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Abstract. In this paper, we prove the controllability for a class of impulsive fractional evolution
equations with state-dependent delay in a Banach space. Our study is based on the Sadovskii’s fixed
point theorem. For the illustration of the main result, an example is given.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÃÂÏÌÀÒÄÏÁÄÁÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ ÉÌÐÖËÓÖÒ ×ÒÀØÝÉÏÍÀËÖÒ
ÄÅÏËÖÝÉÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÄÒÈÉ ÊËÀÓÉÓÈÅÉÓ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÌÀÒÈÅÀ-
ÃÏÁÀ. ÓÀÊÉÈáÉÓ ÛÄÓßÀÅËÀ Ä×ÖÞÍÄÁÀ ÓÀÃÏÅÓÊÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀÓ. ÞÉÒÉÈÀÃÉ
ÛÄÃÄÂÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional order differential equations are generalizations of classical integer order differential equa-
tions. These are increasingly used to model problems in fluid flow, mechanics, viscoelasticity, biology,
physics, engineering and other applications. In recent years, there has been a significant development
in ordinary and partial fractional differential equations; see the monographs by Abbas et al. [1, 2],
Baleanu et al. [9], Diethelm [14], Hilfer [22], Kilbas et al. [25], Miller and Ross [28], Podlubny [30],
Samko et al. [33], Tarasov [38], and Zhou [41,42] and the references therein.

Functional differential equations with state-dependent delay appear frequently in applications as a
model of equations and for this reason the study of this type of equations has received great attention
in the last years (see [3, 4, 6, 11,17–21,24,27,35,39,40]).

The problem of controllability of linear and nonlinear systems represented by ordinary differential
equations in finite dimensional space has been extensively studied. Several authors have extended the
controllability concept to infinite dimensional systems in Banach space. Mophou et al. [29] studied
the controllability of semilinear neutral fractional functional evolution equations with infinite delay,
whereas Tai and Wang [37] discussed the controllability of fractional-order impulsive neutral functional
infinite delay integrodifferential systems. Controllability of impulsive fractional differential equations
with infinite delay is studied by Aissani and Benchohra [5].

Motivated by the previous literature, the purpose of this work is to establish the controllability
for a class of impulsive fractional equations with state-dependent delay described by

Dα
t x(t) = Ax(t) +Bu(t) + f(t, xρ(t,xt), x(t)), t ∈ Jk = (tk, tk+1], k = 0, 1, . . . ,m,

∆x(tk) = Ik(x(t
−
k )), k = 1, 2, . . . ,m,

x(t) = ϕ(t), t ∈ (−∞, 0],

(1.1)

where Dα
t is the Caputo fractional derivative of order α, 0 < α < 1, A : D(A) ⊂ E → E is the

infinitesimal generator of an α-resolvent family (Sα(t))t≥0, f : J × B × E → E is a given function,
J = [0, T ], T > 0, and ρ : J × B → (−∞, T ] is an appropriate function, B is a bounded linear
operator from E into E, the control u ∈ L2(J ;E), the Banach space of admissible controls. Here,
0 = t0 < t1 < · · · < tm < tm+1 = T , Ik : E → E, k = 1, 2, . . . ,m, are the given functions, (E, ∥ · ∥) is
a complex Banach space, ∆x(tk) = x(t+k ) − x(t−k ), x(t

+
k ) = lim

h→0
x(tk + h) and x(t−k ) = lim

h→0
x(tk − h)

denotes the right and the left limit of x(t) at t = tk, respectively. We denote by xt the element of B
defined by xt(θ) = x(t+ θ), θ ∈ (−∞, 0]. Here xt represents the history of the state up to the present
time t. We assume that the histories xt belong to some abstract phase space B, to be specified later,
and ϕ ∈ B.

2 Preliminaries
In what follows, we recall some notations, definitions, and results that we will need in the sequel.

Let C = C(J,E) be the Banach space of continuous functions from J into E with the norm

∥y∥C = sup
{
∥y(t)∥ : t ∈ J

}
.

L(E) is the Banach space of all linear and bounded operators on E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥ is Lebesgue integrable.
L1(J,E) is the Banach space of measurable functions y : J → E that are Bochner integrable, with

the norm

∥y∥L1 =

T∫
0

∥y(t)∥ dt for all y ∈ L1(J,E).

Br(x,E) represents the closed ball in E with the center at x and of radius r.
We need some basic definitions and properties of the fractional calculus theory which will be used

further in this paper.
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Definition 2.1. Let α > 0 and f : R+ → E be in L1(R+, E). Then the Riemann–Liouville integral
is given by

Iαt f(t) =
1

Γ(α)

t∫
0

f(s)

(t− s)1−α
ds.

For more details on the Riemann–Liouville fractional derivative, we refer the reader to [13].

Definition 2.2 ([30]). The Caputo derivative of order α for a function f : [0,+∞) → E can be
written as

Dα
t f(t) =

1

Γ(n− α)

t∫
0

f (n)(s)

(t− s)α+1−n
ds = In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
t f(t) =

1

Γ(1− α)

t∫
0

f ′(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

In order to define a mild solution of problem (1.1), we recall the following

Definition 2.3. A closed linear operator A is said to be sectorial if there are constants ω ∈ R,
θ ∈ [π2 , π], M > 0, such that the following two conditions are satisfied:

1.
∑

(θ,ω)

:= {λ ∈ C : λ ̸= ω, |arg(λ− ω)| < θ} ⊂ ρ(A) (ρ(A) being the resolvent set of A).

2. ∥R(λ,A)∥L(E) ≤ M
|λ−ω| , λ ∈

∑
(θ,ω)

.

Sectorial operators are well studied in the literature. For details see [15].

Definition 2.4 ([8]). Let A be a closed linear operator with domain D(A) defined on a Banach space
E and α > 0. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0 and a
strongly continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λαI −A)−1x =

∞∫
0

e−λtSα(t)x dt, Reλ > ω, x ∈ E.

In this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.5 (see Definition 2.1 in [7]). Let A be a closed linear operator with domain D(A) defined
on a Banach space E and α > 0. We say that A is the generator of a solution operator if there exist
ω ≥ 0 and a strongly continuous function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∞∫
0

e−λtSα(t)x dt, Reλ > ω, x ∈ E.

In this case, Sα(t) is called the solution operator generated by A. For more details see [26,31].

In this paper, we will employ an axiomatic definition for the phase space B which is similar to
those introduced by Hale and Kato [16]. Specifically, B will be a linear space of functions mapping
(−∞, 0] into E endowed with a seminorm ∥ · ∥B, and satisfying the following axioms:

(A1) If x : (−∞, T ] → E is such that x0 ∈ B, then for every t ∈ J , xt ∈ B and

∥x(t)∥ ≤ C∥xt∥B,

where C > 0 is a constant.



Controllability for Impulsive Fractional Evolution Equations with State-Dependent Delay 5

(A2) There exist a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥ 0 in t ≥ 0
such that

∥xt∥B ≤ C1(t) sup
s∈[0,t]

∥x(s)∥+ C2(t)∥x0∥B,

for t ∈ J and x as in (A1).

(A3) The space B is complete.

Example 2.6. The phase space Cr × Lp(g,X).
Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r) → R be a nonnegative measurable function

which satisfies the conditions (g − 5), (g − 6) in the terminology of [23]. Briefly, this means that g
is locally integrable and there exists a nonnegative locally bounded function Λ on (−∞, 0] such that
g(ξ+θ) ≤ Λ(ξ)g(θ) for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊂ (−∞,−r) is a set with Lebesgue
measure zero.

The space Cr × Lp(g,X) consists of all classes of functions φ : (−∞, 0] → X such that φ is
continuous on [−r, 0], Lebesgue-measurable, and g∥φ∥p on (−∞,−r). The seminorm in ∥ · ∥B is
defined by

∥φ∥B = sup
θ∈[−r,0]

∥φ(θ)∥+
( −r∫
−∞

g(θ)∥φ(θ)∥p dθ
) 1

p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0 and p = 2, this
space coincides with

C0 × L2(g,X), H = 1, M(t) = Λ(−t) 1
2 , K(t) = 1 +

( 0∫
−r

g(τ) dτ

) 1
2

.

For more details see [23, Theorem 1.3.8].

Definition 2.7. A function f : J × B × E → E is said to be a Carathéodory function if it satisfies:

(i) for each t ∈ J, the function f(t, · , · ) : B × E → E is continuous;

(ii) for each (v, w) ∈ B × E, the function f( · , v, w) : J → E is measurable.

Definition 2.8. Problem (1.1) is said to be controllable on the interval J if for every initial function
ϕ ∈ B and x1 ∈ E there exists a control u ∈ L2(J,E) such that the mild solution x( · ) of (1.1) satisfies
x(T ) = x1.

Next, we give the concept of a measure of noncompactness [10].

Definition 2.9. Let B be a bounded subset of a seminormed linear space Y . The Kuratowski’s
measure of noncompactness of B is defined as

α(B) = inf
{
d > 0 : B has a finite cover by sets of diameter ≤ d

}
.

We need to use the following basic properties of α measure and Sadovskii’s fixed point theorem
(see [34]).

Lemma 2.10. Let A and B be two bounded sets of the Banach space E. Then:

1. If A ⊆ B, then α(A) ≤ α(B);

2. α(A) = 0 ⇐⇒ A is compact (A is relatively compact);

3. α(A+B) ≤ α(A) + α(B).

Theorem 2.11 (Sadovskii’s fixed point Theorem). Let N be a condensing operator on the Banach
space X, i.e., N is continuous and takes bounded sets into bounded sets, and α(N (D)) < α(D) for
every bounded set D of E with α(D) > 0. If N (S) ⊂ S for a convex, closed and bounded set S of X,
then N has a fixed point in S.



6 Khalida Aissani, Mouffak Benchohra, Mustapha Meghnafi

3 Controllability results
Before going further, we need the following lemma [36].

Lemma 3.1. Consider the Cauchy problem

Dα
t x(t) = Ax(t) +Bu(t) + f(t), 0 < α < 1,

x(0) = x0,
(3.1)

if f satisfies the uniform Hölder condition with exponent β ∈ (0, 1] and A is a sectorial operator, then
the unique solution of the Cauchy problem (3.1) is given by

x(t) = Tα(t)x0 +

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f(s) ds,

where
Tα(t) =

1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ, Sα(t) =

1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

B̂r denotes the Bromwich path, Sα(t) is called the α-resolvent family and Tα(t) is the solution operator
generated by A.

Theorem 3.2 ( [12,36]). If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any x ∈ E and t > 0, we have

∥Tα(t)∥L(E) ≤Meωt and ∥Sα(t)∥L(E) ≤ Ceωt(1 + tα−1), t > 0, ω > ω0.

Let
M̃T = sup

0≤t≤T
∥Tα(t)∥L(E), M̃s = sup

0≤t≤T
Ceωt(1 + tα−1),

hence we have
∥Tα(t)∥L(E) ≤ M̃T , ∥Sα(t)∥L(E) ≤ tα−1M̃s.

Let us consider the set of functions

B1 =
{
x : (−∞, T ] → E such that x

∣∣
Jk

∈ C(Jk, E) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = ϕ, k = 1, 2, . . . ,m
}
.

Endowed with the seminorm,

∥x∥B1
= sup

{
∥x(s)∥ : s ∈ [0, T ]

}
+ ∥ϕ∥B, x ∈ B1,

where x|Jk
is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m.

From Lemma 3.1 we can define a mild solution of system (1.1) as follows.

Definition 3.3. A function x ∈ B1 is called a mild solution of (1.1) if it satisfies the following integral
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equation:

x(t) =



ϕ(t), t ∈ (−∞, 0],

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
(
x(t−1 ) + I1(x(t

−
1 ))

)
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (tm, T ].

(3.2)

Set
R(ρ−) =

{
ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0

}
.

We always assume that ρ : J × B → (−∞, T ] is continuous. Additionally, we introduce the following
hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lϕ : R(ρ−) → (0,∞) such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).

Remark 3.4. Condition (Hφ) is frequently verified by the continuous and bounded functions. For
more details see, e.g., [23].

Remark 3.5. In the rest of this section, C∗
1 and C∗

2 are the constants

C∗
1 = sup

s∈J
C1(s) and C∗

2 = sup
s∈J

C2(s).

Lemma 3.6 ([21]). If x : (−∞, T ] → X is a function such that x0 = ϕ, then

∥xs∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup
{
∥y(θ)∥ : θ ∈ [0,max{0, s}]

}
, s ∈ R(ρ−) ∪ J,

where Lϕ = sup
t∈R(ρ−)

Lϕ(t).

Let us introduce the following hypotheses:

(H1) The semigroup S(t) is compact for t > 0.

(H2) f : J × B × E → E satisfies the Carathéodory conditions.

(H3) There exist a continuous function µ ∈ L1(J,R+) and a continuous nondecreasing function ψ :
R+ → (0,+∞) such that

∥f(t, x, y)∥ ≤ µ(t)ψ
(
∥x∥B + ∥y∥

)
, (t, x, y) ∈ J × B × E.
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(H4) The function Ik : E → E is continuous, and there exists Ω > 0 such that

Ω = max
1≤k≤m

{
∥Ik(x)∥ : x ∈ Br

}
.

(H5) The linear operator W : L2(J,E) → E defined by

Wu =

T∫
0

Sα(T − s)Bu(s) ds,

has an inverse operator W̃−1, which takes values in L2(J,E)/ kerW and there exist two positive
constants M1 and M2 such that

∥B∥L(E) ≤M1, ∥W̃−1∥L(E) ≤M2.

Remark 3.7. The construction of the operator W̃−1 and its properties are discussed in [32].

Theorem 3.8. Assume that Hypotheses (Hφ), (H1)–(H5) are satisfied with M̃T < 1, then the IVP
(1.1) is controllable on (−∞, T ].

Proof. We transform problem (1.1) into a fixed-point problem. Consider the operator N : B1 → B1

defined by:

Nx(t) =



ϕ(t), t ∈ (−∞, 0],

t∫
0

Sα(t− s)Bu(s) ds+

t∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)(x(t
−
1 ) + I1(x(t

−
1 ))) +

t∫
t1

Sα(t− s)Bu(s)

+

t∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds, t ∈ (tm, T ].
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Using hypothesis (H5), for an arbitrary function x( · ), we define the control

u(t) =



W̃−1

[
x1 −

T∫
0

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ [0, t1],

W̃−1

[
x1 − Tα(T − t1)

(
x(t−1 ) + I1(x(t

−
1 ))

)
−

T∫
t1

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ (t1, t2],

...

W̃−1

[
x1 − Tα(T − tm)

(
x(t−m) + Im(x(t−m))

)
−

T∫
tm

Sα(t− s)f
(
s, xρ(s,xs), x(s)

)
ds

]
(t), t ∈ (tm, T ].

(3.3)

Clearly, fixed points of the operator N are mild solutions of problem (1.1).
Let us define y( · ) : (−∞, T ] → E as

y(t) =

{
ϕ(t), t ∈ (−∞, 0],

0, t ∈ J.

Then y0 = ϕ. For each z ∈ C(J,E) with z(0) = 0, we denote by z the function defined by

z(t) =

{
0, t ∈ (−∞, 0],

z(t), t ∈ J.

If x( · ) satisfies (3.2), we can decompose it as x(t) = y(t) + z(t) for t ∈ J , which implies xt = yt + zt
for every t ∈ J , the expression of the control given by (3.3) becomes

u(t) =



W̃−1

[
x1 −

T∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ [0, t1],

W̃−1

[
x1 − Tα(T − t1)

[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
−

T∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ (t1, t2],

...

W̃−1

[
x1 − Tα(T − tm)

[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
−

T∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds

]
(t), t ∈ (tm, T ],
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and

z(t) =



t∫
0

Sα(t− s)Bu(s) ds

+

t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ].

Moreover, z0 = 0.
Let

B2 =
{
z ∈ B1 : z0 = 0

}
.

For any z ∈ B2, we have
∥z∥B2

= sup
t∈J

∥z(t)∥+ ∥z0∥B = sup
t∈J

∥z(t)∥.

Thus (B2, ∥ · ∥B2) is a Banach space. We define the operator P : B2 → B2 by

P (z)(t) =



t∫
0

Sα(t− s)Bu(s) ds

+

t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t

−
1 ) + z(t−1 ))

]
+

t∫
t1

Sα(t− s)Bu(s) ds

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...

Tα(t− tm)
[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)Bu(s) ds

+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ].

Obviously, the operator N has a fixed point is equivalent to P to have a fixed point, so it remains to
prove that P has a fixed point. Let

Br =
{
z ∈ B2 : ∥z∥B2 ≤ r

}
,
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where r is any fixed finite real number which satisfies the inequality

r ≥ M̃TΩ

1− M̃T

+
M̃S

1− M̃T

ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Clearly, the subset Br is a closed, bounded and convex set of B2. We need the following

Lemma 3.9. If x ∈ Br, then we have

∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1r,

and

∥u(s)∥ ≤



M2

[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥

)
dτ

]
, t ∈ [0, t1],

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥

)
dτ

]
, t ∈ (t1, t2],

...

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)∥E

)
dτ

]
, t ∈ (tm, T ].

(3.4)

Proof. Using Lemma 3.6, (H3) and (H5), we obtain∥∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))

∥∥
B

≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup
{
|y(θ)| : θ ∈ [0,max{0, t}]

}
≤ (C∗

2 + Lϕ)∥ϕ∥B + C∗
1r.
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Also, we get

∥u(s)∥ ≤



∥W̃−1∥
[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ [0, t1],

∥W̃−1∥
[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ (t1, t2],

...

∥W̃−1∥
[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1

×
∥∥∥f(τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ], t ∈ (tm, T ]

≤



M2

[
∥x1∥+ M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))

∥∥
B + ∥y(τ) + z(τ)

∥∥
E

)
dτ

]
, t ∈ [0, t1],

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥) dτ], t ∈ (t1, t2],

...

M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

T∫
0

(t− τ)α−1µ(τ)

×ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥
E

)
dτ

]
, t ∈ (tm, T ].

Thus the lemma is proved.
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Now, we define two operators P1 and P2 on Br as

P1(z)(t) =



t∫
0

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ [0, t1],

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1

(
y(t−1 ) + z(t−1 )

)]

+

t∫
t1

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (t1, t2],

...
Tα(t− tm)

[
y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))

]
+

t∫
tm

Sα(t− s)f
(
s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)

)
ds, t ∈ (tm, T ],

P2(z)(t) =



t∫
0

Sα(t− s)Bu(s) ds, t ∈ [0, t1],

t∫
t1

Sα(t− s)Bu(s) ds, t ∈ (t1, t2],

...
t∫

tm

Sα(t− s)Bu(s) ds, t ∈ (tm, T ].

Firstly, we show that the operator P1 maps Br into itself, next, we prove that P2 is completely
continuous.
Step 1: Let z ∈ Br, then show that P1z ∈ Br. For t ∈ [0, t1], we have

∥P1(z)(t)∥ ≤
t∫

0

∥Sα(t− s)∥L(E)

∥∥∥f(s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)
)∥∥∥ ds

≤ M̃S

t∫
0

(t− s)α−1µ(s)ψ
(∥∥yρ(s,ys+z(s)) + zρ(s,ys+z(s))∥B + ∥y(s) + z(s)

∥∥) ds
≤ M̃S

t∫
0

(t− s)α−1µ(s)ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + C∗
1r + r

)
ds

≤ M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

) t∫
0

µ(s) ds

≤ M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

≤ r.
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Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

∥P1(z)(t)∥ ≤ Tα(t− ti)
[
z(t−i ) + Ii(z(t

−
i ))

]
+

t∫
0

∥Sα(t− s)∥L(E)

∥∥∥f(s, yρ(s,ys+z(s)) + zρ(s,ys+z(s)), y(s) + z(s)
)∥∥∥ ds

≤ M̃T (r +Ω) + M̃Sψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

≤ r.

Step 2: P2 is completely continuous. This will be given in several claims.
Claim 1: P2 is continuous.

Let {zn}n∈N be a sequence such that zn → z in B2 as n→ ∞. Since f satisfies (H2), we get

f
(
τ, yτ + znτ , y(τ) + zn(τ)

)
−→ f

(
τ, yτ + zτ , y(τ) + z(τ)

)
as n→ ∞.

Now for all t ∈ [0, t1], we have

∥∥P2(z
n)(t)− P2(z)(t)

∥∥ ≤
t∫

0

∥∥Sα(t− s)B(un(s)− u(s))
∥∥
L(E)

ds

≤
t∫

0

∥Sα(t− s)∥L(E)∥B∥L(E)∥un(s)− u(s)∥ ds ≤M1M̃S

t∫
0

(t− s)α−1∥(un(s)− u(s))∥ ds

≤M1M2M̃
2
S

t∫
0

(t− s)α−1

T∫
0

(T − τ)α−1
∥∥∥f(τ, yρ(τ,yτ+zn(τ)) + znρ(τ,yτ+zn(τ)), y(τ) + zn(τ)

)
− f

(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)∥∥∥ dτ ds ≤M1M2M̃
2
S

T 2α

α2
ε,

where ε > 0, ε→ 0 as n→ ∞. Moreover,

∥∥P2(z
n)(t)− P2(z)(t)

∥∥ ≤M1M2M̃S

t∫
ti

(t− s)α−1

[
M̃T

∥∥zn(t−i )− z(t−i )
∥∥+

∥∥Ii(zn(t−i ))− Ii(z(t
−
i ))

∥∥
+ M̃S

T∫
ti

(T − τ)α−1
∥∥∥f(τ, yρ(τ,yτ+zn(τ)) + znρ(τ,yτ+zn(τ)), y(τ) + zn(τ)

)
− f

(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(s)), y(s) + z(s)

)∥∥∥ dτ] ds
≤M1M2M̃SM̃T

Tα

α

[∥∥zn(t−i )− z(t−i )
∥∥+

∥∥Ii(zn(t−i ))− Ii(z(t
−
i ))

∥∥]+M1M2M̃
2
S

T 2α

α2
ε,

where ε > 0, ε → 0 as n → ∞, for all t ∈ (ti, ti+1], i = 1, . . . ,m,. The impulsive functions Ik,
k = 1, . . . ,m, are continuous, and we get

lim
n→∞

∥P2z
n − P2z∥B2

= 0.

This means that P2 is continuous.
Claim 2: P2 maps bounded sets of B2 into bounded sets in B2. So, let us prove that for any r > 0,
there exists ξ > 0 such that for each z ∈ Br = {z ∈ B2 : ∥z∥B2

≤ r}, ∥P2z∥B2
≤ ξ. Indeed, for any
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z ∈ Br, t ∈ [0, t1], we have

∥P2(z)(t)∥ ≤
t∫

0

∥Sα(t− s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

t∫
0

(t− s)α−1

[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1µ(τ)

× ψ
(∥∥yρ(τ,yτ+z(τ)) + zρ(s,yτ+z(τ))∥B + ∥y(τ) + z(τ)

∥∥) dτ] ds
≤M1M2M̃S

t∫
0

(t− s)α−1

[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1µ(τ)

× ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + C∗
1r + r

)
dτ

]
ds

≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃

2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

) t∫
0

µ(s) ds

≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃

2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

∥P2(z)(t)∥ ≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃SM̃T (r +Ω)

Tα

α

+M1M2M̃
2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

This implies that

∥P2z∥B2 ≤M1M2M̃S
Tα

α
∥x1∥+M1M2M̃SM̃T (r +Ω)

Tα

α

+M1M2M̃
2
S

T 2α

α2
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1 .

Claim 3: P2(Br) is bounded and equicontinuous. Letting u, v ∈ [0, T ], with u < v, we have

∥P2(z)(v)− P2(z)(u)∥ ≤ Q1 +Q2,

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds,

Q2 =

u∫
0

∥Sα(v − s)− Sα(u− s)∥L(E)∥B∥L(E)∥u(s)∥ ds.
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In view of (3.4), for t ∈ [0, t1], we have

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

v∫
u

(v − s)α−1

×
[
∥x1∥+ M̃S

T∫
0

(T − τ)α−1f
(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)

)
dτ

]
ds

≤M1M2M̃S
(v − u)α

α

[
∥x1∥+ M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
.

Hence, lim
u→v

Q1 = 0. Similarly, for u, v ∈ (ti, ti+1], with u < v, i = 1, . . . ,m, we get

Q1 =

v∫
u

∥Sα(v − s)∥L(E)∥B∥L(E)∥u(s)∥ ds

≤M1M2M̃S

v∫
u

(v − s)α−1

[
∥x1∥+ M̃T (r +Ω)

+ M̃S

T∫
0

(T − τ)α−1f
(
τ, yρ(τ,yτ+z(τ)) + zρ(τ,yτ+z(τ)), y(τ) + z(τ)) dτ

]
ds

≤M1M2M̃S
(v − u)α

α

[
∥x1∥+ M̃T (r +Ω) + M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
.

Hence, we deduce that lim
u→v

Q1 = 0.
Using (3.4), for all t ∈ [0, t1] we get

Q2 =

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

∥B∥L(E)∥u(s)∥ ds

≤M1M2

[
∥x1∥+ M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
×

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

ds.

Similarly, when u, v ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

Q2 =

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

∥B∥L(E)∥u(s)∥ ds

≤M1M2

[
∥x1∥+ M̃T (r +Ω) + M̃S

Tα

α
ψ
(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ∥L1

]
×

u∫
0

∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

ds.

Since ∥∥Sα(v − s)− Sα(u− s)
∥∥
L(E)

≤ 2M̃s(ti − s)α−1,
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which belongs to L1(J,R+) and Sα(v− s)− Sα(u− s) → 0 as u→ v, Sα is strongly continuous. This
implies that lim

u→v
Q2 = 0. Thus, from the above inequalities, we have

lim
u→v

∥P (z)(v)− P (z)(u)∥ = 0.

So, P2(Br) is equicontinuous.
Finally, combining Claims 1 and 3 together with the Arzelà–Ascoli’s theorem, we conclude that

the operator P2 is compact. In fact, by Step 1–Step 2 and Lemma 2.10, one can conclude that
P = P1+P2 is continuous and takes bounded sets into bounded sets. Meanwhile, it is easy to see that
α(P2(Br)) = 0, since P2(Br) is relatively compact. It comes from P1(Br) ⊆ Br and α(P2(Br)) = 0
that

α(P (Br)) ≤ α(P1(Br)) + α(P2(Br)) ≤ α(Br)

for every bounded set Br of B2 with α(Br) > 0.
Since P (Br) ⊂ Br for a convex, closed and bounded set Br of B2, using Theorem 2.11, P has a

fixed point z in Br ⊂ B2. It is easy to see that x is a fixed point of the operator N which is a mild
solution of (1.1) satisfying x(T ) = x1. Thus, system (1.1) is controllable on (−∞, T ].

4 An example
To apply our abstract results, we consider the impulsive fractional integro-differential system:

∂qt
∂tq

v(t, ζ) =
∂2

∂ζ2
v(t, ζ) + ωµ(t, ζ)

+

t∫
−∞

a1(s− t)v
(
s− ρ1(t)ρ2(|v(t)|), ξ

)
ds+ t2 cos |v(t, ζ)|, t ∈ [0, T ], ζ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(t, ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],

∆v(tk)(ζ) =

tk∫
−∞

pk(tk − y) dy cos(v(tk)(ζ)), k = 1, 2, . . . ,m,

(4.1)

where 0 < q < 1, ω > 0, µ : [0, T ]× [0, π] → [0, π], pk : R → R, k = 1, 2, . . . ,m, and a1 : (−∞, 0] → R,
ρi : [0,+∞) → [0,+∞), i = 1, 2, v0 : (−∞, 0]× [0, π] → R are continuous functions.

Set E = L2([0, π]) and let D(A) ⊂ E → E be the operator Aω = ω′′ with the domain

D(A) =
{
ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0

}
,

then
Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =
√

2
π sin(nx), n ∈ N, is the orthogonal set of eigenvectors of A. It is well known that

A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0 in E and is given by

T (t)ω =

∞∑
n=1

e−n2t(ω, ωn)ωn for all ω ∈ E and all t > 0.

From these expressions it follows that {T (t)}t≥0 is a uniformly bounded compact semigroup such that
R(λ,A) = (λ−A)−1 is a compact operator for all λ ∈ ρ(A), that is, A ∈ Aα(θ0, ω0).

For the phase space, we choose B = C0 × L2(g,X) (for details, see Example 2.6).
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Set

x(t)(ζ) = v(t, ζ), t ∈ [0, T ], ζ ∈ [0, π];

ϕ(θ)(ζ) = v0(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π];

f(t, φ, x(t))(ζ) =

0∫
−∞

a1(s)φ(s, ξ) ds+ t2 cos |x(t)(ζ)|, t ∈ [0, T ], ζ ∈ [0, π];

ρ(s, φ) = s− ρ1(s)ρ2(|φ(0)|);

Ik(x(t
−
k ))(ζ) =

0∫
−∞

pk(tk − y) dy cos(x(tk)(ζ)), k = 1, 2, . . . ,m;

Bu(t)(ζ) = ωµ(t, ζ).

Under the above conditions, we can represent system (4.1) in the abstract form (1.1). Assume that
the operator W : L2(J,E) → X defined by

Wu( · ) =
T∫

0

Sα(T − s)ωµ(s, · ) ds

has a bounded invertible operator W̃−1 in L2(J,E)/ kerW .
The following result is a direct consequence of Theorem 3.8.

Proposition 4.1. Let φ ∈ B be such that (Hφ) holds, and assume that the above conditions are
fulfilled, then system (4.1) is controllable on (−∞, T ].
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APPROXIMATING SOLUTION OF DISTRIBUTED DELAY
DIFFERENTIAL EQUATION USING GAMMA SERIES
OF DELAY DENSITY FUNCTION



Abstract. The linear chain trick can be used to solve differential equations with distributed delays
of gamma type. In this paper we show that other densities of delay can be expressed as a sum of
gamma densities, which can then be used to find approximate solution of differential equation with
distributed delay.1
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Key words and phrases. Distributed delay, gamma series, Laguerre polynomials, linear chain trick.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ãÀàÅÖÒÉ ÊÀÍÏÍÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÀÌÏáÓÍÉËÉÀ γ-ÔÉÐÉÓ ÃÀÂÅÉÀÍÄÁÖË ÀÒ-
ÂÖÌÄÍÔÉÀÍÉ ÂÀÍÔÏËÄÁÀ. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ÃÀÂÅÉÀÍÄÁÉÓ ÓÉÌÊÅÒÉÅÄ ÛÄÉÞËÄÁÀ ÂÀÌÏÉÓÀáÏÓ
ÒÏÂÏÒÝ γ-ÔÉÐÉÓ ÓÉÌÊÅÒÉÅÄÈÀ ãÀÌÉ. ÀÙÍÉÛÍÖËÉ ÂÀÌÏÓÀáÅÀ ÛÄÉÞËÄÁÀ ÂÀÌÏÚÄÍÄÁÖË ÉØÍÀÓ
ÃÀÂÅÉÀÍÄÁÖË ÀÒÂÖÌÄÍÔÉÀÍÉ ÂÀÍÔÏËÄÁÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÌÏÓÀÞÄÁÍÀÃ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
In this paper we are looking for an approximate solution of a differential equation with distributed
delay, i.e.,

ẋ(t) = f

(
t, x(t),

∞∫
0

x(t− s)g(s)ds
)
,

x(t) = ϕ(t), t ≤ t0,

(1.1)

where f : R3 → R is a Lipschitz function (to ensure the existence and uniqueness of the solution), ϕ is
an initial function (we usually need it to be continuous and bounded on its domain) and g : [0,∞) →
[0,∞) is a weight function which describes how past states of x are affecting present rate of change.
We can presume that g is normed, that is,

∞∫
0

g(s)ds = 1. This means that g is a density of some

nonnegative random variable which we interpret as a delay.
Problem (1.1) is a generalization of a differential equation with a constant delay, i.e.,

ẋ(t) = f
(
t, x(t), x(t− τ)

)
,

x(t) = ϕ(t), t ∈ [t0 − τ, t0],
(1.2)

where f , ϕ are the same as in (1.2) and τ > 0 is a constant delay. We can find a solution of
(1.2) by the method of steps. However, the method of steps can be used to transform (1.1) to an
ordinary differential equation only if 0 ̸∈ supp(g). This restriction may be quite problematic, not
often describing the modelled phenomena well.

Another possible way to solve (1.1) is the use of the Laplace transform. This is not a versatile
method, since it entails several nontrivial steps, such as finding the Laplace transform of g, solving
an algebraic equation and, finally, applying an inverse Laplace transform on a possibly complicated
function.

In a special case, where g is a density of gamma distribution, that is,

gpa(t) =


aptp−1e−at

Γ(p)
, t ≥ 0,

0, otherwise,
(1.3)

where a > 0, p ∈ N and Γ(t) denotes the gamma function at t, we can transform (1.1) to a system of
ordinary differential equations. This process is called the linear chain trick and is in detail explained
in [3]. We will briefly describe it for the case of a scalar equation with one distributed delay of gamma
type, but it can be easily generalized to the case of a vector equation or multiple distributed delays
of gamma type.

Consider (1.1) with g = gpa. We can introduce new variables y1, y2, . . . , yp,

yk =

∞∫
0

x(t− s)gka(s)ds, k = 1, 2, . . . , p. (1.4)

Since
ġpa = a(gp−1

a − gpa), p > 1,

ġ1a = −ag1a,
(1.5)

new variables yk satisfy the system of ordinary differential equations

ẏp(t) = a
(
yp−1(t)− yp(t)

)
ẏp−1(t) = a

(
yp−2(t)− yp−1(t)

)
...

ẏ2(t) = a
(
y1(t)− y2(t)

)
ẏ1(t) = a

(
x(t)− y1(t)

)
.

(1.6)



24 Jan Böhm

Together with the original equation

ẋ(t) = f
(
t, x(t), yp(t)

)
, (1.7)

we obtain a system of p+ 1 ordinary differential equations. The initial values are given by

x(t0) = ϕ(t0),

yk(t0) =

∞∫
0

ϕ(t0 − s)gka(s)ds, k = 1, 2, . . . , p.
(1.8)

System (1.6) is in itself an autonomous linear system with constant coefficients, therefore if (1.1) is
autonomous or linear (with constant coefficients), the same is true for the new system.

2 The main result
The linear chain trick can only be used for gamma densities. However, if we could express other
densities of nonnegative random variables as a sum of gamma densities, we could apply linear chain
trick on each element of the sum. In other words, we are interested in describing the linear span of
{gpa, a > 0, p ∈ N}.

The method of expanding density of a nonnegative random variable into a sum of gamma densities
is described in [1]. We perform similar construction for a = 1. The choice of the value of parameter
a is not important at the moment, so the optimal value is to be discussed.

Consider the space L2
γ(R

+
0 ), i.e., the linear space of real functions f : [0,∞) → R satisfying

∞∫
0

e−xf2(x)dx < ∞. (2.1)

This is a Hilbert space with the inner product ⟨f, g⟩γ given by

⟨f, g⟩γ =

∞∫
0

e−xf(x)g(x)dx. (2.2)

Lemma 2.1. The set of Laguerre polynomials

{
Ln(x) =

ex
n!

dn

dxn
(xne−x), n ∈ N

}
=

{
Ln(x) =

n∑
j=0

(
n

j

)
(−1)j

j!
xj , n ∈ N

}
(2.3)

is a complete orthonormal set in L2
γ(R

+
0 ).

Proof. See [2].

Let f be a density of a nonnegative random variable. We want to express it as a series

f(x) = e−x
∞∑
k=0

akLk(x). (2.4)

For n ∈ N (using orthonormality of Laguerre polynomials),

∞∫
0

f(x)Ln(x)dx =

∞∫
0

Ln(x)e−x
∞∑
k=0

akLk(x)dx = an (2.5)
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holds. This is well-defined if the first n raw moments of the density function f are finite. Series (2.4)
is, in fact, a sum of gamma densities, since

e−x
∞∑
k=0

akLk(x) =

∞∑
k=0

(
e−xak

k∑
j=0

(
k

j

)
(−1)j

j!
xj
)

=

∞∑
k=0

(
e−xak

k∑
j=0

(
k

j

)
(−1)jgj+1

1 (x)
)
=

∞∑
k=0

αkg
k+1
1 (x), (2.6)

where αk contains all coefficients at the corresponding gamma density gk+1
1 . We call series (2.4) the

gamma series of the function f .
We have assumed that (2.4) held. Regarding that, there arises the important question for what

densities f the corresponding gamma series converges to the original function f .

Theorem 2.1. Let f be a density of a nonnegative random variable with all of the raw moments
finite and let there exist x0 > 0 and constants c > 0, δ > 0 such that for all x ≥ x0, the inequality
f(x) ≤ ce−x 1+δ

2 is satisfied. Then the gamma series of f converges to f in the sense of

lim
n→∞

∞∫
0

ex
(
f(x)− e−x

n∑
k=0

akLk(x)
)2

dx = 0. (2.7)

Proof. Denote h(x) = exf(x). The gamma series of h is
∞∑
k=0

akLk(x). The Laguerre polynomials are

a complete orthonormal set in L2
γ(R

+
0 ), therefore h ∈ L2

γ(R
+
0 ) must hold. To prove this, we calculate

its norm in L2
γ(R

+
0 ), i.e.,

∞∫
0

e−xh2(x)d(x) =
∞∫
0

exf2(x)dx =

x0∫
0

exf2(x)dx

︸ ︷︷ ︸
I1

+

∞∫
x0

exf2(x)dx

︸ ︷︷ ︸
I2

. (2.8)

The first term I1 is an integral of a bounded function over a finite interval, so I1 < ∞. Using the
theorem’s assumptions, we can show I2 < ∞ as well, since

I2 ≤ c2
∞∫

x0

ex−x(1+δ) dx =
c2

δ
ex0 < ∞. (2.9)

This means that h ∈ L2
γ(R

+
0 ) and the rest of the theorem is a consequence of the Fourier series theory,

specifically the Riesz–Fischer theorem.

Corollary 2.1. Any density of a nonnegative random variable with a compact support can be expressed
as a gamma series.

This result can be used to find an approximate solution of equation (1.1):

• Find the first n terms of gamma series of g.

• Apply the linear chain trick to each term.

• Solve (analyze) the resulting system of ordinary differential equations.

Remark 2.1. To find the first n terms in the gamma series of a function we need only the first n
raw moments. This is useful in the case where delays are measured experimentally and we need to
estimate the probability density function, since we can use sample raw moments instead of theoretical
ones and thus obtain an estimation in the form of a gamma series.



26 Jan Böhm

Table 1. The first n coefficients of gamma series (2.6) of hat distribution (3.2).

n = 1 n = 3 n = 5 n = 10 n = 20
α0 1 0.083308 −0.591735 −0.154871 0.152195
α1 0 2.333400 5.291708 1.046663 −0.978461
α2 −1.916725 −7.011521 11.170907 6.456673
α3 0.500017 4.766992 −40.563154 71.573716
α4 −1.719577 71.475719 −598.149055
α5 0.261133 −80.029644 2354.843929
α6 60.821780 −6267.150889
α7 −31.534065 12544.162081
α8 10.745646 −19803.452473
α9 −2.178752 25272.614335
α10 0.1997700 −26411.951554
α11 22735.938215
α12 −16129.161624
α13 9390.531536
α14 −4446.376297
α15 1686.572512
α16 −500.587669
α17 112.058428
α18 −17.798574
α19 1.788478
α20 −0.085504
Σ 1 1 1 1 1

3 Example
Consider the initial value problem

ẋ(t) = −2

∞∫
0

x(t− s)gh(s)ds,

x(t) = 1, t ≤ 0,

(3.1)

where gh is the probability density function of the hat distribution, to be specific,

gh(t) =


t, t ∈ [0, 1],

2− t, t ∈ [1, 2],

0, otherwise.
(3.2)

We will compare an approximate solution x̂n obtained by expanding gh into the gamma series with
the first n terms and another approximate solution xh, where xh is obtained by a discretization

xh(t+ h) = x(t)− 2h

200∑
k=0

x(t− hk)gh(hk) (3.3)

with step size h = 0.01.
To illustrate the method, we compute the approximate solution of problem (3.1) for different values

of n, in particular, for n = 1, 3, 5, 10, 20.
First, we compute the first n coefficients of gamma series of the hat distribution by numerically

integrating (2.5) and then sum the results according to (2.6). Numerical values of coefficients αk,
k = 0, 1, . . . , n, are given in Table 1. Notice that the sum of coefficients for each n is 1.
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Instead of the initial value problem (3.1), we can solve the problem

˙̂x(t) = −2

∞∫
0

(
x̂(t− s)

n∑
k=0

gk+1
1 (s)

)
ds = −2

n∑
k=0

αk

∞∫
0

x̂(t− s)gk+1
1 (s)ds,

x(t) = 1, t ≤ 0.

(3.4)

Using the linear chain trick, we obtain a system of n+1 ordinary differential equations with constant
coefficients 

˙̂x(t)
ẏ1(t)
ẏ2(t)

...
ẏn(t)

 =


0 −2α0 −2α1 · · · −2αn

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1




x̂(t)
y1(t)
y2(t)

...
yn(t)

 . (3.5)

Initial values are x̂(0) = y1(0) = · · · = yn(0) = 1.

Figure 1. Approximation of the hat probability density function gh by the first n terms of its gamma
series.

Figure 2. Approximate solutions x̂n of (3.1) obtained by approximating gh by the first n terms of its
gamma series and approximate solution xh computed by discretization.
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We denote by x̂n the solution of (3.4) obtained by using the gamma series of order n. Solutions
xh and x̂n are computed by using R. Approximation of the hat density is given in Figure 1 and
the corresponding solutions are given in Figure 2. Since we do not know the exact solution, we do
not know how precise our solutions are. To our knowledge, there is no distributed delay differential
equation (except for a delay of gamma type) with a known exact solution that could by used as a test
case.
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Abstract. The boundary value problem

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds

is studied, where µ is a positive parameter, f : [0, 1] × [0;+∞) → [0;+∞) and a : (0, 1) → [0,+∞)
are continuous functions, while q : (0, 1) → [0,+∞) is a measurable function. The case, where the
function a has singularities at the points t = 0 and t = 1, is admissible.

Conditions are found guaranteeing, respectively, the existence of at least one and at least two
positive solutions. Examples are gives.1
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ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ÃÀÃÄÁÉÈ µ ÐÀÒÀÌÄÔÒÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds

ÓÀÃÀÝ n ∈ N, n ≥ 3, n−1 < α ≤ n, 0 < λ < α, Dα ÀÒÉÓ α ÒÉÂÉÓ ÒÉÌÀÍ-ËÉÖÅÉËÉÓ ßÀÒÌÏÄÁÖËÉ,
f : [0, 1]× [0;+∞) → [0;+∞) ÃÀ a : (0, 1) → [0,+∞) ÖßÚÅÄÔÉ, áÏËÏ q : (0, 1) → [0,+∞) ÆÏÌÀÃÉ
×ÖÍØÝÉÄÁÉÀ. ÃÀÓÀÛÅÄÁÉÀ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ a ×ÖÍØÝÉÀÓ ÂÀÀÜÍÉÀ ÓÉÍÂÖËÀÒÏÁÄÁÉ t = 0 ÃÀ t = 1
ßÄÒÔÉËÄÁÛÉ.

ÍÀÐÏÅÍÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÓÀÈÀÍÀÃÏÃ ÖÆÒÖÍÅÄËÚÏ×ÄÍ ÄÒÈÉ ÌÀÉÍÝ ÃÀ ÏÒÉ ÌÀÉÍÝ
ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀÓ. ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÄÁÉ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
Fractional differential equations have applications in various fields of science and engineering and
have been a focus of research for decades (see [6,9,10,12] and the references therein). There is a large
number of important subjects in various fields of fractional calculus and related applications such as
the solvability, existence and multiplicity of positive solutions for the given boundary value problems
of fractional differential equations. For more details see [1, 3, 4, 11].

Namely, A. Cabada and Z. Hamdi [3] presented the existence results for the following boundary
value problem 

Dαu(t) + µg(t)f(u(t)) = 0 in [0, 1],

u(0) = u′(0) = 0, u(1) = λ

1∫
0

u(s) ds,

where µ is a positive parameter, 2 < α ≤ 3, 0 < λ < α and f , g are continuous functions. Under the

conditions g ∈ L1([0, 1]) and
1∫

1/2

g(t) dt > 0, they derived various existence and multiplicity results of

positive solutions depending on the parameter µ > 0.
However, all of the above mentioned works are based on a key assumption, that is, the nonlinear

term is required to be nonnegative. When nonlinear fractional differential equations involve a sign-
changing term, J. Henderson and R. Luca [5] investigated the existence of a positive solution for the
nonlinear fractional problem, and then under the similar conditions X. Zhang, L. Liu and Y. Wu [13]
studied the existence of positive solutions of the boundary value problem for a singular fractional
differential equation with a negatively perturbed term. More precisely, the authors considered the
following problem {

−Dαu(t) = p(t)f(t, u(t))− q(t) in (0, 1),

u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3. The function p is continuous nonnegative on (0, 1) and f is in C([0, 1] ×
[0,+∞), [0,+∞)). The perturbed term q : (0, 1) → [0,+∞) is Lebesgue integrable and may be
singular at some zero measure sets of [0, 1].

Under other boundary conditions, X. Zhou, J.-G. Peng and Y.-D. Chu [14] studied the following
problem {

Dαu(t) = p(t)f(t, u(t))− q(t) in (0, 1),

u(0) = u(1) = u′(1) = 0,

where 2 < α ≤ 3. The functions p and q are Lebesgue integrable on (0, 1) and f is in C([0, 1] ×
[0,+∞), [0,+∞)).

The existence of positive solutions of a fractional differential equation with a perturbed term,
integral boundary and parametric dependence, however, has not been studied previously. In this
paper, motivated by [2, 3, 13, 14], we give sufficient conditions for the existence and multiplicity of
positive solutions for problem

Dαu(t) + µa(t)f(t, u(t))− q(t) = 0 in (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds.
(1.1)

The results derived depend on the positive parameter µ.
The outline of this paper is as follows. In Section 2, we present some preliminaries and lemmas

that will be used for the proofs of our main results. The main theorems are presented in Section 3.
The final section of the paper contains examples to illustrate our results.
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2 Preliminaries and lemmas
In this section, we introduce definitions and preliminary facts that will be used throughout this paper.
We refer the reader to [2, 6, 8] for more details.

Definition 2.1. The Riemann–Liouville fractional integral of order α > 0 for a measurable function
f : (0,+∞) → R is defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is pointwise defined on
(0,+∞).

Definition 2.2. The Riemann–Liouville fractional derivative of order α > 0 for a measurable function
f : (0,+∞) → R is defined as

Dαf(t) =
1

Γ(n− α)

( d

dt

)n
t∫

0

(t− s)n−α−1f(s) ds =
( d

dt

)n

In−αf(t),

provided that the right-hand side is pointwise defined on (0,+∞). Here n = [α] + 1, [α] denotes the
integer part of the real number α.

Lemma 2.3. Let α > 0. Let u ∈ C(0, 1) ∩ L1(0, 1). Then

(i) DαIαu = u.

(ii) For δ > α− 1, Dαtδ = Γ(δ+1)
Γ(δ−α+1) t

δ−α. Moreover, we have Dαtα−i = 0, i = 1, 2, . . . , n.

(iii) Dαu(t) = 0 if and only if u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, . . . , n.

(iv) Assume that Dαu ∈ C(0, 1) ∩ L1(0, 1), then we have

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, . . . , n.

Now, we give the explicit expression of the Green function for the linear fractional differential
equation associated to the problem (1.1).

Lemma 2.4 ([2]). Let n ≥ 3, n − 1 < α ≤ n and λ ∈ (0, α). Let y ∈ C([0, 1]). Then the unique
solution of the linear fractional differential problem

Dαu(t) + y(t) = 0 in (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = λ

1∫
0

u(s) ds,
(2.1)

is given by

u(t) =

1∫
0

G(t, s)y(s) ds,

where for all t, s ∈ [0, 1],

G(t, s) =
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)((t− s)∗)α−1

(α− λ)Γ(α)
, (2.2)

G(t, s) is called the Green function of the boundary value problem (2.1). Here, for x ∈ R, x∗ =
max(x, 0).
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Now we recall some properties of the Green function.

Proposition 2.5. Let n ∈ N, n ≥ 3, n− 1 < α ≤ n, and λ ∈ [0, α). Then the function G defined by
(2.2) satisfies the following properties:

(i) G is a nonnegative continuous function on [0, 1]× [0, 1] and G(t, s) > 0 for all t, s ∈ (0, 1).

(ii) G(t, s) ≤ ηK(s) for all t, s ∈ [0, 1], where K(s) = s(1−s)α−1

Γ(α) and η = α
α−λ .

(iii) G(t, s) ≤ ηtα−1K1(s) for all t, s ∈ [0, 1], where K1(s) =
(1−s)α−1

Γ(α) .

(iv) G(t, s) ≥ ηλ∗tα−1K(s) ∀ t, s ∈ [0, 1], where λ∗ =
λ

α
.

(v) If θ ∈ (0, 1
2 ), s ∈ [0, 1], then min

t∈[θ,1−θ]
G(t, s) ≥ γK(s), where γ = ( θ

α−1 + λ
α−λ )θ

α−1.

Proof. The proofs of (i), (ii) and (v) are given in [2]. To prove (iii), we use Lemmas 2.5 and 2.6 in [2].
Assertion (iv) follows immediately from Proposition 2.7 in [2].

Using assertion (ii) of Proposition 2.5, we have the following

Proposition 2.6. Let q be a nonnegative measurable function on (0, 1). Then w(t) =
1∫
0

G(t, s)q(s) ds

is continuous on [0, 1] if and only if
1∫
0

(1− t)α−1q(t) dt converges.

Now we state the following key lemma.

Lemma 2.7. Let n ≥ 3, n−1 < α ≤ n and 0 < λ < α. Assume that (1− t)α−1q(t) ∈ C(0, 1)∩L(0, 1).
Then the boundary value problem

Dαw(t) + q(t) = 0 in (0, 1),

w(0) = w′(0) = · · · = w(n−2)(0) = 0, w(1) = λ

1∫
0

w(s) ds,
(2.3)

has a unique nonnegative solution w(t) =
1∫
0

G(t, s)q(s) ds ∈ C([0, 1]) satisfying

w(t) ≤ η
tα−1

Γ(α)

1∫
0

(1− s)α−1|q(s)| ds

on [0, 1].

Proof. First, we will prove that Dαw(t) + q(t) = 0 on (0, 1). By Proposition 2.6, we have that w
is continuous on [0, 1] and so In−α|w| is bounded on [0, 1]. Thus, using Fubini’s theorem, for each
t ∈ (0, 1) we obtain

In−αw(t) =
1

Γ(n− α)

1∫
0

t∫
0

(t− s)n−α−1G(s, ξ)q(ξ) ds dξ =

1∫
0

H(t, ξ)q(ξ) dξ, (2.4)

where

H(t, ξ) =
1

Γ(n− α)

t∫
0

(t− s)n−α−1G(s, ξ) ds.
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Now, let us find an explicit form of H(t, ξ). Let t, ξ ∈ (0, 1) and c = (α− λ)Γ(α)Γ(n− α), then

cH(t, ξ) =



(α− λ+ λξ)(1− ξ)α−1

t∫
0

(t− s)n−α−1sα−1 ds, 0 < t ≤ ξ < 1,

(α− λ+ λξ)(1− ξ)α−1

t∫
0

(t− s)n−α−1sα−1 ds

−(α− λ)

t∫
ξ

(t− s)n−α−1(s− ξ)α−1 ds, 0 < ξ ≤ t < 1.

Using the fact that for each a, b ≥ 0 and p, q > 0,

b∫
a

(b− θ)p(θ − a)q dθ =
Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)
(b− a)p+q+1,

we get

H(t, ξ) =
1

(α− λ)(n− 1)!

{
(α− λ+ λξ)(1− ξ)α−1tn−1, 0 < t ≤ ξ < 1,

(α− λ+ λξ)(1− ξ)α−1tn−1 − (α− λ)(t− ξ)n−1, 0 < ξ ≤ t < 1.
(2.5)

Thus, by (2.4) and (2.5), we obtain

(α− λ)(n− 1)!In−αw(t) =

t∫
0

(
(1− ξ)α−1(α− λ+ λξ)tn−1 − (α− λ)(t− ξ)n−1

)
q(ξ) dξ

+

1∫
t

(1− ξ)α−1(α− λ+ λξ)tn−1q(ξ) dξ

:= I1(t) + I2(t).

From the hypothesis, we deduce that the function ξ → q(ξ) is continuous and integrable near 0 and
the function ξ → (1− ξ)α−1q(ξ) is continuous and integrable near 1. Hence, I1 and I2 are integrable
on (0, 1). So we get, I1 and I2 are differentiable on (0, 1) and for each t ∈ (0, 1) we have

d

dt
((n− 1)!(α− λ)In−αw(t))

= (n− 1)

t∫
0

(
(1− ξ)α−1(α− λ+ λξ)tn−2 − (α− λ)(t− ξ)n−2

)
q(ξ) dξ

+ (n− 1)

1∫
t

(1− ξ)α−1(α− λ+ λξ)tn−2q(ξ) dξ.

Analogously, using the same arguments as above, we prove that In−αw(t) is differentiable on (0, 1)
and for each t ∈ (0, 1) we have( d

dt

)n(
(n− 1)!(α− λ)In−αw(t)

)
= −(n− 1)!(α− λ)q(t).

Thus ( d

dt

)n

In−αw(t) = −q(t).
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So, Dαw(t) + q(t) = 0 for all t ∈ (0, 1).
Next, let us verify the boundary conditions. Using Proposition 2.5(iii), for each t ∈ [0, 1], we have

|w(t)| ≤ ηtα−1

1∫
0

K1(s)|q(s)| ds

which implies that w(0) = 0.
On the other hand, for each t ∈ (0, 1), we have

(α− λ)Γ(α)w(t) =

t∫
0

(
(α− λ+ λs)(1− s)α−1tα−1 − (α− λ)(t− s)α−1

)
q(s) ds

+

1∫
t

(α− λ+ λs)tα−1(1− s)α−1q(s) ds

:= J1(t) + J2(t). (2.6)

It is clear that lim
t→0

|J1(t)|
t = 0 and lim

t→0

|J2(t)|
t = 0. Thus lim

t→0

w(t)
t = 0 and hence w′(0) = 0. Now, using

the fact that J1 is continuous and integrable near 0 and J2 is continuous and integrable near 1, we
deduce that J1 and J2 are differentiable on (0, 1) and thus we can take derivatives from both sides of
(2.6). So for each t ∈ (0, 1), we have

(α− λ)Γ(α)w′(t) = (α− 1)

t∫
0

(
(α− λ+ λs)(1− s)α−1tα−2 − (α− λ)(t− s)α−2

)
q(s) ds

+ (α− 1)

1∫
t

(α− λ+ λs)tα−2(1− s)α−1q(s) ds

= L1(t) + L2(t).

Since lim
t→0

|L1(t)|
t = 0 and lim

t→0

|L2(t)|
t = 0, we deduce that lim

t→0

w′(t)
t = 0 and then w′′(0) = 0.

In a similar way as above, we prove that w(3)(0) = · · · = w(n−2)(0) = 0.
Now, using Fubini’s theorem, a simple calculus yields

(α− λ)Γ(α)

1∫
0

w(t) dt =

1∫
0

(
(α− λ+ λs)(1− s)α−1

s∫
0

tα−1 dt

+

1∫
s

(
(α− λ+ λs)(1− s)α−1tα−1 − (α− λ)(t− s)α−1

)
dt

)
q(s) ds

=

1∫
0

s(1− s)α−1q(s) ds =
(α− λ)Γ(α)

λ

1∫
0

G(1, s)q(s) ds,

which implies that w(1) = λ
1∫
0

w(t) dt.

Finally, let us prove the uniqueness of the solution. Suppose w1 and w2 are two continuous solutions
on [0, 1] of the boundary value problem (2.3). Then we have Dα(w2(t)− w1(t)) = 0 on (0, 1). Thus,
by Lemma 2.3(iii), there exist c1, . . . , cn ∈ R such that

w2(t)− w1(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n.
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Using the boundary conditions, we find cn = · · · = c2 = 0. So we get

w2(t)− w1(t) = c1t
α−1. (2.7)

On the other hand, using (2.7), we get

w2(1)− w1(1) = λ

1∫
0

w2(t)− w1(t) dt =
λ

α
c1.

This implies that c1 = 0. Then w1 = w2.

In the proofs of our main results we shall use the Guo–Krasnosel’skii fixed point theorem presented
below.

Lemma 2.8 ([7]). Let P be the cone of a real Banach space E and let Ω1, Ω2 be two bounded open
balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose that T : P ∩ (Ω2 \ Ω1) → P is a completely
continuous operator such that either

(i) ∥Tx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω1, and ∥Tx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω2,

or

(ii) ∥Tx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω1, and ∥Tx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω2,

hold. Then the operator T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Let E = C([0, 1]), the Banach space endowed with the supremum norm ∥u∥ = sup
t∈[0,1]

|u(t)|. Let

θ ∈ [0, 1
2 ), and set Jθ = [θ, 1− θ]. For a function b : (0, 1) → (0,+∞), we denote

σθ
b =

1−θ∫
θ

b(t)K(t) dt.

Next, define the cone

Ω =
{
u ∈ E : u(t) ≥ 0 on [0, 1], u(t) ≥ λ∗tα−1∥u∥

}
,

and for r > 0, let
Ωr =

{
u ∈ Ω : ∥x∥ < r

}
.

In the rest of the paper, we suppose that the following assumptions hold:

(H1) q : (0, 1) → [0,+∞) and 0 < σ < ∞, where σ =
1∫
0

q(t)K1(t) dt.

(H2) a ∈ C((0, 1), [0 +∞)) and 0 < σ0
a < ∞.

(H3) f ∈ C([0, 1]× [0,+∞), [0,+∞)).

(H4) There exists t0 ∈ (0, 1) such that f(t0, u) > 0 for each u ∈ (0,+∞).

Remark. We note that (H1) implies 0 < σ0
q < ∞.

In this work we are concerned with a positive solution of problem (1.1). By a positive solution
we mean a function u ∈ C([0, 1]) satisfying (1.1) with u(t) ≥ 0 for all t ∈ [0, 1] and u(t) > 0 for all
t ∈ (0, 1].
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Now, we introduce the following intermediary boundary value problem
Dαx(t) + µa(t)f

(
t, [x(t)− w(t)]∗

)
+ q(t) = 0 in (0, 1),

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) = λ

1∫
0

x(s) ds,
(2.8)


Dαw(t) + 2q(t) = 0 in (0, 1),

w(0) = w′(0) = · · · = w(n−2)(0) = 0, w(1) = λ

1∫
0

w(s) ds,
(2.9)

where [x(t)−w(t)]∗ = max{x(t)−w(t), 0} for each t ∈ [0, 1] and w is the unique solution of problem

(2.9) given by w(t) = 2
1∫
0

G(t, s)q(s) ds.

By Lemma 2.7, the solution w of problem (2.9) satisfies

w(t) ≤ 2ησtα−1 ∀ t ∈ [0, 1]. (2.10)

We shall prove that there exists a solution x(t) for the boundary value problem (2.8) with x(t) ≥
w(t) for any t ∈ [0, 1] and x(t) > w(t) for any t ∈ (0, 1). In this case, x(t)−w(t) represents a positive
solution of the boundary value problem (1.1).

Next, we define the operator T : E → E as follows:

Tx(t) =

1∫
0

G(t, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ∀ t ∈ [0, 1]. (2.11)

Lemma 2.9. Suppose that (H1)–(H4) hold. Then x ∈ C([0, 1]) is a solution of the boundary value
problem (2.8) if and only if x ∈ C([0, 1]) is a solution of the integral equation

x(t) =

1∫
0

G(t, s)
(
µa(s)f(s, [x(s)− w(s)]∗

)
+ q(s)

)
ds.

That is, x is a fixed point of the operator T defined by (2.11).

Proof. The proof is immediate from Lemma 2.4, so we omit it here.

Lemma 2.10. Suppose that (H1)–(H4) hold. Then T : Ω → Ω is completely continuous.

Proof. Since G, f are nonnegative continuous functions, using (H1), (H2) we conclude that T : Ω → E
is continuous. Let x ∈ Ω, then by Proposition 2.5(iv), for all t ∈ [0, 1], it follows that

Tx(t) ≥ ηλ∗tα−1

1∫
0

K(s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds

≥ λ∗tα−1

1∫
0

G(τ, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ∀ τ ∈ [0, 1].

So, for each t ∈ [0, 1], we have

Tx(t) ≥ λ∗tα−1 max
τ∈[0,1]

{ 1∫
0

G(τ, s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds

}
= λ∗tα−1∥Tx∥.
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Then T (Ω) ⊂ Ω. Now, let S be a bounded set of Ω, then there exists a positive constant M > 0 such
that ∥x∥ ≤ M for all x ∈ S. Therefore, [x(s)− w(s)]∗ ≤ ∥x∥ ≤ M .

Let M1 := max
{
1, max

t∈[0,1], x∈[0,M ]
f(t, x)

}
.

From hypotheses (H1), (H2) and Proposition 2.5(ii), for all t ∈ [0, 1] and for all x ∈ S, we have

Tx(t) ≤ η

1∫
0

K(s)
(
µa(s)f

(
s, [x(s)− w(s)]∗

)
+ q(s)

)
ds ≤ M1η(µσ

0
a + σ0

q ).

So we obtain ∥Tx∥ ≤ M1η(µσ
0
a + σ0

q ). Hence, T (S) is uniformly bounded.
Now, let us prove that T (S) is equicontinuous on [0, 1].
Using Proposition 2.5, we obtain that G is uniformly continuous on [0, 1]× [0, 1]. Then for t1, t2 ∈

[0, 1] and for all s ∈ [0, 1], we get

|G(t2, s)−G(t1, s)| → 0 as t2 → t1

and
|G(t2, s)−G(t1, s)| ≤ 2ηM1(a(s)K(s) + q(s)K(s)).

By (H1) and (H2), 2ηM1(a(s)K(s) + q(s)K(s)) is a nonnegative integrable function on (0, 1). Thus
by the Lebesgue control convergence theorem, we obtain

|Tx(t2)− Tx(t1)| → 0 as |t2 − t2| → 0,

and so T (S) is equicontinuous. Consequently, by Ascoli’s theorem, we conclude that T (S) is relatively
compact in E. Hence, T : Ω → Ω is completely continuous. This completes the proof.

3 Main results
We shall give the existence results of positive solutions for the nonlinear boundary value problem
(1.1).

Theorem 3.1. Suppose that conditions (H1)–(H4) hold. In addition, suppose that there exists θ ∈
(0, 1

2 ) such that

f∞ := lim
x→∞

{
min
t∈Jθ

f(t, x)

x

}
= ∞.

Then there exists µ∗ > 0 such that for every 0 < µ < µ∗, problem (1.1) has at least one positive
solution.

Proof. Choose
r >

2ησ

λ∗ .

Define µ∗ =
r−2ησ0

q

Mησ0
a

, where M = max
t∈[0,1], x∈[0,r]

f(t, x), and let 0 < µ < µ∗.

Then for each x ∈ ∂Ωr and s ∈ [0, 1], we have

[x(s)− w(s)]∗ ≤ x(s) ≤ ∥x∥ = r.

Therefore, by Proposition 2.5(ii), for any x ∈ ∂Ωr, we have

T (x)(t) ≤ ηµ

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ 2ησ0

q ≤ µηMσ0
a + 2ησ0

q ≤ µ∗ηMσ0
a + 2ησ0

q = r.

So we get
∥Tx∥ ≤ ∥x∥ for x ∈ ∂Ωr. (3.1)
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Now, if the condition f∞ = ∞ holds, then for A = 2
µγλ∗σθ

aθ
α−1 , there exists B > 0 such that

f(t, x) ≥ Ax ∀ t ∈ Jθ, ∀x ≥ B.
Define R = max{2r, 2B

λ∗θα−1 }. Then, using (2.10), for any x ∈ ∂ΩR and t ∈ [0, 1], we obtain

x(t)− w(t) ≥ x(t)− 2ησtα−1 ≥ x(t)− 2ησ
x(t)

∥x∥
≥ x(t)

(
1− 2ησ

λ∗R

)
≥ 1

2
x(t) ≥ 0.

Therefore, we conclude that for all t ∈ Jθ,

[x(t)− w(t)]∗ ≥ λ∗

2
Rtα−1 ≥ λ∗

2
Rθα−1 ≥ B,

and so for any x ∈ ∂ΩR and t ∈ Jθ, we have

f
(
t, [x(t)− w(t)]∗

)
≥ A[x(t)− w(t)]∗ ≥ A

2
x(t). (3.2)

By (3.2) and Proposition 2.5(v), it follows that for any x ∈ ∂ΩR and t ∈ Jθ,

Tx(t) ≥ µγ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ µγλ∗

2
σθ
aθ

α−1AR = R.

Then we have
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR. (3.3)

Thus, using (3.1) and (3.3), we deduce by Lemma 2.8 that the operator T has a fixed point in ΩR \Ωr.
Therefore, by Lemma 2.9, x is a nonnegative continuous solution of problem (2.8) satisfying

r < ∥x∥ ≤ R. (3.4)

So we deduce that x− w is a nonnegative continuous solution of problem (1.1).
Now, let us prove that x−w is a positive solution of (1.1), that is, x(t)−w(t) > 0 for all t ∈ (0, 1].

Since x satisfies (3.4), using (2.10) we obtain

x(t)− w(t) ≥ tα−1(λ∗r − 2ησ) > 0 ∀ t ∈ (0, 1].

Hence, x− w is a positive solution of problem (1.1). This completes the proof.

Theorem 3.2. Suppose that conditions (H1)–(H4) hold. In addition, assume that the following
assertions hold:

(A1) there exits θ ∈ (0, 1
2 ) such that f∗

∞ := lim
x→∞

{
min
t∈Jθ

f(t, x)
}
= ∞;

(A2) f∞ := lim
x→∞

{
max
t∈[0,1]

f(t,x)
x

}
= 0.

Then there exists µ∗ > 0 such that problem (1.1) has at least one positive solution for every µ > µ∗.

Proof. First, suppose that (A1) holds, then there exists R0 > 0 such that

f(t, x) ≥ f∗
∞
2

∀ t ∈ Jθ, ∀x ≥ R0.

Now, fix R1 > max
{

2R0

λ∗θα−1 ,
4ησ
λ∗

}
. Define µ∗ = 2R1

γσθ
af

∗
∞

> 0 and let µ > µ∗. Then, for each x ∈ ∂ΩR1

and t ∈ [0, 1], we have

x(t)− w(t) ≥ x(t)− 2ησtα−1 ≥ x(t)− 2η

λ∗ σ
x(t)

∥x∥
≥ x(t)

(
1− 2ησ

λ∗R1

)
≥ 1

2
x(t) ≥ 0.
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So, for x ∈ ∂ΩR1 and t ∈ Jθ, we get

[x(t)− w(t)]∗ ≥ 1

2
x(t) ≥ 1

2
λ∗θα−1R1 > R0.

Then for any x ∈ ∂ΩR1
and t ∈ Jθ, we obtain

f
(
t, [x(t)− w(t)]∗

)
≥ f∗

∞
2

.

It follows that for any x ∈ ∂ΩR1
and t ∈ Jθ,

Tx(t) ≥ µγ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ µγ

f∗
∞
2

1−θ∫
θ

K(s)a(s) ds ≥ µ∗γ
f∗
∞
2

σθ
a = R1.

Thus
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR1 .

On the other hand, since f∞ = 0, for ε = 1
µησ0

a
> 0, there exists B > 0 such that for each t ∈ [0, 1],

x ≥ B, we have f(t, x) ≤ εx. Therefore, we obtain

f(t, x) ≤ M + εx ∀ t ∈ [0, 1], ∀x ≥ 0,

where M = max
t∈[0,1], x∈[0,B]

f(t, x). Let M1 = max{1,M} and choose

R2 > max
{
2R1, µησ

0
aM1

(1
2
− µσ0

aηε
)−1

, 2ηM1σ
0
q

}
.

It follows that for any x ∈ ∂ΩR2
and t ∈ [0, 1],

Tx(t) ≤ µη

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q

≤ µηMσ0
a + µηε

1∫
0

K(s)a(s)[x(s)− x(s)]∗ ds+ ησ0
q ≤ µηM1σ

0
a + µησ0

aεR2 + ηM1σ
0
q

≤ R2

(1
2
− µσ0

aηε
)
+ µησ0

aεR2 + ηM1σ
0
q = ∥x∥.

So, we get
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR2

.

Thus, by Lemma 2.8, we deduce that the operator T has a fixed point in ΩR2
\ ΩR1

. Therefore, by
Lemma 2.9, x is a solution of problem (2.8). Thus, we deduce that x−w is a nonnegative solution of
problem (1.1).

The positivity of the solution is shown as in the proof of the previous theorem.

Now we state the multiple existence result.

Theorem 3.3. Assume that µ = 1 and (H1)–(H4) hold. In addition, suppose that the following
conditions are satisfied:

(A1) there exists R1 > 4ησ
λ∗ such that f(t, x) ≤ R1−ησ0

q

ησ0
a

∀ t ∈ [0, 1], x ∈ [0, R1];

(A2) there exists θ ∈ (0, 1
2 ) such that the following assertion holds: ∃R2 > 2R1 : γσθ

af(t, x) ≥ R2

∀ t ∈ Jθ, ∀x ∈ [ 34λ
∗θα−1R2, R2];

(A3) f∞ = lim
x→∞

{
max
t∈[0,1]

f(t,x)
x

}
= 0.
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Then problem (1.1) has two positive solutions.

Proof. First, suppose that condition (A1) holds, then for each x ∈ ∂ΩR1 and t ∈ [0, 1], we have

[x(s)− w(s)]∗ ≤ x(s) ≤ R1 and [x(s)− w(s)]∗ ≥ 1

2
x(s) ≥ 0.

So, for each x ∈ ∂ΩR1
and t ∈ [0, 1],

f
(
t, [x(t)− w(t)]∗

)
≤

R1 − ησ0
q

ησ0
a

.

Therefore, for any x ∈ ∂ΩR1 and t ∈ [0, 1], we get

Tx(t) ≤ η

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q ≤ ησ0
a

(R1 − ησ0
q

ησ0
a

)
+ ησ0

q = ∥x∥.

Thus, we have
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR1

. (3.5)
On the other hand, if (A2) holds, it follows that for R2 > 2R1 and x ∈ ∂ΩR2 , t ∈ [0, 1],

x(t)− w(t) ≥ λ∗tα−1R2 − 2ησtα−1 ≥ λ∗tα−1R2 −
1

2
λ∗tα−1R1 ≥ 3λ∗

4
tα−1R2.

Thus, for all x ∈ ∂ΩR2 and t ∈ Jθ, we have

x(t)− w(t) ≥ 3

4
λ∗θα−1R2.

Therefore, for all x ∈ ∂ΩR2
and t ∈ Jθ, we get

γσθ
af

(
s, [x(s)− w(s)]

)
≥ R2.

So, for any x ∈ ∂ΩR2 and t ∈ Jθ, we obtain

Tx(t) ≥ γ

1−θ∫
θ

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds ≥ γσθ

a

R2

γσθ
a

= R2.

Thus,
∥Tx∥ ≥ ∥x∥ ∀x ∈ ∂ΩR2 . (3.6)

Now, hypothesis (A3) implies that for ε = 1
ησ0

a
, there exists B > 0 such that f(t, x) ≤ εx ∀x ≥ B.

Therefore, we obtain
f(t, x) ≤ M + εx ∀ t ∈ [0, 1], x ≥ 0,

where M = max
t∈[0,1], x∈[0,B]

f(t, x). Put M1 = max{1,M} and choose

R3 > max
{
2R2, ησ

0
aM1

(1
2
− σ0

aηε
)−1

, 2ηM1σ
0
q

}
.

Then for any x ∈ ∂ΩR3
and t ∈ [0, 1], we have

Tx(t) ≤ η

1∫
0

K(s)a(s)f
(
s, [x(s)− w(s)]∗

)
ds+ ησ0

q

≤ ηMσ0
a + µηε

1∫
0

K(s)a(s)[x(s)− x(s)]∗ ds+ ησ0
q ≤ ηM1σ

0
a + ησ0

aεR3 + ηM1σ
0
q

≤ R3

(1
2
− σ0

aηε
)
+ ησ0

aεR3 + ηM1σ
0
q = ∥x∥.
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So, we get
∥Tx∥ ≤ ∥x∥ ∀x ∈ ∂ΩR3

. (3.7)
Therefore, due to Lemma 2.8 and using (3.5), (3.6) and (3.7), we deduce that the operator T has

two fixed points x1 and x2, respectively, in ΩR2
\ ΩR1

and ΩR3
\ ΩR2

. Therefore, by Lemma 2.9,
problem (2.8) admits two nonnegative solutions R1 < ∥x1∥ < R2 < ∥x2∥ < R3. Thus, problem (1.1)
has two nonnegative solutions. The positivity of the solutions is shown in the same manner as in
proving Theorem 3.1.

4 Examples
In this section, we present some examples illustrating our results. We remark that by the following
examples it can immediately be verified that conditions (H1)–(H4) hold.

Example 4.1. We consider the following nonlinear fractional differential equations
D

5
2u(t) + µ

1

t
(u(t))2 − 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds.
(4.1)

Let f(t, u) = u2, a(t) = 1
t , λ = 1 and q(t) = 1

1−t . By a direct calculation, we obtain f∞ = ∞ for
any θ ∈ (0, 1

2 ). We also get σ0
a ≈ 0.3009, σ0

q ≈ 0.2006 and σ = 0.5015. Choose r = 5, then by a
simple calculation we get µ∗ = 0.34547. Then by Theorem 3.1, problem (4.1) has at least one positive
solution for every 0 < µ < 0.34547.

Example 4.2. Consider the following boundary value problem
D

7
3u(t) + µ

1

t

(
100 +

1

1 +
√
u

)
− 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds,

(4.2)

Let f(t, u) = 100+ 1√
u+1

, a(t) = 1
t and q(t) = 1

1−t . By a direct calculation, we obtain f∞ = 0 and for
θ = 1

4 we have f∗
∞ = 100. We also obtain σ0

a ≈ 0.35995, σ0
q ≈ 0.26996, σ ≈ 0.62991 and σθ

a ≈ 0.16979.
Choose R1 = 50 and R2 = 102. A simple calculation yields µ∗ = 39.889. So Theorem 3.2 ensures the
existence of a solution of problem (4.2) such that 50 < ∥u+ w∥ < 102 for every µ > 39.889.

Example 4.3. Consider the following boundary value problem:
D

7
3u(t) + µ

1

t
f(t, u)− 1

1− t
= 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

u(s) ds,

(4.3)

where

f(t, u) =


1

3
u, 0 ≤ u ≤ 12,

10000u− 119996, 12 < u ≤ 13.78,

u+ 17790.3, 13.78 < u ≤ 50,

2523u
1
2 , u > 50.

Then problem (4.3) admits two positive solutions. In fact, let a(t) = 1
t and q(t) = 1

1−t . By a direct
calculation, we get σ0

a ≈ 0.35995, σ0
q ≈ 0.26996 and σ ≈ 0.62991. Choose R1 = 12 > 4ησ

λ∗ , then for
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any t ∈ [0, 1], u ∈ [0, 12], f(t, u) ≤ R1−ησ0
q

ησ0
a

≈ 18.3. Thus condition (A1) is satisfied. On the other
hand, for θ = 1

4 , we have σθ
a ≈ 0.16979. Take R2 = 50, then R2 > 2R1 and for any t ∈ Jθ and for all

u ∈ [ 34 λ
∗θα−1R2, R2], we have f(t, u) ≥ R2

γσθ
a
≈ 1994.5 which implies that condition (A2) is satisfied.

Finally, since f∞ = 0, the assertion (A3) is satisfied. Consequently, by Theorem 3.3, problem (4.3)
admits two positive solutions u1 and u2 satisfying

R1 ≤ ∥u1 + w∥ ≤ R2 ≤ ∥u2 + w∥ ≤ R3.
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Abstract. The second-order Emden–Fowler type differential equation with positive bounded potential
is considered. Asymptotic behavior of maximally extended oscillating solutions to the equation is
described.1
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ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÃÀÃÄÁÉÈÉ ÃÀ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÐÏÔÄÍÝÉÀËÉÓ ÌØÏÍÄ ÌÄÏÒÄ ÒÉÂÉÓ
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1 Introduction
Consider the second-order Emden–Fowler type differential equation

y′′ + p(x, y, y′)|y|k sgn y = 0, k > 0, k ̸= 1, (1.1)

with continuous in x and Lipschitz continuous in u, v positive function p(x, u, v) defined on R × R2.
The asymptotic behavior of all solutions to equation (1.1) in the case p = p(x) was described by
I. T. Kiguradze and T. A. Chanturia (see [11]). The results on asymptotic classification of maximally
extended solutions to third- and fourth-order similar differential equations for k > 0, k ̸= 1, were
given by I. V. Astashova (see [1–5]). The asymptotic classification of solutions to equation (1.1) with
negative function p(x, u, v) for regular (k > 1) and singular (0 < k < 1) nonlinearities is contained
in [6, 7].

Using the methods described in [2], we investigate the behavior of solutions to equation (1.1) in
the case p(x, u, v) > 0 (see [8]). Further, suppose that the function p(x, u, v) additionally satisfies the
inequalities

0 < m ≤ p(x, u, v) ≤M < +∞. (1.2)

2 Oscillation of solutions and their first derivatives
Consider the trajectories {(y(x), y′(x))} ⊂ R2 generated by nontrivial solutions to equation (1.1).
Divide R2 by four closed sets crossing over the boundaries only[

+
+

]
,

[
+
−

]
,

[
−
−

]
,

[
−
+

]
. (2.1)

For the sets boundaries we use the following notation:[
+
0

]
,

[
0
−

]
,

[
−
0

]
,

[
0
+

]
.

For example, [
+
−

]
=

{
(y0, y1) ∈ R2 : y0 ≥ 0, y1 ≤ 0

}
,[

0
+

]
=

{
(y0, y1) ∈ R2 : y0 = 0, y1 ≥ 0

}
.

Lemma 2.1. Suppose k ∈ (0, 1) ∪ (1,+∞), the function p(x, u, v) is continuous in x, Lipschitz
continuous in u, v, satisfies inequalities (1.2) and y(x) is a nontrivial maximally extended solution to
equation (1.1). Then neither y(x) nor its first derivative y′(x) can be constant-sign functions in the
neighborhood of domain boundaries.

Proof. Using the substitutions x 7→ −x, y(x) 7→ −y(x), we obtain an equation of the same type
as (1.1). That is why we further investigate behavior of nontrivial solutions to equation (1.1) and
their first derivatives near the right-side boundary of the domain only.

Prove the statement for solution y(x), the proof for its first derivative y′(x) is similar. Assume that
a solution y(x) to equation (1.1) is defined on a finite or on an infinite interval (a, b) and is positive in
some neighborhood of b. According to the type of equation (1.1), the second derivative is negative in
this neighborhood, therefore the first derivative decreases monotonously and has a finite or an infinite
limit as x→ b− 0. It means that the first derivative is a constant-sign function in the neighborhood
of b. That is why y(x) is monotonous in the neighborhood of b and tends to a finite or an infinite
value as x→ b− 0.

Let b < +∞. If a solution y(x) (and hence y′′(x)) or its first derivative has a finite limit, then
integrating the second derivative or the first derivative, respectively, on a finite interval, we obtain
the finite limits in both cases. So, we get a contradiction with the right-maximally extension of a
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solution. If solution and first derivative limits are infinite, then they must have the same sign. So, we
get a contradiction with equation (1.1).

Let b = +∞. If a solution y(x) (and hence y′′(x)) or its first derivative has a nontrivial limit,
then integrating the second derivative or the first derivative, respectively, on the whole domain, we
obtain infinite limits in both cases. Thus, they must be of the same sign, and therefore we get a
contradiction with equation (1.1). If solution and first derivative limits are equal to zero, then the
solution is positive in a neighborhood of +∞, monotonously decreases to zero and its first derivative is
negative and monotonously increases to zero as x→ +∞. It means that the second derivative (as the
solution is positive) decreases to zero at infinity. So, we get a contradiction with equation (1.1).

Theorem 2.1. Suppose k ∈ (0, 1) ∪ (1,+∞), the function p(x, u, v) is continuous in x, Lipschitz
continuous in u, v and satisfies inequalities (1.2). Then all nontrivial maximally extended solutions
and their first derivatives to equation (1.1) are oscillating at the left– and right-hand sides, zeroes xj

of solutions and zeroes x′
j of their first derivatives alternate, i.e.,

· · · < xj−1 < x′
j < xj < x′

j+1 < · · · , j ∈ Z.

Moreover, for any j ∈ Z, the following inequalities hold:

−
√

M

m
≤ y′(xj+1)

y′(xj)
≤ −

√
m

M
, −

(M
m

) 1
k+1 ≤

y(x′
j+1)

y(x′
j)
≤ −

(m

M

) 1
k+1

.

Proof. As mentioned above, it suffices to investigate the asymptotic behavior of nontrivial maximally
extended solutions at the right-hand side.

Prove that a trajectory generated by any nontrivial maximally extended solution y(x) to equa-
tion (1.1) moves between the introduced sets (2.1) at the right-hand side only by the following scheme:[

+
+

]
−−−−→

[
+
−

]
x y[
−
+

]
←−−−−

[
−
−

] . (2.2)

Indeed, suppose that (y(x), y′(x)) is an internal point for the set
[

+
+

]
at some moment. It means

that y(x) > 0, y′(x) > 0 and y′′(x) < 0. Therefore, y(x) is positive and increases, y′(x) is positive and

decreases, while the trajectory generated by the solution y(x) is located in the interior of
[

+
+

]
. Then

either y′(x) is equal to zero and the corresponding trajectory will get to the boundary
[

+
0

]
of

[
+
+

]
or y′(x) is nontrivial and have a nonnegative limit at the right-hand side, i.e., the first derivative will
be a constant-sign function. So, we get a contradiction with Lemma 2.1. Thus, the case is possible if
and only if the trajectory generated by the solution y(x) gets to the boundary

[
+
0

]
, i.e., the solution

y(x) is positive and has a local extremum at some point x′
0, moreover, y′′(x′

0) < 0. Then there exists
a constant δ > 0 such that y(x) > 0, y′(x) < 0 for x ∈ (x′

0, x
′
0 + δ). So, the trajectory will get to the

interior of the set
[

+
−

]
.

Further, we have y(x) > 0, y′(x) < 0 and y′′(x) < 0. Therefore, y(x) is positive and decreases,

y′(x) is positive and increases, while the corresponding trajectory is located in the interior of
[

+
−

]
.

According to Lemma 2.1, the solution y(x) cannot be positive at the right-hand side, that is why it
will be equal to zero at some point x0 > x′

0, and the trajectory generated by this solution will get to



On Behavior of Oscillating Solutions to Second-Order Emden–Fowler Type DEs 49

[
0
−

]
. As y′(x0) < 0, there exists a constant δ̃ > 0 such that y(x) < 0, y′(x) < 0 for x ∈ (x0, x0 + δ̃).

Thus, the trajectory will get to the interior of the set
[
−
−

]
.

Now, we have y(x) < 0 and y′(x) < 0. Similarly, prove that the trajectory generated by y(x)

at the right-hand side gets to the boundary
[
−
0

]
, i.e., y(x) has a local minimum at some point

x′
1 > x0 > x′

0. It moves further towards the interior of the set
[
−
+

]
, and according to Lemma 2.1,

tends to the boundary
[

0
+

]
for x1 > x′

1 > x0 > x′
0. Thereafter the trajectory goes to the interior of

the set
[

+
+

]
.

So, we have proved that the trajectory generated by any nontrivial maximally extended solution
y(x) to equation (1.1) can move between the introduced sets (2.1) at the right-hand side only by the
scheme (2.2).

Besides, according to Lemma 2.1, it cannot stay in any set (2.1) at the left- and right-hand sides.
Therefore, the solution y(x) to equation (1.1) and its first derivative y′(x) are oscillating at the left-
and right-hand sides, zeroes xj of solutions and zeroes x′

j of their first derivatives alternate, i.e.,

· · · < xj−1 < x′
j < xj < x′

j+1 < · · · , j ∈ Z.

Further, without any restrictions, we assume y′(xj) < 0. Note

0 = |y(xj)|k+1 − |y(xj+1)|k+1 = −(k + 1)

y(xj+1)∫
y(xj)

|y|k−1y dy,

and from equation (1.1) we have

0 = −(k + 1)

y(xj+1)∫
y(xj)

|y|k−1y dy = (k + 1)

xj+1∫
xj

y′′ y′

p(x, y, y′)
dx

= (k + 1)

x′
j+1∫

xj

y′′ y′

p(x, y, y′)
dx+ (k + 1)

xj+1∫
x′
j+1

y′′ y′

p(x, y, y′)
dx. (2.3)

As y′(xj) < 0, we have y′(x) < 0 and y′′(x) > 0 for x ∈ (xj , x
′
j+1). Also, for x ∈ (x′

j+1, xj+1), we have
y′(x) > 0 and y′′(x) > 0. So, y′′ y′

p(x,y,y′) < 0 for x ∈ (xj , x
′
j+1) and y′′ y′

p(x,y,y′) > 0 for x ∈ (x′
j+1, xj+1).

Estimate expression (2.3):

(k + 1)

x′
j+1∫

xj

y′′ y′

p(x, y, y′)
dx+ (k + 1)

xj+1∫
x′
j+1

y′′ y′

p(x, y, y′)
dx

≤ k + 1

M

x′
j+1∫

xj

y′′ y′ dx+
k + 1

m

xj+1∫
x′
j+1

y′′ y′ dx =
k + 1

M

y′(x′
j+1)∫

y′(xj)

y′ dy′ +
k + 1

m

y′(xj+1)∫
y′(x′

j+1)

y′ dy′

=
k + 1

2M
(y′)2

∣∣∣∣x′
j+1

xj

+
k + 1

2m
(y′)2

∣∣∣∣xj+1

x′
j+1

= −k + 1

2M
(y′(xj))

2 +
k + 1

2m
(y′(xj+1))

2,

whence
k + 1

2M
(y′(xj))

2 ≤ k + 1

2m
(y′(xj+1))

2.
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Obtain another estimate for (2.3):

(k + 1)

x′
j+1∫

xj

y′′ y′

p(x, y, y′)
dx+ (k + 1)

xj+1∫
x′
j+1

y′′ y′

p(x, y, y′)
dx

≥ k + 1

m

x′
j+1∫

xj

y′′ y′ dx+
k + 1

M

xj+1∫
x′
j+1

y′′ y′ dx =
k + 1

m

y′(x′
j+1)∫

y′(xj)

y′ dy′ +
k + 1

M

y′(xj+1)∫
y′(x′

j+1)

y′ dy′

=
k + 1

2m
(y′)2

∣∣∣∣x′
j+1

xj

+
k + 1

2M
(y′)2

∣∣∣∣xj+1

x′
j+1

= −k + 1

2m
(y′(xj))

2 +
k + 1

2M
(y′(xj+1))

2,

whence
k + 1

2m
(y′(xj))

2 ≥ k + 1

2M
(y′(xj+1))

2.

Therefore, √
m

M
|y′(xj)| ≤ |y′(xj+1)| ≤

√
M

m
|y′(xj)| (2.4)

and √
m

M
≤

∣∣∣y′(xj+1)

y′(xj)

∣∣∣ ≤√
M

m
.

Since zeroes xj and extremum points x′
j of a nontrivial maximally extended solution to equation

(1.1) alternate, for any j ∈ Z we have y′(xj+1) y
′(xj) < 0 and

−
√

M

m
≤ y′(xj+1)

y′(xj)
≤ −

√
m

M
.

Obtain the second estimate. We have y(x′
j) > 0. Note

|y(x′
j)|k+1 = |y(x′

j)|k+1 − |y(xj)|k+1 = −(k + 1)

y(xj)∫
y(x′

j)

|y|k−1y dy = (k + 1)

xj∫
x′
j

y′′ y′

p(x, y, y′)
dx.

As y(x′
j) > 0, we have y′(x) < 0 and y′′(x) < 0 for x ∈ (x′

j , xj), i.e., y′′ y′

p(x,y,y′) > 0 for x ∈ (x′
j , xj). So,

k + 1

M

xj∫
x′
j

y′′ y′ dx ≤ (k + 1)

xj∫
x′
j

y′′ y′

p(x, y, y′)
dx ≤ k + 1

m

xj∫
x′
j

y′′ y′ dx,

then

k + 1

M

y′(xj)∫
y′(x′

j)

y′ dy′ ≤ |y(x′
j)|k+1 ≤ k + 1

m

y′(xj)∫
y′(x′

j)

y′ dy′

and
k + 1

2M
(y′(xj))

2 ≤ |y(x′
j)|k+1 ≤ k + 1

2m
(y′(xj))

2. (2.5)

Analogously, on the interval (xj , x
′
j+1) we obtain the estimates similar to (2.5):

k + 1

2M
(y′(xj))

2 ≤ |y(x′
j+1)|k+1 ≤ k + 1

2m
(y′(xj))

2
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and, therefore,
2m

k + 1
|y(x′

j+1)|k+1 ≤ (y′(xj))
2 ≤ 2M

k + 1
|y(x′

j+1)|k+1.

So,

m

M
|y(x′

j+1)|k+1 ≤ |y(x′
j)|k+1 ≤ M

m
|y(x′

j+1)|k+1,(m

M

) 1
k+1 |y(x′

j+1)| ≤ |y(x′
j)| ≤

(M
m

) 1
k+1 |y(x′

j+1)|

and (m

M

) 1
k+1 ≤

∣∣∣y(x′
j+1)

y(x′
j)

∣∣∣ ≤ (M
m

) 1
k+1

.

Since zeroes xj and extremum point x′
j of a nontrivial maximally extended solution to equation

(1.1) alternate, for any j ∈ Z we have y(x′
j+1) y(x

′
j) < 0 and

−
(M
m

) 1
k+1 ≤

y(x′
j+1)

y(x′
j)
≤ −

(m

M

) 1
k+1

.

Repeating the steps described in the proof of Theorem 2.1, T. Korchemkina has obtained the
following

Corollary ([9]). Introduce the notation

mj = min
x∈[xj ,xj+1]

p(x, y(x), y′(x)), Mj = max
x∈[xj ,xj+1]

p(x, y(x), y′(x)), j ∈ Z.

Then, for any j ∈ Z, the following inequalities hold:

−

√
Mj

mj
≤ y′(xj+1)

y′(xj)
≤ −

√
mj

Mj
−

( M2
j

mjmj−1

) 1
k+1 ≤

y(x′
j)

y(x′
j+1)

≤ −
( m2

j

Mj Mj−1

) 1
k+1

.

3 Asymptotic behavior of maximally extended solutions
I. T. Kiguradze and T. A. Chanturia in [11] proved that if p = p(x) is a positive locally integrable
function of locally bounded variation, then for both regular (k > 1) and singular (0 < k < 1)
nonlinearities, any nontrivial right-maximally extended solution to equation (1.1) is proper, i.e., is
defined in the neighborhood of +∞.

For k > 1, an example is given [10] of a continuous function p = p(x) satisfying inequalities (1.2)
such that there exists a solution to (1.1) with a resonance asymptote x = x∗ ( lim

x→x∗−0
y(x) = +∞,

lim
x→x∗−0

y(x) = −∞), i.e., a non-proper solution. Step by step we construct a continuous function p(x)

and an oscillating solution y(x) to equation (1.1). On each step we define p, construct a solution to
equation (1.1) and estimate the distance between consecutive zeros xj+1 − xj .

Moreover, the sufficient conditions on the function p = p(x) are obtained under which all nontrivial
maximally extended solutions are defined on the whole axis.

Theorem 3.1. Suppose k ∈ (0, 1)∪ (1,+∞), p = p(x) is a continuous function of a globally bounded
variation satisfying inequalities (1.2). Then for any nontrivial maximally extended solution y(x)
to (1.1) there exist the finite positive limits lim

j→±∞
|y′(xj)|, lim

j→±∞
|y(x′

j)| and lim
j→±∞

(xj+1 − xj).

Proof. Let y(x) be a nontrivial maximally extended solution to equation (1.1). Now we investigate an
asymptotic behavior of y(x) at the right-side boundary of the domain (j → +∞), the case j → −∞
is similar.
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Let us use the following notation:

mj = min
x∈[xj ,xj+1]

p(x), Mj = max
x∈[xj ,xj+1]

p(x), j ∈ Z,

m′
j = min

x∈[x′
j ,x

′
j+1]

p(x), M ′
j = max

x∈[x′
j ,x

′
j+1]

p(x), j ∈ Z.

By repeating the steps described in the proof of Theorem 2.1, for any j ∈ N, we obtain similar to (2.5)
estimates:

k + 1

2M ′
j

(y′(xj))
2 ≤ |y(x′

j)|k+1 ≤ k + 1

2m′
j

(y′(xj))
2,

k + 1

2M ′
j

(y′(xj))
2 ≤ |y(x′

j+1)|k+1 ≤ k + 1

2m′
j

(y′(xj))
2,

whence (m′
j

M ′
j

) 1
k+1 ≤

∣∣∣ y(x′
j)

y(x′
j+1)

∣∣∣ ≤ (M ′
j

m′
j

) 1
k+1

.

Moreover, due to the above estimate and estimate (2.4), for any j ∈ N, we have∣∣ ln |y′(xj+1)| − ln |y′(xj)|
∣∣ ≤ 1

2
(lnMj − lnmj) ≤

1

2
V[xj ,xj+1] ln p(x),∣∣ ln |y(x′

j+1)| − ln |y(x′
j)|

∣∣ ≤ 1

k + 1
(lnM ′

j − lnm′
j) ≤

1

k + 1
V[x′

j ,x
′
j+1]

ln p(x),

+∞∑
j=1

V[xj ,xj+1] ln p(x) = V[x1,+∞) ln p(x) < +∞,

+∞∑
j=1

V[x′
j ,x

′
j+1]

ln p(x) = V[x′
1,+∞) ln p(x) < +∞,

where V[a,b] ln p(x), V[c,+∞) ln p(x) are variations of the function ln p(x) on [a, b] and [c,+∞), respec-

tively. Due to the Weierstrass test, the series
+∞∑
j=1

(ln |y′(xj+1)| − ln |y′(xj)|) converges.

Therefore, there exists a finite lim
j→+∞

ln |y′(xj)|, hence there exists a finite lim
j→+∞

|y′(xj)|. Analo-
gously, we obtain the existence of a finite positive lim

j→+∞
|y(x′

j)|.
Further, let us show that the distance between consecutive zeros (xj+1−xj) has a limit as j → +∞.

Multiplying equation (1.1) by y′, integrating it on [x′
j+1, x], x ≤ xj+1, and assuming without any

restrictions that y(x) ≥ 0 on [x′
j+1, xj+1], we obtain

(y′(x))2 = −2
x∫

x′
j+1

p(s)y′(s)yk(s) ds = 2

x∫
x′
j+1

p(s)|y′(s)|yk(s) ds ≤
2M ′

j+1

k + 1

(
Hk+1

j+1 − yk+1(x)
)
.

Analogously, we obtain the estimate

(y′(x))2 ≥
2m′

j+1

k + 1

(
Hk+1

j+1 − yk+1(x)
)
,

so, √
2m′

j+1

k + 1

√
Hk+1

j+1 − yk+1(x) ≤ |y′(x)| ≤

√
2M ′

j+1

k + 1

√
Hk+1

j+1 − yk+1(x) .

Note that

xj+1 − x′
j+1 =

x′
j+1∫

xj+1

y′(x)

|y′(x)|
dx =

Hj+1∫
0

dy

|y′|
≤

√
k + 1

2m′
j+1

Hj+1∫
0

dy√
Hk+1

j+1 − yk+1
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and making the replacement y = uHj+1 in the last integral, we obtain

xj+1 − x′
j+1 ≤

√
k + 1

2m′
j+1

H
− k−1

2
j+1

1∫
0

du√
1− uk+1

.

Analogously, the inequality

xj+1 − x′
j+1 ≥

√
k + 1

2M ′
j+1

H
− k−1

2
j+1

1∫
0

du√
1− uk+1

holds. Due to the assumptions of the theorem, the function p(x) has a finite positive limit p+ as
x→ +∞ and we have proved that there exists a finite positive lim

j→+∞
Hj . Thus, passing to the limit in

last inequalities, we can conclude that the distance between the extremum point and zero (xj+1−x′
j+1)

has a finite positive limit as j → +∞. Analogously, both the distance (x′
j+1 − xj) and hence their

sum (xj+1 − xj) have finite positive limits as j → +∞.

Remark 3.1. Note that the theorem assumption of a globally bounded variation for the function p(x)
is essential for the existence of finite positive limits lim

j→±∞
|y′(xj)|, lim

j→±∞
|y(x′

j)| and lim
j→±∞

(xj+1−xj).
An example of a continuous function p(x) > 0 (satisfying inequalities (1.2) but not of a globally
bounded variation) is given [10] such that there exists an unbounded proper solution lim

j→+∞
|y′(xj)| =

lim
j→+∞

|y(x′
j)| = +∞. Also, an example of a continuous function p(x) > 0 (satisfying inequalities (1.2)

but not of a globally bounded variation) is given [10] such that there exists a nontrivial proper
oscillating solution tending at +∞ to zero with its first derivative.
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EIGENVALUE OF A STURM–LIOUVILLE PROBLEM
WITH DIRICHLET BOUNDARY CONDITIONS
AND A WEIGHTED INTEGRAL CONDITION



Abstract. We consider a Sturm–Liouville problem on the interval (0, 1) with Dirichlet boundary
conditions and a weighted integral condition on the potential which may have singularities of different
orders at the end-points of the interval (0, 1). One upper estimate for the first eigenvalue for some
values of parameters in the integral condition is obtained.1
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ÒÄÆÉÖÌÄ. (0, 1) ÛÖÀËÄÃÛÉ ÂÀÍáÉËÖËÉÀ ÛÔÖÒÌ-ËÉÖÅÉËÉÓ ÀÌÏÝÀÍÀ ÃÉÒÉáËÄÓ ÓÀÓÀÆÙÅÒÏ
ÐÉÒÏÁÄÁÉÈÀ ÃÀ ÐÏÔÄÍÝÉÀËÆÄ ÃÀÃÄÁÖËÉ ßÏÍÉÀÍÉ ÉÍÔÄÂÒÀËÖÒÉ ÛÄÆÙÖÃÅÉÈ; ÀÌÀÓÈÀÍ ÃÀ-
ÓÀÛÅÄÁÉÀ, ÒÏÌ ÐÏÔÄÍÝÉÀËÓ ÂÀÀÜÍÃÄÓ ÓÉÍÂÖËÀÒÏÁÄÁÉ (0, 1) ÛÖÀËÄÃÉÓ ÁÏËÏ ßÄÒÔÉËÄÁÛÉ.
ÉÍÔÄÂÒÀËÖÒ ÛÄÆÙÖÃÅÀÛÉ ÌÏÍÀßÉËÄ ÐÀÒÀÌÄÔÒÈÀ ÆÏÂÉÄÒÈÉ ÌÍÉÛÅÍÄËÏÁÉÓÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ
ÐÉÒÅÄËÉ ÓÀÊÖÈÒÉÅÉ ÌÍÉÛÅÍÄËÏÁÉÓ ÆÄÌÏÃÀÍ ÛÄ×ÀÓÄÁÀ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
We consider a problem whose origin was the Lagrange problem of finding the form of the firmest
column of the given volume. The Lagrange problem was the source for different extremal eigenvalue
problems for second-order differential equations with integral conditions on the potential.

We develop the methods used in Yu. V. Egorov and V. A. Kondratiev’s works (see, e.g., [1]) devoted
to estimation of eigenvalues for Sturm–Liouville problems. The Sturm–Liouville problem for the
equation y′′ + λQ(x)y = 0 with Dirichlet boundary conditions and a non-negative summable on [0, 1]

function Q satisfying the condition
1∫
0

Qγ(x) dx = 1 as γ ∈ R, γ ̸= 0, was considered by Yu. V. Egorov

and V. A. Kondratiev in [1]. The Sturm–Liouville problem for the equation y′′ − Q(x)y + λy = 0
with Dirichlet boundary conditions and a real Lebesgue integrable on (0, 1) function Q satisfying the

condition
1∫
0

Qγ(x) dx = 1 as γ > 1, was considered by V. A. Vinokurov, V. A. Sadovnichii in [2]. In

the present article we consider a problem of that kind in case the integral condition contains a weight
function. Some results devoted to the Sturm–Liouville problems with weighted integral conditions
can be found in [6]– [9].

Consider the Sturm–Liouville problem
y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1.1)

y(0) = y(1) = 0, (1.2)
where Q belongs to the set Tα,β,γ of all real–valued measurable on (0, 1) functions with non–negative
values such that the following integral condition holds:

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0. (1.3)

A function y is a solution to problem (1.1), (1.2) if it is absolutely continuous on the segment [0, 1],
satisfies (1.2), its derivative y′ is absolutely continuous on any segment [ρ, 1 − ρ], where 0 < ρ < 1

2 ,
and equality (1.1) holds almost everywhere in the interval (0, 1).

We give estimates for
Mα,β,γ = sup

Q∈Tα,β,γ

λ1(Q).

For any function Q ∈ Tα,β,γ , by HQ we denote the closure of the set C∞
0 (0, 1) with respect to the

norm

∥y∥HQ
=

( 1∫
0

y′
2
dx+

1∫
0

Q(x)y2 dx

) 1
2

.

For any function Q ∈ Tα,β,γ , we can prove (see, e.g., [3, 6]) that

λ1(Q) = inf
y∈HQ\{0}

R[Q, y], where R[Q, y] =

∫ 1

0
(y′

2 −Q(x)y2) dx∫ 1

0
y2 dx

.

2 One upper estimate for the first eigenvalue for γ < 0

Theorem 2.1. If γ < 0 and α, β > 3γ − 1, then Mα,β,γ < π2. If γ < −1, α, β > −1, then
there exist a function Q∗ ∈ Tα,β,γ and a positive on the interval (0, 1) function u ∈ HQ∗ such that
Mα,β,γ = R[Q∗, u], moreover, u satisfies the equation

u′′ +mu = −x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1

and the integral condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ

γ−1 dx = 1.
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Proof. Suppose that γ < 0. For any Q ∈ Tα,β,γ and y ∈ HQ, by the Hölder inequality we have
1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ

γ−1 dx 6
( 1∫

0

xα(1− x)βQγ(x) dx

) 1
1−γ

( 1∫
0

Q(x)y2 dx

) γ
γ−1

.

Then
1∫

0

Q(x)y2 dx >
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ

γ−1 dx

) γ−1
γ

(2.1)

and
inf

y∈HQ\{0}
R[Q, y] 6 inf

y∈HQ\{0}
G[y],

where

G[y] =

∫ 1

0
y′

2
dx−

( ∫ 1

0
x

α
1−γ (1− x)

β
1−γ |y|

2γ
γ−1 dx

) γ−1
γ∫ 1

0
y2 dx

.

Consider the function

uε(x) =


0, 0 < x < ε,

1, ε 6 x 6 1− ε,

0, 1− ε < x < 1,

where 0 < ε < 1
3 . By the average processing for ρ = ε

2 we obtain the function

uερ(x) =

+∞∫
−∞

ωρ(x− y)uε(y) dy =

+∞∫
−∞

ωρ(y − x)uε(y) dy =

ρ∫
−ρ

ωρ(z)uε(z + x) dz.

For the function yε(x) = uερ(x) · sinπx of C∞
0 (0, 1) it is true that for any Q ∈ Tα,β,γ the function

yε belongs to HQ and
∥yε(x)− sinπx∥H1

0 (0,1)
−→ 0 as ε → 0.

For γ < 0, α, β > 3γ − 1, the integral
1∫
0

x
α

1−γ (1 − x)
β

1−γ (sinπx)
2γ

γ−1 dx converges. Then for any

Q ∈ Tα,β,γ we have

inf
y∈HQ\{0}

R[Q, y] 6 inf
y∈HQ\{0}

G[y] 6 lim
ε→0

G[yε] = G[sinπx] < π2

and Mα,β,γ < π2.
Let us show the method of finding sharp estimates for Mα,β,γ for γ < −1, α, β > −1. For any

function y ∈ H1
0 (0, 1), the inequalities y2 < Cx and y2 < C(1 − x) hold, where C =

1∫
0

y′2 dx. If

the integral
1∫
0

Q(x)x(1 − x) dx converges, then
1∫
0

Q(x)y2 dx also converges. Consequently, for γ < 0,

α, β > 2γ − 1, the sets of functions of HQ and H1
0 (0, 1) coincide.

Let us prove that for γ < 0, α, β > 2γ− 1 the functional G is bounded from below in H1
0 (0, 1). By

the Hölder inequality, for x ∈ (0, 1
2 ) we have

y2(x) =

( x∫
0

y′(t) dt

)2

6 x

x∫
0

y′2(t) dt 6 x

1
2∫

0

y′2(t) dt

and for x ∈ ( 12 , 1) we have

y2(x) =

(
−

1∫
x

y′(t) dt

)2

6 (1− x)

1∫
x

y′2(t) dt 6 (1− x)

1∫
1
2

y′2(t) dt.
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Then

1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ

γ−1 dx 6

1
2∫

0

x
α−γ
1−γ (1− x)

β
1−γ

( 1
2∫

0

y′2(t) dt

) γ
γ−1

dx

+

1∫
1
2

x
α

1−γ (1− x)
β−γ
1−γ

( 1∫
1
2

y′2(t) dt

) γ
γ−1

dx 6
( 1∫

0

y′2(t) dt

) γ
γ−1

(C1 + C2),

where

C1 =

1
2∫

0

x
α−γ
1−γ (1− x)

β
1−γ dx, C2 =

1∫
1
2

x
α

1−γ (1− x)
β−γ
1−γ dx.

Note that for γ < 0, α, β > 2γ − 1, the integrals
1
2∫
0

x
α−γ
1−γ (1 − x)

β
1−γ dx and

1∫
1
2

x
α

1−γ (1 − x)
β−γ
1−γ dx

converge. Then for any y ∈ H1
0 (0, 1), we have

G[y] > π2
(
1− (C1 + C2)

γ−1
γ

)
.

Thus, the functional G is bounded from below in H1
0 (0, 1) and

m = inf
y∈H1

0 (0,1)\{0}
G[y]. (2.2)

For any function Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈HQ\{0}

R[Q, y] 6 inf
y∈HQ\{0}

G[y] = inf
y∈H1

0 (0,1)\{0}
G[y] = m.

Then
Mα,β,γ = sup

Q∈Tα,β,γ

λ1(Q) 6 inf
y∈H1

0 (0,1)\{0}
G[y] = m.

Consequently, Mα,β,γ 6 m.
Let us prove that for γ < −1, α, β > −1 there exist a function Q∗ ∈ Tα,β,γ and a positive on the

interval (0, 1) function u ∈ HQ∗ such that Mα,β,γ = R[Q∗, u] = m.
Put

Γ∗ =

{
y ∈ H1

0 (0, 1) |
1∫

0

y2 dx = 1

}
and

I[y] =

1∫
0

y′
2
dx−

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ

γ−1 dx

) γ−1
γ

.

Lemma 2.1. There exists a function u∗ ∈ Γ∗ such that I[u∗] = m, where m is defined by (2.2).

Proof. Let {ỹk} be a minimizing sequence of the functional G in H1
0 (0, 1). Then yk = ỹk

C
1/2
k

, where

Ck =
1∫
0

ỹ2k dx, is a minimizing sequence of the functional I in Γ∗, i.e., I[yk] → m as k → ∞. Then

m = inf
y∈H1

0 (0,1)\{0}
G[y] = inf

y∈Γ∗
I[y].
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Let us show that for α, β > −1, the sequence {yk} is bounded in H1
0 (0, 1). Since m = inf

y∈Γ∗
I[y],

for all sufficiently large values of k we have

I[yk] =

1∫
0

y′k
2
dx−

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |yk|
2γ

γ−1 dx

) γ−1
γ

< m+ 1.

For α, β > 0, by the Hölder inequality, we have
1∫

0

x
α

1−γ (1− x)
β

1−γ |yk|
2γ

γ−1 dx 6
( 1∫

0

x−α
γ (1− x)−

β
γ y2k dx

) γ
γ−1

6
( 1∫

0

y2k dx

) γ
γ−1

= 1

and
1∫

0

y′k
2
dx = I[yk] +

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |yk|
2γ

γ−1 dx

) γ−1
γ

6 m+ 2.

For α, β < 0, by the Hölder inequality, we have

1∫
0

x
α

1−γ (1− x)
β

1−γ |yk|
2γ

γ−1 dx 6
( 1∫

0

(x−p(1− x)−p)1−γ dx

) 1
1−γ

×
( 1∫

0

x−α
γ xp· γ−1

γ (1− x)−
β
γ (1− x)p·

γ−1
γ y2k dx

) γ
γ−1

6 M ·
( 1∫

0

y2k dx

) γ
γ−1

= M,

where M =
( 1∫
0

(x−p(1−x)−p)1−γ dx
) 1

1−γ and p is a number such that −α
γ +p· γ−1

γ > 0, −β
γ+p· γ−1

γ > 0,

−p(1− γ) > −1. Consequently, p satisfies the inequalities

α

γ − 1
< p <

1

1− γ
,

β

γ − 1
< p <

1

1− γ
,

which hold for α, β > −1. The proofs for the cases α > 0 > β > −1 and β > 0 > α > −1 are similar.
Since for α, β > −1 the sequence {yk} is bounded in H1

0 (0, 1), it contains a subsequence {zk}
which converges weakly in H1

0 (0, 1) to some function u∗, moreover,

∥u∗∥2H1
0 (0,1)

6 max
{
m+ 3,m+ 2 +M

γ−1
γ

}
.

Since the space H1
0 (0, 1) is compactly embedded in the space C[0, 1], there exists a subsequence

{sk} of {zk} which converges in C[0, 1]. Since the space C[0, 1] is embedded in L2(0, 1), the sequence
{sk} converges in L2(0, 1) to the function u∗. Consequently, for the functional G we have

1∫
0

s2k dx −→
1∫

0

u2
∗ dx as k → ∞

and
1∫

0

u2
∗ dx = 1. (2.3)

Since for α, β > −1 the sequence {sk} is bounded in H1
0 (0, 1), by the definition of the norm

∥sk∥H1
0 (0,1)

the sequence {s′k} is bounded in L2(0, 1). Then there exists a subsequence {wk} of {sk}
such that the sequence {w′

k} converges weakly to the function u′
∗ in L2(0, 1). Then ( [10, p. 217])

∥u′
∗∥2L2(0,1)

6 lim
k→∞

∥w′
k∥2L2(0,1)

= A.
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Thus, we have
∥u′

∗∥2L2(0,1)
6 A. (2.4)

Let {vk} be a subsequence of {wk} such that

lim
k→∞

1∫
0

v′k
2
dx = lim

k→∞

1∫
0

w′
k
2
dx = A.

Since m is a limit of the sequence {I[vk]}, m−A is a limit of the sequence{
−
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |vk|
2γ

γ−1 dx

) γ−1
γ

}
.

Then, for any ε > 0, there exists a number K such that for any k > K the inequality

−
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |vk|
2γ

γ−1 dx

) γ−1
γ

< m−A+ ε

holds. Then ( 1∫
0

x
α

1−γ (1− x)
β

1−γ |vk|
2γ

γ−1 dx

) γ−1
γ

> A−m− ε

and
1∫

0

x
α

1−γ (1− x)
β

1−γ |vk|
2γ

γ−1 dx > (A−m− ε)
γ

γ−1 . (2.5)

Let us use the Lebesgue theorem. For the sequence {x
α

1−γ (1− x)
β

1−γ |rk|
2γ

γ−1 }, we have

x
α

1−γ (1− x)
β

1−γ |rk|
2γ

γ−1 −→ x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 as k → ∞ almost everywhere on [0, 1].

We have proved the existence of a constant V = max{1,M} such that for any sufficiently large
value of k we have

1∫
0

x
α

1−γ (1− x)
β

1−γ |rk|
2γ

γ−1 dx 6 V.

Then
x

α
1−γ (1− x)

β
1−γ |u∗|

2γ
γ−1 ∈ L1(0, 1)

and
1∫

0

x
α

1−γ (1− x)
β

1−γ |rk|
2γ

γ−1 dx −→
1∫

0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx as k → ∞.

If for any k > K inequality (2.5) holds and

1∫
0

x
α

1−γ (1− x)
β

1−γ |rk|
2γ

γ−1 dx −→
1∫

0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx as k → ∞,

then we have
1∫

0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx > (A−m− ε)
γ

γ−1 .
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Since ε may be sufficiently small, we obtain

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx

) γ−1
γ

> A−m

and

−
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx

) γ−1
γ

6 m−A. (2.6)

By virtue of (2.4) and (2.6), we obtain

I[u∗] 6 m. (2.7)

Since m = inf
y∈Γ∗

I[y], we have I[u∗] = m. By (2.3), we obtain u∗ ∈ Γ∗.

Let us consider the set

Γ =

{
y ∈ H1

0 (0, 1) |
1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ

γ−1 dx = 1

}
.

The function u = Cu∗, where

C =

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |u∗|
2γ

γ−1 dx

) 1−γ
2γ

,

is non-negative on [0, 1] and belongs to Γ. Then G[u] = G[u∗] = I[u∗] = m.
Let us fix the argument u of the functional G and fix some variation z ∈ H1

0 (0, 1) of the argument
u and let us consider a set of functions u + tz, where t is an arbitrary parameter. On the functions
u+ tz the functional G turns to the function of t ∈ R:

g(t) =

∫ 1

0
(u′(x) + tz′(x))2 dx−

( ∫ 1

0
x

α
1−γ (1− x)

β
1−γ |u(x) + tz(x)|

2γ
γ−1 dx

) γ−1
γ∫ 1

0
(u(x) + tz(x))2 dx

.

Since the functional G reaches an extremum at y = u and for γ < −1 the function g(t) is differentiable
at zero, we have g′(0) = 0. Since u ∈ Γ and G[u] = m, we obtain

1∫
0

u′z′ dx−
1∫

0

x
α

1−γ (1− x)
β

1−γ |u|
γ+1
γ−1 sgnuz dx = m

1∫
0

uz dx. (2.8)

For γ < −1, α, β > −1, equality (2.8) holds for any function z ∈ H1
0 (0, 1), because by virtue of

the Hölder inequality, we have

1∫
0

x
α

1−γ (1− x)
β

1−γ |u|
γ+1
γ−1 |z| dx

6
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |u|
2γ

γ−1 dx

) γ+1
2γ

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |z|
2γ

γ−1 dx

) γ−1
2γ

.

If z ∈ C∞
0 (0, 1), then u′ has a generalized derivative equal to

u′′ = −x
α

1−γ (1− x)
β

1−γ |u|
γ+1
γ−1 sgnu−mu.
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Since G[y] = G[|y|], we can assume that the sequence {yk} is non-negative and u > 0. Similarly,
to the case α = β = 0 we can prove (see, e.g., [3]) that the function u is convex upward. Thus on the
interval (0, 1) we have u(x) > 0.

Since u ∈ AC[0, 1], for γ < −1, the function x
α

1−γ (1 − x)
β

1−γ |u|
γ+1
γ−1 sgnu is continuous on the

segment [ρ, 1 − ρ], where 0 < ρ < 1
2 , and u′′ ∈ Lp(ρ, 1 − ρ). Let v be a generalized derivative of u of

second order. The Corollary 2.6.1 of Theorem 2.6.1 (see [12, p. 41]) implies that if u, v ∈ Lp(ρ, 1− ρ),
p > 1, then the function u is continuously differentiable on [ρ, 1− ρ] and almost everywhere on it has
the classical derivative of the second order u′′ = v. Thus,

u′′ + x
α

1−γ (1− x)
β

1−γ |u|
2

γ−1u+mu = 0 for x ∈ [ρ, 1− ρ]. (2.9)

Since the number ρ may be sufficiently small and the function u is continuous and positive on
(0, 1), the function u′′ is also continuous on (0, 1) and equality (2.9) holds everywhere on (0, 1).

On (0, 1), let us consider the function

Q∗(x) = x
α

1−γ (1− x)
β

1−γ u
2

γ−1 .

Since Q∗(x) satisfies the integral condition (1.3):

1∫
0

xα(1− x)βQγ
∗(x) dx =

1∫
0

x
α

1−γ (1− x)
β

1−γ u
2γ

γ−1 dx = 1,

the function u belongs to HQ∗ .
Since u satisfies equation (2.9) and conditions (1.2), for Q = Q∗ it satisfies equation (1.1) and

conditions (1.2). Therefore, since u is continuous on [0, 1] and its derivative u′ is continuous on (0, 1),
the function u is the first eigenfunction of problem (1.1)–(1.3) with Q = Q∗ and the first eigenvalue
λ1(Q∗) = m.

Then
inf

y∈HQ∗\{0}
R[Q∗, y] = R[Q∗, u] = G[u] = m

and
Mα,β,γ = sup

Q∈Tα,β,γ

λ1(Q) > λ1(Q∗) = inf
y∈HQ∗\{0}

R[Q∗, y] = R[Q∗, u] = G[u] = m.

Consequently, we obtain Mα,β,γ = m.
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Abstract. In this paper we develop a new method to obtain explicit solutions for a first order
linear delay differential equation based upon the generating function concept. The advantage of this
new method as regards the traditional Method of Step Algorithm (MSA) is also showed through an
example.1
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÐÉÒÅÄËÉ ÒÉÂÉÓ ßÒ×ÉÅÉ ÃÀÂÅÉÀÍÄÁÖË ÀÒÂÖÌÄÍÔÄÁÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÝáÀÃÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÌÉÓÀÙÄÁÀÃ ÛÄÌÖÛÀÅÄÁÖËÉÀ ÀáÀËÉ ÌÄÈÏÃÉ, ÒÏÌÄËÉÝ
Ä×ÖÞÍÄÁÀ ÌÀßÀÒÌÏÄÁÄËÉ ×ÖÍØÝÉÉÓ ÊÏÍÝÄ×ÝÉÀÓ. ÌÀÂÀËÉÈÉÓ ÓÀÛÖÀËÄÁÉÈ ÍÀÜÅÄÍÄÁÉÀ ÀÌ ÀáÀËÉ
ÌÄÈÏÃÉÓ ÖÐÉÒÀÔÄÓÏÁÀ ÔÒÀÃÉÝÉÖË ÁÉãÏÁÒÉÅÉ ÀËÂÏÒÉÈÌÉÓ ÌÄÈÏÃÈÀÍ (MSA) ÛÄÃÀÒÄÁÉÈ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
In this work2 we present the detailed proofs of the results reached in [5,6], as referred in [3], concerning
the solutions of the Basic Initial Problem (BIP),{

x′(t) = f(ϕ(t− r)),

x(0) = ϕ(0),

where B and r are constants, r > 0 is the delay, and ϕ(t) is a given continuous function on [−r, 0].
Delay differential equations (DDEs) are well studied in [1,4,7] from a point of view of the existence,

uniqueness and properties of solutions. Here we point out that when the MSA is applied to the BIP,
there appears combinatorial structure on the solutions.

This kind of structure that we designated by tree combinatorial structure led us to conjecture that
there is a generating function defined over a specific class of polynomials with a single delay that
solves the initial problem. As far as we know, the approach via a generating function is new to the
relevant literature.

Assuming ϕ(t) is constant on [−r, 0], and applying the MSA to the BIP, the solutions xn(t) defined
on An = ((n− 1)r, nr], n ≥ 1, showed one tree structure effect for the solution x(t) of the problem.

That x(t) is the generating function for a sequence of polynomials with a single delay, Pn
j (rB), is

our starting point.
Using the MSA, each solution xn(t) would depend upon the solution xn−1(t) defined on the previous

intervals An−1. In order to provide an explicite formula for xn(t) on the interval An without the
knowledge of all back solutions xn−1(t) defined on the previous intervals An−1, we introduce the
polynomials Pn

j (rB), which we refer to as delay polynomials, and the main theorem proves that this
is possible.

The present paper is organized as follows. Section 2 describes the MSA and presents the conjecture.
Section 3 constructs the alternative method to obtain the BIP’s solution. Section 4 contains the two
fundamental propositions allowing us to obtain the calculating formulas for any solution xn(t) defined
on An with n ≥ 2. Section 5 is devoted to the Main Theorem. Section 6 consists of the proof of the
lemma, which is the basis of the new solution’s method. An example is given to illustrate the theorem
in Section 7.

2 Preliminaries
2.1 The method of step algorithm
Consider the Basic Initial Problem{

x′(t) = Bx(t− r), t ≥ 0,

x(t) = ϕ(t), t ∈ [−r, 0],
(2.1)

where B ∈ ℜ, r > 0 is the delay, and ϕ(t) is a given continuous function on [−r, 0].
The Method of Step Algorithm (MSA) can be described as follows.

Step 1
Consider x′(t) = f(x(t − r)). Given ϕ(t) on [−r, 0], we can determine x(t) on the interval [0, r] by
solving the ODE {

x′(t) = f(ϕ(t− r)),

x(0) = ϕ(0).

Denote its solution by x1(t).

2See [2] for a previous version of this paper
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Step n
For each integer n ≥ 2, given the solution xn−1(t) on [(n − 2)r, (n − 1)r], we can determine x(t) on
the interval [(n− 1)r, nr] by solving the ODE{

x′(t) = f(xn−1(t− r)),

x((n− 1)r) = xn−1((n− 1)r).

Denote its solution by xn(t).
Conclusion
We can define the solution of {

x′(t) = f(x(t− r)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−r, 0],

on each interval An = [(n− 1)r, nr], n ≥ 1, by

xn(t) = xn−1((n− 1)r) +

t∫
(n−1)r

f(xn−1(s− r)) ds,

where x0( · ) ≡ ϕ( · ).
For j = 1, . . . , 5, let xj(t) be the solution of (2.1) defined on the interval Aj obtained with the

MSA. Assuming ϕ(t) = ϕ(0) is a constant,

x1(t) = ϕ(0)[1 +Bt],

x2(t) = ϕ(0)
[ (Bt)2

2!
+Bt(1−Br) +

(Br)2

2!
+ 1

]
,

x3(t) = ϕ(0)

[
(Bt)3

3!
+

(Bt)2

2!

(
1− 3.2

3
Br

)
+Bt

(
1−Br +

3.22

3!
(Br)2

)
− (Br)3

3!
23 +

(Br)2

2!
+ 1

]
,

x4(t) = ϕ(0)

[
(Bt)4

4!
+

(Bt)3

3!

(
1− 4.3

4
Br

)
+

(Bt)2

2!

(
1− 3.2

3
Br +

6.32

4.3
(Br)2

)
+Bt

(
1−Br +

3.22

3!
(Br)2 − 4.33

4!
(Br)3

)
+

(Br)4

4!
34 − (Br)3

3!
23 +

(Br)2

2!
+ 1

]
,

x5(t) = ϕ(0)

[
(Bt)5

5!
+

(Bt)4

4!

(
1− 5.4

5
Br

)
+

(Bt)3

3!

(
1− 4.3

4
Br +

10.42

5.4
(Br)2

)
+

(Bt)2

2!

(
1− 3.2

3
Br +

6.32

4.3
(Br)2 − 10.43

5.4.3
(Br)3

)
+Bt

(
1−Br +

3.22

3!
(Br)2 − 4.33

4!
(Br)3 +

5.44

5!
(Br)4

)
− (Br)5

5!
45 +

(Br)4

4!
34 − (Br)3

3!
23 +

(Br)2

2!
+ 1

]
.

Analysing the form of these first iterates, we observe a tree structure effect, which allow us to
formulate the following conjecture.

2.2 The conjecture
Definition 2.1 (Rainville, [8]). Let cj , j ∈ N0, be a specified sequence independent of r and t. We
say that X(r, t) is a generating function of the set gj(r) if

X(r, t) =
∑
j≥0

cjgj(r)t
j .
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Conjecture 2.2. If x(t), t ≥ 0, is a solution of BIP, then

x(t) ≡ X(r, t) =
∑
j≥0

vj(r)t
j ,

i.e., x(t) is a generating function for some sequence (vj(r))j≥0 in the delay r.

3 Construction of a new solution’s method
3.1 A new solution’s formalization
In order to prove our claim, we will proceed in the following way. Consider the decomposition of
(0,∞) in disjoint subintervals of equal length r. We will consider the restriction of the solution to
each of these subintervals, as a generating function of some family of polynomials in r. That is,

(0,∞) =
∪
n≥1

An, where for each n ≥ 1, An = ((n− 1)r, nr],

φ(t) =



ϕ(t) if t ∈ A0 = [−r, 0],∑
j≥0

w1
j (r)t

j if t ∈ A1 = (0, r],

∑
j≥0

w2
j (r)t

j if t ∈ A2 = (r, 2r],

...∑
j≥0

wn
j (r)t

j if t ∈ An = ((n− 1)r, nr],

...

Hence, we have φ(t) defined on each interval An, n ≥ 1, as

φ(t)
∣∣
t∈An

≡ xn(t) =
∑
j≥0

wn
j (r)t

j . (3.1)

If our conjecture is valid, we must have φ′(t) = Bφ(t− r) for t ≥ 0, where the derivative at t = 0
represents the right-hand derivative. Two different types of conditions must hold. On the one hand,
we are concerned with the differentiability at each point t = nr, which will guarantee the continuity
of the solution. This will be treated in conditions (2.A).

On the other hand, we want x′(t) = Bx(t− r) to be satisfied at any interior point of An. This will
be treated in conditions (2.B). To do this, we determine which of the conditions should the iterates
wn

j (r) in equation (3.1) satisfy in terms of φ(t). Meaning

φ′(0) = Bφ(−r), (3.2)
x′
n(t) = Bxn−1(t− r) for t ∈ An, n ≥ 1, where x0 ≡ ϕ. (3.3)

3.2 The constructive process
(2.A.1) φ′(0) = Bϕ(−r). At t = 0, we have

φ′(0) = lim
h→0+

∑
j≥0

w1
j (r)h

j − ϕ(0)

h
= lim

h→0+

w1
0(r) + w1

1(r)h+ w1
2(r)h

2 + · · · − ϕ(0)

h
.

A sufficient condition for (2.A.1) to hold, is

(2.a.1) w1
0(r) = ϕ(0) and w1

1(r) = Bϕ(−r) and w1
j (r) takes any value for j ≥ 2 .
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(2.B.1) φ′(t) = Bϕ(t− r), t ∈ (0, r). Since

φ′(t) =
∑
j≥0

(j + 1)w1
j+1(r)t

j ,

we can establish the following statement. A sufficient condition for having (2.B.1) is

(2.b.1) Bϕ(−r) +
∑
j≥2

jw1
j (r)t

j−1 = Bϕ(t− r) .

We want to emphasize an important statement that later will lead us to the Main Theorem.
If the initial function ϕ(t) is constant, combining (2.a.1) and (2.b.1) we can choose w1

j (r) =
(ϕ(0), Bϕ(−r), 0, 0, . . . ). In fact, condition (2.b.1) implies ϕ(−r) = ϕ(t− r) since t− r ∈ (−r, 0), and
on this interval the function is constant.

Therefore, the solution on the interval A1 can be defined as

x1(t) =
∑
j≥0

w1
j (r)t

j = ϕ(0)[1 +Bt],

where ϕ(t) = ϕ(0) for t ∈ [−r, 0], which is exactly the solution obtained by the MSA.
Returning to a continuous initial function ϕ(t), we can state the following proposition.

Proposition 3.1. If there exists w1
j (r) satisfying (2.a.1) and (2.b.1), then x1(t) =

∑
j≥0

w1
j (r)t

j

satisfies (3.3) on the interval (0, r).

Proof. For t ∈ (0, r), let

x1(t) =
∑
j≥0

w1
j (r)t

j = w1
0(r) + w1

1(r)t+
∑
j≥2

w1
j (r)t

j .

If w1
j (r) satisfies (2.a.1), then

x1(t) = ϕ(0) +Bϕ(−r)t+
∑
j≥2

w1
j (r)t

j .

By differentiation we obtain

x′
1(t) = Bϕ(−r) +

∑
j≥2

jw1
j (r)t

j−1,

and if (2.b.1) holds, then
x′
1(t) = Bϕ(t− r).

From now on we will use the following lemma whose proof can be seen in Section 6.

Lemma 3.2. For t ̸= 0 and t ̸= r,

∑
j≥0

fj(r)(t− r)j =
∑
j≥0

tj

j!

(∑
i≥0

fj+i(r)
(−r)i

i!
(j + i)!

)
.

(2.A.2) φ′(r) = Bϕ(0). This equality requires: the existence of the derivative at t = r, the
derivative has the value Bϕ(0).
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(ai) To prove the existence of φ′(r), notice that

φ′(r−) = lim
h→0−

φ(r + h)− φ(r)

h

= lim
h→0−

∑
j≥0

w1
j (r)(r + h)j −

∑
j≥0

w1
j (r)r

j

h

= lim
h→0−

∑
j≥0

hj

j!

( ∑
i≥0

w1
j+i(r)

ri

i! (j + i)!
)
−

∑
j≥0

w1
j (r)r

j

h

= lim
h→0−

∑
i≥0

w1
i (r)r

i+h
∑
i≥0

w1
1+i(r)r

i(1+i)+
∑
j≥2

hj

j!

( ∑
i≥0

w1
j+i(r)

ri

i! (j+i)!
)
−

∑
j≥0

w1
j (r)r

j

h

=
∑
i≥0

w1
1+i(r)r

i(1 + i) + lim
h→0−

∑
j≥2

hj−1

j!

(∑
i≥0

w1
j+i(r)

ri

i!
(j + i)!

)
.

If convergence of the series is ensured, then the left-hand derivative at t = r is equal to

φ′(r−) =
∑
i≥0

w1
1+i(r)r

i(1 + i).

Proceeding in a similar way, we have

φ′(r+) = lim
h→0+

φ(r + h)− φ(r)

h

= lim
h→0+

∑
j≥0

w2
j (r)(r + h)j −

∑
j≥0

w1
j (r)r

j

h

= lim
h→0+

∑
j≥0

hj

j!

( ∑
i≥0

w2
j+i(r)

ri

i! (j + i)!
)
−

∑
j≥0

w1
j (r)r

j

h

= lim
h→0+

∑
i≥0

w2
i (r)r

i+h
∑
i≥0

w2
1+i(r)r

i(1+i)+
∑
j≥2

hj

j!

(∑
i≥0

w2
j+i(r)

ri

i! (j+i)!
)
−

∑
j≥0

w1
j (r)r

j

h
.

The right-hand derivative of φ at t = r exists, if∑
i≥0

w2
i (r)r

i =
∑
j≥0

w1
j (r)r

j ,

∑
i≥0

w2
1+i(r)r

i(1 + i) =
∑
i≥0

w1
1+i(r)r

i(1 + i),

and the series
∑
i≥0

wk
j+i(r)

ri

i! (j + i)!, k = 1, 2, converge.

(aii) φ′(r) = Bϕ(0).
We notice that the second condition∑

i≥0

w2
1+i(r)r

i(1 + i) =
∑
i≥0

w1
1+i(r)r

i(1 + i)

represents the equality between, respectively, φ′(r+) and φ′(r−). In order to have φ′(r) = Bϕ(0),
it suffices to have ∑

i≥0

w2
1+i(r)r

i(1 + i) = Bϕ(0).
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The next proposition tells us the behaviour w2
j (r) must be such that the delay differential equation

is satisfied at t = r. We note that in Proposition 3.1, we have established an equivalent result for the
interior points of A1.

Proposition 3.3. If there exists w2
j (r) satisfying

(2.2i)


∑
j≥0

w2
j (r)r

j =
∑
j≥0

w1
j (r)r

j ,

∑
j≥0

w2
1+j(r)r

j(1 + j) =
∑
j≥0

w1
1+j(r)r

j(1 + j)

and

(2.2ii)
∑
j≥0

w2
1+j(r)r

j(1 + j) = Bϕ(0),

then φ′(r) = Bϕ(0) and equality (2.b.1) holds at t = r.

Proof. We have already seen that (2.2i) and (2.2ii) imply φ′(r) = Bϕ(0). We have to prove

Bϕ(−r) +
∑
j≥2

jw1
j (r)r

j−1 −Bϕ(0) = 0.

If (2.2ii) holds, then we can write the first term as

Bϕ(−r) +
∑
i≥0

(2 + i)w1
2+i(r)r

i+1 −
∑
j≥0

w2
1+j(r)r

j(1 + j)

= Bϕ(−r) +
∑
i≥0

(2 + i)w1
2+i(r)r

i+1 −
∑
j≥0

w1
1+j(r)r

j(1 + j)

=
∑
j≥0

w1
1+j(r)r

j(1 + j)−
∑
j≥0

w1
1+j(r)r

j(1 + j),

taking into account that Bϕ(−r) = w1
1(r) and associating the terms in an appropriate way.

The procedure we have just described, can be repeated in an inductive manner. Hence we can
proceed in the following way;

(2.B.2) φ′(t) = Bφ(t− r), t ∈ (r, 2r). Since

φ′(t) =
∑
j≥0

(j + 1)w2
j+1(r)t

j

and
φ(t− r) =

∑
j≥0

w1
j (r)(t− r)j =

∑
j≥0

tj

j!

(∑
i≥0

w1
j+i(r)

(−r)i

i!
(j + i)!

)
,

we can state that a sufficient condition for having (2.B.2) is

(2.b.2) w2
j+1(r) =

B

(j + 1)!

∑
i≥0

w1
j+i(r)

(−r)i

i!
(j + i)! for each j ≥ 0.

Thus we have finished the analysis of the solution defined on interior points of A2.
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4 The fundamental propositions
From a structural point of view, conditions (2.2i), (2.2ii) and (2.b.2) are identical in each interval
An, for n ≥ 2. Then we can state two fundamental propositions which establish sufficient conditions
on wn

j (r), n ≥ 2, in order for (3.3) to hold. The first one concerns with interior points, and the second
one concerns with end points.
Proposition 4.1. If for each n ≥ 2 and j ≥ 0, there exist a sequence wn

j (r) satisfying

wn
j+1(r) =

B

(j + 1)!

∑
i≥0

wn−1
j+i (r)

(−r)i

i!
(j + i)!, (4.1)

then x′
n(t) = Bxn−1(t− r) for t ∈ int An.

Proof. Let xn(t) =
∑
j≥0

wn
j (r)t

j . If t ∈ intAn and n ≥ 2, then

x′
n(t) =

∑
j≥0

(1 + j)wn
1+j(r)t

j =
∑
j≥0

(1 + j)tj
( B

(j + 1)!

∑
i≥0

wn−1
j+i (r)

(−r)i

i!
(j + i)!

)
= B

∑
j≥0

tj

j!

(∑
i≥0

wn−1
j+i (r)

(−r)i

i!
(j + i)!

)
= B

∑
j≥0

wn−1
j (r)(t− r)j = Bxn−1(t− r),

where we have considered (4.1) and Lemma 3.2.

Proposition 4.2. If for each n ≥ 2 there exist a sequence wn
j (r) satisfying the conditions

∑
j≥0

(nr)jwn+1
j (r) =

∑
j≥0

(nr)jwn
j (r),∑

j≥0

(1 + j)(nr)jwn+1
1+j (r) =

∑
j≥0

(1 + j)(nr)jwn
1+j(r)

(4.2)

and ∑
j≥0

(1 + j)(nr)jwn+1
1+j (r) = B

∑
j≥0

wn−1
j (r)[(n− 1)r]j , (4.3)

then x′
n(nr) = Bxn−1((n− 1)r).

Proof. Let n ≥ 2 and t = nr.
We start by showing the existence of a derivative at the points t = nr for n ≥ 2.

• The left-hand derivative:

x′
n(nr

−) = lim
h→0−

xn(nr + h)− xn(nr)

h

= lim
h→0−

∑
j≥0

wn
j (r)(nr + h)j −

∑
j≥0

wn
j (r)(nr)

j

h

= lim
h→0−

∑
j≥0

hj

j!

( ∑
i≥0

wn
j+i(r)

(nr)i

i! (j + i)!
)
−

∑
j≥0

wn
j (r)(nr)

j

h

= lim
h→0−

{∑
i≥0

wn
i (r)(nr)

i + h
∑
i≥0

wn
1+i(r)(nr)

i(1 + i)

h

+

∑
j≥2

hj

j!

( ∑
i≥0

wn
j+i(r)

(nr)i

i! (j + i)!
)
−

∑
j≥0

wn
j (r)(nr)

j

h

}
=

∑
i≥0

wn
1+i(r)(nr)

i(1 + i),
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assuming that
∑
i≥0

wn
j+i(r)

(nr)i

i! (j + i)! converges for j ≥ 1.

• The right-hand derivative:

x′
n(nr

+) = lim
h→0+

xn(nr + h)− xn(nr)

h

= lim
h→0+

∑
j≥0

wn+1
j (r)(nr + h)j −

∑
j≥0

wn
j (r)(nr)

j

h

= lim
h→0+

∑
j≥0

hj

j!

( ∑
i≥0

wn+1
j+i (r)

(nr)i

i! (j + i)!
)
−

∑
j≥0

wn
j (r)(nr)

j

h

= lim
h→0+

{∑
i≥0

wn+1
i (r)(nr)i + h

∑
i≥0

wn+1
1+i (r)(nr)

i(1 + i)

h

+

∑
j≥2

hj

j!

( ∑
i≥0

wn+1
j+i (r)

(nr)i

i! (j + i)!
)
−

∑
j≥0

wn
j (r)(nr)

j

h

}
=

∑
i≥0

wn+1
1+i (r)(nr)

i(1 + i),

assuming that (4.2) holds, and
∑
i≥0

wn+1
j+i (r)

(nr)i

i! (j + i)! converges for n ≥ 1 and j ≥ 1.

We have proved the existence of derivative of xn(t) at t = nr, n ≥ 2, and

x′
n(nr) =

∑
j≥0

wn+1
1+j (r)(nr)

j(1 + j) =
∑
j≥0

wn
1+j(r)(nr)

j(1 + j).

Next, we will show that x′
n(t) = Bxn−1(t− r) at t = nr, n ≥ 2.

x′
n(nr) =

∑
j≥0

wn+1
1+j (r)(nr)

j(1 + j) = B
∑
j≥0

wn−1
j (r)[(n− 1)r]j = Bxn−1((n− 1)r),

where we have considered (4.3).

We point out that equalities (4.1), (4.2) and (4.3) provide calculating formulas for all terms of the
sequences wn

j (r) for n ≥ 2.

Corollary 4.3. Equality (4.3) is a direct consequence of (4.1) and (4.2).

Proof.∑
j≥0

(1 + j)(nr)jwn+1
1+j (r) =

(4.2)

∑
j≥0

(1 + j)(nr)jwn
1+j(r)

=
∑
j≥0

(1 + j)(nr)j
( B

(j + 1)!

∑
i≥0

wn−1
i+j (r)

(−r)i

i!
(i+ j)!

)
= B

∑
j≥0

(nr)j

j!

(∑
i≥0

wn−1
i+j (r)

(−r)i

i!
(i+ j)!

)
= B

∑
j≥0

wn−1
j (r)(nr − r)j ,

where we have considered (4.1) and Lemma 3.2.

We also have a correspondent result to (2.2ii), which refers to n = 1.
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Corollary 4.4. Equality (2.2ii) is a direct consequence of (2.2i) and (2.b.1), being the last one
applied to t = r.

Proof. As a consequence of Proposition 3.3, (2.b.1) is verified at t = r, so

Bϕ(−r) +
∑
j≥2

jw1
j (r)r

j−1 = Bϕ(0).

Then∑
j≥0

w2
1+j(r)r

j(1 + j) =
∑
j≥0

w1
1+j(r)r

j(1 + j)

= w1
1(r) +

∑
j≥1

w1
1+j(r)r

j(1 + j) = w1
1(r) +Bϕ(0)−Bϕ(−r) = Bϕ(0),

since w1
1(r) = Bϕ(−r).

These two corollaries suggest that during the constructive process of the solution, some conditions
with distinct functions emerge.

5 The main theorem
From now on, we consider ϕ(t) = ϕ(0) = C for t ∈ [−r, 0], where C is a real constant.

Proposition 5.1. If

w1
0(r) = C, w1

1(r) = BC and w1
j (r) = 0 for j ≥ 2 (5.1)

then
x1(t) =

∑
j≥0

w1
j (r)t

j = C(1 +Bt)

is the solution of problem (2.1) defined on A1 = (0, r].

Proof. Equalities (5.1) verify (2.a.1) and (2.b.1), implying x′
1(t) = BC for t ∈ [0, r). According to

(3.1), we can then write

x1(t) =
∑
j≥0

w1
j (r)t

j = C(1 +Bt) for t ∈ (0, r).

By Proposition 3.3, the result is also true at t = r.

The main result of this paper is the following theorem.

Theorem 5.2. The solution of problem (2.1) with ϕ(t) = C if t ∈ [−r, 0] can be written as

X(r, t) =
∑
j≥0

vj(r)t
j

for t ≥ 0. The sequence vj(r) is defined by

vj(r) = C
Bj

j!
Pn
j (rB),

where the polynomials Pn
j (rB) are defined by

Pn
j (rB) =


1 +

n−(j+1)∑
i=0

(−rB)i+1

(i+ 1)!
(i+ j)i+1 if j ≤ n− 1,

1 if j = n,

0 if j ≥ n+ 1.
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The proof of this Theorem is divided into four stages: Propositions 5.3 and 5.4, and Corollaries 5.5
and 5.6. In Proposition 5.3, we will obtain the calculating formulas to get all terms of the sequences,
wn

j (r), n ≥ 2. Moreover, we will show that these formulas do not depend on the fact that the initial
function is constant. This fact makes this procedure an alternative method to solve problem (2.1). In
Proposition 5.4 and its Corollaries, we will show the consequences of taking the initial function as a
constant one.

Proposition 5.3. For n ≥ 2, the solution xn(t) =
∑
j≥0

wn
j (r)t

j, defined on each interval An, is

obtained through the application of the following formulas, in the following order

wn
j+1(r) =

B

(j + 1)!

∑
i>0

wn−1
i+j (r)

(−r)i

i!
(i+ j)! (5.2)

and

wn+1
0 (r) = wn

0 (r)−
∑
j>1

[
wn+1

j (r)− wn
j (r)

]
(nr)j . (5.3)

Proof. Equality (5.2) is the sufficient condition (4.1) in Proposition 4.1, and equality (5.3) is obtained
from the first equality of (4.2).

From now on, we consider w1
j (r) = 0 for j ≥ 2.

Combining equalities (5.2) and (5.3), we obtain the sequence w2
j (r).

According to (5.2), for n ≥ 2,

w2
1(r) = B

∑
i≥0

w1
i (r)(−r)i = B

1∑
i=0

w1
i (r)(−r)i,

and since w1
j (r) = 0 for j ≥ 2,

w2
1(r) = B(C − rBC).

On the other hand,
w2

2(r) =
B

2!

∑
i≥0

w1
i+1(r)(−r)i(i+ 1) =

B

2!
BC.

It is easy to check that w2
j (r) = 0 for j ≥ 3. This will lead us to assume that for j ≥ n + 1,

wn
j (r) = 0. We will prove this fact in the next proposition.

It remains to calculate the first term. According to (5.3),

w2
0(r) = w1

0(r)−
∑
j≥1

(w2
j (r)− w1

j (r))r
j = C −

2∑
j=1

(w2
j (r)− w1

j (r))r
j ,

and since w2
j (r) = 0 for j ≥ 3,

w2
0(r) = C − r(w2

1(r)− w1
1(r))− r2w2

2(r) = C
(
1 +

r2B2

2

)
.

Finally, we obtain the solution x2(t) defined on A2 = (r, 2r],

x2(t) =

2∑
i=0

w2
j (r)t

j = C
(
1 +

(rB)2

2
+ t(B − rB2) +

t2B2

2!

)
.

We can verify that
x1(r) = x2(r) = C(1 + rB).

Also, notice that the form of x2(t), obtained with our calculating formulas, has exactly the same
form like the one obtained with MSA.
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Proposition 5.4. Consider problem (2.1), where ϕ(t) = C for t ∈ [−r, 0]. If w1
j (r) = 0 for j ≥ 2,

then
wn

j (r) = 0 for j ≥ n+ 1. (5.4)

Proof. We will use the induction on n. The case n = 1 is obviously true. Assuming wn
j (r) = 0 for

j ≥ n+ 1, consider j ≥ n+ 2. As a consequence of (5.2),

wn+1
j (r) =

B

j!

∑
i≥0

wn
i+j−1(r)

(−r)i

i!
(i+ j − 1)! .

By the induction step, wn+1
j (r) = 0 if i+ j − 1 ≥ n+1. Since i ≥ 0, we can conclude wn+1

j (r) = 0 for
j ≥ n+ 2 as required.

Corollary 5.5. In the above conditions, if n ≥ 1, then

wn
n(r) = C

Bn

n!
. (5.5)

Proof. We will use the induction on n. Since w1
1(r) = BC, the result holds for n = 1. Assuming

wn
n(r) = C Bn

n! , we have

wn+1
n+1(r) =

B

(n+ 1)!

∑
i≥0

wn
i+n(r)

(−r)i

i!
(i+ n)!

=
B

(n+ 1)!
wn

n(r)n! =
B

(n+ 1)!
C

Bn

n!
n! = C

Bn+1

(n+ 1)!
,

where we used (5.2), (5.4) and the induction step.

Corollary 5.6. In the conditions of Proposition 5.4, if j ≤ n− 1, then

wn
j (r) = C

Bj

j!

(
1 +

n−(j+1)∑
i=0

(−rB)i+1

(i+ 1)!
(i+ j)i+1

)
. (5.6)

Proof. To prove (5.6), we will use the induction reasoning applied to j = n−k for the successive values
k = 1, 2, . . . , n. So, we will do it, first considering k = 1, then k = 2 and, finally, by an induction
reasoning.

1. If j = n− 1, n ≥ 1, we have to prove that

wn
n−1(r) = C

Bn−1

(n− 1)!

[
1 + (−rB)(n− 1)

]
.

Using the induction on n, the case n = 1 is valid as a consequence of (2.a.1). Assuming
wn

n−1(r) = C Bn−1

(n−1)! [1 + (−rB)(n− 1)], we have

wn+1
n (r) =

B

n!

∑
i≥0

wn
i+n−1(r)

(−r)i

i!
(i+ n− 1)!

=
B

n!

1∑
i=0

wn
i+n−1(r)

(−r)i

i!
(i+ n− 1)! =

B

n!

{
wn

n−1(r)(n− 1)! + wn
n(r)(−r)n!

}
= B

{ 1

n

CBn−1

(n− 1)!

[
1 + (−rB)(n− 1)

]
+ (−r)C

Bn

n!

}
= C

Bn

n!
[1− rBn+ rB − rB] = C

Bn

n!
[1 + (−rB)n],

where we have used (5.2) for j = n− 1, (5.4), (5.5) and the induction step.
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2. If j = n− 2 for n ≥ 2, we have to prove that

wn
n−2(r) = C

Bn−2

(n− 2)!

[
1 + (−rB)(n− 2) +

(−rB)2

2!
(n− 1)2

]
.

For n = 2, using (5.3), we have

w2
0(r) = w1

0(r)−
∑
j≥1

[
w2

j (r)− w1
j (r)

]
rj = C − [w2

1(r)− w1
1(r)]r − [w2

2(r)− 0]r2 − 0

= C −
[
B(C − rBC)− CB

]
r − C

B2

2!
r2 = C

(
1 +

(−rB)2

2!

)
.

Assuming

wn
n−2(r) = C

Bn−2

(n− 2)!

[
1 + (−rB)(n− 2) +

(−rB)2

2!
(n− 1)2

]
,

we have

wn+1
n−1(r) =

B

(n− 1)!

∑
i≥0

wn
i+n−2(r)

(−r)i

i!
(i+ n− 2)!

=
B

(n− 1)!

{
wn

n−2(r)(n− 2)! + wn
n−1(r)(−r)(n− 1)! + wn

n(r)
(−r)2

2!
n!
}

= C
Bn−1

(n− 1)!

[
1 + (−rB)(n− 1) +

(−rB)2

2!
n2

]
,

where we have used (5.2) for j = n− 2, (5.4), (5.5) and the induction step.
It can be assumed by induction that

for k = 1, 2, . . . , n and n ≥ k,

wn
n−k(r) = C

Bn−k

(n− k)!

(
1 +

k−1∑
i=0

(−rB)i+1

(i+ 1)!
(i+ n− k)i+1

)
.

The proof of the theorem is now complete.

Hence, if we fix n ∈ N, we can calculate xn(t) with t ∈ An = ((n− 1)r, nr] using

xn(t) =
∑
j≥0

wn
j (r)t

j = C
∑
j≥0

Bj

j!
Pn
j (rB)tj , (5.7)

where Pn
j (rB) are defined in Theorem 5.2.

The solution found by this new method coincides with the one obtained by the method of steps,
the recurrences formulas (5.2) and (5.3) can be replaced by (5.7), whenever ϕ(t) is a constant, and,
finally, the solution of problem (2.1) is the generating function for {wn

j (r)}j=0,1,....

6 Proof of Lemma 3.2
For r > 0, t ̸= 0 and t ̸= r,

∑
j≥0

fj(r)(t− r)j =
∑
j≥0

tj

j!

(∑
i≥0

fj+i(r)
(−r)i

i!
(j + i)!

)
.
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Proof.∑
j≥0

fj(r)(t− r)j

= f0(r)+f1(r)(t−r)+f2(r)(t−r)2+f3(r)(t−r)3 + · · ·+ fp(r)(t−r)p+fp+1(r)(t−r)p+1 + · · ·

=
[
f0(r)+f1(r)(−r)+f2(r)(−r)2+f3(r)(−r)3 + · · ·+ fp(r)(−r)p+fp+1(r)(−r)p+1 + · · ·

]
+ t

[
f1(r)− 2rf2(r) + 3r2f3(r)− 4r3f4(r) + · · ·+

(
p

p− 1

)
(−r)p−1fp(r)

+ fp+1(r)(−r)p
(
1 +

(
p

p− 1

))
+ · · ·

]
+ t2

[
f2(r)− 3rf3(r) + 6r2f4(r) + · · ·+

(
p

p− 2

)
(−r)p−2fp(r)

+ fp+1(r)(−r)p−1

((
p

p− 1

)
+

(
p

p− 2

))
+ · · ·

]
+ t3

[
f3(r)− 4rf4(r) + · · ·+

(
p

p− 3

)
(−r)p−3fp(r)

+ fp+1(r)(−r)p−2

((
p

p− 2

)
+

(
p

p− 3

))
+ · · ·

]
+ · · ·+ tp−2

[(
p

2

)
(−r)2fp(r) + fp+1(r)(−r)3

((
p

3

)
+

(
p

2

))
+ · · ·

]
+ tp−1

[(
p

1

)
(−r)fp(r) + fp+1(r)(−r)2

((
p

2

)
+

(
p

1

))
+ · · ·

]
+ tp

[
fp(r) + fp+1(r)(−r)

((
p

1

)
+ 1

)
+ · · ·

]
+ · · · .

Define g(z) =
∑
j>0

(−1)jfj(r)z
j , where g(r) =

∑
j>0

fj(r)(−r)j represents

f0(r) + f1(r)(−r) + f2(r)(−r)2 + f3(r)(−r)3 + · · ·+ fp(r)(−r)p + fp+1(r)(−r)p+1 + · · ·

Claim 6.1.

t

[
f1(r)− 2rf2(r) + 3r2f3(r)− 4r3f4(r) + · · ·

+

(
p

p− 1

)
(−r)p−1fp(r) + fp+1(r)(−r)p

(
1 +

(
p

p− 1

))
+ · · ·

]
can be written as

−tg′(z)
∣∣
z=r

.

Indeed, g′(z) =
∑
j>0

(−1)j+1(j + 1)fj+1(r)z
j . So,

− tg′(z)z=r = t
[∑
j>0

(−z)j(j + 1)fj+1(r)
]
z=r

= t
[
f1(r)− 2rf2(r) + 3r2f3(r) + · · ·+ p(−r)p−1fp(r) + · · ·

]
.

Claim 6.2.

t2
[
f2(r)− 3rf3(r) + 6r2f4(r) + · · ·

+

(
p

p− 2

)
(−r)p−2fp(r) + fp+1(r)(−r)p−1

((
p

p− 1

)
+

(
p

p− 2

))
+ · · ·

]
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can be written as
t2

2!
g′′(z)

∣∣∣
z=r

.

Indeed, g′′(z) =
∑
j>0

(−1)j+2(j + 1)(j + 2)fj+2(r)z
j . So,

t2

2!
g′′(z)z=r =

t2

2!

[∑
j>0

(−z)j(j + 1)(j + 2)fj+2(r)
]
z=r

= t2
[
f2(r)− 3rf3(r) + 6r2f4(r) + · · ·+

(
p

2

)
(−r)p−2fp(r) + · · ·

]
.

Repeating the process,

Claim 6.3.
tn
[
fn(r) + fn+1(r)(−r)

((
n

1

)
+ 1

)
+ · · ·

]
can be written as

(−1)n
tn

n!
g(n)(z)

∣∣∣
z=r

,

where
g(n)(z) =

∑
j>0

(−1)j+n(j + 1)(j + 2) · · · (j + n)fj+n(r)z
j .

We prove this fact by the induction on n.
Proof. As we have already seen,

g′(z) =
∑
j>0

(−1)j+1(j + 1)fj+1(r)z
j ,

so the case n = 1 is verified.
Assuming

g(n−1)(z) =
∑
j>0

(−1)j+n−1(j + 1)(j + 2) · · · (j + n− 1)fj+n−1(r)z
j ,

we have to prove that

g(n)(z) =
∑
j>0

(−1)j+n(j + 1)(j + 2) · · · (j + n)fj+n(r)z
j .

We have

g(n)(z) =
d

dz

(∑
j>0

(−1)j+n−1(j + 1)(j + 2) · · · (j + n− 1)fj+n−1(r)z
j
)

=
∑
j>0

(−1)j+n(j + 1)(j + 2) · · · (j + n)fj+n(r)z
j .

Hence, we can write∑
j≥0

fj(r)(t− r)j = g(r)− tg′(r) +
t2

2!
g′′(r)− t3

3!
g′′′(r) + · · ·+ (−1)p

tp

p!
g(p)(r) + · · ·

=
∑
j>0

(−1)j
tj

j!
g(j)(r) =

∑
j>0

(−1)j
tj

j!

(∑
i>0

(−1)i+j(i+ 1) · · · (i+ j)fi+j(r)r
i
)

=
∑
j>0

tj

j!

(∑
i>0

(−r)i
(i+ j)!

i!
fi+j(r)

)
=

∑
j>0

tj

j!

(∑
i>0

fi+j(r)
(−r)i

i!
(i+ j)!

)
,

where we have used the equality (i+ 1)(i+ 2)(i+ 3) · · · (i+ j) = (i+j)!
i! .
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7 An application
This example is presented in [5].

Suppose we wish to study a population P (t) = (x(t), y(t)), where x(t) denotes the average height
and y(t) the average weight. It was observed that x(t) depends on the height of the previous generation
through x′(t) = Bx(t− r), where r is the size (per units of time) of a generation.

We can determine explicitly the behaviour of this variable regarding the fourth generation. This
means that we wish to compute x4(t), given x(t) = C for t ∈ [−r, 0], where C is the average height.

Using equation (5.7), we can determine it directly, without having to compute the height for the
previous generations,

x4(t) =
∑
j≥0

w4
j (r)t

j = C
∑
j≥0

Bj

j!
P 4
j (rB)tj ,

where P 4
j (rB) are computed by applying Theorem 5.2. From this theorem, since

P 4
4 (rB) = 1,

P 4
3 (rB) = 1 +

0∑
i=0

(−rB)i+1

(i+ 1)!
(i+ 3)i+1 = 1 + 3(−rB),

P 4
2 (rB) = 1 +

1∑
i=0

(−rB)i+1

(i+ 1)!
(i+ 2)i+1 = 1 + 2(−rB) +

32

2!
(−rB)2,

P 4
1 (rB) = 1 +

2∑
i=0

(−rB)i+1

(i+ 1)!
(i+ 1)i+1 = 1 + (−rB) +

22

2!
(−rB)2 +

33

3!
(−rB)3,

P 4
0 (rB) = 1 +

3∑
i=0

(−rB)i+1

(i+ 1)!
ii+1 = 1 +

(−rB)2

2!
+

23

3!
(−rB)3 +

34

4!
(−rB)4,

for j = 0, 1, 2, 3, 4, we have

x4(t) = C
{
P 4
0 (rB) +BP 4

1 (rB)t+
B2

2!
P 4
2 (rB)t2 +

B3

3!
P 4
3 (rB)t3 +

B4

4!
P 4
4 (rB)t4

}
= C

{
1 +

(−rB)2

2!
+

23

3!
(−rB)3 +

34

4!
(−rB)4 +Bt

(
1− rB +

22

2!
(−rB)2 +

33

3!
(−rB)3

)
+

B2

2!
t2
(
1− 2rB +

32

2!
(−rB)2

)
+

B3

3!
t3(1− 3rB) +

B4

4!
t4
}
.
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Abstract. Linear stability and Hoph bifurcation of a solution of the initial-boundary value problem
as well as the finite difference scheme for one system of nonlinear partial differential equations are
investigated. The blow up case is fixed. The mentioned system is based on the Maxwell equations
which describe the process of electromagnetic field penetration into a substance. Numerous computer
experiments are carried out and relying on the obtained results, some graphical illustrations are
presented.
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ÒÄÆÉÖÌÄ. ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÊÄÒÞÏßÀÒÌÏÄÁÖËÄÁÉÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄ-
ÌÉÓÈÅÉÓ ÂÀÌÏÊÅËÄÖËÉÀ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ßÒ×ÉÅÉ ÌÃÂÒÀÃÏÁÀ ÃÀ
äÏ×ÉÓ ÁÉ×ÖÒÊÀÝÉÀ. ÃÀ×ÉØÓÉÒÄÁÖËÉÀ ×ÄÈØÄÁÀÃÉ ÀÌÏÍÀáÓÍÉÓ ÛÄÌÈáÅÄÅÀ. ÀÙÍÉÛÍÖËÉ ÓÉÓÔÄÌÀ
ÃÀ×ÖÞÍÄÁÖËÉÀ ÌÀØÓÅÄËÉÓ ÂÀÍÔÏËÄÁÄÁÆÄ, ÒÏÌÄËÉÝ ÀÙßÄÒÓ ÄËÄØÔÒÏÌÀÂÍÉÔÖÒÉ ÅÄËÉÓ ÂÀ-
ÒÄÌÏÛÉ ÂÀÅÒÝÄËÄÁÉÓ ÐÒÏÝÄÓÓ. ÜÀÔÀÒÄÁÖËÉÀ ÌÒÀÅÀËÉ ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉÌÄÍÔÉ ÃÀ ÌÉÙÄÁÖË
ÛÄÃÄÂÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ßÀÒÌÏÃÂÄÍÉËÉÀ ÂÒÀ×ÉÊÖËÉ ÉËÖÓÔÒÀÝÉÄÁÉ.
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1 Introduction
The aim of the present paper is to study the linear stability and Hoph bifurcation of a solution of the
initial-boundary value problem and finite difference scheme for one diffusion system of nonlinear partial
differential equations. Such systems arise in mathematical modeling of the process of penetration of
an electromagnetic field into a substance. Upon penetrating through a material, the variable magnetic
field induces in it a variable electronic field, which causes the appearance of currents. The currents
lead to the heating of the material and arise its temperature that affects the diffusion process. For
large oscillations of temperature, the dependence on it should be taken into consideration. In a
quasistationary case, the corresponding system of Maxwell equations has the form [10]:

∂H

∂t
= − rot(νm rotH), (1.1)

cν
∂θ

∂t
= νm(rotH)2, (1.2)

where H = (H1,H2,H3) is the vector of a magnetic field, θ is temperature, cν and νm characterize
the thermal heat capacity and electroconductivity of the substance. System (1.1) defines the process
of diffusion of the magnetic field and equation (1.2) describes the change of temperature. As a rule,
the coefficients cν and νm depend on temperature θ, cν = cν(θ), νm = νm(θ).

Many authors are studying models (1.1), (1.2) and their different variations and generalizations
(see, e.g., [1–3,8,14,16,17] and the references therein). In [7], the reduction to the integro-differential
model of system (1.1), (1.2) was proposed and investigated. As for the investigation and approximation
solution of various versions of Maxwell system and the corresponding to it integro-differential models,
one can find, for example, in [8] (see also the references therein). The existence of the corresponding
initial-boundary value problems for such kind of integro-differential models can be proved by using
Galerkin’s modified method and compactness arguments as in [11,15] for nonlinear parabolic equations
and, as it is carried out in [5–7], for the case of one-component magnetic field.

The rest of the present paper is organized as follows. In Section 2, the problem is stated and the
linear stability of a solution of the initial-boundary value problem with nonhomogeneous boundary
conditions on the right side of the lateral boundary is studied. The possibility of appearance of Hoph
bifurcation and the blow up case are fixed, as well. In Section 3, the finite difference scheme for the
problem considered in Section 2 is constructed and its convergence is investigated. At the end of this
section, some graphical illustrations, confirming theoretical findings are given. The final Section 4
contains brief conclusion.

2 Linear stability and Hoph bifurcation
The model of Maxwell equations (1.1), (1.2) is complex enough for theoretical investigations and
practical applications.

In some physical assumptions, if the vector of a magnetic field has the form H = (0, U, V ), where
U = U(x, t) and V = V (x, t), then in the cylinder [0, 1]× [0,∞) we consider the initial-boundary value
problem

∂U

∂t
=

∂

∂x

(
Sα ∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα ∂V

∂x

)
,

∂S

∂t
= −aSβ + bSγ

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x),

S(x, 0) = S0(x) > s0 = const > 0,

(2.1)

where a, b, ψ1, ψ2 are positive constants and α, β, γ are real numbers which will be specified later;
U0(x), V0(x), S0(x) are the known functions of their arguments.

Stabilization of the stationary solution and the finite difference scheme for the special cases of the
above model were investigated in [4, 6, 9].
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It is not difficult to show that if β ̸= γ, then the stationary solution of problem (2.1) has the form

Us = ψ1x, Vs = ψ2x, Ss =
( (ψ2

1 + ψ2
2)b

a

) 1
β−γ

.

The following statement holds.

Theorem 2.1. Let 2α + β − γ > 0, β ̸= γ, then the stationary solution (Us, VsSs) of problem (2.1)
is linearly stable if and only if the inequality

a(γ − β)
[ b
a
(ψ2

1 + ψ2
2)
] β−α−1

β−γ

< π2

is fulfilled.

Proof. Assume that a solution of problem (2.1) has the form

U(x, t) = Us + u(x, t), V (x, t) = Vs + v(x, t), S(x, t) = Ss + s(x, t), (2.2)

where u(x, t), v(x, t), s(x, t) are small perturbations.
Introducing the notations

αs = αψ1

( (ψ2
1 + ψ2

2)b

a

)−α−1
β−γ

, βs =
( (ψ2

1 + ψ2
2)b

a

) α
β−γ

,

γs = αψ2

( (ψ2
1 + ψ2

2)b

a

)α−1
β−γ

, νs = (γ − β)
b

β−1
β−γ

a
γ−1
β−γ

(ψ2
1 + ψ2

2)
β−1
β−γ ,

ηs = 2ψ1b
[ b
a
(ψ2

1 + ψ2
2)
] γ

β−γ

, µs = 2ψ2b
[ b
a
(ψ2

1 + ψ2
2)
] γ

β−γ

,

after linearization of the system of problem (2.1) we get the following system of partial differential
equations:

∂u

∂t
= αs

∂s

∂x
+ βs

∂2u

∂x2
,

∂v

∂t
= γs

∂s

∂x
+ βs

∂2v

∂x2
,

∂s

∂t
= νss+ ηs

∂u

∂x
+ µ

s

∂v

∂x
.

(2.3)

We seek for a solution of system (2.3) in the form

u(x, t) = u(x)eωt, v(x, t) = v(x)eωt, s(x, t) = s(x)eωt, (2.4)

and get the problem on eigenvalues for the following system of ordinary differential equations:

ωu = αs
ds

dx
+ βs

d2u

dx2
, ωv = γs

ds

dx
+ βs

d2v

dx2
,

ωs = νss+ ηs
du

dx
+ µs

dv

dx
.

(2.5)

Assume now that a solution of system (2.5) is of the form

u(x) = u0e
ikx, v(x) = v0e

ikx, s(x) = s0e
ikx.

Substituting these functions in (2.5), we get

ωu0e
ikx = αsike

ikxs0 − βse
ikxk2u0, ωv0e

ikx = γsike
ikxs0 − βse

ikxk2v0,

ωs0e
ikx = νss0e

ikx + ηsiku0e
ikx + µsikv0e

ikx
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from which we obtain

u0(ω + βsk
2)− αsiks0 = 0, v0(ω + βsk

2)− γsiks0 = 0,

u0ikηs + v0µsik + s0(νs − ω) = 0.

It is clear that this system has a nontrivial solution if and only if the condition

∆(ω, k) =

∣∣∣∣∣∣
ω + βsk

2 0 −ikαs

0 ω + βsk
2 −ikγs

ikηs ikµs νs − ω

∣∣∣∣∣∣
= (ω + βsk

2)2(νs − ω)− (ω + βsk
2)k2αsηs − (ω + βsk

2)µsγsk
2 = 0,

or
(ω + βsk

2)[(ω + βsk
2)(νs − ω)− k2αsηs − k2µsγs] = 0

is fulfilled. This implies that

k2(βsνs − βsω − αsηs − µsγs)− ω2 + ωνs = 0. (2.6)

Since the case ω + βsk
2 = 0 is trivial, the latest equality gives two values of the parameter k such

as k1 = −k2.
It is easy to show that the solution of system (2.5) has the form

u(x) =
ik1αs

ω + βsk21
(S1e

ik1x − S2e
−ik1x), v(x) =

ik1γs
ω + βsk21

(S1e
ik1x − S2e

−ik1x),

s(x) = S1e
ik1x + S2e

−ik1x,

(2.7)

where S1 and S2 are the constants.
Taking into account the boundary conditions (2.1), from (2.2) and (2.4) we get

u(0) = u(1) = 0.

From this, taking into account (2.7), we get the following system:

S1 − S2 = 0,

S1e
ik1 − S2e

−ik1 = 0,

which above has a nontrivial solution when

∆ =

∣∣∣∣ 1 −1
eik1 −e−ik1

∣∣∣∣ = eik1 − e−ik1 = 2i sin k1 = 0,

or
k1n = πn, n ∈ Z.

Let us rewrite equation (2.6) in the form

ω2
n + Pn(βs, kn, νs)ωn + Ln(βs, kn, νs, ηs, µs, γs) = 0,

where

Pn(βs, kn, νs) = βsk
2
n − νs,

Ln(βs, kn, νs, ηs, µs, γs) = −βsνsk2n + αsηsk
2
n + µsγsk

2
n.

It should be noted that the solution of problem (2.1) is linearly stable if and only if for all n the
inequality Re(ωn) < 0 holds. It is easy to show that if 2α+β−γ > 0, then Ln(βs, kn, νs, ηs, µs, γs) > 0.

Therefore, for the solution to be linearly stable, it is necessary and sufficient that the inequality

Pn = βsk
2
n − νs =

( (ψ2
1 + ψ2

2)b

a

) α
β−γ

π2n2 − (γ − β)
b

β−1
β−γ

a
γ−1
β−γ

(ψ2
1 + ψ2

2)
β−1
β−γ > 0,

or
a(γ − β)

[ b
a
(ψ2

1 + ψ2
2)
] β−α−1

β−γ

< π2 (n = 1)

holds. Thus, the proof of Theorem 2.1 is complete.
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Remark. As we can see from the above inequality, when γ < β, the solution of problem (2.1) is
always linearly stable.

Assume that γ > β, β − α− 1 ̸= 0 and consider the value

ψs =
[ π2

γ − β
a

γ−α−1
β−γ b

α−β+1
β−γ

] β−γ
β−α−1

,

for which
P1(ψs, α, β, γ) = 0, Pn(ψs, α, β, γ) > 0, n = 2, 3, . . . .

In addition, if we assume that β − α − 1 < 0, then for ψ ∈ (0, ψs), ψ = ψ2
1 + ψ2

2 , we have
Pn(ψ, α, β, γ) > 0, n ∈ Z0.

Therefore, if ψ ∈ (0, ψs), then the solution of problem (2.1) is linearly stable, and if ψ > ψs, then
it is unstable. For ψ = ψs, we have Re(ω1) = 0 and Im(ω1) ̸= 0, i.e., there appears the possibility
of Hoph bifurcation. The small perturbations may cause transformation of a solution into a periodic
oscillations [12].

Consider the problem
∂U

∂t
=

∂

∂x

(
Sα ∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα ∂V

∂x

)
,

∂S

∂t
= Sα

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x), S(x, 0) = S0(x) ≥ s0 = const > 0.

(2.8)

It is not difficult to verify that if α ̸= 1 and S0(x) = s0, then the functions

U(x, t) = ψ1x, V (x, t) = ψ2x,

S(x, t) =
[
s1−α
0

+ (1− α)(ψ2
1 + ψ2

2)t
] 1

1−α

are the solutions of problem (2.8). But if α > 1 at a finite time t0 = s1−α
0 /[(ψ2

1 + ψ2
2)(α − 1)], the

function S(x, t) becomes infinity. This example shows that the solution of problem (2.8) with smooth
initial and boundary conditions can be blown up at a finite time.

3 Convergence of finite difference scheme
In the rectangle [0, 1]× [0, T ], where T is a positive number, let us consider the initial-boundary value
problem (2.1).

Now, we study a numerical approximation of problem (2.1). If we introduce the notationW = S1/2,
then problem (2.1) takes the form

∂U

∂t
− ∂

∂x

(
W 2α ∂U

∂x

)
= 0,

∂V

∂t
− ∂

∂x

(
W 2α ∂V

∂x

)
= 0,

∂W

∂t
= −a

2
W 2β−1 +

b

2
W 2γ−1

[(∂U
∂x

)2

+
(∂V
∂x

)2]
,

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2,

U(x, 0) = U0(x), V (x, 0) = V0(x), W (x, 0) = [S0(x)]
1/2.

(3.1)

Let us discretize the domain [0, 1]× [0, T ] and apply the following known notations [13]

h =
1

M
, τ =

T

N
, xi = ih, tj = jτ, r(xi, tj) = rji ,

ωh =
{
xi, i = 0, 1, . . . ,M

}
, ω∗

h =
{
xi =

(
i− 1

2

)
h, i = 1, 2, . . . ,M

}
,

ωτ =
{
tj = jτ, j = 0, 1, . . . , N

}
, ωhτ = ωh × ωτ , ω∗

hτ = ω∗
h × ωτ ,

rjx,i =
rji+1 − rji

h
, rjx,i =

rji − rji−1

h
, rjt,i =

rj+1
i − rji
τ
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and the corresponding inner products and norms

(rj , gj) = h

M−1∑
i=1

rji g
j
i , (rj , gj ] = h

M∑
i=1

rji g
j
i ,

∥rj∥ = (rj , rj)1/2, ∥rj ]| = (rj , rj ]1/2.

For problem (3.1), consider the following finite difference scheme:

ujt = (w2αux)x, vjt = (w2αvx)x,

wj
t = −a

2
w2β−1 +

b

2
w2γ−1(u2x + v2x),

uj0 = vj0 = 0, ujM = ψ1, vjM = ψ2, j = 0, 1, . . . , N,

u0i = U0(xi), v0i = V0(xi), w0
i =

[
S0(xi+1/2)

]1/2
, i = 0, 1, . . . ,M − 1,

(3.2)

where the grid functions u and v are defined on ωhτ , while the grid function w is defined on ω∗
hτ . Note

that here and below, if the grid functions are taken without indices of time level, it assumed that they
are considered at tj+1.

It is not difficult to show that an approximation error of scheme (3.2) on smooth solutions of
problem (3.1) is O(τ + h2).

The following statement holds.

Theorem 3.1. An approximation error of scheme (3.2) on smooth solutions of problem (3.1) is
O(τ + h2) and if β ≥ 1/2, α = γ, |α| ≤ 1/2, then a solution of scheme (3.2) converges to the solution
of problem (3.1) in discrete analogues of the norms of the space L2(0, 1) and the rate of convergence
is the same as an approximation error.

Proof. For the errors X = u− U , Y = v − V and Z = w −W , we have

Xj
t = (w2αux −W 2αUx)x + φ1, (3.3)

Y j
t = (w2αvx −W 2αVx)x + φ2, (3.4)

Zj
t = −a

2
(w2β−1 −W 2β−1) +

b

2
(w2γ−1u2x −W 2γ−1U2

x + w2γ−1v2x −W 2γ−1V 2
x ) + φ3, (3.5)

where φk = O(τ + h2), k = 1, 2, 3.
Assume α = γ and |α| ≤ 1

2 . Let us multiply scalarly equations (3.3)–(3.5) by 2τX, 2τY and 2
b τZ,

respectively. Using the discrete analogue of integration by parts and the identities [13]

2τ(Xt, X) = ∥X∥2 − ∥Xj∥2 + τ2∥Xt∥2, 2τ(Yt, Y ) = ∥Y ∥2 − ∥Y j∥2 + τ2∥Yt∥2,
2τ(Zt, Z] = ||Z]|2 − ||Zj ]|2 + τ2||Zt]|2,

we get

∥X∥2 − ∥Xj∥2 + τ2∥Xt∥2 =− 2τ
[
(wδ, u2x]− (wδ +W δ, uxUx] + (W δ, U2

x ]− (φ1, X)
]
,

∥Y ∥2 − ∥Y j∥2 + τ2∥Yt∥2 =− 2τ [(wδ, v2x]− (wδ +W δ, vxVx] + (W δ, V 2
x ]− (φ2, Y )],

1

b

(
||Z]|2 − ||Zj ]|2 + τ2||Zt]|2

)
=− a

b
τ(w2β−1 −W 2β−1)(w −W )

+ τ
(
(wδ − wδ−1W,u2x]− (W δ−1w −W δ, U2

x ]

+ (wδ − wδ−1W, v2x]− (W δ−1w −W δ, V 2
x ]
)
+

2τ

b
(φ3, Z].

Here we introduced the notation 2α = δ.
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Adding the above equalities and assuming β ≥ 1/2, we get

∥X∥2 − ∥Xj∥2 + ∥Y ∥2 − ∥Y j∥2 + τ

b

(
||Z]|2 − ||Zj ]|2

)
≤ −2τ

[(wδ + wδ−1W

2
u2x +

W δ +W δ−1w

2
U2
x , 1

]
− (wδ +W δ, uxUx]

+
(wδ + wδ−1W

2
v2x +

W δ +W δ−1w

2
V 2
x , 1

]
− (wδ +W δ, vxVx]−(φ1, X)− (φ2, Y )− 1

b
(φ3, Z]

]
≤ −2τ

{([
(wδ + wδ−1W )(W δ +W δ−1w)

] 1
2 − wδ −W δ, |ux| |Ux|

]
+
([

(wδ + wδ−1W )(W δ +W δ−1w)
] 1

2 − wδ −W δ, |vx| |Vx|
]
− (φ1, X)− (φ2, Y )− 1

b
(φ3, Z]

}
. (3.6)

Note that

(wδ − wδ−1W )(W δ −W δ−1w)− (wδ +W δ)2

= 2wδW δ + wδ+1W δ−1 + wδ−1W δ+1 − w2δ − 2wδW δ −W 2δ

= (wδ+1 −W δ+1)(W δ−1 − wδ−1). (3.7)

Since |δ| ≤ 1, we have
(wδ+1 −W δ+1)(W δ−1 − wδ−1) ≥ 0.

Using relations (3.6) and (3.7) and taking into account the last inequality, we arrive at

∥X∥2 + ∥Y ∥2 + 1

b
||Z]|2 ≤ ∥Xj∥2 + ∥Y j∥2 + 1

b
∥Zj ]|2 + 2τ

(
(φ1, X) + (φ2, Y ) +

1

b
(φ3, Z]

)
,

which yields
∥X∥+ ∥Y ∥+ ||Z]| = O(τ + h2).

Thus, the proof of Theorem 3.1 is complete.

Using the approach on proving Theorem 3.1, it is not difficult to prove the stability of scheme
(3.2).

Applying scheme (3.2) given in this section and the Newton iterative method, various numerical
experiments have been carried out which fully agree with theoretical findings. Using the results
obtained in Section 2, we get graphical illustrations for the stability of solution (see Fig. 1) and fix
the bifurcation phenomena (see Fig. 2).

Figure 1. Stabilization of solution.
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Figure 2. Hoph bifurcation.

4 Conclusion
For the system of nonlinear partial differential equations, which is based on the Maxwell equations
describing the process of penetration of an electromagnetic field into a substance, the linear stability
of a solution, as well as the possibility of Hoph bifurcation are studied. The blow up case is fixed,
too. The corresponding finite difference scheme is constructed and its convergence is proved. The
carried out various numerical experiments show the linear stability of a solution of the corresponding
initial-boundary value problem and also Hopf type bifurcation for certain boundary data.
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Abstract. In the paper, for the construction of a numerical solution of two-dimensional Mitchi-
son nonlinear partial differential system, the variable directions difference scheme and the difference
scheme corresponding to the average method are used. Practical realization of those algorithms and
comparative analysis of the obtained results are carried out. Numerical experiments are in accordance
with theoretical findings. On the basis of experiments the corresponding tables of data are given.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÉÜÉÓÏÍÉÓ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍ ÀÒÀßÒ×ÉÅ ÊÄÒÞÏßÀÒÌÏÄÁÖËÄÁÉÀÍ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÒÉÝáÅÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÓÀÂÄÁÀÃ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÝÅÀËÄ-
ÁÀÃÉ ÌÉÌÀÒÈÖËÄÁÉÓÀ ÃÀ ÂÀÓÀÛÖÀËÄÁÖËÉ ÌÄÈÏÃÉÓ ÛÄÓÀÁÀÌÉÓÉ ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÄÁÉ. ÂÀÍáÏÒ-
ÝÉÄËÄÁÖËÉÀ ÀÌ ÀËÂÏÒÉÈÌÄÁÉÓ ÐÒÀØÔÉÊÖËÉ ÒÄÀËÉÆÀÝÉÀ ÃÀ ÜÀÔÀÒÄÁÖËÉÀ ÌÉÙÄÁÖËÉ ÛÄÃÄ-
ÂÄÁÉÓ ÛÄÃÀÒÄÁÉÈÉ ÀÍÀËÉÆÉ. ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉÌÄÍÔÄÁÉÓ ÛÄÃÄÂÄÁÉ ÛÄÓÀÁÀÌÉÓÏÁÀÛÉÀ ÈÄÏÒÉ-
ÖË ÊÅËÄÅÄÁÈÀÍ. ÄØÓÐÄÒÉÌÄÍÔÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÌÏÝÄÌÖËÉÀ ÛÄÓÀÁÀÌÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÝáÒÉ-
ËÄÁÉ.
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1 Introduction
Using the nonlinear partial differential equations, a lot of natural processes are described. Among
them there is one of the important mathematical model that describes vein formation in the leaves of
higher plants. This model was proposed by J. Michison [15].

The model proposed by Michison has the form:

∂S

∂t
=

∂

∂x1

(
D1

∂S

∂x1

)
+

∂

∂x2

(
D2

∂S

∂x2

)
,

∂Di

∂t
= fi

(
Di, Di

∂S

∂xi

)
, i = 1, 2,

(1.1)

where S(t, x1, x2) is concentration of signal, D1 and D2 are diffusion coefficients to the Ox1- and
Ox2-axis, respectively.

Some qualitative and structural properties of solutions of system (1.1) are established in [15].
Investigations for one-dimensional analogue of system (1.1) with two unknown functions S and D1 are
carried out in [2]. In [2,15] and [16], the authors pointed out on theoretical and practical importance
of the investigation and construction of approximate solutions of the initial boundary value problems
for systems (1.1). In biological modeling there are many other works where this and many models
of similar processes are also presented and discussed (see, e.g., [3, 6, 7, 16, 19, 20] and the references
therein).

The complexity of model (1.1), besides of the nonlinearity, is caused by its two-dimensionality. In
general, a numerical solution of multi-dimensional problems is often carried out by applying decom-
position methods.

Investigations for one-dimensional analogue of system (1.1) were carried out in [2].
Starting from the basic works [4, 18], the methods of constructing the effective algorithms for the

numerical solution of the multi-dimensional problems of mathematical physics and the class of prob-
lems solvable with the help of those algorithms were essentially extended [8,14,21]. Those algorithms
belong mainly to the methods of splitting-up or sum approximation. Some schemes of the variable
directions are constructed and studied in [1], too.

Some questions of construction and investigation of the schemes of variable directions and the
average model of sum approximation as well as the difference schemes for one-dimensional case for
the system of type (1.1) are discussed in [5, 9–13,17].

The paper is organized as follows. In Section 2, the statement of the problem is given. In Section 3,
two economic difference schemes are constructed and the theorem of stability and convergence for the
variable direction scheme is stated. Section 4 contains some results of numerical experiments. The
brief conclusion in Section 5 ends the paper.

2 Statement of the problem
In the domain Q = Ω× [0, T ], where Ω = (0, 1)× (0, 1), let us consider the certain function f and pose
the following initial boundary value problem for the special case of two-dimensional system (1.1):

∂U

∂t
− ∂

∂x

(
V1

∂U

∂x

)
− ∂

∂y

(
V2

∂U

∂y

)
= 0,

∂V1

∂t
+ V1 − g1

(
V1

∂U

∂x

)
= 0,

∂V2

∂t
+ V2 − g2

(
V2

∂U

∂y

)
= 0

(2.1)

with initial
U(x, y, 0) = U0(x, y), (x, y) ∈ Ω,

V1(x, y, 0) = V10(x, y), (x, y) ∈ Ω,

V2(x, y, 0) = V20(x, y), (x, y) ∈ Ω,

(2.2)
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and boundary conditions
U(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ]. (2.3)

Here gα, U0, Vα0, α = 1, 2, are the given sufficiently smooth functions such that

Vα0 ≥ δ0, δ0 = const > 0, (x, y) ∈ Ω,

g0 ≤ gα(ξα) ≤ G0, |g′α(ξα)| ≤ G1, ξα ∈ R,
(2.4)

where δ0, g0, G0, G1 are some positive constants.

3 Economic schemes
In the sequel, for the construction of the grid on the domain Q we follow the known notation:

ωh =
{
(xi, yj) = (ih, jh)

}
, ω1h =

{
(xi, yj) =

( i− 1

2
h, jh

)}
,

ω2h =
{
(xi, yj) =

(
ih,

(
j − 1

2

)
h
)}

, i, j = 0, . . . ,M, Mh = 1,

ωh = Ω ∩ ωh, γh =
ωh

ωh
, ωh = ωh ∪ γh,

ωτ =
{
tk = kτ, k = 0, . . . , N, Nτ = T

}
.

(3.1)

Following the known notation [21], let us correspond to problem (2.1)–(2.3) the following difference
scheme of variable directions:

u1t − (v̂1û1x)x − (v2u2y)y = 0, u2t − (v̂1û1x)x − (v̂2û2y)y = 0,

v1t + v̂1 − g1(v1u1x) = 0, v2t + v̂2 − g2(v2u2y) = 0,

u1(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

u2(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

v1(x, y, 0) = V10, (x, y) ∈ ω1h,

v2(x, y, 0) = V20, (x, y) ∈ ω2h,

u1(x, y, t) = u2(x, y, t) = 0,

(x, y, t) ∈ γh × ωτ .

(3.2)

Using the continuous variant of the averaged model of sum approximation [5], we correspond to
problem (2.1)–(2.3) the following decomposition finite difference scheme:

u1t − (v̂1û1x)x = 0, u2t − (v̂2û2y)y = 0,

v1t + v̂1 − g1(v1u1x) = 0, v2t + v̂2 − g2(v2u2y) = 0,

u1(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

u2(x, y, 0) = U0(x, y), (x, y) ∈ ωh,

v1(x, y, 0) = V10, (x, y) ∈ ω1h,

v2(x, y, 0) = V20, (x, y) ∈ ω2h,

u1(x, y, t) = u2(x, y, t) = 0,

(x, y, t) ∈ γh × ωτ ,

u = η1u1 + η2u2, η1 > 0, η2 > 0, η1 + η2 = 1.

(3.3)

Let us introduce the following notation for the errors: Z1 = u1 − U , Z2 = u2 − U , S1 = v1 − V1,
S2 = v2 − V2.
Theorem. If problem (2.1)–(2.3) has a sufficiently smooth solution, then the finite difference scheme
(3.2) is stable, its solution converges to the exact solution of problem (2.1)–(2.3) as τ → 0, h → 0,
and the inequality

∥Z1∥ωh
+ ∥Z2∥ωh

+ ∥S1∥ω1h
+ ∥S2∥ω

2h
≤ C(τ + h2)

holds.
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Table 1. CPU time and error for solution u, v1, v2 applying scheme of variable directions (3.2).
t CPU time Error u Error v1 Error v2

0.2 0.074 0.00013912790131447 0.00000712766408961 0.00002916084998672
0.4 0.148 0.00022425859907783 0.00001730244454379 0.00009005618525060
0.6 0.224 0.00031286373416026 0.00004804529821700 0.00017715471240609
0.8 0.301 0.00040788793632886 0.00009668298990784 0.00028758192640277
1.0 0.378 0.00051151056363487 0.00016425091499817 0.00041715052893787

Table 2. CPU time and error for solution u, v1, v2 applying difference scheme (3.3) corresponding to
averaged method.

t CPU time Error u Error v1 Error v2
0.2 0.072 0.00006973950435170 0.00001634140038553 0.00001662571352523
0.4 0.146 0.00007422011594080 0.00003786305693865 0.00003781271060488
0.6 0.221 0.00007890208614024 0.00006202878270467 0.00005790906416947
0.8 0.295 0.00008480943243865 0.00008875495749039 0.00007978157763566
1.0 0.369 0.00009205402490850 0.00011818090303972 0.00010625023389577

Here C is a positive constant independent of τ and h, the norms are discrete analogous of the
norm of space L2.

4 Numerical experiments
Using the algorithms proposed in (3.2) and (3.3), let us carry out comparative analysis of the numerical
results for the above schemes.

Let us take
g1(ξ) = g2(ξ) =

1

1 + (1 + ξ)2

and choose the right-hand sides of the corresponding nonhomogeneous system (2.1) so that the solution
of problem (2.1)–(2.3) is:

U = xy(1− x)(1− y)(1 + t),

V1 = 1 + xy(1− x)(1− y)(1 + t+ t2),

V2 = 1 + xy(1− x)(1− y)(1 + t+ t3).

CPU time and errors for the variable directions difference scheme (3.2) are given in Table 1 and
the CPU time and errors for scheme (3.3) are given in Table 2.

The approximation error for the variable direction difference scheme (3.2) is smaller compared
with the scheme (3.3). However, CPU time is better for scheme (3.3) than for scheme (3.2).

Table 3. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function u.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00024074087939129 0.99175505389520200 1.98351010779040000
0.0008 0.04 0.00015728407178949 0.98629676971885200 1.97259353943770000

0.0003125 0.025 0.00006418736860213 0.99204420486615900 1.98408840973232000
0.0002 0.02 0.00004172715815061 0.99421791633935300 1.98843583267871000
0.00005 0.01 0.00001084525005050
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Table 4. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function v1.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00015579938599405 0.99768312053704900 1.99536624107410000
0.0008 0.04 0.00009981476150336 0.99879576821464700 1.99759153642929000

0.0003125 0.025 0.00003903430252067 0.99941764475219500 1.99883528950439000
0.0002 0.02 0.00002498844720772 0.99974995294653000 1.99949990589306000
0.00005 0.01 0.00002498844720772

Table 5. Absolute value of maximum errors and rate of convergence with respect to τ and h for the
function v2.

τ h Error Rate of τ Rate of h
0.00125 0.05 0.00015579938599405 0.99732714185756800 1.99465428371514000
0.0008 0.04 0.00009981476150336 0.99873489122313100 1.99746978244626000

0.0003125 0.025 0.00003903430252067 0.99935953799193100 1.99871907598386000
0.0002 0.02 0.00002498844720772 0.99972504350513300 1.99945008701027000
0.00005 0.01 0.00002498844720772

In Tables 3–5 we also computed errors for different values of time and space steps applying scheme
(3.2) for T = 1 and obtained the rates of convergence confirming the theoretical result in theorem
from the previous section.

5 Conclusion
Numerous numerical experiments are performed for problem (2.1)–(2.3) by using schemes (3.2) and
(3.3). The approximation errors for the variable direction difference scheme (3.2) are smaller compared
with scheme (3.3), but CPU time is better for scheme (3.3) than for scheme (3.2). We have carried
out various numerical experiments and calculated the absolute value of maximum errors for different
time and space steps and obtained the rate of convergence of scheme (3.2). In all cases, the numerical
results fully agree with the theoretical ones.
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Abstract. The second-order differential equation with general power-law nonlinearity with continu-
ous potential bounded by positive constants is considered. The behavior of solutions to the equation
is studied with respect to the values of nonlinearity. The necessary and sufficient conditions for the
existence of a finite right-side boundary of the domain or horizontal asymptote are obtained. The
distance to the right-side boundary of the domain and the limits of solutions with horizontal asymp-
totes near their boundaries are estimated. The continuous dependence of the right-side boundary of
the domain and horizontal asymptotes on initial data is proved.1
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÌÄÏÒÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÀ ÆÏÂÀÃÉ áÀÒÉÓáÏÁÒÉÅÉ
ÀÒÀßÒ×ÉÅÏÁÉÈ ÃÀ ÃÀÃÄÁÉÈÉ ÌÖÃÌÉÅÄÁÉÈ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÖßÚÅÄÔÉ ÐÏÔÄÍÝÉÀËÉÈ. ÍÀÐÏÅÍÉÀ
ÓÀÓÒÖË ÛÖÀËÄÃÆÄ ÂÀÍÓÀÆÙÅÒÖËÉ ÅÄÒÔÉÊÀËÖÒÉ ÃÀ äÏÒÉÆÏÍÔÀËÖÒÉ ÀÓÉÌÐÔÏÔÄÁÉÓ ÌØÏÍÄ
ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ ÃÀ ÃÀÃÂÄÍÉËÉÀ ÌÀÈÉ ÀÓÉÌ-
ÐÔÏÔÖÒÉ ÛÄ×ÀÓÄÁÄÁÉ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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Consider the second-order Emden–Fowler type nonlinear equation

y′′ = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′), k0 > 0, k1 > 0, k0, k1 ∈ R, (0.1)

with positive continuous in x and Lipschitz continuous in u, v function p(x, u, v).
The asymptotic behavior of solutions to (0.1) in the case k1 = 0 is described in [5]. Using the

methods described in [1] by I. V. Astashova, the behavior of decreasing solutions to (0.1) near the
right domain boundary is investigated with respect to the values k0 and k1.

In the case p = p(x), the asymptotic behavior of solutions to (0.1) is obtained by V. M. Ev-
tukhov [6]. Using the methods described in [2–4] by I. V. Astashova, the behavior of positive in-
creasing solutions to (0.1) near the right endpoint of their domains is investigated with respect to the
values k0 and k1.

1 Preliminary results
Consider the behavior of solutions according to initial data.

Lemma 1.1. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a positive continuous in x and Lipschitz
continuous in u, v function. Then all maximally extended solutions to equation (0.1) can be divided
into the following five types according to their behavior:

0. Constant solutions;
1. Increasing positive solutions;
2. Increasing negative solutions;
3. Increasing solutions negative near the left boundary of the domain and positive near the right

boundary of the domain;
4. Decreasing solutions positive near the left boundary of the domain and negative near the right

boundary of the domain.

Proof. Let us show first that if there is a point x0 such that y′(x0) = 0, then y(x) ≡ y(x0). Indeed,
from equation (0.1) we derive that y′′(x0) = 0 and since y0(x) ≡ y(x0) is a solution to (0.1), by the
theorem of the existence and uniqueness, y(x) ≡ y0(x) ≡ y(x0).

Thus, every solution with an extremum at some point is a constant solution (type 0), and therefore
every non-constant solution is either increasing or decreasing on its domain.

Consider increasing solutions. Assume that at some point x0 we have y(x0) > 0 and y′(x0) > 0.
Then, according to the equation, sgn y′′ = sgn y, and therefore y′′(x) > 0 and y′(x) is positive and
increasing, while y(x) > 0. This implies y(x) > 0, y′(x) > 0 and y′′(x) > 0 for all x > x0, so the
solution is positive and increasing on its domain. Consider now x < x0. Since y′(x) is positive on the
whole domain of the solution, either there is a point x̃ such that y(x̃) = 0 or y(x) > 0 (also y′(x) > 0,
and therefore y′′(x) > 0) for all x < x0. Consider the first case. Since the first derivative of the
solution is positive, y′(x) > 0 and y(x) < 0 (therefore, y′′(x) < 0) for all x < x̃. Thus, y(x) is an
increasing solution negative near the left boundary of the domain and positive near the right one.

Assume now that at some point x0 we have y(x0) < 0, y′(x0) > 0. According to the equation,
sgn y′′ = sgn y, and therefore y′′(x) < 0, y′(x) > 0 and y(x) < 0 for all x < x0. Consider x > x0: since
y′(x) > 0, either the solution y(x) is negative and increasing on the whole domain or there exists a
point x̃ such that y(x̃) = 0. In the second case, for x > x̃ we have y(x) > 0, y′(x) > 0, and thus y(x)
is an increasing solution, negative near the left boundary of domain and positive near the right one.

Consider decreasing solutions. Suppose at some point x0 we have y(x0) > 0 and y′(x0) < 0.
According to the equation, sgn y′′ = − sgn y, and therefore y′′(x) < 0 and y′(x) is negative and
decreasing, while y(x) > 0. Thus, y′(x) < y′(x0) and

y(x) < y(x0) + y′(x0)(x− x0) = −|y′(x0)|x+
(
y(x0)− y′(x0)x0

)
,

while y(x) is positive. Since y(x) is estimated from above by a linear function, it cannot be positive on
its whole domain and therefore there exists a point x̃ such that y(x̃) = 0. Note that y′(x̃) is negative
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and therefore in some neighbourhood (x̃, x̃ + ε), ε > 0, the solution y(x) and its derivative y′(x) are
both negative and, due to equation (0.1), we have y′′(x) > 0. Then for all x > x̃, the solution is
decreasing, and since its derivative is of a constant (negative) sign, we have y(x) < 0, y′(x) < 0,
y′′(x) > 0 for all x > x̃ and y(x) > 0, y′(x) < 0, y′′(x) > 0 at x < x̃. Thus, y(x) is a decreasing
solution, positive near the left boundary of the domain and negative near the right one.

Lemma 1.2. Suppose k0 > 0, k1 > 0, k1 ̸= 2. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying the inequalities

0 < m ≤ p(x, u, v) ≤ M < +∞. (1.1)

Then for any solution y(x) to equation (0.1), strictly monotonous and having a constant sign on
[x1, x2], the following inequalities hold:

m
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′) ≤ k0 + 1

2− k1

(
|y′(x2)|2−k1 − |y′(x1)|2−k1

)
sgn y

≤ M
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′). (1.2)

Proof. Due to inequalities (1.1) and equation (0.1), we can estimate the absolute value of the second
derivative as

m|y|k0 |y′|k1 ≤ |y′′| = |p(x, y, y′)|y|k0 |y′|k1 sgn(yy′)| ≤ M |y|k0 |y′|k1 .

Then
m|y|k0 |y′| ≤ |y′′| |y′|1−k1 ≤ M |y|k0 |y′|

and by integrating these inequalities on (x1, x2), we obtain

m

k0 + 1

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′)

≤ 1

2− k1

(
|y′|2−k1 − |y′(x1)|2−k1

)
sgn(y′y′′) ≤ M

k0 + 1

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′),

where sgn(yy′) and sgn(y′y′′) are constant and can be taken at any point from [x1, x2]. Therefore if
sgn y′ ̸= 0,

m
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′)

≤ k0 + 1

2− k1

(
|y′(x2)|2−k1 − |y′(x1)|2−k1

)
sgn y ≤ M

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′).

2 Increasing solutions
Theorem 2.1. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with
y(x0) ≥ 0 and y′(x0) > 0 at some point x0. Then the existence of a finite point x∗ > x0 such that

lim
x→x∗−0

y′(x) = +∞ is equivalent to the condition k0 + k1 > 1. Moreover, there exists a positive
constant ξ = ξ(m, k0) such that

x∗ − x0 < ξ(y′(x0))
− k0+k1−1

k0+1 .

Proof. Consider the case k0 + k1 > 1.
Denote y1 = y′(x0) > 0. According to Lemma 1.1, the solution y(x) with positive initial data tends

to infinity along with its derivative. This implies that for any i ∈ N there exists a point xi > xi−1

such that y′(xi) = 2y′(xi−1) = 2iy1. Let us estimate the difference xi+1 − xi.
For x ∈ [xi, xi+1], the inequalities

y′(x) ≥ y1, y(x)− y(xi) ≥ y1(x− xi)



On the Behavior of Solutions to Second-Order DE with General Power-Law Nonlinearity 105

hold, and since y(xi) ≥ y(x0) ≥ 0, we have y(x) ≥ y1(x− xi), hence

yk0(x) ≥ (y1(x− xi))
k0 and (y′(x))k1 ≥ yk1

1 ,

y′′(x) = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′) ≥ myk0+k1
1 (x− xi)

k0 .

Integrating this inequality on the segment [xi, xi+1], we obtain

y′(xi+1)− y′(xi) ≥
m

k0 + 1
yk0+k1
1 (xi+1 − xi)

k0+1,

which means

2iy1 ≥ m

k0 + 1
yk0+k1
1 (xi+1 − xi)

k0+1,

(xi+1 − xi)
k0+1 ≤ 2i

k0 + 1

m
y
−(k0+k1−1)
1 ,

xi+1 − xi ≤ 2
i

k0+1

(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1 .

Thus, the distance xi+1 −xi is estimated from above by the term of a converging series multiplied
by a positive constant. This implies that there exists a limit

x∗ = lim
n→+∞

n∑
i=0

(xi+1 − xi) + x0 = lim
n→+∞

xn,

and since a solution to (0.1) is continuous, lim
x→x∗−0

y′(x) = +∞. Moreover,

x∗ − x0 =

+∞∑
i=0

(xi+1 − xi) ≤
+∞∑
i=0

2
i

k0+1

(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1 ,

x∗ − x0 ≤
(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1

+∞∑
i=0

2
i

k0+1 ,

which implies
x∗ − x0 < ξ (y′(x0))

− k0+k1−1
k0+1

for
ξ = ξ(m, k0) =

(k0 + 1

m

) 1
k0+1

(1− 2
1

k0+1 )−1 > 0.

For the case k0 + k1 ≤ 1, we can apply the following
Theorem (K. Dulina, T. Korchemkina [5]). Suppose k > 0, k ̸= 1. Let the function P (x, u, v)
be continuous in x, Lipschitz continuous in u, v. Let there exist the constants u0 > 0, v0 > 0
and α ≤ 1 − k such that for u > u0, v > v0 the inequality P (x, u, v) ≤ C|v|−α holds. Then any
non-extensible solution y(x) to equation

y′′ − P (x, y, y′)|y|k sgn y = 0

with initial data y(x0) ≥ u0, y′(x0) ≥ v0 can be extended on (x0,+∞) and

lim
x→+∞

y(x) = lim
x→+∞

y(x) = +∞.

Indeed, here we have P (x, u, v) = p(x, u, v)|v|k1 ≤ Mvk1 , so, the above theorem holds if k1 ≤ 1−k0,
i.e., k0 + k1 ≤ 1.

Remark. It is sufficient that p(x, u, v) ≥ m for the solution to have a finite right-side boundary x∗

of its domain.
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Note that after the substitution y(x) 7→ −y(−x) we obtain an equation of the same type as (0.1),
so the following statement is also true.

Theorem 2.2. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with
y(x0) ≤ 0 and y′(x0) > 0 at some point x0. Then the existence of a finite point x∗ < x0 such that

lim
x→x∗+0

y′(x) = −∞ is equivalent to the condition k0 + k1 > 1. Moreover, there exists a positive
constant ξ = ξ(m, k0) such that

x0 − x∗ < ξ (y′(x0))
− k0+k1−1

k0+1 .

It follows from [5, Theorem 3.4] that in the case k1 > 2 all positive increasing solutions are the
black hole solutions [7], i.e., lim

x→x∗−0
y(x) < ∞.

Applying now Lemma 1.2 for x1 = x0, x2 = x and considering inequalities (1.2) as x → x∗ − 0, we
obtain the following estimates for the limit lim

x→x∗−0
y(x).

Theorem 2.3. Suppose k1 > 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous in u, v
function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with y(x0) ≥ 0
and y′(x0) > 0 at some point x0. Then for the right-side boundary of the domain x∗ which existence
is stated in Theorem 2.1, the limit lim

x→x∗−0
y(x) = y∗ is finite and

k0 + 1

2− k1

1

M
(y′(x0))

2−k1 ≤ (y∗)k0+1 − yk0+1
0 ≤ k0 + 1

2− k1

1

m
(y′(x0))

2−k1 .

Analogously, we obtain the similar statement for the limit lim
x→x∗−0

y(x).

Theorem 2.4. Suppose k1 > 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous in u, v
function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with y(x0) ≤ 0
and y′(x0) > 0 at some point x0. Then for the left-side boundary of the domain x∗ which existence is
stated in Theorem 2.2, the limit lim

x→x∗−0
y(x) = y∗ is finite and

k0 + 1

2− k1

1

M
(y′(x0))

2−k1 ≤ |y∗|k0+1 − |y0|k0+1 ≤ k0 + 1

2− k1

1

m
(y′(x0))

2−k1 .

3 Decreasing solutions
Consider now decreasing solutions. Let us prove that every solution of such type has two horizontal
asymptotes.

Theorem 3.1. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with
initial data y(x0) ≤ 0, y′(x0) < 0 is defined on the whole axis and there exists a finite negative value
y+ < y(x0) such that lim

x→+∞
y(x) = y+. Moreover,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y+|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 .

Proof. According to the proof of Lemma 1.1, for any x > x0, we have y(x) < 0, y′(x) < 0 and therefore
y′′(x) > 0. This implies that y′(x) → 0 as x → x̃, where x̃ > x0 is a right domain boundary of y(x).

Denote y1 = |y′(x0)| = −y′(x0). While y′(x) ̸= 0, from Lemma 1.2 with x1 = x0 and x2 = x > x0

we derive

k0 + 1

2− k1

|y′(x0)|2−k1 − |y′(x)|2−k1

M
≤ |y(x)|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

|y′(x0)|2−k1 − |y′(x)|2−k1

m
.
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Denote Y = lim
x→x̃

y(x), then considering the above inequalities at x → x̃, we obtain

k0 + 1

2− k1

|y′(x0)|2−k1

M
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

|y′(x0)|2−k1

m
,

which implies |Y | < +∞.
Consider now x̃ in correspondence with k1. Let x∗ > x0, x∗ ≤ +∞ be the closest to x0 point such

that lim
x→x∗

y′(x) = 0.
From equation (0.1), on the interval (x0, x

∗), we derive

y′′|y′|−k1 = p(x, y, y′)|y|k0 sgn(yy′),

and since at x > x0 we have y(x) < 0, y′(x) < 0, therefore

y′′(−y′)−k1 = p(x, y, y′)|y|k0 ,

and for k1 ̸= 1,
1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
=

x∫
x0

p(x, y, y′)|y|k0 dx.

In the case k1 ∈ (1, 2), we get

1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
≤

x∫
x0

M |Y |k0 dx = M |Y |k0(x− x0),

x− x0 ≥ 1

M |Y |k0(k1 − 1)

(
|y′(x)|1−k1 − |y′(x0)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1− k1 < 0, the right part of the above inequality tends to infinity as
x → x∗, which implies x∗ = +∞, and therefore the solution y(x) is defined on (x0,+∞), y+ = Y and
the theorem for the case k1 ∈ (1, 2) is proved.

Analogously, in the case k1 = 1, we obtain

x− x0 ≥ 1

M |Y |k0

(
ln |y′(x0)| − ln |y′|

)
.

Since y′(x) → 0 as x → x∗, the right part of the above inequality tends to infinity as x → x∗, which
implies x∗ = +∞, and therefore the solution y(x) is defined on (x0,+∞), y+ = Y and hence the
theorem for the case k1 = 1 is also proved.

In the case k1 ∈ (0, 1), we denote x̃0 = x0 if y(x0) ̸= 0 and otherwise x̃0 = x0 + ε, where ε > 0
is such that y(x) < 0 and y′(x) < 0 on (x0, x0 + ε). Then |y(x)|k0 ≥ |y(x̃0)|k0 on (x̃0, x

∗), and
analogously we obtain the estimate

1

1− k1

(
|y′(x̃0)|1−k1 − |y′|1−k1

)
≥

x∫
x̃0

m|y(x̃0)|k0 dx = m|y(x̃0)|k0(x− x̃0),

x− x̃0 ≤ 1

m|y(x̃0)|k0(1− k1)

(
|y′(x̃0)|1−k1 − |y′(x)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1 − k1 > 0, the right part of the above inequality tends to a
constant value |y′(x̃0)|1−k1

m|y(x̃0)|k0 (1−k1)
as x → x∗, which implies x∗ < +∞, and therefore the solution y(x)

is unique only on (x0, x
∗). Note that even though the uniqueness of solutions is not satisfied, there

is only one possible way to extend the solution y(x) to the right. Thus, y(x) < 0, is decreasing on
(x0, x

∗) and is equal to a constant on [x∗,+∞). This implies y+ = lim
x→+∞

y(x) = y(x∗) = Y and the
theorem is proved.
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Since the substitution y(x) 7→ −y(−x) gives an equation of the same type as (0.1), the following
statement is also true.

Theorem 3.2. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with
initial data y(x0) ≥ 0, y′(x0) < 0 is defined on the whole axis and there exists a finite positive value
y− > y(x0) such that lim

x→−∞
y(x) = y−. Moreover,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y−|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 .

Definition ([8]). y(x) is a white hole solution to equation (0.1) if there exists a finite point x̃ such
that lim

x→x̃
y′(x) = 0, but lim

x→x̃
y(x) ̸= 0.

Thus, all decreasing solutions to equation (0.1) in the case k1 ∈ (1, 2) are the white hole solutions.

Lemma 3.1. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Then any decreasing solution y(x) to equation (0.1) is
defined on the whole axis and there exist a finite positive value y− and a finite negative value y+ such
that lim

x→±∞
y(x) = y±. Moreover,

(m

M

) 1
k0+1 ≤

∣∣∣y+
y−

∣∣∣ ≤ (M
m

) 1
k0+1

.

Proof. Indeed, let x0 be a zero of a decreasing solution y(x) to equation (0.1). Then the limits
y± = lim

x→±∞
y(x) are finite and the estimates from Theorems 3.1 and 3.2 take the form

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y+|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 ,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ yk0+1

− ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 ,

hence
m

M
≤

∣∣∣y+
y−

∣∣∣k0+1

≤ M

m
,

which implies the statement of the lemma.

Applying Lemma 3.1 for the case p(x, u, v) ≡ p0 = const, we obtain the following

Corollary. Suppose k0 > 0, k1 ∈ (0, 2), p(x, u, v) ≡ p0 = const. Then any solution y(x) to (0.1)
satisfying at some point x0 the condition y′(x0) < 0 is defined on the whole axis and the limits
y± = lim

x→±∞
y(x) are finite and satisfying the equality y− = −y+.

Theorem 3.3. Suppose k0 > 0, k1 ≥ 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with initial
data y(x0) ≤ 0, y′(x0) < 0 is unbounded and defined on the whole axis.

Proof. Let us prove the theorem for x > x0. Consider first the case k1 > 2.
According to the proof of Lemma 1.1, for any x > x0 we have y(x) < 0, y′(x) < 0 and, therefore,

y′′(x) > 0. This implies that y′(x) → 0 as x → x̃, where x̃ > x0 is the right domain boundary of y(x).
Denote y1 = |y′(x0)| = −y′(x0). While y′(x) ̸= 0, from Lemma 1.2 with x1 = x0 and x2 = x > x0

we derive

m
(
|y(x)|k0+1 − |y(x0)|k0+1

)
≤ k0 + 1

k1 − 2

(
|y′(x)|2−k1 − y2−k1

1

)
≤ M

(
|y(x)|k0+1 − |y(x0)|k0+1

)
.
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Denote Y = lim
x→x̃

y(x), then considering the above inequalities at x → x̃, we obtain

k0 + 1

k1 − 2

|y′(x)|2−k1 − y2−k1
1

M
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

k1 − 2

|y′(x)|2−k1 − y2−k1
1

m
,

and since y′(x) → 0 as x → x̃ and 2− k1 < 0, it follows that |Y | = +∞.
Analogously, for k1 = 2, we obtain

k0 + 1

M

(
ln y1 − ln |y′(x)|

)
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

m

(
ln y1 − ln |y′(x)|

)
,

and since y′(x) → 0 as x → x̃, it follows that |Y | = +∞.
Consider now x̃ in correspondence with k1. Let x∗ > x0, x∗ ≤ +∞ be the closest to x0 point such

that lim
x→x∗

y′(x) = 0.
From equation (0.1), on the interval (x0, x

∗), we derive

y′′|y′|−k1 = p(x, y, y′)|y|k0 sgn(yy′),

and since at x > x0 there is y(x) < 0, y′(x) < 0, we have

y′′(−y′)−k1 = p(x, y, y′)|y|k0 ,

1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
=

x∫
x0

p(x, y, y′)|y|k0 dx,

therefore
1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
≤

x∫
x0

M |Y |k0 dx = M |Y |k0(x− x0)

and
x− x0 ≥ 1

M |Y |k0(k1 − 1)

(
|y′(x)|1−k1 − |y′(x0)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1− k1 < 0, the right part of the above inequality tends to infinity as
x → x∗, which implies x∗ = +∞ and, therefore, the solution y(x) is defined on (x0,+∞), y+ = Y and
the theorem is proved.

4 Continuous dependence of boundaries of domain or
horizontal asymptotes of solutions on initial data

Consider first continuous dependence of the right-side boundary of the domain on initial data.

Theorem 4.1. Suppose k0 > 0, k1 > 0, k0+k1 > 1. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequality p(x, u, v) ≥ m > 0. Then for any ε > 0, there exists
δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ,
y0 ≥ 0, y1 > 0, z0 ≥ 0, z1 > 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with
the initial data {

y(x0) = y0,

y′(x0) = y1
(4.1)

and {
y(x̃0) = z0,

y′(x̃0) = z1,
(4.2)

respectively, have finite right-side boundaries of the domains x∗
1 > x0 and x∗

2 > x̃0, respectively, and
|x∗

2 − x∗
1| < ε.
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Proof. From Theorem 2.1 it follows that y′(x) → +∞ as x → x∗
1−0, there exists a point x1 such that

ỹ1 = y′(x1) satisfies

ỹ1 >
( ε

2ξ

)− k0+1
k0+k1−1

, ξỹ
− k0+k1−1

k0+1

1 <
ε

2
,

where ξ is a constant from Theorem 2.1. Then

x∗
1 − x1 < ξ(y′(x1))

− k0+k1−1
k0+1 <

ε

2
.

For any ε > 0, there exists δ̃ > 0 such that if |z̃1 − ỹ1| < δ̃, then ξz̃
− k0+k1−1

k0+1

1 < ε
2 . Also for every

δ̃ > 0 there exists δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ,
|z1 − y1| < δ, y0 ≥ 0, y1 > 0, z0 ≥ 0, z1 > 0 the inequality |z′(x1) − y′(x1)| < δ̃ holds. Then from
Theorem 2.1 we derive that the solution z(x) with initial data (4.2) has a finite right-side boundary
of the domain x∗

2 and
x∗
2 − x1 < ξ(z′(x1))

− k0+k1−1
k0+1 <

ε

2
.

Thus, for any ε, there exists δ > 0 such that

|x∗
2 − x∗

1| ≤ |x∗
2 − x1|+ |x1 − x∗

1| <
ε

2
+

ε

2
< ε.

Analogously, continuous dependence of the left-side boundary of the domain on the initial data is
obtained.

Theorem 4.2. Suppose k0 > 0, k1 > 0, k0+k1 > 1. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying the inequality p(x, u, v) ≥ m > 0. Then for any ε > 0, there
exists δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0−x0| < δ, |z0−y0| < δ, |z1−y1| < δ,
y0 ≤ 0, y1 > 0, z0 ≤ 0, z1 > 0, the maximally extended solutions y(x) and z(x) to equation (0.1)
with initial data (4.1) and (4.2), respectively, have finite left-side boundaries of domains x1∗ < x0 and
x2∗ < x̃0, respectively, and |x2∗ − x1∗| < ε.

Analogously, with the help of the estimates from Theorems 3.1 and 3.2 the following results on
the continuous dependence of solutions’ limits on the initial data are obtained.

Theorem 4.3. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then for any ε > 0 there exists δ > 0 such
that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ, y0 ≤ 0, y1 < 0,
z0 ≤ 0, z1 < 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with initial data (4.1)
and (4.2), respectively, have finite limits y+ < y(x0) and z+ < z(x̃0), respectively, as x → +∞, and
|y+ − z+| < ε.

Theorem 4.4. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then for any ε > 0, there exists δ > 0 such
that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ, y0 ≥ 0, y1 < 0,
z0 ≥ 0, z1 < 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with initial data (4.1)
and (4.2), respectively, have finite limits y− > y(x0) and z− > z(x̃0), respectively, as x → −∞, and
|x− − z−| < ε.
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LOCALIZED LOCAL MAXIMA FOR
NON-NEGATIVE GROUND STATE SOLUTION OF
NONLINEAR SCHRÖDINGER EQUATION WITH
NON-MONOTONE EXTERNAL POTENTIAL



Abstract. A non-negative ground state solution u(x) of the nonlinear Schrödinger equation with
non-monotone potential is studied. The existence of local maxima of u(x) which are attained on the
given intervals in one-dimensional space variable x is shown. Next, it is proved that the stationary
point of u(x) per one interval is unique. The co-existence of the local extrema of ground state solution
and external potential on the same interval is considered, too.1
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ÒÄÆÉÖÌÄ. ÛÒÏÃÉÍÂÄÒÉÓ ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÀÒÀÌÏÍÏÔÏÍÖÒÉ ÐÏ-
ÔÄÍÝÉÀËÉÈ ÛÄÓßÀÅËÉËÉÀ ÀÒÀÖÀÒÚÏ×ÉÈÉ ÞÉÒÉÈÀÃÉ ÌÃÂÏÌÀÒÄÏÁÉÓ u(x) ÀÌÏÍÀáÓÍÉ. ÍÀÜÅÄ-
ÍÄÁÉÀ u(x)-ÉÓ ËÏÊÀËÖÒÉ ÌÀØÓÉÌÖÌÄÁÉÓ ÀÒÓÄÁÏÁÀ, ÒÏÌËÄÁÉÝ ÌÉÉÙßÄÅÀ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ
ÓÉÅÒÝÉÈÉ x ÝÅËÀÃÉÓ ÌÏÝÄÌÖË ÉÍÔÄÒÅÀËÄÁÆÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ, ÒÏÌ u(x)-ÉÓ ÓÔÀÝÉÏÍÀÒÖËÉ
ßÄÒÔÉËÉ ÈÉÈÏÄÖËÉ ÉÍÔÄÒÅÀËÉÓÈÅÉÓ ÀÒÉÓ ÄÒÈÀÃÄÒÈÉ. ÂÀÍáÉËÖËÉÀ ÀÂÒÄÈÅÄ ÞÉÒÉÈÀÃÉ
ÌÃÂÏÌÀÒÄÏÁÉÓ ÀÌÏÍÀáÓÍÉÓ ËÏÊÀËÖÒÉ ÄØÓÔÒÄÌÖÌÄÁÉÓÀ ÃÀ ÉÌÀÅÄ ÉÍÔÄÒÅÀËÆÄ ÂÀÒÄ ÐÏÔÄÍ-
ÝÉÀËÉÓ ÈÀÍÀÀÒÓÄÁÏÁÉÓ ÓÀÊÉÈáÉ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction and mathematical setting
1.1 Localized local maxima
Let [a, b] ⊂ R be a bounded interval and u : R → R, u = u(x), be a C1-function. Recall that u(x)
attains a local maximum in a prescribed interval [a, b] if there exists a point xs ∈ [a, b] such that
u′(xs) = 0 (stationary point of u(x)) and u′(x) changes sign at xs such that u′(x) > 0 in (xs − ε, xs)
and u′(x) < 0 in (xs, xs + ε) for some ε > 0. One can say that xs is localized on [a, b].

For instance, if [a, b] = [0, π] and u(x) = exp(sin(x)), then the differential equation u′′ + (sin(x)−
cos2(x))u = 0 possesses a positive solution u(x) having a local maximum at xs = π/2, which is
localized and unique in [a, b].

1.2 Time-independent nonlinear Schrödinger equation (NLSE)
In the paper, we consider C2-solutions u(x) of the following one-dimensional time-independent non-
linear Schrödinger equation:

u′′ +
(
µ− 2m

~2
V (x)

)
u+

2m

~2
f
(
x, |u|2

)
u = 0, (1.1)

where µ ∈ R is the chemical potential, ~ is the Planck constant, m is the particle mass, V (x) is a
continuous the so-called linear, or external, or trapping potential and the nonlinear potential f satisfies:

f(x, s2) ≥ −g(x), (x, s) ∈ R2, (1.2)

where g(x) is a continuous function. In the accordance with (1.2), the following two cases occur:
(1) if g(x) ≤ 0, then f(x, s2) is an attractive potential: f(x, s2) ≥ 0, (x, s) ∈ R2; especially for

g(x)≡ 0, assumption (1.2) allows f(x, s2) to be a classic attractive potential: f(x, s2) = f0(x)s
2

with f0(x) ≥ 0; hence, in this case, our result can be interperted as the non-monotonic behaviour
of particle density in the Bose–Einstein condensate (BEC);

(2) if g(x) ≥ 0 and g(x) ̸≡ 0, then assumption (1.2) allows f(x, s2) to be a repulsive potential:
f(x, s2)≤ 0, (x, s)∈R2, but not a classic repulsive potential: f(x, s2)= f0(x)s2 with f0(x)≤ 0;
an example of a repulsive potential satisfying (1.2) is f(x, s2) = −g0(x) arctan(s2), where g(x) =
π
2 g0(x) with g0(x) ≥ 0.

1.3 Motivation for mathematical treatment of localized local maxima
of ground state solution of NLSE

The so-called solitary wave ψ : R× R → C defined by

ψ(x, t) = e−i ~µ
2m t u(x) (1.3)

satisfies the time-dependent nonlinear Schrödinger equation

i~ ∂ψ
∂t

= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ − f

(
x, |ψ|2

)
ψ, (1.4)

provided u(x) is a solution of our main equation (1.1). In such a situation, u(x) is called as the ground
state solution of NLSE (1.1). If f(x, s2) = f0(x)s

2, equation (1.4) is known as the Gross–Pitaevski
equation (GPE), which is a model for a wave function of the particles in an atomic cloud in BEC. The
quantity |ψ(x, t)|2 represents the particle density in BEC, which has the common stationary points in
the variable x with a non-negative ground state solution, since

|ψ(x, t)|2 = u2(x) and ∂

∂x
|ψ(x, t)|2 = (u2(x))′ = 2u(x)u′(x). (1.5)

Hence, the non-monotonic behaviour of particle density |ψ(x, t)|2 is strictly related with the extrema
of the ground state solution u(x). Among all known numerical simulations in which we can see the
non-monotonic behaviour of particle density in BEC (see [1–4] and [7–11]), we point out the next
three:
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• BEC with spatially modulated parameters – Figure 1. The exact ground state solution
u(x) = ρ(x)Φ(θ(x)) of the main equation (1.1) especially for f(x, s2) = f0(x)s

2, where Φ(t) is
a solution of the corresponding Duffing equation. The potential V (x), the spatially modulation
f0(x) and the frequency θ(x) are generated by the amplitude function ρ(x) via certain differential
relations derived by the similarity transformations (for details see [4]).

Figure 1. [4, Figure 2 – case (a)]

• A spin-orbit coupled BEC – Figure 2. The numerical simulation realized by a split-step
Crank–Nicolson method for the stationary states |ψ1| and |ψ2| of an integrable system of coupled
GPEs (1.4) solved by combining the Lax pair method and gauge transformation approach (for
details see [11]).

Figure 2. [11, Figure 7]

• The ground and first excited states in BEC – Figure 3. The numerically ground state
solution u(x) of the main equation (1.1), which is computed by the gradient flow with discrete
normalization, where the discretizing has been made in two ways (the backward Euler sine-
pseudospectral and backward/forward Euler sine-pseudospectral methods) (for details see [3]).

This numerical simulation is the most interesting for our consideration in the paper, because it
visualizes the next two issues:

- relation between non-monotonic behaviours of u(x) and V (x): when V (x) is non-monotonic,
then u(x) is non-monotonic too, although it is very well known that the classic theory for the
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Figure 3. [3, Figure 1(b), u(x) – solid line, V (x) – dashed lines]

linear Schrödinger equation says that when V (x) is a harmonic potential: V (x) = A|x|2, A > 0,
which is increasing on (0,∞), then u(x) is of Gaussian type: u(x) = Be−|x|2 , B > 0, which is
decreasing on (0,∞), see in [8, Section 2.3: Density profile and velocity distribution];

- the co-existence of local extrema on the same interval: u(x) attains the local maxima (resp.,
minima) in the intervals where the V (x) attains its minima (resp., maxima).

In Section 2, we state and describe our main assumptions and results, which are proved in Section 3.
The essential advantages of our method with respect to the method presented in the recently published
paper [5] are: the assumption for strictly positivity of u(x) is relaxed so that u(x) is now a non-
negative ground state solution having the most finite number of zeros per one interval; here, the
nonlinear potential f(x, s2) is not only of attractive type but it can also be of a repulsive type, which
is described above just after (1.2); our conditions on the external potential V (x) is more general than
related one considered in [6], which is shown below in Subsection 2.2.

2 Statement of the basic assumptions and main results
2.1 Basic assumptions
Let [a, b] ⊂ R be a bounded interval on which the ground state solution u(x) satisfies:

u(x) possesses at most finite number of zeros in [a, b], (H0)

and the potential difference between µ and (V (x) + g(x))2m/~2 satisfies:

µ− 2m

~2
(V (x) + g(x)) > 0 in [a, b]. (H-basic)

The next consequence of the assumptions (H0) and (H-basic) is worth to be pointed out.

Proposition 2.1. Let (1.2) and (H-basic) hold. If the ground state solution u(x) of (1.1) satisfies
(H0) and u(x) ≥ 0 in [a, b], then u(x) has at most one stationary point in [a, b].

Indeed, if the ground state solution u(x) is non-negative in [a, b] and has two stationary points
x1, x2 ∈ [a, b], x1 ̸= x2, then integrating (1.1) over [x1, x2] together with assumptions (1.2), (H0) and
(H-basic), we have

0 = u′(x2)− u′(x1) ≤ −
x2∫

x1

[
µ− 2m

~2
(V (x) + g(x))

]
u(x) dx < 0,
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which is not possible. Thus, the stationary point of u(x) in [a, b] is unique if it exists of course.
Next, the assumption (H0) is more general than the next one,

u(x) ̸= 0, x ∈ [a, b]. (H̸=0)

Although (H̸=0) is involved in all preceding Figures 1–3, the general assumption (H0) is also appearing
in the context of particle density in BEC (see, for instance, [2]).

Remark 2.1. Especially for g(x) ≡ 0 (attractive case) or g(x) ≥ 0 (repulsive case), the assumption
(H-basic) implies

µ− 2m

~2
V (x) > 0 in [a, b]. (2.1)

Since the chemical potential µ is a constant and V (x) is a continuous potential in R, thanks to (2.1)
it is possible to take for [a, b] such an interval in which V (x) attains its minimum. This is in the
accordance with the numerical simulation given in Figure 3 above. More accurate relation between
the non-monotonic behaviours of u(x) and V (x) is considered in Subsection 2.3 below about the
co-existence of local extrema of u(x) and V (x).

2.2 The existence of localized local extrema of u(x)

On a given interval [a, b], we involve on the potentials µ, V (x) and g(x) the following additional
assumption: for some φ ∈ C1(a, b), φ(a) = φ(b) = 0, φ(x) ̸= 0 in (a, b), we have

b∫
a

|φ(x)|2 dx >
b∫

a

|φ′(x)|2

µ− 2m
~2 (V (x) + g(x))

dx. (H-general)

The condition (H-general) is particularly related with the eigenvalue problem for the one-dimen-
sional Laplacian operator in (a, b) with respect to the first eigenvalue λ1 > 0 and the corresponding
eigenvalue vector φ ∈ C2(a, b) (let us remark that λ1 = (π/(b− a))2 and φ(x) = sin(

√
λ1(x− a))):

φ′′ + λ1φ = 0 in (a, b), φ(a) = φ(b) = 0. (2.2)

Indeed, if we suppose
µ− 2m

~2
(V (x) + g(x)) > λ1 in [a, b], (2.3)

which is a more concrete condition than (H-general), from (2.2) and (2.3) we get
b∫

a

|φ(x)|2 dx =
1

λ1

b∫
a

|φ′(x)|2 dx >
b∫

a

|φ′(x)|2

µ− 2m
~2 (V (x) + g(x))

dx.

Thus, condition (2.3) is a particular case of (H-general) taking for φ(x) the eigenfunction from (2.2).
The first main result is

Theorem 2.1. Suppose that (1.2) is satisfied and let [a, b] be an interval such that (H-basic) and (H-
general) hold. Then every solution u(x) of the nonlinear Schrödinger equation (1.1) has a stationary
point in [a, b]. Furthermore, if u(x) ≥ 0 in [a, b] and satisfies (H0), then the stationary point of u(x)
is unique in [a, b]. Moreover, u(x) attains its local maximum in [a, b].

Since (2.3) is a particular case of (H-general), we have also derived the next interesting consequence
of the main result.

Theorem 2.2. Suppose that (1.2) holds and let [a, b] be an interval such that the potentials µ, V (x)
and g(x) satisfy (2.3). Then every solution u(x) of the nonlinear Schrödinger equation (1.1) has a
stationary point on [a, b]. Furthermore, if u(x) ≥ 0 in [a, b] and satisfies (H0), then the stationary
point of u(x) is unique in [a, b]. Moreover, u(x) attains its local maximum in [a, b].

Thus, Theorem 2.2 is a particular case of Theorem 2.1, and Theorem 2.1 is more general than [6,
Theorem 3.1] even in the case g(x) ≡ 0, because the condition (H ̸=0) is relaxed here with (H0).
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2.3 The co-existence of local extrema of ground state solution u(x) and
potential V (x) + g(x)

According to Theorem 2.1, we are able now to explain the case in which the ground state solution u(x)
attains a local minimum on an interval where the potential V (x) + g(x) attains its local maximum.
This is also visualized in the next figure:

Figure 4. u(x) - solid line, V (x) + g(x) – dashed lines.

For this purpose, we need to work with two disjoint intervals [a1, b1] and [a2, b2] such that

a1 < b1 < a2 < b2. (2.4)

In order to simplify the notation, let

W (x) = µ− 2m

~2
(V (x) + g(x)).

Let the assumptions (H-basic), (H-general) and u(x) ≥ 0 with (H0) be satisfied on both intervals
[ak, bk], k ∈ {1, 2}. Firstly, it implies that W (x) > 0 on [a1, b1] ∪ [a2, b2]. Since W (x) is a continuous
potential on R, we have W (x) > 0 on [a1, b1 + ε)∪ (a2 − ε, b2] for some small enough ε > 0. Secondly,
from Theorem 2.1 applied to [a1, b1] and [a2, b2] simultaneously, we obtain that u(x) has two points
of local maximum x1 ∈ [a1, b1] and x2 ∈ [a2, b2] as well as x1 (resp., x2) is a unique stationary point
on [a1, b1] (resp., [a2, b2]). Hence, u(x) attains its local minimum on [b1, a2]. On the other hand, we
claim that

there exists x0 ∈ (b1 + ε, a2 − ε) such that W (x0) < 0. (2.5)
Indeed, if we suppose the contrary, then W (x) ≥ 0 in (b1 + ε, a2 − ε) and hence, W (x) > 0 on
Jε := [x1, b1 + ε) ∪ (a2 − ε, x2]. Next, since u′(x1) = u′(x2) = 0, integrating equation (1.1) over
[x1, x2] ⊂ [a1, b2], as in the proof of Proposition 2.1, we obtain

0 ≤ −
x2∫

x1

W (x)u(x) dx. (2.6)

Since W (x) > 0 on Jε and u(x) ≥ 0, from (H0) and (2.6) it follows that 0 < 0. Hence, W (x) has to
satisfy (2.5). Since W (x) is supposed to be strictly positive on [ak, bk], k ∈ {1, 2}, this implies that
W (x) has a negative minimum on [b1, a2] and hence, V (x)+ g(x) attains a local maximum on [b1, a2].
Thus, we have shown the next result.

Theorem 2.3. Suppose that (1.2) is satisfied and let [ak, bk], k ∈ {1, 2} be two disjoint intervals such
that (2.4) hold. If (H-basic) and (H-general) are satisfied on [ak, bk], k ∈ {1, 2}, then on the interval
[b1, a2] the ground state solution u(x) has a local minimum and the potential V (x) + g(x) attains a
local maximum.

In particular, for g(x) ≡ 0, Theorem 2.3 shows that V (x) has to be necessarily a non-monotonic
potential on [b1, a2].
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3 Proofs of main results
3.1 Some propositions
Before stating two propositions used in the proof of Theorem 2.1, we first state and prove the next

Proposition 3.1. Every solution u(x) of NLSE (1.1) which satisfies (H̸=0) has a stationary point in
[a, b] if and only if there is no any solution (v,R) of the first-order system

R′ = 1 +R2
[(
µ− 2m

~2
V (x)

)
+

2m

~2
f
(
x, |v(x)|2

)]
in (a, b),

v′ =
1

R(x)
v in (a, b),

(3.1)

such that v,R ∈ C([a, b]) ∩ C1(a, b), v(x) ̸= 0 and R(x) ̸= 0, ∀x ∈ [a, b].

Proof. (Direction =⇒) Arguing by contradiction, let there exist a function v ∈ C([a, b]) ∩ C1(a, b),
v(x) ̸= 0 on [a, b] and a function R ∈ C([a, b])∩C1(a, b), R(x) ̸= 0 on [a, b] which satisfy the first-order
system (3.1). Then

v′′(x) =
v′(x)

R(x)
− v(x)

R2(x)
R′(x)

=
v(x)

R2(x)
(1−R′(x)) = −

[(
µ− 2m

~2
V (x)

)
+

2m

~2
f
(
x, |v(x)|2

)]
v(x)

and thus, v(x) is a solution of NLSE (1.1) such that v′(x) = v(x)/R(x) ̸= 0 on [a, b]. It contradicts
the assumption that every solution of NLSE (1.1) has a stationary point in [a, b].

(Direction ⇐=) On the contrary, if u(x) is a solution of NLSE (1.1) such that u′(x) ̸= 0 on [a, b],
then the pair of functions R(x) := u(x)/u′(x) and v(x) := u(x) is the solution of system (3.1) such
that R(x) ̸= 0 and u(x) ̸= 0 on [a, b], because of (H̸=0) and

R′(x) = 1− u(x)

u′2(x)
u′′(x)

= 1 +
u2(x)

u′2(x)

[(
µ− 2m

~2
V (x)

)
+

2m

~2
f
(
x, |u(x)|2

)]
= 1 +R2(x)

[(
µ− 2m

~2
V (x)

)
+

2m

~2
f
(
x, |u(x)|2

)]
.

This contradicts the assumption that (3.1) has no such a solution. It completes the proof of this
proposition.

In the absence of the strong assumption (H ̸=0), we have the following essential proposition, which
is weaker than Proposition 3.1, but it is used in the proof of the main result.

Proposition 3.2. If for a function v(x) there is no any solution R ∈ C([a, b]) ∩ C1(a, b), R = R(x)
of the first-order differential equation

R′ = 1 +R2
[(
µ− 2m

~2
V (x)

)
+

2m

~2
f
(
x, |v(x)|2

)]
in (a, b), (3.2)

then every solution u(x) of NLSE (1.1) has a stationary point in [a, b].

Proof. By contradiction, let u(x) be a solution of (1.1) such that u′(x) ̸= 0 for all x ∈ [a, b]. Then the
function R(x) = u(x)/u′(x) is well defined on [a, b], R ∈ C([a, b])∩C1(a, b) and satisfies equation (3.2)
with v(x) = u(x) (because we can use the similar computation as in the proof of Proposition 3.1).
This contradicts the main assumption of this lemma and hence, there exists xs ∈ [a, b] such that
u′(xs) = 0, which proves the proposition.
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Now we give a condition ensuring that u(x) attains its local maximum at a stationary point.

Proposition 3.3. Suppose that (1.2) holds and let xs ∈ [a, b] be a stationary point of a solution u(x)
of NLSE (1.1). If u(x) ≥ 0 on [a, b] and satisfies (H0), and the potentials µ, V (x) and g(x) satisfy
(H-basic), then xs is a unique stationary point of u(x). Moreover, u(x) attains a local maximum at xs.

Proof. Let u(x) ≥ 0 and satisfy (H0). Since all potentials in (H-basic) are continuous, there exists
ε > 0 such that

µ− 2m

~2
(V (x) + g(x)) > 0 in (a− ε, b+ ε). (3.3)

Integrating (1.1) over [x, xs], where x ∈ (a− ε, xs), and using (1.2), (H0) and (3.3), we obtain

−u′(x) = −
xs∫
x

(
µ− 2m

~2
V (σ)

)
u(σ) dσ − 2m

~2

xs∫
x

f
(
σ, |u(σ)|2

)
u(σ) dσ

≤ −
xs∫
x

[
µ− 2m

~2
(V (σ) + g(σ))

]
u(σ) dσ < 0,

which shows that u′(x) > 0 for all x ∈ (a − ε, xs). Analogously, integrating (1.1) over [xs, x], where
x ∈ (xs, b+ ε), we obtain

u′(x) ≤ −
x∫

xs

[
µ− 2m

~2
(V (σ) + g(σ))

]
u(σ) dσ < 0,

which shows that u′(x) < 0 for all x ∈ (xs, b + ε). Thus, u(x) has a local maximum at the given
stationary point xs. The uniqueness of xs immediately follows from Proposition 2.1.

3.2 Proof of Theorem 2.1
By Proposition 3.2 it is enough to show that the assumption (H-general) ensures that for any v(x)
there is no any solution R(x), R ∈ C([a, b]) ∩ C1(a, b) of equation (3.2). Indeed, if there exists
such a solution, then multiplying (3.2) by φ2(x), where φ ∈ C([a, b]) ∩ C1(a, b), φ(x) ̸= 0 in (a, b),
φ(a) = φ(b) = 0 and using (1.2), we obtain

b∫
a

φ2(x) dx ≤ −
b∫

a

[√
Q(x)φ(x)R(x) +

φ′(x)√
Q(x)

]2
dx+

b∫
a

φ′2(x)

Q(x)
dx,

where Q(x) := µ− 2m
~2 (V (x)+g(x)) and Q(x) > 0 on [a, b] due to the assumption (H-basic). Previous

inequality contradicts the main assumption of this theorem and hence, there is no any solution R(x),
R ∈ C([a, b])∩C1(a, b) of equation (3.2). Therefore, Proposition 3.2 gives the existence of a stationary
point of u(x) in [a, b]. Now, the rest of this proof immediately follows from Proposition 3.3.

References
[1] U. Al Khawaja, Integrability of a general Gross–Pitaevskii equation and exact solitonic solutions

of a Bose-Einstein condensate in a periodic potential. Phys. Lett. A 373 (2009), no. 31, 2710–2716.
[2] Y. Azizi and A. Valizadeh, Rotating Bose–Einstein condensate in an optical lattice: Formulation

of vortex configuration for the ground state. Physica B: Condensed Matter 406 (2011), no. 4,
1017–1021.

[3] W. Bao, I.-L. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for
computing ground and first excited states in Bose–Einstein condensates. J. Comput. Phys. 219
(2006), no. 2, 836–854.



122 Mervan Pašić

[4] J. Belmonte-Beitia, V. V. Konotop, V. M. Pérez-García and V. E. Vekslerchik, Localized and pe-
riodic exact solutions to the nonlinear Schrödinger equation with spatially modulated parameters:
linear and nonlinear lattices. Chaos Solitons Fractals 41 (2009), no. 3, 1158–1166.

[5] M. Pašić, Sign-changing first derivative of positive solutions of forced second-order nonlinear
differential equations. Appl. Math. Lett. 40 (2015), 40–44.

[6] M. Pašić, Strong non-monotonic behavior of particle density of solitary waves of nonlinear
Schrödinger equation in Bose–Einstein condensates. Commun. Nonlinear Sci. Numer. Simul.
29 (2015), no. 1-3, 161–169.

[7] D. E. Pelinovsky, Localization in Periodic Potentials. From Schrödinger Operators to the Gross–
Pitaevskii Equation. London Mathematical Society Lecture Note Series, 390. Cambridge Univer-
sity Press, Cambridge, 2011.

[8] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Second Edition, Cam-
bridge University Press, Cambridge, 2008.

[9] G. A. Sekh, Effects of spatially inhomogeneous atomic interactions on Bose–Einstein condensates
in optical lattices. Phys. Lett., A 376 (2012), no. 21, 1740–1747.

[10] H. J. Shin, R. Radha and V. R. Kumar, Bose–Einstein condensates with spatially inhomogeneous
interaction and bright solitons. Phys. Lett., A 375 (2011), no. 25, 2519–2523.

[11] P. S. Vinayagam, R. Radha, S. Bhuvaneswari, R. Ravisankar and P. Muruganandam, Bright
soliton dynamics in spin orbit–Rabi coupled Bose–Einstein condensates. Commun. Nonlinear
Sci. Numer. Simul. 50 (2017), 68–76.

(Received 22.10.2017)

Authors’ address:

Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University
of Zagreb, Zagreb 10000, Croatia.

E-mail: mervan.pasic@fer.hr



Memoirs on Differential Equations and Mathematical Physics
Volume 73, 2018, 123–129

V. V. Rogachev

ON THE EXISTENCE OF SOLUTIONS TO HIGHER-ORDER
REGULAR NONLINEAR EMDEN–FOWLER TYPE EQUATIONS
WITH GIVEN NUMBER OF ZEROS ON THE PRESCRIBED INTERVAL



Abstract. The existence of solutions with a given number of zeros to higher-order regular-nonlinear
Emden–Fowler type equations is proven.1

2010 Mathematics Subject Classification. 34C11, 34E10

Key words and phrases. Higher-order Emden–Fowler type differential equations, regular nonlin-
earity, boundary value problem.

ÒÄÆÉÖÌÄ. ÌÀÙÀËÉ ÒÉÂÉÓ ÄÌÃÄÍ-×ÀÖËÄÒÉÓ ÔÉÐÉÓ ÀÒÀßÒ×ÉÅÉ, ÒÄÂÖËÀÒÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÌÔÊÉÝÃÄÁÀ ÉÓÄÈÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÀ, ÒÏÌËÉÓ ÍÖËÄÁÉÓ ÒÀÏÃÄÍÏÁÀ
ÌÏÝÄÌÖË ÓÀÓÒÖË ÛÖÀËÄÃÛÉ ßÉÍÀÓßÀÒ ÃÀÓÀáÄËÄÁÖËÉ ÒÉÝáÅÉÓ ÔÏËÉÀ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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1 Introduction
Consider the equation

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, (1.1)

where n ≥ 2, k ∈ (1,+∞), the function p(t, y1, y2, y3, . . . , yn) ∈ C(Rn+1) is Lipschitz continuous in
(y1, y2, y3, . . . , yn) and for some m, M > 0 satisfies the inequalities

0 < m ≤ p(t, y1, y2, . . . , yn) ≤ M < +∞.

The problem of the existence of solutions to (1.1) with the given number of zeros on the prescribed
domain is investigated.

Asymptotic classification of solutions to (1.1) with n = 3, 4, k ∈ (1,+∞), p(t, y, y′, . . . , y(n−1)) ≡
const and with n = 3, k ∈ (0, 1), p(t, y, y′, . . . , y(n−1)) ≡ const is provided in [1, 3] by I. Astashova.
Later, the existence of quasiperiodic solutions to the regular (k ∈ (1,+∞)) higher-order Emden–Fowler
type equations has been proved in [2].

Using [1], the existence of solutions with the given number of zeros was proved for the case of third-
and fourth-order equations with the constant coefficient p and with k ∈ (0, 1) ∪ (1,+∞) (see [4]).
Later, the case of the higher-order differential equation (1.1) with the constant potential and regular
nonlinearity (k > 1) was considered in [5]. In [6], the existence of solutions with the given number of
zeros was proved for (1.1) with n = 3, k ∈ (1,+∞). In [7], the existence of such solutions was proved
for the equation with k ∈ (0, 1).

Now we generalize these results to the case of equation (1.1).

2 Main result
Theorem 2.1. For any real a and b satisfying −∞ < a < b < +∞ and any integer S ≥ 2, equation
(1.1) has a solution defined on the segment [a, b], vanishing at its end points a, b and having exactly
S zeros on [a, b].

3 Preliminary results
The following statements are used to prove the main theorem.

Lemma 3.1 (Generalization of 7.1 from [1]). Let y(t) be a solution to (1.1). If for some t0 the
inequalities

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0

hold, then there is a local supremum of y at some point t′0 > t0 satisfying the inequalities

t′0 − t0 ≤ (µy′(t0))
− k−1

k+n−1 ,

y(t′0) > (µy′(t0))
n

k+n−1 ,

where µ > 0 is a constant depending only on n, k, m, M .

Lemma 3.2 (Generalization of 7.2 from [1]). Let y(t) be a solution to (1.1). If for some t′0 the
inequalities

y(t′0) > 0, y′(t′0) ≤ 0, . . . , y(n−1)(t′0) ≤ 0

hold, then y is equal to zero at some point t0 > t′0 satisfying the inequalities

t0 − t′0 ≤ (µy(t′0))
− k−1

n ,

y′(t0) < −(µy(t′0))
k+n−1

n ,

where µ > 0 is a constant depending only on n, k, m, M .
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Lemma 3.3 (Generalization of 7.3 from [1]). Under the conditions of Lemmas 3.1, 3.2, for any t1 > t0
such that y(t0) = 0, y(t1) = 0, the inequality

|y′(t1)| > Q|y′(t0)|

holds, where Q > 1 is a constant depending only on k, m, M .

Lemma 3.4. Let D be a subset of Rn and D̃ be a subset of Rn+1. Suppose that for any c ∈ D
there exists xc > 0 such that {c} × [0, xc] ⊂ D̃. Consider a continuous function f(c, x) : D̃ → R and
introduce the following conditions:

• f(c, 0) = 0 for any c ∈ D,
• for every c ∈ D, there exists a point x1(c) ∈ (0, xc) such that f(c, x1(c)) = 0 and f(c, x) ̸= 0

whenever x ∈ (0, x1(c)),
• f(c, x) is differentiable in x, and df

dx (c, x1(c)) ̸= 0 for all c ∈ D.

If these conditions hold, then x1(c) : D → R is a continuous function.

Proof. By definition, x1(c) describes the distance from 0 to the first zero of the function f(c, · ). The
existence of such a zero is stated in the second condition of the lemma. Therefore x1(c) is actually a
function (its value is defined for every c ∈ D), but, perhaps, discontinuous. We intend to prove that
x1(c) is a continuous function.

At every point (c, x1(c)) ∈ D̃, the function f(c, x) fulfills the conditions of the Implicit Function
Theorem. Therefore for any c̃ ∈ D there exist rectangular neighborhoods U ⊂ D of c̃, V ⊂ R of x1(c̃),
and a continuous function gc̃(c) : U → V such that for all (c, x) ∈ U × V the conditions f(c, x) = 0
and x = gc̃(c) are equivalent.

It is clear that x1(c̃) = gc̃(c̃), but we have to prove that x1(c) ≡ gc̃(c) in some neighborhood of c̃.
(We know that f(c, gc̃(c)) = 0, but the zeros of f(c, · ) provided by gc̃(c) may not be the zeros closest
to the point x = 0.)

We will prove this by contradiction. Suppose that in any punctured neighborhood of some point
c∗ ∈ D there exists a point c such that gc∗(c) ̸= x1(c). Then we have an infinite set {cα} such that for
every cα the inequality gc∗(cα) ̸= x1(cα) holds. We can extract from {cα} a sequence {cn} tending to
the point c∗. The implicit function theorem for f(c, x) takes place in a neighborhood U × V of the
point (c∗, x1(c

∗)).
Now we look closely at the set {(cn, x1(cn))}. It is a sequence in D̃, which cannot enter U × V ,

because otherwise the condition f(cn, x1(cn)) = 0 inside U×V contradicts the very definition of {cn}.
At the same time, the points (cn, x1(cn)) cannot be above the graph of gc∗(c) and above U × V by
the definition of the function x1(c).

So, the sequence {x1(cn)} is bounded by zero from below and by infV < x1(c
∗) from above.

Hence {x1(cn)} has a limit inferior x∗ < x1(c
∗). We extract a subsequence {x1(cni

)} tending to
the above limit and then consider a sequence {(cni

, x1(cni
))}. The function f(c, x) is continuous,

f(cni
, x1(cni

)) = 0, and (cni
, x1(cni

)) → (c∗, x∗) as i → ∞. Therefore, f(c∗, x∗) = 0. But at the same
time we have x∗ < x1(c

∗), and this contradicts the conditions of the lemma. Therefore, the point c∗,
in fact, does not exist.

This means that for every point c̃ ∈ D the equality x1(c) ≡ gc̃(c) is true in some neighborhood of c̃.
Every function gc̃(c) is continuous near c̃. Therefore, x1(c) is continuous at every point c ∈ D.

3.1 Proof of the main result
Proof of Theorem 2.1. Consider a maximally extended solution y(t) to (1.1) with initial data y(i)(a) =
yi, i ∈ 0, n− 1.

It follows from Lemmas 3.1–3.3 that if the inequalities

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0

hold at some point t0, then there exists a point t1 > t0 such that

y(t1) = 0, y′(t1) < 0, y′′(t1) ≤ 0, . . . , y(n−1)(t1) ≤ 0
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and
t1 − t0 ≤ (µ′y′(t0))

− k−1
k+2 ,

where µ′ > 0 and Q > 1 are constants depending only on k, m, and M .
The analogous statement takes place if

y(t0) ≤ 0, y′(t0) < 0, y′′(t0) ≤ 0, . . . , y(n−1)(t0) ≤ 0.

Hence, if y0 = 0 and yi > 0 for i ∈ 1, n− 1, then y(t) is an oscillating solution, i.e., it has an
infinite sequence of zeros {a, t1, t2, . . .}. In the sequel, y0 = 0 and yi > 0 for i ∈ 1, n− 1.

We denote the distance between zeros by Li = ti − ti−1. The distance from a to the (S− 1)st zero
is a function

L(y1, y2, . . . , yn−1) =

S−1∑
j=1

Lj(y1, y2, . . . , yn−1),

and its value depends on the initial data of the solution y(t).
If L(y1, y2, . . . , yn−1) = b − a, then the solution y(t) has exactly S zeros on [a, b]. To prove the

theorem we have to prove that for any b and a the last equation has at least one solution.
First, notice that L is a continuous function. If we rewrite (1.1) as a system of first-order ODEs,

that system will satisfy the conditions of the continuous dependence on initial data theorem [8, § 7,
Theorem 6]. By Y (t, a, y0, y1, y2, . . . , yn−1) we denote a maximally extended solution to (1.1) with
initial data y(i)(a) = yi, i ∈ 0, n− 1. Therefore, Y (t, a, y0, y1, y2, . . . , yn−1) and n of its derivatives in
t are continuous functions on their domains.

Are the conditions of Lemma 3.4 fulfilled? Put

D =
{
(y1, y2, . . . , yn−1) | yi > 0

}
⊂ Rn−1.

For every such (y1, y2, . . . , yn−1) we have already proved the existence of the first zero t1, which
satisfies y′(t1) ̸= 0. Further, there exists the second zero t2, and for D̃ ⊂ Rn we take the area above
D × {0} and under the graph of t2(y1, y2, . . . , yn−1). Obviously, Y (a, a, y0, y1, y2, . . . , yn−1) = 0, and
Y (t, a, y0, y1, y2, . . . , yn−1) is defined on D̃. (Here a is fixed and y0 is equal to zero.)

The conditions of Lemma 3.4 are fulfilled, hence t1(y1, y2, . . . , yn−1), or L1 is a continuous function
on D. It is possible to prove by using Lemma 3.4 that all Li, and therefore L are continuous. For L2,
for example, notice that y(t1(y1, y2, . . . , yn−1)), y

′(t1(y1, y2, . . . , yn−1)), . . . , y
(n−1)(t1(y1, y2, . . . , yn−1))

are also continuous, because they are compositions of continuous functions Y (i)(·, a, y0, y1, y2, . . . , yn−1)
and t1(y1, . . . , yn−1).

Now we are to find an upper estimate of L. It is already proved that

L1 ≤ (µ′y1)
− k−1

k+n−1 .

It follows from Lemma 3.3 that
|y′(ti)| ≥ Qi|y′(a)|.

Consider Li. Since − k−1
k+n−1 < 0, we have

Li ≤ (µ′Qi−1y1)
− k−1

k+n−1 = (Q− k−1
k+n−1 )i−1(µ′y1)

− k−1
k+n−1 .

Put Q̃ = Q− k−1
k+n−1 . Since Q > 1, − k−1

k+n−1 < 0, and therefore 0 < Q̃ < 1, the upper estimates of Li

form a decreasing geometric progression. Therefore,

L = L1 + L2 + · · ·+ LS−1 ≤ 1− Q̃S

1− Q̃
(µ′y′(a))−

k−1
k+n−1 = c1y

′(a)−
k−1

k+n−1 ,

L < c1y
′(a)−

k−1
k+n−1 , (3.1)

where c1 is a constant depending on n, k, m, M , and S.
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To get a lower estimate of L it is sufficient to make a lower estimation of L1. Consider a point
t′0 ∈ [a, t1] such that y′(t′0) = 0. On the segment [t′0, t1], the derivatives y′, y′′ are non-positive.
Therefore,

Qy′(a) < |y′(t1)| = |y′(t1)| − |y′(t′0)| =
t1∫

t′0

|y′′(ξ)| dξ < |t1 − t′0| max
[t′0,t1]

|y′′|.

We must get an upper estimate of max
[t′0,t1]

|y′′|. Notice the behaviour of the derivatives of y(t) as t

goes from a to t1. On the segment [a, t1], the inequality y(t) > 0 holds. First, near a, every derivative,
except y(n), is positive. It follows that y(n−1) is decreasing and after some point the inequality
y(n−1) < 0 holds, when y(n) is still negative. Hence, now y(n−2) starts to decrease, and we can repeat
the same steps, until the solution y intersects the 0 − t-axis, i.e., when we move t from a to t1, the
derivatives change their signs in order and higher-order derivatives change sign before low-order ones.
Therefore, on [t′0, t1], the second derivative of the solution y is negative, because on the segment [t′0, t1]
the first derivative y′(t) < 0.

Denote |y|k sgn y by |y|k±. All initial data are positive, hence

0 > y′′(t) = y2 + y3(t− a) + y4
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−3

(n− 3)!

−
t∫

a

· · ·
t∫

a

p(t, y, . . . , y(n−1))|y|k±(d t)n−2

> −
t∫

a

· · ·
t∫

a

p(t, y, . . . , y(n−1))|y|k±(d t)n−2 > −M |t− a|n−2 max
[a,t1]

|y|k,

whence
max
[t′0,t1]

|y′′| < M |t1 − a|n−2 max
[a,t1]

|y|k.

Now we get an upper estimation of max
[a,t1]

|y|k. The inequality y(t) > 0 holds on [a, t1], whence

y(t) = y1(t− a) + y2
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−1

(n− 1)!
−

t∫
a

· · ·
t∫

a

p(ξ, y, . . . , y(n−1))|y|k± (dξ)n

< y1(t− a) + y2
(t− a)2

2!
+ · · ·+ yn−1

(t− a)n−1

(n− 1)!
.

Therefore,

max
[a,t1]

|y(t)|k <
(
y1(t1 − a) + · · ·+ yn−1

(t1 − a)n−1

(n− 1)!

)k

.

Combining both estimates, we get

Qy1 < M |t1 − t′0||t1 − a|n−2
(
y1(t1 − a) + · · ·+ yn−1

(t1 − a)n−1

(n− 1)!

)k

.

By definition, t1 − a = L1 and |t1 − t′0| < L1, hence

Qy1 < MLn−1
1

(
y1L1 + · · ·+ yn−1

Ln−1
1

(n− 1)!

)k

.

Suppose y1 = y2 = · · · = yn−1 and y1 is a variable. In this case,

MLn−1
1

(
L1 + · · ·+ Ln−1

1

(n− 1)!

)k

> Qy1−k
1 .
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In the left-hand side of the inequality we have the function of L1 which is defined for every L1 > 0,
is equal to zero when L1 = 0, and is monotonically increasing. The value of the right-hand side may be
arbitrarily large as y1 is arbitrarily small. Hence, for any λ > 0, we can choose initial data providing
L > λ.

But, due to (3.1), for any λ > 0 we can choose initial data providing 0 < L < λ. There-
fore, the value of L(y1, y2, . . . , yn−1) may be arbitrarily large, arbitrarily small, and, at the same
time, L(y1, y2, . . . , yn−1) is proven to be continuous. Thus, we conclude that the range of values of
L(y1, y2, . . . , yn−1) is (0,+∞). Therefore, the equation

L(y1, y2, . . . , yn−1) = b− a

can be resolved for any b > a. This proves the theorem.

Acknowledgment
The author is grateful to Prof. I. V. Astashova for her support.

References
[1] I. V. Astashova, Qualitative properties of solutions to quasilinear ordinary differential equations.

(Russian) In: Astashova I. V. (Ed.) Qualitative Properties of Solutions to Differential Equations
and Related Topics of Spectral Analysis, pp. 22–290, UNITY-DANA, Moscow, 2012.

[2] I. Astashova, On quasi-periodic solutions to a higher-order Emden-Fowler type differential equa-
tion. Bound. Value Probl. 2014, 2014:174, 8 pp.

[3] I. V. Astashova, On asymptotic classification of solutions to nonlinear regular and singular third-
and fourth-order differential equations with power nonlinearity. In: Differential and difference
equations with applications, 191–203, Springer Proc. Math. Stat., 164, Springer, [Cham], 2016.

[4] I. V. Astashova and V. V. Rogachev, On the number of zeros of oscillating solutions of the third-
and fourth-order equations with power nonlinearities. (Russian) NelīnīǐnīKoliv. 17 (2014), no. 1,
16–31; translation in J. Math. Sci. (N.Y.) 205 (2015), no. 6, 733–748.

[5] V. V. Rogachev, On existence of solutions with given number of zeros to high order Emden–Fowler
type equation. Abstracts of Conference on Differential and Difference Equations and Applications,
41–42, Jasna, Slovak Republic, 2014.

[6] V. V. Rogachev, On the existence of solutions with prescribed number of zeros to regular nonlinear
Emden–Fowler type third-order equation with variable coefficient. (Russian) Vestnik SamGU
6(128) (2015), 117–123.

[7] V. V. Rogachev, On existence of solutions to higher-order singular nonlinear Emden-Fowler type
equation with given number of zeros on prescribed interval. Funct. Differ. Equ. 23 (2016), no.
3-4, 141–151.

[8] A. F. Filippov, Introduction to the Theory of Differential Equations. (Russian) 3rd ed.,
Ser. MSU classical textbooks, URSS, Moscow, 2010; https://books.google.ru/books?id=
f2xkkgAACAAJ.

(Received 27.09.2017)

Author’s address:

Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, Russia.
E-mail: valdakhar@gmail.com





Memoirs on Differential Equations and Mathematical Physics
Volume 73, 2018, 131–140

S. H. Saker, D. O’Regan, M. R. Kenawy, R. P. Agarwal

FRACTIONAL HARDY TYPE INEQUALITIES
VIA CONFORMABLE CALCULUS



Abstract. α-fractional analogs of of Hardy’s classical integral inequalities are established.

2010 Mathematics Subject Classification. 26A33, 26D10.

Key words and phrases. Hardy inequality, Conformable fractional derivative, Conformable frac-
tional integral, Hölder inequality.

ÒÄÆÉÖÌÄ. ÃÀÃÂÄÍÉËÉÀ äÀÒÃÉÓ ÊËÀÓÉÊÖÒÉ ÉÍÔÄÂÒÀËÖÒ ÖÔÏËÏÁÀÈÀ α-ßÉËÀÃÖÒÉ ÀÍÀËÏÂÄÁÉ.



Fractional Hardy Type Inequalities via Conformable Calculus 133

1 Introduction
In 1925, Hardy [4] used the calculus of variations to prove the inequality

∞∫
0

(
1

x

x∫
0

f(t) dt

)p

dx ≤
( p

p− 1

)p ∞∫
0

fp(x) dx, (1.1)

where f ≥ 0 is integrable over any finite interval (0, x) and fp is integrable and convergent over (0,∞)
and p > 1. The constant (p/(p− 1))p is the best possible.

In 1928, Hardy [5] generalized inequality (1.1) and proved that if p > 1 and f is non-negative for
x ≥ 0, then

∞∫
0

x−c

( x∫
0

f(t) dt

)p

dx ≤
( p

c− 1

)p ∞∫
0

xp−cfp(x) dx for c > 1, (1.2)

and
∞∫
0

x−c

( ∞∫
x

f(t) dt

)p

dx ≤
( p

1− c

)p ∞∫
0

xp−cfp(x) dx for c < 1. (1.3)

The constants (p/(c− 1))p and (p/(1− c))p are the best possible.
In recent years, fractional inequalities were studied by using the fractional Caputo and Riemann–

Liouville derivative; for details, we refer the reader to [3] and [17]. In [1] and [7], the authors presented
conformable calculus and classical inequalities with the use of conformable fractional calculus such as
Opial’s inequality (see [11] and [12]), Hermite–Hadamard’s inequality (see [8] and [10]), Chebyshev’s
inequality (see [2]) and Steffensen’s inequality (see [13]). In this paper, using a somewhat different
approach we present new Hardy type inequalities via conformable fractional calculus. Also, one can
see from our approach and presentation that the conformable fractional inequalities encountered in
the literature are, in fact, special cases of weighted inequalities (for an appropriate weight function).
Our goal in this paper is, first, to show how naturally weights work in inequalities and, second, to
indicate and correct some slight mistakes (usually when one integrates by parts) in the literature.

The paper is organized as follows. In Section 2, we present some concepts on conformable fractional
calculus and also Hölder’s inequality for α-fractional differentiable functions which we will use to prove
our main results. In Section 3, we prove some Hardy type inequalities for α-fractional differentiable
functions and obtain the classical ones as special cases when α = 1.

2 Basic concepts and lemmas
In this section, we present some basic definitions concerning conformable fractional calculus. For more
details, we refer the reader to [1] and [7].

Definition 2.1. Let f : [0,∞) → R. Then the conformable fractional derivative of order α of f is
defined by

Dαf(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ

for all t > 0 and 0 < α ≤ 1, and
Dαf(0) = lim

t→0+
Dαf(t).

Let α ∈ (0, 1] and f, g be α-differentiable at a point t. Then

Dα(fg) = fDαg + gDαf. (2.1)

Further, let α ∈ (0, 1] and f, g be α-differentiable at a point t, with g(t) ̸= 0. Then

Dα

(f
g

)
=

gDαf − fDαg

g2
. (2.2)
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Remark 2.1. If f is a differentiable function, then

Dαf(t) = t1−α df(t)

dt
.

Definition 2.2. Let f : [0,∞) → R. Then the conformable fractional integral of order α of f is
defined by

Iαf(t) =

t∫
0

f(x) dαx =

t∫
0

xα−1f(x) dx (2.3)

for all t > 0 and 0 < α ≤ 1.

Now, we state an integration by parts formula (see [1] and [7]) which is immediate.

Lemma 2.1. Assume that w, g : [0,∞) → R are two functions such that w, g are differentiable and
0 < α ≤ 1. Then for any b > 0,

b∫
0

w(x)Dαg(x) dαx = w(x)g(x)|b0 −
b∫

0

g(x)Dαw(x) dαx. (2.4)

Next, we prove the Hölder type inequality needed in the next section (of course, it is the usual
Hölder inequality for the functions under consideration (i.e., x

(α−1)
p f(x) and x

(α−1)
q g(x)); for com-

pleteness we include its proof).

Lemma 2.2. Let f, g : [0,∞) → R and 0 < α ≤ 1. Then for any b > 0,

b∫
0

|f(x)g(x)| dαx ≤
( b∫

0

|f(x)|p dαx
) 1

p
( b∫

0

|g(x)|q dαx
) 1

q

, (2.5)

where 1/p+ 1/q = 1 (provided the integrals exist (and are finite)).

Proof. For nonnegative real numbers β, γ, the classical Young inequality is

β
1
p γ

1
q ≤ β

p
+

γ

p
.

Suppose now, without loss of generality, that
b∫

0

|f(x)|p dαx ̸= 0 and
b∫

0

|g(x)|q dαx ̸= 0.

Applying Young’s inequality with

β =
|f(x)|p

b∫
0

|f(x)|p dαx
, γ =

|g(x)|q
b∫
0

|g(x)|q dαx

,

and integrating the obtained inequality from 0 to b, we get

b∫
0

|f(x)|( b∫
0

|f(s)|p dαs
) 1

p

|g(x)|( b∫
0

|g(s)|q dαs
) 1

q

dαx

=

b∫
0

β
1
p (x)γ

1
q (x) dαx ≤

b∫
0

(β
p
+

γ

q

)
dαx
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=

b∫
0

(
|f(x)|p

p
( b∫
0

|f(s)|p dαs
) + |g(x)|q

q
( b∫
0

|g(s)|q dαs
)
)
dαx

=

b∫
0

|f(x)|p dαx

p
( b∫
0

|f(s)|p dαs
) +

b∫
0

|g(x)|q dαx

q
( b∫
0

|g(s)|q dαs
) =

1

p
+

1

q
= 1,

which is the desired inequality (2.5).

3 Hardy type inequalities of α-fractional order
In this section, we state and prove the main results of this paper and we begin with the fractional
version of the classical Hardy type inequality. Throughout the paper, we will assume that the functions
are nonnegative locally α-integrable and the integrals throughout are assumed to exist (and are finite,
i.e., convergent).
Theorem 3.1. Let f be a nonnegative function on (0,∞), and 0 < α ≤ 1 and p > 1. Also assume
xα−1f(x) is continuous on [0,∞). Then

∞∫
0

(
1

x

x∫
0

f(s) dαs

)p

dαx ≤
( p

p− α

)p ∞∫
0

(xα−1f(x))p dαx. (3.1)

Proof. Let

F (x) :=
1

x

x∫
0

f(s) dαs. (3.2)

Integrating by parts, see formula (2.4) with w(x) = F p(x) and Dαg(x) = 1 (note here g(x) = xα

α ),
and using Remark 2.1, we obtain (here t > 0)

t∫
0

F p(x) dαx =
F p(x)xα

α

∣∣∣∣t
0

−
t∫

0

xα

α
DαF

p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

xα

α
x1−αF p−1(x)F ′(x) dαx

=
tαF p(t)

α
− p

α

t∫
0

xF p−1(x)F ′(x) dαx; (3.3)

note

lim
x→0+

x
α
p F (x) = lim

x→0+

x∫
0

sα−1f(s) ds

x
p−α
p

= lim
x→0+

xα−1f(x)

(p−α
p )x−α

p
= lim

x→0+

( p

p− α

)
xα−1f(x)x

α
p = 0.

From the definition of F , we see that

xF ′(x) = xα−1f(x)− F (x),

and substituting it into (3.3), we obtain
t∫

0

F p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

F p−1(x)
(
xα−1f(x)− F (x)

)
dαx

=
tαF p(t)

α
− p

α

t∫
0

xα−1F p−1(x)f(x) dαx+
p

α

t∫
0

F p(x) dαx,
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and so (
1− p

α

) t∫
0

F p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

xα−1F p−1(x)f(x) dαx.

Thus
t∫

0

F p(x) dαx =
tαF p(t)

α− p
+

p

p− α

t∫
0

xα−1F p−1(x)f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), and using the fact that tαF p(x)/(α− p) is
negative, we get

t∫
0

F p(x) dαx ≤ p

p− α

( t∫
0

F p(x) dαx

) p−1
p
( t∫

0

(
xα−1f(x)

)p
dαx

) 1
p

,

and so, ( t∫
0

F p(x) dαx

) 1
p

≤ p

p− α

( t∫
0

(
xα−1f(x)

)p
dαx

) 1
p

.

Hence,
t∫

0

F p(x) dαx ≤
( p

p− α

)p t∫
0

(
xα−1f(x)

)p
dαx.

Let t → ∞, and then
∞∫
0

F p(x) dαx ≤
( p

p− α

)p ∞∫
0

(
xα−1f(x)

)p
dαx,

which is the desired inequality (3.1).

Remark 3.1. From the proof of Theorem 3.1 we see that if the condition “xα−1f(x) is continuous
on [0,∞)” is replaced either by

(i) xα−1f(x) is continuous on (0,∞) and lim
x→0+

xα−1+α
p f(x) = 0,

or

(ii) lim
x→0+

xαF p(x) = 0,

then (3.1) is again true.

Corollary 3.1. In Theorem 3.1, if α = 1, then we obtain the classical Hardy inequality (1.1).

Theorem 3.2. Let f be a nonnegative function on (0,∞) and 0 < α ≤ 1. Let c > 1 and p > 1. Also
assume that xα−1f(x) is continuous on [0,∞) and p > c− α. Then

∞∫
0

x−c

( x∫
0

f(t) dαt

)p

dαx ≤
( p

c− α

)p ∞∫
0

(xα− c
p f(x))p dαx. (3.4)

Proof. Let

F (x) :=

x∫
0

f(s) dαs.
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Integrating by parts
t∫
0

x−cF p(x) dαx (here t > 0) with

w(x) = x−cF p(x), Dαg(x) = 1
(
g(x) =

xα

α

)
,

Dαw(x) = x1−α
(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
,

we obtain
t∫

0

x−cF p(x) dαx =
x−cF p(x)xα

α

∣∣∣∣t
0

−
t∫

0

xα

α
x1−α

(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
dαx

=
tα−cF p(t)

α
+

c

α

t∫
0

x−cF p(x) dαx− p

α

t∫
0

x1−cF p−1(x)F ′(x) dαx;

note

lim
x→0+

x
α−c
p F (x) = lim

x→0+

x∫
0

sα−1f(s) ds

x
c−α
p

= lim
x→0+

xα−1f(x)

( c−α
p )x

c−α
p −1

= lim
x→0+

( p

c− α

)
xα−1f(x)x1+α−c

p = 0.

Thus
t∫

0

x−cF p(x) dαx =
tα−cF p(t)

α− c
+

p

c− α

t∫
0

x1−cF p−1(x)F ′(x) dαx.

Since F ′(x) = xα−1f(x), we obtain

t∫
0

x−cF p(x) dαx =
tα−cF p(t)

α− c
+

p

c− α

t∫
0

x1−cF p−1(x)xα−1f(x) dαx

≤ p

c− α

t∫
0

xα−cF p−1(x)f(x) dαx ≤ p

c− α

t∫
0

xα−cF p−1(x)f(x) dαx

≤ p

c− α

t∫
0

xα−c F p−1(x)

(x−c)
p−1
p (xc)

p−1
p

f(x) dαx ≤ p

c− α

t∫
0

xα−c

(x−c)
p−1
p

(
(x−cF p(x))

) p−1
p f(x) dαx

≤ p

c− α

t∫
0

xα− c
p
(
x−cF p(x)

) p−1
p f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), we obtain (note α− c < 0)

t∫
0

x−cF p(x) dαx ≤ p

c− α

( t∫
0

(
(x−cF p(x))

p−1
p

) p
p−1

dαx

) p−1
p
( t∫

0

(xα− c
p f(x))p dαx

) 1
p

≤ p

c− α

( t∫
0

x−cF p(x) dαx

) p−1
p
( t∫

0

(xα− c
p f(x))p dαx

) 1
p

.

Thus ( t∫
0

x−cF p(x) dαx

) 1
p

≤
( p

c− α

)( t∫
0

(xα− c
p f(x))p dαx

) 1
p

,
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and so
t∫

0

x−cF p(x) dαx ≤
( p

c− α

)p t∫
0

(xα− c
p f(x))p dαx.

Let t → ∞, and then
∞∫
0

x−cF p(x) dαx ≤
( p

c− α

)p ∞∫
0

(xα− c
p f(x))p dαx,

which is the desired inequality (3.4).

Remark 3.2. From the proof of Theorem 3.2 we see that if the condition “xα−1f(x) is continuous
on [0,∞)” is replaced either by

(i) xα−1f(x) is continuous on (0,∞) and lim
x→0+

xα+α−c
p f(x) = 0,

or

(ii) lim
x→0+

xα−cF p(x) = 0,

then (3.4) is again true.

Corollary 3.2. In Theorem 3.2, if α = 1, then we have the weighted Hardy inequality (1.2).

Corollary 3.3. In Theorem 3.2, if c = p and α = 1, then we have the classical Hardy inequality (1.1).

Theorem 3.3. Let f be a nonnegative function on (0,∞) and 0 < c < α ≤ 1. Let p > 1. In addition,
assume that xα−1f(x) is continuous on (0,∞) and lim

t→∞
tα+

α−c
p f(t) = 0. Then

∞∫
0

x−c

( ∞∫
x

f(t) dαt

)p

dαx ≤
( p

α− c

)p ∞∫
0

(xα− c
p f(x))p dαx. (3.5)

Proof. Let F (x) :=
∞∫
x

f(s) dαs =
∞∫
x

sα−1f(s) ds and integrate by parts the term
t∫
ϵ

x−cF p(x) dαx (here

t > 0 and 0 < ϵ < t small) with

w(x) = x−cF p(x), Dαg(x) = 1
(
g(x) =

xα

α

)
,

Dαw(x) = x1−α
(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
.

Then we obtain

t∫
ϵ

x−cF p(x) dαx =
x−cF p(x)xα

α

∣∣∣∣t
ϵ

−
t∫

ϵ

xα

α
x1−α

(
− cx−c−1F p(x) + px−cF p−1(x)F

′
(x)
)
dαx

=
tα−cF p(t)

α
− ϵα−cF p(ϵ)

α
+

c

α

t∫
ϵ

x−cF p(x) dαx− p

α

t∫
ϵ

x1−cF p−1(x)F ′(x) dαx

≤ tα−cF p(t)

α
+

c

α

t∫
ϵ

x−cF p(x) dαx− p

α

t∫
ϵ

x1−cF p−1(x)F ′(x) dαx,

and therefore (letting ϵ → 0+), since α− c > 0, we have
t∫

0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
− p

α− c

t∫
0

x1−cF p−1(x)F ′(x) dαx.
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Since F ′(x) = −xα−1f(x), we obtain

t∫
0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+

p

α− c

t∫
0

x1−cF p−1(x)xα−1f(x) dαx

=
tα−cF p(t)

α− c
+

p

α− c

t∫
0

xα−cF p−1(x)f(x) dαx =
tα−cF p(t)

α− c
+

t∫
0

xα−c F p−1(x)

(x−c)
p−1
p .(xc)

p−1
p

f(x) dαx

=
tα−cF p(t)

α− c
+

t∫
0

xα−c

(x−c)
p−1
p

(
(x−cF (x))p

) p−1
p f(x) dαx

=
tα−cF p(t)

α− c
+

t∫
0

xα− c
p (x−cF p(x))

p−1
p f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), we obtain

t∫
0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+

p

α− c

( t∫
0

(
(x−cF p(x)

) p−1
p

) p
p−1

dαx

) p−1
p
( t∫

0

(
xα− c

p f(x)
)p

dαx

) 1
p

≤ tα−cF p(t)

α− c
+

p

α− c

( t∫
0

x−cF p(x) dαx

) p−1
p
( t∫

0

(
xα− c

p f(x)
)p

dαx

) 1
p

,

so, ( t∫
0

x−cF p(x) dαx

) 1
p

≤ tα−cF p(t)

α− c
+
( p

α− c

)( t∫
0

(xα− c
p f(x))p dαx

) 1
p

.

Thus
t∫

0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+
( p

α− c

)p t∫
0

(xα− c
p f(x))p dαx.

Let t → ∞ and note

lim
t→∞

t
α−c
p F (t) = lim

t→∞

∞∫
t

sα−1f(s)

t
c−α
p

ds = lim
t→∞

− tα−1f(t)

( c−α
p )t

c−α
p −1

= − lim
t→∞

( p

c− α

)
f(t)tα+

α−c
p = 0,

so,
∞∫
0

x−cF p(x) dαx ≤
( p

α− c

)p ∞∫
0

(xα− c
p f(x))p dαx,

which is the desired inequality (3.5).

Corollary 3.4. In Theorem 3.3, if α = 1, then we have the weighted Hardy inequality (1.3).
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Short Communication

Malkhaz Ashordia, Shota Akhalaia, Mzia Talakhadze

ON THE ANTIPERIODIC PROBLEM FOR SYSTEMS
OF NONLINEAR GENERALIZED ORDINARY

DIFFERENTIAL EQUATIONS

Abstract. A general theorem (principle of a priori boundedness) on the solvability of the antiperi-
odic problem for systems of nonlinear generalized ordinary differential equations is given.
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Let n be a natural number, ω > 0 be a real number, A : Rn → Rn×n be a matrix-function with
bounded total variation components on every closed interval of the real axis, and f : R × Rn → Rn

be a vector-function belonging to the Carathéodory class corresponding to the matrix-function A on
every closed interval of the real axis.

Consider the nonlinear system of generalized ordinary differential equations

dx = dA(t) · f(t, x) (1)

with the antiperiodic condition
x(t+ ω) = −x(t) for t ∈ R. (2)

We will assume that

A(t+ ω) = A(t) + C and f(t+ ω, x) = −f(t,−x) for t ∈ R, x ∈ Rn, (3)

or
A(t+ ω) = −A(t) + C and f(t+ ω, x) = f(t,−x) for t ∈ R, x ∈ Rn, (4)

where C ∈ Rn×n is a constant matrix.
The theorem on the existence of a solution of problem (1), (2), which is given below and called

the principle of a priori boundedness, generalizes the well known Conti–Opial type theorems (see
[6, 7, 12] for the case of ordinary differential equations) and supplements earlier known criteria for
the solvability of nonlinear boundary value and initial problems for systems of generalized ordinary
differential equations (see, e.g., [1–5,11,13,14] and the references therein).

Analogous and related questions are investigated in [7–10] (see also the references therein) for
the boundary value problems for linear and nonlinear systems of ordinary differential and functional
differential equations.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
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impulsive and difference equations from a unified point of view (see, e.g., [1–5, 11, 13, 14] and the
references therein).

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ , [a, b] (a, b ∈ R) is a closed interval.

Rn×m is the space of all real n×m-matrices X = (xil)
n,m
i,l=1 with the norm ∥X∥ =

n,m∑
i,l=1

|xil|;

Rn×m
+ =

{
(xil)

n,m
i,l=1 : xil ≥ 0 (i = 1, . . . , n; l = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m-matrix.
If X = (xil)

n,m
i,l=1 ∈ Rn×m, then |X| = (|xil|)n,mi,l=1.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then detX is the determinant of X; In is the identity n×n-matrix; diag(λ1, . . . , λn)
is the diagonal matrix with diagonal elements λ1, . . . , λn.

varba(X) is the total variation of the matrix-function X : R → Rn×m on the closed interval [a, b], i.e.,
the sum of total variations of its components xil (i = 1, . . . , n; l = 1, . . . ,m); V (X)(t) = (v(xil)(t))

n,m
i,l=1,

where v(xil)(0) = 0, v(xil)(t) = vart0(xil) for t > 0 and v(xil)(t) = − var0t (xil) for t < 0;
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m

at the point t (we will assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary);
∆−X(t) = X(t)−X(t−), ∆+X(t) = X(t+)−X(t);

BV([a, b],Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,
such that varba(X) < +∞);

BVs([a, b],Rn×m) is the normed space of all X ∈ BV([a, b],Rn×m) with the norm ∥X∥s =
sup{∥X(t)∥ : t ∈ [a, b]}.

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components
is such.

I ⊂ R is an interval.
C(I,Rn×m) is the set of all continuous matrix-functions X : I → Rn×m.
If B1 and B2 are normed spaces, then the operator g : B1 → B2 (nonlinear, in general) is positive

homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
The operator φ : BV([a, b],Rn) → Rn is called nondecreasing if for every x, y ∈ BV([a, b],Rn) such

that x(t) ≤ y(t) for t ∈ [a, b] the inequality φ(x)(t) ≤ φ(y)(t) holds for t ∈ [a, b].
If α : I → R is a nondecreasing function, then Dα = {t ∈ I : α(t+)− α(t−) ̸= 0}.
s1, s2, sc : BV([a, b],R) → BV([a, b],R) are the operators defined by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

∆−x(τ) and s2(x)(t) =
∑

a≤τ<t

∆+x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)∆−g(τ) +
∑

s≤τ<t

x(τ)∆+g(τ) for a ≤ s < t ≤ b,

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ(sc(g)) corresponding to the function sc(g); if a = b, then we assume
b∫
a

x(t) dg(t) = 0;

so,
t∫
s

x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see [11,13,14]);
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L([a, b],R; g) is the space of all functions x : [a, b] → R, measurable and integrable with respect to
the measure µ(gc(g)) for which∑

a<t≤b

|x(t)|∆−g(t) +
∑

a≤t<b

|x(t)|∆+g(t) < +∞,

with the norm ∥x∥L,g =
b∫
a

|x(t)| dg(t).

If gj : [a, b] → R (j = 1, 2) are nondecreasing functions, g(t) ≡ g1(t) − g2(t), and x : [a, b] → R,
then

t∫
s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for a ≤ s ≤ t ≤ b.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function and D ⊂ Rn×m, then

L([a, b], D;G) is the set of all matrix-functions X = (xkj)
n,m
k,j=1 : [a, b] → D such that xkj ∈

L([a, b], R; gik) (i = 1, . . . , l; k = 1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ) dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2) and Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2;G) is the Carathéodory class, i.e., the set
of all mappings F = (fkj)

n,m
k,j=1 : [a, b]×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:

(i) the function fkj( · , x) : I → D2 is µ(sc(gik))-measurable for every x ∈ D1;

(ii) the function fkj(t, · ) : D1 → D2 is continuous for µ(sc(gik))-almost every t ∈ I and for every
t ∈ Dgik , and

sup
{
|fkj( · , x)| : x ∈ D0

}
∈ L([a, b],R; gik)

for every compact D0 ⊂ D1.

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions, G(t) ≡ G1(t) − G2(t), and
X : [a, b] → Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for a ≤ s ≤ t ≤ b,

Sk(G)(t) ≡ Sk(G1)(t)− Sk(G2)(t) (k = 1, 2), Sc(G)(t) ≡ Sc(G1)(t)− Sc(G2)(t);

If G1(t) ≡ V (G)(t) and G2(t) ≡ V (G)(t)−G(t), then

L([a, b], D;G) =

2∩
j=1

L([a, b], D;Gj),

Car([a, b]×D1, D2;G) =

2∩
j=1

Car([a, b]×D1, D2;Gj).

If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.
The inequalities between the vectors and between the matrices are understood componentwise.
Below we assume that

A1(t) ≡ V (A)(t) and A2(t) ≡ V (A)(t)−A(t).
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A vector-function x : R → Rn is said to be a solution of system (1) if its restriction on every closed
interval [a, b] ⊂ R belongs to BV([a, b],Rn), and

x(t) = x(s) +

t∫
s

dA(τ) · f(τ, x(τ)) for s ≤ t.

Under the solution of problem (1), (2) we mean a solutions of system (1) satisfying the condition (2).
Let B ∈ BV([a, b],Rn×n), η : [a, b] → Rn and q : BV([a, b],Rn) → BV([a, b],Rn) be a matrix-

function, a vector-function and an operator, respectively. Then by a solution of the system of gener-
alized ordinary differential inequalities

dx− dB(t) · x ≤ dη(t) + dq(x) (≥) for t ∈ [a, b]

we mean a vector-function x ∈ BV([a, b],Rn) such that

x(t)− x(s)−
t∫

s

dB(τ) · x(τ) ≤ η(t)− η(s) + q(x)(t)− q(x)(s) (≥) for a ≤ s ≤ t ≤ b.

In addition, if the vector-function η : [a, b] → Rn is nondecreasing and g : BV([a, b],Rn) →
BV([a, b],Rn

+) is a positive homogeneous nondecreasing operator, then by ΩB,η,g we denote a set of
all solutions of the system

|dx− dB(t) · x| ≤ dη(t) + dg(|x|).

If η(t) ≡ 0 and q is the trivial operator, then we omit η and q in the notations containing ones.
So, ΩB is the set of all solutions of the homogeneous system of generalized differential equations

dx = dB(t) · x.

We define

αl(t) =

n∑
i=1

v(ail)(t) (l = 1, . . . , n) and α(t) =

n∑
i=1

αi(t) for t ∈ R.

Under conditions (3) or (4), it is not difficult to verify that if a vector-function x is a solution of
system (1), then the vector-function y(t) = −x(t + ω) (t ∈ R) will be the solution of system (1), as
well. Indeed, by definition of the solution of the system, using (3) or (4), we have

y(t)− y(s) = −
(
x(t+ ω)− x(s+ ω)

)
= −

t+ω∫
s+ω

dA(τ) · f(τ, x(τ)) =
t∫

s

dA(τ + ω) · f(τ + ω, x(τ + ω))

=

t∫
s

dA(τ) · f(τ, y(τ)) for s < t.

Therefore, if x ∈ BV([a, b],Rn) is a solution of system (1) on the closed interval [0, ω] satisfying the
condition

x(ω) = −x(0), (5)

then its ω-antiperiodic continuation, i.e. the vector-function y(t) = (−1)kx(t − kω) for kω ≤ t <
(k + 1)ω (k = 0,±1,±2, . . . ) will be a solution of the ω-antiperiodic problem (1), (2).

In connection with this fact, we consider the boundary value problem (1), (5) on the closed interval
[0, ω]. Below we will give the sufficient conditions guaranteing the solvability of the latter and hence
of problem (1), (2), as well.
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Definition 1. The pair (P, l) of a matrix-function P ∈ Car([0, ω] × Rn,Rn×n;A) and a continuous
operator l : BVs([0, ω],Rn)× BVs([0, ω],Rn) → Rn is said to be consistent if:

(i) for any fixed x ∈ BVs([0, ω],Rn) the operator l(x, · ) : BVs([0, ω],Rn) → Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([0, ω],Rn), the inequalities

∥P (t, z)∥ ≤ ξ(t, ∥z∥), ∥l(x, y)∥ ≤ ξ0(∥x∥s) · ∥y∥s

are fulfilled for µ(gc(α))-almost all t ∈ [0, ω] and for t ∈ Dα, where ξ0 : R+ → R+ is a
nondecreasing function, and ξ : [0, ω] × R+ → R+ is a nondecreasing in the second variable
function such that ξ( · , s) ∈ L([0, ω],R+;α) for every s ∈ R+;

(iii) there exists a positive number β such that for any x ∈ BVs([0, ω],Rn), q ∈ L([0, ω],Rn;A) and
c0 ∈ Rn, for which the conditions

det
(
In −∆−A(t) · P (t, x(t))

)
̸= 0 for t ∈ [0, ω]

and
det

(
In +∆+A(t) · P (t, x(t))

)
̸= 0 for t ∈ [0, ω]

hold, an arbitrary solution x of the boundary value problem

dy = dA(t) ·
(
P (t, x(t))y + q(t)

)
, l(x, y) = c0

admits the estimate
∥y∥s ≤ β

(
∥c0∥+ ∥q∥L,α

)
.

Theorem 1. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn, Rn;A) and let there exist a positive
number ρ and a consistent pair (P, l) of a matrix-function P ∈ Car([0, ω] × Rn,Rn×n;A) and a
continuous operator l : BVs([0, ω],Rn) × BVs([0, ω],Rn) → Rn such that an arbitrary solution of the
problem

dx = dA(t) ·
(
P (t, x)x+ λ[f(t, x)− P (t, x)]x

)
, (6)

λ(x(0) + x(ω)) + (1− λ)l(x, x) = 0 (7)

admits the estimate
∥x∥s ≤ ρ (8)

for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

Definition 2. Let S ⊂ BVs([0, ω],Rn×n), L be a subset of the set of all bounded vector-functionals
l : BVs([0, ω],Rn) → Rn, and y ∈ BV([0, ω],Rn). We say that

(i) a matrix-function B0 ∈ BV([0, ω],Rn×n) belongs to the set En
S if the condition

det
(
In −∆−B0(t)

)
̸= 0 and det

(
In +∆+B0(t)

)
̸= 0 for t ∈ [0, ω] (9)

holds and there exists a sequence Bk ∈ S (k = 1, 2, . . . ) such that

lim
k→+∞

∥Bk −B0∥s = 0;

(ii) a vector-functional l0 : BVs([0, ω],Rn) → Rn belongs to the set En
L(y) if there exists a sequence

lk ∈ L (k = 1, 2, . . . ) such that
lim

k→+∞
lk(y) = l0(y).

Definition 3. Let g0 : BV([0, ω],Rn
+) → BV([0, ω],Rn) be a positive homogeneous nondecreasing

operator, and h0 : BVs([0, ω],Rn
+) → Rn

+ be a positive homogeneous operator. We say that the pair
(S,L) of the set S ⊂ BVs([0, ω],Rn×n) and the set L of some vector-functionals l : BVs([0, ω],Rn) →
Rn belongs to the Opial class On

g0,h0
if:
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(i) every operator l ∈ L is linear and continuous with respect to the norm ∥ · ∥s;

(ii) there exist the numbers r0, ξ0 ∈ R+ and a nondecreasing function φ : [0, ω] → R such that the
inequalities

∥B(0)∥ ≤ r0, ∥B(t)−B(s)∥ ≤ φ(t)− φ(s) for 0 ≤ s < t ≤ ω

and
∥l(y)∥ ≤ ξ0∥y∥s

are fulfilled for any B ∈ S, l ∈ L and y ∈ BVs([0, ω],Rn);

(iii) if for B0 ∈ En
S the function y ∈ BVs([0, ω],Rn) is a solution of the system

|dy − dB0(t) · y| ≤ dg0(|y|)

under the condition
|l0(y)| ≤ h0(|y|),

where l0 ∈ En
L(y), then y(t) ≡ 0.

If

g0(y)(t) ≡
t∫

0

dG0(τ) · q0(y)(τ) for y ∈ BV([0, ω],Rn
+),

where G0 : [0, ω] → Rn is a nondecreasing matrix-function, and q0 : BVs([0, ω],Rn
+) → BVs([0, ω],Rn

+)
is a positive homogeneous operator, then we write On

G0,q0,h0
instead of On

g0,h0
.

Definition 4. Let P ∈ Car([0, ω] × Rn,Rn×n;A) and let l : BVs([0, ω],Rn) × BVs([0, ω],Rn) →
Rn be a continuous vector-functional. We say that the pair (B0, l0) of the matrix-function B0 ∈
BV([0, ω],Rn×n) and the vector-functional l0 : BVs([0, ω],Rn) → Rn belongs to the set En

A,P,l if there
exists a sequence xk ∈ BVs([0, ω],Rn) (k = 1, 2, . . . ) such that the conditions

lim
k→+∞

t∫
a

dA(τ) · P (τ, xk(τ)) = B0(t) uniformly on [0, ω] (10)

and
lim

k→+∞
l(xk, y) = l0(y) for y ∈ ΩB0

are valid.

Definition 5. We say that the pair (P, l) of the matrix-function P ∈ Car([0, ω]× Rn,Rn×n;A) and
the continuous operator l : BVs([0, ω],Rn)×BVs([0, ω],Rn) → Rn belongs to the Opial class On

A with
respect to the matrix-function A if:

(i) for any fixed x ∈ BVs([0, ω],Rn), the operator l(x, · ) : BVs([0, ω],Rn) → Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([0, ω],Rn), the inequalities

∥P (t, z)∥ ≤ ξ(t), ∥l(x, y)∥ ≤ ξ0∥y∥s (11)

are fulfilled for µ(gc(α))-almost all t ∈ [0, ω] and for t ∈ Dα, where ξ0 ∈ R+, and ξ ∈
L([0, ω],R+;α);

(iii) the problem
dy = dB0(t) · y, l0(y) = 0

has only the trivial solution for every pair (B0, l0) ∈ En
A,P,l.
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Remark 1. By (10) and (11), the condition

∥∆−A(t)∥ · ξ(t) < 1 and ∥∆+A(t)∥ · ξ(t) < 1 for t ∈ [0, ω]

guarantees condition (9).

Corollary 1. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn,Rn;A) and let there exist a positive
number ρ and a pair (P, l) ∈ On

A such that an arbitrary solution of problem (6), (7) admits estimate
(8) for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

Corollary 2. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω]× Rn,Rn;A), P ∈ L([0, ω],Rn×n;A), and let
l : BVs([0, ω],Rn) → Rn be a bounded linear operator such that

det
(
In −∆−A(t) · P (t)

)
̸= 0 and det

(
In +∆+A(t) · P (t)

)
̸= 0 for t ∈ [0, ω]

and the problem
dy = dA(t) · P (t)y, l(y) = 0

has only the trivial solution. Let, moreover, there exists a positive number ρ such that an arbitrary
solution of the problem

dx = dA(t) ·
(
P (t)x+ λ[f(t, x)− P (t)x]

)
,

λ
(
x(0) + x(ω)

)
+ (1− λ)l(x) = 0

admits estimate (8) for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

The following result is analogous to the well-known one belonging to R. Conti and Z. Opial for the
boundary value problems for ordinary nonlinear differential equations (see [6, 7, 12]).

Corollary 3. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn,Rn;A) and let a pair (P, l) ∈ On
A be

such that
|f(t, x)− P (t, x)x| ≤ β(t, ∥x∥) for t ∈ [0, ω], x ∈ Rn, (12)

and
|x(0) + x(ω)− l(x, x)| ≤ l0(|x|) + l1(∥x∥s) for x ∈ BVs([0, ω],Rn), (13)

where β ∈ Car([0, ω] × R+,Rn
+;A) is a nondecreasing in the second variable vector-function,

l0 : BVs([0, ω],Rn
+) → Rn

+ is a positive homogeneous continuous operator, and l1 ∈ C(R+,Rn
+).

Let, moreover,

lim
k→+∞

1

ρ

b∫
a

dV (A)(τ) · β(τ, ρ) = 0n, lim
ρ→+∞

l1(ρ)

ρ
= 0n. (14)

Then problem (1), (2) is solvable.

By YP (x) we denote the fundamental matrix of the system

dy = dA(t) · P (t, x(t)) y

for every x ∈ BVs([0, ω],Rn), satisfying the condition YP (x)(a) = In.

Corollary 4. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω]× Rn,Rn;A), P ∈ Car([0, ω]× Rn,Rn×n;A)
and a continuous operator l : BVs([0, ω],Rn)×BVs([0, ω],Rn) → Rn, satisfying conditions (i) and (ii)
of Definition 5, be such that conditions (12)–(14) hold, where β ∈ Car([0, ω]×R+,Rn

+;A) is a nonde-
creasing in the second variable vector-function, l0 : BVs([0, ω],Rn

+) → Rn
+ is a positive homogeneous

continuous operator, and l1 ∈ C(R+,Rn
+). Let, moreover,

inf
{
|det(l(x, YP (x)))| : x ∈ BVs([0, ω],Rn)

}
> 0. (15)

Then problem (1), (2) is solvable.
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Remark 2. In Corollary 4, condition (15) cannot be replaced by the condition

det(l(x, YP (x))) ̸= 0 for x ∈ BVs([0, ω],Rn). (16)

The corresponding example for the ordinary differential systems, i.e., for the case where A(t) ≡
diag(t, . . . , t), has been constructed in [8]. Basing on these example, it is not difficult to construct
analogous examples for the case where A(t) ̸≡ diag(t, . . . , t). Consider the scalar boundary value
problem

dx =

(
|x|x

1 + |x|
+ 1

)
dα(t), x(0) = −x(ω),

where α(t) = 0 for 0 ≤ t ≤ c and α(t) = −2 for c < t ≤ ω, and c = ω/2. Every solution of the system
has the form

x(t) =

x(0) for 0 ≤ t ≤ c,

x(0)− 2
( |x(0)|x(0)
1 + |x(0)|

+ 1
)

for c < t ≤ ω.

This problem is not solvable because the equation x(0) + x(ω) = 0 is not solvable with respect to the
x(0). On the other hand, if we assume P (t, x) = |x|

1+|x| and l(x, y) = y(0) + y(ω) in this case, then

Y (t) =

1 for 0 ≤ t ≤ c,

1− 2|x(c)|
1 + |x(c)|

for c < t ≤ ω

for x ∈ BVs([0, ω],Rn) and, therefore,

det(l(x, YP (x))) =
2

1 + |x(c)|
for x ∈ BVs([0, ω],Rn).

Thus, all conditions of Corollary 4 are fulfilled except of condition (15), instead of which condition
(16) holds.

Remark 3. In particular, we can assume that l(x, y) ≡ x(0) + x(ω) and l(x) = l(x, x) ≡ x(0) + x(ω)
in the results given above. So, for example, the second estimate in condition (ii) of Definition 1 is
fulfilled. Condition (7) in Theorem 1 and Corollary 1 as well as the analogous condition in Corollary 2
coincides to condition (3). Condition (13) is valid for the l0 ≡ 0 and l1 ≡ 0 operators.
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