Memoirs on Differential Equations and Mathematical Physics Volume 75, 2018, 1-91

Sergo Kharibegashvili

SOME LOCAL AND NONLOCAL
MULTIDIMENSIONAL PROBLEMS FOR A CLASS OF SEMILINEAR HYPERBOLIC EQUATIONS AND SYSTEMS

Abstract

Multidimensional versions of the Cauchy characteristic problem, the Darboux problems, and the Sobolev problem for a class of second order semilinear hyperbolic systems are investigated. Depending on the type of nonlinearity, spatial dimension and structure of the hyperbolic system, the cases for which these problems are globally solvable, are singled out. Moreover, the cases of the absence of solutions of these problems are also considered. The questions of the solvability of some nonlocal in time problems for multidimensional second order semilinear hyperbolic equations are studied. The particular cases of the above-mentioned problems are the periodic and antiperiodic problems.

2010 Mathematics Subject Classification. 35L05, 35L20, 35L51, 35L71.
Key words and phrases. Characteristic Cauchy problem, Darboux problems, Sobolev problem, nonlocal problems, multidimensional hyperbolic equations and systems, global and local solvability, uniqueness, existence and nonexistence of solutions.

Preface

The present work consists of five chapters. The first three chapters are devoted to the investigation of multidimensional versions of the Cauchy characteristic problem, the Darboux problems, and the Sobolev problem for one class of the second order semilinear hyperbolic systems. Depending on the type of nonlinearity, spatial dimension and structure of hyperbolic system, the cases for which these problems are globally solvable, are singled out. Moreover, the cases of the absence of solutions of the above-mentioned problems are also considered [56-59].

The questions of the solvability of some nonlocal in time problems for multidimensional second order semilinear hyperbolic equations are studied in the remaining two chapters [53, 60, 61]. The particular cases of these problems are the periodic and antiperiodic problems.

Chapter 1

The Cauchy characteristic problem for one class of the second order semilinear hyperbolic systems

1.1 Statement of the problem

In the space \mathbb{R}^{n+1} of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t, we consider the second order semilinear hyperbolic system of the form

$$
\begin{equation*}
\square u_{i}+f_{i}\left(u_{1}, \ldots, u_{N}\right)=F_{i}(x, t), \quad i=1, \ldots, N \tag{1.1.1}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), F=\left(F_{1}, \ldots, F_{N}\right)$ are the given, and $u=\left(u_{1}, \ldots, u_{N}\right)$ is an unknown real vector function, $n \geq 2, N \geq 2, \square:=\frac{\partial^{2}}{\partial t^{2}}-\Delta, \Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$.

For the system of equations (1.1.1), let us consider the Cauchy characteristic problem of finding a solution $u(x, t)$ in the frustum of a light cone of the future $D_{T}:|x|<t<T, T=$ const >0, by the boundary condition

$$
\begin{equation*}
\left.u\right|_{S_{T}}=g \tag{1.1.2}
\end{equation*}
$$

where $S_{T}: t=|x|, t \leq T$, is the conic surface, characteristic to the system (1.1.1), and $g=\left(g_{1}, \ldots, g_{N}\right)$ is a given vector function on S_{T}. For $T=\infty$, we assume that $D_{\infty}: t>|x|$ and $S_{\infty}=\partial D_{\infty}: t=|x|$.

The questions on the existence or absence of a global solution of the Cauchy problem for semilinear scalar equations of the type (1.1.1) with the initial conditions of the form $\left.u\right|_{t=0}=u_{0},\left.\frac{\partial u}{\partial t}\right|_{t=0}=u_{1}$ were the subject of investigation in many works (see, e.g., $[17-19,23,25,31,33,35,36,39-41,62,64-66$, $69-72,77,80,83,84,87-89,94,96-98]$. The Cauchy characteristic problem (1.1.1), (1.1.2) in the light cone of the future for scalar semilinear equations has been studied in [44-47, 49, 50, 52, 54]. As is known, this problem in the linear case is well-posed in the corresponding function spaces (see, e.g., $[5,16,30,43,63,73])$. A particular case of the system (1.1.1), when $f(u)=\nabla G(u)$, i.e., $f_{i}(u)=\frac{\partial}{\partial u_{i}} G(u)$, $i=1, \ldots, N$, where $G=G(u)$ is a scalar function satisfying some conditions of smoothness and growth as $|u| \rightarrow \infty$, is studied in [57].

In the present chapter we consider a more general case of nonlinearity as compared with that presented in [57]; we impose certain conditions on the nonlinear vector function $f=f(u)$ from (1.1.1) which fulfilment implies that the problem (1.1.1), (1.1.2) is locally or globally solvable, while in some cases it does not have global solution.

1.2 Definition of a generalized solution of the problem (1.1.1), (1.1.2) on D_{T} and D_{∞}

Let $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0\right\}$ and $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{k}(\Omega)$ is the Sobolev space, consisting of the elements of $L_{2}(\Omega)$, the generalize derivatives of which up to the k-th order inclusive belong to $L_{2}(\Omega)$, and the equality $\left.u\right|_{S_{T}}=0$ is understood in the sense of the trace theory [68, p. 71].

We rewrite the system of equations (1.1.1) in the form of one vectorial equation

$$
\begin{equation*}
L u:=\square u+f(u)=F(x, t) \tag{1.2.1}
\end{equation*}
$$

Together with the boundary condition (1.1.2), we consider the corresponding homogeneous boundary condition, i.e.,

$$
\begin{equation*}
\left.u\right|_{S_{T}}=0 . \tag{1.2.2}
\end{equation*}
$$

Below, on the nonlinear vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ from (1.1.1) we impose the following requirement

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{N}\right), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const } \geq 0, \quad u \in \mathbb{R}^{N} \tag{1.2.3}
\end{equation*}
$$

where $|\cdot|$ is the norm of the space \mathbb{R}^{N} and $M_{i}=$ const $\geq 0, u \in \mathbb{R}^{N}$.
Remark 1.2.1. The embedding operator $I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$ and $n>1$ [68, p. 86]. At the same time, the Nemitsky operator K : $L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting according to the formula $K(u)=f(u)$, where $u=\left(u_{1}, \ldots, u_{N}\right) \in L_{q}\left(D_{T}\right)$ and the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfies the condition (1.2.3), is continuous and bounded for $q \geq 2 \alpha$ [67, p. 349], [22, pp. 66,67]. Therefore, if $\alpha<\frac{n+1}{n-1}$, then there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Thus in this case the operator

$$
\begin{equation*}
K_{0}=K I:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N} \tag{1.2.4}
\end{equation*}
$$

is continuous and compact. Moreover, from $u \in W_{2}^{1}\left(D_{T}\right)$ it follows that $f(u) \in L_{2}\left(D_{T}\right)$ and, if $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, then $f\left(u^{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.

Here and henceforth, the belonging of the vector $v=\left(v_{1}, \ldots, v_{N}\right)$ to some space X means that each component $v_{i}, i \leq i \leq N$, of that vector belongs to the space X.
Definition 1.2.1. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (1.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}, F=$ $\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ and $g=\left(g_{1}, \ldots, g_{N}\right) \in W_{2}^{1}\left(S_{T}\right)$. We call a vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in$ $W_{2}^{1}\left(D_{T}\right)$ a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of vector functions $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ such that $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right), L u^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, and $\left.u^{m}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$. The convergence of the sequence $\left\{f\left(u^{m}\right)\right\}$ to $f(u)$ in the space $L_{2}\left(D_{T}\right)$, as $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, is provided by Remark 1.2.1. In the case $g=0$, i.e., in the case of the homogeneous boundary condition (1.2.2), we assume that $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$. Then it is obvious that $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

Obviously, the classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (1.1.1), (1.1.2) is likewise a strong generalized solution of this problem of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.
Remark 1.2.2. It is easy to verify that if $u \in W_{2}^{1}\left(D_{T}\right)$ is the strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1, then for every test vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in C^{1}\left(\bar{D}_{T}\right)$ such that $\left.\varphi\right|_{t=T}=0$, the equality

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} \varphi_{t}+\nabla u \nabla \varphi\right] d x d t=-\int_{D_{T}} f(u) \varphi d x d t+\int_{D_{T}} F \varphi d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \varphi d s \tag{1.2.5}
\end{equation*}
$$

is valid; here, $\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is the derivative along the conormal, $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit vector of the outer normal to $\partial D, \nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.

Indeed, let $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ be the vector functions mentioned in Definition 1.2.1. Let $F^{m}:=L u^{m}$, where L is the operator from (1.2.1). Taking into account the fact that on the characteristic conic surface $S_{T}: t=|x|, t \leq T$, the derivative along the conormal $\frac{\partial}{\partial N}$ represents an inner differential operator, and by integration by parts of the equality $L u^{m}=F^{m}$, we obtain

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t}^{m} \varphi_{t}+\nabla u^{m} \nabla \varphi\right] d x d t=-\int_{D_{T}} f\left(u^{m}\right) \varphi d x d t+\int_{D_{T}} F^{m} \varphi d x d t-\int_{S_{T}} \frac{\partial g^{m}}{\partial N} \varphi d s, \tag{1.2.6}
\end{equation*}
$$

where $g^{m}:=\left.u^{m}\right|_{S_{T}}$. Since, by Definition $1.2 .1, u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right), F^{m}=L u^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right), g^{m}=\left.u^{m}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$, and according to Remark 1.2.1 $f\left(u^{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$, passing to the limit in the equality (1.2.6) as $m \rightarrow \infty$ we obtain (1.2.5).

Note that the equality (1.2.5), valid for every $\varphi \in C^{2}\left(\overline{D_{T}}\right),\left.\varphi\right|_{t=T}=0$, may be put in the basis of the definition of a weak generalized solution u of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T}.
Definition 1.2.2. Let f satisfy the condition (1.2.3), where $0 \leq \alpha<\frac{n+1}{n-1} ; F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (1.1.1), (1.1.2) is locally solvable in the class W_{2}^{1} if there exists a number $T_{0}=T_{0}(F, g)>0$ such that for $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.
Definition 1.2.3. Let f satisfy the condition (1.2.3), where $0 \leq \alpha<\frac{n+1}{n-1} ; F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (1.1.1), (1.1.2) is globally solvable in the class W_{2}^{1} if for every $T>0$ the problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

Definition 1.2.4. Let f satisfy the condition (1.2.3), where $0 \leq \alpha<\frac{n+1}{n-1} ; F \in L_{2, l o c}\left(D_{\infty}\right), g \in$ $W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We call the vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2, l o c}^{1}\left(D_{\infty}\right)$ a global strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the light cone of the future D_{∞} if for every $T>0$ the vector function $\left.u\right|_{D_{T}}$ belongs to the space $W_{2}^{1}\left(D_{T}\right)$ and is a strong generalized solution of this problem of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

Remark 1.2.3. Reasoning from the proof of the equality (1.2.5) allows us to conclude that a global strong generalized solution $u=\left(u_{1}, \ldots, u_{N}\right)$ of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 1.2.4 satisfies the integral equality

$$
\begin{equation*}
\int_{D_{\infty}}\left[-u_{t} \varphi_{t}+\nabla u \nabla \varphi\right] d x d t=-\int_{D_{\infty}} f(u) \varphi d x d t+\int_{D_{\infty}} F \varphi d x d t-\int_{S_{\infty}} \frac{\partial g}{\partial N} \varphi d s \tag{1.2.7}
\end{equation*}
$$

for any vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in C^{1}\left(\bar{D}_{\infty}\right)$, finite with respect to the variable $r=\left(t^{2}+\right.$ $\left.|x|^{2}\right)^{1 / 2}$, i.e., $\varphi=0$ for $r>r_{0}=$ const >0. It is easy to see that the solution $u \in W_{2, l o c}^{1}\left(D_{\infty}\right)$ satisfies the boundary condition (1.1.2) in the sense of the trace theory for $T=\infty$, i.e., $\left.u\right|_{S_{\infty}}=g$.

1.3 Some cases of local and global solvability of the problem (1.1.1), (1.1.2) in the class W_{2}^{1}

For the sake of simplicity, we consider the case in which the boundary condition (1.1.2) is homogeneous. In this case the problem (1.1.1), (1.1.2) takes the form of the problem (1.2.1), (1.2.2).

Remark 1.3.1. First, let us consider the solvability of the problem (1.2.1), (1.2.2), when the vector function $f=0$ in (1.2.1), i.e., the linear problem

$$
\begin{gather*}
L_{0} u:=\square u=F(x, t), \quad(x, t) \in D_{T}, \tag{1.3.1}\\
u(x, t)=0, \quad(x, t) \in S_{T} . \tag{1.3.2}
\end{gather*}
$$

For the problem (1.3.1), (1.3.2), just as for the problem (1.1.1), (1.1.2) in Definition 1.2.1, we introduce the notion of a strong generalized solution $u=\left(u_{1}, \ldots, u_{N}\right)$ of the class W_{2}^{1} in the domain D_{T} for $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$, i.e., of the vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right):=$ $\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$ for which there exists a sequence of vector functions $u^{m}=\left\{u_{1}^{m}, \ldots, u_{N}^{m}\right) \in$ $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{0} u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{1.3.3}
\end{equation*}
$$

For the solution $u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ of the problem (1.3.1), (1.3.2) the following a priori estimate

$$
\begin{equation*}
\|u\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \leq c(T)\|F\|_{L_{2}\left(D_{T}\right)}, \quad c(T)=\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{1.3.4}
\end{equation*}
$$

is valid. Indeed, multiplying scalarly both parts of the equation (1.3.1) by $2 \frac{\partial u}{\partial t}$ and integrating in the domain $D_{\tau}, 0<\tau \leq T$, after simple transformations, with the use of the equality (1.3.2) and integration by parts, we have the equality [45, p. 116]

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{\tau}} F \frac{\partial u}{\partial t} d x d t \tag{1.3.5}
\end{equation*}
$$

where $\Omega_{\tau}:=D_{T} \cap\{t=\tau\}$. Since $S_{T}: t=|x|, t \leq T$, due to (1.3.2), we have

$$
u(x, \tau)=\int_{|x|}^{\tau} \frac{\partial}{\partial t} u(x, s) d s, \quad(x, \tau) \in \Omega
$$

Squaring scalarly both parts of the obtained equation, integrating it in the domain Ω_{τ} and using the Schwartz inequality, we get

$$
\begin{align*}
\int_{\Omega_{\tau}} u^{2} d x=\int_{\Omega_{\tau}}\left(\int_{|x|}^{\tau} \frac{\partial}{\partial t} u(x, s) d s\right)^{2} d x & \leq \int_{\Omega_{\tau}}(\tau-|x|)\left(\int_{|x|}^{\tau}\left(\frac{\partial u}{\partial t}\right)^{2} d s\right) d x \\
& \leq T \int_{\Omega_{\tau}}\left(\int_{|x|}^{\tau}\left(\frac{\partial u}{\partial t}\right)^{2} d s\right) d x=T \int_{D_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t \tag{1.3.6}
\end{align*}
$$

Denoting

$$
w(\tau)=\int_{\Omega_{\tau}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x
$$

taking into account the inequality $2 F \frac{\partial u}{\partial t} \leq\left(\frac{\partial u}{\partial t}\right)^{2}+F^{2}$ and (1.3.5), (1.3.6), we have

$$
\begin{align*}
w(\tau) & \leq(1+T) \int_{D_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F^{2} d x d t \\
& \leq(1+T) \int_{D_{\tau}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t \\
& =(1+T) \int_{0}^{\tau} w(s) d s+\|F\|_{L_{2}\left(D_{\tau}\right)}^{2}, \quad 0<\tau \leq T \tag{1.3.7}
\end{align*}
$$

According to the Gronwall lemma, from (1.3.7) it follows that

$$
\begin{equation*}
w(\tau) \leq\|F\|_{L_{2}\left(D_{\tau}\right)}^{2} \exp (1+T) \tau \leq\|F\|_{L_{2}\left(D_{T}\right)}^{2} \exp (1+T) T, \quad 0<\tau \leq T \tag{1.3.8}
\end{equation*}
$$

Further, according to (1.3.8), we have

$$
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{T} w(\tau) d \tau \leq T\|F\|_{L_{2}\left(D_{T}\right)}^{2} \exp (1+T) T
$$

which ensures the a priori estimate (1.3.4).
Remark 1.3.2. Due to (1.3.3), for the strong generalized solution of the problem (1.3.1), (1.3.2) of the class W_{2}^{1} in the domain D_{T} the a priori estimate (1.3.4) is also valid.

Since the space $C_{0}^{\infty}\left(D_{T}\right)$ of finite infinitely differentiable in D_{T} functions are dense in $L_{2}\left(D_{T}\right)$, for the given $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ there exists a sequence of vector functions $F^{m}=\left(F_{1}^{m}, \ldots, F_{N}^{m}\right) \in$ $C_{0}^{\infty}\left(D_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|F^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. For the fixed m, extending F^{m} by zero beyond the domain D_{T} and retaining the same notation, we have $F^{m} \in C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ with the support supp $F^{m} \subset$ D_{∞}, where $\mathbb{R}_{+}^{n+1}:=\mathbb{R}^{n+1} \cap\{t \geq 0\}$. Denote by $u^{m}=\left(u_{1}^{m}, \ldots, u_{N}^{m}\right)$ the solution of the Cauchy problem: $L_{0} u^{m}=F^{m},\left.u^{m}\right|_{t=0}=0,\left.\frac{\partial u^{m}}{\partial t}\right|_{t=0}=0$, which exists, is unique and belongs to the space $C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ [32, p. 192]. Since $\operatorname{supp} F^{m} \subset D_{\infty},\left.u^{m}\right|_{t=0}=0,\left.\frac{\partial u}{\partial t}\right|_{t=0}=0$, in view of the geometry of the domain of dependence of the solution of the linear wave equation $L_{0} u^{m}=F^{m}$, we have $\operatorname{supp} u^{m} \subset D_{\infty}\left[32\right.$, p. 191]. Retaining the same notation, for the restriction of the vector function u^{m} on the domain D_{T}, one can see that $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ and, according to Remark 1.3.1 and (1.3.4),

$$
\begin{equation*}
\left\|u^{m}-u^{k}\right\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c(T)\left\|F^{m}-F^{k}\right\|_{L_{2}\left(D_{T}\right)} \tag{1.3.9}
\end{equation*}
$$

The sequence $\left\{F^{m}\right\}$ is fundamental in $L_{2}\left(D_{T}\right)$ and, due to (1.3.9), the sequence $\left\{u^{m}\right\}$ is likewise fundamental in the complete space ${ }_{\circ}^{\circ}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$. Therefore, there exists the vector function $u \in$ $\stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0$, and since $L_{0} u^{m}=F^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, according to Remark 1.3.1, this vector function will be the strong generalized solution of the problem (1.3.1), (1.3.2) of the class W_{2}^{1} in the domain D_{T}. The uniqueness of this solution from the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ follows, in view of Remark 1.3.2, from the a priori estimate (1.3.4). Therefore, for the solution u of the problem (1.3.1), (1.3.2) we have $u=L_{0}^{-1} F$, where $L_{0}^{-1}:\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow$ $\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}$ is a linear continuous operator, whose norm, according to Remark 1.3.2 and (1.3.4), has the following estimate:

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}} \leq \sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{1.3.10}
\end{equation*}
$$

Remark 1.3.3. Due to (1.3.10), if the condition (1.2.3) is fulfilled, where $0 \leq \alpha<\frac{n+1}{n-1}$ and $F \in$ $L_{2}\left(D_{T}\right)$, then in view of Remark 1.2.1, it is easy to see that the vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in$ $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem (1.2.1), (1.2.2) of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}(-f(u)+F) \tag{1.3.11}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.
Remark 1.3.4. Let the condition (1.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}$, be fulfilled. We rewrite the equation (1.3.11) in the form

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(-K_{0} u+F\right) \tag{1.3.12}
\end{equation*}
$$

where the operator $K_{0}:\left[{ }^{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N}$ from (1.2.4) is, due to Remark 1.2.1, a continuous compact operator. Therefore, in view of (1.3.10), (1.3.12), the operator $A:\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N} \rightarrow$
$\left[{ }^{\circ}{ }_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}$ is likewise continuous and compact. Denote by $B\left(0, r_{0}\right):=\left\{u=\left(u_{1}, \ldots, u_{N}\right) \in\right.$ $\left.\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):\|u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq r_{0}\right\}$ a closed convex ball of radius r_{0} with center at the origin in the Hilbert space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$. Since the operator A from (1.3.12), acting in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, is continuous and compact, according to the Schauder principle, for the solvability of (1.3.12) in ${ }_{W}^{1}\left(D_{T}, S_{T}\right)$ it suffices to prove that the operator A maps the ball $B\left(0, r_{0}\right)$ into itself for some $r_{0}>0$ [90, p. 370].

Theorem 1.3.1. Let f satisfy the condition (1.2.3), where $1 \leq \alpha<\frac{n+1}{n-1} ; g=0, F \in L_{2, l o c}\left(D_{T}\right)$ and $F_{D_{T}} \in L_{2}\left(D_{T}\right)$ for every $T>0$. Then the problem (1.1.1), (1.1.2) is locally solvable in the class W_{2}^{1}, i.e., there exists a number $T_{0}=T_{0}(F)>0$ such that for $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

Proof. Taking into account Remark 1.3.4, it suffices to prove the existence of the numbers $T_{0}=$ $T_{0}(F)>0$ and $r_{0}=r_{0}(T, F)$ such that for $T<T_{0}$, the operator A from (1.3.12) maps the ball $B\left(0, r_{0}\right)$ into itself. For this purpose, we find the needed estimate of $\|A u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)}$ for $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

For $u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$, we denote by \widetilde{u} the vector function representing the even continuation of u through the plane $t=T$ in the domain $D_{T}^{*}: T<t<2 T-|x|$, symmetric to D_{T} with respect to the same plane, i.e.,

$$
\widetilde{u}= \begin{cases}u(x, t), & (x, t) \in D_{T}, \\ u(x, 2 T-t), & (x, t) \in D_{T}^{*}\end{cases}
$$

and $\widetilde{u}(x, t)=u(x, t)$ for $t=T, t=T$ in the sense of the trace theory. It is obvious that $\widetilde{u} \in$ $\stackrel{\circ}{W}_{2}^{1}\left(\widetilde{D}_{T}\right):=\left\{v \in W_{2}^{1}\left(\widetilde{D}_{T}\right):\left.v\right|_{\partial \widetilde{D}_{T}}=0\right\}$, where $\widetilde{D}_{T}:|x|<t<2 T-|x|$. Clearly, $\widetilde{D}_{T}=D_{T} \cup \Omega_{T} \cup D_{T}^{*}$, $\Omega_{T}:=D_{\infty} \cap\{t=T\}$.

Using the inequality [93, p. 258]

$$
\int_{\Omega}|v| d \Omega \leq(\operatorname{mes} \Omega)^{1-\frac{1}{p}}\|v\|_{p, \Omega}, \quad p \geq 1,
$$

and taking into account the equalities $\|\widetilde{u}\|_{L_{p}\left(\widetilde{D}_{T}\right)}^{p}=2\|u\|_{L_{p}\left(D_{T}\right)}^{p},\|\widetilde{u}\|_{W_{2}^{1}\left(\widetilde{D}_{T}\right)}^{2}=2\|u\|_{W_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}}$, from the known multiplicative inequality [68, p. 78]

$$
\begin{gathered}
\|v\|_{p, \Omega} \leq \beta\left\|\nabla_{x, t} v\right\|_{m, \Omega}^{\widetilde{\alpha}}\|v\|_{r, \Omega}^{1-\widetilde{\alpha}} \forall v \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \Omega \subset \mathbb{R}^{n+1}, \\
\nabla x, t=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right), \widetilde{\alpha}=\left(\frac{1}{r}-\frac{1}{p}\right)\left(\frac{1}{r}-\frac{1}{\widetilde{m}}\right)^{-1}, \widetilde{m}=\frac{(n+1) m}{n+1-m}
\end{gathered}
$$

for $\Omega=\widetilde{D}_{T} \subset \mathbb{R}^{n+1}, v=\widetilde{u}, r=1, m=2$ and $1<p \leq \frac{2(n+1)}{n-1}$, where $\beta=$ const >0 does not depend on v and T, follows the inequality

$$
\begin{equation*}
\|u\|_{L_{p}\left(D_{T}\right)} \leq c_{0}\left(\operatorname{mes} D_{T}\right)^{\frac{1}{p}+\frac{1}{n+1}-\frac{1}{2}}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \quad \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right), \tag{1.3.13}
\end{equation*}
$$

where $c_{0}=$ const >0 does not depend on u and T. Taking into account the fact that mes $D_{T}=$ $\frac{\omega_{n}}{n+1} T^{n+1}$, where ω_{n} is the volume of a unit ball in \mathbb{R}^{n}, for $p=2 \alpha$, from (1.3.13), we obtain

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{T}\right)} \leq C_{T}\|u\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right), \tag{1.3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{T}=c_{0}\left(\frac{\omega_{n}}{n+1}\right)^{\alpha_{1}} T^{(n+1) \alpha_{1}}, \quad \alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2} . \tag{1.3.15}
\end{equation*}
$$

Note that $\alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2}>0$ for $\alpha<\frac{n+1}{n-1}$ and, consequently, $\lim _{t \rightarrow 0} C_{T}=0$.
For the value of $\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)}$, where $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and the operator K_{0} acts according to the formula (1.2.4), in view of (1.2.3) and (1.3.14), we have the estimate

$$
\begin{aligned}
&\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)}^{2} \leq \int_{D_{T}}\left(M_{1}+M_{2}|u|^{\alpha}\right)^{2} d x d t \leq 2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2} \int_{D_{T}}|u|^{2 \alpha} d x d t \\
&=2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2}\|u\|_{L_{2 \alpha}\left(D_{T}\right.}^{2 \alpha} \leq 2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2} C_{T}^{2 \alpha}\|u\|_{W_{2}\left(D_{T}, S_{T}\right)}^{2 \alpha}
\end{aligned}
$$

whence we obtain

$$
\begin{equation*}
\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)} \leq M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\sqrt{2} M_{2} C_{T}^{\alpha}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha} \tag{1.3.16}
\end{equation*}
$$

Further, from (1.3.10), (1.3.12) and (1.3.16), it follows that

$$
\begin{align*}
& \|A u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=\left\|L_{0}^{-1}\left(-K_{0} u+F\right)\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \\
& \leq\left\|L_{0}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}}\left\|\left(-K_{0} u+F\right)\right\|_{L_{2}\left(D_{T}\right)} \\
& \leq\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \\
& \leq\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\sqrt{2} M_{2} C_{T}^{\alpha}\|u\|_{W_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}}^{\alpha}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \\
& =a(T)\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+b(T) . \tag{1.3.17}
\end{align*}
$$

Here,

$$
\begin{align*}
& a(T)=\sqrt{2} M_{2} C_{T}^{\alpha} \sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{1.3.18}\\
& b(T)=\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \tag{1.3.19}
\end{align*}
$$

For the fixed $T>0$, with respect to the variable z we consider the equation

$$
\begin{equation*}
a z^{\alpha}+b=z \tag{1.3.20}
\end{equation*}
$$

where $a=a(T)$ and $b=b(T)$ are defined by (1.3.18) and (1.3.19), respectively.
First, consider the case $\alpha>1$. A simple analysis, analogous to that given in the work [90, pp. 373, $374]$ for $\alpha=3$, shows that:
(1) if $b=0$, then the equation (1.3.20) has a unique positive root $z_{2}=a^{-\frac{1}{\alpha-1}}$ besides the trivial root $z_{1}=0$;
(2) if $b>0$, then for $0<b<b_{0}$, where

$$
\begin{equation*}
b_{0}=b_{0}(T)=\left[\alpha^{-\frac{1}{\alpha-1}}-\alpha^{-\frac{\alpha}{\alpha-1}}\right] a^{-\frac{1}{\alpha-1}} \tag{1.3.21}
\end{equation*}
$$

the equation (1.3.20) has two positive roots z_{1} and $z_{2}, 0<z_{1}<z_{2}$; moreover, for $b=b_{0}$, these roots coincide and we have one positive root $z_{1}=z_{2}=z_{0}=(\alpha a)^{-\frac{1}{\alpha-1}}$;
(3) for $b>b_{0}$, the equation (1.3.20) does not have nonnegative roots. Note that for $0<b<b_{0}$, we have the inequalities $z_{1}<z_{0}=(\alpha a)^{-\frac{1}{\alpha-1}}<z_{2}$.

Due to the absolute continuity of the Lebesgue integral, we have

$$
\lim _{T \rightarrow 0}\|F\|_{L_{2}\left(D_{T}\right)}=0
$$

Therefore, taking into account that mes $D_{T}=\frac{\omega_{n}}{n+1} T^{n+1}$,from (1.3.19) it follows that $\lim _{T \rightarrow 0} b(T)=0$. Besides, since $-\frac{1}{\alpha-1}<0$ for $\alpha>1$ and $\lim _{t \rightarrow 0} C_{T}=0$, from (1.3.18) and (1.3.21) we find that $\lim _{T \rightarrow 0} b_{0}=$ $+\infty$. Therefore, there exists a number $T_{0}=T_{0}(F)>0$ such that for $0<T<T_{0}$, due to (1.3.18)(1.3.21), the condition $0<b<b_{0}$ will be fulfilled and hence the equation (1.3.20) will have at least one positive root; we denote it by $r_{0}=r_{0}(T, F)$.

When $\alpha=1$, the equation (1.3.20) is linear, and $\lim _{T \rightarrow 0} a(T)=0$. Therefore, for $0<T<T_{0}$, where $T_{0}=T(F)$ is a sufficiently small positive number, this equation will have a unique positive root $z(T, F)=b(a-a)^{-1}$ which is also denoted by $r_{0}=r_{0}(T, F)$.

Let us now show that the operator A from (1.3.12) maps the ball $B(0, r) \subset \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ into itself. indeed, in view of (1.3.17) and the equality $a r_{0}^{\alpha}+b=r_{0}$, for every $u \in B\left(0, r_{0}\right)$ we have

$$
\begin{equation*}
\|A u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq a\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+b \leq a r_{0}^{\alpha}+b=r_{0} . \tag{1.3.22}
\end{equation*}
$$

According to Remark 1.3.4, the above reasoning proves Theorem 1.3.1.
Theorem 1.3.2. Let f satisfy the condition (1.2.3), where $0 \leq \alpha<1 ; g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for every $T>0$. Then the problem (1.1.1), (1.1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$, the problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

Proof. According to Remark 1.3.4, it suffices to show that for any $T>0$ there exists a number $r_{0}=r_{0}(T, F)>0$ such that the operator A from (1.3.12) maps the ball $B\left(0, r_{0}\right) \subset \stackrel{\circ}{W_{w}^{1}}\left(D_{T}, S_{T}\right)$ into itself. First, let $\frac{1}{2}<\alpha<1$. Since $2 \alpha>1$, the inequality (1.3.14) is valid and thereby the estimate (1.3.17), as well. For the fixed $T>0$, owing to $\alpha<1$, there exists a number $r_{0}=r_{0}(T, F)>0$ such that

$$
\begin{equation*}
a(T) s^{\alpha}+b(T) \leq r_{0} \forall s \in\left[0, r_{0}\right] \tag{1.3.23}
\end{equation*}
$$

Indeed, the function $\frac{\lambda(s)}{s}$, where $\lambda(s)=a(T) s^{\alpha}+b(T)$, is a monotonically decreasing continuous function, and $\lim _{s \rightarrow+0} \frac{\lambda(s)}{s}=+\infty$ and $\lim _{s \rightarrow+\infty} \frac{\lambda(s)}{s}=0$. Therefore, there exists a number $s=r_{0}(T, F)>0$ such that $\left.\frac{\lambda(s)}{s}\right|_{s=r_{0}}=1$. Hence, since the function $\lambda(s)$ for $s \geq 0$ is monotonically increasing, we immediately arrive at (1.3.23). Further, in view of (1.3.17) and (1.3.23), for every $u \in B\left(0, r_{0}\right)$ we have the inequality (1.3.22), i.e., $A\left(B\left(0, r_{0}\right)\right) \subset B\left(0, r_{0}\right)$.

The case $0 \leq \alpha \leq \frac{1}{2}$ can be reduced to the previous case $\frac{1}{2}<\alpha<1$, since the vector function, satisfying the condition (1.2.3) for $0 \leq \alpha \leq \frac{1}{2}$, satisfies the same condition (1.2.3) for a certain fixed $\alpha=\alpha_{1} \in\left(\frac{1}{2}, 1\right)$ with other positive constants M_{1} and M_{2} (it is easy to see that $M_{1}+M_{2}|u|^{\alpha} \leq$ $\left.\left(M_{1}+M_{2}\right)+M_{2}|u|^{\alpha_{1}} \forall u \in \mathbb{R}, \alpha<\alpha_{1}\right)$. This proves Theorem 1.3.2.

1.4 The uniqueness and existence of the global solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1}

Below, we impose on the nonlinear vector function $f=\left(f_{1}, \ldots, f_{n}\right)$ from (1.1.1) the additional requirements

$$
\begin{equation*}
f \in C^{1}\left(\mathbb{R}^{N}\right),\left|\frac{\partial f_{i}(u)}{\partial u_{j}}\right| \leq M_{3}+M_{4}|u|^{\gamma}, \quad 1 \leq i, j \leq N \tag{1.4.1}
\end{equation*}
$$

where $M_{3}, M_{4}, \gamma=$ const ≥ 0. For the sake of simplicity, we assume that the vector function $g=0$ in the boundary condition (1.1.2), i.e., we consider the problem (1.2.1), (1.2.2).

Obviously, (1.4.1) results in the condition (1.2.3) for $\alpha=\gamma+1$, and in the case for $\gamma<\frac{2}{n-1}$, we have $\alpha=\gamma+1<\frac{n+1}{n-1}$.

Theorem 1.4.1. Let the condition (1.4.1) be fulfilled, where $0 \leq \gamma<\frac{2}{n-1}, F \in L_{2}\left(D_{T}\right), g=0$. Then the problem (1.1.1), (1.1.2) cannot have more than one strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

Proof. Let $F \in L_{2}\left(D_{T}\right), g=0$ and the problem (1.1.1), (1.1.2) have two strong generalized solutions u^{1} and u^{2} of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1, i.e., there exist two sequences of vector functions $u^{i m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right), i=1,2 ; m=1,2, \ldots$, such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{i m}-u^{i}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{i m}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \quad i=1,2 . \tag{1.4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=u^{2}-u^{1}, \quad w^{m}=u^{2 m}-u^{1 m}, \quad F^{m}=L u^{2 m}-L u^{1 m} \tag{1.4.3}
\end{equation*}
$$

According to (1.4.2), (1.4.3), we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|w^{m}-w\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{1.4.4}
\end{equation*}
$$

In accordance with (1.2.1), (1.2.2) and (1.4.3), we consider the vector function $w^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ as a solution of the following problem

$$
\begin{gather*}
\square w^{m}=-\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right]+F^{m} \tag{1.4.5}\\
\left.w^{m}\right|_{S_{T}}=0 . \tag{1.4.6}
\end{gather*}
$$

Multiplying scalarly both parts of the vector equality (1.4.5) by the vector $\frac{\partial w^{m}}{\partial t}$ in the space \mathbb{R}^{N} and integrating by parts in the domain $D_{\tau}, 0<\tau \leq T$, due to (1.4.6), in the same way as that for obtaining the equality (1.3.5), we have

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\right. & \left.\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& =2 \int_{D_{\tau}} F^{m} \frac{\partial w^{m}}{\partial t} d x d t-2 \int_{D_{\tau}}\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial u^{m}}{\partial t} d x d t, \quad 0<\tau \leq T \tag{1.4.7}
\end{align*}
$$

Taking into account the equality

$$
f_{i}\left(u^{2 m}\right)-f_{i}\left(u^{1 m}\right)=\sum_{j=1}^{N} \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\left(u_{j}^{2 m}-u_{j}^{1 m}\right)
$$

we obtain

$$
\begin{equation*}
\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t}=\sum_{i, j=1}^{N}\left[\int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\right]\left(u_{j}^{2 m}-u_{j}^{1 m}\right) \frac{\partial w_{i}^{m}}{\partial t} \tag{1.4.8}
\end{equation*}
$$

From (1.4.1) and the obvious inequality

$$
\left|D_{1}+d_{2}\right|^{\gamma} \leq 2^{\gamma} \max \left(\left|d_{1}\right|^{\gamma},\left|d_{2}\right|^{\gamma}\right) \leq 2^{\gamma}\left(\left|d_{1}\right|^{\gamma}+\left|d_{2}\right|^{\gamma}\right)
$$

for $\gamma \geq 0, d_{1}, d_{2} \in \mathbb{R}$, we have

$$
\begin{align*}
\left\lvert\, \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}\right.\right. & \left.+s\left(u^{2 m}-u^{1 m}\right)\right) d s \mid \\
& \leq \int_{0}^{1}\left[M_{3}+M_{4}\left|(1-s) u^{1 m}+s u^{2 m}\right|^{\gamma}\right] d s \leq M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right) \tag{1.4.9}
\end{align*}
$$

From (1.4.8) and (1.4.9), with regard for (1.4.3), it follows that

$$
\begin{align*}
&\left|\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t}\right| \leq \sum_{i, j=1}^{n}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w_{j}^{m}\right|\left|\frac{\partial w_{i}^{m}}{\partial t}\right| \\
& \leq N^{2}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| \\
& \leq \frac{1}{2} N^{2} M_{3}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right]+2^{\gamma} N^{2} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| \tag{1.4.10}
\end{align*}
$$

In view of (1.4.7) and (1.4.10), we have

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \leq \int_{D_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\left(F^{m}\right)^{2}\right] d x d t+N^{2} M_{3} \int_{\Omega_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right] d x d t \\
& +2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \tag{1.4.11}
\end{align*}
$$

The last integral in the right-hand side of (1.4.11) can be estimated by means of Hölder's inequality

$$
\begin{align*}
& \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \\
& \quad \leq\left(\left\|\left|u^{1 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}+\left\|\left|u^{2 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}\right)\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)}^{2} \tag{1.4.12}
\end{align*}
$$

Here $\frac{1}{n+1}+\frac{1}{p}+\frac{1}{2}=1$, i.e.,

$$
\begin{equation*}
p=\frac{2(n+1)}{n-1} \tag{1.4.13}
\end{equation*}
$$

For $1<q \leq \frac{2(n+1)}{n-1}$, due to (1.3.13), we have

$$
\begin{equation*}
\|v\|_{L_{q}\left(D_{\tau}\right)} \leq C_{q}(T)\|v\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \forall v \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right), \quad 0<\tau<T \tag{1.4.14}
\end{equation*}
$$

with the positive constant $C_{q}(T)$, not depending on $v \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and $\tau \in(0, T]$.
According to the conditions of the theorem $\gamma<\frac{2}{n-1}$, and hence $\gamma(n+1)<\frac{2(n+1)}{n-1}$. Thus, from (1.4.13) and (1.4.14), we get

$$
\begin{gather*}
\left\|\left|u^{i m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}=\left\|u^{i m}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma} \leq C_{\gamma(n+1)}^{\gamma}(T)\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}, \quad i=1,2 ; \quad m \geq 1 \tag{1.4.15}\\
\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)} \leq C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}, \quad m \geq 1 \tag{1.4.16}
\end{gather*}
$$

According to the first equality of (1.4.2), there exists a natural number m_{0} such that for $m \geq m_{0}$, we have

$$
\begin{equation*}
\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma} \leq\left\|u^{i}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+1, \quad i=1,2 ; \quad m \geq 1 \tag{1.4.17}
\end{equation*}
$$

Taking into account the above equalities, from (1.4.12)-(1.4.17) it follows that

$$
\begin{align*}
& 2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left\|\frac{\partial w^{m}}{\partial t}\right\| d x d t \\
& \leq 2^{\gamma+1} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T)\left(\left\|u^{1}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+\left\|u^{2}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+2\right) C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)}^{2} \\
& \leq M_{5}\left(\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2}+\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) \\
& \quad \leq 2 M_{5}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2}=2 M_{5} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t, \quad \text { (1.4.18) } \tag{1.4.18}
\end{align*}
$$

where

$$
M_{5}=2^{\gamma} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T)\left(\left\|u^{1}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+\left\|u^{2}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+2\right) C_{p}(T)
$$

In view of (1.4.18), from (1.4.11) we have

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \quad \leq M_{6} \int_{\Omega_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t+\int_{D_{T}}\left(F^{m}\right)^{2} d x d t, \quad 0<\tau \leq T, \tag{1.4.19}
\end{align*}
$$

where $M_{6}=1+M_{3} N^{2}+2 M_{5}$.
Note that the inequality (1.3.6) is valid for w^{m}, as well, and therefore,

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left(w^{m}\right)^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial w^{m}}{\partial t}\right)^{2} d x d t \leq T \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \tag{1.4.20}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\lambda_{m}(\tau):=\int_{\Omega_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \tag{1.4.21}
\end{equation*}
$$

and adding up the inequalities (1.4.19) and (1.4.20), we obtain

$$
\lambda_{m}(\tau) \leq\left(M_{6}+T\right) \int_{0}^{\tau} \lambda_{m}(s) d s+\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}
$$

Hence, in view of the Gronwall lemma, it follows that

$$
\begin{equation*}
\lambda_{m}(\tau) \leq\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) \tau \tag{1.4.22}
\end{equation*}
$$

From (1.4.21) and (1.4.22) we have

$$
\begin{equation*}
\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}=\int_{0}^{T} \lambda_{m}(\tau) d \tau \leq T\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) T \tag{1.4.23}
\end{equation*}
$$

Due to (1.4.3) and (1.4.4), from (1.4.23) it follows that

$$
\begin{aligned}
&\|w\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}+w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2} \leq \lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}+\lim _{m \rightarrow \infty}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)} \\
&=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}=0 .
\end{aligned}
$$

Therefore, $w=u_{2}-u_{1}=0$, i.e., $u_{2}=u_{1}$, which proves Theorem 1.4.1.

From Theorems 1.3.2 and 1.4.1 the following existence and uniqueness theorem immediately follows.
Theorem 1.4.2. Let the vector function f satisfy the condition (1.2.3) for $\alpha<1$, and the condition (1.4.1) for $\gamma<\frac{2}{n-1}$. Then for every $F \in L_{2}\left(D_{T}\right)$ and $g=0$, the problem (1.1.1), (1.1.2) has a unique strong generalized solution $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1.

The theorem below on the existence of a global solution of the problem (1.1.1), (1.1.2) follows from Theorem 1.4.2.

Theorem 1.4.3. Let the vector function f satisfy the condition (1.2.3) for $\alpha<1$, and the condition (1.4.1) for $\gamma<\frac{2}{n-1} ; g=0$ and $F \in L_{2, \text { loc }}\left(D_{\infty}\right)$ for every $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$. Then the problem (1.1.1), (1.1.2) has a unique strong generalized solution $u \in W_{2, \text { loc }}^{1}\left(D_{\infty}\right)$ of the class W_{2}^{1} in the cone of the future D_{∞} in the sense of Definition 1.2.4.
Proof. According to Theorem 1.4.2, under the fulfilment of the conditions of Theorem 1.4.3 for $T=m$, where m is a natural number, there exists a unique strong generalized solution $u^{m} \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain $D_{T=m}$ in the sense of Definition 1.2.1. Since $\left.u^{m+1}\right|_{D_{T=m}}$ is likewise a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain $D_{T=m}$, according to Theorem 1.4.2, we have $u^{m}=\left.u^{m+1}\right|_{D_{T=m}}$, from which we obtain the following scheme of constructing a unique global strong generalized solution $u \in \stackrel{\circ}{W}_{2, l o c}^{1}\left(D_{\infty}, S_{\infty}\right)$ of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the cone of the future D_{∞} in the sense of Definition 1.2.4:

$$
u(x, t)=u^{m}(x, t), \quad(x, t) \in D_{\infty}, \quad m=[t]+1,
$$

where $[t]$ is an integer part of the number. Thus Theorem 1.4.3 is proved.

1.5 The cases of nonexistence of a global solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1}. Blow-up solutions of the problem (1.1.1), (1.1.2) of the class W_{2}^{1}

Theorem 1.5.1. Let the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (1.2.3), when $1<\alpha<$ $\frac{n+1}{n-1}$, and there exist the numbers $\ell_{1}, \ell_{2}, \ldots, \ell_{N}, \sum_{i=1}^{N}\left|\ell_{i}\right| \neq 0$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} \ell_{i} f_{i}(u) \leq c_{0}-c_{1}\left|\sum_{i=1}^{N} \ell_{i} u_{i}\right|^{\beta} \forall u \in \mathbb{R}^{N}, \quad 1<\beta=\text { const }<\frac{n+1}{n-1}, \tag{1.5.1}
\end{equation*}
$$

where $c_{0}, c_{1}=$ const, $c_{1}>0$. Let $F \in L_{2, l o c}\left(D_{\infty}\right), g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in$ $W_{2}\left(S_{T}\right)$ for every $T>0$. Suppose that at least one of the functions $F_{0}=\sum_{i=1}^{N} \ell_{i} F_{i}-c_{0}$ or $\left.\frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}}$, where $g_{0}=\sum_{i=1}^{N} \ell_{i} g_{i}$, is nontrivial (i.e., differs from zero on a subset of positive measure in D_{∞} or S_{∞}, respectively). If

$$
\begin{equation*}
g_{0} \geq 0,\left.\quad \frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}} \leq 0,\left.\quad F_{0}\right|_{D_{\infty}} \geq 0, \tag{1.5.2}
\end{equation*}
$$

then there exists a finite positive number $T_{0}=T_{0}(F, g)$ such that for $T>T_{0}$, the problem (1.1.1), (1.1.2) does not have a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1. Here, $\frac{\partial}{\partial \mathcal{N}}$ is a derivative along the conormal to S_{∞}, i.e., $\frac{\partial}{\partial \mathcal{N}}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$, where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is a unit vector of the outer normal to $\partial D_{\infty}=S_{\infty}$.

Proof. Let $u=\left(u_{1}, \ldots, u_{N}\right)$ be a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T}. Here we apply the method of test functions [77, pp. 10-12]. According to Remark 1.2.3, the solution u of this problem satisfies the integral equality (1.2.5) in which we take as a test function $\varphi=\left(\ell_{1} \psi, \ell_{2} \psi, \ldots, \ell_{N} \psi\right)$, where $\psi=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]$ and the scalar function $\psi_{0} \in C^{2}((-\infty, \infty))$ satisfies the conditions $\psi_{0} \geq 0, \psi_{0}^{\prime} \leq 0 ; \psi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$ and $\psi(\sigma)=0$ for $\sigma \geq 2\left[77\right.$, p. 22]. For such a test function φ with notations $v=\sum_{i=1}^{N} \ell_{i} u_{i}, g_{0}=\sum_{i=1}^{N} \ell_{i} g_{i}, F_{*}=\sum_{i=1}^{N} \ell_{i} F_{i}$, $f_{0}=\sum_{i=1}^{N} \ell_{i} f_{i}$, the integral equality (1.2.5) takes the form

$$
\begin{equation*}
\int_{D_{T}}\left[-v_{t} \psi_{t}+\nabla v \nabla \psi\right] d x d t=-\int_{D_{T}} f_{0}(u) \psi d x d t+\int_{D_{T}} F_{*} \psi d x d t-\int_{S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \tag{1.5.3}
\end{equation*}
$$

Since $\left.\psi\right|_{t \geq T}=0$ and the equality $\left.v\right|_{S_{T}}=g_{0}$ holds in the sense of the trace theory, integrating by parts the left-hand side of the equality (1.5.3), we get

$$
\begin{equation*}
\int_{D_{T}}\left[-v_{t} \psi_{t}+\nabla v \nabla \psi\right] d x d t=\int_{D_{T}} v \square \psi d x d t-\int_{S_{T}} v \frac{\partial \psi}{\partial \mathcal{N}} d s=\int_{D_{T}} v \square \psi d x d t-\int_{S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s \tag{1.5.4}
\end{equation*}
$$

From (1.5.3) and (1.5.4), due to (1.5.1) and $\psi \geq 0$, we obtain the inequality

$$
\begin{align*}
& \int_{D_{T}} v \square \psi d x d t \geq \int_{D_{T}}\left[c_{1}|v|^{\beta}-c_{0}\right] \psi d x d t+\int_{D_{T}} F_{*} \psi d x d t+\int_{S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \\
&=c_{1} \int_{D_{T}}|v|^{\beta} \psi d x d t+\int_{D_{T}}\left(F_{*}-c_{0}\right) \psi d x d t+\int_{S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \tag{1.5.5}
\end{align*}
$$

According to the properties of the function ψ and the inequalities (1.5.2), the inequalities

$$
\begin{equation*}
\left.\frac{\partial \psi}{\partial \mathcal{N}}\right|_{S_{T}} \geq 0, \quad \int_{S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s \geq 0, \quad \int_{S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \leq 0, \int_{D_{T}} F_{0} \psi d x d t \geq 0 \tag{1.5.6}
\end{equation*}
$$

where $F_{0}=F_{*}-c_{0}=\sum_{i=1}^{N} \ell_{i} F_{i}-c_{0}$, are obvious.
Assuming that the functions F, g and ψ are fixed, we introduce the function of one variable

$$
\begin{equation*}
\gamma(T)=\int_{D_{T}} F_{0} \psi d x d t+\int_{S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s, T>0 \tag{1.5.7}
\end{equation*}
$$

Due to the absolute continuity of the integral and the inequalities (1.5.6), the function $\gamma(T)$ from (1.5.7) is nonnegative, continuous and nondecreasing; besides,

$$
\begin{equation*}
\lim _{T \rightarrow 0} \gamma(T)=0 \tag{1.5.8}
\end{equation*}
$$

and since, according to our supposition, one of the functions $\left.\frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}}$ or F_{0} is nontrivial, we get

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \gamma(T)>0 \tag{1.5.9}
\end{equation*}
$$

In view of (1.5.7), the inequality (1.5.5) can be rewritten as follows:

$$
\begin{equation*}
c_{1} \int_{D_{T}}|v|^{\beta} \psi d x d t \leq \int_{D_{T}} v \square \psi d x d t-\gamma(T) \tag{1.5.10}
\end{equation*}
$$

If in Young's inequality with the parameter $\varepsilon>0: a b \leq(\varepsilon / \beta) a^{\beta}+\left(\beta^{\prime} \varepsilon^{\beta^{\prime}-1}\right)^{-1} b^{\beta^{\prime}}$, where $\beta^{\prime}=\frac{\beta}{\beta-1}$, we take $a=|v| \psi^{1 / \beta}, b=|\square \psi| / \psi^{1 / \beta}$, then, in view of the equality $\beta^{\prime} / \beta=\beta^{\prime}-1$, we have

$$
\begin{equation*}
|v \square \psi|=|v| \psi^{1 / \beta} \frac{|\square \psi|}{\psi^{1 / \beta}} \leq \frac{\varepsilon}{\beta}|v|^{\beta} \psi+\frac{|\square \psi|^{\beta^{\prime}}}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1} \psi^{\beta^{\prime}-1}} \tag{1.5.11}
\end{equation*}
$$

Due to (1.5.11), from (1.5.10) we have the inequality

$$
\left(c_{1}-\frac{\varepsilon}{\beta}\right) \int_{D_{T}}|v|^{\beta} \psi d x d t \leq \frac{1}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{D_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\gamma(T)
$$

whence for $\varepsilon<c_{1} \beta$, we get

$$
\begin{equation*}
\int_{D_{T}}|v|^{\beta} \psi d x d t \leq \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{D_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\frac{\beta}{c_{1} \beta-\varepsilon} \gamma(T) \tag{1.5.12}
\end{equation*}
$$

Since $\beta^{\prime}=\frac{\beta^{\prime}}{\beta-1}, \beta=\frac{\beta^{\prime}}{\beta^{\prime}-1}$, due to the equality

$$
\min _{0<\varepsilon<c_{\beta}} \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}}=\frac{1}{c_{1}^{\beta^{\prime}}}
$$

which is achieved for $\varepsilon=c_{1}$, it follows from (1.5.12) that

$$
\begin{equation*}
\int_{D_{T}}|v|^{\beta} \psi d x d t \leq \frac{1}{c_{1}^{\beta^{\prime}}} \int_{D_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\frac{\beta^{\prime}}{c_{1}} \gamma(T) \tag{1.5.13}
\end{equation*}
$$

According to the properties of the function ψ_{0}, the test function

$$
\psi(x, t)=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]=0
$$

for $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}>T$. Therefore, after changing of variables $t=\sqrt{2} T \xi_{0}, x=\sqrt{2} T \xi$, it is not difficult to verify that

$$
\begin{equation*}
\int_{D_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t=\int_{r=\left(t^{2}+|x|^{2}\right)^{1 / 2} \leq T} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t=(\sqrt{2} T)^{n+1-2 \beta^{\prime}} \varkappa_{0} \tag{1.5.14}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\varkappa_{0}=\int_{1 \leq\left|\xi_{0}\right|^{2}+|\xi|^{2} \leq 2} 2^{\frac{\left|2(1-n) \psi_{0}^{\prime}+4\left(\xi^{2}-|\xi|^{2}\right) \psi_{0}^{\prime \prime}\right|^{\beta^{\prime}}}{\psi_{0}^{\beta^{\prime}-1}}} d \xi d \xi_{0}<+\infty \tag{1.5.15}
\end{equation*}
$$

As is known, the test function $\psi(x, t)=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]$ with the aforementioned properties, for which the condition (1.5.15) is fulfilled, exists [77, p. 22].

Due to (1.5.14), from (1.5.13), in view of $\psi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$, we have

$$
\begin{equation*}
\int_{r \leq \frac{T}{\sqrt{2}}}|v|^{\beta} d x d t \leq \int_{D_{T}}|v|^{\beta} \psi d x d t \leq \frac{\mid \sqrt{2} T)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} \gamma(T) \tag{1.5.16}
\end{equation*}
$$

In the case if $\beta<\frac{n+1}{n-1}$, i.e., if $n+1-2 \beta^{\prime}<0$, the equation

$$
\begin{equation*}
\lambda(T)=\frac{(\sqrt{2} T)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} \gamma(T)=0 \tag{1.5.17}
\end{equation*}
$$

has a unique positive root $T=T_{0}(F, g)$, since the function

$$
\lambda_{1}(T)=\frac{(\sqrt{2} T)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}} \varkappa_{0}
$$

is a positive, continuous, strictly decreasing in $(0,+\infty)$, besides,

$$
\lim _{T \rightarrow 0} \lambda_{1}(T)=+\infty \text { and } \lim _{T \rightarrow+\infty} \lambda_{1}(T)=0
$$

and the function $\gamma(T)$ is, as noted above, nonnegative, continuous and nondecreasing, satisfying the conditions (1.5.8) and (1.5.9). Besides, $\lambda(T)<0$ for $T>T_{0}$ and $\lambda(T)>0$ for $0<T<T_{0}$. Therefore, for $T>T_{0}$, the right-hand side of the inequality (1.5.16) is a negative value, which is impossible. Thus this contradiction proves Theorem 1.5.1.

Remark 1.5.1. Let us consider one class of vector functions f satisfying the condition (1.5.1):

$$
\begin{equation*}
f_{i}\left(u_{1}, \ldots, u_{N}\right)=\sum_{j=1}^{N} a_{i j}\left|u_{j}\right|^{\beta_{i j}}+b_{i}, \quad i=1, \ldots, N \tag{1.5.18}
\end{equation*}
$$

where $a_{i j}=$ const $>0, b_{i}=$ const, $1<b_{i j}=$ const $<\frac{n+1}{n-1}, i, j=1, \ldots, N$. In this case we can take $\ell_{1}=\ell_{2}=\cdots=\ell_{N}=-1$. Indeed, we choose $\beta=$ const such that $1<\beta<\beta_{i j}, i, j=1, \ldots, N$. It is easy to verify that $|s|^{\beta_{i j}} \geq|s|^{\beta}-1 \forall s \in(\infty, \infty)$. Using the inequality [21, p. 302]

$$
\sum_{i=1}^{N}\left|y_{i}\right|^{\beta} \geq N^{1-\beta}\left|\sum_{i=1}^{N} y_{i}\right|^{\beta} \forall y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}, \quad \beta=\text { const }>1
$$

we get

$$
\begin{aligned}
& \sum_{i=1}^{N} f_{i}\left(u_{1}, \ldots, u_{N}\right) \geq a_{0} \sum_{i, j=1}^{N}\left|u_{j}\right|^{\beta_{i j}}+\sum_{i=1}^{N} b_{i} \geq a_{0} \sum_{i, j=1}^{N}\left(\left|u_{j}\right|^{\beta}-1\right)+\sum_{i=1}^{N} b_{i} \\
& \quad=a_{0} N \sum_{j=1}^{N}\left|u_{j}\right|^{\beta}-a_{0} N^{2}+\sum_{i=1}^{N} b_{i} \geq a_{0} N^{2-\beta}\left|\sum_{j=1}^{N} u_{j}\right|^{\beta}+\sum_{i=1}^{N} b_{i}-a_{0} N^{2}, \quad a_{0}=\min _{i, j} a_{i j}>0 .
\end{aligned}
$$

Hence we have the inequality (1.5.1) in which

$$
\ell_{1}=\ell_{2}=\cdots=\ell_{N}=-1, \quad c_{0}=a_{0} N^{2}-\sum_{i=1}^{N} b_{i}, \quad c_{1}=a_{0} N^{2-\beta}>0
$$

Note that the vector function f, represented by the equalities (1.5.18), likewise satisfies the condition (1.5.1) with $\ell_{1}=\ell_{2}=\cdots=\ell_{N}=-1$ for less restrictive conditions when: $a_{i j}=$ const ≥ 0, but $a_{i k_{i}}>0$, where k_{1}, \ldots, k_{N} is any fixed permutation of numbers $1,2 \ldots, N ; i, j=1, \ldots, N$.
Remark 1.5.2. From Theorem 1.5.1 it follows that in the conditions of this theorem the problem (1.1.1), (1.1.2) cannot have a global strong generalized solution of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 1.2.4.

Remark 1.5.3. Let the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (1.2.3) for $1<\alpha<\frac{n+1}{n-1}$, the condition (1.4.1) for $\gamma<\frac{2}{n-1}$ and also the condition (1.5.1). Let $g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for every $T>0$ and, moreover, let F satisfy the third condition of (1.5.2). Then, taking into account the fact that a strong generalized solution u of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2 .1 is also a solution of that problem in a smaller domain $D_{T_{1}}$ for $T_{1}<T$, from Theorems 1.3.1, 1.4.1 and 1.5.1 follows the existence of a finite positive number $T_{*}=T_{*}(F)$ such that for $T>T_{*}$, the problem (1.1.1), (1.1.2) does not have a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.2.1. There exists a unique vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2, l o c}^{1}\left(D_{T_{*}}\right)$ such that for any $T<T_{*}$, the vector function u is a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the domain D_{T}. This vector function can be considered as a blow-up solution of the problem (1.1.1), (1.1.2) of the class W_{2}^{1} in the sense that $\|u\|_{W_{2}^{1}\left(D_{T}\right)}<+\infty$ for $T<T_{*}$ and $\lim _{T \rightarrow T_{*}-0}\|u\|_{W_{2}^{1}\left(D_{T}\right)}=+\infty$.

Chapter 2

One multidimensional version of the Darboux first problem for one class of semilinear second order hyperbolic systems

2.1 Statement of the Problem

In the Euclidean space \mathbb{R}^{n+1} of independent variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t consider a second order semilinear hyperbolic system of the form

$$
\begin{equation*}
\frac{\partial^{2} u_{i}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u_{i}}{\partial x_{i}^{2}}+f_{i}\left(u_{1}, \ldots, u_{N}\right)=F_{i}, \quad i=1, \ldots, N \tag{2.1.1}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), F=\left(F_{1}, \ldots, F_{N}\right)$ are the given, and $u=\left(u_{1}, \ldots, u_{N}\right)$ is an unknown vector function, $n \geq 2, N \geq 2$.

Denote by $D: t>|x|, x_{n}>0$, the half of the light cone of the future bounded by the part $S^{0}: \partial D \cap\left\{x_{n}=0\right\}$ of a hyperplane $x_{n}=0$ and the half $S: t=|x|, x_{n} \geq 0$, of the characteristic conoid $\Lambda: t=|x|$ of the system (2.1.1). Let $D_{T}:=\{(x, t) \in D: t<T\}, S_{T}^{0}:=\left\{(x, t) \in S^{0}: t \leq T\right\}$, $S_{T}:=\{(x, t) \in S: t \leq T\}, T>0$.

For the system of equations (2.1.1) consider the problem on finding a solution $u(x, t)$ of this system by the following boundary conditions

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=g \tag{2.1.2}
\end{equation*}
$$

where $g=\left(g_{1}, \ldots, g_{N}\right)$ is a given vector function on S_{T}. In the case $T=\infty$, we have $D_{\infty}=D$, $S_{\infty}^{0}=S^{0}$ and $S_{\infty}=S$.

The problem (2.1.1), (2.1.2) represents a multidimensional version of the Darboux first problem for the system (2.1.1), when one part of the problem data support is a characteristic manifold, while another part is of time type manifold [5, pp. 228, 233].

The questions on the existence and nonexistence of a global solution of the Cauchy problem for semilinear scalar equations of the form (2.1.1) with the initial conditions $\left.u\right|_{t=0}=u_{0},\left.\frac{\partial u}{\partial t}\right|_{t=0}=u_{1}$ have been considered by many authors (see the corresponding references in Chapter 1). As is known, for the second order scalar linear hyperbolic equations, the multidimensional versions of the Darboux first problem are well-posed and they are globally solvable in suitable function spaces [5, 42, 43, 81, 91, 92]. In regard to the multidimensional problem (2.1.1), (2.1.2) for a scalar case, i.e., when $N=1$, in the case of nonlinearity of the form $f(u)=\lambda|u|^{p} u$, in [51] it is shown that depending on the sign
of the parameter λ and the values of the power exponent p, the problem (2.1.1), (2.1.2) is globally solvable in some cases and not globally solvable in other cases. Another multidimensional version of the Darboux first problem for a scalar semilinear equation of the form (2.1.1), where instead of the boundary condition $\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0$ in (2.1.2) is taken $\left.u\right|_{S_{T}^{0}}=0$, is considered in [9]. Noteworthy is the fact that the multidimensional version of the Darboux second problem for a scalar semilinear equation of the form (2.1.1) is studied in [56].

In the present chapter we introduce certain conditions for the nonlinear vector function $f=f(u)$ from (2.1.1) the fulfilment of which ensures local or global solvability of the problem (2.1.1), (2.1.2), while in some cases it will not have global solution, though it will be locally solvable.

2.2 Definition of a generalized solution of the problem (2.1.1), (2.1.2) in D_{T} and D_{∞}

Let

$$
\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.u\right|_{S_{T}}=0\right\}
$$

Let, moreover, $\stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{k}(\Omega)$ is the Sobolev space consisting of the elements of $L_{2}(\Omega)$ having up to the k-th order generalized derivatives from $L_{2}(\Omega)$, inclusive. Here, the equality $\left.u\right|_{S_{T}}=0$ should be understood in the sense of the trace theory [68, p. 71].

Below, under the belonging of the vector $v=\left(v_{1}, \ldots, v_{N}\right)$ to some space X we mean the belonging of each component $v_{i}, 1 \leq i \leq N$, of that vector to the same space X. In accordance with the above-said, for the sake of simplicity of our writing and to avoid misunderstanding, instead of $v=$ $\left(v_{1}, \ldots, v_{N}\right) \in[X]^{N}$, we write $v \in X$.

Rewrite the system of equations (2.1.1) in the form of one vector equation

$$
\begin{equation*}
L u:=\square u+f(u)=F_{1}, \tag{2.2.1}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\Delta, \Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$.
Together with the boundary conditions (2.1.2), we consider the corresponding homogeneous boundary conditions

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 \tag{2.2.2}
\end{equation*}
$$

Below, on the nonlinear vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ in (2.1.1) we impose the following requirement

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{N}\right), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const } \geq 0, \quad u \in \mathbb{R}^{N} \tag{2.2.3}
\end{equation*}
$$

where $|\cdot|$ is a norm in the space $\mathbb{R}^{N}, M_{i}=$ const $\geq 0, i=1,2$.
Remark 2.2.1. The embedding operator $I:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{q}\left(D_{T}\right)\right]^{N}$ is a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$, when $n>1[68$, p. 86]. At the same time, Nemitski's operator $\mathcal{K}:\left[L_{q}\left(D_{T}\right)\right]^{n} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N}$ acting by the formula $\mathcal{K} u=f(u)$, where $u=\left(u_{1}, \ldots, u_{N}\right) \in\left[L_{q}\left(D_{T}\right)\right]^{N}$, and the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfies the condition (2.2.3), is continuous and bounded for $q \geq 2 \alpha\left[67\right.$, p. 349], [22, pp. 66, 67]. Thus, if $\alpha<\frac{n+1}{n-1}$, i.e., $2 \alpha<\frac{2(n+1)}{n-1}$, then there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Therefore, in this case, the operator

$$
\begin{equation*}
\mathcal{K}_{0}=\mathcal{K} I:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N} \tag{2.2.4}
\end{equation*}
$$

is continuous and compact. Clearly, from $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$ it follows that $f(u) \in L_{2}\left(D_{T}\right)$ and, if $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, then $f\left(u^{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.

Definition 2.2.1. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (2.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}, F=$ $\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ and $g=\left(g_{1}, \ldots, g_{N}\right) \in W_{2}^{1}\left(S_{T}\right)$. We call the vector function $u=\left(u_{1}, \ldots, u_{N}\right)$
$\in W_{2}^{1}\left(D_{T}\right)$ a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of vector functions $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ such that $\left.\frac{\partial u^{m}}{\partial t}\right|_{S_{T}^{0}}=0, u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right), L u^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$ and $\left.u^{m}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$. Convergence of the sequence $\left\{f\left(u^{m}\right)\right\}$ to $f(u)$ in the space $L_{2}\left(D_{T}\right)$ as $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$ follows from Remark 2.2.1. When $g=0$, i.e., in the case of homogeneous boundary conditions (2.2.2), we assume that $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$. Then it is clear that $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

It is obvious that the classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (2.1.1), (2.1.2) is a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.
Remark 2.2.2. It is easy to verify that if $u \in C^{2}\left(\bar{D}_{T}\right)$ is a classical solution of the problem (2.1.1), (2.1.2), then multiplying scalarly both sides of the system (2.2.1) by any test vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in C^{2}\left(\bar{D}_{T}\right)$ satisfying the condition $\left.\varphi\right|_{t=T}=0$, after integration by parts, we obtain the equality

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} \varphi_{t}+\nabla u \nabla \varphi\right] d x d t=-\int_{D_{T}} f(u) \varphi d x d t+\int_{D_{T}} F \varphi d x d t-\int_{S_{T}^{0} \cup S_{T}} \frac{\partial u}{\partial \mathcal{N}} \varphi d s \tag{2.2.5}
\end{equation*}
$$

where $\frac{\partial}{\partial \mathcal{N}}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is the derivative with respect to the conormal, $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit vector of the outer normal to ∂D_{T}, and $\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$. Taking into account that $\left.\frac{\partial}{\partial \mathcal{N}}\right|_{S_{T}^{0}}=\frac{\partial}{\partial x_{n}}$ and S_{T} is a characteristic manifold on which the operator $\frac{\partial}{\partial \mathcal{N}}$ is an inner differential operator, from (2.1.2) we have

$$
\left.\frac{\partial u}{\partial \mathcal{N}}\right|_{S_{T}^{0}}=0,\left.\quad \frac{\partial u}{\partial \mathcal{N}}\right|_{S_{T}}=\left.\frac{\partial g}{\partial \mathcal{N}}\right|_{S_{T}}
$$

Therefore, the equality (2.2.5) takes the form

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} \varphi_{t}+\nabla u \nabla \varphi\right] d x d t=-\int_{D_{T}} f(u) \varphi d x d t+\int_{D_{T}} F \varphi d x d t-\int_{S_{T}} \frac{\partial g}{\partial \mathcal{N}} \varphi d s \tag{2.2.6}
\end{equation*}
$$

It can be easily seen that the equality (2.2.6) is valid also for any vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in$ $W_{2}^{1}\left(D_{T}\right)$ such that $\left.\varphi\right|_{t=T}=0$ in the sense of the trace theory. Note that the equality (2.2.6) is also valid for a strong generalized solution $u \in W_{2}^{1}\left(D_{T}\right)$ of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1. Indeed, if $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ is a sequence of vector functions from Definition 2.2.1, then writing the equality (2.2.6) for $u=u^{m}$ and passing to the limit as $m \rightarrow \infty$, we obtain (2.2.6). It should be noted that the equality (2.2.6), valid for any test vector function $\varphi \in W_{2}^{1}\left(D_{T}\right)$ satisfying the condition $\left.\varphi\right|_{t=T}=0$, can be put in the basis of the definition of a weak generalized solution $u \in W_{2}^{1}\left(D_{T}\right)$ of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T}.

Definition 2.2.2. Let f satisfy the condition (2.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (2.1.1), (2.1.2) is locally solvable in the class W_{2}^{1} if there exists a number $T_{0}=T_{0}(F, g)>0$ such that for any $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Definition 2.2.3. Let f satisfy the condition (2.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (2.1.1), (2.1.2) is globally solvable in the class W_{2}^{1} if for any $T>0$ this problem has a strong generalized solution of the class in the domain D_{T} in the sense of Definition 2.2.1.

Definition 2.2.4. Let f satisfy the condition (2.2.3), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. The vector function $u=$
$\left(u_{1}, \ldots, u_{N}\right) \in W_{2, l o c}^{1}\left(D_{\infty}\right)$ is called a global strong generalized solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{∞} if for any $T>0$ the vector function $\left.u\right|_{D_{T}}$ belongs to the space $W_{2}^{1}\left(D_{T}\right)$ and is a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Remark 2.2.3. Reasoning used in the proof of the equation (2.2.6) makes it possible to conclude that the global strong generalized solution $u=\left(u_{1}, \ldots, u_{N}\right)$ of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 2.2.4 satisfies the following integral equality

$$
\int_{D_{\infty}}\left[-u_{t} \varphi_{t}+\nabla u \nabla \varphi\right] d x d t=-\int_{D_{\infty}} f(u) \varphi d x d t+\int_{D_{\infty}} F \varphi d x d t-\int_{S_{\infty}} \frac{\partial g}{\partial \mathcal{N}} \varphi d s
$$

for any test vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in C^{1}\left(D_{\infty}\right)$, which is finite with respect to the variable $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}$, i.e., $\varphi=0$ for $r>r_{0}=$ const >0.

2.3 Some cases of local and global solvability of the problem (2.1.1), (2.1.2) in the class W_{2}^{1}

For the sake of simplicity, we consider the case where the boundary conditions (2.1.2) are homogeneous. In this case the problem $(2.1 .1),(2.1 .2)$ can be rewritten in the form (2.2.1), (2.2.2).

Remark 2.3.1. Before we proceed to considering the solvability of the problem (2.1.1), (2.1.2), let us consider the same question for the linear case, when the vector function $f=0$ in (2.2.1), i.e., for the problem

$$
\begin{gather*}
L_{0} u:=\square u=F(x, t), \quad(x, t) \in D_{T}, \tag{2.3.1}\\
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 . \tag{2.3.2}
\end{gather*}
$$

For the problem (2.3.1), (2.3.2), by analogy to that in Definition 2.2.1 for the problem (2.1.1), (2.1.2), we introduce the notion of a strong generalized solution $u=\left(u_{1}, \ldots, u_{N}\right)$ of the class W_{2}^{1} in the domain D_{T} for $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$, i.e., for the vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\stackrel{\circ}{W}}{2}\left(D_{T}, S_{T}\right)$, for which there exists a sequence of vector functions $u^{m}=\left(u_{1}^{m}, \ldots, u_{N}^{m}\right) \in \stackrel{\circ}{C}_{2}^{1}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{0} u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{2.3.3}
\end{equation*}
$$

For the solution $u \in \stackrel{\circ}{C}_{2}^{1}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ of the problem (2.3.1), (2.3.2) the estimate

$$
\begin{equation*}
\|u\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq c(T)\|F\|_{L_{2}\left(D_{T}\right)}, \quad c(T)=\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{2.3.4}
\end{equation*}
$$

is valid. Indeed, multiplying scalarly both parts of the vector equation (2.3.2) by $2 \frac{\partial u}{\partial t}$ and integrating in the domain $D_{\tau}, 0<\tau \leq T$, after simple transformations with the use of the equalities (2.3.2) and integration by parts, we arrive at the equality [51], [45, p. 116]

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{\tau}} F \frac{\partial u}{\partial t} d x d t \tag{2.3.5}
\end{equation*}
$$

where $\Omega_{\tau}:=D_{T} \cap\{t=\tau\}$. Since $S_{\tau}: t=|x|, x_{n} \geq 0, t \leq \tau$, due to (2.3.2), we get

$$
u(x, \tau)=\int_{|x|}^{\tau} \frac{\partial}{\partial t} u(x, s) d s, \quad(x, s) \in \Omega_{\tau}
$$

Squaring scalarly both parts of the obtained equality, integrating it in the domain Ω_{τ} and using the Schwartz inequality, we have

$$
\begin{align*}
\int_{\Omega_{\tau}} u^{2} d x=\int_{\Omega_{\tau}}\left(\int_{|x|}^{\tau} \frac{\partial}{\partial t} u(x, s)\right)^{2} d x & \leq \int_{\Omega_{\tau}}(\tau-|x|)\left(\int_{|x|}^{\tau}\left(\frac{\partial u}{\partial t}\right)^{2} d s\right) d x \\
& \leq T \int_{\Omega_{\tau}}\left(\int_{|x|}^{\tau}\left(\frac{\partial u}{\partial t}\right)^{2} d s\right)^{2} d x=T \int_{D_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t \tag{2.3.6}
\end{align*}
$$

Let

$$
w(\tau):=\int_{\Omega_{\tau}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x
$$

Taking into account the inequality $2 F \frac{\partial u}{\partial t} \leq\left(\frac{\partial u}{\partial t}\right)^{2}+F^{2}$, due to (2.3.5) and (2.3.6), we have

$$
\begin{align*}
w(\tau) & \leq(1+T) \int_{D_{T}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F^{2} d x d t \\
& \leq(1+T) \int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t+\|f\|_{L_{2}\left(D_{T}\right)}^{2} \\
& =(1+T) \int_{0}^{\tau} w(s) d s+\|F\|_{L_{2}\left(D_{T}\right)}^{2}, \quad 0<\tau \leq T \tag{2.3.7}
\end{align*}
$$

According to the Gronwall lemma, from (2.3.7) it follows that

$$
\begin{equation*}
w(\tau) \leq\|F\|_{L_{2}\left(D_{T}\right)}^{2} \exp (1+T) T, \quad 0<\tau \leq T \tag{2.3.8}
\end{equation*}
$$

Using (2.3.8), we get

$$
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}=\int_{D_{\tau}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{T} w(\tau) d \tau \leq T\|F\|_{L_{2}\left(D_{T}\right)}^{2} \exp (1+T) T
$$

which results in the estimate (2.3.4).
Remark 2.3.2. Due to (2.3.3), a priori estimate (2.3.4) is also valid for a strong generalized solution of the problem (2.3.1), (2.3.2) of the class W_{2}^{1} in the domain D_{T}.

Since the space $C_{0}^{\infty}\left(D_{T}\right)$ of finite infinitely differentiable in D_{T} functions is dense in $L_{2}\left(D_{T}\right)$, for the given $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ there exists a sequence of vector functions $F^{m}=\left(F_{1}^{m}, \ldots, F_{N}^{m}\right) \in$ $C_{0}^{\infty}\left(D_{T}\right)$ such that

$$
\lim _{m \rightarrow \infty}\left\|F^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0
$$

For the fixed m, extending F^{m} evenly with respect to the variable x_{n} in the domain $D_{T}^{-}:=$ $\left\{(x, t) \in \mathbb{R}^{n+1}: x_{n}<0,|x|<t<T\right\}$ and then by zero beyond the domain $D_{T} \cup D_{T}^{-}$and retaining the same notation, we have $F^{m} \in C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$, for which the support $\operatorname{supp} F^{m} \subset D_{\infty} \cup D_{\infty}^{-}$, where $\mathbb{R}_{+}^{n+1}:=\mathbb{R}^{n+1} \cap\{t \geq 0\}$. Denote by u^{m} the solution of the Cauchy problem

$$
\begin{equation*}
L_{0} u^{m}:=\square u^{m}=F^{m},\left.\quad u^{m}\right|_{t=0}=0,\left.\quad \frac{\partial u^{m}}{\partial t}\right|_{t=0}=0 \tag{2.3.9}
\end{equation*}
$$

which, as is well-known [32, p. 192], exists, is unique and belongs to the space $C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$. Since $\operatorname{supp} F^{m} \subset D_{\infty} \cup D_{\infty}^{-} \subset\left\{(x, t) \in \mathbb{R}^{n+1}: t>|x|\right\},\left.u^{m}\right|_{t=0}=0$ and $\left.\frac{\partial u^{m}}{\partial t}\right|_{t=0}=0$, taking into account
the geometry of the domain of dependence of the solution of the linear wave equation $L_{0} u^{m}=F^{m}$, we have $\operatorname{supp} u^{m} \subset\left\{(x, t) \in \mathbb{R}^{n+1}: t>|x|\right\}\left[32\right.$, p. 191] and, in particular, $\left.u^{m}\right|_{S_{T}}=0$. On the other hand, the vector function $\widetilde{u}^{m}\left(x_{1}, \ldots, x_{n}, t\right)=u^{m}\left(x_{1}, \ldots,-x_{n}, t\right)$ is likewise a solution of the same Cauchy problem (2.3.9), since the vector function F^{m} is even with respect to the variable x_{n}. Therefore, due to the uniqueness of the solution of the Cauchy problem, we have $\widetilde{u}^{m}=u^{m}$, i.e., $u^{m}\left(x_{1}, \ldots,-x_{n}, t\right)=u^{m}\left(x_{1}, \ldots, x_{n}, t\right)$, and hence the vector function u^{m} is likewise an even function with respect to the variable x_{n}. This, in turn, implies that $\left.\frac{\partial u^{m}}{\partial x_{n}}\right|_{x_{n}=0}=0$, which under the condition $\left.u^{m}\right|_{S_{T}}=0$ indicates that if we retain the same notation for the restriction of the vector function u^{m} in the domain D_{T}, then it is obvious that $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$. Further, due to (2.3.4) and (2.3.9), the inequality

$$
\begin{equation*}
\left\|u^{m}-u^{k}\right\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c(T)\left\|F^{m}-F^{k}\right\|_{L_{2}\left(D_{T}\right)} \tag{2.3.10}
\end{equation*}
$$

is valid.
Since the sequence $\left\{F^{m}\right\}$ is fundamental in $L_{2}\left(D_{T}\right)$, due to (2.3.10), the sequence $\left\{u^{m}\right\}$ is also fundamental in the complete space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$. Therefore, there exists a vector function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ such that

$$
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0
$$

and since $L_{0} u^{m}=F^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, this vector function is, according to Remark 2.3.1, a strong generalized solution of the problem $(2.3 .1),(2.3 .2)$ of the class W_{2}^{1} in the domain D_{T}. The uniqueness of that solution from the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ follows, due to Remark 2.3.2, from the a priori estimate (2.3.4). Therefore, for the solution u of the problem (2.3.1), (2.3.2) we can write $u=L_{0}^{-1} F$, where $L_{0}^{-1}:\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}$ is a linear continuous operator with a norm admitting, in view of (2.3.4), the following estimate:

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}} \leq \sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{2.3.11}
\end{equation*}
$$

Remark 2.3.3. Taking into account (2.3.11), when the condition (2.2.3) is fulfilled, where $0 \leq$ $\alpha<\frac{n+1}{n-1}$ and $F \in L_{2}\left(D_{T}\right)$, due to Remark 2.2.1, it is easy to see that the vector function $u=$ $\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem $(2.2 .1),(2.2 .2)$ of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}(-f(u)+F) \tag{2.3.12}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.
Remark 2.3.4. Let the condition (2.2.3) be fulfilled and $0 \leq \alpha<\frac{n+1}{n-1}$. We rewrite the equation (2.3.12) in the form

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(-\mathcal{K}_{0} u+F\right), \tag{2.3.13}
\end{equation*}
$$

where the operator $\mathcal{K}_{0}:\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N}$ from (2.2.4) is, due to Remark 2.2.1, continuous and compact. Therefore, according to (2.3.11) and (2.3.13), the operator $\mathcal{A}:\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N} \rightarrow$ $\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}$ is also continuous and compact. Denote by $B\left(0, r_{0}\right):=\left\{u=\left(u_{1}, \ldots, u_{N}\right) \in\right.$ $\left.W_{2}^{1}\left(D_{T}, S_{T}\right):\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq r_{0}\right\}$ a closed convex ball of radius $r_{0}>0$ with center in a null element in the Hilbert space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

Since the operator \mathcal{A} from (2.3.13), acting in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, is a compact continuous operator, according to the Schauder principle, for the solvability of the equation (2.3.13) in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ it suffices to prove that the operator \mathcal{A} maps the ball $B\left(0, r_{0}\right)$ into itself for some $r_{0}>0$ [90, p. 370].

Theorem 2.3.1. Let f satisfy the condition (2.2.3), where $1 \leq \alpha<\frac{n+1}{n-1}, g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (2.1.1), (2.1.2) is locally solvable in the class W_{2}^{1}, i.e., there exists a number $T_{0}=T_{0}(F)>0$ such that for any $T<T_{0}$, this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Proof. Due to Remark 2.3.4, it suffices to prove the existence of positive numbers $T_{0}=T_{0}(F)$ and $r_{0}=$ $r_{0}(T, F)$ such that for $T<T_{0}$, the operator \mathcal{A} from (2.3.13) maps the ball $B\left(0, r_{0}\right)$ into itself. Towards this end, let us evaluate $\|\mathcal{A} u\|_{\stackrel{\circ}{2}_{2}^{1}\left(D_{T}, S_{T}\right)}$ for $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$. If $u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{{ }_{W}^{1}}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$, we denote by \widetilde{u} the vector function which represents an even extension of u through the planes $x_{n}=0$ and $t=T$. Obviously, $\widetilde{u} \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}^{*}\right):=\left\{v \in W_{2}^{1}\left(D_{T}^{*}:\left.v\right|_{\partial D_{T}^{*}}=0\right\}\right.$, where $D_{T}^{*}:|x|<t<2 T-|x|$.

Using the inequality [93, p. 258]

$$
\int_{\Omega}|v| d \Omega \leq(\operatorname{mes} \Omega)^{1-\frac{1}{p}}\|v\|_{p, \Omega}, \quad p \geq 1
$$

and taking into account the equalities

$$
\|\widetilde{u}\|_{L_{p}\left(D_{T}^{*}\right)}^{p}=2\|u\|_{L_{p}\left(D_{T}\right)}^{p}, \quad\|\widetilde{u}\|_{W_{2}^{1}\left(D_{T}^{*}\right)}^{2}=2\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}
$$

from the known multiplicative inequality [68, p. 78]

$$
\begin{gathered}
\|v\|_{p, \Omega} \leq \beta\left\|\nabla_{x, t} v\right\|_{m, \Omega}^{\widetilde{\alpha}}\|v\|_{r, \Omega}^{1-\widetilde{\alpha}} \forall v \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \quad \Omega \subset \mathbb{R}^{n+1} \\
\nabla_{x, t}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right), \quad \widetilde{\alpha}=\left(\frac{1}{r}-\frac{1}{p}\right)\left(\frac{1}{r}-\frac{1}{\widetilde{m}}\right)^{-1}, \quad \widetilde{m}=\frac{(n+1) m}{n+1-m}
\end{gathered}
$$

for $\Omega=D_{T}^{*} \subset \mathbb{R}^{n+1}, v=\widetilde{u}, r=1, m=2$ and $1<p \leq \frac{2(n+1)}{n+1-m}$, where $\beta=$ const >0 does not depend on v and T, we obtain the following inequality:

$$
\begin{equation*}
\left.\|u\|_{L_{p}\left(D_{T}\right)} \leq c_{0}\left(\operatorname{mes} D_{T}\right)\right)^{\frac{1}{p}+\frac{1}{n+1}-\frac{1}{2}}\|u\|_{\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{2.3.14}
\end{equation*}
$$

where $c_{0}=$ const >0 does not depend on u and T.
Since mes $D_{T}=\frac{\omega_{n}}{n+1} T^{n+1}$, where ω_{n} is the volume of a unit ball in \mathbb{R}^{n}, from (2.3.14) for $p=2 \alpha$ we get

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{T}\right)} \leq C_{T}\|u\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \quad \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{2.3.15}
\end{equation*}
$$

where $C_{T}=c_{0}\left(\frac{\omega_{n}}{n+1}\right)^{\alpha_{1}} T^{(n+1) \alpha_{1}}, \alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2}$.
Note that $\alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2}>0$ for $\alpha<\frac{n+1}{n-1}$, and hence

$$
\begin{equation*}
\lim _{T \rightarrow 0} C_{T}=0 \tag{2.3.16}
\end{equation*}
$$

For $\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}$, where $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and the operator \mathcal{K}_{0} acts according to the formula (2.2.4), due to (2.2.3) and (2.3.15), we have the estimate

$$
\begin{aligned}
&\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}^{2} \leq \int_{D_{T}}\left(M_{1}+M_{2}|u|^{\alpha}\right)^{2} d x d t \leq 2 M_{2}^{1} \operatorname{mes} D_{T}+2 M_{2}^{2} \int_{D_{T}}|u|^{2 \alpha} d x d t \\
&=2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2}\|u\|_{L_{2 \alpha}\left(D_{T}\right)}^{2 \alpha} \leq 2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2} C_{T}^{2 \alpha}\|u\|_{W_{2}\left(D_{T}, S_{T}\right)}^{2 \alpha}
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|\mathcal{K}_{0} u\right\|_{L_{2 \alpha}\left(D_{T}\right)} \leq M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\sqrt{2} M_{2} C_{T}^{\alpha}\|u\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{\alpha} \tag{2.3.17}
\end{equation*}
$$

It follows from (2.3.11), (2.3.13) and (2.3.17) that

$$
\begin{align*}
& \|A u\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=\left\|L_{0}^{-1}\left(-\mathcal{K}_{0} u+F\right)\right\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \\
& \leq\left\|L_{0}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}}\left\|\left(-\mathcal{K}_{0} u+F\right)\right\|_{L_{2}\left(D_{T}\right)} \\
& \leq\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \\
& \leq\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\sqrt{2} M_{2} C_{T}^{\alpha}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \\
& =a(T)\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+b(T) . \tag{2.3.18}
\end{align*}
$$

Here,

$$
\begin{align*}
& a(T)=\sqrt{2} M_{2} C_{T}^{\alpha} \sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{2.3.19}\\
& b(T)=\left[\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)\right]\left(M_{1}\left(2 \operatorname{mes} D_{T}\right)^{\frac{1}{2}}+\|F\|_{L_{2}\left(D_{T}\right)}\right) \tag{2.3.20}
\end{align*}
$$

For the fixed $T>0$, consider the equation

$$
\begin{equation*}
a z^{\alpha}+b=z \tag{2.3.21}
\end{equation*}
$$

with respect to the unknown $z \in \mathbb{R}$, where $a=a(T)$ and $b=b(T)$ are defined by (2.3.19) and (2.3.20).
First, consider the case $\alpha>1$. A simple analysis, analogous to that performed for $\alpha=3$ in [90, pp. 373, 374], shows that:
(1) for $b=0$, together with a trivial root $z_{1}=0$, the equation (2.3.21) has a unique positive root $z_{2}=a^{-\frac{1}{\alpha-1}} ;$
(2) if $b>0$, then for $0<b<b_{0}$, where

$$
\begin{equation*}
b_{0}=b_{0}(T)=\left[\alpha^{-\frac{1}{\alpha-1}}-\alpha^{-\frac{\alpha}{\alpha-1}}\right] a^{-\frac{1}{\alpha-1}} \tag{2.3.22}
\end{equation*}
$$

the equation (2.3.21) has two positive roots z_{1} and $z_{2}, 0<z_{1}<z_{2}$, and for $b=b_{0}$, these roots merge, and we have one positive root $z_{1}=z_{2}=z_{0}=(\alpha a)^{-\frac{1}{\alpha-1}}$;
(3) for $b>b_{0}$, the equation (2.3.21) does not have nonnegative roots. Note that for $0<b<b_{0}$, the inequality $z_{1}<z_{0}=(\alpha a)^{-\frac{1}{\alpha-1}}<z_{2}$ is valid.

In view of the absolute continuity of the Lebesgue integral, we have $\lim _{T \rightarrow 0}\|F\|_{L_{2}\left(D_{T}\right)}=0$. Therefore, taking into account that mes $D_{T}=\frac{\omega_{n}}{n+1} T^{n+1}$, it follows from (2.3.20) that $\lim _{T \rightarrow 0} b(T)=0$. At the same time, since $-\frac{1}{\alpha-1}<0$ for $\alpha>1$, due to (2.3.16), from (2.3.19) and (2.3.22), we get $\lim _{T \rightarrow 0} b_{0}(T)=\infty$. Therefore, there exists a number $T_{0}=T_{0}(F)>0$ such that for $0<T<T_{0}$, in view of (2.3.19)(2.3.22), the condition $0<b<b_{0}$ holds and hence the equation (2.3.21) has at least one positive root, we denote it by $r_{0}=r_{0}(T, F)$.

In case $\alpha=1$, the equation (2.3.21) is linear, where $\lim _{T \rightarrow 0} a(T)=0$. Therefore, for $0<T<T_{0}$, where $T_{0}=T_{0}(F)$ is a sufficiently small positive number, this equation will have a unique positive $\operatorname{root} z(T, F)=b(1-a)^{-1}$, which we also denote by $r_{0}=r_{0}(T, F)$.

Now, we will show that the operator \mathcal{A} from (2.3.13) maps the ball $B\left(0, r_{0}\right) \subset \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ into itself. Indeed, due to (2.3.18) and the equality $a r_{0}^{\alpha}+b=r_{0}$, for any $u \in B\left(0, r_{0}\right)$, we have

$$
\begin{equation*}
\|\mathcal{A} u\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \leq a\|u\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+b \leq a r_{0}^{\alpha}+b=r_{0} . \tag{2.3.23}
\end{equation*}
$$

In view of Remark 2.3.4, the above reasoning proves Theorem 2.3.1.

Theorem 2.3.2. Let f satisfy the condition (2.2.3), where $0 \leq \alpha<1, g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (2.1.1), (2.1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Proof. According to Remark 2.3.4, to prove Theorem 2.3.2, it suffices to show that for any $T>0$ there exists a number $r_{0}=r_{0}(T, F)>0$ such that the operator \mathcal{A} from (2.3.13) maps the ball $B\left(0, r_{0}\right) \subset \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ into itself. Let $\frac{1}{2}<\alpha<1$, then since $2 \alpha>1$, the equality (2.3.15) is valid and hence the estimate (2.3.18) is also valid. For the fixed $T>0$, since $\alpha<1$, there exists a number $r_{0}=r_{0}(T, F)>0$ such that

$$
\begin{equation*}
a(T) s^{\alpha}+b(T) \leq r_{0} \forall s \in\left[0, r_{0}\right] \tag{2.3.24}
\end{equation*}
$$

Indeed, the function $\frac{\lambda(s)}{s}$, where $\lambda(s)=a(T) s^{\alpha}+b(T)$, is a continuous decreasing function and

$$
\lim _{s \rightarrow 0+} \frac{\lambda(s)}{s}=+\infty, \quad \lim _{s \rightarrow+\infty} \frac{\lambda(s)}{s}=0
$$

Therefore, there exists a number $s=r_{0}(T, F)>0$ such that $\left.\frac{\lambda(s)}{s}\right|_{s=r_{0}}=1$. This implies that since the function $\lambda(s)$ for $s \geq 0$ is a monotonic increasing function, (2.3.24) follows immediately. Now, in view of (2.3.18) and (2.3.24), for any $u \in B\left(0, r_{0}\right)$, the inequality $(2.3 .23)$ is valid, i.e., $A\left(B\left(0, r_{0}\right)\right) \subset B\left(0, r_{0}\right)$.

The case $0 \leq \alpha \leq \frac{1}{2}$ can be reduced to the previous case $\frac{1}{2}<\alpha<1$, since the vector function f satisfying the condition (2.2.3) for $0 \leq \alpha \leq \frac{1}{2}$ satisfies the same condition (2.2.3) for a certain fixed $\alpha=\alpha \in\left(\frac{1}{2}, 1\right)$ with other positive constants M_{1} and M_{2} (it is easy to see that $M_{1}+M_{2}\|u\|^{\alpha} \leq$ $\left.\left(M_{1}+M_{2}\right)+M_{2}|u|^{\alpha_{1}} \forall u \in \mathbb{R}, \alpha<\alpha_{1}\right)$. This proves Theorem 2.3.2 completely.

Remark 2.3.5. The global solvability of the problem (2.1.1), (2.1.2) in Theorem 2.3.2 is proved for the case in which the function f satisfies the condition (2.2.3), where $0 \leq \alpha<1$. In the case $1 \leq \alpha<\frac{n+1}{n-1}$, the local solvability of this problem is proved in Theorem 2.3.1, although in this case, for the additional conditions imposed on f the problem (2.1.1), (2.1.2) is globally solvable as is shown in the following theorem.

Theorem 2.3.3. Let f satisfy the condition (2.2.3), where $1 \leq \alpha<\frac{n+1}{n-1}$ and $f=\nabla G$, i.e., $f_{i}(u)=$ $\frac{\partial}{\partial u_{i}} G(u), u \in \mathbb{R}^{N}, i=1, \ldots, N$, where $G=G(u) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a scalar function satisfying the conditions $G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Let $g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (2.1.1), (2.1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$, this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Proof. First, let us show that for any fixed $T>0$, when the conditions of Theorem 2.3.3 are fulfilled, for a strong generalized solution u of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T} the a priori estimate (2.3.4) is valid. Indeed, due to Definition 2.2.1, there exists a sequence of vector functions $u^{m} \in \stackrel{\circ}{C}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{2.3.25}
\end{equation*}
$$

Let

$$
\begin{equation*}
F^{m}:=L u^{m} \tag{2.3.26}
\end{equation*}
$$

then due to the equality (2.3.5), we have

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{T}}\left(F^{m}-f\left(u^{m}\right)\right) \frac{\partial u^{m}}{\partial t} d x d t \tag{2.3.27}
\end{equation*}
$$

Since $f=\nabla G$, we have $f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t}=\frac{\partial}{\partial t} G\left(u^{m}\right)$ and, taking into account that $\left.u^{m}\right|_{S_{T}}=0,\left.\nu_{n+1}\right|_{S_{T}^{0}}=0$, $\left.\nu_{n+1}\right|_{\Omega_{\tau}}=1, G(0)=0$, by integration by parts we get

$$
\begin{align*}
\int_{D_{\tau}} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t} d x d t=\int_{D_{\tau}} & \frac{\partial}{\partial t} G\left(u^{m}\right) d x d t \\
& =\int_{\partial D_{\tau}} G\left(u^{m}\right) \nu_{n+1} d s=\int_{S_{\tau}^{0} \cup S_{\tau} \cup \Omega_{\tau}} G\left(u^{m}\right) \nu_{n+1} d s=\int_{\Omega_{\tau}} G\left(u^{m}\right) d x \tag{2.3.28}
\end{align*}
$$

In view of (2.3.28) and $G \geq 0$, from (2.3.27) we have

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\right. & \left.\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& =2 \int_{D_{\tau}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t-2 \int_{\Omega_{\tau}} G\left(u^{m}\right) d x \leq 2 \int_{D_{\tau}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t . \tag{2.3.29}
\end{align*}
$$

Using the same reasonings as those for finding the estimate (2.3.4), from (2.3.29) we get the following inequality

$$
\left\|u^{m}\right\|_{\stackrel{W}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c(T)\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}, \quad c(T)=\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right)
$$

whence, due to (2.3.25) and (2.3.26), we have (2.3.4).
According to Remarks 2.3.3 and 2.3.4, under the fulfilment of the conditions of Theorem 2.3.3, the vector function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ represents a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} if and only if u represents a solution of the functional equation $u=\mathcal{A} u$ from (2.3.13) in the space $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$, where the operator $\mathcal{A}:\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}$ is continuous and compact. At the same time, as is shown above, for any $\mu \in[0,1]$ and any solution of equation $u=\mu \mathcal{A} u$ with the parameter μ, in the space $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ the following a priori estimate

$$
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq \mu c(T)\|F\|_{L_{2}\left(D_{T}\right)} \leq c(T)\|F\|_{L_{2}\left(D_{T}\right)}
$$

with the positive constant $c(T)$, independent of u, μ and F, is valid. Therefore, according to the Leray-Schauder's theorem [90, p. 375], the equation (2.3.13) and hence the problem (2.1.1), (2.1.2) has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T} for any $T>0$. Thus Theorem 2.3.3 is proved.

2.4 The uniqueness and existence of a global solution of the problem $(2.1 .1),(2.1 .2)$ in the class W_{2}^{1}

Below, we impose on the nonlinear vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ from (2.1.1) the following additional requirements

$$
\begin{equation*}
f \in C^{1}\left(\mathbb{R}^{N}\right), \quad\left|\frac{\partial f_{i}(u)}{\partial u_{j}}\right| \leq M_{3}+M_{4}|u|^{\gamma} \forall u \in \mathbb{R}^{N}, \quad 1 \leq i, j \leq N \tag{2.4.1}
\end{equation*}
$$

where $M_{3}, M_{4}, \gamma=$ const ≥ 0. For the sake of simplicity, we assume that the vector function $g=0$ in the boundary condition (2.1.2).

Remark 2.4.1. It is obvious that from (2.4.1) follows the condition (2.2.3) for $\gamma=\alpha-1$, and in the case $\gamma<\frac{2}{n-1}$, we have $1 \leq \alpha=\gamma+1<\frac{n+1}{n-1}$.

Theorem 2.4.1. Let the condition (2.4.1) be fulfilled, where $0 \leq \gamma<\frac{2}{n-1}, F \in L_{2}\left(D_{T}\right)$ and $g=0$. Then the problem (2.1.1), (2.1.2) cannot have more than one strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

Proof. Let $F \in L_{2}\left(D_{T}\right), g=0$, and assume that the problem (2.1.1), (2.1.2) has two strong generalized solutions u^{1} and u^{2} of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1, i.e., there exist two sequences of vector functions $u^{i m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right), i=1,2 ; m=1,2, \ldots$, such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{i m}-u^{i}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{i m}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \quad i=1,2 \tag{2.4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=u^{2}-u^{1}, \quad w^{m}=u^{2 m}-u^{1 m}, \quad F^{m}=L u^{2 m}-L u^{1 m} \tag{2.4.3}
\end{equation*}
$$

In view of (2.4.2) and (2.4.3), we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|w^{m}-w\right\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{2.4.4}
\end{equation*}
$$

In accordance with (2.4.3), consider the vector function $w^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ as a solution of the following problem:

$$
\begin{gather*}
\square w^{m}=-\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right]+F^{m} \tag{2.4.5}\\
\left.\frac{\partial w^{m}}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad w^{m}\right|_{S_{T}}=0 \tag{2.4.6}
\end{gather*}
$$

From (2.4.5), (2.4.6) and in view of the equality (2.3.5), it follows that

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
&=2 \int_{D_{\tau}} F^{m} \frac{\partial w^{m}}{\partial t} d x d t-2 \int_{D_{\tau}}\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial x_{i}} d x d t, \quad 0<\tau \leq T \tag{2.4.7}
\end{align*}
$$

Taking into account the equality

$$
f_{i}\left(u^{2 m}\right)-f_{i}\left(u^{1 m}\right)=\sum_{j=1}^{N} \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\left(u_{j}^{2 m}-u_{j}^{1 m}\right)
$$

we obtain

$$
\begin{equation*}
\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t}=\sum_{i, j=1}^{N}\left[\int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\right]\left(u_{j}^{2 m}-u_{j}^{1 m}\right) \frac{\partial w_{i}^{m}}{\partial t} \tag{2.4.8}
\end{equation*}
$$

From (2.4.1) and the obvious inequality $\left|d_{1}+d_{2}\right|^{\gamma} \leq 2^{\gamma} \max \left(\left|d_{1}\right|^{\gamma},\left|d_{2}\right|^{\gamma}\right) \leq 2^{\gamma}\left(\left|d_{1}\right|^{\gamma}+\left|d_{2}\right|^{\gamma}\right)$ for $\gamma \geq 0, d_{i} \in \mathbb{R}$, we have

$$
\begin{align*}
\left\lvert\, \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}\right.\right. & \left.+s\left(u^{2 m}-u^{1 m}\right)\right) d s \mid \\
& \leq \int_{0}^{1}\left[M_{3}+M_{4}\left|(1-s) u^{1 m}+s u^{2 m}\right|^{\gamma}\right] d s \leq M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right) \tag{2.4.9}
\end{align*}
$$

From (2.4.8) and (2.4.9), taking into account (2.4.3), we obtain

$$
\begin{align*}
&\left|\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial x_{i}}\right| \leq \sum_{i, j=1}^{N}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w_{j}^{m}\right|\left|\frac{\partial w_{i}^{m}}{\partial t}\right| \\
& \leq N^{2}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| \\
& \leq \frac{1}{2} N^{2} M_{3}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right]+2^{\gamma} N^{2} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| . \tag{2.4.10}
\end{align*}
$$

Due to (2.4.7) and (2.4.10), we get

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \leq \int_{D_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\left(F^{m}\right)^{2}\right] d x d t+N^{2} M_{3} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right] d x d t \\
& +2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \tag{2.4.11}
\end{align*}
$$

The latter integral in the right-hand side of (2.4.11) can be estimated by Hölder's inequality

$$
\begin{align*}
\int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right) & \left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \\
& \leq\left(\left\|\left|u^{1 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}+\left\|\left|u^{2 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}\right)\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)} \tag{2.4.12}
\end{align*}
$$

Here, $\frac{1}{n+1}+\frac{1}{p}+\frac{1}{2}=1$, i.e.,

$$
\begin{equation*}
p=\frac{2(n+1)}{n-1} \tag{2.4.13}
\end{equation*}
$$

In view of (2.3.14), for $q \leq \frac{2(n+1)}{n-1}$ we have

$$
\begin{equation*}
\|v\|_{L_{q}\left(D_{T}\right)} \leq C_{q}(T)\|v\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \forall v \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right), \quad 0<\tau \leq T \tag{2.4.14}
\end{equation*}
$$

with the positive constant $C_{q}(T)$ not depending on $v \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ and $\tau \in[0, T]$.
According to our theorem, $\gamma<\frac{2}{n-1}$ and hence $\gamma(n+1)<\frac{2(n+1)}{n-1}$. Thus, from (2.4.13) and (2.4.14), we obtain

$$
\begin{gather*}
\left\|\left|u^{i m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}=\left\|u^{i m}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma} \leq C_{\gamma(n+1)}^{\gamma}(T)\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}, \quad i=1,2 ; \quad m \geq 1 \tag{2.4.15}\\
\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)} \leq C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}, \quad m \geq 1 \tag{2.4.16}
\end{gather*}
$$

In view of the first equality from (2.4.2), there exists a natural number m_{0} such that for $m \geq m_{0}$, we have

$$
\begin{equation*}
\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma} \leq\left\|u^{i}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+1, \quad i=1,2 ; \quad m \geq m_{0} \tag{2.4.17}
\end{equation*}
$$

In view of the above inequalities, from (2.4.12)-(2.4.16) it follows that

$$
\begin{align*}
& 2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \leq 2^{\gamma+1} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T) \\
& \times\left(\left\|u^{1}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+\left\|u^{2}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+2\right) C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)} \\
& \leq M_{5}\left(\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2}+\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)}\right) \leq 2 M_{5}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)^{2}} \\
& \quad=2 M_{5} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \tag{2.4.18}
\end{align*}
$$

where

$$
M_{5}=2^{\gamma} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T)\left(\left\|u^{1}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+\left\|u^{2}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+2\right) C_{p}(T)
$$

Due to (2.4.17), from (2.4.11) we get

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d s \\
& \quad \leq M_{6} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t+\int_{D_{\tau}}\left(F^{m}\right)^{2} d x d t, \quad 0<\tau \leq T, \tag{2.4.19}
\end{align*}
$$

where $M_{6}=1+M_{3} N^{2}+2 M_{5}$.
Note that the inequality (2.3.6) is likewise valid for w^{m} and, therefore,

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left(w^{m}\right)^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial w^{m}}{\partial t}\right)^{2} d x d t \leq T \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \tag{2.4.20}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\lambda_{m}(\tau):=\int_{\Omega_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \tag{2.4.21}
\end{equation*}
$$

and adding (2.4.18) to (2.4.19), we obtain

$$
\lambda_{m}(\tau) \leq\left(M_{6}+T\right) \int_{0}^{\tau} \lambda_{m}(s) d s+\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}
$$

whence, by the Gronwall lemma, it follows that

$$
\begin{equation*}
\lambda_{m}(\tau) \leq\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) \tau \tag{2.4.22}
\end{equation*}
$$

From (2.4.20) and (2.4.21) we have

$$
\begin{equation*}
\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}=\int_{0}^{T} \lambda(\tau) d \tau \leq T\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) T \tag{2.4.23}
\end{equation*}
$$

In view of (2.4.3) and (2.4.4), from (2.4.22) it follows that

$$
\begin{aligned}
&\|w\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}+w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq \lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}+\lim _{m \rightarrow \infty}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)} \\
&=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0
\end{aligned}
$$

Therefore, $w=u_{2}-u_{1}=0$, i.e., $u_{2}=u_{1}$. Thus Theorem 2.4.1 is proved.

From Theorems 2.3.2, 2.3.3, 2.4.1 and Remark 2.4.1 follows the next theorem on the existence and uniqueness.

Theorem 2.4.2. Let the vector function f satisfy the condition (2.4.1), where $0 \leq \gamma<\frac{2}{n-1}$, and either f satisfy the condition (2.2.3) for $\alpha<1$, or $f=\nabla G$, where $G \in C^{1}\left(\mathbb{R}^{N}\right), G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Then for any $F \in L_{2}\left(D_{T}\right)$ and $g=0$, the problem (2.1.1), (2.1.2) has a unique strong generalized solution $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1.

The theorem below on the existence of a global solution of this problem follows from Theorem 2.4.2.
Theorem 2.4.3. Let the vector function f satisfy the condition (2.4.1), where $0 \leq \gamma<\frac{2}{n-1}$, and either f satisfy the condition (2.2.3) for $\alpha<1$ or $f=\nabla G$, where $G \in C^{1}\left(\mathbb{R}^{N}\right), G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Then the problem (2.1.1), (2.1.2) has a unique global strong generalized solution $u \in \stackrel{\circ}{W_{2, l o c}^{1}}\left(D_{\infty}, S_{\infty}\right)$ of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 2.2.4.
Proof. According to Theorem 2.4.2, when the conditions of Theorem 2.4.3 are fulfilled for $T=k$, where k is a natural number, there exists a unique strong generalized solution $u^{k} \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain $D_{T=k}$ in the sense of Definition 2.2.1. Since $\left.u^{k+1}\right|_{D_{T=k}}$ is also a strong generalized solution of the problem $(2.1 .1),(2.1 .2)$ of the class W_{2}^{1} in the domain $D_{T=k}$, in view of Theorem 2.4.2, we have $u^{k}=\left.u^{k+1}\right|_{D_{T=k}}$. Thus one can construct a unique global generalized solution $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 2.2.4 as follows:

$$
u(x, t)=u^{k}(x, t), \quad(x, t) \in D_{\infty}, \quad k=[t]+1
$$

where $[t]$ is an integer part of the number t. Thus Theorem 2.4.3 is proved.

2.5 The cases of the absence of a global solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1}

Theorem 2.5.1. Let the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (2.2.3), where $1<$ $\alpha<\frac{n+1}{n-1}$, and there exist the numbers $\ell_{1}, \ldots, \ell_{N}, \sum_{i=1}^{N}\left|\ell_{i}\right| \neq 0$, such that

$$
\begin{equation*}
\sum_{i=1}^{N} \ell_{i} f_{i}(u) \leq c_{0}-c_{1}\left|\sum_{i=1}^{N} \ell_{i} u_{i}\right|^{\beta} \forall u \in \mathbb{R}^{N}, \quad 1<\beta=\text { const }<\frac{n+1}{n-1} \tag{2.5.1}
\end{equation*}
$$

where $c_{0}, c_{1}=$ const, $c_{1}>0$. Let $F \in L_{2, l o c}\left(D_{\infty}\right), g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in$ $W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. Let at least one of the functions $F_{0}=\sum_{i=1}^{N} \ell_{i} F_{i}-c_{0}$ or $\left.\frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}}$, where $g_{0}=\sum_{i=1}^{N} \ell_{i} g_{i}$, be nontrivial (i.e., different from zero on a subset of positive measure in D_{∞} or S_{∞}, respectively). Then if

$$
\begin{equation*}
g_{0} \geq 0,\left.\quad \frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}} \leq 0,\left.\quad F_{0}\right|_{D_{\infty}} \geq 0 \tag{2.5.2}
\end{equation*}
$$

there exists a finite positive number $T_{0}=T_{0}(F, g)$ such that for $T>T_{0}$ the problem (2.1.1), (2.1.2) does not have a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1. Here, $\frac{\partial}{\partial \mathcal{N}}$ is a derivative with respect to the conormal to S_{∞}, i.e., $\frac{\partial}{\partial \mathcal{N}}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{N} \nu_{i} \frac{\partial}{\partial x_{i}}$, where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is a unit vector of the outer normal to $\partial D_{\infty}=S_{\infty}$, which is an inner differential operator on the characteristic manifold S_{∞}.

Proof. Let $G_{T}:|x|<t<T, G_{T}^{-}=G_{T} \cap\left\{x_{n}<0\right\}, S_{T}^{-}: t=|x|, x_{n} \leq 0, t \leq T$. Obviously, $D_{T}=G_{T}^{+}: G_{T} \cap\left\{x_{n}>0\right\}$ and $G_{T}=G_{T}^{-} \cup\left(S_{T}^{0} \backslash \partial S_{T}^{0}\right) \cup G_{T}^{+}$, where $S_{T}^{0}=\partial D_{T} \cap\left\{x_{n}=0\right\}$. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 2.2.1. We extend the vector functions u, F and g evenly with respect to the variable x_{n} in G_{T}^{-}and S_{T}^{-}, respectively. For simplicity, we retain the same notations u, F and g to the extended functions defined in G_{T} and $S_{T}^{-} \cup S_{T}$. Let us show that the vector function $u=\left(u_{1}, \ldots, u_{N}\right)$, defined in the domain G_{T}, satisfy the following integral equality

$$
\begin{equation*}
\int_{G_{T}}\left[-u_{t} w_{t}+\nabla u \nabla w\right] d x d t=-\int_{G_{T}} f(u) w d x d t+\int_{G_{T}} F w d x d t-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g}{\partial \mathcal{N}} w d s \tag{2.5.3}
\end{equation*}
$$

for any vector function $w=\left(w_{1}, \ldots, w_{N}\right) \in W_{2}^{1}\left(G_{T}\right)$ such that $\left.w\right|_{t=T}=0$ in the sense of the trace theory. Indeed, if $w \in W_{2}^{1}\left(G_{T}\right)$ and $\left.w\right|_{t=T}=0$, then it is obvious that $\left.w\right|_{D_{T}} \in W_{2}^{1}\left(D_{T}\right)$ and $\widetilde{w} \in W_{2}^{1}\left(D_{T}\right)$, where, by definition, $\widetilde{w}\left(x_{1}, \ldots, x_{n}, t\right)=w\left(x_{1}, \ldots,-x_{n}, t\right),\left(x_{1}, \ldots, x_{n}, t\right) \in D_{T}$ and $\left.\widetilde{w}\right|_{t=T}=0$. Therefore, according to the equality (2.2.6), from Remark 2.2.2, for $\varphi=w$ and $\varphi=\widetilde{w}$, we have

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} w_{t}+\nabla u \nabla w\right] d x d t=-\int_{D_{T}} f(u) w d x d t+\int_{D_{T}} F w d x d t-\int_{S_{T}} \frac{\partial g}{\partial \mathcal{N}} w d s \tag{2.5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} \widetilde{w}_{t}+\nabla u \nabla \widetilde{w}\right] d x d t=-\int_{D_{T}} f(u) \widetilde{w} d x d t+\int_{D_{T}} F \widetilde{w} d x d t-\int_{S_{T}} \frac{\partial g}{\partial \mathcal{N}} \widetilde{w} d s \tag{2.5.5}
\end{equation*}
$$

respectively. Since u, F and g are the even vector functions with respect to the variable x_{n}, and $\widetilde{w}\left(x_{1}, \ldots, x_{n}, t\right)=w\left(x_{1}, \ldots,-x_{n}, t\right),\left(x_{1}, \ldots, x_{n}, t\right) \in D_{T}$, we have

$$
\begin{align*}
& \int_{D_{T}}\left[-u_{t} \widetilde{w}_{t}+\nabla u \nabla \widetilde{w}\right] d x d t=\int_{G_{T}-}\left[-u_{t} w_{t}+\nabla u \nabla w\right] d x d t \tag{2.5.6}\\
&-\int_{D_{T}} f(u) \widetilde{w} d x d t+\int_{D_{T}} F \widetilde{w} d x d t-\int_{S_{T}} \frac{\partial g}{\partial \mathcal{N}} \widetilde{w} d s \\
&=-\int_{G_{T}^{-}} f(u) w d x d t+\int_{G_{T}^{-}} F w d x d t-\int_{S_{T}^{-}} \frac{\partial g}{\partial \mathcal{N}} w d s \tag{2.5.7}
\end{align*}
$$

It follows from (2.5.5)-(2.5.7) that

$$
\begin{equation*}
\int_{G_{T}^{-}}\left[-u_{t} w_{t}+\nabla u \nabla w\right] d x d t=-\int_{G_{T}^{-}} f(u) w d x d t+\int_{G_{T}^{-}} F w d x d t-\int_{S_{T}^{-}} \frac{\partial g}{\partial \mathcal{N}} w d s \tag{2.5.8}
\end{equation*}
$$

Finally, summing up the equalities (2.5.4) and (2.5.8), we obtain (2.5.3).
Let us apply the method of test functions [77, pp. 10-12].
In the integral equality (2.5.3), for the test function w we choose $w=\left(\ell_{1} \psi, \ldots, \ell_{N} \psi\right)$, where $\psi=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]$, while a scalar function $\psi_{0} \in C^{2}(\mathbb{R})$ satisfies the following conditions: $\psi_{0} \geq 0$, $\psi_{0}^{\prime} \leq ; \psi(\sigma)=1$ for $0 \leq \sigma \leq 1$ and $\psi(\sigma)=0$ for $\sigma \geq 2$ [77, p. 22]. For the chosen test function w, using the notations $v=\sum_{i=1}^{N} \ell_{i} u_{i}, g_{0}=\sum_{i=1}^{N} \ell_{i} g_{i}, F_{*}=\sum_{i=1}^{N} \ell_{i} F_{i}, f_{0}=\sum_{i=1}^{N} \ell_{i} f_{i}$, the integral equality (2.5.3) takes the form

$$
\begin{equation*}
\int_{G_{T}}\left[-v_{t} \psi_{t}+\nabla v \nabla \psi\right] d x d t=-\int_{G_{T}} f_{0}(u) \psi d x d t+\int_{G_{T}} F_{*} \psi d x d t-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \tag{2.5.9}
\end{equation*}
$$

Due to $\left.\psi\right|_{t \geq T}=0$ and the equality $\left.v\right|_{S_{T}^{-} \cup S_{T}}=g_{0}$ in the sense of the trace theory, integrating by parts the left-hand side of the equality (2.5.9), we get

$$
\begin{align*}
& \int_{G_{T}}\left[-v_{t} \psi_{t}+\nabla v \nabla \psi\right] d x d t \\
&=\int_{G_{T}} v \square \psi d x d t-\int_{S_{T}^{-} \cup S_{T}} v \frac{\partial \psi}{\partial \mathcal{N}} d s=\int_{G_{T}} v \square \psi d x d t-\int_{S_{T}^{-} \cup S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s . \tag{2.5.10}
\end{align*}
$$

From (2.5.9) and (2.5.10), in view of (2.5.1) and $\psi \geq 0$, we have

$$
\begin{array}{r}
\int_{G_{T}} v \square \psi d x d t \geq \int_{G_{T}}\left[c_{1}|v|^{\beta}-c_{0}\right] \psi d x d t+\int_{G_{T}} F_{*} \psi d x d t+\int_{S_{T}^{-} \cup S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \\
=c_{1} \int_{G_{T}}|v|^{\beta} \psi d x d t+\int_{G_{T}}\left(F_{*}-c_{0}\right) \psi d x d t+\int_{S_{T}^{-} \cup S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \tag{2.5.11}
\end{array}
$$

In view of the properties of the function ψ and the inequalities (2.5.2), we have

$$
\begin{align*}
& \left.\frac{\partial \psi}{\partial \mathcal{N}}\right|_{S_{T}^{-} \cup S_{T}} \geq 0, \quad \int_{S_{T}^{-} \cup S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s \geq 0 \\
& \int_{S_{T}^{-} \cup S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s \leq 0, \quad \int_{G_{T}} F_{0} \psi d x d t \geq 0 \tag{2.5.12}
\end{align*}
$$

where $F_{0}=F_{*}-c_{0}=\sum_{i=1}^{N} \ell_{i} F_{i}-c_{0}$. Upon derivation of the inequality (2.5.12), we have taken into account the fact that $\left.\nu_{n+1}\right|_{S_{T}^{-} \cup S_{T}}<0$.

Assuming that the functions F, g and ψ are fixed, we introduce into consideration a function of one variable

$$
\begin{equation*}
\gamma(T)=\int_{G_{T}} F_{0} \psi d x d t+\int_{S_{T}^{-} \cup S_{T}} g_{0} \frac{\partial \psi}{\partial \mathcal{N}} d s-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g_{0}}{\partial \mathcal{N}} \psi d s, T>0 \tag{2.5.13}
\end{equation*}
$$

Due to the absolute continuity of the integral and the inequalities (2.5.12), the function $\gamma(T)$ from (2.5.13) is nonnegative, continuous and nondecreasing, and

$$
\begin{equation*}
\lim _{T \rightarrow 0} \gamma(T)=0 \tag{2.5.14}
\end{equation*}
$$

Besides, since according to the supposition, at least one of the function $\left.\frac{\partial g_{0}}{\partial \mathcal{N}}\right|_{S_{\infty}^{-} \cup S_{\infty}}$ or F_{0} is nontrivial, we have

$$
\begin{equation*}
\lim _{T \rightarrow+\infty} \gamma(T)>0 \tag{2.5.15}
\end{equation*}
$$

In view of (2.5.13), the inequality (2.5.11) can be rewritten as follows:

$$
\begin{equation*}
c_{1} \int_{G_{T}}|v|^{\beta} \psi d x d t \leq \int_{G_{T}} v \square \psi d x d t-\gamma(T) \tag{2.5.16}
\end{equation*}
$$

If in Young's inequality with the parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\beta} a^{\beta}+\left(\beta^{\prime} c^{\beta^{\prime}-1}\right)^{-1} b^{\beta}
$$

where $\beta^{\prime}=\frac{\beta}{\beta-1}$, we take $a=|v| \psi^{1 / \beta}, b=\frac{|\square \psi|}{\psi^{1 / \beta}}$, then taking into account the equality $\frac{\beta^{\prime}}{\beta}=\beta^{\prime}-1$, we have

$$
\begin{equation*}
|v \square \psi|=|v| \psi^{1 / \beta} \frac{|\square \psi|}{\psi^{1 / \beta}} \leq \frac{\varepsilon}{\beta}|v|^{\beta} \psi+\frac{1}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} \tag{2.5.17}
\end{equation*}
$$

In view of (2.5.17), from (2.5.16) we have

$$
\left(c_{1}-\frac{\varepsilon}{\beta}\right) \int_{G_{T}}|v|^{\beta} \psi d x d t \leq \frac{1}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{G_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\gamma(T)
$$

whence for $\varepsilon<c_{1} \beta$, we obtain

$$
\begin{equation*}
\int_{G_{T}}|v|^{\beta} \psi d x d t \leq \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{G_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\frac{\beta}{c_{1} \beta-\varepsilon} \gamma(T) \tag{2.5.18}
\end{equation*}
$$

Taking into account the equalities $\beta^{\prime}=\frac{\beta}{\beta-1}, \beta=\frac{\beta^{\prime}}{\beta^{\prime}-1}$ and also the equality

$$
\lim _{0<\varepsilon<c_{1} \beta} \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}}=\frac{1}{c_{1}^{\beta^{\prime}}}
$$

obtained for $\varepsilon=c_{1}$, from (2.5.18) it follows that

$$
\begin{equation*}
\int_{G_{T}}|v|^{\beta} \psi d x d t \leq \frac{1}{c_{1}^{\beta^{\prime}}} \int_{G_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t-\frac{\beta^{\prime}}{c_{1}} \gamma(T) \tag{2.5.19}
\end{equation*}
$$

According to the properties of the function ψ_{0}, the test function $\psi(x, t)=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]=0$ for $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}>T$.

Therefore, after substitution of variables $t=\frac{1}{\sqrt{2}} T \xi_{0}, x=\frac{1}{\sqrt{2}} T \xi$, we have

$$
\begin{equation*}
\int_{G_{T}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x d t=\int_{\substack{r=\left(t^{2}+|x|^{2}\right)^{1 / 2}<T, t>|x|}} \frac{|\square \psi|^{\beta^{\prime}}}{\psi^{\beta^{\prime}-1}} d x=\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \beta^{\prime}} \varkappa_{0} \tag{2.5.20}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\varkappa_{0}:=\int_{\substack{1<\left|\xi_{0}\right|^{2}+|\xi|^{2}<2, \xi_{0}>|\xi|}} \frac{\left|2(1-n) \psi_{0}^{\prime}+4\left(\xi_{0}^{2}-|\xi|^{2}\right) \psi_{0}^{\prime \prime}\right|^{\beta^{\prime}}}{\psi_{0}^{\beta^{\prime}-1}} d \xi d \xi_{0}<+\infty \tag{2.5.21}
\end{equation*}
$$

As is know, the test function $\psi(x, t)=\psi_{0}\left[2 T^{-2}\left(t^{2}+|x|^{2}\right)\right]$ with the properties mentioned above, for which the condition (2.5.21) is valid, does exist [77, p. 22].

Due to (2.5.20), from the equality (2.5.19) and the fact that $\psi_{0}(\sigma)=1$, for $0 \leq \sigma \leq 1$, we have

$$
\begin{equation*}
\int_{r \leq \frac{T}{\sqrt{2}}}|v|^{\beta} d x d t \leq \int_{D_{T}}|v|^{\beta} \psi d x d t \leq \frac{\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} \gamma(T) \tag{2.5.22}
\end{equation*}
$$

When $\beta<\frac{n+1}{n-1}$, i.e., when $n+1-2 \beta^{\prime}<0$, the equation

$$
\lambda(T)=\frac{\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} \gamma(T)=0
$$

has a unique positive root $T=T_{0}(F, g)$, since the function

$$
\lambda_{1}(T)=\left(\frac{\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \beta^{\prime}}}{c_{1}^{\beta^{\prime}}}\right) \varkappa_{0}
$$

is positive, continuous, strictly decreasing on the interval $(0,+\infty)$ and, besides, $\lim _{T \rightarrow 0} \lambda_{1}(T)=+\infty$ and $\lim _{T \rightarrow+\infty} \lambda_{1}(T)=0$, and the function $\gamma(T)$ is, as stated above, nonnegative, continuous and nondecreasing, satisfying the conditions (2.5.14) and (2.5.15). Moreover, $\lambda(T)<0$ for $T>T_{0}$ and $\lambda(T)>0$ for $0<T<T_{0}$. Therefore, for $T>T_{0}$, the right-hand side of the inequality (2.5.22) is a negative value, which is impossible. This contradiction proves Theorem 2.5.1.

Remark 2.5.1. As is shown in Chapter 1 , the following class of vector functions $f=\left(f_{1}, \ldots, f_{N}\right)$:

$$
\begin{equation*}
f_{i}\left(u_{1}, \ldots, u_{N}\right)=\sum_{j=1}^{N} a_{i j}\left|u_{j}\right|^{\beta_{i j}}+b_{i}, \quad i=1, \ldots, N \tag{2.5.23}
\end{equation*}
$$

where $a_{i j}=$ const $>0, b_{i}=$ const, $1<b_{i j}=$ const $<\frac{n+1}{n-1}, i, j=1, \ldots, N$, satisfies the condition (2.5.1). Note that the vector function f, given by the equality (2.5.23), likewise satisfies the condition (2.5.1) for $\ell=\ell_{2}=\cdot=\ell_{N}=-1$ for less restrictive conditions, when $a_{i j}=$ cons ≥ 0, but $a_{i k_{i}}>0$, where k_{1}, \ldots, k_{N} is any arbitrary fixed permutation of numbers $1,2, \ldots, N ; i, j=1, \ldots, N$.

Remark 2.5.2. From Theorem 2.5 .1 it follows that if its conditions are fulfilled, then the problem (2.1.1), (2.1.2) fails to have a global strong generalized solution of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 2.2.4.

Chapter 3

One multidimensional version of the Darboux second problem for one class of semilinear second order hyperbolic systems

3.1 Statement of the problem

In the space \mathbb{R}^{n+1} of the independent variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t consider a second order semilinear hyperbolic system of the form

$$
\begin{equation*}
\square u_{i}+f_{i}\left(u_{1}, \ldots, u_{N}\right)=F_{i}, \quad i=1, \ldots, N \tag{3.1.1}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), F=\left(F_{1}, \ldots, F_{N}\right)$ are the given, and $u=\left(u_{1}, \ldots, u_{N}\right)$ is an unknown real vector function, $n \geq 2, N \geq 2, \square:=\frac{\partial^{2}}{\partial t^{2}}-\Delta, \Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$.

Let D be a conic domain in the space \mathbb{R}^{n+1}, i.e., D contains, along with the point $(x, t) \in D$, the whole ray $\ell:(\tau x, \tau t), 0<\tau<\infty$. Denote by S the conic surface ∂D. Suppose that D is homeomorphic to the conic domain $\omega: t>|x|$, and $S \backslash 0$ is a connected n-dimensional manifold of the class C^{∞}, where $O=(0, \ldots, 0,0)$ is the vertex of S. Suppose also that D lies in the half-space $t>0$ and $D_{T}:=\{(x, t) \in D: t<T\}, S_{T}:=\{(x, t) \in S: t \leq T\}, T>0$. It is clear that if $T=\infty$, then $D_{\infty}=D$ and $S_{\infty}=S$.

For the system (3.1.1), we consider the problem on finding a solution $u(x, t)$ of this system in the domain D_{T} by the boundary condition

$$
\begin{equation*}
\left.u\right|_{S_{T}}=g \tag{3.1.2}
\end{equation*}
$$

where $g=\left(g_{1}, \ldots, g_{N}\right)$ is the given vector function on S_{T}.
In the linear case, in which $f=0, N=1$, and the conic manifold $S=\partial D$ is time-oriented, i.e.,

$$
\begin{equation*}
\left.\left(\nu_{0}^{2}-\sum_{i=1}^{n} \nu_{i}^{2}\right)\right|_{S}<0,\left.\quad \nu_{0}\right|_{S}<0 \tag{3.1.3}
\end{equation*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ is the unit vector of the outer normal to $S \backslash O$, the problem (3.1.1), (3.1.2) was posed by S. L. Sobolev [86], where the unique solvability of this problem in the corresponding functional spaces is proved. At the end of the above-mentioned work the author suggests that the obtained results will likewise be valid for a scalar nonlinear wave equation. In [52], for the scalar case $(N=1)$ and power nonlinearity $f(u)=\lambda|u|^{p} u\left(\lambda=\right.$ const, $0<p=$ const $\left.<\frac{2}{n-1}\right)$, the global solvability of this problem for $\lambda>0$ and the absence of a global solution for $\lambda<0$ are shown when
the space dimension of the wave equation $n=2$. A more general nonlinearity case than in [52] for the scalar hyperbolic equation was considered in [56] in which the questions of existence, uniqueness, and the absence of a global solution to this problem were also investigated. Besides, the restriction here is omitted. It is noteworthy mentioning that this problem can be considered as a multidimensional version of the Darboux second problem, since the problem's data support S represents a conic time type manifold. In the case when one part of the boundary of the conic domain D is of time type, while the other part is a characteristic manifold, the boundary value problem can be considered as a multidimensional version of the Darboux first problem. For example, when $D: t>|x|, x_{n}>0$ and the boundary conditions have the form

$$
\left.u\right|_{\Gamma_{0}}=0,\left.\quad u\right|_{\Gamma_{1}}=0
$$

or

$$
\left.\frac{\partial u}{\partial x_{n}}\right|_{\Gamma_{0}}=0,\left.\quad u\right|_{\Gamma_{1}}=0
$$

where $\Gamma_{0}=\partial D \cap\left\{x_{n}=0\right\}$ is a plane part of the time type boundary ∂D and $\Gamma_{1}=\partial D \backslash \Gamma_{0}: t=|x|$, $x_{n}>0$ is a characteristic part of the boundary, we have a multidimensional version of the first Darboux problem.

Investigation of the multidimensional version of the Darboux second problem faces great difficulties as compared with the first problem. More detailed consideration of these problems in the linear case is given in A. B. Bitsadze's monograph [5].

This chapter is organized as follows. Section 3.2 provides us with the notion of a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} and with a definition of a global solution of this problem of the class W_{2}^{1} in the domain D_{∞}. In Section 3.3, we consider the cases of local and global solvability of the problem $(3.1 .1),(3.1 .2)$ in the class W_{2}^{1}. We suppose that the growth of nonlinearity of the system (3.1.1) does not exceed power nonlinearity with exponent $\alpha=$ const ≥ 0. When $\alpha \leq 1$, for the solution of the boundary value problem the a priori estimate (Lemma 3.3.1) is valid, and no restrictions are imposed on the structure of the vector function $f=f(u)$. As it turned out, when $1<\alpha<\frac{n+1}{n-1}$, the only constraint on the growth of nonlinearity of the vector function $f=f(u)$ is not sufficient for the existence of an a priori estimate for the solution of the boundary value problem. Here we need structural constraints on the vector function $f=f(u)$. For example, when $f=\nabla G$, i.e., $f_{i}(u)=\frac{\partial}{\partial u_{i}} G(u), u \in \mathbb{R}^{N}, i=1, \ldots, N$, where $G=G(u) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a scalar function satisfying the conditions $G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$, the a priori estimate of the solution of the boundary value problem and, therefore, a global solvability of this problem (Theorem 3.3.3) are valid. If the vector function f cannot be represented in the form $f=\nabla G$, where the scalar function G satisfies the conditions given above, then the boundary value problem may be globally unsolvable. For example, when $N=n=2$ and $f=\left(f_{1}, f_{2}\right)$, where $f_{1}=u_{1}^{2}-2 u_{2}^{2}, f_{2}=-2 u_{1}^{2}+u_{2}^{2}$, the exponent of the nonlinearity $\alpha=2$ and $1<\alpha<\frac{n+1}{n-1}$, and f is not representable in the form $f=\nabla G$, then from Theorem 3.5.1 we find that for $F_{1}+F_{2} \geq \frac{c}{t^{\gamma}}, t \geq 1$, where $c=$ const $>0, \gamma=$ const ≤ 3, $g=0$, the problem under consideration is not globally solvable (see Remark 3.5.1). The conditions on the vector function f providing the uniqueness and existence of a global solution of this problem of the class W_{2}^{1} are given in Section 3.4. Finally, in Section 3.5, for certain additional conditions on the vector functions f, F and g, we prove nonexistence of a global solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in D_{∞}.

Below, it will be assumed that the condition (3.1.3) is satisfied.

3.2 Definition of a generalized solution of the problem (3.1.1), (3.1.2) in D_{T} and D_{∞}

We rewrite the system (3.1.1) in the form of one vector equation

$$
\begin{equation*}
L u:=\square u+f(u)=F . \tag{3.2.1}
\end{equation*}
$$

Below, we will assume that the condition (3.1.3) is fulfilled and the nonlinear vector function from (3.2.1) satisfies the following inequality

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{N}\right), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const } \geq 0, \quad u \in \mathbb{R}^{N} \tag{3.2.2}
\end{equation*}
$$

where $|\cdot|$ is the norm in the space $\mathbb{R}^{N}, M_{i}=$ const $\geq 0, i=1,2$.
Let $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\left\{u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0\right\}$. Denote by $W_{2}^{k}(\Omega)$ the Sobolev space consisting of the elements $L_{2}(\Omega)$, having generalized derivatives up to the k-order inclusive from $L_{2}(\Omega)$. Let $\stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where the equality $\left.u\right|_{S_{T}}=0$ is understood in the sense of the trace theory [68].

Here and below we say that the vector $v=\left(v_{1}, \ldots, v_{N}\right)$ belongs to the space X if each component $v_{i}, 1 \leq i \leq N$, of that vector belongs to the same X. In accordance with the above-said, to simplify our writing and avoid misunderstanding, instead of $v=\left(v_{1}, \ldots, v_{N}\right) \in X^{N}$ we will write $v \in X$.

Remark 3.2.1. The embedding operator $I:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{q}\left(D_{T}\right)\right]^{N}$ is a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$, when $n>1[68]$. At the same time, Nemitski's operator $\mathcal{K}:\left[L_{q}\left(D_{T}\right)\right]^{N} \rightarrow$ $\left[L_{q}\left(D_{T}\right)\right]^{N}$, acting by the formula $\mathcal{K} u=f(u)$, where $u=\left(u_{1}, \ldots, u_{N}\right) \in\left[L_{q}\left(D_{T}\right)\right]^{N}$, and the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfies the condition (3.2.2), is continuous and bounded for $q \geq 2 \alpha$ [22]. Thus, if $\alpha<\frac{n+1}{n-1}$, i.e., $2 \alpha<\frac{2(n+1)}{n-1}$, then there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q>2 \alpha$. Therefore, in this case the operator

$$
\begin{equation*}
\mathcal{K}_{0}=\mathcal{K} I:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{q}\left(D_{T}\right)\right]^{N} \tag{3.2.3}
\end{equation*}
$$

is continuous and compact. It is clear that from $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$ it follows that $f(u) \in$ $L_{2}\left(D_{T}\right)$ and, if $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, then $f\left(u^{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.

Definition 3.2.1. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (3.2.2), where $0 \leq \alpha<\frac{n+1}{n-1}, F=$ $\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ and $g=\left(g_{1}, \ldots, g_{n}\right) \in W_{2}^{1}\left(S_{T}\right)$. We call a vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in$ $W_{2}^{1}\left(D_{T}\right)$ a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of vector functions $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ such that $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, $L u^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, and $\left.u^{m}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$. The convergence of the sequence $\left\{f\left(u^{m}\right)\right\}$ to the function $f(u)$ in the space $L_{2}\left(D_{T}\right)$ as $u^{m} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$ follows from Remark 3.2.1. When $g=0$, i.e., in the case of the homogeneous boundary conditions (3.1.2), we assume that $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$. Then it is clear that $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$.

Obviously, a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (3.1.1), (3.1.2) represents a strong generalized solution of that problem of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

Definition 3.2.2. Let f satisfy the condition (3.2.2), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (3.1.1), (3.1.2) is locally solvable in the class W_{2}^{1}, if there exists a number $T_{0}=T_{0}(F, g)>0$ such that for $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

Definition 3.2.3. Let f satisfy the condition (3.2.2), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right)$, $g \in W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (3.1.1), (3.1.2) is globally solvable in the class W_{2}^{1} if for any $T>0$ this problem has a strong generalized solution of the class in the domain D_{T} in the sense of Definition 3.2.1.

Definition 3.2.4. Let f satisfy the condition (3.2.2), where $0 \leq \alpha<\frac{n+1}{n-1}, F \in L_{2, l o c}\left(D_{\infty}\right), g \in$ $W_{2, l o c}^{1}\left(S_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right),\left.g\right|_{S_{T}} \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. A vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in$ $W_{2, l o c}^{1}\left(D_{\infty}\right)$ is called a global strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{∞} if for any $T>0$ the vector function $\left.u\right|_{D_{T}}$ belongs to the space $W_{2}^{1}\left(D_{T}\right)$ and represents a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

3.3 Some cases of global and local solvability of the problem (3.1.1), (3.1.2) in the class W_{2}^{1}

Lemma 3.3.1. Let f satisfy the condition (3.2.2), where $0 \leq \alpha \leq 1, F \in L_{2}\left(D_{T}\right)$ and $g \in W_{2}^{1}\left(S_{T}\right)$. Then for any strong generalized solution u of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2 .1 the a priori estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2}\|g\|_{W_{2}^{1}\left(S_{T}\right)}+c_{3} \tag{3.3.1}
\end{equation*}
$$

with the nonnegative constants $c_{i}=c_{i}(S, f, T), i=1,2,3$, independent of u, g and F, with $c_{j}>0$, $j=1,2$, is valid.

Proof. Let $u \in W_{2}^{1}\left(D_{T}\right)$ be a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T}. Then, due to Definition 3.2.1, there exists a sequence of vector functions $u^{m}=\left(u_{1}^{m}, \ldots, u_{N}^{m}\right) \in C^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \tag{3.3.2}\\
\lim _{m \rightarrow \infty}\left\|\left.u^{m}\right|_{S_{T}}-g\right\|_{W_{2}^{1}\left(D_{T}\right)}=0 \tag{3.3.3}
\end{gather*}
$$

Consider the vector function $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ as a solution of the following problem:

$$
\begin{gather*}
L u^{m}=F^{m} \tag{3.3.4}\\
\left.u^{m}\right|_{S_{T}}=g^{m} . \tag{3.3.5}
\end{gather*}
$$

Here,

$$
\begin{equation*}
F^{m}:=L u^{m}, \quad g^{m}:=\left.u^{m}\right|_{S_{T}} \tag{3.3.6}
\end{equation*}
$$

Multiplying scalarly both sides of the vector equation (3.3.4) by $\frac{\partial u^{m}}{\partial t}$ and integrating in the domain $D_{\tau}, 0<\tau \leq T$, we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \Delta u^{m} \frac{\partial u^{m}}{\partial t} d x d t+\int_{D_{\tau}} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t} d x d t=\int_{D_{\tau}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t \tag{3.3.7}
\end{equation*}
$$

Let $\Omega_{\tau}:=D \cap\{t=\tau\}$ and denote by $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ the unit vector of the outer normal to $S_{T} \backslash\{(0, \ldots, 0,0)\}$. Integrating by parts, by virtue of the equality (3.3.5) and $\left.\nu\right|_{\Omega_{\tau}}=(0, \ldots, 0,1)$, we have

$$
\begin{aligned}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t & =\int_{\partial D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} \nu_{0} d s=\int_{\Omega_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x+\int_{S_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} \nu_{0} d s \\
\int_{D_{\tau}} \frac{\partial^{2} u^{m}}{\partial x_{i}^{2}} \frac{\partial u^{m}}{\partial t} d x d t & =\int_{\partial D_{\tau}} \frac{\partial u^{m}}{\partial x_{i}} \frac{\partial u^{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2} d x d t \\
& =\int_{\partial D_{\tau}} \frac{\partial u^{m}}{\partial x_{i}} \frac{\partial u^{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2} \nu_{0} d s \\
& =\int_{\partial D_{\tau}} \frac{\partial u^{m}}{\partial x_{i}} \frac{\partial u^{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2} \nu_{0} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2} d x
\end{aligned}
$$

whence, in view of (3.3.7), it follows that

$$
\begin{align*}
\int_{D_{\tau}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t=\int_{S_{\tau}} \frac{1}{2 \nu_{0}}[& \left.\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u^{m}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s \\
& +\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x+\int_{D_{\tau}} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t} d x d t . \tag{3.3.8}
\end{align*}
$$

From (3.2.2), when $0 \leq \alpha \leq 1$, we find that $|f(u)| \leq M_{1}+M_{2}+M_{2}|u| \forall u \in \mathbb{R}^{N}$, therefore,

$$
\begin{align*}
& \left|f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t}\right| \leq \frac{1}{2}\left[f^{2}\left(u^{m}\right)+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}\right] \\
& \quad \leq \frac{1}{2}\left[2\left(M_{1}+M_{2}\right)^{2}+2 M_{2}^{2}\left|u^{m}\right|^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}\right]=\left(M_{1}+M_{2}\right)^{2}+M_{2}^{2}\left|u^{m}\right|^{2}+\frac{1}{2}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} \tag{3.3.9}
\end{align*}
$$

Due to (3.1.3), (3.3.9) and $\left|F^{m} \frac{\partial u^{m}}{\partial t}\right| \leq \frac{1}{2}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\left(F^{m}\right)^{2}\right]$, from (3.3.8) we have

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \leq \int_{S_{\tau}} \frac{1}{2\left|\nu_{0}\right|}\left[\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u^{m}}{\partial t} \nu_{i}\right)^{2}\right] d s \\
& \quad+\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{\tau}+M_{2}^{2} \int_{D_{\tau}}\left|u^{m}\right|^{2} d x d t+\int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t+\frac{1}{2} \int_{D_{\tau}}\left(F^{m}\right)^{2} d x d t \tag{3.3.10}
\end{align*}
$$

Since S is a conic surface, we have $\sup _{S \backslash O}\left|\nu_{0}\right|^{-1}=\sup _{S \cap\{t=1\}}\left|\nu_{0}\right|^{-1}$. At the same time, $S \backslash O$ is a smooth manifold, $S \cap\{t=1\}=\partial \Omega_{\tau=1}$ is also a compact manifold. Thus, noting that ν_{0} is a continuous function on $S \backslash O$, we get

$$
\begin{equation*}
M_{0}:=\sup _{S \backslash O}\left|\nu_{0}\right|^{-1}=\sup _{S \cap\{t=1\}}\left|\nu_{0}\right|^{-1}<+\infty, \quad\left|\nu_{0}\right| \leq|\nu|=1 \tag{3.3.11}
\end{equation*}
$$

Taking into account that $\left(\nu_{0} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right)(i=1, \ldots, n)$ is an inner differential operator on S_{τ}, due to (3.3.5), we have

$$
\begin{equation*}
\int_{S_{\tau}}\left[\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u^{m}}{\partial t} \nu_{i}\right)^{2}\right] \leq\left\|\left.u^{m}\right|_{S_{T}}\right\|_{W_{2}^{1}\left(S_{t}\right)}^{2}=\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2} \tag{3.3.12}
\end{equation*}
$$

It follows from (3.3.11) and (3.3.12) that

$$
\begin{equation*}
\int_{S_{\tau}} \frac{1}{2\left|\nu_{0}\right|}\left[\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u^{m}}{\partial t} \nu_{i}\right)^{2}\right] \leq \frac{1}{2} M_{0}\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2} \tag{3.3.13}
\end{equation*}
$$

By virtue of (3.3.13), from (3.3.10) we obtain

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\right. & \left.\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \leq M_{0}\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{T} \\
& +2 M_{2}^{2} \int_{D_{\tau}}\left|u^{m}\right|^{2} d x d t+2 \int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t+\int_{D_{T}}\left(F^{m}\right)^{2} d x d t, \quad 0<\tau \leq T \tag{3.3.14}
\end{align*}
$$

If $t=\gamma(x)$ is the equation of the conic surface S, then, in view of (3.3.5), we have

$$
u^{m}(x, \tau)=u^{m}(x, \gamma(x))+\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u^{m}(x, s) d s=g^{m}(x)+\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u^{m}(x, s) d s, \quad(x, \tau) \in \Omega_{\tau}
$$

Squaring scalarly both parts of the obtained equality, integrating in the domain Ω_{τ} and using the

Schwartz inequality, we get

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left(u^{m}\right)^{2} d x \leq 2 \int_{\Omega_{\tau}}\left(g^{m}(x, \gamma(x))^{2} d x+2 \int_{\Omega_{\tau}}\left(\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u^{m}(x, s) d s\right)^{2} d x\right. \\
& \leq 2 \int_{S_{\tau}}\left(g^{m}\right)^{2} d s+2 \int_{\Omega_{\tau}}(\tau-\gamma(x))\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d s\right] d x \\
& \leq 2 \int_{S_{\tau}}\left(g^{m}\right)^{2} d s+2 T \int_{\Omega_{\tau}}\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d s\right] d x=2 \int_{S_{\tau}}\left(g^{m}\right)^{2} d s+2 T \int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t . \tag{3.3.15}
\end{align*}
$$

From (3.3.14) and (3.3.15) it follows

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\right.\left.\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \leq\left(M_{0}+2\right)\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{\tau} \\
&+2 M_{2}^{2} \int_{D_{\tau}}\left|u^{m}\right|^{2} d x d t+2(T+1) \int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t+\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq\left(2 M_{2}^{2}+2(T+1)\right) \int_{D_{\tau}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \\
&+\left[\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left(M_{0}+2\right)\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{T}\right] \tag{3.3.16}
\end{align*}
$$

Putting

$$
\begin{equation*}
w(\tau):=\int_{\Omega_{\tau}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \tag{3.3.17}
\end{equation*}
$$

from (3.3.16) we have

$$
\begin{align*}
& w(\tau) \leq\left(2 M_{2}^{2}+2 T+2\right) \int_{0}^{\tau} w(s) d s \\
& \quad+\left[\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left(M_{0}+2\right)\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{T}\right], \quad 0<\tau \leq T \tag{3.3.18}
\end{align*}
$$

whence by the Gronwall lemma it follows that

$$
\begin{equation*}
w(\tau) \leq A_{m} \exp \left(2 M_{2}^{2}+2 T+2\right) \tau, \quad 0<\tau \leq T \tag{3.3.19}
\end{equation*}
$$

Here,

$$
\begin{equation*}
A_{m}=\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left(M_{0}+2\right)\left\|g^{m}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{T} \tag{3.3.20}
\end{equation*}
$$

In view of (3.3.17) and (3.3.19), we find that

$$
\begin{equation*}
\left\|u^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}=\int_{0}^{T} w(\tau) d \tau \leq A_{m} T \exp \left(2 M_{2}^{2}+2 T+2\right) T \tag{3.3.21}
\end{equation*}
$$

Due to (3.3.2)-(3.3.5) and (3.3.20), passing to the limit in (3.3.21) as $m \rightarrow \infty$, we have

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}\right)}^{2} \leq A T \exp \left(2 M_{2}^{2}+2 T+2\right) T \tag{3.3.22}
\end{equation*}
$$

Here,

$$
\begin{equation*}
A=\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\left(M_{0}+2\right)\|g\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+2\left(M_{1}+M_{2}\right)^{2} \operatorname{mes} D_{T} \tag{3.3.23}
\end{equation*}
$$

Taking a square root from both sides of the inequality (3.3.22) and using the obvious inequality $\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{1 / 2} \leq \sum_{i=1}^{k}\left|a_{i}\right|$, due to (3.3.23), we finally have

$$
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2}\|g\|_{W_{2}^{1}\left(S_{T}\right)}+c_{3} .
$$

Here,

$$
\left\{\begin{array}{l}
c_{1}=\sqrt{T} \exp \left(M_{2}^{2}+T+1\right) T \tag{3.3.24}\\
c_{2}=\sqrt{T}\left(M_{0}+2\right)^{1 / 2} \exp \left(M_{2}^{2}+T+1\right) T \\
c_{3}=\sqrt{2 T}\left(M_{1}+M_{2}\right)\left(\operatorname{mes} D_{T}\right)^{1 / 2} \exp \left(M_{2}^{2}+T+1\right) T
\end{array}\right.
$$

Thus Lemma 3.3.1 is proved completely.
Before passing to the question of solvability of the problem (3.1.1), (3.1.2), let us consider the same question for the linear case of the needed form, when in (3.1.1) the vector function $f=0$, i.e., for the problem

$$
\begin{gather*}
L_{0} u:=\square u=F(x, t), \quad(x, t) \in D_{T} \tag{3.3.25}\\
\left.u\right|_{S_{T}}=g . \tag{3.3.26}
\end{gather*}
$$

For the problem (3.3.25), (3.3.26), analogously to Definition 3.2.1 for the problem (3.1.1), (3.1.2), we introduce the notion of a strong generalized solution $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$ of the class W_{2}^{1} in the domain D_{T} with $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$ and $g=\left(g_{1}, \ldots, g_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$, for which there exists a sequence of vector functions $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{0} u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{3.3.27}\\
\lim _{m \rightarrow \infty}\left\|\left.u^{m}\right|_{S_{T}}-g\right\|_{W_{2}^{1}\left(S_{T}\right)}=0 \tag{3.3.28}
\end{gather*}
$$

Note that, as is easily seen from the proof of Lemma 3.3.1, by virtue of (3.3.24), when $f=0$, i.e., when $M_{1}=M_{2}=0$, for a strong generalized solution $u \in W_{2}^{1}\left(D_{T}\right)$ of the problem (3.3.25), (3.3.26) of the class W_{2}^{1} in the domain D_{T} the following a priori estimate is valid:

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\left(\|F\|_{L_{2}\left(D_{T}\right)}+\|g\|_{W_{2}^{1}\left(S_{T}\right)}\right) \tag{3.3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\sqrt{T}\left(M_{0}+2\right)^{1 / 2} \exp (T+1) T \tag{3.3.30}
\end{equation*}
$$

Consider the Sobolev weight space $W_{2, \alpha}^{*}(D), 0<\alpha<\infty, k=1,2, \ldots$, consisting of the functions belonging to that class $W_{2, l o c}^{k}(D)$ for which the norm

$$
\|w\|_{W_{2, \alpha}^{k}}^{2}=\sum_{i=0}^{k} \int_{D} r^{-2 \alpha-2(k-i)}\left|\frac{\partial^{i} w}{\partial x^{i^{\prime}} \partial t^{i_{0}}}\right|^{2} d x d t
$$

is finite [52], where

$$
r=\left(\sum_{j=1}^{n} x_{j}^{2}+t^{2}\right)^{1 / 2}, \quad \frac{\partial^{i} w}{\partial x^{i^{\prime}} \partial t^{i_{0}}}:=\frac{\partial^{i} w}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}} \partial t^{i_{0}}}, \quad i=i_{1}+\cdots+i_{n}+i_{0}
$$

Analogously we introduce the space $W_{2, \alpha}^{k}(S), S=\partial D$ [52].
Together with the problem (3.3.25), (3.3.26), consider in an infinite cone $D=D_{\infty}$ the analogous problem:

$$
\begin{gather*}
L_{0} u=F(x, t), \quad(x, t) \in D \tag{3.3.31}\\
\left.u\right|_{S}=g \tag{3.3.32}
\end{gather*}
$$

Due to (3.1.3), according to the result obtained in [43], there exists a constant $\alpha_{0}=\alpha_{0}(k)>1$ such that for $\alpha \geq \alpha_{0}$, the problem (3.3.31), (3.3.32) has a unique solution $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2, \alpha}^{2}(D)$ for each $F=\left(F_{1}, \ldots, F_{N}\right) \in W_{2, \alpha-1}^{k-1}(D)$ and $g=\left(g_{1}, \ldots, g_{N}\right) \in W_{2, \alpha-\frac{1}{2}}^{k}(S), k \geq 2$.

Since the space $C_{0}^{\infty}\left(D_{T}\right)$ of finite infinitely differentiable in D_{T} functions is dense in $L_{2}\left(D_{T}\right)$, for the given $F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$, there exists a sequence of vector functions $F^{m}=\left(F_{1}^{m}, \ldots, F_{N}^{m}\right) \in$ $C_{0}^{\infty}\left(D_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|F^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. For the fixed m, extending the vector function F^{m} by zero beyond the domain D_{T} and keeping the same notation, we have $F^{m} \in C_{0}^{\infty}(D)$. Obviously, $F^{m} \in W_{2, \alpha-1}^{k-1}(D)$ for any $k \geq 2$ and $\alpha>1$, and also for $\alpha \geq \alpha_{0}=\alpha_{0}(k)$. If $g \in W_{2}^{1}\left(S_{T}\right)$, then there exists $\widetilde{g} \in W_{2}^{1}(S)$ such that $g=\left.\widetilde{g}\right|_{S_{T}}$ and diamsupp $\widetilde{g}<+\infty$ [68]. Besides, the space $C_{*}^{\infty}(S):=\left\{g \in C^{\infty}(S): \operatorname{diam} \operatorname{supp} g<+\infty, 0 \notin \operatorname{supp} g\right\}$ is dense in $W_{2}^{1}(S)$ [56]. Therefore, there exists a sequence $g^{m} \in C_{*}^{\infty}(S)$ such that $\lim _{m \rightarrow \infty}\left\|g^{m}-g\right\|_{W_{2}^{1}(S)}=0$. It is easy to see that $g^{m} \in W_{2, \alpha-\frac{1}{2}}^{k}(S)$ for any $k \geq 2$ and $\alpha>1$ and, therefore, for $\alpha \geq \alpha_{0}=\alpha(k)$. According to what has been mentioned above, there exists a solution $\widetilde{u}^{m} \in W_{2, \alpha}^{k}(D)$ of the problem (3.3.31), (3.3.32) for $F=F^{m}$ and $g=g^{m}$. Let $u^{m}=\left.\widetilde{u}^{m}\right|_{D_{T}}$. Since $u^{m} \in W_{2}^{k}\left(D_{T}\right)$, taking the number k sufficiently large, namely, $k>\frac{n+1}{2}+2$, we have $u^{m} \in C^{2}\left(\bar{D}_{T}\right)$. By virtue of the estimate (3.3.29), we have

$$
\begin{equation*}
\left\|u^{m}-u^{m^{\prime}}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\left(\left\|F^{m}-F^{m^{\prime}}\right\|_{L_{2}\left(D_{T}\right)}+\left\|g^{m}-g^{m^{\prime}}\right\|_{W_{2}^{1}\left(S_{T}\right)}\right) \tag{3.3.33}
\end{equation*}
$$

Since the sequences $\left\{F^{m}\right\}$ and $\left\{g^{m}\right\}$ are fundamental in the spaces $L_{2}\left(D_{T}\right)$ and $W_{2}^{1}\left(S_{T}\right)$, respectively, the sequence $\left\{u^{m}\right\}$ is, due to (3.3.33), fundamental in the space $W_{2}^{1}\left(D_{T}\right)$. Therefore, in view of the completeness of the space $W_{2}^{1}\left(D_{T}\right)$, there exists a vector function $u \in W_{2}^{1}\left(D_{T}\right)$ such that $\lim _{m=\infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0$, and since $L_{0} u^{m}=F^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$ and $g^{m}=\left.u^{m}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$, i.e., the limit equalities (3.3.27) and (3.3.28) are fulfilled, the vector function u is a strong generalized solution of the problem (3.3.25), (3.3.26) of the class W_{2}^{1} in the domain D_{T}. The uniqueness of the solution of the problem (3.3.25), (3.3.26) of the class W_{2}^{1} in the domain D_{T} follows from the a priori estimate (3.3.29). Thus for the solution u of the problem (3.3.25), (3.3.26) we have $u=L_{0}^{-1}(F, g)$, where $L_{0}^{-1}:\left[L_{2}\left(D_{T}\right)\right]^{N} \times\left[W_{2}^{1}\left(S_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}$ is a linear continuous operator with a norm admitting, in view of (3.3.29), the following estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \times\left[W_{2}^{1}\left(S_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}} \leq c \tag{3.3.34}
\end{equation*}
$$

where the constant c is determined from (3.3.30).
Owing to the linearity of the operator

$$
L_{0}^{-1}:\left[L_{2}\left(D_{T}\right)\right]^{N} \times\left[W_{2}^{1}\left(S_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}
$$

we have a representation

$$
\begin{equation*}
L_{0}^{-1}(F, g)=L_{01}^{-1}(F)+L_{02}^{-1}(g) \tag{3.3.35}
\end{equation*}
$$

where $L_{01}^{-1}:\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}$ and $L_{02}^{-1}:\left[W_{2}^{1}\left(S_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}$ are the linear continuous operators and, in view of (3.3.34), we have

$$
\begin{equation*}
\left\|L_{01}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N}} \leq c, \quad\left\|L_{02}^{-1}\right\|_{\left[W_{2}^{1}\left(S_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}} \leq c . \tag{3.3.36}
\end{equation*}
$$

Remark 3.3.1. Note that for $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ and (3.2.2), where $0 \leq \alpha<\frac{n+1}{n-1}$, in view of (3.3.34), (3.3.35), (3.3.36) and Remark 3.2.1, the vector function $u=\left(u_{1}, \ldots, u_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$ is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the following functional equation

$$
\begin{equation*}
u=L_{01}^{-1}(-f(u))+L_{01}^{-1}(F)+L_{02}^{-1}(g) \tag{3.3.37}
\end{equation*}
$$

in the space $W_{2}^{1}\left(D_{T}\right)$.
Rewrite the equation (3.3.37) in the form

$$
\begin{equation*}
u=A_{0} u:=-L_{01}^{-1}\left(\mathcal{K}_{0} u\right)+L_{01}^{-1}(F)+L_{02}^{-1}(g) \tag{3.3.38}
\end{equation*}
$$

where the operator $\mathcal{K}_{0}:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[L_{2}\left(D_{T}\right)\right]^{N}$ from (3.2.2) is, due to Remark 3.2.1, continuous and compact. Therefore, according to (3.3.36), the operator $\mathcal{A}_{0}:\left[W_{2}^{1}\left(D_{T}\right)\right]^{N} \rightarrow\left[W_{2}^{1}\left(D_{T}\right)\right]^{N}$ is also continuous and compact. At the same time, according to Lemma 3.3.1 and the equalities (3.3.24), for any parameter $\tau \in[0,1]$ and any solution u of the equation $u=\tau \mathcal{A}_{0} u$ with parameter τ, the same a priori estimate (3.3.1) with the constants c_{i} from (3.3.24), independent of u, F, g and τ, is valid. Therefore, due to Schaefer's fixed point theorem [20], the equation (3.3.38) and hence, according to Remark 3.3.1, the problem (3.1.1), (3.1.2) has at least one solution $u \in W_{2}^{1}\left(D_{T}\right)$.

Thus we have proved the following
Theorem 3.3.1. Let f satisfy the condition (3.2.2), where $0 \leq \alpha \leq 1$. Then for any $F \in L_{2}\left(D_{T}\right)$ and $g \in W_{2}^{1}\left(S_{T}\right)$, the problem (3.1.1), (3.1.2) has at least one strong generalized solution u of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

A global solvability of the problem (3.1.1), (3.1.2) in the class W_{2}^{1} in the sense of Definition 3.2.3 follows immediately from Theorem 3.3.1, when the conditions of this theorem are fulfilled.

Remark 3.3.2. In Theorem 3.3.1, a global solvability of the problem (3.1.1), (3.1.2) is proved for the case in which f satisfies the condition (3.2.2), where $0 \leq \alpha \leq 1$. In case $1<\alpha<\frac{n+1}{n-1}$, the problem (3.1.1), (3.1.2) is, generally speaking, not globally solvable, as it will be shown in Section 3.5. At the same time, it will be proved below that when $1<\alpha<\frac{n+1}{n-1}$, the problem (3.1.1), (3.1.2) is locally solvable in the sense of Definition 3.2.2.

Theorem 3.3.2. Let f satisfy the condition (3.2.2), where $1<\alpha<\frac{n+1}{n-1}, g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (3.1.1), (3.1.2) is locally solvable in the class W_{2}^{1}, i.e., there exists a number $T_{0}=T_{0}(F)>0$ such that for $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.
Proof. According to Definition 3.2.1 and Remark 3.3.1, the vector function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right):=\{v \in$ $\left.W_{2}^{1}\left(D_{T}\right):\left.v\right|_{S_{T}}=0\right\}$ is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} for $g=0$ if and only if u is a solution of the functional equation (3.3.38) for $g=0$, i.e.,

$$
\begin{equation*}
u=A_{0} u:=-L_{01}^{-1}\left(\mathcal{K}_{0} u\right)+L_{01}^{-1}(F) \tag{3.3.39}
\end{equation*}
$$

in the space $\stackrel{\circ}{W} \frac{1}{2}\left(D_{T}, S_{T}\right)$. Denote by $B\left(0, r_{0}\right):=\left\{u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right):\|u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq r_{0}\right\}$ a closed convex ball in the Hilbert space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of radius $r_{0}>0$ and with center in a null element. Since the operator A_{0} from (3.3.39), acting in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, is a continuous compact operator, according to Schauder's theorem, for the solvability of the equation (3.3.39) in the space $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ it suffices to prove that the operator \mathcal{A}_{0} maps the ball $B\left(0, r_{0}\right)$ into itself for certain $r_{0}>0$ [20]. Below we will show that for any fixed $r_{0}>0$, there exists a number $T_{0}=T_{0}\left(r_{0}, F\right)>0$ such that for $T<T_{0}$, the operator \mathcal{A}_{0} from (3.3.39) maps the ball $B\left(0, r_{0}\right)$ into itself. Towards this end, we evaluate $\left\|\mathcal{A}_{0} u\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)}$ for $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

When $u=\left(u_{1}, \ldots, u_{N}\right) \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$, we denote by \widetilde{u} the vector function which is an even extension of u through the plane $t=T$ in the domain D_{T}^{*}, symmetric to the domain D_{T} with respect to the same plane, i.e.,

$$
\widetilde{u}= \begin{cases}u(x, t), & (x, t) \in D_{T}, \\ u(x, 2 T-t), & (x, t) \in D_{T}^{*}\end{cases}
$$

and $\widetilde{u}(x, t)=u(x, t)$ for $t=T$ in the sense of the trace theory. It is obvious that $\widetilde{u} \in \stackrel{\circ}{W}_{2}^{1}\left(\widetilde{D}_{T}\right):\{v \in$ $\left.W_{2}^{1}\left(D_{T}\right):\left.v\right|_{\partial \widetilde{D}_{T}}=0\right\}$, where $\widetilde{D}_{T}=D_{T} \cup \Omega_{T} \cup D_{T}^{*}, \Omega_{T}:=D \cap\{t=T\}$.

Using the inequality [93]

$$
\int_{\Omega}|v| d \Omega \leq(\operatorname{mes} \Omega)^{1-\frac{1}{p}}\|v\|_{p, \Omega}, \quad p \geq 1
$$

and taking into account the equalities

$$
\|\widetilde{u}\|_{L_{p}\left(\widetilde{D}_{T}\right)}^{p}=2\|u\|_{L_{p}\left(D_{T}\right)}^{p}, \quad\|\widetilde{u}\|_{W_{2}^{1}\left(\widetilde{D}_{T}\right)}^{2}=2\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}
$$

from the known multiplicative inequality [68]

$$
\begin{gathered}
\|v\|_{p, \Omega} \leq \beta\left\|\nabla_{x, t} v\right\|_{m, \Omega}^{\widetilde{\alpha}}\|v\|_{r, \Omega}^{1-\widetilde{\alpha}} \forall v \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \Omega \subset \mathbb{R}^{n+1}, \\
\nabla_{x, t}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right), \widetilde{\alpha}=\left(\frac{1}{r}-\frac{1}{p}\right)\left(\frac{1}{r}-\frac{1}{\widetilde{m}}\right)^{-1}, \widetilde{m}=\frac{(n+1) m}{n+1-m}
\end{gathered}
$$

for $\Omega=\widetilde{D}_{T} \subset \mathbb{R}^{n+1}, v=\widetilde{v}, r=1, m=2$ and $1<p \leq \frac{2(n+1)}{n+1-m}$, where $\beta=$ const >0 does not depend on v and T, it follows the inequality

$$
\begin{equation*}
\|u\|_{L_{p}\left(D_{T}\right)} \leq c_{0}\left(\operatorname{mes} D_{T}\right)^{\frac{1}{p}+\frac{1}{p+1}-\frac{1}{2}}\|u\|_{\stackrel{\circ}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \quad \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{3.3.40}
\end{equation*}
$$

where $c_{0}=$ const >0 does not depend on u and T.
Since mes $D_{T}=\frac{\omega}{n+1} T^{n+1}$, where ω is the n-dimensional measure of the section $\Omega_{1}:=D \cap\{t=1\}$, for $p=2 \alpha$ from (3.3.40) we have

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{T}\right)} \leq C_{T}\|u\|_{\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{3.3.41}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{T}=c_{0}\left(\frac{\omega}{n+1}\right)^{\alpha_{1}} T^{(n+1) \alpha_{1}}, \quad \alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2} . \tag{3.3.42}
\end{equation*}
$$

Since $\alpha<\frac{n+1}{n-1}$, we have $\alpha_{1}=\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2}>0$, and due to (3.3.41), and (3.3.42), for any $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ we get

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{T}\right)} \leq C_{T_{1}}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \forall T \leq T_{1} \tag{3.3.43}
\end{equation*}
$$

where T_{1} is a fixed positive number.
For $\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}$, where $u \in \stackrel{\stackrel{\circ}{W}}{2}\left(D_{T}, S_{T}\right), T \leq T_{1}$, and the operator \mathcal{K}_{0} acts according to the formula (3.2.3), due to (3.2.2) and (3.3.43), we have the following estimate

$$
\begin{aligned}
&\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}^{2} \leq \int_{D_{T}}\left(M_{1}+M_{2}|u|^{\alpha}\right)^{2} d x d t \leq 2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2} \int_{D_{T}}|u|^{2 \alpha} d x d t \\
&=2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2}\|u\|_{L_{2 \alpha}\left(D_{T}\right)}^{2 \alpha} \leq 2 M_{1}^{2} \operatorname{mes} D_{T}+2 M_{2}^{2} C_{T_{1}}^{2 \alpha}\|u\|_{W_{2}\left(D_{T}, S_{T}\right)}^{2 \alpha}
\end{aligned}
$$

whence we obtain

$$
\begin{equation*}
\left\|\mathcal{K}_{0} u\right\|_{L_{2 \alpha}\left(D_{T}\right)} \leq M_{1}\left(2 \operatorname{mes} D_{T_{1}}\right)^{1 / 2}+\sqrt{2} M_{2} C_{T_{1}}^{\alpha}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha} \tag{3.3.44}
\end{equation*}
$$

From (3.3.30), (3.3.36), (3.3.39) and (3.3.44), it follows that

$$
\begin{align*}
& \left\|\mathcal{A}_{0} u\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \\
& \quad \leq\left\|L_{01}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}}\left\|\mathcal{K}_{0} u\right\|_{L_{2}\left(D_{T}\right)}+\left\|L_{01}^{-1}\right\|_{\left[L_{2}\left(D_{T}\right)\right]^{N} \rightarrow\left[\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)\right]^{N}}\|F\|_{L_{2}\left(D_{T}\right)} \\
& \leq c\left[\sqrt{2 \operatorname{mes} D_{T_{1}}} M_{1}+\sqrt{2} M_{2} C_{T_{1}}^{\alpha}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\alpha}+\|F\|_{L_{2}\left(D_{T_{1}}\right)}\right] \\
& \leq \sqrt{T}\left(M_{0}+2\right)^{1 / 2} \exp \left(T_{1}+1\right) T_{1} \\
& \quad \times\left[\sqrt{2 \operatorname{mes} D_{T_{1}}} M_{1}+\sqrt{2} M_{2} C_{T_{1}}^{\alpha}\|u\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{\alpha}+\|F\|_{L_{2}\left(D_{T_{1}}\right)}\right] \tag{3.3.45}\\
& \quad \forall T \leq T_{1} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) .
\end{align*}
$$

Since the right-hand side of the inequality (3.3.45) contains \sqrt{T} as a factor vanishing as $T \rightarrow 0$, there exists a positive number $T_{0} \leq T_{1}$ such that for $T<T_{0}$ and $\|u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq r_{0}$, due to (3.3.45), we have $\left\|\mathcal{A}_{0} u\right\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq r_{0}$, i.e., the operator $\mathcal{A}_{0}: \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ from (3.3.39) maps the ball $B\left(0, r_{0}\right)$ into itself. Thus Theorem 3.3.2 is proved completely.

Remark 3.3.3. In the case if f satisfies the condition (3.2.2), where $1<\alpha<\frac{n+1}{n-1}$, Theorem 3.3 .2 ensures a local solvability of the problem (3.1.1), (3.1.2), although in this case, with the additional conditions imposed on f, this problem is, as it will be shown in the theorem below, globally solvable.

Theorem 3.3.3. Let f satisfy the condition (3.2.2), where $1<\alpha<\frac{n+1}{n-1}$, and $f=\nabla G$, i.e., $f_{i}(u)=\frac{\partial}{\partial u_{i}} G(u), u \in \mathbb{R}^{N}, i=1, \ldots, N$, where $G=G(u) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a scalar function satisfying the conditions $G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Let $g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (3.1.1), (3.1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$, this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

Proof. First, let us show that for any fixed $T>0$, with the conditions of Theorem 3.3.3, for a strong generalized solution u of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T}, the estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c(T)\|F\|_{L_{2}\left(D_{T}\right)}, \quad c(T)=\sqrt{T} \exp \frac{1}{2}\left(T+T^{2}\right) \tag{3.3.46}
\end{equation*}
$$

is valid.
Indeed, according to Definition 3.2.1, in the case $g=0$, there exists a sequence of vector functions $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\left\{v \in C^{2}\left(\bar{D}_{T}\right):\left.v\right|_{S_{T}}=0\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{3.3.47}
\end{equation*}
$$

Putting

$$
\begin{equation*}
F^{m}:=L u^{m} \tag{3.3.48}
\end{equation*}
$$

and taking into account that $\left.u^{m}\right|_{S_{T}}=0$ and the operator $\nu_{0} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}$ is an inner differential operator on S_{T} and, hence $\left.\left(\frac{\partial u^{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u^{m}}{\partial t} \nu_{i}\right)\right|_{S_{T}}=0, i=1, \ldots, n$, due to (3.1.3), from (3.3.8) we get

$$
\begin{equation*}
\int_{D_{\tau}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t \geq \frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x+\int_{D_{\tau}} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t} d x d t \tag{3.3.49}
\end{equation*}
$$

Since $f=\nabla G$, we have $f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t}=\frac{\partial}{\partial t} G\left(u^{m}\right)$, and taking into account that $\left.u^{m}\right|_{S_{T}}=0$, $\left.\nu_{0}\right|_{\Omega_{\tau}}=1, G(0)=0$, and integrating by parts, we obtain

$$
\begin{align*}
\int_{D_{\tau}} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t} d x d t= & \int_{D_{\tau}} \\
& \frac{\partial}{\partial t} G\left(u^{m}\right) d x d t \tag{3.3.50}\\
& =\int_{\partial D_{\tau}} G\left(u^{m}\right) \nu_{0} d s=\int_{S_{\tau} \cup \Omega_{\tau}} G\left(u^{m}\right) \nu_{0} d s=\int_{\Omega_{\tau}} G\left(u^{m}\right) d x
\end{align*}
$$

Owing to $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$, due to (3.3.50), from (3.3.49), we get

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\right. & \left.\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \leq 2 \int_{D_{T}} F^{m} \frac{\partial u^{m}}{\partial t} d x d t \leq \int_{D_{T}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t+\int_{D_{T}}\left(F^{m}\right)^{2} d x d t, \quad 0<\tau \leq T \tag{3.3.51}
\end{align*}
$$

Since $\left.u^{m}\right|_{S_{T}}=0$, we have $u(x, \tau)=\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u^{m}(x, s) d s$, where $t=\gamma(x)$ is the equation of the conic surface S. Thus just as in obtaining the inequality (3.3.15), we get

$$
\begin{align*}
\int_{\Omega_{\tau}}\left(u^{m}\right)^{2} d x=\int_{\Omega_{\tau}}\left(\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u^{m}(x, s) d s\right)^{2} d x & \leq \int_{\Omega_{\tau}}(\tau-|x|)\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial}{\partial t} u^{m}\right)^{2} d s\right] d x \\
& \leq T \int_{\Omega_{\tau}}\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d s\right] d x=T \int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t \tag{3.3.52}
\end{align*}
$$

Denoting

$$
w(\tau):=\int_{\Omega_{\tau}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x
$$

in view of (3.3.51) and (3.3.52), we have

$$
\begin{align*}
w(\tau) & \leq(1+T) \int_{D_{\tau}}\left(\frac{\partial u^{m}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}}\left(F^{m}\right)^{2} d x d t \\
& \leq(1+T) \int_{D_{\tau}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x d t+\left\|F^{m}\right\|_{L_{2}\left(D_{\tau}\right)}^{2} \\
& =(1+T) \int_{0}^{\tau} w(s) d s+\left\|F^{m}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}, \quad 0<\tau \leq T \tag{3.3.53}
\end{align*}
$$

By virtue of the Gronwall lemma, it follows from (3.3.53) that

$$
\begin{equation*}
w(\tau) \leq\|F\|_{L_{2}\left(D_{\tau}\right)}^{2} \exp (1+T) \tau \leq\|F\|_{L_{2}\left(D_{T}\right)}^{2} \exp (1+T) T, \quad 0<\tau \leq T \tag{3.3.54}
\end{equation*}
$$

According to (3.3.54), we have

$$
\begin{aligned}
\left\|u^{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}=\int_{D_{T}}\left[\left(u^{m}\right)^{2}+\left(\frac{\partial u^{m}}{\partial t}\right)^{2}+\right. & \left.\sum_{i=1}^{n}\left(\frac{\partial u^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \\
& =\int_{0}^{T} w(\tau) d \tau \leq T\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)} \exp (1+T) T
\end{aligned}
$$

whence, due to the limit equalities (3.3.47), we arrive at the estimate (3.3.46).
According to Remark 3.3.1, when the conditions of Theorem 3.3.3 are fulfilled, the vector function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} if and only if u is a solution of the functional equation $u=\mathcal{A}_{0} u$ from (3.3.39) in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, where the operator \mathcal{A}_{0}, acting in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, is continuous and compact. At the same time, due to (3.3.46), for any solution of the equation $u=\mu \mathcal{A}_{0} u$, an a priori estimate

$$
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq \mu c(T)\|F\|_{L_{2}\left(D_{T}\right)} \leq c(T)\|F\|_{L_{2}\left(D_{T}\right)}
$$

with the positive constant $c(T)$, independent of u, μ and F, is valid. Thus, according to Schaefer's fixed point theorem [20], the equation (3.3.46), and hence the problem (3.1.1), (3.1.2), has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T} for any $T>0$. Thus Theorem 3.3.3 is proved completely.

3.4 The uniqueness and existence of a global solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1}

Below, we impose on the nonlinear vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ from (3.1.1) the additional requirements

$$
\begin{equation*}
f \in C^{1}\left(\mathbb{R}^{N}\right), \quad\left|\frac{\partial f_{i}(u)}{\partial u_{j}}\right| \leq M_{3}+M_{4}|u|^{\gamma} \forall u \in \mathbb{R}^{N}, \quad 1 \leq i, j \leq N \tag{3.4.1}
\end{equation*}
$$

where $M_{3}, M_{4}, \gamma=$ const ≥ 0. To simplify our reasoning, we suppose that the vector function $g=0$ in the boundary condition (3.1.2).

Remark 3.4.1. It is obvious that from (3.4.1) follows the condition (3.2.2) for $\alpha=\gamma+1$, and in the case $\gamma<\frac{2}{n-1}$, we have $\alpha<\frac{n+1}{n-1}$.

Theorem 3.4.1. Let the condition (3.4.1) be fulfilled, where $0 \leq \gamma<\frac{2}{n-1}, F \in L_{2}\left(D_{T}\right)$ and $g=0$. Then the problem (3.1.1), (3.1.2) cannot have more than one strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

Proof. Let $F \in L_{2}\left(D_{T}\right), g=0$, and the problem (3.1.1), (3.1.2) have two strong generalized solutions u^{1} and u^{2} of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1, i.e., there exist two sequences of vector functions $u^{i m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0\right\}, i=1,2 ; m=1,2, \ldots$, such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u^{i m}-u^{i}\right\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L u^{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \quad i=1,2 . \tag{3.4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=u^{2}-u^{1}, \quad w^{m}=u^{2 m}-u^{1 m}, \quad F^{m}=L u^{2 m}-L u^{1 m} \tag{3.4.3}
\end{equation*}
$$

In view of (3.4.2) and (3.4.3), we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|w^{m}-w\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{3.4.4}
\end{equation*}
$$

In accordance with (3.4.3), consider the vector function $w^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ as a solution of the following problem:

$$
\begin{gather*}
\square w^{m}=-\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right]+F^{m} \tag{3.4.5}\\
\left.w^{m}\right|_{S_{T}}=0 . \tag{3.4.6}
\end{gather*}
$$

In the same way as the inequality (3.3.49) was obtained, from (3.4.5) and (3.4.6) we arrive at

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \quad \leq 2 \int_{D_{\tau}} F^{m} \frac{\partial w^{m}}{\partial t} d x d t-2 \int_{D_{\tau}}\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t} d x d t, \quad 0<\tau \leq T \tag{3.4.7}
\end{align*}
$$

Taking into account the equality

$$
f_{i}\left(u^{2 m}\right)-f_{i}\left(u^{1 m}\right)=\sum_{j=1}^{N} \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\left(u_{j}^{2 m}-u_{j}^{1 m}\right)
$$

we obtain

$$
\begin{equation*}
\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t}=\sum_{i, j=1}^{N}\left[\int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}+s\left(u^{2 m}-u^{1 m}\right)\right) d s\right]\left(u_{j}^{2 m}-u_{j}^{1 m}\right) \frac{\partial w_{i}^{m}}{\partial t} \tag{3.4.8}
\end{equation*}
$$

By virtue of (3.4.1) and the obvious inequality $\left|d_{1}+d_{2}\right|^{\gamma} \leq 2^{\gamma} \max \left(\left|d_{1}\right|^{\gamma},\left|d_{2}\right|^{\gamma}\right) \leq 2^{\gamma}\left(\left|d_{1}\right|^{\gamma}+\left|d_{2}\right|^{\gamma}\right)$ for $\gamma \geq 0, d_{i} \in \mathbb{R}$, we have

$$
\begin{align*}
\left\lvert\, \int_{0}^{1} \frac{\partial}{\partial u_{j}} f_{i}\left(u^{1 m}\right.\right. & \left.+s\left(u^{2 m}-u^{1 m}\right)\right) d s \mid \\
& \leq \int_{0}^{1}\left[M_{3}+M_{4}\left|(1-s) u^{1 m}+s u^{2 m}\right|^{\gamma}\right] d s \leq M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right) \tag{3.4.9}
\end{align*}
$$

From (3.4.8) and (3.4.9), with regard for (3.4.3), we get

$$
\begin{align*}
&\left|\left[f\left(u^{2 m}\right)-f\left(u^{1 m}\right)\right] \frac{\partial w^{m}}{\partial t}\right| \leq \sum_{i, j=1}^{N}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w_{j}^{m}\right|\left|\frac{\partial w_{i}^{m}}{\partial t}\right| \\
& \leq N^{2}\left[M_{3}+2^{\gamma} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\right]\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| \\
& \leq \frac{1}{2} N^{2} M_{3}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right]+2^{\gamma} N^{2} M_{4}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| \tag{3.4.10}
\end{align*}
$$

Due to (3.4.7) and (3.4.10), we have

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \leq \int_{D_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\left(F^{m}\right)^{2}\right] d x d t+N^{2} M_{3} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}\right] d x d t \\
& +2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \tag{3.4.11}
\end{align*}
$$

The last integral in the right-hand side of (3.4.11) can be estimated by Hölder's inequality

$$
\begin{align*}
& \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \\
& \quad \leq\left(\left\|\left|u^{1 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}+\left\|\left|u^{2 m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}\right)\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)} \tag{3.4.12}
\end{align*}
$$

Here, $\frac{1}{n+1}+\frac{1}{p}+\frac{1}{2}=1$, i.e.,

$$
\begin{equation*}
p=\frac{2(n+1)}{n-1} \tag{3.4.13}
\end{equation*}
$$

By virtue of (3.3.40), for $q \leq \frac{2(n+1)}{n-1}$, we have

$$
\begin{equation*}
\|v\|_{L_{q}\left(D_{\tau}\right)} \leq C_{q}(T)\|v\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \forall v \in \stackrel{\circ}{W}_{2}^{1}\left(D_{\tau}, S_{\tau}\right), \quad 0<\tau \leq T \tag{3.4.14}
\end{equation*}
$$

with the positive constant $C_{q}(T)$, not depending on $v \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{\tau}, S_{\tau}\right)$ and $\tau \in(0, T]$.
According to the theorem, $\gamma<\frac{1}{n-1}$ and, therefore, $\gamma(n+1)<\frac{2(n+1)}{n-1}$. Thus from (3.4.13) and (3.4.14) we obtain

$$
\begin{gather*}
\left\|\left|u^{i m}\right|^{\gamma}\right\|_{L_{n+1}\left(D_{T}\right)}=\left\|u^{i m}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma} \leq C_{\gamma(n+1)}^{\gamma}(T)\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}, \quad i=1,2 ; \quad m \geq 1, \tag{3.4.15}\\
\left\|w^{m}\right\|_{L_{p}\left(D_{\tau}\right)} \leq C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}, \quad m \geq m_{0} . \tag{3.4.16}
\end{gather*}
$$

In view of the first limit equality from (3.4.2), there exists a natural number m_{0} such that for $m \geq m_{0}$, we have

$$
\left\|u^{i m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma} \leq\left\|u^{j}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+1, \quad i=1,2 ; \quad m \geq m_{0}
$$

In view of the above inequalities, it follows from (3.4.12)-(3.4.16) that

$$
\begin{align*}
& 2^{\gamma+1} N^{2} M_{4} \int_{D_{\tau}}\left(\left|u^{1 m}\right|^{\gamma}+\left|u^{2 m}\right|^{\gamma}\right)\left|w^{m}\right|\left|\frac{\partial w^{m}}{\partial t}\right| d x d t \\
& \leq 2^{\gamma+1} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T)\left(\left\|u^{1}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+\left\|u^{2}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{\gamma}+2\right) C_{p}(T)\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}, S_{\tau}\right)}\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)} \\
& \quad \leq M_{5}\left(\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2}+\left\|\frac{\partial w^{m}}{\partial t}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) \\
& \quad \leq 2 M_{5}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2}=2 M_{5} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t, \tag{3.4.17}
\end{align*}
$$

where

$$
M_{5}=2^{\gamma} N^{2} M_{4} C_{\gamma(n+1)}^{\gamma}(T)\left(\left\|u^{1}\right\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{\gamma}+\left\|u^{2}\right\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{\gamma}+2\right) C_{p}(T)
$$

Due to (3.4.17), from (3.4.11) we have

$$
\begin{align*}
& \int_{\Omega_{\tau}}\left[\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \\
& \quad \leq M_{6} \int_{D_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t+\int_{D_{\tau}}\left(F^{m}\right)^{2} d x d t, \quad 0<\tau \leq T, \tag{3.4.18}
\end{align*}
$$

where $M_{6}=1+M_{3} N^{2}+2 M_{5}$.
Note that the inequality (3.3.52) is likewise valid for w^{m} and, therefore,

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left(w^{m}\right)^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial w^{m}}{\partial t}\right)^{2} d x d t \leq T \int_{D_{T}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x d t \tag{3.4.19}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\lambda_{m}(\tau):=\int_{\Omega_{\tau}}\left[\left(w^{m}\right)^{2}+\left(\frac{\partial w^{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial w^{m}}{\partial x_{i}}\right)^{2}\right] d x \tag{3.4.20}
\end{equation*}
$$

and adding (3.4.18) to (3.4.19), we obtain

$$
\lambda_{m}(\tau) \leq\left(M_{6}+T\right) \int_{0}^{\tau} \lambda_{m}(s) d s+\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}
$$

whence by the Gronwall lemma, it follows that

$$
\begin{equation*}
\lambda_{m}(\tau) \leq\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) \tau \tag{3.4.21}
\end{equation*}
$$

From (3.4.20) and (3.4.21) we have

$$
\begin{equation*}
\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}=\int_{0}^{T} \lambda_{m}(\tau) d \tau \leq T\left\|F^{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \exp \left(M_{6}+T\right) T \tag{3.4.22}
\end{equation*}
$$

In view of (3.4.3) and (3.4.4), it follows from (3.4.22) that

$$
\begin{aligned}
&\|w\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}+w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq \lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}+\lim _{m \rightarrow \infty}\left\|w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)} \\
&=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}\right)}=\lim _{m \rightarrow \infty}\left\|w-w^{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0 .
\end{aligned}
$$

Therefore, $w=u_{2}-u_{1}=0$, i.e., $u_{2}=u_{1}$. Thus Theorem 3.4.1 is proved completely.
Theorems 3.3.1, 3.3.3, 3.4.1 and Remark 3.4.1 result in the following theorem of the existence and uniqueness.

Theorem 3.4.2. Let the vector function f satisfy the condition (3.4.1), where $0 \leq \gamma<\frac{2}{n-1}$, and either f satisfy the condition (3.2.2) for $\alpha \leq 1$ or $f=\nabla G$, where $G \in C^{1}\left(\mathbb{R}^{N}\right), G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Then for any $F \in L_{2}\left(D_{T}\right)$ and $g=0$, the problem (3.1.1), (3.1.2) has a unique strong generalized solution $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1.

The following theorem on the existence of a global solution of this problem follows from Theorem 3.4.2.

Theorem 3.4.3. Let the vector function f satisfy the condition (3.4.1), where $0 \leq \gamma<\frac{2}{n-1}$, and either f satisfy the condition (3.2.2) for $\alpha \leq 1$ or $f=\nabla G$, where $G \in C^{1}\left(\mathbb{R}^{N}\right), G(0)=0$ and $G(u) \geq 0 \quad \forall u \in \mathbb{R}^{N}$. Let $g=0, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for each $T>0$. Then the problem (3.1.1), (3.1.2) has a unique global strong generalized solution $u \in W_{2, \text { loc }}^{1}\left(D_{\infty}\right)$ of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 3.2.4.

Proof. According to Theorem 3.4.2, when the conditions of Theorem 3.4.3 are fulfilled, for $T=k$, where k is a natural number, there exists a unique strong generalized solution $u^{k} \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain $D_{T=k}$ in the sense of Definition 3.2.1. Since $\left.u^{k+1}\right|_{D_{T=k}}$ is also a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain $D_{T=k}$, in view of Theorem 3.4.2 we have $u^{k}=\left.u^{k+1}\right|_{D_{T=k}}$. Therefore, one can construct a unique generalized solution $u \in \stackrel{\circ}{W}_{2, l o c}^{1}\left(D_{\infty}\right)$ of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 3.2.4 as follows:

$$
u(x, t)=u^{k}(x, t), \quad(x, t) \in D_{\infty}, \quad k=[t]+1
$$

where $[t]$ is an integer part of the number t. Thus Theorem 3.4.3 is proved completely.

3.5 The cases of the nonexistence of a global solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1}

Theorem 3.5.1. Let the vector function $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (3.2.2), where $1<$ $\alpha<\frac{n+1}{n-1}$, and there exist the numbers $\ell_{1}, \ldots, \ell_{N}, \sum_{i=1}^{N}\left|\ell_{i}\right| \neq 0$, such that

$$
\begin{equation*}
\sum_{i=1}^{N} \ell_{i} f(u) \leq c_{0}-c_{1}\left|\sum_{i=1}^{N} \ell_{i} u_{i}\right|^{\beta} \forall u \in \mathbb{R}^{N}, \quad 1<\beta=\text { const }<\frac{n+1}{n-1} \tag{3.5.1}
\end{equation*}
$$

where $c_{0}, c_{1}=$ const, $c_{1}>0$. Let $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0, g=0$. Let the scalar function $F_{0}=\sum_{i=1}^{N} \ell_{i} F_{i}-c_{0}$ in the domain D_{∞} satisfy the following conditions:

$$
\begin{equation*}
F_{0} \geq 0, \quad \lim _{t \rightarrow+\infty} \inf t^{\gamma} F_{0}(x, t) \geq c_{2}=\text { const }>0, \quad \gamma=\text { const } \leq n+1 \tag{3.5.2}
\end{equation*}
$$

Then there exists a finite positive number $T_{0}=T_{0}(F)$ such that for $T>T_{0}$ the problem (3.1.1), (3.1.2) does not have a strong generalized solution of the class W_{2}^{1} in the sense of Definition 3.2.1.

Proof. Let $u=\left(u_{1}, \ldots, u_{N}\right)$ be a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 3.2.1. It is easy to verify that

$$
\begin{equation*}
\int_{D_{T}} u \square \varphi d x d t=-\int_{D_{T}} f(u) \varphi d x d t+\int_{D_{T}} F \varphi d x d t \tag{3.5.3}
\end{equation*}
$$

for any test vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right)$ such that

$$
\begin{equation*}
\varphi \in C^{2}\left(\bar{D}_{T}\right),\left.\quad \varphi\right|_{\partial D_{T}}=\left.\frac{\partial \varphi}{\partial \nu}\right|_{\partial D_{T}}=0 \tag{3.5.4}
\end{equation*}
$$

where ν is the unit vector of the outer normal to ∂D_{T}. Indeed, according to the definition of the strong generalized solution of the problem (3.1.1), (3.1.2) of the class W_{2}^{1} in the domain D_{T}, there exists a sequence of vector functions $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ for which the limit equalities (3.3.47) are valid. Taking into account (3.3.48) and multiplying scalarly both parts of the equality $L u^{m}=F^{m}$ by the test vector function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right)$, due to (3.5.4), after integrating by parts, we obtain

$$
\begin{equation*}
\int_{D_{T}} u^{m} \square \varphi d x d t=-\int_{D} f\left(u^{m}\right) \varphi d x d t+\int_{D_{T}} F^{m} \varphi d x d t \tag{3.5.5}
\end{equation*}
$$

By virtue of (3.3.47) and Remark 3.2.1, passing in the equality (3.5.5) to the limit as $m \rightarrow \infty$, we get (3.5.3).

Let us apply the method of test functions [77]. Consider a scalar function $\varphi^{0}=\varphi^{0}(x, t)$ such that

$$
\begin{equation*}
\varphi^{0} \in C^{2}\left(\bar{D}_{\infty}\right),\left.\quad \varphi^{0}\right|_{D_{T=1}}>0,\left.\quad \varphi^{0}\right|_{t \geq 1}=0,\left.\quad \varphi^{0}\right|_{\partial D_{T=1}}=\left.\frac{\partial \varphi^{0}}{\partial \nu}\right|_{\partial D_{T=1}}=0 \tag{3.5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\varkappa_{0}:=\int_{D_{T=1}} \frac{\left|\square \varphi^{0}\right|^{\beta^{\prime}}}{\left|\varphi^{0}\right|^{\beta^{\prime}-1}} d x d t<+\infty, \quad \frac{1}{\beta}+\frac{1}{\beta^{\prime}}=1 \tag{3.5.7}
\end{equation*}
$$

It is not difficult to see that in the capacity of the function φ^{0}, satisfying the conditions (3.5.6) and (3.5.7), we can choose the function

$$
\varphi^{0}(x, t)= \begin{cases}\omega^{m}\left(\frac{x}{t}\right)(1-t)^{m} t^{k}, & (x, t) \in D_{T=1} \\ 0, & t \geq 1\end{cases}
$$

for sufficiently large positive m and k, where the function $\omega \in C^{\infty}\left(\mathbb{R}^{n}\right)$ defines the equation of conic section $\partial \Omega_{1}=S \cap\{t=1\}: \omega(x)=0,\left.\nabla \omega\right|_{\partial \Omega_{1}} \neq 0$, and $\left.\omega\right|_{\Omega_{1}}>0, \Omega_{1}: D \cap\{t=1\}$.

Putting

$$
\begin{equation*}
\varphi_{T}(x, t):=\varphi^{0}\left(\frac{x}{T}, \frac{t}{T}\right), \quad T>0 \tag{3.5.8}
\end{equation*}
$$

due to (3.5.6), it is easy to see that

$$
\begin{equation*}
\varphi_{T} \in C^{2}\left(\bar{D}_{T}\right),\left.\quad \varphi_{T}\right|_{D_{T}}>0,\left.\quad \varphi_{T}\right|_{\partial D_{T}}=\left.\frac{\partial \varphi_{T}}{\partial \nu}\right|_{\partial D_{T}}=0 \tag{3.5.9}
\end{equation*}
$$

In the integral equality (3.5.3), for the test vector function φ we choose $\varphi=\left(\ell_{1} \varphi_{T}, \ell_{2} \varphi_{T}, \ldots, \ell_{N} \varphi_{T}\right)$. For the chosen test vector function φ, using the notation

$$
\begin{equation*}
v=\sum_{i=1}^{N} \ell_{i} u_{i}, \quad F_{*}=\sum_{i=1}^{N} \ell_{i} F_{i}, \quad f_{0}=\sum_{i=1}^{N} \ell_{i} f_{i} \tag{3.5.10}
\end{equation*}
$$

the integral equality (3.5.3) takes the form

$$
\begin{equation*}
\int_{D_{T}} v \square \varphi_{T} d x d t=-\int_{D_{T}} f_{0}(u) \varphi_{T} d x d t+\int_{D_{T}} F_{*} \varphi_{T} d x d t \tag{3.5.11}
\end{equation*}
$$

From (3.5.1), (3.5.9) and (3.5.11), it follows that

$$
\begin{equation*}
\int_{D_{T}} v \square \varphi_{T} d x d t \geq \int_{D_{T}}\left[c_{1}|v|^{\beta}-c_{0}\right] \varphi_{T} d x d t+\int_{D_{T}} F_{*} \varphi_{T} d x d t=c_{1} \int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t+\chi(T), \tag{3.5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi(T)=\int_{D_{T}}\left(F_{*}-c_{0}\right) \varphi_{T} d x d t=\int_{D_{T}} F_{0} \varphi_{T} d x d t \geq 0 \tag{3.5.13}
\end{equation*}
$$

due to (3.5.2) and (3.5.9).
In view of (3.5.2), there exists a number $T_{1}=T_{1}(F)>0$ such that

$$
\begin{equation*}
F_{0}(x, t) \geq \frac{c_{2}}{2} t^{-\gamma}, \quad t>T_{1} \tag{3.5.14}
\end{equation*}
$$

By virtue of (3.5.8) and (3.5.14), after the substitution of variables $t=T t^{\prime}, x=T x^{\prime}$ in the integral (3.5.13), for $T>2 T_{1}$ we have

$$
\begin{align*}
\chi(T) & =T^{n+1} \int_{D_{T=1}} F_{0}\left(T x^{\prime}, T t^{\prime}\right) \varphi^{0}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \\
& \geq T^{n+1} \int_{D_{T=1} \cap\left\{\frac{1}{2}<t^{\prime}<1\right\}} F_{0}\left(T x^{\prime}, T t^{\prime}\right) \varphi^{0}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \\
& \geq T^{n+1} \int_{D_{T=1} \cap\left\{\frac{1}{2}<t^{\prime}<1\right\}} \frac{c_{2}}{2}\left(T t^{\prime}\right)^{-\gamma} \varphi^{0}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \\
& =\frac{c_{2}}{2} T^{n+1-\gamma} \int_{D_{T=1} \cap\left\{\frac{1}{2}<t^{\prime}<1\right\}}\left(t^{\prime}\right)^{-\gamma} \varphi^{0}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \\
& =c_{3} T^{n+1-\gamma}, T>2 T_{1}, \tag{3.5.15}
\end{align*}
$$

where, due to $\left.\varphi^{0}\right|_{D_{T=1}}>0$,

$$
\begin{equation*}
c_{3}=\frac{c_{2}}{2} \int_{D_{T=1} \cap\left\{\frac{1}{2}<t^{\prime}<1\right\}}\left(t^{\prime}\right)^{-\gamma} \varphi^{0}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} d x^{\prime} d t^{\prime}=\text { const }>0 \tag{3.5.16}
\end{equation*}
$$

Since according to the conditions of Theorem 3.5.1, the constant $\gamma \leq n+1$, it follows from (3.5.15) and (3.5.16) that

$$
\begin{equation*}
\lim _{T \rightarrow+\infty} \inf \chi(T) \geq c_{3} \tag{3.5.17}
\end{equation*}
$$

Further, in view of (3.5.13), the inequality (3.5.12) can be rewritten in the form

$$
\begin{equation*}
c_{1} \int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \int_{D_{T}} v \square \varphi_{T} d x d t-\chi(T) \tag{3.5.18}
\end{equation*}
$$

If in Young's inequality with the parameter $\varepsilon>0: a b \leq(\varepsilon / \beta) a^{\beta}+\left(\beta^{\prime} \varepsilon^{\beta^{\prime}-1}\right)^{-1} b^{\beta}$, where $\beta^{\prime}=$ $\beta /(\beta-1)$, we take $a=|u| \varphi_{T}^{1 / \beta}, b=\left|\square \varphi_{T}\right| / \varphi_{T}^{1 / \beta}$, then taking into account the equality $\beta^{\prime} / \beta=\beta^{\prime}-1$, we obtain

$$
\begin{equation*}
\left|v \varphi_{T}\right|=|v| \varphi_{T}^{1 / \beta} \frac{\left|\square \varphi_{T}\right|}{\varphi_{T}^{1 / \beta}} \leq \frac{\varepsilon}{\beta}|v|^{\beta} \varphi_{T}+\frac{1}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \frac{\left|\square \varphi_{T}\right|^{\beta^{\prime}}}{\varphi_{T}^{\beta^{\prime}-1}} \tag{3.5.19}
\end{equation*}
$$

In view of (3.5.19), from (3.5.18) we get

$$
\left(c_{1}-\frac{\varepsilon}{\beta}\right) \int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \frac{1}{\beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{\beta^{\prime}}}{\varphi_{T}^{\beta^{\prime}-1}} d x d t-\chi(T)
$$

whence for $\varepsilon<c_{1} \beta$, we obtain

$$
\begin{equation*}
\int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}} \int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{\beta^{\prime}}}{\varphi_{T}^{\beta^{\prime}-1}} d x d t-\frac{\beta}{c_{1} \beta-\varepsilon} \chi(T) \tag{3.5.20}
\end{equation*}
$$

Taking into account the equalities $\beta^{\prime}=\frac{\beta}{\beta-1}, \beta^{\prime}=\frac{\beta^{\prime}}{\beta^{\prime}-1}$ and also the equality

$$
\min _{0<\varepsilon<c_{1} \beta} \frac{\beta}{\left(c_{1} \beta-\varepsilon\right) \beta^{\prime} \varepsilon^{\beta^{\prime}-1}}=\frac{1}{c_{1}^{\beta^{\prime}}},
$$

which is achieved for $\varepsilon=c_{1}$, it follows from (3.5.20) that

$$
\begin{equation*}
\int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \frac{1}{c_{1}^{\beta^{\prime}}} \int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{\beta^{\prime}}}{\varphi_{T}^{\beta^{\prime}-1}} d x d t-\frac{\beta^{\prime}}{c_{1}} \chi(T) \tag{3.5.21}
\end{equation*}
$$

By virtue of (3.5.6)-(3.5.8), after the substitution of variables $x=T x^{\prime}, t=T t^{\prime}$, it can be easily verified that

$$
\int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{\beta^{\prime}}}{\varphi_{T}^{\beta^{\prime}-1}} d x d t=T^{n+1-2 \beta^{\prime}} \int_{D_{T=1}} \frac{\left|\square \varphi^{0}\right|^{\beta^{\prime}}}{\left(\varphi^{0}\right)^{\beta^{\prime}-1}} d x^{\prime} d t^{\prime}=T^{n+1-2 \beta^{\prime}} \varkappa_{0}<+\infty
$$

whence, due to (3.5.9), from the equality (3.5.21) we obtain

$$
\begin{equation*}
0 \leq \int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \frac{1}{c_{1}^{\beta^{\prime}}} T^{n+1-2 \beta^{\prime}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} \chi(T) \tag{3.5.22}
\end{equation*}
$$

Since, by supposition, $\beta<\frac{n+1}{n-1}$, we have $n+1-2 \beta^{\prime}<0$ and hence

$$
\begin{equation*}
\lim _{T \rightarrow+\infty} \frac{1}{c_{1}^{\beta^{\prime}}} T^{n+1-2 \beta^{\prime}} \varkappa_{0}=0 \tag{3.5.23}
\end{equation*}
$$

From (3.5.16), (3.5.17) and (3.5.23) it follows that there exists a positive number $T_{0}=T_{0}(F)$ such that for $T>T_{0}$, the right-hand side of the inequality (3.5.22) will be a negative value, which is impossible. This implies that if for the conditions of Theorem 3.5.1 there exists a strong generalized solution of the problem (3.5.1), (3.5.2) of the class W_{2}^{1} in the domain D_{T}, then $T \leq T_{0}$ necessarily, which proves Theorem 3.5.1.

Remark 3.5.1. As is shown in the first chapter, the following class of vector functions $f=\left(f_{1}, \ldots, f_{N}\right)$:

$$
\begin{equation*}
f_{i}\left(u_{1}, \ldots, u_{N}\right)=\sum_{j=1}^{N} a_{i j}\left|u_{j}\right|^{\beta_{i j}}+b_{i}, \quad i=1, \ldots, N \tag{3.5.24}
\end{equation*}
$$

where $a_{i j}=$ const $>0, b_{i}=$ const, $1<\beta_{i j}=$ const $<\frac{n+1}{n-1} ; i, j=1, \ldots, N$, satisfies the condition (3.5.1). Note that the vector function f represented by the equalities (3.5.24), satisfies likewise the condition (3.5.1) for $\ell_{1}=\ell_{2}=\cdots=\ell_{N}=-1$ for less restrictive conditions, when $a_{i j}=$ const ≥ 0, but $a_{i k_{i}}>0$, where k_{1}, \ldots, k_{N} is any arbitrary fixed permutation of numbers $1,2, \ldots, N ; i, j=1, \ldots, N$.

When $N=n=2, f_{1}=a_{11}\left|u_{1}\right|^{\gamma}+a_{12}\left|u_{2}\right|^{\beta}, f_{2}=a_{21}\left|u_{1}\right|^{\gamma}+a_{22}\left|u_{2}\right|^{\beta}, 1<\gamma, \beta<3$, the restrictions $a_{i j}>0$ can be omitted and replaced by the condition $\operatorname{det}\left(a_{i j}\right) \neq 0$. For example, for $f_{1}=u_{1}^{2}-2 u_{2}^{2}$, $f_{2}=-2 u_{1}^{2}+u_{2}^{2}$, the condition (3.5.1) for $\ell_{1}=\ell_{2}=1, \beta=2, c_{0}=0$ and $c_{1}=\frac{1}{2}$ will be valid, since in this case, $\ell_{1} f_{1}(u)+\ell_{2} f_{2}(u)=-\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}\right) \leq-\frac{1}{2}\left|u_{1}+u_{2}\right|^{2}$, and from Theorem 3.5.1 we find that for $F_{1}+F_{2} \geq \frac{c}{t^{\gamma}}$, where $c=$ const >0 and $\gamma=$ const $\leq 3, g=0$, the boundary value problem under consideration is not globally solvable. More precisely, from (3.5.17) and (3.5.22) it follows that

$$
0 \leq \int_{D_{T}}|v|^{\beta} \varphi_{T} d x d t \leq \frac{1}{c_{1}^{\beta^{\prime}}} T^{n+1-2 \beta^{\prime}} \varkappa_{0}-\frac{\beta^{\prime}}{c_{1}} c_{3}
$$

the right-hand side of which becomes negative for $T>T_{0}=\max \left(\left[\varkappa_{0}^{-1} \beta^{\prime} c_{1}^{\beta^{\prime}-1} c_{3}\right]^{\frac{1}{n+1-2 \beta^{\prime}}}, 1\right)$ and, therefore, for $T>T_{0}$, the problem (3.1.1), (3.1.2) does not have a solution. But for this concrete example, $n=2, \beta=\beta^{\prime}=2 ; \varkappa_{0}$ is determined from (3.5.7). The constants c_{1}, c_{2} and c_{3} are determined from (3.5.1), (3.5.2) and (3.5.16), respectively, and therefore, in this case $c_{1}=\frac{1}{2}$ and $T_{0}=\frac{\varkappa_{0}}{c_{3}}$. Further, due to Theorem 3.3.2 on the local solvability and Theorem 3.4.1 on the uniqueness of the solution of the problem, there exist a finite positive number $T_{*}=T_{*}(F)$ and a unique vector function $u=\left(u_{1}, u_{2}\right) \in W_{2, l o c}^{1}\left(D_{T_{*}}\right)$ such that u is a strong generalized solution of this problem of the class W_{2}^{1} in the domain D_{T} for $T<T_{*}$. From the aforesaid it follows that for the life-span T_{*} of this solution we have the upper estimate $T_{*} \leq T_{0}=\max \left(\frac{\varkappa_{0}}{c_{3}}, 1\right)$. The lower estimate for T_{*} can be obtained from the reasonings given in the proof of Theorem 3.3.2 on the local solvability.

Remark 3.5.2. From Theorem 3.5.1 it follows that when its conditions are fulfilled, the problem (3.1.1), (3.1.2) fails to have a global strong generalized solution of the class W_{2}^{1} in the domain D_{∞} in the sense of Definition 3.2.4.

Chapter 4

Multidimensional problem with one nonlinear in time condition for some semilinear hyperbolic equations with the Dirichlet boundary condition

4.1 Statement of the problem

In the space \mathbb{R}^{n+1} of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t, in the cylindrical domain $D_{T}=\Omega \times(0, T)$, where Ω is a Lipschitz domain in \mathbb{R}^{n}, consider a nonlocal problem of finding a solution $u(x, t)$ of the equation

$$
\begin{equation*}
L_{\lambda} u:=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\lambda f(x, t, u)=F(x, t), \quad(x, t) \in D_{T} \tag{4.1.1}
\end{equation*}
$$

satisfying the Dirichlet homogeneous boundary condition on a part of the boundary $\Gamma: \partial \Omega \times(0, T)$ of the cylinder D_{T}

$$
\begin{equation*}
\left.u\right|_{\Gamma}=0 \tag{4.1.2}
\end{equation*}
$$

the initial condition

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad x \in \Omega \tag{4.1.3}
\end{equation*}
$$

and the nonlocal condition

$$
\begin{equation*}
\mathcal{K}_{\mu} u_{t}: u_{t}(x, 0)-\mu u_{t}(x, T)=\psi(x), \quad x \in \Omega \tag{4.1.4}
\end{equation*}
$$

where f, F, φ and ψ are the given functions; λ and μ are the given nonzero constants, and $n \geq 2$.
A great number of works have been devoted to the study of nonlocal problems for partial differential equations. When a nonlocal problem is posed for abstract evolution equations and hyperbolic partial differential equations, we suggest the reader to refer to the works $[1-8,10,11,13,14,26-29,34,37,38$, $53,60,61,63-65,74,78,82,85,95]$ and to the references therein.

In this chapter, the problem (4.1.1)-(4.1.4) in the multidimensional case is studied in the Sobolev space $W_{2}^{1}\left(D_{T}\right)$, basing on the expansions of functions from the space $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ in the basis, consisting of eigenfunctions of the spectral problem $\Delta w=\widetilde{\lambda} w,\left.w\right|_{\partial \Omega}=0$, and using the embedding theorems in the Sobolev spaces. It should also be noted that if for $n=1$ there is no need in any restriction on the behavior of the function $f(x, t, u)$ with respect to the variable u, as $u \rightarrow \infty$, whereas in the case for $n>1$, we require of the function $f(x, t, u)$, as $u \rightarrow \infty$, to have a growth not exceeding a polynomial.

Moreover, for using the embedding theorems in the Sobolev spaces, it is additionally required for the order of polynomial growth to be less than a certain value that depends on the dimension of the space.

Below, on the function $f=f(x, t, u)$ we impose the following requirements:

$$
\begin{equation*}
f \in C\left(\bar{D}_{T} \times \mathbb{R}\right), \quad|f(x, t, u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{4.1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq \alpha=\text { const }<\frac{n+1}{n-1} \tag{4.1.6}
\end{equation*}
$$

Remark 4.1.1. The embedding operator $I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{1}\left(D_{T}\right)$ is a linear continuous operator for $1<q<\frac{2(n+1)}{n-1}$, when $n>1$ [68]. At the same time, Nemitski's operator $\mathcal{N}: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting by the formula $\mathcal{N} u=f(x, t, u)$, is, due to (4.1.5), continuous and bounded if $q \geq 2 \alpha$ [22]. Thus, since due to (4.1.6) we have $2 \alpha<\frac{2(n+1)}{n-1}$, there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Therefore, in this case the operator

$$
\begin{equation*}
\mathcal{N}_{0}=\mathcal{N} I: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right) \rightarrow L_{2}\left(D_{T}\right) \tag{4.1.7}
\end{equation*}
$$

where $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right):=\left\{w \in W_{2}^{1}\left(D_{T}\right):\left.w\right|_{\Gamma}=0\right\}$, is continuous and compact. Besides, it follows from $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$ that $f(x, t, u) \in L_{2}\left(D_{T}\right)$, and if $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$, then $f\left(x, t, u_{m}\right) \rightarrow$ $f(x, t, u)$ in the space $L_{2}\left(D_{T}\right)$.
Definition 4.1.1. Let the function f satisfy the conditions (4.1.5) and (4.1.6), $F \in L_{2}\left(D_{T}\right), \varphi \in$ $\stackrel{\circ}{W}{ }_{2}^{1}(\Omega):=\left\{v \in W_{2}^{1}(\Omega):\left.v\right|_{\partial \Omega}=0\right\}, \psi \in L_{2}(\Omega)$. We call a function u a generalized solution of the problem (4.1.1)-(4.1.4) if $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$ and there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right):=$ $\left\{w \in C^{2}\left(\bar{D}_{T}\right):\left.w\right|_{\Gamma}=0\right\}$ such that

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{\lambda} u_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \tag{4.1.8}\\
\lim _{m \rightarrow \infty}\left\|\left.u_{m}\right|_{t=0}-\varphi\right\|_{W_{2}^{1}(\Omega)}=0, \quad \lim _{m \rightarrow \infty}\left\|\mathcal{K}_{\mu} u_{m}-\psi\right\|_{L_{2}(\Omega)}=0 . \tag{4.1.9}
\end{gather*}
$$

Obviously, a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (4.1.1)-(4.1.4) is a generalized solution of this problem. It is easy to verify that a generalized solution of the problem (4.1.1)-(4.1.4) is a solution of the equation (4.1.1) in the sense of the theory of distributions. Indeed, let $F_{m}:=L_{\lambda} u_{m}$, $\varphi_{m}:=\left.u_{m}\right|_{t=0}, \psi_{m}:=\mathcal{K}_{\mu} u_{m t}$. Multiplying both sides of the equality $L_{\lambda} u_{m}=F_{m}$ by a test function $w \in V:=\left\{v \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right): v(x, T)-\mu v(x, 0)=0, x \in \Omega\right\}$ and integrating in the domain D_{T}, after simple transformations connected with integration by parts and the equality $\left.w\right|_{\Gamma}=0$, we get

$$
\begin{align*}
& \int_{\Omega}\left[u_{m t}(x, T) w(x, T)-u_{m t}(x, 0) w(x, 0)\right] d x \\
& \quad+\int_{D_{T}}\left[-u_{m t} w_{t}+\sum_{i=1}^{n} u_{m x_{i}} w_{x_{i}}+\lambda f\left(x, t, u_{m}\right) w\right] d x d t=\int_{D_{T}} F_{m} w d x d t \quad \forall w \in V . \tag{4.1.10}
\end{align*}
$$

Due to $\mathcal{K}_{\mu} u_{m t}=\psi_{m}(x)$ and $w(x, T)-\mu w(x, 0)=0, x \in \Omega$, it can be easily seen that $u_{m t}(x, T) w(x, T)-$ $u_{m t}(x, 0) w(x, 0)=u_{m t}(x, T)(w(x, T)-\mu w(x, 0))-\psi_{m}(x) w(x, 0)=-\psi_{m}(x) w(x, 0), x \in \Omega$. Therefore, the equality (4.1.10) takes the form

$$
\begin{align*}
& -\int_{\Omega} \psi_{m}(x) w(x, 0) d x \\
& \quad+\int_{\Omega}\left[-u_{m t} w_{t}+\sum_{i=1}^{n} u_{m x_{i}} w_{x_{i}}+\lambda f\left(x, t, u_{m}\right) w\right] d x d t=\int_{D_{T}} F_{m} w d x d t \quad \forall w \in V \tag{4.1.11}
\end{align*}
$$

In view of (4.1.5), (4.1.6), according to Remark 4.1.1, we have $f\left(x, t, u_{m}\right) \rightarrow f(x, t, u)$ in the space $L_{2}\left(D_{T}\right)$ as $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$. Therefore, due to (4.1.8) and (4.1.9), passing in the equality (4.1.11) to the limit as $m \rightarrow \infty$, we get

$$
\begin{equation*}
-\int_{\Omega} \psi(x) w(x, 0) d x+\int_{D_{T}}\left[-u_{t} w_{t}+\sum_{i=1}^{n} u_{x_{i}} w_{x_{i}}+\lambda f(x, t, u) w\right] d x d t=\int_{D_{T}} F w d x d t \forall w \in V . \tag{4.1.12}
\end{equation*}
$$

Since $C_{0}^{\infty}\left(D_{T}\right) \subset V$, from (4.1.12), integrating by parts, we have

$$
\begin{equation*}
\int_{D_{T}}[u \square w+\lambda f(x, t, u) w] d x d t=\int_{D_{T}} F w d x d t \forall w \in C_{0}^{\infty}\left(D_{T}\right) \tag{4.1.13}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$, and $C_{0}^{\infty}\left(D_{T}\right)$ is a space of finite infinitely differentiable functions on D_{T}. The equality (4.1.13), which is valid for any $w \in C_{0}^{\infty}\left(D_{T}\right)$, implies that a generalized solution u of the problem (4.1.1)-(4.1.4) is a solution of the equation (4.1.1) in the sense of the theory of distributions, besides, since the trace operator $\left.u \rightarrow u\right|_{t=0}$ is well defined in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$ and, particularly, is continuous from the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$ into the space $L_{2}(\Omega \times\{t=0\})$, we find, due to (4.1.8) and (4.1.9), that the initial condition (4.1.3) is fulfilled in the sense of the trace theory, while the nonlocal condition (4.1.4) in the integral sense is taken into account in the equality (4.1.12), which is valid for all $w \in V$. Note also that if a generalized solution u belongs to the class $C^{2}\left(\bar{D}_{T}\right)$, then due to the standard reasoning connected with the integral equality (4.1.12), which is valid for any $w \in V$ [68], we find that u is a classical solution of the problem (4.1.1)-(4.1.4), satisfying the equation (4.1.1), the boundary condition (4.1.2), the initial condition (4.1.3) and the nonlinear condition (4.1.4) pointwise.

Note that even in the linear case, i.e., for $\lambda=0$, the problem (4.1.1)-(4.1.4) is not always wellposed. For example, when $\lambda=0$ and $|\mu|=1$, the corresponding to (4.1.1)-(4.1.4) homogeneous problem may have an infinite number of linearly independent solutions (see Remark 4.3.2).

4.2 An a priori estimate of a solution of the problem (4.1.1)-(4.1.4)

Let

$$
\begin{equation*}
g(x, t, u)=\int_{0}^{u} f(x, t, s) d s, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{4.2.1}
\end{equation*}
$$

Consider the following conditions imposed on the function $g=g(x, t, u)$:

$$
\begin{gather*}
g(x, t, u) \geq-M_{3}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{4.2.2}\\
g_{t} \in C\left(\bar{D}_{T} \times \mathbb{R}, \quad g_{t}(x, t, u) \in M_{4}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R}\right. \tag{4.2.3}
\end{gather*}
$$

where $M_{i}=$ const $\geq 0, i=3,4$.
Let us consider some classes of frequently encountered in applications functions $f=f(x, t, u)$ satisfying the conditions (4.1.5), (4.2.2) and (4.2.3):

1. $f(x, t, u)=f_{0}(x, t) \beta(u)$, where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{T}\right)$ and $\beta \in C(\underset{R}{ }),|\beta(u)| \leq \widetilde{M}_{1}+\widetilde{M}_{2}|u|^{\alpha}$, $\widetilde{M}_{i}=$ const $\geq 0, \alpha=$ const ≥ 0. In this case, $g(x, t, u)=f_{0}(x, t) \int_{0}^{u} \beta(s) d s$ and when $f_{0} \geq 0$, $\frac{\partial}{\partial t} f_{0} \leq 0, \int_{0}^{u} \beta(s) d s \geq-M, M=$ const ≥ 0, the conditions (4.1.5), (4.2.2) and (4.2.3) are fulfilled.
2. $f(x, t, u)=f_{0}(x, t)|u|^{\alpha} \operatorname{sign} u$, where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{T}\right)$ and $\alpha>1$. In this case, $g(x, t, u)=$ $f_{0}(x, t) \frac{|u|^{\alpha}}{\alpha+1}$, and when $f_{0} \geq 0, \frac{\partial}{\partial t} f_{0} \leq 0$, the conditions (4.1.5), (4.2.2) and (4.2.3) are also fulfilled.

Lemma 4.2.1. Let $\lambda>0,|\mu|<1, F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}{ }_{2}^{1}(\Omega), \psi \in L_{2}(\Omega)$ and the conditions (4.1.5), (4.2.2) and (4.2.3) be fulfilled. Then for a generalized solution u of the problem (4.1.1)-(4.1.4) the following a priori estimate

$$
\begin{equation*}
\|u\|_{\mathscr{W}_{2}^{1}\left(D_{T}, \Gamma\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2}\|\varphi\|_{\dot{W}_{2}^{1}(\Omega)}+c_{3}\|\psi\|_{L_{2}(\Omega)}+c_{4}\|\varphi\|_{\stackrel{W}{2}_{2}^{1}(\Omega)}^{\frac{\alpha+1}{2}}+c_{5} \tag{4.2.4}
\end{equation*}
$$

is valid with nonnegative constants $c_{i}=c_{i}\left(\lambda, \mu, \Omega, T, M_{1}, M_{2}, M_{3}, M_{4}\right)$, not depending on u, F, φ, ψ, and $c_{i}>0$ for $i<4$, whereas in the linear case, i.e., when $\lambda=0$, the constants $c_{4}=c_{5}=0$, and in this case, due to (4.2.4), we have the uniqueness of the solution of the problem (4.1.1)-(4.1.4).

Proof. Let u be a generalized solution of the problem (4.1.1)-(4.1.4). In view of Definition 4.1.1, there exists a sequence of the functions $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right)$ such that the limit equalities (4.1.8), (4.1.9) are fulfilled.

Set

$$
\begin{gather*}
L_{\lambda} u_{m}=F_{m}, \quad(x, t) \in D_{T} \tag{4.2.5}\\
\left.u_{m}\right|_{\Gamma}=0, \tag{4.2.6}\\
u_{m}(x, 0)=\varphi_{m}(x), \quad x \in \Omega \tag{4.2.7}\\
\mathcal{K}_{\mu} u_{m t}=\psi_{m}(x), \quad x \in \Omega \tag{4.2.8}
\end{gather*}
$$

Multiplying both sides of the equation (4.2.5) by $2 u_{m t}$ and integrating in the domain $D_{\tau}:=$ $D_{T} \cap\{t<\tau\}, 0<\tau \leq T$, due to (4.2.1), we obtain

$$
\begin{align*}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t-2 \int_{D_{\tau}} \sum_{i=1}^{n} \frac{\partial^{2} u_{m}}{\partial x_{i}^{2}} & \frac{\partial u_{m}}{\partial t} d x d t+2 \lambda \int_{D_{\tau}} \frac{\partial}{\partial t} g\left(x, t, u_{m}(x, t)\right) d x d t \\
& -2 \lambda \int_{D_{\tau}} g_{t}\left(x, t, u_{m}(x, t)\right) d x d t=2 \int_{D_{\tau}} F_{m} \frac{\partial u_{m}}{\partial t} d x d t \tag{4.2.9}
\end{align*}
$$

Let $\omega_{\tau}:=\left\{(x, t) \in \bar{D}_{T}: x \in \Omega, t=\tau\right\}, 0<\tau \leq T$. Denote by $\nu:=\left(\nu_{x_{1}}, \ldots, \nu_{x_{n}}, \nu_{t}\right)$ the unit vector of the outer normal to ∂D_{τ}. Since $\left.\nu_{x_{i}}\right|_{\omega_{\tau} \cup \omega_{0}}=0, i=1, \ldots, n,\left.\nu_{t}\right|_{\Gamma_{\tau}=\Gamma \cap\{t \leq \tau\}}=0,\left.\nu_{t}\right|_{\omega_{\tau}}=1$, $\left.\nu_{t}\right|_{\omega_{0}}=-1$, taking into account the equalities (4.2.6) and integrating by parts, we have

$$
\begin{align*}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t & =\int_{\partial D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} \nu_{t} d s=\int_{\omega_{\tau}} u_{m t}^{2} d x-\int_{\omega_{0}} u_{m t}^{2} d x \tag{4.2.10}\\
-2 \int_{D_{\tau}} \frac{\partial^{2} u_{m}}{\partial x_{i}^{2}} \frac{\partial u_{m}}{\partial t} d x d t & =\int_{D_{\tau}}\left[\left(u_{m x_{i}}^{2}\right)_{t}-2\left(u_{m x_{i}} u_{m t}\right)_{x_{i}}\right] d x d t \\
& =\int_{\omega_{\tau}} u_{m x_{i}}^{2} d x-\int_{\omega_{0}} u_{m x_{i}}^{2} d x, i=1, \ldots, n \tag{4.2.11}\\
2 \lambda \int_{D_{\tau}} \frac{\partial}{\partial t} g\left(x, t, u_{m}(x, t)\right) d x d t & =2 \lambda \int_{\partial D_{\tau}} g\left(x, t, u_{m}(x, t)\right) \nu_{t} d s \\
& =2 \lambda \int_{\omega_{\tau}} g\left(x, t, u_{m}(x, t)\right) d x-2 \lambda \int_{\omega_{0}} g\left(x, t, u_{m}(x, t)\right) d x \tag{4.2.12}
\end{align*}
$$

In view of (4.2.10), (4.2.11) and (4.2.12), from (4.2.9) we get

$$
\begin{align*}
& \int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x=\int_{\omega_{0}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x-2 \lambda \int_{\omega_{\tau}} g\left(x, t, u_{m}(x, t)\right) d x \\
&+2 \lambda \int_{\omega_{0}} g\left(x, t, u_{m}(x, t)\right) d x+2 \lambda \int_{D_{\tau}} g_{t}\left(x, t, u_{m}(x, t)\right) d x d t+2 \int_{D_{\tau}} F_{m} u_{m t} d x d t . \tag{4.2.13}
\end{align*}
$$

Let

$$
\begin{equation*}
w_{m}(\tau):=\int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x . \tag{4.2.14}
\end{equation*}
$$

Since $2 F_{m} u_{m t} \leq \varepsilon^{-1} F_{m}^{2}+\varepsilon u_{m t}^{2}$ for any $\varepsilon=$ const >0, due to (4.2.2), (4.2.3) and (4.2.14), it follows from (4.2.13) that

$$
\begin{align*}
w_{m}(\tau) \leq & w_{m}(0)+2 \lambda M_{3} \operatorname{mes} \Omega \\
& +2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+2 \lambda M_{4} \tau \operatorname{mes} \Omega+\varepsilon \int_{D_{T}} u_{m t}^{2} d x d t+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t \tag{4.2.15}
\end{align*}
$$

Taking into account that

$$
\int_{D_{\tau}} u_{m t}^{2} d x d t=\int_{0}^{\tau}\left[\int_{\omega_{s}} u_{m t}^{2} d x\right] d s \leq \int_{0}^{\tau}\left[\int_{\omega_{s}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x\right] d s=\int_{0}^{\tau} w_{m}(s) d s
$$

from (4.2.15) we obtain

$$
\begin{align*}
w_{m}(\tau) \leq \varepsilon \int_{0}^{\tau} w_{m}(s) d s+w_{m}(0) & +2 \lambda\left(M_{3}+M_{4} \tau\right) \operatorname{mes} \Omega \\
& +2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\varepsilon^{-1} \int_{D_{\tau}} F_{m}^{2} d x d t, \quad 0<\tau \leq T \tag{4.2.16}
\end{align*}
$$

Because of $D_{\tau} \subset D_{T}, 0<\tau \leq T$, according to the Gronwall lemma, it follows from (4.2.16) that

$$
\begin{align*}
w_{m}(\tau) \leq\left[w_{m}(0)+\lambda\left(M_{3}\right.\right. & \left.+M_{4} T\right) \operatorname{mes} \Omega \\
& \left.+2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t\right] e^{\varepsilon \tau}, \quad 0<\tau \leq T \tag{4.2.17}
\end{align*}
$$

Using the obvious inequality

$$
|a+b|^{2}=a^{2}+b^{2}+2 a b \leq a^{2}+b^{2}+\varepsilon_{1} a^{2}+\varepsilon_{1}^{-1} b^{2}=\left(1+\varepsilon_{1}\right) a^{2}+\left(1+\varepsilon_{1}^{-1}\right) b^{2}
$$

that is valid for any $\varepsilon_{1}>0$, from (4.2.8) we have

$$
\begin{equation*}
\left|u_{m t}(x, 0)\right|^{2}=\left|\mu u_{m t}(x, T)+\psi_{m}(x)\right|^{2} \leq|\mu|^{2}\left(1+\varepsilon_{1}\right) u_{m t}^{2}(x, T)+\left(1+\varepsilon_{1}^{-1}\right) \psi_{m}^{2}(x) \tag{4.2.18}
\end{equation*}
$$

From (4.2.18) we obtain

$$
\begin{align*}
& \int_{\omega_{0}} u_{m t}^{2} d x=\int_{\Omega}\left|u_{m t}(x, 0)\right|^{2} d x \leq|\mu|^{2}\left(1+\varepsilon_{1}\right) \int_{\Omega} u_{m t}^{2}(x, T) d x+\left(1+\varepsilon_{1}^{-1}\right) \int_{\Omega} \psi_{m}^{2}(x) d x \\
&=|\mu|^{2}\left(1+\varepsilon_{1}\right) \int_{\omega_{T}} u_{m t}^{2}(x, T) d x+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2} \tag{4.2.19}
\end{align*}
$$

In view of (4.2.7) and (4.2.14), from (4.2.17) we get

$$
\begin{equation*}
\int_{\omega_{T}} u_{m t}^{2}(x, T) d x \leq w_{m}(T) \leq\left[\int_{\omega_{0}} \sum_{i=1}^{n} \varphi_{m x_{i}}^{2} d x+\int_{\omega_{T}} u_{m t}^{2}(x, T) d x+M_{5}\right] e^{\varepsilon T} \tag{4.2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{5}=2 \lambda\left(M_{3}+M_{4} T\right) \operatorname{mes} \Omega+2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t . \tag{4.2.21}
\end{equation*}
$$

From (4.2.19) and (4.2.20) it follows that

$$
\begin{equation*}
\int_{\omega_{0}} u_{m t}^{2} d x \leq|\mu|^{2}\left(1+\varepsilon_{1}\right)\left[\int_{\omega_{0}} \sum_{i=1}^{n} \varphi_{m x_{i}}^{2} d x+\int_{\omega_{0}} u_{m t}^{2} d x+M_{5}\right] e^{\varepsilon T}+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2} . \tag{4.2.22}
\end{equation*}
$$

Since $|\mu|<1$, the positive constants ε and ε_{1} can be chosen insomuch small that

$$
\begin{equation*}
\mu_{1}=|\mu|^{2}\left(1+\varepsilon_{1}\right) e^{\varepsilon T}<1 \tag{4.2.23}
\end{equation*}
$$

Due to (4.2.23), from (4.2.22) we obtain

$$
\begin{align*}
& \int_{\omega_{0}} u_{m t}^{2} d x \leq\left(1-\mu_{1}\right)^{-1}\left[|\mu|^{2}\left(1+\varepsilon_{1}\right)\left(\int_{\omega_{0}} \sum_{i=1}^{n} \varphi_{m x_{i}}^{2} d x+M_{5}\right) e^{\varepsilon T}+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}\right] \\
& \leq\left(1-\mu_{1}\right)^{-1}\left[|\mu|^{2}\left(1+\varepsilon_{1}\right)\left(\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+M_{5}\right) e^{\varepsilon T}+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}\right] \tag{4.2.24}
\end{align*}
$$

It follows from (4.2.7), (4.2.14) and (4.2.24) that

$$
\begin{align*}
& w_{m}(0)=\int_{\omega_{0}}\left[u_{m t}^{2}+\sum_{i=1}^{n} \varphi_{m x_{i}}^{2}\right] d x \\
& \quad \leq\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+\left(1-\mu_{1}\right)^{-1}\left[|\mu|^{2}\left(1+\varepsilon_{1}\right)\left(\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+M_{5}\right) e^{\varepsilon T}+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}\right] . \tag{4.2.25}
\end{align*}
$$

In view of (4.2.21) and (4.2.25), from (4.2.17) we get

$$
\begin{align*}
w_{m}(\tau) \leq & \left\{\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+\left(1-\mu_{1}\right)^{-1}\left[| \mu | ^ { 2 } (1 + \varepsilon _ { 1 }) \left(\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+2 \lambda\left(M_{3}+M_{4} T\right) \operatorname{mes} \Omega\right.\right.\right. \\
& \left.\left.+2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t\right) e^{\varepsilon T}+\left(1+\varepsilon_{1}^{-1}\right)\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}\right] \\
& \left.+2 \lambda\left(M_{3}+M_{4} T\right) \operatorname{mes} \Omega+2 \lambda \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t\right\} e^{\varepsilon T} \\
= & \widetilde{\gamma}_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\widetilde{\gamma}_{2}\left\|\varphi_{m}\right\|_{W_{2}^{1}(\Omega)}^{2}+\widetilde{\gamma}_{3}\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}+\widetilde{\gamma}_{4} \int_{\omega_{0}}\left|g\left(x, t, u_{m}(x, t)\right)\right| d x+\widetilde{\gamma}_{5} . \tag{4.2.26}
\end{align*}
$$

Here,

$$
\begin{align*}
& \widetilde{\gamma}_{1}=\varepsilon^{-1} e^{\varepsilon T}\left[\left(1-\mu_{1}\right)^{-1}\left(1+\varepsilon_{1}\right) e^{\varepsilon T}+1\right], \\
& \widetilde{\gamma}_{2}=e^{\varepsilon T}\left[1+\left(1-\mu_{1}\right)^{-1}|\mu|^{2}\left(1+\varepsilon_{1}\right)\right], \\
& \widetilde{\gamma}_{3}=\left(1-\mu_{1}\right)^{-1}\left(1+\varepsilon_{1}^{-1}\right) e^{\varepsilon T}, \tag{4.2.27}\\
& \widetilde{\gamma}_{4}=2 \lambda\left[\left(1-\mu_{1}\right)^{-1}|\mu|^{2}\left(1+\varepsilon_{1}\right)+1\right] e^{\varepsilon T}, \\
& \widetilde{\gamma}_{5}=2 \lambda\left(M_{3}+M_{4} T\right) \operatorname{mes} \Omega\left[\left(1-\mu_{1}\right)^{-1}|\mu|^{2}\left(1+\varepsilon_{1}\right) e^{\varepsilon T}+1\right] e^{\varepsilon T} .
\end{align*}
$$

Since for the fixed τ the function $u_{m}(x, \tau) \in \stackrel{\circ}{W_{2}^{1}}(\Omega)$, due to the Friedrichs inequality [68], we have

$$
\begin{equation*}
\int_{\omega_{\tau}}\left[u_{m}^{2}+u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x \leq c_{0} w_{m}(\tau)=c_{0} \int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x, \tag{4.2.28}
\end{equation*}
$$

where the positive constant $c_{0}=c_{0}(\Omega)$ does not depend on u_{m}.
From (4.2.26) and (4.2.28) follows

$$
\begin{align*}
& \left\|u_{m}\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}^{2}=\int_{0}^{T}\left[\int_{\omega_{\tau}}\left(u_{m}^{2}+u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right) d x\right] d \tau \\
& \quad \leq \int_{0}^{T} c_{0} w_{m}(\tau) d \tau \leq c_{0} T \widetilde{\gamma}_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{0} T \widetilde{\gamma}_{2}\left\|\varphi_{m}\right\|_{W_{W_{2}}^{1}(\Omega)}^{2} \\
& \quad+c_{0} T \widetilde{\gamma}_{3}\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}+c_{0} T \widetilde{\gamma}_{4} \int_{\Omega}\left|g\left(x, 0, u_{m}(x, 0)\right)\right| d x+c_{0} T \widetilde{\gamma}_{5} \tag{4.2.29}
\end{align*}
$$

Due to (4.2.1) and (4.1.5), we have

$$
\begin{equation*}
|g(x, 0, s)| \leq M_{6}+M_{7}|s|^{\alpha+1} \tag{4.2.30}
\end{equation*}
$$

where M_{6} and M_{7} are some nonnegative constants. Taking into account (4.2.30), from (4.2.29) we get

$$
\begin{align*}
& \left\|u_{m}\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}^{2} \leq c_{0} T \widetilde{\gamma}_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{0} T \widetilde{\gamma}_{2}\left\|\varphi_{m}\right\|_{\mathscr{W}_{2}^{1}(\Omega)}^{2} \\
& \quad+c_{0} T \widetilde{\gamma}_{3}\left\|\psi_{m}\right\|_{L_{2}(\Omega)}^{2}+c_{0} T \widetilde{\gamma}_{4} M_{6} \operatorname{mes} \Omega+c_{0} T \widetilde{\gamma}_{4} M_{7} \int_{\Omega}\left|u_{m}(x, 0)\right|^{\alpha+1} d x+\left.c_{0} T \widetilde{\gamma}\right|_{5} \tag{4.2.31}
\end{align*}
$$

Reasoning from Remark 4.1 .1 concerning the space $W_{2}^{1}(\Omega)$, in view of the equality $\operatorname{dim} \Omega=$ $\operatorname{dim} D_{T}-1=n$ shows that the embedding operator $I: W_{2}^{1}(\Omega) \rightarrow L_{q}(\Omega)$ is a linear continuous compact operator for $1<q<\frac{2 n}{n-2}$, when $n>2$, and for any $q>1$, when $n=2$ [68]. At the same time, Nemitski's operator $\mathcal{N}_{1}: L_{q}(\Omega) \rightarrow L_{2}(\Omega)$, acting by the formula $\mathcal{N}_{1} u=|u|^{\frac{\alpha+1}{2}}$, is continuous and bounded if $q \geq 2^{\frac{\alpha+1}{2}}=\alpha+1$ [22]. Thus, if $\alpha+1<\frac{2 n}{n-2}$, i.e., $\alpha<\frac{n+2}{n-2}$, which, due to (4.1.6), is fulfilled since $\frac{n+1}{n-1}<\frac{n+2}{n-2}$, there exists a number q such that $1<q<\frac{2 n}{n-2}$ and $q \geq \alpha+1$. Therefore, in this case the operator

$$
\mathcal{N}_{2}=\mathcal{N}_{1} I: W_{2}^{1}(\Omega) \rightarrow L_{2}(\Omega)
$$

is continuous and compact. Thus, due to (4.1.9) and (4.2.7), it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega}\left|u_{m}(x, 0)\right|^{\alpha+1} d x=\int_{\Omega}|\varphi(x)|^{\alpha+1} d x \tag{4.2.32}
\end{equation*}
$$

and also [68]

$$
\begin{equation*}
\int_{\Omega}|\varphi(x)|^{\alpha+1} d x \leq C_{1}\|\varphi\|_{W_{2}^{1}(\Omega)}^{\alpha+1} \tag{4.2.33}
\end{equation*}
$$

with the positive constant C_{1}, not depending on $\varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$.
In view of (4.1.8), (4.1.9), (4.2.5)-(4.2.8), (4.2.32) and (4.2.33), passing in (4.2.31) to the limit as $m \rightarrow \infty$ we obtain

$$
\begin{align*}
&\|u\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}^{2} \leq c_{0} T \widetilde{\gamma}_{1}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c_{0} T \widetilde{\gamma}_{2}\|\varphi\|_{W_{2}^{1}(\Omega)}^{2}+c_{0} T \widetilde{\gamma}_{3}\|\psi\|_{L_{2}(\Omega)}^{2} \\
&+c_{0} T \widetilde{\gamma}_{4} M_{7} C_{1}\|\varphi\|_{W_{2}^{1}(\Omega)}^{\alpha+1}+c_{0} T\left(\widetilde{\gamma}_{5}+\widetilde{\gamma}_{4} M_{6} \operatorname{mes} \Omega\right) \tag{4.2.34}
\end{align*}
$$

Taking the square root from both sides of the inequality (4.2.34) and using the obvious inequality $\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{1 / 2} \leq \sum_{i=1}^{k}\left|a_{i}\right|$, we finally get

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2}\|\varphi\|_{\mathscr{W}_{2}^{1}(\Omega)}+c_{3}\|\psi\|_{L_{2}(\Omega)}+c_{4}\|\varphi\|_{W_{2}^{1}(\Omega)}^{\frac{\alpha+1}{2}}+c_{5} . \tag{4.2.35}
\end{equation*}
$$

Here,

$$
\begin{gather*}
c_{1}=\left(c_{0} T \widetilde{\gamma}_{1}\right)^{1 / 2}, \quad c_{2}=\left(c_{0} T \widetilde{\gamma}_{2}\right)^{1 / 2}, \quad c_{3}=\left(c_{0} T \widetilde{\gamma}_{3}\right)^{1 / 2} \\
c_{4}=\left(c_{0} T \widetilde{\gamma}_{4} M_{7} C_{1}\right)^{1 / 2}, \quad c_{5}=\left[c_{0} T\left(\widetilde{\gamma}_{5}+\widetilde{\gamma}_{4} M_{6} \operatorname{mes} \Omega\right)\right]^{1 / 2} \tag{4.2.36}
\end{gather*}
$$

where $\widetilde{\gamma}_{i}, 1 \leq i \leq 5$, are defined in (4.2.27). In the linear case, i.e., for $\widetilde{\gamma}_{4}=\widetilde{\gamma}_{5}=0$, it follows from (4.2.35) that in the estimate (4.2.4) the constants $c_{4}=c_{5}=0$, whence it follows that the solution of the problem (4.1.1)-(4.1.4) is unique in the linear case. Thus, Lemma 4.2.1 is proved completely.

4.3 The existence of a solution of the problem (4.1.1)-(4.1.4)

For the existence of a solution of the problem (4.1.1)-(4.1.4) in the case $|\mu|<1$, we will use the well-known facts dealing with the solvability of the following linear mixed problem [68]:

$$
\begin{gather*}
L_{0} u:=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=F(x, t), \quad(x, t) \in D_{T} \tag{4.3.1}\\
\left.u\right|_{\Gamma}=0, \quad u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\widetilde{\psi}(x), \quad x \in \Omega \tag{4.3.2}
\end{gather*}
$$

where F, φ and $\widetilde{\psi}$ are the given functions.
For $F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \widetilde{\psi} \in L_{2}(\Omega)$, the unique generalized solution u of the problem (4.3.1), (4.3.2) (in the sense of the equality (4.1.12), where $f=0$, and the number $\mu=0$ in the definition of the space V) from the class $E_{2,1}\left(D_{T}\right)$ with the norm [68]

$$
\|u\|_{E_{2,1}\left(D_{T}\right)}^{2}=\sup _{0 \leq \tau \leq T} \int_{\omega_{\tau}}\left[u^{2}+u_{t}^{2}+\sum_{i=1}^{n} u_{x_{i}}^{2}\right] d x
$$

is given by the formula [68]

$$
\begin{equation*}
u=\sum_{k=1}^{\infty}\left(a_{k} \cos \mu_{k} t+b_{k} \sin \mu_{k} t+\frac{1}{\mu_{k}} \int_{0}^{t} F_{k}(\tau) \sin \mu_{k}(t-\tau) d \tau\right) \varphi_{k}(x) \tag{4.3.3}
\end{equation*}
$$

where $\widetilde{\lambda}_{k}=-\mu_{k}^{2}, 0<\mu_{1} \leq \mu_{2} \leq \cdots, \lim _{k \rightarrow \infty} \mu_{k}=\infty$ are the eigenvalues, while $\varphi_{k} \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ are the corresponding eigenfunctions of the spectral problem $\Delta w=\widetilde{\lambda} w,\left.w\right|_{\partial \Omega}=0$ in the domain Ω ($\left.\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)$, forming simultaneously orthonormal basis in $L_{2}(\Omega)$ and orthogonal basis in $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ in the sense of the scalar product $(v, w)_{W_{\frac{1}{2}(\Omega)}^{\circ}}=\int_{\Omega} \sum_{i=1}^{n} v_{x_{i}} w_{x_{i}} d x$, i.e.,

$$
\left(\varphi_{k}, \varphi_{l}\right)_{L_{2}(\Omega)}=\delta_{k}^{l}, \quad\left(\varphi_{k}, \varphi_{l}\right)_{W_{2}^{1}(\Omega)}=-\lambda_{k} \delta_{k}^{l}, \quad \delta_{k}^{l}= \begin{cases}1, & l=k \tag{4.3.4}\\ 0, & l \neq k\end{cases}
$$

Here,

$$
\begin{gather*}
a_{k}=\left(\varphi, \varphi_{k}\right)_{L_{2}(\Omega)}, \quad b_{k}=\mu_{k}^{-1}\left(\widetilde{\psi}, \varphi_{k}\right)_{L_{2}(\Omega)}, \quad k=1,2, \ldots \tag{4.3.5}\\
F(x, t)=\sum_{k=1}^{\infty} F_{k}(t) \varphi_{k}(x), \quad F_{k}(t)=\left(F, \varphi_{k}\right)_{L_{2}\left(\omega_{t}\right)}, \quad \omega_{\tau}: D_{T} \cap\{t=\tau\} \tag{4.3.6}
\end{gather*}
$$

and, besides, for the solution u from (4.3.3), the estimate $[68,75]$

$$
\begin{equation*}
\|u\|_{E_{2,1}\left(D_{T}\right)} \leq \gamma\left(\|F\|_{L_{2}\left(D_{T}\right)}+\|\varphi\|_{W_{2}^{1}(\Omega)}+\|\widetilde{\psi}\|_{L_{2}(\Omega)}\right) \tag{4.3.7}
\end{equation*}
$$

with the positive constant γ, independent of F, φ and $\widetilde{\psi}$, is valid.

Let us consider the linear problem corresponding to (4.1.1)-(4.1.4), i.e., the case for $\lambda=0$:

$$
\begin{align*}
& L_{0} u:=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=F(x, t), \quad(x, t) \in D_{T} \tag{4.3.8}\\
& \left.u\right|_{\Gamma}=0, \quad u(x, 0)=\varphi(x), \quad \mathcal{K}_{\mu} u_{t}=\psi(x), \quad x \in \Omega \tag{4.3.9}
\end{align*}
$$

Let us show that when $|\mu|<1$ for any $F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ and $\psi \in L_{2}(\Omega)$, there exists a unique generalized solution of the problem (4.3.8), (4.3.9) in the sense of Definition 4.1.1 for $\lambda=0$. Indeed, for $\varphi \in \stackrel{\circ}{W_{2}^{1}}(\Omega)$ and $\psi \in L_{2}(\Omega)$, the expansions $\varphi=\sum_{k=1}^{\infty} a_{k} \varphi_{k}$ and $\psi=\sum_{k=1}^{\infty} d_{k} \varphi_{k}$ in the spaces $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ and $L_{2}(\Omega)$, respectively, are valid; here, $a_{k}=\left(\varphi, \varphi_{k}\right)_{L_{2}(\Omega)}$ and $d_{k}=\left(\psi, \varphi_{k}\right)_{L_{2}(\Omega)}[68]$. Therefore, setting

$$
\begin{equation*}
\varphi_{m}=\sum_{k=1}^{m} a_{k} \varphi_{k}, \quad \psi_{m}=\sum_{k=1}^{m} d_{k} \varphi_{k} \tag{4.3.10}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\varphi_{m}-\varphi\right\|_{W_{2}^{1}(\Omega)}=0, \quad \lim _{m \rightarrow \infty}\left\|\psi_{m}-\psi\right\|_{L_{2}(\Omega)}=0 \tag{4.3.11}
\end{equation*}
$$

Since the space of infinitely differentiable functions $C_{0}^{\infty}\left(D_{T}\right)$ is dense in the space $L_{2}\left(D_{T}\right)$, for $F \in L_{2}\left(D_{T}\right)$ and any natural number m there exists a function $F_{m} \in C_{0}^{\infty}\left(D_{T}\right)$ such that

$$
\begin{equation*}
\left\|F_{m}-F\right\|_{L_{2}\left(D_{T}\right)}<\frac{1}{m} \tag{4.3.12}
\end{equation*}
$$

On the other hand, for the function F_{m} in the space $L_{2}\left(D_{T}\right)$ the expansion [68]

$$
\begin{equation*}
F_{m}(X, T)=\sum_{k=1}^{\infty} F_{m, k}(t) \varphi_{k}(x), \quad F_{m, k}(t)=\left(F_{m}, \varphi_{k}\right)_{L_{2}(\Omega)} \tag{4.3.13}
\end{equation*}
$$

is valid. Therefore, there exists a natural number ℓ_{m} such that $\lim _{m \rightarrow \infty} \ell_{m}=\infty$, and for

$$
\begin{equation*}
\widetilde{F}_{m}(x, t)=\sum_{k=1}^{\ell_{m}} F_{m, k}(t) \varphi_{k}(x) \tag{4.3.14}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
\left\|\widetilde{F}_{m}-F_{m}\right\|_{L_{2}\left(D_{T}\right)}<\frac{1}{m} \tag{4.3.15}
\end{equation*}
$$

is valid. From (4.3.12) and (4.3.15) it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\widetilde{F}_{m}-F_{m}\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{4.3.16}
\end{equation*}
$$

The solution $u=u_{m}$ of the problem (4.3.1), (4.3.2) for $\varphi=\varphi_{\ell_{m}}, \widetilde{\psi}=\sum_{k=1}^{\ell_{m}} \widetilde{d}_{k} \varphi_{k}$ and $F=\widetilde{F}_{m}$, where $\varphi_{\ell_{m}}$ and \widetilde{F}_{m} are defined in (4.3.10) and (4.3.14), is given by the formula (4.3.3) which, due to (4.3.4)-(4.3.6), takes the form

$$
\begin{equation*}
u_{m}=\sum_{k=1}^{\ell_{m}}\left(a_{k} \cos \mu_{k} t+\frac{\tilde{d}_{k}}{\mu_{k}} \sin \mu_{k} t+\frac{1}{\mu_{k}} \int_{0}^{t} F_{m, k}(\tau) \sin \mu_{k}(t-\tau) d \tau\right) \varphi_{k}(x) \tag{4.3.17}
\end{equation*}
$$

To determine the coefficients \widetilde{d}_{k} we substitute the right-hand side of the expression (4.3.17) into the equality $\mathcal{K}_{\mu} u_{m t}=\psi_{\ell_{m}}(x)$, where $\psi_{\ell_{m}}$ is defined in (4.3.10). Consequently, taking into account
that the system of functions $\left\{\varphi_{k}(x)\right\}$ represents a basis in $L_{2}(\Omega)$ and $1-\mu \cos \mu_{k} T \neq 0$ for $|\mu|<1$, we obtain the following formulas:

$$
\begin{gather*}
\widetilde{d}_{k}=\frac{1}{1-\mu \cos \mu_{k} T}\left[\left(\varphi_{\ell_{m}}, \varphi_{k}\right)_{L_{2}(\Omega)}-a_{k} \mu \mu_{k} \sin \mu_{k} T+\mu \int_{0}^{T} F_{m, k}(\tau) \cos \mu_{k}(T-\tau) d \tau\right] \tag{4.3.18}\\
k=1, \ldots, \ell_{m}
\end{gather*}
$$

Below, we assume that the Lipschitz domain Ω is such that the eigenfunctions $\varphi_{k} \in C^{2}(\bar{\Omega}), k \geq 1$. For example, this will take place if $\partial \Omega \in C^{\left[\frac{n}{2}\right]+3}$ [75]. This fact will also take place in the case of a piecewise smooth Lipschitz domain, e.g., for the parallelepiped $\Omega:=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right|<a_{i}, i=1, \ldots, n\right\}$, the corresponding eigenfunctions $\varphi_{k} \in C^{\infty}(\bar{\Omega})$ [76]. Therefore, since $F_{m} \in C_{0}^{\infty}\left(D_{T}\right)$, due to (4.3.13), the function $F_{m, k} \in C^{2}([0, T])$ and, consequently, the function u_{m} from (4.3.17) belongs to the space $C^{2}\left(\bar{D}_{T}\right)$. Further, since $\left.\varphi_{k}\right|_{\partial \Omega}=0$, due to (4.3.17), we have $\left.u_{m}\right|_{\Gamma}=0$, and thereby, $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right)$, $m=1,2, \ldots$.

According to the construction, the function u_{m} from (4.3.17) satisfies

$$
\begin{equation*}
\left.u_{m}\right|_{\Gamma}=0, \quad L_{0} u_{m}=\widetilde{F}_{m}, \quad u_{m}(x, 0)=\varphi_{\ell_{m}}(x), \quad \mathcal{K}_{\mu} u_{m t}=\psi_{\ell_{m}}(x), \quad x \in \Omega \tag{4.3.19}
\end{equation*}
$$

and hence

$$
\begin{gathered}
\left.\left(u_{m}-u_{k}\right)\right|_{\Gamma}=0, \quad L_{0}\left(u_{m}-u_{k}\right)=\widetilde{F}_{m}-\widetilde{F}_{k}, \quad\left(u_{m}-u_{k}\right)(x, 0)=\left(\varphi_{\ell_{m}}-\varphi_{\ell_{k}}\right)(x) \\
\mathcal{K}_{\mu}\left(u_{m t}-u_{k t}\right)=\left(\psi_{\ell_{m}}-\psi_{\ell_{k}}\right), \quad x \in \Omega
\end{gathered}
$$

Therefore, from a priori estimate (4.2.4), where $\lambda=0$, the coefficients $c_{4}=c_{5}=0$, we obtain

$$
\begin{equation*}
\left.\| u_{m}-u_{k}\right]\left\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)} \leq c_{1}\right\| \widetilde{F}_{m}-\widetilde{F}_{k}\left\|_{L_{2}\left(D_{T}\right)}+c_{2}\right\| \varphi_{\ell_{m}}-\varphi_{\ell_{k}}\left\|_{W_{2}^{1}(\Omega)}+c_{3}\right\| \psi_{\ell_{m}}-\psi_{\ell_{k}} \|_{L_{2}(\Omega)} \tag{4.3.20}
\end{equation*}
$$

In view of (4.3.11) and (4.3.16), from (4.3.20) it follows that the sequence $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right)$ is fundamental in the complete space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$. Therefore, there exists a function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$ such that due to $(4.3 .11),(4.3 .16)$ and (4.3.19), the limit equalities (4.3.8), (4.3.9) are valid. The uniqueness of this solution follows from the a priori estimate (4.2.4), where the constants $c_{4}=c_{5}=0$ for $\lambda=0$. Therefore, for the solution u of the problem (4.3.8), (4.3.9), we have $u=L_{0}^{-1}(F, \varphi, \psi)$, where $L_{0}^{-1}: L_{2}\left(D_{T}\right) \times \stackrel{\circ}{W}{ }_{2}^{1}(\Omega) \times L_{2}(\Omega) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$, whose norm, due to (4.2.4), can be estimated as follows:

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \times \stackrel{\circ}{W}_{2}^{1}(\Omega) \times L_{2}(\Omega) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)} \leq \gamma_{0}=\max \left(c_{1}, c_{2}, c_{3}\right) \tag{4.3.21}
\end{equation*}
$$

Owing to the linearity of the operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \times \stackrel{\circ}{W}_{2}^{1}(\Omega) \times L_{2}(\Omega) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)
$$

we have the representation

$$
\begin{equation*}
L_{0}^{-1}(F, \varphi, \psi)=L_{0}^{-1}(F, 0,0)+L_{0}^{-1}(0, \varphi, 0)+L_{0}^{-1}(0,0, \psi)=L_{01}^{-1}(F)+L_{02}^{-1}(\varphi)+L_{03}^{-1}(\psi) \tag{4.3.22}
\end{equation*}
$$

where $L_{01}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right), L_{02}^{-1}: \stackrel{\circ}{W}_{2}^{1}(\Omega) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$ and $L_{03}^{-1}: L_{2}(\Omega) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$ are the linear continuous operators and, besides, according to (4.3.21),

$$
\begin{equation*}
\left\|L_{01}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)} \leq \gamma_{0}, \quad\left\|L_{02}^{-1}\right\|_{\stackrel{\circ}{2}_{2}^{1}(\Omega) \rightarrow \stackrel{\circ}{W_{2}^{1}\left(D_{T}, \Gamma\right)}} \leq \gamma_{0}, \quad\left\|L_{03}^{-1}\right\|_{L_{2}(\Omega) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)} \leq \gamma_{0} \tag{4.3.23}
\end{equation*}
$$

Remark 4.3.1. Note that for $F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \psi \in L_{2}(\Omega)$, due to (4.1.5), (4.1.6), (4.3.21)(4.3.23) and Remark 4.1.1, the function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right)$ is a generalized solution of the problem (4.1.1)-(4.1.4) if and only if u is a solution of the following functional equation

$$
\begin{equation*}
u=L_{01}^{-1}(-\lambda f(x, t, u))+L_{01}^{-1}(F)+L_{02}^{-1}(\varphi)+L_{03}^{-1}(\psi) \tag{4.3.24}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$.

We rewrite the equation (4.3.24) in the form

$$
\begin{equation*}
u=A_{0} u:=-\lambda L_{01}^{-1}\left(\mathcal{N}_{0} u\right)+L_{01}^{-1}(F)+L_{02}^{-1}(\varphi)+L_{03}^{-1}(\psi), \tag{4.3.25}
\end{equation*}
$$

where the operator $\mathcal{N}_{0}: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right) \rightarrow L_{2}\left(D_{T}\right)$ from (4.1.7), is, according to Remark 4.1.1, continuous and compact. Therefore, due to (4.3.23), the operator $\mathcal{A}_{0}: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, \Gamma\right) \rightarrow \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, \Gamma\right)$ from (4.3.25) is also continuous and compact. At the same time, according to Lemma 4.2.1 and (4.2.36), for any parameter $\tau \in[0,1]$ and for any solution u of the equation $u=\tau \mathcal{A}_{0} u$ with the parameter τ, the same a priori estimate (4.2.4) with nonnegative constants c_{i}, independent of u, F, φ, ψ and τ, is valid. Therefore, due to Schaefer's fixed point theorem [20], the equation (4.3.25) and hence, by Remark 4.3.1, the problem (4.1.1)-(4.1.4) has at least one solution $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, \Gamma\right)$. Thus, we have proved the following theorem.

Theorem 4.3.1. Let $\lambda>0,|\mu|<1, F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \psi \in L_{2}(\Omega)$ and the conditions (4.1.5), (4.1.6), (4.2.2) and (4.2.3) be fulfilled. Then the problem (4.1.1)-(4.1.4) has at least one generalized solution.

Remark 4.3.2. Note that for $|\mu|=1$, even in the liner case, i.e., for $f=0$, the homogeneous problem corresponding to (4.1.1)-(4.1.4) may have a finite or even infinite number of linearly independent solutions. Indeed, in the case $\mu=1$, we denote by $\Lambda(1)$ a set of points μ_{k} from (4.3.3), for which the ratio $\frac{\mu_{k} T}{2 \pi}$ is a natural number, i.e., $\Lambda(1)=\left\{\mu_{k}: \frac{\mu_{k} T}{2 \pi} \in \mathbb{N}\right\}$. If we seek for a solution of the problem (4.3.8), (4.3.9) in the form of the representation (4.3.3), then for determination of unknown coefficients b_{k} contained in it, we substitute the right-hand side of this representation into the equality $\mathcal{K}_{\mu} u_{t}=\psi(x)$. As a result, we have

$$
\begin{equation*}
\mu_{k}\left(1-\mu \cos \mu_{k} T\right) b_{k}=\left(\psi, \varphi_{k}\right)_{L_{2}(\Omega)}-a_{k} \mu_{k} \sin \mu_{k} T+\int_{0}^{T} F_{k}(\tau) \cos \mu_{k}(T-\tau) d \tau \tag{4.3.26}
\end{equation*}
$$

It is obvious that when $\Lambda(1) \neq \varnothing$ and $\mu_{k} \in \Lambda(1), \mu=1$ we have $1-\cos \mu_{k} T=0$, and for $F=0$, $\varphi=\psi=0$ and thereby for $a_{k}=0, F_{k}(\tau)=0$, the equality (4.3.26) will be satisfied by any number b_{k}. Therefore, in accordance with (4.3.3), the function $u_{k}(x, t)=C \sin \mu_{k} t \varphi_{k}(x), C=$ const $\neq 0$, satisfies the homogeneous problem corresponding to (4.3.8), (4.3.9). Analogously, in the case $\mu=-1$, we denote by $\Lambda(-1)$ the set of points from (4.3.3) for which the ratio $\frac{\mu_{k} T}{\pi}$ is an odd integer. In the case $1-\mu \cos \mu_{k} T=0$ for $\mu_{k} \in \Lambda(-1), \mu=-1$ and the function $u_{k}(x, t)=C \sin \mu_{k} t \varphi_{k}(x), C=$ const $\neq 0$, is a nontrivial solution of the homogeneous problem corresponding to (4.3.8), (4.3.9). For example, when $n=2, \Omega=(0,1) \times(0,1)$, the eigenvalues and eigenfunctions of the Laplace operator Δ are [76]

$$
\lambda_{k}=-\pi^{2}\left(k_{1}^{2}+k_{2}^{2}\right), \quad \varphi_{k}\left(x_{1}, x_{2}\right)=\sin k_{1} \pi x_{1} \sin k_{2} \pi x_{2}, \quad k=\left(k_{1}, k_{2}\right)
$$

i.e., $\mu_{k}=\pi \sqrt{k_{1}^{2}+k_{2}^{2}}$. For $k_{1}=p^{2}-q^{2}, k_{2}=2 p q$, where p and q are any integers, we obtain $\mu_{k}=\pi\left(p^{2}+q^{2}\right)$. In this case, for $\frac{T}{2} \in \mathbb{N}$, we have $\frac{\mu_{k} T}{2 \pi}=\frac{\left(p^{2}+q^{2}\right) T}{2} \in \mathbb{N}$, and according to the abovesaid, when $\mu=1$, the homogeneous problem corresponding to (4.3.8), (4.3.9) has an infinite number of linearly independent solutions

$$
\begin{equation*}
u_{p, q}(x, t)=\sin \pi\left(p^{2}+q^{2}\right) t \sin \pi\left(p^{2}-q^{2}\right) x_{1} \sin 2 \pi p q x_{2} \quad \forall p, q \in \mathbb{N} \tag{4.3.27}
\end{equation*}
$$

Analogously, when $\mu=-1$, the solutions of the homogeneous problem corresponding to (4.3.8), (4.3.9) are the functions from (4.3.27) if and only if p is an even number, while q and T are odd numbers.

4.4 The uniqueness of a solution of the problem (4.1.1)-(4.1.4)

On the function f in the equation (4.1.1) let us impose the following requirements:

$$
\begin{equation*}
f, f_{u}^{\prime} \in C\left(\bar{D}_{T} \times \mathbb{R}\right), \quad\left|f_{u}^{\prime}(x, t, u)\right| \leq a+b|u|^{\gamma}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{4.4.1}
\end{equation*}
$$

where $a, b, \gamma=$ const ≥ 0.
It is obvious that from (4.4.1) we have the condition (4.1.5) for $\alpha=\gamma+1$, and when $\gamma<\frac{2}{n-1}$, we have $\alpha=\gamma+1<\frac{n+1}{n-1}$, hence the condition (4.1.6) is fulfilled.

Theorem 4.4.1. Let $|\mu|<1, F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}{ }_{2}^{1}(\Omega), \psi \in L_{2}(\Omega)$ and the condition (4.4.1) be fulfilled, $\gamma<\frac{2}{n-1}$; and also, the conditions (4.2.2), (4.2.3) hold. Then there exists a positive number $\lambda_{0}=\lambda_{0}\left(F, f, \varphi, \psi, \mu, D_{T}\right)$ such that for $0<\lambda<\lambda_{0}$ the problem (4.1.1)-(4.1.4) cannot have more than one generalized solution.

Proof. Indeed, suppose that the problem (4.1.1)-(4.1.4) has two different generalized solutions u_{1} and u_{2}. According to Definition 4.1.1, there exist sequences of functions $u_{j k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right), j=1,2$, such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|u_{j k}-u_{j}\right\|_{\dot{W}_{2}^{1}\left(D_{T}, \Gamma\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|L_{\lambda} u_{j k}-F\right\|_{L_{2}\left(D_{T}\right)}=0, \tag{4.4.2}\\
\lim _{k \rightarrow \infty}\left\|\left.u_{j k}\right|_{t=0}-\varphi\right\|_{\stackrel{D}{2}_{1}^{1}(\Omega)}=0, \quad \lim _{k \rightarrow \infty}\left\|\mathcal{K}_{\mu} u_{j k t}-\psi\right\|_{L_{2}(\Omega)}=0, j=1,2 . \tag{4.4.3}
\end{gather*}
$$

Let

$$
\begin{gather*}
w:=u_{2}-u_{1}, \quad w_{k}:=u_{2 k}-u_{1 k}, \quad F_{k}: L_{\lambda} u_{2 k}-L_{\lambda} u_{1 k}, \tag{4.4.4}\\
g_{k}: \lambda\left(f\left(x, t, u_{1 k}\right)-f\left(x, t, u_{2 k}\right)\right) . \tag{4.4.5}
\end{gather*}
$$

In view of (4.4.2), (4.4.3) and (4.4.4), it is easy to see that

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|w_{k}-w\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}=0, \tag{4.4.6}\\
\lim _{k \rightarrow \infty}\left\|\left.w_{k}\right|_{t=0}\right\|_{W_{2}^{1}(\Omega)}=0, \quad \lim _{k \rightarrow \infty}\left\|\mathcal{K}_{\mu} w_{k t}\right\|_{L_{2}(\Omega)}=0 . \tag{4.4.7}
\end{gather*}
$$

Owing to (4.4.4), (4.4.5), the function $w_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma\right)$ satisfies the following equalities:

$$
\begin{gather*}
\frac{\partial^{2} w_{k}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} w_{k}}{\partial x_{i}^{2}}=\left(F_{k}+g_{k}\right)(x, t), \quad(x, t) \in D_{T} \tag{4.4.8}\\
\left.w_{k}\right|_{\Gamma}=0 \tag{4.4.9}\\
w_{k}(x, 0)=\widetilde{\varphi}_{k}(x), \quad x \in \Omega \tag{4.4.10}\\
\mathcal{K}_{\mu} w_{k t}: w_{k t}(x, 0)-\mu w_{k t}(x, T)=\widetilde{\psi}_{k}(x), \quad x \in \Omega \tag{4.4.11}
\end{gather*}
$$

where $\widetilde{\varphi}_{k}(x):=u_{2 k}(x, 0)-u_{1 k}(x, 0), \widetilde{\psi}_{k}(x):=\mathcal{K}_{\mu} u_{2 k t}-\mathcal{K}_{\mu} u_{1 k t}$.
First, let us estimate the function g_{k} from (4.4.5). Taking into account the obvious inequality $\left|d_{1}+d_{2}\right|^{\gamma} \leq 2^{\gamma} \max \left(\left|d_{1}\right|^{\gamma},\left|d_{2}\right|^{\gamma}\right) \leq 2^{\gamma}\left(\left|d_{1}\right|^{\gamma}+\left|d_{2}\right|^{\gamma}\right)$ for $\gamma \geq 0$, due to (4.4.1), we have

$$
\begin{align*}
& \left|f\left(x, t, u_{2 k}\right)-f\left(x, t, u_{1 k}\right)\right| \\
& =\left|\left(u_{2 k}-u_{1 k}\right) \int_{0}^{1} f_{u}^{\prime}\left(x, t, u_{1 k}+\tau\left(u_{2 k}-u_{1 k}\right)\right) d \tau\right| \leq\left|u_{2 k}-u_{1 k}\right| \int_{0}^{1}\left(a+b\left|(1-\tau) u_{1 k}+\tau u_{2 k}\right|^{\gamma}\right) d \tau \\
& \quad \leq a\left|u_{2 k}-u_{1 k}\right|+2^{\gamma} b\left|u_{2 k}-u_{1 k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)=a\left|w_{k}\right|+2^{\gamma} b\left|w_{k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right) . \tag{4.4.12}
\end{align*}
$$

In view of (4.4.5), from (4.4.12) we obtain

$$
\begin{align*}
&\left\|g_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)}+\lambda 2^{\gamma} b\left\|\left|w_{k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{2}\left(D_{T}\right)} \\
& \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)}+\lambda_{2} 2^{\gamma} b\left\|w_{k}\right\|_{L_{p}\left(D_{T}\right)}\left\|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{q}\left(D_{T}\right)} \tag{4.4.13}
\end{align*}
$$

Here we have used Hölder's inequality [24]

$$
\left\|v_{1} v_{2}\right\|_{L_{r}\left(D_{T}\right)} \leq\left\|v_{1}\right\|_{L_{p}\left(D_{T}\right)}\left\|v_{2}\right\|_{L_{q}\left(D_{T}\right)}
$$

where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, and in the capacity of p, q and r we take

$$
\begin{equation*}
p=2 \frac{n+1}{n-1} \quad q=n+1, \quad r=2 \tag{4.4.14}
\end{equation*}
$$

Since $\operatorname{dim} D_{T}=n+1$, according to the Sobolev embedding theorem [22], for $1 \leq p \leq \frac{2(n+1)}{n-1}$, we get

$$
\begin{equation*}
\|v\|_{L_{p}\left(D_{T}\right)} \leq C_{p}\|v\|_{W_{2}^{1}\left(D_{T}\right)} \quad \forall v \in W_{2}^{1}\left(D_{T}\right) \tag{4.4.15}
\end{equation*}
$$

with the positive constant C_{p}, not depending on $n \in W_{2}^{1}\left(D_{T}\right)$.
Due to the condition of the theorem, $\gamma<\frac{2}{n-1}$, and therefore, $\gamma(n+1)<\frac{2(n+1)}{n-1}$. Thus, due to (4.4.14) from (4.4.15), we have

$$
\begin{gather*}
\left\|w_{k}\right\|_{L_{p}\left(D_{T}\right)} \leq C_{p}\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}, \quad p=\frac{2(n+1)}{n-1}, \quad k \geq 1, \tag{4.4.16}\\
\left\|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{q}\left(D_{T}\right)} \leq\left\|\left|u_{1 k}\right|^{\gamma}\right\|_{L_{q}\left(D_{T}\right)}+\left\|\left|u_{2 k}\right|^{\gamma}\right\|_{L_{q}\left(D_{T}\right)} \\
=\left\|u_{1 k}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma}+\left\|u_{2 k}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma} \leq C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1 k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2 k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}\right) . \tag{4.4.17}
\end{gather*}
$$

In view of the first inequality of (4.4.2), there exists a natural number k_{0} such that for $k \geq k_{0}$, we obtain

$$
\begin{equation*}
\left\|u_{i k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma} \leq\left\|u_{i}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+1, \quad i=1,2, \quad k \geq k_{0} \tag{4.4.18}
\end{equation*}
$$

Further, in view of (4.4.16), (4.4.17) and (4.4.18), from (4.4.13) we get

$$
\begin{align*}
& \left\|g_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} \\
& \quad+\lambda 2^{\gamma} b C_{p} C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+2\right)\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq \lambda M_{8}\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}, \tag{4.4.19}
\end{align*}
$$

where we have used the inequality $\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}$,

$$
\begin{equation*}
M_{8}=a+2^{\gamma} b C_{p} C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+2\right), \quad p=\frac{2(n+1)}{n-1} \tag{4.4.20}
\end{equation*}
$$

Since the a priori estimate (4.2.4) is valid for $\lambda=0$, due to (4.2.27) and (4.2.36), in this estimate $c_{4}=c_{5}=0$ and, hence, for the solution w_{k} of the problem (4.4.8)-(4.4.11) the estimate

$$
\begin{equation*}
\left\|w_{k}\right\|_{\dot{W}_{2}^{1}\left(D_{T}, \Gamma\right)} \leq c_{1}^{0}\left\|F_{k}+g_{k}\right\|_{L_{2}\left(D_{T}\right)}+c_{2}^{0}\left\|\widetilde{\varphi}_{k}\right\|_{\stackrel{\circ}{2}_{1}^{1}(\Omega)}+c_{3}^{0}\left\|\widetilde{\psi}_{k}\right\|_{L_{2}(\Omega)} \tag{4.4.21}
\end{equation*}
$$

is valid, where the constants $c_{1}^{0}, c_{2}^{0}, c_{3}^{0}$ do not depend on λ.
Because of $\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}=\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}$ and due to (4.4.19), from (4.4.21) we have

$$
\begin{equation*}
\left\|w_{k}\right\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, \Gamma\right)} \leq c_{1}^{0}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}+\lambda c_{1}^{0} M_{8}\left\|w_{k}\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, \Gamma\right)}+c_{2}^{0}\left\|\widetilde{\varphi}_{k}\right\|_{\stackrel{\circ}{2}_{1}^{1}(\Omega)}+c_{3}^{0}\|\widetilde{\psi}\|_{L_{2}(\Omega)} \tag{4.4.22}
\end{equation*}
$$

Note that since for u_{1} and u_{2} the a priori estimate (4.2.4) is valid, the constant M_{8} from (4.4.20) will depend on $\lambda, F, f, \varphi, \psi, D_{T}$; besides, due to (4.2.27) and (4.2.36), the value of M_{8} depends continuously on λ for $\lambda \geq 0$, and

$$
\begin{equation*}
0 \leq \lim _{\lambda \rightarrow 0+} M_{8}=M_{8}^{0}<+\infty \tag{4.4.23}
\end{equation*}
$$

Due to (4.4.23), there exists a positive number $\lambda_{0}=\lambda_{0}\left(F, f, \varphi, \psi, \mu, D_{T}\right)$ such that for

$$
\begin{equation*}
0<\lambda<\lambda_{0} \tag{4.4.24}
\end{equation*}
$$

we obtain $\lambda c_{1}^{0} M_{8}<1$. Indeed, let us fix arbitrarily a positive number ε_{1}. Then, due to (4.4.23), there exists a positive number λ_{1} such that $0 \leq M_{8}<M_{8}^{0}+\varepsilon_{1}$ for $0 \leq \lambda<\lambda_{1}$. It is obvious that for $\lambda_{0}=\min \left(\lambda_{1},\left(c_{1}^{0}\left(M_{8}^{0}+\varepsilon_{1}\right)\right)^{-1}\right)$ the condition $\lambda c_{1}^{0} M_{8}<1$ will be fulfilled.

Therefore, in the case (4.4.24), from (4.4.22) we get

$$
\begin{equation*}
\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)} \leq\left(1-\lambda c_{1}^{0} M_{8}\right)^{-1}\left[c_{1}^{0}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}+c_{2}^{0}\left\|\widetilde{\varphi}_{k}\right\|_{W_{2}^{1}(\Omega)}+c_{3}^{0}\left\|\widetilde{\psi}_{k}\right\|_{L_{2}(\Omega)}\right] \tag{4.4.25}
\end{equation*}
$$

for $k \geq k_{0}$.
From (4.4.2) and (4.4.4), it follows that $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}, \Gamma\right)}=\left\|u_{2}-u_{1}\right\|_{\dot{W}_{2}^{1}\left(D_{T}, \Gamma\right)}$. On the other hand, due to (4.4.6), (4.4.7) and (4.4.10), (4.4.11), from (4.4.25) we have $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{\mathscr{W}_{2}^{1}\left(D_{T}, \Gamma\right)}=0$. Thus, $\left\|u_{2}-u_{1}\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, \Gamma\right)}=0$, i.e., $u_{2}=u_{1}$, which leads to the contradiction. Thus Theorem 4.4.1 is proved.

Chapter 5

Multidimensional problem with two nonlocal in time conditions for some semilinear hyperbolic equations with the Dirichlet or Robin condition

5.1 Statement of the problem

In the space \mathbb{R}^{n+1} of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t, in the cylindrical domain $D_{T}=\Omega \times(0, T)$, where Ω is an open Lipschitz domain in \mathbb{R}^{n}, we consider a nonlocal problem of finding a solution $u(x, t)$ of the equation

$$
\begin{equation*}
L_{\lambda} u: \frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\lambda f(x, t, u)=F(x, t), \quad(x, t) \in D_{T} \tag{5.1.1}
\end{equation*}
$$

satisfying the Dirichlet homogeneous boundary condition

$$
\begin{equation*}
\left.u\right|_{\Gamma}=0 \tag{5.1.2}
\end{equation*}
$$

on the lateral face $\Gamma:=\partial \Omega \times(0, T)$ of the cylinder D_{T} and the homogeneous nonlocal conditions

$$
\begin{align*}
\mathcal{K}_{\mu} u & :=u(x, 0)-\mu u(x, T)=0, \quad x \in \Omega \tag{5.1.3}\\
\mathcal{K}_{\mu} u_{t} & :=u_{t}(x, 0)-\mu u_{t}(x, T)=0, \quad x \in \Omega \tag{5.1.4}
\end{align*}
$$

where f and F are the given functions, λ and μ are the given nonzero constants, and $n \geq 2$.
Remark 5.1.1. Note that for $|\mu| \neq 1$, it suffices to consider the case $|\mu|<1$, since the case $|\mu|>1$ can be reduced to the latter one by passing from the variable t to the variable $t^{\prime}=T-t$. The case for $|\mu|=1$ will be considered at the end of this chapter. In particular, when $\mu=1(-1)$, the problem (5.1.1)-(5.1.4) can be studied as a periodic (antiperiodic) problem.

We further impose on the function $f=f(x, t, u)$ the following restrictions:

$$
\begin{equation*}
f \in C\left(\bar{D}_{T} \times \mathbb{R}\right), \quad|f(x, t, u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq \alpha=\text { const }<\frac{n+1}{n-1} \tag{5.1.6}
\end{equation*}
$$

We consider the following functional spaces

$$
\begin{align*}
\stackrel{\circ}{C}_{\mu}^{2}\left(\bar{D}_{T}\right) & :=\left\{v \in C^{2}\left(\bar{D}_{T}\right):\left.v\right|_{\Gamma}=0, \mathcal{K}_{\mu} v=0, \mathcal{K}_{\mu} v_{t}=0\right\}, \tag{5.1.7}\\
\stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right) & :=\left\{v \in W_{2}^{1}\left(D_{T}\right):\left.v\right|_{\Gamma}=0, \mathcal{K}_{\mu} v=0\right\} \tag{5.1.8}
\end{align*}
$$

where $W_{2}^{1}\left(D_{T}\right)$ is an unknown Sobolev space, and the equalities $\left.v\right|_{\Gamma}=0, \mathcal{K}_{\mu} v=0$ should be understood in the sense of the trace theory [68].

Remark 5.1.2. The embedding operator $I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ represents a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$, when $n>1$ [68]. At the same time, Nemitski's operator $\mathcal{N}: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting by the formula $\mathcal{N} u=f(x, t, u)$, is continuous by (5.1.5) and bounded if $q \geq 2 \alpha$ [22]. Thus, since by (5.1.6) we have $2 \alpha<\frac{2(n+1}{n-1}$, there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Therefore, in this case, the operator

$$
\begin{equation*}
\mathcal{N}_{0}=\mathcal{N} I: \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{5.1.9}
\end{equation*}
$$

is continuous and compact. Besides, from $u \in \stackrel{\circ}{W}{ }_{2, \mu}^{1}\left(D_{T}\right)$ it follows that $f(x, t, u) \in L_{2}\left(D_{T}\right)$ and also, if $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$, then $f\left(x, t, u_{m}\right) \rightarrow f(x, t, u)$ in the space $L_{2}\left(D_{T}\right)$.

Definition 5.1.1. Let the function f satisfy the conditions (5.1.5) and (5.1.6), and $F \in L_{2}\left(D_{T}\right)$. We call a function u a generalized solution of the problem (5.1.1)-(5.1.4) if $u \in \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$ and there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}_{\mu}^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{\mathscr{W}_{2, \mu}^{1}\left(D_{T}\right)}^{\circ}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{\lambda} u_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{5.1.10}
\end{equation*}
$$

Note that the above definition of a generalized solution of the problem (5.1.1)-(5.1.4) remains valid in the linear case, that is, for $\lambda=0$.

It is obvious that a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (5.1.1)-(5.1.4) represents a generalized solution of this problem. It is easily seen that a generalized solution of the problem (5.1.1)-(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Indeed, let $F_{m}:=L_{\lambda} u_{m}$. Multiplying both sides of the equality $L_{\lambda} u_{m}=F_{m}$ by a test function $w \in V_{\mu}:=$ $\left\{v \in W_{2}^{1}\left(D_{T}\right):\left.v\right|_{\Gamma}=0, v(x, T)-\mu v(x, 0)=0, x \in \Omega\right\}$ and integrating in the domain D_{T}, after simple transformations connected with the integration by parts and the equality $\left.w\right|_{\Gamma}=0$, we get

$$
\begin{align*}
& \int_{\Omega}\left[u_{m t}(x, T) w(x, T)-u_{m t}(x, 0) w(x, 0)\right] d x \\
& \quad+\int_{\Omega}\left[-u_{m t} w_{t}+\sum_{i=1}^{n} u_{m x_{i}} w_{x_{i}}+\lambda f\left(x, t, u_{m}\right) w\right] d x d t=\int_{D_{T}} F_{m} w d x d t \quad \forall w \in V_{\mu} \tag{5.1.11}
\end{align*}
$$

Since $\mathcal{K}_{\mu} u_{m t}=0$ and $w(x, T)-\mu w(x, 0)=0, x \in \Omega$, it is not difficult to see that

$$
\begin{aligned}
& u_{m t}(x, T) w(x, T)-u_{m t}(x, 0) w(x, 0) \\
& \quad=u_{m t}(x, T)(w(x, T)-\mu w(x, 0))-w(x, 0)\left(u_{m t}(x, 0)-\mu u_{m t}(x, T)\right)=0
\end{aligned}
$$

Therefore, the equation (5.1.11) takes the form

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{m t} w_{t}+\sum_{i=1}^{n} u_{m x_{i}} w_{x_{i}}+\lambda f\left(x, t, u_{m}\right) w\right] d x d t=\int_{D_{T}} F_{m} w d x d t \forall w \in V_{\mu} \tag{5.1.12}
\end{equation*}
$$

In view of (5.1.5), (5.1.6) and Remark 5.1.2, we have $f\left(x, t, u_{m}\right) \rightarrow f(x, t, u)$ in the space $L_{2}\left(D_{T}\right)$ as $u_{m} \rightarrow u$ in the space $\stackrel{\stackrel{\circ}{W}}{2, \mu}\left(D_{T}\right)$. Therefore, by (5.1.10), passing to the limit in the equation (5.1.12) as $m \rightarrow \infty$, we get

$$
\begin{equation*}
\int_{D_{T}}\left[-u_{t} w_{t}+\sum_{i=1}^{n} u_{x_{i}} w_{x_{i}}+\lambda f(x, t, u) w\right] d x d t=\int_{D_{T}} F w d x d t \forall w \in V_{\mu} \tag{5.1.13}
\end{equation*}
$$

Since $C_{0}^{\infty}\left(D_{T}\right) \subset V_{\mu}$, from (5.1.13), integrating by parts, we have

$$
\begin{equation*}
\int_{D_{T}} u \square w d x d t+\lambda \int_{D_{T}} f(x, t, u) w d x d t=\int_{D_{T}} F w d x d t \forall w \in C_{0}^{\infty}\left(D_{T}\right) \tag{5.1.14}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$, and $C_{0}^{\infty}\left(D_{T}\right)$ is the space of finite infinitely differentiable functions in D_{T}. The equality (5.1.14), valid for any $w \in C_{0}^{\infty}\left(D_{T}\right)$, implies that a generalized solution u of the problem (5.1.1)-(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Besides, since the trace operators $\left.u \rightarrow u\right|_{t=0}$ and $u \rightarrow u_{t=T}$ are continuous, acting from the space $W_{2}^{1}\left(D_{T}\right)$ into the spaces $L_{2}(\Omega \times\{t=0\})$ and $L_{2}(\Omega \times\{t=T\})$, respectively, owing to (5.1.10), the generalized solution u of the problem (5.1.1)-(5.1.4) satisfies the nonlocal condition (5.1.3) in the sense of the trace theory. As for the nonlocal condition (5.1.4), we have taken it into account in the integral sense in the equality (5.1.13), which is valid for all $w \in V_{\mu}$. Note also that if a generalized solution u belongs to the class $C^{2}\left(\bar{D}_{T}\right)$, then by the standard reasoning combined with the integral identity (5.1.13) [68], we have that u is a classical solution of the problem (5.1.1)-(5.1.4), satisfying the pointwise equation (5.1.1), the boundary condition (5.1.2) and the nonlocal conditions (5.1.3) and (5.1.4).

Remark 5.1.3. Note that even in the linear case, that is, for $\lambda=0$, the problem (5.1.1)-(5.1.4) is not always well-posed. For example, when $\lambda=0$ and $|\mu|=1$, the corresponding to (5.1.1)(5.1.4) homogeneous problem may have an infinite number of linearly independent solutions (see Remark 5.3.2).

5.2 A priori estimate of a solution of the problem (5.1.1)-(5.1.4)

Let

$$
\begin{equation*}
g(x, t, u)=\int_{0}^{u} f(x, t, s) d s, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.2.1}
\end{equation*}
$$

Consider the following conditions imposed on the function $g=g(x, t, u)$:

$$
\begin{gather*}
g(x, t, u) \geq 0, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.2.2}\\
g_{t} \in C\left(\bar{D}_{T} \times \mathbb{R}\right), \quad g_{t}(x, t, u) \leq M_{3}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.2.3}\\
g(x, 0, \mu u) \leq \mu^{2} g(x, T, u), \quad(x, u) \in \bar{\Omega} \times \mathbb{R} \tag{5.2.4}
\end{gather*}
$$

where $M_{3}=$ const ≥ 0, and μ is the fixed constant from (5.1.3)-(5.1.4).
Remark 5.2.1. Let us consider the class of functions f from (5.1.1) satisfying the conditions (5.1.5), (5.2.2), (5.2.3) and (5.2.4). For $\alpha=\beta+1$, consider the function $f=f_{0}(t)|u|^{\beta} u$, where $f_{0} \in C^{1}([0, T])$, $f_{0} \geq 0, \frac{d f_{0}}{d t} \leq 0, f_{0}(0) \mu^{\beta} \leq f_{0}(T), \beta \geq 0$, and $\mu>0$ is the fixed constant from (5.1.3)-(5.1.4). In particular, these conditions are satisfied if $f_{0}=$ const >0 and $0<\mu \leq 1$. Indeed, using these conditions, by (5.2.1), we have

$$
g=\frac{f_{0}(t)|u|^{\beta+2}}{\beta+2}, g \geq 0, \quad g_{t} \leq 0
$$

and

$$
g(x, 0, \mu v)=\frac{f_{0}(0)|\mu v|^{\beta+2}}{\beta+2}=\frac{\mu^{2}\left(f_{0}(0) \mu^{\beta}\right)|v|^{\beta+2}}{\beta+2} \leq \mu^{2} f_{0}(T) \frac{|v|^{\beta+2}}{\beta+2}=\mu^{2} g(x, T, v)
$$

Lemma 5.2.1. Let $\lambda>0,|\mu|<1, f \in C\left(\bar{D}_{T} \times \mathbb{R}\right), F \in L_{2}\left(D_{T}\right)$, and the conditions (5.2.2)-(5.2.4) be satisfied. Then for a generalized solution u of the problem (5.1.1)-(5.1.4), we have the a priori estimate

$$
\begin{equation*}
\|u\|_{\stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}\left\|F_{1}\right\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{5.2.5}
\end{equation*}
$$

with nonnegative constants $c_{i}=c_{i}\left(\lambda, \mu, \Omega, T, M_{1}, M_{2}, M_{3}\right)$, not depending on u and $F, c_{1}>0$, whereas in the linear case $(\lambda=0)$, the constant $c_{2}=0$, and in this case, by (5.2.5), we have the uniqueness of the generalized solution of the problem (5.1.1)-(5.1.4).

Proof. Let u be a generalized solution of the problem (5.1.1)-(5.1.4). By Definition 5.1.1, there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right)$ such that the limit equalities (5.1.10) are satisfied.

Set

$$
\begin{equation*}
L_{\lambda} u_{m}=F_{m}, \quad(x, t) \in D_{T} \tag{5.2.6}
\end{equation*}
$$

Multiplying both sides of the equation (5.2.6) by $2 u_{m t}$ and integrating in the domain $D_{\tau}:=$ $D_{T} \cap\{t<\tau\}, 0<\tau \leq T$, by (5.2.1) we obtain

$$
\begin{align*}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t-2 \int_{D_{\tau}} \sum_{i=1}^{n} \frac{\partial^{2} u_{m}}{\partial x_{i}^{2}} & \frac{\partial u_{m}}{\partial t} d x d t+2 \lambda \int_{D_{\tau}} \frac{\partial}{\partial t}\left(g\left(x, t, u_{m}(x, t)\right) d x d t\right. \\
& -2 \lambda \int_{D_{\tau}} g_{t}\left(x, t, u_{m}(x, t)\right) d x d t=2 \int_{D_{\tau}} F_{m} \frac{\partial u_{m}}{\partial t} d x d t \tag{5.2.7}
\end{align*}
$$

Let $\omega_{\tau}:=\left\{(x, t) \in \bar{D}_{T}: x \in \Omega, t=\tau\right\}, 0 \leq \tau \leq T$, where ω_{0} and ω_{T} are the upper and lower bases of the cylindrical domain D_{T}, respectively. Denote by $\nu:=\left(\nu_{x_{1}}, \ldots, \nu_{x_{n}}, \nu_{t}\right)$ the unit vector of the outer normal to ∂D_{τ}. Since

$$
\begin{gathered}
\left.\nu_{x_{i}}\right|_{\omega_{\tau} \cup \omega_{0}}=0, \quad i=1, \ldots, n, \\
\left.\nu_{t}\right|_{\Gamma_{\tau}:=\Gamma \cap\{t \leq \tau\}}=0,\left.\quad \nu_{t}\right|_{\omega_{\tau}}=1,\left.\quad \nu_{t}\right|_{\omega_{0}}=-1,
\end{gathered}
$$

taking into account that $u_{m} \in \stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right)$ and, therefore, by (5.1.7),

$$
\begin{equation*}
\left.u_{m}\right|_{\Gamma}=0, \quad \mathcal{K}_{\mu} u_{m}=0, \quad \mathcal{K}_{\mu} u_{m t}=0 \tag{5.2.8}
\end{equation*}
$$

after integrating by parts we obtain

$$
\begin{align*}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t & =\int_{\partial D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} \nu_{t} d s=\int_{\omega_{\tau}} u_{m t}^{2} d x-\int_{\omega_{0}} u_{m t}^{2} d x \tag{5.2.9}\\
-2 \int_{D_{\tau}} \frac{\partial^{2} u_{m}}{\partial x_{i}^{2}} \frac{\partial u_{m}}{\partial t} d x d t & =\int_{D_{\tau}}\left[\left(u_{m x_{i}}^{2}\right)_{t}-2\left(u_{m x_{i}} u_{m t}\right)_{x_{i}}\right] d x d t \\
& =\int_{\omega_{\tau}} u_{m x_{i}}^{2} d x-\int_{\omega_{0}} u_{m x_{i}}^{2} d x, i=1, \ldots, n \tag{5.2.10}\\
2 \lambda \int_{D_{\tau}} \frac{\partial}{\partial t}\left(g\left(x, t, u_{m}(x, t)\right)\right) d x d t & =2 \lambda \int_{\partial D_{\tau}} g\left(x, t, u_{m}(x, t)\right) \nu_{t} d s \\
& =2 \lambda \int_{\omega_{\tau}} g\left(x, t, u_{m}(x, t)\right) d x-2 \lambda \int_{\omega_{0}} g\left(x, t, u_{m}(x, t)\right) d x \tag{5.2.11}
\end{align*}
$$

In view of (5.2.9)-(5.2.11), from (5.2.7) we get

$$
\begin{align*}
& \int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x=\int_{\omega_{0}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x-2 \lambda \int_{\omega_{\tau}} g\left(x, t, u_{m}(x, t)\right) d x \\
&+2 \lambda \int_{\omega_{0}} g\left(x, t, u_{m}(x, t)\right) d x+2 \lambda \int_{\omega_{\tau}} g_{t}\left(x, t, u_{m}(x, t)\right) d x d t+2 \int_{D_{\tau}} F_{m} u_{m t} d x d t \tag{5.2.12}
\end{align*}
$$

Let

$$
\begin{equation*}
w_{m}(\tau):=\int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}+2 \lambda g\left(x, t, u_{m}(x, t)\right)\right] d x \tag{5.2.13}
\end{equation*}
$$

Since $2 F_{m} u_{m t} \leq \varepsilon^{-1} F_{m}^{2}+\varepsilon u_{m t}^{2}$ for any $\varepsilon=$ const >0 and also since $\lambda>0$, by (5.2.3) and (5.2.13), from (5.2.12) it follows that

$$
\begin{align*}
w_{m}(\tau) & =w_{m}(0)+2 \lambda \int_{D_{\tau}} g_{t}\left(x, t, u_{m}(x, t)\right) d x d t+2 \int_{D_{\tau}} F_{m} u_{m t} d x d t \\
& \leq w_{m}(0)+2 \lambda M_{3} \tau \operatorname{mes} \Omega+\varepsilon \int_{D_{\tau}} u_{m t}^{2} d x d t+\varepsilon^{-1} \int_{D_{\tau}} F_{m}^{2} d x d t \tag{5.2.14}
\end{align*}
$$

Since $\lambda>0$, taking into account (5.2.2) and the inequality

$$
\begin{aligned}
\int_{D_{\tau}} u_{m t}^{2} d x d t=\int_{0}^{\tau} & {\left[\int_{\omega_{s}} u_{m t}^{2} d x\right] d s } \\
& \leq \int_{0}^{\tau}\left[\int_{\omega_{s}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}+2 \lambda g\left(x, t, u_{m}(x, t)\right)\right] d x\right] d s=\int_{0}^{\tau} w_{m}(s) d s
\end{aligned}
$$

from (5.2.14) we obtain

$$
\begin{equation*}
w_{m}(\tau) \leq \varepsilon \int_{0}^{\tau} w_{m}(s) d s+w_{m}(0)+2 \lambda M_{3} \tau \operatorname{mes} \Omega+\varepsilon^{-1} \int_{D_{\tau}} F_{m}^{2} d x d t, \quad 0<\tau \leq T \tag{5.2.15}
\end{equation*}
$$

Because of $D_{\tau} \subset D_{T}, 0<\tau \leq T$, the right-hand side of the inequality (5.2.15) is a nondecreasing function of the variable τ, and by the Gronwall lemma, it follows from (5.2.15) that

$$
\begin{equation*}
w_{m}(\tau) \leq\left[w_{m}(0)+2 \lambda M_{3} T \operatorname{mes} \Omega+\varepsilon^{-1} \int_{D_{\tau}} F_{m}^{2} d x d t\right] e^{\varepsilon \tau}, \quad 0<\tau \leq T \tag{5.2.16}
\end{equation*}
$$

In view of $\lambda>0$, by (5.2.4) and (5.2.8), from (5.2.13) follows

$$
\begin{align*}
w_{m}(0)= & \int_{\Omega}\left[u_{m t}^{2}(x, 0)+\sum_{i=1}^{n} u_{m x_{i}}^{2}(x, 0)+2 \lambda g\left(x, 0, u_{m}(x, 0)\right)\right] d x \\
& =\int_{\Omega}\left[\mu^{2} u_{m t}^{2}(x, T)+\mu^{2} \sum_{i=1}^{n} u_{m x_{i}}^{2}(x, T)+2 \lambda g\left(x, 0, \mu u_{m}(x, T)\right)\right] d x \\
& \leq \mu^{2} \int_{\Omega}\left[u_{m t}^{2}(x, T)+\sum_{i=1}^{n} u_{m x_{i}}^{2}(x, T)+2 \lambda g\left(x, T, u_{m}(x, T)\right)\right] d x=\mu^{2} w_{m}(T) \tag{5.2.17}
\end{align*}
$$

Using the inequality (5.2.16) for $\tau=T$, from (5.2.17) we obtain

$$
\begin{align*}
& w_{m}(0) \leq \mu^{2} w_{m}(T) \leq \mu^{2}\left[w_{m}(0)+2 \lambda M_{3} T \operatorname{mes} \Omega+\varepsilon^{-1} \int_{D_{T}} F_{m}^{2} d x d t\right] e^{\varepsilon T} \\
&=\mu^{2} e^{\varepsilon T} w_{m}(0)+M_{4}+\mu^{2} \varepsilon^{-1} e^{\varepsilon T}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{5.2.18}
\end{align*}
$$

where

$$
\begin{equation*}
M_{4}:=\mu^{2} 2 \lambda M_{3} T e^{\varepsilon T} \operatorname{mes} \Omega \tag{5.2.19}
\end{equation*}
$$

Since $|\mu|<1$, a positive constant $\varepsilon=\varepsilon(\mu, T)$ can be chosen insomuch small that

$$
\begin{equation*}
\mu_{1}=\mu^{2} e^{\varepsilon T}<1 \tag{5.2.20}
\end{equation*}
$$

For example, we can set $\varepsilon=\frac{1}{T} \ln \frac{1}{|\mu|}$.
By (5.2.20), from (5.2.18), we have

$$
\begin{equation*}
w(0) \leq\left(1-\mu_{1}\right)^{-1} M_{4}+\left(1-\mu_{1}\right)^{-1} \mu^{2} \varepsilon^{-1} e^{\varepsilon T}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{5.2.21}
\end{equation*}
$$

From (5.2.16) and (5.2.21) it follows that

$$
\begin{align*}
& w_{m}(\tau) \leq\left[\left(1-\mu_{1}\right)^{-1} M_{4}+\left(1-\mu_{1}\right)^{-1} \mu^{2} \varepsilon^{-1} e^{\varepsilon T}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right. \\
& \left.\quad+2 \lambda M_{3} T \operatorname{mes} \Omega+\varepsilon^{-1}\|F\|_{L_{2}\left(D_{T}\right)}^{2}\right] e^{\varepsilon T} \leq \sigma_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\sigma_{2}, \quad 0<\tau \leq T \tag{5.2.22}
\end{align*}
$$

where

$$
\begin{equation*}
\sigma_{1}=\left[\left(1-\mu_{1}\right)^{-1} \mu^{2} e^{\varepsilon T}+1\right] \varepsilon^{-1} e^{\varepsilon T}, \quad \sigma_{2}=\left[\left(1-\mu_{1}\right)^{-1} M_{4}+2 \lambda M_{3} T \operatorname{mes} \Omega\right] e^{\varepsilon T} \tag{5.2.23}
\end{equation*}
$$

Since, for the fixed τ, the function $u_{m}(x, \tau)$ belongs to the space ${ }_{W}^{\circ}{ }_{2}^{1}(\Omega):=\left\{v \in W_{2}^{1}(\Omega):\left.v\right|_{\partial \Omega}=\right.$ $0\}$, by the Friedrichs inequality [68], taking into account (5.2.2) and $\lambda>0$, we have

$$
\begin{align*}
& \int_{\omega_{\tau}}\left[u_{m}^{2}+u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x \\
& \quad \leq c_{0} \int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right] d x \leq c_{0} \int_{\omega_{\tau}}\left[u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}+\lambda g\left(x, t, u_{m}(x, t)\right)\right] d x=c_{0} w_{m}(\tau) \tag{5.2.24}
\end{align*}
$$

where the positive constant $c_{0}=c_{0}(\Omega)$ does not depend on u_{m}.
From (5.2.22) and (5.2.24) it follows that

$$
\begin{align*}
\left\|u_{m}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)}^{2} & =\int_{0}^{T}\left[\int_{\omega_{\tau}}\left(u_{m}^{2}+u_{m t}^{2}+\sum_{i=1}^{n} u_{m x_{i}}^{2}\right) d x\right] d \tau \\
\leq c_{0} & \int_{0}^{T} w_{m}(\tau) d \tau \leq c_{0} \int_{0}^{T}\left[\sigma_{1}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\sigma_{2}\right] d \tau=c_{0} \sigma_{1} T\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{0} \sigma_{2} T \tag{5.2.25}
\end{align*}
$$

Extracting the square root from both sides of the inequality (5.2.25) and using the inequality $\left(a^{2}+b^{2}\right)^{1 / 2} \leq|a|+|b|$, we get

$$
\begin{equation*}
\left\|u_{m}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{5.2.26}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{1}=\left(c_{0} T\left[\left(1-\mu_{1}\right)^{-1} \mu^{2} e^{\varepsilon T}+1\right] \varepsilon^{-1} e^{\varepsilon T}\right)^{1 / 2} \\
& c_{2}=\left(c_{0} T\left[\left(1-\mu_{1}\right)^{-1} \mu^{2} 2 \lambda M_{3} T e^{\varepsilon T} \operatorname{mes} \Omega+2 \lambda M_{3} T \operatorname{mes} \Omega\right] e^{\varepsilon T}\right)^{1 / 2} \tag{5.2.27}
\end{align*}
$$

In view of the limit equalities (5.1.10), passing to the limit in the inequality (5.2.26) as $m \rightarrow \infty$, we obtain (5.2.5). This proves Lemma 5.2.1.

5.3 The existence of a solution of the problem (5.1.1)-(5.1.4)

For the existence of a solution of the problem (5.1.1)-(5.1.4) in the case $|\mu|<1$, we will use the well-known facts on the solvability of the following linear mixed problem [68]:

$$
\begin{gather*}
L_{\theta} u:=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=F(x, t), \quad(x, t) \in D_{T}, \tag{5.3.1}\\
\left.u\right|_{\Gamma}=0, \quad u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad x \in \Omega, \tag{5.3.2}
\end{gather*}
$$

where F, φ and ψ are the given functions.
For $F \in L_{2}\left(D_{T}\right), \varphi \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ and $\psi \in L_{2}(\Omega)$, the unique generalized solution u of the problem (5.3.1), (5.3.2) (in the sense of the integral identity

$$
-\int_{\Omega} \psi w(x, 0) d x+\int_{D_{T}}\left[-u_{t} w_{t}+\sum_{i=1}^{n} u_{x_{i}} w_{x_{i}}\right] d x d t=\int_{D_{T}} F w d x d t \forall w \in V_{0}
$$

where $V_{0}:=\left\{v \in W_{2}^{1}\left(D_{T}\right):\left.v\right|_{\Gamma}=0, v(x, T)=0, x \in \Omega\right\}$ and $\left.\left.u\right|_{t=0}=\varphi\right)$ from the space $E_{2,1}\left(D_{T}\right)$ with the norm

$$
\|v\|_{E_{2,1}\left(D_{T}\right)}^{2}=\sup _{0 \leq \tau \leq T} \int_{\omega_{\tau}}\left[v^{2}+v_{t}^{2}+\sum_{i=1}^{n} v_{x_{i}}^{2}\right] d x
$$

is given by the formula [68]

$$
\begin{equation*}
u=\sum_{k=1}^{\infty}\left(\widetilde{a}_{k} \cos \mu_{k} t+\widetilde{b}_{k} \sin \mu_{k} t+\frac{1}{\mu_{k}} \int_{0}^{t} F_{k}(\tau) \sin \mu_{k}(t-\tau) d \tau\right) \varphi_{k}(x) \tag{5.3.3}
\end{equation*}
$$

where $\widetilde{\lambda}_{k}=-\mu_{k}^{2}\left(0<\mu_{1} \leq \mu_{2} \leq \cdots, \lim _{k \rightarrow \infty} \mu_{k}=\infty\right)$ and $\varphi_{k} \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ are the eigenvalues and the corresponding eigenfunctions of the spectral problem $\Delta w=\widetilde{\lambda} w,\left.w\right|_{\partial \Omega}=0$ in the domain Ω $\left(\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)$, forming simultaneously an orthonormal basis in $L_{2}(\Omega$ and an orthogonal basis in $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ with respect to the scalar product $(v, w)_{\dot{W}_{2}^{1}(\Omega)}=\int_{\Omega} \sum_{i=1}^{n} v_{x_{i}} w_{x_{i}} d x[68]$, that is,

$$
\left(\varphi_{k}, \psi_{l}\right)_{L_{2}(\Omega)}=\delta_{k}^{l}, \quad\left(\varphi_{k}, \varphi_{l}\right)_{W_{2}^{1}(\Omega)}=-\widetilde{\lambda}_{k} \delta_{k}^{l}, \quad \delta_{k}^{l}= \begin{cases}1, & l=k \tag{5.3.4}\\ 0, & l \neq k .\end{cases}
$$

Here,

$$
\begin{gather*}
\tilde{a}_{k}=\left(\varphi, \varphi_{k}\right)_{L_{2}(\Omega)}, \quad \tilde{b}_{k}=\mu_{k}^{-1}\left(\psi, \varphi_{k}\right)_{L_{2}(\Omega)}, \quad k=1,2, \ldots \tag{5.3.5}\\
F(x, t)=\sum_{k=1}^{\infty} F_{k}(t) \varphi_{k}(x), \quad F_{k}(t)=\left(F, \varphi_{k}\right)_{L_{2}\left(\omega_{t}\right)}, \quad \omega_{t}:=D_{T} \cap\{t=\tau\} \tag{5.3.6}
\end{gather*}
$$

Besides, for the solution u from (5.3.3), we have the following estimate

$$
\begin{equation*}
\|u\|_{E_{2,1}\left(D_{T}\right)} \leq \gamma\left(\|F\|_{L_{2}\left(D_{T}\right)}+\|\varphi\|_{W_{W_{2}^{1}(\Omega)}^{\circ}}+\|\psi\|_{L_{2}(\Omega)}\right) \tag{5.3.7}
\end{equation*}
$$

with the positive constant γ, independent of F, φ and $\psi[68,75]$.
Let us consider the linear problem corresponding to (5.1.1)-(5.1.4), that is, the case $\lambda=0$:

$$
\begin{gather*}
L_{0} u:=\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=F(x, t), \quad(x, t) \in D_{T} \tag{5.3.8}\\
\left.u\right|_{\Gamma}=0 \tag{5.3.9}\\
u(x, 0)-\mu u(x, T)=0, \quad u_{t}(x, 0)-\mu u_{t}(x, T)=0, \quad x \in \Omega \tag{5.3.10}
\end{gather*}
$$

Let us show that when $|\mu|<1$, for any $F \in L_{2}\left(D_{T}\right)$, there exists a unique generalized solution of the problem (5.3.8)-(5.3.10). Indeed, since the space of finite infinitely differentiable functions $C_{0}^{\infty}\left(D_{T}\right)$ is dense in the space $L_{2}\left(D_{T}\right)$, for $F \in L_{2}\left(D_{T}\right)$ and any natural number m, there exists a function $F_{m} \in C_{0}^{\infty}\left(D_{T}\right)$ such that

$$
\begin{equation*}
\left\|F_{m}-F\right\|_{L_{2}\left(D_{T}\right)}<\frac{1}{m} \tag{5.3.11}
\end{equation*}
$$

On the other hand, for a function F_{m} in the space $L_{2}\left(D_{T}\right)$, we have the following expansions [68]:

$$
\begin{equation*}
F_{m}(X, t)=\sum_{k=1}^{\infty} F_{m, k}(t) \varphi_{k}(x), \quad F_{m, k}(t)=\left(F_{m}, \varphi_{k}\right)_{L_{2}(\Omega)} \tag{5.3.12}
\end{equation*}
$$

Therefore, there exists a natural number ℓ_{m} such that $\lim _{m \rightarrow \infty} \ell_{m}=\infty$ and, for

$$
\begin{equation*}
\widetilde{F}_{m}(x, t)=\sum_{k=1}^{\ell_{m}} F_{m, k}(t) \varphi_{k}(x) \tag{5.3.13}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\widetilde{F}_{m}-F_{m}\right\|_{L_{2}\left(D_{T}\right)}<\frac{1}{m} \tag{5.3.14}
\end{equation*}
$$

From (5.3.11) and (5.3.14) it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\widetilde{F}_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{5.3.15}
\end{equation*}
$$

The solution $u=u_{m}$ of the problem (5.3.1), (5.3.2) for

$$
\varphi=\sum_{k=1}^{\ell_{m}} \widetilde{a}_{k} \varphi_{k}, \quad \psi=\sum_{k=1}^{\ell_{m}} \mu_{k} \widetilde{b}_{k} \varphi_{k}, \quad F=\widetilde{F}_{m}
$$

is given by the formula (5.3.3), which by (5.3.4)-(5.3.6) and (5.3.13) can be rewritten as follows:

$$
\begin{equation*}
u_{m}=\sum_{k=1}^{\ell_{m}}\left(\widetilde{a}_{k} \cos \mu_{k} t+\widetilde{b}_{k} \sin \mu_{k} t+\frac{1}{\mu_{k}} \int_{0}^{t} F_{m k}(\tau) \sin \mu_{k}(t-\tau) d \tau\right) \varphi_{k}(x) \tag{5.3.16}
\end{equation*}
$$

By the construction, the function u_{m} from (5.3.16) satisfies the equation (5.3.8) and the boundary condition (5.3.9) for $F=\widetilde{F}_{m}$ from (5.3.13). Let us define unknown coefficients \widetilde{a}_{k} and \widetilde{b}_{k} such that the function u_{m} from (5.3.16) would satisfy the nonlocal conditions (5.3.10), too. Towards this end, let us substitute the right-hand side of the expression (5.3.16) into the equalities (5.3.10). As a result, since the system of functions $\left\{\varphi_{k}(x)\right\}$ forms a basis in $L_{2}(\Omega)$, for defining the coefficients \widetilde{a}_{k} and \widetilde{b}_{k}, we have the following system of linear algebraic equations:

$$
\begin{align*}
\left(1-\mu \cos \mu_{k} T\right) \widetilde{a}_{k}-\left(\mu \sin \mu_{k} T\right) \widetilde{b}_{k} & =\frac{\mu}{\mu_{k}} \int_{0}^{T} F_{m, k}(\tau) \sin \mu_{k}(T-\tau) d \tau \tag{5.3.17}\\
\left(\mu \mu_{k} \sin \mu_{k} T\right) \widetilde{a}_{k}+\mu_{k}\left(1-\mu \cos \mu_{k} T\right) \widetilde{b}_{k} & =\mu \int_{0}^{T} F_{m, k}(\tau) \cos \mu_{k}(T-\tau) d \tau
\end{align*}
$$

$k=1,2, \ldots, \ell_{m}$. Its solution is

$$
\begin{align*}
& \widetilde{a}_{k}=\left[d_{1 k} \mu \mu_{k} \sin \mu_{k} T-d_{2 k}\left(1-\mu \cos \mu_{k} T\right)\right] \Delta_{k}^{-1}, \tag{5.3.18}\\
& \widetilde{b}_{k}=\left[d_{2 k}\left(1-\mu \cos \mu_{k} T\right)-d_{1 k} \mu \mu_{k} \sin \mu_{k} T\right] \Delta_{k}^{-1}, \tag{5.3.19}\\
& k=1, \ldots, \ell_{m}
\end{align*}
$$

Here,

$$
d_{1 k}=\frac{\mu}{\mu_{k}} \int_{0}^{T} F_{m, k}(\tau) \sin \mu_{k}(T-\tau) d \tau, \quad d_{2 k}=\mu \int_{0}^{T} F_{m, k}(\tau) \cos \mu_{k}(T-\tau) d \tau,
$$

and since $|\mu|<1$, for the determinant Δ_{k} of the system (5.3.17) we have

$$
\begin{equation*}
\Delta_{k}=\mu_{k}\left[\left(1-\mu \cos \mu_{k} T\right)^{2}+\mu^{2} \sin ^{2} \mu_{k} T\right] \geq \mu_{k}(1-|\mu|)^{2}>0 \tag{5.3.20}
\end{equation*}
$$

Below, we assume that the Lipschitz domain Ω is such that the eigenfunctions $\varphi_{k} \in C^{2}(\bar{\Omega}), k \geq 1$. For example, this will take place if $\partial \Omega \in C^{\left[\frac{n}{2}\right]+3}$ [75]. This fact will also take place in the case of a piecewise smooth Lipschitz domain, e.g., for the parallelepiped $\Omega=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right|<a_{i}, i=1, \ldots, n\right\}$ the corresponding eigenfunctions $\varphi_{k} \in C^{\infty}(\Omega)[76]$ (see also Remark 5.3.2). Therefore, since $F_{m} \in$ $C_{0}^{\infty}\left(D_{T}\right)$, due to (5.3.12), the function $F_{m, k} \in C^{2}([0, T])$ and, consequently, the function u_{m} from (5.3.16) belongs to the space $C^{2}\left(\bar{D}_{T}\right)$. Further, according to the construction, the function u_{m} from (5.3.16) will belong to the space $\stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right)$ which is defined in (5.1.7), besides,

$$
\begin{equation*}
L_{0} u_{m}=\widetilde{F}_{m}, \quad L_{0}\left(u_{m}-u_{k}\right)=\widetilde{F}_{m}-\widetilde{F}_{k} . \tag{5.3.21}
\end{equation*}
$$

From (5.3.21) and the a priori estimate (5.2.5), when $\lambda=0$, and due to Lemma 5.2.1, the coefficient $c_{2}=0$, we have

$$
\begin{equation*}
\left\|u_{m}-u_{k}\right\|_{\stackrel{W}{2, \mu}_{1, \mu}\left(D_{T}\right)} \leq c_{1}\left\|\widetilde{F}_{m}-\widetilde{F}_{k}\right\|_{L_{2}\left(D_{T}\right)} \tag{5.3.22}
\end{equation*}
$$

In view of (5.3.15), from (5.3.22) it follows that the sequence $u_{m} \in \stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right)$ is fundamental in the complete space $\stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$. Therefore, there exists a function $u \in \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$ such that, due to (5.3.15) and (5.3.21), the limit equalities (5.1.10) are valid for $\lambda=0$. This implies that the function u is a generalized solution of the problem (5.3.8)-(5.3.10). The uniqueness of this solution follows from the a priori estimate (5.2.5), where the constant $c_{2}=0$ for $\lambda=0$, i.e.,

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)} . \tag{5.3.23}
\end{equation*}
$$

Therefore, for the solution u of the problem (5.3.8)-(5.3.10), we have $u=L_{0}^{-1}(F)$, where L_{0}^{-1} : $L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$ is a linear continuous operator whose norm, due to (5.2.23), can be estimated as follows:

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2, \mu}^{1}\left(D_{T}\right)}} \leq c_{1} . \tag{5.3.24}
\end{equation*}
$$

Remark 5.3.1. Note that when the conditions (5.1.5), (5.1.6) are fulfilled and $F \in L_{2}\left(D_{T}\right)$, due to (5.3.24) and Remark 5.1.2, the function $u \in \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$ is a generalized solution of the problem (5.1.1)-(5.1.4) in the sense of Definition 5.1.1 if and only if u is a solution of the following functional equation

$$
\begin{equation*}
u=L_{0}^{-1}(-\lambda f(x, t, u))+L_{0}^{-1}(F) \tag{5.3.25}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$.
Rewrite the equation (5.3.25) in the form

$$
\begin{equation*}
u=A_{0} u:=-\lambda L_{0}^{-1}\left(\mathcal{N}_{0} u\right)+L_{0}^{-1}(F) \tag{5.3.26}
\end{equation*}
$$

where the operator $\mathcal{N}_{0}: \stackrel{\circ}{W_{2, \mu}^{1}}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ from (5.1.9) is, according to Remark 5.1.2, continuous and compact. Therefore, due to (5.3.24), the operator $\mathcal{A}_{0}: \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2, \mu}^{1}}\left(D_{T}\right)$ from (5.3.26) is also continuous and compact for $0 \leq \alpha<\frac{n+1}{n-1}$. At the same time, according to Lemma 5.2.1 and (5.2.27), for any parameter $\tau \in[0,1]$ and for any solution u of the equation $u=\tau \mathcal{A}_{0} u$ with the parameter τ, the same a priori estimate (5.2.5) with nonnegative constants c_{i}, independent of u, F and τ, is valid. Therefore, due to Schaefer's fixed point theorem [20], the equation (5.3.26) and hence, due to Remark 5.3.1, the problem (5.1.1)-(5.1.4) has at least one solution $u \in \stackrel{\circ}{W}_{2, \mu}^{1}\left(D_{T}\right)$. Thus, we have proved the following

Theorem 5.3.1. Let $\lambda>0,|\mu|<1$ and the conditions (5.1.5), (5.1.6), (5.2.2)-(5.2.4) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$, the problem (5.1.1)-(5.1.4) has at least one generalized solution $u \in$ $\stackrel{\circ}{W}{ }_{2, \mu}^{1}\left(D_{T}\right)$ in the sense of Definition 5.1.1.
Remark 5.3.2. Note that for $|\mu|=1$, even in the linear case, i.e., for $f=0$, the homogeneous problem corresponding to (5.1.1)-(5.1.4) may have a finite or even an infinite number of linearly independent solutions, while for the solvability of this problem the function $F \in L_{2}\left(D_{T}\right)$ must satisfy a finite or an infinite number of conditions of the form $\ell(F)=0$, respectively, where ℓ is a continuous functional in $L_{2}\left(D_{T}\right)$. Indeed, in the case $\mu=1$, denote by $\Lambda(1)$ a set of those numbers μ_{k} from (5.3.3) for which the ratio $\frac{\mu_{k} T}{2 \pi}$ is a natural number, i.e., $\Lambda(1)=\left\{\mu_{k}: \frac{\mu_{k} T}{2 \pi} \in \mathbb{N}\right\}$. The formulas (5.3.18), (5.3.19) for determination of unknown coefficients \widetilde{a}_{k} and \widetilde{b}_{k} in the representation (5.3.16) are obtained from the system of linear algebraic equations (5.3.17). In the case $\Lambda(1) \neq \varnothing$ and $\mu_{k} \in \Lambda(1), \mu=1$, the determinant Δ_{k} of the system (5.3.17), given by (5.3.20), equals zero. Moreover, in this case, all coefficients in front of the unknowns \widetilde{a}_{k} and \widetilde{b}_{k} in the left-hand side of the system (5.3.17) equal zero. Therefore, due to (5.3.16), the homogeneous problem corresponding to (5.3.8)-(5.3.10) will be satisfied by the function

$$
\begin{equation*}
u_{k}(x, t)=\left(C_{1} \cos \mu_{k} t+C_{2} \sin \mu_{k} t\right) \varphi_{k}(x) \tag{5.3.27}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constant numbers, and besides, in view of (5.3.17), the necessary conditions for the solvability of the nonhomogeneous problem (5.3.8)-(5.3.10) corresponding to $\mu_{k} \in$ $\Lambda(1)$, are the following conditions

$$
\begin{align*}
& \ell_{k, 1}(F)=\int_{D_{T}} F(x, t) \varphi_{k}(x) \sin \mu_{k}(T-t) d x d t=0 \tag{5.3.28}\\
& \ell_{k, 2}(F)=\int_{D_{T}} F(x, t) \varphi_{k}(x) \cos \mu_{k}(T-t) d x d t=0
\end{align*}
$$

Analogously, in the case $\mu=-1$, we denote by $\Lambda(-1)$ the set of points μ_{k} from (5.3.3) for which the ratio $\frac{\mu_{k} T}{\pi}$ is an odd integer. For $\mu_{k} \in \Lambda(-1), \mu=-1$, the function u_{k} from (5.3.27) is also a solution of the homogeneous problem, corresponding to (5.3.8)-(5.3.10), and the conditions (5.3.28) are the corresponding necessary conditions for the solvability of this problem. For example, when $n=2, \Omega=(0,1) \times(0,1)$, the eigenvalues and eigenfunctions of the Laplace operator Δ are [76]

$$
\lambda_{k}=-\pi^{2}\left(k_{1}^{2}+k_{2}^{2}\right), \quad \varphi_{k}\left(x_{1}, x_{2}\right)=2 \sin k_{1} \pi x_{1} \cdot \sin k_{2} \pi x_{2}, \quad k=\left(k_{1}, k_{2}\right)
$$

that is, $\mu_{k}=\pi \sqrt{k_{1}^{2}+k_{2}^{2}}$. For $k_{1}=p^{2}-q^{2}, k_{2}=2 p q$, where p and q are any integers, we obtain $\mu_{k}=\pi\left(p^{2}+q^{2}\right)$. In this case, for $\frac{T}{2} \in \mathbb{N}$, we have $\frac{\mu_{k} T}{2 \pi}=\frac{\left(p^{2}+q^{2}\right) T}{2} \in \mathbb{N}$, and according to the above-said, when $\mu=1$, the homogeneous problem, corresponding to (5.3.8)-(5.3.10), has an infinite number of linearly independent solutions

$$
u_{p, q}(x, t)=\left[C_{1} \cos \pi\left(p^{2}+q^{2}\right) t+C_{2} \sin \pi\left(p^{2}+q^{2}\right) t\right] \sin \left(p^{2}-q^{2}\right) \pi x_{1} \cdot \sin 2 p q \pi x_{2}
$$

for any integers p and q. Analogously, when $\mu=-1$, the solutions of the homogeneous problem corresponding to (5.3.8)-(5.3.10) in case p is even, while q and T are odd, are the functions from (5.3.27).

5.4 The uniqueness of a solution of the problem (5.1.1)-(5.1.4)

On the function f in the equation (5.1.1) we impose the following additional requirements:

$$
\begin{equation*}
f, f_{u}^{\prime} \in C\left(\bar{D}_{T} \times \mathbb{R}\right), \quad\left|f_{u}^{\prime}(x, t, u)\right| \leq a+b|u|^{\gamma}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.4.1}
\end{equation*}
$$

where $a, b, \gamma=$ const ≥ 0.
It is obvious that from (5.4.1) we have the condition (5.1.5) for $\alpha=\gamma+1$, and when $\gamma<\frac{2}{n-1}$, we have $\alpha=\gamma+1<\frac{n+1}{n-1}$.

Theorem 5.4.1. Let $\lambda>0,|\mu|<1, F \in L_{2}\left(D_{T}\right)$ and the condition (5.4.1) be fulfilled for $\gamma<\frac{2}{n-1}$, and also the conditions (5.2.2)-(5.2.4) hold. Then there exists a positive number $\lambda_{0}=\lambda_{0}\left(F, f, \mu, D_{T}\right)$ such that for $0<\lambda<\lambda_{0}$, the problem (5.1.1)-(5.1.4) has no more than one generalized solution in the sense of Definition 5.1.1.

Proof. Indeed, suppose that the problem (5.1.1)-(5.1.4) has two different generalized solutions u_{1} and u_{2}. According to Definition 5.1.1, there exist sequences of functions $\mu_{j k} \in \stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right), j=1,2$, such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{j k}-u_{j}\right\|_{\stackrel{\circ}{2, \mu}_{1}^{\circ}\left(D_{T}\right)}=0, \quad j=1,2, \quad \lim _{k \rightarrow \infty}\left\|L_{\lambda} u_{j k}-F\right\| L_{2\left(D_{T}\right)}=0 \tag{5.4.2}
\end{equation*}
$$

Let

$$
\begin{gather*}
w:=u_{2}-u_{1}, \quad w_{k}:=u_{2 k}-u_{1 k}, \quad F_{k}:=L_{\lambda} u_{2 k}-L_{\lambda} u_{1 k} \tag{5.4.3}\\
g_{k}:=\lambda\left(f\left(x, t, u_{2 k}\right)-f\left(x, t, u_{1 k}\right)\right) \tag{5.4.4}
\end{gather*}
$$

From (5.4.2) and (5.4.3), it is easy to see that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|w_{k}-w\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{5.4.5}
\end{equation*}
$$

In view of (5.4.3) and (5.4.4), the function $w_{k} \in \stackrel{\circ}{C}_{\mu}^{2}\left(\bar{D}_{T}\right)$ satisfies the following equalities:

$$
\begin{gather*}
\frac{\partial^{2} w_{k}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} w_{k}}{\partial x_{i}^{2}}=\left(F_{k}+g_{k}\right)(x, t), \quad(x, t) \in D_{T} \tag{5.4.6}\\
\left.w_{k}\right|_{\Gamma}=0, \quad w_{k}(x, 0)-\mu w_{k}(x, T)=0, \quad w_{k t}(x, 0)-\mu w_{k t}(x, T)=0, \quad x \in \Omega \tag{5.4.7}
\end{gather*}
$$

First, let us estimate the function g_{k} from (5.4.4). Taking into account the obvious inequality $\left|d_{1}+d_{2}\right|^{\gamma} \leq 2^{\gamma} \max \left(\left|d_{1}\right|^{\gamma},\left|d_{2}\right|^{\gamma}\right) \leq 2^{\gamma}\left(\left|d_{1}\right|^{\gamma}+\left|d_{2}\right|^{\gamma}\right)$ for $\gamma>0$, due to (5.4.1), we have

$$
\begin{align*}
& \left|f\left(x, t, u_{2 k}\right)-f\left(x, t, u_{1 k}\right)\right| \\
& \quad=\mid\left(u_{2 k}-u_{1 k} \int_{0}^{1} f_{u}^{\prime}\left(x, t, u_{1 k}+\tau\left(u_{2 k}-u_{1 k}\right)\right) d \tau\left|\leq\left|u_{2 k}-u_{1 k}\right| \int_{0}^{1}\left(a+b\left|(1-\tau) u_{1 k}+\tau u_{2 k}\right|^{\gamma}\right) d \tau\right.\right. \\
& \quad \leq a\left|u_{2 k}-u_{1 k}\right|+2^{\gamma} b\left|u_{2 k}-u_{1 k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)=a\left|w_{k}\right|+2^{\gamma} b\left|w_{k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right) . \tag{5.4.8}
\end{align*}
$$

In view of (5.4.4), from (5.4.8) we have

$$
\begin{align*}
\left\|g_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} & +\lambda 2^{\gamma} b\left\|\left|w_{k}\right|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{2}\left(D_{T}\right)} \\
& \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)}+\lambda 2^{\gamma} b\left\|w_{k}\right\|_{L_{p}\left(D_{T}\right)}\left\|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{q}\left(D_{T}\right)} \tag{5.4.9}
\end{align*}
$$

Here we have used Hölder's inequality [24]

$$
\left\|v_{1} v_{2}\right\|_{L_{r}\left(D_{T}\right)} \leq\left\|v_{1}\right\|_{L_{p}\left(D_{T}\right)}\left\|v_{2}\right\|_{L_{q}\left(D_{T}\right)}
$$

where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, and in the capacity of p, q and r we took

$$
\begin{equation*}
p=2 \frac{n+1}{n-1}, \quad q=n+1, \quad r=2 \tag{5.4.10}
\end{equation*}
$$

Since $\operatorname{dim} D_{T}=n+1$, according to Sobolev's embedding theorem [22], for $1 \leq p \leq \frac{2(n+1)}{n-1}$, we have

$$
\begin{equation*}
\|v\|_{L_{p}\left(D_{T}\right)} \leq C_{p}\|v\|_{W_{2}^{1}\left(D_{T}\right)} \quad \forall v \in W_{2}^{1}\left(D_{T}\right) \tag{5.4.11}
\end{equation*}
$$

with the positive constant C_{p}, not depending on $v \in W_{2}^{1}\left(D_{T}\right)$.

Due to the condition of the theorem, $\gamma<\frac{2}{n-1}$, and therefore, $\gamma(n+1)<\frac{2(n+1)}{n-1}$. Thus, due to (5.4.10), from (5.4.11) we have

$$
\begin{gather*}
\left\|w_{k}\right\|_{L_{p}\left(D_{T}\right)} \leq C_{p}\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}, \quad p=\frac{2(n+1)}{n-1} \quad k \geq 1 \tag{5.4.12}\\
\left\|\left(\left|u_{1 k}\right|^{\gamma}+\left|u_{2 k}\right|^{\gamma}\right)\right\|_{L_{q}\left(D_{T}\right)} \leq\left\|\left|u_{1 k}\right|^{\gamma}\right\|_{L_{q}\left(D_{T}\right)}+\left\|\left|u_{2 k}\right|^{\gamma}\right\|_{L_{q}\left(D_{T}\right)} \\
=\left\|u_{1 k}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma}+\left\|u_{2 k}\right\|_{L_{\gamma(n+1)}\left(D_{T}\right)}^{\gamma} \leq C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1 k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2 k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}\right) \tag{5.4.13}
\end{gather*}
$$

In view of the first equality of (5.4.2), there exists a natural number k_{0} such that for $k \geq k_{0}$, we have

$$
\begin{equation*}
\left\|u_{i k}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma} \leq\left\|u_{i}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+1, \quad i=1,2 ; \quad k \geq k_{0} \tag{5.4.14}
\end{equation*}
$$

Further, in view of (5.4.12), (5.4.13) and (5.4.14), from (5.4.9), we have

$$
\begin{align*}
& \left\|g_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq \lambda a\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} \\
& \quad+\lambda 2^{\gamma} b C_{p} C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+2\right)\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq \lambda M_{5}\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}, \tag{5.4.15}
\end{align*}
$$

where we have used the inequality $\left\|w_{k}\right\|_{L_{2}\left(D_{T}\right)} \leq\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}$,

$$
\begin{equation*}
M_{5}=a+2^{\gamma} b C_{p} C_{\gamma(n+1)}^{\gamma}\left(\left\|u_{1}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+\left\|u_{2}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{\gamma}+2\right), \quad p=2 \frac{n+1}{n-1} \tag{5.4.16}
\end{equation*}
$$

Since the a priori estimate (5.2.5) is valid for $\lambda=0$, due to (5.2.27), in this estimate $c_{2}=0$, and hence, for the solution w_{k} of the problem (5.4.6), (5.4.7), the estimate

$$
\begin{equation*}
\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}^{0}\left\|F_{k}+g_{k}\right\|_{L_{2}\left(D_{T}\right)} \tag{5.4.17}
\end{equation*}
$$

is valid, where the constant c_{1}^{0} does not depend on λ, F_{k} and g_{k}.
Because of $\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)}=\left\|w_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)}$ and due to (5.4.15) and (5.4.17), we have

$$
\begin{equation*}
\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}^{0}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}+\lambda c_{1}^{0} M_{5}\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)} \tag{5.4.18}
\end{equation*}
$$

It should be noted that since for u_{1} and u_{2} the a priori estimate (5.2.5) is valid, the constant M_{5} from (5.4.16) depends on F, f, μ, D_{T} and λ. Moreover, due to (5.2.19), (5.2.23) and (5.2.27), the value of M_{5} continuously depends on λ for $\lambda \geq 0$, and

$$
\begin{equation*}
0 \leq \lim _{\lambda \rightarrow 0+} M_{5}=M_{5}^{0}<+\infty \tag{5.4.19}
\end{equation*}
$$

Due to (5.4.19), there exists a positive number $\lambda_{0}=\lambda_{0}\left(F, f, \mu, D_{T}\right)$ such that for

$$
\begin{equation*}
0<\lambda<\lambda_{0} \tag{5.4.20}
\end{equation*}
$$

we have $\lambda c_{1}^{0} M_{5}<1$. Indeed, let us fix arbitrarily a positive number ε_{1}. Then, due to (5.4.19), there exists a positive number λ_{1} such that $0 \leq M_{5}<M_{5}^{0}+\varepsilon_{1}$ for $0 \leq \lambda<\lambda_{1}$. Obviously, for

$$
\lambda_{0}=\min \left(\lambda_{1},\left(c_{1}^{0}\left(M_{5}^{0}+\varepsilon_{1}\right)\right)^{-1}\right)
$$

the condition $\lambda c_{1}^{0} M_{5}<1$ is fulfilled. Therefore, in the case (5.4.20), from (5.4.18) we get

$$
\begin{equation*}
\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)} \leq c_{1}^{0}\left(1-\lambda c_{1}^{0} M_{5}\right)^{-1}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}, \quad k \geq k_{0} \tag{5.4.21}
\end{equation*}
$$

From (5.4.2) and (5.4.3) it follows that $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{W_{2, \mu}^{1}\left(D_{T}\right)}=\left\|u_{2}-u\right\|_{\dot{W}_{2, \mu}^{1}\left(D_{T}\right)}$. On the other hand, due to (5.4.5), from (5.4.21) we obtain $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{\stackrel{\circ}{2}_{2, \mu}^{1}\left(D_{T}\right)}=0$. Thus, $\left\|u_{2}-u_{1}\right\|_{\mathscr{W}_{2, \mu}^{1}\left(D_{T}\right)}=0$, i.e., $u_{2}=u_{1}$, which leads to the contradiction. This proves Theorem 5.4.1.

5.5 The cases of absence of a solution of the problem (5.1.1)-(5.1.4)

In this section, using the test function [77], we show that when the condition (5.2.2) is violated, the problem (5.1.1)-(5.1.4) may not have a generalized solution in the sense of Definition 5.1.1.

Lemma 5.5.1. Let u be a generalized solution of the problem (5.1.1)-(5.1.4) in the sense of Definition 5.1.1 and the conditions (5.1.5) and (5.1.6) be fulfilled. Then the following integral equality

$$
\begin{equation*}
\int_{D_{T}} u \square v d x d t=-\lambda \int_{D_{T}} f(x, t, u) v d x d t+\int_{D_{T}} F v d x d t \tag{5.5.1}
\end{equation*}
$$

is valid for every test function v satisfying the conditions

$$
\begin{equation*}
v \in C^{2}\left(\bar{D}_{T}\right),\left.\quad v\right|_{\partial D_{T}}=0,\left.\quad \nabla_{x, t} v\right|_{\partial D_{T}}=0 \tag{5.5.2}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, \nabla_{x, t}:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right)$.
Proof. According to the definition of a generalized solution of the problem (5.1.1)-(5.1.4), there exists the sequence $u_{m} \in \stackrel{\circ}{C}_{\mu}^{2}\left(D_{T}\right)$ such that the equalities (5.1.10), (5.2.8) are valid. We multiply both sides of the equality (5.2.6) by the function v and integrate the obtained equality in the domain D_{T}. Due to (5.5.2), integration by parts of the left-hand side of this equation yields

$$
\begin{equation*}
\int_{D_{T}} u_{m} \square v d x d t+\lambda \int_{D_{T}} f\left(x, t, u_{m}\right) v d x d t=\int_{D_{T}} F_{m} v d x d t \tag{5.5.3}
\end{equation*}
$$

Passing in the equation (5.5.3) to the limit as $m \rightarrow \infty$ and taking into account (5.2.6), the limit equalities (5.1.10) and Remark 5.1.2, we obtain the equality (5.5.2). Thus Lemma 5.5.1 is proved.

Consider the following condition imposed on the function f :

$$
\begin{equation*}
f(x, t, u) \leq-|u|^{p}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} ; \quad p=\text { const }>1 . \tag{5.5.4}
\end{equation*}
$$

Note that when the condition (5.5.4) is fulfilled, the condition (5.5.2) is violated. Let us introduce into consideration the function $v_{0}=c_{0}(x, t)$ such that

$$
\begin{equation*}
v_{0} \in C^{2}\left(\bar{D}_{T}\right),\left.\quad v_{0}\right|_{D_{T}}>0,\left.\quad v_{0}\right|_{\partial D_{T}}=0,\left.\quad \nabla_{x, t} v_{0}\right|_{\partial D_{T}}=0 \tag{5.5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\varkappa_{0}:=\int_{D_{T}} \frac{\left|\square v_{0}\right|^{p^{\prime}}}{\left|v_{0}\right|^{p^{\prime}-1}} d x d t<+\infty, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 \tag{5.5.6}
\end{equation*}
$$

Below, we assume that $\partial D \in C^{2}$ and hence there exists a function $\omega \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $\partial \Omega$: $\omega(x)=0,\left.\nabla_{x} \omega\right|_{\partial \Omega} \neq 0$, and $\left.\omega\right|_{\Omega}>0[24]$.

Simple verification shows that in the capacity of the function v_{0}, satisfying the conditions (5.5.5) and (5.5.6), can be chosen the function

$$
v_{0}(x, t)=[t(T-t) \omega(x)]^{k}, \quad(x, t) \in D_{T}
$$

for a sufficiently large $k=$ const >0.
In view of (5.5.4) and (5.5.5), from (5.5.1), where v_{0} is taken instead of v, it follows that when $\lambda>0$,

$$
\begin{equation*}
\lambda \int_{D_{T}}|u|^{p} v_{0} d x d t \leq \int_{D_{T}}|u|\left|\square v_{0}\right| d x d t-\int_{D_{T}} F v_{0} d x d t \tag{5.5.7}
\end{equation*}
$$

Theorem 5.5.1. Let the function $f \in C\left(\bar{D}_{T} \times \mathbb{R}\right)$ satisfy the conditions (5.1.5), (5.1.6) and (5.5.4); $\lambda>0, \partial \Omega \in C^{2}, F^{0} \in L_{2}\left(D_{T}\right), F^{0} \geq 0,\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0$. Then there exists a number $\gamma_{0}=$ $\gamma_{0}\left(F^{0}, \alpha, p, \lambda\right)>0$ such that for $\gamma>\gamma_{0}$, the problem (5.1.1)-(5.1.4) does not have a generalized solution in the sense of Definition 5.1.1 for $F=\gamma F^{0}$.

Proof. If in Young's inequality with the parameter $\varepsilon>0$,

$$
a b \leq \frac{\varepsilon}{p} a^{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} b^{p^{\prime}}, \quad a, b \geq 0, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad p>1
$$

we take $a=|u| v_{0}^{1 / p}, b=\frac{\left|\square v_{0}\right|}{v^{1 / p}}$, then taking into account the equality $\frac{p^{\prime}}{p}=p^{\prime}-1$, we have

$$
\begin{equation*}
|u|\left|\square v_{0}\right|=|u| v_{0}^{1 / p} \frac{\left|\square v_{0}\right|}{v_{0}^{1 / p}} \leq \frac{\varepsilon}{p}|u|^{p} v_{0}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} \frac{\left|\square v_{0}\right|^{p^{\prime}}}{v_{0}^{p^{\prime}-1}} \tag{5.5.8}
\end{equation*}
$$

Since $F=\gamma F^{0}$, using (5.5.8), from (5.5.7) we get

$$
\left(\lambda-\frac{\varepsilon}{p}\right) \int_{D_{T}}|u|^{p} v_{0} d x d t \leq \frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} \int_{D_{T}} \frac{\left|\square v_{0}\right|^{p^{\prime}}}{v_{0}^{p^{\prime}-1}} d x d t-\gamma \int_{D_{T}} F^{0} v d x d t
$$

whence for $\varepsilon<\lambda p$, we obtain

$$
\begin{equation*}
\int_{D_{T}}|u|^{p} v_{0} d x d t \leq \frac{p}{(\lambda p-\varepsilon) p^{\prime} \varepsilon^{p^{\prime}-1}} \int_{D_{T}} \frac{\left|\square v_{0}\right|^{p^{\prime}}}{v_{0}^{p^{\prime}-1}} d x d t-\frac{p \gamma}{\lambda p-\varepsilon} \int_{D_{T}} F^{0} v_{0} d x d t . \tag{5.5.9}
\end{equation*}
$$

Since $p^{\prime}=\frac{p}{p-1}, p=\frac{p^{\prime}}{p^{\prime}-1}$ and

$$
\min _{0<\varepsilon<\lambda p} \frac{p}{(\lambda p-\varepsilon) p^{\prime} \varepsilon^{p^{\prime}-1}}=\frac{1}{\lambda^{p}},
$$

which is achieved for $\varepsilon=\lambda$, it follows from (5.5.9) that

$$
\begin{equation*}
\int_{D_{T}}|u|^{p} v_{0} d x d t \leq \frac{1}{\lambda^{p^{\prime}}} \int_{D_{T}} \frac{\left|\square v_{0}\right|^{p^{\prime}}}{v_{0}^{p^{\prime}-1}} d x d t-\frac{p^{\prime} \gamma}{\lambda} \int_{D_{T}} F^{0} v_{0} d x d t \tag{5.5.10}
\end{equation*}
$$

Because of the conditions imposed on the function F^{0}, and $\left.v_{0}\right|_{D_{T}}>0$, we have

$$
\begin{equation*}
0<\varkappa_{1}:=\int_{D_{T}} F^{0} v_{0} d x d t<+\infty \tag{5.5.11}
\end{equation*}
$$

Denoting by $\chi=\chi(\gamma)$ the right-hand side of the inequality (5.5.10), which is a linear function with respect to the parameter γ, due to (5.5.6) and (5.5.11), we have

$$
\begin{equation*}
\chi(\gamma)<0 \text { for } \gamma>\gamma_{0} \text { and } \chi(\gamma)>0 \text { for } \gamma<\gamma_{0} \tag{5.5.12}
\end{equation*}
$$

where

$$
\chi(\gamma)=\frac{\varkappa_{0}}{\lambda^{p^{\prime}}}-\frac{p^{\prime} \gamma}{\lambda} \varkappa_{1}, \quad \gamma_{0}=\frac{\varkappa_{0}}{\lambda^{p^{\prime}-1} p^{\prime} \varkappa_{1}}
$$

It remains only to note that the left-hand side of the inequality (5.5.10) is nonnegative for $\gamma>\gamma_{0}$. Thus, for $\gamma>\gamma_{0}$, the problem (5.1.1)-(5.1.4) does not have a generalized solution in the sense of Definition 5.1.1. Thus Theorem 5.5.1 is proved.

5.6 The case $|\mu|=1$

As is mentioned at the end of the third section, for $|\mu|=1$, the problem (5.1.1)-(5.1.4) may turn out to be ill-posed. Below, we will show that in the presence of additional terms $2 a u_{t}$ and $c u$ in the left-hand side of the equation (5.1.1) the problem will be solvable for any $F \in L_{2}\left(D_{T}\right)$.

Consider the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+2 a u_{t}+c u+f_{1}(x, t, u)=F(x, t), \quad(x, t) \in D_{T} \tag{5.6.1}
\end{equation*}
$$

with the constant real coefficients a and c, where f_{1} and F are the given real functions.
For the equation (5.6.1), consider a problem of finding u in the domain D_{T} satisfying the boundary condition (5.1.2) and the nonlocal conditions (5.1.3), (5.1.4) for $|\mu|=1$. For the problem (5.6.1), (5.1.2)-(5.1.4), when $f_{1} \in C\left(\bar{D}_{T} \times \mathbb{R}\right)$ and $F \in L_{2}\left(D_{T}\right)$, analogously to what we have done in Definition 5.1.1, let us introduce the notion of a generalized solution $u \in \stackrel{\stackrel{\circ}{W}}{2, \mu}\left(D_{T}\right)$.

With respect to a new unknown function

$$
\begin{equation*}
v:=\sigma^{-1}(t) u, \quad \text { where } \sigma(t):=\exp (-a t), \quad 0 \leq t \leq T \tag{5.6.2}
\end{equation*}
$$

the problem $(5.6 .1),(5.1 .2)-(5.1 .4)$ can be rewritten as follows:

$$
\begin{gather*}
\frac{\partial^{2} v}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2} v}{\partial x_{i}^{2}}+\left(c-a^{2}\right) v+\sigma^{-1}(t) f_{1}(x, t, \sigma(t) v(x, t))=\sigma^{-1}(t) F(x, t), \quad(x, t) \in D_{T} \tag{5.6.3}\\
\left.v\right|_{\Gamma}=0 \tag{5.6.4}\\
\left(\mathcal{K}_{\mu_{1}} v\right)(x)=0, \quad\left(\mathcal{K}_{\mu_{1}} v_{t}\right)(x)=0, \quad x \in \Omega \tag{5.6.5}
\end{gather*}
$$

where $\mu_{1}=\mu \sigma(T),|\mu|=1$.
In the case $a>0$, due to (5.6.2) and $|\mu|=1$, it is obvious that $\left|\mu_{1}\right|<1$.
It is not difficult to see that for $c-a^{2} \geq 0$, the functions $f(x, t, u)=\left(c-a^{2}\right) u$ and $g(x, t, u)=$ $\int_{0}^{u} f(x, t, s) d s=\frac{1}{2}\left(c-a^{2}\right) u^{2}$ satisfy (5.1.5), (5.2.2)-(5.2.4).

For $f(x, t, u)=\sigma^{-1}(t) f_{1}(x, t, \sigma(t) u)$, we have

$$
\begin{align*}
g(x, t, u)=\int_{0}^{u} f(x, t, s) d s=\int_{0}^{u} \sigma^{-1} & (t) f_{1}(x, t, \sigma(t) s) d s \\
& =\sigma^{-1}(t) \int_{0}^{\sigma(t) u} f_{1}\left(x, t, s^{\prime}\right) d s^{\prime}=\sigma^{-2}(t) g_{1}(x, t, \sigma(t) u) \tag{5.6.6}
\end{align*}
$$

Here,

$$
\begin{equation*}
g_{1}(x, t, u)=\int_{0}^{u} f_{1}(x, t, s) d s \tag{5.6.7}
\end{equation*}
$$

Let us show that if the function $g_{1}(x, t, u)$ from (5.6.7) satisfies the condition

$$
\begin{equation*}
g_{1}\left(x, 0, \mu_{1} u\right) \leq g_{1}\left(x, T,\left|\mu_{1}\right| u\right), \quad(x, t) \in \bar{\Omega} \times \mathbb{R} \tag{5.6.8}
\end{equation*}
$$

for the fixed constant μ_{1} from (5.6.5), then the function $g(x, t, u)$ from (5.6.6) satisfies the condition (5.2.4) for $\mu=\mu_{1}$. Indeed, in view of (5.6.2), (5.6.6) and (5.6.8), since $\mu_{1}=\mu \sigma(T),|\mu|=1$, $\sigma(T)=\left|\mu_{1}\right|$, we have

$$
\begin{aligned}
g\left(x, 0, \mu_{1} u\right)=\sigma^{-2}(0) g_{1}\left(x, 0, \sigma(0) \mu_{1} u\right) & =g_{1}\left(x, 0, \mu_{1} u\right) \\
\mu_{1}^{2} g(x, T, u)=\mu_{1}^{2} \sigma^{-2}(T) g_{1}(x, T, \sigma(T) u) & =g_{1}\left(x, T,\left|\mu_{1}\right| u\right)
\end{aligned}
$$

whence, due to (5.6.8), follows (5.2.4) for $\mu=\mu_{1}$.
Since $\sigma^{\prime}(t)=-a \sigma(t),\left(\sigma^{-2}(t)\right)^{\prime}=2 a \sigma^{-2}(t)$, according to (5.6.6) and supposing that $f_{1}, f_{1 t}, f_{1 u} \in$ $C\left(\bar{D}_{T} \times \mathbb{R}\right)$, we have

$$
g_{t}(x, t, u)=2 a \sigma^{-2}(t) g_{1}(x, t, \sigma(t) u)+\sigma^{-2}(t) g_{1 t}(x, t, \sigma(t) u)-a \sigma^{-1} g_{1 u}(x, t, \sigma(t) u)
$$

Therefore, the condition

$$
\begin{array}{r}
2 a \sigma^{-2}(t) g_{1}(x, t, \sigma(t) u)+\sigma^{-2}(t) g_{1 t}(x, t, \sigma(t) u)-a \sigma^{-1}(t) g_{1 u}(x, t, \sigma(t) u) \leq M_{3} \tag{5.6.9}\\
(x, t, u) \in \bar{D}_{T} \times \mathbb{R}
\end{array}
$$

results in the condition (5.2.3).
Note that due to (5.6.6), from the condition

$$
\begin{equation*}
g_{1}(x, t, u) \geq 0, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{5.6.10}
\end{equation*}
$$

follows the condition (5.2.2).
It is easily seen that if the function $f_{1}(x, t, u)$ satisfies the condition of type (5.1.5), i.e.,

$$
\begin{equation*}
\left|f_{1}(x, t, u)\right| \leq \widetilde{M}_{1}+\widetilde{M}_{2}|u|^{\alpha}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R}, \quad \widetilde{M}_{i}=\mathrm{const} \geq 0 \tag{5.6.11}
\end{equation*}
$$

then the function $f(x, t, u)=\sigma^{-1}(t) f_{1}(x, t, \sigma(t) u)$ from the left-hand side of the equation (5.6.3) satisfies the condition (5.1.5) for some nonnegative constants M_{1} and M_{2}.

It should be noted that in the concrete case $f_{1}(x, t, u)=|u|^{\beta} u, \beta=$ const ≥ 0, the function $g_{1}(x, t, u)=\frac{|u|^{\beta+2}}{\beta+2}$, and

$$
\begin{gather*}
f(x, t, u)=\sigma^{-1}(t) f_{1}(x, t, \sigma(t) u)=\sigma^{\beta}(t)|u|^{\beta} u \tag{5.6.12}\\
g(x, t, u)=\int_{0}^{u} f(x, t, s) d s=\sigma^{\beta}(t) \frac{|u|^{\beta+2}}{\beta+2} \tag{5.6.13}
\end{gather*}
$$

Therefore, taking into account that $\sigma^{\prime}(t) \leq 0, g\left(x, 0, \mu_{1} u\right)=\left|\mu_{1}\right|^{\beta+2} \frac{|u|^{\beta+2}}{\beta+2}, \mu_{1}^{2} g(x, T, u)=$ $\mu_{1}^{2} \sigma^{\beta}(T) \frac{|u|^{\beta+2}}{\beta+2}, \sigma(T)=\left|\mu_{1}\right|$, it is easy to see that the functions $f(x, t, u)$ and $g(x, t, u)$ from (5.6.12) and (5.6.13) satisfy the conditions (5.1.5), (5.2.2)-(5.2.4) for $\mu=\mu_{1}, \alpha=\beta+1, M_{3}=0$.

Further, since the problems (5.6.1), (5.1.2)-(5.1.4) and (5.6.3), (5.6.4), (5.6.5) are equivalent, from Theorem 5.3.1 follows the theorem of the existence of the solution of the problem (5.6.1), (5.1.2)(5.1.4).

Theorem 5.6.1. Let $|\mu|=1, a>0, c-a^{2} \geq 0$, the function $f_{1}(x, t, u)$ from the left-hand side of the equation (5.6.1) and the function $g_{1}(x, t, u)$ from (5.6.7) satisfy the conditions $f_{1}, f_{1 t}, f_{1 u} \in C\left(\bar{D}_{T} \times \mathbb{R}\right)$, (5.6.8)-(5.6.11). Then if in the condition (5.6.11) the order of nonlinearity α satisfies the inequality $\alpha<\frac{n+1}{n-1}$, then the problem (5.6.1), (5.1.2)-(5.1.4) for any $F \in L_{2}\left(D_{T}\right)$ has at least one generalized solution.

Remark 5.6.1. In the case when Robin's boundary condition

$$
\begin{equation*}
\left.\left(\frac{\partial u}{\partial \nu}+\sigma u\right)\right|_{\Gamma}=0 \tag{5.6.14}
\end{equation*}
$$

is considered instead of the Dirichlet boundary condition (5.1.2), analogous results for the nonlocal problem (5.1.1), (5.6.14), (5.1.3), (5.1.4) can be found in [53].

References

[1] S. Aizicovici and M. McKibben, Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39 (2000), no. 5, Ser. A: Theory Methods, 649-668.
[2] G. A. Avalishvili, Nonlocal in time problems for evolution equations of second order. J. Appl. Anal. 8 (2002), no. 2, 245-259.
[3] G. Avalishvili and D. Gordeziani, On one class of spatial nonlocal problems for some hyperbolic equations. Georgian Math. J. 7 (2000), no. 3, 417-425.
[4] I. Benedetti, N. V. Loi, L. Malaguti and V. Taddei, Nonlocal diffusion second order partial differential equations. J. Differential Equations 262 (2017), no. 3, 1499-1523.
[5] A. V. Bitsadze, Some Classes of Partial Differential Equations. (Russian) Nauka, Moscow, 1981.
[6] A. V. Bitsadze, On the theory of nonlocal boundary value problems. (Russian) Dokl. Akad. Nauk SSSR 277 (1984), no. 1, 17-19.
[7] A. V. Bitsadze and A. A. Samarskiǐ, Some elementary generalizations of linear elliptic boundary value problems. (Russian) Dokl. Akad. Nauk SSSR 185 (1969), 739-740; translation in Sov. Math., Dokl. 10 (1969), 398-400.
[8] G. Bogveradze and S. Kharibegashvili, On some nonlocal problems for a hyperbolic equation of second order on a plane. Proc. A. Razmadze Math. Inst. 136 (2004), 1-36.
[9] G. Bogveradze and S. Kharibegashvili, On the global and local solution of the multidimensional Darboux problem for some nonlinear wave equations. Georgian Math. J. 14 (2007), no. 1, 65-80.
[10] A. Bouziani, On a class of nonclassical hyperbolic equations with nonlocal conditions. J. Appl. Math. Stochastic Anal. 15 (2002), no. 2, 135-153.
[11] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40 (1991), no. 1, 11-19.
[12] F. Cagnac, Problème de Cauchy sur un conoïde caractéristique. (French) Ann. Mat. Pura Appl. (4) 104 (1975), 355-393.
[13] J. R. Cannon, The solution of the heat equation subject to the specification of energy. Quart. Appl. Math. 21 (1963), 155-160.
[14] J.-Ch. Chang, Existence and compactness of solutions to impulsive differential equations with nonlocal conditions. Math. Methods Appl. Sci. 39 (2016), no. 2, 317-327.
[15] N. Chinchaladze, R. P. Gilbert, G. Jaiani, S. Kharibegashvili and D. Natroshvili, Cusped elastic beams under the action of stresses and concentrated forces. Appl. Anal. 89 (2010), no. 5, 757-774.
[16] R. Courant, Partial Differential Equations. (Russian) Translated from the English by T. D. Ventcel'; edited by O. A. Oleǐnik, Izdat. Mir, Moscow, 1964.
[17] M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J. Differential Equations 259 (2015), no. 10, 5040-5073.
[18] R. Donninger and J. Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann. 357 (2013), no. 1, 89-163.
[19] R. Donninger and B. Schörkhuber, Stable blow up dynamics for energy supercritical wave equations. Trans. Amer. Math. Soc. 366 (2014), no. 4, 2167-2189.
[20] L. C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
[21] C. M. Fichtengolz, Course of Differential and Integral Calculus, Vol. I. (Russian) Nauka, Moscow, 1969.
[22] S. Fuchík and A. Kufner, Nonlinear Differential Equations. Studies in Applied Mechanics, 2. Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
[23] V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math. 119 (1997), no. 6, 1291-1319.
[24] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983; translation in Nauka, Moscow, 1989.
[25] J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110 (1992), no. 1, 96-130.
[26] D. G. Gordeziani, Methods for Solving a Class of Nonlocal Boundary Value Problems. (Russian) Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi, 1981.
[27] D. Gordeziani and G. Avalishvili, Investigation of the nonlocal initial boundary value problems for some hyperbolic equations. Hiroshima Math. J. 31 (2001), no. 3, 345-366.
[28] Sh. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect. J. Differential Equations 259 (2015), no. 4, 1409-1448.
[29] J. Gvazava, Nonlocal and initial problems for quasilinear, nonstrictly hyperbolic equations with general solutions represented by superposition of arbitrary functions. Georgian Math. J. 10 (2003), no. 4, 687-707.
[30] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations. Yale University Press, New Haven; Humphrey Milford, London; University Press, Oxford, 1923.
[31] Q. Han and Y. Liu, Degenerate hyperbolic equations with lower degree degeneracy. Proc. Amer. Math. Soc. 143 (2015), no. 2, 567-580.
[32] L. Hörmander, Linear Partial Differential Operators. Die Grundlehren der mathematischen Wissenschaften, Bd. 116 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963; translation in Mir, Moscow, 1965.
[33] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques \& Applications (Berlin) [Mathematics \& Applications], 26. Springer-Verlag, Berlin, 1997.
[34] L. I. Ignat and T. I. Ignat, Long-time behavior for a nonlocal convection diffusion equation. J. Math. Anal. Appl. 455 (2017), no. 1, 816-831.
[35] M. Ikeda and T. Ogawa, Lifespan of solutions to the damped wave equation with a critical nonlinearity. J. Differential Equations 261 (2016), no. 3, 1880-1903.
[36] M. Ikeda and Yu. Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation. Proc. Amer. Math. Soc. 143 (2015), no. 1, 163-171.
[37] V. A. Il'in and E. I. Moiseev, On the uniqueness of the solution of a mixed problem for the wave equation with nonlocal boundary conditions. (Russian) Differ. Uravn. 36 (2000), no. 5, 656-661, 719; translation in Differ. Equ. 36 (2000), no. 5, 728-733.
[38] N. I. Ionkin, The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition. (Russian) Differencial'nye Uravnenija 13 (1977), no. 2, 294-304, 381.
[39] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28 (1979), no. 1-3, 235-268.
[40] O. M. Jokhadze and S. S. Kharibegashvili, On the first Darboux problem for second-order nonlinear hyperbolic equations. (Russian) Mat. Zametki 84 (2008), no. 5, 693-712; translation in Math. Notes 84 (2008), no. 5-6, 646-663.
[41] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen. (German) Math. Z. 77 (1961), 295-308.
[42] T. Sh. Kal'menov, Multidimensional regular boundary value problems for the wave equation. (Russian) Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 1982, no. 3, 18-25.
[43] S. Kharibegashvili, Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 4 (1995), 1-127.
[44] S. Kharibegashvili, On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations. Bound. Value Probl. 2005, no. 3, 359-376.
[45] S. Kharibegashvili, Some multidimensional problems for hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 37 (2006), 1-136.
[46] S. S. Kharibegashvili, On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation in a conical domain. (Russian) Differ. Uravn. 42 (2006), no. 2, 261-271, 288; translation in Differ. Equ. 42 (2006), no. 2, 279-290.
[47] S. Kharibegashvili, On the global solvability of the Cauchy characteristic problem for a nonlinear wave equation in a light cone of the future. Mem. Differential Equations Math. Phys. 42 (2007), 49-68.
[48] S. S. Kharibegashvili, On the existence or nonexistence of global solutions of a multidimensional version of the second Darboux problem for some nonlinear hyperbolic equations. (Russian) Differ. Uravn. 43 (2007), no. 3, 388-401, 431; translation in Differ. Equ. 43 (2007), no. 3, 402-416.
[49] S. Kharibegashvili, On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part. J. Math. Anal. Appl. 338 (2008), no. 1, 71-81.
[50] S. S. Kharibegashvili, On the solvability of the characteristic Cauchy problem for some nonlinear wave equations in the future light cone. (Russian) Differ. Uravn. 44 (2008), no. 1, 129-139, 144; translation in Differ. Equ. 44 (2008), no. 1, 135-146.
[51] S. Kharibegashvili, On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations. Nonlinear Anal. 68 (2008), no. 4, 912-924.
[52] S. Kharibegashvili, Boundary value problems for some classes of nonlinear wave equations. Mem. Differential Equations Math. Phys. 46 (2009), 1-114.
[53] S. Kharibegashvili, The existence of solutions of one nonlocal in time problem for multidimensional wave equations with power nonlinearity. Mem. Differ. Equ. Math. Phys. 66 (2015), 83-101.
[54] S. Kharibegashvili and B. Midodashvili, Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part. Electron. J. Differential Equations 2008, No. 72, 12 pp.
[55] S. Kharibegashvili and B. Midodashvili, Some nonlocal problems for second order strictly hyperbolic systems on the plane. Georgian Math. J. 17 (2010), no. 2, 287-303.
[56] S. Kharibegashvili and B. Midodashvili, On the solvability of one boundary value problem for some semilinear wave equations with source terms. NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 2, 117-138.
[57] S. Kharibegashvili and B. Midodashvili, Global solvability of the Cauchy characteristic problem for one class of nonlinear second order hyperbolic systems. J. Math. Anal. Appl. 376 (2011), no. 2, 750-759.
[58] S. Kharibegashvili and B. Midodashvili, On the solvability of one boundary value problem for one class of semilinear second order hyperbolic systems. J. Math. Anal. Appl. 400 (2013), no. 2, 345-362.
[59] S. Kharibegashvili and B. Midodashvili, One multidimensional version of the Darboux first problem for one class of semilinear second order hyperbolic systems. NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 595-619.
[60] S. Kharibegashvili and B. Midodashvili, On the solvability of a problem nonlocal in time for a semilinear multidimensional wave equation. Reprint of Ukraïn. Mat. Zh. 67 (2015), no. 1, 88-105; Ukrainian Math. J. 67 (2015), no. 1, 98-119.
[61] S. Kharibegashvili and B. Midodashvili, One nonlocal problem in time for a semilinear multidimensional wave equation. Lith. Math. J. 57 (2017), no. 3, 331-350.
[62] I. Kiguradze and T. Kiguradze, On blow-up solutions of initial characteristic problem for nonlinear hyperbolic systems with two independent variables. Mem. Differential Equations Math. Phys. 38 (2006), 146-149.
[63] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
[64] T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations. Nonlinear Anal. 39 (2000), no. 2, Ser. A: Theory Methods, 173-185.
[65] T. Kiguradze, On bounded and time-periodic solutions of nonlinear wave equations. J. Math. Anal. Appl. 259 (2001), no. 1, 253-276.
[66] T. Kiguradze, Global and blow-up solutions of the characteristic initial value problem for second order nonlinear hyperbolic equations. Mem. Differential Equations Math. Phys. 49 (2010), 121138.
[67] M. A. Krasnosel'skiǐ, P. P. Zabrevıko, E. I. Pustyl'nik and P. E. Sobolevskiǐ, Integral Operators in Spaces of Summable Functions. (Russian) Nauka, Moscow, 1966.
[68] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics. (Russian) Nauka, Moscow, 1973.
[69] N.-A. Lai, H. Takamura and K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J. Differential Equations 263 (2017), no. 9, 53775394.
[70] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u+\mathcal{F}(u)$. Trans. Amer. Math. Soc. 192 (1974), 1-21.
[71] J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires. (French) Dunod; Gauthier-Villars, Paris, 1969.
[72] G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on \mathbb{R}^{N}. Comput. Math. Appl. 70 (2015), no. 6, 1345-1356.
[73] L.-E. Lundberg, The Klein-Gordon equation with light-cone data. Comm. Math. Phys. 62 (1978), no. 2, 107-118.
[74] B. Midodashvili, A nonlocal problem for fourth order hyperbolic equations with multiple characteristics. Electron. J. Differential Equations 2002, No. 85, 7 pp.
[75] V. P. Mikhaîlov, Partial differential equations. (Russian) Nauka, Moscow, 1976.
[76] S. G. Mikhlin, A Course in Mathematical Physics. (Russian) Nauka, Moscow, 1968.
[77] È. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. (Russian) Tr. Mat. Inst. Steklova 234 (2001), 1384; transltaion in Proc. Steklov Inst. Math. 2001, no. 3(234), 1-362.
[78] E. Moiseev, Spectral characteristics of some nonlocal boundary-value problems. Computational tools of complex systems, II. Comput. Math. Appl. 34 (1997), no. 5-6, 649-655.
[79] R. Narasimhan, Analysis on Real and Complex Manifolds. Reprint of the 1973 edition. NorthHolland Mathematical Library, 35. North-Holland Publishing Co., Amsterdam, 1985; Russian translation: Mir, Noscow, 1971.
[80] K. Nishihara and Yu. Wakasugi, Global existence of solutions for a weakly coupled system of semilinear damped wave equations. J. Differential Equations 259 (2015), no. 8, 4172-4201.
[81] N. I. Popivanov and M. Schneider, The Darboux problems in \mathbf{R}^{3} for a class of degenerating hyperbolic equations. J. Math. Anal. Appl. 175 (1993), no. 2, 537-578.
[82] L. S. Pul'kina, A mixed problem with an integral condition for a hyperbolic equation. (Russian) Mat. Zametki 74 (2003), no. 3, 435-445; translation in Math. Notes 74 (2003), no. 3-4, 411-421.
[83] I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91 (1963), 129-135.
[84] Th. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations 52 (1984), no. 3, 378-406.
[85] A. L. Skubachevskǐ̌, Nonlocal elliptic problems and multidimensional diffusion processes. Russian J. Math. Phys. 3 (1995), no. 3, 327-360.
[86] S. L. Sobolev, Quelques problémes limites nouveaux pour les équations aux dérivées partielles du type hyperbolique. (Russian) Mat. Sb. 11(53) (1942), no. 3, Nov. Ser., 155-203.
[87] W. A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41 (1981), no. 1, 110-133.
[88] M. Struwe, The critical nonlinear wave equation in two space dimensions. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1805-1823.
[89] H. Takeda, Large time behavior of solutions for a nonlinear damped wave equation. Commun. Pure Appl. Anal. 15 (2016), no. 1, 41-55.
[90] V. A. Trenogin, Functional Analysis. (Russian) Second edition. Nauka, Moscow, 1993.
[91] V. N. Vragov, The Goursat and Darboux problems for a certain class of hyperbolic equations. (Russian) Differencial'nye Uravnenija 8 (1972), 7-16.
[92] V. N. Vragov, Boundary Value Problems for Nonclassical Equations of Mathematical Physics. NSU, Novosibirsk, 1983.
[93] B. Z. Vulikh, Concise Course of the Theory of Functions of a Real Variable. Nauka, Moscow, 1973.
[94] Yu. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients. J. Math. Anal. Appl. 447 (2017), no. 1, 452-487.
[95] X. Xu, B. Qin and W. Li, S-shaped bifurcation curve for a nonlocal boundary value problem. J. Math. Anal. Appl. 450 (2017), no. 1, 48-62.
[96] B. T. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231 (2006), no. 2, 361-374.
[97] Y. Zhou, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \mathbb{R}^{N}. Appl. Math. Lett. 18 (2005), no. 3, 281-286.
[98] J. Zhu, Blow-up of solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and boundary condition. Nonlinear Anal. 67 (2007), no. 1, 33-38.
(Received 17.10.2017)

Author's address:

Sergo Kharibegashvili

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia.

E-mail: kharibegashvili@yahoo.com

Memoirs on Differential Equations and Mathematical Physics

$$
\text { Volume } 75,2018,93-104
$$

R. P. Agarwal, A. Aghajani, M. Mirafzal

EXACT CONDITIONS FOR THE EXISTENCE
OF HOMOCLINIC ORBITS IN THE LIÉNARD SYSTEMS

Abstract. We consider the Liénard system $\dot{x}=y-F(x)$ and $\dot{y}=-g(x)$. Under the assumptions that the origin is a unique equilibrium, we investigate the existence of homoclinic orbits of this system which is closely related to the stability of the zero solution, center problem, global attractively of the origin, and oscillation of solutions of the system. We present the necessary and sufficient conditions for this system to have a positive orbit which starts at a point on the vertical isocline $y=F(x)$ and approaches the origin without intersecting the x-axis. Our results solve the problem completely in some sense.

2010 Mathematics Subject Classification. Primary 37C29; Secondary 34A12.
Key words and phrases. Homoclinic orbit, Liénard system, oscillation.

 мณдо

1 Introduction

It is well known that the Liénard system

$$
\begin{align*}
& \frac{d x}{d t}=y-F(x) \\
& \frac{d y}{d t}=-g(x) \tag{1.1}
\end{align*}
$$

is of great importance in various applications. Hence, asymptotic and qualitative behavior of this system and some of its extensions have been widely studied by many authors; results can be found in many books and papers $[1-22]$. In system (1.1), a trajectory is said to be a homoclinic orbit if its $\alpha-$ and ω-limit sets are the origin. The existence of homoclinic orbits in the Liénard-type systems (see [5]) is closely connected with the stability of the zero solution and the center problem. If system (1.1) has a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center cannot exist together in system (1.1). Our subject also has a near relation to the global attractivity of the origin and oscillation of solutions (see $[9,11]$).

Taking the vector field of (1.1) into account, we see that every homoclinic orbit is in the upper or in the lower half-plane. In other words, no homoclinic orbit crosses the x-axis. When a homoclinic orbit appears in the upper (resp. lower) half-plane, all other homoclinic orbits exist in the same half-plane.

We say that system (1.1) has property $\left(Z_{1}^{+}\right)$(resp. $\left(Z_{3}^{+}\right)$) if there exists a point $P\left(x_{0}, y_{0}\right)$ with $y_{0}=F\left(x_{0}\right)$ and $x_{0}>0$ (resp. $\left.x_{0}<0\right)$ such that the positive semitrajectory of (1.1) starting at P approaches the origin through only the first (resp. third) quadrant. We also say that system (1.1) has property $\left(Z_{2}^{-}\right)\left(\right.$resp. $\left.\left(Z_{4}^{-}\right)\right)$if there exists a point $P\left(x_{0}, y_{0}\right)$ with $y_{0}=F\left(x_{0}\right)$ and $x_{0}<0$ (resp. $\left.x_{0}>0\right)$ such that the negative semitrajectory of (1.1) starting at P approaches the origin through only the second (resp. fourth) quadrant. If system (1.1) has both properties $\left(Z_{1}^{+}\right)$and $\left(Z_{2}^{-}\right)$, then a homoclinic orbit exists in the upper half-plane. Similarly, if system (1.1) has both properties $\left(Z_{3}^{+}\right)$ and $\left(Z_{4}^{-}\right)$, then a homoclinic orbit exists in the lower half-plane. Notice that by the transformation $x \rightarrow-x$ and $t \rightarrow-t$, we can transfer any result for property $\left(Z_{1}^{+}\right)$to an analogous result with respect to property $\left(Z_{2}^{-}\right)$. Also, by the transformation $x \rightarrow-x$ and $y \rightarrow-y$, we can transfer any result for property $\left(Z_{1}^{+}\right)\left(\right.$resp. $\left.\left(Z_{2}^{-}\right)\right)$to an analogous result with respect to property $\left(Z_{3}^{+}\right)$(resp. $\left(Z_{4}^{-}\right)$).

In this paper, we intend to give some conditions on $F(x)$ and $g(x)$ under which system (1.1) has properties $\left(Z_{1}^{+}\right),\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, or $\left(Z_{4}^{-}\right)$. We assume that F and g are continuous on an open interval I which contains 0 and satisfy smoothness conditions for uniqueness of solutions of the initial value problems. We also assume that $F(0)=0$ and

$$
x g(x)>0 \text { for } x \neq 0
$$

which guarantee that the origin is the unique equilibrium of (1.1). Throughout this paper, in the results related to property $\left(Z_{1}^{+}\right)\left(\right.$resp. $\left(Z_{2}^{-}\right)$), we assume that $F(x)>0$ for $x>0$ (resp. $\left.x<0\right),|x|$ sufficiently small. Because if $F(x)$ has an infinite number of positive (resp. negative) zeroes clustering at $x=0$, then the system (1.1) fails to have property $\left(Z_{1}^{+}\right)$(resp. $\left(Z_{2}^{-}\right)$). Similarly, in the results related to property $\left(Z_{3}^{+}\right)$(resp. $\left(Z_{4}^{-}\right)$), we assume that $F(x)<0$ for $x<0$ (resp. $x>0$), $|x|$ sufficiently small.
T. Hara and T. Yoneyama [10] considered system (1.1) and proved that if there exists $\delta>0$ such that

$$
F(x)>0, \quad \frac{1}{F(x)} \int_{0}^{x} \frac{g(\eta)}{F(\eta)} d \eta \leq \frac{1}{4}
$$

for $0<x<\delta$, then system (1.1) has property $\left(Z_{1}^{+}\right)$. They also proved that if there exist $a>0$ such that $F(x)>0$ for $0<x \leq a$ and some $\alpha>\frac{1}{4}$ such that

$$
\frac{1}{F(x)} \int_{0}^{x} \frac{g(\eta)}{F(\eta)} d \eta \geq \alpha
$$

then system (1.1) fails to have property $\left(Z_{1}^{+}\right)$(see also $[6,9,15,19]$).
In this paper, we present an implicit necessary and sufficient condition for system (1.1) to have property $\left(Z_{1}^{+}\right)$. Then we drive sharp explicit conditions and solve this problem completely in some sense. We formulate similar results for properties $\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$.

The paper is organized as follows. In Section 2, we give implicit conditions for system (1.1) to have property $\left(Z_{1}^{+}\right)$. In Section 3, we use our results obtained in Section 2 and present sufficient conditions for properties $\left(Z_{1}^{+}\right),\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$. In Section 4, we present the necessary conditions for properties $\left(Z_{1}^{+}\right),\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$and show that the sufficient conditions presented in Section 3 are best possible.

2 Implicit conditions for property $\left(Z_{1}^{+}\right)$

In this section we present implicit conditions for system (1.1) to have property (Z_{1}^{+}). First, we introduce a system which is equivalent to (1.1). Let the function $\lambda(x)$ be defined by

$$
\lambda(x)= \begin{cases}\sqrt{2 G(x)} & \text { for } x \geq 0 \\ -\sqrt{2 G(x)} & \text { for } x<0\end{cases}
$$

and the mapping $\Lambda: R^{2} \rightarrow R^{2}$ by

$$
\Lambda(x, y)=(\lambda(x), y) \equiv(u, v)
$$

Consider the canonical form of the Liénard systems

$$
\begin{align*}
& \frac{d u}{d \tau}=v-F^{*}(u) \\
& \frac{d v}{d \tau}=-u \tag{2.1}
\end{align*}
$$

in which $d \tau=[g(x) \operatorname{sgn}(x) / \sqrt{2 G(x)}] d t$ and a continuous function F^{*} is defined by

$$
F^{*}(u)= \begin{cases}F\left(G^{-1}\left(\frac{1}{2} u^{2}\right)\right. & \text { if } u \geq 0 \\ F\left(G^{-1}\left(-\frac{1}{2} u^{2}\right)\right. & \text { if } u<0\end{cases}
$$

where $G^{-1}(w)$ is the inverse function to $G(x) \operatorname{sgn}(x)$. Then the mapping Λ is a homeomorphism of the (x, y)-plane onto an open subset of the (u, v)-plane which contains zero. It is obvious that Λ maps the x-axis into the u-axis. Consequently, we have only to determine whether system (2.1), instead of (1.1), has property $\left(Z_{1}^{+}\right)$or not. Hereafter we denote τ by t again.

Theorem 2.1. Let $F^{*} \in C^{1}([0, \alpha])$ for some $\alpha>0$. Then system (2.1) has property $\left(Z_{1}^{+}\right)$if and only if there exist a constant $b \leq \alpha$ and a function $\varphi \in C^{1}([0, b])$ such that $\varphi(0)=0$,

$$
\begin{equation*}
\varphi(u)>0, \quad\left(F^{*}\right)^{\prime}(u) \geq \frac{u}{\varphi(u)}+\varphi^{\prime}(u) \text { for } 0<u \leq b \tag{2.2}
\end{equation*}
$$

Proof. Sufficiency. Consider the positive semitrajectory of (2.1) starting at a point $\left(b, F^{*}(b)\right)$. This trajectory is considered as a solution $v(u)$ of

$$
\begin{equation*}
\frac{d v}{d u}=-\frac{u}{v-F^{*}(u)} \tag{2.3}
\end{equation*}
$$

with $v(b)=F^{*}(b)$. Suppose that the positive semitrajectory $v(u)$ crosses the negative y-axis. Then it also meets the curve $v=F^{*}(u)-\varphi(u)$ at a point $\left(s, F^{*}(s)-\varphi(s)\right)$ with $s<b$ such that

$$
\frac{d v}{d u}(s)=\frac{-s}{\left(F^{*}(s)-\varphi(s)\right)-F^{*}(s)}>\left(F^{*}\right)^{\prime}(s)-\varphi^{\prime}(s)
$$

Thus

$$
\left(F^{*}\right)^{\prime}(s)<\frac{s}{\varphi(s)}+\varphi^{\prime}(s)
$$

This is a contradiction. Hence, the trajectory $v(u)$ does not cross the negative y-axis, and, therefore, system (2.1) has property $\left(Z_{1}^{+}\right)$.

Necessity. Suppose that system (2.1) has property $\left(Z_{1}^{+}\right)$. Then there exists a positive semitrajectory of (2.1) starting at a point $\left(b, F^{*}(b)\right)$ with $b>0$, which does not meet the negative y-axis. This trajectory can be regarded as the graph of a continuously differentiable function $\psi(u)$ which is a solution of (2.3). Let $\varphi(u)=F^{*}(u)-\psi(u)$. Then it is clear that $\varphi(0)=0$,

$$
\varphi(u)>0, \quad\left(F^{*}\right)^{\prime}(u)=\frac{u}{\varphi(u)}+\varphi^{\prime}(u) \text { for } 0<u \leq b
$$

Hence, the condition (2.2) is verified.
Theorem 2.2. Suppose that system (2.1) with F_{1} has property $\left(Z_{1}^{+}\right)$. If

$$
\begin{equation*}
F_{2}(u) \geq F_{1}(u) \tag{2.4}
\end{equation*}
$$

for $u>0$ sufficiently small, then system (2.1) corresponding to F_{2} has property $\left(Z_{1}^{+}\right)$.
Proof. Since system (2.1) with $F_{1}(u)$ has property $\left(Z_{1}^{+}\right)$, there exists a positive semitrajectory of (2.1) starting at a point $\left(u_{0}, v_{0}\right)$ with $u_{0}>0$, which approaches the origin through only the first quadrant. This trajectory can be regarded as the graph of a function $v=\psi_{1}(u)$ which is a solution of (2.3). Let $v=\psi_{2}(u)$ be the graph of the solution of system (2.3) corresponding to F_{2} such that $(u(0), v(0))=\left(u_{0}, v_{0}\right)$. We can assume that u_{0} is sufficiently small, thus from (2.4) we have

$$
\psi_{2}^{\prime}(u)=\frac{-u}{v-F_{2}(u)} \leq \frac{-u}{v-F_{1}(u)}=\psi_{1}^{\prime}(u) \text { for } 0<u \leq u_{0}
$$

Hence, $\psi_{2}(u) \geq \psi_{1}(u)>0$ for $0<u \leq u_{0}$. Therefore, system (2.1) corresponding to F_{2} has property $\left(Z_{1}^{+}\right)$.

3 Explicit sufficient conditions for property (Z_{1}^{+})

In this section we use our implicit conditions to drive explicit sufficient conditions for properties $\left(Z_{1}^{+}\right)$, $\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$. To this end, for $u>0$ sufficiently small we define

$$
L_{1}(u)=\log k u
$$

and

$$
L_{n}(u)=\log k u \times \log (b|\log k u|) \times \cdots \times \underbrace{\log \log \cdots \log }_{(n-1) \text {-times }}(b|\log k u|) \text { for } n \geq 2
$$

where $k, b>0$. Notice that $L_{n}(u)<0$ for $u>0$ sufficiently small.
Theorem 3.1. Let $k, b>0$. If

$$
F^{*}(u) \geq 2 u-\frac{1}{4} \sum_{j=1}^{n-1} \frac{u}{\left(L_{j}(u)\right)^{2}}
$$

for some $n \geq 2$ and $u>0$ sufficiently small, then system (2.1) has property (Z_{1}^{+}).
Proof. By Theorem 2.2, it suffices to prove the theorem when

$$
F^{*}(u)=2 u-\frac{1}{4} \sum_{j=1}^{n-1} \frac{u}{\left(L_{j}(u)\right)^{2}}
$$

Let

$$
\begin{gather*}
M_{n}(u)=\sum_{j=1}^{n-1}\left(\frac{1}{L_{j}(u)} \sum_{i=1}^{j} \frac{1}{L_{i}(u)}\right), \tag{3.1}\\
N_{n}(u)=\sum_{j=1}^{n-1} \frac{1}{L_{j}(u)}, \quad \varphi_{n}(u)=u+\frac{1}{2} u N_{n+1}(u) . \tag{3.2}
\end{gather*}
$$

We have

$$
u \frac{d}{d u}\left(L_{n}(u)\right)=N_{n}(u) L_{n}(u)+1, \quad 2 M_{n}(u)-\left(N_{n}(u)\right)^{2}=\sum_{j=1}^{n-1} \frac{1}{\left(L_{j}(u)\right)^{2}}
$$

and

$$
\frac{d}{d u}\left(N_{n}(u)\right)=-\frac{M_{n}(u)}{u}
$$

Thus

$$
\frac{u}{\varphi_{n}(u)}+\varphi_{n}^{\prime}(u)=2-\frac{1}{4\left(1+\frac{1}{2} N_{n+1}(u)\right)}\left(\sum_{j=1}^{n} \frac{1}{\left(L_{j}(u)\right)^{2}}+N_{n+1}(u) M_{n+1}(u)\right)
$$

or

$$
\begin{equation*}
\frac{u}{\varphi_{n}(u)}+\varphi_{n}^{\prime}(u)=2-\frac{1}{4} \sum_{j=1}^{n} \frac{1}{\left(L_{j}(u)\right)^{2}}-\frac{\left(N_{n+1}(u)\right)^{3}}{8\left(1-\frac{1}{2} N_{n+1}(u)\right)} \tag{3.3}
\end{equation*}
$$

for $u>0$ sufficiently small. On the other hand,

$$
\begin{equation*}
\left(F^{*}\right)^{\prime}(u)=2-\frac{1}{4} \sum_{j=1}^{n-1} \frac{1}{\left(L_{j}(u)\right)^{2}}+\frac{1}{2} \sum_{j=1}^{n-1} \frac{N_{j}(u) L_{j}(u)+1}{\left(L_{j}(u)\right)^{3}} \tag{3.4}
\end{equation*}
$$

It is easy to check that

$$
\left(F^{*}\right)^{\prime}(u)>\frac{u}{\varphi_{n}(u)}+\varphi_{n}^{\prime}(u)
$$

for $u>0$ sufficiently small. Hence, (2.2) holds and, by Theorem 2.1, system (2.1) has property $\left(Z_{1}^{+}\right)$.

Recall defining the function $F^{*}(u)$ as follows:

$$
F^{*}(u)=F\left(G^{-1}\left(\frac{1}{2} u^{2}\right)\right) \text { for } u \geq 0
$$

Put $x=G^{-1}\left(\frac{1}{2} u^{2}\right)$. Then for system (1.1) to have property $\left(Z_{1}^{+}\right)$we have the following sufficient condition.

Theorem 3.2. Assume $k, b>0$. If

$$
F(x) \geq \sqrt{8 G(x)}-\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})\right)^{2}}
$$

for some $n \geq 2$ and $x>0$ sufficiently small, then system (1.1) has property $\left(Z_{1}^{+}\right)$.
Similarly, for system (1.1) to have properties $\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$, we have the following sufficient conditions.

Theorem 3.3. Assume $k, b>0$. If

$$
F(x) \geq \sqrt{8 G(x)}-\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})\right)^{2}}
$$

for some $n \geq 2$ and $x<0,|x|$ sufficiently small, then system (1.1) has property $\left(Z_{2}^{-}\right)$.

Theorem 3.4. Assume $k, b>0$. If

$$
F(x) \leq-\sqrt{8 G(x)}+\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})\right)^{2}}
$$

for some $n \geq 2$ and $x<0,|x|$ sufficiently small, then system (1.1) has property $\left(Z_{3}^{+}\right)$.
Theorem 3.5. Assume $k, b>0$. If

$$
F(x) \leq-\sqrt{8 G(x)}+\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})\right)^{2}}
$$

for some $n \geq 2$ and $x>0$ sufficiently small, then system (1.1) has property $\left(Z_{4}^{-}\right)$.

4 Explicit necessary conditions for property $\left(Z_{1}^{+}\right)$

In this section we drive explicit necessary conditions for properties $\left(Z_{1}^{+}\right),\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$and show that the sufficient conditions presented in Section 2 are best possible.
Definition 4.1. Let $f_{1}(u)$ and $f_{2}(u)$ be real-valued functions. By $f_{1}(u) \preceq f_{2}(u)$ we mean that there exists $b>0$ such that $f_{1}(u) \leq f_{2}(u)$ for $0<u \leq b$.

In proving Theorem 4.1 we will need the following
Lemma 4.1. Suppose that $\varphi \in C^{1}([0, \alpha])$ for some $\alpha>0, \varphi(0)=0$, and $\varphi(u)>0$ for $u>0$ sufficiently small. If

$$
\begin{equation*}
\frac{d}{d u}\left(2 u-\frac{1}{4} \sum_{j=1}^{n-1} \frac{u}{\left(L_{j}(u)\right)^{2}}-\frac{\lambda u}{\left(L_{n}(u)\right)^{2}}\right) \geq \frac{u}{\varphi(u)}+\varphi^{\prime}(u), \quad \lambda \geq \frac{1}{4} \tag{4.1}
\end{equation*}
$$

for some $n \geq 2, k>0, b>0$, and $u>0$ sufficiently small, then
(i) $\lim _{u \rightarrow 0^{+}} \frac{\varphi(u)}{u}=1$,
(ii) $\left|\frac{\varphi(u)-u}{u}\right| \leq \frac{1}{|\log k u|}$ for every $k>0$ and $u>0$ sufficiently small.

Proof. It is easy to check that the left-hand side of inequality (4.1) tends to 2 as $u \rightarrow 0^{+}$. Thus, from (4.1) we get

$$
\lim _{u \rightarrow 0^{+}}\left(\frac{u}{\varphi(u)}+\varphi^{\prime}(u)\right)=\frac{1}{\varphi^{\prime}\left(0^{+}\right)}+\varphi^{\prime}\left(0^{+}\right) \leq 2
$$

Hence,

$$
\lim _{u \rightarrow 0^{+}} \frac{\varphi(u)}{u}=\varphi^{\prime}\left(0^{+}\right)=1
$$

This completes the proof of (i). Now let $\varphi(u)=u+h(u)$. Then we have

$$
\begin{equation*}
-\left(\frac{u}{\varphi(u)}+\varphi^{\prime}(u)\right)=-2+\frac{h(u)}{u+h(u)}-h^{\prime}(u) \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) we conclude that

$$
\begin{equation*}
\frac{h(u)}{u+h(u)}-h^{\prime}(u)>0 \tag{4.3}
\end{equation*}
$$

for u sufficiently small. Suppose that $\left\{u_{n}\right\}$ tends to zero and $h\left(u_{n}\right)=0$, then there exists a sequence $\left\{c_{n}\right\}$ such that c_{n} tends to zero as $n \rightarrow \infty, h^{\prime}\left(c_{n}\right)=0$, and $h\left(c_{n}\right) \leq 0$. This contradicts (4.3). Hence,
$h(u)$ is positive or negative for $u>0$ sufficiently small, and we can let $h(u)=\frac{u}{f(u)}$ for $0<u \leq c$ with c sufficiently small. Notice that, by (i), $|f(u)| \rightarrow \infty$ as $u \rightarrow 0$. Since $\varphi(u)>0$ for u sufficiently small,

$$
\begin{equation*}
\frac{f(u)+1}{f(u)}=\frac{\varphi(u)}{u}>0 . \tag{4.4}
\end{equation*}
$$

Thus, from (4.3) and (4.4) we have

$$
f^{\prime}(u)\left(\frac{f(u)+1}{f(u)}\right)>\frac{1}{u}
$$

for $0<u \leq b$ with b sufficiently small. Integration of the above leads to

$$
f(u)+\log (|f(u)|)-f(b)-\log (|f(b)|) \leq \log (u)-\log (b)
$$

for $0<u \leq b$. Hence, $f(u) \rightarrow-\infty$ as $u \rightarrow 0^{+}$, and $|f(u)|>|\log k u|$ for every $k>0$ and $u>0$ sufficiently small.

Theorem 4.1. Suppose that there exist $\lambda>1 / 4, n \geq 2$, and $k, b>0$ such that

$$
F^{*}(u) \leq 2 u-\frac{1}{4} \sum_{j=1}^{n-1} \frac{u}{\left(L_{j}(u)\right)^{2}}-\frac{\lambda u}{\left(L_{n}(u)\right)^{2}}
$$

for $u>0$ sufficiently small. Then system (2.1) fails to have property $\left(Z_{1}^{+}\right)$.
Proof. By Theorem 2.2, it suffices to prove the theorem when

$$
F^{*}(u)=2 u-\frac{1}{4} \sum_{j=1}^{n-1} \frac{u}{\left(L_{j}(u)\right)^{2}}-\frac{\lambda u}{\left(L_{n}(u)\right)^{2}}, \quad \lambda>\frac{1}{4},
$$

for $u>0$ sufficiently small. We prove the theorem by contradiction. Suppose that there exists a continuously differentiable function φ such that $\varphi(0)=0, \varphi(u)>0$ for $u>0$ sufficiently small, and

$$
\begin{equation*}
\left(F^{*}\right)^{\prime}(u) \succeq \frac{u}{\varphi(u)}+\varphi^{\prime}(u) \tag{4.5}
\end{equation*}
$$

Let

$$
h(u)=\varphi(u)-\varphi_{n-1}(u)=\varphi(u)-u\left(1+\frac{1}{2} N_{n}(u)\right)
$$

From (4.5), (3.3), and (3.4) we have

$$
\begin{aligned}
\frac{u}{\varphi_{n-1}(u)}-\frac{u}{\varphi_{n-1}(u)+h(u)}-h^{\prime}(u) & \succeq \frac{u}{\varphi_{n-1}(u)}+\varphi_{n-1}^{\prime}(u)-\left(F^{*}\right)^{\prime}(u) \\
& =\frac{\lambda}{\left(L_{n}(u)\right)^{2}}-\left(2 \lambda+\frac{1}{2}\right) \sum_{j=1}^{n-1} \frac{N_{j}(u) L_{j}(u)+1}{\left(L_{j}(u)\right)^{3}}-\frac{\left(N_{n+1}(u)\right)^{3}}{8\left(1-\frac{1}{2} N_{n+1}(u)\right)} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\frac{\lambda^{\prime}}{\left(L_{n}(u)\right)^{2}} \preceq \frac{u}{\varphi_{n-1}(u)}-\frac{u}{\varphi_{n-1}(u)+h(u)}-h^{\prime}(u) \tag{4.6}
\end{equation*}
$$

where $1 / 4<\lambda^{\prime}<\lambda$. Suppose that $\left\{u_{n}\right\}$ tends to zero and $h\left(u_{n}\right)=0$, then there exists a sequence $\left\{c_{n}\right\}$ such that c_{n} tends to zero as $n \rightarrow \infty, h^{\prime}\left(c_{n}\right)=0$, and $h\left(c_{n}\right) \leq 0$. This contradicts (4.6). Hence, $h(u) \neq 0$ for $x>0$ sufficiently small, and we can let $f(u)=\frac{u}{h(u)}$ for $0<u \leq c$ with c sufficiently small. From (4.5), Lemma 4.1, and the fact that $\left|N_{n}(u)\right| \preceq \frac{2}{|\log k u|}$, we conclude that

$$
\begin{equation*}
\frac{1}{|f(u)|}=\left|\frac{\varphi(u)-u}{u}-\frac{N_{n}(u)}{2}\right| \leq \frac{2}{|\log k u|} \tag{4.7}
\end{equation*}
$$

for $u>0$ sufficiently small.
Let

$$
T_{n}(u)=\left(1+\frac{N_{n}(u)}{2}\right)\left(1+\frac{N_{n}(u)}{2}+\frac{1}{f(u)}\right)
$$

and

$$
g(u)=\frac{f(u)}{L_{n}(u)} .
$$

Then from (3.2) and (4.6) we have

$$
\frac{\lambda^{\prime}}{\left(L_{n}(u)\right)^{2}} \preceq \frac{1}{1+\frac{1}{2} N_{n}(u)}-\frac{1}{1+\frac{1}{2} N_{n}(u)+\frac{1}{f(u)}}-\frac{f(u)-f^{\prime}(u) u}{f^{2}(u)}=\frac{1}{f(u) T_{n}(u)}-\frac{1}{f(u)}+\frac{f^{\prime}(u) u}{f^{2}(u)} .
$$

Hence,

$$
\begin{equation*}
\lambda^{\prime} \preceq \frac{L_{n}(u)}{g(u) T_{n}(u)}-\frac{L_{n}(u)}{g(u)}+\frac{\left(g(u) L_{n}(u)\right)^{\prime} u}{g^{2}(u)} . \tag{4.8}
\end{equation*}
$$

Notice that $u\left(L_{n}(u)\right)^{\prime}=N_{n}(u) L_{n}(u)+1$, thus, from (4.8),

$$
\lambda^{\prime} g^{2}(u) \preceq g^{\prime}(u) u L_{n}(u)+g(u) L_{n}(u)\left(\frac{1-T_{n}(u)+N_{n}(u) T_{n}(u)}{T_{n}(u)}\right)+g(u),
$$

or

$$
\begin{aligned}
& \left(\lambda^{\prime}-\frac{1}{4}\right) g^{2}(u)+\left(\frac{g(u)}{2}-1\right)^{2} \\
& \quad \preceq g^{\prime}(u) u L_{n}(u)+\left(1-\frac{1}{T_{n}(u)}\right)-\frac{N_{n}(u)}{2 T_{n}(u)}-\frac{g(u)\left(N_{n}(u) L_{n}(u)\left(1-T_{n}(u)\right)+\frac{\left(N_{n}(u)\right)^{2}}{4} L_{n}(u)\right)}{T_{n}(u)} .
\end{aligned}
$$

Now, let

$$
A(u)=-\frac{\left(N_{n}(u) L_{n}(u)\left(1-T_{n}(u)\right)+\frac{\left(N_{n}(u)\right)^{2}}{4} L_{n}(u)\right)}{T_{n}(u)}
$$

and

$$
B(u)=1-\frac{1}{T_{n}(u)}-\frac{N_{n}(u)}{2 T_{n}(u)} .
$$

It is easy to check that

$$
\lim _{u \rightarrow 0^{+}}\left(1-T_{n}(u)\right)=\lim _{u \rightarrow 0^{+}}\left(N_{n}(u)\right)^{2} L_{n}(u)=0
$$

Also, by (4.7), we conclude that

$$
\lim _{u \rightarrow 0^{+}} N_{n}(u) L_{n}(u)\left(1-T_{n}(u)\right)=0
$$

thus, $A(u)$ and $B(u)$ tend to 0 as $u \rightarrow 0^{+}$, and we have

$$
\begin{equation*}
\left(\lambda^{\prime}-\frac{1}{4}\right) g^{2}(u)+\left(\frac{g(u)}{2}-1\right)^{2} \preceq g^{\prime}(u) u L_{n}(u)+A(u) g(u)+B(u), \quad \lambda^{\prime}>\frac{1}{4} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{g(u)}{2}-1\right)^{2} \preceq g^{\prime}(u) u L_{n}(u)+A(u) g(u)+B(u) . \tag{4.10}
\end{equation*}
$$

We now prove that if (4.10) holds, then

$$
\begin{equation*}
\lim _{u \rightarrow 0^{+}} g(u)=2 \tag{4.11}
\end{equation*}
$$

Suppose $u_{n}>0$ tends to zero and $g^{\prime}\left(u_{n}\right)=0$. Then from (4.10) we conclude that

$$
\lim _{n \rightarrow \infty} g\left(u_{n}\right)=2
$$

Since g^{\prime} vanishes at the extremum points, if $g(u)$ is not increasing or decreasing for $u>0$ sufficiently small, then

$$
\liminf _{u \rightarrow 0^{+}} g(u)=\limsup _{u \rightarrow 0^{+}} g(u)=2
$$

and (4.11) holds. Suppose now that $g(u)$ is increasing or decreasing for $u>0$ sufficiently small. If $\lim _{u \rightarrow 0^{+}} g(u) \neq 2$, then from (4.10) we conclude that there exists $c>0$ such that

$$
\frac{c}{u L_{n}(u)}>\frac{g^{\prime}(u)}{\left(\frac{g(u)}{2}-1\right)^{2}}
$$

for $0<u \leq l$ with l sufficiently small. Integration of the above leads to

$$
c(\underbrace{\log \log \cdots \log }_{(n-1) \text {-times }}(b|\log k l|)-\underbrace{\log \log \cdots \log }_{(n-1) \text {-times }}(b|\log k u|))>\frac{-2}{\frac{g(l)}{2}-1}+\frac{2}{\frac{g(u)}{2}-1}
$$

and, therefore, $\lim _{u \rightarrow 0^{+}} g(u)=2$. This is a contradiction, thus $\lim _{u \rightarrow 0^{+}} g(u)=2$. But if $\lim _{u \rightarrow 0^{+}} g(u)=2$, then from (4.9) we conclude that there exists $d>0$ such that

$$
g^{\prime}(u) \leq \frac{d}{u L_{n}(u)}
$$

for $u>0$ sufficiently small. Hence, $\lim _{u \rightarrow 0^{+}} g(u)=-\infty$. This is a contradiction and condition (2.2) does not hold. Thus, by Theorem 2.1, system (2.1) fails to have property $\left(Z_{1}^{+}\right)$.

The following theorem gives a necessary condition for system (1.1) to have property $\left(Z_{1}^{+}\right)$.
Theorem 4.2. If there exist $\lambda>1 / 4, n \geq 2$, and $k, b>0$ such that

$$
F(x) \leq \sqrt{8 G(x)}-\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})^{2}\right.}-\frac{\lambda \sqrt{2 G(x)}}{\left(L_{n}\right)(\sqrt{2 G(x)})^{2}}
$$

for $x>0$ sufficiently small, then system (1.1) fails to have property $\left(Z_{1}^{+}\right)$.
Similarly, we have the following necessary conditions for the properties $\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$.
Theorem 4.3. If there exist $\lambda>1 / 4, n \geq 2$, and $k, b>0$ such that

$$
F(x) \leq \sqrt{8 G(x)}-\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})^{2}\right.}-\frac{\lambda \sqrt{2 G(x)}}{\left(L_{n}\right)(\sqrt{2 G(x)})^{2}}
$$

for $x<0,|x|$ sufficiently small, then system (1.1) fails to have property $\left(Z_{2}^{-}\right)$.
Theorem 4.4. If there exist $\lambda>1 / 4, n \geq 2$, and $k, b>0$ such that

$$
F(x) \geq-\sqrt{8 G(x)}+\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})^{2}\right.}+\frac{\lambda \sqrt{2 G(x)}}{\left(L_{n}\right)(\sqrt{2 G(x)})^{2}}
$$

for $x<0,|x|$ sufficiently small, then system (1.1) fails to have property $\left(Z_{3}^{+}\right)$.
Theorem 4.5. If there exist $\lambda>1 / 4, n \geq 2$, and $k, b>0$ such that

$$
F(x) \geq-\sqrt{8 G(x)}+\frac{1}{4} \sum_{j=1}^{n-1} \frac{\sqrt{2 G(x)}}{\left(L_{j}(\sqrt{2 G(x)})^{2}\right.}+\frac{\lambda \sqrt{2 G(x)}}{\left(L_{n}\right)(\sqrt{2 G(x)})^{2}}
$$

for $x>0$ sufficiently small, then system (1.1) fails to have property $\left(Z_{4}^{-}\right)$.
Remark 4.1. Paying attention to the explicit sufficient and necessary conditions presented for properties $\left(Z_{1}^{+}\right),\left(Z_{2}^{-}\right),\left(Z_{3}^{+}\right)$, and $\left(Z_{4}^{-}\right)$, it seems that these results have solved the problem of the existence of homoclinic orbits in system (1.1) completely in some sense.

References

[1] R. P. Agarwal, A. Aghajani and V. Roomi, Existence of homoclinic orbits for general planer dynamical system of Liénard type. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), no. 2, 271-284.
[2] A. Aghajani and A. Moradifam, Intersection with the vertical isocline in the Liénard plane. Nonlinear Anal. 68 (2008), no. 11, 3475-3484.
[3] A. Aghajani and A. Moradifam, Oscillation of solutions of second-order nonlinear differential equations of Euler type. J. Math. Anal. Appl. 326 (2007), no. 2, 1076-1089.
[4] A. Aghajani and A. Moradifam, On the homoclinic orbits of the generalized Liénard equations. Appl. Math. Lett. 20 (2007), no. 3, 345-351.
[5] C. M. Ding, The homoclinic orbits in the Liénard plane. J. Math. Anal. Appl. 191 (1995), no. 1, 26-39.
[6] A. F. Filippov, A sufficient condition for the existence of a stable limit cycle for an equation of the second order. (Russian) Mat. Sbornik N.S. 30(72) (1952), 171-180.
[7] J. R. Graef, On the generalized Liénard equation with negative damping. J. Differential Equations 12 (1972), 34-62.
[8] M. A. Han, Properties in the large of quadratic systems in the plane. A Chinese summary appears in Chinese Ann. Math. Ser. A 10 (1989), no. 4, 519. Chinese Ann. Math. Ser. B 10 (1989), no. 3, 312-322.
[9] T. Hara, Notice on the Vinograd type theorems for Liénard system. Nonlinear Anal. 22 (1994), no. 12, 1437-1443.
[10] T. Hara and T. Yoneyama, On the global center of generalized Liénard equation and its application to stability problems. Funkcial. Ekvac. 28 (1985), no. 2, 171-192.
[11] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics, Vol. 60. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974.
[12] J. F. Jiang and S. X. Yu, A problem on the stability of a positive global attractor. Nonlinear Anal. 20 (1993), no. 4, 381-388.
[13] J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, with Applications. Mathematics in Science and Engineering, Vol. 4 Academic Press, New York-London, 1961.
[14] S. Lefschetz, Differential Equations: Geometric Theory. Reprinting of the second edition. Dover Publications, Inc., New York, 1977.
[15] G. Sansone and R. Conti, Non-Linear Differential Equations. Revised edition. Translated from the Italian by Ainsley H. Diamond. International Series of Monographs in Pure and Applied Mathematics, Vol. 67 A Pergamon Press Book. The Macmillan Co., New York, 1964.
[16] J. Sugie, Homoclinic orbits in generalized Liénard systems. J. Math. Anal. Appl. 309 (2005), no. 1, 211-226.
[17] J. Sugie, Liénard dynamics with an open limit orbit. NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 1, 83-97.
[18] J. Sugie and T. Hara, Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete Contin. Dynam. Systems 2 (1996), no. 2, 237-254.
[19] Y. Q. Ye, S. L. Cai, L. S. Chen, K. C. Huang, D. J. Luo, Z. E. Ma, E. N. Wang, M. S. Wang and X. A. Yang, Theory of Limit Cycles. Translated from the Chinese by Chi Y. Lo. Second edition. Translations of Mathematical Monographs, 66. American Mathematical Society, Providence, RI, 1986.
[20] T. Yoshizawa, Stability Theory by Liapunov's Second Method. Publications of the Mathematical Society of Japan, No. 9 The Mathematical Society of Japan, Tokyo, 1966.
[21] Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations. Translated from the Chinese by Anthony Wing Kwok Leung. Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992.
[22] Y. R. Zhou and X. R. Wang, On the conditions of a center of the Liénard equation. J. Math. Anal. Appl. 180 (1993), no. 1, 43-59.
(Received 02.06.2017)

Authors' addresses:

R. P. Agarwal

Department of Mathematics, Texas A\&M University - Kingsville, 700 University Blvd., Kingsville, TX 78363-8202.

E-mail: agarwal@tamuk.edu

A. Aghajani, M. Mirafzal

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844-13114, Iran.

E-mail: aghajani@iust.ac.ir; mirafzal@iust.ac.ir

Memoirs on Differential Equations and Mathematical Physics
Volume 75, 2018, 105-114
V. M. Evtukhov, N. P. Kolun

ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS OF SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

Abstract

The existence conditions and asymptotic representations as $t \uparrow \omega(\omega \leq+\infty)$ of one class of monotonous solutions of the n-th order differential equations containing on the right-hand side a

 sum of terms with regularly varying nonlinearities are established.2010 Mathematics Subject Classification. 34D05, 34C11.
Key words and phrases. Second-order differential equations, regularly varying nonlinearities, rapidly varying nonlinearities, asymptotics of solutions.

 $(\omega \leq+\infty)$.

1 Introduction

In the recent decades asymptotic properties of solutions of binomial essentially nonlinear secondorder differential equations with a nonlinearity which differs from a power function have been actively studied (for the Emden-Fowler type not generalized equations see the monograph by I. T. Kiguradze and T. A. Chanturiya [13]). The case where the nonlinearity is a regularly varying function was investigated in $[9,12,15,16,18]$, and the case where the nonlinearity is a rapidly varying function can be found in $[1,3-5,8]$. It should be noted here that the second-order equations containing in the righthand side a sum of terms with nonlinearities that differ from power functions were considered only in the case when all nonlinearities are regularly varying functions (see, e.g., $[6,7]$). In this paper, we study the asymptotic properties of solutions of a second-order differential equation in the right-hand side of which, apart from the terms with regularly varying nonlinearities, there are also terms with rapidly varying nonlinearities.

Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}=\sum_{i=1}^{m} \alpha_{i} p_{i}(t) \varphi_{i}(y) \tag{1.1}
\end{equation*}
$$

where $\alpha_{i} \in\{-1,1\}(i=\overline{1, m}), p_{i}:[a, \omega[\rightarrow] 0,+\infty[(i=\overline{1, m})$ are continuous functions, $-\infty<a<$ $\left.\omega \leq+\infty ; \varphi_{i}: \Delta_{Y_{0}} \rightarrow\right] 0,+\infty\left[(i=\overline{1, m})\right.$, where $\Delta_{Y_{0}}$ is a one-sided neighborhood of the point Y_{0}, Y_{0} is equal either to 0 or to $\pm \infty$, are continuous functions for $i=\overline{1, l}$ and twice continuously differentiable for $i=\overline{l+1, m}$, such that for each $i \in\{1, \ldots, l\}$ as some $\sigma_{i} \in \mathbb{R}$

$$
\begin{equation*}
\lim _{\substack{y \rightarrow Y_{0} \\ y \in \Delta_{Y_{0}}}} \frac{\varphi_{i}(\lambda y)}{\varphi_{i}(y)}=\lambda^{\sigma_{i}} \text { for each } \lambda>0 \tag{1.2}
\end{equation*}
$$

and for each $i \in\{l+1, \ldots, m\}$,

$$
\begin{equation*}
\varphi_{i}^{\prime}(y) \neq 0 \text { as } y \in \Delta_{Y_{0}}, \quad \lim _{\substack{y \rightarrow Y_{0} \\ y \in Y_{Y_{0}}}} \varphi_{i}(y) \in\{0,+\infty\}, \quad \lim _{\substack{y \rightarrow Y_{0} \\ y \in \Delta_{Y_{0}}}} \frac{\varphi_{i}^{\prime \prime}(y) \varphi_{i}(y)}{\varphi_{i}^{\prime 2}(y)}=1 \tag{1.3}
\end{equation*}
$$

The functions $\varphi_{i}(i=\overline{1, l})$ that satisfy conditions (1.2) are called regularly varying functions as $y \rightarrow Y_{0}$ of orders $\sigma_{i}(i=\overline{1, l})$ (see the monograph by E. Seneta [17, Ch. 1, § 1, pp. 9-10]). For each of them the representations of the form

$$
\begin{equation*}
\varphi_{i}(y)=|y|^{\sigma_{i}} L_{i}(y) \quad(i=\overline{1, l}) \tag{1.4}
\end{equation*}
$$

hold, where L_{i} are the slowly varying functions as $y \rightarrow Y_{0}$, i.e., such that

$$
\lim _{\substack{y \rightarrow Y_{0} \\ y \in Y_{0}}} \frac{L_{i}(\lambda y)}{L_{i}(y)}=1 \quad(i=\overline{1, l}) \text { for each } \lambda>0
$$

We also say that a function $L_{i}(i \in\{1, \ldots, l\})$ satisfies the condition S_{0} if

$$
L_{i}\left(\nu e^{[1+o(1)] \ln |y|}\right)=L_{i}(y)[1+o(1)] \text { as } y \rightarrow Y_{0} \quad\left(y \in \Delta_{Y_{0}}\right)
$$

where $\nu=\operatorname{sign} y$.
Examples of functions slowly varying as $y \rightarrow Y_{0}$ are as follows:

$$
\left.|\ln | y\left|\left.\right|^{\gamma_{1}}, \quad\right| \ln |y|\right|^{\gamma_{1}}|\ln | \ln |y|| |^{\gamma_{2}} \quad\left(\gamma_{1}, \gamma_{2} \neq 0\right), e^{\sqrt{|\ln | y| |}}
$$

The first two functions satisfy the condition S_{0}.
From conditions (1.3) it immediately follows that

$$
\lim _{\substack{y \rightarrow Y_{0} \\ y \in \Delta_{Y_{0}}}} \frac{y \varphi_{i}^{\prime}(y)}{\varphi_{i}(y)}= \pm \infty \quad(i=\overline{l+1, m})
$$

due to which each of the functions φ_{i} for $i \in\{l+1, \ldots, m\}$ and its first derivative are rapidly varying as $y \rightarrow Y_{0}$ (see the monograph by M. Maric [14, Ch. 3, §3.4, Lemmas 3.2, 3.3, pp. 91-92]).

Definition 1.1. A solution y of the differential equation (1.1) is called a $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solution, where $-\infty \leq \lambda_{0} \leq+\infty$, if it is defined on some interval $\left[t_{0}, \omega[\subset[a, \omega[\right.$ and satisfies the following conditions:

$$
\lim _{t \uparrow \omega} y(t)=Y_{0}, \quad \lim _{t \uparrow \omega} y^{\prime}(t)=\left\{\begin{array}{ll}
\text { either } & 0, \tag{1.5}\\
\text { or } & \pm \infty,
\end{array} \quad \lim _{t \uparrow \omega} \frac{y^{\prime 2}(t)}{y^{\prime \prime}(t) y(t)}=\lambda_{0}\right.
$$

In [10], $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions of the differential equation (1.1) were studied in the case $\lambda_{0} \in \mathbb{R} \backslash\{0 ; 1\}$.
In this paper, for $\lambda_{0}= \pm \infty$, we establish the conditions for the existence of $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions of the differential equation (1.1) and give asymptotic representations, as $t \uparrow \omega$, of such solutions and their first-order derivatives when in each of such solutions the right-hand side of equation is equivalent, as $t \uparrow \omega$, to the s-th item, i.e., when for some $s \in\{1, \ldots, l\}$,

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}(y(t))}{p_{s}(t) \varphi_{s}(y(t))}=0 \text { for all } i \in\{1, \ldots, m\} \backslash\{s\} \tag{1.6}
\end{equation*}
$$

Upon studying the $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solutions of equation (1.1), some of their a priori asymptotic properties will be used.

We set

$$
\pi_{\omega}(t)= \begin{cases}t & \text { if } \omega=+\infty \\ t-\omega & \text { if } \omega<+\infty\end{cases}
$$

Lemma 1.1. Let $y:\left[t_{0}, \omega\left[\rightarrow \mathbb{R}\right.\right.$ be an arbitrary $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solution of equation (1.1). Then

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{\prime}(t)}{y(t)}=1, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{\prime \prime}(t)}{y^{\prime}(t)}=0 \tag{1.7}
\end{equation*}
$$

The validity of this assertion follows directly from [2] (see Corollary 10.1).

2 Statement of the main results

Here and in the sequel, without loss of generality, we assume that

$$
\Delta_{Y_{0}}=\Delta_{Y_{0}}(b)
$$

where

$$
\Delta_{Y_{0}}(b)= \begin{cases}{\left[b, Y_{0}[,\right.} & \text { if } \Delta_{Y_{0}} \text { is a left neighborhood of } Y_{0} \\] Y_{0}, b\right], & \text { if } \Delta_{Y_{0}} \text { is a right neighborhood of } Y_{0}\end{cases}
$$

and the number b satisfies the inequalities

$$
|b|<1 \text { as } Y_{0}=0 \text { and } b>1 \quad(b<-1) \text { as } Y_{0}=+\infty \quad\left(Y_{0}=-\infty\right)
$$

In addition, let us introduce two numbers

$$
\nu_{0}=\operatorname{sign} b, \quad \nu_{1}= \begin{cases}1, & \text { if } \Delta_{Y_{0}}(b)=\left[b, Y_{0}[\right. \\ -1, & \text { if } \left.\left.\Delta_{Y_{0}}(b)=\right] Y_{0}, b\right]\end{cases}
$$

According to the definition of the $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solution of the differential equation (1.1), note that the numbers ν_{0} and ν_{1} determine the signs of any $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solution and its first derivative (respectively) in some left neighborhood of ω. The conditions

$$
\nu_{0} \nu_{1}=-1 \text { if } Y_{0}=0, \quad \nu_{0} \nu_{1}=1 \text { if } Y_{0}= \pm \infty
$$

are necessary for the existence of $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions.
Moreover, if for such solutions of (1.1) conditions (1.6) hold, then

$$
\begin{equation*}
y^{\prime \prime}(t)=\alpha_{s} p_{s}(t) \varphi_{s}(y(t))[1+o(1)] \text { as } t \uparrow \omega \tag{2.1}
\end{equation*}
$$

from which it is clear that $\operatorname{sign} y^{\prime \prime}(t)=\alpha_{s}$ in some left neighborhood of ω, and in this case

$$
\nu_{1} \alpha_{s}=-1 \text { if } \lim _{t \uparrow \omega} y^{\prime}(t)=0, \quad \nu_{1} \alpha_{s}=1 \text { if } \lim _{t \uparrow \omega} y^{\prime}(t)= \pm \infty
$$

In the case where $\nu_{0} \lim _{t \uparrow \omega}\left|\pi_{\omega}(t)\right|=Y_{0}$, we choose the number $a_{1} \in\left[a, \omega\left[\right.\right.$ so that $\nu_{0}\left|\pi_{\omega}(t)\right| \in \Delta_{Y_{0}}(b)$ as $t \in\left[a_{1}, \omega[\right.$, and for $s \in\{1, \ldots, l\}$ set

$$
J_{s}(t)=\int_{A_{s}}^{t} p_{s}(\tau) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(\tau)\right|\right) d \tau
$$

where

$$
A_{s}= \begin{cases}a_{1} & \text { if } \int_{a_{1}}^{\omega} p_{s}(\tau) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(\tau)\right|\right) d \tau= \pm \infty \\ \omega & \text { if } \int_{a_{1}}^{\omega} p_{s}(\tau) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(\tau)\right|\right) d \tau=\text { const }\end{cases}
$$

Theorem 2.1. Let $\sigma_{s} \neq 1$ for some $s \in\{1, \ldots, l\}$ and the function L_{s} satisfy the condition S_{0}. Then for the existence of $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solutions satisfying condition (1.6) of the differential equation (1.1) it is necessary that

$$
\begin{equation*}
\nu_{0} \lim _{t \uparrow \omega}\left|\pi_{\omega}(t)\right|=Y_{0}, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) J_{s}^{\prime}(t)}{J_{s}(t)}=0 \tag{2.2}
\end{equation*}
$$

the inequalities

$$
\begin{equation*}
\left.\alpha_{s} \nu_{1}\left(1-\sigma_{s}\right) J_{s}(t)>0, \quad \nu_{0} \nu_{1} \pi_{\omega}(t)>0 \text { for } t \in\right] a_{1}, \omega[\tag{2.3}
\end{equation*}
$$

as well as the conditions

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}=0 \tag{2.4}
\end{equation*}
$$

for all $i \in\{1, \ldots, l\} \backslash\{s\}$ and

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left(1+\delta_{i}\right)\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}=0 \tag{2.5}
\end{equation*}
$$

for all $i \in\{l+1, \ldots, m\}$ hold, where δ_{i} are arbitrary numbers of some one-sided neighborhood of zero. Moreover, for each of such solutions the following asymptotic representations are valid:

$$
\begin{align*}
y(t) & =\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}[1+o(1)] \text { as } t \uparrow \omega, \tag{2.6}\\
y^{\prime}(t) & =\nu_{1}\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}[1+o(1)] \text { as } t \uparrow \omega . \tag{2.7}
\end{align*}
$$

Proof. Let $y:\left[t_{0}, \omega\left[\rightarrow \mathbb{R}\right.\right.$ be an arbitrary $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solution for some $s \in\{1, \ldots, l\}$ satisfying conditions (1.6) of equation (1.1). Then by virtue of (1.1) and (1.6), the asymptotic relation (2.1) holds.

According to Lemma 1.1, the limit relations (1.7) are valid, from which, in particular, it follows that the function y is regularly varying, as $t \uparrow \omega$, function of first order. Therefore, by virtue of the function L_{s} satisfying the condition S_{0}, representations (1.4) and the first of the limit relations (1.7), we have

$$
\begin{aligned}
\varphi_{s}(y(t)) & =|y(t)|^{\sigma_{s}} L_{s}(y(t))=|y(t)|^{\sigma_{s}} L_{s}\left(\nu_{0} e^{[1+o(1)] \ln \left|\pi_{\omega}(t)\right|}\right) \\
& =\left|\pi_{\omega}(t) y^{\prime}(t)\right|^{\sigma_{s}} L_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\right)[1+o(1)] \text { as } t \uparrow \omega
\end{aligned}
$$

Taking into account this asymptotic relation, from (2.1) we obtain

$$
\begin{equation*}
\frac{y^{\prime \prime}(t)}{\left|y^{\prime}(t)\right|^{\sigma_{s}}}=\alpha_{s} p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\right)[1+o(1)] \text { for } t \uparrow \omega \tag{2.8}
\end{equation*}
$$

Integrating (2.8) on the interval from $t_{1}\left(t_{1} \in\left[t_{0}, \omega[)\right.\right.$ to t and using the second of conditions (1.5), we get

$$
\nu_{1}\left|y^{\prime}(t)\right|^{1-\sigma_{s}}=\alpha_{s}\left(1-\sigma_{s}\right) J_{s}(t)[1+o(1)] \text { as } t \uparrow \omega,
$$

which implies representation (2.7) and the equality

$$
\begin{equation*}
\nu_{1}=\alpha_{s} \operatorname{sign}\left[\left(1-\sigma_{s}\right) J_{s}(t)\right] . \tag{2.9}
\end{equation*}
$$

From the first relation of (1.7) follows the second of inequalities (2.3), so taking into account (2.9), the first of inequalities (2.3) holds. Taking into account the first of limiting relations (1.7), the second inequality of (2.3) and (2.7), we obtain the asymptotic representation (2.6). The validity of the first limit relation of (2.2) follows from Definition 1.1 and the first equality of (1.7) of Lemma 1.1. The second limit relation of (2.2) follows immediately from (2.8) if we use the above-mentioned representation (2.7) and the second of conditions (1.7).

Since the functions $\varphi_{i}(i=\overline{1, l})$ are regularly varying as $y \rightarrow Y_{0}$, we have

$$
\begin{aligned}
\varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right. & {[1+o(1)]) } \\
& =\varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)[1+o(1)] \text { as } t \uparrow \omega .
\end{aligned}
$$

Then, by virtue of (2.6),

$$
\begin{aligned}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}(y(t))}{p_{s}(t) \varphi_{s}(y(t))} & =\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)[1+o(1)]}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)[1+o(1)]} \\
& =\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)} \quad(i=\overline{1, l})
\end{aligned}
$$

hence, taking into account (1.6), we find that conditions (2.4) are valid.
For $i \in\{l+1, \ldots, m\}$, from (2.6) we have

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}(y(t))}{p_{s}(t) \varphi_{s}(y(t))}=\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}[1+o(1)]\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)} . \tag{2.10}
\end{equation*}
$$

By the monotony of function $\varphi_{i}(i \in\{l+1, \ldots, m\})$ on the interval $\Delta_{Y_{0}}(b)$ for each of δ_{i} from some one-sided neighborhood of zero there exists $t_{2} \in\left[t_{1}, \omega\left[\right.\right.$ such that for $t \in\left[t_{2}, \omega[\right.$, we have

$$
\begin{aligned}
& \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}[1+o(1)]\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)} \\
& \quad \geq \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left[1+\delta_{i}\right]\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}>0
\end{aligned}
$$

Thus, by virtue of (1.6) and (2.10), we find that conditions (2.5) are valid. The proof of the theorem is complete.

Now we clarify the question of the actual existence of $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solutions with the asymptotic representations (2.6) and (2.7) for equation (1.1).

Theorem 2.2. Let for some $s \in\{1, \ldots, l\}$ the function L_{s} satisfy the condition S_{0}, the inequality $\sigma_{s} \neq 1$ and conditions (2.2)-(2.4) hold, and for any $i \in\{l+1, \ldots, m\}$,

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}(1+u)\right)}{p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}=0 \tag{2.11}
\end{equation*}
$$

uniformly with respect to $u \in[-\delta, \delta]$ for some $0<\delta<1$. Then the differential equation (1.1) has at least one $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solution that admits asymptotic representations (2.6) and (2.7). Moreover, if $\omega=+\infty$ and $A_{s}=+\infty$, there exists a one-parameter family with such representations, and if $A_{s}=a_{1}$, there is a two-parameter family.

Proof. By virtue of conditions (2.2) and (2.3), the function

$$
Y(t)=\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}
$$

is a first-order function that varies regularly as $t \uparrow \omega$,

$$
\lim _{t \uparrow \omega} Y(t)=Y_{0}
$$

and there exists a number $t_{0} \in\left[a_{1}, \omega[\right.$ such that

$$
Y(t)[1+u] \in \Delta_{Y_{0}}(b) \text { for } t \in\left[t_{0}, \omega[\text { and }|u| \leq \delta\right.
$$

By virtue of the properties of slowly varying functions, taking into account the fact that the function L_{s} satisfies the condition S_{0}, we have

$$
\varphi_{s}(Y(t)(1+u))=|Y(t)(1+u)|^{\sigma_{s}} L_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\right)[1+R(t, u)]
$$

where the function R is such that

$$
\lim _{t \uparrow \omega} R(t, u)=0 \text { uniformly with respect to } u \in[-\delta, \delta] \text {. }
$$

Now applying to equation (1.1) the transformation

$$
\begin{align*}
y(t) & =\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left[1+u_{1}(t)\right], \tag{2.12}\\
y^{\prime}(t) & =\nu_{1}\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left[1+u_{2}(t)\right]
\end{align*}
$$

taking into account inequalities (2.3), we obtain a system of differential equations

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=h_{1}(t)\left[f_{1}\left(t, u_{1}\right)-u_{1}+u_{2}\right] \tag{2.13}\\
u_{2}^{\prime}=h_{2}(t)\left[f_{2}\left(t, u_{1}\right)+\sigma_{s} u_{1}-u_{2}+V\left(u_{1}\right)\right]
\end{array}\right.
$$

where

$$
\begin{gathered}
h_{1}(t)=\frac{1}{\pi_{\omega}(t)}, \quad h_{2}(t)=\frac{J_{s}^{\prime}(t)}{\left(1-\sigma_{s}\right) J_{s}(t)}, \\
f_{1}\left(t, u_{1}\right)=-\frac{\pi_{\omega}(t) J_{s}^{\prime}(t)}{\left(1-\sigma_{s}\right) J_{s}(t)}\left(1+u_{1}\right), \\
f_{2}\left(t, u_{1}\right)=\left(1+u_{1}\right)^{\sigma_{s}} R\left(t, u_{1}\right)+\left(1+u_{1}\right)^{\sigma_{s}}\left(1+R\left(t, u_{1}\right)\right) R_{1}\left(t, u_{1}\right), \\
R_{1}\left(t, u_{1}\right)=\sum_{\substack{i=1 \\
i \neq s}}^{m} \frac{\alpha_{i} p_{i}(t) \varphi_{i}\left(Y(t)\left(1+u_{1}\right)\right)}{\alpha_{s} p_{s}(t) \varphi_{s}\left(Y(t)\left(1+u_{1}\right)\right)}, \quad V\left(u_{1}\right)=\left(1+u_{1}\right)^{\sigma_{s}}-1-\sigma_{s} u_{1}
\end{gathered}
$$

We consider system (2.13) on the set

$$
\Omega=\left[t_{0}, \omega\left[\times D, \text { where } D=\left\{\left(u_{1}, u_{2}\right):\left|u_{i}\right| \leq \delta, i=1,2\right\}\right.\right.
$$

We show that the function R_{1} is such that

$$
\begin{equation*}
\lim _{t \uparrow \omega} R_{1}\left(t, u_{1}\right)=0 \text { uniformly with respect to } u_{1} \in[-\delta, \delta] \tag{2.14}
\end{equation*}
$$

Since the functions φ_{i} with $i \in\{1, \ldots, l\}$ are regularly varying of orders σ_{i} as $y \rightarrow Y_{0}$, by virtue of (1.4), taking into account the properties of slowly varying functions, we have

$$
\begin{aligned}
& \varphi_{i}\left(Y(t)\left(1+u_{1}\right)\right)=\varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left(1+u_{1}\right)\right) \\
& =\left.\left.\left|\nu_{0}\right| \pi_{\omega}(t)| |\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left(1+u_{1}\right)\right|^{\sigma_{i}} L_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left(1+u_{1}\right)\right) \\
& =\left.\left.\left|\nu_{0}\right| \pi_{\omega}(t)| |\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\left(1+u_{1}\right)\right|^{\sigma_{i}} L_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)\left(1+r_{i}\left(t, u_{1}\right)\right) \\
& \quad=\varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)\left(1+u_{1}\right)^{\sigma_{i}}\left(1+r_{i}\left(t, u_{1}\right)\right) \quad(i=\overline{1, l})
\end{aligned}
$$

where the functions r_{i} are such that

$$
\lim _{t \uparrow \omega} r_{i}\left(t, u_{1}\right)=0 \text { uniformly with respect to } u_{1} \in[-\delta, \delta] \text {. }
$$

By virtue of the above conditions,

$$
\begin{equation*}
\lim _{t \uparrow \omega} \sum_{\substack{i=1 \\ i \neq s}}^{l} \frac{\alpha_{i} p_{i}(t) \varphi_{i}\left(Y(t)\left(1+u_{1}\right)\right)}{\alpha_{s} p_{s}(t) \varphi_{s}\left(Y(t)\left(1+u_{1}\right)\right)}=0 \tag{2.15}
\end{equation*}
$$

uniformly with respect to $u_{1} \in[-\delta, \delta]$, since due to (2.4),

$$
\begin{gathered}
\lim _{t \uparrow \omega} \sum_{\substack{i=1 \\
i \neq s}}^{l} \frac{\alpha_{i} p_{i}(t) \varphi_{i}\left(Y(t)\left(1+u_{1}\right)\right)}{\alpha_{s} p_{s}(t) \varphi_{s}\left(Y(t)\left(1+u_{1}\right)\right)} \\
=\lim _{t \uparrow \omega} \sum_{\substack{i=1 \\
i \neq s}}^{l} \frac{\alpha_{i} p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)\left(1+r_{i}\left(t, u_{1}\right)\right)}{\alpha_{s} p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)\left(1+r_{s}\left(t, u_{1}\right)\right)} \\
=\lim _{t \uparrow \omega} \sum_{\substack{i=1 \\
i \neq s}}^{l} \frac{\alpha_{i} p_{i}(t) \varphi_{i}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}{\alpha_{s} p_{s}(t) \varphi_{s}\left(\nu_{0}\left|\pi_{\omega}(t)\right|\left|\left(1-\sigma_{s}\right) J_{s}(t)\right|^{1 /\left(1-\sigma_{s}\right)}\right)}=0 \text { uniformly with respect to } u_{1} \in[-\delta, \delta] .
\end{gathered}
$$

From (2.11) and (2.15), by virtue of the form of function R_{1}, we find that (2.14) is valid. In the system of equations (2.13) the functions $h_{1}, h_{2}:\left[t_{0}, \omega[\rightarrow \mathbb{R}\right.$ are continuous and are such that

$$
\begin{gathered}
h_{1}(t) h_{2}(t) \neq 0 \text { for } t \in\left[t_{0}, \omega[\right. \\
\int_{t_{0}}^{\omega} h_{2}(\tau) d \tau=\frac{1}{1-\sigma_{s}} \int_{t_{0}}^{\omega} \frac{J_{s}^{\prime}(\tau)}{J_{s}(\tau)} d \tau=\left.\frac{1}{1-\sigma_{s}} \ln \left|J_{s}(\tau)\right|\right|_{t_{0}} ^{\omega}= \pm \infty
\end{gathered}
$$

In addition, by virtue of the second of conditions (2.2), we have

$$
\lim _{t \uparrow \omega} \frac{h_{2}(t)}{h_{1}(t)}=\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) J_{s}^{\prime}(t)}{\left(1-\sigma_{s}\right) J_{s}(t)}=0
$$

Further, by the form of the functions $V, f_{k}(k=1,2)$, we have

$$
\begin{gathered}
\frac{h_{1}(t)}{h_{2}(t)} f_{1}\left(t, u_{1}\right) \text { is bounded on the set } \Omega \\
\lim _{u_{1} \rightarrow 0} \frac{d V\left(u_{1}\right)}{d u_{1}}=0 \\
\lim _{t \uparrow \omega} f_{2}\left(t, u_{1}\right)=0 \text { uniformly with respect to } u_{1} \in[-\delta, \delta] .
\end{gathered}
$$

Coefficient at u_{1} in square brackets of the first equation of system (2.13) is nonzero. In addition, the sum of the coefficients of u_{1} and u_{2} in the square brackets of the first equation of system (2.13) is zero, and in the second equation is equal to the number $\sigma_{s}-1$, which is nonzero. This implies that system (2.13) satisfies all the assumptions of Theorem 2.7 of [11]. According to this theorem, the system of differential equations (2.13) has at least one solution $u=\left(u_{1}, u_{2}\right):\left[t_{*}, \omega\left[\rightarrow \mathbb{R}^{2}\left(t_{*} \geq t_{0}\right)\right.\right.$, tending to zero as $t \uparrow \omega$. Each solution of this kind of system (2.13), by virtue of transformations (2.12), corresponds to the solution of the differential equation (1.1) that admits, as $t \uparrow \omega$, asymptotic representations (2.6), (2.7), and this solution is the $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solution of equation (1.1). Moreover, if $\omega=+\infty$, then there exists a one-parameter family of such solutions if $\frac{J_{s}^{\prime}(t)}{J_{s}(t)}<0$ on $] a_{1},+\infty[$ (this inequality holds when J_{s} is chosen for the integration limit of A_{s} to be equal to $+\infty$), and a twoparameter family if the inequality $\frac{J_{s}^{\prime}(t)}{J_{s}(t)}>0$ holds (i.e., when $A_{s}=a_{1}$). The proof of the theorem is complete.

Remark. In the case when there are no terms in equation (1.1) with rapidly varying nonlinearity, i.e., when $m=l$, the assertion of Theorems 2.1 and 2.2 remains true without conditions (2.5) and (2.11).

3 Example

As an example illustrating the results obtained in this paper, we consider a differential equation of the form

$$
\begin{equation*}
y^{\prime \prime}=\alpha_{1} p_{1}(t)|y|^{\sigma}+\alpha_{2} p_{2}(t) e^{\mu y} \tag{3.1}
\end{equation*}
$$

in which $\alpha_{i} \in\{-1,1\}(i=1,2), p_{i}:[a, \omega[\rightarrow] 0,+\infty[(i=1,2)$ are continuous functions, $-\infty<a<$ $\omega \leq+\infty, \mu \neq 0$.

For equation (3.1) let us clarify the existence of $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solutions for which

$$
\begin{equation*}
\lim _{t \uparrow \omega} y(t)= \pm \infty \quad\left(Y_{0}= \pm \infty\right), \quad \lim _{t \uparrow \omega} \frac{p_{2}(t) e^{\mu y(t)}}{p_{1}(t)|y(t)|^{\sigma}}=0 \tag{3.2}
\end{equation*}
$$

From Theorems 2.1 and 2.2 we have
Corollary 3.1. Suppose that inequality $\sigma \neq 1$ holds. Then for the existence of $P_{\omega}\left(Y_{0}, \pm \infty\right)$-solutions of the differential equation (3.1) satisfying conditions (3.2) it is necessary, and if

$$
p_{2}(t)=o\left(\frac{p_{1}(t) t^{\sigma}\left|(1-\sigma) J_{1}(t)\right|^{\frac{\sigma}{1-\sigma}}}{e^{\mu \nu_{0} t\left|(1-\sigma) J_{1}(t)(1+u)\right|^{\frac{1}{1-\sigma}}}}\right) \text { as } t \rightarrow+\infty
$$

uniformly with respect to $u \in[-\delta, \delta]$ for some $0<\delta<1$, it is sufficient that the conditions

$$
\begin{gathered}
\omega=+\infty, \quad \lim _{t \rightarrow+\infty} \frac{t J_{1}^{\prime}(t)}{J_{1}(t)}=0, \\
\left.\nu_{0} \nu_{1}>0, \quad \alpha_{1} \nu_{1}(1-\sigma) J_{1}(t)>0 \text { for } t \in\right] a_{1},+\infty[
\end{gathered}
$$

hold. Moreover, each solution of that kind admits the asymptotic representations

$$
\begin{aligned}
y(t) & =\nu_{0} t\left|(1-\sigma) J_{1}(t)\right|^{\frac{1}{1-\sigma}}[1+o(1)] \text { as } t \rightarrow+\infty \\
y^{\prime}(t) & =\nu_{1}\left|(1-\sigma) J_{1}(t)\right|^{\frac{1}{1-\sigma}}[1+o(1)] \text { as } t \rightarrow+\infty
\end{aligned}
$$

Moreover, if $A_{s}=+\infty$, there exists a one-parameter family with such representations, and in case $A_{s}=a_{1}$, there is a two-parameter family.

References

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987.
[2] V. M. Evtukhov, Asymptotic representations of the solutions of nonautonomous ordinary differential equations. Diss. Doctor. Fiz.-Mat. Nauk., Kiev, 1998.
[3] V. M. Evtukhov and A. G. Chernikova, Asymptotics of the slowly changing solutions of secondorder ordinary binomial differential equations with a rapidly changing nonlinearity. (Russian) Nelı̄nı̄ı̄n̄ Koliv. 19 (2016), no. 4, 458-475; translation in J. Math. Sci. (N.Y.) 228 (2018), no. 3, 207-225.
[4] V. M. Evtukhov and A. G. Chernikova, Asymptotic behavior of the slowly varying solutions of ordinary binomial second-order differential equations with a rapidly varying nonlinearity. (Russian) Nelı̄nйı̌n̄̄ Koliv. 20 (2017), no. 3, 346-360;
[5] V. M. Evtukhov and A. G. Chernikova, Asymptotic behavior of the solutions of second-order ordinary differential equations with rapidly changing nonlinearities. (Russian) Ukraïn. Mat. Zh. 69 (2017), no. 10, 1345-1363; translation in Ukrainian Math. J. 69 (2018), no. 10, 1561-1582.
[6] V. M. Evtukhov and V. A. Kas'yanova, Asymptotic behavior of unbounded solutions of secondorder essentially nonlinear differential equations. I. (Russian) Ukraïn. Mat. Zh. 57 (2005), no. 3, 338-355; translation in Ukrainian Math. J. 57 (2005), no. 3, 406-426.
[7] V. M. Evtukhov and V. A. Kas'yanova, Asymptotic behavior of unbounded solutions of secondorder essentially nonlinear differential equations. II. (Russian) Ukraïn. Mat. Zh. 58 (2006), no. 7, 901-921; translation in Ukrainian Math. J. 58 (2006), no. 7, 1016-1041.
[8] V. M. Evtukhov and V. M. Khar'kov, Asymptotic representations of solutions of second-order essentially nonlinear differential equations. (Russian) Differ. Uravn. 43 (2007), no. 10, 1311-1323; translation in Differ. Equ. 43 (2007), no. 10, 1340-1352.
[9] V. M. Evtukhov and L. A. Kirillova, On the asymptotic behavior of solutions of second-order nonlinear differential equations. (Russian) Differ. Uravn. 41 (2005), no. 8, 1053-1061; translation in Differ. Equ. 41 (2005), no. 8, 1105-1114.
[10] V. M. Evtukhov and N. P. Kolun, Asymptotic representations of solutions to differential equations with regularly and rapidly varying nonlinearities. (Russian) Mat. Metody Fiz.-Mekh. Polya 60 (2017), no. 1, 32-42.
[11] V. M. Evtukhov and A. M. Samoilenko, Conditions for the existence of solutions of real nonautonomous systems of quasilinear differential equations vanishing at a singular point. Ukrainian Math. J. 62 (2010), no. 1, 56-86.
[12] V. M. Evtukhov and A. M. Samoǐlenko, Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities. (Russian) Differ. Uravn. 47 (2011), no. 5, 628-650; translation in Differ. Equ. 47 (2011), no. 5, 627-649.
[13] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Translated from the 1985 Russian original. Mathematics and its Applications (Soviet Series), 89. Kluwer Academic Publishers Group, Dordrecht, 1993.
[14] V. Marić, Regular Variation and Differential Equations. Lecture Notes in Mathematics, 1726. Springer-Verlag, Berlin, 2000.
[15] V. Marić and Z. Radašin, Asymptotic behavior of solutions of the equation $y^{\prime \prime}=f(x) \varphi(\psi(y))$. Glas. Mat. Ser. III 23(43) (1988), no. 1, 27-34.
[16] V. Marić and M. Tomić, Asymptotic properties of solutions of the equation $y^{\prime \prime}=f(x) \phi(y)$. Math. Z. 149 (1976), no. 3, 261-266.
[17] E. Seneta, Regularly Varying Functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976; translation in "Nauka", Moscow, 1985.
[18] S. D. Taliaferro, Asymptotic behavior of solutions of $y^{\prime \prime}=\varphi(t) f(y)$. SIAM J. Math. Anal. 12 (1981), no. 6, 853-865.
(Received 05.06.2018)

Authors' address:

Odessa I. I. Mechnikov National University, 2 Dvoryanska St., Odessa 65082, Ukraine.
E-mail: emden@farlep.net; nataliiakolun@ukr.net

Memoirs on Differential Equations and Mathematical Physics
Volume 75, 2018, 115-128

Ivan Kiguradze, Nino Partsvania

SOME OPTIMAL CONDITIONS
FOR THE SOLVABILITY AND UNIQUE SOLVABILITY
OF THE TWO-POINT NEUMANN PROBLEM

Abstract. For second order ordinary differential equations, unimprovable sufficient conditions are established for the solvability and unique solvability of the Neumann boundary value problem.

2010 Mathematics Subject Classification. 34B05, 34B15.
Key words and phrases. Second order ordinary differential equation, linear, nonlinear, the Neumann problem, existence theorem, uniqueness theorem.

1 Formulation of the main results

On a finite interval $[a, b]$, we consider the differential equation

$$
\begin{equation*}
u^{\prime \prime}=f(t, u) \tag{1.1}
\end{equation*}
$$

with the Neumann two-point boundary conditions

$$
\begin{equation*}
u^{\prime}(a)=c_{1}, \quad u^{\prime}(b)=c_{2} \tag{1.2}
\end{equation*}
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying the local Carathéodory conditions, while c_{1} and c_{2} are real constants.

A number of interesting and unimprovable in a certain sense results concerning the existence and uniqueness of a solution of problem (1.1), (1.2) are known (see, e.g., [1-3,5-8, 12] and the references therein). In the present paper, general theorems on the existence and uniqueness of a solution of that problem are proved which are nonlinear analogues of the first Fredholm theorem. Based on these theorems, unimprovable sufficient conditions, different from the above mentioned results, for the solvability and unique solvability of problem (1.1), (1.2) are obtained.

We use the following notation.
\mathbb{R} is the set of real numbers; $\mathbb{R}_{+}=\left[0,+\infty\left[; \mathbb{R}_{-}=\right]-\infty, 0\right] ;$

$$
[x]_{-}=\frac{|x|-x}{2}
$$

$L([a, b])$ is the space of Lebesgue integrable functions.
Definition 1.1. Let $p_{i} \in L([a, b])(i=1,2)$ and

$$
\begin{equation*}
p_{1}(t) \leq p_{2}(t) \text { for almost all } t \in[a, b] . \tag{1.3}
\end{equation*}
$$

We say that the vector function $\left(p_{1}, p_{2}\right)$ belongs to the set $\mathcal{N} \mathbf{e u m}([\boldsymbol{a}, \boldsymbol{b}])$ if for any measurable function $p:[a, b] \rightarrow \mathbb{R}$, satisfying the inequality

$$
\begin{equation*}
p_{1}(t) \leq p(t) \leq p_{2}(t) \text { for almost all } t \in[a, b] \tag{1.4}
\end{equation*}
$$

the homogeneous Neumann problem

$$
\begin{gather*}
u^{\prime \prime}=p(t) u, \tag{1.5}\\
u^{\prime}(a)=0, \quad u^{\prime}(b)=0 \tag{1.6}
\end{gather*}
$$

has only the trivial solution.
Theorem 1.1. Let there exist $\left(p_{1}, p_{2}\right) \in \mathcal{N} \mathbf{e u m}([\boldsymbol{a}, \boldsymbol{b}])$ and an integrable in the first and nondecreasing in the second argument function $q:[a, b] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \int_{a}^{b} \frac{q(t, x)}{x} d t=0 \tag{1.7}
\end{equation*}
$$

and on the set $[a, b] \times \mathbb{R}$ the inequality

$$
\begin{equation*}
p_{1}(t)|x|-q(t,|x|) \leq f(t, x) \operatorname{sgn}(x) \leq p_{2}(t)|x|+q(t,|x|) \tag{1.8}
\end{equation*}
$$

holds. Then problem (1.1), (1.2) has at least one solution.
Corollary 1.1. Let on the set $[a, b] \times \mathbb{R}$ inequality (1.8) be satisfied, where $p_{i} \in L([a, b])(i=1,2)$ are the functions satisfying inequality (1.3), and $q:[a, b] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is an integrable in the first and non-decreasing in the second argument function satisfying condition (1.7). Let, moreover,

$$
\begin{equation*}
\int_{a}^{b} p_{2}(t) d t \leq 0, \text { mes }\left\{\left[t \in[a, b]: p_{2}(t)<0\right\}>0\right. \tag{1.9}
\end{equation*}
$$

and there exist a number $\lambda \geq 1$ such that

$$
\begin{equation*}
\int_{a}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t \leq \frac{4(b-a)}{\pi^{2}}\left(\frac{\pi}{b-a}\right)^{2 \lambda} \tag{1.10}
\end{equation*}
$$

Then problem (1.1), (1.2) has at least one solution.
Corollary 1.2. Let on the set $[a, b] \times \mathbb{R}$ inequality (1.8) be satisfied, where $p_{1}:[a, b] \rightarrow \mathbb{R}_{-}$and $p_{2}:[a, b] \rightarrow \mathbb{R}$ are integrable functions satisfying inequalities (1.3) and (1.9), while $q:[a, b] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is an integrable in the first and non-decreasing in the second argument function satisfying condition (1.7). Let, moreover, there exist $\left.t_{0} \in\right] a, b\left[\right.$ such that the function p_{1} is non-increasing and nondecreasing in the intervals $] a, t_{0}[$ and $] t_{0}, b[$, respectively, and

$$
\begin{equation*}
\int_{a}^{t_{0}} \sqrt{\left|p_{1}(t)\right|} d t \leq \frac{\pi}{2}, \quad \int_{t_{0}}^{b} \sqrt{\left|p_{1}(t)\right|} d t \leq \frac{\pi}{2}, \quad \int_{a}^{b} \sqrt{\left|p_{1}(t)\right|} d t<\pi \tag{1.11}
\end{equation*}
$$

Then problem (1.1), (1.2) has at least one solution.
Theorem 1.2. Let on the set $[a, b] \times \mathbb{R}$ the inequality

$$
\begin{equation*}
p_{1}(t)|x-y| \leq(f(t, x)-f(t, y)) \operatorname{sgn}(x-y) \leq p_{2}(t)|x-y| \tag{1.12}
\end{equation*}
$$

be satisfed, where $\left(p_{1}, p_{2}\right) \in \mathcal{N} \mathbf{e u m}([\boldsymbol{a}, \boldsymbol{b}])$. Then problem (1.1), (1.2) has one and only one solution.
Corollary 1.3. Let on the set $[a, b] \times \mathbb{R}$ condition (1.12) hold, where $p_{i} \in L([a, b])(i=1,2)$ are the functions satisfying inequalities (1.3) and (1.9). If, moreover, for some $\lambda \geq 1$ inequality (1.10) is satisfied, then problem (1.1), (1.2) has one and only one solution.

Corollary 1.4. Let on the set $[a, b] \times \mathbb{R}$ inequality (1.12) hold, where $p_{1}:[a, b] \rightarrow \mathbb{R}$ _ and $p_{2}:[a, b] \rightarrow \mathbb{R}$ are integrable functions satisfying inequalities (1.3) and (1.9). Let, moreover, there exist $\left.t_{0} \in\right] a, b[$ such that the function p_{2} is non-increasing and non-decreasing in the intervals $] a, t_{0}[$ and $] t_{0}, b[$, respectively, and satisfies inequality (1.11). Then problem (1.1), (1.2) has one and only one solution.

The following two corollaries of Theorem 1.2 concern the linear differential equation

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+q(t) \tag{1.13}
\end{equation*}
$$

where p and $q \in L([a, b])$.
Corollary 1.5. Let

$$
\begin{equation*}
\int_{a}^{b} p(t) d t \leq 0, \operatorname{mes}\{t \in[a, b]: p(t)<0\}>0 \tag{1.14}
\end{equation*}
$$

and let there exist a number $\lambda \geq 1$ such that

$$
\begin{equation*}
\int_{a}^{b}[p(t)]_{-}^{\lambda} d t \leq \frac{4(b-a)}{\pi^{2}}\left(\frac{\pi}{b-a}\right)^{2 \lambda} \tag{1.15}
\end{equation*}
$$

Then problem (1.13), (1.2) has one and only one solution.
Corollary 1.6. Let there exist a number $\left.t_{0} \in\right] a, b[$ such that the function p along with (1.14) satisfies the conditions

$$
\begin{gather*}
p_{0}(t)=\operatorname{ess} \sup \left\{[p(s)]_{-}: a<s<t\right\}<+\infty \quad \text { for } a<t<t_{0}, \tag{1.16}\\
p_{0}(t)=\operatorname{ess} \sup \left\{[p(s)]_{-}: t<s<b\right\}<+\infty \quad \text { for } t_{0}<t<b, \tag{1.17}\\
\int_{a}^{t_{0}} \sqrt{p_{0}(t)} d t \leq \frac{\pi}{2}, \quad \int_{t_{0}}^{b} \sqrt{p_{0}(t)} d t \leq \frac{\pi}{2}, \quad \int_{a}^{b} \sqrt{p_{0}(t)} d t<\pi . \tag{1.18}
\end{gather*}
$$

Then problem (1.13), (1.2) has one and only one solution.

Remark 1.1. In the case, where instead of (1.14) the more hard condition

$$
\begin{equation*}
p(t) \leq 0 \text { for } a<t<b, \quad \operatorname{mes}\{t \in[a, b]: p(t)<0\}>0 \tag{1.19}
\end{equation*}
$$

is satisfied, the results analogous to Corollary 1.5 previously were obtained in $[5,6,12]$. More precisely, in [12] it is required that along with (1.19) the inequalities

$$
\int_{a}^{b}|p(t)| d t \leq \frac{4}{b-a}, \quad \text { ess } \sup \{|p(t)|: a \leq t \leq b\}<+\infty
$$

be satisfied (see [12, Theorem 3]), while in [5] and [6] it is assumed, respectively, that

$$
\int_{a}^{b}|p(t)| d t \leq \frac{4}{b-a}
$$

(see [5, Corollary 1.2]), and

$$
\int_{a}^{b}|p(t)|^{\lambda} d t \leq \frac{4(b-a)}{\pi^{2}}\left(\frac{\pi}{b-a}\right)^{2 \lambda}
$$

where $\lambda \equiv$ const ≥ 1 (see $[6$, Corollary 1.3$]$).
Example 1.1. Suppose

$$
p(t) \equiv-\left(\frac{\pi}{b-a}\right)^{2}
$$

ε is arbitrarily small positive number, while λ is so large that

$$
\left(1+\frac{\varepsilon}{\pi}\right)^{\lambda}>\frac{\pi}{2}
$$

Then instead of (1.15) the inequality

$$
\begin{equation*}
\int_{a}^{b}[p(t)]_{-}^{\lambda} d t<\frac{4(b-a)}{\pi^{2}}\left(\frac{\pi+\varepsilon}{b-a}\right)^{2 \lambda} \tag{1.20}
\end{equation*}
$$

is satisfied. On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution $u_{0}(t)=$ $\cos \frac{\pi(t-a)}{b-a}$, and the nonhomogeneous problem (1.13), (1.2) has no solution if only

$$
c_{1}+c_{2}+\int_{a}^{b} u_{0}(t) q(t) d t \neq 0
$$

Consequently, condition (1.15) in Corollary 1.5 is unimprovable and it cannot be replaced by condition (1.20).

The above example shows also that condition (1.10) in Corollaries 1.1 and 1.3 is unimprovable in the sense that it cannot be replaced by the condition

$$
\int_{a}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t<\frac{4(b-a)}{\pi^{2}}\left(\frac{\pi+\varepsilon}{b-a}\right)^{2 \lambda}
$$

where ε is a positive constant independent of λ.

Note that condition (1.10) in the above mentioned corollaries is unimprovable also in the case where $\lambda=1$, and it cannot be replaced by the condition

$$
\int_{a}^{b}\left[p_{1}(t)\right]_{-} d t<\frac{4+\varepsilon}{b-a}
$$

no matter how small $\varepsilon>0$ would be (see [5, p. 357, Remark 1.1]).
Example 1.2. Suppose $\left.t_{0} \in\right] a, b[$ and

$$
p(t)= \begin{cases}-\frac{\pi^{2}}{4\left(t_{0}-a\right)^{2}} & \text { for } a \leq t \leq t_{0} \\ -\frac{\pi^{2}}{4\left(b-t_{0}\right)^{2}} & \text { for } t_{0}<t \leq b\end{cases}
$$

Then inequalities (1.16), (1.17) hold, and instead of (1.18) we have

$$
\int_{a}^{t_{0}} \sqrt{p_{0}(t)} d t=\frac{\pi}{2}, \quad \int_{t_{0}}^{b} \sqrt{p_{0}(t)} d t=\frac{\pi}{2}
$$

On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution

$$
u_{0}(t)= \begin{cases}\left(t_{0}-a\right) \cos \frac{\pi(t-a)}{2\left(t_{0}-a\right)} & \text { for } a \leq t \leq t_{0} \\ \left(t_{0}-b\right) \cos \frac{\pi(b-t)}{2\left(b-t_{0}\right)} & \text { for } t_{0}<t \leq b\end{cases}
$$

while the nonhomogeneous problem (1.13), (1.2) has no solution if only

$$
\left(t_{0}-a\right) c_{1}+\left(b-t_{0}\right) c_{2}+\int_{a}^{b} u_{0}(t) q(t) d t \neq 0
$$

Consequently, condition (1.18) in Corollary 1.6 is unimprovable in the sense that it cannot be replaced by the condition

$$
\int_{a}^{t_{0}} \sqrt{p_{0}(t)} d t \leq \frac{\pi}{2}, \quad \int_{t_{0}}^{b} \sqrt{p_{0}(t)} d t \leq \frac{\pi}{2}
$$

From the above said it is also clear that condition (1.11) in both Corollary 1.2 and Corollary 1.4 is unimprovable and it cannot be replaced by the condition

$$
\int_{a}^{t_{0}} \sqrt{\left|p_{1}(t)\right|} d t \leq \frac{\pi}{2}, \quad \int_{t_{0}}^{b} \sqrt{\left|p_{1}(t)\right|} d t \leq \frac{\pi}{2}
$$

2 Auxiliary propositions

2.1. Lemma on a priori estimate. In the segment $[a, b]$, we consider the differential inequality

$$
\begin{equation*}
p_{1}(t)|u(t)|-q(t) \leq u^{\prime \prime}(t) \operatorname{sgn}(u(t)) \leq p_{2}(t)|u(t)|+q(t) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(p_{1}, p_{2}\right) \in \mathcal{N} \mathbf{e u m}([\boldsymbol{a}, \boldsymbol{b}]) \tag{2.2}
\end{equation*}
$$

and $q \in L([a, b])$ is a non-negative function.
A function $u:[a, b] \rightarrow \mathbb{R}$ is said to be a solution of the differential inequality (2.1) if it is continuously differentiable, has an absolutely continuous on $[a, b]$ first derivative, and almost everywhere on this segment satisfies inequality (2.1).

Lemma 2.1. If condition (2.2) holds, then there exists a positive constant r_{0} such that for any nonnegative function $q \in L([a, b])$ every solution of the differential inequality (2.1) admits the estimate

$$
\begin{equation*}
|u(t)| \leq r_{o}\left(\left|u^{\prime}(a)\right|+\left|u^{\prime}(b)\right|+\int_{a}^{b} q(s) d s\right) \quad \text { for } a \leq t \leq b \tag{2.3}
\end{equation*}
$$

Proof. Assume the contrary that the lemma is not true. Then for any natural number k there exist a non-negative function $q_{k} \in L([a, b])$ and a solution u_{k} of the differential inequality (2.1) such that

$$
\left\|u_{k}\right\|>k^{2}\left(\left|u_{k}^{\prime}(a)\right|+\left|u_{k}^{\prime}(b)\right|+\int_{a}^{b} q_{k}(s) d s\right)
$$

where $\left\|u_{k}\right\|=\max \left\{\left|u_{k}(t)\right|: t \in[a, b]\right\}$.
Let I_{k} be the set of all $t \in[a, b]$ at which there exists $u_{k}^{\prime \prime}(t)$,

$$
u_{0 k}(t)=u_{k}(t) /\left\|u_{k}\right\| \text { for } t \in[a, b], \quad q_{0 k}(t)=k q(t) /\left\|u_{k}\right\| \text { for } t \in I_{k}
$$

Then

$$
\begin{gather*}
p_{1}(t)\left|u_{0 k}(t)\right|-q_{0 k}(t) / k \leq u_{0 k}^{\prime \prime}(t) \operatorname{sgn}\left(u_{0 k}(t)\right) \leq p_{2}(t)\left|u_{0 k}(t)\right|+q_{0 k}(t) / k \text { for } t \in I_{k}, \tag{2.4}\\
\left|u_{0 k}^{\prime}(a)\right|+\left|u_{0 k}^{\prime}(b)\right|<\frac{1}{k}, \quad\left\|u_{0 k}\right\|=1 \tag{2.5}\\
\int_{a}^{b} q_{0 k}(s) d s<\frac{1}{k} \tag{2.6}
\end{gather*}
$$

Put

$$
\begin{gathered}
I_{1 k}=\left\{t \in I_{k}:\left|u_{0 k}(t)\right| \geq \frac{1}{k}\right\}, \quad I_{2 k}=I_{k} \backslash I_{1 k} \\
p_{0 k}(t)= \begin{cases}\frac{u_{0 k}^{\prime \prime}(t)}{u_{0 k}(t)} & \text { for } t \in I_{1 k} \\
p_{1}(t) & \text { for } t \in I_{2 k}\end{cases} \\
q_{1 k}(t)= \begin{cases}0 & \text { for } t \in I_{1 k} \\
u_{0 k}^{\prime \prime}(t)-p_{1}(t) u_{0 k}(t) & \text { for } t \in I_{2 k}\end{cases} \\
P_{k}(t)=\int_{a}^{t} p_{0 k}(s) d s
\end{gathered}
$$

Then

$$
\begin{equation*}
u_{0 k}^{\prime \prime}(t)=p_{0 k}(t) u_{0 k}(t)+q_{1 k}(t) \text { for } t \in I_{k} \tag{2.7}
\end{equation*}
$$

On the other hand, according to conditions (2.4) and (2.5) we have

$$
\begin{gathered}
\left|u_{0 k}^{\prime \prime}(t)\right| \leq \ell(t)+q_{0 k}(t) \text { for } t \in I_{k}, \\
p_{1}(t)-q_{0 k}(t) \leq p_{0 k}(t) \leq p_{2}(t)+q_{0 k}(t) \text { for } t \in I_{k}, \\
\left|q_{1 k}(t)\right| \leq\left(\left|p_{1}(t)\right|+\ell(t)+q_{0 k}(t)\right) / k \text { for } t \in I_{k},
\end{gathered}
$$

where $\ell(t)=\left|p_{1}(t)\right|+\left|p_{2}(t)\right|$.
If along with these estimates we take into account inequality (2.6), then it becomes evident that

$$
\begin{gather*}
\left|u_{0 k}^{\prime}(t)-u_{0 k}^{\prime}(\tau)\right| \leq \int_{\tau}^{t} \ell(s) d s+\frac{1}{k} \text { for } a \leq \tau<t \leq b \tag{2.8}\\
P_{k}(a)=0, \int_{\tau}^{t} p_{1}(s) d s-\frac{1}{k}<P_{k}(t)-P_{k}(\tau)<\int_{\tau}^{t} p_{2}(s) d s+\frac{1}{k} \quad \text { for } a \leq \tau<t \leq b, \tag{2.9}\\
 \tag{2.10}\\
\int_{a}^{b}\left|p_{0 k}(s)\right| d s<\ell_{0} \tag{2.11}\\
\\
\int_{a}^{b}\left|q_{1 k}(s)\right| d s<\frac{\ell_{0}}{k}
\end{gather*}
$$

where

$$
\ell_{0}=1+\int_{a}^{b}\left(\left|p_{1}(s)\right|+\ell(s)\right) d s
$$

By virtue of conditions (2.5), (2.8) and(2.9), the sequences $\left(u_{k}\right)_{k=1}^{+\infty},\left(u_{k}^{\prime}\right)_{k=1}^{+\infty},\left(P_{k}\right)_{k=1}^{+\infty}$ are uniformly bounded and equicontinuous on $[a, b]$. By the Arzelà-Ascoli lemma, without loss of generality we can assume that these sequences are uniformly convergent.

Put

$$
\begin{equation*}
u(t)=\lim _{k \rightarrow+\infty} u_{0 k}(t), \quad P(t)=\lim _{k \rightarrow+\infty} P_{k}(t) \tag{2.12}
\end{equation*}
$$

If we pass to the limit in inequality (2.9) as $k \rightarrow+\infty$, then we get

$$
\left.P(a)=0, \quad \int_{\tau}^{t} p_{1}(s) d s \leq P(t)-P_{(} \tau\right) \leq \int_{\tau}^{t} p_{2}(s) d s \text { for } a \leq \tau<t \leq b
$$

Hence it is clear that the function P is absolutely continuous and admits the representation

$$
\begin{equation*}
P(t)=\int_{a}^{t} p(s) d s \quad \text { for } a \leq t \leq b \tag{2.13}
\end{equation*}
$$

where $p \in L([a, b])$ is a function satisfying inequality (1.4).
By Lemma 1.1 from [4], conditions (2.10), (2.12) and (2.13) guarantee the validity of the equality

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{a}^{t} p_{0 k}(s) u_{0 k}(s) d s=\int_{a}^{t} p(s) u(s) d s \quad \text { for } a \leq t \leq b \tag{2.14}
\end{equation*}
$$

In view of (2.7) we have

$$
u_{0 k}^{\prime}(t)=u_{0 k}^{\prime}(a)+\int_{a}^{t}\left(p_{0 k}(s) u_{0 k}(s)+q_{1 k}(s)\right) d s \quad \text { for } a \leq t \leq b
$$

If along with this identity we take into account conditions (2.5), (2.11) and (2.14), then we find

$$
\begin{gathered}
u^{\prime}(t)=\int_{a}^{t} p(s) u(s) d s \text { for } a \leq t \leq b \\
u^{\prime}(a)=u^{\prime}(b)=0, \quad\|u\|=1
\end{gathered}
$$

Consequently, u is a nontrivial solution of the homogeneous problem (1.5), (1.6). On the other hand, due to conditions (1.4) and (2.2), this problem has no nontrivial solution. The contradiction obtained proves the lemma.
2.2. Lemmas on two-point boundary value problems for equation (1.5). Let $p \in L([a, b])$. We consider the differential equation (1.5) with the boundary conditions

$$
\begin{equation*}
u^{\prime}(a)=0, \quad u(b)=0 \tag{2.15}
\end{equation*}
$$

or

$$
\begin{equation*}
u(a)=0, \quad u^{\prime}(b)=0 \tag{2.16}
\end{equation*}
$$

Lemma 2.2 (T. Kiguradze). Let

$$
\begin{equation*}
p(t) \geq-p_{0}(t) \quad \text { for almost all } t \in[a, b] \tag{2.17}
\end{equation*}
$$

where $p_{0} \in L([a, b])$ is a non-negative function. If, moreover, for some $\lambda \geq 1$ the inequality

$$
\int_{a}^{b}(b-t) p_{0}^{\lambda}(t) d t \leq\left(\frac{\pi}{2(b-a)}\right)^{2 \lambda-2}
$$

holds, then problem (1.5), (2.15) has only the trivial solution. And if

$$
\int_{a}^{b}(t-a) p_{0}^{\lambda}(t) d t \leq\left(\frac{\pi}{2(b-a)}\right)^{2 \lambda-2}
$$

then problem (1.5), (2.16) has only the trivial solution.
This lemma is a corollary of Theorem 1.3 from [10].
Lemma 2.3. Let inequality (2.17) hold where $p_{0} \in L([a, b])$ is a non-negative non-decreasing (nonincreasing) function such that

$$
\begin{equation*}
\int_{a}^{b} \sqrt{p_{0}(t)} d t<\frac{\pi}{2} \tag{2.18}
\end{equation*}
$$

Then problem (1.5), (2.15) (problem (1.5), (2.16)) has only the trivial solution.
Proof. We consider only problem (1.5), (2.15) since problem (1.5), (2.16) can be considered analogously.

Assume that problem (1.5), (2.15) has a nontrivial solution u. Without loss of generality we can assume that $u^{\prime}(b)<0$. Then there exists $a_{0} \in[a, b[$ such that

$$
\begin{gather*}
u(t)>0, \quad u^{\prime}(t)<0 \text { for } a_{0}<t<b \tag{2.19}\\
u^{\prime}\left(a_{0}\right)=0
\end{gather*}
$$

By virtue of conditions (2.17) and (2.19), almost everywhere on $\left[a_{0}, b\right]$ the inequality

$$
u^{\prime \prime}(t) u^{\prime}(t) \leq-p_{0}(t) u^{\prime}(t) u(t)
$$

is satisfied. If along with this we take into account the fact that p_{0} is a non-decreasing function, then we obtain
$u^{\prime 2}(t) \leq-2 \int_{a_{0}}^{t} p_{0}(s) u^{\prime}(s) u(s) d s \leq p_{0}(t)\left(-\int_{a_{0}}^{t} u^{\prime}(s) u(s) d s\right)=p_{0}(t)\left(u^{2}\left(a_{0}\right)-u^{2}(t)\right)$ for $a_{0} \leq t \leq b$.

Consequently,

$$
\sqrt{p_{0}(t)} \geq \frac{-u^{\prime}(t)}{\sqrt{u^{2}\left(a_{0}\right)-u^{2}(t)}} \text { for } a_{0}<t \leq b
$$

Integrating this inequality from a_{0} to b, we get

$$
\int_{a_{0}}^{b} \sqrt{p_{0}(t)} d t \geq-\int_{a_{0}}^{b} \frac{-u^{\prime}(t) d t}{\sqrt{u^{2}\left(a_{0}\right)-u^{2}(t)}}=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2}
$$

which contradicts inequality (2.18). The contradiction obtained provers the lemma.
Remark 2.1. From Lemma 2.3 it follows, in particular, that if $p:[a, b] \rightarrow \mathbb{R}_{-}$is a non-decreasing (a non-increasing) function and for some $\left.t_{0} \in\right] a, b$ [the inequalities

$$
\int_{a}^{t_{0}} \sqrt{|p(s)|} d s \leq \frac{\pi}{2}, \quad p\left(t_{0}\right)>-\frac{\pi^{2}}{4\left(b-t_{0}\right)^{2}} \quad\left(p\left(t_{0}\right)>-\frac{\pi^{2}}{4\left(t_{0}-a\right)^{2}}, \quad \int_{t_{0}}^{b} \sqrt{|p(s)|} d s \leq \frac{\pi}{2}\right)
$$

hold, then the Dirichlet problem

$$
u^{\prime \prime}=p(t) u, \quad u(a)=u(b)=0
$$

has only the trivial solution. This result generalizes Z. Nehari's theorem [11, Theorem 1], where it is assumed that

$$
\int_{a}^{b} \sqrt{|p(s)|} d s \leq \frac{\pi}{2}
$$

Along with Lemmas 2.2 and 2.3, below we need Lemma 2.4 as well, concerning problem (1.5), (1.6).
Lemma 2.4. If condition (1.14) holds, then every solution of problem (1.5), (1.6) has at least one zero in the interval $] a, b[$.

Proof. Assume the contrary that problem (1.5), (1.6) has a solution u not having a zero in $] a, b[$. Then by (1.6),

$$
u(t) \neq 0 \quad \text { for } a \leq t \leq b
$$

and almost everywhere on $[a, b]$ the equality

$$
\frac{u^{\prime \prime}(t)}{u(t)}=p(t)
$$

holds. If we integrate this identity from a to b, then by conditions (1.6) and (1.14) we get

$$
0<\int_{a}^{b} \frac{u^{\prime 2}(t)}{u^{2}(t)} d t=\int_{a}^{b} p(t) d t \leq 0
$$

The contradiction obtained provers the lemma.
2.3. Lemmas on the set $\mathcal{N e u m}([a, b])$.

Lemma 2.5. Let $p_{i} \in L([a, b])(i=1,2)$ be functions satisfying inequalities (1.3), (1.9) and (1.10), where $\lambda \geq 1$. Then

$$
\left(p_{1}, p_{2}\right) \in \mathcal{N} \operatorname{eum}([\boldsymbol{a}, \boldsymbol{b}])
$$

Proof. Assume the contrary that

$$
\left(p_{1}, p_{2}\right) \notin \mathcal{N} \operatorname{eum}([\boldsymbol{a}, \boldsymbol{b}])
$$

Then there exists a function $p \in L([a, b])$, satisfying condition (1.4), such that problem (1.5), (1.6) has a nontrivial solution u.

Inequalities (1.4) and (1.9) imply inequalities (1.14). Hence by Lemma 2.4 follows the existence of $\left.t_{1} \in\right] a, b[$ such that

$$
\begin{equation*}
u\left(t_{1}\right)=0 \tag{2.20}
\end{equation*}
$$

On the other hand, by Lemma 2.2 inequality (1.4) and equalities (1.6) and (2.20) result in

$$
\begin{aligned}
& \left(\frac{\pi}{2}\right)^{2 \lambda-2}<\left(t_{1}-a\right)^{2 \lambda-2} \int_{a}^{t_{1}}\left(t_{1}-t\right)\left[p_{1}(t)\right]_{-}^{\lambda} d t<\left(t_{1}-a\right)^{2 \lambda-1} \int_{a}^{t_{1}}\left[p_{1}(t)\right]_{-}^{\lambda} d t \\
& \left(\frac{\pi}{2}\right)^{2 \lambda-2}<\left(b-t_{1}\right)^{2 \lambda-2} \int_{t_{1}}^{b}\left(t-t_{1}\right)\left[p_{1}(t)\right]_{-}^{\lambda} d t<\left(b-t_{1}\right)^{2 \lambda-1} \int_{t_{1}}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t
\end{aligned}
$$

Thus

$$
\left(\frac{\pi}{2}\right)^{4 \lambda-4}<\left(\left(t_{1}-a\right)\left(b-t_{1}\right)\right)^{2 \lambda-1}\left(\int_{a}^{t_{1}}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right)\left(\int_{t_{1}}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right)
$$

Hence, in view of the inequalities

$$
\begin{gathered}
\left(t_{1}-a\right)\left(b-t_{1}\right) \leq \frac{1}{4}(b-a)^{2} \\
\left(\int_{a}^{t_{1}}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right)\left(\int_{t_{1}}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right) \leq \frac{1}{4}\left(\int_{a}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right)^{2}
\end{gathered}
$$

it follows that

$$
\left(\frac{\pi}{2}\right)^{4 \lambda-4}<2^{-4 \lambda}(b-a)^{4 \lambda-2}\left(\int_{a}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t\right)^{2}
$$

Consequently,

$$
\int_{a}^{b}\left[p_{1}(t)\right]_{-}^{\lambda} d t>\frac{4(b-a)}{\pi^{2}}\left(\frac{\pi}{b-a}\right)^{2 \lambda}
$$

which contradicts inequality (1.10). The contradiction obtained provers the lemma.
Lemma 2.6. Let $p_{1}:[a, b] \rightarrow \mathbb{R}_{-}$and $p_{2}:[a, b] \rightarrow \mathbb{R}$ be integrable functions satisfying inequalities (1.3) and (1.9). Let, moreover, there exist $\left.t_{0} \in\right] a, b\left[\right.$ such that the function p_{1} is non-increasing and non-decreasing in the intervals $] a, t_{0}[$ and $] t_{0}, b[$, respectively, and inequalities (1.11) are satisfied. Then

$$
\left(p_{1}, p_{2}\right) \in \mathcal{N} \operatorname{eum}([\boldsymbol{a}, \boldsymbol{b}])
$$

Proof. Let $p \in L([a, b])$ be an arbitrary function satisfying inequality (1.4), and let u be an arbitrary solution of problem (1.5), (1.6).

Inequalities (1.4) and (1.9) result in inequalities (1.14). Hence by Lemma 2.4 follows the existence at least one zero of the function u in $] a, b\left[\right.$. Consequently, there exists $\left.t_{1} \in\right] a, b[$ such that

$$
\begin{array}{ll}
u^{\prime}(a)=0, & u\left(t_{1}\right)=0 \\
u\left(t_{1}\right)=0, & u^{\prime}(b)=0 \tag{2.22}
\end{array}
$$

If along with (1.11) we take into account the monotonicity of the function p_{1} in the intervals $] a, t_{0}[$ and $] t_{0}, b[$, then it becomes clear that either

$$
\begin{equation*}
a<t_{1} \leq t_{0}, \quad \int_{a}^{t_{1}} \sqrt{\left|p_{1}(t)\right|} d t<\frac{\pi}{2} \tag{2.23}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{0} \leq t_{1}<b, \quad \int_{t_{1}}^{b} \sqrt{\left|p_{1}(t)\right|} d t<\frac{\pi}{2} \tag{2.24}
\end{equation*}
$$

However, if condition (2.23) (condition (2.24)) holds, then by Lemma 2.3 problem (1.5), (2.21) (problem (1.5), (2.22)) has only the trivial solution. Thus we have proved that $u(t) \equiv 0$. Hence, in view of the arbitrariness of a solution u of problem (1.5), (1.6) and a function p, we have $\left(p_{1}, p_{2}\right) \in$ $\mathcal{N e u m}([a, b])$.
2.4. Lemma on the solvability of problem (1.1),(1.2). Along with problem (1.1), (1.2) we consider the auxiliary problem

$$
\begin{gather*}
u^{\prime \prime}=(1-\lambda) p(t) u+\lambda f(t, u) \tag{2.25}\\
u^{\prime}(a)=\lambda c_{1}, \quad u^{\prime}(b)=\lambda c_{2} \tag{2.26}
\end{gather*}
$$

where $p \in L([a, b])$, and λ is a parameter.
According to Corollary 2 from [9], the following lemma is valid.
Lemma 2.7. Let problem (1.5), (1.6) have only the trivial solution and let there exist a positive constant r such that for any $\lambda \in] 0,1[$ an arbitrary solution u of problem (2.25), (2.26) admits the estimate

$$
\begin{equation*}
|u(t)|+\left|u^{\prime}(t)\right|<r \quad \text { for } a \leq t \leq b \tag{2.27}
\end{equation*}
$$

Then problem (1.1), (1.2) has at least one solution.

3 Proof of the main results

Proof of Theorem 1.1. By Lemma 2.1, there exists a positive constant r_{0} such that every solution u of the differential inequality

$$
\begin{equation*}
p_{1}(t)|u(t)|-q(t,|u(t)|) \leq u^{\prime \prime}(t) \operatorname{sgn}(u(t)) \leq p_{2}(t)|u(t)|+q(t,|u(t)|) \tag{3.1}
\end{equation*}
$$

admits the estimate

$$
\begin{equation*}
\|u\| \leq r_{0}\left(\left|u^{\prime}(a)\right|+\left|u^{\prime}(b)\right|+\int_{a}^{b} q(s,\|u\|) d s\right) \tag{3.2}
\end{equation*}
$$

where

$$
\|u\|=\max \{|u(t)|: a \leq t \leq b\}
$$

On the other hand, according to equality (1.7), there exists a number r_{1} such that

$$
\begin{equation*}
r_{0}\left(\left|c_{1}\right|+\left|c_{2}\right|+\int_{a}^{b} q(s, x) d s\right)<x \quad \text { for } x \geq r_{1} \tag{3.3}
\end{equation*}
$$

Put

$$
r_{2}=\left(\frac{1}{r_{0}}+\int_{a}^{b}\left(\left|p_{1}(s)\right|+\left|p_{2}(s)\right|\right) d s\right) r_{1}, \quad r=r_{1}+r_{2}
$$

Let $p \in L([a, b])$ be an arbitrary function satisfying inequality (1.4), $\lambda \in] 0,1[$, and u be an arbitrary solution of problem (2.25), (2.26). By Lemma 2.7 and condition (2.2), it suffices to state that u admits estimate (2.27).

By virtue of inequality (1.8), the function u is a solution of problem (3.1), (2.26). Thus it admits the estimate

$$
\|u\| \leq r_{0}\left(\left|c_{1}\right|+\left|c_{2}\right|+\int_{a}^{b} q(s,\|u\|) d s\right)
$$

Hence in view of (3.3) we have

$$
\|u\| \leq r_{1}
$$

If along with this inequality we take into account conditions (2.26) and (3.3), we find

$$
\begin{gathered}
\left|u^{\prime}(t)\right| \leq\left|u^{\prime}(a)\right|+\int_{a}^{b}\left|u^{\prime \prime}(s)\right| d s \leq\left|c_{1}\right|+\int_{a}^{b} q\left(s, r_{1}\right) d s+\int_{a}^{b}\left(\left|p_{1}(s)\right|+\left|p_{2}(s)\right|\right)|u(s)| d s \\
\leq r_{1} / r_{0}+r_{1} \int_{a}^{b}\left(\left|p_{1}(s)\right|+\left|p_{2}(s)\right|\right) d s=r_{2} \quad \text { for } a \leq t \leq b
\end{gathered}
$$

Therefore estimate (2.27) is valid.
Proof of Theorem 1.2. Inequality (1.12) yields inequality (1.8), where $q(t,|x|) \equiv|f(t, 0)|$. Consequently, all the conditions of Theorem 1.1 are fulfilled which guarantees the solvability of problem (1.1), (1.2).

Let u_{1} and u_{2} be arbitrary solutions of the above mentioned problem. Put

$$
u(t)=u_{1}(t)-u_{2}(t)
$$

In view of condition (1.12), the function u is a solution of the differential inequality

$$
p_{1}(t)|u(t)| \leq u^{\prime \prime}(t) \operatorname{sgn}(u(t)) \leq p_{2}(t)|u(t)|
$$

satisfying the boundary conditions (1.6). Hence by Lemma 2.1 it follows that $u(t) \equiv 0$. Consequently, problem (1.1), (1.2) has one and only one solution.

By Lemma 2.5, Theorems 1.1 and 1.2 yield Corollaries 1.1 and 1.3, respectively. By Lemma 2.6, Theorems 1.1 and 1.2 yield Corollaries 1.2 and 1.4 , respectively.

In the case, where $f(t, x) \equiv p(t) x+q(t)$, Corollary 1.3 results in Corollary 1.5, and Corollary 1.4 results in Corollary 1.6.

References

[1] A. Cabada, P. Habets and S. Lois, Monotone method for the Neumann problem with lower and upper solutions in the reverse order. Appl. Math. Comput. 117 (2001), no. 1, 1-14.
[2] A. Cabada and L. Sanchez, A positive operator approach to the Neumann problem for a second order ordinary differential equation. J. Math. Anal. Appl. 204 (1996), no. 3, 774-785.
[3] M. Cherpion, C. De Coster and P. Habets, A constructive monotone iterative method for secondorder BVP in the presence of lower and upper solutions. Appl. Math. Comput. 123 (2001), no. 1, 75-91.
[4] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987; translation in J. Soviet Math. 43 (1988), no. 2, 2259--2339.
[5] I. Kiguradze, The Neumann problem for the second order nonlinear ordinary differential equations at resonance. Funct. Differ. Equ. 16 (2009), no. 2, 353-371.
[6] I. T. Kiguradze and T. I. Kiguradze, Conditions for the well-posedness of nonlocal problems for second-order linear differential equations. (Russian) Differ. Uravn. 47 (2011), no. 10, 1400-1411; translation in Differ. Equ. 47 (2011), no. 10, 1414-1425.
[7] I. T. Kiguradze and N. R. Lezhava, On the question of the solvability of nonlinear two-point boundary value problems. (Russian) Mat. Zametki 16 (1974), 479-490; translation in Math. Notes 16 (1974), 873-880.
[8] I. T. Kiguradze and N. R. Lezhava, On a nonlinear boundary value problem. Function theoretic methods in differential equations, pp. 259-276. Res. Notes in Math., No. 8, Pitman, London, 1976.
[9] I. Kiguradze and B. Puža, On boundary value problems for functional-differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106-113.
[10] T. Kiguradze, On solvability and unique solvability of two-point singular boundary value problems. Nonlinear Anal. 71 (2009), no. 3-4, 789-798.
[11] Z. Nehari, Some eigenvalue estimates. J. Analyse Math. 7 (1959), 79-88.
[12] H. Zh. Wang and Y. Li, Neumann boundary value problems for second-order ordinary differential equations across resonance. SIAM J. Control Optim. 33 (1995), no. 5, 1312-1325.
(Received 12.03.2018)

Authors' address:

Ivan Kiguradze, Nino Partsvania

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia.

E-mail: ivane.kiguradze@tsu.ge; nino.partsvania@tsu.ge

Memoirs on Differential Equations and Mathematical Physics

Volume 75, 2018, 129-137

Kemal Özen

SOLVABILITY OF A NONLOCAL PROBLEM
BY A NOVEL CONCEPT OF FUNDAMENTAL FUNCTION

Abstract

Cauchy function, Green function and Riemann function are the several of the fundamental functions used frequently in the expression of a fundamental solution in the literature. In order to construct such functions, various ideas can be considered. The lesser-known one of these ideas is contained in the papers [1-4] by Seyidali S. Akhiev. Inspired by these papers, the solvability of some problems $[12,14,15,17-19]$ has been investigated. In this work, a novel kind of adjoint problem for a generally nonlocal problem, and also Green's functional via the solvability of that adjoint problem are constructed [21]. By means of the obtained Green's functional, an integral representation for the solution of the nonlocal problem is established. ${ }^{1}$

2010 Mathematics Subject Classification. 34B05, 34B10, 34B27.
Key words and phrases. Green's function, nonlocal condition, adjoint problem, uncoupled linear system.

[^0]
1 Introduction

There are various papers related to the investigations on the differential systems involving general boundary conditions $[7,8,20,23]$. To the best of our knowledge, there is no paper on the construction of Green's functional for an uncoupled system of linear ordinary differential equations with the exception the abstract of conference [13]. This work deals with the construction of Green's functional for such a system with a general nonlocal condition. The main aim at this dealing is to identify the Green function for the above-said system.

The rest of the work is organized as follows. In Section 2, the problem considered throughout the work is stated in detail. In Section 3, the solution space and its adjoint space are introduced. In Section 4, the adjoint operator, adjoint system and solvability conditions for the completely nonhomogeneous problem are given. In Section 5, Green's functional is defined. In the last section, the conclusions are emphasized.

2 Statement of the problem

Let \mathbb{R} be the space of all real numbers, consider a bounded open interval $G=(0,1)$ in \mathbb{R}. The problem under consideration is stated as follows:

$$
\begin{gather*}
\left(V_{1} U\right)(x) \equiv U^{\prime}(x)+A(x) U(x)=Z^{1}(x), \quad x \in G=(0,1) \tag{2.1}\\
V_{0} U \equiv a U(0)+\int_{0}^{1} g(\xi) U^{\prime}(\xi) d \xi=Z^{0} \tag{2.2}
\end{gather*}
$$

where $U(x)=\left[\begin{array}{l}u_{1}(x) \\ u_{2}(x)\end{array}\right], Z^{1}(x)=\left[\begin{array}{c}z_{1}^{1}(x) \\ z_{2}^{1}(x)\end{array}\right], A(x)=\left[\begin{array}{cc}A_{1}(x) & 0 \\ 0 & A_{2}(x)\end{array}\right], g(\xi)=\left[\begin{array}{cc}g_{1}(\xi) & 0 \\ 0 & g_{2}(\xi)\end{array}\right]$ are 2vectors and 2-square matrices defined on G, respectively; $Z^{0}=\left[\begin{array}{c}z_{1}^{0} \\ z_{2}^{0}\end{array}\right]$ and $a=\left[\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right]$ are 2-vector and 2 -square matrix with real entries, respectively. The symbol denotes the ordinary derivative of order one. Here $A_{1}(x), A_{2}(x), z_{1}^{1}(x), z_{2}^{1}(x) \in L_{p}(G)$ with $1 \leq p<\infty$ and $g_{1}(\xi), g_{2}(\xi) \in L_{q}(G)$ $\left(\frac{1}{p}+\frac{1}{q}=1\right) . L_{p}(G)$ with $1 \leq p<\infty$ denotes the space of Lebesgue p-integrable functions on G. $L_{\infty}(G)$ denotes the space of measurable and essentially bounded functions on G, and $W_{p}^{(1)}(G)$ with $1 \leq p \leq \infty$ denotes the space of all functions $u(x) \in L_{p}(G)$ having derivative $d u / d x \in L_{p}(G)[12,16,19]$. The space $W_{p}^{(1)}(G)$ is equipped with the norm

$$
\|u\|_{W_{p}^{(1)}(G)}=\sum_{k=0}^{1}\left\|\frac{d^{k} u}{d x^{k}}\right\|_{L_{p}(G)} .
$$

The characteristic feature of this problem is that, instead of an ordinary boundary condition, it involves a more comprehensive nonlocal boundary condition. The stated problem is investigated for a solution vector U such that its entries u_{1} and u_{2} belong to the space $W_{p}^{(1)}(G)$.

Problem (2.1), (2.2) is a linear problem which can be considered as an operator equation

$$
\begin{equation*}
V U=Z \tag{2.3}
\end{equation*}
$$

with the linear operator $V=\left(V_{1}, V_{0}\right)$ and $Z=\left(Z^{1}(x), Z^{0}\right)$.
From the considerations given above, we have that V is bounded from $W_{p}^{(1)}(G)^{2}$ into the Banach space $E_{p}^{2} \equiv L_{p}(G)^{2} \times \mathbb{R}^{2}$ of the elements $Z=\left(Z^{1}(x), Z^{0}\right)$ with

$$
\left\|z_{1}\right\|_{E_{p}}=\left\|z_{1}^{1}(x)\right\|_{L_{p}(G)}+\left|z_{1}^{0}\right|, \quad\left\|z_{2}\right\|_{E_{p}}=\left\|z_{2}^{1}(x)\right\|_{L_{p}(G)}+\left|z_{2}^{0}\right|, \quad 1 \leq p \leq \infty
$$

If, for a given $Z \in E_{p}^{2}$, problem (2.1), (2.2) has a unique solution $U \in W_{p}^{(1)}(G)^{2}$ with $\left\|u_{1}\right\|_{W_{p}^{(1)}(G)} \leq$ $c_{0}\left\|z_{1}\right\|_{E_{p}}$ and $\left\|u_{2}\right\|_{W_{p}^{(1)}(G)} \leq c_{1}\left\|z_{2}\right\|_{E_{p}}$, then this problem is called a well-posed problem, where c_{0} and c_{1} are constants independent of z_{1} and z_{2}, respectively. Problem (2.1), (2.2) is well-posed if and only if $V: W_{p}^{(1)}(G)^{2} \rightarrow E_{p}^{2}$ is a (linear) homeomorphism.

3 Adjoint space of the solution space

Problem (2.1), (2.2) is investigated by means of a novel concept of the adjoint problem which is introduced in $[2,5]$. Some isomorphic decompositions of the solution space $W_{p}^{(1)}(G)^{2}$ and its adjoint space $W_{p}^{(1)}(G)^{2 *}$ are employed. Some of the principal features concerning with the solution space can be given as follows: any function $u \in W_{p}^{(1)}(G)$ can be represented as

$$
\begin{equation*}
u(x)=u(\alpha)+\int_{\alpha}^{x} u^{\prime}(\xi) d \xi \tag{3.1}
\end{equation*}
$$

where α is a given point in \bar{G} which is the set of closure points for $G[12,16,19]$. Furthermore, the trace or the value operator $D_{0} u=u(\gamma)$ is bounded and surjective from $W_{p}^{(1)}(G)$ onto \mathbb{R} for a given point γ of \bar{G}. In addition, the value $u(\alpha)$ and the derivative $u^{\prime}(x)$ are unrelated elements of the function $u \in W_{p}^{(1)}(G)$ such that for any real number ν_{0} and any function $\nu_{1} \in L_{p}(G)$, there exists one and only one $u \in W_{p}^{(1)}(G)$ such that $u(\alpha)=\nu_{0}$ and $u^{\prime}(x)=\nu_{1}(x)$. Therefore, there exists a linear homeomorphism between $W_{p}^{(1)}(G)^{2}$ and E_{p}^{2}. In other words, the space $W_{p}^{(1)}(G)^{2}$ has the isomorphic decomposition $W_{p}^{(1)}(G)^{2}=L_{p}(G)^{2} \times \mathbb{R}^{2}$. The structure of the adjoint space is determined by the following theorem.
Theorem 3.1 ([1,2,4,12,16,19]). If $1 \leq p<\infty$, then any linear bounded functional $F \in W_{p}^{(1)}(G)^{2 *}$ can be represented as

$$
F(U)=\left[\begin{array}{l}
F^{1}\left(u_{1}\right) \tag{3.2}\\
F^{2}\left(u_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\int_{0}^{1} u_{1}^{\prime}(x) \varphi_{1}^{1}(x) d x+u_{1}(0) \varphi_{0}^{1} \\
\int_{0}^{1} u_{2}^{\prime}(x) \varphi_{1}^{2}(x) d x+u_{2}(0) \varphi_{0}^{2}
\end{array}\right]
$$

with a unique element $\varphi=\left(\varphi_{1}(x), \varphi_{0}\right) \in E_{q}^{2}$, where $\frac{1}{p}+\frac{1}{q}=1$. Any linear bounded functional $F \in W_{\infty}^{(1)}(G)^{2 *}$ can be represented as

$$
F(U)=\left[\begin{array}{l}
F^{1}\left(u_{1}\right) \tag{3.3}\\
F^{2}\left(u_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\int_{0}^{1} u_{1}^{\prime}(x) d \varphi_{1}^{1}+u_{1}(0) \varphi_{0}^{1} \\
\int_{0}^{1} u_{2}^{\prime}(x) d \varphi_{1}^{2}+u_{2}(0) \varphi_{0}^{2}
\end{array}\right]
$$

with a unique element $\varphi=\left(\varphi_{1}(e), \varphi_{0}\right) \in \widehat{E}_{1}=(B A(\Sigma, \mu))^{2} \times \mathbb{R}^{2}$, where μ is Lebesgue measure on \mathbb{R}, Σ is σ-algebra of the μ-measurable subsets $e \subset G$ and $B A(\Sigma, \mu)$ is the space of all bounded additive functions $\varphi_{1}(e)$ defined on Σ with $\varphi_{1}(e)=0$ when $\mu(e)=0$ [9]. The inverse is also valid, that is, if $\varphi \in E_{q}^{2}$, then (3.2) is bounded on $W_{p}^{(1)}(G)^{2 *}$ for $1 \leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. If $\varphi \in \widehat{E}_{1}$, then (3.3) is bounded on $W_{\infty}^{(1)}(G)^{2 *}$.

Proof. The operator $N U \equiv\left(U^{\prime}(x), U(0)\right): W_{p}^{(1)}(G)^{2} \rightarrow E_{p}^{2}$ is bounded and has a bounded inverse N^{-1} represented by

$$
U(x)=\left(N^{-1} h\right)(x) \equiv \int_{0}^{x} h_{1}(\xi) d \xi+h_{0}, \quad h=\left(h_{1}(x), h_{0}\right) \in E_{p}^{2}
$$

The kernel Ker N of N is trivial and the image $\operatorname{Im} N$ of N is equal to E_{p}^{2}. Hence, there exists a bounded adjoint operator $N^{*}: E_{p}^{2 *} \rightarrow W_{p}^{(1)}(G)^{2 *}$ with Ker $N^{*}=\{0\}$ and $\operatorname{Im} N^{*}=W_{p}^{(1)}(G)^{2 *}$. In
other words, for a given $F \in W_{p}^{(1)}(G)^{2 *}$, there exists a unique $\psi \in E_{p}^{2 *}$ such that

$$
\begin{equation*}
F=N^{*} \psi \text { or } F(U)=\psi(N U), \quad U \in W_{p}^{(1)}(G)^{2} \tag{3.4}
\end{equation*}
$$

If $1 \leq p<\infty$, then $E_{p}^{2 *}=E_{q}^{2}$ in the sense of an isomorphism [9]. Hence, the functional ψ can be represented by

$$
\begin{equation*}
\psi(h)=\int_{0}^{1} \varphi_{1}(x) h_{1}(x) d x+\varphi_{0} h_{0}, \quad h \in E_{p}^{2} \tag{3.5}
\end{equation*}
$$

with a unique element $\varphi=\left(\varphi_{1}(x), \varphi_{0}\right) \in E_{q}^{2}$. Due to expressions (3.4) and (3.5), any $F \in W_{p}^{(1)}(G)^{2 *}$ can uniquely be written by (3.2). For a given $\varphi \in E_{q}^{2}$, the functional F written by (3.2) is bounded on $W_{p}^{(1)}(G)^{2}$. Hence, (3.2) is a general form for the functional $F \in W_{p}^{(1)}(G)^{2 *}$.

The proof is complete due to the fact that the case $p=\infty$ can likewise be shown $[4,12,16,19]$.
Theorem 3.1 guarantees that $W_{p}^{(1)}(G)^{2 *}=E_{q}^{2}$ for all $1 \leq p<\infty$, and $W_{\infty}^{(1)}(G)^{2 *}=E_{\infty}^{2 *}=\widehat{E}_{1}$. The space E_{1} can also be considered as a subspace of the space $\widehat{E}_{1}[4,12,16,19]$.

4 Adjoint operator, adjoint system and solvability conditions

In this section, an explicit form for the adjoint operator V^{*} of V is investigated. To this end, any $f=\left(f_{1}(x), f_{0}\right) \in E_{q}^{2}$ is taken as a linear bounded functional on E_{p}^{2} and also we assume

$$
\begin{equation*}
f(V U) \equiv \int_{0}^{1} f_{1}(x)\left(V_{1} U\right)(x) d x+f_{0}\left(V_{0} U\right), \quad U \in W_{p}^{(1)}(G)^{2} \tag{4.1}
\end{equation*}
$$

By substituting expressions (2.1) and (2.2), and expression (3.1) for all entries of $U \in W_{p}^{(1)}(G)^{2}$ (for $\alpha=0$) into (4.1), we have

$$
f(V U) \equiv\left[\begin{array}{l}
\int_{0}^{1} f_{1}^{1}(x)\left\{u_{1}^{\prime}(x)+A_{1}(x) u_{1}(x)\right\} d x+f_{0}^{1}\left(a_{1} u_{1}(0)+\int_{0}^{1} g_{1}(\xi) u_{1}^{\prime}(\xi) d \xi\right) \\
\int_{0}^{1} f_{1}^{2}(x)\left\{u_{2}^{\prime}(x)+A_{2}(x) u_{2}(x)\right\} d x+f_{0}^{2}\left(a_{2} u_{2}(0)+\int_{0}^{1} g_{2}(\xi) u_{2}^{\prime}(\xi) d \xi\right)
\end{array}\right]
$$

Hence, we obtain

$$
\begin{array}{r}
f(V U) \equiv \int_{0}^{1} f_{1}(x)\left(V_{1} U\right)(x) d x+f_{0}\left(V_{0} U\right)=\int_{0}^{1}\left(w_{1} f\right)(\xi) U^{\prime}(\xi) d \xi+\left(w_{0} f\right) U(0) \\
\equiv(w f)(U) \quad \forall f \in E_{q}^{2}, \quad \forall U \in W_{p}^{(1)}(G)^{2}, \quad 1 \leq p \leq \infty \tag{4.2}
\end{array}
$$

where

$$
\begin{gather*}
w_{1}=\left[\begin{array}{c}
w_{1}^{1} \\
w_{1}^{2}
\end{array}\right], \quad w_{0}=\left[\begin{array}{c}
w_{0}^{1} \\
w_{0}^{2}
\end{array}\right] \\
\left(w_{1}^{1} f^{1}\right)(\xi)=f_{1}^{1}(\xi)+\int_{\xi}^{1} f_{1}^{1}(s) A_{1}(s) d s+f_{0}^{1} g_{1}(\xi), \quad w_{0}^{1} f^{1}=\int_{0}^{1} f_{1}^{1}(x) A_{1}(x) d x+f_{0}^{1} a_{1} \tag{4.3}\\
\left(w_{1}^{2} f^{2}\right)(\xi)=f_{1}^{2}(\xi)+\int_{\xi}^{1} f_{1}^{2}(s) A_{2}(s) d s+f_{0}^{2} g_{2}(\xi), \quad w_{0}^{2} f^{2}=\int_{0}^{1} f_{1}^{2}(x) A_{2}(x) d x+f_{0}^{2} a_{2}
\end{gather*}
$$

The operators $w_{1}^{1}, w_{0}^{1}, w_{1}^{2}$ and w_{0}^{2} are linear and bounded from the space E_{q} of the pairs $f=\left(f_{1}(x), f_{0}\right)$ into the spaces $L_{q}(G), \mathbb{R}, L_{q}(G)$ and \mathbb{R}, respectively. Therefore, the operator $w=\left(w_{1}, w_{0}\right): E_{q}^{2} \rightarrow E_{q}^{2}$ represented by $w f=\left(w_{1} f, w_{0} f\right)$ is linear and bounded. By (4.2) and Theorem 3.1, the operator w is an adjoint operator for the operator V, when $1 \leq p<\infty$, in other words, $V^{*}=w$. When $p=\infty, w: E_{1}^{2} \rightarrow E_{1}^{2}$ is bounded; in this case, the operator w is the restriction of the adjoint operator $V^{*}: E_{\infty}^{2 *} \rightarrow W_{\infty}^{(1)}(G)^{2 *}$ of V onto $E_{1}^{2} \subset E_{\infty}^{2 *}$.

Equation (2.3) can always be transformed into the following equivalent equation

$$
\begin{equation*}
V S h=Z \tag{4.4}
\end{equation*}
$$

with an unknown $h=\left(h_{1}, h_{0}\right) \in E_{p}^{2}$ by the transformation $U=S h$, where $S=N^{-1}$. If $U=S h$, then $U^{\prime}(x)=h_{1}(x), U(0)=h_{0}$. Hence, (4.2) can be rewritten as

$$
\begin{aligned}
f(V S h) & \equiv \int_{0}^{1} f_{1}(x)\left(V_{1} S h\right)(x) d x+f_{0}\left(V_{0} S h\right) \\
& =\int_{0}^{1}\left(w_{1} f\right)(\xi) h_{1}(\xi) d \xi+\left(w_{0} f\right) h_{0} \equiv(w f)(h) \forall f \in E_{q}^{2}, \quad \forall h \in E_{p}^{2}, \quad 1 \leq p \leq \infty
\end{aligned}
$$

Therefore, one of the operators $V S$ and w becomes an adjoint operator for the other one. Consequently, the equation

$$
\begin{equation*}
w f=\varphi \tag{4.5}
\end{equation*}
$$

with an unknown function $f=\left(f_{1}(x), f_{0}\right) \in E_{q}^{2}$ and a given function $\varphi=\left(\varphi_{1}(x), \varphi_{0}\right) \in E_{q}^{2}$ can be considered as an adjoint equation of (4.4) (or of (2.3)) for all $1 \leq p \leq \infty$, where

$$
\varphi_{1}=\left[\begin{array}{l}
\varphi_{1}^{1} \\
\varphi_{1}^{2}
\end{array}\right], \quad \varphi_{0}=\left[\begin{array}{l}
\varphi_{0}^{1} \\
\varphi_{0}^{2}
\end{array}\right] .
$$

Equation (4.5) can be written in explicit form as the system of equations

$$
\begin{align*}
\left(w_{1}^{1} f^{1}\right)(\xi) & =\varphi_{1}^{1}(\xi), \quad \xi \in G \\
w_{0}^{1} f^{1} & =\varphi_{0}^{1} \\
\left(w_{1}^{2} f^{2}\right)(\xi) & =\varphi_{1}^{2}(\xi), \quad \xi \in G \tag{4.6}\\
w_{0}^{2} f^{2} & =\varphi_{0}^{2}
\end{align*}
$$

By expressions (4.3), the first and third equations in (4.6) are the integral equations for $f_{1}^{1}(\xi), f_{1}^{2}(\xi)$, respectively, and include f_{0}^{1}, f_{0}^{2}, respectively, as parameters; on the other hand, the second and fourth equations in (4.6) are the algebraic equations for the unknowns f_{0}^{1}, f_{0}^{2}, respectively, and they include some integral functionals defined on $f_{1}^{1}(\xi), f_{1}^{2}(\xi)$, respectively. In other words, (4.6) is a system of four integro-algebraic equations. This system called the adjoint system for (4.4) (or (2.3)) is constructed by using (4.2) which is actually a formula of integration by parts in a nonclassical form. The traditional type of an adjoint problem is defined by the classical Green's formula of integration by parts [22], therefore, has a sense only for some restricted class of problems $[4,12,16,19]$.

The following theorem concerning with the solvability of the problem can be derived.
Theorem 4.1 ([4, 12, 16, 19]). If $1<p<\infty$, then $V U=0$ has either only the trivial solution or a finite number of linearly independent solutions in $W_{p}^{(1)}(G)^{2}$:
(1) If $V U=0$ has only the trivial solution in $W_{p}^{(1)}(G)^{2}$, then also $w f=0$ has only the trivial solution in E_{q}^{2}. Then the operators $V: W_{p}^{(1)}(G)^{2} \rightarrow E_{p}^{2}$ and $w: E_{q}^{2} \rightarrow E_{q}^{2}$ become linear homeomorphisms.
(2) If $V U=0$ has m linearly independent solutions $U_{1}, U_{2}, \ldots, U_{m}$ in $W_{p}^{(1)}(G)^{2}$, then $w f=0$ has also m linearly independent solutions

$$
f^{\star 1 \star}=\left(f_{1}^{\star 1 \star}(x), f_{0}^{\star 1 \star}\right), \ldots, f^{\star m \star}=\left(f_{1}^{\star m \star}(x), f_{0}^{\star m \star}\right)
$$

in E_{q}^{2}. In this case, (2.3) and (4.5) have solutions $U \in W_{p}^{(1)}(G)^{2}$ and $f \in E_{q}^{2}$ for the given $Z \in E_{p}^{2}$ and $\varphi \in E_{q}^{2}$ if and only if the conditions

$$
\int_{0}^{1} f_{1}^{\star i \star}(\xi) Z^{1}(\xi) d \xi+f_{0}^{\star i \star} Z^{0}=0, \quad i=1, \ldots, m
$$

and

$$
\int_{0}^{1} \varphi_{1}(\xi) U_{i}^{\prime}(\xi) d \xi+\varphi_{0} U_{i}(0)=0, \quad i=1, \ldots, m
$$

are satisfied, respectively.

5 Green's functional

Consider the equation in the form of a functional identity

$$
\begin{equation*}
(w f)(U)=U(x) \forall U \in W_{p}^{(1)}(G)^{2} \tag{5.1}
\end{equation*}
$$

where $f=\left(f_{1}(\xi), f_{0}\right) \in E_{q}^{2}$ is an unknown pair and $x \in \bar{G}$ is a parameter $[4,12,16,19]$.
Definition $5.1([4,12,16,19])$. Let $f(x)=\left(f_{1}(\xi, x), f_{0}(x)\right) \in E_{q}^{2}$ be a pair with parameter $x \in \bar{G}$. If $f=f(x)$ is a solution of (5.1) for a given $x \in \bar{G}$, then $f(x)$ is called Green's functional of V (or of (2.3)).

Theorem 5.1 ([4, 12, 16, 19]). If Green's functional $f(x)=\left(f_{1}(\xi, x), f_{0}(x)\right)$ of V exists, then any solution $U \in W_{p}^{(1)}(G)^{2}$ of (2.3) can be represented by

$$
U(x)=\int_{0}^{1} f_{1}(\xi, x) Z^{1}(\xi) d \xi+f_{0}(x) Z^{0}
$$

Additionally, $\operatorname{Ker} V=\{0\}$.

6 Conclusion

The proposed approach principally differs from the known classical construction methods of Green's function, it is based on the use of the structural properties of the space of solutions instead of the classical Green's formula of integration by parts, and it has a natural property which can be easily applied to a very wide class of linear and some nonlinear boundary value problems involving linear nonlocal nonclassical multi-point conditions with also integral-type terms. Because of these properties, it is one of the scarce methods which are aimed at the derivation of a solution to such problems by reducing to an integral equation in general. The proposed approach can successfully be employed also for the functional differential problems resulting from the addition of some delayed, loaded (forced) or neutral terms to the main operator as long as its linearity is conserved [6]. The work emphasizes as a significant result that the unique solvability of the stated problem arises in the unique solvability of the stated adjoint systems of integro-algebraic equations.

Acknowledgement

This work was partially supported by Namık Kemal University within The Supporting Programme For Participation To Scientific Activities.

References

[1] S. S. Akhiev, Representations of solutions of some linear operator equations. (Russian) Dokl. Akad. Nauk SSSR 251 (1980), no. 5, 1037-1040; translation in Sov. Math. Dokl. 21 (1980), no. 2, 555-558.
[2] S. S. Akhiev, Fundamental solutions of functional-differential equations and their representations. (Russian) Dokl. Akad. Nauk SSSR 275 (1984), no. 2, 273-276; translation in Sov. Math. Dokl. 29 (1984), 180-184.
[3] S. S. Akhiev, Solvability conditions and Green functional concept for local and nonlocal linear problems for a second order ordinary differential equation. Math. Comput. Appl. 9 (2004), no. 3, 349-358.
[4] S. S. Akhiev, Green and generalized Green's functionals of linear local and nonlocal problems for ordinary integro-differential equations. Acta Appl. Math. 95 (2007), no. 2, 73-93.
[5] S. S. Akhiev and K. Oruçoǧlu, Fundamental solutions of some linear operator equations and applications. Acta Appl. Math. 71 (2002), no. 1, 1-30.
[6] N. Azbelev, V. Maksimov and L. Rakhmatullina, Introduction to the Theory of Linear FunctionalDifferential Equations. Advanced Series in Mathematical Science and Engineering, 3. World Federation Publishers Company, Atlanta, GA, 1995.
[7] R. N. Bryan, A linear differential system with general linear boundary conditions. J. Differential Equations 5 (1969), 38-48.
[8] W. R. Jones, Differential systems with integral boundary conditions. J. Differential Equations 3 (1967), 191-202.
[9] L. V. Kantorovich and G. P. Akilov, Functional Analysis. Translated from the Russian by Howard L. Silcock. Second edition. Pergamon Press, Oxford-Elmsford, N.Y., 1982.
[10] S. G. Kreǐn, Linear Equations in a Banach Space. (Russian) Izdat. "Nauka", Moscow, 1971.
[11] S. G. Krě̌n, Linear Equations in Banach Spaces. Translated from the Russian by A. Iacob. With an introduction by I. Gohberg. Birkhäuser, Boston, Mass., 1982.
[12] K. Özen, Construction of Green or generalized Green's functional for some nonlocal boundary value problems. (Turkish) Ph.D. Thesis, İstanbul Technical University, İstanbul, Turkey, 2013.
[13] K. Özen, Green's functional for system of linear ordinary differential equations with general nonlocal condition. Book of Abstracts of the International Conference on Differential Equations Dedicated to the 110th Anniversary of Ya. B. Lopatynsky (ICL 110), pp. 97-98, Lviv, Ukraine, September 20-24, 2016.
[14] K. Özen, Construction of Green's functional for a third order ordinary differential equation with general nonlocal conditions and variable principal coefficient. Georgian Math. J. (submitted in February 2016, accepted).
[15] K. Özen, Green's functional to a higher order ode with general nonlocal conditions and variable principal coefficient, Ukrainian Math. J. (submitted in March 2016, revised in February 2017, in review).
[16] K. Özen and K. Orucoglu, A transformation technique for boundary value problem with linear nonlocal condition by Green's functional concept. In: D. Biolek and N. A. Baykara(Eds.), Advances in Systems Theory, Signal Processing and Computational Science. Proceedings of the 12th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC'12), Istanbul, Turkey, August 21-23, 2012, pp. 157-162, WSEAS Press, 2012.
[17] K. Özen and K. Oruçoğlu, A representative solution to m-order linear ordinary differential equation with nonlocal conditions by Green's functional concept. Math. Model. Anal. 17 (2012), no. 4, 571-588.
[18] K. Özen and K. Oruçoǧlu, Green's functional concept for a nonlocal problem. Hacet. J. Math. Stat. 42 (2013), no. 4, 437-446.
[19] K. Özen and K. Oruçoğlu, A novel approach to construct the adjoint problem for a first-order functional integro-differential equation with general nonlocal condition. Lith. Math. J. 54 (2014), no. 4, 482-502.
[20] G. Paukštaitė and A. Štikonas, Green's matrices for first order differential systems with nonlocal conditions. Math. Model. Anal. 22 (2017), no. 2, 213-227.
[21] Š. Schwabik, M. Tvrdý and O. Vejvoda, Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979.
[22] I. Stakgold, Green's Functions and Boundary Value Problems. Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1998.
[23] W. M. Whyburn, Differential equations with general boundary conditions. Bull. Amer. Math. Soc. 48 (1942), 692-704.
(Received 22.10.2017)

Authors' address:

Department of Mathematics, Namık Kemal University, Değirmenaltı, Tekirdag 59030, Turkey.
E-mail: kozen@nku.edu.tr

Memoirs on Differential Equations and Mathematical Physics

Volume 75, 2018, 139-149

Short Communication

Malkhaz Ashordia and Valida Sesadze

ON THE SOLVABILITY AND THE WELL-POSEDNESS OF THE MODIFIED CAUCHY PROBLEM FOR LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Abstract

Effective sufficient conditions are given for the unique solvability and for the so-called H -well-posedness of the modified Cauchy problem for linear systems of generalized ordinary differential equations with singularities.

2010 Mathematics Subject Classification: 34K06, 34A12, 34K26.
Key words and phrases: Linear systems of generalized ordinary differential equations, Kurzweil integral, singularities, modified Cauchy problem, unique solvability, well-posednss, effective sufficient conditions, spectral condition.

1 Statement of the problem and basic notation

Let $I \subset \mathbb{R}$ be an interval non-degenerate at the point, $t_{0} \in I$, and

$$
\left.I_{t_{0}}=I \backslash\left\{t_{0}\right\}, \quad I_{t_{0}}^{-}=\right]-\infty, t_{0}\left[\cap I, \quad I_{t_{0}}^{+}=\right] t_{0},+\infty[\cap I .
$$

Consider the linear system of generalized ordinary differential equations

$$
\begin{equation*}
d x=d A(t) \cdot x+d f(t) \text { for } t \in I_{t_{0}} \tag{1.1}
\end{equation*}
$$

where

$$
A=\left(a_{i k}\right)_{i, k=1}^{n} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right), \quad f=\left(f_{k}\right)_{k=1}^{n} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n}\right)
$$

Let $H=\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right): I_{t_{0}} \rightarrow \mathbb{R}^{n \times n}$ be arbitrary diagonal matrix-functions with continuous diagonal elements

$$
\left.h_{k}: I_{t_{0}} \rightarrow\right] 0,+\infty[(k=1, \ldots, n) .
$$

We consider the problem of finding a solution $x \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n}\right)$ of system (1.1) satisfying the modified Cauchy condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}-}\left(H^{-1}(t) x(t)\right)=0 \text { and } \lim _{t \rightarrow t_{0}+}\left(H^{-1}(t) x(t)\right)=0 . \tag{1.2}
\end{equation*}
$$

Along with system (1.1), consider the perturbed singular system

$$
\begin{equation*}
d y=d \widetilde{A}(t) \cdot y+d \widetilde{f}(t) \text { for } t \in I_{t_{0}} \tag{1.3}
\end{equation*}
$$

where

$$
\widetilde{A}=\left(\widetilde{a}_{i k}\right)_{i, k=1}^{n} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right), \quad \widetilde{f}=\left(\widetilde{f}_{k}\right)_{k=1}^{n} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n}\right)
$$

are, as above, the matrix- and vector-functions, respectively.
In the present paper, we give sufficient conditions for the unique solvability of problem (1.1), (1.2). Moreover, we investigate the question when the unique solvability of problem (1.1), (1.2) guarantees unique solvability of problem (1.3), (1.2) and, as well, the nearness of their solutions in the definite sense if the matrix-functions A and \widetilde{A} and the vector-functions f and \widetilde{f} are near, respectively.

The analogous problems for system of ordinary differential equations with singularities

$$
\begin{equation*}
\frac{d x}{d t}=P(t) x+q(t) \text { for } t \in I, \tag{1.4}
\end{equation*}
$$

where

$$
P \in L_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right), \quad q \in L_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n}\right),
$$

have been investigated in the papers [6-8].
The singularity of system (1.4) is considered in the sense that the matrix-function P and the vector-function q are, in general, not integrable at the point t_{0}. In general, a solution of problem (1.4), (1.2) is not continuous at the point t_{0} and, therefore, it cannot be a solution in the classical sense. But its restriction on every interval from $I_{t_{0}}$ is a solution of system (1.4). In this connection we give the example from [8].

Let $\alpha>0$ and $\varepsilon \in] 0, \alpha[$. Then the problem

$$
\frac{d x}{d t}=-\frac{\alpha x}{t}+\varepsilon|t|^{\varepsilon-1-\alpha}, \quad \lim _{t \rightarrow 0}\left(t^{\alpha} x(t)\right)=0
$$

has the unique solution $x(t)=|t|^{\varepsilon-\alpha} \operatorname{sgn} t$. This function is not a solution of the equation in the set $I=\mathbb{R}$, but its restrictions on $]-\infty, 0[$ and $] 0,+\infty[$ are the solutions of these equation.

The singularity of system (1.1) is considered in the sense that the matrix-function A and the vector-function f may have non-bounded total variation at the point t_{0}, i.e., on some closed interval $[a, b]$ from I such that $t_{0} \in[a, b]$.

As is known, such a problem for generalized differential system (1.1) has not been studied. So, the problem remains actual.

Some singular two-point boundary problems for generalized differential system (1.1) are investigated in [3-5].

To a considerable extent, the interest to the theory of generalized ordinary differential equations has also been stimulated by the fact that this theory enables one to study ordinary differential, impulsive and difference equations from a unified point of view (see [2-5, 10, 11] and the references therein).

In the paper the use will be made of the following notation and definitions.
$\mathbb{R}=]-\infty,+\infty\left[, \mathbb{R}_{+}=[0,+\infty[,[a, b]\right.$ and $] a, b[(a, b \in \mathbb{R})$ are, respectively, the closed and open intervals.
$\mathbb{R}^{n \times m}$ is the space of all real $n \times m$ matrices $X=\left(x_{i k}\right)_{i, k=1}^{n, m}$ with the norm $\|X\|=\max _{k=1, \ldots, m} \sum_{i=1}^{n}\left|x_{i k}\right|$.
If $X=\left(x_{i k}\right)_{i, k=1}^{n, m} \in \mathbb{R}^{n \times m}$, then $|X|=\left(\left|x_{i k}\right|\right)_{i, k=1}^{n, m},[X]_{+}=\frac{|X|+X}{2},[X]_{-}=\frac{|X|-X}{2}$.
$\mathbb{R}_{+}^{n \times m}=\left\{\left(x_{i k}\right)_{i, k=1}^{n, m}: x_{i k} \geq 0(i=1, \ldots, n ; k=1, \ldots, m)\right\}$.
$\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n} ; \mathbb{R}_{+}^{n}=\mathbb{R}_{+}^{n \times 1}$.
If $X \in \mathbb{R}^{n \times n}$, then X^{-1}, $\operatorname{det} X$ and $r(X)$ are, respectively, the matrix inverse to X, the determinant of X and the spectral radius of $X ; I_{n}$ is the identity $n \times n$-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components is such.

If $X: \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$ is a matrix-function, then $\bigvee_{a}^{b}(X)$ is the sum of total variations on $[a, b]$ of its components $x_{i k}(i=1, \ldots, n ; k=1, \ldots, m)$; if $a>b$, then we assume $\bigvee_{a}^{b}(X)=-\bigvee_{b}^{a}(X)$;
$X(t-)$ and $X(t+)$ are, respectively, the left and the right limits of the matrix-function $X:[a, b] \rightarrow$ $\mathbb{R}^{n \times m}$ at the point $t(X(a-)=X(a), X(b+)=X(b))$.
$d_{1} X(t)=X(t)-X(t-), d_{2} X(t)=X(t+)-X(t)$.
$\mathrm{BV}\left([a, b], \mathbb{R}^{n \times m}\right)$ is the set of all bounded variation matrix-functions $X:[a, b] \rightarrow \mathbb{R}^{n \times m}$ (i.e., such that $\left.\bigvee^{b}(X)<\infty\right)$.
$\stackrel{a}{V}_{l o c}(J ; D)$, where $J \subset \mathbb{R}$ is an interval and $D \subset \mathbb{R}^{n \times m}$, is the set of all $X: J \rightarrow D$ whose restriction on $[a, b]$ belongs to $\mathrm{BV}([a, b] ; D)$ for every closed interval $[a, b]$ from J.
$\mathrm{BV}_{l o c}\left(I_{t_{0}} ; D\right)$ is the set of all $X: I \rightarrow D$ whose restriction on $[a, b]$ belongs to $\mathrm{BV}([a, b] ; D)$ for every closed interval $[a, b]$ from $I_{t_{0}}$.

Everywhere we assume that $a_{1} \in I_{t_{0}}^{-}$and $a_{2} \in I_{t_{0}}^{+}$are some fixed points.
If $X \in \mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}^{n \times m}\right)$, then $V(X)(t)=\left(v\left(x_{i k}\right)(t)\right)_{i, k=1}^{n, m}$ for $t \in I_{t_{0}}$, where $v\left(x_{i k}\right)\left(a_{j}\right)=0$, $v\left(x_{i k}\right)(t) \equiv \bigvee_{a_{j}}^{t}\left(x_{i k}\right)$ for $\left(t-t_{0}\right)\left(a_{j}-t_{0}\right)>0(j=1,2)$.

$$
[X(t)]_{+}^{v} \equiv \frac{V(X)(t)+X(t)}{2},[X(t)]_{-}^{v} \equiv \frac{V(X)(t)-X(t)}{2} .
$$

s_{1}, s_{2}, s_{c} and $\mathcal{J}: \mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}\right) \rightarrow \mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}\right)$ are the operators defined, respectively, by

$$
\begin{gathered}
s_{1}(x)\left(a_{j}\right)=s_{2}(x)\left(a_{j}\right)=0, \quad s_{c}(x)\left(a_{j}\right)=x\left(a_{j}\right) \\
s_{1}(x)(t)=s_{1}(x)(s)+\sum_{s<\tau \leq t} d_{1} x(\tau), \quad s_{2}(x)(t)=s_{2}(x)(s)+\sum_{s \leq \tau<t} d_{2} x(\tau) \\
s_{c}(x)(t)=s_{c}(x)(s)+x(t)-x(s)-\sum_{j=1}^{2}\left(s_{j}(x)(t)-s_{j}(x)(s)\right)
\end{gathered}
$$

$$
\text { for } s<t<t_{0} \text { if } a_{j}<t_{0} \text { and for } t_{0}<s<t \text { if } a_{j}>t_{0} \quad(j=1,2)
$$

and

$$
\begin{gathered}
\mathcal{J}(x)\left(a_{j}\right)=x\left(a_{j}\right), \\
\mathcal{J}(x)(t)=\mathcal{J}(x)(s)+s_{c}(x)(t)-s_{c}(x)(s)-\sum_{s<\tau \leq t} \ln \left|1-d_{1} x(\tau)\right|+\sum_{s \leq \tau<t} \ln \left|1+d_{2} x(\tau)\right| \\
\text { for } s<t<t_{0} \text { if } a_{j}<t_{0} \text { and for } t_{0}<s<t<t_{0} \text { if } a_{j}>t_{0} \quad(j=1,2) .
\end{gathered}
$$

If $X \in \mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}^{n \times n}\right), \operatorname{det}\left(I_{n}+(-1)^{j} d_{j} X(t)\right) \neq 0$ for $t \in I_{t_{0}}(j=1,2)$, and $Y \in \mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}^{n \times m}\right)$, then

$$
\begin{gathered}
\mathcal{A}(X, Y)\left(a_{j}\right)=O_{n \times m} \\
\mathcal{A}(X, Y)(t)-\mathcal{A}(X, Y)(s)=Y(t)-Y(s)+\sum_{s<\tau \leq t} d_{1} X(\tau) \cdot\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau) \\
-\sum_{s \leq \tau<t} d_{2} X(\tau) \cdot\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau)
\end{gathered}
$$

for $s<t<t_{0}$ if $a_{j}<t_{0}$ and for $t_{0}<s<t<t_{0}$ if $a_{j}>t_{0} \quad(j=1,2)$.
If $g:[a, b] \rightarrow \mathbb{R}$ is a nondecreasing function, $x:[a, b] \rightarrow \mathbb{R}$ and $a \leq s<t \leq b$, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{] s, t[} x(\tau) d s_{c}(g)(\tau)+\sum_{s<\tau \leq t} x(\tau) d_{1} g(\tau)+\sum_{s \leq \tau<t} x(\tau) d_{2} g(\tau)
$$

where $\int_{] s, t[} x(\tau) d s_{c}(g)(\tau)$ is the Lebesgue-Stieltjes integral over the open interval $] s, t[$ with respect to the measure $\mu_{0}\left(s_{c}(g)\right)$ corresponding to the function $s_{c}(g)$. If $a=b$, then we assume $\int_{a}^{b} x(t) d g(t)=0$, and if $a>b$, then $\int_{a}^{b} x(t) d g(t)=-\int_{b}^{a} x(t) d g(t)$. So, $\int_{s}^{t} x(\tau) d g(\tau)$ is the Kurzweil integral [9-11].

Moreover, we put

$$
\int_{s}^{t+} x(\tau) d g(\tau)=\lim _{\delta \rightarrow 0+} \int_{s}^{t+\delta} x(\tau) d g(\tau), \quad \int_{s}^{t-} x(\tau) d g(\tau)=\lim _{\delta \rightarrow 0+} \int_{s}^{t-\delta} x(\tau) d g(\tau)
$$

If $g(t) \equiv g_{1}(t)-g_{2}(t)$, where g_{1} and g_{2} are nondecreasing functions, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{s}^{t} x(\tau) d g_{1}(\tau)-\int_{s}^{t} x(\tau) d g_{2}(\tau) \text { for } s, t \in \mathbb{R}
$$

If $G=\left(g_{i k}\right)_{i, k=1}^{l, n}:[a, b] \rightarrow \mathbb{R}^{l \times n}$ is a nondecreasing matrix-function and $X=\left(x_{k j}\right)_{k, j=1}^{n, m}:[a, b] \rightarrow$ $\mathbb{R}^{n \times m}$, then

$$
\begin{gathered}
\int_{s}^{t} d G(\tau) \cdot X(\tau)=\left(\sum_{k=1}^{n} \int_{s}^{t} x_{k j}(\tau) d g_{i k}(\tau)\right)_{i, j=1}^{l, m} \text { for } a \leq s \leq t \leq b \\
S_{c}(G)(t) \equiv\left(s_{c}\left(g_{i k}\right)(t)\right)_{i, k=1}^{l, n}, \quad S_{j}(G)(t) \equiv\left(s_{j}\left(g_{i k}\right)(t)\right)_{i, k=1}^{l, n} \quad(j=1,2)
\end{gathered}
$$

If $G_{j}:[a, b] \rightarrow \mathbb{R}^{l \times n}(j=1,2)$ are nondecreasing matrix-functions, $G=G_{1}-G_{2}$ and $X:[a, b] \rightarrow$ $\mathbb{R}^{n \times m}$, then

$$
\begin{gathered}
\int_{s}^{t} d G(\tau) \cdot X(\tau)=\int_{s}^{t} d G_{1}(\tau) \cdot X(\tau)-\int_{s}^{t} d G_{2}(\tau) \cdot X(\tau) \text { for } s, t \in \mathbb{R} \\
S_{c}(G)=S_{c}\left(G_{1}\right)-S_{c}\left(G_{2}\right), \quad S_{j}(G)=S_{j}\left(G_{1}\right)-S_{j}\left(G_{2}\right) \quad(j=1,2)
\end{gathered}
$$

A vector-function $x: I_{t_{0}} \rightarrow \mathbb{R}^{n}$ is said to be a solution of system (1.1) if $x \in \mathrm{BV}\left([a, b], \mathbb{R}^{n}\right)$ for every closed interval $[a, b]$ from $I_{t_{0}}$ and

$$
x(t)=x(s)+\int_{s}^{t} d A(\tau) \cdot x(\tau)+f(t)-f(s) \text { for } \quad a \leq s<t \leq b
$$

We assume that

$$
\operatorname{det}\left(I_{n}+(-1)^{j} d_{j} A(t)\right) \neq 0 \quad \text { for } \quad t \in I_{t_{0}} \quad(j=1,2)
$$

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding nonsingular systems (see [9-11]), i.e., for the case when $A \in \mathrm{BV}_{l o c}\left(I, \mathbb{R}^{n \times n}\right)$ and $f \in \mathrm{BV}_{l o c}\left(I, \mathbb{R}^{n}\right)$.

Let the matrix-function $A_{0} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right)$ be such that

$$
\begin{equation*}
\operatorname{det}\left(I_{n}+(-1)^{j} d_{j} A_{0}(t)\right) \neq 0 \text { for } t \in I_{t_{0}}(j=1,2) \tag{1.5}
\end{equation*}
$$

Then a matrix-function $C_{0}: I_{t_{0}} \times I_{t_{0}} \rightarrow \mathbb{R}^{n \times n}$ is said to be the Cauchy matrix of the generalized differential system

$$
\begin{equation*}
d x=d A_{0}(t) \cdot x \tag{1.6}
\end{equation*}
$$

if for every interval and $J \subset I$ and $\tau \in J$, the restriction of the matrix-function $C_{0}(., \tau): I_{t_{0}} \rightarrow \mathbb{R}^{n \times n}$ on J is the fundamental matrix of system (1.6) satisfying the condition

$$
C_{0}(\tau, \tau)=I_{n}
$$

Therefore, C_{0} is the Cauchy matrix of system (1.6) if and only if the restriction of C_{0} on every interval $J \times J$ is the Cauchy matrix of the system in the sense of definition given in [11].

We assume

$$
I_{t_{0}}^{-}(\delta)=\left[t_{0}-\delta, t_{0}\left[\cap I_{t_{0}}, \quad I_{t_{0}}^{+}(\delta)=\right] t_{0}, t_{0}+\delta\right] \cap I_{t_{0}}, \quad I_{t_{0}}(\delta)=I_{t_{0}}^{-}(\delta) \cup I_{t_{0}}^{+}(\delta)
$$

for every $\delta>0$.

2 Existence and uniqueness of solutions of the Cauchy problem

In this section we give sufficient conditions for the unique solvability of problem (1.1), (1.2).
Theorem 2.1. Let there exist a matrix-function $A_{0} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right)$ and constant matrices B_{0} and B from $\mathbb{R}_{+}^{n \times n}$ such that conditions (1.5) and

$$
\begin{equation*}
r(B)<1 \tag{2.1}
\end{equation*}
$$

hold, and the estimates

$$
\begin{equation*}
\left|C_{0}(t, \tau)\right| \leq H(t) B_{0} H^{-1}(\tau) \quad \text { for } \quad t \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0, \quad\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \tag{2.2}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\int_{t_{0} \mp}^{t}\right| C_{0}(t, \tau)\left|d V\left(\mathcal{A}\left(A_{0}, A-A_{0}\right)(\tau)\right) \cdot H(\tau)\right| \leq H(t) B \\
\quad \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively, } \tag{2.3}
\end{gather*}
$$

are valid for some $\delta>0$, where C_{0} is the Cauchy matrix of system (1.4). Let, moreover, respectively,

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp}\left\|\int_{t_{0} \mp}^{t} H^{-1}(\tau)\left|C_{0}(t, \tau)\right| d V\left(\mathcal{A}\left(A_{0}, f\right)\right)(\tau)\right\|=0 . \tag{2.4}
\end{equation*}
$$

Then problem (1.1), (1.2) has the unique solution.
Theorem 2.2. Let there exist a constant matrix $B=\left(b_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}_{+}^{n \times n}$ such that conditions (2.1) and

$$
\begin{align*}
& {\left[(-1)^{j} d_{j} a_{i i}(t)\right]_{+}>-1 \text { for } t<t_{0}(j=1,2 ; i=1, \ldots, n)} \\
& {\left[(-1)^{j} d_{j} a_{i i}(t)\right]_{-}<1 \text { for } t>t_{0} \quad(j=1,2 ; i=1, \ldots, n)} \tag{2.5}
\end{align*}
$$

hold, and the estimates

$$
\begin{align*}
& \left|c_{i}(t, \tau)\right| \leq b_{0} \frac{h_{i}(t)}{h_{i}(\tau)} \text { for } t \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0,\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i=1, \ldots, n), \tag{2.6}\\
& \left|\int_{t_{0} \mp}^{t} c_{i}(t, \tau) h_{i}(\tau) d\left[a_{i i}(\tau) \operatorname{sgn}\left(\tau-t_{0}\right)\right]_{+}^{v}\right| \\
& \leq b_{i i}(t) h_{i}(t) \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i=1, \ldots, n) \tag{2.7}
\end{align*}
$$

and

$$
\begin{array}{r}
\quad\left|\int_{t_{0} \mp}^{t} c_{i}(t, \tau) h_{k}(\tau) d V\left(\mathcal{A}\left(a_{0 i i}, a_{i k}\right)\right)(\tau)\right| \leq b_{i k}(t) h_{i}(t) \\
\text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i \neq k ; i, k=1, \ldots, n) \tag{2.8}
\end{array}
$$

are valid for some $b_{0}>0$ and $\delta>0$. Let, moreover, respectively,

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp} \int_{t_{0} \mp}^{t} \frac{c_{i}(t, \tau)}{h_{i}(t)} d V\left(\mathcal{A}\left(a_{0 i i}, f_{i}\right)\right)(\tau)=0(i=1, \ldots, n) \tag{2.9}
\end{equation*}
$$

where $a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n)$ and c_{i} is the Cauchy function of the equation $d x=x d a_{0 i i}(t)$ for $i \in\{1, \ldots, n\}$. Then problem (1.1), (1.2) has the unique solution.

Remark 2.1. The Cauchy functions $c_{i}(t, \tau)(i=1, \ldots, n)$, mentioned in the theorem, for $t, \tau \in I_{t_{0}}^{-}$ and $t, \tau \in I_{t_{0}}^{+}$, have the form

$$
c_{i}(t, \tau)=\left\{\begin{array}{cl}
\exp \left(s_{0}\left(a_{0 i i}\right)(t)-s_{0}\left(a_{0 i i}\right)(\tau)\right) \prod_{\tau<s \leq t}\left(1-d_{1} a_{0 i i}(s)\right)^{-1} \prod_{\tau \leq s<t}\left(1+d_{2} a_{0 i i}(s)\right) & \text { for } t>\tau \\
\exp \left(s_{0}\left(a_{0 i i}\right)(t)-s_{0}\left(a_{0 i i}\right)(\tau)\right) \prod_{t<s \leq \tau}\left(1-d_{1} a_{0 i i}(s)\right) \prod_{t \leq s<\tau}\left(1+d_{2} a_{0 i i}(s)\right)^{-1} & \text { for } t<\tau \\
1 & \text { for } t=\tau
\end{array}\right.
$$

Corollary 2.1. Let there exist a constant matrix $B=\left(b_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}_{+}^{n \times n}$ such that conditions (2.1) and (2.5) hold, and the estimates

$$
\begin{align*}
& \left|\int_{t_{0} \mp}^{t}\right| \tau-t_{0}\left|d\left[a_{i i}(\tau) \operatorname{sgn}\left(\tau-t_{0}\right)\right]_{+}^{v}\right| \\
& \leq b_{i i}\left|t-t_{0}\right| \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta) \text {, respectively }(i=1, \ldots, n) \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\int_{t_{0} \mp}^{t}\right| \tau-t_{0}\left|d V\left(\mathcal{A}\left(a_{0 i i}, a_{i k}\right)\right)(\tau)\right| \\
& \quad \leq b_{i k}\left|t-t_{0}\right| \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i \neq k ; i, k=1, \ldots, n) \tag{2.11}
\end{align*}
$$

are valid for some $\delta>0$. Let, moreover, respectively,

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp} \frac{1}{\left|t-t_{0}\right|}\left|\bigvee_{t_{0}}^{t}\left(\mathcal{A}\left(a_{0 i i}, f_{i}\right)\right)(\tau)\right|=0 \quad(i=1, \ldots, n) \tag{2.12}
\end{equation*}
$$

where $\left.a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n)$. Then system (1.1) has the unique solution satisfying the initial condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp} \frac{\|x(t)\|}{t-t_{0}}=0 \tag{2.13}
\end{equation*}
$$

Remark 2.2. In Corollary 2.2, if the estimates

$$
\left|\int_{s}^{t}\right| \tau-t_{0}\left|d\left[a_{i i}(\tau) \operatorname{sgn}\left(\tau-t_{0}\right)\right]_{+}^{v}\right| \leq b_{i i}|t-s|
$$

for $t, s \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(s-t_{0}\right)>0, \quad\left|s-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i=1, \ldots, n)$
and

$$
\left|\int_{s}^{t}\right| \tau-t_{0}\left|d V\left(\mathcal{A}\left(a_{0 i i}, a_{i k}\right)\right)(\tau)\right| \leq b_{i k}|t-s|
$$

$$
\text { for } t, s \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(s-t_{0}\right)>0, \quad\left|s-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i \neq k ; i, k=1, \ldots, n)
$$

hold instead of (2.10) and (2.11), respectively, then the solution of problem (1.1), (2.13) belongs to $\mathrm{BV}_{\text {loc }}\left(I, \mathbb{R}^{n}\right)$.

Corollary 2.2. Let conditions (2.5) and

$$
\begin{gather*}
\mathcal{J}\left(a_{0 i i}\right)(t)-\mathcal{J}\left(a_{0 i i}\right)(\tau) \leq-\lambda_{i} \ln \frac{t-t_{0}}{\tau-t_{0}}+a_{i i}^{*}(t)-a_{i i}^{*}(\tau) \\
\text { for } t, \tau \in I_{t_{0}}, \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0, \quad\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i=1, \ldots, n) \tag{2.14}
\end{gather*}
$$

hold, where $a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n), \lambda_{i} \geq 0(i=1, \ldots, n), a_{i i}^{*}$ $(i=1, \ldots, n)$ are nondecreasing functions on the intervals $I_{t_{0}}^{-}$and $I_{t_{0}}^{+}$. Let, moreover,

$$
\left|\int_{t_{0} \mp}^{t}\right| \tau-\left.t_{0}\right|^{\lambda_{i}-\lambda_{k}} d V\left(\mathcal{A}\left(a_{0 i i}, a_{i k}\right)\right)(\tau) \mid<+\infty
$$

$$
\begin{equation*}
\text { for } t \in I_{t_{0}}^{-} \text {and } t \in I_{t_{0}}^{+}, \quad \text { respectively }(i \neq k ; i, k=1, \ldots, n) \text {, } \tag{2.15}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\int_{t_{0} \mp}^{t}\right| \tau-\left.t_{0}\right|^{\lambda_{i}} d V\left(\mathcal{A}\left(a_{0 i i}, f_{i}\right)\right)(\tau) \mid<+\infty \\
\text { for } t \in I_{t_{0}}^{-} \text {and } t \in I_{t_{0}}^{+}, \text {respectively }(i=1, \ldots, n) \tag{2.16}
\end{gather*}
$$

Then system (1.1) has the unique solution satisfying the initial condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp}\left(\left|t-t_{0}\right|^{\lambda_{i}} x_{i}(t)\right)=0 \quad(i=1, \ldots, n) . \tag{2.17}
\end{equation*}
$$

3 Well-posedness of the Cauchy problem

Let $\left.I_{t_{0} t}=\right] \min \left\{t_{0}, t\right\}, \max \left\{t_{0}, t\right\}[$ for $t \in I$.
Definition 3.1. Problem (1.1), (1.2) is said to be H-well-posed if it has the unique solution x and for every $\varepsilon>0$ there exists $\eta>0$ such that problem (1.3), (1.2) has the unique solution y and the estimate

$$
\|H(t)(x(t)-y(t))\|<\varepsilon \text { for } t \in I
$$

holds for every $\widetilde{A} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right)$ and $\tilde{f} \in \mathrm{BV}_{l o c}\left(I_{t_{0}}, \mathbb{R}^{n}\right)$ such that

$$
\begin{aligned}
& \operatorname{det}\left(I_{n}+(-1)^{j} d_{j} \widetilde{A}(t)\right) \neq 0 \text { for } t \in I_{t_{0}} \quad(j=1,2) \\
& \left\|\int_{t_{0} \mp}^{t} H^{-1}(s) d V(\widetilde{A}-A)(s) \cdot H(s)\right\|+\sum_{j=1}^{2}\left\|\sum_{\tau \in I_{t_{0} t}} H^{-1}(\tau)\left|d_{j}(\widetilde{A}-A)(\tau)\right| H(\tau)\right\|<\eta \\
& \quad \text { for } t \in I_{t_{0}}^{-} \text {and } t \in I_{t_{0}}^{+}, \quad \text { respectively } \quad(\mathrm{j}=1,2),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\int_{t_{0} \mp}^{t} H^{-1}(s) d V(\tilde{f}-f)(s) \cdot H(s)\right\|+\sum_{j=1}^{2}\left\|\sum_{\tau \in I_{t_{0} t}} H^{-1}(\tau)\left|d_{j}(\widetilde{f}-f)(\tau)\right| H(\tau)\right\|<\eta \\
& \quad \text { for } t \in I_{t_{0}}^{-} \text {and } t \in I_{t_{0}}^{+}, \quad \text { respectively } \quad(\mathrm{j}=1,2)
\end{aligned}
$$

Theorem 3.1. Let I be a closed interval and there exist a matrix-function $A_{0} \in \mathrm{BV}_{\text {loc }}\left(I_{t_{0}}, \mathbb{R}^{n \times n}\right)$ and constant matrices B_{0} and B from $\mathbb{R}_{+}^{n \times n}$ such that conditions (1.5), (2.1) hold and estimates (2.2),

$$
\begin{aligned}
& \left|C_{0}(t, \tau)\right|\left|d_{j} A_{0}(\tau)\left(I_{n}+(-1)^{j} d_{j} A_{0}(\tau)\right)^{-1}\right| \leq H(t) B_{0} H^{-1}(\tau) \\
& \quad \text { for } t \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0, \quad\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \quad(j=1,2)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\int_{t_{0} \mp}^{t}\left|C_{0}(t, \tau)\right| d V(A)(s) \cdot H(s)\right\| \\
& \quad+\quad \sum_{j=1}^{2}\left\|\sum _ { l \in I _ { t _ { 0 } t } } \left|C_{0}(t, \tau)\left\|d_{j} A_{0}(\tau) \cdot\left(I_{n}+(-1)^{j} d_{j} A_{0}(\tau)\right)^{-1}| | d_{j} A(\tau) \mid H(\tau)\right\|<\eta\right.\right.
\end{aligned}
$$

for $t \in I_{t_{0}}^{-}$and $t \in I_{t_{0}}^{+}$, respectively,
are valid for some $\delta>0$, where C_{0} is the Cauchy matrix of system (1.6). Let, moreover, respectively,

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0} \mp}\left(\left\|\int_{t_{0} \mp}^{t} H^{-1}(t)\left|C_{0}(t, \tau)\right| d V(f)(\tau)\right\|\right. \\
&\left.+\sum_{j=1}^{2}\left\|\sum_{l \in I_{t_{0} t}} H^{-1}(t)\left|C_{0}(t, \tau)\right|\left|d_{j} A_{0}(\tau) \cdot\left(I_{n}+(-1)^{j} d_{j} A_{0}(\tau)\right)^{-1}\right|\left|d_{j} f(\tau)\right|\right\|\right)=0
\end{aligned}
$$

Then problem (1.1), (1.2) is H-well-posed.
Theorem 3.2. Let I be a closed interval and there exist a constant matrix $B=\left(b_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}_{+}^{n \times n}$ such that conditions (2.1), (2.5) hold and estimates (2.6), (2.7),

$$
\begin{aligned}
&\left|c_{i}(t, \tau)\right|\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right| \leq b_{0} \frac{h_{i}(t)}{h_{i}(\tau)} \\
& \text { for } t \in I_{t_{0}}(\delta), \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0, \quad\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i=1, \ldots, n ; j=1,2)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\int_{t_{0} \mp}^{t}\right| c_{i}(t, \tau)\left|h_{k}(\tau) d v\left(a_{i k}\right)(\tau)\right| \\
& \quad+\sum_{j=1}^{2}\left|\sum_{\tau \in I_{t_{0} t}}\right| c_{i}(t, \tau)| | d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}| | d_{j} a_{i k}(\tau)\left|h_{i}(\tau)\right| \leq b_{i k} h_{i}(t) \\
& \quad \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i \neq k ; i, k=1, \ldots, n)
\end{aligned}
$$

are valid for some $b_{0}>0$ and $\delta>0$. Let, moreover, respectively,

$$
\begin{aligned}
\lim _{t \rightarrow t_{0} \mp}\left(\mid \int_{t_{0} \mp}^{t}\right. & \left.\frac{\left|c_{i}(t, \tau)\right|}{h_{i}(t)} d v\left(f_{i}\right)(\tau) \right\rvert\, \\
& \left.+\sum_{j=1}^{2} \sum_{\tau \in I_{t_{0} t}} \frac{\left|c_{i}(t, \tau)\right|}{h_{i}(t)}\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right|\left|d_{j} f_{i}(\tau)\right|\right)=0 \quad(i=1, \ldots, n)
\end{aligned}
$$

where $a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n)$, and c_{i} is the Cauchy function of the equation $d x=x d a_{0 i i}(t)$ for $i \in\{1, \ldots, n\}$. Then problem (1.1), (1.2) is H-well-posed.

Corollary 3.1. Let I be a closed interval and there exist a constant matrix $B=\left(b_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}_{+}^{n \times n}$
such that conditions (2.1) and (2.5) hold, and the estimates

$$
\begin{gather*}
\mathcal{J}\left(a_{0 i i}\right)(t)-\mathcal{J}\left(a_{0 i i}\right)(\tau) \leq \mu_{i} \ln \frac{t-t_{0}}{\tau-t_{0}} \\
\text { for } t, \tau \in I_{t_{0}}, \quad\left(t-t_{0}\right)\left(\tau-t_{0}\right)>0,\left|\tau-t_{0}\right| \leq\left|t-t_{0}\right| \quad(i=1, \ldots, n), \tag{3.1}\\
\lim _{\tau \rightarrow t_{0} \mp}\left|\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{+}^{v}-\left[a_{i i}(\tau) \operatorname{sgn}\left(\tau-t_{0}\right)\right]_{+}^{v}\right| \\
\leq b_{i i} \text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \quad \text { respectively }(i=1, \ldots, n)
\end{gather*}
$$

and

$$
\begin{gathered}
\lim _{\tau \rightarrow t_{0} \mp}\left|v\left(a_{i k}\right)(t)-v\left(a_{i k}\right)(\tau)+\sum_{j=1}^{2} \sum_{s \in I_{t_{0} \tau}}\right| d_{j} a_{0 i i}(s) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(s)\right)^{-1}| | d_{j} a_{i k}(s) \mid \leq b_{i k} \\
\text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i \neq k ; i, k=1, \ldots, n)
\end{gathered}
$$

are valid for some $\mu_{i} \geq 0(i=1, \ldots, n)$ and $\delta>0$, where $a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)$ $(i=1, \ldots, n)$. Let, moreover, respectively,

$$
\begin{aligned}
\lim _{t \rightarrow t_{0} \mp}(\mid & \left.\int_{t_{0} \mp}^{t} \frac{1}{\left|\tau-t_{0}\right|^{\mu_{i}}} d v\left(f_{i}\right)(\tau) \right\rvert\, \\
& \left.\quad+\sum_{j=1}^{2} \sum_{\tau \in I_{t_{0} \tau}} \frac{1}{\left|\tau-t_{0}\right|^{\mu_{i}}}\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right|\left|d_{j} f_{i}(\tau)\right|\right)=0 \quad(i=1, \ldots, n) .
\end{aligned}
$$

Then system (1.1) under the condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp} \frac{x_{i}(t)}{\left|t-t_{0}\right|^{\mu_{i}}}=0 \quad(i=1, \ldots, n) \tag{3.2}
\end{equation*}
$$

is H-well-posed.
Remark 3.1. Let, in addition to the conditions of Corollary 3.1, the condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp} \sup \xi_{j i}(t)<+\infty(j=1,2 ; i=1, \ldots, n) \tag{3.3}
\end{equation*}
$$

hold, where

$$
\begin{equation*}
\left.\xi_{j i}(t)=\sum_{\tau \in I_{t j}} \sum_{k=1}^{n}\left|\tau-t_{0}\right|^{\mu_{k}}\left|d_{j} a_{i k}(\tau)\right|+\left|d_{j} f_{i}(\tau)\right| \text { for } t \in I_{t_{0}} \cap\right] a_{1}, a_{2}[(j=1,2 ; i=1, \ldots, n), \tag{3.4}
\end{equation*}
$$

$\left.\left.I_{t 1}=\right] a_{1}, t\right]$ and $I_{t 2}=\left[a_{1}, t\left[\right.\right.$ for $\left.\left.a_{1}<t<t_{0}, I_{t 1}=\right] t, a_{2}\right]$ and $I_{t 2}=\left[t, a_{2}\left[\right.\right.$ for $t_{0}<t<a_{2}$. Then the solution of problem $(1.1),(3.2)$ belongs to $\operatorname{BV}_{l o c}\left(I, \mathbb{R}^{n}\right)$.

Corollary 3.2. Let I be a closed interval and there exist a constant matrix $B=\left(b_{i k}\right)_{i, k=1}^{n} \in \mathbb{R}_{+}^{n \times n}$ such that conditions (2.1) and (2.5) hold, and estimates (2.10), (3.1) for $\mu_{i}=0(i=1, \ldots, n)$ and

$$
\left.\left|\int_{t_{0} \mp}^{t}\right| \tau-t_{0} \mid d v\left(a_{i k}\right)\right)(\tau)\left|+\sum_{j=1}^{2} \sum_{\tau \in I_{t_{0} t}}\right| \tau-t_{0}| | d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}| | d_{j} a_{i k}(\tau)\left|\leq b_{i k}\right| t-t_{0} \mid
$$

$$
\text { for } t \in I_{t_{0}}^{-}(\delta) \text { and } t \in I_{t_{0}}^{+}(\delta), \text { respectively }(i \neq k ; i, k=1, \ldots, n)
$$

are valid for some $\delta>0$, where $a_{0 i i}(t) \equiv-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n)$. Let, moreover, respectively,

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0} \mp} \frac{1}{\left|t-t_{0}\right|}\left(\left|v\left(f_{i}\right)(t)-v\left(f_{i}\right)\left(t_{0} \mp\right)\right|\right. \\
& \left.+\sum_{j=1}^{2} \sum_{\tau \in I_{t_{0} \tau}}\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right|\left|d_{j} f_{i}(\tau)\right|\right)=0 \quad(i=1, \ldots, n) .
\end{aligned}
$$

Then problem (1.1), (2.13) is H-well-posed.
Remark 3.2. Let, in addition to the conditions of Corollary 3.2, condition (3.3) hold, where the functions $\xi_{j i}(j=1,2 ; i=1, \ldots, n)$ are defined by $(3.4), \mu_{i}=1(i=1, \ldots, n)$, and the intervals $I_{t j}(j=1,2)$ are defined as in Remark 3.1. Then the solution of problem (1.1), (2.13) belongs to $\mathrm{BV}_{l o c}\left(I, \mathbb{R}^{n}\right)$.

Corollary 3.3. Let I be a closed interval and let conditions (2.5) and (2.14) hold, where $a_{0 i i}(t) \equiv$ $-\left[a_{i i}(t) \operatorname{sgn}\left(t-t_{0}\right)\right]_{-}^{v} \operatorname{sgn}\left(t-t_{0}\right)(i=1, \ldots, n), \lambda_{i} \geq 0(i=1, \ldots, n)$, and the functions $a_{i i}^{*}(t) \operatorname{sgn}\left(t-t_{0}\right)$ $(i=1, \ldots, n)$ are nondecreasing on the interval I. Let, moreover,

$$
\begin{aligned}
& \left.\left.\left|\int_{t_{0} \mp}^{t}\right| \tau-\left.t_{0}\right|^{\lambda_{i}-\lambda_{k}} d v\left(a_{i k}\right)\right) \tau\right) \mid \\
& \quad+\sum_{j=1}^{2}\left|\sum_{\tau \in I_{t_{0} t}}\right| \tau-\left.t_{0}\right|^{\lambda_{i}-\lambda_{k}}\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right|\left|d_{j} a_{i k}(\tau)\right| \mid<+\infty \\
& \quad \text { for } t \in I_{t_{0}}^{+} \text {and } t \in I_{t_{0}}^{-}, \text {respectively }(i \neq k ; i, k=1, \ldots, n)
\end{aligned}
$$

and

$$
\begin{array}{r}
\left.\left|\int_{t_{0} \mp}^{t}\right| \tau-\left.t_{0}\right|^{\lambda_{i}} d v\left(f_{i}\right)\right)(\tau)\left|+\sum_{j=1}^{2} \sum_{\tau \in I_{t_{0} t}}\right| \tau-\left.t_{0}\right|^{\lambda_{i}-\lambda_{k}}\left|d_{j} a_{0 i i}(\tau) \cdot\left(1+(-1)^{j} d_{j} a_{0 i i}(\tau)\right)^{-1}\right|\left|d_{j} f_{i}(\tau)\right|<+\infty \\
\text { for } t \in I_{t_{0}}^{-} \text {and } t \in I_{t_{0}}^{+}, \text {respectively }(i=1, \ldots, n) .
\end{array}
$$

Then system (1.1) under the condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{0} \mp}\left(\left|t-t_{0}\right|^{\lambda_{i}} x_{i}(t)\right)=0 \quad(i=1, \ldots, n) \tag{3.5}
\end{equation*}
$$

is H-well-posed.
Remark 3.3. Let the conditions of Corollary (3.3) hold, where $\lambda_{i}=0(i=1, \ldots, n)$. Let, in addition, condition (3.3) hold, where the functions $\xi_{j i}(j=1,2 ; i=1, \ldots, n)$ are defined by (3.4), $\mu_{i}=0(i=1, \ldots, n)$, and the intervals $I_{t j}(j=1,2)$ are defined as in Remark 3.1. Then the solution of problem (1.1), (3.5) belongs to $\mathrm{BV}_{l o c}\left(I, \mathbb{R}^{n}\right)$.

Remark 3.4. In Remarks 3.1-3.3, condition (3.3) is essential, i.e., if the condition is violated, then the conclusion of our remarks are not true. Below, we reduce the corresponding example. Let $I=[0,1]$, $n=1, t_{0}=0, t_{n}=1 / \sqrt{n}(n=1,2, \ldots)$, the function $a: I \rightarrow \mathbb{R}$ is defined by

$$
a(0)=0, a(1)=-\ln 2, a(t)=\ln \left(k_{n}\left(t-t_{n}\right)+\frac{1}{n}\right) \text { for } t_{n} \leq t<t_{n-1} \quad(n=2,3, \ldots)
$$

where $k_{n}=(n-2)\left(2 n(n-1)\left(t_{n}-t_{n-1}\right)\right)^{-1}(n=2,3, \ldots)$. It is evident that the singular Cauchy problem

$$
d x=x d a(t), \quad \lim _{t \rightarrow 0} t^{-1}|x(t)|=0
$$

has the unique solution x defined by the equalities

$$
x(t)=k_{n}\left(t-t_{n}\right)+\frac{1}{n} \text { for } t_{n} \leq t<t_{n-1} \quad(n=2,3, \ldots), x(1)=-\ln 2
$$

Moreover, we have $d_{2} x(t) \equiv 0$ and $d_{1} x\left(t_{n}\right)=1 / 2(n=2,3, \ldots)$. Thus we conclude that $x \in$ $\mathrm{BV}_{l o c}\left(I_{t_{0}} ; \mathbb{R}\right)$, but $x \notin \mathrm{BV}_{l o c}(I ; \mathbb{R})$. Besides, taking into account that the function $a(t)$ is nonincreasing on the intervals $t_{n} \leq t<t_{n-1}(n=2,3, \ldots)$, we conclude that $[a(t)]_{+}^{v}=0$ on these intervals. Therefore, due to the equalities $d_{2} a(t) \equiv 0$ and $d_{1} a\left(t_{n}\right)=1 / 2(n=2,3, \ldots)$, all the conditions of our remarks are fulfilled with the exclusion of (3.3).

References

[1] M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996), no. 3, 385-404.
[2] M. Ashordia, On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differential Equations Math. Phys. 36 (2005), 1-80.
[3] M. T. Ashordia, On boundary value problems for systems of linear generalized ordinary differential equations with singularities. (Russian) Differ. Uravn. 42 (2006), no. 3, 291-301; translation in Differ. Equ. 42 (2006), no. 3, 307-319.
[4] M. T. Ashordia, On some boundary value problems for linear generalized differential systems with singularities. (Russian) Differ. Uravn. 46 (2010), no. 2, 163-177; translation in Differ. Equ. 46 (2010), no. 2, 167-181.
[5] M. Ashordia, On two-point singular boundary value problems for systems of linear generalized ordinary differential equations. Mem. Differ. Equ. Math. Phys. 56 (2012), 9-35.
[6] V. A. Chechik, Investigation of systems of ordinary differential equations with a singularity. (Russian) Trudy Moskov. Mat. Obshch. 8 (1959), 155-198.
[7] I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.
[8] I. Kiguradze, The Initial Value Problem and Boundary Value Problems for Systems of Ordinary Differential Equations. Vol. I. Linear Theory. (Russian) "Metsniereba", Tbilisi, 1997.
[9] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter. (Russian) Czechoslovak Math. J. 7 (82) (1957), 418-449.
[10] Š. Schwabik, Generalized Ordinary Differential Equations. Series in Real Analysis, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
[11] Š. Schwabik, M. Tvrdý and O. Vejvoda, Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979.
(Received 29.06.2017)

Authors' addresses:

Malkhaz Ashordia

1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili St., Tbilisi 0177, Georgia;
2. Sokhumi State University, 9 A. Politkovskaia St., Tbilisi 0186, Georgia.

E-mail: malkhaz.ashordia@tsu.ge, ashord@rmi.ge

Valida Sesadze

Georgian Technical University, 77 M. Kostava Str., Tbilisi 0175, Georgia.
E-mail: v.sesadze@gtu.ge

Memoirs on Differential Equations and Mathematical Physics

Volume 75, 2018

CONTENTS

Sergo Kharibegashvili
Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 1
Preface 3
Chapter I. The Cauchy Characteristic Problem for One Class of the Second Order Semilinear Hyperbolic Systems 4
1.1. Statement of the Problem 4
1.2. Definition of a Generalized Solution of the Problem (1.1.1), (1.1.2) on D_{T} and D_{∞} 5
1.3. Some Cases of Local and Global Solvability of the Problem (1.1.1), (1.1.2) in the Class W_{2}^{1} 6
1.4. The Uniqueness and Existence of the Global Solution of the Problem (1.1.1), (1.1.2) of the Class W_{2}^{1} 11
1.5. The Cases of Nonexistence of a Global Solution of the Problem (1.1.1), (1.1.2) of the Class W_{2}^{1}. Blow-up Solutions of the Problem (1.1.1), (1.1.2) of the Class W_{2}^{1} 15
Chapter II. One Multidimensional Version of the Darboux First Problem for One Class of Semilinear Second Order Hyperbolic Systems 19
2.1. Statement of the Problem 19
2.2. Definition of a Generalized Solution of the Problem (2.1.1), (2.1.2) in D_{T} and D_{∞} 20
2.3. Some Cases of Local and Global Solvability of the Problem (2.1.1), (2.1.2) in the Class W_{2}^{1} 22
2.4. The Uniqueness and Existence of a Global Solution of the Problem (2.1.1), (2.1.2) in the Class W_{2}^{1} 28
2.5. The Cases of the Absence of a Global Solution of the Problem (2.1.1), (2.1.2) of the Class W_{2}^{1} 32
Chapter III. One Multidimensional Version of the Darboux Second Problem for One Class of Semilinear Second Order Hyperbolic Systems 37
3.1. Statement of the Problem 37
3.2. Definition of a Generalized Solution of the Problem (3.1.1), (3.1.2) in D_{T} and D_{∞} 38
3.3. Some Cases of Global and Local Solvability of the Problem (3.1.1), (3.1.2) in the Class W_{2}^{1} 40
3.4. The Uniqueness and Existence of a Global Solution of the Problem (3.1.1), (3.1.2) of the Class W_{2}^{1} 49
3.5. The Cases of the Nonexistence of a Global Solution of the Problem (3.1.1), (3.1.2) of the Class W_{2}^{1} 52
Chapter IV. Multidimensional Problem with One Nonlinear in Time Condition for some Semilinear Hyperbolic Equations with the Dirichlet Boundary Condition 57
4.1. Statement of the Problem 57
4.2. An A Priori Estimate of a Solution of the Problem (4.1.1)-(4.1.4) 59
4.3. The Existence of a Solution of the Problem (4.1.1)-(4.1.4) 64
4.4. The Uniqueness of a Solution of the Problem (4.1.1)-(4.1.4) 67
Chapter V. Multidimensional Problem with Two Nonlocal in Time Conditions for some Semilinear Hyperbolic Equations with the Dirichlet or Robin Condition 71
5.1. Statement of the Problem 71
5.2. A Priori Estimate of a Solution of the Problem (5.1.1)-(5.1.4) 73
5.3. The Existence of a Solution of the Problem (5.1.1)-(5.1.4) 77
5.4. The Uniqueness of a Solution of the Problem (5.1.1)-(5.1.4) 80
5.5. The Cases of Absence of a Solution of the Problem (5.1.1)-(5.1.4) 83
5.6. The Case $|\mu|=1$ 85
References 87
R. P. Agarwal, A. Aghajani, M. Mirafzal
Exact Conditions for the Existence of Homoclinic Orbits in The Liénard Systems 93
V. M. Evtukhov, N. P. Kolun
Asymptotic Behaviour of Solutions of Second-Order Nonlinear Differential Equations 105
Ivan Kiguradze, Nino Partsvania
Some Optimal Conditions for the Solvability and Unique Solvability of the Two-Point Neumann Problem 115
Kemal Özen
Solvability of a Nonlocal Problem by a Novel Concept of Fundamental Function 129

Short Communication

Malkhaz Ashordia and Valida Sesadze. On the Solvability and the Well-Posedness of the Modified Cauchy Problem139

[^0]: ${ }^{1}$ Reported on Conference "Differential Equation and Applications", September 4-7, 2017, Brno

