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Abstract. Multidimensional versions of the Cauchy characteristic problem, the Darboux problems,
and the Sobolev problem for a class of second order semilinear hyperbolic systems are investigated.
Depending on the type of nonlinearity, spatial dimension and structure of the hyperbolic system, the
cases for which these problems are globally solvable, are singled out. Moreover, the cases of the absence
of solutions of these problems are also considered. The questions of the solvability of some nonlocal
in time problems for multidimensional second order semilinear hyperbolic equations are studied. The
particular cases of the above-mentioned problems are the periodic and antiperiodic problems.
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ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ÓÖÓÔÀÃ ÀÒÀßÒ×ÉÅ äÉÐÄÒÁÏËÖÒ ÓÉÓÔÄÌÀÈÀ ÄÒÈÉ ÊËÀÓÉÓÈÅÉÓ ÂÀÌÏ-
ÊÅËÄÖËÉÀ ÊÏÛÉÓ ÌÀáÀÓÉÀÈÄÁÄËÉ ÀÌÏÝÀÍÉÓ, ÃÀÒÁÖÓ ÀÌÏÝÀÍÄÁÉÓÀ ÃÀ ÓÏÁÏËÄÅÉÓ ÀÌÏÝÀÍÉÓ
ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÅÀÒÉÀÍÔÄÁÉ. äÉÐÄÒÁÏËÖÒÉ ÓÉÓÔÄÌÉÓ ÓÔÒÖØÔÖÒÉÓ, ÓÉÅÒÝÖËÉ ÂÀÍ-
ÆÏÌÉËÄÁÉÓ ÃÀ ÀÒÀßÒ×ÉÅÏÁÉÓ ÔÉÐÉÓ ÌÉáÄÃÅÉÈ ÂÀÌÏÚÏ×ÉËÉÀ ÛÄÌÈáÅÄÅÄÁÉ, ÒÏÝÀ ÄÓ ÀÌÏÝÀÍÄÁÉ
ÂËÏÁÀËÖÒÀÃ ÀÒÉÓ ÀÌÏáÓÍÀÃÉ. ÂÀÍáÉËÖËÉÀ ÀÂÒÄÈÅÄ ÀÌ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÀÒÓÄÁÏ-
ÁÉÓ ÛÄÌÈáÅÄÅÄÁÉ. ÌÄÏÒÄ ÒÉÂÉÓ ÓÖÓÔÀÃ ÀÒÀßÒ×ÉÅÉ äÉÐÄÒÁÏËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÛÄÓßÀÅ-
ËÉËÉÀ ÃÒÏÉÈ ÀÒÀËÏÊÀËÖÒÉ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ ÓÀÊÉÈáÄÁÉ, ÒÏÌÄËÈÀ ÊÄÒÞÏ ÛÄÌ-
ÈáÅÄÅÄÁÓ ßÀÒÌÏÀÃÂÄÍÓ ÐÄÒÉÏÃÖËÉ ÃÀ ÀÍÔÉÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÄÁÉ.



Preface

The present work consists of five chapters. The first three chapters are devoted to the investigation
of multidimensional versions of the Cauchy characteristic problem, the Darboux problems, and the
Sobolev problem for one class of the second order semilinear hyperbolic systems. Depending on the
type of nonlinearity, spatial dimension and structure of hyperbolic system, the cases for which these
problems are globally solvable, are singled out. Moreover, the cases of the absence of solutions of the
above-mentioned problems are also considered [56–59].

The questions of the solvability of some nonlocal in time problems for multidimensional second
order semilinear hyperbolic equations are studied in the remaining two chapters [53, 60, 61]. The
particular cases of these problems are the periodic and antiperiodic problems.
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Chapter 1

The Cauchy characteristic problem
for one class of the second order
semilinear hyperbolic systems

1.1 Statement of the problem

In the space Rn+1 of variables x = (x1, . . . , xn) and t, we consider the second order semilinear hyper-
bolic system of the form

�ui + fi(u1, . . . , uN ) = Fi(x, t), i = 1, . . . , N, (1.1.1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given, and u = (u1, . . . , uN ) is an unknown real
vector function, n ≥ 2, N ≥ 2, � := ∂2

∂t2 −∆, ∆ :=
n∑
i=1

∂2

∂x2
i

.

For the system of equations (1.1.1), let us consider the Cauchy characteristic problem of finding a
solution u(x, t) in the frustum of a light cone of the future DT : |x| < t < T , T = const > 0, by the
boundary condition

u
∣∣
ST

= g, (1.1.2)

where ST : t = |x|, t ≤ T , is the conic surface, characteristic to the system (1.1.1), and g = (g1, . . . , gN )
is a given vector function on ST . For T = ∞, we assume that D∞ : t > |x| and S∞ = ∂D∞ : t = |x|.

The questions on the existence or absence of a global solution of the Cauchy problem for semilinear
scalar equations of the type (1.1.1) with the initial conditions of the form u|t=0 = u0, ∂u

∂t

∣∣
t=0

= u1
were the subject of investigation in many works (see, e.g., [17–19,23,25,31,33,35,36,39–41,62,64–66,
69–72, 77, 80, 83, 84, 87–89, 94, 96–98]. The Cauchy characteristic problem (1.1.1), (1.1.2) in the light
cone of the future for scalar semilinear equations has been studied in [44–47, 49, 50, 52, 54]. As is
known, this problem in the linear case is well-posed in the corresponding function spaces (see, e.g.,
[5,16,30,43,63,73]). A particular case of the system (1.1.1), when f(u) = ∇G(u), i.e., fi(u) = ∂

∂ui
G(u),

i = 1, . . . , N , where G = G(u) is a scalar function satisfying some conditions of smoothness and growth
as |u| → ∞, is studied in [57].

In the present chapter we consider a more general case of nonlinearity as compared with that
presented in [57]; we impose certain conditions on the nonlinear vector function f = f(u) from (1.1.1)
which fulfilment implies that the problem (1.1.1), (1.1.2) is locally or globally solvable, while in some
cases it does not have global solution.
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1.2 Definition of a generalized solution of the problem
(1.1.1), (1.1.2) on DT and D∞

Let
◦
C2(DT , ST ) := {u ∈ C2(DT ) : u|ST = 0} and

◦
W 1

2(DT , ST ) := {u ∈ W 1
2 (DT ) : u|ST = 0}, where

W k
2 (Ω) is the Sobolev space, consisting of the elements of L2(Ω), the generalize derivatives of which

up to the k-th order inclusive belong to L2(Ω), and the equality u|ST = 0 is understood in the sense
of the trace theory [68, p. 71].

We rewrite the system of equations (1.1.1) in the form of one vectorial equation

Lu := �u+ f(u) = F (x, t). (1.2.1)

Together with the boundary condition (1.1.2), we consider the corresponding homogeneous bound-
ary condition, i.e.,

u
∣∣
ST

= 0. (1.2.2)

Below, on the nonlinear vector function f = (f1, . . . , fN ) from (1.1.1) we impose the following
requirement

f ∈ C(RN ), |f(u)| ≤M1 +M2|u|α, α = const ≥ 0, u ∈ RN , (1.2.3)
where | · | is the norm of the space RN and Mi = const ≥ 0, u ∈ RN .

Remark 1.2.1. The embedding operator I : W 1
2 (DT ) → Lq(DT ) is a linear continuous compact

operator for 1 < q < 2(n+1)
n−1 and n > 1 [68, p. 86]. At the same time, the Nemitsky operator K :

Lq(DT ) → L2(DT ), acting according to the formula K(u) = f(u), where u = (u1, . . . , uN ) ∈ Lq(DT )
and the vector function f = (f1, . . . , fN ) satisfies the condition (1.2.3), is continuous and bounded for
q ≥ 2α [67, p. 349], [22, pp. 66,67]. Therefore, if α < n+1

n−1 , then there exists a number q such that
1 < q < 2(n+1)

n−1 and q ≥ 2α. Thus in this case the operator

K0 = KI : [W 1
2 (DT )]

N → [L2(DT )]
N (1.2.4)

is continuous and compact. Moreover, from u ∈ W 1
2 (DT ) it follows that f(u) ∈ L2(DT ) and, if

um → u in the space W 1
2 (DT ), then f(um) → f(u) in the space L2(DT ).

Here and henceforth, the belonging of the vector v = (v1, . . . , vN ) to some space X means that
each component vi, i ≤ i ≤ N , of that vector belongs to the space X.

Definition 1.2.1. Let f = (f1, . . . , fN ) satisfy the condition (1.2.3), where 0 ≤ α < n+1
n−1 , F =

(F1, . . . , FN ) ∈ L2(DT ) and g = (g1, . . . , gN ) ∈W 1
2 (ST ). We call a vector function u = (u1, . . . , uN ) ∈

W 1
2 (DT ) a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W 1

2 in the domain
DT if there exists a sequence of vector functions um ∈ C2(DT ) such that um → u in the space
W 1

2 (DT ), Lum → F in the space L2(DT ), and um|ST → g in the space W 1
2 (ST ). The convergence of

the sequence {f(um)} to f(u) in the space L2(DT ), as um → u in the space W 1
2 (DT ), is provided by

Remark 1.2.1. In the case g = 0, i.e., in the case of the homogeneous boundary condition (1.2.2), we
assume that um ∈

◦
C2(DT , ST ). Then it is obvious that u ∈

◦
W 1

2(DT , ST ).

Obviously, the classical solution u ∈ C2(DT ) of the problem (1.1.1), (1.1.2) is likewise a strong
generalized solution of this problem of the class W 1

2 in the domain DT in the sense of Definition 1.2.1.

Remark 1.2.2. It is easy to verify that if u ∈ W 1
2 (DT ) is the strong generalized solution of the

problem (1.1.1), (1.1.2) of the class W 1
2 in the domain DT in the sense of Definition 1.2.1, then for

every test vector function φ = (φ1, . . . , φN ) ∈ C1(DT ) such that φ|t=T = 0, the equality∫
DT

[
− utφt +∇u∇φ

]
dx dt = −

∫
DT

f(u)φ dx dt+

∫
DT

Fφ dx dt−
∫
ST

∂g

∂N
φds (1.2.5)

is valid; here, ∂
∂N = νn+1

∂
∂t −

n∑
i=1

νi
∂
∂xi

is the derivative along the conormal, ν = (ν1, . . . , νn, νn+1) is

the unit vector of the outer normal to ∂D, ∇ =
(
∂
∂x1

, . . . , ∂
∂xn

)
.
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Indeed, let um ∈ C2(DT ) be the vector functions mentioned in Definition 1.2.1. Let Fm := Lum,
where L is the operator from (1.2.1). Taking into account the fact that on the characteristic conic
surface ST : t = |x|, t ≤ T , the derivative along the conormal ∂

∂N represents an inner differential
operator, and by integration by parts of the equality Lum = Fm, we obtain∫

DT

[
− umt φt +∇um∇φ

]
dx dt = −

∫
DT

f(um)φ dx dt+

∫
DT

Fmφ dx dt−
∫
ST

∂gm

∂N
φds, (1.2.6)

where gm := um|ST . Since, by Definition 1.2.1, um → u in the space W 1
2 (DT ), Fm = Lum → F in the

space L2(DT ), gm = um|ST → g in the space W 1
2 (ST ), and according to Remark 1.2.1 f(um) → f(u)

in the space L2(DT ), passing to the limit in the equality (1.2.6) as m→ ∞ we obtain (1.2.5).
Note that the equality (1.2.5), valid for every φ ∈ C2(DT ), φ|t=T = 0, may be put in the basis of

the definition of a weak generalized solution u of the problem (1.1.1), (1.1.2) of the class W 1
2 in the

domain DT .

Definition 1.2.2. Let f satisfy the condition (1.2.3), where 0 ≤ α < n+1
n−1 ; F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(1.1.1), (1.1.2) is locally solvable in the class W 1

2 if there exists a number T0 = T0(F, g) > 0 such that
for T < T0 this problem has a strong generalized solution of the class W 1

2 in the domain DT in the
sense of Definition 1.2.1.

Definition 1.2.3. Let f satisfy the condition (1.2.3), where 0 ≤ α < n+1
n−1 ; F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(1.1.1), (1.1.2) is globally solvable in the class W 1

2 if for every T > 0 the problem has a strong gener-
alized solution of the class W 1

2 in the domain DT in the sense of Definition 1.2.1.

Definition 1.2.4. Let f satisfy the condition (1.2.3), where 0 ≤ α < n+1
n−1 ; F ∈ L2,loc(D∞), g ∈

W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We call the vector function
u = (u1, . . . , uN ) ∈ W 1

2,loc(D∞) a global strong generalized solution of the problem (1.1.1), (1.1.2)
of the class W 1

2 in the light cone of the future D∞ if for every T > 0 the vector function u|DT belongs
to the space W 1

2 (DT ) and is a strong generalized solution of this problem of the class W 1
2 in the

domain DT in the sense of Definition 1.2.1.

Remark 1.2.3. Reasoning from the proof of the equality (1.2.5) allows us to conclude that a global
strong generalized solution u = (u1, . . . , uN ) of the problem (1.1.1), (1.1.2) of the class W 1

2 in the
domain D∞ in the sense of Definition 1.2.4 satisfies the integral equality∫

D∞

[
− utφt +∇u∇φ

]
dx dt = −

∫
D∞

f(u)φ dx dt+

∫
D∞

Fφ dx dt−
∫
S∞

∂g

∂N
φds (1.2.7)

for any vector function φ = (φ1, . . . , φN ) ∈ C1(D∞), finite with respect to the variable r = (t2 +
|x|2)1/2, i.e., φ = 0 for r > r0 = const > 0. It is easy to see that the solution u ∈W 1

2,loc(D∞) satisfies
the boundary condition (1.1.2) in the sense of the trace theory for T = ∞, i.e., u|S∞ = g.

1.3 Some cases of local and global solvability
of the problem (1.1.1), (1.1.2) in the class W 1

2

For the sake of simplicity, we consider the case in which the boundary condition (1.1.2) is homogeneous.
In this case the problem (1.1.1), (1.1.2) takes the form of the problem (1.2.1), (1.2.2).

Remark 1.3.1. First, let us consider the solvability of the problem (1.2.1), (1.2.2), when the vector
function f = 0 in (1.2.1), i.e., the linear problem

L0u := �u = F (x, t), (x, t) ∈ DT , (1.3.1)
u(x, t) = 0, (x, t) ∈ ST . (1.3.2)
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For the problem (1.3.1), (1.3.2), just as for the problem (1.1.1), (1.1.2) in Definition 1.2.1, we
introduce the notion of a strong generalized solution u = (u1, . . . , uN ) of the class W 1

2 in the domain
DT for F = (F1, . . . , FN ) ∈ L2(DT ), i.e., of the vector function u = (u1, . . . , uN ) ∈

◦
W 1

2(DT , ST ) :=
{u ∈W 1

2 (DT ) : u|ST = 0} for which there exists a sequence of vector functions um = {um1 , . . . , umN ) ∈
◦
C2(DT , ST ) := {u ∈ C2(DT ) : u|ST = 0} such that

lim
m→∞

∥um − u∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥L0u

m − F∥L2(DT ) = 0. (1.3.3)

For the solution u ∈
◦
C2(DT , ST ) of the problem (1.3.1), (1.3.2) the following a priori estimate

∥u∥ ◦
W 1

2(DT ,ST )
≤ c(T )∥F∥L2(DT ), c(T ) =

√
T exp 1

2
(T + T 2) (1.3.4)

is valid. Indeed, multiplying scalarly both parts of the equation (1.3.1) by 2 ∂u
∂t and integrating in

the domain Dτ , 0 < τ ≤ T , after simple transformations, with the use of the equality (1.3.2) and
integration by parts, we have the equality [45, p. 116]∫

Ωτ

[(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2
]
dx = 2

∫
Dτ

F
∂u

∂t
dx dt , (1.3.5)

where Ωτ := DT ∩ {t = τ}. Since ST : t = |x|, t ≤ T , due to (1.3.2), we have

u(x, τ) =

τ∫
|x|

∂

∂t
u(x, s) ds, (x, τ) ∈ Ω.

Squaring scalarly both parts of the obtained equation, integrating it in the domain Ωτ and using
the Schwartz inequality, we get

∫
Ωτ

u2 dx =

∫
Ωτ

( τ∫
|x|

∂

∂t
u(x, s) ds

)2

dx ≤
∫
Ωτ

(τ − |x|)
( τ∫

|x|

(∂u
∂t

)2

ds

)
dx

≤ T

∫
Ωτ

( τ∫
|x|

(∂u
∂t

)2

ds

)
dx = T

∫
Dτ

(∂u
∂t

)2

dx dt. (1.3.6)

Denoting

w(τ) =

∫
Ωτ

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2
]
dx,

taking into account the inequality 2F ∂u
∂t ≤ (∂u∂t )

2 + F 2 and (1.3.5), (1.3.6), we have

w(τ) ≤ (1 + T )

∫
Dτ

(∂u
∂t

)2

dx dt+

∫
Dτ

F 2 dx dt

≤ (1 + T )

∫
Dτ

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2
]
dx dt

= (1 + T )

τ∫
0

w(s) ds+ ∥F∥2L2(Dτ )
, 0 < τ ≤ T. (1.3.7)

According to the Gronwall lemma, from (1.3.7) it follows that

w(τ) ≤ ∥F∥2L2(Dτ )
exp(1 + T )τ ≤ ∥F∥2L2(DT )

exp(1 + T )T, 0 < τ ≤ T. (1.3.8)
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Further, according to (1.3.8), we have

∥u∥ ◦
W 1

2(DT ,ST )
=

∫
DT

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2
]
dx dt =

T∫
0

w(τ) dτ ≤ T∥F∥2L2(DT )
exp(1 + T )T,

which ensures the a priori estimate (1.3.4).

Remark 1.3.2. Due to (1.3.3), for the strong generalized solution of the problem (1.3.1), (1.3.2) of
the class W 1

2 in the domain DT the a priori estimate (1.3.4) is also valid.

Since the space C∞
0 (DT ) of finite infinitely differentiable in DT functions are dense in L2(DT ), for

the given F = (F1, . . . , FN ) ∈ L2(DT ) there exists a sequence of vector functions Fm=(Fm1 , . . . , F
m
N ) ∈

C∞
0 (DT ) such that lim

m→∞
∥Fm − F∥L2(DT ) = 0. For the fixed m, extending Fm by zero beyond the

domain DT and retaining the same notation, we have Fm ∈ C∞(Rn+1
+ ) with the support suppFm ⊂

D∞, where Rn+1
+ := Rn+1 ∩ {t ≥ 0}. Denote by um = (um1 , . . . , u

m
N ) the solution of the Cauchy

problem: L0u
m = Fm, um|t=0 = 0, ∂um

∂t

∣∣
t=0

= 0, which exists, is unique and belongs to the space
C∞(Rn+1

+ ) [32, p. 192]. Since suppFm ⊂ D∞, um|t=0 = 0, ∂u
∂t

∣∣
t=0

= 0, in view of the geometry
of the domain of dependence of the solution of the linear wave equation L0u

m = Fm, we have
suppum ⊂ D∞ [32, p. 191]. Retaining the same notation, for the restriction of the vector function um

on the domain DT , one can see that um ∈
◦
C2(DT , ST ) and, according to Remark 1.3.1 and (1.3.4),

∥um − uk∥ ◦
W 1

2(DT ,ST )
≤ c(T )∥Fm − F k∥L2(DT ). (1.3.9)

The sequence {Fm} is fundamental in L2(DT ) and, due to (1.3.9), the sequence {um} is likewise
fundamental in the complete space

◦
W 1

2(DT , ST ). Therefore, there exists the vector function u ∈
◦
W 1

2(DT , ST ) such that lim
m→∞

∥um − u∥ ◦
W 1

2(DT ,ST )
= 0, and since L0u

m = Fm → F in the space
L2(DT ), according to Remark 1.3.1, this vector function will be the strong generalized solution of the
problem (1.3.1), (1.3.2) of the class W 1

2 in the domain DT . The uniqueness of this solution from the
space

◦
W 1

2(DT , ST ) follows, in view of Remark 1.3.2, from the a priori estimate (1.3.4). Therefore,
for the solution u of the problem (1.3.1), (1.3.2) we have u = L−1

0 F , where L−1
0 : [L2(DT )]

N →
[
◦
W 1

2(DT , ST )]
N is a linear continuous operator, whose norm, according to Remark 1.3.2 and (1.3.4),

has the following estimate:

∥L−1
0 ∥

[L2(DT )]N→[
◦
W 1

2(DT ,ST )]
N
≤

√
T exp 1

2
(T + T 2). (1.3.10)

Remark 1.3.3. Due to (1.3.10), if the condition (1.2.3) is fulfilled, where 0 ≤ α < n+1
n−1 and F ∈

L2(DT ), then in view of Remark 1.2.1, it is easy to see that the vector function u = (u1, . . . , uN ) ∈
◦
W 1

2(DT , ST ) is a strong generalized solution of the problem (1.2.1), (1.2.2) of the class W 1
2 in the

domain DT if and only if u is a solution of the functional equation

u = L−1
0 (−f(u) + F ) (1.3.11)

in the space
◦
W 1

2(DT , ST ).

Remark 1.3.4. Let the condition (1.2.3), where 0 ≤ α < n+1
n−1 , be fulfilled. We rewrite the equation

(1.3.11) in the form
u = Au := L−1

0 (−K0u+ F ), (1.3.12)

where the operator K0 : [
◦
W 1

2(DT , ST )]
N → [L2(DT )]

N from (1.2.4) is, due to Remark 1.2.1, a conti-
nuous compact operator. Therefore, in view of (1.3.10), (1.3.12), the operator A : [

◦
W 1

2(DT , ST )]
N →
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[
◦
W 1

2(DT , ST )]
N is likewise continuous and compact. Denote by B(0, r0) := {u = (u1, . . . , uN ) ∈

◦
W 1

2(DT , ST ) : ∥u∥ ◦
W 1

2(DT ,ST )
≤ r0} a closed convex ball of radius r0 with center at the origin in

the Hilbert space
◦
W 1

2(DT , ST ). Since the operator A from (1.3.12), acting in the space
◦
W 1

2(DT , ST ),
is continuous and compact, according to the Schauder principle, for the solvability of (1.3.12) in
◦
W 1

2(DT , ST ) it suffices to prove that the operator A maps the ball B(0, r0) into itself for some r0 > 0
[90, p. 370].

Theorem 1.3.1. Let f satisfy the condition (1.2.3), where 1 ≤ α < n+1
n−1 ; g = 0, F ∈ L2,loc(DT ) and

FDT ∈ L2(DT ) for every T > 0. Then the problem (1.1.1), (1.1.2) is locally solvable in the class W 1
2 ,

i.e., there exists a number T0 = T0(F ) > 0 such that for T < T0 this problem has a strong generalized
solution of the class W 1

2 in the domain DT in the sense of Definition 1.2.1.

Proof. Taking into account Remark 1.3.4, it suffices to prove the existence of the numbers T0 =
T0(F ) > 0 and r0 = r0(T, F ) such that for T < T0, the operator A from (1.3.12) maps the ball B(0, r0)

into itself. For this purpose, we find the needed estimate of ∥Au∥ ◦
W 1

2(DT ,ST )
for u ∈

◦
W 1

2(DT , ST ).

For u = (u1, . . . , uN ) ∈
◦
W 1

2(DT , ST ), we denote by ũ the vector function representing the even
continuation of u through the plane t = T in the domain D∗

T : T < t < 2T − |x|, symmetric to DT

with respect to the same plane, i.e.,

ũ =

{
u(x, t), (x, t) ∈ DT ,

u(x, 2T − t), (x, t) ∈ D∗
T ,

and ũ(x, t) = u(x, t) for t = T , t = T in the sense of the trace theory. It is obvious that ũ ∈
◦
W 1

2(D̃T ) := {v ∈W 1
2 (D̃T ) : v|∂D̃T = 0}, where D̃T : |x| < t < 2T−|x|. Clearly, D̃T = DT ∪ΩT ∪D∗

T ,
ΩT := D∞ ∩ {t = T}.

Using the inequality [93, p. 258]∫
Ω

|v| dΩ ≤ (mesΩ)1−
1
p ∥v∥p,Ω, p ≥ 1,

and taking into account the equalities ∥ũ∥p
Lp(D̃T )

= 2∥u∥pLp(DT ), ∥ũ∥
2
◦
W 1

2(D̃T )
= 2∥u∥2◦

W 1
2(DT ,ST )

, from

the known multiplicative inequality [68, p. 78]

∥v∥p,Ω ≤ β∥∇x,tv∥α̃m,Ω∥v∥1−α̃r,Ω ∀ v ∈
◦
W 1

2(Ω), Ω ⊂ Rn+1,

∇x, t =
( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂t

)
, α̃ =

(1
r
− 1

p

)(1
r
− 1

m̃

)−1

, m̃ =
(n+ 1)m

n+ 1−m

for Ω = D̃T ⊂ Rn+1, v = ũ, r = 1, m = 2 and 1 < p ≤ 2(n+1)
n−1 , where β = const > 0 does not depend

on v and T , follows the inequality

∥u∥Lp(DT ) ≤ c0(mesDT )
1
p+

1
n+1−

1
2 ∥u∥ ◦

W 1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (1.3.13)

where c0 = const > 0 does not depend on u and T . Taking into account the fact that mesDT =
ωn
n+1 T

n+1, where ωn is the volume of a unit ball in Rn, for p = 2α, from (1.3.13), we obtain

∥u∥L2α(DT ) ≤ CT ∥u∥ ◦
W 1

2(DT ,ST )
∀u ∈

◦
W 1

2(DT , ST ), (1.3.14)

where
CT = c0

( ωn
n+ 1

)α1

T (n+1)α1 , α1 =
1

2α
+

1

n+ 1
− 1

2
. (1.3.15)
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Note that α1 = 1
2α + 1

n+1 − 1
2 > 0 for α < n+1

n−1 and, consequently, lim
t→0

CT = 0.

For the value of ∥K0u∥L2(DT ), where u ∈
◦
W 1

2(DT , ST ) and the operator K0 acts according to the
formula (1.2.4), in view of (1.2.3) and (1.3.14), we have the estimate

∥K0u∥2L2(DT )
≤

∫
DT

(M1 +M2|u|α)2 dx dt ≤ 2M2
1 mesDT + 2M2

2

∫
DT

|u|2α dx dt

= 2M2
1 mesDT + 2M2

2 ∥u∥2αL2α(DT
≤ 2M2

1 mesDT + 2M2
2C

2α
T ∥u∥2α◦

W 1
2(DT ,ST )

,

whence we obtain

∥K0u∥L2(DT ) ≤M1(2mesDT )
1
2 +

√
2M2C

α
T ∥u∥α◦

W 1
2(DT ,ST )

. (1.3.16)

Further, from (1.3.10), (1.3.12) and (1.3.16), it follows that

∥Au∥ ◦
W 1

2(DT ,ST )
=

∥∥L−1
0 (−K0u+ F )

∥∥ ◦
W 1

2(DT ,ST )

≤ ∥L−1
0 ∥

[L2(DT )]N→[
◦
W 1

2(DT ,ST )]
N
∥(−K0u+ F )∥L2(DT )

≤
[√

T exp 1

2
(T + T 2)

](
∥K0u∥L2(DT ) + ∥F∥L2(DT )

)
≤

[√
T exp 1

2
(T + T 2)

](
M1(2mesDT )

1
2 +

√
2M2C

α
T ∥u∥α◦

W 1
2(DT ,ST )

+ ∥F∥L2(DT )

)
= a(T )∥u∥α◦

W 1
2(DT ,ST )

+ b(T ). (1.3.17)

Here,

a(T ) =
√
2M2C

α
T

√
T exp 1

2
(T + T 2), (1.3.18)

b(T ) =
[√

T exp 1

2
(T + T 2)

](
M1(2mesDT )

1
2 + ∥F∥L2(DT )

)
. (1.3.19)

For the fixed T > 0, with respect to the variable z we consider the equation

azα + b = z, (1.3.20)

where a = a(T ) and b = b(T ) are defined by (1.3.18) and (1.3.19), respectively.
First, consider the case α > 1. A simple analysis, analogous to that given in the work [90, pp. 373,

374] for α = 3, shows that:

(1) if b = 0, then the equation (1.3.20) has a unique positive root z2 = a−
1

α−1 besides the trivial
root z1 = 0;

(2) if b > 0, then for 0 < b < b0, where

b0 = b0(T ) =
[
α− 1

α−1 − α− α
α−1

]
a−

1
α−1 , (1.3.21)

the equation (1.3.20) has two positive roots z1 and z2, 0 < z1 < z2; moreover, for b = b0, these
roots coincide and we have one positive root z1 = z2 = z0 = (αa)−

1
α−1 ;

(3) for b > b0, the equation (1.3.20) does not have nonnegative roots. Note that for 0 < b < b0, we
have the inequalities z1 < z0 = (αa)−

1
α−1 < z2.

Due to the absolute continuity of the Lebesgue integral, we have

lim
T→0

∥F∥L2(DT ) = 0.
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Therefore, taking into account that mesDT = ωn
n+1 T

n+1,from (1.3.19) it follows that lim
T→0

b(T ) = 0.
Besides, since − 1

α−1 < 0 for α > 1 and lim
t→0

CT = 0, from (1.3.18) and (1.3.21) we find that lim
T→0

b0 =

+∞. Therefore, there exists a number T0 = T0(F ) > 0 such that for 0 < T < T0, due to (1.3.18)–
(1.3.21), the condition 0 < b < b0 will be fulfilled and hence the equation (1.3.20) will have at least
one positive root; we denote it by r0 = r0(T, F ).

When α = 1, the equation (1.3.20) is linear, and lim
T→0

a(T ) = 0. Therefore, for 0 < T < T0,
where T0 = T (F ) is a sufficiently small positive number, this equation will have a unique positive root
z(T, F ) = b(a− a)−1 which is also denoted by r0 = r0(T, F ).

Let us now show that the operator A from (1.3.12) maps the ball B(0, r) ⊂
◦
W 1

2(DT , ST ) into itself.
indeed, in view of (1.3.17) and the equality arα0 + b = r0, for every u ∈ B(0, r0) we have

∥Au∥ ◦
W 1

2(DT ,ST )
≤ a∥u∥α◦

W 1
2(DT ,ST )

+ b ≤ arα0 + b = r0. (1.3.22)

According to Remark 1.3.4, the above reasoning proves Theorem 1.3.1.

Theorem 1.3.2. Let f satisfy the condition (1.2.3), where 0 ≤ α < 1; g = 0, F ∈ L2,loc(D∞) and
F |DT ∈ L2(DT ) for every T > 0. Then the problem (1.1.1), (1.1.2) is globally solvable in the class
W 1

2 , i.e., for any T > 0, the problem has a strong generalized solution of the class W 1
2 in the domain

DT in the sense of Definition 1.2.1.

Proof. According to Remark 1.3.4, it suffices to show that for any T > 0 there exists a number
r0 = r0(T, F ) > 0 such that the operator A from (1.3.12) maps the ball B(0, r0) ⊂

◦
W 1

w(DT , ST ) into
itself. First, let 1

2 < α < 1. Since 2α > 1, the inequality (1.3.14) is valid and thereby the estimate
(1.3.17), as well. For the fixed T > 0, owing to α < 1, there exists a number r0 = r0(T, F ) > 0 such
that

a(T )sα + b(T ) ≤ r0 ∀ s ∈ [0, r0]. (1.3.23)

Indeed, the function λ(s)
s , where λ(s) = a(T )sα + b(T ), is a monotonically decreasing continuous

function, and lim
s→+0

λ(s)
s = +∞ and lim

s→+∞
λ(s)
s = 0. Therefore, there exists a number s = r0(T, F ) > 0

such that λ(s)
s

∣∣
s=r0

= 1. Hence, since the function λ(s) for s ≥ 0 is monotonically increasing, we
immediately arrive at (1.3.23). Further, in view of (1.3.17) and (1.3.23), for every u ∈ B(0, r0) we
have the inequality (1.3.22), i.e., A(B(0, r0)) ⊂ B(0, r0).

The case 0 ≤ α ≤ 1
2 can be reduced to the previous case 1

2 < α < 1, since the vector function,
satisfying the condition (1.2.3) for 0 ≤ α ≤ 1

2 , satisfies the same condition (1.2.3) for a certain fixed
α = α1 ∈ ( 12 , 1) with other positive constants M1 and M2 (it is easy to see that M1 +M2|u|α ≤
(M1 +M2) +M2|u|α1 ∀u ∈ R, α < α1). This proves Theorem 1.3.2.

1.4 The uniqueness and existence of the global solution
of the problem (1.1.1), (1.1.2) of the class W 1

2

Below, we impose on the nonlinear vector function f = (f1, . . . , fn) from (1.1.1) the additional re-
quirements

f ∈ C1(RN ),
∣∣∣∂fi(u)
∂uj

∣∣∣ ≤M3 +M4|u|γ , 1 ≤ i, j ≤ N, (1.4.1)

where M3, M4, γ = const ≥ 0. For the sake of simplicity, we assume that the vector function g = 0
in the boundary condition (1.1.2), i.e., we consider the problem (1.2.1), (1.2.2).

Obviously, (1.4.1) results in the condition (1.2.3) for α = γ + 1, and in the case for γ < 2
n−1 , we

have α = γ + 1 < n+1
n−1 .

Theorem 1.4.1. Let the condition (1.4.1) be fulfilled, where 0 ≤ γ < 2
n−1 , F ∈ L2(DT ), g = 0. Then

the problem (1.1.1), (1.1.2) cannot have more than one strong generalized solution of the class W 1
2 in

the domain DT in the sense of Definition 1.2.1.
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Proof. Let F ∈ L2(DT ), g = 0 and the problem (1.1.1), (1.1.2) have two strong generalized solutions
u1 and u2 of the class W 1

2 in the domain DT in the sense of Definition 1.2.1, i.e., there exist two
sequences of vector functions uim ∈

◦
C2(DT , ST ), i = 1, 2; m = 1, 2, . . . , such that

lim
m→∞

∥uim − ui∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Luim − F∥L2(DT ) = 0, i = 1, 2. (1.4.2)

Let
w = u2 − u1, wm = u2m − u1m, Fm = Lu2m − Lu1m. (1.4.3)

According to (1.4.2), (1.4.3), we have

lim
m→∞

∥wm − w∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Fm∥L2(DT ) = 0. (1.4.4)

In accordance with (1.2.1), (1.2.2) and (1.4.3), we consider the vector function wm ∈
◦
C2(DT , ST )

as a solution of the following problem

�wm = −
[
f(u2m)− f(u1m)

]
+ Fm, (1.4.5)

wm
∣∣
ST

= 0. (1.4.6)

Multiplying scalarly both parts of the vector equality (1.4.5) by the vector ∂wm

∂t in the space RN
and integrating by parts in the domain Dτ , 0 < τ ≤ T , due to (1.4.6), in the same way as that for
obtaining the equality (1.3.5), we have

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx

= 2

∫
Dτ

Fm
∂wm

∂t
dx dt− 2

∫
Dτ

[
f(u2m)− f(u1m)

] ∂um
∂t

dx dt, 0 < τ ≤ T. (1.4.7)

Taking into account the equality

fi(u
2m)− fi(u

1m) =

N∑
j=1

1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds (u2mj − u1mj )

we obtain

[
f(u2m)− f(u1m)

] ∂wm
∂t

=

N∑
i,j=1

[ 1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

]
(u2mj − u1mj )

∂wmi
∂t

. (1.4.8)

From (1.4.1) and the obvious inequality

|D1 + d2|γ ≤ 2γ max
(
|d1|γ , |d2|γ

)
≤ 2γ

(
|d1|γ + |d2|γ

)
for γ ≥ 0, d1, d2 ∈ R, we have

∣∣∣∣
1∫

0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

∣∣∣∣
≤

1∫
0

[
M3 +M4

∣∣(1− s)u1m + su2m
∣∣γ] ds ≤M3 + 2γM4

(
|u1m|γ + |u2m|γ

)
. (1.4.9)
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From (1.4.8) and (1.4.9), with regard for (1.4.3), it follows that

∣∣∣[f(u2m)− f(u1m)
] ∂wm
∂t

∣∣∣ ≤ n∑
i,j=1

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wmj |

∣∣∣∂wmi
∂t

∣∣∣
≤ N2

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wm|

∣∣∣∂wm
∂t

∣∣∣
≤ 1

2
N2M3

[
(wm)2 +

(∂wm
∂t

)2]
+ 2γN2M4

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣. (1.4.10)

In view of (1.4.7) and (1.4.10), we have

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx

≤
∫
Dτ

[(∂wm
∂t

)2

+ (Fm)2
]
dx dt+N2M3

∫
Ωτ

[
(wm)2 +

(∂wm
∂t

)2]
dx dt

+ 2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt. (1.4.11)

The last integral in the right-hand side of (1.4.11) can be estimated by means of Hölder’s inequality

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt
≤

(∥∥ |u1m|γ
∥∥
Ln+1(DT )

+
∥∥ |u2m|γ

∥∥
Ln+1(DT )

)
∥wm∥Lp(Dτ )

∥∥∥∂wm
∂t

∥∥∥2
L2(Dτ )

. (1.4.12)

Here 1
n+1 + 1

p +
1
2 = 1, i.e.,

p =
2(n+ 1)

n− 1
. (1.4.13)

For 1 < q ≤ 2(n+1)
n−1 , due to (1.3.13), we have

∥v∥Lq(Dτ ) ≤ Cq(T )∥v∥ ◦
W 1

2(DT ,ST )
∀ v ∈

◦
W 1

2(DT , ST ), 0 < τ < T, (1.4.14)

with the positive constant Cq(T ), not depending on v ∈
◦
W 1

2(DT , ST ) and τ ∈ (0, T ].
According to the conditions of the theorem γ < 2

n−1 , and hence γ(n + 1) < 2(n+1)
n−1 . Thus, from

(1.4.13) and (1.4.14), we get∥∥ |uim|γ
∥∥
Ln+1(DT )

= ∥uim∥γLγ(n+1)(DT )
≤ Cγγ(n+1)(T )∥u

im∥γ◦
W 1

2(DT ,ST )
, i = 1, 2; m ≥ 1, (1.4.15)

∥wm∥Lp(Dτ ) ≤ Cp(T )∥wm∥ ◦
W 1

2(Dτ )
, m ≥ 1. (1.4.16)

According to the first equality of (1.4.2), there exists a natural number m0 such that for m ≥ m0,
we have

∥uim∥γ◦
W 1

2(DT ,ST )
≤ ∥ui∥γ◦

W 1
2(DT ,ST )

+ 1, i = 1, 2; m ≥ 1. (1.4.17)
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Taking into account the above equalities, from (1.4.12)–(1.4.17) it follows that

2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∥∥∥∂wm
∂t

∥∥∥ dx dt
≤ 2γ+1N2M4C

γ
γ(n+1)(T )

(
∥u1∥γ◦

W 1
2(DT ,ST )

+ ∥u2∥γ◦
W 1

2(DT ,ST )
+ 2

)
Cp(T )∥wm∥ ◦

W 1
2(Dτ ,Sτ )

∥∥∥∂wm
∂t

∥∥∥2
L2(Dτ )

≤M5

(
∥wm∥2◦

W 1
2(Dτ )

+
∥∥∥∂wm
∂t

∥∥∥2
L2(Dτ )

)
≤ 2M5∥wm∥2W 1

2 (Dτ )
= 2M5

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx dt, (1.4.18)

where
M5 = 2γN2M4C

γ
γ(n+1)(T )

(
∥u1∥γ◦

W 1
2(DT ,ST )

+ ∥u2∥γ◦
W 1

2(DT ,ST )
+ 2

)
Cp(T ).

In view of (1.4.18), from (1.4.11) we have∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx

≤M6

∫
Ωτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx dt+

∫
DT

(Fm)2 dx dt, 0 < τ ≤ T, (1.4.19)

where M6 = 1 +M3N
2 + 2M5.

Note that the inequality (1.3.6) is valid for wm, as well, and therefore,∫
Ωτ

(wm)2 dx ≤ T

∫
Dτ

(∂wm
∂t

)2 dx dt ≤ T

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx dt. (1.4.20)

Putting

λm(τ) :=

∫
Ωτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2
]
dx dt (1.4.21)

and adding up the inequalities (1.4.19) and (1.4.20), we obtain

λm(τ) ≤ (M6 + T )

τ∫
0

λm(s) ds+ ∥Fm∥2L2(DT )
.

Hence, in view of the Gronwall lemma, it follows that

λm(τ) ≤ ∥Fm∥2L2(DT )
exp(M6 + T )τ. (1.4.22)

From (1.4.21) and (1.4.22) we have

∥wm∥2W 1
2 (DT )

=

T∫
0

λm(τ) dτ ≤ T∥Fm∥2L2(DT )
exp(M6 + T )T. (1.4.23)

Due to (1.4.3) and (1.4.4), from (1.4.23) it follows that

∥w∥W 1
2 (DT )

= lim
m→∞

∥w − wm + wm∥2W 1
2 (DT )

≤ lim
m→∞

∥w − wm∥W 1
2 (DT )

+ lim
m→∞

∥wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥ ◦
W 1

2(DT )
= 0.

Therefore, w = u2 − u1 = 0, i.e., u2 = u1, which proves Theorem 1.4.1.
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From Theorems 1.3.2 and 1.4.1 the following existence and uniqueness theorem immediately fol-
lows.

Theorem 1.4.2. Let the vector function f satisfy the condition (1.2.3) for α < 1, and the condition
(1.4.1) for γ < 2

n−1 . Then for every F ∈ L2(DT ) and g = 0, the problem (1.1.1), (1.1.2) has a

unique strong generalized solution u ∈
◦
W 1

2(DT , ST ) of the class W 1
2 in the domain DT in the sense of

Definition 1.2.1.

The theorem below on the existence of a global solution of the problem (1.1.1), (1.1.2) follows from
Theorem 1.4.2.

Theorem 1.4.3. Let the vector function f satisfy the condition (1.2.3) for α < 1, and the condition
(1.4.1) for γ < 2

n−1 ; g = 0 and F ∈ L2,loc(D∞) for every F |DT ∈ L2(DT ). Then the problem
(1.1.1), (1.1.2) has a unique strong generalized solution u ∈ W 1

2,loc(D∞) of the class W 1
2 in the cone

of the future D∞ in the sense of Definition 1.2.4.

Proof. According to Theorem 1.4.2, under the fulfilment of the conditions of Theorem 1.4.3 for T = m,
where m is a natural number, there exists a unique strong generalized solution um ∈

◦
W 1

2(DT , ST ) of
the problem (1.1.1), (1.1.2) of the class W 1

2 in the domain DT=m in the sense of Definition 1.2.1. Since
um+1|DT=m

is likewise a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W 1
2 in

the domain DT=m, according to Theorem 1.4.2, we have um = um+1|DT=m
, from which we obtain the

following scheme of constructing a unique global strong generalized solution u ∈
◦
W 1

2,loc(D∞, S∞) of
the problem (1.1.1), (1.1.2) of the class W 1

2 in the cone of the future D∞ in the sense of Definition 1.2.4:

u(x, t) = um(x, t), (x, t) ∈ D∞, m = [t] + 1,

where [t] is an integer part of the number. Thus Theorem 1.4.3 is proved.

1.5 The cases of nonexistence of a global solution
of the problem (1.1.1), (1.1.2) of the class W 1

2 .
Blow-up solutions of the problem (1.1.1), (1.1.2)
of the class W 1

2

Theorem 1.5.1. Let the vector function f = (f1, . . . , fN ) satisfy the condition (1.2.3), when 1 < α <

n+1
n−1 , and there exist the numbers ℓ1, ℓ2, . . . , ℓN ,

N∑
i=1

|ℓi| ̸= 0 such that

N∑
i=1

ℓifi(u) ≤ c0 − c1

∣∣∣ N∑
i=1

ℓiui|β ∀u ∈ RN , 1 < β = const <
n+ 1

n− 1
, (1.5.1)

where c0, c1 = const, c1 > 0. Let F ∈ L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈

W2(ST ) for every T > 0. Suppose that at least one of the functions F0 =
N∑
i=1

ℓiFi − c0 or ∂g0
∂N

∣∣
S∞

,

where g0 =
N∑
i=1

ℓigi, is nontrivial (i.e., differs from zero on a subset of positive measure in D∞ or S∞,

respectively). If
g0 ≥ 0,

∂g0
∂N

∣∣∣
S∞

≤ 0, F0

∣∣
D∞

≥ 0, (1.5.2)

then there exists a finite positive number T0 = T0(F, g) such that for T > T0, the problem (1.1.1), (1.1.2)
does not have a strong generalized solution of the class W 1

2 in the domain DT in the sense of Defini-
tion 1.2.1. Here, ∂

∂N is a derivative along the conormal to S∞, i.e., ∂
∂N = νn+1

∂
∂t −

n∑
i=1

νi
∂
∂xi

, where

ν = (ν1, . . . , νn, νn+1) is a unit vector of the outer normal to ∂D∞ = S∞.
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Proof. Let u = (u1, . . . , uN ) be a strong generalized solution of the problem (1.1.1), (1.1.2) of the class
W 1

2 in the domain DT . Here we apply the method of test functions [77, pp. 10–12]. According to
Remark 1.2.3, the solution u of this problem satisfies the integral equality (1.2.5) in which we take
as a test function φ = (ℓ1ψ, ℓ2ψ, . . . , ℓNψ), where ψ = ψ0[2T

−2(t2 + |x|2)] and the scalar function
ψ0 ∈ C2((−∞,∞)) satisfies the conditions ψ0 ≥ 0, ψ′

0 ≤ 0; ψ0(σ) = 1 for 0 ≤ σ ≤ 1 and ψ(σ) = 0 for

σ ≥ 2 [77, p. 22]. For such a test function φ with notations v =
N∑
i=1

ℓiui, g0 =
N∑
i=1

ℓigi, F∗ =
N∑
i=1

ℓiFi,

f0 =
N∑
i=1

ℓifi, the integral equality (1.2.5) takes the form

∫
DT

[
− vtψt +∇v∇ψ

]
dx dt = −

∫
DT

f0(u)ψ dx dt+

∫
DT

F∗ψ dx dt−
∫
ST

∂g0
∂N

ψ ds. (1.5.3)

Since ψ|t≥T = 0 and the equality v|ST = g0 holds in the sense of the trace theory, integrating by
parts the left-hand side of the equality (1.5.3), we get∫
DT

[
− vtψt +∇v∇ψ

]
dx dt =

∫
DT

v�ψ dx dt−
∫
ST

v
∂ψ

∂N
ds =

∫
DT

v�ψ dx dt−
∫
ST

g0
∂ψ

∂N
ds. (1.5.4)

From (1.5.3) and (1.5.4), due to (1.5.1) and ψ ≥ 0, we obtain the inequality∫
DT

v�ψ dx dt ≥
∫
DT

[
c1|v|β − c0

]
ψ dx dt+

∫
DT

F∗ψ dx dt+

∫
ST

g0
∂ψ

∂N
ds−

∫
ST

∂g0
∂N

ψ ds

= c1

∫
DT

|v|βψ dx dt+
∫
DT

(F∗ − c0)ψ dx dt+

∫
ST

g0
∂ψ

∂N
ds−

∫
ST

∂g0
∂N

ψ ds. (1.5.5)

According to the properties of the function ψ and the inequalities (1.5.2), the inequalities

∂ψ

∂N

∣∣∣
ST

≥ 0,

∫
ST

g0
∂ψ

∂N
ds ≥ 0,

∫
ST

∂g0
∂N

ψ ds ≤ 0,

∫
DT

F0ψ dx dt ≥ 0, (1.5.6)

where F0 = F∗ − c0 =
N∑
i=1

ℓiFi − c0, are obvious.

Assuming that the functions F , g and ψ are fixed, we introduce the function of one variable

γ(T ) =

∫
DT

F0ψ dx dt+

∫
ST

g0
∂ψ

∂N
ds−

∫
ST

∂g0
∂N

ψ ds, T > 0. (1.5.7)

Due to the absolute continuity of the integral and the inequalities (1.5.6), the function γ(T ) from
(1.5.7) is nonnegative, continuous and nondecreasing; besides,

lim
T→0

γ(T ) = 0, (1.5.8)

and since, according to our supposition, one of the functions ∂g0
∂N

∣∣
S∞

or F0 is nontrivial, we get

lim
T→∞

γ(T ) > 0. (1.5.9)

In view of (1.5.7), the inequality (1.5.5) can be rewritten as follows:

c1

∫
DT

|v|βψ dx dt ≤
∫
DT

v�ψ dx dt− γ(T ). (1.5.10)
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If in Young’s inequality with the parameter ε > 0: ab ≤ (ε/β)aβ+(β′εβ
′−1)−1bβ

′ , where β′ = β
β−1 ,

we take a = |v|ψ1/β , b = |�ψ|/ψ1/β , then, in view of the equality β′/β = β′ − 1, we have

|v�ψ| = |v|ψ1/β |�ψ|
ψ1/β

≤ ε

β
|v|βψ +

|�ψ|β′

β′εβ′−1ψβ′−1
. (1.5.11)

Due to (1.5.11), from (1.5.10) we have the inequality

(
c1 −

ε

β

) ∫
DT

|v|βψ dx dt ≤ 1

β′εβ′−1

∫
DT

|�ψ|β′

ψβ′−1
dx dt− γ(T ),

whence for ε < c1β, we get∫
DT

|v|βψ dx dt ≤ β

(c1β − ε)β′εβ′−1

∫
DT

|�ψ|β′

ψβ′−1
dx dt− β

c1β − ε
γ(T ). (1.5.12)

Since β′ = β′

β−1 , β = β′

β′−1 , due to the equality

min
0<ε<cβ

β

(c1β − ε)β′εβ′−1
=

1

cβ
′

1

,

which is achieved for ε = c1, it follows from (1.5.12) that∫
DT

|v|βψ dx dt ≤ 1

cβ
′

1

∫
DT

|�ψ|β′

ψβ′−1
dx dt− β′

c1
γ(T ). (1.5.13)

According to the properties of the function ψ0, the test function

ψ(x, t) = ψ0

[
2T−2(t2 + |x|2)

]
= 0

for r = (t2 + |x|2)1/2 > T . Therefore, after changing of variables t =
√
2Tξ0, x =

√
2Tξ, it is not

difficult to verify that∫
DT

|�ψ|β′

ψβ′−1
dx dt =

∫
r=(t2+|x|2)1/2≤T

|�ψ|β′

ψβ′−1
dx dt = (

√
2T )n+1−2β′

κ0. (1.5.14)

Here,

κ0 =

∫
1≤|ξ0|2+|ξ|2≤2

2

|2(1−n)ψ′
0+4(ξ20−|ξ|2)ψ′′

0 |β
′

ψ
β′−1
0 dξ dξ0 < +∞. (1.5.15)

As is known, the test function ψ(x, t) = ψ0[2T
−2(t2 + |x|2)] with the aforementioned properties,

for which the condition (1.5.15) is fulfilled, exists [77, p. 22].
Due to (1.5.14), from (1.5.13), in view of ψ0(σ) = 1 for 0 ≤ σ ≤ 1, we have∫

r≤ T√
2

|v|β dx dt ≤
∫
DT

|v|βψ dx dt ≤ |
√
2T )n+1−2β′

cβ
′

1

κ0 −
β′

c1
γ(T ). (1.5.16)

In the case if β < n+1
n−1 , i.e., if n+ 1− 2β′ < 0, the equation

λ(T ) =
(
√
2T )n+1−2β′

cβ
′

1

κ0 −
β′

c1
γ(T ) = 0 (1.5.17)
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has a unique positive root T = T0(F, g), since the function

λ1(T ) =
(
√
2T )n+1−2β′

cβ
′

1

κ0

is a positive, continuous, strictly decreasing in (0,+∞), besides,
lim
T→0

λ1(T ) = +∞ and lim
T→+∞

λ1(T ) = 0

and the function γ(T ) is, as noted above, nonnegative, continuous and nondecreasing, satisfying the
conditions (1.5.8) and (1.5.9). Besides, λ(T ) < 0 for T > T0 and λ(T ) > 0 for 0 < T < T0. Therefore,
for T > T0, the right-hand side of the inequality (1.5.16) is a negative value, which is impossible. Thus
this contradiction proves Theorem 1.5.1.

Remark 1.5.1. Let us consider one class of vector functions f satisfying the condition (1.5.1):

fi(u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N, (1.5.18)

where aij = const > 0, bi = const, 1 < bij = const < n+1
n−1 , i, j = 1, . . . , N . In this case we can take

ℓ1 = ℓ2 = · · · = ℓN = −1. Indeed, we choose β = const such that 1 < β < βij , i, j = 1, . . . , N . It is
easy to verify that |s|βij ≥ |s|β − 1 ∀ s ∈ (∞,∞). Using the inequality [21, p. 302]

N∑
i=1

|yi|β ≥ N1−β
∣∣∣ N∑
i=1

yi

∣∣∣β ∀ y = (y1, . . . , yN ) ∈ RN , β = const > 1,

we get
N∑
i=1

fi(u1, . . . , uN ) ≥ a0

N∑
i,j=1

|uj |βij +
N∑
i=1

bi ≥ a0

N∑
i,j=1

(
|uj |β − 1

)
+

N∑
i=1

bi

= a0N

N∑
j=1

|uj |β − a0N
2 +

N∑
i=1

bi ≥ a0N
2−β

∣∣∣ N∑
j=1

uj

∣∣∣β +

N∑
i=1

bi − a0N
2, a0 = min

i,j
aij > 0.

Hence we have the inequality (1.5.1) in which

ℓ1 = ℓ2 = · · · = ℓN = −1, c0 = a0N
2 −

N∑
i=1

bi, c1 = a0N
2−β > 0.

Note that the vector function f , represented by the equalities (1.5.18), likewise satisfies the condi-
tion (1.5.1) with ℓ1 = ℓ2 = · · · = ℓN = −1 for less restrictive conditions when: aij = const ≥ 0, but
aiki > 0, where k1, . . . , kN is any fixed permutation of numbers 1, 2 . . . , N ; i, j = 1, . . . , N .
Remark 1.5.2. From Theorem 1.5.1 it follows that in the conditions of this theorem the problem
(1.1.1), (1.1.2) cannot have a global strong generalized solution of the class W 1

2 in the domain D∞ in
the sense of Definition 1.2.4.
Remark 1.5.3. Let the vector function f = (f1, . . . , fN ) satisfy the condition (1.2.3) for 1 < α < n+1

n−1 ,
the condition (1.4.1) for γ < 2

n−1 and also the condition (1.5.1). Let g = 0, F ∈ L2,loc(D∞) and
F |DT ∈ L2(DT ) for every T > 0 and, moreover, let F satisfy the third condition of (1.5.2). Then,
taking into account the fact that a strong generalized solution u of the problem (1.1.1), (1.1.2) of the
class W 1

2 in the domain DT in the sense of Definition 1.2.1 is also a solution of that problem in a
smaller domain DT1

for T1 < T , from Theorems 1.3.1, 1.4.1 and 1.5.1 follows the existence of a finite
positive number T∗ = T∗(F ) such that for T > T∗, the problem (1.1.1), (1.1.2) does not have a strong
generalized solution of the class W 1

2 in the domain DT in the sense of Definition 1.2.1. There exists a
unique vector function u = (u1, . . . , uN ) ∈W 1

2,loc(DT∗) such that for any T < T∗, the vector function
u is a strong generalized solution of the problem (1.1.1), (1.1.2) of the class W 1

2 in the domain DT .
This vector function can be considered as a blow-up solution of the problem (1.1.1), (1.1.2) of the class
W 1

2 in the sense that ∥u∥W 1
2 (DT )

< +∞ for T < T∗ and lim
T→T∗−0

∥u∥W 1
2 (DT )

= +∞.



Chapter 2

One multidimensional version
of the Darboux first problem
for one class of semilinear
second order hyperbolic systems

2.1 Statement of the Problem
In the Euclidean space Rn+1 of independent variables x = (x1, . . . , xn) and t consider a second order
semilinear hyperbolic system of the form

∂2ui
∂t2

−
n∑
i=1

∂2ui
∂x2i

+ fi(u1, . . . , uN ) = Fi, i = 1, . . . , N, (2.1.1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given, and u = (u1, . . . , uN ) is an unknown vector
function, n ≥ 2, N ≥ 2.

Denote by D : t > |x|, xn > 0, the half of the light cone of the future bounded by the part
S0 : ∂D ∩ {xn = 0} of a hyperplane xn = 0 and the half S : t = |x|, xn ≥ 0, of the characteristic
conoid Λ : t = |x| of the system (2.1.1). Let DT := {(x, t) ∈ D : t < T}, S0

T := {(x, t) ∈ S0 : t ≤ T},
ST := {(x, t) ∈ S : t ≤ T}, T > 0.

For the system of equations (2.1.1) consider the problem on finding a solution u(x, t) of this system
by the following boundary conditions

∂u

∂xn

∣∣∣
S0
T

= 0, u
∣∣
ST

= g, (2.1.2)

where g = (g1, . . . , gN ) is a given vector function on ST . In the case T = ∞, we have D∞ = D,
S0
∞ = S0 and S∞ = S.

The problem (2.1.1), (2.1.2) represents a multidimensional version of the Darboux first problem
for the system (2.1.1), when one part of the problem data support is a characteristic manifold, while
another part is of time type manifold [5, pp. 228, 233].

The questions on the existence and nonexistence of a global solution of the Cauchy problem for
semilinear scalar equations of the form (2.1.1) with the initial conditions u|t=0 = u0, ∂u∂t

∣∣
t=0

= u1 have
been considered by many authors (see the corresponding references in Chapter 1). As is known, for
the second order scalar linear hyperbolic equations, the multidimensional versions of the Darboux first
problem are well-posed and they are globally solvable in suitable function spaces [5, 42, 43, 81, 91, 92].
In regard to the multidimensional problem (2.1.1), (2.1.2) for a scalar case, i.e., when N = 1, in
the case of nonlinearity of the form f(u) = λ|u|pu, in [51] it is shown that depending on the sign
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of the parameter λ and the values of the power exponent p, the problem (2.1.1), (2.1.2) is globally
solvable in some cases and not globally solvable in other cases. Another multidimensional version of
the Darboux first problem for a scalar semilinear equation of the form (2.1.1), where instead of the
boundary condition ∂u

∂xn

∣∣
S0
T

= 0 in (2.1.2) is taken u|S0
T
= 0, is considered in [9]. Noteworthy is the

fact that the multidimensional version of the Darboux second problem for a scalar semilinear equation
of the form (2.1.1) is studied in [56].

In the present chapter we introduce certain conditions for the nonlinear vector function f = f(u)
from (2.1.1) the fulfilment of which ensures local or global solvability of the problem (2.1.1), (2.1.2),
while in some cases it will not have global solution, though it will be locally solvable.

2.2 Definition of a generalized solution
of the problem (2.1.1), (2.1.2) in DT and D∞

Let
◦
C2(DT , S

0
T , ST ) :=

{
u ∈ C2(DT ) :

∂u

∂xn

∣∣∣
S0
T

= 0, u
∣∣
ST

= 0
}
.

Let, moreover,
◦
W 1

2(DT , ST ) := {u ∈ W 1
2 (DT ) : u|ST = 0}, where W k

2 (Ω) is the Sobolev space
consisting of the elements of L2(Ω) having up to the k-th order generalized derivatives from L2(Ω),
inclusive. Here, the equality u|ST = 0 should be understood in the sense of the trace theory [68, p. 71].

Below, under the belonging of the vector v = (v1, . . . , vN ) to some space X we mean the belonging
of each component vi, 1 ≤ i ≤ N , of that vector to the same space X. In accordance with the
above-said, for the sake of simplicity of our writing and to avoid misunderstanding, instead of v =
(v1, . . . , vN ) ∈ [X]N , we write v ∈ X.

Rewrite the system of equations (2.1.1) in the form of one vector equation

Lu := �u+ f(u) = F1, (2.2.1)

where � := ∂2

∂t2 −∆, ∆ :=
n∑
i=1

∂2

∂x2
i

.

Together with the boundary conditions (2.1.2), we consider the corresponding homogeneous bo-
undary conditions

∂u

∂xn

∣∣∣
S0
T

= 0, u
∣∣
ST

= 0. (2.2.2)

Below, on the nonlinear vector function f = (f1, . . . , fN ) in (2.1.1) we impose the following re-
quirement

f ∈ C(RN ), |f(u)| ≤M1 +M2|u|α, α = const ≥ 0, u ∈ RN , (2.2.3)

where | · | is a norm in the space RN , Mi = const ≥ 0, i = 1, 2.

Remark 2.2.1. The embedding operator I : [W 1
2 (DT )]

N → [Lq(DT )]
N is a linear continuous compact

operator for 1 < q < 2(n+1)
n−1 , when n > 1 [68, p. 86]. At the same time, Nemitski’s operator

K : [Lq(DT )]
n → [L2(DT )]

N acting by the formula Ku = f(u), where u = (u1, . . . , uN ) ∈ [Lq(DT )]
N ,

and the vector function f = (f1, . . . , fN ) satisfies the condition (2.2.3), is continuous and bounded for
q ≥ 2α [67, p. 349], [22, pp. 66, 67]. Thus, if α < n+1

n−1 , i.e., 2α < 2(n+1)
n−1 , then there exists a number

q such that 1 < q < 2(n+1)
n−1 and q ≥ 2α. Therefore, in this case, the operator

K0 = KI : [W 1
2 (DT )]

N → [L2(DT )]
N (2.2.4)

is continuous and compact. Clearly, from u = (u1, . . . , uN ) ∈ W 1
2 (DT ) it follows that f(u) ∈ L2(DT )

and, if um → u in the space W 1
2 (DT ), then f(um) → f(u) in the space L2(DT ).

Definition 2.2.1. Let f = (f1, . . . , fN ) satisfy the condition (2.2.3), where 0 ≤ α < n+1
n−1 , F =

(F1, . . . , FN ) ∈ L2(DT ) and g = (g1, . . . , gN ) ∈W 1
2 (ST ). We call the vector function u = (u1, . . . , uN )
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∈W 1
2 (DT ) a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W 1

2 in the domain
DT if there exists a sequence of vector functions um ∈ C2(DT ) such that ∂um

∂t

∣∣
S0
T

= 0, um → u in the
space W 1

2 (DT ), Lum → F in the space L2(DT ) and um|ST → g in the space W 1
2 (ST ). Convergence

of the sequence {f(um)} to f(u) in the space L2(DT ) as um → u in the space W 1
2 (DT ) follows from

Remark 2.2.1. When g = 0, i.e., in the case of homogeneous boundary conditions (2.2.2), we assume
that um ∈

◦
C2(DT , S

0
T , ST ). Then it is clear that u ∈

◦
W 1

2(DT , ST ).

It is obvious that the classical solution u ∈ C2(DT ) of the problem (2.1.1), (2.1.2) is a strong
generalized solution of the class W 1

2 in the domain DT in the sense of Definition 2.2.1.

Remark 2.2.2. It is easy to verify that if u ∈ C2(DT ) is a classical solution of the problem
(2.1.1), (2.1.2), then multiplying scalarly both sides of the system (2.2.1) by any test vector func-
tion φ = (φ1, . . . , φN ) ∈ C2(DT ) satisfying the condition φ|t=T = 0, after integration by parts, we
obtain the equality∫

DT

[
− utφt +∇u∇φ

]
dx dt = −

∫
DT

f(u)φ dx dt+

∫
DT

Fφ dx dt−
∫

S0
T∪ST

∂u

∂N
φds, (2.2.5)

where ∂
∂N = νn+1

∂
∂t −

n∑
i=1

νi
∂
∂xi

is the derivative with respect to the conormal, ν = (ν1, . . . , νn, νn+1)

is the unit vector of the outer normal to ∂DT , and ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

). Taking into account that
∂
∂N

∣∣
S0
T

= ∂
∂xn

and ST is a characteristic manifold on which the operator ∂
∂N is an inner differential

operator, from (2.1.2) we have

∂u

∂N

∣∣∣
S0
T

= 0,
∂u

∂N

∣∣∣
ST

=
∂g

∂N

∣∣∣
ST
.

Therefore, the equality (2.2.5) takes the form∫
DT

[
− utφt +∇u∇φ

]
dx dt = −

∫
DT

f(u)φ dx dt+

∫
DT

Fφ dx dt−
∫
ST

∂g

∂N
φds. (2.2.6)

It can be easily seen that the equality (2.2.6) is valid also for any vector function φ = (φ1, . . . , φN ) ∈
W 1

2 (DT ) such that φ|t=T = 0 in the sense of the trace theory. Note that the equality (2.2.6) is also
valid for a strong generalized solution u ∈ W 1

2 (DT ) of the problem (2.1.1), (2.1.2) of the class W 1
2

in the domain DT in the sense of Definition 2.2.1. Indeed, if um ∈ C2(DT ) is a sequence of vector
functions from Definition 2.2.1, then writing the equality (2.2.6) for u = um and passing to the limit
as m → ∞, we obtain (2.2.6). It should be noted that the equality (2.2.6), valid for any test vector
function φ ∈ W 1

2 (DT ) satisfying the condition φ|t=T = 0, can be put in the basis of the definition
of a weak generalized solution u ∈ W 1

2 (DT ) of the problem (2.1.1), (2.1.2) of the class W 1
2 in the

domain DT .

Definition 2.2.2. Let f satisfy the condition (2.2.3), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(2.1.1), (2.1.2) is locally solvable in the class W 1

2 if there exists a number T0 = T0(F, g) > 0 such that
for any T < T0 this problem has a strong generalized solution of the class W 1

2 in the domain DT in
the sense of Definition 2.2.1.

Definition 2.2.3. Let f satisfy the condition (2.2.3), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(2.1.1), (2.1.2) is globally solvable in the class W 1

2 if for any T > 0 this problem has a strong genera-
lized solution of the class in the domain DT in the sense of Definition 2.2.1.

Definition 2.2.4. Let f satisfy the condition (2.2.3), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. The vector function u =



22 Sergo Kharibegashvili

(u1, . . . , uN ) ∈W 1
2,loc(D∞) is called a global strong generalized solution of the problem (2.1.1), (2.1.2)

of the class W 1
2 in the domain D∞ if for any T > 0 the vector function u|DT belongs to the space

W 1
2 (DT ) and is a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W 1

2 in the
domain DT in the sense of Definition 2.2.1.

Remark 2.2.3. Reasoning used in the proof of the equation (2.2.6) makes it possible to conclude
that the global strong generalized solution u = (u1, . . . , uN ) of the problem (2.1.1), (2.1.2) of the class
W 1

2 in the domain D∞ in the sense of Definition 2.2.4 satisfies the following integral equality∫
D∞

[
− utφt +∇u∇φ

]
dx dt = −

∫
D∞

f(u)φ dx dt+

∫
D∞

Fφ dx dt−
∫
S∞

∂g

∂N
φds

for any test vector function φ = (φ1, . . . , φN ) ∈ C1(D∞), which is finite with respect to the variable
r = (t2 + |x|2)1/2, i.e., φ = 0 for r > r0 = const > 0.

2.3 Some cases of local and global solvability
of the problem (2.1.1), (2.1.2) in the class W 1

2

For the sake of simplicity, we consider the case where the boundary conditions (2.1.2) are homogeneous.
In this case the problem (2.1.1), (2.1.2) can be rewritten in the form (2.2.1), (2.2.2).

Remark 2.3.1. Before we proceed to considering the solvability of the problem (2.1.1), (2.1.2), let us
consider the same question for the linear case, when the vector function f = 0 in (2.2.1), i.e., for the
problem

L0u := �u = F (x, t), (x, t) ∈ DT , (2.3.1)
∂u

∂xn

∣∣∣
S0
T

= 0, u
∣∣
ST

= 0. (2.3.2)

For the problem (2.3.1), (2.3.2), by analogy to that in Definition 2.2.1 for the problem (2.1.1), (2.1.2),
we introduce the notion of a strong generalized solution u = (u1, . . . , uN ) of the class W 1

2 in the domain
DT for F = (F1, . . . , FN ) ∈ L2(DT ), i.e., for the vector function u = (u1, . . . , uN ) ∈

◦
W 1

2(DT , ST ), for
which there exists a sequence of vector functions um = (um1 , . . . , u

m
N ) ∈

◦
C1

2(DT , S
0
T , ST ) such that

lim
m→∞

∥um − u∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥L0u

m − F∥L2(DT ) = 0. (2.3.3)

For the solution u ∈
◦
C1

2(DT , S
0
T , ST ) of the problem (2.3.1), (2.3.2) the estimate

∥u∥ ◦
W 1

2(DT ,ST )
≤ c(T )∥F∥L2(DT ), c(T ) =

√
T exp 1

2
(T + T 2), (2.3.4)

is valid. Indeed, multiplying scalarly both parts of the vector equation (2.3.2) by 2 ∂u
∂t and integrating

in the domain Dτ , 0 < τ ≤ T , after simple transformations with the use of the equalities (2.3.2) and
integration by parts, we arrive at the equality [51], [45, p. 116]∫

Ωτ

[(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2]
dx = 2

∫
Dτ

F
∂u

∂t
dx dt, (2.3.5)

where Ωτ := DT ∩ {t = τ}. Since Sτ : t = |x|, xn ≥ 0, t ≤ τ , due to (2.3.2), we get

u(x, τ) =

τ∫
|x|

∂

∂t
u(x, s) ds, (x, s) ∈ Ωτ .
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Squaring scalarly both parts of the obtained equality, integrating it in the domain Ωτ and using
the Schwartz inequality, we have

∫
Ωτ

u2 dx =

∫
Ωτ

( τ∫
|x|

∂

∂t
u(x, s)

)2

dx ≤
∫
Ωτ

(τ − |x|)
( τ∫

|x|

(∂u
∂t

)2

ds

)
dx

≤ T

∫
Ωτ

( τ∫
|x|

(∂u
∂t

)2

ds

)2

dx = T

∫
Dτ

(∂u
∂t

)2

dx dt. (2.3.6)

Let
w(τ) :=

∫
Ωτ

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2]
dx.

Taking into account the inequality 2F ∂u
∂t ≤ (∂u∂t )

2 + F 2, due to (2.3.5) and (2.3.6), we have

w(τ) ≤ (1 + T )

∫
DT

(∂u
∂t

)2

dx dt+

∫
Dτ

F 2 dx dt

≤ (1 + T )

∫
DT

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2]
dx dt+ ∥f∥2L2(DT )

= (1 + T )

τ∫
0

w(s) ds+ ∥F∥2L2(DT )
, 0 < τ ≤ T. (2.3.7)

According to the Gronwall lemma, from (2.3.7) it follows that

w(τ) ≤ ∥F∥2L2(DT )
exp(1 + T )T, 0 < τ ≤ T. (2.3.8)

Using (2.3.8), we get

∥u∥2◦
W 1

2(DT ,ST )
=

∫
Dτ

[
u2 +

(∂u
∂t

)2

+

n∑
i=1

( ∂u
∂xi

)2]
dx dt =

T∫
0

w(τ) dτ ≤ T∥F∥2L2(DT )
exp(1 + T )T,

which results in the estimate (2.3.4).

Remark 2.3.2. Due to (2.3.3), a priori estimate (2.3.4) is also valid for a strong generalized solution
of the problem (2.3.1), (2.3.2) of the class W 1

2 in the domain DT .

Since the space C∞
0 (DT ) of finite infinitely differentiable in DT functions is dense in L2(DT ), for the

given F = (F1, . . . , FN ) ∈ L2(DT ) there exists a sequence of vector functions Fm = (Fm1 , . . . , F
m
N ) ∈

C∞
0 (DT ) such that

lim
m→∞

∥Fm − F∥L2(DT ) = 0.

For the fixed m, extending Fm evenly with respect to the variable xn in the domain D−
T :=

{(x, t) ∈ Rn+1 : xn < 0, |x| < t < T} and then by zero beyond the domain DT ∪D−
T and retaining

the same notation, we have Fm ∈ C∞(Rn+1
+ ), for which the support supp Fm ⊂ D∞ ∪ D−

∞, where
Rn+1

+ := Rn+1 ∩ {t ≥ 0}. Denote by um the solution of the Cauchy problem

L0u
m := �um = Fm, um

∣∣
t=0

= 0,
∂um

∂t

∣∣∣
t=0

= 0, (2.3.9)

which, as is well-known [32, p. 192], exists, is unique and belongs to the space C∞(Rn+1
+ ). Since

suppFm ⊂ D∞ ∪D−
∞ ⊂ {(x, t) ∈ Rn+1 : t > |x|}, um|t=0 = 0 and ∂um

∂t

∣∣
t=0

= 0, taking into account
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the geometry of the domain of dependence of the solution of the linear wave equation L0u
m = Fm,

we have suppum ⊂ {(x, t) ∈ Rn+1 : t > |x|} [32, p. 191] and, in particular, um|ST = 0. On the
other hand, the vector function ũm(x1, . . . , xn, t) = um(x1, . . . ,−xn, t) is likewise a solution of the
same Cauchy problem (2.3.9), since the vector function Fm is even with respect to the variable xn.
Therefore, due to the uniqueness of the solution of the Cauchy problem, we have ũm = um, i.e.,
um(x1, . . . ,−xn, t) = um(x1, . . . , xn, t), and hence the vector function um is likewise an even function
with respect to the variable xn. This, in turn, implies that ∂um

∂xn

∣∣
xn=0

= 0, which under the condition
um|ST = 0 indicates that if we retain the same notation for the restriction of the vector function um

in the domain DT , then it is obvious that um ∈
◦
C2(DT , S

0
T , ST ). Further, due to (2.3.4) and (2.3.9),

the inequality
∥um − uk∥ ◦

W 1
2(DT ,ST )

≤ c(T )∥Fm − F k∥L2(DT ) (2.3.10)

is valid.
Since the sequence {Fm} is fundamental in L2(DT ), due to (2.3.10), the sequence {um} is

also fundamental in the complete space
◦
W 1

2(DT , ST ). Therefore, there exists a vector function
u ∈

◦
W 1

2(DT , ST ) such that
lim
m→∞

∥um − u∥ ◦
W 1

2(DT ,ST )
= 0,

and since L0u
m = Fm → F in the space L2(DT ), this vector function is, according to Remark 2.3.1,

a strong generalized solution of the problem (2.3.1), (2.3.2) of the class W 1
2 in the domain DT . The

uniqueness of that solution from the space
◦
W 1

2(DT , ST ) follows, due to Remark 2.3.2, from the a priori
estimate (2.3.4). Therefore, for the solution u of the problem (2.3.1), (2.3.2) we can write u = L−1

0 F ,
where L−1

0 : [L2(DT )]
N → [

◦
W 1

2(DT , ST )]
N is a linear continuous operator with a norm admitting, in

view of (2.3.4), the following estimate:

∥L−1
0 ∥

[L2(DT )]N→[
◦
W 1

2(DT ,ST )]
N
≤

√
T exp 1

2
(T + T 2). (2.3.11)

Remark 2.3.3. Taking into account (2.3.11), when the condition (2.2.3) is fulfilled, where 0 ≤
α < n+1

n−1 and F ∈ L2(DT ), due to Remark 2.2.1, it is easy to see that the vector function u =

(u1, . . . , uN ) ∈
◦
W 1

2(DT , ST ) is a strong generalized solution of the problem (2.2.1), (2.2.2) of the class
W 1

2 in the domain DT if and only if u is a solution of the functional equation

u = L−1
0 (−f(u) + F ) (2.3.12)

in the space
◦
W 1

2(DT , ST ).

Remark 2.3.4. Let the condition (2.2.3) be fulfilled and 0 ≤ α < n+1
n−1 . We rewrite the equation

(2.3.12) in the form
u = Au := L−1

0 (−K0u+ F ), (2.3.13)

where the operator K0 : [
◦
W 1

2(DT , ST )]
N → [L2(DT )]

N from (2.2.4) is, due to Remark 2.2.1, continu-
ous and compact. Therefore, according to (2.3.11) and (2.3.13), the operator A : [

◦
W 1

2(DT , ST )]
N →

[
◦
W 1

2(DT , ST )]
N is also continuous and compact. Denote by B(0, r0) := {u = (u1, . . . , uN ) ∈

◦
W 1

2(DT , ST ) : ∥u∥ ◦
W 1

2(DT ,ST )
≤ r0} a closed convex ball of radius r0 > 0 with center in a null

element in the Hilbert space
◦
W 1

2(DT , ST ).

Since the operator A from (2.3.13), acting in the space
◦
W 1

2(DT , ST ), is a compact continuous
operator, according to the Schauder principle, for the solvability of the equation (2.3.13) in the space
◦
W 1

2(DT , ST ) it suffices to prove that the operator A maps the ball B(0, r0) into itself for some r0 > 0
[90, p. 370].
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Theorem 2.3.1. Let f satisfy the condition (2.2.3), where 1 ≤ α < n+1
n−1 , g = 0, F ∈ L2,loc(D∞)

and F |DT ∈ L2(DT ) for any T > 0. Then the problem (2.1.1), (2.1.2) is locally solvable in the class
W 1

2 , i.e., there exists a number T0 = T0(F ) > 0 such that for any T < T0, this problem has a strong
generalized solution of the class W 1

2 in the domain DT in the sense of Definition 2.2.1.

Proof. Due to Remark 2.3.4, it suffices to prove the existence of positive numbers T0 = T0(F ) and r0 =
r0(T, F ) such that for T < T0, the operator A from (2.3.13) maps the ball B(0, r0) into itself. Towards
this end, let us evaluate ∥Au∥ ◦

W 1
2(DT ,ST )

for u ∈
◦
W 1

2(DT , ST ). If u = (u1, . . . , uN ) ∈
◦
W 1

2(DT , ST ), we
denote by ũ the vector function which represents an even extension of u through the planes xn = 0

and t = T . Obviously, ũ ∈
◦
W 1

2(D
∗
T ) := {v ∈W 1

2 (D
∗
T : v|∂D∗

T
= 0}, where D∗

T : |x| < t < 2T − |x|.
Using the inequality [93, p. 258]∫

Ω

|v| dΩ ≤ (mesΩ)1−
1
p ∥v∥p,Ω, p ≥ 1,

and taking into account the equalities

∥ũ∥pLp(D∗
T )

= 2∥u∥pLp(DT ), ∥ũ∥2◦
W 1

2(D
∗
T )

= 2∥u∥2◦
W 1

2(DT ,ST )
,

from the known multiplicative inequality [68, p. 78]

∥v∥p,Ω ≤ β∥∇x,tv∥α̃m,Ω∥v∥1−α̃r,Ω ∀ v ∈
◦
W 1

2(Ω), Ω ⊂ Rn+1,

∇x,t =
( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂t

)
, α̃ =

(1
r
− 1

p

)(1
r
− 1

m̃

)−1

, m̃ =
(n+ 1)m

n+ 1−m

for Ω = D∗
T ⊂ Rn+1, v = ũ, r = 1, m = 2 and 1 < p ≤ 2(n+1)

n+1−m , where β = const > 0 does not depend
on v and T , we obtain the following inequality:

∥u∥Lp(DT ) ≤ c0(mesDT ))
1
p+

1
n+1−

1
2 ∥u∥ ◦

W 1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (2.3.14)

where c0 = const > 0 does not depend on u and T .
Since mesDT = ωn

n+1 T
n+1, where ωn is the volume of a unit ball in Rn, from (2.3.14) for p = 2α

we get
∥u∥L2α(DT ) ≤ CT ∥u∥ ◦

W 1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (2.3.15)

where CT = c0(
ωn
n+1 )

α1T (n+1)α1 , α1 = 1
2α + 1

n+1 − 1
2 .

Note that α1 = 1
2α + 1

n+1 − 1
2 > 0 for α < n+1

n−1 , and hence

lim
T→0

CT = 0. (2.3.16)

For ∥K0u∥L2(DT ), where u ∈
◦
W 1

2(DT , ST ) and the operator K0 acts according to the formula
(2.2.4), due to (2.2.3) and (2.3.15), we have the estimate

∥K0u∥2L2(DT )
≤

∫
DT

(M1 +M2|u|α)2 dx dt ≤ 2M1
2 mesDT + 2M2

2

∫
DT

|u|2α dx dt

= 2M2
1 mesDT + 2M2

2 ∥u∥2αL2α(DT )
≤ 2M2

1 mesDT + 2M2
2C

2α
T ∥u∥2α◦

W 1
2(DT ,ST )

,

whence
∥K0u∥L2α(DT ) ≤M1(2mesDT )

1
2 +

√
2M2C

α
T ∥u∥α◦

W 1
2(DT ,ST )

. (2.3.17)
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It follows from (2.3.11), (2.3.13) and (2.3.17) that

∥Au∥ ◦
W 1

2(DT ,ST )
=

∥∥L−1
0 (−K0u+ F )

∥∥ ◦
W 1

2(DT ,ST )

≤ ∥L−1
0 ∥

[L2(DT )]N→[
◦
W 1

2(DT ,ST )]
N
∥(−K0u+ F )∥L2(DT )

≤
[√

T exp 1

2
(T + T 2)

](
∥K0u∥L2(DT ) + ∥F∥L2(DT )

)
≤

[√
T exp 1

2
(T + T 2)

](
M1(2mesDT )

1
2 +

√
2M2C

α
T ∥u∥α◦

W 1
2(DT ,ST )

+ ∥F∥L2(DT )

)
= a(T )∥u∥α◦

W 1
2(DT ,ST )

+ b(T ). (2.3.18)

Here,

a(T ) =
√
2M2C

α
T

√
T exp 1

2
(T + T 2), (2.3.19)

b(T ) =
[√

T exp 1

2
(T + T 2)

](
M1(2mesDT )

1
2 + ∥F∥L2(DT )

)
. (2.3.20)

For the fixed T > 0, consider the equation

azα + b = z (2.3.21)

with respect to the unknown z ∈ R, where a = a(T ) and b = b(T ) are defined by (2.3.19) and (2.3.20).
First, consider the case α > 1. A simple analysis, analogous to that performed for α = 3 in [90,

pp. 373, 374], shows that:

(1) for b = 0, together with a trivial root z1 = 0, the equation (2.3.21) has a unique positive root
z2 = a−

1
α−1 ;

(2) if b > 0, then for 0 < b < b0, where

b0 = b0(T ) =
[
α− 1

α−1 − α− α
α−1

]
a−

1
α−1 , (2.3.22)

the equation (2.3.21) has two positive roots z1 and z2, 0 < z1 < z2, and for b = b0, these roots
merge, and we have one positive root z1 = z2 = z0 = (αa)−

1
α−1 ;

(3) for b > b0, the equation (2.3.21) does not have nonnegative roots. Note that for 0 < b < b0, the
inequality z1 < z0 = (αa)−

1
α−1 < z2 is valid.

In view of the absolute continuity of the Lebesgue integral, we have lim
T→0

∥F∥L2(DT ) = 0. Therefore,
taking into account that mesDT = ωn

n+1 T
n+1, it follows from (2.3.20) that lim

T→0
b(T ) = 0. At the same

time, since − 1
α−1 < 0 for α > 1, due to (2.3.16), from (2.3.19) and (2.3.22), we get lim

T→0
b0(T ) = ∞.

Therefore, there exists a number T0 = T0(F ) > 0 such that for 0 < T < T0, in view of (2.3.19)–
(2.3.22), the condition 0 < b < b0 holds and hence the equation (2.3.21) has at least one positive root,
we denote it by r0 = r0(T, F ).

In case α = 1, the equation (2.3.21) is linear, where lim
T→0

a(T ) = 0. Therefore, for 0 < T < T0,
where T0 = T0(F ) is a sufficiently small positive number, this equation will have a unique positive
root z(T, F ) = b(1− a)−1, which we also denote by r0 = r0(T, F ).

Now, we will show that the operator A from (2.3.13) maps the ball B(0, r0) ⊂
◦
W 1

2(DT , ST ) into
itself. Indeed, due to (2.3.18) and the equality arα0 + b = r0, for any u ∈ B(0, r0), we have

∥Au∥ ◦
W 1

2(DT ,ST )
≤ a∥u∥α◦

W 1
2(DT ,ST )

+ b ≤ arα0 + b = r0. (2.3.23)

In view of Remark 2.3.4, the above reasoning proves Theorem 2.3.1.
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Theorem 2.3.2. Let f satisfy the condition (2.2.3), where 0 ≤ α < 1, g = 0, F ∈ L2,loc(D∞) and
F |DT ∈ L2(DT ) for any T > 0. Then the problem (2.1.1), (2.1.2) is globally solvable in the class W 1

2 ,
i.e., for any T > 0 this problem has a strong generalized solution of the class W 1

2 in the domain DT

in the sense of Definition 2.2.1.

Proof. According to Remark 2.3.4, to prove Theorem 2.3.2, it suffices to show that for any T > 0
there exists a number r0 = r0(T, F ) > 0 such that the operator A from (2.3.13) maps the ball
B(0, r0) ⊂

◦
W 1

2(DT , ST ) into itself. Let 1
2 < α < 1, then since 2α > 1, the equality (2.3.15) is valid

and hence the estimate (2.3.18) is also valid. For the fixed T > 0, since α < 1, there exists a number
r0 = r0(T, F ) > 0 such that

a(T )sα + b(T ) ≤ r0 ∀ s ∈ [0, r0]. (2.3.24)

Indeed, the function λ(s)
s , where λ(s) = a(T )sα + b(T ), is a continuous decreasing function and

lim
s→0+

λ(s)

s
= +∞, lim

s→+∞

λ(s)

s
= 0.

Therefore, there exists a number s = r0(T, F ) > 0 such that λ(s)
s

∣∣
s=r0

= 1. This implies that since the
function λ(s) for s ≥ 0 is a monotonic increasing function, (2.3.24) follows immediately. Now, in view of
(2.3.18) and (2.3.24), for any u ∈ B(0, r0), the inequality (2.3.23) is valid, i.e., A(B(0, r0)) ⊂ B(0, r0).

The case 0 ≤ α ≤ 1
2 can be reduced to the previous case 1

2 < α < 1, since the vector function f
satisfying the condition (2.2.3) for 0 ≤ α ≤ 1

2 satisfies the same condition (2.2.3) for a certain fixed
α = α ∈ ( 12 , 1) with other positive constants M1 and M2 (it is easy to see that M1 +M2∥u∥α ≤
(M1 +M2) +M2|u|α1 ∀u ∈ R, α < α1). This proves Theorem 2.3.2 completely.

Remark 2.3.5. The global solvability of the problem (2.1.1), (2.1.2) in Theorem 2.3.2 is proved
for the case in which the function f satisfies the condition (2.2.3), where 0 ≤ α < 1. In the case
1 ≤ α < n+1

n−1 , the local solvability of this problem is proved in Theorem 2.3.1, although in this case,
for the additional conditions imposed on f the problem (2.1.1), (2.1.2) is globally solvable as is shown
in the following theorem.

Theorem 2.3.3. Let f satisfy the condition (2.2.3), where 1 ≤ α < n+1
n−1 and f = ∇G, i.e., fi(u) =

∂
∂ui

G(u), u ∈ RN , i = 1, . . . , N , where G = G(u) ∈ C1(RN ) is a scalar function satisfying the
conditions G(0) = 0 and G(u) ≥ 0 ∀u ∈ RN . Let g = 0, F ∈ L2,loc(D∞) and F |DT ∈ L2(DT ) for any
T > 0. Then the problem (2.1.1), (2.1.2) is globally solvable in the class W 1

2 , i.e., for any T > 0, this
problem has a strong generalized solution of the class W 1

2 in the domain DT in the sense of Definition
2.2.1.

Proof. First, let us show that for any fixed T > 0, when the conditions of Theorem 2.3.3 are fulfilled,
for a strong generalized solution u of the problem (2.1.1), (2.1.2) of the class W 1

2 in the domain DT

the a priori estimate (2.3.4) is valid. Indeed, due to Definition 2.2.1, there exists a sequence of vector
functions um ∈

◦
C(DT , S

0
T , ST ) such that

lim
m→∞

∥um − u∥W 1
2 (DT )

= 0, lim
m→∞

∥Lum − F∥L2(DT ) = 0. (2.3.25)

Let
Fm := Lum, (2.3.26)

then� due to the equality (2.3.5), we have∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx = 2

∫
DT

(Fm − f(um))
∂um

∂t
dx dt. (2.3.27)
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Since f = ∇G, we have f(um) ∂u
m

∂t = ∂
∂t G(u

m) and, taking into account that um|ST = 0, νn+1|S0
T
= 0,

νn+1|Ωτ = 1, G(0) = 0, by integration by parts we get∫
Dτ

f(um)
∂um

∂t
dx dt =

∫
Dτ

∂

∂t
G(um) dx dt

=

∫
∂Dτ

G(um)νn+1 ds =

∫
S0
τ∪Sτ∪Ωτ

G(um)νn+1 ds =

∫
Ωτ

G(um) dx. (2.3.28)

In view of (2.3.28) and G ≥ 0, from (2.3.27) we have

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx

= 2

∫
Dτ

Fm
∂um

∂t
dx dt− 2

∫
Ωτ

G(um) dx ≤ 2

∫
Dτ

Fm
∂um

∂t
dx dt. (2.3.29)

Using the same reasonings as those for finding the estimate (2.3.4), from (2.3.29) we get the
following inequality

∥um∥ ◦
W 1

2(DT ,ST )
≤ c(T )∥Fm∥L2(DT ), c(T ) =

√
T exp 1

2
(T + T 2),

whence, due to (2.3.25) and (2.3.26), we have (2.3.4).
According to Remarks 2.3.3 and 2.3.4, under the fulfilment of the conditions of Theorem 2.3.3, the

vector function u ∈
◦
W 1

2(DT , ST ) represents a strong generalized solution of the problem (2.1.1), (2.1.2)
of the class W 1

2 if and only if u represents a solution of the functional equation u = Au from (2.3.13)
in the space

◦
W 1

2(DT , ST ), where the operator A : [
◦
W 1

2(DT , ST )]
N → [

◦
W 1

2(DT , ST )]
N is continuous

and compact. At the same time, as is shown above, for any µ ∈ [0, 1] and any solution of equation
u = µAu with the parameter µ, in the space

◦
W 1

2(DT , ST ) the following a priori estimate

∥u∥ ◦
W 1

2(DT ,ST )
≤ µc(T )∥F∥L2(DT ) ≤ c(T )∥F∥L2(DT )

with the positive constant c(T ), independent of u, µ and F , is valid. Therefore, according to the
Leray–Schauder’s theorem [90, p. 375], the equation (2.3.13) and hence the problem (2.1.1), (2.1.2)
has at least one strong generalized solution of the class W 1

2 in the domain DT for any T > 0. Thus
Theorem 2.3.3 is proved.

2.4 The uniqueness and existence of a global solution
of the problem (2.1.1), (2.1.2) in the class W 1

2

Below, we impose on the nonlinear vector function f = (f1, . . . , fN ) from (2.1.1) the following addi-
tional requirements

f ∈ C1(RN ),
∣∣∣∂fi(u)
∂uj

∣∣∣ ≤M3 +M4|u|γ ∀u ∈ RN , 1 ≤ i, j ≤ N, (2.4.1)

where M3, M4, γ = const ≥ 0. For the sake of simplicity, we assume that the vector function g = 0
in the boundary condition (2.1.2).

Remark 2.4.1. It is obvious that from (2.4.1) follows the condition (2.2.3) for γ = α− 1, and in the
case γ < 2

n−1 , we have 1 ≤ α = γ + 1 < n+1
n−1 .
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Theorem 2.4.1. Let the condition (2.4.1) be fulfilled, where 0 ≤ γ < 2
n−1 , F ∈ L2(DT ) and g = 0.

Then the problem (2.1.1), (2.1.2) cannot have more than one strong generalized solution of the class
W 1

2 in the domain DT in the sense of Definition 2.2.1.

Proof. Let F ∈ L2(DT ), g = 0, and assume that the problem (2.1.1), (2.1.2) has two strong generalized
solutions u1 and u2 of the class W 1

2 in the domain DT in the sense of Definition 2.2.1, i.e., there exist
two sequences of vector functions uim ∈

◦
C2(DT , S

0
T , ST ), i = 1, 2; m = 1, 2, . . . , such that

lim
m→∞

∥uim − ui∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Luim − F∥L2(DT ) = 0, i = 1, 2. (2.4.2)

Let
w = u2 − u1, wm = u2m − u1m, Fm = Lu2m − Lu1m. (2.4.3)

In view of (2.4.2) and (2.4.3), we have

lim
m→∞

∥wm − w∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Fm∥L2(DT ) = 0. (2.4.4)

In accordance with (2.4.3), consider the vector function wm ∈
◦
C2(DT , S

0
T , ST ) as a solution of the

following problem:

�wm = −
[
f(u2m)− f(u1m)

]
+ Fm, (2.4.5)

∂wm

∂xn

∣∣∣
S0
T

= 0, wm
∣∣
ST

= 0. (2.4.6)

From (2.4.5), (2.4.6) and in view of the equality (2.3.5), it follows that

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx

= 2

∫
Dτ

Fm
∂wm

∂t
dx dt− 2

∫
Dτ

[
f(u2m)− f(u1m)

] ∂wm
∂xi

dx dt, 0 < τ ≤ T. (2.4.7)

Taking into account the equality

fi(u
2m)− fi(u

1m) =

N∑
j=1

1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds (u2mj − u1mj ),

we obtain

[
f(u2m)− f(u1m)

] ∂wm
∂t

=

N∑
i,j=1

[ 1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

]
(u2mj − u1mj )

∂wmi
∂t

. (2.4.8)

From (2.4.1) and the obvious inequality |d1 + d2|γ ≤ 2γ max(|d1|γ , |d2|γ) ≤ 2γ(|d1|γ + |d2|γ) for
γ ≥ 0, di ∈ R, we have

∣∣∣∣
1∫

0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

∣∣∣∣
≤

1∫
0

[
M3 +M4

∣∣(1− s)u1m + su2m
∣∣γ] ds ≤M3 + 2γM4

(
|u1m|γ + |u2m|γ

)
. (2.4.9)
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From (2.4.8) and (2.4.9), taking into account (2.4.3), we obtain

∣∣∣[f(u2m)− f(u1m)
] ∂wm
∂xi

∣∣∣ ≤ N∑
i,j=1

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wmj |

∣∣∣∂wmi
∂t

∣∣∣
≤ N2

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wm|

∣∣∣∂wm
∂t

∣∣∣
≤ 1

2
N2M3

[
(wm)2 +

(∂wm
∂t

)2]
+ 2γN2M4

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣. (2.4.10)

Due to (2.4.7) and (2.4.10), we get

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx

≤
∫
Dτ

[(∂wm
∂t

)2

+ (Fm)2
]
dx dt+N2M3

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2]
dx dt

+ 2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt. (2.4.11)

The latter integral in the right-hand side of (2.4.11) can be estimated by Hölder’s inequality

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣ dx dt
≤

(
∥|u1m|γ∥Ln+1(DT ) + ∥|u2m|γ∥Ln+1(DT )

)
∥wm∥Lp(Dτ )

∥∥∥∂wm
∂t

∥∥∥
L2(Dτ )

. (2.4.12)

Here, 1
n+1 + 1

p +
1
2 = 1, i.e.,

p =
2(n+ 1)

n− 1
. (2.4.13)

In view of (2.3.14), for q ≤ 2(n+1)
n−1 we have

∥v∥Lq(DT ) ≤ Cq(T )∥v∥ ◦
W 1

2(DT ,ST )
∀ v ∈

◦
W 1

2(Dτ , Sτ ), 0 < τ ≤ T, (2.4.14)

with the positive constant Cq(T ) not depending on v ∈
◦
W 1

2(Dτ , Sτ ) and τ ∈ [0, T ].
According to our theorem, γ < 2

n−1 and hence γ(n+1) < 2(n+1)
n−1 . Thus, from (2.4.13) and (2.4.14),

we obtain

∥|uim|γ∥Ln+1(DT ) = ∥uim∥γLγ(n+1)(DT )
≤ Cγγ(n+1)(T )∥u

im∥γ◦
W 1

2(DT ,ST )
, i = 1, 2; m ≥ 1, (2.4.15)

∥wm∥Lp(Dτ ) ≤ Cp(T )∥wm∥W 1
2 (Dτ )

, m ≥ 1. (2.4.16)

In view of the first equality from (2.4.2), there exists a natural number m0 such that for m ≥ m0,
we have

∥uim∥γ◦
W 1

2(DT ,ST )
≤ ∥ui∥γ◦

W 1
2(DT ,ST )

+ 1, i = 1, 2; m ≥ m0. (2.4.17)
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In view of the above inequalities, from (2.4.12)–(2.4.16) it follows that

2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt ≤ 2γ+1N2M4C
γ
γ(n+1)(T )

×
(
∥u1∥γ◦

W 1
2(DT ,ST )

+ ∥u2∥γ◦
W 1

2(DT ,ST )
+ 2

)
Cp(T )∥wm∥ ◦

W 1
2(DT ,ST )

∥∥∥∂wm
∂t

∥∥∥
L2(Dτ )

≤M5

(
∥wm∥2W 1

2 (Dτ )
+
∥∥∥∂wm
∂t

∥∥∥
L2(Dτ )

)
≤ 2M5∥wm∥W 1

2 (Dτ )
2

= 2M5

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt, (2.4.18)

where
M5 = 2γN2M4C

γ
γ(n+1)(T )

(
∥u1∥γ◦

W 1
2(DT ,ST )

+ ∥u2∥γ◦
W 1

2(DT ,ST )
+ 2

)
Cp(T ).

Due to (2.4.17), from (2.4.11) we get∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
ds

≤M6

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt+

∫
Dτ

(Fm)2 dx dt, 0 < τ ≤ T, (2.4.19)

where M6 = 1 +M3N
2 + 2M5.

Note that the inequality (2.3.6) is likewise valid for wm and, therefore,∫
Ωτ

(wm)2 dx ≤ T

∫
Dτ

(∂wm
∂t

)2

dx dt ≤ T

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt. (2.4.20)

Putting

λm(τ) :=

∫
Ωτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx (2.4.21)

and adding (2.4.18) to (2.4.19), we obtain

λm(τ) ≤ (M6 + T )

τ∫
0

λm(s) ds+ ∥Fm∥2L2(DT )
.

whence, by the Gronwall lemma, it follows that

λm(τ) ≤ ∥Fm∥2L2(DT )
exp(M6 + T )τ. (2.4.22)

From (2.4.20) and (2.4.21) we have

∥wm∥2W 1
2 (DT )

=

T∫
0

λ(τ) dτ ≤ T∥Fm∥2L2(DT )
exp(M6 + T )T. (2.4.23)

In view of (2.4.3) and (2.4.4), from (2.4.22) it follows that

∥w∥W 1
2 (DT )

= lim
m→∞

∥w − wm + wm∥W 1
2 (DT )

≤ lim
m→∞

∥w − wm∥W 1
2 (DT )

+ lim
m→∞

∥wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥ ◦
W 1

2(DT ,ST )
= 0.

Therefore, w = u2 − u1 = 0, i.e., u2 = u1. Thus Theorem 2.4.1 is proved.
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From Theorems 2.3.2, 2.3.3, 2.4.1 and Remark 2.4.1 follows the next theorem on the existence and
uniqueness.

Theorem 2.4.2. Let the vector function f satisfy the condition (2.4.1), where 0 ≤ γ < 2
n−1 , and

either f satisfy the condition (2.2.3) for α < 1, or f = ∇G, where G ∈ C1(RN ), G(0) = 0 and
G(u) ≥ 0 ∀u ∈ RN . Then for any F ∈ L2(DT ) and g = 0, the problem (2.1.1), (2.1.2) has a
unique strong generalized solution u ∈

◦
W 1

2(DT , ST ) of the class W 1
2 in the domain DT in the sense of

Definition 2.2.1.

The theorem below on the existence of a global solution of this problem follows from Theorem 2.4.2.

Theorem 2.4.3. Let the vector function f satisfy the condition (2.4.1), where 0 ≤ γ < 2
n−1 , and

either f satisfy the condition (2.2.3) for α < 1 or f = ∇G, where G ∈ C1(RN ), G(0) = 0 and
G(u) ≥ 0 ∀u ∈ RN . Then the problem (2.1.1), (2.1.2) has a unique global strong generalized solution
u ∈

◦
W 1

2,loc(D∞, S∞) of the class W 1
2 in the domain D∞ in the sense of Definition 2.2.4.

Proof. According to Theorem 2.4.2, when the conditions of Theorem 2.4.3 are fulfilled for T = k,
where k is a natural number, there exists a unique strong generalized solution uk ∈

◦
W 1

2(DT , ST ) of
the problem (2.1.1), (2.1.2) of the class W 1

2 in the domain DT=k in the sense of Definition 2.2.1. Since
uk+1|DT=k

is also a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W 1
2 in the

domain DT=k, in view of Theorem 2.4.2, we have uk = uk+1|DT=k
. Thus one can construct a unique

global generalized solution u ∈
◦
W 1

2(DT , ST ) of the problem (2.1.1), (2.1.2) of the class W 1
2 in the

domain D∞ in the sense of Definition 2.2.4 as follows:

u(x, t) = uk(x, t), (x, t) ∈ D∞, k = [t] + 1,

where [t] is an integer part of the number t. Thus Theorem 2.4.3 is proved.

2.5 The cases of the absence of a global solution
of the problem (2.1.1), (2.1.2) of the class W 1

2

Theorem 2.5.1. Let the vector function f = (f1, . . . , fN ) satisfy the condition (2.2.3), where 1 <

α < n+1
n−1 , and there exist the numbers ℓ1, . . . , ℓN ,

∑N
i=1 |ℓi| ̸= 0, such that

N∑
i=1

ℓifi(u) ≤ c0 − c1

∣∣∣ N∑
i=1

ℓiui

∣∣∣β ∀u ∈ RN , 1 < β = const <
n+ 1

n− 1
, (2.5.1)

where c0, c1 = const, c1 > 0. Let F ∈ L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈

W 1
2 (ST ) for any T > 0. Let at least one of the functions F0 =

N∑
i=1

ℓiFi − c0 or ∂g0
∂N

∣∣
S∞

, where

g0 =
N∑
i=1

ℓigi, be nontrivial (i.e., different from zero on a subset of positive measure in D∞ or S∞,

respectively). Then if

g0 ≥ 0,
∂g0
∂N

∣∣∣
S∞

≤ 0, F0

∣∣
D∞

≥ 0, (2.5.2)

there exists a finite positive number T0 = T0(F, g) such that for T > T0 the problem (2.1.1), (2.1.2) does
not have a strong generalized solution of the class W 1

2 in the domain DT in the sense of Definition 2.2.1.

Here, ∂
∂N is a derivative with respect to the conormal to S∞, i.e., ∂

∂N = νn+1
∂
∂t −

N∑
i=1

νi
∂
∂xi

, where

ν = (ν1, . . . , νn, νn+1) is a unit vector of the outer normal to ∂D∞ = S∞, which is an inner differential
operator on the characteristic manifold S∞.
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Proof. Let GT : |x| < t < T , G−
T = GT ∩ {xn < 0}, S−

T : t = |x|, xn ≤ 0, t ≤ T . Obviously,
DT = G+

T : GT ∩ {xn > 0} and GT = G−
T ∪ (S0

T \ ∂S0
T ) ∪ G

+
T , where S0

T = ∂DT ∩ {xn = 0}. Let
u = (u1, . . . , un) be a strong generalized solution of the problem (2.1.1), (2.1.2) of the class W 1

2 in the
domain DT in the sense of Definition 2.2.1. We extend the vector functions u, F and g evenly with
respect to the variable xn in G−

T and S−
T , respectively. For simplicity, we retain the same notations u,

F and g to the extended functions defined in GT and S−
T ∪ ST . Let us show that the vector function

u = (u1, . . . , uN ), defined in the domain GT , satisfy the following integral equality∫
GT

[
− utwt +∇u∇w

]
dx dt = −

∫
GT

f(u)w dxdt+

∫
GT

Fw dx dt−
∫

S−
T ∪ST

∂g

∂N
w ds (2.5.3)

for any vector function w = (w1, . . . , wN ) ∈ W 1
2 (GT ) such that w|t=T = 0 in the sense of the trace

theory. Indeed, if w ∈ W 1
2 (GT ) and w|t=T = 0, then it is obvious that w|DT ∈ W 1

2 (DT ) and
w̃ ∈ W 1

2 (DT ), where, by definition, w̃(x1, . . . , xn, t) = w(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT and
w̃|t=T = 0. Therefore, according to the equality (2.2.6), from Remark 2.2.2, for φ = w and φ = w̃, we
have ∫

DT

[
− utwt +∇u∇w

]
dx dt = −

∫
DT

f(u)w dxdt+

∫
DT

Fw dx dt−
∫
ST

∂g

∂N
w ds (2.5.4)

and ∫
DT

[
− utw̃t +∇u∇ w̃

]
dx dt = −

∫
DT

f(u)w̃ dx dt+

∫
DT

Fw̃ dx dt−
∫
ST

∂g

∂N
w̃ ds, (2.5.5)

respectively. Since u, F and g are the even vector functions with respect to the variable xn, and
w̃(x1, . . . , xn, t) = w(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , we have∫

DT

[
− utw̃t +∇u∇ w̃

]
dx dt =

∫
GT−

[
− utwt +∇u∇w

]
dx dt, (2.5.6)

−
∫
DT

f(u)w̃ dx dt+

∫
DT

Fw̃ dx dt−
∫
ST

∂g

∂N
w̃ ds

= −
∫
G−
T

f(u)w dxdt+

∫
G−
T

Fw dx dt−
∫
S−
T

∂g

∂N
w ds. (2.5.7)

It follows from (2.5.5)–(2.5.7) that∫
G−
T

[
− utwt +∇u∇w

]
dx dt = −

∫
G−
T

f(u)w dxdt+

∫
G−
T

Fw dx dt−
∫
S−
T

∂g

∂N
w ds. (2.5.8)

Finally, summing up the equalities (2.5.4) and (2.5.8), we obtain (2.5.3).
Let us apply the method of test functions [77, pp. 10–12].
In the integral equality (2.5.3), for the test function w we choose w = (ℓ1ψ, . . . , ℓNψ), where

ψ = ψ0[2T
−2(t2+ |x|2)], while a scalar function ψ0 ∈ C2(R) satisfies the following conditions: ψ0 ≥ 0,

ψ′
0 ≤; ψ(σ) = 1 for 0 ≤ σ ≤ 1 and ψ(σ) = 0 for σ ≥ 2 [77, p. 22]. For the chosen test function w,

using the notations v =
N∑
i=1

ℓiui, g0 =
N∑
i=1

ℓigi, F∗ =
N∑
i=1

ℓiFi, f0 =
N∑
i=1

ℓifi, the integral equality (2.5.3)

takes the form∫
GT

[
− vtψt +∇ v∇ψ

]
dx dt = −

∫
GT

f0(u)ψ dx dt+

∫
GT

F∗ψ dx dt−
∫

S−
T ∪ST

∂g0
∂N

ψ ds. (2.5.9)
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Due to ψ|t≥T = 0 and the equality v|S−
T ∪ST = g0 in the sense of the trace theory, integrating by

parts the left-hand side of the equality (2.5.9), we get∫
GT

[
− vtψt +∇ v∇ψ

]
dx dt

=

∫
GT

v�ψ dx dt−
∫

S−
T ∪ST

v
∂ψ

∂N
ds =

∫
GT

v�ψ dx dt−
∫

S−
T ∪ST

g0
∂ψ

∂N
ds. (2.5.10)

From (2.5.9) and (2.5.10), in view of (2.5.1) and ψ ≥ 0, we have∫
GT

v�ψ dx dt ≥
∫
GT

[c1|v|β − c0]ψ dx dt+

∫
GT

F∗ψ dx dt+

∫
S−
T ∪ST

g0
∂ψ

∂N
ds−

∫
S−
T ∪ST

∂g0
∂N

ψ ds

= c1

∫
GT

|v|βψ dx dt+
∫
GT

(F∗ − c0)ψ dx dt+

∫
S−
T ∪ST

g0
∂ψ

∂N
ds−

∫
S−
T ∪ST

∂g0
∂N

ψ ds. (2.5.11)

In view of the properties of the function ψ and the inequalities (2.5.2), we have

∂ψ

∂N

∣∣∣
S−
T ∪ST

≥ 0,

∫
S−
T ∪ST

g0
∂ψ

∂N
ds ≥ 0,

∫
S−
T ∪ST

∂g0
∂N

ψ ds ≤ 0,

∫
GT

F0ψ dx dt ≥ 0,

(2.5.12)

where F0 = F∗ − c0 =
N∑
i=1

ℓiFi − c0. Upon derivation of the inequality (2.5.12), we have taken into

account the fact that νn+1|S−
T ∪ST < 0.

Assuming that the functions F , g and ψ are fixed, we introduce into consideration a function of
one variable

γ(T ) =

∫
GT

F0ψ dx dt+

∫
S−
T ∪ST

g0
∂ψ

∂N
ds−

∫
S−
T ∪ST

∂g0
∂N

ψ ds, T > 0. (2.5.13)

Due to the absolute continuity of the integral and the inequalities (2.5.12), the function γ(T ) from
(2.5.13) is nonnegative, continuous and nondecreasing, and

lim
T→0

γ(T ) = 0. (2.5.14)

Besides, since according to the supposition, at least one of the function ∂g0
∂N

∣∣
S−
∞∪S∞

or F0 is non-
trivial, we have

lim
T→+∞

γ(T ) > 0. (2.5.15)

In view of (2.5.13), the inequality (2.5.11) can be rewritten as follows:

c1

∫
GT

|v|βψ dx dt ≤
∫
GT

v�ψ dx dt− γ(T ). (2.5.16)

If in Young’s inequality with the parameter ε > 0

ab ≤ ε

β
aβ + (β′cβ

′−1)−1bβ ,
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where β′ = β
β−1 , we take a = |v|ψ1/β , b = |�ψ|

ψ1/β , then taking into account the equality β′

β = β′ − 1,
we have

|v�ψ| = |v|ψ1/β |�ψ|
ψ1/β

≤ ε

β
|v|βψ +

1

β′εβ′−1

|�ψ|β′

ψβ′−1
. (2.5.17)

In view of (2.5.17), from (2.5.16) we have(
c1 −

ε

β

) ∫
GT

|v|βψ dx dt ≤ 1

β′εβ′−1

∫
GT

|�ψ|β′

ψβ′−1
dx dt− γ(T ),

whence for ε < c1β, we obtain∫
GT

|v|βψ dx dt ≤ β

(c1β − ε)β′εβ′−1

∫
GT

|�ψ|β′

ψβ′−1
dx dt− β

c1β − ε
γ(T ). (2.5.18)

Taking into account the equalities β′ = β
β−1 , β = β′

β′−1 and also the equality

lim
0<ε<c1β

β

(c1β − ε)β′εβ′−1
=

1

cβ
′

1

obtained for ε = c1, from (2.5.18) it follows that∫
GT

|v|βψ dx dt ≤ 1

cβ
′

1

∫
GT

|�ψ|β′

ψβ′−1
dx dt− β′

c1
γ(T ). (2.5.19)

According to the properties of the function ψ0, the test function ψ(x, t) = ψ0[2T
−2(t2 + |x|2)] = 0

for r = (t2 + |x|2)1/2 > T .
Therefore, after substitution of variables t = 1√

2
Tξ0, x = 1√

2
Tξ, we have∫

GT

|�ψ|β′

ψβ′−1
dx dt =

∫
r=(t2+|x|2)1/2<T,

t>|x|

|�ψ|β′

ψβ′−1
dx =

( 1√
2
T
)n+1−2β′

κ0. (2.5.20)

Here,

κ0 :=

∫
1<|ξ0|2+|ξ|2<2,

ξ0>|ξ|

|2(1− n)ψ′
0 + 4(ξ20 − |ξ|2)ψ′′

0 |β
′

ψβ
′−1

0

dξ dξ0 < +∞. (2.5.21)

As is know, the test function ψ(x, t) = ψ0[2T
−2(t2 + |x|2)] with the properties mentioned above,

for which the condition (2.5.21) is valid, does exist [77, p. 22].
Due to (2.5.20), from the equality (2.5.19) and the fact that ψ0(σ) = 1, for 0 ≤ σ ≤ 1, we have∫

r≤ T√
2

|v|β dx dt ≤
∫
DT

|v|βψ dx dt ≤
( 1√

2
T )n+1−2β′

cβ
′

1

κ0 −
β′

c1
γ(T ). (2.5.22)

When β < n+1
n−1 , i.e., when n+ 1− 2β′ < 0, the equation

λ(T ) =
( 1√

2
T )n+1−2β′

cβ
′

1

κ0 −
β′

c1
γ(T ) = 0

has a unique positive root T = T0(F, g), since the function

λ1(T ) =

( ( 1√
2
T )n+1−2β′

cβ
′

1

)
κ0
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is positive, continuous, strictly decreasing on the interval (0,+∞) and, besides, lim
T→0

λ1(T ) = +∞ and
lim

T→+∞
λ1(T ) = 0, and the function γ(T ) is, as stated above, nonnegative, continuous and nondecreas-

ing, satisfying the conditions (2.5.14) and (2.5.15). Moreover, λ(T ) < 0 for T > T0 and λ(T ) > 0 for
0 < T < T0. Therefore, for T > T0, the right-hand side of the inequality (2.5.22) is a negative value,
which is impossible. This contradiction proves Theorem 2.5.1.

Remark 2.5.1. As is shown in Chapter 1, the following class of vector functions f = (f1, . . . , fN ):

fi(u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N, (2.5.23)

where aij = const > 0, bi = const, 1 < bij = const < n+1
n−1 , i, j = 1, . . . , N , satisfies the condition

(2.5.1). Note that the vector function f , given by the equality (2.5.23), likewise satisfies the condition
(2.5.1) for ℓ = ℓ2 = · = ℓN = −1 for less restrictive conditions, when aij = cons ≥ 0, but aiki > 0,
where k1, . . . , kN is any arbitrary fixed permutation of numbers 1, 2, . . . , N ; i, j = 1, . . . , N .

Remark 2.5.2. From Theorem 2.5.1 it follows that if its conditions are fulfilled, then the problem
(2.1.1), (2.1.2) fails to have a global strong generalized solution of the class W 1

2 in the domain D∞ in
the sense of Definition 2.2.4.



Chapter 3

One multidimensional version
of the Darboux second problem
for one class of semilinear
second order hyperbolic systems

3.1 Statement of the problem
In the space Rn+1 of the independent variables x = (x1, . . . , xn) and t consider a second order semi-
linear hyperbolic system of the form

�ui + fi(u1, . . . , uN ) = Fi, i = 1, . . . , N, (3.1.1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given, and u = (u1, . . . , uN ) is an unknown real
vector function, n ≥ 2, N ≥ 2, � := ∂2

∂t2 −∆, ∆ :=
n∑
i=1

∂2

∂x2
i

.

Let D be a conic domain in the space Rn+1, i.e., D contains, along with the point (x, t) ∈ D,
the whole ray ℓ : (τx, τt), 0 < τ < ∞. Denote by S the conic surface ∂D. Suppose that D is
homeomorphic to the conic domain ω : t > |x|, and S \ 0 is a connected n-dimensional manifold of
the class C∞, where O = (0, . . . , 0, 0) is the vertex of S. Suppose also that D lies in the half-space
t > 0 and DT := {(x, t) ∈ D : t < T}, ST := {(x, t) ∈ S : t ≤ T}, T > 0. It is clear that if T = ∞,
then D∞ = D and S∞ = S.

For the system (3.1.1), we consider the problem on finding a solution u(x, t) of this system in the
domain DT by the boundary condition

u
∣∣
ST

= g, (3.1.2)

where g = (g1, . . . , gN ) is the given vector function on ST .
In the linear case, in which f = 0, N = 1, and the conic manifold S = ∂D is time-oriented, i.e.,(

ν20 −
n∑
i=1

ν2i

)∣∣∣∣
S

< 0, ν0
∣∣
S
< 0, (3.1.3)

where ν = (ν1, . . . , νn, ν0) is the unit vector of the outer normal to S \O, the problem (3.1.1), (3.1.2)
was posed by S. L. Sobolev [86], where the unique solvability of this problem in the corresponding
functional spaces is proved. At the end of the above-mentioned work the author suggests that the
obtained results will likewise be valid for a scalar nonlinear wave equation. In [52], for the scalar
case (N = 1) and power nonlinearity f(u) = λ|u|pu (λ = const, 0 < p = const < 2

n−1 ), the global
solvability of this problem for λ > 0 and the absence of a global solution for λ < 0 are shown when

37
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the space dimension of the wave equation n = 2. A more general nonlinearity case than in [52] for the
scalar hyperbolic equation was considered in [56] in which the questions of existence, uniqueness, and
the absence of a global solution to this problem were also investigated. Besides, the restriction here
is omitted. It is noteworthy mentioning that this problem can be considered as a multidimensional
version of the Darboux second problem, since the problem’s data support S represents a conic time
type manifold. In the case when one part of the boundary of the conic domain D is of time type,
while the other part is a characteristic manifold, the boundary value problem can be considered as a
multidimensional version of the Darboux first problem. For example, when D : t > |x|, xn > 0 and
the boundary conditions have the form

u
∣∣
Γ0

= 0, u
∣∣
Γ1

= 0

or
∂u

∂xn

∣∣∣
Γ0

= 0, u
∣∣
Γ1

= 0,

where Γ0 = ∂D ∩ {xn = 0} is a plane part of the time type boundary ∂D and Γ1 = ∂D \Γ0 : t = |x|,
xn > 0 is a characteristic part of the boundary, we have a multidimensional version of the first Darboux
problem.

Investigation of the multidimensional version of the Darboux second problem faces great difficulties
as compared with the first problem. More detailed consideration of these problems in the linear case
is given in A. B. Bitsadze’s monograph [5].

This chapter is organized as follows. Section 3.2 provides us with the notion of a strong generalized
solution of the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT and with a definition of a
global solution of this problem of the class W 1

2 in the domain D∞. In Section 3.3, we consider the
cases of local and global solvability of the problem (3.1.1), (3.1.2) in the class W 1

2 . We suppose that
the growth of nonlinearity of the system (3.1.1) does not exceed power nonlinearity with exponent α =
const ≥ 0. When α ≤ 1, for the solution of the boundary value problem the a priori estimate (Lemma
3.3.1) is valid, and no restrictions are imposed on the structure of the vector function f = f(u). As it
turned out, when 1 < α < n+1

n−1 , the only constraint on the growth of nonlinearity of the vector function
f = f(u) is not sufficient for the existence of an a priori estimate for the solution of the boundary value
problem. Here we need structural constraints on the vector function f = f(u). For example, when
f = ∇G, i.e., fi(u) = ∂

∂ui
G(u), u ∈ RN , i = 1, . . . , N , where G = G(u) ∈ C1(RN ) is a scalar function

satisfying the conditions G(0) = 0 and G(u) ≥ 0 ∀u ∈ RN , the a priori estimate of the solution of
the boundary value problem and, therefore, a global solvability of this problem (Theorem 3.3.3) are
valid. If the vector function f cannot be represented in the form f = ∇G, where the scalar function
G satisfies the conditions given above, then the boundary value problem may be globally unsolvable.
For example, when N = n = 2 and f = (f1, f2), where f1 = u21 − 2u22, f2 = −2u21 + u22, the exponent
of the nonlinearity α = 2 and 1 < α < n+1

n−1 , and f is not representable in the form f = ∇G, then
from Theorem 3.5.1 we find that for F1 + F2 ≥ c

tγ , t ≥ 1, where c = const > 0, γ = const ≤ 3,
g = 0, the problem under consideration is not globally solvable (see Remark 3.5.1). The conditions on
the vector function f providing the uniqueness and existence of a global solution of this problem of
the class W 1

2 are given in Section 3.4. Finally, in Section 3.5, for certain additional conditions on the
vector functions f , F and g, we prove nonexistence of a global solution of the problem (3.1.1), (3.1.2)
of the class W 1

2 in D∞.
Below, it will be assumed that the condition (3.1.3) is satisfied.

3.2 Definition of a generalized solution
of the problem (3.1.1), (3.1.2) in DT and D∞

We rewrite the system (3.1.1) in the form of one vector equation

Lu := �u+ f(u) = F. (3.2.1)
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Below, we will assume that the condition (3.1.3) is fulfilled and the nonlinear vector function from
(3.2.1) satisfies the following inequality

f ∈ C(RN ), |f(u)| ≤M1 +M2|u|α, α = const ≥ 0, u ∈ RN , (3.2.2)

where | · | is the norm in the space RN , Mi = const ≥ 0, i = 1, 2.
Let

◦
C2(DT , ST ) := {u ∈

◦
C2(DT ) : u|ST = 0}. Denote by W k

2 (Ω) the Sobolev space consisting
of the elements L2(Ω), having generalized derivatives up to the k-order inclusive from L2(Ω). Let
◦
W 1

2(DT , ST ) := {u ∈W 1
2 (DT ) : u|ST = 0}, where the equality u|ST = 0 is understood in the sense of

the trace theory [68].
Here and below we say that the vector v = (v1, . . . , vN ) belongs to the space X if each component

vi, 1 ≤ i ≤ N , of that vector belongs to the same X. In accordance with the above-said, to simplify
our writing and avoid misunderstanding, instead of v = (v1, . . . , vN ) ∈ XN we will write v ∈ X.

Remark 3.2.1. The embedding operator I : [W 1
2 (DT )]

N → [Lq(DT )]
N is a linear continuous compact

operator for 1 < q < 2(n+1)
n−1 , when n > 1 [68]. At the same time, Nemitski’s operator K : [Lq(DT )]

N →
[Lq(DT )]

N , acting by the formula Ku = f(u), where u = (u1, . . . , uN ) ∈ [Lq(DT )]
N , and the vector

function f = (f1, . . . , fN ) satisfies the condition (3.2.2), is continuous and bounded for q ≥ 2α [22].
Thus, if α < n+1

n−1 , i.e., 2α < 2(n+1)
n−1 , then there exists a number q such that 1 < q < 2(n+1)

n−1 and
q > 2α. Therefore, in this case the operator

K0 = KI : [W 1
2 (DT )]

N → [Lq(DT )]
N (3.2.3)

is continuous and compact. It is clear that from u = (u1, . . . , uN ) ∈ W 1
2 (DT ) it follows that f(u) ∈

L2(DT ) and, if um → u in the space W 1
2 (DT ), then f(um) → f(u) in the space L2(DT ).

Definition 3.2.1. Let f = (f1, . . . , fN ) satisfy the condition (3.2.2), where 0 ≤ α < n+1
n−1 , F =

(F1, . . . , FN ) ∈ L2(DT ) and g = (g1, . . . , gn) ∈W 1
2 (ST ). We call a vector function u = (u1, . . . , uN ) ∈

W 1
2 (DT ) a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT

if there exists a sequence of vector functions um ∈ C2(DT ) such that um → u in the space W 1
2 (DT ),

Lum → F in the space L2(DT ), and um|ST → g in the space W 1
2 (ST ). The convergence of the

sequence {f(um)} to the function f(u) in the space L2(DT ) as um → u in the space W 1
2 (DT ) follows

from Remark 3.2.1. When g = 0, i.e., in the case of the homogeneous boundary conditions (3.1.2), we
assume that um ∈

◦
C2(DT , ST ). Then it is clear that u ∈

◦
W 1

2(DT , ST ).

Obviously, a classical solution u ∈ C2(DT ) of the problem (3.1.1), (3.1.2) represents a strong
generalized solution of that problem of the class W 1

2 in the domain DT in the sense of Definition 3.2.1.

Definition 3.2.2. Let f satisfy the condition (3.2.2), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(3.1.1), (3.1.2) is locally solvable in the class W 1

2 , if there exists a number T0 = T0(F, g) > 0 such that
for T < T0 this problem has a strong generalized solution of the class W 1

2 in the domain DT in the
sense of Definition 3.2.1.

Definition 3.2.3. Let f satisfy the condition (3.2.2), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞),

g ∈ W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈ W 1

2 (ST ) for any T > 0. We say that the problem
(3.1.1), (3.1.2) is globally solvable in the class W 1

2 if for any T > 0 this problem has a strong general-
ized solution of the class in the domain DT in the sense of Definition 3.2.1.

Definition 3.2.4. Let f satisfy the condition (3.2.2), where 0 ≤ α < n+1
n−1 , F ∈ L2,loc(D∞), g ∈

W 1
2,loc(S∞) and F |DT ∈ L2(DT ), g|ST ∈W 1

2 (ST ) for any T > 0. A vector function u = (u1, . . . , uN ) ∈
W 1

2,loc(D∞) is called a global strong generalized solution of the problem (3.1.1), (3.1.2) of the class
W 1

2 in the domain D∞ if for any T > 0 the vector function u|DT belongs to the space W 1
2 (DT ) and

represents a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1
2 in the domain

DT in the sense of Definition 3.2.1.
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3.3 Some cases of global and local solvability
of the problem (3.1.1), (3.1.2) in the class W 1

2

Lemma 3.3.1. Let f satisfy the condition (3.2.2), where 0 ≤ α ≤ 1, F ∈ L2(DT ) and g ∈ W 1
2 (ST ).

Then for any strong generalized solution u of the problem (3.1.1), (3.1.2) of the class W 1
2 in the domain

DT in the sense of Definition 3.2.1 the a priori estimate

∥u∥W 1
2 (DT )

≤ c1∥F∥L2(DT ) + c2∥g∥W 1
2 (ST )

+ c3 (3.3.1)

with the nonnegative constants ci = ci(S, f, T ), i = 1, 2, 3, independent of u, g and F , with cj > 0,
j = 1, 2, is valid.

Proof. Let u ∈ W 1
2 (DT ) be a strong generalized solution of the problem (3.1.1), (3.1.2) of the class

W 1
2 in the domain DT . Then, due to Definition 3.2.1, there exists a sequence of vector functions

um = (um1 , . . . , u
m
N ) ∈ C2(DT ) such that

lim
m→∞

∥um − u∥W 1
2 (DT )

= 0, lim
m→∞

∥Lum − F∥L2(DT ) = 0, (3.3.2)

lim
m→∞

∥∥um∣∣
ST

− g
∥∥
W 1

2 (DT )
= 0. (3.3.3)

Consider the vector function um ∈ C2(DT ) as a solution of the following problem:

Lum = Fm, (3.3.4)
um

∣∣
ST

= gm. (3.3.5)

Here,
Fm := Lum, gm := um|ST . (3.3.6)

Multiplying scalarly both sides of the vector equation (3.3.4) by ∂um

∂t and integrating in the domain
Dτ , 0 < τ ≤ T , we obtain

1

2

∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt−
∫
Dτ

∆um
∂um

∂t
dx dt+

∫
Dτ

f(um)
∂um

∂t
dx dt =

∫
Dτ

Fm
∂um

∂t
dx dt. (3.3.7)

Let Ωτ := D ∩ {t = τ} and denote by ν = (ν1, . . . , νn, ν0) the unit vector of the outer normal to
ST \ {(0, . . . , 0, 0)}. Integrating by parts, by virtue of the equality (3.3.5) and ν|Ωτ = (0, . . . , 0, 1), we
have ∫

Dτ

∂

∂t

(∂um
∂t

)2

dx dt =

∫
∂Dτ

(∂um
∂t

)2

ν0 ds =

∫
Ωτ

(∂um
∂t

)2

dx+

∫
Sτ

(∂um
∂t

)2

ν0 ds,

∫
Dτ

∂2um

∂x2i

∂um

∂t
dx dt =

∫
∂Dτ

∂um

∂xi

∂um

∂t
νi ds−

1

2

∫
Dτ

∂

∂t

(∂um
∂xi

)2

dx dt

=

∫
∂Dτ

∂um

∂xi

∂um

∂t
νi ds−

1

2

∫
∂Dτ

(∂um
∂xi

)2

ν0 ds

=

∫
∂Dτ

∂um

∂xi

∂um

∂t
νi ds−

1

2

∫
Sτ

(∂um
∂xi

)2

ν0 ds−
1

2

∫
Ωτ

(∂um
∂xi

)2

dx,

whence, in view of (3.3.7), it follows that∫
Dτ

Fm
∂um

∂t
dx dt =

∫
Sτ

1

2ν0

[ n∑
i=1

(∂um
∂xi

ν0 −
∂um

∂t
νi

)2

+
(∂um
∂t

)2(
ν20 −

n∑
j=1

ν2j

)]
ds

+
1

2

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx+

∫
Dτ

f(um)
∂um

∂t
dx dt. (3.3.8)
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From (3.2.2), when 0 ≤ α ≤ 1, we find that |f(u)| ≤M1 +M2 +M2|u| ∀u ∈ RN , therefore,

∣∣∣f(um)
∂um

∂t

∣∣∣ ≤ 1

2

[
f2(um) +

(∂um
∂t

)2]
≤ 1

2

[
2(M1 +M2)

2 + 2M2
2 |um|2 +

(∂um
∂t

)2]
= (M1 +M2)

2 +M2
2 |um|2 + 1

2

(∂um
∂t

)2

. (3.3.9)

Due to (3.1.3), (3.3.9) and |Fm ∂um

∂t | ≤ 1
2 [(

∂um

∂t )2 + (Fm)2], from (3.3.8) we have

1

2

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx ≤

∫
Sτ

1

2|ν0|

[ n∑
i=1

(∂um
∂xi

ν0 −
∂um

∂t
νi

)2]
ds

+ (M1 +M2)
2 mesDτ +M2

2

∫
Dτ

|um|2 dx dt+
∫
Dτ

(∂um
∂t

)2

dx dt+
1

2

∫
Dτ

(Fm)2 dx dt. (3.3.10)

Since S is a conic surface, we have sup
S\O

|ν0|−1 = sup
S∩{t=1}

|ν0|−1. At the same time, S \ O is a

smooth manifold, S ∩ {t = 1} = ∂Ωτ=1 is also a compact manifold. Thus, noting that ν0 is a
continuous function on S \O, we get

M0 := sup
S\O

|ν0|−1 = sup
S∩{t=1}

|ν0|−1 < +∞, |ν0| ≤ |ν| = 1. (3.3.11)

Taking into account that (ν0
∂
∂xi

− νi
∂
∂t ) (i = 1, . . . , n) is an inner differential operator on Sτ , due

to (3.3.5), we have

∫
Sτ

[ n∑
i=1

(∂um
∂xi

ν0 −
∂um

∂t
νi
)2] ≤

∥∥um∣∣
ST

∥∥2
W 1

2 (St)
= ∥gm∥2W 1

2 (ST )
. (3.3.12)

It follows from (3.3.11) and (3.3.12) that

∫
Sτ

1

2|ν0|

[ n∑
i=1

(∂um
∂xi

ν0 −
∂um

∂t
νi
)2] ≤ 1

2
M0∥gm∥2W 1

2 (ST )
. (3.3.13)

By virtue of (3.3.13), from (3.3.10) we obtain

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx ≤M0∥gm∥2W 1

2 (ST )
+ 2(M1 +M2)

2 mesDT

+ 2M2
2

∫
Dτ

|um|2 dx dt+ 2

∫
Dτ

(∂um
∂t

)2

dx dt+

∫
DT

(Fm)2 dx dt, 0 < τ ≤ T. (3.3.14)

If t = γ(x) is the equation of the conic surface S, then, in view of (3.3.5), we have

um(x, τ) = um(x, γ(x)) +

τ∫
γ(x)

∂

∂t
um(x, s) ds = gm(x) +

τ∫
γ(x)

∂

∂t
um(x, s) ds, (x, τ) ∈ Ωτ .

Squaring scalarly both parts of the obtained equality, integrating in the domain Ωτ and using the
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Schwartz inequality, we get

∫
Ωτ

(um)2 dx ≤ 2

∫
Ωτ

(gm(x, γ(x))2 dx+ 2

∫
Ωτ

( τ∫
γ(x)

∂

∂t
um(x, s) ds

)2

dx

≤ 2

∫
Sτ

(gm)2 ds+ 2

∫
Ωτ

(τ − γ(x))

[ τ∫
γ(x)

(∂um
∂t

)2

ds

]
dx

≤ 2

∫
Sτ

(gm)2 ds+ 2T

∫
Ωτ

[ τ∫
γ(x)

(∂um
∂t

)2

ds

]
dx = 2

∫
Sτ

(gm)2 ds+ 2T

∫
Dτ

(∂um
∂t

)2

dx dt. (3.3.15)

From (3.3.14) and (3.3.15) it follows∫
Ωτ

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx ≤ (M0 + 2)∥gm∥2W 1

2 (ST )
+ 2(M1 +M2)

2 mesDτ

+ 2M2
2

∫
Dτ

|um|2 dx dt+ 2(T + 1)

∫
Dτ

(∂um
∂t

)2

dx dt+ ∥Fm∥2L2(DT )

≤ (2M2
2 + 2(T + 1))

∫
Dτ

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx dt

+
[
∥Fm∥2L2(DT )

+ (M0 + 2)∥gm∥2W 1
2 (ST )

+ 2(M1 +M2)
2 mesDT

]
. (3.3.16)

Putting

w(τ) :=

∫
Ωτ

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx, (3.3.17)

from (3.3.16) we have

w(τ) ≤ (2M2
2 + 2T + 2)

τ∫
0

w(s) ds

+
[
∥Fm∥2L2(DT )

+ (M0 + 2)∥gm∥2W 1
2 (ST )

+ 2(M1 +M2)
2 mesDT

]
, 0 < τ ≤ T, (3.3.18)

whence by the Gronwall lemma it follows that

w(τ) ≤ Am exp(2M2
2 + 2T + 2)τ, 0 < τ ≤ T, (3.3.19)

Here,
Am = ∥Fm∥2L2(DT )

+ (M0 + 2)∥gm∥2W 1
2 (ST )

+ 2(M1 +M2)
2 mesDT . (3.3.20)

In view of (3.3.17) and (3.3.19), we find that

∥um∥2W 1
2 (DT )

=

T∫
0

w(τ) dτ ≤ AmT exp(2M2
2 + 2T + 2)T. (3.3.21)

Due to (3.3.2)–(3.3.5) and (3.3.20), passing to the limit in (3.3.21) as m→ ∞, we have

∥u∥2W 1
2 (DT )

≤ AT exp(2M2
2 + 2T + 2)T. (3.3.22)

Here,
A = ∥F∥2L2(DT )

+ (M0 + 2)∥g∥2W 1
2 (ST )

+ 2(M1 +M2)
2 mesDT . (3.3.23)
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Taking a square root from both sides of the inequality (3.3.22) and using the obvious inequality

(
k∑
i=1

a2i )
1/2 ≤

k∑
i=1

|ai|, due to (3.3.23), we finally have

∥u∥W 1
2 (DT )

≤ c1∥F∥L2(DT ) + c2∥g∥W 1
2 (ST )

+ c3.

Here, 
c1 =

√
T exp(M2

2 + T + 1)T,

c2 =
√
T (M0 + 2)1/2 exp(M2

2 + T + 1)T,

c3 =
√
2T (M1 +M2)(mesDT )

1/2 exp(M2
2 + T + 1)T.

(3.3.24)

Thus Lemma 3.3.1 is proved completely.

Before passing to the question of solvability of the problem (3.1.1), (3.1.2), let us consider the same
question for the linear case of the needed form, when in (3.1.1) the vector function f = 0, i.e., for the
problem

L0u := �u = F (x, t), (x, t) ∈ DT , (3.3.25)
u
∣∣
ST

= g. (3.3.26)

For the problem (3.3.25), (3.3.26), analogously to Definition 3.2.1 for the problem (3.1.1), (3.1.2), we
introduce the notion of a strong generalized solution u = (u1, . . . , uN ) ∈ W 1

2 (DT ) of the class W 1
2 in

the domain DT with F = (F1, . . . , FN ) ∈ L2(DT ) and g = (g1, . . . , gN ) ∈ W 1
2 (DT ), for which there

exists a sequence of vector functions um ∈ C2(DT ) such that

lim
m→∞

∥um − u∥W 1
2 (DT )

= 0, lim
m→∞

∥L0u
m − F∥L2(DT ) = 0, (3.3.27)

lim
m→∞

∥∥um∣∣
ST

− g
∥∥
W 1

2 (ST )
= 0. (3.3.28)

Note that, as is easily seen from the proof of Lemma 3.3.1, by virtue of (3.3.24), when f = 0, i.e.,
when M1 = M2 = 0, for a strong generalized solution u ∈ W 1

2 (DT ) of the problem (3.3.25), (3.3.26)
of the class W 1

2 in the domain DT the following a priori estimate is valid:

∥u∥W 1
2 (DT )

≤ c
(
∥F∥L2(DT ) + ∥g∥W 1

2 (ST )

)
, (3.3.29)

where
c =

√
T (M0 + 2)1/2 exp(T + 1)T. (3.3.30)

Consider the Sobolev weight space W ∗
2,α(D), 0 < α < ∞, k = 1, 2, . . . , consisting of the functions

belonging to that class W k
2,loc(D) for which the norm

∥w∥2Wk
2,α

=

k∑
i=0

∫
D

r−2α−2(k−i)
∣∣∣ ∂iw

∂xi′∂ti0

∣∣∣2 dx dt
is finite [52], where

r =
( n∑
j=1

x2j + t2
)1/2

,
∂iw

∂xi′∂ti0
:=

∂iw

∂xi11 · · · ∂xinn ∂ti0
, i = i1 + · · ·+ in + i0.

Analogously we introduce the space W k
2,α(S), S = ∂D [52].

Together with the problem (3.3.25), (3.3.26), consider in an infinite cone D = D∞ the analogous
problem:

L0u = F (x, t), (x, t) ∈ D, (3.3.31)
u
∣∣
S
= g. (3.3.32)
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Due to (3.1.3), according to the result obtained in [43], there exists a constant α0 = α0(k) > 1
such that for α ≥ α0, the problem (3.3.31), (3.3.32) has a unique solution u = (u1, . . . , uN ) ∈W 2

2,α(D)

for each F = (F1, . . . , FN ) ∈W k−1
2,α−1(D) and g = (g1, . . . , gN ) ∈W k

2,α− 1
2

(S), k ≥ 2.
Since the space C∞

0 (DT ) of finite infinitely differentiable in DT functions is dense in L2(DT ), for the
given F = (F1, . . . , FN ) ∈ L2(DT ), there exists a sequence of vector functions Fm = (Fm1 , . . . , F

m
N ) ∈

C∞
0 (DT ) such that lim

m→∞
∥Fm − F∥L2(DT ) = 0. For the fixed m, extending the vector function Fm

by zero beyond the domain DT and keeping the same notation, we have Fm ∈ C∞
0 (D). Obviously,

Fm ∈ W k−1
2,α−1(D) for any k ≥ 2 and α > 1, and also for α ≥ α0 = α0(k). If g ∈ W 1

2 (ST ),
then there exists g̃ ∈ W 1

2 (S) such that g = g̃|ST and diam supp g̃ < +∞ [68]. Besides, the space
C∞

∗ (S) := {g ∈ C∞(S) : diam supp g < +∞, 0 ̸∈ supp g} is dense in W 1
2 (S) [56]. Therefore,

there exists a sequence gm ∈ C∞
∗ (S) such that lim

m→∞
∥gm − g∥W 1

2 (S)
= 0. It is easy to see that

gm ∈ W k
2,α− 1

2

(S) for any k ≥ 2 and α > 1 and, therefore, for α ≥ α0 = α(k). According to what
has been mentioned above, there exists a solution ũm ∈W k

2,α(D) of the problem (3.3.31), (3.3.32) for
F = Fm and g = gm. Let um = ũm|DT . Since um ∈W k

2 (DT ), taking the number k sufficiently large,
namely, k > n+1

2 + 2, we have um ∈ C2(DT ). By virtue of the estimate (3.3.29), we have

∥um − um
′
∥W 1

2 (DT )
≤ c

(
∥Fm − Fm

′
∥L2(DT ) + ∥gm − gm

′
∥W 1

2 (ST )

)
. (3.3.33)

Since the sequences {Fm} and {gm} are fundamental in the spaces L2(DT ) and W 1
2 (ST ), respec-

tively, the sequence {um} is, due to (3.3.33), fundamental in the space W 1
2 (DT ). Therefore, in view

of the completeness of the space W 1
2 (DT ), there exists a vector function u ∈ W 1

2 (DT ) such that
lim
m=∞

∥um − u∥W 1
2 (DT )

= 0, and since L0u
m = Fm → F in the space L2(DT ) and gm = um|ST → g in

the space W 1
2 (ST ), i.e., the limit equalities (3.3.27) and (3.3.28) are fulfilled, the vector function u is

a strong generalized solution of the problem (3.3.25), (3.3.26) of the class W 1
2 in the domain DT . The

uniqueness of the solution of the problem (3.3.25), (3.3.26) of the class W 1
2 in the domain DT follows

from the a priori estimate (3.3.29). Thus for the solution u of the problem (3.3.25), (3.3.26) we have
u = L−1

0 (F, g), where L−1
0 : [L2(DT )]

N × [W 1
2 (ST )]

N → [W 1
2 (DT )]

N is a linear continuous operator
with a norm admitting, in view of (3.3.29), the following estimate

∥L−1
0 ∥[L2(DT )]N×[W 1

2 (ST )]
N→[W 1

2 (DT )]
N ≤ c, (3.3.34)

where the constant c is determined from (3.3.30).
Owing to the linearity of the operator

L−1
0 : [L2(DT )]

N × [W 1
2 (ST )]

N → [W 1
2 (DT )]

N

we have a representation
L−1
0 (F, g) = L−1

01 (F ) + L−1
02 (g), (3.3.35)

where L−1
01 : [L2(DT )]

N → [W 1
2 (DT )]

N and L−1
02 : [W 1

2 (ST )]
N → [W 1

2 (DT )]
N are the linear continuous

operators and, in view of (3.3.34), we have

∥L−1
01 ∥[L2(DT )]N→[L2(DT )]N ≤ c, ∥L−1

02 ∥[W 1
2 (ST )]

N→[W 1
2 (DT )]

N ≤ c. (3.3.36)

Remark 3.3.1. Note that for F ∈ L2(DT ), g ∈ W 1
2 (ST ) and (3.2.2), where 0 ≤ α < n+1

n−1 , in view
of (3.3.34), (3.3.35), (3.3.36) and Remark 3.2.1, the vector function u = (u1, . . . , uN ) ∈ W 1

2 (DT ) is
a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT if and
only if u is a solution of the following functional equation

u = L−1
01 (−f(u)) + L−1

01 (F ) + L−1
02 (g) (3.3.37)

in the space W 1
2 (DT ).

Rewrite the equation (3.3.37) in the form

u = A0u := −L−1
01 (K0u) + L−1

01 (F ) + L−1
02 (g), (3.3.38)
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where the operator K0 : [W 1
2 (DT )]

N → [L2(DT )]
N from (3.2.2) is, due to Remark 3.2.1, continuous

and compact. Therefore, according to (3.3.36), the operator A0 : [W 1
2 (DT )]

N → [W 1
2 (DT )]

N is also
continuous and compact. At the same time, according to Lemma 3.3.1 and the equalities (3.3.24), for
any parameter τ ∈ [0, 1] and any solution u of the equation u = τA0u with parameter τ , the same
a priori estimate (3.3.1) with the constants ci from (3.3.24), independent of u, F , g and τ , is valid.
Therefore, due to Schaefer’s fixed point theorem [20], the equation (3.3.38) and hence, according to
Remark 3.3.1, the problem (3.1.1), (3.1.2) has at least one solution u ∈W 1

2 (DT ).
Thus we have proved the following

Theorem 3.3.1. Let f satisfy the condition (3.2.2), where 0 ≤ α ≤ 1. Then for any F ∈ L2(DT )
and g ∈W 1

2 (ST ), the problem (3.1.1), (3.1.2) has at least one strong generalized solution u of the class
W 1

2 in the domain DT in the sense of Definition 3.2.1.

A global solvability of the problem (3.1.1), (3.1.2) in the class W 1
2 in the sense of Definition 3.2.3

follows immediately from Theorem 3.3.1, when the conditions of this theorem are fulfilled.

Remark 3.3.2. In Theorem 3.3.1, a global solvability of the problem (3.1.1), (3.1.2) is proved for the
case in which f satisfies the condition (3.2.2), where 0 ≤ α ≤ 1. In case 1 < α < n+1

n−1 , the problem
(3.1.1), (3.1.2) is, generally speaking, not globally solvable, as it will be shown in Section 3.5. At the
same time, it will be proved below that when 1 < α < n+1

n−1 , the problem (3.1.1), (3.1.2) is locally
solvable in the sense of Definition 3.2.2.

Theorem 3.3.2. Let f satisfy the condition (3.2.2), where 1 < α < n+1
n−1 , g = 0, F ∈ L2,loc(D∞) and

F |DT ∈ L2(DT ) for any T > 0. Then the problem (3.1.1), (3.1.2) is locally solvable in the class W 1
2 ,

i.e., there exists a number T0 = T0(F ) > 0 such that for T < T0 this problem has a strong generalized
solution of the class W 1

2 in the domain DT in the sense of Definition 3.2.1.

Proof. According to Definition 3.2.1 and Remark 3.3.1, the vector function u ∈
◦
W 1

2(DT , ST ) := {v ∈
W 1

2 (DT ) : v|ST = 0} is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1
2 in

the domain DT for g = 0 if and only if u is a solution of the functional equation (3.3.38) for g = 0, i.e.,

u = A0u := −L−1
01 (K0u) + L−1

01 (F ) (3.3.39)

in the space
◦
W 1

2(DT , ST ). Denote byB(0, r0) :={u=(u1, . . . , uN )∈
◦
W 1

2(DT , ST ) : ∥u∥ ◦
W 1

2(DT ,ST )
≤ r0}

a closed convex ball in the Hilbert space
◦
W 1

2(DT , ST ) of radius r0 > 0 and with center in a null ele-
ment. Since the operator A0 from (3.3.39), acting in the space

◦
W 1

2(DT , ST ), is a continuous compact
operator, according to Schauder’s theorem, for the solvability of the equation (3.3.39) in the space
◦
W 1

2(DT , ST ) it suffices to prove that the operator A0 maps the ball B(0, r0) into itself for certain
r0 > 0 [20]. Below we will show that for any fixed r0 > 0, there exists a number T0 = T0(r0, F ) > 0
such that for T < T0, the operator A0 from (3.3.39) maps the ball B(0, r0) into itself. Towards this
end, we evaluate ∥A0u∥ ◦

W 1
2(DT ,ST )

for u ∈
◦
W 1

2(DT , ST ).

When u = (u1, . . . , uN ) ∈
◦
W 1

2(DT , ST ), we denote by ũ the vector function which is an even
extension of u through the plane t = T in the domain D∗

T , symmetric to the domain DT with respect
to the same plane, i.e.,

ũ =

{
u(x, t), (x, t) ∈ DT ,

u(x, 2T − t), (x, t) ∈ D∗
T ,

and ũ(x, t) = u(x, t) for t = T in the sense of the trace theory. It is obvious that ũ ∈
◦
W 1

2(D̃T ) : {v ∈
W 1

2 (DT ) : v|∂D̃T = 0}, where D̃T = DT ∪ ΩT ∪D∗
T , ΩT := D ∩ {t = T}.

Using the inequality [93] ∫
Ω

|v| dΩ ≤ (mesΩ)1−
1
p ∥v∥p,Ω, p ≥ 1,
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and taking into account the equalities

∥ũ∥p
Lp(D̃T )

= 2∥u∥pLp(DT ), ∥ũ∥2◦
W 1

2(D̃T )
= 2∥u∥2◦

W 1
2(DT ,ST )

,

from the known multiplicative inequality [68]

∥v∥p,Ω ≤ β∥∇x,tv∥α̃m,Ω∥v∥1−α̃r,Ω ∀ v ∈
◦
W 1

2(Ω),Ω ⊂ Rn+1,

∇x,t =
( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂t

)
, α̃ =

(1
r
− 1

p

)(1
r
− 1

m̃

)−1

, m̃ =
(n+ 1)m

n+ 1−m

for Ω = D̃T ⊂ Rn+1, v = ṽ, r = 1, m = 2 and 1 < p ≤ 2(n+1)
n+1−m , where β = const > 0 does not depend

on v and T , it follows the inequality

∥u∥Lp(DT ) ≤ c0(mesDT )
1
p+

1
p+1−

1
2 ∥u∥ ◦

W 1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (3.3.40)

where c0 = const > 0 does not depend on u and T .
Since mesDT = ω

n+1 T
n+1, where ω is the n-dimensional measure of the section Ω1 := D∩{t = 1},

for p = 2α from (3.3.40) we have

∥u∥L2α(DT ) ≤ CT ∥u∥ ◦
W 1

2(DT ,ST )
∀u ∈

◦
W 1

2(DT , ST ), (3.3.41)

where
CT = c0

( ω

n+ 1

)α1

T (n+1)α1 , α1 =
1

2α
+

1

n+ 1
− 1

2
. (3.3.42)

Since α < n+1
n−1 , we have α1 = 1

2α + 1
n+1 − 1

2 > 0, and due to (3.3.41), and (3.3.42), for any

u ∈
◦
W 1

2(DT , ST ) we get
∥u∥L2α(DT ) ≤ CT1

∥u∥ ◦
W 1

2(DT ,ST )
∀T ≤ T1, (3.3.43)

where T1 is a fixed positive number.
For ∥K0u∥L2(DT ), where u ∈

◦
W 1

2(DT , ST ), T ≤ T1, and the operator K0 acts according to the
formula (3.2.3), due to (3.2.2) and (3.3.43), we have the following estimate

∥K0u∥2L2(DT )
≤

∫
DT

(M1 +M2|u|α)2 dx dt ≤ 2M2
1 mesDT + 2M2

2

∫
DT

|u|2α dx dt

= 2M2
1 mesDT + 2M2

2 ∥u∥2αL2α(DT )
≤ 2M2

1 mesDT + 2M2
2C

2α
T1

∥u∥2α◦
W 1

2(DT ,ST )
,

whence we obtain

∥K0u∥L2α(DT ) ≤M1(2mesDT1
)1/2 +

√
2M2C

α
T1
∥u∥α◦

W 1
2(DT ,ST )

. (3.3.44)

From (3.3.30), (3.3.36), (3.3.39) and (3.3.44), it follows that

∥A0u∥ ◦
W 1

2(DT ,ST )

≤ ∥L−1
01 ∥

[L2(DT )]N→[
◦
W 1

2(DT ,ST )]
N
∥K0u∥L2(DT ) + ∥L−1

01 ∥
[L2(DT )]N→[

◦
W 1

2(DT ,ST )]
N
∥F∥L2(DT )

≤ c
[√

2mesDT1 M1 +
√
2M2C

α
T1
∥u∥α◦

W 1
2(DT ,ST )

+ ∥F∥L2(DT1 )

]
≤

√
T (M0 + 2)1/2 exp(T1 + 1)T1

×
[√

2mesDT1 M1 +
√
2M2C

α
T1
∥u∥α◦

W 1
2(DT ,ST )

+ ∥F∥L2(DT1 )

]
(3.3.45)

∀T ≤ T1 ∀u ∈
◦
W 1

2(DT , ST ).
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Since the right-hand side of the inequality (3.3.45) contains
√
T as a factor vanishing as T → 0,

there exists a positive number T0 ≤ T1 such that for T < T0 and ∥u∥ ◦
W 1

2(DT ,ST )
≤ r0, due to (3.3.45),

we have ∥A0u∥ ◦
W 1

2(DT ,ST )
≤ r0, i.e., the operator A0 :

◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) from (3.3.39) maps
the ball B(0, r0) into itself. Thus Theorem 3.3.2 is proved completely.

Remark 3.3.3. In the case if f satisfies the condition (3.2.2), where 1 < α < n+1
n−1 , Theorem 3.3.2

ensures a local solvability of the problem (3.1.1), (3.1.2), although in this case, with the additional
conditions imposed on f , this problem is, as it will be shown in the theorem below, globally solvable.

Theorem 3.3.3. Let f satisfy the condition (3.2.2), where 1 < α < n+1
n−1 , and f = ∇G, i.e.,

fi(u) =
∂
∂ui

G(u), u ∈ RN , i = 1, . . . , N , where G = G(u) ∈ C1(RN ) is a scalar function satisfying
the conditions G(0) = 0 and G(u) ≥ 0 ∀u ∈ RN . Let g = 0, F ∈ L2,loc(D∞) and F |DT ∈ L2(DT )
for any T > 0. Then the problem (3.1.1), (3.1.2) is globally solvable in the class W 1

2 , i.e., for any
T > 0, this problem has a strong generalized solution of the class W 1

2 in the domain DT in the sense
of Definition 3.2.1.

Proof. First, let us show that for any fixed T > 0, with the conditions of Theorem 3.3.3, for a strong
generalized solution u of the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT , the estimate

∥u∥ ◦
W 1

2(DT ,ST )
≤ c(T )∥F∥L2(DT ), c(T ) =

√
T exp 1

2
(T + T 2) (3.3.46)

is valid.
Indeed, according to Definition 3.2.1, in the case g = 0, there exists a sequence of vector functions

um ∈
◦
C2(DT , ST ) := {v ∈ C2(DT ) : v|ST = 0} such that

lim
m→∞

∥um − u∥W 1
2 (DT )

= 0, lim
m→∞

∥Lum − F∥L2(DT ) = 0. (3.3.47)

Putting
Fm := Lum (3.3.48)

and taking into account that um|ST = 0 and the operator ν0 ∂
∂xi

−νi ∂∂t is an inner differential operator
on ST and, hence (∂u

m

∂xi
ν0 − ∂um

∂t νi)
∣∣
ST

= 0, i = 1, . . . , n, due to (3.1.3), from (3.3.8) we get∫
Dτ

Fm
∂um

∂t
dx dt ≥ 1

2

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx+

∫
Dτ

f(um)
∂um

∂t
dx dt. (3.3.49)

Since f = ∇G, we have f(um) ∂u
m

∂t = ∂
∂t G(u

m), and taking into account that um|ST = 0,
ν0|Ωτ = 1, G(0) = 0, and integrating by parts, we obtain∫

Dτ

f(um)
∂um

∂t
dx dt =

∫
Dτ

∂

∂t
G(um) dx dt

=

∫
∂Dτ

G(um)ν0 ds =

∫
Sτ∪Ωτ

G(um)ν0 ds =

∫
Ωτ

G(um) dx. (3.3.50)

Owing to G(u) ≥ 0 ∀u ∈ RN , due to (3.3.50), from (3.3.49), we get

∫
Ωτ

[(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx

≤ 2

∫
DT

Fm
∂um

∂t
dx dt ≤

∫
DT

(∂um
∂t

)2

dx dt+

∫
DT

(Fm)2 dx dt, 0 < τ ≤ T. (3.3.51)



48 Sergo Kharibegashvili

Since um|ST = 0, we have u(x, τ) =
τ∫

γ(x)

∂
∂t u

m(x, s) ds, where t = γ(x) is the equation of the conic

surface S. Thus just as in obtaining the inequality (3.3.15), we get

∫
Ωτ

(um)2 dx =

∫
Ωτ

( τ∫
γ(x)

∂

∂t
um(x, s) ds

)2

dx ≤
∫
Ωτ

(τ − |x|)
[ τ∫
γ(x)

( ∂
∂t
um

)2

ds

]
dx

≤ T

∫
Ωτ

[ τ∫
γ(x)

(∂um
∂t

)2

ds

]
dx = T

∫
Dτ

(∂um
∂t

)2

dx dt. (3.3.52)

Denoting

w(τ) :=

∫
Ωτ

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx,

in view of (3.3.51) and (3.3.52), we have

w(τ) ≤ (1 + T )

∫
Dτ

(∂um
∂t

)2

dx dt+

∫
Dτ

(Fm)2 dx dt

≤ (1 + T )

∫
Dτ

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx dt+ ∥Fm∥2L2(Dτ )

= (1 + T )

τ∫
0

w(s) ds+ ∥Fm∥2L2(Dτ )
, 0 < τ ≤ T. (3.3.53)

By virtue of the Gronwall lemma, it follows from (3.3.53) that

w(τ) ≤ ∥F∥2L2(Dτ )
exp(1 + T )τ ≤ ∥F∥2L2(DT )

exp(1 + T )T, 0 < τ ≤ T. (3.3.54)

According to (3.3.54), we have

∥um∥2◦
W 1

2(DT ,ST )
=

∫
DT

[
(um)2 +

(∂um
∂t

)2

+

n∑
i=1

(∂um
∂xi

)2]
dx dt

=

T∫
0

w(τ) dτ ≤ T∥Fm∥L2(DT ) exp(1 + T )T,

whence, due to the limit equalities (3.3.47), we arrive at the estimate (3.3.46).
According to Remark 3.3.1, when the conditions of Theorem 3.3.3 are fulfilled, the vector function

u ∈
◦
W 1

2(DT , ST ) is a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1
2 if and

only if u is a solution of the functional equation u = A0u from (3.3.39) in the space
◦
W 1

2(DT , ST ),
where the operator A0, acting in the space

◦
W 1

2(DT , ST ), is continuous and compact. At the same
time, due to (3.3.46), for any solution of the equation u = µA0u, an a priori estimate

∥u∥ ◦
W 1

2(DT ,ST )
≤ µc(T )∥F∥L2(DT ) ≤ c(T )∥F∥L2(DT )

with the positive constant c(T ), independent of u, µ and F , is valid. Thus, according to Schaefer’s
fixed point theorem [20], the equation (3.3.46), and hence the problem (3.1.1), (3.1.2), has at least one
strong generalized solution of the class W 1

2 in the domain DT for any T > 0. Thus Theorem 3.3.3 is
proved completely.
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3.4 The uniqueness and existence of a global solution
of the problem (3.1.1), (3.1.2) of the class W 1

2

Below, we impose on the nonlinear vector function f = (f1, . . . , fN ) from (3.1.1) the additional
requirements

f ∈ C1(RN ),
∣∣∣∂fi(u)
∂uj

∣∣∣ ≤M3 +M4|u|γ ∀u ∈ RN , 1 ≤ i, j ≤ N, (3.4.1)

where M3,M4, γ = const ≥ 0. To simplify our reasoning, we suppose that the vector function g = 0
in the boundary condition (3.1.2).

Remark 3.4.1. It is obvious that from (3.4.1) follows the condition (3.2.2) for α = γ +1, and in the
case γ < 2

n−1 , we have α < n+1
n−1 .

Theorem 3.4.1. Let the condition (3.4.1) be fulfilled, where 0 ≤ γ < 2
n−1 , F ∈ L2(DT ) and g = 0.

Then the problem (3.1.1), (3.1.2) cannot have more than one strong generalized solution of the class
W 1

2 in the domain DT in the sense of Definition 3.2.1.

Proof. Let F ∈ L2(DT ), g = 0, and the problem (3.1.1), (3.1.2) have two strong generalized solutions
u1 and u2 of the class W 1

2 in the domain DT in the sense of Definition 3.2.1, i.e., there exist two
sequences of vector functions uim ∈

◦
C2(DT , ST ) := {u ∈ C2(DT ) : u|ST = 0}, i = 1, 2; m = 1, 2, . . . ,

such that
lim
m→∞

∥uim − ui∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Lum − F∥L2(DT ) = 0, i = 1, 2. (3.4.2)

Let
w = u2 − u1, wm = u2m − u1m, Fm = Lu2m − Lu1m. (3.4.3)

In view of (3.4.2) and (3.4.3), we have

lim
m→∞

∥wm − w∥ ◦
W 1

2(DT ,ST )
= 0, lim

m→∞
∥Fm∥L2(DT ) = 0. (3.4.4)

In accordance with (3.4.3), consider the vector function wm ∈
◦
C2(DT , ST ) as a solution of the

following problem:

�wm = −[f(u2m)− f(u1m)] + Fm, (3.4.5)
wm

∣∣
ST

= 0. (3.4.6)

In the same way as the inequality (3.3.49) was obtained, from (3.4.5) and (3.4.6) we arrive at

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx

≤ 2

∫
Dτ

Fm
∂wm

∂t
dx dt− 2

∫
Dτ

[f(u2m)− f(u1m)]
∂wm

∂t
dx dt, 0 < τ ≤ T. (3.4.7)

Taking into account the equality

fi(u
2m)− fi(u

1m) =

N∑
j=1

1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds (u2mj − u1mj ),

we obtain

[f(u2m)− f(u1m)]
∂wm

∂t
=

N∑
i,j=1

[ 1∫
0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

]
(u2mj − u1mj )

∂wmi
∂t

. (3.4.8)
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By virtue of (3.4.1) and the obvious inequality |d1+ d2|γ ≤ 2γ max(|d1|γ , |d2|γ) ≤ 2γ(|d1|γ + |d2|γ)
for γ ≥ 0, di ∈ R, we have

∣∣∣∣
1∫

0

∂

∂uj
fi
(
u1m + s(u2m − u1m)

)
ds

∣∣∣∣
≤

1∫
0

[
M3 +M4|(1− s)u1m + su2m|γ

]
ds ≤M3 + 2γM4

(
|u1m|γ + |u2m|γ

)
. (3.4.9)

From (3.4.8) and (3.4.9), with regard for (3.4.3), we get

∣∣∣[f(u2m)− f(u1m)
] ∂wm
∂t

∣∣∣ ≤ N∑
i,j=1

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wmj |

∣∣∣∂wmi
∂t

∣∣∣
≤ N2

[
M3 + 2γM4

(
|u1m|γ + |u2m|γ

)]
|wm|

∣∣∣∂wm
∂t

∣∣∣
≤ 1

2
N2M3

[
(wm)2 +

(∂wm
∂t

)2]
+ 2γN2M4

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣. (3.4.10)

Due to (3.4.7) and (3.4.10), we have

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx

≤
∫
Dτ

[(∂wm
∂t

)2

+ (Fm)2
]
dx dt+N2M3

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2]
dx dt

+ 2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt. (3.4.11)

The last integral in the right-hand side of (3.4.11) can be estimated by Hölder’s inequality∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt
≤

(∥∥ |u1m|γ
∥∥
Ln+1(DT )

+
∥∥ |u2m|γ

∥∥
Ln+1(DT )

)
∥wm∥Lp(Dτ )

∥∥∥∂wm
∂t

∥∥∥
L2(Dτ )

. (3.4.12)

Here, 1
n+1 + 1

p +
1
2 = 1, i.e.,

p =
2(n+ 1)

n− 1
. (3.4.13)

By virtue of (3.3.40), for q ≤ 2(n+1)
n−1 , we have

∥v∥Lq(Dτ ) ≤ Cq(T )∥v∥ ◦
W 1

2(DT ,ST )
∀ v ∈

◦
W 1

2(Dτ , Sτ ), 0 < τ ≤ T, (3.4.14)

with the positive constant Cq(T ), not depending on v ∈
◦
W 1

2(Dτ , Sτ ) and τ ∈ (0, T ].
According to the theorem, γ < 1

n−1 and, therefore, γ(n + 1) < 2(n+1)
n−1 . Thus from (3.4.13) and

(3.4.14) we obtain∥∥ |uim|γ
∥∥
Ln+1(DT )

= ∥uim∥γLγ(n+1)(DT )
≤ Cγγ(n+1)(T )∥u

im∥γ◦
W 1

2(DT ,ST )
, i = 1, 2; m ≥ 1, (3.4.15)

∥wm∥Lp(Dτ ) ≤ Cp(T )∥wm∥W 1
2 (Dτ )

, m ≥ m0. (3.4.16)
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In view of the first limit equality from (3.4.2), there exists a natural number m0 such that for
m ≥ m0, we have

∥uim∥γ◦
W 1

2(DT ,ST )
≤ ∥uj∥γ◦

W 1
2(DT ,ST )

+ 1, i = 1, 2; m ≥ m0.

In view of the above inequalities, it follows from (3.4.12)–(3.4.16) that

2γ+1N2M4

∫
Dτ

(
|u1m|γ + |u2m|γ

)
|wm|

∣∣∣∂wm
∂t

∣∣∣ dx dt
≤ 2γ+1N2M4C

γ
γ(n+1)(T )

(
∥u1∥γ◦

W 1
2(DT ,ST )

+∥u2∥γ◦
W 1

2(DT ,ST )
+2

)
Cp(T )∥wm∥ ◦

W 1
2(Dτ ,Sτ )

∥∥∥∂wm
∂t

∥∥∥
L2(Dτ )

≤M5

(
∥wm∥2W 1

2 (Dτ )
+
∥∥∥∂wm
∂t

∥∥∥2
L2(Dτ )

)
≤ 2M5∥wm∥2W 1

2 (Dτ )
= 2M5

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt, (3.4.17)

where
M5 = 2γN2M4C

γ
γ(n+1)(T )

(
∥u1∥γ◦

W 1
2(DT ,ST )

+ ∥u2∥γ◦
W 1

2(DT ,ST )
+ 2

)
Cp(T ).

Due to (3.4.17), from (3.4.11) we have

∫
Ωτ

[(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx

≤M6

∫
Dτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt+

∫
Dτ

(Fm)2 dx dt, 0 < τ ≤ T, (3.4.18)

where M6 = 1 +M3N
2 + 2M5.

Note that the inequality (3.3.52) is likewise valid for wm and, therefore,∫
Ωτ

(wm)2 dx ≤ T

∫
Dτ

(∂wm
∂t

)2

dx dt ≤ T

∫
DT

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx dt. (3.4.19)

Putting

λm(τ) :=

∫
Ωτ

[
(wm)2 +

(∂wm
∂t

)2

+

n∑
i=1

(∂wm
∂xi

)2]
dx (3.4.20)

and adding (3.4.18) to (3.4.19), we obtain

λm(τ) ≤ (M6 + T )

τ∫
0

λm(s) ds+ ∥Fm∥2L2(DT )
,

whence by the Gronwall lemma, it follows that

λm(τ) ≤ ∥Fm∥2L2(DT )
exp(M6 + T )τ. (3.4.21)

From (3.4.20) and (3.4.21) we have

∥wm∥2W 1
2 (DT )

=

T∫
0

λm(τ) dτ ≤ T∥Fm∥2L2(DT )
exp(M6 + T )T. (3.4.22)
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In view of (3.4.3) and (3.4.4), it follows from (3.4.22) that

∥w∥W 1
2 (DT )

= lim
m→∞

∥w − wm + wm∥W 1
2 (DT )

≤ lim
m→∞

∥w − wm∥W 1
2 (DT )

+ lim
m→∞

∥wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥W 1
2 (DT )

= lim
m→∞

∥w − wm∥ ◦
W 1

2(DT ,ST )
= 0.

Therefore, w = u2 − u1 = 0, i.e., u2 = u1. Thus Theorem 3.4.1 is proved completely.

Theorems 3.3.1, 3.3.3, 3.4.1 and Remark 3.4.1 result in the following theorem of the existence and
uniqueness.

Theorem 3.4.2. Let the vector function f satisfy the condition (3.4.1), where 0 ≤ γ < 2
n−1 , and

either f satisfy the condition (3.2.2) for α ≤ 1 or f = ∇G, where G ∈ C1(RN ), G(0) = 0 and
G(u) ≥ 0 ∀u ∈ RN . Then for any F ∈ L2(DT ) and g = 0, the problem (3.1.1), (3.1.2) has a
unique strong generalized solution u ∈

◦
W 1

2(DT , ST ) of the class W 1
2 in the domain DT in the sense of

Definition 3.2.1.

The following theorem on the existence of a global solution of this problem follows from Theo-
rem 3.4.2.

Theorem 3.4.3. Let the vector function f satisfy the condition (3.4.1), where 0 ≤ γ < 2
n−1 , and

either f satisfy the condition (3.2.2) for α ≤ 1 or f = ∇G, where G ∈ C1(RN ), G(0) = 0 and
G(u) ≥ 0 ∀u ∈ RN . Let g = 0, F ∈ L2,loc(D∞) and F |DT ∈ L2(DT ) for each T > 0. Then the
problem (3.1.1), (3.1.2) has a unique global strong generalized solution u ∈W 1

2,loc(D∞) of the class W 1
2

in the domain D∞ in the sense of Definition 3.2.4.

Proof. According to Theorem 3.4.2, when the conditions of Theorem 3.4.3 are fulfilled, for T = k,
where k is a natural number, there exists a unique strong generalized solution uk ∈

◦
W 1

2(DT , ST ) of
the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT=k in the sense of Definition 3.2.1. Since
uk+1|DT=k

is also a strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1
2 in the

domain DT=k, in view of Theorem 3.4.2 we have uk = uk+1|DT=k
. Therefore, one can construct a

unique generalized solution u ∈
◦
W 1

2,loc(D∞) of the problem (3.1.1), (3.1.2) of the class W 1
2 in the

domain D∞ in the sense of Definition 3.2.4 as follows:

u(x, t) = uk(x, t), (x, t) ∈ D∞, k = [t] + 1,

where [t] is an integer part of the number t. Thus Theorem 3.4.3 is proved completely.

3.5 The cases of the nonexistence of a global solution
of the problem (3.1.1), (3.1.2) of the class W 1

2

Theorem 3.5.1. Let the vector function f = (f1, . . . , fN ) satisfy the condition (3.2.2), where 1 <

α < n+1
n−1 , and there exist the numbers ℓ1, . . . , ℓN ,

N∑
i=1

|ℓi| ̸= 0, such that

N∑
i=1

ℓif(u) ≤ c0 − c1

∣∣∣ N∑
i=1

ℓiui

∣∣∣β ∀u ∈ RN , 1 < β = const <
n+ 1

n− 1
, (3.5.1)

where c0, c1 = const, c1 > 0. Let F ∈ L2,loc(D∞) and F |DT ∈ L2(DT ) for any T > 0, g = 0. Let the

scalar function F0 =
N∑
i=1

ℓiFi − c0 in the domain D∞ satisfy the following conditions:

F0 ≥ 0, lim
t→+∞

inf tγF0(x, t) ≥ c2 = const > 0, γ = const ≤ n+ 1. (3.5.2)

Then there exists a finite positive number T0 = T0(F ) such that for T > T0 the problem (3.1.1), (3.1.2)
does not have a strong generalized solution of the class W 1

2 in the sense of Definition 3.2.1.
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Proof. Let u = (u1, . . . , uN ) be a strong generalized solution of the problem (3.1.1), (3.1.2) of the class
W 1

2 in the domain DT in the sense of Definition 3.2.1. It is easy to verify that∫
DT

u�φ dx dt = −
∫
DT

f(u)φ dx dt+

∫
DT

Fφ dx dt (3.5.3)

for any test vector function φ = (φ1, . . . , φN ) such that

φ ∈ C2(DT ), φ
∣∣
∂DT

=
∂φ

∂ν

∣∣∣
∂DT

= 0, (3.5.4)

where ν is the unit vector of the outer normal to ∂DT . Indeed, according to the definition of the
strong generalized solution of the problem (3.1.1), (3.1.2) of the class W 1

2 in the domain DT , there
exists a sequence of vector functions um ∈

◦
C2(DT , ST ) for which the limit equalities (3.3.47) are valid.

Taking into account (3.3.48) and multiplying scalarly both parts of the equality Lum = Fm by the
test vector function φ = (φ1, . . . , φN ), due to (3.5.4), after integrating by parts, we obtain∫

DT

um�φ dx dt = −
∫
D

f(um)φ dx dt+

∫
DT

Fmφ dx dt. (3.5.5)

By virtue of (3.3.47) and Remark 3.2.1, passing in the equality (3.5.5) to the limit as m→ ∞, we
get (3.5.3).

Let us apply the method of test functions [77]. Consider a scalar function φ0 = φ0(x, t) such that

φ0 ∈ C2(D∞), φ0
∣∣
DT=1

> 0, φ0
∣∣
t≥1

= 0, φ0
∣∣
∂DT=1

=
∂φ0

∂ν

∣∣∣
∂DT=1

= 0 (3.5.6)

and
κ0 :=

∫
DT=1

|�φ0|β′

|φ0|β′−1
dx dt < +∞,

1

β
+

1

β′ = 1. (3.5.7)

It is not difficult to see that in the capacity of the function φ0, satisfying the conditions (3.5.6)
and (3.5.7), we can choose the function

φ0(x, t) =

ω
m
(x
t

)
(1− t)mtk, (x, t) ∈ DT=1,

0, t ≥ 1,

for sufficiently large positive m and k, where the function ω ∈ C∞(Rn) defines the equation of conic
section ∂Ω1 = S ∩ {t = 1} : ω(x) = 0, ∇ω|∂Ω1

̸= 0, and ω|Ω1
> 0, Ω1 : D ∩ {t = 1}.

Putting
φT (x, t) := φ0

( x
T
,
t

T

)
, T > 0, (3.5.8)

due to (3.5.6), it is easy to see that

φT ∈ C2(DT ), φT
∣∣
DT

> 0, φT
∣∣
∂DT

=
∂φT
∂ν

∣∣∣
∂DT

= 0. (3.5.9)

In the integral equality (3.5.3), for the test vector function φ we choose φ=(ℓ1φT , ℓ2φT , . . . , ℓNφT ).
For the chosen test vector function φ, using the notation

v =

N∑
i=1

ℓiui, F∗ =

N∑
i=1

ℓiFi, f0 =

N∑
i=1

ℓifi, (3.5.10)

the integral equality (3.5.3) takes the form∫
DT

v�φT dx dt = −
∫
DT

f0(u)φT dx dt+

∫
DT

F∗φT dx dt. (3.5.11)
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From (3.5.1), (3.5.9) and (3.5.11), it follows that∫
DT

v�φT dx dt ≥
∫
DT

[c1|v|β − c0]φT dx dt+

∫
DT

F∗φT dx dt = c1

∫
DT

|v|βφT dx dt+ χ(T ), (3.5.12)

where
χ(T ) =

∫
DT

(F∗ − c0)φT dx dt =

∫
DT

F0φT dx dt ≥ 0, (3.5.13)

due to (3.5.2) and (3.5.9).
In view of (3.5.2), there exists a number T1 = T1(F ) > 0 such that

F0(x, t) ≥
c2
2
t−γ , t > T1. (3.5.14)

By virtue of (3.5.8) and (3.5.14), after the substitution of variables t = Tt′, x = Tx′ in the integral
(3.5.13), for T > 2T1 we have

χ(T ) = Tn+1

∫
DT=1

F0(Tx
′, T t′)φ0(x′, t′) dx′ dt′

≥ Tn+1

∫
DT=1∩{ 1

2<t
′<1}

F0(Tx
′, T t′)φ0(x′, t′) dx′ dt′

≥ Tn+1

∫
DT=1∩{ 1

2<t
′<1}

c2
2
(Tt′)−γφ0(x′, t′) dx′ dt′

=
c2
2
Tn+1−γ

∫
DT=1∩{ 1

2<t
′<1}

(t′)−γφ0(x′, t′) dx′ dt′

= c3T
n+1−γ , T > 2T1, (3.5.15)

where, due to φ0|DT=1
> 0,

c3 =
c2
2

∫
DT=1∩{ 1

2<t
′<1}

(t′)−γφ0(x′, t′) dx′ dt′ dx′ dt′ = const > 0. (3.5.16)

Since according to the conditions of Theorem 3.5.1, the constant γ ≤ n+1, it follows from (3.5.15)
and (3.5.16) that

lim
T→+∞

infχ(T ) ≥ c3. (3.5.17)

Further, in view of (3.5.13), the inequality (3.5.12) can be rewritten in the form

c1

∫
DT

|v|βφT dx dt ≤
∫
DT

v�φT dx dt− χ(T ). (3.5.18)

If in Young’s inequality with the parameter ε > 0: ab ≤ (ε/β)aβ + (β′εβ
′−1)−1bβ , where β′ =

β/(β− 1), we take a = |u|φ1/β
T , b = |�φT |/φ1/β

T , then taking into account the equality β′/β = β′ − 1,
we obtain

|v φT | = |v|φ1/β
T

|�φT |
φ
1/β
T

≤ ε

β
|v|βφT +

1

β′εβ′−1

|�φT |β
′

φβ
′−1
T

. (3.5.19)

In view of (3.5.19), from (3.5.18) we get(
c1 −

ε

β

) ∫
DT

|v|βφT dx dt ≤
1

β′εβ′−1

∫
DT

|�φT |β
′

φβ
′−1
T

dx dt− χ(T ),
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whence for ε < c1β, we obtain∫
DT

|v|βφT dx dt ≤
β

(c1β − ε)β′εβ′−1

∫
DT

|�φT |β
′

φβ
′−1
T

dx dt− β

c1β − ε
χ(T ). (3.5.20)

Taking into account the equalities β′ = β
β−1 , β′ = β′

β′−1 and also the equality

min
0<ε<c1β

β

(c1β − ε)β′εβ′−1
=

1

cβ
′

1

,

which is achieved for ε = c1, it follows from (3.5.20) that∫
DT

|v|βφT dx dt ≤
1

cβ
′

1

∫
DT

|�φT |β
′

φβ
′−1
T

dx dt− β′

c1
χ(T ). (3.5.21)

By virtue of (3.5.6)–(3.5.8), after the substitution of variables x = Tx′, t = Tt′, it can be easily
verified that ∫

DT

|�φT |β
′

φβ
′−1
T

dx dt = Tn+1−2β′
∫

DT=1

|�φ0|β′

(φ0)β′−1
dx′ dt′ = Tn+1−2β′

κ0 < +∞,

whence, due to (3.5.9), from the equality (3.5.21) we obtain

0 ≤
∫
DT

|v|βφT dx dt ≤
1

cβ
′

1

Tn+1−2β′
κ0 −

β′

c1
χ(T ). (3.5.22)

Since, by supposition, β < n+1
n−1 , we have n+ 1− 2β′ < 0 and hence

lim
T→+∞

1

cβ
′

1

Tn+1−2β′
κ0 = 0. (3.5.23)

From (3.5.16), (3.5.17) and (3.5.23) it follows that there exists a positive number T0 = T0(F )
such that for T > T0, the right-hand side of the inequality (3.5.22) will be a negative value, which is
impossible. This implies that if for the conditions of Theorem 3.5.1 there exists a strong generalized
solution of the problem (3.5.1), (3.5.2) of the class W 1

2 in the domain DT , then T ≤ T0 necessarily,
which proves Theorem 3.5.1.

Remark 3.5.1. As is shown in the first chapter, the following class of vector functions f=(f1, . . . , fN ):

fi(u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N, (3.5.24)

where aij = const > 0, bi = const, 1 < βij = const < n+1
n−1 ; i, j = 1, . . . , N , satisfies the condition

(3.5.1). Note that the vector function f represented by the equalities (3.5.24), satisfies likewise the
condition (3.5.1) for ℓ1 = ℓ2 = · · · = ℓN = −1 for less restrictive conditions, when aij = const ≥ 0, but
aiki > 0, where k1, . . . , kN is any arbitrary fixed permutation of numbers 1, 2, . . . , N ; i, j = 1, . . . , N .

When N = n = 2, f1 = a11|u1|γ + a12|u2|β , f2 = a21|u1|γ + a22|u2|β , 1 < γ, β < 3, the restrictions
aij > 0 can be omitted and replaced by the condition det(aij) ̸= 0. For example, for f1 = u21 − 2u22,
f2 = −2u21 + u22, the condition (3.5.1) for ℓ1 = ℓ2 = 1, β = 2, c0 = 0 and c1 = 1

2 will be valid, since in
this case, ℓ1f1(u) + ℓ2f2(u) = −(|u1|2 + |u2|2) ≤ − 1

2 |u1 + u2|2, and from Theorem 3.5.1 we find that
for F1 + F2 ≥ c

tγ , where c = const > 0 and γ = const ≤ 3, g = 0, the boundary value problem under
consideration is not globally solvable. More precisely, from (3.5.17) and (3.5.22) it follows that

0 ≤
∫
DT

|v|βφT dx dt ≤
1

cβ
′

1

Tn+1−2β′
κ0 −

β′

c1
c3,
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the right-hand side of which becomes negative for T > T0 = max([κ−1
0 β′cβ

′−1
1 c3]

1
n+1−2β′ , 1) and,

therefore, for T > T0, the problem (3.1.1), (3.1.2) does not have a solution. But for this concrete
example, n = 2, β = β′ = 2; κ0 is determined from (3.5.7). The constants c1, c2 and c3 are
determined from (3.5.1), (3.5.2) and (3.5.16), respectively, and therefore, in this case c1 = 1

2 and
T0 = κ0

c3
. Further, due to Theorem 3.3.2 on the local solvability and Theorem 3.4.1 on the uniqueness

of the solution of the problem, there exist a finite positive number T∗ = T∗(F ) and a unique vector
function u = (u1, u2) ∈ W 1

2,loc(DT∗) such that u is a strong generalized solution of this problem of
the class W 1

2 in the domain DT for T < T∗. From the aforesaid it follows that for the life-span T∗ of
this solution we have the upper estimate T∗ ≤ T0 = max(κ0

c3
, 1). The lower estimate for T∗ can be

obtained from the reasonings given in the proof of Theorem 3.3.2 on the local solvability.

Remark 3.5.2. From Theorem 3.5.1 it follows that when its conditions are fulfilled, the problem
(3.1.1), (3.1.2) fails to have a global strong generalized solution of the class W 1

2 in the domain D∞ in
the sense of Definition 3.2.4.



Chapter 4

Multidimensional problem with
one nonlinear in time condition
for some semilinear hyperbolic
equations with the Dirichlet
boundary condition

4.1 Statement of the problem
In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical domain DT = Ω × (0, T ),
where Ω is a Lipschitz domain in Rn, consider a nonlocal problem of finding a solution u(x, t) of the
equation

Lλu :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
+ λf(x, t, u) = F (x, t), (x, t) ∈ DT , (4.1.1)

satisfying the Dirichlet homogeneous boundary condition on a part of the boundary Γ : ∂Ω × (0, T )
of the cylinder DT

u
∣∣
Γ
= 0, (4.1.2)

the initial condition
u(x, 0) = φ(x), x ∈ Ω, (4.1.3)

and the nonlocal condition

Kµut : ut(x, 0)− µut(x, T ) = ψ(x), x ∈ Ω, (4.1.4)

where f , F , φ and ψ are the given functions; λ and µ are the given nonzero constants, and n ≥ 2.
A great number of works have been devoted to the study of nonlocal problems for partial differential

equations. When a nonlocal problem is posed for abstract evolution equations and hyperbolic partial
differential equations, we suggest the reader to refer to the works [1–8, 10, 11, 13, 14, 26–29, 34, 37, 38,
53,60,61,63–65,74,78,82,85,95] and to the references therein.

In this chapter, the problem (4.1.1)–(4.1.4) in the multidimensional case is studied in the Sobolev
space W 1

2 (DT ), basing on the expansions of functions from the space
◦
W 1

2(Ω) in the basis, consisting
of eigenfunctions of the spectral problem ∆w = λ̃w, w|∂Ω = 0, and using the embedding theorems in
the Sobolev spaces. It should also be noted that if for n = 1 there is no need in any restriction on the
behavior of the function f(x, t, u) with respect to the variable u, as u → ∞, whereas in the case for
n > 1, we require of the function f(x, t, u), as u→ ∞, to have a growth not exceeding a polynomial.
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Moreover, for using the embedding theorems in the Sobolev spaces, it is additionally required for the
order of polynomial growth to be less than a certain value that depends on the dimension of the space.

Below, on the function f = f(x, t, u) we impose the following requirements:

f ∈ C(DT × R), |f(x, t, u)| ≤M1 +M2|u|α, (x, t, u) ∈ DT × R, (4.1.5)

where
0 ≤ α = const <

n+ 1

n− 1
. (4.1.6)

Remark 4.1.1. The embedding operator I : W 1
2 (DT ) → L1(DT ) is a linear continuous operator for

1 < q < 2(n+1)
n−1 , when n > 1 [68]. At the same time, Nemitski’s operator N : Lq(DT ) → L2(DT ),

acting by the formula Nu = f(x, t, u), is, due to (4.1.5), continuous and bounded if q ≥ 2α [22].
Thus, since due to (4.1.6) we have 2α < 2(n+1)

n−1 , there exists a number q such that 1 < q < 2(n+1)
n−1

and q ≥ 2α. Therefore, in this case the operator

N0 = N I :
◦
W 1

2(DT ,Γ) → L2(DT ), (4.1.7)

where
◦
W 1

2(DT ,Γ) := {w ∈ W 1
2 (DT ) : w|Γ = 0}, is continuous and compact. Besides, it follows from

u ∈
◦
W 1

2(DT ,Γ) that f(x, t, u) ∈ L2(DT ), and if um → u in the space
◦
W 1

2(DT ,Γ), then f(x, t, um) →
f(x, t, u) in the space L2(DT ).

Definition 4.1.1. Let the function f satisfy the conditions (4.1.5) and (4.1.6), F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω) := {v ∈ W 1
2 (Ω) : v|∂Ω = 0}, ψ ∈ L2(Ω). We call a function u a generalized solution of the

problem (4.1.1)–(4.1.4) if u ∈
◦
W 1

2(DT ,Γ) and there exists a sequence of functions um ∈
◦
C2(DT ,Γ) :=

{w ∈ C2(DT ) : w|Γ = 0} such that

lim
m→∞

∥um − u∥ ◦
W 1

2(DT ,Γ)
= 0, lim

m→∞
∥Lλum − F∥L2(DT ) = 0, (4.1.8)

lim
m→∞

∥∥um∣∣
t=0

− φ
∥∥ ◦
W 1

2(Ω)
= 0, lim

m→∞
∥Kµum − ψ∥L2(Ω) = 0. (4.1.9)

Obviously, a classical solution u ∈ C2(DT ) of the problem (4.1.1)–(4.1.4) is a generalized solution
of this problem. It is easy to verify that a generalized solution of the problem (4.1.1)–(4.1.4) is a
solution of the equation (4.1.1) in the sense of the theory of distributions. Indeed, let Fm := Lλum,
φm := um|t=0, ψm := Kµumt. Multiplying both sides of the equality Lλum = Fm by a test function
w ∈ V := {v ∈

◦
W 1

2(DT ,Γ) : v(x, T )− µv(x, 0) = 0, x ∈ Ω} and integrating in the domain DT , after
simple transformations connected with integration by parts and the equality w|Γ = 0, we get∫

Ω

[
umt(x, T )w(x, T )− umt(x, 0)w(x, 0)

]
dx

+

∫
DT

[
− umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w
]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ V. (4.1.10)

Due to Kµumt = ψm(x) and w(x, T )−µw(x, 0) = 0, x ∈ Ω, it can be easily seen that umt(x, T )w(x, T )−
umt(x, 0)w(x, 0) = umt(x, T )(w(x, T )−µw(x, 0))−ψm(x)w(x, 0) = −ψm(x)w(x, 0), x ∈ Ω. Therefore,
the equality (4.1.10) takes the form

−
∫
Ω

ψm(x)w(x, 0) dx

+

∫
Ω

[
− umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w
]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ V. (4.1.11)
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In view of (4.1.5), (4.1.6), according to Remark 4.1.1, we have f(x, t, um) → f(x, t, u) in the space
L2(DT ) as um → u in the space

◦
W 1

2(DT ,Γ). Therefore, due to (4.1.8) and (4.1.9), passing in the
equality (4.1.11) to the limit as m→ ∞, we get

−
∫
Ω

ψ(x)w(x, 0) dx+

∫
DT

[
−utwt+

n∑
i=1

uxiwxi+λf(x, t, u)w
]
dx dt =

∫
DT

Fw dx dt ∀w ∈ V. (4.1.12)

Since C∞
0 (DT ) ⊂ V , from (4.1.12), integrating by parts, we have∫

DT

[
u�w + λf(x, t, u)w

]
dx dt =

∫
DT

Fw dx dt ∀w ∈ C∞
0 (DT ), (4.1.13)

where � := ∂2

∂t2 −
∑n
i=1

∂2

∂x2
i
, and C∞

0 (DT ) is a space of finite infinitely differentiable functions on DT .
The equality (4.1.13), which is valid for any w ∈ C∞

0 (DT ), implies that a generalized solution u of the
problem (4.1.1)–(4.1.4) is a solution of the equation (4.1.1) in the sense of the theory of distributions,
besides, since the trace operator u → u|t=0 is well defined in the space

◦
W 1

2(DT ,Γ) and, particularly,
is continuous from the space

◦
W 1

2(DT ,Γ) into the space L2(Ω × {t = 0}), we find, due to (4.1.8) and
(4.1.9), that the initial condition (4.1.3) is fulfilled in the sense of the trace theory, while the nonlocal
condition (4.1.4) in the integral sense is taken into account in the equality (4.1.12), which is valid for
all w ∈ V . Note also that if a generalized solution u belongs to the class C2(DT ), then due to the
standard reasoning connected with the integral equality (4.1.12), which is valid for any w ∈ V [68],
we find that u is a classical solution of the problem (4.1.1)–(4.1.4), satisfying the equation (4.1.1), the
boundary condition (4.1.2), the initial condition (4.1.3) and the nonlinear condition (4.1.4) pointwise.

Note that even in the linear case, i.e., for λ = 0, the problem (4.1.1)–(4.1.4) is not always well-
posed. For example, when λ = 0 and |µ| = 1, the corresponding to (4.1.1)–(4.1.4) homogeneous
problem may have an infinite number of linearly independent solutions (see Remark 4.3.2).

4.2 An a priori estimate of a solution
of the problem (4.1.1)–(4.1.4)

Let

g(x, t, u) =

u∫
0

f(x, t, s) ds, (x, t, u) ∈ DT × R. (4.2.1)

Consider the following conditions imposed on the function g = g(x, t, u):

g(x, t, u) ≥ −M3, (x, t, u) ∈ DT × R, (4.2.2)
gt ∈ C(DT × R, gt(x, t, u) ∈M4, (x, t, u) ∈ DT × R, (4.2.3)

where Mi = const ≥ 0, i = 3, 4.
Let us consider some classes of frequently encountered in applications functions f = f(x, t, u)

satisfying the conditions (4.1.5), (4.2.2) and (4.2.3):

1. f(x, t, u) = f0(x, t)β(u), where f0,
∂
∂t f0 ∈ C(DT ) and β ∈ C(R), |β(u)| ≤ M̃1 + M̃2|u|α,

M̃i = const ≥ 0, α = const ≥ 0. In this case, g(x, t, u) = f0(x, t)
u∫
0

β(s) ds and when f0 ≥ 0,

∂
∂t f0 ≤ 0,

u∫
0

β(s) ds ≥ −M , M = const ≥ 0, the conditions (4.1.5), (4.2.2) and (4.2.3) are

fulfilled.

2. f(x, t, u) = f0(x, t)|u|α signu, where f0, ∂∂t f0 ∈ C(DT ) and α > 1. In this case, g(x, t, u) =

f0(x, t)
|u|α
α+1 , and when f0 ≥ 0, ∂

∂t f0 ≤ 0, the conditions (4.1.5), (4.2.2) and (4.2.3) are also
fulfilled.
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Lemma 4.2.1. Let λ > 0, |µ| < 1, F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω), ψ ∈ L2(Ω) and the conditions (4.1.5),
(4.2.2) and (4.2.3) be fulfilled. Then for a generalized solution u of the problem (4.1.1)–(4.1.4) the
following a priori estimate

∥u∥ ◦
W 1

2(DT ,Γ)
≤ c1∥F∥L2(DT ) + c2∥φ∥ ◦

W 1
2(Ω)

+ c3∥ψ∥L2(Ω) + c4∥φ∥
α+1
2

◦
W 1

2(Ω)
+ c5 (4.2.4)

is valid with nonnegative constants ci = ci(λ, µ,Ω, T,M1,M2,M3,M4), not depending on u, F , φ, ψ,
and ci > 0 for i < 4, whereas in the linear case, i.e., when λ = 0, the constants c4 = c5 = 0, and in
this case, due to (4.2.4), we have the uniqueness of the solution of the problem (4.1.1)–(4.1.4).
Proof. Let u be a generalized solution of the problem (4.1.1)–(4.1.4). In view of Definition 4.1.1, there
exists a sequence of the functions um ∈

◦
C2(DT ,Γ) such that the limit equalities (4.1.8), (4.1.9) are

fulfilled.
Set

Lλum = Fm, (x, t) ∈ DT , (4.2.5)
um

∣∣
Γ
= 0, (4.2.6)

um(x, 0) = φm(x), x ∈ Ω, (4.2.7)
Kµumt = ψm(x), x ∈ Ω. (4.2.8)

Multiplying both sides of the equation (4.2.5) by 2umt and integrating in the domain Dτ :=
DT ∩ {t < τ}, 0 < τ ≤ T , due to (4.2.1), we obtain∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt− 2

∫
Dτ

n∑
i=1

∂2um
∂x2i

∂um
∂t

dx dt+ 2λ

∫
Dτ

∂

∂t
g(x, t, um(x, t)) dx dt

− 2λ

∫
Dτ

gt(x, t, um(x, t)) dx dt = 2

∫
Dτ

Fm
∂um
∂t

dx dt. (4.2.9)

Let ωτ := {(x, t) ∈ DT : x ∈ Ω, t = τ}, 0 < τ ≤ T . Denote by ν := (νx1
, . . . , νxn , νt) the unit

vector of the outer normal to ∂Dτ . Since νxi |ωτ∪ω0
= 0, i = 1, . . . , n, νt|Γτ=Γ∩{t≤τ} = 0, νt|ωτ = 1,

νt|ω0 = −1, taking into account the equalities (4.2.6) and integrating by parts, we have∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt =

∫
∂Dτ

(∂um
∂t

)2

νt ds =

∫
ωτ

u2mt dx−
∫
ω0

u2mt dx, (4.2.10)

−2

∫
Dτ

∂2um
∂x2i

∂um
∂t

dx dt =

∫
Dτ

[
(u2mxi)t − 2(umxiumt)xi

]
dx dt

=

∫
ωτ

u2mxi dx−
∫
ω0

u2mxi dx, i = 1, . . . , n, (4.2.11)

2λ

∫
Dτ

∂

∂t
g(x, t, um(x, t)) dx dt = 2λ

∫
∂Dτ

g(x, t, um(x, t))νt ds

= 2λ

∫
ωτ

g(x, t, um(x, t)) dx− 2λ

∫
ω0

g(x, t, um(x, t)) dx. (4.2.12)

In view of (4.2.10), (4.2.11) and (4.2.12), from (4.2.9) we get∫
ωτ

[
u2mt +

n∑
i=1

u2mxi

]
dx =

∫
ω0

[
u2mt +

n∑
i=1

u2mxi

]
dx− 2λ

∫
ωτ

g(x, t, um(x, t)) dx

+ 2λ

∫
ω0

g(x, t, um(x, t)) dx+ 2λ

∫
Dτ

gt(x, t, um(x, t)) dx dt+ 2

∫
Dτ

Fmumt dx dt. (4.2.13)
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Let

wm(τ) :=

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi

]
dx. (4.2.14)

Since 2Fmumt ≤ ε−1F 2
m + εu2mt for any ε = const > 0, due to (4.2.2), (4.2.3) and (4.2.14), it

follows from (4.2.13) that

wm(τ) ≤ wm(0) + 2λM3 mesΩ

+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ 2λM4τ mesΩ+ ε

∫
DT

u2mt dx dt+ ε−1

∫
DT

F 2
m dx dt. (4.2.15)

Taking into account that

∫
Dτ

u2mt dx dt =

τ∫
0

[ ∫
ωs

u2mt dx

]
ds ≤

τ∫
0

[ ∫
ωs

[
u2mt +

n∑
i=1

u2mxi

]
dx

]
ds =

τ∫
0

wm(s) ds,

from (4.2.15) we obtain

wm(τ) ≤ ε

τ∫
0

wm(s) ds+ wm(0) + 2λ(M3 +M4τ)mesΩ

+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ ε−1

∫
Dτ

F 2
m dx dt, 0 < τ ≤ T. (4.2.16)

Because of Dτ ⊂ DT , 0 < τ ≤ T , according to the Gronwall lemma, it follows from (4.2.16) that

wm(τ) ≤
[
wm(0) + λ(M3 +M4T )mesΩ

+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ ε−1

∫
DT

F 2
m dx dt

]
eετ , 0 < τ ≤ T. (4.2.17)

Using the obvious inequality

|a+ b|2 = a2 + b2 + 2ab ≤ a2 + b2 + ε1a
2 + ε−1

1 b2 = (1 + ε1)a
2 + (1 + ε−1

1 )b2,

that is valid for any ε1 > 0, from (4.2.8) we have

|umt(x, 0)|2 =
∣∣µumt(x, T ) + ψm(x)

∣∣2 ≤ |µ|2(1 + ε1)u
2
mt(x, T ) + (1 + ε−1

1 )ψ2
m(x). (4.2.18)

From (4.2.18) we obtain∫
ω0

u2mt dx =

∫
Ω

|umt(x, 0)|2 dx ≤ |µ|2(1 + ε1)

∫
Ω

u2mt(x, T ) dx+ (1 + ε−1
1 )

∫
Ω

ψ2
m(x) dx

= |µ|2(1 + ε1)

∫
ωT

u2mt(x, T ) dx+ (1 + ε−1
1 )∥ψm∥2L2(Ω). (4.2.19)

In view of (4.2.7) and (4.2.14), from (4.2.17) we get∫
ωT

u2mt(x, T ) dx ≤ wm(T ) ≤
[ ∫
ω0

n∑
i=1

φ2
mxi dx+

∫
ωT

u2mt(x, T ) dx+M5

]
eεT , (4.2.20)
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where

M5 = 2λ(M3 +M4T )mesΩ+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ ε−1

∫
DT

F 2
m dx dt. (4.2.21)

From (4.2.19) and (4.2.20) it follows that∫
ω0

u2mt dx ≤ |µ|2(1 + ε1)

[ ∫
ω0

n∑
i=1

φ2
mxi dx+

∫
ω0

u2mt dx+M5

]
eεT + (1 + ε−1

1 )∥ψm∥2L2(Ω). (4.2.22)

Since |µ| < 1, the positive constants ε and ε1 can be chosen insomuch small that

µ1 = |µ|2(1 + ε1)e
εT < 1. (4.2.23)

Due to (4.2.23), from (4.2.22) we obtain∫
ω0

u2mt dx ≤ (1− µ1)
−1

[
|µ|2(1 + ε1)

(∫
ω0

n∑
i=1

φ2
mxi dx+M5

)
eεT + (1 + ε−1

1 )∥ψm∥2L2(Ω)

]
≤ (1− µ1)

−1
[
|µ|2(1 + ε1)

(
∥φm∥2◦

W 1
2(Ω)

+M5

)
eεT + (1 + ε−1

1 )∥ψm∥2L2(Ω)

]
. (4.2.24)

It follows from (4.2.7), (4.2.14) and (4.2.24) that

wm(0) =

∫
ω0

[
u2mt +

n∑
i=1

φ2
mxi

]
dx

≤ ∥φm∥2◦
W 1

2(Ω)
+ (1− µ1)

−1
[
|µ|2(1 + ε1)

(
∥φm∥2◦

W 1
2(Ω)

+M5

)
eεT + (1 + ε−1

1 )∥ψm∥2L2(Ω)

]
. (4.2.25)

In view of (4.2.21) and (4.2.25), from (4.2.17) we get

wm(τ) ≤

{
∥φm∥2◦

W 1
2(Ω)

+ (1− µ1)
−1

[
|µ|2(1 + ε1)

(
∥φm∥2◦

W 1
2(Ω)

+ 2λ(M3 +M4T )mesΩ

+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ ε−1

∫
DT

F 2
m dx dt

)
eεT + (1 + ε−1

1 )∥ψm∥2L2(Ω)

]

+ 2λ(M3 +M4T )mesΩ+ 2λ

∫
ω0

|g(x, t, um(x, t))| dx+ ε−1

∫
DT

F 2
m dx dt

}
eεT

= γ̃1∥Fm∥2L2(DT )
+ γ̃2∥φm∥2◦

W 1
2(Ω)

+ γ̃3∥ψm∥2L2(Ω) + γ̃4

∫
ω0

|g(x, t, um(x, t))| dx+ γ̃5. (4.2.26)

Here,
γ̃1 = ε−1eεT

[
(1− µ1)

−1(1 + ε1)e
εT + 1

]
,

γ̃2 = eεT
[
1 + (1− µ1)

−1|µ|2(1 + ε1)
]
,

γ̃3 = (1− µ1)
−1(1 + ε−1

1 )eεT ,

γ̃4 = 2λ
[
(1− µ1)

−1|µ|2(1 + ε1) + 1
]
eεT ,

γ̃5 = 2λ(M3 +M4T )mesΩ
[
(1− µ1)

−1|µ|2(1 + ε1)e
εT + 1

]
eεT .

(4.2.27)

Since for the fixed τ the function um(x, τ) ∈
◦
W 1

2(Ω), due to the Friedrichs inequality [68], we have∫
ωτ

[
u2m + u2mt +

n∑
i=1

u2mxi

]
dx ≤ c0wm(τ) = c0

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi

]
dx, (4.2.28)
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where the positive constant c0 = c0(Ω) does not depend on um.
From (4.2.26) and (4.2.28) follows

∥um∥2◦
W 1

2(DT ,Γ)
=

T∫
0

[ ∫
ωτ

(
u2m + u2mt +

n∑
i=1

u2mxi

)
dx

]
dτ

≤
T∫

0

c0wm(τ) dτ ≤ c0T γ̃1∥Fm∥2L2(DT )
+ c0T γ̃2∥φm∥2◦

W 1
2(Ω)

+ c0T γ̃3∥ψm∥2L2(Ω) + c0T γ̃4

∫
Ω

|g(x, 0, um(x, 0))| dx+ c0T γ̃5. (4.2.29)

Due to (4.2.1) and (4.1.5), we have

|g(x, 0, s)| ≤M6 +M7|s|α+1, (4.2.30)

where M6 and M7 are some nonnegative constants. Taking into account (4.2.30), from (4.2.29) we get

∥um∥2◦
W 1

2(DT ,Γ)
≤ c0T γ̃1∥Fm∥2L2(DT )

+ c0T γ̃2∥φm∥2◦
W 1

2(Ω)

+ c0T γ̃3∥ψm∥2L2(Ω) + c0T γ̃4M6 mesΩ+ c0T γ̃4M7

∫
Ω

|um(x, 0)|α+1 dx+ c0T γ̃|5. (4.2.31)

Reasoning from Remark 4.1.1 concerning the space W 1
2 (Ω), in view of the equality dimΩ =

dimDT − 1 = n shows that the embedding operator I : W 1
2 (Ω) → Lq(Ω) is a linear continuous

compact operator for 1 < q < 2n
n−2 , when n > 2, and for any q > 1, when n = 2 [68]. At the same

time, Nemitski’s operator N1 : Lq(Ω) → L2(Ω), acting by the formula N1u = |u|α+1
2 , is continuous

and bounded if q ≥ 2
α+1
2 = α+ 1 [22]. Thus, if α+ 1 < 2n

n−2 , i.e., α < n+2
n−2 , which, due to (4.1.6), is

fulfilled since n+1
n−1 <

n+2
n−2 , there exists a number q such that 1 < q < 2n

n−2 and q ≥ α + 1. Therefore,
in this case the operator

N2 = N1I :W 1
2 (Ω) → L2(Ω)

is continuous and compact. Thus, due to (4.1.9) and (4.2.7), it follows that

lim
m→∞

∫
Ω

|um(x, 0)|α+1 dx =

∫
Ω

|φ(x)|α+1 dx, (4.2.32)

and also [68] ∫
Ω

|φ(x)|α+1 dx ≤ C1∥φ∥α+1
◦
W 1

2(Ω)
(4.2.33)

with the positive constant C1, not depending on φ ∈
◦
W 1

2(Ω).
In view of (4.1.8), (4.1.9), (4.2.5)–(4.2.8), (4.2.32) and (4.2.33), passing in (4.2.31) to the limit as

m→ ∞ we obtain

∥u∥2◦
W 1

2(DT ,Γ)
≤ c0T γ̃1∥F∥2L2(DT )

+ c0T γ̃2∥φ∥2◦
W 1

2(Ω)
+ c0T γ̃3∥ψ∥2L2(Ω)

+ c0T γ̃4M7C1∥φ∥α+1
◦
W 1

2(Ω)
+ c0T (γ̃5 + γ̃4M6 mesΩ). (4.2.34)

Taking the square root from both sides of the inequality (4.2.34) and using the obvious inequality( k∑
i=1

a2i
)1/2 ≤

k∑
i=1

|ai|, we finally get

∥u∥ ◦
W 1

2(DT ,Γ)
≤ c1∥F∥L2(DT ) + c2∥φ∥ ◦

W 1
2(Ω)

+ c3∥ψ∥L2(Ω) + c4∥φ∥
α+1
2

◦
W 1

2(Ω)
+ c5. (4.2.35)
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Here,
c1 = (c0T γ̃1)

1/2, c2 = (c0T γ̃2)
1/2, c3 = (c0T γ̃3)

1/2,

c4 = (c0T γ̃4M7C1)
1/2, c5 =

[
c0T (γ̃5 + γ̃4M6 mesΩ)

]1/2
,

(4.2.36)

where γ̃i, 1 ≤ i ≤ 5, are defined in (4.2.27). In the linear case, i.e., for γ̃4 = γ̃5 = 0, it follows from
(4.2.35) that in the estimate (4.2.4) the constants c4 = c5 = 0, whence it follows that the solution of
the problem (4.1.1)–(4.1.4) is unique in the linear case. Thus, Lemma 4.2.1 is proved completely.

4.3 The existence of a solution of the problem (4.1.1)–(4.1.4)
For the existence of a solution of the problem (4.1.1)–(4.1.4) in the case |µ| < 1, we will use the
well-known facts dealing with the solvability of the following linear mixed problem [68]:

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (4.3.1)

u
∣∣
Γ
= 0, u(x, 0) = φ(x), ut(x, 0) = ψ̃(x), x ∈ Ω, (4.3.2)

where F , φ and ψ̃ are the given functions.
For F ∈ L2(DT ), φ ∈

◦
W 1

2(Ω), ψ̃ ∈ L2(Ω), the unique generalized solution u of the problem
(4.3.1), (4.3.2) (in the sense of the equality (4.1.12), where f = 0, and the number µ = 0 in the
definition of the space V ) from the class E2,1(DT ) with the norm [68]

∥u∥2E2,1(DT )
= sup

0≤τ≤T

∫
ωτ

[
u2 + u2t +

n∑
i=1

u2xi

]
dx

is given by the formula [68]

u =

∞∑
k=1

(
ak cosµkt+ bk sinµkt+

1

µk

t∫
0

Fk(τ) sinµk(t− τ) dτ

)
φk(x), (4.3.3)

where λ̃k = −µ2
k, 0 < µ1 ≤ µ2 ≤ · · · , lim

k→∞
µk = ∞ are the eigenvalues, while φk ∈

◦
W 1

2(Ω) are

the corresponding eigenfunctions of the spectral problem ∆w = λ̃w, w|∂Ω = 0 in the domain Ω

(∆ :=
n∑
i=1

∂2

∂x2
i
), forming simultaneously orthonormal basis in L2(Ω) and orthogonal basis in

◦
W 1

2(Ω) in

the sense of the scalar product (v, w) ◦
W 1

2(Ω)
=

∫
Ω

∑n
i=1 vxiwxi dx, i.e.,

(φk, φl)L2(Ω) = δlk, (φk, φl) ◦
W 1

2(Ω)
= −λkδlk, δlk =

{
1, l = k,

0, l ̸= k.
(4.3.4)

Here,

ak = (φ,φk)L2(Ω), bk = µ−1
k (ψ̃, φk)L2(Ω), k = 1, 2, . . . , (4.3.5)

F (x, t) =

∞∑
k=1

Fk(t)φk(x), Fk(t) = (F,φk)L2(ωt), ωτ : DT ∩ {t = τ}, (4.3.6)

and, besides, for the solution u from (4.3.3), the estimate [68,75]

∥u∥E2,1(DT ) ≤ γ
(
∥F∥L2(DT ) + ∥φ∥ ◦

W 1
2(Ω)

+ ∥ψ̃∥L2(Ω)

)
(4.3.7)

with the positive constant γ, independent of F , φ and ψ̃, is valid.
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Let us consider the linear problem corresponding to (4.1.1)–(4.1.4), i.e., the case for λ = 0:

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (4.3.8)

u
∣∣
Γ
= 0, u(x, 0) = φ(x), Kµut = ψ(x), x ∈ Ω, (4.3.9)

Let us show that when |µ| < 1 for any F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω) and ψ ∈ L2(Ω), there exists a
unique generalized solution of the problem (4.3.8), (4.3.9) in the sense of Definition 4.1.1 for λ = 0.
Indeed, for φ ∈

◦
W 1

2(Ω) and ψ ∈ L2(Ω), the expansions φ =
∞∑
k=1

akφk and ψ =
∞∑
k=1

dkφk in the

spaces
◦
W 1

2(Ω) and L2(Ω), respectively, are valid; here, ak = (φ,φk)L2(Ω) and dk = (ψ,φk)L2(Ω) [68].
Therefore, setting

φm =

m∑
k=1

akφk, ψm =

m∑
k=1

dkφk, (4.3.10)

we have
lim
m→∞

∥φm − φ∥ ◦
W 1

2(Ω)
= 0, lim

m→∞
∥ψm − ψ∥L2(Ω) = 0. (4.3.11)

Since the space of infinitely differentiable functions C∞
0 (DT ) is dense in the space L2(DT ), for

F ∈ L2(DT ) and any natural number m there exists a function Fm ∈ C∞
0 (DT ) such that

∥Fm − F∥L2(DT ) <
1

m
. (4.3.12)

On the other hand, for the function Fm in the space L2(DT ) the expansion [68]

Fm(X,T ) =

∞∑
k=1

Fm,k(t)φk(x), Fm,k(t) = (Fm, φk)L2(Ω) (4.3.13)

is valid. Therefore, there exists a natural number ℓm such that lim
m→∞

ℓm = ∞, and for

F̃m(x, t) =

ℓm∑
k=1

Fm,k(t)φk(x) (4.3.14)

the inequality
∥F̃m − Fm∥L2(DT ) <

1

m
(4.3.15)

is valid. From (4.3.12) and (4.3.15) it follows that

lim
m→∞

∥F̃m − Fm∥L2(DT ) = 0. (4.3.16)

The solution u = um of the problem (4.3.1), (4.3.2) for φ = φℓm , ψ̃ =
ℓm∑
k=1

d̃kφk and F = F̃m,

where φℓm and F̃m are defined in (4.3.10) and (4.3.14), is given by the formula (4.3.3) which, due to
(4.3.4)–(4.3.6), takes the form

um =

ℓm∑
k=1

(
ak cosµkt+

d̃k
µk

sinµkt+
1

µk

t∫
0

Fm,k(τ) sinµk(t− τ) dτ

)
φk(x), (4.3.17)

To determine the coefficients d̃k we substitute the right-hand side of the expression (4.3.17) into
the equality Kµumt = ψℓm(x), where ψℓm is defined in (4.3.10). Consequently, taking into account
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that the system of functions {φk(x)} represents a basis in L2(Ω) and 1 − µ cosµkT ̸= 0 for |µ| < 1,
we obtain the following formulas:

d̃k =
1

1− µ cosµkT

[
(φℓm , φk)L2(Ω) − akµµk sinµkT + µ

T∫
0

Fm,k(τ) cosµk(T − τ) dτ

]
, (4.3.18)

k = 1, . . . , ℓm.

Below, we assume that the Lipschitz domain Ω is such that the eigenfunctions φk ∈ C2(Ω), k ≥ 1.
For example, this will take place if ∂Ω ∈ C [n2 ]+3 [75]. This fact will also take place in the case of a
piecewise smooth Lipschitz domain, e.g., for the parallelepiped Ω := {x ∈ Rn : |xi| < ai, i = 1, . . . , n},
the corresponding eigenfunctions φk ∈ C∞(Ω) [76]. Therefore, since Fm ∈ C∞

0 (DT ), due to (4.3.13),
the function Fm,k ∈ C2([0, T ]) and, consequently, the function um from (4.3.17) belongs to the space
C2(DT ). Further, since φk|∂Ω = 0, due to (4.3.17), we have um|Γ = 0, and thereby, um ∈

◦
C2(DT ,Γ),

m = 1, 2, . . . .
According to the construction, the function um from (4.3.17) satisfies

um
∣∣
Γ
= 0, L0um = F̃m, um(x, 0) = φℓm(x), Kµumt = ψℓm(x), x ∈ Ω, (4.3.19)

and hence

(um − uk)
∣∣
Γ
= 0, L0(um − uk) = F̃m − F̃k, (um − uk)(x, 0) = (φℓm − φℓk)(x),

Kµ(umt − ukt) = (ψℓm − ψℓk), x ∈ Ω.

Therefore, from a priori estimate (4.2.4), where λ = 0, the coefficients c4 = c5 = 0, we obtain

∥um − uk]∥ ◦
W 1

2(DT ,Γ)
≤ c1∥F̃m − F̃k∥L2(DT ) + c2∥φℓm − φℓk∥ ◦

W 1
2(Ω)

+ c3∥ψℓm − ψℓk∥L2(Ω). (4.3.20)

In view of (4.3.11) and (4.3.16), from (4.3.20) it follows that the sequence um ∈
◦
C2(DT ,Γ) is

fundamental in the complete space
◦
W 1

2(DT ,Γ). Therefore, there exists a function u ∈
◦
W 1

2(DT ,Γ)
such that due to (4.3.11), (4.3.16) and (4.3.19), the limit equalities (4.3.8), (4.3.9) are valid. The
uniqueness of this solution follows from the a priori estimate (4.2.4), where the constants c4 = c5 = 0
for λ = 0. Therefore, for the solution u of the problem (4.3.8), (4.3.9), we have u = L−1

0 (F,φ, ψ),
where L−1

0 : L2(DT ) ×
◦
W 1

2(Ω) × L2(Ω) →
◦
W 1

2(DT ,Γ), whose norm, due to (4.2.4), can be estimated
as follows:

∥L−1
0 ∥

L2(DT )×
◦
W 1

2(Ω)×L2(Ω)→
◦
W 1

2(DT ,Γ)
≤ γ0 = max(c1, c2, c3). (4.3.21)

Owing to the linearity of the operator

L−1
0 : L2(DT )×

◦
W 1

2(Ω)× L2(Ω) →
◦
W 1

2(DT ,Γ)

we have the representation

L−1
0 (F,φ, ψ) = L−1

0 (F, 0, 0) + L−1
0 (0, φ, 0) + L−1

0 (0, 0, ψ) = L−1
01 (F ) + L−1

02 (φ) + L−1
03 (ψ), (4.3.22)

where L−1
01 : L2(DT ) →

◦
W 1

2(DT ,Γ), L−1
02 :

◦
W 1

2(Ω) →
◦
W 1

2(DT ,Γ) and L−1
03 : L2(Ω) →

◦
W 1

2(DT ,Γ) are
the linear continuous operators and, besides, according to (4.3.21),

∥L−1
01 ∥

L2(DT )→
◦
W 1

2(DT ,Γ)
≤ γ0, ∥L−1

02 ∥ ◦
W 1

2(Ω)→
◦
W 1

2(DT ,Γ)
≤ γ0, ∥L−1

03 ∥
L2(Ω)→

◦
W 1

2(DT ,Γ)
≤ γ0. (4.3.23)

Remark 4.3.1. Note that for F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω), ψ ∈ L2(Ω), due to (4.1.5), (4.1.6), (4.3.21)–
(4.3.23) and Remark 4.1.1, the function u ∈

◦
W 1

2(DT ,Γ) is a generalized solution of the problem
(4.1.1)–(4.1.4) if and only if u is a solution of the following functional equation

u = L−1
01 (−λf(x, t, u)) + L−1

01 (F ) + L−1
02 (φ) + L−1

03 (ψ) (4.3.24)

in the space
◦
W 1

2(DT ,Γ).



Some Local and Nonlocal Multidimensional Problems for a Class of Semilinear Hyperbolic Equations and Systems 67

We rewrite the equation (4.3.24) in the form

u = A0u := −λL−1
01 (N0u) + L−1

01 (F ) + L−1
02 (φ) + L−1

03 (ψ), (4.3.25)

where the operator N0 :
◦
W 1

2(DT ,Γ) → L2(DT ) from (4.1.7), is, according to Remark 4.1.1, continuous
and compact. Therefore, due to (4.3.23), the operator A0 :

◦
W 1

2(DT ,Γ) →
◦
W 1

2(DT ,Γ) from (4.3.25)
is also continuous and compact. At the same time, according to Lemma 4.2.1 and (4.2.36), for any
parameter τ ∈ [0, 1] and for any solution u of the equation u = τA0u with the parameter τ , the
same a priori estimate (4.2.4) with nonnegative constants ci, independent of u, F , φ, ψ and τ , is
valid. Therefore, due to Schaefer’s fixed point theorem [20], the equation (4.3.25) and hence, by
Remark 4.3.1, the problem (4.1.1)–(4.1.4) has at least one solution u ∈

◦
W 1

2(DT ,Γ). Thus, we have
proved the following theorem.

Theorem 4.3.1. Let λ > 0, |µ| < 1, F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω), ψ ∈ L2(Ω) and the conditions (4.1.5),
(4.1.6), (4.2.2) and (4.2.3) be fulfilled. Then the problem (4.1.1)–(4.1.4) has at least one generalized
solution.

Remark 4.3.2. Note that for |µ| = 1, even in the liner case, i.e., for f = 0, the homogeneous problem
corresponding to (4.1.1)–(4.1.4) may have a finite or even infinite number of linearly independent
solutions. Indeed, in the case µ = 1, we denote by Λ(1) a set of points µk from (4.3.3), for which
the ratio µkT

2π is a natural number, i.e., Λ(1) = {µk : µkT
2π ∈ N}. If we seek for a solution of the

problem (4.3.8), (4.3.9) in the form of the representation (4.3.3), then for determination of unknown
coefficients bk contained in it, we substitute the right-hand side of this representation into the equality
Kµut = ψ(x). As a result, we have

µk(1− µ cosµkT )bk = (ψ,φk)L2(Ω) − akµk sinµkT +

T∫
0

Fk(τ) cosµk(T − τ) dτ. (4.3.26)

It is obvious that when Λ(1) ̸= ∅ and µk ∈ Λ(1), µ = 1 we have 1− cosµkT = 0, and for F = 0,
φ = ψ = 0 and thereby for ak = 0, Fk(τ) = 0, the equality (4.3.26) will be satisfied by any number bk.
Therefore, in accordance with (4.3.3), the function uk(x, t) = C sinµktφk(x), C = const ̸= 0, satisfies
the homogeneous problem corresponding to (4.3.8), (4.3.9). Analogously, in the case µ = −1, we
denote by Λ(−1) the set of points from (4.3.3) for which the ratio µkT

π is an odd integer. In the case
1−µ cosµkT = 0 for µk ∈ Λ(−1), µ = −1 and the function uk(x, t) = C sinµktφk(x), C = const ̸= 0,
is a nontrivial solution of the homogeneous problem corresponding to (4.3.8), (4.3.9). For example,
when n = 2, Ω = (0, 1)× (0, 1), the eigenvalues and eigenfunctions of the Laplace operator ∆ are [76]

λk = −π2(k21 + k22), φk(x1, x2) = sin k1πx1 sin k2πx2, k = (k1, k2),

i.e., µk = π
√
k21 + k22 . For k1 = p2 − q2, k2 = 2pq, where p and q are any integers, we obtain

µk = π(p2 + q2). In this case, for T
2 ∈ N, we have µkT

2π = (p2+q2)T
2 ∈ N, and according to the above-

said, when µ = 1, the homogeneous problem corresponding to (4.3.8), (4.3.9) has an infinite number
of linearly independent solutions

up,q(x, t) = sinπ(p2 + q2)t sinπ(p2 − q2)x1 sin 2πpqx2 ∀ p, q ∈ N. (4.3.27)

Analogously, when µ = −1, the solutions of the homogeneous problem corresponding to (4.3.8),
(4.3.9) are the functions from (4.3.27) if and only if p is an even number, while q and T are odd
numbers.

4.4 The uniqueness of a solution of the problem (4.1.1)–(4.1.4)
On the function f in the equation (4.1.1) let us impose the following requirements:

f, f ′u ∈ C(DT × R), |f ′u(x, t, u)| ≤ a+ b|u|γ , (x, t, u) ∈ DT × R, (4.4.1)
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where a, b, γ = const ≥ 0.
It is obvious that from (4.4.1) we have the condition (4.1.5) for α = γ +1, and when γ < 2

n−1 , we
have α = γ + 1 < n+1

n−1 , hence the condition (4.1.6) is fulfilled.

Theorem 4.4.1. Let |µ| < 1, F ∈ L2(DT ), φ ∈
◦
W 1

2(Ω), ψ ∈ L2(Ω) and the condition (4.4.1) be
fulfilled, γ < 2

n−1 ; and also, the conditions (4.2.2), (4.2.3) hold. Then there exists a positive number
λ0 = λ0(F, f, φ, ψ, µ,DT ) such that for 0 < λ < λ0 the problem (4.1.1)–(4.1.4) cannot have more than
one generalized solution.

Proof. Indeed, suppose that the problem (4.1.1)–(4.1.4) has two different generalized solutions u1 and
u2. According to Definition 4.1.1, there exist sequences of functions ujk ∈

◦
C2(DT ,Γ), j = 1, 2, such

that

lim
k→∞

∥ujk − uj∥ ◦
W 1

2(DT ,Γ)
= 0, lim

k→∞
∥Lλujk − F∥L2(DT ) = 0, (4.4.2)

lim
k→∞

∥∥ujk∣∣t=0
− φ

∥∥ ◦
W 1

2(Ω)
= 0, lim

k→∞
∥Kµujkt − ψ∥L2(Ω) = 0, j = 1, 2. (4.4.3)

Let

w := u2 − u1, wk := u2k − u1k, Fk : Lλu2k − Lλu1k, (4.4.4)
gk : λ

(
f(x, t, u1k)− f(x, t, u2k)

)
. (4.4.5)

In view of (4.4.2), (4.4.3) and (4.4.4), it is easy to see that

lim
k→∞

∥wk − w∥ ◦
W 1

2(DT ,Γ)
= 0, lim

k→∞
∥Fk∥L2(DT ) = 0, (4.4.6)

lim
k→∞

∥∥wk∣∣t=0

∥∥ ◦
W 1

2(Ω)
= 0, lim

k→∞
∥Kµwkt∥L2(Ω) = 0. (4.4.7)

Owing to (4.4.4), (4.4.5), the function wk ∈
◦
C2(DT ,Γ) satisfies the following equalities:

∂2wk
∂t2

−
n∑
i=1

∂2wk
∂x2i

= (Fk + gk)(x, t), (x, t) ∈ DT , (4.4.8)

wk
∣∣
Γ
= 0, (4.4.9)

wk(x, 0) = φ̃k(x), x ∈ Ω, (4.4.10)
Kµwkt : wkt(x, 0)− µwkt(x, T ) = ψ̃k(x), x ∈ Ω, (4.4.11)

where φ̃k(x) := u2k(x, 0)− u1k(x, 0), ψ̃k(x) := Kµu2kt −Kµu1kt.
First, let us estimate the function gk from (4.4.5). Taking into account the obvious inequality

|d1 + d2|γ ≤ 2γ max(|d1|γ , |d2|γ) ≤ 2γ(|d1|γ + |d2|γ) for γ ≥ 0, due to (4.4.1), we have∣∣f(x, t, u2k)− f(x, t, u1k)
∣∣

=

∣∣∣∣(u2k − u1k)

1∫
0

f ′u(x, t, u1k + τ(u2k − u1k)) dτ

∣∣∣∣ ≤ |u2k − u1k|
1∫

0

(
a+ b|(1− τ)u1k + τu2k|γ

)
dτ

≤ a|u2k − u1k|+ 2γb|u2k − u1k|
(
|u1k|γ + |u2k|γ

)
= a|wk|+ 2γb|wk|

(
|u1k|γ + |u2k|γ

)
. (4.4.12)

In view of (4.4.5), from (4.4.12) we obtain

∥gk∥L2(DT ) ≤ λa∥wk∥L2(DT ) + λ2γb
∥∥ |wk|(|u1k|γ + |u2k|γ

)∥∥
L2(DT )

≤ λa∥wk∥L2(DT ) + λ22
γb∥wk∥Lp(DT )

∥∥(|u1k|γ + |u2k|γ
)∥∥
Lq(DT )

. (4.4.13)
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Here we have used Hölder’s inequality [24]

∥v1v2∥Lr(DT ) ≤ ∥v1∥Lp(DT )∥v2∥Lq(DT ),

where 1
p +

1
q = 1

r , and in the capacity of p, q and r we take

p = 2
n+ 1

n− 1
q = n+ 1, r = 2. (4.4.14)

Since dimDT = n+ 1, according to the Sobolev embedding theorem [22], for 1 ≤ p ≤ 2(n+1)
n−1 , we

get
∥v∥Lp(DT ) ≤ Cp∥v∥W 1

2 (DT )
∀ v ∈W 1

2 (DT ) (4.4.15)

with the positive constant Cp, not depending on n ∈W 1
2 (DT ).

Due to the condition of the theorem, γ < 2
n−1 , and therefore, γ(n + 1) < 2(n+1)

n−1 . Thus, due to
(4.4.14) from (4.4.15), we have

∥wk∥Lp(DT ) ≤ Cp∥wk∥W 1
2 (DT )

, p =
2(n+ 1)

n− 1
, k ≥ 1, (4.4.16)∥∥(|u1k|γ + |u2k|γ

)∥∥
Lq(DT )

≤
∥∥ |u1k|γ∥∥Lq(DT ) + ∥∥ |u2k|γ∥∥Lq(DT )

= ∥u1k∥γLγ(n+1)(DT )
+ ∥u2k∥γLγ(n+1)(DT )

≤ Cγγ(n+1)

(
∥u1k∥γW 1

2 (DT )
+ ∥u2k∥γW 1

2 (DT )

)
. (4.4.17)

In view of the first inequality of (4.4.2), there exists a natural number k0 such that for k ≥ k0, we
obtain

∥uik∥γW 1
2 (DT )

≤ ∥ui∥γW 1
2 (DT )

+ 1, i = 1, 2, k ≥ k0. (4.4.18)

Further, in view of (4.4.16), (4.4.17) and (4.4.18), from (4.4.13) we get

∥gk∥L2(DT ) ≤ λa∥wk∥L2(DT )

+ λ2γbCpC
γ
γ(n+1)

(
∥u1∥γW 1

2 (DT )
+ ∥u2∥γW 1

2 (DT )
+ 2

)
∥wk∥L2(DT ) ≤ λM8∥wk∥W 1

2 (DT )
, (4.4.19)

where we have used the inequality ∥wk∥L2(DT ) ≤ ∥wk∥W 1
2 (DT )

,

M8 = a+ 2γbCpC
γ
γ(n+1)

(
∥u1∥γW 1

2 (DT )
+ ∥u2∥γW 1

2 (DT )
+ 2

)
, p =

2(n+ 1)

n− 1
. (4.4.20)

Since the a priori estimate (4.2.4) is valid for λ = 0, due to (4.2.27) and (4.2.36), in this estimate
c4 = c5 = 0 and, hence, for the solution wk of the problem (4.4.8)–(4.4.11) the estimate

∥wk∥ ◦
W 1

2(DT ,Γ)
≤ c01∥Fk + gk∥L2(DT ) + c02∥φ̃k∥ ◦

W 1
2(Ω)

+ c03∥ψ̃k∥L2(Ω) (4.4.21)

is valid, where the constants c01, c02, c03 do not depend on λ.
Because of ∥wk∥ ◦

W 1
2(DT ,Γ)

= ∥wk∥W 1
2 (DT )

and due to (4.4.19), from (4.4.21) we have

∥wk∥ ◦
W 1

2(DT ,Γ)
≤ c01∥Fk∥L2(DT ) + λc01M8∥wk∥ ◦

W 1
2(DT ,Γ)

+ c02∥φ̃k∥ ◦
W 1

2(Ω)
+ c03∥ψ̃∥L2(Ω). (4.4.22)

Note that since for u1 and u2 the a priori estimate (4.2.4) is valid, the constant M8 from (4.4.20)
will depend on λ, F , f , φ, ψ, DT ; besides, due to (4.2.27) and (4.2.36), the value of M8 depends
continuously on λ for λ ≥ 0, and

0 ≤ lim
λ→0+

M8 =M0
8 < +∞. (4.4.23)

Due to (4.4.23), there exists a positive number λ0 = λ0(F, f, φ, ψ, µ,DT ) such that for

0 < λ < λ0, (4.4.24)
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we obtain λc01M8 < 1. Indeed, let us fix arbitrarily a positive number ε1. Then, due to (4.4.23), there
exists a positive number λ1 such that 0 ≤ M8 < M0

8 + ε1 for 0 ≤ λ < λ1. It is obvious that for
λ0 = min(λ1, (c01(M0

8 + ε1))
−1) the condition λc01M8 < 1 will be fulfilled.

Therefore, in the case (4.4.24), from (4.4.22) we get

∥wk∥ ◦
W 1

2(DT ,Γ)
≤ (1− λc01M8)

−1
[
c01∥Fk∥L2(DT ) + c02∥φ̃k∥ ◦

W 1
2(Ω)

+ c03∥ψ̃k∥L2(Ω)

]
(4.4.25)

for k ≥ k0.
From (4.4.2) and (4.4.4), it follows that lim

k→∞
∥wk∥ ◦

W 1
2(DT ,Γ)

= ∥u2 − u1∥ ◦
W 1

2(DT ,Γ)
. On the other

hand, due to (4.4.6), (4.4.7) and (4.4.10), (4.4.11), from (4.4.25) we have lim
k→∞

∥wk∥ ◦
W 1

2(DT ,Γ)
= 0.

Thus, ∥u2 − u1∥ ◦
W 1

2(DT ,Γ)
= 0, i.e., u2 = u1, which leads to the contradiction. Thus Theorem 4.4.1 is

proved.



Chapter 5

Multidimensional problem with
two nonlocal in time conditions
for some semilinear hyperbolic
equations with the Dirichlet or
Robin condition

5.1 Statement of the problem
In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical domain DT = Ω × (0, T ),
where Ω is an open Lipschitz domain in Rn, we consider a nonlocal problem of finding a solution
u(x, t) of the equation

Lλu :
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
+ λf(x, t, u) = F (x, t), (x, t) ∈ DT , (5.1.1)

satisfying the Dirichlet homogeneous boundary condition

u
∣∣
Γ
= 0 (5.1.2)

on the lateral face Γ := ∂Ω× (0, T ) of the cylinder DT and the homogeneous nonlocal conditions

Kµu := u(x, 0)− µu(x, T ) = 0, x ∈ Ω, (5.1.3)
Kµut := ut(x, 0)− µut(x, T ) = 0, x ∈ Ω, (5.1.4)

where f and F are the given functions, λ and µ are the given nonzero constants, and n ≥ 2.

Remark 5.1.1. Note that for |µ| ̸= 1, it suffices to consider the case |µ| < 1, since the case |µ| > 1
can be reduced to the latter one by passing from the variable t to the variable t′ = T − t. The case
for |µ| = 1 will be considered at the end of this chapter. In particular, when µ = 1 (−1), the problem
(5.1.1)–(5.1.4) can be studied as a periodic (antiperiodic) problem.

We further impose on the function f = f(x, t, u) the following restrictions:

f ∈ C(DT × R), |f(x, t, u)| ≤M1 +M2|u|α, (x, t, u) ∈ DT × R, (5.1.5)

where
0 ≤ α = const <

n+ 1

n− 1
. (5.1.6)

71
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We consider the following functional spaces

◦
C2
µ(DT ) :=

{
v ∈ C2(DT ) : v

∣∣
Γ
= 0, Kµv = 0, Kµvt = 0

}
, (5.1.7)

◦
W 1

2,µ(DT ) :=
{
v ∈W 1

2 (DT ) : v
∣∣
Γ
= 0, Kµv = 0

}
, (5.1.8)

where W 1
2 (DT ) is an unknown Sobolev space, and the equalities v|Γ = 0, Kµv = 0 should be under-

stood in the sense of the trace theory [68].

Remark 5.1.2. The embedding operator I : W 1
2 (DT ) → Lq(DT ) represents a linear continuous

compact operator for 1 < q < 2(n+1)
n−1 , when n > 1 [68]. At the same time, Nemitski’s operator

N : Lq(DT ) → L2(DT ), acting by the formula Nu = f(x, t, u), is continuous by (5.1.5) and bounded
if q ≥ 2α [22]. Thus, since by (5.1.6) we have 2α < 2(n+1

n−1 , there exists a number q such that
1 < q < 2(n+1)

n−1 and q ≥ 2α. Therefore, in this case, the operator

N0 = N I :
◦
W 1

2,µ(DT ) → L2(DT ) (5.1.9)

is continuous and compact. Besides, from u ∈
◦
W 1

2,µ(DT ) it follows that f(x, t, u) ∈ L2(DT ) and also,

if um → u in the space
◦
W 1

2,µ(DT ), then f(x, t, um) → f(x, t, u) in the space L2(DT ).

Definition 5.1.1. Let the function f satisfy the conditions (5.1.5) and (5.1.6), and F ∈ L2(DT ).
We call a function u a generalized solution of the problem (5.1.1)–(5.1.4) if u ∈

◦
W 1

2,µ(DT ) and there

exists a sequence of functions um ∈
◦
C2
µ(DT ) such that

lim
m→∞

∥um − u∥ ◦
W 1

2,µ(DT )
= 0, lim

m→∞
∥Lλum − F∥L2(DT ) = 0. (5.1.10)

Note that the above definition of a generalized solution of the problem (5.1.1)–(5.1.4) remains valid
in the linear case, that is, for λ = 0.

It is obvious that a classical solution u ∈ C2(DT ) of the problem (5.1.1)–(5.1.4) represents a
generalized solution of this problem. It is easily seen that a generalized solution of the problem
(5.1.1)–(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Indeed,
let Fm := Lλum. Multiplying both sides of the equality Lλum = Fm by a test function w ∈ Vµ :=
{v ∈ W 1

2 (DT ) : v|Γ = 0, v(x, T ) − µv(x, 0) = 0, x ∈ Ω} and integrating in the domain DT , after
simple transformations connected with the integration by parts and the equality w|Γ = 0, we get∫

Ω

[
umt(x, T )w(x, T )− umt(x, 0)w(x, 0)

]
dx

+

∫
Ω

[
− umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w
]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ Vµ. (5.1.11)

Since Kµumt = 0 and w(x, T )− µw(x, 0) = 0, x ∈ Ω, it is not difficult to see that

umt(x, T )w(x, T )− umt(x, 0)w(x, 0)

= umt(x, T )(w(x, T )− µw(x, 0))− w(x, 0)(umt(x, 0)− µumt(x, T )) = 0.

Therefore, the equation (5.1.11) takes the form∫
DT

[
− umtwt +

n∑
i=1

umxiwxi + λf(x, t, um)w
]
dx dt =

∫
DT

Fmw dxdt ∀w ∈ Vµ. (5.1.12)
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In view of (5.1.5), (5.1.6) and Remark 5.1.2, we have f(x, t, um) → f(x, t, u) in the space L2(DT ) as
um → u in the space

◦
W 1

2,µ(DT ). Therefore, by (5.1.10), passing to the limit in the equation (5.1.12)
as m→ ∞, we get∫

DT

[
− utwt +

n∑
i=1

uxiwxi + λf(x, t, u)w
]
dx dt =

∫
DT

Fw dx dt ∀w ∈ Vµ. (5.1.13)

Since C∞
0 (DT ) ⊂ Vµ, from (5.1.13), integrating by parts, we have∫

DT

u�w dxdt+ λ

∫
DT

f(x, t, u)w dxdt =

∫
DT

Fw dx dt ∀w ∈ C∞
0 (DT ), (5.1.14)

where � := ∂2

∂t2 −
n∑
i=1

∂2

∂x2
i

, and C∞
0 (DT ) is the space of finite infinitely differentiable functions in DT .

The equality (5.1.14), valid for any w ∈ C∞
0 (DT ), implies that a generalized solution u of the problem

(5.1.1)–(5.1.4) is a solution of the equation (5.1.1) in the sense of the theory of distributions. Besides,
since the trace operators u → u|t=0 and u → ut=T are continuous, acting from the space W 1

2 (DT )
into the spaces L2(Ω× {t = 0}) and L2(Ω× {t = T}), respectively, owing to (5.1.10), the generalized
solution u of the problem (5.1.1)–(5.1.4) satisfies the nonlocal condition (5.1.3) in the sense of the
trace theory. As for the nonlocal condition (5.1.4), we have taken it into account in the integral sense
in the equality (5.1.13), which is valid for all w ∈ Vµ. Note also that if a generalized solution u belongs
to the class C2(DT ), then by the standard reasoning combined with the integral identity (5.1.13) [68],
we have that u is a classical solution of the problem (5.1.1)–(5.1.4), satisfying the pointwise equation
(5.1.1), the boundary condition (5.1.2) and the nonlocal conditions (5.1.3) and (5.1.4).

Remark 5.1.3. Note that even in the linear case, that is, for λ = 0, the problem (5.1.1)–(5.1.4)
is not always well-posed. For example, when λ = 0 and |µ| = 1, the corresponding to (5.1.1)–
(5.1.4) homogeneous problem may have an infinite number of linearly independent solutions (see
Remark 5.3.2).

5.2 A priori estimate of a solution of the problem (5.1.1)–(5.1.4)
Let

g(x, t, u) =

u∫
0

f(x, t, s) ds, (x, t, u) ∈ DT × R. (5.2.1)

Consider the following conditions imposed on the function g = g(x, t, u):

g(x, t, u) ≥ 0, (x, t, u) ∈ DT × R, (5.2.2)
gt ∈ C(DT × R), gt(x, t, u) ≤M3, (x, t, u) ∈ DT × R, (5.2.3)

g(x, 0, µu) ≤ µ2g(x, T, u), (x, u) ∈ Ω× R, (5.2.4)

where M3 = const ≥ 0, and µ is the fixed constant from (5.1.3)–(5.1.4).

Remark 5.2.1. Let us consider the class of functions f from (5.1.1) satisfying the conditions (5.1.5),
(5.2.2), (5.2.3) and (5.2.4). For α = β+1, consider the function f = f0(t)|u|βu, where f0 ∈ C1([0, T ]),
f0 ≥ 0, df0

dt ≤ 0, f0(0)µβ ≤ f0(T ), β ≥ 0, and µ > 0 is the fixed constant from (5.1.3)–(5.1.4).
In particular, these conditions are satisfied if f0 = const > 0 and 0 < µ ≤ 1. Indeed, using these
conditions, by (5.2.1), we have

g =
f0(t)|u|β+2

β + 2
, g ≥ 0, gt ≤ 0

and
g(x, 0, µv) =

f0(0)|µv|β+2

β + 2
=
µ2(f0(0)µ

β)|v|β+2

β + 2
≤ µ2f0(T )

|v|β+2

β + 2
= µ2g(x, T, v).
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Lemma 5.2.1. Let λ > 0, |µ| < 1, f ∈ C(DT × R), F ∈ L2(DT ), and the conditions (5.2.2)–(5.2.4)
be satisfied. Then for a generalized solution u of the problem (5.1.1)–(5.1.4), we have the a priori
estimate

∥u∥ ◦
W 1

2,µ(DT )
≤ c1∥F1∥L2(DT ) + c2 (5.2.5)

with nonnegative constants ci = ci(λ, µ,Ω, T,M1,M2,M3), not depending on u and F , c1 > 0, whereas
in the linear case (λ = 0), the constant c2 = 0, and in this case, by (5.2.5), we have the uniqueness of
the generalized solution of the problem (5.1.1)–(5.1.4).

Proof. Let u be a generalized solution of the problem (5.1.1)–(5.1.4). By Definition 5.1.1, there exists
a sequence of functions um ∈

◦
C2
µ(DT ) such that the limit equalities (5.1.10) are satisfied.

Set
Lλum = Fm, (x, t) ∈ DT . (5.2.6)

Multiplying both sides of the equation (5.2.6) by 2umt and integrating in the domain Dτ :=
DT ∩ {t < τ}, 0 < τ ≤ T , by (5.2.1) we obtain

∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt− 2

∫
Dτ

n∑
i=1

∂2um
∂x2i

∂um
∂t

dx dt+ 2λ

∫
Dτ

∂

∂t
(g(x, t, um(x, t)) dx dt

− 2λ

∫
Dτ

gt(x, t, um(x, t)) dx dt = 2

∫
Dτ

Fm
∂um
∂t

dx dt. (5.2.7)

Let ωτ := {(x, t) ∈ DT : x ∈ Ω, t = τ}, 0 ≤ τ ≤ T , where ω0 and ωT are the upper and lower
bases of the cylindrical domain DT , respectively. Denote by ν := (νx1

, . . . , νxn , νt) the unit vector of
the outer normal to ∂Dτ . Since

νxi
∣∣
ωτ∪ω0

= 0, i = 1, . . . , n,

νt
∣∣
Γτ :=Γ∩{t≤τ} = 0, νt

∣∣
ωτ

= 1, νt
∣∣
ω0

= −1,

taking into account that um ∈
◦
C2
µ(DT ) and, therefore, by (5.1.7),

um
∣∣
Γ
= 0, Kµum = 0, Kµumt = 0, (5.2.8)

after integrating by parts we obtain∫
Dτ

∂

∂t

(∂um
∂t

)2

dx dt =

∫
∂Dτ

(∂um
∂t

)2

νt ds =

∫
ωτ

u2mt dx−
∫
ω0

u2mt dx, (5.2.9)

−2

∫
Dτ

∂2um
∂x2i

∂um
∂t

dx dt =

∫
Dτ

[
(u2mxi)t − 2(umxiumt)xi

]
dx dt

=

∫
ωτ

u2mxi dx−
∫
ω0

u2mxi dx, i = 1, . . . , n, (5.2.10)

2λ

∫
Dτ

∂

∂t
(g(x, t, um(x, t))) dx dt = 2λ

∫
∂Dτ

g(x, t, um(x, t))νt ds

= 2λ

∫
ωτ

g(x, t, um(x, t)) dx− 2λ

∫
ω0

g(x, t, um(x, t)) dx. (5.2.11)
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In view of (5.2.9)–(5.2.11), from (5.2.7) we get

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi

]
dx =

∫
ω0

[
u2mt +

n∑
i=1

u2mxi

]
dx− 2λ

∫
ωτ

g(x, t, um(x, t)) dx

+ 2λ

∫
ω0

g(x, t, um(x, t)) dx+ 2λ

∫
ωτ

gt(x, t, um(x, t)) dx dt+ 2

∫
Dτ

Fmumt dx dt. (5.2.12)

Let

wm(τ) :=

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi + 2λg(x, t, um(x, t))
]
dx. (5.2.13)

Since 2Fmumt ≤ ε−1F 2
m+εu2mt for any ε = const > 0 and also since λ > 0, by (5.2.3) and (5.2.13),

from (5.2.12) it follows that

wm(τ) = wm(0) + 2λ

∫
Dτ

gt(x, t, um(x, t)) dx dt+ 2

∫
Dτ

Fmumt dx dt

≤ wm(0) + 2λM3τ mesΩ+ ε

∫
Dτ

u2mt dx dt+ ε−1

∫
Dτ

F 2
m dx dt. (5.2.14)

Since λ > 0, taking into account (5.2.2) and the inequality

∫
Dτ

u2mt dx dt =

τ∫
0

[ ∫
ωs

u2mt dx

]
ds

≤
τ∫

0

[ ∫
ωs

[
u2mt +

n∑
i=1

u2mxi + 2λg(x, t, um(x, t))
]
dx

]
ds =

τ∫
0

wm(s) ds,

from (5.2.14) we obtain

wm(τ) ≤ ε

τ∫
0

wm(s) ds+ wm(0) + 2λM3τ mesΩ+ ε−1

∫
Dτ

F 2
m dx dt, 0 < τ ≤ T. (5.2.15)

Because of Dτ ⊂ DT , 0 < τ ≤ T , the right-hand side of the inequality (5.2.15) is a nondecreasing
function of the variable τ , and by the Gronwall lemma, it follows from (5.2.15) that

wm(τ) ≤
[
wm(0) + 2λM3T mesΩ+ ε−1

∫
Dτ

F 2
m dx dt

]
eετ , 0 < τ ≤ T. (5.2.16)

In view of λ > 0, by (5.2.4) and (5.2.8), from (5.2.13) follows

wm(0) =

∫
Ω

[
u2mt(x, 0) +

n∑
i=1

u2mxi(x, 0) + 2λg(x, 0, um(x, 0))
]
dx

=

∫
Ω

[
µ2u2mt(x, T ) + µ2

n∑
i=1

u2mxi(x, T ) + 2λg(x, 0, µum(x, T ))
]
dx

≤ µ2

∫
Ω

[
u2mt(x, T ) +

n∑
i=1

u2mxi(x, T ) + 2λg(x, T, um(x, T ))
]
dx = µ2wm(T ). (5.2.17)
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Using the inequality (5.2.16) for τ = T , from (5.2.17) we obtain

wm(0) ≤ µ2wm(T ) ≤ µ2

[
wm(0) + 2λM3T mesΩ+ ε−1

∫
DT

F 2
m dx dt

]
eεT

= µ2eεTwm(0) +M4 + µ2ε−1eεT ∥Fm∥2L2(DT )
, (5.2.18)

where
M4 := µ22λM3Te

εT mesΩ. (5.2.19)
Since |µ| < 1, a positive constant ε = ε(µ, T ) can be chosen insomuch small that

µ1 = µ2eεT < 1. (5.2.20)

For example, we can set ε = 1
T ln 1

|µ| .
By (5.2.20), from (5.2.18), we have

w(0) ≤ (1− µ1)
−1M4 + (1− µ1)

−1µ2ε−1eεT ∥Fm∥2L2(DT )
. (5.2.21)

From (5.2.16) and (5.2.21) it follows that

wm(τ) ≤
[
(1− µ1)

−1M4 + (1− µ1)
−1µ2ε−1eεT ∥Fm∥2L2(DT )

+ 2λM3T mesΩ+ ε−1∥F∥2L2(DT )

]
eεT ≤ σ1∥Fm∥2L2(DT )

+ σ2, 0 < τ ≤ T, (5.2.22)

where

σ1 =
[
(1− µ1)

−1µ2eεT + 1
]
ε−1eεT , σ2 =

[
(1− µ1)

−1M4 + 2λM3T mesΩ
]
eεT . (5.2.23)

Since, for the fixed τ , the function um(x, τ) belongs to the space
◦
W 1

2(Ω) := {v ∈W 1
2 (Ω) : v|∂Ω =

0}, by the Friedrichs inequality [68], taking into account (5.2.2) and λ > 0, we have∫
ωτ

[
u2m + u2mt +

n∑
i=1

u2mxi

]
dx

≤ c0

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi

]
dx ≤ c0

∫
ωτ

[
u2mt +

n∑
i=1

u2mxi + λg(x, t, um(x, t))
]
dx = c0wm(τ), (5.2.24)

where the positive constant c0 = c0(Ω) does not depend on um.
From (5.2.22) and (5.2.24) it follows that

∥um∥2◦
W 1

2,µ(DT )
=

T∫
0

[ ∫
ωτ

(
u2m + u2mt +

n∑
i=1

u2mxi

)
dx

]
dτ

≤ c0

T∫
0

wm(τ) dτ ≤ c0

T∫
0

[
σ1∥F∥2L2(DT )

+ σ2
]
dτ = c0σ1T∥Fm∥2L2(DT )

+ c0σ2T. (5.2.25)

Extracting the square root from both sides of the inequality (5.2.25) and using the inequality
(a2 + b2)1/2 ≤ |a|+ |b|, we get

∥um∥ ◦
W 1

2,µ(DT )
≤ c1∥Fm∥L2(DT ) + c2, (5.2.26)

where
c1 =

(
c0T

[
(1− µ1)

−1µ2eεT + 1
]
ε−1eεT

)1/2

,

c2 =
(
c0T

[
(1− µ1)

−1µ22λM3Te
εT mesΩ+ 2λM3T mesΩ

]
eεT

)1/2

.

(5.2.27)

In view of the limit equalities (5.1.10), passing to the limit in the inequality (5.2.26) as m → ∞,
we obtain (5.2.5). This proves Lemma 5.2.1.
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5.3 The existence of a solution of the problem (5.1.1)–(5.1.4)
For the existence of a solution of the problem (5.1.1)–(5.1.4) in the case |µ| < 1, we will use the
well-known facts on the solvability of the following linear mixed problem [68]:

Lθu :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (5.3.1)

u
∣∣
Γ
= 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Ω, (5.3.2)

where F , φ and ψ are the given functions.
For F ∈ L2(DT ), φ ∈

◦
W 1

2(Ω) and ψ ∈ L2(Ω), the unique generalized solution u of the problem
(5.3.1), (5.3.2) (in the sense of the integral identity

−
∫
Ω

ψw(x, 0) dx+

∫
DT

[
− utwt +

n∑
i=1

uxiwxi

]
dx dt =

∫
DT

Fw dx dt ∀w ∈ V0,

where V0 := {v ∈ W 1
2 (DT ) : v|Γ = 0, v(x, T ) = 0, x ∈ Ω} and u|t=0 = φ) from the space E2,1(DT )

with the norm
∥v∥2E2,1(DT )

= sup
0≤τ≤T

∫
ωτ

[
v2 + v2t +

n∑
i=1

v2xi

]
dx

is given by the formula [68]

u =

∞∑
k=1

(
ãk cosµkt+ b̃k sinµkt+

1

µk

t∫
0

Fk(τ) sinµk(t− τ) dτ

)
φk(x), (5.3.3)

where λ̃k = −µ2
k (0 < µ1 ≤ µ2 ≤ · · · , lim

k→∞
µk = ∞) and φk ∈

◦
W 1

2(Ω) are the eigenvalues and

the corresponding eigenfunctions of the spectral problem ∆w = λ̃w, w|∂Ω = 0 in the domain Ω

(∆ :=
n∑
i=1

∂2

∂x2
i
), forming simultaneously an orthonormal basis in L2(Ω and an orthogonal basis in

◦
W 1

2(Ω) with respect to the scalar product (v, w) ◦
W 1

2(Ω)
=

∫
Ω

n∑
i=1

vxiwxi dx [68], that is,

(φk, ψl)L2(Ω) = δlk, (φk, φl) ◦
W 1

2(Ω)
= −λ̃kδlk, δlk =

{
1, l = k,

0, l ̸= k.
(5.3.4)

Here,

ãk = (φ,φk)L2(Ω), b̃k = µ−1
k (ψ,φk)L2(Ω), k = 1, 2, . . . , (5.3.5)

F (x, t) =

∞∑
k=1

Fk(t)φk(x), Fk(t) = (F,φk)L2(ωt), ωt := DT ∩ {t = τ}. (5.3.6)

Besides, for the solution u from (5.3.3), we have the following estimate

∥u∥E2,1(DT ) ≤ γ
(
∥F∥L2(DT ) + ∥φ∥ ◦

W 1
2(Ω)

+ ∥ψ∥L2(Ω)

)
(5.3.7)

with the positive constant γ, independent of F , φ and ψ [68, 75].
Let us consider the linear problem corresponding to (5.1.1)–(5.1.4), that is, the case λ = 0:

L0u :=
∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (5.3.8)

u
∣∣
Γ
= 0, (5.3.9)

u(x, 0)− µu(x, T ) = 0, ut(x, 0)− µut(x, T ) = 0, x ∈ Ω. (5.3.10)
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Let us show that when |µ| < 1, for any F ∈ L2(DT ), there exists a unique generalized solution
of the problem (5.3.8)–(5.3.10). Indeed, since the space of finite infinitely differentiable functions
C∞

0 (DT ) is dense in the space L2(DT ), for F ∈ L2(DT ) and any natural number m, there exists a
function Fm ∈ C∞

0 (DT ) such that
∥Fm − F∥L2(DT ) <

1

m
. (5.3.11)

On the other hand, for a function Fm in the space L2(DT ), we have the following expansions [68]:

Fm(X, t) =

∞∑
k=1

Fm,k(t)φk(x), Fm,k(t) = (Fm, φk)L2(Ω). (5.3.12)

Therefore, there exists a natural number ℓm such that lim
m→∞

ℓm = ∞ and, for

F̃m(x, t) =

ℓm∑
k=1

Fm,k(t)φk(x), (5.3.13)

we have
∥F̃m − Fm∥L2(DT ) <

1

m
. (5.3.14)

From (5.3.11) and (5.3.14) it follows that

lim
m→∞

∥F̃m − F∥L2(DT ) = 0. (5.3.15)

The solution u = um of the problem (5.3.1), (5.3.2) for

φ =

ℓm∑
k=1

ãkφk, ψ =

ℓm∑
k=1

µk b̃kφk, F = F̃m,

is given by the formula (5.3.3), which by (5.3.4)–(5.3.6) and (5.3.13) can be rewritten as follows:

um =

ℓm∑
k=1

(
ãk cosµkt+ b̃k sinµkt+

1

µk

t∫
0

Fmk(τ) sinµk(t− τ) dτ

)
φk(x). (5.3.16)

By the construction, the function um from (5.3.16) satisfies the equation (5.3.8) and the boundary
condition (5.3.9) for F = F̃m from (5.3.13). Let us define unknown coefficients ãk and b̃k such that
the function um from (5.3.16) would satisfy the nonlocal conditions (5.3.10), too. Towards this end,
let us substitute the right-hand side of the expression (5.3.16) into the equalities (5.3.10). As a result,
since the system of functions {φk(x)} forms a basis in L2(Ω), for defining the coefficients ãk and b̃k,
we have the following system of linear algebraic equations:

(1− µ cosµkT )ãk − (µ sinµkT )̃bk =
µ

µk

T∫
0

Fm,k(τ) sinµk(T − τ) dτ,

(µµk sinµkT )ãk + µk(1− µ cosµkT )̃bk = µ

T∫
0

Fm,k(τ) cosµk(T − τ) dτ,

(5.3.17)

k = 1, 2, . . . , ℓm. Its solution is

ãk =
[
d1kµµk sinµkT − d2k(1− µ cosµkT )

]
∆−1
k , k = 1, . . . , ℓm, (5.3.18)

b̃k =
[
d2k(1− µ cosµkT )− d1kµµk sinµkT

]
∆−1
k , k = 1, . . . , ℓm. (5.3.19)
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Here,

d1k =
µ

µk

T∫
0

Fm,k(τ) sinµk(T − τ) dτ, d2k = µ

T∫
0

Fm,k(τ) cosµk(T − τ) dτ,

and since |µ| < 1, for the determinant ∆k of the system (5.3.17) we have

∆k = µk
[
(1− µ cosµkT )2 + µ2 sin2 µkT

]
≥ µk(1− |µ|)2 > 0. (5.3.20)

Below, we assume that the Lipschitz domain Ω is such that the eigenfunctions φk ∈ C2(Ω), k ≥ 1.
For example, this will take place if ∂Ω ∈ C [n2 ]+3 [75]. This fact will also take place in the case of a
piecewise smooth Lipschitz domain, e.g., for the parallelepiped Ω = {x ∈ Rn : |xi| < ai, i = 1, . . . , n}
the corresponding eigenfunctions φk ∈ C∞(Ω) [76] (see also Remark 5.3.2). Therefore, since Fm ∈
C∞

0 (DT ), due to (5.3.12), the function Fm,k ∈ C2([0, T ]) and, consequently, the function um from
(5.3.16) belongs to the space C2(DT ). Further, according to the construction, the function um from
(5.3.16) will belong to the space

◦
C2
µ(DT ) which is defined in (5.1.7), besides,

L0um = F̃m, L0(um − uk) = F̃m − F̃k. (5.3.21)

From (5.3.21) and the a priori estimate (5.2.5), when λ = 0, and due to Lemma 5.2.1, the coefficient
c2 = 0, we have

∥um − uk∥ ◦
W 1

2,µ(DT )
≤ c1∥F̃m − F̃k∥L2(DT ). (5.3.22)

In view of (5.3.15), from (5.3.22) it follows that the sequence um ∈
◦
C2
µ(DT ) is fundamental in the

complete space
◦
W 1

2,µ(DT ). Therefore, there exists a function u ∈
◦
W 1

2,µ(DT ) such that, due to (5.3.15)
and (5.3.21), the limit equalities (5.1.10) are valid for λ = 0. This implies that the function u is a
generalized solution of the problem (5.3.8)–(5.3.10). The uniqueness of this solution follows from the
a priori estimate (5.2.5), where the constant c2 = 0 for λ = 0, i.e.,

∥u∥ ◦
W 1

2,µ(DT )
≤ c1∥F∥L2(DT ). (5.3.23)

Therefore, for the solution u of the problem (5.3.8)–(5.3.10), we have u = L−1
0 (F ), where L−1

0 :

L2(DT ) →
◦
W 1

2,µ(DT ) is a linear continuous operator whose norm, due to (5.2.23), can be estimated
as follows:

∥L−1
0 ∥

L2(DT )→
◦
W 1

2,µ(DT )
≤ c1. (5.3.24)

Remark 5.3.1. Note that when the conditions (5.1.5), (5.1.6) are fulfilled and F ∈ L2(DT ), due
to (5.3.24) and Remark 5.1.2, the function u ∈

◦
W 1

2,µ(DT ) is a generalized solution of the problem
(5.1.1)–(5.1.4) in the sense of Definition 5.1.1 if and only if u is a solution of the following functional
equation

u = L−1
0 (−λf(x, t, u)) + L−1

0 (F ) (5.3.25)

in the space
◦
W 1

2,µ(DT ).
Rewrite the equation (5.3.25) in the form

u = A0u := −λL−1
0 (N0u) + L−1

0 (F ), (5.3.26)

where the operator N0 :
◦
W 1

2,µ(DT ) → L2(DT ) from (5.1.9) is, according to Remark 5.1.2, continuous

and compact. Therefore, due to (5.3.24), the operator A0 :
◦
W 1

2,µ(DT ) →
◦
W 1

2,µ(DT ) from (5.3.26)
is also continuous and compact for 0 ≤ α < n+1

n−1 . At the same time, according to Lemma 5.2.1
and (5.2.27), for any parameter τ ∈ [0, 1] and for any solution u of the equation u = τA0u with the
parameter τ , the same a priori estimate (5.2.5) with nonnegative constants ci, independent of u, F
and τ , is valid. Therefore, due to Schaefer’s fixed point theorem [20], the equation (5.3.26) and hence,
due to Remark 5.3.1, the problem (5.1.1)–(5.1.4) has at least one solution u ∈

◦
W 1

2,µ(DT ). Thus, we
have proved the following
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Theorem 5.3.1. Let λ > 0, |µ| < 1 and the conditions (5.1.5), (5.1.6), (5.2.2)–(5.2.4) be fulfilled.
Then for any F ∈ L2(DT ), the problem (5.1.1)–(5.1.4) has at least one generalized solution u ∈
◦
W 1

2,µ(DT ) in the sense of Definition 5.1.1.

Remark 5.3.2. Note that for |µ| = 1, even in the linear case, i.e., for f = 0, the homogeneous problem
corresponding to (5.1.1)–(5.1.4) may have a finite or even an infinite number of linearly independent
solutions, while for the solvability of this problem the function F ∈ L2(DT ) must satisfy a finite or
an infinite number of conditions of the form ℓ(F ) = 0, respectively, where ℓ is a continuous functional
in L2(DT ). Indeed, in the case µ = 1, denote by Λ(1) a set of those numbers µk from (5.3.3) for
which the ratio µkT

2π is a natural number, i.e., Λ(1) = {µk : µkT
2π ∈ N}. The formulas (5.3.18), (5.3.19)

for determination of unknown coefficients ãk and b̃k in the representation (5.3.16) are obtained from
the system of linear algebraic equations (5.3.17). In the case Λ(1) ̸= ∅ and µk ∈ Λ(1), µ = 1, the
determinant ∆k of the system (5.3.17), given by (5.3.20), equals zero. Moreover, in this case, all
coefficients in front of the unknowns ãk and b̃k in the left-hand side of the system (5.3.17) equal zero.
Therefore, due to (5.3.16), the homogeneous problem corresponding to (5.3.8)–(5.3.10) will be satisfied
by the function

uk(x, t) = (C1 cosµkt+ C2 sinµkt)φk(x), (5.3.27)
where C1 and C2 are arbitrary constant numbers, and besides, in view of (5.3.17), the necessary
conditions for the solvability of the nonhomogeneous problem (5.3.8)–(5.3.10) corresponding to µk ∈
Λ(1), are the following conditions

ℓk,1(F ) =

∫
DT

F (x, t)φk(x) sinµk(T − t) dx dt = 0,

ℓk,2(F ) =

∫
DT

F (x, t)φk(x) cosµk(T − t) dx dt = 0.

(5.3.28)

Analogously, in the case µ = −1, we denote by Λ(−1) the set of points µk from (5.3.3) for which
the ratio µkT

π is an odd integer. For µk ∈ Λ(−1), µ = −1, the function uk from (5.3.27) is also a
solution of the homogeneous problem, corresponding to (5.3.8)–(5.3.10), and the conditions (5.3.28)
are the corresponding necessary conditions for the solvability of this problem. For example, when
n = 2, Ω = (0, 1)× (0, 1), the eigenvalues and eigenfunctions of the Laplace operator ∆ are [76]

λk = −π2(k21 + k22), φk(x1, x2) = 2 sin k1πx1 · sin k2πx2, k = (k1, k2),

that is, µk = π
√
k21 + k22 . For k1 = p2 − q2, k2 = 2pq, where p and q are any integers, we obtain

µk = π(p2+q2). In this case, for T
2 ∈ N, we have µkT

2π = (p2+q2)T
2 ∈ N, and according to the above-said,

when µ = 1, the homogeneous problem, corresponding to (5.3.8)–(5.3.10), has an infinite number of
linearly independent solutions

up,q(x, t) =
[
C1 cosπ(p2 + q2)t+ C2 sinπ(p2 + q2)t

]
sin(p2 − q2)πx1 · sin 2pqπx2

for any integers p and q. Analogously, when µ = −1, the solutions of the homogeneous problem
corresponding to (5.3.8)–(5.3.10) in case p is even, while q and T are odd, are the functions from
(5.3.27).

5.4 The uniqueness of a solution of the problem (5.1.1)–(5.1.4)
On the function f in the equation (5.1.1) we impose the following additional requirements:

f, f ′u ∈ C(DT × R), |f ′u(x, t, u)| ≤ a+ b|u|γ , (x, t, u) ∈ DT × R, (5.4.1)

where a, b, γ = const ≥ 0.
It is obvious that from (5.4.1) we have the condition (5.1.5) for α = γ +1, and when γ < 2

n−1 , we
have α = γ + 1 < n+1

n−1 .
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Theorem 5.4.1. Let λ > 0, |µ| < 1, F ∈ L2(DT ) and the condition (5.4.1) be fulfilled for γ < 2
n−1 ,

and also the conditions (5.2.2)–(5.2.4) hold. Then there exists a positive number λ0 = λ0(F, f, µ,DT )
such that for 0 < λ < λ0, the problem (5.1.1)–(5.1.4) has no more than one generalized solution in the
sense of Definition 5.1.1.

Proof. Indeed, suppose that the problem (5.1.1)–(5.1.4) has two different generalized solutions u1 and
u2. According to Definition 5.1.1, there exist sequences of functions µjk ∈

◦
C2
µ(DT ), j = 1, 2, such

that
lim
k→∞

∥ujk − uj∥ ◦
W 1

2,µ(DT )
= 0, j = 1, 2, lim

k→∞
∥Lλujk − F∥L2(DT ) = 0. (5.4.2)

Let

w := u2 − u1, wk := u2k − u1k, Fk := Lλu2k − Lλu1k, (5.4.3)
gk := λ

(
f(x, t, u2k)− f(x, t, u1k)

)
. (5.4.4)

From (5.4.2) and (5.4.3), it is easy to see that

lim
k→∞

∥wk − w∥ ◦
W 1

2,µ(DT )
= 0, lim

k→∞
∥Fk∥L2(DT ) = 0. (5.4.5)

In view of (5.4.3) and (5.4.4), the function wk ∈
◦
C2
µ(DT ) satisfies the following equalities:

∂2wk
∂t2

−
n∑
i=1

∂2wk
∂x2i

= (Fk + gk)(x, t), (x, t) ∈ DT , (5.4.6)

wk
∣∣
Γ
= 0, wk(x, 0)− µwk(x, T ) = 0, wkt(x, 0)− µwkt(x, T ) = 0, x ∈ Ω. (5.4.7)

First, let us estimate the function gk from (5.4.4). Taking into account the obvious inequality
|d1 + d2|γ ≤ 2γ max(|d1|γ , |d2|γ) ≤ 2γ(|d1|γ + |d2|γ) for γ > 0, due to (5.4.1), we have∣∣f(x, t, u2k)− f(x, t, u1k)

∣∣
=

∣∣∣∣(u2k − u1k

1∫
0

f ′u
(
x, t, u1k + τ(u2k − u1k)

)
dτ

∣∣∣∣ ≤ |u2k − u1k|
1∫

0

(
a+ b|(1− τ)u1k + τu2k|γ

)
dτ

≤ a|u2k − u1k|+ 2γb|u2k − u1k|
(
|u1k|γ + |u2k|γ

)
= a|wk|+ 2γb|wk|

(
|u1k|γ + |u2k|γ

)
. (5.4.8)

In view of (5.4.4), from (5.4.8) we have

∥gk∥L2(DT ) ≤ λa∥wk∥L2(DT ) + λ 2γb
∥∥ |wk|(|u1k|γ + |u2k|γ

)∥∥
L2(DT )

≤ λa∥wk∥L2(DT ) + λ 2γb∥wk∥Lp(DT )
∥∥(|u1k|γ + |u2k|γ

)∥∥
Lq(DT )

. (5.4.9)

Here we have used Hölder’s inequality [24]

∥v1v2∥Lr(DT ) ≤ ∥v1∥Lp(DT )∥v2∥Lq(DT ),

where 1
p +

1
q = 1

r , and in the capacity of p, q and r we took

p = 2
n+ 1

n− 1
, q = n+ 1, r = 2. (5.4.10)

Since dimDT = n + 1, according to Sobolev’s embedding theorem [22], for 1 ≤ p ≤ 2(n+1)
n−1 , we

have
∥v∥Lp(DT ) ≤ Cp∥v∥W 1

2 (DT )
∀ v ∈W 1

2 (DT ) (5.4.11)

with the positive constant Cp, not depending on v ∈W 1
2 (DT ).
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Due to the condition of the theorem, γ < 2
n−1 , and therefore, γ(n + 1) < 2(n+1)

n−1 . Thus, due to
(5.4.10), from (5.4.11) we have

∥wk∥Lp(DT ) ≤ Cp∥wk∥W 1
2 (DT )

, p =
2(n+ 1)

n− 1
k ≥ 1, (5.4.12)∥∥(|u1k|γ + |u2k|γ

)∥∥
Lq(DT )

≤
∥∥ |u1k|γ∥∥Lq(DT ) + ∥∥ |u2k|γ∥∥Lq(DT )

= ∥u1k∥γLγ(n+1)(DT )
+ ∥u2k∥γLγ(n+1)(DT )

≤ Cγγ(n+1)

(
∥u1k∥γW 1

2 (DT )
+ ∥u2k∥γW 1

2 (DT )

)
. (5.4.13)

In view of the first equality of (5.4.2), there exists a natural number k0 such that for k ≥ k0, we
have

∥uik∥γW 1
2 (DT )

≤ ∥ui∥γW 1
2 (DT )

+ 1, i = 1, 2; k ≥ k0. (5.4.14)

Further, in view of (5.4.12), (5.4.13) and (5.4.14), from (5.4.9), we have

∥gk∥L2(DT ) ≤ λa∥wk∥L2(DT )

+ λ 2γbCpC
γ
γ(n+1)

(
∥u1∥γW 1

2 (DT )
+ ∥u2∥γW 1

2 (DT )
+ 2

)
∥wk∥W 1

2 (DT )
≤ λM5∥wk∥W 1

2 (DT )
, (5.4.15)

where we have used the inequality ∥wk∥L2(DT ) ≤ ∥wk∥W 1
2 (DT )

,

M5 = a+ 2γbCpC
γ
γ(n+1)

(
∥u1∥γW 1

2 (DT )
+ ∥u2∥γW 1

2 (DT )
+ 2

)
, p = 2

n+ 1

n− 1
. (5.4.16)

Since the a priori estimate (5.2.5) is valid for λ = 0, due to (5.2.27), in this estimate c2 = 0, and
hence, for the solution wk of the problem (5.4.6), (5.4.7), the estimate

∥wk∥ ◦
W 1

2,µ(DT )
≤ c01∥Fk + gk∥L2(DT ) (5.4.17)

is valid, where the constant c01 does not depend on λ, Fk and gk.
Because of ∥wk∥ ◦

W 1
2,µ(DT )

= ∥wk∥W 1
2 (DT )

and due to (5.4.15) and (5.4.17), we have

∥wk∥ ◦
W 1

2,µ(DT )
≤ c01∥Fk∥L2(DT ) + λc01M5∥wk∥ ◦

W 1
2,µ(DT )

. (5.4.18)

It should be noted that since for u1 and u2 the a priori estimate (5.2.5) is valid, the constant M5

from (5.4.16) depends on F , f , µ, DT and λ. Moreover, due to (5.2.19), (5.2.23) and (5.2.27), the
value of M5 continuously depends on λ for λ ≥ 0, and

0 ≤ lim
λ→0+

M5 =M0
5 < +∞. (5.4.19)

Due to (5.4.19), there exists a positive number λ0 = λ0(F, f, µ,DT ) such that for

0 < λ < λ0 (5.4.20)

we have λc01M5 < 1. Indeed, let us fix arbitrarily a positive number ε1. Then, due to (5.4.19), there
exists a positive number λ1 such that 0 ≤M5 < M0

5 + ε1 for 0 ≤ λ < λ1. Obviously, for

λ0 = min
(
λ1, (c

0
1(M

0
5 + ε1))

−1
)
,

the condition λc01M5 < 1 is fulfilled. Therefore, in the case (5.4.20), from (5.4.18) we get

∥wk∥ ◦
W 1

2,µ(DT )
≤ c01(1− λc01M5)

−1∥Fk∥L2(DT ), k ≥ k0. (5.4.21)

From (5.4.2) and (5.4.3) it follows that lim
k→∞

∥wk∥ ◦
W 1

2,µ(DT )
= ∥u2 − u∥ ◦

W 1
2,µ(DT )

. On the other

hand, due to (5.4.5), from (5.4.21) we obtain lim
k→∞

∥wk∥ ◦
W 1

2,µ(DT )
= 0. Thus, ∥u2 − u1∥ ◦

W 1
2,µ(DT )

= 0,
i.e., u2 = u1, which leads to the contradiction. This proves Theorem 5.4.1.
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5.5 The cases of absence of a solution
of the problem (5.1.1)–(5.1.4)

In this section, using the test function [77], we show that when the condition (5.2.2) is violated, the
problem (5.1.1)–(5.1.4) may not have a generalized solution in the sense of Definition 5.1.1.

Lemma 5.5.1. Let u be a generalized solution of the problem (5.1.1)–(5.1.4) in the sense of Defini-
tion 5.1.1 and the conditions (5.1.5) and (5.1.6) be fulfilled. Then the following integral equality∫

DT

u� v dx dt = −λ
∫
DT

f(x, t, u)v dx dt+

∫
DT

Fv dx dt (5.5.1)

is valid for every test function v satisfying the conditions

v ∈ C2(DT ), v
∣∣
∂DT

= 0, ∇x,tv
∣∣
∂DT

= 0, (5.5.2)

where � := ∂2

∂t2 −
n∑
i=1

∂2

∂x2
i

, ∇x,t := ( ∂
∂x1

, . . . , ∂
∂xn

, ∂∂t ).

Proof. According to the definition of a generalized solution of the problem (5.1.1)–(5.1.4), there exists
the sequence um ∈

◦
C2
µ(DT ) such that the equalities (5.1.10), (5.2.8) are valid. We multiply both sides

of the equality (5.2.6) by the function v and integrate the obtained equality in the domain DT . Due
to (5.5.2), integration by parts of the left-hand side of this equation yields∫

DT

um� v dx dt+ λ

∫
DT

f(x, t, um)v dx dt =

∫
DT

Fmv dx dt. (5.5.3)

Passing in the equation (5.5.3) to the limit as m → ∞ and taking into account (5.2.6), the limit
equalities (5.1.10) and Remark 5.1.2, we obtain the equality (5.5.2). Thus Lemma 5.5.1 is proved.

Consider the following condition imposed on the function f :

f(x, t, u) ≤ −|u|p, (x, t, u) ∈ DT × R; p = const > 1. (5.5.4)

Note that when the condition (5.5.4) is fulfilled, the condition (5.5.2) is violated. Let us introduce
into consideration the function v0 = c0(x, t) such that

v0 ∈ C2(DT ), v0
∣∣
DT

> 0, v0
∣∣
∂DT

= 0, ∇x,tv0
∣∣
∂DT

= 0, (5.5.5)

and
κ0 :=

∫
DT

|� v0|p
′

|v0|p′−1
dx dt < +∞,

1

p
+

1

p′
= 1. (5.5.6)

Below, we assume that ∂D ∈ C2 and hence there exists a function ω ∈ C2(Rn) such that ∂Ω :
ω(x) = 0, ∇xω|∂Ω ̸= 0, and ω|Ω > 0 [24].

Simple verification shows that in the capacity of the function v0, satisfying the conditions (5.5.5)
and (5.5.6), can be chosen the function

v0(x, t) = [t(T − t)ω(x)]k, (x, t) ∈ DT ,

for a sufficiently large k = const > 0.
In view of (5.5.4) and (5.5.5), from (5.5.1), where v0 is taken instead of v, it follows that when

λ > 0,
λ

∫
DT

|u|pv0 dx dt ≤
∫
DT

|u| |�v0| dx dt−
∫
DT

Fv0 dx dt. (5.5.7)
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Theorem 5.5.1. Let the function f ∈ C(DT × R) satisfy the conditions (5.1.5), (5.1.6) and (5.5.4);
λ > 0, ∂Ω ∈ C2, F 0 ∈ L2(DT ), F 0 ≥ 0, ∥F 0∥L2(DT ) ̸= 0. Then there exists a number γ0 =
γ0(F

0, α, p, λ) > 0 such that for γ > γ0, the problem (5.1.1)–(5.1.4) does not have a generalized
solution in the sense of Definition 5.1.1 for F = γF 0.

Proof. If in Young’s inequality with the parameter ε > 0,

ab ≤ ε

p
ap +

1

p′εp′−1
bp

′
, a, b ≥ 0,

1

p
+

1

p′
= 1, p > 1,

we take a = |u|v1/p0 , b = |�v0|
v1/p

, then taking into account the equality p′

p = p′ − 1, we have

|u| |�v0| = |u|v1/p0

|� v0|
v
1/p
0

≤ ε

p
|u|pv0 +

1

p′εp′−1

|� v0|p
′

vp
′−1

0

. (5.5.8)

Since F = γF 0, using (5.5.8), from (5.5.7) we get

(
λ− ε

p

) ∫
DT

|u|pv0 dx dt ≤
1

p′εp′−1

∫
DT

|�v0|p
′

vp
′−1

0

dx dt− γ

∫
DT

F 0v dx dt,

whence for ε < λp, we obtain∫
DT

|u|pv0 dx dt ≤
p

(λp− ε)p′εp′−1

∫
DT

|� v0|p
′

vp
′−1

0

dx dt− pγ

λp− ε

∫
DT

F 0v0 dx dt. (5.5.9)

Since p′ = p
p−1 , p = p′

p′−1 and

min
0<ε<λp

p

(λp− ε)p′εp′−1
=

1

λp
,

which is achieved for ε = λ, it follows from (5.5.9) that∫
DT

|u|pv0 dx dt ≤
1

λp′

∫
DT

|� v0|p
′

vp
′−1

0

dx dt− p′γ

λ

∫
DT

F 0v0 dx dt. (5.5.10)

Because of the conditions imposed on the function F 0, and v0|DT > 0, we have

0 < κ1 :=

∫
DT

F 0v0 dx dt < +∞. (5.5.11)

Denoting by χ = χ(γ) the right-hand side of the inequality (5.5.10), which is a linear function with
respect to the parameter γ, due to (5.5.6) and (5.5.11), we have

χ(γ) < 0 for γ > γ0 and χ(γ) > 0 for γ < γ0, (5.5.12)

where
χ(γ) =

κ0

λp′
− p′γ

λ
κ1, γ0 =

κ0

λp′−1p′κ1
.

It remains only to note that the left-hand side of the inequality (5.5.10) is nonnegative for γ > γ0.
Thus, for γ > γ0, the problem (5.1.1)–(5.1.4) does not have a generalized solution in the sense of
Definition 5.1.1. Thus Theorem 5.5.1 is proved.
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5.6 The case |µ| = 1

As is mentioned at the end of the third section, for |µ| = 1, the problem (5.1.1)–(5.1.4) may turn
out to be ill-posed. Below, we will show that in the presence of additional terms 2aut and cu in the
left-hand side of the equation (5.1.1) the problem will be solvable for any F ∈ L2(DT ).

Consider the equation

∂2u

∂t2
−

n∑
i=1

∂2u

∂x2i
+ 2aut + cu+ f1(x, t, u) = F (x, t), (x, t) ∈ DT , (5.6.1)

with the constant real coefficients a and c, where f1 and F are the given real functions.
For the equation (5.6.1), consider a problem of finding u in the domain DT satisfying the bound-

ary condition (5.1.2) and the nonlocal conditions (5.1.3), (5.1.4) for |µ| = 1. For the problem
(5.6.1), (5.1.2)–(5.1.4), when f1 ∈ C(DT ×R) and F ∈ L2(DT ), analogously to what we have done in
Definition 5.1.1, let us introduce the notion of a generalized solution u ∈

◦
W 1

2,µ(DT ).
With respect to a new unknown function

v := σ−1(t)u, where σ(t) := exp(−at), 0 ≤ t ≤ T, (5.6.2)

the problem (5.6.1), (5.1.2)–(5.1.4) can be rewritten as follows:

∂2v

∂t2
−

n∑
i=1

∂2v

∂x2i
+ (c− a2)v + σ−1(t)f1

(
x, t, σ(t)v(x, t)

)
= σ−1(t)F (x, t), (x, t) ∈ DT , (5.6.3)

v
∣∣
Γ
= 0, (5.6.4)

(Kµ1v)(x) = 0, (Kµ1vt)(x) = 0, x ∈ Ω, (5.6.5)

where µ1 = µσ(T ), |µ| = 1.
In the case a > 0, due to (5.6.2) and |µ| = 1, it is obvious that |µ1| < 1.
It is not difficult to see that for c − a2 ≥ 0, the functions f(x, t, u) = (c − a2)u and g(x, t, u) =

u∫
0

f(x, t, s) ds = 1
2 (c− a2)u2 satisfy (5.1.5), (5.2.2)–(5.2.4).

For f(x, t, u) = σ−1(t)f1(x, t, σ(t)u), we have

g(x, t, u) =

u∫
0

f(x, t, s) ds =

u∫
0

σ−1(t)f1(x, t, σ(t)s) ds

= σ−1(t)

σ(t)u∫
0

f1(x, t, s
′) ds′ = σ−2(t)g1(x, t, σ(t)u). (5.6.6)

Here,

g1(x, t, u) =

u∫
0

f1(x, t, s) ds. (5.6.7)

Let us show that if the function g1(x, t, u) from (5.6.7) satisfies the condition

g1(x, 0, µ1u) ≤ g1(x, T, |µ1|u), (x, t) ∈ Ω× R, (5.6.8)

for the fixed constant µ1 from (5.6.5), then the function g(x, t, u) from (5.6.6) satisfies the condition
(5.2.4) for µ = µ1. Indeed, in view of (5.6.2), (5.6.6) and (5.6.8), since µ1 = µσ(T ), |µ| = 1,
σ(T ) = |µ1|, we have

g(x, 0, µ1u) = σ−2(0)g1(x, 0, σ(0)µ1u) = g1(x, 0, µ1u),

µ2
1g(x, T, u) = µ2

1σ
−2(T )g1(x, T, σ(T )u) = g1(x, T, |µ1|u),
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whence, due to (5.6.8), follows (5.2.4) for µ = µ1.
Since σ′(t) = −aσ(t), (σ−2(t))′ = 2aσ−2(t), according to (5.6.6) and supposing that f1, f1t, f1u ∈

C(DT × R), we have

gt(x, t, u) = 2aσ−2(t)g1(x, t, σ(t)u) + σ−2(t)g1t(x, t, σ(t)u)− aσ−1g1u(x, t, σ(t)u).

Therefore, the condition

2aσ−2(t)g1(x, t, σ(t)u) + σ−2(t)g1t(x, t, σ(t)u)− aσ−1(t)g1u(x, t, σ(t)u) ≤M3, (5.6.9)
(x, t, u) ∈ DT × R,

results in the condition (5.2.3).
Note that due to (5.6.6), from the condition

g1(x, t, u) ≥ 0, (x, t, u) ∈ DT × R, (5.6.10)

follows the condition (5.2.2).
It is easily seen that if the function f1(x, t, u) satisfies the condition of type (5.1.5), i.e.,

|f1(x, t, u)| ≤ M̃1 + M̃2|u|α, (x, t, u) ∈ DT × R, M̃i = const ≥ 0, (5.6.11)

then the function f(x, t, u) = σ−1(t)f1(x, t, σ(t)u) from the left-hand side of the equation (5.6.3)
satisfies the condition (5.1.5) for some nonnegative constants M1 and M2.

It should be noted that in the concrete case f1(x, t, u) = |u|βu, β = const ≥ 0, the function
g1(x, t, u) =

|u|β+2

β+2 , and

f(x, t, u) = σ−1(t)f1(x, t, σ(t)u) = σβ(t)|u|βu, (5.6.12)

g(x, t, u) =

u∫
0

f(x, t, s) ds = σβ(t)
|u|β+2

β + 2
. (5.6.13)

Therefore, taking into account that σ′(t) ≤ 0, g(x, 0, µ1u) = |µ1|β+2 |u|β+2

β+2 , µ2
1g(x, T, u) =

µ2
1σ
β(T ) |u|β+2

β+2 , σ(T ) = |µ1|, it is easy to see that the functions f(x, t, u) and g(x, t, u) from (5.6.12)
and (5.6.13) satisfy the conditions (5.1.5), (5.2.2)–(5.2.4) for µ = µ1, α = β + 1, M3 = 0.

Further, since the problems (5.6.1), (5.1.2)–(5.1.4) and (5.6.3), (5.6.4), (5.6.5) are equivalent, from
Theorem 5.3.1 follows the theorem of the existence of the solution of the problem (5.6.1), (5.1.2)–
(5.1.4).

Theorem 5.6.1. Let |µ| = 1, a > 0, c− a2 ≥ 0, the function f1(x, t, u) from the left-hand side of the
equation (5.6.1) and the function g1(x, t, u) from (5.6.7) satisfy the conditions f1, f1t, f1u ∈ C(DT×R),
(5.6.8)–(5.6.11). Then if in the condition (5.6.11) the order of nonlinearity α satisfies the inequality
α < n+1

n−1 , then the problem (5.6.1), (5.1.2)–(5.1.4) for any F ∈ L2(DT ) has at least one generalized
solution.

Remark 5.6.1. In the case when Robin’s boundary condition(∂u
∂ν

+ σu
)∣∣∣

Γ
= 0 (5.6.14)

is considered instead of the Dirichlet boundary condition (5.1.2), analogous results for the nonlocal
problem (5.1.1), (5.6.14), (5.1.3), (5.1.4) can be found in [53].
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EXACT CONDITIONS FOR THE EXISTENCE
OF HOMOCLINIC ORBITS IN THE LIÉNARD SYSTEMS



Abstract. We consider the Liénard system ẋ = y − F (x) and ẏ = −g(x). Under the assumptions
that the origin is a unique equilibrium, we investigate the existence of homoclinic orbits of this system
which is closely related to the stability of the zero solution, center problem, global attractively of the
origin, and oscillation of solutions of the system. We present the necessary and sufficient conditions
for this system to have a positive orbit which starts at a point on the vertical isocline y = F (x) and
approaches the origin without intersecting the x-axis. Our results solve the problem completely in
some sense.
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ÒÄÆÉÖÌÄ. ÂÀÍÅÉáÉËÀÅÈ ËÉÄÍÀÒÃÉÓ ÓÉÓÔÄÌÀÓ ẋ = y − F (x) ÃÀ ẏ = −g(x). ÉÌ ÃÀÛÅÄÁÉÈ, ÒÏÌ
ÓÀÈÀÅÄ ÀÒÉÓ ÄÒÈÀÃÄÒÈÉ ßÏÍÀÓßÏÒÏÁÉÓ ßÄÒÔÉËÉ, ÅÓßÀÅËÏÁÈ ÀÌ ÓÉÓÔÄÌÉÓ äÏÌÏÊËÉÍÖÒÉ
ÏÒÁÉÔÄÁÉÓ ÀÒÓÄÁÏÁÀÓ, ÒÀÝ ÌàÉÃÒÏÃ ÀÒÉÓ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÍÖËÏÅÀÍÉ ÀÌÏÝÀÍÉÓ ÌÃÂÒÀÃÏÁÀÓ-
ÈÀÍ, ÝÄÍÔÒÉÓ ÐÒÏÁËÄÌÀÓÈÀÍ, ÓÀÈÀÅÉÓ ÂËÏÁÀËÖÒ ÌÉÆÉÃÖËÏÁÀÓÈÀÍ ÃÀ ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÈÀ
ÒáÄÅÀÃÏÁÀÓÈÀÍ. ÌÏÚÅÀÍÉËÉÀ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÀÈÀ ÀÌ ÓÉÓÔÄÌÀÓ
ÂÀÀÜÍÃÄÓ ÃÀÃÄÁÉÈÉ ÏÒÁÉÔÄÁÉ, ÒÏÌËÄÁÉÝ ÉßÚÄÁÀ y = F (x) ÅÄÒÔÉÊÀËÖÒÉ ÉÆÏÊËÉÍÉÓ ßÄÒ-
ÔÉËÛÉ ÃÀ ÖÀáËÏÅÃÄÁÀ ÓÀÈÀÅÄÓ ÉÓÄ, ÒÏÌ ÀÒ ÂÀÃÀÊÅÄÈÓ x ÙÄÒÞÓ. ÛÄÃÄÂÄÁÉ ÂÀÒÊÅÄÖËÉ
ÈÅÀËÓÀÆÒÉÓÉÈ ÓÒÖËÀÃ áÓÍÉÓ ÃÀÓÌÖË ÀÌÏÝÀÍÀÓ.
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1 Introduction
It is well known that the Liénard system

dx

dt
= y − F (x),

dy

dt
= −g(x),

(1.1)

is of great importance in various applications. Hence, asymptotic and qualitative behavior of this
system and some of its extensions have been widely studied by many authors; results can be found in
many books and papers [1–22]. In system (1.1), a trajectory is said to be a homoclinic orbit if its α-
and ω-limit sets are the origin. The existence of homoclinic orbits in the Liénard-type systems (see [5])
is closely connected with the stability of the zero solution and the center problem. If system (1.1) has
a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center cannot
exist together in system (1.1). Our subject also has a near relation to the global attractivity of the
origin and oscillation of solutions (see [9, 11]).

Taking the vector field of (1.1) into account, we see that every homoclinic orbit is in the upper or in
the lower half-plane. In other words, no homoclinic orbit crosses the x-axis. When a homoclinic orbit
appears in the upper (resp. lower) half-plane, all other homoclinic orbits exist in the same half-plane.

We say that system (1.1) has property (Z+
1 ) (resp. (Z+

3 )) if there exists a point P (x0, y0) with
y0 = F (x0) and x0 > 0 (resp. x0 < 0) such that the positive semitrajectory of (1.1) starting at P
approaches the origin through only the first (resp. third) quadrant. We also say that system (1.1)
has property (Z−

2 ) (resp. (Z−
4 )) if there exists a point P (x0, y0) with y0 = F (x0) and x0 < 0 (resp.

x0 > 0) such that the negative semitrajectory of (1.1) starting at P approaches the origin through
only the second (resp. fourth) quadrant. If system (1.1) has both properties (Z+

1 ) and (Z−
2 ), then a

homoclinic orbit exists in the upper half-plane. Similarly, if system (1.1) has both properties (Z+
3 )

and (Z−
4 ), then a homoclinic orbit exists in the lower half-plane. Notice that by the transformation

x→ −x and t→ −t, we can transfer any result for property (Z+
1 ) to an analogous result with respect

to property (Z−
2 ). Also, by the transformation x → −x and y → −y, we can transfer any result for

property (Z+
1 ) (resp. (Z−

2 )) to an analogous result with respect to property (Z+
3 ) (resp. (Z−

4 )).
In this paper, we intend to give some conditions on F (x) and g(x) under which system (1.1) has

properties (Z+
1 ), (Z−

2 ), (Z+
3 ), or (Z−

4 ). We assume that F and g are continuous on an open interval
I which contains 0 and satisfy smoothness conditions for uniqueness of solutions of the initial value
problems. We also assume that F (0) = 0 and

xg(x) > 0 for x ̸= 0,

which guarantee that the origin is the unique equilibrium of (1.1). Throughout this paper, in the
results related to property (Z+

1 ) (resp. (Z−
2 )), we assume that F (x) > 0 for x > 0 (resp. x < 0),|x|

sufficiently small. Because if F (x) has an infinite number of positive (resp. negative) zeroes clustering
at x = 0, then the system (1.1) fails to have property (Z+

1 ) (resp. (Z−
2 )). Similarly, in the results

related to property (Z+
3 ) (resp. (Z−

4 )), we assume that F (x) < 0 for x < 0 (resp. x > 0), |x|
sufficiently small.

T. Hara and T. Yoneyama [10] considered system (1.1) and proved that if there exists δ > 0 such
that

F (x) > 0,
1

F (x)

x∫
0

g(η)

F (η)
dη ≤ 1

4

for 0 < x < δ, then system (1.1) has property (Z+
1 ). They also proved that if there exist a > 0 such

that F (x) > 0 for 0 < x ≤ a and some α > 1
4 such that

1

F (x)

x∫
0

g(η)

F (η)
dη ≥ α,
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then system (1.1) fails to have property (Z+
1 ) (see also [6, 9, 15,19]).

In this paper, we present an implicit necessary and sufficient condition for system (1.1) to have
property (Z+

1 ). Then we drive sharp explicit conditions and solve this problem completely in some
sense. We formulate similar results for properties (Z−

2 ), (Z+
3 ), and (Z−

4 ).
The paper is organized as follows. In Section 2, we give implicit conditions for system (1.1) to have

property (Z+
1 ). In Section 3, we use our results obtained in Section 2 and present sufficient conditions

for properties (Z+
1 ), (Z−

2 ), (Z+
3 ), and (Z−

4 ). In Section 4, we present the necessary conditions for
properties (Z+

1 ), (Z−
2 ), (Z+

3 ), and (Z−
4 ) and show that the sufficient conditions presented in Section 3

are best possible.

2 Implicit conditions for property (Z+
1 )

In this section we present implicit conditions for system (1.1) to have property (Z+
1 ). First, we

introduce a system which is equivalent to (1.1). Let the function λ(x) be defined by

λ(x) =

{√
2G(x) for x ≥ 0,

−
√

2G(x) for x < 0

and the mapping Λ : R2 → R2 by

Λ(x, y) = (λ(x), y) ≡ (u, v).

Consider the canonical form of the Liénard systems

du

dτ
= v − F ∗(u),

dv

dτ
= −u,

(2.1)

in which dτ = [g(x) sgn(x)/
√
2G(x)] dt and a continuous function F ∗ is defined by

F ∗(u) =


F (G−1

(1
2
u2

)
if u ≥ 0,

F (G−1
(
− 1

2
u2

)
if u < 0,

where G−1(w) is the inverse function to G(x) sgn(x). Then the mapping Λ is a homeomorphism of
the (x, y)-plane onto an open subset of the (u, v)-plane which contains zero. It is obvious that Λ maps
the x-axis into the u-axis. Consequently, we have only to determine whether system (2.1), instead of
(1.1), has property (Z+

1 ) or not. Hereafter we denote τ by t again.

Theorem 2.1. Let F ∗ ∈ C1([0, α]) for some α > 0. Then system (2.1) has property (Z+
1 ) if and only

if there exist a constant b ≤ α and a function φ ∈ C1([0, b]) such that φ(0) = 0,

φ(u) > 0, (F ∗)′(u) ≥ u

φ(u)
+ φ′(u) for 0 < u ≤ b. (2.2)

Proof. Sufficiency. Consider the positive semitrajectory of (2.1) starting at a point (b, F ∗(b)). This
trajectory is considered as a solution v(u) of

dv

du
= − u

v − F ∗(u)
(2.3)

with v(b) = F ∗(b). Suppose that the positive semitrajectory v(u) crosses the negative y-axis. Then it
also meets the curve v = F ∗(u)− φ(u) at a point (s, F ∗(s)− φ(s)) with s < b such that

dv

du
(s) =

−s
(F ∗(s)− φ(s))− F ∗(s)

> (F ∗)′(s)− φ′(s).



Exact Conditions for Existence of Homoclinic Orbits in the Liénard Systems 97

Thus
(F ∗)′(s) <

s

φ(s)
+ φ′(s).

This is a contradiction. Hence, the trajectory v(u) does not cross the negative y-axis, and, therefore,
system (2.1) has property (Z+

1 ).

Necessity. Suppose that system (2.1) has property (Z+
1 ). Then there exists a positive semitra-

jectory of (2.1) starting at a point (b, F ∗(b)) with b > 0, which does not meet the negative y-axis.
This trajectory can be regarded as the graph of a continuously differentiable function ψ(u) which is
a solution of (2.3). Let φ(u) = F ∗(u)− ψ(u). Then it is clear that φ(0) = 0,

φ(u) > 0, (F ∗)′(u) =
u

φ(u)
+ φ′(u) for 0 < u ≤ b.

Hence, the condition (2.2) is verified.

Theorem 2.2. Suppose that system (2.1) with F1 has property (Z+
1 ). If

F2(u) ≥ F1(u) (2.4)

for u > 0 sufficiently small, then system (2.1) corresponding to F2 has property (Z+
1 ).

Proof. Since system (2.1) with F1(u) has property (Z+
1 ), there exists a positive semitrajectory of

(2.1) starting at a point (u0, v0) with u0 > 0, which approaches the origin through only the first
quadrant. This trajectory can be regarded as the graph of a function v = ψ1(u) which is a solution
of (2.3). Let v = ψ2(u) be the graph of the solution of system (2.3) corresponding to F2 such that
(u(0), v(0)) = (u0, v0). We can assume that u0 is sufficiently small, thus from (2.4) we have

ψ′
2(u) =

−u
v − F2(u)

≤ −u
v − F1(u)

= ψ′
1(u) for 0 < u ≤ u0.

Hence, ψ2(u) ≥ ψ1(u) > 0 for 0 < u ≤ u0. Therefore, system (2.1) corresponding to F2 has property
(Z+

1 ).

3 Explicit sufficient conditions for property (Z+
1 )

In this section we use our implicit conditions to drive explicit sufficient conditions for properties (Z+
1 ),

(Z−
2 ), (Z+

3 ), and (Z−
4 ). To this end, for u > 0 sufficiently small we define

L1(u) = log ku

and
Ln(u) = log ku× log(b| log ku|)× · · · × log log · · · log︸ ︷︷ ︸

(n−1)-times

(
b| log ku|

)
for n ≥ 2,

where k, b > 0. Notice that Ln(u) < 0 for u > 0 sufficiently small.

Theorem 3.1. Let k, b > 0. If

F ∗(u) ≥ 2u− 1

4

n−1∑
j=1

u

(Lj(u))2

for some n ≥ 2 and u > 0 sufficiently small, then system (2.1) has property (Z+
1 ).

Proof. By Theorem 2.2, it suffices to prove the theorem when

F ∗(u) = 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
.
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Let

Mn(u) =

n−1∑
j=1

( 1

Lj(u)

j∑
i=1

1

Li(u)

)
, (3.1)

Nn(u) =

n−1∑
j=1

1

Lj(u)
, φn(u) = u+

1

2
uNn+1(u). (3.2)

We have

u
d

du
(Ln(u)) = Nn(u)Ln(u) + 1, 2Mn(u)− (Nn(u))

2 =

n−1∑
j=1

1

(Lj(u))2

and
d

du
(Nn(u)) = −Mn(u)

u
.

Thus
u

φn(u)
+ φ′

n(u) = 2− 1

4(1 + 1
2Nn+1(u))

( n∑
j=1

1

(Lj(u))2
+Nn+1(u)Mn+1(u)

)
,

or
u

φn(u)
+ φ′

n(u) = 2− 1

4

n∑
j=1

1

(Lj(u))2
− (Nn+1(u))

3

8(1− 1
2Nn+1(u))

(3.3)

for u > 0 sufficiently small. On the other hand,

(F ∗)′(u) = 2− 1

4

n−1∑
j=1

1

(Lj(u))2
+

1

2

n−1∑
j=1

Nj(u)Lj(u) + 1

(Lj(u))3
. (3.4)

It is easy to check that
(F ∗)′(u) >

u

φn(u)
+ φ′

n(u)

for u > 0 sufficiently small. Hence, (2.2) holds and, by Theorem 2.1, system (2.1) has property
(Z+

1 ).

Recall defining the function F ∗(u) as follows:

F ∗(u) = F
(
G−1

(1
2
u2

))
for u ≥ 0.

Put x = G−1( 12u
2). Then for system (1.1) to have property (Z+

1 ) we have the following sufficient
condition.

Theorem 3.2. Assume k, b > 0. If

F (x) ≥
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

for some n ≥ 2 and x > 0 sufficiently small, then system (1.1) has property (Z+
1 ).

Similarly, for system (1.1) to have properties (Z−
2 ), (Z+

3 ), and (Z−
4 ), we have the following sufficient

conditions.

Theorem 3.3. Assume k, b > 0. If

F (x) ≥
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

for some n ≥ 2 and x < 0, |x| sufficiently small, then system (1.1) has property (Z−
2 ).
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Theorem 3.4. Assume k, b > 0. If

F (x) ≤ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x)))2

,

for some n ≥ 2 and x < 0, |x| sufficiently small, then system (1.1) has property (Z+
3 ).

Theorem 3.5. Assume k, b > 0. If

F (x) ≤ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x)))2
,

for some n ≥ 2 and x > 0 sufficiently small, then system (1.1) has property (Z−
4 ).

4 Explicit necessary conditions for property (Z+
1 )

In this section we drive explicit necessary conditions for properties (Z+
1 ), (Z−

2 ), (Z+
3 ), and (Z−

4 ) and
show that the sufficient conditions presented in Section 2 are best possible.

Definition 4.1. Let f1(u) and f2(u) be real-valued functions. By f1(u) ≼ f2(u) we mean that there
exists b > 0 such that f1(u) ≤ f2(u) for 0 < u ≤ b.

In proving Theorem 4.1 we will need the following

Lemma 4.1. Suppose that φ ∈ C1([0, α]) for some α > 0, φ(0) = 0, and φ(u) > 0 for u > 0
sufficiently small. If

d

du

(
2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2

)
≥ u

φ(u)
+ φ′(u), λ ≥ 1

4
, (4.1)

for some n ≥ 2, k > 0, b > 0, and u > 0 sufficiently small, then

(i) lim
u→0+

φ(u)
u = 1,

(ii) |φ(u)−u
u | ≤ 1

| log ku| for every k > 0 and u > 0 sufficiently small.

Proof. It is easy to check that the left-hand side of inequality (4.1) tends to 2 as u→ 0+. Thus, from
(4.1) we get

lim
u→0+

( u

φ(u)
+ φ′(u)

)
=

1

φ′(0+)
+ φ′(0+) ≤ 2.

Hence,
lim

u→0+

φ(u)

u
= φ′(0+) = 1.

This completes the proof of (i). Now let φ(u) = u+ h(u). Then we have

−
( u

φ(u)
+ φ′(u)

)
= −2 +

h(u)

u+ h(u)
− h′(u). (4.2)

From (4.1) and (4.2) we conclude that

h(u)

u+ h(u)
− h′(u) > 0 (4.3)

for u sufficiently small. Suppose that {un} tends to zero and h(un) = 0, then there exists a sequence
{cn} such that cn tends to zero as n→ ∞, h′(cn) = 0, and h(cn) ≤ 0. This contradicts (4.3). Hence,
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h(u) is positive or negative for u > 0 sufficiently small, and we can let h(u) = u
f(u) for 0 < u ≤ c with

c sufficiently small. Notice that, by (i), |f(u)| → ∞ as u→ 0. Since φ(u) > 0 for u sufficiently small,

f(u) + 1

f(u)
=
φ(u)

u
> 0. (4.4)

Thus, from (4.3) and (4.4) we have

f ′(u)
(f(u) + 1

f(u)

)
>

1

u

for 0 < u ≤ b with b sufficiently small. Integration of the above leads to

f(u) + log(|f(u)|)− f(b)− log(|f(b)|) ≤ log(u)− log(b)

for 0 < u ≤ b. Hence, f(u) → −∞ as u → 0+, and |f(u)| > | log ku| for every k > 0 and u > 0
sufficiently small.

Theorem 4.1. Suppose that there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F ∗(u) ≤ 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2

for u > 0 sufficiently small. Then system (2.1) fails to have property (Z+
1 ).

Proof. By Theorem 2.2, it suffices to prove the theorem when

F ∗(u) = 2u− 1

4

n−1∑
j=1

u

(Lj(u))2
− λu

(Ln(u))2
, λ >

1

4
,

for u > 0 sufficiently small. We prove the theorem by contradiction. Suppose that there exists a
continuously differentiable function φ such that φ(0) = 0, φ(u) > 0 for u > 0 sufficiently small, and

(F ∗)′(u) ≽ u

φ(u)
+ φ′(u). (4.5)

Let
h(u) = φ(u)− φn−1(u) = φ(u)− u

(
1 +

1

2
Nn(u)

)
.

From (4.5), (3.3), and (3.4) we have

u

φn−1(u)
− u

φn−1(u) + h(u)
− h′(u) ≽ u

φn−1(u)
+ φ′

n−1(u)− (F ∗)′(u)

=
λ

(Ln(u))2
−

(
2λ+

1

2

) n−1∑
j=1

Nj(u)Lj(u) + 1

(Lj(u))3
− (Nn+1(u))

3

8(1− 1
2Nn+1(u))

.

Then
λ′

(Ln(u))2
≼ u

φn−1(u)
− u

φn−1(u) + h(u)
− h′(u), (4.6)

where 1/4 < λ′ < λ. Suppose that {un} tends to zero and h(un) = 0, then there exists a sequence
{cn} such that cn tends to zero as n→ ∞, h′(cn) = 0, and h(cn) ≤ 0. This contradicts (4.6). Hence,
h(u) ̸= 0 for x > 0 sufficiently small, and we can let f(u) = u

h(u) for 0 < u ≤ c with c sufficiently
small. From (4.5), Lemma 4.1, and the fact that |Nn(u)| ≼ 2

| log ku| , we conclude that

1

|f(u)|
= |φ(u)− u

u
− Nn(u)

2
| ≤ 2

| log ku| (4.7)
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for u > 0 sufficiently small.
Let

Tn(u) =
(
1 +

Nn(u)

2

)(
1 +

Nn(u)

2
+

1

f(u)

)
and

g(u) =
f(u)

Ln(u)
.

Then from (3.2) and (4.6) we have

λ′

(Ln(u))2
≼ 1

1 + 1
2Nn(u)

− 1

1 + 1
2 Nn(u) +

1
f(u)

− f(u)− f ′(u)u

f2(u)
=

1

f(u)Tn(u)
− 1

f(u)
+
f ′(u)u

f2(u)
.

Hence,
λ′ ≼ Ln(u)

g(u)Tn(u)
− Ln(u)

g(u)
+

(g(u)Ln(u))
′u

g2(u)
. (4.8)

Notice that u(Ln(u))
′ = Nn(u)Ln(u) + 1, thus, from (4.8),

λ′g2(u) ≼ g′(u)uLn(u) + g(u)Ln(u)
(1− Tn(u) +Nn(u)Tn(u)

Tn(u)

)
+ g(u),

or(
λ′ − 1

4

)
g2(u) +

(g(u)
2

− 1
)2

≼ g′(u)uLn(u) +
(
1− 1

Tn(u)

)
− Nn(u)

2Tn(u)
−
g(u)

(
Nn(u)Ln(u)(1− Tn(u)) +

(Nn(u))
2

4 Ln(u)
)

Tn(u)
.

Now, let

A(u) = −
(Nn(u)Ln(u)(1− Tn(u)) +

(Nn(u))
2

4 Ln(u))

Tn(u)

and
B(u) = 1− 1

Tn(u)
− Nn(u)

2Tn(u)
.

It is easy to check that
lim

u→0+
(1− Tn(u)) = lim

u→0+
(Nn(u))

2Ln(u) = 0.

Also, by (4.7), we conclude that

lim
u→0+

Nn(u)Ln(u)(1− Tn(u)) = 0,

thus, A(u) and B(u) tend to 0 as u→ 0+, and we have(
λ′ − 1

4

)
g2(u) +

(g(u)
2

− 1
)2

≼ g′(u)uLn(u) +A(u)g(u) +B(u), λ′ >
1

4
, (4.9)

and (g(u)
2

− 1
)2

≼ g′(u)uLn(u) +A(u)g(u) +B(u). (4.10)

We now prove that if (4.10) holds, then

lim
u→0+

g(u) = 2. (4.11)

Suppose un > 0 tends to zero and g′(un) = 0. Then from (4.10) we conclude that

lim
n→∞

g(un) = 2.
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Since g′ vanishes at the extremum points, if g(u) is not increasing or decreasing for u > 0 sufficiently
small, then

lim inf
u→0+

g(u) = lim sup
u→0+

g(u) = 2,

and (4.11) holds. Suppose now that g(u) is increasing or decreasing for u > 0 sufficiently small. If
lim

u→0+
g(u) ̸= 2, then from (4.10) we conclude that there exists c > 0 such that

c

uLn(u)
>

g′(u)

( g(u)2 − 1)2

for 0 < u ≤ l with l sufficiently small. Integration of the above leads to

c
(

log log · · · log︸ ︷︷ ︸
(n−1)-times

(
b| log kl|

)
− log log · · · log︸ ︷︷ ︸

(n−1)-times

(
b| log ku|

))
>

−2
g(l)
2 − 1

+
2

g(u)
2 − 1

and, therefore, lim
u→0+

g(u) = 2. This is a contradiction, thus lim
u→0+

g(u) = 2. But if lim
u→0+

g(u) = 2,
then from (4.9) we conclude that there exists d > 0 such that

g′(u) ≤ d

uLn(u)

for u > 0 sufficiently small. Hence, lim
u→0+

g(u) = −∞. This is a contradiction and condition (2.2) does
not hold. Thus, by Theorem 2.1, system (2.1) fails to have property (Z+

1 ).

The following theorem gives a necessary condition for system (1.1) to have property (Z+
1 ).

Theorem 4.2. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≤
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x))2
−

λ
√
2G(x)

(Ln)(
√
2G(x))2

for x > 0 sufficiently small, then system (1.1) fails to have property (Z+
1 ).

Similarly, we have the following necessary conditions for the properties (Z−
2 ), (Z+

3 ), and (Z−
4 ).

Theorem 4.3. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≤
√
8G(x)− 1

4

n−1∑
j=1

√
2G(x)

(Lj(
√

2G(x))2
−

λ
√
2G(x)

(Ln)(
√
2G(x))2

for x < 0, |x| sufficiently small, then system (1.1) fails to have property (Z−
2 ).

Theorem 4.4. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≥ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x))2

+
λ
√

2G(x)

(Ln)(
√

2G(x))2

for x < 0, |x| sufficiently small, then system (1.1) fails to have property (Z+
3 ).

Theorem 4.5. If there exist λ > 1/4, n ≥ 2, and k, b > 0 such that

F (x) ≥ −
√
8G(x) +

1

4

n−1∑
j=1

√
2G(x)

(Lj(
√
2G(x))2

+
λ
√

2G(x)

(Ln)(
√

2G(x))2

for x > 0 sufficiently small, then system (1.1) fails to have property (Z−
4 ).

Remark 4.1. Paying attention to the explicit sufficient and necessary conditions presented for prop-
erties (Z+

1 ), (Z−
2 ), (Z+

3 ), and (Z−
4 ), it seems that these results have solved the problem of the existence

of homoclinic orbits in system (1.1) completely in some sense.
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Abstract. The existence conditions and asymptotic representations as t ↑ ω (ω ≤ +∞) of one class
of monotonous solutions of the n-th order differential equations containing on the right-hand side a
sum of terms with regularly varying nonlinearities are established.
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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ, ÒÏÌÄËÉÝ ÌÀÒãÅÄÍÀ ÌáÀÒÄÛÉ
ÛÄÉÝÀÅÓ ÒÄÂÖËÀÒÖËÀÃ ÝÅËÀÃÉ ÀÒÀßÒ×ÉÅÉ ßÄÅÒÄÁÉÓ ãÀÌÓ, ÃÀÃÂÄÍÉËÉÀ ÂÀÒÊÅÄÖËÉ ÊËÀÓÉÓ
ÌÏÍÏÔÏÍÖÒÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ ÃÀ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ, ÒÏÝÀ t ↑ ω
(ω ≤ +∞).
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1 Introduction
In the recent decades asymptotic properties of solutions of binomial essentially nonlinear second-
order differential equations with a nonlinearity which differs from a power function have been actively
studied (for the Emden–Fowler type not generalized equations see the monograph by I. T. Kiguradze
and T. A. Chanturiya [13]). The case where the nonlinearity is a regularly varying function was
investigated in [9,12,15,16,18], and the case where the nonlinearity is a rapidly varying function can
be found in [1,3–5,8]. It should be noted here that the second-order equations containing in the right-
hand side a sum of terms with nonlinearities that differ from power functions were considered only
in the case when all nonlinearities are regularly varying functions (see, e.g., [6, 7]). In this paper, we
study the asymptotic properties of solutions of a second-order differential equation in the right-hand
side of which, apart from the terms with regularly varying nonlinearities, there are also terms with
rapidly varying nonlinearities.

Consider the differential equation

y′′ =

m∑
i=1

αipi(t)φi(y), (1.1)

where αi ∈ {−1, 1} (i = 1,m), pi : [a, ω[→ ]0,+∞[ (i = 1,m) are continuous functions, −∞ < a <
ω ≤ +∞; φi : ∆Y0 → ]0,+∞[ (i = 1,m), where ∆Y0 is a one-sided neighborhood of the point Y0, Y0 is
equal either to 0 or to ±∞, are continuous functions for i = 1, l and twice continuously differentiable
for i = l + 1,m, such that for each i ∈ {1, . . . , l} as some σi ∈ R

lim
y→Y0
y∈∆Y0

φi(λy)

φi(y)
= λσi for each λ > 0, (1.2)

and for each i ∈ {l + 1, . . . ,m},

φ′
i(y) ̸= 0 as y ∈ ∆Y0

, lim
y→Y0
y∈∆Y0

φi(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ′′
i (y)φi(y)

φ′2
i (y)

= 1. (1.3)

The functions φi (i = 1, l) that satisfy conditions (1.2) are called regularly varying functions as
y → Y0 of orders σi (i = 1, l) (see the monograph by E. Seneta [17, Ch. 1, § 1, pp. 9–10]). For each
of them the representations of the form

φi(y) = |y|σiLi(y) (i = 1, l) (1.4)

hold, where Li are the slowly varying functions as y → Y0, i.e., such that

lim
y→Y0
y∈∆Y0

Li(λy)

Li(y)
= 1 (i = 1, l) for each λ > 0.

We also say that a function Li (i ∈ {1, . . . , l}) satisfies the condition S0 if

Li(νe
[1+o(1)] ln |y|) = Li(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

where ν = sign y.
Examples of functions slowly varying as y → Y0 are as follows:

| ln |y||γ1 , | ln |y||γ1
∣∣ ln | ln |y||

∣∣γ2
(γ1, γ2 ̸= 0), e

√
| ln |y||.

The first two functions satisfy the condition S0.
From conditions (1.3) it immediately follows that

lim
y→Y0
y∈∆Y0

yφ′
i(y)

φi(y)
= ±∞ (i = l + 1,m),

due to which each of the functions φi for i ∈ {l+1, . . . ,m} and its first derivative are rapidly varying
as y → Y0 (see the monograph by M. Maric [14, Ch. 3, § 3.4, Lemmas 3.2, 3.3, pp. 91–92]).
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Definition 1.1. A solution y of the differential equation (1.1) is called a Pω(Y0, λ0)-solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions:

lim
t↑ω

y(t) = Y0,   lim
t↑ω

y′(t) =

{
either 0,

or ±∞,
lim
t↑ω

y′2(t)

y′′(t)y(t)
= λ0. (1.5)

In [10], Pω(Y0, λ0)-solutions of the differential equation (1.1) were studied in the case λ0 ∈ R\{0; 1}.
In this paper, for λ0 = ±∞, we establish the conditions for the existence of Pω(Y0, λ0)-solutions of

the differential equation (1.1) and give asymptotic representations, as t ↑ ω, of such solutions and their
first-order derivatives when in each of such solutions the right-hand side of equation is equivalent, as
t ↑ ω, to the s-th item, i.e., when for some s ∈ {1, . . . , l},

lim
t↑ω

pi(t)φi(y(t))

ps(t)φs(y(t))
= 0 for all i ∈ {1, . . . ,m} \ {s}. (1.6)

Upon studying the Pω(Y0,±∞)-solutions of equation (1.1), some of their a priori asymptotic
properties will be used.

We set

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.

Lemma 1.1. Let y : [t0, ω[→ R be an arbitrary Pω(Y0,±∞)-solution of equation (1.1). Then

lim
t↑ω

πω(t)y
′(t)

y(t)
= 1, lim

t↑ω

πω(t)y
′′(t)

y′(t)
= 0. (1.7)

The validity of this assertion follows directly from [2] (see Corollary 10.1).

2 Statement of the main results
Here and in the sequel, without loss of generality, we assume that

∆Y0
= ∆Y0

(b),

where

∆Y0
(b) =

{
[b, Y0[ , if ∆Y0 is a left neighborhood of Y0,
]Y0, b], if ∆Y0

is a right neighborhood of Y0,

and the number b satisfies the inequalities

|b| < 1 as Y0 = 0 and b > 1 (b < −1) as Y0 = +∞ (Y0 = −∞).

In addition, let us introduce two numbers

ν0 = sign b, ν1 =

{
1, if ∆Y0(b) = [b, Y0[ ,

−1, if ∆Y0(b) = ]Y0, b].

According to the definition of the Pω(Y0, λ0)-solution of the differential equation (1.1), note that the
numbers ν0 and ν1 determine the signs of any Pω(Y0, λ0)-solution and its first derivative (respectively)
in some left neighborhood of ω. The conditions

ν0ν1 = −1 if Y0 = 0, ν0ν1 = 1 if Y0 = ±∞

are necessary for the existence of Pω(Y0, λ0)-solutions.
Moreover, if for such solutions of (1.1) conditions (1.6) hold, then

y′′(t) = αsps(t)φs(y(t))[1 + o(1)] as t ↑ ω, (2.1)
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from which it is clear that sign y′′(t) = αs in some left neighborhood of ω, and in this case

ν1αs = −1 if lim
t↑ω

y′(t) = 0, ν1αs = 1 if lim
t↑ω

y′(t) = ±∞.

In the case where ν0 lim
t↑ω

|πω(t)| = Y0, we choose the number a1 ∈ [a, ω[ so that ν0|πω(t)| ∈ ∆Y0
(b)

as t ∈ [a1, ω[ , and for s ∈ {1, . . . , l} set

Js(t) =

t∫
As

ps(τ)φs(ν0|πω(τ)|) dτ,

where

As =


a1 if

ω∫
a1

ps(τ)φs(ν0|πω(τ)|) dτ = ±∞,

ω if
ω∫

a1

ps(τ)φs(ν0|πω(τ)|) dτ = const.

Theorem 2.1. Let σs ̸= 1 for some s ∈ {1, . . . , l} and the function Ls satisfy the condition S0. Then
for the existence of Pω(Y0,±∞)-solutions satisfying condition (1.6) of the differential equation (1.1)
it is necessary that

ν0 lim
t↑ω

|πω(t)| = Y0, lim
t↑ω

πω(t)J
′
s(t)

Js(t)
= 0, (2.2)

the inequalities
αsν1(1− σs)Js(t) > 0, ν0ν1πω(t) > 0 for t ∈ ]a1, ω[ , (2.3)

as well as the conditions

lim
t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
= 0 (2.4)

for all i ∈ {1, . . . , l} \ {s} and

lim
t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + δi))

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
= 0 (2.5)

for all i ∈ {l+1, . . . ,m} hold, where δi are arbitrary numbers of some one-sided neighborhood of zero.
Moreover, for each of such solutions the following asymptotic representations are valid:

y(t) = ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + o(1)] as t ↑ ω, (2.6)
y′(t) = ν1|(1− σs)Js(t)|1/(1−σs)[1 + o(1)] as t ↑ ω. (2.7)

Proof. Let y : [t0, ω[→ R be an arbitrary Pω(Y0,±∞)-solution for some s ∈ {1, . . . , l} satisfying
conditions (1.6) of equation (1.1). Then by virtue of (1.1) and (1.6), the asymptotic relation (2.1)
holds.

According to Lemma 1.1, the limit relations (1.7) are valid, from which, in particular, it follows
that the function y is regularly varying, as t ↑ ω, function of first order. Therefore, by virtue of the
function Ls satisfying the condition S0, representations (1.4) and the first of the limit relations (1.7),
we have

φs(y(t)) = |y(t)|σsLs(y(t)) = |y(t)|σsLs(ν0e
[1+o(1)] ln |πω(t)|)

= |πω(t)y′(t)|σsLs(ν0|πω(t)|)[1 + o(1)] as t ↑ ω.

Taking into account this asymptotic relation, from (2.1) we obtain

y′′(t)

|y′(t)|σs
= αsps(t)φs(ν0|πω(t)|)[1 + o(1)] for t ↑ ω. (2.8)
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Integrating (2.8) on the interval from t1 (t1 ∈ [t0, ω[) to t and using the second of conditions (1.5),
we get

ν1|y′(t)|1−σs = αs(1− σs)Js(t)[1 + o(1)] as t ↑ ω,

which implies representation (2.7) and the equality

ν1 = αs sign[(1− σs)Js(t)]. (2.9)

From the first relation of (1.7) follows the second of inequalities (2.3), so taking into account (2.9),
the first of inequalities (2.3) holds. Taking into account the first of limiting relations (1.7), the second
inequality of (2.3) and (2.7), we obtain the asymptotic representation (2.6). The validity of the
first limit relation of (2.2) follows from Definition 1.1 and the first equality of (1.7) of Lemma 1.1.
The second limit relation of (2.2) follows immediately from (2.8) if we use the above-mentioned
representation (2.7) and the second of conditions (1.7).

Since the functions φi (i = 1, l) are regularly varying as y → Y0, we have

φi

(
ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + o(1)]

)
= φi

(
ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)

)
[1 + o(1)] as t ↑ ω.

Then, by virtue of (2.6),

lim
t↑ω

pi(t)φi(y(t))

ps(t)φs(y(t))
= lim

t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))[1 + o(1)]

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))[1 + o(1)]

= lim
t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
(i = 1, l)

hence, taking into account (1.6), we find that conditions (2.4) are valid.
For i ∈ {l + 1, . . . ,m}, from (2.6) we have

lim
t↑ω

pi(t)φi(y(t))

ps(t)φs(y(t))
= lim

t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + o(1)])

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
. (2.10)

By the monotony of function φi (i ∈ {l + 1, . . . ,m}) on the interval ∆Y0
(b) for each of δi from some

one-sided neighborhood of zero there exists t2 ∈ [t1, ω[ such that for t ∈ [t2, ω[ , we have

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + o(1)])

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))

≥ pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + δi])

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
> 0.

Thus, by virtue of (1.6) and (2.10), we find that conditions (2.5) are valid. The proof of the theorem
is complete.

Now we clarify the question of the actual existence of Pω(Y0,±∞)-solutions with the asymptotic
representations (2.6) and (2.7) for equation (1.1).

Theorem 2.2. Let for some s ∈ {1, . . . , l} the function Ls satisfy the condition S0, the inequality
σs ̸= 1 and conditions (2.2)–(2.4) hold, and for any i ∈ {l + 1, . . . ,m},

lim
t↑ω

pi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + u))

ps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
= 0 (2.11)

uniformly with respect to u ∈ [−δ, δ] for some 0 < δ < 1. Then the differential equation (1.1) has
at least one Pω(Y0,±∞)-solution that admits asymptotic representations (2.6) and (2.7). Moreover,
if ω = +∞ and As = +∞, there exists a one-parameter family with such representations, and if
As = a1, there is a two-parameter family.
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Proof. By virtue of conditions (2.2) and (2.3), the function

Y (t) = ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)

is a first-order function that varies regularly as t ↑ ω,

lim
t↑ω

Y (t) = Y0

and there exists a number t0 ∈ [a1, ω[ such that

Y (t)[1 + u] ∈ ∆Y0(b) for t ∈ [t0, ω[ and |u| ≤ δ.

By virtue of the properties of slowly varying functions, taking into account the fact that the
function Ls satisfies the condition S0, we have

φs(Y (t)(1 + u)) = |Y (t)(1 + u)|σsLs(ν0|πω(t)|)[1 +R(t, u)],

where the function R is such that

lim
t↑ω

R(t, u) = 0 uniformly with respect to u ∈ [−δ, δ].

Now applying to equation (1.1) the transformation

y(t) = ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)[1 + u1(t)],

y′(t) = ν1|(1− σs)Js(t)|1/(1−σs)[1 + u2(t)],
(2.12)

taking into account inequalities (2.3), we obtain a system of differential equations{
u′1 = h1(t)[f1(t, u1)− u1 + u2],

u′2 = h2(t)
[
f2(t, u1) + σsu1 − u2 + V (u1)

]
,

(2.13)

where

h1(t) =
1

πω(t)
, h2(t) =

J ′
s(t)

(1− σs)Js(t)
,

f1(t, u1) = − πω(t)J
′
s(t)

(1− σs)Js(t)
(1 + u1),

f2(t, u1) = (1 + u1)
σsR(t, u1) + (1 + u1)

σs(1 +R(t, u1))R1(t, u1),

R1(t, u1) =

m∑
i=1
i ̸=s

αipi(t)φi(Y (t)(1 + u1))

αsps(t)φs(Y (t)(1 + u1))
, V (u1) = (1 + u1)

σs − 1− σsu1.

We consider system (2.13) on the set

Ω = [t0, ω[×D, where D =
{
(u1, u2) : |ui| ≤ δ, i = 1, 2

}
.

We show that the function R1 is such that

lim
t↑ω

R1(t, u1) = 0 uniformly with respect to u1 ∈ [−δ, δ]. (2.14)

Since the functions φi with i ∈ {1, . . . , l} are regularly varying of orders σi as y → Y0, by virtue of
(1.4), taking into account the properties of slowly varying functions, we have

φi(Y (t)(1 + u1)) = φi

(
ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + u1)

)
= |ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + u1)|σiLi

(
ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + u1)

)
= |ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs)(1 + u1)|σiLi

(
ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))(1 + ri(t, u1)

)
= φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))(1 + u1)

σi(1 + ri(t, u1)) (i = 1, l)
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where the functions ri are such that

lim
t↑ω

ri(t, u1) = 0 uniformly with respect to u1 ∈ [−δ, δ].

By virtue of the above conditions,

lim
t↑ω

l∑
i=1
i̸=s

αipi(t)φi(Y (t)(1 + u1))

αsps(t)φs(Y (t)(1 + u1))
= 0 (2.15)

uniformly with respect to u1 ∈ [−δ, δ], since due to (2.4),

lim
t↑ω

l∑
i=1
i̸=s

αipi(t)φi(Y (t)(1 + u1))

αsps(t)φs(Y (t)(1 + u1))

= lim
t↑ω

l∑
i=1
i ̸=s

αipi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))(1 + ri(t, u1))

αsps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))(1 + rs(t, u1))

= lim
t↑ω

l∑
i=1
i ̸=s

αipi(t)φi(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))

αsps(t)φs(ν0|πω(t)| |(1− σs)Js(t)|1/(1−σs))
= 0 uniformly with respect to u1 ∈ [−δ, δ].

From (2.11) and (2.15), by virtue of the form of function R1, we find that (2.14) is valid. In the system
of equations (2.13) the functions h1, h2 : [t0, ω[→ R are continuous and are such that

h1(t)h2(t) ̸= 0 for t ∈ [t0, ω[ ,
ω∫

t0

h2(τ) dτ =
1

1− σs

ω∫
t0

J ′
s(τ)

Js(τ)
dτ =

1

1− σs
ln |Js(τ)|

∣∣∣∣∣
ω

t0

= ±∞.

In addition, by virtue of the second of conditions (2.2), we have

lim
t↑ω

h2(t)

h1(t)
= lim

t↑ω

πω(t)J
′
s(t)

(1− σs)Js(t)
= 0.

Further, by the form of the functions V , fk (k = 1, 2), we have

h1(t)

h2(t)
f1(t, u1) is bounded on the set Ω,

lim
u1→0

dV (u1)

du1
= 0,

lim
t↑ω

f2(t, u1) = 0 uniformly with respect to u1 ∈ [−δ, δ].

Coefficient at u1 in square brackets of the first equation of system (2.13) is nonzero. In addition,
the sum of the coefficients of u1 and u2 in the square brackets of the first equation of system (2.13)
is zero, and in the second equation is equal to the number σs − 1, which is nonzero. This implies
that system (2.13) satisfies all the assumptions of Theorem 2.7 of [11]. According to this theorem, the
system of differential equations (2.13) has at least one solution u = (u1, u2) : [t∗, ω[→ R2 (t∗ ≥ t0),
tending to zero as t ↑ ω. Each solution of this kind of system (2.13), by virtue of transformations
(2.12), corresponds to the solution of the differential equation (1.1) that admits, as t ↑ ω, asymptotic
representations (2.6), (2.7), and this solution is the Pω(Y0,±∞)-solution of equation (1.1). Moreover,
if ω = +∞, then there exists a one-parameter family of such solutions if J′

s(t)
Js(t)

< 0 on ]a1,+∞[ (this
inequality holds when Js is chosen for the integration limit of As to be equal to +∞), and a two-
parameter family if the inequality J′

s(t)
Js(t)

> 0 holds (i.e., when As = a1). The proof of the theorem is
complete.
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Remark. In the case when there are no terms in equation (1.1) with rapidly varying nonlinearity,
i.e., when m = l, the assertion of Theorems 2.1 and 2.2 remains true without conditions (2.5) and
(2.11).

3 Example
As an example illustrating the results obtained in this paper, we consider a differential equation of
the form

y′′ = α1p1(t)|y|σ + α2p2(t)e
µy, (3.1)

in which αi ∈ {−1, 1} (i = 1, 2), pi : [a, ω[→ ]0,+∞[ (i = 1, 2) are continuous functions, −∞ < a <
ω ≤ +∞, µ ̸= 0.

For equation (3.1) let us clarify the existence of Pω(Y0,±∞)-solutions for which

lim
t↑ω

y(t) = ±∞ (Y0 = ±∞), lim
t↑ω

p2(t)e
µy(t)

p1(t)|y(t)|σ
= 0. (3.2)

From Theorems 2.1 and 2.2 we have

Corollary 3.1. Suppose that inequality σ ̸= 1 holds. Then for the existence of Pω(Y0,±∞)-solutions
of the differential equation (3.1) satisfying conditions (3.2) it is necessary, and if

p2(t) = o
(p1(t)tσ|(1− σ)J1(t)|

σ
1−σ

eµν0t|(1−σ)J1(t)(1+u)|
1

1−σ

)
as t→ +∞

uniformly with respect to u ∈ [−δ, δ] for some 0 < δ < 1, it is sufficient that the conditions

ω = +∞, lim
t→+∞

tJ ′
1(t)

J1(t)
= 0,

ν0ν1 > 0, α1ν1(1− σ)J1(t) > 0 for t ∈ ]a1,+∞[

hold. Moreover, each solution of that kind admits the asymptotic representations

y(t) = ν0t|(1− σ)J1(t)|
1

1−σ [1 + o(1)] as t→ +∞,

y′(t) = ν1|(1− σ)J1(t)|
1

1−σ [1 + o(1)] as t→ +∞.

Moreover, if As = +∞, there exists a one-parameter family with such representations, and in case
As = a1, there is a two-parameter family.
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ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÀÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ
ÍÄÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓÀ ÃÀ ÝÀËÓÀáÀÃ ÀÌÏáÓÍÀÃÏÁÉÓ ÀÒÀÂÀÖÌãÏÁÄÓÄ-
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1 Formulation of the main results
On a finite interval [a, b], we consider the differential equation

u′′ = f(t, u) (1.1)

with the Neumann two-point boundary conditions

u′(a) = c1, u′(b) = c2, (1.2)

where f : [a, b] × R → R is a function satisfying the local Carathéodory conditions, while c1 and c2
are real constants.

A number of interesting and unimprovable in a certain sense results concerning the existence and
uniqueness of a solution of problem (1.1), (1.2) are known (see, e.g., [1–3, 5–8, 12] and the references
therein). In the present paper, general theorems on the existence and uniqueness of a solution of
that problem are proved which are nonlinear analogues of the first Fredholm theorem. Based on
these theorems, unimprovable sufficient conditions, different from the above mentioned results, for the
solvability and unique solvability of problem (1.1), (1.2) are obtained.

We use the following notation.
R is the set of real numbers; R+ = [0,+∞[ ; R− = ]−∞, 0];

[x]− =
|x| − x

2
;

L([a, b]) is the space of Lebesgue integrable functions.

Definition 1.1. Let pi ∈ L([a, b]) (i = 1, 2) and

p1(t) ≤ p2(t) for almost all t ∈ [a, b]. (1.3)

We say that the vector function (p1, p2) belongs to the set Neum([a, b]) if for any measurable function
p : [a, b] → R, satisfying the inequality

p1(t) ≤ p(t) ≤ p2(t) for almost all t ∈ [a, b], (1.4)

the homogeneous Neumann problem

u′′ = p(t)u, (1.5)
u′(a) = 0, u′(b) = 0 (1.6)

has only the trivial solution.

Theorem 1.1. Let there exist (p1, p2) ∈ Neum([a, b]) and an integrable in the first and non-
decreasing in the second argument function q : [a, b]× R+ → R+ such that

lim
x→+∞

b∫
a

q(t, x)

x
dt = 0, (1.7)

and on the set [a, b]× R the inequality

p1(t)|x| − q(t, |x|) ≤ f(t, x) sgn(x) ≤ p2(t)|x|+ q(t, |x|) (1.8)

holds. Then problem (1.1), (1.2) has at least one solution.

Corollary 1.1. Let on the set [a, b] × R inequality (1.8) be satisfied, where pi ∈ L([a, b]) (i = 1, 2)
are the functions satisfying inequality (1.3), and q : [a, b]× R+ → R+ is an integrable in the first and
non-decreasing in the second argument function satisfying condition (1.7). Let, moreover,

b∫
a

p2(t) dt ≤ 0, mes {[t ∈ [a, b] : p2(t) < 0} > 0, (1.9)
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and there exist a number λ ≥ 1 such that
b∫

a

[p1(t)]
λ
−
dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

. (1.10)

Then problem (1.1), (1.2) has at least one solution.
Corollary 1.2. Let on the set [a, b] × R inequality (1.8) be satisfied, where p1 : [a, b] → R− and
p2 : [a, b] → R are integrable functions satisfying inequalities (1.3) and (1.9), while q : [a, b]×R+ → R+

is an integrable in the first and non-decreasing in the second argument function satisfying condition
(1.7). Let, moreover, there exist t0 ∈ ]a, b[ such that the function p1 is non-increasing and non-
decreasing in the intervals ]a, t0[ and ]t0, b[ , respectively, and

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
,

b∫
a

√
|p1(t)| dt < π. (1.11)

Then problem (1.1), (1.2) has at least one solution.
Theorem 1.2. Let on the set [a, b]× R the inequality

p1(t)|x− y| ≤ (f(t, x)− f(t, y)) sgn(x− y) ≤ p2(t)|x− y| (1.12)

be satisfed, where (p1, p2) ∈ Neum([a, b]). Then problem (1.1), (1.2) has one and only one solution.
Corollary 1.3. Let on the set [a, b]× R condition (1.12) hold, where pi ∈ L([a, b]) (i = 1, 2) are the
functions satisfying inequalities (1.3) and (1.9). If, moreover, for some λ ≥ 1 inequality (1.10) is
satisfied, then problem (1.1), (1.2) has one and only one solution.
Corollary 1.4. Let on the set [a, b]×R inequality (1.12) hold, where p1 : [a, b] → R− and p2 : [a, b] → R
are integrable functions satisfying inequalities (1.3) and (1.9). Let, moreover, there exist t0 ∈ ]a, b[
such that the function p2 is non-increasing and non-decreasing in the intervals ]a, t0[ and ]t0, b[ ,
respectively, and satisfies inequality (1.11). Then problem (1.1), (1.2) has one and only one solution.

The following two corollaries of Theorem 1.2 concern the linear differential equation

u′′ = p(t)u+ q(t), (1.13)

where p and q ∈ L([a, b]).
Corollary 1.5. Let

b∫
a

p(t) dt ≤ 0, mes{t ∈ [a, b] : p(t) < 0} > 0, (1.14)

and let there exist a number λ ≥ 1 such that
b∫

a

[p(t)]λ
−
dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

. (1.15)

Then problem (1.13), (1.2) has one and only one solution.
Corollary 1.6. Let there exist a number t0 ∈ ]a, b[ such that the function p along with (1.14) satisfies
the conditions

p0(t) = ess sup
{
[p(s)]− : a < s < t

}
< +∞ for a < t < t0, (1.16)

p0(t) = ess sup
{
[p(s)]− : t < s < b

}
< +∞ for t0 < t < b, (1.17)

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
,

b∫
a

√
p0(t) dt < π. (1.18)

Then problem (1.13), (1.2) has one and only one solution.
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Remark 1.1. In the case, where instead of (1.14) the more hard condition

p(t) ≤ 0 for a < t < b, mes{t ∈ [a, b] : p(t) < 0} > 0 (1.19)

is satisfied, the results analogous to Corollary 1.5 previously were obtained in [5,6,12]. More precisely,
in [12] it is required that along with (1.19) the inequalities

b∫
a

|p(t)| dt ≤ 4

b− a
, ess sup{|p(t)| : a ≤ t ≤ b} < +∞

be satisfied (see [12, Theorem 3]), while in [5] and [6] it is assumed, respectively, that

b∫
a

|p(t)| dt ≤ 4

b− a

(see [5, Corollary 1.2]), and
b∫

a

|p(t)|λ dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

,

where λ ≡ const ≥ 1 (see [6, Corollary 1.3]).

Example 1.1. Suppose

p(t) ≡ −
(

π

b− a

)2

,

ε is arbitrarily small positive number, while λ is so large that(
1 +

ε

π

)λ

>
π

2
.

Then instead of (1.15) the inequality

b∫
a

[p(t)]λ
−
dt <

4(b− a)

π2

(
π + ε

b− a

)2λ

(1.20)

is satisfied. On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution u0(t) =

cos π(t−a)
b−a , and the nonhomogeneous problem (1.13), (1.2) has no solution if only

c1 + c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (1.15) in Corollary 1.5 is unimprovable and it cannot be replaced by condition
(1.20).

The above example shows also that condition (1.10) in Corollaries 1.1 and 1.3 is unimprovable in
the sense that it cannot be replaced by the condition

b∫
a

[p1(t)]
λ
−
dt <

4(b− a)

π2

(
π + ε

b− a

)2λ

,

where ε is a positive constant independent of λ.
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Note that condition (1.10) in the above mentioned corollaries is unimprovable also in the case
where λ = 1, and it cannot be replaced by the condition

b∫
a

[p1(t)]− dt <
4 + ε

b− a

no matter how small ε > 0 would be (see [5, p. 357, Remark 1.1]).

Example 1.2. Suppose t0 ∈ ]a, b[ and

p(t) =


− π2

4(t0 − a)2
for a ≤ t ≤ t0,

− π2

4(b− t0)2
for t0 < t ≤ b.

Then inequalities (1.16), (1.17) hold, and instead of (1.18) we have

t0∫
a

√
p0(t) dt =

π

2
,

b∫
t0

√
p0(t) dt =

π

2
.

On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution

u0(t) =


(t0 − a) cos π(t− a)

2(t0 − a)
for a ≤ t ≤ t0,

(t0 − b) cos π(b− t)

2(b− t0)
for t0 < t ≤ b,

while the nonhomogeneous problem (1.13), (1.2) has no solution if only

(t0 − a)c1 + (b− t0)c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (1.18) in Corollary 1.6 is unimprovable in the sense that it cannot be replaced
by the condition

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
.

From the above said it is also clear that condition (1.11) in both Corollary 1.2 and Corollary 1.4
is unimprovable and it cannot be replaced by the condition

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
.

2 Auxiliary propositions
2.1. Lemma on a priori estimate. In the segment [a, b], we consider the differential inequality

p1(t)|u(t)| − q(t) ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|+ q(t), (2.1)

where
(p1, p2) ∈ Neum([a, b]), (2.2)
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and q ∈ L([a, b]) is a non-negative function.
A function u : [a, b] → R is said to be a solution of the differential inequality (2.1) if it is continu-

ously differentiable, has an absolutely continuous on [a, b] first derivative, and almost everywhere on
this segment satisfies inequality (2.1).

Lemma 2.1. If condition (2.2) holds, then there exists a positive constant r0 such that for any non-
negative function q ∈ L([a, b]) every solution of the differential inequality (2.1) admits the estimate

|u(t)| ≤ ro

(
|u′(a)|+ |u′(b)|+

b∫
a

q(s) ds

)
for a ≤ t ≤ b. (2.3)

Proof. Assume the contrary that the lemma is not true. Then for any natural number k there exist
a non-negative function qk ∈ L([a, b]) and a solution uk of the differential inequality (2.1) such that

∥uk∥ > k2
(
|u′

k(a)|+ |u′
k(b)|+

b∫
a

qk(s) ds

)
,

where ∥uk∥ = max{|uk(t)| : t ∈ [a, b]}.
Let Ik be the set of all t ∈ [a, b] at which there exists u′′

k(t),

u0k(t) = uk(t)/∥uk∥ for t ∈ [a, b], q0k(t) = kq(t)/∥uk∥ for t ∈ Ik.

Then

p1(t)|u0k(t)| − q0k(t)/k ≤ u′′
0k(t) sgn(u0k(t)) ≤ p2(t)|u0k(t)|+ q0k(t)/k for t ∈ Ik, (2.4)

|u′
0k(a)|+ |u′

0k(b)| <
1

k
, ∥u0k∥ = 1, (2.5)

b∫
a

q0k(s) ds <
1

k
. (2.6)

Put

I1k =

{
t ∈ Ik : |u0k(t)| ≥

1

k

}
, I2k = Ik \ I1k,

p0k(t) =


u′′
0k(t)

u0k(t)
for t ∈ I1k,

p1(t) for t ∈ I2k,

q1k(t) =


0 for t ∈ I1k,

u′′
0k(t)− p1(t)u0k(t) for t ∈ I2k,

Pk(t) =

t∫
a

p0k(s) ds.

Then
u′′
0k(t) = p0k(t)u0k(t) + q1k(t) for t ∈ Ik. (2.7)

On the other hand, according to conditions (2.4) and (2.5) we have

|u′′
0k(t)| ≤ ℓ(t) + q0k(t) for t ∈ Ik,

p1(t)− q0k(t) ≤ p0k(t) ≤ p2(t) + q0k(t) for t ∈ Ik,

|q1k(t)| ≤ (|p1(t)|+ ℓ(t) + q0k(t)) /k for t ∈ Ik,
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where ℓ(t) = |p1(t)|+ |p2(t)|.
If along with these estimates we take into account inequality (2.6), then it becomes evident that

|u′
0k(t)− u′

0k(τ)| ≤
t∫

τ

ℓ(s) ds+
1

k
for a ≤ τ < t ≤ b, (2.8)

Pk(a) = 0,

t∫
τ

p1(s) ds−
1

k
< Pk(t)− Pk(τ) <

t∫
τ

p2(s) ds+
1

k
for a ≤ τ < t ≤ b, (2.9)

b∫
a

|p0k(s)| ds < ℓ0, (2.10)

b∫
a

|q1k(s)| ds <
ℓ0
k
, (2.11)

where

ℓ0 = 1 +

b∫
a

(|p1(s)|+ ℓ(s)) ds.

By virtue of conditions (2.5), (2.8) and(2.9), the sequences (uk)
+∞
k=1, (u′

k)
+∞
k=1, (Pk)

+∞
k=1 are uniformly

bounded and equicontinuous on [a, b]. By the Arzelà–Ascoli lemma, without loss of generality we can
assume that these sequences are uniformly convergent.

Put
u(t) = lim

k→+∞
u0k(t), P (t) = lim

k→+∞
Pk(t). (2.12)

If we pass to the limit in inequality (2.9) as k → +∞, then we get

P (a) = 0,

t∫
τ

p1(s) ds ≤ P (t)− P(τ) ≤
t∫

τ

p2(s) ds for a ≤ τ < t ≤ b.

Hence it is clear that the function P is absolutely continuous and admits the representation

P (t) =

t∫
a

p(s) ds for a ≤ t ≤ b, (2.13)

where p ∈ L([a, b]) is a function satisfying inequality (1.4).
By Lemma 1.1 from [4], conditions (2.10), (2.12) and (2.13) guarantee the validity of the equality

lim
k→+∞

t∫
a

p0k(s)u0k(s) ds =

t∫
a

p(s)u(s) ds for a ≤ t ≤ b. (2.14)

In view of (2.7) we have

u′
0k(t) = u′

0k(a) +

t∫
a

(p0k(s)u0k(s) + q1k(s)) ds for a ≤ t ≤ b.

If along with this identity we take into account conditions (2.5), (2.11) and (2.14), then we find

u′(t) =

t∫
a

p(s)u(s) ds for a ≤ t ≤ b

u′(a) = u′(b) = 0, ∥u∥ = 1.
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Consequently, u is a nontrivial solution of the homogeneous problem (1.5), (1.6). On the other hand,
due to conditions (1.4) and (2.2), this problem has no nontrivial solution. The contradiction obtained
proves the lemma.

2.2. Lemmas on two-point boundary value problems for equation (1.5). Let p ∈ L([a, b]).
We consider the differential equation (1.5) with the boundary conditions

u′(a) = 0, u(b) = 0, (2.15)

or
u(a) = 0, u′(b) = 0. (2.16)

Lemma 2.2 (T. Kiguradze). Let

p(t) ≥ −p0(t) for almost all t ∈ [a, b], (2.17)

where p0 ∈ L([a, b]) is a non-negative function. If, moreover, for some λ ≥ 1 the inequality

b∫
a

(b− t)pλ0 (t) dt ≤
(

π

2(b− a)

)2λ−2

holds, then problem (1.5), (2.15) has only the trivial solution. And if

b∫
a

(t− a)pλ0 (t) dt ≤
(

π

2(b− a)

)2λ−2

,

then problem (1.5), (2.16) has only the trivial solution.

This lemma is a corollary of Theorem 1.3 from [10].

Lemma 2.3. Let inequality (2.17) hold where p0 ∈ L([a, b]) is a non-negative non-decreasing (non-
increasing) function such that

b∫
a

√
p0(t) dt <

π

2
. (2.18)

Then problem (1.5), (2.15) (problem (1.5), (2.16)) has only the trivial solution.

Proof. We consider only problem (1.5), (2.15) since problem (1.5), (2.16) can be considered analo-
gously.

Assume that problem (1.5), (2.15) has a nontrivial solution u. Without loss of generality we can
assume that u′(b) < 0. Then there exists a0 ∈ [a, b[ such that

u(t) > 0, u′(t) < 0 for a0 < t < b, (2.19)
u′(a0) = 0.

By virtue of conditions (2.17) and (2.19), almost everywhere on [a0, b] the inequality

u′′(t)u′(t) ≤ −p0(t)u
′(t)u(t)

is satisfied. If along with this we take into account the fact that p0 is a non-decreasing function, then
we obtain

u′ 2(t) ≤ −2

t∫
a0

p0(s)u
′(s)u(s) ds ≤ p0(t)

(
−

t∫
a0

u′(s)u(s) ds

)
= p0(t)(u

2(a0)− u2(t)) for a0 ≤ t ≤ b.
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Consequently, √
p0(t) ≥

−u′(t)√
u2(a0)− u2(t)

for a0 < t ≤ b.

Integrating this inequality from a0 to b, we get

b∫
a0

√
p0(t) dt ≥ −

b∫
a0

−u′(t) dt√
u2(a0)− u2(t)

=

1∫
0

dx√
1− x2

=
π

2
,

which contradicts inequality (2.18). The contradiction obtained provers the lemma.

Remark 2.1. From Lemma 2.3 it follows, in particular, that if p : [a, b] → R− is a non-decreasing (a
non-increasing) function and for some t0 ∈ ]a, b[ the inequalities

t0∫
a

√
|p(s)| ds ≤ π

2
, p(t0) > − π2

4(b− t0)2

(
p(t0) > − π2

4(t0 − a)2
,

b∫
t0

√
|p(s)| ds ≤ π

2

)

hold, then the Dirichlet problem

u′′ = p(t)u, u(a) = u(b) = 0

has only the trivial solution. This result generalizes Z. Nehari’s theorem [11, Theorem 1], where it is
assumed that

b∫
a

√
|p(s)| ds ≤ π

2
.

Along with Lemmas 2.2 and 2.3, below we need Lemma 2.4 as well, concerning problem (1.5), (1.6).

Lemma 2.4. If condition (1.14) holds, then every solution of problem (1.5), (1.6) has at least one
zero in the interval ]a, b[ .

Proof. Assume the contrary that problem (1.5), (1.6) has a solution u not having a zero in ]a, b[ . Then
by (1.6),

u(t) ̸= 0 for a ≤ t ≤ b,

and almost everywhere on [a, b] the equality

u′′(t)

u(t)
= p(t)

holds. If we integrate this identity from a to b, then by conditions (1.6) and (1.14) we get

0 <

b∫
a

u′ 2(t)

u2(t)
dt =

b∫
a

p(t) dt ≤ 0.

The contradiction obtained provers the lemma.

2.3. Lemmas on the set Neum([a, b]).

Lemma 2.5. Let pi ∈ L([a, b]) (i = 1, 2) be functions satisfying inequalities (1.3), (1.9) and (1.10),
where λ ≥ 1. Then

(p1, p2) ∈ Neum([a, b]).
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Proof. Assume the contrary that
(p1, p2) ̸∈ Neum([a, b]).

Then there exists a function p ∈ L([a, b]), satisfying condition (1.4), such that problem (1.5), (1.6) has
a nontrivial solution u.

Inequalities (1.4) and (1.9) imply inequalities (1.14). Hence by Lemma 2.4 follows the existence of
t1 ∈ ]a, b[ such that

u(t1) = 0. (2.20)

On the other hand, by Lemma 2.2 inequality (1.4) and equalities (1.6) and (2.20) result in

(π
2

)2λ−2

< (t1 − a)2λ−2

t1∫
a

(t1 − t)[p1(t)]
λ
−
dt < (t1 − a)2λ−1

t1∫
a

[p1(t)]
λ
−
dt,

(π
2

)2λ−2

< (b− t1)
2λ−2

b∫
t1

(t− t1)[p1(t)]
λ
−
dt < (b− t1)

2λ−1

b∫
t1

[p1(t)]
λ
−
dt.

Thus (π
2

)4λ−4

< ((t1 − a)(b− t1))
2λ−1

( t1∫
a

[p1(t)]
λ
−
dt

)( b∫
t1

[p1(t)]
λ
−
dt

)
.

Hence, in view of the inequalities

(t1 − a)(b− t1) ≤
1

4
(b− a)2,( t1∫

a

[p1(t)]
λ
−
dt

)( b∫
t1

[p1(t)]
λ
−
dt

)
≤ 1

4

( b∫
a

[p1(t)]
λ
−
dt

)2

,

it follows that (π
2

)4λ−4

< 2−4λ(b− a)4λ−2

( b∫
a

[p1(t)]
λ
−
dt

)2

.

Consequently,
b∫

a

[p1(t)]
λ
−
dt >

4(b− a)

π2

(
π

b− a

)2λ

,

which contradicts inequality (1.10). The contradiction obtained provers the lemma.

Lemma 2.6. Let p1 : [a, b] → R− and p2 : [a, b] → R be integrable functions satisfying inequalities
(1.3) and (1.9). Let, moreover, there exist t0 ∈ ]a, b[ such that the function p1 is non-increasing and
non-decreasing in the intervals ]a, t0[ and ]t0, b[ , respectively, and inequalities (1.11) are satisfied.
Then

(p1, p2) ∈ Neum([a, b]).

Proof. Let p ∈ L([a, b]) be an arbitrary function satisfying inequality (1.4), and let u be an arbitrary
solution of problem (1.5), (1.6).

Inequalities (1.4) and (1.9) result in inequalities (1.14). Hence by Lemma 2.4 follows the existence
at least one zero of the function u in ]a, b[ . Consequently, there exists t1 ∈ ]a, b[ such that

u′(a) = 0, u(t1) = 0, (2.21)
u(t1) = 0, u′(b) = 0. (2.22)
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If along with (1.11) we take into account the monotonicity of the function p1 in the intervals ]a, t0[
and ]t0, b[ , then it becomes clear that either

a < t1 ≤ t0,

t1∫
a

√
|p1(t)| dt <

π

2
, (2.23)

or

t0 ≤ t1 < b,

b∫
t1

√
|p1(t)| dt <

π

2
. (2.24)

However, if condition (2.23) (condition (2.24)) holds, then by Lemma 2.3 problem (1.5), (2.21)
(problem (1.5), (2.22)) has only the trivial solution. Thus we have proved that u(t) ≡ 0. Hence, in
view of the arbitrariness of a solution u of problem (1.5), (1.6) and a function p, we have (p1, p2) ∈
Neum([a, b]).

2.4. Lemma on the solvability of problem (1.1), (1.2). Along with problem (1.1), (1.2) we
consider the auxiliary problem

u′′ = (1− λ)p(t)u+ λf(t, u), (2.25)
u′(a) = λc1, u′(b) = λc2, (2.26)

where p ∈ L([a, b]), and λ is a parameter.
According to Corollary 2 from [9], the following lemma is valid.

Lemma 2.7. Let problem (1.5), (1.6) have only the trivial solution and let there exist a positive
constant r such that for any λ ∈ ]0, 1[ an arbitrary solution u of problem (2.25), (2.26) admits the
estimate

|u(t)|+ |u′(t)| < r for a ≤ t ≤ b. (2.27)

Then problem (1.1), (1.2) has at least one solution.

3 Proof of the main results
Proof of Theorem 1.1. By Lemma 2.1, there exists a positive constant r0 such that every solution u
of the differential inequality

p1(t)|u(t)| − q(t, |u(t)|) ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|+ q(t, |u(t)|) (3.1)

admits the estimate

∥u∥ ≤ r0

(
|u′(a)|+ |u′(b)|+

b∫
a

q(s, ∥u∥) ds
)
, (3.2)

where
∥u∥ = max {|u(t)| : a ≤ t ≤ b} .

On the other hand, according to equality (1.7), there exists a number r1 such that

r0

(
|c1|+ |c2|+

b∫
a

q(s, x) ds

)
< x for x ≥ r1. (3.3)

Put

r2 =

(
1

r0
+

b∫
a

(|p1(s)|+ |p2(s)|) ds
)
r1, r = r1 + r2.
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Let p ∈ L([a, b]) be an arbitrary function satisfying inequality (1.4), λ ∈ ]0, 1[ , and u be an arbitrary
solution of problem (2.25), (2.26). By Lemma 2.7 and condition (2.2), it suffices to state that u admits
estimate (2.27).

By virtue of inequality (1.8), the function u is a solution of problem (3.1), (2.26). Thus it admits
the estimate

∥u∥ ≤ r0

(
|c1|+ |c2|+

b∫
a

q(s, ∥u∥) ds
)
.

Hence in view of (3.3) we have
∥u∥ ≤ r1.

If along with this inequality we take into account conditions (2.26) and (3.3), we find

|u′(t)| ≤ |u′(a)|+
b∫

a

|u′′(s)| ds ≤ |c1|+
b∫

a

q(s, r1) ds+

b∫
a

(|p1(s)|+ |p2(s)|) |u(s)| ds

≤ r1/r0 + r1

b∫
a

(|p1(s)|+ |p2(s)|) ds = r2 for a ≤ t ≤ b.

Therefore estimate (2.27) is valid.

Proof of Theorem 1.2. Inequality (1.12) yields inequality (1.8), where q(t, |x|) ≡ |f(t, 0)|. Conse-
quently, all the conditions of Theorem 1.1 are fulfilled which guarantees the solvability of problem
(1.1), (1.2).

Let u1 and u2 be arbitrary solutions of the above mentioned problem. Put

u(t) = u1(t)− u2(t).

In view of condition (1.12), the function u is a solution of the differential inequality

p1(t)|u(t)| ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|,

satisfying the boundary conditions (1.6). Hence by Lemma 2.1 it follows that u(t) ≡ 0. Consequently,
problem (1.1), (1.2) has one and only one solution.

By Lemma 2.5, Theorems 1.1 and 1.2 yield Corollaries 1.1 and 1.3, respectively. By Lemma 2.6,
Theorems 1.1 and 1.2 yield Corollaries 1.2 and 1.4, respectively.

In the case, where f(t, x) ≡ p(t)x+ q(t), Corollary 1.3 results in Corollary 1.5, and Corollary 1.4
results in Corollary 1.6.
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SOLVABILITY OF A NONLOCAL PROBLEM
BY A NOVEL CONCEPT OF FUNDAMENTAL FUNCTION



Abstract. Cauchy function, Green function and Riemann function are the several of the fundamental
functions used frequently in the expression of a fundamental solution in the literature. In order to
construct such functions, various ideas can be considered. The lesser-known one of these ideas is
contained in the papers [1–4] by Seyidali S. Akhiev. Inspired by these papers, the solvability of some
problems [12, 14, 15, 17–19] has been investigated. In this work, a novel kind of adjoint problem for
a generally nonlocal problem, and also Green’s functional via the solvability of that adjoint problem
are constructed [21]. By means of the obtained Green’s functional, an integral representation for the
solution of the nonlocal problem is established.1
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Key words and phrases. Green’s function, nonlocal condition, adjoint problem, uncoupled linear
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ÒÄÆÉÖÌÄ. ÊÏÛÉÓ ×ÖÍØÝÉÀ, ÂÒÉÍÉÓ ×ÖÍØÝÉÀ ÃÀ ÒÉÌÀÍÉÓ ×ÖÍØÝÉÀ ÞÉÒÉÈÀÃÉ ×ÖÍØÝÉÄÁÉÀ, ÒÏÌ-
ËÄÁÉÝ ËÉÔÄÒÀÔÖÒÀÛÉ áÛÉÒÀÃ ÂÀÌÏÉÚÄÍÄÁÀ ×ÖÍÃÀÌÄÍÔÖÒÉ ÀÌÏÍÀáÓÍÉÓ ßÀÒÌÏÓÀÃÂÄÍÀÃ. ÀÌ
×ÖÍØÝÉÄÁÉÓ ÀÓÀÂÄÁÀÃ ÀÒÓÄÁÏÁÓ ÒÀÌÃÄÍÉÌÄ ÌÉÃÂÏÌÀ. ÌÀÈ ÛÏÒÉÓ ÄÒÈ-ÄÒÈÉ ÍÀÊËÄÁÀÃ ÝÍÏ-
ÁÉËÉ ÌÏÚÅÀÍÉËÉÀ Ó. Ó. ÀáÉÄÅÉÓ ÍÀÛÒÏÌÄÁÛÉ [1–4]. ÀÌ ÓÔÀÔÉÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÂÀÌÏÊÅËÄÖË
ÉØÍÀ ÆÏÂÉÄÒÈÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÀ [12, 14, 15, 17–19]. ÍÀÛÒÏÌÛÉ ÆÏÂÀÃÉ ÀÒÀËÏÊÀËÖÒÉ
ÀÌÏÝÀÍÉÓÈÅÉÓ ÀÂÄÁÖËÉÀ ÀáÀËÉ ÔÉÐÉÓ ÛÄÖÙËÄÁÖËÉ ÀÌÏÝÀÍÀ, ÒÏÌËÉÓ ÀÌÏáÓÍÀÃÏÁÀÆÄ ÃÀÚ-
ÒÃÍÏÁÉÈ ÀÂÄÁÖËÉÀ ÂÒÉÍÉÓ ×ÖÍØÝÉÏÍÀËÉ [21]. ÌÉÙÄÁÖËÉ ÂÒÉÍÉÓ ×ÖÍØÝÉÏÍÀËÉÓ ÓÀÛÖÀËÄÁÉÈ
ÃÀÃÂÄÍÉËÉÀ ÀÒÀËÏÊÀËÖÒÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÉÍÔÄÂÒÀËÖÒÉ ßÀÒÌÏÃÂÄÍÀ.

1Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno
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1 Introduction
There are various papers related to the investigations on the differential systems involving general
boundary conditions [7,8,20,23]. To the best of our knowledge, there is no paper on the construction of
Green’s functional for an uncoupled system of linear ordinary differential equations with the exception
the abstract of conference [13]. This work deals with the construction of Green’s functional for such
a system with a general nonlocal condition. The main aim at this dealing is to identify the Green
function for the above-said system.

The rest of the work is organized as follows. In Section 2, the problem considered throughout the
work is stated in detail. In Section 3, the solution space and its adjoint space are introduced. In
Section 4, the adjoint operator, adjoint system and solvability conditions for the completely nonho-
mogeneous problem are given. In Section 5, Green’s functional is defined. In the last section, the
conclusions are emphasized.

2 Statement of the problem
Let R be the space of all real numbers, consider a bounded open interval G = (0, 1) in R. The problem
under consideration is stated as follows:

(V1U)(x) ≡ U ′(x) +A(x)U(x) = Z1(x), x ∈ G = (0, 1), (2.1)

V0U ≡ aU(0) +

1∫
0

g(ξ)U ′(ξ) dξ = Z0, (2.2)

where U(x) =

[
u1(x)
u2(x)

]
, Z1(x) =

[
z11(x)
z12(x)

]
, A(x) =

[
A1(x) 0

0 A2(x)

]
, g(ξ) =

[
g1(ξ) 0
0 g2(ξ)

]
are 2-

vectors and 2-square matrices defined on G, respectively; Z0 =

[
z01
z02

]
and a =

[
a1 0
0 a2

]
are 2-vector

and 2-square matrix with real entries, respectively. The symbol ′ denotes the ordinary derivative
of order one. Here A1(x), A2(x), z

1
1(x), z

1
2(x) ∈ Lp(G) with 1 ≤ p < ∞ and g1(ξ), g2(ξ) ∈ Lq(G)

( 1p + 1
q = 1). Lp(G) with 1 ≤ p < ∞ denotes the space of Lebesgue p-integrable functions on G.

L∞(G) denotes the space of measurable and essentially bounded functions on G, and W
(1)
p (G) with

1 ≤ p ≤ ∞ denotes the space of all functions u(x) ∈ Lp(G) having derivative du/dx ∈ Lp(G) [12,16,19].
The space W (1)

p (G) is equipped with the norm

∥u∥
W

(1)
p (G)

=

1∑
k=0

∥∥∥dku
dxk

∥∥∥
Lp(G)

.

The characteristic feature of this problem is that, instead of an ordinary boundary condition, it involves
a more comprehensive nonlocal boundary condition. The stated problem is investigated for a solution
vector U such that its entries u1 and u2 belong to the space W (1)

p (G).
Problem (2.1), (2.2) is a linear problem which can be considered as an operator equation

V U = Z (2.3)

with the linear operator V = (V1, V0) and Z = (Z1(x), Z0).
From the considerations given above, we have that V is bounded from W

(1)
p (G)2 into the Banach

space E2
p ≡ Lp(G)

2 × R2 of the elements Z = (Z1(x), Z0) with

∥z1∥Ep
= ∥z11(x)∥Lp(G) + |z01 |, ∥z2∥Ep

= ∥z12(x)∥Lp(G) + |z02 |, 1 ≤ p ≤ ∞.

If, for a given Z ∈ E2
p , problem (2.1), (2.2) has a unique solution U ∈ W

(1)
p (G)2 with ∥u1∥W (1)

p (G)
≤

c0∥z1∥Ep
and ∥u2∥W (1)

p (G)
≤ c1∥z2∥Ep

, then this problem is called a well-posed problem, where c0 and
c1 are constants independent of z1 and z2, respectively. Problem (2.1), (2.2) is well-posed if and only
if V :W

(1)
p (G)2 → E2

p is a (linear) homeomorphism.
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3 Adjoint space of the solution space
Problem (2.1), (2.2) is investigated by means of a novel concept of the adjoint problem which is
introduced in [2, 5]. Some isomorphic decompositions of the solution space W (1)

p (G)2 and its adjoint
space W (1)

p (G)2∗ are employed. Some of the principal features concerning with the solution space can
be given as follows: any function u ∈W

(1)
p (G) can be represented as

u(x) = u(α) +

x∫
α

u′(ξ) dξ, (3.1)

where α is a given point in G which is the set of closure points for G [12, 16, 19]. Furthermore, the
trace or the value operator D0u = u(γ) is bounded and surjective from W

(1)
p (G) onto R for a given

point γ of G. In addition, the value u(α) and the derivative u′(x) are unrelated elements of the
function u ∈W

(1)
p (G) such that for any real number ν0 and any function ν1 ∈ Lp(G), there exists one

and only one u ∈ W
(1)
p (G) such that u(α) = ν0 and u′(x) = ν1(x). Therefore, there exists a linear

homeomorphism between W
(1)
p (G)2 and E2

p . In other words, the space W (1)
p (G)2 has the isomorphic

decomposition W
(1)
p (G)2 = Lp(G)

2 × R2. The structure of the adjoint space is determined by the
following theorem.

Theorem 3.1 ([1, 2, 4, 12, 16, 19]). If 1 ≤ p < ∞, then any linear bounded functional F ∈ W
(1)
p (G)2∗

can be represented as

F (U) =

[
F 1(u1)
F 2(u2)

]
=



1∫
0

u′1(x)φ
1
1(x) dx+ u1(0)φ

1
0

1∫
0

u′2(x)φ
2
1(x) dx+ u2(0)φ

2
0

 (3.2)

with a unique element φ = (φ1(x), φ0) ∈ E2
q , where 1

p + 1
q = 1. Any linear bounded functional

F ∈W
(1)
∞ (G)2∗ can be represented as

F (U) =

[
F 1(u1)
F 2(u2)

]
=



1∫
0

u′1(x) dφ
1
1 + u1(0)φ

1
0

1∫
0

u′2(x) dφ
2
1 + u2(0)φ

2
0

 (3.3)

with a unique element φ = (φ1(e), φ0) ∈ Ê1 = (BA(Σ, µ))2 × R2, where µ is Lebesgue measure on R,
Σ is σ-algebra of the µ-measurable subsets e ⊂ G and BA(Σ, µ) is the space of all bounded additive
functions φ1(e) defined on Σ with φ1(e) = 0 when µ(e) = 0 [9]. The inverse is also valid, that is, if
φ ∈ E2

q , then (3.2) is bounded on W
(1)
p (G)2∗ for 1 ≤ p < ∞ and 1

p + 1
q = 1. If φ ∈ Ê1, then (3.3) is

bounded on W
(1)
∞ (G)2∗.

Proof. The operator NU ≡ (U ′(x), U(0)) : W
(1)
p (G)2 → E2

p is bounded and has a bounded inverse
N−1 represented by

U(x) = (N−1h)(x) ≡
x∫

0

h1(ξ) dξ + h0, h = (h1(x), h0) ∈ E2
p .

The kernel KerN of N is trivial and the image ImN of N is equal to E2
p . Hence, there exists a

bounded adjoint operator N∗ : E2∗
p → W

(1)
p (G)2∗ with KerN∗ = {0} and ImN∗ = W

(1)
p (G)2∗. In
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other words, for a given F ∈W
(1)
p (G)2∗, there exists a unique ψ ∈ E2∗

p such that

F = N∗ψ or F (U) = ψ(NU), U ∈W (1)
p (G)2. (3.4)

If 1 ≤ p < ∞, then E2∗
p = E2

q in the sense of an isomorphism [9]. Hence, the functional ψ can be
represented by

ψ(h) =

1∫
0

φ1(x)h1(x) dx+ φ0h0, h ∈ E2
p , (3.5)

with a unique element φ = (φ1(x), φ0) ∈ E2
q . Due to expressions (3.4) and (3.5), any F ∈ W

(1)
p (G)2∗

can uniquely be written by (3.2). For a given φ ∈ E2
q , the functional F written by (3.2) is bounded

on W
(1)
p (G)2. Hence, (3.2) is a general form for the functional F ∈W

(1)
p (G)2∗.

The proof is complete due to the fact that the case p = ∞ can likewise be shown [4,12,16,19].

Theorem 3.1 guarantees that W (1)
p (G)2∗ = E2

q for all 1 ≤ p < ∞, and W
(1)
∞ (G)2∗ = E2∗

∞ = Ê1.
The space E1 can also be considered as a subspace of the space Ê1 [4, 12,16,19].

4 Adjoint operator, adjoint system and solvability conditions
In this section, an explicit form for the adjoint operator V ∗ of V is investigated. To this end, any
f = (f1(x), f0) ∈ E2

q is taken as a linear bounded functional on E2
p and also we assume

f(V U) ≡
1∫

0

f1(x)(V1U)(x) dx+ f0(V0U), U ∈W (1)
p (G)2. (4.1)

By substituting expressions (2.1) and (2.2), and expression (3.1) for all entries of U ∈ W
(1)
p (G)2 (for

α = 0) into (4.1), we have

f(V U) ≡



1∫
0

f11 (x)
{
u′1(x) +A1(x)u1(x)

}
dx+ f10

(
a1u1(0) +

1∫
0

g1(ξ)u
′
1(ξ) dξ

)
1∫

0

f21 (x)
{
u′2(x) +A2(x)u2(x)

}
dx+ f20

(
a2u2(0) +

1∫
0

g2(ξ)u
′
2(ξ) dξ

)
 .

Hence, we obtain

f(V U) ≡
1∫

0

f1(x)(V1U)(x) dx+ f0(V0U) =

1∫
0

(w1f)(ξ)U
′(ξ) dξ + (w0f)U(0)

≡ (wf)(U) ∀ f ∈ E2
q , ∀U ∈W (1)

p (G)2, 1 ≤ p ≤ ∞, (4.2)

where

w1 =

[
w1

1

w2
1

]
, w0 =

[
w1

0

w2
0

]
,

(w1
1f

1)(ξ) = f11 (ξ) +

1∫
ξ

f11 (s)A1(s) ds+ f10 g1(ξ), w1
0f

1 =

1∫
0

f11 (x)A1(x) dx+ f10a1,

(w2
1f

2)(ξ) = f21 (ξ) +

1∫
ξ

f21 (s)A2(s) ds+ f20 g2(ξ), w2
0f

2 =

1∫
0

f21 (x)A2(x) dx+ f20a2.

(4.3)
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The operators w1
1, w

1
0, w

2
1 and w2

0 are linear and bounded from the space Eq of the pairs f = (f1(x), f0)
into the spaces Lq(G),R, Lq(G) and R, respectively. Therefore, the operator w = (w1, w0) : E

2
q → E2

q

represented by wf = (w1f, w0f) is linear and bounded. By (4.2) and Theorem 3.1, the operator
w is an adjoint operator for the operator V, when 1 ≤ p < ∞, in other words, V ∗ = w. When
p = ∞, w : E2

1 → E2
1 is bounded; in this case, the operator w is the restriction of the adjoint operator

V ∗ : E2∗
∞ →W

(1)
∞ (G)2∗ of V onto E2

1 ⊂ E2∗
∞ .

Equation (2.3) can always be transformed into the following equivalent equation

V Sh = Z (4.4)

with an unknown h = (h1, h0) ∈ E2
p by the transformation U = Sh, where S = N−1. If U = Sh, then

U ′(x) = h1(x), U(0) = h0. Hence, (4.2) can be rewritten as

f(V Sh) ≡
1∫

0

f1(x)(V1Sh)(x) dx+ f0(V0Sh)

=

1∫
0

(w1f)(ξ)h1(ξ) dξ + (w0f)h0 ≡ (wf)(h) ∀ f ∈ E2
q , ∀h ∈ E2

p , 1 ≤ p ≤ ∞.

Therefore, one of the operators V S and w becomes an adjoint operator for the other one. Consequently,
the equation

wf = φ (4.5)

with an unknown function f = (f1(x), f0) ∈ E2
q and a given function φ = (φ1(x), φ0) ∈ E2

q can be
considered as an adjoint equation of (4.4) (or of (2.3)) for all 1 ≤ p ≤ ∞, where

φ1 =

[
φ1
1

φ2
1

]
, φ0 =

[
φ1
0

φ2
0

]
.

Equation (4.5) can be written in explicit form as the system of equations

(w1
1f

1)(ξ) = φ1
1(ξ), ξ ∈ G,

w1
0f

1 = φ1
0,

(w2
1f

2)(ξ) = φ2
1(ξ), ξ ∈ G,

w2
0f

2 = φ2
0.

(4.6)

By expressions (4.3), the first and third equations in (4.6) are the integral equations for f11 (ξ), f21 (ξ),
respectively, and include f10 , f20 , respectively, as parameters; on the other hand, the second and fourth
equations in (4.6) are the algebraic equations for the unknowns f10 , f20 , respectively, and they include
some integral functionals defined on f11 (ξ), f21 (ξ), respectively. In other words, (4.6) is a system of four
integro-algebraic equations. This system called the adjoint system for (4.4) (or (2.3)) is constructed by
using (4.2) which is actually a formula of integration by parts in a nonclassical form. The traditional
type of an adjoint problem is defined by the classical Green’s formula of integration by parts [22],
therefore, has a sense only for some restricted class of problems [4, 12,16,19].

The following theorem concerning with the solvability of the problem can be derived.

Theorem 4.1 ([4, 12, 16, 19]). If 1 < p < ∞, then V U = 0 has either only the trivial solution or a
finite number of linearly independent solutions in W

(1)
p (G)2:

(1) If V U = 0 has only the trivial solution in W
(1)
p (G)2, then also wf = 0 has only the trivial

solution in E2
q . Then the operators V : W

(1)
p (G)2 → E2

p and w : E2
q → E2

q become linear
homeomorphisms.
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(2) If V U = 0 has m linearly independent solutions U1, U2, . . . , Um in W
(1)
p (G)2, then wf = 0 has

also m linearly independent solutions

f⋆ 1 ⋆ =
(
f⋆ 1 ⋆
1 (x), f⋆ 1 ⋆

0

)
, . . . , f⋆m⋆ =

(
f⋆m⋆
1 (x), f⋆m⋆

0

)
in E2

q . In this case, (2.3) and (4.5) have solutions U ∈ W
(1)
p (G)2 and f ∈ E2

q for the given
Z ∈ E2

p and φ ∈ E2
q if and only if the conditions

1∫
0

f⋆ i ⋆
1 (ξ)Z1(ξ) dξ + f⋆ i ⋆

0 Z0 = 0, i = 1, . . . ,m,

and
1∫

0

φ1(ξ)U
′
i(ξ) dξ + φ0Ui(0) = 0, i = 1, . . . ,m,

are satisfied, respectively.

5 Green’s functional
Consider the equation in the form of a functional identity

(wf)(U) = U(x) ∀U ∈W (1)
p (G)2, (5.1)

where f = (f1(ξ), f0) ∈ E2
q is an unknown pair and x ∈ G is a parameter [4, 12,16,19].

Definition 5.1 ([4, 12, 16, 19]). Let f(x) = (f1(ξ, x), f0(x)) ∈ E2
q be a pair with parameter x ∈ G. If

f = f(x) is a solution of (5.1) for a given x ∈ G, then f(x) is called Green’s functional of V (or of
(2.3)).

Theorem 5.1 ([4, 12, 16, 19]). If Green’s functional f(x) = (f1(ξ, x), f0(x)) of V exists, then any
solution U ∈W

(1)
p (G)2 of (2.3) can be represented by

U(x) =

1∫
0

f1(ξ, x)Z
1(ξ) dξ + f0(x)Z

0.

Additionally, KerV = {0}.

6 Conclusion
The proposed approach principally differs from the known classical construction methods of Green’s
function, it is based on the use of the structural properties of the space of solutions instead of the
classical Green’s formula of integration by parts, and it has a natural property which can be easily
applied to a very wide class of linear and some nonlinear boundary value problems involving linear
nonlocal nonclassical multi-point conditions with also integral-type terms. Because of these properties,
it is one of the scarce methods which are aimed at the derivation of a solution to such problems by
reducing to an integral equation in general. The proposed approach can successfully be employed also
for the functional differential problems resulting from the addition of some delayed, loaded (forced)
or neutral terms to the main operator as long as its linearity is conserved [6]. The work emphasizes
as a significant result that the unique solvability of the stated problem arises in the unique solvability
of the stated adjoint systems of integro-algebraic equations.
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ON THE SOLVABILITY AND THE WELL-POSEDNESS
OF THE MODIFIED CAUCHY PROBLEM FOR

LINEAR SYSTEMS OF GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Abstract. Effective sufficient conditions are given for the unique solvability and for the so-called H-
well-posedness of the modified Cauchy problem for linear systems of generalized ordinary differential
equations with singularities.
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ÃÀ Ä.ß. H-ÊÏÒÄØÔÖËÏÁÉÓ Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.
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integral, singularities, modified Cauchy problem, unique solvability, well-posednss, effective suffi-
cient conditions, spectral condition.

1 Statement of the problem and basic notation
Let I ⊂ R be an interval non-degenerate at the point, t0 ∈ I, and

It0 = I \ {t0}, I−t0 = ]−∞, t0[∩ I, I+t0 =]t0,+∞[∩ I.

Consider the linear system of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ It0 , (1.1)

where
A = (aik)

n
i,k=1 ∈ BVloc(It0 ,Rn×n), f = (fk)

n
k=1 ∈ BVloc(It0 ,Rn).

Let H = diag(h1, . . . , hn) : It0 → Rn×n be arbitrary diagonal matrix-functions with continuous
diagonal elements

hk : It0 → ]0,+∞[ (k = 1, . . . , n).

We consider the problem of finding a solution x ∈ BVloc(It0 ,Rn) of system (1.1) satisfying the
modified Cauchy condition

lim
t→t0−

(H−1(t)x(t)) = 0 and lim
t→t0+

(H−1(t)x(t)) = 0. (1.2)

Along with system (1.1), consider the perturbed singular system

dy = dÃ(t) · y + df̃(t) for t ∈ It0 , (1.3)
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where
Ã = (ãik)

n
i,k=1 ∈ BVloc(It0 ,Rn×n), f̃ = (f̃k)

n
k=1 ∈ BVloc(It0 ,Rn)

are, as above, the matrix- and vector-functions, respectively.
In the present paper, we give sufficient conditions for the unique solvability of problem (1.1), (1.2).

Moreover, we investigate the question when the unique solvability of problem (1.1), (1.2) guarantees
unique solvability of problem (1.3), (1.2) and, as well, the nearness of their solutions in the definite
sense if the matrix-functions A and Ã and the vector-functions f and f̃ are near, respectively.

The analogous problems for system of ordinary differential equations with singularities

dx

dt
= P (t)x+ q(t) for t ∈ I, (1.4)

where
P ∈ Lloc(It0 ,Rn×n), q ∈ Lloc(It0 ,Rn),

have been investigated in the papers [6–8].
The singularity of system (1.4) is considered in the sense that the matrix-function P and the

vector-function q are, in general, not integrable at the point t0. In general, a solution of problem
(1.4), (1.2) is not continuous at the point t0 and, therefore, it cannot be a solution in the classical
sense. But its restriction on every interval from It0 is a solution of system (1.4). In this connection
we give the example from [8].

Let α > 0 and ε ∈ ]0, α[ . Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α, lim

t→0
(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not a solution of the equation in the set
I = R, but its restrictions on ]−∞, 0[ and ]0,+∞[ are the solutions of these equation.

The singularity of system (1.1) is considered in the sense that the matrix-function A and the
vector-function f may have non-bounded total variation at the point t0, i.e., on some closed interval
[a, b] from I such that t0 ∈ [a, b].

As is known, such a problem for generalized differential system (1.1) has not been studied. So, the
problem remains actual.

Some singular two-point boundary problems for generalized differential system (1.1) are investi-
gated in [3–5].

To a considerable extent, the interest to the theory of generalized ordinary differential equations has
also been stimulated by the fact that this theory enables one to study ordinary differential, impulsive
and difference equations from a unified point of view (see [2–5,10,11] and the references therein).

In the paper the use will be made of the following notation and definitions.
R = ] −∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, the closed and open

intervals.
Rn×m is the space of all real n×m matrices X = (xik)

n,m
i,k=1 with the norm ∥X∥ = max

k=1,...,m

n∑
i=1

|xik|.

If X = (xik)
n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,mi,k=1, [X]+ = |X|+X

2 , [X]− = |X|−X
2 .

Rn×m
+ = {(xik)

n,m
i,k=1 : xik ≥ 0 (i = 1, . . . , n; k = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the determinant
of X and the spectral radius of X; In is the identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
If X : R → Rn×m is a matrix-function, then

b∨
a
(X) is the sum of total variations on [a, b] of its

components xik (i = 1, . . . , n; k = 1, . . . ,m); if a > b, then we assume
b∨
a
(X) = −

a∨
b

(X);
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X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X : [a, b] →
Rn×m at the point t (X(a−) = X(a), X(b+) = X(b)).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the set of all bounded variation matrix-functions X : [a, b] → Rn×m (i.e., such

that
b∨
a
(X) < ∞).

BVloc(J ;D), where J ⊂ R is an interval and D ⊂ Rn×m, is the set of all X : J → D whose
restriction on [a, b] belongs to BV([a, b];D) for every closed interval [a, b] from J .

BVloc(It0 ;D) is the set of all X : I → D whose restriction on [a, b] belongs to BV([a, b];D) for
every closed interval [a, b] from It0 .

Everywhere we assume that a1 ∈ I−t0 and a2 ∈ I+t0 are some fixed points.
If X ∈ BVloc(It0 ;Rn×m), then V (X)(t) = (v(xik)(t))

n,m
i,k=1 for t ∈ It0 , where v(xik)(aj) = 0,

v(xik)(t) ≡
t∨
aj

(xik) for (t− t0)(aj − t0) > 0 (j = 1, 2).

[X(t)]v+ ≡ V (X)(t)+X(t)
2 , [X(t)]v− ≡ V (X)(t)−X(t)

2 .
s1, s2, sc and J : BVloc(It0 ;R) → BVloc(It0 ;R) are the operators defined, respectively, by

s1(x)(aj) = s2(x)(aj) = 0, sc(x)(aj) = x(aj);

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ)

sc(x)(t) = sc(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s))

for s < t < t0 if aj < t0 and for t0 < s < t if aj > t0 (j = 1, 2)

and

J (x)(aj) = x(aj),

J (x)(t) = J (x)(s) + sc(x)(t)− sc(x)(s)−
∑

s<τ≤t

ln |1− d1x(τ)|+
∑

s≤τ<t

ln |1 + d2x(τ)|

for s < t < t0 if aj < t0 and for t0 < s < t < t0 if aj > t0 (j = 1, 2).

If X ∈ BVloc(It0 ;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ It0 (j = 1, 2), and Y ∈BVloc(It0 ;Rn×m),
then

A(X,Y )(aj) = On×m,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ)

for s < t < t0 if aj < t0 and for t0 < s < t < t0 if aj > t0 (j = 1, 2).

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then
t∫

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ) d1g(τ) +
∑

s≤τ<t

x(τ) d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ0(sc(g)) corresponding to the function sc(g). If a = b, then we assume
b∫
a

x(t) dg(t) = 0,

and if a > b, then
b∫
a

x(t) dg(t) = −
a∫
b

x(t) dg(t). So,
t∫
s

x(τ) dg(τ) is the Kurzweil integral [9–11].



142 Malkhaz Ashordia and Valida Sesadze

Moreover, we put
t+∫
s

x(τ) dg(τ) = lim
δ→0+

t+δ∫
s

x(τ) dg(τ),

t−∫
s

x(τ) dg(τ) = lim
δ→0+

t−δ∫
s

x(τ) dg(τ).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then
t∫

s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s, t ∈ R.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function and X = (xkj)

n,m
k,j=1 : [a, b] →

Rn×m, then
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ) dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sc(G)(t) ≡ (sc(gik)(t))
l,n
i,k=1, Sj(G)(t) ≡

(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2).

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions, G = G1 −G2 and X : [a, b] →
Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for s, t ∈ R,

Sc(G) = Sc(G1)− Sc(G2), Sj(G) = Sj(G1)− Sj(G2) (j = 1, 2).

A vector-function x : It0 → Rn is said to be a solution of system (1.1) if x ∈ BV([a, b],Rn) for
every closed interval [a, b] from It0 and

x(t) = x(s) +

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s < t ≤ b.

We assume that
det(In + (−1)jdjA(t)) ̸= 0 for t ∈ It0 (j = 1, 2).

The above inequalities guarantee the unique solvability of the Cauchy problem for the correspond-
ing nonsingular systems (see [9–11]), i.e., for the case when A ∈ BVloc(I,Rn×n) and f ∈ BVloc(I,Rn).

Let the matrix-function A0 ∈ BVloc(It0 ,Rn×n) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ It0 (j = 1, 2). (1.5)

Then a matrix-function C0 : It0 × It0 → Rn×n is said to be the Cauchy matrix of the generalized
differential system

dx = dA0(t) · x, (1.6)
if for every interval and J ⊂ I and τ ∈ J , the restriction of the matrix-function C0(., τ) : It0 → Rn×n

on J is the fundamental matrix of system (1.6) satisfying the condition

C0(τ, τ) = In.

Therefore, C0 is the Cauchy matrix of system (1.6) if and only if the restriction of C0 on every interval
J × J is the Cauchy matrix of the system in the sense of definition given in [11].

We assume

I−t0(δ) = [t0 − δ, t0[∩It0 , I+t0(δ) = ]t0, t0 + δ] ∩ It0 , It0(δ) = I−t0(δ) ∪ I+t0(δ)

for every δ > 0.
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2 Existence and uniqueness of solutions of the Cauchy prob-
lem

In this section we give sufficient conditions for the unique solvability of problem (1.1), (1.2).

Theorem 2.1. Let there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and constant matrices B0

and B from Rn×n
+ such that conditions (1.5) and

r(B) < 1 (2.1)

hold, and the estimates

|C0(t, τ)| ≤ H(t)B0 H
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (2.2)

and ∣∣∣∣
t∫

t0∓

|C0(t, τ)| dV (A(A0, A−A0)(τ)) ·H(τ)

∣∣∣∣ ≤ H(t)B

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively, (2.3)

are valid for some δ > 0, where C0 is the Cauchy matrix of system (1.4). Let, moreover, respectively,

lim
t→t0∓

∥∥∥∥
t∫

t0∓

H−1(τ) |C0(t, τ)| dV (A(A0, f))(τ)

∥∥∥∥ = 0. (2.4)

Then problem (1.1), (1.2) has the unique solution.

Theorem 2.2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (2.1)
and [

(−1)jdjaii(t)
]
+
> −1 for t < t0 (j = 1, 2; i = 1, . . . , n),[

(−1)jdjaii(t)
]
− < 1 for t > t0 (j = 1, 2; i = 1, . . . , n)

(2.5)

hold, and the estimates

|ci(t, τ)| ≤ b0
hi(t)

hi(τ)
for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n), (2.6)

∣∣∣∣
t∫

t0∓

ci(t, τ)hi(τ) d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣
≤ bii(t)hi(t) for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n) (2.7)

and ∣∣∣∣
t∫

t0∓

ci(t, τ)hk(τ) dV (A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik(t)hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n) (2.8)

are valid for some b0 > 0 and δ > 0. Let, moreover, respectively,

lim
t→t0∓

t∫
t0∓

ci(t, τ)

hi(t)
dV (A(a0ii, fi))(τ) = 0 (i = 1, . . . , n), (2.9)

where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n) and ci is the Cauchy function of the

equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then problem (1.1), (1.2) has the unique solution.
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Remark 2.1. The Cauchy functions ci(t, τ) (i = 1, . . . , n), mentioned in the theorem, for t, τ ∈ I−t0
and t, τ ∈ I+t0 , have the form

ci(t, τ) =



exp
(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
τ<s≤t

(1− d1a0ii(s))
−1

∏
τ≤s<t

(1 + d2a0ii(s)) for t > τ,

exp
(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
t<s≤τ

(1− d1a0ii(s))
∏

t≤s<τ

(1 + d2a0ii(s))
−1 for t < τ,

1 for t = τ.

Corollary 2.1. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (2.1)
and (2.5) hold, and the estimates

∣∣∣∣
t∫

t0∓

|τ − t0| d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣
≤ bii |t− t0| for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n) (2.10)

and∣∣∣∣
t∫

t0∓

|τ − t0| dV (A(a0ii, aik))(τ)

∣∣∣∣
≤ bik |t− t0| for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n) (2.11)

are valid for some δ > 0. Let, moreover, respectively,

lim
t→t0∓

1

|t− t0|

∣∣∣ t∨
t0

(A(a0ii, fi))(τ)
∣∣∣ = 0 (i = 1, . . . , n), (2.12)

where a0ii(t) ≡ −[aii(t) sgn(t − t0))]
v
− sgn(t − t0) (i = 1, . . . , n). Then system (1.1) has the unique

solution satisfying the initial condition

lim
t→t0∓

∥x(t)∥
t− t0

= 0. (2.13)

Remark 2.2. In Corollary 2.2, if the estimates∣∣∣∣
t∫

s

|τ − t0| d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣ ≤ bii|t− s|

for t, s ∈ It0(δ), (t− t0)(s− t0) > 0, |s− t0| ≤ |t− t0| (i = 1, . . . , n)

and ∣∣∣∣
t∫

s

|τ − t0| dV (A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik |t− s|

for t, s ∈ It0(δ), (t− t0)(s− t0) > 0, |s− t0| ≤ |t− t0| (i ̸= k; i, k = 1, . . . , n)

hold instead of (2.10) and (2.11), respectively, then the solution of problem (1.1), (2.13) belongs to
BVloc(I,Rn).

Corollary 2.2. Let conditions (2.5) and

J (a0ii)(t)− J (a0ii)(τ) ≤ −λi ln t− t0
τ − t0

+ a∗ii(t)− a∗ii(τ)

for t, τ ∈ It0 , (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n) (2.14)
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hold, where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n), λi ≥ 0 (i = 1, . . . , n), a∗ii

(i = 1, . . . , n) are nondecreasing functions on the intervals I−t0 and I+t0 . Let, moreover,

∣∣∣∣
t∫

t0∓

|τ−t0|λi−λk dV (A(a0ii, aik))(τ)

∣∣∣∣<+∞

for t∈I−t0 and t∈I+t0 , respectively (i ̸=k; i, k=1, . . . , n), (2.15)

and ∣∣∣∣
t∫

t0∓

|τ − t0|λi dV (A(a0ii, fi))(τ)

∣∣∣∣ < +∞

for t ∈ I−t0 and t ∈ I+t0 , respectively (i = 1, . . . , n). (2.16)

Then system (1.1) has the unique solution satisfying the initial condition

lim
t→t0∓

(
|t− t0|λi xi(t)

)
= 0 (i = 1, . . . , n). (2.17)

3 Well-posedness of the Cauchy problem
Let It0t = ]min{t0, t},max{t0, t}[ for t ∈ I.

Definition 3.1. Problem (1.1), (1.2) is said to be H-well-posed if it has the unique solution x and
for every ε > 0 there exists η > 0 such that problem (1.3), (1.2) has the unique solution y and the
estimate

∥H(t) (x(t)− y(t))∥ < ε for t ∈ I

holds for every Ã ∈ BVloc(It0 ,Rn×n) and f̃ ∈ BVloc(It0 ,Rn) such that

det
(
In + (−1)jdjÃ(t)

)
̸= 0 for t ∈ It0 (j = 1, 2);

∥∥∥∥
t∫

t0∓

H−1(s) dV (Ã−A)(s) ·H(s)

∥∥∥∥+

2∑
j=1

∥∥∥∥∥ ∑
τ∈It0t

H−1(τ)|dj(Ã−A)(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively (j=1,2),

and

∥∥∥∥
t∫

t0∓

H−1(s) dV (f̃ − f)(s) ·H(s)

∥∥∥∥+

2∑
j=1

∥∥∥∥∥ ∑
τ∈It0t

H−1(τ)|dj(f̃ − f)(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively (j=1,2).

Theorem 3.1. Let I be a closed interval and there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and
constant matrices B0 and B from Rn×n

+ such that conditions (1.5), (2.1) hold and estimates (2.2),

|C0(t, τ)| |djA0(τ)(In + (−1)jdjA0(τ))
−1| ≤ H(t)B0 H

−1(τ)

for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (j = 1, 2)
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and

∥∥∥∥
t∫

t0∓

|C0(t, τ)| dV (A)(s) ·H(s)

∥∥∥∥
+

2∑
j=1

∥∥∥∥∥ ∑
l∈It0t

|C0(t, τ)||djA0(τ) · (In + (−1)jdjA0(τ))
−1| |djA(τ)|H(τ)

∥∥∥∥∥ < η

for t ∈ I−t0 and t ∈ I+t0 , respectively,

are valid for some δ > 0, where C0 is the Cauchy matrix of system (1.6). Let, moreover, respectively,

lim
t→t0∓

(∥∥∥∥
t∫

t0∓

H−1(t) |C0(t, τ)| dV (f)(τ)

∥∥∥∥
+

2∑
j=1

∥∥∥∥ ∑
l∈It0t

H−1(t)|C0(t, τ)| |djA0(τ) · (In + (−1)jdjA0(τ))
−1| |djf(τ)|

∥∥∥∥) = 0.

Then problem (1.1), (1.2) is H-well-posed.

Theorem 3.2. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+

such that conditions (2.1), (2.5) hold and estimates (2.6), (2.7),

|ci(t, τ)| |dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| ≤ b0

hi(t)

hi(τ)

for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n; j = 1, 2)

and

∣∣∣∣
t∫

t0∓

|ci(t, τ)|hk(τ) dv(aik)(τ)

∣∣∣∣
+

2∑
j=1

∣∣∣∣ ∑
τ∈It0t

|ci(t, τ)||dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djaik(τ)|hi(τ)

∣∣∣∣ ≤ bik hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)

are valid for some b0 > 0 and δ > 0. Let, moreover, respectively,

lim
t→t0∓

(∣∣∣∣
t∫

t0∓

|ci(t, τ)|
hi(t)

dv(fi)(τ)

∣∣∣∣
+

2∑
j=1

∑
τ∈It0t

|ci(t, τ)|
hi(t)

|dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djfi(τ)|

)
= 0 (i = 1, . . . , n),

where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0) (i = 1, . . . , n), and ci is the Cauchy function of the

equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then problem (1.1), (1.2) is H-well-posed.

Corollary 3.1. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+
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such that conditions (2.1) and (2.5) hold, and the estimates

J (a0ii)(t)− J (a0ii)(τ) ≤ µi ln t− t0
τ − t0

for t, τ ∈ It0 , (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n), (3.1)

lim
τ→t0∓

∣∣∣[aii(t) sgn(t− t0)
]v
+
−
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣
≤ bii for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n)

and

lim
τ→t0∓

∣∣v(aik)(t)− v(aik)(τ) +

2∑
j=1

∑
s∈It0τ

|dja0ii(s) · (1 + (−1)jdja0ii(s))
−1| |djaik(s)| ≤ bik

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)

are valid for some µi ≥ 0 (i = 1, . . . , n) and δ > 0, where a0ii(t) ≡ −[aii(t) sgn(t − t0)]
v
− sgn(t − t0)

(i = 1, . . . , n). Let, moreover, respectively,

lim
t→t0∓

(∣∣∣∣
t∫

t0∓

1

|τ − t0|µi
dv(fi)(τ)

∣∣∣∣
+

2∑
j=1

∑
τ∈It0τ

1

|τ − t0|µi
|dja0ii(τ) · (1 + (−1)jdja0ii(τ))

−1| |djfi(τ)|
)

= 0 (i = 1, . . . , n).

Then system (1.1) under the condition

lim
t→t0∓

xi(t)

|t− t0|µi
= 0 (i = 1, . . . , n) (3.2)

is H-well-posed.

Remark 3.1. Let, in addition to the conditions of Corollary 3.1, the condition

lim
t→t0∓

sup ξji(t) < +∞ (j = 1, 2; i = 1, . . . , n) (3.3)

hold, where

ξji(t) =
∑
τ∈Itj

n∑
k=1

|τ − t0|µk |djaik(τ)|+ |djfi(τ)| for t ∈ It0∩ ]a1, a2[ (j = 1, 2; i = 1, . . . , n), (3.4)

It1 = ]a1, t] and It2 = [a1, t[ for a1 < t < t0, It1 = ]t, a2] and It2 = [t, a2[ for t0 < t < a2. Then the
solution of problem (1.1), (3.2) belongs to BVloc(I,Rn).

Corollary 3.2. Let I be a closed interval and there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+

such that conditions (2.1) and (2.5) hold, and estimates (2.10), (3.1) for µi = 0 (i = 1, . . . , n) and

∣∣∣∣
t∫

t0∓

|τ − t0| dv(aik))(τ)
∣∣∣∣+ 2∑

j=1

∑
τ∈It0t

|τ − t0||dja0ii(τ) · (1+ (−1)jdja0ii(τ))
−1| |djaik(τ)| ≤ bik|t− t0|

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)
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are valid for some δ > 0, where a0ii(t) ≡ −[aii(t) sgn(t−t0)]
v
− sgn(t−t0) (i = 1, . . . , n). Let, moreover,

respectively,

lim
t→t0∓

1

|t− t0|

(
|v(fi)(t)− v(fi)(t0∓)|

+

2∑
j=1

∑
τ∈It0τ

|dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djfi(τ)|

)
= 0 (i = 1, . . . , n).

Then problem (1.1), (2.13) is H-well-posed.

Remark 3.2. Let, in addition to the conditions of Corollary 3.2, condition (3.3) hold, where the
functions ξji (j = 1, 2; i = 1, . . . , n) are defined by (3.4), µi = 1 (i = 1, . . . , n), and the intervals
Itj (j = 1, 2) are defined as in Remark 3.1. Then the solution of problem (1.1), (2.13) belongs to
BVloc(I,Rn).

Corollary 3.3. Let I be a closed interval and let conditions (2.5) and (2.14) hold, where a0ii(t) ≡
−[aii(t) sgn(t−t0)]

v
− sgn(t−t0) (i = 1, . . . , n), λi ≥ 0 (i = 1, . . . , n), and the functions a∗ii(t) sgn(t−t0)

(i = 1, . . . , n) are nondecreasing on the interval I. Let, moreover,

∣∣∣∣
t∫

t0∓

|τ − t0|λi−λk dv(aik))τ)

∣∣∣∣
+

2∑
j=1

∣∣∣∣ ∑
τ∈It0t

|τ − t0|λi−λk |dja0ii(τ) · (1 + (−1)jdja0ii(τ))
−1| |djaik(τ)|

∣∣∣∣ < +∞

for t ∈ I+t0 and t ∈ I−t0 , respectively (i ̸= k; i, k = 1, . . . , n)

and

∣∣∣∣
t∫

t0∓

|τ − t0|λi dv(fi))(τ)

∣∣∣∣+ 2∑
j=1

∑
τ∈It0t

|τ − t0|λi−λk |dja0ii(τ) · (1+ (−1)jdja0ii(τ))
−1| |djfi(τ)| < +∞

for t ∈ I−t0 and t ∈ I+t0 , respectively (i = 1, . . . , n).

Then system (1.1) under the condition

lim
t→t0∓

(
|t− t0|λi xi(t)

)
= 0 (i = 1, . . . , n) (3.5)

is H-well-posed.

Remark 3.3. Let the conditions of Corollary (3.3) hold, where λi = 0 (i = 1, . . . , n). Let, in
addition, condition (3.3) hold, where the functions ξji (j = 1, 2; i = 1, . . . , n) are defined by (3.4),
µi = 0 (i = 1, . . . , n), and the intervals Itj (j = 1, 2) are defined as in Remark 3.1. Then the solution
of problem (1.1), (3.5) belongs to BVloc(I,Rn).

Remark 3.4. In Remarks 3.1–3.3, condition (3.3) is essential, i.e., if the condition is violated, then the
conclusion of our remarks are not true. Below, we reduce the corresponding example. Let I = [0, 1],
n = 1, t0 = 0, tn = 1/

√
n (n = 1, 2, . . . ), the function a : I → R is defined by

a(0) = 0, a(1) = − ln 2, a(t) = ln
(
kn(t− tn) +

1

n

)
for tn ≤ t < tn−1 (n = 2, 3, . . . ),

where kn = (n − 2)(2n(n − 1)(tn − tn−1))
−1 (n = 2, 3, . . . ). It is evident that the singular Cauchy

problem
dx = xda(t), lim

t→0
t−1|x(t)| = 0
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has the unique solution x defined by the equalities

x(t) = kn(t− tn) +
1

n
for tn ≤ t < tn−1 (n = 2, 3, . . . ), x(1) = − ln 2.

Moreover, we have d2x(t) ≡ 0 and d1x(tn) = 1/2 (n = 2, 3, . . . ). Thus we conclude that x ∈
BVloc(It0 ;R), but x ̸∈ BVloc(I;R). Besides, taking into account that the function a(t) is non-
increasing on the intervals tn ≤ t < tn−1 (n = 2, 3, . . . ), we conclude that [a(t)]v+ = 0 on these
intervals. Therefore, due to the equalities d2a(t) ≡ 0 and d1a(tn) = 1/2 (n = 2, 3, . . . ), all the
conditions of our remarks are fulfilled with the exclusion of (3.3).
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