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Preface

The present work consists of five chapters. The first three chapters are devoted to the investigation
of multidimensional versions of the Cauchy characteristic problem, the Darboux problems, and the
Sobolev problem for one class of the second order semilinear hyperbolic systems. Depending on the
type of nonlinearity, spatial dimension and structure of hyperbolic system, the cases for which these
problems are globally solvable, are singled out. Moreover, the cases of the absence of solutions of the
above-mentioned problems are also considered [56-59].

The questions of the solvability of some nonlocal in time problems for multidimensional second
order semilinear hyperbolic equations are studied in the remaining two chapters [53,60,61]. The
particular cases of these problems are the periodic and antiperiodic problems.



Chapter 1

The Cauchy characteristic problem
for one class of the second order
semilinear hyperbolic systems

1.1 Statement of the problem

In the space R"*! of variables x = (x1,...,7,) and t, we consider the second order semilinear hyper-
bolic system of the form

Dui + fi(ul, e ,’U,N) = Fi(l’,t), = ]., .. .,N, (111)
where f = (f1,...,f~n), F = (F1,...,Fxn) are the given, and u = (uq,...,uy) is an unknown real
vector function, n > 2, N > 2 [ := g—; —AA =) 6‘122 )

i=1 i

For the system of equations (1.1.1), let us consider the Cauchy characteristic problem of finding a
solution u(z,t) in the frustum of a light cone of the future Dy : |z| <t < T, T = const > 0, by the
boundary condition

ulg, =9, (1.1.2)

where St : t = |z|, t < T, is the conic surface, characteristic to the system (1.1.1), and g = (g1, ...,9n)
is a given vector function on Sp. For T = oo, we assume that Do, : ¢ > |z| and Seo = 0D @ ¢ = |2].

The questions on the existence or absence of a global solution of the Cauchy problem for semilinear
scalar equations of the type (1.1.1) with the initial conditions of the form w|;—g = wo, %|t=0 =
were the subject of investigation in many works (see, e.g., [17-19,23,25, 31, 33,35, 36,39-41,62,64-66,
69-72,77, 80, 83,84, 87-89,94,96-98]. The Cauchy characteristic problem (1.1.1), (1.1.2) in the light
cone of the future for scalar semilinear equations has been studied in [44-47,49, 50,52, 54]. As is
known, this problem in the linear case is well-posed in the corresponding function spaces (see, e.g.,
[5,16,30,43,63,73]). A particular case of the system (1.1.1), when f(u) = VG(u), i.e., fi(u) = 8%; G(u),
t=1,...,N, where G = G(u) is a scalar function satisfying some conditions of smoothness and growth
as |u| — oo, is studied in [57].

In the present chapter we consider a more general case of nonlinearity as compared with that
presented in [57]; we impose certain conditions on the nonlinear vector function f = f(u) from (1.1.1)
which fulfilment implies that the problem (1.1.1),(1.1.2) is locally or globally solvable, while in some
cases it does not have global solution.
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1.2 Definition of a generalized solution of the problem
(1.1.1),(1.1.2) on Dy and Dy

Let C*(D7,St) := {u € C*(Dr) : ulg, =0} and Wi(Dz, St) := {u € W3 (D7) : u|s, = 0}, where
Wk(Q) is the Sobolev space, consisting of the elements of Ly(f2), the generalize derivatives of which
up to the k-th order inclusive belong to L2(€2), and the equality u|g, = 0 is understood in the sense
of the trace theory [68, p. 71].

We rewrite the system of equations (1.1.1) in the form of one vectorial equation

Lu:=0u+ f(u) = F(x,1). (1.2.1)

Together with the boundary condition (1.1.2), we consider the corresponding homogeneous bound-
ary condition, i.e.,

ulg, =0 (1.2.2)
Below, on the nonlinear vector function f = (f1,..., fn) from (1.1.1) we impose the following
requirement
feCRY), |f(u)| < My + Ma|u|®, a=const >0, uecRY, (1.2.3)
where | - | is the norm of the space RY and M; = const > 0, u € RV,

Remark 1.2.1. The embedding operator I : W} (Dr) — L,(Dr) is a linear continuous compact
operator for 1 < ¢ < % and n > 1 [68, p. 86]. At the same time, the Nemitsky operator K :
L,(Dr) — Lo(Dr), acting according to the formula K(u) = f(u), where u = (u1,...,un) € Ly(Dr)
and the vector function f = (fi,..., fn) satisfies the condition (1.2.3), is continuous and bounded for
q > 2a [67, p. 349], [22, pp. 66,67]. Therefore, if @ < 2t then there exists a number ¢ such that
1<g< 2("+1) and ¢ > 2a. Thus in this case the operator

Ko = KI: W3 (Dp)|N — [Lao(Dr)]Y (1.2.4)

is continuous and compact. Moreover, from v € W3 (Dr) it follows that f(u) € Lo(Dr) and, if
u™ — u in the space W3 (D7), then f(u™) — f(u) in the space Lo(Dr).

Here and henceforth, the belonging of the vector v = (vy,...,vn) to some space X means that
each component v;, i < i < N, of that vector belongs to the space X.

Definition 1.2.1. Let f = (f1,..., fn) satisfy the condition (1.2.3), where 0 < a < Z—i, F =
(Fy,...,Fyn) € Ly(D7) and g = (g1, - .-,9n) € W2 (ST). We call a vector function u = (ug,...,ux) €
W4 (D) a strong generalized solution of the problem (1.1.1),(1.1.2) of the class W3 in the domain
Dr if there exists a sequence of vector functions u™ € C?(Dr) such that «™ — u in the space
Wy (Dr), Lu™ — F in the space La(Dr), and u™|g, — g in the space Wy (S7). The convergence of
the sequence {f(u™)} to f(u) in the space La(Dr), as u™ — u in the space W3 (Dr), is provided by
Remark 1.2.1. In the case g = 0, i.e., in the case of the homogeneous boundary condition (1.2.2), we

assume that u™ € C?(Dr, St). Then it is obvious that u € Wi(Dr, St).

Obviously, the classical solution u € C?(Dr) of the problem (1.1.1),(1.1.2) is likewise a strong
generalized solution of this problem of the class W3 in the domain Dy in the sense of Definition 1.2.1.

Remark 1.2.2. It is easy to verify that if u € W}(Dyr) is the strong generalized solution of the
problem (1.1.1), (1.1.2) of the class W in the domain Dy in the sense of Definition 1.2.1, then for
every test vector function ¢ = (p1,...,¢n) € C*(D7) such that ¢|,—7 = 0, the equality

0
/ [ — wpr + VuVy] dxdt:—/f(u)ga dxdt+/F<p dx dt — ﬁgpd& (1.2.5)
Dr Dr Dr St
is valid; here, a‘r])\, = Upt1 at Z z/Zd— is the derivative along the conormal, v = (v1,...,Vn, Vpy1) is
the unit vector of the outer normal to 0D, V = (621 e 82 )
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Indeed, let u™ € C?(D7) be the vector functions mentioned in Definition 1.2.1. Let F™ := Lu™,
where L is the operator from (1.2.1). Taking into account the fact that on the characteristic conic
surface St : t = |z|, t < T, the derivative along the conormal 3% represents an inner differential
operator, and by integration by parts of the equality Lu™ = F™, we obtain

/ [— w1+ Vu"" Vo] dedt = — / fw™)e dxdt + / F™p dzdt — / %LN pds, (1.2.6)
Dr Dr Dr S

where g™ := u™|s,. Since, by Definition 1.2.1, ™ — u in the space W3 (Dr), F™ = Lu™ — F in the
space Lo(Dr), g™ = u™|g, — g in the space W4 (St), and according to Remark 1.2.1 f(u™) — f(u)
in the space Lo(Dr), passing to the limit in the equality (1.2.6) as m — oo we obtain (1.2.5).

Note that the equality (1.2.5), valid for every ¢ € C?(Dr), ¢|(=r = 0, may be put in the basis of
the definition of a weak generalized solution u of the problem (1.1.1),(1.1.2) of the class W3 in the
domain Dr.

Definition 1.2.2. Let f satisfy the condition (1.2.3), where 0 < a < Z—ﬂ; F € Lyjoe(Do),
9 € W3 ,1,.(Sx) and F|p, € Lao(Dr), gls, € W,(Sr) for any T > 0. We say that the problem
(1.1.1), (1.1.2) is locally solvable in the class Wy if there exists a number Ty = Ty (F, g) > 0 such that
for T < Ty this problem has a strong generalized solution of the class W in the domain Dr in the

sense of Definition 1.2.1.

Definition 1.2.3. Let f satisfy the condition (1.2.3), where 0 < a < Z—i; F € L3 oc(Doo),
9 € Wy,,.(S«) and F|p, € La(Dr), gls, € Wy(Sr) for any T > 0. We say that the problem
(1.1.1), (1.1.2) is globally solvable in the class W3 if for every T > 0 the problem has a strong gener-

alized solution of the class W4 in the domain Dt in the sense of Definition 1.2.1.

Definition 1.2.4. Let f satisfy the condition (1.2.3), where 0 < a < Z—ﬂ; F € Lyjoc(Do), g €
W3 106(Se0) and Flp, € La(Dr), gls, € Wy (Sr) for any T > 0. We call the vector function
u = (uy,...,uy) € Wy ;,.(Dso) a global strong generalized solution of the problem (1.1.1),(1.1.2)
of the class W3 in the light cone of the future D, if for every T' > 0 the vector function u|p, belongs
to the space Wi (Dr) and is a strong generalized solution of this problem of the class W3 in the

domain Dy in the sense of Definition 1.2.1.

Remark 1.2.3. Reasoning from the proof of the equality (1.2.5) allows us to conclude that a global
strong generalized solution u = (u1,...,uy) of the problem (1.1.1),(1.1.2) of the class W3 in the
domain D, in the sense of Definition 1.2.4 satisfies the integral equality

/[futgat+Vqu0] dzdt:—/f(u)god:rdtJr/Fgadxdtf/aa—i[gads (1.2.7)
D

Do oo oo

for any vector function ¢ = (¢1,...,pn) € C*(Dy), finite with respect to the variable r = (t2 +
|x|2)1/2, i.e., p =0 for r > rqg = const > 0. It is easy to see that the solution u € W21,loc(D00) satisfies
the boundary condition (1.1.2) in the sense of the trace theory for T' = oo, i.e., u|s_ = g.

1.3 Some cases of local and global solvability
of the problem (1.1.1),(1.1.2) in the class W

For the sake of simplicity, we consider the case in which the boundary condition (1.1.2) is homogeneous.
In this case the problem (1.1.1), (1.1.2) takes the form of the problem (1.2.1),(1.2.2).

Remark 1.3.1. First, let us consider the solvability of the problem (1.2.1), (1.2.2), when the vector
function f =0 in (1.2.1), i.e., the linear problem

Lou:=0u = F(x,t), (z,t) € Dr, (1.3.1)

u(z,t) =0, (x,t) € Sr. (1.3.2)
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For the problem (1.3.1),(1.3.2), just as for the problem (1.1.1), (1.1.2) in Definition 1.2.1, we
introduce the notion of a strong generalized solution u = (u1,...,uy) of the class W in the domain
Dy for F = (Fy,...,Fy) € La(D7), i.e., of the vector function u = (uy,...,un) € Wi(Dr, St) :=
{u € WH(Dr) : u|s, =0} for which there exists a sequence of vector functions u™ = {uf*, ..., u%) €

o

C?*(Dr, St) := {u € C*(D7) : ulg, = 0} such that

g =l o =00 imliZou™ = Fllzyop) =0 (1:33)

For the solution u € C%(D7, St) of the problem (1.3.1),(1.3.2) the following a priori estimate
1

o < = - 2 3.

el i, 50y < CONE Loy, o) VT exp 5 (T +T7) (1.3.4)

is valid. Indeed, multiplying scalarly both parts of the equation (1.3.1) by 2 % and integrating in

the domain D,, 0 < 7 < T, after simple transformations, with the use of the equality (1.3.2) and
integration by parts, we have the equality [45, p. 116]

/[(Z)2+i(§;)1 dx:Q/F%lt‘ dx dt, (1.3.5)

Q- =1 D,

where Q. := Dp N {t =7}. Since Sy : ¢t = |z|, t <T, due to (1.3.2), we have

u(x,T) z/%u(m,s) ds, (z,7)€Q.

||

Squaring scalarly both parts of the obtained equation, integrating it in the domain €2, and using
the Schwartz inequality, we get

/u2dx:/(]§tu(x,s)ds>2dx <S/(T—|x)</<g?ft)2ds) dz

Q. Qx| - |z|

Denoting

ma[@%(?ﬁ)ﬁ ( )2]dx,

taking into account the inequality 2F % < (‘?9—7;)2 + F? and (1.3.5), (1.3.6), we have

w(T)g(HT)/(%)dedH/F? dz dt

n

ou
. Gmi

=1

D, D,
ou 2 " 0u2
2 JE—
g(l—l—T)/[u +(at) +Z(8xi) } da: dt
4 =
:(1+T)/w(s)ds+||FH%2(DT), 0<r<T. (1.3.7)
0

According to the Gronwall lemma, from (1.3.7) it follows that

w(r) < ||F||2L2(DT) exp(l+T)7 < ||F||2L2(DT) exp(1+4T)T, 0<7<T. (1.3.8)
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Further, according to (1.3.8), we have

il s, = /[u (Zy? +i1<<%) } i dt =

Dr

w(r)dr <T|F|3,pyyexp(1+T)T,

St~

which ensures the a priori estimate (1.3.4).

Remark 1.3.2. Due to (1.3.3), for the strong generalized solution of the problem (1.3.1),(1.3.2) of
the class W4 in the domain Dr the a priori estimate (1.3.4) is also valid.

Since the space C3°(Dr) of finite infinitely differentiable in Dp functions are dense in Lo(Dr), for
the given F' = (F1,...,Fn) € La(Dr) there exists a sequence of vector functions F™ = (Fy*,..., F) €
C§°(Dr) such that hm |F™ — F||1,(py) = 0. For the fixed m, extending F'™ by zero beyond the

m—r o0

domain Dp and retaining the same notation, we have F" € C'* (Riﬂ) with the support supp F'™ C
Do, where R := R 0 {t > 0}. Denote by u™ = (u],...,uR) the solution of the Cauchy
problem: Lou™ = F™, u™|i—o = 0, agt +—o = 0, which exists, is unique and belongs to the space
COO(IR:L_H) [32, p. 192]. Since supp F™ C Dy, u™|i=0 = 0, %’Ht o = 0, in view of the geometry
of the domain of dependence of the solution of the linear wave equation Lou™ = F™, we have

suppu™ C Do, [32, p. 191]. Retaining the same notation, for the restriction of the vector function 4™

on the domain D7, one can see that u™ € C?(Dz, St) and, according to Remark 1.3.1 and (1.3.4),

"l.e

m m k
0™ =y S ATIE™ = Flaog). (1.3.9)

The sequence {F™} is fundamental in Lo (Dr) and, due to (1.3.9), the sequence {u™} is likewise
fundamental in the complete space W3(Dr, St). Therefore, there exists the vector function u €
° 1 . ™m _ . _ .

W5 (Dr, St) such that n}gnoo lum — u||v<{/%(DT7ST) = 0, and since Lou™ = F™ — F in the space
Ls(Dr), according to Remark 1.3.1, this vector function will be the strong generalized solution of the
problem (1.3.1), (1.3.2) of the class W3 in the domain Dz. The uniqueness of this solution from the

space W3(Dr, St) follows, in view of Remark 1.3.2, from the a priori estimate (1.3.4). Therefore,
for the solution u of the problem (1.3.1),(1.3.2) we have u = Ly'F, where Ly' : [Lo(Dr)]¥

o
[Wi(Dr,S7)]" is a linear continuous operator, whose norm, according to Remark 1.3.2 and (1.3.4),
has the following estimate:

1207 g s sy = < VT exp - (T+T ). (1.3.10)

Remark 1.3.3. Due to (1.3.10), if the condition (1.2.3) is fulfilled, where 0 < a < 24 and F €
Lo(Dr), then in view of Remark 1.2.1, it is easy to see that the vector function v = (uy,...,un) €

WL(Dr,St) is a strong generalized solution of the problem (1.2.1),(1.2.2) of the class W3 in the
domain Dy if and only if w is a solution of the functional equation

u= Ly (—f(u) + F) (1.3.11)

in the space Wi(Dr, St).

Remark 1.3.4. Let the condition (1.2.3), where 0 < o < 2£1 be fulfilled. We rewrite the equation
(1.3.11) in the form

u=Au:= Ly (—~Kou+ F), (1.3.12)
where the operator Kg : [W3(Dr, S7)]N — [L2(D7)]Y from (1.2.4) is, due to Remark 1.2.1, a conti-
nuous compact operator. Therefore, in view of (1.3.10), (1.3.12), the operator A : [W3(Dr, St)]N —



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 9

(Wi(Dr,S7)]V is likewise continuous and compact. Denote by B(0,70) := {u = (uy,...,un) €

Wi(Dr.Sy) : .
Dr 50 ¢ g

the Hilbert space W3(Dz, St). Since the operator A from (1.3.12), acting in the space W3(Dr, St),
is continuous and compact, according to the Schauder principle, for the solvability of (1.3.12) in

< 1o} a closed convex ball of radius ry with center at the origin in

I/?/é(DT, St) it suffices to prove that the operator A maps the ball B(0,rq) into itself for some rg > 0
[90, p. 370].

Theorem 1.3.1. Let f satisfy the condition (1.2.3), where 1 < a < Z—ﬂ; g=0, F € Ly joc(Dr) and
Fp, € La(D7) for every T > 0. Then the problem (1.1.1), (1.1.2) is locally solvable in the class W3,
i.e., there exists a number Ty = To(F) > 0 such that for T < Ty this problem has a strong generalized
solution of the class W4 in the domain Dt in the sense of Definition 1.2.1.

Proof. Taking into account Remark 1.3.4, it suffices to prove the existence of the numbers Ty =
To(F) > 0 and ro = ro(7T, F) such that for T < Tj, the operator A from (1.3.12) maps the ball B(0, ro)

into itself. For this purpose, we find the needed estimate of ||AuHVf€/1 for uw € Wi(Dr, St).
2

(Dr,ST)

o
For u = (uy,...,uy) € Wi(Dr,Sr), we denote by @ the vector function representing the even
continuation of w through the plane ¢ = T' in the domain D% : T < t < 2T — |z|, symmetric to Dy
with respect to the same plane, i.e.,

U= U([E,t), ([E,t) € DTa
a U(JC,QT - t)a (l‘,t) € D;‘a

and u(x,t) = wu(x,t) for t = T, ¢ = T in the sense of the trace theory. It is obvious that u €

W(Dr) = {ve Wl(Dr): |5, = 0}, where Dr: |z| <t < 2T —|z|. Clearly, Dy = DpUQpUD3,
Qr := Do N {t = T}
Using the inequality [93, p. 258]

/ 0] 92 < (mes )L H[uflp0r P> 1,
Q

and taking into account the equalities ||@]|® ~ . = 2|u|? , lzl% = 2||ul|% , from
: avlites 7% 5 = 20l o,y VI, =20l
the known multiplicative inequality [68, p. 78]
lollpe < BIVallgallolig” Yo e Wi(Q), 2cCRY™,
0 o 0 - 1 1y/1 1N\-1 _ 1
Va,t = (—,...,—,—), o= (7_7><7_T) ) m:M
0x1 ox,, Ot r p/\r m n+1l—m
forQ:ﬁTCR"H,v:ﬁ,rzl,m:2and 1<p< %,whereﬂ:const>0doesnot depend
on v and T, follows the inequality
1p1 1 71
||uHLp(DT) < C()(HlCS DT)p +17 2 ||u||{/(l)/é(DT,ST) Yue VVQ(Z)T7 ST)7 (1313)

where ¢y = const > 0 does not depend on uw and 7. Taking into account the fact that mes Dy =

e T+ where w, is the volume of a unit ball in R", for p = 2«, from (1.3.13), we obtain

< . V1 3.
|l Lyo (Dry < CTHUHW;(DT7ST) Vu € Wy(Dr, St), (1.3.14)
where 1 L 1
Wy, \™
O = (i) TrHDen o = — oy~ 2 1.3.15
T\ P B ( )
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_ 1 1 1 +1 : _
Note that a; = 55 + 13 >0 for @ < 225 and, consequently, }gr(l) Cr =0.

For the value of ||Koul1,(p,), where u € W3(Dr, Sr) and the operator K acts according to the
formula (1.2.4), in view of (1.2.3) and (1.3.14), we have the estimate

I Koull7,(pyy < /(M1 + Ma|u|®)? de dt < 2M? mes Dy + 2M2 / |u|?* da dt

DT DT
= 2M? mes Dy + 2M22||u||%02‘a(DT < 2M? mes Dy + 2M30%0‘|u||20a1 ’
W3(Dr,ST)
whence we obtain
[ Kot]| y(pry < Mi(2mes Dr)2 + V2 MaC|lul|% (1.3.16)

Wi(Dr,St)

Further, from (1.3.10), (1.3.12) and (1.3.16), it follows that

[ A =||Lg ' (—Kou + F)

o o
W%(DT7ST) W%(DT,ST)

< [ILg | 1(=EKou + F)l| L, (Dr)

[La(D2)IN 5 [WL(Dr,S1)]N

1
< [VT e 5 (1 + )] (1Kol ator) + 1F2a(on)

1
< [VT exp 5 (T + 72)] (M2 mes Dr)? + V2 MoC ] + IFllLuor) )
2 Wi(Dr,St)

T

=a(T % b(T). 1.3.17
auly, D) (13.17)
Here,
1
a(T) = V2 MyCSVT exp 5 T+ T?), (1.3.18)
1 1
b(T) = |:\/T exXp 5 (T + Tz):| (M1(2 mes DT)E + ||FHL2(DT)) (1319)

For the fixed T' > 0, with respect to the variable z we consider the equation
az®+b=z, (1.3.20)

where a = a(T) and b = b(T) are defined by (1.3.18) and (1.3.19), respectively.
First, consider the case @ > 1. A simple analysis, analogous to that given in the work [90, pp. 373,
374] for o = 3, shows that:

(1) if b = 0, then the equation (1.3.20) has a unique positive root zo = a” =T besides the trivial
root z1 = 0;

(2) if b > 0, then for 0 < b < by, where

e

bo = bo(T) = [@~ T —a~aT|a" 51, (1.3.21)

the equation (1.3.20) has two positive roots z; and 22, 0 < z1 < z9; moreover, for b = by, these
1
roots coincide and we have one positive root z1 = 20 = 29 = (aa)” = 1;

(3) for b > by, the equation (1.3.20) does not have nonnegative roots. Note that for 0 < b < by, we
have the inequalities z1 < zg = (oza)7ﬁ < 2zo.

Due to the absolute continuity of the Lebesgue integral, we have

%iglo ||F||L2(DT) =0.
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Therefore, taking into account that mes Dy = ;22 T from (1.3.19) it follows that 7lﬂimo b(T) = 0.
—
Besides, since ——1- < 0 for a > 1 and }iH(l) Cr =0, from (1.3.18) and (1.3.21) we find that 7ljim0 by =
— —

+o0. Therefore, there exists a number Ty = Tp(F) > 0 such that for 0 < T' < Tp, due to (1.3.18)—
(1.3.21), the condition 0 < b < by will be fulfilled and hence the equation (1.3.20) will have at least
one positive root; we denote it by rg = ro(T, F).

When a = 1, the equation (1.3.20) is linear, and %iino a(T) = 0. Therefore, for 0 < T < Ty,

where Ty = T'(F) is a sufficiently small positive number, this equation will have a unique positive root
2(T,F) = b(a — a)~! which is also denoted by rq = ro(T, F).

Let us now show that the operator A from (1.3.12) maps the ball B(0,r) C W}(Dz, St) into itself.
indeed, in view of (1.3.17) and the equality arg + b = rg, for every u € B(0,ry) we have

Au % b<ary +b=ro. 1.3.22
[ HW1(D Sr ) <alu HW1(D 57) +b<ary+ 70 ( )
According to Remark 1.3.4, the above reasoning proves Theorem 1.3.1. O

Theorem 1.3.2. Let f satisfy the condition (1.2.3), where 0 < a < 1; g =0, F' € L3 joc(Dx) and
F|\py € Lo(D1) for every T > 0. Then the problem (1.1.1),(1.1.2) is globally solvable in the class
Wy, i.e., for any T > 0, the problem has a strong generalized solution of the class Wy in the domain
Dy in the sense of Definition 1.2.1.

Proof. According to Remark 1.3.4, it suffices to show that for any T° > 0 there exists a number

ro = ro(T, F) > 0 such that the operator A from (1.3.12) maps the ball B(0,rq) C I/?/}U(DT, St) into
itself. First, let % < a < 1. Since 2a > 1, the inequality (1.3.14) is valid and thereby the estimate
(1.3.17), as well. For the fixed T' > 0, owing to @ < 1, there exists a number ro = ro(T, F') > 0 such
that

a(T)s* +b(T) <rg Vs € [0,79). (1.3.23)

Indeed, the function /\(SS) , where A(s) = a(T)s® + b(T), is a monotonically decreasing continuous

function, and lim A9 — fooand lim 28 =, Therefore, there exists a number s = ro(T, F') > 0
s—+0 s—+oo S

such that %‘s:m = 1. Hence, since the function A(s) for s > 0 is monotonically increasing, we
immediately arrive at (1.3.23). Further, in view of (1.3.17) and (1.3.23), for every u € B(0,rg) we
have the inequality (1.3.22), i.e., A(B(0,70)) C B(0,ro).

The case 0 < a < % can be reduced to the previous case % < «a < 1, since the vector function,
satisfying the condition (1.2.3) for 0 < a < 1, satisfies the same condition (1.2.3) for a certain fixed
o = a; € (3,1) with other positive constants M; and M (it is easy to see that M; + Malu|* <
(My + M) + Ms|ul** Vu € R, @ < a1). This proves Theorem 1.3.2. O

1.4 The uniqueness and existence of the global solution
of the problem (1.1.1),(1.1.2) of the class W,

Below, we impose on the nonlinear vector function f = (fi,..., fn) from (1.1.1) the additional re-
quirements
‘afz

feCYRY), ‘ < Ms+ MyJul", 1<i,j <N, (1.4.1)

where M3, My, v = const > 0. For the sake of simplicity, we assume that the vector function g = 0
in the boundary condition (1.1.2), i.e., we consider the problem (1.2.1), (1.2.2).

Obviously, (1.4.1) results in the condition (1.2.3) for « = v+ 1, and in the case for v < % , we
have a =vy+1< ”—fl

Theorem 1.4.1. Let the condition (1.4.1) be fulfilled, where 0 <y < —= 1 , F € Ly(Dr),g=0. Then

the problem (1.1.1), (1.1.2) cannot have more than one strong generalized solution of the class Wy in
the domain Dt in the sense of Definition 1.2.1.
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Proof. Let F € Ly(Dr), g = 0 and the problem (1.1.1), (1.1.2) have two strong generalized solutions

u! and u? of the class Wy in the domain Dr in the sense of Definition 1.2.1, i.e., there exist two

sequences of vector functions v'™ € C?(Dr, St), i =1,2; m =1,2,..., such that
W}gnoo lu'™ —u ||V<{/5(DT’ST) =0, n}gnoo | Lu™ — Fllp,pry) =0, i=1,2. (1.4.2)
Let
w=u?—u', w"=u" '™ F™=Lu*" — Lu'™. (1.4.3)

According to (1.4.2), (1.4.3), we have

lim ||lw™ — w] . =0, lim [[F™|1,ps) = 0. (1.4.4)

m—00 Wi(Dr,St) m—00

In accordance with (1.2.1), (1.2.2) and (1.4.3), we consider the vector function w™ € C?(Dr, St)
as a solution of the following problem

Ouw™ = —[f(uQm) - f(ulm)] + ™ (1.4.5)
=0. (1.4.6)
Multiplying scalarly both parts of the vector equality (1.4.5) by the vector g’—tm in the space RV

and integrating by parts in the domain D, 0 < 7 < T, due to (1.4.6), in the same way as that for
obtaining the equality (1.3.5), we have

=~ du; J J
we obtain
1
2m 1m 8wm al a 1m 2m im 2m 1m awzm
[f(u*™) = f(u )]W:Z anl(u + s(u®™ —u'™)) ds| (u3™ —u;™) prak (1.4.8)
ij=1 b7 J

From (1.4.1) and the obvious inequality
|D1 + d2|’y < 27 max (|d1|7, |d2|ﬂy) < 27(|d1|ﬂy + ‘d2|7)

for v > 0, dy,ds € R, we have

[

\ <

lm +S( 2m 7u1m)) ds

o3

“J

1
/ Mg + My|(1 = s)u tm 4 su2m| ] ds < My + 27 My (|Ju'™" + [u®™]7).  (1.4.9)
0



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 13

From (1.4.8) and (1.4.9), with regard for (1.4.3), it follows that

ow;"
ot

) = ) 27 < 3 [wdy 20 (4 )

i,j=1

ow™

ot

2 2 im 2m m a,wm

)]+ 2 NEM () MW' (1.4.10)

< N2 M+ 20 (P )] |

ouw™

N My [(w™)? + (W

In view of (1.4.7) and (1.4.10), we have

o i=1
< / [(a;”itm)ﬁ(m)ﬂ dxdt+N2M3/[(wm)2+(ag”—tm)2} dar dt
D Q-
+2"’+1N2M4/(|u1m|7+|u2’”|7)|wm|)8g)7tm‘ dedt. (1.4.11)
D,

The last integral in the right-hand side of (1.4.11) can be estimated by means of Holder’s inequality

/ (™ + [u2™ ) ™| ]%‘ dz dt

D,
ow™ (|2
Im 2m m
= (H [u "YHLnH(DT) + H Ju |’YHLn+1(DT))Hw HLP(DT) ot ‘Lz(DT). (1.4.12)
1 1,1 _1:
Here ;= + st = 1, i.e.,
2(n+1)
= — 1.4.13
p==" ( )
For1l<qg< % , due to (1.3.13), we have
vl L, D,y < Co(D|v] < | Yo e Wi(Dr,Sr), 0<7<T, (1.4.14)
W2(DT75T)
with the positive constant C,(T), not depending on v € Wi(Dr, Sr) and 7 € (0,7].
According to the conditions of the theorem v < % , and hence y(n + 1) < % . Thus, from
(1.4.13) and (1.4.14), we get
m _ m ||y ol am ||Y s .
1™ 000 = W0y 0m) € Coaay @I =12 m21, (1415)
0"l .) < CoDl0" g, ) o m=1. (1.4.16)

According to the first equality of (1.4.2), there exists a natural number mg such that for m > my,
we have

”uim”’yo < ”uZ”’YO + ]_7 7= ]_72; m > 1. (1417)
WL(Dr,S7) W3 (Dr,ST)
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Taking into account the above equalities, from (1.4.12)—(1.4.17) it follows that

a m
27+1N2M4/ (™ a2 ) o) | | e

D,
<P ONMC (I, e, 2)emery, |
y(n+1) W1(Dr,S7) Wi(Dr,Sr) Wl(D ,S7)
ow™
< M. ( m||2 )
5 ||w ||W1 D ) at L2(D )

s2M5||wm||%V21(D,>=2M5/[(wmf ( ) +an(axl ) ] da dt,

D, =1
where
Ms = 2YN? M, C7 wt|| + [|u?]”, +2)C,(T).
Wy, o+, +2)G()

In view of (1.4.18), from (1.4.11) we have

[y 3 (5]

.

§M6/ [(wm)2+(%)z+i<aaﬁ?)2] d;vdt+/(Fm)2 drdt, 0<7<T,

Qr = Dr

where MG =1+ M3N2 + 2M5
Note that the inequality (1.3.6) is valid for w™, as well, and therefore,

/(wm)2 dx < T/ (8;”—:)2 dr dt < T/ [(wm)2 + (%U—tmf + Z_: (8;;?)2] de dt.

Qr D, D,

Am(7) = / [(wm)2 + (a:,;—tm)2 + i: (8627:)2] d dt

-

and adding up the inequalities (1.4.19) and (1.4.20), we obtain

Putting

T

An(7) < (Mg +T) / An(5)ds + [ F™ 12, ).
0

Hence, in view of the Gronwall lemma, it follows that
A (1) < NF™17 Dy exp(Ms + T)7.
From (1.4.21) and (1.4.22) we have

T
||wm||%VZI(DT) — //\m(T) dr < T||Fm||2L2(DT) exp(Ms + T)T.
0

Due to (1.4.3) and (1.4.4), from (1.4.23) it follows that

lwllwy (pry = w}gnoo [w—w™ + wm||%V21(DT) < mlgﬂoo |w—w™lwipy) + mlgnoo W™ lwa (D)

= Tim_[lw —w" (g = lm_ w—w™],

Therefore, w = us — uy = 0, i.e., ug = u1, which proves Theorem 1.4.1.

L2(D~)

(1.4.18)

(1.4.19)

(1.4.20)

(1.4.21)

(1.4.22)

(1.4.23)

Wi(Dr)
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From Theorems 1.3.2 and 1.4.1 the following existence and uniqueness theorem immediately fol-
lows.

Theorem 1.4.2. Let the vector function f satisfy the condition (1.2.3) for a < 1, and the condition
(1.4.1) for v < Then for every F € Lo(Dr) and g = 0, the problem (1.1.1),(1.1.2) has a

n—1"-
[e]

unique strong generalized solution u € W(Dr, St) of the class W3 in the domain Dt in the sense of

Definition 1.2.1.

The theorem below on the existence of a global solution of the problem (1.1.1), (1.1.2) follows from
Theorem 1.4.2.

Theorem 1.4.3. Let the vector function [ satisfy the condition (1.2.3) for a < 1, and the condition
(1.41) for v < =25; g = 0 and F € Ly oc(Dso) for every F|p, € Ly(Dr). Then the problem
(1.1.1),(1.1.2) has a unique strong generalized solution u € W3 ,,.(Dso) of the class Wy in the cone
of the future Dy in the sense of Definition 1.2.4.

Proof. According to Theorem 1.4.2, under the fulfilment of the conditions of Theorem 1.4.3 for T' = m,

[e]
where m is a natural number, there exists a unique strong generalized solution u™ € W3(Dr, St) of
the problem (1.1.1), (1.1.2) of the class W4 in the domain Dr—,, in the sense of Definition 1.2.1. Since
u™ Y p,_, is likewise a strong generalized solution of the problem (1.1.1),(1.1.2) of the class W3 in
the domain Dy—,,, according to Theorem 1.4.2, we have u™ = u™"!|p,_ | from which we obtain the

following scheme of constructing a unique global strong generalized solution u € W%,ZOC(DOC’ Soo) of
the problem (1.1.1), (1.1.2) of the class W3 in the cone of the future Do, in the sense of Definition 1.2.4:
u(z,t) = u™(x,t), (x,t) € Do, m=1[t]+1,

where [t] is an integer part of the number. Thus Theorem 1.4.3 is proved. O

1.5 The cases of nonexistence of a global solution
of the problem (1.1.1),(1.1.2) of the class W.
Blow-up solutions of the problem (1.1.1),(1.1.2)
of the class W,

Theorem 1.5.1. Let the vector function f = (f1,..., fn) satisfy the condition (1.2.3), when 1 < o <

n—17’

N
ntl " and there exist the numbers £y, 0o, ... L, S |€;| # 0 such that
i=1

N N

1
Z&fi(u) <co— cl‘ Z&ui\ﬁ VueRY, 1< 8 =const< i, (1.5.1)
i=1 i=1 n—1

where co,c1 = const, c1 > 0. Let F € Ly joe(Doc), 9 € Wy 1,0(Sec) and Flp, € Lao(Dr), gls, €

N
Wo(St) for every T > 0. Suppose that at least one of the functions Fy = i; U;F; — co or g‘ij\ﬂsm,

N

where go = >, £;gi, is nontrivial (i.e., differs from zero on a subset of positive measure in Doo 01 Soo,
i=1

respectively). If

g0 > 0, <0, F|, >0, (1.5.2)

990

ON Is..

then there exists a finite positive number Ty = To(F, g) such that for T > Ty, the problem (1.1.1), (1.1.2)

does not have a strong generalized solution of the class W3 in the domain Dt in the sense of Defini-
n

tion 1.2.1. Here, % s a derivative along the conormal to S, i.e., % = Upnt1 % — 2:1 v; 6% , where

1=

v= (V1. VUnyVnt1) s a unit vector of the outer normal to Do, = Seo.
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Proof. Let u = (uy,...,un) be a strong generalized solution of the problem (1.1.1), (1.1.2) of the class

Wy in the domain Dz. Here we apply the method of test functions [77, pp. 10-12]. According to

Remark 1.2.3, the solution u of this problem satisfies the integral equality (1.2.5) in which we take

as a test function ¢ = (£19, 621, ..., INv), where ¢ = 1pg[2T72(t? + |x|?)] and the scalar function

o € C%((—00,00)) satisfies the conditions ¥ > 0, ¥ < 0; 1g(0) =1 for 0 < o <1 and (o) = 0 for
N N N

o > 2 [77, p. 22]. For such a test function ¢ with notations v = Y Liu;, go = Y. 4igi, Fu = > UiF;,
i=1 i=1 i=1

N
fo=>_ ¢ fi, the integral equality (1.2.5) takes the form
i=1

690
[ — vy + Vo] dedt = — | fo(u)y dadt + W dx dt — (1.5.3)
/ D[ / /

Dt

Since ¢¥|¢>r = 0 and the equality v|s, = go holds in the sense of the trace theory, integrating by
parts the left-hand side of the equality (1.5.3), we get

/[—vtz/)t—i-Vsz/J] dmdt:/vljwdxdt /v—ds-/vljwdmdt— gogj\p[ds (1.5.4)
Dr Dr Dr St
From (1.5.3) and (1.5.4), due to (1.5.1) and ¢ > 0, we obtain the inequality
/v[lw dz dt > / [cl|v|ﬁ — co)? dxdt + / Fopdxdt+ [ go gjsz ds — 890 wd
DT DT ST ST
0 0
=0 / |v|P da dt + /(F* —co)pdrdt+ [ go (‘3./1\#/' ds — 8?\(} Pds. (1.5.5)
DT DT ST ST

According to the properties of the function ¢ and the inequalities (1.5.2), the inequalities

Y

>0, /go%dszo, /&%wd <0, /Fowdmdtzo, (1.5.6)

St St Dr

where Fy = F, —cg = Z {;F; — cg, are obvious.

Assuming that the functlons F, g and 1 are fixed, we introduce the function of one variable

990
~(T) = /F(ﬂ/}dxdt—i— 9o 3./\/'d8_/8./\/¢d T >0. (1.5.7)

Dr St

Due to the absolute continuity of the integral and the inequalities (1.5.6), the function (7T') from
(1.5.7) is nonnegative, continuous and nondecreasing; besides,

li T) = 1.5.
Jim +(T) =0, (1.5.8)
and since, according to our supposition, one of the functions 2 5 N or Fy is nontrivial, we get
lim ~(T) > 0. (1.5.9)
T—o0

In view of (1.5.7), the inequality (1.5.5) can be rewritten as follows:

c1/|v|% dx dt < /umw dx dt —~(T). (1.5.10)

Dt
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If in Young’s inequality with the parameter ¢ > 0: ab < (¢/8)a’ +(8e? 1) =107, where 8/ = B%
we take a = |v|¢Y/?, b= |0|/¢*P, then, in view of the equality 3’/8 = ' — 1, we have

—

ﬁl
—ti/s 1B 5 0¥
O] = |v|y!/ v _B\ vl ¢+W- (1.5.11)
Due to (1.5.11), from (1.5.10) we have the inequality
9 B 1 |D¢|BI
(Cl - B) |U| /l/} dx dt S /BIEﬂ/_l wﬂz_l dr dt — ’Y(T)?
DT DT
whence for € < ¢13, we get
6/
8 =g B
/ ol dodt < — 5, — / iy dedt— (D). (1.5.12)
Dr
Since B’ = Bifll , B= ﬁ,ﬁip due to the equality
min s _ L
0<e<cs (13 —e)pleP' =1 &
which is achieved for € = ¢y, it follows from (1.5.12) that
[mED B
/ v ¢5, - dxdt — o7 ~(T). (1.5.13)

According to the properties of the function g, the test function
P(z,t) =1y [2T*2(t2 + |x|2)} =

for r = (12 + |a:|2)1/2 > T. Therefore, after changing of variables t = \/2T&, x = V2T¢, it is not
difficult to verify that

(=R 3 |O|*
DT dedt = P 1

Dr r=(t34z|2)1/2<T

dodt = (V2T)" 1728 (1.5.14)

Here,
12(1—n)wh+4(R— 1612wl 15

o = 2 g ! de dty < +oo. (1.5.15)

1<]€ol? 41617 <2

As is known, the test function 1 (z,t) = ¥o[2T~2(t?> + |x|?)] with the aforementioned properties,
for which the condition (1.5.15) is fulfilled, exists [77, p. 22].
Due to (1.5.14), from (1.5.13), in view of 9g(c) =1 for 0 < ¢ < 1, we have

2T n+1-245" ’
/ |v|? dadt < / [v|Pep da dt < M+ o — f—l'y(T). (1.5.16)
a
r< D

S

In the case if § < ”“ ie,ifn+1-28" <0, the equation

1>
w o — g ~(T)=0 (1.5.17)

NT) = ;
(1) = -
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has a unique positive root T' = Ty (F, g), since the function

(\/i T)n+1726'

M (T) = ,
&

>0

is a positive, continuous, strictly decreasing in (0, 4+00), besides,
lim A\ (T) =400 and lim A\ (T) =0

T—0 T—4o0

and the function ~(7') is, as noted above, nonnegative, continuous and nondecreasing, satisfying the
conditions (1.5.8) and (1.5.9). Besides, A(T") < 0 for T' > Ty and A(T') > 0 for 0 < T < Tp. Therefore,
for T' > Ty, the right-hand side of the inequality (1.5.16) is a negative value, which is impossible. Thus
this contradiction proves Theorem 1.5.1. O

Remark 1.5.1. Let us consider one class of vector functions f satisfying the condition (1.5.1):

N
filur, .. uy) = aijlu;|* +b;, i=1,...,N, (1.5.18)
j=1
where a;; = const > 0, b; = const, 1 < b;; = const < Zﬂ , 4,5 =1,...,N. In this case we can take

6y =40y =--- =Ly = —1. Indeed, we choose 3 = const such that 1 < 8 < B;;, 4,5 =1,...,N. It is
easy to verify that |s|% > |s|® — 1 Vs € (00,00). Using the inequality [21, p. 302]

N N
> lwil? > Nl‘ﬁ‘ > v
i=1 =1

7 N
Vy=(y1,...,yn) ERY, B =const>1,

we get
N N N N N
Zfi(u1,~~,uN) > ag Z |uj | +Zbi > agp Z (lu;]? = 1) +sz‘
i=1 ij=1 i=1 ij=1 i=1

N N N N
B
= agN E |uj|ﬁfa0N2+ g biZaONQ*l?’ E Uj’ + E b; — agN?, aO:Hilijnaij > 0.

j=1 i=1 j=1 i=1

Hence we have the inequality (1.5.1) in which

N
fl 262 = ZKN = —1, C():aoNQ—ZbZ‘, C1 :aoNQ_’B > 0.
i=1
Note that the vector function f, represented by the equalities (1.5.18), likewise satisfies the condi-
tion (1.5.1) with ¢y = { = --- = {;y = —1 for less restrictive conditions when: a;; = const > 0, but
air, > 0, where k1, ..., ky is any fixed permutation of numbers 1,2...,N;i,j=1,...,N.

Remark 1.5.2. From Theorem 1.5.1 it follows that in the conditions of this theorem the problem
(1.1.1), (1.1.2) cannot have a global strong generalized solution of the class W3 in the domain Do, in
the sense of Definition 1.2.4.

Remark 1.5.3. Let the vector function f = (f1,..., fn) satisfy the condition (1.2.3) for 1 < o < 2£L

n—1"
the condition (1.4.1) for v < -2+ and also the condition (1.5.1). Let g = 0, F € Lj oc(Ds) and
F|p, € Lo(Dr) for every T > 0 and, moreover, let F' satisfy the third condition of (1.5.2). Then,
taking into account the fact that a strong generalized solution u of the problem (1.1.1),(1.1.2) of the
class Wy in the domain D7 in the sense of Definition 1.2.1 is also a solution of that problem in a
smaller domain Dy, for 71 < T, from Theorems 1.3.1, 1.4.1 and 1.5.1 follows the existence of a finite
positive number T, = T, (F') such that for T' > T, the problem (1.1.1), (1.1.2) does not have a strong
generalized solution of the class W in the domain Dy in the sense of Definition 1.2.1. There exists a
unique vector function u = (uq,...,uy) € Wzl,loc(DT*) such that for any T < T, the vector function
u is a strong generalized solution of the problem (1.1.1),(1.1.2) of the class W4 in the domain Dr.
This vector function can be considered as a blow-up solution of the problem (1.1.1), (1.1.2) of the class
W3 in the sense that |luly;(p,) < +oo for T < T, and Tii%n . lullwz(pgy = +o0.




Chapter 2

One multidimensional version
of the Darboux first problem
for one class of semilinear
second order hyperbolic systems

2.1 Statement of the Problem

In the Euclidean space R"! of independent variables x = (1, ..., x,) and t consider a second order
semilinear hyperbolic system of the form

9%u; 0%u; .
o~ ZaQ—ku uy,...,uy)=Fi, i=1,...,N, (2.1.1)
where f = (f1,...,fn), F = (F1,...,Fy) are the given, and v = (uq,...,uy) is an unknown vector

function, n > 2, N > 2.

Denote by D : t > |z|, &, > 0, the half of the light cone of the future bounded by the part
SY: 0D N {x, = 0} of a hyperplane x,, = 0 and the half S : t = |z|, z,, > 0, of the characteristic
conoid A : t = |z| of the system (2.1.1). Let Dy := {(z,t) € D: t <T}, S} :={(x,t) € S°: t < T},
Sr:={(z,t) e S: t<T}, T >0.

For the system of equations (2.1.1) consider the problem on finding a solution u(z, t) of this system
by the following boundary conditions

ou

— =0, =y, 2.1.2

axn S% u‘ST g ( )
where g = (¢1,...,9n) is a given vector function on Sp. In the case T = oo, we have Do, = D,

SY =S%and Sy = S.

The problem (2.1.1),(2.1.2) represents a multidimensional version of the Darboux first problem
for the system (2.1.1), when one part of the problem data support is a characteristic manifold, while
another part is of time type manifold [5, pp. 228, 233].

The questions on the existence and nonexistence of a global solution of the Cauchy problem for
semilinear scalar equations of the form (2.1.1) with the initial conditions u|t—¢ = uog, a ; ‘ 4—o = u1 have
been considered by many authors (see the corresponding references in Chapter 1). As is known, for
the second order scalar linear hyperbolic equations, the multidimensional versions of the Darboux first
problem are well-posed and they are globally solvable in suitable function spaces [5,42,43,81,91,92].
In regard to the multidimensional problem (2.1.1),(2.1.2) for a scalar case, i.e., when N = 1, in
the case of nonlinearity of the form f(u) = Mu|Pu, in [51] it is shown that depending on the sign

19
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of the parameter A and the values of the power exponent p, the problem (2.1.1),(2.1.2) is globally
solvable in some cases and not globally solvable in other cases. Another multidimensional version of
the Darboux first problem for a scalar semilinear equation of the form (2.1.1), where instead of the
boundary condition (% | 50 = = 01in (2.1.2) is taken u|go = 0, is considered in [9]. Noteworthy is the
fact that the multldlmensmnal version of the Darboux second problem for a scalar semilinear equation
of the form (2.1.1) is studied in [56].

In the present chapter we introduce certain conditions for the nonlinear vector function f = f(u)
from (2.1.1) the fulfilment of which ensures local or global solvability of the problem (2.1.1),(2.1.2),
while in some cases it will not have global solution, though it will be locally solvable.

2.2 Definition of a generalized solution
of the problem (2.1.1),(2.1.2) in Dy and D,

Let 5
o _ — U
C%(Dr,S%, St) == {u e C2(Dy) : o

5 =0, u|ST = O}.

o

Let, moreover, W3(Dr, St) := {u € WH(Dr) : uls, = 0}, where WF(€Q) is the Sobolev space
consisting of the elements of Lo(2) having up to the k-th order generalized derivatives from Lo(£2),
inclusive. Here, the equality u|s, = 0 should be understood in the sense of the trace theory [68, p. 71].

Below, under the belonging of the vector v = (v1,...,vn) to some space X we mean the belonging
of each component v;, 1 < i < N, of that vector to the same space X. In accordance with the
above-said, for the sake of simplicity of our writing and to avoid misunderstanding, instead of v =
(v1,...,vn) € [X]V, we write v € X.

Rewrite the system of equations (2.1.1) in the form of one vector equation

Lu:=0u+ f(u) = F, (2.2.1)

2
where [ := 2

5z — A, A= Z

Together with the boundary cond1t10ns (2.1.2), we consider the corresponding homogeneous bo-
undary conditions

ou
B, s = 0, ulg, =0. (2.2.2)
Below, on the nonlinear vector function f = (f1,..., fn) in (2.1.1) we impose the following re-
quirement
feCRY), |flu)] <M, + My|ul|®, «=const >0, uecRY, (2.2.3)
where | - | is a norm in the space R, M; = const > 0, i = 1,2.

Remark 2.2.1. The embedding operator I : [W3 (D7)]Y — [L,(Dr)]" is a linear continuous compact
operator for 1 < ¢ < %, when n > 1 [68, p. 86]. At the same time, Nemitski’s operator
K : [Ly(D7)]™ — [L2(Dr)]N acting by the formula Ku = f(u), where u = (uy,...,uy) € [Ly(Dr)]V,
and the vector function f = (f,..., fn) satisfies the condition (2.2.3), is continuous and bounded for
q > 2o [67, p. 349], [22, pp. 66, 67]. Thus, if @ < 2£1 ie., 20 < 2("+1) , then there exists a number

q such that 1 < ¢ < Q(njl)

and q > 2a. Therefore, in this case, the operator
Ko = KI: WD)V — [La(Dp)]Y (2.2.4)

is continuous and compact. Clearly, from u = (uy,...,uy) € W3 (Dr) it follows that f(u) € La(Dr)
and, if u™ — u in the space W3 (Dr), then f(u™) — f(u) in the space La(Dr).

Definition 2.2.1. Let f = (f1,..., fn) satisfy the condition (2.2.3), where 0 < a < "—"‘1 F =
(Fy,...,Fyn) € Lay(D7) and g = (g1, . ..,9n) € W2 (St). We call the vector function u = (ul, ceUN)
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€ W3 (Dr) a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W; in the domain

D if there exists a sequence of vector functions u™ € C?(D7) such that %bo =0, u"™ — u in the
T

space W (Dr), Lu™ — F in the space Ly(Dr) and u™|s, — g in the space W3 (S7). Convergence

of the sequence {f(u™)} to f(u) in the space La(Dr) as u™ — u in the space Wi (D7) follows from

Remark 2.2.1. When g = 0, i.e., in the case of homogeneous boundary conditions (2.2.2), we assume

that u™ € C%(Dr, S2, S7). Then it is clear that u € W(Dr, S7).

It is obvious that the classical solution u € C?(Dr) of the problem (2.1.1),(2.1.2) is a strong
generalized solution of the class W3 in the domain Dt in the sense of Definition 2.2.1.

Remark 2.2.2. It is easy to verify that if w € C?(D7) is a classical solution of the problem
(2.1.1),(2.1.2), then multiplying scalarly both sides of the system (2.2.1) by any test vector func-
tion ¢ = (¢1,...,pn) € C*(Dr) satisfying the condition p|,—7 = 0, after integration by parts, we
obtain the equality

/[—uﬂpt—&—VUV(p] drdt = /f @dmdt—F/ngdxdt / aN(pds (2.2.5)
Dr Dr SO USt
where 3/\/ = Vn+1 at Z v; 8 is the derivative with respect to the conormal, v = (v1, ..., v, Vpt1)

is the unit vector of the outer normal to 0Dz, and V = (%, e m)

and St is a characteristic manifold on which the operator % is an inner differential

. Taking into account that

_0_ .
ON S% — Oz,
operator, from (2.1.2) we have

oul _y w0y
ON lso. B
Therefore, the equality (2.2.5) takes the form
/[—utgot+Vquo] drdt = /f cpdxdt—i—/Fgodxdt—/aNgads. (2.2.6)
Dr Dr

Tt can be easily seen that the equality (2.2.6) is valid also for any vector function ¢ = (¢1,...,¢N) €
W3 (Dr) such that ¢|;—r = 0 in the sense of the trace theory. Note that the equality (2.2.6) is also
valid for a strong generalized solution u € W3 (Dr) of the problem (2.1.1),(2.1.2) of the class W3
in the domain D7 in the sense of Definition 2.2.1. Indeed, if u™ € C?(Dr) is a sequence of vector
functions from Definition 2.2.1, then writing the equality (2.2.6) for u = u™ and passing to the limit
as m — oo, we obtain (2.2.6). It should be noted that the equality (2.2.6), valid for any test vector
function ¢ € W} (D7) satisfying the condition ¢|;—r = 0, can be put in the basis of the definition
of a weak generalized solution u € W (Dr) of the problem (2.1.1),(2.1.2) of the class W3 in the
domain Dr.

Definition 2.2.2. Let f satisfy the condition (2.2.3), where 0 < o < 25 F € Lgjoc(Doo),
9 € W3 ,1,.(Sx) and F|p, € Lo(Dr), gls, € W3(St) for any T > 0. We say that the problem
(2.1.1),(2.1.2) is locally solvable in the class W3 if there exists a number Ty = Ty(F, g) > 0 such that
for any T < Ty this problem has a strong generalized solution of the class W, in the domain D in
the sense of Definition 2.2.1.

Definition 2.2.3. Let f satisfy the condition (2.2.3), where 0 < a < "—H F € Lyjoc(Deo),
g € Wy1,.(8«) and F|p, € Lao(Dr), gls, € Wy(Sr) for any T > 0. We say that the problem

(2.1.1),(2.1.2) is globally solvable in the class W if for any T' > 0 this problem has a strong genera-
lized solution of the class in the domain Dp in the sense of Definition 2.2.1.

Definition 2.2.4. Let f satisfy the condition (2.2.3), where 0 < a < ”—H F € Lyjoc(Doo)s
g € W3,,.(Sx) and F|p, € La(Dr), gls, € W,(Sr) for any T > 0. The Vector function u =
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(u1,...,un) € Wy ,.(Doo) is called a global strong generalized solution of the problem (2.1.1), (2.1.2)
of the class W in the domain D, if for any 7' > 0 the vector function u|p, belongs to the space
W4 (Dr) and is a strong generalized solution of the problem (2.1.1),(2.1.2) of the class W3 in the
domain D7 in the sense of Definition 2.2.1.

Remark 2.2.3. Reasoning used in the proof of the equation (2.2.6) makes it possible to conclude
that the global strong generalized solution u = (uy,...,uy) of the problem (2.1.1), (2.1.2) of the class
W3 in the domain D, in the sense of Definition 2.2.4 satisfies the following integral equality

/[*“t%ﬁt*VW@] dzdt:*/f(u)sﬁdxdwr/ngdxdtf/%@ds
Do

oo oo oo

for any test vector function ¢ = (¢1,...,¢n) € C'(Ds), which is finite with respect to the variable
r= (2 + |z|>)"2, ie., o = 0 for r > 19 = const > 0.

2.3 Some cases of local and global solvability
of the problem (2.1.1),(2.1.2) in the class W

For the sake of simplicity, we consider the case where the boundary conditions (2.1.2) are homogeneous.
In this case the problem (2.1.1),(2.1.2) can be rewritten in the form (2.2.1), (2.2.2).

Remark 2.3.1. Before we proceed to considering the solvability of the problem (2.1.1), (2.1.2), let us
consider the same question for the linear case, when the vector function f = 0 in (2.2.1), i.e., for the
problem

Lou :=0u = F(x,t), (z,t) € Dr, (2.3.1)
ou
B, 5o = O ulg, =0 (2.3.2)

For the problem (2.3.1), (2.3.2), by analogy to that in Definition 2.2.1 for the problem (2.1.1), (2.1.2),
we introduce the notion of a strong generalized solution u = (u1, ..., uy) of the class W3 in the domain

D for F = (Fy,...,Fy) € Ly(D7), i.e., for the vector function u = (u1,...,ux) € Wi(Dr, St), for

o __
which there exists a sequence of vector functions u™ = (u,...,u%) € C3(Dr, S%, St) such that
i mo_ o - i mo_ = U. 0.
Jimlu Ul pyosey =0 dm IEow™ = Fllzyor) =0 (2.3.3)

For the solution u € C3(D7, S%, St) of the problem (2.3.1), (2.3.2) the estimate

[l o

1
< = By 2 . .
W%(DT,ST) — C(T)”F”LQ(DT), C(T) \/T exp 2 (T + T )’ (2 3 4)

is valid. Indeed, multiplying scalarly both parts of the vector equation (2.3.2) by 2 % and integrating
in the domain D,, 0 < 7 < T, after simple transformations with the use of the equalities (2.3.2) and
integration by parts, we arrive at the equality [51], [45, p. 116]

[+ 5 (22 )an=2 [ r22an

Q. = D,

where Q. := Dp N {t =7}. Since S; : t = |z|, z, >0, t < 7, due to (2.3.2), we get

u(z,7) = /%u(x,s) ds, (z,s) € Q.

||
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Squaring scalarly both parts of the obtained equality, integrating it in the domain 2, and using
the Schwartz inequality, we have

/qux—/(/uxs) deﬂ/(T—b&)(/T(g?Z)st)dx

T Q- |z| - |z

ST/(](?Z)QCZS)2CZ$:T/ (%)2dacdt. (2.3.6)

oz T

w(r) = / [u2 + (%)2 + zzzl (g;t)z} dx.

Q,

Let

Taking into account the inequality 2F $% 6“ < (%)2 + F2, due to (2.3.5) and (2.3.6), we have

w(r)§(1+T)/<%) da dt+/F2dxdt

Dr

caar) [l (2 +Z DUV dwdt + 1£12,
815

Dr

— (14T /w(s) ds + |FI2,pyy, 0<T<T. (2.3.7)
0

According to the Gronwall lemma, from (2.3.7) it follows that
w(t) < ||F(|7,ppy exp(1+T)T, 0<7<T. (2.3.8)
Using (2.3.8), we get

T

0 "0
| ||?}V1 (DeSe) = / [uZ + ((,71;)2 + ; (a;i) } dx dt = /w(T) dr < T||FH%2(DT)eXp(1 + )T,

D, 0

which results in the estimate (2.3.4).

Remark 2.3.2. Due to (2.3.3), a priori estimate (2.3.4) is also valid for a strong generalized solution
of the problem (2.3.1),(2.3.2) of the class W3 in the domain Dy.

Since the space C§°(Dr) of finite infinitely differentiable in Dy functions is dense in Ly (D7), for the
given F = (F1,...,Fn) € Lo(Dr) there exists a sequence of vector functions F™ = (FJ",..., F¥) €
C§°(Dr) such that

Jim |[F™ = Fl,pr) =0

For the fixed m, extending F™ evenly with respect to the variable z, in the domain D :=
{(z,t) e R"" : z, <0, || <t < T} and then by zero beyond the domain Dy U D7 and retaining

the same notation, we have F™ € C'* (Riﬂ) for which the support supp F'™ C Do U D, where
RT‘l := Rt N {t > 0}. Denote by u™ the solution of the Cauchy problem
ou™
Lou™ :=Ou™ = F™, ™| =0, 7‘ —0, 2.3.9
ou™ i=Du e =0 Tl (239)

which, as is well-known [32, p. 192], exists, is unique and belongs to the space COO(RiH). Since

supp F™ C Doy U D, C {(z,t) € R" = t > |z|}, u™|j—¢ = 0 and 2% = 0, taking into account

t‘tO
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the geometry of the domain of dependence of the solution of the linear wave equation Lou™ = F™,
we have suppu™ C {(z,t) € R""! : ¢ > |z[} [32, p. 191] and, in particular, u™|s, = 0. On the
other hand, the vector function u™(x1,...,x,,t) = u™(21,...,—2n,t) is likewise a solution of the
same Cauchy problem (2.3.9), since the vector function F™ is even with respect to the variable x,.
Therefore, due to the uniqueness of the solution of the Cauchy problem, we have u™ = u™, i.e.,
u™ (21, ..., —Tp,t) = u™ (21, ..., 2, t), and hence the vector function u™ is likewise an even function
with respect to the variable z,,. This, in turn, implies that %1;:' |xn:O = 0, which under the condition
u™|s, = 0 indicates that if we retain the same notation for the restriction of the vector function u™
in the domain Dr, then it is obvious that u™ € C?(Dz, S%, St). Further, due to (2.3.4) and (2.3.9),
the inequality

m k”

lu™ — u <c(T)|F™ = F¥||1ynp) (2.3.10)

Wi(Dr,S1)
is valid.
Since the sequence {F™} is fundamental in Lo(Dr), due to (2.3.10), the sequence {u™} is

also fundamental in the complete space Wi(Dr,St). Therefore, there exists a vector function

u € Wi(Dr, St) such that

lim ||u™ — ull

° =
m— o0 W%(DT,ST) ’

and since Lou™ = F™ — F in the space Lo(Dr), this vector function is, according to Remark 2.3.1,
a strong generalized solution of the problem (2.3.1),(2.3.2) of the class W3 in the domain Dy. The

uniqueness of that solution from the space Wi(Dr, St) follows, due to Remark 2.3.2, from the a priori
estimate (2.3.4). Therefore, for the solution u of the problem (2.3.1),(2.3.2) we can write u = Ly ' F,

where Ly ' : [Lo(Dr)|NY — [Wi(Dr, Sr)]Y is a linear continuous operator with a norm admitting, in
view of (2.3.4), the following estimate:

Lo <

1
! o < VT exp = (T +T?). 2.3.11
H[Lz(DT)]N—>[W;(DT,ST)]N eXPQ( +T7) (2:3.11)

Remark 2.3.3. Taking into account (2.3.11), when the condition (2.2.3) is fulfilled, where 0 <
a < Z—ﬂ and F' € Ly(Dr), due to Remark 2.2.1, it is easy to see that the vector function u =

(u1,...,un) € Wi(Dr, St) is a strong generalized solution of the problem (2.2.1), (2.2.2) of the class
W3 in the domain Dy if and only if u is a solution of the functional equation

u= Ly (—f(u) + F) (2.3.12)

in the space W (Dr, St).

Remark 2.3.4. Let the condition (2.2.3) be fulfilled and 0 < o < 2tl . We rewrite the equation
(2.3.12) in the form
u= Au:= Ly (—Kou + F), (2.3.13)

where the operator K : [I/Io/%(DT, ST)N — [La(Dr)]N from (2.2.4) is, due to Remark 2.2.1, continu-
ous and compact. Therefore, according to (2.3.11) and (2.3.13), the operator A : [W(Dr, S7)]¥ —
(Wi(Dr,S7)]V is also continuous and compact. Denote by B(0,70) := {u = (u1,...,un) €

W3(Dr,St) : ullo . < ro} a closed convex ball of radius o > 0 with center in a null
Wz(DT,ST)

element in the Hilbert space VCE/%(DT, St).

Since the operator A from (2.3.13), acting in the space Wi(Dz, St), is a compact continuous
operator, according to the Schauder principle, for the solvability of the equation (2.3.13) in the space

o

W3(Dr, St) it suffices to prove that the operator A maps the ball B(0,7) into itself for some ro > 0
[90, p. 370).
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Theorem 2.3.1. Let f satisfy the condition (2.2.3), where 1 < a < "H ,9=0, F € L p(Doo)
and F|p, € La(Dr) for any T > 0. Then the problem (2.1.1),(2.1.2) is locally solvable in the class
W3, i.e., there exists a number Ty = To(F) > 0 such that for any T < Ty, this problem has a strong
generalized solution of the class W4 in the domain Dt in the sense of Definition 2.2.1.

Proof. Due to Remark 2.3.4, it suffices to prove the existence of positive numbers Ty = Ty (F') and rg =

ro(T, F') such that for T' < Tp, the operator A from (2.3.13) maps the ball B(0,r) into itself. Towards

this end, let us evaluate HAU”V?N(D ) for u € Wi(Dr, St). If u = (uy,...,un) € Wi(Dr,St), we
> (D1, 51

denote by w the vector function which represents an even extension of v through the planes x,, = 0

and t = T. Obviously, uw € W5(D3) := {v € W3 (D5 : v|opz = 0}, where D : |z| <t < 2T — |z|.
Using the inequality [93, p. 258]

/ 0] 2 < (mes ) H|[oflps P> 1,

and taking into account the equalities

[t = 2|ul%

7P =92 P
Foltz, o) = 20z, oy WG ) = 20005 5, sy

from the known multiplicative inequality [68, p. 78]

[vllp,2 < BlIVa, [l & vueWi(Q), QcRY
d & 0\ . (1 1y,1 1\-1 _  (n+Dm
) G- (Ao Ly o

vx,t:(aixlv"w%va )

TP

m =

n+l—m

r m

for Q=D CcR"™ v=u,r=1,m=2and 1 <p< 7fsrnliljzl,vvhe1re[3:const>Odoesnotdepend
on v and T', we obtain the following inequality:

p T vu € I/(I)/é(DT,ST), (2.3.14)

[ll 1, (D7) < colmes D)) 7512 |lul| o

Wi(Dr,Sr

where ¢y = const > 0 does not depend on u and 7.
Since mes Dy = 22 T™*1 where w, is the volume of a unit ball in R", from (2.3.14) for p = 2«

n+1
we get
ul| Lo (D7) < Crllu le(D sy TUE W5 (Dr, St), (2.3.15)
where Cr = o P )O‘lT(”+1)“1 a1 2a + n_lH — %
Note that a; = 55 + n—H -3 > 0 for a < Z"‘% , and hence
lim Cp = 0. (2.3.16)
T-50

For ||Koul||r,(py), Where u € W3 (Dr,Sr) and the operator Ky acts according to the formula
(2.2.4), due to (2.2.3) and (2.3.15), we have the estimate

1Koul, ) < /(M1 + Mau|*)? dz dt < 2M} mes Dy + 2M2 / 2 dz dt

DT DT
= 2M7 mes Dy + 2M3 < 2M7 mes Dy + 2MFC3* ||u| %
f mes Dy + 2M3 |[u| 72, by 1 mes Dy + 245 Hu”wl(DT,ST)
whence
1Kol Lo, (pry < Mi(2mes Dr)? + \fMQCT||u||‘* (2.3.17)

Q(DT7ST)
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It follows from (2.3.11), (2.3.13) and (2.3.17) that

[ Au] o

_ —1/_
W3i(Dr,Sr) B HLO ( KOU+F)

o
Wi(Dr,Sr)

= ||L61H[L M=K+ F)[ Lo (0

2(Dr)]N +[W(Dr,S1)]

1
< VT exp 5 (0 + )| (IKotllbaor) + 1P (o)

1
< [VTewps(T+ T2>} (M1(2mes Dr)® + V2 MCfllls, o+ ||F||L2<DT>)
L(Dr,

= a(T)||u||:?/%(DT7ST) +b(T). (2.3.18)
Here,
a(T) = V2 MyC$V'T exp % (T +T?), (2.3.19)
W(T) = [VT exp % (T +T%)| (M (2mes D1)? + ]| F |1, (pr))- (2.3.20)
For the fixed T' > 0, consider the equation
az®+b==z2 (2.3.21)

with respect to the unknown z € R, where a = a(T") and b = b(T') are defined by (2.3.19) and (2.3.20).
First, consider the case o > 1. A simple analysis, analogous to that performed for a = 3 in [90,
pp. 373, 374], shows that:

1) for b = 0, together with a trivial root z; = 0, the equation (2.3.21) has a unique positive root
, 108
29 =a o-1;

(2) if b > 0, then for 0 < b < by, where

1

by = bo(T) = [a—ﬁ _ a—ﬁ]a—m, (2.3.22)

the equation (2.3.21) has two positive roots z; and z2, 0 < 21 < z9, and for b = by, these roots
merge, and we have one positive root z1 = 2z = 29 = (aa)fﬁ;

(3) for b > by, the equation (2.3.21) does not have nonnegative roots. Note that for 0 < b < by, the
inequality z1 < zg = (aa)fﬁ < z9 is valid.

In view of the absolute continuity of the Lebesgue integral, we have %iglo | Fllzo(Dyy = 0. Therefore,

taking into account that mes Dy = = T"*+1, it follows from (2.3.20) that 71}310 b(T) = 0. At the same

time, since ——= < 0 for a > 1, due to (2.3.16), from (2.3.19) and (2.3.22), we get %1310 bo(T) = o0.

Therefore, there exists a number Ty = To(F) > 0 such that for 0 < T < Ty, in view of (2.3.19)—
(2.3.22), the condition 0 < b < by holds and hence the equation (2.3.21) has at least one positive root,
we denote it by 1o = ro(T, F).

In case @ = 1, the equation (2.3.21) is linear, where %iglo a(T) = 0. Therefore, for 0 < T < Ty,

where Ty = To(F) is a sufficiently small positive number, this equation will have a unique positive
root z(T, F) = b(1 — a)~!, which we also denote by r¢ = ro(T, F).

Now, we will show that the operator A from (2.3.13) maps the ball B(0,ry) C Wi(Dr, S7) into
itself. Indeed, due to (2.3.18) and the equality ar§ + b = ro, for any u € B(0,r), we have

. < allul|% <arg +b=ro. 2.3.23
Mules b gp = a”””w;(DT,sT) +b<arg +b=mo (2.3.23)

In view of Remark 2.3.4, the above reasoning proves Theorem 2.3.1. O
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Theorem 2.3.2. Let f satisfy the condition (2.2.3), where 0 < o <1, g =0, F € Lg 0.(Dw) and
F|p, € Ly(Dr) for any T > 0. Then the problem (2.1.1),(2.1.2) is globally solvable in the class Wy ,
i.e., for any T > 0 this problem has a strong generalized solution of the class W3 in the domain D
in the sense of Definition 2.2.1.

Proof. According to Remark 2.3.4, to prove Theorem 2.3.2, it suffices to show that for any T > 0
there exists a number rg = 7¢(7, F) > 0 such that the operator A from (2.3.13) maps the ball
B(0,79) C Wi(Dr, Sr) into itself. Let 3 < a < 1, then since 2a > 1, the equality (2.3.15) is valid
and hence the estimate (2.3.18) is also valid. For the fixed T' > 0, since o < 1, there exists a number
ro = ro(T, F') > 0 such that

a(T)s* +b(T) <rg Vs € [0,79). (2.3.24)

Indeed, the function %9) , where A(s) = a(T)s® + b(T), is a continuous decreasing function and

A A
lim ﬂ = +o0, lim ﬂ =0.
s—04+ 8 s—+4oo 8§
A(s)

Therefore, there exists a number s = ro(T, F') > 0 such that =

S

|S:T0 = 1. This implies that since the

function A(s) for s > 0 is a monotonic increasing function, (2.3.24) follows immediately. Now, in view of
(2.3.18) and (2.3.24), for any v € B(0, o), the inequality (2.3.23) is valid, i.e., A(B(0,79)) C B(0,7o).
The case 0 < a < % can be reduced to the previous case % < a < 1, since the vector function f
satisfying the condition (2.2.3) for 0 < o < 1 satisfies the same condition (2.2.3) for a certain fixed
o = a € (1,1) with other positive constants M; and M, (it is easy to see that My + Mallul|* <
(My + M) + Ms|u|** Vu € R, @ < ay). This proves Theorem 2.3.2 completely. O

Remark 2.3.5. The global solvability of the problem (2.1.1),(2.1.2) in Theorem 2.3.2 is proved
for the case in which the function f satisfies the condition (2.2.3), where 0 < a < 1. In the case
1<ax< Zf} , the local solvability of this problem is proved in Theorem 2.3.1, although in this case,
for the additional conditions imposed on f the problem (2.1.1), (2.1.2) is globally solvable as is shown
in the following theorem.

Theorem 2.3.3. Let f satisfy the condition (2.2.3), where 1 < a < Z—ﬂ and f =V G, ie., fi(u)=
%G(u), u € RN, i=1,...,N, where G = G(u) € CYRY) is a scalar function satisfying the
conditions G(0) = 0 and G(u) > 0Vu € RY. Let g=0, F € L2 1p.(Dwo) and F|p, € La(D7) for any
T > 0. Then the problem (2.1.1), (2.1.2) is globally solvable in the class W3, i.e., for any T > 0, this

problem has a strong generalized solution of the class Wy in the domain Dt in the sense of Definition
2.2.1.

Proof. First, let us show that for any fixed T" > 0, when the conditions of Theorem 2.3.3 are fulfilled,
for a strong generalized solution u of the problem (2.1.1),(2.1.2) of the class W3 in the domain Dr
the a priori estimate (2.3.4) is valid. Indeed, due to Definition 2.2.1, there exists a sequence of vector

functions u™ € C(Dr, S%, St) such that
Jim [[u™ —ullwipgy =0, i [[Lu™ = Fllpypr = 0. (2.3.25)

Let
Fm = Lu™, (2.3.26)

then due to the equality (2.3.5), we have

/ [(35‘7:)2 oy (%zmﬂ do = 2 /(Fm — F™) ag—;n da dt. (2.3.27)

Q. i=1 Dr
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Since f = V G, we have f(u™) ag: = £ G(u™) and, taking into account that u™|s, = 0, Vntilso =0,
Unt1la, =1, G(0) = 0, by integration by parts we get

/f —d dt = /gG(um)dxdt

/G YWnt1ds = / G(u uanS—/G( ™) dz. (2.3.28)

SOUS,UQ,

In view of (2.3.28) and G > 0, from (2.3.27) we have

J1 5 ()

Q-

:Q/Fm%dxdt—2/G(um)dx§2/F %d dt. (2.3.29)

D. Q. D.

Using the same reasonings as those for finding the estimate (2.3.4), from (2.3.29) we get the
following inequality

[u™l o, < c(DEF™ra(pg), o(T) = \/Texp (T +T?),
W1(Dr,S7) —

whence, due to (2.3.25) and (2.3.26), we have (2.3.4).
According to Remarks 2.3.3 and 2.3.4, under the fulfilment of the conditions of Theorem 2.3.3, the

vector function u € W3(Dr, St) represents a strong generalized solution of the problem (2.1.1), (2.1.2)
of the class W if and only if u represents a solution of the functional equatlon u = Au from (2.3.13)

in the space Wi(Dr, St), where the operator A : [Wl(DT7 Sr)¥ [WQ(DT7 S7)]YV is continuous
and compact. At the same time, as is shown above, for any p € [0, 1] and any solution of equation

u = pAu with the parameter y, in the space Wi(Dz, St) the following a priori estimate

l[ull o S pe(DFlloory < (D F Lo (0r)

W(Dr,S7)

with the positive constant ¢(T), independent of u, p and F, is valid. Therefore, according to the
Leray—Schauder’s theorem [90, p. 375], the equation (2.3.13) and hence the problem (2.1.1),(2.1.2)
has at least one strong generalized solution of the class W4 in the domain Dy for any 7' > 0. Thus
Theorem 2.3.3 is proved. O

2.4 The uniqueness and existence of a global solution
of the problem (2.1.1),(2.1.2) in the class W,

Below, we impose on the nonlinear vector function f = (f1,..., fnv) from (2.1.1) the following addi-
tional requirements

‘ dfi(u

f e CHRY), ‘<z\43+1\44\u|7 VueRN, 1<i,j<N, (2.4.1)

where M3, My, v = const > 0. For the sake of simplicity, we assume that the vector function g = 0
in the boundary condition (2.1.2).

Remark 2 4.1. Tt is obvious that from (2.4.1) follows the condition (2.2.3) for vy = a— 1, and in the
casev<n vvehauve1<oz—’y—l—1<"+1
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Theorem 2.4.1. Let the condition (2.4.1) be fulfilled, where 0 < v < —==, F € La(Dr) and g = 0.
Then the problem (2.1.1),(2.1.2) cannot have more than one strong genemlzzed solution of the class
W3 in the domain Dt in the sense of Definition 2.2.1.

Proof. Let F' € Lo(Dr), g = 0, and assume that the problem (2.1.1), (2.1.2) has two strong generalized
solutions u! and u? of the class W4 in the domain D7 in the sense of Definition 2.2.1, i.e., there exist

two sequences of vector functions u'™ € C%(Dr, S%, Sr), i =1,2; m =1,2,..., such that
’rr}gnoo Hu v ||W1(DT ST) =0, ’rggnoo HLu”n - F||L2(DT) =0, i=12 (242)
Let
w=u*—u', w"=u"—u™, F™ = Lu*™ — Lu'™. (2.4.3)

In view of (2.4.2) and (2.4.3), we have

A =y 5y = O 2 W ea0m) = 0 (2.4

In accordance with (2.4.3), consider the vector function w™ € C?(Dr, S%, St) as a solution of the
following problem:

Ow™ = —[f(uzm) - f(ulm)] + ™, (2.4.5)
ow™ m
a5 = 0, w"|g =0. (2.4.6)

From (2.4.5), (2.4.6) and in view of the equality (2.3.5), it follows that

/ [(852")&;@: ) -

0,

/ W et — 2 / [f(u®™) — f(u'™)] aax dedt, 0 <7 <T. (2.4.7)

D, D,

Taking into account the equality

J

1
(0, 2mN 1m_N i 1m 2m _ ,, 1m 2m _ . 1m
fl(u ) fl(u )_Z 87.L +S( u ))dS(UJ u] )7
0

=1
we obtain
i 0 0
m m m w:n
[f(uQm)—f(Ulm)] [/3 (u'™ + s(u™ —u'™)) ds | (ui™ —uj™) T (2.4.8)
1,7=1 0

From (2.4.1) and the obvious inequality |dy + da|” < 2Y max(|d1|7, |d2|?) < 27(|d1|" + |d2|?) for
v >0, d; € R, we have

[

\ <

lm +S( 2m 7u1m)) ds

o3

“J

1
/ Mg + My|(1 = s)u tm 4 su2m| ] ds < My + 27 My (|Ju'™" + [u®™]7).  (2.4.9)
0
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From (2.4.8) and (2.4.9), taking into account (2.4.3), we obtain

e - sam) G| < i_ [+ 20 ()| | 2|
< N2 [ My 20 My 4 )] ) | 22
< %N?M3 [(w™)? + (ag—tm)z} + 2 N2M (Jul™ | + [u2™ ) ™| ’7 . (2.4.10)
Due to (2.4.7) and (2.4.10), we get
JIEamICP
< / [(a;“—tm)z+(Fm)2] dxdt+N2M3/ [(wm)? + (ag"—tm)z} dz dt
D, D,

v+1 ar2 Im |y 2m |y m ow™
+ 27T N My (|u [ + |u |)|w |73t dx dt. (2.4.11)

D,

The latter integral in the right-hand side of (2.4.11) can be estimated by Holder’s inequality

/(I Y ) |wm|’ 5 |dxdt

D,
< (U™ Pl iwis 0 + I i) 0™ Ny | |, 2412
Here, n+1 +1 +2 =1,ie.,
_ 72(:11) , (2.4.13)
In view of (2.3.14), for ¢ < 2(n _H) we have
olzyion < oDl ) Y0 EWHD,S7), 0<T<T, (24.14)

with the positive constant C,(T") not depending on v € Wi(D,,S,) and 7 € [0, T].

According to our theorem, ¥ < —2- and hence y(n+1) < % . Thus, from (2.4.13) and (2.4.14),
we obtain

m |y _ im||Y Y am ||y s .
0 a9 = 101y 0 S iy @I, =12 m2 1, (2415)
[w™ (|, D,y < Cp(Dw™[lwyp,), m=>1. (2.4.16)

In view of the first equality from (2.4.2), there exists a natural number mg such that for m > my,
we have

™|, < ||u1||7 +1, i=1,2; m>mo. (2.4.17)
Wi(Dr,ST) Wi(Dr,ST)
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In view of the above inequalities, from (2.4.12)—(2.4.16) it follows that

2INMy / (™ + u®™7) \wm“ ot ‘d wdt < 2FINIMLCY ) (T)
D,
< (I + +2)cp<T>||me o
Wi(Dr,Sr) Dr,St) Wl(DT7ST) ot Lo(Dy)
2
SME’(me”Wé(DTWH ot Lz(rm) = wllwi ooy
ow™\ 2 "L Hw™N 2
— oM, [ my2 (7) ( )]d dt, (241
5/(w)+at +30(5) ] dedt, (24.13)
D. =1
where
My = 27 N2 M,C? (u”o + 2| +2)C ).
@B, AR 2)G)

Due to (2.4.17), from (2.4.11) we get

FI 5 (]

.

— 8(1)1‘
D, = D,

< M6/ [(wM)2 n (a;”—tm)Q +Zn: (3wm)2} da di + /(Fm)2 dedt, 0<7<T, (24.19)

where M6 =1+ M3N2 + 2M5
Note that the inequality (2.3.6) is likewise valid for w™ and, therefore,

/(wm)2 do < T/ (%27 i < T/ [+ (220 i (88“;)2} dodt.  (24.20)

Q. D, D,

Putting

Sw™ 2 n Sw™\ 2
A (7) = / [(w™)? + (%) +>( - )] da (2.4.21)
O, i=1 ’
and adding (2.4.18) to (2.4.19), we obtain

A (T) < (Mg + 1)

Am(s) ds + HFWHL2 Dr)*

o\

whence, by the Gronwall lemma, it follows that
Am (1) < ||Fm||2L2(DT) exp(Ms + T')7. (2.4.22)
From (2.4.20) and (2.4.21) we have

T
o™ 2 ) = / () dr < T|F™|2, . exp(Ms + T)T. (2.4.23)
0

In view of (2.4.3) and (2.4.4), from (2.4.22) it follows that

lwllwz(pyy = n}gnoo [w—w"4+w"lwipy) < n}gnw Jw —w™wi (s + n}gnoo W™ lwi (Do)

= i " ) = i =, =0

Therefore, w = us — uy; = 0, i.e., us = uy. Thus Theorem 2.4.1 is proved. O
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From Theorems 2.3.2, 2.3.3, 2.4.1 and Remark 2.4.1 follows the next theorem on the existence and
uniqueness.

Theorem 2.4.2. Let the vector function [ satisfy the condition (2.4.1), where 0 < v < % , and

either f satisfy the condition (2.2.3) for a < 1, or f = VG, where G € C*(RY), G(0) = 0 and
G(u) > 0 Vu € RN, Then for any F € La(Dr) and g = 0, the problem (2.1.1),(2.1.2) has a

unique strong generalized solution u € W(Dr, St) of the class W3 in the domain Dt in the sense of
Definition 2.2.1.

The theorem below on the existence of a global solution of this problem follows from Theorem 2.4.2.

Theorem 2.4.3. Let the vector function f satisfy the condition (2.4.1), where 0 < v < -2 and

n—17’
either f satisfy the condition (2.2.3) for a < 1 or f = VG, where G € CY(RY), G(0) = 0 and
G(u) > 0 VYu € RY. Then the problem (2.1.1),(2.1.2) has a unique global strong generalized solution

u € WilOC(DOO, Sso) of the class W3 in the domain Do, in the sense of Definition 2.2.4.

Proof. According to Theorem 2.4.2, when the conditions of Theorem 2.4.3 are fulfilled for T = k,

]
where k is a natural number, there exists a unique strong generalized solution u* € W(Dr, St) of
the problem (2.1.1), (2.1.2) of the class W4 in the domain D7 in the sense of Definition 2.2.1. Since
uFtl|p,_, is also a strong generalized solution of the problem (2.1.1),(2.1.2) of the class W3 in the
domain D7—y, in view of Theorem 2.4.2, we have u* = u**1|p__,. Thus one can construct a unique

global generalized solution u € Wi(Dr, St) of the problem (2.1.1),(2.1.2) of the class W3 in the
domain D, in the sense of Definition 2.2.4 as follows:

u(z,t) = uF(x,t), (x,t) € Do, k=[t] +1,

where [t] is an integer part of the number ¢. Thus Theorem 2.4.3 is proved. O

2.5 The cases of the absence of a global solution
of the problem (2.1.1),(2.1.2) of the class W}

Theorem 2.5.1. Let the vector function f = (f1,...,fn) satisfy the condition (2.2.3), where 1 <

a < Z—ﬂ, and there exist the numbers l1,... 0N, Zfil |4;] # 0, such that
N N
B 1
Z&fl(u) Sco—cl‘ZEiui VueRY, 1< B =const < i, (2.5.1)
i=1 i=1 n—1

where co,c1 = const, ¢; > 0. Let F' € Ly joc(Doo), g € W21,loc(500) and F|p, € La(Dr), gls, €

N
W3(St) for any T > 0. Let at least one of the functions Fy = Y. {;F; — ¢y or % s » where
i=1 >

N

go = Y. 4igi, be nontrivial (i.e., different from zero on a subset of positive measure in Do 07 Seo,

i=1
respectively). Then if

90 >0, == <0, F|, >0, (2.5.2)

there exists a finite positive number Ty = To(F, g) such that for T > Ty the problem (2.1.1), (2.1.2) does

not have a strong generalized solution of the class W4 in the domain Dy in the sense of Definition 2.2.1.

N
Here, % s a derivative with respect to the conormal to S, i.c., % = Upnt1 % - >y G%i , where
i=1

v= (V1. VUn,Vnt1) 8 a unit vector of the outer normal to Dy = Ss, which is an inner differential
operator on the characteristic manifold S .
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Proof. Let Gp : |z| <t < T, Gy = GrN{x, <0}, Sp : t = l|z[, z, <0,t <T. Obviously,
Dr =G Grn{z, >0} and Gr = G U (S \ 9S%) U G, where S% = D1 N {z,, = 0}. Let
w = (u1,...,uy) be a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W in the
domain D7 in the sense of Definition 2.2.1. We extend the vector functions u, F' and g evenly with
respect to the variable z,, in G, and S, respectively. For simplicity, we retain the same notations u,
F and g to the extended functions defined in Gy and S U S7. Let us show that the vector function
u = (uy,...,uy), defined in the domain Gr, satisfy the following integral equality

/[—utwt—l—Vqu] dz dt = /f wda:dt—l—/Fwdxdt S—Nwds (2.5.3)

Gr Gr SEUST

for any vector function w = (w1, ..., wy) € W3(Gr) such that w|;—r = 0 in the sense of the trace
theory. Indeed, if w € W} (Gr) and w|—r = 0, then it is obvious that w|p, € WJ(Dr) and
w € Wi (Dr), where, by definition, w(z1,...,2,,t) = w(z1,...,—Tn,t), (x1,...,2n,t) € Dy and
W|i=r = 0. Therefore, according to the equality (2.2.6), from Remark 2.2.2, for ¢ = w and ¢ = w, we
have

/[—utwt+Vqu] dx dt = /f wdxdtJr/Fwdxdtf/aa—Nwds (2.5.4)
Dt Dr St

and
/[—ut@t—l—VuV@] dz dt = /f wdxdt+/Fwdmdt /8./\/'~ (2.5.5)
DT DT

respectively. Since u, F' and g are the even vector functions with respect to the variable x,, and

W(T1, .. Ty,t) = w(T1, ..o, =Ty, t), (T1,...,Tp,t) € Dy, we have

/ [ —wwy + VuV 15] dx dt = / [ —wwy + VuV w] dx dt, (2.5.6)

Dr Gpr—

- / F)@ da dt + / F& dxdtf/ﬁ{ﬁds
ON
Dr Dt St
- / fww dxdt + / Fw dxdt — 387\/ wds. (2.5.7)
G; G; Sy
It follows from (2.5.5)—(2.5.7) that

/ [ —ww; + VuVw| dedt =— / fuw)w dz dt + / Fwdzdt — / g—/‘(\l/_wds. (2.5.8)

Gy Gy Gy Sy

Finally, summing up the equalities (2.5.4) and (2.5.8), we obtain (2.5.3).

Let us apply the method of test functions [77, pp. 10-12].

In the integral equality (2.5.3), for the test function w we choose w = (¢14,...,¢N), where
P = o[2772(t? + |x|?)], while a scalar function 1)y € C?(R) satisfies the following conditions: g > 0,
Py <; (o) =1 for 0 < cr <1 and ¢( ) =0 for o > 2 77, p. 22] For the chosen test function w,

using the notations v = Z g, go = Z ligi, F = Z G, fo= Z ; f;, the integral equality (2.5.3)
i=1 i=1 i=1 i=1
takes the form

/[—vﬂ/}t—FVquﬂ dxdt:—/fo(u)wdxdt—i—/F*wda:dt— 890

Gr Gr Gr S UST

wds (2.5.9)
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Due to ¢|;>7 = 0 and the equality v| S7usy = 90 in the sense of the trace theory, integrating by
parts the left-hand side of the equality (2.5.9), we get

/ [—vtwt—l-VvViﬂ dx dt

Gt

:/vadxdtf / vg—;\/}/,dsf/vadxdtf / gog—f/ds. (2.5.10)

Gr SpUST Gr SpUST

From (2.5.9) and (2.5.10), in view of (2.5.1) and v > 0, we have

/vadxdtZ/[cl|v|ﬁ—co]wdxdt+/F*wdxdt—i- / 9o gNdS_ / 3Nwd

Gt Gr Gr SrUST SrUSt
0 9]
=0 / |v|P1 da dt + /( —co)y dedt + / goﬁds go wd (2.5.11)
Gr SpuUST s;usT
In view of the properties of the function ¢ and the inequalities (2.5.2), we have
o Y
— ds >0
S7UST ’ / 90 N “° ’
S7US
5 e (2.5.12)
goz/;d <0, /Fm/)d:rdtzo,
SpUST Gr

where Fy = Fy, — cg = Z L;F; — ¢p. Upon derivation of the inequality (2.5.12), we have taken into
i=
account the fact that Vn+1\5 usy <0

Assuming that the functlons F, g and v are fixed, we introduce into consideration a function of
one variable

~(T) = /Fow dz dt + / 9o g—}\/}/ ds — / 3)(]\(} Yds, T >0. (2.5.13)
Gr SpUST S7UST

Due to the absolute continuity of the integral and the inequalities (2.5.12), the function v(T) from
(2.5.13) is nonnegative, continuous and nondecreasing, and

lim ~(T) = 0. 2.5.14
Jim A(T) =0 (2.5.14)

Besides, since according to the supposition, at least one of the function g—f{} or Fp is non-

5% USeo
trivial, we have
li T . 2.5.1
Pim y(T) >0 (2.5.15)

In view of (2.5.13), the inequality (2.5.11) can be rewritten as follows:

cl/|v|% dx dt < /va dx dt —~(T). (2.5.16)

Gr

If in Young’s inequality with the parameter ¢ > 0

ab < %aﬁ + (B NP,
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where ' = %, we take a = |v[yp!/8, b = BY1 then taking into account the equality %’ =p3 -1,

E G
we have .
176 109 8 1 [Oy
wmwr4|w/ﬁyﬁ_ﬁ||w+ﬁﬁ_lw@4. (2.5.17)
In view of (2.5.17), from (2.5.16) we have
1 Oy
61 - = /|y|51/) dr dt < e o1 dx dt — ~(T),
Gr
whence for € < ¢1 8, we obtain
lo|P da dt < DU g B (2.5.18)
NGE @ﬂ'l i ap—e ) "
Gr
Taking into account the equalities 5’ = 1 , 8= ﬁ and also the equality
li b 1
im —— = —
0<e<ap (c1f —e)fef =1 &
obtained for € = ¢y, from (2.5.18) it follows that
(=R g
dedt — — ~v(T). 2.5.19
/ [ S o= o) (25.19)

Gr

According to the properties of the function g, the test function v¥(x,t) = ¢ [2T2(t> + |z|?)] = 0
for r = (12 + |z|?)V/2 > T.
Therefore, after substitution of variables t = % T¢y, x = % T¢, we have

(=B _ B9 L\
i dedi = / T = (ﬂT) 0. (2.5.20)
Gr r=(*+|z|*)"/? <1,
t>|z|
Here,
21 — I A(E2 — €12 B’

B—1
1<éo? He? <2, 0
So>1¢]
As is know, the test function ¥ (z,t) = 1o[2T~2(t? + |=|?)] with the properties mentioned above,
for which the condition (2.5.21) is valid, does exist [77, p. 22].
Due to (2.5.20), from the equality (2.5.19) and the fact that ¢o(c) =1, for 0 < o < 1, we have

( 1 T)n+1 28’ B,
/th&</M%mm<JL?T——O—aﬂﬂ. (2.5.22)
1
rg%

When 8 < 241 | ie., when n+ 1 — 28" < 0, the equation

(L T)n+1f2ﬁ’ M
V2T - g T) =0

\T) = -

&
has a unique positive root T' = Ty (F, g), since the function

(L T)n+1f2ﬁ/
)\1(T) = <\/§5/>%0
1
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is positive, continuous, strictly decreasing on the interval (0, +00) and, besides, 7lﬂimO M (T) = 400 and
—

Tlim A1(T) = 0, and the function v(T) is, as stated above, nonnegative, continuous and nondecreas-
—+o00

ing, satisfying the conditions (2.5.14) and (2.5.15). Moreover, A(T') < 0 for T' > T and A(T) > 0 for
0 < T < Ty. Therefore, for T > Tp, the right-hand side of the inequality (2.5.22) is a negative value,
which is impossible. This contradiction proves Theorem 2.5.1. O

Remark 2.5.1. As is shown in Chapter 1, the following class of vector functions f = (f1,..., fn):

N
fl-(ul, e ,UN) = Zaiﬂuj Bij + bi, 1= ]., ceey ]\/v7 (2523)
j=1
where a;; = const > 0, b; = const, 1 < b;; = const < Z—ﬂ, i,7 = 1,..., N, satisfies the condition
(2.5.1). Note that the vector function f, given by the equality (2.5.23), likewise satisfies the condition
(2.5.1) for £ = £y = - = £y = —1 for less restrictive conditions, when a;; = cons > 0, but a;x, > 0,
where ki, ..., ky is any arbitrary fixed permutation of numbers 1,2,...,N; 4,5 =1,..., N.

Remark 2.5.2. From Theorem 2.5.1 it follows that if its conditions are fulfilled, then the problem
(2.1.1), (2.1.2) fails to have a global strong generalized solution of the class W3 in the domain Do, in
the sense of Definition 2.2.4.



Chapter 3

One multidimensional version
of the Darboux second problem
for one class of semilinear
second order hyperbolic systems

3.1 Statement of the problem

In the space R"T! of the independent variables x = (x1,...,2,) and t consider a second order semi-
linear hyperbolic system of the form

Dui—l—fi(ul,...,uN):Fi izl,...,N, (311)

where f = (f1,...,fn), F = (F1,...,Fn) are the given, and u = (ug,...,uy) is an unknown real
: D N~
vector function, n > 2, N >2,0:= 55 — A, A= 231 527 -
=

Let D be a conic domain in the space R"*!, i.e., D contains, along with the point (z,t) € D,
the whole ray ¢ : (rz,7t), 0 < 7 < co. Denote by S the conic surface 9D. Suppose that D is
homeomorphic to the conic domain w : ¢ > |z|, and S\ 0 is a connected n-dimensional manifold of
the class C*°, where O = (0,...,0,0) is the vertex of S. Suppose also that D lies in the half-space
t>0and Dy :={(z,t) e D: t<T}, Sp:={(z,t) € S: t<T} T > 0. It is clear that if T = oo,
then Do, = D and S, = S.

For the system (3.1.1), we consider the problem on finding a solution w(z,t) of this system in the
domain D by the boundary condition

ulg, =9, (3.1.2)

where g = (¢1,...,gn) is the given vector function on St.
In the linear case, in which f =0, N =1, and the conic manifold S = 0D is time-oriented, i.e.,

(-5,

i=1

<0, wlg <0, (3.1.3)

where v = (v1,...,Vn, V) is the unit vector of the outer normal to S\ O, the problem (3.1.1),(3.1.2)
was posed by S. L. Sobolev [86], where the unique solvability of this problem in the corresponding
functional spaces is proved. At the end of the above-mentioned work the author suggests that the
obtained results will likewise be valid for a scalar nonlinear wave equation. In [52], for the scalar
case (N = 1) and power nonlinearity f(u) = Alu[Pu (A = const, 0 < p = const < —2-), the global
solvability of this problem for A > 0 and the absence of a global solution for A < 0 are shown when

37
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the space dimension of the wave equation n = 2. A more general nonlinearity case than in [52] for the
scalar hyperbolic equation was considered in [56] in which the questions of existence, uniqueness, and
the absence of a global solution to this problem were also investigated. Besides, the restriction here
is omitted. It is noteworthy mentioning that this problem can be considered as a multidimensional
version of the Darboux second problem, since the problem’s data support S represents a conic time
type manifold. In the case when one part of the boundary of the conic domain D is of time type,
while the other part is a characteristic manifold, the boundary value problem can be considered as a
multidimensional version of the Darboux first problem. For example, when D : ¢ > |z|, , > 0 and
the boundary conditions have the form

u’rg =0, u|Fl =0
or
ou
e 0, ulp =0,

where I'g = 9D N {z,, = 0} is a plane part of the time type boundary 0D and I'y = 9D\ Ty : t = |z|,
xy, > 0 is a characteristic part of the boundary, we have a multidimensional version of the first Darboux
problem.

Investigation of the multidimensional version of the Darboux second problem faces great difficulties
as compared with the first problem. More detailed consideration of these problems in the linear case
is given in A. B. Bitsadze’s monograph [5].

This chapter is organized as follows. Section 3.2 provides us with the notion of a strong generalized
solution of the problem (3.1.1), (3.1.2) of the class W4 in the domain Dy and with a definition of a
global solution of this problem of the class W3 in the domain D.,. In Section 3.3, we consider the
cases of local and global solvability of the problem (3.1.1),(3.1.2) in the class W4. We suppose that
the growth of nonlinearity of the system (3.1.1) does not exceed power nonlinearity with exponent oo =
const > 0. When « < 1, for the solution of the boundary value problem the a priori estimate (Lemma
3.3.1) is valid, and no restrictions are imposed on the structure of the vector function f = f(u). As it
turned out, when 1 < a < Z—ﬂ , the only constraint on the growth of nonlinearity of the vector function
f = f(u) is not sufficient for the existence of an a priori estimate for the solution of the boundary value
problem. Here we need structural constraints on the vector function f = f(u). For example, when
f=VG,ie, fi(u) = 52 G(u),u e RN, i =1,...,N, where G = G(u) € C*(R") is a scalar function
satisfying the conditions G(0) = 0 and G(u) > 0 Vu € RY, the a priori estimate of the solution of
the boundary value problem and, therefore, a global solvability of this problem (Theorem 3.3.3) are
valid. If the vector function f cannot be represented in the form f = V G, where the scalar function
G satisfies the conditions given above, then the boundary value problem may be globally unsolvable.
For example, when N = n = 2 and f = (fi, f2), where f; = u? — 2u2, fo = —2u? + u2, the exponent
of the nonlinearity « =2 and 1 < a < Zi , and f is not representable in the form f = V G, then
from Theorem 3.5.1 we find that for F1 + F» > 5, ¢t > 1, where ¢ = const > 0, v = const < 3,
g = 0, the problem under consideration is not globally solvable (see Remark 3.5.1). The conditions on
the vector function f providing the uniqueness and existence of a global solution of this problem of
the class W3 are given in Section 3.4. Finally, in Section 3.5, for certain additional conditions on the
vector functions f, F' and g, we prove nonexistence of a global solution of the problem (3.1.1), (3.1.2)
of the class W3 in Do.

Below, it will be assumed that the condition (3.1.3) is satisfied.

3.2 Definition of a generalized solution
of the problem (3.1.1),(3.1.2) in Dy and D,

We rewrite the system (3.1.1) in the form of one vector equation

Lu:=0u+ f(u) = F. (3.2.1)
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Below, we will assume that the condition (3.1.3) is fulfilled and the nonlinear vector function from
(3.2.1) satisfies the following inequality

feCRRY), |f(u)] < My + M|ul|®, «=const >0, uecRY, (3.2.2)

where | - | is the norm in the space RY, M; = const > 0, i =1,2.
Let C?(Dz,St) := {u € C*(Dr) : u|s, = 0}. Denote by W¥(Q2) the Sobolev space consisting
of the elements Lo(f2), having generalized derivatives up to the k-order inclusive from Lo(Q). Let

T/({/%(DT, Sr) :={u € W}(Dr) : u|s, =0}, where the equality u|g, = 0 is understood in the sense of
the trace theory [68].

Here and below we say that the vector v = (v1,...,vy) belongs to the space X if each component
v;, 1 <4 < N, of that vector belongs to the same X. In accordance with the above-said, to simplify
our writing and avoid misunderstanding, instead of v = (vy,...,vx) € XV we will write v € X.

Remark 3.2.1. The embedding operator I : [W3 (Dr)]Y — [Lq(Dr)]Y is a linear continuous compact
operator for 1 < g < 2D whenn > 1 [68]. At the same time, Nemitski’s operator K : [L,(Dr)]N —

n—1
[Ly(D7)]Y, acting by the formula Ku = f(u), where u = (u1,...,un) € [Ly(Dr)]", and the vector
function f = (fi,..., fiv) satisfies the condition (3.2.2), is continuous and bounded for ¢ > 2a [22].
Thus, if a < %7 i.e., 2a < %, then there exists a number ¢ such that 1 < ¢ < % and
q > 2a. Therefore, in this case the operator

Ko =KI: [WH(Dr)|N — [Ly(Dr)]V (3.2.3)

is continuous and compact. It is clear that from u = (uy,...,uy) € W3 (Dr) it follows that f(u) €
Lo(Dr) and, if u™ — u in the space W3 (D), then f(u™) — f(u) in the space La(D7).

Definition 3.2.1. Let f = (f1,..., fn) satisfy the condition (3.2.2), where 0 < a < Z'ﬂ, F =
(Fy,...,Fx) € Ly(D7) and g = (g1,---,9n) € Wa(S7). We call a vector function u = (ug,...,ux) €
W (D7) a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W3 in the domain Dr
if there exists a sequence of vector functions u™ € C?(Dz) such that u™ — u in the space W4 (Dr),
Lu™ — F in the space Ly(Dr), and u™|g, — g in the space W3 (Sr). The convergence of the
sequence {f(u™)} to the function f(u) in the space La(Dr) as u™ — u in the space Wi (Dr) follows

from Remark 3.2.1. When g = 0, i.e., in the case of the homogeneous boundary conditions (3.1.2), we

assume that u™ € C?(Dr, St). Then it is clear that u € W(Dr, St).

Obviously, a classical solution u € C?(D7) of the problem (3.1.1),(3.1.2) represents a strong
generalized solution of that problem of the class W3 in the domain D7 in the sense of Definition 3.2.1.

Definition 3.2.2. Let f satisfy the condition (3.2.2), where 0 < a < Z—ﬂ , F € Lajoc(Doo),
g € WQIJOC(SOO) and F|p, € La(Dr), gls, € Wi (Sr) for any T > 0. We say that the problem
(3.1.1), (3.1.2) is locally solvable in the class Wi, if there exists a number Ty = Ty(F, g) > 0 such that
for T < Ty this problem has a strong generalized solution of the class W3 in the domain Dy in the

sense of Definition 3.2.1.

Definition 3.2.3. Let f satisfy the condition (3.2.2), where 0 < a < 2 F € Lj,.(Do),
9 € W3 ,1,.(Sx) and Flp, € La(Dr), gls, € W4(Sr) for any T > 0. We say that the problem
(3.1.1),(3.1.2) is globally solvable in the class W3 if for any T' > 0 this problem has a strong general-
ized solution of the class in the domain Dr in the sense of Definition 3.2.1.

Definition 3.2.4. Let f satisfy the condition (3.2.2), where 0 < o < %, F € Lyjoc(Dxo), g €
W3 10e(Sx) and F|p, € Lao(Dr), gls, € W3 (Sr) for any T > 0. A vector function v = (u1,...,un) €
ng;loc(Doo) is called a global strong generalized solution of the problem (3.1.1),(3.1.2) of the class
W3 in the domain Dy, if for any 7' > 0 the vector function u|p, belongs to the space W3 (Dr) and
represents a strong generalized solution of the problem (3.1.1),(3.1.2) of the class W4 in the domain
D~ in the sense of Definition 3.2.1.
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3.3 Some cases of global and local solvability
of the problem (3.1.1),(3.1.2) in the class W)

Lemma 3.3.1. Let f satisfy the condition (3.2.2), where 0 < a < 1, F € Ly(Dr) and g € W3 (St).
Then for any strong generalized solution u of the problem (3.1.1), (3.1.2) of the class Wy in the domain
Dy in the sense of Definition 3.2.1 the a priori estimate

lullwi oy < llF Ly o) + c2llgllwi sy +c3 (3.3.1)

with the nonnegative constants ¢; = ¢;(S, f,T), i = 1,2,3, independent of u, g and F, with ¢; > 0,
7 =1,2, is valid.

Proof. Let u € Wi (Dr) be a strong generalized solution of the problem (3.1.1),(3.1.2) of the class
W3 in the domain Dr. Then, due to Definition 3.2.1, there exists a sequence of vector functions

u™ = (u,...,uR) € C*(Dr) such that
dim u™ —ullwypgy =0, lim [|Lu™ = F|,p,) =0, (3.3.2)
i [u™(g =g,y =0- (3.3.3)
Consider the vector function u™ € C?(Dr) as a solution of the following problem:
Lu™ = F™, (3.3.4)
unL‘ST _ gm
Here,
Fm:=Lu™, ¢™ :=u"|s,. (3.3.6)

Multiplying scalarly both sides of the vector equation (3.3.4) by % and integrating in the domain

D., 0 <71 <T, we obtain

1 [0 sou™ m ou™
/at (— da dt — /Au —dxdtJr/f —dxdt /F - dedt. (33.7)
D, D
Let Q, := DN {t = 7} and denote by v = (v1,...,vp, V) the unit vector of the outer normal to
ST\ {(0,...,0,0)}. Integrating by parts, by virtue of the equality (3.3.5) and v|q, = (0,...,0,1), we
have
0 /ou™\2 ou'\ 2 ou™\?2 u™\ 2
/&( 6t> du dt = / ( ot ) Vodsf/( 8t) dx+/( ot ) vo s,
. oD, Q, S,
o*um Ou™ ou™ ou™ 1 0 /0u™\?2
a2 o WA= / ox; Ot ”idS_E/E(axi) dar dt
D, oD, D,
ou™ Ju™ 1 ou™\ 2
_/ ox; ot ”"ds_i/(axi) vods
oD, oD,
ou™ ou™ 1 ou™\ 2 1 ou™\ 2
- / oz, Ot ”ids_§/<axi) ”Ods_i/(ax) 4,
oD, S, Q,
whence, in view of (3.3.7), it follows that
m ou™ B 1 "L ou™ ou™ 2 ou™\2/ , - 9
[ = [ 5o [3 (G- T+ () (8- )]
1 8u7n 2 aum 2 m 6u7n
+§/[( = ) <8xi) }dm—l—/f(u ) o dudt. (33.8)
D

Q.
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From (3.2.2), when 0 < a < 1, we find that |f(u)| < My + My + Ms|u| Yu € RY | therefore,

ou™ 9 ou™ \ 2
‘f(“)at —z[f( R (é%”
1 ou™\2 ou™
<! 2 2|, m|2 _ 21,m2 4 (33
< 5 (200 + M) 4 2032+ (S )] = (M + M)+ M2 + (m) (3.3.9)
Due to (3.1.3), (3.3.9) and |F™ 24%| < 1 [(247)2 + (F"™)?], from (3.3.8) we have
1 N2 I Ou™N 2 - _Ou™ N2
5/{( 8t) +;(axi”d /2|1/0|[;(8x1 ot v) ] ds
2 2 m|2 du™ 2 L my2
+ (M1 + M)*mes D, + My | |u™|* dedt + (W) dacdt—l—§ (F™)% dadt. (3.3.10)
D, D, D,
Since S is a conic surface, we have sup |[1p|™' = sup |vp|7!. At the same time, S\ O is a
S\O sAft=1}

smooth manifold, SN {t = 1} = 90,-; is also a compact manifold. Thus, noting that vy is a
continuous function on S\ O, we get

My :=sup|vo| ™' = sup |wo|™t < +oo, | <|v|=1. (3.3.11)
S\O Sn{t=1}
Taking into account that (v % — U %) (¢=1,...,n) is an inner differential operator on S, due
0 (3.3.5), we have
"L oum™ ou™ |2 m 2 o
/ [Z; (G o= T ] = 1oL, gy = 19 Bvgs (3:3.12)

S,

It follows from (3.3.11) and (3.3.12) that

/2|V0| {Z ( Bxl gt l/")z} < §M0H9m||12/v21(sT)~ (3.3.13)

i=1

Sr

By virtue of (3.3.13), from (3.3.10) we obtain

U™NZ U™ 2 9 9
< m 1
/[( ot ) +Z;<6a:i> | dz < Mollg™ I35 s, + 2(M1 + Ma)* mes Dy
Q. =
2 m|2 du™ 2 my2
+oM2 [ [ dedt +2 (W) dedt+ [ (F™)?dedt, 0<7<T. (3.3.14)

D, Dt

If ¢t = y(x) is the equation of the conic surface S, then, in view of (3.3.5), we have

W) = e @) + [ Sanesds =g @)+ [ S ueds, @) €9
y(z) v(z)

Squaring scalarly both parts of the obtained equality, integrating in the domain €2, and using the
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Schwartz inequality, we get

/(um)zdeZ/(gm(x,'y( ) dx+2/</ >2dx

Q. Qr Qr y(z)
ou \ 2
< 2/(gm)2 ds + 2/(7’ - 'y(x))[ (%) ds} dx
$, of +(z)
[ (oumy2 du\ 2
< 2/(gm)2ds+2T/ [ / (%) ds} dz = 2/(gm)2d8+2T/ (%) dz dt.
Sr Qr  y(x) S D,
From (3.3.14) and (3.3.15) it follows
ou"N2 s Ou™
m\2 m
/ (w2 + (5-) + 2 (3 ] de < (Mo + 2) 9™ s,y + 2041 + Mo)? mes D,
Q. =
o [ dede+ 20+ 1) [((250) dwdt 1 |F2
203 [ P dedt+2T+1) | (S5) dedt+ 172,00,
D, D,
U2 O Ou™ N2
2 m\2
< (2M?2 +2(T+1))/ [(u )2+ (W) +Z(8xi) } dx dt
D, =1
(113 0y + (Mo + D)lg™ 33 s,y + 2(Mi + Ma)? mes Dy
Putting
U™NZ O U™ 2
. m\2
utr) = [ [+ () + X (5e) T
Q. =1
from (3.3.16) we have
w(r) < (2M3 + 2T +2) /w(s) ds
0
 [IF 1200y + (o + 209" s,y + 2001 + Ma)?mes Dy ], 0 < < T,
whence by the Gronwall lemma it follows that
w(r) < Ay exp(2Mi +2T +2)7, 0< 1< T,
Here,
A = [|F™[7, gy + (Mo + 2)ll9™ 5y s,y +2(M1 + Mz)? mes Dr.
In view of (3.3.17) and (3.3.19), we find that
T
1™ 12,y = / w(r) dr < AT exp(2M2 + 2T + 2)T.
0
Due to (3.3.2)—(3.3.5) and (3.3.20), passing to the limit in (3.3.21) as m — oo, we have
[ullfys (ppy < AT exp(2M3 + 2T + 2)T.
Here,
A= FI, oy + (Mo + 2911303 5y +2(Mi + Ma)? mes Dr.

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

(3.3.22)

(3.3.23)



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 43

Taking a square root from both sides of the inequality (3.3.22) and using the obvious inequality
k k
(3= a?)t/2 < 37 |ay|, due to (3.3.23), we finally have
i=1

i=1

lullwz(pry < ellFllLy(pr) + c2llgllwi sy + s

Here,
c1 = VT exp(M3 + T+ 1)T,
co = VT (Mo + 2)"/? exp(M3 + T + 1)T, (3.3.24)
c3 = V2T (M, + My)(mes Dp)'/? exp(M3 + T + 1)T.

Thus Lemma 3.3.1 is proved completely. O

Before passing to the question of solvability of the problem (3.1.1), (3.1.2), let us consider the same
question for the linear case of the needed form, when in (3.1.1) the vector function f = 0, i.e., for the
problem

Lou :=0u = F(x,t), (z,t) € Dr, (3.3.25)

ulg, =9 (3.3.26)

For the problem (3.3.25), (3.3.26), analogously to Definition 3.2.1 for the problem (3.1.1),(3.1.2), we
introduce the notion of a strong generalized solution v = (uq,...,uyn) € W21 (Dr) of the class W21 in

the domain Dy with F' = (F1,...,Fy) € Ly(Dr) and g = (g1,...,9n5) € W3 (Dr), for which there
exists a sequence of vector functions u™ € C?(Dr) such that

Jin 10" = lyory =0, Lo~ Flls o) =0 @32
77}iﬁmoo ||um|ST - gHW;(ST) =0. (3.3.28)

Note that, as is easily seen from the proof of Lemma 3.3.1, by virtue of (3.3.24), when f =0, i.e.,
when M; = My = 0, for a strong generalized solution u € W4 (Dr) of the problem (3.3.25), (3.3.26)
of the class W4 in the domain D7 the following a priori estimate is valid:

lullwz(pr) < c(IFlla(pry + lgllwy (sr)), (3.3.29)

where
¢ = VT (My+2)"? exp(T + 1)T. (3.3.30)
Consider the Sobolev weight space W3 (D), 0 < a < o0, k =1,2,..., consisting of the functions

belonging to that class W} ,,.(D) for which the norm

2 ‘ 20—2(k—i) Pw |2
_ —2a—2(k—1i
s, =2 [ e
=07
is finite [52], where
CN L on1/2 d'w dtw o . ,
= C+t , = — = cee iy, )
r (;azj—i— ) Ot - ot o o i=11 4 +i, +io

Analogously we introduce the space W5 ,(5), S = 0D [52].
Together with the problem (3.3.25), (3.3.26), consider in an infinite cone D = D, the analogous
problem:
Lou = F(z,t), (z,t) € D, (3.3.31)
“|s =g. (3.3.32)
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Due to (3.1.3), according to the result obtained in [43], there exists a constant ag = ag(k) > 1
such that for o > o, the problem (3.3.31), (3.3.32) has a unique solution u = (uy,...,un) € W3 (D)
for each F = (F1,...,Fn) € W;;il(D) and g = (g1,...,9Nn) € W;a_%(S), k> 2.

Since the space C§°(Dr) of finite infinitely differentiable in Dy functions is dense in Lo (D7), for the
given F = (F1,...,Fn) € Lao(Dr), there exists a sequence of vector functions F™ = (Fy",...,Fi) €
Cg°(Dr) such that lim ||F™ — F||.,(p,) = 0. For the fixed m, extending the vector function F™

m—r o0
by zero beyond the domain Dp and keeping the same notation, we have F™ € C§°(D). Obviously,
e W;;il(D) for any k > 2 and a > 1, and also for a > ag = ag(k). If g € W3(Sr),
then there exists g € W} (S) such that g = g|s, and diamsuppg < +oo [68]. Besides, the space
C(8) := {g € C=(S) : diamsuppg < +oo, 0 & suppg} is dense in W} (S) [56]. Therefore,
there exists a sequence g™ € C°(S) such that lim [|g™ — gllwy(s) = 0. It is easy to see that
m— o0
g € Wzka_l(S) for any k > 2 and « > 1 and, therefore, for o > g = a(k). According to what
) 2

has been mentioned above, there exists a solution @™ € W¥ (D) of the problem (3.3.31), (3.3.32) for
F=F"and g =g™. Let u™ =u™|p,. Since u™ € W§(Dr), taking the number k sufficiently large,
namely, k > "T'H + 2, we have u™ € C?(Dr). By virtue of the estimate (3.3.29), we have

™ —u™ lwz (pry < c(IF™ = F™ |y + 19™ = 9™ lwisr))- (3.3.33)

Since the sequences {F™} and {g™} are fundamental in the spaces Lo(Dr) and W3 (St), respec-
tively, the sequence {u™} is, due to (3.3.33), fundamental in the space W4 (Dr). Therefore, in view
of the completeness of the space Wi (Dr), there exists a vector function u € Wy (Dr) such that
Wlll_rrgo [w™ = ullwi(pyy = 0, and since Lou™ = F™ — F in the space Ly(Dr) and g™ = u™|s, — g in
the space W3 (St), i.e., the limit equalities (3.3.27) and (3.3.28) are fulfilled, the vector function w is
a strong generalized solution of the problem (3.3.25), (3.3.26) of the class Wy in the domain D7. The
uniqueness of the solution of the problem (3.3.25), (3.3.26) of the class W4 in the domain D7 follows
from the a priori estimate (3.3.29). Thus for the solution u of the problem (3.3.25), (3.3.26) we have
u = Ly'(F,g), where Ly* : [La(Dr)]N x [W3(S7)]N — [W3(Dr)]Y is a linear continuous operator
with a norm admitting, in view of (3.3.29), the following estimate

IZg* L2 (DY x (W (8] =W (DY < 65 (3.3.34)

where the constant ¢ is determined from (3.3.30).
Owing to the linearity of the operator

Lyt [La(Dp)]N x Wy (Sp)]Y — W (Dr)]Y

we have a representation

Ly (F.g) = Loy (F) + Loz (9), (3.3.35)
where Ly : [Lo(Dp)]Y — [Wa(Dp)]N and Ly : [Wa (St)]Y — [W3 (Dr)]Y are the linear continuous
operators and, in view of (3.3.34), we have

1L (LoD 122Dy < 6 Log lws ey > Wi (peyy < € (3.3.36)

Remark 3.3.1. Note that for F' € Ly(Dr), g € W4 (Sr) and (3.2.2), where 0 < a < 2t " in view

n—1"
of (3.3.34), (3.3.35), (3.3.36) and Remark 3.2.1, the vector function u = (uy,...,ux) € Wa(Dr) is
a strong generalized solution of the problem (3.1.1),(3.1.2) of the class W3 in the domain D7 if and
only if u is a solution of the following functional equation

= Lot (—f(u)) + Lot (F) + Loz (9) (3.3.37)
in the space W3 (Dr).
Rewrite the equation (3.3.37) in the form

u = Agu := — Ly (Kou) + Lo (F) + Lys (9), (3.3.38)
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where the operator Ko : [W3(D7)]N — [La(Dr)]Y from (3.2.2) is, due to Remark 3.2.1, continuous
and compact. Therefore, according to (3.3.36), the operator Ag : [W3(Dr)]N — [W3(D7)]Y is also
continuous and compact. At the same time, according to Lemma 3.3.1 and the equalities (3.3.24), for
any parameter 7 € [0,1] and any solution u of the equation u = 7 Agu with parameter 7, the same
a priori estimate (3.3.1) with the constants ¢; from (3.3.24), independent of u, F, g and 7, is valid.
Therefore, due to Schaefer’s fixed point theorem [20], the equation (3.3.38) and hence, according to
Remark 3.3.1, the problem (3.1.1), (3.1.2) has at least one solution u € W3 (D7).
Thus we have proved the following

Theorem 3.3.1. Let f satisfy the condition (3.2.2), where 0 < o < 1. Then for any F € Lo(Dr)
and g € W3 (St), the problem (3.1.1), (3.1.2) has at least one strong generalized solution u of the class
W3 in the domain Dr in the sense of Definition 3.2.1.

A global solvability of the problem (3.1.1),(3.1.2) in the class Wy in the sense of Definition 3.2.3
follows immediately from Theorem 3.3.1, when the conditions of this theorem are fulfilled.

Remark 3.3.2. In Theorem 3.3.1, a global solvability of the problem (3.1.1), (3.1.2) is proved for the
case in which f satisfies the condition (3.2.2), where 0 < o < 1. In case 1 < a < Z—ﬂ, the problem
(3.1.1),(3.1.2) is, generally speaking, not globally solvable, as it will be shown in Section 3.5. At the
same time, it will be proved below that when 1 < a < 2| the problem (3.1.1),(3.1.2) is locally
solvable in the sense of Definition 3.2.2.

Theorem 3.3.2. Let f satisfy the condition (3.2.2), where 1 < a < 25 g =0, F € L3 joc(Do) and
F|p, € La(Dr) for any T > 0. Then the problem (3.1.1),(3.1.2) is locally solvable in the class Wy,
i.e., there exists a number Ty = To(F') > 0 such that for T < Ty this problem has a strong generalized

solution of the class W3 in the domain Dt in the sense of Definition 3.2.1.

Proof. According to Definition 3.2.1 and Remark 3.3.1, the vector function u € Wi(Dz, S7) := {v €
Ws(Dr) : vlg, =0} is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W3 in
the domain D for g = 0 if and only if u is a solution of the functional equation (3.3.38) for g = 0, i.e.,

u = Agu = — Ly (Kou) + Lo (F) (3.3.39)

in the space Wi(Dz, St). Denote by B(0, 7o) :={u=(uy,...,uny)EWi(D7,S7) : |lul o

a closed convex ball in the Hilbert space W3(Dz, St) of radius 9 > 0 and with center in a null ele-

ment. Since the operator Ag from (3.3.39), acting in the space Wi (D, St), is a continuous compact
operator, according to Schauder’s theorem, for the solvability of the equation (3.3.39) in the space

I/(I)/é(DT,ST) it suffices to prove that the operator Ay maps the ball B(0,7g) into itself for certain
ro > 0 [20]. Below we will show that for any fixed ro > 0, there exists a number Ty = Ty(rg, F) > 0
such that for T' < T, the operator Ay from (3.3.39) maps the ball B(0,ry) into itself. Towards this

end, we evaluate || Apul| o for u € Wi(Dr, St).

W3(Dr,ST)

o
When u = (u,...,uy) € Wi(Dr,Sr), we denote by u the vector function which is an even
extension of u through the plane ¢ = T in the domain D, symmetric to the domain D7 with respect
to the same plane, i.e.,

- u(x, t), (z,t) € Dp,
u =
w(z,2T —t), (x,t) € DX,

and U(z,t) = u(x,t) for t = T in the sense of the trace theory. It is obvious that & € Wi(Dy) : {v €

W3 (Dr) : vlyp, = 0}, where Dp =DpUQpUD:, Qp :=Dn{t=T}
Using the inequality [93]

/|v|dQ < (mes )7 v]lp0s p> 1,
Q
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and taking into account the equalities
[tk = 2|ull%,

[[l” )
w (DT7ST)

LBy = 2T, o
from the known multiplicative inequality [68]

[llpg < BIVacolE ollolie Vo e WhR),Q c R,
) 0 0\ ~ (1 1y/1 1\=' _  (n+1)m
Ver= (g oma) =G0 5) =

rp

room n+1l—m

foerﬁTCR”H,v:Er:Lm:2and1<p§ 7?_(‘_”17?%,WhereB:const>0doesnot depend
on v and 7T, it follows the inequality

lullz, (pe) < co(mes Dy) T 7T 3 ||y |\ Yu € Wi(Dr, St), (3.3.40)
» )

1(Dr,ST

where ¢y = const > 0 does not depend on u and T'.
Since mes Dy = %7 T"1 where w is the n-dimensional measure of the section Q := DN {t = 1},

for p = 2a from (3.3.40) we have

[tl1a00r) < Crllull g, o ¥u € Wh(Dr Sr), (3.3.41)
where o 1 L 1
Cr = co(%ﬂ) IO oy = o (3.3.42)
Since a@ < 2t we have oy = 5= + nT—l — 1 >0, and due to (3.3.41), and (3.3.42), for any
URS VCE/%(DT, St) we get
lull Ly (D7) < C1ylJu ||W1(D 5 VT <Ty, (3.3.43)

where T is a fixed positive number.

For ||Koullz,(py), where u € W3(Dz,S7), T < Ti, and the operator Ko acts according to the
formula (3.2.3), due to (3.2.2) and (3.3.43), we have the following estimate

1Koul, py) < /(M1 + MyJul®)? da dt < 2M2 mes Dy + 2M2 / 2 da dt
DT DT

= 2M12 mes Dt + 2M22||u||%‘;a(DT) < 2M12 mes Dr + 2M2 Hu||2a AP,
whence we obtain
1Kol Lo (Dr) < M1(2mesDT1)1/2+\/M20T1|\u||°‘ s Dms (3.3.44)
From (3.3.30), (3.3.36), (3.3.39) and (3.3.44), it follows that
Moty
GIKoullLy(pry + 1 Loy H[Lz(DT)]NA)[V‘E/%(DT’ST)]N||FHL2(DT)

[La(D)IN = [Wi(Dr.57)]N

< c{\/Q mes Dy, My + V2 Mo O [,
2

< VT (Mo + 2)Y? exp(Ty + 1)Ty

{\/QmesDTl M1+fM20T1|\u||a ot \|F||L2(DT1)} (3.3.45)
Ta T

VT <T, Yu € Wi(Dr, St).

A IF o]

T,°0T
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Since the right-hand side of the inequality (3.3.45) contains /T as a factor vanishing as T — 0,
there exists a positive number Ty < T; such that for T' < Ty and Hu|| 1(D S < rg, due to (3.3.45),
¥1(Dr.5e) < rg, i.e., the operator Aj : W%(DT, St) — W2(DT, St) from (3.3.39) maps

the ball B(0,7g) into itself. Thus Theorem 3.3.2 is proved completely. O

we have HAOUH

Remark 3.3.3. In the case if f satisfies the condition (3.2.2), where 1 < a < 2L Theorem 3.3.2

n—17

ensures a local solvability of the problem (3.1.1),(3.1.2), although in this case, with the additional
conditions imposed on f, this problem is, as it will be shown in the theorem below, globally solvable.

Theorem 3.3.3. Let f satisfy the condition (3.2.2), where 1 < a < Z—i, and f = VG, ie.,
filu) = 8%,3 Gu), u € RN, i =1,...,N, where G = G(u) € CY(RY) is a scalar function satisfying
the conditions G(0) = 0 and G(u) >0 Yu € RN. Let g =0, F € Lajoe(Doo) and F|p, € La(Dr)
for any T > 0. Then the problem (3.1.1),(3.1.2) is globally solvable in the class Wy, i.e., for any
T > 0, this problem has a strong generalized solution of the class W4 in the domain D in the sense

of Definition 3.2.1.
Proof. First, let us show that for any fixed T' > 0, with the conditions of Theorem 3.3.3, for a strong
generalized solution u of the problem (3.1.1),(3.1.2) of the class W3 in the domain D7, the estimate

1
Julg,, (D) Fllypry, oT) = VT exp 3 (T+T?) (3.3.46)

Wi(Dr S)*

is valid.
Indeed, according to Definition 3.2.1, in the case g = 0, there exists a sequence of vector functions

u™ € 52(ET,ST) :={v € C*Dr): v|s, =0} such that

Jim Ju™ ~ullwy gy =0, lim || Lu™ — Flln,(p,) = 0. (3.3.47)
Putting
F™ = Lu™ (3.3.48)

and taking into account that u™|s, = 0 and the operator 1 0% —V; % is an inner differential operator

9u™ 1y — 375? l/i)‘ST =0,i=1,...,n, due to (3.1.3), from (3.3.8) we get

on St and, hence (5%

m ou™
/F —d dt > /[( 8t>+Z( d+/f —d dt. (3.3.49)
QT
Since f = VG, we have f(u™) 85:1 = 2 G(u™), and taking into account that u™|gs, = 0,

vla, =1, G(0) = 0, and integrating by parts, we obtain

/f —d dt = /%G(um) dx dt

= /G(um)yods: / G(um)l/ods:/G(um)dx. (3.3.50)

S.UQ, Q.

Owing to G(u) >0 Vu € RY, due to (3.3.50), from (3.3.49), we get

[10) 5 (G

0,

ou™ Ou™\ 2 )
< m < m <T. .O.
2/F s dmdt_/(at) dxdt+/(F)d;vdt,0<T_T (3.3.51)

Dr Dr Dr
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Since u™|s, = 0, we have u(z,T) f 5; u™(x,s)ds, where t = y(x) is the equation of the conic

surface S. Thus just as in obtaining the 1nequahty (3.3.15), we get

/(um)de/(/Taatum(x,s)ds)zdxﬁ/(T|x){/f (gtu ) ds} da
Q

Q- Qr y(z) T v(z)
[ ou™\2 ou™\ 2
< [ = —_— . O,
_T/{/(8t>ds]dx T/(at) dvdt. (3.3.52)
Q- y(z) D~
Denoting

wiri= [ [ () 43 (2

D,
= (1+T)/w(s)ds+||FmH%2(DT), 0<7<T. (3.3.53)
0

By virtue of the Gronwall lemma, it follows from (3.3.53) that
w(r) < |FII7,p.yexp(1+T)7 < ||F|7,ppy exp(1+T)T, 0<7<T. (3.3.54)
According to (3.3.54), we have

471 s 5y = / (™) + (a(f;‘—:)2 +§ (%;i )] dwar

Dr

T
_ /w(T) dr < TIF™| 1oy exp(l + )T,
0

whence, due to the limit equalities (3.3.47), we arrive at the estimate (3.3.46).
According to Remark 3.3.1, when the conditions of Theorem 3.3.3 are fulfilled, the vector function

u € Wi(Dr, St) is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W3 if and
only if u is a solution of the functional equation v = Aqu from (3.3.39) in the space Wi(Dr, St),

where the operator Ag, acting in the space Wi(Dr, St), is continuous and compact. At the same
time, due to (3.3.46), for any solution of the equation u = pApu, an a priori estimate

[[ull o (MEN Lo(pry < ADNF N L2(Dr)

Wi(Dr,S7) — < pe
with the positive constant ¢(T), independent of u, u and F, is valid. Thus, according to Schaefer’s
fixed point theorem [20], the equation (3.3.46), and hence the problem (3.1.1), (3.1.2), has at least one
strong generalized solution of the class W, in the domain Dt for any T' > 0. Thus Theorem 3.3.3 is
proved completely. O



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 49

3.4 The uniqueness and existence of a global solution
of the problem (3.1.1),(3.1.2) of the class W,

Below, we impose on the nomnlinear vector function f = (f1,...,fny) from (3.1.1) the additional
requirements
‘61‘1

f e CLRY), ‘<M3+M4\u|” VueRY, 1<i,j<N, (3.4.1)

where M3, M4,y = const > 0. To snnphfy our reasoning, we suppose that the vector function g = 0
in the boundary condition (3.1.2).

Remark 3 4.1. It is obvious that from (3.4.1) follows the condition (3.2.2) for &« = v+ 1, and in the

case 7 < =7, we have a < ""‘%

Theorem 3.4.1. Let the condition (3.4.1) be fulfilled, where 0 < v < —= 1, F € Ly(Dr) and g = 0.
Then the problem (3.1.1), (3.1.2) cannot have more than one strong generalized solution of the class
Wy in the domain Dr in the sense of Definition 3.2.1.

Proof. Let F € Lo(Dr), g =0, and the problem (3.1.1), (3.1.2) have two strong generalized solutions
ul and u? of the class W3 in the domain Dz in the sense of Definition 3.2.1, i.e., there exist two

sequences of vector functions u'™ € C%(Dr, St) = {u € C*(D7) : u|s, =0}, i=1,2;m=1,2,...,
such that

b R —_ m _ -
W}E}noo '™ —u ||W%(DT7ST) 0, 77}Hnoo | Lu™ — Fl|1ypyy =0, i=1,2. (3.4.2)
Let
w=u?—u', w"=u" '™  F™=Lu*™ — Lu'™. (3.4.3)

In view of (3.4.2) and (3.4.3), we have

i e —wl e, =0, T [P o = 0. (3.4.4)

In accordance with (3.4.3), consider the vector function w™ € C?(Dr,St) as a solution of the
following problem:

Ow™ = —[f(u®™) — f(u'™)] + F™, (3.4.5)

f!
m|sT =0.
In the same way as the inequality (3.3.49) was obtained, from (3.4.5) and (3.4.6) we arrive at

OwW™N\2 s 0w 2
/[( ot ) +;(8xi) }d””

A,

<2 / Fm 8% dadt —2 /[f(u2m) — flul™)] a% dedt, 0<7<T. (3.4.7)

D. D.

Taking into account the equality

Mz

fi (u2m)

J J
(’)u]

1
/ i u'™ + s(uP —u'™)) ds (ui — ul™),
0

j=1

we obtain

ow!m

1
0
Um%v—ﬂww] O fi(ul s — ™)) ds | (2 ™) T (3.4.8)
AN ) at
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By virtue of (3.4.1) and the obvious inequality |dy +da|? < 27 max(|dy1|?, |da|?) < 27(|d1|Y + |d2])
for v > 0, d; € R, we have

1

‘/aaujfz(ulm + S(U2m _ ulm)) ds

0

[M; + My|(1 = s)ul™ + su®™|"] ds < Mz + 27 My (Ju™ " + [u*™]7). (3.4.9)

O\H

From (3.4.8) and (3.4.9), with regard for (3.4.3), we get

m N
[P = p ™) | < 0 [Ma 4+ 27 Ma (™ + 7)o

1,j=1

< N?[Mj + 2 My (Ju' ™ + [ [7)] ™| ‘ =

%N M, [( m2 4 (%U—tm)z} + 2 N2 M (™ + [u2m ) [w™| ‘82”—: . (3.4.10)
Due to (3.4.7) and (3.4.10), we have
[y +;<%>}
< / m)2] dxdt+N2M3/ [(wm)2 + (ag”—tm)Q} dz dt
D, D,
+2’*+1N2M4/(|u1m|7+|u2m|7)|wm|)8g)—tm‘ drdt. (3.4.11)

D,

The last integral in the right-hand side of (3.4.11) can be estimated by Holder’s inequality

/ (™ + [ ) [ (%‘ d i

D,
ow™
Im vy 2m |y m
=< (H |u | HLnJrl(DT) + || |7.L | | L"+1(DT))||w 8t7HL2(DT). (3412)
Here, n_lH + % + % =1, i.e.,
2(n+1)
= - 3.4.13
P n—1 ( )
By virtue of (3.3.40), for ¢ < 72(;@-11) , we have
Ivllz,(p,) < Co(D)llv]l o VoeWy(D;,S,), 0<7<T, (3.4.14)

Wl(DT75 )

with the positive constant Cy(T), not depending on v € Wi(D,, S;) and 7 € (0,7.

According to the theorem, v < — and, therefore, y(n + 1) < % Thus from (3.4.13) and
(3.4.14) we obtain
1m|’YHLn+1(DT) _ H zmH’Y

<C T)[|lu"™|", , 1=1,2;, m>1, (3.4.15)

Wl(DT,ST)
[0l L, D,y < Co(Tllw™ llwp (D> ™ =m0 (3.4.16)

” u Lonir) (D) = 7(n+1
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In view of the first limit equality from (3.4.2), there exists a natural number mg such that for
m > mg, we have

a1 < 1|, FLi=12 m>m
Wi(Dr,ST) W3 (Dr,ST)

In view of the above inequalities, it follows from (3.4.12)—(3.4.16) that

+1 772 im 2m my | QW™
PHNIM, [ (™[ + 2™ |w \W‘dxdt
D,
<2v+1N2M ol (T) ” 1||V +|| 2||‘Y +2)C (T)H m” &Uim
- 4 v(n+1) u V%/é(DT,ST) u V%/%(DT,ST) p w VC‘}%(DT7ST) ot L2(D-)
ow™ (|12
m||2
<5 (1o + [T o)
Jw™N 2 n Hwm\ 2
< 2Ms||w™ |3 . :2M5/ [(w™)? + (%) +Z($i_ )] dedt, (3.4.17)
D. i=1 v
where
My = 27 N2 M, C” ) (||, + [l +2)C,(T).
(I, P, +2)G()

Due to (3.4.17), from (3.4.11) we have

L1 3 (3 e

< MG/ [(wm)? + (ag’—tm)z +§n: (86?)2} d dt + /(Fm)2 dedt, 0<7<T, (3.4.18)

D, v D,

where MG =1+ M3N2 + 2M5
Note that the inequality (3.3.52) is likewise valid for w™ and, therefore,

/(wm)2daz < T/ (%) dwa < T/ [+ (220 5 (%) drar. (3419
i=1

2
Q, D, Dr

Putting

Am (T) 1= / {(wm)2 + <5g)7tm)2 + Z (%ﬁé)? dx (3.4.20)
e i=1 ¢
and adding (3.4.18) to (3.4.19), we obtain

T

A(r) < (M +T) / An(8)ds + |F™[2_ 1,
0

whence by the Gronwall lemma, it follows that
A (1) < NF™17 0y exp(Ms + T)T. (3.4.21)

From (3.4.20) and (3.4.21) we have

T
0™ 2 gy = /Am(T) dr < T F™[2, 1, exp(M + T)T. (3.4.22)
0
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In view of (3.4.3) and (3.4.4), it follows from (3.4.22) that

||wHW21(DT) = "}gnoo lw—w™ + wm||W21(DT) < "}i_ffloo |lw — wm||W21(DT) + W}gnoo ||meW21(DT)
= i - m == i - m o == U.
= i o = ey = Jim o =0l =0
Therefore, w = ug —uy = 0, i.e., ug = uy. Thus Theorem 3.4.1 is proved completely. O

Theorems 3.3.1, 3.3.3, 3.4.1 and Remark 3.4.1 result in the following theorem of the existence and
uniqueness.

Theorem 3.4.2. Let the vector function [ satisfy the condition (3.4.1), where 0 < v < % , and

either f satisfy the condition (3.2.2) for a < 1 or f = VG, where G € CY(RY), G(0) = 0 and
G(u) > 0 Yu € RN. Then for any F € Ly(Dr) and g = 0, the problem (3.1.1),(3.1.2) has a

unique strong generalized solution u € W(Dr, St) of the class W3 in the domain Dt in the sense of
Definition 3.2.1.

The following theorem on the existence of a global solution of this problem follows from Theo-
rem 3.4.2.

Theorem 3.4.3. Let the vector function f satisfy the condition (3.4.1), where 0 < v < % , and
either f satisfy the condition (3.2.2) for a < 1 or f = VG, where G € CL(RY), G(0) = 0 and
Gu) >0 Yu € RV, Let g =0, F € Lajo.(Ds) and F|p, € La(Dr) for each T > 0. Then the
problem (3.1.1), (3.1.2) has a unique global strong generalized solution u € Wy ,,.(Doo) of the class Wy

in the domain Do, in the sense of Definition 3.2.4.

loc

Proof. According to Theorem 3.4.2, when the conditions of Theorem 3.4.3 are fulfilled, for T' = k,

where k is a natural number, there exists a unique strong generalized solution u* € Wi(Dr, St) of
the problem (3.1.1), (3.1.2) of the class W3 in the domain D7y, in the sense of Definition 3.2.1. Since
uFtl|p,_, is also a strong generalized solution of the problem (3.1.1),(3.1.2) of the class W3 in the
domain Dp—p, in view of Theorem 3.4.2 we have u¥f = uk+1| Dr_,- Therefore, one can construct a

unique generalized solution u € W%,loc(DOO) of the problem (3.1.1),(3.1.2) of the class W in the
domain D4, in the sense of Definition 3.2.4 as follows:

u(z,t) = uf(x,t), (x,t) € Do, k=[t] +1,

where [t] is an integer part of the number ¢. Thus Theorem 3.4.3 is proved completely. O

3.5 The cases of the nonexistence of a global solution
of the problem (3.1.1),(3.1.2) of the class W,

Theorem 3.5.1. Let the vector function f = (fi1,...,fn) satisfy the condition (3.2.2), where 1 <
N

n—1"7’

a < ™ML and there exist the numbers £1,...,0n, S |ti| # 0, such that
i=1

B 1
YueRY, 1< B =const < L—’—l’ (3.5.1)
n—

N N
Z&f(u) <co— 01‘ Z&ui
i=1 i—1

where cg,c1 = const, ¢; > 0. Let F' € L joc(Doo) and F|p, € Lao(Dr) for any T >0, g =0. Let the

N
scalar function Fo = > €;F; — co in the domain Do satisfy the following conditions:
i=1

Fy >0, , ligrn inft"Fy(z,t) > ca = const >0, = const <n+ 1. (3.5.2)
—+00

Then there exists a finite positive number Ty = To(F') such that for T > Ty the problem (3.1.1), (3.1.2)
does not have a strong generalized solution of the class Wy in the sense of Definition 3.2.1.



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 53

Proof. Let u = (uy,...,un) be a strong generalized solution of the problem (3.1.1), (3.1.2) of the class
W4 in the domain D7 in the sense of Definition 3.2.1. It is easy to verify that

/uljgod:vdt:—/f(u)godxdt—i—/Fcpdxdt (3.5.3)
Dr Dr Dr
for any test vector function ¢ = (p1,...,pN) such that

- (3.5.4)

)=
D = N
p € C*(Dr), 90|8DT Ov lopy

where v is the unit vector of the outer normal to dDr. Indeed, according to the definition of the
strong generalized solution of the problem (3.1.1),(3.1.2) of the class W3 in the domain Dr, there

o __
exists a sequence of vector functions u™ € C?(Dy, St) for which the limit equalities (3.3.47) are valid.
Taking into account (3.3.48) and multiplying scalarly both parts of the equality Lu™ = F™ by the
test vector function ¢ = (p1,...,pnN), due to (3.5.4), after integrating by parts, we obtain

/ungodxdt = —/f(um)ap dz dt + / F™y dx dt. (3.5.5)
Dr D Dr

By virtue of (3.3.47) and Remark 3.2.1, passing in the equality (3.5.5) to the limit as m — oo, we

get (3.5.3).
Let us apply the method of test functions [77]. Consider a scalar function ¢® = ¢°(z,¢) such that
0c 2D 0 0. 0 —0. &° _ 0¢° —0 3.5.6
(RS ( oo)v <)0|DT:1> ’ <'0|t21_ y P 8DT:1_$(’)DT:1_ ()
and 0
,_ [ [
T=1

It is not difficult to see that in the capacity of the function ¢°, satisfying the conditions (3.5.6)
and (3.5.7), we can choose the function

O 1) = wm(%)(l—t)mtk, (z,t) € Dr_y,

0, t>1,

for sufficiently large positive m and k, where the function w € C*°(R™) defines the equation of conic
section 0 = SN{t =1} : w(x) =0, Vwlaq, #0, and w|o, >0, Q2 : DN{t=1}.
Putting

pr(z,t) : soo(x t), T >0, (3.5.8)

T
due to (3.5.6), it is easy to see that

der

or € C*(Dr), ¢rlp, >0, ¢rlop, = 7 =0. (3.5.9)

0D

In the integral equality (3.5.3), for the test vector function ¢ we choose o= (¢107, laor, . . ., ENQT)-
For the chosen test vector function ¢, using the notation

N N N
v = Zéiui, F, = Z&-Fi, fo= Z&fi, (3.5.10)
i=1 i=1 i=1
the integral equality (3.5.3) takes the form
/ ver dedt = — / Jo(w)pr dx dt + / F.por dxdt. (3.5.11)
Dr Dr Dy
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From (3.5.1), (3.5.9) and (3.5.11), it follows that

/UD(pT dx dt > /[c1|v|ﬁ — colr dedt + / Fopr dedt = ¢ / lv|Por dedt + x(T), (3.5.12)
DT DT DT DT

where

x(T) = /(F* —co)pr dedt = /FocpT dx dt >0, (3.5.13)
DT DT

due to (3.5.2) and (3.5.9).
In view of (3.5.2), there exists a number T} = T (F) > 0 such that

Folz,t) > %215—7, t>Ti. (3.5.14)

By virtue of (3.5.8) and (3.5.14), after the substitution of variables t = T't', x = Tz’ in the integral
(3.5.13), for T > 2T} we have

X(T)=1""" / Fo(Ta', Tt (' ') da’ dt’

Dr=1
> / Fo(Ta!, Tt (2!, ) da’ dt!
DT=1Q{%<t/<1}
> it / %2 (T#) 70 (2!, ') da’ dt!
Dr_in{i<t’'<1}
- %2 T+ / )70 (2, ') da’ dt!
Dp_1n{3<t’'<1}
=T T > 21, (3.5.15)
where, due to ©°|p,_, >0,
c3 = %2 / (Y7 (2! ) da’ dt’ da’ dt’ = const > 0. (3.5.16)

Dr_in{i<t’'<1}

Since according to the conditions of Theorem 3.5.1, the constant v < n+1, it follows from (3.5.15)
and (3.5.16) that

li infx(T) > c3. 5.1
pim in X(T) > c3 (3.5.17)

Further, in view of (3.5.13), the inequality (3.5.12) can be rewritten in the form

c1 / lv|Pop dedt < /chpT dx dt — x(T). (3.5.18)
Dr Dr

If in Young’s inequality with the parameter e > 0: ab < (¢/8)d® + (8'e?'~1)~1b°, where § =
B/(8—1), we take a = |u|<p;/ﬂ, b=|0 <pT|/50;/’8, then taking into account the equality /8 = 5’ — 1,
we obtain

1/ [Der| _ ¢
v or| = [vlpyl® 15 = B
Pr

1 |Oerl”
|’U|B | SOT| i

T+ g e (3.5.19)

In view of (3.5.19), from (3.5.18) we get

I 1 D@T B/
(Cl _,) / [P or dedt < = | ﬁ,,ll dr dt — x(T),
B 3 g er

T
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whence for € < ¢1 8, we obtain

B Dozl B
—— dxdt —
(clﬁ—s)glgﬁ/ﬂD wgfl * cap—e¢

T

/ [v|Por dzdt < x(T). (3.5.20)
Dr

Taking into account the equalities 5’ = % , B = % and also the equality
8 1

0<e<cifB (Clﬁ — E)ﬁ/{fﬁ -1 C’f

which is achieved for € = ¢y, it follows from (3.5.20) that

1 Op|? ’

/ o] or dedt < — % dz dt — B—X(T). (3.5.21)
cy o7 C1

Dr Dr

By virtue of (3.5.6)—(3.5.8), after the substitution of variables x = Ta’, t = Tt', it can be easily
verified that

Oepr|? , OO |% :
/ % drdt =TmH172P / (|<po<)pﬁ/1 da’ dt’ = T8 35 < 400,
Y7

T D=1

whence, due to (3.5.9), from the equality (3.5.21) we obtain

1 / !
0< / [P or dzdt < - T2 5 — g x(T). (3.5.22)

c1 C1

Dt
Since, by supposition, 8 < Z—f} , we have n +1 — 28’ < 0 and hence
1 /
lim — T2 54 = 0. (3.5.23)
T—+oc0 cl

From (3.5.16), (3.5.17) and (3.5.23) it follows that there exists a positive number Ty = To(F)
such that for T' > Tp, the right-hand side of the inequality (3.5.22) will be a negative value, which is
impossible. This implies that if for the conditions of Theorem 3.5.1 there exists a strong generalized
solution of the problem (3.5.1),(3.5.2) of the class W in the domain Dy, then T' < T necessarily,
which proves Theorem 3.5.1. O

Remark 3.5.1. Asis shown in the first chapter, the following class of vector functions f=(f1,..., fn):

N
fi(ul, N ,UN) = Zaiﬂuj Bij + bi, 1= ]., ey ]\/v7 (3524)

j=1
where a;; = const > 0, b; = const, 1 < 8;; = const < Z—ﬂ; i,7 = 1,..., N, satisfies the condition
(3.5.1). Note that the vector function f represented by the equalities (3.5.24), satisfies likewise the
condition (3.5.1) for ¢; =l = --- = £y = —1 for less restrictive conditions, when a;; = const > 0, but
a;r; > 0, where k1, ..., kn is any arbitrary fixed permutation of numbers 1,2,...,N; 4,5 =1,..., N.

When N =n =2, fi = ay1|us]? +a12|U2|B, fo = aa1|uq|? +a22|U2|ﬁ, 1 < #, B < 3, the restrictions
ai; > 0 can be omitted and replaced by the condition det(a;;) # 0. For example, for fi = u? — 2u3,
fo = —2u? + 3, the condition (3.5.1) for 1 =l =1,3=2,¢co =0 and ¢; = % will be valid, since in
this case, 01 f1(u) + l2f2(u) = —(Jur|* + [uz]?) < =3 |u1 + u2|?, and from Theorem 3.5.1 we find that
for Fy + F» > 5, where ¢ = const > 0 and v = const < 3, g = 0, the boundary value problem under

consideration is not globally solvable. More precisely, from (3.5.17) and (3.5.22) it follows that

1 / !
0< / 0| pr dedt < — T2 5 — f—cs,
1
Dr “
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the right-hand side of which becomes negative for T > Ty = max([%alﬁ’cf/_lcg]ﬁ,l) and,
therefore, for T > Ty, the problem (3.1.1),(3.1.2) does not have a solution. But for this concrete
example, n = 2, 8 = (' = 2; 3 is determined from (3.5.7). The constants ¢i, ¢y and c3 are
determined from (3.5.1),(3.5.2) and (3.5.16), respectively, and therefore, in this case ¢; = 1 and
Ty = }C‘—;’ . Further, due to Theorem 3.3.2 on the local solvability and Theorem 3.4.1 on the uniqueness
of the solution of the problem, there exist a finite positive number T, = T, (F) and a unique vector
function u = (uy,uz) € Wy, (Dr,) such that u is a strong generalized solution of this problem of
the class VV21 in the domain Dy for T' < T,. From the aforesaid it follows that for the life-span T of
this solution we have the upper estimate T, < Ty = max(’:—;, 1). The lower estimate for T, can be
obtained from the reasonings given in the proof of Theorem 3.3.2 on the local solvability.

Remark 3.5.2. From Theorem 3.5.1 it follows that when its conditions are fulfilled, the problem
(3.1.1), (3.1.2) fails to have a global strong generalized solution of the class W in the domain D, in
the sense of Definition 3.2.4.



Chapter 4

Multidimensional problem with
one nonlinear in time condition
for some semilinear hyperbolic
equations with the Dirichlet
boundary condition

4.1 Statement of the problem

In the space R"*! of variables # = (x1,...,2,) and ¢, in the cylindrical domain Dy = Q x (0,T),
where (2 is a Lipschitz domain in R™, consider a nonlocal problem of finding a solution u(z,t) of the
equation

0u " 9%

Lyu:= — — —
A o2 £—= 92
i=1 g

+ Af(z,t,u) = F(z,t), (x,t) € Dp, (4.1.1)

satisfying the Dirichlet homogeneous boundary condition on a part of the boundary T' : 9Q x (0,7T)
of the cylinder Dr

ul. =0, (4.1.2)
the initial condition
u(z,0) = p(z), =€, (4.1.3)
and the nonlocal condition
Ko o u(z,0) — pug(z, T) = ¢(z), ze€Q, (4.1.4)

where f, F, ¢ and 9 are the given functions; A and p are the given nonzero constants, and n > 2.

A great number of works have been devoted to the study of nonlocal problems for partial differential
equations. When a nonlocal problem is posed for abstract evolution equations and hyperbolic partial
differential equations, we suggest the reader to refer to the works [1-8,10,11,13,14,26-29, 34,37, 38,
53,60,61,63—65,74,78,82,85,95] and to the references therein.

In this chapter, the problem (4.1.1)—(4.1.4) in the multidimensional case is studied in the Sobolev

o
space W4 (Dr), basing on the expansions of functions from the space W3(€2) in the basis, consisting
of eigenfunctions of the spectral problem Aw = Xw, wlaq = 0, and using the embedding theorems in
the Sobolev spaces. It should also be noted that if for n = 1 there is no need in any restriction on the
behavior of the function f(z,¢,u) with respect to the variable u, as u — oo, whereas in the case for
n > 1, we require of the function f(z,t,u), as u — 0o, to have a growth not exceeding a polynomial.

57
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Moreover, for using the embedding theorems in the Sobolev spaces, it is additionally required for the
order of polynomial growth to be less than a certain value that depends on the dimension of the space.
Below, on the function f = f(x,t,u) we impose the following requirements:

fe€C(Dr xR), |f(z,t,u)] < My + Ms|u|®*, (z,t,u) € Dy x R, (4.1.5)
where +1
0 < a=const < % (4.1.6)

Remark 4.1.1. The embedding operator I : Wi (Dr) — Li(D7) is a linear continuous operator for
1< q< 22 when n > 1 [68]. At the same time, Nemitski’s operator N : Ly(Dr) — Lo(Dr),

n—1

acting by the formula Nu = f(z,t,u), is, due to (4.1.5), continuous and bounded if ¢ > 2« [22].

Thus, since due to (4.1.6) we have 2a < 2(:_+11) , there exists a number ¢ such that 1 < ¢ < %
and ¢ > 2«. Therefore, in this case the operator
No =NT:W3(Drp,T) — Ly(Dr), (4.1.7)

where I/(I)/%(DT, ) :={w € W4 (D7) : w|r = 0}, is continuous and compact. Besides, it follows from
u € V(I)/é(DT,F) that f(z,¢,u) € L2(Dr), and if u,, — u in the space V(f/é(DT,F), then f(z,t, um) —
f(x,t,u) in the space Lay(Dr).

Definition 4.1.1. Let the function f satisfy the conditions (4.1.5) and (4.1.6), F' € Lo(Dr), ¢ €
I/Cl)/é(Q) = {v e WHQ) : vlga = 0}, ¥ € La(Q). We call a function u a generalized solution of the

problem (4.1.1)~(4.1.4) if u € W3(Dr,T') and there exists a sequence of functions u,, € C*(Dr,T) :=
{w € C*(Dr) : w|r = 0} such that

n}gnoo Hum B u”VOVl(DT r) =0, W}E;noo ||L>\um B F||L2(DT) =0, (418)
2 )
ol =l =0 Wt i =0 (119

Obviously, a classical solution u € C?(Dr) of the problem (4.1.1)—(4.1.4) is a generalized solution
of this problem. It is easy to verify that a generalized solution of the problem (4.1.1)—(4.1.4) is a
solution of the equation (4.1.1) in the sense of the theory of distributions. Indeed, let F, := Lt,,
Om = Um|t=0, Ym = Kytm:. Multiplying both sides of the equality Lyu,, = F,, by a test function

[e]
weV:={veWiDs,T): v(x,T) — pv(z,0) =0, z € Q} and integrating in the domain D7, after
simple transformations connected with integration by parts and the equality w|r = 0, we get

/ [tme (2, T)w(2, T) = tme (2, 0)w(z,0)] do
Q

+ / [— Uyt We + Zumzww + )\f(ac,t,um)w} dx dt = /me dedt YweV. (4.1.10)
Dr i=1 Dr

Due to K tms = ¥m(z) and w(z, T)—pw(z,0) = 0, z € €, it can be easily seen that wp(z, T)w(x,T)—
U (2, 0)w (2, 0) = Ut (2, T)(w(z, T) — pw(z,0)) — o (2)w(z, 0) = =, (x)w(x,0), z € Q. Therefore,
the equality (4.1.10) takes the form

- /wm(x)w(x, 0) dx
Q

+/ {—umtwt +Zumxiwwi —l—)\f(:v,t,um)w} dx dt = /me dedt YweV. (4.1.11)
Q i=1 Dr
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In view of (4.1.5), (4.1.6), according to Remark 4.1.1, we have f(x,t,u,) — f(z,t,u) in the space

Lao(Dr) as u,, — u in the space Wi(Dr,T'). Therefore, due to (4.1.8) and (4.1.9), passing in the
equality (4.1.11) to the limit as m — oo, we get

/1/} w(z, 0) d:I:—i—/ [—utwt—l-ZuwiwIi+)\f(:n7t,u)w} dx dt = /Fw dedt VweV. (4.1.12)
Dr =1 Dr

Since C§°(Dr) C V, from (4.1.12), integrating by parts, we have

/ [uOw+ Af(z, t,w)w] dedt = / Fwdzdt Yw e C§°(Dr), (4.1.13)
Dr
where [ := 68722 -3 8 927 and C§°(Dr) is a space of finite infinitely differentiable functions on Drp.

The equality (4.1.13), which is valid for any w € C§°(Dr), implies that a generalized solution u of the
problem (4.1.1)—(4.1.4) is a solution of the equation (4.1.1) in the sense of the theory of distributions,

besides, since the trace operator u — u|;—o is well defined in the space Wi(Dr,T') and, particularly,

is continuous from the space W(Dr,T') into the space L2(Q x {t = 0}), we find, due to (4.1.8) and
(4.1.9), that the initial condition (4.1.3) is fulfilled in the sense of the trace theory, while the nonlocal
condition (4.1.4) in the integral sense is taken into account in the equality (4.1.12), which is valid for
all w € V. Note also that if a generalized solution u belongs to the class C?(D7), then due to the
standard reasoning connected with the integral equality (4.1.12), which is valid for any w € V [68],
we find that u is a classical solution of the problem (4.1.1)—(4.1.4), satisfying the equation (4.1.1), the
boundary condition (4.1.2), the initial condition (4.1.3) and the nonlinear condition (4.1.4) pointwise.

Note that even in the linear case, i.e., for A = 0, the problem (4.1.1)—(4.1.4) is not always well-
posed. For example, when A = 0 and |u| = 1, the corresponding to (4.1.1)—(4.1.4) homogeneous
problem may have an infinite number of linearly independent solutions (see Remark 4.3.2).

4.2 An a priori estimate of a solution
of the problem (4.1.1)—(4.1.4)

Let

g(z, t,u) = /f(x,t,s) ds, (z,t,u) € Dp x R. (4.2.1)

Consider the following conditions imposed on the function g = g(z,t,u):
g(z,t,u) > —Mjz, (x,t,u) € Dy x R, (4.2.2)
gt € C(Dr x R, gi(z,t,u) € My, (z,t,u) € Dy x R, (4.2.3)
where M; = const > 0, ¢ = 3,4.

Let us consider some classes of frequently encountered in applications functions f = f(z,¢,u)
satisfying the conditions (4.1.5), (4.2.2) and (4.2.3):

L f(z,t,u) = folz,t)B(u), where fo, 2 fo € C(Dr) and B € C(R), |B(u)] < M + Mol|ul,

M; = const > 0, « = const > 0. In this case, g(z,t,u) = fo(z,t) [ B(s)ds and when fo > 0,
0

2 fo <0, [B(s)ds > =M, M = const > 0, the conditions (4.1.5), (4.2.2) and (4.2.3) are
fulfilled.

2. f(z,t,u) = fo(z,t)|u|*signu, where fo,%fo € C(Dr) and o > 1. In this case, g(z,t,u) =

folz,t) %, and when fo > 0, & fo < 0, the conditions (4.1.5), (4.2.2) and (4.2.3) are also

fulfilled.
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Lemma 4.2.1. Let A > 0, |u| < 1, F € Ly(Dr), p € Wi(Q), ¥ € L2(Q) and the conditions (4.1.5),
(4.2.2) and (4.2.3) be fulfilled. Then for a generalized solution u of the problem (4.1.1)—~(4.1.4) the
following a priori estimate

at1
< allFllLy e +e2llells, o+ eallvli@ +C4||<P||VOV21(Q) +c5 (4.2.4)
2 2

Wl(D ) )

is valid with nonnegative constants ¢; = c;(A, p, Q, T, My, Ma, M3, My), not depending on u, F, ¢, 1,
and ¢; > 0 for i < 4, whereas in the linear case, i.e., when A = 0, the constants ¢4 = ¢5 = 0, and in
this case, due to (4.2.4), we have the uniqueness of the solution of the problem (4.1.1)—(4.1.4).

Proof. Let u be a generalized solution of the problem (4.1.1)—(4.1.4). In view of Definition 4.1.1, there

exists a sequence of the functions u,, € C?(Dr,I') such that the limit equalities (4.1.8), (4.1.9) are
fulfilled.

Set
Lty = Fy, (x,t) € Dr, (4.2.5)
U | = 0, (4.2.6)
Um (2,0) = pm(x), =€, (4.2.7)
Kptime = ¥m(x), =€ Q. (4.2.8)

Multiplying both sides of the equation (4.2.5) by 2u,,; and integrating in the domain D,
Drn{t<r7},0<7<T, due to (4.2.1), we obtain

0 8um aum Oy, 0
/&(W da dt — /Z o 5 dx dt+2A/§g(:c7t,um(w7t))dwdt

D, D.
Oy,
—2X | gz, tyup(z,t)) dedt =2 | F, T dxdt. (4.2.9)
D, D,

Let w, := {(z,t) € Dy : € Q, t =7},0 <71 <T. Denote by v := (vg,,...,Vs,, ) the unit

vector of the outer normal to dD;. Since vy, |w, uw, = 0,7 = 1,...,n, Vi|r —rage<ry = 0, velo, =1,
Vt|lw, = —1, taking into account the equalities (4.2.6) and integrating by parts, we have
0 /0Um\?2 Oty \ 2
/a <W> drdt = / (W) vpds = /“Ent da:—/u?m dz, (4.2.10)
D, oD, [ wo
0%y, Oup,
-9 87? 5t drdt = / [(ufm)t — 2(ummiumt)mi] dx dt
D, D,
= /ufm dx—/uim de, i=1,...,n, (4.2.11)
wWr wo
2)\/ 59 gz, t,um(z,t)) dedt = 2\ / g(x, t, um (z,t))ve ds
aD-
= 2/\/ T, U (2, t)) do — 2/\/ x,t, um (2, t)) d. (4.2.12)

In view of (4.2.10), (4.2.11) and (4.2.12), from (4.2.9) we get

n

/[ufnt—l—Zu%w} dm—/[ mt—i—Zuiml} dsc—2)\/ x,t, um(x,t)) de

wr i=1 wo

+2)\/ (x,t, um (z,t)) dx+2)\/gt (x,t, um(z,t)) d;vdt+2/qumt dxdt. (4.2.13)
D,

wo D,
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Let

Wi (7 )._/[ mt—i—Zumx} 2. (4.2.14)

wr

Since 2Fum: < e 1F2 + eu?, for any € = const > 0, due to (4.2.2), (4.2.3) and (4.2.14), it
follows from (4.2.13) that

Wi (T) < Wy, (0) + 2A M5 mes Q

+2/\/|g by U (T t))|dz+2)\M4TmesQ+s/ufm da:dt+€*1/F,2n dx dt. (4.2.15)

DT DT

Taking into account that

/u?m dxdt:/T {/ufntdx} ds</[/[ufnt+2u2mxi] dx} ds:/wm(s)ds,
/ =

- 0 ws
from (4.2.15) we obtain

T

wm (1) < €/wm(5) ds + wm (0) + 2X (M3 + My7) mes Q
0

+ 2)\/ lg(z,t, tp (z,1))| de 4+t /FﬁT dedt, 0<7<T. (4.2.16)

wo DT

Because of D, C Dr, 0 < 7 < T, according to the Gronwall lemma, it follows from (4.2.16) that
Wi (T) < |wm (0) + A(M5 + MyT) mes

+ 2)\/ lg(z,t, um (z,1))| do + / F2 dx dt] e, 0< T <T. (4.2.17)

Using the obvious inequality
la+0)> =a® + b +2ab < a® + b +e1a® + 710 = (1 +e1)a® + (1 + 7 1)v?,

that is valid for any €; > 0, from (4.2.8) we have

it (2, O = [pstgne (2. T) + o (@)* < [P 0 (0. T) + (L ey (). (42.18)

From (4.2.18) we obtain

/ mtdx—/\umtx()ﬂ dx < |u|*(14&1) /u Jo,T)de+ (14+¢e7 )/ipfn(x)d:v
Q

Q

wo

— 1’1 +e) / W@, T de + (1 + 7 omldy ) (4:2.19)

wT

In view of (4.2.7) and (4.2.14), from (4.2.17) we get

/ufnt(a:,T) dz < w,, (T {/Z‘sz@ da:—i—/ mt(x T)dx + Ms|e™, (4.2.20)

wT wr



62 Sergo Kharibegashvili

where
Ms = 2\(Ms + M4T) mes 2 + 2>\/ lg(z,t, um (z,1))| dz + e / F2 dxdt. (4.2.21)
wo DT

From (4.2.19) and (4.2.20) it follows that

[utwte <l en| [t dos [t a4 @ el o (1222)
i=1
0

wo wo

Since |p] < 1, the positive constants € and ; can be chosen insomuch small that
= |pP(1+e)eT < 1. (4.2.23)

Due to (4.2.23), from (4.2.22) we obtain

/ufnt de < (1—pp)t {mz(l + 51)(/290%%@ dx + M5>65T +(1+ 61_1)1/’m||%2(9)}
oo =1

wo

< W) [P+ ) (oml, )+ M)e™ + (e nlE )] (42:24)
2

Q)
It follows from (4.2.7), (4.2.14) and (4.2.24) that

wn©) = [ 2+ 3 6] o
1=1

wo

F ) I+ ) (ol M)+ (L ) [l ] (4225)

< 2
- H(pm”vvas Wi(Q)

2)
In view of (4.2.21) and (4.2.25), from (4.2.17) we get

< 2 1L— ) |1 2 2A(M3 + MyT Q
wm<f>_{||wm||wé( ) [ e (lonl?, | + 20O + MT) mes

)

P\ / 19, 2t (2, ) d + / F2 dxdt)e”+<1+sll>||wm%m)}
wo

T

+ 22X\ (M3 + M4T) mes ) + 2/\/ lg(2, t, U (,8))| d + 71 / F2 dx dt}eET
wo DT

a2, 0 + T / (92t (2, )| d + T, (4.2.26)

wo

=3 F 12 Palleml’
Yl Fmllz,(pry +72lle ”w;(ﬂ)

Here,
Y=t [(1—p1) " (14e)e +1],

Fo = [T+ (1 — ) HulP (1 +e1)],

T = (1= )~ (1 27 )eeT, (12.27)
Fa = 2A[(1 = p) PP (L + &) + 1],

Y5 = 2A(M3 + MaT) mes Q(1 — p1) " Hp> (1 +e1)e” + 1]eT.

Since for the fixed 7 the function u,,(z,7) € VCE/% (€2), due to the Friedrichs inequality [68], we have

n

/ [ufn +ud, + Z ufm] dz < cowp (1) = co/ [ufm + zn: ufm] dz, (4.2.28)
=1

wr i=1 wr
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where the positive constant ¢y = ¢o(2) does not depend on w,y,.
From (4.2.26) and (4.2.28) follows

T n
2 2 2
lonll = [ [+t i) daar
0

o i=1
T

< [ () dr < TRl Pull or) + aTRllenl?,
0

T 0T [ mll2, 0 + 0T / 19(2, 0, (x,0))| dr + coTs.  (4.2.20)

Due to (4.2.1) and (4.1.5), we have
lg(2,0,5)| < Mg + Mz|s|*", (4.2.30)

where Mg and M7 are some nonnegative constants. Taking into account (4.2.30), from (4.2.29) we get

" 20 < TN Fm 2 T"' m 20
[|u ”W%(DT,I‘)_CO o ||L2(DT)+CO Yall¢ ||W1(Q)
+00T§3”wm”%2(9) + co T4 Mg mesQ+cOT§4M7/|um(a:,0)|°‘+l d.Z‘+CoT§|5. (4.2.31)

Q

Reasoning from Remark 4.1.1 concerning the space W3 (Q), in view of the equality dimQ =
dim Dy — 1 = n shows that the embedding operator I : W} (Q) — L,(f2) is a linear continuous
compact operator for 1 < g < when n > 2, and for any ¢ > 1, when n = 2 [68]. At the same

n— 2’
time, Nemitski’s operator N7 : L,(Q) — Lo(2), acting by the formula Nju = lu| =", is continuous
and bounded if ¢ > 2"% = a +1 [22]. Thus, if a + 1 < 20 e, a < 222 which, due to (4.1.6), i

fulfilled since Z—ﬂ < Z—J_“g , there exists a number ¢ such that 1 <gqg< ” and q>a+1. Therefore
in this case the operator

Nay = N1 : W3 Q) — Ly(Q)
is continuous and compact. Thus, due to (4.1.9) and (4.2.7), it follows that

lim /|um(917,0)|°‘+1 dx:/\go(ac)|°‘+1 dz, (4.2.32)
m—r o0
and also [68]
/ [pla)|** do < il (12.33)
Wi

with the positive constant C, not depending on ¢ € W2 Q).
In view of (4.1.8), (4.1.9), (4.2.5)—(4.2.8), (4.2.32) and (4.2.33), passing in (4.2.31) to the limit as

m — 00 we obtain
|u HiVl(D o < THFI,pe) + 00TW2||90||2 ‘@ + coTsl|¢17, ()
+ CoT’Y4M7Cl H(pH;}j_ll(Q) + CoT(%g + §4M6 mes Q) (4234)
2

Taking the square root from both sides of the inequality (4.2.34) and using the obvious inequality
k k
(> af)1/2 < 3 |ag|, we finally get
i=1 i=1

atl
+e3l[Yl L) + callell o + c5. (4.2.35)

vl py < 1l llzao) +eallollgy o

Wi(Dp,T) =
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Here,

c1 = (coT7)Y?, 2= (coTH2)?, 3 = (coT3)

cy = (00T§4M7C1)1/2, cs = [COT(% + Y4 Mg mes Q)]

1/2
o (4.2.36)

where 7;, 1 < ¢ < 5, are defined in (4.2.27). In the linear case, i.e., for 74 = 75 = 0, it follows from
(4.2.35) that in the estimate (4.2.4) the constants ¢4 = ¢5 = 0, whence it follows that the solution of
the problem (4.1.1)—(4.1.4) is unique in the linear case. Thus, Lemma 4.2.1 is proved completely. [

4.3 The existence of a solution of the problem (4.1.1)—(4.1.4)

For the existence of a solution of the problem (4.1.1)—(4.1.4) in the case |u| < 1, we will use the
well-known facts dealing with the solvability of the following linear mixed problem [68]:

0% = d%u

Lou = =7 = > 5z = Fl@,t), (a,t) € Dr, (4.3.1)
i=1 i

u|F =0, u(z,0)=p(x), u(z,0)= QZ(JC), T €, (4.3.2)

where F, ¢ and J are the given functions.

For F € Ly(Dr), ¢ € Wi(Q), ¢ € Ly(Q), the unique generalized solution u of the problem
(4.3.1),(4.3.2) (in the sense of the equality (4.1.12), where f = 0, and the number p = 0 in the
definition of the space V') from the class Fs 1(Dr) with the norm [68]

n
2 2 : Z z
|| ||E2,1(DT) OSTET/[ ! i=1 "

is given by the formula [68]
- ¢
. 1 .
u= Z (ak cos gt + by sin ppt + — / Fy(7) sin ug(t — 7) dT) i (), (4.3.3)
b1 Mk s
where Xk = —,ui, 0 < < g < ovey klim pr = oo are the eigenvalues, while ¢ € W1(Q) are
— 00

the corresponding eigenfunctions of the spectral problem Aw = Xw, wlan = 0 in the domain

(A= 8‘9—;), forming simultaneously orthonormal basis in Lo (€2) and orthogonal basis in W3(€2) in
i=1 7

the sense of the scalar product (v, w)vc[)/%(m = s{ S Ve Wy, dz, e,
. P 1, =k,
Pk, 01) La(@) = O (%’W)vov;(ﬂ) = =0, O = {07 I £k (4.3.4)
Here,
ar = (0, 0k) L) bk = M;Zl({/’vv Ok Lo, k=1,2,..., (4.3.5)
Fa,t) =Y Fe(t)pr(x), Fi(t) = (F,0)Ly(w), wr: Drn{t=r1}, (4.3.6)
k=1
and, besides, for the solution u from (4.3.3), the estimate [68, 75]
lullg, ,(pr) < Y(IFl LoDy + ||90||V7,5(Q) + ”"ZHLQ(Q)) (4.3.7)

with the positive constant v, independent of F', ¢ and 12, is valid.
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Let us consider the linear problem corresponding to (4.1.1)—(4.1.4), i.e., the case for A = 0:
ot £ 0z}
alp =0, u(@,0) = o), Ky =(z), z€Q, (43.9)

Lou := = F(x,t), (z,t) € Dr, (4.3.8)

Let us show that when |u| < 1 for any F' € La(Dr), ¢ € Wi(Q) and ¢ € Ly(f), there exists a
unique generalized solution of the problem (4.3.8),(4.3.9) in the sense of Definition 4.1.1 for A = 0.

Indeed, for ¢ € W3(Q) and ¢ € L2(Q), the expansions ¢ = > arpr and ¥ = Y dppy in the
k=1 k=1

spaces W3(Q) and L (), respectively, are valid; here, aj, = (0, 0r) o) and d = (Y, 0r) L, () [68].
Therefore, setting

¥m = Zak‘p’“ Ym = Z di Pk, (4.3.10)
k=1 k=1
we have
mlgnoc ”(‘Om - L‘OHV([);%(Q) =0, 'rr}gnoo ||’(/}m - wHLg(Q) = 0. (4.3.11)

Since the space of infinitely differentiable functions C§°(Dr) is dense in the space Lo(Dr), for
F € Ly(Dr) and any natural number m there exists a function F,,, € C§°(Dr) such that

1

On the other hand, for the function F, in the space Ly(Dyr) the expansion [68]

Fu(X,T) =Y Frs®)er(@),  Frnr(t) = (F, k)10 (4.3.13)
k=1

is valid. Therefore, there exists a natural number #,, such that lim ¢,, = oo, and for
m—r o0

L

F(z,t) =Y Fi(t)or() (4.3.14)
k=1

the inequality
1

1 = Eanllaor) < — (4.3.15)
is valid. From (4.3.12) and (4.3.15) it follows that

~ L~ ~
The solution u = w,, of the problem (4.3.1),(4.3.2) for ¢ = ¢y, ¥ = Y. drpr and F = F,,
k=1

where ¢, and F), are defined in (4.3.10) and (4.3.14), is given by the formula (4.3.3) which, due to
(4.3.4)—(4.3.6), takes the form

, - ¢
- d 1
Uy = Z (ak cos it + 2k sin it + — / F i (7) sin g (t — 7) dT) or(z), (4.3.17)
b1 Hk Hk J

To determine the coefficients dj, we substitute the right-hand side of the expression (4.3.17) into
the equality K ume = 1, (), where 1), is defined in (4.3.10). Consequently, taking into account

m
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that the system of functions {¢y(x)} represents a basis in La(€2) and 1 — pcos upT # 0 for |u] < 1,
we obtain the following formulas:

1

A
k 1 — pcos T

T
(Pl Pr) La() — Orpiptr S0 g T 4 po / Fo (1) cos up (T — 1) dr|,  (4.3.18)
0

k=1,... 0.

Below, we assume that the Lipschitz domain 2 is such that the eigenfunctions ¢y € C?(Q), k > 1.
For example, this will take place if 9Q € C1Z1+3 [75]. This fact will also take place in the case of a
piecewise smooth Lipschitz domain, e.g., for the parallelepiped 2 := {z € R" : |z;| < a;, i =1,...,n},
the corresponding eigenfunctions ¢i, € C*°(Q) [76]. Therefore, since F,,, € C§°(Dr), due to (4.3.13),
the function F,, , € C%([0,7]) and, consequently, the function u,, from (4.3.17) belongs to the space
C?(Dr). Further, since pr|aq = 0, due to (4.3.17), we have u,,|r = 0, and thereby, u,, € C?(Dr,T),
m=1,2,....

According to the construction, the function u,, from (4.3.17) satisfies

um}r =0, Loum = Fpn, Um (2,0) = @q,, (x), Kptme =0, (), x€Q, (4.3.19)
and hence

(tm — )| = 0, Lo(um —ur) = Fo = Fry (um — ug)(@,0) = (¢2,, — p0,) (@),
Ku(ume — upe) = (e, — e, ), © €.

Therefore, from a priori estimate (4.2.4), where A = 0, the coefficients ¢4 = ¢5 = 0, we obtain

[ 1P = Filliao) + eallor, = el o + call e, = sy (4320)

. <
Wi(Dr,I) )

In view of (4.3.11) and (4.3.16), from (4.3.20) it follows that the sequence u,, € C?*(Dr,T) is

fundamental in the complete space W3(Dr,T'). Therefore, there exists a function u € Wi(Dr,T')
such that due to (4.3.11), (4.3.16) and (4.3.19), the limit equalities (4.3.8), (4.3.9) are valid. The
uniqueness of this solution follows from the a priori estimate (4.2.4), where the constants ¢4 = ¢5 = 0
for A\ = 0. Therefore, for the solution u of the problem (4.3.8),(4.3.9), we have u = Ly ' (F,¢,1),

where Ly : Ly(Dr) x W3(Q) x Ly(Q) — Wi(D7,T'), whose norm, due to (4.2.4), can be estimated
as follows:

Lo < v = max(cy, g, C3). (4.3.21)

La(D1)x W1(Q)x Ly (2)—WL(Dr,I)
Owing to the linearity of the operator

Lyt i La(Dr) x W) x La(Q) — Wi (Dr,T)
we have the representation

Ly ' (F,@,%) = Ly (F,0,0) + Ly (0,9,0) + Ly 1(0,0,4) = Lyi (F) + Loy (@) + Log (¥),  (4.3.22)

where Lg! : Lo(Dr) — WA(Dp,T), Lyt : WL(Q) = Wh(Dg,T) and Ly : Ly(Q) — Wi(Dyp,T) are
the linear continuous operators and, besides, according to (4.3.21),

I Loy <70, Loz <, |Los |l <70 (4.3.23)

||L2(DT)%V?/§(DT,F) W1(2)—WL(Dr,I) L2(2)—WL(Dr.T)

Remark 4.3.1. Note that for F' € Ly(Dr), ¢ € V?/é(ﬂ), ¥ € Ly(Q), due to (4.1.5), (4.1.6), (4.3.21)—

(4.3.23) and Remark 4.1.1, the function u € W3(Dz,T) is a generalized solution of the problem
(4.1.1)—(4.1.4) if and only if u is a solution of the following functional equation

u= Loy (=M f(z,t,u)) + Lo (F) + Log (@) + Loz () (4.3.24)

in the space Wi(Dr,T).
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We rewrite the equation (4.3.24) in the form
w= Agu = —ALg! (Now) + L5 (F) + L (¢) + L (), (43.25)

where the operator Ny : Wi(Dr,T') — La(Dr) from (4.1.7), is, according to Remark 4.1.1, continuous

and compact. Therefore, due to (4.3.23), the operator Ay : Wi(Dr,T') — W3(Dz,T) from (4.3.25)
is also continuous and compact. At the same time, according to Lemma 4.2.1 and (4.2.36), for any
parameter 7 € [0,1] and for any solution u of the equation v = T Agu with the parameter 7, the
same a priori estimate (4.2.4) with nonnegative constants ¢;, independent of u, F, ¢, ¢ and 7, is
valid. Therefore, due to Schaefer’s fixed point theorem [20], the equation (4.3.25) and hence, by

Remark 4.3.1, the problem (4.1.1)—(4.1.4) has at least one solution v € W3(Dr,T). Thus, we have
proved the following theorem.

Theorem 4.3.1. Let A\ > 0, |u| <1, F € La(D7), ¢ € W3(2), ¥ € Lo
(4.1.6), (4.2.2) and (4.2.3) be fulfilled. Then the problem (4.1.1)—(4.1.4
solution.

Q) and the conditions (4.1.5),
) has at least one generalized

Remark 4.3.2. Note that for |u| = 1, even in the liner case, i.e., for f = 0, the homogeneous problem
corresponding to (4.1.1)—(4.1.4) may have a finite or even infinite number of linearly independent
solutions. Indeed, in the case p = 1, we denote by A(1) a set of points u from (4.3.3), for which
the ratio “L is a natural number, i.e., A(1) = {u : % € N}. If we seek for a solution of the
problem (4.3.8),(4.3.9) in the form of the representation (4.3.3), then for determination of unknown
coefficients by contained in it, we substitute the right-hand side of this representation into the equality

Kpue = ¥(x). As a result, we have

T

pe(1 = peos ppT)by = (¥, o) L, (0) — arpu sin T + /Fk:(T) cos pup(T' — 7) dr. (4.3.26)
0

It is obvious that when A(1) # @ and ug € A(1), p =1 we have 1 — cos uxT = 0, and for F = 0,
© =1 = 0 and thereby for a; = 0, F(7) = 0, the equality (4.3.26) will be satisfied by any number by.
Therefore, in accordance with (4.3.3), the function ug (z,t) = C'sin uxter(z), C = const # 0, satisfies
the homogeneous problem corresponding to (4.3.8), (4.3.9). Analogously, in the case p = —1, we
denote by A(—1) the set of points from (4.3.3) for which the ratio % is an odd integer. In the case
1—pcos ppT =0 for py € A(—1), p = —1 and the function ug(z,t) = Csin urter(z), C = const # 0,
is a nontrivial solution of the homogeneous problem corresponding to (4.3.8), (4.3.9). For example,
when n =2, Q = (0,1) x (0,1), the eigenvalues and eigenfunctions of the Laplace operator A are [76]

e = —m2(k2 + k2), (2, x2) = sinkyray sinkome, k = (k1, k2),

ie., uy = m\/k? +ks. For ky = p? — ¢?, ko = 2pq, where p and ¢ are any integers, we obtain

2 2
wi = 7(p? + ¢?). In this case, for % € N, we have % = W € N, and according to the above-

said, when p = 1, the homogeneous problem corresponding to (4.3.8), (4.3.9) has an infinite number
of linearly independent solutions

Up q(x,t) = sin 7(p? 4+ ¢*)tsinw(p® — ¢*)zy sin 2mpgzy Vp,q € N. (4.3.27)

Analogously, when p = —1, the solutions of the homogeneous problem corresponding to (4.3.8),
(4.3.9) are the functions from (4.3.27) if and only if p is an even number, while ¢ and T are odd
numbers.

4.4 The uniqueness of a solution of the problem (4.1.1)—(4.1.4)
On the function f in the equation (4.1.1) let us impose the following requirements:

f,f, e C(Dr xR), |fl(x,t,u)| <a+blu|”, (x,t,u) € Dr xR, (4.4.1)
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where a, b,y = const > 0.
It is obvious that from (4.4.1) we have the condition (4.1.5) for & = v+ 1, and when v < -2, we
have v = v+ 1 < 21 hence the condition (4.1.6) is fulfilled.

Theorem 4.4. 1 Let |u| < 1, F € La(Dr), ¢ € Wi(Q), ¥ € La(Q) and the condition (4.4.1) be
fulfilled, v < =5 ; and also, the conditions (4.2.2), (4.2.3) hold. Then there exists a positive number
Ao = Xo(F, f, <p w,u, Dr) such that for 0 < X < Ao the problem (4.1.1)—(4.1.4) cannot have more than
one generalized solution.

Proof. Indeed, suppose that the problem (4.1.1)—(4.1.4) has two different generalized solutions u; and

o —
uz. According to Definition 4.1.1, there exist sequences of functions u;; € C?*(Dr,T), j = 1,2, such
that

i gy, — Uil ppry =0 [ Lauje — Fl|p(p7) =0, (4.4.2)
Jim |ujr|,_o — . 0, Mm [IKuune = Pllr,) = 0,5 = 1,2 (4.4.3)

Let
W= Uy — U, Wk = Uk — Uk, Fg: Lyusg — Lyuig, (4.4.4)

gkt A(f (@t uak) — £, uz)).

In view of (4.4.2), (4.4.3) and (4.4.4), it is easy to see that

hm lwi — w||W1(D oo =0, klgrolo | Fxllopr) =0, (4.4.6)
klinolo||wk|t:0“v°v;<m =0, k1L%||Kuwkt\\L2(Q) =0. (4.4.7)

Owing to (4.4.4), (4.4.5), the function wy, € C*(Dr,T") satisfies the following equalities:

“”“ Z 83 = (F + g)(x,1), (z,t) € Dr, (4.4.8)
wk‘r =0, (4.4.9)

wg(x,0) = gr(z), (4.4.10)

Kpwge © wi(z,0) — pwg (z, ) (a:), z €, (4.4.11)

where @k (x) 1= uak(z,0) — uig(z, 0), {[;k(x) = Kuuore — K.
First, let us estimate the function g from (4.4.5). Taking into account the obvious inequality
|dy + da]” < 2Ymax(|di]|?, |da]|?) < 27(|d1|Y + |d2|”) for v > 0, due to (4.4.1), we have

‘f(fL',t/U,Qk;) - f(m7t7u1k)|
1

(utzg, — s / £ (st ung + Tz, — urg)) dr

< |ugk — u1k| / (a +b0|(1 — 1T)ug + TngW) dr

< alugr — uik] + 27bluok — wik|(Juik]” + [uzk|”) = alwi| + 27blwe| (Jui]” + Juzk]?).  (4.4.12)

In view of (4.4.5), from (4.4.12) we obtain

lgklla(Dry < AallwillLy(pry + X270 fwr] (Juae” + 2 ") ||, 5,

< Aallwil|Ly(pry + A227bllwil| L, (oo || (Juak ] + \uzkIV)HLq(DT). (4.4.13)
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Here we have used Holder’s inequality [24]

lvivallz, (D) < Vil (o) lv2llL, (D)

where % + % = % , and in the capacity of p, ¢ and r we take

1
p=2Zi_1 g=n+1, r=2. (4.4.14)

Since dim D7 = n + 1, according to the Sobolev embedding theorem [22], for 1 < p < % , wWe
get
0]l ,(Dr) < Collvllws (pry Vv € Wy (Dr) (4.4.15)

with the positive constant Cj,, not depending on n € W4(D7).

Due to the condition of the theorem, v < % , and therefore, y(n + 1) < % . Thus, due to
(4.4.14) from (4.4.15), we have

2(n+1)
-1 7

Qs+ oz gy = skl oy + e

lwkllL,or) < Collwkllwipry, = k=1, (4.4.16)
=Nl ., om 2kl oy < Cingny ks oy + 2kl p,)- (4.4.17)

In view of the first inequality of (4.4.2), there exists a natural number kg such that for k > kg, we
obtain
H“ikH;VQl(DT) < Hui||;’V21(DT) +1, i=1,2, k> ko. (4.4.18)

Further, in view of (4.4.16), (4.4.17) and (4.4.18), from (4.4.13) we get

9k Lo (Dr) < Aalwill L, (Dr)
+ 22700, s pgy T 102y oy + D wkllLaor) < AMsllwellwy gy, (4.4.19)

(n+1)(
where we have used the inequality [|wkl|L,(pr) < |lwkllwz(pr)s

2(n+1)
Mg =a+ 2’YbCpC:Yy(n+1) (”UIH;VZl(DT) + ||UQ||"ZV21(DT) + 2), p= ﬁ . (4420)
Since the a priori estimate (4.2.4) is valid for A = 0, due to (4.2.27) and (4.2.36), in this estimate
¢4 = ¢5 = 0 and, hence, for the solution wy, of the problem (4.4.8)—(4.4.11) the estimate

< ANFr + gkl Loor) + APkl o, + Allvel . (4.4.21)

el .

W%(DT 1F)
is valid, where the constants ¢, ¢, ¢§ do not depend on A.

Because of Hwkchf/l(DT . |willw;(pr) and due to (4.4.19), from (4.4.21) we have
2 )

|wel| o < AN FllLa(pr) + A Ms|lwe o

o~
Wi(DpT) = Wi(DrT) t vl (44.22)

+ N Br|l o
AT

Note that since for u; and ug the a priori estimate (4.2.4) is valid, the constant Mg from (4.4.20)
will depend on A\, F, f, ¢, ¥, Dr; besides, due to (4.2.27) and (4.2.36), the value of Mg depends
continuously on A for A > 0, and

0< lim Mg = M < +oc. (4.4.23)
A—0+

Due to (4.4.23), there exists a positive number A\g = A\o(F, f, ¢, ¥, p, Dr) such that for

0 <A< Ao, (4.4.24)
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we obtain A\c{ Mg < 1. Indeed, let us fix arbitrarily a positive number &1. Then, due to (4.4.23), there
exists a positive number A; such that 0 < Mg < Mg + e for 0 < X < A;. It is obvious that for
Ao = min(Ay, (¢§(M§ + £1))~!) the condition A Mg < 1 will be fulfilled.

Therefore, in the case (4.4.24), from (4.4.22) we get

o < - 0 _1 0 0 ) o ‘O b } . .
Hw’“HW;(DT,r)*(l Aci Ms) 01||Fk||L2(DT)+Cz||90kHW%(Q)+03||1/Jk|\L2(Q) (4.4.25)

for k > ko.

From (4.4.2) and (4.4.4), it follows that lim |lwg]|| o = |luz — u|| - . On the other
ko0 W1(Dr,T) Wi(Dr,I)
hand, due to (4.4.6), (4.4.7) and (4.4.10), (4.4.11), from (4.4.25) we have lim ||wg] o =0
k— oo Wi(Dr,T)
Thus, ||uz — u1l| o =0, i.e., ug = uy, which leads to the contradiction. Thus Theorem 4.4.1 is
Wi(Dr.T)
proved. O



Chapter 5

Multidimensional problem with
two nonlocal in time conditions
for some semilinear hyperbolic

equations with the Dirichlet or
Robin condition

5.1 Statement of the problem

In the space R"*! of variables # = (x1,...,2,) and ¢, in the cylindrical domain Dy = Q x (0,T),
where 2 is an open Lipschitz domain in R™, we consider a nonlocal problem of finding a solution
u(zx,t) of the equation

Z +>\fxt,u):F(x,t), (2,t) € Dr, (5.1.1)

satisfying the Dirichlet homogeneous boundary condition

ul. =0 (5.1.2)

on the lateral face T' := 9Q x (0,T) of the cylinder Dt and the homogeneous nonlocal conditions
Kuu:=u(z,0) — pu(z,T) =0, x€Q, (5.1.3)
Kpug == ui(z,0) — pug(z,T) =0, =€,

where f and F are the given functions, A and p are the given nonzero constants, and n > 2.

Remark 5.1.1. Note that for |u| # 1, it suffices to consider the case |u| < 1, since the case |u| > 1
can be reduced to the latter one by passing from the variable ¢ to the variable t' = T — t. The case
for |u] = 1 will be considered at the end of this chapter. In particular, when =1 (—1), the problem
(5.1.1)—(5.1.4) can be studied as a periodic (antiperiodic) problem.

We further impose on the function f = f(x,t,u) the following restrictions:

f€C(Dr xR), |f(x,t,u)| < My + Malu|®, (z,t,u) € Dr x R, (5.1.5)
where nt1
0 < a=const < 1 (5.1.6)

71
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We consider the following functional spaces

&Z(ET) = {v € C2(ET) : U‘F =0, Kyo=0, Ko = ()}7 (5.1.7)
ﬁ/%vu(DT) = {U E W21(DT) : U’F = 07 ’CMU = O}) (518)

where W (Dr) is an unknown Sobolev space, and the equalities v|r = 0, K,v = 0 should be under-
stood in the sense of the trace theory [68].

Remark 5.1.2. The embedding operator I : WJ(Dr) — L,(Dr) represents a linear continuous
compact operator for 1 < ¢q < %, when n > 1 [68]. At the same time, Nemitski’s operator

N : Ly(Dr) — Lo(Dr), acting by the formula Nu = f(z,t,u), is continuous by (5.1.5) and bounded
if ¢ > 2a [22]. Thus, since by (5.1.6) we have 2a < 2ntl  there exists a number ¢ such that

n—1 7
1l<g< % and g > 2a. Therefore, in this case, the operator
No =NT:Wj ,(Dr) — Ly(Dr) (5.1.9)

is continuous and compact. Besides, from u € W4 ,(Dr) it follows that f(z,t,u) € Ly(Dr) and also,

if u,;, — w in the space W%M(DT), then f(xz,t,um) — f(x,t,u) in the space Lo(Dr).

Definition 5.1.1. Let the function f satisfy the conditions (5.1.5) and (5.1.6), and F € Lo(Dr).
We call a function u a generalized solution of the problem (5.1.1)~(5.1.4) if u € W3 ,(Dr) and there

o
exists a sequence of functions u,, € C%(Dr) such that

Tim ey, — 0, lm |[Latm = Fllryp,) = 0. (5.1.10)

o =
w3 . (Dr)

Note that the above definition of a generalized solution of the problem (5.1.1)—(5.1.4) remains valid
in the linear case, that is, for A = 0.

It is obvious that a classical solution u € C?(Dr) of the problem (5.1.1)—(5.1.4) represents a
generalized solution of this problem. It is easily seen that a generalized solution of the problem
(5.1.1)—(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Indeed,
let Fy, := Lyu,,. Multiplying both sides of the equality Lyu,, = Fy, by a test function w € V,, :=
{v e Ws(Dr) : vlr =0, v(z,T) — pv(x,0) = 0, x € Q} and integrating in the domain Dy, after
simple transformations connected with the integration by parts and the equality w|r = 0, we get

/ [tme (2, T)w(2, T) = tme(z, 0)w(z,0)] do
Q

n

+/ [— Ut Wi + Zummwxi + /\f(ac,t,um)w} dx dt = /me dedt YweV,. (5.1.11)
Q =1 Dr

Since Kpume =0 and w(z,T) — pw(z,0) =0, x € Q, it is not difficult to see that

Ut (2, T)w(x, T) — wme (2, 0)w(z, 0)
=t (2, T)(w(z, T) — pw(x,0)) — w(w, 0)(um (2, 0) — prume (2, T)) = 0.

Therefore, the equation (5.1.11) takes the form

/ [— Ut Wt + Zummwm + )\f(x,t,um)w} dx dt = /me dedt Yw eV, (5.1.12)

Dr i=1 Dr
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In view of (5.1.5), (5.1.6) and Remark 5.1.2, we have f(z,¢, u;) — f(z,¢,u) in the space Ly(Dr) as

o
U — u in the space W5 ,(Dr). Therefore, by (5.1.10), passing to the limit in the equation (5.1.12)
as m — 00, we get

/ [— upwy + ZuLwL +)\f(:c,t,u)w} dx dt = / Fwdxdt YweV,. (5.1.13)
Drp i=1 Drp

Since C§°(Dr) C V,, from (5.1.13), integrating by parts, we have

/ uOw dedt + A / flz, t,u)w dedt = / Fwdxdt Yw e C3°(Dr), (5.1.14)
Dr Dr Dr
where O := atg Z 527 0 and C§°(Dr) is the space of finite infinitely differentiable functions in Dy.

The equality (5.1. 14) valid for any w € C§°(Dr), implies that a generalized solution u of the problem
(5.1.1)—(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Besides,
since the trace operators u — ul—o and u — us—7 are continuous, acting from the space W4 (D7)
into the spaces Ly(2 x {t = 0}) and Lo(Q x {t = T'}), respectively, owing to (5.1.10), the generalized
solution u of the problem (5.1.1)—(5.1.4) satisfies the nonlocal condition (5.1.3) in the sense of the
trace theory. As for the nonlocal condition (5.1.4), we have taken it into account in the integral sense
in the equality (5.1.13), which is valid for all w € V,. Note also that if a generalized solution u belongs
to the class C%(Dr7), then by the standard reasoning combined with the integral identity (5.1.13) [68],
we have that u is a classical solution of the problem (5.1.1)—(5.1.4), satisfying the pointwise equation
(5.1.1), the boundary condition (5.1.2) and the nonlocal conditions (5.1.3) and (5.1.4).

Remark 5.1.3. Note that even in the linear case, that is, for A\ = 0, the problem (5.1.1)—(5.1.4)
is not always well-posed. For example, when A = 0 and |u| = 1, the corresponding to (5.1.1)—
(5.1.4) homogeneous problem may have an infinite number of linearly independent solutions (see
Remark 5.3.2).

5.2 A priori estimate of a solution of the problem (5.1.1)—(5.1.4)
Let

g(z,t,u) /fxts s, (z,t,u) € Dy x R. (5.2.1)

Consider the following conditions imposed on the function g = g(z,t,u):

g(x,t,u) >0, (z,t,u) € Dy x R, (5.2.2)
gt € C(Dr x R), gi(x,t,u) < Mz, (x,t,u) € Dr xR, (5.2.3)
92,0, ) < g, Tou), (2,u) €T xR, (5.2.4)

where M3 = const > 0, and p is the fixed constant from (5.1.3)—(5.1.4).

Remark 5.2.1. Let us consider the class of functions f from (5.1.1) satisfying the conditions (5.1.5),
(5.2.2), (5 2.3) and (5.2.4). For a = +1, consider the function f = fo(t)|u|?u, where fo € C*([0,T)),
fo >0, dTO <0, fo(0)u? < fo(T), B >0, and p > 0 is the fixed constant from (5.1.3)—(5.1.4).
In particular, these conditions are satisfied if fo = const > 0 and 0 < p < 1. Indeed, using these

conditions, by (5.2.1), we have

_ fo®)]ul*?

and
‘U|B+2

B+2

B+2 2 B B+2
o) = O GO

= u?g(x, T, v).
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Lemma 5.2.1. Let A > 0, |u| < 1, f € C(Dr x R), F € Ly(Dr), and the conditions (5.2.2)—~(5.2.4)
be satisfied. Then for a generalized solution u of the problem (5.1.1)—(5.1.4), we have the a priori
estimate

||“HVC‘>/1 (D2) < allFillpypy) +c2 (5.2.5)
2,p

with nonnegative constants ¢; = ¢;(A\, u, Q, T, My, Mo, M3), not depending on u and F', ¢c; > 0, whereas
in the linear case (A = 0), the constant co = 0, and in this case, by (5.2.5), we have the uniqueness of
the generalized solution of the problem (5.1.1)—(5.1.4).

Proof. Let u be a generalized solution of the problem (5.1.1)—(5.1.4). By Definition 5.1.1, there exists

a sequence of functions u,, € C%(Dr) such that the limit equalities (5.1.10) are satisfied.
Set

Lty = Fyy, (2,t) € Dy (5.2.6)

Multiplying both sides of the equation (5.2.6) by 2u,,: and integrating in the domain D,
Drn{t<7},0<7<T, by (5.2.1) we obtain

9 [ Oum 62um 8um
/&(W da dt — /Z da dt+2)\/8 (9(,t, wm (, 1)) da dt

D, D,

*2>\/gt(df,t,um(x,t)) dxdt:Q/Fm

D, D,

O goar. (5.2.7)

Let wy := {(z,t) € Dr: 2 € Q, t =7}, 0 <7 < T, where wy and wy are the upper and lower
bases of the cylindrical domain Dy, respectively. Denote by v := (vg,, ..., Vs, , ) the unit vector of
the outer normal to 0D.. Since

Vg =
Tilw,Uwg

:0, l/t’ :1, I/t| :*].,

Vt}FT::Fﬁ{tST} wr
taking into account that u,, € éﬁ(DT) and, therefore, by (5.1.7),
um‘r =0, Kuum=0, Kiunm =0, (5.2.8)

after integrating by parts we obtain

2 2
/%(8:;?) drdt = / <8gtm) ytd(s:/ufntdx—/ u?,, dr, (5.2.9)
D

D, oD wr wo
0%y, O,

-2 W 51 drdt = / [(ufm)t - 2(umxiumt)mi] dx dt

D, D,

= /u,%m dx—/ufmi dr, i=1,...,n, (5.2.10)
W wo
2)\/ at g(x, t,um(x,t))) dedt = 2\ / Xyt U (2, 1))y ds
oD,

:2/\/g($7t,um(x,t))dx—ZA/g(x,t,um(x,t))dx. (5.2.11)

wr wo
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In view of (5.2.9)—(5.2.11), from (5.2.7) we get

n n

/ [ufnt + Zufm] dr = / [ufnt + Zufm] dr — QA/g(x,t,um(x,t)) dx
o i=1 i=1
T wo wr
+ 2)\/g(x,t,um(x,t)) dx + 2)\/gt(x,t,um(m,t)) dx dt + 2 / Fotume dedt. (5.2.12)
wo wWr D,
Let
Wy (T) 1= / {ufm + Zufnm + 2)\g(x,t,um(x,t))} dx. (5.2.13)
e i=1

Since 2F,upy < e F2 4eu?,, for any € = const > 0 and also since A > 0, by (5.2.3) and (5.2.13),
from (5.2.12) it follows that

Wi (T) = W, (0) + 24 / ge(x, t, um (z,t)) de dt + 2 / Frtim da dt
D, D,

< wm(0) + 2AM37mesQ + ¢ / u?, dedt+e! / F2 dx dt. (5.2.14)

D, D
Since A > 0, taking into account (5.2.2) and the inequality

T

/ufm dxdt:/[/ufntdx} ds

D, 0 Ws
< / [/ [ufm + Zufm —+ 2)\g(x,t,um(x,t))} dm] ds = /wm(s) ds,
0 o i=1 5
from (5.2.14) we obtain
Wi (1) < e/wm(s) ds + Wy (0) + 2AM37mes Q + ¢+ /Fg1 dedt, 0<7<T. (5.2.15)
0 D,

Because of D, C Dp, 0 < 7 < T, the right-hand side of the inequality (5.2.15) is a nondecreasing
function of the variable 7, and by the Gronwall lemma, it follows from (5.2.15) that

Wi () < {wm(O) + 2AM3T mes Q + ¢+ /Fﬁl dx dt] e, 0<T7<T. (5.2.16)
D.

In view of A > 0, by (5.2.4) and (5.2.8), from (5.2.13) follows

n

W, (0) = / {ufm(x, 0) + Zufmi (2,0) + 2Xg(x, 0, up (z, O))} dzx
Q

=1

=1
= [ [pPate D) 4 12 3 0 0. T) + 22900, 0 i (0,7 d
Q

n

< i [ i)+ Y, (0 T) 4 2Ag(o Ty, 7) | do = P (1), (5:207)
Q

i=1
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Using the inequality (5.2.16) for 7 = T, from (5.2.17) we obtain

Wi (0) < p2w (T) < p? | W (0) + 2AM3T mes Q 4 &1 / F2 dx dt} et
Dr
= 2w (0) + My + e e | Pl oy, (5:2.18)

where
My = p*2XAM3Te T mes Q. (5.2.19)
Since |u| < 1, a positive constant € = e(u, T') can be chosen insomuch small that
= pleft < 1. (5.2.20)
For example, we can set ¢ = % In |71| .
By (5.2.20), from (5.2.18), we have

w(0) < (1— ) My + (1 ) " 2e e T | F2, . (5.2.21)
From (5.2.16) and (5.2.21) it follows that

wn(7) < [(1= )7 M+ (1= )27 T Bl
+ 2\M5T mes Q2 +5—1||F||§2(DT)}68T < ol Fnld, gy + 02, 0<T<T, (52.22)

where

o1 = [(1—p) "pwPe T +1]e e, oy = [(1— p1) "' My + 2AM5T mes Q]e”. (5.2.23)

Since, for the fixed 7, the function u,,(z,7) belongs to the space Wi(Q) := {v € W3 () : v|pq =
0}, by the Friedrichs inequality [68], taking into account (5.2.2) and A > 0, we have

n
/ |:u3n + u?nt + Z ufrul:| d.I‘
i=1

wr

< co/ {ufm + Zufmi} dx < co/ [ufnt + Zufmt + Ag(z, t, um (2, 1)) | de = cowm (T), (5.2.24)

wr i=1 W, i=1

where the positive constant ¢ = ¢o(€2) does not depend on .
From (5.2.22) and (5.2.24) it follows that

Extracting the square root from both sides of the inequality (5.2.25) and using the inequality
(a® +b*)!/% < |a| + |b], we get

[wmll e, (on) = a1l FnllLa(pr) + 2, (5.2.26)
2,

where 12
¢ = (COT[(l — ) tpPefT ¢ 1]671€€T> ,
(5.2.27)

1/2
Cco = (COT[(l — 1) T P22 M5 Tef T mes Q + 2AM3T mes Q] eET) )

In view of the limit equalities (5.1.10), passing to the limit in the inequality (5.2.26) as m — oo,
we obtain (5.2.5). This proves Lemma 5.2.1. O
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5.3 The existence of a solution of the problem (5.1.1)—(5.1.4)

For the existence of a solution of the problem (5.1.1)—(5.1.4) in the case |u| < 1, we will use the
well-known facts on the solvability of the following linear mixed problem [68]:

*u - 0%u
Lyu = =z = ; i F(x,t), (x,t) € Dy, (5.3.1)
u|F =0, u(z,0)=p(x), ul(r,0)=1), e, (5.3.2)

where F, ¢ and ¢ are the given functions.

For F € Ly(Dr), o € W(Q) and ¥ € Lo(Q), the unique generalized solution u of the problem
(5.3.1),(5.3.2) (in the sense of the integral identity

/[—utwt—i—zn:umwm} dxdt = /Fwdxdt Yw € V,
i=1 Dy

Dt

—/ww(x,O) dx +
Q
where Vy := {v € W}(Dr) : vlr =0, v(z,T) =0, z € Q} and u|i—o = ¢) from the space Es 1 (D7)

with the norm
n
2 2 2 2
v = su ve+ i + v } dr
| ||E2,1(DT) OSTET/[ i ;:1 @

wr

is given by the formula [68]

t
N~ ~ 1
U= Z <ak cos gt + by sin pugt + — / Fy(7) sin pg(t — 7) d7'> or(z), (5.3.3)
1 Mk ,
where A\, = —pi (0 < 1 < pg < oeey klim pr = oo) and @ € W3(Q) are the eigenvalues and
—00

the corresponding eigenfunctions of the spectral problem Aw = Xw, wlan = 0 in the domain

(A= ;—;), forming simultaneously an orthonormal basis in Lo(2 and an orthogonal basis in
i=1 7%

W1(€2) with respect to the scalar product (U’w)v?/l(ﬂ) = [ > vy, w,, dz [68], that is,
Q

2 i=1
. ~ g 1, I=k,
(Sﬁk,l/fl)Lz(Q) = 0, (@k’(pl)v?/;(ﬂ) = —Alp, O = {0’ 14k (5.3.4)
Here,
ar = (¢, k) Lo () by, = e (W, ok ra), k=1,2,..., (5.3.5)
F(z,t) = ZFk(t)SOk(x)v Fy(t) = (F, k) Ly(wy)s wi = DrN{t=r}. (5.3.6)
k=1
Besides, for the solution u from (5.3.3), we have the following estimate
lullg, 1 (pr) < Y(IFlLa(pr) + H@Hﬁ/;(m + 19l Lo 0)) (5.3.7)

with the positive constant +, independent of F, ¢ and v [68,75].
Let us consider the linear problem corresponding to (5.1.1)—(5.1.4), that is, the case A = 0:

o2 £~ 9u?
i=1 g

ul. =0, (5.3.9)

w(z,0) — pu(z,T) =0, wu(z,0)— pu(z, T) =0, x€ Q. (5.3.10)

Lou := = F(z,t), (z,t) € Dr, (5.3.8)
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Let us show that when |u| < 1, for any F € Ly(Dr), there exists a unique generalized solution
of the problem (5.3.8)—(5.3.10). Indeed, since the space of finite infinitely differentiable functions
C§°(Dr) is dense in the space Lo(Dr), for F € Lo(Dr) and any natural number m, there exists a
function F),, € C§°(Dr) such that

1
|Fon = Fllzaor) < - (5.3.11)

On the other hand, for a function F, in the space Lo(Dr), we have the following expansions [68]:

Fn(X,1) = > F i (®)or(@),  Fuk(t) = (Fons 0k) La(0)- (5.3.12)
k=1

Therefore, there exists a natural number ¢, such that lim ¢,, = oo and, for

m—o0
~ Z’VYL
F(z,t) =Y Fok(t)er(@), (5.3.13)
k=1
we have 1
1 Em = FllLy(pr) < g (5.3.14)
From (5.3.11) and (5.3.14) it follows that
lim | Eon — FlLo(pry = 0. (5.3.15)

The solution u = u,, of the problem (5.3.1), (5.3.2) for
lm, b N
=D arpr, V=Y mbipr, F=Fy,
k=1 k=1

is given by the formula (5.3.3), which by (5.3.4)—(5.3.6) and (5.3.13) can be rewritten as follows:

Lm

¢

. ~ 1

Upy, = Z (ak cos gt + by sin pupt + /T / Fr(7) sin pugs (T — 7) dT) or(z). (5.3.16)

k
k=1 0

By the construction, the function w,, from (5.3.16) satisfies the equation (5.3.8) and the boundary
condition (5.3.9) for F = F,, from (5.3.13). Let us define unknown coefficients a; and by, such that
the function u,, from (5.3.16) would satisfy the nonlocal conditions (5.3.10), too. Towards this end,
let us substitute the right-hand side of the expression (5.3.16) into the equalities (5.3.10). As a result,

since the system of functions {¢x(x)} forms a basis in La(2), for defining the coefficients aj and by,
we have the following system of linear algebraic equations:

T
(1 — peos ppT)ag — (psin g T)by, = Ll / Fon i (7) sin pg (T — 7) dr,
0

Pk
. (5.3.17)
(g sin ppT)ag + pr (1 — pcos ukT)gk = /L/Fm,k(’l') cos (T — 7) dr,
0
k=1,2,...,¢,,. Its solution is
ar = [digppur sin T — dog (1 — peos T ALY, k=1, 0, (5.3.18)

Ek = [dgk(l — pcos upT) — dyg s SinukT] A;l, k=1,...,4m. (5.3.19)
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Here,
T T
dip = Mi /ka(r) sinpg(T — 7)dr, dop = ,u/ka(T) cos ug (T — 7)dr,
k
0 0

and since |p| < 1, for the determinant Ay of the system (5.3.17) we have
A = i [(1 = peos uT)? + i sin® j T] > pui(1 = |u])? > 0. (5.3.20)

Below, we assume that the Lipschitz domain € is such that the eigenfunctions ¢ € C?(Q), k > 1.
For example, this will take place if 9Q € C1Z1+3 [75]. This fact will also take place in the case of a
piecewise smooth Lipschitz domain, e.g., for the parallelepiped Q = {& € R™ : |z;| < a;, i =1,...,n}
the corresponding eigenfunctions ¢ € C°(Q) [76] (see also Remark 5.3.2). Therefore, since F,, €
Cs°(Dr), due to (5.3.12), the function F,, ; € C?([0,7]) and, consequently, the function u,, from
(5.3.16) belongs to the space C?(D7). Further, according to the construction, the function u,, from

(5.3.16) will belong to the space (OZ'i(DT) which is defined in (5.1.7), besides,

Lotim = Fry,  Lo(tm — ug) = Fpy — Fp. (5.3.21)
From (5.3.21) and the a priori estimate (5.2.5), when A = 0, and due to Lemma 5.2.1, the coefficient

co = 0, we have _ B
o =l < 1 = Filiacon (5.3.22)

In view of (5.3.15), from (5.3.22) it follows that the sequence u,, € C}(Dr) is fundamental in the

complete space W ,(Dr). Therefore, there exists a function u € W3 ,(Dr) such that, due to (5.3.15)
and (5.3.21), the limit equalities (5.1.10) are valid for A = 0. This implies that the function u is a
generalized solution of the problem (5.3.8)—(5.3.10). The uniqueness of this solution follows from the
a priori estimate (5.2.5), where the constant c; = 0 for A =0, i.e.,

”u”v?/; (D) < allFlloypr)- (5.3.23)
S

Therefore, for the solution u of the problem (5.3.8)-(5.3.10), we have u = Ly'(F), where L' :

o
Ls(Dr) — W%M (D7) is a linear continuous operator whose norm, due to (5.2.23), can be estimated
as follows:

[ <o (5.3.24)

o
LZ(DT)‘)W;H(DT)

Remark 5.3.1. Note that when the conditions (5.1.5), (5.1.6) are fulfilled and F € Ly(Dr), due

o

to (5.3.24) and Remark 5.1.2, the function u € W3 ,(Dr) is a generalized solution of the problem
(5.1.1)—(5.1.4) in the sense of Definition 5.1.1 if and only if u is a solution of the following functional
equation

u= Ly (=A\f(z,t,u)) + Ly (F) (5.3.25)

in the space T/?/éyu(DT).
Rewrite the equation (5.3.25) in the form
u = Aogu = —ALy  (Nou) + Ly *(F), (5.3.26)

where the operator Ny : W3 (D) — La(Dr) from (5.1.9) is, according to Remark 5.1.2, continuous

and compact. Therefore, due to (5.3.24), the operator Ay : W3 ,(Dr) — W3 ,(Dr) from (5.3.26)

is also continuous and compact for 0 < a < Z—ﬂ At the same time, according to Lemma 5.2.1
and (5.2.27), for any parameter 7 € [0, 1] and for any solution u of the equation v = 7 Agu with the
parameter 7, the same a priori estimate (5.2.5) with nonnegative constants ¢;, independent of u, F

and 7, is valid. Therefore, due to Schaefer’s fixed point theorem [20], the equation (5.3.26) and hence,

due to Remark 5.3.1, the problem (5.1.1)-(5.1.4) has at least one solution u € W3 ,(Dr). Thus, we
have proved the following
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Theorem 5.3.1. Let A > 0, |u| < 1 and the conditions (5.1.5), (5.1.6), (5.2.2)~(5.2.4) be fulfilled.
Then for any F € Lo(Dr), the problem (5.1.1)~(5.1.4) has at least one generalized solution u €

W3.,.(Dr) in the sense of Definition 5.1.1.

Remark 5.3.2. Note that for || = 1, even in the linear case, i.e., for f = 0, the homogeneous problem
corresponding to (5.1.1)—(5.1.4) may have a finite or even an infinite number of linearly independent
solutions, while for the solvability of this problem the function F € Lo(D7) must satisfy a finite or
an infinite number of conditions of the form ¢(F) = 0, respectively, where £ is a continuous functional
in Lo(Dr). Indeed, in the case u = 1, denote by A(1) a set of those numbers uy from (5.3.3) for
which the ratio £ T is a natural number ie, A(1 ) = {u : “"T € N}. The formulas (5.3.18), (5.3.19)

for determlnatlon of unknown coefficients @ and by, in the representatlon (5.3.16) are obtained from
the system of linear algebraic equations (5.3.17). In the case A(1) # @ and ux € A(1), p = 1, the
determinant Ay of the system (5.3.17), given by (5.3.20), equals zero. Moreover, in this case, all
coefficients in front of the unknowns @y, and by, in the left-hand side of the system (5.3.17) equal zero.
Therefore, due to (5.3.16), the homogeneous problem corresponding to (5.3.8)—(5.3.10) will be satisfied
by the function

ug(z,t) = (C1 cos prt + Co sin pyt)op(x), (5.3.27)

where C7 and Cs are arbitrary constant numbers, and besides, in view of (5.3.17), the necessary
conditions for the solvability of the nonhomogeneous problem (5.3.8)—(5.3.10) corresponding to py €
A(1), are the following conditions

L1 (F /Fa?tgpk( )sin pg (T — t) dedt = 0,

br (5.3.28)
L o(F /Fxtgpk( ) cos ux (T —t) dedt = 0.

Dt

Analogously, in the case p = —1, we denote by A(—1) the set of points yuy from (5.3.3) for which
the ratio “:L is an odd integer. For py € A(—1), u = —1, the function uy, from (5.3.27) is also a
solution of the homogeneous problem, corresponding to (5.3.8)—(5.3.10), and the conditions (5.3.28)
are the corresponding necessary conditions for the solvability of this problem. For example, when
n=2Q=(0,1) x (0,1), the eigenvalues and eigenfunctions of the Laplace operator A are [76]

A = —7T2(k% + k§)7 or(T1,22) = 2sin kymay - sinkomas, k= (k1,k2),

that is, ux = m\/k? + k3. For ky = p? — ¢%, ka = 2pq, where p and ¢ are any integers, we obtain
2 2

e = 7(p*>+¢?). In this case, for 2 € N, we have ”2’°T "4+a)T £ N, and according to the above-said,

when p = 1, the homogeneous problem corresponding to (5.3.8)—(5.3.10), has an infinite number of

linearly independent solutions
Upq(x,t) = [Crcosm(p® + ¢*)t + Casin(p® + ¢°)t] sin(p® — ¢*)way - sin 2pgme,

for any integers p and ¢. Analogously, when p = —1, the solutions of the homogeneous problem
corresponding to (5.3.8)—(5.3.10) in case p is even, while ¢ and T are odd, are the functions from
(5.3.27).

5.4 The uniqueness of a solution of the problem (5.1.1)—(5.1.4)

On the function f in the equation (5.1.1) we impose the following additional requirements:
f,f, e C(Dr xR), |fl(z,t,u)] <a+blu|”, (z,t,u) € Dr x R, (5.4.1)

where a, b,y = const > 0.
It is obvious that from (5.4.1) we have the condition (5.1.5) for @ = v+ 1, and when v < -2, we

havea:7+1<%.
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Theorem 5.4.1. Let A >0, |u| <1, F € Ly(Dr) and the condition (5.4.1) be fulfilled for v < 2+,
and also the conditions (5.2.2)—(5.2.4) hold. Then there exists a positive number \g = \o(F, f, p, D7)
such that for 0 < XA < Ao, the problem (5.1.1)—~(5.1.4) has no more than one generalized solution in the
sense of Definition 5.1.1.

Proof. Indeed, suppose that the problem (5.1.1)—(5.1.4) has two different generalized solutions u; and

o]
uz. According to Definition 5.1.1, there exist sequences of functions p;; € Ci(DT), j = 1,2, such
that

kli)H;C ||ujk UJHW% ”(DT) = 0, _j = 1, 2, kll)n;o ||L,\Ujk - FHLQ(DT) =0. (542)
Let
W= Uy — UL, Wk = Usg — Uk, Fi := Lausg — Lauig, (5.4.3)

gk ‘= )\(f(x7t7u2k) - f(x>taulk))'
From (5.4.2) and (5.4.3), it is easy to see that

hm lwi, — w||W1 (D) =0, klim | Fxll Lo(pry = 0. (5.4.5)
2,1 S

In view of (5.4.3) and (5.4.4), the function wy € C%(Dr) satisfies the following equalities:

0?
Z % = (B+g0)(@t), (o,) € Dr, (5.46)
wk}r =0, w(x,0)— uwk(x,T) =0, wie(x,0) — pwp(x,T) =0, z el (5.4.7)

First, let us estimate the function g from (5.4.4). Taking into account the obvious inequality
|dy + d2]” < 2Ymax(|di|?, |da]|?) < 27(|d1|Y + |d2|”) for v > 0, due to (5.4.1), we have

‘f(xatv/uﬁk) - f(x7t7u1k)|
1

= (u2k — ulk/f; (x,t,ulk + T(ng — ulk)) dr| < |U2k — ulk\ / (CL —+ b|(1 — T)Ulk + Tu2k|7) dr

< alugr — wak| + 27blugke — wrk|(Juik]” + Juzk]”) = alwi| + 27blwe| (Juik]” + Juzk]?).  (5.4.8)

In view of (5.4.4), from (5.4.8) we have

lgkllza(pr) < Aallwillzo(ory + X270 fwk] (luwk]” + [uze )], oy

< AalwllLo(pry + A 270wkl L, () || (luak]” + [uar]”) HLq(DT). (5.4.9)
Here we have used Holder’s inequality [24]
)s
where % + % = % , and in the capacity of p, ¢ and r we took
pz?%, g=n+1, r=2. (5.4.10)

Since dim Dy = n + 1, according to Sobolev’s embedding theorem [22], for 1 < p < %, we
have
[vllz,(pr) < Cpllvllwg (pry Yo € Wy (Dr) (5.4.11)

with the positive constant Cj,, not depending on v € W(Dr).
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Due to the condition of the theorem, v < —==, and therefore, y(n + 1) < % . Thus, due to
(5.4.10), from (5.4.11) we have
2(n+1)
lwillz,(pr) < Collwkllwy(pry, P= o1 k=1, (5.4.12)

I Qeasl” 4 "M 2y = sty + oz o

In view of the first equality of (5.4.2), there exists a natural number ko such that for k > kg, we
have
”uikH’Iszl(DT) < Hui”’{ZVzl(DT) +1, i=1,2; k> ko. (5.4.14)

Further, in view of (5.4.12), (5.4.13) and (5.4.14), from (5.4.9), we have
||gk7||L2(DT) < Aa’||u)/<>||LQ(DT)
FAZBCLC ) (1 [y + 102 oy + 2) [0l o) € AV [lhwg oy, (5.4.15)
where we have used the inequality [|wk||r,(ps) < |Wkllwy(Dr),

n+1
n—1"

M5 =a+27bC, C’A’(nJr1 (||u1||$V21(DT) + Hu2||ZV21(DT) +2), p=2 (5.4.16)

Since the a priori estimate (5.2.5) is valid for A = 0, due to (5.2.27), in this estimate ¢z = 0, and
hence, for the solution wy, of the problem (5.4.6), (5.4.7), the estimate

||wlc||v<;/1 On) < N EFxk + gkl o (Do) (5.4.17)
2,

is valid, where the constant ¢{ does not depend on \, F}, and gi.
Because of Hwkle on) = ||wkllwy (pyy and due to (5.4.15) and (5.4.17), we have

[0y < SFRliaor) + MMl (5.4.15)

It should be noted that since for u; and ug the a priori estimate (5.2.5) is valid, the constant M;
from (5.4.16) depends on F, f, u, Dr and A. Moreover, due to (5.2.19), (5.2.23) and (5.2.27), the
value of M5 continuously depends on A for A > 0, and

0< lim Ms= M) < +oc. (5.4.19)
A—0+

Due to (5.4.19), there exists a positive number A\g = Ao (F, f, 4, Dr) such that for
0< A< (5.4.20)

we have A M5 < 1. Indeed, let us fix arbitrarily a positive number e1. Then, due to (5.4.19), there
exists a positive number \; such that 0 < My < M2 + &1 for 0 < XA < A\;. Obviously, for

Ao = min ()\1, (c (Mg + 51))_1)’

the condition A\e{ M5 < 1 is fulfilled. Therefore, in the case (5.4.20), from (5.4.18) we get

[w chWé o) = A = AEMs) " Fill Lo (o), k2> ko (5.4.21)

From (5.4.2) and (5.4.3) it follows that hm HwkH = |luz — ul| o . On the other
Ws H(D ) W% ;L(DT)

hand, due to (5.4.5), from (5.4.21) we obtaln hm ||wk|| o = 0. Thus, [us — u1|| om) =0,

i.e., uo = u1, which leads to the contradlctlon. ThlS proves Theorem 5.4.1. O
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5.5 The cases of absence of a solution
of the problem (5.1.1)—(5.1.4)

In this section, using the test function [77], we show that when the condition (5.2.2) is violated, the
problem (5.1.1)—(5.1.4) may not have a generalized solution in the sense of Definition 5.1.1.

Lemma 5.5.1. Let u be a generalized solution of the problem (5.1.1)—~(5.1.4) in the sense of Defini-
tion 5.1.1 and the conditions (5.1.5) and (5.1.6) be fulfilled. Then the following integral equality

/uDvda@dt:—)\/f(x,t,u)v da:dt+/Fv dz dt (5.5.1)
Dt

DT DT

is valid for every test function v satisfying the conditions

v e 02(5T)7 U’(DDT =0, VI,tU|aDT =0, (552)
whereD_a—Q_i O V.= (2 0 o)
TP 4 0al zt = \fzy " O, Ot

Proof. According to the definition of a generalized solution of the problem (5.1.1)—(5.1.4), there exists

the sequence u,, € C%(Dr) such that the equalities (5.1.10), (5.2.8) are valid. We multiply both sides
of the equality (5.2.6) by the function v and integrate the obtained equality in the domain Dy. Due
to (5.5.2), integration by parts of the left-hand side of this equation yields

/umDv dr dt+ A / fz,t,um)v de dt = /Fmv dx dt. (5.5.3)
Dt

DT DT

Passing in the equation (5.5.3) to the limit as m — oo and taking into account (5.2.6), the limit
equalities (5.1.10) and Remark 5.1.2; we obtain the equality (5.5.2). Thus Lemma 5.5.1 is proved. [

Consider the following condition imposed on the function f:
flx,t,u) < —|ul?, (x,t,u) € Dy x R; p=const > 1. (5.5.4)

Note that when the condition (5.5.4) is fulfilled, the condition (5.5.2) is violated. Let us introduce
into consideration the function vy = ¢g(x,t) such that

vo € C*(Dr), wolp, >0, volyp =0, Visvoly,, =0, (5.5.5)
and )
TP 11
= da dt —+ = =1 5.5.6
0 p ool 1 T dt < 400, » + v ( )
T

Below, we assume that 9D € C? and hence there exists a function w € C?(R") such that o€ :
w(z) =0, Vywlag # 0, and w|g > 0 [24].

Simple verification shows that in the capacity of the function vy, satisfying the conditions (5.5.5)
and (5.5.6), can be chosen the function

’Uo(l‘,t) = [t(T - t)w(x)]k, (x’t) € DT7

for a sufficiently large k = const > 0.
In view of (5.5.4) and (5.5.5), from (5.5.1), where vy is taken instead of v, it follows that when
A >0,

)\/|u|pvo dx dt < / |ul |Ove| da dt — /FUO dx dt. (5.5.7)
Dr Dr Dr
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Theorem 5.5.1. Let the function f € C(Dr x R) satisfy the conditions (5.1.5), (5.1.6) and (5.5.4);
A> 0,00 € C? F° € Ly(Dr), F* > 0, [|[F°,py) # 0. Then there exists a number »y =
Yo(F% a,p,\) > 0 such that for v > v, the problem (5.1.1)~(5.1.4) does not have a generalized
solution in the sense of Definition 5.1.1 for F = yF°.

Proof. If in Young’s inequality with the parameter € > 0,

/ 1 1
abgiap‘f',i,lbp,aqbZO, *+*:1,p>1,
p p'eP = p 7
we take a = |u|vé/p, b= El;‘;l , then taking into account the equality % =p’ — 1, we have
0 1 |Owl?
l Beo] = et/ 0] < & o 4 L B0l (553
v/t P p'eP vl
Since F = yF?, using (5.5.8), from (5.5.7) we get
1 mc
(A—f)/mpvo dodt < —— | onjl dxdt—y/Fov da dt,
p p'er ™ vl
DT T 0 DT
whence for € < Ap, we obtain
Owol”
/ |u|Pvg da dt < P - | 1,}0|1 dx dt — - / Fy dx dt. (5.5.9)
(Ap —e)pler’'—1 e Ap—¢
Drp Dr Dt
Since p’ = p’%l , D= p,p_/l and
: P 1
mn ——— = —
0<e<ip (Ap —e)p/eP’ =1 AP’
which is achieved for € = A, it follows from (5.5.9) that
1 Owol?’ '
/ ulrvg dudt < — [ | f’ﬂ'l dedt — 21 | FOuq da dt. (5.5.10)
AP vb A
D~ Dt Dr
Because of the conditions imposed on the function F°, and vg|p, > 0, we have
0 <= /Fovo dz dt < 4o0. (5.5.11)

Dt

Denoting by x = x(7) the right-hand side of the inequality (5.5.10), which is a linear function with
respect to the parameter -, due to (5.5.6) and (5.5.11), we have

X(7) <0 for v >~y and x(y) >0 for v < 7o, (5.5.12)
where
X =22 BT, o= 22
)\p/ )\ 15 0 )\plilp/%l

It remains only to note that the left-hand side of the inequality (5.5.10) is nonnegative for v > ~o.
Thus, for v > =9, the problem (5.1.1)-(5.1.4) does not have a generalized solution in the sense of
Definition 5.1.1. Thus Theorem 5.5.1 is proved. O
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5.6 The case |u| =1

As is mentioned at the end of the third section, for |u| = 1, the problem (5.1.1)—(5.1.4) may turn
out to be ill-posed. Below, we will show that in the presence of additional terms 2au; and cu in the
left-hand side of the equation (5.1.1) the problem will be solvable for any F' € La(Dr).

Consider the equation

0%u

" 9%u
2 Z 922 + 2auy + cu + fi(z,t,u) = F(x,t), (z,t) € D, (5.6.1)
=1 1

with the constant real coefficients @ and ¢, where f; and F' are the given real functions.

For the equation (5.6.1), consider a problem of finding w in the domain Dy satisfying the bound-
ary condition (5.1.2) and the nonlocal conditions (5.1.3), (5.1.4) for |u] = 1. For the problem
(5.6.1), (5.1.2)—(5.1.4), when f; € C(Dr x R) and F € Ly(Dr), analogously to what we have done in

Definition 5.1.1, let us introduce the notion of a generalized solution u € W%’u (Dr).
With respect to a new unknown function

v:i=o0"(t)u, where o(t):=exp(—at), 0<t<T, (5.6.2)
the problem (5.6.1), (5.1.2)—(5.1.4) can be rewritten as follows:

0? "L 92
aT;} - 872 +(c—a)v+ o (W) fi(n,t, 0Bz, t)) = 0 () F(x,t), (x,t) € Dy,  (5.6.3)
i=1 "t
vl =0, (5.6.4)
(Kuv)(x) =0,  (Ky,ve)(x) =0, =€,
where py = po(T), |u] = 1.
In the case a > 0, due to (5.6.2) and |u| = 1, it is obvious that |u;| < 1.
It is not difficult to see that for ¢ — a? > 0, the functions f(x,t,u) = (¢ — a®)u and g(z,t,u) =

ff(m,t, s)ds = % (c — a?)u? satisfy (5.1.5), (5.2.2)—(5.2.4).
’ For f(x,t,u) = o~ 1(t)fi(z,t,0(t)u), we have

u

g(:c,t,u)z/f(x,t,s) ds=/071(t)f1(m,t,a(t)s) ds
0

0
o(t)u

=0 ) / fi(z,t,s')ds' = o 2(t)gy(z,t, o(t)u). (5.6.6)

Here,
u

g1 (z,t,u) = /fl(x,t,s) ds. (5.6.7)
0
Let us show that if the function g1 (z,t,u) from (5.6.7) satisfies the condition

91(33, 0,,ulu) < gl(vaa |,LL1|U)7 (xat) €N x R, (568)

for the fixed constant p; from (5.6.5), then the function g(x,t,u) from (5.6.6) satisfies the condition
(5.2.4) for p = p1. Indeed, in view of (5.6.2), (5.6.6) and (5.6.8), since u1 = po(T), |p| = 1,
o(T) = |p1], we have

9(x,0, pru) = 072(0)g1 (2,0, 0(0)p1u) = g1 (2,0, prw),
M%g(l" T, u) = N%U_Q(T)gl ('757 T, U(T)u) =01 (aj’ T, ‘/Jl |u>7
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whence, due to (5.6.8), follows (5.2.4) for p = p;.
Since ¢'(t) = —ao(t), (672(t)) = 2a0~%(t), according to (5.6.6) and supposing that f1, fir, f1u €
C(Dr x R), we have

gt(l‘v ta u) = 2(10_2(lf)g1 (l’, t7 a(t)u) + O_Q(t)glt(mv ta a(t)u) - aa—lglu(xa t7 U(t)u)
Therefore, the condition

2(1072(15)91 (z,t,0(t)u) + UﬁQ(t)glt(m,t,a(t)u) — a0 () gru(z, t,0(t)u) < Ms, (5.6.9)
(z,t,u) € Dy x R,

results in the condition (5.2.3).
Note that due to (5.6.6), from the condition

gi(x,t,u) >0, (z,t,u) € Dy x R, (5.6.10)

follows the condition (5.2.2).
It is easily seen that if the function f;(z,t,u) satisfies the condition of type (5.1.5), i.e.,

|f1(z,t,u)| < My + Mau|®, (z,t,u) € Dy xR, M; = const > 0, (5.6.11)

then the function f(z,t,u) = o~ 1(t)fi(z,t,0(t)u) from the left-hand side of the equation (5.6.3)
satisfies the condition (5.1.5) for some nonnegative constants M; and Ms.

It should be noted that in the concrete case fi(z,t,u) = |u|’u, 3 = const > 0, the function
_ |u)ft?

g1(z,t,u) = 55, and

fx,t,u) = o () fi(z, t,0(t)u) = o (t)|u|’u, (5.6.12)

u

gt u) = / f(t,5)ds = o (1)

0

(5.6.13)

|u\5+2

Therefore, taking into account that o’(t) < 0, g(z,0,pu1u) = |ui|?*? BT wig(x, T,u) =

p2af(T) ‘"Af; , 0(T) = |pu1], it is easy to see that the functions f(z,t,u) and g(z,t,u) from (5.6.12)
and (5.6.13) satisfy the conditions (5.1.5), (5.2.2)-(5.2.4) for p = p1, a =+ 1, M3 = 0.

Further, since the problems (5.6.1), (5.1.2)—(5.1.4) and (5.6.3), (5.6.4), (5.6.5) are equivalent, from
Theorem 5.3.1 follows the theorem of the existence of the solution of the problem (5.6.1),(5.1.2)—

(5.1.4).

Theorem 5.6.1. Let [u| =1, a >0, c —a® >0, the function fi(x,t,u) from the left-hand side of the
equation (5.6.1) and the function gi(x,t,u) from (5.6.7) satisfy the conditions f1, fit, f1u € C(D1XR),
(5.6.8)~(5.6.11). Then if in the condition (5.6.11) the order of nonlinearity o satisfies the inequality
o < 2L then the problem (5.6.1),(5.1.2)~(5.1.4) for any F € Ly(Dr) has at least one generalized
solution.

Remark 5.6.1. In the case when Robin’s boundary condition
U
(— + ou) ‘ ) (5.6.14)
r

is considered instead of the Dirichlet boundary condition (5.1.2), analogous results for the nonlocal
problem (5.1.1), (5.6.14), (5.1.3), (5.1.4) can be found in [53].
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OF HOMOCLINIC ORBITS IN THE LIENARD SYSTEMS



Abstract. We consider the Liénard system @ = y — F(z) and § = —g(x). Under the assumptions
that the origin is a unique equilibrium, we investigate the existence of homoclinic orbits of this system
which is closely related to the stability of the zero solution, center problem, global attractively of the
origin, and oscillation of solutions of the system. We present the necessary and sufficient conditions
for this system to have a positive orbit which starts at a point on the vertical isocline y = F'(z) and
approaches the origin without intersecting the z-axis. Our results solve the problem completely in
some sense.
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1 Introduction

It is well known that the Liénard system

dx
(1.1)
% = —g(ﬂf),

is of great importance in various applications. Hence, asymptotic and qualitative behavior of this
system and some of its extensions have been widely studied by many authors; results can be found in
many books and papers [1-22]. In system (1.1), a trajectory is said to be a homoclinic orbit if its a-
and w-limit sets are the origin. The existence of homoclinic orbits in the Liénard-type systems (see [5])
is closely connected with the stability of the zero solution and the center problem. If system (1.1) has
a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center cannot
exist together in system (1.1). Our subject also has a near relation to the global attractivity of the
origin and oscillation of solutions (see [9,11]).

Taking the vector field of (1.1) into account, we see that every homoclinic orbit is in the upper or in
the lower half-plane. In other words, no homoclinic orbit crosses the xz-axis. When a homoclinic orbit
appears in the upper (resp. lower) half-plane, all other homoclinic orbits exist in the same half-plane.

We say that system (1.1) has property (Z;") (resp. (Z3)) if there exists a point P(z¢,y0) with
Yo = F(xp) and 29 > 0 (resp. zp < 0) such that the positive semitrajectory of (1.1) starting at P
approaches the origin through only the first (resp. third) quadrant. We also say that system (1.1)
has property (Z5 ) (resp. (Z,)) if there exists a point P(xg,y0) with yo = F(x9) and z¢ < 0 (resp.
xo > 0) such that the negative semitrajectory of (1.1) starting at P approaches the origin through
only the second (resp. fourth) quadrant. If system (1.1) has both properties (Z;) and (Zy ), then a
homoclinic orbit exists in the upper half-plane. Similarly, if system (1.1) has both properties (Zgr )
and (Z; ), then a homoclinic orbit exists in the lower half-plane. Notice that by the transformation
r — —x and t — —t, we can transfer any result for property (Z1+ ) to an analogous result with respect
to property (Z; ). Also, by the transformation x — —x and y — —y, we can transfer any result for
property (Z]") (resp. (Z5)) to an analogous result with respect to property (Z3) (resp. (Z;)).

In this paper, we intend to give some conditions on F(x) and g(z) under which system (1.1) has
properties (Z1), (Z5), (Z3), or (Z; ). We assume that F and g are continuous on an open interval
I which contains 0 and satisfy smoothness conditions for uniqueness of solutions of the initial value
problems. We also assume that F'(0) = 0 and

zg(z) >0 for = #0,

which guarantee that the origin is the unique equilibrium of (1.1). Throughout this paper, in the
results related to property (Z;") (resp. (Z;)), we assume that F(z) > 0 for > 0 (resp. = < 0),|z]
sufficiently small. Because if F'(x) has an infinite number of positive (resp. negative) zeroes clustering
at z = 0, then the system (1.1) fails to have property (Z;") (resp. (Z;)). Similarly, in the results
related to property (Z3) (resp. (Z;)), we assume that F(z) < 0 for x < 0 (vesp. = > 0), |z]
sufficiently small.

T. Hara and T. Yoneyama [10] considered system (1.1) and proved that if there exists § > 0 such
that

=

L[ g
Fle) >, F(x)o/ Ok

for 0 < x < §, then system (1.1) has property (Z;"). They also proved that if there exist a > 0 such
that F(z) > 0 for 0 < # < a and some a > 1 such that

1 x
/ g(n) > o
0

Fz) ) F(n)
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then system (1.1) fails to have property (Z;") (see also [6,9,15,19]).

In this paper, we present an implicit necessary and sufficient condition for system (1.1) to have
property (Zl+ ). Then we drive sharp explicit conditions and solve this problem completely in some
sense. We formulate similar results for properties (Z5 ), (Z3), and (Z]).

The paper is organized as follows. In Section 2, we give implicit conditions for system (1.1) to have
property (Zl+ ). In Section 3, we use our results obtained in Section 2 and present sufficient conditions
for properties (Z]), (Z3), (Z5), and (Z; ). In Section 4, we present the necessary conditions for
properties (Z7"), (Z5 ), (Z5), and (Z]) and show that the sufficient conditions presented in Section 3
are best possible.

2 Implicit conditions for property (Z;")

In this section we present implicit conditions for system (1.1) to have property (Z;). First, we
introduce a system which is equivalent to (1.1). Let the function A(z) be defined by

\g) = V2G(z)  for x >0,
@=1_ /se@

for x <0
and the mapping A : R2 = R? by

A(z,y) = (M=), y) = (u, v).
Consider the canonical form of the Liénard systems
du

:’UiF*(u)a

dr
ar (2.1)

dr

= —u,

in which dr = [g(x) sgn(z)/+/2G(x)] dt and a continuous function F* is defined by

F(G*1 (% uz) if u>0,

F*(u) = 1
F(G—l(— §u2) if w<0,

where G~1(w) is the inverse function to G(z)sgn(z). Then the mapping A is a homeomorphism of
the (x,y)-plane onto an open subset of the (u, v)-plane which contains zero. It is obvious that A maps
the z-axis into the u-axis. Consequently, we have only to determine whether system (2.1), instead of
(1.1), has property (Z;") or not. Hereafter we denote T by ¢ again.

Theorem 2.1. Let F* € C*([0,a]) for some a > 0. Then system (2.1) has property (Z;") if and only
if there exist a constant b < a and a function o € C*(]0,b]) such that »(0) = 0,

olu) >0, (F*)(u)> ﬁ + ¢ (u) for 0<u<b. (2.2)
Proof. Sufficiency. Consider the positive semitrajectory of (2.1) starting at a point (b, F*(b)). This

trajectory is considered as a solution v(u) of

dv U

i S 2.3

du v — F*(u) (2:3)
with v(b) = F*(b). Suppose that the positive semitrajectory v(u) crosses the negative y-axis. Then it
also meets the curve v = F*(u) — ¢(u) at a point (s, F*(s) — ¢(s)) with s < b such that

0 (s) = =
au' T W o) )

> (F7)'(s) = ¢'(9).
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Thus s

(F")(s) < —= +¢/(s).
(s)
This is a contradiction. Hence, the trajectory v(u) does not cross the negative y-axis, and, therefore,
system (2.1) has property (Z;").

Necessity. Suppose that system (2.1) has property (Z;7). Then there exists a positive semitra-
jectory of (2.1) starting at a point (b, F*(b)) with b > 0, which does not meet the negative y-axis.
This trajectory can be regarded as the graph of a continuously differentiable function v (u) which is
a solution of (2.3). Let ¢(u) = F*(u) — 1(u). Then it is clear that ¢(0) = 0,

o(u) >0, (F*)(u)=——+¢'(u) for 0 <u<b.

Hence, the condition (2.2) is verified. O

Theorem 2.2. Suppose that system (2.1) with Fy has property (Z{). If
Fy(u) > Fi(u) (2.4)
for u > 0 sufficiently small, then system (2.1) corresponding to Fy has property (Zi).

Proof. Since system (2.1) with F(u) has property (Z;"), there exists a positive semitrajectory of
(2.1) starting at a point (ug,vo) with ug > 0, which approaches the origin through only the first
quadrant. This trajectory can be regarded as the graph of a function v = 1 (u) which is a solution
of (2.3). Let v = 12(u) be the graph of the solution of system (2.3) corresponding to F such that
(u(0),v(0)) = (ug,v0). We can assume that ug is sufficiently small, thus from (2.4) we have

v — Fy(u) = v — Fi(u)

=1 (u) for 0 <u < ug.

Wy (u) =

Hence, 12(u) > 11(u) > 0 for 0 < u < ug. Therefore, system (2.1) corresponding to F5 has property
(7). O

3 Explicit sufficient conditions for property (Z;")

In this section we use our implicit conditions to drive explicit sufficient conditions for properties (ZlJr ),
(Z3), (Z3), and (Z; ). To this end, for u > 0 sufficiently small we define

Li(u) =logku

and
Ly, (u) = log ku x log(b|log kul) x - - - x loglog - -log (b|log ku|) for n > 2,
—_—

(n—1)-times

where k,b > 0. Notice that L, (u) < 0 for u > 0 sufficiently small.
Theorem 3.1. Let k,b> 0. If

F*(u) > 2u —

for some n > 2 and u > 0 sufficiently small, then system (2.1) has property (Z).

Proof. By Theorem 2.2, it suffices to prove the theorem when
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Let
(S AR |
M"(u)_jz_;(LJ(u);Lz(u))’ (3-1)
N, = ! = L N, 2
n(U)Aijzl‘Lj(u)’ @n(u)‘*7i*’§7i 1 (u) (3.2)
We have
d = 1
Y du (Ln(u)) = No(u)Ln(u) + 1, 2Mp(u) — (No(u))? = = (Lj(u))?
and J M, ()
£ (W) = 2
Thus
u Py 1 - 1
u o I 1 (N )’
o F e =2 I @R TR - N () (33

n—1 n—1
1 1 12 N, (W)L (u) + 1
(F) (u) =2— - +3 S (3.4)

4 (L) 244 (L(w)?

It is easy to check that
u

(F*) (u) > + ¢ (u)
for u > 0 sufficiently small. Hence, (2.2) holds and, by Theorem 2.1, system (2.1) has property
(Z1). 0

Recall defining the function F*(u) as follows:
1
F*(u) = F(Gi1 <§u2>> for u > 0.

Put 2 = G7'(1u?). Then for system (1.1) to have property (Z;") we have the following sufficient
condition.

Theorem 3.2. Assume k,b > 0. If

F(z) > \/3G(z) — iz_: L(m)

for some n > 2 and x > 0 sufficiently small, then system (1.1) has property (Z).

Similarly, for system (1.1) to have properties (Z5 ), (Z3), and (Z; ), we have the following sufficient
conditions.

Theorem 3.3. Assume k,b > 0. If
15
F(z) > /8G(z) - i

for some n > 2 and x < 0, |z| sufficiently small, then system (1.1) has property (Z5 ).
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Theorem 3.4. Assume k,b > 0. If

n—1
F(x) < — 8G(w)+32?¢,

for some n > 2 and v <0, |x| sufficiently small, then system (1.1) has property (Z3).
Theorem 3.5. Assume k,b > 0. If

i
L

H’F%_‘

ol
e

for some n > 2 and x > 0 sufficiently small, then system (1.1) has property (Z, ).

F(z) < —/8G(z) +

4 Explicit necessary conditions for property (7;")

In this section we drive explicit necessary conditions for properties (Z;), (Z5), (Z3), and (Z; ) and
show that the sufficient conditions presented in Section 2 are best possible.

Definition 4.1. Let fi(u) and fa(u) be real-valued functions. By fi(u) < fo(u) we mean that there
exists b > 0 such that fi(u) < fa(u) for 0 < u < b.

In proving Theorem 4.1 we will need the following

Lemma 4.1. Suppose that ¢ € C*([0,a]) for some a > 0, ¢(0) = 0, and p(u) > 0 for u > 0
sufficiently small. If

(4.1)

RNy

1« Au ) u ,
- > +¢'(u), \>
( 4 z::  (La(w)? o(u)
for somen >2,k>0,b>0, and u > 0 sufficiently small, then

(i) lim 2W =1

u—0t ’

(i) ‘sa(u | < |log o for every k > 0 and u > 0 sufficiently small.

Proof. Tt is easy to check that the left-hand side of inequality (4.1) tends to 2 as u — 0%. Thus, from
(4.1) we get

u 1
1. (7 / ) - - / 0+ < 2
25 Gy T W) = on T =
Hence,
. ‘P(u) 1+
1 —~ =9 (0") =1.

This completes the proof of (i). Now let p(u) = u + h(u). Then we have

u / _ h(u) — W(u
From (4.1) and (4.2) we conclude that
h(u) /

for u sufficiently small. Suppose that {u,} tends to zero and h(u,) = 0, then there exists a sequence
{¢n} such that ¢, tends to zero as n — oo, h/(¢y,) = 0, and h(c,) < 0. This contradicts (4.3). Hence,
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h(u) is positive or negative for u > 0 sufficiently small, and we can let h(u) = ;5 for 0 < u < c with
¢ sufficiently small. Notice that, by (i), |f(u)] — oo as u — 0. Since p(u) > 0 for u sufficiently small,

fw)+1 _ p(u)
f(u) u

> 0. (4.4)

Thus, from (4.3) and (4.4) we have

flu)+1 1
f(u (7) > —
) 7
for 0 < w < b with b sufficiently small. Integration of the above leads to

f(u) +log(|f(u)]) = f(b) —log(|f(b)]) < log(u) —log(b)

for 0 < uw < b. Hence, f(u) - —oo as u — 07, and |f(u)| > |logku| for every k > 0 and u > 0
sufficiently small. O

Theorem 4.1. Suppose that there exist X > 1/4, n > 2, and k,b > 0 such that

) 1= m Au
P < 2u- g E TR~ TP

for uw > 0 sufficiently small. Then system (2.1) fails to have property (Z).

Proof. By Theorem 2.2, it suffices to prove the theorem when

for v > 0 sufficiently small. We prove the theorem by contradiction. Suppose that there exists a
continuously differentiable function ¢ such that ¢(0) = 0, ¢(u) > 0 for u > 0 sufficiently small, and

(") (w) = s+ ¢/ () (4.5)

Let

From (4.5), (3.3), and (3.4) we have

gon_l(u) N @n—l(u) + h(u> - h/(u i m + 90/n 1( ) (F*)I(U)
_ A 1\ = Ny (u) L (w) +1 (Npy1(u))?
 (La()? (2+3) ; (Li(w)  8(1- gNnH(u)) '
Then
N u u

< _ (), 4.6
() e R I R T R o)
where 1/4 < A < A. Suppose that {u,} tends to zero and h(u,) = 0, then there exists a sequence
{¢n} such that ¢, tends to zero as n — oo, h/(¢y,) = 0, and h(cn) < 0. This contradicts (4.6). Hence,
h(u) # 0 for x > 0 sufficiently small, and we can let f(u) = for 0 < u < ¢ with ¢ sufficiently

small. From (4.5), Lemma 4.1, and the fact that | N, (u)| <

h(u)

“Og Tl e conclude that

1 |<p(u) —u  Np(u) 2

(@) 4.7

= | log kul
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for u > 0 sufficiently small.

Let
Ny (u) Ny (u) 1
T, (u) = <1+ 5 )<1+ 5 er)
and
=7 0
Then from (3.2) and (4.6) we have
N - 1 B 1 ~ f(w) = f(w)u _ 1 1 n f(wu
(Ln(u))®> = 14 5Na(u) 14 5 No(u) + 50 f2(w) f)To(u)  flu)  f2(u)

Hence,
po_La(w)  Ln(uw)  (g(u)Ln(u
VRSN T e T
Notice that u(Ly(u))" = Np(u)L,(u) + 1, thus, from (4.8),

1—To(u) + Np(u)Th(u)
T (u)

Ng?(u) % g/ (wuLy(u) + g(u) L (u) ) + 9w,

(¥ =+ (5 -1)

= g (w)uln(u) + (1 T, u)) T 2T (u) T ()
Now, let
(N (W) Lo (w) (1 = Ty (w)) + L0 1, (w))
Alu) == T (u) :
and . N ()

It is easy to check that
lim (1 —T,(u)) = lim (N,(u))*L,(u) = 0.

u—0F u—07+

Also, by (4.7), we conclude that

lim N, (u)Ly(u)(1 —T,(u)) =0,

u—0t

thus, A(u) and B(u) tend to 0 as u — 07, and we have

(/\' — i)gQ(U) + (@ — 1)2 =g (wuly,(u) + A(u)g(u) + B(u), XN > i , (4.9)

and (w) )
(% - 1) < g (WL (u) + A(w)g(u) + B(w). (4.10)

We now prove that if (4.10) holds, then
uli)Ingg(u) =2. (4.11)

Suppose u,, > 0 tends to zero and ¢’'(u,) = 0. Then from (4.10) we conclude that

lim g(u,) = 2.

n—oo
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Since ¢’ vanishes at the extremum points, if g(u) is not increasing or decreasing for u > 0 sufficiently
small, then
liminfg(u) = limsup g(u) = 2,
u—0+ u—0+
and (4.11) holds. Suppose now that g(u) is increasing or decreasing for u > 0 sufficiently small. If
IL%lJr g(u) # 2, then from (4.10) we conclude that there exists ¢ > 0 such that

c g
uLy, (u) (% —1)2
for 0 < w <[ with [ sufficiently small. Integration of the above leads to
-2 2
c(loglog~ -+log (b]log kl|) — loglog - - -log (b log ku|)) > +
— —— % -1 % —1

(n—1)-times (n—1)-times

and, therefore, lim+ g(u) = 2. This is a contradiction, thus lim g(u) = 2. But if lim g(u) = 2,
u—0

u—07F u—07F
then from (4.9) we conclude that there exists d > 0 such that
d
/
<
g(u) < uLy, (u)
for u > 0 sufficiently small. Hence, lir{)lJr g(u) = —oo. This is a contradiction and condition (2.2) does
u—
not hold. Thus, by Theorem 2.1, system (2.1) fails to have property (Z;"). O

The following theorem gives a necessary condition for system (1.1) to have property (Z;").

Theorem 4.2. If there exist A > 1/4, n > 2, and k,b > 0 such that

F(z) < RO 1« 2G () M/2G ()

TS (LG (La)(/20@)?

for x > 0 sufficiently small, then system (1.1) fails to have property (Z;).

Similarly, we have the following necessary conditions for the properties (Z; ), (Z3), and (Z;).

Theorem 4.3. If there exist A > 1/4, n > 2, and k,b > 0 such that

F(z) < RO 1« 2G () M/2G ()

4 (Li(V2G(2)?*  (La)(V/2G(2))?
for x <0, |z| sufficiently small, then system (1.1) fails to have property (Z5 ).
Theorem 4.4. If there exist A > 1/4, n > 2, and k,b > 0 such that

V2G(x) n A/2G(x)
i(V2G(@))? (Ln)(v/2G(2))?

for x <0, |x| sufficiently small, then system (1.1) fails to have property (Z).
Theorem 4.5. If there exist A > 1/4, n > 2, and k,b > 0 such that

1l 2G(x) A/2G(z)
P = VRO 4 5 2 et ¢ T vae?

for x > 0 sufficiently small, then system (1.1) fails to have property (Z, ).

F(z) > —/8G(z) + i i 0

Remark 4.1. Paying attention to the explicit sufficient and necessary conditions presented for prop-
erties (Z77), (Z3 ), (Z§), and (Z, ), it seems that these results have solved the problem of the existence
of homoclinic orbits in system (1.1) completely in some sense.
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1 Introduction

In the recent decades asymptotic properties of solutions of binomial essentially nonlinear second-
order differential equations with a nonlinearity which differs from a power function have been actively
studied (for the Emden—Fowler type not generalized equations see the monograph by I. T. Kiguradze
and T. A. Chanturiya [13]). The case where the nonlinearity is a regularly varying function was
investigated in [9,12,15,16,18], and the case where the nonlinearity is a rapidly varying function can
be found in [1,3-5,8]. It should be noted here that the second-order equations containing in the right-
hand side a sum of terms with nonlinearities that differ from power functions were considered only
in the case when all nonlinearities are regularly varying functions (see, e.g., [6,7]). In this paper, we
study the asymptotic properties of solutions of a second-order differential equation in the right-hand
side of which, apart from the terms with regularly varying nonlinearities, there are also terms with
rapidly varying nonlinearities.
Consider the differential equation

y" = Zami(t)w(y), (L1)

where a; € {—1,1} (i = 1,m), p; : [a,w[—]0,+00[ (i = 1,m) are continuous functions, —oco < a <
w < 400; @; ¢ Ay, —10,+00[ (i = 1,m), where Ay, is a one-sided neighborhood of the point Yy, Yy is
equal either to 0 or to oo, are continuous functions for ¢ = 1,1 and twice continuously differentiable
for i =1+ 1, m, such that for each i € {1,...,l} as some 0; € R

lim 2 _ 3o for each A >0, (1.2)

y=Yo wi(y)

YEAQY,

and for each ¢ € {{ 4+ 1,...,m},

" )

Oi(y) #0 as y € Ay,, lim ¢;(y) € {0,+0c0}, lim Pi\Y)PilY) (yz)%(y) =1. (1.3)
v=Yo v=Yo @i (y)
yEAY, YyEAY,

The functions ¢; (i = 1,1) that satisfy conditions (1.2) are called regularly varying functions as
y — Yy of orders o; (i = 1,1) (see the monograph by E. Seneta [17, Ch. 1, § 1, pp. 9-10]). For each
of them the representations of the form

ei(y) = lyl” Li(y) (i =1,0) (1.4)
hold, where L; are the slowly varying functions as y — Yj, i.e., such that
L;(\ R
lim (Ay) =1 (i=1,1) for each A > 0.
v=Yo Li(y)
YEAY,

We also say that a function L; (i € {1,...,1}) satisfies the condition Sy if
Li(wel oI = Li(y)[L + o(1)] as y = Yo (y € Ay,),

where v = signy.
Examples of functions slowly varying as y — Y|, are as follows:

[yl [ fyl P [t Dn fyl | (n,7 #0), eVTEb,

The first two functions satisfy the condition Sj.
From conditions (1.3) it immediately follows that

/
im YW 4o = TF Tm),
v=Yo i(y)

YEAy,

due to which each of the functions ¢; for i € {I{+1,...,m} and its first derivative are rapidly varying
as y — Yy (see the monograph by M. Maric [14, Ch. 3, § 3.4, Lemmas 3.2, 3.3, pp. 91-92]).
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Definition 1.1. A solution y of the differential equation (1.1) is called a P,,(Yo, Ag)-solution, where
—00 < Ag < 400, if it is defined on some interval [tg, w[C [a,w]| and satisfies the following conditions:

ither 0 2(t
aher T T OB (1.5)

ttw or +o0, ttw " (t)y(1)

limy(t) =Yy, limy/(t) = {
tTw
In [10], P, (Yy, Ao)-solutions of the differential equation (1.1) were studied in the case A\ € R\{0;1}.
In this paper, for Ay = 00, we establish the conditions for the existence of P, (Yp, Ag)-solutions of
the differential equation (1.1) and give asymptotic representations, as ¢t 1 w, of such solutions and their
first-order derivatives when in each of such solutions the right-hand side of equation is equivalent, as
t T w, to the s-th item, i.e., when for some s € {1,... 1},

i (1) (y(T

L pey()
tTw Ps (t)% <y<t))

Upon studying the P, (Yp,+00)-solutions of equation (1.1), some of their a priori asymptotic

properties will be used.
We set

=0 forall i€ {1,...,m}\ {s}. (1.6)

Tw(t) =

t if w=+4o0,
t—w if w<+oo.

Lemma 1.1. Let y : [tg,w[— R be an arbitrary P,,(Yy, £00)-solution of equation (1.1). Then

POV Lm0y

=0. 1.7
G S0 il

The validity of this assertion follows directly from [2] (see Corollary 10.1).

2 Statement of the main results
Here and in the sequel, without loss of generality, we assume that

AYo = AYo (b)7

where

Ay, (b) = [b,Yo[, if Ay, is a left neighborhood of Yy,
Yol 1¥0,0], if Ay, is a right neighborhood of Yp,
and the number b satisfies the inequalities
bl <1 as Yo=0 and b>1 (b< —1) as Yy =400 (Y =—o0).

In addition, let us introduce two numbers

1, if Ay, (b) = [b,Yo[,

= si b’ =
Yo T RISRD, M {1, it Ay, (b) =]Yo,bl.

According to the definition of the P, (Yj, \p)-solution of the differential equation (1.1), note that the
numbers vy and v; determine the signs of any P,,(Yy, Ag)-solution and its first derivative (respectively)
in some left neighborhood of w. The conditions

1/01/1:71 lfY()ZO, I/()I/1:1 if Y()::l:OO

are necessary for the existence of P, (Yp, \o)-solutions.
Moreover, if for such solutions of (1.1) conditions (1.6) hold, then

y"(t) = csps(t)ps (y(t))[1 + 0(1)] as t 1w, (2.1)
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from which it is clear that signy”(¢) = a; in some left neighborhood of w, and in this case

o = =1 if lmy'() =0, v, =1if limy/(t) = +oo.
tTw 1w

In the case where 1 ltle |7y ()] = Yo, we choose the number a; € [a,w[ so that vy|m,(£)| € Ay, (b)
as t € [ar,w[, and for s € {1,...,1} set

t

Ju() = / pe(r)ps (vl (1)) dr.

As

where

a; if /ps(T)Lps(Volﬂw(T)D dr = £o0,
As = alw
w if /pS(T)gOS(Volﬂw(T)|) dT = const.

ay

Theorem 2.1. Let o5 # 1 for some s € {1,...,1} and the function Ls satisfy the condition Sy. Then
for the existence of P, (Yy, Ltoo)-solutions satisfying condition (1.6) of the differential equation (1.1)
it is necessary that

: _ mu(t) 5 ()
lim |7, (¢)] = Yy, lim —2-2-2 =0, 2.2
Y tlTw |7T ( )| 0 tlTw Js(t) ( )
the inequalities
asv1(1—o05)Js(t) >0, wvovim,(t) >0 for t €lar,wl, (2.3)

as well as the conditions

i P2 ol mo ()] |(1 = o) Ju(B)] /O 7))
ttw ps(t)ps (Vo] mw (8] [(1 = 04)J4(£)[/(1=72))

forallie{1,...,1}\ {s} and
 piOlm (L~ o) LOM O (1 + )
o ps(t)ps(voma ()] [(1 = 05) Jo(#)[1/ (0 =04))

forallie {I+1,...,m} hold, where 6; are arbitrary numbers of some one-sided neighborhood of zero.
Moreover, for each of such solutions the following asymptotic representations are valid:

=0 (2.4)

=0 (2.5)

y(t) = volme ()] |(1 — 04) Js ()Y I [1 4+ 0(1)] as t T w, (2.6)
Y (1) = |1 = oo) L)1+ 0(1)] as t1w. (2.7)

Proof. Let y : [to,w][— R be an arbitrary P, (Y5, £00)-solution for some s € {1,...,1} satisfying
conditions (1.6) of equation (1.1). Then by virtue of (1.1) and (1.6), the asymptotic relation (2.1)
holds.

According to Lemma 1.1, the limit relations (1.7) are valid, from which, in particular, it follows
that the function y is regularly varying, as t 1 w, function of first order. Therefore, by virtue of the
function L satisfying the condition Sy, representations (1.4) and the first of the limit relations (1.7),
we have

ws(y(t) = ly(t) 7 Ly (voeltHoWlinIme O

= |mu(t)y' (1)

Taking into account this asymptotic relation, from (2.1) we obtain
y"(t)

ly'(£)]7

7 Ls(y(t)) = ly(t)
% Ls(vo|mu(B)])[1 4+ 0o(1)] as t T w.

= asps () s (volmu (D)1 + o(1)] for 1 w. (2.8)
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Integrating (2.8) on the interval from ¢; (1 € [to,w[) to ¢t and using the second of conditions (1.5),
we get
vy’ (7% = as(1 — 05)Js()[1 4+ 0(1)] as t T w,

which implies representation (2.7) and the equality
v = agsign[(1 — o5)Js(t)]. (2.9)

From the first relation of (1.7) follows the second of inequalities (2.3), so taking into account (2.9),
the first of inequalities (2.3) holds. Taking into account the first of limiting relations (1.7), the second
inequality of (2.3) and (2.7), we obtain the asymptotic representation (2.6). The validity of the
first limit relation of (2.2) follows from Definition 1.1 and the first equality of (1.7) of Lemma 1.1.
The second limit relation of (2.2) follows immediately from (2.8) if we use the above-mentioned
representation (2.7) and the second of conditions (1.7).

Since the functions ¢; (i = 1,1) are regularly varying as y — Yy, we have

i (volma ()] [(1 = 00) Jo ()= [1+ o(1)])
= ;i (volmu ()] [(1 = 05) Js ()| 77)) [L + 0(1)] as ¢ 1T w.

Then, by virtue of (2.6),

g PO@i @) _ . pi®ei(volme ()] (1= 00) L (#)] /7)1 + o(1)]
ttw Ps(t)@s(y(t) 11w ps(t)es(volme ()] [(1 — o) Js ()Y E=7)[1 + o(1)]
= lim pi ()i (vo|mo (t)| (1 — US)JS(tﬂl/(l_US)) 1= 71)

t1w Ps(t)s (volmw ()] [(1 — 05) Js (t) [/ (1=7)) 7

hence, taking into account (1.6), we find that conditions (2.4) are valid.
Forie{l+1,...,m}, from (2.6) we have

i) | piOiolmu ()10 = 0)J (1701 + o(1)])
S pOpsy®) — e pOesGolma @I - 00) L OT0=7)

By the monotony of function ¢; (i € {I{+1,...,m}) on the interval Ay, (b) for each of ; from some
one-sided neighborhood of zero there exists t2 € [t1,w] such that for ¢ € [ta,w], we have

(2.10)

pi(t)pi(volmu (O] (1 = 00) Js (O~ [1 + o(1))])
ps(t)ps(volme ()| [(1 = o) Js(£)[1/(1=72))
Pi()pi(o|me (1) (L — o) Js ()Y =7 [1 + &])
Ps(H)ps (ol mu (O] (1 — 06) Jo(£) [/ (1 =72))

Thus, by virtue of (1.6) and (2.10), we find that conditions (2.5) are valid. The proof of the theorem
is complete. O

> 0.

Now we clarify the question of the actual existence of P, (Yp, 200)-solutions with the asymptotic
representations (2.6) and (2.7) for equation (1.1).

Theorem 2.2. Let for some s € {1,...,1} the function Ly satisfy the condition Sy, the inequality
os # 1 and conditions (2.2)—(2.4) hold, and for anyi € {l+1,...,m},

i Pi@i o1 (D] |1~ 0) o)/ =) (1 + w))
o ps(t)ps(Vo|me (8)| (1 — og) Jo(t)[1/(A=02))

uniformly with respect to w € [—4§,8] for some 0 < § < 1. Then the differential equation (1.1) has
at least one P, (Yo, £00)-solution that admits asymptotic representations (2.6) and (2.7). Moreover,
if w = 400 and As = +o0, there exists a one-parameter family with such representations, and if
A = aq, there is a two-parameter family.

=0 (2.11)
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Proof. By virtue of conditions (2.2) and (2.3), the function
Y (1) = wolmo (D] (1 = 04)J (1))
is a first-order function that varies regularly as ¢t 1T w,

limY(t) = Y,
lim (t)=Yo

and there exists a number ¢y € [a1,w[ such that
Y(#)[1+ u] € Ay, (b) for ¢ € [to,w[ and |u] < 6.

By virtue of the properties of slowly varying functions, taking into account the fact that the
function L, satisfies the condition Sy, we have

s (Y ()1 +u) =Y ()(1 4+ u)|7 Ls(vo|me (D)1 + R(E, )],
where the function R is such that

1tiTm R(t,u) = 0 uniformly with respect to u € [—4, 4].

Now applying to equation (1.1) the transformation

y(t) = volmu (1) 1(1 = o) Js ()] /77 L + s (1),

- (2.12)
Y () = v1|(1 = 0) Jo(0)[V 771 + ua (1),
taking into account inequalities (2.3), we obtain a system of differential equations
uy = ha(0)[f1(t u1) — wa + g, (2.13)
uh = ha(t) [ fa(t,ur) + osur — ug + V(u1)],
where
1 JL(t)
hi(t) = ho(t) = —F——
1() ﬂ_w(t)a 2() (1_0'5)J5(t)’
7 () JL(t)
t =———"5 (1
f1(7u1) (I—Ué)Jé(t)( +u1)7
fg(t, ul) = (1 + Ul)USR(t, ul) + (1 + Ul)gs (]. + R(t, Ul))Rl(t, ul),
N opi ()i (Y (1)(1 + uy)) -
Ry (¢, = , Vv =(1+ s —1—oguy.
) = eV ayy V) = ) =1
1#£S
We consider system (2.13) on the set
Q = [to,w[xD, where D = {(u1,us): |u;| <4, i =1,2}.
We show that the function R; is such that
ltiTm Ry (t,u1) = 0 uniformly with respect to uy € [—4,d]. (2.14)
w
Since the functions ; with ¢ € {1,...,1} are regularly varying of orders o; as y — Yp, by virtue of

(1.4), taking into account the properties of slowly varying functions, we have

(Y ()1 +11)) = o1 (volma(B)] (L = ) T (OO~ (1 4 uy))
= ol (O] (1 = ) (O] = (1 4 w7 L (vl ()] (L = ) Ju ()7 (1 4 uy))
= ol (O] (1 = )OI~ (1 + u)[7 L (vo s ()] | (L = ) T () A=T)) (L + 74t 1)
= el (O] (1 = o) T (OO ) (1 4+ wn)” (1 + ri(tow)) (i = L1)
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where the functions r; are such that

ltiTm r;(t,u1) = 0 uniformly with respect to u; € [—4,4].
w

By virtue of the above conditions,

thw £~ asps(t)es(Y () (1 + uq))
i£s

uniformly with respect to u; € [—4, 0], since due to (2.4),
1
o oY1+ w))
im
1w = asps(t)ps (Y (1)(1 + u1))
i#S

i S QB Ol ()] = 0T o) (L it )
1 2 ap s (olm 10— 0 L OITT=) L+ 1t ur))
1#S
= lim aipi(t) i (vo|me ()] | (1 = a) J ()| /=)
1 & ap O (olm 11— 0) 1, (OF70-7)
1#£S

From (2.11) and (2.15), by virtue of the form of function Ry, we find that (2.14) is valid. In the system

of equations (2.13) the functions hy, ha : [to,w[— R are continuous and are such that

= 0 uniformly with respect to u; € [—4,d].

hl(t)hg(t) 7é 0 for te [to,w[,

ho(T)dr = =L dr = In |J, = +o0.
/ 2(7) dr 1—o0s /JS(T) T 1—o0s n |, (7)| o
to to to
In addition, by virtue of the second of conditions (2.2), we have
!/
i P2® o T

ttw hl(t) ttw (1 — US)JS(t)
Further, by the form of the functions V, fi (k= 1,2), we have

hy(t
1) f1(t,u1) is bounded on the set Q,
ha(t)
lim dV(ul) :07
u1—0 dul

%tiTm fo(t,u1) = 0 uniformly with respect to u; € [, 4].

Coefficient at u; in square brackets of the first equation of system (2.13) is nonzero. In addition,
the sum of the coefficients of u; and ug in the square brackets of the first equation of system (2.13)
is zero, and in the second equation is equal to the number o, — 1, which is nonzero. This implies
that system (2.13) satisfies all the assumptions of Theorem 2.7 of [11]. According to this theorem, the
system of differential equations (2.13) has at least one solution u = (ug,uz) : [t.,w[— R? (t. > to),
tending to zero as ¢ 1 w. Each solution of this kind of system (2.13), by virtue of transformations
(2.12), corresponds to the solution of the differential equation (1.1) that admits, as ¢ T w, asymptotic
representations (2.6), (2.7), and this solution is the P, (Yp, £00)-solution of equation (1.1). Moreover,

if w = 400, then there exists a one-parameter family of such solutions if jé 8 < 0 on Jay,+oo[ (this

inequality holds when J; is chosen for the integration limit of A, to be equal to +00), and a two-

parameter family if the inequality 5;8 > 0 holds (i.e., when A; = a1). The proof of the theorem is

complete. N
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Remark. In the case when there are no terms in equation (1.1) with rapidly varying nonlinearity,
i.e., when m = [, the assertion of Theorems 2.1 and 2.2 remains true without conditions (2.5) and
(2.11).

3 Example

As an example illustrating the results obtained in this paper, we consider a differential equation of
the form
y" = aip1(t)]y|” + azpa(t)e?, (3.1)
in which o; € {=1,1} (¢ = 1,2), p; : [a,w][—]0, 400 (i = 1,2) are continuous functions, —oco < a <
w < 400, p# 0.
For equation (3.1) let us clarify the existence of P, (Yy, £00)-solutions for which

_ _ pg(t)e“y(t)

limy(t) = oo (Yp = +o0), lim ————= =0. 3.2

b u(t) = £eo ( R NOO]: (32)
From Theorems 2.1 and 2.2 we have

Corollary 3.1. Suppose that inequality o # 1 holds. Then for the existence of P, (Yo, £00)-solutions
of the differential equation (3.1) satisfying conditions (3.2) it is necessary, and if

pLt)t7](1 — o) i (1) 77
ot (1=0) 1 (6) (14+u) 17

pa(t) = 0(

) as t — +o0

uniformly with respect to u € [—4,0] for some 0 < d < 1, it is sufficient that the conditions
tJ]

m 1(t)

t=+oo Ji(t)

vovy >0, a1 —o0)Ji(t) >0 for t €lay,+o0|

w = +00, 207

hold. Moreover, each solution of that kind admits the asymptotic representations

y(t) = wot|(1 — o) Ji ()| 77 [L + 0(1)] as t — +oo,
y'(t) = 11| (1 — o)1 (1) 77 [1 + 0(1)] as t — +oo.

Moreover, if As = +00, there exists a one-parameter family with such representations, and in case
Ay = aq, there is a two-parameter family.
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1 Formulation of the main results

On a finite interval [a, b], we consider the differential equation
u' = f(t,u) (1.1)
with the Neumann two-point boundary conditions
u'(a) = c1, u'(b) = ca, (1.2)

where f : [a,b] Xx R — R is a function satisfying the local Carathéodory conditions, while ¢; and ¢
are real constants.

A number of interesting and unimprovable in a certain sense results concerning the existence and
uniqueness of a solution of problem (1.1),(1.2) are known (see, e.g., [1-3,5-8,12] and the references
therein). In the present paper, general theorems on the existence and uniqueness of a solution of
that problem are proved which are nonlinear analogues of the first Fredholm theorem. Based on
these theorems, unimprovable sufficient conditions, different from the above mentioned results, for the
solvability and unique solvability of problem (1.1), (1.2) are obtained.

We use the following notation.

R is the set of real numbers; R, = [0,4o00[; R_ =] — o0, 0];

_lal==

=
L([a, b)) is the space of Lebesgue integrable functions.
Definition 1.1. Let p; € L([a,b]) (¢ = 1,2) and
p1(t) < pa(t) for almost all ¢ € [a, b]. (1.3)

We say that the vector function (p1,p2) belongs to the set Neum([a, b]) if for any measurable function
p: a,b] = R, satisfying the inequality

p1(t) < p(t) < pao(t) for almost all t € [a,b], (1.4)
the homogeneous Neumann problem

u” = p(t)u, (1.5)

has only the trivial solution.

Theorem 1.1. Let there exist (p1,p2) € Neum([a,b]) and an integrable in the first and non-
decreasing in the second argument function q : [a,b] x Ry — Ry such that

b

lim /M dt =0, (1.7)

r—r+00 X
a

and on the set [a,b] x R the inequality
pr(®)|] = q(t, [z]) < f(t,2) sgn(x) < pa(t)|z| + q(t, |2]) (1.8)
holds. Then problem (1.1),(1.2) has at least one solution.

Corollary 1.1. Let on the set [a,b] X R inequality (1.8) be satisfied, where p; € L([a,b]) (i = 1,2)
are the functions satisfying inequality (1.3), and q : [a,b] x Ry — Ry is an integrable in the first and
non-decreasing in the second argument function satisfying condition (1.7). Let, moreover,

b
/pg(t) dt <0, mes{[t € [a,b]: pa(t) < 0} >0, (1.9)
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and there exist a number A > 1 such that

/[m N dt < (7;“) (bf()%, (1.10)

Then problem (1.1), (1.2) has at least one solution.

Corollary 1.2. Let on the set [a,b] X R inequality (1.8) be satisfied, where py : [a,b] — R_ and
p2 : [a,b] — R are integrable functions satisfying inequalities (1.3) and (1.9), while q : [a,b] x R4 — Ry
is an integrable in the first and non-decreasing in the second argument function satisfying condition
(1.7). Let, moreover, there exist ty €]a,b[ such that the function p; is non-increasing and non-
decreasing in the intervals |a,to[ and |tg, [, respectively, and

/\/Fd g/\/ﬁd ;T/b\/Wdt<7r. (1.11)

Then problem (1.1), (1.2) has at least one solution.

Theorem 1.2. Let on the set [a,b] X R the inequality

pi()|z —yl < (f(t,2) — f(t,y)) sgn(z — y) < pa2(t)|z — y| (1.12)
be satisfed, where (p1,p2) € Neum([a, b]). Then problem (1.1),(1.2) has one and only one solution.

Corollary 1.3. Let on the set [a,b] x R condition (1.12) hold, where p; € L([a,b]) (i = 1,2) are the
functions satisfying inequalities (1.3) and (1.9). If, moreover, for some A > 1 inequality (1.10) is
satisfied, then problem (1.1),(1.2) has one and only one solution.

Corollary 1.4. Let on the set [a, b] xR inequality (1.12) hold, where p; : [a,b] = R_ andps : [a,b] = R
are integrable functions satisfying inequalities (1.3) and (1.9). Let, moreover, there exist ty € |a,b|
such that the function ps is mon-increasing and non-decreasing in the intervals la,to[ and ]to,b],
respectively, and satisfies inequality (1.11). Then problem (1.1), (1.2) has one and only one solution.

The following two corollaries of Theorem 1.2 concern the linear differential equation
u” = p(t)u +q(t), (1.13)
where p and ¢ € L([a, b]).

Corollary 1.5. Let
b

/p(t) dt <0, mes{t € [a,b]: p(t) <0} >0, (1.14)

and let there exist a number A > 1 such that

/[p Adt < ﬂ;“) (b”a)%. (1.15)

Then problem (1.13), (1.2) has one and only one solution.

Corollary 1.6. Let there exist a number ty € |a, b[ such that the function p along with (1.14) satisfies
the conditions

po(t) = esssup {[p(s)]_ : a <s <t} <+oo for a<t< iy, (1.16)
po(t) = esssup{[p(s)]_ D t<s<b}<+4oo for tog<t<b, (1.17)

/to\/]T g /\/;Td gg /Mdt<w. (1.18)

a

Then problem (1.13), (1.2) has one and only one solution.
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Remark 1.1. In the case, where instead of (1.14) the more hard condition

p(t) <0 for a<t<b, mes{te€]la,b]: pt) <0} >0 (1.19)
is satisfied, the results analogous to Corollary 1.5 previously were obtained in [5,6,12]. More precisely,
in [12] it is required that along with (1.19) the inequalities

b
4
/\p(t)| dt < o esssup{|p(t)| : a <t <b} < +oc0
—a
a

be satisfied (see [12, Theorem 3]), while in [5] and [6] it is assumed, respectively, that

(see [5, Corollary 1.2]), and

t;mwﬁdusqiy”(bfa)”,

where A = const > 1 (see [6, Corollary 1.3]).

o= (5

¢ is arbitrarily small positive number, while A is so large that

(955
T 2"

Example 1.1. Suppose

Then instead of (1.15) the inequality

(fmaniﬁ<:“i;a)<§f§)ﬂ (1.20)

a

is satisfied. On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution ug(t) =

cos ”Ef:aa)7 and the nonhomogeneous problem (1.13), (1.2) has no solution if only

b

c1+er+ /uo(t)q(t) dt # 0.

a

Consequently, condition (1.15) in Corollary 1.5 is unimprovable and it cannot be replaced by condition
(1.20).

The above example shows also that condition (1.10) in Corollaries 1.1 and 1.3 is unimprovable in
the sense that it cannot be replaced by the condition

b

/mmﬁﬁ<

a

4(ba)<7r+€>2A’

w2 b—a

where ¢ is a positive constant independent of .
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Note that condition (1.10) in the above mentioned corollaries is unimprovable also in the case
where A = 1, and it cannot be replaced by the condition

4
/[pl _dt < +2

no matter how small € > 0 would be (see [5, p. 357, Remark 1.1]).

Example 1.2. Suppose tg €]a, b[ and

2

- f <t<t

4(t0—a)2 orezt=to
p(t) = ,

4(b—to)?

il for tog <t <b.
Then inequalities (1.16), (1.17) hold, and instead of (1.18) we have

to b
[Vmwa=3, [ Va3

a to

On the other hand, the homogeneous problem (1.5),(1.6) has a nontrivial solution

(toa)cos;r(ita)) for a <t <1,
0o—a
up(t) = b1
(b —

_ ALY <

(to b)cos2(b_t0) or top <t <b,

while the nonhomogeneous problem (1.13), (1.2) has no solution if only

b

(m—aky+@—mky+/ﬁdﬂﬂﬂﬁ#0.

a

Consequently, condition (1.18) in Corollary 1.6 is unimprovable in the sense that it cannot be replaced
by the condition

to b
/Vm@ﬁﬁg,/vm®ﬁ§§

From the above said it is also clear that condition (1.11) in both Corollary 1.2 and Corollary 1.4
is unimprovable and it cannot be replaced by the condition

/\/ng/blpl

M\=l

2 Auxiliary propositions
2.1. Lemma on a priori estimate. In the segment [a, b], we consider the differential inequality

pr®)[u(t)] = q(t) < u”(t) sgn(u(t)) < p2(t)[u(t)] + ¢(t), (2.1)

where
(p1,p2) € Neum([a, b]), (2.2)



Some Optimal Conditions for the Solvability and Unique Solvability of the Two-Point Neumann Problem 121

and ¢ € L([a,b]) is a non-negative function.

A function u : [a,b] — R is said to be a solution of the differential inequality (2.1) if it is continu-
ously differentiable, has an absolutely continuous on [a, b] first derivative, and almost everywhere on
this segment satisfies inequality (2.1).

Lemma 2.1. If condition (2.2) holds, then there exists a positive constant ro such that for any non-
negative function q € L([a,b]) every solution of the differential inequality (2.1) admits the estimate

b

lu(t)| < ro(|u’(a)| + |/ (b)] + /q(s) ds) for a <t <b. (2.3)

a

Proof. Assume the contrary that the lemma is not true. Then for any natural number k there exist
a non-negative function g, € L([a, b]) and a solution uy of the differential inequality (2.1) such that

b

ol > 2 (el + )]+ [ o) ).

where |Jug| = max{|ug ()| : t € [a,b]}.
Let Ij, be the set of all ¢ € [a, b] at which there exists u}(¢),

wow(t) = () /||| for ¢ € a,b], qor(t) = kq(t)/|luel| for t € Ix.

Then
p1(t)|uok (t)| — qok(t)/k < ugy(t) sgn(uok (t)) < pa(t)|uok(t)| + qox(t)/k for t € I, (2.4)
1
Juor(@)] + luor (O)] < 25 fluor]l = 1, (2.5)
b
1
/qu(s) ds < T (2.6)
a
Put
1
Ly, = {f € Iy Juon(t)] > k:}’ Loy = I \ Iy,
"
uOkEg for t € Iy,
pok(t) = ok
p1(t) for t € Iy,
0 for t € Iy,
qk(t) =
ugy(t) — p1(H)uok(t) for t € Iy,
¢
Py(t) = /pok(s) ds.
Then

ugy, (t) = pok(t)uok(t) + qi(t) for t e Iy. (2.7)
On the other hand, according to conditions (2.4) and (2.5) we have
lulfy (8)] < £(t) + qor(t) for t € Iy,

P1(t) — qor(t) < pok(t) < pa(t) + qok(t) for t € Iy,
lqur ()| < (Ip1(t)] + £(t) + qox(t)) /K for t € I,
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where £(t) = |p1(¢)] + |p2(t)]-
If along with these estimates we take into account inequality (2.6), then it becomes evident that

t

1
[ugy (t) — ugy (1)) < /E(s) ds + z for a <7<t <b, (2.8)
/ 1 / 1
Py(a) =0, /pl(s) ds — z < Py(t) — Pu(1) < /pg(s) ds + z for a <7<t <b, (2.9)
b
/ [por(s)| ds < Lo, (2.10)
/ ¢
/Iqlk(S)\ ds < (2.11)

where

lo=1 +/(\p1(s)| +4(s)) ds.

a

By virtue of conditions (2.5), (2.8) and(2.9), the sequences (ux){25, (u},)i5, (Pe)i2] are uniformly
bounded and equicontinuous on [a, b]. By the Arzela—Ascoli lemma, without loss of generality we can
assume that these sequences are uniformly convergent.

Put

u(t) = lim wog(t), P(t)= lm Pg(t). (2.12)

k— o0 k— o0
If we pass to the limit in inequality (2.9) as k — 400, then we get
t ¢
P(a) =0, /pl(s) ds < P(t) — P7) < /pg(s) ds for a <7 <t<b.
Hence it is clear that the function P is absolutely continuous and admits the representation
t
P(t) = /p(s) ds for a <t <, (2.13)

a

where p € L([a, b]) is a function satisfying inequality (1.4).
By Lemma 1.1 from [4], conditions (2.10), (2.12) and (2.13) guarantee the validity of the equality

t t

kginoo pok(s)uok(s) ds = /p(s)u(s) ds for a <t <b. (2.14)
a a
In view of (2.7) we have
t
ugr(t) = ugr(a) + / (por(8)uok(s) + qix(s)) ds for a <t <h.

a

If along with this identity we take into account conditions (2.5), (2.11) and (2.14), then we find

u'(t) = /t

p(s)u(s)ds for a <t <b
(a) =u'(b) =0, |lul=1.
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Consequently, u is a nontrivial solution of the homogeneous problem (1.5),(1.6). On the other hand,
due to conditions (1.4) and (2.2), this problem has no nontrivial solution. The contradiction obtained
proves the lemma. O

2.2. Lemmas on two-point boundary value problems for equation (1.5). Let p € L([a,]).
We consider the differential equation (1.5) with the boundary conditions

u'(a) =0, u(b)=0, (2.15)
or
u(a) =0, u'(b)=0. (2.16)
Lemma 2.2 (T. Kiguradze). Let
p(t) > —po(t) for almost all t € [a,b], (2.17)

where pg € L([a,b]) is a non-negative function. If, moreover, for some A > 1 the inequality

b

/(b—t)p()\(t) dt < (2(b7r_a))2>\_2

a

holds, then problem (1.5), (2.15) has only the trivial solution. And if

a/b(t—a)pé(t) dt < (2(b7r_a))2>\_27

then problem (1.5),(2.16) has only the trivial solution.
This lemma is a corollary of Theorem 1.3 from [10].

Lemma 2.3. Let inequality (2.17) hold where py € L([a,b]) is a non-negative non-decreasing (non-
increasing) function such that

b
[ Vmiar <3, (2.18)

Then problem (1.5),(2.15) (problem (1.5),(2.16)) has only the trivial solution.

Proof. We consider only problem (1.5),(2.15) since problem (1.5),(2.16) can be considered analo-
gously.

Assume that problem (1.5), (2.15) has a nontrivial solution u. Without loss of generality we can
assume that u/(b) < 0. Then there exists ag € [a, b such that

u(t) >0, u'(t)<0 for ap <t <b, (2.19)
u'(ag) = 0.

By virtue of conditions (2.17) and (2.19), almost everywhere on [ag, b] the inequality
u(t)u'(t) < —po(t)u'(t)u(t)

is satisfied. If along with this we take into account the fact that py is a non-decreasing function, then
we obtain

W2(1) < -2 / po () (s)u(s) ds < po(t) ( _ / W ()uls) ds) — po(B)(u2(ag) — w2()) for ap <t <b.
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Consequently,
—u'(t)

——2  for qp <t <b.
u?(ag) — u?(t)

po(t) >

Integrating this inequality from ag to b, we get

/\/p0 dt> / = do :E7
u2 (ao —uQ(t) J Vi—a?2 2

which contradicts inequality (2.18). The contradiction obtained provers the lemma. O

=

Remark 2.1. From Lemma 2.3 it follows, in particular, that if p : [a,b] — R_ is a non-decreasing (a
non-increasing) function and for some tg € ]a, b] the inequalities

2

/\/7d Sg p(to) > m (P(t0)>—4(7r)2a /\/stsg>

hold, then the Dirichlet problem

has only the trivial solution. This result generalizes Z. Nehari’s theorem [11, Theorem 1], where it is
assumed that

b
[ Violis< 3.

Along with Lemmas 2.2 and 2.3, below we need Lemma 2.4 as well, concerning problem (1.5), (1.6).

Lemma 2.4. If condition (1.14) holds, then every solution of problem (1.5),(1.6) has at least one
zero in the interval |a, b .

Proof. Assume the contrary that problem (1.5), (1.6) has a solution u not having a zero in Ja, b[. Then
by (16).
u(t) #0 for a <t <b,

and almost everywhere on [a, b] the equality

holds. If we integrate this identity from a to b, then by conditions (1.6) and (1.14) we get

12 t) b
dt = /p(t)dtgo.

The contradiction obtained provers the lemma. O

0<

a

2.3. Lemmas on the set Neum([a, b]).

Lemma 2.5. Let p; € L([a,b]) (i = 1,2) be functions satisfying inequalities (1.3), (1.9) and (1.10),
where X > 1. Then

(p1,p2) € Neum([a, b]).
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Proof. Assume the contrary that
(p1,p2) ¢ Neum([a, ]).

Then there exists a function p € L(]a, b]), satisfying condition (1.4), such that problem (1.5), (1.6) has
a nontrivial solution wu.
Inequalities (1.4) and (1.9) imply inequalities (1.14). Hence by Lemma 2.4 follows the existence of
t1 €]a, b such that
u(ty) = 0. (2.20)

On the other hand, by Lemma 2.2 inequality (1.4) and equalities (1.6) and (2.20) result in
22—2 y; y;
TN 2A
(3) <=0 [t - 0O d < -0 [l a,
b

b
(G)" 7 <o-w [a- o a< 0-0? o) a

t1

Thus

(5™ <t - ayo - ™ ( / o2 (1)) dt) ( /b o1 () dt).

Hence, in view of the inequalities

Q

(tl — (l)(b — tl) S

( / (0 ) / o) < 5 / o at)

it follows that

Consequently,

/b o> 200 (1)

a

which contradicts inequality (1.10). The contradiction obtained provers the lemma. O

Lemma 2.6. Let py : [a,b] = R_ and py : [a,b] — R be integrable functions satisfying inequalities
(1.3) and (1.9). Let, moreover, there exist to € |a, b such that the function py is non-increasing and
non-decreasing in the intervals |a,to[ and ]to,b[, respectively, and inequalities (1.11) are satisfied.
Then

(p1,p2) € Neum([a, b]).

Proof. Let p € L([a,b]) be an arbitrary function satisfying inequality (1.4), and let w be an arbitrary
solution of problem (1.5), (1.6).

Inequalities (1.4) and (1.9) result in inequalities (1.14). Hence by Lemma 2.4 follows the existence
at least one zero of the function u in ]a, b[. Consequently, there exists ¢; € |a, b[ such that

u'(a) =0, wu(ty)
u(ty) =0, u'(b)

0, (2.21)
0. (2.22)
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If along with (1.11) we take into account the monotonicity of the function p; in the intervals |a, to[
and Jtg, b[, then it becomes clear that either

t1
o<t <to, / Vi@l < 3, (2.23)

or
b

to <t <b, /\/|p1(t)|dt < g (2.24)

ty

However, if condition (2.23) (condition (2.24)) holds, then by Lemma 2.3 problem (1.5),(2.21)
(problem (1.5),(2.22)) has only the trivial solution. Thus we have proved that w(t) = 0. Hence, in
view of the arbitrariness of a solution u of problem (1.5), (1.6) and a function p, we have (p1,p2) €
Neum([a, b]). O

2.4. Lemma on the solvability of problem (1.1),(1.2). Along with problem (1.1),(1.2) we
consider the auxiliary problem

u = (1= Npt)u+ \f(t,u), (2.25)
u'(a) = ey, U/ (D) = Aea, (2.26)

where p € L([a,b]), and X is a parameter.
According to Corollary 2 from [9], the following lemma is valid.

Lemma 2.7. Let problem (1.5),(1.6) have only the trivial solution and let there exist a positive
constant v such that for any A €]0,1[ an arbitrary solution u of problem (2.25),(2.26) admits the
estimate

lu(t)| + [u'(t)] <7 for a<t<b. (2.27)

Then problem (1.1),(1.2) has at least one solution.

3 Proof of the main results

Proof of Theorem 1.1. By Lemma 2.1, there exists a positive constant ry such that every solution
of the differential inequality

pr®)u(®)] = gt [u(®)]) < o”(t) sgn(u(t)) < pa(t)ult)] + q(t, [u(t)]) 3.1

admits the estimate
b
[Jull < 7'o(IU’(a)I + [’ ()] +/Q(s, IIUI)d8>7 (3.2)

where
|lu|| = max {|u(t)|: a <t <b}.

On the other hand, according to equality (1.7), there exists a number 1 such that

b
o (|Cl| + |ea] + /q(s,:z:) ds) <z for x>y (3.3)

Put

Ty = (1 + /b(|p1(5)| + |p2(5)|)d5>7“1a T=Tr1+T2.

To
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Let p € L([a, b]) be an arbitrary function satisfying inequality (1.4), A €]0, 1[, and u be an arbitrary
solution of problem (2.25), (2.26). By Lemma 2.7 and condition (2.2), it suffices to state that v admits
estimate (2.27).

By virtue of inequality (1.8), the function w is a solution of problem (3.1), (2.26). Thus it admits

the estimate
b
full < roJel + leal+ [ ats. ) s ).

a

Hence in view of (3.3) we have
Jul| <71

If along with this inequality we take into account conditions (2.26) and (3.3), we find

b
(1)) < o (a H/M”|%<MH/ mu%+/wll+mwmwﬂ%

a
b

§r1/7‘0+7‘1/(|p1(s)|—|—|p2(s)|) ds =17y for a <t<b.

a

Therefore estimate (2.27) is valid. O

Proof of Theorem 1.2. Inequality (1.12) yields inequality (1.8), where ¢(t,|z|) = |f(¢,0)]. Conse-
quently, all the conditions of Theorem 1.1 are fulfilled which guarantees the solvability of problem
(1.1),(1.2).

Let u; and us be arbitrary solutions of the above mentioned problem. Put

u(t) = uq(t) — ua(t).

In view of condition (1.12), the function u is a solution of the differential inequality

pr(®)|u(t)] < u”(t) sgn(u(t)) < pa(t)|u(t)],

satisfying the boundary conditions (1.6). Hence by Lemma 2.1 it follows that u(¢) = 0. Consequently,
problem (1.1),(1.2) has one and only one solution. O

By Lemma 2.5, Theorems 1.1 and 1.2 yield Corollaries 1.1 and 1.3, respectively. By Lemma 2.6,
Theorems 1.1 and 1.2 yield Corollaries 1.2 and 1.4, respectively.

In the case, where f(t,z) = p(t)z + ¢(t), Corollary 1.3 results in Corollary 1.5, and Corollary 1.4
results in Corollary 1.6.
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SOLVABILITY OF A NONLOCAL PROBLEM
BY A NOVEL CONCEPT OF FUNDAMENTAL FUNCTION



Abstract. Cauchy function, Green function and Riemann function are the several of the fundamental
functions used frequently in the expression of a fundamental solution in the literature. In order to
construct such functions, various ideas can be considered. The lesser-known one of these ideas is
contained in the papers [1-4] by Seyidali S. Akhiev. Inspired by these papers, the solvability of some
problems [12,14,15,17-19] has been investigated. In this work, a novel kind of adjoint problem for
a generally nonlocal problem, and also Green’s functional via the solvability of that adjoint problem
are constructed [21]. By means of the obtained Green’s functional, an integral representation for the
solution of the nonlocal problem is established.!
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1 Introduction

There are various papers related to the investigations on the differential systems involving general
boundary conditions [7,8,20,23]. To the best of our knowledge, there is no paper on the construction of
Green’s functional for an uncoupled system of linear ordinary differential equations with the exception
the abstract of conference [13]. This work deals with the construction of Green’s functional for such
a system with a general nonlocal condition. The main aim at this dealing is to identify the Green
function for the above-said system.

The rest of the work is organized as follows. In Section 2, the problem considered throughout the
work is stated in detail. In Section 3, the solution space and its adjoint space are introduced. In
Section 4, the adjoint operator, adjoint system and solvability conditions for the completely nonho-
mogeneous problem are given. In Section 5, Green’s functional is defined. In the last section, the
conclusions are emphasized.

2 Statement of the problem

Let R be the space of all real numbers, consider a bounded open interval G = (0, 1) in R. The problem
under consideration is stated as follows:

(WU)(x) = U'(z) + A(@)U(z) = Z(z), =€ G=(0,1), (2.1)
VoU = alU (0 +/g £)d¢ = 7°, (2.2)

where U(z) = [Z;Eiﬂ Z\(x) = [ig H Alz) = [Aléx) A;zx)], g(€) = {glé@ 92(() f)} are 2

9 0
vectors and 2-square matrices defined on G, respectively; Z° = [zé} and a = %1 a } are 2-vector
2 2

and 2-square matrix with real entries, respectively. The symbol ’ denotes the ordinary derivative
of order one. Here A;(z), Aa(), 21 (z),23(x) € L,(G) with 1 < p < oo and ¢1(£),92(£) € Ly(G)
(% + % =1). L,(G) with 1 < p < oo denotes the space of Lebesgue p-integrable functions on G.

L+ (G) denotes the space of measurable and essentially bounded functions on G, and W,El)(G) with
1 < p < oo denotes the space of all functions u(z) € L,(G) having derivative du/dx € L,(G) [12,16,19].

The space ngl)(G) is equipped with the norm

Fellyvso o) = Z |

The characteristic feature of this problem is that, instead of an ordinary boundary condition, it involves
a more comprehensive nonlocal boundary condition. The stated problem is investigated for a solution

L,(G)

vector U such that its entries u; and us belong to the space W,gl)(G).
Problem (2.1),(2.2) is a linear problem which can be considered as an operator equation

VU =2 (2.3)

with the linear operator V = (V1,Vp) and Z = (Z'(z), Z°).
From the considerations given above, we have that V' is bounded from W,gl)(G)2 into the Banach
space B2 = L,(G)? x R? of the elements Z = (Z'(z), Z°) with

l1lle, = llzi (@), @) + 1281 llz2lle, = 2@, + 12l 1<p< oo

If, for a given Z € E7, problem (2.1),(2.2) has a unique solution U € WiY(G)? with ||U1||W]§1>(G) <
collz1l| g, and ||u2||W151>(G) < ci1||22||g, , then this problem is called a well-posed problem, where ¢y and
¢1 are constants independent of z; and zy, respectively. Problem (2.1),(2.2) is well-posed if and only
ifV: ngl)(G)2 — Eg is a (linear) homeomorphism.
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3 Adjoint space of the solution space

Problem (2.1),(2.2) is investigated by means of a novel concept of the adjoint problem which is
introduced in [2,5]. Some isomorphic decompositions of the solution space W,El)(G)2 and its adjoint
space Wzgl)(G)Q* are employed. Some of the principal features concerning with the solution space can
be given as follows: any function u € W,El)(G) can be represented as

x

u(@) = u(a) + / o' (€) d, (3.1)

[e3

where « is a given point in G which is the set of closure points for G' [12,16,19]. Furthermore, the

trace or the value operator Dou = u(7) is bounded and surjective from Wél)(G) onto R for a given
point v of G. In addition, the value u(a) and the derivative u'(z) are unrelated elements of the

function u € Wzgl) (G) such that for any real number vy and any function 11 € L,(G), there exists one
and only one u € W,Sl)(G) such that u(a) = vg and w'(x) = v1(x). Therefore, there exists a linear
homeomorphism between W,S”(G)2 and E2. In other words, the space VV,SU(G)2 has the isomorphic

decomposition Wzgl)(G)2 = L,(G)? x R?. The structure of the adjoint space is determined by the
following theorem.

Theorem 3.1 ([1,2,4,12,16,19]). If 1 < p < oo, then any linear bounded functional F € Wzgl)(G)Q*
can be represented as

1
/u x) dx + up (0)@]
_[FYu)] _ o
Fo) = )] = | (2)
/u x) dx 4 u(0) 2
0
with a unique element ¢ = (p1(x),po) € Eg, where %+% = 1. Any linear bounded functional

Fe W(Q)(G)Z“ can be represented as

uy (z) det + 1 (0)pg
(3.3)

uh(x) dpt + uz(0)p]

e
S
Il
g
5
Il
o\)_‘o\H

with a unique element o = (p1(€), po) € By = (BA(S, 1)) x R2, where p is Lebesgue measure on R,
Y is o-algebra of the u-measurable subsets e C G and BA(X, 1) is the space of all bounded additive
functions p1(e) defined on ¥ with ¢1(e) = 0 when p(e) = 0 [9]. The inverse is also valid, that is, if

€ E2, then (3.2) is bounded on Wzgl)(G)Q* for1 <p < oo and % +% =1. If p € Ey, then (3.3) is

bounded on Wi (G)*

Proof. The operator NU = (U'(x),U(0)) : Wp(l)(G)2 — E2 is bounded and has a bounded inverse
N~ represented by

U(x) = (N“1h)(x) = / ha(€) dE + ho, b= (ha (), ho) € B2,
0

The kernel Ker N of N is trivial and the image Im N of N is equal to Eg. Hence, there exists a
bounded adjoint operator N* : E>* — W,El)(G)Z* with Ker N* = {0} and Im N* = Wél)(G)Z*. In
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other words, for a given F' € W,Sl)(G)Q*, there exists a unique ¥ € Ez* such that
F =Ny or F(U)=%(NU), UeWM(G). (3.4)

If 1 <p < oo, then E2* = EZ in the sense of an isomorphism [9]. Hence, the functional ¢ can be
represented by

vh) = [ er(@)h(o)do+ oo, b€ X (3.5)
0

with a unique element ¢ = (¢1(x), o) € E}. Due to expressions (3.4) and (3.5), any F € W,gl)(G)Q*
can uniquely be written by (3.2). For a given ¢ € Eg, the functional F written by (3.2) is bounded

on ngl)(G)Q. Hence, (3.2) is a general form for the functional F' € ngl)(G)z*.
The proof is complete due to the fact that the case p = oo can likewise be shown [4,12,16,19]. O

Theorem 3.1 guarantees that WY (G)?* = E? for all 1 < p < oo, and w (@) = B = E.
The space E; can also be considered as a subspace of the space El [4,12,16,19].

4 Adjoint operator, adjoint system and solvability conditions

In this section, an explicit form for the adjoint operator V* of V is investigated. To this end, any
[ = (fi(z), fo) € E} is taken as a linear bounded functional on E?2 and also we assume

fVU) = / A @) ViU @) de + fo(Vol), U € W(G). (4.1)
0

By substituting expressions (2.1) and (2.2), and expression (3.1) for all entries of U € W,gl)(G)2 (for
a = 0) into (4.1), we have

/ FHa) (e (@) + Ay (2)un ()} da + 12 (a1u1<o> + / MGG, dg)
fvo) = |9 0

/ff(a:){u’z(x) + Ag(z)us(z) } dx + f§ <a2u2(0) + /192(5)1/2(5) df)

Hence, we obtain

1V0) = [ @0 do+ foo0) = [ OV de + (wof)U0)
0 0
= (wf)(U) VfeEL YUeWM(G)?, 1<p<oo, (4.2)
where
e
w1 = 9| wo = K
wy Wy

(wif1)(E€) = fi€) + [ fi(s)Ai(s)ds + fogu (), wof' = / fH(@)A1(z) dz + fias, (4.3)
0

1
(Wi f)(€) = f1(&) + [ fi(s)Az(s)ds + fig2(6), w§f2=/f12($)A2($)dw+f3a2-

m— S~



134 Kemal Ozen

The operators wi, w}, w? and wg are linear and bounded from the space E, of the pairs f = (f1(z), fo)
into the spaces Ly(G), R, Ly(G) and R, respectively. Therefore, the operator w = (w1, wo) : E2 — E2
represented by wf = (w1 f,wof) is linear and bounded. By (4.2) and Theorem 3.1, the operator
w is an adjoint operator for the operator V, when 1 < p < oo, in other words, V* = w. When
p =00, w: E? — E? is bounded; in this case, the operator w is the restriction of the adjoint operator

Ve B2 — W(G)? of V onto E? ¢ E2*.
Equation (2.3) can always be transformed into the following equivalent equation

VSh=2 (4.4)

with an unknown h = (hy, ho) € E2 by the transformation U = Sh, where S = N~'. If U = Sh, then
U'(xz) = hi(x), U(0) = hg. Hence, (4.2) can be rewritten as

f(VSh) = / F1(@)(ViSh) (@) dz + fo(VoSh)

1
— [P Om(© e + (wos)ho = (wf)(h) ¥ € B Vhe B 1p <.
0

Therefore, one of the operators V.S and w becomes an adjoint operator for the other one. Consequently,
the equation

wf=¢ (4.5)

with an unknown function f = (f1(z), fo) € E} and a given function ¢ = (¢1(z), o) € E2 can be
considered as an adjoint equation of (4.4) (or of (2.3)) for all 1 < p < oo, where

[w%} [wé]
Y1 = ) Yo = .
o o

Equation (4.5) can be written in explicit form as the system of equations

(wifH)(€) = ¢i(é), £€G,

1,1 1
wof = ¥
4.6
W2 I)(E) = 22(E), €€, (4.6)
w3 f* = 5.

By expressions (4.3), the first and third equations in (4.6) are the integral equations for £} (&), f2(¢),
respectively, and include fJ, f3, respectively, as parameters; on the other hand, the second and fourth
equations in (4.6) are the algebraic equations for the unknowns fa, f2, respectively, and they include
some integral functionals defined on f1(€), fZ(€), respectively. In other words, (4.6) is a system of four
integro-algebraic equations. This system called the adjoint system for (4.4) (or (2.3)) is constructed by
using (4.2) which is actually a formula of integration by parts in a nonclassical form. The traditional
type of an adjoint problem is defined by the classical Green’s formula of integration by parts [22],
therefore, has a sense only for some restricted class of problems [4,12,16,19].
The following theorem concerning with the solvability of the problem can be derived.

Theorem 4.1 ([4,12,16,19]). If 1 < p < oo, then VU = 0 has either only the trivial solution or a

finite number of linearly independent solutions in W,gl)(G)Q:

(1) If VU = 0 has only the trivial solution in Wzgl)(G)2, then also wf = 0 has only the trivial

solution in Eg. Then the operators V : VV,S”(G)2 — Ef) and w : Eg — Eg become linear
homeomorphisms.
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(2) If VU = 0 has m linearly independent solutions Uy,Us, ..., Uy, in Wél)(G)z, then wf = 0 has

also m linearly independent solutions

f*l*_(f*l*( ) *1*)’-“7f*m*:(ffm*(x)’fa(m*)

in EZ. In this case, (2.3) and (4.5) have solutions U € W}SU(G)2 and f € E3 for the given
Z e E2 and ¢ € E2 if and only if the conditions

/f*“ ©dé+ f5ixz2°=0, i=1,...,m,
and
1
/gol &) dé+ ooU;(0) =0, i=1,...,m,
0

are satisfied, respectively.

5 Green’s functional
Consider the equation in the form of a functional identity

(wf)(U) =U(z) YU € WM(G)?, (5.1)
where f = (f1(£), fo) € EZ is an unknown pair and z € G is a parameter [4,12,16,19].

Definition 5.1 ([4,12,16,19]). Let f(z) = (f1(¢, z), fo(z)) € E? be a pair with parameter z € G. If
f = f(z) is a solution of (5.1) for a given x € G, then f(z) is called Green’s functional of V (or of

(2.3)).

Theorem 5.1 ([4,12,16,19]). If Green’s functional f(x) = (f1(, ), fo(x)) of V exists, then any
solution U € VVp(l)(G)2 of (2.3) can be represented by

1
V@) = [ hie0Z'©de + fo()2°
0
Additionally, Ker V = {0}.

6 Conclusion

The proposed approach principally differs from the known classical construction methods of Green’s
function, it is based on the use of the structural properties of the space of solutions instead of the
classical Green’s formula of integration by parts, and it has a natural property which can be easily
applied to a very wide class of linear and some nonlinear boundary value problems involving linear
nonlocal nonclassical multi-point conditions with also integral-type terms. Because of these properties,
it is one of the scarce methods which are aimed at the derivation of a solution to such problems by
reducing to an integral equation in general. The proposed approach can successfully be employed also
for the functional differential problems resulting from the addition of some delayed, loaded (forced)
or neutral terms to the main operator as long as its linearity is conserved [6]. The work emphasizes
as a significant result that the unique solvability of the stated problem arises in the unique solvability
of the stated adjoint systems of integro-algebraic equations.
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ON THE SOLVABILITY AND THE WELL-POSEDNESS
OF THE MODIFIED CAUCHY PROBLEM FOR
LINEAR SYSTEMS OF GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Abstract. Effective sufficient conditions are given for the unique solvability and for the so-called H-
well-posedness of the modified Cauchy problem for linear systems of generalized ordinary differential
equations with singularities.
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cient conditions, spectral condition.

1 Statement of the problem and basic notation
Let I C R be an interval non-degenerate at the point, to € I, and
L, =1\{to}, I, =]—o0,to[NI, I =]to,+oo[NI.
Consider the linear system of generalized ordinary differential equations
dx = dA(t) - x4+ df (t) for t € Iy, (1.1)

where

A= (aik)?,kzl € BVlOC(ItoaRnxn)v f= (fk)Z:l € BVZOC(ItmRn)'

Let H = diag(hy,...,hy) : I;, = R™ ™ be arbitrary diagonal matrix-functions with continuous
diagonal elements
hi : Ity =10, 400[ (k=1,...,n).

We consider the problem of finding a solution x € BV,.(I3,, R™) of system (1.1) satisfying the
modified Cauchy condition

lim (H~'(t)2(t)) =0 and lim (H '(t)2(t)) = 0. (1.2)

t—to— t—to+

Along with system (1.1), consider the perturbed singular system

dy = dA(t) -y +df(t) for t €I, (1.3)
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where B B B
A= (az‘k):‘tkzl S BVloc(ItoaRnxn)v f = (fk)Z:l S Bvloc(ItmRn)

are, as above, the matrix- and vector-functions, respectively.

In the present paper, we give sufficient conditions for the unique solvability of problem (1.1), (1.2).
Moreover, we investigate the question when the unique solvability of problem (1.1),(1.2) guarantees
unique solvability of problem (1.3),(1.2) and, as well, the nearness of their solutions in the definite
sense if the matrix-functions A and A and the vector-functions f and f are near, respectively.

The analogous problems for system of ordinary differential equations with singularities

dzx

i P(t)xz+q(t) for t e, (1.4)

where
Pe Lloc(IthRnxn)a qc Lloc(ItoaRn)a

have been investigated in the papers [6-8].

The singularity of system (1.4) is considered in the sense that the matrix-function P and the
vector-function ¢ are, in general, not integrable at the point ty. In general, a solution of problem
(1.4),(1.2) is not continuous at the point to and, therefore, it cannot be a solution in the classical
sense. But its restriction on every interval from I, is a solution of system (1.4). In this connection
we give the example from [8].

Let o > 0 and € €]0,«[. Then the problem

dx ax

o= TeEldTT lm(a() =0
has the unique solution x(t) = [t|°~*sgn¢. This function is not a solution of the equation in the set
I =R, but its restrictions on | — 0o, 0] and |0, +o0o[ are the solutions of these equation.

The singularity of system (1.1) is considered in the sense that the matrix-function A and the
vector-function f may have non-bounded total variation at the point ¢g, i.e., on some closed interval
[a,b] from I such that ¢y € [a,b].

As is known, such a problem for generalized differential system (1.1) has not been studied. So, the
problem remains actual.

Some singular two-point boundary problems for generalized differential system (1.1) are investi-
gated in [3-5].

To a considerable extent, the interest to the theory of generalized ordinary differential equations has
also been stimulated by the fact that this theory enables one to study ordinary differential, impulsive
and difference equations from a unified point of view (see [2-5,10,11] and the references therein).

In the paper the use will be made of the following notation and definitions.

R =] — o0, +o0[, Ry = [0,400[, [a,b] and ]a,b[ (a,b € R) are, respectively, the closed and open
intervals. n
R™*™ is the space of all real n x m matrices X = (2;x); -, with the norm || X|| =  nax S @ikl
o =1,....m;—1
If X = (@)}l € R™™, then |X| = (|lza)fil,, [X]4 = P55, [X]- = BE~

Rf_xm = {(I“C)Zkril x>0 =1,....,n; k=1,...,m)}.

R"™ = R™*! is the space of all real column n-vectors = = (z;)1_;; R? = R7*1.

If X € R®*" then X !, det X and 7(X) are, respectively, the matrix inverse to X, the determinant
of X and the spectral radius of X; I,, is the identity n X n-matrix.

The inequalities between the matrices are understood componentwise.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
b
If X : R — R™™ ig a matrix-function, then \/(X) is the sum of total variations on [a,b] of its
a
b a

components z;; (i =1,...,n; k=1,...,m); if a > b, then we assume \/(X) = — \/(X);
a b
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X (t—) and X (t+) are, respectively, the left and the right limits of the matrix-function X : [a, b] —
R™™ ™ at the point ¢t (X (a—) = X(a), X (b+) = X (b)).
i X)) =X(t)— X({t-), do X (t) = X(t+) — X (¥).
BV ([a, b],R™*™) is the set of all bounded variation matrix-functions X : [a,b] — R™*™ (i.e., such
b
that \/(X) < 00).

a
BVioe(J; D), where J C R is an interval and D C R™ ™ is the set of all X : J — D whose
restriction on [a, b] belongs to BV([a, b]; D) for every closed interval [a, b] from J.
BVioe(It,; D) is the set of all X : I — D whose restriction on [a,b] belongs to BV([a,b]; D) for
every closed interval [a,b] from I, .
Everywhere we assume that a; € I, and a3 € Itt are some fixed points.
If X € BVige(ly; R™™), then V(X)(t) = (v(zix)(t));32, for t € Iy, where v(zit)(a;) = 0,

v(xig)(t) = \t/(aclk) for (t —to)(a; —to) >0 (j =1,2).

[X(t)ﬁ- = VX )+X(t) X = V(X)(t) X()
$1, 82, Sc and j Bvloc(ItU; R) — BVlOC(ItO,R) are the operators defined, respectively, by
s1(z)(aj) = s2(z)(a;) =0, sc(z)(a;) = z(ay);
si(@)(t) = s1(2)(s)+ > diz(r), sa(@)(t) = sa(2)(s) + Y dox(r)

s<T<t s<tT<t

se(@)(t) = se(@)(s) +x(t) — x(s) = Y _(5;(2)(t) = 55(2)(5)

j=1
for s <t <ty if aj <ty andfor to <s<t if a; >ty (j=1,2)

and
J(x)(aj) = x(ay),
T(@)(t) = T(2)(s) + se(x)(t) = sc(z)(s) = > [l —diz(r)[+ > In|l+dya(r)]

s<T<t s<t<t
for s <t <ty if aj <ty and for to <s <t <ty if a;j >ty (j =1,2).

If X € BVipe(lty; R™*™), det([n+(71)jde(t)) #0fort € I, (j =1,2),and Y € BV (I, ; R™*™),
then

-A(Xv Y)(aj) = On><m7

AXY)) - AXY)(s) =Y () = Y(s)+ > diX(7)-(In — i X (7)) drY (1)
=) dX(7) - (I +d2X( )"t doY (7)

for s <t <ty if aj<t0 and for tg <s <t <ty if a;j >ty (j=1,2).

If g : [a,b] — R is a nondecreasing function, z : [a,b] = R and a < s < t < b, then

t

/ 2(r) dg(r) = / 2 dselg) () + 3 () digr)+ 3 (r) dag(),

s I s<t<t s<t<t
where [ x(7)ds.(g)(7) is the Lebesgue-Stieltjes integral over the open interval |s, t[ with respect to
Is;t
b
the measure f10(s.(g)) corresponding to the function s.(g). If @ = b, then we assume [ z(t) dg(t) =

a
a

b t
and if @ > b, then [z(t)dg(t) = — [x(t)dg(t). So, [x(r)dg(7) is the Kurzweil integral [9-11].

o
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Moreover, we put

t+ t+6 t— t—5
[amrdsr) = tim [ atr)dg(o). [ar)dg(r) = tim [ atr)dg(r).

If g(t) = g1(t) — g2(t), where g1 and go are nondecreasing functions, then
t t t
/1’(7’) dg(r) = /CU(’T) dgr (1) —/(E(T) dga(7) for s,t € R.
If G = (gm)izzl : [a,b] — R™™ is a nondecreasing matrix-function and X = (Thj)pjey * lasb] =

R™ ™ then

t l,m

/dG(T) X(r) = (zn:/txkj(f) dgik(r)) for a<s<t<bh
k=17

2 i,j=1

n In .
Se(@) (1) = (selgim) (®)ihmrs SH(G)(B) = (55(90)(1)); 0y (= 1,2).
If G, : [a,b] — R™™ (j = 1,2) are nondecreasing matrix-functions, G = G; — G2 and X : [a,b] —
nxm
R , then
¢ ¢ ¢

/dG(T)~X(T) :/dal(f)-X(T)—/d@(T)-X(T) for s, t €R,

Se(G) = Se(Gr) = Se(Ga), 55(G) = 5;(Gr) = 55(Ga) (5 =1,2).
A vector-function x : I, — R™ is said to be a solution of system (1.1) if z € BV([a, b],R™) for
every closed interval [a,b] from I, and
¢
z(t) = x(s) + /dA(’T) cx(T)+ f(t) — f(s) for a<s<t<hb.

We assume that ‘
det(l, + (—1)'d;A(t)) #0 for tel, (j=1,2).

The above inequalities guarantee the unique solvability of the Cauchy problem for the correspond-
ing nonsingular systems (see [9-11]), i.e., for the case when A € BVy,.(I,R"*™) and f € BV,.(I,R"™).
Let the matrix-function Ag € BVjoc (I, R"*™) be such that

det (I, + (=1)7d;Ag(t)) #0 for t €L, (j=1,2). (1.5)

Then a matrix-function Cy : I, X Iy, — R™*™ is said to be the Cauchy matrix of the generalized
differential system
dx = dAp(t) - x, (1.6)

if for every interval and J C I and 7 € J, the restriction of the matrix-function Co(.,7) : I, — R"*"
on J is the fundamental matrix of system (1.6) satisfying the condition

Co(r,7) = I,.

Therefore, Cy is the Cauchy matrix of system (1.6) if and only if the restriction of Cy on every interval
J x J is the Cauchy matrix of the system in the sense of definition given in [11].
We assume

I (8) = [to — 9, to[ N1ty Itt((;) =lto,to + 0] N 1y, 14, (0) = I, (0) U I;g((S)

for every § > 0.
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2 Existence and uniqueness of solutions of the Cauchy prob-
lem

In this section we give sufficient conditions for the unique solvability of problem (1.1),(1.2).

Theorem 2.1. Let there exist a matriz-function Ay € BViee(It,, R"*™) and constant matrices By
and B from R™"™ such that conditions (1.5) and

r(B) <1 (2.1)
hold, and the estimates
|Co(t,7)| < H(t) ByH™ () for t € I;,(8), (t—to)(T —to) >0, |7 —to| <[t —to (2.2)
and
t
’ / |Co(t, 7)| dV (A(Ag, A — Ao)(7)) - H(7)| < H(t) B
toF
for t € I, (6) and t € I, (8), respectively, (2.3)

are valid for some § > 0, where Cy is the Cauchy matriz of system (1.4). Let, moreover, respectively,

lim
t—=toF

/H*l(T) (Colt, 7)] dV (A(Ao, £))(7)

toF

=0. (2.4)

Then problem (1.1), (1.2) has the unique solution.

Theorem 2.2. Let there exist a constant matriz B = (big)j'y—; € RI™™ such that conditions (2.1)

and

(1) djau(t)] . > =1 for t <ty (j=1,25i=1,...,n), )
[(—1)Ydjau(t)]_ <1 for t>ty (j=1,2;i=1,...,n) 25)

hold, and the estimates

hi(t)

(1,7 < by S

fO’I“ t e It0(5>, (t—to)(’i’ —to) >0, |T—t0‘ < |t—t()| (Z = 1,...711), (26)

’ /t ci(t, T)hi(T) d[a“‘(’r) sgn(r — to)}j_

toF

< byi(t) hi(t) for t € I;(6) and t € I} (5), respectively (i=1,...,n)  (2.7)

and

¢
‘ / ci(t, )i () AV (Alagis, ase)) (7)
toF

for t € I, (6) and t € I} (8), respectively (i #k; i,k=1,...,n) (2.8)

< b (t) hi(t)

are valid for some by > 0 and 6 > 0. Let, moreover, respectively,

t

. Ci(t, T) . - -
til?nl; / O dV (A(agii, fi))(7) =0 (i=1,...,n), (2.9)
toF
where ap;;(t) = —[ai(t) sgn(t — to)]Y sgn(t —t9) (i = 1,...,n) and ¢; is the Cauchy function of the

equation dx = x dag;(t) fori € {1,...,n}. Then problem (1.1),(1.2) has the unique solution.
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Remark 2.1. The Cauchy functions ¢;(¢,7) (i = 1,...,n), mentioned in the theorem, for ¢,7 € I
and t, 7 € I;g, have the form

exp (s0(a0) (t) — so(aoi) (1)) [ (1 = draois(s)™ T (1 +daacii(s)) for ¢ >,

T<s<t T<s<t
Ci(t?T) ~ Y exp (So(aol'i)(t) — So(a()ii)(’r)) H (1 - dlaon'(s)) H (1 + dgaon‘(s))_l for t <,
t<s<T t<s<T
1 for t =r.

Corollary 2.1. Let there exist a constant matriz B = (bi,)j—; € R}*" such that conditions (2.1)
and (2.5) hold, and the estimates

‘ /t |7 — to| d[aii(r) sen(r — to)] "

toF

<bji [t —to| for t €I, (6) and t € I} (8), respectively (i=1,...,n) (2.10)

and

\ / v — to] dV (Ao, ai))(7)

toF

< b |t —to| for t € I;,(6) and t € I, (8), respectively (i #k; i,k=1,...,n) (2.11)

are valid for some 6 > 0. Let, moreover, respectively,

t—>toﬂF |t — to\

t
‘\/ (avis f))(P)] =0 (i=1,...,n), (2.12)

where ag;(t) = —[a;i(t) sgn(t — t9))]” sgu(t — tg) (i = 1,...,n). Then system (1.1) has the unique
solution satisfying the initial condition

=@l _ . (2.13)

lim
t—toF t — to

Remark 2.2. In Corollary 2.2, if the estimates

< |t — s

‘ / |7 — to| d[asi(T) sgn(r — to)]i

for t,s € Iy, (), (t—to)(s—to) >0, |s—to] <[t—to] (i=1,...,n)

and

< bix |t — s

] / v — to] dV (A(as, ase))(r)

for ¢t,s € I, (8), (t—to)(s—1to) >0, |s—to| <|t—to] (i F#k; i, k=1,...,n)

hold instead of (2.10) and (2.11), respectively, then the solution of problem (1.1),(2.13) belongs to
BVioe(I,R™).
Corollary 2.2. Let conditions (2.5) and
t
T (a0ir) (1) = T (agi) () < =Ailn —2 + aj(t) = ajy(7)
—tlo

for t,7 € Ly, (t—to)(T—1to) >0, |7 —to| <|t—to] (i=1,...,n) (2.14)
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hold, where ag;(t) = —laii(t)sgn(t — to)]Vsgn(t —t9) (i = 1,...,n), \; >0 (i = 1,...,n), af
(i =1,...,n) are nondecreasing functions on the intervals I; and Ith- Let, moreover,
t
/ (A(agiis air))(T)| < +00
toF
for tel; and teI;g, respectively (i#£k; i,k=1,...,n), (2.15)
and
N dV (Aaoii, £:)(T)| < 400
toF
for t € I, and t € I}, respectively (i=1,...,n). (2.16)

Then system (1.1) has the unique solution satisfying the initial condition

lim ([t —to|M (1)) =0 (i=1,...,n). (2.17)

t—)to

3 Well-posedness of the Cauchy problem
Let It,; =] min{tg, t}, max{to,t}[ for ¢t € I.

Definition 3.1. Problem (1.1),(1.2) is said to be H-well-posed if it has the unique solution x and
for every € > 0 there exists > 0 such that problem (1.3),(1.2) has the unique solution y and the
estimate

|H () (x(t) —y@)|| <e for tel

holds for every Ae BVioe(It,, R™*™) and fe BVioc(It,, R™) such that

det (I, + (—1)7d;A(t)) #0 for t € I, (j =1,2);

<n

| / ) v (A— A 1)+ 3

toF J=1

Y HN(7)ldi(A - A)(7)|H(r)

7€t

for tel;, and t € I;g, respectively (j=1,2),

2

3

<n

Y H'@d(f = f)(@)H(T)

TELyt

for t € I;, and t € I", respectively (j=1,2).

Theorem 3.1. Let I be a closed interval and there exist a matriz-function Ag € BVioc(It,, R"*™) and
constant matrices By and B from R}*™ such that conditions (1.5), (2.1) hold and estimates (2.2),

|Co(t, )| |d;j Ao (T) (I + (=1)7d; Ao (7)) | < H(t) Bo H (1)
for t€ I, (8), (t—to)(r —to) >0, |7 —to] <[t —to] (j=1,2)
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and

H / (Colt, 7)| AV (A)(s) - H(s)
toF
2

2.
j=1

<7

Y 1Co(t,7)ld;Ao(r) - (In + (—1Y d;Ao(r) " |d;A(T) [ H ()

L€yt

for tel, and te I;;, respectively,

are valid for some § > 0, where Cy is the Cauchy matriz of system (1.6). Let, moreover, respectively,

lim (H / H(t) [Colt, 7] dV (£)(7)

)-o

Y H'®IC0(E ) dj Ao(r) - (I + (=1)7d; Ao()) | |d; £ (7)

L€l

Z

Then problem (1.1), (1.2) is H-well-posed.
Theorem 3.2. Let I be a closed interval and there exist a constant matriz B = (bix)}p—; € R}
such that conditions (2.1), (2.5) hold and estimates (2.6), (2.7),

lei(t, 7)| [djaoii(T) - (1 + (=1) djau (7)) "] < bo Z:((i))

for t € I, (0), (t—to)(T—to) >0, |7 —to| <[t —to| (¢

=1,...,n;j=1,2)

and

' / ex(t,7) () o) (7)

toF

D leit, )l djaoi(r) - (1+ (=1 djaois(r) ™| |djain (1) |hi(r)| < bin ha(t)

TEL ¢

2
=1
for t €I, (0) and t € Ijo(é), respectively (i #k; i,k=1,...,n)

are valid for some by > 0 and 6 > 0. Let, moreover, respectively,

<\/1

o)

|da ao;i (T )'(1+(—1)jdjaoz‘i(T))_l||djfi(T)|> =0 (i=1,...,n),

7€l

where agi;(t) = —[a;(t) sgn(t — to)]” sgn(t —to) (i = 1,...,n), and ¢; is the Cauchy function of the
equation dx = x dag;(t) fori e {1,...,n}. Then problem (1.1),(1.2) is H-well-posed.

Corollary 3.1. Let I be a closed interval and there exist a constant matriz B = (bix)j'y—; € RY"
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such that conditions (2.1) and (2.5) hold, and the estimates

t—1p

T (a0ii)(t) — T (a0i)(T) < piln — -
T 0

for t,TEItU, (t—to)(T—to) > 0, |T—t0| < |t—t0| (izl,...,n), (31)

lim ‘ [ai;(t) sgn(t — to)]ljr — [asi () sgn(r — to)] +’

T—=toF

< by for t €I () and t € I (5), respectively (i=1,...,n)
and
2 .
Aim [v(air)(t) = v(ai) (1) + Z; ZI: |djaoii(s) - (1 + (=1) djaoii(s)) | Idjai(s)] < bik
J=1s€liyr
for t € I, (6) and t € I} (8), respectively (i #k; i,k=1,...,n)

are valid for some p; >0 (i =1,...,n) and § > 0, where ag;(t) = —[a;(t) sgn(t — to)]” sgn(t — to)
(i=1,...,n). Let, moreover, respectively,

t
. 1
i (| ] g 000
toF

+ Z Z ﬁwj‘aom@') . (1 + (—1)jdj(101‘i(7'))71| |d]fz(7')|> =0 (Z = 1, [N ,TL).

J=171€lyy+
Then system (1.1) under the condition

zi(t)
m ————— =
t—toF |t — t0|’”

is H-well-posed.

Remark 3.1. Let, in addition to the conditions of Corollary 3.1, the condition

lim supé;i(t) <+oo (j=1,2;i=1,...,n) (3.3)

t—=toF

hold, where

Git) = D> |r—tol**|djam(r)| + |d; fi(r)| for t € L,Nar,az] (j=1,27i=1,....n), (3.4)
TEIl; k=1

I;1 =]aq,t] and Iis = [a1,t] for a1 < t < to, Iy1 =]t,as] and I;o = [t,as[ for tg < t < ag. Then the
solution of problem (1.1), (3.2) belongs to BV,.(1,R™).

Corollary 3.2. Let I be a closed interval and there exist a constant matriz B = (bix)j'y—; € RY"
such that conditions (2.1) and (2.5) hold, and estimates (2.10), (3.1) for uy; =0 (i =1,...,n) and

t

U 7~ tol do(ai)) (1) |+ 3 |7~ tolldjacu(r) - (1+ (~1) djanis(r) | [djan ()] < bislt — to]

toF J=17€Lye
for t € I (6) and t € I, (8), respectively (i #k; i,k=1,...,n)
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are valid for some § > 0, where ap;(t) = —[ai; (t) sgn(t—1to)]” sgn(t—to) (¢ =1,...,n). Let, moreover,
respectively,

1

im ——
t—toF |t — to

(|v<fi><t> — o))

+3 > ldjacii() - (1+ (=1) djagi () ™| |djfz‘(T)|> =0 (i=1...,n).

j=l7€lyyr
Then problem (1.1), (2.13) is H-well-posed.

Remark 3.2. Let, in addition to the conditions of Corollary 3.2, condition (3.3) hold, where the
functions &;; (j = 1,2; ¢ = 1,...,n) are defined by (34), u; =1 (i = 1,...,n), and the intervals
I (j = 1,2) are defined as in Remark 3.1. Then the solution of problem (1.1),(2.13) belongs to
BVioe(I,R™).

Corollary 3.3. Let I be a closed interval and let conditions (2.5) and (2.14) hold, where ag;;(t) =
—laii(t)sgn(t—to)]" sgn(t—to) (i =1,...,n), Ay >0 (i =1,...,n), and the functions a};(t) sgn(t—to)

(i=1,...,n) are nondecreasing on the interval I. Let, moreover,
t
‘ / 7 to] M do(ag))7)
toF
2 .
30 D0 =t dja0u(r) - (1 + (<1 dyaois(7) ! djain(r)]| < +oo
J=1"7€ly:
for t e It'g and t € I, respectively (i # k; i,k =1,...,n)
and
t 2
' / [ —to* dv(f)(T)|+ Y D 1T =t M djacu(7) - (14 (=1) djaos(r)) | |ds fi(7)] < +o0
toF J=17€lye

for te€l, and te I:;, respectively (i=1,...,n).
Then system (1.1) under the condition

lim (|t —to

t—toF

Nog(t)) =0 (i=1,...,n) (3.5)

is H-well-posed.

Remark 3.3. Let the conditions of Corollary (3.3) hold, where A; = 0 (i = 1,...,n). Let, in
addition, condition (3.3) hold, where the functions &;; (j = 1,2; ¢ = 1,...,n) are defined by (3.4),
w; =0 (¢ =1,...,n), and the intervals I;; (j = 1,2) are defined as in Remark 3.1. Then the solution
of problem (1.1), (3.5) belongs to BVi,.(I,R™).

Remark 3.4. In Remarks 3.1-3.3, condition (3.3) is essential, i.e., if the condition is violated, then the
conclusion of our remarks are not true. Below, we reduce the corresponding example. Let I = [0, 1],
n=1t=0,t,=1/y/n (n=1,2,...), the function a : I — R is defined by

1
a(0) =0, a(l)=—In2, a(t)=1In (kn(t —ta) + f) for ty <t <tn_1 (n=2,3,...),
n
where k, = (n —2)(2n(n — 1)(t, — tn_1))"! (n = 2,3,...). It is evident that the singular Cauchy

problem
dx = xda(t), limt z(t)] =0
t—0
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has the unique solution = defined by the equalities
1
x(t) =kt —ty)+— for t, <t <tp,—1 (n=2,3,...), z(l)=—In2.
n

Moreover, we have dex(t) = 0 and dyx(t,) = 1/2 (n = 2,3,...). Thus we conclude that = €
BVioe(It,; R), but @ & BVi(I;R). Besides, taking into account that the function a(t) is non-
increasing on the intervals ¢, <t < t,_1 (n = 2,3,...), we conclude that [a(f)]} = 0 on these
intervals. Therefore, due to the equalities dsa(t) = 0 and dia(t,) = 1/2 (n = 2,3,...), all the
conditions of our remarks are fulfilled with the exclusion of (3.3).
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