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A Short Survey of Scientific Results
of Academician Andria Bitsadze

“It is too difficult to write about a scientist not only because
of the great responsibility toward the history of science, but
also because of the complexity of scientific creative process
without which it is impossible to show his real personality”.

A. Bitsadze

Such an attitude of Andria Bitsadze to the problem cited in the epigraph is not accidental; a task
to give an exhaustive description of his versatile activities seems to us insuperable. The true appraisal
of human creativity and its crystallization occurs in the future generations. This point of view has
been shared by A. Bitsadze. However, his creative work during his lifetime was properly evaluated
by the mathematical community. This is confirmed at least by the fact that in the mathematical
literature we are often encountered with the facts and terms associated with his name: Bitsadze’s
equation, Lavrent’ev—Bitsadze’s equation, Bitsadze’s general mixed problem, Bitsadze’s extremum
principle, Bitsadze’s inversion formula, weakly and strongly connected Bitsadze’s elliptic systems,
Bitsadze—Samarski’s problem, and others. We do not intend to touch upon his organizational, peda-
gogical or educational work with students, we will dwell only on his scientific results not pretending
to present them in a perfect form.

We consider it appropriate to divide Andria Bitsadze’s activity into several staged, keeping here
chronology.

Elliptic equations and systems together with the problems posed for them take central place in
Andria Bitsadze’s creative work.

The fact that the condition of uniform ellipticity
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ensures fredholmity of the boundary value problems in the domain D, in particular, of the first
boundary value problem
u|6D =1
was assumed formerly indisputable.
Irregularity of this fact was illustrated by A. Bitsadze in a simple and clear for everyone example,
called later on Bitsadze’s system
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It turned out that the Dirichlet homogeneous problem for Bitsadze’s system in a circular domain
D: (z—x0)®+ (y — yo)? < R? has an infinite set of linearly independent solutions, and all of them
are representable explicitly by the formula
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written in terms of an arbitrary analytic function 1(z) of the complex argument z = x + iy.
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While this fact seemed unexpected and almost improbable, it became a subject of discussions for
many mathematicians trying to explain this phenomenon. At his known seminar, I. Gelfand made an
attempt to explain this fact by multiplicity of characteristic roots of system (1). In reply, A. Bitsadze
has constructed another system
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with simple characteristic roots, the system for which the Dirichlet problem has likewise an infinite
set of linearly independent solutions
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where ¢ = z — 29, (1 +V/2)p = i, and By, are arbitrary complex constants. On the basis of those
simple and refined examples, the theory of boundary value problems for elliptic systems has acquired
a great deal of new trends. The widely known theory of nonfredholm boundary value problems is one
of such them. These theories do not lose their importance even nowadays, and many of A. Bitsadze’s
followers and pupils devote them their researches.

Afterwards, there arose the natural question to single out classes of elliptic systems with solvable, in
a certain sense, boundary value problems, in particular, solvable in the Fredholm, Noether or Hausdorff
sense. In this direction, it is impossible to hold back about the question on weakly connected Bitsadze’s
systems for which the Dirichlet problem is always fredholmian one.

It was considered earlier that solvability of boundary value problems is determined only by the
principal part of the system. A. Bitsadze has expressed somewhat different opinion that coefficients
of the system with lower order derivatives may significantly affect the solvability of the problem. To
justify this concept, he introduced the notion of strongly connected elliptic systems that cover systems
(1) and (2) constructed earlier in the form of particular examples. As it has become clear, the solvable
in one or another sense boundary value problems for elliptic systems with Bitsadze’s operators in the
principal part may turn out to be unsolvable on adding the lower order terms.

The above-mentioned fundamental effects were discovered by A. Bitsadze by using the apparatus
of the theory of functions of a complex variable. This instrument is well suited for a homogeneous
system consisting only of the principal part
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with two independent variables. A. Bitsadze has constructed a general regular solution of system (1)
in the form
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where ¢;;(z;) are analytic functions of the complex variable z; = = + A;y, and A; are the roots of
the corresponding to system (3) characteristic polynomial Q(A\) = det(A + 2B\ + C\?) with positive
imaginary parts. As regards the N-component vectors Cyy;, they are the solutions of the fully defined
system of linear algebraic equations.

The instruments of the theories of analytic functions and of one-dimensional singular integral
equations make it possible to investigate many boundary value problems in the case of two independent
variables. If there are more than two variables, then there arise considerable difficulties due to the
lack of a complete theory of multidimensional singular integral equations. Using a multidimensional
analogue of the Sokhotski—Plemelj theorem, A. Bitsadze has studied the first boundary value problem
for the well-known Moisel-Theodorescu system, reduced it to a multidimensional system of singular
integral equations with a special matrix kernel and constructed the inversion formula which in the
literature is called “Bitsadze’s inversion formula”.

Among the problems formulated for elliptic equations and systems, even, in particular, for harmonic
functions, the problem with an oblique derivative is regarded as one of the basic ones, when on the
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boundary of the n-dimensional domain D there is the condition
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As far back as in G. Giraud’s works it has been shown that if the direction of the vector ¢ :=
(l1,...,4,) at none of the boundary points meets the tangent, the problem becomes solvable in
Fredholm’s sense. Otherwise, the situation changes insomuch that many scientists were inclined to
consider this problem atypical for elliptic equations. Considering these nonstandard cases, A. Bitsadze
has shown this problem not at all to exceed the bounds of typical problems and proved the theorems
on a number and existence of solutions. As it has become clear, the problem with an oblique derivative
may turn out to be simultaneously subdefinite and overdetermined. For the problem to be well-posed,
it is necessary, proceeding from the structure of interconnection between the vector field ¢ and the
domain, to release some set of boundary points from the conditions and impose additional conditions
on some set of points. To illustrate this, we consider one simplest example when the vector field meets
the boundary at k isolated points. In this case a number of linearly independent solutions of the
problem under consideration does not exceed k.

The objects of A. Bitsadze’s investigations are not always ordinary. He studied the problems which
are, as a rule, not subjected to the standard conditions ensuring the existence and uniqueness of
solutions. To such problems may belong those suggested by A. Bitsadze for elliptic equations with
parabolic degeneration with weighted conditions on the boundary. These problems were dictated by
their practical necessity. For such problems not only the conditions of uniform or strong ellipticity
violate, but they degenerate parabolically either on the whole boundary, or on its certain part. In
addition, a set of points of parabolic degeneration may turn out to be even a characteristic. For
example, for the equation
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the line of degeneration y = 0 is simultaneously its multiple characteristic. In such a case, the role of
coefficients with the lower order derivatives extends, and depending on them, not all solutions may be
bounded. M. Keldysh considered this problem in the class of bounded functions, and hence neglected
unbounded solutions. A. Bitsadze replaced the requirement of the boundedness by the following
weighted boundary conditions:

+cu=0, y>0, m>0,

ul, =f I, g)u(ey) = e@), 0<w <1,

where o U{y =0, 0 < z < 1} is the boundary of the domain, and the weighted function ¢ on the line
of degeneration vanishes. These problems have brought to light new practical and theoretical validity
of weighted functional spaces that before and after formulation of those problems have become the
subject of a great number of research works.

The hyperbolic equations and systems aren’t less rich with the effects connected with parabolic
degeneration. Many factors affect the solvability of the problems formulated here; they include an
order of parabolic degeneration, orientation of a set of degeneration points with respect to charac-
teristic manifolds, etc. As distinct from a separately taken equation, hyperbolic systems show a lot
of unexpected properties even without parabolic degeneration. Thus, for example, the well-known
Goursat problem for a scalar equation is quite well-posed. The constructed by A. Bitsadze hyperbolic
system
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has shown that the corresponding homogeneous problem may have an infinite set of linearly indepen-
dent solutions, and what is more, the lower order terms of the system may affect significantly the
well-posedness of the problem. This fact has given a great impetus to many important researches and
stimulated the development of a series of scientific trends.

In the middle of the past century, mathematics has found new significant applications that should,
seemingly, be explained by an unprecedented rate of technical progress. The major achievements in
transonic and supersonic velocities have drawn attention of scientists to many problems, including
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those of mixed type equations in which M. Lavrent’ev has shown spacial interest and awoken it in
A. Bitsadze. Combining the methods of the theory of analytic functions, of partial differential equa-
tions and singular integral equations, A. Bitsadze created a powerful and, at the same time, elegant
apparatus, convenient for solving the problems formulated for the mixed type equations. Effectiveness
of the suggested method has been tested on the boundary value problems for the Lavrent’ev—Bitsadze’s
equation
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being the model of the well-known Tricomi’s equation for which A. Bitsadze posed a great number

of actual problems and established a series of significant facts known in the literature as “Bitsadzian
facts”. Here we will mention only Bitsadze’s extremum principle. For the Tricomi’s equation
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along with the Tricomi’s problem has also been considered the Dirichlet problem expecting its solv-
ability. This was needed, mainly, for practical, concrete purpose.

A. Bitsadze has shown that this problem was not always well-posed, and for it to be solvable, it was
necessary to release a definite part of the boundary of hyperbolic subdomain from the conditions. To
formulate the problems responding practical purposes in which the whole boundary is occupied with
the conditions, A. Bitsadze suggested several versions. In one of his versions he linked the solution
values at different boundary points with the functional law. This nonlocal problem is well-posed. It
has prompted the ways of its natural generalization to a multidimensional case.

To every well-posed plane problem there may be assigned several spatial versions, of which we
will dwell only on those which maximally approach practical problems. The spatial version of the
above-mentioned problem of exactly such a nature is easily generalizable and provides us with a well-
posed problem. As concerns the Tricomi’s problem, it has several generalization versions that make
it possible to demonstrate the structure of a set of type variation points. This set of points may turn
out to be a surface, oriented to the space and time. This moment determines two essentially different
trends in the theory of boundary value problems for multidimensional mixed type equations.

Equations refer to different types, depending on their characteristic roots. If the equation, along
with its real characteristic roots, has complex ones, then it belongs to the composite type equations.
Such equations include, for example, the Laplace differentiated equation. If instead of the Laplace
operator is differentiated Tricomi’s operator, we obtain the mixed-composite type operator. For the
equation of such a complicated nature, A. Birsadze formulated a great number of actual problems and
obtained important results.

We have mentioned above the nonlocal problem in which the values of an unknown solution are
interconnected at different boundary points. Of practical and theoretical interest are the problems, in
which the boundary values of solutions are connected by the specific law with their values on a set of
interior points of the domain. Among the problems of such a kind the Bitsadze-Samarski’s problem
takes central place. Its simplest and visual version is formulated as follows: Find in a unit circle a
harmonic function u satisfying the condition

u(a,y) —u(dz,0y) = f(z,y), 2*+y* =1,
where the constant § € (0,1).

Practical problems in modeling are reduced, mainly, to the nonlinear equations. This is, seemingly,
the fact that explains special interest to the above formulated problems. The powerful methods used
for linear equations, in the nonlinear case are not always effective. It is a great advantage to reveal
even a separate class of their solutions. The constructed by A. Bitsadze exact solutions of special type
nonlinear equations
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have found versatile practical and theoretical applications. Equations of type (4) cover a large number
of models corresponding to the well-known equations of gravitation field, ferromagnetism theory,

Heisenberg equations and Lorentz-covariant equations.
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A large number of A. Bitsadze’s creative achievements, including those mentioned above, have
become long ago a corner stone on which scientific trends in the modern theory of partial differential
equations are constructed.

Sergo Kharibegashvili
Otar Jokhadze
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Abstract. In this paper, we establish the existence and uniqueness of solutions for a class of bound-
ary value problems for nonlinear implicit fractional differential equations with impulse and Caputo’s
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1. INTRODUCTION

In this paper, we establish existence, uniqueness and stability results to the following boundary
value problems (BVPs) for nonlinear implicit fractional differential equations with impulses

°Dy y(t) = f(t,y,°Diy(t)) for each ¢ € (tg,ths1], k=0,...,m, 0<a <1, (1)
Ay|t:tk :Ik(y(t;)% k: 17"'7m7 (2)
ay(0) + by(T) = ¢, (3)

where D} is the Caputo’s fractional derivative, f : JxRXR — R, I : R — R are given functions, and
a, b, c are real constants with a+b#£0,0=1tg <t; < -+ <ty < tpmar1 =17, Ay‘t:tk =y(th) —y(t;),
y(th) = hli}r(r)l+ y(ty +h) and y(t,) = hl_i)r(r)lﬁ y(ti + h) represent the right and left limits of y(t) at t = t.

In recent years, there has been a significant development in the theory of fractional differential
equations. It is caused by its applications in the modeling of many phenomena in various fields of
science and engineering such as acoustic, control theory, signal processing, porous media, electrochem-
istry, viscoelasticity, rheology, polymer physics, proteins, optics, economics, astrophysics, chaotic
dynamics, statistical physics, thermodynamics, biosciences, bioengineering, etc. See, for example,
[1, 6, 7, 15, 20, 27], and the references therein. On the other hand, impulsive differential equations
have received much attention, we refer the reader to the books [2, 10, 16, 22, 24, 26], and the pa-
pers [13, 19, 29], and the references therein. Very recently, boundary value problems of fractional
differential equations have received a considerable attention because they occur in the mathematical
modeling of a variety of physical processes; see, for example, [3, 4, 8, 9, 14, 28, 31]. In [11, 12], the
authors give some existence and uniqueness results for some classes of implicit fractional order differ-
ential equations. In [23], the authors consider the existence of multiple positive solutions of systems
of nonlinear Caputo’s fractional differential equations with general separated boundary conditions.

Motivated by the works mentioned above, in this paper we present some existence and uniqueness
results for a class of boundary value problems for implicit fractional differential equations. The
present paper is organized as follows. In Section 2, some notations are introduced and we recall some
preliminaries about fractional calculus and auxiliary results. In Section 3, two results for the problem
(1)—(3) are presented: the first one is based on the Banach contraction principle, and the second
one on Schaefer’s fixed point theorem. In Section 4, we present Ulam—Hyers stability result for the
problem (1)—(2). Finally, in the last Section, we give two examples to illustrate the applicability of
our main results.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. Let T'> 0, J = [0,T]. By C(J,R) we denote the Banach space of continuous functions
from J into R with the norm

1Y]loo = Sup{\y(t)| i te J};
Ll(J, R) is the space of Lebesgue-integrable functions w : J — R with the norm

T
el = / fw(s)] ds,
0

AC™(J)={h:J = R:h N, ... "1 e C(J,R) and h("~Y is absolutely continuous}.
In what follows, o > 0. Consider the set of functions
PC(J,R) = {y SRy e C((tg, tg+1,R), k=0,...,m
and there exist y(t;) and y(t), k=1,...,m with y(t;) = y(tk)}
PC(J,R) is a Banach space with the norm

¥l pc = sup [y(t)].
teJ
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Let Jo = [to, t1] and Ji = (g, tg+1] where k =1,... ,m.

Definition 2.1 (]21, 25]). The fractional (arbitrary) order integral of the function h € L*([0,7],R)
of order o € R is defined by

t

1

Ia _ _(11

—F(a/ts h(s)ds,
0

where I is the Euler’s gamma function defined by I'(a) = [ t*~ et dt, a > 0.
0
Definition 2.2 ([21, 25]). For a function h € AC™(J), the Caputo’s fractional-order derivative of
order « is defined by
¢

) / (t — 5)"==Lh(m (5) ds,

0

1

(DERO) = 7

where n = [a] + 1 and [a] denotes the integer part of the real number a.

Lemma 2.3 ([21, 25]). Let « > 0 and n = [a] + 1. Then

I Dg f(t) = f(1) =

Lemma 2.4 ([21]). Let a > 0. Then the differential equation
°D§k(t) =0
has solutions k(t) = co + cit +cot?> + -+ cp_1t" Y ¢ €R,i=0,1,2,...,n—1, n = [a] + 1.
Lemma 2.5 ([21]). Let a > 0. Then
I%D§k(t) = k(t) +co +cit +cot? + -+ cp1t"
for somec; €R,i=0,1,2,...,.n—1, n=[a] + 1.

D. Bainov and S. Hristova [5] introduced the following integral inequality of Gronwall type for
piecewise continuous functions which can be used in the sequel.
Lemma 2.6. Let fort >ty > 0 the inequality

t

z(t) < a(t) + / glt,s)x(s)ds+ > Br(t)x(ty)

to to<tp<t

holds, where Bi(t) (k € N) are nondecreasing functions for t > to, a € PC([tg,0),Ry), a is nonde-
creasing and g(t, s) is a continuous nonnegative function for t,s >ty and nondecreasing with respect
to t for any fized s > tg. Then, fort > ty, the following inequality is valid:

x(t) < a(t)t 1:[ t(1+ﬂk(t))exp (/tg(t,S) dS)-

Definition 2.7. A function y € PC(J,R) N AC(J) is said to be a solution of (1)—(3) if y satisfies
the equation “Dg y(t) = f(t,y(t),“Dy. y(t)) on Jy and the conditions

Ay|t:tk =I(y(t,)), k=1,...,m,
(
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Here, we adopt the concepts from Wang et al. [30] and introduce Ulam’s type stability concepts
for the problem (1)—(3). Let z € PC(J,R), € > 0, ¢ > 0, and ¢ € PC(J,R) be nondecreasing. We
consider the set of inequalities

{|0Daz(t) f(tz(t),°DY2(t))| < e, te€ (t,tim], k=1,...,m, @
|Ay(tr) — Ie(y(t))| <e, k=1,...,m,
{|0D“ — f(t, (t),°D0‘z )] <), te (trtiml], k=1,...,m, )
|Ay(tr) — Ie(y(t))] < k=1,...,m,
and
{|0Da 2(t) — ( 2(t),°D2(t))| <ep(t), t€ (thtesr), k=1,...,m, )
|Ay(ty) — )| < e, k=1,...,m

Definition 2.8. The problem ( )—(3) is Ulam-Hyers stable if there exists a real number cf,, > 0
such that for each ¢ > 0 and for each solution z € PC(J,R) N AC(Jy) of (4) there exists a solution y
of the problem (1)—(3) with

|2(t) —y(t)| < crme, tE

Definition 2.9. The problem (1)—(3) is generalized Ulam-Hyers stable if there exists 67, €
C(R4+,R4), 05, (0) = 0 such that for each solution z € PC(J,R) N AC(Jy) of (4) there exists a
solution y of the problem (1)—(3) with

2(t) —y(O)] < Opm(e), tE T
Definition 2.10. The problem (1)—(3) is Ulam-Hyers-Rassias stable with respect to (¢, ) if there

exists ¢fm,, > 0 such that for each ¢ > 0 and for each solution z € PC(J,R) N AC(J;) of (6) there
exists a solution y of the problem (1)—(3) with

|2(t) — y(t)| < cpm.pelo(t) + 1), tEJ.

Definition 2.11. The problem (1)-(3) is generalized Ulam-Hyers-Rassias stable with respect to
(p, ) if there exists ¢fm,, > 0 such that for each solution z € PC(J,R) N AC(J) of (5) there exists
a solution y of the problem (1)—(3) with

[2(t) =y(O] < cme(0(t) +9), teJ
Remark 2.12. Tt is clear that:
(i) Definition 2.8 implies Definition 2.9;
(ii) Definition 2.10 implies Definition 2.11;
(iii) Definition 2.10 for ¢(t) = ¢ = 1 implies Definition 2.8.
Remark 2.13. A function z € PC(J,R) N AC(J}) is a solution of (6) if and only if there are o €
PC(J,R) and a sequence oy, k = 1,...,m (which depend on z), such that
(1) lo(t)| <ep(t), t € (tk,trt1], k=1,...,m, and |og| < ey, k=1,...,m;
(if) °DYz(t) = f(t,2(t),°DY2(t)) + o(t), t € (tg,tht1], k=1,...,m
(ili) Az(ty) = Ix(2(t,)) +or, k=1,...,m
One can have similar remarks for inequalities (4) and (5).

Theorem 2.14 ([18]) (Ascoli-Arzela theorem). Let A C C(J,R). A is relatively compact (i.e., A is
compact) if:
1. A is uniformly bounded, i.e., there exists M > 0 such that
|f(z)| < M for every f€ A and x € J.

2. A is equicontinuous, i.e., for every ¢ > 0, there exists 6 > 0 such that for each x, T € J,
|z —Z| <& implies | f(z) — f(T)| < e, for every f € A.
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Theorem 2.15 ([17]) (The Banach fixed point theorem). Let C' be a non-empty closed subset of a
Banach space X. Then any contraction mapping T of C into itself has a unique fixed point.

Theorem 2.16 ([17]) (The Schaefer’s fixed point theorem). Let X be a Banach space and N : X — X
be a completely continuous operator. If the set € = {y € X : y = ANy for some X € (0,1)} is bounded,

then N has fized points.

3. THE EXISTENCE OF SOLUTIONS

To prove the existence of solutions to (1)—(3), we need the following auxiliary Lemma.

Lemma 3.1. Let 0 < a <1 and let o : J — R be continuous. A function y € PC(J,R) is a solution
of the fractional integral equation

-1 - — b o a—1 b r a—1
P {b;[i(y(ti ))—!—I,(a);t/l(ti—s) o(s) ds—|—r(a)t/(T—s) o(s) ds—c}
1 / a—1
T (a)o/(t $)*Lo(s)ds, if t€[0,h]
t; T
—1 - — b a=1,
k B 1 1;1 ¢ )
NI )Y / (ti—)* 1o (s) ds
+ﬁ /(t — ) to(s)ds, if te (tp,tryi,
where k=1,...,m, if and only if y € PC(J,R) N AC(J}) is a solution of the fractional BVP
‘D(t) = o(t), te Ji, (8)
Ay|t te =Ii(y(ty)), k=1,....m, 9)
ay(0) +by(T) = c. (10)
Proof. Assume that y satisfies (8)—(10). If ¢ € [0,¢1], then
‘D*y(t) = o(t).
By Lemma 2.5
y(t) =co+I%(t) = s)ds
Tl
for ¢g € R. If t € (1, 2], then Lemma 2.5 implies
1) = u(t) + g [ (=)o) ds = Al +9le7) + s [0= 9 ols)ds
/ a—1 1 / a—1
= B+ o0+ / (0= 5)° a0 (s) ds] + s / (t - )" o (s) ds
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If t € (t2,t3], then from Lemma 2.5 we get
t t

) = 0(t) + g [ (6= 9" o) ds = Ay, +9lty) + gy [0 =9 a(s)ds

to to
t1 ty

= L(y(t;)) + [co + L(y(t) + ﬁ / (ts — 5)° Lo(s)ds + ﬁ / (ts — 5)°Lor(s) ds}
0

t

+ F(la)h/(t —5)*Lo(s)ds
— o+ (Do) + )] + | / (1= 5)° o (s) ds + / (1= 5)* a5 s
+ ﬁ /t(t —5)* to(s)ds.
Re.}z(t%ating the process i: this way, the solution y(¢) for ¢ € (tg,trs1], where k = 1,...,m, can be
y(t) = co + ZZZL@@:)) + T gj / (1= 5" o(5)ds + s / (t - )" Lo (s) ds

m m T
e o+ 0)+b Y L) + g 3 [ (=9 el ds+ s (09t ds
Then - i
1 [ & boIn b
co = a_—+—b {bzlll(y(tz)) o) ; /(tl — ) lo(s)ds + @/(T 5)* to(s)ds — c]
Thus, if t € (tg,tgt1], where k =1,...,m, then
t; T
-1 - — b - a—1 b -1 —c
y(t) = " {b;[i(y(ti )+ m; / (t; —s)* 'o(s)ds + F(oz)t[(T 5)* o(s)ds ]

+ZI +—Z/ (ti —5)* o )ds+()/(ts)“ Lo(s) ds.

71tb 1

Conversely, assume that y satisfies the impulsive fractional integral equation (7). If ¢ € [0,¢1], then
ay(0) + by(T) = c and, using the fact that °D® is the left inverse of I*, we get

‘DYy(t) = o(t) for each ¢ € [0,¢1].
If t € (¢, trt1], K =1,...,m, using the fact that °D*C = 0, where C is a constant, we get
D%y(t) = o(t) for each ¢ € (tg, tkt1]-
Also, we can easily show that
Ay|t:tk =I(yty)), k=1,...,m

We are now in a position to state and prove our existence result for the problem (1)—(3) based on
the Banach fixed point theorem. O
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Theorem 3.2. Assume
(H1) the function f:J x R xR — R is continuous;
(H2) there exist constants K >0 and 0 < L < 1 such that
| f(t,u,v) = f(t,1,0)] < K|lu—1u|+ Ljv —7|
for any u,v,u, v ER andt € J;
(H3) there exists a constant | > 0 such that
() — Ix(@)| < T|u— 1]
for eachu,u e R and k=1,...,m.

|0| ~  (m+1)KT*
(|a+b|+1)[ml+m <1, (11)

then there exists a unique solution for the BVP (1)—(3).

Proof. Transform the problem (1)—(3) into a fixed point problem. Consider the operator N : PC(J,R) —
PC(J,R) defined by

N(y)(t) :Hb{bz +—Z/t—sa1 ds+/T g(s)ds —c

If

w2 /tkfsal st g [E=0r a3 RGi). (2

0<t}‘<ttk N e O<tp<t

where g € C(J,R) is such that
g(t) = f(t.y(t), 9(t))-
Clearly, the fixed points of operator N are solutions of problem (1)—(3).
Let u,w € PC(J,R). Then for t € J we have

+%/(t—s)a Yg(s) — h(s)|ds + Z | (u( Iu(w(t;))],

0<tp<t

and

By (H2), we have

l9(t) = h(t)] = | (£, u(t), g(8)) — f(t,w(t), h(t)| < Klu(t) — w(t)| + Llg(t) — h(t)|.
Then

Therefore, for each t € J,
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la + 0] Pt
Koo T
+(1—L)I‘(a) ;tk[ (tr —s)° ‘u(s)—w(8)|d8—|—(1 DI( )t/(T_S)a— lu(s) — w(s)| ds
K - i a—1
TR ;t / (tk = ) u(s) — w(s)| ds

S( |b] +1)[ml~—|— mKT®* N KT* }HU—WHPG

|a + b 1-LINa+1) (1-L)T(a+1)
Thus o ( VKT
~ m _|_ (&4
N Nlee < (g 1) e HDET™ Jy
1N @) = Nlpe < (25 + 1) [+ 5 Fa ) 1o - wlee
By (11), the operator N is a contraction. Hence, by the Banach contraction principle, N has a unique
fixed point which is a unique solution of the problem (1)—(3). O

Our second result is based on the Schaefer’s fixed point theorem.
Theorem 3.3. Assume that (H1), (H2) and the following conditions are fulfilled:
(H4) there exist p,q,7 € C(J,Ry) with r* = sup,c ;7(t) < 1 such that
|f(tu,w)| < p(t) + q)|u] + r(t)|w| for t € J and u,w € R;
(Hb5) the functions I, : R — R are continuous and there exist constants M*, N* > 0 such that
[Tr(uw)| < M*|u| + N* for each ueR, k=1,...,m.
If

(|a|~bk o " 1) (mar + (1(m;)1p)(q;T:1)) <1, (13)

then the BVP (1)—(3) has at least one solution on J.

Proof. Let the operator N be defined by (12). We shall use the Schaefer’s fixed point theorem to
prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {u,} be a sequence such that u, — w in PC(J,R). Then for each
ted

|CL+b| i=1
1 m 1 T
i 2 [ e lgn<s>g<s>|ds+r(a)t/<Ts>a gn(s) — g(s)] ds
frm B[ -9 - sl
0<tk<ttk,1
1 / 1 _ _
*@/ (t=5)" Hgals) — ()l ds + D [elun(ti)) = Iuu(t)). (14)

& 0<tp<t
where g,,g9 € C(J,R) are such that
gn(t) = f(tvun(t)vgn(t))
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and

By (H2), we have
90(6) = 9(0)] = | £t (6), 90 (0)) = F(t,0(t), 9(0))] < Klun(£) — w(t)] + Llgn(t) — g(0)].
Then
90(0) 90 < T2 (1) — ut).

Since u, — u, we get gn(t) = g(t) as n — oo for each t € J. Let > 0 be such that, for each ¢ € J,
we have |g,,(t)| <7 and |g(t)| < n. Then we have

(t =) gn(s) = g(s)| < (¢ = )" lgn(s)] + 1g(s)]] < 2n(t - 5)*7"
and
(tr = ) Hgn(s) = 9(s)] < (te = )7 lgn(s)| + lg(s)]] < 2n(tr — 5)* 7.
For each t € J, the functions s — 2n(t — s)*~! and s — 2n(tx — s)*~! are integrable on [0,¢], then
the Lebesgue Dominated Convergence Theorem and (14) imply that

[N (un)(t) = N(u)(t)| — 0 as n — oo
and hence
|V (un) — N(U)HPC — 0 as n — oo.
Consequently, N is continuous.

Step 2: F maps bounded sets into bounded sets in PC(J,R). Indeed, it is enough to show that for
any 1" > 0 there exists a positive constant £ such that for each v € B« = {u € PC(J,R) : ||u|lpc <
7}, ||V (uw)||pec < L. For each t € J we have

Nw(® = = [bzlmu(t;)) + e > [ = et s+ s [t as -

JrFi > /(tk—s)a_lg(s)ds—F%/(t_s)a_lg(s)ds+ > Ilult),  (15)

(O() 0<tk<ttk,1 F( )tk 0<tp<t

where g € C(J,R) is such that

By (H4), for each t € J we have

where p* = sup p(t) and ¢* = sup ¢(¢). Then
teJ teJ

Thus (15) implies

mMT* n MTe }
MNa+1) TD(a+1)
|c] mMT* MT>

+ + + +m(M*[u| + N*
la+b T(a+1) T(a+1) (Mu )

< (l + 1) {m(M*|u| +N*)+ (m + 1)MTQ} i

N < 1 [mO el + N7 +

la + b| Ia+1) la+ b
Therefore
10| o, ey, (m+DMT |
<|(—+1 = /.
[N (u)llpc < (|a+b| + )[m(M n"+N*)+ (ot 1) ] et bl 4
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Step 3: F' maps bounded sets into equicontinuous sets of PC(J,R). Let 71,72 € J, 71 < T2, By-
be a bounded set of PC(J,R) as in Step 2, and let v € B,-. Then

1 7 a—1 a—1
[N (u)(r2) = N(u)(r)| < F(Q)O/KTQ =)t = (1= 5)" 7 |g(s)l ds

17 B B
+w/|<m—s>“ lHo@)lds+ 3 |Tut))]

0<tp<T2—T1
M
< L(a+1) [2(r2 = 1) + (75 = 71)] + (12 — 71) (M *|u| + N*)
= % [2(7-2 - Tl)a + (Tél — Tla)] —+ (7'2 — Tl)(M*ﬁ* + N*)

As 11 — 79, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1
to 3, together with the Ascoli-Arzela theorem, we can conclude that N : PC(J,R) — PC(J,R) is
completely continuous.

Step 4: A priori bounds. Now it remains to show that the set
E={ue PC(J,R): u=AN(u) for some 0 < A < 1}
is bounded. Let u € E, then w = AN (u) for some 0 < A < 1. Thus for each t € J

m T
u(t) = a;—i—lb {b)\z[i(u(ti_ b/\ Z / g(s)ds + Fla) /(T —5)* 1g(s)ds — cA

tm

ty

A -1 A / a—1 —
—l—m Z /(tk—s)o‘ g(s)ds—&—m/(t—s) g(s)ds + A Z I (u(ty)). (16)

0<ti<ty” & 0<trp<t
By (H4), for each t € J we have

O] = [F(t,u(t), g(t)] < p(t) + a®)|u@®)] +r@)g(t)] < p* + g |ult)| +r*|g(t)].
Thus

1 * * * *
90)] < = (" + 0 Tu0)) < = (" + ¢ llullpc).

This implies, by (16) and (H5), that for each ¢t € J

1—

= g [0 e + )+ BRI+ TR
+ i et lele) | T 0 fuo) e + ).
Then
lullpe < ( i+ 1) [m M*|[u(t)| pc + N*) + (m +(1)£p::)rrq(*olé|lﬂlf)c)Ta} a|i| ;
(|a+b| +1) (my 1m:)lp)(;:ia1))
|a|—c|—b| i (|a|—l|)—b| +1) (mdr" + (1(T;)1r)(q;ia1))”“m
Thus

i () T

10| | . (m+1DpT™
< 1 N .
—(|a+b|+ )[mm*m +(1—r*)F(a—|—1)}
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Finally, by (13), we obtain

( [b] 4 1) [mN* + (1(m+1)p T + \a|C| }

la+Db| )T (a+1) +b|
lullpe < 5 = R.
| B (m4+1)q* T
[1— (R + DmM* + et
This shows that the set E is bounded. As a consequence of the Schaefer’s fixed point theorem, we
deduce that N has a fixed point which is a solution of the problem (1)—(3). O

4. ULAM—HYERS RASSIAS STABILITY
Now, we state the following Ulam—Hyers—Rassias stable result.

Theorem 4.1. Assume that (H1)—(H3), (11) and the following condition are satisfied:

(H6) there exists a nondecreasing function ¢ € PC(J,Ry) and there exists A, > 0 such that for
anyteJ:

I%p(t) < Ape(t).
Then the problem (1)—(2) is Ulam—Hyers—Rassias stable with respect to (¢,v).

Proof. Let z € PC(J,R) N AC(Jx) be a solution of (6). Denote by y the unique solution of the BVP
‘DR y(t) = f(t,y(t), "D y(t)), t€ (tr,toy1], k=1,...,m,
Ay(te) = In(y(ty)), k=1,....m
ay(0) +by(T) = ¢,
y(0) = 2(0).

Using Lemma 3.1, for each t € (¢, tx+1] we obtain

k 1 x ty
1) =50+ Y L) + g O [ (=) als) ds
+ T / (0= )" gs)ds, 1€ (1x, g,

where g € C(J,R) is such that
g(t) = f(tay(t)’g(t))'

Since z is a solution of (6), by Remark 2.13, we have

{CD,?kz(t) = f(t,2(t),°Dg z(t)) + o(t), t€ (totusa], k=1,...,m,

(17)
Az(tk):Ik(z(t,;))—l—ak, k=1,...,m.

Clearly, the solution of (17) is given by

k 1k b
2(t) = Z(O)—i—ZIi(z(t;))—i-Zai—i—m Z / (ti—s)* " h(s)ds

]t—s “lo(s)ds+ o )/(t—s)“_lh(s)ds

ds7 t e (tk,tk+1],

Y
oo

”\

where h € C(J,R) is such that
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Hence for each ¢ € (ty, tg+1] it follows that

k k
2() —y()] <Y ool + Y [L(=(t7)) — Lily(t))]
i=1 i=1
1 : | a—1 1 k i a1
+w;t/ (tz—S) ‘h(s)_g(s)‘ds—f—mz; /(tl—s) |O'(8)|d8
1 / o=l L / a—1
+(a)/(t 5) |h(5)—9(3)|d8+r(a)t/(t—s) lo(s)].

Thus

By (H2), we get

h(t) = g(O)] = | f(t, 2(t), h(t)) — (L, y(8), g(1))| < K|z(t) — y(t)] + Llg(t) — h(1)]-
Then

Thus

k
[2(t) —y(t)] < ZﬂZ(tZ)—y(tZ)!+€(¢+90(t))(m+(m+1)/\sa)

t

7K(m+1) — $)%7Yz(s) — y(s)| ds
+(1—L)F(a)0/(t )7 2(s) — yls) ds.

Applying Lemma 2.6, we get

|2(t) = y(®)] < e(® + @) (m + (m+1)A,)

[ 1 e ( [ BOED o) < ot v,
0

0<ty<t



28 Mouffak Benchohra and Soufyane Bouriah

where
i D e (K DT
Cp = (m+ (m+ 1))\59) |:kl:[l(1 + 1) exp ((1 — L)I(a+ 1)>:|
B - K(m+1)T> \1™
= (m+ (m+1)\,) [(1 + 1) exp (MM)]
Thus, the problem (1)—(2) is Ulam—Hyers—Rassias stable with respect to (¢, ). O

Next, we present the following Ulam—Hyers stability result.

Theorem 4.2. Assume that (H1)-(H3) and (11) are satisfied. Then the problem (1)—(2) is Ulam—
Hyers stable.

Proof. Let z € PC(J,R) N AC(Jx) be a solution of (4). Denote by y the unique solution of the BVP
‘D y(t) = f(t,y(t),°Diy(t)), te (tptrppa], k=1,...,m,
Ay(tr) = Le(y(ty)), k=1,...,m,
ay(0) + by(T) =
y(0) = 2(0).

Similarly as in the proof of Theorem 4.1 we get the inequality

k
[2(t) = y(&)] < D T|C(87) = (w(t)]
=1

t

T (m + 1) K(m + 1) jo-1
me o [0 )~ ol as.
0
Applying Lemma 2.6, we obtain
ml(a+1)+T*(m+ 1)
— <
20 -yl <e(Fa Ty )
¢
~ K(m+1 o l
X|: H (l—i—l)exp(/(l(L)F(a))(t—s) 1d8) SCQOE’
0<ty <t o J
where
~(mD(a+1)+T*(m+1)\ [ 1 K(m+1)T* \]
= ( T(a+1) )“:[ ( 1— L)F(a+1))_
~(mI(a+1)+T*(m+1) ~ K(m+1)T> \]™
- ( T(a+1) ) (1+0) exp ((1—L)F(a+1))
which completes the proof of the theorem. O

Moreover, if we set y(g) = ce, 7(0) = 0, then the problem (1)—(2) is generalized Ulam—Hyers stable.
Remark 4.3. Our results for the boundary value problem (1)—(3) are appropriate for the following
problems:

e Initial value problem: a =1, b=10, ¢ = 0.
e Terminal value Problem: a = 0, b = 1, ¢ is arbitrary.
e Anti-periodic problem: a =1,b=1, ¢ =0.

However, our results are not applicable for the periodic problem, i.e., fora =1,b= -1, ¢ = 0.
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5. EXAMPLES

Example 1. Consider the following impulsive boundary value problem:

1
CD2 " y(t)= for each t€JyU Jy, (18)
5et+2 (14 [y(1) | +[<Df y(1))
1-
’t_ = (5 1)|_ (19)
210+ y(3 )l
2y(0) —y(1) =3, (20)
where Jo = [0, 3], Ji = (3,1, to = 0 and #; = §. Set
1

t 0,1 R.
ftu,v) = 5ett2(1 + [u| + [v]) tel0,1], uve

Clearly, the function f is jointly continuous.
For each u,v,w,7 € R and t € [0, 1]

_ 1 _ _
’f<t7uav) - f<t7uav)‘ < 5? (|U, - U| + |’U - U')
Hence the condition (H2) is satisfied with K = L = &5 .
Let v
ILi(u) = ora Y € [0, 00).

Let u,v € [0,00). Then we have
v 10ju — v|

B 0 = s - e -
|11 (w) v)| 10+v 10+ (10+u)(10+v) =10

lu—wvl.

Thus the condition
2

b ~ m KT 2 4
(a|+|b +1) |l + (1<—Li_);)(oz+1)} :2[110+(:;)(§)} —2[m+% <!

is satisfied with T=1,a=2,b=—-1,c=3, m =1 and I = % From Theorem 3.2 it follows that
the problem (18)—(20) has a unique solution on J.
Set for any ¢ € [0,1], ¢(t) =1, ¢ = 1. Since

¢
1 2t
I’y /t—s lsds < —,

%O VT

the condition (HG6) is satisfied with A, = % From this it follows that the problem (18)—(19) is
Ulam—Hyers—Rassias stable with respect to (¢, ).

Example 2. Consider the following impulsive anti-periodic problem:

1
2+ |y(O)|+]°Dg y(t)|

CDiy(t) = £ for each teJyU Jy, (21)

108e!+3(1+|y(t)[+]°Df y(t)])
L, = )

6+ y(5 )l
y(0) = —y(1), (23)

where Jo = [0,4], J1 = (3,1], to = 0, and t; = 5. Set
2
flt,u,v) = + lul + o] €[0,1], uw,v€eR.

108et+3(1 + |u| + |v])
Clearly, the function f is jointly continuous. For any u,v,u,v € R and ¢ € [0, 1]

| f(t ) = f(6.70,)] <

1
10803 (Ju—1a| +|v—1]).
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Hence the condition (H2) is satisfied with K = L = 54— . For each t € [0, 1] we have
1
|f(t,u,v)| < 108et 3 (2 + ul + [v]).
Thus the condition (H4) is satisfied with p(t) = zr2=7 and ¢(t) = 7(t) = 15eerrs -
Let u
I = 0 .
1(“) 6+u’ UE[,OO)

For each u € [0, 00) we have

1

Thus the condition (H5) is satisfied with M* = { and N* = 1. Therefore the condition

is

(o + ) + 2 5ne 1) =3 (6 s —pygs) <

satisfied with T'=1,a=1,b=1, ¢ =0, m = 1 and ¢*(t) = r*(t) = {g5=s . From Theorem 3.3 it

follows that the problem (21)—(23) has at least one solution on J.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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ON THE CONVERGENCE RATE ANALYSIS OF
ONE DIFFERENCE SCHEME FOR BURGERS’ EQUATION



Abstract. We consider an initial boundary value problem for the 1D nonlinear Burgers’ equation.
A three-level finite difference scheme is studied. Two-level scheme is used to find the values of unknown
function on the first level. The obtained algebraic equations are linear with respect to the values of the
unknown function for each new level. It is proved that the scheme is convergent at rate O(7*~14+h*~1)
in discrete Ly-norm when an exact solution belongs to the Sobolev space W&, 2 < k < 3.
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1. INTRODUCTION

We will study the finite difference method for a numerical solution of initial boundary value problem
for a forced Burgers’ equation

ou ou 0%u

u(0,t) =u(l,t) =0, t€[0,7), wu(z,0)=¢), xe€l0,1], (1.2)

where Q = (0,1) x (0,T), and parameter v = const > 0 defines the kinematic viscosity.

Assume that a solution of this problem belongs to the fractional-order Sobolev space W (Q), k > 2,
whose norms and seminorms we denote by || - ||y (q) and | - [ (), respectively.

Certain numerical methods (Galerkin, least squares, collocation, method of lines, finite differences,
etc.) are devoted to problems posed for Burgers’ equation (see, e.g., [1, 2, 3, 7, 10, 11, 14, 15, 16, 19]).
In some cases, the Hopf—Cole transformation [9, 13] is used before approximation in order to reduce
Burgers’ equation to a linear heat equation.

H. Sun and Z. Z. Sun [19] investigated a three-level difference scheme for the problem (1.1),(1.2)
and ascertained a second-order convergence in the maximum-norm under the assumption that the
exact solution belongs to C43(Q).

In the present article, a three-level difference scheme is studied for the problem (1.1),(1.2). All
the obtained algebraic equations are linear with respect to the values of an unknown function on the
upper level. It is proved that the scheme is convergent at rate O(7*~! + h*~1) when an exact solution
belongs to the Sobolev space W¥(Q), 2 < k < 3. The error estimate is derived by using the certain
well-known techniques (see, e.g., [18, 4]) that employ the generalized Bramble-Hilbert Lemma. For
the upper layers, the difference equations are the same as in [19] and are obtained by using the well
known approximations for derivatives. For the first layer, the difference equations are constructed with
the help of approximation of d(u)?/dz by the way offered in [5, 6]. In the case of sufficiently smooth
solutions, they represent the second order approximations for obtaining additional initial data. At
the same time, they represent approximation of the equation (1.1) to within the accuracy O(r + h?) .

Despite the last circumstance, the order of convergence by discrete Lo-norm does not decrease and
remains still second order on sufficiently smooth solutions. “The study of the local approximation is
insufficient for determination of the order of the difference approximation and proper evaluation of
the quality of a difference operator” (Samarskii [17, Chapter 2, Section 1.3, Example 1]).

2. A FINITE DIFFERENCE SCHEME AND MAIN RESULTS

The finite domain [0,1] x [0,7] is divided into rectangle grids by the points (x;,t;) = (ih,jT),
1=0,1,...,n,5=0,1,2,...,J, where h = 1/n and 7 = T'/J denote the spatial and temporal mesh
sizes, respectively.

Letw={x;: i=0,1,....,n},w={x;: i=1,2,....n— 1}, wt ={z;: i=1,2,...,n}.

The value of the mesh function U at the node (z;,;) is denoted by U/, that is, U(ih,j7) = U.
For the sake of simplicity sometimes we will use notation without subscripts: Uij =U, Uij oy ,
Uijf1 = U. Moreover, let

70 _ ut+0° 7 Uittt +yit

) =1,2,....
2 ) 2 ) j 9 )
We define the difference quotients in x and ¢ directions as follows:
Ui — Uifl 1 Ul 1— 2U1 + Uifl
Uiz = ———, (Ui)g =5, Wis1 = Vi), Uiz = . [ ;
) Ui+t —yi ) Uit —yi-1 ) Uitt —oui 4 yi-1
i, =2 Y AV Y. —
(U )t - = ) (U )‘g - 2 ) (U )tt - 72 .

Let Hy be a set of functions defined on the mesh w and equal to zero at x =0 and x = 1. On Hy
we define the following inner product and norm:

U, V) =Y hU(x)V(z), |Ull=UU)">

rew
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Let, moreover,
U, V= > hU(x)V(z), |U)=(UU]">
rewt
We need the following averaging operators for the functions defined on Q:

. t+h ) t+h
Sv = - /v(x,f) ¢, Sv:= > /U(x,f) dg,
t t—h
1 x+h 1 x+h
Pov = 7 / v(&, t)dE, Puv:= 72 / (h — |z - §|)v(£,t) d€.
T z—h
Note that )
° Jv 4 0v 0%v ov =~
Sa—’t}g, SE—’Ut, ’P@—’Ufz, P%—'PUE
We approximate the problem (1.1), (1.2) by of the difference scheme:
LU =F/, i=1,2,...,n—1, j=0,1,...,J -1, (2.1)
Ul=Ul=0, j=0,1,...,J, U’=o(x;), i=0,1,...,n. (2.2)
where
1 _
LU = (U°); + 5 AU° V(T )z,

0

AU =0T, + (UT"),, FO=PF",

. . 1 . .
LUT = (U7); + S AU7 — V(0 ze, j=1,2,...,
AU = U3, + (UT)s, F7=PF .

Theorem 2.1. The finite difference scheme (2.1), (2.2) is uniquely solvable.
Proof. Note that

(YV_% + (YV)%, V)=0, if V € H,. (2.3)
Considering inner products (EUj,Uj) and (EUO,ﬁO), we obtain
1 . . — C—dy
E(||UJ+1”2_HUJ 1||2)+V||U%]|2:(FJ7UJ)7 .7:1727"' ) (24)
1 —0 —0
Z(||U1||2—HU°||2)+V||U§]|2=(FO,U ). (2.5)
Summing up the equalities (2.4) with respect to 7 from 1 to k, we get
g up q P J ) g
k k
o (TP + ORI = TP = T°1P) + 20 Y T2 =2 (FI,T7). (2.6)
j=1 =1
Adding the equalities (2.5) and (2.6) gives
1 k . 1 k .
o (02 4 UIP) 4203 0y [T202 = L0 +2 3 o3 (F9,07), k=12,  (27)
=0 j=0

where 0; =1 for j > 1 and 09 = 1/2.
If we rewrite the equality (2.5) in the form

1 —0 1 —0
> UM+ 1U°1%) + vl Uz 1P = - IU°(1* + (F°, T ), (2.8)

we will see that the equalities (2.7), (2.8) can be written all in the same key

J J
TP+ 07 )1%) + 207> ol|Tz )P = llell® + 27> _on(F7,T”), §=0,1,2,....  (29)
k=0 k=0

N —
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Since the difference scheme (2.1),(2.2) is linear on each new level with respect to the unknown
values, its unique solvability follows directly from (2.9). O

Remark. Let the external source f(x,t) be equal to 0. Then we rewrite (2.9) as

J
E(U’)+ VZ ox|UZ > = 0.5]¢l% j=0,1,....
k=0
The left-hand side of this equality is the energy of the system at time ¢ = ¢;. As we see, the difference
scheme is energy conservative and, besides, kinetic energy
U2 + 10712

E(UY) = | 1

is monotonically decreasing, i.e.,

B(UTY < B(UY) for j > 0.
Theorem 2.2. Let the exact solution of the initial boundary value problem (1.1),(1.2) belong to
W¥(Q), 2 < k < 3. Then the convergence rate of the finite difference scheme (2.1), (2.2) is determined

by the estimate
|07 —ud|| < e(rF 1 + hk_l)”“”W;“(Q)’

where ¢ = ¢(u) denotes the positive constant, independent of h and .
The correctness of Theorem 2.2 follows from the consequence of Lemmas 3.1, 4.2 and 4.4, proved
in the next sections.
3. A PRIORI ESTIMATE OF DISCRETIZATION ERROR

Let Z := U — u, where u is an exact solution of the problem (1.1), (1.2), and U is a solution of the
finite difference scheme (2.1),(2.2). Substituting U = Z + w into (2.1), (2.2), we obtain

1

77l = 5 (MUY — ) 407, (3.1)
t
- 1
70— vZe, = —5 (AU® = Au) 40, (3.2)
zZ0=0, Zi=7l=0, j=0,1,2,..., (3.3)

where W/ 1= FJ — Lo/,
Denote
B =2+ 1Z77?, j=12,....
Lemma 3.1. For a solution of the problem (3.1)—(3.3), the relations
By < ||re°%, (3.4)

j
Bijn <aBi+ery [P j=12,..., (3.5)
k=1
are valid, where
Tc? c1
€1 = exp ( 3 ) p =, = [uller @)-

Proof. Multiplying (3.2) by 70, we obtain

_ 0 — 1 — —
(20, 2%+ v(Z2,72) = -5 (AU — A, Z°%) + (10, Z°).
Taking into account U° = u® we have

AU° — A = u°Zs + (u"Z")

)

Ko

therefore due to (2.3)
(AU — Au®,Z°) = 0



38 Givi Berikelashvili, Nodar Khomeriki and Manana Mirianashvili

and we get
(20,2") +v(Z
From this, via Z° = 0, we see that

1 v 1
2P+ 2P = 5 (90, 2,
o e L YT 012 0 ~1
127017 + 5 12z 117 = (797, Z7),
where
VT 1
12117 + 20 1232 < 3 IO + 22
and
I1ZE 2 < 2%,
= 2
and also
124> < I7e) ]| 21
and

124 < [l7%°].
On the basis of the above consideration, we come to the conclusion that (3.4) is true.
Now, let us multiply (3.1) by Z” scalarly:
1, . ~ —j 1
= (1257 1257 ) + v Z20P = —5
Noticing in the right-hand side of (3.6) that
AU — A = (UIZ] + (U7Z7)) + (29T + (2°T7),),

o o
x x

AU/ — A, Z0) 4+ (99, Z7), j=1,2,....  (36)

and taking into account (2.3), we obtain
: N iy TIN _ (imd i BIN _ (i =i =
(AU — A, Z7) = (Zju; +(Z7a’).,27) = (Zju%7Z )= (27’ Z5) = (27 Z ,ug) - (27 Z5,u?).
Applying here the Cauchy—Bunyakovsky inequality, the e-inequality, and finally the Friedrichs’
inequality

IVIZ < < IVs1%,

ool —

we obtain
(AU = 8, Z7)| < e (12211127 + 112°)1 12 )
< e (GIZ00P + 1271 + 1217 + 5 IZ20P) < (2217 + 1o IZ20R). (37)
Now, let us estimate the second term in the right-hand side of (3.6)
(.2 < N Z7) < 592 + 51777 < g 9P 4+ e 12200 (38)

After substituting (3.7) and (3.8) in (3.6), we arrive at

1 ; - —j € . R — € , Cx =i
Zi+L)2 _ || 7zi-1)2 Z212 < *(* 22+ =72 2) — W72+ = | Z2])2
= (1272 =127 2) + o ZL0P < s (S1291P + o I1Z21P) + o IR + 4 1221
ec . g . c _—
< N2+ — |92+ =1 Z2))2
< SR+ o W + 527

Cx
4v °

Here choose ¢ = Then we obtain

1 . X 1 . 02 .
- Zj—‘,—l 2 Zj—l 2 < —||\pd 2 ||\ zZI 2
& (129 = 1272) < IR + 2 2],
that is,
2
ZIH2 — 252 < w2+ S0 1272, j=1,2 3.9
| ° =1l I < o IWI1°+ 5~ 12705, 5=1,2,..... (3.9)
Suppose
c? 1
a:=—, bi=—
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From (3.9) we find '
Bjp1 < (L+ar)B; + 07| W77, j=1,2,..

t

whence

J
Bij1 < (1+ar) By +br(1+ar) ' Y JWHP, j=1,2,.... (3.10)
k=1
Since j < T/, we obtain
(1+ar) < (14 ar)?/" < exp(Ta),
and on the basis of (3.10), the validity of (3.5) follows directly. Thus Lemma 3.1 is proved. O

4. ESTIMATION OF THE TRUNCATION ERROR

In order to determine the rate of convergence of the finite difference scheme (2.1), (2.2) with the help
of Lemma 3.1, it is sufficient to estimate a truncation error eventuated while replacing a differential
equation by a difference scheme, ¥. Towards this end, we will need the following result.

Lemma 4.1. Assume that the linear functional [(u) is bounded in I/sz(E), where k =k + ¢, k is an
integer, 0 < € < 1, and l(P) = 0 for every polynomial P of degree k in two variables. Then, there
exists a constant c, independent of u, such that |l(u)| < clulys g)-

This lemma is a particular case of the Dupont—Scott approximation theorem [12] and represents a
generalization of the Bramble-Hilbert lemma [8] (see, e.g., [18, p. 29]).

Let us introduce the elementary rectangles e = e(x,t) = {(z,t) : |z —a;| < h, |t —t;| < T},
eo = (zi—1,Ti41) X (0,7), @ = (0,1) x (0,7), Q; = (0,1) x (tj-1,t4+1).
Lemma 4.2. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W¥(Q), 2 < k < 3,
then for the truncation error W/ = FJ — L/ the estimate

711 < e(7 + B> llullfye g,y 421,

.)7
J
is true, where the constant ¢ > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

1 ot outt Ou\J+1 Ju\J—1 v, - -
- s - _ 2 (gL J—1\_  _
2P< oo g (05 ) g (W AW g = B

With the help of this equality, the expression ¥ can be written in the form

1
W:X1+Xa+6X47

where
Jdu ° /0u
w=P(5) +5(5).
1 o(w)?  d(u)? 1, ., - 9
X2 _ZP< O O ) _§(u)§;’ X4 = 3(u)§—2Au
We assert that the following inequalities hold for a = 1,2, 3:

Xl < e+ ) 2 ullwpe), 2<k<3. (4.1)

First of all, note that x,, as a linear functional with respect to u(z,t), vanishes on the polynomials
of second degree and is bounded in W¥, k > 1. Consequently, using Lemma 4.1 and the well known
techniques from [18], we see that the estimate (4.1) for a = 1 is true.

Now, let us note that

Xo = X, () = 0) 1= 3 (PSvg —v), vi= (w).

The linear functional £(v) is bounded for v € W&, k > 2, and vanishes on polynomials of second
degree. For this functional the estimate
()] < e(r + B2 ollwpe), 2<k <3, (4.2)

is obtained.
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Since Sobolev space W¥(Q), k > 1, is an algebra with respect to a pointwise multiplication,
consequently, [uul[wzey < cllullws ), ¢ = c(u). Therefore, (4.2) proves the validity of (4.1) in the
case where a = 2.

We will present estimates y, in a more convenient form. We have

= 3(u ) —u(u+a)g — (u(@+a))
= 3(u ) —u(u—2u+1a), — (u(ﬂ—Qu—i—ﬂ))% — 2uuge — 2(uu),
= (u)g — 2uug — Tzuuzt; - T2(uu5t)§:,

whence

Xs = h2u§u5x Tzuuho - T2(U’£Ltt)o =X+ X+ X (4.3)

since
2 _ _ 22
(u)g — 2uu, = U%(Ui+1 +uim1) — 2uus = h Ug Uz z-

When u € WE(Q), 2 < k < 3, the terms in the right-hand side of (4.3) can be estimated as follows:
X, < P2 lluller g luz ol < e(m+ R Pllullwze) < o(m + 1) 2 [ullyr-z(),

| < 72 luller gyl g | < o7 + B)* 2 lullyyr-2 oy

‘ ttw

///| = 72|y uy Ug,o T Uy 1 < ||UHC1(Q)(‘“

Ix o+ [uzgial) < e(m+ )2 fully e

Ttz

and therefore (4.1) is true for a = 3 also.
Finally, (4.1) yields

2 = ST AN < elr+ m3ulfg o,y @ =1.2.3,

rEw

which completes the proof of Lemma 4.2. O
Lemma 4.3. For any function v € W5 (Q), 1 < k < 3, the inequalities
g, I < e(m+ 1) 2 lollwp ), (4.4)
logoll < e(7 + 1) llvllwgq) (4.5)
are true.

Proof. v?t is bounded when v € W3 (@), A > 1, and vanishes on the first degree polynomials. Therefore
for 1 < A < 2 we have

09, < e(7 + )P ollw eo)
16 11 = Zhlvo 2 < el + )PP ollfr g
which confirms the validity of (4.4) in the case where 1 < k < 2.5. Further,

0 _
‘U%t‘ QTh’//

0 zi—1

—1/2
Dzt dwdt‘ (27h) Hazat

Lz 60

—1/2

lve,II < er (4.6)

H axé)t‘ L>(Q-)

In order to obtain the desired estimate, it is sufficient to use the inequality giving estimate of the
Ly-norm of the function in the near-border stripe via its W3'-norm in the domain (cf. [18, p. 161])

0]l agr) < 7P lvllwp gy 05 <A<

This relation along with (4.6) confirms the validity of (4.4) for 2.5 < k < 3.
When 1 < k < 2.5, (4.5) can be proved similarly to the previous case. In the event of 2.5 < k < 3,
we use the relation

- 0%u .
jua] < [P8 551+ I(u— S)zal.
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Here the first term in the right-hand side is estimated again analogously to the previous case, and for
the second term Lemma 4.1 is used. g

Lemma 4.4. If a solution u of the problem (1.1),(1.2) belongs to the Sobolev space W (Q), k > 2,
then for the truncation error U = FO — Lu° the estimate

10| < e(r + 1) 2 ullfyp ) 2 <k <3,

@)y
is true, where the constant ¢ > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

o_Lpopy_lp0u®  ou
F _27?(f +f)_27)(8t+ 8t)

Via this equality we rewrite U0 as

P(@(u)z L ow)? L—T> i

1
4 ox ‘t:O ox

\I}OZCI_ECZ_gC& t:()v
where . 5
u ~
(1:=P o ug, Gy = 2(utis + (ulr)s) — 5 (@2 + (w)?)s.
4.7)
Uy o 10?0 (
G _2((u) + @) )f% 2P( Ox t—0+ Oox ‘t:‘r
We assert that the inequalities
ICall < e(m + 1) lullws ) 2<k <3, (4.8)

hold for a = 1,2, 3.
Expression ¢; can be estimated similarly to x,.
Further, notice that
ov 81})

G = Glw) = I(0) == 5 B+ 0)g — 5 P(50 + 50 ), vi= (W)

It is easy to verify that I(v), as a linear functional with respect to v, vanishes on the polynomials
of second degree and is bounded when v € W¥(Q), k > 2. For that functional we can derive the
following estimate
(@) < e(r + 1) 2 |ollwp gy 2 <k <3
The latter along with [luullyxg) < c||u||%V§(Q), k > 1, states the validity of (4.8) in the case oo = 3,
as well.
Now, let us pass to the estimation of (5. If we take into account that

Qo = 2utle + Tulle,, 2utte = (u)?e — h*Uotz 4,
T T xt T T T

(4.7) will give

1
G = Tuug, — hQU;UEz + 3 (4uu — 3(0)* — (u)2);
1 I ~ ~
= Tuug, — h2u§u§z ~3 (2[(u)2 — (u)Q] + [(u)2 — 2uu + (u)ﬂ)g
or )
.
2 = Tuug, — hZU%ugz - T(u)zgt ) (ut)zg =G+G+G +6G". (4.9)

In the right-hand side of (4.9), the first and the second terms can be estimated by using Lemma 4.3:
Il < erllullegg)lug, Il < e(m +B)*2llullwp ), 2<k <3,
1511 < chllulleig)luzall < elr +h)*2|lullwgq), 2<k<3.

The term ¢}’ can be estimated in a similar way, if we make replacement (u)? := v in it.

Change the term (5" as follows:
7 2 (ue)fiy — (ue)iy
? (ut)2§ _ i+ i _

2 (Utip1 — Upi—1) (Ug i1 + Ugi—1) — 2y Ug i1+ U1
— o —tn S

T T
2 2h 2 2h ot 2
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from which again via Lemma 4.3 we get

Fi

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.

A
G

" k—2
1657 < erlug,| < e(r +B)*?[lullwg ), 2<k <3

nally, all of these estimates confirm the validity of (4.8) in the case a = 2.
The inequalities (4.8) prove Lemma 4.4. O
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1. INTRODUCTION AND PRELIMINARIES

Consider the differential equation

y™ = aop(t)y|InJy||°, (1.1)
where ap € {—1,1}, 0 € R, p : [a,w[—]0,+0o0[ is a continuous function, —oc0 < a < w <
Hool.

A solution y of the equation (1.1) is called a P, (Ag)-solution, if it is defined on the interval
[ty,w[ C [a,w[, and satisfies the conditions:

ither 0 )
limy® () = " (k=0.1,...n—1), lim—2 W\ 1.2
tlTIZ}y ) {or +o0 ( oL-om—1), tITIB Y™ (t)y(=2)(t) ’ (12)

For each such solution, the representation y(t)|In |y(t)|| = |y(t)]* M) signy(t) as t T w,
holds. Therefore, when we study these solutions, the equation (1.1) is asymptotically close
to linear differential equations

y™ = agp(t)y, (1.3)
such asymptotic behavior of solutions has been studied extensively (see, e.g., [9, Chapter 1]).
For n = 2 and any o € R, asymptotic behavior as ¢ T w of all possible types of P, (\g)-
solutions of the differential equation (1.1) was studied in [1, 2, 3, 5, 7].
We introduce the following auxiliary notation:

agk =M —k)X—(n—k—-1) (k=1,...,n) for Ay € R,
To(t) =t —w, if w< oo,

La(t) = / o (1) p() dr,
A

A=w, if /ﬁw(T)]"_lp(T) dr < +o0.

The following theorem concerning the differential equation (1.1) has been established in [4].

Theorem 1.1. Let 0 # n and Ny € R\ {0, 3 % 3,...,n 1,1} Then for the existence of a
P, (Xo)-solution of the equation (1.1) it is necessary, and if the inequality

G#am(l—i-za%) (1.4)

holds and the algebraic equation

n—1k—1
H aoj +p) + Y [ [ (a0 +p) H agj =0 (1.5)
j=1 k=1 j=1 j=k+1

with respect to p has no roots with zero real part, then it is sufficient for the inequality

n—1
ao( H CL()k> (Ao — Dmo(t)]" >0 for t € [a,w], (1.6)
k=1
and the conditions

7 I5(t)

_ 1
725 aoi] <szia0k|n>””
b

B |)\0—1| |a01|

lim p ()] (1)

1VVeassumethata>1foro.z:+oo7 and w —a < 1 for w < +o0.
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to take place. Moreover, each of these solutions admits the following asymptotic representa-
tions as t T w:

In [y(t)| = V<HZ’?OIZL;€\5 ) M —= Js(t) 1+ o(1)), (L.7)
v OO @k k=1 1), (1.8)

yE=D#) (Mo — 1)my(t)
where
v = sign [ag1 (Ao — 1)(n — o) (t) Jp(t)].
In addition to these conditions, if the algebraic equation (1.5) has the m-roots (including

multiples), the real parts of which have a sign opposite to the sign of the function (Ag—1)m,(t)
on the interval [a,w], and the inequality

o n—1 1 n—1 1
L=y )1+ ) >0
<CL01 ; aok kzl Aok
is satisfied, then the equation (1.1) has m-parametric family of solutions with the representa-

tions (1.7) and (1.8), and when the opposite inequality holds, it has m + 1-parametric family
of such solutions.

From this theorem the following corollary for the linear differential equation (1.3) is ob-
tained.

Corollary 1.1. For the existence of P,(\g)-solution of the equation (1.3), where Ay € R\
{0, %, cee Z—j, 1}, it is necessary, and if the algebraic equation (1.5) with respect to p has no
roots with zero real part, then it is sufficient that the inequality (1.6) and the condition

n—1
O szl Qaok

limp(t)m;(t) = 1.9
i p(1)73(1) = 2 =L (19)

are satisfied. For each of these solutions the asymptotic representations

Ozo()\o - 1)n_1IA(t)
In [y(t)| = ) [1+o(1)], (1.10)
k=2 A0k
(k) (¢

YO @k o)) (k=1,...,n—1), (1.11)

y*=(E)  (do = Dmw(t)

take place as t 1T w. Moreover, if in addition to these conditions, the algebraic equation (1.5)
has the m-roots (including multiples), the real parts of which have a sign, opposite to that
of the function (A\g — 1)m,(t) on the interval [a,w], then for the equation (1.1) there exists
m + 1-parametric family of solutions with the representations (1.10) and (1.11).

We note that this corollary refers to the case where the differential equation (1.3) is asymp-

totically close to the Euler equations.
If

bim p(t)me,(t) = co # 0

and the next algebraic equation with respect to Ag

n—1

coho—1)" =ag [] [(n—k)Ao — (n— k= 1)],
k=1
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which we obtain from (1.9) by taking into account the inequality (1.6), has n distinct real
roots Agj (j = 1,...,n), then the fundamental system of solutions y; (j = 1,...,n) of the
differential equation (1.3) admits as t T w the following asymptotic representations:

()] = ao(Aoj — 1" a(t)
) noal(n =)Aoy — (n—j = 1)]
yB () (n—=5)oj—(n—j—1)
y*=1 (1) (Aoj — Dmas(t)

From the previous statements it is clear that the case for \g = 1 is a special one in the
study of P, (Ag)-solutions. This case is the subject of this work.

[1+o(1)],

l14+o1)] (k=1,....n—=1; j=1,...,n).

2. THE MAIN RESULT AND THE NECESSARY AUXILIARY STATEMENTS FOR ITS
ESTABLISHMENT

We introduce the function Jp(t), setting

JB(t) :B/P

The main result of this paper is the following

a, if/pvlw(T) dr = 400,

3=

(r)dr, B=
w, if/pi(T) dr < +00.

\ a

Theorem 2.1. Let o0 # n. Then for the existence of P, (1)-solution of the equation (1.1) it
is necessary that for some p € {—1,1} the inequality

app” >0 (2.1)
and the condition )
t | (1)} ()T (1) 757 = +00 (22)
hold. Moreover, each of these solutions admits the following asymptotic representations as
t1Tw

n —

7 I5(t)

In Jy(t)] = v|"— 1+ o(1)) (2.3)

(k) 1 n—o e
m :Mpz(t)j —Z e L4 o(1)] (k=1,...,1), (2.4)

where
v = psign (u JB(t)>.
n
If the function p : [a,w]—]0,+o0[ is continuously differentiable, and there exists the limit
(finite or equal to £00)

1
i 210
e pa ()| Jp()]
and if (2.1) and (2.2) hold, then the equation (1.1) has at least one P, (1)-solution which
admits the asymptotic representations (2.3), (2.4) ast tw. If p =1 and o > n, then there
exists (n — 1)-parametric family of solutions, if p = 1 and o < n, then we get n-parametric
family of solutions, if u = —1 and o < n, then we obtain one parametric family of solutions.

) (2.5)

g
n—o
20
n—o

To prove Theorem 2.1, we will use the following lemma which can be deduced from Lem-
mas 10.1-10.6 in [6].
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Lemma 2.1. Let y : [to,w]|— R\ {0} be an arbitrary P, (1)-solution of the equation (1.1).
Then we have the following asymptotic relations:

OIA0
s~y

(k=1,...,n) as tTw (2.6)

and ®)
Lm0y ()
ttw y(kfl) (t)

Along with this lemma, we will also need the next result on the existence of vanishing at
infinity solutions of a system of quasi-linear differential equations

=t00 (k=1,...,n). (2.7)

n
V), = Bo[fk(r,vl,...,vn) + chﬂ% + Vk(vl,...,vn)] (k=1,...,n—1),
=ty (2.8)
v, = H(T) [fn(T, V1., Up) F Zcmvi + Vo(vg, ... ,vn)],

i=1

in which gp € R\ {0}, cir. € R (4,k = 1,...,n), H : [19,+00[— R\ {0} is a continuous
function, fi : [10, +00o] xR} (k=1,...,n) are continuous functions satisfying the conditions
2

ltiTm fe(myv1,...,v,) =0 uniformly in (vq,...,v,) € RY, (2.9)
w 2
where .
RY — {(vl,...,vn) ER: fuil <5 (= 1,...,n)},
2
and Vi : R? — R (k=1,...,n) are continuously differentiable functions such that
2
aVi(0,...,0
Vi(0,...,00=0 (k=1,...,n), k(av) =0 (i,k=1,...,n). (2.10)

By Theorem 2.6 of [8], for a system of the differential equations (2.8), we have the following

Lemma 2.2. Let the function H : [t9, +o0o[ [R\ {0} be continuously differentiable and satisfy
the following conditions:

+oo
=0, / H(t)dr = +00, (2.11)

70

. . H'(7)
Jim H(r) =0, lim H(r)

and the matrices Cy, = (cpi)j ,—q and Cp_1 = (ck,)zzzll are such that det C, # 0, and Cp_1

has no eigenvalues with a zero real part. Then the system of differential equations (2.8) has

at least one solution (vg)p_, @ [11,+00[—= R} (11 > 70), which tends to zero as t — +o0.
2

Moreover, if among the eigenvalues of the matriz Cp,—1 there are m eigenvalues (taking into
account multiplicity), the real parts of which have opposite sign to Py, then the system (2.8)
has m-parametric family of solutions if H(7)(det Cy)(det Cp,—1) > 0, and m + 1-parametric
family of solutions if the inequality holds in opposite direction.

3. PROOF OF THE MAIN THEOREM AND THE COROLLARY TO A LINEAR DIFFERENTIAL
EQUATION

Proof of Theorem 2.1. Necessity. Let y : [ty,w[— R\ {0} be an arbitrary P, (1) solution of
(1.1). Then, according to Lemma 2.1, the conditions (2.6) and (2.7) are satisfied. In view of
(2.7), in a left neighborhood of w,

sign (Z/((:))) = p, where pe {-1;1}. (3.1)
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Since from (1.1)

y%” — aop(t)]| I |y ()]
and by (2.6)
y) _ @)y ) (y’“))” as ¢ 1w
y(t) @)y y T ) |
then

y'(t)\" i
(y(t) ) = aop(t)| In [y (1)]|7[1 + o(1)] as t T w.

Hence, in view of (3.1), it is clear that the inequality (2.1) holds, and so we have the
asymptotic relation
y'(t)

y(@)|In |y(@)][=
Since o # n, therefore, integrating this relation from ¢, to ¢ and taking into account the
definition of P, (1)-solution, we find that

= up% (H)[1+0(1)] as t 1 w. (3.2)

j(n — o)

|In|y(t)|| = sign (In|y(t)]) = Je()[1+o(1)] as t T w.

Thus (2.3) holds. Taking into account (2.3), from (3.2) we obtain the representation

’;'((f)) =t 0] 0] L+ o()] as 1w,

from which, by (2.6) and (2.7), it follows that the condition (2.2) holds and we have the
asymptotic representation (2.4).

n

Sufficiency. Let p : [a,w[— |0, +00[ be continuously differentiable function for which there
is a finite or equal to oo limit (2.5). We show that in this case, if the conditions (2.1) and
(2.2) are satisfied, then the equation (1.1) has solutions defined in the left neighborhood of
w and admits as t T w the asymptotic representations (2.3) and (2.4).

We choose arbitrary ap € Ja,w[. By (2.2) we get

w

/ P ()] J5(1)| 757 dt = +oo,

ag

hence, taking into account the form of the function Jp, it follows that

lim 1JB(t)|77 = 4o0. (3.3)

Next, we establish that the limit (2.5) is equal to zero. Assume the contrary. Then, by
virtue of its existence,

either const # 0
li t) = ’ 3.4
tlTIEQ( ) {or +o00, (34)
where ) i
(pﬁ (t Jp(t)|n——e !
Q) =72 ) 5( )\270) .
pr ()| JB(t)| "=
Integrating the function @ from ag to ¢, we obtain
/ 1

Q(1)dr = —— — +C, (3.5)

/ pr ()| JB(t)[=>
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where C is a constant. If w = 400, then 7, (t) = t, and in this case, by (2.2), we have

 faQ(r)dr
lim Ja " 7

t——+o00 t

However, this is impossible since by the de L’Hospital’s rule and (3.4),

- JaQ@dr
i 5 < i Q) 0
If w < oo, then 7, (t) =t —w and by (2.2)
lim pr (1)].75 (£)| 77 = +o0.

Therefore, from (3.5) it follows that

ttw

t
lim/Q(T) dr =C.

Due to this condition, the equation (3.5) can be rewritten as

/ 1
Q(r)dr = —— — .
/ o o=

Dividing this relation by 7, (t), taking then the limit as ¢ T w and using (2.2) we obtain

t
lim 7];0 Qlr)dr =
tHw t—w

However, the last equality is impossible because the limit owing to the de L.’Hospital’s rule
and (3.4), is nonzero. Therefore, the assumption that the limit (2.5) is not equal to zero was
incorrect.

Now, applying to the equation (1.1) the transformation

() (¢ 1, |n—o b
B o) P )] )] (k=1 1),
y*=b(t) n (3.6)
n—o T n—o e
Inly ()] = v|“—Z Jp(t)| L+ ea(r)), 7= | 0]
we obtain the following system of differential equations:
v = p (L +vg) Vg1 — vp — ph(7)] (k=1,...,n—2),
/ ’1 + Un‘a 2 }
= — (14 vn-1)? = ph(1) (1 + vy (3.7)
u[(lw)_“(lw_g (14 v0-1)? — ph(r)(1 +va-1)]
v, = 9(7)(v1 = vn),
in which ) .
n—o — (pm ("5 JB(t)["==)'
g(T(t)):( . JB(t)‘ L h(r(t) = A
pr ()57 Jp(t)| "7
We will consider this system on the set [19, +oo[ xR, where
2
— = 1
0= |"—T Jplao)| T, RE = {(0n ) ERY: ol < 5 (=1,
2
By (3.3) and the fact that the limit (2.5) is equal to zero as established above, we have
li =1 t) = li =limh(7(t)) = 0. .
Jim_g(r) = limg(r(0) =0, _lim_h(r) =limh(r()) =0 (3.9
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Moreover,
+o00o w l()d
n pn S S n w
dr — — Inl|J = 400. 3.9
[ atryar = 2o [EEUE - ()] = e (39)
0 ao

By separating linear parts in the equations of the system (3.7), we obtain a system of
differential equations (2.8) in which

Bo = u, H(T):g(T)a fk(TaUIa---an):_M(1+Ul~c)h(7—) (k:17"'an_1)>

fa(ryv1,..0,n) =0, Vi(v,...,0p ):/Ukvk+]_—v£ (k=1,....,n—2),
1+
Vi—1(v1, ... 0p) = (1+v1|) 2’4_@” 3 +iz:1;z—u —oUp, Vp(vr,...,0,) =0,

Ckk:_17 Ckk-l-l:la Ckizo for Z?ék',k?‘f‘l (k:l,...,n—Q),
Cn—1i = —1 (i:l,...,n—2), Cn—1n-1= —2, Cn—1n =0,
Cn1:17 cnizo (2227)71_]‘)7 Cnn:_l'

Here the functions Vi (kK = 1,...,n) satisfy (2.10) and by (3.8) and (3.9) the conditions
(2.9) and (2.11) hold. Furthermore, for the matrices Cy,—1 = (ckz)zzzll and C,, = (Ckim,z‘:p
we find

detC,, = (=1)"" o —n], det[Cp_y — pE] = (—1)"! Z (1+ p)*

Therefore, (det Cy,)(det Cp,—1) = n(o — n) and the characteristic equation of the matrix
C)—1 has the form

n
Y (L+prt=o.
k=1

The roots of this equation differ from the roots of (14 p)™ = 1. Clearly, all such roots have
negative real parts.

Hence, taking into account the condition o # n, it is clear that the system of differential
equations (3.7) satisfy all the conditions of Lemma 2.2. On the basis of this lemma, the given
system of differential equations has at least one solution (vg)p_; : [11,+o0[—= R™ (11 > 79),
which tends to zero as 7 — 4o00. Moreover, if y = 1 and o > n, there exist (n—1)-parametric
family of such solutions and n-parametric family in case ¢ =1 and ¢ < n. If 4 = —1 and
o < n, there exists one-parametric family of solutions. Each such solution of the system
(3.7) by virtue of the substitutions (3.6) corresponds to y-solution of the differential equation
(1.1), which admits the asymptotic representations (2.3), (2.4) as ¢ T w. It is not difficult to
see that using the conditions (2.1) and (2.2) any of these solutions is a P, (1)-solution. [

From this theorem we get the following corollary for the linear differential equation (1.3).

Corollary 3.1. For the existence of P,(1)-solution of the differential equation (1.3), it
is necessary, and if the function p : [a,w]—]0,400[ is continuously differentiable and

limyp,, p’(t)pinTH(t) is finite or equal to +o00, then it is sufficient that for some p € {—1;1},
the inequality (2.1) holds and the condition

lim (1) (8] = 0 (3.10)

1s fulfilled.
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Moreover, for each of these solutions there take place the following asymptotic representa-
tions as t T w:

In|y(t)] = pJp(t)[1 + o(1)],

(k)
y W) 1 _ _
g = o] (k=1 n—1),
whereas, for =1, there exists an n-parametric family of B, (1)-solutions for this represen-
tation, and for = —1, there exists one-parametric family of solutions.

This corollary complements the results given in [9, Chapter 1, § 6] on the asymptotic
behavior of solutions of linear differential equations. In view of (3.10), it does not refer to
the cases where the differential equation (1.3) is asymptotically close to the Euler equation
and the equation with almost constant coefficients.
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1. STATEMENT OF THE PROBLEM

In a plane of independent variables x and ¢ we consider a wave equation with a nonlinear dissipative
term (see [16, p. 57], [17])

Lu = ug — Uge + g(x, t,u)uy = f(2,1), (1.1)
where f, g are the given and w is an unknown real functions.

By Dr = {(z,t) : 0 <z < Et, 0 < t < T} we denote a triangular domain lying inside of the
characteristic angle ¢t > |z| and bounded by the segments 17 : z = %t, Yor: x=0,0<t<T and
V3,1 ° t:T,ngSET,0<E<1. For T = 400, we assume that Do, := {(z,t) €ER?: 0 <z <
kt, 0 <t < 400}

For the equation (1.1), we consider the Cauchy—Darboux problem on finding a solution u(x,t) in
the domain Dr by the conditions [2, p. 284]

|§17T =0, u‘%”;‘?zT =0. (12)

Note that, the problem
Upt — Ugy + a(, )uy + b(z, )us + c(z, t)u + d(z, t,u) = f(z,t),
(aiur + ﬂiut + ’Ylu)| T = 07 1= 17 27 U(O, 0) = O

Vi,

in a linear case has been investigated in [4,11,12,18,22,23] and in a nonlinear case in [1,6-8,10,13-15].
As is mentioned in [4,23], the problems of such a matter arise under mathematical simulation of small
harmonic wedge oscillations in a supersonic flow and of string oscillations in a cylinder filled with a
viscous liquid. It should also be noted that when passing from the nonlinearity d(z,t,u) appearing
in [1,6-8,10,13-15] to the nonlinearity of type g(z,t, u)u; in the equation (1.1), as it will be seen
below when studying the boundary value problem, there arise difficulties, and not only of technical
character.

Below, we will show that under definite requirements imposed on the nonlinear function g the
problem (1.1),(1.2) is locally solvable. The conditions of global solvability of the problem will be
obtained, violation of these conditions may, generally speaking, give rise to a soluion destruction after
a lapse of a finite time interval. The question on the uniqueness of a solution of the problem (1.1), (1.2)
will also be considered in the present work.

Definition 1.1. Let f € C(D7), g € C(Dr x R). The function u is said to be a general solution of
the problem (1.1), (1.2) of the class C! in the domain D7 if u € C*(D7) and there exists a sequence

of functions u,, € C%(Dr, fT) such that u, — v and Lu, — f, as n — 0o, respectively, in the spaces
C'(Dr) and C(Dr), where C*(Dr,T'r) := {v € C*(Dr) : vls, , = 0, v, , = 0}, I := 31,7 U 1.

Remark 1.1. Below, for the sake of simplicity of our exposition, sometimes instead of a generalized
solution of the problem (1.1), (1.2) of the class C! in the domain D7 we will speak about a generalized
solution of that problem.

Remark 1.2. Obviously, a classical solution of the problem (1.1), (1.2) from the space u € C2(Dy,I'r)
is a generalized solution of that problem. In its turn, if a generalized solution of the problem (1.1),(1.2)
belongs to the space C?(Dr), it will also be a classical solution of the problem.

Definition 1.2. Let f € C(Dr), g € C(D7 x R). We say that the problem (1.1),(1.2) is locally
solvable in the class C, if there is a positive number Ty = To(f,g) < T such that for any T} < Ty,
this problem has a generalized solution of the class C! in the domain Dr,.

Definition 1.3. Let f € C(Dy), g € C(Ds x R). We say that the problem (1.1), (1.2) is globally
solvable in the class C*, if for any finite 7 > 0 this problem has a generalized solution of the class C'*
in the domain Dr,.

When investigating the problem (1.1), (1.2), below, in Section 4, we will need to study the following
mixed problem: in the domain Dy, 4, := Dy N {t1 < t < t2}, where 0 < t; < to < T, find a solution
u(x,t) of the equation (1.1) by the initial

u|t=t1 =¥ ut’tztl = ¢ (13)
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and boundary

=0, =0 (1.4)

a,y o wl,,
0Dy, 15071, T T1OD¢, .ty F2,7

conditions.

Remark 1.3. Analogously, just as in the case of the problem (1.1),(1.2), we introduce the notions
of a generalized solution, local and global solvability of the problem (1.1),(1.3), (1.4).

2. EQUIVALENT REDUCTION OF THE PROBLEM (1.1),(1.2) TO THE NONLINEAR
INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE

In new independent variables £ = % (t+x),n= % (t —x), the domain D7 will pass into a triangular

domain Ep with vertices at the points O(0,0), Q1 (+L;, £L.), Qz(%, %) of the plane of variables &, 7,

T+k° T+k
and the problem (1.1), (1.2) will pass into the problem (see Figure 2.1)
-~ 1 N ~
L = gy + 5 g(§ =, & +n,u) (g +uy) = f(& ), (§m) € Er, (2.1)
v:z|%)T =0, (ue-— an)|y” ) (2.2)

with respect to a new unknown function (&, n) := u(§ — n,& + 1) with the right-hand side f(&,7n) :=
f(f - Uaf + 77) Herea

T T
n = <E< = €= <n< = — 2.
nrin=k 0<8§<Er T 2T §=mn, 0<n<nr % (2.3)
1-k
0<ki=—r<1. (2.4)
1+ k

FIGURE 1

Remark 2.1. According to Definition 1.1, we introduce the notion of a generalized solution w of
the problem (2.1),(2.2) of the class C! in the domain Er, i.e., there exists a sequence of function

U, € C*(Ep,I'y) :={w € C*(Er) : w|y, , =0, (we —wy)|y, , = 0} such that

nh_)néo Hun - uHC(ET) =0, nh—>H;o ||Lun - fHC(ET) =0, (25)
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where I'r := vy 7 Uz 1.

Note that, if u is a generalized solution of the problem (1.1), (1.2) in a sense of Definition 1.1, then
u will be a generalized solution of the problem (2.1),(2.2) in a sense of the given definition, and vice
versa.

By G we denote a triangular domain with vertices at the points O, @, QT(ﬁTTk, H_Lk
with respect to the straight line £ = 7, and as is easily seen, Gy N {n < £} = Er.

We continue the functions u,, and fevenly with respect to the straight line £ = 7 into the domain
Gr retaining for them previous notation, i.e.,

), symmetric

un(§,m) =un(n€),  f(&n)=fn.€), (&n) € Cr. (2.6)
Remark 2.2. Since ﬂET € C(Er) and @, |5, € 8’2(ET, I'r), taking into account (2.6), we have

feC(Gr), uneC*Gr), (2.7)
=0, (2.8)

|

=0, ﬁn

*
Y1, T ’YI,T

where 77 7 := 0Q7 € 0Gr, ie, i E=kn, 0<n< H_Lk
Remark 2.3. Note that, for the functions 1, ]F‘v7 continued to the domain G, the limiting equalities
of type (2.5) remain valid, i.e.,

nll)ngo [[tn — ﬂHc(@T) =0, ”h_?;o (| Lty — f“c(@T) =0. (2.9)

If Py = (&0,m0) € E7, we denote by Py MyPyNy the characteristic with respect to the equation (2.1)
rectangle whose vertices No and M lie, respectively, on the segments v1 7 and 77 , i.e., by virtue of
(2.3): No = (&0, k&0), Mo = (kno,mo), P1 = (kno, k&y). Since P, € Gp, we construct analogously the
characteristic rectangle PoM; P;N; with vertices Ny and M; lying, respectively, on the segments v; 7
and 77 7. Continuing this process, we get the characteristic rectangle P; 1 M; P; N; for which N; € v,

M; € 7, where N; = (&, k&), My = (kni,mi), Piyr = (kni, k&), it Pi= (&,mi), i =0,1,....
It is easily seen that

Py = (k¥ &0, k*™00),  Pamy1 = (K2 o, K2 1E),
Moy, = (K200, k*™n0),  Mamia = (k¥ 260, K™ H1&), m=0,1,2,.... (2.10)
Noy = (K™ €0, K24 1&0),  Namyr = (B2 lng, K27+ 21p0),
As is known, for any function v of the class C? in the closed characteristic rectangle P; 1 M;P;N;
the equality (see, e.g., [3, p. 173])
v(P;) = v(M;) + v(N;) — v(Piyy) + / Ovdé&dm, i=0,1,..., (2.11)
P 1 M; P;N;
where 0 = %;7 , is valid.
From (2.10), by virtue of (2.8), we have w, (M;) = ,(N;) = 0,i=0,1,2,.... Therefore, (2.11) for
v = u,, results in
T €0s10) = T (P0) = To(M) + T (No) = To(P) [ D dydm
Py Mo PoNo
= —Un(P) + / O, dé; dny
Py Mo PyNo
= —TUn (M) — U (N1) + Up (P) — / O, d& dmy + / O, déy dmy
Py M Py Ny Py Mo Py N
—ap) - [ Btadadn+ [ Dudadn=--

Py M Py Ny Py MoPyNy
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()" (P) + Y (1) / B, dey dny, (60v0) € Er (2.12)
=0 P 1 M; P;N;

Since the point P, from (2.12) tends to the point O, as m — oo, by virtue of (2.8), we have

lim u,(P,) = 0. Hence, passing in the equality (2.12) to the limit, as m — oo, for the function
m—r o0

U, € C?(Gr) in the domain E7 we obtain the following integral representation:

o

Wnom) = > (-0 [ D dédn, (Gom) € Br. (2.13)
=0 P11 M; P;N;
Remark 2.4. Since 1, € C(Er) and there are the inequalities (2.4), and owing to (2.10),
mes Py 1 M; PN; = k** (&0 — kno)(no — k&o), (2.14)
therefore the series in the right-hand side of the equality (2.13) is uniformly and absolutely convergent.

It can be easily seen that by virtue of (2.4) and (2.14),

(oo} (oo}

S [ Bwdadn-Y 1 [ Fdadn
=0 P11 M;P;N; =0 P 1 M;P;N;
< Z ||ﬁ7jn - J?Hc(éT) mes P; 1 M; P;N; = Hﬁﬂn - ﬂ|c(§T) Z k> (€0 — ko) (o — k&o)
i=0 =0
oo 1=~ 7
= 1322 HD“n_fHC(éT)' (2.15)

Remark 2.5. By (2.5) for ¢ = 0 and (2.15), passing in the equality (2.13) to the limit, as n — oo,
for a generalized solution @ of the problem (2.1), (2.2) we obtain the following integral representation:

ieom) = > (-1 [ Fderdm. (om) € Er. (2.16)

=0 P; 1 M;P;N;

Remark 2.6. From the above reasonings it follows that for any ]7 € C(E7), the linear problem
(2.1),(2.2) has a unique generalized solution & which is representable in the form of a uniformly and

absolutely convergent series (2.16) and for f € C*(E7) is a classical solution of that problem, i.e.,
u € CQ(ET,FT).

According to (2.16), we introduce into consideration the operator -1 : C(Er) — C(E7) acting
by the formula

@ PEm=3 (-0 [ Fdewdm, €< Er (2.17)
=0 P11 M; P;N;
In the integrand here, according to (2.6), under f we mean the right-hand side of the equation
(2.1) which is continued evenly from the domain Er to the domain Gr with respect to the straight
line ¢ =7, and due to (2.7), we have f € C(E7).

Remark 2.7. By virtue of (2.17) and Remark 2.6, a unique generalized solution @ of the problem
(2.1),(2.2) is representable in the form u = 7! f, and in view of (2.4), (2.14), the estimate

aemi<y. [ 1 dedn < alflom, YR
iZOPH»lMiPiN'i =0
62 +n2 . T2 -
= m”f”c(ﬁﬂ < m”f“c@ﬂ
holds which in its turn yields
. T2
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Remark 2.8. Standard reasonings (see, e.g., [9]) show that the function @ € C*(E7) is the generalized
solution of the problem (2.1), (2.2), if and only if it is a solution of the following nonlinear Volterra
type integro-differential equation

W) + 5 07 (o€~ €+ m D@+ T) (€)= O 6, € eBr  (219)

3. LOCAL SOLVABILITY OF THE PROBLEM (1.1), (1.2)

Lemma 3.1. The operator O-! deﬁneciby the formula (2.17) is the linear continuous operator acting
from the space C(ET) to the space C*(Er).

Proof. To this end, we first show that for f € C(Er), the series from the right-hand side of (2.17),
differentiated formally with respect to & and to 7 converges uniformly on the set Ep. Indeed, as it
can be easily verified, we have

(L) = 2 (@ FEn)]

[kZ" fdny + k242 fdmy — k21 fdgl} . (3)
Nzn/P2n P2n+242n+1 M2n+/1N2n

(@) n)]

[W / fdg, + k2 / fde — k2t / fdm] . (3.2)

Map Pap, Papt2Nanta Napt1Map

I
8

3
I
o

(LQf)(£, 77) =

Mz &>

0

3
Il

By virtue of (2.10), we have the equalities
|N2mP2m| = k2m(77 - k£)7 ‘P2m+2M2m+1| = k2m+1(€ - k77>7 |M2m+1N2m‘ = k2m(1 - k2)§7
| Mo Poma| = E*™ (& = kn), | PamsoNomy1| = 2" (= kE), [ Nami1 Mam| = E*™(1 — k),

which in view of (2.4) imply that the series (3.1) and (3.2) are uniformly and absolutely convergent,
and the estimate

~ ~ 37~
max {HLlch(ETy ||L2f||C(ET)} < 1_ 74 ||f||c(ET) (33)
holds.
From (3.3), in view of (2.18) and the fact that ||v||cr = max{||v||c, ||vellc, [|vgllc}, it follows that
Lemma 3.1 is valid. O

Introducing the notation v1 := @, vg := Ug, vs := U, and differentiating formally the equality (2.19)
with respect to £ and n for (§,n) € Er, we obtain

Ul(fﬂ?) = _1 El_l(g(g - 7775 +77a7)1)(7)2 +’l)3)) + (E_lf)(gan)v

2
va(€,m) = *%Ll(g(f — 1,6 +m,01)(v2 +v3)) + (L) (€ m), (3.4)
U3(§7"7) = _%L2(g(£ - 77a§ + navl)(UQ + U3)) + (L2f)(£a77>7

where the linear operators L, and Lo are defined by the equalities (3.1) and (3.2).

Remark 3.1. It is not difficult to check that if u € C1(E7) is a solution of the nonlinear equation
(2.19), then the functions vy := u, vy := Ug, vs := «, of the class C(Er) satisfy the system of nonlinear
equations (3.4), and vice versa, if the functions vy, vo and v of the class C(Er) satisfy the system
of equations (3.4), then v; € C*(E7) and Vi = U2, U2y = v3, and u = vy will be a solution of the
equation (2.19) of the class C!(E7).

We will now proceed to the proof of the local solvability of the system of nonlinear integral equa-
tions (3.4).
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Let us consider the following conditions:
lg(x,t,s)| <m(r), |g(w,t,s2) = g(z.t,s51)| < c(r)lsa = s1l, (x,t) € Dr, |s|,|sal,[s2| <7, (3.5)

where m(r) and ¢(r) are some nonnegative ‘continuous functions of argument r > 0. Obviously, the
conditions (3.5) will be fulfilled if g, g5 € C(Dr x R).

Theorem 3.1. Let f € C(Dy) and the function g € C(Dr x R) satisfy the conditions (3.5). Then
there exists a positive number Ty = To(f,g) < T such that for any Ty < Ty the problem (1.1),(1.2)
has at least one generalized solution in the domain Dr, .

Proof. By Remarks 2.1 and 2.8, the problem (1.1),(1.2) in the space C'(Dr) is equivalent to the
system of nonlinear integral equations (3.4) in the class C(E7). Below, we will prove the solvability
of the system (3.4) by using the principle of contracted mappings (see, e.g., [21, p. 390]).

Assume V := (v1, va,v3) and introduce the vector operator ® := (®1, P5, P3) acting by the formula

(22V)(€,m) = —5 T (9(E — &+ myvr)e2 + v5)) + (O &),
(‘I)2V)(§»77) = _% Ll (g(g - 7776 + 77#&)(“2 + U?))) + (Llf)(fﬂl)» (36)

1
(@3V) (&) = =5 La(9(& = m, €+ my01)(v2 +v3)) + (L2f)(€m).
Taking into account (3.6), the system (3.4) can be rewritten in the vector form
V=2oV. (3.7

Let
— — (T TR3
WVixy := Jnax {HUZ'”C(FT)}’ Ve X :=C(Em;R?),

where C(Er;R?) is a set of continuous vector functions V : Ep — R3.

We fix the number R > 0 and denote by Br(T) :={V € Xr: ||V|x, < R} a closed ball of radius
R in the Banach space X1 with center in a zero element.

Below, we will prove that there exists the positive number Ty = Tp(f,9) < T such that for any
T < Tp:

(i) ® maps the ball Bg(Ty) into itself;

(ii) @ is a contractive mapping on the set Br(T}).

Indeed, by the estimates (2.18), (3.3) and the first inequality (3.5), from (3.6) for V € Bgr(Th1),
when T7 < T, we have

T2 ~
3.8
3T ~ .
|(‘I’zv)(§a77)‘ < 1_ 2;4 (Rm(R) + ||f||C(FT))a (5777) € ET17 = 273
From these estimates, owing to the fact that k2 < 1, it follows that
Ty (Th + 3) ~
12V xr, < -z (RM(R) + || fllezm)- (3.9)
For the fixed R > 0, we require for the value T} to be so small that
T, (T1 + 3) ~
e (BmR) + | llec,)) < R (3.10)

Then from (3.9) and (3.10) it follows that ®U € Br(T}), and hence the condition (i) is fulfilled.
Next, by (2.18) and (3.5), from (3.6), for V; = (v},v?,v3) € Br(Ty), i = 1,2, we have

1) V) e

|(@1V2 = 21V1)(€ )| = % 57 g€ = m.€ +m,03) (05 + o) — 9(€ = € +m 0D F +])|
- % ‘ﬁ—l [(g(ﬁ—n,&mv%)—g(ﬁ—n,&mv}))(v§+v§)+g(§—n,§+n,vi)(v§—v§+v§—v§)} ’
7

<
- 1-k?

(Re(R) +m(R))[[Va = Vil xr, -
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Analogously, taking into account (3.3), we have

3T :
[(@:V2 — @;V1)(&m)] < 1= 24 (Re(R) +m(R))|IVa — Villxg,, i=2,3. (3.11)
We now choose the number T3 so small that
Ty (T + 3)
2 (Re(R) + m(R)) < g = const < 1, (3.12)

and hence ||V, — @V x, < q||Va — Vi||x,, . Thus the operator ® is a contractive mapping on the
set Br(T1), i.e., the condition (ii) is fulfilled.

It follows from (3.11) and (3.12) that there exists the number Ty = To(f, g) < T such that for any
Ty < Ty, both conditions (i) and (ii) are fulfilled for the mapping ® : Br(T1) — Bgr(T1). Therefore,
by the principle of contracted mappings, there exists the solution V' of the equation (3.7) in the space
C’(ET1 3 RS) O

Remark 3.2. From the above reasonings as in proving Theorem 3.1 dealt with the contraction of
the mapping @, it immediately follows that if u; and us are two possible solutions of the problem
(1.1),(1.2) of the class C1(Dz), then there exists the positive number Ty = T4 (||uy |, [[uz]|) < T such
that Ul |DT1 = U2|DT1 .

4. A PRIORI ESTIMATES OF A SOLUTION OF THE PROBLEM (1.1), (1.3), (1.4) IN THE CLASSES
O(Dthfa) AND Cl(Dthh)

Assume
wr =Dy i, N{t =7} t1 <7 <ty
Yistrote = Dy oty Vi, 0= 1,2,
Loyt 1= Yt0 00 U V258005

and introduce into consideration the space

CQ(EtlJQ’Ftl’Q) = {U < CQ(Etl’b) : U{’Yl;ﬂ,tz - 0, UI|'Y2;t1,t2 - 0}
Let

feCDr), g C(Dr xR), ¢ € C' (@), ¥ € C@y,). (4.1)
Definition 4.1. The function u € C'(Dy, +,) is said to be a generalized solution of the problem

(1.1),(1.3), (1.4) if there exists a sequence of functions u, € C?(Dy, t,,1, +,) such that the limiting
equalities

Jim {uy = ulleap,, ,,) =0 lm |[Lun = flloo,, ,,) =0 (4.2)
and

Jimlunlg, = ¢ller@,) =0, Im [lunlz, —¢lea,) =0 (4.3)
hold.

Lemma 4.1. Let the conditions (4.1) and
g(z,t,8) > —Myp, (z,t,5) € Dy x R, My := const >0, (4.4)

be fulfilled. Then for a generalized solution u € C*(Dy, 4,) of the problem (1.1),(1.3), (1.4) an a priori
estimate

lulles,, .,y < allflem,, ., +Ielc@y) + [Yllew.,)) (4.5)
with the positive constant ¢y = ¢1(T'), independent of u, f, ¢, and ¥ is valid.
Proof. Let u be a generalized solution of the problem (1.1), (1.3), (1.4). Then by Definition 4.1, there

exists the sequence of functions u,, € C%(Dy, 1,,t,.1,) such that the limiting equalities (4.2), (4.3)
are valid.

Consider the function u,, € C?(Dy, +,,T,.+,) as a solution of the following mixed problem

Lu, = fn, (4.6)
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’Uﬂl‘wtl = ¥n, unt|wt1 = Q/Jm (47)
uﬂ|’¥1;t1,t2 =0, unz|72;t1,t2 =0. (48)

Here,
On = Un|wt17 {lpn = “”t|wt1’ fn = L'Ltn (49)

Multiplying both parts of the equality (4.6) by u,: and integrating the obtained equality with
respect to the domain Dy, 4,.r == {(z,t) € Dy, 4, : t1 <t < T}, t1 <7 <y, we have
1

3 / (uflt)t dx dt — / UppaUnt dT dt + / g(x,t,un)uit dx dt = / Fntng dz dt.

Dtl,tz;ﬂ' Dtl‘tz:r Dtl,fQ:T Dtl,tg;ﬂ'

Taking into account (4.8) and applying Green’s formula to the left-hand side of the last equality,
we obtain

1
/ fnunt dr dt = / 271/15 [(unmyt - Unth)Q + u?zt(y? - l/g):l ds

Dy tgir Y1ty
1 1
by fderade - [ v ayder [ gt ded, (2.0
wWr wtl Dtl,tQ;T

where v := (v, 1) is a unit vector of the outer normal to Dy, 1,:7-
Taking into account the fact that the operator v a% — Ug % is the directional derivative, tangent
to 71.4,,7, owing to the first condition (4.8), we have

(unxl/t - untVac)|,yl_t1 LT 0. (4.11)
Since v, = \/11? , Uy = IEEQ and 0 < k < 1, therefore
+ +
(v} — ”5)|ww < 0. (4.12)

Consequently, by (4.4), (4.11), (4.12), from (4.10), we have

wp(7) == /(ufm +u?,)dr < /(ufm +u?,) dr +2 / frntint dx dt + 2Mp / u?, drdt. (4.13)

wr (= Diy to;r Dy to;r

Bearing in mind the inequality 2f,un; < u2, + f2, by (4.7) and (4.13), we get

wp (1) < (14 2M7) / uit dx dt + / ffl dx dt + /((p;? + wi) dx,
Dy toir Dty tgr Wty

whence, in view of the expression for the function w,(7), it follows that

wn(r) S mr [ @) do 4 1Fall iy ) + 16t + 1l
0
where mp := 142M7. Hence, since the value an||%2(Dt i)’ being the function of 7, is nondecreasing,
1,257

by the Gronwall’s lemma (see, e.g., [5, p. 13]), we have
wa(r) < expmrr) [ fallaion ooy + 19610y + 1l ] (114)

If (z,t) € Dy, +,, then by virtue of the first condition (4.8), we obtain the equality

x

U (2,8) = U (2, 1) — un(kt, t) = /um(a, t) do,

kt

which owing to the Schwartz inequality and (4.14) results in
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Tt Tt
[un (z,8)|? < / do / [Una (0, )2 do < (kt — x) / [Una (0, 1)]? do < (kt — 2)wn (t) < ktw,(t)

wt

< ktz exp(mrtz) [anHQC(ﬁT) mes Dy, 1,7 +meswy, ([ onll2n @, ) + H%HQC@I))}

1~ ~
= 5 K*ta(t3 = 11) exp(mrta) | fulle o,y + B2 trt2 exp(mats) [ onlén z,,)

+ k2 tts exp(mrta) [l @, )- (4.15)

Thus, using the obvious inequality

(

n
1=

1 n
2 2
a/q; ) S |a'i | )
1 i=1

we obtain

~ /T TmT
lunlle,, . < Ty 5 ex0 () Ifullcny

~ Tm ~ Tm
+ Tk exp (TT) ||(Pn||cl(wt1) =+ Tk exp (TT) ||1/1n|\C(m1)'

Passing in the last inequality to the limit, as n — oo, by virtue of (4.2), (4.3), (4.9), we obtain the

estimate (4.5) in which
~ TmT T
c1(T) = Tkexp (T) max{ 5,1}. O

Remark 4.1. Repeating the same reasoning as in Lemma 4.1, for a generalized solution of the problem
(1.1), (1.2) we obtain an a priori estimate

||U||C(ET) < COHch(ﬁT)»

~ T T
co =Tk Eexp(m; )

Below, using the classical method of characteristics and taking into account (4.5), we obtain a priori
estimate in the space C'(Dy, 4,) for a generalized solution of the problem (1.1), (1.3), (1.4).
We have the following

where

Lemma 4.2. Under the conditions of Lemma 4.1, if
1~
ty—ty < 5 kb, (4.16)

for a generalized solution of the problem (1.1),(1.3),(1.4) an a priori estimate
HUHCI(ELQ) < (2T|\f||c(5T) +lleller @) + ||¢||C(wt1)) exp [2(Ky,y + 1T (4.17)
holds. Here,

Koy =K(Ifle@, + Ielor@,) + 1¢le@.,)), (4.18)

where

K(s):= sup lg(z,t,s1)| < o0,
(z,t)€Dr, [s1|<c1s

¢ is the constant from the a priori estimate (4.5), and

||U||cl(5tl,t2) = maX{HUHc(ENz)a ||Ux||c(5t1,t2)a ||Ut||c(5t1,t2)}'

Proof. Let u be a generalized solution of the problem (1.1),(1.3),(1.4). The limiting equalities (4.2),
(4.3) are valid, where u,, can be considered as a solution of the problem (4.6)—(4.8) with right-hand
sides fn, ¢n, ¥p from (4.9). For the fixed natural n we introduce the functions

1. 2 . 3 ._
Uy = Upt — Ung, Uy = Unt + Ung, Uy = Up, (4.19)
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which in view of (4.7), (4.8) for ¢; <t < ¢ satisfy the initial and boundary conditions

1 _ ! 2 _ / 3 _
un|th - 1/}?1 — Pno u”|wt1 - wn + P> un‘wtl = Pn, (420)
1—k
(@+4i% —0, =0, (u,—u2)| ~0. (4.21)
1+k Yisty,to V2s5tq o

YLty to

By virtue of (1.1), and (4.19), the unknown functions ul, u2, u3 satisfy the following system of

partial differential equations of the first order

oul  oul 1

a5t + Bz fn(z,t) — 59(%15’”%)(“; +ul),

ou?  ou? 1

5t ox fn(z,t) — gg(x,t, ul)(uy +up), (4.22)
Oup,  Oup _ o

ot or "

Taking into account (4.16), we divide the domain Dy, ;, into three subdomains
Diy 4 i={(2,1) € Dy gy 0 t —t1 <@ < (L+k)ty —t},
D2;t1,t2 = {(x,t) c Dt17t2 <z <t— tl},

D3;t1,t2 = {($,t) S Dtth : (1 +E)t1 —t<x< %t}

For (z,t) € D1y, +,, integration equations of the system (4.22) along the corresponding characteristic
curves and bearing in mind the initial conditions (4.20), we obtain

U}L(x,t):—%/g(PT,ui(PT))(u}Z(PT)—I—ui(PT)) dr + fn(PT)dT+wn(x_t+t1)_‘P;z(x_t"’tl)a

tl tl
t t

ui($7t):_%/Q(Q‘nui(QT))(”i(QT)"'”i(QT)) dr + fn(QT>dT+wn(x+t_tl)+90;L($+t_t1)7

t1 ty
t

Wb (2, 1) = /ui(@»dr n(a+t—t),

t1

where P; := (z —t+7,7), Qr := (z +¢ —7,7). Passing in this system to the limit, as n — oo, in the
space C'(D1., +,) and taking into account (4.2), (4.3), (4.6), (4.7), (4.9) and (4.10), we have

2

t1
—o'(x—t+1t1),

wie,t) = =3 [oPrt PO) (P + 2(P)) dr+ [ F(P)dr v~ t+ 1)

t

u?(z,t) :f%/g(QT,u?’(QT))(ul(QT)+u2(QT)) dT+/f(QT) dr + P(z +t —t1) (4.23)
+¢’Ex+t—t1), 1
u?(z,t) :/ul(QT) dr + o(x + 1t —t1).

t1

Here, by (4.2) and (4.19),

ul = —ug, U= Fug, U= (4.24)
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In case (x,t) € Day, +,, integrating equations of the system (4.22) along the corresponding charac-

teristic curves and taking into

1

U (2, 8) = 1, (0, — z) —

t
:/

account the initial conditions (4.20), we obtain

3
P u;,

g(

(Po)) (uk(Py) + 2 (P,)) dr + / Ju(Py) dr,

Q) (L (@) + 12 (Qy)) dr + / @) +inletot)

t
1
w2 t) = =5 [ o(@ i
ty
+on(z+t—t1),
t
B (2,1) = /u;(QT)dT Fon@tt—t).
ty

Since due to (4.21) the equality ul (0,t — x) = u2(0,¢ — ) holds, bearing in mind the second equality
of the obtained system and the notation P? := (t —z — 7,7), we can rewrite the system (4.25) in the

form

t—x

1

Up,

t1

t

un (@,1)

T2
t1

t

t1

o (t—a—t)— 5

L / 9(Qrr (@) (uh(Qr) +u

t—x

(@06 =—5 [ a(PRub (PP + (PR dr [ fu(PRydr + 6t =2~ 1)

ty

(Po)(ul(P,) + u2(P,)) dr + / fulPy)dr,

t

/g(

t—x

1 .
P ud

2

t

Q-)) d7_+/fn(Q'r)dT+7/)n,(‘T+t*t1)+Q0;1(ft+t7t1),
t1

() = / W (Q)dr + pula +t— 1),

Passing here to the limit as n — oo in the space C(Da., +,) and taking into account (4.2), (4.3), (4.6),
(4.7), (4.9) and (4.19), we have

t—x

t

t1

ud(z,t) =

t
ty

e,t) = —5 [ 9Qr @) (@) + (@) dr+ [ £(@)dr bl t)

x

wet) = —5 [ oPRa PP + (P2 dr [ fPRdr vt - o)
wlt=a =) =5 [ o(Prad PP+ (P)dr + [ F(P)ar

: (4.26)

t1

+<P/(‘:C +t- tl)a

uM(Qr) dr + p(x +t — ).
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For (x,t) € Dsy, +,, integrating equations of the system (4.22) along the characteristic curves, in
view of the initial and boundary conditions (4.20), (4.21), we obtain

U}z(xat):_%/g(Pﬂui(P'r))(uqlm(PT)'i‘ufzz(Pf)) dr+|fn(Pr) dT—|—1/Jn(x—t—|—t1)—goln(x—t—f—tl),
tl tl
,]\{;, t t
@ = (U 2 L [hnat@ @ @) drt [f@adn o

k+1 k+1
t

wot) = [ ub(@)dr

ztt
k41

Since by (4.21) there is on 1.4, +, the equality u2 = % L due to the first equality of the obtained

system and the notation P2 := (% (x +t) + 7,7), the system (4.27) can be rewritten in the form

t

t
ub(wt) = =5 [ 9P POk (P +E(P) drt [ fulPr)dria(a—tata) gl a—t),
’lL2 T — Eil _1 n 3 U3 3 ul 3 ’LL2 3 T v 3 P
et = 2 2t/gua, (P (uh(P2) + w2 (P2)) d +t/fn<PT>d
k—1 L k=1
-H%(%+1(x+ty+h)—w%<%+1@+¢)+h)
—%/Q(Qmui(Qr))(u}l(Qr)+U72L(Q'r))d7'+/fn(Qr)dT,
wot) = [ ub(@)dr

Passing in this system to the limit, as n — oo, in the space C(Ds., +,) and taking into account (4.2),
(4.3), (4.6), (4.7), (4.9) and (4.10), we have

ul(x,t)——f/g(Pﬂu (PT))(ul(PT)+u2(PT)) dr+[f(P;) dr+(z—t+t1)—¢' (x—t+t1),
ty t1
ot = 2 | - / g(P2,u (P2)) (uM(P2) + u2(P2)) dr + / F(P)dr
k-1 k=1
+w(7€,+1(x+t)+t1)—cp(%ﬂ(ﬁt)ﬂl) (4.28)
1 t ( t
—5 [ 9@ @) @) + @) dr + [ 5Qn)ar,
. k+1 pE)
o) = [ W@ ar
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By the a priori estimate (4.5), for a generalized solution u® = u of the problem (1.1), (1.3), (1.4) we get

lg(@,t,u?(2,1)| < Ky, (2,t) € Dy, 4, (4.29)
where K, , is defined in (4.18).
Let . '
v(t):= sup |u'(§ 7)), 1=1,2,3, F(t):= sup |f(& 7). (4.30)
(&,7)ED; ¢ (&,7)ED,

It follows from (4.23), (4.26) and (4.28) by virtue of (4.29) and (4.30) that

t

u' (2, 8)] < (Kgp + 1)/ [ (1) + v ()] dr + 2t flo,, ) + ler@,) + 1Wllo@,), ©=1,2,3.
ty
whence taking into account the fact that the right-hand sides of these inequalities are nondecreasing,
by virtue of (4.30), we obtain

t
VO] < Ko+ 1) [ [0+ 0] dr + 20 o, ) + Ielcrag) + W0,
ty

t<t<ty, i=1,23.
Putting v(¢) := uax v'(t), the obtained inequalities result in
717
t

o) < 2o + D) [ o7 dr + 20l e, ) + Ilron) + Wlow,) B<t<ta (131
ty
From (4.31), applying Gronwall’s lemma, we obtain
o(t) <[22l Fllom, )+ Iellcr @) + [Wllcw,)) exp (Ko + D, 6 <t<ts
From (4.24) and (4.30), it now easily follows that

lelers, ..y < [2talfllo,, .y + Ielcr@a) + 1l epRKps + 1)),

which proves Lemma 4.2. O

5. THE UNIQUENESS OF A SOLUTION OF THE PROBLEMS (1.1), (1.2) AND (1.1),(1.3), (1.4)

Lemma 5.1. Let the conditions (3.5), (4.1), (4.4), (4.16) be fulfilled. Then the problem (1.1),(1.3),
(1.4) may have no more than one generalized solution of the class C*(Dy, +,).

Proof. Indeed, assume that the problem (1.1),(1.3),(1.4) has two possible different generalized so-
lutions u! and u? of the class C! in the domain Dy, ;,. According to Definition 1.1, there exists a

sequence of functions u, € C?(Dy, 1,,T4, +,) such that the limiting equalities

i~ enp,, ) =00l 12— flogs, ) =0 (5.1)
and ' '
nll)n;o ||u’zrl|Wt1 - QOHCI(EH) =0, nlinéo ||U3n|wt1 - ,(/}HC(D“) =0, i=12, (52)
hold.
We take advantage here the well-known notation 0 := §2/9t* — 9? /02 and put w,, := u2 —u,,. It
can be easily seen that the function w,, € C?(Dy, +,,4, +,) satisfies the following equalities:
Uwn, + gn = fn, (53)
wn‘wtl = S,Env Wm&|wt1 = 1/1n, (54)
Wy | =0, Wnel =0, (5.5)
Y1ty ,to V25t ,to

where

In = g(x,t,ui)uit — g(x,t,u}l)uit, fn = Lui — Lu}l, (5.6)
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O = w"}wt , {/}vn = w”t|w, , (5.7)
1 “1
and by virtue of (5.2) and (5.7), the equalities
Jim [onllor@,) =0, lim [Ynle@,) =0, i=1,2 (5.8)

hold.
By the first equality of (5.1), there is the number A = const > 0, independent of the indices ¢ and
n, such that

||U;||Cl(5t1‘t2) S A. (59)
According to the second equalities of (5.1) and (5.6), we have
1m [fllo, .., =0 (5.10)

By (3.5), (5.9) and the first equality of (5.6), it is not difficult to see that
2
g2 = (9.t ) + (9o, t,02) = glatul))uhy ) < 2m(A)l, + 2422 (A2 (5.11)

Multiplying both parts of the equality (5.3) by w,: and integrating the obtained equality with
respect to the domain Dy, 1,, by virtue of (5.4), (5.5), just in the same manner as when obtaining
inequality (4.13), from (4.10)—(4.12), we have

wn (1) = /(w2$+wit)d$ < / ((Zn/2_~_&i) dx +2 / (fn — gn)wns dz dt. (5.12)

wr Wty Diy toir

By virtue of the estimate (5.11) and the Cauchy inequality, we obtain

2 / (frn — Gn)wne dzdt < /(fn—gn)dedt+ / w?, dz dt

Dy tor Dyt Dyt
<2 / f2drdt+2 / g2 dx dt + / w2, dx dt
t,to;T Dty to;r Dty to;r
<2 / f2 dedt +4A%C(A) / w2 dzdt + (14 4m?(A)) / w2, dedt. (5.13)
Dil,tQ;‘r Dtl,tQ;T Dtl,tQ;T

Next, in view of the equality

wp(z,t) = /wm(g,t) d¢, (z,t) € Dy, 1yir
kt
which follows from the first equality of (5.5), reasoning in a standard manner, we obtain the following
inequality:
/ w? dxdt < (KT)? / w2, da dt. (5.14)

Dy to:r Dy toir

It follows from (5.12)—(5.14) that

w2 [@Reidesz [ facd
Wty Dtl to;T
+ART? A2 (A) / W2 dzdt + (1 + 4m2(A)) / W2, da dt

Dy tyir Dy tyir

< /(~’2+w)dx+2 / F2 d dt+ (AR2T2 A% (A)+ 1+ 4m?(A)) / (g teny) do dt

Wty Diytosr Dty ,toir
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= (4k2T2A202(A)+1+4m2(A))/wn(a) da+/($;?+zli)dx+2 / f2 dxdt,

t1 Wty Dt,l,tz;r
whence due to the Gronwall’s lemma, we find that
wn(7) < (1813, oy + 193y + 21 FallEn by )s B <7 < b (5.15)

where
¢ i= exp (4k*T? AP (A) + 1+ 4m?(A)) (t2 — t1).

Reasoning analogously as in the obtaining estimate (4.15) and taking into account obvious inequal-
ities

anniz(Dtl,tZ) < ||f"||2C'(5tl,t2)meSDtlltW ||¢5”||%2(th) < ||$n||264(5t1) mes we, ,
Hw’ﬂ”%@(wtl) S ||{¢)n||2c(wt1) mes wy, ,
by virtue of (5.15), for (z,t) € Dy, +, we have
o )1 <R (1) <K (mes s |4, b mes 1l 205 Dol )
< R0+ D (1802, + 19alEe,) + 1alEm,, )

Hence it immediately follows that

lonllom, ) <RIVl T T) (184lc@,) + oy + Ialem, ). (5:16)

According to the definition of the function w,, and the first equality of (5.1), we can easily see that

. 2 1 _
A fenller @, ) = I0° = wller @, .,
and all the more,
. L2 )
nh~>nolo ||wnHC(5t1,t2) - ”u —u ||C(Dt17t2).

Therefore, passing in the inequality (5.16) to the limit, as n — oo, and taking into account (5.8) and

(5.10), we obtain [[u® — u'(|p, , ) =0, ie u' =u’ O

ty)
Theorem 5.1. Let the conditions (3.5), (4.1), (4.4) be fulfilled. Then the problem (1.1),(1.2) may
have no more than one generalized solution of the class C*(Dr).

Proof. We take a natural number n so large that A = % < %%Tl, where 77 is the number

appearing in Remark 3.2, and put T; :=T1 + (1 — 1)A, i = 2,. ..,n+ 1. Then if u; and uy are the
two possible solutions of the problem (1.1),(1.2) of the class C'(Dr), then owing to Remark 3.2, we
have u1|p,, = u2|p,, , whence by virtue of Lemma 5.1, we find that ui|p,, ., = ua|p,, 5. Further,

continuing analogous reasoning step by step, in the domains Dr, 1, D1y 135 - - - » D13, 70,1, We find that
U1|Dr, 7y, = UQ‘DTi’T/LLFl, i=2,...,n, and hence u1|p, = uz2|p,. Thus this proves the uniqueness of
a solution of the problem (1.1),(1.2) in the class C1(Dr). O

6. SOLVABILITY OF THE PROBLEM (1.1), (1.2)

As is known, if a global a priori estimate of a solution is obtained and the existence of a local
solution of the evolution problem is established, then reasoning in a standard manner, we obtain the
existence of the global solution of that problem (see, e.g., [20]). In our case, the a priori estimate of a
solution of the problem (1.1), (1.3), (1.4) is obtained under the assumption that the height At := to—t;
of the trapezoid Dy, 4, is less than the defined value (see (4.16)). Therefore, in this case, to prove the
existence of the global solution, we have to modify the above-mentioned general approach, making it
convenient for our case.
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Remark 6.1. In the assumption that the condition (4.16) is fulfilled, we consider first the question
on the solvability of the problem (1.1),(1.3),(1.4) of the class C! in the domain Dy, ;, taking into
account that if u is a generalized solution of that problem of the class C! in the domain Dy, ,, then
ub = wy — ug, u? = uy + Uy, ud := u is a continuous solution of the system of nonlinear Volterra
type integral equations (4.23), (4.26), (4.28), respectively, in the domains D1, ¢, Doty 1y, D3ty ts,
and vice versa, if u', 2, u? is a continuous solution of the above-mentioned system, then v := u? is
a generalized solution of the problem (1.1),(1.3),(1.4) of the class C! in the domain Dy, 4,, and the

equalities u! 1= u; — ug, u? 1= uy + u, are valid.

We rewrite the systems (4.23), (4.26) and (4.28) in the vector form

U(P) = (®U)(P), P € Dy, 4,, (6.1)
where U := (u!,u?,u?) and ® := (@1, ®2, ®3), and the operators
L (U) = @(U)|D1;t1yt2, ®3(U) := <I>(U)|D2;tlyt2, ®3(U) := <I>(U)|D3;t11t2 (6.2)

are defined by the right-hand sides of the systems (4.23), (4.26) and (4.28), respectively.
Let

HUHth,t2 = 1r£1?<x3{HuiHC(Etl‘tz)}7 U e th,tg = C(Etl,tz;R3)~

We fix the number R > 0 and denote by Br(t1,t2) :={U € X4, 1, : [|Ullx,,,, < R} a closed ball
of radius R in the Banach space X, ;, with the center in a zero element.
Below, it will be shown that there exists the positive number tJ € (¢1,7] such that for any to < t39:
(i) ® maps the ball Bg(t1,t2) into itself;
(ii) @ is a contracting mapping on the set Br(t1,t2).
Assume
R= 2(2T||f||c(5T) + ||<P‘|Cl(m1) + ||1/}||C(m1))-
For ||U]x,, ,, < R, by virtue of (6.1), from (4.31), we have
¢
|(@U) (@, 1)] < 2(Kp +1) / o(r)dr + 26l fleo, )+ Ielo@y) + IWllo@,)
t1

S 2Ky + DR —t1) + 2T\ fllem, + el @) + [¥lle@,). tr <t <t
whence for

Aty =ty —t] < ——
PR S UK, + 1)

we obtain
|((I)U)(.’£,t)| < R’ (xvt) € Dtl,t2' (64)

The value K here is defined in Lemma 4.2.

Thus, by (6.4), in the case (6.3), the operator ® maps the ball Bg(t1,t2) into itself, i.e., item (i) is
fulfilled.

Let us now show that item (ii) is likewise fulfilled, that is, the operator ® is a contracted mapping
in that ball. Indeed, for U; := (u},u?,u?), i = 1,2, and P € D1y, 4,, from (4.23), by virtue of (3.5)
for

2
ty

(P1U)(P) = - /g(PnUB(PT))(Ul(PT)JruZ(PT)) dT+/f(PT)d7+¢($*t+f1)*<ﬁ'(fﬂ*t+t1),

we have

[ (9P P)) = e ()] a(Pr) + (P,

t1

+ |9(Pr, w (P)| [ub(Pr) — ub(Pr) + w3 (Pr) — wd(Py)]) dr

(@102 — @1U1) (=, 1)] <

N | =
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1
3.3 11 2 2
< c(R)RAt [Juy — ulHC(Bl;tl,Q) + 5 m(R) Aty (|Jug — Uch(Blatlh) + [Jug — u1||0(51;t1,t2))
< ((R)R+m(R)ALIV: — Uillogp,, )
whence in view of (4.23) and (6.3), for

. (1~ 1 1
Atl = tg—tl :mln{§ kt174(K§0’¢+1) 5 2(C(R)R—|—m(R))} (65)

we obtain
1
’(‘P%UQ - (I)}U1)(.T7t)| < By Uz — U1||c(51;t1)1/2), (x,t) € D1ty to- (6.6)
The estimates, analogous to (6.6) are likewise valid for the operators

t

/g(QT,US(QT))(ul(QT)—FuQ(QT)) d7'+/f(Q7—) dr+(z+t—t))+¢ (z+t—11)

t1

(@IU)(P) := —

N =

and
(@LU)(P) = / Q) dr + p(a + 1 — 1)

from (6.2), namely,

1 )
|(@i02 — @i Uh)(@, )] < 5 V2 = Uillem,,, .p)» (@:1) € Diityiay i =2,3. (6.7)
The same reasonings in the case (6.5) result in the following estimates:
) , 1 . .
[(®4U — @LUL ) (x,1)| < 5102 =Uillow,,, .,y @1 € Dty 1=2,3; j=1,2,3 (6.8)
Bearing in mind (6.1), (6.2), (6.5)—(6.8), the estimate
1
[®U2 — @Uillep, ,.) < 5 102 = Uillem, ..y (@,t) € Dy, (6.9)
1:t2 2 (Dty 1y

holds.
Thus, in the case (6.5), by virtue of (6.4), (6.9) and theorem on the contracted mapping it follows
that the system (6.1) in the class C(Dy, +,) is solvable, and hence the following lemma is valid.

Lemma 6.1. The problem (1.1), (1.3), (1.4) has a unique solution of the class C* in the domain Dy, +,
if the condition (6.5) is fulfilled.

Let t7 = Ty < T, where T} is taken from Theorem 3.1 when the problem (1.1),(1.2) has a unique
generalized solution of the class C! in the triangular domain Dr,.
We take a natural number n so large that the inequality

T-—1T; 1~
L < 5 (6.10)

n
holds.

Accordingly, we divide the interval [T},T] into n equal segments [Ty, T5], [T%, T3], . . ., [T, Tnt1] of
the same length A := T=5

In the domain Dy, 1,, consider the problem (1.1),(1.3),(1.4) in which as the initial functions ¢
and ¢ we take traces of the solution w and its derivative u; of the problem (1.1),(1.2) in the domain
Dy, on the interval wr,. In view of (6.10), the condition (4.16) of Lemma 4.2 is fulfilled, and hence
we have the following a priori estimate

[uller Dy 2y < L= CTfllomy) + lelcr@n) + ¥llo@a)) exp [2(Kpy +1)T]. (6.11)

Remark 6.2. From the definition of the value K = K(s), s > 0 it is easy to see that it is the
nondecreasing function with respect to the variable s.
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Remark 6.3. It is not difficult to see that by virtue of (6.11) and (4.17), if u is a solution of the
problem (1.1),(1.3), (1.4) of the class C! in the domain D7, 7, then the estimate

lult=rllcr@,) + utli=rllc@,) <201 V7 € [T, T3] (6.12)
is valid, and hence

Koo, = K(Iflc@y) +luli=rllcr @) +luli=rlc@,) < K(Ifllc@, +2L1) V7€ [T, T2]. (6.13)

By Lemma 6.1, in view of (6.5) and (6.13), for the value At; for which there exists the unique
solution of the problem (1.1),(1.3), (1.4) of the class C! in the domain D, 1,, where to = T} + At
the following lower bound

1~ 1 1
a0 min {5 M S S0 1) SO () (o1
is valid.

Continuing this process of constructing a local solution of the problem (1.1),(1.3),(1.4) in the
domains Dy, | ., by (6.14), for the length At of the interval [t;_1,%;], independently on the step
number ¢, there exists the natural number 7y such that ¢;, > ¢». This latter means that the problem
(1.1),(1.3),(1.4) has the unique solution in the domain Dr, 1,. The same process, owing to the
estimate (6.14), allows one to construct step by step a unique solution of the problem (1.1), (1.3), (1.4)
in the domains Dr, 1y,..., D7, 1,,,, and since T, = T, this proves the existence of a generalized
solution of the problem (1.1), (1.2) in the domain Dy.

Thus the following theorem is valid.

Theorem 6.1. Let f € C(Dr), g € C(Dr x R) and the conditions (3.5) and (4.4) be fulfilled. Then
the problem (1.1), (1.2) has a unique generalized solution of the class C* in the domain Dr.

Remark 6.4. From Theorem 6.1 we arrive at the global solvability of the problem (1.1),(1.2) in the
sense of Definition 1.3.

7. THE CASE OF NONEXISTENCE OF A GLOBAL SOLUTION OF THE PROBLEM (1.1), (1.2)

Below, we will show that violation of the condition (4.4) may result in the nonexistence of global
solvability of the problem (1.1),(1.2) in the sense of Definition 1.3. To simplify our exposition, we
consider the case k = 1, i.e., when 7 7 is the characteristic of the equation (1.1). Indeed, let
g(z,t,8) = —|s|“s, s € R and the nonlinearity exponent o > —1.

Lemma 7.1. Let u be a strong generalized solution of the problem (1.1),(1.2) of the class C' in the
domain Dy in the sense of Definition 1.1. Then the following integral equality

/uDgo dxdt:/|u|o‘uut<p dxdt—i—/fgo dz dt (7.1)
Dr Dr Dr

is valid for any function ¢ such that

¢ € C*(Dr), ¢ls, . =0, @ty

Y3, T

=0, ¢zl =0 (7.2)

Y2, T

Proof. According to the definition of a strong generalized solution u of the problem (1.1),(1.2) of
the class C! in the domain D, the function u € C*(D7) and there exists the sequence of functions

u, € C?*(Dr, 1~“T) such that the equalities

nlggo [tin — uHcl(BT) =0, nh—)ngo | L, — f||c(5T) =0 (7.3)

are valid.

Assume f,, := Lu,. We multiply both parts of the equality Lu, = f, by the function ¢ and
integrate the obtained equality with respect to the domain Dr. As a result of integration by parts of
the left part of that equality, in view of (7.2) and the conditions (1.2), we obtain

/uana dxdt:/|un|aununtgp da:dt+/fn<p dx dt.
Dr D~ Dr

Passing in this equality to the limit, as n — oo, owing to (7.3), we obtain (7.1). O
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Below, the use will be made of the test functions method (see, e.g., [19, pp. 10-12]). We introduce
into consideration the function ¢ := ©°(x,t) such that

p" € C* (D), "+ <0, %[, >0, flo =0, ¢, =0 (7.4)
and
_ [mrd ,_a+t2
T=1

It can be easily verified that in the capacity of the function ° satisfying the conditions (7.4) and
(7.5), we can take the function

)z =), (x,t) € Dy,
¢ (1) {07 o

for a sufficiently large positive n.
Put pr(x,t) == @Y (%, %), T > 0. By virtue of (7.4), it can be easily seen that

T°>T
- der dor dor
or € C*(Dr), or +TW <0, ¢r|, >0, . = 0, ¢r|, =0, 5l = 0. (7.6)
Y2, T V3, T
Given f, we consider the function
¢(T) := / for dxdt, T > 0. (7.7)

Dt
The following theorem on the nonexistence of global solvability of the problem (1.1),(1.2) holds.
Theorem 7.1. Let g(z,t,5) = —|s|%, s € R, a > —1, f € C(Dw), and f > 0 in the domain Dy,.
Then if
lim inf (T .
lim inf {(T) > 0, (7.8)

there exists the positive number T* := T*(f) such that for T > T* the problem (1.1),(1.2) fails to
have a strong generalized solution u of the class C' in the domain Dr.

Proof. Suppose that in the conditions of this theorem there exists a strong generalized solution u of
the problem (1.1),(1.2) of the class C! in the domain Dz. Then by Lemma 7.1, there is the equality
(7.1) in which, due to (7.6), in the capacity of the function ¢ is taken the function ¢ = pr, i.e.,

/uDng dxdtz/\u|auut<pT dxdt+/fg0T dzx dt. (7.9)
DT DT

Dt
Taking into account (1.2) and (7.6), we have

1

a—+2
Dt

/ |u|“uurpr dedt = or % |u|*T2 dx dt
Dr

1 8<pT 1
= at2 222 g dt>7/ 20 da dt.
a+2/|“| or = gy | e de
DT DT

Hence by (7.7), it follows from (7.9) that

1
—T/|u|pg0T dzx dt < /chpT dedt —((T), p:==a+2>1. (7.10)
P Dr Dr

If in the Young’s inequality with parameter € > 0

5 / 1 1
ab§*0p+mbp;a7bzo, 7+7/:17p>1’
p pe p p
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1 ’
we take a = |u|pr, b= % ,E= % , then in view of the fact that % =p’ — 1, we obtain
2z
L 0er| 1 T ~1 | Or)?’
uOeprl = b B < Ly L Berl?.

v pT D 0P

Pr T
By virtue of (7.10) and the last inequality, we have
Tp,71 D p/

0<— | jﬁ‘l dx dt — (T). (7.11)
p E o
T

Since ¢r(z,t) = (%, %), in view of (7.4), (7.5), after the change of variables = Txy, t = Ty,
it can be easily verified that

D" 1 [mpzis Ko
/ F dl‘ dt = T2(p,_1) ‘w0|p,71 dﬂ?ldtl = m .
T T Dr=1

Hence, bearing in mind (7.11), we obtain

Ko
0< p/Tp’ -1

= ¢(T). (7.12)

Since p’ = ;E5 > 1, by virtue of (7.5), we have

ko

li ——— =0.
Tﬂlrfoo p'Tp/71

Therefore, owing to (7.8), there exists the positive number T% := T*(f) such that for T > T*,
the right-hand side of the inequality (7.12) is negative, whereas the left-hand side equals zero. The
obtained contradiction shows that if u is a strong generalized solution of the problem (1.1),(1.2) of
the class C! in the domain Dy, then necessarily T < T*, which proves Theorem 7.1. 0

Remark 7.1. It is easy to check that if f € C(Dy), f > 0, and f(x,t) > ct=™ for t > 1, where
¢ = const > 0,0 < m = const < 2, then the condition (7.8) is fulfilled and hence for g = —|s|*s, s € R,
a > —1 the problem (1.1),(1.2) for sufficiently large T fails to have a strong generalized solution u of
the class C! in the domain Dy.

Indeed, introducing in (7.7)the transformation of independent variables x and ¢ by formula z = T'z4,
t = Tt,, after simple transformations we will have

(:(T) = T2 / f(TfL‘l,Ttl)gOO(.’L‘l,tl) dl‘l dtl
Dr=
> eTr?m / tl_mgoo(l‘l, tl) dxydt] + T2 / f(TJ,‘l, Tt1)<p0(x1, tl) dxq dty
DTzlﬂ{tlszl} DTer‘I{t1<T71}
in the assumption that 7" > 1. Further, let 773 > 1 be an arbitrary fixed number. Then from the last
inequality, when T > T > 1, for the function ¢ we have
¢(T) > 1™ / t7" 0% (w1, t1) day dty > ¢ / 7% (w1, t1) day dta,

DT:lm{tlzTil} DTzlﬁ{tlszl}

which immediately results in the validity of (7.8).
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CERTAIN PROPERTIES OF GENERALIZED
ANALYTIC FUNCTIONS FROM SMIRNOV CLASS
WITH A VARIABLE EXPONENT



Abstract. Let D be a simply connected domain bounded by a simple, closed, rectifiable curve T,
p = p(t) be the given on I' positive measurable function, and z = z(¢), ¢ = re’” be conformal mapping
of the circle U = {¢ : |¢|] < 1} onto the domain D.

The function W(z), generalized-analytical in I. Vekua’s sense, belongs to the Smirnov class
EPM(A; B; D), if

(1) W e U>*(A; B; D);

27 .
(2) sup f |W(z(7’eiﬁ))\p(z(em))|z’(7’em)\d19 < 00
0<r<1

(see [15]).

When p(t) is Log-Holder function continuous in I' and min p(t) = p > 1, we considers the problems
of representability of functions from EP(*)(A; B; D) by the generalized Cauchy integral, show the
connection between the generalized Cauchy type integral and the generalized singular integral; of
special interest is the question of extendability of functions from those classes, and the symmetry
principle is proved.

2010 Mathematics Subject Classification. 47B38, 42B20, 45P05.

Key words and phrases. Generalized analytic functions, variable exponent, Smirnov classes of
generalized analytic functions, generalized Cauchy and Cauchy type integrals.

09b0gdg. g0dgom, D Gomosdgmo s6gs Jgdmbsbmgegmo ds@Gogo, 3of®Ogggewo, dgzegmo T
Fo@om, p=p(t) Ly goblobPg@ymo sEgd0mo bmdswo g9bdEoss, bmme z = z(¢), ¢ = re®
900 gmmgsbo U = {(: |¢| < 1} §@olb D sdgby 3mbgm@dgmop sdlobggmo ggbioss.

D 50530 0. 393950 sb®om 356Dmasegdgmo sbsgobygmo W(z) g9bdaos g3gmabol Lombmgols
(335035B39693@056 EPM) (A; B; D) ganslls, o

(1) W € U2(4; B; D);

0<r<
(ob. [15]).
658®m3Bo  gobobomgds EPW(A; B; D) ganslol g96dzosms oBol 0b@ga@smon Fo@dmeo-
39bo@mo0ls Logombo, gmBol Godol gsbbmaswgdgmo 0bGgademon Fomdmpygbomo ggbdiools
Ldo@bmgol gemsbolowdo doggmgbgdol Lsgombo, Yglfsgmomos LBombmgols 3esbol g3bdiosms
353®dgegdoEmdol bsgombo; ©sdB403g0gmos bodgdmools 3@obzodo, @mas p(t) Log-Holder-ol
sb@om 9fy3960 gubdEoss I'-by s minp(t) =p > 1.

21 .
(2) sup [ |W(z(re®))|PEED] (rei?)| d < oo
10
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1. INTRODUCTION

The Hardy classes H? of analytic in a unit circle U functions and their generalizations, i.e., Smirnov
classes EP(D), p > 0, are the main objects of investigation of mathematical analysis (see [2,3,10,16],
etc.). They have a great number of applications in the boundary value problems of the theory of
analytic functions.

Recently, the Lebesgue spaces with a variable exponent LP(*) and their applications attract attention
of many mathematicians. This tendency has touched upon certain questions of the theory of analytic
functions. The notions of Hardy and Smirnov classes (with a variable exponent) of analytic functions
have been introduced in [5] and [6] and successfully applied to the boundary value problems; a part
of those applications are reflected in [7].

For a constant p, the analogues of Smirnov classes for generalized analytic functions are presented
in [4,11-14] and some boundary value problems in these classes are studied therein.

The perspective to investigate the boundary value problems for generalized analytic functions more
thoroughly made it necessary to introduce Smirnov classes with a variable exponent. But towards this
end, one has, first of all, to know the properties of generalized Cauchy type integrals and generalized
singular integrals with densities from the class LP(!). These questions have been studied in [9]. In
particular, the validity of analogues of Sokhotski-Plemelj’s formulas in the case of arbitrary, simple,
rectifiable curves and summable densities has been proved, and the continuity in the space LP(*) ()
(with weight) of the operator §p generated by a generalized singular integral when I' is the Carleson
curve has been proved, as well. All that made it possible to introduce the notion of Smirnov classes with
a variable exponent for generalized analytic functions and to establish a series of their properties [15];
some of them we will frequently refer to in this work, are cited below, in Subsection 3.1. It should be
noted here that in [15] the questions of extension and the symmetry principle for the introduced classes
were left unconsidered; the case of unbounded domains was‘ considered superficially; the belonging of
the generalized Cauchy type integrals with density from LP®*) to Smirnov classes was not considered
in detail.

The present paper, being the continuation of our previous work [15], deals with the problems just
mentioned and provides us with many new properties of the generalized Cauchy type integrals and
Smirnov classes (with a variable exponent) of generalized analytic functions.

Relying mainly on the results obtained in [9,15], we have succeeded in investigating the Riemann
problem for generalized analytic functions from the introduced Smirnov classes with a variable expo-
nent [8].

2. PRELIMINARIES

2.1. Generalized analytic functions in I. N. Vekua’s sense. Let D be a simply connected
domain bounded by a simple, closed, rectifiable curve I' and A(z), B(z) be the functions given on D.
We extend them by zero on the set '\ D when E is the complex plane, retaining the same notation
for the obtained functions.

Let s > 0 and L*(D) be a set of functions f, summable on D, of degree s. If D = E, then we put
fu(z) = 2" f(1), v € (—o0,400). The set of functions f for which

feL*U), f.(z)eLl*U), s>1, U={z: |2| <1},

we denote by L*"(E).
A solution W (z) of the equation

LW = 0:W + A(2)W + B(z)W =0 (2.1)

is said to be regular in the domain D, if every point zg € D possesses the neighborhood D(zp) C D,
where W has a generalized in Sobolev sense derivative OzW = 1 (%—VX +i %—V;).

If A, B € L*2(D), then we denote by U*?(A; B; D) the set of all regular solutions of the equation
(2.1). For s > 2, the equation (2.1) has regular solutions and each solution W(z) is representable in

the form
W(2) = B, (=) expu, (2) (= Dexpw), (2.2)



80 Vakhtang Paatashvili

where ®,, is analytic in D function, and

() = %// (40 + 5O ) 2

The function w,, belongs to the Holder class Hs—2 (E) [17, pp. 156, 163]. The function ®,, (z) is called
a normal analytic divisor of the generalized analytlc function W(z) [17, p. 160].

2.2. Principal kernels of the class U*2(A; B; D). Let
1 1
¢1(2)—m7 ¢2(2)—m’

where ¢ is a fixed point of the plane E. Then there exist the functions X;(z), j = 1,2 (solutions of
the equation (2.1)), such that:

(1) Xj0(2) = 52 € Hooa (B);

(2) the functions X ¢(z) are continuous in D and continuously extendable on E;
(3) Xjo(2) #0;
(4) Xjo(t)=1.

The functions

Ql(Z,t) = Xl(Z,t) —|—Z'X2(Z,t)7 QQ(Z,t) = X1(27t) — 1X2(27t)

are called principal normalized kernels of the class U%2(A; B; D), s > 2 [17, p. 193]. There exist
bounded functions m;(z,t), ma(z,t) such that
1 my(z,t)

=2 [t — 2]’

ma(z,t) 2
Qa(2,1) = “2_7:4&? a=- (2.3)

Ql (Z,t) =
(see [17, p. 179)).

2.3. The generalized Cauchy type integral and generalized singular integral. Let
F:{tGE: t=t(o), 0§J§£},

where o is the arc coordinate of the point t.
If 1, Qs are the principal normalized kernels of the class U2?(A; B; D) and f € L(T), then the
function

Wi(z) = (Kr‘f /Ql (z,7)f(T)dr — Qa(2,7)f(7) dT

is a regular solution of the equation (2.1) of the class U%?(A; B; D) [17, pp. 156, 168].
The function (Kt f)(z) is called the generalized Cauchy type integral. The corresponding singular
integral is defined by the equality

(Sef)(E) = lim —— / Q1 (7, 2) f(7) dr — Qa(z,7)F(7) 7,

e—0 271
r-T.(1)
where T'.(t) is a small in length arc lying on T with the ends ¢(c — ¢) and ¢(c + ¢€).

Under different assumptions for I' and f, the integrals (Krf)(z) and (S f)(t) and their interconnec-
tions have been studied in [11-14] (for details see [9]). In particular, analogues of Sokhotski—Plemelj’s
formulas have been obtained. Here we cite the most general results stated in [9].

If I is a simple rectifiable curve and f € L(T'), then the generalized Cauchy type integral (Kpf)(z)
for almost all ¢ € I' has angular boundary values (K f)*(¢) and (Krf)~ (), and the equalities

(Re D)5 (1) = 5 (1) + 5 (Brh)(0) (2.0

are valid.
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2.4. The space LP)(T"). Let p = p(t) be a measurable positive function on I'. Assume

L
(t(2))
Il =t {x > 00 [ [HEDD a5 <1}
0

and
OT) = {f: Iflpw < o0}

2.5. The class of exponents P(I'). By P(I") we denote a union of those measurable on I' positive
functions p(t) for which:

(1) there exists a constant ¢(p) such that for any t1,t5 € I' we have
~1
Ip(t1) — p(t2)] < C(p)’ In [t; — t2|| ;

(2) p= infp(t) > 1.
2.6. On the continuity of the operator §p in the space LP(*) (T"). Not touching upon the ques-
tions dealing with the investigation of that operator for constant p, we will cite here the most general
result for the variable p(t) [9].
If T is the Carleson curve (in the sequel, we will write T" € R) and p(t) € P(T'), then the operator
Sr : f(t) — (Spf)(t) is continuous in LP®)(T;w), where w belongs to the definite class of weighted
functions, inclusive all admissible power functions of the type

L S0
o) <O gy @5 PO

3. THE VARIABLE SMIRNOV CLASSES OF GENERALIZED ANALYTIC FUNCTIONS

w=|t—al®

3.1. The case of a bounded domain. Let D be a finite domain bounded by a simple rectifiable
curve I and p be a measurable function different from zero almost everywhere on I'.
We say that the generalized analytic function W (z) belongs to the Smirnov class EP®)(A; B; y; D) if:

(1) W e U*%(A; B; D), s > 2;
(2)

27
sup / |W(z(rem))/¢(z(rew))’p(z(e“ ))|z'(re“9)| dd < oo, (3.1)
0<r<1

0

where z = z(re’?) is conformal mapping of U onto D.
Assume EP()(A; B; D) = EPW(A; B;1; D).
This class of functions has been considered in [15]. Here we present the results from [15] which we
will need in the sequel.

Statement 3.1. The function W € US2(A; B; D), s > 2, belongs to EPM(A; B; D) if and only if its
normal analytic divisor ®,, (see Subsection 2.1) belongs to EPM) (D), i.e.,
27

; 2(e'? ;
sup /|<1>W(z(rew))\”( D (ret?)| dv < 0. (3.2)
0<r<1 5

Statement 3.2. The function W (z) € EP®)(A; B; D), p > 0, has angular boundary values W (t) for
almost all t € T and, moreover, W+ (t) € LP®(T"). If p € P(T'), then

W(z), ze€D,

0, z€ E\D. (3:3)

(KW *)(2) = {

Remark 3.1. It follows from Statement 3.1 that if W € EP()(A; B; D), p>0,and WH(t)=0,t €€,
ECT,mes€ >0, then W(z) =0, z € D.
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Statement 3.3. If W € U*2(A; B; D), s > 2, and it belongs to El(g;E;D), where

~  JA(z), z€D, ~ . ]B(z), z€D,
A(Z){o, 2 e E\D, B(Z){o, 2 e E\D,

then it is representable by the formula

W) = o / (2, )W () dt — Qo= )T () dF,
T

when Qg (z,t), k = 1,2, are the principal normalized kernels of the class US’2(E; E; E).

Statement 3.4. If A,B € L**(D),I' € R, pe P(I), p’ =supp'(t), § >p’, f € LPO(T), then Krf
tel

belongs to EPM)(A; B; D).
Corollary 3.1. If A,B € L=(D),T € R, p e P(), f € LPO(T), then (Krf)(z) € EP()(A; B; D).

3.2. The case of an unbounded domain. We will consider only those unbounded domains D
whose boundary is a simple, closed, rectifiable curve. For the sake of simplicity, we consider only
conformal mappings z = z(s) of the circle U onto the domain D (which we denote by D~) for which
2(0) = 0o and assume that W € EP®)(A; B; D7) if the conditions (3.1) are fulfilled.

From the definition it follows that if W € E1(4; B; D), then W (co) = 0. If p € P(I'), then this is
likewise valid when W € EP()(A; B; D™) (since EP(M)(A; B; D~) € EY(A; B;D7)).

Theorem 3.1. If D~ is an outer domain bounded by a simple, closed, rectifiable curve I', and
W € EY(A; B; D7), then

W(z) = (KrW™)(z), z€ D™, (3.4)
where I' denotes the curve oriented so that moving around it leaves D™ on the left.

Proof. Denote by I', the image of the circumference {¢ : |{| = p < 1} under the conformal mapping
of the circle U onto the domain D~. Further, let I'g be the circumference {z : |z| = R > 1}. Then for
p, close to unity, and for sufficiently large R, the curve I', lies inside of the circle {z : |z| < R}. The
function W (z) defined in a doubly-connected domain £ with the boundary I', UT' is representable
by the Cauchy integral [17, p. 186], that is,

W (z) = (Kr,W)(2) + (Kr,W)(2). (3.5)
We have ' ' .
W (z(pe™)) = @, (2(pe™)) expuw,, (2(pe’”)).
Assume
0p(9) = @, (2(pe™))2 (pe™)ipe™,
then 4 ‘ 4 4
W (206 )2 (06 )ipe™® = iy(9) expisn, (=(pe™)).
Therefore
1 2
(R, W)(a(re'®)) = 5 [ 00 (a(re), 206 ) 00 (9) b (o 3(p6™)))
0

— Qs (z(rew), z(pem))@p(ﬁ) exp (wy, (z(pem))) dd. (3.6)

Since W (z) € E*(A; B; D7), ®,, belongs to the class E*(D™) (see Statement 3.1). Consequently,
the sequence {p,(¥)} for ¥ — 1 converges in the space L([0,2n]) to the function ¢1(9) [16, p. 89].

Since exp(wy, (2(¢))) is continuous in U, from the above-said it follows that the sequence
{W (2(pe'?))} for p — 1 converges in L([0,27]) to W (z(e'?)).

Let pg € (0,1) and € > 0 be a small number such that py(1 +¢) = p1 < 1. We take the point
z(ret?), r € (0,po). If p € (p1,1), then

|z(rei'8) - z(pew)| > dist (z(reiﬁ),l“p0 UT,,) =mg > 0.
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By the equality (2.3), there exists a number ¢ such that
c c ¢

Q1(z,1)] < = . —— < —
GO < T = Cre) = 2000 = mo

Owing to this fact, if we put

90(0) = Q1 (2(re'®), 2(pe™)) 0, (9),
then
19,(9)| < mio lop(9)].

From the convergence of {¢,} to ¢ in L([0, 2]) it follows that for any set £ C [0, 27] the sequence
{¢,} converges to 1 in L(E) (see, e.g., [17]). According to the Hahn-Banach theorem [1, p. 255], we
can conclude that the family {¢,} has absolutely continuous integrals of the same degree. Moreover,
as p — 1, the sequence |g,(¢)| converges almost everywhere to g; (19).

Now, owing to the Vitali theorem [1, p. 255], we can conclude that in (3.6) the limiting passage
under the integral sign is admissible and hence

27

,%LH%(IN(FPW)( %/Ql em))(I)W (z(re'))ie® expw,, (2(e)) dv
0

= Dy (2(re®), 2(e)) @, (2(re?)) 2/ (¢ )ie? expuwy, (2(e7)) d9 = (KpW)(2(re'?)).  (3.7)
Let us prove that
lim (Kp,W)(z) = 0.

R—o00
Let |z] = Rand t € I'g. Then |t| = R and it can be easily verified that |Q;(z,t)| < R¥|z\ . Therefore
\W (Re™)| 2
|(Kp, W )|<2M BR=12D)" dv, a=-.

Since Rlim |W (Re?)| = 0 for large R, we have |W(Re“9)| < My and hence
— 00

fad 27TMMO
Kr W) < ——-—— 0.
|( T'r )|— (R*|ZDO‘ —

This, together with (3.5) and (3.7), results in the equality (3.4). O

Remark 3.2. If orientation on I' is chosen such that when moving around in this direction the domain
DT leaves to the left, then the formula (3.4) takes the form

W(z) = —(KrW™)(z), z€ D".

3.3. On the belonging of the function (Krf)(z)) to Smirnov class. First, let us prove an
analogue of Statement 3.4 for an unbounded domain. Towards this end, we will need the following

Lemma 3.1. Let

(1) T be a simple, closed, rectifiable curve bounding the finite DT and the infinite D~ domains;
(2) peP(I);

(3) ¢ =<¢(2) be conformal mapping of UT onto D~

(4) w(C) = fa, a € DY, ( € D™, and k be the constant such that k < [dist(a,T)]?> = d?, hence

I'=0D, w: D~ — D, where D is the bounded domain;
(5) the function T = % map I' onto r.
Assume p(7) = p(£ +a). Then

p(r) € P(D). (3.8)
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Proof. Let |11 — 72| < 3. We have

|§(T1) (T2 | = ’p( +a) fp(% +a)‘ < |C(p) (3.9)

k‘Tz 7'1\ |
[T172]

Since |71| > d, |r2| > d, owing to the condition (4), we obtain —%- < % < 1. Therefore kM —m| <

[TiT2| — [Time]  —

|71 — 72| < 3, which implies that

klr —
‘lnu‘ > |In|m
1172
and from (3.9) we can conclude that |p(71) — p(m2)| < ﬁ. Moreover, it is obvious that
min p(7) = rtneinp(t) = p > 1. Thus the inclusion (3.8) is proved. O
ko p

Theorem 3.2. Let I' be the simple, closed, rectifiable curve bounding the domain D™, and let the
conditions

A(z),B(z) € L®(D7), T eR, feLPO(T), peP(D), (3.10)
be fulfilled. Then the function
W(z) = (Krf)(z), z€ D™,
belongs to the class B (A; B; D).

Proof. We choose a point a from D and assume ¢ = where k is chosen as in Lemma 3.1. Then

za’

z=a+ f and
W(% +a) = (f{»ff)(g +a). (3.11)

We replace the integral variable in the right-hand side of (3.11) by the equality ¢t = é +a. Asa
result, we obtain

WO = 5 [ B¢ dr - falC F () ar, (312)
r
where
— - k a
W(():W<§+a>, Q;(¢.7) = ( +a), j m:-% koo (3.13)

Since f € LPM(T), we have F € LP(7)(7), p( ) = p(£ +a). In our assumptions Lemma 3.1 is
applicable by virtue of which we have p(7) € P(T).

It can be easily verified that ﬁk(C,T), k = 1,2, are the kernels of the type of principal normal
kernels. Therefore following the proof of Statement 3.4 (see Theorem 3 of [15]), we find that W(C ) €
EP()(A; B; D). Tt is not difficult to show that W € EP((A; B; D). O

From Statement 3.4 and Theorem 3.2 follows one statement on the generalized Cauchy type integral
which we formulate in the form of the following

Lemma 3.2. Let I be the simple, closed, rectifiable curve dividing the plane E into the domains D
and D™ ; next, let

A(z),B(z) € L*(E), T R, feLPY(), peP). (3.14)
Then the narrowings on DT and D~ of the function W(z) = (Kpf)(z) belong to the classes
EPM(A; B; DT) and EPY(A; B; D7), respectively, vice versa, if W1(z) € EPM(A; B; DT) and Wy (z) €
EPM(A; B; D7), then the function

_ Wi(2), ze DT,
W(z)_{wg(z), seD-

is representable by the generalized Cauchy type integral with density from LP®) ().
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Proof. First, we note that if W € EP(®)(A; B; DT), then according to Statement 3.2 we have

~ W(z), ze€ D"

KrWH)(z) = ’ ’ 3.15
(KrW™)(2) { 0. veD- (3.15)

(see (3.3)).
Relying on Remark 3.2, it is not difficult to establish that if W € EP(*)(A; B; D~), then

~ 0 z€ Dt

KrW™)(z) =< " ’ 3.16
(Kr )) {—W(z), ze€D™. ( )

Let now W (z) = (Krf)(z); if we consider it in the domain D™, then according to Statement 3.4
we find that W € EP®)(A; B; DT), but if we consider W in the domain D, then it belongs to
W € EP)(A; B; D7), by Theorem 3.2.

The formulas (2.4) result in W+ — W~ = f, hence W = Kp(W+ — W ™).

Since for Wy and Wj respectively the relations (3.15) and (3.16) are valid, we have

~ _ Wi(z) ze DT
Kr(W;" — W. = ’ ’ 3.17
[ r(Wy 2 )](Z) {W2(2)7 e D ( )
Obviously, [W;F (t) — Wy (t)] € LPC)(T'), hence W (z) € KP()(T). O
4. CERTAIN PROPERTIES OF INTEGRALS f(pf AND §pf
Theorem 4.1. In order for the function W (z) € U%2(A; B; D), s > 2, the equality
W(z) = (KrW)(2) (4.1)
to take place, it is necessary and sufficient that for almost allt € I' the equality
(SeWH)(t) = WH(t) (4.2)
to hold.

Proof. The necessity. It follows from the representation (4.1) that W+ € L(T'). By the equalities (2.4)
we have ) )
WH(t) = 3 WH(t) + 3 (StW)(),

and hence the equality (4.2) is valid.

Sufficiency. Let the equality (4.2) hold. Let us show that the equality (4.1) is likewise valid.

Consider the function N

M(z) = W(z) — (KrW™)(2), z € D.
We have

1 ~ ~
MY =W — o (W 5w ) = 2 (W = Sew™). (4.3)

N |

By virtue of (4.2), we can conclude that M ™ (t) = 0.
Since W € U%2%(A;B; D), s > 2, we have KtW™T € U®?(A; B; D) (see Subsection 2.3); conse-
quently, M(z) € U*2(A; B; D). Therefore we have the representation
M(z) = ®p(2)wm(2), 2z € D,

(see Subsection 2.1, the equality (2.2)). Here wps(z) # 0 everywhere on E\ T

Consequently, wj\% # 0, and from the equality M* = 0 we conclude that @L(t) = 0 almost
everywhere on I'. From the theorem on the uniqueness of analytic functions we find that ®,/(z) = 0;
hence M(z) =0, and from (4.3) follows (4.1). O

Remark 4.1. If D is an unbounded domain, then for the equality W(z) = —(KpW™)(2) it is
necessary and sufficient that the equality

(ScW™)(t) = =W~ (¢)
to be fulfilled.
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Theorem 4.2. Let
A,Be L*(D), TeR, peP). (4.4)

For the generalized analytic function W (z) to have the boundary function W (2) of the class LP®)(T)
and the equality

W(z) = (KrW)(7) (4.5)
to hold, it is necessary and sufficient that W (z) belong to the class EP®)(A; B; D).

Proof. The necessity. Let the conditions (4.4) be fulfilled and there exist W*(t) and W+ € LP()(T),
then by Corollary 3.1 we conclude that (KpW™*)(z) € EP((A; B; D).

Sufficiency. Let W € EPM)(A; B; D) and p € P(I'), then W € E'(A; B; D). According to State-
ment 3.3 and Theorem 3.1, the equality (4.5) holds. This allows us to conclude that W+ € LP(®)(T),
by virtue of Statement 3.2. 0

Remark 4.2. Theorem 4.2 is a certain analogue of the Fichtenholz theorem [9, p. 97].
Theorem 4.3. If the assumptions (4.4) holds and f € LPM(T'), then

Str=1 (4.6)
holds.

Proof. By virtue of Corollary 3.1, the function W (z) = (Kp f)(z) belongs to EP()(A; B; D). Then by
Statement 3.2 we have (KrW™)(z) = W(z). Now, by Theorem 4.1 we can conclude that W(t) =
(ScW(t). Using the first of the formulas (2.4), we write the last equality in the form

§F(f+§rf)

DO =

1 ~
5 (f+5ef) =
from which follows the equality (4.6). O

Tracing the proof of the theorem, we easily find that the following assertion is valid.

Lemma 4.1. Let W = &, expw,, be the function of the class U%%(A; B; D), s > 2, and ¢ be analytic
function in D, then

s ¥
W =90 _,expw,, €U ’Q(A;Bi;D),

where

O =Py and w,, =w,y,.

Proof. Since dz¢ = 0, we have dz=(¢W) = pd-W. Moreover, =W + AW + BW = 0, hence
%@W+A@W+B§@7W:O.

This implies that oW = U%2(A; B 2:D).

Find the function w We have [17, p. 192]

W

L] s 2 TV L 0 T 2

Next, taking into account the above equality, we obtain
W = o0, expw,, = {p®, }expw,,

from which we get both provable equalities. O
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5. EXTENSIONS OF GENERALIZED SMIRNOV CLASS ANALYTIC FUNCTIONS

Theorem 5.1. Let Dy and Dy be the domains lying outside of each other, bounded with simple
rectifiable curves of the class R, and:

(1) boundaries of the domains Dy and Do have common arc T, so that D1 = T'1UT", 0Dy = T'oUT';
(2) pi(t) € P(I'1), pa(t) € P(I2);
(3) Ay, By € L®(Dy), Ag, By € L>®(Ds) and Wy € EP*()(Ay; By; Dy), Wy € EP2()(Ay; By; Dy);
(4) p1(a) = pa(a), p1(b) = pa(b), where a and b are the ends of the arc T';
(5) Wi(t) =Wa(t), tel.
Then the function
Wi(z), z € Dy,
W(z) = ¢ Wa(z), 2z € Do, (5.1)
Wi(t) = Wa(t), teT,

belongs to the Smirnov class EP®)(A; B; D), where D = Dy U Dy UT,
t tel
p(t) = pi(t), te 17’
pZ(t)v te F27

and

A(z) _ Al(Z), A Dl, B(Z) _ Bl(Z)7 z € Dl,
AQ(Z), S DQ, BQ(Z), S DQ.

Proof. Assume

gk(z) _ Ak(z), S Dk7 Ek(z) _ Bk(Z), z € Dk, k=19
0, z € E\ Dy, 0, z € E\ Dy, ’

Then A = Ay + Ay, B = By + B,. By virtue of the assumption (3), we have A, B € L°°(D). Further,
owing to (3.3) and assumption (3),

(Kr,urWi)(2) =0, z € Dy, (Kp,urWa)(2) =0, z € Dy. (5.2)

In these integrals, the integration sets are I'y UI" and 'y UT'. In addition, the curve I'y UT" is oriented
so that moving in this direction, the domain D; leaves to the left, analogously, I'y U T is oriented so
that moving in this direction, the domain D5 leaves to the left. These orientations on I' generate on I'
opposite directions. Therefore, if we denote the oriented arc of I" on the boundary dD; of the domain
D, by I't, then on D, it will be I'~.

In the domain D, let us consider the function

F(2) = (Kr,ur+W1)(2) + (Kr,ur- Wa)(2) = Fi(2) + Fa(2) = (K, W1)(2) + (Kp, W2)(2)
= 2%” /Ql(z,t)Wf’(t) dt — Qa(z,t)W1(t) dt + %m /Ql(z,t)WQ(t) dt — Qo (z,t)Wa(t) di,
r+ -
where 4, 5 are the principal kernels of the class U (A; B; E).
We write F'(z) in the form
F(2) = (Kr,W1)(2) + (Kp,W2)(2)
1 1 — _
+ % /Q1(Z,t)(W1(t) — Wg(t)) dt — % / QQ(Z,t)(W](t) — W2(t)) dt
r+ r-

= (Kr,ur, W)(2) (5:3)

(we have taken into account that Wy (t) = Wa(t), t € I).
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In view of the equality (5.2) we have

(RrionW)(:) = {%E; e

that is, F(z) = W(z), z € D1 U Dy. Moreover, for ¢ € I we have
lim  F(z) = Wi(t),

255t z€EDy,
that is, F(t) = Wi(t) = Wa(t), t € I'. Consequently, almost everywhere on D, we get
F(z) =W(z2). (5.4)

The function p(t) given on I'y U Ty is, by assumption (4), of the class P(I'; UT). Therefore, it
can be easily seen from (5.3) that F(z) is the generalized Cauchy type integral with density from
LPO(T; UTy). In view of Statement 3.4, we can conclude that F(z) € EP®)(A; B; D), and hence
owing to (5.4), W(z) € EP®)(A; B; D), as well. O

6. THE SYMMETRY PRINCIPLE FOR SMIRNOV CLASS FUNCTIONS

Before we proceed to formulating and proving the above-mentioned principle, we will prove below
the following Lemmas 6.1 and 6.2. We denote UT =U, U~ = E\ U+.

Lemma 6.1. Let the domain D lie in Ut and a part of its boundary lie on . Assume D, = {( :
(=1, 2€ D}, and let A(z), B(z) € L**(D), s > 2. Then the functions

A(Q), ¢eD, B(¢), (eD,
Ao(¢) = 1 /1 By(¢) = 1 —/1 (6.1)
_CQA(C)’ CED*, —? B(E)’ CED*

belong to the class L*?(D U D,.).
Proof. Show that Ag € L*>?(D U D,). Let ( = x + iy and

J= //|A0 ) dxdy—//’——A

Assume 7 = a+1 and transform the variable by the equality ¢ = % ie,x =

dac dy.

S5 Y=

Then
~ [ awpi daas,
D
where
R '(62—a2)(a2+52)‘2 20p(2+61)2 |1 1
y(/l y% —2045(&2 +52)—2 (a2 _ ﬁ2)(a2 +62)_2 (a2 +62)2 |7_|4 .
Therefore

I= é/ 172 A(T)|° dﬁff = é/ JA(T)*| 7272 dadB = é/ |A(T)|* dadp < 0.

(We have taken into account that s > 2, |7] < 1 and A,B € L*°(D).) This implies that Ay €
L*2(DUD,).
In the same manner we can prove that By € L%%(D U D). O

Assume that the domain D is bounded by a simple, rectifiable, closed curve, D C U and a part
of the boundary D is the arc lying on ~.
Given W (z) on D, we put
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Lemma 6.2. Let W(z) € EY(A;B; D) and either z =0 ¢ D, or z =0 € D, W(0) = 0. Then
W.(2) € E'(Ao; Bo; D..), where Ao, By are defined by the equality (6.1).
Proof. According to the definition of the class E'(Ag, By, D.), we have to establish that
W.(2) € U*(Ag; Bo; D.) (6.2)

and

sup /|W*(z(r6“9))| |2/ (e |" di) < oo, (6.3)

0<r<1 0

where z = z(re??) is conformal mapping of U+ onto D.,.

We start from the first one. By Lemma 6.1, Ay, By € L*2(D U D,). Therefore we have to prove
that for z € D, we have the equality

OzW. + Ao (2)W.(2) + Bo(z)
Assuming W(z) = u(z) + iv(z), we have

%\
N
&
I

(@)

(6.4)

But

o(3) +ae(3) = AG) (o(5) +0(5) -PE) ((5) + 1 5)

and from (6.5), we get

—ow.2) = (- ) [AE) W (5) -5 (2)w (3)]
= S A(2)We) — 55 B(Z) () = A(IWa2) + Bolo) W),

that is, o
DWW, (2) + Ao(2)W.(2) + Bo(2)Wu(2) = 0, = € D..
Let now W € E'(A; B; D). This implies that

sup /|W(C(rew))C'(rew)|rd19 =M < oo, (6.6)
0<r<1

where the function ¢ = ((re??) is conformal mapping of U+ onto D and if 0 € D, then ((0) =
The function z = ﬁ is the conformal mapping of U™ onto D,.
We need to prove that

) C(Tew)
021:21/ V- () eyl <
We have
27
B 1 ¢ (re?)
Ir _/‘W*<C(re“9)) C2(ret) rdv
27 _
/‘W S |rav = /|W(Z)% rdv
Q T [ ©
:0/|W(g) T mwzo/m/(g) o frav. (6.7)
If0 ¢ D, then
e M M (6.8)
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If 0 € D, then ¢(0) = 0, W(0) = 0, hence for small r (say, for 0 < r < rg) we have |W (re=")| ~ r,
|¢(re'”)| < er. Owing to that facts, there exists the constant ¢ such that |[W (re'?)| < cr, [¢(r(e??)] ~
cr. Therefore, for small r we get

2 2m
5< [Gicenirar =< [1¢Ge)ar=d < o. (69)
1
0 0

Now, from (6.8), (6.9), when r € (0, 1), we have J, < (2% +d). This implies that the inequality (6.3)
is valid, and since (6.2) is already proved, we have W, € E'(Ag; Bo; Dx). O

Corollary 6.1. If W € EP()(A; B; D), p € P(I') and either 0 ¢ D, or 0 € D and W(0) = 0, then
W € E'C)(A; B; D,), £(1) = p(2(2) = p(2(1)).

=

Indeed, since EP%)(A; B; D) C E'(A; B; D), we have W, = Kr W, where T, is the boundary of
the domain D,. In addition,

(=($))
/\W (OFP©O1()]|dc| = /‘W i ‘7(d7_/|w )P [dr| < oo.

(We have taken into account that if 7 € v, then 2 = =T.)

Theorem 6.1 (The symmetry principle for the Smirnov class functions). Let:

(1) D be the simply connected domain bounded by a simple, closed, rectifiable curve vo U~ € R,
lying inside of U™, and the arc v1 lying on v;

(2) A,B € L>®(D);

(3) D, be a mirror image of D with respect to y;
(4)

(5) W

4) W € EPW(A; B; D);
5) WHt)+ WH(t) =0, t € m;
.y p(t), t €72,
(6) Ao and By are defined by the equalities (6.1), Dy = DUD, U~y and po(t) = |
(?)a le (’72)
Then, if either z=0¢ D, or0 € D and W(0) = 0, then there exists a function F' € EpO(t)(AO, Bo, Dy)
which for z € D coincides with W (z), and for z € D, with W, (2), but if t € v1, then F(t) = WT(t) =

~WH(@).

Proof. Assume W1(z) = W(z), z € D, and W(z) = W.(2), z € D,. For the points ¢ lying on 71, we
have

— 1 1

Wit)= lim Wi(z)=W(t), Wat)= _lim [— W(f)} - —W(j) — W)

z=t,z€D 2=t, 2€D, ¥
Due to the condition W (t) + W+(t) = 0, t € 1, we have
Wi(t) = Wa(t), t €.
We have the right to apply Theorem 5.1 due to which the function F(z) given by the equality (5.3)
coincides with the function W given by the equality (5.1). Thus the proof of theorem is complete. [

Corollary 6.2. If A(z), B(z) € L=(D), W(z) € EPW(A; B;UT), W(0) = 0, and W+ (t)+W+(t) = 0,
t € v, then Wi(z) € EP-M (A, Bo; U™), where p.(t) = p(%) = p(t).

Indeed, if we take D = U™, 1 = v, then D, = U~, and hence the validity of Corollary 6.2 follows
from Theorem 6.1.
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Abstract. We prove the uniqueness theorem for the Dirichlet boundary value problem of statics of the
thermo-electro-magneto-elasticity theory in the case of a half-space. The corresponding unique solu-
tion is represented explicitly by means of the inverse Fourier transform under some natural restrictions
imposed on the boundary vector function.

2010 Mathematics Subject Classification. 35J57, 74F05, 74F15, 74E10, 74G05, 74G25.

Key words and phrases. Thermo-electro-magneto-elasticity, piezoelectricity, boundary value prob-
lem.

M9bomdg. bobggombog@Eol JgdmgggsBo ©sIHI0EgoPmos 0g@dm=gmgddOm=-ds3bgdm Mg om=
50l wgm®ool o®obmgl Lobsbmgmm sdmEsbobomgol gomsg@mmdol mgmmgds. oM 3397
d9690M03 gbogpggd o, MmBmgdlsi gogdm Lasbsbwgmm gg]@me-g3bdiEost, dgbsssdolbo @o-
®0begl Lobsbmgdm sdm3sbols gHmeg@mo sdmbsblibo Fo®dmoagbogmos 3boo Lobom dgo@obg-
dg9m0 g3g®mogl aomEsdbols 5Tgg9mdom.



The Dirichlet BVP of Thermo-Electro-Magneno Elasticity for Half Space 95

1. INTRODUCTION

Although natural materials rarely show full coupling between elastic, electric, magnetic and thermal
fields, some artificial materials do. In [14] it is reported that the fabrication of BaTiO3-CoFe2Oy
composite had the magnetoelectric effect not existing in either constituent. Other examples of similar
complex coupling can be found in the references [1]-[6], [8]-[10], [13], [15].

The mathematical model of the thermo-electro-magneto-elasticity theory is described by the non-
self-adjoint 6 x 6 system of second order partial differential equations with the appropriate boundary
and initial conditions. The problem is to determine three components of the elastic displacement
vector, the electric and magnetic scalar potential functions and the temperature distribution. Other
field characteristics (e.g., mechanical stresses, electric and magnetic fields, electric displacement vector,
magnetic induction vector, heat flux vector and entropy density) can be then determined by the
gradient equations and the constitutive equations.

In the paper we prove the uniqueness theorem of solutions for Dirichlet boundary value problems
of statics for half-space.

We show that under some natural restriction on the boundary vector functions the corresponding
unique solution is represented by the inverse Fourier transform.

2. BAsic EQUATIONS AND FORMULATION OF BOUNDARY VALUE PROBLEMS

2.1. Field equations. Throughout the paper u = (uy,u2,u3)" denotes the displacement vector, 04j is
the mechanical stress tensor, £x; = 271 (9yu;+0;uy) is the strain tensor, E = (Ey, Ea, E3) T = — grad ¢
and H = (Hy, Hy, H3) = —grad ) are electric and magnetic fields, respectively, D = (D1, Dy, D3) T
is the electric displacement vector and B = (By, Ba, B3) " is the magnetic induction vector, ¢ and
stand for the electric and magnetic potentials, 9 is the temperature increment, ¢ = (g1, ¢2,q3) ' is the
heat flux vector, and S is the entropy density. We employ the notation 0 = (01, 0,03), 0; = 0/0;,
0y = 0/0y; the superscript ()7 denotes transposition operation; the summation over the repeated
indices is meant from 1 to 3, unless stated otherwise.

In this subsection we collect the field equations of the linear theory of thermo-electro-magneto-
elasticity for a general anisotropic case and introduce the corresponding matrix partial differential
operators [11].

Constitutive relations:

Orj = Ojr = Crjki€kl — €lrj 1 — quvjHy — My, 1,5 =1,2,3,
Dj = ejuicn + » By + ajHy +pid, j=1,2,3,
Bj = gjriem + au By + pH +myd, j=1,2,3,

S = Apieks + pBx + mi Hy, + 0.

Fourier Law: q; = —m; 0,9, j=1,2,3.
Equations of motion: dj0.; + X, = 00iu,, r=1,2,3.

Quasi-static equations for electro-magnetic fields where the rate of magnetic field is small (electric
field is curl free) and there is no electric current (magnetic field is curl free): 0;D; = 0., 0;B; =0.

Linearised equation of the entropy balance: To0,S — Q = —0;q;,

Here o is the mass density, o, is the electric density, c,j; are the elastic constants, e;x; are the piezo-
electric constants, g;jx; are the piezomagnetic constants, s, are the dielectric (permittivity) constants,
i1 are the magnetic permeability constants, a;;, are the coupling coefficients connecting electric and
magnetic fields, p; and m; are constants characterizing the relation between thermodynamic processes
and electro-magnetic effects, A;; are the thermal strain constants, n;, are the heat conductivity co-
efficients, v = QCTO_l is the thermal constant, T} is the initial reference temperature, ¢ is the specific
heat per unit mass, X = (X1, X2, X3)" is a mass force density, Q is a heat source intensity. The
constants involved in these equations satisfy the symmetry conditions

Crjkl = Cjrkl = Cklrj, €klj = €kjl,  qklj = qkjl, Hkj = Xjk,

. 2.1
)\k:j = )\jlw BEj = Hjk, Nkj = MNjk; Q5 = Qjk, T,j,k,l = 1a253' ( )
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From physical considerations it follows (see, e.g., [7], [12])

Crint&rinl > colmbit, 2wy > el &€ > c2lé? mki€rés > csléf?, (2.2)

for all {x; = &x € R and for all £ = (£,&2,&3) € R3, where cg, c1,co and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy and thermodynamical
laws insure positive definiteness of the matrix

[%kj}3><3 [akj]:sxg [pj]3><1
E=|larlsxs  [rjilaxs  [mylsxa : (2.3)
[pilixs  [mjlixs v X7

Further we introduce the following generalised stress operator

[CrjuiniOlaxs  [ewrniOl)axs  [qrjn;03x1  [=Arjnjlaxt
T(0,n) = [—€rimn;iOi]1xs 27550 a;im;0, —pjn;
’ (=m0 1x3 ajin;0; pjin ;0 —m;n;
[0]1x3 0 0 N0 | ge

Evidently, for a six vector U := (u, ¢, ,9) " we have

T(@, n)U = (aljnj, 024Mj,035Nj, —l)j’l’Lj7 —Bjnj, —anj)T. (24)
The components of the vector TU given by (2.4) have the physical sense: the first three components
correspond to the mechanical stress vector in the theory of thermo-electro-magneto-elasticity, the
forth, fifth and sixth ones are respectively the normal components of the electric displacement vector,

magnetic induction vector and heat flux vector with opposite sign.
From the above equations we derive the following equations of statics

A(O)U(z) = @(),

where U = (u1,...,ug) " := (u,¢,%,9)" is the sought for vector function and ® = (®q,...,P¢)" :=
(—X1,—X2,—X3,—0¢,0,—Q) T is a given vector function; A(9) = [Ap,(0)]exs is the matrix differential
operator

[erimdiOlsxs  [ersOiOlsxs  |arj0i05x1 [=Arj0jlaxa
A(0) = [—e;110;01]1x3 #1001 a;,0;0, —p;0;
[=a410;0]1x3 ;1050 w1050, —m;0,
[0]1x3 0 0 1,0;0, ot

From the symmetry conditions (2.1), inequalities (2.2) and positive definiteness of the matrix (2.3) it
follows that A(9) is a formally non-self adjoint strongly elliptic operator.

2.2. Formulation of boundary value problems. Let R? be divided by some plane into two half-
spaces. Without loss of generality we can assume that these half-spaces are

R} :={z |2 = (z1,22,23) €R® and 23 >0} and

RS := {JI | = (21, 29,23) € R® and z3 < 0};
n = (n1,n2,n3) = (0,0,—1) is the outward unit normal vector with respect to RY; S := OR? ,.

Now we formulate the basic boundary value problems of the thermo-electro-magneto-elasticity
theory for a half-space.

Dirichlet problem (D)*. Find a solution vector U = (u,,%,9)" € [C*(R3,)]° N [C*(RS,)]° to
the system of equations

AU =0 in R}, (2.5)
satisfying the Dirichlet type boundary condition
{Uy*=f on S (2.6)

The symbols {-}* denote the one-sided limits on S from R$ (sign “+”) and R3 (sign “—").
We require that the boundary data involved in the above setting possess the following smoothness

property: f € C*°(R?), where C°°(R?) is the space of infinitely differentiable functions with compact
support.
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Let F S and }"é;lw denote the direct and inverse generalized Fourier transforms in the space of
xr

tempered distributions (the Schwartz space S’(R?)) which for regular summable functions g and h
read as follows

Foidlol = [ ol@)e™ e,

R2
(2.7)
_ - 1 N, —iT-€ g8
ol = gy [ 0@
R2
where T = (xl,xg), g: (51,52), dz = dx; dxo, T- g: 33151 + .ngg.
Note that if g(x) = g(z1, 22, x3) = g(T, x3), then
and hence
—i&1 _ _
Fy AVag(@) = | —iés | Foclolw)] = P(—iE, 025)3(E, ws), (2.8)
here §(€, 23) = F;_¢lg] and
P = P(—i€,0y,) = (=i, —ik2, 0uy) (2.9)

Applying Fourier transform (2.7) in (2.5)-(2.6) and taking into account (2.9) we arrive at the
problem:

A(P)ﬁ(g, 23) =0, 3 € (0;400) or z3 € (—00;0), (2.10)
oew), . -F@ @.11)

We see that (2.10) is the system of ordinary differential equations of second order for each E € R2.

3. UNIQUENESS THEOREMS

We start with constructing a system of linear independent solutions to the system (2.10).

Let us denote by k; = k;(&), j = 1,12, the roots of the equation
det A(—i€) =0 (3.1)

with respect to &3, where A(—i&) is the symbol matrix of the operator A(J).
Note that det A(—i) is a homogeneous polynomial of order 12 and the equation (3.1) has no real
roots, Imk; # 0, j = 1,12. These roots are continuously dependent on the coefficients of (3.1) and

the number of roots with positive and negative imaginary parts are equal. Denote by ki, ko, ..., kg
roots with positive imaginary parts and by k7, ..., k12 with negative ones.
Let us construct the following matrices:
(€, 23) = /A‘l(—ig)e_i53x3 dés, (3.2)
¢+
(€, a3) = /A‘l(—ig)e_i53””3 dés, (3.3)
—

where £T (respectively, £7) is a closed simple curve of positive counterclockwise orientation (respec-
tively, negative clockwise orientation) in the upper (respectively, lower) complex half-plane Re&5 > 0
(respectively, Re &3 < 0) enclosing all the roots with respect to &3 of the equation det A(—i&) = 0 with
positive (respectively, negative) imaginary parts (see Fig. 1). Clearly, (3.2) and (3.3) do not depend
on the shape of £* (respectively, £7).

With the help of the Cauchy integral theorem for analytic functions, we conclude that the entries of
the matrix <I>(+)(§, x3) = [tbg) (E, x3)]6x6 are increasing exponentially as z3 — +o0o and are decreasing
exponentially as x3 — —oo (—i€sx3 = —i(&5 + &4 )xs = —ilhas + & x3).
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&

FIGURE 1

Analogously, the entries of the matrix ®(7) (£, z3) = [q),i;)(g, x3)]exe are increasing exponentially
as x3 — —oo and vanish exponentially as z3 — 400.

Lemma 3.1. The columns of (ID(i)(g, x3) are linearly independent solutions to system (2.10).
Proof. Applying the Cauchy integral theorem we have
APYOD € a5) = [ A(-ig) 47 (-ig)e o de
VeSS

= / Tge™%373(dgs = 0,

VeSS
where Ig is the 6 X 6 unit matrix. Now we prove that the columns of the matric <I>('*‘)(§~7 x3)

FACSIR- (ISR S

are linearly independent vector functions. N
Assume that there exists a complex vector (Cy,Cs,...,C) =: C € C (C = C(£)) such that
6 (4) ~
S C;0F) (€ x3) =0or
j=1
) (€, 25)C =0, (3.4)
If 23 = 0, then from (3.2) and (3.4) we get

BE0)C = [ 47 (-ig g C =0, (3.5)
i+
Taking into account that (see (3.27) in [11])

/A‘l(—z‘f) dés = 7A‘1(—i§) d€s,

i+

one can rewrite (3.5) as follows

o

/ AT (-ig)C dgs = / A} (=i€)Cydés =0, k=T,
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or
+eo [[erklfj&]]?’” lerr€i€axt  lami&i&laxt  [~An&ilaxi]
—ejm&;&)ixs 7€ a;i;& —ip;&; _
/ [_Qj'klfjfl]b@ a;lfj-gl Mj’lé‘fl _W;jgj Cdgs = 0. (3.6)
B [O]1x3 0 0 n71&& | exe

The integrand in (3.6) is ¥ := —A~1(—i¢)C and hence C = —A(—i€)V¥. Using these notation we

can write

+oo +oo

/ \I/k d§3 = O7 / @k d€3 = 07 k= 176, and
+oo 3
/ > G, dés =0, / CyWydés =0, (3.7)
o T= 1

/ Cs5Ws5dés =0, / Ce¥Ugdés = 0.

Using (2.2) and the last equality of (3.7) we conclude that ¥g = 0.
Taking the sum of the first five equalities of (3.7) we obtain

/{Z T+ (- (—ii)W)4W4+(—W)5¢5}d§3

— 00 -
+oo

= / {erjm&&Ve¥y + €& PaVy + @i &6 VsV, — €& E W, Uy

+ 5860V + aji&EVs Vs — qiu& S W Us + a& & PWaVs + 16U Us Hdés = 0,

ie.

/ {erim&&Ve¥y + 566 Va0 s + aj& & (Vs Wy + UsWy) + &6 V5 W5 bdés = 0.

De to (2.1), (2.2) and positive definiteness of the matrix (2.3) from the last equality we conclude
that ¥}, = 0, k = 1,5, and therefore together with Wg = 0 we have Cy =0, k = 1,6.
Hence the columns of the matrix <I>(+)(§ x3) are hnearly independent vector functions. Similarly,

it can be proved that the columns of the matrix ®(~ (5 ,x3) defined by (3.3) are linearly independent
vector functions. O

Theorem 3.2. The boundary value problems (2.10)—(2.11) have only one solution in the space of
functions vanishing at infinity.

Proof. If z3 € (0; +00), then we look for a solution of the Dirichlet problem in the following form
U(€, x3) = ®)(€,23)C, a3 >0,

where C' = (C4,...,Cg) is unknown vector depending only on 5

From (2.11) we have

(€00 = [(©)
and since det ®(7)(£,0) # 0, |€| # 0, due to Lemma 3.1 we obtain
C =207 F(9).
Therefore the unique solution has the following form
U(€ ws) = 2 (6 az)[@ (€ 0] (), a3 >0. (3:8)
Similarly, if 5 € (—o00;0), then the unique solution of the Dirichlet problem has the form

U(€,23) = (€, 23)[@D(€,0)] 7 f(€), a3 <0. (3.9)
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The theorem is proved. O
Lemma 3.3. There hold the following relations
DE o1 = |[OU&D]sxs [0
(0]t = [ i : (3.10)
| | O ole) |,
Proof. Tt can be shown (see [11]) that the entries of the matrix A=1(—i¢) are homogeneous functions
in £ and
“1_ O(I€]72)]sx5 [0(|§|3)}5x1]
A (—ig) = || / . 3.11
i = 05,0 O8] (310

Assume that & = [€], & = t2[€], & = talé], where € = (€1,62.6) = (§,&), B+ 83 = L I |§[ £ 0,
from (3.11) we obtain

+oo +oo
27€0 = [ A de— [OGemde m=2 or m=3

Hence
+oo +oo -
) c c ~
|¢>2j>(£,0>|s/wd53/ I —T<
ES Lo (VEIER + 13182 + 31él2)
—+oo

. c / dtg - C1 .
|€~|m—1 (1 +t§)m/2 |£~|m—1 !

here ¢ > 0 and ¢; > 0 are some constants.
We derive the following relations

(,0) =

O ]sxs  [O(IE~)]sx1
Oue  O(E) ] (312

It can easily be checked that det ®(7)(£,0) = O(|¢|6) and there exist constants ¢ > 0 and ¢} > 0
such that

¢ilE]70 < |det (£, 0)] < c5lé] . (3.13)
If <I>£7)(£~, 0) is the corresponding matrix of cofactors, then
~ 1 ~
@& 0] {7 (£,0).

T det 3O)(E,0)

Taking into account (3.12) and (3.13) we arrive at the relation

OE oo L 008 )sxs  [OUE]~)sxa
EOT = 0G0 | 0 (&) ]
_ [10085s [0(1)15“] . 0
[0]1x5 O([¢) 66

Remark 3.4. Note that <I>(_)(§~7 x3) has the same behaviour (3.12) as <I>(_)(£~, 0) for arbitrary x3 and
due to (3.10)

@(7)(5, xg)[@(*)(a 0) ! = {[0[8]13]5;5 [O(|§OH))]5X1} ) (3.14)
x 6x6

Theorem 3.5. The Dirichlet boundary value problems (2.5)~(2.6) have at most one solution U =
(u, %w,ﬁ)—r in the space [C* (R%z)}ﬁ N [CQ(R§,2)]6 provided

0*9(x) = O(|z| 1~ 1), (3.15)
0°U(z) = O(jz|~ 1" |z|) as |z| = (3.16)
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for arbitrary multi-indexr o = (a1, aa, ag), Here U = (u, o, 1) T

Proof. Let UM = (uM) M) M) 9ONT and UR) = (u?), @) ) 92)) be two solutions of the
problem under con51derat10n with properties indicated in the theorem for R$. It is evident that the
difference
V= (u/7 4,0/, 1/]/719/) _ U(l) _ U(2)
solves the corresponding homogeneous problem.
Therefore for the temperature function we get the separated homogeneous Dirichlet problem

[A(O)V]e = 1n;10;009' =0 in R3, (3.17)
(W} =0 on S. (3.18)
By Green’s formula (see (2.83) in [11]) for B*(0; R) := {(z1, 2, 23) | 23+ 23 +23 < R? and z3 > 0}
and (3.17)—(3.18) we have
njlé)lﬁ’ajﬁ’ dr = / {njlnjﬁlﬁ’}+{z9’}+d5
B+(0;R) 8B+ (0;R)
_ /’{mmﬁwqupdz (3.19)
5+(0;R)

Here 1 (0; R) is the upper half sphere.
Taking the limit as R — oo in (3.19) according to (3.15) we get

/njlfﬂlﬁ’@jﬁ’ dxr = 0.
R
Due to (2.2) ¢ = const and from (3.15) we conclude that ¢’ = 0.

Therefore the five dimensional vector V = (u',¢',9")T constructed by the first five components of
the solution vector V, solves the following homogeneous boundary value problem

A@V =0 in R3

{V}*=0 on 5, (3.20)

where 1(8) is the 5 x 5 differential operator of statics of the electro-magneto-elasticity theory without
taking into account thermal effects (see (2.85) in [11]).

Using the limiting procedure as above in the corresponding Green’s identity for vectors satisfying
decay conditions (3.16) we obtain

R—o0
R3 S+ (0;R)

/M@VV+aﬁ%mﬁum /‘WW VT (3.21)

Here 7 (9, n) is the corresponding 5 x 5 generalized stress operator (see (2.86) in [11]) and
g(i} ‘7) = erklaluza‘u/ + %jlﬁl(plajtpl + aﬂ(&(p’ jlﬁ/ + 8jw’81ap’) + ,Ujlalw/ajwl. (3.22)
If V is a solution of (3.20) satisfying (3.16), then from (3.21) we have

/5vv (3.23)

From (3.20), (3.22) and (3.23) along with (2.2) we get
() =axa+b, ¢ (x)=by, o' =bs,

where a = (ag,a2,a3) and b = (b1, by, b3) are arbitrary constant vectors and by, bs are arbitrary
constants. Now, in view of (3.16) we arrive at the equalities u'(x) = 0, ¢'(z) = 0, ¥'(x) = 0 for all
x € R, consequently, U) = U?) in R3,

The proof is similar for the domain R3. O
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Theorem 3.6. Let f € C*(R?) and

/f(%) dz = 0, /f(%)xj Az =0, j=1,2.
R2 R2

Then the Dirichlet boundary value problems (2.5)—(2.6) possess unique solutions which can be repre-
sented in the following form

U) = Fz! [0O €)@ €01 F©)]. a5 >0, (3.24)
U) = F2' [0 (Eaa) @D €0 F©)] . 25 <0, (3.25)

Proof. It suffices to show that the vector functions (3.24) and (3.25) satisfy the conditions (3.15)—
(3.16). This will be done if we prove that the following relations hold for all z € R3:

o P! U xs)] <0(1), j=1,2,3, (3.26)
and
TG0 <0(1), 7=1,23, (3.27)
where U (€, z3) is defined by (3.8) or (3.9). For j =1 or j = 2, we find
_15 . —25 T —ig% .
x]/U@m;g d§—z/U§,x3 (%g d§—z hm / Uf,xg 96, d€
K(O R)
s 8U(§7333) 77;5-5 = e —i&F &
K(0;R) K (0;R)
i W& 23) gz 7, / UE23) gz gz
= zzzlgnoo 7c e dé = —i D€, e dg, (3.28)
K(0;R)

where K (0, R) is the circle of radius R centered at the origin.

Under the restriction on f we conclude that f € S(R2) and f(€) = O(|¢[?) as |€] — 0, where S is
the space of rapidly decreasing functions. Therefore in view of (3.14) we have

% =0(1), |§/—0 and
% (3.29)
U8 _ H(Ew), il = o0, k>2,
9¢;

uniformly for all z € R3. Then the relations (3.28) and (3.29) imply (3.26). The condition (3.27) can
be proved similarly if we note that

0*U (&, w3) (1) gl

et o = d

i o) E=0

PUCT) _ 0@+, (80 k22,
%%

uniformly for all z € R3.
Note that

w5 F2 ! O ws)) = 75 / ( / —fémdgs)[<1><-><E,o>1—1f<5>e-@’fd§. (3.30)
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Using the Cauchy integral theorem for analytic functions and the relations (3.10), (3.11), from
(3.30) we get

.’173]:5:_1*5[[7(5, -TS)]

iy [ e [0 Dlena (008 o] [100EDlers 10(0]ews] 7 i

J [0]1x5 () Olixs — O(l€])
= zg/eflflfs [O(W)]sxef(€)dE = I) + I, (3.31)
RZ

where

o~ o~ o~ ~ ~

Iy = s / eI (0166 F(E) dE and I — a3 / e~ €173[0(1)]s w6 F () dE
[gl<M l&|>M

o~ ~

Since f(£) € S(R?), it is easy to check that I; = O(1) and Iy = O(1) and hence (3.26) holds.
We can prove the boundedness of the vector function x%fg—if[U (&, z3)] quite similarly taking into

o~ ~

account that f(£) = O(|€]?) as |¢] — 0. a
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MALKHAZ ASHORDIA

ON THE SOLVABILITY OF THE ANTIPERIODIC PROBLEM
FOR LINEAR SYSTEMS OF IMPULSIVE EQUATIONS

Abstract. The antiperiodic boundary value problem for systems of linear impulsive equations is
considered. The Green type theorem on the unique solvability of the problem is established, and
its solution is represented. The effective necessary and sufficient (among them spectral sufficient)
conditions for the unique solvability of the problem are also given.
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In the present paper, we consider the system of linear impulsive equations on the real axis with a
finite number of impulses points

‘(% — P(t)x +p(t) for ace. tER, (1)
(Thj+) — (i —) = Qujx(Thj—) +ar; (G =1,...,mo; k=0,£1,£2,...) (2)
under the w-antiperiodic condition
z(t+w)=—=z() for t R, (3)
where kw < 71 < -+ < Ty < (k+1D)w, Tey1j =Tk j+w (j=1,...,mo; k=0,£1,£2,...), mg is a

fixed natural number, w is a fixed positive number, P € L;,.(R; R™*™) is a w-periodic matrix-function,
P € Lioe(R; R™) is a w-antiperiodic vector-function, Qr; € R**™ (j=1,...,m; k=0,%£1,£2,...) and
qrj ER™ (j=1,...,m; k=0,£1,42,...) are, respectively, constant n x n-matrices and n-vectors.

Below we present the Green type theorem on the solvability of the problem (1), (2);(3) and give
representation of its solution. In addition, we give effective necessary and sufficient (spectral type)
conditions for the unique solvability of the problem. The general linear boundary value problem for
the system (1), (2) and the nonlinear problems for impulsive systems are investigated sufficiently well
in [1,5,6,8-11,16-18] (see also the references therein), where, in particular, the Green type theorems for
the unique solvability have been obtained. Some questions of periodic problems for the system (1), (2)
are investigated in [10,11,16-18]. Moreover, they are a particular case of the problems considered
in [3,4,6,19]. As to the antiperiodic problem, it is rather far from completeness. Thus the problem
under consideration what follows, is actual.

In the paper we establish some spectral conditions for the unique solvability of the problem which
follows from the analogous results for the generalized linear differential systems.

In the paper, the use will be made of the following notation and definitions.

R =] — o0, 400[; [a,b] and ]a, b] (a,b € R) are, respectively, closed and open intervals. Z is a set of
all integers.
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n
R™™ is the space of all real n x m matrices X = (2;); /=, with the norm || X|| = max 3 @il
' J ™i=1

Opnxm (or O) is the zero n x m matrix.
If X = (245);72 € R™™, then |X| = (|loy]);5%,-
R™ = R™*! is the space of all real column n-vectors x = (z;)7_;; R? = R’}
If X € R*"*"™ then:
X! is the matrix inverse to X;
det X is the determinant of X;
r(X) is the spectral radius of X;
I, is the identity n x n-matrix.
The inequalities between the real matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components
is such.
If X : [a,b] = R™ ™ is a matrix-function, then X (t—) and X (¢+) are, respectively, the left and the
right limits of X at the point ¢ (X (a—) = X(a), X (b+) = X (b)).
L([a, b]; R™*™) is the set of all measurable and Lebesgue integrable on [a, b] matrix-functions X :
[a, b] — R™*™;
Lioe(R,R™ ™) is the set of all matrix-functions X : R — R™*™ whose restrictions on every closed
interval [a, b] from R belong to L([a, b], R"*™).
C([a, b); R™*!) is the set of all continuous on [a, b] matrix-functions X : [a,b] — R™*!;
Cioc(R,R™¥!) is the set of all matrix-functions X : R — R™*! whose restrictions on every closed
interval [a,b] from R belong to C([a,b], R"*!).

C([a, b); R™*!) is the set of all absolutely continuous on [a, b] matrix-functions X : [a, b] — R™*/;

5([a,b];R"Xl;7'1, ey Tm), where T1,..., T € [a,b], is the set of all matrix-functions X : [a,b] —
R™*™ having the one-sided limits X (7,—) (k=1,...,m) and X (7x+) (k= 1,...,m), whose restric-
tion on an arbitrary closed interval [c, d] from [a, b] \ {7 }}, belong to C([e, d); R,

For the pair {X;{Y;}]",}, consisting of the matrix-function X € L([0,w], R™*™) and a sequence of

constant n x n matrices Y7,...,Y,,, we put
[(X;{Yi}2) ()], = In for 0<t<w,

(OGO @], = [ X [ K (0] dr

+ ) V(G ()], for 0<t<w (i=1,2,...). (4

a<tT<t
We say that the pair {X;{Y;}]",} satisfies the Lappo-Danilevskil condition, if the matrices
Y1,...,Y,, are pairwise permutable and there exists ty € [a,b] such that

t

¢
/X(T)dX(T) = / dX(r)- X () for t € [0,w]
to to
and
XY, =YXt for te0,w] (I=1,...,m).
Under a solution of the system (1), (2) we understand a continuous from the left vector-function
2 : R = R™ whose restrictions on [kw, (k+ 1)w] belong to C([kw, (k+ 1)w]; R™; Tk1, - - - , Tkm, ) for every
k € Z and satisfying both the system (1) for a.e. t € R and the equality (2) for every j € {1,...,mq}.
In the sequel, we assume everywhere that P(t +w) = P(¢) and ¢(t +w) = —q(¢) for t € R, 79; = 75,
q0; = ¢, Qr; = Qj and gry1; = —qr; (j=1,...,mo; k=0,£1,£2,...). Moreover, we assume that

det(I, +Q;) #0 (j=1,...,mp). (5)

Note that the condition (5) guarantees the unique solvability of the system (1), (2) under the Cauchy
condition z(tg) = co.
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Alongside with the system (1), (2), we consider the corresponding homogeneous system

d
d—f = P(t)r for a.e. t€R, (1o)
ZE(Tkj+) - ZE(Tkjf) = ijx(Tkj—) (j =1,...,mog; k= 0,4+1,+£2,... ) (20)
Moreover, along with (3) we consider the condition
z(0) = —z(w). (6)

Proposition 1. The following statements are valid:

(a) if z is a solution of the system (1), (2), then the function y(t) = —z(t+w) (t € R) is a solution
of the system (1), (2), as well;

(b) the problem (1), (2);(3) 4s solvable if and only if the system (1),(2) on the closed interval
[0,w] has a solution satisfying the boundary condition (6). Moreover, the set of restrictions of
solutions of the problem (1), (2);(3) on [0,w] coincides with the set of solutions of the problem

(1), (2); (6).

Based on this proposition we give the following definition.
Let
D=1I,+Y(w),
where Y is the fundamental matrix of the problem (1), (2¢); (6) under the condition Y (0) = I,.

Definition 1. Let det D # 0. A matrix-function G : [0,w] X [0,w] — R™ ™ is said to be the Green
matrix of the problem (1¢), (2¢); (6) if:

(a) for every s €]0,w[, the matrix-function G(-,s) satisfies the impulsive homogeneous matrix
equation

dX
= P(t)X for a. e. t€R,

X(mj4) = X(m5—) = Q;X(1;—) (G=1,...,mo);

G(t,t+) — G(t,t=) = Y () D 'Y (w)Y (1) for t €]0,w[\{T1,- -, Tmo},
G(rj,74) = G(r5,7—) =Y (1) DY ()Y ) (In + Q)" (G=1,...,mo);

G(t+,t) —G(t—,t) =1, for t €]0,w[\{T1,-.-, Tmo }
g<Tj+’ T]) - g(Tj_7Tj) = ITL + Q]Y(T])D71<In =+ Yﬁl(Tj)) (.] = 17 ceey m0)7

(d)
G(t,-) € 6’([0,w};R”X";ﬁ, . ,Tmo) for ¢ € [0,w];
(e) the equality

w

/ (g(ov 8) + g(wv 5)) p(s) ds + Z (g(O,Tj+) + g(w77—j+)) cqj = 0
0 j=1
holds for every p € L([0,w],R™) and ¢1, ..., ¢m, € R™.

The Green matrix of the problem (1), (20); (6) exists and is unique in the following sense. If G(, s)
and Gy (t, s) are two matrix-functions satisfying the conditions (a)—(e) of Definition 1, then

g(tv 8) - gl (tv 5) = Y(t)H*(S)a
where H, € 5’([0,w]; R™ ™ 74, ..., Tm,) is a matrix-function such that
H,(s+) = H.(s—) = C = const for s € [0,w],

and C € R™*™ is a constant matrix.
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In particular, the matrix-function G defined by

Y (t)D~ YT, + Y ~1(s)) for 0 <s<t<uw,
G(t,s) =qY()D (I, - Y(w)Y"!(s)) for 0<t<s<w,
arbitrary for t =s

is the Green matrix of the problem (1p), (20); (6).

Theorem 1. The problem (1),(2) has a unique w-antiperiodic solution x if and only if the corre-
sponding homogeneous system (1g), (20) has only the trivial solution satisfying the condition (6), i.e.,
when

det(I, + Y (w)) # 0. (7)
If the last condition holds, then the solution x admits the notation
w mo
:/g(t,s)-p(S)dS—i—Zg(t,Tj-l-)-qj fmn te [0,0.)], (8)
0 J=1

where G : [0,w] X [0,w] = R™*™ s the Green matriz G of the problem (1p), (20);(6) on [0,w].

Corollary 1. Let the pair {P, {Q] 0} satisfy the Lappo—Danilevskii condition. Then the problem
(1),(2) has a unique w-antiperiodic solutwn if and only if

det (In + exp <O/P(s) ds> [[@. + Qj)) #0.

j=1

Note that if the pair {P, {Q,}]2, } satisfies the Lappo-Danilevskil condition, then

Y (t) = exp (]P(s) ds> ﬁ([n +Qj)
0

j=1
and, therefore, the condition (7) is of the form given in the corollary.

Remark 1. If the system (1), (29) has a nontrivial w-antiperiodic solution, then there exist the vector-
function p € Ljo(R,R™) and constant vectors gg; (j = 1,...,mo; k = 0,%£1,£2,...) such that
gt +w) = —q(t) for t € R, qry1; = —qrj (j=1,...,mp; K =0,£1,%£2,...), but the system (1), (2)
has no w-antiperiodic solution.

In general, it is quite difficult to verify the condition (7) directly even in the case where one is able to
write out the fundamental matrix of the system (1), (2¢) explicitly. Therefore it is important to find
of effective conditions which would guarantee the absence of nontrivial w-antiperiodic solutions of the
homogeneous system (1g), (2¢). Below we give the results concerning the subset question. Analogous
results have been obtained by T. Kiguradze for the ordinary differential equations (see [12,13]).

Theorem 2. The system (1), (2) has a unique w-antiperiodic solution if and only if there exist natural
numbers k and m such that the matriz
k—

My, = —Z [(P;{Q lyiol)(w)]i

=0

[u

is monsingular and
r(Mg,m) <1, (9)
where

Mk,m - [(P {Ql 'rn + Z P {Ql mo ( )]z : |M];1‘ [(P’ {Ql ;iol)(w)]ka
=0

and [(P;{Qi}2)(w)]i (1 =0,...,m —1) are defined by (4).



On the Solvability of the Antiperiodic Problem for Linear Systems of Impulsive Equations 109

Corollary 2. Let there exist a natural j such that
(PHQU™) )], =0 (1= L....])
and
det ([(P Q) @), ) #0,
where [(P;{Q};"%)(w)]i (i =0,...,m —1) are defined by (4). Then there exists g > 0 such that the
system
dx
il
x(mh;+) — x(thj—) = eQ x(mej—) +qx; (F=1,...,mp; k=0,£1,%£2,...)

have one and only one w-antiperiodic solution for every e €]0, gl

P(t)x + p(t) for a.e. t €R,

Theorem 3. Let the homogeneous system

d
d—f = Py(t)x fora. e. teR,, (10p)
(Thj+) — (T —) = Qokjr(thi—) (J=1,...,mo; k=0,£1,£2,...) (119)
has only the trivial w-antiperiodic solution, where Py € Ljoc(R;R™ ™) is w > 0-periodic matriz-
function, Qor; € R™™ (j = 1,...,m; k = 0,£1,%2,...) are constant n x n-matrices such that

Q()kj :on (_]: 1,...,m0;k=0,:t17:|:2,...) and
det(InJron) #0 (j=1,...,mp).

Let, moreover, the matriz-function Py € Ljoc(R; R™*™) and constant matrices Q;(j = 1,...,mq) admit
the estimate

/|90(t77)| |P(7) = Po(r)|dr + Y 1Go(t, 74)(Q; — Qoy)| < M for t € [0,w],
0

j=1

where Go(t,T) is the Green matriz of the problem (100), (11¢);(6), and M € R}*™ is a constant matrix
such that
r(M) < 1.

Then the system (1), (2) has one and only one w-antiperiodic solution.

The representation (8) can be replaced by a more simple and suitable form by introducing the
concept of the Green matrix for the problem (1g), (20); (3).

Definition 2. The matrix-function G, : R x R — R™*" is said to be the Green matrix of the problem
(10), (20); (3) if:
(a) Gu(t+w, 7+ w)=G,(t,7), Gu(t,t +w) + Gu(t,7) = —1I, for t, 7 € R;

(b) the matrix-function G, (-,7) : R — R™*" is a fundamental matrix of the system (19), (2¢) for
every 7 € R.

Proposition 2. Let the problem (1p), (20) have only a trivial solution. Then there exists the unique
Green matriz of the problem, which has the form

Gol(t,7) = =Y ()T, + Y Hw)) 'Y =(7) for t, 7 € R.
Theorem 4. Let the condition
det(In :l:Qj) 7é 0 (] = 1,...,m0)

hold and the boundary value problem (1p), (20); (3) have only a trivial solution. Then the w-antiperiodic
problem (1), (2);(3) has a unique solution x admitting the representation

t+w
z(t) = /gw(t,T)P(T)dT+ Z Goo (t, Tg) (I — Q3) i
t t<7p;<(k+1)w
+ Z gw(taTk+1j)(In_Q?)_1Qk+1j for te (kw, (k+1)w] (k=0;%+1;45...), (12)

(k4+1)w<Tgy1;<t+w
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where G, is the Green matriz of the problem (1), (20);(3).

Using the properties of the Green matrix G, (¢, 7) (see Definition 2 (a)), the representation (12) can
be rewriten in the form

t+w
s= [ Gultrpm ()Y Gl - @
t 0<7;<t—kw
+ (=1)* Z gw(t—k’w,Tj)(In—Q?)_lqj for t € (kw, (k+1)w] (k=0;%1;=%;...).

t—kw<T;<w
Note that the results obtained in the paper, follow from the corresponding results given in [7] for
the generalized differential system of the form
dx(t) = dA(t) - z(t) + df (t)
since the impulsive system (1), (2) is the particular case of the last system under the assumptions that
t

A(0) = Opxn, A1) :/P(T)dT+ Z Q, for t e (0,w],

OSTJ' <t

0
F0)=0, f(t) /p(T)dT+ > gy for t e (0,w],
0

0<7; <t
and
At +w) = A(t) and f(t+w)=—f(t) for t € R\ [0,w].
It is not difficult to verify that
¢
A(t) = /P(T) dr + Z Qj + kA(w) for t € (kw, (k+ 1)w]
Fw kw<Tr; <t

and
t

f(t)Z/p(T)dT-i- S g+ (B fw) for te (ko (k+1)w] (k= 0;41,42,..),

T kw<Tr; <t

where (k) = 0 if k is an even integer, and (k) = 1 if k is an odd one.

The theory of generalized ordinary differential equations has been introduced by J. Kurzweil [14,15]
in connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

Finally, we note that, to a considerable extent, the interest to the theory of generalized ordinary
differential equations has been stimulated by the fact that this theory enables one to investigate
ordinary differential, impulsive and difference equations from a unified point of view (see [1,2,5,7,19]
and the references therein).
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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF LINEAR GENERALIZED DIFFERENTIAL EQUATIONS

Abstract. The question of well-posedness of antiperiodic boundary value problem for systems of
linear generalized differential equations is considered. The necessary and sufficient as well as the
effective sufficient conditions are found for the well-posedness of the problem.
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2010 Mathematics Subject Classification: 34KO06.
Key words and phrases: Antiperiodic problem, linear systems, generalized ordinary differential
equations, well-posed, necessary and sufficient conditions, effective conditions.

We consider the question of well-posedness of the w-antiperiodic problem for linear generalized
ordinary differential equations of the form

dz(t) = dA(t) - z(t) + df (t) for t € R, (1)
z(t+w) =—x(t) for t € R, (2)

where A : R — R™™ " and f : R — R" are, respectively, the matrix- and vector-functions with bounded
variation components on the every closed interval [a, b] from R, and w is a fixed positive number.
Let the system (1) have a unique w-antiperiodic solution z°.

Along with the system (1), consider a sequence of systems
dx(t) = dAg(t) - x(t) + dfi(t) (k=1,2,...) (1)

where Ar : R — R™ ™ and fi : R — R" are, respectively, the matrix- and vector-functions with
bounded variation components on every closed interval [a, b] from R.

In the present paper, the necessary and sufficient conditions are given for a sequence of w-antipe-
riodic problems (1), (2) (k=1,2,...) to have a unique solution z; for a sufficiently large k and

lim z(t) = 2°(t) uniformly on R. (3)
k—+o00

The analogous questions for the linear general boundary value problems are investigated in [2,
6,10,11,19] (see also the references therein) for linear generalized differential systems, in [3-5, 14]
(see also the references therein) for nonlinear generalized differential systems and equations, and
in [1,9,12,13,16] (see also the references therein) for ordinary differential and impulsive systems.

The problem on the solvability of the w-antiperiodic boundary value problem (1), (2) can be found
in [8].

As to the well-posedness question concerning of the antiperiodic problem, it is sufficiently far from
by completeness. Thus the problem considered in the present paper is actual.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [3,7,14,15,17,18] and the references
therein).

The theory of generalized ordinary differential equations has been introduced by J. Kurzweil [14,15]
in connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

In the paper, the use will be made of the following notation and definitions:

R =] — 00, +00] is the real axis;
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R™*™ is the space of all real n x m matrices X = (x”)szl with the norm

n
X[ = max > |ayl;
j=1,....m P}

Opnxm (or O) is the zero n X m matrix; I,, is the identity n x n-matrix.
R™ = R™*! is the space of all real column n-vectors z = (z;)™ ;.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such. The inequalities between the real matrices are understood componentwise.
b

If X : [a,b] — R™™ is a matrix-function, then \/(X) is the sum of total variations on [a,d] of

its components x;; (i = 1,...,n; j = 1,...,m); V(X)(t) = (V(2i;)(t));2,, where V(z5)(a) = 0,

t
V(zij)(t) = V(z4j) for a <t < b; X(t—) and X (t+) are, respectively, the left and the right limits of

X at the point ¢ (X (a—) = X(a), X(b+) = X(b)); di X (t) = X(t) — X(t—), do X (t) = X (t+) — X (1).
BV([a, b], R™*™) is the normed space of all bounded variation matrix-functions X : [a, b] — R™*™
b

(i.e., V(X) < 00) with the norm || X||s = sup{||X(¢)|| : t € [a,b]}.

a

BVioe(R,R™"*™) is the set of all matrix-functions X : [a,b] — R™*™ whose restrictions on every
closed interval [a, b] from R belong to BV([a, b], R"*™).

BV (R,R™™) and BV (R,R"*™) are the sets of all matrix-functions G : R — R™ ™ whose
restrictions on [0,w] belong to BV([0,w],R™*™)  and there exist a constant matrix C € R"*™ such
that, respectively,

Gt+w)=G({t)+C and G(t+w)=—-G(t)+C for t € R.
S¢, 85 : BV([a,b],R) = BV([a,b],R) (j = 1,2) are the operators defined, respectively, by
s1(x)(a) = Sz(x)(a) =0,
Z dyz(r) and so(x Z dax(1) for a <t <b,
a<t<t a<t<t
and
se(x)(t) = x(t) — s1(x)(t) — s2(x)(¢) for t € [a,b].
If g : [a,b] — R is a nondecreasing function, z : [a,b] = R and a < s <t < b, then
¢

/ o(r) dg(r) = / 2 dse()() + 3 w(dig(r) + 3 a(r)dag(r),

s 15, s<t<t s<t<t
where [ x(7)ds.(g)(7) is the Lebesgue-Stieltjes integral over the open interval |s, t[ with respect to

Js,t[
the measure 1 (s.(g)) corresponding to the function s.(g).

If a = b, then we assume
b
JECOR

and if @ > b, then we assume
b a

[atydgy =~ [ atedgto.
a b
b
Thus [ z(7)dg(7) is the Kurzweil-Stieltjes integral (see [14-19]).
Ifgt)=g ( ) — g2(t), where g; and go are nondecreasing functions, then

/tx(T) dg(T) = /tx(T) dgy(7) —/tx(T) dga(7) for s <t.

S S S
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If G = (gir);7—y € BV([a,b], R™™) and X = (z;) ™, : [a, b] — R™ ™, then

Se(G)(1) = (segn) (D) h_ s S (G = (s5(g)(B) e, (G =1,2)

and
b

/dG( (Z/x,w ) dgir (T )l:_{

We introduce the operators. If X € BV;,.(R,; R”X") and Y € BV (R, ; R™*™), then
t
BIX.Y)(0) = XY ()~ XOY(©) - [ dX(r)- ¥ (r)
0
if, in addition, det(X (¢)) # 0 for t € R, then
t
XY@ = [ d(X(7) + B Y)(m) - X (o)
0
and if, moreover, det(I,, + (—1)7d; X (t)) # 0 for t € R (j = 1,2), then
A(X,Y)(0) = Onxm,
AX,Y)(t) = + > diX(7) - (In— i X(1) " diY(7)

0<r<t

- Z do X I + do X ()) 1d2Y(T) for t > 0,

o<r<t

A(X,Y)(t) = —A(X,Y)(t) for t < 0.

We say that the matrix-function X € BV([a, b], R"*™) satisfies the Lappo-Danilevskii condition if
the matrices S.(X)(t), S1(X)(t) and S2(X)(t) are pairwise permutable for every ¢ € [a, ], and there
exists to € [a, b] such that

/SC(X)(T) dS.(X)(r) = /dSC(X)(T) - Se(X)(7) for t € [a,b].

A vector-function BV, (R, R™*™) is said to be a solution of the system (1) if

/dA + f(t) — f(s) for s<t; s,teR.

We assume that
A, A, € BVE(R,R™™) and f, fr. € BV, (R,R") (k=1,2,...),

ie.,

Alt+w)=A)+C, Ap(t+w)=Art)+Cy for teR (k=1,2,...)
and

f+w)=—ft)+c¢, frt+w)=—fr(t)+c for teR (k=1,2,...),
where C,C, € R™™™ (k = 1,2,...) and ¢,¢c, € R™ (k = 1,2,...) are, respectively, some constant
matrix and vector. In addition, without loss of generality, we assume that

A(0) = Ak(0) = Onxn, f(0) = fr(0) =0 (k=1,2,...)
(the last condition is assumed for every generalized linear systems, as well). Moreover, we assume
det (I, + (—1)7d;A(t)) #0 for teR (j =1,2).

Alongside with the system (1), we consider the corresponding homogeneous system

dz(t) = dA(t) - z(t). (40)
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Moreover, along with the problem (2), we consider the problem

2(0) = —z(w). (5)
If the matrix-function A satisfies the Lappo—Danilevskii’s condition, then the fundamental matrix

Y, Y(0) = I,,, of the system (4o) is defined by
Y(t) = exp(So(A)0) [ Un+d2A(r) [T n—drA(r))™" for t € [0,0).

0<r<t 0<T<t

Definition 1. We say that a sequence (Ag, fr) (k = 1,2,...) belongs to the set S(A4, f) if the w-
antiperiodic problem (1), (2) has a unique solution zj, for any sufficiently large &, and the condition
(3) holds.

Proposition 1. The following statements are valid:

(a) if x is a solution of the system (1), then the vector-function y(t) = —z(t + w) (t € R) will be
a solution of the system (1), as well;

(b) the problem (1), (2) is solvable if and only if the system (1) on the closed interval [0,w] has a
solution satisfying the boundary condition (5). Moreover, the set of restrictions of solutions
of the problem (1), (2) on [0,w] coincides with the set of solutions of the problem (1), (5).

Theorem 1. The inclusion
((Ar f1), 25 € S(A ) (6)

is valid if and only if there exists a sequence of matriz-functions H, Hy, € BV(]0,w],R"*") (k =
1,2,...) such that

b
kEI-ll}oo sup \/(Hk + B(Hy, Ag)) < +o0, (7)
inf{| det(H(t)| : te [O,w]} >0, (8)
and the conditions
i Hy (1) = H(0), )
i B(Hy, Ag)(1) = BOH, A)(1), (10)

im B(, f1)(1) = BH, £)(0)
are fulfilled uniformly on [0, w].
Theorem 2. Let A, € BV([0,w],R™*™), f, € BV([0,w],R™) be such that
det (I, + (=1)7d;A.(t)) #0 for t € [0,w] (j =1,2) (11)

and the system

dx(t) = dA(t) - x(t) + df(t) (12)
have a unique w-antiperiodic solution x.. Let, moreover, there exist sequences of matriz- and vector-
functions Hy, € BV([0,w],R™™™) (k = 1,2,...) and hy € BV([0,w],R™) (k = 1,2...), respectively,
such that hi(0) = —hg(w) (k=1,2,...),

inf{| det(Hy(t)| : te [O,w]} >0 (k=1,2,...), (13)
and
b
kgrfoo sup \/ Ay < 00, (14)
and the conditions ’
Jm A () = Au(0), (15)

lim f*k(t) = f*(t)

k—+4o00



On the Well-Posedness of Antiperiodic Problem for Systems of Linear Generalized Differential Equations 117

are fulfilled uniformly on [0,w], where
A*k(t> = Ik(Hk, Ak)(t) (k = 1, 2, . ),

Falt) = i (t) = hn(0) + Bu(Ha. f)0) ~ [ dAa(r) - bu(t) (k= 1.2....),
0

Then the system (1y) has a unique w-antiperiodic solution xy, for any sufficiently large k, and

hm |Hrxy + hi — z4||s = 0.

k—+

Corollary 1. Let the conditions (7) and (8) hold, and let the conditions (9), (10) and

k— 400

lim (zs(Hh Jo— o)) + / dB(H, Ay)(s) - ms)) = B(H, f)()

be fulfilled uniformly on [0,w], where H, H; € BV([0,w],R™"*™) (k =1,2,...). Then the system (1)
has a unique w-antiperiodic solution xy for any sufficiently large k and

lm ||z — or — 24]|s = 0.
k—-+o0

Corollary 2. Let the conditions (7) and (8) hold, and let the conditions (9),
t

t
lim /I‘I}C dAk /H dA hm Hk dfk /H
k—+o0 k—
0 0
(

hm d; Ak(t) —de(t) (j=1,2), and hm d;fe(t) =d; f(¢)

k——+oo

be fulfilled uniformly on [0,w], where H, Hy, € BV([0,w],R™*™) (k=1,2,...). Let, moreover, either

Jimsup > (ldiAc@)] + di fe®)]]) < +o0 (j=1,2)

a<t<b

.7:’)

or
lim sup Y [ld;H(t)|| < o0 (j =1,2). (16)
k—4o00 a<i<h
Then the inclusion (6) holds.

Corollary 3. Let the conditions (7) and (8) hold, and let the conditions (9),

kgmoo A(t) = A(t), (17)
Jim () = £ (1), (18)

t

k—+oo
0
t

lim [ d(H ' (s)Hi(s)) - fu(s) = (0

k——+oo
0

be fulfilled uniformly on [0,w], where H,Hy, A, € BV([0,w],R"™") (k = 1,2,...), and f. €
BV([0,w],R™). Let, moreover, the system
do(t) = d(A(t) = A. (1) -a(t) + d(£(2) - £.(1)

have a unique w-antiperiodic solution. Then

((Ak. fr), 05 € S(A— As f = f).
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Corollary 4. Let there exist a natural number m and matriz-functions B; € BV([0,w],R™*™) (j =

0,...,m —1 such that
b

lim sup \/(Akm) < 400,

k—-+oco
and the conditions

lim (Akm(t) - Akm(o)) = A(t),

k—+o00

lim  (frm(t) = fem(0)) = f(2)

k——+oo
be fulfilled uniformly on [0,w], where
1
Hyo(t) = In, Hpjqr0(t) = H (In — A(t) + Ak (0) + Bi(t) — Bi(0)),
i+
Ak j1 = Hyj(t) + B(Hyj, Ak)(t),  frj+1 = B(Hyj, fi)(2).
Then the inclusion (6) holds.
If m =1, then Corollary 4 has the following form

Corollary 5. Let
b

lim sup \/(Ak) < 400

k—+o0

and the conditions (17) and (18) be fulfilled uniformly on [0,w]. Then the inclusion (6) holds.

Theorem 1'. Let A, € BV([0,w],R™*"), f. € BV([0,w],R™) be such that the condition (11) hold
and the system (12) has a unique w-antiperiodic solution x.. Let, moreover, there exist sequences
of matriz- and vector-functions Hy € BV([0,w],R™*™) (k = 1,2,...) and B, By € BV([0,w],R™*™)
(k=1,2,...), and a sequence of vector-functions hy, € BV([0,w],R™) (k =1,2...), respectively, such
that hi(0) = —hi(w) (k=1,2,...), the conditions (13),
b
kgrﬁ)o sup\a/(A*;C — By) < 400, (19)

det (I,+(—1)7d;B(t)) #0, det (I,+(—1)d;Bi(t))#0 for te[0,w] (j=1,2; k=0,1,...) (20)

hold, and the conditions

im Zu() = Z(0), (21)
lim B(Z, Au(t)) = B(Z1, Au(1)), (22)

k— 400

Jim B(Z7 falt) = B(Z L 1.0) (23)

are fulfilled uniformly on [0,w], where A,k and fi are the matriz- and vector-functions appearing in
Theorem 2, and Zy, (Z) is the fundamental matriz of the system

dz(t) = dBy(t) - z(t) (daz(t) =dB(t)-z(t)) (24)

under the condition
Then the conclusion of Theorem 2 is true.

Below, everywhere, just as in the above theorem, it will be assumed that Z (Z) is the fundamental
matrix of the system (24) under the condition (25) for every k € {1,2,...}, as well.

Corollary 6. Let the conditions (8), (19),

Jim sup Y 4Bl < +o0 (G =1,2) (26)

0<t<w
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and
det (I, + (=1)7d;B(t)) #0 for t€[0,w] (j=1,2; k=0,1,...) (27)
hold and let the conditions (9),
Lm  Bi(t) = B(t), (28)
t t
Jlim / 27 (s) dA(By, Au)(s) = / Z-1(s) dA(B, A.)(s) (29)
0 0
and
i / 275 dABL £)(s) = [ 271(5) dAB. 1)) (30)
0 0

be fulfilled uniformly on [0,w], where H, Hj € BV([0,w],R™*") (k = 1,2,...), and B and By, €
BV([0,w],R™**™) (k = 1,2,...) satisfy the Lappo—Danilevskii condition; A.x(t) = Z(Hy, Ax)(t) (k =
1,2,...),

t

£a®) = ~Hi(00on(0) + Hu(0)on(0) + BlHi )0 + [ dA(s) - Hi(5)ou(s),
0
or € BV([0,w],R?) (k=1,2,...),

and A, and f. are the matriz- and vector-functions appearing in Theorem 1'. Then the conclusion of
Corollary 1 is true.

In the Lappo-Danilevskil case, for every k € {1,2,...}, we have

Zi(t) = exp(So(Be)(#)) [[ (In+ d2Bi(7)) [ (In — diBi(7))

o<r<t 0<r<t

Corollary 7. Let the conditions (8), (19) hold and let the conditions (9), (15), (27) and

-1

t

lim / exp(—Bi(s)) dfun(s) = / exp(—B(s)) df.(s)

k——+o0
0

be fulfilled uniformly on [0,w], where H, Hj € BV([0,w],R™*") (k = 1,2,...), and B and By €
BV([0,w],R™*™) (k =1,2,...) are the continuous matriz-functions satisfying the Lappo—Danilevskit
condition; and Ay, A and fo, fur, pr (K =1,2,...) are, respectively, matriz- and vector-functions
appearing in Corollary 6. Then the conclusion of Corollary 1 is true.

Corollary 8. Let there exist a sequence of matriz-functions H and Hy (k = 0,1,...) from
BV([0,w], R™*™) such that the matriz-functions S.(A) and S.(Ax) (k =1,2,...) satisfy the Lappo—Da-
nilevskit condition and the conditions (8) and

Jim sup D[l Ak (t)]] < +o0 (5=1,2)
0<t<w
hold, let the conditions (9),
lim Su(A)(t) = S.(A)(),  lim S;(Au) = S;(A)(0) (G =1,2)

k—4o00 k—4o00
and
kgrfwo/exp ( — SC(A*k)(S)) dfur)(s) = O/GXP ( - SC(A*k)(S)> df.)(s)

be fulfilled uniformly on [0,w], where Ay, Ak and fi, far, ©x (K = 1,2,...) are, respectively, the
matriz-and vector-functions appearing in Corollary 6. Then the conclusion of Corollary 1 is true.
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Theorem 2'. The inclusion (6) is valid if and only if there exist the sequences of matriz-functions
H, Hy, and B, B, € BV([0,w],R™*™) (k =0,1,...) such that the conditions (8), (20) and

b
lim sup \/(I(Hk,Ak) — By) < 400

k—+oo

hold, and the conditions (9), (21),
lim B(Z, ', I(Hy, Ay))(t) = B(Z7 ', Z(H, A))(¢t)

k—+oco

and

lim B(Z; ' I(Hy, fr))(t) = B(Z~', Z(H, [))(t)

k—+oo

are fulfilled uniformly on [0, w).

Corollary 9. Let the conditions (20) and
b

kgar_loo sup\a/(Ak — Bi) < 400 (31)
hold and the conditions (21),
lim B(Zy', Ag)(t) = B(Z~, A)(t) (32)
k—+o0
and
lim B(Z. ", fi)(t) = B(Z™, ))(®) (33)
k—+o00

be fulfilled uniformly on [0,w], where B and By, € BV([0,w],R™*") (k =1,2,...). Then the inclusion
(6) holds.

Corollary 10. Let the conditions (26), (27) and (31) hold and the conditions (29),

Jim [ 27 (5) dA(BL, AW)(s) = / 271 (s) dA(B, A)(s)

0 0

and \ .
i / 2 5) dA(By, fy)(s) = / 27 (5) dA(B, 1)(s)

be fulfilled uniformly on [0,w], where B and By € BV([0,w],R™*™) (kK = 1,2,...) salisfy the
Lappo—Danilevskii condition. Then the inclusion (6) holds.

Corollary 11. Let the condition (31) hold and the conditions (17), (29) and
t t

kgrfoo exp(—Bx(s)) dfi(s) :/exp(fB(s))df(s)
0 0

be fulfilled uniformly on [0,w], where B and By € BV([0,w],R™"*™) (k =1,2,...) are the continuous

matriz-function satisfying the Lappo—Danilevskit condition. Then the inclusion (6) holds.

Corollary 12. Let the matriz-functions Sc(A) and Sc(Ag) (k=0,1,...), A(t) = Ao(t), satisfy the
Lappo—Danilevskit condition and the condition

li A =12
k_yfoosupoq; ld; ARl < +oo (j =1,2)

hold. Let, moreover, the conditions
lim  Sc(Ag)(t) = Sc(A)(t),  lim S;(Ap) = S;(A)(t) (j=1,2)
k— o0 k—+o0

and
t t

lim / exp (= So(Ax)(5)) dfi(s) = / exp (— Sa(A)(s)) df(s)

k—+oo
0 0
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be fulfilled uniformly on [0,w]. Then the inclusion (6) holds.
Remark 1. The condition (8) is equivalent to the condition
det (H(t—)- H(t+)) # 0 for t € [0,w].

Remark 2. Let A.(t) = Z(H, A)(t) and (9) be fulfilled uniformly on [0,w]. Then the condition (14)
holds and (15) is fulfilled uniformly on [0, w] if and only if the condition (7) holds and (10) is fulfilled
uniformly on [0, w], respectively.

Remark 3. Without loss of generality we can assume that H(t) = I,, in Theorems 1 and 1’ and in the
above corollaries.

Remark 4. In designations of Theorem 1':
(a) if (19) holds and the conditions (21),

kll;lfoo ) d(Aur(s) — Bi(s)) = /Zk_l(s)d(A*(s) — B(s)) (34)
0 0
and
Jimd(Au(t) - Belt)) = dy (4.0 - B®) (=12 (35)

are fulfilled uniformly on [0,w], then (22) is fulfilled uniformly on [0, w], as well. On the other
hand, if the condition (19) holds and the conditions (21) and

kEToo (Auk(t) — B(t)) = AL(t) — B(2)

are fulfilled uniformly on [0,w], then the conditions (34) and (35) are fulfilled uniformly on
[0,w], as well;

(b) if
Jim sp 37 i fon(t)] < oo (= 1,2)
0<t<w
and the conditions (21),
¢ ¢
Jin [ 20 aa) = [ 206 (36)
0 0
and
Jim difu() = di.(0) (G=1.2) (37)

are fulfilled uniformly on [0, w], then the condition (24) is fulfilled uniformly on [0,w], as well;
(c) if B(t) = A.(t) and Bg(t) = Au(t) (kK = 1,2,...), then (19) vanishes and (22) follows
from (21).
Remark 5. In designations of Corollary 6:
(a) if (19) holds and (15) and (28) are fulfilled uniformly on [0, w], then (29) is fulfilled uniformly
on [0,w], as well;

(b) if (26) and (27) holds and (28), (36) and (37) are fulfilled uniformly on [0,w], then (30) is
fulfilled uniformly on [0, w], as well.
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IvAN KIGURADZE

OSCILLATORY SOLUTIONS OF HIGHER ORDER
NONLINEAR NONAUTONOMOUS DIFFERENTIAL SYSTEMS

Abstract. Oscillatory properties of solutions of higher order nonlinear nonautonomous differential
systems are considered. In particular, unimprovable in a certain sense conditions are found under
which all proper solutions of those systems are oscillatory.

0gbogdyg.  podmggmggmos Jopomo Mool sMsogEHM™bmdogmo, s@SFBBog0 ©oRI@IbE0SmY@O
LobEgdgdol s3mbsblbgool mlEomsizogmo mgolgdgdo.  3g@dme, bsdmgbos godggggmo  >b-
00 5M535993xMdgLgos0  30MMdgd0, MmImgooi  YbHgbggmymagb o3 LoLEgdgdol Fgbogdo
53mbsblbgool ®bggoEmosl.

2010 Mathematics Subject Classification: 34C10, 34C15.
Key words and phrases: Differential system, higher order, nonlinear, oscillatory solution, Kneser
solution, property Ao, property By.

On an infinite interval [a, +00[, we consider the differential system

u") = 9i (t, Uy - - - 7U§m*1)7 U2, .. 7“?271)) (i=1,2), M)

7

where ny > 1, ny > 2, a > 0, g; : [a,400o[ xR™ x R" — R (i = 1,2) are continuous functions,
satisfying on [a, +oo[ xR™ x R™ one of the following two conditions

gl(taxh ey gy Y1y - - aynz)sgn(yl) Z fl(t,yl)sgn(yl),
92(t71'17~ ey T Y1y e e 7yn2)5gn(x1) S _f2(t7x1)sgn(x1)?

(2)

or
gl(ta L1 Tngs Y1y - -0 ynz) Sgn(yl) 2 fl(t7 yl) Sgn(yl)v (3)
92ty @1,y Ty YLy - e s YUny ) sEO(1) > fo(t, 1) sgn(zy).
Here f;la,+oo[ xR — R (¢ = 1,2) are nondecreasing in the second argument continuous functions
such that
filt,x)sgn(z) >0 (i=1,2).

The present paper is devoted to the investigation of oscillatory properties of solutions of system (1).
Previously, such properties have been investigated only in the cases when system (1) can be reduced
to one differential equation of order n = ny + ng (see, [1-13,15] and the references therein), or when
ny =ng =1 (see, [14]).

A solution of system (1) defined on some interval [ag, +00[ C [a, +00[ is said to be proper if it does
not identically equal to zero in any neighbourhood of +oo.

A proper solution (u1,uz) of system (1) is said to be oscillatory if at least one of its components
changes sign in any neighbourhood of +00, and is said to be Kneser solution if in the interval [ag, +00[
it satisfies the inequalities

D) Out) >0 (i=1,...,m),
(=1 "l (t)ua(t) > 0 (k=1,...,ny).
Assume
n =ni + ng,
and introduce the definitions.

Definition 1. System (1) has the property Ay if every its proper solution for even n is oscillatory,
and for odd n either is oscillatory or is a Kneser solution.
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Definition 2. System (1) has the property By if every its proper solution for even n is either
oscillatory, or is a Kneser solution, or satisfies the condition

lim [u™~ V()] >0 (i=1,2), (4)

t—+4o00
and for n odd either is oscillatory or satisfies condition (4).
If m is a natural number, then by N9 we denote the set of those k € {1,...,m} for which m + k

is even.
For an arbitrary natural k, we put

t

Li(t,) = [t * / (t— )" fu(s,ws" 1) ds|

a

Theorem 1. Let condition (2) be satisfied and for any x #0 and k € /\/;9271 the equalities

+00 +oo
/[mgmﬁ=+m,‘/WTWMmmﬁ=+m, (5)
a Jroo a

(/ﬁT“Wh@h&@ﬂﬁ:+m (6)

a

be fulfilled. Then system (1) has the property Ag.

Theorem 2. Let condition (3) be satisfied. If, moreover, ng > 2 (n2 = 2) and for any © # 0 and
ke N,?272 equalities (5) and (6) hold (for any x # 0 equalities (5) is fulfilled), then system (1) has
the property By.

Ifni=1,ny=n-1,
gl(t7x1a"'7mn17y1a"'ayn2) = Y1, g2(t?mla"'axn1?y17'"aynz) :f(taxl)’

then system (1) is equivalent to the differential equation
u™ = f(t,u). (7)

We consider the last equation in the case where f : [a,4+00o[ xR — R is a continuous function
satisfying either the condition

f(£,0)=0, f(t,x)<f(ty) for t >a, z<y, (8)
or the condition
f(£,0)=0, f(t,x)> f(t,y) for t >a, x<y. (9)
A solution u of the equation (1), defined on some interval [ag, +00[ C [a, +0], is said to be proper
if is not identically zero in any neighborhood of 4occ.

A proper solution u : [ag+o0o[ — R is said to be oscillatory if it changes the sign in any neighborhood
of +00 and side to be Kneser solution

(=)' (H)u(t) >0 for t>ag (i=1,...,n).
For equation (6), Definitions 1, 2 and Theorems 1 and 2 have the following forms.

Definition 3. Equation (7) has the property Ay if any proper solution of this equation in case n even
is oscillatory and in case n odd either is oscillatory or is a Kneser solution.

Definition 4. Equation (7) has the property By if any proper solution of this equation in case n even
either is oscillatory, or is a Kneser solution, or satisfies the condition

lim [u""2(t)] = 400, (10)

t— o0

and in case n odd either is oscillatory or satisfies condition (10).
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Theorem 3. If along with (8) the condition
+oo
/ R f(tatt )| dt = oo for x#£0, keNI_, (11)

holds, then equation (7) has the property Ap.
Theorem 4. Ifn >3 and along with (9) the condition

—+oo
/ﬂ**ﬁ@m“ﬁﬁ:+mﬁwx¢leN&2 (12)
holds, then equation (7) has the property By.

The conditions of Theorems 1-4 are in a certain sense unimprovable. Moreover, the following
statements are valid.

Theorem 5. Let condition (8) be satisfied and for any x # 0 there exist numbers t, > a and 6(x) >0
such that

R ()] > 0(@) [ f(at™ )| for t > b, ke N,
Then for the differential equation (6) to have the property Ag it is necessary and sufficient equalities
(11) to be fulfilled.

Theorem 6. Let conditions (9) be fulfilled, n > 3 and for any x # 0 there exist numbers t, > a and
d(x) > 0 such that

tn—k—2|f(t’ xt’“_l)| > 5(m)‘f(t,$t"_2)‘ for t >t,, ke NP ,.

Then for the differential equation (2) to have the property By it is necessary and sufficient equalities

(12) to be fulfilled.

An essential difference between the above formulated theorems and the results obtained earlier (see,
e.g., [1-15]) is that they cover the case, where the right-hand sides of system (1) and of equation (7)
are slowly increasing with respect to the phase variable functions.

As an example, let us consider the differential equation

u™ = go(t) folu) + g1 (£) In (1 + |ul)sign (u), (13)

gi : [a,+oo[— R (i = 0,1) are continuous functions, fp : R — R is a continuous, nondecreasing
function such that

fo(@)z >0 for ©#0, sup{|fo(z)|: z € R} < +oo.
Theorems 5 and 6 result in the following corollaries.
Corollary 1. Ifn > 3 and go(t) <0, g1(t) <0 fort > a, then for equation (13) to have property Ag
it is necessary and sufficient the equality
+oo

/f%®+mwmﬂﬁ:_m

a

to be fulfilled.
Corollary 2. Ifn >4 and go(t) > 0, g1(t) > 0 for t > a, then for differential equation (13) to have
property By it is necessary and sufficient the equality

+oo

/ﬂ%@+m@mﬂﬁ=+m

a

to be satisfied.
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Consider now the case where the right-hand sides of system (1) on the set [a, +oo[ xR™ x R™2

satisfy either the inequalities

9161, T, Yy Yny) sE0(yn) = pa()ya M

92ty @1, Ty YLy ey Uny ) SED(21) < —pg(t)|x1|)‘2,
or the inequalities

91(6 @1, Ty Y1y - Uny) sE0(y1) = pa(8)|ya [N

Go(t, L1, Ty Yy e e ey Yny ) SEN (1) > pa(t)|21]2,
where
A1 >0, Ao >0, Ay >1,
and p; : [a, +oo[ — [0, +oo[ are continuous functions.
Along with system (1), let us consider its particular cases

u(lnl) = pl(t)|u2\>‘1 sgn(us), uém) = 7p2(t)|u1\>‘2 sgn(uq),

and

ugnl) =m (t)|u2|/\1 sgn(us), uém) = pg(t)|u1|/\2 sgn(uq).

Theorem 7. If along with (14) (along with (15)) the conditions
+oo
/ p1(t) dt = 400,
a

+oo t Ao

/ t[ Ja=9m ()" o ds] palt) dt = +o0,

a a

x x )\1
lim [ ™! {/(5 — )27 1py (s) ds} p1(t) dt = 400

Tr—+00
a

are fulfilled, then system (1) has the property Ao (the property By).

Note that if
t

Jt = sym1stm=0p ) ds
ltierinf . " >0,
—> 100
tn2=DX1 [(t — s)m1—1p;(s)ds

a

then condition (19) takes the form

“+o00 t A2

/t”rl[/(t—s)"rlpl(s) ds|  p(t)dt = +o0.

For system (16), from Theorem 5 it follows

(21)

(22)

Corollary 3. If conditions (18) and (21) are fulfilled, then for system (16) (system (17)) to have the
property Ao (the property By), it is necessary and sufficient the equalities (20) and (22) to be satisfied.

Acknowledgement. Supported by the Shota Rustaveli National Science Foundation (Project

# FR/317/5-101/12).

REFERENCES

1. R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation theory for difference and functional differential equations.

Kluwer Academic Publishers, Dordrecht, 2000.

2. I. V. Astashova, Qualitative properties of solutions of quasilinear ordinary differential equations. (Russian) Izd.

tsentr MESI, Moscow, 2010.

3. M. Bartusek, Asymptotic properties of oscillatory solutions of differential equations of the nth order. Folia Facultatis
Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, 3. Masaryk University, Brno, 1992.



Oscillatory Solutions of Higher Order Nonlinear Nonautonomous Differential Systems 127

4.

5.

10.

11.

12.

13.

14.

15.

M. Bartusek, M. Cecchi, Z. Dosla, M. and Marini, On oscillatory solutions of quasilinear differential equations. J.
Math. Anal. Appl. 320 (2006), no. 1, 108-120.

Z. Dosla and N. Partsvania, Oscillation theorems for second order nonlinear differential equations. Nonlinear Anal.
71 (2009), no. 12, E1649-E1658.

. Z. Dosla and N. Partsvania, Oscillatory properties of second order nonlinear differential equations. Rocky Mountain

J. Math. 40 (2010), no. 2, 445-470.

. U. Elias, Oscillation theory of two-term differential equations. Kluwer Academic Publishers Group, Dordrecht, 1997.
. I. T. Kiguradze, On the oscillation of solutions of some ordinary differential equations. (Russian) Dokl. Akad. Nauk

SSSR 144 (1962), no. 1, 33-36; translation in Sov. Math., Dokl. 3 (1962), 649-652.

. I. T. Kiguradze, On the oscillatory character of solutions of the equation d™u/dt™ + a(t)|u|™ signu = 0. (Russian)

Mat. Sb. (N.S.) 65 (107) (1964), 172-187.

I. T. Kiguradze, On the question of variability of solutions of nonlinear differential equations. (Russian) Differen-
cial’'nye Uravnenija 1 (1965), no. 8, 995-1006; translation in Differential Equations 1 (1965), 773-782.

I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations. (Russian) Izdat. Tbilis.
Univ., Tbilisi, 1975.

I. T. Kiguradze, An oscillation criterion for a class of ordinary differential equations. (Russian) Differentsial’nye
Uravneniya 28 (1992), no. 2, 207-219, 364; translation in Differential Equations 28 (1992), no. 2, 180-190.

I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential
equations. Springer Science & Business Media, 2012.

J. D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equa-
tions. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, 14. Masaryk
University, Brno, 2004.

C. H. Ou and James S. W. Wong, Oscillation and non-oscillation theorems for superlinear Emden—Fowler equations
of the fourth order. Ann. Mat. Pura Appl. (4) 183 (2004), no. 1, 25-43.

(Received 28.03.2016)

Author’s address:

A. Razmadze Mathematical Institute of I. Javakhishvili Thbilisi State University, 6 Tamarashvili

Str., Thilisi 0177, Georgia.

E-mail: kig@rmi.ge






Mem. Differential Equations Math. Phys. 69 (2016), 129-133

NINO PARTSVANIA

ON OSCILLATORY AND MONOTONE SOLUTIONS
OF NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. The nonlinear functional differential system with deviating arguments

™ (1) = fi(tua(n(1), ug™ (1) = fo (6w (n(1)))

is considered, where f; : [a,+oo[ xR = R (i = 1,2) and 7; : [a,+00o[— R (i = 1,2) are continuous
functions, and 74(t) — +o0 as t — +oo (¢ = 1,2). Conditions are found under which any proper
solution of that system is, respectively: a) oscillatory, b) either oscillatory or Kneser solution,
c) either oscillatory or rapidly increasing.

0gbagdg.  aobboggmos yopeb@omomygdgb@gdosbo smsfOgogo B9bdEombomygm-wogg@gbEos-

@0 LobEgds

w™ (1) = fi(tu(n(0), w (1) = (1w (2(1)),
bowoi fi ¢ [a,+oo[ xR — R (i = 1,2) @o 7 : [a,+oo[— R (i = 1,2) 9fyz960 Babd30gd0s
s Ti(t) = 400, @mEs t — oo (i = 1,2). bsdmgbos 30®mdgd0, GmIgmms Ygldgmgsolsls o3
Loli@gdol bgdoldogdo Fglog@o sdmbsblbo Lomsbspme smol: o) @bggoeo, ) ob @bggomo, o6
369bgdgmo, ) ob Mbggowo, 56 Lf@Mogse bewswo.
2000 Mathematics Subject Classification: 34K11, 34K12.

Key words and phrases: Functional differential system, nonlinear, oscillatory solution, Kneser
solution, rapidly increasing solution, property Ag, property Bo.

The present paper is devoted to the investigation of asymptotic properties of solutions of the
nonlinear functional differential system

™ (1) = fi(tua(n(®), wh™(8) = fotua(ra(8))- (1)
Here, ny > 1, ng > 2, a > 0, while f; : [a, +00[ xR = R and 7; : [a, +oo[— R (i = 1,2) are continuous
functions. Moreover,
lim 7(t) =400 (1 =1,2),

t—+o0
and one of the following two conditions

fi(£,0) =0, (=11t )
fi(tvo):()v fi(tax)

(—1) filtyy) for t>a, <y (i=1,2); (2)

<
< filt,y) for t>a, v<y (i=1,2) (3)

is satisfied.

Asymptotic (including oscillatory) properties of solutions of the system (1) previously have been
investigated mainly in the cases where this system can be reduced to one nj + ne-order functional
differential equation, or in the cases where ny = ny = 1 (see [1-7,11,12,15-19] and the references
therein). The case, where nq + no > 2, 7;(t) £t (i = 1,2), and the system (1) cannot be reduced
to one equation, still remains practically unstudied. The results of the present paper concern namely
this case.

Let ap > a. A vector function (u1,uz) : [ag, +00[ — R? is said to be a solution of the system (1)
if u; and uy are, respectively, ni-times and no-times continuously differentiable functions, and there
exist continuous functions v; :] — 00, ag] — R (¢ = 1,2) such that on [ag,+oo| the equalities (1) are
fulfilled, where

u;(t) = vi(t) for t <ap (i=1,2).

A solution (u1,us) of the system (1), defined on some interval [ag, +oo] C [a, +o0], is said to be
proper if it is not identically zero in any neighborhood of +oc.

A proper solution of the system (1) is said to be oscillatory if at least one of its components
changes the sign in any neighborhood of +oc.
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Note that if one of the conditions (2) and (3) is satisfied, then both components of every oscillatory
solution of the system (1) change the sign in any neighborhood of +cc.

A nontrivial solution (uy,us) : [ag, +00[ = R of the system (1) is said to be a Kneser solution if
on [ag, +oo[ it satisfies the inequalities

(~ D) (1) (1) >
(— 1) (t)ua(t) >
and it is said to be rapidly increasing if

. (n;—1) .
t_l>1+moo lu; )] >0 (1=1,2).
Let
n =mnp + no,

and following I. Kiguradze [8,9] introduce the definitions.

Definition 1. The system (1) has the property Ay if every its proper solution for n even is oscillatory,
and for n odd either is oscillatory or is a Kneser solution.

Definition 2. The system (1) has the property By if every its proper solution for n even either is
oscillatory, or is a Kneser solution, or is rapidly increasing, and for n odd either is oscillatory or is
rapidly increasing.

I. T. Kiguradze [8,9] has established unimprovable in a certain sense conditions under which the

differential system
w™ (1) = filtua(t), w"(0) = faltua(2)

has the property Ay (the property Bp). The theorems below are the generalizations of those results
for the system (1).

If m is a natural number, then by N9 we denote the set of those k € {1,...,m} for which m + k
is even.

For any natural k, we put

Tz(t)

or(t,z) =2 |:|T2(t)n1_1 —|—/ (r2(t) — s)"1_1’f1 (t7x\71(s)\k_l)| ds|.

Theorem 1. Let the condition (2) hold and let for any x # 0 and k € N, _, the equalities
“+o00 —+o00
[ nala = oo, [ e w)d = o 0

+oo
/ 2R fo (8, oi(t, 2))| dt = 400 (5)
be satisfied. Then the system (1) has the property Ag.

Theorem 2. Let ny > 2 (n2 = 2) and the condition (3) hold. If, moreover, for any © # 0 and
ke NQ, _, the equalities (4) and (5) are satisfied (for any x # 0 the equalities (4) are satisfied), then
the system (1) has the property By.

Remark 1. For the equality (5) to be satisfied for any = # 0 and k € N2 _, it is sufficient that the
equality
+oo
[ el = +oo
a
be satisfied for any = # 0.

The conditions of Theorems 1 and 2 do not guarantee the existence of proper solutions appearing
in the definitions of the properties Ay and By. The problem on the existence of such solutions needs
additional investigation. In particular, for the system (1) we have to study the initial problem

k-1 .

u ) = e (k=105 i=1,2), (6)

7
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the Kneser problem

2 ny
SN W a@) = o (CD)F TV Bui(t) > 0 for t>a (k=1,...n5 i=1,2), (7)
i=1 k=1

and the Kiguradze problem [10]

ugkfl)(a) _ alku(gnrl)(a) +ep (E=1,...,n1), g
uékil)(a) = azkugnrl)(a) + cak (k =1l..mny— 1)’ ltiLn_Fi&ﬂuénrl)(tﬂ < too ( )

The following lemma is valid.
Lemma 1. If the conditions
a<T7(t)<t, fi(t,x)#0 for t>a, x#0 (i=1,2),
and

2 n;
ZZ |cik| >0

=1 k=1

are fulfilled, then the problem (1), (6) is solvable and every its solution is proper.
On the basis of the methods proposed in [13] and [14], the following lemmas can be proved.
Lemma 2. If ¢y >0,
Ti(t) >t for t >a (i=1,2),
and
ft,x)z >0, (=)™t fy(t,x)x >0 for t >a, x#0,
then the problem (1), (7) is solvable.
Lemma 3. Let the conditions

a<Tt)<t, fi(t,x)x>0 for t>a, x#0 (i=1,2),

fl(tvx) Sfl(tvy) fO’I’ tZ(% l’gy,

and

—+o0
[ 1 rm @) = v for 2 0

hold. If, moreover,

TL2—1

nq
Otlj>0, Oégk>0 (j:].,...,nl; kil,...,ﬂQ*l), Z|Clj‘+ Z |02k|>0,
j=1 k=1

then the problem (1), (8) is solvable and every its solution is proper.

Theorem 1 and Lemmas 1 and 2 yield the following propositions.

Theorem 3. Let ny + ng be even and along with (2) the condition
Ti(t) <t, fi(t,x)#0 for t >a, 2#0 (i=1,2) (9)

be satisfied. If, moreover, for any x # 0 and k € N}, | the equalities (4) and (5) are fulfilled, then
the system (1) has an infinite set of proper solutions and every such solution is oscillatory.

Theorem 3'. Let ny + ng be odd and along with (2) the condition
Ti(t) > t, fi(t,x)#0 for t >a, v#0 (i=1,2) (10)
hold. If, moreover, for any x # 0 and k € N})H the equalities (4) and (5) are satisfied, then:
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(i) the system (1) has an infinite set of proper Kneser solutions and every such solution is
vanishing at infinity;

(ii) an arbitrary nontrivial solution (uy,us) of the system (1), defined on some interval [ag, +0o[ C
[a, +00[ and satisfying the inequality

K2

min {(—1)ku(-k)(ao)ui(a0) ck=1,...,n;—1; i = 1,2} <0,
is oscillatory.

On the basis of Theorem 2 and Lemma 3 the following theorem can be proved.

Theorem 4. Let ny + ng be odd and the conditions (3) and (9) hold. If, moreover, ng > 2 (ng = 2)
and for any x # 0 and k € N, _, the equalities (4) and (5) are satisfied (for any x # 0 the equalities

(4

) are satisfied), then the system (1) has infinite sets of oscillatory and rapidly increasing solutions.

Remark 2. If ny + nz is even and the conditions (3) and (10) hold, then by Lemma 3 the system (1)
has an infinite set of proper Kneser solutions. However, in this case the problem on the existence of

OS

cillatory and rapidly increasing solutions of that system remains open.
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JITKA VACKOVA

BOUNDED SOLUTIONS OF NONLINEAR DIFFERENTIAL SYSTEMS
WITH DEVIATING ARGUMENTS

Abstract. For systems of nonlinear differential equations with deviating arguments, sufficient
conditions for the existence and uniqueness of bounded on (—oo, +00) solutions are established.
0gbogdg.  aopob@om sMy9dgb@gdosh s@of®Bog ©oBIMIbEosmY® obFmmgdsms LolFgdgool-
0gols @sEagbogos (—oo, +00) Fgomgedo 98mlsbmg@mgmo sdmbsblibgdols s@lgdmdols s gHms-
©gOmmdol Lsgdomolio Jommdgdo.

2010 Mathematics Subject Classification: 34K10, 34B15, 34B40.
Key words and phrases: System of nonlinear differential equations with deviating arguments,
local Carathéodory conditions, bounded solution, existence, uniqueness, a priori estimates.

Consider the system of nonlinear differential equations with deviating arguments

a:;(t) = g,»(t)a:i(t) + fi(t,l‘l(ﬂ‘l(t)), ey Z‘n(Tin(t))) (Z = 1, e ,n), (1)

where 7;; : R = R (¢, = 1,...,n) are measurable in any finite interval functions, g; € Ljo.(R,R)
(i=1,...,n) and f; : R"" — R (i = 1,...,n) are functions satisfying the local Carathéodory
conditions.

A vector function (z;)7; : R — R™ is said to be a bounded solution of the system (1) if it is
absolutely continuous in any finite interval, satisfies the system (1) almost everywhere on R and

sup{i lz;(t)] : t € R} < 400.
i=1

For systems of ordinary differential equations, the problem on the existence of bounded solutions
is investigated in detail (see, [4-7] and the references therein). In particular, for both linear [5] and
essentially nonlinear differential systems [4,6], I. Kiguradze has established unimprovable in a certain
sense conditions guaranteeing, respectively, the existence and uniqueness of a bounded solution.

By R. Hakl [1,2] effective sufficient conditions are established for the existence of a unique solution
of a linear differential system with deviating arguments

dméit) = Zpij(t)xj(ﬂ‘j(t)) +q(t) (i=1,...,n).

In the present paper, based on the method of a priori estimates elaborated in [3, 4, 8-10], the
Kiguradze type theorems on the existence and uniqueness of a bounded solution of the system (1) are
established.

Throughout the paper the following notation is used.

R = (—o0, +0), Ry = [0, 00).

R™ is the space of n-dimensional vectors x = (z;)!"_; with the components z; € R (i =1,...,n).

R™*" is the space of n x n matrices X = (z;;);';,_; with the components z;; € R (4,7 =1,...,n).

Rﬁxn = {X = (xij)zjzl e R™*™ . Tij € RJr (Z,j =1,.. ,TL)}

r(X) is the spectral radius of the matrix X € R"*"™.

Lioe (R, R) is the space of summable in any finite interval functions u : R — R.
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Theorem 1. Let there exist a constant matriz A = (a;)7 ;= € RY™, a nonnegative number b, and
nonnegative functions p;j, ¢; € Lioc(R,R) (2,5 =1,...,n) such that

r(A) <1, (2)
|fi(t,a:1, . ,xn)| < Zpij(tﬂa:j\ +qi(t) for teR, (z;)j, €R" (i=1,...,n),
j=1

’/texp (/tgi(f) d§>pij(s) ds

t

Saij fO?“tER (iajzla"'an)7 (3)

" ¢
Z /exp (/gl(é) d{) qi(s)ds| <b for t € R, (4)
=1 ti S

where t; € {—o0,+00} (i =1,...,n). Then the system (1) has at least one bounded solution.

Theorem 2. Let there exist a constant matriz A = (aij)?)j:l € RY*", a nonnegative number b, and
nonnegative functions p;j € Lioe(R,R) (4,7 =1,...,n) such that along with (2), (3) the conditions

|fi(t,$1,...,l’n) - fz(t7y17ayn)‘

< pii)xy — vyl for t€R, (z;))—y €R™, (y;)]—, €R™ (i=1,...,n), (b)

j=1

.t t

3 /exp(/gi(@ds)|fi(s,o...,0>|ds <b for teR (6)

=14 s

and
t

limsup/gi(s)dSZ—i—oo (i=1,...,n) (7)
t—t;

be fulfilled, where t; € {—o0,+o0} (i =1,...,n). Then the system (1) has one and only one bounded
solution.

Let us describe a scheme of proving the above-formulated theorems.
For an arbitrary natural number m, we consider the system of differential equations

2h(t) = g;(t)xi(t) + N fi (t, 1(Ti1m(t))y .- oy xn (7 nm(t))) (i=1,...,n) (8)

and the system of differential equations
|2i(t) = gi()zi(®)| < D pij (O] (7 jm ()| + a:t) (i=1,...,n) (9)
j=1

with the boundary conditions
zi(o;m) =0 (i=1,...,n). (10)
Here A € [0,1], 0y € {-1,1} (i =1,...,n),

Ti;(t) for |7i;(t)] < m,
Tijm(t) =4{{m for Tij(t) >m,
-m  for 7;(t) < —m

and p;; € Lioc(R,R), ¢; € Lioe(R,R) (4,5 = 1,...,n) are nonnegative functions.

An absolutely continuous vector function (z;)? : [-m,m] — R" is said to be a solution of the
system (8) (of the system (9)) if it almost everywhere on [—m, m] satisfies this system. A solution
of the system (8) (of the system (9)), satisfying the boundary conditions (10), is called a solution of
the problem (8), (10) (of the problem (9), (10)).

The following lemmas are valid.
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Lemma 1. Let there exist a positive constant p such that for an arbitrary natural number m and
arbitrary A € [0,1] every solution of the problem (8), (10) admits the estimate

n

maX{Z\xi(tﬂ : —mgtgm} < p. (11)

i=1
Then the system (1) has at least one bounded solution.
Lemma 2. Let inequalities (2)~(4), where t; € {—o0,+oo} (i =1,...,n), A= (a;i;)};—; € R}*" and
b e Ry, be fulfilled. Moreover, let the condition
g; =
-1 Zf tz = —
for any i € {1,...,n} be fulfilled. Then there exists a positive constant p such that for an arbitrary

natural m every solution of the problem (9), (10) admits the estimate (11).

Theorem 1 follows from Lemmas 1 and 2.

Assume now that the conditions of Theorem 2 are fulfilled. Then by Theorem 1, the system (1)
has at least one bounded solution (x;)?_;. Our aim is to show that an arbitrary bounded solution
(Z;)7_, of that system coincides with (z;)" ;. Assume

ui(t) =T;(t) —xi(t) (i=1,...,n)
and
pi =sup{|u;(t)]: teR} (i=1,...,n).
Then according to the condition (5), the vector function (u;)?_; is a bounded solution of the system
of differential inequalities

i) — gi(Dui(t)] < pii(t)p; (i=1,....n).
j=1

If we now take the conditions (3) and (7) into account, then it becomes clear that

ui(t)] < Z

t

/teXP (/gi(ﬁ) dé‘)pij(S) ds

i S

n
Pj SZaijpj for teR (i=1,...,n)
j=1

and N
pi < Zaijpj (’L = 17...7n).
j=1
Hence, in view of (2), it follows that

and, consequently,
T;(t) = x;(t) (i =1,...,n).
Example. Consider the differential equation
o'(t) = g(t)[z(t) + ala(r(1))] + b], (12)

where a € Ry, b > 0, 7: R = R is a measurable in any infinite interval function and g € Lj,.(R,R)
is a nonnegative function such that

+oo
/ g(s)ds = +o0. (13)
0
The equation (12) follows from the system (1) in case
n=1, n(t)=7(t), g1(t) =g(t), fi(t,z1) = gi(t)(alzs] +b). (14)

On the other hand, the equalities (13) and (14) guarantee the fulfilment of the conditions (3), (5)—(7),
where

ty = +o00, a1 =a, pu(t) = ang(t),
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whence by Theorem 2, it follows that if

th

of

th

a<1, (15)

en the equation (12) has a unique bounded solution.
Let us now show that the condition (15) is also necessary for the existence of a bounded solution
the equation (1). Indeed, let the equation (12) have a bounded solution z. If we put

§ =inf{|z(t)]: t € R},

en with regard for (13), we find
+o0 t
~at) = [ e ([ a6 d€ )ats) alalr ()] 8] s
+oo t

Y

(a6+b)/exp(/g(f)d§)g(s)ds:a6+b>0 for t e R

S

and

6> ad+b.

Consequently, the inequality (15) is fulfilled.

The above-constructed example shows that the condition (2) in Theorems 1 and 2 is unimprovable

and it cannot be replaced by the condition

10.

A

r(A) < 1.
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