
This issue is dedicated
to the memory of Academician Andria Bitsadze

on the occasion of his 100th birthday anniversary

22.05.1916 - 06.09.1994



Mem. Differential Equations Math. Phys. 69 (2016), 1–14

A Short Survey of Scientific Results
of Academician Andria Bitsadze

“It is too difficult to write about a scientist not only because
of the great responsibility toward the history of science, but
also because of the complexity of scientific creative process
without which it is impossible to show his real personality”.

A. Bitsadze

Such an attitude of Andria Bitsadze to the problem cited in the epigraph is not accidental; a task
to give an exhaustive description of his versatile activities seems to us insuperable. The true appraisal
of human creativity and its crystallization occurs in the future generations. This point of view has
been shared by A. Bitsadze. However, his creative work during his lifetime was properly evaluated
by the mathematical community. This is confirmed at least by the fact that in the mathematical
literature we are often encountered with the facts and terms associated with his name: Bitsadze’s
equation, Lavrent’ev–Bitsadze’s equation, Bitsadze’s general mixed problem, Bitsadze’s extremum
principle, Bitsadze’s inversion formula, weakly and strongly connected Bitsadze’s elliptic systems,
Bitsadze–Samarski’s problem, and others. We do not intend to touch upon his organizational, peda-
gogical or educational work with students, we will dwell only on his scientific results not pretending
to present them in a perfect form.

We consider it appropriate to divide Andria Bitsadze’s activity into several staged, keeping here
chronology.

Elliptic equations and systems together with the problems posed for them take central place in
Andria Bitsadze’s creative work.

The fact that the condition of uniform ellipticity

k0

( n∑
i=1

λ2i

)N

≤ det
n∑

i,j=1

Aij(x)λiλj ≤ k1

( n∑
i=1

λ2i

)N

, k0, k1 = const > 0,

of the linear equation, or of the system

L(u) :=

n∑
i,j=1

Aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

Bi(x)
∂u

∂xi
+ C(x)u = F (x), u = (u1, . . . , uN )

ensures fredholmity of the boundary value problems in the domain D, in particular, of the first
boundary value problem
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was assumed formerly indisputable.
Irregularity of this fact was illustrated by A. Bitsadze in a simple and clear for everyone example,

called later on Bitsadze’s system
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It turned out that the Dirichlet homogeneous problem for Bitsadze’s system in a circular domain
D : (x − x0)

2 + (y − y0)
2 < R2 has an infinite set of linearly independent solutions, and all of them

are representable explicitly by the formula
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)
ψ(z), z0 = x0 + iy0

written in terms of an arbitrary analytic function ψ(z) of the complex argument z = x+ iy.
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While this fact seemed unexpected and almost improbable, it became a subject of discussions for
many mathematicians trying to explain this phenomenon. At his known seminar, I. Gelfand made an
attempt to explain this fact by multiplicity of characteristic roots of system (1). In reply, A. Bitsadze
has constructed another system
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with simple characteristic roots, the system for which the Dirichlet problem has likewise an infinite
set of linearly independent solutions

wk(z) = Bk

{[
(µζ + ζ)2 − 4µR2

]k − (µζ − ζ)2k
}
, k = 1, 2, . . . ,

where ζ = z − z0, (1 +
√
2)µ = i, and Bk are arbitrary complex constants. On the basis of those

simple and refined examples, the theory of boundary value problems for elliptic systems has acquired
a great deal of new trends. The widely known theory of nonfredholm boundary value problems is one
of such them. These theories do not lose their importance even nowadays, and many of A. Bitsadze’s
followers and pupils devote them their researches.

Afterwards, there arose the natural question to single out classes of elliptic systems with solvable, in
a certain sense, boundary value problems, in particular, solvable in the Fredholm, Noether or Hausdorff
sense. In this direction, it is impossible to hold back about the question on weakly connected Bitsadze’s
systems for which the Dirichlet problem is always fredholmian one.

It was considered earlier that solvability of boundary value problems is determined only by the
principal part of the system. A. Bitsadze has expressed somewhat different opinion that coefficients
of the system with lower order derivatives may significantly affect the solvability of the problem. To
justify this concept, he introduced the notion of strongly connected elliptic systems that cover systems
(1) and (2) constructed earlier in the form of particular examples. As it has become clear, the solvable
in one or another sense boundary value problems for elliptic systems with Bitsadze’s operators in the
principal part may turn out to be unsolvable on adding the lower order terms.

The above-mentioned fundamental effects were discovered by A. Bitsadze by using the apparatus
of the theory of functions of a complex variable. This instrument is well suited for a homogeneous
system consisting only of the principal part
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with two independent variables. A. Bitsadze has constructed a general regular solution of system (1)
in the form
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where φjl(zj) are analytic functions of the complex variable zj = x + λjy, and λj are the roots of
the corresponding to system (3) characteristic polynomial Q(λ) = det(A+ 2Bλ+ Cλ2) with positive
imaginary parts. As regards the N -component vectors Clkj , they are the solutions of the fully defined
system of linear algebraic equations.

The instruments of the theories of analytic functions and of one-dimensional singular integral
equations make it possible to investigate many boundary value problems in the case of two independent
variables. If there are more than two variables, then there arise considerable difficulties due to the
lack of a complete theory of multidimensional singular integral equations. Using a multidimensional
analogue of the Sokhotski–Plemelj theorem, A. Bitsadze has studied the first boundary value problem
for the well-known Moisel–Theodorescu system, reduced it to a multidimensional system of singular
integral equations with a special matrix kernel and constructed the inversion formula which in the
literature is called “Bitsadze’s inversion formula”.

Among the problems formulated for elliptic equations and systems, even, in particular, for harmonic
functions, the problem with an oblique derivative is regarded as one of the basic ones, when on the
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boundary of the n-dimensional domain D there is the condition
n∑

i=1

ℓi(x)
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∂xi
= f(x), x ∈ ∂D.

As far back as in G. Giraud’s works it has been shown that if the direction of the vector ℓ :=
(ℓ1, . . . , ℓn) at none of the boundary points meets the tangent, the problem becomes solvable in
Fredholm’s sense. Otherwise, the situation changes insomuch that many scientists were inclined to
consider this problem atypical for elliptic equations. Considering these nonstandard cases, A. Bitsadze
has shown this problem not at all to exceed the bounds of typical problems and proved the theorems
on a number and existence of solutions. As it has become clear, the problem with an oblique derivative
may turn out to be simultaneously subdefinite and overdetermined. For the problem to be well-posed,
it is necessary, proceeding from the structure of interconnection between the vector field ℓ and the
domain, to release some set of boundary points from the conditions and impose additional conditions
on some set of points. To illustrate this, we consider one simplest example when the vector field meets
the boundary at k isolated points. In this case a number of linearly independent solutions of the
problem under consideration does not exceed k.

The objects of A. Bitsadze’s investigations are not always ordinary. He studied the problems which
are, as a rule, not subjected to the standard conditions ensuring the existence and uniqueness of
solutions. To such problems may belong those suggested by A. Bitsadze for elliptic equations with
parabolic degeneration with weighted conditions on the boundary. These problems were dictated by
their practical necessity. For such problems not only the conditions of uniform or strong ellipticity
violate, but they degenerate parabolically either on the whole boundary, or on its certain part. In
addition, a set of points of parabolic degeneration may turn out to be even a characteristic. For
example, for the equation
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∂y
+ cu = 0, y > 0, m > 0,

the line of degeneration y = 0 is simultaneously its multiple characteristic. In such a case, the role of
coefficients with the lower order derivatives extends, and depending on them, not all solutions may be
bounded. M. Keldysh considered this problem in the class of bounded functions, and hence neglected
unbounded solutions. A. Bitsadze replaced the requirement of the boundedness by the following
weighted boundary conditions:

u
∣∣
σ
= f, lim

y→0
ψ(x, y)u(x, y) = φ(x), 0 ≤ x ≤ 1,

where σ ∪{y = 0, 0 ≤ x ≤ 1} is the boundary of the domain, and the weighted function ψ on the line
of degeneration vanishes. These problems have brought to light new practical and theoretical validity
of weighted functional spaces that before and after formulation of those problems have become the
subject of a great number of research works.

The hyperbolic equations and systems aren’t less rich with the effects connected with parabolic
degeneration. Many factors affect the solvability of the problems formulated here; they include an
order of parabolic degeneration, orientation of a set of degeneration points with respect to charac-
teristic manifolds, etc. As distinct from a separately taken equation, hyperbolic systems show a lot
of unexpected properties even without parabolic degeneration. Thus, for example, the well-known
Goursat problem for a scalar equation is quite well-posed. The constructed by A. Bitsadze hyperbolic
system

∂2u1
∂x2

+
∂2u1
∂y2

+ 2
∂2u2
∂x∂y

= 0, 2
∂2u1
∂x∂y

+
∂2u2
∂x2

+
∂2u2
∂y2

= 0

has shown that the corresponding homogeneous problem may have an infinite set of linearly indepen-
dent solutions, and what is more, the lower order terms of the system may affect significantly the
well-posedness of the problem. This fact has given a great impetus to many important researches and
stimulated the development of a series of scientific trends.

In the middle of the past century, mathematics has found new significant applications that should,
seemingly, be explained by an unprecedented rate of technical progress. The major achievements in
transonic and supersonic velocities have drawn attention of scientists to many problems, including
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those of mixed type equations in which M. Lavrent’ev has shown spacial interest and awoken it in
A. Bitsadze. Combining the methods of the theory of analytic functions, of partial differential equa-
tions and singular integral equations, A. Bitsadze created a powerful and, at the same time, elegant
apparatus, convenient for solving the problems formulated for the mixed type equations. Effectiveness
of the suggested method has been tested on the boundary value problems for the Lavrent’ev–Bitsadze’s
equation

∂2u

∂x2
+ sgn y ∂

2u

∂y2
= 0

being the model of the well-known Tricomi’s equation for which A. Bitsadze posed a great number
of actual problems and established a series of significant facts known in the literature as “Bitsadzian
facts”. Here we will mention only Bitsadze’s extremum principle. For the Tricomi’s equation

y
∂2u

∂x2
+
∂2u

∂y2
= 0,

along with the Tricomi’s problem has also been considered the Dirichlet problem expecting its solv-
ability. This was needed, mainly, for practical, concrete purpose.

A. Bitsadze has shown that this problem was not always well-posed, and for it to be solvable, it was
necessary to release a definite part of the boundary of hyperbolic subdomain from the conditions. To
formulate the problems responding practical purposes in which the whole boundary is occupied with
the conditions, A. Bitsadze suggested several versions. In one of his versions he linked the solution
values at different boundary points with the functional law. This nonlocal problem is well-posed. It
has prompted the ways of its natural generalization to a multidimensional case.

To every well-posed plane problem there may be assigned several spatial versions, of which we
will dwell only on those which maximally approach practical problems. The spatial version of the
above-mentioned problem of exactly such a nature is easily generalizable and provides us with a well-
posed problem. As concerns the Tricomi’s problem, it has several generalization versions that make
it possible to demonstrate the structure of a set of type variation points. This set of points may turn
out to be a surface, oriented to the space and time. This moment determines two essentially different
trends in the theory of boundary value problems for multidimensional mixed type equations.

Equations refer to different types, depending on their characteristic roots. If the equation, along
with its real characteristic roots, has complex ones, then it belongs to the composite type equations.
Such equations include, for example, the Laplace differentiated equation. If instead of the Laplace
operator is differentiated Tricomi’s operator, we obtain the mixed-composite type operator. For the
equation of such a complicated nature, A. Birsadze formulated a great number of actual problems and
obtained important results.

We have mentioned above the nonlocal problem in which the values of an unknown solution are
interconnected at different boundary points. Of practical and theoretical interest are the problems, in
which the boundary values of solutions are connected by the specific law with their values on a set of
interior points of the domain. Among the problems of such a kind the Bitsadze-Samarski’s problem
takes central place. Its simplest and visual version is formulated as follows: Find in a unit circle a
harmonic function u satisfying the condition

u(x, y)− u(δx, δy) = f(x, y), x2 + y2 = 1,

where the constant δ ∈ (0, 1).
Practical problems in modeling are reduced, mainly, to the nonlinear equations. This is, seemingly,

the fact that explains special interest to the above formulated problems. The powerful methods used
for linear equations, in the nonlinear case are not always effective. It is a great advantage to reveal
even a separate class of their solutions. The constructed by A. Bitsadze exact solutions of special type
nonlinear equations

n∑
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aij(x)
[ ∂2u

∂xi∂xj
− b(u)

∂u
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∂u

∂xj

]
+
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∂u

∂xi
+ d(x, u) = 0 (4)

have found versatile practical and theoretical applications. Equations of type (4) cover a large number
of models corresponding to the well-known equations of gravitation field, ferromagnetism theory,
Heisenberg equations and Lorentz-covariant equations.
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A large number of A. Bitsadze’s creative achievements, including those mentioned above, have
become long ago a corner stone on which scientific trends in the modern theory of partial differential
equations are constructed.

Sergo Kharibegashvili
Otar Jokhadze
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Main Publication

(i) Monographs

1. Mixed type equations. (Chinese) Peking, 1955.
2. Some linear problems for linear partial differential equations. (Chinese) Advancement in Math.

4 (1958), 321–403.
3. Mixed type equations. (Russian) Itogi Nauki 2 (1959), 1–164.
4. Gleichungen vom gemischten Typus. (Russian) Verlag der Akademie der Wissenschaften der

UdSSR, Moskau, 1959.
5. Equations of the mixed type. A Pergamon Press Book The Macmillan Co., New York, 1964.
6. Boundary value problems for elliptic equations of second order. (Russian) Izdat. “Nauka”,

Moscow, 1966.
7. Boundary value problems for second order elliptic equations. North-Holland Series in Applied

Mathematics and Mechanics, Vol. 5 North-Holland Publishing Co., Amsterdam; Interscience
Publishers Division John Wiley & Sons, Inc., New York, 1968.

8. Foundations of the theory of analytic functions of a complex variable. (Russian) Izdat.
“Nauka”, Moscow, 1969 (3rd ed. “Nauka”, Moscow, 1984).

9. Equations of mathematical physics. (Russian) Izdat. “Nauka”, Moscow, 1976 (2nd ed.
“Nauka”, Moscow, 1982).

10. Some classes of partial differential equations. (Russian) “Nauka”, Moscow, 1981.
11. Some classes of partial differential equations. Advanced Studies in Contemporary Mathemat-

ics, 4. Gordon and Breach Science Publishers, New York, 1988.
12. Partial differential equations. Series on Soviet and East European Mathematics. 2. World

Scientific, Singapore, 1994.
13. Integral equations of first kind. Series on Soviet and East European Mathematics, 7. World

Scientific Publishing Co., Inc., River Edge, NJ, 1995.
14. Boundary value problems for second order elliptic equations. Elsevier Sci., Engelska, 2012-

12-02.
15. Bitsadze, Andrei Vasil’evich. Equations of the mixed type. Elsevier Sci., Engelska, 2014-05-

16.

(ii) Dissertations

1. General representation of solutions of elliptic systems of differential equations and some of
their applications. Dissertation for the Degree of Candidate of the Phys.-Math. Sciences,
Tbilisi, 1944.

2. To the problem of mixed type equations. Dissertation for the Degree of Doctor of the Phys.-
Math. Sciences, Moscow, 1951.

(iii) Text Books and School Supplies

1. Lectures in the theory of analytic functions of a complex variable. Novosibirsk State Univer-
sity, Novosibirsk, 1967, 1–226.

2. Grundlagen der Theorie der analytischen Funktionen einer komplexen Veränderlichen (Rus-
sian) Hauptredaktion für physikalisch-mathematische Literatur, Verlag “Nauka”, Moskau,
1969.

3. Essentials of the theory of analytical functions of a complex variable. 2nd edition. Nauka,
Moscow, 1972, 1–264.

4. Lectures in equations of mathematical physics. Moscow Physical Engineering Institute, Mos-
cow, 1972.

5. Grundlagen der Theorie analytischer Functionen. Academic Verlag, Berlin, DDR, 1973.
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6. Approximate collection of exercises in the course of equations of mathematical physics. MIFI,
Moscow, 1975.

7. Arrangement of teaching of mathematics in MIFI. 2nd edition. In: Scientific organization of
the teaching process. MIFI, Moscow, 1975,

8. Equations of mathematical physics. Nauka, Moscow, 1976.
9. Collection of problems on the equations of mathematical physics (with D. F. Kalinichenko).

(Russian) Izdat. “Nauka”, Moscow, 1977.
10. Equations of mathematical physics. Mir, Moscow, 1980.
11. Equations of mathematical physics. Nauka, Moscow, 1982.
12. Essentials of the theory of analytical functions. 3rd edition. Text book. Nauka, Moscow,

1984.

(iv) Scientific papers

1. Tangential derivative of a simple layer potential. In: N. I. Muskhelishvili. Singular Integral
equations. Moscow, 1946, no. 13, Ch. I.

2. Ü̈ber lokale Deformationen in zusammengedrückten elastischen Körpern. (Russian) Soobshch.
Akad. Nauk Gruz. SSR 3 (1942), 419–424.

3. Ü̈ber eine allgemeine Darstellung der Lösungen linearer elliptischer Differentialgleichun gen.
(Georgian. Russian summary) Soobshch. Akad. Nauk Gruz. SSR 4 (1943), 613–622.

4. Boundary value problems for a system of linear differential equations of elliptic type. (Geor-
gian) Bull. Acad. Sci. Georgian SSR [Soobshchenia Akad. Nauk Gruzinskoi SSR] 5 (1944),
761–770.

5. On some applications of a general representation of solutions of elliptic differential equations.
Bull. Acad. Sci. Georgian SSR [Soobshchenia Akad. Nauk Gruzinskoi SSR] 7 (1946), no. 6.

6. Problems of oscillation of uniformly compressed thin elastic plate. Proc. Tbilisi State Uni-
versity. Tbilisi 30a (1947).

7. General representations of solutions of a system of elliptic second order differential equa-
tions, and their application. In: I. N. Vekua. New methods of solution of elliptic equations.
Moscow–Leningrad, 1948.

8. On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential
equations. (Russian) Uspehi Matem. Nauk (N.S.) 3 (1948), no. 6(28), 211–212.

9. On the so-called areolar monogenic functions. (Russian) Doklady Akad. Nauk SSSR (N.S.)
59 (1948), 1385–1388.

10. On a system of functions. (Russian) Uspehi Matem. Nauk (N.S.) 5 (1950), no. 4(38), 154–155.
11. On the uniqueness of solution of a general boundary problem for an equation of mixed type.

(Russian) Soobshch. Akad. Nauk Gruzin. SSR. 11 (1950), 205–210.
12. On the problem of equations of mixed type (with M. A. Lavrent’ev). (Russian) Doklady Akad.

Nauk SSSR (N.S.) 70 (1950), 373–376.
13. On some problems of mixed type. (Russian) Doklady Akad. Nauk SSSR (N.S.) 70 (1950),

561–564.
14. On the general problem of mixed type. (Russian) Doklady Akad. Nauk SSSR (N.S.) 78

(1951), 621–624.
15. On the problem of equations of mixed type. (Russian) Trudy Mat. Inst. Steklov. vol. 41.

Izdat. Akad. Nauk SSSR, Moscow, 1953. 59 pp.
16. Über die Gleichung von gemischten Typus. (Russian) Usp. Mat. Nauk 8, no. 1(53), 174–175

(1953).
17. Spatial analogue of an integral of Cauchy type and some of its applications. (Russian) Izvestiya

Akad. Nauk SSSR. Ser. Mat. 17 (1953), 525–538.
18. A spatial analogue of the Cauchy-type integral and some of its applications. (Russian) Doklady

Akad. Nauk SSSR (N.S.) 93 (1953) 389–392; errata, 94, 980 (1954).
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19. Inversion of a system of singular integral equations. (Russian) Doklady Akad. Nauk SSSR
(N.S.) 93 (1953), 595–597; errata, 94, 980 (1954).

20. On two-dimensional integrals of Cauchy type. (Russian) Soobshch. Akad. Nauk Gruzin. SSR
16 (1955), 177–184.

21. On a problem of Frankl’. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 1091–1094.
22. Linear mixed type partial differential equations. Proc. of the III All-Union Mathematical

Congress. M.: Acad. Sci. USSR Publishers 3 (1956), 36–42.
23. On the problem of equations of mixed type in many dimensional regions. (Russian) Dokl.

Akad. Nauk SSSR (N.S.) 110 (1956), 901–902.
24. On the uniqueness of solution of the problem of Frankl’ for Chaplygin’s equation. (Russian)

Dokl. Akad. Nauk SSSR (N.S.) 112 (1957), 375–376.
25. On elliptical systems of second order partial differential equations. (Russian) Dokl. Akad.

Nauk SSSR 112 (1957), 983–986.
26. On an elementary method of solving certain boundary problems in the theory of holomorphic

functions and certain singular integral equations connected with them. (Russian) Uspehi Mat.
Nauk (N.S.) 12 (1957), no. 5(77) 185–190.

27. Incorrectness of Dirichlet’s problem for the mixed type of equations in mixed regions. (Rus-
sian) Dokl. Akad. Nauk SSSR 122 (1958), 167–170.

28. On the theory of equations of mixed type (with M. S. Salahitdinov). (Russian) Sibirsk. Mat.
Zh. 2 (1961), 7–19.

29. The equations of mixed composite type. (Russian) Certain problems in mathematics and
mechanics (in honor of M. A. Lavrent’ev) (Russian), pp. 47–49. Izdat. Sibirsk. Otdel. Akad.
Nauk SSSR, Novosibirsk, 1961.

30. To the theory of harmonic functions. Proc. Tbilisi State University, Tbilisi 84 (1961).
31. Equations of mixed type in three-dimensional regions. (Russian) Dokl. Akad. Nauk SSSR

143 (1962), 1017–1019; translation in Soviet Math. Dokl. 3 (1962), 510–512.
32. On the theory of harmonic functions. (Russian) Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat.

Nauk 84 (1962), 35–38.
33. A three-dimensional analogue of the Tricomi problem. (Russian) Sibirsk. Mat. Zh. 3 (1962),

642–644.
34. The homogeneous problem for the directional derivative for harmonic functions in three-

dimensional regions. (Russian) Dokl. Akad. Nauk SSSR 148 (1963), 749–752; translation in
Soviet Math. Dokl. 4 (1963), 156–159.

35. On oblique derivative problem for harmonic functions in three-dimensional domains. 1963
Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), pp. 46–50, Acad.
Sci. USSR Siberian Branch, Moscow.

36. A special case of the problem of the oblique derivative for harmonic functions in three-
dimensional domains. (Russian) Dokl. Akad. Nauk SSSR 155 (1964), 730–731; translation in
Soviet Math. Dokl. 5 (1964), 477–478.

37. The problem of the inclined derivative with polynomial coefficients. (Russian) Dokl. Akad.
Nauk SSSR 157 (1964) 1273–1275; translation in Soviet Math. Dokl. 5 (1964), 1102–1104.

38. On a class of higher-dimensional singular integral equations. (Russian) Dokl. Akad. Nauk
SSSR 159 (1964), 955–957; translation in Soviet Math. Dokl. 5 (1964), 1616–1618.

39. Normally solvable elliptic boundary value problems. (Russian) Dokl. Akad. Nauk SSSR 164
(1965), 1218–1220; translation in Soviet Math. Dokl. 6 (1965), 1347–1349.

40. A criterion for convergence of the gradients of a sequence of harmonic functions. (Russian)
Dokl. Akad. Nauk SSSR 168 (1966), 733–734; translation in Soviet Math. Dokl. 7 (1966),
708–709.

41. On Schwarz’ lemma. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze (Proc. A. Razmadze
Math. Inst.) 33 (1967), 15–20.
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42. Some elementary generalizations of linear elliptic boundary value problems (with A. A. Samar-
skií). (Russian) Dokl. Akad. Nauk SSSR 185 (1969), 739–740; translation in Soviet Math.
Dokl. 10 (1969), 398–400.

43. On the theory of equations of mixed type. (German) Ellipt. Differentialgl., Kolloquium Berlin
1969, 91–96 (1971).

44. Zur Theorie der Gleichungen gemischten Typs. (Russian) Differentsial’nye Uravneniya 6
(1970), 3–6.

45. On the theory of non-Fredholm elliptic boundary value problems. (Russian) Partial differential
equations (Proc. Sympos. dedicated to the 60th birthday of S. L. Sobolev) (Russian), 64–70.
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48. Sur la théorie des problèmes aux limites elliptiques non-fredholmiens. (French) Actes du
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Villars, Paris, 1971.

49. On the theory of first order quasilinear ordinary differential equations. (Russian) Collection
of articles dedicated to Academician Ivan Matveevich Vinogradov on his eightieth birthday, I.
Trudy Mat. Inst. Steklov. 112 (1971), 95–104, 386; translation in Proc. Steklov Inst. Math.
112 (1971), 94–104.

50. To the theory of non-Fredholm elliptic boundary value problems. Proc. Intern. Math.
Congress in Nice, 1972.

51. To the theory of one mixed type equation. In: Beitrage zur Analysis, 4 (Berlin, DDR, DVM)
4 (1972).

52. On the theory of equations of mixed type whose order is degenerate along the line on which
the type changes. (Russian) Continuum mechanics and related problems of analysis (on the
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ÒÄÆÉÖÌÄ. ÊÀÐÖÔÏÓ ßÉËÀÃßÀÒÌÏÄÁÖËÄÁÉÀÍÉ ÃÀ ÉÌÐÖËÓÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ÀÒÀÝáÀÃÉ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÆÏÂÉÄÒÈÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ
ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ. ÂÀÍáÉËÖËÉÀ ÀÂÒÄÈÅÄ ÀÙÍÉÛÍÖË ÀÌÏÝÀÍÀÈÀ ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉ-
ÈáÉ. ÃÀÌÔÊÉÝÄÁÄÁÉ ÄÚÒÃÍÏÁÀ ÁÀÍÀáÉÓ ÊÖÌÛÅÉÈÉ ÀÓÀáÅÉÓ ÐÒÉÍÝÉÐÓ ÃÀ ÛÀÄ×ÄÒÉÓ ÈÄÏÒÄÌÀÓ
ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÛÄÓÀáÄÁ.
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1. Introduction

In this paper, we establish existence, uniqueness and stability results to the following boundary
value problems (BVPs) for nonlinear implicit fractional differential equations with impulses

cDα
tk
y(t) = f

(
t, y, cDα

tk
y(t)

)
for each t ∈ (tk, tk+1], k = 0, . . . ,m, 0 < α ≤ 1, (1)

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m, (2)

ay(0) + by(T ) = c, (3)
where cDα

tk
is the Caputo’s fractional derivative, f : J×R×R → R, Ik : R → R are given functions, and

a, b, c are real constants with a+ b ̸= 0, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y
∣∣
t=tk

= y(t+k )− y(t
−
k ),

y(t+k ) = lim
h→0+

y(tk +h) and y(t−k ) = lim
h→0−

y(tk +h) represent the right and left limits of y(t) at t = tk.
In recent years, there has been a significant development in the theory of fractional differential

equations. It is caused by its applications in the modeling of many phenomena in various fields of
science and engineering such as acoustic, control theory, signal processing, porous media, electrochem-
istry, viscoelasticity, rheology, polymer physics, proteins, optics, economics, astrophysics, chaotic
dynamics, statistical physics, thermodynamics, biosciences, bioengineering, etc. See, for example,
[1, 6, 7, 15, 20, 27], and the references therein. On the other hand, impulsive differential equations
have received much attention, we refer the reader to the books [2, 10, 16, 22, 24, 26], and the pa-
pers [13, 19, 29], and the references therein. Very recently, boundary value problems of fractional
differential equations have received a considerable attention because they occur in the mathematical
modeling of a variety of physical processes; see, for example, [3, 4, 8, 9, 14, 28, 31]. In [11, 12], the
authors give some existence and uniqueness results for some classes of implicit fractional order differ-
ential equations. In [23], the authors consider the existence of multiple positive solutions of systems
of nonlinear Caputo’s fractional differential equations with general separated boundary conditions.

Motivated by the works mentioned above, in this paper we present some existence and uniqueness
results for a class of boundary value problems for implicit fractional differential equations. The
present paper is organized as follows. In Section 2, some notations are introduced and we recall some
preliminaries about fractional calculus and auxiliary results. In Section 3, two results for the problem
(1)–(3) are presented: the first one is based on the Banach contraction principle, and the second
one on Schaefer’s fixed point theorem. In Section 4, we present Ulam–Hyers stability result for the
problem (1)–(2). Finally, in the last Section, we give two examples to illustrate the applicability of
our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. Let T > 0, J = [0, T ]. By C(J,R) we denote the Banach space of continuous functions
from J into R with the norm

∥y∥∞ = sup
{
|y(t)| : t ∈ J

}
;

L1(J,R) is the space of Lebesgue-integrable functions w : J → R with the norm

∥w∥1 =

T∫
0

|w(s)| ds,

ACn(J) =
{
h : J → R : h, h′, . . . h(n−1) ∈ C(J,R) and h(n−1) is absolutely continuous

}
.

In what follows, α > 0. Consider the set of functions

PC(J,R) =
{
y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . ,m

and there exist y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)
}
.

PC(J,R) is a Banach space with the norm
∥y∥PC = sup

t∈J
|y(t)|.
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Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . ,m.

Definition 2.1 ([21, 25]). The fractional (arbitrary) order integral of the function h ∈ L1([0, T ],R+)
of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

t∫
0

(t− s)α−1h(s) ds,

where Γ is the Euler’s gamma function defined by Γ(α) =
∞∫
0

tα−1e−t dt, α > 0.

Definition 2.2 ([21, 25]). For a function h ∈ ACn(J), the Caputo’s fractional-order derivative of
order α is defined by

(cDα
0 h)(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1h(n)(s) ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3 ([21, 25]). Let α ≥ 0 and n = [α] + 1. Then

Iα(cDα
0 f(t)) = f(t)−

n−1∑
k=0

fk(0)

k!
tk.

Lemma 2.4 ([21]). Let α > 0. Then the differential equation
cDα

0 k(t) = 0

has solutions k(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Lemma 2.5 ([21]). Let α > 0. Then

IαcDα
0 k(t) = k(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

D. Bainov and S. Hristova [5] introduced the following integral inequality of Gronwall type for
piecewise continuous functions which can be used in the sequel.

Lemma 2.6. Let for t ≥ t0 ≥ 0 the inequality

x(t) ≤ a(t) +

t∫
t0

g(t, s)x(s) ds+
∑

t0<tk<t

βk(t)x(tk)

holds, where βk(t) (k ∈ N) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),R+), a is nonde-
creasing and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and nondecreasing with respect
to t for any fixed s ≥ t0. Then, for t ≥ t0, the following inequality is valid:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk(t)) exp
( t∫

t0

g(t, s) ds

)
.

Definition 2.7. A function y ∈ PC(J,R) ∩ AC(Jk) is said to be a solution of (1)–(3) if y satisfies
the equation cDα

tk
y(t) = f(t, y(t), cDα

tk
y(t)) on Jk and the conditions

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c.
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Here, we adopt the concepts from Wang et al. [30] and introduce Ulam’s type stability concepts
for the problem (1)–(3). Let z ∈ PC(J,R), ε > 0, ψ > 0, and φ ∈ PC(J,R+) be nondecreasing. We
consider the set of inequalities{∣∣cDαz(t)− f

(
t, z(t), cDαz(t)

)∣∣ ≤ ε, t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ ε, k = 1, . . . ,m,
(4)

{∣∣cDαz(t)− f
(
t, z(t), cDαz(t)

)∣∣ ≤ φ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ ψ, k = 1, . . . ,m,
(5)

and {∣∣cDαz(t)− f
(
t, z(t), cDαz(t)

)∣∣ ≤ εφ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,∣∣∆y(tk)− Ik
(
y(t−k )

)∣∣ ≤ εψ, k = 1, . . . ,m.
(6)

Definition 2.8. The problem (1)–(3) is Ulam–Hyers stable if there exists a real number cf,m > 0
such that for each ε > 0 and for each solution z ∈ PC(J,R) ∩AC(Jk) of (4) there exists a solution y
of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,mε, t ∈ J.

Definition 2.9. The problem (1)–(3) is generalized Ulam–Hyers stable if there exists θf,m ∈
C(R+,R+), θf,m(0) = 0 such that for each solution z ∈ PC(J,R) ∩ AC(Jk) of (4) there exists a
solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ θf,m(ε), t ∈ J.

Definition 2.10. The problem (1)–(3) is Ulam–Hyers–Rassias stable with respect to (φ,ψ) if there
exists cf,m,φ > 0 such that for each ε > 0 and for each solution z ∈ PC(J,R) ∩ AC(Jk) of (6) there
exists a solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,m,φε(φ(t) + ψ), t ∈ J.

Definition 2.11. The problem (1)–(3) is generalized Ulam–Hyers–Rassias stable with respect to
(φ,ψ) if there exists cf,m,φ > 0 such that for each solution z ∈ PC(J,R) ∩AC(Jk) of (5) there exists
a solution y of the problem (1)–(3) with

|z(t)− y(t)| ≤ cf,m,φ(φ(t) + ψ), t ∈ J.

Remark 2.12. It is clear that:
(i) Definition 2.8 implies Definition 2.9;
(ii) Definition 2.10 implies Definition 2.11;
(iii) Definition 2.10 for φ(t) = ψ = 1 implies Definition 2.8.

Remark 2.13. A function z ∈ PC(J,R) ∩ AC(Jk) is a solution of (6) if and only if there are σ ∈
PC(J,R) and a sequence σk, k = 1, . . . ,m (which depend on z), such that

(i) |σ(t)| ≤ εφ(t), t ∈ (tk, tk+1], k = 1, . . . ,m, and |σk| ≤ εψ, k = 1, . . . ,m;
(ii) cDαz(t) = f(t, z(t), cDαz(t)) + σ(t), t ∈ (tk, tk+1], k = 1, . . . ,m;
(iii) ∆z(tk) = Ik(z(t

−
k )) + σk, k = 1, . . . ,m.

One can have similar remarks for inequalities (4) and (5).

Theorem 2.14 ([18]) (Ascoli–Arzela theorem). Let A ⊂ C(J,R). A is relatively compact (i.e., A is
compact) if:

1. A is uniformly bounded, i.e., there exists M > 0 such that
|f(x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous, i.e., for every ε > 0, there exists δ > 0 such that for each x, x ∈ J ,
|x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.
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Theorem 2.15 ([17]) (The Banach fixed point theorem). Let C be a non-empty closed subset of a
Banach space X. Then any contraction mapping T of C into itself has a unique fixed point.

Theorem 2.16 ([17]) (The Schaefer’s fixed point theorem). Let X be a Banach space and N : X −→ X
be a completely continuous operator. If the set E = {y ∈ X : y = λNy for some λ ∈ (0, 1)} is bounded,
then N has fixed points.

3. The Existence of Solutions

To prove the existence of solutions to (1)–(3), we need the following auxiliary Lemma.

Lemma 3.1. Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y ∈ PC(J,R) is a solution
of the fractional integral equation

y(t) =



−1

a+b

[
b

m∑
i=1

Ii(y(t
−
i ))+

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T−s)α−1σ(s) ds−c
]

+
1

Γ(α)

t∫
0

(t− s)α−1σ(s) ds, if t ∈ [0, t1]

−1

a+b

[
b

m∑
i=1

Ii(y(t
−
i ))+

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T−s)α−1σ(s) ds−c
]

+

k∑
i=1

Ii(y(t
−
i ))+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds, if t ∈ (tk, tk+1],

(7)

where k = 1, . . . ,m, if and only if y ∈ PC(J,R) ∩AC(Jk) is a solution of the fractional BVP
cDαy(t) = σ(t), t ∈ Jk, (8)

∆y
∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m, (9)

ay(0) + by(T ) = c. (10)

Proof. Assume that y satisfies (8)–(10). If t ∈ [0, t1], then
cDαy(t) = σ(t).

By Lemma 2.5

y(t) = c0 + Iασ(t) = c0 +
1

Γ(α)

t∫
0

(t− s)α−1σ(s) ds

for c0 ∈ R. If t ∈ (t1, t2], then Lemma 2.5 implies

y(t) = y(t+1 ) +
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds = ∆y
∣∣
t=t1

+ y(t−1 ) +
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds

= I1(y(t
−
1 )) +

[
c0 +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds

]
+

1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds

= c0 + I1(y(t
−
1 )) +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t∫
t1

(t− s)α−1σ(s) ds.
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If t ∈ (t2, t3], then from Lemma 2.5 we get

y(t) = y(t+2 ) +
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds = ∆y
∣∣
t=t2

+ y(t−2 ) +
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds

= I2(y(t
−
2 )) +

[
c0 + I1(y(t

−
1 )) +

1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t2∫
t1

(t2 − s)α−1σ(s) ds

]

+
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds

= c0 +
[
I1(y(t

−
1 )) + I2(y(t

−
2 ))

]
+

[
1

Γ(α)

t1∫
0

(t1 − s)α−1σ(s) ds+
1

Γ(α)

t2∫
t1

(t2 − s)α−1σ(s) ds

]

+
1

Γ(α)

t∫
t2

(t− s)α−1σ(s) ds.

Repeating the process in this way, the solution y(t) for t ∈ (tk, tk+1], where k = 1, . . . ,m, can be
written as

y(t) = c0 +
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds.

Applying the boundary condition ay(0) + by(T ) = c we get

c = c0(a+ b) + b
m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds.

Then

c0 =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds− c

]
.

Thus, if t ∈ (tk, tk+1], where k = 1, . . . ,m, then

y(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1σ(s) ds− c

]

+
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds.

Conversely, assume that y satisfies the impulsive fractional integral equation (7). If t ∈ [0, t1], then
ay(0) + by(T ) = c and, using the fact that cDα is the left inverse of Iα, we get

cDαy(t) = σ(t) for each t ∈ [0, t1].

If t ∈ (tk, tk+1], k = 1, . . . ,m, using the fact that cDαC = 0, where C is a constant, we get
cDαy(t) = σ(t) for each t ∈ (tk, tk+1].

Also, we can easily show that
∆y

∣∣
t=tk

= Ik(y(t
−
k )), k = 1, . . . ,m.

We are now in a position to state and prove our existence result for the problem (1)–(3) based on
the Banach fixed point theorem. �
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Theorem 3.2. Assume
(H1) the function f : J × R× R → R is continuous;
(H2) there exist constants K > 0 and 0 < L < 1 such that∣∣f(t, u, v)− f(t, u, v)

∣∣ ≤ K|u− u|+ L|v − v|
for any u, v, u, v ∈ R and t ∈ J ;

(H3) there exists a constant l̃ > 0 such that∣∣Ik(u)− Ik(u)
∣∣ ≤ l̃ |u− u|

for each u, u ∈ R and k = 1, . . . ,m.
If ( |b|

|a+ b|
+ 1

)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
< 1, (11)

then there exists a unique solution for the BVP (1)–(3).
Proof. Transform the problem (1)–(3) into a fixed point problem. Consider the operatorN :PC(J,R)→
PC(J,R) defined by

N(y)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(y(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− c

]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+
∑

0<tk<t

Ik(y(t
−
k )), (12)

where g ∈ C(J,R) is such that
g(t) = f

(
t, y(t), g(t)

)
.

Clearly, the fixed points of operator N are solutions of problem (1)–(3).
Let u,w ∈ PC(J,R). Then for t ∈ J we have

∣∣N(u)(t)−N(w)(t)
∣∣ ≤ |b|

|a+ b|

[ m∑
i=1

∣∣Ii(u(t−i ))− Ii(w(t
−
i ))

∣∣
+

1

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1|g(s)− h(s)| ds+ 1

Γ(α)

T∫
tm

(T − s)α−1|g(s)− h(s)| ds
]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1|g(s)− h(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|g(s)− h(s)| ds+
∑

0<tk<t

∣∣Ik(u(t−k ))− Ik(w(t
−
k ))

∣∣,
where g, h ∈ C(J,R) are such that

g(t) = f
(
t, u(t), g(t)

)
and

h(t) = f
(
t, w(t), h(t)

)
.

By (H2), we have
|g(t)− h(t)| =

∣∣f(t, u(t), g(t))− f(t, w(t), h(t))
∣∣ ≤ K|u(t)− w(t)|+ L|g(t)− h(t)|.

Then
|g(t)− h(t)| ≤ K

1− L
|u(t)− w(t)|.

Therefore, for each t ∈ J,
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∣∣N(u)(t)−N(w)(t)
∣∣ ≤ |b|

|a+ b|

[ m∑
k=1

l̃
∣∣u(t−k )− w(t−k )

∣∣
+

K

(1− L)Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1|u(s)− w(s)| ds+ K

(1− L)Γ(α)

T∫
tm

(T − s)α−1|u(s)− w(s)| ds
]

+
K

(1− L)Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1|u(s)− w(s)| ds

+
K

(1− L)Γ(α)

t∫
tk

(t− s)α−1|u(s)− w(s)| ds+
m∑

k=1

l̃
∣∣u(t−k )− w(t−k )

∣∣
≤

( |b|
|a+ b|

+ 1
)[
ml̃ +

mKTα

(1− L)Γ(α+ 1)
+

KTα

(1− L)Γ(α+ 1)

]
∥u− w∥PC .

Thus
∥N(u)−N(w)∥PC ≤

( |b|
|a+ b|

+ 1
)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
∥u− w∥PC .

By (11), the operator N is a contraction. Hence, by the Banach contraction principle, N has a unique
fixed point which is a unique solution of the problem (1)–(3). �

Our second result is based on the Schaefer’s fixed point theorem.

Theorem 3.3. Assume that (H1), (H2) and the following conditions are fulfilled:
(H4) there exist p, q, r ∈ C(J,R+) with r∗ = supt∈J r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R;

(H5) the functions Ik : R → R are continuous and there exist constants M∗, N∗ > 0 such that
|Ik(u)| ≤M∗|u|+N∗ for each u ∈ R, k = 1, . . . ,m.

If ( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
< 1, (13)

then the BVP (1)–(3) has at least one solution on J .

Proof. Let the operator N be defined by (12). We shall use the Schaefer’s fixed point theorem to
prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {un} be a sequence such that un → u in PC(J,R). Then for each
t ∈ J∣∣N(un)(t)−N(u)(t)

∣∣ ≤ |b|
|a+ b|

[ m∑
i=1

∣∣Ik(un(t−k ))− Ik(u(t
−
k ))

∣∣
+

1

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1|gn(s)− g(s)| ds+ 1

Γ(α)

T∫
tm

(T − s)α−1|gn(s)− g(s)| ds
]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1|gn(s)− g(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|gn(s)− g(s)| ds+
∑

0<tk<t

∣∣Ik(un(t−k ))− Ik(u(t
−
k ))

∣∣, (14)

where gn, g ∈ C(J,R) are such that
gn(t) = f

(
t, un(t), gn(t)

)
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and
g(t) = f

(
t, u(t), g(t)

)
.

By (H2), we have
|gn(t)− g(t)| =

∣∣f(t, un(t), gn(t))− f(t, u(t), g(t))
∣∣ ≤ K|un(t)− u(t)|+ L|gn(t)− g(t)|.

Then
|gn(t)− g(t)| ≤ K

1− L
|un(t)− u(t)|.

Since un → u, we get gn(t) → g(t) as n → ∞ for each t ∈ J . Let η > 0 be such that, for each t ∈ J ,
we have |gn(t)| ≤ η and |g(t)| ≤ η. Then we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1
[
|gn(s)|+ |g(s)|

]
≤ 2η(t− s)α−1

and
(tk − s)α−1|gn(s)− g(s)| ≤ (tk − s)α−1

[
|gn(s)|+ |g(s)|

]
≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s→ 2η(t− s)α−1 and s→ 2η(tk − s)α−1 are integrable on [0, t], then
the Lebesgue Dominated Convergence Theorem and (14) imply that∣∣N(un)(t)−N(u)(t)

∣∣ −→ 0 as n→ ∞

and hence ∥∥N(un)−N(u)
∥∥
PC

−→ 0 as n→ ∞.

Consequently, N is continuous.
Step 2: F maps bounded sets into bounded sets in PC(J,R). Indeed, it is enough to show that for

any η∗ > 0 there exists a positive constant ℓ such that for each u ∈ Bη∗ = {u ∈ PC(J,R) : ∥u∥PC ≤
η∗}, ∥N(u)∥PC ≤ ℓ. For each t ∈ J we have

N(u)(t) =
−1

a+ b

[
b

m∑
i=1

Ii(u(t
−
i )) +

b

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
b

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− c

]

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+
∑

0<tk<t

Ik(u(t
−
k )), (15)

where g ∈ C(J,R) is such that
g(t) = f

(
t, u(t), g(t)

)
.

By (H4), for each t ∈ J we have
|g(t)| =

∣∣f(t, u(t), g(t))∣∣ ≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)| ≤ p∗ + q∗η∗ + r∗|g(t)|,

where p∗ = sup
t∈J

p(t) and q∗ = sup
t∈J

q(t). Then

|g(t)| ≤ p∗ + q∗η∗

1− r∗
:=M.

Thus (15) implies

|N(u)(t)| ≤ |b|
|a+ b|

[
m(M∗|u|+N∗) +

mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

+
mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)
+m

(
M∗|u|+N∗)

≤
( |b|
|a+ b|

+ 1
)[
m(M∗|u|+N∗) +

(m+ 1)MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

.

Therefore

∥N(u)∥PC ≤
( |b|
|a+ b|

+ 1
)[
m(M∗η∗ +N∗) +

(m+ 1)MTα

Γ(α+ 1)

]
+

|c|
|a+ b|

:= ℓ.
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Step 3: F maps bounded sets into equicontinuous sets of PC(J,R). Let τ1, τ2 ∈ J , τ1 < τ2, Bη∗

be a bounded set of PC(J,R) as in Step 2, and let u ∈ Bη∗ . Then

∣∣N(u)(τ2)−N(u)(τ1)
∣∣ ≤ 1

Γ(α)

τ1∫
0

∣∣(τ2 − s)α−1 − (τ1 − s)α−1
∣∣ |g(s)| ds

+
1

Γ(α)

τ2∫
τ1

∣∣(τ2 − s)α−1
∣∣ |g(s)| ds+ ∑

0<tk<τ2−τ1

∣∣Ik(u(t−k ))∣∣
≤ M

Γ(α+ 1)

[
2(τ2 − τ1)

α + (τα2 − τα1 )
]
+ (τ2 − τ1)

(
M∗|u|+N∗)

≤ M

Γ(α+ 1)

[
2(τ2 − τ1)

α + (τα2 − τα1 )
]
+ (τ2 − τ1)

(
M∗η∗ +N∗).

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1
to 3, together with the Ascoli–Arzela theorem, we can conclude that N : PC(J,R) → PC(J,R) is
completely continuous.

Step 4: A priori bounds. Now it remains to show that the set
E =

{
u ∈ PC(J,R) : u = λN(u) for some 0 < λ < 1

}
is bounded. Let u ∈ E, then u = λN(u) for some 0 < λ < 1. Thus for each t ∈ J

u(t) =
−1

a+ b

[
bλ

m∑
i=1

Ii(u(t
−
i )) +

bλ

Γ(α)

m∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds+
bλ

Γ(α)

T∫
tm

(T − s)α−1g(s) ds− cλ

]

+
λ

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1g(s) ds+
λ

Γ(α)

t∫
tk

(t− s)α−1g(s) ds+ λ
∑

0<tk<t

Ik(u(t
−
k )). (16)

By (H4), for each t ∈ J we have
|g(t)| =

∣∣f(t, u(t), g(t))∣∣ ≤ p(t) + q(t)|u(t)|+ r(t)|g(t)| ≤ p∗ + q∗|u(t)|+ r∗|g(t)|.

Thus
|g(t)| ≤ 1

1− r∗
(
p∗ + q∗|u(t)|

)
≤ 1

1− r∗
(
p∗ + q∗∥u∥PC

)
.

This implies, by (16) and (H5), that for each t ∈ J

|u(t)| ≤ |b|
|a+ b|

[
m
(
M∗∥u∥PC +N∗)+ mTα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+
Tα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)

]
+

|c|
|a+ b|

+
mTα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+
Tα(p∗ + q∗∥u∥PC)

(1− r∗)Γ(α+ 1)
+m

(
M∗∥u(t)∥PC +N∗).

Then

∥u∥PC ≤
( |b|
|a+ b|

+ 1
)[
m
(
M∗∥u(t)∥PC +N∗)+ (m+ 1)(p∗ + q∗∥u∥PC)T

α

(1− r∗)Γ(α+ 1)

]
+

|c|
|a+ b|

≤
( |b|
|a+ b|

+ 1
)(
mN∗ +

(m+ 1)p∗Tα

(1− r∗)Γ(α+ 1)

)
+

|c|
|a+ b|

+
( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
∥u∥PC .

Thus [
1−

( |b|
|a+ b|

+ 1
)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)]
∥u∥PC

≤
( |b|
|a+ b|

+ 1
)[ |c|

|a+ b|
+mN∗ +

(m+ 1)p∗Tα

(1− r∗)Γ(α+ 1)

]
.
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Finally, by (13), we obtain

∥u∥PC ≤
( |b|
|a+b| + 1)

[
mN∗ + (m+1)p∗Tα

(1−r∗)Γ(α+1) +
|c|

|a+b|
][

1− ( |b|
|a+b| + 1)(mM∗ + (m+1)q∗Tα

(1−r∗)Γ(α+1) )
] := R.

This shows that the set E is bounded. As a consequence of the Schaefer’s fixed point theorem, we
deduce that N has a fixed point which is a solution of the problem (1)–(3). �

4. Ulam–Hyers Rassias Stability

Now, we state the following Ulam–Hyers–Rassias stable result.

Theorem 4.1. Assume that (H1)–(H3), (11) and the following condition are satisfied:
(H6) there exists a nondecreasing function φ ∈ PC(J,R+) and there exists λφ > 0 such that for

any t ∈ J :
Iαφ(t) ≤ λφφ(t).

Then the problem (1)–(2) is Ulam–Hyers–Rassias stable with respect to (φ,ψ).

Proof. Let z ∈ PC(J,R) ∩AC(Jk) be a solution of (6). Denote by y the unique solution of the BVP

cDα
tk
y(t) = f

(
t, y(t), cDα

tk
y(t)

)
, t ∈ (tk, tk+1], k = 1, . . . ,m,

∆y(tk) = Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

y(0) = z(0).

Using Lemma 3.1, for each t ∈ (tk, tk+1] we obtain

y(t) = y(0) +
k∑

i=1

Ii(y(t
−
i )) +

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1g(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1g(s) ds, t ∈ (tk, tk+1],

where g ∈ C(J,R) is such that
g(t) = f(t, y(t), g(t)).

Since z is a solution of (6), by Remark 2.13, we have{
cDα

tk
z(t) = f

(
t, z(t), cDα

tk
z(t)

)
+ σ(t), t ∈ (tk, tk+1], k = 1, . . . ,m,

∆z(tk) = Ik(z(t
−
k )) + σk, k = 1, . . . ,m.

(17)

Clearly, the solution of (17) is given by

z(t) = z(0)+
k∑

i=1

Ii(z(t
−
i ))+

k∑
i=1

σi+
1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1h(s) ds

+
1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti−s)α−1σ(s) ds+
1

Γ(α)

t∫
tk

(t−s)α−1h(s) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1σ(s) ds, t ∈ (tk, tk+1],

where h ∈ C(J,R) is such that
h(t) = f

(
t, z(t), h(t)

)
.
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Hence for each t ∈ (tk, tk+1] it follows that

|z(t)− y(t)| ≤
k∑

i=1

|σi|+
k∑

i=1

∣∣Ii(z(t−i ))− Ii(y(t
−
i ))

∣∣
+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|σ(s)| ds

+
1

Γ(α)

t∫
tk

(t− s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

t∫
tk

(t− s)α−1|σ(s)|.

Thus

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελφφ(t) +
k∑

i=1

l̃
∣∣z(t−i )− y(t−i )

∣∣
+

1

Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|h(s)− g(s)| ds+ 1

Γ(α)

t∫
tk

(t− s)α−1|h(s)− g(s)| ds.

By (H2), we get

|h(t)− g(t)| =
∣∣f(t, z(t), h(t))− f

(
t, y(t), g(t)

)∣∣ ≤ K|z(t)− y(t)|+ L|g(t)− h(t)|.

Then

|h(t)− g(t)| ≤ K

1− L
|z(t)− y(t)|.

Therefore, for each t ∈ J,

|z(t)− y(t)| ≤ mεψ + (m+ 1)ελφφ(t) +
k∑

i=1

l̃
∣∣z(t−i )− y(t−i )

∣∣
+

K

(1− L)Γ(α)

k∑
i=1

ti∫
ti−1

(ti − s)α−1|z(s)− y(s)| ds

+
K

(1− L)Γ(α)

t∫
tk

(t− s)α−1|z(s)− y(s)| ds.

Thus

|z(t)−y(t)| ≤
k∑

i=1

l̃
∣∣z(t−i )−y(t−i )∣∣+ε(ψ+φ(t))(m+(m+1)λφ

)
+

K(m+ 1)

(1− L)Γ(α)

t∫
0

(t− s)α−1|z(s)− y(s)| ds.

Applying Lemma 2.6, we get

|z(t)− y(t)| ≤ ε(ψ + φ(t))(m+ (m+ 1)λφ)

×
[ ∏
0<tk<t

(1 + l̃) exp
( t∫

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1 ds

)]
≤ cφε(ψ + φ(t)),
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where

cφ = (m+ (m+ 1)λφ)

[ m∏
k=1

(1 + l̃) exp
( K(m+ 1)Tα

(1− L)Γ(α+ 1)

)]
=

(
m+ (m+ 1)λφ

)[
(1 + l̃) exp

( K(m+ 1)Tα

(1− L)Γ(α+ 1)

)]m
.

Thus, the problem (1)–(2) is Ulam–Hyers–Rassias stable with respect to (φ,ψ). �

Next, we present the following Ulam–Hyers stability result.

Theorem 4.2. Assume that (H1)–(H3) and (11) are satisfied. Then the problem (1)–(2) is Ulam–
Hyers stable.

Proof. Let z ∈ PC(J,R) ∩AC(Jk) be a solution of (4). Denote by y the unique solution of the BVP

cDα
tk
y(t) = f

(
t, y(t), cDα

tk
y(t)

)
, t ∈ (tk, tk+1], k = 1, . . . ,m,

∆y(tk) = Ik(y(t
−
k )), k = 1, . . . ,m,

ay(0) + by(T ) = c,

y(0) = z(0).

Similarly as in the proof of Theorem 4.1 we get the inequality

|z(t)− y(t)| ≤
k∑

i=1

l̃
∣∣(z(t−i ))− (y(t−i ))

∣∣
+mε+

Tαε(m+ 1)

Γ(α+ 1)
+

K(m+ 1)

(1− L)Γ(α)

t∫
0

(t− s)α−1|z(s)− y(s)| ds.

Applying Lemma 2.6, we obtain

|z(t)− y(t)| ≤ ε
(mΓ(α+ 1) + Tα(m+ 1)

Γ(α+ 1)

)
×

[ ∏
0<tk<t

(1 + l̃) exp
( t∫

0

K(m+ 1)

(1− L)Γ(α)
(t− s)α−1 ds

)]
≤ cφε,

where

cφ =
(mΓ(α+1)+Tα(m+1)

Γ(α+1)

)[ m∏
k=1

(1+ l̃) exp
( K(m+1)Tα

(1−L)Γ(α+1)

)]
=

(mΓ(α+1)+Tα(m+1)

Γ(α+1)

)[
(1+ l̃) exp

( K(m+1)Tα

(1−L)Γ(α+1)

)]m
.

which completes the proof of the theorem. �

Moreover, if we set γ(ε) = cε, γ(0) = 0, then the problem (1)–(2) is generalized Ulam–Hyers stable.

Remark 4.3. Our results for the boundary value problem (1)–(3) are appropriate for the following
problems:

• Initial value problem: a = 1, b = 0, c = 0.

• Terminal value Problem: a = 0, b = 1, c is arbitrary.
• Anti-periodic problem: a = 1, b = 1, c = 0.

However, our results are not applicable for the periodic problem, i.e., for a = 1, b = −1, c = 0.
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5. Examples

Example 1. Consider the following impulsive boundary value problem:
cD

1
2
tk
y(t)=

1

5et+2(1+|y(t)|+|cD
1
2
tk
y(t)|)

for each t∈J0 ∪ J1, (18)

∆y
∣∣
t= 1

2

=
|y( 12

−
)|

10 + |y( 12
−
)|
, (19)

2y(0)− y(1) = 3, (20)

where J0 = [0, 12 ], J1 = ( 12 , 1], t0 = 0 and t1 = 1
2 . Set

f(t, u, v) =
1

5et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For each u, v, u, v ∈ R and t ∈ [0, 1]∣∣f(t, u, v)− f(t, u, v)

∣∣ ≤ 1

5e2
(
|u− u|+ |v − v|

)
.

Hence the condition (H2) is satisfied with K = L = 1
5e2 .

Let
I1(u) =

u

10 + u
, u ∈ [0,∞).

Let u, v ∈ [0,∞). Then we have∣∣I1(u)− I1(v)
∣∣ = ∣∣∣ u

10 + u
− v

10 + v

∣∣∣ = 10|u− v|
(10 + u)(10 + v)

≤ 1

10
|u− v|.

Thus the condition( |b|
|a+ b|

+ 1
)[
ml̃ +

(m+ 1)KTα

(1− L)Γ(α+ 1)

]
= 2

[ 1

10
+

2
5e2

(1− 1
5e2 )Γ(

3
2 )

]
= 2

[ 4

(5e2 − 1)
√
π
+

1

10

]
< 1

is satisfied with T = 1, a = 2, b = −1, c = 3, m = 1 and l̃ = 1
10 . From Theorem 3.2 it follows that

the problem (18)–(20) has a unique solution on J .
Set for any t ∈ [0, 1], φ(t) = t, ψ = 1. Since

I
1
2 φ(t) =

1

Γ( 12 )

t∫
0

(t− s)
1
2−1s ds ≤ 2t√

π
,

the condition (H6) is satisfied with λφ = 2√
π

. From this it follows that the problem (18)–(19) is
Ulam–Hyers–Rassias stable with respect to (φ,ψ).

Example 2. Consider the following impulsive anti-periodic problem:

cD
1
2
tk
y(t)=

2+|y(t)|+|cD
1
2
tk
y(t)|

108et+3(1+|y(t)|+|cD
1
2
tk
y(t)|)

for each t∈J0 ∪ J1, (21)

∆y
∣∣
t= 1

3

=
|y( 13

−
)|

6 + |y( 13
−
)|
, (22)

y(0) = −y(1), (23)

where J0 = [0, 13 ], J1 = ( 13 , 1], t0 = 0, and t1 = 1
3 . Set

f(t, u, v) =
2 + |u|+ |v|

108et+3(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous. For any u, v, u, v ∈ R and t ∈ [0, 1]∣∣f(t, u, v)− f(t, u, v)
∣∣ ≤ 1

108e3
(
|u− u|+ |v − v|

)
.
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Hence the condition (H2) is satisfied with K = L = 1
108e3 . For each t ∈ [0, 1] we have

|f(t, u, v)| ≤ 1

108et+3

(
2 + |u|+ |v|

)
.

Thus the condition (H4) is satisfied with p(t) = 1
54et+3 and q(t) = r(t) = 1

108et+3 .
Let

I1(u) =
u

6 + u
, u ∈ [0,∞).

For each u ∈ [0,∞) we have
|I1(u)| ≤

1

6
u+ 1.

Thus the condition (H5) is satisfied with M∗ = 1
6 and N∗ = 1. Therefore the condition( |b|

|a+ b|
+ 1

)(
mM∗ +

(m+ 1)q∗Tα

(1− r∗)Γ(α+ 1)

)
=

3

2

(1
6
+

4

(108e3 − 1)
√
π

)
< 1,

is satisfied with T = 1, a = 1, b = 1, c = 0, m = 1 and q∗(t) = r∗(t) = 1
108e3 . From Theorem 3.3 it

follows that the problem (21)–(23) has at least one solution on J .
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ON THE CONVERGENCE RATE ANALYSIS OF
ONE DIFFERENCE SCHEME FOR BURGERS’ EQUATION



Abstract. We consider an initial boundary value problem for the 1D nonlinear Burgers’ equation.
A three-level finite difference scheme is studied. Two-level scheme is used to find the values of unknown
function on the first level. The obtained algebraic equations are linear with respect to the values of the
unknown function for each new level. It is proved that the scheme is convergent at rate O(τk−1+hk−1)
in discrete L2-norm when an exact solution belongs to the Sobolev space W k

2 , 2 < k ≤ 3.
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ÁÖÒÂÄÒÓÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÃÀÓÌÖ-
ËÉ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ. ÛÄÓßÀÅËÉËÉÀ ÓÀÌÛÒÉÀÍÉ ÓÀÓÒÖË-ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÀ. ÖÝÍÏÁÉ
×ÖÍØÝÉÉÓ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌÏÓÀÞÄÁÍÀÃ ÐÉÒÅÄË ÛÒÄÆÄ ÏÒÛÒÉÀÍÉ ÓØÄÌÀÀ ÂÀÌÏÚÄÍÄÁÖËÉ. ÌÉÙÄ-
ÁÖËÉ ÀËÂÄÁÒÖËÉ ÂÀÍÔÏËÄÁÄÁÉ ßÒ×ÉÅÉÀ ÖÝÍÏÁÉ ×ÖÍØÝÉÉÓ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌÉÌÀÒÈ ÚÏÅÄË
ÀáÀË ÛÒÄÆÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ, ÒÏÌ ÈÖ ÆÖÓÔÉ ÀÌÏÍÀáÓÍÉ ÌÉÄÊÖÈÅÍÄÁÀ ÓÏÁÏËÄÅÉÓ W k

2 , 2 <
k ≤ 3, ÓÉÅÒÝÄÓ, ÌÀÛÉÍ ÃÉÓÊÒÄÔÖËÉ L2 ÍÏÒÌÉÈ ÓØÄÌÉÓ ÊÒÄÁÀÃÏÁÉÓ ÓÉÜØÀÒÄÀ O(τk−1+hk−1).
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1. introduction

We will study the finite difference method for a numerical solution of initial boundary value problem
for a forced Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f, (x, t) ∈ Q, (1.1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [0, 1], (1.2)

where Q = (0, 1)× (0, T ), and parameter ν = const > 0 defines the kinematic viscosity.
Assume that a solution of this problem belongs to the fractional-order Sobolev space W k

2 (Q), k > 2,
whose norms and seminorms we denote by ∥ · ∥Wk

2 (Q) and | · |Wk
2 (Q), respectively.

Certain numerical methods (Galerkin, least squares, collocation, method of lines, finite differences,
etc.) are devoted to problems posed for Burgers’ equation (see, e.g., [1, 2, 3, 7, 10, 11, 14, 15, 16, 19]).
In some cases, the Hopf–Cole transformation [9, 13] is used before approximation in order to reduce
Burgers’ equation to a linear heat equation.

H. Sun and Z. Z. Sun [19] investigated a three-level difference scheme for the problem (1.1), (1.2)
and ascertained a second-order convergence in the maximum-norm under the assumption that the
exact solution belongs to C4,3(Q).

In the present article, a three-level difference scheme is studied for the problem (1.1), (1.2). All
the obtained algebraic equations are linear with respect to the values of an unknown function on the
upper level. It is proved that the scheme is convergent at rate O(τk−1+hk−1) when an exact solution
belongs to the Sobolev space W k

2 (Q), 2 < k ≤ 3. The error estimate is derived by using the certain
well-known techniques (see, e.g., [18, 4]) that employ the generalized Bramble–Hilbert Lemma. For
the upper layers, the difference equations are the same as in [19] and are obtained by using the well
known approximations for derivatives. For the first layer, the difference equations are constructed with
the help of approximation of ∂(u)2/∂x by the way offered in [5, 6]. In the case of sufficiently smooth
solutions, they represent the second order approximations for obtaining additional initial data. At
the same time, they represent approximation of the equation (1.1) to within the accuracy O(τ + h2) .

Despite the last circumstance, the order of convergence by discrete L2-norm does not decrease and
remains still second order on sufficiently smooth solutions. “The study of the local approximation is
insufficient for determination of the order of the difference approximation and proper evaluation of
the quality of a difference operator” (Samarskii [17, Chapter 2, Section 1.3, Example 1]).

2. A Finite Difference Scheme and Main Results

The finite domain [0, 1] × [0, T ] is divided into rectangle grids by the points (xi, tj) = (ih, jτ),
i = 0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and temporal mesh
sizes, respectively.

Let ω = {xi : i = 0, 1, . . . , n}, ω = {xi : i = 1, 2, . . . , n− 1}, ω+ = {xi : i = 1, 2, . . . , n}.
The value of the mesh function U at the node (xi, tj) is denoted by U j

i , that is, U(ih, jτ) = U j
i .

For the sake of simplicity sometimes we will use notation without subscripts: U j
i = U , U j+1

i = Û ,
U j−1
i = Ǔ . Moreover, let

U
0
=

U1 + U0

2
, U

j
=

U j+1 + U j−1

2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:

(Ui)x =
Ui − Ui−1

h
, (Ui)◦x =

1

2h
(Ui+1 − Ui−1), (Ui)x x =

Ui+1 − 2Ui + Ui−1

h2
,

(U j)t =
U j+1 − U j

τ
, (U j)◦

t
=

U j+1 − U j−1

2τ
, (U j)t t =

U j+1 − 2U j + U j−1

τ2
.

Let H0 be a set of functions defined on the mesh ω and equal to zero at x = 0 and x = 1. On H0

we define the following inner product and norm:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.
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Let, moreover,
(U, V ] =

∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2.

We need the following averaging operators for the functions defined on Q:

Ŝv :=
1

τ

t+h∫
t

v(x, ξ) dξ,
◦
Sv :=

1

2τ

t+h∫
t−h

v(x, ξ) dξ,

P̂v :=
1

h

x+h∫
x

v(ξ, t) dξ, Pv :=
1

h2

x+h∫
x−h

(
h− |x− ξ|

)
v(ξ, t) dξ.

Note that
◦
S ∂v

∂t
= v◦

t
, Ŝ ∂v

∂t
= vt, P ∂2v

∂x2
= vx x, P ∂v

∂x
= P̂vx.

We approximate the problem (1.1), (1.2) by of the difference scheme:

LU j
i = F j

i , i = 1, 2, . . . , n− 1, j = 0, 1, . . . , J − 1, (2.1)
U j
0 = U j

n = 0, j = 0, 1, . . . , J, U0
i = φ(xi), i = 0, 1, . . . , n. (2.2)

where

LU0 := (U0)t +
1

3
ΛU0 − ν(U

0
)x x,

ΛU0 := U0(U
0
)◦
x
+ (U0U

0
)◦
x
, F 0 := Pf

0
,

LU j := (U j)◦
t
+

1

3
ΛU j − ν(U

j
)xx, j = 1, 2, . . . ,

ΛU j = U j(U
j
)◦
x
+ (U jU

j
)◦
x
, F j := Pf

j
.

Theorem 2.1. The finite difference scheme (2.1), (2.2) is uniquely solvable.

Proof. Note that
(Y V◦

x
+ (Y V )◦

x
, V ) = 0, if V ∈ H0. (2.3)

Considering inner products (LU j , U
j
) and (LU0, U

0
), we obtain

1

4τ

(
∥U j+1∥2 − ∥U j−1∥2

)
+ ν∥U j

x ]|2 = (F j , U
j
), j = 1, 2, . . . , (2.4)

1

2τ

(
∥U1∥2 − ∥U0∥2

)
+ ν∥U 0

x ]|2 = (F 0, U
0
). (2.5)

Summing up the equalities (2.4) with respect to j from 1 to k, we get

1

2τ

(
∥Uk+1∥2 + ∥Uk∥2 − ∥U1∥2 − ∥U0∥2

)
+ 2ν

k∑
j=1

∥U j

x ]|2 = 2

k∑
j=1

(F j , U
j
). (2.6)

Adding the equalities (2.5) and (2.6) gives

1

2τ

(
∥Uk+1∥2 + ∥Uk∥2

)
+ 2ν

k∑
j=0

σj∥U
j

x ]|2 =
1

τ
∥U0∥2 + 2

k∑
j=0

σj(F
j , U

j
), k = 1, 2, . . . , (2.7)

where σj = 1 for j ≥ 1 and σ0 = 1/2.
If we rewrite the equality (2.5) in the form

1

2τ

(
∥U1∥2 + ∥U0∥2

)
+ ν∥U 0

x ]|2 =
1

τ
∥U0∥2 + (F 0, U

0
), (2.8)

we will see that the equalities (2.7), (2.8) can be written all in the same key

1

2

(
∥U j+1∥2 + ∥U j∥2

)
+ 2ντ

j∑
k=0

σk∥U
k

x ]|2 = ∥φ∥2 + 2τ

j∑
k=0

σk(F
j , U

j
), j = 0, 1, 2, . . . . (2.9)
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Since the difference scheme (2.1), (2.2) is linear on each new level with respect to the unknown
values, its unique solvability follows directly from (2.9). �

Remark. Let the external source f(x, t) be equal to 0. Then we rewrite (2.9) as

E(U j) + ν

j∑
k=0

σkτ∥U
k

x ∥2 = 0.5∥φ∥2, j = 0, 1, . . . .

The left-hand side of this equality is the energy of the system at time t = tj . As we see, the difference
scheme is energy conservative and, besides, kinetic energy

E(U j) :=
∥U j+1∥2 + ∥U j∥2

4

is monotonically decreasing, i.e.,
E(U j+1) ≤ E(U j) for j ≥ 0.

Theorem 2.2. Let the exact solution of the initial boundary value problem (1.1), (1.2) belong to
W k

2 (Q), 2 < k ≤ 3. Then the convergence rate of the finite difference scheme (2.1), (2.2) is determined
by the estimate

∥U j − uj∥ ≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q),

where c = c(u) denotes the positive constant, independent of h and τ .

The correctness of Theorem 2.2 follows from the consequence of Lemmas 3.1, 4.2 and 4.4, proved
in the next sections.

3. A Priori Estimate of Discretization Error

Let Z := U − u, where u is an exact solution of the problem (1.1), (1.2), and U is a solution of the
finite difference scheme (2.1), (2.2). Substituting U = Z + u into (2.1), (2.2), we obtain

Zj
◦
t
− νZ

j

x x = −1

3
(ΛU j − Λuj) + Ψj , (3.1)

Z0
t − νZ

0

x x = −1

3
(ΛU0 − Λu0) + Ψ0, (3.2)

Z0 = 0, Zj
0 = Zj

n = 0, j = 0, 1, 2, . . . , (3.3)

where Ψj := F j − Luj .
Denote

Bj := ∥Zj∥2 + ∥Zj−1∥2, j = 1, 2, . . . .

Lemma 3.1. For a solution of the problem (3.1)–(3.3), the relations
B1 ≤ ∥τΨ0∥2, (3.4)

Bj+1 ≤ c1B1 + c2τ

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . , (3.5)

are valid, where

c1 = exp
(Tc2∗
3ν

)
, c2 =

c1
2ν

, c∗ = ∥u∥C1(Q).

Proof. Multiplying (3.2) by Z
0, we obtain

(Z0
t , Z

0
) + ν(Z

0

x , Z
0

x ) = −1

3
(ΛU0 − Λu0, Z

0
) + (Ψ0, Z

0
).

Taking into account U0 = u0 we have

ΛU0 − Λu0 = u0Z
0
◦
x + (u0Z

0
)◦
x
,

therefore due to (2.3)
(ΛU0 − Λu0, Z

0
) = 0
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and we get
(Z0

t , Z
0
) + ν(Z

0

x , Z
0

x ) = (Ψ0, Z
0
).

From this, via Z0 = 0, we see that
1

2τ
∥Z1∥2 + ν

4
∥Z1

x ∥2 =
1

2
(Ψ0, Z1),

or
∥Z1∥2 + ντ

2
∥Z1

x ∥2 = (τΨ0, Z1),

where
∥Z1∥2 + ντ

2
∥Z1

x ∥2 ≤ 1

4
∥τΨ0∥2 + ∥Z1∥2

and
∥Z1

x ∥2 ≤ τ

2ν
∥Ψ0∥2,

and also
∥Z1∥2 ≤ ∥τΨ0∥ ∥Z1∥

and
∥Z1∥ ≤ ∥τΨ0∥.

On the basis of the above consideration, we come to the conclusion that (3.4) is true.
Now, let us multiply (3.1) by Z

j scalarly:
1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
+ ν∥Z j

x ]|2 = −1

3
(ΛU j − Λuj , Z

j
) + (Ψj , Z

j
), j = 1, 2, . . . . (3.6)

Noticing in the right-hand side of (3.6) that

ΛU j − Λuj = (U jZ
j
◦
x
+ (U jZ

j
)◦
x
) + (ZjU

j
◦
x
+ (ZjU

j
)◦
x
),

and taking into account (2.3), we obtain

(ΛU j − Λuj , Z
j
) = (Zju j

◦
x
+ (Zju j)◦

x
, Z

j
) = (Zju j

◦
x
, Z

j
)− (Zju j , Z

j
◦
x
) = (ZjZ

j
, u j

◦
x
)− (ZjZ

j
◦
x
, u j).

Applying here the Cauchy–Bunyakovsky inequality, the ε-inequality, and finally the Friedrichs’
inequality

∥V ∥2 ≤ 1

8
∥Vx ]|2,

we obtain∣∣(ΛU j − Λuj , Z
j
)
∣∣ ≤ c∗

(
∥Zj∥ ∥Z j∥+ ∥Zj∥ ∥Z j

x ]|
)

≤ c∗

(ε
2
∥Zj∥2 + 1

2ε
∥Z j∥2 + ε

2
∥Zj∥2 + 1

2ε
∥Z j

x ]|2
)
≤ c∗

(
ε∥Zj∥2 + 9

16ε
∥Z j

x ]|2
)
. (3.7)

Now, let us estimate the second term in the right-hand side of (3.6)

|(Ψj , Z
j
)| ≤ ∥Ψj∥ ∥Z j∥ ≤ ε

2c∗
∥Ψj∥2 + c∗

2ε
∥Z j∥2 ≤ ε

2c∗
∥Ψj∥2 + c∗

16ε
∥Z j

x ]|2. (3.8)

After substituting (3.7) and (3.8) in (3.6), we arrive at
1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
+ ν∥Z j

x ]|2 ≤ c∗

(ε
3
∥Zj∥2 + 3

16ε
∥Z j

x ]|2
)
+

ε

2c∗
∥Ψj∥2 + c∗

16ε
∥Z j

x ]|2

≤ εc∗
3

∥Zj∥2 + ε

2c∗
∥Ψj∥2 + c∗

4ε
∥Z j

x ]|2.

Here choose ε = c∗
4ν . Then we obtain

1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
≤ 1

8ν
∥Ψj∥2 + c2∗

12ν
∥Zj∥2,

that is,

∥Zj+1∥2 − ∥Zj−1∥2 ≤ τ

2ν
∥Ψj∥2 + c2∗τ

3ν
∥Zj∥2, j = 1, 2, . . . . (3.9)

Suppose

a :=
c2∗
3ν

, b :=
1

2ν
.
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From (3.9) we find
Bj+1 ≤ (1 + aτ)Bj + bτ∥Ψj∥2, j = 1, 2, . . . ,

whence

Bj+1 ≤ (1 + aτ)jB1 + bτ(1 + aτ)j−1

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . . (3.10)

Since j ≤ T/τ , we obtain
(1 + aτ)j ≤ (1 + aτ)T/τ ≤ exp(Ta),

and on the basis of (3.10), the validity of (3.5) follows directly. Thus Lemma 3.1 is proved. �

4. Estimation of the Truncation Error

In order to determine the rate of convergence of the finite difference scheme (2.1), (2.2) with the help
of Lemma 3.1, it is sufficient to estimate a truncation error eventuated while replacing a differential
equation by a difference scheme, Ψ. Towards this end, we will need the following result.

Lemma 4.1. Assume that the linear functional l(u) is bounded in W k
2 (E), where k = k + ϵ, k is an

integer, 0 < ϵ ≤ 1, and l(P ) = 0 for every polynomial P of degree k in two variables. Then, there
exists a constant c, independent of u, such that |l(u)| ≤ c|u|Wk

2 (E).

This lemma is a particular case of the Dupont–Scott approximation theorem [12] and represents a
generalization of the Bramble–Hilbert lemma [8] (see, e.g., [18, p. 29]).

Let us introduce the elementary rectangles e = e(x, t) = {(x, t) : |x − xi| ≤ h, |t − tj | ≤ τ},
e0 = (xi−1, xi+1)× (0, τ), Qτ = (0, 1)× (0, τ), Qj = (0, 1)× (tj−1, tj+1).

Lemma 4.2. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W k
2 (Q), 2 < k ≤ 3,

then for the truncation error Ψj = F j − Luj the estimate
∥Ψj∥2 ≤ c(τ + h)2k−3∥u∥2Wk

2 (Qj)
, j ≥ 1,

is true, where the constant c > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):
1

2
P
(
∂uj−1

∂t
+

∂uj+1

∂t
+

(
u
∂u

∂x

)j+1

+
(
u
∂u

∂x

)j−1
)
− ν

2
(uj+1 + uj−1)x x = F j .

With the help of this equality, the expression Ψ can be written in the form

Ψ = χ1 + χ3 +
1

6
χ4 ,

where

χ1 = P
(∂u
∂t

)
+

◦
S
(∂u
∂t

)
,

χ2 :=
1

4
P
(∂(û)2

∂x
+

∂(ǔ)2

∂x

)
− 1

2
(u)2◦

x
, χ4 := 3(u)2◦

x
− 2Λu.

We assert that the following inequalities hold for α = 1, 2, 3:
|χα | ≤ c(τ + h)k−2∥u∥Wk

2 (e), 2 < k ≤ 3. (4.1)
First of all, note that χ1 , as a linear functional with respect to u(x, t), vanishes on the polynomials

of second degree and is bounded in W k
2 , k > 1. Consequently, using Lemma 4.1 and the well known

techniques from [18], we see that the estimate (4.1) for α = 1 is true.
Now, let us note that

χ2 = χ2(u) = ℓ(v) :=
1

2
(P̂

◦
Svx − v◦

x
), v := (u)2.

The linear functional ℓ(v) is bounded for v ∈ W k
2 , k > 2, and vanishes on polynomials of second

degree. For this functional the estimate
|ℓ(v)| ≤ c(τ + h)k−2∥v∥Wk

2 (e), 2 < k ≤ 3, (4.2)
is obtained.
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Since Sobolev space W k
2 (Q), k > 1, is an algebra with respect to a pointwise multiplication,

consequently, ∥uu∥Wk
2 (e) ≤ c∥u∥Wk

2 (e), c = c(u). Therefore, (4.2) proves the validity of (4.1) in the
case where α = 2.

We will present estimates χ3 in a more convenient form. We have
χ3 = 3(u)2◦

x
− u(û+ ǔ)◦

x
− (u(û+ ǔ))◦

x

= 3(u)2◦
x
− u(û− 2u+ ǔ)◦

x
−

(
u(û− 2u+ ǔ)

)
◦
x
− 2uu◦

x
− 2(uu)◦

x

= (u)2◦
x
− 2uu◦

x
− τ2uu

t t
◦
x
− τ2(uut t)◦x,

whence
χ3 = h2u◦

x
ux x − τ2uu

t t
◦
x
− τ2(uut t)◦x := χ′

3
+ χ′′

3
+ χ′′′

3
, (4.3)

since
(u)2◦

x
− 2uu◦

x
= u◦

x
(ui+1 + ui−1)− 2uu◦

x
= h2u◦

x
ux x.

When u ∈ W k
2 (Q), 2 < k ≤ 3, the terms in the right-hand side of (4.3) can be estimated as follows:

|χ′
3
| ≤ h2∥u∥C1(Q)|ux x| ≤ c(τ + h)k−2∥u∥W 2

2 (e)
≤ c(τ + h)k−2∥u∥Wk−2

2 (e),

|χ′′
3
| ≤ τ2∥u∥C1(Q)|ut t

◦
x
| ≤ c(τ + h)k−2∥u∥Wk−2

2 (e),

|χ′′′
3
| = τ2|ui+1ut t

◦
x
+ u◦

x
ut t,i−1| ≤ ∥u∥C1(Q)(|ut t

◦
x
|+ |ut t,i−1|) ≤ c(τ + h)k−2∥u∥Wk−2

2 (e)

and therefore (4.1) is true for α = 3 also.
Finally, (4.1) yields

∥χα∥2 =
∑
x∈ω

h|χα |2 ≤ c(τ + h)2k−3∥u∥2Wk
2 (Qj)

, α = 1, 2, 3,

which completes the proof of Lemma 4.2. �

Lemma 4.3. For any function v ∈ W k
2 (Q), 1 < k ≤ 3, the inequalities

∥v0◦
xt
∥ ≤ c(τ + h)k−3∥v∥Wk

2 (Q), (4.4)

∥v0x x∥ ≤ c(τ + h)k−3∥v∥Wk
2 (Q) (4.5)

are true.

Proof. v0◦
xt

is bounded when v ∈ Wλ
2 (Q), λ > 1, and vanishes on the first degree polynomials. Therefore

for 1 < λ ≤ 2 we have
|v0◦

xt
| ≤ c(τ + h)λ−3∥v∥Wλ

2 (e0),

∥v0◦
xt
∥2 =

∑
ω

h|v0◦
xt
|2 ≤ c(τ + h)2λ−5∥v∥2Wλ

2 (Qτ )
,

which confirms the validity of (4.4) in the case where 1 < k ≤ 2.5 . Further,

|v0◦
xt
| = 1

2τh

∣∣∣∣
τ∫

0

xi+1∫
xi−1

∂2v

∂x∂t
dx dt

∣∣∣∣ ≤ (2τh)−1/2
∥∥∥ ∂2v

∂x∂t

∥∥∥
L2(e0)

,

∥v0◦
xt
∥ ≤ cτ−1/2

∥∥∥ ∂2v

∂x∂t

∥∥∥
L2(Qτ )

. (4.6)

In order to obtain the desired estimate, it is sufficient to use the inequality giving estimate of the
L2-norm of the function in the near-border stripe via its Wλ

2 -norm in the domain (cf. [18, p. 161])

∥v∥L2(Qτ ) ≤ cτ1/2∥v∥Wλ
2 (Q), 0.5 < λ ≤ 1.

This relation along with (4.6) confirms the validity of (4.4) for 2.5 < k ≤ 3.
When 1 < k ≤ 2.5, (4.5) can be proved similarly to the previous case. In the event of 2.5 < k ≤ 3,

we use the relation
|ux x| ≤ |PŜ ∂2u

∂x2
|+ |(u− Ŝ)x x|.
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Here the first term in the right-hand side is estimated again analogously to the previous case, and for
the second term Lemma 4.1 is used. �

Lemma 4.4. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W k
2 (Q), k > 2,

then for the truncation error Ψ0 = F 0 − Lu0 the estimate
∥Ψ0∥ ≤ c(τ + h)k−2∥u∥2Wk

2 (Q), 2 < k ≤ 3,

is true, where the constant c > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

F 0 =
1

2
P(f0 + f1) =

1

2
P
(∂u0

∂t
+

∂u1

∂t

)
+

1

4
P
(
∂(u)2

∂x

∣∣∣
t=0

+
∂(u)2

∂x

∣∣∣
t=τ

)
− νuxx.

Via this equality we rewrite Ψ0 as

Ψ0 = ζ1 −
1

6
ζ2 −

1

2
ζ3, t = 0,

where
ζ1 := P ∂u

∂t
− u0

t , ζ2 := 2(uu◦
x
+ (uu)◦

x
)− 3

2

(
(û)2 + (u)2

)
◦
x
,

ζ3 :=
1

2

(
(û)2 + (u)2

)
◦
x
− 1

2
P
(
∂(u)2

∂x

∣∣∣
t=0

+
∂(u)2

∂x

∣∣∣
t=τ

)
.

(4.7)

We assert that the inequalities
∥ζα∥ ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3, (4.8)
hold for α = 1, 2, 3.

Expression ζ1 can be estimated similarly to χ1 .
Further, notice that

ζ3 = ζ3(u) = I(v) :=
1

2
(v̂ + v)◦

x
− 1

2
P
(∂v̂
∂x

+
∂v

∂x

)
, v := (u)2.

It is easy to verify that I(v), as a linear functional with respect to v, vanishes on the polynomials
of second degree and is bounded when v ∈ W k

2 (Q), k > 2. For that functional we can derive the
following estimate

∥I(v)∥ ≤ c(τ + h)k−2∥v∥Wk
2 (Q), 2 < k ≤ 3.

The latter along with ∥uu∥Wk
2 (Q) ≤ c∥u∥2

Wk
2 (Q)

, k > 1, states the validity of (4.8) in the case α = 3,
as well.

Now, let us pass to the estimation of ζ2. If we take into account that
2uu◦

x
= 2uu◦

x
+ τuu◦

xt
, 2uu◦

x
= (u)2◦

x
− h2u◦

x
uxx,

(4.7) will give

ζ2 = τuu◦
xt

− h2u◦
x
ux x +

1

2

(
4uu− 3(û)2 − (u)2

)
◦
x

= τuu◦
xt

− h2u◦
x
ux x − 1

2

(
2
[
(û)2 − (u)2

]
+
[
(û)2 − 2ûu+ (u)2

])
◦
x

or
ζ2 = τuu◦

xt
− h2u◦

x
uxx − τ(u)2◦

xt
− τ2

2
(ut)

2
◦
x
:= ζ ′2 + ζ ′′2 + ζ ′′′2 + ζ ′′′′2 . (4.9)

In the right-hand side of (4.9), the first and the second terms can be estimated by using Lemma 4.3:
∥ζ ′2∥ ≤ cτ∥u∥C(Q)∥u◦

xt
∥ ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3,

∥ζ ′′2 ∥ ≤ ch∥u∥C(Q)∥uxx∥ ≤ c(τ + h)k−2∥u∥Wk
2 (Q), 2 < k ≤ 3.

The term ζ ′′′2 can be estimated in a similar way, if we make replacement (u)2 := v in it.
Change the term ζ ′′′′2 as follows:
τ2

2
(ut)

2
◦
x
=

τ2

2

(ut)
2
i+1 − (ut)

2
i−1

2h
=

τ2

2

(ut,i+1 − ut,i−1)(ut,i+1 + ut,i−1)

2h
= τ2u◦

xt

ut,i+1 + ut,i−1

2
,
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from which again via Lemma 4.3 we get
∥ζ ′′′′2 ∥ ≤ cτ |u◦

xt
| ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3.

Finally, all of these estimates confirm the validity of (4.8) in the case α = 2.
The inequalities (4.8) prove Lemma 4.4. �
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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÀÒÀßÒ×ÉÅÉ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏ-
ËÄÁÄÁÉÓÈÅÉÓ, ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÀáËÏÓ ÀÒÉÀÍ ßÒ×ÉÅ ÂÀÍÔÏËÄÁÄÁÈÀÍ, ÃÀÃÂÄÍÉ-
ËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1. Introduction and Preliminaries
Consider the differential equation

y(n) = α0p(t)y| ln |y||σ, (1.1)
where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤
+∞1.

A solution y of the equation (1.1) is called a Pω(λ0)-solution, if it is defined on the interval
[ty, ω[⊂ [a, ω[ , and satisfies the conditions:

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 0, 1, . . . , n− 1), lim

t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0. (1.2)

For each such solution, the representation y(t)| ln |y(t)|| = |y(t)|1+o(1) sign y(t) as t ↑ ω,
holds. Therefore, when we study these solutions, the equation (1.1) is asymptotically close
to linear differential equations

y(n) = α0p(t)y, (1.3)
such asymptotic behavior of solutions has been studied extensively (see, e.g., [9, Chapter 1]).

For n = 2 and any σ ∈ R, asymptotic behavior as t ↑ ω of all possible types of Pω(λ0)-
solutions of the differential equation (1.1) was studied in [1, 2, 3, 5, 7].

We introduce the following auxiliary notation:
a0k = (n− k)λ0 − (n− k − 1) (k = 1, . . . , n) for λ0 ∈ R,

πω(t) = t− ω, if ω < +∞,

IA(t) =

t∫
A

[πω(τ)]
n−1p(τ) dτ,

A = ω, if
ω∫

a

|πω(τ)|n−1p(τ) dτ < +∞.

The following theorem concerning the differential equation (1.1) has been established in [4].

Theorem 1.1. Let σ ̸= n and λ0 ∈ R \ {0, 12 ,
2
3 , . . . ,

n−2
n−1 , 1}. Then for the existence of a

Pω(λ0)-solution of the equation (1.1) it is necessary, and if the inequality

σ ̸= a01

(
1 +

n−1∑
k=1

1

a0k

)
(1.4)

holds and the algebraic equation
n−1∏
j=1

(a0j + ρ) +
n−1∑
k=1

k−1∏
j=1

(a0j + ρ)
n−1∏

j=k+1

a0j = 0 (1.5)

with respect to ρ has no roots with zero real part, then it is sufficient for the inequality

α0

( n−1∏
k=1

a0k

)[
(λ0 − 1)πω(t)

]n
> 0 for t ∈ [a, ω[ , (1.6)

and the conditions

lim
t↑ω

p
1
n (t)|πω(t)|

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

=
|a01|

|λ0 − 1|

(∏n−1
k=1 |a0k|

1
n

|a01|

) n
n−σ

,

1 We assume that a > 1 for ω = +∞, and ω − a < 1 for ω < +∞.
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to take place. Moreover, each of these solutions admits the following asymptotic representa-
tions as t ↑ ω:

ln |y(t)| = ν

(
|a01|∏n−1

k=1 |a0k|
1
n

) n
n−σ

∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + o(1)], (1.7)

y(k)(t)

y(k−1)(t)
=

a0k
(λ0 − 1)πω(t)

[1 + o(1)] (k = 1, . . . , n− 1), (1.8)

where
ν = sign

[
a01(λ0 − 1)(n− σ)πω(t)JB(t)

]
.

In addition to these conditions, if the algebraic equation (1.5) has the m-roots (including
multiples), the real parts of which have a sign opposite to the sign of the function (λ0−1)πω(t)
on the interval [a, ω[ , and the inequality( σ

a01
− 1−

n−1∑
k=1

1

a0k

)(
1 +

n−1∑
k=1

1

a0k

)
> 0

is satisfied, then the equation (1.1) has m-parametric family of solutions with the representa-
tions (1.7) and (1.8), and when the opposite inequality holds, it has m+ 1-parametric family
of such solutions.

From this theorem the following corollary for the linear differential equation (1.3) is ob-
tained.

Corollary 1.1. For the existence of Pω(λ0)-solution of the equation (1.3), where λ0 ∈ R \
{0, 12 , . . . ,

n−2
n−1 , 1}, it is necessary, and if the algebraic equation (1.5) with respect to ρ has no

roots with zero real part, then it is sufficient that the inequality (1.6) and the condition

lim
t↑ω

p(t)πn
ω(t) =

α0
∏n−1

k=1 a0k
(λ0 − 1)n

(1.9)

are satisfied. For each of these solutions the asymptotic representations

ln |y(t)| = α0(λ0 − 1)n−1IA(t)∏n−1
k=2 a0k

[1 + o(1)], (1.10)

y(k)(t)

y(k−1)(t)
=

a0k
(λ0 − 1)πω(t)

[1 + o(1)] (k = 1, . . . , n− 1), (1.11)

take place as t ↑ ω. Moreover, if in addition to these conditions, the algebraic equation (1.5)
has the m-roots (including multiples), the real parts of which have a sign, opposite to that
of the function (λ0 − 1)πω(t) on the interval [a, ω[ , then for the equation (1.1) there exists
m+ 1-parametric family of solutions with the representations (1.10) and (1.11).

We note that this corollary refers to the case where the differential equation (1.3) is asymp-
totically close to the Euler equations.

If
lim
t↑ω

p(t)πn
ω(t) = c0 ̸= 0

and the next algebraic equation with respect to λ0

c0(λ0 − 1)n = α0

n−1∏
k=1

[
(n− k)λ0 − (n− k − 1)

]
,
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which we obtain from (1.9) by taking into account the inequality (1.6), has n distinct real
roots λ0j (j = 1, . . . , n), then the fundamental system of solutions yj (j = 1, . . . , n) of the
differential equation (1.3) admits as t ↑ ω the following asymptotic representations:

ln |yj(t)| =
α0(λ0j − 1)n−1IA(t)∏n−1

k=2 [(n− j)λ0j − (n− j − 1)]
[1 + o(1)],

y(k)(t)

y(k−1)(t)
=

(n− j)λ0j − (n− j − 1)

(λ0j − 1)πω(t)
[1 + o(1)] (k = 1, . . . , n− 1; j = 1, . . . , n).

From the previous statements it is clear that the case for λ0 = 1 is a special one in the
study of Pω(λ0)-solutions. This case is the subject of this work.

2. The Main Result and the Necessary Auxiliary Statements for its
Establishment

We introduce the function JB(t), setting

JB(t) =

t∫
B

p
1
n (τ) dτ, B =


a, if

ω∫
a

p
1
n (τ) dτ = +∞,

ω, if
ω∫

a

p
1
n (τ) dτ < +∞.

The main result of this paper is the following

Theorem 2.1. Let σ ̸= n. Then for the existence of Pω(1)-solution of the equation (1.1) it
is necessary that for some µ ∈ {−1, 1} the inequality

α0µ
n > 0 (2.1)

and the condition
lim
t↑ω

|πω(t)|p
1
n (t)|JB(t)|

σ
n−σ = +∞ (2.2)

hold. Moreover, each of these solutions admits the following asymptotic representations as
t ↑ ω

ln |y(t)| = ν
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + o(1)], (2.3)

y(k)(t)

y(k−1)(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + o(1)] (k = 1, . . . ,−1), (2.4)

where
ν = µ sign

(n− σ

n
JB(t)

)
.

If the function p : [a, ω[→ ]0,+∞[ is continuously differentiable, and there exists the limit
(finite or equal to ±∞)

lim
t↑ω

(p
1
n (t)|JB(t)|

σ
n−σ )′

p
2
n (t)|JB(t)|

2σ
n−σ

, (2.5)

and if (2.1) and (2.2) hold, then the equation (1.1) has at least one Pω(1)-solution which
admits the asymptotic representations (2.3), (2.4) as t ↑ ω. If µ = 1 and σ > n, then there
exists (n − 1)-parametric family of solutions, if µ = 1 and σ < n, then we get n-parametric
family of solutions, if µ = −1 and σ < n, then we obtain one parametric family of solutions.

To prove Theorem 2.1, we will use the following lemma which can be deduced from Lem-
mas 10.1–10.6 in [6].
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Lemma 2.1. Let y : [t0, ω[→ R \ {0} be an arbitrary Pω(1)-solution of the equation (1.1).
Then we have the following asymptotic relations:

y(k)(t)

y(k−1)(t)
∼ y′(t)

y(t)
(k = 1, . . . , n) as t ↑ ω (2.6)

and
lim
t↑ω

πω(t)y
(k)(t)

y(k−1)(t)
= ±∞ (k = 1, . . . , n). (2.7)

Along with this lemma, we will also need the next result on the existence of vanishing at
infinity solutions of a system of quasi-linear differential equations

v′k = β0

[
fk(τ, v1, . . . , vn) +

n∑
i=1

ckivi + Vk(v1, . . . , vn)
]

(k = 1, . . . , n− 1),

v′n = H(τ)
[
fn(τ, v1, . . . , vn) +

n∑
i=1

cnivi + Vn(v1, . . . , vn)
]
,

(2.8)

in which β0 ∈ R \ {0}, cik ∈ R (i, k = 1, . . . , n), H : [τ0,+∞[→ R \ {0} is a continuous
function, fk : [τ0,+∞[×Rn

1
2

(k = 1, . . . , n) are continuous functions satisfying the conditions

lim
t↑ω

fk(τ, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2

, (2.9)

where
Rn

1
2

=
{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
(i = 1, . . . , n)

}
,

and Vk : Rn
1
2

→ R (k = 1, . . . , n) are continuously differentiable functions such that

Vk(0, . . . , 0) = 0 (k = 1, . . . , n),
∂Vk(0, . . . , 0)

∂vi
= 0 (i, k = 1, . . . , n). (2.10)

By Theorem 2.6 of [8], for a system of the differential equations (2.8), we have the following

Lemma 2.2. Let the function H : [τ0,+∞[ [R \ {0} be continuously differentiable and satisfy
the following conditions:

lim
τ→+∞

H(τ) = 0, lim
τ→+∞

H ′(τ)

H(τ)
= 0,

+∞∫
τ0

H(τ) dτ = ±∞, (2.11)

and the matrices Cn = (cki)
n
k,i=1 and Cn−1 = (cki)

n−1
k,i=1 are such that detCn ̸= 0, and Cn−1

has no eigenvalues with a zero real part. Then the system of differential equations (2.8) has
at least one solution (vk)

n
k=1 : [τ1,+∞[→ Rn

1
2

(τ1 ≥ τ0), which tends to zero as t → +∞.
Moreover, if among the eigenvalues of the matrix Cn−1 there are m eigenvalues (taking into
account multiplicity), the real parts of which have opposite sign to β0, then the system (2.8)
has m-parametric family of solutions if H(τ)(detCn)(detCn−1) > 0, and m + 1-parametric
family of solutions if the inequality holds in opposite direction.

3. Proof of the Main Theorem and the Corollary to a Linear Differential
Equation

Proof of Theorem 2.1. Necessity. Let y : [ty, ω[→ R \ {0} be an arbitrary Pω(1) solution of
(1.1). Then, according to Lemma 2.1, the conditions (2.6) and (2.7) are satisfied. In view of
(2.7), in a left neighborhood of ω,

sign
(y′(t)
y(t)

)
= µ, where µ ∈ {−1; 1}. (3.1)
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Since from (1.1)
y(n)(t)

y(t)
= α0p(t)|| ln |y(t)||σ

and by (2.6)
y(n)(t)

y(t)
=

y(n)(t)

y(n−1)(t)
· y

(n−1)(t)

y(n−2)(t)
· · · y

′(t)

y(t)
∼

(y′(t)
y(t)

)n
as t ↑ ω,

then (y′(t)
y(t)

)n
= α0p(t)| ln |y(t)||σ[1 + o(1)] as t ↑ ω.

Hence, in view of (3.1), it is clear that the inequality (2.1) holds, and so we have the
asymptotic relation

y′(t)

y(t)| ln |y(t)||
σ
n

= µp
1
n (t)[1 + o(1)] as t ↑ ω. (3.2)

Since σ ̸= n, therefore, integrating this relation from ty to t and taking into account the
definition of Pω(1)-solution, we find that

| ln |y(t)||
n−σ
n sign

(
ln |y(t)|

)
=

µ(n− σ)

n
JB(t)[1 + o(1)] as t ↑ ω.

Thus (2.3) holds. Taking into account (2.3), from (3.2) we obtain the representation
y′(t)

y(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + o(1)] as t ↑ ω,

from which, by (2.6) and (2.7), it follows that the condition (2.2) holds and we have the
asymptotic representation (2.4).

Sufficiency. Let p : [a, ω[→ ]0,+∞[ be continuously differentiable function for which there
is a finite or equal to ±∞ limit (2.5). We show that in this case, if the conditions (2.1) and
(2.2) are satisfied, then the equation (1.1) has solutions defined in the left neighborhood of
ω and admits as t ↑ ω the asymptotic representations (2.3) and (2.4).

We choose arbitrary a0 ∈ ]a, ω[ . By (2.2) we get
ω∫

a0

p
1
n (t)|JB(t)|

σ
σ−n dt = +∞,

hence, taking into account the form of the function JB, it follows that

lim
t↑ω

|JB(t)|
n

n−σ = +∞. (3.3)

Next, we establish that the limit (2.5) is equal to zero. Assume the contrary. Then, by
virtue of its existence,

lim
t↑ω

Q(t) =

{
either const ̸= 0,

or ±∞,
(3.4)

where

Q(t) =
(p

1
n (t)|JB(t)|

σ
n−σ )′

p
2
n (t)|JB(t)|

2σ
n−σ

.

Integrating the function Q from a0 to t, we obtain
t∫

a0

Q(τ) dτ = − 1

p
1
n (t)|JB(t)|

σ
n−σ

+ C, (3.5)
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where C is a constant. If ω = +∞, then πω(t) = t, and in this case, by (2.2), we have

lim
t→+∞

∫ t
a0

Q(τ) dτ

t
= 0.

However, this is impossible since by the de L’Hospital’s rule and (3.4),

lim
t→+∞

∫ t
a0

Q(τ) dτ

t
= lim

t→+∞
Q(t) ̸= 0.

If ω < ∞, then πω(t) = t− ω and by (2.2)

lim
t↑ω

p
1
n (t)|JB(t)|

σ
n−σ = +∞.

Therefore, from (3.5) it follows that

lim
t↑ω

t∫
a0

Q(τ) dτ = C.

Due to this condition, the equation (3.5) can be rewritten as
t∫

ω

Q(τ) dτ = − 1

p
1
n (t)|JB(t)|

σ
n−σ

.

Dividing this relation by πω(t), taking then the limit as t ↑ ω and using (2.2) we obtain

lim
t↑ω

∫ t
ω Q(τ) dτ

t− ω
= 0.

However, the last equality is impossible because the limit owing to the de L’Hospital’s rule
and (3.4), is nonzero. Therefore, the assumption that the limit (2.5) is not equal to zero was
incorrect.

Now, applying to the equation (1.1) the transformation
y(k)(t)

y(k−1)(t)
= µp

1
n (t)

∣∣∣n− σ

n
JB(t)

∣∣∣ σ
n−σ

[1 + vk(τ)] (k = 1, . . . , n− 1),

ln |y(t)| = ν
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

[1 + vn(τ)], τ =
∣∣∣n− σ

n
JB(t)

∣∣∣ n
n−σ

,

(3.6)

we obtain the following system of differential equations:
v′k = µ (1 + vk)[vk+1 − vk − µh(τ)] (k = 1, . . . , n− 2),

v′n−1 = µ
[ |1 + vn|σ

(1 + v1) · · · (1 + vn−2)
− (1 + vn−1)

2 − µh(τ)(1 + vn−1)
]
,

v′n = g(τ)(v1 − vn),

(3.7)

in which

g(τ(t)) =
∣∣∣n− σ

n
JB(t)

∣∣∣− n
n−σ

, h(τ(t)) =
(p

1
n (t)|n−σ

n JB(t)|
σ

n−σ )′

p
2
n (t)|n−σ

n JB(t)|
2σ

n−σ

.

We will consider this system on the set [τ0,+∞[×Rn
1
2

, where

τ0 =
∣∣∣n− σ

n
JB(a0)

∣∣∣ n
n−σ

, Rn
1
2

=
{
(v1, . . . , vn) ∈ Rn : |vk| ≤

1

2
(k = 1, . . . , n)

}
.

By (3.3) and the fact that the limit (2.5) is equal to zero as established above, we have
lim

τ→+∞
g(τ) = lim

t↑ω
g(τ(t)) = 0, lim

τ→+∞
h(τ) = lim

t↑ω
h(τ(t)) = 0. (3.8)
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Moreover,
+∞∫
τ0

g(τ) dτ =
n

n− σ

ω∫
a0

p
1
n (s) ds

JB(s)
=

n

n− σ
ln |JB(s)|

∣∣∣ω
a0

= ±∞. (3.9)

By separating linear parts in the equations of the system (3.7), we obtain a system of
differential equations (2.8) in which

β0 = µ, H(τ) = g(τ), fk(τ, v1, . . . , n) = −µ(1 + vk)h(τ) (k = 1, . . . , n− 1),

fn(τ, v1, . . . , n) ≡ 0, Vk(v1, . . . , vn) = vkvk+1 − v2k (k = 1, . . . , n− 2),

Vn−1(v1, . . . , vn) =
|1 + vn|σ

(1 + v1) · · · (1 + vn−2)
+

n−2∑
i=1

vi − v2n−1 − σvn, Vn(v1, . . . , vn) ≡ 0,

ckk = −1, ckk+1 = 1, cki = 0 for i ̸= k, k + 1 (k = 1, . . . , n− 2),

cn−1i = −1 (i = 1, . . . , n− 2), cn−1n−1 = −2, cn−1n = σ,

cn1 = 1, cni = 0 (i = 2, . . . , n− 1), cnn = −1.

Here the functions Vk (k = 1, . . . , n) satisfy (2.10) and by (3.8) and (3.9) the conditions
(2.9) and (2.11) hold. Furthermore, for the matrices Cn−1 = (cki)

n−1
k,i=1 and Cn = (cki)

n
k,i=1,

we find

detCn = (−1)n+1[σ − n], det[Cn−1 − ρE] = (−1)n+1
n∑

k=1

(1 + ρ)k−1.

Therefore, (detCn)(detCn−1) = n(σ − n) and the characteristic equation of the matrix
Cn−1 has the form

n∑
k=1

(1 + ρ)k−1 = 0.

The roots of this equation differ from the roots of (1+ρ)n = 1. Clearly, all such roots have
negative real parts.

Hence, taking into account the condition σ ̸= n, it is clear that the system of differential
equations (3.7) satisfy all the conditions of Lemma 2.2. On the basis of this lemma, the given
system of differential equations has at least one solution (vk)

n
k=1 : [τ1,+∞[→ Rn (τ1 ≥ τ0),

which tends to zero as τ → +∞. Moreover, if µ = 1 and σ > n, there exist (n−1)-parametric
family of such solutions and n-parametric family in case µ = 1 and σ < n. If µ = −1 and
σ < n, there exists one-parametric family of solutions. Each such solution of the system
(3.7) by virtue of the substitutions (3.6) corresponds to y-solution of the differential equation
(1.1), which admits the asymptotic representations (2.3), (2.4) as t ↑ ω. It is not difficult to
see that using the conditions (2.1) and (2.2) any of these solutions is a Pω(1)-solution. �

From this theorem we get the following corollary for the linear differential equation (1.3).

Corollary 3.1. For the existence of Pω(1)-solution of the differential equation (1.3), it
is necessary, and if the function p : [a, ω[→ ]0,+∞[ is continuously differentiable and
limt↑ω p′(t)p−

n+1
n (t) is finite or equal to ±∞, then it is sufficient that for some µ ∈ {−1; 1},

the inequality (2.1) holds and the condition

lim
t↑ω

p(t)|πω(t)|n = +∞ (3.10)

is fulfilled.



52 Mousa Jaber Abu Elshour

Moreover, for each of these solutions there take place the following asymptotic representa-
tions as t ↑ ω:

ln |y(t)| = µJB(t)[1 + o(1)],

y(k)(t)

y(k−1)(t)
= µp

1
n (t)[1 + o(1)] (k = 1, . . . , n− 1),

whereas, for µ = 1, there exists an n-parametric family of Pω(1)-solutions for this represen-
tation, and for µ = −1, there exists one-parametric family of solutions.

This corollary complements the results given in [9, Chapter 1, § 6] on the asymptotic
behavior of solutions of linear differential equations. In view of (3.10), it does not refer to
the cases where the differential equation (1.3) is asymptotically close to the Euler equation
and the equation with almost constant coefficients.
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Abstract. The Cauchy–Darboux problem for wave equations with a nonlinear dissipative term is
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ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÊÏÛÉ-ÃÀÒÁÖÓ ÀÌÏÝÀÍÀ ÔÀËÙÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÀÒÀßÒ×ÉÅÉ ÃÉÓÉ-
ÐÀÔÉÖÒÉ ßÄÅÒÉÈ. ÂÀÍáÉËÖËÉÀ ÀÒÓÄÁÏÁÉÓ, ÄÒÈÀÃÄÒÈÏÁÉÓ ÃÀ ÂËÏÁÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ
ÀÒÀÒÓÄÁÏÁÉÓ ÓÀÊÉÈáÄÁÉ. ÀÓÄÅÄ ÂÀÍÉáÉËÄÁÀ ÃÀÓÌÖËÉ ÀÌÏÝÀÍÉÓ ËÏÊÀËÖÒÉ ÀÌÏáÓÍÀÃÏÁÉÓ
ÓÀÊÉÈáÉ.
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1. Statement of the Problem

In a plane of independent variables x and t we consider a wave equation with a nonlinear dissipative
term (see [16, p. 57], [17])

Lu := utt − uxx + g(x, t, u)ut = f(x, t), (1.1)
where f , g are the given and u is an unknown real functions.

By DT := {(x, t) : 0 < x < k̃t, 0 < t < T} we denote a triangular domain lying inside of the
characteristic angle t > |x| and bounded by the segments γ̃1,T : x = k̃t, γ̃2,T : x = 0, 0 ≤ t ≤ T and
γ̃3,T : t = T , 0 ≤ x ≤ k̃T , 0 < k̃ < 1. For T = +∞, we assume that D∞ := {(x, t) ∈ R2 : 0 < x <

k̃t, 0 < t < +∞}.
For the equation (1.1), we consider the Cauchy–Darboux problem on finding a solution u(x, t) in

the domain DT by the conditions [2, p. 284]
u
∣∣
γ̃1,T

= 0, ux
∣∣
γ̃2,T

= 0. (1.2)

Note that, the problem
utt − uxx + a(x, t)ux + b(x, t)ut + c(x, t)u+ d(x, t, u) = f(x, t),

(αiux + βiut + γiu)
∣∣
γi,T

= 0, i = 1, 2; u(0, 0) = 0

in a linear case has been investigated in [4,11,12,18,22,23] and in a nonlinear case in [1,6–8,10,13–15].
As is mentioned in [4,23], the problems of such a matter arise under mathematical simulation of small
harmonic wedge oscillations in a supersonic flow and of string oscillations in a cylinder filled with a
viscous liquid. It should also be noted that when passing from the nonlinearity d(x, t, u) appearing
in [1, 6–8, 10, 13–15] to the nonlinearity of type g(x, t, u)ut in the equation (1.1), as it will be seen
below when studying the boundary value problem, there arise difficulties, and not only of technical
character.

Below, we will show that under definite requirements imposed on the nonlinear function g the
problem (1.1), (1.2) is locally solvable. The conditions of global solvability of the problem will be
obtained, violation of these conditions may, generally speaking, give rise to a soluion destruction after
a lapse of a finite time interval. The question on the uniqueness of a solution of the problem (1.1), (1.2)
will also be considered in the present work.
Definition 1.1. Let f ∈ C(DT ), g ∈ C(DT × R). The function u is said to be a general solution of
the problem (1.1), (1.2) of the class C1 in the domain DT if u ∈ C1(DT ) and there exists a sequence
of functions un ∈

◦
C2(DT , Γ̃T ) such that un → u and Lun → f , as n→ ∞, respectively, in the spaces

C1(DT ) and C(DT ), where
◦
C2(DT , Γ̃T ) := {v ∈ C2(DT ) : v|γ̃1,T = 0, vx|γ̃2,T = 0}, Γ̃T := γ̃1,T ∪ γ̃2,T .

Remark 1.1. Below, for the sake of simplicity of our exposition, sometimes instead of a generalized
solution of the problem (1.1), (1.2) of the class C1 in the domain DT we will speak about a generalized
solution of that problem.

Remark 1.2. Obviously, a classical solution of the problem (1.1), (1.2) from the space u ∈
◦
C2(DT , Γ̃T )

is a generalized solution of that problem. In its turn, if a generalized solution of the problem (1.1), (1.2)
belongs to the space C2(DT ), it will also be a classical solution of the problem.

Definition 1.2. Let f ∈ C(DT ), g ∈ C(DT × R). We say that the problem (1.1), (1.2) is locally
solvable in the class C1, if there is a positive number T0 = T0(f, g) ≤ T such that for any T1 < T0,
this problem has a generalized solution of the class C1 in the domain DT1 .

Definition 1.3. Let f ∈ C(D∞), g ∈ C(D∞ × R). We say that the problem (1.1), (1.2) is globally
solvable in the class C1, if for any finite T > 0 this problem has a generalized solution of the class C1

in the domain DT1 .
When investigating the problem (1.1), (1.2), below, in Section 4, we will need to study the following

mixed problem: in the domain Dt1,t2 := DT ∩ {t1 < t < t2}, where 0 < t1 < t2 ≤ T , find a solution
u(x, t) of the equation (1.1) by the initial

u
∣∣
t=t1

= φ, ut
∣∣
t=t1

= ψ (1.3)
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and boundary
u
∣∣
∂Dt1,t2∩γ̃1,T

= 0, ux
∣∣
∂Dt1,t2∩γ̃2,T

= 0 (1.4)
conditions.
Remark 1.3. Analogously, just as in the case of the problem (1.1), (1.2), we introduce the notions
of a generalized solution, local and global solvability of the problem (1.1), (1.3), (1.4).

2. Equivalent Reduction of the Problem (1.1), (1.2) to the Nonlinear
Integro-Differential Equation of Volterra Type

In new independent variables ξ = 1
2 (t+x), η = 1

2 (t−x), the domain DT will pass into a triangular
domain ET with vertices at the points O(0, 0), Q1(

T
1+k ,

kT
1+k ), Q2(

T
2 ,

T
2 ) of the plane of variables ξ, η,

and the problem (1.1), (1.2) will pass into the problem (see Figure 2.1)

L̃ũ := ũξη +
1

2
g(ξ − η, ξ + η, ũ)(ũξ + ũη) = f̃(ξ, η), (ξ, η) ∈ ET , (2.1)

ũ
∣∣
γ1,T

= 0, (ũξ − ũη)
∣∣
γ2,T

= 0, (2.2)

with respect to a new unknown function ũ(ξ, η) := u(ξ − η, ξ + η) with the right-hand side f̃(ξ, η) :=
f(ξ − η, ξ + η). Here,

γ1,T : η = kξ, 0 ≤ ξ ≤ ξT :=
T

1 + k
, γ2,T : ξ = η, 0 ≤ η ≤ ηT :=

T

2
, (2.3)

0 < k :=
1− k̃

1 + k̃
< 1. (2.4)

Figure 1

Remark 2.1. According to Definition 1.1, we introduce the notion of a generalized solution ũ of
the problem (2.1), (2.2) of the class C1 in the domain ET , i.e., there exists a sequence of function
ũn ∈

◦
C2(ET ,ΓT ) := {w ∈ C2(ET ) : w|γ1,T = 0, (wξ − wη)|γ2,T = 0} such that

lim
n→∞

∥ũn − ũ∥C(ET ) = 0, lim
n→∞

∥L̃ũn − f̃∥C(ET ) = 0, (2.5)
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where ΓT := γ1,T ∪ γ2,T .

Note that, if u is a generalized solution of the problem (1.1), (1.2) in a sense of Definition 1.1, then
ũ will be a generalized solution of the problem (2.1), (2.2) in a sense of the given definition, and vice
versa.

By GT we denote a triangular domain with vertices at the points O, Q1, Q
∗
1(

kT
1+k ,

T
1+k ), symmetric

with respect to the straight line ξ = η, and as is easily seen, GT ∩ {η < ξ} = ET .
We continue the functions ũn and f̃ evenly with respect to the straight line ξ = η into the domain

GT retaining for them previous notation, i.e.,

ũn(ξ, η) = ũn(η, ξ), f̃(ξ, η) = f̃(η, ξ), (ξ, η) ∈ GT . (2.6)

Remark 2.2. Since f̃ |ET
∈ C(ET ) and ũn|ET

∈
◦
C2(ET ,ΓT ), taking into account (2.6), we have

f̃ ∈ C(GT ), ũn ∈ C2(GT ), (2.7)
ũn

∣∣
γ1,T

= 0, ũn
∣∣
γ∗
1,T

= 0, (2.8)

where γ∗1,T := OQ∗
1 ∈ ∂GT , i.e., γ∗1,T : ξ = kη, 0 ≤ η ≤ T

1+k .

Remark 2.3. Note that, for the functions ũn, f̃ , continued to the domain GT , the limiting equalities
of type (2.5) remain valid, i.e.,

lim
n→∞

∥ũn − ũ∥C(GT ) = 0, lim
n→∞

∥L̃ũn − f̃∥C(GT ) = 0. (2.9)

If P0 = (ξ0, η0) ∈ ET , we denote by P1M0P0N0 the characteristic with respect to the equation (2.1)
rectangle whose vertices N0 and M0 lie, respectively, on the segments γ1,T and γ∗1,T , i.e., by virtue of
(2.3): N0 = (ξ0, kξ0), M0 = (kη0, η0), P1 = (kη0, kξ0). Since P1 ∈ GT , we construct analogously the
characteristic rectangle P2M1P1N1 with vertices N1 and M1 lying, respectively, on the segments γ1,T
and γ∗1,T . Continuing this process, we get the characteristic rectangle Pi+1MiPiNi for which Ni ∈ γ1,T ,
Mi ∈ γ∗1,T , where Ni = (ξi, kξi), Mi = (kηi, ηi), Pi+1 = (kηi, kξi), if Pi = (ξi, ηi), i = 0, 1, . . . .

It is easily seen that
P2m = (k2mξ0, k

2mη0), P2m+1 = (k2m+1η0, k
2m+1ξ0),

M2m = (k2m+1η0, k
2mη0), M2m+1 = (k2m+2ξ0, k

2m+1ξ0),

N2m = (k2mξ0, k
2m+1ξ0), N2m+1 = (k2m+1η0, k

2m+2η0),

m = 0, 1, 2, . . . . (2.10)

As is known, for any function v of the class C2 in the closed characteristic rectangle Pi+1MiPiNi
the equality (see, e.g., [3, p. 173])

v(Pi) = v(Mi) + v(Ni)− v(Pi+1) +

∫
Pi+1MiPiNi

�̃ v dξ1d η1, i = 0, 1, . . . , (2.11)

where �̃ = ∂2

∂ξ∂η , is valid.
From (2.10), by virtue of (2.8), we have ũn(Mi) = ũn(Ni) = 0, i = 0, 1, 2, . . . . Therefore, (2.11) for

v = ũn results in

ũn(ξ0, η0) = ũn(P0) = ũn(M0) + ũn(N0)− ũn(P1) +

∫
P1M0P0N0

�̃ ũn dξ1 dη1

= −ũn(P1) +

∫
P1M0P0N0

�̃ ũn dξ1 dη1

= −ũn(M1)− ũn(N1) + ũn(P2)−
∫

P2M1P1N1

�̃ ũn dξ1 dη1 +

∫
P1M0P0N0

�̃ ũn dξ1 dη1

= ũn(P2)−
∫

P2M1P1N1

�̃ ũn dξ1 dη1 +

∫
P1M0P0N0

�̃ ũn dξ1 dη1 = · · ·
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= (−1)mũn(Pm) +
m−1∑
i=0

(−1)i
∫

Pi+1MiPiNi

�̃ ũn dξ1 dη1, (ξ0, η0) ∈ ET . (2.12)

Since the point Pm from (2.12) tends to the point O, as m → ∞, by virtue of (2.8), we have
lim
m→∞

ũn(Pm) = 0. Hence, passing in the equality (2.12) to the limit, as m → ∞, for the function
ũn ∈ C2(GT ) in the domain ET we obtain the following integral representation:

ũn(ξ0, η0) =
∞∑
i=0

(−1)i
∫

Pi+1MiPiNi

�̃ ũn dξ1 dη1, (ξ0, η0) ∈ ET . (2.13)

Remark 2.4. Since �̃ ũn ∈ C(ET ) and there are the inequalities (2.4), and owing to (2.10),
mesPi+1MiPiNi = k2i(ξ0 − kη0)(η0 − kξ0), (2.14)

therefore the series in the right-hand side of the equality (2.13) is uniformly and absolutely convergent.
It can be easily seen that by virtue of (2.4) and (2.14),∣∣∣∣ ∞∑

i=0

(−1)i
∫

Pi+1MiPiNi

�̃ ũn dξ1 dη1 −
∞∑
i=0

(−1)i
∫

Pi+1MiPiNi

f̃ dξ1 dη1

∣∣∣∣
≤

∞∑
i=0

∥∥�̃ ũn − f̃
∥∥
C(GT )

mesPi+1MiPiNi =
∥∥�̃ ũn − f̃

∥∥
C(GT )

∞∑
i=0

k2i(ξ0 − kη0)(η0 − kξ0)

≤ ξ0η0
1− k2

∥∥�̃ ũn − f̃
∥∥
C(GT )

. (2.15)

Remark 2.5. By (2.5) for g = 0 and (2.15), passing in the equality (2.13) to the limit, as n → ∞,
for a generalized solution ũ of the problem (2.1), (2.2) we obtain the following integral representation:

ũ(ξ0, η0) =

∞∑
i=0

(−1)i
∫

Pi+1MiPiNi

f̃ dξ1 dη1, (ξ0, η0) ∈ ET . (2.16)

Remark 2.6. From the above reasonings it follows that for any f̃ ∈ C(ET ), the linear problem
(2.1), (2.2) has a unique generalized solution ũ which is representable in the form of a uniformly and
absolutely convergent series (2.16) and for f̃ ∈ C1(ET ) is a classical solution of that problem, i.e.,
ũ ∈

◦
C2(ET ,ΓT ).

According to (2.16), we introduce into consideration the operator �̃−1 : C(ET ) → C(ET ) acting
by the formula

(�̃−1f̃)(ξ, η) :=
∞∑
i=0

(−1)i
∫

Pi+1MiPiNi

f̃ dξ1 dη1, (ξ, η) ∈ ET . (2.17)

In the integrand here, according to (2.6), under f̃ we mean the right-hand side of the equation
(2.1) which is continued evenly from the domain ET to the domain GT with respect to the straight
line ξ = η, and due to (2.7), we have f̃ ∈ C(ET ).
Remark 2.7. By virtue of (2.17) and Remark 2.6, a unique generalized solution ũ of the problem
(2.1), (2.2) is representable in the form ũ = �̃−1f̃ , and in view of (2.4), (2.14), the estimate

|ũ(ξ, η)| ≤
∞∑
i=0

∫
Pi+1MiPiNi

|f̃ | dξ1 dη1 ≤ ξη∥f̃∥C(ET )

∞∑
i=0

k2i

≤ ξ2 + η2

2(1− k2)
∥f̃∥C(ET ) ≤

T 2

1− k2
∥f̃∥C(ET )

holds which in its turn yields

∥�̃−1∥C(ET )−→C(ET ) ≤
T 2

1− k2
. (2.18)
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Remark 2.8. Standard reasonings (see, e.g., [9]) show that the function ũ ∈ C1(ET ) is the generalized
solution of the problem (2.1), (2.2), if and only if it is a solution of the following nonlinear Volterra
type integro-differential equation

ũ(ξ, η) +
1

2
�̃−1

(
g(ξ − η, ξ + η, ũ)(ũξ + ũη)

)
(ξ, η) = (�̃−1f̃)(ξ, η), (ξ, η) ∈ ET . (2.19)

3. Local Solvability of the Problem (1.1), (1.2)

Lemma 3.1. The operator �̃−1 defined by the formula (2.17) is the linear continuous operator acting
from the space C(ET ) to the space C1(ET ).

Proof. To this end, we first show that for f̃ ∈ C(ET ), the series from the right-hand side of (2.17),
differentiated formally with respect to ξ and to η converges uniformly on the set ET . Indeed, as it
can be easily verified, we have

(L1f̃)(ξ, η) :=
∂

∂ξ

[
(�̃−1f̃)(ξ, η)

]
=

∞∑
n=0

[
k2n

∫
N2nP2n

f̃ dη1 + k2n+2

∫
P2n+2M2n+1

f̃ dη1 − k2n+1

∫
M2n+1N2n

f̃ dξ1

]
, (3.1)

(L2f̃)(ξ, η) :=
∂

∂η

[
(�̃−1f̃)(ξ, η)

]
=

∞∑
n=0

[
k2n

∫
M2nP2n

f̃ dξ1 + k2n+2

∫
P2n+2N2n+1

f̃ dξ1 − k2n+1

∫
N2n+1M2n

f̃ dη1

]
. (3.2)

By virtue of (2.10), we have the equalities

|N2mP2m| = k2m(η − kξ), |P2m+2M2m+1| = k2m+1(ξ − kη), |M2m+1N2m| = k2m(1− k2)ξ,

|M2mP2m| = k2m(ξ − kη), |P2m+2N2m+1| = k2m+1(η − kξ), |N2m+1M2m| = k2m(1− k2)η,

which in view of (2.4) imply that the series (3.1) and (3.2) are uniformly and absolutely convergent,
and the estimate

max
{
∥L1f̃∥C(ET ), ∥L2f̃∥C(ET )

}
≤ 3T

1− k4
∥f̃∥C(ET ) (3.3)

holds.
From (3.3), in view of (2.18) and the fact that ∥v∥C1 := max{∥v∥C , ∥vξ∥C , ∥vη∥C}, it follows that

Lemma 3.1 is valid. �

Introducing the notation v1 := ũ, v2 := ũξ, v3 := ũη and differentiating formally the equality (2.19)
with respect to ξ and η for (ξ, η) ∈ ET , we obtain

v1(ξ, η) = −1

2
�̃−1

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (�̃−1f̃)(ξ, η),

v2(ξ, η) = −1

2
L1

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (L1f̃)(ξ, η),

v3(ξ, η) = −1

2
L2

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (L2f̃)(ξ, η),

(3.4)

where the linear operators L1 and L2 are defined by the equalities (3.1) and (3.2).

Remark 3.1. It is not difficult to check that if ũ ∈ C1(ET ) is a solution of the nonlinear equation
(2.19), then the functions v1 := ũ, v2 := ũξ, v3 := ũη of the class C(ET ) satisfy the system of nonlinear
equations (3.4), and vice versa, if the functions v1, v2 and v3 of the class C(ET ) satisfy the system
of equations (3.4), then v1 ∈ C1(ET ) and v1ξ = v2, v2η = v3, and ũ = v1 will be a solution of the
equation (2.19) of the class C1(ET ).

We will now proceed to the proof of the local solvability of the system of nonlinear integral equa-
tions (3.4).
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Let us consider the following conditions:
|g(x, t, s)| ≤ m(r),

∣∣g(x, t, s2)− g(x, t, s1)
∣∣ ≤ c(r)|s2 − s1|, (x, t) ∈ DT , |s|, |s1|, |s2| ≤ r, (3.5)

where m(r) and c(r) are some nonnegative continuous functions of argument r ≥ 0. Obviously, the
conditions (3.5) will be fulfilled if g, gs ∈ C(DT × R).

Theorem 3.1. Let f ∈ C(DT ) and the function g ∈ C(DT × R) satisfy the conditions (3.5). Then
there exists a positive number T0 = T0(f, g) ≤ T such that for any T1 < T0 the problem (1.1), (1.2)
has at least one generalized solution in the domain DT1 .

Proof. By Remarks 2.1 and 2.8, the problem (1.1), (1.2) in the space C1(DT ) is equivalent to the
system of nonlinear integral equations (3.4) in the class C(ET ). Below, we will prove the solvability
of the system (3.4) by using the principle of contracted mappings (see, e.g., [21, p. 390]).

Assume V := (v1, v2, v3) and introduce the vector operator Φ := (Φ1,Φ2,Φ3) acting by the formula
(Φ1V )(ξ, η) = −1

2
�̃−1

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (�̃−1f̃)(ξ, η),

(Φ2V )(ξ, η) = −1

2
L1

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (L1f̃)(ξ, η),

(Φ3V )(ξ, η) = −1

2
L2

(
g(ξ − η, ξ + η, v1)(v2 + v3)

)
+ (L2f̃)(ξ, η).

(3.6)

Taking into account (3.6), the system (3.4) can be rewritten in the vector form
V = ΦV. (3.7)

Let
∥V ∥XT

:= max
1≤i≤3

{
∥vi∥C(ET )

}
, V ∈ XT := C(ET ;R3),

where C(ET ;R3) is a set of continuous vector functions V : ET → R3.
We fix the number R > 0 and denote by BR(T ) := {V ∈ XT : ∥V ∥XT ≤ R} a closed ball of radius

R in the Banach space XT with center in a zero element.
Below, we will prove that there exists the positive number T0 = T0(f, g) ≤ T such that for any

T1 < T0:
(i) Φ maps the ball BR(T1) into itself;
(ii) Φ is a contractive mapping on the set BR(T1).

Indeed, by the estimates (2.18), (3.3) and the first inequality (3.5), from (3.6) for V ∈ BR(T1),
when T1 < T , we have∣∣(Φ1V )(ξ, η)

∣∣ ≤ T 2
1

1− k2
(
Rm(R) + ∥f̃∥C(ET )

)
, (ξ, η) ∈ ET1 ,∣∣(ΦiV )(ξ, η)

∣∣ ≤ 3T1
1− k4

(
Rm(R) + ∥f̃∥C(ET )

)
, (ξ, η) ∈ ET1 , i = 2, 3.

(3.8)

From these estimates, owing to the fact that k2 < 1, it follows that

∥ΦV ∥XT1
≤ T1(T1 + 3)

1− k2
(
RM(R) + ∥f̃∥C(ET )

)
. (3.9)

For the fixed R > 0, we require for the value T1 to be so small that
T1(T1 + 3)

1− k2
(
Rm(R) + ∥f̃∥C(ET )

)
≤ R. (3.10)

Then from (3.9) and (3.10) it follows that ΦU ∈ BR(T1), and hence the condition (i) is fulfilled.
Next, by (2.18) and (3.5), from (3.6), for Vi = (v1i , v

2
i , v

3
i ) ∈ BR(T1), i = 1, 2, we have∣∣(Φ1V2 − Φ1V1)(ξ, η)

∣∣ = 1

2

∣∣∣�̃−1
[
g(ξ − η, ξ + η, v12)(v

2
2 + v32)− g(ξ − η, ξ + η, v11)(v

2
1 + v31)

]∣∣∣
=

1

2

∣∣∣∣�̃−1
[(
g(ξ−η, ξ+η, v12)−g(ξ−η, ξ+η, v11)

)
(v22+v

3
2)+g(ξ−η, ξ+η, v11)(v22−v21+v32−v31)

]∣∣∣∣
≤ T 2

1

1− k2
(Rc(R) +m(R))∥V2 − V1∥XT1

.
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Analogously, taking into account (3.3), we have∣∣(ΦiV2 − ΦiV1)(ξ, η)
∣∣ ≤ 3T1

1− k4
(Rc(R) +m(R))∥V2 − V1∥XT1

, i = 2, 3. (3.11)

We now choose the number T1 so small that
T1(T1 + 3)

1− k2
(Rc(R) +m(R)) ≤ q = const < 1, (3.12)

and hence ∥ΦV2 − ΦV1∥XT1
≤ q∥V2 − V1∥XT1

. Thus the operator Φ is a contractive mapping on the
set BR(T1), i.e., the condition (ii) is fulfilled.

It follows from (3.11) and (3.12) that there exists the number T0 = T0(f, g) ≤ T such that for any
T1 < T0, both conditions (i) and (ii) are fulfilled for the mapping Φ : BR(T1) → BR(T1). Therefore,
by the principle of contracted mappings, there exists the solution V of the equation (3.7) in the space
C(ET1 ;R3). �

Remark 3.2. From the above reasonings as in proving Theorem 3.1 dealt with the contraction of
the mapping Φ, it immediately follows that if u1 and u2 are two possible solutions of the problem
(1.1), (1.2) of the class C1(DT ), then there exists the positive number T1 = T1(∥u1∥, ∥u2∥) ≤ T such
that u1|DT1

= u2|DT1
.

4. A priori Estimates of a Solution of the Problem (1.1), (1.3), (1.4) in the Classes
C(Dt1,t2) and C1(Dt1,t2)

Assume
ωτ := Dt1,t2 ∩ {t = τ}, t1 ≤ τ ≤ t2,

γi;t1,t2 := Dt1,t2 ∩ γ̃i,T , i = 1, 2,

Γt1,t2 := γ1;t1,t2 ∪ γ2;t1,t2 ,
and introduce into consideration the space

◦
C2(Dt1,t2 ,Γt1,t2) :=

{
v ∈ C2(Dt1,t2) : v

∣∣
γ1;t1,t2

= 0, vx
∣∣
γ2;t1,t2

= 0
}
.

Let
f ∈ C(DT ), g ∈ C(DT × R), φ ∈ C1(ωt1), ψ ∈ C(ωt1). (4.1)

Definition 4.1. The function u ∈ C1(Dt1,t2) is said to be a generalized solution of the problem
(1.1), (1.3), (1.4) if there exists a sequence of functions un ∈

◦
C2(Dt1,t2 ,Γt1,t2) such that the limiting

equalities
lim
n→∞

∥un − u||C1(Dt1,t2
) = 0, lim

n→∞
∥Lun − f∥C(Dt1,t2

) = 0 (4.2)
and

lim
n→∞

∥un|ωt1
− φ∥C1(ωt1 )

= 0, lim
n→∞

∥unt|ωt1
− ψ∥C(ωt1 )

= 0 (4.3)
hold.

Lemma 4.1. Let the conditions (4.1) and
g(x, t, s) ≥ −MT , (x, t, s) ∈ DT × R, MT := const > 0, (4.4)

be fulfilled. Then for a generalized solution u ∈ C1(Dt1,t2) of the problem (1.1), (1.3), (1.4) an a priori
estimate

∥u∥C(Dt1,t2 )
≤ c1

(
∥f∥C(Dt1,t2 )

+ ∥φ∥C1(ωt1 )
+ ∥ψ∥C(ωt1 )

)
(4.5)

with the positive constant c1 = c1(T ), independent of u, f , φ, and ψ is valid.

Proof. Let u be a generalized solution of the problem (1.1), (1.3), (1.4). Then by Definition 4.1, there
exists the sequence of functions un ∈

◦
C2(Dt1,t2 ,Γt1,t2) such that the limiting equalities (4.2), (4.3)

are valid.
Consider the function un ∈

◦
C2(Dt1,t2 ,Γt1,t2) as a solution of the following mixed problem

Lun = fn, (4.6)
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un
∣∣
ωt1

= φn, unt
∣∣
ωt1

= ψn, (4.7)

un
∣∣
γ1;t1,t2

= 0, unx
∣∣
γ2;t1,t2

= 0. (4.8)

Here,
φn := un

∣∣
ωt1

, ψn := unt
∣∣
ωt1

, fn := Lun. (4.9)

Multiplying both parts of the equality (4.6) by unt and integrating the obtained equality with
respect to the domain Dt1,t2;τ := {(x, t) ∈ Dt1,t2 : t1 < t < τ}, t1 < τ ≤ t2, we have

1

2

∫
Dt1,t2;τ

(u2nt)t dx dt−
∫

Dt1,t2;τ

unxxunt dx dt+

∫
Dt1,t2;τ

g(x, t, un)u
2
nt dx dt =

∫
Dt1,t2;τ

fnunt dx dt.

Taking into account (4.8) and applying Green’s formula to the left-hand side of the last equality,
we obtain∫
Dt1,t2;τ

fnunt dx dt =

∫
γ1;t1,τ

1

2νt

[
(unxνt − untνx)

2 + u2nt(ν
2
t − ν2x)

]
ds

+
1

2

∫
ωτ

(u2nx + u2nt) dx− 1

2

∫
ωt1

(u2nx + u2nt) dx+

∫
Dt1,t2;τ

g(x, t, un)u
2
nt dx dt, (4.10)

where ν := (νx, νt) is a unit vector of the outer normal to Dt1,t2;τ .
Taking into account the fact that the operator νt ∂

∂x − νx
∂
∂t is the directional derivative, tangent

to γ1;t1,τ , owing to the first condition (4.8), we have
(unxνt − untνx)

∣∣
γ1;t1,τ

= 0. (4.11)

Since νx = 1√
1+k̃2

, νt = −k̃√
1+k̃2

and 0 < k̃ < 1, therefore

(ν2t − ν2x)
∣∣
γ1;t1,τ

< 0. (4.12)

Consequently, by (4.4), (4.11), (4.12), from (4.10), we have

wn(τ) :=

∫
ωτ

(u2nx + u2nt) dx ≤
∫
ωt1

(u2nx + u2nt) dx+ 2

∫
Dt1,t2;τ

fnunt dx dt+ 2MT

∫
Dt1,t2;τ

u2nt dx dt. (4.13)

Bearing in mind the inequality 2fnunt ≤ u2nt + f2n, by (4.7) and (4.13), we get

wn(τ) ≤ (1 + 2MT )

∫
Dt1,t2;τ

u2nt dx dt+

∫
Dt1,t2;τ

f2n dx dt+

∫
ωt1

(φ′2
n + ψ2

n) dx,

whence, in view of the expression for the function wn(τ), it follows that

wn(τ) ≤ mT

τ∫
0

wn(σ) dσ + ∥fn∥2L2(Dt1,t2;τ )
+ ∥φ′

n∥2L2(ωt1 )
+ ∥ψn∥2L2(ωt1 )

,

wheremT := 1+2MT . Hence, since the value ∥fn∥2L2(Dt1,t2;τ )
, being the function of τ , is nondecreasing,

by the Gronwall’s lemma (see, e.g., [5, p. 13]), we have

wn(τ) ≤ exp(mT τ)
[
∥fn∥2L2(Dt1,t2;τ )

+ ∥φ′
n∥2L2(ωt1 )

+ ∥ψn∥2L2(ωt1 )

]
. (4.14)

If (x, t) ∈ Dt1,t2 , then by virtue of the first condition (4.8), we obtain the equality

un(x, t) = un(x, t)− un(k̃t, t) =

x∫
k̃t

unx(σ, t) dσ,

which owing to the Schwartz inequality and (4.14) results in
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|un(x, t)|2 ≤
k̃t∫
x

dσ

k̃t∫
x

[unx(σ, t)]
2 dσ ≤ (k̃t− x)

∫
ωt

[unx(σ, t)]
2 dσ ≤ (k̃t− x)wn(t) ≤ k̃twn(t)

≤ k̃t2 exp(mT t2)
[
∥fn∥2C(DT )

mesDt1,t2;τ + mesωt1
(
∥φn∥2C1(ωt1 )

+ ∥ψn∥2C(ωt1 )

)]
=

1

2
k̃2t2(t

2
2 − t21) exp(mT t2)∥fn∥2C(DT )

+ k̃2t1t2 exp(mT t2)∥φn∥2C1(ωt1 )

+ k̃2t1t2 exp(mT t2)∥ψn∥2C(ωt1 )
. (4.15)

Thus, using the obvious inequality ( n∑
i=1

a2i

) 1
2 ≤

n∑
i=1

|ai|,

we obtain

∥un∥C(Dt1,t2 )
≤ T k̃

√
T

2
exp

(TmT

2

)
∥fn∥C(DT )

+ T k̃ exp
(TmT

2

)
∥φn∥C1(ωt1 )

+ T k̃ exp
(TmT

2

)
∥ψn∥C(ωt1 )

.

Passing in the last inequality to the limit, as n→ ∞, by virtue of (4.2), (4.3), (4.9), we obtain the
estimate (4.5) in which

c1(T ) = T k̃ exp
(TmT

2

)
max

{√T

2
, 1
}
. �

Remark 4.1. Repeating the same reasoning as in Lemma 4.1, for a generalized solution of the problem
(1.1), (1.2) we obtain an a priori estimate

∥u∥C(DT ) ≤ c0∥f∥C(DT ),

where

c0 = T k̃

√
T

2
exp

(mTT

2

)
.

Below, using the classical method of characteristics and taking into account (4.5), we obtain a priori
estimate in the space C1(Dt1,t2) for a generalized solution of the problem (1.1), (1.3), (1.4).

We have the following

Lemma 4.2. Under the conditions of Lemma 4.1, if

t2 − t1 ≤ 1

2
k̃t1, (4.16)

for a generalized solution of the problem (1.1), (1.3), (1.4) an a priori estimate
∥u∥C1(Dt1,t2 )

≤
(
2T∥f∥C(DT ) + ∥φ∥C1(ωt1 )

+ ∥ψ∥C(ωt1 )

)
exp

[
2(Kφ,ψ + 1)T

]
(4.17)

holds. Here,
Kφ,ψ := K

(
∥f∥C(DT ) + ∥φ∥C1(ωt1 )

+ ∥ψ∥C(ωt1 )

)
, (4.18)

where
K(s) := sup

(x,t)∈DT , |s1|≤c1s
|g(x, t, s1)| < +∞,

c is the constant from the a priori estimate (4.5), and

∥u∥C1(Dt1,t2 )
:= max

{
∥u∥C(Dt1,t2 )

, ∥ux∥C(Dt1,t2 )
, ∥ut∥C(Dt1,t2 )

}
.

Proof. Let u be a generalized solution of the problem (1.1), (1.3), (1.4). The limiting equalities (4.2),
(4.3) are valid, where un can be considered as a solution of the problem (4.6)–(4.8) with right-hand
sides fn, φn, ψn from (4.9). For the fixed natural n we introduce the functions

u1n := unt − unx, u2n := unt + unx, u3n := un, (4.19)
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which in view of (4.7), (4.8) for t1 ≤ t ≤ t2 satisfy the initial and boundary conditions

u1n
∣∣
ωt1

= ψn − φ′
n, u2n

∣∣
ωt1

= ψn + φ′
n, u3n

∣∣
ωt1

= φn, (4.20)(
u2n +

1− k̃

1 + k̃
u1n

)∣∣∣∣
γ1;t1,t2

= 0, u3n
∣∣
γ1;t1,t2

= 0, (u1n − u2n)
∣∣
γ2;t1,t2

= 0. (4.21)

By virtue of (1.1), and (4.19), the unknown functions u1n, u2n, u3n satisfy the following system of
partial differential equations of the first order

∂u1n
∂t

+
∂u1n
∂x

= fn(x, t)−
1

2
g(x, t, u3n)(u

1
n + u2n),

∂u2n
∂t

− ∂u2n
∂x

= fn(x, t)−
1

2
g(x, t, u3n)(u

1
n + u2n),

∂u3n
∂t

− ∂u3n
∂x

= u1n.

(4.22)

Taking into account (4.16), we divide the domain Dt1,t2 into three subdomains

D1;t1,t2 :=
{
(x, t) ∈ Dt1,t2 : t− t1 < x < (1 + k̃)t1 − t

}
,

D2;t1,t2 :=
{
(x, t) ∈ Dt1,t2 : 0 < x < t− t1

}
,

D3;t1,t2 :=
{
(x, t) ∈ Dt1,t2 : (1 + k̃)t1 − t < x < k̃t

}
.

For (x, t) ∈ D1;t1,t2 , integration equations of the system (4.22) along the corresponding characteristic
curves and bearing in mind the initial conditions (4.20), we obtain

u1n(x, t)=−1

2

t∫
t1

g(Pτ , u
3
n(Pτ ))

(
u1n(Pτ )+u

2
n(Pτ )

)
dτ +

t∫
t1

fn(Pτ ) dτ+ψn(x−t+t1)− φ′
n(x−t+t1),

u2n(x, t)=−1

2

t∫
t1

g(Qτ , u
3
n(Qτ ))

(
u1n(Qτ )+u

2
n(Qτ )

)
dτ +

t∫
t1

fn(Qτ ) dτ+ψn(x+t−t1) + φ′
n(x+t−t1),

u3n(x, t) =

t∫
t1

u1n(Qτ ) dτ + φn(x+ t− t1),

where Pτ := (x− t+ τ, τ), Qτ := (x+ t− τ, τ). Passing in this system to the limit, as n→ ∞, in the
space C(D1;t1,t2) and taking into account (4.2), (4.3), (4.6), (4.7), (4.9) and (4.10), we have

u1(x, t) = −1

2

t∫
t1

g(Pτ , u
3(Pτ ))

(
u1(Pτ ) + u2(Pτ )

)
dτ +

t∫
t1

f(Pτ ) dτ + ψ(x− t+ t1)

−φ′(x− t+ t1),

u2(x, t) = −1

2

t∫
t1

g(Qτ , u
3(Qτ ))

(
u1(Qτ ) + u2(Qτ )

)
dτ +

t∫
t1

f(Qτ ) dτ + ψ(x+ t− t1)

+φ′(x+ t− t1),

u3(x, t) =

t∫
t1

u1(Qτ ) dτ + φ(x+ t− t1).

(4.23)

Here, by (4.2) and (4.19),

u1 := ut − ux, ;u2 := ut + ux, u3 := u. (4.24)
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In case (x, t) ∈ D2;t1,t2 , integrating equations of the system (4.22) along the corresponding charac-
teristic curves and taking into account the initial conditions (4.20), we obtain



u1n(x, t) = u1n(0, t− x)− 1

2

t∫
t−x

g(Pτ , u
3
n(Pτ ))

(
u1n(Pτ ) + u2n(Pτ )

)
dτ +

t∫
t−x

fn(Pτ ) dτ,

u2n(x, t) = −1

2

t∫
t1

g(Qτ , u
3
n(Qτ ))

(
u1n(Qτ ) + u2n(Qτ )) dτ +

t∫
t1

fn(Qτ ) dτ + ψn(x+ t− t1)

+φ′
n(x+ t− t1),

u3n(x, t) =

t∫
t1

u1n(Qτ )dτ + φn(x+ t− t1).

(4.25)

Since due to (4.21) the equality u1n(0, t− x) = u2n(0, t− x) holds, bearing in mind the second equality
of the obtained system and the notation P 2

τ := (t− x− τ, τ), we can rewrite the system (4.25) in the
form



u1n(x, t) = −1

2

t−x∫
t1

g(P 2
τ , u

3
n(P

2
τ ))

(
u1n(P

2
τ ) + u2n(P

2
τ )
)
dτ +

t−x∫
t1

fn(P
2
τ ) dτ + ψn(t− x− t1)

+φ′
n(t− x− t1)−

1

2

t∫
t−x

g(Pτ , u
3
n(Pτ ))

(
u1n(Pτ ) + u2n(Pτ )

)
dτ +

t∫
t−x

fn(Pτ ) dτ,

u2n(x, t) = −1

2

t∫
t1

g(Qτ , u
3
n(Qτ ))

(
u1n(Qτ )+u

2
n(Qτ )

)
dτ+

t∫
t1

fn(Qτ ) dτ+ψn(x+t−t1)+φ′
n(x+t−t1),

u3n(x, t) =

t∫
t1

u1n(Qτ )dτ + φn(x+ t− t1).

Passing here to the limit as n→ ∞ in the space C(D2;t1,t2) and taking into account (4.2), (4.3), (4.6),
(4.7), (4.9) and (4.19), we have



u1(x, t) = −1

2

t−x∫
t1

g(P 2
τ , u

3(P 2
τ ))

(
u1(P 2

τ ) + u2(P 2
τ )
)
dτ +

t−x∫
t1

f(P 2
τ ) dτ + ψ(t− x− t1)

+φ′(t− x− t1)−
1

2

t∫
t−x

g(Pτ , u
3(Pτ ))

(
u1(Pτ ) + u2(Pτ )

)
dτ +

t∫
t−x

f(Pτ ) dτ,

u2(x, t) = −1

2

t∫
t1

g(Qτ , u
3(Qτ ))

(
u1(Qτ ) + u2(Qτ )

)
dτ +

t∫
t1

f(Qτ ) dτ + ψ(x+ t− t1)

+φ′(x+ t− t1),

u3(x, t) =

t∫
t1

u1(Qτ ) dτ + φ(x+ t− t1).

(4.26)
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For (x, t) ∈ D3;t1,t2 , integrating equations of the system (4.22) along the characteristic curves, in
view of the initial and boundary conditions (4.20), (4.21), we obtain

u1n(x, t)=−1

2

t∫
t1

g(Pτ , u
3
n(Pτ))

(
u1n(Pτ)+u

2
n(Pτ)

)
dτ+

t∫
t1

fn(Pτ ) dτ+ψn(x−t+t1)−φ′
n(x−t+t1),

u2n(x, t) = u2n

( k̃(x+t)
k̃ + 1

,
x+t

k̃+1

)
− 1

2

t∫
x+t

k̃+1

g(Qτ , u
3
n(Qτ ))

(
u1n(Qτ )+u

2
n(Qτ )

)
dτ+

t∫
x+t

k̃+1

fn(Qτ ) dτ,

u3n(x, t) =

t∫
x+t

k̃+1

u1n(Qτ ) dτ.

(4.27)

Since by (4.21) there is on γ1;t1,t2 the equality u2n = k̃−1

k̃+1
u1n, due to the first equality of the obtained

system and the notation P 3
τ := ( k̃−1

k̃+1
(x+ t) + τ, τ), the system (4.27) can be rewritten in the form

u1n(x, t) = −1

2

t∫
t1

g(Pτ , u
3
n(Pτ ))

(
u1n(Pτ )+u

2
n(Pτ )

)
dτ+

t∫
t1

fn(Pτ ) dτ+ψn(x−t+t1)−φ′
n(x−t+t1),

u2n(x, t) =
k̃ − 1

k̃ + 1

[
− 1

2

x+t

k̃+1∫
t1

g(P 3
τ , u

3
n(P

3
τ ))

(
u1n(P

3
τ ) + u2n(P

3
τ )
)
dτ +

x+t

k̃+1∫
t1

fn(P
3
τ ) dτ

+ψn

( k̃ − 1

k̃ + 1
(x+ t) + t1

)
− φ′

n

( k̃ − 1

k̃ + 1
(x+ t) + t1

)]

−1

2

t∫
x+t

k̃+1

g(Qτ , u
3
n(Qτ ))

(
u1n(Qτ ) + u2n(Qτ )

)
dτ +

t∫
x+t

k̃+1

fn(Qτ ) dτ,

u3n(x, t) =

t∫
x+t

k̃+1

u1n(Qτ ) dτ.

Passing in this system to the limit, as n→ ∞, in the space C(D3;t1,t2) and taking into account (4.2),
(4.3), (4.6), (4.7), (4.9) and (4.10), we have

u1(x, t)=−1

2

t∫
t1

g(Pτ , u
3(Pτ ))

(
u1(Pτ )+u

2(Pτ )
)
dτ+

t∫
t1

f(Pτ ) dτ+ψ(x−t+t1)−φ′(x−t+t1),

u2(x, t) =
k̃ − 1

k̃ + 1

[
− 1

2

x+t

k̃+1∫
t1

g(P 3
τ , u

3(P 3
τ ))

(
u1(P 3

τ ) + u2(P 3
τ )
)
dτ +

x+t

k̃+1∫
t1

f(P 3
τ ) dτ

+ψ
( k̃ − 1

k̃ + 1
(x+ t) + t1

)
− φ′

( k̃ − 1

k̃ + 1
(x+ t) + t1

)]

−1

2

t∫
x+t

k̃+1

g(Qτ , u
3(Qτ ))

(
u1(Qτ ) + u2(Qτ )

)
dτ +

t∫
x+t

k̃+1

f(Qτ ) dτ,

u3(x, t) =

t∫
x+t

k̃+1

u1(Qτ ) dτ.

(4.28)
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By the a priori estimate (4.5), for a generalized solution u3 = u of the problem (1.1), (1.3), (1.4) we get∣∣g(x, t, u3(x, t))∣∣ ≤ Kφ,ψ, (x, t) ∈ Dt1,t2 , (4.29)
where Kφ,ψ is defined in (4.18).

Let
vi(t) := sup

(ξ,τ)∈Dt1,t

|ui(ξ, τ)|, i = 1, 2, 3, F (t) := sup
(ξ,τ)∈Dt1,t

|f(ξ, τ)|. (4.30)

It follows from (4.23), (4.26) and (4.28) by virtue of (4.29) and (4.30) that

|ui(x, t)| ≤ (Kφ,ψ + 1)

t∫
t1

[
v1(τ) + v2(τ)

]
dτ + 2t∥f∥C(Dt1,t)

+ ∥φ∥C1(ωt1
) + ∥ψ∥C(ωt1

), i = 1, 2, 3.

whence taking into account the fact that the right-hand sides of these inequalities are nondecreasing,
by virtue of (4.30), we obtain

|vi(t)| ≤ (Kφ,ψ + 1)

t∫
t1

[
v1(τ) + v2(τ)

]
dτ + 2t2∥f∥C(Dt1,t2

) + ∥φ∥C1(ωt1 )
+ ∥ψ∥C(ωt1 )

,

t1 ≤ t ≤ t2, i = 1, 2, 3.

Putting v(t) := max
1≤i≤3

vi(t), the obtained inequalities result in

v(t) ≤ 2(Kφ,ψ + 1)

t∫
t1

v(τ) dτ + 2t2∥f∥C(Dt1,t2 )
+ ∥φ∥C1(ωt1 )

+ ∥ψ∥C(ωt1 )
, t1 ≤ t ≤ t2. (4.31)

From (4.31), applying Gronwall’s lemma, we obtain

v(t) ≤
[
2t2∥f∥C(Dt1,t2 )

+ ∥φ∥C1(ωt1
) + ∥ψ∥C(ωt1

)

]
exp

[
2(Kφ,ψ + 1)t

]
, t1 ≤ t ≤ t2.

From (4.24) and (4.30), it now easily follows that

∥u∥C1(Dt1,t2 )
≤

[
2t2∥f∥C(Dt1,t2 )

+ ∥φ∥C1(ωt1
) + ∥ψ∥C(ωt1

)] exp[2(Kφ,ψ + 1)t2

]
,

which proves Lemma 4.2. �

5. The Uniqueness of a Solution of the Problems (1.1), (1.2) and (1.1), (1.3), (1.4)

Lemma 5.1. Let the conditions (3.5), (4.1), (4.4), (4.16) be fulfilled. Then the problem (1.1), (1.3),
(1.4) may have no more than one generalized solution of the class C1(Dt1,t2).

Proof. Indeed, assume that the problem (1.1), (1.3), (1.4) has two possible different generalized so-
lutions u1 and u2 of the class C1 in the domain Dt1,t2 . According to Definition 1.1, there exists a
sequence of functions uin ∈

◦
C2(Dt1,t2 ,Γt1,t2) such that the limiting equalities

lim
n→∞

∥uin − ui∥C1(Dt1,t2 )
= 0, lim

n→∞
∥Luin − f∥C(Dt1,t2 )

= 0 (5.1)

and
lim
n→∞

∥uin|ωt1
− φ∥C1(ωt1 )

= 0, lim
n→∞

∥uint|ωt1
− ψ∥C(ωt1 )

= 0, i = 1, 2, (5.2)
hold.

We take advantage here the well-known notation � := ∂2/∂t2 − ∂2/∂x2 and put ωn := u2n − u1n. It
can be easily seen that the function ωn ∈

◦
C2(Dt1,t2 ,Γt1,t2) satisfies the following equalities:
�ωn + gn = fn, , (5.3)

ωn
∣∣
ωt1

= φ̃n, ωnt
∣∣
ωt1

= ψ̃n, (5.4)

ωn
∣∣
γ1;t1,t2

= 0, ωnx
∣∣
γ2;t1,t2

= 0, (5.5)

where
gn := g(x, t, u2n)u

2
nt − g(x, t, u1n)u

1
nt, fn := Lu2n − Lu1n, (5.6)
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φ̃n := ωn
∣∣
ωt1

, ψ̃n := ωnt
∣∣
ωt1

, (5.7)

and by virtue of (5.2) and (5.7), the equalities

lim
n→∞

∥φ̃n∥C1(ωt1 )
= 0, lim

n→∞
∥ψ̃n∥C(ωt1 )

= 0, i = 1, 2, (5.8)

hold.
By the first equality of (5.1), there is the number A = const > 0, independent of the indices i and

n, such that
∥uin∥C1(Dt1,t2 )

≤ A. (5.9)

According to the second equalities of (5.1) and (5.6), we have

lim
n→∞

∥fn∥C(Dt1,t2 )
= 0. (5.10)

By (3.5), (5.9) and the first equality of (5.6), it is not difficult to see that

g2n =
(
g(x, t, u2n)ωnt +

(
g(x, t, u2n)− g(x, t, u1n)

)
u1nt

)2

≤ 2m2(A)ω2
nt + 2A2c2(A)ω2

n. (5.11)

Multiplying both parts of the equality (5.3) by ωnt and integrating the obtained equality with
respect to the domain Dt1,t2 , by virtue of (5.4), (5.5), just in the same manner as when obtaining
inequality (4.13), from (4.10)–(4.12), we have

wn(τ) :=

∫
ωτ

(ω2
nx + ω2

nt) dx ≤
∫
ωt1

(
φ̃n

′2 + ψ̃2
n

)
dx+ 2

∫
Dt1,t2;τ

(fn − gn)ωnt dx dt. (5.12)

By virtue of the estimate (5.11) and the Cauchy inequality, we obtain

2

∫
Dt1,t2;τ

(fn − gn)ωnt dx dt ≤
∫

Dt1,t2;τ

(fn − gn)
2dxdt+

∫
Dt1,t2;τ

ω2
nt dx dt

≤ 2

∫
Dt1,t2;τ

f2n dx dt+ 2

∫
Dt1,t2;τ

g2n dx dt+

∫
Dt1,t2;τ

ω2
nt dx dt

≤ 2

∫
Dt1,t2;τ

f2n dx dt+ 4A2c2(A)

∫
Dt1,t2;τ

ω2
n dx dt+ (1 + 4m2(A))

∫
Dt1,t2;τ

ω2
nt dx dt. (5.13)

Next, in view of the equality

ωn(x, t) =

x∫
k̃t

ωnx(ξ, t) dξ, (x, t) ∈ Dt1,t2;τ

which follows from the first equality of (5.5), reasoning in a standard manner, we obtain the following
inequality: ∫

Dt1,t2;τ

ω2
n dx dt ≤ (k̃T )2

∫
Dt1,t2;τ

ω2
nx dx dt. (5.14)

It follows from (5.12)–(5.14) that

wn(τ) ≤
∫
ωt1

(φ̃′2
n + ψ̃2

n) dx+ 2

∫
Dt1,t2;τ

f2n dx dt

+ 4k2T 2A2c2(A)

∫
Dt1,t2;τ

ω2
nx dx dt+ (1 + 4m2(A))

∫
Dt1,t2;τ

ω2
nt dx dt

≤
∫
ωt1

(φ̃′2
n +ψ̃

2
n) dx+2

∫
Dt1,t2;τ

f2n dx dt+
(
4k2T 2A2c2(A)+1+4m2(A)

) ∫
Dt1,t2;τ

(ω2
nx+ω

2
nt) dx dt
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=
(
4k2T 2A2c2(A) + 1 + 4m2(A)

) τ∫
t1

wn(σ) dσ +

∫
ωt1

(φ̃′2
n + ψ̃2

n) dx+ 2

∫
Dt1,t2;τ

f2n dx dt,

whence due to the Gronwall’s lemma, we find that

wn(τ) ≤ c2
(
∥φ̃ ′

n∥2L2(ωt1 )
+ ∥ψ̃n∥2L2(ωt1 )

+ 2∥fn∥2L2(Dt1,t2 )

)
, t1 < τ ≤ t2, (5.15)

where
c2 := exp

(
4k2T 2A2c2(A) + 1 + 4m2(A)

)
(t2 − t1).

Reasoning analogously as in the obtaining estimate (4.15) and taking into account obvious inequal-
ities

∥fn∥2L2(Dt1,t2 )
≤ ∥fn∥2C(Dt1,t2 )

mesDt1,t2 , ∥φ̃ ′
n∥2L2(ωt1 )

≤ ∥φ̃ ′
n∥2C(ωt1 )

mesωt1 ,

∥ψ̃n∥2L2(ωt1 )
≤ ∥ψ̃n∥2C(ωt1 )

mesωt1 ,

by virtue of (5.15), for (x, t) ∈ Dt1,t2 we have

|ωn(x, t)|2≤ k̃twn(t)≤ k̃T c2
(

mesωt1∥φ̃ ′
n∥2C(ωt1 )

+mesωt1∥ψ̃n∥2C(ωt1 )
+2mesDt1,t2∥fn∥2C(Dt1,t2 )

)
≤ c2(k̃T )

2(1 + T )
(
∥φ̃ ′

n∥2C(ωt1 )
+ ∥ψ̃n∥2C(ωt1 )

+ ∥fn∥2C(Dt1,t2 )

)
.

Hence it immediately follows that

∥ωn∥C(Dt1,t2 )
≤ k̃T

√
c2(1 + T )

(
∥φ̃ ′

n∥C(ωt1 )
+ ∥ψ̃n∥C(ωt1 )

+ ∥fn∥C(Dt1,t2 )

)
. (5.16)

According to the definition of the function ωn and the first equality of (5.1), we can easily see that

lim
n→∞

∥ωn∥C1(Dt1,t2 )
= ∥u2 − u1∥C1(Dt1,t2 )

and all the more,
lim
n→∞

∥ωn∥C(Dt1,t2 )
= ∥u2 − u1∥C(Dt1,t2 )

.

Therefore, passing in the inequality (5.16) to the limit, as n→ ∞, and taking into account (5.8) and
(5.10), we obtain ∥u2 − u1∥C(Dt1,t2 )

= 0, i.e. u1 = u2. �

Theorem 5.1. Let the conditions (3.5), (4.1), (4.4) be fulfilled. Then the problem (1.1), (1.2) may
have no more than one generalized solution of the class C1(DT ).

Proof. We take a natural number n so large that ∆ = T−T1

n < 1
2 k̃T1, where T1 is the number

appearing in Remark 3.2, and put Ti := T1 + (i − 1)∆, i = 2, . . . , n + 1. Then if u1 and u2 are the
two possible solutions of the problem (1.1), (1.2) of the class C1(DT ), then owing to Remark 3.2, we
have u1|DT1

= u2|DT1
, whence by virtue of Lemma 5.1, we find that u1|DT1,T2

= u2|DT1,T2
. Further,

continuing analogous reasoning step by step, in the domains DT2,T3 , DT3,T4 , . . . , DTn,Tn+1 we find that
u1|DTi,Ti+1

= u2|DTi,Ti+1
, i = 2, . . . , n, and hence u1|DT

= u2|DT
. Thus this proves the uniqueness of

a solution of the problem (1.1), (1.2) in the class C1(DT ). �

6. Solvability of the Problem (1.1), (1.2)

As is known, if a global a priori estimate of a solution is obtained and the existence of a local
solution of the evolution problem is established, then reasoning in a standard manner, we obtain the
existence of the global solution of that problem (see, e.g., [20]). In our case, the a priori estimate of a
solution of the problem (1.1), (1.3), (1.4) is obtained under the assumption that the height ∆t := t2−t1
of the trapezoid Dt1,t2 is less than the defined value (see (4.16)). Therefore, in this case, to prove the
existence of the global solution, we have to modify the above-mentioned general approach, making it
convenient for our case.
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Remark 6.1. In the assumption that the condition (4.16) is fulfilled, we consider first the question
on the solvability of the problem (1.1), (1.3), (1.4) of the class C1 in the domain Dt1,t2 taking into
account that if u is a generalized solution of that problem of the class C1 in the domain Dt1,t2 , then
u1 := ut − ux, u2 := ut + ux, u3 := u is a continuous solution of the system of nonlinear Volterra
type integral equations (4.23), (4.26), (4.28), respectively, in the domains D1;t1,t2 , D2;t1,t2 , D3;t1,t2 ,
and vice versa, if u1, u2, u3 is a continuous solution of the above-mentioned system, then u := u3 is
a generalized solution of the problem (1.1), (1.3), (1.4) of the class C1 in the domain Dt1,t2 , and the
equalities u1 := ut − ux, u2 := ut + ux are valid.

We rewrite the systems (4.23), (4.26) and (4.28) in the vector form
U(P ) = (ΦU)(P ), P ∈ Dt1,t2 , (6.1)

where U := (u1, u2, u3) and Φ := (Φ1,Φ2,Φ3), and the operators
Φ1(U) := Φ(U)

∣∣
D1;t1,t2

, Φ2(U) := Φ(U)
∣∣
D2;t1,t2

, Φ3(U) := Φ(U)
∣∣
D3;t1,t2

(6.2)

are defined by the right-hand sides of the systems (4.23), (4.26) and (4.28), respectively.
Let

∥U∥Xt1,t2
:= max

1≤i≤3

{
∥ui∥C(Dt1,t2 )

}
, U ∈ Xt1,t2 := C(Dt1,t2 ;R3).

We fix the number R > 0 and denote by BR(t1, t2) := {U ∈ Xt1,t2 : ∥U∥Xt1,t2
≤ R} a closed ball

of radius R in the Banach space Xt1,t2 with the center in a zero element.
Below, it will be shown that there exists the positive number t02 ∈ (t1, T ] such that for any t2 < t02:

(i) Φ maps the ball BR(t1, t2) into itself;
(ii) Φ is a contracting mapping on the set BR(t1, t2).

Assume
R = 2

(
2T∥f∥C(DT ) + ∥φ∥C1(ωt1 )

+ ∥ψ∥C(ωt1 )

)
.

For ∥U∥Xt1,t2
≤ R, by virtue of (6.1), from (4.31), we have

∣∣(ΦU)(x, t)
∣∣ ≤ 2(Kφ,ψ + 1)

t∫
t1

v(τ) dτ + 2t2∥f∥C(Dt1,t2 )
+ ∥φ∥C1(ωt1

) + ∥ψ∥C(ωt1
)

≤ 2(Kφ,ψ + 1)R(t− t1) + 2T∥f∥C(DT ) + ∥φ∥C1(ωt1 )
+ ∥ψ∥C(ωt1 )

, t1 ≤ t ≤ t2,

whence for
∆t1 := t2 − t1 ≤ 1

4(Kφ,ψ + 1)
, (6.3)

we obtain
|(ΦU)(x, t)| ≤ R, (x, t) ∈ Dt1,t2 . (6.4)

The value K here is defined in Lemma 4.2.
Thus, by (6.4), in the case (6.3), the operator Φ maps the ball BR(t1, t2) into itself, i.e., item (i) is

fulfilled.
Let us now show that item (ii) is likewise fulfilled, that is, the operator Φ is a contracted mapping

in that ball. Indeed, for Ui := (u1i , u
2
i , u

3
i ), i = 1, 2, and P ∈ D1;t1,t2 , from (4.23), by virtue of (3.5)

for

(Φ1
1U)(P ) := −1

2

t∫
t1

g(Pτ , u
3(Pτ ))

(
u1(Pτ )+u

2(Pτ )
)
dτ+

t∫
t1

f(Pτ ) dτ+ψ(x−t+t1)−φ′(x−t+t1),

we have

∣∣(Φ1
1U2 − Φ1

1U1)(x, t)
∣∣ ≤ 1

2

t∫
t1

(∣∣g(Pτ , u32(Pτ ))− g(Pτ , u
3
1(Pτ ))

∣∣ ∣∣u12(Pτ ) + u22(Pτ )
∣∣

+
∣∣g(Pτ , u31(Pτ ))∣∣ ∣∣u12(Pτ )− u11(Pτ ) + u22(Pτ )− u21(Pτ )

∣∣) dτ
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≤ c(R)R∆t1∥u32 − u31∥C(D1;t1,t2 )
+

1

2
m(R)∆t1

(
∥u12 − u11∥C(D1;t1,t2 )

+ ∥u22 − u21∥C(D1;t1,t2 )

)
≤ (c(R)R+m(R))∆t1∥U2 − U1∥C(D1;t1,t2 )

,

whence in view of (4.23) and (6.3), for

∆t1 := t2 − t1 = min
{1

2
k̃t1,

1

4(Kφ,ψ + 1)
,

1

2(c(R)R+m(R))

}
(6.5)

we obtain ∣∣(Φ1
1U2 − Φ1

1U1)(x, t)
∣∣ ≤ 1

2
∥U2 − U1∥C(D1;t1,t2 )

, (x, t) ∈ D1;t1,t2 . (6.6)

The estimates, analogous to (6.6) are likewise valid for the operators

(Φ1
2U)(P ) := −1

2

t∫
t1

g(Qτ , u
3(Qτ ))

(
u1(Qτ )+u

2(Qτ )
)
dτ+

t∫
t1

f(Qτ ) dτ+ψ(x+t−t1)+φ′(x+t−t1)

and

(Φ1
3U)(P ) :=

t∫
t1

u1(Qτ ) dτ + φ(x+ t− t1)

from (6.2), namely,∣∣(Φ1
iU2 − Φ1

iU1)(x, t)
∣∣ ≤ 1

2
∥U2 − U1∥C(D1;t1,t2 )

, (x, t) ∈ D1;t1,t2 , i = 2, 3. (6.7)

The same reasonings in the case (6.5) result in the following estimates:∣∣(ΦijU2 − ΦijU1)(x, t)
∣∣ ≤ 1

2
∥U2 − U1∥C(Di;t1,t2 )

, (x, t) ∈ Di;t1,t2 , i = 2, 3; j = 1, 2, 3. (6.8)

Bearing in mind (6.1), (6.2), (6.5)–(6.8), the estimate

∥ΦU2 − ΦU1∥C(Dt1,t2 )
≤ 1

2
∥U2 − U1∥C(Dt1,t2 )

, (x, t) ∈ Dt1,t2 (6.9)

holds.
Thus, in the case (6.5), by virtue of (6.4), (6.9) and theorem on the contracted mapping it follows

that the system (6.1) in the class C(Dt1,t2) is solvable, and hence the following lemma is valid.

Lemma 6.1. The problem (1.1), (1.3), (1.4) has a unique solution of the class C1 in the domain Dt1,t2

if the condition (6.5) is fulfilled.

Let t1 = T1 < T , where T1 is taken from Theorem 3.1 when the problem (1.1), (1.2) has a unique
generalized solution of the class C1 in the triangular domain DT1 .

We take a natural number n so large that the inequality
T − T1
n

<
1

2
k̃T1 (6.10)

holds.
Accordingly, we divide the interval [T1, T ] into n equal segments [T1, T2], [T2, T3], . . . , [Tn, Tn+1] of

the same length ∆ := T−T1

n .
In the domain DT1,T2 , consider the problem (1.1), (1.3), (1.4) in which as the initial functions φ

and ψ we take traces of the solution u and its derivative ut of the problem (1.1), (1.2) in the domain
DT1 on the interval ωT1 . In view of (6.10), the condition (4.16) of Lemma 4.2 is fulfilled, and hence
we have the following a priori estimate

∥u∥C1(DT1,T2
) ≤ L1 :=

(
2T∥f∥C(DT ) + ∥φ∥C1(ωT1

) + ∥ψ∥C(ωT1
)

)
exp

[
2(Kφ,ψ + 1)T

]
. (6.11)

Remark 6.2. From the definition of the value K = K(s), s ≥ 0 it is easy to see that it is the
nondecreasing function with respect to the variable s.
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Remark 6.3. It is not difficult to see that by virtue of (6.11) and (4.17), if u is a solution of the
problem (1.1), (1.3), (1.4) of the class C1 in the domain DT1,T2 , then the estimate

∥u|t=τ∥C1(ωτ ) + ∥ut|t=τ∥C(ωτ ) ≤ 2L1 ∀ τ ∈ [T1, T2] (6.12)
is valid, and hence
Kφτ ,ψτ = K

(
∥f∥C(DT )+∥u|t=τ∥C1(ωτ )+∥ut|t=τ∥C(ωτ )

)
≤ K

(
∥f∥C(DT )+2L1

)
∀ τ ∈ [T1, T2]. (6.13)

By Lemma 6.1, in view of (6.5) and (6.13), for the value ∆t1 for which there exists the unique
solution of the problem (1.1), (1.3), (1.4) of the class C1 in the domain DT1,t2 , where t2 = T1 +∆t1,
the following lower bound

∆t1 ≥ min
{1

2
k̃t1,

1

4(K(∥f∥C(DT ) + 2L1) + 1)
,

1

2(c(R)R+m(R))

}
(6.14)

is valid.
Continuing this process of constructing a local solution of the problem (1.1), (1.3), (1.4) in the

domains Dti−1,ti , by (6.14), for the length ∆ti of the interval [ti−1, ti], independently on the step
number i, there exists the natural number i0 such that ti0 ≥ t2. This latter means that the problem
(1.1), (1.3), (1.4) has the unique solution in the domain DT1,T2 . The same process, owing to the
estimate (6.14), allows one to construct step by step a unique solution of the problem (1.1), (1.3), (1.4)
in the domains DT2,T3 , . . . , DTn,Tn+1 , and since Tn+1 = T , this proves the existence of a generalized
solution of the problem (1.1), (1.2) in the domain DT .

Thus the following theorem is valid.
Theorem 6.1. Let f ∈ C(DT ), g ∈ C(DT ×R) and the conditions (3.5) and (4.4) be fulfilled. Then
the problem (1.1), (1.2) has a unique generalized solution of the class C1 in the domain DT .
Remark 6.4. From Theorem 6.1 we arrive at the global solvability of the problem (1.1), (1.2) in the
sense of Definition 1.3.

7. The Case of Nonexistence of a Global Solution of the Problem (1.1), (1.2)

Below, we will show that violation of the condition (4.4) may result in the nonexistence of global
solvability of the problem (1.1), (1.2) in the sense of Definition 1.3. To simplify our exposition, we
consider the case k̃ = 1, i.e., when γ̃1,T is the characteristic of the equation (1.1). Indeed, let
g(x, t, s) = −|s|αs, s ∈ R and the nonlinearity exponent α > −1.
Lemma 7.1. Let u be a strong generalized solution of the problem (1.1), (1.2) of the class C1 in the
domain DT in the sense of Definition 1.1. Then the following integral equality∫

DT

u�φ dx dt =

∫
DT

|u|αuutφ dx dt+
∫
DT

fφ dx dt (7.1)

is valid for any function φ such that
φ ∈ C2(DT ), φ

∣∣
γ̃3,T

= 0, φt
∣∣
γ̃3,T

= 0, φx
∣∣
γ̃2,T

= 0. (7.2)

Proof. According to the definition of a strong generalized solution u of the problem (1.1), (1.2) of
the class C1 in the domain DT , the function u ∈ C1(DT ) and there exists the sequence of functions
un ∈

◦
C2(DT , Γ̃T ) such that the equalities

lim
n→∞

∥un − u||C1(DT ) = 0, lim
n→∞

∥Lun − f∥C(DT ) = 0 (7.3)

are valid.
Assume fn := Lun. We multiply both parts of the equality Lun = fn by the function φ and

integrate the obtained equality with respect to the domain DT . As a result of integration by parts of
the left part of that equality, in view of (7.2) and the conditions (1.2), we obtain∫

DT

un�φ dx dt =

∫
DT

|un|αununtφ dx dt+
∫
DT

fnφ dx dt.

Passing in this equality to the limit, as n→ ∞, owing to (7.3), we obtain (7.1). �
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Below, the use will be made of the test functions method (see, e.g., [19, pp. 10–12]). We introduce
into consideration the function φ0 := φ0(x, t) such that

φ0 ∈ C2(D∞), φ0 + φ0
t ≤ 0, φ0

∣∣
DT=1

> 0, φ0
x

∣∣
γ̃2,∞

= 0, φ0
∣∣
t≥1

= 0 (7.4)

and

κ0 :=

∫
DT=1

|�φ0|p′

|φ0|p′−1
dx dt < +∞, p′ =

α+ 2

α+ 1
. (7.5)

It can be easily verified that in the capacity of the function φ0 satisfying the conditions (7.4) and
(7.5), we can take the function

φ0(x, t) =

{
[x(1− t)]n, (x, t) ∈ DT=1,

0, t ≥ 1

for a sufficiently large positive n.
Put φT (x, t) := φ0( xT ,

t
T ), T > 0. By virtue of (7.4), it can be easily seen that

φT ∈ C2(DT ), φT + T
∂φT
∂t

≤ 0, φT
∣∣
DT

> 0,
∂φT
∂x

∣∣∣∣
γ̃2,T

= 0, φT
∣∣
γ̃3,T

= 0,
∂φT
∂t

∣∣∣∣
γ̃3,T

= 0. (7.6)

Given f , we consider the function

ζ(T ) :=

∫
DT

fφT dx dt, T > 0. (7.7)

The following theorem on the nonexistence of global solvability of the problem (1.1), (1.2) holds.

Theorem 7.1. Let g(x, t, s) = −|s|αs, s ∈ R, α > −1, f ∈ C(D∞), and f ≥ 0 in the domain D∞.
Then if

lim inf
T→+∞

ζ(T ) > 0, (7.8)

there exists the positive number T ∗ := T ∗(f) such that for T > T ∗ the problem (1.1), (1.2) fails to
have a strong generalized solution u of the class C1 in the domain DT .

Proof. Suppose that in the conditions of this theorem there exists a strong generalized solution u of
the problem (1.1), (1.2) of the class C1 in the domain DT . Then by Lemma 7.1, there is the equality
(7.1) in which, due to (7.6), in the capacity of the function φ is taken the function φ = φT , i.e.,∫

DT

u�φT dx dt =

∫
DT

|u|αuutφT dx dt+
∫
DT

fφT dx dt. (7.9)

Taking into account (1.2) and (7.6), we have∫
DT

|u|αuutφT dx dt =
1

α+ 2

∫
DT

φT
∂

∂t
|u|α+2 dx dt

= − 1

α+ 2

∫
DT

|u|α+2 ∂φT
∂t

dx dt ≥ 1

(α+ 2)T

∫
DT

|u|α+2φT dx dt.

Hence by (7.7), it follows from (7.9) that
1

pT

∫
DT

|u|pφT dx dt ≤
∫
DT

u�φT dx dt− ζ(T ), p := α+ 2 > 1. (7.10)

If in the Young’s inequality with parameter ε > 0

ab ≤ ε

p
ap +

1

p′εp′−1
bp

′
; a, b ≥ 0,

1

p
+

1

p′
= 1, p > 1,
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we take a = |u|φ
1
p

T , b = |�φT |

φ
1
p
T

, ε = 1
T , then in view of the fact that p′

p = p′ − 1, we obtain

|u�φT | = |u|φ
1
p

T

|�φT |

φ
1
p

T

≤ 1

pT
|u|pφT +

T p
′−1

p′
|�φT |p

′

φp
′−1
T

.

By virtue of (7.10) and the last inequality, we have

0 ≤ T p
′−1

p′

∫
DT

|�φT |p
′

φp
′−1
T

dx dt− ζ(T ). (7.11)

Since φT (x, t) := φ0( xT ,
t
T ), in view of (7.4), (7.5), after the change of variables x = Tx1, t = Tt1,

it can be easily verified that∫
DT

|�φT |p
′

φp
′−1
T

dx dt =
1

T 2(p′−1)

∫
DT=1

|�φ0|p′

|φ0|p′−1
dx1d t1 =

κ0
T 2(p′−1)

.

Hence, bearing in mind (7.11), we obtain

0 ≤ κ0
p′T p′−1

− ζ(T ). (7.12)

Since p′ = p
p−1 > 1, by virtue of (7.5), we have

lim
T→+∞

κ0
p′T p′−1

= 0.

Therefore, owing to (7.8), there exists the positive number T ∗ := T ∗(f) such that for T > T ∗,
the right-hand side of the inequality (7.12) is negative, whereas the left-hand side equals zero. The
obtained contradiction shows that if u is a strong generalized solution of the problem (1.1), (1.2) of
the class C1 in the domain DT , then necessarily T ≤ T ∗, which proves Theorem 7.1. �

Remark 7.1. It is easy to check that if f ∈ C(D∞), f ≥ 0, and f(x, t) ≥ ct−m for t ≥ 1, where
c = const > 0, 0 ≤ m = const ≤ 2, then the condition (7.8) is fulfilled and hence for g = −|s|αs, s ∈ R,
α > −1 the problem (1.1), (1.2) for sufficiently large T fails to have a strong generalized solution u of
the class C1 in the domain DT .

Indeed, introducing in (7.7)the transformation of independent variables x and t by formula x = Tx1,
t = Tt1, after simple transformations we will have

ζ(T ) = T 2

∫
DT=1

f(Tx1, T t1)φ
0(x1, t1) dx1 dt1

≥ cT 2−m
∫

DT=1∩{t1≥T−1}

t−m1 φ0(x1, t1) dx1 dt1 + T 2

∫
DT=1∩{t1<T−1}

f(Tx1, T t1)φ
0(x1, t1) dx1 dt1

in the assumption that T > 1. Further, let T1 > 1 be an arbitrary fixed number. Then from the last
inequality, when T ≥ T1 > 1, for the function ζ we have

ζ(T ) ≥ cT 2−m
∫

DT=1∩{t1≥T−1}

t−m1 φ0(x1, t1) dx1 dt1 ≥ c

∫
DT=1∩{t1≥T−1

1 }

t−m1 φ0(x1, t1) dx1 dt1,

which immediately results in the validity of (7.8).
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CERTAIN PROPERTIES OF GENERALIZED
ANALYTIC FUNCTIONS FROM SMIRNOV CLASS
WITH A VARIABLE EXPONENT



Abstract. Let D be a simply connected domain bounded by a simple, closed, rectifiable curve Γ,
p = p(t) be the given on Γ positive measurable function, and z = z(ζ), ζ = reiϑ be conformal mapping
of the circle U = {ζ : |ζ| < 1} onto the domain D.

The function W (z), generalized-analytical in I. Vekua’s sense, belongs to the Smirnov class
Ep(t)(A;B;D), if

(1) W ∈ Us,2(A;B;D);

(2) sup
0<r<1

2π∫
0

|W (z(reiϑ))|p(z(eiϑ))|z′(reiϑ)| dϑ < ∞

(see [15]).
When p(t) is Log–Hölder function continuous in Γ and min p(t) = p > 1, we considers the problems

of representability of functions from Ep(t)(A;B;D) by the generalized Cauchy integral, show the
connection between the generalized Cauchy type integral and the generalized singular integral; of
special interest is the question of extendability of functions from those classes, and the symmetry
principle is proved.

2010 Mathematics Subject Classification. 47B38, 42B20, 45P05.
Key words and phrases. Generalized analytic functions, variable exponent, Smirnov classes of
generalized analytic functions, generalized Cauchy and Cauchy type integrals.

ÒÄÆÉÖÌÄ. ÅÈØÅÀÈ, D ÝÀËÀÃÁÌÖËÉ ÀÒÄÀ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÌÀÒÔÉÅÉ, ÂÀßÒ×ÄÅÀÃÉ, ÛÄÊÒÖËÉ Γ

ßÉÒÉÈ, p = p(t) ÌÀÓÆÄ ÂÀÍÓÀÆÙÅÒÖËÉ ÃÀÃÄÁÉÈÉ ÆÏÌÀÃÉ ×ÖÍØÝÉÀÀ, áÏËÏ z = z(ζ), ζ = reiϑ

ÄÒÈÄÖËÏÅÀÍÉ U = {ζ : |ζ| < 1} ßÒÉÓ D ÀÒÄÆÄ ÊÏÍ×ÏÒÌÖËÀÃ ÀÌÓÀáÅÄËÉ ×ÖÍØÝÉÀÀ.
D ÀÒÄÛÉ É. ÅÄÊÖÀÓ ÀÆÒÉÈ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÍÀËÉÆÖÒÉ W (z) ×ÖÍØÝÉÀ ÄÊÖÈÅÍÉÓ ÓÌÉÒÍÏÅÉÓ

ÝÅËÀÃÌÀÜÅÄÍÄÁËÉÀÍ Ep(t)(A;B;D) ÊËÀÓÓ, ÈÖ:

(1) W ∈ Us,2(A;B;D);

(2) sup
0<r<1

2π∫
0

|W (z(reiϑ))|p(z(eiϑ))|z′(reiϑ)| dϑ < ∞

(Éá. [15]).
ÍÀÛÒÏÌÛÉ ÂÀÍÉáÉËÄÁÀ Ep(t)(A;B;D) ÊËÀÓÉÓ ×ÖÍØÝÉÀÈÀ ÊÏÛÉÓ ÉÍÔÄÂÒÀËÉÈ ßÀÒÌÏÃ-

ÂÄÍÀÃÏÁÉÓ ÓÀÊÉÈáÉ, ÊÏÛÉÓ ÔÉÐÉÓ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÉÍÔÄÂÒÀËÉÈ ßÀÒÌÏÃÂÄÍÉËÉ ×ÖÍØÝÉÉÓ
ÓÌÉÒÍÏÅÉÓ ÊËÀÓÉÓÀÃÌÉ ÌÉÊÖÈÅÍÄÁÉÓ ÓÀÊÉÈáÉ, ÛÄÓßÀÅËÉËÉÀ ÓÌÉÒÍÏÅÉÓ ÊËÀÓÉÓ ×ÖÍØÝÉÀÈÀ
ÂÀÂÒÞÄËÄÁÀÃÏÁÉÓ ÓÀÊÉÈáÉ; ÃÀÌÔÊÉÝÄÁÖËÉÀ ÓÉÌÄÔÒÉÉÓ ÐÒÉÍÝÉÐÉ, ÒÏÝÀ p(t) Log–Hölder-ÉÓ
ÀÆÒÉÈ ÖßÚÅÄÔÉ ×ÖÍØÝÉÀÀ Γ-ÆÄ ÃÀ min p(t) = p > 1.
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1. Introduction

The Hardy classes Hp of analytic in a unit circle U functions and their generalizations, i.e., Smirnov
classes Ep(D), p > 0, are the main objects of investigation of mathematical analysis (see [2,3,10,16],
etc.). They have a great number of applications in the boundary value problems of the theory of
analytic functions.

Recently, the Lebesgue spaces with a variable exponent Lp(t) and their applications attract attention
of many mathematicians. This tendency has touched upon certain questions of the theory of analytic
functions. The notions of Hardy and Smirnov classes (with a variable exponent) of analytic functions
have been introduced in [5] and [6] and successfully applied to the boundary value problems; a part
of those applications are reflected in [7].

For a constant p, the analogues of Smirnov classes for generalized analytic functions are presented
in [4, 11–14] and some boundary value problems in these classes are studied therein.

The perspective to investigate the boundary value problems for generalized analytic functions more
thoroughly made it necessary to introduce Smirnov classes with a variable exponent. But towards this
end, one has, first of all, to know the properties of generalized Cauchy type integrals and generalized
singular integrals with densities from the class Lp(t). These questions have been studied in [9]. In
particular, the validity of analogues of Sokhotski-Plemelj’s formulas in the case of arbitrary, simple,
rectifiable curves and summable densities has been proved, and the continuity in the space Lp(t)(Γ)

(with weight) of the operator S̃Γ generated by a generalized singular integral when Γ is the Carleson
curve has been proved, as well. All that made it possible to introduce the notion of Smirnov classes with
a variable exponent for generalized analytic functions and to establish a series of their properties [15];
some of them we will frequently refer to in this work, are cited below, in Subsection 3.1. It should be
noted here that in [15] the questions of extension and the symmetry principle for the introduced classes
were left unconsidered; the case of unbounded domains was‘ considered superficially; the belonging of
the generalized Cauchy type integrals with density from Lp(t) to Smirnov classes was not considered
in detail.

The present paper, being the continuation of our previous work [15], deals with the problems just
mentioned and provides us with many new properties of the generalized Cauchy type integrals and
Smirnov classes (with a variable exponent) of generalized analytic functions.

Relying mainly on the results obtained in [9, 15], we have succeeded in investigating the Riemann
problem for generalized analytic functions from the introduced Smirnov classes with a variable expo-
nent [8].

2. Preliminaries

2.1. Generalized analytic functions in I. N. Vekua’s sense. Let D be a simply connected
domain bounded by a simple, closed, rectifiable curve Γ and A(z), B(z) be the functions given on D.
We extend them by zero on the set E \D when E is the complex plane, retaining the same notation
for the obtained functions.

Let s > 0 and Ls(D) be a set of functions f , summable on D, of degree s. If D = E, then we put
fν(z) ≡ zνf( 1z ), ν ∈ (−∞,+∞). The set of functions f for which

f ∈ Ls(U), fν(z) ∈ Ls(U), s ≥ 1, U = {z : |z| < 1},

we denote by Ls,ν(E).
A solution W (z) of the equation

LW = ∂zW +A(z)W +B(z)W = 0 (2.1)

is said to be regular in the domain D, if every point z0 ∈ D possesses the neighborhood D(z0) ⊂ D,
where W has a generalized in Sobolev sense derivative ∂zW ≡ 1

2 (
∂W
∂x + i ∂W

∂y ).
If A,B ∈ Ls,2(D), then we denote by Us,2(A;B;D) the set of all regular solutions of the equation

(2.1). For s > 2, the equation (2.1) has regular solutions and each solution W (z) is representable in
the form

W (z) = ΦW (z) expωW (z) (= Φ expω), (2.2)
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where Φ
W

is analytic in D function, and

ωW (z) =
1

2πi

∫∫
D

(
A(ζ) +B(ζ)

W (ζ)

W (ζ)

) ds

ζ − z
.

The function ωW belongs to the Hölder class H s−2
s
(E) [17, pp. 156, 163]. The function ΦW (z) is called

a normal analytic divisor of the generalized analytic function W (z) [17, p. 160].

2.2. Principal kernels of the class Us,2(A;B;D). Let

ϕ1(z) =
1

2(t− z)
, ϕ2(z) =

1

2i(t− z)
,

where t is a fixed point of the plane E. Then there exist the functions Xj(z), j = 1, 2 (solutions of
the equation (2.1)), such that:

(1) Xj,0(z) =
Xj(z)
ϕj(z)

∈ H s−2
s
(E);

(2) the functions Xj,0(z) are continuous in D and continuously extendable on E;
(3) Xj,0(z) ̸= 0;
(4) Xj,0(t) = 1.

The functions

Ω1(z, t) = X1(z, t) + iX2(z, t), Ω2(z, t) = X1(z, t)− iX2(z, t)

are called principal normalized kernels of the class Us,2(A;B;D), s > 2 [17, p. 193]. There exist
bounded functions m1(z, t), m2(z, t) such that

Ω1(z, t) =
1

t− z
+

m1(z, t)

|t− z|α
, Ω2(z, t) =

m2(z, t)

|t− z|α
, α =

2

s
(2.3)

(see [17, p. 179]).

2.3. The generalized Cauchy type integral and generalized singular integral. Let

Γ =
{
t ∈ E : t = t(σ), 0 ≤ σ ≤ ℓ

}
,

where σ is the arc coordinate of the point t.
If Ω1, Ω2 are the principal normalized kernels of the class Us,2(A;B;D) and f ∈ L(Γ), then the

function
W (z) = (K̃Γf)(z) =

1

2πi

∫
Γ

Ω1(z, τ)f(τ) dτ − Ω2(z, τ)f(τ) dτ

is a regular solution of the equation (2.1) of the class Us,2(A;B;D) [17, pp. 156, 168].
The function (K̃Γf)(z) is called the generalized Cauchy type integral. The corresponding singular

integral is defined by the equality

(S̃Γf)(t) = lim
ε→0

1

2πi

∫
Γ−Γε(t)

Ω1(τ, z)f(τ) dτ − Ω2(z, τ)f(τ) dτ,

where Γε(t) is a small in length arc lying on Γ with the ends t(σ − ε) and t(σ + ε).
Under different assumptions for Γ and f , the integrals (K̃Γf)(z) and (S̃Γf)(t) and their interconnec-

tions have been studied in [11–14] (for details see [9]). In particular, analogues of Sokhotski–Plemelj’s
formulas have been obtained. Here we cite the most general results stated in [9].

If Γ is a simple rectifiable curve and f ∈ L(Γ), then the generalized Cauchy type integral (K̃Γf)(z)

for almost all t ∈ Γ has angular boundary values (K̃Γf)
+(t) and (K̃Γf)

−(t), and the equalities

(K̃Γf)
±(t) = ±1

2
f(t) +

1

2
(S̃Γf)(t) (2.4)

are valid.
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2.4. The space Lp(t)(Γ). Let p = p(t) be a measurable positive function on Γ. Assume

∥f∥p(t) = inf
{
λ > 0 :

ℓ∫
0

∣∣∣f(t(σ))
λ

∣∣∣p(t(σ)) dσ ≤ 1

}
and

Lp(t)(Γ) =
{
f : ∥f∥p(t) < ∞

}
.

2.5. The class of exponents P(Γ). By P(Γ) we denote a union of those measurable on Γ positive
functions p(t) for which:

(1) there exists a constant c(p) such that for any t1, t2 ∈ Γ we have

|p(t1)− p(t2)| < c(p)
∣∣ ln |t1 − t2|

∣∣−1
;

(2) p = inf
t∈Γ

p(t) > 1.

2.6. On the continuity of the operator S̃Γ in the space Lp(t)(Γ). Not touching upon the ques-
tions dealing with the investigation of that operator for constant p, we will cite here the most general
result for the variable p(t) [9].

If Γ is the Carleson curve (in the sequel, we will write Γ ∈ R) and p(t) ∈ P(Γ), then the operator
S̃Γ : f(t) → (S̃Γf)(t) is continuous in Lp(t)(Γ;ω), where ω belongs to the definite class of weighted
functions, inclusive all admissible power functions of the type

ω = |t− a|α, − 1

p(a)
< α <

1

p′(a)
a ∈ Γ, p′(t) =

p(t)

p(t)− 1
.

3. The Variable Smirnov Classes of Generalized Analytic Functions

3.1. The case of a bounded domain. Let D be a finite domain bounded by a simple rectifiable
curve Γ and µ be a measurable function different from zero almost everywhere on Γ.

We say that the generalized analytic function W (z) belongs to the Smirnov class Ep(t)(A;B;µ;D) if:
(1) W ∈ Us,2(A;B;D), s > 2;
(2)

sup
0<r<1

2π∫
0

∣∣W (z(reiϑ))µ(z(reiϑ))
∣∣p(z(eiϑ))|z′(reiϑ)| dϑ < ∞, (3.1)

where z = z(reiϑ) is conformal mapping of U onto D.
Assume Ep(t)(A;B;D) = Ep(t)(A;B; 1;D).
This class of functions has been considered in [15]. Here we present the results from [15] which we

will need in the sequel.

Statement 3.1. The function W ∈ Us,2(A;B;D), s > 2, belongs to Ep(t)(A;B;D) if and only if its
normal analytic divisor Φ

W
(see Subsection 2.1) belongs to Ep(t)(D), i.e.,

sup
0<r<1

2π∫
0

∣∣ΦW (z(reiϑ))
∣∣p(z(eiϑ))|z′(reiϑ)| dϑ < ∞. (3.2)

Statement 3.2. The function W (z) ∈ Ep(t)(A;B;D), p > 0, has angular boundary values W+(t) for
almost all t ∈ Γ and, moreover, W+(t) ∈ Lp(t)(Γ). If p ∈ P(Γ), then

(K̃ΓW
+)(z) =

{
W (z), z ∈ D,

0, z ∈ E \D.
(3.3)

Remark 3.1. It follows from Statement 3.1 that if W ∈ Ep(t)(A;B;D), p > 0, and W+(t) = 0, t ∈ E ,
E ⊂ Γ, mes E > 0, then W (z) ≡ 0, z ∈ D.



82 Vakhtang Paatashvili

Statement 3.3. If W ∈ Us,2(A;B;D), s > 2, and it belongs to E1(Ã; B̃;D), where

Ã(z) =

{
A(z), z ∈ D,

0, z ∈ E \D,
B̃(z) =

{
B(z), z ∈ D,

0, z ∈ E \D,

then it is representable by the formula

W (z) =
1

2πi

∫
Γ

Ω1(z, t)W
+(t) dt− Ω2(z, t)W+(t) dt,

when Ωk(z, t), k = 1, 2, are the principal normalized kernels of the class Us,2(Ã; B̃;E).

Statement 3.4. If A,B ∈ Ls,2(D), Γ ∈ R, p ∈ P(Γ), p ′ = sup
t∈Γ

p′(t), s
2 > p ′, f ∈ Lp(t)(Γ), then K̃Γf

belongs to Ep(t)(A;B;D).

Corollary 3.1. If A,B ∈ L∞(D), Γ ∈ R, p ∈ P(Γ), f ∈ Lp(t)(Γ), then (K̃Γf)(z) ∈ Ep(t)(A;B;D).

3.2. The case of an unbounded domain. We will consider only those unbounded domains D
whose boundary is a simple, closed, rectifiable curve. For the sake of simplicity, we consider only
conformal mappings z = z(s) of the circle U onto the domain D (which we denote by D−) for which
z(0) = ∞ and assume that W ∈ Ep(t)(A;B;D−) if the conditions (3.1) are fulfilled.

From the definition it follows that if W ∈ E1(A;B;D), then W (∞) = 0. If p ∈ P(Γ), then this is
likewise valid when W ∈ Ep(t)(A;B;D−) (since Ep(t)(A;B;D−) ∈ E1(A;B;D−)).

Theorem 3.1. If D− is an outer domain bounded by a simple, closed, rectifiable curve Γ, and
W ∈ E1(A;B;D−), then

W (z) = (K̃ΓW
−)(z), z ∈ D−, (3.4)

where Γ denotes the curve oriented so that moving around it leaves D− on the left.

Proof. Denote by Γρ the image of the circumference {ζ : |ζ| = ρ < 1} under the conformal mapping
of the circle U onto the domain D−. Further, let ΓR be the circumference {z : |z| = R > 1}. Then for
ρ, close to unity, and for sufficiently large R, the curve Γρ lies inside of the circle {z : |z| < R}. The
function W (z) defined in a doubly-connected domain E with the boundary Γρ ∪ ΓR is representable
by the Cauchy integral [17, p. 186], that is,

W (z) = (K̃ΓρW )(z) + (K̃ΓR
W )(z). (3.5)

We have
W (z(ρeiϑ)) = Φ

W
(z(ρeiϑ)) expω

W
(z(ρeiϑ)).

Assume
φρ(ϑ) = ΦW (z(ρeiϑ))z′(ρeiϑ)iρeiϑ,

then
W (z(ρeiϑ))z′(ρeiϑ)iρeiϑ = φρ(ϑ) expωW (z(ρeiϑ)).

Therefore

(K̃ΓρW )(z(reiβ)) =
1

2πi

2π∫
0

Ω1

(
z(reiβ), z(ρeiϑ))

)
φρ(ϑ) exp

(
ω

W
(z(ρeiϑ))

)
dϑ

− Ω2

(
z(reiβ), z(ρeiϑ)

)
φρ(ϑ) exp

(
ω

W
(z(ρeiϑ))

)
dϑ. (3.6)

Since W (z) ∈ E1(A;B;D−), Φ
W

belongs to the class E1(D−) (see Statement 3.1). Consequently,
the sequence {φρ(ϑ)} for ϑ → 1 converges in the space L([0, 2π]) to the function φ1(ϑ) [16, p. 89].

Since exp(ω
W
(z(ζ))) is continuous in U , from the above-said it follows that the sequence

{W (z(ρeiϑ))} for ρ → 1 converges in L([0, 2π]) to W (z(eiϑ)).
Let ρ0 ∈ (0, 1) and ε > 0 be a small number such that ρ0(1 + ε) = ρ1 < 1. We take the point

z(reiβ), r ∈ (0, ρ0). If ρ ∈ (ρ1, 1), then∣∣z(reiβ)− z(ρeiϑ)
∣∣ ≥ dist

(
z(reiβ),Γρ0 ∪ Γρ1

)
= m0 > 0.
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By the equality (2.3), there exists a number c such that

|Ω1(z, t)| <
c

|z − t|
=

c

|z(reiβ)− z(ρeiϑ)|
≤ c

m0
.

Owing to this fact, if we put

gρ(ϑ) = Ω1

(
z(reiβ), z(ρeiϑ)

)
φρ(ϑ),

then
|gρ(ϑ)| <

c

m0
|φρ(ϑ)|.

From the convergence of {φρ} to φ1 in L([0, 2π]) it follows that for any set E ⊂ [0, 2π] the sequence
{φρ} converges to φ1 in L(E) (see, e.g., [17]). According to the Hahn–Banach theorem [1, p. 255], we
can conclude that the family {φρ} has absolutely continuous integrals of the same degree. Moreover,
as ρ → 1, the sequence |gρ(ϑ)| converges almost everywhere to g1(ϑ).

Now, owing to the Vitali theorem [1, p. 255], we can conclude that in (3.6) the limiting passage
under the integral sign is admissible and hence

lim
ρ→1

(K̃ΓρW )(z(reiβ)) =
1

2πi

2π∫
0

Ω1

(
z(reiβ), z(eiϑ)

)
ΦW (z(reiϑ))ieiϑ expωW (z(eiϑ)) dϑ

− Ω2

(
z(reiβ), z(eiϑ)

)
ΦW (z(reiϑ))z′(eiϑ)ieiϑ expωW (z(eiϑ)) dϑ = (K̃ΓW )(z(reiβ)). (3.7)

Let us prove that
lim

R→∞
(K̃ΓR

W )(z) = 0.

Let |z| = R and t ∈ ΓR. Then |t| = R and it can be easily verified that |Ωj(z, t)| < M
R−|z| . Therefore

|(K̃ΓR
W )| < 2M

2π∫
0

|W (Reiϑ)|
(R− |z|)α

dϑ, α =
2

s
.

Since lim
R→∞

|W (Reiϑ)| = 0 for large R, we have |W (Reiϑ)| ≤ M0 and hence

|(K̃ΓR
W )| ≤ 2πMM0

(R− |z|)α
−→ 0.

This, together with (3.5) and (3.7), results in the equality (3.4). �

Remark 3.2. If orientation on Γ is chosen such that when moving around in this direction the domain
D+ leaves to the left, then the formula (3.4) takes the form

W (z) = −(K̃ΓW
−)(z), z ∈ D−.

3.3. On the belonging of the function (K̃Γf)(z)) to Smirnov class. First, let us prove an
analogue of Statement 3.4 for an unbounded domain. Towards this end, we will need the following

Lemma 3.1. Let
(1) Γ be a simple, closed, rectifiable curve bounding the finite D+ and the infinite D− domains;
(2) p ∈ P(Γ);
(3) ζ = ζ(z) be conformal mapping of U+ onto D−;
(4) ω(ζ) = k

ζ−a , a ∈ D+, ζ ∈ D−, and k be the constant such that k ≤ [dist(a,Γ)]2 = d2, hence
Γ̃ = ∂D̃, ω : D− → D̃, where D̃ is the bounded domain;

(5) the function τ = k
t−a map Γ onto Γ̃.

Assume p̃(τ) = p(kτ + a). Then
p̃(τ) ∈ P(Γ̃). (3.8)
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Proof. Let |τ1 − τ2| < 1
2 . We have∣∣p̃(τ1)− p̃(τ2)

∣∣ = ∣∣∣p( k

τ1
+ a

)
− p

( k

τ2
+ a

)∣∣∣ ≤ c(p)

| ln k|τ2−τ1|
|τ1τ2| |

. (3.9)

Since |τ1| ≥ d, |τ2| ≥ d, owing to the condition (4), we obtain k
|τ1τ2| ≤

k
d2 ≤ 1. Therefore k|τ1−τ2|

|τ1τ2| ≤
|τ1 − τ2| < 1

2 , which implies that ∣∣∣ ln k|τ1 − τ2|
|τ1τ2|

∣∣∣ > ∣∣ ln |τ1 − τ2|
∣∣,

and from (3.9) we can conclude that |p̃(τ1) − p̃(τ2)| < c(p)
| ln |τ1−τ2|| . Moreover, it is obvious that

min p̃(τ) = min
t∈γ

p(t) = p > 1. Thus the inclusion (3.8) is proved. �

Theorem 3.2. Let Γ be the simple, closed, rectifiable curve bounding the domain D−, and let the
conditions

A(z), B(z) ∈ L∞(D−), Γ ∈ R, f ∈ Lp(t)(Γ), p ∈ P(Γ), (3.10)
be fulfilled. Then the function

W (z) = (K̃Γf)(z), z ∈ D−,

belongs to the class Ep(t)(A;B;D−).

Proof. We choose a point a from D+ and assume ζ = k
z−a , where k is chosen as in Lemma 3.1. Then

z = a+ k
ζ and

W
(k
ζ
+ a

)
= (K̃Γ̃f)

(k
ζ
+ a

)
. (3.11)

We replace the integral variable in the right-hand side of (3.11) by the equality t = k
τ + a. As a

result, we obtain

W̃ (ζ) =
1

2πi

∫
Γ

Ω̃1(ζ, τ)F (τ) dτ − Ω̃2(ζ, τ)F (τ) dτ, (3.12)

where

W̃ (ζ) = W
(k
ζ
+ a

)
, Ω̃j(ζ, τ) = Ωj

(k
ζ
+ a,

k

τ
+ a

)
, j = 1, 2, F (τ) = −

f(kτ + a)

τ2
k. (3.13)

Since f ∈ Lp(t)(Γ), we have F ∈ Lp̃(τ)(γ̃), p̃(τ) = p(kτ + a). In our assumptions Lemma 3.1 is
applicable by virtue of which we have p̃(τ) ∈ P(Γ̃).

It can be easily verified that Ω̃k(ζ, τ), k = 1, 2, are the kernels of the type of principal normal
kernels. Therefore following the proof of Statement 3.4 (see Theorem 3 of [15]), we find that W̃ (ζ) ∈
Ep̃(τ)(Ã; B̃; D̃). It is not difficult to show that W ∈ Ep(t)(A;B;D). �

From Statement 3.4 and Theorem 3.2 follows one statement on the generalized Cauchy type integral
which we formulate in the form of the following

Lemma 3.2. Let Γ be the simple, closed, rectifiable curve dividing the plane E into the domains D+

and D−; next, let
A(z), B(z) ∈ L∞(E), Γ ∈ R, f ∈ Lp(t)(Γ), p ∈ P(Γ). (3.14)

Then the narrowings on D+ and D− of the function W (z) = (K̃Γf)(z) belong to the classes
Ep(t)(A;B;D+) and Ep(t)(A;B;D−), respectively, vice versa, if W1(z) ∈ Ep(t)(A;B;D+) and W2(z) ∈
Ep(t)(A;B;D−), then the function

W (z) =

{
W1(z), z ∈ D+,

W2(z), z ∈ D−

is representable by the generalized Cauchy type integral with density from Lp(t)(Γ).
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Proof. First, we note that if W ∈ Ep(t)(A;B;D+), then according to Statement 3.2 we have

(K̃ΓW
+)(z) =

{
W (z), z ∈ D+,

0, z ∈ D− (3.15)

(see (3.3)).
Relying on Remark 3.2, it is not difficult to establish that if W ∈ Ep(t)(A;B;D−), then

(K̃ΓW
−)(z) =

{
0, z ∈ D+,

−W (z), z ∈ D−.
(3.16)

Let now W (z) = (K̃Γf)(z); if we consider it in the domain D+, then according to Statement 3.4
we find that W ∈ Ep(t)(A;B;D+), but if we consider W in the domain D−, then it belongs to
W ∈ Ep(t)(A;B;D−), by Theorem 3.2.

The formulas (2.4) result in W+ −W− = f , hence W = K̃Γ(W
+ −W−).

Since for W1 and W2 respectively the relations (3.15) and (3.16) are valid, we have[
K̃Γ(W

+
1 −W−

2 )
]
(z) =

{
W1(z), z ∈ D+,

−W2(z), z ∈ D−.
(3.17)

Obviously, [W+
1 (t)−W−

2 (t)] ∈ Lp( · )(Γ), hence W (z) ∈ K̃p( · )(Γ). �

4. Certain Properties of Integrals K̃Γf and S̃Γf

Theorem 4.1. In order for the function W (z) ∈ Us,2(A;B;D), s > 2, the equality

W (z) = (K̃ΓW
+)(z) (4.1)

to take place, it is necessary and sufficient that for almost all t ∈ Γ the equality

(S̃ΓW
+)(t) = W+(t) (4.2)

to hold.

Proof. The necessity. It follows from the representation (4.1) that W+ ∈ L(Γ). By the equalities (2.4)
we have

W+(t) =
1

2
W+(t) +

1

2
(S̃ΓW

+)(t),

and hence the equality (4.2) is valid.
Sufficiency. Let the equality (4.2) hold. Let us show that the equality (4.1) is likewise valid.
Consider the function

M(z) = W (z)− (K̃ΓW
+)(z), z ∈ D.

We have
M+ = W+ − 1

2
(W+ + S̃ΓW

+) =
1

2
(W+ − S̃ΓW

+). (4.3)

By virtue of (4.2), we can conclude that M+(t) = 0.
Since W ∈ Us,2(A;B;D), s > 2, we have K̃ΓW

+ ∈ Us,2(A;B;D) (see Subsection 2.3); conse-
quently, M(z) ∈ Us,2(A;B;D). Therefore we have the representation

M(z) = ΦM (z)ωM (z), z ∈ D,

(see Subsection 2.1, the equality (2.2)). Here ωM (z) ̸= 0 everywhere on E \ Γ.
Consequently, ω+

M ̸= 0, and from the equality M+ = 0 we conclude that Φ+
M (t) = 0 almost

everywhere on Γ. From the theorem on the uniqueness of analytic functions we find that ΦM (z) = 0;
hence M(z) = 0, and from (4.3) follows (4.1). �

Remark 4.1. If D is an unbounded domain, then for the equality W (z) = −(K̃ΓW
−)(z) it is

necessary and sufficient that the equality
(S̃ΓW

−)(t) = −W−(t)

to be fulfilled.
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Theorem 4.2. Let
A,B ∈ L∞(D), Γ ∈ R, p ∈ P(Γ). (4.4)

For the generalized analytic function W (z) to have the boundary function W+(z) of the class Lp(t)(Γ)
and the equality

W (z) = (K̃ΓW
+)(τ) (4.5)

to hold, it is necessary and sufficient that W (z) belong to the class Ep(t)(A;B;D).

Proof. The necessity. Let the conditions (4.4) be fulfilled and there exist W+(t) and W+ ∈ Lp(t)(Γ),
then by Corollary 3.1 we conclude that (K̃ΓW

+)(z) ∈ Ep(t)(A;B;D).
Sufficiency. Let W ∈ Ep(t)(A;B;D) and p ∈ P(Γ), then W ∈ E1(A;B;D). According to State-

ment 3.3 and Theorem 3.1, the equality (4.5) holds. This allows us to conclude that W+ ∈ Lp(t)(Γ),
by virtue of Statement 3.2. �

Remark 4.2. Theorem 4.2 is a certain analogue of the Fichtenholz theorem [9, p. 97].

Theorem 4.3. If the assumptions (4.4) holds and f ∈ Lp(t)(Γ), then

S̃2
Γf = f (4.6)

holds.

Proof. By virtue of Corollary 3.1, the function W (z) = (K̃Γf)(z) belongs to Ep(t)(A;B;D). Then by
Statement 3.2 we have (K̃ΓW

+)(z) = W (z). Now, by Theorem 4.1 we can conclude that W+(t) =

(S̃ΓW
+(t). Using the first of the formulas (2.4), we write the last equality in the form

1

2
(f + S̃Γf) =

1

2
S̃Γ(f + S̃Γf)

from which follows the equality (4.6). �

Tracing the proof of the theorem, we easily find that the following assertion is valid.

Lemma 4.1. Let W = Φ
W

expω
W

be the function of the class Us,2(A;B;D), s > 2, and φ be analytic
function in D, then

φW = Φ
φW

expω
φW

∈ Us,2
(
A;B

φ

φ
;D

)
,

where
ΦφW = φΦW and ωφW = ωW .

Proof. Since ∂zφ = 0, we have ∂z(φW ) = φ∂zW . Moreover, ∂zW +AW +BW = 0, hence

∂zφW +AφW +B
φ

φ
φW = 0.

This implies that φW = Us,2(A;B φ
φ ;D).

Find the function ωφW . We have [17, p. 192]

ω
φW

(ζ) =
1

π

∫∫
D

(
A(t) +B(t)

φ(t)

φ(t)

φW

φW

) dξ dη

t− ζ
=

1

π

∫∫
D

(
A(t) +B(t)

W (t)

W (t)

) dξ dη

t− ζ
= φ

W
(ζ).

Next, taking into account the above equality, we obtain

φW = φΦ
W

expω
W

= {φΦ
W
} expω

W
,

from which we get both provable equalities. �
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5. Extensions of Generalized Smirnov Class Analytic Functions

Theorem 5.1. Let D1 and D2 be the domains lying outside of each other, bounded with simple
rectifiable curves of the class R, and:

(1) boundaries of the domains D1 and D2 have common arc Γ, so that ∂D1 = Γ1∪Γ, ∂D2 = Γ2∪Γ;
(2) p1(t) ∈ P(Γ1), p2(t) ∈ P(Γ2);
(3) A1, B1 ∈ L∞(D1), A2, B2 ∈ L∞(D2) and W1 ∈ Ep1(t)(A1;B1;D1), W2 ∈ Ep2(t)(A2;B2;D2);
(4) p1(a) = p2(a), p1(b) = p2(b), where a and b are the ends of the arc Γ;
(5) W1(t) = W2(t), t ∈ Γ.

Then the function

W (z) =


W1(z), z ∈ D1,

W2(z), z ∈ D2,

W1(t) = W2(t), t ∈ Γ,

(5.1)

belongs to the Smirnov class Ep(t)(A;B;D), where D = D1 ∪D2 ∪ Γ,

p(t) =

{
p1(t), t ∈ Γ1,

p2(t), t ∈ Γ2,
,

and

A(z) =

{
A1(z), z ∈ D1,

A2(z), z ∈ D2,
B(z) =

{
B1(z), z ∈ D1,

B2(z), z ∈ D2.

Proof. Assume

Ãk(z) =

{
Ak(z), z ∈ Dk,

0, z ∈ E \Dk,
B̃k(z) =

{
Bk(z), z ∈ Dk,

0, z ∈ E \Dk,
k = 1, 2.

Then A = Ã1 + Ã2, B̃ = B̃1 + B̃2. By virtue of the assumption (3), we have A,B ∈ L∞(D). Further,
owing to (3.3) and assumption (3),

(K̃Γ1∪ΓW1)(z) = 0, z ∈ D2, (K̃Γ2∪ΓW2)(z) = 0, z ∈ D1. (5.2)

In these integrals, the integration sets are Γ1∪Γ and Γ2∪Γ. In addition, the curve Γ1∪Γ is oriented
so that moving in this direction, the domain D1 leaves to the left, analogously, Γ2 ∪ Γ is oriented so
that moving in this direction, the domain D2 leaves to the left. These orientations on Γ generate on Γ
opposite directions. Therefore, if we denote the oriented arc of Γ on the boundary ∂D1 of the domain
D1 by Γ+, then on ∂D2 it will be Γ−.

In the domain D, let us consider the function

F (z) = (K̃Γ1∪Γ+W1)(z) + (K̃Γ1∪Γ−W2)(z) = F1(z) + F2(z) = (K̃Γ1W1)(z) + (K̃Γ2W2)(z)

=
1

2πi

∫
Γ+

Ω1(z, t)W
+
1 (t) dt− Ω2(z, t)W 1(t) dt+

1

2πi

∫
Γ−

Ω1(z, t)W2(t) dt− Ω2(z, t)W 2(t) dt,

where Ω1, Ω2 are the principal kernels of the class U∞(A;B;E).
We write F (z) in the form

F (z) = (K̃Γ1W1)(z) + (K̃Γ2W2)(z)

+
1

2πi

∫
Γ+

Ω1(z, t)(W1(t)−W2(t)) dt−
1

2πi

∫
Γ−

Ω2(z, t)(W 1(t)−W 2(t)) dt

= (KΓ1∪Γ2W )(z) (5.3)

(we have taken into account that W1(t) = W2(t), t ∈ Γ).
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In view of the equality (5.2) we have

(K̃Γ1∪Γ2W )(z) =

{
W1(z), z ∈ D1,

W2(z), z ∈ D2,

that is, F (z) = W (z), z ∈ D1 ∪D2. Moreover, for t ∈ Γ we have
lim

z→̂t, z∈Dk

F (z) = Wk(t),

that is, F (t) = W1(t) = W2(t), t ∈ Γ. Consequently, almost everywhere on D, we get
F (z) = W (z). (5.4)

The function p(t) given on Γ1 ∪ Γ2 is, by assumption (4), of the class P(Γ1 ∪ Γ2). Therefore, it
can be easily seen from (5.3) that F (z) is the generalized Cauchy type integral with density from
Lp(t)(Γ1 ∪ Γ2). In view of Statement 3.4, we can conclude that F (z) ∈ Ep(t)(A;B;D), and hence
owing to (5.4), W (z) ∈ Ep(t)(A;B;D), as well. �

6. The Symmetry Principle for Smirnov Class Functions

Before we proceed to formulating and proving the above-mentioned principle, we will prove below
the following Lemmas 6.1 and 6.2. We denote U+ = U , U− = E \ U+.

Lemma 6.1. Let the domain D lie in U+ and a part of its boundary lie on γ. Assume D∗ = {ζ :
ζ = 1

z , z ∈ D}, and let A(z), B(z) ∈ Ls,2(D), s > 2. Then the functions

A0(ζ) =


A(ζ), ζ ∈ D,

− 1

ζ
2 A

(1
ζ

)
, ζ ∈ D∗,

B0(ζ) =


B(ζ), ζ ∈ D,

− 1

ζ
2 B

(1
ζ

)
, ζ ∈ D∗

(6.1)

belong to the class Ls,2(D ∪D∗).

Proof. Show that A0 ∈ Ls,2(D ∪D∗). Let ζ = x+ iy and

J =

∫∫
D∗

|A0(ζ)|s dx dy =

∫∫
D

∣∣∣− 1

ζ 2
A
(1
ζ

)∣∣∣s dx dy.
Assume τ = α+ iβ and transform the variable ζ by the equality ζ = 1

τ , i.e., x = α
α2+β2 , y = β

α2+β2 .
Then

J =

∫∫
D

|τ2A(τ)|s|I| dα dβ,

where

I =

∣∣∣∣x′
α x′

β

y′α y′β

∣∣∣∣ = ∣∣∣∣(β2 − α2)(α2 + β2)−2 −2αβ(α2 + β2)−2

−2αβ(α2 + β2)−2 (α2 − β2)(α2 + β2)−2

∣∣∣∣ = − 1

(α2 + β2)2
= − 1

|τ |4
.

Therefore

I =

∫∫
D

|τ2A(τ)|s dα dβ

|τ |4
=

∫∫
D

|A(τ)|s|τ |2(s−2) dα dβ =

∫∫
D

|A(τ)|s dα dβ < ∞.

(We have taken into account that s > 2, |τ | < 1 and A,B ∈ L∞(D).) This implies that A0 ∈
Ls,2(D ∪D∗).

In the same manner we can prove that B0 ∈ Ls,2(D ∪D∗). �

Assume that the domain D is bounded by a simple, rectifiable, closed curve, D ⊂ U+ and a part
of the boundary D is the arc lying on γ.

Given W (z) on D, we put

W∗(z) =


W (z), z ∈ D,

−W
(1
z

)
, z ∈ D∗.
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Lemma 6.2. Let W (z) ∈ E1(A;B;D) and either z = 0 ̸∈ D, or z = 0 ∈ D, W (0) = 0. Then
W∗(z) ∈ E1(A0;B0;D∗), where A0, B0 are defined by the equality (6.1).

Proof. According to the definition of the class E1(A0, B0, D∗), we have to establish that
W∗(z) ∈ Us,2(A0;B0;D∗) (6.2)

and

sup
0<r<1

2π∫
0

∣∣W∗(z(re
iϑ))

∣∣ |z′(reiϑ|r dϑ < ∞, (6.3)

where z = z(reiϑ) is conformal mapping of U+ onto D∗.
We start from the first one. By Lemma 6.1, A0, B0 ∈ Ls,2(D ∪ D∗). Therefore we have to prove

that for z ∈ D∗ we have the equality
∂zW∗ +A0(z)W∗(z) +B0(z)W ∗(z) = 0. (6.4)

Assuming W (z) = u(z) + iv(z), we have

∂zW∗ = −∂zW
(1
z

)
= −

[
∂z

(
u
(1
z

)
− iv

(1
z

)](
− 1

z 2

)
. (6.5)

But
uz

(1
z

)
+ ivz

(1
z

)
= −A

(1
z

)(
u
(1
z

)
+ iv

(1
z

))
−B

(1
z

)(
u
(1
z

)
+ iv

(1
z

))
,

and from (6.5), we get

−∂zW∗(z) =
(
− 1

z 2

)[
A
(1
z

)
W

(1
z

)
−B

(1
z

)
W

(1
z

)]
= − 1

z 2 A
(1
z

)
W∗(z)−

1

z 2 B
(1
z

)
W ∗(z) = A0(z)W∗(z) +B0(z)W ∗(z),

that is,
∂zW∗(z) +A0(z)W∗(z) +B0(z)W ∗(z) = 0, z ∈ D∗.

Let now W ∈ E1(A;B;D). This implies that

sup
0<r<1

2π∫
0

∣∣W (ζ(reiϑ))ζ ′(reiϑ)
∣∣r dϑ = M < ∞, (6.6)

where the function ζ = ζ(reiϑ) is conformal mapping of U+ onto D and if 0 ∈ D, then ζ(0) = 0.
The function z = 1

ζ(reiϑ)
is the conformal mapping of U+ onto D∗.

We need to prove that

sup
0<r<1

2π∫
0

∣∣∣W∗

( 1

ζ(reiϑ)

) ζ ′(reiϑ)

ζ2(reiϑ)

∣∣∣r dϑ < ∞

We have

Jr =

2π∫
0

∣∣∣W∗

( 1

ζ(reiϑ)

) ζ ′(reiϑ)

ζ2(reiϑ)

∣∣∣r dϑ
=

2π∫
0

∣∣∣W (ζ)
ζ ′

ζ2

∣∣∣r dϑ =

2π∫
0

|W (ζ)
ζ ′

ζ2

∣∣∣r dϑ
=

2π∫
0

|W (ζ)
(ζ)′

ζ2
ζ ′

(ζ)′

∣∣∣r dϑ =

2π∫
0

|W (ζ)
(ζ)′

ζ2

∣∣∣r dϑ. (6.7)

If 0 ̸∈ D, then
Jr <

M

[dist(0;D)]2
=

M

m2
. (6.8)
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If 0 ∈ D, then ζ(0) = 0, W (0) = 0, hence for small r (say, for 0 < r < r0) we have |W (re−iϑ)| ∼ r,
|ζ(reiϑ)| < cr. Owing to that facts, there exists the constant c such that |W (reiϑ)| < cr, |ζ(r(eiϑ)| ∼
cr. Therefore, for small r we get

Jr <

2π∫
0

cr

r2
|ζ ′(reiϑ)|r dϑ =

c

c1

2π∫
0

|ζ ′(reiϑ)| dϑ = d < ∞. (6.9)

Now, from (6.8), (6.9), when r ∈ (0, 1), we have Jr < ( M
m2 + d). This implies that the inequality (6.3)

is valid, and since (6.2) is already proved, we have W∗ ∈ E1(A0;B0;D∗). �

Corollary 6.1. If W ∈ Ep(t)(A;B;D), p ∈ P(Γ) and either 0 ̸∈ D, or 0 ∈ D and W (0) = 0, then
W ∈ Eℓ(τ)(A;B;D∗), ℓ(τ) = p(z( 1τ ) ≡ p(z(τ)).

Indeed, since Ep(t)(A;B;D) ⊂ E1(A;B;D), we have W∗ = K̃Γ∗W
+
∗ , where Γ∗ is the boundary of

the domain D∗. In addition,∫
Γ∗

|W∗(ζ)|p(ζ)|z′(ζ)| |dζ| =
∫
γ

∣∣∣W(1
τ

)∣∣∣p(z( 1
τ ))∣∣∣ 1

τ2

∣∣∣ dτ =

∫
γ

|W (τ)|p(z(τ)) |dτ | < ∞.

(We have taken into account that if τ ∈ γ, then 1
τ = τ .)

Theorem 6.1 (The symmetry principle for the Smirnov class functions). Let:
(1) D be the simply connected domain bounded by a simple, closed, rectifiable curve γ2 ∪ γ1 ∈ R,

lying inside of U+, and the arc γ1 lying on γ;
(2) A,B ∈ L∞(D);
(3) D∗ be a mirror image of D with respect to γ;
(4) W ∈ Ep(t)(A;B;D);
(5) W+(t) +W+(t) = 0, t ∈ γ1;

(6) A0 and B0 are defined by the equalities (6.1), D0 = D∪D∗∪γ1 and p0(t) =

{
p(t), t ∈ γ2,

p( 1
t
), t ∈ (γ2)∗.

Then, if either z = 0 ̸∈ D, or 0 ∈ D and W (0) = 0, then there exists a function F ∈ Ep0(t)(A0;B0;D0)
which for z ∈ D coincides with W (z), and for z ∈ D∗ with W∗(z), but if t ∈ γ1, then F (t) = W+(t) =

−W+(t).

Proof. Assume W1(z) = W (z), z ∈ D, and W2(z) = W∗(z), z ∈ D∗. For the points t lying on γ1, we
have

W1(t) = lim
z→̂t, z∈D

W1(z) = W (t), W2(t) = lim
z→̂t, z∈D∗

[
−W

(1
z

)]
= −W

(1
t

)
= −W (t).

Due to the condition W+(t) +W+(t) = 0, t ∈ γ1, we have

W1(t) = W2(t), t ∈ γ1.

We have the right to apply Theorem 5.1 due to which the function F (z) given by the equality (5.3)
coincides with the function W given by the equality (5.1). Thus the proof of theorem is complete. �

Corollary 6.2. If A(z), B(z) ∈ L∞(D), W (z) ∈ Ep(t)(A;B;U+), W (0) = 0, and W+(t)+W+(t) = 0,
t ∈ γ, then W∗(z) ∈ Ep∗(t)(A0, B0;U

−), where p∗(t) = p( 1
t
) = p(t).

Indeed, if we take D = U+, γ1 = γ, then D∗ = U−, and hence the validity of Corollary 6.2 follows
from Theorem 6.1.
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THE DIRICHLET BOUNDARY VALUE PROBLEM
OF THERMO-ELECTRO-MAGNENO ELASTICITY
FOR HALF SPACE



Abstract. We prove the uniqueness theorem for the Dirichlet boundary value problem of statics of the
thermo-electro-magneto-elasticity theory in the case of a half-space. The corresponding unique solu-
tion is represented explicitly by means of the inverse Fourier transform under some natural restrictions
imposed on the boundary vector function.
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ÒÄÆÉÖÌÄ. ÍÀáÄÅÀÒÓÉÅÒÝÉÓ ÛÄÌÈÅÄÅÀÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÒÌÏ-ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ ÃÒÄÊÀÃÏ-
ÁÉÓ ÈÄÏÒÉÉÓ ÃÉÒÉáËÄÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÀÈÅÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÈÄÏÒÄÌÀ. ÂÀÒÊÅÄÖË
ÁÖÍÄÁÒÉÅ ÛÄÆÙÖÃÅÄÁÛÉ, ÒÏÌËÄÁÓÀÝ ÅÀÃÄÁÈ ÓÀÓÀÆÙÅÒÏ ÅÄØÔÏÒ-×ÖÍØÝÉÀÓ, ÛÄÓÀÁÀÌÉÓÉ ÃÉ-
ÒÉáËÄÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÄÒÈÀÃÄÒÈÉ ÀÌÏÍÀáÓÍÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÝáÀÃÉ ÓÀáÉÈ ÛÄÁÒÖÍÄ-
ÁÖËÉ ×ÖÒÉÄÓ ÂÀÒÃÀØÌÍÉÓ ÌÄÛÅÄÏÁÉÈ.
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1. Introduction

Although natural materials rarely show full coupling between elastic, electric, magnetic and thermal
fields, some artificial materials do. In [14] it is reported that the fabrication of BaTiO3-CoFe2O4

composite had the magnetoelectric effect not existing in either constituent. Other examples of similar
complex coupling can be found in the references [1]–[6], [8]–[10], [13], [15].

The mathematical model of the thermo-electro-magneto-elasticity theory is described by the non-
self-adjoint 6× 6 system of second order partial differential equations with the appropriate boundary
and initial conditions. The problem is to determine three components of the elastic displacement
vector, the electric and magnetic scalar potential functions and the temperature distribution. Other
field characteristics (e.g., mechanical stresses, electric and magnetic fields, electric displacement vector,
magnetic induction vector, heat flux vector and entropy density) can be then determined by the
gradient equations and the constitutive equations.

In the paper we prove the uniqueness theorem of solutions for Dirichlet boundary value problems
of statics for half-space.

We show that under some natural restriction on the boundary vector functions the corresponding
unique solution is represented by the inverse Fourier transform.

2. Basic Equations and Formulation of Boundary Value Problems

2.1. Field equations. Throughout the paper u = (u1, u2, u3)
⊤ denotes the displacement vector, σij is

the mechanical stress tensor, εkj = 2−1(∂kuj+∂juk) is the strain tensor, E = (E1, E2, E3)
⊤ = − gradφ

and H = (H1, H2,H3) = − gradψ are electric and magnetic fields, respectively, D = (D1, D2, D3)
⊤

is the electric displacement vector and B = (B1, B2, B3)
⊤ is the magnetic induction vector, φ and ψ

stand for the electric and magnetic potentials, ϑ is the temperature increment, q = (q1, q2, q3)
⊤ is the

heat flux vector, and S is the entropy density. We employ the notation ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂j ,
∂t = ∂/∂t; the superscript (·)⊤ denotes transposition operation; the summation over the repeated
indices is meant from 1 to 3, unless stated otherwise.

In this subsection we collect the field equations of the linear theory of thermo-electro-magneto-
elasticity for a general anisotropic case and introduce the corresponding matrix partial differential
operators [11].
Constitutive relations:

σrj = σjr = crjklεkl − elrjEl − qlrjHl − λrjϑ, r, j = 1, 2, 3,

Dj = ejklεkl + κjlEl + ajlHl + pjϑ, j = 1, 2, 3,

Bj = qjklεkl + ajlEl + µjlHl +mjϑ, j = 1, 2, 3,

S = λklεkl + pkEk +mkHk + γϑ.

Fourier Law: qj = −ηjl∂lϑ, j = 1, 2, 3.
Equations of motion: ∂jσrj +Xr = ϱ∂2t ur, r = 1, 2, 3.
Quasi-static equations for electro-magnetic fields where the rate of magnetic field is small (electric
field is curl free) and there is no electric current (magnetic field is curl free): ∂jDj = ϱe, ∂jBj = 0.
Linearised equation of the entropy balance: T0∂tS −Q = −∂jqj ,
Here ϱ is the mass density, ϱe is the electric density, crjki are the elastic constants, ejki are the piezo-
electric constants, qjki are the piezomagnetic constants, κjk are the dielectric (permittivity) constants,
µjk are the magnetic permeability constants, ajk are the coupling coefficients connecting electric and
magnetic fields, pj and mj are constants characterizing the relation between thermodynamic processes
and electro-magnetic effects, λjk are the thermal strain constants, ηjk are the heat conductivity co-
efficients, γ = ϱcT−1

0 is the thermal constant, T0 is the initial reference temperature, c is the specific
heat per unit mass, X = (X1, X2, X3)

⊤ is a mass force density, Q is a heat source intensity. The
constants involved in these equations satisfy the symmetry conditions

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl, κkj = κjk,

λkj = λjk, µkj = µjk, ηkj = ηjk, akj = ajk, r, j, k, l = 1, 2, 3.
(2.1)
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From physical considerations it follows (see, e.g., [7], [12])
crjklξrjξkl ≥ c0ξklξkl, κkjξkξj ≥ c1|ξ|2, µkjξkξj ≥ c2|ξ|2, ηkjξkξj ≥ c3|ξ|2, (2.2)

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3, where c0, c1, c2 and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy and thermodynamical
laws insure positive definiteness of the matrix

Ξ =

[κkj ]3×3 [akj ]3×3 [pj ]3×1

[akj ]3×3 [µkj ]3×3 [mj ]3×1

[pj ]1×3 [mj ]1×3 γ


7×7

. (2.3)

Further we introduce the following generalised stress operator

T (∂, n) :=


[crjklnj∂l]3×3 [elrjnj∂l]3×3 [qlrjnj∂l]3×1 [−λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj
[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj

[0]1×3 0 0 ηjlnj∂l


6×6

.

Evidently, for a six vector U := (u, φ, ψ, ϑ)⊤ we have
T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−qjnj)⊤. (2.4)

The components of the vector T U given by (2.4) have the physical sense: the first three components
correspond to the mechanical stress vector in the theory of thermo-electro-magneto-elasticity, the
forth, fifth and sixth ones are respectively the normal components of the electric displacement vector,
magnetic induction vector and heat flux vector with opposite sign.

From the above equations we derive the following equations of statics
A(∂)U(x) = Φ(x),

where U = (u1, . . . , u6)
⊤ := (u, φ, ψ, ϑ)⊤ is the sought for vector function and Φ = (Φ1, . . . ,Φ6)

⊤ :=
(−X1,−X2,−X3,−ϱe, 0,−Q)⊤ is a given vector function; A(∂) = [Apq(∂)]6×6 is the matrix differential
operator

A(∂) =


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×3 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l


6×6

.

From the symmetry conditions (2.1), inequalities (2.2) and positive definiteness of the matrix (2.3) it
follows that A(∂) is a formally non-self adjoint strongly elliptic operator.

2.2. Formulation of boundary value problems. Let R3 be divided by some plane into two half-
spaces. Without loss of generality we can assume that these half-spaces are

R3
1 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 > 0

}
and

R3
2 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 < 0

}
;

n = (n1, n2, n3) = (0, 0,−1) is the outward unit normal vector with respect to R3
1; S := ∂R3

1,2.
Now we formulate the basic boundary value problems of the thermo-electro-magneto-elasticity

theory for a half-space.

Dirichlet problem (D)±. Find a solution vector U = (u, φ, ψ, ϑ)⊤ ∈ [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 to
the system of equations

A(∂)U = 0 in R3
1,2 (2.5)

satisfying the Dirichlet type boundary condition
{U}± = f on S. (2.6)

The symbols {·}± denote the one-sided limits on S from R3
1 (sign “+”) and R3

2 (sign “−”).
We require that the boundary data involved in the above setting possess the following smoothness

property: f ∈
◦
C∞(R2), where

◦
C∞(R2) is the space of infinitely differentiable functions with compact

support.
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Let Fx̃→ξ̃ and F−1

ξ̃→x̃
denote the direct and inverse generalized Fourier transforms in the space of

tempered distributions (the Schwartz space S ′(R2)) which for regular summable functions g and h
read as follows

Fx̃→ξ̃[g] =

∫
R2

g(x̃)eix̃·ξ̃dx̃,

F−1

ξ̃→x̃
[h] =

1

4π2

∫
R2

h(ξ̃)e−ix̃·ξ̃dξ̃,

(2.7)

where x̃ = (x1, x2), ξ̃ = (ξ1, ξ2), dx̃ = dx1 dx2, x̃ · ξ̃ = x1ξ1 + x2ξ2.
Note that if g(x) = g(x1, x2, x3) = g(x̃, x3), then

Fx̃→ξ̃[∂xjg(x)] = −iξjFx̃→ξ̃[g] = −iξj ĝ(ξ̃, x3), j = 1, 2,

and hence

Fx̃→ξ̃[∇xg(x)] =

−iξ1−iξ2
∂x3

Fx̃→ξ̃[g(x)] = P (−iξ̃, ∂x3)ĝ(ξ̃, x3), (2.8)

here ĝ(ξ̃, x3) = Fx̃→ξ̃[g] and

P = P (−iξ̃, ∂x3
) = (−iξ1,−iξ2, ∂x3

)⊤. (2.9)
Applying Fourier transform (2.7) in (2.5)–(2.6) and taking into account (2.9) we arrive at the

problem:

A(P )Û(ξ̃, x3) = 0, x3 ∈ (0;+∞) or x3 ∈ (−∞; 0), (2.10){
Û(ξ̃, x3)

}±

(x3→0±)
= f̂(ξ̃). (2.11)

We see that (2.10) is the system of ordinary differential equations of second order for each ξ̃ ∈ R2.

3. Uniqueness Theorems

We start with constructing a system of linear independent solutions to the system (2.10).
Let us denote by kj = kj(ξ̃), j = 1, 12, the roots of the equation

detA(−iξ) = 0 (3.1)
with respect to ξ3, where A(−iξ) is the symbol matrix of the operator A(∂).

Note that detA(−iξ) is a homogeneous polynomial of order 12 and the equation (3.1) has no real
roots, Im kj ̸= 0, j = 1, 12. These roots are continuously dependent on the coefficients of (3.1) and
the number of roots with positive and negative imaginary parts are equal. Denote by k1, k2, . . . , k6
roots with positive imaginary parts and by k7, . . . , k12 with negative ones.

Let us construct the following matrices:

Φ(+)(ξ̃, x3) =

∫
ℓ+

A−1(−iξ)e−iξ3x3 dξ3, (3.2)

Φ(−)(ξ̃, x3) =

∫
ℓ−

A−1(−iξ)e−iξ3x3 dξ3, (3.3)

where ℓ+ (respectively, ℓ−) is a closed simple curve of positive counterclockwise orientation (respec-
tively, negative clockwise orientation) in the upper (respectively, lower) complex half-plane Re ξ3 > 0
(respectively, Re ξ3 < 0) enclosing all the roots with respect to ξ3 of the equation detA(−iξ) = 0 with
positive (respectively, negative) imaginary parts (see Fig. 1). Clearly, (3.2) and (3.3) do not depend
on the shape of ℓ+ (respectively, ℓ−).

With the help of the Cauchy integral theorem for analytic functions, we conclude that the entries of
the matrix Φ(+)(ξ̃, x3) = [Φ

(+)
kj (ξ̃, x3)]6×6 are increasing exponentially as x3 → +∞ and are decreasing

exponentially as x3 → −∞ (−iξ3x3 = −i(ξ′3 + iξ′′3 )x3 = −iξ′3x3 + ξ′′3x3).
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Figure 1

Analogously, the entries of the matrix Φ(−)(ξ̃, x3) = [Φ
(−)
kj (ξ̃, x3)]6×6 are increasing exponentially

as x3 → −∞ and vanish exponentially as x3 → +∞.

Lemma 3.1. The columns of Φ(±)(ξ̃, x3) are linearly independent solutions to system (2.10).

Proof. Applying the Cauchy integral theorem we have

A(P )Φ(±)(ξ̃, x3) =

∫
ℓ±

A(−iξ)A−1(−iξ)e−iξ3x3dξ3

=

∫
ℓ±

I6e
−ξ3x3dξ3 = 0,

where I6 is the 6× 6 unit matrix. Now we prove that the columns of the matric Φ(+)(ξ̃, x3)

(1)

Φ (+),
(2)

Φ (+), . . . ,
(6)

Φ (+)

are linearly independent vector functions.
Assume that there exists a complex vector (C1, C2, . . . , C6) =: C ∈ C6 (C = C(ξ̃)) such that

6∑
j=1

Cj

(j)

Φ (+)(ξ̃, x3) = 0 or

Φ(+)(ξ̃, x3)C = 0. (3.4)

If x3 = 0, then from (3.2) and (3.4) we get

Φ(+)(ξ̃, 0)C =

∫
ℓ+

A−1(−iξ) dξ3 C = 0. (3.5)

Taking into account that (see (3.27) in [11])∫
ℓ+

A−1(−iξ) dξ3 =

∞∫
−∞

A−1(−iξ) dξ3,

one can rewrite (3.5) as follows
∞∫

−∞

A−1(−iξ)C dξ3 =

∞∫
−∞

A−1
kj (−iξ)Cj dξ3 = 0, k = 1, 6,
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or
+∞∫

−∞


[crjklξjξl]3×3 [elrjξjξl]3×1 [qlrjξjξl]3×1 [−λrjξj ]3×1

[−ejklξjξl]1×3 κjlξjξl ajlξjξl −ipjξj
[−qjklξjξl]1×3 ajlξjξl µjlξjξl −imjξj

[0]1×3 0 0 ηjlξjξl


−1

6×6

C dξ3 = 0. (3.6)

The integrand in (3.6) is Ψ := −A−1(−iξ)C and hence C = −A(−iξ)Ψ. Using these notation we
can write

+∞∫
−∞

Ψk dξ3 = 0,

+∞∫
−∞

Ψk dξ3 = 0, k = 1, 6, and

+∞∫
−∞

3∑
r=1

CrΨr dξ3 = 0,

+∞∫
−∞

C4Ψ4 dξ3 = 0,

+∞∫
−∞

C5Ψ5 dξ3 = 0,

+∞∫
−∞

C6Ψ6 dξ3 = 0.

(3.7)

Using (2.2) and the last equality of (3.7) we conclude that Ψ6 = 0.
Taking the sum of the first five equalities of (3.7) we obtain

+∞∫
−∞

{ 3∑
r=1

(−A(−iξ)Ψ)r Ψr +
(
−A(−iξ)Ψ

)
4
Ψ4 +

(
−A(−iξ)Ψ

)
5
Ψ5

}
dξ3

=

+∞∫
−∞

{
crjklξjξlΨkΨr + elrjξjξlΨ4Ψr + qlrjξjξlΨ5Ψr − ejklξjξlΨrΨ4

+ κjlξjξlΨ4Ψ4 + ajlξjξlΨ5Ψ4 − qjklξjξlΨrΨ5 + ajlξjξlΨ4Ψ5 + µjlξjξlΨ5Ψ5

}
dξ3 = 0,

i.e.
+∞∫

−∞

{
crjklξjξlΨkΨr + κjlξjξlΨ4Ψ4 + ajlξjξl(Ψ5Ψ4 +Ψ5Ψ4) + µjlξjξlΨ5Ψ5

}
dξ3 = 0.

De to (2.1), (2.2) and positive definiteness of the matrix (2.3) from the last equality we conclude
that Ψk = 0, k = 1, 5, and therefore together with Ψ6 = 0 we have Ck = 0, k = 1, 6.

Hence the columns of the matrix Φ(+)(ξ̃, x3) are linearly independent vector functions. Similarly,
it can be proved that the columns of the matrix Φ(−)(ξ̃, x3) defined by (3.3) are linearly independent
vector functions. �
Theorem 3.2. The boundary value problems (2.10)–(2.11) have only one solution in the space of
functions vanishing at infinity.

Proof. If x3 ∈ (0;+∞), then we look for a solution of the Dirichlet problem in the following form
Û(ξ̃, x3) = Φ(−)(ξ̃, x3)C, x3 > 0,

where C = (C1, . . . , C6) is unknown vector depending only on ξ̃.
From (2.11) we have

Φ(−)(ξ̃, 0)C = f̂(ξ̃)

and since detΦ(−)(ξ̃, 0) ̸= 0, |ξ̃| ̸= 0, due to Lemma 3.1 we obtain
C = [Φ(−)(ξ̃, 0)]−1f̂(ξ̃).

Therefore the unique solution has the following form
Û(ξ̃, x3) = Φ(−)(ξ̃, x3)[Φ

(−)(ξ̃, 0)]−1f̂(ξ̃), x3 > 0. (3.8)
Similarly, if x3 ∈ (−∞; 0), then the unique solution of the Dirichlet problem has the form

Û(ξ̃, x3) = Φ(+)(ξ̃, x3)[Φ
(+)(ξ̃, 0)]−1f̂(ξ̃), x3 < 0. (3.9)
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The theorem is proved. �
Lemma 3.3. There hold the following relations

[Φ(−)(ξ̃, 0)]−1 =

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

. (3.10)

Proof. It can be shown (see [11]) that the entries of the matrix A−1(−iξ) are homogeneous functions
in ξ and

A−1(−iξ) =
[
[O(|ξ|−2)]5×5 [O(|ξ|−3)]5×1

[0]1×5 O(|ξ|−2)

]
6×6

. (3.11)

Assume that ξ1 = t1|ξ̃|, ξ2 = t2|ξ̃|, ξ3 = t3|ξ̃|, where ξ = (ξ1, ξ2, ξ3) = (ξ̃, ξ3), t21 + t22 = 1. If |ξ̃| ̸= 0,
from (3.11) we obtain

Φ
(−)
kj (ξ̃, 0) =

+∞∫
−∞

A−1
kj (−iξ) dξ3 =

+∞∫
−∞

O(|ξ|−m) dξ3, m = 2 or m = 3.

Hence

|Φ(−)
kj (ξ̃, 0)| ≤

+∞∫
−∞

c̃

|ξ|m
dξ3 =

+∞∫
−∞

c̃(√
t21|ξ̃|2 + t22|ξ̃|2 + t23|ξ̃|2

)m |ξ̃| dt3

=
c̃

|ξ̃|m−1

+∞∫
−∞

dt3
(1 + t23)

m/2
=

c̃1

|ξ̃|m−1
;

here c̃ > 0 and c̃1 > 0 are some constants.
We derive the following relations

Φ(−)(ξ̃, 0) =

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.12)

It can easily be checked that detΦ(−)(ξ̃, 0) = O(|ξ̃|−6) and there exist constants c∗1 > 0 and c∗2 > 0
such that

c∗1|ξ̃|−6 ≤ | detΦ(−)(ξ̃, 0)| ≤ c∗2|ξ̃|−6. (3.13)
If Φ(−)

c (ξ̃, 0) is the corresponding matrix of cofactors, then

[Φ(−)(ξ̃, 0)]−1 =
1

detΦ(−)(ξ̃, 0)
Φ(−)

c (ξ̃, 0).

Taking into account (3.12) and (3.13) we arrive at the relation

[Φ(−)(ξ̃, 0)]−1 =
1

detΦ(−)(ξ̃, 0)

[
[O(|ξ̃|−5)]5×5 [O(|ξ̃|−6)]5×1

[0]1×5 O(|ξ̃|−5)

]
6×6

=

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

. �

Remark 3.4. Note that Φ(−)(ξ̃, x3) has the same behaviour (3.12) as Φ(−)(ξ̃, 0) for arbitrary x3 and
due to (3.10)

Φ(−)(ξ̃, x3)[Φ
(−)(ξ̃, 0)]−1 =

[
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
6×6

. (3.14)

Theorem 3.5. The Dirichlet boundary value problems (2.5)–(2.6) have at most one solution U =

(u, φ, ψ, ϑ)⊤ in the space [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 provided

∂αϑ(x) = O(|x|−1−|α|), (3.15)

∂αŨ(x) = O(|x|−1−|α| ln |x|) as |x| → ∞ (3.16)
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for arbitrary multi-index α = (α1, α2, α3). Here Ũ = (u, φ, ψ)⊤.

Proof. Let U (1) = (u(1), φ(1), ψ(1), ϑ(1))⊤ and U (2) = (u(2), φ(2), ψ(2), ϑ(2)) be two solutions of the
problem under consideration with properties indicated in the theorem for R3

1. It is evident that the
difference

V = (u′, φ′, ψ′, ϑ′) = U (1) − U (2)

solves the corresponding homogeneous problem.
Therefore for the temperature function we get the separated homogeneous Dirichlet problem

[A(∂)V ]6 = ηjl∂j∂lϑ
′ = 0 in R3

1, (3.17)
{ϑ′}+ = 0 on S. (3.18)

By Green’s formula (see (2.83) in [11]) for B+(0;R) := {(x1, x2, x3) | x21+x22+x23 ≤ R2 and x3 > 0}
and (3.17)–(3.18) we have∫

B+(0;R)

ηjl∂lϑ
′∂jϑ

′ dx =

∫
∂B+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+dS

=

∫
Σ+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+ dΣ. (3.19)

Here Σ+(0;R) is the upper half sphere.
Taking the limit as R→ ∞ in (3.19) according to (3.15) we get∫

R3
1

ηjl∂lϑ
′∂jϑ

′ dx = 0.

Due to (2.2) ϑ′ = const and from (3.15) we conclude that ϑ′ = 0.
Therefore the five dimensional vector Ṽ = (u′, φ′, ψ′)⊤ constructed by the first five components of

the solution vector V , solves the following homogeneous boundary value problem

Ã(∂)Ṽ = 0 in R3
1,

{Ṽ }+ = 0 on S,
(3.20)

where Ã(∂) is the 5×5 differential operator of statics of the electro-magneto-elasticity theory without
taking into account thermal effects (see (2.85) in [11]).

Using the limiting procedure as above in the corresponding Green’s identity for vectors satisfying
decay conditions (3.16) we obtain∫

R3
1

[Ã(∂)Ṽ · Ṽ + Ẽ(Ṽ , Ṽ )] dx = lim
R→∞

∫
Σ+(0;R)

[T̃ Ṽ ]+ · [Ṽ ]+ dΣ. (3.21)

Here T̃ (∂, n) is the corresponding 5× 5 generalized stress operator (see (2.86) in [11]) and

Ẽ(Ṽ , Ṽ ) = crjkl∂lu
′
k∂ju

′
r + κjl∂lφ

′∂jφ
′ + ajl(∂lφ

′∂jψ
′ + ∂jψ

′∂lφ
′) + µjl∂lψ

′∂jψ
′. (3.22)

If Ṽ is a solution of (3.20) satisfying (3.16), then from (3.21) we have∫
R3

1

Ẽ(Ṽ , Ṽ ) dx = 0. (3.23)

From (3.20), (3.22) and (3.23) along with (2.2) we get
u′(x) = a× x+ b, φ′(x) = b4, ψ′ = b5,

where a = (a2, a2, a3) and b = (b1, b2, b3) are arbitrary constant vectors and b4, b5 are arbitrary
constants. Now, in view of (3.16) we arrive at the equalities u′(x) = 0, φ′(x) = 0, ψ′(x) = 0 for all
x ∈ R3

1, consequently, U (1) = U (2) in R3
1.

The proof is similar for the domain R3
2. �
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Theorem 3.6. Let f ∈
◦
C∞(R2) and∫

R2

f(x̃) dx̃ = 0,

∫
R2

f(x̃)xj dx̃ = 0, j = 1, 2.

Then the Dirichlet boundary value problems (2.5)–(2.6) possess unique solutions which can be repre-
sented in the following form

U(x) = F−1

ξ̃→x̃

[
Φ(−)(ξ̃, x3)[Φ

(−)(ξ̃, 0)]−1f̂(ξ̃)
]
, x3 > 0, (3.24)

or

U(x) = F−1

ξ̃→x̃

[
Φ(+)(ξ̃, x3)[Φ

(+)(ξ̃, 0)]−1f̂(ξ̃)
]
, x3 < 0. (3.25)

Proof. It suffices to show that the vector functions (3.24) and (3.25) satisfy the conditions (3.15)–
(3.16). This will be done if we prove that the following relations hold for all x ∈ R3:

xjF−1

ξ̃→x̃
[Û(ξ̃, x3)] ≤ O(1), j = 1, 2, 3, (3.26)

and
x2jF−1

ξ̃→x̃
[Û(ξ̃, x3)] ≤ O(1), j = 1, 2, 3, (3.27)

where Û(ξ̃, x3) is defined by (3.8) or (3.9). For j = 1 or j = 2, we find

xj

∫
R2

Û(ξ̃, x3)e
−iξ̃·x̃ dξ̃ = i

∫
R2

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃ = i lim

R→∞

∫
K(0;R)

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃

= −i lim
R→∞

( ∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ −

∫
∂K(0;R)

Û(ξ̃, x3) e
−iξ̃·x̃ ξj

R
ds

)

= −i lim
R→∞

∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ = −i

∫
R2

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃, (3.28)

where K(0, R) is the circle of radius R centered at the origin.
Under the restriction on f we conclude that f̂ ∈ S(R2) and f̂(ξ̃) = O(|ξ̃|2) as |ξ̃| → 0, where S is

the space of rapidly decreasing functions. Therefore in view of (3.14) we have

∂Û(ξ̃, x3)

∂ξj
= O(1), |ξ̃| → 0 and

∂Û(ξ̃, x3)

∂ξj
= O(|ξ̃|−k), |ξ̃| → ∞, k ≥ 2,

(3.29)

uniformly for all x ∈ R3. Then the relations (3.28) and (3.29) imply (3.26). The condition (3.27) can
be proved similarly if we note that

∂2Û(ξ̃, x3)

∂ξ2j
= O

(
1

|ξ̃|

)
, |ξ̃| → 0 and

∂2Û(ξ̃, x3)

∂ξ2j
= O(|ξ̃|−k−1), |ξ̃| → ∞, k ≥ 2,

uniformly for all x ∈ R3.
Note that

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)] = x3

∫
R2

(∫
ℓ−

A−1(−ξ)e−iξ3x3dξ3

)
[Φ(−)(ξ̃, 0)]−1f̂(ξ̃)e−iξ̃·x̃dξ̃. (3.30)
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Using the Cauchy integral theorem for analytic functions and the relations (3.10), (3.11), from
(3.30) we get

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)]

= x3

∫
R2

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

] [
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
f̂(ξ̃) dξ̃

= x3

∫
R2

e−|ξ̃|x3 [O(1)]6×6f̂(ξ̃) dξ̃ = I1 + I2, (3.31)

where

I1 = x3

∫
|ξ|≤M

e−|ξ̃|x3 [O(1)]6×6f̂(ξ̃) dξ̃ and I2 = x3

∫
|ξ|>M

e−|ξ̃|x3 [O(1)]6×6f̂(ξ̃) dξ̃.

Since f̂(ξ̃) ∈ S(R2), it is easy to check that I1 = O(1) and I2 = O(1) and hence (3.26) holds.
We can prove the boundedness of the vector function x23F−1

ξ̃→x̃
[Û(ξ̃, x3)] quite similarly taking into

account that f̂(ξ̃) = O(|ξ̃|2) as |ξ̃| → 0. �
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Short Communications

Malkhaz Ashordia

ON THE SOLVABILITY OF THE ANTIPERIODIC PROBLEM
FOR LINEAR SYSTEMS OF IMPULSIVE EQUATIONS

Abstract. The antiperiodic boundary value problem for systems of linear impulsive equations is
considered. The Green type theorem on the unique solvability of the problem is established, and
its solution is represented. The effective necessary and sufficient (among them spectral sufficient)
conditions for the unique solvability of the problem are also given.
ÒÄÆÉÖÌÄ. ßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÀÍÔÉÐÄÒÉÏÃÖËÉ
ÀÌÏÝÀÍÀ. ÌÉÙÄÁÖËÉÀ ÂÒÉÍÉÓ ÔÉÐÉÓ ÈÄÏÒÄÌÀ ÀÌ ÀÌÏÝÀÍÉÓ ÝÀËÓÀáÀÃ ÀÌÏáÓÍÀÃÏÁÉÓÀ ÃÀ ÌÉÓÉ
ÀÌÏÍÀáÓÍÉÓ ßÀÒÌÏÃÂÄÍÉÓ ÛÄÓÀáÄÁ. ÀÂÒÄÈÅÄ ÌÏÝÄÌÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÝÀËÓÀáÀÃ ÀÌÏáÓÍÀÃÏ-
ÁÉÓ Ä×ÄØÔÖÒÉ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ (ÌÀÈ ÛÏÒÉÓ ÓÐÄØÔÒÀËÖÒÉ ÓÀÊÌÀÒÉÓÉ) ÐÉÒÏÁÄÁÉ.

2010 Mathematics Subject Classification: 34B37.
Key words and phrases: Nonlocal boundary value problem, antiperiodic problem, linear systems,
impulsive differential equations, unique solvability, effective conditions.

In the present paper, we consider the system of linear impulsive equations on the real axis with a
finite number of impulses points

dx

dt
= P (t)x+ p(t) for a.e. t ∈ R, (1)

x(τkj+)− x(τkj−) = Qkjx(τkj−) + qkj (j = 1, . . . ,m0; k = 0,±1,±2, . . . ) (2)

under the ω-antiperiodic condition

x(t+ ω) = −x(t) for t ∈ R, (3)

where kω ≤ τk1 < · · · < τkm0 < (k+1)ω, τk+1 j = τk j + ω (j = 1, . . . ,m0; k = 0,±1,±2, . . . ), m0 is a
fixed natural number, ω is a fixed positive number, P ∈ Lloc(R;Rn×n) is a ω-periodic matrix-function,
p ∈ Lloc(R;Rn) is a ω-antiperiodic vector-function, Qkj ∈ Rn×n (j = 1, . . . ,m; k = 0,±1,±2, . . . ) and
qkj ∈ Rn (j = 1, . . . ,m; k = 0,±1,±2, . . . ) are, respectively, constant n× n-matrices and n-vectors.

Below we present the Green type theorem on the solvability of the problem (1), (2); (3) and give
representation of its solution. In addition, we give effective necessary and sufficient (spectral type)
conditions for the unique solvability of the problem. The general linear boundary value problem for
the system (1), (2) and the nonlinear problems for impulsive systems are investigated sufficiently well
in [1,5,6,8–11,16–18] (see also the references therein), where, in particular, the Green type theorems for
the unique solvability have been obtained. Some questions of periodic problems for the system (1), (2)
are investigated in [10, 11, 16–18]. Moreover, they are a particular case of the problems considered
in [3, 4, 6, 19]. As to the antiperiodic problem, it is rather far from completeness. Thus the problem
under consideration what follows, is actual.

In the paper we establish some spectral conditions for the unique solvability of the problem which
follows from the analogous results for the generalized linear differential systems.

In the paper, the use will be made of the following notation and definitions.
R = ]−∞,+∞[ ; [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open intervals. Z is a set of

all integers.
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Rn×m is the space of all real n×m matrices X = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then:
X−1 is the matrix inverse to X;
detX is the determinant of X;
r(X) is the spectral radius of X;
In is the identity n× n-matrix.

The inequalities between the real matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
If X : [a, b] → Rn×m is a matrix-function, then X(t−) and X(t+) are, respectively, the left and the

right limits of X at the point t (X(a−) = X(a), X(b+) = X(b)).
L([a, b];Rn×m) is the set of all measurable and Lebesgue integrable on [a, b] matrix-functions X :

[a, b] → Rn×m;
Lloc(R,Rn×m) is the set of all matrix-functions X : R → Rn×m whose restrictions on every closed

interval [a, b] from R belong to L([a, b],Rn×n).
C([a, b];Rn×l) is the set of all continuous on [a, b] matrix-functions X : [a, b] → Rn×l;
Cloc(R,Rn×l) is the set of all matrix-functions X : R → Rn×l whose restrictions on every closed

interval [a, b] from R belong to C([a, b],Rn×l).
C̃([a, b];Rn×l) is the set of all absolutely continuous on [a, b] matrix-functions X : [a, b] → Rn×l;
C̃([a, b];Rn×l; τ1, . . . , τm), where τ1, . . . , τm ∈ [a, b], is the set of all matrix-functions X : [a, b] →

Rn×m, having the one-sided limits X(τk−) (k = 1, . . . ,m) and X(τk+) (k = 1, . . . ,m), whose restric-
tion on an arbitrary closed interval [c, d] from [a, b] \ {τk}mk=1 belong to C̃([c, d];Rn×l).

For the pair {X; {Yl}ml=1}, consisting of the matrix-function X ∈ L([0, ω],Rn×n) and a sequence of
constant n× n matrices Y1, . . . , Ym, we put[

(X; {Yl}ml=1)(t)
]
0
= In for 0 ≤ t ≤ ω,[

(X; {Yl}ml=1)(0)
]
i
= On×n (i = 1, 2, . . . ),

[
(X; {Yl}ml=1)(t)

]
i+1

=

t∫
0

X(τ) ·
[
(X; {Yl}ml=1)(τ)

]
i
dτ

+
∑

a≤τl<t

Yl ·
[
(X; {Yl}ml=1)(τl)

]
i

for 0 < t ≤ ω (i = 1, 2, . . . ). (4)

We say that the pair {X; {Yl}ml=1} satisfies the Lappo–Danilevskiĭ condition, if the matrices
Y1, . . . , Ym are pairwise permutable and there exists t0 ∈ [a, b] such that

t∫
t0

X(τ) dX(τ) =

t∫
t0

dX(τ) ·X(τ) for t ∈ [0, ω]

and
X(t)Yl = YlX(t) for t ∈ [0, ω] (l = 1, . . . ,m).

Under a solution of the system (1), (2) we understand a continuous from the left vector-function
x : R → Rn whose restrictions on [kω, (k+1)ω] belong to C̃([kω, (k+1)ω];Rn; τk1, . . . , τkm0) for every
k ∈ Z and satisfying both the system (1) for a.e. t ∈ R and the equality (2) for every j ∈ {1, . . . ,m0}.

In the sequel, we assume everywhere that P (t+ω) = P (t) and q(t+ω) = −q(t) for t ∈ R, τ0j = τj ,
q0j = qj , Qkj = Qj and qk+1j = −qkj (j = 1, . . . ,m0; k = 0,±1,±2, . . . ). Moreover, we assume that

det(In +Qj) ̸= 0 (j = 1, . . . ,m0). (5)
Note that the condition (5) guarantees the unique solvability of the system (1), (2) under the Cauchy

condition x(t0) = c0.
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Alongside with the system (1), (2), we consider the corresponding homogeneous system
dx

dt
= P (t)x for a.e. t ∈ R, (10)

x(τkj+)− x(τkj−) = Qkjx(τkj−) (j = 1, . . . ,m0; k = 0,±1,±2, . . . ). (20)
Moreover, along with (3) we consider the condition

x(0) = −x(ω). (6)

Proposition 1. The following statements are valid:
(a) if x is a solution of the system (1), (2), then the function y(t) = −x(t+ω) (t ∈ R) is a solution

of the system (1), (2), as well;
(b) the problem (1), (2); (3) is solvable if and only if the system (1), (2) on the closed interval

[0, ω] has a solution satisfying the boundary condition (6). Moreover, the set of restrictions of
solutions of the problem (1), (2); (3) on [0, ω] coincides with the set of solutions of the problem
(1), (2); (6).

Based on this proposition we give the following definition.
Let

D = In + Y (ω),

where Y is the fundamental matrix of the problem (10), (20); (6) under the condition Y (0) = In.

Definition 1. Let detD ̸= 0. A matrix-function G : [0, ω] × [0, ω] → Rn×n is said to be the Green
matrix of the problem (10), (20); (6) if:

(a) for every s ∈ ]0, ω[ , the matrix-function G( · , s) satisfies the impulsive homogeneous matrix
equation

dX

dt
= P (t)X for a. e. t ∈ R,

X(τj+)−X(τj−) = QjX(τj−) (j = 1, . . . ,m0);

(b)
G(t, t+)− G(t, t−) = Y (t)D−1Y (ω)Y −1(t) for t ∈ ]0, ω[ \{τ1, . . . , τm0},

G(τj , τj+)− G(τj , τj−) = Y (τj)D
−1Y (ω)Y −1(τj)(In +Qj)

−1 (j = 1, . . . ,m0);

(c)
G(t+, t)− G(t−, t) = In for t ∈ ]0, ω[ \{τ1, . . . , τm0},

G(τj+, τj)− G(τj−, τj) = In +QjY (τj)D
−1

(
In + Y −1(τj)

)
(j = 1, . . . ,m0);

(d)
G(t, ·) ∈ C̃

(
[0, ω];Rn×n; τ1, . . . , τm0

)
for t ∈ [0, ω];

(e) the equality
ω∫

0

(
G(0, s) + G(ω, s)

)
· p(s) ds+

m0∑
j=1

(
G(0, τj+) + G(ω, τj+)

)
· qj = 0

holds for every p ∈ L([0, ω],Rn) and q1, . . . , qm0 ∈ Rn.

The Green matrix of the problem (10), (20); (6) exists and is unique in the following sense. If G(t, s)
and G1(t, s) are two matrix-functions satisfying the conditions (a)–(e) of Definition 1, then

G(t, s)− G1(t, s) ≡ Y (t)H∗(s),

where H∗ ∈ C̃([0, ω];Rn×n; τ1, . . . , τm0) is a matrix-function such that
H∗(s+) = H∗(s−) = C = const for s ∈ [0, ω],

and C ∈ Rn×n is a constant matrix.
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In particular, the matrix-function G defined by

G(t, s) =


Y (t)D−1(In + Y −1(s)) for 0 ≤ s < t ≤ ω,

Y (t)D−1
(
In − Y (ω)Y −1(s)

)
for 0 ≤ t < s ≤ ω,

arbitrary for t = s

is the Green matrix of the problem (10), (20); (6).

Theorem 1. The problem (1),(2) has a unique ω-antiperiodic solution x if and only if the corre-
sponding homogeneous system (10), (20) has only the trivial solution satisfying the condition (6), i.e.,
when

det(In + Y (ω)) ̸= 0. (7)

If the last condition holds, then the solution x admits the notation

x(t) =

ω∫
0

G(t, s) · p(s) ds+
m0∑
j=1

G(t, τj+) · qj for t ∈ [0, ω], (8)

where G : [0, ω]× [0, ω] → Rn×n is the Green matrix G of the problem (10), (20); (6) on [0, ω].

Corollary 1. Let the pair {P, {Qj}m0
j=1} satisfy the Lappo–Danilevskiĭ condition. Then the problem

(1),(2) has a unique ω-antiperiodic solution if and only if

det
(
In + exp

( ω∫
0

P (s) ds

) m0∏
j=1

(In +Qj)

)
̸= 0.

Note that if the pair {P, {Qj}m0
j=1} satisfies the Lappo–Danilevskiĭ condition, then

Y (t) ≡ exp
( ω∫

0

P (s) ds

) m0∏
j=1

(In +Qj)

and, therefore, the condition (7) is of the form given in the corollary.

Remark 1. If the system (10), (20) has a nontrivial ω-antiperiodic solution, then there exist the vector-
function p ∈ Lloc(R,Rn) and constant vectors qkj (j = 1, . . . ,m0; k = 0,±1,±2, . . . ) such that
q(t + ω) = −q(t) for t ∈ R, qk+1j = −qkj (j = 1, . . . ,m0; k = 0,±1,±2, . . . ), but the system (1), (2)
has no ω-antiperiodic solution.

In general, it is quite difficult to verify the condition (7) directly even in the case where one is able to
write out the fundamental matrix of the system (10), (20) explicitly. Therefore it is important to find
of effective conditions which would guarantee the absence of nontrivial ω-antiperiodic solutions of the
homogeneous system (10), (20). Below we give the results concerning the subset question. Analogous
results have been obtained by T. Kiguradze for the ordinary differential equations (see [12,13]).

Theorem 2. The system (1), (2) has a unique ω-antiperiodic solution if and only if there exist natural
numbers k and m such that the matrix

Mk = −
k−1∑
i=0

[
(P ; {Ql}m0

l=1)(ω)
]
i

is nonsingular and
r(Mk,m) < 1, (9)

where

Mk,m =
[
(P ; {Ql}m0

l=1)(ω)
]
m
+

m−1∑
i=0

[
(P ; {Ql}m0

l=1)(ω)
]
i
· |M−1

k |
[
(P ; {Ql}m0

l=1)(ω)
]
k
,

and [(P ; {Ql}m0

l=1)(ω)]i (i = 0, . . . ,m− 1) are defined by (4).
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Corollary 2. Let there exist a natural j such that[
(P ; {Ql}m0

l=1)(ω)
]
j
= 0 (i = 1, . . . , j)

and
det

([
(P ; {Ql}m0

l=1)(ω)
]
j+1

)
̸= 0,

where [(P ; {Ql}m0

l=1)(ω)]i (i = 0, . . . ,m− 1) are defined by (4). Then there exists ε0 > 0 such that the
system

dx

dt
= εP (t)x+ p(t) for a.e. t ∈ R,

x(τkj+)− x(τkj−) = εQjx(τkj−) + qkj (j = 1, . . . ,m0; k = 0,±1,±2, . . . )

have one and only one ω-antiperiodic solution for every ε ∈]0, ε0[.
Theorem 3. Let the homogeneous system

dx

dt
= P0(t)x for a. e. t ∈ R, , (100)

x(τkj+)− x(τkj−) = Q0kjx(τkj−) (j = 1, . . . ,m0; k = 0,±1,±2, . . . ) (110)
has only the trivial ω-antiperiodic solution, where P0 ∈ Lloc(R;Rn×n) is ω > 0-periodic matrix-
function, Q0kj ∈ Rn×n (j = 1, . . . ,m; k = 0,±1,±2, . . . ) are constant n × n-matrices such that
Q0kj = Q0j (j = 1, . . . ,m0; k = 0,±1,±2, . . . ) and

det(In +Q0j) ̸= 0 (j = 1, . . . ,m0).

Let, moreover, the matrix-function P0 ∈ Lloc(R;Rn×n) and constant matrices Qj(j = 1, . . . ,m0) admit
the estimate

ω∫
0

|G0(t, τ)| |P (τ)− P0(τ)| dτ +

m0∑
j=1

|G0(t, τj+)(Qj −Q0j)| ≤ M for t ∈ [0, ω],

where G0(t, τ) is the Green matrix of the problem (100), (110); (6), and M ∈ Rn×n
+ is a constant matrix

such that
r(M) < 1.

Then the system (1), (2) has one and only one ω-antiperiodic solution.
The representation (8) can be replaced by a more simple and suitable form by introducing the

concept of the Green matrix for the problem (10), (20); (3).
Definition 2. The matrix-function Gω : R×R → Rn×n is said to be the Green matrix of the problem
(10), (20); (3) if:

(a) Gω(t+ ω, τ + ω) = Gω(t, τ), Gω(t, t+ ω) + Gω(t, τ) = −In for t, τ ∈ R;
(b) the matrix-function Gω( · , τ) : R → Rn×n is a fundamental matrix of the system (10), (20) for

every τ ∈ R.
Proposition 2. Let the problem (10), (20) have only a trivial solution. Then there exists the unique
Green matrix of the problem, which has the form

Gω(t, τ) = −Y (t)(In + Y −1(ω))−1Y −1(τ) for t, τ ∈ R.
Theorem 4. Let the condition

det(In ±Qj) ̸= 0 (j = 1, . . . ,m0)

hold and the boundary value problem (10), (20); (3) have only a trivial solution. Then the ω-antiperiodic
problem (1), (2); (3) has a unique solution x admitting the representation

x(t) =

t+ω∫
t

Gω(t, τ)p(τ) dτ +
∑

t≤τkj<(k+1)ω

Gω(t, τkj)(In −Q2
j )

−1qkj

+
∑

(k+1)ω≤τk+1 j<t+ω

Gω(t, τk+1 j)(In −Q2
j )

−1qk+1 j for t∈(kω, (k+1)ω] (k=0;±1;±; . . . ), (12)
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where Gω is the Green matrix of the problem (10), (20); (3).

Using the properties of the Green matrix Gω(t, τ) (see Definition 2 (a)), the representation (12) can
be rewriten in the form

x(t) =

t+ω∫
t

Gω(t, τ)p(τ) dτ + (−1)k+1
∑

0≤τj<t−kω

Gω(t− ω, τj)(In −Q2
j )

−1qj

+ (−1)k
∑

t−kω≤τj<ω

Gω(t− kω, τj)(In −Q2
j )

−1qj for t ∈ (kω, (k + 1)ω] (k = 0;±1;±; . . . ).

Note that the results obtained in the paper, follow from the corresponding results given in [7] for
the generalized differential system of the form

dx(t) = dA(t) · x(t) + df(t)

since the impulsive system (1), (2) is the particular case of the last system under the assumptions that

A(0) = On×n, A(t) =

t∫
0

P (τ) dτ +
∑

0≤τj<t

Qj for t ∈ (0, ω],

f(0) = 0, f(t) =

t∫
0

p(τ) dτ +
∑

0≤τj<t

qj for t ∈ (0, ω],

and
A(t+ ω) = A(t) and f(t+ ω) = −f(t) for t ∈ R \ [0, ω].

It is not difficult to verify that

A(t) =

t∫
kω

P (τ) dτ +
∑

kω≤τkj<t

Qj + kA(ω) for t ∈ (kω, (k + 1)ω]

and

f(t) =

t∫
kω

p(τ) dτ +
∑

kω≤τkj<t

qj + φ(k)f(ω) for t ∈ (kω, (k + 1)ω] (k = 0;±1,±2, . . . ),

where φ(k) = 0 if k is an even integer, and φ(k) = 1 if k is an odd one.
The theory of generalized ordinary differential equations has been introduced by J. Kurzweil [14,15]

in connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

Finally, we note that, to a considerable extent, the interest to the theory of generalized ordinary
differential equations has been stimulated by the fact that this theory enables one to investigate
ordinary differential, impulsive and difference equations from a unified point of view (see [1,2,5,7,19]
and the references therein).
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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF LINEAR GENERALIZED DIFFERENTIAL EQUATIONS

Abstract. The question of well-posedness of antiperiodic boundary value problem for systems of
linear generalized differential equations is considered. The necessary and sufficient as well as the
effective sufficient conditions are found for the well-posedness of the problem.
ÒÄÆÉÖÌÄ. ßÒ×ÉÅ ÂÀÍÆÏÂÀÃÄÁÖË ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÂÀÍáÉËÖ-
ËÉÀ ÀÍÔÉÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓ ÓÀÊÉÈáÉ. ÃÀÃÂÄÍÉËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÊÏÒÄØ-
ÔÖËÏÁÉÓ ÒÏÂÏÒÝ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ, ÀÓÄÅÄ Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.

2010 Mathematics Subject Classification: 34K06.
Key words and phrases: Antiperiodic problem, linear systems, generalized ordinary differential
equations, well-posed, necessary and sufficient conditions, effective conditions.

We consider the question of well-posedness of the ω-antiperiodic problem for linear generalized
ordinary differential equations of the form

dx(t) = dA(t) · x(t) + df(t) for t ∈ R, (1)
x(t+ ω) = −x(t) for t ∈ R, (2)

where A : R → Rn×n and f : R → Rn are, respectively, the matrix- and vector-functions with bounded
variation components on the every closed interval [a, b] from R, and ω is a fixed positive number.

Let the system (1) have a unique ω-antiperiodic solution x0.
Along with the system (1), consider a sequence of systems

dx(t) = dAk(t) · x(t) + dfk(t) (k = 1, 2, . . . ) (1k)
where Ak : R → Rn×n and fk : R → Rn are, respectively, the matrix- and vector-functions with
bounded variation components on every closed interval [a, b] from R.

In the present paper, the necessary and sufficient conditions are given for a sequence of ω-antipe-
riodic problems (1k), (2) (k = 1, 2, . . . ) to have a unique solution xk for a sufficiently large k and

lim
k→+∞

xk(t) = x0(t) uniformly on R. (3)

The analogous questions for the linear general boundary value problems are investigated in [2,
6, 10, 11, 19] (see also the references therein) for linear generalized differential systems, in [3–5, 14]
(see also the references therein) for nonlinear generalized differential systems and equations, and
in [1, 9, 12,13,16] (see also the references therein) for ordinary differential and impulsive systems.

The problem on the solvability of the ω-antiperiodic boundary value problem (1), (2) can be found
in [8].

As to the well-posedness question concerning of the antiperiodic problem, it is sufficiently far from
by completeness. Thus the problem considered in the present paper is actual.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [3,7,14,15,17,18] and the references
therein).

The theory of generalized ordinary differential equations has been introduced by J. Kurzweil [14,15]
in connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

In the paper, the use will be made of the following notation and definitions:
R = ]−∞,+∞[ is the real axis;
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Rn×m is the space of all real n×m matrices X = (xij)
n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |;

On×m (or O) is the zero n×m matrix; In is the identity n× n-matrix.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components
is such. The inequalities between the real matrices are understood componentwise.

If X : [a, b] → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of total variations on [a, b] of

its components xij (i = 1, . . . , n; j = 1, . . . ,m); V (X)(t) = (V (xij)(t))
n,m
i,j=1, where V (xij)(a) = 0,

V (xij)(t) =
t∨
a
(xij) for a < t ≤ b; X(t−) and X(t+) are, respectively, the left and the right limits of

X at the point t (X(a−) = X(a), X(b+) = X(b)); d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the normed space of all bounded variation matrix-functions X : [a, b] → Rn×m

(i.e.,
b∨
a
(X) < ∞) with the norm ∥X∥s = sup{∥X(t)∥ : t ∈ [a, b]}.

BVloc(R,Rn×m) is the set of all matrix-functions X : [a, b] → Rn×m whose restrictions on every
closed interval [a, b] from R belong to BV([a, b],Rn×n).

BV+
ω (R,Rn×m) and BV−

ω (R,Rn×m) are the sets of all matrix-functions G : R → Rn×m whose
restrictions on [0, ω] belong to BV([0, ω],Rn×m), and there exist a constant matrix C ∈ Rn×m such
that, respectively,

G(t+ ω) = G(t) + C and G(t+ ω) = −G(t) + C for t ∈ R.
sc, sj : BV([a, b],R) → BV([a, b],R) (j = 1, 2) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then
t∫

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ0(sc(g)) corresponding to the function sc(g).
If a = b, then we assume

b∫
a

x(t) dg(t) = 0,

and if a > b, then we assume
b∫

a

x(t) dg(t) = −
a∫

b

x(t) dg(t).

Thus
b∫
a

x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see [14–19]).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s ≤ t.
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If G = (gik)
l,n
i,k=1 ∈ BV([a, b],Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

, Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2)

and
b∫

a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkj(τ) dgik(τ)

)l,m

i,j=1

.

We introduce the operators. If X ∈ BVloc(R, ;Rn×n) and Y ∈ BVloc(R, ;Rn×m), then

B(X,Y )(t) = X(t)Y (t)−X(0)Y (0)−
t∫

0

dX(τ) · Y (τ);

if, in addition, det(X(t)) ̸= 0 for t ∈ R, then

I(X,Y )(t) =

t∫
0

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ);

and if, moreover, det(In + (−1)jdjX(t)) ̸= 0 for t ∈ R (j = 1, 2), then
A(X,Y )(0) = On×m,

A(X,Y )(t) = Y (t)− Y (0) +
∑

0<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) for t > 0,

A(X,Y )(t) = −A(X,Y )(t) for t < 0.

We say that the matrix-function X ∈ BV([a, b],Rn×n) satisfies the Lappo–Danilevskiĭ condition if
the matrices Sc(X)(t), S1(X)(t) and S2(X)(t) are pairwise permutable for every t ∈ [a, b], and there
exists t0 ∈ [a, b] such that

t∫
t0

Sc(X)(τ) dSc(X)(τ) =

t∫
t0

dSc(X)(τ) · Sc(X)(τ) for t ∈ [a, b].

A vector-function BVloc(R,Rn×m) is said to be a solution of the system (1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for s < t; s, t ∈ R.

We assume that
A,Ak ∈ BV+

ω (R,Rn×n) and f, fk ∈ BV−
ω (R,Rn) (k = 1, 2, . . . ),

i.e.,
A(t+ ω) = A(t) + C, Ak(t+ ω) = Ak(t) + Ck for t ∈ R (k = 1, 2, . . . )

and
f(t+ ω) = −f(t) + c, fk(t+ ω) = −fk(t) + ck for t ∈ R (k = 1, 2, . . . ),

where C,Ck ∈ Rn×n (k = 1, 2, . . . ) and c, ck ∈ Rn (k = 1, 2, . . . ) are, respectively, some constant
matrix and vector. In addition, without loss of generality, we assume that

A(0) = Ak(0) = On×n, f(0) = fk(0) = 0 (k = 1, 2, . . . )

(the last condition is assumed for every generalized linear systems, as well). Moreover, we assume
det

(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ R (j = 1, 2).

Alongside with the system (1), we consider the corresponding homogeneous system
dx(t) = dA(t) · x(t). (40)
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Moreover, along with the problem (2), we consider the problem
x(0) = −x(ω). (5)

If the matrix-function A satisfies the Lappo–Danilevskiĭ’s condition, then the fundamental matrix
Y , Y (0) = In, of the system (40) is defined by

Y (t) ≡ exp(S0(A)(t))
∏

0≤τ<t

(In + d2A(τ))
∏

0<τ≤t

(In − d1A(τ))
−1 for t ∈ [0, ω].

Definition 1. We say that a sequence (Ak, fk) (k = 1, 2, . . . ) belongs to the set S(A, f) if the ω-
antiperiodic problem (1k), (2) has a unique solution xk for any sufficiently large k, and the condition
(3) holds.

Proposition 1. The following statements are valid:
(a) if x is a solution of the system (1), then the vector-function y(t) = −x(t+ ω) (t ∈ R) will be

a solution of the system (1), as well;
(b) the problem (1), (2) is solvable if and only if the system (1) on the closed interval [0, ω] has a

solution satisfying the boundary condition (5). Moreover, the set of restrictions of solutions
of the problem (1), (2) on [0, ω] coincides with the set of solutions of the problem (1), (5).

Theorem 1. The inclusion (
(Ak, fk)

)+∞
k=1

∈ S(A, f) (6)
is valid if and only if there exists a sequence of matrix-functions H,Hk ∈ BV([0, ω],Rn×n) (k =
1, 2, . . . ) such that

lim
k→+∞

sup
b∨
a

(Hk + B(Hk, Ak)) < +∞, (7)

inf
{∣∣det(H(t))

∣∣ : t ∈ [0, ω]
}
> 0, (8)

and the conditions
lim

k→+∞
Hk(t) = H(t), (9)

lim
k→+∞

B(Hk, Ak)(t) = B(H,A)(t), (10)

lim
k→+∞

B(Hk, fk)(t) = B(H, f)(t)

are fulfilled uniformly on [0, ω].

Theorem 2. Let A∗ ∈ BV([0, ω],Rn×n), f∗ ∈ BV([0, ω],Rn) be such that
det

(
In + (−1)jdjA∗(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2) (11)

and the system
dx(t) = dA∗(t) · x(t) + df∗(t) (12)

have a unique ω-antiperiodic solution x∗. Let, moreover, there exist sequences of matrix- and vector-
functions Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) and hk ∈ BV([0, ω],Rn) (k = 1, 2 . . . ), respectively,
such that hk(0) = −hk(ω) (k = 1, 2, . . . ),

inf
{∣∣det(Hk(t))

∣∣ : t ∈ [0, ω]
}
> 0 (k = 1, 2, . . . ), (13)

and

lim
k→+∞

sup
b∨
a

A∗k < +∞, (14)

and the conditions
lim

k→+∞
A∗k(t) = A∗(t), (15)

lim
k→+∞

f∗k(t) = f∗(t)
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are fulfilled uniformly on [0, ω], where

A∗k(t) ≡ Ik(Hk, Ak)(t) (k = 1, 2, . . . ),

f∗k(t) ≡ hk(t)− hk(0) + Bk(Hk, fk)(t)−
t∫

0

dA∗k(τ) · hk(t) (k = 1, 2, . . . ).

Then the system (1k) has a unique ω-antiperiodic solution xk for any sufficiently large k, and

lim
k→+∞

∥Hkxk + hk − x∗∥s = 0.

Corollary 1. Let the conditions (7) and (8) hold, and let the conditions (9), (10) and

lim
k→+∞

(
B(Hk, fk − φk)(t) +

t∫
0

dB(Hk, Ak)(s) · φk(s)

)
= B(H, f)(t)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Then the system (1k)
has a unique ω-antiperiodic solution xk for any sufficiently large k and

lim
k→+∞

∥xk − φk − x∗∥s = 0.

Corollary 2. Let the conditions (7) and (8) hold, and let the conditions (9),

lim
k→+∞

t∫
0

Hk(s) dAk(s) =

t∫
0

H(s) dA(s), lim
k→+∞

t∫
0

Hk(s) dfk(s) =

t∫
0

H(s) df(s),

lim
k→+∞

djAk(t) = djA(t) (j = 1, 2), and lim
k→+∞

djfk(t) = djf(t) (j = 1, 2)

be fulfilled uniformly on [0, ω], where H,Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Let, moreover, either

lim
k→+∞

sup
∑

a≤t≤b

(
∥djAk(t)∥+ ∥djfk(t)∥

)
< +∞ (j = 1, 2)

or
lim

k→+∞
sup

∑
a≤t≤b

∥djHk(t)∥ < +∞ (j = 1, 2). (16)

Then the inclusion (6) holds.

Corollary 3. Let the conditions (7) and (8) hold, and let the conditions (9),

lim
k→+∞

Ak(t) = A(t), (17)

lim
k→+∞

fk(t) = f(t)), (18)

lim
k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
·Ak(s) = A∗(t),

lim
k→+∞

t∫
0

d
(
H−1(s)Hk(s)

)
· fk(s) = f∗(t)

be fulfilled uniformly on [0, ω], where H,Hk, A∗ ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and f∗ ∈
BV([0, ω],Rn). Let, moreover, the system

dx(t) = d
(
A(t)−A∗(t)

)
· x(t) + d

(
f(t)− f∗(t)

)
have a unique ω-antiperiodic solution. Then(

(Ak, fk)
)+∞
k=1

∈ S(A−A∗, f − f∗).
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Corollary 4. Let there exist a natural number m and matrix-functions Bj ∈ BV([0, ω],Rn×n) (j =
0, . . . ,m− 1 such that

lim
k→+∞

sup
b∨
a

(Akm) < +∞,

and the conditions
lim

k→+∞

(
Akm(t)−Akm(0)

)
= A(t),

lim
k→+∞

(
fkm(t)− fkm(0)

)
= f(t)

be fulfilled uniformly on [0, ω], where

Hk0(t) ≡ In, Hk j+1 0(t) ≡
1∏

j+1

(
In −Akl(t) +Akl(0) +Bl(t)−Bl(0)

)
,

Ak j+1 ≡ Hkj(t) + B(Hkj , Ak)(t), fk j+1 ≡ B(Hkj , fk)(t).

Then the inclusion (6) holds.

If m = 1, then Corollary 4 has the following form

Corollary 5. Let

lim
k→+∞

sup
b∨
a

(Ak) < +∞

and the conditions (17) and (18) be fulfilled uniformly on [0, ω]. Then the inclusion (6) holds.

Theorem 1′. Let A∗ ∈ BV([0, ω],Rn×n), f∗ ∈ BV([0, ω],Rn) be such that the condition (11) hold
and the system (12) has a unique ω-antiperiodic solution x∗. Let, moreover, there exist sequences
of matrix- and vector-functions Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) and B,Bk ∈ BV([0, ω],Rn×n)
(k = 1, 2, . . . ), and a sequence of vector-functions hk ∈ BV([0, ω],Rn) (k = 1, 2 . . . ), respectively, such
that hk(0) = −hk(ω) (k = 1, 2, . . . ), the conditions (13),

lim
k→+∞

sup
b∨
a

(A∗k −Bk) < +∞, (19)

det
(
In+(−1)jdjB(t)

)
̸=0, det

(
In+(−1)jdjBk(t)

)
̸=0 for t∈ [0, ω] (j=1, 2; k=0, 1, . . . ) (20)

hold, and the conditions
lim

k→+∞
Zk(t) = Z(t), (21)

lim
k→+∞

B
(
Z−1
k , A∗k(t)

)
= B(Z−1, A∗(t)), (22)

lim
k→+∞

B
(
Z−1
k , f∗k(t)

)
= B(Z−1, f∗(t)) (23)

are fulfilled uniformly on [0, ω], where A∗k and f∗k are the matrix- and vector-functions appearing in
Theorem 2, and Zk (Z) is the fundamental matrix of the system

dx(t) = dBk(t) · x(t)
(
dx(t) = dB(t) · x(t)

)
(24)

under the condition
Zk(0) = In (Z(0) = Im) (k = 1, 2, . . . ). (25)

Then the conclusion of Theorem 2 is true.
Below, everywhere, just as in the above theorem, it will be assumed that Zk (Z) is the fundamental

matrix of the system (24) under the condition (25) for every k ∈ {1, 2, . . . }, as well.

Corollary 6. Let the conditions (8), (19),

lim
k→+∞

sup
∑

0≤t≤ω

∥djBk(t)∥ < +∞ (j = 1, 2) (26)
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and
det

(
In + (−1)jdjB(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2; k = 0, 1, . . . ) (27)

hold and let the conditions (9),

lim
k→+∞

Bk(t) = B(t), (28)

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, A∗k)(s) =

t∫
0

Z−1(s) dA(B,A∗)(s) (29)

and

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, f∗k)(s) =

t∫
0

Z−1(s) dA(B, f∗)(s) (30)

be fulfilled uniformly on [0, ω], where H, Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and B and Bk ∈
BV([0, ω],Rn×n) (k = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition; A∗k(t) ≡ I(Hk, Ak)(t) (k =
1, 2, . . . ),

f∗k(t) ≡ −Hk(t)φk(t) +Hk(0)φk(0) + B(Hk, fk)(t) +

t∫
0

dA∗k(s) ·Hk(s)φk(s),

φk ∈ BV([0, ω],Rn) (k = 1, 2, . . . ),

and A∗ and f∗ are the matrix- and vector-functions appearing in Theorem 1′. Then the conclusion of
Corollary 1 is true.

In the Lappo–Danilevskiĭ case, for every k ∈ {1, 2, . . . }, we have

Zk(t) ≡ exp(S0(Bk)(t))
∏

0≤τ<t

(
In + d2Bk(τ)

) ∏
0<τ≤t

(
In − d1Bk(τ)

)−1
.

Corollary 7. Let the conditions (8), (19) hold and let the conditions (9), (15), (27) and

lim
k→+∞

t∫
0

exp(−Bk(s)) df∗k(s) =

t∫
0

exp(−B(s)) df∗(s)

be fulfilled uniformly on [0, ω], where H, Hk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ), and B and Bk ∈
BV([0, ω],Rn×n) (k = 1, 2, . . . ) are the continuous matrix-functions satisfying the Lappo–Danilevskiĭ
condition; and A∗, A∗k and f∗, f∗k, φk (k = 1, 2, . . . ) are, respectively, matrix- and vector-functions
appearing in Corollary 6. Then the conclusion of Corollary 1 is true.

Corollary 8. Let there exist a sequence of matrix-functions H and Hk (k = 0, 1, . . . ) from
BV([0, ω],Rn×n) such that the matrix-functions Sc(A) and Sc(A∗k) (k = 1, 2, . . . ) satisfy the Lappo–Da-
nilevskiĭ condition and the conditions (8) and

lim
k→+∞

sup
∑

0≤t≤ω

∥djA∗k(t)∥ < +∞ (j = 1, 2)

hold, let the conditions (9),

lim
k→+∞

Sc(A∗k)(t) = Sc(A∗)(t), lim
k→+∞

Sj(A∗k) = Sj(A∗)(t) (j = 1, 2)

and

lim
k→+∞

t∫
0

exp
(
− Sc(A∗k)(s)

)
df∗k)(s) =

t∫
0

exp
(
− Sc(A∗k)(s)

)
df∗)(s)

be fulfilled uniformly on [0, ω], where A∗, A∗k and f∗, f∗k, φk (k = 1, 2, . . . ) are, respectively, the
matrix-and vector-functions appearing in Corollary 6. Then the conclusion of Corollary 1 is true.
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Theorem 2′. The inclusion (6) is valid if and only if there exist the sequences of matrix-functions
H, Hk and B, Bk ∈ BV([0, ω],Rn×n) (k = 0, 1, . . . ) such that the conditions (8), (20) and

lim
k→+∞

sup
b∨
a

(I(Hk, Ak)−Bk) < +∞

hold, and the conditions (9), (21),
lim

k→+∞
B
(
Z−1
k , I(Hk, Ak)

)
(t) = B

(
Z−1, I(H,A)

)
(t)

and
lim

k→+∞
B
(
Z−1
k , I(Hk, fk)

)
(t) = B

(
Z−1, I(H, f)

)
(t)

are fulfilled uniformly on [0, ω].
Corollary 9. Let the conditions (20) and

lim
k→+∞

sup
b∨
a

(Ak −Bk) < +∞ (31)

hold and the conditions (21),
lim

k→+∞
B(Z−1

k , Ak)(t) = B(Z−1, A)(t) (32)

and
lim

k→+∞
B(Z−1

k , fk)(t) = B(Z−1, f)(t) (33)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ). Then the inclusion
(6) holds.
Corollary 10. Let the conditions (26), (27) and (31) hold and the conditions (29),

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, Ak)(s) =

t∫
0

Z−1(s) dA(B,A)(s)

and

lim
k→+∞

t∫
0

Z−1
k (s) dA(Bk, fk)(s) =

t∫
0

Z−1(s) dA(B, f)(s)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) satisfy the
Lappo–Danilevskiĭ condition. Then the inclusion (6) holds.
Corollary 11. Let the condition (31) hold and the conditions (17), (29) and

lim
k→+∞

t∫
0

exp(−Bk(s)) dfk(s) =

t∫
0

exp(−B(s)) df(s)

be fulfilled uniformly on [0, ω], where B and Bk ∈ BV([0, ω],Rn×n) (k = 1, 2, . . . ) are the continuous
matrix-function satisfying the Lappo–Danilevskiĭ condition. Then the inclusion (6) holds.
Corollary 12. Let the matrix-functions Sc(A) and Sc(Ak) (k = 0, 1, . . . ), A(t) ≡ A0(t), satisfy the
Lappo–Danilevskiĭ condition and the condition

lim
k→+∞

sup
∑

0≤t≤ω

∥djAk(t)∥ < +∞ (j = 1, 2)

hold. Let, moreover, the conditions
lim

k→+∞
Sc(Ak)(t) = Sc(A)(t), lim

k→+∞
Sj(Ak) = Sj(A)(t) (j = 1, 2)

and

lim
k→+∞

t∫
0

exp
(
− Sc(Ak)(s)

)
dfk(s) =

t∫
0

exp
(
− Sc(A)(s)

)
df(s)
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be fulfilled uniformly on [0, ω]. Then the inclusion (6) holds.

Remark 1. The condition (8) is equivalent to the condition

det
(
H(t−) ·H(t+)

)
̸= 0 for t ∈ [0, ω].

Remark 2. Let A∗(t) ≡ I(H,A)(t) and (9) be fulfilled uniformly on [0, ω]. Then the condition (14)
holds and (15) is fulfilled uniformly on [0, ω] if and only if the condition (7) holds and (10) is fulfilled
uniformly on [0, ω], respectively.

Remark 3. Without loss of generality we can assume that H(t) ≡ In in Theorems 1 and 1′ and in the
above corollaries.

Remark 4. In designations of Theorem 1′:
(a) if (19) holds and the conditions (21),

lim
k→+∞

t∫
0

Z−1
k (s) d

(
A∗k(s)−Bk(s)

)
=

t∫
0

Z−1
k (s) d

(
A∗(s)−B(s)

)
(34)

and
lim

k→+∞
dj
(
A∗k(t)−Bk(t

)
) = dj

(
A∗(t)−B(t)

)
(j = 1, 2) (35)

are fulfilled uniformly on [0, ω], then (22) is fulfilled uniformly on [0, ω], as well. On the other
hand, if the condition (19) holds and the conditions (21) and

lim
k→+∞

(
A∗k(t)−Bk(t)

)
= A∗(t)−B(t)

are fulfilled uniformly on [0, ω], then the conditions (34) and (35) are fulfilled uniformly on
[0, ω], as well;

(b) if
lim

k→+∞
sup

∑
0≤t≤ω

∥djf∗k(t)∥ < +∞ (j = 1, 2)

and the conditions (21),

lim
k→+∞

t∫
0

Z−1
k (s) df∗k(s) =

t∫
0

Z−1
k (s) df∗(s) (36)

and
lim

k→+∞
djf∗k(t) = djf∗(t) (j = 1, 2) (37)

are fulfilled uniformly on [0, ω], then the condition (24) is fulfilled uniformly on [0, ω], as well;
(c) if B(t) ≡ A∗(t) and Bk(t) ≡ A∗k(t) (k = 1, 2, . . . ), then (19) vanishes and (22) follows

from (21).

Remark 5. In designations of Corollary 6:
(a) if (19) holds and (15) and (28) are fulfilled uniformly on [0, ω], then (29) is fulfilled uniformly

on [0, ω], as well;
(b) if (26) and (27) holds and (28), (36) and (37) are fulfilled uniformly on [0, ω], then (30) is

fulfilled uniformly on [0, ω], as well.
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Ivan Kiguradze

OSCILLATORY SOLUTIONS OF HIGHER ORDER
NONLINEAR NONAUTONOMOUS DIFFERENTIAL SYSTEMS

Abstract. Oscillatory properties of solutions of higher order nonlinear nonautonomous differential
systems are considered. In particular, unimprovable in a certain sense conditions are found under
which all proper solutions of those systems are oscillatory.
ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÌÀÙÀËÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ, ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÓÉÓÔÄÌÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÏÓÝÉËÀÝÉÖÒÉ ÈÅÉÓÄÁÄÁÉ. ÊÄÒÞÏÃ, ÍÀÐÏÅÍÉÀ ÂÀÒÊÅÄÖËÉ ÀÆ-
ÒÉÈ ÀÒÀÂÀÖÌãÏÁÄÓÄÁÀÃÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×ÄÍ ÀÌ ÓÉÓÔÄÌÄÁÉÓ ßÄÓÉÄÒÉ
ÀÌÏÍÀáÓÍÄÁÉÓ ÒáÄÅÀÃÏÁÀÓ.

2010 Mathematics Subject Classification: 34C10, 34C15.
Key words and phrases: Differential system, higher order, nonlinear, oscillatory solution, Kneser
solution, property A0, property B0.

On an infinite interval [a,+∞[ , we consider the differential system

u
(ni)
i = gi

(
t, u1, . . . , u

(n1−1)
1 , u2, . . . , u

(n2−1)
2

)
(i = 1, 2), (1)

where n1 ≥ 1, n2 ≥ 2, a > 0, gi : [a,+∞[×Rn1 × Rn2 → R (i = 1, 2) are continuous functions,
satisfying on [a,+∞[×Rn1 × Rn2 one of the following two conditions

g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ f1(t, y1) sgn(y1),
g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≤ −f2(t, x1) sgn(x1),

(2)

or
g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ f1(t, y1) sgn(y1),
g2(t, x1, . . . , xn1

, y1, . . . , yn2
) sgn(x1) ≥ f2(t, x1) sgn(x1).

(3)

Here fi[a,+∞[×R → R (i = 1, 2) are nondecreasing in the second argument continuous functions
such that

fi(t, x) sgn(x) ≥ 0 (i = 1, 2).

The present paper is devoted to the investigation of oscillatory properties of solutions of system (1).
Previously, such properties have been investigated only in the cases when system (1) can be reduced
to one differential equation of order n = n1 + n2 (see, [1–13, 15] and the references therein), or when
n1 = n2 = 1 (see, [14]).

A solution of system (1) defined on some interval [a0,+∞[⊂ [a,+∞[ is said to be proper if it does
not identically equal to zero in any neighbourhood of +∞.

A proper solution (u1, u2) of system (1) is said to be oscillatory if at least one of its components
changes sign in any neighbourhood of +∞, and is said to be Kneser solution if in the interval [a0,+∞[
it satisfies the inequalities

(−1)iu
(i)
1 (t)u1(t) ≥ 0 (i = 1, . . . , n1),

(−1)ku
(k)
2 (t)u2(t) ≥ 0 (k = 1, . . . , n2).

Assume
n = n1 + n2,

and introduce the definitions.

Definition 1. System (1) has the property A0 if every its proper solution for even n is oscillatory,
and for odd n either is oscillatory or is a Kneser solution.
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Definition 2. System (1) has the property B0 if every its proper solution for even n is either
oscillatory, or is a Kneser solution, or satisfies the condition

lim
t→+∞

|u(ni−1)(t)| > 0 (i = 1, 2), (4)

and for n odd either is oscillatory or satisfies condition (4).

If m is a natural number, then by N 0
m we denote the set of those k ∈ {1, . . . ,m} for which m+ k

is even.
For an arbitrary natural k, we put

Ik(t, x) = x

[
tn1−1 +

t∫
a

(t− s)n1−1
∣∣f1(s, xsk−1)

∣∣ ds].
Theorem 1. Let condition (2) be satisfied and for any x ̸= 0 and k ∈ N 0

n
2
−1 the equalities

+∞∫
a

|f1(t, x)| dt = +∞,

+∞∫
a

tn2−1|f2(t, x)| dt = +∞, (5)

+∞∫
a

tn2−k−1
∣∣f2(t, Ik(t, x))∣∣ dt = +∞ (6)

be fulfilled. Then system (1) has the property A0.

Theorem 2. Let condition (3) be satisfied. If, moreover, n2 > 2 (n2 = 2) and for any x ̸= 0 and
k ∈ N 0

n2−2 equalities (5) and (6) hold (for any x ̸= 0 equalities (5) is fulfilled), then system (1) has
the property B0.

If n1 = 1, n2 = n− 1,

g1(t, x1, . . . , xn1 , y1, . . . , yn2) = y1, g2(t, x1, . . . , xn1 , y1, . . . , yn2) = f(t, x1),

then system (1) is equivalent to the differential equation

u(n) = f(t, u). (7)

We consider the last equation in the case where f : [a,+∞[×R → R is a continuous function
satisfying either the condition

f(t, 0) = 0, f(t, x) ≤ f(t, y) for t > a, x < y, (8)

or the condition
f(t, 0) = 0, f(t, x) ≥ f(t, y) for t > a, x < y. (9)

A solution u of the equation (1), defined on some interval [a0,+∞[⊂ [a,+∞[ , is said to be proper
if is not identically zero in any neighborhood of +∞.

A proper solution u : [a0+∞[→ R is said to be oscillatory if it changes the sign in any neighborhood
of +∞ and side to be Kneser solution

(−1)iu(i)(t)u(t) ≥ 0 for t ≥ a0 (i = 1, . . . , n).

For equation (6), Definitions 1, 2 and Theorems 1 and 2 have the following forms.

Definition 3. Equation (7) has the property A0 if any proper solution of this equation in case n even
is oscillatory and in case n odd either is oscillatory or is a Kneser solution.

Definition 4. Equation (7) has the property B0 if any proper solution of this equation in case n even
either is oscillatory, or is a Kneser solution, or satisfies the condition

lim
t→+∞

|u(n−2)(t)| = +∞, (10)

and in case n odd either is oscillatory or satisfies condition (10).
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Theorem 3. If along with (8) the condition
+∞∫
a

tn−k−1
∣∣f(t, xtk−1)

∣∣ dt = +∞ for x ̸= 0, k ∈ N 0
n−1 (11)

holds, then equation (7) has the property A0.

Theorem 4. If n ≥ 3 and along with (9) the condition
+∞∫
a

tn−k−1
∣∣f(t, xtk−1)

∣∣ dt = +∞ for x ̸= 0, k ∈ N 0
n−2 (12)

holds, then equation (7) has the property B0.

The conditions of Theorems 1–4 are in a certain sense unimprovable. Moreover, the following
statements are valid.

Theorem 5. Let condition (8) be satisfied and for any x ̸= 0 there exist numbers tx ≥ a and δ(x) > 0
such that

tn−k−1
∣∣f(t, xtk−1)

∣∣ ≥ δ(x)
∣∣f(t, xtn−1)

∣∣ for t ≥ tx, k ∈ N 0
n−1.

Then for the differential equation (6) to have the property A0 it is necessary and sufficient equalities
(11) to be fulfilled.

Theorem 6. Let conditions (9) be fulfilled, n ≥ 3 and for any x ̸= 0 there exist numbers tx ≥ a and
δ(x) > 0 such that

tn−k−2
∣∣f(t, xtk−1)

∣∣ ≥ δ(x)
∣∣f(t, xtn−2)

∣∣ for t ≥ tx, k ∈ N 0
n−2.

Then for the differential equation (2) to have the property B0 it is necessary and sufficient equalities
(12) to be fulfilled.

An essential difference between the above formulated theorems and the results obtained earlier (see,
e.g., [1–15]) is that they cover the case, where the right-hand sides of system (1) and of equation (7)
are slowly increasing with respect to the phase variable functions.

As an example, let us consider the differential equation

u(n) = g0(t)f0(u) + g1(t) ln
(
1 + |u|

)
sign (u), (13)

gi : [a,+∞[→ R (i = 0, 1) are continuous functions, f0 : R → R is a continuous, nondecreasing
function such that

f0(x)x > 0 for x ̸= 0, sup
{
|f0(x)| : x ∈ R

}
< +∞.

Theorems 5 and 6 result in the following corollaries.

Corollary 1. If n ≥ 3 and g0(t) ≤ 0, g1(t) ≤ 0 for t ≥ a, then for equation (13) to have property A0

it is necessary and sufficient the equality
+∞∫
a

[
g0(t) + g1(t) ln t

]
dt = −∞

to be fulfilled.

Corollary 2. If n ≥ 4 and g0(t) ≥ 0, g1(t) ≥ 0 for t ≥ a, then for differential equation (13) to have
property B0 it is necessary and sufficient the equality

+∞∫
a

t
[
g0(t) + g1(t) ln t

]
dt = +∞

to be satisfied.
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Consider now the case where the right-hand sides of system (1) on the set [a,+∞[×Rn1 × Rn2

satisfy either the inequalities
g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ p1(t)|y1|λ1 ,

g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≤ −p2(t)|x1|λ2 ,
(14)

or the inequalities
g1(t, x1, . . . , xn1

, y1, . . . , yn2
) sgn(y1) ≥ p1(t)|y1|λ1 ,

g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≥ p2(t)|x1|λ2 ,
(15)

where
λ1 > 0, λ2 > 0, λ1λ2 > 1,

and pi : [a,+∞[→ [0,+∞[ are continuous functions.
Along with system (1), let us consider its particular cases

u
(n1)
1 = p1(t)|u2|λ1 sgn(u2), u

(n2)
2 = −p2(t)|u1|λ2 sgn(u1), (16)

and
u
(n1)
1 = p1(t)|u2|λ1 sgn(u2), u

(n2)
2 = p2(t)|u1|λ2 sgn(u1). (17)

Theorem 7. If along with (14) (along with (15)) the conditions
+∞∫
a

p1(t) dt = +∞, (18)

+∞∫
a

tn2−1

[ t∫
a

(t− s)n1−1
(s
t

)(n2−1)λ1

p1(s) ds

]λ2

p2(t) dt = +∞, (19)

lim
x→+∞

x∫
a

tn1−1

[ x∫
t

(s− t)n2−1p2(s) ds

]λ1

p1(t) dt = +∞ (20)

are fulfilled, then system (1) has the property A0 (the property B0).

Note that if

lim inf
t→+∞

t∫
a

(t− s)n1−1s(n2−1)λ1p1(s) ds

t(n2−1)λ1

t∫
a

(t− s)n1−1p1(s) ds

> 0, (21)

then condition (19) takes the form
+∞∫
a

tn2−1

[ t∫
a

(t− s)n2−1p1(s) ds

]λ2

p2(t) dt = +∞. (22)

For system (16), from Theorem 5 it follows

Corollary 3. If conditions (18) and (21) are fulfilled, then for system (16) (system (17)) to have the
property A0 (the property B0), it is necessary and sufficient the equalities (20) and (22) to be satisfied.
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Nino Partsvania

ON OSCILLATORY AND MONOTONE SOLUTIONS
OF NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. The nonlinear functional differential system with deviating arguments

u
(n1)
1 (t) = f1

(
t, u2(τ1(t))

)
, u

(n2)
2 (t) = f2

(
t, u1(τ2(t))

)
is considered, where fi : [a,+∞[×R → R (i = 1, 2) and τi : [a,+∞[→ R (i = 1, 2) are continuous
functions, and τi(t) → +∞ as t → +∞ (i = 1, 2). Conditions are found under which any proper
solution of that system is, respectively: a) oscillatory, b) either oscillatory or Kneser solution,
c) either oscillatory or rapidly increasing.
ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÂÀÃÀáÒÉËÀÒÂÖÌÄÍÔÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀ-
ËÖÒÉ ÓÉÓÔÄÌÀ

u
(n1)
1 (t) = f1

(
t, u2(τ1(t))

)
, u

(n2)
2 (t) = f2

(
t, u1(τ2(t))

)
,

ÓÀÃÀÝ fi : [a,+∞[×R → R (i = 1, 2) ÃÀ τi : [a,+∞[→ R (i = 1, 2) ÖßÚÅÄÔÉ ×ÖÍØÝÉÄÁÉÀ
ÃÀ τi(t) → +∞, ÒÏÝÀ t → +∞ (i = 1, 2). ÍÀÐÏÅÍÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÈÀ ÛÄÓÒÖËÄÁÉÓÀÓ ÀÌ
ÓÉÓÔÄÌÉÓ ÍÄÁÉÓÌÉÄÒÉ ßÄÓÉÄÒÉ ÀÌÏÍÀáÓÍÉ ÓÀÈÀÍÀÃÏÃ ÀÒÉÓ: À) ÒáÄÅÀÃÉ, Á) ÀÍ ÒáÄÅÀÃÉ, ÀÍ
ÊÍÄÆÄÒÖËÉ, Â) ÀÍ ÒáÄÅÀÃÉ, ÀÍ ÓßÒÀ×ÀÃ ÆÒÃÀÃÉ.

2000 Mathematics Subject Classification: 34K11, 34K12.
Key words and phrases: Functional differential system, nonlinear, oscillatory solution, Kneser
solution, rapidly increasing solution, property A0, property B0.

The present paper is devoted to the investigation of asymptotic properties of solutions of the
nonlinear functional differential system

u
(n1)
1 (t) = f1

(
t, u2(τ1(t))

)
, u

(n2)
2 (t) = f2

(
t, u1(τ2(t))

)
. (1)

Here, n1 ≥ 1, n2 ≥ 2, a > 0, while fi : [a,+∞[×R → R and τi : [a,+∞[→ R (i = 1, 2) are continuous
functions. Moreover,

lim
t→+∞

τi(t) = +∞ (i = 1, 2),

and one of the following two conditions
fi(t, 0) = 0, (−1)i−1fi(t, x) ≤ (−1)i−1fi(t, y) for t > a, x < y (i = 1, 2); (2)

fi(t, 0) = 0, fi(t, x) ≤ fi(t, y) for t ≥ a, x < y (i = 1, 2) (3)
is satisfied.

Asymptotic (including oscillatory) properties of solutions of the system (1) previously have been
investigated mainly in the cases where this system can be reduced to one n1 + n2-order functional
differential equation, or in the cases where n1 = n2 = 1 (see [1–7, 11, 12, 15–19] and the references
therein). The case, where n1 + n2 > 2, τi(t) ̸≡ t (i = 1, 2), and the system (1) cannot be reduced
to one equation, still remains practically unstudied. The results of the present paper concern namely
this case.

Let a0 ≥ a. A vector function (u1, u2) : [a0,+∞[→ R2 is said to be a solution of the system (1)
if u1 and u2 are, respectively, n1-times and n2-times continuously differentiable functions, and there
exist continuous functions vi : ] −∞, a0] → R (i = 1, 2) such that on [a0,+∞[ the equalities (1) are
fulfilled, where

ui(t) = vi(t) for t ≤ a0 (i = 1, 2).

A solution (u1, u2) of the system (1), defined on some interval [a0,+∞[⊂ [a,+∞[ , is said to be
proper if it is not identically zero in any neighborhood of +∞.

A proper solution of the system (1) is said to be oscillatory if at least one of its components
changes the sign in any neighborhood of +∞.
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Note that if one of the conditions (2) and (3) is satisfied, then both components of every oscillatory
solution of the system (1) change the sign in any neighborhood of +∞.

A nontrivial solution (u1, u2) : [a0,+∞[→ R of the system (1) is said to be a Kneser solution if
on [a0,+∞[ it satisfies the inequalities

(−1)iu
(i)
1 (t)u1(t) ≥ 0 (i = 1, . . . , n1),

(−1)ku
(k)
2 (t)u2(t) ≥ 0 (k = 1, . . . , n2),

and it is said to be rapidly increasing if

lim
t→+∞

|u(ni−1)
i (t)| > 0 (i = 1, 2).

Let
n = n1 + n2,

and following I. Kiguradze [8, 9] introduce the definitions.

Definition 1. The system (1) has the property A0 if every its proper solution for n even is oscillatory,
and for n odd either is oscillatory or is a Kneser solution.

Definition 2. The system (1) has the property B0 if every its proper solution for n even either is
oscillatory, or is a Kneser solution, or is rapidly increasing, and for n odd either is oscillatory or is
rapidly increasing.

I. T. Kiguradze [8, 9] has established unimprovable in a certain sense conditions under which the
differential system

u
(n1)
1 (t) = f1(t, u2(t)), u

(n2)
2 (t) = f2(t, u1(t))

has the property A0 (the property B0). The theorems below are the generalizations of those results
for the system (1).

If m is a natural number, then by N 0
m we denote the set of those k ∈ {1, . . . ,m} for which m+ k

is even.
For any natural k, we put

φk(t, x) = x

[
|τ2(t)|n1−1 +

∫ τ2(t)

a

(τ2(t)− s)n1−1
∣∣f1(t, x|τ1(s)|k−1

)∣∣ ds].
Theorem 1. Let the condition (2) hold and let for any x ̸= 0 and k ∈ N 0

n2−1 the equalities∫ +∞

a

|f1(t, x)| dt = +∞,

∫ +∞

a

tn2−1|f2(t, x)| dt = +∞, (4)∫ +∞

a

tn2−k−1
∣∣f2(t, φk(t, x))

∣∣ dt = +∞ (5)

be satisfied. Then the system (1) has the property A0.

Theorem 2. Let n2 > 2 (n2 = 2) and the condition (3) hold. If, moreover, for any x ̸= 0 and
k ∈ N 0

n2−2 the equalities (4) and (5) are satisfied (for any x ̸= 0 the equalities (4) are satisfied), then
the system (1) has the property B0.

Remark 1. For the equality (5) to be satisfied for any x ̸= 0 and k ∈ N 0
n2−1 it is sufficient that the

equality ∫ +∞

a

∣∣f2(t, x|τ2(t)|n1−1
)∣∣ dt = +∞

be satisfied for any x ̸= 0.

The conditions of Theorems 1 and 2 do not guarantee the existence of proper solutions appearing
in the definitions of the properties A0 and B0. The problem on the existence of such solutions needs
additional investigation. In particular, for the system (1) we have to study the initial problem

u
(k−1)
i (a) = cik (k = 1, . . . , ni; i = 1, 2), (6)
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the Kneser problem
2∑

i=1

ni∑
k=1

|u(k−1)
i (a)| = c0, (−1)k−1u

(k−1)
i (t)ui(t) > 0 for t ≥ a (k = 1, . . . , ni; i = 1, 2), (7)

and the Kiguradze problem [10]

u
(k−1)
1 (a) = α1ku

(n2−1)
2 (a) + c1k (k = 1, . . . , n1),

u
(k−1)
2 (a) = α2ku

(n2−1)
1 (a) + c2k (k = 1, . . . , n2 − 1), lim inf

t→+∞
|u(n2−1)

2 (t)| < +∞.
(8)

The following lemma is valid.

Lemma 1. If the conditions
a ≤ τi(t) < t, fi(t, x) ̸= 0 for t > a, x ̸= 0 (i = 1, 2),

and
2∑

i=1

ni∑
k=1

|cik| > 0

are fulfilled, then the problem (1), (6) is solvable and every its solution is proper.

On the basis of the methods proposed in [13] and [14], the following lemmas can be proved.

Lemma 2. If c0 > 0,
τi(t) > t for t > a (i = 1, 2),

and

f1(t, x)x > 0, (−1)n1+n2f2(t, x)x > 0 for t > a, x ̸= 0,

then the problem (1), (7) is solvable.

Lemma 3. Let the conditions
a ≤ τi(t) < t, fi(t, x)x > 0 for t ≥ a, x ̸= 0 (i = 1, 2),

f1(t, x) ≤ f1(t, y) for t ≥ a, x ≤ y,

and ∫ +∞

a

∣∣f1(t, x|τ1(t)|n2−1
)∣∣ dt = +∞ for x ̸= 0

hold. If, moreover,

α1j > 0, α2k > 0 (j = 1, . . . , n1; k = 1, . . . , n2 − 1),

n1∑
j=1

|c1j |+
n2−1∑
k=1

|c2k| > 0,

then the problem (1), (8) is solvable and every its solution is proper.

Theorem 1 and Lemmas 1 and 2 yield the following propositions.

Theorem 3. Let n1 + n2 be even and along with (2) the condition
τi(t) < t, fi(t, x) ̸= 0 for t ≥ a, x ̸= 0 (i = 1, 2) (9)

be satisfied. If, moreover, for any x ̸= 0 and k ∈ N 0
n2−1 the equalities (4) and (5) are fulfilled, then

the system (1) has an infinite set of proper solutions and every such solution is oscillatory.

Theorem 3′. Let n1 + n2 be odd and along with (2) the condition
τi(t) > t, fi(t, x) ̸= 0 for t > a, x ̸= 0 (i = 1, 2) (10)

hold. If, moreover, for any x ̸= 0 and k ∈ N 0
n2−1 the equalities (4) and (5) are satisfied, then:
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(i) the system (1) has an infinite set of proper Kneser solutions and every such solution is
vanishing at infinity;

(ii) an arbitrary nontrivial solution (u1, u2) of the system (1), defined on some interval [a0,+∞[⊂
[a,+∞[ and satisfying the inequality

min
{
(−1)ku

(k)
i (a0)ui(a0) : k = 1, . . . , ni − 1; i = 1, 2

}
≤ 0,

is oscillatory.
On the basis of Theorem 2 and Lemma 3 the following theorem can be proved.

Theorem 4. Let n1 + n2 be odd and the conditions (3) and (9) hold. If, moreover, n2 > 2 (n2 = 2)
and for any x ̸= 0 and k ∈ N 0

n2−2 the equalities (4) and (5) are satisfied (for any x ̸= 0 the equalities
(4) are satisfied), then the system (1) has infinite sets of oscillatory and rapidly increasing solutions.

Remark 2. If n1 + n2 is even and the conditions (3) and (10) hold, then by Lemma 3 the system (1)
has an infinite set of proper Kneser solutions. However, in this case the problem on the existence of
oscillatory and rapidly increasing solutions of that system remains open.
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Jitka Vacková

BOUNDED SOLUTIONS OF NONLINEAR DIFFERENTIAL SYSTEMS
WITH DEVIATING ARGUMENTS

Abstract. For systems of nonlinear differential equations with deviating arguments, sufficient
conditions for the existence and uniqueness of bounded on (−∞,+∞) solutions are established.
ÒÄÆÉÖÌÄ. ÂÀÃÀáÒÉË ÀÒÂÖÌÄÍÔÄÁÉÀÍ ÀÒÀßÒ×ÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓ-
ÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ (−∞,+∞) ÛÖÀËÄÃÛÉ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀ-
ÃÄÒÈÏÁÉÓ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.

2010 Mathematics Subject Classification: 34K10, 34B15, 34B40.
Key words and phrases: System of nonlinear differential equations with deviating arguments,
local Carathéodory conditions, bounded solution, existence, uniqueness, a priori estimates.

Consider the system of nonlinear differential equations with deviating arguments

x′
i(t) = gi(t)xi(t) + fi(t, x1(τi1(t)), . . . , xn(τin(t))) (i = 1, . . . , n), (1)

where τij : R → R (i, j = 1, . . . , n) are measurable in any finite interval functions, gi ∈ Lloc(R,R)
(i = 1, . . . , n) and fi : Rn+1 → R (i = 1, . . . , n) are functions satisfying the local Carathéodory
conditions.

A vector function (xi)
n
i=1 : R → Rn is said to be a bounded solution of the system (1) if it is

absolutely continuous in any finite interval, satisfies the system (1) almost everywhere on R and

sup
{ n∑

i=1

|xi(t)| : t ∈ R
}
< +∞.

For systems of ordinary differential equations, the problem on the existence of bounded solutions
is investigated in detail (see, [4–7] and the references therein). In particular, for both linear [5] and
essentially nonlinear differential systems [4,6], I. Kiguradze has established unimprovable in a certain
sense conditions guaranteeing, respectively, the existence and uniqueness of a bounded solution.

By R. Hakl [1,2] effective sufficient conditions are established for the existence of a unique solution
of a linear differential system with deviating arguments

dxi(t)

dt
=

n∑
j=1

pij(t)xj(τij(t)) + qi(t) (i = 1, . . . , n).

In the present paper, based on the method of a priori estimates elaborated in [3, 4, 8–10], the
Kiguradze type theorems on the existence and uniqueness of a bounded solution of the system (1) are
established.

Throughout the paper the following notation is used.
R = (−∞,+∞), R+ = [0,∞).
Rn is the space of n-dimensional vectors x = (xi)

n
i=1 with the components xi ∈ R (i = 1, . . . , n).

Rn×n is the space of n× n matrices X = (xij)
n
i,j=1 with the components xij ∈ R (i, j = 1, . . . , n).

Rn×n
+ = {X = (xij)

n
i,j=1 ∈ Rn×n : xij ∈ R+ (i, j = 1, . . . , n)}.

r(X) is the spectral radius of the matrix X ∈ Rn×n.
Lloc(R,R) is the space of summable in any finite interval functions u : R → R.
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Theorem 1. Let there exist a constant matrix A = (aij)
n
i,j=1 ∈ Rn×n

+ , a nonnegative number b, and
nonnegative functions pij, qi ∈ Lloc(R,R) (i, j = 1, . . . , n) such that

r(A) < 1, (2)∣∣fi(t, x1, . . . , xn)
∣∣ ≤ n∑

j=1

pij(t)|xj |+ qi(t) for t ∈ R, (xj)
n
j=1 ∈ Rn (i = 1, . . . , n),

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
pij(s) ds

∣∣∣∣ ≤ aij for t ∈ R (i, j = 1, . . . , n), (3)

n∑
i=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
qi(s) ds

∣∣∣∣ ≤ b for t ∈ R, (4)

where ti ∈ {−∞,+∞} (i = 1, . . . , n). Then the system (1) has at least one bounded solution.

Theorem 2. Let there exist a constant matrix A = (aij)
n
i,j=1 ∈ Rn×n

+ , a nonnegative number b, and
nonnegative functions pij ∈ Lloc(R,R) (i, j = 1, . . . , n) such that along with (2), (3) the conditions∣∣fi(t, x1, . . . , xn)− fi(t, y1, . . . , yn)

∣∣
≤

n∑
j=1

pij(t)|xj − yj | for t ∈ R, (xj)
n
j=1 ∈ Rn, (yj)

n
j=1 ∈ Rn (i = 1, . . . , n), (5)

n∑
i=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
|fi(s, 0 . . . , 0)| ds

∣∣∣∣ ≤ b for t ∈ R (6)

and

lim sup
t→ti

t∫
0

gi(s) ds = +∞ (i = 1, . . . , n) (7)

be fulfilled, where ti ∈ {−∞,+∞} (i = 1, . . . , n). Then the system (1) has one and only one bounded
solution.

Let us describe a scheme of proving the above-formulated theorems.
For an arbitrary natural number m, we consider the system of differential equations

x′
i(t) = gi(t)xi(t) + λfi

(
t, x1(τi 1m(t)), . . . , xn(τi nm(t))

)
(i = 1, . . . , n) (8)

and the system of differential equations∣∣x′
i(t)− gi(t)xi(t)

∣∣ ≤ n∑
j=1

pij(t)
∣∣xj(τi jm(t))

∣∣+ qi(t) (i = 1, . . . , n) (9)

with the boundary conditions
xi(σim) = 0 (i = 1, . . . , n). (10)

Here λ ∈ [0, 1], σi ∈ {−1, 1} (i = 1, . . . , n),

τi jm(t) =


τij(t) for |τij(t)| ≤ m,

m for τij(t) > m,

−m for τij(t) < −m

and pij ∈ Lloc(R,R), qi ∈ Lloc(R,R) (i, j = 1, . . . , n) are nonnegative functions.
An absolutely continuous vector function (xi)

n
i=1 : [−m,m] → Rn is said to be a solution of the

system (8) (of the system (9)) if it almost everywhere on [−m,m] satisfies this system. A solution
of the system (8) (of the system (9)), satisfying the boundary conditions (10), is called a solution of
the problem (8), (10) (of the problem (9), (10)).

The following lemmas are valid.
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Lemma 1. Let there exist a positive constant ρ such that for an arbitrary natural number m and
arbitrary λ ∈ [0, 1] every solution of the problem (8), (10) admits the estimate

max
{ n∑

i=1

|xi(t)| : −m ≤ t ≤ m
}
≤ ρ. (11)

Then the system (1) has at least one bounded solution.

Lemma 2. Let inequalities (2)–(4), where ti ∈ {−∞,+∞} (i = 1, . . . , n), A = (aij)
n
i,j=1 ∈ Rn×n

+ and
b ∈ R+, be fulfilled. Moreover, let the condition

σi =

{
1 if ti = +∞,

−1 if ti = −∞

for any i ∈ {1, . . . , n} be fulfilled. Then there exists a positive constant ρ such that for an arbitrary
natural m every solution of the problem (9), (10) admits the estimate (11).

Theorem 1 follows from Lemmas 1 and 2.
Assume now that the conditions of Theorem 2 are fulfilled. Then by Theorem 1, the system (1)

has at least one bounded solution (xi)
n
i=1. Our aim is to show that an arbitrary bounded solution

(xi)
n
i=1 of that system coincides with (xi)

n
i=1. Assume

ui(t) = xi(t)− xi(t) (i = 1, . . . , n)

and
ρi = sup

{
|ui(t)| : t ∈ R

}
(i = 1, . . . , n).

Then according to the condition (5), the vector function (ui)
n
i=1 is a bounded solution of the system

of differential inequalities ∣∣u′
i(t)− gi(t)ui(t)

∣∣ ≤ n∑
j=1

pij(t)ρj (i = 1, . . . , n).

If we now take the conditions (3) and (7) into account, then it becomes clear that

|ui(t)| ≤
n∑

j=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
pij(s) ds

∣∣∣∣ρj ≤ n∑
j=1

aijρj for t ∈ R (i = 1, . . . , n)

and
ρi ≤

n∑
j=1

aijρj (i = 1, . . . , n).

Hence, in view of (2), it follows that
ρi = 0 (i = 1, . . . , n),

and, consequently,
xi(t) ≡ xi(t) (i = 1, . . . , n).

Example. Consider the differential equation
x′(t) = g(t)

[
x(t) + a|x(τ(t))|+ b

]
, (12)

where a ∈ R+, b > 0, τ : R → R is a measurable in any infinite interval function and g ∈ Lloc(R,R)
is a nonnegative function such that

+∞∫
0

g(s) ds = +∞. (13)

The equation (12) follows from the system (1) in case
n = 1, τ1(t) = τ(t), g1(t) = g(t), f1(t, x1) = g1(t)(a|x1|+ b). (14)

On the other hand, the equalities (13) and (14) guarantee the fulfilment of the conditions (3), (5)–(7),
where

t1 = +∞, a11 = a, p11(t) = a11g1(t),
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whence by Theorem 2, it follows that if
a < 1, (15)

then the equation (12) has a unique bounded solution.
Let us now show that the condition (15) is also necessary for the existence of a bounded solution

of the equation (1). Indeed, let the equation (12) have a bounded solution x. If we put
δ = inf

{
|x(t)| : t ∈ R

}
,

then with regard for (13), we find

−x(t) =

+∞∫
t

exp
( t∫

s

g(ξ) dξ

)
g(s)

[
a|x(τ(s))|+ b

]
ds

≥ (aδ + b)

+∞∫
t

exp
( t∫

s

g(ξ) dξ

)
g(s) ds = aδ + b > 0 for t ∈ R

and
δ ≥ aδ + b.

Consequently, the inequality (15) is fulfilled.

The above-constructed example shows that the condition (2) in Theorems 1 and 2 is unimprovable
and it cannot be replaced by the condition

r(A) ≤ 1.
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