composite materials
with complex microstructure and, on the other hand, complex composed structures consisting of
materials having essentially different physical properties (for example, piezoelectric, piezomagnetic,
hemitropic materials, two- and multi-component mixtures, nano-materials, bio-materials, and solid
structures constructed by composition of these materials, such as, e.g., Smart Materials and other
meta-materials). Therefore the investigation and analysis of mathematical models describing the
mechanical, thermal, electric, magnetic and other physical properties of such materials have a crucial
importance for both fundamental research and practical applications. In particular, the investigation
of correctness of corresponding mathematical models (namely, existence, uniqueness, smoothness,
asymptotic properties and stability of solutions) and construction of appropriate adequate and efficient
numerical algorithms have a crucial role for fundamental research.

In the study of active material systems, there is significant interest in the coupling effects be-
tween elastic, electric, magnetic and thermal fields. For example, piezoelectric materials (electro-
elastic coupling) have been used as ultrasonic transducers and micro-actuators; pyroelectric materials
(thermal-electric coupling) have been applied in thermal imaging devices; and piezomagnetic materials
(elastic-magnetic coupling) are pursued for health monitoring of civil structures (see [81], [98], [33],
[96], [106], [107], [111], [59]–[67], [18], [97], [34], and the references therein).

Although natural materials rarely show full coupling between elastic, electric, magnetic, and ther-
mal fields, some artificial materials do. In the reference [110] it is reported that the fabrication of
BaTiO3-CoFe2O4 composite had the magnetoelectric effect not existing in either constituent. Other
examples of similar complex coupling can be found in the references [9], [8], [46], [47], [6], [69], [86],
[7], [70], [71], [115], [48], [102], [87].

Here we consider the generalized thermo-electro-magneto-elasticity (GTEME) theory associated
with Green–Lindsay’s model. The essential feature of the generalized model under consideration is
that heat propagation has a finite speed (see [103], [5]).

Thermoelasticity theories predicting a finite speed for the propagation of thermal signals have come
into existence during the past sixty years. In contrast to the conventional thermoelasticity theory,
these nonclassical theories involve a hyperbolic-type heat transport equation, and are motivated by
experiments exhibiting the actual occurrence of wave-type heat transport (second sound). Several
authors have formulated these theories on different grounds, and a wide variety of problems revealing
characteristic features of the theories has been investigated. A detailed historical notes and extensive
reviews on the literature on thermoelasticity with temperature waves of finite speed can be found in
the references [85], [19], [20], [49], [55], [52], and [103].

The mathematical dynamical model of the generalized thermo-electro-magneto-elasticity theory is
described by a system of second order partial differential equations with the appropriate boundary and
initial conditions. The problem is to determine three components of the elastic displacement vector,
the electric and magnetic scalar potential functions and the temperature distribution. Other field
characteristics (e.g., mechanical stresses, electric and magnetic fields, electric displacement vector,
magnetic induction vector, heat flux vector and entropy density) can be then determined by the
gradient equations and the constitutive equations.

The main feature of the dynamical mathematical model under consideration is that in the corre-
sponding second order system of partial differential equations the mechanical, thermal and electro-
magnetic fields are fully coupled, and the corresponding matrix differential operator generated by the
dynamical equations does not belong to the well known standard classes of differential operators, such
as elliptic, hyperbolic or parabolic. The case is that the second order 6× 6 matrix differential opera-
tor, generated by the second order partial derivatives with respect to the spatial variables, represents
a strongly elliptic part of the system, while the system contains the first and second order partial
derivatives with respect to the time variable of the components of the displacement vector and the
temperature function, and only the first order derivatives of the electric and magnetic potential func-
tions with respect to the time variable. Therefore the basic matrix differential operator of dynamics
possesses elliptic-hyperbolic-parabolic properties.

Moreover, additional difficulties arise in the setting of initial conditions which is caused by a special
structure of the differential equations of dynamics. It turned out that the electric and magnetic
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potential functions should be free from initial conditions at the initial time, since they can be uniquely
defined by the initial conditions associated with the components of the displacement vector and the
temperature function. We willdescribe and analyze all these peculiarities in detail.

For these equations the uniqueness of solutions of some mixed initial-boundary value problems
of dynamics are considered in the mathematical scientific literature. In particular, the uniqueness
theorem for linear homogeneous dynamical problems with special type initial data, consisting of nine
homogeneous initial conditions, is proved without making restrictions on the positive definiteness
on the elastic moduli in the references [69], [4], [5]. However, as we will show in Chapter 2 of this
monograph, only eight nonhomogeneous initial conditions can be prescribed arbitrarily in the GTEME
model and, along with the natural boundary conditions, they form well posed initial-boundary value
problems of dynamics.

The main purpose of the present monograph is detailed investigation of the existence, uniqueness,
and asymptotic behaviour of solutions to the general mixed initial-boundary value, transmission and
crack type problems of the GTEME theory for homogeneous and piecewise homogeneous composite
bodies.

We analyze dynamical initial-boundary value problems and the corresponding boundary value prob-
lems of pseudo-oscillations obtained from the dynamical problems by the Laplace transform.

As we have mentioned above, the dynamical system of partial differential equations generate a
nonstandard 6 × 6 matrix differential operator of second order, but the corresponding system of
partial differential equations of pseudo-oscillations generates a second order strongly elliptic formally
non-selfadjoint 6× 6 matrix differential operator depending on a complex parameter.

First we prove uniqueness theorems of dynamical initial-boundary value problems under reasonable
restrictions on material parameters and afterwards we apply the Laplace transform technique to inves-
tigate the existence of solutions. This approach reduces the dynamical problems to the corresponding
elliptic problems for pseudo-oscillation equations. On the final stage, by the inverse Laplace transform
the solutions of the original dynamical problems are constructed with the help of the solutions of the
corresponding elliptic problems of pseudo-oscillations.

As it is well known, solutions to mixed and crack type boundary value problems and the corre-
sponding mechanical, electrical, magnetic, and thermal characteristics usually have singularities at the
so called exceptional curves: the crack edges and the curves where the different types of boundary con-
ditions collide (the so-called collision curves). Along with the existence and uniqueness questions our
main goal is a detailed theoretical investigation of regularity properties of the thermo-mechanical and
electro-magnetic fields near the exceptional curves and qualitative description of their singularities.
In particular, the most important question is description of the dependence of the stress singularity
exponents on the material parameters.

With the help of the potential method we reduce the three-dimensional basic, mixed and crack
type boundary value problems for the pseudo-oscillation equations of the thermo-electro-magneto-
elasticity theory to the equivalent systems of pseudodifferential equations which live on proper parts
of the boundary of the elastic body under consideration. We analyze the solvability of the resulting
boundary pseudodifferential equations in the Sobolev–Slobodetskii (W s

p ), Bessel potential (Hs
p), and

Besov (Bs
p,q) spaces. We show that the principal homogeneous symbol matrices of the corresponding

pseudodifferential operators yield information on the existence and regularity of the solution fields
of the corresponding boundary value problems. We study smoothness and asymptotic properties of
solutions near the exceptional curves and establish almost best global Cα-regularity results with some
α ∈ (0, 12 ). The exponent α is determined with the help of the eigenvalues of special matrices which are
explicitly constructed by means of the principal homogeneous symbol matrices of the corresponding
pseudodifferential operators. These eigenvalues depend on the material parameters and the geometry
of exceptional curves, in general, and actually they define the singularity exponents for the first order
derivatives of solutions. On the basis of the asymptotic analysis, we give an efficient method for
calculation of the stress singularity exponents.

Along with the dynamical problems we investigate the boundary value problems of statics of thermo-
electro-magneto-elasticity theory. In the study of BVPs of statics there arise essential difficulties
related to the behaviour of solutions at infinity. The case is that solutions to the exterior static BVPs
for unbounded domains do not vanish at infinity, they are bounded, in general, and the function spaces
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for problems to be uniquely solvable should be chosen appropriately. We establish efficient structural
restrictions which guarantee uniqueness of solutions to exterior BVPs of statics.

It should be mentioned that the GTEME model considered in the monograph is a rather general
mathematical model of deformable solids and as particular cases it contains models of classical elastic-
ity, classical thermo-elasticity, thermo-electro-elasticity, and thermo-electro-magneto elasticity without
taking into account the second sound effects. All these models can be obtained from the GTEME
model by appropriate choice of the material parameters. It should be specially mentioned that all the
results obtained in the monograph for the GTEME theory remain valid for the problems of the above
listed models.

The monograph is organized as follows.
In the second section, we collect the basic field equations, introduce matrix differential operators as-

sociated with the dynamical and pseudo-oscillation equations of the thermo-electro-magneto-elasticity
theory, derive the corresponding Green’s formulas, formulate the initial-boundary and boundary value
problems for dynamical and pseudo-oscillation equations in the sense of classical and variational set-
tings in the appropriate regular and generalized function spaces, and prove the corresponding unique-
ness theorems for the problems of dynamics, pseudo-oscillations, and statics in the case of Lipschitz
domains.

In the third section, the fundamental matrices for the operators of pseudo-oscillations and statics
are constructed explicitly by means of the generalized Fourier transform technique, their properties
near the origin and at infinity are established, the corresponding single and double layer potentials
and the Newtonian volume potentials are introduced, and the general integral representation formulas
of solutions are derived in the case of bounded and unbounded domains.

The fourth section is devoted to the investigation mapping and coercivity properties of the sin-
gle and double layer potentials, the boundary operators generated by them, and the generalized
Steklov–Poincaré type operators. Mapping properties are established in Hölder (Ck,α), Sobolev–Slo-
bodetskii (W s

p ), Bessel potential (Hs
p), and Besov (Bs

p, q) function spaces.
In the fifth section, we study existence of regular and weak solutions to the Dirichlet, Neumann,

and mixed type boundary value problems of pseudo-oscillations for smooth and Lipschitz domains.
We establish the almost best regularity properties of solutions to the mixed boundary value problems
near the curves where the different boundary conditions collide.

In the sixth section, we analyze different type crack problems and investigate the regularity of
solutions near the crack edges. An important issue in studying fracture mechanics of piezoelectric
materials is the crack-face electric boundary conditions. There are two idealized crack-face boundary
conditions that are extensively used in the literatures. One commonly used boundary condition
is the specification that the normal components of electric displacement and magnetic induction
vectors along the crack faces equal to zero. These boundary conditions ignore the permittivity in
the medium interior to the crack. The other commonly used boundary condition treats the crack
as being electrically permeable. In this case the appropriate transmission conditions are prescribed
on the crack surface. We deal with both type problems and derive the corresponding existence and
regularity results which afterwards are applied to establish the asymptotic behaviour of solutions near
the crack edges.

The seventh section is devoted to the study of boundary value problems of statics. Here essential
difficulties arise in the study of exterior BVPs of statics for unbounded domains. The case is that
one has to consider the problem in a class of vector functions which are bounded at infinity. This
complicates the proof of uniqueness and existence theorems since Green’s formulas do not hold for
such vector functions and analysis of null spaces of the corresponding integral operators needs special
consideration. We have found efficient and natural asymptotic conditions at infinity which ensure
the uniqueness of solutions in the space of bounded vector functions. Moreover, for the interior
Neumann-type boundary-value problem, the complete system of linearly independent solutions of the
corresponding homogeneous adjoint integral equation is constructed in polynomials and the necessary
and sufficient conditions of solvability of the problem are written explicitly.

In the eight section, we investigate the boundary-transmission problems of pseudo-oscillations for
piecewise homogeneous elastic bodies containing the interfacial cracks and study the smoothness
properties of solutions. We investigate the asymptotic properties of solutions to the mixed transmission
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problems near the interfacial crack adges and characterize the so called singularity exponents for the
thermo-mechanical and electro-magnetic fields.

In the Appendices A, B, C, and D we present some auxiliary results employed in the main text
of the monograph. In particular, in Appendix A, we describe the structural properties of bounded
solutions in unbounded domains. In Appendix B, we formulate basic results concerning Fredholm
properties of pseudodifferential operators defined on manifolds with boundary which plays a crucial
role in the study of mixed and crack type boundary value problems. In Appendix C, the expressions
for the principal homogeneous symbols of the boundary pseudodifferential operators generated by the
single and double layer potentials are written down explicitly. Appendix D, is devoted to calculation
of specific integrals.

2. Basic Equations and Operators, Statement of Problems, and Uniqueness Theorems

2.1. Field equations. In this subsection we collect the field equations of the generalized linear theory
of thermo-electro-magneto-elasticity under Green–Lindsay’s model for a general anisotropic case (see
[103], [5], [43]) and introduce the corresponding matrix partial differential operators.

Throughout the monograph u = (u1, u2, u3)
⊤ denotes the displacement vector, σij are the compo-

nents of the mechanical stress tensor, εkj = 2−1(∂k uj + ∂j uk) are the compnents of the mechanical
strain tensor, E = (E1, E2, E3)

⊤ and H = (H1,H2,H3)
⊤ are electric and magnetic fields, respec-

tively, D = (D1, D2, D3)
⊤ is the electric displacement vector and B = (B1, B2, B3)

⊤ is the magnetic
induction vector, φ and ψ stand for the electric and magnetic potentials and

E = − gradφ , H = − gradψ , (2.1)
ϑ is the temperature change to a reference temperature T0, q = (q1, q2, q3)

⊤ is the heat flux vector,
and S is the entropy density.

We employ also the notation ∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , ∂t = ∂/∂t; sometimes we use also
the traditional (“overset dot”) notation for the time derivatives: ∂tu = u̇ and ∂2t u := ∂t∂tu = ü; the
superscript ( · )⊤ denotes transposition operation. In what follows the summation over the repeated
indices is meant from 1 to 3, unless stated otherwise. The over bar, applied to numbers and functions,
denotes complex conjugation and the central dot denotes the scalar product of two vectors in the

complex vector space CN , i.e., a · b ≡ (a, b) :=
N∑
j=1

aj bj for a, b ∈ CN . Over bar, applied to a subset

M of Euclidean space RN , denotes the closure of M, i.e. M = M∪ ∂M, where ∂M is the boundary
of M.

The basic linear field equations of the thermo-electro-magneto-elasticity theory under Green–Lin-
dsay’s model read as follows (see [103], [5], [43]) and the references therein):
The constitutive relations:

σrj = σjr = crjklεkl − elrjEl − qlrjHl − λrj(ϑ+ ν0∂tϑ), r, j = 1, 2, 3, (2.2)
Dj = ejklεkl + κjlEl + ajlHl + pj(ϑ+ ν0∂tϑ), j = 1, 2, 3, (2.3)
Bj = qjklεkl + ajlEl + µjlHl +mj(ϑ+ ν0∂tϑ), j = 1, 2, 3, (2.4)
ϱS = λklεkl + plEl +mlHl + a0 + d0ϑ+ h0∂tϑ. (2.5)

The equations of motion:
∂jσrj + ϱFr = ϱ ∂2t ur, r = 1, 2, 3. (2.6)

The quasi-static equations for electric and magnetic fields:
∂jDj = ϱe , ∂jBj = ϱc . (2.7)

The linearized energy equations:
ϱ T0∂tS = −∂jqj + ϱQ, qj = −T0 ηjl∂lϑ. (2.8)

Here and in what follows we employ the following notation: ϱ – the mass density, ϱe – the electric
charge density, ϱc – the electric current density, F = (F1, F2, F3)

⊤ – the mass force density, Q – the heat
source intensity, crjkl – the elastic constants, ejkl – the piezoelectric constants, qjkl – the piezomagnetic
constants, κjk – the dielectric (permittivity) constants, µjk – the magnetic permeability constants,
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ajk – the electromagnetic coupling coefficients, pj , mj , and λrj – coupling coefficients connecting
dissimilar fields, ηjk – the heat conductivity coefficients, T0 – the initial reference temperature, that
is the temperature in the natural state in the absence of deformation and electromagnetic fields, ν0
and h0 – two relaxation times, a0 and d0 – constitutive coefficients.

Note that, if the relaxation time parameters ν0 and h0 equal to zero, then the generalized model
under consideration coincides with the classical thermo-electro-magneto-elasticity model and the tem-
perature distribution loses its wave nature.

The constants involved in the above equations satisfy the symmetry conditions:
crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl,

κkj = κjk, λkj = λjk, µkj = µjk, akj = ajk, ηkj = ηjk, r, j, k, l = 1, 2, 3.
(2.9)

Some authors require more extended symmetry conditions for piezoelectric and piezomagnetic con-
stants: eklj = ekjl = eljk, qklj = qkjl = qljk (see, e.g., [68], [69], [4], [5]). However in our further
analysis we will require only the symmetry properties described in (2.9).

From physical considerations it follows that (see, e.g., [95], [68], [5], [103], [43]):
crjklξrjξkl ≥ δ0ξkl ξkl, κkjξkξj ≥ δ1|ξ|2, µkjξkξj ≥ δ2|ξ|2, ηkjξkξj ≥ δ3|ξ|2,

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3,
(2.10)

ν0 > 0, h0 > 0, d0ν0 − h0 > 0, (2.11)
where δ0, δ1, δ2, and δ3 are positive constants depending on material parameters.

Due to the symmetry conditions (2.9), with the help of (2.10) we easily derive
crjklζrjζkl ≥ δ0ζklζkl, κkjζkζj ≥ δ1|ζ|2, µkjζkζj ≥ δ2|ζ|2, ηkjζkζj ≥ δ3| ζ|2,

for all ζkj = ζjk ∈ C and for all ζ = (ζ1, ζ2, ζ3) ∈ C3.
(2.12)

More careful analysis related to the positive definiteness of the potential energy and the thermo-
dynamical laws insure that the following 8× 8 matrix

M = [Mkj ]8×8 :=


[κjl]3×3 [ajl]3×3 [pj ]3×1 [ν0pj ]3×1

[ajl]3×3 [µjl]3×3 [mj ]3×1 [ν0mj ]3×1

[pj ]1×3 [mj ]1×3 d0 h0

[ν0pj ]1×3 [ν0mj ]1×3 h0 ν0h0


8×8

(2.13)

is positive definite. Note that the positive definiteness of M remains valid if the parameters pj and
mj in (2.13) are replaced by the opposite ones, −pj and −mj . Moreover, it follows that the matrices

Λ(1) :=

[
[κkj ]3×3 [akj ]3×3

[akj ]3×3 [µkj ]3×3

]
6×6

, Λ(2) :=

[
d0 h0

h0 ν0h0

]
2×2

(2.14)

are positive definite as well, i.e.,
κkjζ

′
kζ

′
j + akj(ζ

′
kζ

′′
j + ζ ′kζ

′′
j ) + µkjζ

′′
k ζ

′′
j ≥ κ1

(
|ζ ′|2 + |ζ ′′|2

)
∀ ζ ′, ζ ′′ ∈ C3, (2.15)

d0|z1|2 + h0
(
z1z2 + z1z2

)
+ ν0h0|z2|2 ≥ κ2

(
|z1|2 + |z2|2

)
∀ z1, z2 ∈ C, (2.16)

with some positive constants κ1 and κ2 depending on the material parameters involved in (2.14).
With the help of the symmetry conditions (2.10) we can rewrite the constitutive relations (2.2)–(2.5)

as follows
σrj = crjkl∂luk + elrj∂lφ+ qlrj∂lψ − λrj(ϑ+ ν0∂tϑ), r, j = 1, 2, 3, (2.17)
Dj = ejkl∂luk − κjl∂lφ− ajl∂lψ + pj(ϑ+ ν0∂tϑ), j = 1, 2, 3, (2.18)
Bj = qjkl∂luk − ajl∂lφ− µjl∂lψ +mj(ϑ+ ν0∂tϑ), j = 1, 2, 3, (2.19)
S = λkl∂luk − pl∂lφ−ml∂lψ + a0 + d0ϑ+ h0∂tϑ. (2.20)

In the theory of generalized thermo-electro-magneto-elasticity the components of the three-dimensio-
nal mechanical stress vector acting on a surface element with a normal n = (n1, n2, n3) have the form

σrjnj = crjklnj∂luk + elrjnj∂lφ+ qlrjnj∂lψ − λrjnj(ϑ+ ν0∂tϑ), r = 1, 2, 3, (2.21)
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while the normal components of the electric displacement vector, magnetic induction vector and heat
flux vector read as

Djnj = ejklnj∂luk − κjlnj∂lφ− ajlnj∂lψ + pjnj(ϑ+ ν0∂tϑ), (2.22)
Bjnj = qjklnj∂luk − ajlnj∂lφ− µjlnj∂lψ +mjnj(ϑ+ ν0∂tϑ), (2.23)
qjnj = −T0ηjlnj∂lϑ. (2.24)

For convenience we introduce the following matrix differential operator

T (∂x, n, ∂t) =
[
Tpq(∂x, n, ∂t)

]
6×6

:=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [−λrjnj(1 + ν0∂t)]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj(1 + ν0∂t)

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj(1 + ν0∂t)

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.25)

Denote by T (0)(∂x, n) the “main part” of the operator T (∂x, n, ∂t) with respect to the spatial deriva-
tives,

T (0)(∂x, n) =
[
T (0)
pq (∂x, n)

]
6×6

:=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [0]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l 0

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l 0

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.26)

Evidently, for a smooth six vector U := (u, φ, ψ, ϑ)⊤ we have

T (∂x, n, ∂t)U = (σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−T−1
0 qjnj)

⊤. (2.27)

Due to the constitutive equations, the components of the vector T U given by (2.27) have the following
physical sense: the first three components correspond to the mechanical stress vector in the theory of
generalized thermo-electro-magneto-elasticity, the forth and the fifth components correspond to the
normal components of the electric displacement vector and the magnetic induction vector, respectively,
with opposite sign, and finally the sixth component is (−T−1

0 ) times the normal component of the
heat flux vector.

Note that the following pairs are called like fields:
(i) {u = (u1, u2, u3)

⊤, (σ1jnj , σ2jnj , σ3jnj)
⊤} – pair of mechanical fields,

(ii) {φ,−Djnj} – pair of electric fields,
(iii) {ψ,−Bjnj} – pair of magnetic fields,
(iv) {ϑ,−T−1

0 qjnj} – pair of thermal fields.

As we see all the thermo-mechanical and electro-magnetic characteristics can be determined by the
six scalar functions: three displacement components uj , j = 1, 2, 3, temperature function ϑ, and the
electric and magnetic potentials φ and ψ. Therefore, all the above field relations and the corresponding
boundary value problems we reformulate in terms of these six functions.

First of all, from the equations (2.6)–(2.8) with the help of the constitutive relations (2.1)–(2.5)
we derive the basic linear system of dynamics of the generalized thermo-electro-magneto-elasticity
theory of inhomogeneous solids, when the material parameters are functions of the spatial variables
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x = (x1, x2, x3), but does not depend on the time variable t,

∂j
(
crjkl(x)∂luk(x, t)

)
+ ∂j

(
elrj(x)∂lφ(x, t)

)
+ ∂j

(
qlrj(x)∂lψ(x, t)

)
−∂j

[
λrj(x)

(
ϑ(x, t) + ν0(x)∂tϑ(x, t)

)]
− ϱ(x)∂2t ur(x, t) = −ϱ(x)Fr(x, t), r = 1, 2, 3,

−∂j
(
ejkl(x)∂luk(x, t)

)
+ ∂j

(
κjl(x)∂lφ(x, t)

)
+ ∂j

(
ajl(x)∂lψ(x, t)

)
−∂j

[
pj(x)

(
ϑ(x, t) + ν0(x)∂tϑ(x, t)

)]
= −ϱe(x, t),

−∂j
(
qjkl(x)∂luk(x, t)

)
+ ∂j

(
ajl(x)∂lφ(x, t)

)
+ ∂j

(
µjl(x)∂lψ(x, t)

)
−∂j(x)

[
mj(x)

(
ϑ(x, t) + ν0(x)∂tϑ(x, t)

)]
= −ϱc(x, t),

−λkl(x)∂t∂luk(x, t) + pl(x)∂l∂tφ(x, t) +ml(x)∂l∂tψ(x, t) + ∂j
(
ηjl(x)∂lϑ(x, t)

)
−d0(x)∂tϑ(x, t)− h0(x)∂

2
t ϑ(x, t) = −T−1

0 ϱ(x)Q(x, t).

(2.28)

If the body under consideration is homogeneous, then all the material parameters are constants
and the basic equations (2.28) can be rewritten as:

crjkl∂j∂luk(x, t) + elrj∂j∂lφ(x, t) + qlrj∂j∂lψ(x, t)− λrj∂jϑ(x, t)− ν0λrj∂j∂tϑ(x, t)

−ϱ∂2t ur(x, t) = −ϱFr(x, t), r = 1, 2, 3,

−ejkl∂j∂luk(x, t)+κjl∂j∂lφ(x, t)+ajl∂j∂lψ(x, t)−pj∂jϑ(x, t)−ν0pj∂j∂tϑ(x, t)=−ϱe(x, t),
−qjkl∂j∂luk(x, t)+ajl∂j∂lφ(x, t)+µjl∂j∂lψ(x, t)−mj∂jϑ(x, t)−ν0mj∂j∂tϑ(x, t)=−ϱc(x, t),

−λkl∂t∂luk(x, t) + pl∂l∂tφ(x, t) +ml∂l∂tψ(x, t) + ηjl∂j∂lϑ(x, t)− d0∂tϑ(x, t)

−h0∂2t ϑ(x, t) = −T−1
0 ϱQ(x, t).

(2.29)

Let us introduce the matrix differential operator generated by the left hand side expressions in equa-
tions (2.29),

A(∂x, ∂t) = [Apq(∂x, ∂t)]6×6

:=


[crjkl∂j∂l − ϱδrk∂

2
t ]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−λrj∂j(1 + ν0∂t)]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j(1 + ν0∂t)

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j(1 + ν0∂t)

[−λkl∂l∂t]1×3 pl∂l∂t ml∂l∂t ηjl∂j∂l − d0∂t − h0∂
2
t


6×6

. (2.30)

Then the system of equations (2.29) can be rewritten in matrix form

A(∂x, ∂t)U(x, t) = Φ(x, t), (2.31)

where
U = (u1, u2, u3, u4, u5, u6)

⊤ := (u, φ, ψ, ϑ)⊤ (2.32)
is the sought for vector function and

Φ = (Φ1, . . . ,Φ6)
⊤ := (−ϱF1,−ϱF2,−ϱF3,−ϱe,−ϱc,−ϱT−1

0 Q)⊤ (2.33)

is a given vector function.
If all the functions involved in these equations are harmonic time dependent, that is they can

be represented as the product of a function of the spatial variables (x1, x2, x3) and the multiplier
exp{τt}, where τ = σ + iω is a complex parameter, we have the pseudo-oscillation equations of the
generalized thermo-electro-magneto-elasticity theory. Note that the pseudo-oscillation equations can
be obtained from the corresponding dynamical equations by the Laplace transform. If τ = iω is a
pure imaginary number, with the so called frequency parameter ω ∈ R, we obtain the steady state
oscillation equations. Finally, if τ = 0, i.e., the functions involved in equations (2.29) are independent
of t, we get the equations of statics:

A(∂x)U(x) = Φ(x), (2.34)
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where

A(∂x) = [Apq(∂x)]6×6 := A(∂x, 0)

=


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l


6×6

. (2.35)

Recall that for a smooth function v(t) which is exponentially bounded,

e−σ0t
[
|v(t)|+ |∂v(t)|+ |∂2t v(t)|

]
= O(1) as t→ +∞, σ0 > 0, (2.36)

the corresponding Laplace transform

v̂(τ) ≡ Lt→τ [v(t)] :=

∫ +∞

0

e−τtv(t) dt, τ = σ + iω, σ > σ0, (2.37)

possesses the following properties

Lt→τ [∂tv(t)] :=

∫ +∞

0

e−τt∂tv(t) dt = −v(0) + τ v̂(τ), (2.38)

Lt→τ [∂
2
t v(t)] :=

∫ +∞

0

e−τt∂2t v(t) dt = −∂tv(0)− τv(0) + τ2v̂(τ). (2.39)

Assuming that all the functions involved in the dynamical equations (2.29) are exponentially bounded
and applying the Laplace transform to the system (2.29), we obtain the following pseudo-oscillation
equations:

crjkl∂j∂lûk(x, τ)−ϱτ2ûr(x, τ) + elrj∂j∂lφ̂(x, τ) + qlrj∂j∂lψ̂(x, τ)− (1 + ν0τ)λrj∂j ϑ̂(x, τ)

= −ϱF̂r(x, τ) + Ψ(0)
r (x, τ), r = 1, 2, 3,

−ejkl∂j∂lûk(x, τ) + κjl∂j∂lφ̂(x, τ) + ajl∂j∂lψ̂(x, τ)− (1 + ν0τ)pj∂j ϑ̂(x, τ)

= −ϱ̂e(x, τ) + Ψ
(0)
4 (x, τ),

−qjkl∂j∂lûk(x, τ) + ajl∂j∂lφ̂(x, τ) + µjl∂j∂lψ̂(x, τ)− (1 + ν0τ)mj∂j ϑ̂(x, τ)

= −ϱ̂c(x, τ) + Ψ
(0)
5 (x, τ),

−τλkl∂lûk(x, τ) + τpl∂lφ̂(x, τ) + τml∂lψ̂(x, τ) + ηjl∂j∂lϑ̂(x, τ)− (τd0 + τ2h0)ϑ̂(x, τ)

= −T−1
0 ϱQ̂(x, τ) + Ψ

(0)
6 (x, τ),

(2.40)

where the overset “hat” denotes the Laplace transform of the corresponding function with respect to
t (see (2.37)) and

Ψ(0)(x, τ) =
(
Ψ

(0)
1 (x, τ), . . . ,Ψ

(0)
6 (x, τ)

)⊤

:=



−ϱτu1(x, 0)− ϱ∂tu1(x, 0)− ν0λ1j∂jϑ(x, 0)

−ϱτu2(x, 0)− ϱ∂tu2(x, 0)− ν0λ2j∂jϑ(x, 0)

−ϱτu3(x, 0)− ϱ∂tu3(x, 0)− ν0λ3j∂jϑ(x, 0)

ν0pj∂jϑ(x, 0)

ν0mj∂jϑ(x, 0)

−λkl∂luk(x, 0) + pj∂lφ(x, 0) +mj∂lψ(x, 0)− (d0 + τh0)ϑ(x, 0)− h0∂tϑ(x, 0)


. (2.41)

Note that the relations (2.37)–(2.39) can be extended to the spaces of generalized functions (see
e.g., [116]).

In matrix form these pseudo-oscillation equations can be rewritten as

A(∂x, τ)Û(x, τ) = Ψ(x, τ), (2.42)
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where

Û = (û1, û2, û3, û4, û5, û6)
⊤ := (û, φ̂, ψ̂, ϑ̂)⊤ (2.43)

is the sought for complex-valued vector function,

Ψ(x, τ) =
(
Ψ1(x, τ), . . . ,Ψ6(x, τ)

)⊤
= Φ̂(x, τ) + Ψ(0)(x, τ) (2.44)

with Φ̂(x, τ) being the Laplace transform of the vector function Φ(x, t) defined in (2.33) and Ψ(0)(x, τ)
given by (2.41), and A(∂, τ) is the pseudo-oscillation matrix differential operator generated by the left
hand side expressions in equations (2.40),

A(∂x, τ) = [Apq(∂x, τ)]6×6

:=


[crjkl∂j∂l − ϱτ2δrk]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−(1 + ν0τ)λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −(1 + ν0τ)pj∂j

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −(1 + ν0τ)mj∂j

[−τλkl∂l]1×3 τpl∂l τml∂l ηjl∂j∂l − τ2h0 − τd0


6×6

. (2.45)

From (2.35) and (2.45) we see that A(∂x, 0) = A(∂x).
It is evident that the operator

A(0)(∂x) :=


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [0]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l 0

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l 0

[0]1×3 0 0 ηjl∂j∂l


6×6

(2.46)

is the principal part of the operators A(∂, τ) and A(∂). Clearly, the symbol matrix A(0)(−iξ), ξ ∈ R3,
of the operator A(0)(∂) is the principal homogeneous symbol matrix of the operator A(∂, τ) for all
τ ∈ C,

A(0)(−iξ) = A(0)(iξ) = −A(0)(ξ)

=


[−crjklξjξl]3×3 [−elrjξjξl]3×1 [−qlrjξjξl]3×1 [0]3×1

[ejklξjξl]1×3 −κjlξjξl −ajlξjξl 0

[qjklξjξl]1×3 −ajlξjξl −µjlξjξl 0

[0]1×3 0 0 −ηjlξjξl


6×6

. (2.47)

From the symmetry conditions (2.9), inequalities (2.10), and positive definiteness of the matrix Λ(1)

defined in (2.14) it follows that there is a positive constant C0 depending only on the material param-
eters, such that

Re
(
−A(0)(−iξ)ζ · ζ

)
= Re

( 6∑
k,j=1

A
(0)
kj (ξ)ζjζk

)
≥ C0|ξ|2|ζ|2 (2.48)

for all ξ ∈ R3 and for all ζ ∈ C6.

Therefore, −A(∂x, τ) is a non-selfadjoint strongly elliptic differential operator. We recall that the
over bar denotes complex conjugation and the central dot denotes the scalar product in the respective
complex-valued vector space.



12 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

By A∗(∂x, τ) := [A(−∂x, τ)]⊤ = A⊤(−∂x, τ) we denote the operator formally adjoint to A(∂x, τ),

A∗(∂x, τ) =
[
A∗

pq(∂x, τ)
]
6×6

:=


[crjkl∂j∂l−ϱτ2δrk]3×3 [−elrj∂j∂l]3×1 [−qlrj∂j∂l]3×1 [τλkl∂l]3×1

[ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −τpl∂l
[qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −τml∂l

[(1 + ν0τ)λrj∂j ]1×3 (1 + ν0τ)pj∂j (1 + ν0τ)mj∂j ηjl∂j∂l − τ2h0 − τd0


6×6

. (2.49)

Applying the Laplace transform to the dynamical constitutive relations (2.2)–(2.4) and (2.8) we get

σ̂rj(x, τ) = crjklε̂kl(x, τ) + elrj∂lφ̂(x, τ) + qlrj∂lψ̂(x, τ)− (1 + ν0τ)λrj ϑ̂(x, τ)

+ ν0λrjϑ(x, 0), r, j = 1, 2, 3, (2.50)

D̂j(x, τ) = ejklε̂kl(x, τ)− κjl∂lφ̂(x, τ)− ajl∂lψ̂(x, τ) + (1 + ν0τ)pj ϑ̂(x, τ)

− ν0pjϑ(x, 0), j = 1, 2, 3, (2.51)

B̂j(x, τ) = qjklε̂kl(x, τ)− ajl∂lφ̂(x, τ)− µjl∂lψ̂(x, τ) + (1 + ν0τ)mj ϑ̂(x, τ)

− ν0mjϑ(x, 0), j = 1, 2, 3, (2.52)

q̂j(x, τ) = −T0ηjl∂lϑ̂(x, τ). (2.53)

By these equalities, the Laplace transform of the dynamical stress vector T (∂x, n, ∂t)U(x, t) defined
in (2.27) can be represented as

Lt→τ

[
T (∂x, n, ∂t)U(x, t)

]
= T (∂x, n, τ)Û(x, τ) + F (0)(x), (2.54)

where

T (∂x, n, τ)Û(x, τ) =
(
σ̂1j(x, τ)nj(x), σ̂2j(x, τ)nj(x), σ̂3j(x, τ)nj(x),

− D̂j(x, τ)nj(x), −B̂j(x, τ)nj(x), −T−1
0 q̂j(x, τ)nj(x)

)⊤ − F (0)(x), (2.55)

F (0)(x) :=



ν0λ1jnj(x)ϑ(x, 0)

ν0λ2jnj(x)ϑ(x, 0)

ν0λ3jnj(x)ϑ(x, 0)

ν0pjnj(x)ϑ(x, 0)

ν0mjnj(x)ϑ(x, 0)

0


=



ν0λ1jnj(x)

ν0λ2jnj(x)

ν0λ3jnj(x)

ν0pjnj(x)

ν0mjnj(x)

0


ϑ(x, 0), (2.56)

and the pseudo-oscillation stress operator T (∂x, n, τ) reads as (cf. (2.25))

T (∂x, n, τ) =
[
Tpq(∂x, n, τ)

]
6×6

:=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [−(1 + ν0τ)λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −(1 + ν0τ)pjnj

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −(1 + ν0τ)mjnj

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.57)

The vector T (∂x, n, τ)Û(x, τ) will be referred to as a pseudo-oscillation stress vector.
Below, in Green’s formulas there appears also the boundary operator P(∂x, n, τ) associated with the
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adjoint differential operator A∗(∂x, τ),

P(∂x, n, τ) =
[
Ppq(∂x, n, τ)

]
6×6

=


[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1 [τλrjnj ]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −τpjnj
[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −τmjnj

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.58)

By T (0)(∂x, n) and P(0)(∂x, n) we denote the principal parts of the operators T (∂x, n, τ) and P(∂x, n, τ),
respectively,

T (0)(∂x, n) :=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [0]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l 0

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l 0

[0]1×3 0 0 ηjlnj∂l


6×6

, (2.59)

P(0)(∂x, n) :=


[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1 [0]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l 0

[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l 0

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.60)

2.2. Initial-boundary value problems of dynamics. Let Ω+ be a bounded 3-dimensional domain
in R3 with a smooth boundary S = ∂Ω+, Ω+ = Ω+ ∪S, and Ω− = R3 \Ω+. Assume that the domain
Ω+ is occupied by an anisotropic homogeneous material with the above described generalized thermo-
electro-magneto-elastic properties.

By Ck(Ω±) we denote the subspace of functions from Ck(Ω±) whose derivatives up to the order k
are continuously extendable to S from Ω±.

By D(Ω) we denote the space of infinitely differentiable test functions with compact supports in
Ω ⊂ R3.

The symbols { · }+S and { · }−S denote one-sided limits (traces) on S from Ω+ and Ω−, respectively.
We often drop the subscript S if it does not lead to misunderstanding.

By Lp, Lp,loc, Lp,comp, W r
p , W r

p,loc, W r
p,comp, Hs

p , and Bs
p,q (with r ≥ 0, s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev–Slobodetskii, Bessel potential, and Besov
function spaces, respectively (see, e.g., [108], [74]). Recall that Hr

2 = W r
2 = Br

2,2, Hs
2 = Bs

2,2,
W t

p = Bt
p,p, and Hk

p = W k
p , for any r ≥ 0, for any s ∈ R, for any positive and non-integer t, and for

any non-negative integer k. In our analysis we essentially employ also the spaces:

H̃s
p(M) :=

{
f : f ∈ Hs

p(M0), supp f ⊂ M
}
, B̃s

p,q(M) :=
{
f : f ∈ Bs

p,q(M0), supp f ⊂ M
}
,

Hs
p(M) :=

{
rMf : f ∈ Hs

p(M0)
}
, Bs

p,q(M) :=
{
rMf : f ∈ Bs

p,q(M0)
}
,

where M0 is a closed manifold without boundary and M is an open proper submanifold of M0 with
nonempty smooth boundary ∂M ̸= ∅; rM is the restriction operator onto M. Below, sometimes we
use also the abbreviations Hs

2 = Hs and W s
2 =W s.

Remark 2.1. Let a function f be defined on an open proper submanifold M of a closed manifold M0

without boundary. Let f ∈ Bs
p,q(M) and f̃ be the extension of f by zero to M0 \M. If the extension

preserves the space, i.e., if f̃ ∈ B̃s
p,q(M), then we write f ∈ B̃s

p,q(M) instead of f ∈ rMB̃s
p,q(M) when

it does not lead to misunderstanding.

Further, let J∞ := (0,+∞), J̃∞ := [0,+∞), and JT := (0, T ) for 0 < T < +∞, JT := [0, T ].
Now, we formulate the basic initial-boundary value problems for the dynamical equations of the

generalized thermo-electro-magneto-elasticity (GTEME) theory in the classical setting.
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The Dirichlet dynamical problem (D)+t : Find a regular solution
U = (u, φ, ψ, ϑ)⊤ ∈ [C1(Ω+ × J̃∞)]6 ∩ [C2(Ω+ × J∞)]6 (2.61)

to the dynamical equations of the GTEME theory,
A(∂x, ∂t)U(x, t) = Φ(x, t), (x, t) ∈ Ω+ × J∞, (2.62)

satisfying the initial conditions:
u(x, 0) = u(0)(x), ∂tu(x, 0) = u(1)(x), x ∈ Ω+, (2.63)
ϑ(x, 0) = ϑ(0)(x), ∂tϑ(x, 0) = ϑ(1)(x), x ∈ Ω+, (2.64)

and the Dirichlet type boundary condition,
{U(x, t)}+ = f(x, t), (x, t) ∈ S × J̃∞, (2.65)

i.e.,
{ur(x, t)}+ = fr(x, t), (x, t) ∈ S × J̃∞, r = 1, 2, 3, (2.66)

{φ(x, t)}+ = f4(x, t), (x, t) ∈ S × J̃∞, (2.67)

{ψ(x, t)}+ = f5(x, t), (x, t) ∈ S × J̃∞, (2.68)

{ϑ(x, t)}+ = f6(x, t), (x, t) ∈ S × J̃∞, (2.69)

where Φ = (Φ1, . . . ,Φ6)
⊤, u(0), u(1), ϑ(0), ϑ(1), and f = (f1, . . . , f6)

⊤ are given functions from
appropriate smooth spaces.

The Neumann dynamical problem (N)+t : Find a regular solution
U = (u, φ, ψ, ϑ)⊤ ∈ [C1(Ω+ × J̃∞)]6 ∩ [C2(Ω+ × J∞)]6

to the dynamical equations of the GTEME theory (2.62) satisfying the initial conditions (2.63), (2.64)
and the Neumann type boundary condition

{T (∂x, n, ∂t)U(x, t)}+ = F (x, t), (x, t) ∈ S × J̃∞, (2.70)
i.e. {

[T (∂x, n, ∂t)U(x, t)]r
}+ ≡ {σrjnj}+ = Fr(x, t), (x, t) ∈ S × J̃∞, r = 1, 2, 3, (2.71){

[T (∂x, n, ∂t)U(x, t)]4
}+ ≡ {−Djnj}+ = F4(x, t), (x, t) ∈ S × J̃∞, (2.72){

[T (∂x, n, ∂t)U(x, t)]5
}+ ≡ {−Bjnj}+ = F5(x, t), (x, t) ∈ S × J̃∞, (2.73){

[T (∂x, n, ∂t)U(x, t)]6
}+ ≡ {−T−1

0 qjnj}+ = F6(x, t), (x, t) ∈ S × J̃∞, (2.74)

where F = (F1, . . . , F6)
⊤ is a given continuous vector function.

Now, we formulate the most general mixed initial-boundary value problem. To this end, let us con-
sider the following four dissections of the boundary surface S into non-overlapping open submanifolds
Sk, k = 1, 2, . . . , 8, so that

S = S1 ∪ S2 = S3 ∪ S4 = S5 ∪ S6 = S7 ∪ S8,

S1 ∩ S2 = S3 ∩ S4 = S5 ∩ S6 = S7 ∩ S8 = ∅, ℓj = Sj ∩ Sj+1, j = 1, 3, 5, 7.
(2.75)

Further, let
Ω̃+

ℓ := Ω+ \ ℓ, ℓ := ℓ1 ∪ ℓ3 ∪ ℓ5 ∪ ℓ7, (2.76)
and introduce the classes of semi-regular functions.

Definition 2.2. We say that w is a semi-regular function in Ω̃+
ℓ and write w ∈ C(Ω̃+

ℓ ;α) if
(i) w is continuous in Ω+;
(ii) the first order derivatives of w are continuous in Ω̃+

ℓ and there is α ∈ [0, 1), such that

|∂kw(x)| 6 C
∑

j=1,3,5,7

[dist(x, ℓj)]−α, x ∈ Ω̃+
ℓ , C = const, k = 1, 2, 3;
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(iii) the second order derivatives of w are continuous in Ω+ and integrable over Ω+.
Evidently,

C(Ω̃+
ℓ ;α) ⊂ C(Ω+) ∩ C1(Ω̃+

ℓ ) ∩ C
2(Ω+). (2.77)

Definition 2.3. We say that w is a semi-regular function in Ω̃+
ℓ ×J∞ and write w ∈ C(Ω̃+

ℓ × J̃∞;α) if

(i) w and ∂tw are continuous in Ω+ × J̃∞;
(ii) the first order derivatives of w with respect to the spatial variables are continuous in Ω̃+

ℓ × J̃∞
and there is α ∈ [0, 1), such that for any T ∈ J̃∞

|∂kw(x, t)| 6 C
∑

j=1,3,5,7

[dist(x, ℓj)]−α, (x, t) ∈ Ω̃+
ℓ × JT , C = C(T ) = const, k = 1, 2, 3;

(iii) the second order derivatives of w are continuous in Ω+ × J∞ and integrable over Ω+ × JT for
any T ∈ J̃∞.

Evidently,
C(Ω̃+

ℓ × J̃∞;α) ⊂ C(Ω+ × J̃∞) ∩ C1(Ω̃+
ℓ × J̃∞) ∩ C2(Ω+ × J∞) (2.78)

and if w ∈ C(Ω̃+
ℓ × J̃∞;α), then for any fixed t ∈ J∞ the function w( · , t) is semi-regular in Ω̃+

ℓ as a
function of spatial variable x, i.e., w( · , t) ∈ C(Ω̃+

ℓ ;α).

Mixed type dynamical problem (M)+t : Find a semi-regular solution

U = (u, φ, ψ, ϑ)⊤ ∈ [C(Ω̃+
ℓ × J̃∞;α)]6

to the dynamical equations of the GTEME theory (2.62) satisfying the initial conditions (2.63), (2.64)
and the mixed type boundary conditions:

{ur(x, t)}+ = f∗r (x, t), (x, t) ∈ S1 × J̃∞, r = 1, 2, 3, (2.79){
[T (∂x, n, ∂t)U(x, t)]r

}+ ≡ {σrjnj}+ = F ∗
r (x, t), (x, t) ∈ S2 × J̃∞, r = 1, 2, 3, (2.80)

{φ(x, t)}+ = f∗4 (x, t), (x, t) ∈ S3 × J̃∞, (2.81){
[T (∂x, n, ∂t)U(x, t)]4

}+ ≡ {−Djnj}+ = F ∗
4 (x, t), (x, t) ∈ S4 × J̃∞, (2.82)

{ψ(x, t)}+ = f∗5 (x, t), (x, t) ∈ S5 × J̃∞, (2.83){
[T (∂x, n, ∂t)U(x, t)]5

}+ ≡ {−Bjnj}+ = F ∗
5 (x, t), (x, t) ∈ S6 × J̃∞, (2.84)

{ϑ(x, t)}+ = f∗6 (x, t), (x, t) ∈ S7 × J̃∞, (2.85){
[T (∂x, n, ∂t)U(x, t)]6

}+ ≡ {−T−1
0 qjnj}+ = F ∗

6 (x, t), (x, t) ∈ S8 × J̃∞, (2.86)
where f∗k and F ∗

k , k = 1, 2, . . . , 6, are given functions from appropriate smooth spaces.

Remark 2.4. In the case of a special particular dissection of the boundary S when
S1 = S3 = S5 = S7 := SD, S2 = S4 = S6 = S8 := SN , ℓ = SD ∩ SN , (2.87)

we refer the mixed problem as Basic mixed dynamical problem (M)+t associated with the dis-
section S = SD ∪ SN .

Now, let an elastic solid occupying the domain Ω+ (respectively, Ω−) contain an interior crack.
We identify the crack surface as a two-dimensional, two-sided smooth manifold Σ ⊂ Ω± with the
crack edge ℓc := ∂Σ. We assume that Σ is a proper submanifold of a closed surface S0 surrounding a
domain Ω0 which is a proper subdomain of Ω+ (respectively, Ω−). We choose the direction of the unit
normal vector to the fictitious surface S0 such that it is outward with respect to the domain Ω0. This
agreement defines uniquely the direction of the normal vector to the crack surface Σ. The symbols
{ · }+Σ and { · }−Σ denote the one-sided limits on Σ from Ω0 and Ω+ \ Ω0, respectively.

Further, let Ω+
Σ := Ω+ \ Σ and Ω̃+

Σ := Ω+ \ Σ with Σ = Σ ∪ ℓc.

Definition 2.5. We say that w is a semi-regular function in Ω̃+
Σ and write w ∈ C(Ω̃+

Σ ;α) if
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(i) w is continuous in Ω̃+
Σ and one-sided continuously extendable to Σ from Ω0 and from Ω+ \Ω0,

i.e., w is continuous in Ω̃+
Σ , Ω+ \ Ω0, and Ω0;

(ii) the first order derivatives of w are continuous in Ω̃+
Σ and one-sided continuously extendable

to Σ from Ω0 and from Ω+ \ Ω0, and there is α ∈ [0, 1), such that at the crack edge ℓc = ∂Σ
the following estimates hold

|∂kw(x)| 6 C[dist(x, ℓc)]−α, x ∈ Ω̃+
Σ , C = const, k = 1, 2, 3;

(iii) the second order derivatives of w are continuous in Ω+
Σ and integrable over Ω+

Σ .
Evidently, formally we can write

C(Ω̃+
Σ ;α) ⊂ C(Ω0) ∩ C(Ω+ \ Ω0) ∩ C1(Ω̃+

Σ) ∩ C
2(Ω+

Σ), (2.88)

which is understood in the following sense: if w ∈ C(Ω̃+
Σ ;α), then

r
Ω0
w ∈ C(Ω0), r

Ω+\Ω0

w ∈ C(Ω+ \ Ω0), w ∈ C1(Ω̃+
Σ), w ∈ C2(Ω+

Σ).

Definition 2.6. We say that w is a semi-regular function in Ω̃+
Σ×J∞ and write w ∈ C(Ω̃+

Σ× J̃∞;α) if

(i) w and ∂tw are continuous in Ω̃+
Σ × J̃∞ and one-sided continuously extendable to Σ from Ω0

and from Ω+ \ Ω0 for all t ∈ J̃∞;
(ii) the first order derivatives of w with respect to the spatial variables are continuous in Ω̃+

Σ × J̃∞
and one-sided continuously extendable to Σ from Ω0 and from Ω+ \ Ω0 for all t ∈ J̃∞, and
there is α ∈ [0, 1), such that at the crack edge ℓc = ∂Σ the following estimates hold for any
T ∈ J̃∞

|∂kw(x, t)| 6 C[dist(x, ℓc)]−α, (x, t) ∈ Ω̃+
Σ × JT , C = C(T ) = const, k = 1, 2, 3;

(iii) the second order derivatives of w are continuous in Ω+
Σ × J∞ and integrable over Ω+

Σ × JT for
any T ∈ J̃∞.

Evidently, we can formally write (in the same sense as (2.88))

C(Ω̃+
Σ × J̃∞;α) ⊂ C(Ω0 × J̃∞) ∩ C

(
(Ω+ \ Ω0)× J̃∞

)
∩ C1(Ω̃+

Σ × J̃∞) ∩ C2(Ω+
Σ × J∞). (2.89)

As usual, we assume that the crack faces are mechanically traction free, i.e., the traces of the
components of the mechanical stress vector equal to zero on Σ, i.e., {σrjnj}± = 0, r = 1, 2, 3.

Depending on the physical properties of the crack gap, one can consider different conditions on the
crack faces for the electric, magnetic and thermal fields (the same applies to the transmission and
interfacial crack problems where the physical thermo-mechanical and electro-magnetic properties of
the interface thin layer modeled as a two dimensional surface between adjacent contacting parts of a
composite body should be taken into account). In particular,

(1) if the crack gap is a dielectric medium, then the traces of the normal component of the electric
displacement vector {Djnj}± should be zero on Σ;

(2) if the crack gap is a conductor, then the electric potential function and the normal compo-
nent of the electric displacement vector should satisfy the electrically permeable boundary
conditions on the crack surface Σ, i.e., {φ}+ = {φ}− and {Djnj}+ = {Djnj}− on Σ;

(3) if the crack gap is not magnetically permeable, then the traces of the normal component of
the magnetic induction vector {Bjnj}± should be zero on Σ;

(4) if the crack gap is magnetically permeable, then the magnetic potential function and the
normal component of the magnetic induction vector should be continuous across the crack
surface Σ, i.e., {ψ}+ = {ψ}− and {Bjnj}+ = {Bjnj}− on Σ;

(5) if the crack gap is thermally insulated, then the traces of the normal heat flux function {qjnj}±
should be zero on the crack surface Σ;
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(6) if the crack gap is not thermally insulated, then the temperature and the normal heat flux
functions should be continuous on the crack surface Σ, i.e., {ϑ}+ = {ϑ}− and {qjnj}+ =
{qjnj}− on Σ.

The applicability and effect of the crack-face electrical boundary conditions in piezoelectric fracture
are investigated in many papers and by treating flaws in a medium as notches with a finite width,
the results from different electrical boundary condition assumptions on the crack faces are compared.
It is found that the electrically impermeable boundary is a reasonable one for engineering problems.
Unless the flaw interior is filled with conductive media, the permeable crack assumption may not be
directly applied to the fracture of piezoelectric materials in engineering applications (see, e.g. [112],
[113], [114], [94], [32], [72], and the references therein).

As model cases we consider the following three type of the crack problems.
Crack type dynamical problems: Find a semi-regular vector function

U = (u, φ, ψ, ϑ)⊤ ∈
[
C(Ω̃+

Σ × J̃∞;α)
]6

satisfying
(i) the dynamical equations of the GTEME theory (2.62) in Ω+

Σ × J∞;
(ii) the initial conditions (2.63), (2.64) in Ω+

Σ ;

(iii) the Dirichlet or Neumann type boundary conditions on S × J̃∞;
(iv) one of the following type boundary and/or transmission conditions on the crack surface Σ:

(a) screen type conditions:

{U(x, t)}+ = f (+)(x, t), (x, t) ∈ Σ× J̃∞, (2.90)

{U(x, t)}− = f (−)(x, t), (x, t) ∈ Σ× J̃∞, (2.91)
or
(b) crack type conditions:

{T (∂x, n, ∂t)U(x, t)}+ = F (+)(x, t), (x, t) ∈ Σ× J̃∞, (2.92)

{T (∂x, n, ∂t)U(x, t)}− = F (−)(x, t), (x, t) ∈ Σ× J̃∞, (2.93)
or
(c) mixed crack type conditions:{

[T (∂x, n, ∂t)U(x, t)]r
}±

= F (±)
r (x, t), (x, t)∈Σ×J̃∞, r=1, 2, 3, (2.94)

{φ(x, t)}+ − {φ(x, t)}− = f∗∗4 (x, t), (x, t) ∈ Σ× J̃∞, (2.95){
[T (∂x, n, ∂t)U(x, t)]4

}+ −
{
[T (∂x, n, ∂t)U(x, t)]4

}−
= F ∗∗

4 (x, t), (x, t) ∈ Σ× J̃∞, (2.96)

{ψ(x, t)}+ − {ψ(x, t)}− = f∗∗5 (x, t), (x, t) ∈ Σ× J̃∞, (2.97){
[T (∂x, n, ∂t)U(x, t)]5

}+ −
{
[T (∂x, n, ∂t)U(x, t)]5

}−
= F ∗∗

5 (x, t), (x, t) ∈ Σ× J̃∞, (2.98)

{ϑ(x, t)}+ − {ϑ(x, t)}− = f∗∗6 (x, t), (x, t) ∈ Σ× J̃∞, (2.99){
[T (∂x, n, ∂t)U(x, t)]6

}+ −
{
[T (∂x, n, ∂t)U(x, t)]6

}−
= F ∗∗

6 (x, t), (x, t) ∈ Σ× J̃∞, (2.100)

where f (±) = (f
(±)
1 , . . . , f

(±)
6 )⊤, F (±) = (F

(±)
1 , . . . , F

(±)
6 )⊤, f∗∗k , and F ∗∗

k , k = 4, 5, 6, are
given functions from the appropriate smooth spaces.

Evidently, we can formulate the semi-regular setting of crack type dynamical problem with mixed
conditions on the exterior boundary of the body S × J̃∞ as well, but in this case we have to require
that for some open neighbourhood UΣ × J̃∞ ⊂ Ω+

Σ × J̃∞ of the crack surface Σ the sought for vector
belongs to the semi-regular class of functions [C(ŨΣ × J̃∞;α)]6 and, at the same time, for some open
one-sided interior neighbourhood V+

S × J̃∞ ⊂ Ω+
Σ × J̃∞ of the exterior boundary surface S it belongs

to the semi-regular class of functions [C(Ṽ+
S,ℓ× J̃∞;α)]6, where the curve ℓ is defined by the dissection
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of the surface S associated with the mixed boundary conditions and Ṽ+
S,ℓ = V+

S \ ℓ. Without loss of
generality one can assume that UΣ ∩ S = ∅ and V+

S ∩ Σ = ∅.
Crack type dynamical problem with the Dirichlet type conditions (2.90), (2.91) on the crack faces

will be referred to as Problem (B-CR-D)+t , with the Neumann type conditions (2.92), (2.93) – as
Problem (B-CR-N)+t , and with the mixed type Neumann-Transmission conditions (2.94)–(2.100) – as
Problem (B-CR-NT)+t . Here B stands for D or for N or for M and shows which kind of boundary
conditions (Dirichlet, Neumann or Mixed type boundary conditions) are prescribed on the exterior
surface S.

The initial-boundary value problems of dynamics for an exterior unbounded domain Ω− can be
formulated quite similarly. The only difference in the formal setting is that the one-sided limiting
values of the corresponding functions on the boundary surface should be taken from the domain Ω−,
i.e., the interior traces { · }+ should be replaced by the exterior ones { · }−. We denote these problems
by (D)−t , (N)−t , (M)−t , (B-CR-D)−t , (B-CR-N)−t , and (B-CR-NT)−t with B∈ {D, N, M}.

Evidently, the known functions involved in the formulation of dynamical problems should possess
appropriate smoothness properties and, in addition, they should satisfy some compatibility conditions.
These aspects will be discussed and specified later when we start investigation of uniqueness and
existence questions.

Note that, some authors formulate the dynamical initial-boundary value problems with different
initial conditions. In particular, in the reference [5] which deals with the uniqueness of solutions to the
dynamical problems, instead of conditions (2.64) for the temperature function, the initial conditions
for the electric and magnetic potentials φ(x, 0) and ψ(x, 0) and for the entropy function S(x, 0) are
given along with the initial condition for the displacement vector (2.63). As a result, in [5] there are
given 9 independent initial conditions, while in our formulation and further analysis we have only 8
independent initial conditions.

2.2.1. Essential remarks concerning the initial data of electro-magnetic potentials. Remarks con-
cerning the Dirichlet problem. Special attention should be paid to the fact that in the formulation
of the dynamical problems stated above we have not initial conditions for the electric and magnetic
potentials φ and ψ. The case is that for x ∈ Ω+ the values of the functions φ(x, 0) and ψ(x, 0) at
the initial moment t = 0 can be found by the data of the corresponding dynamical problems if the
corresponding necessary smoothness conditions are satisfied. Indeed, the fourth and fifth equations
of the system (2.62) for t = 0 read as (see system (2.29) and the initial conditions (2.63), (2.64))

κjl∂j∂lφ(x, 0) + ajl∂j∂lψ(x, 0) = Y4(x),

ajl∂j∂lφ(x, 0) + µjl∂j∂lψ(x, 0) = Y5(x),
x ∈ Ω+, (2.101)

where Y4(x) and Y5(x) are known functions, defined by the relations

Y4(x) := −ϱe(x, 0) + ejkl∂j∂lu
(0)
k (x) + pj∂jϑ

(0)(x) + ν0pj∂jϑ
(1)(x),

Y5(x) := −ϱc(x, 0) + qjkl∂j∂lu
(0)
k (x) +mj∂jϑ

(0)(x) + ν0mj∂jϑ
(1)(x)

(2.102)

(see below Remark 2.18 concerning the weak formulation of these equations).
Further, from the Dirichlet boundary conditions (2.67), (2.68) for t = 0 we have

{φ(x, 0)}+ = f4(x, 0),

{ψ(x, 0)}+ = f5(x, 0),
x ∈ S. (2.103)

Note that, if ν0 = 0, i.e., in the case of the classical thermo-electro-magneto-elasticity theory, the
function ϑ(1) is not involved in the right hand side expressions in (2.102).

Now, let

L(∂x) :=

[
κjl∂j∂l ajl∂j∂l

ajl∂j∂l µjl∂j∂l

]
2×2

, Υ(∂x, n) :=

[
κjlnj∂l ajlnj∂l

ajlnj∂l µjlnj∂l

]
2×2

. (2.104)
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Note that, for vector functions X = (X1, X2)
⊤ and X̃ = (X̃1, X̃2)

⊤ possessing appropriate smoothness
properties, we have the following Green’s formula∫

Ω+

L(∂x)X(x)·X̃(x) dx = −
∫
Ω+

Λ(1)∇X(x)·∇X̃(x) dx+

∫
S

{
Υ(∂x, n)X(x)

}+·
{
X̃(x)

}+
dS, (2.105)

where the 6 × 6 matrix Λ(1) is given by (2.14), ∇X(x) := (∇X1(x)),∇X2(x))
⊤ and ∇X̃(x) :=

(∇X̃1(x)),∇X̃2(x))
⊤ are six dimensional vectors.

This formula can be extended to arbitrary vector functions X, X̃ ∈ [H1
2 (Ω

+)]2, where in addition
L(∂x)X ∈ [L2(Ω

+)]2. Note that, for such X the generalized trace on S of the co-normal derivative
{Υ(∂x, n)X}+ is well defined by (2.105) and belongs to the space [H

− 1
2

2 (S)]2,⟨
{Υ(∂x, n)X}+, {X̃}+

⟩
S
:=

∫
Ω+

Λ(1)∇X(x) · ∇X̃(x) dx+

∫
Ω+

L(∂x)X(x) · X̃(x) dx, (2.106)

where ⟨ · , · ⟩S denotes the duality relation between the mutually adjoint function spaces [H
− 1

2
2 (S)]2

and [H
1
2
2 (S)]

2.
Due to positive definiteness of the matrix Λ(1) and the Friedrichs inequality, the bilinear form

B(X, X̃) :=

∫
Ω+

Λ(1)∇X(x) · ∇X̃(x) dx, X, X̃ ∈ [H̃1
2 (Ω

+)]2 × [H̃1
2 (Ω

+)]2 (2.107)

is strongly coercive in the space [H̃1
2 (Ω

+)]2 × [H̃1
2 (Ω

+)]2, i.e.,

B(X,X) > κ1∥∇X∥2[L2(Ω+)]2 > κ∗1∥X∥2[H1
2 (Ω

+)]2 , κ∗1 = const > 0, (2.108)

for all X = (X1, X2)
⊤ ∈ [H̃1

2 (Ω
+)]2 with a positive constant κ1 involved in (2.15).

In view of the coercivity property (2.108), for a Lipschitz domain Ω+ and

ϱe( · , 0), ϱc( · , 0) ∈ H−1
2 (Ω+), u

(0)
k ∈ H1

2 (Ω
+), ϑ(0), ϑ(1) ∈ L2(Ω

+),

f4( · , 0), f5( · , 0) ∈ H
1
2
2 (S),

(2.109)

the nonhomogeneous Dirichlet boundary value problem (2.101), (2.103) possesses a unique weak solu-
tion φ( · , 0), ψ( · , 0) ∈ H1

2 (Ω
+), where equations (2.101) are understood in the distributional sense, i.e.,

B(X, X̃) = ⟨ϱe, X̃1⟩Ω+ + ⟨ϱc, X̃2⟩Ω+ +

∫
Ω+

{[
ejkl∂lu

(0)
k (x) + pjϑ

(0)(x) + ν0pjϑ
(1)(x)

]
∂jX̃1(x)

+
[
qjkl∂lu

(0)
k (x) +mjϑ

(0)(x) + ν0mjϑ
(1)(x)

]
∂jX̃2(x)

}
dx for all X̃ = (X̃1, X̃2)

⊤ ∈ [D(Ω+)]2,

while the Dirichlet boundary conditions (2.103) are understood in the usual trace sense.
Indeed, we can decompose the nonhomogeneous Dirichlet boundary value problem (2.101), (2.103)

into two Dirichlet boundary value problems:

L(∂x)X
(1) = Y (1) in Ω+,

{X(1)}+ = 0 on S,
(2.110)

with
X(1) := (φ(1), ψ(1))⊤ ∈ [H̃1

2 (Ω
+)]2, Y (1) := (Y4, Y5)

⊤ ∈ [H−1
2 (Ω+)]2, (2.111)

and
L(∂x)X

(2) = 0 in Ω+,

{X(2)}+ = g on S,
(2.112)

with
X(2) := (φ(2), ψ(2))⊤ ∈ [H1

2 (Ω
+)]2, g =

(
f4( · , 0), f5( · , 0)

)⊤ ∈ [H
1
2
2 (S)]

2. (2.113)
In view of (2.106) and (2.107), the weak formulation of the first problem (2.110) reads as

B(X(1), X̃) = −⟨Y (1), X̃⟩Ω+ for all X̃ = (X̃1, X̃2)
⊤ ∈ [H̃1

2 (Ω
+)]2, (2.114)
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and is uniquely solvable in [H̃1
2 (Ω

+)]2 by the Lax–Milgram theorem due to the coercivity property
(2.108) and since for arbitrary X̃ = (X̃1, X̃2)

⊤ ∈ [H̃1
2 (Ω

+)]2 the duality

− ⟨Y (1), X̃⟩Ω+ = ⟨ϱe, X̃1⟩Ω+ + ⟨ϱc, X̃2⟩Ω+

+

∫
Ω+

{[
ejkl∂lu

(0)
k (x) + pjϑ

(0)(x) + ν0pjϑ
(1)(x)

]
∂jX̃1(x)

+
[
qjkl∂lu

(0)
k (x) +mjϑ

(0)(x) + ν0mjϑ
(1)(x)

]
∂jX̃2(x)

}
dx

defines a bounded linear functional in [H̃1
2 (Ω

+)]2 under conditions (2.109).
The second problem (2.112) is also uniquely solvable in [H1

2 (Ω
+)]2 which can be proved by standard

potential method (for details see, e.g. [25], [75, Ch. 7]; see also [51, Ch. 9], [27, Ch. 11]). A unique
weak solution of the problem (2.112) is representable in the form

X(2) = V(H−1g) ∈ [H1
2 (Ω

+)]2,

where V is a single layer potential operator constructed by the fundamental matrix Γ(L) = [Γ
(L)
kj ]2×2

of the operator L(∂),

V(f)(x) =

∫
∂Ω+

Γ(L)(x− y)f(y) dS, f = (f1, f2)
⊤,

possessing the mapping properties

V : [H
− 1

2
2 (S)]2 → [H1

2 (Ω
+)]2 for Lipschitz S = ∂Ω+,

V : [Cr,κ′
(S)]2 → [Cr+1,κ′

(Ω+)]2, S ∈ Cm,κ, m ∈ N, 0 6 r ≤ m− 1, 0 < κ′ < κ 6 1,

while H is an integral operator generated by the trace on S = ∂Ω+ of the single layer potential,
H(f) = {V(f)}+S . Note that, due to the positive definiteness of the matrix Λ(1) given by (2.14), the
operator H is coercive on [H

− 1
2

2 (S)]2, i.e., there is a positive constant C0 = const > 0 such that for
all f ∈ [H

− 1
2

2 (S)]2

⟨Hf, f⟩S > C0∥f∥
[H

− 1
2

2 (S)]2
,

implying the invertibility of the operator

H : [H
− 1

2
2 (S)]2 → [H

1
2
2 (S)]

2.

Now, it is evident that the vector function

X =
(
φ( · , 0), ψ( · , 0)

)⊤
:= X(1) +X(2) ∈ [H1

2 (Ω
+)]2

is a unique weak solution of the nonhomogeneous Dirichlet problem (2.101), (2.103) for a Lipschitz
domain Ω+.

Remark 2.7. It is evident that in the case of the homogeneous dynamical Dirichlet problem (D)+t the
vector function (φ(x, 0), ψ(x, 0))⊤ solves the homogeneous Dirichlet boundary value problem (2.101)–
(2.103) with Y4 = Y5 = 0 and f4 = f5 = 0, and, consequently, φ( · , 0) = ψ( · , 0) = 0 in Ω+.

Due to the classical interior and boundary regularity results, if the surface S and the functions
(2.109) are smoother, then the functions φ( · , 0) and ψ( · , 0) are smoother as well (for details see, e.g.
[75, Ch. 4, Theorem 4.18]). In particular, if for some integer r > 0 the following conditions hold

S ∈ Cr+1,1, ϱe( · , 0), ϱc( · , 0) ∈ Hr
2 (Ω

+), u
(0)
k ∈ Hr+2

2 (Ω+),

ϑ(0), ϑ(1) ∈ Hr+1
2 (Ω+), f4( · , 0), f5( · , 0) ∈ H

r+ 3
2

2 (S),
(2.115)

then φ( · , 0), ψ( · , 0) ∈ Hr+2
2 (Ω+). Further, if for some integer r > 0 and 0 < κ′ < κ 6 1 the following

conditions hold (cf. [45], [78], [57], [3])

S ∈ Cr+1,κ, ϱe( · , 0), ϱc( · , 0) ∈ Cr,κ′
(Ω+), u

(0)
k ∈ Cr+2,κ′

(Ω+),

ϑ(0), ϑ(1) ∈ Cr+1,κ′
(Ω+), f4( · , 0), f5( · , 0) ∈ Cr,κ′

(S),
(2.116)

then φ( · , 0), ψ( · , 0) ∈ Cr,κ′
(Ω+).
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Remarks concerning the Neumann problem. Now, let us consider the dynamical Neumann
initial-boundary value problem (N)+t . In this case, if the problem (N)+t possesses a solution and
the corresponding smoothness conditions are satisfied, the function φ( · , 0) and ψ( · , 0) solve again
the equations (2.101), (2.102) and satisfy the Neumann type boundary conditions (see (2.72), (2.73),
and (2.25)) {

κjlnj∂lφ(x, 0) + ajlnj∂lψ(x, 0)
}+

= G4(x),{
ajlnj∂lφ(x, 0) + µjlnj∂lψ(x, 0)

}+
= G5(x),

x ∈ S, (2.117)

with

G4(x) := F4(x, 0) +
{
ejklnj∂lu

(0)
k (x) + njpj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)}+

, x ∈ S,

G5(x) := F5(x, 0) +
{
qjklnj∂lu

(0)
k (x) + njmj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)}+

, x ∈ S.

(2.118)

For sufficiently smooth data involved in (2.118) and (2.102), the corresponding solution vector X =
(φ( · , 0), ψ( · , 0))⊤ to the Neumann type problem (2.101), (2.117) will be also regular and for an
arbitrary smooth vector function X̃ = (X̃1, X̃2)

⊤, in view of (2.105) the following relation∫
Ω+

Λ(1)∇X(x) · ∇X̃(x) dx =

∫
S

G(x) ·
{
X̃(x)

}+
dS −

∫
Ω+

Y (1)(x) · X̃(x) dx (2.119)

holds, where G = (G4, G5)
⊤ is given by (2.118) and Y (1) = (Y4, Y5)

⊤ with Y4 and Y5 being defined in
(2.102).

With the help of the equalities (2.118) and (2.102), and applying the integration by parts formula,
the right hand side of (2.119) can be rewritten as

G(X̃) :=

∫
S

G(x) ·
{
X̃(x)

}+
dS −

∫
Ω+

Y (1)(x) · X̃(x) dx

=

∫
S

[
F4(x, 0)

{
X̃1(x)

}+
+ F5(x, 0)

{
X̃2(x)

}+
]
dS

+

∫
Ω+

{
ϱe(x, 0)X̃1(x) +

[
ejkl∂lu

(0)
k (x) + pj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃1(x)

+ ϱc(x, 0)X̃2(x) +
[
qjkl∂lu

(0)
k (x) +mj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃2(x)

}
dx. (2.120)

Finally, employing the notations (2.107) and (2.120) we can rewrite (2.119) as

B(X, X̃) = G(X̃). (2.121)

This equation can be extended to vector functions X, X̃ ∈
[
H1

2 (Ω
+)

]2, if

ϱe( · , 0), ϱc( · , 0) ∈ H̃−1
2 (Ω+), u

(0)
k ∈ H1

2 (Ω
+), k = 1, 2, 3,

ϑ(0), ϑ(1) ∈ L2(Ω
+), F4( · , 0), F5( · , 0) ∈ H

− 1
2

2 (S).
(2.122)

In this case

G(X̃) :=
⟨
F4(x, 0), {X̃1(x)}+

⟩
S
+
⟨
F5(x, 0), {X̃2(x)}+

⟩
S

+ ⟨ϱe(x, 0), X̃1(x)
⟩
Ω+ +

⟨
ϱc(x, 0), X̃2(x)

⟩
Ω+

+

∫
Ω+

{[
ejkl∂lu

(0)
k (x) + pj

(
ϑ(0)(x) + ν0pjϑ

(1)(x)
)]
∂jX̃1(x)

+
[
qjkl∂lu

(0)
k (x) +mj

(
ϑ(0)(x) + ν0mjϑ

(1)(x)
)]
∂jX̃2(x)

}
dx, (2.123)

where the dualities on S and Ω+ are well defined due to (2.122).
Note that, under conditions (2.122) the linear functional G given by formula (2.123) is bounded on

[H1
2 (Ω

+)]2 and due to positive definiteness of the matrix Λ(1) given by (2.14) we have
B(X,X) > κ1

(
∥∇X1∥2L2(Ω+) + ∥∇X2∥2L2(Ω+)

)
(2.124)

for arbitrary X = (X1, X2)
⊤ ∈ [H1

2 (Ω
+)]2 with κ1 involved in (2.15).
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The weak formulation of the nonhomogeneous Neumann type boundary value problem (2.101) and
(2.117) then reads as follows: Find X = (φ( · , 0), ψ( · , 0))⊤ ∈ [H1

2 (Ω
+)]2 such that the following equa-

tion
B(X, X̃) ≡

∫
Ω+

Λ(1)∇X(x) · ∇X̃(x) dx = G(X̃) (2.125)

holds for arbitrary X̃ ∈ [H1
2 (Ω

+)]2, where G(X̃) is given by (2.123) and Ω+ is assumed to be a Lipschitz
domain.

It is easy to show that in the space of regular vector functions, φ( · , 0) = c4 and ψ( · , 0) = c5 with c4
and c5 being arbitrary constants, represent the general solution to the homogeneous boundary value
problem (2.101), (2.117) with Y4 = Y5 = 0 and G4 = G5 = 0.

The same is valid for the homogeneous variational equation (2.125) with G = 0: the vector X =(
c4, c5

)⊤ represents a general weak solution to the equation B(X, X̃) = 0 for arbitrary X̃ ∈ [H1
2 (Ω

+)]2.
It is well known that the necessary and sufficient condition for the nonhomogeneous problem (2.101),

(2.117) with sufficiently smooth data to be solvable in the space of regular vector functions is the
following relation (see, e.g., [78]) ∫

S

G(x) dS =

∫
Ω+

Y (1)(x) dx. (2.126)

In view of (2.102) and (2.118) it then follows that equality (2.126) is equivalent to the conditions∫
S

F4(x, 0) dS +

∫
Ω+

ϱe(x, 0) dx = 0,

∫
S

F5(x, 0) dS +

∫
Ω+

ϱc(x, 0) dx = 0. (2.127)

Similarly, in the case of weak formulation of the Neumann problem under assumptions (2.122), it can
be shown that the necessary and sufficient conditions for solvability of equation (2.125) read as (cf.
[74], [51], [75], [93])

G(E(1)) ≡ ⟨F4(x, 0), 1⟩S + ⟨ϱe(x, 0), 1⟩Ω+ = 0, E(1) = (1, 0)⊤, (2.128)
G(E(2)) ≡ ⟨F5(x, 0), 1⟩S + ⟨ϱc(x, 0), 1⟩Ω+ = 0, E(2) = (0, 1)⊤, (2.129)

where G is defined in (2.123).
As a byproduct, from these results it follows that the relations (2.128), (2.129) are the necessary

conditions for solvability of the dynamical Neumann problem (N)+t as well.

Remark 2.8. Note that in the case of the weak formulation (2.125) of the Neumann problem (2.101),
(2.102) and (2.117), the sought for vector function X = (φ( · , 0), ψ( · , 0))⊤ belongs to the function
space [H1(Ω+)]2 and is a distributional solution of the differential equation

L(∂x)X = Y (1) in Ω+,

where L(∂x) is defined in (2.104) and Y (1) := (Y4, Y5)
⊤ with Y4 and Y5 given by (2.102). Due to the

conditions (2.122) we can assume that Y (1) ∈ [H̃−1(Ω+)]2. But in this case, the trace of the conormal
derivative {Υ(∂x, n)X}+ (see (2.104)) can not be defined uniquely by a reasonable definition, say by
Green’s formula (2.106), where the second integral over Ω+ in the right hand side is understood as the
duality ⟨L(∂x)X, X̃⟩Ω+ between the mutually adjoint spaces [H̃−1(Ω+)]2 and [H−1(Ω+)]2. The case
is that here we need extension of the distribution L(∂x)X from the open domain Ω+ to Ω− by zero
which is not unique and in general is defined modulo a nontrivial distribution from [H̃−1(Ω+)]2 with
support in ∂Ω+. Note that the space [H̃−1(Ω+)]2 contains nontrivial distributions from [H−1(R3)]2

with support in ∂Ω+ (for details see [75, Ch. 4], [76]).
Therefore in the framework of the weak formulation of the Neumann problem we can speak about

the Neumann condition (2.117) if the vector L(∂x)X = Y (1) ∈ [Hs(Ω+)]2 as a distribution admits a
unique continuation from Ω+ to Ω− by zero. This is the case, e.g., when L(∂x)X = Y (1) ∈ [L2(Ω

+)]2,
and then the generalised trace of the conormal derivative {Υ(∂x, n)X}+ can be defined by Green’s
formula (2.106) with Y (1) for L(∂x)X. Evidently, in this case we need higher regularity for the initial
data and the right hand side functions ϱe( · , 0), ϱc( · , 0), and we require that

ϱe( · , 0), ϱc( · , 0) ∈ L2(Ω
+), u

(0)
k ∈ H2

2 (Ω
+), k = 1, 2, 3,

ϑ(0), ϑ(1) ∈ H1
2 (Ω

+), F4( · , 0), F5( · , 0) ∈ H
− 1

2
2 (S),

(2.130)
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implying (see (2.102), (2.117), and (2.118))

Y (1) ∈ [L2(Ω
+)]2, G4( · , 0), G5( · , 0) ∈ H

− 1
2

2 (S), (2.131)
which in turn imply that X = (φ( · , 0), ψ( · , 0))⊤ ∈ [H1(Ω+)]2 with L(∂x)X = Y (1) ∈ [L2(Ω

+)]2.
Therefore we conclude that the conormal derivative {Υ(∂x, n)X}+ is correctly defined by Green’s
formula (2.106) and, consequently, the Neumann boundary conditions (2.117) are understood in the
generalized functional trace sense (cf., e.g., [75, Ch. 4]).

If instead of inclusions (2.130), there hold

ϱe( · , 0), ϱc( · , 0) ∈ L2(Ω
+), u

(0)
k ∈ H2

2 (Ω
+), k = 1, 2, 3,

ϑ(0), ϑ(1) ∈ H1
2 (Ω

+), F4( · , 0), F5( · , 0) ∈ H
1
2
2 (S),

(2.132)

then
Y (1) ∈ [L2(Ω

+)]2, G4( · , 0), G5( · , 0) ∈ H
1
2
2 (S), (2.133)

which in turn imply that X = (φ( · , 0), ψ( · , 0))⊤ ∈ [H2(Ω+)]2 and, consequently, the Neumann
boundary conditions (2.117) are satisfied in the usual trace sense (cf., e.g., [75, Ch. 4, Theorem 4.18]).

Remark 2.9. From the above results it follows that if the nonhomogeneous dynamical Neumann
problem (N)+t is solvable and the conditions (2.128), (2.129), and (2.132) hold, then the functions
φ(x, 0) and ψ(x, 0) belong to the space H2(Ω+) and they are defined modulo constant summands
by the data of the problem (N)+t . In particular, it is evident that in the case of the homogeneous
dynamical Neumann problem (N)+t , all the above required conditions are satisfied, and the functions
φ(x, 0) and ψ(x, 0) could be only arbitrary constants and do not vanish, in general.

Remarks concerning the mixed problem. It can analogously be shown that in the case of the
mixed type dynamical problem (M)+t , as in the case of the dynamical Dirichlet problem, the functions
φ( · , 0), ψ( · , 0) ∈ H1

2 (Ω
+) are defined uniquely by the data of the problem. In particular, this implies

that for the homogeneous dynamical mixed problem (M)+t they vanish, φ( · , 0) = ψ( · , 0) = 0 in Ω+.
Indeed, for illustration let us consider the semi-regular setting of the basic mixed dynamical problem

associated with the dissection S = SD ∪ SN (see Remark 2.4). In this case the vector X(x, 0) =
(φ( · , 0), ψ( · , 0))⊤ solves the system of differential equations (2.101) in Ω+ and satisfies the Dirichlet
type condition on SD and the Neumann type condition on SN :

L(∂x)X = Y (1) in Ω+, (2.134)
{X}+ = g∗ on SD, (2.135)

{Υ(∂x, n)X}+ = G∗ on SN , (2.136)

where Y (1) = (Y4, Y5) with Y4 and Y5 defined in (2.102), the boundary operator Υ(∂, n) is defined
in (2.104), and in accordance with boundary conditions (2.81)–(2.84): g∗ = (f∗4 ( · , 0), f∗5 ( · , 0))⊤ and
G∗ = (G∗

4( · , 0), G∗
5( · , 0))⊤ where G∗

4 and G∗
5 are given by (2.118) on SN with F ∗

4 and F ∗
5 for F4 and

F5, respectively.
We decompose this problem into two boundary value problems:

L(∂x)X
(1) = 0 in Ω+, (2.137)

{X(1)}+ = g∗ on SD, (2.138)
{Υ(∂x, n)X

(1)}+ = 0 on SN , (2.139)
and

L(∂x)X
(2) = Y (1) in Ω+, (2.140)

{X(2)}+ = 0 on SD, (2.141)
{Υ(∂x, n)X

(2)}+ = G∗ on SN , (2.142)
Using the potential method it can be shown that the mixed boundary value problem (2.137)–(2.139)
possesses a unique solution (see, e.g. [25], [75, Ch. 7])

X(1) = (φ(1), ψ(1))⊤ ∈ [H1
2 (Ω

+)]2 (2.143)
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if Ω+ is Lipschitz domain, SD and SN are Lipschitz manifolds with Lipschitz boundary, and

g∗ =
(
f∗4 ( · , 0), f∗5 ( · , 0)

)⊤ ∈ [H
1
2 (SD)]2. (2.144)

On the other hand, applying the same arguments as in the case of the Neumann problem, the
second mixed problem (2.140)–(2.142) under conditions

ϱe( · , 0), ϱc( · , 0) ∈ H̃−1
2 (Ω+), u

(0)
k ∈ H1

2 (Ω
+), ϑ(0), ϑ(1) ∈ L2(Ω

+),

F ∗
4 ( · , 0), F ∗

5 ( · , 0) ∈ [H
− 1

2
2 (SN )]2,

(2.145)

can be reformulated as a variational equation (see (2.119), (2.120))

B(X(2), X̃(2)) ≡
∫
Ω+

Λ(1)∇X(2)(x) · ∇X̃(2)(x) dx = G2(X̃
(2)) (2.146)

for the unknown vector function
X(2) = (φ(2), ψ(2))⊤ ∈ [H1

2 (Ω
+, SD)]2, (2.147)

where [H1
2 (Ω

+, SD)]2 is a subspace of [H1
2 (Ω

+)]2,
[H1

2 (Ω
+, SD)]2 =

{
X ∈ [H1

2 (Ω
+)]2 : r

SD
X = 0

}
, (2.148)

endowed with the norm of the space [H1
2 (Ω

+)]2, X̃(2) = (X̃
(2)
1 , X̃

(2)
2 )⊤ ∈ [H1

2 (Ω
+, SD)]2, and G2 is a

well defined bounded linear functional on [H1
2 (Ω

+, SD)]2 (cf. (2.123))

G2(X̃
(2)) :=

⟨
F ∗
4 (x, 0), {X̃

(2)
1 (x)}+

⟩
SN

+
⟨
F ∗
5 (x, 0), {X̃

(2)
2 (x)}+

⟩
SN

+
⟨
ϱe(x, 0), X̃

(2)
1 (x)

⟩
Ω+ +

⟨
ϱc(x, 0), X̃

(2)
2 (x)

⟩
Ω+

+

∫
Ω+

{[
ejkl∂lu

(0)
k (x) + pj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃

(2)
1 (x)

+
[
qjkl∂lu

(0)
k (x) +mj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃

(2)
2 (x)

}
dx. (2.149)

Evidently, the bilinear form B(X(2), X̃(2)) is bounded and strongly coercive in [H1
2 (Ω

+, SD)]2 (see,
e.g., [93, Section 1.1.8, Theorem 1.10]), i.e., there is a positive constant κ such that

B(X(2), X(2)) > κ∥X(2)∥2H1
2 (Ω

+) for all X(2) ∈ [H1
2 (Ω

+, SD)]2. (2.150)

Consequently, equation (2.146) is uniquely solvable in the space [H1
2 (Ω

+, SD)]2 by Lax-Milgram the-
orem.

Therefore, we conclude that if the conditions (2.144) and (2.145) hold, then the mixed problem
(2.134)–(2.136) possesses a unique weak solution X which can be represented as

X =
(
φ( · , 0), ψ( · , 0)

)⊤
= X(1) +X(2) ∈ [H1

2 (Ω
+)]2.

Remark 2.10. Here we have to take into consideration the arguments and reasonings presented in Re-
mark 2.8 concerning existence of the trace of conormal derivative {Υ(∂x, n)X}+ on SN . In particular,
if the conditions

ϱe( · , 0), ϱc( · , 0) ∈ L2(Ω
+), u

(0)
k ∈ H2

2 (Ω
+), k = 1, 2, 3, ϑ(0), ϑ(1) ∈ H1

2 (Ω
+),

f∗4 ( · , 0), f∗5 ( · , 0) ∈ H
1
2
2 (SD), F ∗

4 ( · , 0), F ∗
5 ( · , 0) ∈ H

− 1
2

2 (SN ),
(2.151)

hold, then (see (2.102), (2.117), and (2.118))

Y (1) ∈ [L2(Ω
+)]2, g∗ ∈ H

1
2
2 (SD), G∗ ∈ H

− 1
2

2 (SN ) (2.152)
which in turn imply that X = (φ( · , 0), ψ( · , 0))⊤ ∈ [H1(Ω+)]2 with L(∂x)X = Y (1) ∈ [L2(Ω

+)]2.
Therefore we conclude that the conormal derivative {Υ(∂x, n)X}+ is correctly defined by Green’s
formula (2.106) and, consequently, the Neumann boundary conditions (2.136), (2.139), and (2.142)
are understood in the generalized functional trace sense.

Unfortunately, for mixed and crack type problems we can not improve regularity of solutions up to
H2(Ω+), in general, by increasing smoothness of data of the problems (for details see Section 5).
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By the word for word arguments we can show that in the case of the crack type dynamical problems
the initial values of the electric and magnetic potentials, φ(x, 0) and ψ(x, 0) are defined uniquely if
the boundary conditions of the dynamical problems contain the Dirichlet conditions for the electric
and magnetic potentials, φ(x, t) and ψ(x, t), otherwise they are defined modulo constant summands.
In particular, for the homogeneous dynamical crack problems the functions φ(x, 0) and ψ(x, 0) either
vanish or they are arbitrary constants in Ω+

Σ .
From the above results it follows that under appropriate assumptions, the initial data of the electric

and magnetic potentials, φ(x, 0) and ψ(x, 0), are defined either uniquely or modulo constant summand
by the data of the dynamical problems formulated in Subsection 2.2. In particular, in the case of the
homogeneous dynamical problems, the functions φ(x, 0) and ψ(x, 0) equal to zero if the Dirichlet data
for the electro-magnetic potentials are prescribed on some non-empty part of the boundary, otherwise
they are arbitrary constants.

Remark 2.11. It is important to note here that for the pseudo-oscillation elliptic problems (see Subsec-
tion 2.3), obtained from the corresponding dynamical problems with the help of the Laplace transform,
all the data are defined uniquely:

(i) for the Dirichlet type boundary data it is evident due to the Laplace transform definition,
see (2.37);

(ii) for the Neumann type boundary data it follows from the fact that in view of formula (2.54)
the pseudo-oscillation stress vector {T (∂x, n, τ)Û(x, τ)}+ is uniquely defined by the Laplace
transform of the given dynamical stress vector Lt→τ [{T (∂x, n, ∂t)U(x, t)}+] and the vector
function F (0) defined by (2.56).

(iii) for the right hand sides of the pseudo-oscillation equations (2.40) (see also (2.42), (2.44)) it
follows from the fact that the vector function Ψ(0)(x, τ) given by (2.41), is defined uniquely
since the functions φ(x, 0) and ψ(x, 0) are defined at most modulo constant summands, as it
has been shown above.

2.3. Boundary value problems for pseudo-oscillation equations. Applying the Laplace trans-
form and formulas (2.37)–(2.39), the above formulated dynamical problems can be reduced to the
corresponding elliptic problems containing a complex parameter τ , assuming that all the data in-
volved in the formulation of the dynamical problems and the sought for solutions are exponentially
bounded with respect to the variable t (see (2.36)).

Here we preserve the notation for the operators introduced in the previous subsections and formu-
late the boundary value problems for the pseudo-oscillation equations of the GTEME theory. The
operators A(∂, τ) and T (∂, n, τ) involved in the formulations below are determined by the relations
(2.45) and (2.57), respectively. In our analysis we always assume that

τ = σ + iω, σ > σ0 > 0, ω ∈ R, (2.153)
if not otherwise stated.

We recall that over posed ”hat” denotes the Laplace transform of the corresponding function defined
by (2.37).
The Dirichlet pseudo-oscillation problem (D)+τ : Find a regular complex-valued solution vector

Û = (û, φ̂, ψ̂, ϑ̂)⊤ ∈ [C1(Ω+)]6 ∩ [C2(Ω+)]6 (2.154)
to the pseudo-oscillation equations of the GTEME theory,

A(∂x, τ)Û(x) = Ψ(x), x ∈ Ω+, (2.155)
satisfying the Dirichlet type boundary condition

{Û(x)}+ = f̂(x), x ∈ S, (2.156)
i.e.

{ûr(x)}+ = f̂r(x), x ∈ S, r = 1, 2, 3, (2.157)

{φ̂(x)}+ = f̂4(x), x ∈ S, (2.158)
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{ψ̂(x)}+ = f̂5(x), x ∈ S, (2.159)

{ϑ̂(x)}+ = f̂6(x), x ∈ S, (2.160)

where Ψ = (Ψ1, . . . ,Ψ6)
⊤ defined by (2.44) and (2.41), and f̂ = (f̂1, . . . , f̂6)

⊤ are given smooth
functions from the appropriate spaces.

The Neumann pseudo-oscillation problem (N)+τ : Find a regular complex-valued solution vector

Û = (û, φ̂, ψ̂, ϑ̂)⊤ ∈ [C1(Ω+)]6 ∩ [C2(Ω+)]6

to the pseudo-oscillation equations of the GTEME theory (2.155) satisfying the Neumann type boundary
condition

{T (∂x, n, τ)Û(x)}+ = F̂ (x)− F (0)(x), x ∈ S, (2.161)
i.e. {

[T (∂x, n, τ)Û(x)]r
}+ ≡ {σ̂rjnj}+ − F (0)

r (x) = F̂r(x)− F (0)
r (x), x ∈ S, r = 1, 2, 3, (2.162){

[T (∂x, n, τ)Û(x)]4
}+ ≡ {−D̂jnj}+ − F

(0)
4 (x) = F̂4(x)− F

(0)
4 (x), x ∈ S, (2.163){

[T (∂x, n, τ)Û(x)]5
}+ ≡ {−B̂jnj}+ − F

(0)
5 (x) = F̂5(x)− F

(0)
5 (x), x ∈ S, (2.164){

[T (∂x, n, τ)Û(x)]6
}+ ≡ {−T−1

0 q̂jnj}+ = F̂6(x), x ∈ S, (2.165)

where F̂ − F (0) is a given continuous vector function with F (0) = (F
(0)
1 , . . . , F

(0)
6 )⊤ defined in (2.56).

Mixed type pseudo-oscillation problem (M)+τ : Find a semi-regular complex-valued solution vector

Û = (û, φ̂, ψ̂, ϑ̂)⊤ ∈ [C(Ω̃+
ℓ ;α)]

6

to the pseudo-oscillation equations of the GTEME theory (2.155) satisfying the mixed type boundary
conditions:

{ûr(x)}+ = f̂∗r (x), x ∈ S1, r = 1, 2, 3, (2.166){
[T (∂x, n, τ)Û(x)]r

}+ ≡ {σ̂rjnj}+ − F (0)
r (x) = F̂ ∗

r (x)− F (0)
r (x), x ∈ S2, r = 1, 2, 3, (2.167)

{φ̂(x)}+ = f̂∗4 (x), x ∈ S3, (2.168){
[T (∂x, n, τ)Û(x)]4

}+ ≡ {−D̂jnj}+ − F
(0)
4 (x) = F̂ ∗

4 (x)− F
(0)
4 (x), x ∈ S4, (2.169)

{ψ̂(x)}+ = f̂∗5 (x), x ∈ S5, (2.170){
[T (∂x, n, τ)Û(x)]5

}+ ≡ {−B̂jnj}+ − F
(0)
5 (x) = F̂ ∗

5 (x)− F
(0)
5 (x), x ∈ S6, (2.171)

{ϑ̂(x)}+ = f̂∗6 (x), x ∈ S7, (2.172){
[T (∂x, n, τ)Û(x)]6

}+ ≡ {−T−1
0 q̂jnj}+ = F̂ ∗

6 (x), x ∈ S8, (2.173)

where f̂∗k and F̂ ∗
k − F

(0)
k , k = 1, 2, . . . , 6, are given functions form the appropriate spaces.

Crack type pseudo-oscillation problems: Find a semi-regular complex-valued vector function

Û = (û, φ̂, ψ̂, ϑ̂)⊤ ∈ [C(Ω̃+
Σ ;α)]

6

satisfying
(i) the pseudo-oscillation equations of the GTEME theory (2.155) in Ω+

Σ ;
(ii) the Dirichlet or Neumann type boundary conditions on S;
(iii) one of the following type boundary and/or transmission conditions on the crack surface Σ:

(a) screen type conditions:

{Û(x)}+ = f̂ (+)(x), x ∈ Σ, (2.174)

{Û(x)}− = f̂ (−)(x), x ∈ Σ, (2.175)
or
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(b) crack type conditions:{
T (∂x, n, τ)Û(x)

}+
= F̂ (+)(x)− {F (0)(x)}+, x ∈ Σ, (2.176){

T (∂x, n, τ)U(x)
}−

= F̂ (−)(x)− {F (0)(x)}−, x ∈ Σ, (2.177)

or
(c) mixed crack type conditions:{

[T (∂x, n, τ)Û(x)]r
}±

= F̂ (±)
r (x)− {F (0)

r (x)}±, x ∈ Σ, r = 1, 2, 3, (2.178)

{φ̂(x)}+ − {φ̂(x)}− = f̂∗∗4 (x), x ∈ Σ, (2.179){
[T (∂x, n, τ)Û(x)]4

}+ −
{
[T (∂x, n, τ)Û(x)]4

}−

= F̂ ∗∗
4 (x)−

[
{F (0)

4 (x)}+ − {F (0)
4 (x)}−

]
, x ∈ Σ, (2.180)

{ψ̂(x)}+ − {ψ̂(x)}− = f̂∗∗5 (x), x ∈ Σ, (2.181){
[T (∂x, n, τ)Û(x)]5

}+ −
{
[T (∂x, n, τ)Û(x)]5

}−

= F̂ ∗∗
5 (x)− [{F (0)

5 (x)}+ − {F (0)
5 (x)}−

]
, x ∈ Σ, (2.182)

{ϑ̂(x)}+ − {ϑ̂(x)}− = f̂∗∗6 (x), x ∈ Σ, (2.183){
[T (∂x, n, τ)Û(x)]6

}+ −
{
[T (∂x, n, τ)Û(x)]6

}−
= F̂ ∗∗

6 (x), x ∈ Σ, (2.184)

where f̂ (±) = (f̂
(±)
1 , . . . , f̂

(±)
6 )⊤, F̂ (±) = (F̂

(±)
1 , . . . , F̂

(±)
6 )⊤, F (0) = (F

(0)
1 , . . . , F

(0)
6 )⊤,

f̂∗∗k , and F̂ ∗∗
k , k = 4, 5, 6, are given functions form the appropriate spaces.

Evidently, as in the dynamical case, here we can formulate the semi-regular setting of crack type
pseudo-oscillation problem with mixed conditions on the exterior boundary of the body S as well, but
in this case we have to require that in some open neighbourhood UΣ ⊂ ΩΣ of the crack surface Σ the
sought for vector belongs to the semi-regular class of functions [C(ŨΣ;α)]

6 and at the same time for
some open one-sided interior neighbourhood V+

S ⊂ ΩΣ of the exterior boundary surface S it belongs
to the semi-regular class of functions [C(Ṽ+

S,ℓ;α)]
6, where ℓ is defined by the dissection of the surface

S associated with the mixed boundary conditions and Ṽ+
S,ℓ := V+

S \ ℓ. Without loss of generality one
can assume that UΣ ∩ S = ∅ and V+

S ∩ Σ = ∅.
It is evident that the right hand side of differential equation (2.155) as well as the boundary

data involved in the above formulated pseudo-oscillation problems, associated to the corresponding
dynamical problems via the Laplace transform, depend also on the complex parameter τ .

As in the dynamical case, here the crack type pseudo-oscillation problem with the Dirichlet type
conditions (2.174), (2.175) on the crack faces, will be referred to as Problem (B-CR-D)+τ , with the Neu-
mann type conditions (2.176), (2.177) – as Problem (B-CR-N)+τ , and with the mixed type Neumann-
Transmission conditions (2.178)–(2.184) – as Problem (B-CR-NT)+τ . Again, here B stands for D or
for N or for M and shows which kind of boundary conditions (Dirichlet, Neumann or Mixed type
boundary conditions) are prescribed on the surface S.

The boundary value problems of pseudo-oscillations for an exterior unbounded domain Ω− can be
formulated quite similarly. The only difference in the formal setting is that solution vectors have
to satisfy certain conditions at infinity, which will be specified later (see (2.207)), and the one-sided
limiting values of the corresponding functions on the boundary surface should be taken from the
domain Ω−, i.e., the interior traces { · }+ should be replaced by the exterior ones { · }−. We denote
these problems by (D)−τ , (N)−τ , (M)−τ , (B-CR-D)−τ , (B-CR-N)−τ , and (B-CR-NT)−τ with B ∈ {D,N,M}.

Remark 2.12. In order to simplify the notation, in what follows, treating the general boundary value
problems of pseudo-oscillations we do not use over posed ”hat” and employ the simple notation
U(x, τ) = (u(x, τ), φ(x, τ), ψ(x, τ), ϑ(x, τ))⊤ for the sought vector assuming that all the data of the
problem depend upon the complex parameter τ as well.
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2.4. Green’s formulas for the dynamical model. Let U = (u, φ, ψ, ϑ)⊤ ∈ [C2(Ω+ × J̃∞)]6 and
U ′ = (u′, φ′, ψ′, ϑ′)⊤ ∈ [C1(Ω+× J̃∞)]6. In view of the relations (2.1)–(2.8), (2.17)–(2.25), and (2.30),
by the Gauss divergence theorem we derive the following formulas:∫

Ω+

[
A(∂x, ∂t)U(x, t)

]
r
u′r(x, t) dx =

∫
Ω+

[
∂jσrj(x, t)− ϱ∂2t ur(x, t)

]
u′r(x, t) dx

=

∫
∂Ω+

{
σrj(x, t)nj(x)

}+{u′r(x, t)}+ dS −
∫
Ω+

[
σrj(x, t)∂ju

′
r(x, t) + ϱ∂2t ur(x, t)u

′
r(x, t)

]
dx

=

∫
∂Ω+

{[
T (∂x, n, ∂t)U(x, t)

]
r

}+{u′r(x, t)}+ dS −
∫
Ω+

σrj(x, t)∂ju
′
r(x, t) dx

−
∫
Ω+

ϱ∂2t ur(x, t)u
′
r(x, t) dx, (2.185)∫

Ω+

[
A(∂x, ∂t)U(x, t)

]
4
φ′(x, t) dx = −

∫
Ω+

∂jDj(x, t)φ
′(x, t) dx

= −
∫
∂Ω+

{Dj(x, t)nj(x)}+{φ′(x, t)}+ dS +

∫
Ω+

Dj(x, t)∂jφ
′(x, t) dx

=

∫
∂Ω+

{[
T (∂x, n, ∂t)U(x, t)

]
4

}+{φ′(x, t)}+ dS +

∫
Ω+

Dj(x, t)∂jφ
′(x, t) dx, (2.186)∫

Ω+

[A(∂x, ∂t)U(x, t)]5ψ
′(x, t) dx = −

∫
Ω+

∂jBj(x, t)ψ
′(x, t) dx

= −
∫
∂Ω+

{Bj(x, t)nj(x)}+{ψ′(x, t)}+ dS +

∫
Ω+

Bj(x, t)∂jψ
′(x, t) dx

=

∫
∂Ω+

{[
T (∂x, n, ∂t)U(x, t)

]
5

}+{ψ′(x, t)}+ dS +

∫
Ω+

Bj(x, t)∂jψ
′(x, t) dx, (2.187)∫

Ω+

[A(∂x, ∂t)U(x, t)]6ϑ
′(x, t) dx = −

∫
Ω+

[
ϱ∂tS(x, t) + T−1

0 ∂jqj(x, t)
]
ϑ′(x, t) dx

= −
∫
∂Ω+

{
T−1
0 qj(x, t)nj(x)

}+{ϑ′(x, t)}+ dS −
∫
Ω+

ϱ∂tS(x, t)ϑ′(x, t) dx

+

∫
Ω+

T−1
0 qj(x, t)]∂jϑ

′(x, t) dx =

∫
∂Ω+

{[
T (∂x, n, ∂t)U(x, t)

]
6

}+{ϑ′(x, t)}+ dS

−
∫
Ω+

ϱ∂tS(x, t)ϑ′(x, t) dx−
∫
Ω+

ηjl∂lϑ(x, t)∂jϑ
′(x, t) dx. (2.188)

Combining these formulas and keeping in mind that U and U ′ are real valued vector functions, we
get:∫

Ω+

[
A(∂x, ∂t)U(x, t)

]
· U ′(x, t) dx =

∫
∂Ω+

{
T (∂x, n, ∂t)U(x, t)

}+ · {U ′(x, t)}+ dS

−
∫
Ω+

[
σrj(x, t)ε

′
rj(x, t) + ϱ∂2t ur(x, t)u

′
r(x, t)−Dj(x, t)∂jφ

′(x, t)−Bj(x, t)∂jψ
′(x, t)

+ ηjl∂lϑ(x, t)∂jϑ
′(x, t) + ϱ∂tS(x, t)ϑ′(x, t)

]
dx, (2.189)

where σrj , Dj , Bj , and S are defined in (2.2)–(2.5).
Note that the above Green’s formulas by standard limiting procedure can be extended to Lips-

chitz domains and to vector functions from the Sobolev–Slobodetskii spaces, such that the following
inclusions are continuous in the sense of appropriate function spaces with respect to t ∈ J̃∞,

U( · , t) ∈ [W 1
p (Ω

+)]6, U ′( · , t) ∈ [W 1
p′(Ω+)]6, [A(∂x, ∂t)U( · , t)]r ∈ Lp(Ω

+),

∂2t uk( · , t), ∂t∂juk( · , t), ∂t∂jφ( · , t), ∂t∂jψ( · , t), ∂2t ϑ( · , t) ∈ Lp(Ω
+),

r = 1, 2, . . . , 6, k, j = 1, 2, 3, 1 < p <∞,
1

p
+

1

p′
= 1.

(2.190)
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With the help of Green’s formula (2.189) we can correctly determine a generalized trace vector
{T (∂x, n, ∂t)U( · , t)}+ ∈ [B

−1/p
p,p (∂Ω+)]6 for a function U( · , t) ∈ [W 1

p (Ω
+)]6 provided the conditions

(2.190) are satisfied (cf. [93], [89], [12]),⟨{
T (∂x, n, ∂t)U(x, t)

}+
, {U ′(x, t)}+

⟩
∂Ω+

:=

∫
Ω+

[A(∂x, ∂t)U(x, t)] · U ′(x, t) dx

+

∫
Ω+

[
σrj(x, t)ε

′
rj(x, t) + ϱ∂2t ur(x, t)u

′
r(x, t)−Dj(x, t)∂jφ

′(x, t)−Bj(x, t)∂jψ
′(x, t)

+ ηjl∂lϑ(x, t)∂jϑ
′(x, t) + ϱ∂tS(x, t)ϑ′(x, t)

]
dx. (2.191)

Here the symbol ⟨ · , · ⟩∂Ω+ denotes the duality between the real valued Besov spaces [B
−1/p
p,p (∂Ω+)]6

and [B
1/p
p′,p′(∂Ω+)]6 which extends the usual L2 inner product for real valued vector functions,

⟨f, g⟩∂Ω+ =

∫
∂Ω+

6∑
j=1

fj(x)gj(x) dS for f, g ∈ [L2(∂Ω
+)]6. (2.192)

Let us return to identity (2.189) written for smooth functions and in addition assume that

u′r(x, T ) = 0, r = 1, 2, 3, ϑ′(x, T ) = 0 in Ω+, (2.193)

where T is some positive number. Integrating (2.189) over the interval (0, T ) with respect to t, using
the integration by parts formula for the terms involving ϱ∂2t ur(x, t) and ∂tS(x, t), and the equalities
(2.193) and (2.5) we get∫ T

0

∫
Ω+

[
A(∂x, ∂t)U(x, t)

]
· U ′(x, t) dx dt =

∫ T

0

∫
∂Ω+

{
T (∂x, n, ∂t)U(x, t)

}+ · {U ′(x, t)}+ dS dt

−
∫ T

0

∫
Ω+

[
σrj(x, t)ε

′
rj(x, t)− ϱ∂tur(x, t)∂tu

′
r(x, t)−Dj(x, t)∂jφ

′(x, t)−Bj(x, t)∂jψ
′(x, t)

+ ηjl∂lϑ(x, t)∂jϑ
′(x, t)− [ϱS(x, t)− a0]∂tϑ

′(x, t)
]
dx dt

+

∫
Ω+

{
ϱ∂tur(x, 0)u

′
r(x, 0) + [ϱS(x, 0)− a0]ϑ

′(x, 0)
}
dx. (2.194)

Here we have taken into consideration that ∂tS(x, t) = ∂t[S(x, t) − a0], where a0 is the constant
involved in (2.5).

With the help of the constitutive relations (2.2)–(2.5) we can rewrite (2.194) in the form that will
be very useful in our further analysis∫ T

0

∫
Ω+

{[
crjklεkl(x, t)+elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε′rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ

′(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ

′(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ

′(x, t)

+ ηjl∂lϑ(x, t)∂jϑ
′(x, t)− ϱ∂tur(x, t)∂tu

′
r(x, t)

}
dx dt

= −
∫ T

0

∫
Ω+

[
A(∂x, ∂t)U(x, t)

]
· U ′(x, t) dx dt+

∫ T

0

∫
∂Ω+

{
T (∂x, n, ∂t)U(x, t)

}+ · {U ′(x, t)}+ dS dt

+

∫
Ω+

{[
λklεkl(x, 0)− pl∂lφ(x, 0)−ml∂lψ(x, 0) + d0ϑ(x, 0) + h0∂tϑ(x, 0)

]
ϑ′(x, 0)

+ ϱ∂tur(x, 0)u
′
r(x, 0)

}
dx. (2.195)
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This formula can also be extended to generalized function spaces. In particular, (2.195) holds if

U = (u1, u2, u3, φ, ψ, ϑ)
⊤ ∈

[
W 1

p (Ω
+ × JT )

]6
, A(∂x, ∂t)U( · , t) ∈

[
Lp(Ω

+ × JT )
]6
,

∂2t uk( · , t), ∂t∂juk( · , t), ∂t∂jφ( · , t), ∂t∂jψ( · , t), ∂2t ϑ( · , t) ∈ Lp(Ω
+),

U ′ = (u′1, u
′
2, u

′
3, φ

′, ψ′, ϑ′)⊤ ∈
[
W 1

p′(Ω+ × JT )
]6
,

u′k(x, T ) = 0, ϑ′(x, T ) = 0 in Ω+,

k, l = 1, 2, 3, 1 < p <∞,
1

p
+

1

p′
= 1.

(2.196)

Note that in view of the inclusions in the second row of (2.196) we have
∂luk( · , 0), ∂tuk( · , 0), ∂lφ( · , 0), ∂lψ( · , 0), ϑ( · , 0), ∂tϑ( · , 0) ∈ Lp(Ω

+), k = 1, 2, 3.

Evidently, in this case, the integral involving the trace of the generalized stress vector should be
understood as the appropriate duality relation, and under conditions (2.196) we have⟨{

T (∂x, n, ∂t)U(x, t)
}+
, {U ′(x, t)}+

⟩
∂Ω+×JT

:=

∫ T

0

∫
Ω+

{[
crjklεkl(x, t) + elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε′rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ

′(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ

′(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ

′(x, t)

+ηjl∂lϑ(x, t)∂jϑ
′(x, t)− ϱ∂tur(x, t)∂tu

′
r(x, t)

}
dx dt

+

∫ T

0

∫
Ω+

[
A(∂x, ∂t)U(x, t)

]
· U ′(x, t) dx dt−

∫
Ω+

{
ϱ∂tur(x, 0)u

′
r(x, 0)

+
[
λklεkl(x, 0)− pl∂lφ(x, 0)−ml∂lψ(x, 0) + d0ϑ(x, 0) + h0∂tϑ(x, 0)]ϑ

′(x, 0)
}
dx. (2.197)

This formula correctly defines the generalized trace of the stress vector on the boundary ∂Ω+ × JT
(cf. (2.191)) {

T (∂x, n, ∂t)U(x, t)
}+ ∈

[
B−1/p

p,p (∂Ω+ × JT )
]6
.

Remark 2.13. Note that formula (2.195) remains valid for vector functions U ∈
[
H1

p (Ω
+ × JT )

]6 and
U ′ ∈

[
D(Ω+ × JT )

]6, but the first summand in the right hand side should be replaced by the well
defined duality ⟨−A(∂x, ∂t)U,U ′⟩Ω+×JT

between the mutually adjoint spaces [H−1
p (Ω+ × JT )]

6 and
[H̃p′(Ω+×JT )]6, while the second and third summands equal to zero since the traces of U ′ on ∂Ω+×JT
and Ω+ × {0} vanish.

2.5. Green’s formulas for the pseudo-oscillation model. For arbitrary vector functions
U = (u1, u2, u3, φ, ψ, ϑ)

⊤ ∈ [C2(Ω+)]6 and U ′ = (u′1, u
′
2, u

′
3, φ

′, ψ′, ϑ′)⊤ ∈ [C2(Ω+)]6

we can derive the following Green’s identities with the help of the Gauss divergence theorem:∫
Ω+

[
A(∂x, τ)U · U ′ + Eτ (U,U ′)

]
dx =

∫
∂Ω+

{T (∂x, n, τ)U}+ · {U ′}+ dS, (2.198)∫
Ω+

[
U ·A∗(∂x, τ)U

′ + Eτ (U,U ′)
]
dx =

∫
∂Ω+

{U}+ · {P(∂x, n, τ)U
′}+ dS, (2.199)∫

Ω+

[
A(∂x, τ)U · U ′ − U ·A∗(∂x, τ)U

′] dx
=

∫
∂Ω+

[
{T (∂x, n, τ)U}+ · {U ′}+ − {U}+ · {P(∂x, n, τ)U

′}+
]
dS, (2.200)
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where the operators A(∂x, τ), T (∂x, n, τ), A∗(∂x, τ) and P(∂x, n, τ) are given in (2.45), (2.57), (2.49),
and (2.58), respectively,

Eτ (U,U ′) := crjkl∂luk∂ju′r + ϱτ2uru′r + elrj(∂lφ∂ju′r − ∂jur∂lφ′)

+ qlrj(∂lψ∂ju′r − ∂jur∂lψ′) + κjl∂lφ∂jφ′ + ajl(∂lφ∂jψ′ + ∂jψ∂lφ′)

+ µjl∂lψ∂jψ′ + λkj
[
τϑ′∂juk − (1 + ν0τ)ϑ∂ju′k

]
− pl

[
τϑ′∂lφ+ (1 + ν0τ)ϑ∂lφ′

]
−ml

[
τϑ′∂lψ + (1 + ν0τ)ϑ∂lψ′

]
+ ηjl∂lϑ∂jϑ′ + τ(h0τ + d0)ϑϑ′. (2.201)

Note that, the above Green’s formula (2.198) by standard limiting procedure can be generalized to
Lipschitz domains and to vector functions U ∈ [W 1

p (Ω
+)]6 and U ′ ∈ [W 1

p′(Ω+)]6 with

A(∂x, τ)U ∈ [Lp(Ω
+)]6, 1 < p <∞,

1

p
+

1

p′
= 1.

With the help of Green’s formula (2.198) we can correctly determine a generalized trace of the stress
vector {T (∂x, n, τ)U}+ ∈ [B

−1/p
p,p (∂Ω+)]6 for a function U ∈ [W 1

p (Ω
+)]6 with A(∂x, τ)U ∈ [Lp(Ω

+)]6

by the following relation (cf. [93], [75], [89], [12])⟨{
T (∂x, n, τ)U

}+
, {U ′}+

⟩
∂Ω+ :=

∫
Ω+

[
A(∂x, τ)U · U ′ + Eτ (U,U ′)

]
dx, (2.202)

where U ′ ∈ [W 1
p′(Ω+)]6 is an arbitrary vector function. Here the symbol ⟨ · , · ⟩∂Ω+ denotes the duality

between the function spaces [B
−1/p
p,p (∂Ω+)]6 and [B

1/p
p′,p′(∂Ω+)]6 which extends the usual L2 inner

product for complex-valued vector functions,

⟨f, g⟩∂Ω+ =

∫
∂Ω+

6∑
j=1

fj(x)gj(x) dS for f, g ∈ [L2(∂Ω
+)]6. (2.203)

We have the following evident estimate∥∥{T (∂x, n, τ)U
}+∥∥

[B
−1/p
p,p (∂Ω+)]6

≤ C0

{
∥A(∂x, τ)U∥[Lp(Ω+)]6 + (1 + |τ |)∥U∥[W 1

p (Ω
+)]6 + |τ |2

(
∥u∥[Lp(Ω+)]3 + ∥ϑ∥Lp(Ω+)

)}
, (2.204)

where a positive constants C0 does not depend on U and τ ; in general C0 depends on the material
parameters and on the geometrical characteristics of the domain Ω+.

Let us introduce a sesquilinear form on [H1
2 (Ω

+)]6 × [H1
2 (Ω

+)]6

B(U, V ) :=

∫
Ω+

Eτ (U, V ) dx, (2.205)

where Eτ (U, V ) is defined by (2.201). With the help of the relations (2.10) and (2.201), positive
definiteness of the matrix (2.14), and the well known Korn’s inequality we deduce the following
estimate

ReB(U,U) ≥ c1∥U∥2[H1
2 (Ω

+)]6 − c2∥U∥2[H0
2 (Ω

+)]6 for all U ∈ [H1
2 (Ω

+)]6 (2.206)
with some positive constants c1 and c2 depending on the material parameters and on the complex
parameter τ (cf. [38], [89]), which shows that the sesquilinear form defined in (2.205) is coercive.

From Green’s identities (2.198)–(2.200) by standard limiting procedure one can derive similar for-
mulas for the exterior domain Ω− provided the regular vector functions U and U ′ belong to the space
[C2(Ω−)]6 and satisfy certain decay conditions at infinity. In particular, let A(∂x, τ)U be compactly
supported and the following asymptotic conditions hold at infinity as |x| → ∞

uk(x) = O(|x|−2), ∂juk(x) = O(|x|−2), φ(x) = O(|x|−1), ∂jφ(x) = O(|x|−2),

ψ(x)=O(|x|−1), ∂jψ(x)=O(|x|−2), ϑ(x)=O(|x|−2), ∂jϑ(x)=O(|x|−2), k, j, l=1, 2, 3.
(2.207)

Definition 2.14. We say that a vector functions U = (u1, u2, u3, φ, ψ, ϑ)
⊤ ∈ [W 1

p,loc(Ω
−)]6 with some

p ∈ (1,+∞) belongs to the class Zτ (Ω
−) if the components of U satisfy the decay conditions (2.207)

at infinity.
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As we shall see below the columns of the fundamental matrix of the operator A(∂x, τ) with τ =
σ + iω, σ > σ0, possesses the decay properties (2.207) (see Section 3).

Assume that A∗(∂x, τ)U
′ is compactly supported as well and U ′ satisfies the decay conditions of

type (2.207). Then for regular vector functions the following Green formulas hold true for the exterior
unbounded domain Ω−:∫

Ω−

[
A(∂x, τ)U · U ′ + Eτ (U,U ′)

]
dx = −

∫
∂Ω−

{
T (∂x, n, τ)U

}− · {U ′}− dS, (2.208)∫
Ω−

[
U ·A∗(∂x, τ)U

′ + Eτ (U,U ′)
]
dx = −

∫
∂Ω−

{U}− ·
{
P(∂x, n, τ)U

′}−
dS, (2.209)∫

Ω−

[
A(∂x, τ)U · U ′ − U ·A∗(∂x, τ)U

′] dx
= −

∫
∂Ω−

[{
T (∂x, n, τ)U

}− · {U ′}− − {U}− ·
{
P(∂x, n, τ)U

′}−
]
dS, (2.210)

where Eτ is defined by (2.201). We recall that the direction of the unit normal vector to S = ∂Ω− is
outward with respect to the domain Ω+.

As in the case of bounded domains, by standard limiting procedure Green’s formula (2.208), can be
extended to vector functions U ∈ [W 1

p,loc(Ω
−)]6 and U ′ ∈ [W 1

p′,loc(Ω
−)]6 with 1/p+1/p′ = 1 satisfying

the decay conditions at infinity (2.207) and possessing the property A(∂x, τ)U ∈ [L2,comp(Ω
−)]6,∫

Ω−

[
A(∂x, τ)U · U ′ + Eτ (U,U ′)

]
dx = −

⟨
{T (∂x, n, τ)U}−, {U ′}−

⟩
S
, (2.211)

where the duality brackets in the right hand side between the function spaces [B
−1/p
p,p (S)]6 and

[B
1/p
p′,p′(S)]6 correctly defines the generalized trace of the stress vector {T (∂x, n, τ)U}− ∈ [B

−1/p
p,p (S)]6

on the boundary surface S = ∂Ω−.
Note that, since the operator A(∂x, τ) is strongly elliptic and A(∂x, τ)U has a compact support,

then actually U is an analytic vector function of the real variables (x1, x2, x3) in a vicinity of infinity (in
the domain Ω− \ suppA(∂x, τ)U) and the conditions (2.207) can be understood in the usual classical
pointwise sense. Therefore, the improper integral over Ω− in formula (2.211) is convergent and well
defined.

Remark 2.15. The above Green’s formula (2.195), (2.198), and (2.211) remains valid for semi-regular
vector functions (see Definitions 2.2–2.3, 2.5–2.6). Indeed, e.g., for the class C(Ω̃+

ℓ ;α), we have to
consider a domain Ω+

ε := Ω+ \ Uℓ(ε), where Uℓ(ε) ⊂ Ω+ is a tubular neighbourhood of the curve ℓ
with Lebesgue measure equivalent to ε2 (say, a cylindrical neighbourhood of circular cross section of
radius ε) and write Green’s formula of type (2.195) for the domain Ω+

ε . Under the conditions stated
in the definition of the class of semi-regular functions C(Ω̃+

ℓ ;α), it can be shown that the limits of the
integrals involved in Green’s identity written for the domain Ω+

ε exist as ε tends to zero.
Similarly, for semi-regular functions from the class Ω̃+

Σ the corresponding Green’s first formula
reads as∫

Ω+
Σ

[
A(∂x, τ)U · U ′ + Eτ (U,U ′)

]
dx =

∫
S

{T (∂x, n, τ)U}+ · {U ′}+ dS

+

∫
Σ

[{
T (∂x, n, τ)U

}+ · {U ′}+ −
{
T (∂x, n, τ)U

}− · {U ′}−
]
dS. (2.212)

2.6. Weak formulation of the problems. As we have mentioned above in Introduction, solutions
to the mixed and crack type boundary value problems and the corresponding thermo-mechanical and
electro-magnetic characteristics usually have singularities at the so called exceptional curves: the crack
edges and the curves where the different types of boundary conditions collide (the collision curves). In
general, these types of problems do not possess regular solutions in a neighbourhood of the exceptional
curves even for infinitely smooth data. Therefore we have to look for solutions either in classes of
semi-regular vector functions or in properly chosen Sobolev–Slobodetskii, Bessel potential, and Besov
spaces. To this end, we need the appropriate weak reformulations of the above stated classical settings
of the problems (see Subsections 2.2 and 2.3).
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2.6.1. Weak solutions of the dynamical problems. In the case of weak statements of the dynamical
problems for the domain Ω+, we look for a vector function (cf., e.g., [73], [36])

U( · , t) =
(
u( · , t), φ( · , t), ψ( · , t), ϑ( · , t)

)⊤ ∈ [H1
2 (Ω

+)]6, (2.213)

which is two times continuously differentiable with respect to t in J̃∞ and satisfies:
(i) the differential equation (2.62) in the weak sense which means that for an arbitrary test vector

function
U ′ =

(
u′, φ′, ψ′, ϑ′

)⊤ ∈ [D(Ω+)]6 (2.214)

the following equation holds true for all t ∈ J̃∞ (see Green’s formula (2.189))∫
Ω+

[
σrj(x, t)ε

′
rj(x) + ϱ∂2t ur(x, t)u

′
r(x)−Dj(x, t)∂jφ

′(x)−Bj(x, t)∂jψ
′(x)

+ ηjl(x, t)∂lϑ(x, t)∂jϑ
′(x) + ϱ∂tS(x, t)ϑ′(x)

]
dx = −

∫
Ω+

Φ(x, t) · U ′(x) dx, (2.215)

where ε′rj = 2−1(∂ru
′
j + ∂ju

′
r);

(ii) initial conditions (2.63), (2.64);
(iii) one of the following boundary conditions:

• the Dirichlet type boundary condition (2.65) in the usual trace sense,
or

• the Neumann type boundary condition (2.70) in the generalized trace sense defined by
Green’s formula (2.191),

or
• the mixed type boundary conditions (2.79)–(2.86), where the Dirichlet type conditions are

understood in the usual trace sense, while the Neumann type conditions are understood
in the generalized trace sense defined by Green’s formula (2.191).

The weak dynamical crack type problems for the domain Ω+
Σ are formulated similarly. In this case,

the boundary conditions (2.90)–(2.100) on the crack faces are understood in the usual trace sense for
the Dirichlet data and in the sense of generalized trace for the Neumann data.

We require that the data involved in the weak formulations of initial-boundary value problems
satisfy the following conditions for arbitrary t ∈ J̃∞:

Φ( · , t) ∈ [L2(Ω
+)]6, u(0)r , φ(0), ψ(0), ϑ(0), u(1), ϑ(1) ∈ H1

2 (Ω
+), (2.216)

fr( · , t) ∈ H
1
2
2 (S), Fr( · , t) ∈ H

− 1
2

2 (S), r = 1, 2, . . . , 6, (2.217)

f∗k ( · , t) ∈ H
1
2
2 (S1), F ∗

k ( · , t) ∈ H
− 1

2
2 (S2), k = 1, 2, 3, (2.218)

f∗4 ( · , t) ∈ H
1
2
2 (S3), F ∗

4 ( · , t) ∈ H
− 1

2
2 (S4), (2.219)

f∗5 ( · , t) ∈ H
1
2
2 (S5), F ∗

5 ( · , t) ∈ H
− 1

2
2 (S6), (2.220)

f∗6 ( · , t) ∈ H
1
2
2 (S7), F ∗

6 ( · , t) ∈ H
− 1

2
2 (S8), (2.221)

f (±)
r ( · , t) ∈ H

1
2
2 (Σ), F (±)

r ( · , t) ∈ H
− 1

2
2 (Σ)], r = 1, 2, . . . , 6, (2.222)

f∗∗j ( · , t) ∈ H
1
2
2 (Σ), F ∗∗

j ( · , t) ∈ H
− 1

2
2 (Σ), j = 4, 5, 6. (2.223)

Moreover, we assume that these functions satisfy certain natural compatibility conditions.
In the case of the exterior dynamical problems for the unbounded domain Ω−, we assume that the

right hand side vector function Φ has a compact support in x for arbitrary t ∈ J̃∞ and

Φ( · , t) ∈ [L2,comp(Ω
−)]6. (2.224)

Motivated by Green’s formulas (2.194), (2.195), now we formulate an alternative, more general
definition of a weak solution for the dynamical equation (2.62) (cf. e.g. [58]).
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Definition 2.16. A vector function
U = (u, φ, ψ, ϑ))⊤ ∈ [H1

2 (Ω
+ × JT )]

6, JT = (0, T ), T > 0, (2.225)
is said to be a weak solution to the differential equation (2.62) if the following relation∫ T

0

∫
Ω+

[
σrj(x, t)ε̃rj(x, t)− ϱ∂tur(x, t)∂tũr(x, t)−Dj(x, t)∂jφ̃(x, t)−Bj(x, t)∂jψ̃(x, t)

+ ηjl∂lϑ(x, t)∂j ϑ̃(x, t)− [ϱS(x, t)7− a0]∂tϑ̃(x, t)
]
dx dt = −

∫ T

0

∫
Ω+

Φ(x, t) · Ũ(x, t) dx dt, (2.226)

or what is the same∫ T

0

∫
Ω+

{[
crjklεkl(x, t)+elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε̃rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ̃(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ̃(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

+ηjl∂lϑ(x, t)∂j ϑ̃(x, t)− ϱ∂tur(x, t)∂tũr(x, t)

}
dx dt

= −
∫ T

0

∫
Ω+

Φ(x, t) · Ũ(x, t) dx dt (2.227)

holds for an arbitrary test vector function Ũ = (ũ, φ̃, ψ̃, ϑ̃)⊤ ∈ [D(Ω+ × JT )]
6.

Remark 2.17. Evidently, a weak solution U to the differential equation (2.213) in the sense of the
relation (2.215) is also a weak solution in the sense of the relation (2.227), but the reverse assertion is
not valid, in general. Clearly, the reverse assertion holds true if the weak solution U to the functional
equation (2.227) is in addition two times continuously differentiable with respect to t ∈ J̃T .

Remark 2.18. It should be noted that for the electric and magnetic potentials, φ and ψ, both definitions
lead to the same relations if u′ = 0 and ϑ′ = 0 in (2.215), and ũ = 0 and ϑ̃ = 0 in (2.227). These
relations correspond to the weak formulation of the forth and fifth equations of the basic system (2.29).

Further, based on Green’s formula (2.197), we can formulate the weak setting of nonhomogeneous
dynamical initial-boundary value problems that takes into consideration the corresponding nonhomo-
geneous initial and boundary conditions.

For illustration below we consider the weak setting of the following basic mixed type problem
associated with the dissection ∂Ω+ = SD ∪ SN (see Remark 2.4): Find a vector function

U = (u, φ, ψ, ϑ)⊤ ∈ [C(Ω̃+
ℓ × J̃∞;α)]6 (2.228)

satisfying the dynamical equation of the GTEME theory
A(∂x, ∂t)U(x, t) = Φ(x, t), (x, t) ∈ Ω+ × JT , (2.229)

the initial conditions
u(x, 0) = u(0)(x), ∂tu(x, 0) = u(1)(x), x ∈ Ω+, (2.230)
ϑ(x, 0) = ϑ(0)(x), ∂tϑ(x, 0) = ϑ(1)(x), x ∈ Ω+, (2.231)

and the Dirichlet and Neumann type boundary condition on SD and SN , respectively,
{U(x, t)}+ = 0, (x, t) ∈ SD × JT , (2.232){

T (∂x, n, ∂t)U(x, t)
}+

= F ∗(x, t), (x, t) ∈ SN × JT , (2.233)
i.e.,

{ur(x, t)}+ = 0, (x, t) ∈ SD × JT , r = 1, 2, 3, (2.234)
{φ(x, t)}+ = 0, (x, t) ∈ SD × JT , (2.235)
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{ψ(x, t)}+ = 0, (x, t) ∈ SD × JT , (2.236)
{ϑ(x, t)}+ = 0, (x, t) ∈ SD × JT , (2.237){

[T (∂x, n, ∂t)U(x, t)]r
}+ ≡ {σrjnj}+ = F ∗

r (x, t), (x, t) ∈ SN × JT , r = 1, 2, 3, (2.238){
[T (∂x, n, ∂t)U(x, t)]4

}+ ≡ {−Djnj}+ = F ∗
4 (x, t), (x, t) ∈ SN × JT , (2.239){

[T (∂x, n, ∂t)U(x, t)]5
}+ ≡ {−Bjnj}+ = F ∗

5 (x, t), (x, t) ∈ SN × JT , (2.240){
[T (∂x, n, ∂t)U(x, t)]6

}+ ≡ {−T−1
0 qjnj}+ = F ∗

6 (x, t), (x, t) ∈ SN × JT , (2.241)

where SD and SN are nonempty submanifolds of the surface S, SD ∩ SN = ∅, S = SD ∪ SN , Φ =

(Φ1, . . . ,Φ6)
⊤, F ∗ = (F ∗

1 , . . . , F
∗
6 )

⊤, u(0) = (u
(0)
1 , u

(0)
2 , u

(0)
3 )⊤, u(1) = (u

(1)
1 , u

(1)
2 , u

(1)
3 )⊤, ϑ(0), and ϑ(1)

are given smooth vector functions.
Note that, the general nonhomogeneous Dirichlet condition {U(x, t)}+ = f∗(x, t) on SD × JT can

be reduced to the homogeneous condition (2.232) by standard approach. Therefore the homogeneous
condition (2.232) does not restrict generality of the problem under consideration.

Let us introduce a subspace of [H1
2 (Ω

+×JT )]6 consisting of vector functions satisfying the Dirichlet
homogeneous condition (2.232) on SD × JT ,

[H1
2 (Ω

+ × JT ;SD)]6 = [W 1
2 (Ω

+ × JT ;SD)]6

:=
{
U ∈ [H1

2 (Ω
+ × JT )]

6 : {U(x, t)}+ = 0 on SD × JT

}
, (2.242)

and also set
[H1

2 (Ω
+;SD)]2 =

{
X ∈ [H1

2 (Ω
+)]2 : r

SD
{X}+ = 0

}
. (2.243)

These spaces are endowed with the norms of the spaces [H1
2 (Ω

+ × JT )]
6 and [H1

2 (Ω
+)]2, respectively.

With the help of Green’s formula (2.197) and the arguments presented in Subsection 2.2.1, the mixed
initial-boundary value problem (2.228)–(2.241) can be reformulated in the following weak sense.
Weak setting of the basic mixed dynamical problem (WM)t: Find a vector function

U = (u, φ, ψ, ϑ)⊤ ∈ [H1
2 (Ω

+ × JT ;SD)]6 (2.244)
satisfying the initial conditions

uk(x, 0) = u
(0)
k (x), x ∈ Ω+, k = 1, 2, 3, (2.245)

ϑ(x, 0) = ϑ(0)(x), x ∈ Ω+, (2.246)

lim
t→0

∫
Ω+

∂tϑ(x, t)h(x) dx =

∫
Ω+

ϑ(1)(x)h(x) dx for all h ∈ L2(Ω
+), (2.247)

and the functional equation∫ T

0

∫
Ω+

{[
crjklεkl(x, t) + elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε̃rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ̃(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ̃(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

+ ηjl∂lϑ(x, t)∂j ϑ̃(x, t)− ϱ∂tur(x, t)∂tũr(x, t)

}
dx dt

=
⟨
F ∗(x, t), {Ũ(x, t)}+

⟩
SN×JT

−
∫ T

0

∫
Ω+

Φ(x, t) · Ũ(x, t) dx dt+

∫
Ω+

{
ϱu(1)r (x)ũr(x, 0)

+
[
λklε

(0)
kl (x)− pl∂lφ

(0)(x)−ml∂lψ
(0)(x) + d0ϑ

(0)(x) + h0 ϑ
(1)(x)

]
ϑ̃(x, 0)

}
dx, (2.248)

where
Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, ϑ̃)

⊤ ∈ [H1
2 (Ω

+ × JT )]
6 (2.249)
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is an arbitrary vector function such that

{Ũ(x, t)}+ = 0 for (x, t) ∈ SD × JT , (2.250)

ũk(x, T ) = 0, ϑ̃(x, T ) = 0 for x ∈ Ω+, k = 1, 2, 3, (2.251)
and

ε̃kl(x, t) :=
1

2

(
∂kũl(x, t) + ∂lũk(x, t)

)
∈ L2(Ω

+ × JT ).

Here we assume that Φ (see (2.33)), F ∗, u(0)k , u(1)k , ϑ(0), and ϑ(1) are given functions satisfying the
inclusions

Φ = (Φ1, . . . ,Φ6)
⊤ := (−ϱF1,−ϱF2,−ϱF3,−ϱe,−ϱc,−ϱT−1

0 Q)⊤ ∈ [L2(Ω
+ × JT )]

6, (2.252)

F ∗ = (F ∗
1 , F

∗
2 , . . . , F

∗
6 )

⊤ ∈ [H
− 1

2
2 (SN × JT )]

6, (2.253)

u
(1)
k , ϑ(0), ϑ(1) ∈ L2(Ω

+), u
(0)
k ∈ H1

2 (Ω
+), k = 1, 2, 3, (2.254)

ε
(0)
kl (x) :=

1

2

(
∂ku

(0)
l (x) + ∂lu

(0)
k (x)

)
∈ L2(Ω

+), (2.255)

and the vector function
X(0) :=

(
φ(0), ψ(0)

)⊤ ∈ [H1
2 (Ω

+;SD)]2 (2.256)
is defined by the variational equation (see (2.146))

B(X(0), X̃) ≡
∫
Ω+

Λ(1)∇X(0)(x) · ∇X̃(x) dx = G2(X̃) for all X̃ ∈ [H1
2 (Ω

+;SD)]2, (2.257)

where Λ(1) is a positive definite matrix given by (2.14) and G2 is a well defined bounded linear functional
on [H1

2 (Ω
+;SD)]2 introduced in Subsection (2.2.1) (see (2.149)),

G2(X̃) :=
⟨
F ∗
4 (x, 0), {X̃1(x)}+

⟩
SN

+
⟨
F ∗
5 (x, 0), {X̃2(x)

}+⟩
SN

+

∫
Ω+

[
ϱe(x, 0)X̃1(x)+ϱc(x, 0)X̃2(x)

]
dx

+

∫
Ω+

{[
ejkl∂lu

(0)
k (x) + pj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃1(x)

+
[
qjkl∂lu

(0)
k (x) +mj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃2(x)

}
dx. (2.258)

Due to the conditions (2.250) and (2.253), and the inclusion X̃ ∈ [H1
2 (Ω

+;SD)]2, the duality relations
on SN × JT and SN in the right hand sides of (2.248) and (2.258) are well defined.

Evidently, the natural compatibility equalities related to the conditions (2.245), (2.246) and inclusion
(2.244) should be fulfilled, in particular,

rSD
{u(0)}+S = 0, rSD

{ϑ(0)}+S = 0. (2.259)

The weak formulation (2.248) covers the Dirichlet and Neumann type problems as particular cases
when either SN or SD is an empty set. We denote them by the symbols, (WD)t and (WN)t.

In what follows by a weak solutions of a dynamical problem under consideration we always under-
stand a weak solution in the sense of the relation (2.248) if not otherwise stated.

Remark 2.19. It is evident that any weak solution U of the problem (WM)t is a distributional solution
to the equation

A(∂x, ∂t)U(x, t) = Φ(x, t) in Ω+ × JT . (2.260)
This easily follows from (2.248) with Ũ ∈ [D(Ω+ × JT )]

6.
By standard arguments it can be shown that if the functions Φ, u(0), u(1), ϑ(0), ϑ(1), φ(0), ψ(0),

F ∗, and the weak solution U possesses higher regularity property, then all the conditions of the mixed
initial-boundary value problem (2.229)–(2.241) are satisfied pointwise and moreover, φ(x, 0) = φ(0)(x)
and ψ(x, 0) = ψ(0)(x). It follows from the above weak formulation of the problem (WSBMDP) and
Green’s formula (2.197).

Indeed, let us assume that the functions Φ, u(0), u(1), ϑ(0), ϑ(1), φ(0), ψ(0), and F ∗ are sufficiently
smooth, and the weak solution U of the problem (WM)t possesses the semi-regularity property. Then
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equation (2.260) is satisfied pointwise and Green’s formula (2.197) holds true for U and U ′ = Ũ
satisfying the conditions (2.249), (2.250), and (2.251). Therefore we have∫ T

0

∫
Ω+

{[
crjklεkl(x, t) + elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε̃rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ̃(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ̃(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

+ ηjl∂lϑ(x, t)∂j ϑ̃(x, t)− ϱ∂tur(x, t)∂tũr(x, t)

}
dx dt

=

∫ T

0

∫
SN

{
T (∂x, n, ∂t)U(x, t)

}+ · {Ũ(x, t)}+ dS dt−
∫ T

0

∫
Ω+

[Φ(x, t)U(x, t)] · Ũ(x, t) dx dt

+

∫
Ω+

{
ϱ∂tur(x, 0)ũr(x, 0)

+
[
λklε

(0)
kl (x)− pl∂lφ(x, 0)−ml∂lψ(x, 0) + d0ϑ

(0)(x) + h0ϑ
(1)(x)

]
ϑ̃(x, 0)

}
dx. (2.261)

Here we have taken into consideration that in view of the semi-regularity property of U we have
εkl(x, 0) = ε

(0)
kl (x), ϑ(x, 0) = ϑ(0)(x), and ∂tϑ(x, 0) = ϑ(1)(x) due to (2.245), (2.246), and (2.247).

Comparing equalities (2.248) and (2.261) we deduce∫ T

0

∫
SN

[{
T (∂x, n, ∂t)U(x, t)

}+−F ∗(x, t)
]
· {Ũ(x, t)}+ dS dt+

∫
Ω+

ϱ
[
∂tur(x, 0)−u(1)r (x)

]
ũr(x, 0) dx

−
∫
Ω+

{
pl
[
∂lφ(x, 0)− ∂lφ

(0)(x)
]
+ml

[
∂lψ(x, 0)− ∂lψ

(0)(x)
]}
ϑ̃(x, 0) dx = 0. (2.262)

By taking an arbitrary vector function Ũ(x, t) possessing in addition the property Ũ(x, 0) = 0, we
conclude from (2.262) {

T (∂x, n, ∂t)U(x, t)
}+

= F ∗(x, t) on ∂Ω+ × JT . (2.263)

Now, if in (2.262) we take Ũ(x, t) with arbitrary ũr(x, 0) and φ̃(x, 0) = ψ̃(x, 0) = ϑ̃(x, 0) = 0 we find

∂tur(x, 0) = u(1)r (x) in Ω+. (2.264)
Then (2.262) leads to the relation∫

Ω+

{
pl
[
∂lφ(x, 0)− ∂lφ

(0)(x)
]
+ml

[
∂lψ(x, 0)− ∂lψ

(0)(x)
]}
ϑ̃(x, 0) dx = 0. (2.265)

Now, we show that φ(x, 0) = φ(0)(x) and ψ(x, 0) = ψ(0)(x) for x ∈ Ω+. To this end let us take in
(2.248) an arbitrary vector function Ũ with ũ = 0 and ϑ̃ = 0 and take into consideration(2.252),∫ T

0

∫
Ω+

{[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ̃(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ̃(x, t)

}
dx dt

=

∫ T

0

∫
SN

[
F ∗
4 (x, t){φ̃(x, t)}+ + F ∗

5 (x, t){ψ̃(x, t)}+
]
dS dt

+

∫ T

0

∫
Ω+

[
ϱe(x, t)φ̃(x, t) + ϱc(x, t)ψ̃(x, t)

]
dx dt. (2.266)

Taking here Ũ4(x, t) = φ̃(x, t) = X̃2(x)χ̃(t) and Ũ5(x, t) = ψ̃(x, t) = X̃2(x)χ̃(t), where X̃1, X̃2 ∈
H1

2 (Ω
+;SD) and χ̃ is an absolutely continuous function in JT with χ̃(T ) = 0, and keeping in mind
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that U is a semi-regular vector, from (2.266) we deduce∫
Ω+

{[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jX̃1(x)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t)+µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jX̃2(x)

}
dx

=

∫
SN

[
F ∗
4 (x, t){X̃1(x)}+ + F ∗

5 (x, t){X̃2(x)}+
]
dS

+

∫
Ω+

[
ϱe(x, t)X̃1(x) + ϱc(x, t)X̃2(x)

]
dx, t ∈ JT . (2.267)

Passing to the limit in (2.267) as t→ 0 and taking into consideration (2.245)–(2.247) we arrive at the
relation∫

Ω+

{[
κjl∂lφ(x, 0) + ajl∂lψ(x, 0)

]
∂jX̃1(x) +

[
ajl∂lφ(x, 0) + µjl∂lψ(x, 0)

]
∂jX̃2(x)

}
dx

=

∫
SN

[
F ∗
4 (x, 0){X̃1(x)}+ + F ∗

5 (x, 0){X̃2(x)}+
]
dS +

∫
Ω+

[
ϱe(x, 0)X̃1(x) + ϱc(x, 0)X̃2(x)

]
dx

+

∫
Ω+

{[
ejklε

(0)
kl (x) + pj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃1(x)

+
[
qjklε

(0)
kl (x) +mj

(
ϑ(0)(x) + ν0ϑ

(1)(x)
)]
∂jX̃2(x)

}
dx, (2.268)

which holds true for arbitrary X̃1, X̃2 ∈ H1
2 (Ω

+;SD).
By comparing the relations (2.268) and (2.256)–(2.258) we conclude that the semi-regular vector

(φ(x, 0), ψ(x, 0))⊤ ∈ [H1
2 (Ω

+;SD)]2 is a solution to the uniquely solvable weak problem (2.256)–
(2.258). Therefore, φ(x, 0) = φ(0)(x) and ψ(x, 0) = ψ(0)(x) for x ∈ Ω+. Consequently, equality
(2.265) holds true.

Remark 2.20. Some additional structural restrictions on the problem data associated with the higher
order compatibility conditions will be treated in detail later on when we investigate existence and
regularity of solutions.

2.6.2. Weak formulation of the pseudo-oscillation problems. In the case of weak formulation of the
pseudo-oscillation problems for the domain Ω+, we look for a complex-valued vector function

U = (u, φ, ψ, ϑ)⊤ ∈ [W 1
p (Ω

+)]6, 1 < p <∞, (2.269)
which satisfies:

(i) the differential equation A(∂x, τ)U(x) = Ψ(x) (see (2.155)) in the weak sense which means
that for arbitrary vector function U ′ ∈ [D(Ω+)]6 the following functional equation holds true
(see Green’s formula (2.198))∫

Ω+

Eτ (U,U ′) dx = −
∫
Ω+

Ψ(x) · U ′(x) dx (2.270)

with Eτ (U,U ′) defined in (2.201);
(ii) one of the boundary conditions

• the Dirichlet type boundary condition (2.161) in the usual trace sense,
or

• the Neumann type boundary condition (2.156) in the generalized trace sense defined by
Green’s formula (2.202),

or
• the mixed type boundary conditions (2.166)–(2.173), where the Dirichlet type condi-

tions are understood in the usual trace sense, while the Neumann type conditions are
understood in the generalized trace sense defined by Green’s formula (2.202).

The weak statements of the crack type pseudo-oscillation problems for the domain Ω+
Σ are formu-

lated similarly; in this case the boundary conditions (2.174)–(2.184) on the crack faces are understood
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in the usual trace sense for the Dirichlet data and in the sense of generalized trace for the Neumann
data.

Note that, if U ∈ [W 1
p (Ω)]

6 is a weak solution to the homogeneous differential equation (2.155) in
an open domain Ω ⊂ R3, i.e., Ψ = 0 in Ω, then actually we have the inclusion U ∈ [C∞(Ω)]6 due to
the strong ellipticity of the differential operator A(∂, τ). In fact, in this case U is a complex-valued
analytic vector function of the spatial real variables (x1, x2, x3) in the domain Ω.

Remark 2.21. The data involved in the weak formulations of the boundary value problems of pseudo-
oscillations should satisfy natural smoothness conditions, in particular, the right hand side of the
differential equation Ψ ∈ [Lp(Ω

+)]6, the Dirichlet and Neumann data belong to the spaces B1− 1
p

p,p and
B

− 1
p

p,p , respectively, on the corresponding parts of the boundary.
In the case of the exterior pseudo-oscillation problems for an unbounded domain Ω− we assume

that the right hand side vector function Ψ has a compact support, Φ ∈ [Lp,comp(Ω
−)]6.

Some additional restrictions associated with the asymptotic behaviour of solutions with respect to
the complex parameter τ will be treated later on when we analyse sufficient conditions for existence
of the inverse Laplace transform.

2.7. Uniqueness theorems. Here we will prove the uniqueness theorems for the general dynamical
and pseudo-oscillation problems. Note that the uniqueness theorem for classical solutions to the
homogeneous mixed initial-boundary value problem with special type initial data, consisting of nine
homogeneous initial conditions, is proved without making restrictions on the positive definiteness on
the elastic moduli in the references [69], [4], [5], but the additional symmetry assumption is assumed
for the the piezoelectric and the piezomagnetic constants: ejkl = eljk = elkj and qjkl = qljk = qlkj (cf.
(2.9)).

However, as we have shown in Subsection 2.2.1, only eight nonhomogeneous initial conditions can
be prescribed arbitrarily in the GTEME model and they along with the natural boundary conditions
form well posed initial-boundary value problems of dynamics.

We will apply here a different technique which allows to prove uniqueness of weak solutions and to
avoid the additional symmetry requirements but instead we need the positive definiteness of both the
elasticity tensor and the matrix M defined by (2.13).

2.7.1. Uniqueness theorems for regular solutions of the dynamical problems.

Theorem 2.22. Let the conditions (2.9), (2.10) hold and the matrix M defined by (2.13) be positive
definite. In the class of regular vector functions [C3(Ω+ × J∞)]6 ∩ [C2(Ω+ × J̃∞)]6, the homogeneous
Dirichlet and mixed type initial-boundary value problems (D)+t and (M)+t possess only the trivial
solution, provided the subsurfaces S3 and S5 in the setting of mixed problem are not empty, while the
general solution of the Neumann type initial-boundary value problem (N)+t reads as

U(x, t) = (0, 0, 0, C1(t), C2(t), 0)
⊤ (2.271)

with arbitrary differentiable functions C1 and C2.

Proof. Let U = (u, φ, ψ, ϑ)⊤ ∈ [C3(Ω+ × J∞)]6 ∩ [C2(Ω+ × J̃∞)]6 be a solution vector to the ho-
mogeneous initial-boundary value problem (D)+t , or (N)+t , or (M)+t . Thus the vector U solves the
homogeneous system of dynamical differential equations A(∂x, ∂t)U(x, t) = 0 in (x, t) ∈ Ω+×J∞, i.e.,

crjkl∂j∂luk + elrj∂j∂lφ+ qlrj∂j∂lψ − λrj∂jϑ− ν0λrj∂j ϑ̇− ϱür = 0, r = 1, 2, 3,

−ejkl∂j∂luk + κjl∂j∂lφ+ ajl∂j∂lψ − pj∂jϑ− ν0pj∂j ϑ̇ = 0,

−qjkl∂j∂luk + ajl∂j∂lφ+ µjl∂j∂lψ −mj∂jϑ− ν0mj∂j ϑ̇ = 0,

−λkl∂lu̇k + pl∂lφ̇+ml∂lψ̇ + ηjl∂j∂lϑ− d0ϑ̇− h0ϑ̈ = 0,

(2.272)

where all the unknown functions uk, φ, ψ, and ϑ depend on the variables x ∈ Ω+ and t ∈ J∞, and
the overset dots denote the time derivatives.

By multiplying the first three equations in (2.272) by −u̇r, r = 1, 2, 3, integrating over Ω+, applying
the Gauss divergence theorem and taking into account the homogenous boundary conditions and the
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symmetry properties of the material parameters (2.9), we get (cf. (2.185) with u′r = u̇r)∫
Ω+

[
crjklεklε̇rj + elrj∂lφε̇rj + qlrj∂lψε̇rj − λrj(ϑ+ ν0ϑ̇)ε̇rj +

ϱ

2
∂t(u̇)

2
]
dx = 0, (2.273)

where εkl = 2−1(∂kul + ∂luk) and (u̇)2 = (∂tu1)
2 + (∂tu2)

2 + (∂tu3)
2.

Further, differentiate the fourth and the fifth equations in (2.272) with respect to t, multiply by −φ
and −ψ, respectively, integrate over Ω+, again apply the Gauss divergence theorem, the homogeneous
boundary conditions and the symmetry properties of the material parameters (2.9) to obtain (cf.
(2.186) and (2.187) with φ′ = −φ and ψ′ = −ψ, respectively)∫

Ω+

[
− ejkl∂jφε̇kl + κjl∂jφ∂lφ̇+ ajl∂jφ∂lψ̇ − (ϑ̇+ ν0ϑ̈)pj∂jφ

]
dx = 0, (2.274)∫

Ω+

[
− qjkl∂jψε̇kl + ajl∂jψ∂lφ̇+ µjl∂jψ∂lψ̇ − (ϑ̇+ ν0ϑ̈)mj∂jψ

]
dx = 0. (2.275)

Quite similarly, by multiplying the sixth equation in (2.272) by −(ϑ+ ν0ϑ̇), integrating over Ω+ and
applying the same manipulations as in the derivation of the previous relations, we get (cf. (2.188)
with ϑ′ = −(ϑ+ ν0ϑ̇))∫

Ω+

[
λklε̇kl(ϑ+ ν0ϑ̇)− (ϑ+ ν0ϑ̇)pl∂lφ̇− (ϑ+ ν0ϑ̇)ml∂lψ̇

+ ηjl∂lϑ(∂jϑ+ ν0∂j ϑ̇) + (d0ϑ̇+ h0ϑ̈)(ϑ+ ν0ϑ̇)
]
dx = 0. (2.276)

In the derivation of the relations (2.273)–(2.276), the surface integrals vanish for all initial-boundary
value problems stated in the theorem due to the homogeneous boundary conditions.

Using the following evident relations
crjklεklε̇rj = 2−1∂t

(
crjklεklεrj

)
, κjl∂jφ∂lφ̇ = 2−1∂t

(
κjl∂jφ∂lφ

)
,

µjl∂jψ∂lψ̇ = 2−1∂t
(
µjl∂jψ∂lψ

)
, ηjl∂jϑ∂lϑ̇ = 2−1∂t

(
ηjl∂jϑ∂lϑ

)
,

ajl
(
∂jφ∂lψ̇ + ∂lφ̇∂jψ

)
= ∂t

(
ajl∂jφ∂lψ

)
,

the sum of equalities (2.273)–(2.276) can be written as∫
Ω+

[
1

2
∂t
(
crjklεklεrj

)
+
ϱ

2
∂t(u̇)

2 +
1

2
∂t
[
κjl∂jφ∂lφ+ 2ajl∂jφ∂lψ + µjl∂jψ∂lψ

]
− ∂t

[
(ϑ+ ν0ϑ̇)(pj∂jφ+mj∂jψ)

]
+
ν0
2
∂t(ηjl∂jϑ∂lϑ) +

d0
2
∂t(ϑ

2) +
h0ν0
2

∂t(ϑ̇)
2

+ h0ϑϑ̈+ ηjl∂jϑ∂lϑ+ d0ν0(ϑ̇)
2

]
dx = 0. (2.277)

In our analysis below, we take into consideration that due to the results obtained in Sub-subsecti-
on 2.2.1, the functions φ(x, 0) and ψ(x, 0) either vanish in Ω+ or they are constants. Therefore, we
have ∂jφ(x, 0) = 0 and ∂jψ(x, 0) = 0 for x ∈ Ω+.

Now, multiply equation (2.277) by 2, integrate over the interval (0, t) and take into account the
corresponding homogeneous initial conditions to obtain∫

Ω+

[
crjklεklεrj + ϱ(u̇)2 + κjl∂jφ∂lφ+ 2ajl∂jφ∂lψ + µjl∂jψ∂lψ

− 2(ϑ+ ν0ϑ̇)(pj∂jφ+mj∂jψ) + ν0ηjl∂jϑ∂lϑ+ d0ϑ
2 + h0ν0(ϑ̇)

2
]
dx

+

∫
Ω+

∫ t

0

[
2h0ϑϑ̈+ 2ηjl∂jϑ∂lϑ+ 2d0ν0(ϑ̇)

2
]
dt′ dx = 0. (2.278)

With the help of the equality∫ t

0

ϑ(x, t′)ϑ̈(x, t′) dt′ = ϑ(x, t)ϑ̇(x, t)−
∫ t

0

[
ϑ̇(x, t′)

]2
dt′,

from (2.278) we finally arrive at the relation
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∫
Ω+

[
crjklεklεrj + ϱ(u̇)2 + ν0ηjl∂jϑ∂lϑ+ κjl∂jφ∂lφ+ 2ajl∂jφ∂lψ + µjl∂jψ∂lψ

− 2(ϑ+ ν0ϑ̇)(pj∂jφ+mj∂jψ) + d0ϑ
2 + h0ν0(ϑ̇)

2 + 2h0ϑϑ̇
]
dx

+

∫
Ω+

∫ t

0

[
2ηjl∂jϑ∂lϑ+ 2(d0ν0 − h0)(ϑ̇)

2
]
dt′ dx = 0. (2.279)

The first, the second, and the third summands in the first integral, as well as the summands in the
second integral are non-negative in accordance with the inequalities in (2.10) and (2.11). Further, we
show that the sum of the last seven terms in the first integrand containing the functions ∂jφ, ∂jψ, ϑ,
and ϑ̇ is also non-negative. Indeed let us set

ζj := ∂jφ, ζj+3 := ∂jψ, ζ7 := −ϑ, ζ8 := −ϑ̇, j = 1, 2, 3, (2.280)

and introduce the vector

Θ := (ζ1, ζ2, . . . , ζ8)
⊤. (2.281)

Keeping in mind the structure of the matrix M = [Mpq]8×8 defined by (2.13), it can easily be checked
that (summation over repeated indices is meant from 1 to 3)

κjl∂jφ∂lφ+ 2ajl∂jφ∂lψ + µjl∂jψ∂lψ − 2(ϑ+ ν0ϑ̇)(pj∂jφ+mj∂jψ) + d0ϑ
2 + h0ν0(ϑ̇)

2 + 2h0ϑϑ̇

=
[
κjl∂lφ+ ajl∂lψ + pj(−ϑ) + ν0pj(−ϑ̇)

]
∂jφ+

[
ajl∂lφ+ µjl∂lψ +mj(−ϑ) + ν0mj(−ϑ̇)

]
∂jψ

+
[
pl∂lφ+ml∂lψ + d0(−ϑ) + h0(−ϑ̇)

]
(−ϑ) +

[
ν0pl∂lφ+ ν0ml∂lψ + h0(−ϑ) + ν0h0(−ϑ̇)

]
(−ϑ̇)

=
[
κjlζl + ajlζl+3 + pjζ7 + ν0pjζ8

]
ζj +

[
ajlζl + µjlζl+3 +mjζ7 + ν0mjζ8

]
ζj+3

+
[
plζl +mlζl+3 + d0ζ7 + h0ζ8

]
ζ7 +

[
ν0plζl + ν0mlζl+3 + h0ζ7 + ν0h0ζ8

]
ζ8

=

8∑
p,q=1

Mpqζqζp =MΘ ·Θ ≥ C0|Θ|2 (2.282)

with some positive constant C0 due to positive definiteness of the matrix M . Therefore from (2.279)
in view of (2.280)–(2.282) it follows that

2εrj(x, t) = ∂ruj + ∂jur = 0, u̇r(x, t) = 0, ϑ(x, t) = 0, (2.283)
∂jφ(x, t) = 0, ∂jψ(x, t) = 0, r, j = 1, 2, 3, (x, t) ∈ Ω+ × J∞, (2.284)

implying that u is independent of t, while φ and ψ are independent of x. As it is well known (see,
e.g., [57]), the general solution to the first group of equations in (2.283) is a rigid displacement vector
which reads as

χ(x) = a× x+ b, (2.285)

where a = (a1, a2, a3) and b = (b1, b2, b3) are arbitrary real constant vectors and the symbol “×”
denotes the cross product. Therefore from (2.283), (2.284) we find

u(x, t) = χ(x) = a× x+ b, ϑ(x, t) = 0, φ(x, t) = C1(t), ψ(x, t) = C2(t), (2.286)

where a = (a1, a2, a3) and b = (b1, b2, b3) are arbitrary constant vectors, while C1 and C2 are arbitrary
differentiable functions of t. In view of the homogeneous initial conditions we finally conclude

u(x, t) = 0, ϑ(x, t) = 0, φ(x, t) = C1(t), ψ(x, t) = C2(t) (2.287)

with arbitrary differentiable functions C1 and C2.
In the case of the dynamical Dirichlet and mixed type problems (with non-empty subsurfaces S3 and

S5) it is evident that C1 = C2 = 0, while in the case of the dynamical Neumann problem the functions
C1 and C2 remain arbitrary differentiable functions. This completes the proof of the theorem. �
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2.7.2. Uniqueness theorems for weak solutions of the dynamical problems.

Theorem 2.23. Let the matrix M given by (2.13) be positive definite. The homogeneous Dirichlet
and mixed type initial-boundary value problems (WD)+t and (WM)+t possess only the trivial weak
solutions in the spaces [W 1

2 (Ω
+ × JT ;S)]

6 and [W 1
2 (Ω

+ × JT ;SD)]6, respectively, while the general
weak solution of the Neumann type problem (WN)+t in the space [W 1

2 (Ω
+ × JT )]

6 reads as

U(x, t) =
(
0, 0, 0, C1(t), C2(t), 0

)⊤
, (x, t) ∈ Ω+ × JT , (2.288)

where C1(t) and C2(t) are arbitrary absolutely continuous functions on [0, T ].

Proof. Let U = (u, φ, ψ, ϑ)⊤ ∈ [W 1
2 (Ω

+ × JT )]
6 be a weak solution to the homogeneous initial-

boundary value problem (WD)+t , or (WN)+t , or (WM)+t in the sense of the definition (2.244)–(2.259),
where we have to substitute

Φ(x, t) = 0, F ∗(x, t) = 0, ur(x, 0) = u(0)r (x) = 0, ∂tur(x, 0) = u(1)r (x) = 0,

ϑ(x, 0) = ϑ(0)(x) = 0, ∂tϑ(x, 0) = ϑ(1)(x) = 0,

φ(x, 0) = φ(0)(x) = c4, ψ(x, 0) = ψ(0)(x, 0) = c5,

(2.289)

where c4 and c5 are arbitrary constants in the case of the Neumann problem and they equal to zero
for the Dirichlet and mixed type problems. Therefore U satisfies the homogeneous functional equation∫ T

0

∫
Ω+

{[
crjklεkl(x, t) + elrj∂lφ(x, t) + qlrj∂lψ(x, t)− λrj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
ε̃rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)− pj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jφ̃(x, t)

+
[
− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)−mj

(
ϑ(x, t) + ν0∂tϑ(x, t)

)]
∂jψ̃(x, t)

+
[
− λklεkl(x, t) + pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

+ ηjl∂lϑ(x, t)∂j ϑ̃(x, t)− ϱ∂tur(x, t)∂tũr(x, t)

}
dx dt = 0 (2.290)

for arbitrary vector function

Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, ϑ̃)
⊤ ∈ [W 1

2 (Ω
+ × JT )]

6, (2.291)
such that

{Ũ(x, t)}+ = 0 for (x, t) ∈ SD × JT , (2.292)

ũk(x, T ) = 0, ϑ̃(x, T ) = 0 for x ∈ Ω+, k = 1, 2, 3. (2.293)
Recall that SD = S in the case of the Dirichlet problem, SD = ∅ in the case of the Neumann problem,
and SD is a proper part of S in the case of the mixed problem.

Let us define the following functions

ũr(x, t) := −
∫ T

t

ur(x, t1) dt1, r = 1, 2, 3, (2.294)

ϑ̃(x, t) := −
∫ T

t

[ ∫ t1

0

ϑ(x, t2) dt2 + ν0ϑ(x, t1)
]
dt1, (2.295)

φ̃(x, t) := −
∫ t

0

φ(x, t1) dt1, (2.296)

ψ̃(x, t) := −
∫ t

0

ψ(x, t1) dt1, (x, t) ∈ Ω+ × (0, T ]. (2.297)

It is evident that the vector function Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, ϑ̃)
⊤ defined by the equalities (2.294)–(2.297)

belongs to the space [W 1
2 (Ω

+ × JT )]
6 and the following relations hold

∂tũr(x, t) = ur(x, t), ũ(x, T ) = 0, ε̃rj(x, T ) = 0,

∂j∂tũr(x, t) = ∂ju(x, t), r, j = 1, 2, 3,
(2.298)
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∂tϑ̃(x, t) =

∫ t

0

ϑ(x, t2) dt2 + ν0ϑ(x, t), ∂j∂tϑ̃(x, t) =

∫ t

0

∂jϑ(x, t2) dt2 + ν0∂jϑ(x, t),

∂t∂tϑ̃(x, t) = ϑ(x, t) + ν0∂tϑ(x, t), ϑ̃(x, T ) = 0, ∂tϑ̃(x, 0) = 0, ∂j ϑ̃(x, T ) = 0,

(2.299)

∂tφ̃(x, t) = −φ(x, t), ∂j∂tφ̃(x, t) = −∂jφ(x, t), φ̃(x, 0) = 0, ∂jφ̃(x, 0) = 0, (2.300)

∂tψ̃(x, t) = −ψ(x, t), ∂j∂tψ̃(x, t) = −∂jψ(x, t), ψ̃(x, 0) = 0, ∂jψ̃(x, 0) = 0, (2.301)

implying in particular that

∂j∂tũr, ∂t∂tũr, ∂j∂tφ̃, ∂t∂tφ̃, ∂j∂tψ̃, ∂t∂tψ̃, ∂j∂tϑ̃, ∂t∂tϑ̃ ∈ L2(Ω
+ × JT ), r, j = 1, 2, 3. (2.302)

Denote by I(U) the expression in the left hand side of (2.290) with Ũ defined by the equalities
(2.294)–(2.297) and represent I(U) as the sum,

I(U) = I1 + I2 + I3 + I4 + I5 + I6 + I7 = 0, (2.303)

where

I1 := −
∫ T

0

∫
Ω+

ϱ∂tur(x, t)∂tũr(x, t) dx dt, (2.304)

I2 :=

∫ T

0

∫
Ω+

crjklεkl(x, t)ε̃rj(x, t) dx dt, (2.305)

I3 :=

∫ T

0

∫
Ω+

elrj
[
∂lφ(x, t)ε̃rj(x, t)− ∂lφ̃(x, t)εrj(x, t)

]
dx dt, (2.306)

I4 :=

∫ T

0

∫
Ω+

qlrj
[
∂lψ(x, t)ε̃rj(x, t)− ∂lψ̃(x, t)εrj(x, t)

]
dx dt, (2.307)

I5 :=

∫ T

0

∫
Ω+

{
κjl∂lφ(x, t)∂jφ̃(x, t) + µjl∂lψ(x, t)∂jψ̃(x, t)

+ ajl
[
∂lψ(x, t)∂jφ̃(x, t) + ∂lψ̃(x, t)∂jφ(x, t)

]}
dx dt, (2.308)

I6 := −
∫ T

0

∫
Ω+

λrj

{[
ϑ(x, t) + ν0∂tϑ(x, t)

]
ε̃rj(x, t) + εrj(x, t)∂tϑ̃(x, t)

}
dx dt, (2.309)

I7 :=

∫ T

0

∫
Ω+

{
−
[
ϑ(x, t) + ν0∂tϑ(x, t)

] [
pj∂jφ̃(x, t) +mj∂jψ̃(x, t)

]
+
[
pl∂lφ(x, t) +ml∂lψ(x, t)− d0ϑ(x, t)− h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

+ ηjl∂lϑ(x, t)∂j ϑ̃(x, t)
}
dx dt. (2.310)

Applying the homogeneous initial conditions (2.289), the relations (2.293) and (2.294)–(2.302), and
using the integration by parts formula from (2.304)–(2.310) we find

I1 = −ϱ
2

∫ T

0

∫
Ω+

∂t
[
∂tũr(x, t)∂tũr(x, t)

]
dx dt = −ϱ

2

∫
Ω+

[u(x, T )]2 dx, (2.311)

I2 =
1

2

∫ T

0

∫
Ω+

crjkl∂t
[
ε̃kl(x, t) ε̃rj(x, t)

]
dx dt = −1

2

∫
Ω+

crjklε̃kl(x, 0) ε̃rj(x, 0) dx, (2.312)

I3 = −
∫ T

0

∫
Ω+

elrj∂t
[
∂lφ̃(x, t)ε̃rj(x, t)

]
dx dt = 0, (2.313)

I4 =

∫ T

0

∫
Ω+

qlrj∂t
[
∂lψ̃(x, t)ε̃rj(x, t)

]
dx dt = 0, (2.314)

I5 = −1

2

∫ T

0

∫
Ω+

∂t

[
κjl∂lφ̃(x, t)∂jφ̃(x, t) + 2ajl∂lψ̃(x, t)∂jφ̃(x, t) + µjl∂lψ̃(x, t)∂jψ̃(x, t)

]
dx dt

= −1

2

∫
Ω+

[
κjl∂lφ̃(x, T )∂jφ̃(x, T ) + 2ajl∂lψ̃(x, T )∂jφ̃(x, T ) + µjl∂lψ̃(x, T )∂jψ̃(x, T )

]
dx, (2.315)
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I6 = −
∫ T

0

∫
Ω+

λrj
[
ϑ(x, t) + ν0∂tϑ(x, t)

]
ε̃rj(x, t) dx dt−

∫
Ω+

λrj
[
ε̃rj(x, t)∂tϑ̃(x, t)

]T
0
dx

+

∫ T

0

∫
Ω+

λrj ε̃rj(x, t)∂t∂tϑ̃(x, t) dx dt = 0. (2.316)

To transform the integral I7 let us introduce the notation

θ(x, t) :=

∫ t

0

ϑ(x, t1) dt1. (2.317)

Using the relations

∂tϑ̃(x, t) = θ(x, t) + ν0∂tθ(x, t), θ(x, 0) = ∂jθ(x, 0) = 0, ∂tθ(x, t) = ϑ(x, t), (2.318)

we get from (2.310)

I7=
∫ T

0

∫
Ω+

{
− ∂t∂tϑ̃(x, t)

[
pj∂jφ̃(x, t)+mj∂jψ̃(x, t)

]
−
[
pj∂t∂jφ̃(x, t)+mj∂t∂jψ̃(x, t)

]
∂tϑ̃(x, t)

−
[
d0ϑ(x, t) + h0∂tϑ(x, t)

]
∂tϑ̃(x, t) + ηjl∂lϑ(x, t)∂j ϑ̃(x, t)

}
dx dt

= −
∫
Ω+

[
θ(x, T ) + ν0∂tθ(x, T )

] [
pj∂jφ̃(x, T ) +mj∂jψ̃(x, T )

]
dx

+

∫ T

0

∫
Ω+

{
ηjl∂lϑ(x, t)∂j ϑ̃(x, t)−

[
d0ϑ(x, t) + h0∂tϑ(x, t)

]
∂tϑ̃(x, t)

}
dx dt. (2.319)

By simple manipulations we arrive at the following chain of equalities∫ T

0

∫
Ω+

ηjl∂lϑ(x, t)∂j ϑ̃(x, t) dx dt =

∫ T

0

∫
Ω+

{
ηjl∂t∂lθ(x, t)∂j ϑ̃(x, t)

}
dx dt

=

∫
Ω+

ηjl
[
∂lθ(x, t)∂j ϑ̃(x, t)

]T
0
dx−

∫ T

0

∫
Ω+

ηjl∂lθ(x, t)∂t∂j ϑ̃(x, t) dx dt

= −
∫ T

0

∫
Ω+

ηjl∂lθ(x, t)
[
∂jθ(x, t) + ν0∂t∂jθ(x, t)

]
dx dt

= −
∫ T

0

∫
Ω+

{
ηjl∂lθ(x, t)∂jθ(x, t) +

ν0
2
∂t
[
ηjl∂jθ(x, t)∂lθ(x, t)

]}
dx dt

= −
∫ T

0

∫
Ω+

ηjl∂lθ(x, t)∂jθ(x, t) dx dt−
∫
Ω+

ν0
2
ηjl∂jθ(x, T )∂lθ(x, T ) dx, (2.320)

−
∫ T

0

∫
Ω+

[
d0ϑ(x, t) + h0∂tϑ(x, t)

]
∂tϑ̃(x, t) dx dt

= −
∫ T

0

∫
Ω+

{
d0
2
∂t
[
θ(x, t)

]2
+ d0ν0[∂tθ(x, t)]

2 + h0θ(x, t)∂t∂tθ(x, t) +
ν0h0
2

∂t
[
∂tθ(x, t)

]2}
dx dt

= −
∫
Ω+

[d0
2

[θ(x, T )]2 +
ν0h0
2

[∂tθ(x, T )]
2 + h0θ(x, T )∂tθ(x, T )

]
dx

−
∫ T

0

∫
Ω+

(d0ν0 − h0)[∂tθ(x, t)]
2 dx dt. (2.321)

Now substitute (2.320), (2.321) into (2.319) to obtain

I7 = −
∫
Ω+

{[
θ(x, T ) + ν0∂tθ(x, T )

] [
pj∂jφ̃(x, T ) +mj∂jψ̃(x, T )

]
+
d0
2

[θ(x, T )]2

+
ν0h0
2

[
∂tθ(x, T )

2 + h0θ(x, T )∂tθ(x, T )
]
+
ν0
2
ηjl∂jθ(x, T )∂lθ(x, T )

}
dx

−
∫ T

0

∫
Ω+

[
ηjl∂lθ(x, t)∂jθ(x, t) + (d0ν0 − h0)

[
∂tθ(x, t)

]2]
dx dt. (2.322)
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Thus we have found that
I(U) = I1 + I2 + I5 + I7 = 0. (2.323)

From (2.311) and (2.312) it follows that
I1 6 0, I2 6 0. (2.324)

Moreover, with the help of the arguments applied in the proof of Theorem 2.22 we get

I5 + I7 = −1

2

∫
Ω+

{
κjl∂lφ̃(x, T )∂jφ̃(x, T ) + 2ajl∂lψ̃(x, T )∂jφ̃(x, T ) + µjl∂lψ̃(x, T )∂jψ̃(x, T )

+ 2
[
θ(x, T ) + ν0∂tθ(x, T )

] [
pj∂jφ̃(x, T ) +mj∂jψ̃(x, T )

]
+ d0[θ(x, T )]

2

+ ν0h0[∂tθ(x, T )]
2 + 2h0θ(x, T )∂tθ(x, T ) + ν0ηjl∂jθ(x, T )∂lθ(x, T )

}
dx

−
∫ T

0

∫
Ω+

[
ηjl∂lθ(x, t)∂jθ(x, t) + (d0ν0 − h0)

[
∂tθ(x, t)

]2]
dx dt

= −1

2

∫
Ω+

{ 8∑
p,q=1

Mpqζp(x, T )ζq(x, T ) + ν0ηjl∂jθ(x, T )∂lθ(x, T )

}
dx

−
∫ T

0

∫
Ω+

[
ηjl∂lθ(x, t)∂jθ(x, t) + (d0ν0 − h0)[∂tθ(x, t)]

2
]
dx dt, (2.325)

where M = [Mpq]8×8 is the positive definite matrix defined by (2.13) and

ζj := ∂jφ̃(x, T ), ζj+3 := ∂jψ̃(x, T ), ζ7 := −θ(x, T ), ζ8 := −∂tθ(x, T ), j = 1, 2, 3. (2.326)
Evidently,

8∑
p,q=1

Mpqζqζp > C0(ζ
2
1 + ζ22 + · · ·+ ζ28 ) (2.327)

with some positive constant C0.
Due to the properties of the material parameters described in (2.10) and (2.11) we deduce that

each summand in (2.325) is nonnegative, which implies
I5 + I7 6 0. (2.328)

Finally, in accordance with (2.311), (2.312), and (2.325), from (2.323) we get

I(U) = −1

2

∫
Ω+

{
ϱ[u(x, T )]2 + crjklε̃kl(x, 0)ε̃rj(x, 0) +

8∑
p,q=1

Mpqζp(x, T )ζq(x, T )

+ν0ηjl∂jθ(x, T )∂lθ(x, T )

}
dx−

∫ T

0

∫
Ω+

[
ηjl∂lθ(x, t)∂jθ(x, t)+(d0ν0−h0)[∂tθ(x, t)]2

]
dx dt=0. (2.329)

Taking into account that each summand of the integrands in (2.329) is nonnegative, we conclude that
ur(x, T ) = 0, 2ε̃rj(x, 0) = ∂rũj(x, 0) + ∂j ũr(x, 0) = 0, (2.330)

∂jφ̃(x, T ) = 0, ∂jψ̃(x, T ) = 0, (2.331)
∂jθ(x, t) = 0, ∂tθ(x, t) = 0, r, j = 1, 2, 3, t ∈ (0, T ), x ∈ Ω+. (2.332)

From (2.332) and (2.317) we find that
ϑ(x, t) = 0 for (x, t) ∈ Ω+ × JT . (2.333)

In view of (2.333), now from (2.290) it follows that U = (u, φ, ψ, 0)⊤ satisfies the functional equation∫ T

0

∫
Ω+

{[
crjklεkl(x, t) + elrj∂lφ(x, t) + qlrj∂lψ(x, t)

]
ε̃rj(x, t)

+
[
− ejklεkl(x, t) + κjl∂lφ(x, t) + ajl∂lψ(x, t)

]
∂jφ̃(x, t)[

− qjklεkl(x, t) + ajl∂lφ(x, t) + µjl∂lψ(x, t)
]
∂jψ̃(x, t)− ϱ∂tur(x, t)∂tũr(x, t)

}
dx dt = 0 (2.334)
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for arbitrary vector function Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, 0)
⊤ ∈ [W 1

2 (Ω
+ × JT )]

6 such that

{Ũ(x, t)}+ = 0 for (x, t) ∈ SD × JT , ũr(x, T ) = 0 for x ∈ Ω+, r = 1, 2, 3. (2.335)

Let a ∈ (0, T ] be an arbitrary number and for (x, t) ∈ Ω+ × (0, T ] define the functions

ũr(x, t) :=

−
∫ a

t

ur(x, t1) dt1 for t 6 a,

0 for a < t 6 T,
r = 1, 2, 3, (2.336)

φ̃(x, t) :=

−
∫ a

t

φ(x, t1) dt1 for t 6 a,

0 for a < t 6 T,
(2.337)

ψ̃(x, t) :=

−
∫ a

t

ψ(x, t1) dt1 for t 6 a,

0 for a < t 6 T.
(2.338)

It is evident that the vector function Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, 0)
⊤ defined by the equalities (2.336)–(2.338)

belongs to the space [W 1
2 (Ω

+ × JT )]
6, vanishes for (x, t) ∈ Ω+ × (a, T ], and the following relations

hold for (x, t) ∈ Ω+ × (0, a],

∂tũr(x, t) = ur(x, t), ∂j∂tũr(x, t) = ∂jur(x, t), ũr(x, a) = ∂j ũr(x, a) = 0, (2.339)
∂tφ̃(x, t) = φ(x, t), ∂j∂tφ̃(x, t) = ∂jφ(x, t), φ̃(x, a) = 0, (2.340)

∂tψ̃(x, t) = ψ(x, t), ∂j∂tψ̃(x, t) = ∂jψ(x, t), ψ̃(x, a) = 0, r, j = 1, 2, 3. (2.341)

These relations imply that

∂j∂tũr, ∂t∂tũr, ∂j∂tφ̃, ∂j∂tψ̃ ∈ L2(Ω
+ × Ja), Ja = (0, a) r, j = 1, 2, 3. (2.342)

Applying the homogeneous initial conditions (2.289) and relations (2.336)–(2.342), with the help of
the integration by parts formula we can rewrite the functional equation (2.334) in the following form

I1(a) + I2(a) + I3(a) + I4(a) + I5(a) = 0, (2.343)

where

I1(a) := −
∫ T

0

∫
Ω+

ϱ∂tur(x, t)∂tũr(x, t) dx dt = −ϱ
2

∫ a

0

∫
Ω+

∂t
[
∂tũr(x, t)∂tũr(x, t)

]
dx dt

= −ϱ
2

∫
Ω+

[
ur(x, t)ur(x, t)

]a
0
dx dt = −ϱ

2

∫
Ω+

[u(x, a)]2 dx, (2.344)

I2(a) :=
∫ T

0

∫
Ω+

crjklεkl(x, t)ε̃rj(x, t) dx dt =
1

2

∫ a

0

∫
Ω+

crjkl∂t
[
ε̃kl(x, t)ε̃rj(x, t)

]
dx dt

= −1

2

∫
Ω+

crjklε̃kl(x, 0)ε̃rj(x, 0) dx, (2.345)

I3(a) :=
∫ T

0

∫
Ω+

elrj
[
∂lφ(x, t)ε̃rj(x, t)− ∂lφ̃(x, t)εrj(x, t)

]
dx dt

=

∫ a

0

∫
Ω+

elrj
[
∂t∂lφ̃(x, t)ε̃rj(x, t)− ∂lφ̃(x, t)∂tε̃rj(x, t)

]
dx dt, (2.346)

I4(a) :=
∫ T

0

∫
Ω+

qlrj
[
∂lψ(x, t)ε̃rj(x, t)− ∂lψ̃(x, t)εrj(x, t)

]
dx dt

=

∫ a

0

∫
Ω+

qlrj
[
∂t∂lψ̃(x, t)ε̃rj(x, t)− ∂lψ̃(x, t)∂tε̃rj(x, t)

]
dx dt, (2.347)

I5(a) :=
∫ T

0

∫
Ω+

{
κjl∂lφ(x, t)∂jφ̃(x, t) + µjl∂lψ(x, t)∂jψ̃(x, t)

+ ajl

[
∂lψ(x, t)∂jφ̃(x, t) + ∂lψ̃(x, t)∂jφ(x, t)

]}
dx dt
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=
1

2

∫ a

0

∫
Ω+

∂t

[
κjl∂lφ̃(x, t)∂jφ̃(x, t)+2ajl∂lψ̃(x, t)∂jφ̃(x, t)+µjl∂lψ̃(x, t)∂jψ̃(x, t)

]
dx dt

= −1

2

∫
Ω+

[
κjl∂lφ̃(x,0)∂jφ̃(x,0)+2ajl∂lψ̃(x,0)∂jφ̃(x,0)+µjl∂lψ̃(x,0)∂jψ̃(x,0)

]
dx. (2.348)

Note that, the vector function Ũ∗ = (ũ1, ũ2, ũ3,−φ̃,−ψ̃, 0)⊤, with the components given by (2.336)–
(2.338), belongs to the space [W 1

2 (Ω
+ × JT )]

6 and satisfies the conditions (2.335). Therefore, in the
functional equation (2.334) instead of Ũ = (ũ1, ũ2, ũ3, φ̃, ψ̃, 0)

⊤ ∈ [W 1
2 (Ω

+ × JT )]
6 we can substitute

the vector function Ũ∗. As a result we obtain
I1(a) + I2(a)− I3(a)− I4(a) + I5(a) = 0 (2.349)

with Ik(a) defined in (2.344)–(2.348). Now, from (2.343) and (2.349) it follows that
I1(a) + I2(a) + I5(a) = 0. (2.350)

Due to the inequalities (2.10), (2.15), and since ϱ > 0, from (2.350) we get

uj(x, a) = 0, ε̃rj(x, 0) = 0, ∂jφ̃(x, 0) = ∂jψ̃(x, 0) = 0, x ∈ Ω+, r, j = 1, 2, 3, (2.351)
Since a is an arbitrary number from (0, T ], in view of (2.336)–(2.338) we find that

uj(x, t) = 0, ∂jφ(x, t) = ∂jψ(x, t) = 0, (x, t) ∈ Ω+ × JT , j = 1, 2, 3, (2.352)
whence we finally conclude

uj(x, t) = 0, φ(x, t) = C1(t), ψ(x, t) = C2(t), (x, t) ∈ Ω+ × JT , j = 1, 2, 3, (2.353)
where C1 and C2 are arbitrary absolutely continuous functions of t ∈ [0, T ] due to the inclusion
C1, C2 ∈ H1(JT ).

Therefore, if SD ̸= ∅, form (2.353) we conclude that
uj(x, t) = 0, φ(x, t) = 0, ψ(x, t) = 0, (x, t) ∈ Ω+ × JT , j = 1, 2, 3, (2.354)

due to the homogeneous Dirichlet conditions on SD × JT .
If SD = ∅, i.e., in the case of the Neumann type problem, C1 and C2 remain arbitrary absolutely

continuous functions of t ∈ [0, T ]. This completes the proof. �

From Theorem 2.23 and Remark 2.19 the following assertion follows which generalizes Theorem 2.22.

Corollary 2.24. Let the matrix M given by (2.13) be positive definite. Then
(i) The homogeneous Dirichlet type initial-boundary value problem (D)+t possesses only the trivial

solutions in the class of regular vector-functions;
(ii) The homogeneous mixed type initial-boundary value problem (M)+t possesses only the trivial

solutions in the class of semi-regular vector functions;
(iii) The general solution of the homogeneous Neumann type problem (N)+t in the space of regular

vector-functions reads as follows
U(x, t) = (0, 0, 0, C1(t), C2(t), 0)

⊤, (x, t) ∈ Ω+ × JT , (2.355)
where C1(t) and C2(t) are arbitrary regular functions of the class C1[0, T ] ∩ C2(0, T ).

2.7.3. Uniqueness theorems for the pseudo-oscillation problems. We start with the following unique-
ness results for weak solutions of the pseudo-oscillation problems in the case of p = 2.

Theorem 2.25. Let S be Lipschitz surface and τ = σ + iω with σ > σ0 > 0 and ω ∈ R.
(i) The basic boundary value problems (D)+τ and (M)+τ have at most one solution in the space

[W 1
2 (Ω

+)]6 provided the subsurfaces S3 and S5 in the setting of mixed problem are not empty.
(ii) Solutions to the Neumann type boundary value problem (N)+τ in the space [W 1

2 (Ω
+)]6 are

defined modulo a vector of type U (N ) = (0, 0, 0, b1, b2, 0)
⊤, where b1 and b2 are arbitrary

constants.
(iii) Crack type boundary value problems (D-CR-D)+τ , (N-CR-D)+τ , (M-CR-D)+τ , (D-CR-N)+τ , (M-

CR-N)+τ , (D-CR-NT)+τ , and (M-CR-NT)+τ have at most one solution in the space [W 1
2 (Ω

+
Σ)]

6.
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(iv) Solutions to the crack type boundary value problems (N-CR-N)+τ and (N-CR-NT)+τ in the space
[W 1

2 (Ω
+
Σ)]

6 are defined modulo a vector of type U (N ) = (0, 0, 0, b1, b2, 0)
⊤, where b1 and b2 are

arbitrary constants.

Proof. Due to the linearity of the boundary value problems in question it suffices to consider the
corresponding homogeneous problems.

First we demonstrate the proof for the problems stated in the items (i) and (ii) of the theorem. Let
U = (u, φ, ψ, ϑ)⊤ ∈

[
W 1

2 (Ω
+)

]6 be a solution to the homogeneous problem (D)+τ or (N)+τ or (M)+τ .
For arbitrary U ′ = (u′, φ′, ψ′, ϑ′)⊤ ∈ [W 1

2 (Ω
+)]6 from Green’s formula (2.202) then we have∫

Ω+

Eτ (U,U ′) dx =
⟨{

T (∂x, n, τ)U
}+
, {U ′}+

⟩
∂Ω+ , (2.356)

where Eτ (U,U ′) is given by (2.201).
If in (2.356) we substitute the vectors

(u1, u2, u3, 0, 0, 0)
⊤, (0, 0, 0, φ, 0, 0)⊤, (0, 0, 0, 0, ψ, 0)⊤, (0, 0, 0, 0, 0, (1 + ν0τ)[τ ]

−1ϑ)⊤

for the vector U ′ successively and take into consideration the homogeneous boundary conditions,
we get∫

Ω+

[
crjkl∂luk∂jur + ϱτ2urur + elrj∂lφ∂jur + qlrj∂lψ∂jur − (1 + ν0τ)λkjϑ∂juk

]
dx = 0, (2.357)∫

Ω+

[
− elrj∂jur∂lφ+ κjl∂lφ∂jφ+ ajl∂jψ∂lφ− (1 + ν0τ)plϑ∂lφ

]
dx = 0, (2.358)∫

Ω+

[
− qlrj∂jur∂lψ + ajl∂lφ∂jψ + µjl∂lψ∂jψ − (1 + ν0τ)mlϑ∂lψ

]
dx = 0, (2.359)∫

Ω+

{
(1+ν0τ)

[
λkjϑ∂juk−plϑ∂lφ−mlϑ∂lψ+(h0τ + d0)|ϑ|2

]
+

1+ν0τ

τ
ηjl∂lϑ∂jϑ

}
dx = 0. (2.360)

Add to equation (2.357) the complex conjugate of equations (2.358)–(2.360) and use the symmetry
properties (2.9) to obtain∫

Ω+

{
crjkl∂luk∂jur+ϱτ

2|u|2+κjl∂lφ∂jφ+ajl(∂lψ∂jφ+∂jφ∂lψ)+µjl∂lψ∂jψ−2Re
[
pl(1+ν0τ)ϑ∂lφ

]
− 2Re

[
ml(1 + ν0τ)ϑ∂lψ

]
+ (1 + ν0τ)(h0τ + d0)|ϑ|2 +

1 + ν0τ

τ
ηjl∂lϑ∂jϑ

}
dx = 0. (2.361)

Due to the relations (2.12) and the positive definiteness of the matrix Λ(1) defined in (2.14), we find
that

cijlk∂iuj∂luk ≥ 0, ηjl∂lϑ∂jϑ ≥ 0,[
κjl∂lφ∂jφ+ ajl(∂lψ∂jφ+ ∂jφ∂lψ) + µjl∂lψ∂jψ

]
≥ λ0

(
|∇φ|2 + |∇ψ|2

)
,

(2.362)

where λ0 is a positive constant. Using the equalities

τ2 = σ2 − ω2 + 2iσω,
1 + ν0τ

τ
=
σ + ν0(σ

2 − ω2)

|τ |2
+ i

ω(1 + 2σν0)

|τ |2
,

(1 + ν0τ)(h0τ + d0) = d0 + ν0h0|τ |2 + (h0 + ν0d0)σ + iω(ν0d0 − h0),

(2.363)

and separating the imaginary part of (2.361), we deduce

ω

∫
Ω+

{
2ϱσ|u|2 + (ν0d0 − h0)|ϑ|2 +

1 + 2σν0
|τ |2

ηjl∂lϑ∂jϑ
}
dx = 0. (2.364)

By the inequalities (2.11) and since σ > σ0 > 0, we conclude u = 0 and ϑ = 0 in Ω+ for ω ̸= 0. From
(2.361) we then have∫

Ω+

[
κjl∂lφ∂jφ+ ajl(∂lψ∂jφ+ ∂jφ∂lψ) + µjl∂lψ∂jψ

]
dx = 0. (2.365)
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Whence, in view of the last inequality in (2.362), we get ∂lφ = 0, ∂lψ = 0, l = 1, 2, 3, in Ω+. Thus, if
ω ̸= 0,

u = 0, φ = b1 = const, ψ = b2 = const, ϑ = 0 in Ω+. (2.366)
If ω = 0, then τ = σ > 0 and (2.361) can be rewritten in the form∫
Ω+

{
crjkl∂luk∂jur + ϱσ2|u|2 + 1 + ν0σ

σ
ηjl∂lϑ∂jϑ

}
dx

+

∫
Ω+

{
κjl∂lφ∂jφ+ ajl(∂lψ∂jφ+ ∂jφ∂lψ) + µjl∂lψ∂jψ − 2pl(1 + ν0σ)Re

[
ϑ∂lφ

]
− 2ml(1 + ν0σ)Re

[
ϑ∂lψ

]
+ (1 + ν0σ)(h0σ + d0)|ϑ|2

}
dx = 0. (2.367)

The integrand in the first integral is nonnegative. Let us show that the integrand in the second integral
is also nonnegative. To this end, as in the proof of Theorem 2.22, we set

ζj := ∂jφ, ζj+3 := ∂jψ, ζ7 := −ϑ, ζ8 := −σϑ, j = 1, 2, 3, (2.368)
and introduce the vector

Θ := (ζ1, ζ2, . . . , ζ8)
⊤. (2.369)

It can easily be checked that (summation over repeated indices is meant from 1 to 3)

κjl∂lφ∂jφ+ ajl(∂lψ∂jφ+ ∂jφ∂lψ) + µjl∂lψ∂jψ − 2pl(1 + ν0σ)Re
[
ϑ∂lφ

]
−2ml(1 + ν0σ)Re

[
ϑ∂lψ

]
+ (1 + ν0σ)(h0σ + d0)|ϑ|2

=
[
κjl∂lφ+ ajl∂lψ + pj(−ϑ) + ν0pj(−σϑ)

]
∂jφ+

[
ajl∂lφ+ µjl∂lψ +mj(−ϑ) + ν0mj(−σϑ)

]
∂jψ

+
[
pl∂lφ+ml∂lψ + d0(−ϑ) + h0(−σϑ)

]
(−ϑ)

+
[
ν0pl∂lφ+ ν0ml∂lψ + h0(−ϑ) + ν0h0(−σϑ)

]
(−σϑ) + σ(d0ν0 − h0)|ϑ|2

=
[
κjlζl + ajlζl+3 + pjζ7 + ν0pjζ8

]
ζj +

[
ajlζl + µjlζl+3 +mjζ7 + ν0mjζ8

]
ζj+3

+
[
plζl +mlζl+3 + d0ζ7 + h0ζ8

]
ζ7 +

[
ν0plζl + ν0mlζl+3 + h0ζ7 + ν0h0ζ8

]
ζ8 + σ(d0ν0 − h0)|ϑ|2

=

8∑
p,q=1

Mpqζqζp + σ(d0ν0 − h0)|ϑ|2 =MΘ ·Θ+ σ(d0ν0 − h0)|ϑ|2 ≥ C0|Θ|2 (2.370)

with some positive constant C0, due to the positive definiteness of the matrix M defined by (2.13)
and the inequality σ(d0ν0 − h0) > 0.

Therefore, from (2.367) we see that the relations (2.366) hold for ω = 0 as well.
Thus the equalities (2.366) hold for arbitrary τ = σ + iω with σ > σ0 > 0 and ω ∈ R, whence the

items (i) and (ii) of the theorem follow immediately, since the homogeneous Dirichlet conditions for
φ and ψ imply b1 = b2 = 0, while a vector U (N ) = (0, 0, 0, b1, b2, 0)

⊤, where b1 and b2 are arbitrary
complex constants, solves the homogeneous Neumann BVP (N)+τ .

To prove the remaining items of the theorem we have to add together two Green’s formulas of
type (2.356) for the domains Ω \ Ω0 and Ω0, where the auxiliary domain Ω0 ⊂ Ω+ is introduced in
the beginning of Subsection 2.2. We recall that the crack surface Σ is a proper part of the boundary
S0 = ∂Ω0 ⊂ Ω+ and any solution to the homogeneous differential equation A(∂, τ)U = 0 of the class
[W 1

2 (Ω
+
Σ)]

6 and its derivatives are continuous across the surface S0 \ Σ. If U is a solution to one of
the homogeneous crack type BVPs listed in items (iii) and (iv), by the same arguments as above, we
arrive at the relation (cf. (2.212))∫

Ω+
Σ

{
crjkl∂luk∂jur+ϱτ

2|u|2+κjl∂lφ∂jφ+ajl(∂lψ∂jφ+∂jφ∂lψ)+µjl∂lψ∂jψ−2Re
[
pl(1+ν0τ)ϑ∂lφ

]
− 2Re

[
ml(1 + ν0τ)ϑ∂lψ

]
+ (1 + ν0τ)(h0τ + d0)|ϑ|2 +

1 + ν0τ

τ
ηjl∂lϑ∂jϑ

}
dx = 0. (2.371)

The surface integrals vanish due to the homogeneous boundary and crack type conditions and the above
mentioned continuity of solutions and its derivatives across the auxiliary surface S0 \ Σ. Therefore,
the proof of items (iii) and (iv) can be verbatim performed. �
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For the exterior BVPs of pseudo-oscillations we have the following uniqueness results.

Theorem 2.26. Let S be Lipschitz surface and τ = σ + iω with σ > σ0 > 0 and ω ∈ R. The
exterior basic boundary value problems (D)−τ , (N)

−
τ and (M)

−
τ , and the crack type boundary value prob-

lems (D-CR-D)−τ , (N-CR-D)−τ , (M-CR-D)−τ , (D-CR-N)−τ , (M-CR-N)−τ , (D-CR-NT)−τ , (M-CR-NT)−τ ,
(N-CR-N)−τ and (N-CR-NT)−τ have at most one solution in the space [W 1

2,loc(Ω
−)]6 and [W 1

2,loc(Ω
−
Σ)]

6,
respectively, satisfying the decay conditions (2.207) at infinity.

Proof. With the help of Green’s formula (2.211) and the decay conditions (2.207) by the word for
word arguments applied in the proof of Theorem 2.25 we can show that the homogeneous basic and
crack type exterior BVPs possess only the trivial solution. �
Remark 2.27. From Theorem 2.25 it follows that in the case of the homogenous problems (N)+τ ,
(N-CR-N)+τ , and (N-CR-NT)+τ the functions φ and ψ are arbitrary constants b1 and b2 which do not
depend on the variable x but may depend on the parameter τ :

φ(x, τ) = b1(τ), ψ(x, τ) = b2(τ). (2.372)
If we assume that these boundary value problems are associated with the corresponding dynamical
problems via the Laplace transform, then φ(x, τ) = b1(τ) and ψ(x, τ) = b2(τ), must be Laplace
transforms of exponentially bounded regular generalized functions. Therefore they have to satisfy
some natural restrictions. In particular, b1(τ) and b2(τ) must be analytic in the half-plane Re τ > σ0
with respect to τ and the inverse Laplace transforms

vj(t) :=
1

2πi

∫ σ+i∞

σ−i∞
bj(τ)e

τt dτ, j = 1, 2, σ > σ0, (2.373)

must define exponentially bounded regular generalized functions. Some sufficient conditions for bj
having the above properties can be found in [116].

2.7.4. Uniqueness theorems for interior static problems. The setting of the BVPs of statics coincides
with the above formulated pseudo-oscillation BVPs with τ = 0 (see Subsection 2.3). We denote these
problems by the same symbols as in the pseudo-oscillation case but without subscript τ : (D)±, (N)±,
(M)±, (B-CR-D)+, (B-CR-N)+, and (B-CR-NT)+ with B ∈ {D,N,M}. Recall that the differential
operator of statics A(∂) coincides with the operator A(∂, 0) (see (2.35) and (2.45)). Moreover, note
that in the static case the differential equation for the temperature function and the corresponding
boundary conditions are then decoupled and we obtain separated BVPs for ϑ, since

[A(∂x)U ]6 = ηjl∂j∂lϑ and
{
T (∂x, n)U

}
6
=

{
ηjlnj∂lϑ

}
,

where (see (2.57))

T (∂x, n) := T (∂x, n, 0) =
[
Tpq(∂x, n, 0)

]
6×6

:=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [−λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj
[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj

[0]1×3 0 0 ηjlnj∂l


6×6

. (2.374)

Note also that in the static problems, without loss of generality, we can assume that all unknowns
and given data are real functions, since the coefficients of the differential operators in Ω± and the
boundary operators on ∂Ω± are real valued quantities. For the interior static BVPs we have the
following uniqueness results.

Theorem 2.28. Let S be a Lipschitz surface.
(i) The homogeneous boundary value problems of statics (D)

+ and (M)
+ have only the trivial

solution in the space [W 1
2 (Ω

+)]6.
(ii) The homogeneous crack type boundary value problems of statics (D-CR-D)+, (N-CR-D)+,

(M-CR-D)+, (D-CR-N)+, (M-CR-N)+, (D-CR-NT)+, and (M-CR-NT)+ have anly the trivial
solution in the space [W 1

2 (Ω
+
Σ)]

6.
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Proof. Let U = (u, φ, ψ, ϑ)⊤ be a solution to the homogeneous mixed boundary value problem (M)+.
Then ϑ solves the following decoupled mixed BVP

ηjl∂j∂lϑ = 0 in Ω+, (2.375)
{ϑ}+ = 0 on S7, (2.376)

{ηjlnj∂lϑ}+ = 0 on S8. (2.377)
By Green’s formula ∫

Ω+

ηjl∂lϑ∂jϑ dx =
⟨
{ηjlnj∂lϑ}+, {ϑ}+

⟩
S

(2.378)

and with the help of the homogeneous boundary conditions we derive ϑ = const in Ω+, since the
right hand side duality expression in (2.378) vanishes and the matrix [ηjl]3×3 is positive definite.
Consequently, ϑ = 0 in Ω+ due to the homogeneous Dirichlet condition (2.376). Therefore, the five
dimensional vector V = (u, φ, ψ)⊤, constructed by the first five components of the solution vector U ,
solves the following homogeneous mixed BVP (see the formulation of BVP (M)+, formulas (2.30) and
(2.25) and take into account that ϑ = 0)

Ã(0)(∂x)V (x) = 0, x ∈ Ω+,

{ur(x)}+ = 0, x ∈ S1, r = 1, 2, 3,{
[T (∂x, n)V (x)]r

}+
= 0, x ∈ S2, r = 1, 2, 3,

{φ(x)}+ = 0, x ∈ S3,{
[T (∂x, n)V (x)]4

}+
= 0, x ∈ S4,

{ψ(x)}+ = 0, x ∈ S5,{
[T (∂x, n)V (x)]5

}+
= 0, x ∈ S6,

(2.379)

where Ã(0)(∂x) is the 5 × 5 differential operator of statics of the electro-magneto-elasticity theory
without taking into account thermal effects

Ã(0)(∂x) =
[
Ã(0)

pq (∂x)
]
5×5

:=


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l


5×5

, (2.380)

and T (∂, n) is the corresponding 5× 5 generalized stress operator (cf. (2.25), (2.26) and (2.58))

T (∂x, n) =
[
Tpq(∂x, n)

]
5×5

=


[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l


5×5

(2.381)

In this case, Green’s identity for arbitrary vectors V = (u, φ, ψ)⊤, V ′ = (u′, φ′, ψ′)⊤ ∈ [W 1
2 (Ω

+)]5 with
Ã(0)(∂x)V ∈ L2(Ω

+) reads as∫
Ω+

[
Ã(0)(∂x)V · V ′ + Ẽ(V, V ′)

]
dx =

⟨
{T (∂x, n)V }+, {V ′}+

⟩
∂Ω+ , (2.382)

where

Ẽ(V, V ′) = crjkl∂luk∂ju
′
r + elrj(∂lφ∂ju

′
r − ∂jur∂lφ

′) + qlrj(∂lψ∂ju
′
r − ∂jur∂lψ

′)

+ κjl∂lφ∂jφ
′ + ajl(∂lφ∂jψ

′ + ∂jψ∂lφ
′) + µjl∂lψ∂jψ

′. (2.383)
Write the above Green’s formula for a solution V of the problem (2.379) and V ′ = V to obtain∫

Ω+

Ẽ(V, V ) dx = 0, (2.384)

where
Ẽ(V, V ) := crjkl∂luk∂jur + κjl∂lφ∂jφ+ 2ajl∂lφ∂jψ + µjl∂lψ∂jψ. (2.385)
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Due to the inequalities (2.10) and positive definiteness of the matrix Λ(1) defined in (2.14) we conclude
that ∂jφ = 0 and ∂jψ = 0 in Ω+ for j = 1, 2, 3, and

crjkl∂luk∂jur = 0 implying ∂luk + ∂kul = 0 in Ω+, k, l = 1, 2, 3. (2.386)

Therefore from (2.385) it follows that

u(x) = χ(x) = a× x+ b, φ = b4, ψ = b5, (2.387)

where χ(x) is a rigid displacement vector with a = (a1, a2, a3)
⊤ and b = (b1, b2, b3)

⊤ being arbitrary
real constant vectors and b4 and b5 being arbitrary real constants. Now, the homogeneous Dirichlet
condition in (2.379) implies u = 0, φ = 0, and ψ = 0 in Ω+, which proves the uniqueness theorem for
the homogenous problem (M)+.

It is evident that the proof for the problem (D)+ is word-for-word.
The uniqueness results for the homogeneous crack type problems, (D-CR-D)+, (N-CR-D)+,

(M-CR-D)+, (D-CR-N)+, (M-CR-N)+, (D-CR-NT)+, and (M-CR-NT)+, follow from the identities∫
Ω+

Σ

ηjl∂lϑ∂jϑdx = 0,

∫
Ω+

Σ

Ẽ(V, V ) dx = 0,

which can be obtained with the help of the same arguments applied in the proof of Theorem 2.25;
here U = (u, φ, ψ, ϑ)⊤ is a solution vector to one of the above listed homogeneous crack type static
problems, V = (u, φ, ψ)⊤, and Ẽ(V, V ) is defined by (2.385). Therefore the proof can be verbatim
performed. �

Further, we analyze the homogenous Neumann type boundary value problem (N)+. Let a vector
U = (u, φ, ψ, ϑ)⊤ solve the homogenous problem (N)+. In this case the temperature function ϑ solves
the following decoupled problem

ηjl∂j∂lϑ = 0 in Ω+, (2.388){
ηjlnj∂lϑ

}+
= 0 on S = ∂Ω+. (2.389)

Whence, by (2.378), we get ϑ = b6 = const in Ω+. Therefore, the vector V = (u, φ, ψ)⊤ solves then
the nonhomogeneous BVP (see the formulation of BVP (N)+, formulas (2.30) and (2.25), and take
into account that ϑ = b6 = const in Ω+)

Ã(0)(∂x)V = 0 in Ω+, (2.390)
{T (∂x, n)V }+ = b6G

∗ on S, (2.391)

where Ã(0)(∂x) and T (∂x, n) are defined by (2.380) and (2.381), and G∗ is a special type given five
dimensional vector function

G∗ = (λ1jnj , λ2jnj , λ3jnj , pjnj ,mjnj)
⊤. (2.392)

Due to Green’s formula (2.382) we easily derive that a solution to the BVP (2.390), (2.391) is defined
modulo the summand

Ṽ = (χ(x), b4, b5)
⊤, (2.393)

where χ(x) is an arbitrary rigid displacement vector function given by (2.285), and b4 and b5 are
arbitrary real constants. This follows from the fact that the vector (2.393) is a general solution of the
equation Ẽ(Ṽ , Ṽ ) = 0 in Ω+ and T (∂x, n)Ṽ = 0 everywhere for arbitrary unit vector n. Therefore, an
arbitrary solution to the homogeneous Neumann type BVP (2.390), (2.391) can be represented as

V = Ṽ + b6V
∗, (2.394)

where Ṽ is given by (2.393) and V ∗ = (u∗, φ∗, ψ∗)⊤ is a particular solution to the BVP

Ã(0)(∂x)V
∗ = 0 in Ω+, (2.395)

{T (∂x, n)V ∗}+ = G∗ on S, (2.396)

with G∗ defined by (2.392).
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Now, we show that the vector V ∗ can be constructed explicitly in terms of linear functions for
arbitrary domain Ω+. To this end, let us look for a solution to the problem (2.395), (2.396) in the form

V ∗ = (u∗, φ∗, ψ∗)⊤, u∗k = b̃∗kqxq, k = 1, 2, 3, φ∗ = c̃∗qxq, ψ∗ = d̃∗qxq, (2.397)

where b̃∗kq = b̃∗qk, c̃∗q and d̃∗q , k, q = 1, 2, 3, are 12 unknown real coefficients. Evidently, the vector V ∗

solves the differential equation (2.395) and in view of (2.381) the boundary condition (2.396) leads to
the simultaneous equations

crjklnj b̃
∗
kl + elrjnj c̃

∗
l + qlrjnj d̃

∗
l = λrjnj , r = 1, 2, 3,

−ejklnj b̃∗kl + κjlnj c̃
∗
l + ajlnj d̃

∗
l = pjnj ,

−qjklnj b̃∗kl + ajlnj c̃
∗
l + µjlnj d̃

∗
l = mjnj .

(2.398)

Note that, the normal components nj are linearly independent functions due to arbitrariness of the
domain Ω+. Therefore we equate the expressions at the components nj and obtain 12 linear equations
for the 12 unknown coefficients

crjklb̃
∗
kl + elrj c̃

∗
l + qlrj d̃

∗
l = λrj , r, j = 1, 2, 3,

−ejklb̃∗kl + κjlc̃
∗
l + ajld̃

∗
l = pj , j = 1, 2, 3,

−qjklb̃∗kl + ajlc̃
∗
l + µjld̃

∗
l = mj , j = 1, 2, 3.

(2.399)

Due to the first inequality in (2.10) and positive definiteness of the matrix Λ(1) defined in (2.14), and
since b̃∗kq = b̃∗qk, it follows that the homogeneous version of the system (2.399) possesses only the trivial
solution, i.e., the determinant of the system is different from zero. Therefore, the nonhomogeneous
system (2.399) is uniquely solvable and we can define the twelve unknown coefficients b̃∗kq = b̃∗qk,
c̃∗q and d̃∗q , k, q = 1, 2, 3. It is evident that then the boundary conditions (2.398) are satisfied and,
consequently, the vector V ∗ solves the BVP (2.395), (2.396) for arbitrary domain Ω+.

Thus, we have constructed the general solution of the homogeneous Neumann problem (N)+ of
statics explicitly U = (V, b6)

⊤ = (Ṽ , 0)⊤ + b6(V
∗, 1)⊤, where V is defined by (2.394), and Ṽ and V ∗

are given by (2.393) and (2.397).
It is easy to check that the same vector is a general solution to the homogeneous crack type problems

(N-CR-N)+ and (N-CR-NT)+ for arbitrary domain Ω+
Σ with arbitrary crack surface Σ.

Thus, we have the following uniqueness theorem.

Theorem 2.29. A general solution to the homogeneous Neumann type boundary value problem of
statics (N)+ and to the homogeneous crack type boundary value problems of statics (N-CR-N)+ and
(N-CR-NT)+ in the space [W 1

2 (Ω
+)]6 and [W 1

2 (Ω
+
Σ)]

6, respectively, reads as

U = (Ṽ , 0)⊤ + b6(V
∗, 1)⊤,

where Ṽ = (a× x+ b, b4, b5)
⊤ with a = (a1, a2, a3)

⊤ and b = (b1, b2, b3)
⊤ and V ∗ is given by (2.397)

with coefficients b̃∗kq = b̃∗qk, c̃∗q , d̃∗q , k, q = 1, 2, 3, defined by the uniquely solvable system (2.399), and
where a1, a2, a3, and b1, . . . , b6 are arbitrary real constants.

Uniqueness theorems for exterior BVPs of statics will be considered later since it needs a quite
different approach based on the properties of the corresponding fundamental matrix of the opera-
tor A(∂).

2.8. Auxiliary boundary value problems for the adjoint operator A∗(∂x, τ). In our further
analysis we need also uniqueness theorems for some auxiliary BVPs for the operator A∗(∂x, τ) adjoint
to A(∂x, τ). In particular, in the study of properties of boundary operators generated by the layer
potentials we will use the uniqueness theorems for the following homogeneous Dirichlet and Neumann
type BVPs.
Dirichlet problem (D∗

0)
±
τ : Find a solution vector U = (u1, . . . , u6)

⊤ ∈ [W 1
2 (Ω

+)]6 (respectively,
U = (u1, . . . , u6)

⊤ ∈ [W 1
2,loc(Ω

−)]6) to the equation

A∗(∂x, τ)U = 0 in Ω± (2.400)
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satisfying the Dirichlet type boundary condition
{U}± = 0 on S. (2.401)

Neumann problem (N∗
0)

±
τ : Find a solution vector U = (u1, . . . , u6)

⊤ ∈ [W 1
2 (Ω

+)]6 (respectively, U =
(u1, . . . , u6)

⊤ ∈ [W 1
2,loc(Ω

−)]6) to equation (2.211) satisfying the Neumann type boundary condition{
P(∂x, n, τ)U

}±
= 0 on S, (2.402)

where the operator P(∂x, n, τ) is defined by (2.58). In the case of the exterior BVPs we assume that
solutions satisfy the decay conditions (2.207) at infinity.

We have the following uniqueness results for these auxiliary problems.

Theorem 2.30. Let τ = σ + iω with σ > σ0 > 0 and ω ∈ R.
(i) The homogeneous boundary value problems (D∗

0)
±
τ and (N∗

0)
−
τ have only the trivial solution.

(ii) A general solution to the homogeneous Neumann type boundary value problem (N∗
0)

+
τ reads

as U = b1U
(1) + b2U

(1), where b1 and b2 are arbitrary constants, U (1) = (0, 0, 0, 1, 0, 0)⊤ and
U (2) = (0, 0, 0, 0, 1, 0)⊤.

Proof. The proof is quite similar to the proofs of Theorems 2.25 and 2.26 and follows from Green’s
formulas (2.199) and (2.209). �

3. Fundamental Matrices

3.1. Fundamental matrix of the operator A(0)(∂x). We start with the construction of a fun-
damental matrix of the operator A(0)(∂x) given by (2.46) by the Fourier transform technique. Let
Fx→ξ and F−1

ξ→x denote the direct and inverse generalized Fourier transform in the space of tempered
distributions (Schwartz space S ′(R3)) which for regular summable functions f and g read as follows

Fx→ξ[f ] =

∫
R3

f(x)eix·ξ dx, F−1
ξ→x[g] =

1

(2π)3

∫
R3

g(ξ)e−ix·ξ dξ, (3.1)

where x = (x1, x2, x3) and ξ = (ξ1, ξ2, ξ3). Note that for an arbitrary multi–index α = (α1, α2, α3)
and f ∈ S ′(R3)

F [∂αf ] = (−iξ)αF [f ], F−1[ξαg] = (i∂)αF−1[g], (3.2)
where ξα = ξα1

1 ξα2
2 ξα3

3 and ∂α = ∂α1
1 ∂α2

2 ∂α3
3 .

Denote by Γ(0)(x) = [Γ
(0)
kj (x)]6×6 the fundamental matrix of the operator A(0)(∂),

A(0)(∂x)Γ
(0)(x) = δ(x)I6. (3.3)

Here δ( · ) is Dirac’s delta distribution and Ik stands for the unit k×k matrix. By standard arguments
we can show that (cf., e.g., [14])

Γ(0)(x) = F−1
ξ→x

[
{A(0)(−iξ)}−1

]
=

1

8π3
lim

R→∞

∫
|ξ|<R

{A(0)(−iξ)}−1e−ix·ξ dξ

=
1

8π2|x|

∫ 2π

0

{
A(0)(−iE(x̃)η)

}−1
dϕ, η = (cosϕ, sinϕ, 0)⊤, x̃ =

x

|x|
, (3.4)

where E(x̃) is an orthogonal matrix with properties E⊤(x̃)x⊤ = (0, 0, |x|)⊤ and detE(x̃) = 1,

{A(0)(−iξ)}−1 =
1

detA(0)(−iξ)
A(0c)(−iξ)

is the inverse to the symbol matrix A(0)(−iξ) given by (2.47), while the matrix A(0c)(−iξ) =

[A
(0c)
kj (−iξ)]6×6 is the corresponding matrix of cofactors.
Note that, the entries of the matrix Γ(0)(x) are homogeneous even functions of order −1 and

Γ(0)(x) =

[
Γ̃(0)(x) [0]5×1

[0]1×5 Γ
(0)
66 (x)

]
6×6

, Γ(0)(−x) = Γ(0)(x), (3.5)



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 55

where Γ̃(0)(x) = [Γ
(0)
kj (x)]5×5 is a fundamental matrix of the operator Ã(0)(∂) defined by (2.380) and

Γ
(0)
66 (x) is a fundamental solution of the operator A(0)

66 (∂) = ηjl∂j∂l which reads as (see, e.g., [78,
Ch. 1, § 8])

Γ
(0)
66 (x) = − α0

4π(Dx · x)1/2
= − α0

4π[dkjxkxj ]1/2
, α0 = (detD)1/2, (3.6)

where D = [dkj ]3×3 is the inverse to the positive definite matrix [ηkj ]3×3.
Now, we derive an alternative representation of the fundamental matrix Γ(0)(x), which is very

useful and convenient, in particular, for calculation of the principal homogeneous symbol matrices of
the boundary integral operators generated by the layer potentials.

With the help of the Cauchy integral theorem for analytic functions, we can represent the matrix
Γ(0)(x) in the form

Γ(0)(x) = F−1
ξ→x

[
{A(0)(−iξ)}−1

]
= F−1

ξ′→x′

[
F−1

ξ3→x3
{A(0)(−iξ)}−1

]
= F−1

ξ′→x′ [Ψ(ξ′, x3)], (3.7)

where ξ′ = (ξ1, ξ2), x′ = (x′1, x
′
2) and

Ψ(ξ′, x3) =
1

2π

∫
R1

{
A(0)(−iξ)

}−1
e−ix3ξ3 dξ3

=


1

2π

∫
ℓ+

{
A(0)(−iξ)

}−1
e−ix3ξ3 dξ3 for x3 ≤ 0,

1

2π

∫
ℓ−

{
A(0)(−iξ)

}−1
e−ix3ξ3 dξ3 for x3 ≥ 0.

(3.8)

Here ℓ+ (respectively, ℓ−) is a closed simple curve of positive counterclockwise orientation (respec-
tively, negative clockwise orientation) in the upper (respectively, lower) complex half-plane Re ξ3 > 0
(respectively, Re ξ3 < 0) enclosing all the roots with respect to ξ3 of the equation detA(0)(−iξ) = 0
with positive (respectively, negative) imaginary parts. Clearly, (3.8) does not depend on the shape of
ℓ+ (respectively, ℓ−). It can easily be shown that the entries of the matrix (3.8) for x3 = 0 are even,
homogeneous real-valued functions in ξ′ of order −1. Moreover, from (3.8) and the inequality (2.48)
it follows that there is a positive constant c depending only on the material parameters, such that

Re
[
−Ψ(ξ′, 0)ζ · ζ

]
≥ c|ξ′|−1|ζ|2 for all ξ′ ∈ R2 \ {0} and for all ζ ∈ C6. (3.9)

3.2. Fundamental matrix of the operator A(∂x, τ). Now, let us construct a fundamental matrix
Γ(x, τ) = [Γkj(x, τ)]6×6 of the operator A(∂x, τ) given by (2.30),

A(∂x, τ)Γ(x, τ) = δ(x)I6.

Applying the Fourier transform we get
A(−iξ, τ)Fx→ξ[Γ(x, τ)] = I6, (3.10)

where

A(−iξ, τ) = [Apq(−iξ, τ)]6×6

= −


[crjklξjξl + ϱτ2δrk]3×3 [elrjξjξl]3×1 [qlrjξjξl]3×1 [−i(1 + ν0τ)λrjξj ]3×1

[−ejklξjξl]1×3 κjlξjξl ajlξjξl −i(1 + ν0τ)pjξj

[−qjklξjξl]1×3 ajlξjξl µjlξjξl −i(1 + ν0τ)mjξj

[−iτλklξl]1×3 iτplξl iτmlξl ηjlξjξl + τ2h0 + τd0


6×6

. (3.11)

From (3.10) we find
Γ(x, τ) = F−1

ξ→x

[
A−1(−iξ, τ)

]
, (3.12)

where A−1(−iξ, τ) is the matrix inverse to A(−iξ, τ) defined in (3.11).
Now, we establish some properties of the matrix A(−iξ, τ) needed in our further analysis.

Lemma 3.1. Let τ = σ + iω with σ > 0 and ω ∈ R. Then
detA(−iξ, τ) ̸= 0 for all ξ ∈ R3 \ {0}. (3.13)
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Proof. It suffices to show that for all ξ ∈ R3\{0} the homogeneous system of linear algebraic equations
−A(−iξ, τ)ζ = 0 for unknowns ζ = (ζ1, . . . , ζ6)

⊤ ∈ C6, i.e. the simultaneous equations
crjklξjξlζk + ϱτ2ζr + elrjξjξlζ4 + qlrjξjξlζ5 − i(1 + ν0τ)λrjξjζ6 = 0, r = 1, 2, 3,

−ejklξjξlζk + κjlξjξlζ4 + ajlξjξlζ5 − i(1 + ν0τ)pjξjζ6 = 0,

−qjklξjξlζk + ajlξjξlζ4 + µjlξjξlζ5 − i(1 + ν0τ)mjξjζ6 = 0,

−iτλklξlζk + iτplξlζ4 + iτmlξlζ5 + (ηjlξjξl + τ2h0 + τd0)ζ6 = 0,

(3.14)

possess only the trivial solution.
Multiply the first three equations by ζr, r = 1, 2, 3, the complex conjugate of the fourth equation

by ζ4, the complex conjugate of the fifth equation by ζ5, the complex conjugate of the sixth equation
by (1+ν0τ)

τ ζ6, and add together to obtain

crjkl(ξlζk)(ξjζr) + ϱτ2ζrζr + κjl(ξjζ4)(ξlζ4) + µjl(ξjζ5)(ξlζ5)

+ ajl
[
(ξjζ4)(ξlζ5) + (ξjζ4)(ξlζ5)

]
+ 2plξlRe

[
(1 + ν0τ)(iζ4)ζ6

]
+ 2mlξlRe

[
(1 + ν0τ)(iζ5)ζ6

]
+

(1 + ν0τ)

τ
ηjlξjξl|ζ6|2 + (τh0 + d0)(1 + ν0τ)|ζ6|2 = 0, (3.15)

In view of the inequalities (2.12) and (2.15), we have

crjkl(ξlζk)(ξjζr) =
1

4
crjkl(ξlζk + ξkζl)(ξjζr + ξrζj) ≥

δ0
4

3∑
k,j=1

|ξlζk + ξkζl|2,

κjl(ξjζ4)(ξlζ4) + µjl(ξjζ5)(ξlζ5) + ajl
[
(ξjζ4)(ξlζ5) + (ξjζ4)(ξlζ5)

]
≥ κ1

(
|ξ|2|ζ4|2 + |ξ|2|ζ5|2

)
,

ηjlξjξl ≥ δ3|ξ|2.

Therefore, by separating the imaginary part of (3.15) we find

ω

{
2ϱσ

(
|ζ1|2 + |ζ2|2 + |ζ3|2

)
+

[1 + 2ν0σ

|τ |2
ηjlξjξl + (ν0d0 − h0)

]
|ζ6|2

}
= 0.

Since ϱ > 0, σ > 0, and ν0d0 −h0 > 0 (see (2.11)) we get ζ1 = ζ2 = ζ3 = ζ6 = 0 if ω ̸= 0. The relation
(3.15) then takes the form

κjl(ξjζ4)(ξlζ4) + µjl(ξjζ5)(ξlζ5) + ajl
[
(ξjζ4)(ξlζ5) + (ξjζ4)(ξlζ5)

]
= 0

and, by positive definiteness of the matrix Λ(1) defined in (2.14), we conclude ζ4 = ζ5 = 0 since
ξ ∈ R3 \ {0}. Consequently, system (3.14) possesses only the trivial solution for ω ̸= 0.

Now, if ω = 0, then τ = σ > 0 and (3.15) can be rewritten as

crjkl(ξlζk)(ξjζr) + ϱσ2ζrζr +
(1 + ν0σ)

σ
ηjlξjξl|ζ6|2 + κjl(ξjζ4)(ξlζ4)

+ µjl(ξjζ5)(ξlζ5) + ajl
[
(ξjζ4)(ξlζ5) + (ξjζ4)(ξlζ5)

]
+ 2plξlRe

[
(1 + ν0σ)(iζ4)ζ6

]
+ 2mlξlRe

[
(1 + ν0σ)(iζ5)ζ6

]
+ (σh0 + d0)(1 + ν0σ)|ζ6|2 = 0, (3.16)

Evidently, the sum of the first three summands is nonnegative. Let us show that the sum of the
remaining terms is also nonnegative. To this end, let us set

ηj := ξjζ4, ηj+3 := ξjζ5, η7 := −ζ6, η8 := −σζ6, j = 1, 2, 3, (3.17)
and introduce the vector

Q := (η1, η2, . . . , η8)
⊤. (3.18)

It can be easily checked that (summation over repeated indices is meant from 1 to 3)

κjl(ξjζ4)(ξlζ4) + µjl(ξjζ5)(ξlζ5) + ajl
[
(ξjζ4)(ξlζ5) + (ξjζ4)(ξlζ5)

]
+ 2plξlRe

[
(1 + ν0σ)(iζ4)ζ6

]
+ 2mlξlRe

[
(1 + ν0σ)(iζ5)ζ6

]
+ (σh0 + d0)(1 + ν0σ)|ζ6|2

=
[
κjlηl + ajlηl+3 + pjη7 + ν0pjη8

]
ηj +

[
ajlηl + µjlηl+3 +mjη7 + ν0mjη8

]
ηj+3

+
[
plηl +mlηl+3 + d0η7 + h0η8

]
η7 +

[
ν0plηl + ν0mlηl+3 + h0η7 + ν0h0η8

]
η8 + σ(d0ν0 − h0)|ζ6|2
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=
8∑

p,q=1

Mpqηqηp + σ(d0ν0 − h0)|ζ6|2 =MQ ·Q+ σ(d0ν0 − h0)|ζ6|2 ≥ C0|Q|2

with some positive constant C0 due to the positive definiteness of the matrix M defined in (2.13) and
the inequality ν0d0 − h0 > 0 (see (2.11)). Therefore from (3.16) it follows that ζj = 0, j = 1, . . . , 6,
which completes the proof. �

Further we analyze properties of the inverse matrix A−1(−iξ, τ). First of all let us note that the
determinant detA(−iξ, τ) is representable as (see (3.11))

detA(−iξ, τ) = P12(ξ) + P10(ξ, τ) + P8(ξ, τ) + P6(ξ, τ) + P4(ξ, τ), (3.19)
where Pk are homogeneous polynomials in ξ of order k. In particular,

P12(ξ) = detA(0)(−iξ) = det[−A(0)(−iξ)] = det A(0)(ξ), (3.20)
where A(0)(−iξ) is given by (2.47) and

A(0)(ξ) :=−A(0)(−iξ) =


[crjklξjξl]3×3 [elrjξjξl]3×1 [qlrjξjξl]3×1 [0]3×1

[−ejklξjξl]1×3 κjlξjξl ajlξjξl 0

[−qjklξjξl]1×3 ajlξjξl µjlξjξl 0

[0]1×3 0 0 ηjlξjξl


6×6

. (3.21)

In view of (2.48) it can be shown that
P12(ξ) = det A(0)(ξ) > 0 for all ξ ∈ R3 \ {0}. (3.22)

Indeed, denote by λj , j = 1, . . . , 6, the eigenvalues of the matrix (3.21). Since λj are roots of the
equation det[A(0)(ξ)− λI6] = 0, we have

det A(0)(ξ) = λ1λ2 · · ·λ6. (3.23)
Without loss of generality we can assume that the eigenvectors associated with the real eigenvalues
are real-valued vectors. Therefore it is easy to see that the real eigenvalues of the matrix (3.21) are
positive due to (2.48). On the other side, since the entries of the matrix A(0)(ξ) are real valued, it
is evident that if λj is a complex eigenvalue of the matrix then its complex conjugate λj is also an
eigenvalue of the same matrix. Thus the product of the eigenvalues λ1λ2 · · ·λ6 is positive which proves
the desired inequality (3.22).

Consequently, for the homogeneous function P12(ξ) we have the following two-sided estimate
a∗0|ξ|12 ≤ P12(ξ) ≤ a∗∗0 |ξ|12 for all ξ ∈ R3 (3.24)

with
a∗0 = min

|ξ|=1
det A(0)(ξ) > 0, a∗∗0 = max

|ξ|=1
det A(0)(ξ) > 0. (3.25)

Further, the fourth order homogeneous polynomial P4(ξ, τ) in (3.19) reads as
P4(ξ, τ) = ϱ3τ6B(ξ, τ), (3.26)

where

B(ξ, τ) = det

κjlξjξl ajlξjξl −i(1 + ν0τ)pjξj

ajlξjξl µjlξjξl −i(1 + ν0τ)mjξj

iτplξl iτmlξl τ2h0 + τd0

 = τ detM (1)(ξ) +
τ2

ν0
detM (2)(ξ) (3.27)

with

M (1)(ξ) =

κjlξjξl ajlξjξl pjξj

ajlξjξl µjlξjξl mjξj

pjξj mjξj d0

 , (3.28)

M (2)(ξ) =

κjlξjξl ajlξjξl ν0pjξj

ajlξjξl µjlξjξl ν0mjξj

ν0pjξj ν0mjξj ν0h0

 . (3.29)
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Due to positive definiteness of the matrix (2.13), the matrices M (j)(ξ), j = 1, 2, are positive definite
as well and for all ξ ∈ R3 \ {0} and for all η ∈ R3 we have

M (j)(ξ)η · η ≥ a∗j
[
(η21 + η22)|ξ|2 + η23

]
, a∗j = const > 0, j = 1, 2. (3.30)

In particular, detM (j)(ξ) > 0 for all ξ ∈ R3 \ {0}. Denote

b∗j := min
|ξ|=1

detM (j)(ξ) > 0, j = 1, 2. (3.31)

Keeping in mind that ν0 > 0, σ > 0, and detM (j)(ξ) > 0 for all ξ ∈ R3 \ {0}, from (3.26)–(3.31) we
then derive

|P4(ξ, τ)| = ϱ3|τ |7
∣∣∣detM (1)(ξ) +

σ

ν0
detM (2)(ξ) +

iω

ν0
detM (2)(ξ)

∣∣∣
≥ ϱ3|τ |7√

2

{
detM (1)(ξ) +

σ

ν0
detM (2)(ξ) +

|ω|
ν0

detM (2)(ξ)
}

≥ ϱ3|τ |7√
2 ν0

(
b∗1ν0 + |τ |b∗2

)
|ξ|4 for all ξ ∈ R3. (3.32)

Evidently, we have also the following estimate

|P4(ξ, τ)| ≤
2ϱ3|τ |7

ν0

(
b∗∗1 ν0 + |τ |b∗∗2

)
|ξ|4 for all ξ ∈ R3 (3.33)

with
b∗∗j := max

|ξ|=1
detM (j)(ξ) > 0, j = 1, 2. (3.34)

Now, the relation (3.19) and estimates (3.24), (3.32), and (3.33) lead to the following assertion.

Lemma 3.2. Let τ = σ + iω with σ > 0 and ω ∈ R. There hold the following asymptotic relations

detA(−iξ, τ) = |ξ|12
[
a(ξ̃) +O(|ξ|−2)

]
as |ξ| → ∞, (3.35)

detA(−iξ, τ) = |ξ|4
[
b(ξ̃) +O(|ξ|2)

]
as |ξ| → 0, (3.36)

where ξ̃ = ξ/|ξ| and

a∗0 ≤ |a(ξ̃)| ≤ a∗∗0 ,
ϱ3|τ |7√
2ν0

(
b∗1ν0 + |τ |b∗2

)
≤ |b(ξ̃)| ≤ 2ϱ3|τ |7

ν0

(
b∗∗1 ν0 + |τ |b∗∗2

)
, (3.37)

with a∗0, a∗∗0 , b∗j , and b∗∗j given by (3.25), (3.31), and (3.34), respectively.

Further, we investigate behaviour of the inverse matrix A−1(−iξ, τ) at infinity and near the origin.
By (3.11) and the representation formula

A−1(−iξ, τ) = 1

detA(−iξ, τ)A
(c)(−iξ, τ),

where A(c)(−iξ, τ) = [A
(c)
kj (−iξ, τ)]6×6 is the corresponding matrix of cofactors, we derive the following

asymptotic relation for sufficiently large |ξ| (as |ξ| → ∞),

A(c)(−iξ, τ) =

[
[O(|ξ|10)]5×5 [O(|ξ|9)]5×1

[O(|ξ|9)]1×5 O(|ξ|10)

]
6×6

, (3.38)

implying

A−1(−iξ, τ) =

[
[O(|ξ|−2)]5×5 [O(|ξ|−3)]5×1

[O(|ξ|−3)]1×5 O(|ξ|−2)

]
6×6

, (3.39)
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and for sufficiently small |ξ| (as |ξ| → 0),

A(c)(−iξ, τ) =



O(|ξ|4) O(|ξ|6) O(|ξ|6) O(|ξ|4) O(|ξ|4) O(|ξ|5)
O(|ξ|6) O(|ξ|4) O(|ξ|6) O(|ξ|4) O(|ξ|4) O(|ξ|5)
O(|ξ|6) O(|ξ|6) O(|ξ|4) O(|ξ|4) O(|ξ|4) O(|ξ|5)
O(|ξ|4) O(|ξ|4) O(|ξ|4) O(|ξ|2) O(|ξ|2) O(|ξ|3)
O(|ξ|4) O(|ξ|4) O(|ξ|4) O(|ξ|2) O(|ξ|2) O(|ξ|3)
O(|ξ|5) O(|ξ|5) O(|ξ|5) O(|ξ|3) O(|ξ|3) O(|ξ|4)


6×6

, (3.40)

implying

A−1(−iξ, τ) =



O(1) O(|ξ|2) O(|ξ|2) O(1) O(1) O(|ξ|)
O(|ξ|2) O(1) O(|ξ|2) O(1) O(1) O(|ξ|)
O(|ξ|2) O(|ξ|2) O(1) O(1) O(1) O(|ξ|)
O(1) O(1) O(1) O(|ξ|−2) O(|ξ|−2) O(|ξ|−1)

O(1) O(1) O(1) O(|ξ|−2) O(|ξ|−2) O(|ξ|−1)

O(|ξ|) O(|ξ|) O(|ξ|) O(|ξ|−1) O(|ξ|−1) O(1)


6×6

. (3.41)

Since the entries of the matrixA−1(−iξ, τ) are rational functions in ξ it follows that the dominant terms
in asymptotic expansions at infinity and at the origin are homogenous functions of order mentioned
in the relations (3.39) and (3.41). Furthermore, in (3.39) the entries A−1

6j (−iξ, τ) and A−1
j6 (−iξ, τ),

j = 1, . . . , 5, with the asymptotic O(|ξ|−3) have dominant terms of type |ξ|−3χ(ξ), where χ(ξ) is an
odd homogeneous function of order 0. Therefore∫

|ξ|=1

χ(ξ) dS = 0,

and, consequently, the generalized inverse Fourier transform of the function |ξ|−3χ(ξ), considered in
the Cauchy Principal Value sense, is a homogeneous function of order 0 (see, e.g., [77, Ch. 10, § 1],
[35, Ch. 1, § 2], [80, Ch. 2, § 6]).

Let h be an infinitely differentiable function with compact support,

h ∈ C∞(R3), h(ξ) =

{
1 for |ξ| < 1,

0 for |ξ| > 2.

Then we can represent the fundamental matrix Γ(x, τ) in the form

Γ(x, τ) = F−1
ξ→x[A

−1(−iξ, τ)] = Γ(1)(x, τ) + Γ(2)(x, τ), (3.42)

where

Γ(1)(x, τ) := F−1
ξ→x

[
h(ξ)A−1(−iξ, τ)

]
, Γ(2)(x, τ) := F−1

ξ→x

[
(1− h(ξ))A−1(−iξ, τ)

]
.

Applying properties (3.2) of the generalized Fourier transform we derive that the entries of the matrix
Γ(2)(x, τ) decay at infinity (as |x| → ∞) faster than any positive power of |x|−1, while at the origin
(as |x| → 0) the singularity is defined by the asymptotic behaviour (3.39) and with the help of the
Fourier transform of homogeneous functions we find (see, e.g., [35, Ch. 1, § 2], [80, Ch. 2, § 6])

Γ(2)(x, τ) =

[
[O(|x|−1)]5×5 [O(1)]5×1

[O(1)]1×5 O(|x|−1)

]
6×6

. (3.43)

Here the dominant parts of the entries of the block matrices are homogeneous functions of the corre-
sponding order.

On the other hand, we easily establish that the entries of the matrix Γ(1)(x, τ) are infinitely differ-
entiable functions in R3 and due to formula (3.41) they have the following asymptotic behaviour at
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infinity (as |x| → ∞)

Γ(1)(x, τ) =



O(|x|−3) O(|x|−5) O(|x|−5) O(|x|−3) O(|x|−3) O(|x|−4)

O(|x|−5) O(|x|−3) O(|x|−5) O(|x|−3) O(|x|−3) O(|x|−4)

O(|x|−5) O(|x|−5) O(|x|−3) O(|x|−3) O(|x|−3) O(|x|−4)

O(|x|−3) O(|x|−3) O(|x|−3) O(|x|−1) O(|x|−1) O(|x|−2)

O(|x|−3) O(|x|−3) O(|x|−3) O(|x|−1) O(|x|−1) O(|x|−2)

O(|x|−4) O(|x|−4) O(|x|−4) O(|x|−2) O(|x|−2) O(|x|−3)


6×6

(3.44)

As above, here the dominant parts of the entries of the matrix Γ(1)(x, τ) are homogeneous functions
of the corresponding order. Therefore, the asymptotic formulas (3.43) and (3.44) can be differentiated
any times with respect to the variables xj , j = 1, 2, 3, to obtain similar asymptotic formulas for
derivatives ∂αΓ(2)(x, τ) and ∂αΓ(1)(x, τ) with arbitrary multi-index α = (α1, α2, α3).

Finally, we arrive at the following asymptotic relations for the fundamental matrix

Γ(x, τ) = O(Γ(2)(x, τ)) as |x| → 0, Γ(x, τ) = O(Γ(1)(x, τ)) as |x| → ∞,

∂αΓ(x, τ) = O(∂αΓ(2)(x, τ)) as |x| → 0, ∂αΓ(x, τ) = O(∂αΓ(1)(x, τ)) as |x| → ∞,
(3.45)

where α = (α1, α2, α3) is an arbitrary multi-index.
Note that, the fundamental matrices Γ(0)(x) and Γ(x, τ) have essentially different properties at

infinity in view of the relations (3.5) and (3.45). To describe the relationship between them in a
neighbourhood of the origin we prove the following assertion.

Lemma 3.3. Let ether τ = σ + iω with σ > 0 and ω ∈ R or τ = 0. For an arbitrary multi-index
α = (α1, α2, α3) and for sufficiently small |x| there hold the estimates

Γkj(x, τ)− Γ
(0)
kj (x) = O(1), ∂αΓkj(x, τ)− ∂αΓ

(0)
kj (x) = O(|x|−|α|),

k, j = 1, . . . , 6, |α| = |α1|+ |α2|+ |α3|.
(3.46)

Proof. For arbitrary P ̸= 0 and P +Q ̸= 0, one can easily verify the identity

1

P +Q
=

1

P
+

N∑
k=1

(−1)kQk

P k+1
+

(−1)N+1QN+1

PN+1(P +Q)
. (3.47)

Taking into consideration (3.19), (3.20), (3.24), Lemma 3.1, and applying (3.47) with P = P12(ξ) and
Q = P10(ξ, τ) + P8(ξ, τ) + P6(ξ, τ) + P4(ξ, τ), we find

A−1(−iξ, τ) = 1

detA(−iξ, τ)A
(c)(−iξ, τ) = 1

P12(ξ)
A(c)(−iξ, τ) +O(|ξ|−4) as |ξ| → ∞. (3.48)

It can be checked that for sufficiently large |ξ|

A(c)(−iξ, τ)−A(c,0)(−iξ) = [O(|ξ|9)]6×6,

where A(c,0)(−iξ) is the matrix of cofactors of A(0)(−iξ) and the dominant parts of the entries of the
right hand side matrix are homogeneous polynomials of order 9. Therefore, in view of (3.20) we get

A−1(−iξ, τ) = {A(0)(−iξ)}−1 + |ξ|−3[χkj(ξ)]6×6 + [O(|ξ|−4)]6×6 as |ξ| → ∞,

where χkj(ξ) are odd homogeneous functions of order 0. Whence the relations (3.46) follow from
properties of the generalized Fourier transform of homogeneous functions. �

Remark 3.4. Note that, the matrix Γ∗(x, τ) := [Γ(−x, τ)]⊤ = Γ⊤(−x, τ) represents a fundamental
solution to the formally adjoint differential operator A∗(∂x, τ) ≡ [A(−∂x, τ)]⊤,

A∗(∂x, τ)Γ
⊤(−x, τ) = I6δ(x). (3.49)

This follows from the relations (3.11), (3.12), and[
Γ(−x, τ)

]⊤
= F−1

ξ→x

[
{A⊤(iξ, τ)}−1

]
= F−1

ξ→x

[
{A∗(−iξ, τ)}−1

]
. (3.50)
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3.3. Fundamental matrix of the operator A(∂, 0). If τ = 0, than it is evident that detA(−iξ, 0) =
detA(0)(−iξ) due to (3.11) and (2.47), and by the same approach as above we get the following
expression for the fundamental matrix of the operator of statics A(∂, 0)

Γ(x, 0) = F−1
ξ→x

[
A−1(−iξ, 0)

]
(3.51)

where
A−1(−iξ, 0) = 1

detA(−iξ, 0) A
(c)(−iξ, 0). (3.52)

Note that, detA(−iξ, 0) is a homogeneous polynomial in ξ = (ξ1, ξ2, ξ3) of order 12. Moreover, the
cofactors A(c)

kj (−iξ, 0) are homogeneous polynomials in ξ as well, namely,

ordA(c)
kj (−iξ, 0) = 10, k, j = 1, . . . , 5, ordA(c)

66 (−iξ, 0) = 10,

ordA(c)
j6 (−iξ, 0) = 9, A

(c)
6j (−iξ, 0) = 0, j = 1, . . . , 5.

Therefore, the functions

Kj(ξ) :=
A

(c)
j6 (−iξ, 0)

detA(−iξ, 0) , j = 1, . . . , 5, (3.53)

are odd homogeneous rational functions of order −3 in ξ and, consequently,∫
|ξ|=1

Kj(ξ) dS = 0, j = 1, . . . , 5. (3.54)

Then it follows that the inverse Fourier transform of the function Kj(ξ), considered in the Principal
Value sense, is a homogeneous function of order 0 (see, e.g., [35, Ch. 1, § 2], [80, Ch. 2, § 6]) and∫

|x|=1

F−1
ξ→x[Kj(ξ)] dSx = 0, j = 1, . . . , 5, (3.55)

i.e., ∫
|x|=1

Γj6(x, 0) dS = 0, j = 1, . . . , 5, (3.56)

Therefore, the entries of the fundamental matrix Γ(x, 0) are homogeneous functions in x and

Γ(x, 0) =

[
[O(|x|−1)]5×5 [O(1)]5×1

[0]1×5 O(|x|−1)

]
6×6

. (3.57)

Moreover, since A
(c)
kj (−iξ, 0) = A

(c,0)
kj (−iξ) for k, j = 1, . . . , 5 and A

(c)
66 (−iξ, 0) = A

(c,0)
66 (−iξ), we

conclude that (see (3.4)–(3.6))

Γkj(x, 0) = Γ
(0)
kj (x), k, j = 1, . . . , 5, Γ66(x, 0) = Γ

(0)
66 (x).

As we see from formulas (3.57), (3.44), and (3.45) the entries of the fundamental matrices Γ(x, 0) and
Γ(x, τ) with Re τ = σ > 0 have essentially different properties at infinity.

3.4. Integral representation formulae of solutions. For simplicity, in this subsection we assume
(if not otherwise stated) that

S = ∂Ω± ∈ Cm,κ with integer m ≥ 1 and 0 < κ ≤ 1,

τ = σ + iω with σ > 0, ω ∈ R.
(3.58)

Let us introduce the generalized single and double layer potentials, and the Newton type volume
potential

VS(g)(x) = V (g)(x) =

∫
S

Γ(x− y, τ)g(y) dSy, x ∈ R3 \ S, (3.59)

WS(g)(x) =W (g)(x) =

∫
S

[
P(∂y, n(y), τ)Γ

⊤(x− y, τ)
]⊤
g(y) dSy, x ∈ R3 \ S, (3.60)

NΩ±(h)(x) =

∫
Ω±

Γ(x− y, τ)h(y)dy, x ∈ R3, (3.61)
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where P(∂, n, τ) is the boundary differential operator defined by (2.58), Γ( · , τ) is the fundamental
matrix of the operator A(∂, τ), g = (g1, . . . , g6)

⊤ is a density vector function defined on S, while a
density vector function h = (h1, . . . , h6)

⊤ is defined on Ω±. We assume that in the case of unbounded
domain Ω− the support of the vector function h is a compact domain.

Due to the equality
6∑

j=1

Akj(∂x, τ)
(
[P(∂y, n(y), τ)Γ

⊤(x− y, τ)]⊤
)
jp

=
6∑

j,q=1

Akj(∂x, τ)Ppq(∂y, n(y), τ)Γjq(x− y, τ)

=
6∑

j,q=1

Ppq(∂y, n(y), τ)Akj(∂x, τ)Γjq(x− y, τ) = 0, x ̸= y, k, p = 1, . . . , 6,

it can easily be checked that the potentials defined by (3.59) and (3.60) are C∞–smooth in
R3 \ S and solve the homogeneous equation A(∂, τ)U(x) = 0 in R3 \ S for an arbitrary Lp-summable
vector function g. By standard arguments it can be shown that the volume potential solves the
nonhomogeneous equation (cf., e.g., [57, Ch. 5, § 10])

A(∂x, τ)NΩ±(h) = h in Ω± for h ∈ [C0,κ(Ω±)]6.

This formula holds also true almost everywhere in Ω± for h ∈ [Lp(Ω
±)]6, provided that in the case of

unbounded domain Ω− the support of the vector function h is a compact domain (cf. [57]).
With the help of Green’s formulas (2.200) and (2.210) we can prove the following assertions (cf.,

e.g., [75, Ch. 6, Theorem 6.10], [92, Ch. 1, Lemma 2.1; Ch. 2, Lemma 8.2]).
Theorem 3.5. Let S = ∂Ω+ be C1,κ-smooth with 0 < κ ≤ 1 and let U be a regular vector of the class
[C2(Ω+)]6. Then there holds the integral representation formula

W ({U}+)(x)− V ({T U}+)(x) +NΩ+(A(∂, τ)U)(x) =

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(3.62)

This formula can be extended to Lipschitz domains and to vector functions satisfying the conditions
U ∈ [W 1

p (Ω
+)]6 and A(∂, τ)U ∈ [Lp(Ω

+)]6 with 1 < p <∞.
Proof. For the smooth case it easily follows from Green’s formula (2.200) with the domain of in-
tegration Ω+ \ B(x, ε), where x ∈ Ω+ is treated as a fixed parameter and B(x, ε) ⊂ Ω+ is a
ball centered at x and radius ε. One needs to take the j-th column of the fundamental matrix
Γ∗(y − x, τ) = [Γ(x− y, τ)]⊤ for U ′(y) and pass to the limit as ε→ 0, taking into account that

lim
ε→0

∫
Σ(x,ε)

P(∂y, n(y), τ)Γ
⊤(x− y, τ) dS = I6, (3.63)

where Σ(x, ε) = ∂B(x, ε) and n(y) = (y−x)/ε is the exterior normal vector to the sphere Σ(x, ε) (see
Appendix D).

The second part of the theorem can be shown by standard limiting procedure. �
Similar representation formula holds in the exterior domain Ω−.

Theorem 3.6. Let S = ∂Ω− be C1,κ-smooth with 0 < κ ≤ 1 and let U be a regular vector of
the class [C2(Ω−)]6 satisfying the decay conditions at infinity (2.207). Then there holds the integral
representation formula

−W ({U}−)(x) + V ({T U}−)(x) +NΩ−(A(∂, τ)U)(x) =

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−.
(3.64)

This integral representation formula can be extended to Lipschitz domains and to vector functions
U ∈ [W 1

p,loc(Ω
−)]6 ∩ Zτ (Ω

−) with A(∂, τ)U ∈ [Lp,comp(Ω
−)]6 with 1 < p <∞.

Proof. The proof for regular case immediately follows from Theorem 3.5. Indeed, one needs to write
the integral representation formula (3.62) for bounded domain Ω− ∩ B(0, R), send then R to +∞
and take into consideration that the surface integrals over Σ(0, R) tend to zero due to the conditions
(2.207) and the decay properties of the fundamental matrix at infinity.

The second part of the theorem again can be shown by standard limiting procedure. �
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Corollary 3.7. Let S = ∂Ω± be C1,κ-smooth with 0 < κ ≤ 1 and U ∈ [C2(Ω±)]6 be a solution to the
homogeneous equations A(∂, τ)U = 0 in Ω+ and Ω− satisfying conditions (2.207). Then the following
representation formula holds

U(x) =W ([U ]S)(x)− V ([T U ]S)(x), x ∈ Ω+ ∪ Ω−, (3.65)
where [U ]S = {U}+S − {U}−S and [T U ]S = {T U}+S − {T U}−S .

This formula can be extended to Lipschitz domains and to solution vector functions U from the
space [W 1

p,loc(Ω
−)]6 with 1 < p <∞ satisfying conditions (2.207).

Proof. It immediately follows from Theorems 3.5 and 3.6. �
It is evident that representation formulas similar to (3.62), (3.64), and (3.65) hold also for domains

Ω±
Σ with interior cracks. For example, for a solution vector U ∈ [W 1

p (Ω
+
Σ)]

6 to the homogeneous
equations A(∂, τ)U = 0 in Ω+

Σ the following representation formula holds true

WS({U}+S )(x)− VS({T U}+S )(x) +NΩ+
Σ
(A(∂, τ)U)(x)

+WΣ([U ]Σ)(x)− VΣ([T U ]Σ)(x) =

{
U(x) for x ∈ Ω+

Σ ,

0 for x ∈ Ω−.
(3.66)

Note that, if U ∈ [W 1
p (Ω

+
Σ)]

6 and A(∂, τ)U ∈ [Lp(Ω
+
Σ)]

6 or U ∈ [W 1
p,loc(Ω

−
Σ)]

6 and A(∂, τ)U ∈
[Lp,comp(Ω

−
Σ)]

6, then U ∈ [W 2
p (Ω)]

6 for arbitrary Ω ⊂ Ω±
Σ due to the interior regularity results, while

by the conventional trace theorem for {U}± and the definition of the generalized traces of the stress
vector {T U}± we have

{U}±∈
[
B

1− 1
p

p,p (S)
]6
, {T U}±∈

[
B

− 1
p

p,p (S)
]6
, [U ]Σ∈rΣ

[
B̃

1− 1
p

p,p (Σ)
]6
, [T U ]Σ∈rΣ

[
B̃

− 1
p

p,p (Σ)
]6
. (3.67)

Therefore, the surface integrals over the exterior boundary manifold S or over the crack surface Σ, con-
taining the traces of the generalized stress vector, should be understood in the sense of dualities which
are well-defined between the corresponding pairs of the adjoint spaces [B

− 1
p

p,p (S)]6 and [B
1
p

p′,p′(S)]6, or

[B̃
− 1

p
p,p (Σ)]6 and [B

1
p

p′,p′(Σ)]6, respectively, with 1/p+ 1/p′ = 1.

3.5. Uniqueness results for exterior BVPs of statics. Here we study the uniqueness of solutions
to exterior BVPs of statics of thermo-electro-magneto-elasticity, which corresponds to the case τ = 0.
Throughout this subsection we assume that S, Σ, and ∂Σ are Lipschitz if not otherwise stated. First
we analyze the temperature field.

3.5.1. Asymptotic behaviour of the temperature field at infinity. As we have mentioned above, in
Subsection 2.7.4, in the case of static problems the differential equation (see (2.35) and (2.45))

A66(∂x, 0)ϑ ≡ A
(0)
66 (∂x)ϑ ≡ ηjl∂j∂lϑ = Φ6 (3.68)

and the corresponding boundary and crack type conditions for temperature field are separated. Here
the right hand side function Φ6 has a compact support. Therefore, one can easily prove the correspond-
ing uniqueness theorems for the homogenous BVPs for the temperature function ϑ ∈ W 1

2,loc(Ω
−) or

ϑ ∈W 1
2,loc(Ω

−
Σ) satisfying the decay condition ϑ = o(1) at infinity. This decay condition automatically

implies that
∂αϑ(x) = O(|x|−|α|−1) as |x| → ∞ (3.69)

for arbitrary multi-index α = (α1, α2, α3) with |α| = α1 + α2 + α3.
For such solutions to the differential equation (3.68) we have the following integral representation

formula (for the domain Ω−
Σ say)

ϑ(x) =

∫
S

Γ
(0)
66 (x− y){∂n(y)ϑ(y)}− dSy −

∫
S

∂n(y)Γ
(0)
66 (x− y){ϑ(y)}− dSy

−
∫
Σ

Γ
(0)
66 (x− y)[∂n(y)ϑ(y)]Σ dSy +

∫
Σ

∂n(y)Γ
(0)
66 (x− y)[ϑ(y)]Σ dSy

+

∫
Ω−

Σ

Γ
(0)
66 (x− y)Φ6(y)dy, x ∈ Ω−

Σ , (3.70)
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where Γ
(0)
66 (x) is the fundamental solution of the operator A66(∂, 0) ≡ A

(0)
66 (∂) defined by (3.6), ∂n(y) =

T66(∂y, n(y)) = ηkjnj(y)∂k denotes the co-normal derivative,

[ϑ(y)]Σ = {ϑ(y)}+ − {ϑ(y)}−,
[
∂n(y)ϑ(y)

]
Σ
=

{
∂n(y)ϑ(y)

}+ −
{
∂n(y)ϑ(y)

}− on Σ.

If Ω− does not contain an interior crack Σ, then in (3.70) we have not the surface integrals over Σ.
Applying (3.70) we derive the following asymptotic relation

ϑ(x) =
θ0

(Dx · x)1/2
+O(|x|−2) as |x| → ∞, (3.71)

where D = [dkj ]3×3 is the same as in (3.6), θ0 is a real constant which is calculated explicitly

θ0 = lim
|x|→∞

(Dx · x)1/2ϑ(x) = −α0

4π

[ ∫
S

{∂n(y)ϑ(y)}− dSy −
∫
Σ

[∂n(y)ϑ(y)]Σ dSy +

∫
Ω−

Σ

Φ(y) dy

]
(3.72)

with α0 being defined in (3.6). Note that (3.71) can be differentiated any times with respect to xj ,
j = 1, 2, 3. In particular, in view of the symmetry property djl = dlj , we have

∂jϑ(x) = − θ0djlxl
(Dx · x)3/2

+O(|x|−3) as |x| → ∞, j = 1, 2, 3. (3.73)

3.5.2. General uniqueness results. First, let us consider the exterior Dirichlet problem of statics of
thermo-electro-magneto-elasticity:

A(∂x, 0)U = Φ in Ω−, (3.74)
{U}− = g on S = ∂Ω−, (3.75)

where U = (u, φ, ψ, ϑ)⊤ ∈ [W 1
2,loc(Ω

−)]6 is a sought for vector and

Φ = (Φ1, . . . ,Φ6)
⊤ ∈ [L2,comp(Ω

−)]6, g = (g1, . . . , g6)
⊤ ∈ [H

1
2
2 (S)]

6.

Our goal is to establish asymptotic conditions at infinity which guarantee the uniqueness for the BVP
(3.74), (3.75).

For the temperature function ϑ we have the separated exterior Dirichlet problem
A66(∂x, 0)ϑ = ηkj∂k∂jϑ = Φ6 in Ω−, (3.76)

{ϑ}− = g6 on S = ∂Ω−. (3.77)
We assume that

ϑ(x) = O(|x|−1) as |x| → ∞. (3.78)
Then the BVP (3.76)–(3.78) is uniquely solvable for arbitrary Φ6 and g6, and there holds the asymp-
totic relation (3.71) with

θ0 = lim
|x|→∞

(Dx · x)1/2ϑ(x) = −α0

4π

[ ∫
S

{
∂n(y)ϑ(y)

}−
dSy +

∫
Ω0

Φ(y) dy

]
(3.79)

which follows from (3.6) and the representation formula

ϑ(x) =

∫
S

Γ
(0)
66 (x− y){∂n(y)ϑ(y)}− dSy −

∫
S

∂n(y)Γ
(0)
66 (x− y){ϑ(y)}− dSy

+

∫
Ω0

Γ
(0)
66 (x− y)Φ6(y) dy, x ∈ Ω−, (3.80)

where Ω0 = suppΦ6 ⊂ Ω− is compact.
Since Φ6 has a compact support we see that outside of suppΦ6 the temperature function ϑ is a

real analytic function with respect to x in Ω− \ Ω0.
Thus, assuming that the temperature function is known we can substitute it in the first five equa-

tions in (3.74). Then from (3.74), (3.75) we obtain the following BVP for the unknown vector function
Ũ = (u, ψ, φ)⊤ ∈ [W 1

2,loc(Ω
−)]5

Ã(0)(∂x)Ũ = Ψ̃ + Φ̃ in Ω−, (3.81)

{Ũ}− = g̃ on S = ∂Ω−, (3.82)
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where the differential operator Ã(∂x, 0) = Ã(0)(∂x) = [Ã
(0)
kj (∂x)]5×5 is defined by (2.380), Φ̃ =

(Φ1, . . . ,Φ5)
⊤ ∈ [L2,comp(Ω

−)]5, g̃ = (g1, . . . , g5)
⊤ ∈ [H

1
2
2 (S)]

5, and

Ψ̃ = (λ1j∂jϑ, λ2j∂jϑ, λ3j∂jϑ, pj∂jϑ,mj∂jϑ)
⊤ ∈ [L2(Ω

−)]5. (3.83)

Note that Ψ̃ has not a compact support and due to formulas (3.73)

Ψ̃(x) = θ0P̃ (x) + Q̃(x), (3.84)

where θ0 is defined in (3.79), Q̃ ∈ [L2(Ω
−)]5 ∩ [C∞(R3 \ suppΦ6)]

5 and

Q̃(x) = O(|x|−3) as |x| → ∞, (3.85)

while P̃ (x) is an odd, C∞-smooth homogeneous vector function of order −2,

P̃ (x) = − 1

(Dx, x)3/2
(λ1jdjlxl, λ2jdjlxl, λ3jdjlxl, pjdjlxl,mjdjlxl)

⊤. (3.86)

Therefore, it is easy to see that in a vicinity of infinity, more precisely, outside of suppΦ the solution
vector Ũ of equation (3.81) is C∞-smooth but we can not assume that Ũ decays at infinity, in general.

Now, we establish asymptotic properties of Ũ(x) as |x| → ∞. To this end, let us consider the
equation

Ã(0)(∂x)Ũ = θ0P̃ in R3 \ {0}, (3.87)
where θ0 is given by (3.79). In view of (3.86) and in accordance with Lemma A.2 in Appendix A, equa-
tion (3.87) possesses a unique solution W̃ (0) ∈ [C∞(R3 \{0})]5 in the space of zero order homogeneous
vector functions satisfying the condition∫

|x|=1

W̃ (0)(x) dS = 0. (3.88)

This solution reads as (cf. (A.17))

W̃ (0)(x) = θ0Ũ
(0)(x) with Ũ (0)(x) := F−1

ξ→x

(
v.p.[Ã(0)(−iξ)]−1F P̃ (ξ)

)
. (3.89)

Equation (3.81) can be rewritten as

Ã(0)(∂x)Ũ = θ0P̃ + Q̃+ Φ̃ in Ω−, (3.90)
and by Lemmas A.1–A.3 and Corollary A.5 (see Appendix A) we conclude that a solution of (3.90),
which is bounded at infinity, has the form

Ũ(x) = C + θ0Ũ
(0)(x) + Ũ∗(x), x ∈ Ω−, (3.91)

where C = (C1, . . . , C5)
⊤ is an arbitrary constant vector, Ũ (0) is given by (3.89) and satisfies the

condition (3.88), Ũ∗ ∈ [W 1
2,loc(Ω

−)]5 ∩ [C∞(R3 \ suppΦ)]5 and

∂αŨ∗(x) = O
(
|x|−1−|α| ln |x|

)
as |x| → ∞ (3.92)

for arbitrary multi-index α = (α1, α2, α3).
Along with the boundedness at infinity, if we require that the mean value of a solution vector Ũ

over the sphere Σ(O,R) tends to zero as R→ ∞, i.e.,

lim
R→∞

1

4πR2

∫
Σ(O,R)

Ũ(x) dΣ(O,R) = 0, (3.93)

then the constant summand C in formula (3.91) vanishes and we arrive at the following assertion.

Lemma 3.8. Let S be Lipschitz and Ũ ∈ [W 1
2,loc(Ω

−)]5 be a solution of equation (3.90), i.e., equation
(3.81), which is bounded at infinity and satisfies condition (3.93). Then

Ũ(x) = θ0Ũ
(0)(x) + Ũ∗(x), x ∈ Ω−, (3.94)

where Ũ (0) is given by (3.89) and Ũ∗ is as in (3.91).

Now, let us return to the exterior Dirichlet BVP (3.74), (3.75) and analyze the uniqueness question.
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Theorem 3.9. Let S be Lipschitz. The exterior Dirichlet boundary value problem (3.74), (3.75) has
at most one solution U = (u, φ, ψ, ϑ)⊤ in the space [W 1

2,loc(Ω
−)]6, provided

ϑ(x) = O(|x|−1) as |x| → ∞, (3.95)

and Ũ = (u, φ, ψ)⊤ is bounded at infinity and satisfies the condition (3.93).

Proof. Let U (1) = (u(1), φ(1), ψ(1), ϑ(1))⊤ and U (2) = (u(2), φ(2), ψ(2), ϑ(2))⊤ be two solutions of the
problem under consideration with properties indicated in the theorem. Then the difference

V = (u′, φ′, ψ′, ϑ′)⊤ = U (1) − U (2)

solves the corresponding homogeneous problem.
Therefore, for the temperature function ϑ′ we get the homogeneous Dirichlet problem of type

(3.76), (3.77) (with Φ6 = 0, g6 = 0) and since ϑ′ satisfies the decay condition (3.95), it is identical
zero in Ω−.

Consequently, the vector Ṽ = (u′, φ′, ψ′)⊤ is a solution of the homogeneous exterior Dirichlet
problem

A(0)(∂)Ṽ = 0 in Ω−, (3.96)

{Ṽ }− = 0 on S = ∂Ω−. (3.97)

Moreover, the vector Ṽ satisfies the condition (3.93) with Ṽ for Ũ since both vector functions Ũ (1) =

(u(1), φ(1), ψ(1))⊤ and Ũ (2) = (u(2), φ(2), ψ(2))⊤ satisfy the same condition.
In accordance with Lemma 3.8 then Ṽ is representable in the form (3.94),

Ṽ (x) = θ′0Ũ
(0)(x) + Ṽ ∗(x), x ∈ Ω−,

where Ũ (0) is given by (3.89),

∂αṼ ∗(x) = O(|x|−1−|α| ln |x|) as |x| → ∞

for arbitrary multi-index α and θ′0 = lim
|x|→∞

(Dx · x)1/2ϑ′(x) = 0 since ϑ′ = 0 in Ω− (cf. (3.79)).

Therefore,
∂αṼ = O(|x|−1−|α| ln |x|) as |x| → ∞. (3.98)

For vectors satisfying the decay conditions (3.98) we can easily derive the following Green’s formula
(cf. (2.382)) ∫

Ω−

[
Ã(0)(∂)Ṽ · Ṽ + Ẽ(Ṽ , Ṽ )

]
dx = −

⟨
{T Ṽ }−, {Ṽ }−

⟩
∂Ω− , (3.99)

where T (∂, n) is given by (2.381) and

Ẽ(Ṽ , Ṽ ) = crjkl∂lu
′
k∂ju

′
r + κjl∂lφ

′∂jφ
′ + ajl(∂lφ

′∂jψ
′ + ∂jψ

′∂lφ
′) + µjl∂lψ

′∂jψ
′. (3.100)

From (3.96), (3.97) and (3.99), (3.100) along with the inequalities (2.10) we get
∂lu

′
k(x) + ∂ku

′
l(x) = 0, ∂kφ

′(x) = 0, ∂kψ
′(x) = 0, x ∈ Ω−, k, l = 1, 2, 3,

implying u′(x) = a × x + b, φ′(x) = b4, ψ′(x) = b5, x ∈ Ω−, where a = (a1, a2, a3) and
b = (b1, b2, b3) are arbitrary constant vectors, and b4 and b5 are arbitrary constants. Now, in view
of (3.98) we arrive at the equalities u′(x) = 0, φ′(x) = 0 and ψ′(x) = 0 for x ∈ Ω−. Consequently,
U (1) = U (2) in Ω−. �

The proof of the following theorem is word for word.

Theorem 3.10. Let S be Lipschitz. The exterior Neumann and mixed boundary value problems of
statics of thermo-electro-magneto-elasticity have at most one solution U = (u, φ, ψ, ϑ)⊤ in the space
[W 1

2,loc(Ω
−)]6, provided

ϑ(x) = O(|x|−1) as |x| → ∞, (3.101)
and Ũ = (u, φ, ψ)⊤ is bounded at infinity and satisfies the condition (3.93).

Let us introduce the following class of vector functions.
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Definition 3.11. We say that a vector function
U = (u, φ, ψ, ϑ)⊤ ≡ (U1, . . . , U6)

⊤ ∈ [W 1
p,loc(Ω

−)]6

belongs to the class Z(Ω−) if the components of U satisfy the following asymptotic conditions:

Ũ(x) := (u(x), φ(x), ψ(x))⊤ = O(1) as |x| → ∞,

U6(x) = ϑ(x) = O(|x|−1) as |x| → ∞, (3.102)

lim
R→∞

1

4πR2

∫
ΣR

Uk(x) dΣR = 0, k = 1, 2, . . . , 5,

where ΣR is the sphere centered at the origin and radius R.

Remark 3.12. Due to Definition 3.11 and Theorems 3.9 and 3.10, we see that for a Lipschitz domain
Ω− the homogeneous exterior Dirichlet, Neumann, and mixed BVPs of statics possess only the trivial
solutions in the class [W 1

2,loc(Ω
−)]6 ∩ Z(Ω−).

4. Properties of Generalized Potentials

4.1. Mapping properties. Here we establish the mapping and regularity properties of the single
and double layer potentials and the boundary pseudodifferential operators generated by them in the
Hölder (Ck,κ), Sobolev–Slobodetskii (W s

p ), Bessel potential (Hs
p) and Besov (Bs

p,q) spaces. They can
be established by standard methods (see, e.g., [57], [77], [100], [35], [30], [31], [91], [92], [75], [90],
and [29]). We remark only that the layer potentials corresponding to the fundamental matrices with
different values of the parameter τ (τ ′ and τ ′′ say) have the same smoothness properties and possess the
same jump relations, since the entries of the difference of the fundamental matrices Γ(x, τ ′)−Γ(x, τ ′′)
are bounded and their derivatives of order m have a singularity of type O(|x|−m) in a neighbourhood
of the origin. This implies that the boundary integral operators generated by the corresponding single
layer potentials (respectively, by the double layer potentials) constructed with the help of the kernels
Γ(x, τ ′) and Γ(x, τ ′′) differ by a compact perturbations. Therefore, using the technique and word for
word arguments given in the references [57], [75], [30], [13], [12], and [29] we can prove the following
theorems concerning the above introduced generalized potentials.

Theorem 4.1. Let S, m, and κ be as in (3.58), 0 < κ′ < κ, and let k ≤ m− 1 be integer. Then the
operators

V : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(Ω±)]6, W : [Ck,κ′
(S)]6 −→ [Ck,κ′

(Ω±)]6, (4.1)
are continuous.

For any g ∈ [C0,κ′
(S)]6, h ∈ [C1,κ′

(S)]6, and for any x ∈ S

{V (g)(x)}± = V (g)(x) = Hg(x), (4.2){
T (∂x, n(x), τ)V (g)(x)

}±
= [∓2−1I6 +K]g(x), (4.3)

{W (g)(x)}± = [±2−1I6 +N ]g(x), (4.4){
T (∂x, n(x), τ)W (h)(x)

}+
=

{
T (∂x, n(x), τ)W (h)(x)

}−
= Lh(x), m ≥ 2, (4.5)

where

Hg(x) ≡ HSg(x) :=

∫
S

Γ(x− y, τ)g(y) dSy, x ∈ S, (4.6)

Kg(x) ≡ KSg(x) :=

∫
S

[
T (∂x, n(x), τ)Γ(x− y, τ)

]
g(y) dSy, x ∈ S, (4.7)

N g(x) ≡ N
S
g(x) :=

∫
S

[
P(∂y, n(y), τ)Γ

⊤(x− y, τ)
]⊤
g(y) dSy, x ∈ S, (4.8)

Lh(x) ≡ L
S
h(x) := lim

Ω±∋z→x
T (∂z, n(x), τ)

∫
S

[
P(∂y, n(y), τ)Γ

⊤(z − y, τ)
]⊤
h(y) dSy, x ∈ S. (4.9)

Proof. The proof of the relations (4.2)–(4.4) can be performed by standard arguments (see, e.g., [57,
Ch. 5]). We demonstrate here only a simplified proof of relation (4.5), known as Liapunov–Tauber
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type theorem. Let h ∈ [C1,κ′
(S)]6, S ∈ C2,κ, and consider the double layer potential U := W (h) ∈

[C1,κ′
(Ω±)]6. Then by Corollary 3.7 and the jump relations (4.4) we have

U(x) =W ([U ]S)(x)− V ([T U ]S)(x), x ∈ Ω±,

i.e.,
W (h)(x) =W (h)(x)− V ([TW (h)]S)(x), x ∈ Ω±,

since [U ]S = {W (h)}+ − {W (h)}− = h on S due to (4.4). Therefore V ([TW (h)]S) = 0 in Ω± and in
view of (4.3) we conclude{

T V ([TW (h)]S)
}− −

{
T V ([TW (h)]S)

}+
= [TW (h)]S = {TW (h)}+ − {TW (h)}− = 0

on S, which completes the proof. �

Using the properties of the fundamental matrix Γ(x−y, τ) it can easily be shown that the operators
K and N are singular integral operators, H is a smoothing (weakly singular) integral operator, while
L is a singular integro-differential operator. For a C∞-smooth surface S all these boundary operators
can be treated as pseudodifferential operators on S (cf., [1], [51], [31]). In contrast to the classical
elasticity case, neither H and L are self-adjoint and nor K and N are mutually adjoint operators. For
the adjoint operators H∗, K∗, and N ∗ we have

H∗g(x) ≡ H∗
τg(x) :=

∫
S

Γ∗(x− y, τ)g(y) dSy, x ∈ S, (4.10)

K∗g(x) ≡ K∗
τg(x) :=

∫
S

[
T (∂y, n(y), τ)[Γ

∗(x− y, τ)]⊤
]⊤

g(y) dSy, x ∈ S, (4.11)

N ∗g(x) ≡ N ∗
τ g(x) :=

∫
S

P(∂x, n(x), τ)Γ
∗(x− y, τ)g(y) dSy, x ∈ S, (4.12)

where Γ∗(x−y, τ) = [Γ(y − x, τ)]⊤ is a fundamental matrix of the operator A∗(∂, τ) (see Remark 3.4).
These adjoint operators are defined by the duality relations for complex-valued function spaces (cf.
(2.203))

⟨Hg, h⟩S = ⟨g,H∗h⟩S , ⟨Kg, h⟩S = ⟨g,K∗h⟩S , ⟨N g, h⟩S = ⟨g,N ∗h⟩S . (4.13)
It is easy to see that the adjoint boundary operators are generated by the “adjoint” single layer
and double layer potentials constructed with the help of the fundamental matrix Γ∗(x − y, τ). In
particular, let

V ∗
S (g)(x) = V ∗(g)(x) :=

∫
S

Γ∗(x− y, τ)g(y) dSy, (4.14)

W ∗
S(g)(x) =W ∗(g)(x) =

∫
S

[
T (∂y, n(y), τ)[Γ

∗(x− y, τ)]⊤
]⊤
g(y) dSy. (4.15)

Then for any solution U∗ of the equation A∗(∂x, τ)U
∗ = 0 in Ω+ we have the representation formula

U∗(x) =W ∗({U∗}+)(x)− V ∗({PU∗}+)(x), x ∈ Ω+, (4.16)

which can be obtained by Green’s identity (2.200) (cf., Theorem 3.5). The right hand side expression
in (4.16) vanishes for x ∈ Ω−. Clearly, the layer potential operators V ∗ and W ∗ have the same
mapping properties as the operators V and W , namely

V ∗ : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(Ω±)]6, W ∗ : [Ck,κ′
(S)]6 −→ [Ck,κ′

(Ω±)]6, (4.17)

where S, m, κ, κ′, and k ≤ m − 1 are as in Theorem 4.1. Moreover, for g ∈ [C0,κ′
(S)]6 and

h ∈ [C1,κ′
(S)]6 the following jump relations hold on S

{V ∗(g)(x)}± = V ∗(g)(x) = H∗g(x), x ∈ S, (4.18){
P(∂x, n(x), τ)V

∗(g)(x)
}±

= [∓2−1I6 +N ∗]g(x), x ∈ S, (4.19)
{W ∗(g)(x)}± = [±2−1I6 +K∗]g(x), x ∈ S, (4.20){

P(∂x, n(x), τ)W
∗(h)(x)

}+
=

{
P(∂x, n(x), τ)W

∗(h)(x)
}−

= L∗h(x), m ≥ 2, x ∈ S. (4.21)
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Theorem 4.2. Let S be a Lipschitz surface. The operators V , W , V ∗, and W ∗ can be extended to
the continuous mappings

V, V ∗ : [H
− 1

2
2 (S)]6 −→ [H1

2 (Ω
+)]6

[
[H

− 1
2

2 (S)]6 −→ [H1
2,loc(Ω

−)]6
]
,

W,W ∗ : [H
1
2
2 (S)]

6 −→ [H1
2 (Ω

+)]6
[
[H

1
2
2 (S)]

6 −→ [H1
2,loc(Ω

−)]6
]
.

The jump relations (4.2)–(4.5) and (4.18)–(4.21) on S remain valid for the extended operators in the
corresponding function spaces.

Proof. It is word for word of the proofs of the similar theorems in [25] and [75]. �

Theorem 4.3. Let S, m, κ, κ′ and k be as in Theorem 4.1. Then the operators

H,H∗ : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(S)]6, m ≥ 1, (4.22)

: [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6, m ≥ 1, (4.23)

K,N ∗ : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (4.24)

: [H
− 1

2
2 (S)]6 −→ [H

− 1
2

2 (S)]6, m ≥ 1, (4.25)

N ,K∗ : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (4.26)

: [H
1
2
2 (S)]

6 −→ [H
1
2
2 (S)]

6, m ≥ 1, (4.27)

L,L∗ : [Ck,κ′
(S)]6 −→ [Ck−1,κ′

(S)]6, m ≥ 2, k ≥ 1, (4.28)

: [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6 m ≥ 2, (4.29)

are continuous. The operators (4.23), (4.25), (4.27), and (4.29) are bounded if S is a Lipschitz surface
and the following equalities hold true in appropriate function spaces:

NH = HK, LN = KL, HL = −4−1I6 +N 2, LH = −4−1I6 +K2. (4.30)

Proof. It is word for word of the proofs of the similar theorems in [57], [31], [25] and [75]. �

The next assertion is a consequence of the general theory of elliptic pseudodifferential operators
on smooth manifolds without boundary (see, e.g., [1], [35], [100], [31], [29], [12], and the references
therein).

Theorem 4.4. Let V , W , H, K, N , L, V ∗, W ∗, H∗, K∗, N ∗, and L∗ be as in Theorems 4.1, 4.2
and 4.3 and let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer potential operators (4.1), (4.17)
and the boundary integral (pseudodifferential) operators (4.22)–(4.29) can be extended to the following
continuous operators

V, V ∗ : [Bs
p,p(S)]

6 −→ [H
s+1+ 1

p
p (Ω+)]6

[
[Bs

p,p(S)]
6 −→ [H

s+1+ 1
p

p,loc (Ω−)]6 ∩ Zτ (Ω
−)

]
,

: [Bs
p,q(S)]

6 −→ [B
s+1+ 1

p
p,q (Ω+)]6

[
[Bs

p,q(S)]
6 −→ [B

s+1+ 1
p

p,q,loc (Ω−)]6 ∩ Zτ (Ω
−)

]
,

W,W ∗ : [Bs
p,p(S)]

6 −→ [H
s+ 1

p
p (Ω+)]6

[
[Bs

p,p(S)]
6 −→ [H

s+ 1
p

p,loc(Ω
−)]6 ∩ Zτ (Ω

−)
]
,

: [Bs
p,q(S)]

6 −→ [B
s+ 1

p
p,q (Ω+)]6

[
[Bs

p,q(S)]
6 −→ [B

s+ 1
p

p,q,loc(Ω
−)]6 ∩ Zτ (Ω

−)
]
,

H,H∗ : [Hs
p(S)]

6 −→ [Hs+1
p (S)]6

[
[Bs

p,q(S)]
6 −→ [Bs+1

p,q (S)]6
]
,

K,N ∗ : [Hs
p(S)]

6 −→ [Hs
p(S)]

6
[
[Bs

p,q(S)]
6 −→ [Bs

p,q(S)]
6
]
,

N ,K∗ : [Hs
p(S)]

6 −→ [Hs
p(S)]

6
[
[Bs

p,q(S)]
6 → [Bs

p,q(S)]
6
]
,

L,L∗ : [Hs+1
p (S)]6 −→ [Hs

p(S)]
6

[
[Bs+1

p,q (S)]6 → [Bs
p,q(S)]

6
]
.

The jump relations (4.2)–(4.5) and (4.18)–(4.21) remain valid in appropriate function spaces for
arbitrary g, h ∈ [Bs

p,q(S)]
6 with s ∈ R if the limiting values (traces) on S are understood in the sense

described in [100].
In particular,
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(i) if g ∈ [B
− 1

p
p,q (S)]6, then relations (4.2) and (4.18) remain valid in the sense of the space

[B
1− 1

p
p,q (S)]6, while the relations (4.3) and (4.19) remain valid in the sense of the space

[B
− 1

p
p,q (S)]6;

(ii) if g, h ∈ [B
1− 1

p
p,q (S)]6, then relations (4.4) and (4.20) remain valid in the sense of the space

[B
1− 1

p
p,q (S)]6, while the relations (4.5) and (4.21) remain valid in the sense of the space

[B
− 1

p
p,q (S)]6.

Proof. It is word for word of the proofs of the similar theorems in [31], [12] and [29]. �
Remark 4.5. Let Φ ∈ [Lp,comp(R3)]6 with p > 1. Then the Newtonian volume potential NR3(Φ)
defined by (3.61) possesses the following properties (cf. [77, Ch. 11])

NR3(Φ) ∈ [W 2
p,loc(R3)]6, A(∂, τ)NR3(Φ) = Φ almost everywhere in R3.

Further, due to the properties of the fundamental matrices Γ(x−y, τ) and Γ∗(x−y, τ) at infinity (see
(3.44), (3.45) and Remark 3.4) for τ = σ + iω with σ > 0 it follows that the single and double layer
potentials, and the Newtonian volume potentials with compactly supported densities, associated with
the differential operators A(∂x, τ) and A∗(∂x, τ), possess the asymptotic decay properties (2.207), i.e.,
they belong to the class Zτ (Ω

−).
Moreover, for regular densities the volume potential operator NΩ+ possesses the following properties

(cf. [45], [78], [57], [3]): If S = ∂Ω+ ∈ C2,α, then the following operators are continuous,
NΩ+ : [L∞(Ω+)]6 −→ [C1,γ(R3)]6 for all 0 < γ < 1, (4.31)
NΩ+ : [C0,β(Ω+)]6 −→ [C2,β(Ω+)]6, 0 < β < 1, (4.32)
NΩ+ : [C1,β(Ω+)]6 −→ [C3,β(Ω+)]6, 0 < β < α 6 1. (4.33)

4.2. Coercivity and strong ellipticity properties of the operator H. Here we assume that
either τ = σ + iω with σ > 0 and ω ∈ R or τ = 0, and establish that the boundary integral operator
H, defined by (4.6), satisfies Gårding type inequality. By H(0), K(0), N (0) and L(0) we denote the
boundary operators generated by the single and double layer potentials constructed with the help of
the fundamental matrix Γ(0)( · ) associated with the operator A(0)(∂x) (see (2.46) and Subsection 3.1).
Note that Γ(0)( · ) is the principal singular part of the fundamental matrix Γ( · , τ) (see Subsection 3.1).
So, we have

H(0)h = {V (0)(h)}+ = {V (0)(h)}− on S, (4.34)[
∓ 2−1I6 +K(0)

]
g =

{
T (0)(∂x, n(x))V

(0)(g)
}± on S, (4.35)[

± 2−1I6 +N (0)
]
h = {W (0)(h)}± on S, (4.36)

L(0)g =
{
T (0)(∂x, n)W

(0)(g)
}+

=
{
T (0)(∂x, n)W

(0)(g)
}− on S, (4.37)

where

V (0)(h)(x) =

∫
S

Γ(0)(x− y)h(y) dSy, (4.38)

W (0)(g)(x) =

∫
S

[P(0)(∂y, n(y))[Γ
(0)(x− y)]⊤]⊤g(y) dSy. (4.39)

Here the boundary differential operators T (0)(∂x, n) and P(0)(∂y, n(y)) are defined by (2.59) and
(2.60), respectively.

Evidently, Theorems 4.1–4.4 hold true for the layer potentials V (0) and W (0) and for the boundary
operators generated by them.

For a Lipschitz surface S the operators

H−H(0) : [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6, (4.40)

K −K(0) : [H
− 1

2
2 (S)]6 −→ [H

− 1
2

2 (S)]6, (4.41)

N −N (0) : [H
1
2
2 (S)]

6 −→ [H
1
2
2 (S)]

6, (4.42)
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L − L(0) : [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6, (4.43)

are compact for arbitrary τ due to Lemma 3.3. Moreover, if S, m, κ, κ′ and k are as in Theorem 4.1,
then the operators

H−H(0) : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(S)]6, m ≥ 1, (4.44)

K −K(0) : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (4.45)

N −N (0) : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (4.46)

L − L(0) : [Ck,κ′
(S)]6 −→ [Ck−1,κ′

(S)]6, m ≥ 2, k ≥ 1, (4.47)

are compact for arbitrary τ due to Lemma 3.3.

Theorem 4.6. Let ∂Ω+ = S be a Lipschitz surface. Then there is a positive constant c such that for
all h ∈ [H

− 1
2

2 (S)]6 there holds the inequality

Re⟨−H(0)h, h⟩S ≥ c∥h∥2
[H

− 1
2

2 (S)]6
, (4.48)

where ⟨ · , · ⟩S denotes the duality between the spaces [H
1
2
2 (S)]

6 and [H
− 1

2
2 (S)]6.

Proof. Note that, the single layer potential V (0)(h) with h ∈ [H
− 1

2
2 (S)]6 belongs to the space [W 1

2,loc(R3)]6,
solves the homogeneous equation A(0)(∂x)V

(0)(h) = 0 in Ω± and possesses the following asymp-
totic property at infinity: ∂αV (0)(h)(x) = O(|x|−1−|α|) as |x| → ∞ for arbitrary multi-index α =
(α1, α2, α3). Therefore in view of formulas (2.378) and (2.382) we easily derive the following Green’s
identities∫

Ω+

E(0)(U,U) dx =
⟨
{U}+, {T (0)U}+

⟩
∂Ω+ ,

∫
Ω−

E(0)(U,U) dx = −
⟨
{U}−, {T (0)U}−

⟩
∂Ω− , (4.49)

with U = (u, φ, ψ, ϑ)⊤ = V (0)(h) and

E(0)(U,U) = crjkl∂luk∂jur + elrj(∂lφ∂jur − ∂jur∂lφ) + qlrj(∂lψ∂jur − ∂jur∂lψ)

+ κjl∂lφ∂jφ+ ajl(∂lφ∂jψ + ∂jψ∂lφ) + µjl∂lψ∂jψ + ηjl∂lϑ∂jϑ. (4.50)

Applying the properties of the single layer potential treated in Theorem 4.1, from (4.49) we get∫
Ω+∪Ω−

E(0)(U,U) dx = ⟨−H(0)h, h⟩S . (4.51)

With the help of inequalities (2.10) and (2.15) we derive from (4.51)

Re⟨−H(0)h, h⟩S = Re
∫
Ω+∪Ω−

E(0)(U,U) dx ≥ c1

∫
Ω+∪Ω−

{
εkjεkj+ |∇φ|2+ |∇ψ|2+ |∇ϑ|2

}
dx, (4.52)

where εkj = 2−1(∂kuj + ∂juk) and c1 is a positive constant independent of h. Now, using the Korn’s
inequality for R3 (see [56]) we have

Re⟨−H(0)h, h⟩S ≥ c2

{ 3∑
k,j=1

∥∂juk∥2L2(R3) + ∥∇φ∥2L2(R3) + ∥∇ψ∥2L2(R3) + ∥∇ϑ∥2L2(R3)

}
. (4.53)

Due to the properties of the single layer potential V (0)(h) it follows that

V (0)(h) ∈ BL(R3) :=
{
U ∈ [W 1

2,loc(R3)]6 : (1 + |x|2)−1/2Uk ∈ L2(R3), ∇Uk ∈ [L2(R3)]3
}
, (4.54)

where BL(R3) denotes the Beppo-Levy type space (for details see [27, Ch. XI]). It is well known that
the norm in this space defined by

∥U∥2BL(R3) :=
∥∥(1 + |x|2)−1/2U

∥∥2
[L2(R3)]6

+

6∑
k=1

3∑
j=1

∥∂jUk∥2L2(R3) (4.55)
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is equivalent to the seminorm

∥U∥2∗BL(R3) :=
6∑

k=1

3∑
j=1

∥∂jUk∥2L2(R3). (4.56)

Therefore, from (4.53) it follows that
Re⟨−H(0)h, h⟩S ≥ c3∥V (0)(h)∥2BL(R3). (4.57)

v Since A(0)(∂)V (0)(h) = 0 in Ω+ ∪ Ω− and V (0)(h) ∈ [W 1
2,loc(R3)]6, the generalized boundary func-

tionals [T (0)V (0)(h)]± ∈ [H
− 1

2
2 (S)]6 are defined correctly and the norms ∥[T (0)V (0)(h)]±∥

[H
− 1

2
2 (S)]6

can be controlled by the norm ∥V (0)(h)∥BL(R3) (see (2.5)). Consequently, there is a positive constant
c5 such that ∥∥{T (0)V (0)(h)

}±∥∥
[H

− 1
2

2 (S)]6
≤ c5∥V (0)(h)∥BL(R3). (4.58)

Whence the inequality

∥h∥
[H

− 1
2

2 (S)]6
=

∥∥{T (0)V (0)(h)
}− −

{
T (0)V (0)(h)

}+∥∥
[H

− 1
2

2 (S)]6
≤ c6∥V (0)(h)∥BL(R3) (4.59)

follows immediately which along with (4.57) completes the proof. �

Corollary 4.7. Let ∂Ω+ = S be a Lipschitz surface. Then the operator

H(0) : [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6

is invertible.

Proof. It follows from Theorem 4.6 and the Lax-Milgram theorem. �

Corollary 4.8. Let ∂Ω+ = S be a Lipschitz surface and either τ = σ + iω with σ > 0 and ω ∈ R or
τ = 0. Then there is a positive constant c1 such that for all h ∈ [H

− 1
2

2 (S)]6 there holds the inequality
Re

⟨
(−H+ C)h, h

⟩
S
≥ c1∥h∥2

[H
− 1

2
2 (S)]6

, (4.60)

where C : [H
− 1

2
2 (S)]6 → [H

1
2
2 (S)]

6 is a compact operator. The operator

H : [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6 (4.61)
is invertible.

Proof. The first part of the corollary follows from Theorem 4.6 and from the fact that the operator
(4.40) is compact. In turn, (4.60) implies that operator (4.61) is Fredholm with zero index. On the
other hand, from the uniqueness Theorem 2.25 for the Dirichlet BVP, we conclude that the null space
of the operator (4.61) is trivial and, consequently, (4.61) is invertible. �

Corollary 4.9. Let ∂Ω± = S be a Lipschitz surface and either τ = σ + iω with σ > 0 and ω ∈ R
or τ = 0. Further, let either U ∈ [H1

2 (Ω
+)]6 or U ∈ [H1

2,loc(Ω
−)]6 be a solution to the homogeneous

equation A(∂x, τ)U = 0 in Ω± possessing the property Zτ (Ω
−) or Z(Ω−), respectively, in the case of

exterior domain Ω−. Then U is uniquely representable in the form
U(x) = V

(
H−1{U}±

)
(x), x ∈ Ω±, (4.62)

where {U}± are the interior and exterior traces of U on S from Ω±, respectively, and H−1 is the
operator inverse to (4.61).

Proof. It follows from Corollary 4.8 and the uniqueness Theorems 2.25 and 2.26. �

Remark 4.10. If S is a sufficiently smooth surface (C∞ regular surface say), then for arbitrary τ ∈ C,
the operator H is a pseudodifferential operator of order −1 with the principal homogeneous symbol
matrix S(H;x, ξ1, ξ2) = [Skj(H;x, ξ1, ξ2)]6×6 given by the following relation (see Subsection 3.1 and
Appendix C)

S(H;x, ξ1, ξ2) = S
(
H(0);x, ξ1, ξ2) = H(x, ξ1, ξ2) = [Hkj(x, ξ1, ξ2)]6×6
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:=

[
[Hkj(x, ξ1, ξ2)]5×5 [0]5×1

[0]1×5 H66(x, ξ1, ξ2)

]
6×6

=

= − 1

2π

∫ ∞

−∞
[A(0)(Bn(x)ξ)]

−1 dξ3 = − 1

2π

∫
ℓ±
[A(0)(Bn(x)ξ)]

−1 dξ3, (4.63)

Bn(x) =


l1(x) m1(x) n1(x)

l2(x) m2(x) n2(x)

l3(x) m3(x) n3(x)

 , x ∈ ∂Ω, ξ = (ξ1, ξ2, ξ3), ξ′ = (ξ1, ξ2) ∈ R2 \ {0}, (4.64)

where Bn(x) is an orthogonal matrix with detBn(x) = 1, n(x) = (n1(x), n2(x), n3(x)) is the outward
unit normal vectors to S, while l(x) = (l1(x), l2(x), l3(x)) and m(x) = (m1(x),m2(x),m3(x)) are
orthogonal unit vectors in the tangential plane associated with some local chart at the point x ∈ S;
here ℓ+ (respectively, ℓ−) is a closed contour in the upper (respectively, lower) complex half-plane
Re ξ3 > 0 (respectively, Re ξ3 < 0), orientated counterclockwise (respectively, clockwise) and enclosing
all the roots with positive (respectively, negative) imaginary parts of the equation detA(0)(Bnξ) = 0
with respect to ξ3; ξ1 and ξ2 are to be considered as real parameters.

From the representation (4.63) it follows that the entries of the principal homogeneous symbol
matrix S

(
H;x, ξ1, ξ2) are odd, real valued and homogeneous of order −1 functions in ξ′ = (ξ1, ξ2) ∈

R2 \ {0},
ImSkj

(
H;x, ξ1, ξ2) = 0, Skj(H;x,−ξ1,−ξ2) = Skj(H;x, ξ1, ξ2),

Skj(H;x, tξ1, tξ2) = t−1Skj(H;x, ξ1, ξ2) for all t > 0, k, j = 1, . . . , 6.
(4.65)

In accordance with (3.5) we have
S6j(H;x, ξ1, ξ2) = Sj6(H;x, ξ1, ξ2) = 0, j = 1, . . . , 5, (4.66)

Moreover, with the help of the relations (2.48) and (4.63) one can show that the principal homogeneous
symbol matrix −S(H;x, ξ1, ξ2) is strongly elliptic, i.e., there is a positive constant C such that for all
ξ′ = (ξ1, ξ2) ∈ R2 \ {0} and for all ζ ∈ C6

Re
[
−S(H;x, ξ1, ξ2)ζ · ζ

]
≥ C|ξ|−1|ζ|2. (4.67)

In addition, from the structure of the matrix A(0)(Bn(x)ξ) defined in (2.47) it follows that{
[A(0)(Bn(x)ξ)]

−1
}
66
> 0 for ξ ̸= 0,

which in view of (4.63) implies that
−S66(H;x, ξ1, ξ2) = −S66(H;x,−ξ1,−ξ2) > 0 for ξ ̸= 0. (4.68)

4.3. Steklov–Poincaré type operators. Now, we introduce the so called Steklov–Poincaré type
operators A± which map Dirichlet data to the corresponding Neumann data,

A+{U}+ = {T U}+ and A−{U}− = {T U}− on S, (4.69)
where U is a solution of the homogeneous equation A(∂, τ)U = 0 in Ω± from the space [W 1

p (Ω
+)]6 or

[W 1
p,loc(Ω

−)]6 ∩ Zτ (Ω
−), respectively.

From (4.62) and (4.3) it is evident that
A± := (∓2−1I6 +K)H−1. (4.70)

Lemma 4.11. Let ∂Ω+ = S be a Lipschitz surface and τ = σ+ iω with σ > 0 and ω ∈ R. Then there
is a positive constant C1 such that for all h ∈ [H

1
2
2 (S)]

6 there holds the inequality
Re

⟨
(±A± + C0)h, h

⟩
S
≥ C1∥h∥2

[H
1
2
2 (S)]6

, (4.71)

where C0 : [H
1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6 is a compact operator. The operator

A− : [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6, (4.72)

is invertible, while
A+ : [H

1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6 (4.73)
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is a Fredholm operator of index zero and with the null space of dimension two.

Proof. Mapping properties (4.72) and (4.73) follow from Theorem 4.3 and Corollary 4.8. With the
help of Green’s identities for the vector function U = V (H−1h) with h ∈ [H

1
2
2 (S)]

6 we get (see (2.198),
(2.201), (2.211))

⟨A+h, h⟩∂Ω+ =

∫
Ω+

Eτ (U,U) dx, −⟨A−h, h⟩∂Ω− =

∫
Ω−

Eτ (U,U) dx. (4.74)

Applying the same reasoning as in the proofs of Theorem 4.6 and Corollary 4.8 we arrive at the
inequalities (4.71) which in turn imply that the operators (4.72) and (4.73) are Fredholm and have
zero index.

The null space of the operator (4.72) is trivial. Indeed, the homogeneous equation A−h = 0 cor-
responds to the exterior homogeneous Neumann type problem for the vector function U = V (H−1h).
Therefore by Theorem 2.26 we get U = V (H−1h) = 0 in Ω−. Hence h = 0 follows. Thus the operator
(4.72) is invertible.

Now, we show that the operator (4.73) has two-dimensional null space. Set

Ψ = b1Ψ
(1) + b2Ψ

(2), (4.75)

where b1 and b2 are arbitrary constants and

Ψ(1) = (0, 0, 0, 1, 0, 0)⊤, Ψ(2) = (0, 0, 0, 0, 1, 0)⊤. (4.76)

Consider the vector U (N ) := V (H−1Ψ) in Ω+. Since [U (N )]+ = [V (H−1Ψ)]+ = Ψ on ∂Ω+ and the
interior Dirichlet problem possesses a unique solution we conclude that

U (N ) = V
(
H−1Ψ

)
= (0, 0, 0, b1, b2, 0)

⊤ in Ω+.

Therefore, [T (∂x, n)U
(N )]+ ≡ A+Ψ = 0 on S; hence it follows that dim kerA+ ≥ 2, since Ψ(1) and

Ψ(2) are linearly independent.
On the other hand, if A+ψ = 0 on S, then [T (∂x, n)V (H−1ψ)]+ = 0 on S, and by Theorem 2.25

we have V (H−1ψ) = (0, 0, 0, b′1, b
′
2, 0)

⊤ in Ω+, where b′1 and b′2 are arbitrary constants. Consequently,[
V (H−1ψ)

]+
= ψ = (0, 0, 0, b′1, b

′
2, 0)

⊤ = b′1Ψ
(1) + b′2Ψ

(2) on ∂Ω+ (4.77)

and dim kerA+ ≤ 2. Therefore dim kerA+ = 2. Moreover, from (4.77) it follows that the null space
kerA+ is the linear span of the vectors (4.76). �

Remark 4.12. If S is a sufficiently smooth surface (C∞ regular surface say), then for arbitrary τ ∈ C,
the operators ±A± are strongly elliptic pseudodifferential operators of order 1, i.e., there is a positive
constant C such that for all ξ′ = (ξ1, ξ2) ∈ R2 \ {0} and x ∈ S

Re
{
S(±A±;x, ξ1, ξ2)ζ · ζ

}
≥ C|ξ| |ζ|2, (4.78)

which follow from equalities (4.74). Here S
(
± A±;x, ξ1, ξ2) stand for the principal homogeneous

symbol matrices of the operators ±A±.
With the help of the strong elipticity property of the principal homogeneous symbol matrices

S
(
±H;x, ξ1, ξ2) and S(±A±;x, ξ1, ξ2), by Corollary 4.8 and Lemma 4.11, and applying the general

theory of pseudodifferential operators on manifolds without boundary (cf. [1, Ch. 3]), we infer that
the operators

H : [Bs
p,q(S)]

6 −→ [Bs+1
p,q (S)]6, s ∈ R, p > 1, q ≥ 1, (4.79)

A− : [Bs+1
p,q (S)]6 −→ [Bs

p,q(S)]
6, s ∈ R, p > 1, q ≥ 1, (4.80)

are invertible, while the operator

A+ : [Bs+1
p,q (S)]6 −→ [Bs

p,q(S)]
6, s ∈ R, p > 1, q ≥ 1, (4.81)

is Fredholm of zero index and the corresponding two-dimensional null space kerA+ is a linear span
of the vectors (4.76) as it is shown in the proof of Lemma 4.11.
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Remark 4.13. The relations (4.78), (4.70), and (4.67) imply that the principal homogeneous symbol
matrices of the operators ±2−1I6 +K are non-degenerated,

detS(±2−1I6 +K;x, ξ1, ξ2) ̸= 0, x ∈ S, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}. (4.82)
By (4.82) and (4.67), in view of the second equality in (4.30), then we find that the principal homo-
geneous symbol matrix of the operator L is also non-degenerated,

detS(L;x, ξ1, ξ2) ̸= 0, x ∈ S, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}. (4.83)
Finally, (4.83), (4.67), and the first equality in (4.30) yield that the principal homogeneous symbol
matrices of the operators ±2−1I6 +N are non-degenerated,

detS(±2−1I6 +N ;x, ξ1, ξ2) ̸= 0, x ∈ S, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}. (4.84)
In Subsection 5.5 we will show that the symbol matrix S(L;x, ξ1, ξ2) is strongly elliptic.

5. Investigation of Basic BVPs of Pseudo-Oscillations

Throughout this section we assume that Re τ = σ > 0 and investigate the Dirichlet (D)±τ , Neumann
(N)±τ , and mixed (M)+τ boundary value problems for the pseudo-oscillation equation (2.155). Note
that, with the help of the Newtonian volume potential NΩ±(Φ) (see (3.61) and Remark 4.5 we can
reduce the nonhomogeneous equation (2.155) to the homogeneous one. Therefore without loss of
generality in what follows we consider the homogeneous differential equation (2.155) with Φ = 0.

5.1. The interior Dirichlet BVP: a regular case. We assume that
S = ∂Ω± ∈ Cm,κ with integer m ≥ 2 and 0 < κ ≤ 1, (5.1)

f ∈ [Ck,κ′
(S)]6, 0 < κ′ < κ, 1 ≤ k ≤ m− 1, (5.2)

and look for a solution to the interior Dirichlet problem (D)+τ (see Subsection 2.3),
A(∂, τ)U = 0 in Ω+, (5.3)

{U}+ = f on S, (5.4)
in the form of double layer potential

U(x) =W (h)(x), x ∈ Ω+, (5.5)
where h ∈ [Ck,κ′

(S)]6 is an unknown density vector. By Theorem 4.1 and in view of the boundary
condition (5.4) we get the following integral equation for the density vector function h

(2−1I6 +N )h = f on S, (5.6)
where the singular integral operator N is defined by (4.8). Our goal is to prove that this integral
equation is unconditionally solvable for an arbitrary right hand side vector function. To this end, we
prove the following assertion.

Theorem 5.1. Let conditions (5.1) and (5.2) be fulfilled. Then the singular integral operator

2−1I6 +N : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, 0 < κ′ < κ, (5.7)
is invertible.

Proof. The mapping property (5.7) follows from Theorem 4.3. With the help of the strong ellipticity
property of the differential operator A(∂, τ), by standard arguments (see, e.g., [91], [88], [53]) we can
show that 2−1I6+N is a singular integral operator with elliptic principal homogeneous symbol matrix
S(2−1I6 +N ;x, ξ1, ξ2), i.e., detS(2−1I6 +N ;x, ξ1, ξ2) ̸= 0 for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0}
(see Remark 4.13). Therefore, (5.6) is normally solvable ([77], [57]).

Next, we show that the index of the operator
2−1I6 +N : [L2(S)]

6 −→ [L2(S)]
6 (5.8)

equals to zero. First we establish that the operator (5.8) is injective. Let h0 ∈ [L2(S)]
6 be a solution

of the homogeneous equation [2−1I6 + N ]h0 = 0 on S. Then by the embedding theorems (see,
e.g., [57, Ch. IV]) we conclude that h0 ∈ [Ck,κ′

(S)]6 and, consequently, the double layer potential
U0(x) := W (h0)(x) is a regular vector function of the class [C1(Ω±)]6 ∩ [C2(Ω±)]6 due to Theorem
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4.1 and solves the homogeneous interior Dirichlet problem. By the uniqueness Theorem 2.25 then U0

vanishes in Ω+ and in accordance with Theorem 4.1 we have[
T (∂x, n(x), τ)W (h0)(x)

]−
=

[
T (∂x, n(x), τ)W (h0)(x)

]+
= 0, x ∈ S.

Thus U0 solves the exterior homogeneous Neumann type problem in the domain Ω− and possesses
the decay property (2.207) at infinity. Therefore, by the uniqueness Theorem 2.26, it follows that U0

vanishes in the exterior domain Ω− as well. But then in view of the jump relation (4.4) we finally
conclude {W (h0)(x)}+−{W (h0)(x)}− = h0(x) = 0 on S, whence the injectivity of the operator (5.7)
follows.

Further, we show that the null space of the adjoint operator
2−1I6 +N ∗ : [L2(S)]

6 −→ [L2(S)]
6 (5.9)

is trivial as well. Indeed, let h∗0 ∈ [L2(S)]
6 be a solution of the equation [2−1I6 + N ∗]h∗0 = 0 on

S. Then, using again the embedding theorems we conclude that h∗0 ∈ [Ck,κ′
(S)]6. Evidently, the

adjoint single layer potential (see (4.14)) U∗
0 (x) := V ∗(h∗0)(x) is a regular vector function of the class

[C1(Ω±)]6 ∩ [C2(Ω±)]6 due to the mapping property (4.17) and satisfies the decay conditions (2.207)
at infinity (see Remark 4.5). Moreover, U∗

0 solves the exterior homogeneous Neumann type BVP for
the adjoint differential equation (see Subsection 2.8 and formulas (2.49), (2.58), and (4.19))

A∗(∂, τ)U∗
0 = 0 in Ω−,{

P(∂, n, τ)U∗
0

}−
= [2−1I6 +N ∗]h∗0 = 0 on S.

(5.10)

Due to the uniqueness Theorem 2.30 we then have U∗
0 (x) = V ∗(h∗0)(x) = 0, x ∈ Ω−. Now, by (4.18)

we see that U∗
0 = V ∗(h∗0) is a solution to the interior homogeneous Dirichlet type auxiliary BVP for

the adjoint differential equation,
A∗(∂, τ)U∗

0 = 0 in Ω+,

{U∗
0 }+ = 0 on S.

(5.11)

Again by Theorem 2.30 we find U∗
0 (x) = V ∗(h∗0) = 0 in Ω+ and, consequently, in view of the jump

relations (4.19), we finally get h∗0 = 0 on S. Thus the null spaces of the operators (5.8) and (5.9) are
trivial and the index of the operator (5.8) equals to zero. Therefore, the operator (5.8) is invertible,
which implies that the operator (5.7) is invertible as well. �

From the invertibility of the operator (5.7) the following existence result follows immediately.
Theorem 5.2. Let S, m, κ, κ′ and k be as in Theorem 5.1. Then the Dirichlet interior problem
(5.3), (5.4) with f ∈ [Ck,κ′

(S)]6 is uniquely solvable in the class [Ck,κ′
(Ω+)]6 ∩ [C∞(Ω+)]6 and the

solution is representable in the form of double layer potential (5.5), where the density vector h is
defined by the singular integral equation (5.6).
5.2. The exterior Dirichlet BVPs: a regular case. We again assume that the conditions (5.1)
and (5.2) are fulfilled and consider the exterior Dirichlet BVP:

A(∂, τ)U(x) = 0 in Ω−, (5.12)
{U(x)}− = f(x) on S = ∂Ω−. (5.13)

We require that U ∈ [C1,κ′
(Ω−)]6 and possesses the asymptotic properties (2.207).

We look for a solution to the exterior Dirichlet problem in the form of linear combination of the
single and double layer potentials

U(x) =W (h)(x) + αV (h)(x), x ∈ Ω−, (5.14)
where h ∈ [Ck,κ′

(S)]6 is an unknown density vector and α > 0 is a constant. In accordance with
Remark 4.5 the asymptotic relations (2.207) are automatically satisfied, as well as equation (5.12).
By Theorem 4.1 and in view of the boundary condition (5.13) we get the following integral equation
for the density vector function h

(−2−1I6 +N + αH)h = f on S, (5.15)
where the singular integral operator N and weakly singular integral operator H are defined by (4.8)
and (4.6), respectively.
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Theorem 5.3. Let conditions (5.1) and (5.2) be fulfilled. Then the singular integral operator

−2−1I6 +N + αH : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, 0 < κ′ < κ, (5.16)
is invertible.

Proof. With the help of the strong ellipticity property of the differential operator A(∂, τ), as in the
previous case, by standard arguments (see, e.g., [91], [88], [53]) we can show that −2−1I6+N+αH is a
singular integral operator with elliptic principal homogeneous symbol matrix S

(
−2−1I6+N ;x, ξ1, ξ2),

i.e., detS(−2−1I6 + N ;x, ξ1, ξ2) ̸= 0 for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0} (see Remark 4.13).
Note that, the summand αH in (5.16) is a compact perturbation of the operator −2−1I6 +N .

Now, we show that the index of the operator
−2−1I6 +N + αH : [L2(S)]

6 −→ [L2(S)]
6 (5.17)

equals to zero. To this end, let us consider the homogeneous equation on S

(−2−1I6 +N + αH)h = 0. (5.18)
By the embedding theorems we conclude that if h0 ∈ [L2(S)]

6 solves equation (5.18), then h0 ∈
[Ck,κ′

(S)]6 and, consequently, the vector U0 =W (h0) + αV (h0) ∈ [C1(Ω±)]6 ∩ [C2(Ω±)]6 is a regular
solution of the homogenous equation A(∂, τ)U0 = 0 in Ω± satisfying the decay conditions (2.207) at
infinity. In view of (5.18) we see that U0 solves the exterior Dirichlet BVP and by the uniqueness
Theorem 2.26 we have U0(x) = 0, x ∈ Ω−. Due to the jump relations for the layer potentials (see
Theorem 4.1), we then have {U0}+ = h0 and {T (∂, n, τ)U0}+ = −αh0 on S, i.e.,{

T (∂, n, τ)U0

}+
+ α{U0}+ = 0 on S. (5.19)

With the help of Green’s formula (2.198) we get∫
Ω+

Eτ (U0, U ′) dx+ α

∫
S

{U0}+ · {U ′}+ dS = 0 (5.20)

for arbitrary U ′ ∈ [W 1
2 (Ω

+)]6. By the word for word arguments applied in the proof of Theorem 2.25
we conclude that U0(x) = 0, x ∈ Ω+. Therefore h0 = 0 on S and the null space of the operator (5.17)
is trivial.

Quite similarly we can show that the null space of the adjoint operator
−2−1I6 +N ∗ + αH∗ : [L2(S)]

6 −→ [L2(S)]
6 (5.21)

with N ∗ and H∗ being defined in (4.12) and (4.10), is trivial. Indeed, if h∗0 ∈ [L2(S)]
6 solves the

homogeneous equation
(−2−1I6 +N ∗ + αH∗)h∗0 = 0, (5.22)

then h∗0 ∈ [Ck,κ′
(S)]6 by the embedding theorems and, consequently, the vector U∗

0 = V ∗(h∗0) ∈
[C1(Ω±)]6 ∩ [C2(Ω±)]6 is a regular solution of the homogenous equation A∗(∂, τ)U∗

0 = 0 in Ω± sat-
isfying the decay conditions (2.207) at infinity. In view of (5.22) we find that U∗

0 satisfies the Robin
type boundary condition on S (see (4.18), (4.19)){

P(∂, n, τ)U∗
0

}+
+ α{U∗

0 }+ = (−2−1I6 +N ∗ + αH∗)h∗0 = 0 on S. (5.23)
By Green’s formula (2.199) we have∫

Ω+

Eτ (U,U∗
0 ) dx+ α

∫
S

{U}+ · {U∗
0 }+ dS = 0 (5.24)

for arbitrary U ∈ [W 1
2 (Ω

+)]6. By the same arguments as in the proof of the uniqueness Theorem 2.25
we derive that U∗

0 (x) = V ∗(h∗0)(x) = 0, x ∈ Ω+. Since the single layer potential is continuous across
the surface S (see (4.18)), we see that U∗

0 solves the homogeneous exterior Dirichlet type BVP for
the operator A∗(∂, τ) and satisfies the decay conditions (2.207) at infinity (see Remark (4.5)). Hence,
with the help of Green’s formula (2.209), it follows that U∗

0 (x) = V ∗(h∗0)(x) = 0, x ∈ Ω−. Due to the
jump relations for the single layer potential (see (4.19)), we then have h∗0 = 0 on S, i.e., the null space
of the adjoint operator (5.21) is trivial.

Thus, the operator (5.17) is injective and has the zero index. Consequently, it is invertible. Then
it follows that the operator (5.16) is invertible as well. �
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This theorem leads to the following existence result for the exterior Dirichlet problem.

Theorem 5.4. Let conditions (5.1) and (5.2) be fulfilled. Then the Dirichlet exterior problem
(5.12), (5.13) with f∈ [Ck,κ′

(S)]6 is uniquely solvable in the class of regular vector functions [Ck,κ′
(Ω−)]6

satisfying the asymptotic decay conditions (2.207) and the solution is representable in the form (5.14),
where the density vector h is defined by the uniquely solvable singular integral equation (5.15).

5.3. Single layer approach for the interior and exterior Dirichlet BVPs: a regular case.
Applying the results of Subsection 4.2, we can investigate the interior and exterior Dirichlet boundary
value problems by means of the single layer potential and derive the corresponding existence results.

Let us look for solutions to the Dirichlet BVPs (5.3), (5.4) and (5.12), (5.13) with f ∈ [Ck,κ′
(S)]6

in the form of single layer potential
U(x) = V (h)(x), x ∈ Ω±, (5.25)

where h is a solution to the following equation
Hh(x) = f(x), x ∈ ∂Ω±. (5.26)

Due to the results presented in Remark 4.10 and under the conditions (5.1) and (5.2) we see that the
operator

H : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(S)]6, 1 ≤ k ≤ m− 1, m ≥ 2, (5.27)
is a strongly elliptic pseudodifferential operator of order −1 with index zero. Since the null space of
the operator (5.27) is trivial we conclude that it is invertible and

H−1 : [Ck+1,κ′
(S)]6 −→ [Ck,κ′

(S)]6. (5.28)
This leads to the following existence results and representation formulas of solutions.

Theorem 5.5. Let conditions (5.1) and (5.2) be fulfilled. Then the Dirichlet interior and exterior
boundary value problems are uniquely solvable in the space of regular vector functions [Ck,κ′

(Ω±)]6

and the solutions are representable in the form (5.25), where the density vector h is defined by the
uniquely solvable pseudodifferential equation (5.26).

In the regular case under consideration, we have the following counterpart of Corollary 4.9.

Corollary 5.6. Let condition (5.1) be fulfilled and U ∈ [C1,κ′
(Ω±)]6 be a solution to the homogeneous

equation A(∂, τ)U = 0 in Ω±, satisfying the decay conditions (2.207) in the case of exterior domain
Ω−. Then U is uniquely representable in the form

U(x) = V (H−1[U ]±)(x), x ∈ Ω±, (5.29)
where [U ]± are the interior and exterior limiting values (traces) of U on S from Ω±, respectively.

5.4. The interior and exterior Neumann BVPs: a regular case. Here we assume that
∂Ω± = S ∈ Cm,κ, m ≥ 2, 0 < κ ≤ 1, (5.30)

F ∈ [Ck,κ′
(S)]6, 0 ≤ k ≤ m− 1, 0 < κ′ < κ, (5.31)

and look for a solution of the interior Neumann BVP (see (2.155), (2.161)),
A(∂, τ)U(x) = 0 in Ω+, (5.32){

T (∂, n, τ)U(x)
}+

= F (x) on S = ∂Ω+, (5.33)
in the form of single layer potential

U(x) = V (h)(x), x ∈ Ω+, (5.34)

where h ∈ [Ck,κ′
(S)]6 is an unknown density vector function. By Theorem 4.1 and in view of the

boundary condition (2.161) we get the following integral equation for the density vector h
(−2−1I6 +K)h = F on S. (5.35)

Theorem 5.7. Let S and F = (F1, . . . , F6)
⊤ satisfy the conditions (5.30) and (5.31).
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(i) The operator
−2−1I6 +K : [L2(S)]

6 −→ [L2(S)]
6 (5.36)

is a singular integral operator of normal type with zero index and has a two-dimensional null
space Λ(S) := ker(−2−1I6 +K) ⊂ [Cm−1,κ′

(S)]6, which represents a linear span of the vector
functions

h(1), h(2) ∈ Λ(S), (5.37)
such that
V (h(1)) = Ψ(1) := (0, 0, 0, 1, 0, 0)⊤ and V (h2)) = Ψ(2) := (0, 0, 0, 0, 1, 0)⊤ in Ω+. (5.38)

(ii) The null space Λ∗(S) of the operator adjoint to (5.36),
−2−1I6 +K∗ : [L2(S)]

6 −→ [L2(S)]
6 (5.39)

is a linear span of the vectors Ψ(1) = (0, 0, 0, 1, 0, 0)⊤ and Ψ(2) = (0, 0, 0, 0, 1, 0)⊤.
(iii) Equation (5.35) is solvable if and only if∫

S

F4(x) dS =

∫
S

F5(x) dS = 0. (5.40)

(iv) If the conditions (5.40) are satisfied, then solutions to equation (5.35) belong to the space
[Ck,κ′

(S)]6 and are defined modulo a linear combination of the vector functions h(1) and h(2).
(v) If the conditions (5.40) are satisfied, then the interior Neumann BVP is solvable in the space

Ck+1,κ′
(Ω+) and the solutions are representable in the form of the single layer potential

(5.34), where the density vector function h is defined by the singular integral equation (5.35).
A solution to the interior Neumann BVP is defined in Ω+ modulo a linear combination of the
constant vector functions Ψ(1) and Ψ(2) given by (5.38).

Proof. The mapping property (5.36) follows from Theorem 4.3. With the help of the strong ellipticity
property of the differential operator A(∂, τ), by standard arguments one can show that −2−1I6+K is a
singular integral operator with elliptic principal homogeneous symbol matrix S(−2−1I6+K;x, ξ1, ξ2),
i.e., detS(−2−1I6 + K;x, ξ1, ξ2) ̸= 0 for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0} (for details see
Remark 4.13). Therefore, (5.35) is normally solvable ([77], [57]).

Further, we prove that the index of the operator (5.36) equals to zero. To this end, let us consider
the operator

−2−1I6 +K + αH : [L2(S)]
6 −→ [L2(S)]

6 (5.41)
with α > 0. Evidently, the operator (5.41) is a compact perturbation of the operator (5.36) due to
Theorem 4.4 since H : [L2(S)]

6 → [H1
2 (S)]

6 and [H1
2 (S)]

6 is compactly embedded in [L2(S)]
6. One

can easily show that the homogeneous equation
(−2−1I6 +K + αH)h0 = 0 on S (5.42)

has only the trivial solution in [L2(S)]
6. Indeed, by the embedding theorem we have h0 ∈ [C1,κ′

(S)]6

and the vector U0 = V (h0) ∈ [C2,κ′
(Ω±)]6 is a regular solution of the homogeneous equation

A(∂, τ)U0 = 0 in Ω± and satisfies the following Robin type condition
{T U0}+ + α{U0}+ = 0 on S.

Therefore, by Green’s formula (2.198) we derive U0(x) = V (h0)(x) = 0 in Ω+, and, consequently,
h0 = 0, since U0 = V (h0) possesses the decay conditions (2.207). Thus ker(−2−1I6 +K+αH) = {0}.

Now, let us consider the adjoint homogeneous equation (see (4.10), (4.11))
(−2−1I6 +K∗ + αH∗)h∗0 = 0 on S. (5.43)

Again by the embedding theorem we have that h∗0 ∈ [C1,κ′
(S)]6 and the vector

U∗
0 =W ∗(h∗0) + αV ∗(h0) ∈ [C1,κ′

(Ω+)]6 (5.44)
is a regular solution to the homogeneous equation A∗(∂, τ)U∗

0 = 0 in Ω±, satisfying the decay condi-
tions of type (2.207) at infinity and the homogeneous Dirichlet condition {U∗

0 }− = 0 on S. Therefore
U∗
0 = 0 in Ω− by the uniqueness Theorem 2.30. In view of (5.44) and the jump relations for the
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layer potentials involved in (5.44), then it follows that {P(∂, n, τ)U∗
0 }+ + α{U∗

0 }+ = 0 on S since
{P(∂, n, τ)U∗

0 }+ − {P(∂, n, τ)U∗
0 }− = −αh∗0 and {U∗

0 }+ − {U∗
0 }− = h∗0. As in the proof of Theorem

5.3 with the help of formula (5.24) we derive that U∗
0 = 0 in Ω+ which implies h∗0 = 0 on S and,

consequently, ker(−2−1I6 + K∗ + αH∗) = {0}. Thus the index of the operator (5.41) is zero. The
same conclusion holds true for the operator (5.36) due to the above mentioned compactness property
of the operator H. Note that the operator (5.41) is invertible.

Now, we study the null spaces of the operator (5.36) and its adjoint one
−2−1I6 +K∗ : [L2(S)]

6 −→ [L2(S)]
6. (5.45)

Evidently, dim ker(−2−1I6 +K) = dim ker(−2−1I6 +K∗).
From the integral representation formula (4.16) it follows that for the vector

Ψ = (0, 0, 0, b′1, b
′
2, 0)

⊤ = b′1Ψ
(1) + b′2Ψ

(2), (5.46)
where b′1 and b′2 are arbitrary constants and vector functions Ψ(1) and Ψ(2) are given by (5.38), the
following formula

Ψ =W ∗(Ψ) in Ω+ (5.47)
holds, since A∗(∂, τ)Ψ = 0 in R3 and P(∂, n, τ)Ψ = 0 for arbitrary n and x ∈ R3. From (5.47) we get

(−2−1I6 +K∗)Ψ = 0 on S. (5.48)
Hence Ψ ∈ ker(−2−1I6 + K∗) which shows that dim ker(−2−1I6 + K∗) ≥ 2. On the other hand, it
is clear that if Φ ∈ ker(−2−1I6 + K) ≡ Λ(S), then (−2−1I6 + K)Φ = 0 on S which is equivalent to
the relation {T (∂, n, τ)V (Φ)}+ = 0 on S. Therefore V (Φ) = (0, 0, 0, b1, b2, 0)

⊤ in Ω+ with arbitrary
constants b1 and b2 due to Theorem 2.25, i.e., V (Φ) = b1Ψ

(1) + b2Ψ
(2), where Ψ(1) and Ψ(2) are given

by (5.38). Since the operator (5.27) is invertible it follows that there are vector functions h(1) ∈ Λ(S)

and h(2) ∈ Λ(S) such that Hh(j) = Ψ(j) on S, h(j) ∈ [Cm−1,κ′
(S)]6, j = 1, 2, which in view of the

uniqueness theorem for the interior Dirichlet problem lead to the equalities V (h(j)) = Ψ(j) in Ω+

j = 1, 2. In turn these formulas imply that
V (Φ) = b1V (h(1)) + b2V (h(2)) in Ω+, Φ = b1H−1Ψ(1) + b2H−1Ψ(2) on S. (5.49)

Therefore, dim ker(−2−1I6 +K) ≤ 2 since the vector functions h(1) := H−1Ψ(1) and h(2) := H−1Ψ(2)

are linearly independent. Consequently, we finally get
dim ker(−2−1I6 +K) = dim ker(−2−1I6 +K∗) = 2,

and the vector functions h(1) and h(2) represent the basis of the null space Λ(S), while the null space
ker(−2−1I6 + K∗) represents a linear span of the vector functions Ψ(1) and Ψ(2). From the above
arguments the items (i) and (ii) of the theorem follow.

It is evident that the necessary and sufficient conditions for the integral equation (5.35) to be
solvable reads then as (5.40) which proves the item (iii).

The item (iv) follows then from the embedding theorems (see, e.g., [57], Ch. IV), while the item
(v) is a direct consequence of items (i)–(iv). �

In the class of vector functions satisfying the asymptotic conditions (2.207) the exterior Neu-
mann BVP

A(∂, τ)U(x) = 0 in Ω−, (5.50){
T (∂, n, τ)U(x)

}−
= F (x) on S = ∂Ω−, (5.51)

with S and F as in (5.30) and (5.31), can be studied quite similarly. Indeed, if we look for a solution
again in the form of single layer potential

U(x) = V (h)(x), x ∈ Ω−, (5.52)
we arrive at the following singular integral equation for the sought for density vector function h

(2−1I6 +K)h = F on S. (5.53)
The following assertion holds.

Theorem 5.8. Let S and F = (F1, . . . , F6)
⊤ satisfy the conditions (5.30) and (5.31).
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(i) The operators
2−1I6 +K : [L2(S)]

6 −→ [L2(S)]
6, (5.54)

: [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, 0 ≤ k ≤ m− 1, (5.55)
are singular integral operators of normal type with zero index and have the trivial null spaces.

(ii) Operators (5.54) and (5.55) are invertible, and equation (5.53) is uniquely solvable in the space
[Ck,κ′

(S)]6.
(iii) The exterior Neumann BVP is uniquely solvable and the solution is representable in the form

of single layer potential (5.52), where the density vector function h is defined by the singular
integral equation (5.53).

Proof. Again, with the help of the strong ellipticity property of the differential operator A(∂, τ), by
standard arguments one can show that 2−1I6 +K is a singular integral operator of normal type ([77],
[57]) with elliptic principal homogeneous symbol matrix S(2−1I6 + K;x, ξ1, ξ2), i.e., detS(2−1I6 +
K;x, ξ1, ξ2) ̸= 0 for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0} (see Remark 4.13).

Now, we show that the operator (5.54) and its adjoint one have trivial null spaces. Let h0 ∈ [L2(S)]
6

be a solution to the homogeneous equation [2−1I6 +K]h0 = 0 on S. Then by embedding theorems we
conclude that h0 ∈ [Cm−1,κ′

(S)]6 and, consequently, the single layer potential U0(x) = V (h0)(x) is
a regular vector function of the class [Cm,κ′

(Ω−)]6 which solves the homogeneous exterior Neumann
BVP and belongs to the class Zτ (Ω). Therefore, U0 = V (h0) = 0 in Ω− by Theorem 2.26. Due to
continuity of the single layer potential we see that the vector function U0 = V (h0) solves then the
homogeneous interior Dirichlet BVP in Ω+ and by Theorem 2.25 it vanishes identically in Ω+. In view
of the jump formulas (4.3) we arrive at the equation [T (∂, n, τ)V (h0)]

−− [T (∂, n, τ)V (h0)]
+ = h0 = 0

on S implying that ker[2−1I6 +K] is trivial.
Now, let h∗0 ∈ [L2(S)]

6 be a solution to the adjoint homogeneous equation (2−1I6+K∗)h∗0 = 0 on S.
Then by embedding theorems we conclude that h∗0 ∈ [Cm−1,κ′

(S)]6 and, consequently, the double layer
potential U∗

0 (x) =W ∗(h∗0)(x) is a regular vector function of the class [Cm−1,κ′
(Ω+)]6 which solves the

homogeneous interior Dirichlet problem (2.400), (2.401) for the adjoint operator A∗(∂, τ). Therefore,
U∗
0 = W ∗(h∗0) = 0 in Ω+ by Theorem 2.30. Since [P(∂, n, τ)W ∗(h∗0)]

− = [P(∂, n, τ)W ∗(h∗0)]
+ = 0 on

S in view of (4.21), by the same Theorem 2.30 we get U∗
0 =W ∗(h∗0) = 0 in Ω−. Hence, in accordance

with the jump relations (4.20) we finally derive [W ∗(h∗0)]
+ − [W ∗(h∗0)]

− = h0 on S, implying that
ker[2−1I6 +K∗] is trivial.

From these results the items (i), (ii), and (iii) follow immediately. �
5.5. Double layer approach for the interior and exterior Neumann BVPs: a regular case.
Let conditions (5.30) and (5.31) be satisfied with 1 ≤ k ≤ m− 1 and look for a solution of the interior
and exterior Neumann BVPs (5.32), (5.33) and (5.50), (5.51) in the form of double layer potential

U(x) =W (h)(x), x ∈ Ω±, (5.56)
where h ∈ [Ck,κ′

(S)]6 is an unknown density vector function. By Theorem 4.1 (see (4.5) and 4.9) and
in view of the boundary conditions (5.33) and (5.51) we get the following integral equation for the
density vector h

Lh = F on S. (5.57)
The mapping properties of the operator L is described in Theorems 4.3 and 4.4. Due to the equalities

HL=−4−1I6+N 2, LH=−4−1I6+K2, L∗H∗=−4−1I6+[N ∗]2, H∗L∗=−4−1I6+[K∗]2, (5.58)
with the help of Corollary 4.8 and Theorems 5.1 and 5.8, we see that

kerL = ker(−2−1I6 +N ), kerL∗ = ker(−2−1I6 +K∗). (5.59)
Now, we show that the null spaces of the operators L and L∗ are the same and coincide with the
linear span of the vectors Ψ(1) = (0, 0, 0, 1, 0, 0)⊤ and Ψ(2) = (0, 0, 0, 0, 1, 0)⊤ (see (5.38)).

From the integral representation formula (3.62) and Theorem 4.1 it follows that Ψ(1) and Ψ(2) are
linearly independent solutions of the homogeneous equation [−2−1I6 + N ]h = 0 on S, since for the
vector

Ψ = (0, 0, 0, b1, b2, 0)
⊤ = b1Ψ

(1) + b2Ψ
(2), (5.60)
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where b1 and b2 are arbitrary constants, we have A(∂, τ)Ψ = 0 in R3 and T (∂, n, τ)Ψ = 0 for arbitrary
n and x ∈ R3. Consequently, in view of (3.62), the following formula

Ψ =W (Ψ) in Ω+ (5.61)

holds which implies [−2−1I6 + N ]Ψ = 0 on S. Hence Ψ ∈ ker(−2−1I6 + N ) which shows that
dim ker(−2−1I6 + N ) ≥ 2. On the other hand, it is clear that if Φ ∈ ker(−2−1I6 + N ), then
Φ ∈ [Cm−1,κ′

(S)]6 and (−2−1I6 +N )Φ = 0 on S which is equivalent to the relation {W (Φ)}− = 0 on
S. Therefore W (Φ) = 0 in Ω− due to Theorem 2.26 and [T (∂, n)W (Φ)]+ = [T (∂, n)W (Φ)]− = 0 by
Theorem 4.1. In accordance with Theorem 2.25 the double layer potential W (Φ), as a solution to the
interior homogeneous Neumann BVP in Ω+, belongs to the linear span of the vectors Ψ(1) and Ψ(2),
i.e., W (Φ) = c1Ψ

(1) + c2Ψ
(2) in Ω+ with some constants c1 and c2. By the jump relations we derive

Φ = [W (Φ)]+ − [W (Φ)]− = [W (Φ)]+ = c1Ψ
(1) + c2Ψ

(2) on S. Thus kerL represents the linear span
of the vectors Ψ(1) and Ψ(2).

By Theorem 5.7 the same holds for the null space of the operator [−2−1I6 +K∗]. Therefore

kerL = ker(−2−1I6 +N ) = kerL∗ = ker(−2−1I6 +K∗) =
{
c1Ψ

(1) + c2Ψ
(2), c1, c2 ∈ C

}
(5.62)

with Ψ(1) and Ψ(2) defined by (5.38). Consequently, the index of the operator L equals to zero.
Due to invertibility of the operator (5.27) from (5.58) we have the representation

L = H−1(−4−1I6 +N 2). (5.63)

Taking into account that the principal homogeneous symbol matrices of the pseudodifferential oper-
ators ±2−1I6 + N , ±2−1I6 + K and H are elliptic (see Remark 4.13), we infer that L is an elliptic
pseudodifferential operator of order +1 with the principal homogeneous symbol matrix

S(L;x, ξ1, ξ2) =
[
S(H;x, ξ1, ξ2)

]−1
S(−4−1I6 +N 2;x, ξ1, ξ2) (5.64)

for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0}.
Note that, the entries of the matrix S

(
H;x, ξ1, ξ2) are even and homogeneous functions of order −1

(see (4.65)), while the entries of the matrix S(N ;x, ξ1, ξ2) are odd functions of zero order since they
represent the Fourier transforms of odd singular kernel functions. Therefore, from (5.64) we conclude
that detS(L;x, ξ1, ξ2) ̸= 0 for all x ∈ S and ξ′ = (ξ1, ξ2) ∈ R2 \ {0}, and S(L;x, ξ1, ξ2) is even and
homogeneous of order +1 matrix function in ξ′ = (ξ1, ξ2) (see Remark 4.13 and Appendix C).

Further, let us show that the symbol matrix S(L;x, ξ1, ξ2) = S(L(0);x, ξ1, ξ2) is strongly elliptic.
To this end, we recall that the operator L(0) : [H

1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6 is introduced in Subsection 4.2

and that the operator L − L(0) : [H
1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6 is compact.

Formulas (4.49) with U = U (0) = (u(0), φ(0), ψ(0), ϑ(0))⊤ :=W (0)(g) imply (see Subsection 4.2)

⟨L(0)g, g⟩S =

∫
Ω+∪Ω−

E(U (0), U (0)) dx (5.65)

for arbitrary g ∈ [C1,α(S)]6. Note that W (0)(g) ∈ [H1
2 (Ω

±)]6, but W (0)(g) ̸∈ [H1
2 (R3)]6 if g ̸= 0. With

the help of (4.50) and (5.65), using the Korn inequalities for the domains Ω± (see [56]), the trace
theorem, the boundedness properties and jump relations for the double layer potential U (0) =W (0)(g)
(see Theorems 4.1 and 4.2), we derive the following Gårding type inequality

Re⟨L(0)g, g⟩S ≥
∫
Ω+∪Ω−

{
ε
(0)
kj ε

(0)
kj + |∇φ(0)|2 + |∇ψ(0)|2 + |∇ϑ(0)|2

}
dx

≥ C1

(
∥U (0)∥2[H1

2 (Ω
+)]6 + ∥U (0)∥2[H1

2 (Ω
−)]6

)
− C2∥U (0)∥2[L2(Ω+)]6

≥ C3

(∥∥{U (0)}+
∥∥2
[H

1/2
2 (S)]6

+
∥∥{U (0)}−

∥∥2
[H

1/2
2 (S)]6

)
− C4∥U (0)∥2[L2(Ω+)]6

≥ C3

∥∥{U (0)}+ − {U (0)}−
∥∥2
[H

1/2
2 (S)]6

− C4∥U (0)∥2[L2(Ω+)]6

≥ C5∥g∥2[H1/2
2 (S)]6

− C6∥g∥2[H−1/2
2 (S)]6

, (5.66)

where ε(0)kj = 1
2 (∂ku

(0)
j + ∂ju

(0)
k ) and Cj , j = 1, . . . , 6, are positive constants.
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Next, we consider unbounded half-spaces R3
+(n) := {x1n1 + x2n2 + x3n3 < 0} and R3

−(n) :=
{x1n1+x2n2+x3n3 > 0} instead of Ω+ and Ω−, respectively, and assume that n is the unit “outward”
normal vector to the hyperplane Sn := {x1n1 + x2n2 + x3n3 = 0} with respect to R3

+(n). Evidently,
n is a constant vector. Further, let us note that the double layer potential U (0) = W (0)(g) with the
integration surface Sn and the density g being an arbitrary rapidly decreasing vector function of the
Schwartz space, decays at infinity as O(|x|−2). Moreover, ∂αW (0)(g)(x) = O(|x|−2−|α|) as |x| → ∞
for arbitrary multi-index α = (α1, α2, α3) due to the homogeneity property of the fundamental matrix
Γ(0)(x) given by (3.5) and since g(x̃) decays at infinity faster than any negative power of |x̃|, x̃ ∈ Sn.
Therefore, ∂αW (0)(g) ∈ [L2(R3

±(n))]
6 for |α| ≥ 0 and with the help of the Korn inequalities for

unbounded domains R3
±(n) (see [56]), one can show a counterpart of formula (5.65) which yields the

following relation (cf. (5.66))

Re⟨L(0)g, g⟩Sn = Re
∫
Sn

L(0)g · g dSn = Re
∫
R3

+(n)∪R3
−(n)

≥ E(U (0), U (0)) dx

≥
∫
R3

+(n)∪R3
−(n)

{
ε
(0)
kj ε

(0)
kj + |∇φ(0)|2 + |∇ψ(0)|2 + |∇ϑ(0)|2

}
dx

≥ C∗
1

(
∥U (0)∥2[H1

2 (R3
+(n))]6+∥U (0)∥2[H1

2 (R3
−(n))]6

)
≥C∗

2

(∥∥{U (0)}+
∥∥2
[H

1/2
2 (Sn)]6

+∥{U (0)}−∥2
[H

1/2
2 (Sn)]6

)
≥ C∗

2

∥∥{U (0)}+ − {U (0)}−
∥∥2
[H

1/2
2 (Sn)]6

≥ C∗
3∥g∥2[H1/2

2 (Sn)]6
,

where C∗
j , j = 1, 2, 3, are some positive constants. Now, let us take into account that L(0) is a

convolution operator and perform an orthogonal transform x = B(n)x′ of the half-spaces R3
±(n) onto

the usual standard half-spaces R3
± := {x′ ∈ R3 : ±x′3 ≥ 0} having the boundary S = R2 := {x′ ∈

R3 : x′3 = 0}. Here B(n) is an orthogonal matrix given by (4.64) where n = (n1, n2, n3), l = (l1, l2, l3)
and m = (m1,m2,m3) are mutually orthogonal constant unit vectors. Applying the Parseval equality
we then easily deduce that the corresponding homogeneous symbol matrix S(L(0); ξ1, ξ2) is strongly
elliptic, i.e., there is a positive constant c such that

Re
[
S(L(0); ξ1, ξ2)ζ · ζ

]
= Re

[
S(L; ξ1, ξ2)ζ · ζ

]
≥ c|ξ′∥ζ|2 (5.67)

for arbitrary normal vector n and for all ζ ∈ C6, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}, and x ∈ Sn. The constant c
depends only on the material parameters.

Thus we have proved the following

Lemma 5.9. Let condition (5.30) be satisfied and τ = σ+ iω with σ > 0 and ω ∈ R. Then there is a
positive constant C1 such that for all g ∈ [H

1
2
2 (S)]

6 there holds the inequality

Re⟨(L+ C0)g, g⟩S ≥ C1∥g∥2
[H

1
2
2 (S)]6

, (5.68)

where C0 : [H
1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6 is a compact operator. The operator

L : [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6, (5.69)

is a strongly elliptic pseudodifferential operator of index zero and the corresponding two dimensional
null space is defined by (5.62).

Equation (5.57) with F ∈ [Ck,κ′
(S)]6 is solvable if and only if∫

S

F4(x) dS =

∫
S

F5(x) dS = 0 (5.70)

and solution h ∈ [Ck,κ′
(S)]6 is defined modulo a vector summand given by (5.60).

From Lemma 5.9 one can derive the corresponding existence results and representability of solutions
to the Neumann BVPs by double layer potentials.

Theorem 5.10. Let S and F = (F1, . . . , F6)
⊤ satisfy the conditions (5.30) and (5.31).
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(i) If conditions (5.70) hold, then the interior Neumann BVP is solvable in the space of vector
functions [Ck,κ′

(Ω+)]6 and its solutions are representable in the form of double layer potential
(5.56), where the density vector function h is defined by the pseudodifferential equation (5.57)
and h ∈ [Ck,κ′

(S)]6 is defined modulo a vector summand given by (5.60). A solutions to the
interior Neumann BVP for the domain Ω+ is defined modulo a linear combination of the
constant vector functions Ψ(1) = (0, 0, 0, 1, 0, 0)⊤ and Ψ(2) = (0, 0, 0, 0, 1, 0)⊤.

(ii) If conditions (5.70) hold, then the exterior Neumann BVP is solvable in the space of functions
[Ck,κ′

(Ω−)]6 satisfying the decay conditions (2.207) at infinity and its solution is representable
in the form of double layer potential (5.56), where the density vector function h is defined by
the pseudodifferential equation (5.57) and h ∈ [Ck,κ′

(S)]6 is defined modulo a vector summand
given by (5.60). A solution to the exterior Neumann BVP for the domain Ω− is uniquely
defined since the double layer potentials W (Ψ(j)), j = 1, 2, vanish identically in Ω−.

Remark 5.11. Note that, if we seek a solution to the exterior Neumann BVP (5.50), (5.51) in the form
of linear combination of the single and double layer potentials

U(x) =W (h)(x) + αV (h)(x), x ∈ Ω−, α = const > 0, (5.71)
we arrive at the equation (see Theorem 4.1, (4.7), (4.9))

Lh+ α(2−1I6 +K)h = F on S. (5.72)
It can be shown that the operator

L+ α(2−1I6 +K) : [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6, (5.73)

is invertible. Indeed, since the index of the operator (5.73) is zero by Lemma 5.9, it suffices to prove
that the corresponding null space is trivial. Let Lh0+α(2−1I6+K)h0 = 0 on S. Then h0 ∈ [C1,κ′

(S)]6

and the regular vector U0 =W (h0)+αV (h0) ∈ [C1,κ′
(Ω−)]6 solves the homogeneous exterior Neumann

BVP. In view of the uniqueness Theorem 2.26 then U0 = 0 in Ω−. Due to the jump relations we then
get that U0 solves the homogeneous Robin type BVP in Ω+,

{T U0}+ + α{U0}+ = 0 on S. (5.74)
As we have shown in the proof of Theorem 5.3 this problem has only the trivial solution, i.e., U0 = 0
in Ω+. Therefore h0 = {U0}+ − {U0}− = 0 on S and, consequently, the null space of the operator
(5.73) is trivial.

Thus (5.73) is invertible and equation (5.72) is uniquely solvable. This proves that a unique solution
to the exterior Neumann BVP can be represented in the form (5.71) with the density h ∈ [Ck,κ′

(S)]6

defined by the pseudodifferential equation (5.72).

5.6. The interior and exterior Dirichlet and Neumann BVPs in Bessel potential and Besov
spaces. If not otherwise stated, throughout this subsection we assume that

S ∈ C∞, p > 1, q ≥ 1, s ∈ R. (5.75)
Applying the general theory of pseudodifferential equations on manifolds without boundary (see, e.g.,
[35], [101], [44]), we can generalize the existence results obtained in the previous subsections to more
wide classes of boundary data. In particular, using Theorem 4.4 and the fact that the null spaces
of strongly elliptic pseudodifferential operators acting in Bessel potential Hs

p(S) and Besov Bs
p,q(S)

spaces actually do not depend on the parameters s, p, and q, we arrive at appropriate existence results.

Theorem 5.12. Let condition (5.75) be fulfilled and g ∈ [B
1− 1

p
p,p (S)]6. Then the pseudodifferential

operator
2−1I6 +N : [B

1− 1
p

p,p (S)]6 −→ [B
1− 1

p
p,p (S)]6 (5.76)

is invertible and the interior Dirichlet BVP (5.3), (5.4) is uniquely solvable in the space [H1
p (Ω

+)]6 and
the solution is representable in the form of double layer potential U = W (h) with the density vector
function h ∈ [B

1− 1
p

p,p (S)]6 being a unique solution of the equation
(2−1I6 +N )h = g on S. (5.77)
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Proof. The invertibility of the operator (5.76) immediately follows from the strong ellipticity of the
operator 2−1I6 +N and the invertibility of the operator (5.8). Therefore equation (5.77) is uniquely
solvable for arbitrary g ∈ [B

1− 1
p

p,p (S)]6. Moreover, due to Theorem 4.4, it is easy to see that the double
layer potential U = W (h) with density vector h ∈ [B

1− 1
p

p,p (S)]6 being a solution to equation (5.77),
belongs to the space [H1

p (Ω
+)]6 and solves the interior Dirichlet BVP. It remains to show that the

homogenous interior Dirichlet BVP possesses only the trivial solution in the space [H1
p (Ω

+)]6. Let
U0 ∈ [H1

p (Ω
+)]6 be a solution to the homogenous interior Dirichlet BVP. Due to the general integral

representation formula (3.62) we then get

U0 = −V ({T U0}+) in Ω+, (5.78)

where {T U0}+ ∈
[
B

− 1
p

p,p (S)
]6. Therefore, in view of the homogeneous Dirichlet condition on S, we

have
{U0}+ = −H{T U0}+ = 0 on S. (5.79)

But the operator
H : [B

− 1
p

p,p (S)]
6 −→ [B

1− 1
p

p,p (S)]6 (5.80)
is invertible for arbitrary p > 1, since for a particular value of the parameter p = 2 it is invertible (see
Corollary 4.8). Therefore (5.79) and (5.78) yield U0 = 0 in Ω+, which completes the proof. �

The following assertions can be proved quite similarly.

Theorem 5.13. Let condition (5.75) be fulfilled and g ∈ [B
1− 1

p
p,p (S)]6. Then the Dirichlet exterior

problem (5.12), (5.13), (2.207), is uniquely solvable in the space [H1
p,loc(Ω

−)]6 and the solution is

representable in the form U = W (h) + αV (h), where the density vector function h ∈
[
B

1− 1
p

p,p (S)
]6 is

defined by the uniquely solvable pseudodifferential equation

(−2−1I6 +N + αH)h = g on S. (5.81)

Theorem 5.14.
(i) Let a vector function U ∈ [H1

p (Ω
+)]6 solve the homogeneous differential equation A(∂, τ)U = 0

in Ω+. Then it is uniquely representable in the form

U(x) = V
(
H−1{U}+

)
(x), x ∈ Ω+, (5.82)

where H−1 stands for the operator inverse to (5.80), while {U}+ is the trace of U on S from
Ω+ and belongs the space [B

1− 1
p

p,p (S)]6.
(ii) Let a vector function U ∈ [H1

p,loc(Ω
−)]6, satisfy the decay conditions (2.207), and solve the

homogeneous differential equation A(∂, τ)U = 0 in Ω−. Then it is uniquely representable in
the form

U(x) = V
(
H−1{U}−

)
(x), x ∈ Ω−, (5.83)

where H−1 again stands for the operator inverse to (5.80), while {U}− is the traces of U on
S from Ω− and belongs the space [B

1− 1
p

p,p (S)]6.

Analogous propositions hold true for the interior and exterior Neumann BVPs. The following
counterparts of Theorems 5.7 and 5.8 hold.

Theorem 5.15. Let (5.75) be fulfilled and F = (F1, . . . , F6)
⊤ ∈ [B

− 1
p

p,p (S)]6.
(i) The operator

−2−1I6 +K : [B
− 1

p
p,p (S)]

6 −→ [B
− 1

p
p,p (S)]

6 (5.84)
is an elliptic pseudodifferential operator with zero index and has a two-dimensional null space
Λ(S) := ker(−2−1I6 +K) ⊂ [C∞(S)]6, which represents a linear spanof the vector functions

h(1), h(2) ∈ Λ(S), (5.85)
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such that

V (h(1)) = Ψ(1) := (0, 0, 0, 1, 0, 0)⊤ and V (h2)) = Ψ(2) := (0, 0, 0, 0, 1, 0)⊤ in Ω+. (5.86)

(ii) The null space of the operator adjoint to (5.84),

−2−1I6 +K∗ : [B
1− 1

p′

p′,p′ (S)]
6 −→ [B

1− 1
p′

p′,p′ (S)]
6,

1

p
+

1

p′
= 1, (5.87)

is a linear span of the vectors (0, 0, 0, 1, 0, 0)⊤ and (0, 0, 0, 0, 1, 0)⊤.
(iii) The equation

(−2−1I6 +K)h = F on S, (5.88)
is solvable if and only if ∫

S

F4(x) dS =

∫
S

F5(x) dS = 0. (5.89)

(iv) If the conditions (5.89) hold, then solutions to equation (5.88) are defined modulo a linear
combination of the vector functions h(1) and h(2).

(v) If the conditions (5.89) hold, then the interior Neumann type boundary value problem (5.32),
(5.33) is solvable in the space [H1

p (Ω
+)]6 and solutions are representable in the form of single

layer potential U = V (h), where the density vector function h ∈ [B
− 1

p
p,p (S)]6 is defined by

equation (5.88). A solutions to the interior Neumann BVP in Ω+ is defined modulo a linear
combination of the constant vector functions Ψ(1) and Ψ(2) given by (5.86).

Theorem 5.16. Let (5.75) be fulfilled and F = (F1, . . . , F6)
⊤ ∈ [B

− 1
p

p,p (S)]6.
(i) The operator

2−1I6 +K : [B
− 1

p
p,p (S)]

6 −→ [B
− 1

p
p,p (S)]

6 (5.90)
is an invertible elliptic pseudodifferential operator.

(ii) The exterior Neumann type boundary value problem (5.50), (5.51) is uniquely solvable in the
space of vector functions [H1

p (Ω
−)]6 satisfying the decay conditions (2.207) and the solution is

representable in the form of single layer potential U = V (h), where the density vector function
h ∈ [B

− 1
p

p,p (S)]6 is defined by the uniquely solvable pseudodifferential equation (2−1I6+K)h = F
on S.

Remark 5.17. From the general theory of pseudodifferential equations on C∞-smooth manifolds with-
out boundary it follows that

(i) the elliptic pseudodifferential operators

H : [Bs
p,q(S)]

6 −→ [Bs+1
p,q (S)]6, (5.91)

2−1I6 +N : [Bs+1
p,q (S)]6 −→ [Bs+1

p,q (S)]6, (5.92)
2−1I6 +K : [Bs

p,q(S)]
6 −→ [Bs

p,q(S)]
6, (5.93)

are invertible for arbitrary s ∈ R, p > 1, q ≥ 1, since (5.91), (5.92), and (5.93) are invertible for
the following particular values of the parameters s = −1

2 and p = q = 2 due to Corollary 4.9,
Theorem 5.12 and Theorem 5.16, respectively;

(ii) the elliptic pseudodifferential operators

−2−1I6 +N : [Bs
p,q(S)]

6 −→ [Bs
p,q(S)]

6, −2−1I6 +K : [Bs
p,q(S)]

6 −→ [Bs
p,q(S)]

6,

have zero index for arbitrary s ∈ R, p > 1, q ≥ 1, and their two-dimensional null spaces do
not depend on s, p, q.

Remark 5.18. From the results obtained in Subsections 4.2 and 4.3 it follows that Theorems 5.13–5.16
with p = 2 hold true for Lipschitz domains (cf. [75, Ch. 7]).
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5.7. Basic mixed type BVPs. Having in hand the results obtained in the previous subsections, we
can investigate the mixed type boundary value problems formulated in Subsection 2.3 (see (2.166)–
(2.173)). In general, solutions to the mixed type BVPs are not Cα-Hölder continuous with α > 1

2 at
the exceptional curves ℓm where different boundary conditions collide. Therefore we are not allowed
to look for solutions in the space of regular vector functions even for C∞ smooth boundary surfaces
and C∞ smooth boundary data.

Here we study in detail the basic interior mixed type boundary value problems associated with a
simple dissection of the boundary ∂Ω+ into the Dirichlet and Neumann parts, ∂Ω+ = SD ∪ SN . The
exterior problems can be treated quite similarly.

In particular, in this subsection, we will analyze the following mixed type BVP: Find a solution
vector U = (u, φ, ψ, ϑ)⊤ ∈ [W 1

p (Ω
+)]6 to the homogeneous system of pseudo-oscillation equation

A(∂, τ)U = 0 in Ω+, (5.94)
which satisfies the mixed Dirichlet–Neumann type boundary conditions

{U}+ = f (D) on SD, (5.95){
T (∂, n)U

}+
= F (N) on SN . (5.96)

Here
f (D) ∈ [B

1− 1
p

p,p (SD)]6, F (N) ∈ [B
− 1

p
p,p (SN )]6. (5.97)

For simplicity, throughout this subsection we assume that S and ∂SD = ∂SN = ℓm are C∞-smooth.
Denote by f (e) a fixed extension of the vector function f (D) from SD onto the whole of S preserving
the functional space,

f (e) ∈ [B
1− 1

p
p,p (S)]6, r

SD
f (e) = f (D) on SD. (5.98)

Recall that rM denotes the restriction operator onto M.

Remark 5.19. If f (D) = 0 on SD, we always choose in the role of a fixed extension preserving the
space the zero function f (e) = 0 on S.

Clearly, an arbitrary extension f of f (D) onto the whole of S, which preserves the functional space,
can be then represented as

f = f (e) + f̃ with f̃ ∈ [B̃
1− 1

p
p,p (SN )]6. (5.99)

In accordance with Theorem 5.14, we can seek a solution in the form

U = V
(
H−1(f (e) + f̃)

)
, (5.100)

where f̃ ∈ [B̃
1− 1

p
p,p (SN )]6 is an unknown vector function and H−1 is a strongly elliptic pseudodifferential

operator inverse to the operator (5.80) (see Remark 5.17),

H−1 : [B
1− 1

p
p,p (S)]6 −→ [B

− 1
p

p,p (S)]
6. (5.101)

In view of (5.98) and (5.99), it is easy to check that the Dirichlet condition (5.95) on SD is satisfied
automatically. It remains only to satisfy the Neumann condition (5.96) on SN , which leads to the
pseudodifferential equation

(−2−1I6 +K)H−1(f (e) + f̃) = F (N) (5.102)
on the open subsurface SN for the unknown vector function f̃ .

We recall that
A+ = (−2−1I6 +K)H−1 (5.103)

is the Steklov–Poincaré operator introduced and studied in Subsection 4.3 for p = 2. In view of
Remark 4.12 it is clear that

A+ : [B
1− 1

p
p,p (S)]6 −→ [B

− 1
p

p,p (S)]
6 (5.104)

is a strongly elliptic pseudodifferential operator of order 1 with index equal to zero.
Denote

F (0) := F (N) − r
SN

A+f (e) ∈ [B
− 1

p
p,p (SN )]6 (5.105)
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and rewrite equation (5.102) as
rSN

A+f̃ = F (0) on SN , (5.106)
which is a pseudodifferential equation on the submanifold SN with boundary ∂SN . We would like to
investigate the solvability of equation (5.106). To this end, we proceed as follows.

Denote by S(A+;x, ξ1, ξ2) the principal homogeneous symbol matrix of the operator A+ in some
local coordinate system at the point x ∈ SN and let ξ′ = (ξ1, ξ2) ∈ R2 \ {0}). In view of Remark 4.12
the symbol matrix S(A+;x, ξ1, ξ2) is strongly elliptic. Let λ1(x), . . . , λ6(x) be the eigenvalues of the
matrix

MA+(x) :=
[
S(A+;x, 0,+1)

]−1
S(A+;x, 0,−1), x ∈ ∂SN . (5.107)

Introduce the notation
δj(x) = Re

[
(2πi)−1 lnλj(x)

]
, j = 1, . . . , 6, (5.108)

a1 = inf
x∈ℓm,1≤j≤6

δj(x), a2 = sup
x∈ℓm,1≤j≤6

δj(x); (5.109)

here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Note
that the numbers δj(x) do not depend on the choice of the local coordinate system (see Appendix B).
Due to the strong ellipticity of the operator A+ we have the strict inequalities −1

2 < δj(x) <
1
2 for

x ∈ SN , j = 1, . . . , 6. Therefore
−1

2
< a1 ≤ a2 <

1

2
. (5.110)

Moreover, from the structure of the principal homogeneous symbol matrix of the operator A+,
S(A+;x, ξ1, ξ2) = S(−2−1I6 +K;x, ξ1, ξ2)S(H−1;x, ξ1, ξ2),

it follows that (see Appendix C and Remarks C.5)[
S(A+;x, ξ1, ξ2)

]
j6

=
[
S(A+;x, ξ1, ξ2)

]
6j

= 0, j = 1, . . . , 5,[
S(A+;x, ξ1, ξ2)

]
66

= −2−1
[
S(H−1;x, ξ1, ξ2)

]
66

= −2−1
[
S(H−1;x,−ξ1,−ξ2)]66 =

[
S(A+;x,−ξ1,−ξ2)

]
66
> 0,

in accordance with equalities (4.68) and [S(−2−1I6 + K;x, ξ1, ξ2)]66 = −1
2 . Therefore, we find that

[MA+(x)]66 = 1 and due to Remark 4.12 and Lemma C.4, it follows that one of the eigenvalues of the
matrix MA+(x) defined in (5.107) equals to 1, say λ6 = 1, implying δ6 = 0.

Consequently, we have the following estimates

−1

2
< a1 6 0 6 a2 <

1

2
. (5.111)

Lemma 5.20. The operators
rSN

A+ : [H̃s
p(SN )]6 −→ [Hs−1

p (SN )]6, (5.112)

r
SN

A+ : [B̃s
p,q(SN )]6 −→ [Bs−1

p,q (SN )]6, q ≥ 1 (5.113)
are invertible if

1

p
− 1

2
+ a2 < s <

1

p
+

1

2
+ a1, (5.114)

where a1 and a2 are given by (5.109).

Proof. The mapping properties (5.112) and (5.113) follow from Theorem 4.4 and Remark 5.17. To
prove the invertibility of the operators (5.112) and (5.113), we first consider the particular values of
the parameters s = 1/2 and p = q = 2, which fall into the region defined by the inequalities (5.114),
and show that the null space of the operator

rSN
A+ : [H̃

1
2
2 (SN )]6 −→ [H

− 1
2

2 (SN )]6 (5.115)
is trivial, i.e., the equation

rSN
A+f̃ = 0 on SN (5.116)

admits only the trivial solution in the space [H̃
1
2
2 (SN )]6. Recall that H̃s

2(SN ) = B̃s
2,2(SN ) and

Hs
2(SN ) = Bs

2,2(SN ) for s ∈ R.



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 89

Let f̃ ∈ [H̃
1
2 (SN )]6 be a solution of the homogeneous equation (5.116). It is evident that the vector

U = V (H−1f̃) belongs to the space [H1
2 (Ω

+)]6 = [W 1
2 (Ω

+)]6 and solves the homogeneous mixed BVP
(5.94)–(5.96) with f (D) = 0 and F (N) = 0. Therefore, U(x) = V (H−1f̃)(x) = 0 for x ∈ Ω+, due to
Theorem 2.25 and, consequently, {U}+ = f̃ = 0 on S.

Since the principal homogeneous symbol matrix of the operator A+ is strongly elliptic, by Theo-
rem B.1 (see Appendix B) we conclude that for all values of the parameters satisfying the inequalities
(5.114), the operators (5.112) and (5.113) are Fredholm with zero index and with trivial null spaces.
Thus they are invertible. �

With the help of this lemma we can prove the following main existence result.

Theorem 5.21. Let the conditions (5.97) be fulfilled, a1 and a2 be defined by (5.109), and
4

3− 2a2
< p <

4

1− 2a1
. (5.117)

Then the mixed boundary value problem (5.94)–(5.96) has a unique solution U ∈ [W 1
p (Ω

+)]6 which is
representable in the form of single layer potential (5.100),

U = V
(
H−1(f (e) + f̃)

)
, (5.118)

where f (e) ∈ [B
1−1/p
p,p (S)]6 is a fixed extension of the vector function f (D) ∈ [B

1−1/p
p,p (SD)]g from SD

onto S preserving the functional space and f̃ ∈ [B̃
1−1/p
p,p (SN )]6 is defined by the uniquely solvable

pseudodifferential equation
rSN

A+f̃ = F (0) on SN (5.119)
with

F (0) := F (N) − r
SN

A+f (e) ∈ [B−1/p
p,p (SN )]6.

Proof. First we note that in accordance with Lemma 5.20, equation (5.119) is uniquely solvable for
s = 1 − 1

p where p satisfies the inequality (5.117), since the inequalities (5.114) are fulfilled. This
implies that the mixed boundary value problem (5.94)–(5.96) is solvable in the space [W 1

p (Ω
+)]6 with

p as in (5.117).
Next, we show the uniqueness of solution in the space [W 1

p (Ω
+)]6 for arbitrary p satisfying (5.117).

Note that p = 2 belongs to the interval defined by the inequality (5.117) and for p = 2 the uniqueness
has been proved in Theorem 2.25. Now, let U ∈ [W 1

p (Ω
+)]6 be some solution of the homogeneous

mixed boundary value problem. Evidently, then

{U}+ ∈ [B̃1−1/p
p,p (SN )]6. (5.120)

By Theorem 5.14, we have the representation

U(x) = V (H−1{U}+)(x), x ∈ Ω+.

Since U satisfies the homogeneous Neumann condition (5.96) on SN , we arrive at the equation

rSN
A+{U}+ = 0 on SN ,

whence {U}+ = 0 on S follows due to the inclusion (5.120), Lemma 5.20, and inequality (5.117)
implying the conditions (5.114). Therefore, U = 0 in Ω+. �

Further, we prove almost the best regularity results for solutions to the mixed type boundary value
problems.

Theorem 5.22. Let inclusions (5.97) hold and let
4

3− 2a2
< p <

4

1− 2a1
, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
+ a2 < s <

1

r
+

1

2
+ a1, (5.121)

with a1 and a2 defined by (5.109).
Further, let U ∈ [W 1

p (Ω
+)]6 be a unique solution to the mixed boundary value problem (5.94)–(5.96).

Then the following hold:
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(i) if
f (D) ∈ [Bs

r,r(SD)]6, F (D) ∈ [Bs−1
r,r (SN )]6,

then U ∈ [H
s+ 1

r
r (Ω+)]6;

(ii) if
f (D) ∈ [Bs

r,q(SD)]6, F (D) ∈ [Bs−1
r,q (SN )]6,

then
U ∈ [B

s+ 1
r

r,q (Ω+)]6; (5.122)

(iii) if α > 0 is not integer and

f (D) ∈ [Cα(SD)]6, F (D) ∈ [Bα−1
∞,∞(SN )]6, (5.123)

then
U ∈

∩
α′<κm

[Cα′
(Ω+)]6,

where 0 < κm = min{α, a1 + 1
2} 6 1

2 .

Proof. The proofs of items (i) and (ii) follow easily from Lemma 5.20, and Theorems 5.21, and B.1.
To prove (iii) we use the following embedding (see, e.g., [108], [109])

Cα(M) = Bα
∞,∞(M) ⊂ Bα−ε

∞,1 (M) ⊂ Bα−ε
∞,q (M) ⊂ Bα−ε

r,q (M) ⊂ Cα−ε−k/r(M), (5.124)

where ε is an arbitrary small positive number, M ⊂ R3 is a compact k-dimensional (k = 2, 3) smooth
manifold with smooth boundary, 1 ≤ q ≤ ∞, 1 < r <∞, α− ε− k

r > 0, and α and α− ε− k
r are not

integers.
From (5.123) and the embedding (5.124) the condition (5.122) follows with any s ≤ α− ε.
Bearing in mind (5.121) and taking r sufficiently large and ε sufficiently small, we can put

s = α− ε if 1

r
− 1

2
+ a2 < α− ε <

1

r
+

1

2
+ a1, (5.125)

and
s ∈

(1
r
− 1

2
+ a2,

1

r
+

1

2
+ a1

)
if 1

r
+

1

2
+ a1 < α− ε. (5.126)

By (5.122) for the solution vector we have U ∈ [B
s+ 1

r
r,q (Ω+)]6 with

s+
1

r
= α− ε+

1

r

if (5.125) holds, and with

s+
1

r
∈
(2
r
− 1

2
+ a2,

2

r
+

1

2
+ a1

)
if (5.126) holds. In the last case we can take

s+
1

r
=

2

r
+

1

2
+ a1 − ε.

Therefore, we have either

U ∈ [B
α−ε+ 1

r
r,q (Ω+)]6 or U ∈ [B

1
2+

2
r+a1−ε

r,q (Ω+)]5,

in accordance with the inequalities (5.125) and (5.126). The last embedding in (5.124) (with k = 3)
yields then that either

U ∈ [Cα−ε− 2
r (Ω+)]6 or U ∈ [C

1
2−ε+a1− 1

r (Ω+)]6.

These relations lead to the inclusions
U ∈ [Cκm−ε− 2

r (Ω+)]6, (5.127)
where κm = min{α, a1 + 1

2} and 0 < κm 6 1
2 due to the inequalities (5.111). Since r is sufficiently

large and ε is sufficiently small, the inclusions (5.127) accomplish the proof. �
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Remark 5.23. Using exactly the same arguments, it can be shown that the similar uniqueness, existence
and regularity results hold also true for the exterior mixed boundary value problem (M)−τ . We note
only that the solution U = (u, φ, ψ, ϑ)⊤ ∈ [W 1

p (Ω
−)]6, satisfying the decay condition (2.207), is

representable again in the form of the single layer potential (5.100), where f (e) ∈ [B
1− 1

p
p,p (S)]6 is the

same as above, and f̃ ∈ [B̃
1− 1

p
p,p (SN )]6 is the unique solution of the pseudodifferential equation

r
SN

A−g̃ = F̃ (0) on SN , (5.128)

where
A− := [2−1I6 +K]H−1, F̃ (0) := F (N) − r

SN
A−f (e).

The operator rSN
A− has the same Fredholm properties as rSN

A+, in particular, Lemma 5.20 holds
with r

SN
A− for r

SN
A+.

Remark 5.24. Lemma 5.20 with p = q = 2 and s = 1
2 and Theorems 5.21 with p = 2 remain valid for

Lipschitz domains due to Lemma 4.11 and the uniqueness Theorem 2.25.

Remark 5.25. The asymptotic expansions derived in [16] of solutions imply that for sufficiently smooth
boundary data (e.g., C∞-smooth data say) the solution vector U to the mixed boundary value problem
(M)+τ belongs to the class of semi-regular functions described in Definition 2.2:

U ∈ [C(Ω̃ℓ;α)]
6,

where α = 1
2 − a1 + ε with a1 defined in (5.109) and ε being an arbitrarily small positive number.

Due to the relations (5.110), it is evident that 1
2 < α < 1 if 0 < ε < 1

4 + 1
2 a1.

Moreover, the dominant terms of the asymptotic expansion of the solution vector U near the
curve ℓm can be represented as the product of C∞-smooth vector-functions and factors of the form
[ln ϱ(x)]mj−1[ϱ(x)]κj+iνj , where ϱ(x) is the distance from a reference point x to the curve ℓm (for
details see [16, Subsection 6.2]). Therefore, near the curve ℓm the dominant singular terms of the cor-
responding generalized stress vector T U is represented as the product of C∞-smooth vector-functions
and the singular factors [ln ϱ(x)]mj−1[ϱ(x)]−1+κj+iνj . The numbers νj are different from zero, in
general, and describe the oscillating character of the stress singularities.

The exponents κj + iνj are related to the corresponding eigenvalues λj of the matrix (5.107) by
the equalities

κj =
1

2
+

argλj
2π

, νj = − ln |λj |
2π

, j = 1, 2, . . . , 6. (5.129)

In the above expressions the parameter mj denotes the multiplicity of the eigenvalue λj .
It is evident that at the curve ℓm the components of the generalized stress vector T U behave

like O([ln ϱ(x)]m0−1[ϱ(x)]−
1
2+a1), where m0 denotes the maximal multiplicity of the eigenvalues λj ,

j =, . . . , 6. This is a global singularity effect for the first order derivatives of the vectors U . In contrast
to the classical pure elasticity case (where a1 = 0), here a1 depends on the material parameters and is
different from zero, in general. Since a1 6 0, we see that the stress singularity exponents may become
less than − 1

2 , in general.

6. Investigation of Model Crack Type Problems of Pseudo-Oscillations

In this section, first we investigate in detail model crack type problems. To describe principal
qualitative aspects of the crack problems, for simplicity, first we assume that an elastic solid occupies
a whole space R3 and contains an interior crack which coincides with a two-dimensional, two-sided
smooth manifold Σ with the crack edge ℓc := ∂Σ. Denote R3

Σ := R3 \ Σ. As in Subsection 2.3, the
crack surface Σ is considered as a submanifold of a closed surface S0 surrounding a bounded domain
Ω0. We choose the direction of the unit normal vector on the fictional surface S0 such that it is
outward with respect to the domain Ω0. This agreement defines uniquely the direction of the normal
vector on the crack surface Σ.

For the domain R3
Σ we treat two model problems when on the crack surface Σ there are pre-

scribed either the Neumann type crack boundary conditions (CR-N)τ (see (2.176), (2.177)) or mixed
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Neumann-Transmission crack type conditions (CR-NT)τ (see (2.178)–(2.184)). We prove unique sol-
vability of the problems (CR-N)τ and (CR-NT)τ by the potential method and analyze regularity
properties of solutions.

Afterwards, for a bounded domain Ω+
Σ containing an interior crack Σ, we investigate in detail

the crack type BVPs (D-CR-N)+τ and (M-CR-N)+τ with the Dirichlet and basic mixed boundary
conditions on the exterior boundary S of Ω+

Σ associated with the dissection S = SD ∪ SN . The BVPs
(D-CR-N)−τ , (M-CR-N)−τ , (D-CR-NT)±τ , (M-CR-NT)±τ , (N-CR-N)±τ , and (N-CR-NT)±τ , can be studi-
ed by the same approach.

For simplicity, throughout this section we assume that Σ, ℓc = ∂Σ, S = ∂Ω±, and ℓm = ∂SD = ∂SN

are C∞-smooth if not otherwise stated.

6.1. Crack type problem (CR-N)τ . We have to find a solution vector U = (u, φ, ψ, ϑ)⊤ ∈
[W 1

p,loc(R3
Σ)]

6 to the equation
A(∂, τ)U = 0 in R3

Σ, (6.1)
possessing the decay properties (2.207) and satisfying the crack type boundary conditions on the faces
of surface Σ (cf. (2.176), (2.177)): {

T (∂, n, τ)U
}+

= F (+) on Σ, (6.2){
T (∂, n, τ)U

}−
= F (−) on Σ, (6.3)

where F (±) = (F
(±)
1 , . . . , F

(±)
6 )⊤ ∈ [B

− 1
p

p,p (Σ)]6 are given vector functions on Σ satisfying the following
compatibility condition

F (+) − F (−) ∈ [B̃
− 1

p
p,p (Σ)]

6. (6.4)
The imbedding (6.4) means that the extension of the vector function F (+) − F (−) form Σ onto the
whole of S0 by zero preserves the functional space [B̃

− 1
p

p,p (Σ)]6. It is easy to see that (6.4) is a necessary
condition for the problem (CR-N)τ to be solvable in the space [W 1

p,loc(R3
Σ)]

6.
Recall that these boundary conditions correspond to the case when the crack gap is thermally

insulated and electrically impermeable (see Subsection 2.2).
Let us rewrite the boundary conditions (6.2), (6.3) in the following equivalent form{

[T (∂, n, τ)U ]
}+

+
{
[T (∂, n, τ)U ]

}−
= F (+) + F (−) on Σ, (6.5){

[T (∂, n, τ)U ]
}+ −

{
[T (∂, n, τ)U ]

}−
= F (+) − F (−) on Σ. (6.6)

Due to Corollary 3.7 we look for a solution to the crack type BVP (CR-N)τ in the form
U =W (g)− V (h) in R3

Σ, (6.7)
where W (g) =WΣ(g) and V (h) = VΣ(h) are double and single layer potentials defined by (3.60) and
(3.59), respectively, with Σ for S,

g = [U ]Σ = {U}+ − {U}− ∈ [B̃
1− 1

p
p,p (Σ)]6 (6.8)

is an unknown vector function on Σ, while

h = [T U ]Σ = {T U}+ − {T U}− = F (+) − F (−) ∈ [B̃
− 1

p
p,p (Σ)]

6 (6.9)
is a given vector function on Σ.

In view of Theorem 4.4 and jump relations (4.2)–(4.5), it is evident that the vector function (6.7)
with g and h as in (6.8) and (6.9) belongs to the space [W 1

p,loc(R3
Σ)]

6, satisfies the decay condition
(2.207) and the boundary condition (6.6) on Σ. The remaining boundary condition (6.5) leads then
to the pseudodifferential equation for the unknown vector function g

r
Σ
Lg = F on Σ, (6.10)

where L is a pseudodifferential operator defined by (4.9) with Σ for S and

F =
1

2
[F (+) + F (−)] + rΣKh ∈ [B

− 1
p

p,p (Σ)]
6 (6.11)
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with h given by (6.9) and where the operator K is defined by (4.7). In what follows we show that the
pseudodifferential equation (6.10) is uniquely solvable for arbitrary right hand side. To this end, we
first formulate the following propositions.

Lemma 6.1. Let the crack manifold Σ and the crack edge ∂Σ be Lipschitz. Then the crack problems
(CR-N)τ and (CR-NT)τ possess at most one solution in the space [W 1

2,loc(R3
Σ)]

6 satisfying the decay
properties (2.207).

Proof. It is word for word of the proof of the uniqueness Theorem 2.26. �

Lemma 6.2. Let s ∈ R, p > 1, and q ≥ 1. The operators

rΣL : [H̃s
p(Σ)]

6 −→ [Hs−1
p (Σ)]6, (6.12)

rΣL : [B̃s
p,q(Σ)]

6 −→ [Bs−1
p,q (Σ)]6, (6.13)

are invertible if
1

p
− 1

2
< s <

1

p
+

1

2
. (6.14)

Proof. In Subsection 5.5, we have shown that the principal homogeneous symbol matrix S
(
L;x, ξ′) of

the operator L is even and homogeneous of order +1 in ξ′ = (ξ1, ξ2). Moreover, in the same subsection
we have established that the symbol matrix S(L;x, ξ1, ξ2) is strongly elliptic. So we can apply the
theory of strongly elliptic pseudodifferential equations on manifolds with boundary (see Appendix B,
Theorem B.1).

Note that, since the principal homogeneous symbol matrix S
(
L;x, ξ1, ξ2) is even in ξ′ = (ξ1, ξ2),

we have
ML(x) := [S(L;x, 0,+1)]−1[S(L;x, 0,−1)] = I6, x ∈ Σ. (6.15)

Therefore all the eigenvalues λ1(x), . . . , λ6(x) of the matrix ML(x) equal to 1 and
δj(x) = Re

[
(2πi)−1 lnλj(x)

]
= 0, j = 1, . . . , 6, (6.16)

where ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0] (see
Appendix B). Therefore, by Theorem B.1 the operators (6.12) and (6.13) are Fredholm with zero
index if the conditions (6.14) hold. Moreover, in view of Theorem B.1, it remains to show that
for some particular values of the parameters s, p, and q, satisfying the inequalities (6.14), they are
invertible. Let us take s = 1/2, p = q = 2 and recall that H̃s

2(Σ) = B̃s
2,2(Σ) and Hs

2(Σ) = Bs
2,2(Σ) for

s ∈ R. Thus the operators (6.12) and (6.13) coincide for the chosen particular values of the parameters
and actually we have to prove that the null space of the operator rΣL : [H̃

1
2
2 (Σ)]

6 → [H
− 1

2
2 (Σ)]6 is

trivial. Indeed, let g0 ∈ [H̃
1
2
2 (Σ)]

6 be a solution of the homogeneous equation rΣLg0 = 0 on Σ and
construct the vector function U0 = W (g0). By Theorem 4.2 we see that U0 = W (g0) ∈ [W 1

2,loc(R3
Σ)]

6

and satisfies the decay conditions (2.207). Moreover, it is also easy to see that U0 satisfies the
homogeneous crack conditions (6.5), (6.6) due to Theorem 4.2. Therefore U0 = 0 in R3

Σ by Lemma 6.1.
Consequently, {U0}+ − {U0}− = g0 = 0 on Σ which implies that the null space of the operator
rΣL : [H̃

1
2
2 (Σ)]

6 → [H
− 1

2
2 (Σ)]6 is trivial. Therefore the null spaces of the operators (6.12) and (6.13)

are trivial as well due to Theorem B.1 which completes the proof. �

Now, we can prove the following existence result.

Theorem 6.3. Let F (±) = (F
(±)
1 , . . . , F

(±)
6 )⊤ ∈ [B

− 1
p

p,p (Σ)]6, the compatibility conditions (6.4) be
fulfilled and

4

3
< p < 4. (6.17)

Then the crack type BVP (CR-N)τ has a unique solution U ∈ [W 1
p,loc(R3

Σ)]
6 ∩ Zτ (R3

Σ) which is
representable in the form

U =W (g)− V (F (+) − F (−)) in R3
Σ, (6.18)

where g ∈ [B̃
1− 1

p
p,p (Σ)]6 is defined by the uniquely solvable pseudodifferential equation (6.10), (6.11).
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Proof. First we note that in accordance with Lemma 6.2, the pseudodifferential equation (6.10), (6.11)
is uniquely solvable for s = 1 − 1

p with p from the interval (6.17), since the inequalities (6.14) are
fulfilled. This implies that the crack type BVP (CR-N)τ is solvable in the space [W 1

p,loc(R3
Σ)]

6∩Zτ (R3
Σ)

with p satisfying inequalities (6.17).
Next, we show the uniqueness of solution in the space [W 1

p,loc(R3
Σ)]

6 ∩ Zτ (R3
Σ) with p satisfying

(6.17). Note that, p = 2 belongs to the interval (6.17) and for p = 2 the uniqueness holds due to
Lemma 6.1. Now, let U ∈ [W 1

p,loc(R3
Σ)]

6 ∩ Zτ (R3
Σ) be some solution of the homogeneous crack type

BVP (CR-N)τ . Then
{U}± ∈ [B1−1/p

p,p (Σ)]6, {T U}± ∈ [B−1/p
p,p (Σ)]6,

{U}+ − {U}− ∈ [B̃1−1/p
p,p (Σ)]6, {T U}+ − {T U}− ∈ [B̃−1/p

p,p (Σ)]6,
(6.19)

since actually U ∈ [W 1
p,loc(R3

Σ)]
6 ∩ [C∞(R3

Σ)]
6 due to the interior regularity results.

In accordance with Corollary 3.7 for the solution vector U of the homogeneous crack type BVP
(CR-N)τ we have then the representation

U =WΣ(g) ≡W (g) in R3
Σ, (6.20)

with g = [U ]Σ = {U}+−{U}− ∈ [B̃
1− 1

p
p,p (Σ)]6. Since U satisfies the homogeneous crack type conditions

on Σ, we arrive at the equation rΣ{T U}± = rΣLg = 0 on Σ, whence g = 0 on Σ follows due to
Lemma 6.2 in view of the inequality (6.17). Therefore, U = 0 in R3

Σ. �

As in the case of mixed type BVP (M)+τ (see Theorem 5.22), we can prove almost the best regularity
results for solutions to the crack type BVP (CR-N)τ .

Theorem 6.4. Let the inclusions F (±) = (F
(±)
1 , . . . , F

(±)
6 )⊤ ∈ [B

− 1
p

p,p (Σ)]6 and the compatibility
conditions (6.4) hold and let

4

3
< p < 4, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
< s <

1

r
+

1

2
. (6.21)

Further, let U ∈ [W 1
p,loc(R3

Σ)]
6 ∩ Zτ (R3

Σ) be a unique solution to the crack type BVP (CR-N)τ . Then
the following hold:

(i) if
F (±) ∈ [Bs−1

r,r (Σ)]6, F (+) − F (−) ∈ [B̃s−1
r,r (Σ)]6,

then U ∈ [H
s+ 1

r

r,loc (R3
Σ)]

6;

(ii) if
F (±) ∈ [Bs−1

r,q (Σ)]6, F (+) − F (−) ∈ [B̃s−1
r,q (Σ)]6,

then
U ∈ [B

s+ 1
r

r,q,loc(R
3
Σ)]

6; (6.22)

(iii) if α > 0 is not integer and

F (±) ∈ [Bα−1
∞,∞(Σ)]6, F (+) − F (−) ∈ [B̃α−1

∞,∞(Σ)]6, (6.23)
then

U ∈
∩

α′<κc

[Cα′
(Ω)]6,

with κc = min{α, 12} > 0; here Ω is either Ω0 or R3 \ Ω0, where Ω0 is a domain with C∞

regular boundary S0 = ∂Ω0 which contains the crack surface Σ as a proper part.

Proof. It is word for word of the proof of Theorem 5.22 with a1 = a2 = 0. �

Remark 6.5. If we compare the regularity results exposed in Theorems 5.22 and 6.4 for solutions of
mixed (M)±τ and crack type (CR-N)τ BVPs near the exceptional curves, i.e., near the curve ℓm where
the Dirichlet and Neumann conditions collide and near the crack edge ℓc, we see that the Hölder
smoothness exponent for solution vectors at the curve ℓc is greater than the Hölder smoothness
exponent at the curve ℓm, in general. In particular, if boundary data are sufficiently smooth, α > 1/2
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say, due to Theorem 5.22(iii) solutions to mixed BVPs belong then to the class
∩

α′<κm

Cα′ at the curve

ℓm where the positive upper bound κm = a1 +
1
2 depends on the material parameters essentially and

may take an arbitrary value from the interval (0, 12 ], since in general a1 may take an arbitrary value
from the interval (−1

2 , 0] depending on the material parameters.
In the case of crack type BVPs with α > 1/2, due to Theorem 6.4(iii) solutions belong to the

class
∩

α′<1/2

Cα′ at the crack edge ℓc and as we see the upper bound κc = 1/2 does not depend on

the material parameters. Thus κm ≤ κc, which proves that, in general, solutions to the crack type
BVPs possess higher regularity near the crack edge ℓc than solutions to the mixed type BVPs at the
exceptional collision curve ℓm (cf. [15], [10], [11]).
Remark 6.6. The asymptotic expansions of solutions at the crack edge derived in [16] imply that for
sufficiently smooth boundary data (e.g., C∞-smooth data say) the solution vector U to the crack
problem (CR-N)τ belongs to the class of semi-regular functions described in Definition 2.2,

U ∈ [C(R3
Σ;α)]

6 with α =
1

2
.

Moreover, the dominant terms of the asymptotic expansion of the solution vector U near the curve
ℓc has the form O(ϱ

1
2 (x)), where ϱ(x) is the distance from a reference point x to the curve ℓc, while

the dominant singular terms of the corresponding generalized stress vector T U are estimated by the
expressions of type O(ϱ−

1
2 (x)) (for details see [16, Subsection 6.1]).

6.2. Crack type problem (CR-NT)τ . In this case we have to find a solution vector U = (u, φ, ψ, ϑ)⊤

∈ [W 1
p,loc(R3

Σ)]
6 to the equation A(∂, τ)U = 0 in R3

Σ possessing the decay properties (2.207) and satisfy-
ing the boundary conditions (2.178)–(2.184) on the crack faces. Recall that these boundary conditions
correspond to the case when the crack gap is thermally and electrically conductive (see Subsection 2.2).

As in the previous case, we first reformulate the crack conditions (2.178)–(2.184) on Σ equivalently,{
[T (∂, n)U ]k

}+ −
{
[T (∂, n)U ]k

}−
= F ∗∗

k := F
(+)
k − F

(−)
k , k = 1, 2, 3, (6.24){

[T (∂, n)U ]j
}+ −

{
[T (∂, n)U ]j

}−
= F ∗∗

j , j = 4, 5, 6, (6.25)
{Uj}+ − {Uj}− = f∗∗j , j = 4, 5, 6, (6.26){

[T (∂, n)U ]k
}+

+
{
[T (∂, n)U ]k

}−
= F

(+)
k + F

(−)
k , k = 1, 2, 3, (6.27)

where
F

(±)
k ∈ B

− 1
p

p,p (Σ), F ∗∗
k := F

(+)
k − F

(−)
k ∈ B̃

− 1
p

p,p (Σ),

f∗∗j ∈ B̃
1− 1

p
p,p (Σ), F ∗∗

j ∈ B̃
− 1

p
p,p (Σ),

k = 1, 2, 3, j = 4, 5, 6. (6.28)

Again, due to Corollary 3.7 we look for a solution to the crack type BVP (CR-NT)τ in the form
U =W (g)− V (h) in R3

Σ, (6.29)
where W (g) =WΣ(g) and V (h) = VΣ(h) are double and single layer potentials defined by (3.60) and
(3.59), respectively, with Σ for S, and where g and h are related to the solution vector U by the
relations:

g = (g1, g2, . . . , g6)
⊤ = {U}+ − {U}− ∈ [B̃

1− 1
p

p,p (Σ)]6, (6.30)

h = (h1, h2, . . . , h6)
⊤ = {T U}+ − {T U}− ∈ [B̃

− 1
p

p,p (Σ)]
6. (6.31)

It is easy to see that the vector function h is defined explicitly from the boundary conditions (6.24),
(6.25),

hj = F ∗∗
j ∈ B̃

− 1
p

p,p (Σ), j = 1, . . . , 6. (6.32)
In view of (6.26) and (6.30) the components g4, g5, and g5 of the vector function g are also explicitly
defined

gj = f∗∗j ∈ B̃
1− 1

p
p,p (Σ), j = 4, 5, 6. (6.33)

So as we see, if (6.32) and (6.33) hold, then the vector function U defined by (6.29) automatically
satisfies all conditions of the crack type BVP (CR-NT)τ except the three boundary conditions in
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(6.27). Keeping in mind that in the representation formula (6.29) the only unknowns remain the
functions g1, g2, and g3, the first three components of the vector g, and taking into account the
boundary conditions (6.27), we arrive at the following pseudodifferential equations

rΣ

3∑
j=1

Lkjgj = Fk on Σ, k = 1, 2, 3, (6.34)

where L = [Lkj ]6×6 is a pseudodifferential operator defined by (4.9) with Σ for S and

Fk =
1

2
[F

(+)
k + F

(−)
k ]− rΣ

6∑
j=4

Lkjf
∗∗
j + rΣ

6∑
j=1

KkjF
∗∗
j ∈ B

− 1
p

p,p (Σ), k = 1, 2, 3, (6.35)

where f∗∗j , j = 1, 2, 3, and F ∗∗
j , j = 1, 2, . . . , 6, are given functions from the spaces shown in (6.28)

and the pseudodifferential operator K = [Kkj ]6×6 is defined by (4.7) with Σ for S.
Let us introduce the matrix pseudodifferential operator

L := [Lkj ]3×3, 1 ≤ k, j ≤ 3, (6.36)
which coincides with the first basic 3× 3 block of the matrix pseudodifferential operator L = [Lkj ]6×6

defined by (4.9).
Further, we rewrite the system of equation (6.34) in matrix form

rΣLg
(3) = F on Σ, (6.37)

where
g(3) = (g1, g2, g3)

⊤ ∈ [B̃
1− 1

p
p,p (Σ)]3 (6.38)

is the unknown vector function and

F = (F1, F2, F3)
⊤ ∈ [B

− 1
p

p,p (Σ)]
3 (6.39)

is a known right hand side defined in (6.35).
From the properties of the operator L, described in Lemma 5.9, it follows immediately that the

pseudodifferential operator L is strongly elliptic as well and the principal homogeneous symbol matrix
S
(
L;x, ξ′) = [Skj

(
L;x, ξ′)]3×3 of the operator L is even and homogeneous of order +1 in ξ′ = (ξ1, ξ2).

Therefore, we can apply Theorem B.1 and prove the following counterpart of Lemma 6.2.

Lemma 6.7. Let s ∈ R, p > 1, and q ≥ 1. The operators

rΣL : [H̃s
p(Σ)]

3 −→ Hs−1
p (Σ)]3, (6.40)

rΣL : [B̃s
p,q(Σ)]

3 −→ [Bs−1
p,q (Σ)]3, (6.41)

are invertible if
1

p
− 1

2
< s <

1

p
+

1

2
. (6.42)

Proof. By the same arguments as in the proof of Lemma 6.2 we easily derive that the operators
(6.40) and (6.41) are Fredholm with zero index if the inequalities (6.42) hold. Therefore we need
only to prove that the operator (6.40) has the trivial null space if s = 1/2, p = q = 2. Let g0 =

(g01, g02, g03)
⊤ ∈ [H̃

1
2
2 (Σ)]

3 be a solution of the homogeneous equation rΣLg0 = 0 on Σ. We set
f0 := (g0, 0, 0, 0)

⊤ = (g01, g02, g03, 0, 0, 0)
⊤ and construct the vector function U0 = W (f0) ≡ WΣ(f0).

By Theorem 4.2 we see that U0 =W (f0) ∈ [W 1
2,loc(R3

Σ)]
6 and U0 satisfies the decay conditions (2.207).

Moreover, it is also easy to see that U0 satisfies the homogeneous crack conditions (6.24)–(6.27) due to
Theorem 4.2 and the homogeneous equation for g0 on Σ. By the uniqueness Lemma 6.1 we conclude
U0 = 0 in R3

Σ. Consequently, {U0}+ − {U0}− = f0 = 0 on Σ implying that the null space of the
operator rΣL : [H̃

1
2
2 (Σ)]

3 → [H
− 1

2
2 (Σ)]3 is trivial. Therefore under the condition (6.42), the null spaces

of the operators (6.40) and (6.41) are trivial as well due to Theorem B.1 which completes the proof. �

Lemma 6.7 immediately leads to the following existence and regularity results which can be proved
by means of exactly the same arguments as Theorems 6.3 and 6.4.
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Theorem 6.8. Let conditions (6.28) be fulfilled and 4
3 < p < 4. Then the crack type BVP (CR-NT)τ

has a unique solution U ∈ [W 1
p,loc(R3

Σ)]
6 ∩ Zτ (R3

Σ) which is representable in the form

U =W (g∗) +W (f∗∗)− V (F ∗∗) in R3
Σ, (6.43)

where F ∗∗ := (F ∗∗
1 , . . . , F ∗∗

6 )⊤ and f∗∗ := (0, 0, 0, f∗∗4 , f∗∗5 , f∗∗6 )⊤ are given boundary data defined
in (6.24)–(6.28), while the unknown vector function g∗ = (g(3), 0, 0, 0)⊤ with g(3) = (g1, g2, g3)

⊤ ∈
[B̃

1− 1
p

p,p (Σ)]3 is defined by the uniquely solvable pseudodifferential equation (6.37), i.e., the equations
(6.34), (6.35).

Theorem 6.9. Let conditions (6.28) be fulfilled and let
4

3
< p < 4, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
< s <

1

r
+

1

2
, (6.44)

Further, let U ∈ [W 1
p,loc(R3

Σ)]
6 ∩Zτ (R3

Σ) be a unique solution to the crack type BVP (CR-NT)τ . Then
the following hold:

(i) if
F

(±)
k ∈ Bs−1

r,r (Σ), F ∗∗
k := F

(+)
k − F

(−)
k ∈ B̃s−1

r,r (Σ),

f∗∗j ∈ B̃s
r,r(Σ), F ∗∗

j ∈ B̃s−1
r,r (Σ), k = 1, 2, 3, j = 4, 5, 6,

(6.45)

then U ∈ [H
s+ 1

r

r,loc (R3
Σ)]

6;

(ii) if
F

(±)
k ∈ Bs−1

r,q (Σ), F ∗∗
k := F

(+)
k − F

(−)
k ∈ B̃s−1

r,q (Σ),

f∗∗j ∈ B̃s
r,q(Σ), F ∗∗

j ∈ B̃s−1
r,q (Σ), k = 1, 2, 3, j = 4, 5, 6,

(6.46)

then
U ∈ [B

s+ 1
r

r,q,loc(R
3
Σ)]

6; (6.47)

(iii) if α > 0 is not integer and

F
(±)
k ∈ Bα−1

∞,∞(Σ), F ∗∗
k := F

(+)
k − F

(−)
k ∈ B̃α−1

∞,∞(Σ), F ∗∗
j ∈ B̃α−1

∞,∞(Σ),

f∗∗j ∈ Cα(Σ), r
∂Σ
f∗∗j = 0, k = 1, 2, 3, j = 4, 5, 6,

(6.48)

then
U ∈

∩
α′<κc

[Cα′
(Ω)]6,

with κc = min{α, 12} > 0; here Ω is either Ω0 or R3 \ Ω0, where Ω0 is a domain with C∞

regular boundary S0 = ∂Ω0 which contains the crack surface Σ as a proper part.

Remark 6.10. If we compare the regularity results exposed in Theorems 5.22 and 6.9 for solutions
of mixed (M)±τ and crack type (CR-NT)τ BVPs near the exceptional curves, i.e., near the curve
ℓm where the Dirichlet and Neumann conditions collide and near the crack edge ℓc, we see that the
Hölder smoothness exponent for solution vectors at the curve ℓc is greater than the Hölder smoothness
exponent at the curve ℓm, since κm ≤ κc, in general (cf. Remark 6.5).

Remark 6.11. By the arguments applied in the proof of Lemma 5.9, we can show that inequality (5.68)
holds true for an arbitrary Lipschitz surface S (cf. [75, Ch. 7]), which implies that if the crack surface
Σ and the crack edge ∂Σ are Lipschitz, then the operator

L : [H̃
1
2
2 (Σ)]

6 −→ [H
− 1

2
2 (Σ)]6 (6.49)

is Fredholm operator with zero index ([75, Ch. 2]). Then by the uniqueness Lemma 6.1 we can prove
that the null space of the operator (6.49) is trivial and, consequently, it is invertible. Therefore it is
easy to show that Lemmas 6.2 and 6.7 with p = q = 2 and s = 1

2 , and Theorems 6.3 and 6.8 with
p = 2 remain valid if the crack surface Σ and the crack edge ∂Σ are Lipschitz.
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Remark 6.12. Applying again the asymptotic expansions of solutions at the crack edge derived in [16]
imply that for sufficiently smooth boundary data (e.g., C∞-smooth data say) the solution vector U to
the crack problem (CR-NT)τ belongs to the class of semi-regular functions described in Definition 2.5,

U ∈ [C(R̃3
Σ;α)]

6 with α =
1

2
.

Moreover, the dominant terms of the asymptotic expansion of the solution vector U near the curve
ℓc has the form O(ϱ

1
2 (x)), where ϱ(x) is the distance from a reference point x to the curve ℓc, while

the dominant singular terms of the corresponding generalized stress vector T U are estimated by the
expressions of type O(ϱ−

1
2 (x)) (for details see [16, Subsection 6.1]).

6.3. Interior crack type problem (D-CR-N)+τ . Let an elastic solid occupy a bounded domain
Ω+ with boundary S = ∂Ω+ and contain an interior crack Σ ⊂ Ω+, S ∩ Σ = ∅. As above, here
we assume that the crack surface Σ is a submanifold of a closed surface S0 surrounding a bounded
domain Ω0 ⊂ Ω+. Moreover, we again assume that S, Σ, and ℓc = ∂Σ are C∞ regular if not otherwise
stated.

The problem we would like to study in this subsection can be reformulated as follows (see Subsec-
tion 2.3): Find a solution U = (u, φ, ψ, ϑ)⊤ ∈ [W 1

p (Ω
+
Σ)]

6 to the equation

A(∂, τ)U = 0 in Ω+
Σ := Ω+ \ Σ, (6.50)

satisfying the Dirichlet boundary condition on the exterior surface S = ∂Ω+

{U}+ = f on S, (6.51)
and (CR-N)τ type conditions on the crack faces (see (6.2), (6.3) and (6.5), (6.6)){

[T (∂, n)U ]
}+

+
{
[T (∂, n)U ]

}−
= F (+) + F (−) on Σ, (6.52){

[T (∂, n)U ]
}+ −

{
[T (∂, n)U ]

}−
= F (+) − F (−) on Σ, (6.53)

where f ∈ [B
1− 1

p
p,p (S)]6 and F (±) = (F

(±)
1 , . . . , F

(±)
6 )⊤ ∈ [B

− 1
p

p,p (Σ)]6 are given vector functions on S and
Σ, respectively. We assume the following compatibility condition

F := F (+) − F (−) ∈ [B̃
− 1

p
p,p (Σ)]

6. (6.54)
We look for a solution vector in the form

U = VS(H−1
S g) +WΣ(h)− VΣ(F ) in Ω+

Σ , (6.55)
where VS , VΣ, and WΣ are single and double layer potentials defined by (3.59) and (3.60), HS is
a pseudodifferential operator defined by (4.6) and H−1

S is the inverse to the operator (5.80), g =

(g1, . . . , g6)
⊤ ∈ [B

1− 1
p

p,p (S)]6 and h = (h1, . . . , h6)
⊤ ∈ [B̃

1− 1
p

p,p (Σ)]6 are unknown vector functions.
It is evident that the differential equation (6.50) and the crack condition (6.53) are satisfied auto-

matically, while the conditions (6.51) and (6.52) lead to the system of pseudodifferential equations

g + rSWΣ(h) = Φ(1) on S, (6.56)
rΣT (∂, n)VS(H−1

S g) + rΣLΣh = Φ(2) on Σ, (6.57)
where

Φ(1) := f + r
S
VΣ(F ) ∈ [B

1− 1
p

p,p (S)]6, Φ(2) :=
1

2
F + rΣKΣF ∈ [B

− 1
p

p,p (Σ)]
6. (6.58)

Here KΣ and LΣ are pseudodifferential operators defined by (4.7) and (4.9) with Σ for S.
Denote the operator generated by the left hand side expressions in (6.56), (6.57) by D which acts

on the pair of the sought for vectors (g, h)⊤,

D :=

[
I6 r

S
WΣ

rΣT (∂, n)VS(H−1
S ) rΣLΣ

]
12×12

. (6.59)

Evidently, the operators r
S
WΣ and rΣT (∂, n)VS(H−1

S ) are smoothing operators, since the manifolds
S and Σ are disjoint.
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Set
Ψ = (g, h)⊤, Φ = (Φ(1),Φ(2))⊤,

and rewrite equations (6.56), (6.57) in matrix form
DΨ = Φ. (6.60)

Theorem 4.4 yields the following mapping properties
D : Xs

p −→ Ys
p, (6.61)

D : Xs
p,t −→ Ys

p,t, (6.62)
where s ∈ R, 1 < p <∞, 1 ≤ t ≤ ∞, and

Xs
p := [Hs

p(S)]
6 × [H̃s

p(Σ)]
6, Ys

p := [Hs
p(S)]

6 × [Hs−1
p (Σ)]6,

Xs
p,t := [Bs

p,t(S)]
6 × [B̃s

p,t(Σ)]
6, Ys

p,t := [Bs
p,t(S)]

6 × [Bs−1
p,t (Σ)]6.

Further, let us consider the operator

D̃ :=

[
I6 0

0 rΣLΣ

]
12×12

. (6.63)

It is evident that D̃ has the same mapping properties as the operator D and the operator D−D̃, with
the same domain and range spaces as in (6.61), (6.62), is a compact operator. Moreover, in view of
Lemma 6.2 the operators

D̃ : Xs
p −→ Ys

p, D̃ : Xs
p,t −→ Ys

p,t, (6.64)
are invertible if

1

p
− 1

2
< s <

1

p
+

1

2
. (6.65)

Therefore the operators (6.61) and (6.62) are Fredholm with zero index for arbitrary p and s satisfying
the inequalities (6.65) hold (see Theorem B.1).
Lemma 6.13. The operators (6.61) and (6.62) are invertible if the inequalities (6.65) hold.
Proof. Since the operators (6.61) and (6.62) are Fredholm with zero index for arbitrary s and p
satisfying (6.65), in accordance with Theorem B.1 we need only to show that the corresponding null-
spaces are trivial for some particular values of the parameters s and p satisfying the inequalities (6.65).
Let us take s = 1

2 and p = 2, and prove that the homogeneous system DΨ = 0, i.e., the equations
(6.56), (6.57) with Φ(1) = Φ(2) = 0 have only the trivial solution in the space X

1
2
2 := [H

1
2
2 (S)]

6 ×
[H̃

1
2
2 (Σ)]

6. Indeed, let Ψ0 = (g0, h0)
⊤ ∈ [H

1
2
2 (S)]

6 × [H̃
1
2
2 (Σ)]

6 be a solution of the homogeneous
system (6.56), (6.57) and construct the vector

U0(x) = VS(H−1
S g0)(x) +WΣ(h0)(x), x ∈ R3 \ (S ∪ Σ).

Now, it is easy to show that the embedding U0 ∈ [W 1
2 (Ω

+
Σ)]

6 holds and U0 solves the homogeneous
BVP (D-CR-N)+τ . By Theorem 2.25 we conclude U0 = 0 in Ω+

Σ . Hence {U0}+Σ −{U0}−Σ = h0 = 0 on Σ

follows immediately. Therefore, we get U0 = VS(H−1
S g0) = 0 in Ω+

Σ which implies g0 = {U0}+S = 0 on
S. Thus Ψ0 = (g0, h0)

⊤ = 0 and the operator D has a trivial null space in X
1
2
2 . Taking into account

the relations Hs
2(S) = Bs

2,2(S) and H̃s
2(Σ) = B̃s

2,2(Σ), by Theorem B.1 we now conclude that the null
spaces of the operators (6.61) and (6.62) are trivial under the condition (6.65) and therefore they are
invertible. �

These invertibility properties for the operator D lead to the following existence results for Problem
(D-CR-N)+τ .
Theorem 6.14. Let 4/3 < p < 4 and

f ∈ [B
1− 1

p
p,p (S)]6, F (±) ∈ [B

− 1
p

p,p (Σ)]
6, F = F (+) − F (−) ∈ [B̃

− 1
p

p,p (Σ)]
6.

Then the crack type BVP (D-CR-N)+τ possesses a unique solution U ∈ [W 1
p (Ω

+
Σ)]

6 which can be
represented by formula (6.55), where the pair (g, h)⊤ ∈ [B

1− 1
p

p,p (S)]6 × [B̃
1− 1

p
p,p (Σ)]6 is a unique solution

of the system of boundary pseudodifferential equations (6.56), (6.57).



100 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

Proof. Existence of solutions directly follows from Lemma 6.13 since the condition (6.65) is fulfilled
for s = 1 − 1

p and 4
3 < p < 4. Uniqueness for p = 2 follows from Theorem 2.25. Let us now show

uniqueness of solutions for arbitrary p ∈ ( 43 , 4).
Let U ∈ [W 1

p (Ω
+
Σ)]

6 be a solution to the homogeneous BVP (D-CR-N)+τ . Then by the general
integral representation formula (3.66) we get

U(x) = −VS({T U}+S )(x) +WΣ([U ]Σ)(x), x ∈ Ω+
Σ , (6.66)

due to the homogeneous Dirichlet condition on S and the homogeneous crack type conditions on Σ.
Recall that [U ]Σ stands for the jump of a vector U across the surface Σ. Note that

{T U}+S ∈ [B
− 1

p
p,p (S)]

6, [U ]Σ ∈ [B̃
1− 1

p
p,p (Σ)]6. (6.67)

Since U solves the homogeneous BVP (D-CR-N)+τ we arrive at the following pseudodifferential equa-
tions

−HS{T U}+S +WΣ([U ]Σ) = 0 on S, −T VS({T U}+S ) + LΣ[U ]Σ = 0 on Σ, (6.68)
which can be rewritten as

DΨ̃ = 0, (6.69)
where D is given by (6.59) and Ψ̃ := (g̃, h̃)⊤ with

g̃ := −HS{T U}+S ∈ [B
1− 1

p
p,p (S)]6, h̃ = [U ]Σ ∈ [B̃

1− 1
p

p,p (Σ)]6.

Clearly, Ψ̃ ∈ X1− 1
p

p,p := [B
1− 1

p
p,p (S)]6 × [B̃

1− 1
p

p,p (Σ)]6. Now, by Lemma 6.13 we conclude that Ψ̃ = 0 since
the conditions (6.65) are fulfilled for s = 1 − 1

p and 4
3 < p < 4. Consequently, {T U}+S = 0 on S in

view of invertibility of the operator HS (see Remark 5.17) and [U ]Σ = 0 on Σ. But then (6.66) yields
U = 0 in Ω+

Σ which completes the proof. �

Remark 6.15. By the same arguments as in Remark 6.13 we can verify that Lemma 6.13 and Theo-
rem 6.14 with p = t = 2 and s = 1

2 remain valid for Lipschitz domains if the surface S, crack surface
Σ and the crack edge ℓc = ∂Σ are Lipschitz.

Remark 6.16. Applying again the asymptotic expansions of solutions at the crack edge derived in [16]
imply that for sufficiently smooth boundary data (e.g., C∞-smooth data say) the solution vector U to
the crack problem (D-CR-NT)τ belongs to the class of semi-regular functions described in Definition
2.5, U ∈ [C(Ω̃+

Σ ;α)]
6 with α = 1/2 . Moreover, the dominant terms of the asymptotic expansion of the

solution vector U near the curve ℓc has the form O(ϱ
1
2 (x)), where ϱ(x) is the distance from a reference

point x to the curve ℓc, while the dominant singular terms of the corresponding generalized stress
vector T U are estimated by the expressions of type O(ϱ−

1
2 (x)) (for details see [16, Subsection 6.1]).

6.4. Interior crack type problem (M-CR-N)+τ . We reformulate the problem (M-CR-N)+τ as fol-
lows (see Subsection 2.3): Find a solution U = (u, φ, ψ, ϑ)⊤ ∈ [W 1

p (Ω
+
Σ)]

6 to the equation

A(∂, τ)U = 0 in Ω+
Σ := Ω+ \ Σ (6.70)

satisfying the mixed Dirichlet–Neumann type boundary conditions on the exterior surface S = ∂Ω+ =
SD ∩ SN

{U}+ = f (D) on SD, (6.71){
T (∂, n)U

}+
= F (N) on SN , (6.72)

and (CR-N)τ type conditions on the crack faces{
[T (∂, n)U ]

}+
+
{
[T (∂, n)U ]

}−
= F (+) + F (−) on Σ, (6.73){

[T (∂, n)U ]
}+ −

{
[T (∂, n)U ]

}−
= F (+) − F (−) on Σ, (6.74)

where f (D) ∈ [B
1− 1

p
p,p (SD)]6, F (N) ∈ [B

− 1
p

p,p (SN )]6, and F (±) = (F
(±)
1 , . . . , F

(±)
6 )⊤ ∈ [B

− 1
p

p,p (Σ)]6 are given
vector functions on S and Σ, respectively. We assume the following compatibility condition

F := F (+) − F (−) ∈ [B̃
− 1

p
p,p (Σ)]

6. (6.75)



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 101

As in Subsection 5.7, we denote by f (e) a fixed extension of the vector function f (D) from SD onto
the whole of S preserving the functional space,

f (e) ∈ [B
1− 1

p
p,p (S)]6, r

SD
f (e) = f (D) on SD. (6.76)

Evidently, an arbitrary extension f of f (D) onto the whole of S, which preserves the functional space,
can be then represented as

f = f (e) + g with g ∈ [B̃
1− 1

p
p,p (SN )]6. (6.77)

In accordance with Theorem 5.14, we can seek a solution to the BVP (M-CR-N)+τ in the form
U = VS

(
H−1

S

[
f (e) + g −WΣ(h) + VΣ(F )

])
+WΣ(h)− VΣ(F ) in Ω+

Σ , (6.78)
where F and f (e) are the above introduced given vector functions with properties (6.75) and (6.76);
VS , VΣ, and WΣ are single and double layer potentials defined by (3.59) and (3.60), HS is a pseudodif-
ferential operator defined by (4.6) and H−1

S is the inverse to the operator (5.80); g = (g1, . . . , g6)
⊤ ∈

[B̃
1− 1

p
p,p (SN )]6 and h = (h1, . . . , h6)

⊤ ∈ [B̃
1− 1

p
p,p (Σ)]6 are unknown vector functions.

It is evident that the differential equation (6.70), the Dirichlet condition (6.71) and the crack
condition (6.74) are satisfied automatically, while the Neumann condition (6.72) and the condition
(6.73) on the crack surface lead to the system of pseudodifferential equations[

− 2−1I6 +KS

]
H−1

S

[
f (e) + g −WΣ(h) + VΣ(F )

]
+ TWΣ(h)− T VΣ(F ) = F (N) on SN ,

2T (∂, n)VS
(
H−1

S

[
f (e) + g −WΣ(h) + VΣ(F )

])
+ 2LΣh− 2KΣF = F+ + F− on Σ,

which can be rewritten as
r
SN

A+
S g − r

SN
A+

SWΣ(h) + r
SN

TWΣ(h) = Q(1) on SN , (6.79)
rΣT (∂, n)VS(H−1

S g) + rΣLΣh− rΣT VS(H−1
S WΣ(h)) = Q(2) on Σ, (6.80)

where A+
S := [−2−1I6 +KS ]H−1

S is the Steklov–Poincaré operator (see Subsection 4.3) and

Q(1) := F (N) − r
SN

A+
S [f

(e) + VΣ(F )] + r
SN

T VΣ(F ) ∈ [B
− 1

p
p,p (SN )]6, (6.81)

Q(2) :=
1

2
[F+ + F−]− rΣT (∂, n)VS

(
H−1

S [f (e) + VΣ(F )]
)
+ rΣKΣF ∈ [B

− 1
p

p,p (Σ)]
6. (6.82)

Here KΣ and LΣ are pseudodifferential operators defined by (4.7) and (4.9) with Σ for S.
Denote by M the pseudodifferential matrix operator generated by the left hand side expressions in

(6.79), (6.80),

M :=

[
r
SN

A+
S −r

SN
A+

SWΣ + r
SN

TWΣ

r
Σ
T (∂, n)VS(H−1

S ) r
Σ
LΣ − r

Σ
T VS(H−1

S WΣ)

]
12×12

. (6.83)

Evidently, the operators
r
SN

A+
SWΣ, r

SN
A+

SVΣ, r
SN

TWΣ, r
SN

T VΣ,
r
Σ
T (∂, n)VS(H−1

S ), r
Σ
T VS(H−1

S WΣ), r
Σ
T VS(H−1

S VΣ),

are smoothing operators, since the manifolds S and Σ are disjoint.
Set

Ψ = (g, h)⊤, Q = (Q(1), Q(2))⊤,

and rewrite equations (6.79), (6.80) in matrix form
MΨ = Q. (6.84)

For C∞ regular S and Σ, Theorem 4.4 yields the following mapping properties
M : Xs

p −→ Ys−1
p , (6.85)

M : Xs
p,t −→ Ys−1

p,t , (6.86)
where s ∈ R, 1 < p <∞, 1 ≤ t ≤ ∞, and

Xs
p := [H̃s

p(SN )]6 × [H̃s
p(Σ)]

6, Ys
p := [Hs

p(SN )]6 × [Hs
p(Σ)]

6,

Xs
p,t := [B̃s

p,t(SN )]6 × [B̃s
p,t(Σ)]

6, Ys
p,t := [Bs

p,t(SN )]6 × [Bs
p,t(Σ)]

6.
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Further, let us consider the operator

M̃ :=

[
r
SN

A+
S 0

0 rΣLΣ

]
12×12

. (6.87)

It is evident that M̃ has the same mapping properties as M and the operator M − M̃ with the
same domain and range spaces as in (6.85) and (6.86) is a compact operator. Moreover, in view of
Lemmas 5.20 and 6.2 the operators

M̃ : Xs
p −→ Ys−1

p , M̃ : Xs
p,t −→ Ys−1

p,t , (6.88)

are invertible if the following inequalities
1

p
− 1

2
< s <

1

p
+

1

2
,

1

p
− 1

2
+ a2 < s <

1

p
+

1

2
+ a1, (6.89)

are satisfied, where a1 and a2 are defined by relations (5.109).
Therefore the operators (6.85) and (6.86) are Fredholm with zero index if the inequalities (6.89)

hold.

Lemma 6.17. The operators (6.85) and (6.86) are invertible if the inequalities (6.89) hold.

Proof. As in the case of Lemma 6.13, we need only to show that the corresponding null-spaces are
trivial for some particular values of the parameters s and p satisfying the inequalities (6.89). We
again take s = 1

2 and p = 2, and prove that the homogeneous system MΨ = 0, i.e., the equations
(6.79), (6.80) with Q(1) = Q(2) = 0 have only the trivial solution. Indeed, let Ψ0 = (g0, h0)

⊤ ∈
[H̃

1
2
2 (SN )]6 × [H̃

1
2
2 (Σ)]

6 be a solution of the homogeneous system (6.79), (6.80) and construct the
vector

U0(x) = VS
(
H−1

S [g0 −WΣ(h0)]
)
(x) +WΣ(h0)(x), x ∈ R3 \ (S ∪ Σ).

It is easy to see that U0 ∈ [W 1
2 (Ω

+
Σ)]

6 and U0 solves the homogeneous BVP (M-CR-N)+τ . By The-
orem 2.25 we then have U0 = 0 in Ω+

Σ . Hence {U0}+Σ − {U0}−Σ = h0 = 0 on Σ follows immedi-
ately. Therefore we get U0 = VS(H−1

S g0) = 0 in Ω+
Σ which implies g0 = {U0}+S = 0 on S. Thus

Ψ0 = (g0, h0)
⊤ = 0. This implies that the null spaces of the operators

M : X
1
2
2 −→ Y− 1

2
2 , M : X

1
2
2,2 −→ Y− 1

2
2,2 ,

are trivial since X
1
2
2 = X

1
2
2,2 and Y− 1

2
2 = Y− 1

2
2,2 due to the relations H̃s

2(SN ) = B̃s
2,2(SN ) and H̃s

2(Σ) =

B̃s
2,2(Σ) for s ∈ R. Actually these operators are the same. Therefore, by Theorem B.1 the null spaces

of the operators (6.85) and (6.86) are also trivial if the conditions (6.89) hold. This completes the
proof of the lemma. �

From Lemma 6.17 the following existence result follows directly.

Theorem 6.18. Let a1 and a2 be defined by relations (5.109) and
4

3
< p < 4,

4

3− 2a2
< p <

4

1− 2a1
, (6.90)

f (D) ∈ [B
1− 1

p
p,p (SD)]6, F (N) ∈

[
B

− 1
p

p,p (SN )
]6
, F (±) ∈ [B

− 1
p

p,p (Σ)]
6, F = F (+) − F (−) ∈ [B̃

− 1
p

p,p (Σ)]
6.

Then the crack type BVP (M-CR-N)+τ (6.70)–(6.74) possesses a unique solution U ∈ [W 1
p (Ω

+
Σ)]

6 which
can be represented by formula (6.78), where the pair (g, h)⊤ ∈ [B̃

1− 1
p

p,p (SN )]6 × [B̃
1− 1

p
p,p (Σ)]6 is a unique

solution of the system of boundary pseudodifferential equations (6.79), (6.80).

Proof. Existence of a solution directly follows from Lemma 6.17 since the conditions (6.89) are fulfilled
for s = 1 − 1/p where p is restricted by the inequalities (6.90). Uniqueness for p = 2 follows from
Theorem 2.25. Note that for p = 2 both relations in (6.90) hold, since −1

2 < a1 ≤ a2 <
1
2 .

Now, let p satisfy the inequalities (6.90) and let U0 ∈ [W 1
p (Ω

+
Σ)]

6 be a solution to the homogeneous
BVP (M-CR-N)+. We have to show that U0 vanishes identically in Ω+

Σ . We proceed as follows.
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Keeping in mind the homogeneous crack type conditions (6.73), (6.74) on Σ, from the general
integral representation formula (3.66) we get

U0(x) =WS({U0}+S )(x)− VS
(
{T U0}+S

)
(x) +WΣ([U0]Σ)(x), x ∈ Ω+

Σ . (6.91)

Recall that here [U0]Σ stands for the jump of the vector U0 across the crack surface Σ and

h0 := [U0]Σ ∈ [B̃
1− 1

p
p,p (Σ)]6. (6.92)

Note also that due to the homogeneous mixed boundary conditions (6.71), (6.72) we have

g0 := {U0}+S ∈ [B̃
1− 1

p
p,p (SN )]6, G0 := {T U0}+S ∈ [B̃

− 1
p

p,p (SD)]6. (6.93)

With the help of Theorem 5.14 and the relation NSHS = HSKS (see Theorem 4.3) we conclude
that the double layer potential WS({U0}+S ) can be represented in the form of a single layer potential
uniquely

WS({U0}+S ) =WS(g0) = VS(A−
S g0) in Ω+

Σ , (6.94)
where A−

S := [2−1I6 + KS ]H−1
S is the Steklov–Poincaré operator (see Subsection 4.3). Indeed, one

can easily check that the layer potentials WS(g0) and VS(A−
S g0) have the same Dirichlet data on the

boundary S,

{WS(g0)}+ =
[1
2
I6 +NS

]
g0 =

[1
2
I6 +NS

]
HSH−1

S g0

= HS

[1
2
I6 +KS

]
H−1

S g0 = HSA−
S g0 = {VS(A−

S g0)
}+
.

Therefore WS(g0) = VS(A−
S g0) in Ω+ by the uniqueness Theorem 2.25. Consequently, from (6.91) it

follows that U0 is representable in the form

U0 = VS(χ) +WΣ([U0]Σ) in Ω+
Σ with χ := A−

S {U0}+S − {T U0}+S . (6.95)

In turn, (6.95) yields {U0}+S = HSχ+WΣ([U0]Σ) on S. Whence χ = H−1
S [{U0}+S −WΣ([U0]Σ)] on S,

and finally, in view of (6.95), we arrive at the representation (cf. (6.78))

U0 = VS
(
H−1

S

[
{U0}+S −WΣ([U0]Σ)

])
+WΣ([U0]Σ) = VS

(
H−1

S

[
g0−WΣ(h0)

])
+WΣ(h0) in Ω+

Σ , (6.96)

where g0 and h0 are given by relations (6.93) and (6.92).
Now recall that by assumption U0 solves the homogeneous BVP (M-CR-N)+τ . As we see from the

representation (6.96), the vector U0 satisfies the homogeneous boundary conditions (6.71) and (6.74)
with f (D) = 0 and F = F (+) − F (−) = 0, while the homogeneous conditions (6.72) and (6.73) with
F (N) = 0 and F (+) + F (−) = 0 give the following relations (cf. (6.79), (6.80)):

rSN
A+

S g0 − rSN
A+

SWΣ(h0) + rSN
TWΣ(h0) = 0 on SN , (6.97)

rΣT (∂, n)VS(H−1
S g0) + rΣLΣh0 − rΣT VS(H−1

S WΣ(h0)) = 0 on Σ, (6.98)

where A+
S = [−2−1I6 +KS ]H−1

S is the Steklov–Poincaré operator (see Subsection 4.3).
It is easy to see that this system is equivalent to the homogeneous equation

MΨ̃0 = 0, (6.99)

where M is given by (6.83) and Ψ̃0 := (g0, h0)
⊤ ∈ X

1− 1
p

p,p := [B̃
1− 1

p
p,p (SN )]6 × [B̃

1− 1
p

p,p (Σ)]6. By Lem-
ma 6.17 we then conclude that Ψ̃0 = 0 since the conditions (6.89) are fulfilled if p satisfies inequalities
(6.90) and s = 1 − 1

p . Consequently, g0 := {U0}+S = 0 and h0 := [U0]Σ = 0. But then (6.96) yields
U0 = 0 in Ω+

Σ which completes the proof. �

Remark 6.19. By the same arguments as in Remark 6.13 we can verify that Lemma 6.17 and Theo-
rem 6.18 with p = t = 2 and s = 1

2 remain valid for Lipschitz domains if the surface S, crack surface
Σ and the crack edge ∂Σ are Lipschitz.

Remark 6.20. Note that, smoothness properties of solutions to the BVPs (D-CR-N)+τ and (M-CR-N)+τ
near the crack edge ℓc and near the collision curve ℓm are described by Theorems 5.22 and 6.4.
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Remark 6.21. In view of Remarks 5.25 and 6.16 we conclude that for sufficiently smooth boundary data
(e.g., C∞-smooth data say) the solution vector U to the boundary value problem (M-CR-N)+τ belongs
to the class of semi-regular functions near the collision curve ℓm with the exponent α = 1

2−a1+ε, while
near the crack edge ℓC it is semi-regular with the exponent α = 1

2 . Evidently, the generalized stress
vector T U possesses different singularities at the collision curve ℓm and the crack edge ℓC described
in Remarks 5.25 and 6.16.

7. Basic BVPs of Statics

We demonstrate our approach for the interior and exterior Neumann-type boundary-value problems
of statics (cf. [84], [82], [83]). The Dirichlet and mixed type BVPs of statics can be studied quite
analogously and in some sense their analysis is even simpler since they are unconditionally solvable
due to the corresponding uniqueness results.

7.1. Formulation of problems. The basic differential equations of statics of the theory of thermo-
electro-magneto-elasticity read as follows (cf. (2.35) and (2.45)):

crjkl∂j∂luk(x) + elrj∂j∂lφ(x) + qlrj∂j∂lψ(x)− λrj∂jϑ(x) = −ϱFr(x), r = 1, 2, 3,

−ejkl∂j∂luk(x) + κjl∂j∂lφ(x) + ajl∂j∂lψ(x)− pj∂jϑ(x) = −ϱe(x),
−qjkl∂j∂luk(x) + ajl∂j∂lφ(x) + µjl∂j∂lψ(x)−mj∂jϑ(x) = −ϱc(x),

ηjl∂j∂lϑ(x) = −ϱT−1
0 Q(x).

(7.1)

In matrix form these equations can be written as A(∂)U(x) = Φ(x), where

U = (u1, u2, u3, u4, u5, u6)
⊤ := (u, φ, ψ, ϑ)⊤,

Φ = (Φ1, . . . ,Φ6)
⊤ := (−ϱF1,−ϱF2,−ϱF3,−ϱe,−ϱc,−ϱT−1

0 Q)⊤

and A(∂) is the matrix differential operator generated by equations (7.1) (see (2.35))

A(∂) = A(∂, 0) = [Apq(∂)]6×6

:=


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l


6×6

. (7.2)

Neumann problems (N)±: Find a regular solution vector U = (u, φ, ψ, ϑ)⊤ ∈ [C1(Ω±)]6 ∩ [C2(Ω±)]6

to the system of equations
A(∂)U = Φ in Ω±,

satisfying the Neumann-type boundary condition{
T U

}±
= f on S,

where A(∂) is a nonselfadjoint strongly elliptic matrix partial differential operator defined in (7.2),
while T (∂, n) := T (∂, n, 0) is the matrix boundary stress operator of statics defined in (2.374).

In what follows we always assume that in the case of exterior boundary-value problems of statics
for the domain Ω− a solution vector U possesses Z(Ω−) property introduced in Subsection 3.5.2 (see
Definition 3.11).

7.2. Potentials of statics and their properties. From the results obtained in Subsection 3.3
it follows that the fundamental matrix Γ(x) := Γ(x, 0) = [Γkj(x)]6×6 which solves the equation
A(∂)Γ(x) = I6δ(x), where δ( · ) is the Dirac delta distribution and I6 stands for the unit 6× 6 matrix,
can be represented in the form (see (3.51))

Γ(x) = F−1
ξ→x[A

−1(−iξ)], (7.3)
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where F−1 is the generalized inverse Fourier transform and A−1(−iξ) is the matrix inverse to A(−iξ).
Moreover, as we have shown in Subsection 3.3, the entries of the fundamental matrix Γ(x) are ho-
mogeneous functions in x and at the origin and at infinity the following asymptotic relations hold
(see (3.57))

Γ(x) =

[
[O(|x|−1)]5×5 [O(1)]5×1

[0]1×5 O(|x|−1)

]
6×6

. (7.4)

From the relations (7.4) and (3.56) it easily follows that the columns of the matrix Γ(x) possess
the property Z(R3 \ {0}).

With the help of this fundamental matrix we construct the generalized single and double layer
potentials, and the Newton-type volume potentials of statics (the potentials of statics are equipped
with the subscript “zero” showing that they correspond to the above introduced pseudo-oscillation
potentials with τ = 0)

V0(h)(x) = VS,0(h)(x) =

∫
S

Γ(x− y)h(y) dSy, x ∈ R3 \ S, (7.5)

W0(h)(x) =WS,0(h)(x) =

∫
S

[
P(∂y, n(y))Γ

⊤(x− y)
]⊤
h(y) dSy, x ∈ R3 \ S, (7.6)

NΩ±,0(g)(x) =

∫
Ω±

Γ(x− y)g(y) dy, x ∈ R3, (7.7)

where h = (h1, . . . , h6)
⊤ and g = (g1, . . . , g6)

⊤ are density vector functions defined, respectively, on
S and in Ω±; the so called generalized stress operator P(∂, n), associated with the adjoint differential
operator of statics A∗(∂) = A⊤(−∂), reads as (cf. (2.58))

P(∂, n) = P(∂, n, 0) =
[
Ppq(∂, n)

]
6×6

=


[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1 [0]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l 0

[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l 0

[0]1×3 0 0 ηjlnj∂l

 . (7.8)

The following properties of layer potentials of statics immediately follow from their definition and the
results presented in Sections 3 and 4.
Theorem 7.1. The generalized single and double layer potentials of statics solve the homogeneous
differential equation A(∂)U = 0 in R3 \ S and possess the property Z(Ω−).

With the help of Green’s formulas, one can derive general integral representation formulas of
solutions to the homogeneous equation A(∂)U = 0 in Ω+. In particular, the following counterpart of
Theorem 3.5 holds.
Theorem 7.2. Let S = ∂Ω+ ∈ C1,κ with 0 < κ ≤ 1 and U be a regular solution to the homoge-
neous equation A(∂)U = 0 in Ω+ of the class [C1(Ω+)]6 ∩ [C2(Ω+)]6. Then there holds the integral
representation formula

W0({U}+)(x)− V0({T U}+)(x) =

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(7.9)

Now, we show that for the exterior unbounded domain the similar general integral representa-
tion formula holds also true for solutions to the homogeneous static equation satisfying the Z(Ω−)
condition. As we will see the proof is not as trivial as the proof of Theorem 3.6.
Theorem 7.3. Let S = ∂Ω− be C1,κ-smooth with 0 < κ ≤ 1 and let U be a regular solution to
the homogeneous equation A(∂)U = 0 in Ω− of the class [C1(Ω−)]6 ∩ [C2(Ω−)]6 having the property
Z(Ω−). Then there holds the integral representation formula

−W0({U}−)(x) + V0({T U}−)(x) =

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−.
(7.10)
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Proof. Let Ω−
R := B(0, R)\Ω+ and ΣR = ∂B(0, R), where B(0, R) is a ball centered at the origin and

radius R. We assume that the origin belongs to the domain Ω+ and R is sufficiently large, such that
Ω+ ⊂ B(0, R). Then in view of (7.9) we have

U(x) = −WS,0({U}−S )(x) + VS,0
(
{T U}−S

)
(x) + ΦR(x), x ∈ Ω−

R, (7.11)
0 = −WS,0({U}−S )(x) + VS,0

(
{T U}−S

)
(x) + ΦR(x), x ∈ Ω+, (7.12)

where the directions of the normal vectors are outward with respect to S and ΣR and
ΦR(x) :=WΣR,0(U)(x)− VΣR,0(T U)(x). (7.13)

Here VM,0 and WM,0 denote the single and double layer potential operators of statics (7.5) and (7.6)
with integration surface M. Evidently,

A(∂)ΦR(x) = 0, |x| < R. (7.14)
In turn, from (7.11) and (7.12) we get

ΦR(x) = U(x) +WS,0({U}−S )(x)− VS,0({T U}−S )(x), x ∈ Ω−
R,

ΦR(x) =WS,0({U}−S )(x)− VS,0({T U}−S )(x), x ∈ Ω+,
(7.15)

whence the equality ΦR1
(x) = ΦR2

(x) follows for |x| < R1 < R2. We assume that R1 and R2 are
sufficiently large numbers. Therefore, for an arbitrary fixed point x ∈ R3 the following limit exists

Φ(x) := lim
R→∞

ΦR(x) =

{
U(x) +WS,0({U}−S )(x)− VS,0({T U}−S )(x), x ∈ Ω−,

WS,0({U}−S )(x)− VS,0({T U}−S )(x), x ∈ Ω+,
(7.16)

and A(∂)Φ(x) = 0 for all x ∈ Ω+ ∪ Ω−. On the other hand, for arbitrary fixed point x ∈ R3 and a
number R1, such that |x| < R1 and Ω+ ⊂ B(0, R1), from (7.15) we have

Φ(x) = lim
R→∞

ΦR(x) = ΦR1(x).

Now, from (7.13), (7.14) we deduce
A(∂)Φ(x) = 0 ∀x ∈ R3. (7.17)

Since US,0,WS,0, VS,0 ∈ Z(Ω−) we conclude from (7.16) that Φ(x) ∈ Z(R3). In particular, we have

lim
R→∞

1

4πR2

∫
ΣR

Φ(x) dΣR = 0. (7.18)

Our goal is to show that Φ(x) = 0 ∀x ∈ R3.

Applying the generalized Fourier transform to equation (7.61) we get A(−iξ)Φ̂(ξ) = 0, ξ ∈ R3, where
Φ̂(ξ) is the Fourier transform of Φ(x). Taking into account that detA(−iξ) ̸= 0 for all ξ ∈ R3 \ {0},
we conclude that the support of the generalized functional Φ̂(ξ) is the origin and, consequently,

Φ̂(ξ) =
∑

|α|≤M

cαδ
(α)(ξ),

where α is a multi-index, cα are constant vectors and M is some nonnegative integer. Then it follows
that Φ(x) is a polynomial in x (see, e.g., [35, Ch. 1, Example 2.2]),

Φ(x) =
∑

|α|≤M

cαx
α,

and due to the inclusion Φ ∈ Z(Ω−), the vector Φ(x) is bounded at infinity, i.e., Φ(x) = const in
R3. Therefore (7.18) implies that Φ(x) vanishes identically in R3. This proves that formula (7.10)
holds. �

By standard limiting procedure, formulas (7.9) and (7.10) can be extended to Lipschitz domains
and to solution vectors from the spaces [W 1

p (Ω
+)]6 and [W 1

p,loc(Ω
−)]6 ∩ Z(Ω−) with 1 < p < ∞ (cf.,

[51], [75], [91]).
The qualitative and mapping properties of the layer potentials are described by the following

theorems (see Subsection 4.1).
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Theorem 7.4. Let S = ∂Ω± ∈ Cm,κ with integers m ≥ 1 and k ≤ m− 1, and 0 < κ′ < κ ≤ 1. Then
the operators

V0 : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(Ω±)]6, W0 : [Ck,κ′
(S)]6 −→ [Ck,κ′

(Ω±)]6 (7.19)
are continuous and V0,W0 ∈ Z(Ω−).

For any g ∈ [C0,κ′
(S)]6, h ∈ [C1,κ′

(S)]6, and any x ∈ S we have the following jump relations:
{V0(g)(x)}± = V0(g)(x) = H0g(x), (7.20){

T (∂x, n(x))V0(g)(x)
}±

=
[
∓ 2−1I6 +K0

]
g(x), (7.21)

{W0(g)(x)}± =
[
± 2−1I6 +N0

]
g(x), (7.22){

T (∂x, n(x))W0(h)(x)
}+

= {T (∂x, n(x))W0(h)(x)}− = L0h(x), m ≥ 2, (7.23)
where H0 is a weakly singular integral operator, K0 and N0 are singular integral operators, and L0 is
a singular integro-differential operator,

H0g(x) :=

∫
S

Γ(x− y)g(y) dSy,

K0g(x) :=

∫
S

T (∂x, n(x))Γ(x− y) g(y) dSy,

N0g(x) :=

∫
S

[
P(∂y, n(y))Γ

⊤(x− y)
]⊤
g(y) dSy,

L0h(x) := lim
Ω±∋z→x∈S

T (∂z, n(x))

∫
S

[
P(∂y, n(y))Γ

⊤(z − y)
]⊤
h(y) dSy.

(7.24)

Theorem 7.5. Let S be a Lipschitz surface. The operators V0 and W0 can be extended to the
continuous mappings

V0 : [H
− 1

2
2 (S)]6 −→ [H1

2 (Ω
+)]6,

V0 : [H
− 1

2
2 (S)]6 −→ [H1

2,loc(Ω
−)]6 ∩ Z(Ω−),

W0 : [H
1
2
2 (S)]

6 −→ [H1
2 (Ω

+)]6,

W0 : [H
1
2
2 (S)]

6 −→ [H1
2,loc(Ω

−)]6 ∩ Z(Ω−).

The jump relations (7.20)–(7.23) on S remain valid for the extended operators in the corresponding
function spaces.

Theorem 7.6. Let S, m, κ, κ′ and k be as in Theorem 7.4. Then the operators
H0 : [Ck,κ′

(S)]6 −→ [Ck+1,κ′
(S)]6, m ≥ 1, (7.25)

: [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6, m ≥ 1, (7.26)

K0 : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (7.27)

: [H
− 1

2
2 (S)]6 −→ [H

− 1
2

2 (S)]6, m ≥ 1, (7.28)

N0 : [Ck,κ′
(S)]6 −→ [Ck,κ′

(S)]6, m ≥ 1, (7.29)

: [H
1
2
2 (S)]

6 −→ [H
1
2
2 (S)]

6, m ≥ 1, (7.30)

L0 : [Ck,κ′
(S)]6 −→ [Ck−1,κ′

(S)]6, m ≥ 2, k ≥ 1, (7.31)

: [H
1
2
2 (S)]

6 −→ [H
− 1

2
2 (S)]6, m ≥ 2, (7.32)

are continuous. The operators (7.26), (7.28), (7.30), and (7.32) are bounded if S is a Lipschitz surface.

Proofs of the above formulated theorems are word for word proofs of the similar theorems in [15],
[25], [30], [31], [29], [53], [54], [57], [75], [88], [92]).

From Corollary 4.9 and the uniqueness Theorem 2.28 for the Dirichlet problem of static we can
deduce the following assertion.
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Theorem 7.7. Let S, m ≥ 1, κ, κ′ and k be as in Theorem 7.4. Then the operators
H0 : [Ck,κ′

(S)]6 −→ [Ck+1,κ′
(S)]6, (7.33)

: [H
− 1

2
2 (S)]6 −→ [H

1
2
2 (S)]

6 (7.34)
are invertible.

The next assertion is a consequence of the general theory of elliptic pseudodifferential operators on
smooth manifolds without boundary (see, e.g., [1], [13], [29], [51], [100], and the references therein).

Theorem 7.8. Let V0, W0, H0, K0, N0, and L0 be as in Theorem 7.4 and let s ∈ R, 1 < p <∞, 1 ≤
q ≤ ∞, S ∈ C∞. The layer potential operators (7.19) and the boundary integral (pseudodifferential)
operators (7.25), (7.27), (7.29), and (7.31) can be extended to the following continuous operators

V0 : [Bs
p,p(S)]

6 −→ [H
s+1+ 1

p
p (Ω+)]6,

V0 : [Bs
p,p(S)]

6 −→ [H
s+1+ 1

p

p,loc (Ω−)]6 ∩ Z(Ω−),

H0 : [Hs
p(S)]

6 −→ [Hs+1
p (S)]6,

N0 : [Hs
p(S)]

6 −→ [Hs
p(S)]

6,

W0 : [Bs
p,p(S)]

6 −→ [H
s+ 1

p
p (Ω+)]6,

W0 : [Bs
p,p(S)]

6 −→ [H
s+ 1

p

p,loc(Ω
−)]6 ∩ Z(Ω−),

K0 : [Hs
p(S)]

6 −→ [Hs
p(S)]

6,

L0 : [Hs+1
p (S)]6 −→ [Hs

p(S)]
6.

The jump relations (7.20)–(7.22) remain valid in appropriate function spaces for arbitrary g ∈
[Bs

p,q(S)]
6 with s ∈ R if the limiting values (traces) on S are understood in the sense described

in [100].
In particular,

(i) if g ∈ [B
− 1

p
p,q (S)]6, then relations (7.20) remains valid in the sense of the function space

[B
1− 1

p
p,q (S)]6, while the relations (7.21) remains valid in the sense of the space [B

− 1
p

p,q (S)]6;

(ii) if g, h ∈ [B
1− 1

p
p,q (S)]6, then relations (7.22) remains valid in the sense of the space [B

1− 1
p

p,q (S)]6,
while the relations (7.23) remains valid in the sense of the space [B

− 1
p

p,q (S)]6.

Remark 7.9. Let either Φ ∈ [Lp(Ω
+)]6 or Φ ∈ [Lp,comp(Ω

−)]6, p > 1. Then the Newtonian volume
potentials NΩ±,0(Φ) defined in (7.7) possess the following properties (see, e.g., [77]):

NΩ+,0(Φ) ∈ [W 2
p (Ω

+)]6, NΩ−,0(Φ) ∈ [W 2
p,loc(Ω

−)]6 ∩ Z(Ω−), (7.35)
A(∂)NΩ±,0(Φ) = Φ almost everywhere in Ω±. (7.36)

If Φ ∈ [C0,κ(Ω±)]6 with κ > 0, then NΩ±,0(Φ) ∈ [C1,κ(Ω±)]6 ∩ [C2,κ(Ω±)]6 and equation (7.36) holds
for all x ∈ Ω±.

Moreover, for regular densities the volume potential operator NΩ+ possesses the following properties
(cf. [45], [78], [57], [3]): If S = ∂Ω+ ∈ C2,α, then the following operators are continuous,

NΩ+,0 : [L∞(Ω+)]6 −→ [C1,γ(R3)]6 for all 0 < γ < 1,

NΩ+,0 : [C0,β(Ω+)]6 −→ [C2,β(Ω+)]6, 0 < β < 1,

NΩ+,0 : [C1,β(Ω+)]6 −→ [C3,β(Ω+)]6, 0 < β < α 6 1.

7.3. Investigation of the exterior Neumann BVP. We start with the regular setting of the
exterior Neumann-type BVP for the domain Ω−:

A(∂)U(x) = 0, x ∈ Ω−, (7.37){
T (∂, n)U(x)

}−
= F (x), x ∈ S, (7.38)

U ∈ [C1,κ′
(Ω−)]6 ∩ [C2(Ω−)]6 ∩ Z(Ω−). (7.39)

In accordance with Remark 7.9, without loss of generality, we assume that the right hand side function
in the differential equation (7.37) vanishes, since a particular solution to a nonhomogeneous differential
equation A(∂)U(x) = Φ in Ω− with a compactly supported right hand side Φ ∈ [C0,κ(Ω−)]6 always
can be written explicitly in the form of the Newtonian potential NΩ−,0(Φ).

Moreover, we assume that S ∈ C1,κ and F ∈ C0,κ′
(S) with 0 < κ′ < κ ≤ 1.
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As we have shown in Subsection 3.5.2 the homogeneous version of the exterior Neumann-type
problem possesses at most one solution.

To prove the existence result, we look for a solution of the problem (7.37), (7.38) as the single layer
potential

U(x) ≡ V0(h)(x) =

∫
S

Γ(x− y)h(y) dSy, (7.40)

where h = (h1, . . . , h6)
⊤ ∈ [C0,κ′

(S)]6 is the unknown density. By Theorem 7.4 and in view of the
boundary condition (7.38), we get the following integral equation for the density vector

[2−1I6 +K0]h = F on S, (7.41)
where K0 is a singular integral operator defined by (7.24). Note that, the operators

2−1I6 +K0 : [C0,κ′
(S)]6 −→ [C0,κ′

(S)]6, (7.42)
: [L2(S)]

6 −→ [L2(S)]
6, (7.43)

are compact perturbations of their counterpart operators associated with the pseudo-oscillation equa-
tions which are studied in Section 5. Therefore 2−1I6 + K0 is a singular integral operator of normal
type (i.e., its principal homogeneous symbol matrix is non-degenerate) and its index equals to zero.

Let us show that the operators (7.42) and (7.43) have trivial null spaces. To this end, it suffices to
prove that the corresponding homogeneous integral equation

[2−1I6 +K0]h = 0 on S (7.44)
has only the trivial solution in the appropriate space. Let h(0) ∈ [L2(S)]

6 be a solution to equation
(7.44). By the embedding theorems (see, e.g., [57, Ch. 4]), we actually have that h(0) ∈ [C0,κ′

(S)]6.
Now, we construct the single layer potential U0(x) = V0(h

(0))(x). Evidently, U0 ∈ [C1,κ′
(Ω±)]6 ∩

[C2(Ω±)]6∩Z(Ω−) and the equation A(∂)U0 = 0 in Ω± is automatically satisfied due to Theorems 7.1
and 7.4. Since h(0) solves equation (7.44), we have

{T (∂, n)U0}− = [2−1I6 +K0]h
(0) = 0 on S.

Therefore U0 is a solution to the homogeneous exterior Neumann problem satisfying the property
Z(Ω−). Consequently, U0 = 0 in Ω− by the uniqueness Theorem 3.10. Applying the continuity
property of the single layer potential we find 0 = {U0}− = {U0}+ on S, yielding that the vector
U0 = V0(h

(0)) represents a solution to the homogeneous interior Dirichlet problem of statics. Now, by
the uniqueness Theorem 2.28 we deduce that U0 = 0 in Ω+. Thus U0 = 0 in Ω± and by virtue of the
jump formula we get {

T (∂, n)U0

}+ −
{
T (∂, n)U0

}−
= −h(0) = 0 on S.

Therefore the null space of the operator 2−1I6 +K0 is trivial and the operators (7.42) and (7.43) are
invertible. As a ready consequence, we finally conclude that the non-homogeneous integral equation
(7.41) is uniquely solvable in [C0,κ′

(S)]6 for arbitrary right hand side vector F ∈ [C0,κ′
(S)]6, which

implies the following existence result.

Theorem 7.10. Let m ≥ 0 be a nonnegative integer and 0 < κ′ < κ ≤ 1. Further, let S ∈ Cm+1,κ and
F ∈ [Cm,κ′

(S)]6. Then the exterior Neumann-type BVP (7.37)–(7.39) is uniquely solvable in the space
of regular vector functions, [Cm+1,κ′

(Ω−)]6 ∩ [C2(Ω−)]6 ∩Z(Ω−), and the solution is representable by
the single layer potential U(x) = V0(h)(x) with the density h = (h1, . . . , h6)

⊤ ∈ [Cm,κ′
(S)]6 being a

unique solution of the integral equation (7.41).

Applying the same arguments as in Section 5, we can prove the existence theorem for the exterior
Neumann problem of statics in the Sobolev spaces (cf. Theorem 5.16).

Theorem 7.11. Let S ∈ C∞, p > 1, s > 0, and F = (F1, . . . , F6)
⊤ ∈ [B

s− 1
p

p,p (S)]6. Then
(i) the elliptic singular integral operator

2−1I6 +K0 :
[
B

s− 1
p

p,p (S)
]6 −→

[
B

s− 1
p

p,p (S)
]6 (7.45)

is invertible;



110 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

(ii) the exterior Neumann type boundary value problem is uniquely solvable in the space of vector
functions [Bs+1

p,p (Ω−)]6 ∩ Z(Ω−) ≡ [W s+1
p (Ω−)]6 ∩ Z(Ω−) and the solution is representable in

the form of single layer potential U = V (h), where the density vector function h ∈ [B
s− 1

p
p,p (S)]6

is defined by the uniquely solvable pseudodifferential equation (2−1I6 +K0)h = F on S.
Remark 7.12. As in Section 5 (see Remark 5.18) we can obtain existence results for static problems
in the case of non-smooth domains. In particular, if S is Lipschitz surface and F ∈ [H−1/2(S)]6, then

(i) the integral equation (7.41) is uniquely solvable in the space [H−1/2(S)]6;
(ii) the exterior Neumann-type BVP is uniquely solvable in the space [H1

2,loc(Ω
−)]6 ∩ Z(Ω−) and

the solution is representable by the single layer potential (7.40), where the density vector
h ∈ [H−1/2(S)]6 solves the integral equation (7.41).

7.4. Investigation of the interior Neumann BVP. Before we go over to the interior Neumann
problem we prove some preliminary assertions needed in our analysis.

7.4.1. Some auxiliary results. Let us consider the adjoint operator A∗(∂) to the operator A(∂),

A∗(∂) :=


[ckjrl∂j∂l]3×3 [−ejkl∂j∂l]3×1 [−qjkl∂j∂l]3×1 [0]3×1

[elrj∂j∂l]1×3 κjl∂j∂l ajl∂j∂l 0

[qlrj∂j∂l]1×3 ajl∂j∂l µjl∂j∂l 0

[λrj∂j ]1×3 pj∂j mj∂j ηjl∂j∂l


6×6

. (7.46)

The corresponding matrix of fundamental solutions Γ∗(x−y) = [Γ(y−x)]⊤ has the following property
at infinity

Γ∗(x− y) = Γ⊤(y − x) :=

[
[O(|x|−1)]5×5 [0]5×1

[O(1)]1×5 O(|x|−1)

]
6×6

(7.47)

as |x| → ∞. With the help of the fundamental matrix Γ∗(x − y) we construct the single and double
layer potentials, and the Newtonian volume potentials

V ∗
0 (h

∗)(x) = V ∗
S,0(h

∗)(x) =

∫
S

Γ∗(x− y)h∗(y) dSy, x ∈ R3 \ S, (7.48)

W ∗
0 (h

∗)(x) =W ∗
S,0(h

∗)(x) =

∫
S

[
T (∂y, n(y))[Γ

∗(x− y)]⊤
]⊤
h∗(y) dSy, x ∈ R3 \ S, (7.49)

N∗
Ω±,0(g

∗)(x) =

∫
Ω±

Γ∗(x− y)g∗(y)dy, x ∈ R3,

where T (∂y, n(y)) is defined by (2.374), the density vector h∗ = (h∗1, . . . , h
∗
6)

⊤ is defined on S, while
g∗ = (g∗1 , . . . , g

∗
6)

⊤ is defined in Ω±. We assume that in the case of the domain Ω− the vector g∗ has
a compact support.

It can be shown that the layer potentials V ∗
0 and W ∗

0 possess exactly the same mapping properties
and jump relations as the potentials V0 and W0 (see Theorems 7.4–7.8). In particular,

{V ∗
0 (h

∗)}+ = {V ∗
0 (h

∗)}− = H∗
0h

∗,

{W ∗
0 (h

∗)}± = ±2−1h∗ +K∗
0h

∗, (7.50){
PV ∗

0 (h
∗)
}±

= ∓2−1h∗ +N ∗
0 h

∗, (7.51)
where H∗

0 is a weakly singular integral operator, while K∗
0 and N ∗

0 are singular integral operators,

H∗
0h

∗(x) :=

∫
S

Γ∗(x− y)h∗(y) dSy,

K∗
0h

∗(x) :=

∫
S

[
T (∂y, n(y))[Γ

∗(x− y)]⊤
]⊤
h∗(y) dSy,

N ∗
0 h

∗(x) :=

∫
S

[
P(∂x, n(x))Γ

∗(x− y)
]
h∗(y) dSy.

(7.52)

Now, we introduce a special class of vector functions which is a counterpart of the class Z(Ω−).
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Definition 7.13. We say that a vector function U∗ = (u∗, φ∗, ψ∗, ϑ∗)⊤ ∈ [W 1
p,loc(Ω

−)]6 has the
property Z∗(Ω−) in the domain Ω−, if the following conditions are satisfied

Ũ∗(x) =
(
u∗(x), φ∗(x), ψ∗(x)

)⊤
= O(|x|−1) as |x| → ∞, ϑ∗(x) = O(1) as |x| → ∞,

lim
R→∞

1

4πR2

∫
ΣR

ϑ∗(x) dΣR = 0,

where ΣR is a sphere centered at the origin and radius R.

The following assertion easily follows from the relations (7.47) and (3.56).

Theorem 7.14. The generalized single and double layer potentials, defined by (7.48) and (7.49), solve
the homogeneous differential equation A∗(∂)U∗ = 0 in R3 \ S and possess the property Z∗(Ω−).

For an arbitrary regular solution to the equation A∗(∂)U∗(x) = 0 in Ω+ one can derive the following
integral representation formula with the help of Green’s formula (2.200) with τ = 0

W ∗
0 ({U∗}+)(x)− V ∗

0 ({PU∗}+)(x) =

{
U∗(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(7.53)

Similar integral representation formula holds also for an arbitrary regular solution to the equation
A∗(∂)U∗(x) = 0 in Ω− possessing the property Z∗(Ω−):

−W ∗
0 ({U∗}−S )(x) + V ∗

0 ({PU∗}−S )(x) =

{
U∗(x), x ∈ Ω−,

0, x ∈ Ω+.
(7.54)

The proof of (7.54) is quite similar to the proof of Theorem 7.3. Indeed, introduce again the notation
Ω−

R := B(0, R) \ Ω+, where B(0, R) is a ball centered at the origin and radius R. Then in view of
(7.53) we have

U∗(x) = −W ∗
S,0({U∗}−S )(x) + V ∗

S,0({PU∗}−S )(x) + Φ∗
R(x), x ∈ Ω−

R, (7.55)
0 = −W ∗

S,0({U∗}−S )(x) + V ∗
S,0({PU∗}−S )(x) + Φ∗

R(x), x ∈ Ω+, (7.56)
where

Φ∗
R(x) :=W ∗

ΣR,0(U
∗)(x)− V ∗

ΣR,0(PU∗)(x). (7.57)
Here V ∗

M,0 and W ∗
M,0 denote the single and double layer potential operators (7.48) and (7.49) with

integration surface M. Evidently,
A∗(∂)Φ∗

R(x) = 0, |x| < R. (7.58)
In turn, from (7.55) and (7.56) we get

Φ∗
R(x) = U∗(x) +W ∗

S,0({U∗}−S )(x)− V ∗
S,0({PU∗}−S )(x), x ∈ Ω−

R,

Φ∗
R(x) =W ∗

S,0({U∗}−S )(x)− V ∗
S,0({PU∗}−S )(x), x ∈ Ω+,

(7.59)

whence the equality Φ∗
R1

(x) = Φ∗
R2

(x) follows for |x| < R1 < R2. We assume that R1 and R2 are
sufficiently large numbers. Therefore, for an arbitrary fixed point x ∈ R3 the following limit exists

Φ∗(x) := lim
R→∞

Φ∗
R(x) =

U
∗(x) +W ∗

S,0({U∗}−S )(x)− V ∗
S,0({PU∗}−S )(x), x ∈ Ω−,

W ∗
S,0({U∗}−S )(x)− V ∗

S,0({PU∗}−S )(x), x ∈ Ω+,
(7.60)

and A∗(∂)Φ∗(x) = 0 for all x ∈ Ω+ ∪ Ω−. On the other hand, for arbitrary fixed point x ∈ R3 and a
number R1, such that |x| < R1 and Ω+ ⊂ B(0, R1), from (7.59) we have

Φ∗(x) = lim
R→∞

Φ∗
R(x) = Φ∗

R1
(x).

Now, from (7.57), (7.58), we deduce
A∗(∂)Φ∗(x) = 0 ∀x ∈ R3. (7.61)

Since U∗,W ∗
S,0, V

∗
S,0 ∈ Z∗(Ω−) we conclude from (7.60) that Φ∗(x) ∈ Z∗(R3). In particular, we have

lim
R→∞

1

4πR2

∫
ΣR

Φ∗(x) dΣR = 0. (7.62)
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Our goal is to show that Φ∗(x) = 0 ∀x ∈ R3. Applying the generalized Fourier transform to equation
(7.61) we get A∗(−iξ)Φ̂∗(ξ) = 0, ξ ∈ R3, where Φ̂∗(ξ) is the Fourier transform of Φ∗(x). Taking into
account that detA∗(−iξ) ̸= 0 for all ξ ∈ R3 \ {0}, we conclude that the support of the generalized
functional Φ̂∗(ξ) is the origin and, consequently,

Φ̂∗(ξ) =
∑

|α|≤M

cαδ
(α)(ξ),

where α is a multi-index, cα are constant vectors and M is some nonnegative integer. Then it follows
that Φ∗(x) is polynomial in x,

Φ∗(x) =
∑

|α|≤M

cαx
α,

and due to the inclusion Φ∗ ∈ Z∗(Ω−), Φ∗(x) is bounded at infinity, i.e., Φ∗(x) = const in R3.
Therefore (7.62) implies that Φ∗(x) vanishes identically in R3. This proves that formula (7.54) holds.

Theorem 7.15. Let S ∈ C2,κ and h ∈ [C1,κ′
(S)]6 with 0 < κ′ < κ ≤ 1. Then for the double

layer potential W ∗
0 defined by (7.49) there holds the following formula (generalized Lyapunov–Tauber

relation) {
PW ∗

0 (h)
}+

=
{
PW ∗

0 (h)
}− on S, (7.63)

where the operator P is given by (7.8).
For a Lipschitz S and h ∈ [H

1
2
2 (S)]

6, the relation (7.63) also holds true in the space [H
− 1

2
2 (S)]6.

Proof. Since h ∈
[
C1,κ′

(S)
]6, evidently U∗ := W ∗

0 (h) ∈ [C1,κ′
(Ω±)]6 ∩ Z∗(Ω−). It is clear that, the

vector U∗ is a solution of the homogeneous equation A∗(∂)U∗(x) = 0 in Ω+ ∪Ω−, where the operator
A∗(∂) is defined by (7.46). With the help of (7.53) and (7.54), for the vector function U∗ we derive
the following representation formula

U∗(x) =W ∗
0 ([U

∗]S)(x)− V ∗
0 ([PU∗]S)(x), x ∈ Ω+ ∪ Ω−, (7.64)

where
[U∗]S ≡ {U∗}+ − {U∗}− and [PU∗]S ≡ {PU∗}+ − {PU∗}− on S.

In view of the equality U∗ =W ∗
0 (h), from (7.64) we get

W ∗
0 (h)(x) =W ∗

0 ([W
∗
0 (h)]S)(x)− V ∗

0 ([PW ∗
0 (h)]S)(x), x ∈ Ω+ ∪ Ω−.

Using the jump relation (7.50), we find [U∗]S = [W ∗
0 (h)]S = {W ∗

0 (h)}+ − {W ∗
0 (h)}− = h. Therefore,

W ∗
0 (h)(x) =W ∗

0 (h)(x)− V ∗
0 ([PW ∗

0 (h)]S)(x), x ∈ Ω+ ∪ Ω−,

i.e., V ∗
0 (Φ

∗)(x) = 0 in Ω+ ∪ Ω−, where Φ∗ := [PW ∗
0 (h)]S . With the help of the jump relation (7.51)

finally we arrive at the equation

0 = {PV ∗
0 (Φ

∗)}− − {PV ∗
0 (Φ

∗)}+ = Φ∗ = [PW ∗
0 (h)]S = {PW ∗

0 (h)}+ − {PW ∗
0 (h)}−

on S, which completes the proof for the regular case.
The second part of the theorem can be proved by standard limiting procedure. �

Let us consider the interior and exterior homogeneous Dirichlet BVPs for the adjoint differential
operator A∗(∂)

A∗(∂)U∗ = 0 in Ω±, (7.65)
{U∗}± = 0 on S. (7.66)

In the case of the interior problem, we assume that either U∗ is a regular vector of the class
[C1,κ′

(Ω+)]6 or U∗ ∈ [W 1
2 (Ω

+)]6, while in the case of the exterior problem, we assume that either
U∗ ∈ [C1,κ′

(Ω−)]6 ∩ Z∗(Ω−) or U∗ ∈ [W 1
2,loc(Ω

−)]6 ∩ Z∗(Ω−).

Theorem 7.16. The interior and exterior homogeneous Dirichlet type BVPs (7.65), (7.66) have only
the trivial solution in the appropriate spaces.
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Proof. First, we treat the exterior Dirichlet problem. In view of the structure of the operator A∗(∂),
it is easy to see that we can consider separately the BVP for the vector function Ũ∗ = (u∗, φ∗, ψ∗)⊤,
constructed by the first five components of the solution vector U∗,

Ã∗(∂)Ũ∗(x) = 0, x ∈ Ω−, (7.67)

{Ũ∗(x)}− = 0, x ∈ S, (7.68)

where Ã∗(∂) is the 5×5 matrix differential operator, obtained from A∗(∂) by deleting the sixth column
and the sixth row,

Ã∗(∂) :=


[ckjrl∂j∂l]3×3 [−ejkl∂j∂l]3×1 [−qjkl∂j∂l]3×1

[elrj∂j∂l]1×3 κjl∂j∂l ajl∂j∂l

[qlrj∂j∂l]1×3 ajl∂j∂l µjl∂j∂l


5×5

. (7.69)

With the help of Green’s identity in Ω−
R = B(0, R) \ Ω+, we have∫

Ω−
R

[
Ũ∗ ·Ã∗(∂)Ũ∗+ Ẽ(Ũ∗, Ũ∗)

]
dx = −

∫
S

{Ũ∗}− ·{P̃ (∂, n)Ũ∗}− dS+
∫
ΣR

Ũ∗ ·P̃ (∂, n)Ũ∗ dΣR, (7.70)

where

P̃(∂, n) :=


[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l

[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l


5×5

, (7.71)

and

Ẽ(Ũ∗, Ũ∗) = crjkl∂lu
∗
k∂ju

∗
r + κjl∂lφ

∗∂jφ
∗ + ajl(∂lφ

∗∂jψ
∗ + ∂jψ

∗∂lφ
∗) + µjl∂lψ

∗∂jψ
∗. (7.72)

Due to the fact that U∗ possesses the property Z∗(Ω−), it follows that Ũ∗ = O(|x|−1) and ∂jŨ
∗ =

O(|x|−2) as |x| → ∞, j = 1, 2, 3. Therefore,∣∣∣∣ ∫
ΣR

Ũ∗ · P̃ (∂, n)Ũ∗ dΣR

∣∣∣∣ ≤ ∫
ΣR

C

R3
dΣR =

C

R3
4πR2 =

4πC

R
→ 0 as R→ ∞. (7.73)

Taking into account that Ẽ(Ũ∗, Ũ∗) ≥ 0, applying the relations (7.67), (7.68), and (7.73), from (7.70)
we conclude that Ẽ(Ũ∗, Ũ∗) = 0 in Ω−. Hence in view of (2.10) and (2.15) it follows that (see the
proof of Theorem 2.28) Ũ∗ = (a× x+ b, b4, b5), where a and b are arbitrary constant vectors, and b4
and b5 are arbitrary scalar constants. Recall that the symbol × denotes the cross product operation.
Due to the boundary condition (7.68) we get then a = b = 0 and b4 = b5 = 0, from which we derive
that Ũ∗ = 0. Since Ũ∗ vanishes in Ω−, from (7.65), (7.66) we arrive at the following boundary-value
problem for ϑ∗,

ηkj∂k∂jϑ
∗ = 0 in Ω−, {ϑ∗}− = 0 on S. (7.74)

From boundedness of ϑ∗ at infinity and from (7.74) one can derive that ϑ∗(x) = C +O(|x|−1), where
C is an arbitrary constant (see Lemma A.1 in Appendix A). In view of U∗ ∈ Z∗(Ω−) we have C = 0
and ϑ∗(x) = O(|x|−1), ∂jϑ∗(x) = O(|x|−2), j = 1, 2, 3. Therefore, we can apply Green’s formula∫

Ω−
R

[
ϑ∗ηkj∂k∂jϑ

∗ + ηkj∂kϑ
∗∂jϑ

∗] dx = −
∫
S

{ϑ∗}−
{
ηkjnk∂jϑ

∗}−
dS +

∫
ΣR

ϑ∗ηkjnk∂jϑ
∗ dΣR.

Passing to the limit as R→ ∞, we get∫
Ω−

ηkj∂kϑ
∗∂jϑ

∗ dx = 0.

Using the fact that the matrix [ηkj ]3×3 is positive definite, we conclude that ϑ∗ = C1 = const and
since ϑ∗(x) = O(|x|−1) as |x| → ∞, finally we get ϑ∗ = 0 in Ω−. Thus U∗ = 0 in Ω− which completes
the proof for the exterior problem. The interior problem can be treated quite similarly. �
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7.4.2. Existence results for the interior Neumann BVP. First, let us treat the uniqueness question.
To this end, we consider the homogeneous interior Neumann-type BVP

A(∂)U(x) = 0, x ∈ Ω+, (7.75){
T (∂, n)U(x)

}+
= 0, x ∈ S = ∂Ω+. (7.76)

As it is shown in Subsection 2.7, a general solution to the problem (7.75), (7.76) can be represented
in the form (see Theorem 2.29)

U =

9∑
k=1

CkU
(k) in Ω+, (7.77)

where Ck are arbitrary scalar constants and {U (k)}9k=1 is the basis in the space of solution vectors of
the homogeneous problem (7.75), (7.76). They read as

U (k) =
(
Ṽ (k), 0

)⊤
, k = 1, . . . , 8, U (9) =

(
Ṽ (9), 1

)⊤
, (7.78)

where U (k) = (u(k), φ(k), ψ(k), ϑ(k))⊤, Ṽ (k) = (u(k), φ(k), ψ(k))⊤,
Ṽ (1)=(0,−x3, x2, 0, 0)⊤, Ṽ (2)=(x3, 0,−x1, 0, 0)⊤, Ṽ (3)=(−x2, x1, 0, 0, 0)⊤, Ṽ (4)=(1, 0, 0, 0, 0)⊤,

Ṽ (5) = (0, 1, 0, 0, 0)⊤, Ṽ (6) = (0, 0, 1, 0, 0)⊤, Ṽ (7) = (0, 0, 0, 1, 0)⊤, Ṽ (8) = (0, 0, 0, 0, 1)⊤,

and Ṽ (9) is defined as
Ṽ (9) = (u(9), φ(9), ψ(9))⊤, u

(9)
k = bkqxq, k = 1, 2, 3, φ(9) = cqxq, ψ(9) = dqxq,

with the twelve coefficients bkq = bqk, cq and dq, k, q = 1, 2, 3, defined by the uniquely solvable linear
algebraic system of equations (see Subsection 2.7.4)

crjklbkl + elrjcl + qlrjdl = λrj , r, j = 1, 2, 3,

−ejklbkl + κjlcl + ajldl = pj , j = 1, 2, 3,

−qjklbkl + ajlcl + µjldl = mj , j = 1, 2, 3.

We have shown in the proof of Theorem 2.29 that the vector U given by (7.77) can be rewritten as
U = (Ṽ , 0)⊤ + b6(Ṽ

(9), 1)⊤,

where Ṽ = (a × x + b, b4, b5)
⊤, and a = (a1, a2, a3)

⊤ and b = (b1, b2, b3)
⊤ are arbitrary constant

vectors, while b4, b5, b6 are arbitrary scalar constants.
Now, let us consider the non-homogeneous interior Neumann-type BVP

A(∂)U(x) = 0, x ∈ Ω+, (7.79){
T (∂, n)U(x)

}+
= F (x), x ∈ S, (7.80)

where U ∈ [C1,κ′
(Ω+)]6 ∩ [C2(Ω+)]6 is a sought for vector and F ∈ [C0,κ′

(S)]6 is a given vector. It is
clear that if the problem (7.79), (7.80) is solvable, then a solution is defined within a summand vector
of type (7.77).

We look for a solution to the problem (7.79), (7.80) in the form of the single layer potential,
U(x) = V0(h)(x), x ∈ Ω+, (7.81)

where h = (h1, . . . , h6)
⊤ ∈ [C0,κ′

(S)]6 is an unknown density. From the boundary condition (7.80)
and by virtue of the jump relation (7.21) (see Theorem 7.4) we get the following integral equation for
the density vector h

(−2−1I6 +K0)h = F on S, (7.82)
where K0 is a singular integral operator defined in (7.24). Note that −2−1I6 + K0 is a singular

integral operator of normal type with index zero due to Lemma 3.3, Remark 4.13, and Theorem 5.7.
Now, we investigate the null space Ker(−2−1I6 + K0). To this end, we consider the homogeneous

equation
(−2−1I6 +K0)h = 0 on S (7.83)

and assume that a vector h(0) is a solution to (7.83), i.e., h(0) ∈ Ker(−2−1I6 + K0). Since h(0) ∈
[C0,κ′

(S)]6, it is evident that the corresponding single layer potential U0(x) = V0(h
(0))(x) belongs to
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the space of regular vector functions and solves the homogeneous equation A(∂)U0(x) = 0 in Ω+.
Moreover, {T (∂, n)U0(x)}+ = −2−1h(0) + K0h

(0) = 0 on S due to (7.83), i.e., U0(x) solves the
homogeneous interior Neumann problem. Therefore, in accordance with the above results U0(x) =
9∑

k=1

CkU
(k)(x) in Ω+, where Ck, k = 1, . . . , 9, are some constants, and the vectors U (k)(x) are defined

by (7.78). Hence, we have V0(h(0))(x) =
9∑

k=1

CkU
(k)(x), x ∈ Ω+, which implies

{V0(h(0))(x)}+ ≡ H0(h
(0))(x) =

9∑
k=1

CkU
(k)(x), x ∈ S. (7.84)

Keeping in mind that the operators

H0 : [H− 1
2 (S)]6 −→ [H

1
2 (S)]6, H0 : [C0,κ′

(S)]6 −→ [C1,κ′
(S)]6

are invertible (see Subsection 4.2, Corollary 4.8), from (7.84) we obtain

h(0) =
9∑

k=1

Ckh
(k)(x) with h(k)(x) := H−1

0 (U (k))(x), x ∈ S, k = 1, . . . , 9. (7.85)

Further, we show that the system of vectors {h(k)}9k=1 is linearly independent. Let us assume the

opposite. Then there exist constants ck, k = 1, . . . , 9, such that
9∑

k=1

|ck| ̸= 0 and the following relation
9∑

k=1

ckh
(k) = 0 on S holds, i.e.,

9∑
k=1

ckH−1
0 (U (k)) = 0 on S. Hence we get H−1

0

( 9∑
k=1

ckU
(k)

)
= 0 on S,

and, consequently,
9∑

k=1

ckU
(k)(x) = 0, x ∈ S. (7.86)

Now, consider the vector U∗(x) ≡
9∑

k=1

ckU
(k)(x), x ∈ Ω+. Since the vectors U (k) are solutions of the

homogeneous equation (7.79), in view of (7.86) we have

A(∂)U∗(x) = 0, x ∈ Ω+, {U∗(x)}+ =

{ 9∑
k=1

ckU
(k)(x)

}+

= 0, x ∈ S.

That is, U∗ is a solution of the homogeneous interior Dirichlet problem and in accordance with the
uniqueness theorem for the interior Dirichlet BVP we conclude U∗(x) = 0 in Ω+, i.e.,

9∑
k=1

ckU
(k)(x) = 0, x ∈ Ω+.

This contradicts to linear independence of the system {U (k)}9k=1. Thus, the system of the vectors
{h(k)}9k=1 is linearly independent which implies that dim Ker(−2−1I6 +K0) ≥ 9. Next, we show that
dim Ker(−2−1I6 + K0) ≤ 9. Let the equation (−2−1I6 + K0)h = 0 have a solution h(10) which is not
representable in the form of a linear combination of the system {h(k)}9k=1. Then the system {h(k)}10k=1

is linearly independent. It is easy to show that the system of the corresponding single layer potentials
V (k)(x) := V0(h

(k))(x), k = 1, . . . , 10, x ∈ Ω+, is linearly independent as well. Indeed, let us assume
the opposite. Then there are constants ak, such that

U(x) :=

10∑
k=1

akV
(k)(x) = 0, x ∈ Ω+, (7.87)

with
10∑
k=1

|ak| ̸= 0. From (7.87) we then derive that {U(x)}+ = 0, x ∈ S. Therefore,

{U}+ =
10∑
k=1

ak{V (k)}+ =
10∑
k=1

akH0(h
(k)) = H0

( 10∑
k=1

akh
(k)

)
= 0 on S.
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Whence, due to the invertibility of the operator H0, we get
10∑
k=1

akh
(k) = 0 on S, which contradicts

to the linear independence of the system {h(k)}10k=1. Thus the system {V0(h(k))(x)}10k=1 is linearly
independent.

On the other hand, we have

A(∂)V (k)(x) = 0, x ∈ Ω+,{
T V (k)

}+
= (−2−1I6 +K0)h

(k) = 0, x ∈ S,

since h(k), k = 1, . . . , 10, are solutions to the homogeneous equation (7.83). Therefore, the vectors
V (k), k = 1, . . . , 10, are solutions to the homogeneous interior Neumann-type BVP and they can
be expressed by linear combinations of the vectors U (j), j = 1, . . . , 9, defined in (7.78). Whence
it follows that the system {V (k)}10k=1 is linearly dependent and so is the system {h(k)}10k=1 for an
arbitrary solution h(10) of the equation (7.83). Consequently, dim Ker(−2−1I6 + K0) ≤ 9 implying
that dim Ker(−2−1I6 + K0) = 9. We can consider the system h(1), . . . , h(9) defined in (7.85) as
basis vectors of the null space of the operator −2−1I6 + K0. If h0 is a particular solution to the
nonhomogeneous integral equation (7.82), then a general solution of the same equation is represented as

h = h0 +
9∑

k=1

ckh
(k), where ck are arbitrary constants.

For our further analysis we need also to study the homogeneous interior Neumann-type BVP for
the adjoint operator A∗(∂),

A∗(∂)U∗ = 0 in Ω+, (7.88)
{PU∗}+ = 0 on S = ∂Ω+; (7.89)

here the adjoint operator A∗(∂) and the boundary operator P are defined by (7.46) and (7.8), respec-
tively.

Note that, in the case of the problem (7.88), (7.89) we get also two separated problems:
(a) For the vector function Ũ∗ ≡ (u∗, φ∗, ψ∗)⊤,

Ã∗(∂)Ũ∗ = 0 in Ω+, (7.90){
P̃Ũ∗}+

= 0 on S, (7.91)

where Ã∗ and P̃ are defined by (7.69) and (7.71), respectively, and
(b) For the function U∗

6 ≡ ϑ∗

λrj∂ju
∗
r + pj∂jφ

∗ +mj∂jψ
∗ + ηjl∂j∂lϑ

∗ = 0 in Ω+, (7.92)
ηjlnj∂lϑ

∗ = 0 on S. (7.93)

For a regular solution vector Ũ∗ of the problem (7.90), (7.91) we can write the following Green’s
identity ∫

Ω+

[
Ũ∗ · Ã∗(∂)Ũ∗ + Ẽ(Ũ∗, Ũ∗)

]
dx =

∫
∂Ω+

{Ũ∗}+ ·
{
P̃(∂, n)Ũ∗}+

dS, (7.94)

where Ẽ is given by (7.72). If we take into account the conditions (7.90)–(7.91), from (7.94) we obtain∫
Ω+

Ẽ(Ũ∗, Ũ∗) dx = 0,

whence we get ∂jφ∗ = 0, ∂jψ∗ = 0, j = 1, 2, 3, and ∂lu∗k+∂ju∗r = 0 in Ω+. Therefore, u∗(x) = a×x+b
is a rigid displacement vector, φ∗ = b4 and ψ∗ = b5 are arbitrary constants in Ω+. It is evident that

λrj∂ju
∗
r =

1

2
λrj(∂ju

∗
r + ∂ru

∗
j ) = 0

and pj∂jφ
∗ = mj∂jψ

∗ = 0. Then from (7.92), (7.93) we get the following BVP for the scalar
function ϑ∗,

ηjl∂j∂lϑ
∗ = 0 in Ω+, ηjlnj∂lϑ

∗ = 0 on S.
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Using the following Green’s identity∫
Ω+

ηjl∂j∂lϑ
∗ϑ∗ dx = −

∫
Ω+

ηjl∂lϑ
∗∂jϑ

∗ dx+

∫
∂Ω+

{ηjlnj∂lϑ∗}+{∂jϑ∗}+ dS,

we find ∫
Ω+

ηjl∂lϑ
∗∂jϑ

∗ dx = 0,

and by the positive definiteness of the matrix [ηjl]3×3 we get ∂jϑ∗ = 0, j = 1, 2, 3, in Ω+, i.e.,
ϑ∗ = b6 = const in Ω+. Consequently, a general solution U∗ = (u∗, φ∗, ψ∗, ϑ∗)⊤ of the adjoint
homogeneous BVP (7.88), (7.89) can be represented as

U∗(x) =
9∑

k=1

CkU
∗(k)(x), x ∈ Ω+,

where Ck are arbitrary scalar constants and

U∗(1) = (0,−x3, x2, 0, 0, 0)⊤, U∗(2) = (x3, 0,−x1, 0, 0, 0)⊤, U∗(3) = (−x2, x1, 0, 0, 0, 0)⊤,

U∗(4) = (1, 0, 0, 0, 0, 0)⊤, U∗(5) = (0, 1, 0, 0, 0, 0)⊤, U∗(6) = (0, 0, 1, 0, 0, 0)⊤,

U∗(7) = (0, 0, 0, 1, 0, 0)⊤, U∗(8) = (0, 0, 0, 0, 1, 0)⊤, U∗(9) = (0, 0, 0, 0, 0, 1)⊤.

(7.95)

As we see, U∗(k) = U (k), k = 1, . . . , 8, where U (k), k = 1, . . . , 8, is given in (7.78). One can easily
check that the system {U∗(k)}9k=1 is linearly independent. As a result we get the following assertion.

Lemma 7.17. The space of solutions of the adjoint homogeneous BVP (7.88), (7.89) is nine dimen-
sional and an arbitrary solution can be represented as a linear combination of the vectors {U∗(k)}9k=1,
i.e., the system {U∗(k)}9k=1 is a basis in the space of solutions to the homogeneous BVP (7.88), (7.89).

Now, we return to the nonhomogeneous equation (7.82). Note that K∗
0 and K0 are mutually adjoint

operators in the sense of the duality relation

(K0h, h
∗)L2(S) = (h,K∗

0h
∗)L2(S), ∀h, h∗ ∈ [L2(S)]

6.

Consider the corresponding homogeneous adjoint equation

(−2−1I6 +K∗
0)h

∗ = 0 on S,

In what follows we prove that dim Ker(− 1
2I6 + K∗

0) = 9. Indeed, in accordance with Lemma 7.17
we have that A∗(∂)U∗(k) = 0 in Ω+ and {PU∗(k)}+ = 0 on S. Therefore from (7.53) we have

U∗(k)(x) =W ∗
0 ({U∗(k)}+)(x), x ∈ Ω+. (7.96)

Denote
h∗(k) := {U∗(k)}+, k = 1, . . . , 9. (7.97)

By the jump relations (7.50) we get from (7.96)

h∗(k) = 2−1h∗(k) +K∗
0h

∗(k) on S,

whence it follows that
(−2−1I6 +K∗

0)h
∗(k) = 0, k = 1, . . . , 9.

By Theorem 7.16 and the relations (7.96) and (7.97) we conclude that the system {h∗(k)}9k=1 is linearly
independent, and therefore dim Ker

(
− 2−1I6 + K∗

0

)
≥ 9. Now, let h∗(0) ∈ Ker(−2−1I6 + K∗

0), i.e.,
(−2−1I6+K∗

0)h
∗(0) = 0. The corresponding double layer potential U∗

0 (x) :=W ∗
0 (h

∗(0))(x) is a solution
to the homogeneous equation A∗(∂)U∗

0 = 0 in Ω+. Moreover, {W ∗
0 (h

∗(0))}− = −2−1h∗(0)+K∗
0h

∗(0) = 0
on S. Consequently, U∗

0 is a solution of the homogeneous exterior Dirichlet BVP possessing the
property Z∗(Ω−). With the help of the uniqueness Theorem 7.16 we conclude that W ∗

0 (h
∗(0)) = 0 in

Ω−. Further, {PW ∗
0 (h

∗(0))}+ = {PW ∗
0 (h

∗(0))}− = 0 due to Theorem 7.15, and for the vector function
U∗
0 we arrive at the following BVP,

A∗(∂)U∗
0 = 0 in Ω+, {PU∗

0 }+ = 0 on S.
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Using Lemma 7.17 we can write U∗
0 (x) = W ∗

0 (h
∗(0))(x) =

∑9
k=1 ckU

∗(k)(x), x ∈ Ω+, where ck are
some constants. The jump relation for the double layer potential then gives{

W ∗
0 (h

∗(0))(x)
}+ −

{
W ∗

0 (h
∗(0))(x)

}−
= h∗(0)(x) =

9∑
k=1

ck
{
U∗(k)(x)

}+
=

9∑
k=1

ckh
∗(k)(x), x ∈ S,

which implies that the system {h∗(k)}9k=1 represents a basis of the null space Ker(−2−1I6+K∗). Thus
dim Ker(−2−1I6 +K∗

0) = 9.
Now, we can formulate the following basic existence theorem for the integral equation (7.82) and

the interior Neumann-type BVP.

Theorem 7.18. Let m ≥ 0 be a nonnegative integer and 0 < κ′ < κ ≤ 1. Further, let S ∈ Cm+1,κ

and F ∈ [Cm,κ′
(S)]6. The necessary and sufficient conditions for the integral equation (7.82) and the

interior Neumann-type BVP (7.79), (7.80) to be solvable read as∫
S

F (x) · h∗(k)(x) dS = 0, k = 1, . . . , 9, (7.98)

where the system {h∗(k)}9k=1 is defined explicitly by (7.97) and (7.95).
If these conditions are satisfied, then a solution vector to the interior Neumann-type BVP is

representable by the single layer potential (7.81), where the density vector h ∈ [Cm,κ′
(S)]6 is defined

by the integral equation (7.82).
A solution vector function U ∈ [Cm+1,κ′

(Ω+)]6 is defined modulo a linear combination of the vector
functions {U (k)}9k=1 given by (7.78).

Remark 7.19. Similar to the exterior problem, if S is a Lipschitz surface, F ∈ [H−1/2(S)]6, and the
conditions (7.98) are fulfilled, then

(i) the integral equation (7.82) is solvable in the space [H−1/2(S)]6;
(ii) the interior Neumann-type BVP (7.79), (7.80) is solvable in the space [H1

2 (Ω
+)]6 and solutions

are representable by the single layer potential (7.81), where the density vector h ∈
[
H−1/2(S)

]6
solves the integral equation (7.82);

(iii) a solution U ∈ [H1
2 (Ω

+)]6 to the interior Neumann-type BVP (7.79), (7.80) is defined modulo
a linear combination of the vector functions {U (k)}9k=1 given by (7.78).

8. Transmission Problems of Pseudo-Oscillations

Throughout this section, we assume that Re τ = σ > 0 and investigate the boundary-transmission
problems for the pseudo-oscillation equations for piecewise homogeneous elastic composite bodies.
Along with the classical regular transmission problems, we study the mixed transmission problems
arising in the case when a composite body under consideration contains interface cracks and study
the smoothness properties of weak solutions.

Note that depending on the physical properties of the interface layer, which is assumed to be
very thin and is mathematically modeled as a two-dimensional interface surface between adjacent
elastic regions of the composite solid, one can consider different boundary-transmission conditions
for the thermo-mechanical and electro-magnetic fields adequately describing the physical process. For
illustration, we treat the so called rigid transmission conditions which correspond to complete bonding
of different adjacent parts of the composite body and the mixed transmission conditions for the case
when a composite body contains an interfacial crack (for information concerning the formulation of
the boundary and transmission conditions and their relationship to the above mentioned physical
properties see the material presented in Subsection 2.2 before setting of crack dynamical problems).

Note that, the transmission problems of statics (i.e., when τ = 0) can be studied by the same
approach as the corresponding pseudodifferential problems.

8.1. Formulation of the Transmission problems of pseudo-oscillations and uniqueness the-
orems. First, let us consider the so called basic transmission problem for the whole piecewise homo-
geneous space when R3 is divided into two regions, a bounded domain Ω(1) := Ω+ and its unbounded
complement Ω(2) := Ω− = R3 \ Ω+. For simplicity, we assume that the interface S = ∂Ω+ = ∂Ω−

is an infinitely smooth simply connected manifold if not otherwise stated. As above n(x) denotes
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the unit normal vector at the point x ∈ S directed outwards the domain Ω+. Further, we assume
that the domains Ω(1) and Ω(2) are occupied by anisotropic homogeneous materials possessing differ-
ent thermo-electro-magneto-elastic properties described in Section 2. This means that their material
parameters are different constants, in general. The thermo-mechanical and electro-magnetic charac-
teristics associated with the domain Ω(β) for β = 1, 2, we equip with the superscript (β) and employ
the following notation

- for displacement vectors, strain and stress tensors:

u(β) = (u
(β)
1 , u

(β)
2 , u

(β)
3 )⊤, ε

(β)
kj , σ

(β)
kj ;

- for electric and magnetic potentials, electric displacements and magnetic inductions:

φ(β), ψ(β), D(β) = (D
(β)
1 , D

(β)
2 , D

(β)
3 )⊤, B(β) = (B

(β)
1 , B

(β)
2 , B

(β)
3 )⊤;

- for temperature functions and heat fluxes:

ϑ(β), q(β) = (q
(β)
1 , q

(β)
2 , q

(β)
3 )⊤;

- for material constants:
c
(β)
rjkl, e

(β)
rjk, q

(β)
rjk, λ

(β)
jk , a

(β)
jk , κ(β)

jk , p
(β)
j , m

(β)
j , ν

(β)
0 , h

(β)
0 , a

(β)
0 , d

(β)
0 etc.

For the region Ω(β), we use the notation introduced in the previous sections for the basic field
equations, differential and boundary operators, as well as the fundamental solutions, single layer,
double layer and volume potentials and the corresponding boundary integral operators, but now
equipped with the superscript (β), e.g., A(β)(∂, τ), T (β)(∂, n, τ), P(β)(∂, n, τ), V (β), W (β), N (β),
H(β), K(β), N (β), L(β) etc.

The basic transmission problem of pseudo-oscillations (T)τ in the classical pointwise setting
reads as follows:

Find regular solutions

U (β) = (u(β), φ(β), ψ(β), ϑ(β))⊤ ∈ [C1(Ω(β))]6 ∩ [C2(Ω(β))]6, β = 1, 2, (8.1)
to the pseudo-oscillation equations of the GTEME theory

A(β)(∂x, τ)U
(β)(x) = Φ(β)(x), x ∈ Ω(β), β = 1, 2, (8.2)

satisfying the transmission conditions on the interface S = ∂Ω(1) = ∂Ω(2):
{U (1)(x)}+ − {U (2)(x)}− = f(x), x ∈ S, (8.3){

T (1)(∂x, n, τ)U
(1)(x)

}+ −
{
T (2)(∂x, n, τ)U

(2)(x)
}−

= F (x), x ∈ S, (8.4)

where the differential operator A(β)(∂x, τ) and the generalized stress operator T (β)(∂x, n, τ) are given
by (2.45) and (2.57) with the material constants associated with the region Ω(β), β = 1, 2, Φ(β) =

(Φ
(β)
1 , . . . ,Φ

(β)
6 )⊤, f = (f1, . . . , f6)

⊤, and F = (F1, . . . , F6)
⊤ are given smooth vector functions from the

appropriate spaces; in addition, we assume that the vector function Φ(2) has a compact support and the
sought for vector function U (2) = (u(2), φ(2), ψ(2), ϑ(2))⊤ belongs to the class Zτ (Ω

(2)), i.e., at infinity
(as |x| → ∞) the following asymptotic relations hold:

u
(2)
k (x) = O(|x|−2), ∂ju

(2)
k (x) = O(|x|−2),

φ(2)(x) = O(|x|−1), ∂jφ
(2)(x) = O(|x|−2),

ψ(2)(x) = O(|x|−1), ∂jψ
(2)(x) = O(|x|−2),

ϑ(2)(x) = O(|x|−2), ∂jϑ
(2)(x) = O(|x|−2), k, j = 1, 2, 3.

(8.5)

In the case of weak formulation of the basic transmission problem (T)τ , we look for vector
functions

U (1) ∈ [W 1
p (Ω

(1))]6, U (2) ∈ [W 1
p,loc(Ω

(2))]6 ∩ Zτ (Ω
(2)), (8.6)
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satisfying the differential equations (8.2) of pseudo-oscillations in the distributional sense, the Dirich-
let type transmission condition (8.3) in the usual trace sense, and the Neumann type transmission
condition (8.4) in the generalized functional sense defined by Green’s formulas (2.202) and (2.211).
Moreover, in the case of weak setting, we assume that

Φ(1) ∈ [Lp(Ω
(1))]6, Φ(2) ∈ [Lp,comp(Ω

(2))]6, f ∈ [B
1− 1

p
p,p (S)]6, F ∈ [B

− 1
p

p,p (S)]
6. (8.7)

Now, let us consider the case when the composite body contains an interfacial crack, which math-
ematically means that the interface surface S is divided into two proper, non-overlapping, open sub-
manifolds, S = ST ∪SC , where ST is the transmission part of the interface and SC is the crack surface
with infinitely smooth boundary curve ℓ = ∂ST = ∂SC which is also the interfacial crack edge. Let
Ω̃

(β)
ℓ := Ω(β) \ ℓ.
Mixed type interfacial crack problems (MTC-D)τ , (MTC-N)τ , and (MTC-M)τ , in the

classical setting are formulated as follows: Find semi-regular solutions

U (β) = (u(β), φ(β), ψ(β), ϑ(β))⊤ ∈ [C1(Ω̃
(β)
ℓ )]6 ∩ [C2(Ω(β))]6, β = 1, 2, (8.8)

to the pseudo-oscillation equations of the GTEME theory (8.2) satisfying the decay conditions at infinity
(8.5), the rigid transmission conditions on ST :

{U (1)(x)}+ − {U (2)(x)}− = f (1)(x), x ∈ ST , (8.9){
T (1)(∂x, n, τ)U

(1)(x)
}+ −

{
T (2)(∂x, n, τ)U

(2)(x)
}−

= F (1)(x), x ∈ ST , (8.10)

and one of the following pairs of boundary conditions on the crack surface SC :
(a) screen type conditions (Problem (MTC-D)τ ):

{U (1)(x)}+ = f (+)(x), x ∈ SC , (8.11)
{U (2)(x)}− = f (−)(x), x ∈ SC , (8.12)

or
(b) crack type conditions (Problem (MTC-N)τ ):

{T (1)(∂x, n, τ)U
(1)(x)}+ = F (+)(x), x ∈ SC , (8.13){

T (2)(∂x, n, τ)U
(2)(x)

}−
= F (−)(x), x ∈ SC , (8.14)

or
(c) mixed crack type conditions (Problem (MTC-M)τ ):

{[T (1)(∂x, n, τ)U
(1)(x)]r}+ = F (+)

r (x), x ∈ SC , r = 1, 2, 3, (8.15){
[T (2)(∂x, n, τ)U

(2)(x)]r
}−

= F (−)
r (x), x ∈ SC , r = 1, 2, 3, (8.16)

{φ(1)(x)}+ − {φ(2)(x)}− = f∗4 (x), x ∈ SC , (8.17){
[T (1)(∂x, n, τ)U

(1)(x)]4
}+ −

{
[T (2)(∂x, n, τ)U

(2)(x)]4
}−

= F ∗
4 (x), x ∈ SC , (8.18)

{ψ(1)(x)}+ − {ψ(2)(x)}− = f∗5 (x), x ∈ SC , (8.19){
[T (1)(∂x, n, τ)U

(1)(x)]5
}+ −

{
[T (2)(∂x, n, τ)U

(2)(x)]5
}−

= F ∗
5 (x), x ∈ SC , (8.20)

{ϑ(1)(x)}+ − {ϑ(2)(x)}− = f∗6 (x), x ∈ SC , (8.21){
[T (1)(∂x, n, τ)U

(1)(x)]6
}+ −

{
[T (2)(∂x, n, τ)U

(2)(x)]6
}−

= F ∗
6 (x), x ∈ SC , (8.22)

where
f (1) = (f

(1)
1 , . . . , f

(1)
6 )⊤, F (1) = (F

(1)
1 , . . . , F

(1)
6 )⊤, f (±) = (f

(±)
1 , . . . , f

(±)
6 )⊤,

F (±) = (F
(±)
1 , . . . , F

(±)
6 )⊤, f∗j , F ∗

j , j = 4, 5, 6,

are given smooth functions form appropriate spaces.
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In the case of weak formulation of the mixed type interfacial crack problems
(MTC-D)τ , (MTC-N)τ , and (MTC-M)τ , we look for vector functions U (1) ∈ [W 1

p (Ω
(1))]6 and

U (2) ∈ [W 1
p,loc(Ω

(2))]6∩Zτ (Ω
(2)) satisfying the differential equations (8.2) of pseudo-oscillations in the

distributional sense, the Dirichlet type conditions (8.9), (8.11), (8.12), (8.17), (8.19), and (8.21) in the
usual trace sense, and the Neumann type transmission condition (8.10), (8.13), (8.14), (8.15), (8.16)
(8.18), (8.20), and (8.22) in the generalized functional sense defined by Green’s appropriate formulas.
Moreover, in the case of weak setting, we assume that

Φ(1) ∈ [Lp,comp(Ω
(1))]6, Φ(2) ∈ [Lp(Ω

(2))]6, f
(1)
k ∈ B

1− 1
p

p,p (ST ), F
(1)
k ∈ B

− 1
p

p,p (ST ),

f
(±)
k ∈ B

1− 1
p

p,p (SC), F
(±)
k ∈ B

− 1
p

p,p (SC), f∗j ∈ B
1− 1

p
p,p (SC), F ∗

j ∈ B
− 1

p
p,p (SC),

k = 1, . . . , 6, j = 4, 5, 6.

(8.23)

Further, we prove the uniqueness theorem for weak solutions of the above formulated interfacial crack
problems of pseudo-oscillations in the case of p = 2.

Theorem 8.1. Let the interface surface S and its submanifolds ST and SC along with the curve ℓ =
∂ST = ∂SC be Lipschitz and τ = σ+ iω with σ > σ0 > 0 and ω ∈ R. The homogeneous basic interface
problem (T)τ and homogeneous interfacial crack problems (MTC-D)τ , (MTC-N)τ , and (MTC-M)τ
possess only the trivial weak solution in the spaces [W 1

2 (Ω
(1))]6 and [W 1

2,loc(Ω
(2))]6∩Zτ (Ω

(2)), assuming
that the time relaxation parameters ν(1)0 and ν(2)0 are the same,

ν
(1)
0 = ν

(2)
0 =: ν0. (8.24)

Proof. Let the vector functions

U (1) = (u(1), φ(1), ψ(1), ϑ(1))⊤ ∈ [W 1
2 (Ω

(1))]6,

U (2) = (u(2), φ(2), ψ(2), ϑ(2))⊤ ∈ [W 1
2,loc(Ω

(2))]6 ∩ Zτ (Ω
(2)),

solve one of the homogeneous transmission problems listed in the theorem. For arbitrary U ′ =
(u′, φ′, ψ′, ϑ′)⊤ ∈ [W 1

2 (Ω
(1))]6 or U ′ = (u′, φ′, ψ′, ϑ′)⊤ ∈ [W 1

2,loc(Ω
(2))]6 satisfying the decay conditions

(8.5), from Green’s formulas (2.202) and (2.211) then we have∫
Ω(1)

E(1)
τ (U (1), U ′) dx =

⟨{
T (1)(∂, n, τ)U (1)

}+
, {U ′}+

⟩
S
, (8.25)∫

Ω(2)

E(2)
τ (U (2), U ′) dx = −

⟨{
T (2)(∂, n, τ)U (2)

}−
, {U ′}−

⟩
S
, (8.26)

where E(β)
τ ( · , · ) is defined by the relation (2.201) with the material constants associated with the

region Ω(β), β = 1, 2,

E(β)
τ (U (β), U ′) := c

(β)
rjkl∂lu

(β)
k ∂ju′r + ϱ(β)τ2u(β)r u′r + e

(β)
lrj

(
∂lφ

(β)∂ju′r − ∂ju
(β)
r ∂lφ′

)
+ q

(β)
lrj

(
∂lψ

(β)∂ju′r − ∂ju
(β)
r ∂lψ′

)
+ κ(β)

jl ∂lφ
(β)∂jφ′ + a

(β)
jl

(
∂lφ

(β)∂jψ′ + ∂jψ
(β)∂lφ′

)
+ µ

(β)
jl ∂lψ

(β)∂jψ′+λ
(β)
kj

[
τ∂ju

(β)
k ϑ′−(1+ν

(β)
0 τ)ϑ(β)∂ju′k

]
−p(β)l

[
τ∂lφ

(β)ϑ′+(1+ν
(β)
0 τ)ϑ(β)∂lφ′

]
−m

(β)
l

[
τ∂lψ

(β)ϑ′ + (1 + ν
(β)
0 τ)ϑ(β)∂lψ′

]
+ η

(β)
jl ∂lϑ

(β)∂jϑ′ + τ
(
h
(β)
0 τ + d

(β)
0

)
ϑ(β)ϑ′. (8.27)

Recall that the summation over the repeated Latin indices is meant from 1 to 3 if not otherwise stated.
If in (8.25) and (8.26) we substitute successively the vectors

(
u
(2)
1 , u

(2)
2 , u

(2)
3 , 0, 0, 0

)⊤
,

(
0, 0, 0, φ(2), 0, 0

)⊤
,

(
0, 0, 0, 0, ψ(2), 0

)⊤
,
(
0, 0, 0, 0, 0,

1 + ν
(2)
0 τ

τ
ϑ(2)

)⊤
,

(
u
(1)
1 , u

(1)
2 , u

(1)
3 , 0, 0, 0

)⊤
,
(
0, 0, 0, φ(1), 0,

)⊤
,
(
0, 0, 0, 0, ψ(1), 0

)⊤
,

(
0, 0, 0, 0, 0,

1 + ν
(1)
0 τ

τ
ϑ(1)

)⊤
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in the place of the vector U ′, we get the following relations for the vectors U (1) and U (2):∫
Ω(1)

[
c
(1)
rjkl∂lu

(1)
k ∂ju

(1)
r + ϱ(1)τ2u(1)r u

(1)
r + e

(1)
lrj∂lφ

(1)∂ju
(1)
r + q

(1)
lrj∂lψ

(1)∂ju
(1)
r

− (1 + ν
(1)
0 τ)λ

(1)
kj ϑ

(1)∂ju
(1)
k

]
dx =

⟨{[
T (1)(∂, n, τ)U (1)

]
r

}+
, {u(1)r }+

⟩
S
, (8.28)∫

Ω(1)

[
− e

(1)
lrj∂ju

(1)
r ∂lφ(1) + κ(1)

jl ∂lφ
(1)∂jφ(1) + a

(1)
jl ∂jψ

(1)∂lφ(1)

− (1 + ν
(1)
0 τ)p

(1)
l ϑ(1)∂lφ(1)

]
dx =

⟨{[
T (1)(∂, n, τ)U (1)

]
4

}+
, {φ(1)}+

⟩
S
, (8.29)∫

Ω(1)

[
− q

(1)
lrj∂ju

(1)
r ∂lψ(1) + a

(1)
jl ∂lφ

(1)∂jψ(1) + µ
(1)
jl ∂lψ

(1)∂jψ(1)

− (1 + ν
(1)
0 τ)m

(1)
l ϑ(1)∂lψ(1)

]
dx =

⟨{[
T (1)(∂, n, τ)U (1)

]
5

}+
, {ψ(1)}+

⟩
S
, (8.30)∫

Ω(1)

{
(1+ν

(1)
0 τ)

[
λ
(1)
kj ϑ

(1)∂ju
(1)
k −p(1)l ϑ(1)∂lφ

(1)−m(1)
l ϑ(1)∂lψ

(1)+(h
(1)
0 τ + d

(1)
0 )|ϑ(1)|2

]
+

1+ν
(1)
0 τ

τ
η
(1)
jl ∂lϑ

(1)∂jϑ(1)
}
dx=

1+ν
(1)
0 τ

τ

⟨{[
T (1)(∂, n, τ)U (1)

]
6

}+
, {ϑ(1)}+

⟩
S

(8.31)

and∫
Ω(2)

[
c
(2)
rjkl∂lu

(2)
k ∂ju

(2)
r + ϱ(2)τ2u(2)r u

(2)
r + e

(2)
lrj∂lφ

(2)∂ju
(2)
r + q

(2)
lrj∂lψ

(2)∂ju
(2)
r

− (1 + ν
(2)
0 τ)λ

(2)
kj ϑ

(2)∂ju
(2)
k

]
dx = −

⟨{[
T (2)(∂, n, τ)U (2)

]
r

}−
, {u(2)r }−

⟩
S
, (8.32)∫

Ω(2)

[
− e

(2)
lrj∂ju

(2)
r ∂lφ(2) + κ(2)

jl ∂lφ
(2)∂jφ(2) + a

(2)
jl ∂jψ

(2)∂lφ(2)

− (1 + ν
(2)
0 τ)p

(2)
l ϑ(2)∂lφ(2)

]
dx = −

⟨{[
T (2)(∂, n, τ)U (2)

]
4

}−
, {φ(2)}−

⟩
S
, (8.33)∫

Ω(2)

[
− q

(2)
lrj∂ju

(2)
r ∂lψ(2) + a

(2)
jl ∂lφ

(2)∂jψ(2) + µ
(2)
jl ∂lψ

(2)∂jψ(2)

− (1 + ν
(2)
0 τ)m

(2)
l ϑ(2)∂lψ(2)

]
dx = −

⟨{[
T (2)(∂, n, τ)U (2)

]
5

}−
, {ψ(2)}−

⟩
S
, (8.34)∫

Ω(2)

{
(1 + ν

(2)
0 τ)

[
λ
(2)
kj ϑ

(2)∂ju
(2)
k − p

(2)
l ϑ(2)∂lφ

(2)−m(2)
l ϑ(2)∂lψ

(2)+(h
(2)
0 τ + d

(2)
0 )|ϑ(2)|2

]
+

1+ν
(2)
0 τ

τ
η
(2)
jl ∂lϑ

(2)∂jϑ(2)
}
dx=−1+ν

(2)
0 τ

τ

⟨{[
T (2)(∂, n, τ)U (2)

]
6

}−
, {ϑ(2)}−

⟩
S
. (8.35)

Note that, due to (8.24), the coefficients in the right hand side expressions in equalities (8.31) and
(8.35) coincide.

Now, if we add to equation (8.28) (respectively, to (8.32)) the complex conjugate of equations
(8.29)–(8.31) (respectively, to (8.33)–(8.35)), and take into account equality (8.24), the symmetry
properties (2.9) of coefficients and the homogeneous boundary conditions of the interfacial crack
problems (MTC-D)τ , (MTC-N)τ , and (MTC-M)τ , we find

2∑
β=1

∫
Ω(β)

{
c
(β)
rjkl∂lu

(β)
k ∂ju

(β)
r +ϱ(β)τ2|u(β)|2+κ(β)

jl ∂lφ
(β)∂jφ(β)+a

(β)
jl

(
∂lψ

(β)∂jφ(β)+∂jφ
(β)∂lψ(β)

)
+ µ

(β)
jl ∂lψ

(β)∂jψ(β) − 2Re
[
p
(β)
l (1 + ν0τ)ϑ

(β)∂lφ(β)
]
− 2Re

[
m

(β)
l (1 + ν0τ)ϑ

(β)∂lψ(β)
]

+ (1 + ν0τ)(h
(β)
0 τ + d

(β)
0 )|ϑ(β)|2 + 1 + ν0τ

τ
η
(β)
jl ∂lϑ

(β)∂jϑ(β)
}
dx = 0. (8.36)

Now, it is evident that this equality is a counterpart of the relation (2.361) and by the word-for-word
arguments applied in the proof of Theorem 2.25 we deduce that

u(β) = 0, φ(β) = b
(β)
1 = const, ψ(β) = b

(β)
2 = const, ϑ(β) = 0 in Ω(β), β = 1, 2, (8.37)
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for all τ = σ+iω with σ > σ0 > 0 and ω ∈ R. Since the vector U (1) satisfies the decay conditions (8.5)
at infinity and either on the whole interface or on the submanifold ST the Dirichlet type homogeneous
transmission conditions are satisfied, finally we conclude that b(β)1 = b

(β)
2 = 0, β = 1, 2, which comple-

tes the proof. �

Throughout this and forthcoming sections when we treat transmission problems for composite
bodies, we always assume that the condition (8.24) is satisfied.

8.2. Existence and regularity results for transmission problems. As in the previous sec-
tions without loss of generality here we consider the homogeneous differential equations of pseudo-
oscillations (8.2) with Φ(β)(x) = 0 in Ω(β), β = 1, 2, and prove the existence theorems of solutions to
the above formulated basic transmission and interfacial crack problems. As we will see the qualitative
properties of solutions near the edges of the interior cracks and near the edges of the interfacial cracks,
are essentially different. In particular, as we will see the Hölder continuity exponents of solutions to
the interfacial cracks problems essentially depend on material parameters and for sufficiently smooth
problem data they are not close to 0.5, as it was in the case of interior cracks (see Theorem 6.4 and
Remark 6.5).

8.2.1. Existence and regularity of solutions to the basic transmission problem. We consider the weak
formulation of the basic transmission problem for the homogeneous differential equations of pseudo-
oscillations of the GTEME theory,

A(β)(∂x, τ)U
(β) = 0 in Ω(β), β = 1, 2, (8.38)

{U (1)}+ − {U (2)}− = f on S, (8.39){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F on S, (8.40)

where U (1) ∈ [W 1
p (Ω

(1))]6, U (2) ∈ [W 1
p,loc(Ω

(2))]6 ∩ Zτ (Ω
(2)), and

f ∈ [B
1− 1

p
p,p (S)]6, F ∈ [B

− 1
p

p,p (S)]
6, p > 1. (8.41)

Let us look for solution vectors U (2) and U (1) of the problem (8.38)–(8.40) in the form of single layer
potentials associated with the operator A(β)(∂x, τ) and constructed by the corresponding fundamental
matrix Γ(β)(x− y, τ) (see Section 3)

U (1)(x) = V (1)g(1)(x) in Ω(1), U (2)(x) = V (2)g(2)(x) in Ω(2), (8.42)

where g(β) ∈ [B
−1/p
p,p (S)]6, β = 1, 2, are unknown density vectors. The transmission conditions (8.39)

and (8.40) and properties of the single layer potentials lead then to the following system of the
pseudodifferential equations for g(1) and g(2),

H(1)g(1) −H(2)g(2) = f on S, (8.43)(
− 1

2
I6 +K(1)

)
g(1) −

(1
2
I6 +K(2)

)
g(2) = F on S, (8.44)

where the integral operators H(β) and K(β) are generated by the single layer potential V (β) and are
defined by (4.6) and (4.7), respectively. Note that, the operators

H(β) : [B
− 1

p
p,p (S)]

6 −→ [B
1− 1

p
p,p (S)]6, β = 1, 2, (8.45)

are invertible for arbitrary p > 1 (see Remarks 4.12 and 5.17). Therefore we can introduce new
unknown vectors g̃ (2) and g̃ (1) by the relations

g̃ (1) = H(1)g(1) ∈ [B
1− 1

p
p,p (S)]6, g̃ (2) = H(2)g(2) ∈ [B

1− 1
p

p,p (S)]6. (8.46)
Then

g(1) = [H(1)]−1g̃ (1), g(2) = [H(2)]−1g̃ (2), (8.47)
where [H(β)]−1 is the operator inverse to H(β) in (8.45). It is evident that the system (8.43)–(8.44) is
then equivalent via the relations (8.46) and (8.47) to the following simultaneous equations

g̃ (1) − g̃ (2) = f on S, (8.48)
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A(1)g̃ (1) −A(2)g̃ (2) = F on S, (8.49)
where

A(1) :=
(
− 1

2
I6 +K(1)

)
[H(1)]−1, A(2) :=

(1
2
I6 +K(2)

)
[H(2)]−1 (8.50)

are Steklov–Poincaré type operators associated with the domains Ω(1) and Ω(2), respectively (see
Subsection 4.3). Due to Remark 4.12 the pseudodifferential operators

A(1) : [B
1− 1

p
p,p (S)]6 −→ [B

− 1
p

p,p (S)]
6, −A(2) : [B

1− 1
p

p,p (S)]6 −→ [B
− 1

p
p,p (S)]

6, (8.51)

are strongly elliptic Fredholm operators with index equal to zero, and moreover, A(2) is invertible. By
Lemma 4.11 the operator

A(1) −A(2) : [B
1− 1

p
p,p (S)]6 −→ [B

− 1
p

p,p (S)]
6 (8.52)

is strongly elliptic Fredholm operator with zero index as well. Let us show that (8.52) is invertible.
To this end we prove that it has the trivial null space for p = 2 implying invertibility of (8.52)
for p = 2, which in turn implies then invertibility for arbitrary p > 1 due to the general theory of
pseudodifferential equations on manifolds without boundary.

Let g̃ ∈ [B
1
2
2,2(S)]

6 = [H
1
2
2 (S)]

6 be a solution to the homogeneous equation

[A(1) −A(2)]g̃ = 0 on S, (8.53)
and construct the vectors

U (1)(x) = V (1)
(
[H(1)]−1g̃

)
(x) in Ω(1), U (2)(x) = V (2)

(
[H(2)]−1g̃

)
(x) in Ω(2). (8.54)

On account of (8.53) and since [H(β)]−1g̃ ∈ [H
− 1

2
2 (S)]6, applying the properties of the single layer

potential operators, it is easy to verify that these vectors satisfy the conditions:

U (1)(x) ∈ [W 1
2 (Ω

(1))]6, U (2)(x) ∈ [W 1
2,loc(Ω

(2))]6 ∩ Zτ (Ω
(2)), (8.55)

{U (1)}+ − {U (2)}− = 0 on S, (8.56){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= 0 on S. (8.57)

Therefore, the vectors U (1) and U (2) solve the homogenous transmission problem (8.38)–(8.40) for
p = 2 and by the uniqueness Theorem 8.1 they equal to zero in the corresponding regions, respectively.
Consequently, {U (1)}+ = {U (2)}− = g̃ = 0, which completes the proof of the invertibility of the
operator (8.52).

Let us denote by A and Ã the operators generated by the left hand side expresions of the systems
(8.43), (8.44) and (8.48), (8.49), respectively:

A :=

 H(1) −H(2)

1

2
I6 +K(1) −1

2
I6 −K(2)


12×12

, Ã :=

[
I6 −I6
A(1) −A(2)

]
12×12

(8.58)

Applying the ellipticity of the symbol matrices S(A(1) −A(2)) and S(H(j)) for j = 1, 2, we can easily
show that the symbol matrices S(A) and S(Ã) are elliptic.

Theorem 8.2. The elliptic pseudodifferential operators

A : [B
− 1

p
p,p (S)]

6 × [B
− 1

p
p,p (S)]

6 −→ [B
1− 1

p
p,p (S)]6 × [B

− 1
p

p,p (S)]
6, (8.59)

Ã : [B
1− 1

p
p,p (S)]6 × [B

1− 1
p

p,p (S)]6 −→ [B
− 1

p
p,p (S)]

6 × [B
− 1

p
p,p (S)]

6, (8.60)

are invertible and the systems (8.43), (8.44) and (8.48), (8.49) are uniquely solvable. The solution
vectors g(β) ∈ [B

− 1
p

p,p (S)]6 and g̃ (β) ∈ [B
1− 1

p
p,p (S)]6, β = 1, 2, of the system (8.43), (8.44) are representable

in the form

g̃ (1) = [A(1) −A(2)]−1F − [A(1) −A(2)]−1A(2)f, (8.61)
g̃ (2) = [A(1) −A(2)]−1F − [A(1) −A(2)]−1A(1)f. (8.62)
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and
g(1) = [H(1)]−1[A(1) −A(2)]−1F − [H(1)]−1[A(1) −A(2)]−1A(2)f, (8.63)
g(2) = [H(2)]−1[A(1) −A(2)]−1F − [H(2)]−1[A(1) −A(2)]−1A(1)f. (8.64)

Proof. It immediately follows from the invertibility of the operator (8.52) and the relations (8.47)–
(8.49). �

Theorem 8.3. If conditions (8.41) hold, then the basic transmission problem (T)τ (8.38)–(8.40) is
uniquely solvable in the space [W 1

p (Ω
(1))]6 × ([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) for arbitrary p > 1 and the
solution vectors are representable in the form

U (1) = V (1)
(
[H(1)]−1[A(1) −A(2)]−1F − [H(1)]−1[A(1) −A(2)]−1A(2)f

)
in Ω(1), (8.65)

U (2) = V (2)
(
[H(2)]−1[A(1) −A(2)]−1F − [H(2)]−1[A(1) −A(2)]−1A(1)f

)
in Ω(1). (8.66)

Proof. Due to conditions (8.41) and the mapping properties of the single layer potential operators
and the boundary integral operators involved in formulas (8.65) and (8.66) (see Section 4) it follows
that U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)).
Evidently, the vectors (8.65) and (8.66) solve the homogeneous differential equations (8.38). Using

relations (4.3), formulas (8.50), and the equality
A(1)[A(2) −A(1)]−1A(2) = A(2)[A(2) −A(1)]−1A(1), (8.67)

by direct calculation one can easily verify that the Dirichlet transmission conditions (8.39) and the
Neumann transmission conditions (8.40) hold as well. Thus the vectors (8.65) and (8.66) satisfy all
conditions of the basic transmission problem (8.38)–(8.40). It remains to show that for arbitrary
p > 1 the problem possesses a unique solution, i.e., the homogeneous problem possesses only the
trivial solution. We proceed as follows. Let U (1)

0 ∈ [W 1
p (Ω

(1))]6 and U
(2)
0 ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))

be a solution to the homogeneous basic transmission problem (8.38)–(8.40) with f = F = 0. Denote

{U (1)
0 }+ = {U (2)

0 }− =: g ∈ [B
1− 1

p
p,p (S)]6,{

T (1)(∂x, n, τ)U
(1)

}+
=

{
T (2)(∂x, n, τ)U

(2)
}−

=: h ∈ [B
− 1

p
p,p (S)]

6.
(8.68)

Due to the general integral representation formulas derived in Subsection 3.4, see Theorems 3.5–3.6,
we have

U
(1)
0 =W (1)(g)− V (1)(h) in Ω(1), U

(2)
0 = −W (2)(g) + V (2)(h) in Ω(2), (8.69)

leading to the relations upon taking the traces from the corresponding regions,

H(1)h =
(
− 1

2
I6 +N (1)

)
g, H(2)h =

(1
2
I6 +N (2)

)
g, (8.70)

where N (β)g is the direct value of the double layer potential W (β)(g) on the surface S (see (4.4) and
(4.8)). By invertibility of the operator (8.45), from (8.70) it follows that

h = [H(1)]−1
(
− 1

2
I6 +N (1)

)
g, h = [H(2)]−1

(1
2
I6 +N (2)

)
g, (8.71)

and, consequently, [
[H(1)]−1

(
− 1

2
I6 +N (1)

)
− [H(2)]−1

(1
2
I6 +N (2)

)]
g = 0. (8.72)

The first relation in (4.30) implies
[H(1)]−1N (1) = K(1)[H(1)]−1, [H(2)]−1N (2) = K(2)[H(2)]−1,

and therefore (8.72) can be rewritten equivalently as[(
− 1

2
I6 +K(1)

)
[H(1)]−1 −

(1
2
I6 +K(2)

)
[H(2)]−1

]
g = 0, (8.73)

that is,
(A(1) −A(2))g = 0. (8.74)
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In view of the inclusion (8.68) and invertibility of the operator (8.52) for arbitrary p > 1, we deduce
from(8.74) that g = 0 on S, implying by (8.71) h = 0 on S, which finally leads to the equalities
U

(1)
0 = 0 in Ω(1) and U

(2)
0 = 0 in Ω(2) due to (8.69). This completes the proof. �

For the regular setting, due to the imbedding theorems and the invertibility of the corresponding
integral operators in the Hölder continuous spaces, we have the following existence theorem.

Theorem 8.4. Let S ∈ Ck+2,κ, f ∈ [Ck+1,κ′
(S)]6, and F ∈ [Ck,κ′

(S)]6 with a nonnegative integer k
and 0 < κ′ < κ 6 1. Then the basic transmission problem (T)τ possesses a unique regular solution

U (β) = (u(β), φ(β), ψ(β), ϑ(β))⊤ ∈ [Ck+1,κ′
(Ω(β))]6 ∩ [C∞(Ω(β))]6, β = 1, 2,

representable in the form (8.65), (8.66).

Proof. It follows from the invertibility of the strongly elliptic pseudodifferential operators in smooth
spaces

H(β) : [Ck,κ′
(S)]6 −→ [Ck+1,κ′

(S)]6, (8.75)

A(1) −A(2) : [Ck+1,κ′
(S)]6 −→ [Ck,κ′

(S)]6, (8.76)
which follows from the results obtained in Section 5. �

8.2.2. Existence and regularity of solutions to the interfacial crack problem (MTC-D)τ . Let us assume
that the conditions (cf. (8.23))

f (1) ∈ [B
1− 1

p
p,p (ST )]

6, F (1) ∈ [B
− 1

p
p,p (ST )]

6, f (±) ∈ [B
1− 1

p
p,p (SC)]

6, (8.77)
are satisfied and reformulate equivalently the screen type conditions (8.11) and (8.12) in the setting
of the crack problem (MTC-D)τ in the following form:

{U (1)}+ − {U (2)}− = f (1) on ST , (8.78){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F (1) on ST , (8.79)
{U (1)}+ − {U (2))}− = f (+) − f (−) on SC , (8.80)
{U (1)}+ + {U (2)}− = f (+) + f (−) on SC . (8.81)

Define the vector function

f̃ :=

{
f (1) on ST ,

f (+) − f (−) on SC .
(8.82)

We assume that the following natural compatibility condition is satisfied

f̃ ∈ [B
1− 1

p
p,p (S)]6. (8.83)

We see that the weak formulation of the crack problem (MTC-D)τ now reads as follows: Find vector
functions U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6∩Zτ (Ω

(2)) satisfying the homogeneous differential
equations (8.2) of pseudo-oscillations in the distributional sense with Φ(β) = 0, β = 1, 2, and

{U (1)}+ − {U (2)}− = f̃ on S, (8.84){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F (1) on ST , (8.85)
{U (1)}+ + {U (2)}− = f (+) + f (−) on SC . (8.86)

Let F̃ ∈
[
B

− 1
p

p,p (S)
]6 be a fixed extension of the vector function F (1) from ST onto the whole of S.

Then an arbitrary extension preserving the space has the form F = F̃ + g, where g ∈ [B̃
− 1

p
p,p (SC)]

6.
Evidently, r

ST
F = F (1) on ST .

Motivated by the results obtained in Subsection 8.2.1 (see Theorem 8.3), we look for a solution of
the problem (MTC-D)τ in the form

U (1) = V (1)
(
[H(1)]−1[A(1) −A(2)]−1(F̃ + g)− [H(1)]−1[A(1) −A(2)]−1A(2)f̃

)
in Ω(2), (8.87)



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 127

U (2) = V (2)
(
[H(2)]−1[A(1) −A(2)]−1(F̃ + g)− [H(2)]−1[A(1) −A(2)]−1A(1)f̃

)
in Ω(1). (8.88)

It can easily be verified that all the conditions of the problem (MTC-D)τ are satisfied automatically,
except the condition (8.86), which leads to the following pseudodifferential equation on SC with respect
to the unknown vector g ∈ [B̃

− 1
p

p,p (SC)]
6,

2[A(1) −A(2)]−1(F̃ + g)− [A(1) −A(2)]−1[A(1) +A(2)]f̃ = f (+) + f (−) on SC ,

that is,
rSC

Ag = G(D) on SC , (8.89)
where

A := [A(1) −A(2)]−1, (8.90)

G(D) :=
1

2
(f (+) + f (−)) +

1

2
r
SC

A[A(1) +A(2)]f̃ − r
SC

AF̃ ∈ [B̃
1− 1

p
p,p (SC)]

6. (8.91)

As we have shown in Subsection 8.2.1 the operator (8.52) is strongly elliptic invertible pseudodif-
ferential operator implying that the principal homogeneous symbol matrix of the inverse operator,
S(A;x, ξ1, ξ2), x ∈ S, ξ = (ξ1, ξ2) ∈ R2, is also strongly elliptic,

Re
[
S(A;x, ξ1, ξ2)η · η

]
≥ c|ξ|−1|η|2 for all x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}, η ∈ C6, (8.92)

and, consequently, the operators

r
SC

A : [H̃
− 1

p
p (SC)]

6 −→ [H
1− 1

p
p (SC)]

6, r
SC

A : [B̃
− 1

p
p,p (SC)]

6 −→ [B
1− 1

p
p,p (SC)]

6,

are bounded. To analyse the invertibility of these operators, in accordance with Theorem B.1 in
Appendix B, let us consider the matrix

MA(x) := [S(A;x, 0,+1)]−1[S(A;x, 0,−1)], x ∈ ℓ = ∂SC , (8.93)

constructed by the principal homogeneous symbol matrix S(A;x, ξ1, ξ2) of the pseudodifferential
operator A. Let λ1(x), . . . , λ6(x) be the eigenvalues of the matrix (8.93) and

δj(x) = Re
[
(2πi)−1 lnλj(x)

]
, j = 1, . . . , 6, (8.94)

a3 = inf
x∈ℓ,1≤j≤6

δj(x), a4 = sup
x∈ℓ,1≤j≤6

δj(x); (8.95)

here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due
to the strong ellipticity of the operator A we have the strict inequalities −1

2 < δj(x) <
1
2 for x ∈ SC ,

j = 1, . . . , 6. Therefore

−1

2
< a3 ≤ a4 <

1

2
. (8.96)

Moreover, by the same arguments as in Subsection 5.7, we can show that one of the eigenvalues, say
λ6, of the matrix MA(x) defined in (8.93) equals to 1, implying δ6 = 0. Consequently, we have the
following estimates

−1

2
< a3 6 0 6 a4 <

1

2
. (8.97)

Lemma 8.5. The operators

r
SC

A : [H̃s
p(SC)]

6 −→ [Hs+1
p (SC)]

6, (8.98)

r
SC

A : [B̃s
p,q(SC)]

6 −→ [Bs+1
p,q (SC)]

6, q ≥ 1, (8.99)

are invertible if
1

p
− 3

2
+ a4 < s <

1

p
− 1

2
+ a3, (8.100)

where a3 and a4 are given by (8.95).



128 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

Proof. To prove the invertibility of the operators (8.98) and (8.99), we first consider the particular
values of the parameters s = −1/2 and p = q = 2, which fall into the region defined by the inequalities
(8.100), and show that the null space of the operator

r
SC

A : [H̃
− 1

2
2 (SC)]

6 −→ [H
1
2
2 (SC)]

6 (8.101)
is trivial, i.e., the equation

rSC
Ag̃ = 0 on SC (8.102)

admits only the trivial solution in the space [H̃
− 1

2
2 (SC)]

6. Recall that H̃s
2(SC) = B̃s

2,2(SC) and
Hs

2(SC) = Bs
2,2(SC) for s ∈ R.

Let g̃ ∈ [B̃
− 1

2
2,2 (SC)]

6 = [H̃
− 1

2
2 (SC)]

6 be a solution to the homogeneous equation (8.102) and construct
the vectors

Ũ (1)(x) = V (1)
(
[H(1)]−1Ag̃

)
(x) in Ω(1), Ũ (2)(x) = V (2)

(
[H(2)]−1Ag̃

)
(x) in Ω(2).

Evidently, U (1) ∈ [W 1
2 (Ω

(1))]6 and U (2) ∈ [W 1
2,loc(Ω

(2))]6∩Zτ (Ω
(2)). Further, taking into consideration

that the following relations hold on S:

{Ũ (1)}+ = Ag̃,
{
T (1)Ũ (1)

}+
= A(1)Ag̃, {U (2)}− = Ag̃,

{
T (2)Ũ (2)

}−
= A(2)Ag̃,

and using (8.102) and (8.90), and keeping in mind that r
ST
g̃ = 0, we find

rSC
{Ũ (1)}+ = 0, rSC

{Ũ (2)}− = 0 on SC ,

r
ST

[
{Ũ (1)}+ − {Ũ (2)}−

]
= 0, r

ST

[
{T (1)U (1)}+ − {T (2)U (2)}−

]
= 0 on ST .

Therefore, Ũ (1) and Ũ (2) solve the homogeneous interfacial crack problem (MTC-D)τ with p = 2 and
by Theorem 8.1 they vanish in the corresponding regions, Ω(1) and Ω(2), respectively, which implies
that g̃ = {T (1)Ũ (1)}+ − {T (2)Ũ (2)}− = 0 on S. Consequently, the null space of the operator (8.101)
is trivial. Since the principal homogeneous symbol matrix of the operator A is strongly elliptic,
we conclude by Theorem B.1 (see Appendix B) that the operators (8.98) and (8.99) are Fredholm
operators with zero indices and with the trivial null spaces for all values of the parameters satisfying
the inequalities (8.100). Thus they are invertible. �

This lemma leads to the following existence theorem.

Theorem 8.6. Let the conditions (8.77) be fulfilled and
4

3− 2a4
< p <

4

1− 2a3
, (8.103)

where a3 and a4 are defined by (8.95). Then the interfacial crack problem (MTC-D)τ has a unique
solution U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), and the solution vectors are repre-
sentable in the form of single layer potentials (8.87) and (8.88), where the unknown vector g is defined
from the uniquely solvable pseudodifferential equation (8.89).

Proof. In accordance with Lemma 8.5, equation (8.89) is uniquely solvable for s = − 1
p with p satis-

fying inequality (8.103), since the inequalities (8.100) are fulfilled. Therefore the vectors (8.87) and
(8.88) represent a solution to the interfacial crack problem (MTC-D)τ in the space [W 1

p (Ω
(1))]6 ×

([W 1
p,loc(Ω

(2))]6 ∩ Zτ (Ω
(2))) with p as in (8.103).

It remains to show that the problem (MTC-D)τ is uniquely solvable in the space [W 1
p (Ω

(1))]6 ×
([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) for arbitrary p satisfying (8.103).
Let a pair of vectors (Ũ (1), Ũ (2)) ∈ [W 1

p (Ω
(1))]6 × ([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) be a solution to the
homogeneous problem (MTC-D)τ . Then by Theorem 8.3 they are representable in the form (8.65),
(8.66) with

F = {T (1)Ũ (1)}+ − {T (2)Ũ (2)}−, f = {Ũ (1)}+ − {Ũ (2)}− on S.

Due to the homogeneous conditions of the problem (MTC-D)τ , (8.9)–(8.12) with f (1) = F (1) = 0 on
ST and f (±) = 0 on SC , we have

F = {T (1)Ũ (1)}+ − {T (2)Ũ (2)}− ∈ [B̃
− 1

p
p,p (SC)]

6, f = 0 on S, (8.104)
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and, using the notation (8.90), we get the representations
Ũ (1) = V (1)

(
[H(1)]−1AF

)
in Ω(1), Ũ (2) = V (2)

(
[H(2)]−1AF

)
in Ω(2). (8.105)

Since, rSC
{Ũ (1)}+ = rSC

{Ũ (2)}− = 0 on SC we arrive at the equation
rSC

AF = 0 on SC .

Therefore, the inclusion (8.104) and Lemma 8.5 imply that F = 0 on SC which completes the proof
in view of (8.105). �

Further, we establish almost the best regularity Hölder continuity results for solutions to the crack
problem (MTC-D)τ .

Theorem 8.7. Let inclusions (8.77) hold and let
4

3− 2a4
< p <

4

1− 2a3
, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
+ a4 < s <

1

r
+

1

2
+ a3, (8.106)

with a3 and a4 defined by (8.95).
Further, let U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), be a unique solution pair to
the interfacial crack problem (MTC-D)τ . Then the following hold:

(i) if
f (1) ∈ [Bs

r,r(ST )]
6, F (1) ∈ [Bs−1

r,r (ST )]
6, f (±) ∈ [Bs

r,r(SC)]
6, (8.107)

and f̃ ∈ [Bs
r,r(S)]

6 with f̃ defined in (8.82), then

U (1) ∈ [H
s+ 1

r
r (Ω(1))]6, U (2) ∈ [H

s+ 1
r

r,loc (Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.108)

(ii) if
f (1) ∈ [Bs

r,q(ST )]
6, F (1) ∈ [Bs−1

r,q (ST )]
6, f (±) ∈ [Bs

r,q(SC)]
6, (8.109)

and f̃ ∈ [Bs
r,q(S)]

6 with f̃ defined in (8.82), then

U (1) ∈ [B
s+ 1

r
r,q (Ω(1))]6, U (2) ∈ [B

s+ 1
r

r,q,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.110)

(iii) if α > 0 is not integer and
f (1) ∈ [Cα(ST )]

6, F (1) ∈ [Bα−1
∞,∞(ST )]

6, f (±) ∈ [Cα(SC)]
6, (8.111)

and f̃ ∈ [Cα(S)]6 with f̃ defined in (8.82), then

U (1) ∈
∩

α′<κ

[Cα′
(Ω(1))]6, U (2) ∈

∩
α′<κ

[Cα′
(Ω(2))]6 ∩ Zτ (Ω

(2)), (8.112)

where κ = min{α, a3 + 1
2} > 0.

Proof. It is word for word of the proof of Theorem 5.22. �
8.2.3. Asymptotic expansion of solutions to the problem (MTC-D)τ . In this subsection we investigate
the asymptotic behaviour of the solution to the problem (MTC-D)τ near the interfacial crack edge
ℓ = ∂Sc. For simplicity of description of the method applied below, we assume that the crack and
transmission boundary data of the problem under consideration are infinitely smooth, namely,

f (+), f (−) ∈ [C∞(SC)]
6, f (1), F (1) ∈ [C∞(ST )]

6, f̃ ∈ [C∞(S)]6.

In Subsection 8.2.2 we have shown that the problem (MTC-D)τ is uniquely solvable and the solution
(U (1), U (2)) is represented by (8.87), (8.88) with the density defined by the pseudodifferential equation
(8.89).

To establish the asymptotic expansion of solution (U (1), U (2)) near the crack edge ℓ = ∂Sc we
preserve the notation of Subsection 8.2.2 and rewrite the representation (8.87), (8.88) in the form

U (1) = V (1)(C1g) +R(1) in Ω(1), U (2) = V (2)(C2g) +R(2) in Ω(2),

where C1 = [H(1)]−1A, C2 = [H(2)]−1A,

R(1)=V (1)(C1F̃ )−V (1)(C1A(2)f̃) ∈ [C∞(Ω(1))]6, R(2)=V (2)(C2F̃ )−V (2)(C2A(1)f̃) ∈ [C∞(Ω(2))]6,
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and g solves the pseudodifferential equation
r
SC

Ag = G(D) on SC , (8.113)

where A = (A(2) −A(1))−1 (see (8.90)) and

G(D) :=
1

2
(f+ + f−) +

1

2
r
SC

A(A(1) +A(2))f̃ − r
SC

AF̃ ∈ [C∞(SC)]
6.

Now, we can choose a partition of unity and natural local coordinate systems to perform a standard
rectifying procedure for ℓ = ∂SC = ∂ST and SC based on canonical diffeomorphisms. For simplicity,
let us denote the local rectified images of ℓ and SC under this diffeomorphisms by the same symbols.
Then we identify a one-sided neighbourhood on SC of an arbitrary point x̃ ∈ ℓ = ∂SC as a part of the
half-plane x2 > 0. Thus we assume that (x1, 0) = x̃ ∈ ℓ and (x1, x2,+) ∈ ∂SC for 0 < x2,+ < ε with
some positive ε.

Consider the 6 × 6 matrix MA related to the principal homogeneous symbol S(A;x, ξ) of the
operator A (see (8.93))

MA(x1) :=
[
S(A;x1, 0, 0,+1)

]−1
S(A;x1, 0, 0,−1), (x1, 0) ∈ ℓ = ∂SC .

Denote by λ1(x1), . . . , λ6(x1) the eigenvalues of the matrix MA(x1) and by mj the algebraic multi-
plicities of λj(x1). Let µ1(x1), . . . , µl(x1) be the distinct eigenvalues. Evidently, mj and l depend on
x1 in general and m1 + · · ·+ml = 6.

It is well known that the matrix MA(x1) admits the following decomposition (see, e.g. [42, Ch. 7,
Section 7])

MA(x1) = D(x1)JMA(x1)D−1(x1), (x1, 0) ∈ ∂SC ,

where D is 6× 6 non-degenerate matrix with infinitely smooth entries and JMA is block diagonal
JMA(x1) := diag

{
µ1(x1)B

m1(1), . . . , µl(x1)B
ml(1)

}
.

Here B(ν)(t) with ν ∈ {m1, . . . ,ml} are upper triangular matrices:

B(ν)(t) = ∥b(ν)jk (t)∥ν×ν , b
(ν)
jk (t) =


tk−j

(k − j)!
, j < k,

1, j = k,

0, j > k,

i.e.,

B(ν)(t) =



1 t
t2

2!
· · · tν−2

(ν − 2)!

tν−1

(ν − 1)!

0 1 t · · · tν−3

(ν − 3)!

tν−2

(ν − 2)!
. . . . . . . . . . . . . . . . . .

0 0 0 · · · 1 t

0 0 0 · · · 0 1


ν×ν

.

Denote
B0(t) := diag

{
B(m1)(t), . . . , B(ml)(t)

}
. (8.114)

Applying the results from the reference [22] we arrive at the following asymptotic expansion for the
solution of the pseudodifferential equation (8.113)

g(x1, x2,+) = D(x1)x
− 1

2+∆(x1)
2,+ B0

(
− 1

2πi
logx2,+

)
D−1(x1)b0(x1)

+

M∑
k=1

D(x1)x
− 1

2+∆(x1)+k
2,+ Bk(x1, logx2,+) + gM+1(x1, x2,+), (8.115)

where b0 ∈ [C∞(ℓ)]6, g
M+1

∈ [C∞(ℓ+ε )]
6, ℓ+ε = ℓ× [0, ε], and

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑
j=1

tjdkj(x1).
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Here m0 = max{m1, . . . ,m6}, the coefficients dkj ∈ [C∞(ℓ)]6,

∆(x1) := (∆1(x1), . . . ,∆6(x1)), ∆j(x1) =
1

2πi
logλj(x1) =

1

2π
argλj(x1) +

1

2πi
log |λj(x1)|,

−π < argλj(x1) < π, (x1, 0) ∈ ℓ = ∂SC , j = 1, . . . , 6.

Furthermore,
x
− 1

2+∆(x1)
2,+ := diag

{
x
− 1

2+∆1(x1)
2,+ , . . . , x

− 1
2+∆6(x1)

2,+

}
.

Now, having at hand the above asymptotic expansion for the density vector function g, we can apply
Theorem 2.2 in the reference [23], and write the following spatial asymptotic expansions of the solution
(U (1), U (2))

U (β)(x) =
∑
µ=±1

{ l
(β)
0∑
s=1

n(β)
s −1∑
j=0

xj3

[
d
(β)
sj (x1, µ)(z

(β)
s,µ)

1
2+∆(x1)−jB0

(
− 1

2πi
log z(β)s,µ

)]
cj(x1)+

+
M+2∑
k,l=0

M+2−l∑
j+p=0

xl2x
j
3d

(β)
sljp(x1, µ)(z

(β)
s,µ)

1
2+∆(x1)+p+kB

(β)
skjp

(
x1, log z(β)s,µ

)}
+

+ U (β)
M+1

(x), x3 > 0, β = 1, 2. (8.116)

The coefficients d(β)sj ( · , µ) and d(β)sljp( · , µ) are 6× 6 matrices with entries from the space C∞(ℓ), while
B

(β)
skjp(x1, t) are polynomials in t with vector coefficients which depend on the variable x1 and have the

order νkjp = k(2m0−1)+m0−1+p+j in general, where m0 = max{m1, . . . ,ml} and m1+· · ·+ml = 6,

cj ∈ [C∞(ℓ)]6, U (β)
M+1

∈ [CM+1(Ω(β))]6, (z(β)s,µ)
κ+∆(x1) :=diag

{
(z(β)s,µ)

κ+∆1(x1), . . . , (z(β)s,µ)
κ+∆6(x1)

}
,

κ ∈ R, µ = ±1, β = 1, 2, (x1, 0) ∈ ℓ = ∂SC ,

z
(β)
s,+1 := −x2 − x3ζ

(β)
s,+1, z

(β)
s,−1 := x2 − x3ζ

(β)
s,−1, −π < arg z(β)s,±1 < π, ζ

(β)
s,±1 ∈ C∞(ℓ).

Here {ζ(β)s,±1}
l
(β)
0
s=1 are the different roots of multiplicity n

(β)
s , s = 1, . . . , l

(β)
0 , of the polynomial in

ζ, detA(β,0)([J⊤
κβ

(x, 0, 0)]−1η±) with η± = (0,±1, ζ)⊤, satisfying the conditions Re ζs,±1 < 0. The
matrix Jκβ

stands for the Jacobian matrix corresponding to the canonical diffeomorphism κβ related
to the chosen local coordinate system. Under this diffeomorphism the curve ℓ = ∂SC and SC are
locally rectified and we assume that (x1, 0, 0) ∈ ℓ = ∂SC , x2 = dist(x(β)C , ℓ), x3 = dist(x, SC), where
x
(β)
C is the projection of the reference point x ∈ Ω(β), β = 1, 2, on the plane corresponding to the

image of SC under the diffeomorphism κβ .
Note that, the coefficients d(β)sj ( · , µ) can be calculated explicitly, whereas the coefficients cj can be

expressed by means of the first coefficient b0 in the asymptotic expansion (8.115) (see [23]),

d
(β)
sj (x1,+1)=

1

2π
Gκβ

(x1, 0)P
β,+
sj (x1)D(x1), d

(β)
sj (x1,−1)=

1

2π
Gκβ

(x1, 0)P
β,−
sj (x1)D(x1)e

iπ( 1
2−∆(x1)),

s = 1, . . . , l
(β)
0 , j = 0, . . . , n(β)

s − 1, β = 1, 2,

where
P±,β
sj (x1) := V β,s

−1,j(x1, 0, 0,±1)S(Cβ ; 0, 0,±1),

V β,s
−1,j(x1, 0, 0,±1) :=

ij+1

j!(n
(β)
s − 1− j)!

dn
(β)
s −1−j

dζn
(β)
s −1−j

(ζ − ζ
(β)
s,±1)

n(β)
s ×

×
(
A(β,0)

(
(J⊤

κβ
(x1, 0)v)

−1(0,±1, ζ)⊤
))−1

∣∣∣∣
ζ=ζ

(β)
s,±1

,

eiπ(
1
2−∆(x1)) := diag

{
eiπ(

1
2−∆1(x1)), . . . , eiπ(

1
2−∆6(x1))

}
,

Gκβ
are the square roots of Gram’s determinant of the diffeomorphisms κβ , β = 1, 2, and

cj(x1) = aj(x1)B
−
0

(
− 1

2
+ ∆(x1)

)
D−1(x1)b0(x1), j = 0, , . . . , n(β)

s − 1,
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B−
0

(
− 1

2
+ ∆(x1)

)
= diag

{
Bm1

−

(
− 1

2
+ ∆(x1)

)
, . . . , Bml

−

(
− 1

2
+ ∆(x1)

)}
,

Bmr
− (t) = ∥b̃mr

kp (t)∥mr×mr , r = 1, . . . , l,

b̃mr

kp (t) =


( 1

2πi

)p−k (−1)p−k

(p− k)!

dp−k

dtp−k
Γ(t+ 1)e

iπ(t+1)
2 for k ≤ p,

0 for k > p,

Γ(t+ 1) is the Euler function,

aj(x1) = diag
{
am1(α

(j)
1 ), . . . , aml(α

(j)
l )

}
,

α(j)
r = −3

2
−∆r(x1) + j, r = 1, . . . , l, j = 0, . . . , r(β)s − 1, amr (α(j)

r ) =
∥∥amr

kp (α(j)
r )

∥∥
mr×mr

,

amr

kp (α(j)
r ) =


−i

p∑
l=k

(−1)p−k(2πi)l−pb̃mr
kl (µ

(0)
r )

(α
(0)
r + 1)p−l+1

, j = 0, k ≤ p,

(−1)p−k b̃mr

kp (α(j)
r ), j = 1, . . . , n

(r)
s − 1, k ≤ p,

0, k > p,

with α
(j)
r = −1 + j + µ

(j)
r , −1 < Reµ(j)

r < 0.

Remark 8.8. The above asymptotic expansions (8.116) of solutions imply that for sufficiently smooth
boundary data (e.g., C∞-smooth data say) the solution vectors (U (1), U (2)) to the interfacial problem
(MTC-D)τ belong to the class of semi-regular functions described in Definition 2.2:

U (1) ∈ [C(Ω̃
(1)
ℓ ;α)]6, U (2) ∈ [C(Ω̃

(2)
ℓ ;α)]6, Ω̃

(β)
ℓ = Ω(β) \ ℓ, ℓ = ∂SC , β = 1, 2,

where α = 1
2 − a3 + ε with a3 defined in (8.95) and ε being an arbitrarily small positive number. Due

to the relations (8.97), it is evident that 1
2 < α < 1 if 0 < ε < 1

4 + 1
2a3.

Moreover, the dominant terms of the solution vectors U (β) near the curves ℓ = ∂SC can be repre-
sented as the product of C∞-smooth vector-functions and factors of the form [ln ϱ(x)]mj−1[ϱ(x)]κj+iνj ,
where ϱ(x) is the distance from a reference point x to the curve ℓ. Therefore, near the curve ℓ the
dominant singular terms of the corresponding generalized stress vectors T (β)U (β) are represented
as the product of C∞-smooth vector-functions and the singular factors [ln ϱ(x)]mj−1[ϱ(x)]−1+κj+iνj .
The numbers νj are different from zero, in general, and describe the oscillating character of the stress
singularities.

The exponents κj + iνj are related to the corresponding eigenvalues λj of the matrix (8.93) by the
equalities

κj =
1

2
+

argλj
2π

, νj = − ln |λj |
2π

, j = 1, 2, . . . , 6. (8.117)

Recall that in the above expressions the parameter mj denotes the multiplicity of the eigenvalue λj .
It is evident that at the curve ℓ the components of the generalized stress vector T (β)U (β) behave

like O([ln ϱ(x)]m0−1[ϱ(x)]−
1
2+a3), where m0 denotes the maximal multiplicity of the eigenvalues. This

is a global singularity effect for the first order derivatives of the vectors U (β), β = 1, 2. In contrast to
the classical pure elasticity case (where a3 = 0), here a3 depends on the material parameters and is
different from zero, in general. Since a3 6 0, we see that the stress singularity exponents may become
less than − 1

2 , in general.

8.2.4. Existence and regularity of solutions to the interfacial crack problem (MTC-N)τ . Let us assume
that the conditions (cf. (8.23))

f (1) ∈ [B
1− 1

p
p,p (ST )]

6, F (1) ∈ [B
− 1

p
p,p (ST )]

6, F (±) ∈ [B
− 1

p
p,p (SC)]

6, (8.118)
are satisfied and reformulate equivalently the crack conditions (8.13) and (8.14) in the setting of the
crack problem (MTC-N)τ in the following form:

{U (1)}+ − {U (2)}− = f (1) on ST , (8.119)
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{
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F (1) on ST , (8.120){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F (+) − F (−) on SC , (8.121){
T (1)(∂x, n, τ)U

(1)
}+

+
{
T (2)(∂x, n, τ)U

(2)
}−

= F (+) + F (−) on SC . (8.122)
Define the vector function

F̃ :=

{
F (1) on ST ,

F (+) − F (−) on SC .
(8.123)

We assume that the following natural compatibility condition is satisfied

F̃ ∈ [B
− 1

p
p,p (S)]

6. (8.124)
We see that the weak formulation of the crack problem (MTC-N)τ now reads as follows: Find vector
functions U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6∩Zτ (Ω

(2)) satisfying the homogeneous differential
equations (8.2) of pseudo-oscillations in the distributional sense with Φ(β) = 0, β = 1, 2, and

{U (1)}+ − {U (2)}− = f (1) on ST , (8.125){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F̃ on S, (8.126){
T (1)(∂x, n, τ)U

(1)
}+

+
{
T (2)(∂x, n, τ)U

(2)
}−

= F (+) + F (−) on SC . (8.127)

Let f̃ ∈ [B
1− 1

p
p,p (S)]6 be a fixed extension of the vector function f (1) from ST onto the whole of S.

Then an arbitrary extension preserving the space has the form f = f̃ + g, where g ∈ [B̃
1− 1

p
p,p (SC)]

6.
Evidently, rST

f = f (1) on ST .
Motivated by the results obtained in Subsection 8.2.1 (see Theorem 8.3) and applying the notation

(8.90), we look for a weak solution of the problem (MTC-N)τ again in the form

U (1) = V (1)
(
[H(1)]−1AF̃ − [H(1)]−1AA(2)(f̃ + g)

)
in Ω(1), (8.128)

U (2) = V (2)
(
[H(2)]−1AF̃ − [H(2)]−1AA(1)(f̃ + g)

)
in Ω(2). (8.129)

It can easily be verified that all the conditions of the problem (MTC-N)τ are satisfied automatically,
except the condition (8.127), which leads to the following pseudodifferential equation on SC with
respect to the unknown vector g ∈ [B̃

1− 1
p

p,p (SC)]
6,

(A(1) +A(2))AF̃ −
(
A(1)AA(2) +A(2)AA(1)

)
(f̃ + g) = F (+) + F (−) on SC .

In view of the equality (8.67), the later equation can be rewritten as
r
SC

A(N)g = G(N) on SC , (8.130)
where

A(N) := −A(1)AA(2) ≡ −A(2)AA(1), (8.131)

G(N) :=
1

2
(F (+) + F (−))− 1

2
r
SC

(A(1) +A(2))AF̃ + r
SC

A(N)f̃ ∈ [B
− 1

p
p,p (SC)]

6. (8.132)

Now, we show that the principal homogenous symbol matrix of the first order pseudodifferential
operator A(N) is strongly elliptic. Indeed, keeping in mind that the symbol matrices of the operators
A(1), −A(2), and A = [A(1) − A(2)]−1 are strongly elliptic, we can transform the symbol matrix
S(A(N)) as follows

S(A(N)) = −S(A(1))S(A)S(A(2)) = −S(A(1))S
(
[A(1) −A(2)]−1

)
S(A(2))

= −S(A(1))
[
S(A(1) −A(2))

]−1
S(A(2)) = −

[
[S(A(2))]−1S(A(1) −A(2))[S(A(1))]−1

]−1

= −
[
[S(A(2))]−1

[
S(A(1))−S(A(2))

]
[S(A(1))]−1

]−1

=
[
[S(A(1))]−1 − [S(A(2))]−1

]−1

. (8.133)

Whence we conclude that S(A(N)) is a strongly elliptic symbol matrix, i.e.,
Re

[
S(A(N);x, ξ1, ξ2)η · η

]
≥ c|ξ||η|2 for all x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}, η ∈ C6. (8.134)
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Consequently, the operators

rSC
A(N) : [H̃

1− 1
p

p (SC)]
6 −→ [H

− 1
p

p (SC)]
6, rSC

A(N) : [B̃
1− 1

p
p,p (SC)]

6 −→ [B
− 1

p
p,p (SC)]

6

are bounded. To analyse the invertibility of these operators, in accordance with Theorem B.1 in
Appendix B, let us consider the matrix

MA(N)(x) :=
[
S(A(N);x, 0,+1)

]−1[
S(A(N);x, 0,−1)

]
, x ∈ ∂SC , (8.135)

constructed by the principal homogeneous symbol matrix S(A(N);x, ξ1, ξ2) of the pseudodifferential
operator A(N). Let λ′1(x), . . . , λ′6(x) be the eigenvalues of the matrix (8.135) and

δ′j(x) = Re
[
(2πi)−1 lnλ′j(x)

]
, j = 1, . . . , 6, (8.136)

a5 = inf
x∈ℓ,1≤j≤6

δ′j(x), a6 = sup
x∈ℓ,1≤j≤6

δ′j(x); (8.137)

here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due
to the strong ellipticity of the operator A we have the strict inequalities −1

2 < δ′j(x) <
1
2 for x ∈ SC ,

j = 1, . . . , 6. Therefore
−1

2
< a5 ≤ a6 <

1

2
. (8.138)

Moreover, by the same arguments as in Subsection 5.7, we can show that one of the eigenvalues, say
λ6, of the matrix MA(N)(x) defined in (8.135) equals to 1, implying δ6 = 0. Consequently, we have
the following estimates

−1

2
< a5 6 0 6 a6 <

1

2
. (8.139)

Lemma 8.9. The operators
r
SC

A(N) : [H̃s
p(SC)]

6 −→ [Hs−1
p (SC)]

6, (8.140)

rSC
A(N) : [B̃s

p,q(SC)]
6 −→ [Bs−1

p,q (SC)]
6, q ≥ 1, (8.141)

are invertible if
1

p
− 1

2
+ a6 < s <

1

p
+

1

2
+ a5, (8.142)

where a5 and a6 are given by (8.137).

Proof. To prove the invertibility of the operators (8.140) and (8.141), we first consider the particular
values of the parameters s = 1/2 and p = q = 2, which fall into the region defined by the inequalities
(8.142), and show that the null space of the operator

rSC
A(N) : [H̃

1
2
2 (SC)]

6 −→ [H
− 1

2
2 (SC)]

6 (8.143)
is trivial, i.e., the equation

r
SC

A(N)g̃ = 0 on SC (8.144)

admits only the trivial solution in the space [H̃
1
2
2 (SC)]

6. Recall that H̃s
2(SC) = B̃s

2,2(SC) andHs
2(SC) =

Bs
2,2(SC) for s ∈ R.
Let g̃ ∈ [B̃

1
2
2,2(S)]

6 = [H̃
1
2
2 (S)]

6 be a solution to the homogeneous equation (8.144) and construct
the vectors

Ũ (1)(x) = −V (2)
(
[H(1)]−1AA(2)g̃

)
(x) in Ω(1),

Ũ (2)(x) = −V (1)
(
[H(2)]−1AA(1)g̃

)
(x) in Ω(2).

Evidently, U (1) ∈ [W 1
2 (Ω

(1))]6 and U (2) ∈ [W 1
2,loc(Ω

(2))]6∩Zτ (Ω
(2)). Further, taking into consideration

that the following relations hold on S:
{Ũ (1)}+ = −AA(2)g̃, {T (1)Ũ (1)}+ = −A(1)AA(2)g̃,

{U (2)}− = −AA(1)g̃, {T (2)Ũ (2)}− = −A(2)AA(1)g̃,

and using (8.131) and (8.144), and keeping in mind that r
ST
g̃ = 0, we find

r
SC

{T (1)Ũ (1)}+ = 0, r
SC

{T (2)Ũ (2)}− = 0 on SC ,
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r
ST

[
{Ũ (1)}+ − {Ũ (2)}−

]
= 0, r

ST

[
{T (1)U (1)}+ − {T (2)U (2)}−

]
= 0 on ST .

Therefore, Ũ (1) and Ũ (2) solve the homogeneous interfacial crack problem (MTC-N)τ with p = 2 and
by Theorem 8.1 they vanish in the corresponding regions, Ω(1) and Ω(2), respectively, which implies
that g̃ = {Ũ (1)}+ − {Ũ (2)}− = 0 on S. Consequently, the null space of the operator (8.143) is trivial.
Since the principal homogeneous symbol matrix of the operator A(N) is strongly elliptic, we conclude
by Theorem B.1 (see Appendix B) that the operators (8.140) and (8.141) are Fredholm operators with
zero indices and with the trivial null spaces for all values of the parameters satisfying the inequalities
(8.142). Thus they are invertible. �

This lemma leads to the following existence theorem.

Theorem 8.10. Let the conditions (8.118) be fulfilled and
4

3− 2a6
< p <

4

1− 2a5
, (8.145)

where a5 and a6 are defined by (8.137). Then the interfacial crack problem (MTC-N)τ has a unique
solution U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), and the solution vectors are rep-
resentable in the form of single layer potentials (8.128) and (8.129), where the unknown vector g is
defined from the uniquely solvable pseudodifferential equation (8.130).

Proof. In accordance with Lemma 8.9, equation (8.130) is uniquely solvable for s = 1 − 1
p with p

satisfying inequality (8.145), since the inequalities (8.142) are fulfilled. Therefore the vectors (8.128)
and (8.129) represent a solution to the interfacial crack problem (MTC-N)τ in the space [W 1

p (Ω
(1))]6×

([W 1
p,loc(Ω

(2))]6 ∩ Zτ (Ω
(2))) with p as in (8.145).

It remains to show that the problem (MTC-N)τ is uniquely solvable in the space [W 1
p (Ω

(1))]6 ×
([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) for arbitrary p satisfying (8.145).
Let a pair of vectors (Ũ (1), Ũ (2)) ∈ [W 1

p (Ω
(1))]6 × ([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) be a solution to the
homogeneous problem (MTC-N)τ . Then by Theorem 8.3 they are representable in the form (8.65),
(8.66) with

F = {T (1)Ũ (1)}+ − {T (2)Ũ (2)}−, f = {Ũ (1)}+ − {Ũ (2)}− on S.

Due to the homogeneous conditions of the problem (MTC-N)τ , (8.9), (8.10) and (8.13), (8.14) with
f (1) = F (1) = 0 on ST and F (±) = 0 on SC , we have

f = {Ũ (1)}+ − {Ũ (2)}− ∈ [B̃
1− 1

p
p,p (SC)]

6, F = 0 on S, (8.146)

and, using the notation (8.90), we get the representations

Ũ (1) = −V (1)
(
[H(1)]−1AA(2)f

)
in Ω(1), Ũ (2) = −V (2)

(
[H(2)]−1AA(1)f

)
in Ω(2).

Since, r
SC

{T (1)Ũ (1)}+ = r
SC

{T (2)Ũ (2)}− = 0 on SC we arrive at the equation r
SC

A(N)f = 0 on
SC . Therefore the inclusion (8.146) and Lemma 8.9 imply that f = 0 on SC which completes the
proof. �

Further, we deduce almost the best regularity Hölder continuity results for solutions to the crack
problem (MTC-N)τ .

Theorem 8.11. Let inclusions (8.118) hold and let
4

3− 2a6
< p <

4

1− 2a5
, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
+ a6 < s <

1

r
+

1

2
+ a5, (8.147)

with a5 and a6 defined by (8.137).
Further, let U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), be a unique solution pair to
the interfacial crack problem (MTC-N)τ . Then the following hold:

(i) if
f (1) ∈ [Bs

r,r(ST )]
6, F (1) ∈ [Bs−1

r,r (ST )]
6, F (±) ∈ [Bs−1

r,r (SC)]
6, (8.148)
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and F̃ ∈ [Bs−1
r,r (S)]6 with F̃ defined in (8.123), then

U (1) ∈ [H
s+ 1

r
r (Ω(1))]6, U (2) ∈ [H

s+ 1
r

r,loc (Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.149)

(ii) if
f (1) ∈ [Bs

r,q(ST )]
6, F (1) ∈ [Bs−1

r,q (ST )]
6, F (±) ∈ [Bs−1

r,q (SC)]
6, (8.150)

and F̃ ∈ [Bs−1
r,q (S)]6 with F̃ defined in (8.123), then

U (1) ∈ [B
s+ 1

r
r,q (Ω(1))]6, U (2) ∈ [B

s+ 1
r

r,q,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.151)

(iii) if α > 0 is not integer and

f (1) ∈ [Cα(ST )]
6, F (1) ∈ [Bα−1

∞,∞(ST )]
6, F (±) ∈ [Bα−1

∞,∞(SC)]
6, (8.152)

and F̃ ∈ [Bα−1
∞,∞(S)]6 with F̃ defined in (8.123), then

U (1) ∈
∩

α′<κ

[Cα′
(Ω(1))]6, U (2) ∈

∩
α′<κ

[Cα′
(Ω(2))]6 ∩ Zτ (Ω

(2)), (8.153)

where κ = min{α, a5 + 1
2} > 0.

Proof. It is word for word of the proof of Theorem 5.22. �

8.2.5. Asymptotic expansion of solutions to the problem (MTC-N)τ . In this subsection we investigate
the asymptotic behaviour of the solution to the problem (MTC-N)τ near the interfacial crack edge
ℓ = ∂SC . For simplicity of description of the method applied below, we again assume that the crack
and transmission boundary data of the problem are infinitely smooth, namely,

F (+), F (−) ∈ [C∞(SC)]
6, f (1), F (1) ∈ [C∞(ST )]

6, F̃ ∈ [C∞(S)]6.

In Subsection 8.2.4 we have shown that the problem (MTC-N)τ is uniquely solvable and the solu-
tion (U (1), U (2)) is represented by (8.128), (8.129) with the density defined by the pseudodifferential
equation (8.130).

To establish the asymptotic expansion of solution (U (1), U (2)) near the crack edge ∂SC we again
employ the notation introduced in Subsection 8.2.4 and rewrite the representation (8.128), (8.129) in
the form

U (1) = V (1)B1g +R(1) in Ω(1), U (2) = V (2)B2g +R(2) in Ω(2),

where B1 = −(H(1))−1AA(2), B2 = −(H(2))−1AA(1),

R(1) = V (1)(H(1))−1AF̃ − V (1)B1f̃ ∈ [C∞(Ω(1))]6,

R(2) = V (2)(H(2))−1AF̃ − V (2)B2f̃ ∈ [C∞(Ω(2))]6,

and g solves the pseudodifferential equation
rSC

A(N)g = G(N) on SC (8.154)

with G(N) ∈ [C∞(SC)]
6.

Applying again a partition of unity and natural local coordinate systems we perform a standard
rectifying procedure for ℓ = ∂SC = ∂ST and SC based on canonical diffeomorphisms. For simplicity,
we again denote the local rectified images of ℓ and SC under this diffeomorphisms by the same symbols.
Then we identify a one-sided neighbourhood on SC of an arbitrary point x̃ ∈ ℓ = ∂SC as a part of the
half-plane x2 > 0. Thus we assume that (x1, 0) = x̃ ∈ ℓ and (x1, x2,+) ∈ ∂SC for 0 < x2,+ < ε with
some positive ε.

Consider the 6× 6 matrix MA(N) related to the principal homogeneous symbol S(A(N);x, ξ) of the
operator A(N)

MA(N)(x1) :=
[
S(A(N);x1, 0, 0,+1)

]−1
S(A(N);x1, 0, 0,−1), (x1, 0) ∈ ℓ = ∂SC .

Denote by λ1(x1), . . . , λ6(x1) the eigenvalues of the matrix MA(N)(x1) and by mj the algebraic mul-
tiplicity of λj(x1). Let µ1(x1), . . . , µl(x1) be the distinct eigenvalues. Evidently, mj and l depend on
x1 in general and m1 + · · ·+ml = 6.
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It is well known that the matrix MA(N)(x1) admits the following decomposition (see, e.g. [42, Ch. 7,
Section 7])

MA(N)(x1) = N (x1)JMA(N)
(x1)N−1(x1), (x1, 0) ∈ ℓ = ∂SC ,

where N is 6× 6 non-degenerate matrix with infinitely smooth entries and JMA(N)
is block diagonal

JMA(N)
(x1) := diag

{
µ1(x1)B

m1(1), . . . , µl(x1)B
ml(1)

}
.

Here B(ν)(t) with ν ∈ {m1, . . . ,ml} are upper triangular matrices introduced in Subsection 8.2.3.
Denote

B0(t) := diag
{
B(m1)(t), . . . , B(ml)(t)

}
. (8.155)

Applying the results from the reference [22] we derive the following asymptotic expansion for the
solution of the pseudodifferential equation (8.154)

g(x1, x2,+) = N (x1)x
1
2+∆(x1)
2,+ B0

(
− 1

2πi
logx2,+

)
N−1(x1)b0(x1)

+
M∑
k=1

N (x1)x
1
2+∆(x1)+k
2,+ Bk(x1, logx2,+) + gM+1(x1, x2,+), (8.156)

where b0 ∈ [C∞(ℓ)]6, gM+1 ∈ [C∞(ℓ+c,ε)]
6, ℓ+c,ε = ℓ× [0, ε], and

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑
j=1

tjdkj(x1).

Here m0 = max{m1, . . . ,m6}, the coefficients dkj ∈ [C∞(ℓ)]6,

∆(x1) := (∆1(x1), . . . ,∆6(x1)), ∆j(x1) =
1

2πi
logλ′j(x1) =

1

2π
argλ′j(x1) +

1

2πi
log |λ′j(x1)|,

−π < argλ′j(x1) < π, (x1, 0) ∈ ℓ = ∂SC , j = 1, . . . , 6.

Furthermore,
x

1
2+∆(x1)
2,+ := diag

{
x

1
2+∆1(x1)
2,+ , . . . , x

1
2+∆6(x1)
2,+

}
.

Now, having at hand the above asymptotic expansion for the density vector function g, we can apply
the results of the reference [23] and write the following spatial asymptotic expansions of the solution
(U (1), U (2))

U (β)(x) =
∑
µ=±1

{ l
(β)
0∑
s=1

n(β)
s −1∑
j=0

xj3

[
d
(β)
sj (x1, µ)

(
z(β)s,µ

) 1
2+∆(x1)−j

B0

(
− 1

2πi
log z(β)s,µ

)]
cj(x1)

+
M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2x
j
3d

(β)
sljp(x1, µ)(z

(β)
s,µ)

1
2+∆(x1)+p+kB

(β)
skjp(x1, log z(β)s,µ)

}

+ U (β)
M+1

(x), x3 > 0, β = 1, 2. (8.157)

The coefficients d
(β)
sj ( · , µ) and d

(β)
sljp( · , µ) are matrices with entries from the space C∞(ℓ), while

B
(β)
skjp(x1, t) are polynomials in t with vector coefficients which depend on the variable x1 and have the

order νkjp = k(2m0−1)+m0−1+p+j in general, where m0 = max{m1, . . . ,ml} and m1+· · ·+ml = 6,

cj ∈ [C∞(ℓ)]6, U (β)
M+1

∈ [CM+1(Ω
(β)

)]6, (z(β)s,µ)
κ+∆(x1) := diag

{
(z(β)s,µ)

κ+∆1(x1), . . . , (z(β)s,µ)
κ+∆6(x1)

}
,

κ ∈ R, µ = ±1, β = 1, 2, (x1, 0) ∈ ℓ,

z
(β)
s,+1 := −x2 − x3ζ

(β)
s,+1, z

(β)
s,−1 := x2 − x3ζ

(β)
s,−1, −π < arg z(β)s,±1 < π, ζ

(β)
s,±1 ∈ C∞(ℓ).

Note that, the coefficients d(β)sj ( · , µ) can be calculated explicitly, whereas the coefficients cj can
be expressed by means of the first coefficient b0 in the asymptotic expansion of (8.156) (for details
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see [23]),

d
(β)
sj (x1,+1) =

1

2π
Gκβ

(x1, 0)P
+,β
sj (x1)N (x1),

d
(β)
sj (x1,−1) =

1

2π
Gκβ

(x1, 0)P
−,β
sj (x1)N (x1)e

iπ(− 1
2−∆(x1)),

s = 1, . . . , l
(β)
0 , j = 0, . . . , n(β)

s − 1, β = 1, 2,

where

P±,β
sj (x1) := V β,s

−1,j(x1, 0, 0,±1)S(Bβ ; 0, 0,±1),

V β,s
−1,j(x1, 0, 0,±1) :=

ij+1

j!(n
(β)
s − 1− j)!

dn
(β)
s −1−j

dζn
(β)
s −1−j

(ζ − ζ
(β)
s,±1)

n(β)
s

×
(
A(β,0)

(
(J⊤

κβ
(x1, 0))

−1(0,±1, ζ)⊤
))−1

∣∣∣∣
ζ=ζ

(β)
s,±1

,

eiπ(−
1
2−∆(x1)) := diag

{
eiπ(−

1
2−∆1(x1)), . . . , eiπ(−

1
2−∆6(x1))

}
,

Gκβ
are the square roots of Gram’s determinant of the diffeomorphisms κβ , β = 1, 2, and

cj(x1) = aj(x1)B
−
0

(1
2
+ ∆(x1)

)
N−1(x1)b0(x1), j = 0, . . . , n(β)

s − 1,

B−
0

(1
2
+ ∆(x1)

)
= diag

{
Bm1

−

(1
2
+ ∆(x1)

)
, . . . , Bml

−

(1
2
+ ∆(x1)

)}
,

Bmr
− (t) = ∥b̃mr

kp (t)∥mr×mr , r = 1, . . . , l,

b̃mr

kp (t) =


( 1

2πi

)p−k (−1)p−k

(p− k)!

dp−k

dtp−k
Γ(t+ 1)e

iπ(t+1)
2 , for k ≤ p,

0 for k > p,

Γ(t+ 1) is the Euler function,

aj(x1) = diag
{
am1(α

(j)
1 ), . . . , aml(α

(j)
l )

}
,

α(j)
r = −3

2
−∆r(x1) + j, r = 1, . . . , l, j = 0, . . . , r(β)s − 1, amr (α(j)

r ) =
∥∥amr

kp (α(j)
r )

∥∥
mr×mr

,

amr

kp (α(j)
r ) =


−i

p∑
l=k

(−1)p−k(2πi)l−pb̃mr
kl (µ

(0)
r )

(α
(0)
r + 1)p−l+1

, j = 0, k ≤ p,

(−1)p−k b̃mr

kp (α
(j)
r ), j = 1, . . . , n

(r)
s − 1, k ≤ p,

0, k > p,

with α
(j)
r = −1 + j + µ

(j)
r , −1 < Reµ(j)

r < 0.

Remark 8.12. The above asymptotic expansions (8.157) of solutions imply that for sufficiently smooth
boundary data (e.g., C∞-smooth data say) the solution vectors (U (1), U (2)) to the interfacial problem
(MTC-N)τ belong to the class of semi-regular functions described in Definition 2.2:

U (1) ∈ [C(Ω̃
(1)
ℓ ;α)]6, U (2) ∈ [C(Ω̃

(2)
ℓ ;α)]6, Ω̃

(β)
ℓ = Ω(β) \ ℓ, ℓ = ∂SC , β = 1, 2,

where α = 1
2 − a5 + ε with a5 defined in (8.137) and ε being an arbitrarily small positive number.

Due to the relations (8.139), it is evident that 1
2 < α < 1 if 0 < ε < 1

4 + 1
2 a5.

Moreover, the dominant terms of the solution vectors U (β) near the curves ℓ = ∂SC can be repre-
sented as the product of C∞-smooth vector-functions and factors of the form [ln ϱ(x)]mj−1[ϱ(x)]κ

′
j+iν′

j ,
where ϱ(x) is the distance from a reference point x to the curve ℓ. Therefore, near the curve ℓ the
dominant singular terms of the corresponding generalized stress vectors T (β)U (β) are represented
as the product of C∞-smooth vector-functions and the singular factors [ln ϱ(x)]mj−1[ϱ(x)]−1+κ′

j+iν′
j .



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 139

The numbers νj are different from zero, in general, and describe the oscillating character of the stress
singularities.

The exponents κ′j + iν′j are related to the corresponding eigenvalues λ′j of the matrix (8.135) by
the equalities

κ′j =
1

2
+

argλ′j
2π

, ν′j = −
ln |λ′j |
2π

, j = 1, 2, . . . , 6. (8.158)

Recall that in the above expressions the parameter mj denotes the multiplicity of the eigenvalue λ′j .
It is evident that at the curve ℓ the components of the generalized stress vector T (β)U (β) behave

like O([ln ϱ(x)]m0−1[ϱ(x)]−
1
2+a5), where m0 denotes the maximal multiplicity of the eigenvalues. This

is a global singularity effect for the first order derivatives of the vectors U (β), β = 1, 2. In contrast to
the classical pure elasticity case (where a5 = 0), here a5 depends on the material parameters and is
different from zero, in general. Since a5 6 0, we see that the stress singularity exponents may become
less than − 1

2 , in general.

8.2.6. Existence and regularity of solutions to the interfacial crack problem (MTC-M)τ . Here we
assume that

f
(1)
k ∈ B

1− 1
p

p,p (ST ), F
(1)
k ∈ B

− 1
p

p,p (ST ), k = 1, . . . , 6,

F (±)
r ∈ B

− 1
p

p,p (SC), f∗j ∈ B
1− 1

p
p,p (SC), F ∗

j ∈ B
− 1

p
p,p (SC), r = 1, 2, 3, j = 4, 5, 6.

(8.159)

and reformulate equivalently the conditions of the problem (MTC-M)τ as follows

{U (1)}+ − {U (2)}− = f (1) on ST , (8.160){
T (1)(∂x, n, τ)U

(1)
}+ −

{
T (2)(∂x, n, τ)U

(2)
}−

= F (1) on ST , (8.161){[
T (1)(∂x, n, τ)U

(1)
]
r

}+ −
{[

T (2)(∂x, n, τ)U
(2)

]
r

}−
= F (+)

r − F (−)
r on SC , r = 1, 2, 3, (8.162){[

T (1)(∂x, n, τ)U
(1)

]
r

}+
+
{[

T (2)(∂x, n, τ)U
(2)

]
r

}−
= F (+)

r + F (−)
r on SC , r = 1, 2, 3, (8.163)

{φ(1)}+ − {φ(2)}− = f∗4 on SC , (8.164){[
T (1)(∂x, n, τ)U

(1)
]
4

}+ −
{[
T (2)(∂x, n, τ)U

(2)
]
4

}−
= F ∗

4 on SC , (8.165)
{ψ(1)}+ − {ψ(2)}− = f∗5 on SC , (8.166){[

T (1)(∂x, n, τ)U
(1)

]
5

}+ −
{[
T (2)(∂x, n, τ)U

(2)
]
5

}−
= F ∗

5 on SC , (8.167)
{ϑ(1)}+ − {ϑ(2)}− = f∗6 on SC , (8.168){[

T (1)(∂x, n, τ)U
(1)

]
6

}+ −
{[
T (2)(∂x, n, τ)U

(2)
]
6

}−
= F ∗

6 on SC . (8.169)

Denote by f̃ (1)r , r = 1, 2, 3, a fixed extension, preserving the space, of the functions f (1)r from ST to the
whole of S. An arbitrary extension can be written then as f̃ (1)r +gr, where gr ∈ B̃

1− 1
p

p,p (SC), r = 1, 2, 3.
Evidently, r

ST
[f̃

(1)
r + gr] = f

(1)
r on ST .

Now, let us define the functions:

f̃r =

{
f
(1)
r on ST ,

f̃
(1)
r on SC ,

r = 1, 2, 3, f̃j =

{
f
(1)
j on ST ,

f∗j on SC ,
j = 4, 5, 6, (8.170)

F̃r =

{
F

(1)
r on ST ,

F
(+)
r − F

(−)
r on SC ,

r = 1, 2, 3, F̃j =

{
F

(1)
j on ST ,

F ∗
j on SC ,

j = 4, 5, 6. (8.171)

We require that the following natural compatibility conditions are satisfied:

f̃j ∈ B
1− 1

p
p,p (S), j = 4, 5, 6, F̃k ∈ B

− 1
p

p,p (S), k = 1, . . . , 6.

Therefore, we have

f̃ = (f̃1, . . . , f̃6)
⊤ ∈ [B

1− 1
p

p,p (S)]6, F̃ = (F̃1, . . . , F̃6)
⊤ ∈ [B

− 1
p

p,p (S)]
6. (8.172)
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As in the previous subsections, motivated by the results stated in Theorem 8.3, we employ the
same notation and look for a weak solution of the problem (MTC-M)τ in the form

U (1) = V (1)
(
[H(1)]−1AF̃ − [H(1)]−1AA(2)(f̃ + g)

)
in Ω(1), (8.173)

U (2) = V (2)
(
[H(2)]−1AF̃ − [H(2)]−1AA(1)(f̃ + g)

)
in Ω(2), (8.174)

where
g = (g1, g2, g3, 0, 0, 0)

⊤ with gr ∈ B̃
1− 1

p
p,p (SC), r = 1, 2, 3, (8.175)

is an unknown vector. From (8.173), (8.174) it follows that all the above stated conditions of the
problem (MTC-M)τ are satisfied automatically, except the conditions (8.163), which lead to the
following pseudodifferential equation on SC with respect to the components g1, g2, g3, of the unknown
vector g,[

(A(1) +A(2))AF̃ −
(
A(1)AA(2) +A(2)AA(1)

)
(f̃ + g)

]
r
= F (+)

r + F (−)
r on SC , r = 1, 2, 3.

In view of the equality (8.67), the later equation can be rewritten as

rSC
[A(M)g]r = G(M)

r on SC , r = 1, 2, 3, (8.176)

where the pseudodifferential operator A(M) coincides with A(N) defined in (8.131),

A(M) = A(N) = −A(1)AA(2) ≡ −A(2)AA(1), (8.177)

while the known functions G(M)
r , r = 1, 2, 3, are given by the relations

G(M)
r :=

1

2
(F (+)

r + F (−)
r )− 1

2
r
SC

[
(A(1) +A(2))AF̃

]
r
+ r

SC
[A(M)f̃ ]r ∈ B

− 1
p

p,p (SC) (8.178)

with F̃k and f̃k defined in (8.170), (8.171).
Denote the upper left hand side 3×3 matrix block of the pseudodifferential operator A(M) by Ã(M),

Ã(M) = [Ã(M)
lj ]3×3 := [A(M)

lj ]3l,j=1 = [A(N)
lj ]3l,j=1. (8.179)

Equation (8.176) can be written then as

r
SC

Ã(M)g̃ = G̃(M) on SC , (8.180)

where g̃ = (g1, g2, g3)
⊤ ∈ [B̃

1− 1
p

p,p (SC)]
3 is the unknown vector and the right hand side G̃(M) is a known

vector with components defined in (8.178), G̃(M) = (G
(M)
1 , G

(M)
2 , G

(M)
3 )⊤ ∈ [B

− 1
p

p,p (SC)]
3.

As we have shown in the previous Section 8.2.4 the principal homogenous 6× 6 symbol matrix of
the first order pseudodifferential operator A(N) is strongly elliptic. In view of (8.177) and (8.179),
this implies that the principal homogenous 3 × 3 symbol matrix S(Ã(M)) of the pseudodifferential
operator Ã(M) is strongly elliptic as well, i.e.,

Re
[
S(Ã(M);x, ξ1, ξ2)η · η

]
≥ c|ξ| |η|2 for all x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}, η ∈ C3. (8.181)

Consequently the operators

r
SC

Ã(M) : [H̃
1− 1

p
p (SC)]

3 −→ [H
− 1

p
p (SC)]

3, r
SC

Ã(N) : [B̃
1− 1

p
p,p (SC)]

3 −→ [B
− 1

p
p,p (SC)]

3,

are bounded. To analyse the invertibility of these operators, in accordance with Theorem B.1 in
Appendix B, let us consider the 3× 3 matrix

MÃ(M)(x) :=
[
S(Ã(M);x, 0,+1)

]−1[
S(Ã(M);x, 0,−1)

]
, x ∈ ℓ = ∂SC , (8.182)

constructed by the principal homogeneous symbol matrix S(Ã(M);x, ξ1, ξ2). Let λ′′1(x), λ′′2(x), and
λ′′3(x) be the eigenvalues of the matrix (8.182) and

δ′′j (x) = Re
[
(2πi)−1 lnλ′′j (x)

]
, j = 1, 2, 3, (8.183)

a7 = inf
x∈ℓ,1≤j≤3

δ′′j (x), a8 = sup
x∈ℓ,1≤j≤3

δ′′j (x). (8.184)
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Here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due
to the strong ellipticity of the operator A we have the strict inequalities −1

2 < δ′′j (x) <
1
2 for x ∈ SC ,

j = 1, 2, 3. Therefore
−1

2
< a7 ≤ a8 <

1

2
. (8.185)

Lemma 8.13. The operators

rSC
Ã(M) : [H̃s

p(SC)]
3 −→ [Hs−1

p (SC)]
3, (8.186)

r
SC

Ã(M) : [B̃s
p,q(SC)]

3 −→ [Bs−1
p,q (SC)]

3, q ≥ 1, (8.187)

are invertible if
1

p
− 1

2
+ a8 < s <

1

p
+

1

2
+ a7, (8.188)

where a7 and a8 are defined in (8.184).

Proof. To prove the invertibility of the operators (8.186) and (8.187), we again first consider the
particular values of the parameters s = 1/2 and p = q = 2, which fall into the region defined by the
inequalities (8.188), and show that the null space of the operator

r
SC

Ã(M) : [H̃
1
2
2 (SC)]

3 −→ [H
− 1

2
2 (SC)]

3 (8.189)
is trivial, i.e., the equation

r
SC

Ã(M)g̃ = 0 on SC (8.190)

admits only the trivial solution in the space [H̃
1
2
2 (SC)]

3. Recall again that H̃s
2(SC) = B̃s

2,2(SC) and
Hs

2(SC) = Bs
2,2(SC) for s ∈ R.

Let g̃ = (g̃1, g̃2, g̃3)
⊤ ∈ [B

1
2
2,2(S)]

3 = [H
1
2
2 (S)]

3 be a solution to the homogeneous equation (8.190)
and construct the vectors
Ũ (1)(x) = −V (1)

(
[H(1)]−1AA(2)g∗

)
(x) in Ω(1), Ũ (2)(x) = −V (2)

(
[H(2)]−1AA(1)g∗

)
(x) in Ω(2),

where g∗ = (g̃1, g̃2, g̃3, 0, 0, 0)
⊤. Evidently, U (1) ∈ [W 1

2 (Ω
(1))]6 and U (2) ∈ [W 1

2,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)).
Further, taking into consideration that the following relations hold on S:

{Ũ (1)}+ = −AA(2)g∗,
{
T (1)Ũ (1)

}+
= −A(1)AA(2)g∗,

{U (2)}− = −AA(1)g∗,
{
T (2)Ũ (2)

}−
= −A(2)AA(1)g∗,

and using (8.177) and (8.190), and keeping in mind that r
ST
g∗r = r

ST
g̃r = 0 for r = 1, 2, 3, and g∗j = 0

on S for j = 4, 5, 6, we find

rSC

{
[T (1)Ũ (1)]r

}+
= 0, rSC

{
[T (2)Ũ (2)]r

}−
= 0 on SC , r = 1, 2, 3,

r
SC

[
{Ũ (1)

j }+ − {Ũ (2)
j }−

]
= 0, r

SC

[{
[T (1)Ũ (1)]j

}+ −
{
[T (2)Ũ (2)]j

}−]
= 0 on SC , j = 4, 5, 6,

rST

[
{Ũ (1)}+ − {Ũ (2)}−

]
= 0, rST

[
{T (1)U (1)}+ − {T (2)U (2)}−

]
= 0 on ST .

Therefore, Ũ (2) and Ũ (1) solve the homogeneous interfacial crack problem (MTC-M)τ with p = 2 and
by Theorem 8.1 they vanish in the corresponding regions, Ω(1) and Ω(2), respectively, which implies
that g∗r = g̃r = {Ũ (1)

r }+ − {Ũ (2)
r }− = 0 on S, r = 1, 2, 3. Consequently, the null space of the operator

(8.189) is trivial. Since the operator Ã(M) is strongly elliptic, we conclude by Theorem B.1 (see
Appendix B) that the operators (8.186) and (8.187) are Fredholm operators with zero indices and
with the trivial null spaces for all values of the parameters satisfying the inequalities (8.188). Thus
they are invertible. �

This lemma leads to the following existence theorem.

Theorem 8.14. Let the conditions (8.159) be fulfilled and
4

3− 2a8
< p <

4

1− 2a7
, (8.191)
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where a7 and a8 are defined by (8.184). Then the interfacial crack problem (MTC-M)τ has a unique
solution U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), and the solution vectors are rep-
resentable in the form of single layer potentials (8.173) and (8.174), where the unknown vector g̃ is
defined from the uniquely solvable pseudodifferential equation (8.180).

Proof. In accordance with Lemma 8.13, equation (8.180) is uniquely solvable for s = 1 − 1
p with p

satisfying inequality (8.191), since the inequalities (8.188) are fulfilled. Therefore the vectors (8.173)
and (8.174) represent a solution to the interfacial crack problem (MTC-M)τ in the space [W 1

p (Ω
(1))]6×

([W 1
p,loc(Ω

(2))]6 ∩ Zτ (Ω
(2))) with p as in (8.191).

It remains to show that the problem (MTC-M)τ is uniquely solvable in the space [W 1
p (Ω

(1))]6 ×
([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) for arbitrary p satisfying (8.191).
Let a pair of vectors (Ũ (1), Ũ (2)) ∈ [W 1

p (Ω
(1))]6 × ([W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2))) be a solution to the
homogeneous problem (MTC-M)τ . Then by Theorem 8.3 they are representable in the form (8.65),
(8.66) with

F = {T (1)Ũ (1)}+ − {T (2)Ũ (2)}−, f = {Ũ (1)}+ − {Ũ (2)}− on S.

Due to the homogeneous conditions of the problem (MTC-M)τ , (8.9), (8.10) and (8.15), (8.22) with
f (1) = F (1) = 0 on ST and F

(±)
r = 0 on SC for r = 1, 2, 3, f∗j = F ∗

j = 0 on SC for j = 4, 5, 6, we have

fr ∈ B̃
1− 1

p
p,p (SC) for r = 1, 2, 3, fj = 0 on S for j = 4, 5, 6, F = 0 on S, (8.192)

and, using the notation (8.90), we get the representations

Ũ (1) = −V (1)
(
[H(1)]−1AA(2)f

)
in Ω(1), Ũ (2) = −V (2)

(
[H(2)]−1AA(1)f

)
in Ω(2),

where f = (f̃ , 0, 0, 0)⊤ with f̃ = (f1, f2, f3)
⊤.

Since, r
SC

{[T (1)Ũ (1)]r}+ = r
SC

{[T (2)Ũ (2)]r}− = 0 on SC for r = 1, 2, 3, we arrive at the equation

r
SC

Ã(M)f̃ = 0 on SC , where f̃ = (f1, f2, f3)
⊤ ∈ [B̃

1− 1
p

p,p (SC)]
3. Therefore Lemma 8.13 implies that

f̃ = 0 on SC , i.e., f = 0 on S, which completes the proof. �

Finally, we establish almost the best regularity Hölder continuity results for solutions to the crack
problem (MTC-M)τ .

Theorem 8.15. Let inclusions (8.159) hold and let
4

3− 2a8
< p <

4

1− 2a7
, 1 < r <∞, 1 ≤ q ≤ ∞,

1

r
− 1

2
+ a8 < s <

1

r
+

1

2
+ a7, (8.193)

with a7 and a8 defined by (8.184).
Further, let U (1) ∈ [W 1

p (Ω
(1))]6 and U (2) ∈ [W 1

p,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)), be a unique solution pair to
the interfacial crack problem (MTC-M)τ . Then the following hold:

(i) if

f
(1)
k ∈ Bs

r,r(ST ), F
(1)
k ∈ Bs−1

r,r (ST ), k = 1, . . . , 6,

F
(±)
l ∈ Bs−1

r,r (SC), f∗j ∈ Bs
r,r(SC), F ∗

j ∈ Bs−1
r,r (SC), l = 1, 2, 3, j = 4, 5, 6.

(8.194)

and f̃ = (f̃1, . . . , f̃6)
⊤ ∈ [Bs

r,r(S)]
6 and F̃ = (F̃1, . . . , F̃6)

⊤ ∈ [Bs−1
r,r (S)]6 with f̃ and F̃ defined

by (8.170), (8.171), then

U (1) ∈ [H
s+ 1

r
r (Ω(1))]6, U (2) ∈ [H

s+ 1
r

r,loc (Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.195)

(ii) if

f
(1)
k ∈ Bs

r,q(ST ), F
(1)
k ∈ Bs−1

r,q (ST ), k = 1, . . . , 6,

F
(±)
l ∈ Bs−1

r,q (SC), f∗j ∈ Bs
r,q(SC), F ∗

j ∈ Bs−1
r,q (SC), l = 1, 2, 3, j = 4, 5, 6.

(8.196)
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and f̃ = (f̃1, . . . , f̃6)
⊤ ∈ [Bs

r,q(S)]
6 and F̃ = (F̃1, . . . , F̃6)

⊤ ∈ [Bs−1
r,q (S)]6 with f̃ and F̃ defined

by (8.170), (8.171), then

U (1) ∈ [B
s+ 1

r
r,q (Ω(1))]6, U (2) ∈ [B

s+ 1
r

r,q,loc(Ω
(2))]6 ∩ Zτ (Ω

(2)); (8.197)

(iii) if α > 0 is not integer and

f
(1)
k ∈ Cα(ST ), F

(1)
k ∈ Bα−1

∞,∞(ST ), k = 1, . . . , 6,

F
(±)
l ∈ Bα−1

∞,∞(SC), f∗j ∈ Cα(SC), F ∗
j ∈ Bα−1

∞,∞(SC), l = 1, 2, 3, j = 4, 5, 6.
(8.198)

and f̃ = (f̃1, . . . , f̃6)
⊤ ∈ [Cα(S)]6 and F̃ = (F̃1, . . . , F̃6)

⊤ ∈ [Bα−1
∞,∞(S)]6 with f̃ and F̃ defined

by (8.170), (8.171), then

U (1) ∈
∩

α′<κ

[Cα′
(Ω(1))]6, U (2) ∈

∩
α′<κ

[Cα′
(Ω(2))]6 ∩ Zτ (Ω

(2)), (8.199)

where κ = min{α, a7 + 1
2} > 0.

Proof. It is word for word of the proof of Theorem 5.22. �

8.2.7. Asymptotic expansion of solutions to the problem (MTC-M)τ . In this subsection we investigate
the asymptotic behaviour of the solution to the problem (MTC-M)τ near the interfacial crack edge
ℓ = ∂SC . For simplicity of description of the method applied below, we assume that the crack and
transmission boundary data of the problem are infinitely smooth, namely,

F (+)
r , F (−)

r ∈ C∞(SC), r = 1, 2, 3, f∗j , F
∗
j ∈ C∞(SC), j = 4, 5, 6,

f (1), F (2) ∈ [C∞(ST )]
6, f̃ , F̃ ∈ [C∞(S)]6.

In Subsection 8.2.6 we have shown that the problem (MTC-M)τ is uniquely solvable and the solu-
tion (U (1), U (2)) is represented by (8.173), (8.174) with the density defined by the pseudodifferential
equation (8.180).

To establish the asymptotic expansion of solution (U (1), U (2)) near the crack edge ℓ = ∂SC we again
preserve the notation introduced in Subsection 8.2.6 and rewrite the representation (8.173), (8.174)
in the form

U (1) = V (1)B1g +R(1) in Ω(1), U (2) = V (2)B2g +R(2) in Ω(2),

where B1 = −(H(1))−1AA(2), B2 = −(H(2))−1AA(1),

R(1)=V (1)(H(1))−1AF−V (1)B1f̃ ∈ [C∞(Ω(1))]6, R(2)=V (2)(H(2))−1AF− V (2)B2f̃ ∈ [C∞(Ω(2))]6,

and g = (g̃, 0, 0, 0)⊤,g̃ = (g1, g2, g3)
⊤ solves the pseudodifferential equation

rSC
Ã(M)g = G̃(M) on SC (8.200)

with G̃(M) ∈ [C∞(SC)]
3.

Consider the 3×3 matrix MÃ(M) related to the principal homogeneous symbol matrix S(Ã(M);x, ξ)

of the operator Ã(M)

MÃ(M)(x1) :=
[
S(Ã(M);x1, 0, 0,+1)

]−1
S(Ã(M);x1, 0, 0,−1), (x1, 0) ∈ ℓ = ∂SC .

Denote by λ1(x1), λ2(x1), λ3(x1) the eigenvalues of the matrix MÃ(M)(x1) and by mj the algebraic
multiplicity of λj(x1). Let µ1(x1), . . . , µl(x1) (1 ≤ l ≤ 3) be the distinct eigenvalues. Evidently, mj

and l depend on x1 in general and m1 + · · ·+ml = 3.
It is well known that the matrix MA(N)(x1) admits the following decomposition (see, e.g. [42, Ch. 7,

Section 7])
MÃ(M)(x1) = K(x1)JMÃ(M)

(x1)K−1(x1), (x1, 0) ∈ ℓ = ∂SC ,

where K is 3× 3 non-degenerate matrix with infinitely smooth entries and JMÃ(M)
is block diagonal

JMÃ(M)
(x1) := diag

{
µ1(x1)B

m1(1), . . . , µl(x1)B
ml(1)

}
.

Here B(ν)(t), ν ∈ {m1, . . . ,ml} are upper triangular matrices (see Subsection 5.2.3).
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Introduce a 3× 3 matrix

B0(t) := diag
{
B(m1)(t), . . . , B(ml)(t)

}
. (8.201)

Applying the results from the reference [22] we derive the following asymptotic expansion for the
solution of the pseudodifferential equation (8.200)

g̃(x1, x2,+) = K(x1)x
1
2+∆(x1)
2,+ B0

(
− 1

2πi
logx2,+

)
K−1(x1)b0(x1)

+
M∑
k=1

K(x1)x
1
2+∆(x1)+k
2,+ Bk(x1, logx2,+) + g̃

M+1
(x1, x2,+), (8.202)

where b0 ∈ [C∞(ℓ)]3, g̃
M+1

∈ [C∞(ℓ+c,ε)]
3, ℓ+c,ε = ℓ× [0, ε], and

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑
j=1

tjdkj(x1).

Here m0 = max{m1, . . . ,ml}, the coefficients dkj ∈ [C∞(ℓ)]3,

∆(x1) := (∆1(x1),∆2(x1),∆3(x1)), ∆j(x1)=
1

2πi
logλ′′j (x1)=

1

2π
argλ′′j (x1)+

1

2πi
log |λ′′j (x1)|,

−π < argλ′′j (x1) < π, (x1, 0) ∈ ℓ, j = 1, 2, 3.

Furthermore,

x
1
2+∆(x1)
2,+ := diag

{
x

1
2+∆1(x1)
2,+ , x

1
2+∆2(x1)
2,+ , x

1
2+∆3(x1)
2,+

}
.

Now, having at hand the above asymptotic expansion for the density vector function g̃, we can apply
the results of the reference [23] and write the following spatial asymptotic expansions of the solution
(U (1), U (2))

U (β)(x) =
∑
µ=±1

{ l
(β)
0∑
s=1

n(β)
s −1∑
j=0

xj3

[
d
(β)
sj (x1, µ)

(
z̃(β)s,µ

) 1
2+∆̃(x1)−j

B̃0

(
− 1

2πi
log z(β)s,µ

)]
c̃j(x1)

+
M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2x
j
3d

(β)
sljp(x1, µ)(z̃

(β)
s,µ)

1
2+∆̃(x1)+p+kB

(β)
skjp(x1, log z̃(β)s,µ)

}

+ U (β)
M+1

(x), x3 > 0, β = 1, 2. (8.203)

The coefficients d(β)sj ( · , µ) and d(β)sljp( · , µ) are 6× 6 matrices with entries from the space C∞(ℓ), while
B

(β)
skjp(x1, t) are polynomials in t with vector coefficients which depend on the variable x1 and have the

order νkjp = k(2m0−1)+m0−1+p+j in general, where m0 = max{m1, . . . ,ml} and m1+· · ·+ml = 3,

∆̃(x1) := (∆(x1),∆(x1)), c̃j ∈ [C∞(ℓ)]6, U (β)
M+1

∈ [CM+1(Ω
(β)

)]6,

(z̃(β)s,µ)
κ+∆̃(x1) := diag

{
(z(β)s,µ)

κ+∆(x1), (z(β)s,µ)
κ+∆(x1)

}
,

where

(z(β)s,µ)
κ+∆(x1) := diag

{
(z(β)s,µ)

κ+∆1(x1), (z(β)s,µ)
κ+∆2(x1), (z(β)s,µ)

κ+∆3(x1)
}
,

κ ∈ R, µ = ±1, β = 1, 2, (x1, 0) ∈ ℓ,

z
(β)
s,+1 := −x2 − x3ζ

(β)
s,+1, z

(β)
s,−1 := x2 − x3ζ

(β)
s,−1,

−π < arg z(β)s,±1 < π, ζ
(β)
s,±1 ∈ C∞(ℓ), B̃0(t) := diag{B0(t), B0(t)}.
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Note that, the coefficients d(β)sj ( · , µ) can be calculated explicitly, whereas the coefficients cj can be
expressed by means of the first coefficient b0 in the asymptotic expansion of (3.65) (see [23, Theo-
rem 2.3])

d
(β)
sj (x1,+1) =

1

2π
Gκβ

(x1, 0)P
+,β
sj (x1)K̃(x1),

d
(β)
sj (x1,−1) =

1

2π
Gκβ

(x1, 0)P
−,β
sj (x1)K̃(x1)e

iπ(− 1
2−∆̃(x1)),

s = 1, . . . , l
(β)
0 , j = 0, . . . , n(β)

s − 1, β = 1, 2,

K̃(x1) := diag{K(x1),K(x1)},

where

P±,β
sj (x1) := V β,s

−1,j(x1, 0, 0,±1)S
(
[Bjk

β ]6×3; 0, 0,±1
)
, j = 1, . . . , 6, k = 1, . . . , 3,

V β,s
−1,j(x1, 0, 0,±1) :=

ij+1

j!(n
(β)
s − 1− j)!

dn
(β)
s −1−j

dζn
(β)
s −1−j

(ζ − ζ
(β)
s,±1)

n(β)
s

×
(
A(β,0)

(
(J⊤

κβ
(x1, 0))

−1(0,±1, ζ)⊤
))−1

∣∣∣∣
ζ=ζ

(β)
s,±1

,

Gκβ
are the square roots of Gram’s determinant of the diffeomorphisms κβ , β = 1, 2, and

c̃j(x1) := (cj(x1), cj(x1)),

cj(x1) = aj(x1)B
−
0

(1
2
+ ∆(x1)

)
K−1(x1)b0(x1), j = 0, . . . , n(β)

s − 1,

where aj and B−
0 have the same structure and properties as in Subsection 8.2.5.

Remark 8.16. The above asymptotic expansions (8.203) of solutions imply that for sufficiently smooth
boundary data (e.g., C∞-smooth data say) the solution vectors (U (1), U (2)) to the interfacial problem
(MTC-M)τ belong to the class of semi-regular functions described in Definition 2.2:

U (1) ∈ [C(Ω̃
(1)
ℓ ;α)]6, U (2) ∈ [C(Ω̃

(2)
ℓ ;α)]6, Ω̃

(β)
ℓ = Ω(β) \ ℓ, ℓ = ∂SC , β = 1, 2,

where α = 1
2 − a7 + ε with a7 defined in (8.184) and ε being an arbitrarily small positive number.

Due to the relations (8.185), it is evident that 0 < α < 1 if 0 < ε < 1
4 + 1

2 a7.
Moreover, the dominant terms of the vectors U (β) near the curves ℓ = ∂SC can be represented as the

product of C∞-smooth vector-functions and factors of the following form [ln ϱ(x)]mj−1[ϱ(x)]κ
′′
j +iν′′

j ,
where ϱ(x) is the distance from a reference point x to the curves ℓ. Therefore, near the curve ℓ
the dominant singular terms of the corresponding generalized stress vectors T (β)U (β) are represented
as the product of C∞-smooth vector-functions and the singular factors [ln ϱ(x)]mj−1[ϱ(x)]−1+κ′′

j +iν′′
j .

The numbers νj are different from zero, in general, and describe the oscillating character of the stress
singularities.

The exponents κ′′j + iν′′j are related to the corresponding eigenvalues λ′′j of the matrix (8.182) by
the equalities

κ′′j =
1

2
+

argλ′′j
2π

, ν′′j = −
ln |λ′′j |
2π

, j = 1, 2, 3. (8.204)

Recall that in the above expressions the parameter mj denotes the multiplicity of the eigenvalue λ′′j .
It is evident that at the curve ℓ the components of the generalized stress vector T (β)U (β) behave

like O([ln ϱ(x)]m0−1[ϱ(x)]−
1
2+a7), where m0 denotes the maximal multiplicity of the eigenvalues. This

is a global singularity effect for the first order derivatives of the vectors U (β), β = 1, 2.

8.3. General transmission problems of pseudo-oscillations for multi-layered composite
structures. First of all we describe the geometrical structure of layered elastic three-dimensional com-
posites treated in this subsection. Let us consider a nested set of closed disjoint surfaces: S1, S2, . . . , SK ,
assuming that the surface Sk is located inside the surface Sk+1, k = 1, . . . ,K − 1, and Sj ∩Sl = ∅ for
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all j, l = 1, 2, . . . ,K. Denote by Ω(1) the domain surrounded by the surface S1, by Ω(k) the region be-
tween the surfaces Sk−1 and Sk, k = 2, . . . ,K, and, finally, by Ω(K+1) the unbounded region exterior
to SK . Evidently,

∂Ω(1) = S1, ∂Ω(k) = Sk−1 ∪ Sk, k = 2, . . . ,K, ∂Ω(K+1) = SK ,

Ω(1) = Ω(1) ∪ S1, Ω(k) = Ω(k) ∪ Sk−1 ∪ Sk, k = 2, . . . ,K, Ω(K+1) = Ω(K+1) ∪ SK .

For x ∈ Sl, by n(x) we again denote the outward unit normal vector to the surface Sl, l = 1, 2, . . . ,K.
For simplicity, we again assume that the surfaces Sl are sufficiently smooth (C∞-smooth say) if not
otherwise stated.

Further, as in Subsection 8.1, we assume that the domains Ω(j), j = 1, 2, . . . ,K + 1, are occupied
by anisotropic homogeneous materials possessing different thermo-electro-magneto-elastic properties
described in Section 2. Again, the material parameters, thermo-mechanical and electro-magnetic char-
acteristics (displacement vectors, strain and stress tensors, electric and magnetic potentials, electric
displacements and magnetic inductions, temperature functions and heat fluxes) associated with the do-
main Ω(j) for j = 1, . . . ,K +1, we equip with the superscript (j) and employ the notation introduced
in Subsection 8.1.

For the region Ω(j), we again use the notation introduced in the previous sections for the ba-
sic field equations, differential and boundary operators, as well as the fundamental solutions, single
layer, double layer and volume potentials, and the corresponding boundary integral operators, but
now equipped with the superscript (j), e.g., A(j)(∂, τ), T (j)(∂, n, τ), P(j)(∂, n, τ), V (j)

Sl
, W (j)

Sl
, N (j)

Ω(j) ,
H(j)

Sl
, K(j)

Sl
, N (j)

Sl
, L(j)

Sl
etc. Recall that the subindex Sl in the notation of payer potentials and the

corresponding boundary integral operators denotes the integration surface, e.g., W (j)
Sl

stands for the
double layer potential where the integrand kernel is constructed by the fundamental solution matrix
Γ(j) and by the boundary operator P(j) associated with the field equations in the region Ω(j) and Sl

is the integration surface.
Further, depending on the structure of the composed body, the following four main cases can be

considered:
(i) multi-layered composite space:

Ω(1) ∪ Ω(2) ∪ · · · ∪ Ω(K) ∪ Ω(K+1) = R3 with interfaces S1, . . . , SK ;

(ii) multi-layered bounded composite structure:

Ω(1) ∪ Ω(2) ∪ · · · ∪ Ω(K) = R3 \ Ω(K+1) with interfaces S1, . . . , SK−1, and exterior boundary SK ;

(iii) multi-layered unbounded composite structure with interior cavity:

Ω(2) ∪ · · · ∪ Ω(K+1) = R3 \ Ω(1) with interfaces S2, . . . , SK , and interior boundary S1;

(iv) multi-layered bounded composite structure with interior cavity:

Ω(2) ∪ · · · ∪ Ω(K) = R3 \ [Ω(1) ∪ Ω(K+1)]

with interfaces S2, . . . , SK−1, interior boundary S1, and exterior boundary SK .

In the case of General transmission problems of pseudo-oscillations of the GTEME theory, the
sought for vectors should satisfy the corresponding differential equations in each subdomain Ω(j), the
transmission conditions on the interfaces, and the boundary conditions on the boundary surface of
the composite body under consideration. If the composite body contains interior or interfacial cracks,
then the corresponding crack conditions should be prescribed on the crack faces.

Among the huge number of possible general mathematical transmission problems for the above
listed composite structures, for illustration of our approach, here we formulate and analyse only one
general transmission problem for multi-layered bounded composite structure with interior cavity. In
particular, as a model problem, we consider a composed body

Ω := Ω(2) ∪ · · · ∪ Ω(K) = R3 \ [Ω(1) ∪ Ω(K+1)] (8.205)



Mathematical Problems of Generalized Thermo-Electro-Magneto-Elasticity Theory 147

with interfaces S2, . . . , SK−1, interior boundary S1 and exterior boundary SK , and formulate the
following transmission problem.
Problem (GTP-Ω-DN)τ : Find vector functions

U (j) =
(
u
(j)
1 , u

(j)
2 , u

(j)
3 , φ(j), ψ(j), ϑ(j)

)⊤ ∈ [W 1
p (Ω

(j))]6, j = 2, . . . ,K, p > 1, (8.206)

satisfying the corresponding differential equations of pseudo-oscillations in each region Ω(j),
A(j)(∂x, τ)U

(j)(x) = 0, x ∈ Ω(j), j = 2, . . . ,K, (8.207)
the transmission conditions on the interfaces Sl, l = 2, . . . ,K − 1,

{U (l)(x)}+ − {U (l+1)(x)}− = f (l)(x), x ∈ Sl, (8.208){
T (l)(∂x, n, τ)U

(l)(x)
}+ −

{
T (l+1)(∂x, n, τ)U

(l+1)(x)
}−

= F (l)(x), x ∈ Sl, (8.209)
and the Dirichlet boundary conditions on the interior boundary S1 and the Neumann boundary condi-
tions on the exterior boundaries SK ,

{U (2)(x)}− = f (1)(x), x ∈ S1, (8.210){
T (K)(∂x, n, τ)U

(K)(x)
}+

= F (K)(x), x ∈ SK , (8.211)
where

f (l) ∈ [B
1− 1

p
p,p (Sl)]

6, l = 1, . . . ,K − 1, F (j) ∈ [B
− 1

p
p,p (Sl)]

6, j = 2, . . . ,K. (8.212)

Theorem 8.17. Let the surfaces Sk, k = 1, . . . ,K, be Lipschitz and τ = σ + iω with σ > σ0 > 0 and
ω ∈ R. The homogeneous transmission problem (GTP-Ω-DN)τ for p = 2 possesses only the trivial
weak solution assuming that the time relaxation parameters ν(j)0 are the same for all regions Ω(j),
j = 2, . . . ,K,

ν
(2)
0 = · · · = ν

(K)
0 =: ν0. (8.213)

Proof. By the corresponding Green’s formulas for the regions Ω(j) and by the word-for-word arguments
applied in the proof of Theorem 8.1, we deduce the relations

u(j) = 0, φ(j) = b
(j)
1 = const, ψ(j) = b

(j)
2 = const, ϑ(j) = 0 in Ω(j), j = 2, . . . ,K, (8.214)

for all τ = σ + iω with σ > σ0 > 0 and ω ∈ R. Since the vector U (2) satisfies the homogeneous
Dirichlet condition (8.210) with f (1) = 0 on S1 we conclude that b(2)1 = b

(2)
2 = 0. Therefore due to the

homogeneous transmission conditions (8.208) on Sl with f (l) = 0 for l = 2, . . . ,K − 1, we get that all
the constants b(j)1 and b

(j)
2 vanish for j = 2, . . . ,K, which completes the proof. �

In what follows we assume that the condition (8.213) is satisfied.
To prove the existence of solutions to the nonhomogeneous problem (GTP-Ω-DN)τ , (8.206)–(8.212),

we look for solution vectors (8.206) in the form of single layer potentials

U (j)(x) = V
(j)
Sj−1

(g
(j)
j−1)(x) + V

(j)
Sj

(g
(j)
j )(x), x ∈ Ω(j), j = 2, . . . ,K, (8.215)

where
g
(j)
j−1 ∈ [B

− 1
p

p,p (Sj−1)]
6, g

(j)
j ∈ [B

− 1
p

p,p (Sj)]
6, j = 2, . . . ,K, (8.216)

are 2(K−1) unknown density vector functions (the superscript corresponds to the number of the layer
region and the subscript corresponds to the number of integration surface). The transmission and
boundary conditions (8.210), (8.208), (8.209), and (8.211) lead then to the following pseudodifferential
equations for the unknown densities g(2)1 , g

(2)
2 , g

(3)
2 , g

(3)
3 , . . . , g

(K)
K−1, g

(K)
K :

H(2)
S1
g
(2)
1 + γ−S1

V
(2)
S2

(g
(2)
2 ) = f (1) on S1, (8.217)

γ+S2
V

(2)
S1

(g
(2)
1 ) +H(2)

S2
g
(2)
2 −H(3)

S2
g
(3)
2 − γ−S2

V
(3)
S3

(g
(3)
3 ) = f (2) on S2, (8.218)

γ+S2

{
T (2)V

(2)
S1

(g
(2)
1 )

}
+
(
− 1

2
I6 +K(2)

S2

)
g
(2)
2

−
(1
2
I6 +K(3)

S2

)
g
(3)
2 − γ−S2

{
T (3)V

(3)
S3

(g
(3)
3 )

}
= F (2) on S2, (8.219)
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γ+S3
V

(3)
S2

(g
(3)
2 ) +H(3)

S3
g
(3)
3 −H(4)

S3
g
(4)
3 − γ−S3

V
(4)
S4

(g
(4)
4 ) = f (3) on S3, (8.220)

γ+S3

{
T (3)V

(3)
S2

(g
(3)
2 )

}
+
(
− 1

2
I6 +K(3)

S3

)
g
(3)
3 −

(1
2
I6 +K(4)

S3

)
g
(4)
3

−γ−S3

{
T (4)V

(4)
S4

(g
(4)
4 )

}
= F (3) on S3, (8.221)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ+SK−1
V

(K−1)
SK−2

(g
(K−1)
K−2 ) +H(K−1)

SK−1
g
(K−1)
K−1 −H(K)

SK−1
g
(K)
K−1

−γ−SK−1
V

(K)
SK

(g
(K)
K ) = f (K−1) on SK−1, (8.222)

γ+SK−1

{
T (K−1)V

(K−1)
SK−2

(g
(K−1)
K−2 )

}
+
(
− 1

2
I6 +K(K−1)

SK−1

)
g
(K−1)
K−1

−
(1
2
I6 +K(K)

SK−1

)
g
(K)
K−1 − γ−SK−1

{
T (K)V

(K)
SK

(g
(K)
K )

}
= F (K−1) on SK−1, (8.223)

γ+SK

{
T (K)V

(K)
SK−1

(g
(K)
K−1)

}+
+
(
− 1

2
I6 +K(K)

SK

)
g
(K)
K = F (K−1) on SK , (8.224)

where γ±Sl
denote one-sided traces on Sl, the integral operators H(l)

Sl
and K(l)

Sl
are associated with the

single layer potential and are defined in (4.6) and (4.7), respectively.
Let us denote by T = [Tpq]12(K−1)×12(K−1) the matrix pseudodifferential operator generated by

the left hand side expressions in equations (8.217)–(8.224), and introduce the notation for 12(K −
1) dimensional vectors constructed by the sought for unknowns and given right hand sides in the
simultaneous equations (8.217)–(8.224):

G :=
(
g
(2)
1 , g

(2)
2 , g

(3)
2 , g

(3)
3 , . . . , g

(K)
K−1, g

(K)
K

)⊤ ∈ Xp, (8.225)

F :=
(
f (1), f (2), F (2), f (3), F (3), . . . , f (K−1), F (K−1), F (K)

)⊤ ∈ Yp, (8.226)

where the structures of the function spaces X and Y are determined bythe conditions (8.216) and
(8.212), respectively,

Xp :=
[
B

− 1
p

p,p (S1)
]6 × [

B
− 1

p
p,p (S2)

]6 × [
B

− 1
p

p,p (S2)
]6 × [

B
− 1

p
p,p (S3)

]6 × [
B

− 1
p

p,p (S3)
]6 × · · ·

×
[
B

− 1
p

p,p (SK−1)
]6 × [

B
− 1

p
p,p (SK−1)

]6 × [
B

− 1
p

p,p (SK)
]6
, (8.227)

Yp :=
[
B

1− 1
p

p,p (S1)
]6 × [

B
1− 1

p
p,p (S2)

]6 × [
B

− 1
p

p,p (S2)
]6 × [

B
1− 1

p
p,p (S3)

]6 × [
B

− 1
p

p,p (S3)
]6 × · · ·

×
[
B

1− 1
p

p,p (SK−1)
]6 × [

B
− 1

p
p,p (SK−1)

]6 × [
B

− 1
p

p,p (SK)
]6
. (8.228)

The system of equations (8.217)–(8.224) can be rewritten then as

TG = F, (8.229)

where the operator
T : Xp −→ Yp (8.230)

is continuous due to the mapping properties of the operators H(l)
Sl

and K(l)
Sl

(see Theorem 4.4).
Let us remark that the integral operators generated by the summands containing the trace operators

γ±Sl
are compact. Therefore from (8.217)–(8.224) it follows that the “principal part” of the operator

T is blockwise diagonal matrix operator and reads as follows:

T̃ := diag
[
T̃(1), T̃(2), . . . , T̃(K−1), T̃(K)

]
, (8.231)

where

T̃(1) =
[
T̃(1)
pq

]
6×6

:= H(2)
S1
, (8.232)

T̃(2) =
[
T̃(2)
pq

]
12×12

:=

 H(2)
S2

−H(3)
S2

−1

2
I6 +K(2)

S2
−1

2
I6 −K(2)

S3

 , (8.233)
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T̃(3) =
[
T̃(3)
pq

]
12×12

:=

 H(3)
S3

−H(4)
S3

−1

2
I6 +K(3)

S3
−1

2
I6 −K(4)

S3

 , (8.234)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T̃(K−1) =
[
T̃(K−1)
pq

]
12×12

:=

 H(K−1)
SK−1

−H(K)
SK−1

−1

2
I6 +K(K−1)

SK−1
−1

2
I6 −K(K)

SK−1

 , (8.235)

T̃(K) =
[
T̃(K)
pq

]
6×6

:= −1

2
I6 +K(K)

SK
. (8.236)

Note that, the operators T̃(j) for j = 2, 3, , . . . ,K−1, are counterparts of the elliptic pseudodifferential
operator A defined in (8.58) and their principal homogeneous symbol matrices are non-degenerate. In
view of the ellipticity of the symbol matrices S(H(2)

S1
) and S( 12I6+K(K)

SK
) we deduce that the principal

homogeneous symbol matrix S(T̃) is elliptic, implying in turn that the pseudodifferential operator T
is elliptic. Evidently, the operators

T̃(1) : [B
− 1

p
p,p (S1)]

6 −→ [B
1− 1

p
p,p (S1)]

6, (8.237)

T̃(j) : [B
− 1

p
p,p (Sj)]

6 × [B
− 1

p
p,p (Sj)]

6 −→ [B
1− 1

p
p,p (Sj)]

6 × [B
− 1

p
p,p (Sj)]

6, j = 2, 3, . . . ,K − 1, (8.238)

T̃(K) : [B
− 1

p
p,p (SK)]6 −→ [B

− 1
p

p,p (SK)]6, (8.239)

are bounded and, consequently, the operator

T̃ : Xp −→ Yp (8.240)

is continuous. Moreover, the operator

T− T̃ : Xp −→ Yp (8.241)

is compact.
By Remark 5.17 and Theorem 8.2 the operators (8.237), (8.238) are invertible, while (8.239) is a

Fredholm operator with zero index. Therefore, (8.240) and (8.230) are Fredholm operators with zero
index. Now we show that the null space of the operator (8.230) for p = 2 is trivial. Indeed, let

G̃ :=
(
g̃
(2)
1 , g̃

(2)
2 , g̃

(3)
2 , g̃

(3)
3 , . . . , g̃

(K)
K−1, g̃

(K)
K

)⊤ ∈ X2,

be a solution to the homogeneous equation TG̃ = 0 and construct the vectors

Ũ (j)(x) = V
(j)
Sj−1

(g̃
(j)
j−1)(x) + V

(j)
Sj

(g̃
(j)
j )(x), x ∈ Ω(j), j = 2, . . . ,K. (8.242)

In view of the homogeneous equation TG̃ = 0, it follows that the vectors Ũ (j), j = 2, . . . ,K, solve
the homogeneous transmission problem (GTP-Ω-DN)τ , and by Theorem 8.17 they vanish in the
corresponding domains. By continuity of the single layer potential and the uniqueness theorem for
solutions to the Dirichlet problem, we deduce that all the vectors Ũ (j) vanish in R3, implying that
g̃
(j)
j = 0 on Sj and g̃ (j)

j−1 = 0 on Sj−1 for j = 2, . . . ,K. Thus the null space of the operator (8.230) for
p = 2 is trivial which implies invertibility of (8.230) for p = 2. But then, due to the general theory of
pseudodifferential equations on manifolds without boundary, we conclude the invertibility of (8.230)
for arbitrary p > 1. Thus we have proved the following lemma.

Lemma 8.18. The pseudodifferential operator (8.230) is invertible for arbitrary p > 1.

Now, we can prove the following existence results.

Theorem 8.19. Let conditions (8.212) be satisfied with p > 1. Then the transmission problem
(GTP-Ω-DN)τ , (8.206)–(8.212), is uniquely solvable in the space

W1
p := [W 1

p (Ω
(2))]6 × [W 1

p (Ω
(3))]6 × · · · × [W 1

p (Ω
(K))]6
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and the solution vectors U (j), j = 2, 3, , . . . ,K, are representable in the form of single layer potentials
(8.215), where the density vectors g(j)j−1 ∈ [B

− 1
p

p,p (Sj−1)]
6 and g

(j)
j ∈

[
B

− 1
p

p,p (Sj)
]6 are defined from the

uniquely solvable system of pseudodifferential equations (8.217)–(8.224).

Proof. Existence of a solution in the space W1
p follows from Lemma 8.18, while the uniqueness of

solution to the problem (GTP-Ω-DN)τ for arbitrary p > 1 can be shown by using exactly the same
arguments as in the proof of Theorem 8.3. �

For the regular setting and smooth boundary-transmission data, due to the imbedding theorems
and the invertibility of the corresponding integral operators in Hölder continuous spaces, we have the
following counterpart of Theorem 8.4.

Theorem 8.20. Let Sq ∈ Ck+2,κ for q = 1, . . . ,K, f (l) ∈ [Ck+1,κ′
(Sl)]

6 for l = 1, . . . ,K − 1, and
F (j) ∈ [Ck,κ′

(S)]6 for j = 2, . . . ,K, with a nonnegative integer k and 0 < κ′ < κ 6 1. Then the basic
transmission problem (GTP-Ω-DN)τ possesses a unique regular solution in the space

[Ck+1,κ′
(Ω(2))]6 × [Ck+1,κ′

(Ω(3))]6 × · · · × [Ck+1,κ′
(Ω(K))]6

representable in the form of single layer potentials (8.215), where the density vector-functions g(j)j−1 ∈
[Ck,κ′

(Sj−1)]
6 and g(j)j ∈ [Ck,κ′

(Sj)]
6 are defined from the uniquely solvable system of pseudodifferential

equations (8.217)–(8.224).

Proof. It is word for word of the proof of Theorem 8.4. �

9. Appendix A: Structural Properties of Bounded Solutions in Exterior Domains

Here we prove several technical lemmas.

Lemma A.1. Let U = (u1, u2, . . . , uN )⊤ be a bounded solution to the homogeneous differential equa-
tion

L(∂)U(x) = 0, x ∈ Ω−, (A.1)
where Ω− ⊂ R3 is a complement of a bounded region Ω+ with a compact boundary S = ∂Ω+ and
L(∂) = [Lkj(∂)]N×N is a strongly elliptic second order matrix differential operator with constant
coefficients,

Lkj(∂) =

3∑
p,q=1

akjpq∂p∂q, k, j = 1, . . . , N.

Then
U(x) = C +O(|x|−1) as |x| → +∞, (A.2)

where C = (C1, . . . , CN )⊤ is a constant vector.

Proof. Let U be a bounded solution to equation (A.1) and B(O,R) be a ball centered at the origin
and radius R, such that Ω+ ⊂ B(O,R). Clearly, U ∈ [C∞(Ω−)]N due to the ellipticity of the operator
L(∂). Let V = (v1, . . . , vN )⊤ ∈ [C∞(R3)]N be a vector whose restriction on Ω−

R := Ω− \ B(O,R)
coincides with U , i.e,

V (x) = U(x) for x ∈ Ω−
R. (A.3)

Due to (A.1) and (A.3) the vector V solves the nonhomogeneous differential equation
L(∂)V (x) = Φ(x), x ∈ R3, (A.4)

with Φ = (Φ1, . . . ,ΦN )⊤ ∈ [C∞
comp(R3)]N having a compact support, suppΦ ⊂ B(O,R). Keeping in

mind that V is bounded, we can apply the generalized Fourier transform to equation (A.4) to obatin
L(−iξ)V̂ (ξ) = Φ̂(ξ), ξ ∈ R3, (A.5)

where V̂ = F [V ] and Φ̂ = F [Φ] ∈ C∞(R3). This equation is understood in the sense of tempered
distributions. Since detL(−iξ) ̸= 0 for ξ ̸= 0 and the entries of the inverse matrix [L(−iξ)]−1 are
C∞-smooth homogeneous functions of order −2 in R3 \ {0}, from (A.5) we conclude

V̂ (ξ) = [L(−iξ)]−1Φ̂(ξ) +
∑

|α|≤M

Cαδ
(α)(ξ), (A.6)
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where α = (α1, α2, α3) is a multi-index, Cα = (Cα,1, . . . , Cα,N )⊤ are arbitrary constant vectors, M is
a nonnegative integer, δ( · ) is Dirac’s distribution and δ(α) = ∂αδ.

By applying the inverse Fourier transform to (A.6) we get

V (x) = F−1
ξ→x

(
[L(−iξ)]−1Φ̂(ξ)

)
+

∑
|α|≤M

Cαx
α. (A.7)

Denote by ΓL(x) the fundamental matrix of the operator L(∂) whose entries are homogeneous func-
tions of order −1,

ΓL(x) := F−1
ξ→x

(
[L(−iξ)]−1

)
, ΓL ∈ C∞(R3 \ {0}), L(∂)ΓL(x) = δ(x)IN . (A.8)

Then (A.7) can be rewritten as follows

V (x) = F−1
ξ→xF(ΓL ∗ Φ) +

∑
|α|≤M

Cαx
α = (ΓL ∗ Φ)(x) +

∑
|α|≤M

Cαx
α, (A.9)

where ∗ denotes the convolution operator. Therefore,

V (x) =

∫
R3

ΓL(x− y)Φ(y) dy +
∑

|α|≤M

Cαx
α. (A.10)

Since suppΦ ⊂ B(O,R) is compact, the first summand in the right hand side in (A.10) decays at
infinity as O(|x|−1). Then it follows that Cα = 0 for |α| ≥ 1 due to boundedness of V at infinity.
Finally, we get

V (x) =

∫
B(O,R)

ΓL(x− y)Φ(y) dy + C = C +O(|x|−1), (A.11)

where C = C(0,...,0) =: (C1, . . . , CN )⊤ is an arbitrary constant vector. �

Lemma A.2. Let L(∂) be as in Lemma A.1 and P = (P1, P2, . . . , PN )⊤ ∈ [C∞(R3 \{0})]N be an odd
homogeneous vector function of order −2. Then the equation

L(∂)U(x) = P (x), x ∈ R3 \ {0}, (A.12)

has a unique homogeneous solution U (0) ∈ [C∞(R3 \ {0})]N of zero order satisfying the condition∫
|x|=1

U (0)(x) dS = 0. (A.13)

Proof. From (A.12) by the Fourier transform we get

L(−iξ)Û(ξ) = P̂ (ξ), x ∈ R3, (A.14)

where P̂ (ξ) is an odd homogeneous vector function of order −1, detL(−iξ) ̸= 0 for ξ ̸= 0 and the
entries of the inverse matrix [L(−iξ)]−1 are even, C∞-smooth homogeneous functions of order −2.

The equation (A.14) is understood in the sense of the space of tempered distributions and applying
the same arguments as in the proof of Lemma A.1 we arrive at the relation

Û(ξ) = [L(−iξ)]−1P̂ (ξ) +
∑

|α|≤M

Cαδ
(α)(ξ), (A.15)

where again α = (α1, α2, α3) is a multi-index, Cα = (Cα,1, . . . , Cα,N )⊤ are arbitrary constant vectors,
and M is a nonnegative integer.

Note that, the first summand in the right hand side is an odd homogeneous function of order −3
satisfying the condition ∫

|ξ|=1

[L(−iξ)]−1P̂ (ξ) dS = 0. (A.16)

Therefore, we can regularize this summand and consider it in the Cauchy Principal Value (v.p.) sense.
Then the corresponding inverse Fourier transform

V (x) := F−1
ξ→x

(
v.p.[L(−iξ)]−1P̂ (ξ)

)
(A.17)
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is a homogeneous vector function of order zero satisfying the condition∫
|x|=1

V (x) dS = 0. (A.18)

Moreover, U ∈ [C∞(R3 \ {0})]N (see, e.g., [80], Assertion 2.13 and Theorem 2.16).
Now, from (A.15) by the inverse Fourier transform we get

U(x) = V (x) +
∑

|α|≤M

Cαx
α.

Since U should be a homogeneous vector function of order zero satisfying condition (A.13), we conclude
that Cα = 0 for all α in view of (A.18), and, consequently,

U(x) = V (x), (A.19)
which completes the proof. �

Lemma A.3. Let L(∂) be as in Lemma A.1, ΓL(x) be the fundamental solution of the operator L(∂)
defined by (A.8), and Q = (Q1, Q2, . . . , QN )⊤ ∈ [C∞(R3)]N with

∂αQj(x) = O(|x|−3−|α|) as |x| → ∞, j = 1, . . . , N, (A.20)
for any multi-index α = (α1, α2, α3).

Then the Newtonian volume potential

V (x) =

∫
R3

ΓL(x− y)Q(y) dy = (ΓL ∗Q)(x) (A.21)

is a particular solution of the equation
L(∂)U(x) = Q(x), x ∈ R3. (A.22)

Moreover, the embedding V ∈ [C∞(R3)]N holds and

∂αV (x) = O
(
|x|−1−|α| ln |x|

)
as |x| → ∞ (A.23)

for any multi-index α = (α1, α2, α3).

Proof. The equation L(∂)V = Q in R3 and the inclusion V ∈ [C∞(R3)]N ∩ [C2(Ω−)]N follow from
the properties of the Newtonian volume potential and can be shown by standard arguments.

To derive the estimate (A.23) we proceed as follows. Assume that the origin of the coordinate
system belongs to the domain Ω+ and r = |x| is sufficiently large, such that Ω+ ⊂ B(O, r2 ). Then V
can be represented as

∂αxV (x) =

∫
R3

ΓL(x− y)∂αyQ(y) dy =

4∑
k=1

Ik(x) (A.24)

with
Ik(x) :=

∫
Ωk

ΓL(x− y)∂αyQ(y) dy, k = 1, 2, 3, 4, (A.25)

where R3 = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 and

Ω1 = B(O,
r

2
), Ω2 = B(x,

r

2
), Ω3 = R3 \B(O,

3r

2
), Ω4 = B

(
O,

3r

2

)
\
[
B
(
x,
r

2

)
∪B

(
x,
r

2

)]
.

From the assumptions of the lemma and relation (A.20) it follows that for arbitrary multi-index α
there is a positive constant C1 such that

|∂αQ(x)| 6 C1

(1 + |x|)3+|α| for all x ∈ R3. (A.26)

For arbitrary multi-index α we have also the following relation

|∂αΓL(x− y)| 6 C2

|x− y|−1−|α| for all x, y ∈ R3, x ̸= y, (A.27)

with a positive constant C2.
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First, we estimate I1(x). Note that if y ∈ Ω1, then |x − y| > |x|
2 . Applying the Gauss divergence

theorem |α| times and relation (A.26), we easily derive

I1(x) =
∫
Ω1

ΓL(x− y)∂αyQ(y) dy =

∫
Ω1

∂αy ΓL(x− y)Q(y) dy +O(r−1−|α|). (A.28)

Further, we have∣∣∣∣ ∫
Ω1

∂αy ΓL(x− y)Q(y) dy

∣∣∣∣ 6 C3

∫
Ω1

1

|x− y|1+|α|
1

(1 + |y|)3
dy

6 C4
1

|x|1+|α|

∫
Ω1

1

(1 + |y|)3
dy 6 C5

ln |x|
|x|1+|α| ,

where Cj , j = 3, 4, 5, are some positive constants. Consequently,

I1(x) = O
(
|x|−1−|α| ln |x|

)
. (A.29)

If y ∈ Ω2, then |y| > |x|
2 , and we have

|I2(x)| =
∣∣∣∣ ∫

Ω2

ΓL(x− y)∂αyQ(y) dy

∣∣∣∣ 6 C6

∫
Ω2

1

|x− y|
1

(1 + |y|)3+|α| dy = O(|x|−1−|α|). (A.30)

Now, if y ∈ Ω3, then |y| > 3|x|
2 and |x− y| > |y|

3 , and we get

|I3(x)| =
∣∣∣∣ ∫

Ω3

ΓL(x− y)∂αyQ(y) dy

∣∣∣∣ 6 C7

∫
Ω2

1

|x− y|
1

(1 + |y|)3+|α| dy = O(|x|−1−|α|). (A.31)

And finally, if y ∈ Ω4, then |x− y| > |x|
2 and |y| > |x|

2 , and we obtain

|I4(x)| =
∣∣∣∣ ∫

Ω4

ΓL(x− y)∂αyQ(y) dy

∣∣∣∣ 6 C7

∫
Ω2

1

|x− y|
1

(1 + |y|)3+|α| dy = O(|x|−1−|α|), (A.32)

which completes the proof. �

From the above lemma the following assertions follow directly.

Corollary A.4. Let L(∂) be as in Lemma A.1, ΓL(x) be the fundamental solution of the operator
L(∂) defined by (A.8), and Q = (Q1, Q2, . . . , QN )⊤ ∈ [C∞(Ω−)]N with

∂αQj(x) = O(|x|−3−|α|) as |x| → ∞, j = 1, . . . , N,

for any multi-index α = (α1, α2, α3).
Then the Newtonian volume potential

V (x) =

∫
Ω−

ΓL(x− y)Q(y) dy (A.33)

is a particular solution of the equation
L(∂)U(x) = Q(x), x ∈ Ω−. (A.34)

Moreover, the embedding V ∈ [C∞(Ω−)]N holds and
∂αV (x) = O

(
|x|−1−|α| ln |x|

)
as |x| → ∞ (A.35)

for any multi-index α = (α1, α2, α3).

Proof. Let R0 be a positive number such that Ω+ := R3 \ Ω− ⊂ B(O,R0) and χ(x) be a C∞ regular
function with properties χ(x) = 1 for |x| > 2R0 and χ(x) = 0 for |x| 6 R0. Represent Q(x) as

Q(x) = Q1(x) +Q2(x) with Q1(x) := [1− χ(x)]Q(x), Q2(x) := χ(x)Q(x).

Evidently, Q1 has a compact support and Q2, extended by zero onto Ω+, is C∞ regular in R3 and
satisfies the condition (A.26). Then the proof follows from the representation

V (x) =

∫
Ω−∩supp(1−χ)

ΓL(x− y)Q1(y) dy +

∫
R3

ΓL(x− y)Q2(y) dy (A.36)

and Lemma A.3. �
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Corollary A.5. Let L(∂), Ω−, P , and Q be as in Lemmas A.1–A.3 and Corollary A.4 and let
Φ ∈ [L2,comp(Ω

−)]N . Further, let U ∈ [W 1
2,loc(Ω

−)]N be a solution of the equation

L(∂)U(x) = P (x) +Q(x) + Φ(x), x ∈ Ω− (A.37)
satisfying the condition U(x) = O(1) as |x| → ∞.

Then U can be represented as

U(x) = C + U (0)(x) + V (0)(x),

where C = (C1, . . . , CN )⊤ is a constant vector, U (0) is given by (A.17) and

V (0) ∈ [W 1
2,loc(Ω

−)]N ∩ [C∞(R3 \ suppΦ)]N

possesses the following asymptotic property at infinity

∂αV (0)(x) = O
(
|x|−1−|α| ln |x|

)
as |x| → ∞

for arbitrary multi-index α = (α1, α2, α3).

Proof. Let ΓL(x) be the fundamental matrix of the operator L(∂) defined by (A.8). Note that, the
Newtonian potential

NΩ−(Φ)(x) :=

∫
Ω−

ΓL(x− y)Φ(y) dy =

∫
Ω−∩supp Φ

ΓL(x− y)Φ(y) dy

belongs to [W 2
2,loc(Ω

−)]N ∩ [C∞(R3 \ suppΦ)]N , solves the equation L(∂)NΩ−(Φ) = Φ in Ω−, and
at infinity has the property ∂αNΩ−(Φ)(x) = O(|x|−1−|α|) as |x| → ∞ for arbitrary multi-index
α = (α1, α2, α3). Then it is evident that the vector

U∗(x) := U (0)(x) +NΩ−(Q)(x) +NΩ−(Φ)(x)

is bounded at infinity and solves the nonhomogeneous equation (A.37) due to Lemmas A.2–A.3. Now,
the proof follows from Lemma A.1. �

10. Appendix B: Fredholm Properties of Strongly Elliptic Pseudodifferential
Operators on Manifolds with Boundary

Here we recall some results from the theory of strongly elliptic pseudodifferential equations on
manifolds with boundary, in both Bessel potential and Besov spaces. These are the main tools for
proving existence theorems for mixed boundary value, boundary–transmission and crack type problems
using the potential method. They can be found e.g. in [35], [44], [101].

Let M ∈ C∞ be a compact, n–dimensional, non-self-intersecting manifold with boundary ∂M ∈
C∞, and let A be a strongly elliptic N × N matrix pseudodifferential operator of order ν ∈ R on
M. Denote by S(A;x, ξ) the principal homogeneous symbol matrix of the operator A in some local
coordinate system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix[
S(A;x, 0, . . . , 0,+1)

]−1[
S(A;x, 0, . . . , 0,−1)

]
, x ∈ ∂M.

Introduce the notation
δj(x) = Re

[
(2πi)−1 lnλj(x)

]
, j = 1, . . . , N,

where ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due
to the strong ellipticity of A we have the strict inequality

−1/2 < δj(x) < 1/2 for x ∈ M, j = 1, . . . , N.

The numbers δj(x) do not depend on the choice of the local coordinate system. Note that, in particular
cases, when S(A;x, ξ) is an even matrix function in ξ or S(A;x, ξ) is a positive definite matrix for
every x ∈ M and ξ ∈ Rn \ {0}, we have δj(x) = 0 for j = 1, . . . , N , since all the eigenvalues λj(x)
(j = 1, . . . , N) are positive numbers for any x ∈ M.

The Fredholm properties of strongly elliptic pseudodifferential operators on manifolds with boun-
dary are characterized by the following theorem.
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Theorem B.1. Let s ∈ R, 1 < p <∞, 1 ≤ t ≤ ∞, and let A be a strongly elliptic pseudodifferential
operator of order ν ∈ R, that is, there is a positive constant c0such that

ReS(A;x, ξ)η · η ≥ c0|η|2

for x ∈ M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .
Then the operators

A : [H̃s
p(M)]N −→ [Hs−ν

p (M)]N , (B.1)

A : [B̃s
p,t(M)]N −→ [Bs−ν

p,t (M)]N , (B.2)
are Fredholm with zero index if

1

p
− 1 + sup

x∈∂M, 1≤j≤N
δj(x) < s− ν

2
<

1

p
+ inf

x∈∂M, 1≤j≤N
δj(x). (B.3)

Moreover, the null–spaces and indices of the operators (B.1) and (B.2) are the same (for all values of
the parameter t ∈ [1,+∞]) provided p and s satisfy the inequality(B.3).

11. Appendix C: Explicit Expressions for Symbol Matrices

Here we present the explicit expressions for the homogeneous principal symbol matrices of the
pseudodifferential operators introduced in the main body of the monograph, in Section 4. With the
help of the results presented in Subsection 3.1 and, in particular, using formulas (3.7) and (3.8), we can
derive the following formulas for the principal homogeneous symbol matrices of the pseudodifferential
operators generated by the layer potentials:

S(H;x, ξ′) = H(x, ξ′) = [Hpq(x, ξ
′)]6×6 =

[
[Hkj(x, ξ

′)]5×5 [0]5×1

[0]1×5 H66(x, ξ
′)

]
6×6

:= − 1

2π

∫
ℓ±

[A(0)(Bξ)]−1 dξ3 = − 1

2π

∫ +∞

−∞
[A(0)(Bξ)]−1 dξ3, (C.1)

S(±2−1I6 +K;x, ξ′) = K(±)(x, ξ′) = [K(±)
pq (x, ξ′)]6×6 =

[
[K

(±)
kj (x, ξ′)]5×5 [0]5×1

[0]1×5 ±2−1

]
6×6

:=
i

2π

∫
ℓ∓

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3, (C.2)

S(±2−1I6 +N ;x, ξ′) = N (±)x, ξ′) = [N (±)
pq (x, ξ′)]6×6 =

[
[N

(±)
kj (x, ξ′)]5×5 [0]5×1

[0]1×5 ±2−1

]
6×6

:= − i

2π

∫
ℓ±

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3, (C.3)

S(L;x, ξ′) = L(x, ξ′) = [Lpq(x, ξ
′)]6×6 =

[
[Lkj(x, ξ1, ξ2)]5×5 [0]5×1

[0]1×5 L66(x, ξ1, ξ2)

]
6×6

:= − 1

2π

∫
ℓ±

T (0)(Bξ, n)[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3, (C.4)

where ξ′ = (ξ1, ξ2) ∈ R2 \ {0}, ξ = (ξ1, ξ2, ξ3)
⊤, the matrices A(0)( · ), T (0)( · , · ) and P(0)( · , · ) are

defined by (2.47), (2.59), and (2.60), respectively,

B(x) =

l1(x) m1(x) n1(x)

l2(x) m2(x) n2(x)

l3(x) m3(x) n3(x)

 (C.5)

is an orthogonal matrix with detB(x) = 1 for x ∈ ∂Ω± = S; here n(x) is the exterior unit normal
vector to S, while l(x) and m(x) are orthogonal unit vectors in the tangential plane associated with
some local chart; ℓ− (ℓ+) is a closed contours in the lower (upper) complex ξ3 = ξ′3 + iξ′′3 half-plane,
orientated clockwise (counterclockwise) and enclosing all roots with negative (positive) imaginary
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parts of the equation detA(0)(Bξ) = 0 with respect to ξ3, while ξ′ = (ξ1, ξ2) ∈ R2 \ {0} is to be
considered as a parameter. Let R > 0 be sufficiently large positive number, such that the circle CR

centered at the origin and radius R, encloses all the roots. Then without loss of generality we can
take

ℓ− = [−R,+R] ∪ C(−)
R , ℓ+ = [−R,+R] ∪ C(+)

R , (C.6)
where C(−)

R ⊂ CR is a semi-circle in the lower half-plane orientated clockwise and C
(+)
R ⊂ CR is a

semi-circle in the upper half-plane orientated counterclockwise.
In (C.2) and (C.3) we employed the fact that N66 and K66 are weakly singular integral operators

since their kernel functions, the co-normal derivatives ηjlnj(y)∂lΓ66(x− y) and ηjlnj(x)∂lΓ66(x− y),
are weakly singular functions of type O(|x− y|−2+κ) on a C1,κ smooth surface S with 0 < κ 6 1.

The principal homogeneous symbol matrices (C.1)–(C.4) are elliptic (see Remark 4.13).
The entries of the matrices H(x, ξ′) and L(x, ξ′) are homogeneous functions in ξ′ of order −1

and +1, respectively, while the entries of the matrices K(±)(x, ξ′) and N (±)(x, ξ′) are homogeneous
functions in ξ′ = (ξ1, ξ2) of order 0.

Moreover, the matrices −S(H;x, ξ1, ξ2) and S(L;x, ξ1, ξ2) are strongly elliptic, i.e., there is a
positive constant c depending on the material parameters such that (see Subsections 4.2, formula
(4.67), and Subsections 5.5, formula (5.67))

Re
[
−S(H;x, ξ1, ξ2)η · η

]
≥ c|ξ|−1|η|2 for all x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}, η ∈ C6, (C.7)

Re
[
S(L;x, ξ1, ξ2)η · η

]
≥ c|ξ||η|2 for all x ∈ S, (ξ1, ξ2) ∈ R2 \ {0}, η ∈ C6. (C.8)

Now, we prove some structural properties of the above introduced symbol matrices.

Lemma C.1. Entries of the symbol matrices S(K;x, ξ1, ξ2) and S(N ;x, ξ1, ξ2) are pure imaginary
complex functions, that is, ReS(K;x, ξ1, ξ2) = ReS(N ;x, ξ1, ξ2) = 0 implying

K(±)(x, ξ′) = ±1

2
I6 + iK̃(x, ξ′) and N (±)(x, ξ′) = ±1

2
I6 + iÑ(x, ξ′), ξ′ = (ξ1, ξ2),

where K̃(x, ξ′) and Ñ(x, ξ′) are matrices with real entries and they read as

K̃(x, ξ′) := −iS(K;x, ξ′) =

[
[K̃kj(x, ξ

′)]5×5 [0]5×1

[0]1×5 0

]
6×6

:= ± i

2
I6 +

1

2π

∫
ℓ∓

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3, (C.9)

and

Ñ(x, ξ′) := −iS(N ;x, ξ′) =

[
[Ñkj(x, ξ

′)]5×5 [0]5×1

[0]1×5 0

]
6×6

:= ± i

2
I6 −

1

2π

∫
ℓ±

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3. (C.10)

Proof. Formulas (C.9) and (C.10) follow from (C.2) and (C.3). From the same formulas (C.2) and
(C.3), we get
2S(K;x, ξ′) = S(2−1I6 +K;x, ξ′) +S(−2−1I6 +K;x, ξ′)

=
i

2π

[ ∫
ℓ−

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3 +

∫
ℓ+

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3

]
, (C.11)

2S(N ;x, ξ′) = S(2−1I6 +N ;x, ξ′) +S(−2−1I6 +N ;x, ξ′)

= − i

2π

[∫
ℓ+

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3+

∫
ℓ−

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3

]
, (C.12)

implying

2K̃(x, ξ′) =
1

2π

∫
ℓ−

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3 +
1

2π

∫
ℓ+

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3, (C.13)
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2Ñ(x, ξ′) = − 1

2π

∫
ℓ−

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3 −
1

2π

∫
ℓ+

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3, (C.14)

The first and the second summands in both formulas (C.13) and (C.14) are mutually complex conjugate
quantities, ∫

ℓ−

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3 =

∫
ℓ+

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3,∫
ℓ−

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3 =

∫
ℓ+

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3.

Therefore K̃(x, ξ′) and Ñ(x, ξ′) are matrices with real-valued entries. �
Lemma C.2. Entries of the matrices S(K;x, ξ1, ξ2) and S(N ;x, ξ1, ξ2) are odd functions in ξ′ =
(ξ1, ξ2), while the entries of S(H;x, ξ1, ξ2) and S(L;x, ξ1, ξ2) are real-valued even functions in ξ′ =
(ξ1, ξ2).

Proof. The claim of the lemma for the matrix S(H;x, ξ1, ξ2) follows from (C.1) and (2.47).
To prove the claim of the lemma for the matrices S(K;x, ξ1, ξ2) and S(N ;x, ξ1, ξ2), let us write

formulas (C.11) and (C.12) for −ξ′ = (−ξ1,−ξ2) and perform the transformation of the integration
variable ξ3 = −η3. In view of (C.6), by this substitution the integration line ℓ− will be transformed
into the line ℓ+ preserving the clockwise orientation, and the line ℓ+ will be transformed into the line
ℓ− preserving the counterclockwise orientation. Therefore the expressions for the symbol matrices
S(K;x,−ξ′) and S(K;x,−ξ′) have the same form (C.11) and (C.12), respectively, but with opposite
orientation for the integration lines. Consequently,

S(K;x,−ξ′) = −S(K;x, ξ′), S(N ;x,−ξ′) = −S(N ;x, ξ′).

Further, we apply the first relation in (4.30),

HL = −1

4
I6 +N 2, (C.15)

which leads to the following equality for the corresponding principal homogeneous symbol matrices

S(H;x, ξ′)S(L;x, ξ′) = −1

4
I6 +

[
S(N ;x, ξ′)

]2
, (C.16)

implying that the entries of the symbol matrix S(L;x, ξ′) are real-valued even functions in ξ′. This
completes the proof. �
Remark C.3. From the relations (C.1), (C.4), (C.7), and (C.15) it follows that for all x ∈ S and
(ξ1, ξ2) ∈ R2 \ {0},

−H66(x, ξ1, ξ2) > 0, S66(L;x, ξ′) = L66(x, ξ1, ξ2) = − 1

4H66(x, ξ1, ξ2)
> 0.

Further, we present some auxiliary formulas associated with the above symbol matrices.
Due to (C.5), we have

B(x)e(3) = n(x) =
(
n1(x), n2(x), n3(x)

)⊤
, (C.17)

with e(3) = (0, 0, 1)⊤ and the same normal vector n(x) as in (C.5). Consequently, for arbitrary
ξ = (ξ1, ξ2, ξ3)

⊤, we get the representation,
B(x)ξ = B(x)ξ̃ +B(x)e(3)ξ3 = B(x)ξ̃ + ξ3n(x) with ξ̃ = (ξ′, 0)⊤, ξ′ = (ξ1, ξ2) ∈ R2 \ {0}. (C.18)

Note also that
T (0)(n, n) =

[
P(0)(n, n)

]⊤
= A(0)(n), (C.19)

due to (2.47), (2.59), and (2.60).
Using these relations we derive

T (0)(Bξ, n) = ξ3T (0)(n, n) + T (0)(Bξ̃, n) = ξ3A
(0)(n) + T (0)(Bξ̃, n), (C.20)

P(0)(Bξ, n) = ξ3P(0)(n, n) + P(0)(Bξ̃, n) = ξ3[A
(0)(n)]⊤ + P(0)(Bξ̃, n), (C.21)

A(0)(Bξ) = ξ23A
(0)(n) + ξ3A

(1)(x, ξ′) +A(0)(Bξ̃), (C.22)
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where the entries of the matrix A(1)(x, ξ′) are linear homogeneous functions in ξ′ = (ξ1, ξ2), as well as
the entries of the matrices T (0)(Bξ̃, n) and P(0)(Bξ̃, n), while the entries of the matrix A(0)(Bξ̃) are
second order homogeneous functions in ξ′ = (ξ1, ξ2).

From these relations it follows that for sufficiently large |ξ3| and ξ′ ∈ R2 \ {0} the following
asymptotic relations hold true:

[A(0)(Bξ)]−1 = ξ−2
3 [A(0)(n)]−1 +O(|ξ3|−3), (C.23)

T (0)(Bξ, n)[A(0)(Bξ)]−1 = ξ−1
3 I6 +O(|ξ3|−2), (C.24)

[A(0)(Bξ)]−1
[
P(0)(Bξ, n)

]⊤
= ξ−1

3 I6 +O(|ξ3|−2). (C.25)

These relations imply that

lim
R→+∞

∫
C

(±)
R

T (0)(Bξ, n)
[
A(0)(Bξ)

]−1
= ±iπI6, (C.26)

lim
R→+∞

∫
C

(±)
R

[
A(0)(Bξ)

]−1[P(0)(Bξ, n)
]⊤

= ±iπI6. (C.27)

Now, from (C.2) and (C.3) with the help of (C.6), (C.26), and (C.26) we deduce

S(±2−1I6 +K;x, ξ′)

=
i

2π
lim

R→+∞

[ ∫
C(∓)

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3 +

∫ R

−R

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3

]
= ±1

2
I6 +

i

2π
lim

R→+∞

∫ R

−R

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3, (C.28)

S(±2−1I6 +N ;x, ξ′)

= − i

2π
lim

R→+∞

[ ∫
C(±)

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3 +

∫ R

R

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3

]
= ±1

2
I6 −

i

2π
lim

R→+∞

∫ R

R

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3. (C.29)

These equalities give alternative formulas for calculation of the symbol matrices of the operators K
and N ,

S(K;x, ξ′) = iK̃(x, ξ′), S(N ;x, ξ′) = iÑ(x, ξ′), (C.30)
where K̃(x, ξ′) and Ñ(x, ξ′) are matrices with real entries defined by the relations

K̃(x, ξ′) =
1

2π
lim

R→+∞

∫ R

−R

T (0)(Bξ, n)[A(0)(Bξ)]−1 dξ3, (C.31)

Ñ(x, ξ′) = − 1

2π
lim

R→+∞

∫ R

R

[A(0)(Bξ)]−1[P(0)(Bξ, n)]⊤ dξ3. (C.32)

Finally, we formulate the following technical lemma.

Lemma C.4. Let Q be the set of all non-singular k × k square matrices with complex-valued entries
and having the structure [

[Qlj ](k−1)×(k−1) {0}(k−1)×1

{0}1×(k−1) Qkk

]
k×k

, k ∈ N. (C.33)

If X,Y ∈ Q, then XY ∈ Q and X−1 ∈ Q. Moreover, if in addition X = [Xjl]k×k and Y = [Yjl]k×k

are strongly elliptic, i.e.

Re(Xζ · ζ) > 0, Re(Y ζ · ζ) > 0 for all ζ ∈ Ck \ {0}, (C.34)

and Xkk and Ykk are real numbers, then at least one eigenvalue of the matrix XY is positive.
In particular, if XkkYkk = 1, then λ = 1 is an eigenvalue of the matrix XY .
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Proof. The first part of the lemma follows from the structure (C.33) and can be verified trivially.
The second part of the lemma is also trivial and follows from the strong ellipticity property (C.34),

since it implies that if X ∈ Q and Y ∈ Q are strongly elliptic with Xkk and Ykk being real numbers,
and B = XY , then evidently Xkk > 0, Ykk > 0, and, consequently, the number

λ = Bkk = XkkYkk > 0

is a solution of the equation det[B − λI] = 0 and is a positive eigenvalue of the matrix B = XY . �

Remark C.5. Note that, the principal homogeneous symbol matrices (C.1)–(C.4) are non-singular and
have the structure (C.33) and therefore along with their inverse matrices they belong to the class Q.

12. Appendix D: Calculation of Some Specific Integrals

D.1. Proof of formula (3.63). Here we prove the equality

lim
ε→0

∫
Σ(x,ε)

P(∂y, n(y), τ)Γ
⊤(x− y, τ) dS = I6, (D.1)

where Σ(x, ε) = ∂B(x, ε) is a sphere of radius ε centered at the point x ∈ R3, n(y) = (y − x)/ε is the
exterior normal vector to Σ(x, ε) at the point y ∈ Σ(x, ε), boundary operator P(∂y, n(y), τ) is given
by (2.58), and Γ(x− y, τ) is the fundamental matrix constructed in Subsection 3.2.

Due to Lemma 3.3 we easily deduce that

lim
ε→0

∫
Σ(x,ε)

P(∂y, n(y), τ)Γ
⊤(x− y, τ) dS = lim

ε→0

∫
Σ(x,ε)

P(0)(∂y, n(y))[Γ
(0)(x− y)]⊤ dS (D.2)

where the boundary operator P(0)(∂y, n(y)) is given by (2.60) and is the principal part of the operator
P(∂y, n(y), τ), and the matrix Γ(0)(x− y), constructed in Subsection 3.1, is the fundamental solution
of the differential operator A(0)(∂) defined in (2.46). Evidently, Γ(0)∗(y − x) := [Γ(0)(x− y)]⊤ is then
a fundamental matrix of the adjoint operator A(0)∗(∂) = [A(0)(−∂)]⊤ = [A(0)(∂)]⊤,

A(0)∗(∂y)Γ
(0)∗(y − x) = δ(x)I6, (D.3)

where δ( · ) is Dirac’s distribution. For arbitrary test function U = (U1, U2, . . . , U6)
⊤ ∈ [D(R3)]6 we

then have⟨
A(0)∗(∂y)Γ

(0)∗
(j) ( · − x), U

⟩
R3 =

∫
R3

Γ
(0)∗
(j) (y − x) ·A(0)(∂y)U(y) dy = Uj(x), ∀x ∈ R3, (D.4)

where Γ
(0)∗
(j) (y − x) is the j-th column of the matrix Γ(0)∗(y − x). From (D.4) we have

Uj(x) = lim
ε→0

∫
R3

ε

A(0)(∂y)U(y) · Γ(0)∗
(j) (y − x) dy, ∀x ∈ R3, j = 1, 2, . . . , 6, (D.5)

where R3
ε = R3 \B(x, ε). Taking into account that the support of U is compact and n(y) = (y− x)/ε

is the inward normal vector for the domain R3
ε, by Green’s formula (2.198) with Γ

(0)∗
(j) (y−x) for U ′(y),

we can rewrite (D.5) as follows

Uj(x) = − lim
ε→0

[ ∫
R3

ε

E(0)
(
U,Γ

(0)∗
(j) (y − x)

)
dy +

∫
Σ(x,ε)

T (∂, n, τ)U · Γ(0)∗
(j) (y − x) dSy

]
= − lim

ε→0

∫
R3

ε

E(0)
(
U,Γ

(0)∗
(j) (y − x)

)
dy, (D.6)

where E(0)( · , · ) is defined in (4.50). Now, applying Green’s formula (2.199) and keeping in mind that
A(0)∗(∂y)Γ

(0)∗
(j) (y − x) = 0 for x ̸= y, we find from (D.6)

Uj(x) = lim
ε→0

∫
Σ(x,ε)

U(y) · P(∂, n, τ)Γ
(0)∗
(j) (y − x) dSy

= lim
ε→0

∫
Σ(x,ε)

[U(y)− U(x)] · P(∂, n, τ)Γ
(0)∗
(j) (y − x) dSy
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+ U(x) · lim
ε→0

∫
Σ(x,ε)

P(∂, n, τ)Γ
(0)∗
(j) (y − x) dSy

= U(x) · lim
ε→0

∫
Σ(x,ε)

P(∂, n, τ)Γ
(0)∗
(j) (y − x) dSy, j = 1, 2, . . . , 6. (D.7)

Evidently, the last formula is equivalent to the relation

U(x) = U(x) lim
ε→0

∫
Σ(x,ε)

P(∂, n, τ)Γ(0)∗(y − x) dSy ∀x ∈ R3 (D.8)

implying
lim
ε→0

∫
Σ(x,ε)

P(∂, n, τ)Γ(0)∗(y − x) dSy = I6 ∀x ∈ R3. (D.9)

And finally, since Γ(0)∗(y − x) := [Γ(0)(x − y)]⊤, from equations (D.2) and (D.9) we conclude that
(D.1) holds true.
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