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Abstract. The present monograph is concerned with the investigation and numerical solution of the
initial-boundary value problems for some nonlinear partial differential and parabolic type integro-
differential models. The models are based on the well-known system of Maxwell equations which
describes the process of propagation of an electromagnetic field into a medium. The existence, unique-
ness and asymptotic behavior of solutions, as time tends to infinity, for some types of initial-boundary
value problems are studied. The examples of one-dimensional nonlinear systems and their analytical
solutions are given which show that those systems do not, in general, have global solutions. Conse-
quently, the case of a blow-up solution is observed. Linear stability of the stationary solution of the
initial-boundary value problem for one nonlinear system is proved. The possibility of occurrence of the
Hopf-type bifurcation is established. Semi-discrete and finite difference approximations are discussed.
The splitting-up scheme with respect to physical processes for one-dimensional case as well as addi-
tive Rothe-type semi-discrete schemes for multi-dimensional cases are investigated. The stability and
convergence properties for those schemes are studied. Algorithms for finding approximate solutions
are constructed. Results of numerical experiments with tables and graphical illustrations are given.
Their analysis is carried out.
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ÒÄÆÉÖÌÄ. ÌÏÍÏÂÒÀ×ÉÀ ÄÞÙÅÍÄÁÀ ÆÏÂÉÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÊÄÒÞÏßÀÒÌÏÄÁÖËÄÁÉÀÍÉ ÃÀ ÐÀÒÀÁÏËÖ-
ÒÉ ÔÉÐÉÓ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÌÏÃÄËÄÁÉÓÀÈÅÉÓ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÂÀÌÏ-
ÊÅËÄÅÀÓ ÃÀ ÒÉÝáÅÉÈ ÀÌÏáÓÍÀÓ. ÄÓ ÌÏÃÄËÄÁÉ ÃÀ×ÖÞÍÄÁÖËÉÀ ÌÀØÓÅÄËÉÓ ÝÍÏÁÉË ÂÀÍÔÏËÄÁÀ-
ÈÀ ÓÉÓÔÄÌÀÆÄ, ÒÏÌÄËÉÝ ÀÙßÄÒÓ ÂÀÒÄÌÏÛÉ ÄËÄØÔÒÏÌÀÂÍÉÔÖÒÉ ÅÄËÉÓ ÂÀÅÒÝÄËÄÁÉÓ ÐÒÏÝÄÓÓ.
ÒÀÌÃÄÍÉÌÄ ÔÉÐÉÓ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÀÈÅÉÓ ÛÄÓßÀÅËÉËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÀ,
ÄÒÈÀÃÄÒÈÏÁÀ ÃÀ ÀÓÉÌÐÔÏÔÉÊÖÒÉ ÚÏ×ÀØÝÄÅÀ ÃÒÏÉÈÉ ÝÅËÀÃÉÓ ÖÓÀÓÒÖËÏÃ ÆÒÃÉÓÀÓ. ÄÒÈ-
ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÓÉÓÔÄÌÄÁÉÓ ÌÀÂÀËÉÈÄÁÉ ÃÀ ÌÀÈÉ ÀÍÀËÉÆÖÒÉ ÀÌÏÍÀáÓÍÄÁÉ ÀÜÅÄÍÄÁÄÍ, ÒÏÌ ÀÌ
ÓÉÓÔÄÌÄÁÓ ÓÀÆÏÂÀÃÏÃ ÀÒ ÂÀÀÜÍÉÀÈ ÂËÏÁÀËÖÒÉ ÀÌÏÍÀáÓÍÄÁÉ. ÛÄÓÀÁÀÌÉÓÀÃ, ÃÀ×ÉØÓÉÒÄÁÖËÉÀ
×ÄÈØÄÁÀÃÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÛÄÌÈáÅÄÅÀÝ. ÄÒÈÉ ÓÉÓÔÄÌÉÓ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉ-
ÓÀÈÅÉÓ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÓÔÀÝÉÏÍÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ ßÒ×ÉÅÀÃ ÌÃÂÒÀÃÏÁÀ. ÀÙÌÏÜÄÍÉËÉÀ
äÏ×ÉÓ ÔÉÐÉÓ ÁÉ×ÖÒÊÀÝÉÀÓ ÛÄÓÀÞËÄÁËÏÁÀ. ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÛÄÌÈáÅÄÅÉÓÀÈÅÉÓ ÛÄÓßÀÅËÉ-
ËÉÀ ×ÉÆÉÊÖÒÉ ÐÒÏÝÄÓÄÁÉÓ ÌÉÌÀÒÈ ÂÀáËÄÜÉËÉ ÓØÄÌÄÁÉ, ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÛÄÌÈáÅÄÅÄ-
ÁÉÓÀÈÅÉÓ ÊÉ ÀÃÉÔÉÖÒÉ ÒÏÔÄÓ-ÔÉÐÉÓ ÍÀáÄÅÒÀÃ-ÃÉÓÊÒÄÔÖËÉ ÓØÄÌÄÁÉ. ÂÀÌÏÊÅËÄÖËÉÀ ÀÌ
ÓØÄÌÄÁÉÓ ÌÃÂÒÀÃÏÁÉÓÀ ÃÀ ÊÒÄÁÀÃÏÁÉÓ ÈÅÉÓÄÁÄÁÉ. ÛÄØÌÍÉËÉÀ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏÍÀáÓÍÄÁÉÓ
ÌÏÞÄÁÍÉÓ ÀËÂÏÒÉÈÌÄÁÉ. ÂÒÀ×ÉÊÄÁÉÓÀ ÃÀ ÝáÒÉËÄÁÉÓ ÓÀáÉÈ ÌÏÝÄÌÖËÉÀ ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉ-
ÌÄÍÔÄÁÉÓ ÛÄÃÄÂÄÁÉ. ÜÀÔÀÒÄÁÖËÉÀ ÌÀÈÉ ÀÍÀËÉÆÉ.



Introduction

Differential, integral and integro-differential equations (IDEs) occur in many applications. Numerous
scientific works, monographs and textbooks are devoted to the investigation of differential equations.
There are lots of publications in the field of integral and integro-differential models, as well. Differential
equations connect unknown functions, their derivative and an independent variable or variables. On
the other hand, integral equations contain unknown functions under the integral sign. In the literature,
the term IDE is used in the case if the equation contains an unknown function together with its
derivative and if either an unknown function, or its derivative, or both appear under the integral sign.

Differential equations are, naturally, divided into two classes: ordinary differential equations
(ODEs) and partial differential equations (PDEs). If the derivative is always taken with respect
to one variable, the differential equation is called ODE. Other differential equations, on the contrary,
which often occur in the mathematical physics, contain derivatives with respect to different variables
are called PDEs.

Integro-differential models are also divided into two classes: ordinary integro-differential equations
(OIDEs) and partial integro-differential equations (PIDEs). Let us give a general classification of
IDEs. If the equation contains derivatives of an unknown function of one variable, then the IDE
is called OIDE. The order of an equation is the same as that of the higher-order derivative of the
unknown function in the equation.

The IDEs, encountered often in physics and mathematics, contain derivative of various variables;
therefore, those equations are called as the integro-differential equations with partial derivatives or
PIDEs.

The ODEs and OIDEs are the special cases of the PDEs and PIDEs, but the behavior of their
solutions is quite different, in general. It is much more complicated in the case of PDEs and PIDEs
and caused by the fact that the functions which we are looking for are the functions of more than one
independent variable.

The advantage of the IDEs representation for a variety of problems is witnessed by their increasing
frequency in the literature and in many texts dealing with the method of advanced applied mathemat-
ics. Also, the suitability of the solution method for machine computation, combined with the inherent
simplicity of the subject structure make the IDE approach very valuable for many applications (see,
e.g., [12, 19,39,48] and the references therein).

The IDEs are classified as two types of the OIDEs and PIDEs; namely, the Fredholm and Voltera
types, as it is usually given in the well-known theory of integral equations. The Fredholm and Volterra
type IDEs can be classified into the first, second and third kinds as it is in the theory of integral
equations.

The theory of PDEs and PIDEs considers three main classes: elliptic, parabolic and hyperbolic
type equations. Although, there are models not belonging to those classes.

All the above-mentioned differential, integral and integro-differential models are broadly classified
as linear and nonlinear. For example, a linear PDE is one in which all of the partial derivatives appear
in a linear form and none of the coefficients depends on the dependent variables. The coefficient may
be a function of the independent variables. A nonlinear PDE can be described as a PDE involving
nonlinear terms.

The purpose of the present work is to study some classes of nonlinear partial differential and
parabolic IDEs based on the well-known system of Maxwell equations.

The process of electromagnetic field penetration in the medium is described by the system of
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Maxwell equations. In the quasistationary approximation this system has the form [47]:

∂H

∂t
= −∇× (νm∇×H), (0.0.1)

∂θ

∂t
= νm(∇×H)2, (0.0.2)

where H = (H1,H2,H3) is a vector of magnetic field, θ is temperature, νm characterizes the electro-
conductivity of the medium. In system (0.0.1), (0.0.2), by ∇× the usual operation of the field theory
is designated. As a rule, the coefficient νm is a function of argument θ. Equations (0.0.1) describe the
process of diffusion of the magnetic field, whereas equation (0.0.2) describes the change of temperature
at the expense of the Joule heating.

Maxwell equations appeared first in Philosophical Transactions of the Royal Society of London
under the title “A Dynamical Theory of the Electromagnetic Field”, in 1865. James Clerk Maxwell
wrote: “The agreement of the results seems to show that light and magnetism are affections of the
same medium, and that light is an electromagnetic disturbance propagated through the field according
to electromagnetic laws”. With that knowledge, he has changed the world forever. In the span of 150
years since his celebrated paper, numerous scientific discoveries and technological innovations have
originated from the Maxwell equations.

For a more thorough description of electromagnetic field propagation in a medium, it is desirable
to take into consideration different physical effects, first of all, heat conductivity of the medium has
to be taken into account. In this case, together with (0.0.1), instead of (0.0.2) the equation [47]

∂θ

∂t
= νm(∇×H)2 + div(κm grad θ) (0.0.3)

is considered, where κm is a coefficient of heat conductivity. As a rule, this coefficient is a function of
argument θ, as well. In (0.0.3), by div and grad the usual operations of the field theory are designated.

The literature on the questions of existence, uniqueness, regularity, asymptotic behavior of so-
lutions and numerical resolutions of the initial-boundary value problems for one-, two- and three-
dimensional cases to the models of (0.0.1), (0.0.2) and (0.0.1), (0.0.3) type is very rich (see, e.g.,
[2, 7, 9, 13,18,19,21,22,25,36,40,47,49,56,60,63,68–70,73] and the references therein).

Besides, the essential nonlinearity, complexities of the above-mentioned systems (0.0.1), (0.0.2)
and (0.0.1), (0.0.3) are caused by its multi-dimensionality. It is well known that the general method
for constructing economic algorithms for multi-dimensional problems of mathematical physics is the
method of decomposition. This approach allows one to reduce multi-dimensional problems to a set
of one-dimensional ones, whose numerical realizations obviously need less computer resources (see,
e.g., [1, 14,15,57,64,72] and the references therein).

Complex nonlinearity dictates also to split along the physical process and investigate the basic
model by splitted ones, where the first model considers the Joule law, whereas the second process
deals with the heat conductivity.

Investigation of splitting-up along the physical processes in one-dimensional case is the natural
starting point to study this problem.

Let us also note that the system of Maxwell equations can be written in terms of electric field
and temperature. This and more general type systems are trated in Chapter 1. Some qualitative and
quantitative properties of such type models are studied in the next parts of the book.

It is well-known that by the above-mentioned system of Maxwell equations many very important
applied processes are described. For example, in one-dimensional case, system (0.0.1), (0.0.2) describes
an adiabatic shearing flow [9,13].

As an important case, let us consider the following system of nonlinear partial differential equations:

∂U

∂t
=

∂

∂x

(
A(V )

∂U

∂x

)
,

∂V

∂t
= F

(
V,
∂U

∂x

)
,

(0.0.4)

where A and F are the given functions of their arguments.
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The numerous diffusion problems are reduced to the system of nonlinear differential equations
(0.0.4). In particular, if

F
(
V,
∂U

∂x

)
= B(V )

(∂U
∂x

)2
,

then as it is visible from (0.0.1), (0.0.2), system (0.0.4) meets upon modeling of the process of elec-
tromagnetic field penetration into a medium, a coefficient of electroconductivity of which depends on
temperature, without taking into account heat conductivity. In this case, the above system allows
one to describe an adiabatic shearing flow [9, 13]. This type of one-dimensional system with coeffi-
cients depending also on the space and time variables is a model for the behavior of nonhomogeneous,
stratified, thermoviscoplastic materials exhibiting thermal softening and temperature dependent rate
of plastic work converted into heat (see, e.g., [39, 69, 70] and the references therein). So, in this case
we have the following system of nonlinear partial differential equations:

∂U

∂t
=

∂

∂x

(
A(V )

∂U

∂x

)
, (0.0.5)

∂V

∂t
= B(V )

(∂U
∂x

)2
. (0.0.6)

This is a one-dimensional analogue of system (0.0.1), (0.0.2) with one-component magnetic field
H = (0, 0, U) and temperature θ denoted by V .

If
A(V ) ≡ V, F

(
V,
∂U

∂x

)
= −V +G

(
V,
∂U

∂x

)
, (0.0.7)

where 0 < go ≤ G(ξ) ≤ G0, go and G0 are constants, and G is a smooth enough function, then system
(0.0.4), (0.0.7) is a one-dimensional analogue of the two-dimensional system which arises in studying
the process of vein formation in the young leaves of higher plants [59].

If
∂U

∂t
=

∂

∂x

(
A(V )

∂U

∂x

)
,

∂V

∂t
= B(V )

(∂U
∂x

)2
+

∂

∂x

(
C(V )

∂V

∂x

)
,

(0.0.8)

then system (0.0.8) is again a one-dimensional analogue of system (0.0.1), (0.0.3) with one-component
magnetic field, describing penetration of the electromagnetic field into a medium, with taking into
account the heat conductivity.

The above system (0.0.8) can also be used as a model for an incompressible, unidirectional flow
with temperature-dependent viscosity (see, e.g., references in [39]). There are two major difficulties
for that system. The first one is that the system is coupled in the coefficient of the leading term. The
second is that the growth order with respect to the gradient of the solution is critical. Therefore, the
general regularity theory is not applicable.

Let us now give some descriptions of integro-differential models which will be discussed in the
present work. One of the main purposes of the present work is to study two classes of the nonlinear
PIDEs based on the system of Maxwell equations (0.0.1), (0.0.2) describing the process of electromag-
netic field penetration into a medium:

∂W

∂t
+∇×

[
a

( t∫
0

|∇ ×W |2 dτ
)
∇×W

]
= 0 (0.0.9)

and
∂W

∂t
− a

( t∫
0

∫
Ω

|∇ ×W |2 dx dτ
)
∆W = 0, (0.0.10)

W = (W1,W2,W3) denotes a vector, which is connected with a vector of the magnetic field H =
(H1,H2,H3).
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The scalar analogues of systems (0.0.9) and (0.0.10) have, respectively, the following forms:

∂U

∂t
= ∇

[
a

( t∫
0

|∇U |2 dτ
)
∇U

]
(0.0.11)

and
∂U

∂t
= a

( t∫
0

∫
Ω

|∇U |2 dx dt
)
∆U. (0.0.12)

In equations (0.0.10)–(0.0.12), ∇ and ∆ denote the usual differential operations.
Note that equations such as (0.0.9), (0.0.11) have arisen for the first time in [28]. In [16,17,20], the

unique solvability of the initial-boundary value problems for equations (0.0.9) and (0.0.11) is given for
rather general assumptions on the function a = a(S) than in [28]. Based on the works [16, 17, 20, 28],
the models of type (0.0.10), (0.0.12) appeared in G. Laptev’s investigation, and the author named
those models as the averaged integro-differential equations (AIDEs).

The literature on the questions of the existence, uniqueness, regularity, asymptotic behavior of the
solutions and numerical resolutions of the initial-boundary value problems for one-, two- and three-
dimensional cases to the models of (0.0.9)–(0.0.12) type is very rich (see, e.g., [3,5,6,10,16,17,19,20,
23,24,28,30–33,35,37–39,44,46,49,50,52,53,55,65–67,74] and the references therein).

The models of (0.0.9)–(0.0.12) types are complex and have been intensively studied by many
authors. The existence and uniqueness of global solutions of initial-boundary value problems for
systems and equations of (0.0.9), (0.0.11) type were studied in [5, 6, 16, 17, 19, 20, 28, 32] and in a
number of other works, as well. The existence theorems that are proved in [16, 17, 20, 28] are based
on a priori estimates, modified version of Galerkin’s method and on compactness arguments as in
[54, 71] for nonlinear parabolic equations. The asymptotic behavior, as t → ∞, of the solutions
of such type models have been an object of intensive researches. In this direction the so-called
average integro-differential models (0.0.10), (0.0.12) are intensively investigated as well (see, e.g.,
[3, 19,23,24,31,32,35,39,46] and the references therein).

The numerous scientific works are devoted to the construction and justification of algorithms of the
numerical resolution of initial-boundary value problems for the above-stated models (see, e.g., [10,18,
19,22,30,33,35,37–40,44,52,65–67,74] and the references therein). In those works, the construction and
investigation of the semi-discrete schemes are given. The possibility of finite difference approximations,
application of Galerkin’s methods and the method of finite elements, as well as the algorithms for their
realization are discussed.

The purpose of the present monograph is to continue our study and give a description of both the
results obtained at the research and numerical resolution of partial differential and integro-differential
models based on the systems of Maxwell equations and systems of Maxwell type equations and their
generalizations.

The work consists of five chapters.
Chapter 1 gives mathematical modeling of the process of penetration of the electromagnetic field in

a medium. The corresponding nonlinear partial differential model is based on the well-known system
of Maxwell equations. On the basis of that system the general statement of the problem is given. Some
mathematical features of the problems under investigation are given in the same chapter. In particular,
the examples of one-dimensional nonlinear systems and their analytical solutions are presented which
show that those systems generally do not have global solutions. Consequently, the case of the blow-up
solution is considered. Linear stability of the stationary solution of the initial-boundary value problem
for one nonlinear partial differential system is proved. Possibility of the occurrence of the Hopf-type
bifurcation is established. Global asymptotic stability of the solution for one diffusion problem is also
given. Discrete schemes and splitting analogues with respect to the physical processes are constructed
and investigated for one-dimensional (0.0.8) type system, too. The reduction of the system of Maxwell
equations to integro-differential models is considered. Consequently, two types of nonlinear partial
integro-differential models are obtained. Both models in different physical assumptions describe the
process of penetration of the electromagnetic field into a medium with the Joule law. First, the
reduction of the system of Maxwell equations to the (0.0.9) and (0.0.11) type nonlinear Volterra-type
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parabolic integro-differential model is discussed. The average type (0.0.10) and (0.0.12) integro-
differential model is constructed in the same chapter, as well.

Chapter 2 is devoted to the asymptotic behavior of some types of initial-boundary value problems
for one-dimensional integro-differential (0.0.9) type models. Asymptotic behavior of solutions when
time tends to infinity are studied for nonlinear parabolic integro-differential models with homogeneous
data on the whole boundary. The nonhomogeneous data on a part of the boundary are discussed in
Chapter 2, as well. Different properties of asymptotic behavior in those two cases are observed.
Particularly, for the homogeneous boundary conditions the exponential and for a nonhomogeneous
case the power-like stability are established.

In Chapter 3, the same questions are discussed for an average one-dimensional integro-differential
(0.0.12) type models. Results of numerical experiments with appropriate table and graphical illustra-
tions are given too. Results of numerical experiments fully agree with theoretical researches.

The well-posedness of the initial-boundary value problems for both (0.0.11) and (0.0.12) type
multi-dimensional integro-differential models is discussed in Chapter 4. Asymptotic behavior of the
solutions are also studied therein.

The decomposition methods for building an approximate solution for the nonlinear multi-dimen-
sional (0.0.11) and (0.0.12) type integro-differential models are discussed in the final Chapter 5. In
particular, the additive averaged Rothe-type scheme for those models is constructed and investigated.
Results of numerical experiments with tables and graphical illustrations, as well as their analysis are
given in the same Chapter 5.

At the end of the work, the list of the cited literature is given. The list of references is not intended
to be a complete bibliography on the subject, but it is, nevertheless, detailed enough to enable further
independent work.

The author hopes that the work will be valuable for a wide range of scientists interested in the
investigation and numerical resolution of nonlinear differential and integro-differential models. In the
author’s opinion, the material stated here is acceptable for a variety of specialists engages in different
fields of mathematical physics, problems of applied and numerical mathematics, as well as for MS and
PhD students of appropriate specializations. Because of this, in some places, despite the similarity in
the studies of the same initial-boundary value problems for different type models, they are given in
sufficient detail. For example, this concerns the study of semi-discrete and finite difference schemes for
Volterra-type IDEs and AIDEs. Relatively, in less portion so is done also for studying the asymptotic
behavior of solutions for the above-mentioned models. But note that from the asymptotics point of
view, with the same approach, the above problems were studied for different classes of nonlinearity.



Chapter 1

Nonlinear partial differential and
integro-differential models based on
the system of Maxwell equations

Chapter 1 consists of four sections which are devoted to the mathematical modeling of systems of
nonlinear partial differential and integro-differential models. The models are based on the well-known
system of Maxwell equations. Some mathematical features of those models are fixed. Maxwell equa-
tions represent one of the most elegant and concise way to state the fundamentals of electricity and
magnetism. Here, the basic attention is given to the mathematical description of the process of
penetration of an electromagnetic field into a medium whose coefficient of conductivity depends on
temperature. General statement of the diffusion process is given on the basis of the system of Maxwell
differential equations. Some mathematical features of the problems under investigation are given. In
particular, the examples of nonlinear systems and their analytical solutions are given which show
that those systems generally do not have global solutions. Consequently, the blow-up solution case
is presented. Linear stability of the stationary solution of the initial-boundary value problem for one
nonlinear partial differential system is proved. The opportunity of the occurrence of a Hopf-type
bifurcation is established. Global asymptotic stability of the solution for one diffusion problem is
given, too. Discrete schemes and splitting-up analogues with respect to the physical processes are
constructed and investigated for one-dimensional case. The reduction of the Maxwell system to the
integro-differential models is considered. Two types of nonlinear integto-differential models are ob-
tained. First, the reduction of the system of Maxwell equations to a nonlinear Volterra-type parabolic
integro-differential model is discussed. The average type integro-differential model is constructed in
this chapter as well.

1.1 Some features of systems of Maxwell type equations
1.1.1 Process with the Joule law
Let us consider the phenomena that occur in a conducting medium placed in an external variable
electromagnetic field. The conductor is bordered by a vacuum region (dielectric). It is required to
determine the coordinated change of fields, both inside and outside of the conductive region.

Let an electromagnetic field and the currents satisfy the quasistationary conditions [47]. The
system of Maxwell equations in this approach looks like

divE = 4πρ, (1.1.1)

−1

c

∂µH

∂t
= ∇× E, (1.1.2)

div(µH) = 0, (1.1.3)

8
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4π

c
σE = ∇×H, (1.1.4)

where E = (E1, E2, E3) and H = (H1,H2,H3) are the electric and magnetic vector fields, respectively,
ρ is a given distribution of charges, µ is magnetic permeability, σ is electrical conductivity of the
medium, c is velocity of light in vacuum.

In (1.1.4), following an assumption of quasistationarity, the term adequate a current of displace-
ment (it is proportional to ∂E/∂t) is omitted and the Ohm law is used, connecting the vector E with
a vector of density of a current J by the relation

J = σE. (1.1.5)

As for the environment, where the diffusion process takes place, we assume that it is an isotropic
medium with µ = 1 and the coefficient of electroconductivity depends on temperature, σ = σ(θ). In
applications, the form of σ is power-like, for example, for metals σ ∼ θ−1, for homogeneous plasma
σ ∼ θ−3/2, etc.

For definition of temperature it is necessary to use the equation of a heat balance. First, we make
the following assumption. Let characteristic time resistive diffusion be much less, than that of heat
transfer. Then, neglecting the effect of heat conductivity, the change of temperature is defined only
by the Joule heating and, taking into account (1.1.5), we have

cν
∂θ

∂t
= EJ = σE2, (1.1.6)

where cν is a specific heat capacity of the medium. Thus, the coefficient of heat capacity can also
depend on temperature.

Equations (1.1.2), (1.1.4), (1.1.6) form the closed system for finding an electromagnetic field and
temperature under the appropriate initial and boundary conditions.

In the general case, the questions about how to state the boundary and initial conditions, and also
the conditions of coincidence on the border of environments, are discussed in detail in [19,25] (see also
the references therein).

For a diffusion system, it is possible to obtain an important energy identity. Multiplying (1.1.2)
scalarly by c/(4π)H, (1.1.4) by c/(4π)E and taking into account the differential identity

div(A×B) = (∇×A) ·B −A · (∇×B),

where A×B denotes the vector product, for any area Ω, we deduce the following balance equality∫
Ω

∂

∂t

(H2

8π
+ σE2

)
dx =

∫
∂Ω

P · νdγ. (1.1.7)

Here, dγ is an infinitesimal element of a surface ∂Ω, ν is outer normal to ∂Ω, P = c/(4π)E×H is the
Poynting vector. Taking into account an onward equation

∂ε

∂t
= σE2, (1.1.8)

where ε is specific internal energy of the environment, dε = cνdθ, after integration over time, from
(1.1.7) we get

∫
Ω

(H2

8π
+ ε
)
dx =

∫
Ω

(H2(x, 0)

8π
+ ε(x, 0)

)
dx+

t∫
0

∫
∂Ω

P × ν dγ dτ. (1.1.9)

The expression H2/(8π) + ε under the first integral represents density of complete energy of the
medium.

From the mathematical point of view, the complexity of the study of systems (1.1.2), (1.1.4),
(1.1.8) is caused by the following two factors. Firstly, as it has been mentioned in Introduction, the
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dependence of the electroconductivity coefficient on the temperature (on ε) and, eventually, on a field
is, substantially, of nonlinear character; secondly, under transition from the medium to the vacuum
area the type of equations is changing. Indeed, excluding the vectors H from (1.1.2) and (1.1.4), we
obtain the equation

σ
∂E

∂t
= −∇× (∇× E),

from which it follows that in a conductor (σ > 0) it is necessary to solve the parabolic, and in a
vacuum area (σ = 0) the elliptic problems.

The questions of the existence and uniqueness of solutions of linear differential problems (σ = σ(x)),
in a general enough statement, have been considered in many works. The change of environment is
supposed to be within the framework of magnetic-hydrodynamical approach. In those works, as a rule,
the transition from a classical statement to the generalized one is made. The requirement that the
functions satisfy both equation (1.1.3) and the boundary conditions, is replaced by the requirement
of their belonging to the special functional spaces. The problem for equations (1.1.2), (1.1.4) is
formulated in the variational form, in particular, in terms of variational inequalities.

The study of system (1.1.1)–(1.1.4) can be also made on the basis of the equations which have
been written down only for the vectors E or H.

1.1.2 Process with the Joule law and heat conductivity
As it has been already noted, the above considered equations take no account of many physical effects.
For a more thorough description of electromagnetic field propagation in the medium, it is desirable
to take into account different physical effects, first of all the heat conductivity of the medium has to
be taken into consideration. In this case, the same process of penetration of magnetic field into a
medium is described by the following system [47]:

∂H

∂t
= −∇× (νm∇×H),

∂θ

∂t
= νm(∇×H)2 + div(κ grad θ),

(1.1.10)

where κ is a coefficient of heat conductivity. As a rule, this coefficient is a function of the argument
θ, as well.

The literature on the questions of the existence, uniqueness, regularity, asymptotic behavior of
solutions and numerical resolution of the initial-boundary value problems to the (1.1.10) type models
and models like them is very rich (see, e.g., [2, 19,25,26,68] and the references therein).

Besides essential nonlinearity, complexities of the above-mentioned system (1.1.10) are caused by
its multi-dimensionality. This circumstance complicates to get numerical results for concrete real
problems. Naturally, there arises the possibility to reduce them to the suitable one-dimensional
models.

It is well known that the general method for construction of economic algorithms for multi-
dimensional problems of mathematical physics is a decomposition method. This method allows one
to reduce multi-dimensional problems to a set of one-dimensional problems, whose numerical realiza-
tions need, obviously, lesser computer resources. Work in this direction began in the 50th of the past
century and intensively continues nowadays (see, e.g., [1,14,15,57,64,72] and the references therein).

Complex nonlinearity dictates also to split along physical processes and then investigate the basic
model by their means. In particular, it is logical to split system (1.1.10) into the following two models:

∂H̃

∂t
= −∇× (νm(θ̃)∇× H̃),

∂θ̃

∂t
= νm(θ̃)(∇× H̃)2
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and

∂
˜̃
H

∂t
= −∇× (νm(

˜̃
θ)∇× ˜̃

H),

∂
˜̃
θ

∂t
= div(κ(˜̃θ) grad ˜̃θ).

In the first system of the above-mentioned two systems the Joule law is considered, whereas in the
second, the process of heat conductivity.

Investigation of splitting-up along the physical processes in one-dimensional case is the natural
starting point for studying this problem. In this direction the first step was made in [2].

This question and some other studies for one-dimensional variant of system (1.1.10) are discussed
in Section 1.3.

1.1.3 One-dimensional processes for cylindrical case
In this subsection, the system of Maxwell equations for one-dimensional axi-symmetric problems is
stated. The consideration is conducted similarly to that made, for example, in [25].

Let us write the initial equations in a dimensionless form and let the scales for length, time
and density of a current (r∗, t∗, J∗) be chosen. In differential equations given below, the following
normalizations are performed: H∗ = 4πr∗

c J∗ for magnetic field; E∗ = H∗r∗

t∗c = 4πr∗2

c2t∗ J∗ for electrical
field; σ∗ = J∗

E∗ for electroconductivity; θ∗ = H∗2

4π for internal energy. Thus, taking into account these
normalizations, we obtain the system of equations:

∂H

∂t
= −∇× E, (1.1.11)

σE = ∇×H, (1.1.12)
divH = 0, (1.1.13)

∂ε

∂t
= σE2, σ = σ(ε). (1.1.14)

This system has no additional multipliers, and for the dimensionless values the initial designations
are maintained.

When the coefficient of electroconductivity depends only on time and spatial variables, then system
of the diffusion equations is linear. The fields are determined from equations (1.1.11)–(1.1.13), and
equation (1.1.14) provides the distribution of temperature. From the mathematical point of view,
such cases are interesting only in two- and three-dimensional statements.

However, if σ = σ(ε), it is necessary to solve all equations of system (1.1.11)–(1.1.14) jointly.
The case of a spatial variable is of importance, both in the sense of theoretical study and numerical
analysis, and for a qualitative understanding of the real diffusion process.

Thus suppose that all unknowns are the functions of one spatial and time variables.
Assume that the medium is occupied by the field bounded by two infinite coaxial cylinders of radii

ra and rb. Introduce the appropriate cylindrical system of coordinates (r, φ, z) and assume that the
unknowns H, E and θ are the functions of arguments (r, t).

In our further investigations the necessary requirements of regularity for the considered functions
are assumed to be fulfilled.

The system of equations (1.1.11)–(1.1.14) is solved in the area

Ω = Ω1 ∪ Ω2,

where
Ω1 = (r0, ra) ∪ (rb, rc), Ω2 = (ra, rb), r0 > 0.

The conductivity σ is defined by the formula

σ =

{
σ(ε(r, t)) > 0, r ∈ Ω2,

0, r ∈ Ω1.
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On the intersection of two environments (points ra, rb) the conditions of conjugation are satisfied:

E(1)
φ = E(2)

φ , E(1)
z = E(2)

z , H(1) = H(2). (1.1.15)

The boundary conditions at the points r0 and rc, and the initial conditions will be specified later.
Taking into account the above assumptions, system (1.1.11)–(1.1.14) can be written in the form:

∂Hr

∂t
= 0,

∂Hφ

∂t
=
∂Ez

∂r
,

∂Hz

∂t
= −1

r

∂rEφ

∂r
, (1.1.16)

σEr = 0, σEφ = −∂Hz

∂r
, σEz =

1

r

∂rHφ

∂r
, (1.1.17)

∂rHr

∂r
= 0, (1.1.18)

∂ε

∂t
= σ(E2

r + E2
z + E2

φ). (1.1.19)

For the radial components, we find

Hr =
Cr

r
, Er = 0 if r ∈ Ω2.

At the same time, if Ω contains the axis of symmetry, then Cr = 0 and Hr = 0.
Assume also that Er = 0 in Ω1.
In Ω1, we have σ ≡ 0, and from (1.1.17) we get

Hφ =
Cφ(t)

r
, Hz = −Cz(t), (1.1.20)

where Cφ and Cz are some functions depending on t and, in general, different on the intervals (r0, ra)
and (ra, rb). Substituting (1.1.20) into (1.1.16) and integrating with respect to t, if r ∈ Ω1, we obtain

rEφ = C ′
z(t)

r2

2
+ C1(t), Ez = C ′

φ(t) ln r + C2(t), (1.1.21)

where
C ′

z =
dCz

dt
, C ′

φ =
dCφ

dt
.

Before we proceed to discussing the boundary and initial conditions, we notice that equations
(1.1.20) and (1.1.21) allow us to reduce the diffusion problem to the system

∂Hφ

∂t
=
∂Ez

∂r
,

∂Hφ

∂t
= −1

r

∂rEφ

∂r
, (1.1.22)

σEφ = −∂Hz

∂r
, σEz =

1

r

∂rHφ

∂r
, (1.1.23)

∂ε

∂t
= σ(E2

φ + E2
z ) =

1

σ

[(∂Hz

∂r

)2
+
(1
r

∂rHφ

∂r

)2]
(1.1.24)

in Ω2 . Consider now some boundary conditions.
(a) Let magnetic fields at points r0 and rc be given as follows:

Hτ (r0, t) = ψ0(t), Hτ (rc, t) = ψc(t),

where
Hτ = (Hφ,Hz), ψ0 = (ψ0

φ, ψ
0
z), ψc = (ψc

φ, ψ
c
z).

Then by virtue of (1.1.20) in Ω1, we have

H(1)
φ (r, t) =


r0
r
ψ0
φ(t), r0 ≤ r ≤ ra,

rc
r
ψc
φ(t), rb ≤ r ≤ rc,

H(1)
z (r, t) =

{
ψ0
z(t), r0 ≤ r ≤ ra,

ψc
z(t), rb ≤ r ≤ rc.
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To define Hτ in Ω2, it is necessary to solve the problem

∂Hφ

∂t
=

∂

∂r

( 1

rσ

∂rHφ

∂r

)
,

∂Hz

∂t
=

1

r

∂

∂r

( r
σ

∂Hz

∂r

)
,

∂ε

∂t
=

1

σ

[(∂Hz

∂r

)2
+
(1
r

∂rHφ

∂r

)2]
, σ = σ(ε),

Hτ (ra, t) = H(1)
τ (ra, t), Hτ (rb, t) = H(1)

τ (rb, t), Hτ (r, 0) = Hτ0(r), ε(r, 0) = ε0(r),

(1.1.25)

where Hτ0 and ε0 are initial distributions for Hτ and ε.
If problem (1.1.25) is solved, from (1.1.23) in Ω2 we get

Eτ =
1

σ
(∇×H)τ .

Using the condition of interface on the border and (1.1.21), it is easy to find Eτ in Ω1.
(b) Assume now that the following boundary conditions are given:

Eτ (r0, t) = Φ0(t), Eτ (rc, t) = Φc(t),

where
Eτ = (Eφ, Ez), Φ0 = (Φ0

φ,Φ
0
z), Φc = (Φc

φ,Φ
c
z).

Taking into account (1.1.21) in Ω1, we have

rEφ(r, t) =


dC0

z

dt

r2 − r20
2

+ r0Φ
0
φ(t), r0 ≤ r ≤ ra,

dCc
z

dt

r2 − r2c
2

+ rcΦ
c
φ(t), rb ≤ r ≤ rc,

Ez(r, t) =


dC0

φ

dt
ln r

r0
+Φ0

z(t), r0 ≤ r ≤ ra,

dCc
φ

dt
ln r

rc
+Φc

φ(t), rb ≤ r ≤ rc.

Noticing that
C ′

φ(t) = r
∂Ez

∂r
, C ′

z(t) =
1

r

∂rEφ

∂r
,

in Ω2 we pose the following problem:

∂σEφ

∂t
=

∂

∂r

(1
r

∂rEφ

∂r

)
,

∂σEz

∂t
=

1

r

∂

∂r

(
r
∂Ez

∂r

)
,

∂ε

∂t
= σ(E2

φ + E2
z ), σ = σ(ε),[

rEφ − 1

r

∂rEφ

∂r

r2 − r20
2

]
r=ra

= r0Φ
0
φ(t),[

rEφ − 1

r

∂rEφ

∂r

r2 − r2c
2

]
r=rb

= rcΦ
c
φ(t),[

Ez − r
∂Ez

∂r
ln r

r0

]
r=ra

= Φ0
z(t),[

Ez − r
∂Ez

∂r
ln r

rc

]
r=rb

= Φc
z(t),

Eτ

∣∣
t=0

= Eτ0, ε
∣∣
t=0

= ε0(r).

(1.1.26)

Consequently, solving problem (1.1.26) for Eτ together with the equation for ε, it is possible to
define the derivative ∂Eτ/∂r at the points ra and rb. Integration with respect to t gives Cφ and Cz

and finally the vectors Hτ and Eτ we can found in Ω1.
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Note that if Ω1 contains an axis of symmetry, it is necessary to modify the given formulations by
taking into account the singularity at r = 0.

Suppose that there are no extraneous currents, r0 = 0, rc = ∞, the field inside the conductor is
absent at the initial state, ε = ε0 in Ω2, σ = σ0ε

−α. External electromotive forces provide the total
longitudinal current Iz = Iz(t) and the linear density of the azimuth current Iφ = Iφ(t).

Using the results of the preceding reasoning, we find

Hφ(r, t) =


0, 0 ≤ r ≤ ra,

Iz(t)

2πr
, r ≥ rb,

Hz(r, t) =

{
Iφ(t), 0 ≤ r ≤ ra,

0, r ≥ rb.

Thus, in Ω2, it is necessary to solve the following problem:

∂Hφ

∂t
=

∂

∂r

(v
r

∂rHφ

∂r

)
,

∂Hz

∂t
=

1

r

∂

∂r

(
vr
∂Hz

∂r

)
,

∂ε

∂t
= v

[(∂Hz

∂r

)2
+
(1
r

∂rHφ

∂r

)2]
, ν = ν0ε

α,

Hφ(ra, t) = 0, Hz(ra, t) = Ha(t),

Hφ(rb, t) = Hb(t), Hz(rb, t) = 0,

H(r, 0) = 0, ε(r, 0) = ε0,

(1.1.27)

where Hb(t) = I(t)/2πrb, Ha(t) = Iφ(t), v0 = 1/σ0.
Note that many scientific papers are devoted to the study of the problems of type (1.1.27) in the

cylindrical system of coordinates (see, e.g., [25] and the references therein).

1.1.4 Some mathematical features of magnetic field penetration processes
In the present subsection we establish some features of those types of equations that are considered
in Introduction and which are a one-dimensional analogue of the models described in the first two
subsections of this chapter.

As a model, let us consider the system of nonlinear PDEs of the following kind:

∂U

∂t
=

∂

∂x

(
A(V )

∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
C(V )

∂V

∂x

)
+ F

(
V,
∂U

∂x

)
,

(1.1.28)

where A, C and F are the given functions of their arguments.
The numerous diffusion problems are reduced to system (1.1.28) of differential equations. In

particular, if
C(V ) ≡ 0, F

(
V,
∂U

∂x

)
= B(V )

(∂U
∂x

)2
,

system (1.1.28), as it has been mentioned in Subsections 1.1.1–1.1.3, meets at the modeling of pene-
tration of an electromagnetic field into a medium, whose coefficient of electroconductivity depends on
temperature, without taking into account the heat conductivity.

If, for example,

A(V ) ≡ V, C(V ) ≡ 0, F
(
V,
∂U

∂x

)
= −V +G

(
V,
∂U

∂x

)
, (1.1.29)

where 0 < go ≤ G(ξ) ≤ G0, g0 and G0 are constants, and g is a smooth enough function, (1.1.28),
(1.1.29) is a one-dimensional analogue of system which arises in studying the process of vein formation
in young leaves of higher plants [59].
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If
C(V ) ̸= 0, F

(
V,
∂U

∂x

)
= −D(V ) +B(V )

(∂U
∂x

)2
, (1.1.30)

then by system (1.1.28), (1.1.30) it is described penetration of an electromagnetic field into the
medium, taking into account the heat conductivity.

1.1.5 On the blow-up solution
Let us consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
, (1.1.31)

∂V

∂t
= V α

(∂U
∂x

)2
, (1.1.32)

U(0, t) = 0, U(1, t) = ψ, (1.1.33)
U(x, 0) = U0(x), V (x, 0) = V0(x), (1.1.34)

where ψ = const > 0, and U0 = U0(x) and V0 = V0(x) are the given functions.
If U(x, 0) = ψx and V (x, 0) = δ0 = const > 0, it is easy to find that the pair of functions

U(x, t) = ψx, V (x, t) =
[
δ1−α
0 + (1− α)ψ2t

] 1
1−α (1.1.35)

is the solution of the initial-boundary value problem (1.1.31)–(1.1.34) for any α ̸= 1. However, if
α > 1, then for a finite time t0 = δ1−α

0 /(ψ2(α−1)) the function V becomes unbounded. This example
shows that the solutions of a system such as (1.1.31), (1.1.32) with smooth initial and boundary
conditions can blow-up at a finite time.

Note that the functions U and V , determined by formulas (1.1.35), satisfy as well the system

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
, (1.1.36)

∂V

∂t
= V α

(∂U
∂x

)2
+
∂2V

∂x2
, (1.1.37)

with the initial and boundary conditions (1.1.33), (1.1.34) and adding to them the following boundary
conditions:

∂V

∂x

∣∣∣∣
x=0

=
∂V

∂x

∣∣∣∣
x=1

= 0. (1.1.38)

From this we can conclude that if α > 1, then for problem (1.1.33), (1.1.34), (1.1.36)–(1.1.38) the
theorem on the existence of the global solution also does not hold.

1.1.6 Linear stability of the stationary solution
It is known that in electric circuits for cryogenic current systems, voltage and temperature oscillations
often arise with the initially stationary distribution of parameters.

The question of the stability of the stationary solution for appropriate diffusion problems is in-
teresting for a mathematical explanation of this phenomenon. In this connection we consider the
following initial-boundary value problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= −V β + V γ

(∂U
∂x

)2
,

U(0, t) = 0, V α ∂U

∂x

∣∣∣∣
x=1

= ψ,

U(x, 0) = U0(x), V (x, 0) = V0(x),

(1.1.39)
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where α ̸= 0, 2α+ β − γ ̸= 0.
It is easy to be convinced that the stationary solution of problem (1.1.39) has the form(

ψ
β−γ

2α+β−γ x, ψ
2

2α+β−γ
)
.

Assume that there exists a smooth solution of problem (1.1.39) with V (x, t) ≥ const > 0. Intro-
ducing the notation W = V α∂U/∂x , it is convenient to reduce the problem (1.1.39) to the equivalent
form:

∂W

∂t
= V α ∂

2W

∂x2
+ α(V γ−2α−1W 2 − V β−1)W,

∂V

∂t
= −V β + V γ−2αW 2,

∂W

∂x

∣∣∣∣
x=0

= 0, (1, t) = ψ,

W (x, 0) = V α
0 (x)

dU0(x)

dx
, V (x, 0) = V0(x).

(1.1.40)

The stationary solution of problem (1.1.40) is a pair of constants (ψ,ψ
2

2α+β−γ ).
We linearize system (1.1.40) by assuming

W (x, t) = ψ +W1(x)e
λt, V (x, t) = ψ

2
2α+β−γ + V1(x)e

λt.

After simple transformations, we obtain the problem

λW1 = ψ
2α

2α+β−γ
d2W

dx2
+ 2αψ

2(β−1)
2α+β−γ − α(2α+ β − γ)ψ

2α+3β−γ−4
2α+β−γ V1,[

λ+ (2α+ β − γ)ψ
2(β−1)
2α+β−γ

]
V1 = 2ψ

β−2α+γ
2α+β−γW1,

dW1(x)

dx

∣∣∣∣
x=0

=W1(1) = 0,

which, in turn, is easily reduced to an eigenvalue problem

d2W1

dx2
+ η2W1 = 0,

dW1(x)

dx

∣∣∣∣
x=0

=W1(1) = 0, (1.1.41)

where

η2 = 2αψ
2(β−α−1)
2α+β−γ − 2α(2α+ β − γ)ψ

2(2β−α−2)
2α+β−γ

(
λ+ (2α+ β − γ)ψ

2(β−1)
2α+β−γ

)−1 − λψ
−2α

2α+β−γ .

It is obvious that problem (1.1.41) has no trivial solution only for

η2 = η2n =

(
n+

1

2

)2

π2, n ∈ Z0 .

For an appropriate λ = λn, we have

λ2n +

[(
n+

1

2

)2
π2ψ

2α
2α+β−γ + (β − γ)ψ

2(β−1)
2α+β−γ

]
λn +

(
n+

1

2

)2
π2(2α+ β − γ)ψ

2(α=β−1)
2α+β−γ = 0,

or
λ2n − Pn(ψ, α, β, γ) + Ln(ψ, α, β, γ) = 0, (1.1.42)

where we have used the following notations:

Pn(ψ, α, β, γ) = (α− β)ψ
2(β−1)
2α+β−γ −

(
n+

1

2

)2
π2ψ

2α
2α+β−γ ,

Ln(ψ, α, β, γ) =
(
n+

1

2

)2
π2(2α+ β − γ)ψ

2(α+β−1)
2α+β−γ .

(1.1.43)
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The stationary solution of problem (1.1.40) is linearly stable only if Re(λn) < 0, for any n, and
unstable, if there exists m such that Re(λm) > 0.

From (1.1.42) and (1.1.43) it is obvious that if 2α + β − γ> 0, stationary solution of problem
(1.1.40) is linearly stable if and only if the inequality

Pn(ψ, α, β, γ) < 0, n ∈ Z0,

is fulfilled, or in an expanded form,

(γ − β)ψ
2(β−α−1)
2α+β−γ <

(
n+

1

2

)2
π2, n ∈ Z0.

Hence, eventually, we have

(γ − β)ψ
2(β−α−1)
2α+β−γ <

π2

4
. (1.1.44)

Thus, the following statement is true.

Theorem 1.1.1. If 2α+ β − γ > 0, then the stationary solution of problem (1.1.40)

(ψ,ψ
2

2α+β−γ )

is linearly stable if and only if condition (1.1.44) takes place.

Remark 1.1.1. If γ−β ≤ 0, then the stationary solution of problem (1.1.40) is always linearly stable.

1.1.7 Hopf-type bifurcation
Let

γ − β > 0, β − α− 1 ̸= 0,

and consider the quantity

ψc =
[ π2

4(γ − β)

] 2α+β−γ
2(β−α−1)

.

We have
P0(ψc, α, β, γ) = 0, Pn(ψc, α, β, γ) < 0, n ∈ N.

In addition, let β−α−1 > 0. It is clear that if 0 < ψ < ψc, then Pn(ψ,α, β, γ) < 0 for any n ∈ Z0.
Thus, if 0 < ψ < ψc, the stationary solution of problem (1.1.40) is linearly stable, and if ψ > ψc

it becomes unstable. For ψ = ψc, we have Re(λ0) = 0 and Im(λ0) ̸= 0, i.e., there is the possibility
of occurrence of the Hopf-type bifurcation [58]. Small perturbations of the stationary solution can be
transformed into a periodic in time self-oscillation. Based on [21], where the issues of Subsections 1.1.6–
1.1.8 are studied, the analogous investigations for more general models are given in [36,40,45].

1.1.8 Global stability of the stationary solution
Let us now prove the global stability of a solution of problem (1.1.39) for one particular case. Consider
the following problem:

∂U

∂t
=

∂

∂x

(
V
∂U

∂x

)
,

∂V

∂t
= −V +

(∂U
∂x

)2
,

U(0, t) = 0, V
∂U

∂x

∣∣∣∣
x=1

= ψ,

U(x, 0) = U0(x), V (x, 0) = V0(x).

(1.1.45)

It is obvious that the stationary solution of problem (1.1.45) looks like (ψ
1
3x, ψ

2
3 ).
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Introduce the notations:

y(x, t) = U(x, t)− ψ
1
3x, z(x, t) = V (x, t)− ψ

2
3 ,

where (U, V ) is a solution of problem (1.1.45). We have

∂y

∂t
=
∂U

∂t
=

∂

∂x

(
V
∂U

∂x

)
,

∂z

∂t
=
∂V

∂t
= −z − ψ

2
3 +

(∂U
∂x

)2
.

(1.1.46)

Multiplying the first equation (1.1.46) scalarly by y, integrating the obtained identity by parts and
taking into account the boundary conditions, we get

1

2

d

dt

1∫
0

y2 dx =

1∫
0

y
∂

∂x

(
V
∂U

∂x

)
dx,

1

2

d

dt

1∫
0

y2 dx = ψy(1, t)−
1∫

0

V
∂U

∂x

∂y

∂x
dx = ψ

1∫
0

∂y

∂x
dx−

1∫
0

V
(∂y
∂x

+ ψ
1
3

) ∂y
∂x

dx

=

1∫
0

[
− V

(∂y
∂x

)2
+ (ψ − V ψ

1
3 )
∂y

∂x

]
dx.

Note that
ψ − ψ

1
3V = ψ − (z + ψ

2
3 )ψ

1
3 = −ψ 1

3 z,

so,

1

2

d

dt

1∫
0

y2 dx =

1∫
0

(
− V

(∂y
∂x

)2
− ψ

1
3 z

∂y

∂x

)
dx. (1.1.47)

From the second equation of (1.1.46), we have

1

2

d

dt

1∫
0

z2 dx =

1∫
0

(
− z2 − ψ

2
3 z + z

(∂U
∂x

)2)
dx =

1∫
0

{
− z2 −

[
ψ

2
3 −

(∂y
∂x

+ ψ
1
3

)2]
z

}
dx

=

1∫
0

(
− z2 + V

(∂y
∂x

)2
− ψ

2
3

(∂y
∂x

)2
+ 2ψ

1
3 z

∂y

∂x

)
dx. (1.1.48)

Adding equalities (1.1.47) and (1.1.48) and using the inequality ab ≤ a2/2 + b2/2, we have

1

2

d

dt

1∫
0

(y2 + z2) dx =

1∫
0

(
− z2 − ψ

2
3

(∂y
∂x

)2
+ ψ

1
3 z

∂y

∂x

)
dx

≤
1∫

0

(
− z2 − ψ

2
3

(∂y
∂x

)2
+

1

2
z2 +

1

2
ψ

2
3

(∂y
∂x

)2)
dx = −1

2

1∫
0

(
z2 + ψ

2
3

(∂y
∂x

)2)
dx.

Applying the Poincaré inequality

1∫
0

y2 dx ≤ 1

2

1∫
0

(∂y
∂x

)2
dx,
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we finally arrive at

d

dt

1∫
0

(y2 + z2) dx ≤ −C
1∫

0

(y2 + z2) dx, (1.1.49)

where C is a positive constant.
From (1.1.49) we deduce

1∫
0

[
y2(x, t) + z2(x, t)

]
dx ≤ e−Ct

1∫
0

{[
U0(x)− ψ

1
3x
]2

+
[
V0(x)− ψ

2
3x
]2}

dx.

Thus, the following statement is true.

Theorem 1.1.2. For the stationary solution of problem (1.1.45)

(ψ
1
3x, ψ

2
3 )

there takes place the global and monotone stability in L2(0, 1).

Note that it is not difficult to get a certain generalization of the results considered in this subsection
for the diffusion model, where the process of heat conductivity is taken into account.

Note also that some results regarding the asymptotic behavior of solutions of the corresponding
integro-differential models with different kinds of boundary conditions will be studied in the subsequent
parts of the monograph.

1.2 Finite difference schemes for one-dimensional problems
with the Joule law

1.2.1 Discretization

The significant quantity of works are devoted to the problems of numerical integration of linear and
nonlinear electrodynamic problems in the quasistationary approximation. Such a variety is dictated,
on the one hand, by the desire to utilize fully the specific features of a particular applied problem,
and on the other hand, by choosing the main variables (magnetic or electric field, vector potential,
etc.) and the approach to constructing a numerical model. Most of the computational algorithms
are based on the finite element method. The corresponding theoretical and methodological references
are available in many works. It should also be mentioned that of importance is the construction of a
difference scheme in which the principles analogous to those of the conservatism and fully conservatism
are widely used. According to those principles, the discrete model, in addition to natural requirements
(approximation, stability, convergence), should be subordinated to specific physical conditions. In the
case of diffusion problems, this means that for an approximate model the analogues of electromagnetic
induction laws and the magnetic field circulation, as well as the energy identity (1.1.45) must be
satisfied (see Section 1.1).

In this section, following the technique as e.g. in [64], the discrete model is constructed for problem
(1.1.27) and the question of the convergence of the difference scheme is studied.

Let us divide the areas Ω = [ra, rb] and [0, T ] uniformly by M and N points, respectively, and
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introduce the notations:

h =
rb − ra
M

, τ =
T

N
, xi = ih, tj = jτ, uji = u(xi, tj),

ωh =
{
xi, i = 1, 2, . . . ,M − 1

}
, ωh = ωh ∪

{
x0 = ra, xM = rb

}
,

ui = uj+1
i , ut =

ui − uji
τ

, ux =
uj+1
i+1 − uj+1

i

h
, ux =

uj+1
i − uj+1

i−1

h
,

(u, v) =

M−1∑
i=1

uivih, (u, v] =

M∑
i=1

uivih,

∥u∥L2(ωh) = (u, u)
1
2 , ||u]|L2(ωh) = (u, u]

1
2 .

Using an integral-interpolation approach (see, e.g., [25,64]), for problem (1.1.27) we construct the
following differential-difference scheme:

1

r

dHφ

dt
=
(ν
r
Hφx

)
x
, r

dHZ

dt
= (νRHZx)x, (1.2.1)

de

dt
=

ν

R2
(Hφx)

2 + ν(HZx)
2, (1.2.2)

Hφ0(t) = 0, HφM (t) = Hb(t),

HZ0(t) = Ha(t), HZM (t) = 0,

Hφi(0) = 0, HZi(0) = 0,

ei(0) = ε0i, i = 1, 2, . . . ,M − 1.

Here, for the grid functions we use the customary notations:

Hφ ≈ (rHφ)i, HZ ≈ (HZ)i, e ≈ (ε)i+ 1
2
,

r = xi, R =
ri+1 + ri

2
, ν = ν(e).

The difference analogue of the Ohm law looks like

EZ = νJZ =
ν

R
Hφx,

Eφ = νJφ = −νRHZx,

where

EZ ≈ (EZ)i+ 1
2
, Eφ ≈

(Eφ

r

)
i+ 1

2

,

JZ ≈ (JZ)i+ 1
2
, Jφ ≈ (Jφ)i+ 1

2
.

For the system of difference equations (1.2.1), (1.2.2) it is possible to deduce energetic equality
similar to (1.1.9). Towards this end, we multiply the first equation of (1.2.1) by Hφih, and the second
one by HZih. Summing-up the resulting equations with respect to i together with (1.2.2) multiplied
by Rih, we obtain

d

dt

[M−1∑
i=1

(Hφ2
i

2ri
+
riHZ

2
i

2

)
h+

M−1∑
i=0

Rieih

]

=

M−1∑
i=1

(EZixHφi − EφixHZi)h+

M−1∑
i=0

(EZiHφix − EφiHZix)h.

Applying in the right-hand side the discrete analogue of the formula of integration by parts, after
simple transformations we get

d

dt

[M−1∑
i=1

(Hφ2
i

2ri
+
riHZ

2
i

2

)
h+

M−1∑
i=0

Rieih

]
= EZM−1HφM − Eφ0HZ0. (1.2.3)
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Integrating equality (1.2.3) in time and taking into account the boundary and initial conditions,
we find the analogue of the complete energy change law

M−1∑
i=1

(Hφ2
i

2ri
+
riHZ

2
i

2

)
h+

M−1∑
i=0

Rieih =

M−1∑
i=0

Riε0ih+

t∫
0

[
EZM−1Hb(t

′)− Eφ0H(t′)
]
dt′.

The construction of the difference equations is carried out in a usual way, replacing time derivative
by the difference relations and build the two-layer schemes. Following [64] and making the time
domain discretization in a standard way, we get a family of difference schemes for problem (1.1.27):

1

r
Hφt =

( ν
R
Hφx

)(σ1)

x
, riHZt = (νRHZx)

(σ1)
x ,

Ret =
( ν
R
Hφx

)(σ2)

(Hφx)
(σ3) + (νRHZx)

(σ2)(HZx)
(σ3),

(1.2.4)

where 0 ≤ σk ≤ 1, k = 1, 2, 3 and the known notation y(σ) = σyj+1 + (1− σ)yj is also used.
It is possible to show that for the weights σ1 = σ2 = σ, σ3 = 0, 5, the scheme (1.2.4) has the

property of a complete conservation (the difference analogues of the conservation laws of fluxes of a
magnetic field and total energy are fulfilled).

Obviously, the study of a question on the convergence of difference scheme for a rather general
dependence ν = ν(ε), is a difficult problem.

1.2.2 Convergence of the finite difference schemes
Let us study the convergence of difference schemes for the case |α| ≤ 1/2. To simplify the calculations,
we assume that the magnetic field vector is represented by one component and consider the Cartesian
system of coordinates. Thus, we consider the following problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= V α

(∂U
∂x

)2
,

(1.2.5)

U(0, t) = U(1, t) = 0, U(x, 0) = U0(x),

V (x, 0) = V0(x) ≥ δ0 = const > 0.
(1.2.6)

Using the relation V0(x, t) ≥ δ0, equations (1.2.5) can be rewritten in the form

∂U

∂t
=

∂

∂x

(
W γ ∂U

∂x

)
,

∂W

∂t
=

1

2
W γ−1

(∂U
∂x

)2
, (1.2.7)

where γ = 2α, W = V 1/2 and the initial condition for V will be converted accordingly.
The grid-function u = {ui} corresponding to U is considered in ωh, whereas the function w = {wi}

approximating W is considered at the centers of grid points.
Let us put the following implicit difference scheme into correspondence with problem (1.2.6), (1.2.7),

ut = (wux)x, wt =
1

2
wγ−1u2x,

uj0 = ujM = 0, u0i = U0(xi), w0
i = V

1
2
0 (xi+ 1

2
).

(1.2.8)

The order of approximation accuracy of equation (1.2.8) on the smooth solution of the initial
differential equations is O(τ + h2).

The difference scheme (1.2.8), representing the system of the nonlinear algebraic equations, has
the unique solution. To be convinced of the solvability, it is enough to use an a priori estimation which
follows after multiplication of equations (1.2.8) by u and w, respectively, and apply the Brouwer fixed-
point lemma (see, e.g., [54], or Section 4.1). Note that applying the same technique as that we will
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use in proving the convergence below, it is not difficult to prove the uniqueness of the solution and
the stability of scheme (1.2.8).

For the errors z = u− U , s = w −W , we have the equations

zt = (wγux)x − (W γUx)x + ψ1, st =
1

2
(wγ−1u2x −W γ−1U2

x) + ψ2, (1.2.9)

where
ψ1 = O(τ + h2), ψ2 = O(τ + h2).

Multiplying equation (1.2.9) scalarly by 2τz and 2τs, respectively, we have
∥z∥2h − ∥zj∥2h + τ2∥zt∥2h = −2τ

(
wγux −W γUx, ux − Ux

]
+ 2τ(ψ1, z),

∥s∥2h − ∥sj∥2h + τ2∥st∥2h = 2τ
(
wγ−1u2x −W γ−1U2

x , s
]
+ 2τ(ψ2, s).

(1.2.10)

Here we use the difference analogue of Green’s formula and the relation
2τ(rt, r) = ∥r∥2h − ∥rj∥2h + τ2∥rt∥2h,

where r is an arbitrary grid-function.
Summing-up relations (1.2.10) and applying some simple transformations, we get
∥z∥2h + ∥s∥2h + τ2∥zt∥2h + τ2∥st∥2h − ∥zj∥2h − ∥sj∥2h

= −
(wγ + wγ−1W

2
u2x +

W γ +W γ−1w

2
U2
x , 1
]
+
(
wγ +W γ , uxUx

]
+ 2τ(ψl, z) + 2τ(ψ2, s)

≤
([

(W γ +W γ−1w)(wγ + wγ−1W )
] 1

2

+W γ − wγ , |ux| |Ux|
]
+ 2τ(ψ1, z) + 2τ(ψ2, s).

Considering the inequality
(W γ +W γ−1w)(wγ + wγ−1W )

= (W γ + wγ)2 − (W γ−1 − wγ−1)(W γ+1 − wγ+1) ≥ (W γ + wγ)2,

which, in turn, for |γ| ≤ 1 follows from an obvious inequality
−(W γ−1 − wγ−1)(W γ+1 − wγ+1) ≥ 0,

we arrive at
∥z∥2h + ∥s∥2h + τ2∥zt∥2h + τ2∥st∥2h ≤ ∥zj∥2h + ∥sj∥2h + 2τ(ψ1, z) + 2τ(ψ2, s).

Applying usual methodology, from the above inequality we get
∥zk+1∥h + ∥sk+1∥h = O(τ + h2).

Thus, the convergence of the difference scheme (1.2.8) is proved.
Note that in [22] the convergence of the following two-parameterized difference scheme is proved:

ut + βτutt =
[
(w(α))γu(α)x

]
x
,

wt + βτwtt =
1

2
(w(α))γ−1(u(α)x )2,

u(0, t) = u(1, t) = 0, u(x, 0) = U0(x),

u(x, τ) = U0(x) + τ
[
(W (α))γU (α)

x

]
t=0

,

W (x, 0) =W0(x), W (x, τ) =W0(x) +
1

2
τ
[
(W (α))γ−1(U (α)

x )2
]
t=0

.

(1.2.11)

Here,
v(α) = αvj+1 + (1− α)vj .

The scheme (1.2.11) has the following order of approximation:
O(τ2 + h2 + (α− 0, 5− β)τ).

The convergence of this difference scheme is established under the condition α−0.5−β ≥ 0. Thus,
if α = 1/2, β = 0, the two-layer difference scheme with accuracy of order O(τ2 + h2) is constructed.
The same accuracy takes place if α = 1, β = 1/2. In this case, (1.2.11) is the three-layer scheme.
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1.3 Splitting methods and difference schemes for the system
with the Joule law and heat conductivity

1.3.1 Some preliminary remarks
Let us consider the questions of the approximate integration of problems, which are connected with
the following system of nonlinear equations:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
,

∂V

∂t
= V α

(∂U
∂x

)2
+A(V ),

(1.3.1)

where A(V ) is the second order differential operator of an elliptic type.
It is easy to see that system (1.3.1) includes a diffusion system considered in Section 1.1 as a partial

case, if under the functions U and V respectively are given the components of the magnetic field and
temperature, and the differential operator A(V ) has the form

A(V ) =
∂

∂x

(
V β ∂V

∂x

)
.

Some questions concerning systems (1.3.1) are also considered in [2]. In particular, the uniqueness
of the solution of the initial-boundary value problem for fairly general operators A(V ) is studied.
Various discrete analogues are constructed and their mathematical investigations are carried out.

In the numerical integration of equations (1.3.1) it is natural to begin with the standard finite
difference models. Accordingly, in this section the difference scheme is constructed and its convergence
is proved for equations (1.3.1). However, besides the usual approaches, it is interesting to develop
additive models, which are, as is known, successfully applied to numerous problems of mathematical
physics (see, e.g., [1, 2, 14, 15,57,64,72] and the references therein). As we already have mentioned in
Subsection 1.1.2, it is possible to build various additive models if system (1.3.1) is divided into two
groups of equations: the first group describes diffusion process with regard for only the Joule law of
heating and the second group is used for the description of a heat conductivity process.

The present section consists of three subsections. In the first subsection we establish the unique-
ness of the stated problem. In the second and third subsections we construct and investigate the
approximate analogues of the following problem:

∂U

∂t
=

∂

∂x

(
V α ∂U

∂x

)
, (1.3.2)

∂V

∂t
= V α

(∂U
∂x

)2
+
∂2V

∂x2
, (1.3.3)

U(0, t) = U(1, t) =
∂V

∂x

∣∣∣∣
x=0

=
∂V

∂x

∣∣∣∣
x=1

= 0, (1.3.4)

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ δ0 = const > 0, (1.3.5)

where |α| ≤ 1/2; U0(x) and V0(x) are the given functions on [0, 1].
Following [2] and using the notations V 1/2 =W , 2α = γ, we can rewrite equations (1.3.2), (1.3.3)

in the form:

∂U

∂t
=

∂

∂x

(
W γ ∂U

∂x

)
, (1.3.6)

∂W

∂t
=

1

2
W γ−1

(∂U
∂x

)2
+
∂2W

∂x2
+

1

W

(∂W
∂x

)2
, (1.3.7)

for which the boundary and initial conditions will be transformed accordingly, and |γ| ≤ 1.
Assume that the solution of problem (1.3.4)–(1.3.7) has a required smoothness which will be

necessary in our further discussions.
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1.3.2 On the uniqueness of a solution
Let U1, W1, U2, W2 be two pairs of solutions of system (1.3.6), (1.3.7) under the appropriate initial-
boundary conditions.

For Z = U1 − U2 and S =W1 −W2, we easily get the following relations:
1

2

d

dt
∥Z∥2 = −

(
W γ

1

∂U1

∂x
−W γ

2

∂U2

∂x
,
∂Z

∂x

)
= −

(
W γ

1 ,
[∂U1

∂x

]2)
−
(
W γ

2 ,
[∂U2

∂x

]2)
+
(
W γ

1 +W γ
2 ,
∂U1

∂x

∂U2

∂x

)
, (1.3.8)

1

2

d

dt
∥S∥2 =

1

2

(
W γ−1

1

[∂U1

∂x

]2
−W γ−1

2

[∂U2

∂x

]2
, S

)
−
∥∥∥∂S
∂x

∥∥∥2
+

(
1

W1

[∂W1

∂x

]2
− 1

W2

[∂W2

∂x

]2
, S

)
, (1.3.9)

where ( · , · ) and ∥ · ∥ denote the scalar product and the norm in L2(0, 1), respectively.
Designating the last term in (1.3.9) through J , we can transform it as follows:

J =

([∂W1

∂x

]2
+
[∂W2

∂x

]2
, 1

)
−
(
W2

W1

[∂W1

∂x

]2
+
W1

W2

[∂W2

∂x

]2
, 1

)
=
∥∥∥∂S
∂x

∥∥∥2 − ∥∥∥∥(W2

W1

) 1
2 ∂W1

∂x
−
(W1

W2

) 1
2 ∂W2

∂x

∥∥∥∥2.
Using the last identity from (1.3.9), we obtain the inequality

1

2

d

dt
∥S∥2 ≤ 1

2

(
W γ

1

[∂U1

∂x

]2
+W γ

2

[∂U2

∂x

]2
, 1

)
− 1

2

(
W γ−1

1 W2

[∂U1

∂x

]2
−W γ−1

2 W1

[∂U2

∂x

]2
, 1

)
,

by adding of which to (1.3.8) we find that

1

2

d

dt

(
∥S∥2 + ∥Z∥2

)
≤ −

(
W γ

1 +W γ−1
1 W2

2

[∂U1

∂x

]2
+
W γ

2 +W γ−1
2 W1

2

[∂U2

∂x

]2
, 1

)
+
(
W γ

2 +W γ
1 ,
∂U1

∂x

∂U2

∂x

)
≤
∫
Ω

{[
(W γ

1 +W γ−1
1 W2)(W

γ
2 +W γ−1

2 W1)
] 1

2 −W γ
1 −W γ

2

} ∣∣∣∂U2

∂x

∣∣∣ ∣∣∣∂U2

∂x

∣∣∣ dx. (1.3.10)

Note that if −1 ≤ γ ≤ 1, then −(W γ−1
1 −W γ−1

2 )(W γ+1
1 −W γ+1

2 ) ≥ 0, and the validity of the
estimation

(W γ
1 +W γ−1

1 W2)(W
γ
2 +W γ−1

2 W1) = 2W γ
1 W

γ
2 +W γ−1

1 W γ+1
2 +W γ−1

2 W γ+1
1

= (W γ
1 +W γ

2 )
2 − (W γ−1

1 −W γ−1
2 )(W γ+1

1 −W γ+1
2 )

≥ (W γ
1 +W γ

2 )
2

becomes obvious.
By virtue of the above inequality, from (1.3.10) it follows that

d

dt

(
∥S∥2 + ∥Z∥2

)
≤ 0

and, therefore, Z ≡ 0, S ≡ 0.
Thus, the uniqueness of the solution of problem (1.3.4)–(1.3.7) is proved.

Remark 1.3.1. It is easy to be convinced that the proof given above can likewise be applied to the
case, where instead of the second equation of system (1.3.2), (1.3.3) we consider the equation

∂V

∂t
= V α

(∂U
∂x

)2
+A(V ),
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where A(V ) is the differential operator such that(
V

− 1
2

1 A(V1)− V
− 1

2
2 A(V2), V

1
2
1 − V

1
2
2

)
≤ 0.

Now, let us take the initial system of equations as follows:
∂U

∂t
=

∂

∂x

(
V β ∂U

∂x

)
,

∂V

∂t
= V α

(∂U
∂x

)2
+A(V ).

(1.3.11)

Here, A(V ) is the elliptic operator satisfying some analogue of the requirements of monotonicity(
V −α
1 A(V1)− V −α

2 A(V2), V
β
1 − V β

2

)
≤ 0. (1.3.12)

The functions U and V satisfy conditions (1.3.4), (1.3.5). The parameters satisfy the following
restrictions: α+ β = 1, α < 1.

Rewrite the second equation of (1.3.11) as
1

β

∂V β

∂t
=
(∂U
∂x

)2
+ V −αA(V ).

Consider now the differences Z = U1−U2, S = V β
1 −V β

2 , where U1, V1 and U2, V2 are again two pairs
of solutions of the problem under investigation. After simple transformations, we get the following
relations:

1

2

d

dt
∥Z∥2 = −

(
V β
1 − V β

2

2
,
[∂U1

∂x

]2
−
[∂U2

∂x

]2)
−
(
V β
1 + V β

2

2
,
[∂Z
∂x

]2)
,

1

4β

d

dt
∥S∥2 ≤

(
V β
1 + V β

2

2
,
[∂U1

∂x

]2
−
[∂U2

∂x

]2)
.

To derive the last inequality, we use condition (1.3.12). Further, it is easy to see that
d

dt

(
∥Z∥2 + 1

2β
∥S∥2

)
≤ 0,

whence we obtain U1 ≡ U2, V1 ≡ V2.

1.3.3 Splitting-up methods with respect to physical processes
It is possible to build various additive models if system (1.3.1) is divided into two groups of equations:
the first group describes diffusion process with regard for only the Joule law of heating and looks like

∂U1

∂t
=

∂

∂x

(
V α
1

∂U1

∂x

)
,

∂V1
∂t

= V α
1

(∂U1

∂x

)2
,

and the second group is used to describe the heat conductivity process. The similar splitting-up of
an initial problem is named as a division according to physical processes. It allows one to transfer
the results available in connection with equations (1.2.5). On the other hand, to the appropriate
heat equation (in the absence of the nonlinear term of the Joule heating) the well-advanced numerical
methods can be applied.

According to the standard approach, the sub-problems are solved sequentially, taking the solution
of a first step as the initial data for the next one. The possibility of constructing the additive model
with parallel count algorithm is also considered. For this purpose the semi-discrete average additive
model is constructed on the basis of the approach suggested for the linear problems and advanced
ones in a nonlinear case (see, e.g., [2] and the references therein). For the cases, where the uniqueness
of the solution of an initial problem takes place, it is possible, as usual, to establish the convergence
of the approximate solutions to the exact one. A multi-dimensional case for equations (1.3.11) can be
investigated according to the similar scheme, if splitting-up regarding the spatial variables is performed
in advance.



26 Temur Jangveladze

1.3.4 Convergence of the semi-discrete additive models
In this subsection, following the technique developed in [57, 64, 72], the semi-discrete scheme (the
Rothe-type scheme) of sum-approximation is constructed. The split problems are solved in parallel
and the question of the convergence is studied.

We divide the domain [0, T ] uniformly into N parts and introduce the following notations:

τ =
T

N
, ωτ =

{
tj : t0 = 0, tj+1 = tj + τ, j = 0, 1, . . . , N − 1

}
,

yα(tj−1) = yj−1
α , yα(tj+1) = yj+1

α = yα, yα(tj) = yjα,

yt =
yj+1 − yj

τ
, yαt =

yα − yj

τ
,

η1 + η2 = 1, η1 > 0, η2 > 0, yj = η1y
j
1 + η2y

j
2.

Let to problem (1.3.4)–(1.3.7) be assigned the semi-discrete additive scheme.
Let

u = η1u1 + η2u2 and w = η1w1 + η2w2,

where uα, wα, α = 1, 2, are the solutions of the following systems of ordinary differential equations:

u1t =
d

dx

[
wγ

1

du1
dx

]
, η1w1t =

1

2
wγ−1

1

[du1
dx

]2
, (1.3.13)

u2t =
d

dx

[
wγ

2

du2
dx

]
, η2w2t =

d2 w2

dx2
+

1

w2

[dw2

dx

]2
, (1.3.14)

y0α = y0 = U0(x), w0
α = w0 =W0(x),

where η1 + η2 = 1, η1 > 0, η2 > 0 and η1, η2 are the constants.
Define the errors

zα = Uα − uα, sα =Wα − wα, α = 1, 2.

Obviously,
z = η1z1 + η2z2, s = η1s1 + η2s2.

It is easy to be convinced that these errors satisfy the following system:

η1z1t =
d

dx

[
W γ ∂U

∂x
− wγ

1

du1
dx

]
+ ψ1,

η1s1t =
1

2

[
W γ−1

(∂U
∂x

)2
− wγ−1

1

(du1
dx

)2]
+ ψ2,

η2z2t = η2
d

dx

[
W γ ∂U

∂x
− wγ

2

du2
dx

]
+ ψ3,

η2s2t =
∂2s2
∂x2

+
1

W

(∂W
∂x

)2
− 1

w2

(dw2

dx

)2
+ ψ4,

(1.3.15)

where

ψ1 = η1

(
Ut −

dU

dt

)
= O(τ),

ψ2 = −η2
W γ−1

2

(dU
dx

)2
+ η1

(d2W
dx2

+
1

W

(dW
dx

)2)
+ η1

(
Wt −

dW

dt

)
,

ψ3 = η2

(
Ut −

dU

dt

)
= O(τ),

ψ4 = η2
W γ−1

2

(dU
dx

)2
− η1

(d2W
dx2

+
1

W

(dW
dx

)2)
+ η2

(
Wt −

dW

dt

)
.

Thus, the condition of sum-approximation is satisfied as

ψ2 + ψ4 = O(τ).
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After multiplication of equations (1.3.15) scalarly by the appropriate errors, we have

2η2τ(z1t, z1) = 2τ(ψ1, z1) + J1, 2η21τ(s1t, s1) = 2τη1(ψ2, s1) + J2,

2η2τ(z2t, z2) = 2τ(ψ3, z2) + J3, 2η1η2τ(s2t, s1) = 2τη1(ψ4, s1) + J4,
(1.3.16)

where

J1 = −2τη1

(
W γ dU

dx
− wγ

1

dy1
dx

,
dz1
dx

)
,

J2 = τη1

(
W γ−1

(dU
dx

)2
− wγ−1

1

(dy1
dx

)2
, s1

)
,

J3 = −2τη2

(
W γ dU

dx
− wγ

2

dy2
dx

,
dz2
dx

)
,

J4 = 2τη1

∣∣∣ds1
dx

∣∣∣2 + 2τη1

(
1

W

(dW
dx

)2
− 1

w2

(dw2

dx

)2
, s2

)
.

Using the same transformations as are carried out in proving the uniqueness of the solution of the
initial-boundary value problem for system (1.3.6), (1.3.7) (see also [2]), we deduce

J1 + J2 ≤ 0, J4 ≤ 0.

Estimate the scalar product J3,

J3 = −2τη2

[(
W γ − wγ

2 ,
dz2
dx

,
dU

dx

)
+
(
wγ

2 ,
(dz2
dx

)2)]

≤ τη2
2

( (W γ − wγ
2

)2
wγ

2

,
(dU
dx

)2)
≤ Cτ

(
s22,
(dU
dx

)2)
.

Here, the constant C = η2γδ
2−γ
0 /2 comes from the inequality

|W γ − wγ
2 |

w
γ
2
2

≤ |γ|δ1−
γ
2

0 |W γ − w2|,

the validity of which is easily deduced by using the following known inequality [29]

kr(x− y)xk−1 < xk − yk < k(x− y)yk−1, 0 < k < 1,

and taking
W ≥ δ0, w2 ≥ δ0.

Adding equalities (1.3.16) and using the relations

rj+1 = rj + τrt, 2τ(rt, r) = ∥rj+1∥2 − ∥rj∥2 + τ2∥rt∥2,

where r is an arbitrary grid-function, we find that

η1∥z1∥2 + η1∥s1∥2 + η2∥z2∥2 + η1η2∥s2∥2 + τ2
(
η1∥z1t∥2 + η2∥z2t∥2

)
+ τ2η1

(
η1∥s1t∥2 + η2∥s2t∥2

)
≤ η1∥sj∥2 + ∥zj∥2 + 2τ

[
(ψ1 + ψ3, z

j) + η1(ψ2 + ψ4, s
j)
]
+ Cτ

(
s22,
(∂U
∂x

)2)
+ 2τ2

[
(ψ1, z1t) + (ψ3, z2t) + η1(ψ2, s1t) + η1(ψ4, s2t)

]
,

from which, using the ε-inequality, it follows that

η1∥z1∥2 + η1
(
η1∥s1∥2 + η2∥s2∥2

)
+ η2∥z2∥2

≤ η1∥sj∥2 + ∥zj∥2 + τ2∥ψ∥2 + 2τ
(
O(τ), |zj + sj |

)
+ C1η1τ∥s2∥2,
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where
∥ψ∥2 = η1∥ψ1∥2 + η2∥ψ3∥2 + ∥ψ2∥2 +

η1
η2

∥ψ4∥2.

Let us strengthen the last inequality

(1− τC1)
[
η1∥z1∥2 + η2∥z2∥2 + η1

(
η1∥s1∥2 + η2∥s2∥2

)]
≤ τ2∥ψ∥2 + (1 + τ)

(
∥zj∥2 + η1∥sj∥2

)
.

Here, the term of the rate O(τ3) is ignored. Further, using the property of convexity of the norm

η1∥z1∥2 + η2∥z2∥2 ≥ ∥η1z1∥2 + ∥η2z2∥2 = ∥z∥2, η1∥s1∥2 + η2∥s2∥2 ≥ ∥s∥2,

we finally obtain

∥Φj+1∥2 ≤ ∥Φj∥2 + τC2∥Φj∥2 + τ2

1− τC1
∥ψ∥2,

where
∥Φj∥2 = ∥zj∥2 + η1∥sj∥2, C2 =

1 + C1

1− τC1
.

Summing-up by j and taking into account the relation Φ0 = 0 (under obvious restriction of a step τ),
we find

∥Φn∥2 ≤ τC1

n−1∑
j=1

∥Φj∥2 + τC3∥ψ∥2, C3 =
1

1− τC1
.

Finally, using a discrete analogue of Gronwall’s inequality, the validity of the estimation

∥uj − U( · , tj)∥+ ∥wj −W ( · , tj)∥ = O(τ
1
2 )

is proved.

Remark 1.3.2. The following average semi-discrete model can be investigated in a similar way:

ut =
d

dx

[
(η1w

γ
1 + η2w

γ
2 )
du

dx

]
, η1w1t =

1

2
wγ−1

1

[du
dx

]2
, η2w2t =

d2w2

dx2
+

1

w2

[dw2

dx

]2
,

wj
1 = wj

2 = wj = η1w1(tj) + η2w2(tj).

1.3.5 Convergence of the finite difference scheme
Let us study the convergence of the difference scheme. For the sake of convenience, we consider the
case with γ = 1. Thus, we consider the following problem:

∂U

∂t
=

∂

∂x

(
W

∂U

∂x

)
,

∂W

∂t
=

1

2

(∂U
∂x

)2
+
∂2W

∂x2
+

1

W

(∂W
∂x

)2
,

(1.3.17)

U(0, t) = U(1, t) =W (0, t) =W (1, t) = 0,

U(x, 0) = U0(x), W (x, 0) =W0(x) ≥ δ0 > 0.
(1.3.18)

On Ω = [0, 1], once again, we introduce a uniform grid ωh, where h designates, as usual, a step on
a spatial variable. The grid-function u = {ui}, corresponding to U , is considered in ωh, whereas the
function w = {wi}, approximating W , is considered at the centers of grid points.

Let to problem (1.3.17), (1.3.18) be assigned the following implicit difference scheme:

ut = (wux)x,

wt =
1

2
u2x + wxx +

1

2w
(w2

x + w2
x),

(1.3.19)

uj0 = ujM = 0, wj
1
2

= wj

M+ 1
2

= 0,

u0i = U0(xi), w0
i =W0(xi+ 1

2
).

(1.3.20)
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It is not difficult to find that difference equations (1.3.19) approximate the initial differential
equations on the smooth solutions with accuracy of order O(τ + h2).

The above-mentioned difference scheme represents a system of nonlinear algebraic equations which
has the unique solution. The proof of the solvability can be carried out by using a priori estimations
which are obtained by multiplication of (1.3.19) scalarly by u and w, respectively, and applying the
Brouwer fixed-point lemma (see, e.g., [54], or Section 4.1). Note that applying the technique as in
proving the convergence below, it is not difficult to prove the uniqueness of the solution and the
stability of scheme (1.3.19)–(1.3.20).

The equations for an error look as follows:

zt = (wux)x − (WUx)x + ψ1,

st = 0.5(u2x − U2
x) + sxx +

w2
x + w2

x

2w
+
W 2

x +W 2
x

2W
+ ψ2,

(1.3.21)

where
z = u− U, s = w −W,

and the errors of approximation will be

ψ1 = O(τ + h2), ψ2 = O(τ + h2).

Multiplying the first equation of scheme (1.3.21) scalarly by 2τ(u−U) = 2τz and applying Green’s
difference formula, we get

∥z∥2h − ∥zj∥2h + τ2∥z∥2h = −2τ
(
wux −WUx, ux − Ux

]
h
+ 2τ(ψ1, z)h, (1.3.22)

here, ∥ · ∥h, ( · , · )h, ( · , · ]h denote discrete analogues of norm and scalar products in L2(ωh).
Taking into account the relation z = zj + τzt and identity

(wux −WUx)(ux − Ux) =
w +W

2
z2x +

s

2
(u2x − U2

x),

from (1.3.22) we get the inequality

∥z∥2h − ∥zj∥2h + τ2∥zt∥2h +
(
u2x − U2

x , s
]
h
≤ 2τ(ψ1, z

j)h + τ2∥zt∥2h + τ2∥ψ1∥2h,

whence
∥z∥2h + τ

(
u2x − U2

x , s
]
h
≤ ∥zj∥2h + 2τ(ψ1, z

j)h + τ2∥ψ1∥2h. (1.3.23)

Multiplying the second equation of the scheme (1.3.21) scalarly by 2τs and acting similarly, we
get

∥s∥2h − τ
(
u2x − U2

x , s
]
h
≤∥sj∥2h + 2τ(ψ2, s

j)h + τ2∥ψ2∥2h. (1.3.24)

Adding inequalities (1.3.23) and (1.3.24), we deduce

∥z∥2h + ∥s∥2h ≤ ∥zj∥2h + ∥sj∥2h + τ2∥ψ∥2h + 2τ
[
(ψ1, z

j)h − (ψ2, s
j)h
]
, (1.3.25)

where
∥ψ∥2h = ∥ψ1∥2h + ∥ψ2∥2h.

Summing-up (1.3.25) over j from zero to k, we arrive at

∥zk+1∥2h + ∥sk+1∥2h ≤ τ

k∑
j=1

(
∥zj∥2h + ∥sj∥2h + ∥ψj∥2h

)
.

Thus, we have obtained the convergence of the finite difference scheme (1.3.19), (1.3.20) and the
validity of the estimation

∥zk+1∥h + ∥sk+1∥h = ∥uk+1 − Uk+1∥h + ∥wk+1 −W k+1∥h = O(τ + h2).
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1.4 Reduction of the system of Maxwell equations to
the nonlinear parabolic Volterra-type and averaged
integro-differential models

1.4.1 Volterra-type integro-differential model
The IDEs arising in mathematics and physics often contain derivatives with respect to several vari-
ables; therefore, these equations are referred to as PIDEs. Numerous publications deal with the
study of IDEs of various kinds (see, e.g., [4, 8, 11, 12, 27, 39, 41, 48, 51, 61] and the references therein).
Many scientific papers are dedicated to the investigation of nonlinear integro-differential equations of
parabolic type. Such an integro-differential model appears, for example, in the mathematical mod-
eling of penetration of electromagnetic field into a medium whose electric conductivity substantially
depends on temperature. On the basis of the system of Maxwell differential equations [47], in [28] the
above-mentioned diffusion problem was reduced to an integro-differential model. The corresponding
initial-boundary value problems were posed. The uniqueness and existence of their global solutions
were considered.

Let us briefly describe reduction to the above-mentioned integro-differential model. Assume that
the massive body is placed in a variable magnetic field. It is necessary to describe the field distribution
inside the body. According to [47], consider the following system of Maxwell equations describing the
interaction of electromagnetic field with the medium:

−1

c

∂H

∂t
= ∇× E, (1.4.1)

divH = 0, (1.4.2)
4π

c
J = ∇×H, (1.4.3)

J = σE. (1.4.4)

Introducing the resistance ρ = 1/σ, from the last two equations, we can express electric field as
follows:

E = ρ
c

4π
∇×H.

Substituting this expression into (1.4.1), we get

∂H

∂t
+
c2

4π
∇× (ρ∇×H) = 0. (1.4.5)

When penetrating into a medium, a variable magnetic field induces a variable electric field which
causes appearance of currents. These currents lead to heating of a medium and raising its temperature
θ which affects the resistance ρ. According to the reasoning cited in [47], it follows that the power-like
change of temperature leads to a change of the resistance ρ in several orders. Therefore, for large
variations of temperature the dependence ρ = ρ(θ) must be taken into account. The last significant
restriction that should be made is due to the assumption that the change of temperature in the
medium under the influence of the current J obeys the Joule law which has the form

cv
∂θ

∂t
= ρJ2. (1.4.6)

Here, ρ is the medium density and cv is the heat capacity. In general, they are also dependent on the
temperature θ. Equation (1.4.6) does not consider the process of heat transfer by heat conductivity
and radiation. A number of other physical effects are not considered either. However, in this form,
system (1.4.5), (1.4.6) is quite complicated from a mathematical point of view. Many scientific papers
are devoted to the investigation and numerical solution of a system of Maxwell equations and to
models like those equations (see, e.g., [19, 25, 39, 56, 60, 63, 73] and the references therein). It should
also be noted that (1.4.5), (1.4.6) type models arise in mathematical modeling of many other processes
(see, e.g., [9, 13,39,69,70] and the references therein).
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Let us begin with a reduction of system (1.4.5), (1.4.6) to the system of nonlinear integro-differential
equations.

We rewrite equation (1.4.6) in the form

cv
ρ(θ)

∂θ

∂t
= J2.

Introducing the function

S(θ) =

θ∫
θ0

cv
ρ(ξ)

dξ,

we have
∂S

∂t
= J2.

Suppose that the process starts for t = 0, which corresponds to a constant temperature θ0 over
the medium. Integrating this equation over the interval [0, t], we obtain

S(θ(x, t))− S(θ0) =

t∫
0

J2 dτ.

The functions cv and ρ are positive due to physical sense; therefore, S(θ) is a monotonically increasing
function. Thus, there exists a uniquely defined inverse function θ = φ(S), related to the function S(θ)
by the relation φ(S(θ)) = θ. So, we can write

θ(x, t) = φ

( t∫
0

J2 dτ

)
.

From equation (1.4.3) we have
J =

c

4π
∇×H,

so,

θ(x, t) = φ

( t∫
0

∣∣∣ c
4π

∇×H
∣∣∣2 dτ).

Substituting this expression into (1.4.5) as an argument of the function ρ = ρ(θ), we get

∂H

∂t
+
c2

4π
∇×

[
ρ

(
φ

( t∫
0

∣∣∣ c
4π

∇×H
∣∣∣2 dτ))∇×H

]
= 0,

divH = 0.

Introduce the notations
a(S) =

c2

4π
ρ(φ(S)), W =

c

4π
H,

and rewrite the above system in the form

∂W

∂t
+∇×

[
a

( t∫
0

|∇ ×W |2 dτ
)
∇×W

]
= 0,

divW = 0.

(1.4.7)

If the magnetic field has the form W = (0, U, V ), where the function U = U(x, y, t) depends on
two spatial variables, then we have

∇× U =
(∂U
∂y

,−∂U
∂x

, 0
)
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and equation (1.4.7) takes the form

∂U

∂t
= ∇

[
a

( t∫
0

|∇U |2 dτ
)
∇U

]
. (1.4.8)

It should be noted that model (1.4.7) was appeared first in [28]. This work, together with the
other issues, provide us with the uniqueness of solutions of the initial-boundary value problems for
(1.4.7) under fairly general assumptions on the function a = a(S). Forms of models (1.4.7) and (1.4.8)
naturally give an answer to the question why they are called Volterra-type.

Assume that cv is constant. Below, we present some examples of functions a = a(S) and inducing
them functions ρ(θ) (see, e.g., [19, 28,49,50]).

If the function ρ(θ) is uniformly bounded, that is, 0 < ρ0 ≤ ρ(θ) ≤ ρ1, where ρ0 and ρ1 are some
constants, then a(S) possesses an analogous property

c2

4π
ρ0 ≤ a(S) ≤ c2

4π
ρ1.

If ρ(θ) = θα, α > 1, then
a(S) = C1(C0 − S)p,

where C0 and C1 are some positive constants and p = − α
α−1 < −1. For example, if ρ(θ) = 1 + θ2,

then
a(S) = C0 tg(C1 + c−2

ν S).

Thus, the polynomial growth of ρ(θ) leads to a determination of a = a(S) only on a finite interval.
Note that there are no physical media with such a property.

If ρ(θ) = θ, then
a(S) = C1e

C0S

with positive constants C0 and C1, i.e., the linear growth of the function ρ(θ) leads to an exponential
function a = a(S). The linear growth of the resistance with the growth of temperature is characteristic
for metals.

If ρ(θ) = θα, 0 < α < 1, then
a(S) = C1(C0 + S)p,

where C0 and C1 are some positive constants, and p = α
1−α > 0. Thus, under-linear growth of the

resistance ρ(θ) leads to a polynomial growth of the function a = a(S).
If ρ(θ) = θα, α < 0, then

a(S) = C1(C0 + S)p,

where C0 and C1 are some positive constants and p = α
1−α > 0, −1 < p < 0. Thus, a decreasing

function ρ(θ) induces a decreasing function a = a(S). This is a general rule if cv is constant. Indeed,
suppose that the function ρ(θ) is differentiable for θ ≥ θ0. Then, according to the definition,

da

dS
=
c2

4π

dρ

dθ

dθ

dS
=
c2

4π

dρ/dθ

dS/dθ
=

c2

4πρcν
ρ(θ)ρ′(θ).

Hence, it is obvious that the function a = a(S) increases or decreases simultaneously with the
function ρ(θ). Note that the decrease of the resistance ρ(θ) with increasing temperature is charac-
teristic for semiconductors in the solid phase, for gases and also for plastic, for which the formula
ρ(θ) = Kθ−3/2 takes place.

1.4.2 On the averaged integro-differential model
A certain generalization of equations of type (1.4.7) is proposed by G. Laptev. In particular, assuming
the temperature of the considered body to be constant throughout the material, i.e., depending on
time but independent of the spatial coordinates, the same process of penetration of the magnetic field
into the material is modeled by the so-called averaged integro-differential model.
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Let us begin with a procedure of derivation of the above-mentioned average equation describing
again the process of penetration of an electromagnetic field into a medium [47].

Following [47], as in Subsection 1.4.1, let us consider a system of Maxwell equations (1.4.1)–(1.4.4)
describing the interaction of an electromagnetic field into a medium.

The Joule law (1.4.6) represents the law of localization of heat allocation [47],

dQ =

∫
Ω

JE dx dt. (1.4.9)

Here, dQ is an inflow of a thermal energy gained by a body in an electromagnetic field within time
dt in all mass of the medium, occupying the area Ω ⊂ R3. The Joule law does not take into account
the process of heat transfer inside a body, that is valid if temperature of a body is considered to be
constant along the medium, i.e., dependent on time, but independent of spatial coordinates. Thus, in
this case it is possible to admit that θ = θ(t). Under such an assumption, dQ = mcνdθ, where m is a
mass of the medium, and then equation (1.4.1) takes the form

mcv(θ)
dθ

dt
=

∫
Ω

JE dx.

Using the Ohm law, E = ρ(θ)J, and repeating the process of substitution, we shall obtain the following
analogue of system (1.4.7) in the same notations:

∂W

∂t
+∇×

[
a

(
1

|Ω|

t∫
0

∫
Ω

|∇ ×W |2 dx dt
)
∇×W

]
= 0,

divW = 0.

Here, |Ω| is the medium volume. Due to averaging through the area, the coefficient of this equation
depends only on a time variable t and, consequently, the equation can be rewritten in the form

∂W

∂t
= a

( t∫
0

∫
Ω

|∇ ×W |2 dx dτ
)
∆W. (1.4.10)

Here, we have used the known formula of the field theory,

∇× (∇×W ) = −∆W +∇divW.

For a plane field W = (0, 0, U), where U = U(x, y, t) is a function of two spatial variables, equation
(1.4.10) takes the form

∂U

∂t
= a

( t∫
0

∫
Ω

|∇U |2 dx dt
)
∆U. (1.4.11)

G. Laptev mentioned that investigation of models (1.4.10) and (1.4.11) type requires somewhat
different approach, than that of the Volterra-type models.



Chapter 2

Investigation and numerical
solution of one-dimensional
Volterra-type nonlinear
integro-differential equation

Chapter 2 studies asymptotics of a solution and a finite difference approximation of the nonlinear
Volterra-type IDEs associated with the penetration of a magnetic field into a medium. Asymptotic
properties of solutions for the initial-boundary value problem with homogeneous as well as nonhomo-
geneous Dirichlet boundary conditions are considered. The corresponding finite difference scheme is
studied. The convergence of this scheme is proven.

Chapter 2 is organized as follows. In Section 2.1 we state the problem and consider the large
time behavior of solutions of the first type initial-boundary value problems for the Volterra-type
nonlinear IDE with the homogeneous boundary conditions and nonhomogeneous boundary condition
on one side of lateral boundary. In Section 2.2 the stability and convergence of semi-discrete and
finite difference schemes are discussed. Section 2.2 we finish with some conclusions and remarks on
numerical implementations.

2.1 Large time behavior of solutions

2.1.1 Introduction

Many practical problems are described by integro-differential models. One type integro-differential
nonlinear parabolic model is obtained at mathematical simulation of processes of electromagnetic field
penetration into the medium. Based on the system of Maxwell equations [47], as we have mentioned
in Chapter 1, this model appeared first in [28]. Many other processes are described by means of
integro-differential models (see, e.g., [4, 8, 12, 27, 39, 42, 48, 51, 61] and the references therein). A lot
of scientific works are dedicated to the investigation and numerical resolution of the initial-boundary
value problems for models obtained in [28] and considered in Chapter 1 (see, e.g., [39] and the references
therein). The existence, uniqueness and asymptotic behavior of a solution for such type of equations
and systems are studied in [3, 5, 6, 16, 17, 19, 20, 23, 24, 28, 31, 32, 35, 37–39, 46, 49, 50, 53, 55] and in a
number of other works, as well (for more detailed citations see, e.g., [39] and the references therein).

The present section is devoted to the investigation of asymptotic properties of a solution of the
initial-boundary value problem with the first type boundary conditions for the model whose one-

34
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dimensional scalar analogue has the following form [28]:

∂U

∂t
=

∂

∂x

[
a

( t∫
0

(∂U
∂x

)2
dτ

)
∂U

∂x

]
, (2.1.1)

where a = a(S) is a given function defined for S ∈ [0,∞).
Principal characteristic peculiarity of equation (2.1.1) is connected with the appearance of a non-

linear term depending on the time integral in the coefficient of a higher order derivative.
Note that the integro-differential equation of type (2.1.1) is complex and only special cases were

investigated (see, e.g., [39] and the references therein).
The existence and uniqueness of the solutions of the initial-boundary value problems for the equa-

tions of type (2.1.1) are studied in [5,6,16,17,19,20,32,49,50,53,55] and in a number of other works
as well. The existence theorems proved in [16, 17, 19, 20, 32] are based on Galerkin’s method and
compactness arguments as in [54,71] for nonlinear parabolic problems.

Asymptotic behavior of solutions, as t → ∞, of the initial-boundary value problem for equation
(2.1.1) are given in many works (see, e.g., [3, 39] and the references therein).

2.1.2 Asymptotic behavior of solutions with homogeneous boundary
conditions

Consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (x, t) ∈ Q = (0, 1)× (0,∞), (2.1.2)

U(0, t) = U(1, t) = 0, t ≥ 0, (2.1.3)
U(x, 0) = U0(x), x ∈ [0, 1], (2.1.4)

where

S(x, t) =

t∫
0

(∂U
∂x

)2
dτ, (2.1.5)

and U0 = U0(x) is a given function.
For the earlier work on the asymptotic behavior in time of solutions of problem (2.1.2)–(2.1.5) see,

e.g., [31].
It is easy to verify the following statement [32].

Lemma 2.1.1. If a(S) ≥ a0 = const > 0 and U0 ∈ L2(0, 1), then for the solution of problem
(2.1.2)–(2.1.5) the estimate

∥U∥ ≤ C exp(−a0t)

holds.

Here and below, C denote positive constants independent of t.
Note that Lemma 2.1.1 gives exponential stabilization of the solution of problem (2.1.2)–(2.1.5) in

the norm of the space L2(0, 1). In [31], using the scheme of investigation presented in [43], we study
an asymptotic behavior of a solution in the norm of the space W 1

2 (0, 1) without rate of convergence.
In this direction see Section 4.4, where more general (2.1.2) type multi-dimensional equations are
treated.

Here and below, we use the usual Sobolev spaces W k
2 (0, 1) and

◦
W k

2(0, 1).
The purpose of this section is to show that for some cases the stabilization is likewise achieved

in the norm of the space C1(0, 1). First, we formulate the result of the stabilization in the space
W 1

2 (0, 1) [23]. Indeed,
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Theorem 2.1.1. If a(S) = (1 + S)p, 0 < p ≤ 1, U0 ∈ W 2
2 (0, 1) ∩

◦
W 1

2(0, 1), then for the solution of
problem (2.1.2)–(2.1.5) the estimate

∥∥∥∂U
∂x

∥∥∥+ ∥∥∥∂U
∂t

∥∥∥ ≤ C exp
(
− t

2

)
is true.

Let us now prove the following main statement of this section.

Theorem 2.1.2. If a(S) = (1 + S)p, 0 < p ≤ 1, U0 ∈ W 2
2 (0, 1) ∩

◦
W 1

2(0, 1), then for the solution of
problem (2.1.2)–(2.1.5) the relation

∣∣∣∂U(x, t)

∂x

∣∣∣ ≤ C exp
(
− t

2

)
holds.

In order to prove Theorem 2.1.2, we present some auxiliary estimates.

Lemma 2.1.2. For the function S the estimates

cφ
1

1+2p (t) ≤ 1 + S(x, t) ≤ Cφ
1

1+2p (t)

are true, where

φ(t) = 1 +

t∫
0

1∫
0

σ2 dx dτ (2.1.6)

and σ = (1 + S)p ∂U/∂x.

Proof. From definition of the function S it follows that

∂S

∂t
=
(∂U
∂x

)2
, S(x, 0) = 0. (2.1.7)

We multiply (2.1.7) by (1 + S)2p,

1

1 + 2p

∂(1 + S)1+2p

∂t
=
(∂U
∂x

)2
(1 + S)2p.

Note that equation (2.1.2) can be rewritten as

∂U

∂t
=
∂σ

∂x
. (2.1.8)

We have

1

1 + 2p

∂(1 + S)1+2p

∂t
= σ2, (2.1.9)

σ2(x, t) =

1∫
0

σ2(y, t) dy + 2

1∫
0

x∫
y

σ(ξ, t)
∂U(ξ, t)

∂t
dξ dy. (2.1.10)
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From Theorem 2.1.1 and relations (2.1.6), (2.1.9), (2.1.10), we get

1

1 + 2p
(1 + S)1+2p =

t∫
0

σ2 dτ +
1

1 + 2p

=

t∫
0

1∫
0

σ2(y, τ) dy dτ + 2

t∫
0

1∫
0

x∫
y

σ(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ +

1

1 + 2p

≤ 2

t∫
0

1∫
0

σ2(y, τ) dy dτ +

t∫
0

1∫
0

(∂U(x, τ)

∂τ

)2
dx dτ +

1

1 + 2p

≤ 2

t∫
0

1∫
0

σ2(y, τ) dy dτ + C1

t∫
0

exp(−τ) dτ + 1

1 + 2p
≤ C2φ(t),

i.e.,
1 + S(x, t) ≤ Cφ

1
1+2p (t). (2.1.11)

Analogously,

1

1 + 2p
(1 + S)1+2p =

t∫
0

1∫
0

σ2(y, τ) dy dτ + 2

t∫
0

1∫
0

x∫
y

σ(ξ, τ)
∂U(ξ, τ)

∂τ
dξ dy dτ +

1

1 + 2p

≥ 1

2

t∫
0

1∫
0

σ2(y, τ) dy dτ − C2 =
1

2
φ(t)− C3. (2.1.12)

We have
C3(1 + S)1+2p ≥ C3. (2.1.13)

From (2.1.10) and (2.1.11), we get( 1

1 + 2p
+ C3

)
(1 + S)1+2p ≥ 1

2
φ(t),

or
1 + S(x, t) ≥ cφ

1
1+2p (t). (2.1.14)

Finally, from (2.1.11) and (2.1.14) follows Lemma 2.1.2.
Taking into account relation (2.1.6), Lemma 2.1.2 and Theorem 2.1.1, we have

dφ(t)

dt
=

1∫
0

(1 + S)2p
(∂U
∂x

)2
dx ≤ Cφ

2p
1+2p (t) exp(−t),

or
d

dt
(φ

1
1+2p (t)) ≤ C exp(−t).

After integrating from 0 to t, keeping in mind definition (2.1.6), we get

1 ≤ φ(t) ≤ C,

whence, using Lemma 2.1.2, we obtain

1 ≤ 1 + S(x, t) ≤ C. (2.1.15)
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Using (2.1.15) and Theorem 2.1.1, equality (2.1.10) yields

σ2(x, t) ≤ 2

1∫
0

(1 + S)2p
(∂U
∂x

)2
dx+

1∫
0

(∂U
∂t

)2
dx ≤ C exp(−t),

or
|σ(x, t)| ≤ C exp

(
− t

2

)
.

This estimate, taking into account (2.1.15) and the relation σ = (1 + S)p∂U/∂x, completes the
proof of Theorem 2.1.2.

2.1.3 Asymptotic behavior of solutions with nonhomogeneous condition on
a part of the boundary

In the domain Q, let us consider the following initial-boundary value problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (x, t) ∈ Q, (2.1.16)

U(0, t) = 0, U(1, t) = ψ, t ≥ 0, (2.1.17)
U(x, 0) = U0(x), x ∈ [0, 1], (2.1.18)

where

S(x, t) =

t∫
0

(∂U
∂x

)2
dτ, (2.1.19)

a(S) = (1 + S)p, 0 < p ≤ 1, ψ = Const > 0; U0 = U0(x) is a given function.
The main purpose of this subsection is to prove the following statement.

Theorem 2.1.3. If a(S) = (1 + S)p, 0 < p ≤ 1, U0 ∈ W 2
2 (0, 1), U0(0) = 0, U0(1) = ψ, then for the

solution of problem (2.1.16)–(2.1.19) the estimate∣∣∣∂U(x, t)

∂x
− ψ

∣∣∣ ≤ Ct−1−p, t ≥ 1,

is true.

In this subsection, C, Ci and c denote the positive constants dependent on ψ, U0 and independent
of t.

The proof of Theorem 2.1.3 is based on a priori estimates which will be obtained below.

Lemma 2.1.3. For the solution of problem (2.1.16)–(2.1.19) the following estimate takes place

t∫
0

1∫
0

(∂U
∂τ

)2
dx dτ ≤ C.

Proof. Let us differentiate equation (2.1.16) with respect to t,

∂2U

∂t2
− ∂

∂x

[∂(1 + S)p

∂t

∂U

∂x
+ (1 + S)p

∂2U

∂t∂x

]
= 0,

and multiply the result scalarly by ∂U/∂t. Using the formula of integrating by parts and boundary
conditions (2.1.17), we get

1

2

d

dt

1∫
0

(∂U
∂t

)2
dx+

1∫
0

(1 + S)p
( ∂2U
∂t∂x

)2
dx+ p

1∫
0

(1 + S)p−1
(∂U
∂x

)3 ∂2U
∂t∂x

dx = 0. (2.1.20)
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From (2.1.20), taking into account the Poincaré inequality, we have

d

dt

1∫
0

(∂U
∂t

)2
dx+ 2

1∫
0

(∂U
∂t

)2
dx+

p

2

1∫
0

(1 + S)p−1 ∂

∂t

(∂U
∂x

)4
dx ≤ 0. (2.1.21)

Let us integrate relation (2.1.21) from 0 to t

1∫
0

(∂U
∂t

)2
dx+ 2

t∫
0

1∫
0

(∂U
∂τ

)2
dx dτ +

p

2

t∫
0

1∫
0

(1 + S)p−1 ∂

∂τ

(∂U
∂x

)4
dx dτ ≤ C.

An integration by parts gives

1∫
0

(∂U
∂t

)2
dx+ 2

t∫
0

1∫
0

(∂U
∂τ

)2
dx dτ ≤ C. (2.1.22)

Therefore, Lemma 2.1.3 is proved.

Note that from Lemma 2.1.3, according to the scheme applied in the second subsection, we get
the validity of Lemma 2.1.2 for problem (2.1.16)–(2.1.19), as well.

Lemma 2.1.4. The following estimates are true

cφ
2p

1+2p (t) ≤
1∫

0

σ2(x, t) dx ≤ Cφ
2p

1+2p (t).

Proof. Taking into account Lemma 2.1.2, we get

1∫
0

σ2 dx =

1∫
0

(1 + S)2p
(∂U
∂x

)2
dx ≥ cφ

2p
1+2p (t)

1∫
0

(∂U
∂x

)2
dx

≥ cφ
2p

1+2p (t)

( 1∫
0

∂U

∂x
dx

)2

= ψ2cφ
2p

1+2p (t),

or
1∫

0

σ2(x, t) dx ≥ cφ
2p

1+2p (t). (2.1.23)

From (2.1.22), it follows that
1∫

0

(∂U
∂t

)2
dx ≤ C. (2.1.24)

Let us multiply equation (2.1.16) scalarly by U . Using the boundary conditions (2.1.17), we have

1∫
0

U
∂U

∂t
dx+

1∫
0

(1 + S)p
(∂U
∂x

)2
dx = ψσ(1, t).

Using this equality, Lemma 2.1.3, relations (2.1.8), (2.1.10), (2.1.23), (2.1.24) and the maximum
principle

|U(x, t)| ≤ max
0≤y≤1

|U0(y)|, 0 ≤ x ≤ 1, t ≥ 0,
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we get{ 1∫
0

σ2(x, t) dx

}2

≤ C1φ
2p

1+2p (t)

[ 1∫
0

(1 + S)p
(∂U
∂x

)2
dx

]2

≤ 2C1φ
2p

1+2p (t)

[
(ψσ(1, t))2 +

( 1∫
0

U
∂U

∂t
dx

)2]

≤ 2C1φ
2p

1+2p (t)

[
2ψ2

1∫
0

σ2 dx+ ψ2

1∫
0

(∂σ
∂x

)2
dx+

1∫
0

U2 dx

1∫
0

(∂U
∂t

)2
dx

]

≤ 2C1φ
2p

1+2p (t)

[
2ψ2

1∫
0

σ2 dx+ ψ2

1∫
0

(∂U
∂t

)2
dx+

(
max
0≤y≤1

|U0(y)|
)2 1∫

0

(∂U
∂t

)2
dx

]

≤ 2C1φ
2p

1+2p (t)

(
C2

1∫
0

σ2 dx+
C3

φ
2p

1+2p (t)

1∫
0

σ2 dx

)
.

From this, taking into account the relation φ(t) ≥ 1, we have
1∫

0

σ2(x, t) dx ≤ Cφ
2p

1+2p (t).

Thus Lemma 2.1.4 is proved.

From Lemma 2.1.4 and (2.1.6), we have the estimates

cφ
2p

1+2p (t) ≤ dφ(t)

dt
≤ Cφ

2p
1+2p (t). (2.1.25)

Lemma 2.1.5. The derivative ∂U/∂t satisfies the inequality
1∫

0

(∂U
∂t

)2
dx ≤ Cφ− 2

1+2p (t).

Proof. Equality (2.1.20) yields

d

dt

1∫
0

(∂U
∂t

)2
dx+

1∫
0

(1 + S)p
( ∂2U
∂t∂x

)2
dx ≤ p2

1∫
0

(1 + S)p−2
(∂U
∂x

)6
dx. (2.1.26)

Using now Lemmas 2.1.3, 2.1.4, the relation σ = (1 + S)p ∂U/∂x and identity
1∫

0

(∂σ
∂x

)2
dx = −

1∫
0

σ
∂2σ

∂x2
dx,

from (2.1.26) we get

d

dt

1∫
0

(∂U
∂t

)2
dx+ cφ

p
1+2p (t)

1∫
0

( ∂2U
∂t∂x

)2
dx

≤ C1φ
− 5p+2

1+2p (t)

1∫
0

σ6 dx ≤ C1φ
− 5p+2

1+2p (t)

1∫
0

σ2(x, t) dx
[

max
0≤x≤1

σ2(x, t)
]2
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≤ C2φ
− 3p+2

1+2p (t)

{ 1∫
0

σ2 dx+ 2

[ 1∫
0

σ2 dx

] 1
2
[ 1∫

0

(∂σ
∂x

)2
dx

] 1
2
}2

≤ C2φ
− 3p+2

1+2p (t)

{ 1∫
0

σ2 dx+ 2

[ 1∫
0

σ2 dx

] 3
4
[ 1∫

0

(∂2σ
∂x2

)2
dx

] 1
4
}2

≤ C3φ
p−2
1+2p (t) + C4φ

− 3p+2
1+2p (t)φ

3p
1+2p (t)

[ 1∫
0

( ∂2U
∂t∂x

)2
dx

] 1
2

≤ C3φ
p−2
1+2p (t) + C5φ

− p+4
1+2p (t) +

c

2
φ

p
1+2p (t)

1∫
0

( ∂2U
∂t∂x

)2
dx.

Note that in our case p− 2 > −p− 4. So, the last relation, by using the Poincaré inequality, results in

d

dt

1∫
0

(∂U
∂t

)2
dx+

c

2
φ

p
1+2p (t)

1∫
0

(∂U
∂t

)2
dx ≤ Cφ

p−2
1+2p (t).

From Gronwall’s inequality, we get

d

dt

1∫
0

(∂U
∂t

)2
dx ≤ exp

(
− c

2

t∫
0

φ
p

1+2p (τ) dτ

)

×

[ 1∫
0

(∂U
∂t

)2
dx

∣∣∣∣
t=0

+ C

t∫
0

exp
(
c

2

τ∫
0

φ
p

1+2p (ξ) dξ

)
φ

p−2
1+2p (τ) dτ

]
. (2.1.27)

Noting that φ(t) ≥ 1, applying L’Hopital rule and estimate (2.1.25), we have

lim
t→∞

t∫
0

exp
(

c
2

τ∫
0

φ
p

1+2p (ξ) dξ
)
φ

p−2
1+2p (τ) dτ

exp
(

c
2

t∫
0

φ
p

1+2p (τ) dτ
)
φ− 2

1+2p (t)

= lim
t→∞

exp
(

c
2

t∫
0

φ
p

1+2p (τ) dτ
)
φ

p−2
1+2p (t)

exp
(

c
2

t∫
0

φ
p

1+2p (τ) dτ
)(

c
2φ

p−2
1+2p (t)− 2

1+2p φup
−3−2p
1+2p (t) dφ

dt

)
≤ lim

t→∞

1

c
2 − 2C

1+2pφ
− p+1

1+2p (t)
≤ C. (2.1.28)

Therefore, the validity of Lemma 2.1.5 follows from (2.1.27) and (2.1.28).

Let us now estimate ∂S/∂x in L1(0, 1).

Lemma 2.1.6. For ∂S/∂x, the following estimate is true:
1∫

0

∣∣∣∣∂S∂x
∣∣∣∣ dx ≤ Cφ− p

1+2p (t).

Proof. Let us differentiate (2.1.7) with respect to x,

∂

∂t

[
(1 + S)2p

∂S

∂x

]
= 2σ

∂σ

∂x
. (2.1.29)
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From Lemmas 2.1.4 and 2.1.5 we obtain
1∫

0

∣∣∣σ ∂U
∂t

∣∣∣ dx ≤ Cφ
p

1+2p (t)φ− 1
1+2p (t) = Cφ

p−1
1+2p (t). (2.1.30)

Finally, from Lemma 2.1.3 and relations (2.1.8), (2.1.25), (2.1.29), (2.1.30), we have

(1 + S)2p
∂S

∂x
=

t∫
0

2σ
∂U

∂τ
dτ,

1∫
0

∣∣∣∂S
∂x

∣∣∣ dx ≤ Cφ− 2p
1+2p (t)

t∫
0

φ
p−1
1+2p (τ) dτ ≤ C1φ

− 2p
1+2p (t)

t∫
0

φ− p+1
1+2p dφ

= C2φ
− 2p

1+2p (t)

t∫
0

dφ
p

1+2p = C2φ
− 2p

1+2p (t)(φ
p

1+2p (t)− 1) ≤ Cφ− p
1+2p (t).

Thus, Lemma 2.1.6 is proved.

Proof of Theorem 2.1.3. We are ready to prove Theorem 2.1.3. Using (2.1.10) and Lemmas 2.1.4 and
2.1.5, we arrive at

σ2(x, t) ≤
1∫

0

σ2(y, t) dy + 2

1∫
0

∣∣∣σ(y, t) ∂U(y, t)

∂t

∣∣∣ dy ≤ C1φ
2p

1+2p (t) + C2φ
p−1
1+2p (t).

From this, we get
|σ(x, t)| ≤ Cφ

p
1+2p (t).

Now, taking into account Lemmas 2.1.2, 2.1.5, 2.1.6, equality (2.1.8), definition of σ and the latter
estimate, we derive

1∫
0

∣∣∣∂2U(x, t)

∂x2

∣∣∣ dx ≤
1∫

0

∣∣∣∂U
∂t

(1 + S)−p
∣∣∣ dx+ p

1∫
0

∣∣∣σ(1 + S)−p−1 ∂S

∂x

∣∣∣ dx
≤
[ 1∫

0

(1 + S)−2p dx

] 1
2
[ 1∫

0

∣∣∣∂U
∂t

∣∣∣2 dx] 1
2

+ p

1∫
0

∣∣∣σ(1 + S)−p−1 ∂S

∂x

∣∣∣ dx
≤ C1φ

− p
1+2p (t)φ− 1

1+2p (t) + C2φ
− p+1

1+2p (t)φ
p

1+2p (t)

1∫
0

∣∣∣∂S
∂x

∣∣∣ dx
≤ C3φ

− p+1
1+2p (t).

Hence, we have
1∫

0

∣∣∣∂2U(x, t)

∂x2

∣∣∣ dx ≤ Cφ− p+1
1+2p (t).

From this estimate, taking into account the relation

∂U(x, t)

∂x
=

1∫
0

∂U(y, t)

∂y
dy +

1∫
0

x∫
y

∂2U(ξ, t)

∂ξ2
dξ dy,
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we arrive at

∣∣∣∂U(x, t)

∂x
− ψ

∣∣∣ = ∣∣∣∣
1∫

0

x∫
y

∂2U(ξ, t)

∂ξ2
dξ dy

∣∣∣∣ ≤
1∫

0

∣∣∣∂2U(y, t)

∂y2

∣∣∣ dy ≤ Cφ− p+1
1+2p (t). (2.1.31)

From (2.1.25), it is easy to show that

ct1+2p ≤ φ(t) ≤ Ct1+2p, t ≥ 1.

From this, taking into account estimate (2.1.31), we get the validity of Theorem 2.1.3.

Remark 2.1.1. The large time behavior to the solutions of the initial-boundary value problems
(2.1.16)–(2.1.19) for the case -1/2 < p < 0 is studied in [32].

Note that in this section we have used the scheme similar to that of work [13] in which the adiabatic
shearing of incompressible fluids with temperature-dependent viscosity is studied.

Remark 2.1.2. The existence of globally defined solutions of problems (2.1.2)–(2.1.5) and (2.1.16)–
(2.1.19) can now be reobtained by a routine procedure, proving first the existence of local solutions at
a maximal time interval and then, using the derived a priori estimates, showing that these solutions
cannot escape at a finite time.

Results of Theorems 2.1.1, 2.1.2 and 2.1.3 show the difference between stabilization character of
solutions with homogeneous and nonhomogeneous boundary conditions.

2.2 Stability and convergence of semi-discrete and finite
difference schemes

2.2.1 Space-discretization of the problem
Many authors study the semi-discrete and finite difference approximations for a integro-differential
models (see, e.g., [4, 8, 10,11,18,19,30,33,35,37–39,41,42,44,51,52,61,65–67,74]).

In the present section we strengthen the results of stability and convergence of a semi-discrete
scheme for the solution of first type initial-boundary value problem for equation (2.1.1) for the case
a(S) = (1+S)p, 0 < p ≤ 1. We also discuss a finite difference scheme for equation (2.1.1) for the same
case. Asymptotic behavior of a solution as t → ∞ and a numerical solution of the initial-boundary
value problem for equation (2.1.1) can be found in many works (see, e.g., [19,35,39] and the references
therein).

Let us consider the problem

∂U

∂t
=

∂

∂x

[(
1 +

t∫
0

(∂U
∂x

)2
dτ

)p
∂U

∂x

]
, (2.2.1)

U(0, t) = U(1, t) = 0, (2.2.2)
U(x, 0) = U0(x), (2.2.3)

where 0 < p ≤ 1 and U0 is a given function.
On [0, 1], let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M , with

h = 1/M . The boundaries are specified by i = 0 and i = M . In this subsection, the semi-discrete
approximation for (xi, t) is designed by ui = ui(t). The exact solution to the problem for (xi, t) is
denoted by Ui = Ui(t). At the points i = 1, 2, . . . ,M − 1, the IDE will be replaced by approxima-
tion of the space derivatives by forward and backward differences. We will use the following known
notations [64]:

rx,i(t) =
ri+1(t)− ri(t)

h
, rx,i(t) =

ri(t)− ri−1(t)

h
.
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Let to problem (2.2.1)–(2.2.3) be assigned the following semi-discrete scheme:

dui
dt

=

{(
1 +

t∫
0

(ux,i)
2 dτ

)p

ux,i

}
x

, i = 1, 2, . . . ,M − 1, (2.2.4)

u0(t) = uM (t) = 0, (2.2.5)
ui(0) = U0,i, i = 0, 1, . . . ,M. (2.2.6)

Thus, we have obtained the Cauchy problem (2.2.4)–(2.2.6) for the nonlinear system of OIDEs.
For the earlier work on the discretization in time or space, or both, of equations such as (2.2.4)

for the case p = 1, see [33].
Introduce usual inner products and norms:

(r, g) = h

M−1∑
i=1

rigi, (r, g] = h

M∑
i=1

rigi,

∥r∥ = (r, r)
1
2 , ∥r]| = (r, r]

1
2 .

Multiplying equations (2.2.4) scalarly by u(t) = (u1(t), u2(t), . . . , uM−1(t)), after simple transfor-
mations we get

d

dt
∥u(t)∥2 + h

M∑
i=1

(
1 +

t∫
0

(ux,i)
2 dτ

)p

(ux,i)
2
= 0,

whence we obtain the inequality

∥u(t)∥2 +
t∫

0

∥ux]|2 dτ ≤ C; (2.2.7)

here and below in this section C denotes a positive constant which does not depend on h.

Remark 2.2.1. The a priori estimate (2.2.7) guarantee the global solvability of scheme (2.2.4)–
(2.2.6). Note that applying the same technique as when proving the convergence theorem below, it is
not difficult to prove the uniqueness of the solution and stability of scheme (2.2.4)–(2.2.6), too.

The principal aim of the present subsection is to prove the following statement.

Theorem 2.2.1. If 0 < p ≤ 1 and problem (2.2.1)–(2.2.3) has a sufficiently smooth solution U =
U(x, t), then the solution u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem (2.2.4)–(2.2.6) tends to
the solution of the continuous problem U = U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the
estimate

∥u(t)− U(t)∥ ≤ Ch (2.2.8)

holds.

Proof. For U = U(x, t), we have

dUi

dt
−
{(

1 +

t∫
0

(Ux,i)
2 dτ

)p

Ux,i

}
x

= ψi(t), i = 1, 2, . . . ,M − 1, (2.2.9)

U0(t) = UM (t) = 0, (2.2.10)
Ui(0) = U0,i, i = 0, 1, . . . ,M, (2.2.11)

where
ψi(t) = O(h).
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Let zi(t) = ui(t)− Ui(t). From (2.2.4)–(2.2.6) and (2.2.9)–(2.2.11), we have

dzi
dt

−
{(

1 +

t∫
0

(ux,i)
2 dτ

)p

ux,i −
(
1 +

t∫
0

(Ux,i)
2 dτ

)p

Ux,i

}
x

= −ψi(t), (2.2.12)

z0(t) = zM (t) = 0,

zi(0) = 0.

Multiplying equation (2.2.12) scalarly by z(t) = (z1(t), z2(t), . . . , zM−1(t)) and using the discrete
analogue of the formula of integration by parts, we get

1

2

d

dt
∥z∥2 +

M∑
i=1

{(
1 +

t∫
0

(ux,i)
2 dτ

)p

ux,i −
(
1 +

t∫
0

(Ux,i)
2 dτ

)p

Ux,i

}
zx,ih = −h

M−1∑
i=1

ψizi. (2.2.13)

Note that

{(
1 +

t∫
0

(ux,i)
2 dτ

)p

ux,i −
(
1 +

t∫
0

(Ux,i)
2 dτ

)p

Ux,i

}
(ux,i − Ux,i)

= p

1∫
0

(
1 +

t∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]2
dτ

)p−1

× d

dt

( t∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]
(ux,i − Ux,i) dτ

)2

dξ

+

1∫
0

(
1 +

t∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]2
dτ

)p

dξ (ux,i − Ux,i)
2.

After substituting this equality in (2.2.13), integrating the obtained equality on (0, t) and using the
formula of integration by parts, we get

∥z∥2 + 2h

M∑
i=1

t∫
0

1∫
0

(
1 +

t′∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]2
dτ ′
)p

(ux,i − Ux,i)
2 dξ dτ

+ ph

M∑
i=1

1∫
0

(
1 +

t∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]2
dτ

)p−1

×
( t∫

0

[
Ux,i + ξ(ux,i − Ux,i)

]
(ux,i − Ux,i) dτ

)2

dξ

− p(p− 1)h

M∑
i=1

1∫
0

t∫
0

(
1 +

t′∫
0

[
Ux,i + ξ(ux,i − Ux,i)

]2
dτ ′
)p−2[

Ux,i + ξ(ux,i − Ux,i)
]2

×
( t′∫

0

[
Ux,i + ξ(ux,i − Ux,i)

]
(ux,i − Ux,i) dτ

′
)2

dξ dτ

= −2h

M−1∑
i=1

ψizi.
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Taking into account the restriction 0 < p ≤ 1, the last equality yields

∥z(t)∥2 ≤
t∫

0

∥z(τ)∥2 dτ +
t∫

0

∥ψi∥2 dτ. (2.2.14)

From (2.2.14) we get (2.2.8), and thus Theorem 2.2.1 is proved.

2.2.2 Finite difference scheme
In [0, 1] × [0, T ], let us consider again problem (2.2.1)–(2.2.3) and introduce a net on it with mesh
points denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N .
The initial line is denoted by j = 0. The discrete approximation for (xi, tj) is designed by uji and the
exact solution to problem (2.2.1)–(2.2.3) by U j

i . One again can use the following known notations [64]:

ujx,i =
uji+1 − uji

h
, ujx,i =

uji − uji−1

h
, ujt,i =

uj+1
i − uji
τ

.

For problem (2.2.1)–(2.2.3), let us consider the following finite difference scheme:

uj+1
i − uji
τ

−
{(

1 + τ

j+1∑
k=1

(ukx,i)
2
)p
uj+1
x,i

}
x

= f ji , i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1, (2.2.15)

uj0 = ujM = 0, j = 0, 1, . . . , N, (2.2.16)
u0i = U0,i, i = 0, 1, . . . ,M. (2.2.17)

Multiplying equation (2.2.15) scalarly by uj+1
i , it is not difficult to get the inequality

∥un∥2 +
n∑

j=1

∥ujx]|
2τ < C, n = 1, 2, . . . , N, (2.2.18)

where C is a positive constant independent of τ and h.

Remark 2.2.2. The a priori estimate (2.2.18) guarantees the solvability of scheme (2.2.15)–(2.2.17)
by using the Brouwer fixed-point lemma (see, e.g., [54] or Section 4.1). Note that applying the same
technique as when proving the convergence theorem below, it is not difficult to prove the uniqueness
of the solution and stability of the scheme (2.2.15)–(2.2.17), as well.

The main statement of the present subsection can be stated as follows.

Theorem 2.2.2. If 0 < p ≤ 1 and problem (2.2.1)–(2.2.3) has a sufficiently smooth solution
U(x, t), then the solution uj = (uj1, u

j
2, . . . , u

j
M−1), j = 1, 2, . . . , N of the difference scheme (2.2.15)–

(2.2.17) tends to the solution of the continuous problem (2.2.1)–(2.2.3) U j = (U j
1 , U

j
2 , . . . , U

j
M−1),

j = 1, 2, . . . , N as τ → 0, h→ 0, and the estimate

∥uj − U j∥ ≤ C(τ + h) (2.2.19)

is true.

Proof. To prove Theorem 2.2.2, we introduce the difference zji = uji − U j
i . We have

zj+1
t,i −

{(
1 + τ

j+1∑
k=1

(ukx,i)
2
)p
uj+1
x,i −

(
1 + τ

j+1∑
k=1

(Uk
x,i)

2
)p
U j+1
x,i

}
x

= −ψj
i , (2.2.20)

zj0 = zjM = 0,

z0i = 0,
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where
ψj
i = O(τ + h).

Multiplying (2.2.20) scalarly by τzj+1 = τ(zj+1
1 , zj+1

2 , . . . , zj+1
M−1) and using the discrete analogue

of the formula of integration by parts, we get

∥zj+1∥2 − (zj+1, zj)

+ τh

M∑
i=1

{(
1 + τ

j+1∑
k=1

(ukx,i)
2
)p
uj+1
x,i −

(
1 + τ

j+1∑
k=1

(Uk
x,i)

2
)p
U j+1
x,i

}
zj+1
x,i = −τ(ψj , zj+1). (2.2.21)

Note that

{(
1 + τ

j+1∑
k=1

(ukx,i)
2
)p
uj+1
x,i −

(
1 + τ

j+1∑
k=1

(Uk
x,i)

2
)p
U j+1
x,i

}
(uj+1

x,i − U j+1
x,i )

=

1∫
0

d

dµ

{(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p[

U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]}
dµ (uj+1

x,i − U j+1
x,i )

= 2p

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p−1

× τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]
(ukx,i − Uk

x,i)
[
U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]
dµ (uj+1

x,i − U j+1
x,i )

+

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p

(uj+1
x,i − U j+1

x,i ) dµ (uj+1
x,i − U j+1

x,i )

= 2p

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p−1

× τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]
(ukx,i − Uk

x,i)
[
U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]
(uj+1

x,i − U j+1
x,i ) dµ

+

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p

(uj+1
x,i − U j+1

x,i )2 dµ

= 2p

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p−1

ξj+1
i (µ)ξjt,i(µ) dµ

+

1∫
0

(
1 + τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2)p

(uj+1
x,i − U j+1

x,i )2 dµ,

where

ξj+1
i (µ) = τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]
(ukx,i − Uk

x,i),

ξ0i (µ) = 0,

and therefore,
ξjt,i(µ) =

[
U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]
(uj+1

x,i − U j+1
x,i ).
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Introducing the notation

sj+1
i (µ) = τ

j+1∑
k=1

[
Uk
x,i + µ(ukx,i − Uk

x,i)
]2
,

from the previous equality we have

{(
1 + τ

j+1∑
k=1

(ukx,i)
2
)p
uj+1
x,i −

(
1 + τ

j+1∑
k=1

(Uk
x,i)

2
)p
U j+1
x,i

}
(uj+1

x,i − U j+1
x,i )

= 2p

1∫
0

(1 + sj+1
i (µ))p−1ξj+1

i ξjt,i dµ+

1∫
0

(1 + sj+1
i (µ))p(uj+1

x,i − U j+1
x,i )

2
dµ.

After substituting this equality into (2.2.21), we get

∥zj+1∥2 − (zj+1, zj) + 2τhp

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1ξj+1

i ξjt,i dµ

+ τh

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p(uj+1

x,i − U j+1
x,i )2 dµ = −τ(ψj , zj+1). (2.2.22)

Taking into account the restriction p > 0 and relations

sj+1
i (µ) ≥ 0,

(zj+1, zj) =
1

2
∥zj+1∥2 + 1

2
∥zj∥2 − 1

2
∥zj+1 − zj∥2,

τξj+1
i ξjt,i =

1

2
(ξj+1

i )2 − 1

2
(ξji )

2 +
τ2

2
(ξjt,i)

2,

from (2.2.22) we obtain

∥zj+1∥2 − 1

2
∥zj+1∥2 − 1

2
∥zj∥2 + 1

2
∥zj+1 − zj∥2

+ hp

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1

[
(ξj+1

i )2 − (ξji )
2
]
dµ

+ τ2hp

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1(ξjt,i)

2 dµ+ τh

M∑
i=1

(uj+1
x,i − U j+1

x,i )2 ≤ −τ(ψj , zj+1). (2.2.23)

From (2.2.23), we arrive at

1

2
∥zj+1∥2 − 1

2
∥zj∥2 + τ2

2
∥zjt ∥2

+ hp

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1

[
(ξj+1

i )2 − (ξji )
2
]
dµ+ τ∥zj+1

x ]|2 ≤ τ

2
∥ψj∥2 + τ

2
∥zj+1∥2. (2.2.24)

Using a discrete analogue of the Poincaré inequality [64]

∥zj+1∥2 ≤ ∥zj+1
x ]|2,
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from (2.2.24) we get

∥zj+1∥2 − ∥zj∥2 + τ2∥zjt ∥2

+ 2hp
M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1

[
(ξj+1

i )2 − (ξji )
2
]
dµ+ τ∥zj+1

x ]|2 ≤ τ∥ψj∥2. (2.2.25)

Summing-up (2.2.24) from j = 0 to j = n− 1, we arrive at

∥zn∥2 + τ2
n−1∑
j=0

∥zjt ∥2

+ 2hp

n−1∑
j=0

M∑
i=1

1∫
0

(1 + sj+1
i (µ))p−1

[
(ξj+1

i )2 − (ξji )
2
]
dµ+ τ

n−1∑
j=0

∥zj+1
x ]|2 ≤ τ

n−1∑
j=0

∥ψj∥2. (2.2.26)

Note that since sj+1
i (µ) ≥ sji (µ) and p ≤ 1, for the second line of the last formula, we have

n−1∑
j=0

(1 + sj+1
i (µ))p−1

[
(ξj+1

i )2 − (ξji )
2
]

= (1 + s1i (µ))
p−1(ξ1i )

2 − (1 + s1i (µ))
p−1(ξ0i )

2 + (1 + s2i (µ))
p−1(ξ2i )

2

− (1 + s2i (µ))
p−1(ξ1i )

2 + · · ·+ (1 + sni (µ))
p−1(ξni )

2 − (1 + sni (µ))
p−1(ξn−1

i )2

= (1 + sni (µ))
p−1(ξni )

2 +

n−1∑
j=1

[
(1 + sji (µ))

p−1 − (1 + sj+1
i (µ))p−1

]
(ξji )

2 ≥ 0.

Taking into account the latter relation and (2.2.26), one can deduce

∥zn∥2 + τ2
n−1∑
j=0

∥zjt ∥2 + τ

n−1∑
j=0

∥zj+1
x ]|2 ≤ τ

n−1∑
j=0

∥ψj∥2. (2.2.27)

From (2.2.27) we get (2.2.19), and thus Theorem 2.2.2 is proved.

2.2.3 Numerical implementation remarks
In Section 2.2, the finite difference scheme (2.2.15)–(2.2.17) is constructed and investigated for problem
(2.2.1)–(2.2.3). It should be noted that the stability and convergence of the semi-discrete scheme for
problem (2.2.15)–(2.2.17) for the case 0 < p ≤ 1 is proved, as well. The fully discrete analogues for the
case p = 1 for this type models are studied in [33] and in a number of other works for different type
boundary conditions (see, e.g., [39] and the references therein). As is noted in [39], it is important
to construct and investigate fully discrete finite difference schemes and finite element analogues for
more general type nonlinearities and for multi-dimensional cases, as well. So, in the present section
the finite difference scheme is investigated for the case of the nonlinearity such as a(S) = (1 + S)p,
0 < p ≤ 1. Using the numerical implementation remarks that are given in the above-mentioned
works, the numerical algorithms for solving nonlinear systems of algebraic equations based on the
difference scheme (2.2.15)–(2.2.17) are constructed. The results of numerical experiments fully agree
with theoretical investigations. Experimental calculations for the AIDEs in more details are given in
Subsection 3.2.3.



Chapter 3

Investigation and numerical
solution of one-dimensional
averaged nonlinear
integro-differential equation

Chapter 3 studies the large-time behavior of solutions and finite difference approximations of the
nonlinear AIDE associated with the penetration of a magnetic field into a medium. Asymptotic
properties of solutions for the initial-boundary value problem with the Dirichlet boundary conditions
are considered. The rates of convergence are given, as well. The convergence of the semi-discrete and
finite difference schemes is proved. Numerical experiments are carried out.

Chapter 3 is organized as follows. In Section 3.1 we formulate the problem and consider a large time
behavior of solutions of the first type initial-boundary value problems with homogeneous conditions on
the whole boundary and nonhomogeneous conditions on one side of the lateral boundary for nonlinear
AIDE. The stability and convergence of semi-discrete and finite difference schemes are discussed in
Section 3.2. Some remarks on numerical implementations conclude this section.

3.1 Large time behavior of solutions
3.1.1 Introduction
As it has been mentioned several times, a great deal of applied problems are being modeled by
nonlinear IDEs or systems. Such systems arise, for instance, in the mathematical modeling of the
process of penetration of an electromagnetic field into a medium.

G. Laptev proposed some generalizations of the Volterra-type system considered in Chapter 2. In
particular, assuming the temperature of a body to be constant all along the material, i.e., depending
on time, but independent of the spatial coordinates, the process of penetration of the magnetic field
into a material is modeled by the so-called averaged integro-differential system. One-dimensional
variant of this model has the form

∂U

∂t
= a

( t∫
0

1∫
0

(∂U
∂x

)2
dx dτ

)
∂2U

∂x2
. (3.1.1)

Note that the AIDEs of type (3.1.1) are complex and that is why only special cases were investi-
gated. The existence and uniqueness of the solutions of the initial-boundary value problems for the
equations of type (3.1.1) were first studied in [32]. For more information about (3.1.1) type models
see also [39] and the references therein.
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The purpose of this section is to study an asymptotic behavior of the solutions for equation
(3.1.1). Our objective is to give a large-time asymptotic behavior (as t → ∞) of solutions of the
initial-boundary value problem with the homogeneous Dirichlet boundary conditions. Asymptotic
behavior of the solutions with nonhomogeneous conditions on a part of the boundary is also studied
in this section. Note that investigations of difference schemes for these models can be found in [10,
19,30,38,39,44,52,65–67,74]. Difference schemes for a certain nonlinear parabolic integro-differential
model similar to (3.1.1) with the same boundary conditions were studied in a number of other works,
as well.

3.1.2 Asymptotic behavior of solutions with the homogeneous boundary
conditions

Consider the following initial-boundary value problem:

∂U

∂t
= a(S)

∂2U

∂x2
, (x, t) ∈ Q = (0, 1)× (0,∞), (3.1.2)

U(0, t) = U(1, t) = 0, t ≥ 0, (3.1.3)
U(x, 0) = U0(x), x ∈ [0, 1], (3.1.4)

where

S(t) =

t∫
0

1∫
0

(∂U
∂x

)2
dx dτ, (3.1.5)

a(S) = (1 + S)p, p > 0; U0 = U0(x) is a given function.
For earlier work on the unique solvability and asymptotic behavior in time of solutions for (3.1.2)–

(3.1.5) type problems, see [32].
The main purpose of this subsection is to prove the following statement.

Theorem 3.1.1. If a(S) = (1+S)p, p > 0; U0 ∈W 2
2 (0, 1)∩

◦
W 1

2(0, 1), then for the solution of problem
(3.1.2)–(3.1.5) the following estimates hold:∣∣∣∂U(x, t)

∂x

∣∣∣ ≤ C
(
− t

2

)
,
∣∣∣∂U(x, t)

∂t

∣∣∣ ≤ C
(
− t

2

)
.

Now we intend to get a priori estimates for a solution of problem (3.1.2)–(3.1.5).
To prove the main Theorem 3.1.1, we need some auxiliary statements.

Theorem 3.1.2. If a(S) = (1 + S)p, p > 0; U0 ∈
◦
W 1

2(0, 1), then for the solution of problem (3.1.2)–
(3.1.5) the estimate

∥U∥+
∥∥∥∂U
∂x

∥∥∥ ≤ C
(
− t

2

)
is true.

Proof. We multiply equation (3.1.2) by U and integrate over (0, 1). After integrating by parts and
using the boundary conditions (3.1.3), we get

1

2

d

dt
∥U∥2 +

1∫
0

(1 + S)p
(∂U
∂x

)2
dx = 0,

whence, taking into account the relation (1 + S)p ≥ 1 and the Poincaré inequality, we obtain

1

2

d

dt
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2 ≤ 0,
1

2

d

dt
∥U∥2 + ∥U∥2 ≤ 0. (3.1.6)
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Multiplying equation (3.1.2) scalarly by ∂2U/∂x2, using again formula of integrating by parts and
the boundary conditions (3.1.3), we get

∂U

∂t

∂U

∂x

∣∣∣∣1
0

−
1∫

0

∂2U

∂x∂t

∂U

∂x
dx =

1∫
0

(1 + S)p
(∂2U
∂x2

)2
dx,

1

2

d

dt

∥∥∥∂U
∂x

∥∥∥2 + (1 + S)p
∥∥∥∂2U
∂x2

∥∥∥2 = 0,

or
d

dt

∥∥∥∂U
∂x

∥∥∥2 ≤ 0. (3.1.7)

Combining (3.1.6) and (3.1.7), we deduce
d

dt
∥U∥2 + ∥U∥2 + d

dt

∥∥∥∂U
∂x

∥∥∥2 + ∥∥∥∂U
∂x

∥∥∥2 ≤ 0.

After multiplying by the function exp(t), the last inequality yields
d

dt

(
exp(t)∥U∥2

)
+
d

dt

(
exp(t)

∥∥∥∂U
∂x

∥∥∥2) ≤ 0,

or
d

dt

[
exp(t)

(
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2)] ≤ 0.

This inequality immediately proves Theorem 3.1.2.

Note that Theorem 3.1.2 provides us with the exponential stabilization of the solution of problem
(3.1.2)–(3.1.5) in the norm of the space W 1

2 (0, 1). Let us show that stabilization is also achieved in
the norm of the space C1(0, 1).

First of all, let us show that the following statement is valid.
Theorem 3.1.3. For the solution of problem (3.1.2)–(3.1.5), the following estimate holds∥∥∥∂U(x, t)

∂t

∥∥∥ ≤ C exp
(
− t

2

)
.

Proof. We differentiate equation (3.1.2) with respect to t,

∂2U

∂t2
= (1 + S)p

∂3U

∂x2∂t
+ p(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

∂2U

∂x2
, (3.1.8)

and multiply (3.1.8) scalarly by ∂U/∂t. We deduce

1

2

d

dt

1∫
0

(∂U
∂t

)2
dx+ (1 + S)p

1∫
0

( ∂2U
∂x∂t

)2
dx+ p(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂x∂t
dx = 0,

or

d

dt

1∫
0

(∂U
∂t

)2
dx+ 2(1 + S)p

1∫
0

( ∂2U
∂x∂t

)2
dx = −2p(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂x∂t
dx.

Let us estimate the left-hand side of the latter equality

−2p(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂x∂t
dx

= −2

1∫
0

{
p(1 + S)

p
2−1

[ 1∫
0

(∂U
∂x

)2
dx

]
∂U

∂x

}{
(1 + S)

p
2
∂2U

∂x∂t

}
dx,
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from which, using the Schwarz inequality, we get

d

dt

1∫
0

(∂U
∂t

)2
dx+ 2(1 + S)p

1∫
0

( ∂2U
∂x∂t

)2
dx

≤ (1 + S)p
1∫

0

( ∂2U
∂x∂t

)2
dx+ p2(1 + S)p−2

[ 1∫
0

(∂U
∂x

)2
dx

]2 1∫
0

(∂U
∂x

)2
dx,

or
d

dt

1∫
0

(∂U
∂t

)2
dx+ (1 + S)p

1∫
0

( ∂2U
∂x∂t

)2
dx ≤ p2(1 + S)p−2

[ 1∫
0

(∂U
∂x

)2
dx

]3
. (3.1.9)

Note that Theorem 3.1.2 enables us to estimate the function S,

S(t) =

t∫
0

1∫
0

(∂U
∂x

)2
dx dτ =

t∫
0

∥∥∥∂U
∂x

∥∥∥2 dτ ≤ C

t∫
0

exp(−τ) dτ ≤ C.

Thus, we have
1 ≤ 1 + S(t) ≤ C. (3.1.10)

Using the Poincaré inequality, Theorem 3.1.2 and relation (3.1.10), from (3.1.9) we get

d

dt

1∫
0

(∂U
∂t

)2
dx+

1∫
0

(∂U
∂t

)2
dx ≤ C exp(−3τ).

Multiplying the latter inequality by the function exp(t), we arrive at

d

dt

(
exp(t)

∥∥∥∂U
∂t

∥∥∥2) ≤ C exp(−2t).

From this, we deduce

exp(t)
∥∥∥∂U
∂t

∥∥∥2 ≤ C

t∫
0

exp(−2τ) dτ.

Therefore, Theorem 3.1.3 is proved.

Proof of Theorem 3.1.1. Let us now estimate ∂2U/∂x2 in the norm of the space L1(0, 1). From (3.1.2)
we have

∂2U

∂x2
= (1 + S)−p ∂U

∂t
. (3.1.11)

So, applying again the Schwarz inequality, Theorem 3.1.3 and estimate (3.1.10), we derive

1∫
0

∣∣∣∂2U
∂x2

∣∣∣ dx ≤
[ 1∫

0

(1 + S)−2p dx

] 1
2
[ 1∫

0

∣∣∣∂U
∂t

∣∣∣2 dx] 1
2

≤ C exp
(
− t

2

)
,

whence, taking into account the relation

∂U(x, t)

∂x
=

1∫
0

∂U(y, t)

∂y
dy +

1∫
0

x∫
y

∂2U(ξ, t)

∂ξ2
dξ dy
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and the boundary conditions (3.1.3), it follows that

∣∣∣∂U(x, t)

∂x

∣∣∣ = ∣∣∣∣
1∫

0

x∫
y

∂2U(ξ, t)

∂ξ2
dξ dy

∣∣∣∣ ≤
1∫

0

∣∣∣∂2U(y, t)

∂y2

∣∣∣ dy ≤ C exp
(
− t

2

)
.

Let us now estimate ∂U/∂t in the norm of the space C1(0, 1). We multiply equation (3.1.2) scalarly
by ∂3U/∂x2∂t. After using the formula of integrating by parts and the boundary conditions (3.1.3),
we get

∂U

∂t

∂2U

∂x∂t

∣∣∣∣1
0

−
∥∥∥ ∂2U
∂x∂t

∥∥∥2 = (1 + S)p
1∫

0

∂2U

∂x2
∂3U

∂x2∂t
dx, (3.1.12)

1

2
(1 + S)p

d

dt

∥∥∥∂2U
∂x2

∥∥∥2 + ∥∥∥ ∂2U
∂x∂t

∥∥∥2 = 0,

or
d

dt

∥∥∥∂2U
∂x2

∥∥∥2 ≤ 0. (3.1.13)

Note that from (3.1.12) we have

∥∥∥ ∂2U
∂x∂t

∥∥∥2 ≤ (1 + S)p
[ 1∫

0

(∂2U
∂x2

)2
dx

] 1
2
[ 1∫

0

( ∂3U

∂x2∂t

)2
dx

] 1
2

≤ 1

2
(1 + S)p

∥∥∥∂2U
∂x2

∥∥∥2 + 1

2
(1 + S)p

∥∥∥ ∂3U

∂x2∂t

∥∥∥2. (3.1.14)

Multiplying (3.1.8) scalarly by ∂3U/∂x2∂t,

∂2U

∂t2
∂2U

∂x∂t

∣∣∣∣1
0

−
1∫

0

∂3U

∂x∂t2
∂2U

∂x∂t
dx

= (1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2 + p(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂2U

∂x2
∂3U

∂x2∂t
dx,

and taking into account the boundary conditions (3.1.3), we obtain

d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 + 2(1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2
= −2

1∫
0

{
p(1 + S)

p
2−1

[ 1∫
0

(∂U
∂x

)2
dx

]
∂2U

∂x2

}{
(1 + S)

p
2
∂3U

∂x2∂t

}
dx.

From this, using the Schwarz inequality once again, we obtain

d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 + 2(1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2
≤ (1 + S)p

∥∥∥ ∂3U

∂x2∂t

∥∥∥2 + p2(1 + S)p−2

[ 1∫
0

(∂U
∂x

)2
dx

]2 1∫
0

(∂2U
∂x2

)2
dx,

or
d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 + (1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2 ≤ p2(1 + S)p−2

[ 1∫
0

(∂U
∂x

)2
dx

]2 1∫
0

(∂2U
∂x2

)2
dx.
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Using Theorem 3.1.2, relations (3.1.10), (3.1.11) and Theorem 3.1.3, we arrive at

d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 + (1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2 ≤ C exp(−3t). (3.1.15)

Combining (3.1.6), (3.1.7) and (3.1.13)–(3.1.15), we get

∥U∥2 + d

dt
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2 + d

dt

∥∥∥∂U
∂x

∥∥∥2 + 2(1 + S)p
∥∥∥∂2U
∂x2

∥∥∥2
+
d

dt

∥∥∥∂2U
∂x2

∥∥∥2 + ∥∥∥ ∂2U
∂x∂t

∥∥∥2 + d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 + (1 + S)p
∥∥∥ ∂3U

∂x2∂t

∥∥∥2
≤ 1

2
(1 + S)p

∥∥∥∂2U
∂x2

∥∥∥2 + 1

2
(1 + S)p

∥∥∥ ∂3U

∂x2∂t

∥∥∥2 + C exp(−3t). (3.1.16)

After a simple transformation, keeping in mind estimate (3.1.10), from (3.1.16) we deduce

∥U∥2 + d

dt
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2 + d

dt

∥∥∥∂U
∂x

∥∥∥2
+
∥∥∥∂2U
∂x2

∥∥∥2 + d

dt

∥∥∥∂2U
∂x2

∥∥∥2 + ∥∥∥ ∂2U
∂x∂t

∥∥∥2 + d

dt

∥∥∥ ∂2U
∂x∂t

∥∥∥2 ≤ C exp(−3t).

From this, after multiplication by the function exp(t), we get

d

dt

[
exp(t)

(
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2 + ∥∥∥∂2U
∂x2

∥∥∥2 + ∥∥∥ ∂2U
∂x∂t

∥∥∥2)] ≤ C exp(−2t),

or
∥U∥2 +

∥∥∥∂U
∂x

∥∥∥2 + ∥∥∥∂2U
∂x2

∥∥∥2 + ∥∥∥ ∂2U
∂x∂t

∥∥∥2 ≤ C exp(−t).

At last, taking into account the relation

∂U(x, t)

∂t
=

1∫
0

∂U(y, t)

∂t
dy +

1∫
0

x∫
y

∂2U(ξ, t)

∂ξ∂t
dξ dy

and Theorem 3.1.3, we obtain

∣∣∣∂U(x, t)

∂t

∣∣∣ ≤ [ 1∫
0

(∂U(x, t)

∂t

)2
dx

] 1
2

+

[ 1∫
0

(∂2U(x, t)

∂x∂t

)2
dx

] 1
2

≤ C
(
− t

2

)
.

So, the main Theorem 3.1.1 of this subsection is proved.

Remark 3.1.1. The large time behavior to the solutions of the initial-boundary value problems for
(3.1.2) type models for the case −1/2 < p < 0 is studied in [32,46].

Remark 3.1.2. The existence of globally defined solutions of problem (3.1.2)–(3.1.5) can be reob-
tained by a routine procedure. One can first establish the existence of local solutions at a maximal
time interval and then find from the obtained estimates that this solution cannot escape at a finite
time.

3.1.3 Asymptotic behavior of solutions with nonhomogeneous condition on
a part of the boundary

Let us consider the following initial-boundary value problem:

∂U

∂t
= a(S)

∂2U

∂x2
, (x, t) ∈ Q = (0, 1)× (0,∞), (3.1.17)

U(0, t) = 0, U(1, t) = ψ, t ≥ 0, (3.1.18)
U(x, 0) = U0(x), x ∈ [0, 1], (3.1.19)
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where

S(t) =

t∫
0

1∫
0

(∂U
∂x

)2
dx dτ, (3.1.20)

a(S) = (1 + S)p, p > 0, ψ = Const > 0; U0 = U0(x) is a given function.

Remark 3.1.3. It should be noted that the boundary conditions (3.1.18) are, just as in Chapter 2,
used by taking into account the physical problems considered in [25].

The main purpose of this section is to prove the following statement.

Theorem 3.1.4. If a(S) = (1 + S)p, p > 0, ψ = Const > 0; U0 ∈ W 2
2 (0, 1), U0(0) = 0, U0(1) = ψ,

then for the solution of problem (3.1.17)–(3.1.20) the following estimates are true:∣∣∣∂U(x, t)

∂x
− ψ

∣∣∣ ≤ Ct−1−p,
∣∣∣∂U(x, t)

∂t

∣∣∣ ≤ Ct−1, t ≥ 1.

Before we proceed to proving Theorem 3.1.4, we establish some auxiliary lemmas.

Lemma 3.1.1. The following estimates are true:

φ
1

1+2p (t) ≤ 1 + S(t) ≤ Cφ
1

1+2p (t), t ≥ 0,

where

φ(t) = 1 +

t∫
0

1∫
0

(1 + S)2p
(∂U
∂x

)2
dx dτ. (3.1.21)

Proof. From (3.1.20) it follows that

dS

dt
=

1∫
0

(∂U
∂x

)2
dx, S(0) = 0. (3.1.22)

Let us multiply the first identity of (3.1.22) by (1 + S)2p and introduce the following notation

σ = (1 + S)p
∂U

∂x
.

We have
1

1 + 2p

dS1+2p

dt
=

1∫
0

σ2 dx.

Integrating this relation on (0, t), we arrive at

1

1 + 2p
(1 + S)1+2p =

t∫
0

1∫
0

σ2 dx dτ +
1

1 + 2p
.

Note that 0 < 1
1+2p < 1. So, we get

φ
1

1+2p (t) ≤ 1 + S(t) ≤
[
(1 + 2p)φ(t)

] 1
1+2p .

Thus, Lemma 3.1.1 is proved.

Lemma 3.1.2. The following estimates are true:

cφ
2p

1+2p (t) ≤
1∫

0

σ2 dx ≤ Cφ
2p

1+2p (t), t ≥ 0.
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Proof. Taking into account Lemma 3.1.1, we get

1∫
0

σ2 dx =

1∫
0

(1 + S)2p
(∂U
∂x

)2
dx ≥ φ

2p
1+2p (t)

1∫
0

(∂U
∂x

)2
dx

≥ φ
2p

1+2p (t)

[ 1∫
0

∂U

∂x
dx

]2
= ψ2φ

2p
1+2p (t),

or
1∫

0

σ2 dx ≥ cφ
2p

1+2p (t). (3.1.23)

Let us multiply equation (3.1.17) scalarly by (1+S)−p∂U/∂t. Using the formula of integration by
parts and the boundary conditions (3.1.18), we have

1∫
0

(1 + S)−p
(∂U
∂t

)2
dx+

1

2

d

dt

1∫
0

(∂U
∂x

)2
dx = 0.

After integration from 0 to t, we arrive at

t∫
0

1∫
0

(1 + S)−p
(∂U
∂τ

)2
dx dτ +

1

2

1∫
0

(∂U
∂x

)2
dx = C.

From this, we get
1∫

0

(∂U
∂x

)2
dx ≤ C. (3.1.24)

Using (3.1.24) and Lemma 3.1.1, we conclude

1∫
0

σ2 dx = (1 + S)2p
1∫

0

(∂U
∂x

)2
dx ≤ Cφ

2p
1+2p (t).

Now, taking into account (3.1.23), from the latter inequality the proof of Lemma 3.1.2 is complete.

From Lemma 3.1.2 and relation (3.1.21) we have the following estimates:

cφ
2p

1+2p (t) ≤ dφ(t)

dt
≤ Cφ

2p
1+2p (t), t ≥ 0. (3.1.25)

Lemma 3.1.3. ∂U/∂t satisfy the inequality

1∫
0

(∂U
∂t

)2
dx ≤ Cφ− 2

1+2p (t).

Proof. Using the Poincaré inequality, Lemma 3.1.1 and relation (3.1.24), we get

d

dt

1∫
0

(∂U
∂t

)2
dx+ φ

p
1+2p (t)

1∫
0

(∂U
∂t

)2
dx ≤ Cφ

p−2
1+2p (t).
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Using Gronwall’s inequality, we have
1∫

0

(∂U
∂t

)2
dx ≤ exp

(
−

t∫
0

φ
p

1+2p (τ) dτ

)

×
[ 1∫

0

(∂U
∂t

)2
dx

∣∣∣∣
t=0

+ C

t∫
0

exp
( τ∫

0

φ
p

1+2p (ξ) dξ

)
φ

p−2
1+2p (τ) dτ

]
. (3.1.26)

Noting that φ(t) ≥ 1, applying the L’Hopital rule and estimate (3.1.25), we obtain

lim
t→∞

t∫
0

exp
( τ∫

0

φ
p

1+2p (ξ) dξ
)
φ

p−2
1+2p (τ) dτ

exp
( t∫

0

φ
p

1+2p (τ) dτ
)
φ− 2

1+2p (t)

= lim
t→∞

exp
( t∫

0

φ
p

1+2p (τ) dτ
)
φ

p−2
1+2p (t)

exp
( t∫

0

φ
p

1+2p (τ) dτ
)(
φ

p−2
1+2p (t)− 2

1+2pφ
−3−2p
1+2p (t) dφ

dt

)
≤ lim

t→∞

1

1− C
1+2pφ

− p+1
1+2p (t)

≤ C. (3.1.27)

Therefore, Lemma 3.1.3 follows from (3.1.26) and (3.1.27).

Proof of Theorem 3.1.4. Now, according to the method applied in Subsection 3.1.1, taking into ac-
count Lemmas 3.1.1 and 3.1.3, we derive

∣∣∣∂U(x, t)

∂x
− ψ

∣∣∣ = ∣∣∣∣
1∫

0

x∫
y

∂2U(ξ, t)

∂ξ2
dξ dy

∣∣∣∣ ≤
1∫

0

∣∣∣∂2U(x, t)

∂x2

∣∣∣ dx ≤
1∫

0

∣∣∣(1 + S)−p ∂U

∂t

∣∣∣ dx
≤
[ 1∫

0

(1 + S)−2p dx

] 1
2
[ 1∫

0

∣∣∣∂U
∂t

∣∣∣2 dx] 1
2

≤ Cφ− p
1+2p (t)φ− 1

1+2p (t) = Cφ− p+1
1+2p (t).

Hence, we have ∣∣∣∂U(x, t)

∂x
− ψ

∣∣∣ ≤ Cφ− p+1
1+2p (t). (3.1.28)

Let us now estimate ∂U/∂t. To this end, let us multiply (3.1.8) by φ
2

1+2p (t). Integrating on (0, t),
using the formula of integrating by parts, estimates (3.1.24), (3.1.25) and Lemmas 3.1.1, 3.1.3, we get

t∫
0

φ
2

1+2p (τ)
d

dτ

1∫
0

(∂U
∂τ

)2
dx dτ +

t∫
0

φ
2

1+2p (τ)(1 + S)p
1∫

0

( ∂2U
∂τ∂x

)2
dx dτ ≤ C

t∫
0

φ
p

1+2p (τ) dτ,

t∫
0

φ
2

1+2p (τ)φ
p

1+2p (τ)

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ ≤ −φ

2
1+2p (t)

1∫
0

(∂U
∂t

)2
dx+

1∫
0

(∂U
∂t

)2
dx

∣∣∣∣
t=0

+
2

1 + 2p

t∫
0

φ
1−2p
1+2p (τ)

dφ

dτ

1∫
0

(∂U
∂τ

)2
dx dτ + C1

t∫
0

φ
−p

1+2p (τ)
dφ

dτ
dτ

≤ C2 + C3

t∫
0

φ− 1
1+2p (τ) dτ + C4(φ

p+1
1+2p (t)− 1) ≤ Cφ

p+1
1+2p (t),
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or
t∫

0

φ
p+2
1+2p (τ)

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ ≤ Cφ

p+1
1+2p (t). (3.1.29)

Multiplying equation (3.1.8) scalarly by φ
3

1+2p (t)∂2U/∂t2, applying the formula of integration by
parts, the Schwarz inequality, Lemma 3.1.1 and a priori estimates (3.1.25), (3.1.28), (3.1.29), we get

1∫
0

φ
3

1+2p (t)
(∂2U
∂t2

)2
dx+

1∫
0

φ
3

1+2p (t)(1 + S)p
∂2U

∂t∂x

∂3U

∂t2∂x
dx

+p

1∫
0

φ
3

1+2p (t)(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

∂U

∂x

∂3U

∂t2∂x
dx = 0,

t∫
0

1∫
0

φ
3

1+2p (τ)
(∂2U
∂τ2

)2
dx dτ +

1

2

t∫
0

1∫
0

φ
3

1+2p (τ)(1 + S)p
∂

∂τ

( ∂2U
∂τ∂x

)2
dx dτ

+p

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂

∂τ

( ∂2U
∂τ∂x

)
dx dτ = 0,

1

2
φ

3
1+2p (t)(1 + S)p

1∫
0

( ∂2U
∂t∂x

)2
dx− 1

2

1∫
0

( ∂2U
∂t∂x

)2
dx

∣∣∣∣
t=0

≤ 3

2 + 4p

t∫
0

1∫
0

φ
2−2p
1+2p (τ)

dφ

dτ
(1 + S)p

( ∂2U
∂τ∂x

)2
dx dτ

+
p

2

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ

−pφ
3

1+2p (t)(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂t∂x
dx+ p

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂t∂x
dx

∣∣∣∣
t=0

+
3p

1 + 2p

t∫
0

φ
2−2p
1+2p (τ)

dφ

dτ
(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂τ∂x
dx dτ

+p(p− 1)

t∫
0

φ
3

1+2p (τ)(1 + S)p−2

[ 1∫
0

(∂U
∂x

)2
dx

]2 1∫
0

∂U

∂x

∂2U

∂τ∂x
dx dτ

+p

t∫
0

φ
3

1+2p (τ)(1 + S)p−1 d

dτ

1∫
0

(∂U
∂x

)2
dx

1∫
0

∂U

∂x

∂2U

∂τ∂x
dx dτ

+p

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

1∫
0

(∂U
∂x

)2
dx

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ

≤ C1φ
p+1
1+2p (t) + C2φ

p+1
1+2p (t) +

1

4
φ

3
1+2p (t)(1 + S)p

1∫
0

( ∂2U
∂t∂x

)2
dx

+C3φ
3

1+2p (t)(1 + S)p−2 + p
∥∥∥∂U
∂x

∥∥∥3∥∥∥ ∂2U
∂x∂t

∥∥∥ ∣∣∣∣
t=0
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+C4

t∫
0

φ
2

1+2p (τ)(1 + S)p
1∫

0

( ∂2U
∂τ∂x

)2
dx dτ + C4

t∫
0

φ
2

1+2p (τ)(1 + S)p−2 dτ

+C5

t∫
0

φ
2

1+2p (τ)(1 + S)p
1∫

0

( ∂2U
∂τ∂x

)2
dx dτ + C5

t∫
0

φ
4

1+2p (τ)(1 + S)p−4 dτ

+C6

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

[ 1∫
0

(∂U
∂x

)2
dx

] 1
2

×
[ 1∫

0

( ∂2U
∂x∂τ

)2
dx

] 1
2
[ 1∫

0

(∂U
∂x

)2
dx

] 1
2
[ 1∫

0

( ∂2U
∂x∂τ

)2
dx

] 1
2

dτ

+C7

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ.

From this, taking again into account Lemma 3.1.1 and estimates (3.1.23), (3.1.24), after simple trans-
formations we get

1

4
φ

p+3
1+2p (t)

1∫
0

( ∂2U
∂t∂x

)2
dx ≤ C8φ

p+1
1+2p (t) + C9

t∫
0

φ
p

1+2p (τ) dτ

+ C10

t∫
0

φ
3

1+2p (τ)(1 + S)p−1

1∫
0

( ∂2U
∂τ∂x

)2
dx dτ + C11

≤ C12φ
p+1
1+2p (t),

or, finally,
1∫

0

( ∂2U
∂t∂x

)2
dx ≤ Cφ− 2

1+2p (t).

From this, according to the scheme of Chapter 2, we obtain∣∣∣∂U(x, t)

∂t

∣∣∣ ≤ Cφ− 1
1+2p (t). (3.1.30)

After integration, from (3.1.24), it is easy to show that

ct1+2p ≤ φ(t) ≤ Ct1+2p, t ≥ 1.

From this, taking into account estimates (3.1.28) and (3.1.30), we obtain the validity of Theo-
rem 3.1.4.

Remark 3.1.4. The existence of globally defined solutions of problems (3.1.2)–(3.1.5) and (3.1.17)–
(3.1.20) can now be reobtained by a routine procedure. One first establishes the existence of local
solutions at a maximal time interval and then, relying on the obtained estimates, concludes that this
solution cannot vanish at a finite time.

3.2 Stability and convergence of semi-discrete and finite
difference schemes

The purpose of this section is to study the semi-discrete and finite difference schemes for equation
(3.1.1). Here we consider the case a(S) = (1 + S)p, 0 < p ≤ 1. Note that the difference schemes for
these models were investigated in [38, 39]. The difference schemes for a certain nonlinear parabolic
integro-differential model, similar to (3.1.1), were studied in [10,19,30,44,52,65–67,74].
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3.2.1 Semi-discrete scheme
Consider the problem

∂U

∂t
−
[
1 +

t∫
0

1∫
0

(∂U
∂x

)2
dx dτ

]p
∂2U

∂x2
= f(x, t), (3.2.1)

U(0, t) = U(1, t) = 0, (3.2.2)
U(x, 0) = U0(x), (3.2.3)

in the rectangle QT = (0, 1)× (0, T ), where T is a positive constant, f = f(x, t) and U0 = U0(x) are
the given functions of their arguments.

As in Chapter 2, we introduce a net whose mesh points are denoted by xi = ih, i = 0, 1, . . . ,M ,
with h = 1/M . The boundaries are specified by i = 0 and i = M . Let ui = ui(t) be a semi-
discrete approximation for (xi, t). The exact solution to the problem for (xi, t), denoted by Ui =
Ui(t), is assumed to exist and be smooth enough. From the boundary conditions (3.2.2) we have
u0(t) = uM (t) = 0. For other points xi, i = 1, 2, . . . ,M − 1, the AIDE (3.2.1) will be replaced by
approximation of the space derivatives by the forward and backward differences and spatial integral
will be approximated by quadrature, say right rectangular formula. Once again, for the forward and
backward differences we use the following notations:

ux,i(t) =
ui+1(t)− ui(t)

h
, ux,i(t) =

ui(t)− ui−1(t)

h
.

Note that the values ui(0), i = 1, 2, . . . ,M − 1, can be computed from the initial condition (3.2.3):

ui(0) = U0,i, i = 1, 2, . . . ,M − 1.

Therefore, the semi-discrete problem corresponding to (3.2.1)–(3.2.3) is

dui
dt

−
[
1 + h

M∑
l=1

t∫
0

(ux,l)
2 dτ

]p
uxx,i = f(xi, t), i = 1, 2, . . . ,M − 1, (3.2.4)

u0(t) = uM (t) = 0, (3.2.5)
ui(0) = U0,i, i = 0, 1, . . . ,M. (3.2.6)

Thus, we have obtained the Cauchy problem (3.2.4)–(3.2.6) for a nonlinear system of OIDEs.
Multiplying (3.2.4) by u(t) = (u1(t), u2(t), . . . , uM−1(t)), using the discrete analogue of the inte-

gration by parts and the Poincaré inequality, we get

1

2

d

dt
∥u(t)∥2h + ∥ux(t)]|2h ≤ (f(t), u(t))h ≤ 1

2
∥f(t)∥2h +

1

2
∥u(t)∥2h ≤ 1

2
∥f(t)∥2h +

1

2
∥ux(t)]|2h,

where f(t) = (f1(t), f2(t), . . . , fM−1(t)), fi(t) = f(xi, t). So, we have

∥u(t)∥2h +

t∫
0

∥ux]|2h dτ ≤ C. (3.2.7)

Here and below, in the investigation of (3.2.4)–(3.2.6), C denotes a positive constant independent
of h.

Remark 3.2.1. The a priori estimate (3.1.28) guarantees the global solvability of scheme (3.2.4)–
(3.2.6). Note that applying the technique as in proving the convergence of theorem below, it is not
difficult to prove the uniqueness and stability of the solution of scheme (3.2.4)–(3.2.6), as well.

The first result of this section is formulated in the form of the following statement.
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Theorem 3.2.1. If 0 < p ≤ 1 and problem (3.2.1)–(3.2.3) has a sufficiently smooth solution U =
U(x, t), then the solution u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem (3.2.4)–(3.2.6) tends to the
solution of the continuous problem (3.2.1)–(3.2.3) U = U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0,
and the following estimate is true:

∥u(t)− U(t)∥h ≤ Ch. (3.2.8)

Proof. For the exact solution U = U(x, t), we have

dUi

dt
−
[
1 + h

M∑
l=1

t∫
0

(Ux,l)
2 dτ

]p
Uxx,i = f(xi, t)− ψi(t), i = 1, 2, . . . ,M − 1, (3.2.9)

U0(t) = UM (t) = 0, (3.2.10)
Ui(0) = U0,i, i = 0, 1, . . . ,M, (3.2.11)

where
ψi(t) = O(h).

Let zi(t) = ui(t)−Ui(t) be the difference between approximate and exact solutions. From (3.2.4)–
(3.2.6) and (3.2.9)–(3.2.11), we have

dzi
dt

−
{[

1 + h

M∑
l=1

t∫
0

(ux,l)
2 dτ

]p
ux,i −

[
1 + h

M∑
l=1

t∫
0

(Ux,l)
2 dτ

]p
Ux,i

}
x

= ψi(t), (3.2.12)

z0(t) = zM (t) = 0, (3.2.13)
zi(0) = 0. (3.2.14)

Multiplying (3.2.12) by z(t) = (z1(t), z2(t), . . . , zM−1(t)), using (3.2.13) and the discrete analogue
of the integration by parts, we get

1

2

d

dt
∥z∥2h + h

M∑
i=1

{[
1 + h

M∑
l=1

t∫
0

(ux,l)
2 dτ

]p
ux,i −

[
1 + h

M∑
l=1

t∫
0

(Ux,l)
2 dτ

]p
Ux,i

}
(ux,i − Ux,i)

=

M−1∑
i=1

ψizih. (3.2.15)

Note that

h

M∑
i=1

{(
1 + h

M∑
ℓ=1

t∫
0

(ux,ℓ)
2 dτ

)p
ux,i −

(
1 + h

M∑
ℓ=1

t∫
0

(Ux,ℓ)
2 dτ

)p
Ux,i

}
(ux,i − Ux,i)

= h

M∑
i=1

1∫
0

{
d

dµ

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p[
Ux,i + µ(ux,i − Ux,i)

]}
dµ (ux,i − Ux,i)

= 2ph

M∑
i=1

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p−1

× h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]
(ux,ℓ − Ux,ℓ) dτ

[
Ux,i + µ(ux,i − Ux,i)

]
dµ (ux,i − Ux,i)

+ h

M∑
i=1

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p

(ux,i − Ux,i

)
dµ (ux,i − Ux,i)



Investigation and Numerical Solution of Nonlinear Partial Differential and Integro-Differential Models . . . 63

= 2p

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p−1

× h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]
(ux,ℓ − Ux,ℓ) dτ h

M∑
i=1

[
Ux,i + µ(ux,i − Ux,i)

]
(ux,i − Ux,i

)
dµ

+

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p

h

M∑
i=1

(ux,i − Ux,i)
2 dµ

= 2p

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ

)p−1

ξ(µ)
dξ(µ)

dt
dµ

+

1∫
0

(
1 + h

M∑
ℓ=1

t∫
0

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2
dτ

)p

h

M∑
i=1

(zx)
2 dµ,

where

ξ(µ) = h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]
(ux,ℓ − Ux,ℓ) dτ,

ξ(µ)
∣∣
t=0

= 0,

and therefore,
dξ(µ)

dt
= h

M∑
ℓ=1

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]
(ux,ℓ − Ux,ℓ).

Introducing the notation

s(µ) = h

M∑
ℓ=1

t∫
0

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
dτ,

from the previous equality, we have

h

M∑
i=1

{(
1 + h

M∑
ℓ=1

t∫
0

(ux,ℓ)
2 dτ

)p

ux,i −
(
1 + h

M∑
ℓ=1

t∫
0

(Ux,ℓ)
2 dτ

)p

Ux,i

}
(ux,i − Ux,i)

= 2p

1∫
0

(1 + s(µ))p−1ξ(µ)
dξ(µ)

dt
dµ+

1∫
0

(1 + s(µ))p∥zx]|2 dµ

= p

1∫
0

(1 + s(µ))p−1 dξ
2(µ)

dt
dµ+

1∫
0

(1 + s(µ))p∥zx]|2 dµ.

After substituting this equality in (3.2.15), we get

1

2

d

dt
∥z∥2h + p

1∫
0

(1 + s(µ))p−1 dξ
2(µ)

dt
dµ+

1∫
0

(1 + s(µ))p∥zx]|2 dµ = (ψ, z). (3.2.16)

Integrating the obtained equality (3.2.16) on (0, t), we have

∥z∥2h + 2p

t∫
0

1∫
0

(1 + s(µ))p−1 dξ
2(µ)

dt
dµ dτ +

t∫
0

1∫
0

(1 + s(µ))p∥zx]|2 dµ dτ =

t∫
0

(ψ, z) dτ.
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Using the formula of integration by parts, we get

∥z∥2h + 2p

1∫
0

(1 + s(µ))p−1ξ2(µ) dµ− 2p(p− 1)

t∫
0

1∫
0

(1 + s(µ))p−2 ds(µ)

dt
ξ2(µ )dµ dτ

+

t∫
0

1∫
0

(1 + s(µ))p∥zx]|2 dµ dτ =

t∫
0

(ψ, z) dτ,

or from the definition of s (µ), we have

∥z∥2h + 2p

1∫
0

(1 + s(µ))p−1ξ2(µ) dµ

− 2p(p− 1)

t∫
0

1∫
0

(1 + s(µ))p−2h

M∑
ℓ=1

[
Ux,ℓ + µ(ux,ℓ − Ux,ℓ)

]2
ξ2(µ) dµ dτ

+

t∫
0

1∫
0

(1 + s(µ))p∥zx]|2 dµ dτ =

t∫
0

(ψ, z) dτ.

Taking into account the restriction 0 < p ≤ 1, from the last equality, we have

∥z(t)∥2 ≤
t∫

0

∥z(τ)∥2 dτ +
t∫

0

∥ψi∥2 dτ. (3.2.17)

From (3.2.17) we get (3.2.8), and hence Theorem 3.2.1 is proved.

3.2.2 Finite difference scheme
In the rectangle [0, 1] × [0, T ], where T is a positive constant, let us study a finite difference scheme
for the following initial-boundary value problem:

∂U

∂t
−
(
1 +

t∫
0

1∫
0

(∂U
∂x

)2
dx dτ

)p
∂2U

∂x2
= f(x, t), (3.2.18)

U(0, t) = U(1, t) = 0, (3.2.19)
U(x, 0) = U0(x), (3.2.20)

where 0 < p ≤ 1 and U0 is a given function.
As earlier, let us introduce a net on [0, 1]× [0, T ] with mesh points denoted by (xi, tj) = (ih, jτ),

where, i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N . The initial line is denoted by
j = 0. The discrete approximation for (xi, tj) is designated by uji and the exact solution to problem
(3.2.18)–(3.2.20) by U j

i . We again follow the known notations of the backward and forward derivatives
and the inner products.

For problem (3.2.18)–(3.2.20), let us consider the following finite difference scheme:

uj+1
i − uji
τ

−
(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(ukx,ℓ)
2
)p
uj+1
xx,i = f ji , i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1, (3.2.21)

uj0 = ujM = 0, j = 0, 1, . . . , N, (3.2.22)
u0i = U0,i, i = 0, 1, . . . ,M. (3.2.23)
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Multiplying (3.2.21) scalarly by uj+1
i , it is not difficult to get the inequality

∥un∥2 + τ

n∑
j=1

∥ujx]|
2 < C, n = 1, 2, . . . , N ; (3.2.24)

here and below in this subsection C is a positive constant independent of τ and h.

Remark 3.2.2. The a priori estimate (3.2.24) guarantees the solvability of scheme (3.2.21)–(3.2.23)
by using the Brouwer’s fixed-point lemma (see, e.g., [54] or Section 4.1). Note that applying the same
technique as in proving the convergence theorem below, it is not difficult to prove the uniqueness and
stability of the solution of the scheme (3.2.21)–(3.2.23), as well.

The main statement of the present subsection can be stated as follows.

Theorem 3.2.2. If 0 < p ≤ 1 and problem (3.2.18)–(3.2.20) has a sufficiently smooth solution U(x, t),
then the solution uj = (uj1, u

j
2, . . . , u

j
M−1), j = 1, 2, . . . , N , of the difference scheme (3.2.21)–(3.2.23)

tends to the solution of the continuous problem U j = (U j
1 , U

j
2 , . . . , U

j
M−1), j = 1, 2, . . . , N , as τ → 0,

h→ 0 and the following estimate is true

∥uj − U j∥ ≤ C(τ + h). (3.2.25)

Proof. Let us introduce the difference zji = uji − U j
i to get the relations

zj+1
t,i −

{(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(ukx,ℓ)
2
)p
uj+1
x,i −

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(Uk
x,ℓ)

2
)p
U j+1
x,i

}
x

= −ψj
i , (3.2.26)

zj0 = zjM = 0,

z0i = 0,

where
ψj
i = O(τ + h).

Multiplying (3.2.26) scalarly by τzj+1 = τ(zj+1
1 , zj+1

2 , . . . , zj+1
M−1) and using the discrete analogue

of the formula of integration by parts, we get

∥zj+1∥2 − (zj+1, zj) + τh

M∑
i=1

{(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(ukx,ℓ)
2
)p
uj+1
x,i

−
(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(Uk
x,ℓ)

2
)p
U j+1
x,i

}
zj+1
x,i = −τ(ψj , zj+1). (3.2.27)

Note that

h

M∑
i=1

{(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(ukx,ℓ)
2
)p
uj+1
x,i −

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(Uk
x,ℓ)

2
)p
U j+1
x,i

}
(uj+1

x,i − U j+1
x,i )

= h

M∑
i=1

1∫
0

{
d

dµ

(
1+τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ+µ(u

k
x,ℓ−Uk

x,ℓ)
]2)p[

U j+1
x,i +µ(uj+1

x,i −U j+1
x,i )

]}
dµ (uj+1

x,i −U j+1
x,i )

= 2ph

M∑
i=1

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p−1

× τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]
(ukx,ℓ − Uk

x,ℓ)
[
U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]
dµ (uj+1

x,i − U j+1
x,i )
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+ h

M∑
i=1

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p

(uj+1
x,i − U j+1

x,i ) dµ (uj+1
x,i − U j+1

x,i )

= 2p

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p−1

× τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]
(ukx,ℓ − Uk

x,ℓ)h

M∑
i=1

[
U j+1
x,i + µ(uj+1

x,i − U j+1
x,i )

]
(uj+1

x,i − U j+1
x,i ) dµ

+

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p

h

M∑
i=1

(uj+1
x,i − U j+1

x,i )2 dµ

= 2p

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p−1

ξj+1(µ)ξjt (µ) dµ

+

1∫
0

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2)p

h

M∑
i=1

(zj+1
x )2 dµ,

where

ξj+1(µ) = τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]
(ukx,ℓ − Uk

x,ℓ),

ξ0(µ) = 0,

and therefore,

ξjt (µ) = h

M∑
ℓ=1

[
U j+1
x,ℓ + µ(uj+1

x,ℓ − U j+1
x,ℓ )

]
(uj+1

x,ℓ − U j+1
x,ℓ ).

Introducing the notation

sj+1(µ) = τh

j+1∑
k=1

M∑
ℓ=1

[
Uk
x,ℓ + µ(ukx,ℓ − Uk

x,ℓ)
]2
,

from the previous equality, we have

h

M∑
i=1

{(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(ukx,ℓ)
2
)p
uj+1
x,i −

(
1 + τh

j+1∑
k=1

M∑
ℓ=1

(Uk
x,ℓ)

2
)p
U j+1
x,i

}
(uj+1

x,i − U j+1
x,i )

= 2p

1∫
0

(1 + sj+1(µ))p−1ξj+1ξjt dµ+

1∫
0

(1 + sj+1(µ))p∥zj+1
x ]|2 dµ.

After substituting this equality into (3.2.27), we get

∥zj+1∥2 − (zj+1, zj) + 2τp

1∫
0

(1 + sj+1(µ))p−1ξj+1(µ)ξjt (µ) dµ

+ τ

1∫
0

(1 + sj+1(µ))p∥zj+1
x ]|2 dµ = −τ(ψj , zj+1). (3.2.28)
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Taking into account the restriction p > 0 and the relations sj+1(µ) ≥ 0,

(rj+1, rj) =
1

2
∥rj+1∥2 + 1

2
∥rj∥2 − 1

2
∥rj+1 − rj∥2,

τξj+1ξjt =
1

2
(ξj+1)2 − 1

2
(ξj)2 +

τ2

2
(ξjt )

2,

from (3.2.28), we have

∥zj+1∥2 − 1

2
∥zj+1∥2 − 1

2
∥zj∥2

+
1

2
∥zj+1 − zj∥2 + p

1∫
0

(1 + sj+1(µ))p−1
[
(ξj+1(µ))2 − (ξj(µ))2

]
dµ

+ τ2p

1∫
0

(1 + sj+1(µ))p−1(ξjt (µ))
2 dµ+ τ∥zj+1

x ]|2 ≤ −τ(ψj , zj+1). (3.2.29)

From (3.2.29), we arrive at

1

2
∥zj+1∥2 − 1

2
∥zj∥2 + τ2

2
∥zjt ∥2

+ p

1∫
0

(1 + sj+1(µ))p−1
[
(ξj+1(µ))2 − (ξj(µ))2 ] dµ+ τ∥zj+1

x ]|2 ≤ τ

2
∥ψj∥2 + τ

2
∥zj+1∥2. (3.2.30)

Using a discrete analogue of the Poincaré inequality ∥zj+1∥2 ≤ ∥zj+1
x ]|2, from (3.2.30), we get

∥zj+1∥2 − ∥zj∥2 + τ2∥zjt ∥2

+ 2p

1∫
0

(1 + sj+1(µ))p−1
[
(ξj+1(µ))2 − (ξj(µ))2

]
dµ+ τ∥zj+1

x ]|2 ≤ τ∥ψj∥2. (3.2.31)

Summing-up (3.2.31) from j = 0 to j = n− 1, we arrive at

∥zn∥2 + τ2
n−1∑
j=0

∥zjt ∥2

+ 2p

n−1∑
j=0

1∫
0

(1 + sj+1(µ))p−1
[
(ξj+1(µ))2 − (ξj(µ))2

]
dµ+ τ

n−1∑
j=0

∥zj+1
x ]|2 ≤ τ

n−1∑
j=0

∥ψj∥2. (3.2.32)

Note that since sj+1(µ) ≥ sj(µ) and p ≤ 1, for the second line of the latter formula we have

n−1∑
j=0

(1 + sj+1(µ))p−1
[
(ξj+1(µ))2 − (ξj(µ))2

]
= (1 + s1(µ))p−1(ξ1(µ))2 − (1 + s1(µ))p−1(ξ0(µ))2 + (1 + s2(µ))p−1(ξ2(µ))2

− (1 + s2(µ))p−1(ξ1(µ))2 + · · ·+ (1 + sn(µ))p−1(ξn(µ))2 − (1 + sn(µ))p−1(ξn−1(µ))2

= (1 + sn(µ))p−1(ξn(µ))2 +

n−1∑
j=1

[
(1 + sj(µ))p−1 − (1 + sj+1(µ))p−1

]
(ξj(µ))2 ≥ 0.

Taking into account the last relation and (3.2.32), one can deduce

∥zn∥2 + τ2
n−1∑
j=0

∥zjt ∥2 + τ

n−1∑
j=0

∥zj+1
x ]|2 ≤ τ

n−1∑
j=0

∥ψj∥2. (3.2.33)



68 Temur Jangveladze

From (3.2.33), we get (3.2.25), and thus, Theorem 3.2.2 is proved.

Note that using the same approach of investigation, the second order difference scheme for problem
(3.2.18)–(3.2.20) can be studied.

3.2.3 Numerical implementation remarks

Let us now speak about the numerical implementation of the discrete problem (3.2.21)–(3.2.23). Note
that (3.2.21) can be rewritten as

1

τ
uj+1
i −A(uj+1)

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
− f ji − 1

τ
uji = 0, i = 1, . . . ,M − 1,

where

A(uj+1) =

[
1 + τh

M∑
ℓ=1

j+1∑
k=1

(ukℓ − ukℓ−1

h

)2]p
.

This system can be written in a matrix form

H(uj+1) ≡ G(uj+1)− 1

τ
uj − f j = 0.

The vector u contains all the unknowns u1, . . . , uM−1 at the level indicated by superscript. The vector
G is given by

G(uj+1) = T (uj+1)uj+1,

where the matrix T is symmetric and tridiagonal with the elements

Tir =


1

τ
+ 2

A

h2
, r = i,

− A

h2
, r = i± 1.

The Newton method for the system is given by

∇H(uj+1)|(n)(uj+1|(n+1) − uj+1|(n)) = −H(uj+1)|(n).

The elements of the matrix ∇H
(
uj+1

)
require the derivative of A. The elements are

∇H(uj+1)|ir =



1

τ
+

2

h2
A(uj+1)− ∂A(uj+1)

∂uj+1
i

δj+1
i , r = i,

−δj+1
i

∂A(uj+1)

∂uj+1
r

− 1

h2
(uj+1), r = i± 1,

−δj+1
i

∂A(uj+1)

∂uj+1
r

, otherwise,

where

δj+1
i = uj+1

xx,i =
uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
.
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To evaluate the partial derivatives, we use

∂A

∂uj+1
r

=
∂

∂uj+1
r

[
1 + τh

M∑
ℓ=1

j+1∑
k=1

(ukℓ − ukℓ−1

h

)2]p

= p

[
1 + τh

M∑
ℓ=1

j+1∑
k=1

(ukℓ − ukℓ−1

h

)2]p−1
∂

∂uj+1
r

[
C + τh

(uj+1
r − uj+1

r−1

h

)2
+ τh

(uj+1
r+1 − uj+1

r

h

)2]

= 2pτh

[
1 + τh

M∑
ℓ=1

j+1∑
k=1

(ukℓ − ukℓ−1

h

)2]p−1[uj+1
r − uj+1

r−1

h
· 1
h
+
uj+1
r+1 − uj+1

r

h
·
(
− 1

h

)]

= −2pτh

[
1 + τh

M∑
ℓ=1

j+1∑
k=1

(ukℓ − ukℓ−1

h

)2]p−1 uj+1
r+1 − 2uj+1

r + uj+1
r−1

h2
.

Note that we have incorporated into the constant C all the terms that are independent of uj+1
r .

Let us apply the Newton theorem for the convergence of the iterative process [62].

Theorem 3.2.3. Given the nonlinear system of equations

gi(x1, . . . , xM−1) = 0, i = 1, 2, . . . ,M − 1.

If gi are three times continuously differentiable in a region containing the solution ξ1, . . . , ξM−1 and
the Jacobian does not vanish in that region, then the Newton method converges at least quadratically.

In our case, we can write

gi = uj+1
i − τA(uj+1)

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
− τf ji − uji = 0, i = 1, . . . ,M − 1.

The Jacobian is the matrix ∇H computed above. The term 1/τ on diagonal ensures that the
Jacobian does not vanish. The differentiability is guaranteed, since ∇H is quadratic. The Newton
method is valuable, because the matrix varies at every step of the iteration. One can use the Newton
modified method (keeping the same matrix for several iterations), but the rate of convergence will be
slower.

In our first numerical experiment we have chosen the right-hand side, so the exact solution is given
by

U(x, t) = x(1− x)e−x−t.

In this case, the right-hand side is

f(x, t) = −x(1− x)e−x−t
(
1 +

1

4
e−2tt− 3

4
e−2−2tt

)p
×
(
2e−x−t − 2(1− x)e−x−t + 2xe−x−t + x(1−)xe−x−t

)
.

The parameters used are M = 100 which determines h = 0.01. Since the method is implicit, we
can use τ = h and take 100 time steps. We plotted the numerical solution (marked with +) and the
exact solution for t = 0.5 and t = 1.0 for different values of p (p = 0.25, 0.5, 0.75, 1; Figures 3.1–3.8),
and it is clear that in all cases this two solutions are almost identical.

In our next experiment we have taken the zero right-hand side and the initial solution given by

U(x, 0) = x(1− x) + x
(
e−x − e−1cos(30πx)

)
.

In this case, we know that the solution will decay in time. The parameters M,h, τ are as before.
In Figures 3.9 and 3.10 we plotted the initial solution and the numerical solution at five different times
for the case p = 1. The same results are obtained for the cases p = 0.25; 0.5; 0.75. It is clear that
the numerical solution approaches zero for all x. Therefore, the numerical solution of our experiment
fully agree with the theoretical results in Theorem 3.1.2.
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Figure 3.1. The solution at t = 0.5 for p = 0.25. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.2. The solution at t = 1 for p = 0.25. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.3. The solution at t = 0.5 for p = 0.5. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.4. The solution at t = 1 for p = 0.5. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.5. The solution at t = 0.5 for p = 0.75. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.6. The solution at t = 1 for p = 0.75. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.7. The solution at t = 0.5 for p = 1. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.8. The solution at t = 1 for p = 1. The exact solution is a solid line and the numerical
solution is marked by +.
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Figure 3.9. Initial solution.
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Figure 3.10. The numerical solutions at t = 0.1, 0.2, 0.3, 0.4 which are marked as ‘−’, ‘+’, ‘◦’, ‘⋄’,
respectively, for the case p = 1.
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Table 3.1 shows maximum of the absolute values of errors between the exact and numerical solu-
tions for different time levels and different values of p.

As we can see, the maximum of the absolute values of differences between the exact and numerical
solutions does not exceed the approximation error. Note also that the energy norm of the error
decreases as it was expected by the theoretical researches. Several other numerical experiments were
carried out which show the stability and convergence of scheme (3.2.21)–(3.2.23).

At the end of Chapter 3, let us make some conclusions. One nonlinear parabolic AIDE based on the
system of Maxwell equations is considered. Large time behavior of solutions of the initial-boundary
value problems for that model are studied. The corresponding semi-discrete and finite difference
schemes are constructed and investigated. The stability and convergence of those schemes are proved.
Results of numerical experiments with appropriate table and graphical illustrations are given. Results
of numerical experiments fully agree with theoretical researches both, in the convergence of the finite
discrete scheme, as well as in asymptotic behavior of a solution.

Table 3.1. Maximum of the absolute values of errors between the exact and numerical
solutions for different time levels and different values of p.

t Error for p = 0.25 Error for p = 0.5 Error for p = 0.75 Error for p = 1

0.2 0.00005013277686 0.00000033742015 0.00000142297535 0.00000286166125

0.4 0.00008803560728 0.00000267708729 0.00000387833216 0.00000997725914

0.5 0.00010724661584 0.00000488801011 0.00000543335746 0.00001519617372

0.6 0.00012672452711 0.00000790771200 0.00000720734945 0.00002157533554

0.8 0.00016681835775 0.00001649515863 0.00001138842646 0.00003789336764

1.0 0.00020916077114 0.00002898727812 0.00001632434202 0.00005892627813



Chapter 4

Unique solvability and asymptotic
behavior of solutions for nonlinear
multi-dimensional parabolic
integro-differential problems

In Chapter 4, we investigate two classes of nonlinear parabolic type IDEs:

∂U

∂t
−

n∑
i=1

Di

[
a

( t∫
0

|∇U |q dτ
)
|∇U |q−2DiU

]
= f(x, t),

and

∂U

∂t
− a

( t∫
0

∫
Ω

|∇U |q dx dτ
) n∑

i=1

Di

[
|∇U |q−2DiU

]
= f(x, t),

where

Di =
∂

∂xi
, ∇ =

( ∂

∂x1
, . . . ,

∂

∂xn

)
,

q ≥ 2, Ω ⊂ Rn is a bounded domain, f and a are the given functions of their arguments.
These models are some generalizations of the equations considered in Chapters 1–3. They are

based on the Maxwell system and arise at mathematical modeling of the process of penetration of an
electromagnetic field in a medium, coefficient electroconductivity of which depends on temperature.
Some peculiarities of these mathematical models are studied in Chapters 1–3. The above-pointed out
IDEs are complex and has been managed to be investigated only for the particular cases so far (see,
e.g., [3,5,6,16,17,19,20,23,24,28,31,32,34,35,37–39,46,49,50,53,55] and the references therein). As to
the similar type equations as given here, they were first suggested in [16,20, 28] and then generalized
in numerous other works.

In the present chapter we study the first type initial-boundary value problem. Investigations are
carried out with the help of Galerkin’s method and the method of compactness [54, 71]. Attention is
also paid to the asymptotic behavior of solutions as t→ ∞. The chapter consists of five sections. Some
designations, preliminary remarks and auxiliary statements are given in Section 4.1. Some features
of the Volterra-type integro-differential problems are presented in Section 4.2. Section 4.3 is devoted
to the unique solvability of the Volterra-type integro-differential problems. Asymptotic behavior of
solutions for Volterra-type equations is given in Section 4.4. Some comments on the unique solvability
and asymptotic behavior of the solutions for AIDEs are shortly given in Section 4.5.

76
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4.1 Designations, preliminary remarks and auxiliary
statements

Let Ω be a bounded area in the n-dimensional Euclidian space Rn, with a smooth enough boundary
∂Ω, x = (x1, . . . , xn) ∈ Ω; α = (α1, . . . , αn) is multi-index with the whole nonnegative components αi

and
DαU = Dα1

1 · · ·Dαn
n U =

∂|α|U

∂xα1
1 · · · ∂xαn

n
, |α| = α1 + · · ·+ αn.

Through Lp(Ω) is designated the Banach space of functions, integrable on Ω of degree p, 1 ≤ p <∞,
and through W k

p (Ω) are designated Sobolev spaces [54] consisting of the functions belonging to Lp(Ω)
and having all generalized derivatives up to order k, inclusive, integrable on Ω with a degree p. The
norm in W k

p (Ω) is determined by the equality

∥U∥Wk
p (Ω) =

[ ∫
Ω

∑
|α|≤k

|DαU |p dx
] 1

p

.

Let D(Ω) be a space of indefinite differentiable functions with compact support in Ω. Through
◦
W k

p(Ω) is designated a subspace of the space W k
p (Ω), obtained by closure on the norm of the set D(Ω),

and W−k
q (Ω), 1/p+ 1/q = 1 denotes the space, conjugate to

◦
W k

p(Ω).
Further, if X is the Banach space and U(t), 0 ≤ t ≤ T , is a measurable function with values in X,

then Lp(0, T ;X) designates the Banach space with the norm

∥U∥Lp(0,T ;X) =

[ T∫
0

∥U(t)∥pX dt

] 1
p

, 1 ≤ p <∞,

where ∥U(t)∥X is the norm of functions U in the space X for fixed t ∈ [0, T ]. In particular, we will
use the spaces Lp(0, T ;

◦
W k

p(Ω)) and Lp(0, T ;W
−k
q (Ω)). In order to prove the existence of solutions of

a system of nonlinear algebraic equations obtained at application of Galerkin’s method, we will use
one of the variants of the Brouwer fixed point theorem. Let us formulate this statement [54].

For ξ = (ξ1, . . . , ξm) and η = (η1, . . . , ηm), we introduce the following Euclidean scalar product
and the norm:

(ξ, η) =

m∑
i=1

ξiηi, |ξ| = (ξ, ξ)
1
2 .

Lemma 4.1.1. Let ξ → P (ξ) be the function, continuous from Rm into itself such that for a suitable
ρ > 0,

(P (ξ), ξ) ≥ 0

for any ξ of the sphere Sρ = {ξ : |ξ| = ρ}. Then there exists ξ, |ξ| ≤ ρ, such that

P (ξ) = 0.

The next lemma gives us an opportunity for further application of the obtained a priori estimations
through the scalar multiplication of the initial operator by the elements of some complete system
[54,71].

Lemma 4.1.2. There exists the “basis” {wj(x, t)} of smooth enough functions in Q = Ω× [0, T ] such
that the functions {Bwj(x, t)} form the “basis” in the space Lp(0, T ;

◦
W k

p(Ω)), where

Bw = − ∂

∂t

[
(T − t)

∂w

∂t

]
− ψ∆w + λw, ∆w =

n∑
i=1

∂2w

∂x2i
, λ > 0,

and ψ ∈ C∞(Ω); ψ(x) > 0 for x ∈ Ω and ψ = ∂ψ/∂ν = 0 on ∂Ω, where ν is an outer normal to ∂Ω.
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To prove Lemma 4.1.2, we consider the following two auxiliary problems.

Problem 4.1.1. The sequence of functions gk, defined on [0, T ], are constructed so that

− d

dt

[
(T − t)

dgk
dt

]
= µkgk, gk(0) = 0,

gk(t) is bounded as t→ T , and the eigenvalues µk are positive, and the eigenfunctions are normalized
by the condition

T∫
0

g2k(t) dt = 1.

Remark 4.1.1. The solutions of Problem 4.1.1 can be written in an analytic form as follows

gk(t) = ckJ0

[
νk

(
1− t

T

) 1
2
]
.

Here, J0 is the first kind Bessel function, k represents the k-th positive root of function J0, µk = νk/4T
and ck is any constant, chosen from the normalization condition of the function gk.

Problem 4.1.2. Let ξm, m = 1, 2, . . . , ξm ∈ D(Ω) be some complete system in
◦
W k

p(Ω). We define
Vkm as the solutions of the following problem:

−ψ∆Vkm + (λ+ µk)Vkm = ξm,

Vkm = 0, x ∈ ∂Ω.

For large enough λ > 0, Problem 4.1.2 has a unique solution, smooth in Ω [54, 71]. Applying
now the diagonal method if enumerate system of functions {Vkm} so that Vkm will depend on one
index, it is easy to establish that by linear combinations of the function of kind B(Vkm(x)gk(t))

it is possible to approximate any function V ∈ Lp(0, T ;
◦
W k

p(Ω)) and thus they form the “basis”

in the space Lp(0, T ;
◦
W k

p(Ω)). Note that in many essentially nonlinear problems the application of
usual Galerkin’s method does not reach the goal, because the constructed in such a way sequence of
Galerkin’s approximation fails to take limit under the nonlinear functions. That is why the application
of the modified Galerkin’s method is needed with the basis defined by the operator B. For the limiting
transition under the nonlinear members we use the following statements.

Lemma 4.1.3. Let Q be a bounded area in Rn×R, hm and h be the functions from Lq(Q), 1 < q <∞,
such that

∥hm∥Lq(Q) ≤ C, C = const,

hm → h almost everywhere in Q. Then hm → h weakly in Lq(Q), i.e.,∫∫
Q

hm(x, t)V (x, t) dx dt −→
∫∫
Q

h(x, t)V (x, t) dx dt

for any V ∈ Lq(Q), where 1/p+ 1/q = 1.

Theorem 4.1.1 (Valle–Pussen). Let on the measurable set Q the family of measurable functions
M = {h(x, t)} be given. If there is a positive growing function ϕ(v) given for v ≥ 0 and tending to
+∞ together with v, for which ∫∫

Q

|h(x, t)|ϕ(|h(x, t)|) dx dt < C,

where h is any function from M and C is a finite constant, independent of h, then the functions h are
summable on Q, and their integrals are uniformly absolutely continuous.



Investigation and Numerical Solution of Nonlinear Partial Differential and Integro-Differential Models . . . 79

Theorem 4.1.2 (Vitali). Let on the measurable set Q the sequence of functions h1, h2, . . . be con-
vergent in a measure sense to the function h. If the functions of the sequence {hm} have uniformly
absolutely continuous integrals, then h is summable and

lim
m→∞

∫∫
Q

hm(x, t) dx dt =

∫∫
Q

h(x, t) dx dt.

For the investigation of asymptotic behavior of solutions of the above-studied initial-boundary
value problems we use the following statement (see, e.g., [43]).

Lemma 4.1.4. Let h(τ) ≥ 0 and for any t ∈ [0,∞) the inequalities

t∫
0

h(τ) dτ < C,

t∫
0

∣∣∣dh(τ)
dτ

∣∣∣ dτ < C

be valid. Then
h(t) → 0 as t→ ∞.

4.2 Some features of the Volterra-type integro-differential
problems

In the domain Q = Ω× (0, T ), T = const > 0, of the variables x1, x2, . . . , xn, t, where Ω ⊂ Rn is the
bounded domain with a sufficiently smooth boundary ∂Ω, let us consider the following initial-boundary
value problem:

∂U

∂t
−

n∑
i=1

Di

[
a

( t∫
0

|∇U |q dτ
)
|∇U |q−2DiU

]
= f(x, t), (4.2.1)

U(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (4.2.2)
U(x, 0) = 0, x ∈ Ω. (4.2.3)

Here, a = a(S) is a given function of its argument, q ≥ 2,

|∇U | =
( n∑

k=1

|DkU |2
) 1

2

.

We seek for a solution of the problem in the space Lpq+q(0, T ;
◦
W 1

pq+q(Ω)) and ∂U/∂t ∈ L2(Q).
This solution satisfies the following integral identity∫∫

Q

(∂U
∂t

+AU
)
V dx dt =

∫∫
Q

fV dx dt, (4.2.4)

where V is an arbitrary function from the space Lpq+q(0, T ;
◦
W 1

pq+q(Ω)),

AU = −
n∑

i=1

Di

[
a

( t∫
0

|∇U |q dτ
)
|∇U |q−2DiU

]
.

The principal characteristic peculiarity of the equation of type (4.2.1) is connected with the ap-
pearance of the nonlinear terms depending on the time integral in the coefficients with high order
derivatives. These circumstances require more different discussions than those usually necessary for
the solution of local differential problems. Coefficient a = a(S) in equation (4.2.1) consists of the
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integral defining the nonlocal operator A. The fact that the operator of type
t∫
0

U dτ is improvable,

is often applied in the theory of differential equations. However, as is noted in [19, 49, 50], in the
combination with spatial derivatives, the above-mentioned improvable characteristics may be lost.
For example, the equation

∂U

∂t
=

∂

∂x

[
a

( t∫
0

∂U

∂x
dτ

)]
,

in the nature of parabolic type, by the substitution of
t∫
0

U dτ = V , is transformed into the following

nonlinear hyperbolic equation
∂2V

∂t2
=

∂

∂x

[
a
(∂V
∂x

)]
,

which, in general, has no global solution. This peculiarity gets a particular form in perspectives of
solvability of such equations by requiring the restrictions on the coefficient a.

Note also that equation (4.2.1) admits the degeneration.

4.3 The unique solvability of Volterra-type integro-differential
problems by modified Galerkin method

The principal aim of the present section is to prove the following statement.

Theorem 4.3.1. If

a(S) = (1 + S)p, S(x, t) =

t∫
0

|∇U |q dτ, 0 < p ≤ 1, q ≥ 2,

f,
∂f

∂t
,
√
ψ
∂f

∂xi
∈ L2(Q), f(x, 0) = 0,

then there exists the unique solution U of problem (4.2.1)–(4.2.3) satisfying identity (4.2.4) and having
the following properties:

U ∈ Lpq+q(0, T ;
◦
W 1

pq+q(Ω)),
∂U

∂t
∈ L2(Q),√

ψ
∂

∂xj

(∣∣∣ ∂U
∂xi

∣∣∣ q−2
2 ∂U

∂xi

)
∈ L2(Q),

√
T − t

∂

∂t

(∣∣∣ ∂U
∂xi

∣∣∣ q−2
2 ∂U

∂xi

)
∈ L2(Q), i, j = 1, . . . , n,

where ψ ∈ C∞(Ω), ψ(x) > 0, x ∈ Ω; ψ = ∂ψ/∂ν = 0, x ∈ ∂Ω, ν is the outer normal of ∂Ω.

Proof of Theorem 4.3.1 is divided into several steps applying Galerkin’s method and the method
of compactness [54,71]. One of the basic steps is getting the necessary a priori estimations.

Remark 4.3.1. Since in equation (4.2.1) we have nonlinear terms of the form

Di

[
a

( t∫
0

|∇U |q dτ
)
|∇U |q−2DiU

]
, i = 1, . . . , n,

for the application of compactness method it is necessary to obtain a priori estimations for the second
derivatives.

Approximate solution of problem (4.2.1)–(4.2.3) should be sought in the form

Um(x, t) =

m∑
k=1

cmkwk(x, t),
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where unknown coefficients cmk are defined from the system of nonlinear algebraic equations of the
form ∫∫

Q

(∂Um

∂t
+AUm

)
Bwj dx dt =

∫∫
Q

fBwj dx dt, j = 1, . . . ,m. (4.3.1)

Here, {Bwj} form the complete system in the space Lpq+q(0, T ;
◦
W 1

pq+q(Ω)) [54, 71], and

Bw = − ∂

∂t

[
(T − t)

∂w

∂t

]
− ψ∆w + λw, λ = const > 0.

It is necessary to establish the solvability of system (4.3.1), i.e., the existence of Galerkin’s ap-
proximations Um. To this end, we prove the following statement beforehand.
Lemma 4.3.1. Galerkin’s approximations Um of problem (4.2.1)–(4.2.3) satisfy the inequality∫∫

Q

(∂Um

∂t
+AUm

)
BUm dx dt ≥ C

∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt+ C

∫∫
Q

a(Sm)|∇Um|q dx dt

+ C

∫∫
Q

a′(Sm)|∇Um|2q dx dt− C

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt

+ C

n∑
i=1

∫∫
Q

(T − t)a(Sm)

[
∂

∂t

(∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt

+ C

n∑
i,j=1

∫∫
Q

ψa(Sm

[
∂

∂xj

(∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt, (4.3.2)

where

Sm(x, t) =

t∫
0

|∇Um|q dτ.

Proof. To obtain relation (4.3.2), we have to estimate the following expressions:

J1 =

∫∫
Q

∂Um

∂t
BUm dx dt,

J2 =

∫∫
Q

AUmBUm dx dt = λ

∫∫
Q

UmAUm dx dt

−
∫∫
Q

∂

∂t

[
(T − t)

∂Um

∂t

]
AUm dx dt−

∫∫
Q

ψ∆UmAUm dx dt = J
(1)
2 + J

(2)
2 + J

(3)
2 .

Estimating these quantities, we have

J1 =

∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt− T∫
0

T − t

2

d

dt

∫
Ω

∣∣∣∂Um

∂t

∣∣∣2 dx dt+ n∑
i=1

∫∫
Q

ψ
∂

∂t
(DiUm)DiUm dx dt

+

n∑
i=1

∫∫
Q

Diψ
∂Um

∂t
DiUm dx dt+

λ

2

∫∫
Q

∂U2
m

∂t
dx dt

≥ 1

4

∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt− C

n∑
i=1

∫∫
Q

|DiUm|2 dx dt, (4.3.3)

J
(1)
2 = λ

n∑
i=1

∫∫
Q

a(Sm)|∇Um|q−2|DiUm|2 dx dt = λ

∫∫
Q

a(Sm)|∇Um|q dx dt. (4.3.4)
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Note that C in (4.3.3) denotes, generally speaking, various positive constants independent of λ, m
and f . Estimating the terms J (2)

2 and J
(3)
2 , we have

J
(2)
2 =

n∑
i=1

∫∫
Q

Di

[
a(Sm)|∇Um|q−2DiUm

] ∂
∂t

[
(T − t)

∂Um

∂t

]
dx dt

=

n∑
i=1

∫∫
Q

(T − t)
∂

∂t

[
a(Sm)|∇Umt|q−2DiUm

] ∂
∂t

(DiUm) dx dt

=

n∑
i=1

∫∫
Q

(T − t)a(Sm)|∇Um|q−2
∣∣∣ ∂
∂t

(DiUm)
∣∣∣2 dx dt

+

n∑
i=1

∫∫
Q

(T − t)a′(Sm)|∇Um|q|∇Um|q−2DiUm
∂

∂t
(DiUm) dx dt

+

n∑
i=1

∫∫
Q

(T − t)a(Sm)
∂

∂t

(
|∇Um|q−2

)
DiUm

∂

∂t
(DiUm) dx dt.

Taking into account the identity
n∑

i=1

∫∫
Q

(T − t)a′(Sm)|∇Um|2q−2DiUm
∂

∂t
(DiUm) dx dt

=
1

2q

∫∫
Q

(T − t)a′(Sm)|∇Um|2q−2 ∂

∂t
(DiUm)2 dx dt

=
1

2q

∫∫
Q

(T − t)a′(Sm)
∂

∂t
|∇Um|2q dx dt

=
1

2q

∫∫
Q

a′(Sm)|∇Um|2q dx dt− 1

2q

∫∫
Q

(T − t)a′′(Sm)|∇Um|q|∇Um|2q dx dt

=
1

2q

∫∫
Q

a′(Sm)|∇Um|2q dx dt− 1

2q

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt,

we get
n∑

i=1

∫∫
Q

(T − t)a′(Sm)|∇Um|2q−2 ∂

∂t
|DiUm|2 dx dt

=
1

q

∫∫
Q

a′(Sm)|∇Um|2q dx dt− 1

q

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt. (4.3.5)

Let us estimate now the last third term of J (2)
2 ,

n∑
i=1

∫∫
Q

(T − t)a(Sm)
∂

∂t
(|∇Um|2q−2)DiUm

∂

∂t
(DiUm) dx dt

= (q − 2)

n∑
i,k=1

∫∫
Q

(T − t)a(Sm)|∇Um|q−4DkUm
∂

∂t
(DkUm)DiUm

∂

∂t
(DiUm) dx dt

= (q − 2)

n∑
i=1

∫∫
Q

(T − t)a(Sm)|∇Um|q−4
[ n∑

i=1

DiUm
∂

∂t
(DiUm)

]2
dx dt.
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Here we have applied easily verified identity

∂

∂t
(|∇Um|q−2) = (q − 2)|∇Um|q−4

n∑
k=1

DkUm
∂

∂t
(DkUm).

Using (4.3.5), for J (2)
2 , we have

J
(2)
2 =

n∑
i=1

∫∫
Q

(T − t)a(Sm)|∇Um|q−2
∣∣∣ ∂
∂t

(DiUm)
∣∣∣2 dx dt

+
1

2q

∫∫
Q

a′(Sm)|∇Um|2q dx dt− 1

2q

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt

+ (q − 2)

∫∫
Q

(T − t)a(Sm)|∇Um|q−4
[ n∑

i=1

DiUm
∂

∂t
(DiUm)

]2
dx dt.

Taking into account the identity

|DiUm|
q−2
2

∂

∂t
(DiUm) =

2

q

∂

∂t

(
|DiUm|

q−2
2 DiUm

)
,

the first term of J (2)
2 can be estimated as follows

n∑
i=1

∫∫
Q

(T − t)a(Sm)|∇Um|q−2
[ ∂
∂t

(DiUm)
]2
dx dt

=

n∑
i=1

∫∫
Q

(T − t)a(Sm)
[ n∑
k=1

|DkUm|2
] q−2

2
∣∣∣ ∂
∂t

(DiUm)
∣∣∣2 dx dt

≥
n∑

i=1

∫∫
Q

(T − t)a(Sm)|DiUm|q−2
∣∣∣ ∂
∂t

(DiUm)
∣∣∣2 dx dt

=
4

q2

n∑
i=1

∫∫
Q

(T − t)a(Sm)
∂

∂t

[
|DiUm|

q−2
2 DiUm

]2
dx dt.

Thus, for J (2)
2 , we finally get the following estimation

J
(2)
2 ≥ 4

q2

n∑
i=1

∫∫
Q

(T − t)a(Sm)
[ ∂
∂t

(|DiUm|
q−2
2 DiUm

)]2
dx dt

+
1

2q

∫∫
Q

a′(Sm)|∇Um|2q dx dt− 1

2q

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt

+ (q − 2)

∫∫
Q

(T − t)a(Sm)|∇Um|q−4
[ n∑

i=1

DiUm
∂

∂t
(DiUm)

]2
dx dt. (4.3.6)

Let us now estimate the term J
(3)
2 . Towards this end, we rewrite it in the following form

J
(3)
2 = −

∫∫
Q

ψA(Um)∆Um dx dt = −
n∑

j=1

∫∫
Q

ψA(Um)Dj(DjUm) dx dt

= −
n∑

j=1

∫∫
Q

A(Um)(Dj(ψDjUm)−DjψDjUm) dx dt
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=

n∑
i,j=1

∫∫
Q

Di

[
a(Sm)|∇Um|q−2DiUm

]
Di(ψDjUm) dx dt+

n∑
j=1

∫∫
Q

A(Um)DjψDjUm dx dt

=

n∑
i,j=1

∫∫
Q

ψDj

[
a(Sm)|∇Um|q−2DiUm

]
Di(DjUm) dx dt

+

n∑
i,j=1

∫∫
Q

DiψDj

[
a(Sm)|∇Um|q−2DiUm

]
DjUm dx dt

−
n∑

i,j=1

∫∫
Q

DjψDi

[
a(Sm)|∇Um|q−2DiUm

]
DjUm dx dt.

Taking into account the easily verified identity

Dj

(
|∇Um|q−2DiUm

)
= (q − 2)|∇Um|q−4

n∑
k=1

DkUmDj(DkUm)DiUm + |∇Um|q−2Dj(DiUm),

we get

J
(3)
2 =

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DjUm)|2 dx dt

+ q

n∑
i,j,k=1

∫∫
Q

ψa′(Sm)

t∫
0

|∇Um|q−2DkUmDj(DkUm) dτ |∇Um|q−2DiUmDi(DjUm) dx dt

+ (q − 2)

n∑
i,j,k=1

∫∫
Q

ψa(Sm)|∇Um|q−4DkUmDj(DkUm)DiUmDi(DjUm) dx dt

+

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DjUm)|2 dx dt

+

n∑
i,j=1

∫∫
Q

Diψa(Sm)|∇Um|q−2Dj(DiUm)DjUm dx dt

+ q

n∑
i,j,k=1

∫∫
Q

Diψa
′(Sm)

t∫
0

|∇Um|q−2DkUmDk(DjUm) dτ |∇Um|q−2DiUmDjUm dx dt

+ (q − 2)

n∑
i,j,k=1

∫∫
Q

Diψa(Sm)|∇Um|q−4DkUmDj(DkUm)DiUmDjUm dx dt

+

n∑
i,j=1

∫∫
Q

Diψa(Sm)|∇Um|q−2Dj(DiUm)DjUm dx dt

−
n∑

i,j=1

∫∫
Q

Djψa(Sm)|∇Um|q−2Di(DiUm)DjUm dx dt

− q

n∑
i,j,k=1

∫∫
Q

Diψa
′(Sm)

t∫
0

|∇Um|q−2DkUmDi(DkUm) dτ |∇Um|q−2DiUmDjUm dx dt

− (q − 2)

n∑
i,j,k=1

∫∫
Q

Djψa(Sm)|∇Um|q−4DkUmDi(DkUm)DiUmDjUm dx dt
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−
n∑

i,j=1

∫∫
Q

Djψa(Sm)|∇Um|q−2Di(DiUm)DjUm dx dt =

12∑
l=1

Il.

Let us now estimate Il, l = 1, 2, . . . , 12. We have

I1 + I4 = 2

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DjUm)|2 dx dt. (4.3.7)

Introducing the notation

φkj(x, t) =

t∫
0

|∇Um|q−2DkUmDj(DkUm) dτ,

for I2, we obtain

I2 = q

n∑
i,j,k=1

∫∫
Q

ψa′(Sm)

t∫
0

|∇Um|q−2DkUmDj(DkUm) dτ |∇Um|q−2DiUmDi(DjUm) dx dt

= q

n∑
i,j,k=1

∫∫
Q

ψa′(Sm)φkj
∂φij

∂t
dx dt =

q

2

n∑
i,j,k=1

∫∫
Q

ψa′(Sm)
∂

∂t
(φkjφij) dx dt

=
q

2

n∑
i,j,k=1

∫∫
Ω

ψa′(Sm(x, T ))φkj(x, T )φij(x, T ) dx

−
n∑

i,j,k=1

∫∫
Q

ψa′′(Sm)|∇Um|qφkjφij dx dt. (4.3.8)

As a′(S) = p(1 + S)p−1 ≥ 0, a′′(S) = p(p− 1)(1 + S)p−2 ≤ 0, one deduces that I2 ≥ 0.
Introducing the notation

Xkj = DkUmDj(DkUm),

for I3, we get

I3 = (q − 2)

n∑
i,j,k=1

∫∫
Q

ψa(Sm)|∇Um|q−4DkUmDj(DkUm)DiUmDi(DjUm) dx dt

= (q − 2)

n∑
i,j,k=1

∫∫
Q

ψa(Sm)|∇Um|q−4XkjXij dx dt ≥ 0. (4.3.9)

From the expression for I6, I7, I10 and I11, it is clear that

I6 + I10 = q

n∑
i,j,k=1

∫∫
Q

Diψa
′(Sm)

t∫
0

|∇Um|q−2DkUmDj(DkUm) dτ |∇Um|DiUmDjUm dx dt

−q
n∑

i,j,k=1

∫∫
Q

Djψa
′(Sm)

t∫
0

|∇Um|q−2DkUmDi(DkUm) dτ |∇Um|DiUmDjUm dx dt = 0, (4.3.10)

I7 + I11 = (q − 2)

n∑
i,j,k=1

∫∫
Q

Diψa(Sm)|∇Um|q−4DkUmDj(DkUm)DiUmDjUm dx dt

−(q − 2)

n∑
i,j,k=1

∫∫
Q

Djψa(Sm)|∇Um|q−4DkUmDi(DkUm)DiUmDjUm dx dt = 0. (4.3.11)
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Consider now the rest terms of the quantity J (3)
2 . We have

I5 + I8 + I9 + I12 = 2

n∑
i,j=1

∫∫
Q

Diψa(Sm)|∇Um|q−2Dj(DiUm)DjUm dx dt

− 2

n∑
i,j=1

∫∫
Q

Djψa(Sm)|∇Um|q−2Di(DiUm)DjUm dx dt

= 2

n∑
i,j=1

∫∫
Q

Diψ√
ψ

√
ψ a(Sm)|∇Um|q−2Dj(DiUm)DjUm dx dt

− 2

n∑
i,j=1

∫∫
Q

Diψ√
ψ

√
ψ a(Sm)|∇Um|q−2Di(DiUm)DjUm dx dt.

Using the ε-inequality

|bc| ≤ ε2

2
b2 +

1

2ε2
c2,

we finally arrive at

I5 + I8 + I9 + I12 ≥ − ε2

2

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Dj(DiUm)|2 dx dt

− C

2ε2

n∑
j=1

∫∫
Q

a(Sm)|∇Um|q−2|DjUm|2 dx dt

− ε2

2

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DiUm)|2 dx dt

− C

2ε2

n∑
j=1

∫∫
Q

a(Sm)|∇Um|q−2|DjUm|2 dx dt

− ε2
n∑

i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Dj(DiUm)|2 dx dt

− C

ε2

∫∫
Q

a(Sm)|∇Um|q dx dt. (4.3.12)

Collecting (4.3.4), (4.3.7) and (4.3.12), we have

I1 + I4 + I5 + I8 + I9 + I12 + J
(1)
2 ≥ 2

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DjUm)|2 dx dt

− ε2
n∑

i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Dj(DiUm)|2 dx dt

− C

ε2

∫∫
Q

a(Sm)|∇Um|q dx dt+ λ

∫∫
Q

a(Sm)|∇Um|q dx dt

≥ (2− ε2)

n∑
i,j=1

∫∫
Q

ψa(Sm)|∇Um|q−2|Di(DjUm)t|2 dx dt

+
(
λ− C

ε2

)∫∫
Q

a(Sm)|∇Um|q dx dt.
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Choosing now ε sufficiently small, and λ sufficiently large such that

2− ε2 = C > 0, λ− C

ε2
= C(λ) > 0,

taking into account the identity

|DiUm|
q−2
2 Dj(DiUm) =

2

q
Dj

(
|DiUm|

q−2
2 DiUm

)
,

we obtain

I1 + I4 + I5 + I8 + I9 + I12 + J
(1)
2

≥ C

n∑
i,j=1

∫∫
Q

ψa(Sm)
( n∑

k=1

|DkUm|2
) q−2

2 |Di(DjUm)|2 dx dt+ C(λ)

∫∫
Q

a(Sm)|∇Um|q dx dt

≥ C

n∑
i,j=1

∫∫
Q

ψa(Sm)|DiUm|q−2|Di(DjUm)|2 dx dt+ C(λ)

∫∫
Q

a(Sm)|∇Um|q dx dt

=
4C

q2

n∑
i,j=1

∫∫
Q

ψa(Sm)
[
Dj(|DiUm|

q−2
2 DiUm)

]2
dx dt+ C(λ)

∫∫
Q

a(Sm)|∇Um|q dx dt. (4.3.13)

Note that in (4.3.13), C(λ) → ∞ as λ→ ∞.
Taking into account relations (4.3.3), (4.3.6), (4.3.8)–(4.3.11), (4.3.13), we finally arrive at∫∫

Q

(∂Um

∂t
+A(Um)

)
BUm dx dt

≥ C

∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt+ C(λ)

∫∫
Q

a(Sm)|∇Um|q dx dt

+ C

∫∫
Q

a′(Sm)|∇Um|2q dx dt− C

∫∫
Q

(T − t)a′′(Sm)|∇Um|3q dx dt

+ C

n∑
i,j=1

∫∫
Q

(T − t)a(Sm)
[ ∂
∂t

(|DiUm|
q−2
2 DiUm

)]2
dx dt

+ (q − 2)

∫∫
Q

(T − t)a(Sm)|∇Um|q−4
( n∑

k=1

DiUm
∂

∂t
(DiUm)

)2
dx dt

+
q

2

n∑
i,j,k=1

∫∫
Ω

ψa′(Sm(x, T ))φkj(x, T )φij(x, T ) dx

−
n∑

i,j,k=1

∫∫
Q

ψa′′(Sm)|∇Um|qφkjφij dx dt

+ (q − 2)

n∑
i,j,k=1

∫∫
Q

ψa(Sm)|∇Um|q−4XkjXij dx dt

+ C

n∑
i,j,k=1

∫∫
Q

ψa(Sm)
[
Dj(|DiUm|

q−2
2 DiUm

)]2
dx dt.

From this estimation follows the validity of Lemma 4.3.1.
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We also have [54,71]∣∣∣∣ n∑
j=1

cmj

∫∫
Q

fBωj dx dt

∣∣∣∣ = ∣∣∣∣ ∫∫
Q

fBUm dx dt

∣∣∣∣ ≤ C

[ ∫∫
Q

(∣∣∣∂Um

∂t

∣∣∣2 + |∇Um|2
)
dx dt

] 1
2

. (4.3.14)

Next, choosing ∫∫
Q

[∣∣∣∂Um

∂t

∣∣∣2 + |∇Um|q
]
dx dt

sufficiently large, due to (4.3.2) and (4.3.14) it is not difficult to establish the validity of the inequality∫∫
Q

(∂Um

∂t
+A(Um)− f

)
BUm dx dt ≥ 0. (4.3.15)

From estimation (4.3.15), taking into account the Brouwer fixed-point lemma (see, e.g., [54], or
Lemma 4.1.1) follows the solvability of system (4.3.1) with regards to the coefficients cmk.

On the basis of Lemma 4.3.1, we get∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt+ ∫∫
Q

a(Sm)|∇Um|q dx dt+
∫∫
Q

a′(Sm)|∇Um|2q dx dt

+

n∑
i=1

∫∫
Q

(T − t)a(Sm)

[
∂

∂t

(
t
∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt

+

n∑
i,j=1

∫∫
Q

ψa(Sm)

[
∂

∂xj

(∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt ≤ C. (4.3.16)

From a priori estimations (4.3.16), we can conclude that

Um are bounded in Lq(0, T ;
◦
W 1

q(Ω)), (4.3.17)
∂Um

∂t
are bounded in L2(Q), (4.3.18)

√
T − t

∂

∂t

(
|DiUm|

q−2
2 DiUm

)
are bounded in L2(Q), (4.3.19)√

ψDj

(
|DiUm|

g−2
2 DiUm

)
are bounded in L2(Q), i, j = 1, . . . , n. (4.3.20)

Besides, we have the estimation

∫∫
Q

[
1 +

t∫
0

|∇Um|q dτ
]p−1

|∇um|2q dx dt ≤ C. (4.3.21)

Let us obtain some additional a priori estimations for limiting transition in identity (4.3.1) as
m→ ∞.

Using (4.3.21), we get the following statement.

Lemma 4.3.2. The sequence of approximate solutions {Um} is bounded in the space
Lpq+q(0, T ;

◦
W 1

pq+q(Ω)), i.e., ∫∫
Q

|∇Um|pq+q dx dt ≤ C. (4.3.22)
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Proof. Applying the easily verifiable inequalities

t∫
0

|∇Um|q dτ ≤ C

[ t∫
0

|∇Um|2q dτ
] 1

2

, 1 +

t∫
0

|∇Um|q dτ ≤ C

[
1 +

t∫
0

|∇Um|2q dτ
] 1

2

,

[
1 +

t∫
0

|∇Um|q dτ
]p−1

≥ C

[
1 +

t∫
0

|∇Um|2q dτ
] p−1

2

,

from (4.3.21), we obtain

∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] p−1

2

|∇Um|2q dx dt ≤ C. (4.3.23)

From (4.3.23), it is not difficult to conclude that

∫
Ω

[
1 +

T∫
0

|∇Um|2q dτ
] p−1

2

dx ≤ C. (4.3.24)

Indeed, introducing the notation

gm(x, t) = 1 +

t∫
0

|∇Um|2q dτ,

from (4.3.23), we have

∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] p−1

2

|∇Um|2q dx dt =
∫∫
Q

g
p−1
2

m (x, t)
∂gm
∂t

dx dt

=
2

p+ 1

∫∫
Q

∂g
p+1
2

m

∂t
dx dt =

2

p+ 1

∫
Ω

g
p+1
2

m (x, T ) dx− 2

p+ 1

∫
Ω

g
p+1
2

m (x, 0) dx

=
2

p+ 1

∫
Ω

[
1 +

T∫
0

|∇Um|2q dt
] p+1

2

dx− 2

p+ 1
|Ω| ≤ C,

which evidently results in a priori estimation (4.3.24).
As

∫∫
Q

|∇Um|pq+q dx dt =

∫
Ω

[ T∫
0

|∇Um|pq+q dt

]
dx

≤ C

∫
Ω

[ T∫
0

|∇Um|(pq+q) 2
p+1 dt

] p+1
2

dx ≤ C

∫
Ω

[ T∫
0

|∇Um|2q dt
] p+1

2

dx ≤ C,

we get the validity of inequality (4.3.22).
To ensure the possibility of limiting transition in nonlinear terms

a(Sm)|∇Um|q−2DiUm, i = 1, . . . , n,

let us prove the following statement.
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Lemma 4.3.3. The set {a(Sm)|∇Um|q−2DiUm} is bounded in the space L∗
pq+q(Q) = L pq+q

pq+q−1
(Q),

i.e.,
n∑

i=1

∫∫
Q

∣∣a(Sm)|∇Um|q−2DiUm

∣∣ pq+q
pq+q−1 dx dt ≤ C. (4.3.25)

Proof. We have∫∫
Q

∣∣a(Sm)|∇Um|q−2DiUm

∣∣ pq+q
pq+q−1 dx dt

=

∫∫
Q

[
1 +

t∫
0

|∇Um|q dτ
]p pq+q

pq+q−1

|∇Um|(q−2) pq+q
pq+q−1 |DiUm|

pq+q
pq+q−1 dx dt

≤
∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
]p pq+q

2(pq+q−1)

|∇Um|(q−2) pq+q
pq+q−1 (|DiUm|2)

pq+q
pq+q−1 dx dt

≤ C

∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] pq(p+1)

2(pq+q−1)

|∇Um|(q−2)
q(p+1)
pq+q−1 (|DiUm|2)

q(p+q)
pq+q−1 dx dt

= C

∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] pq(p+1)

2(pq+q−1)

|∇Um|(q−1)
q(p+1)
pq+q−1 dx dt

≤ C

{∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] pq(p+1)

2(pq+q−1)
pq+q−1

pq

|∇Um|(q−1)
q(p+1)
pq+q−1 dx dt

} pq
pq+q−1

×

{∫∫
Q

|∇Um|(q−1)
q(p+1)
pq+q−1

pq+q−1
q−1 dx dt

} q−1
pq+q−1

= C

{∫∫
Q

[
1 +

t∫
0

|∇Um|2q dτ
] p+1

2

dx dt

} pq
pq+q+1

{∫∫
Q

|∇Um|pq+q dx dt

} q−1
pq+q−1

≤ C

{∫
Ω

[
1 +

T∫
0

|∇Um|2q dτ
] p+1

2

dx dt

} pq
pq+q+1

{∫∫
Q

|∇Um|pq+q dx dt

} q−1
pq+q−1

.

From this, taking into account (4.3.22) and (4.3.24), we get∫∫
Q

∣∣a(Sm)|∇Um|q−2DiUm

∣∣ pq+q
pq+q−1 dx dt ≤ C.

Thus (4.3.25) is proved.

Now, it remains only to implement a limit transition as m→ ∞ in identity (4.3.1).

Proof of Theorem 4.3.1. From a priori estimations (4.3.19), (4.3.20), it follows that

|Dium|
q−2
2 DiUm are bounded in W 1

2 (Q1),

where Q1 = Ω1× (0, T − δ), δ is any sufficiently small positive number, and Ω1 is an arbitrary domain
such that Ω1 ⊂ Ω. Since the imbedding W 1

2 (Q1) ⊂ L2(Q1) is compact, from estimations (4.3.17)–
(4.3.20), (4.3.25) we can choose the subsequence of the sequence {Um} (denote it again by {Um}) such
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that

Um −→ U weakly in Lq(0, T ;
◦
W 1

q(Ω)), (4.3.26)
∂Um

∂t
−→ ∂U

∂t
weakly in L2(Q), (4.3.27)

|DiUm|
q−2
2 DiUm converge almost everywhere in Q, (4.3.28)

√
T − t

∂

∂t

(
|DiUm|

q−2
2 DiUm

)
−→ ξi weakly L2(Q), (4.3.29)√

ψDj

(
|DiUm|

q−2
2 DiUm

)
−→ ρij weakly in L2(Q), (4.3.30)

a(Sm)|DiUm|q−2DiUm −→ ηi weakly in L pq+q
pq+q+1

(Q). (4.3.31)

Note that for the derivation of relation (4.3.28), we have used the diagonal process with regard for
an arbitrariness of δ and Ω1 [54,71].

As far as the function r → |r|
q−2
2 r is monotonic, from (4.3.28) it follows that

DiUm → DiU almost everywhere in Q. (4.3.32)

From (4.3.29), (4.3.30), we have [54,71]

ξi =
√
T − t

∂

∂t

(
|DiUm|

q−2
2 DiUm

)
, ρij =

√
ψDj

(
|DiUm|

q−2
2 DiUm

)
.

Let us now proceed to proving the main limiting relation

a(Sm)|∇Um|q−2DiUm −→ a(S)|∇U |q−2DU.

Result (4.3.22) can be strengthened. Namely, let us show that the following statement is valid.

Lemma 4.3.4. Galerkin’s approximations {Um} converge strongly in the space Lq(0, T ;
◦
W 1

q(Ω)), i.e.,

DiUm −→ DiU strongly in Lq(Q), i = 1, . . . , n. (4.3.33)

Proof. From estimation (4.3.22) and the Valle–Poussen Theorem 4.1.1 follows absolute equicontinuity
of the integrals ∫∫

Q

|∇Um|q dx dt, i = 1, . . . , n.

From the convergence of the sequence of measurable functions almost everywhere to some function
there follows the convergence in measure of this sequence to the same function. From this, in turn,
due to the Vitali Theorem 4.1.2 we have the following equality

lim
m→∞

∫∫
Q

|DiUm|q dx dt =
∫∫
Q

|DiUm|q dx dt, i = 1, . . . , n,

or
∥DiUm∥Lq(Q) −→ ∥DiUm∥Lq(Q), i = 1, . . . , n. (4.3.34)

Further, from (4.3.26), we have

DiUm −→ DiU weakly in Lq(Q), i = 1, . . . , n. (4.3.35)

From (4.3.34) and (4.3.35), according to the Riesz theorem, we obtain the validity of relation (4.3.33).
Thus Lemma 4.3.4 is proved.
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Applying Lemma 4.3.4, it is not difficult to derive

|∇(Um − U)| −→ 0 strongly in Lq(Q),

i.e., ∫∫
Q

|∇(Um −∇U)|q dx dt −→ 0, m→ ∞. (4.3.36)

Consider the sequence of functions

T∫
0

|∇Um −∇U |q dt. (4.3.37)

From (4.3.36), it follows that sequence (4.3.37) converges to zero in L1(Ω). Hence, it is possible to
select a subsequence (denote it again by {Um}) which for almost every x ∈ Ω (4.3.37) will converge
to zero, i.e.,

T∫
0

|∇Um −∇U |q dt −→ 0 in almost everywhere in Ω,

or
∇Um −→ ∇U Lq(0, T ) for almost every x ∈ Ω.

Thus,
T∫

0

|∇Um|q dt −→
T∫

0

|∇U |q dt almost everywhere in Ω.

As far as the limiting transition can be carried out on any subset [0, t] ⊂ [0, T ], we get

t∫
0

|∇Um|q dτ −→
t∫

0

|∇U |q dτ almost everywhere in Q. (4.3.38)

From (4.3.33) and (4.3.38), using the continuity of the function a = a(S), we have

a(Sm)|DiUm|q−2DiUm −→ a(S)|DiU |q−2DiU almost everywhere in Q. (4.3.39)

Applying now Lemma 4.3.4 and relation (4.3.39), we conclude that

a(Sm)|DiUm|q−2DiUm −→ a(S)|DiU |q−2DiU weakly in L pq+q
pq+q+1

(Q). (4.3.40)

In view of (4.3.27) and (4.3.40), taking the limit in (4.3.1) as m→ ∞, we obtain the identity∫∫
Q

(∂U
∂t

+A(U)
)
Bwj dx dt =

∫∫
Q

fBwj dx dt

for any j ∈ N .
Taking into account that {Bwj} form the “basis” in Lpq+q(0, T ;

◦
W 1

pq+q(Ω)) [54, 71], we come to
(4.2.4) and thus, the existence of the solution of problem (4.2.1)–(4.2.3) is proved.

Proof of uniqueness. Let us now prove the uniqueness of the solution of problem (4.2.1)–(4.2.3). As-
sume that problem (4.2.1)–(4.2.3) has two solutions U and U . Introducing the difference W (x, t) =
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U(x, t)− U(x, t), we have

∂W

∂t
−

n∑
i=1

Di

[
a(S)∇|U |q−2DiU − a(S)∇|U |q−2DiU

]
= 0, (4.3.41)

W (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (4.3.42)
W (x, 0) = 0, x ∈ Ω, (4.3.43)

S(x, t) =

t∫
0

|∇U |q dτ, S(x, t) =

t∫
0

|∇U |q dτ.

Multiplying (4.3.41) by W , integrating the obtained identity on Qt = Ω × (0, t) and taking into
account (4.3.42), (4.3.43), we have

1

2

∫
Ω

W 2(x, t) dx+

n∑
i=1

∫∫
Qt

[
a(S)∇|U |q−2DiU − a(S)∇|U |q−2DiU)

]
DiW dxdt = 0. (4.3.44)

Following [50], it is not difficult to get

n∑
i=1

∫∫
Qt

[
a(S)|∇U |q−2DiU − a(S)|∇U |q−2DiU

]
Di(U − U) dx dt ≥ 0.

From this, taking into account (4.3.44), we derive∫
Ω

W 2(x, t) dx ≤ 0

for arbitrary t ∈ [0, T ].
The latter inequality gives the uniqueness of the solution of problem (4.2.1)–(4.2.3).

Remark 4.3.2. The theorem is also true for a more general right-hand side f = f(x, t) and for the
coefficients a = a(x, t, S), depending on variables x, t and satisfying certain conditions. In particular, it
is true for f ∈ L pq+q

pq+q−1
(0, T ;W−1

pq+q
pq+q−1

(Ω)), and the homogeneity of the initial and boundary conditions
are not essential (see [54,71]).

Remark 4.3.3. In the one-dimensional spatial case (n = 1) the system {wj} can be built by applying
the following operator

Bw = − ∂

∂t

[
(T − t)

∂w

∂t

]
− ∂2w

∂x2
+ λw.

Remark 4.3.4. If q = 2, i.e., in the absence of degeneration in equation (4.2.1), the following relations
take place:

√
T − t

∂2U

∂t∂xi
∈ L2(Q),

√
ψ
∂2U

∂x2i
∈ L2(Q), i = 1, . . . , n.

Remark 4.3.5. Investigations carried out above hold also for the following nonlinear integro-diffe-
rential equation

∂U

∂t
−

n∑
i=1

Di

[
ai

( t∫
0

|DiU |q dτ
)
|DiU |q−2DiU

]
= f(x, t),

where the functions ai = ai(S) satisfy the same conditions as a = a(S).
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Remark 4.3.6. Investigations by the compactness method can be carried out also for the following
nonlinear integro-differential equations of order 2m:

∂U

∂t
+ (−1)m

∑
|α|=m

Dα

[
aα

( t∫
0

|DαU |q dτ
)
|DαU |q−2DαU

]
= f(x, t)

and
∂U

∂t
+ (−1)m

∑
|α|=m

Dα

[
aα

( t∫
0

|DmU |q dτ
)
|DmU |q−2DαU

]
= f(x, t),

where
|DmU |2 =

∑
|α|=m

|DαU |2.

According to the operator scheme of the method of conditionally weakly closed operators, these
equations have been studied in [50].

4.4 Asymptotic behavior of solutions for Volterra-type
equations

In the present section, for one nonlinear integro-differential problem we obtain a priori estimations of
solutions independent of T . From these estimations follows stabilization of the solution, as t→ ∞.

In the cylinder Q = Ω× (0,∞), we consider the following problem:

∂U

∂t
−

n∑
i=1

Di

[
a

( t∫
0

|∇U |2 dτ
)
DiU

]
= 0, (4.4.1)

U(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞), (4.4.2)
U(x, 0) = U0(x), x ∈ Ω. (4.4.3)

We will use the scheme of the work [43], in which the stabilization of a solution of the initial-
boundary value problem for equations of barotropic viscous fluid is established.

Here and in the sequel, C will denote various positive constants, independent of t. The norm in
L2(Ω), as usual, will be denoted by ∥ · ∥.

Theorem 4.4.1. If a(S) ≥ a0 = const > 0, a′(S) ≥ 0, a′′(S) ≤ 0, U0 ∈W 2
2 (0, 1) ∩

◦
W 1

2(0, 1), then for
solution of problem (3.1.2)–(3.1.5) the following asymptotic expression holds:

∥U( · , t)∥W 1
2 (Ω) −→ 0, t→ ∞.

Proof. Let us begin with the obtaining a priori estimations. Multiplying equation (4.4.1) scalarly
by U , using formula of integration by parts and taking into account the boundary condition (4.4.2),
we get

1

2

d

dt
∥U∥2 +

n∑
i=1

∫
Ω

a(S)|DiU |2 dx = 0. (4.4.4)

Multiplying (4.4.4) by eβτ , β = const > 0, we have

t∫
0

eβτ
d

dτ
∥U∥2 dτ + 2

n∑
i=1

t∫
0

∫
Ω

eβτa(S)|DiU |2 dx dτ = 0. (4.4.5)
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Application of the formula of integration by parts gives
t∫

0

eβτ
d

dτ
∥U∥2 dτ = eβτ∥U∥2

∣∣∣t
0
−

t∫
0

eβτ
d

dt
∥U∥2 dτ. (4.4.6)

Using the Poincaré inequality
∥U∥2 ≤ C(Ω)

∫
Ω

|∇U |2 dx,

from (4.4.6), we get
t∫

0

eβτ
d

dτ
∥U∥2 dτ ≥ eβt∥U∥2 − ∥U0∥2 − Cβ

t∫
0

eβτ
∫
Ω

|∇U |2 dx dτ.

Taking into account the condition a(S) ≥ a0, we derive
t∫

0

eβτ
d

dτ
∥U∥2 dτ ≥ eβt∥U∥2 − ∥U0∥2 −

Cβ

a0

n∑
i=1

t∫
0

∫
Ω

eβτa(S)|DiU |2 dx dτ.

Thus, from the identities (4.4.6) and (4.4.6), we obtain

eβt∥U∥2 − ∥U0∥2 +
(
2− Cβ

a0

) n∑
i=1

t∫
0

∫
Ω

eβτa(S)|DiU |2 dx dτ ≤ 0.

From this, if 2− Cβ/a0 ≥ 0, i.e., choosing β ≤ 2a0/C, we arrive at

eβt∥U∥2 ≤ ∥U0∥2,

or, finally,
∥U∥ ≤ e−

βt
2 ∥U0∥.

Thus, for the solution of problem (4.4.1)–(4.4.3) there takes place the stabilization as t→ ∞, and
the rate of stabilization in the norm of the space L2(Ω) is exponential.

Let us now investigate asymptotic behavior of the solution of problem (4.4.1)–(4.4.3) in the norm
of the space W 1

2 (Ω) [37].
Suppose that a = a(S) satisfies additional restrictions a′(S) ≥ 0 and a′′(S) ≤ 0.
We integrate (4.4.4) on (0, t). Taking into account the initial condition (4.4.3), we have

∥U∥2 + a(S)

t∫
0

∫
Ω

|∇U |2 dx dτ ≤ ∥U0∥2,

whence we get a priori estimations

∥U∥ ≤ C,

t∫
0

∫
Ω

|∇U |2 dx dτ ≤ C. (4.4.7)

For an arbitrary i, we have
t∫

0

∣∣∣∣ ddτ
∫
Ω

|DiU |2 dx
∣∣∣∣ dτ = 2

t∫
0

∣∣∣∣ ∫
Ω

DiU
d

dτ
(DiU) dx

∣∣∣∣ dτ
≤

t∫
0

∫
Ω

|DiU |2 dx dτ +
t∫

0

∫
Ω

∣∣∣ d
dτ

(DiU)
∣∣∣2 dx dτ. (4.4.8)
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Estimate the second integral on the right-hand side of inequality (4.4.8). To this end, let us
differentiate (4.4.1) with respect to t and multiply the obtained equality scalarly by ∂U/∂t,∫

Ω

∂2U

∂t2
∂U

∂t
dx−

∫
Ω

∂U

∂t

n∑
i=1

Di

[
DiUa

′(S)|∇U |+ a(S)
∂

∂t
(DiU)

]
dx = 0.

Applying the formula of integration by parts and taking into account the boundary conditions (4.4.2),
we have

d

dt

∥∥∥∂U
∂t

∥∥∥2 + 2

n∑
i=1

∫
Ω

∂2U

∂xi∂t

(
DiUa

′(S)|∇U |2 + a(S)
∂

∂t
(DiU)

)
dx = 0,

or
d

dt

∥∥∥∂U
∂t

∥∥∥2 + 2

n∑
i=1

∫
Ω

a(S)
∣∣∣ ∂
∂t

(DiU)
∣∣∣2 dx+ 2

n∑
i=1

∫
Ω

a′(S)
∂

∂t
(DiU)DiU |DkU |2 dx = 0.

We integrate the obtained identity on (0, t),

∥∥∥∂U
∂t

∥∥∥2 − ∥∥∥∂U
∂t

∥∥∥2
t=0

+ 2

n∑
i=1

t∫
0

∫
Ω

a(S)
∣∣∣ ∂
∂τ

(DiU)
∣∣∣2 dx dτ

+

n∑
i,k=1

t∫
0

∫
Ω

a′(S)|DkU |2
∣∣∣ ∂
∂τ

(DiU)2
∣∣∣ dx dτ = 0.

Taking into account the boundary condition (4.4.2) and the restrictions on a = a(S), we have

∥∥∥∂U
∂t

∥∥∥2 + 2a0

n∑
i=1

t∫
0

∫
Ω

∣∣∣ ∂
∂τ

(DiU)
∣∣∣2 dx dτ + J ≤ 0, (4.4.9)

where

J =

n∑
i,k=1

t∫
0

∫
Ω

a′(S)|DkU |2
∣∣∣ ∂
∂τ

(DiU)2
∣∣∣ dx dτ

=

n∑
i,k=1

∫
Ω

a′(S)|DkU |2|DiU |2 dx−
n∑

i,k=1

∫
Ω

a′(S)|DkU |2|DiU |2 dx
∣∣∣∣
t=0

−
n∑

i,j,k=1

t∫
0

∫
Ω

a′′(S)|DiU |2|DjU |2|DkU |2 dx dτ

−
n∑

i,k=1

t∫
0

∫
Ω

a′(S)|DiU |2|DjU |2
∣∣∣ ∂
∂τ

(DkU)2
∣∣∣ dx dτ ≥ C − J.

From this we get J ≥ C/2, and from inequality (4.4.9), we have

∥∥∥∂U
∂t

∥∥∥2 + 2a0

n∑
i=1

t∫
0

∫
Ω

∣∣∣ ∂
∂τ

(DiU)
∣∣∣2 dx dτ ≤ C.

Thus, the following a priori estimations hold:
t∫

0

∫
Ω

∣∣∣ ∂
∂τ

(DiU)
∣∣∣2 dx dτ ≤ C, i = 1, . . . , n.
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From relations (4.4.7), (4.4.8) and (4.4.10), we get

t∫
0

∫
Ω

|DiU |2 dx dτ ≤ C,

t∫
0

∣∣∣∣ ddτ
∫
Ω

|DiU |2 dx
∣∣∣∣ dτ ≤ C, i = 1, . . . , n.

The obtained a priori estimations hold for an arbitrary t. Therefore, we arrive at

t∫
0

∫
Ω

|∇U |2 dx dτ ≤ C,

t∫
0

∣∣∣∣ ddτ
∫
Ω

|∇U |2 dx
∣∣∣∣ dτ ≤ C, (4.4.10)

and from (4.4.10), using Lemma 4.1.4, we finally get

∥U( · , t)∥W 1
2 (Ω) −→ 0, t→ ∞.

Thus, stabilization of the solution of problem (4.4.1)–(4.4.3) is proved in the norm of the space
W 1

2 (Ω) as well in the case a(S) ≥ a0 = const > 0, a′(S) ≥ 0, a′′(S) ≤ 0.

4.5 Some comments on the unique solvability and asymptotic
behavior of solutions for averaged equations

In the domain Q = Ω × (0, T ), let us consider the following initial-boundary value problem for the
following AIDE:

∂U

∂t
− a

(∫
Ω

t∫
0

|∇U |q dτ
) n∑

i=1

Di

(
|∇U |q−2DiU

)
= f(x, t), (4.5.1)

U(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (4.5.2)
U(x, 0) = 0, x ∈ Ω. (4.5.3)

The study of equation (4.5.1) does not fit the well-known theories of nonlinear operator equations,
including the operator scheme with the so-called conditionally weakly closed operators proposed in [50].
This scheme includes, as a special case, equations with coercive monotone operators and is successfully
used to determine the solvability of the problems considered in Section 4.3 [58]. The author noted
in [50] that equations of type (4.5.1) require an independent scheme of investigation.

As we have noted in Chapter 1, the equations of type (4.5.1) simulate the processes of diffusion
supposing the dependence of temperature only on time and independence of spatial variables. Thus, on
the one hand, the equations simulate the process of a more simplified physical problem, which should,
at the first glance, facilitate their study. But on the other hand, the appearance of an integral in the
coefficients depending not only on time, but also on spatial variables, attaches a more complex nonlocal
character to the operator. This fact, apparently, also complicates their mathematical research.

The compactness method applied in Section 4.3 with the use of Galerkin’s method makes it possible
to get the necessary a priori estimates. Moreover, in the case under consideration, just as in the one-
dimensional variant of the Volterra-type IDE, the system {Bwj} can be constructed by using the
operator (see Remark 4.3.3)

Bwj = − ∂

∂t

[
(T − t)

∂w

∂t

]
−∆w + λw.

For Galerkin’s approximations Um of problem (4.5.1)–(4.5.3), we obtain the following a priori
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estimations ∫∫
Q

∣∣∣∂Um

∂t

∣∣∣2 dx dt+ ∫∫
Q

a(Sm)|∇Um|q dx dt+
∫∫
Q

a′(Sm)|∇Um|2q dx dt

+

n∑
i=1

∫∫
Q

(T − t)a(Sm)

[
∂

∂t

(∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt

+

n∑
i,j=1

∫∫
Q

a(Sm)

[
∂

∂xj

(∣∣∣∂Um

∂xi

∣∣∣ q−2
2 ∂Um

∂xi

)]2
dx dt ≤ C.

So, the unique solvability of problem (4.5.1)–(4.5.3) can be obtained by applying a similar approach
as in Section 4.4.

Using the schemes of investigations of asymptotic behavior of solutions that are given in previous
chapters, it is possible to get a rate of convergence, as well. Many authors study this property for
IDEs type models investigated in our works (see, e.g., [65–67,74] and the references therein).



Chapter 5

The unique solvability and additive
Rothe-type semi-discrete schemes
for two nonlinear multi-dimensional
parabolic integro-differential
problems

Chapter 5 is devoted to the construction and study of the decomposition type semi-discrete scheme
for nonlinear multi-dimensional IDEs of parabolic type considered in Chapters 1–4. The existence
and uniqueness of a solution of the first type initial-boundary value problem are given, as well. The
studied by us equations are certain generalizations of integro-differential models based on the well-
known system of Maxwell equations arising in mathematical simulation of an electromagnetic field
penetration into a medium. Chapter 5 consists of two sections. Section 5.1 has four subsections
dealing with the unique solvability and decomposition method for one particular case of the Volterra-
type nonlinear multi-dimensional integro-differential parabolic equation. Some results of numerical
experiments are given in this section as well. In Section 5.2, some comments on the unique solvability
and on the decomposition algorithm are shortly given for one particular case of a nonlinear multi-
dimensional AIDE.

5.1 The unique solvability and additive scheme for
the Volterra-type equation

5.1.1 Introduction
The relevance of partial IDEs can be motivated by a number of their applications in practice and
in many fields of science. The main characteristic feature of models considered in Chapters 1–4 are
associated with the appearance of nonlinear terms depending on time and spatial integrals. This
circumstance complicates the study and requires other considerations than those required normally
for solving the local differential problems. So, the integro-differential models under consideration
may be interpreted as, e.g., generalized models of the problems occurring in the theory of nonlinear
parabolic equations (see, e.g., [54,71]). The Volterra-type models considered in the previous chapters
for the scalar one-dimensional spatial case were first investigated in [20] and [28]. The scalar multi-
dimensional spatial case was first studied in [17]. Later on, these types of integro-differential models
were considered in a number of papers (see, e.g., [24, 32,33,39] and the references therein).

The literature devoted to the questions of the existence, uniqueness and regularity of solutions to
the above types of equations is ample. Asymptotic behavior of solutions is discussed in [24,32,39] and
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in a number of other works, as well. Note also that many works are devoted to the numerical resolution
of the Volterra-type one-dimensional equations (see, e.g., Chapter 2, [33,39] and the references therein).
Many authors study the Rothe scheme, the semi-discrete scheme with a spatial variable, finite element
and finite difference approximations for integro-differential models (see, e.g., [4,8–11,18,19,22,30,33,
35,37–42,44,51,54,56,61,65–67,74]).

Of special importance is investigation of decomposition analogues for the above-mentioned multi-
dimensional integro-differential models. At present there are several effective algorithms for solving
the multi-dimensional problems (see, e.g., [1, 2, 57,64,72] and the references therein).

This section is devoted to the global existence and uniqueness of solutions of the initial-boundary
value problem. Great attention is paid to the investigation of a semi-discrete additive average scheme.
We will focus our attention to the particular case of the Volterra-type multi-dimensional integro-
differential equation.

This section is organized as follows. Subsection 5.1.2 presents the formulation of the problem and
some of its properties. Especially, the existence and uniqueness of the solution of the stated problem
are studied therein. Main attention is paid to the construction and investigation of semi-discrete
additive averaged scheme. This question is discussed in Subsection 5.1.3. Some comments on the
numerical implementations and the results of numerical experiments are given in Subsection 5.1.4.

5.1.2 Formulation of the problem and the unique solvability
Let Ω be the bounded domain in the n-dimensional Euclidean space Rn, with a sufficiently smooth
boundary ∂Ω. In the domain Q = Ω× (0, T ) of the variables (x, t) = (x1, x2, . . . , xn, t) let us consider
the following first type initial-boundary value problem:

∂U

∂t
−

n∑
i=1

∂

∂xi

[(
1 +

t∫
0

∣∣∣ ∂U
∂xi

∣∣∣2 dτ) ∂U
∂xi

]
= f(x, t), (x, t) ∈ Q, (5.1.1)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (5.1.2)
U(x, 0) = 0, x ∈ Ω, (5.1.3)

where T is a fixed positive constant, f is a given function of its arguments.
Since problem (5.1.1)–(5.1.3) is similar to that considered in [32] and in Chapter 4, we can follow

the same procedure used there. Using the modified version of Galerkin’s method and the compactness
arguments [54,71], the following statement can be proved for problem (5.1.1)–(5.1.3).

Theorem 5.1.1. If
f,
∂f

∂t
,
√
ψ
∂f

∂xi
∈ L2(Q), f(x, 0) = 0,

then there exists the unique solution U of problem (5.1.1)–(5.1.3) satisfying the properties

U ∈ L4(0, T,
◦
W 1

4(Ω)),
∂U

∂t
∈ L2(Q),√

ψ
∂2U

∂xi∂xj
∈ L2(Q),

√
T − t

∂2U

∂t∂xi
∈ L2(Q), i, j = 1, . . . , n,

where ψ ∈ C∞(Ω), ψ(x) > 0, x ∈ Ω; ψ = ∂ψ/∂ν = 0, x ∈ ∂Ω, ν is an outer normal of ∂Ω.

Proof. Let us consider the following weak formulation of problem (5.1.1)–(5.1.3):
T∫

0

∫
Ω

(
∂U

∂t
V +

n∑
i=1

(
1 +

t∫
0

∣∣∣ ∂U
∂xi

∣∣∣2 dτ) ∂U

∂xi

∂V

∂xi

)
dx dt =

T∫
0

∫
Ω

fV dx dt (5.1.4)

for all V ∈ L4(0, T ;
◦
W 1

4(Ω)). We seek for an approximate solution of the problem in the form

um(x, t) =

m∑
k=1

cmkwk(x, t),
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where the unknown coefficients cmk satisfy the following system of nonlinear algebraic equations:

T∫
0

∫
Ω

(
∂um
∂t

Bwk +
n∑

i=1

(
1 +

t∫
0

∣∣∣∂um
∂xi

∣∣∣2 dτ) ∂um
∂xi

∂(Bwk)

∂xi

)
dx dt

=

T∫
0

∫
Ω

fBwk dx dt, k = 1, . . . ,m. (5.1.5)

Here, {Bwj} is the complete system in the space L4(0, T ;
◦
W 1

4(Ω)) (see, e.g., Chapter 4 and [54, 71])
and

Bw = − ∂

∂t

[
(T − t)

∂w

∂t

]
− ψ

n∑
i=1

∂2w

∂x2i
+ λw, λ = const > 0.

After some straightforward computations (for more details see Chapter 4 and [17,32]), one estab-
lishes the relation

T∫
0

∫
Ω

(
∂um
∂t

Bum +

n∑
i=1

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)
∂um
∂xi

∂(Bum)

∂xi

)
dx dt

≥ C

∫∫
Q

∣∣∣∂um
∂t

∣∣∣2 dx dt+ C

∫∫
Q

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)
dx dt

+ C

n∑
i=1

∫∫
Q

(T − t)

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)(∂2um
∂t∂xi

)2
dx dt

+ C

n∑
i,j=1

∫∫
Q

ψ

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)( ∂2um
∂xj∂xi

)2
dx dt. (5.1.6)

Throughout this subsection, the constants used are not necessarily to be the same at different
occurrences.

It is not difficult to estimate the right-hand side of (5.1.5)

∣∣∣∣ m∑
k=1

cmj

T∫
0

∫
Ω

fBwj dx dt

∣∣∣∣ = ∣∣∣∣
T∫

0

∫
Ω

fBum dx dt

∣∣∣∣
=

∣∣∣∣− ∫∫
Q

f
∂

∂t

[
(T − t)

∂um
∂t

]
dx dt−

n∑
i=1

∫∫
Q

fψ
∂2um
∂x2i

dx dt+ λ

∫∫
Q

fum dx dt

∣∣∣∣
≤
∣∣∣∣ ∫∫

Q

(T − t)
∂f

∂t

∂um
∂t

dx dt

∣∣∣∣+ ∣∣∣∣ n∑
i=1

∫∫
Q

ψ
∂f

∂xi

∂um
∂xi

dx dt

∣∣∣∣
+

∣∣∣∣ n∑
i=1

∫∫
Q

f
∂ψ

∂xi

∂um
∂xi

dx dt

∣∣∣∣+ λ

∣∣∣∣ ∫∫
Q

fum dx dt

∣∣∣∣
≤ ε

∫∫
Q

∣∣∣∂um
∂t

∣∣∣2 dx dt+ C

ε

∫∫
Q

∣∣∣∂f
∂t

∣∣∣2 dx dt+ ε

n∑
i=1

∫∫
Q

ψ
∣∣∣∂um
∂xi

∣∣∣2 dx dt
+
C

ε

n∑
i=1

∫∫
Q

ψ
∣∣∣ ∂f
∂xi

∣∣∣2 dx dt+ ε

n∑
i=1

∫∫
Q

ψ
∣∣∣∂um
∂xi

∣∣∣2 dx dt+ C

ε
λ

∫∫
Q

f2 dx dt, (5.1.7)
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where ε is a positive constant of the ε-inequality.
As a consequence, choosing ε sufficiently small and λ sufficiently large, after simple transformations,

estimations (5.1.6) and (5.1.7) easily yield

∫∫
Q

∣∣∣∂um
∂t

∣∣∣2 dx dt+ ∫∫
Q

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)
dx dt

+

n∑
i=1

∫∫
Q

(T − t)

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)(∂2um
∂t∂xi

)2
dx dt

+

n∑
i,j=1

∫∫
Q

ψ

(
1 +

t∫
0

(∂um
∂xi

)2
dτ

)( ∂2Um

∂xj∂xi

)2
dx dt ≤ C. (5.1.8)

From the a priori estimations (5.1.8), the desired result now follows by using the method proposed
in [17,32] and used in Chapter 4 for proving the suitable existence results for models of type (5.1.1)–
(5.1.3).

Let us now establish the second part of Theorem 5.1.1, namely, a uniqueness property of the
solution of problem (5.1.1)–(5.1.3). We will have a more detailed discussion here than in Chapter 4
for proving the analogous fact.

Let problem (5.1.1)–(5.1.3) have two solutions U and U . Introduce the following notation: Z(x, t) =
U(x, t)− U(x, t). Subtracting (5.1.1)–(5.1.3) for U from (5.1.1)–(5.1.3) for U we get

∂Z

∂t
−

n∑
i=1

∂

∂xi

[(
1 +

t∫
0

( ∂U
∂xi

)2

dτ
) ∂U
∂xi

−
(
1 +

t∫
0

( ∂U
∂xi

)2
dτ

)
∂U

∂xi

]
= 0, (x, t) ∈ Q, (5.1.9)

Z(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (5.1.10)
Z(x, 0) = 0, x ∈ Ω. (5.1.11)

We multiply (5.1.9) by Z and integrate the obtained identity on Ω × (0, t). Taking into account
(5.1.10), (5.1.11), we have

1

2

∫
Ω

Z2(x, t) dx

+

n∑
i=1

∫
Ω

t∫
0

[(
1 +

t∫
0

( ∂U
∂xi

)2
dτ

)
∂U

∂xi
−
(
1 +

t∫
0

( ∂U
∂xi

)2
dτ

)
∂U

∂xi

]
∂Z

∂xi
dx dτ = 0. (5.1.12)

Note that[(
1 +

t∫
0

( ∂U
∂xi

)2
dτ

)
∂U

∂xi
−
(
1 +

t∫
0

( ∂U
∂xi

)2
dτ

)
∂U

∂xi

]( ∂U
∂xi

− ∂U

∂xi

)

=
1

2

[
2 +

t∫
0

( ∂U
∂xi

)2
dτ +

t∫
0

( ∂U
∂xi

)2
dτ

][ ∂U
∂xi

− ∂U

∂xi

]2

+
1

2

[ t∫
0

( ∂U
∂xi

)2
dτ −

t∫
0

( ∂U
∂xi

)2
dτ

] [( ∂U
∂xi

)2
−
( ∂U
∂xi

)2]

≥ 1

2

[ t∫
0

( ∂U
∂xi

)2
dτ −

t∫
0

( ∂U
∂xi

)2
dτ

] [( ∂U
∂xi

)2
−
( ∂U
∂xi

)2]
. (5.1.13)
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Introducing the notation

W (x, t) =

n∑
i=1

t∫
0

[( ∂U
∂xi

)2
−
( ∂U
∂xi

)2]
dτ,

from (5.1.12) and (5.1.13), we get

∫
Ω

Z2(x, t) dx+

t∫
0

∫
Ω

W (x, t)
∂W (x, t)

∂t
dx dτ ≤ 0

or ∫
Ω

Z2(x, t) dx+
1

2

∫
Ω

W 2(x, t) dx ≤ 0.

The latter estimation implies that Z ≡ 0 and hence, the uniqueness of the solution of problem
(5.1.1)–(5.1.3). Thus, Theorem 5.1.1 is complete.

Using the scheme of investigation as, e.g., in [24, 32, 39], it is not difficult to get the exponential
stabilization of solution as t → ∞ for equation (5.1.1) with f(x, t) ≡ 0 and homogeneous boundary
(5.1.2) and nonhomogeneous initial conditions (5.1.3).

5.1.3 Semi-discrete additive scheme
On [0, T ], let us introduce a net with mesh points denoted by tj = jτ , j = 0, 1, . . . , N , with τ = 1/N .
Coming back to problem (5.1.1)–(5.1.3), let us construct the following additive average Rothe-type
semi-discrete scheme:

ηi
uj+1
i − uj

τ
=

∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi

]
+ f j+1

i ,

u0i = u0 = 0, i = 1, . . . , n; j = 0, 1, . . . , N − 1,

(5.1.14)

with homogeneous boundary conditions, where uji (x), j = 0, 1, . . . , N , is the solution of problem
(5.1.14), and introduce the following notation:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,

n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where uj denotes approximation of the exact solution U of problem (5.1.1)–(5.1.3) for tj .
The object of this subsection is to prove one main statement of this chapter. Here we use a usual

scalar product ( · , · ) and the norm ∥ · ∥ of the space L2(Ω).

Theorem 5.1.2. If problem (5.1.1)–(5.1.3) has a sufficiently smooth solution, then the functions um
defined by the solutions of problems (5.1.14) converge to the solution of problem (5.1.1)–(5.1.3) and
the estimate

∥Um − um∥ = O(τ
1
2 ), m = 1, 2, . . . , N,

holds.

Proof. Let us introduce the notations:

zk = Uk − uk, zki = Uk − uki .

For the exact solution of problem (5.1.1)–(5.1.3) we have

ηi
U j+1 − U j

τ
= ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xℓ

)2) ∂U j+1

∂xℓ

]
+ ηif

j+1 +O(τ).
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After subtracting (5.1.1), from the above relation we get

ηi

(
U j+1 − U j

τ
− uj+1

i − uj

τ

)
= ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xℓ

)2) ∂U j+1

∂xℓ

]

− ∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi

]
+ ηif

j+1 − f j+1
i +O(τ).

Thus, introducing the notation
zj+1
i − zj

τ
= zj+1

it
,

we have

ηiz
j+1

it
=

∂

∂xi

[(
1 + τ

j+1∑
k=0

(∂Uk

∂xi

)2) ∂U j+1

∂xi

]
− ∂

∂xi

[(
1 + τ

j+1∑
k=0

(∂Uk

∂xi

)2) ∂U j+1

∂xi

]

+ ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xℓ

)2) ∂U j+1

∂xℓ

]

− ∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi

]
+ ηif

j+1 − f j+1
i +O(τ).

Here we add and subtract the first and the second terms in the right-hand side.
Using (5.1.1) and (5.1.14), we obtain the following problem:

ηiz
j+1

it
=

∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xi

)2) ∂U j+1

∂xi
−
(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi

]
+ ψj+1

i (x),

z0i = 0,

(5.1.15)

with the homogeneous boundary conditions and where

ψj+1
i (x) = − ∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xi

)2) ∂U j+1

∂xi

]

+ ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xℓ

)2) ∂U j+1

∂xℓ

]
+ ηif

j+1(x)− f j+1
i (x) +O(τ)

= ψ
j+1

i (x) +O(τ).

Using the assumptions on f j+1
i and ηi, we have the identity of sum-approximation

n∑
i=1

ψ
j+1

i (x) = −
n∑

i=1

∂

∂xi

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xi

)2) ∂U j+1

∂xi

]

+

n∑
i=1

ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

(∂Uk

∂xℓ

)2) ∂U j+1

∂xℓ

]

+

n∑
i=1

ηif
j+1(x)−

n∑
i=1

f j+1
i (x) = 0. (5.1.16)

So,
n∑

i=1

ψj+1
i (x) = O(τ).
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Multiplying (5.1.15) scalarly by 2τzj+1
i , we obtain

2τηi(z
j+1

it
, zj+1

i ) + 2τ

((
1 + τ

j+1∑
k=1

(∂Uk

∂xi

)2) ∂U j+1

∂xi
−
(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi
,
∂zj+1

i

∂xi

)
− 2τ(ψj+1

i , zj+1
i ) = 0. (5.1.17)

It can be easily checked that((
1 + τ

j+1∑
k=1

(∂Uk

∂xi

)2) ∂U j+1

∂xi
−
(
1 + τ

j+1∑
k=1

(∂uki
∂xi

)2) ∂uj+1
i

∂xi
,
∂zj+1

i

∂xi

)

=
1

2

[(
2 + τ

j+1∑
k=1

(∂Uk

∂xi

)2
+ τ

j+1∑
k=1

(∂uki
∂xi

)2
,
(∂zj+1

i

∂xi

)2)

+

(
τ

j+1∑
k=1

[(∂Uk

∂xi

)2
−
(∂uki
∂xi

)2]
,
(∂U j+1

∂xi

)2
−
(∂uj+1

i

∂xi

)2)]

≥ 1

2

(
τ
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From (5.1.17), for the error we get

2τηi(z
j+1

it
, zj+1

i ) + τ
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τ
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i ).

Using the identities

zj+1
i = zj + τzj+1

it
, 2τ(zj+1

it
, zj+1

i ) = ∥zj+1
i ∥2 + τ2∥zj+1

it
∥2 − ∥zj∥2,

after simple transformations, from the latter inequality, we have
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Summing-up this equality from 1 to n, we arrive at
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). (5.1.18)
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Note that
n∑

i=1

ηiz
j+1
i =

n∑
i=1

ηi(U
j+1 − uj+1

i ) = zj+1,

n∑
i=1

ηi∥zj∥2 = ∥zj∥2,

n∑
i=1

ηi∥zj+1
i ∥2 ≥

∥∥∥ n∑
i=1

ηiz
j+1
i

∥∥∥2 = ∥zj+1∥2.

Using these relations, identity of the sum-approximation (5.1.16) and the Schwarz inequality, from
(5.1.18) we get
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ηiτ
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2
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Here,

∥ψj+1∥2 =

n∑
i=1

η−1
i ∥ψj+1

i ∥2.

Using the boundedness of ∥ψj+1∥, we find

∥zj+1∥2 + 1
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≤ ∥zj∥2 + 1

2
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i=1

∥∥∥∥τ j∑
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[(∂Uk

∂xi

)2
−
(∂uki
∂xi

)2]∥∥∥∥2 + 2τ(O(τ), zj) +O(τ2). (5.1.20)

Summing-up (5.1.20) with respect to j from 0 to m− 1, we get

∥zm∥2 + τ

2

n∑
i=1

∥∥∥∥(∂Um

∂xi

)2
−
(∂umi
∂xi
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(O(τ), zj) + Cτ

≤ τ
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j=0

[
O(τ2) + ∥zj∥2

]
+O(τ)

≤ τ

m−1∑
j=0

∥zj∥2 + Cτ. (5.1.21)

The desired result of Theorem 5.1.2 now follows from (5.1.21) by the standard discrete Gronwall’s
lemma.

5.1.4 Numerical implementation remarks
The study of the operator splitting techniques has a long history and has been pursued with various
methods. Since alternating-direction methods and fractional step methods reduce the time-stepping
of multi-dimensional problems to locally one-dimensional computations, those methods have been
applied in the numerical simulation of many practically important problems.

Starting with the basic works (see, e.g., [14,15]), the methods of constructing effective algorithms
for the numerical solution of the multi-dimensional problems of the mathematical physics and a range
of problems solvable with the help of those algorithms are essentially extended. At present, there
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are some effective algorithms for solving the multi-dimensional problems of the mathematical physics
(see, e.g., [1, 57, 64, 72] and the references therein). Those algorithms belong mainly to the methods
of splitting-up or sum-approximation according to their approximating properties.

Several test examples are carried out using semi-discrete additive scheme (5.1.14). Here we consider
one of such test examples: consider the case n = 2, Ω = (0, 1)× (0, 1) and choose the right-hand side
of equation (5.1.1), thus the exact solution is given by

U(x1, x2, t) = x1x2(1− x1)(1− x2)(1 + t2).

Parameters used here are T = 1, τ = 0.004, and for the spatial discretization we used h1 = h2 = 0.02.
Results of the test experiment for exact and numerical solution are given in Figures 5.1–5.4.
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Figure 5.1. The exact solution for t = 0.2.
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Figure 5.2. The numerical solution for t = 0.2.



108 Temur Jangveladze

0
10

20
30

40
50

60

0

10

20

30

40

50

60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 t=1.0

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5.3. The exact solution for t = 1.0.

For the errors analysis the maximum of the absolute values of errors between the exact and
numerical solutions for different time levels are shown in Figures 5.5 and 5.6. Absolute values of
errors are given in Table 5.1, as well.

Table 5.1. Absolute values of errors.

t Absolute values of errors between
exact and numerical solutions

0.2 0.0010559595

0.4 0.0014377328

0.6 0.0021740239

0.8 0.0034338814

1.0 0.0053835245

We have carried out several other numerical experiments and observed the same situation.
In our next experiment we have taken the zero right-hand side and the initial solution given by

U(x1, x2, 0) = x1x2(1− x1)(1− x2)
(
ex2−x1 − cos(8π(x1 − x2))

)
.

In this case, we know that the solution should decay in time. The parameters τ and h are as
before. In Table 5.2, we put the values of numerical solution for the initial and five different time
levels. It is clear that the numerical solution approaches zero, as it was expected according to the
theoretical result given at the end of Subsection 5.1.2.

We will try to make some comments on the results we have obtained. The additive averaged
semi-discrete scheme for nonlinear multi-dimensional IDE of parabolic type is studied. The inves-
tigated equation is a certain generalization of the integro-differential model which is based on the
well-known system of Maxwell equations arising under the mathematical simulation of electromag-
netic field penetration into a medium. The existence and uniqueness of the solution of the first type
initial-boundary value problem are given. A long time behavior of the solution is fixed. For the
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Figure 5.4. The numerical solution for t = 1.0.

Table 5.2. Asymptotic behavior of solution.

t Numerical solution

0.0 0.12868

0.4 1.42398e-003

0.8 2.94541e-005

1.2 6.09236e-007

2.0 2.60654e-010

two-dimensional case, the numerical experiments agreeing with the theoretical findings, are presented.
Numerical experiments illustrating asymptotic behavior as t→ ∞ of solutions are given, as well.

5.2 Some comments on the unique solvability and additive
Rothe-type scheme for one nonlinear averaged
integro-differential parabolic problem

The main attention of this section is paid to the Rothe-type additive averaged scheme for the averaged
type multi-dimensional integro-differential scalar equation.

Let Ω be the bounded domain in the n-dimensional Euclidean space Rn, with a sufficiently smooth
boundary ∂Ω. In the domain Q = Ω × (0, T ) of variables (x, t) = (x1, x2, . . . , xn, t), let us consider
the following first type initial-boundary value problem:

∂U

∂t
−

n∑
i=1

(
1 +

∫
Ω

t∫
0

∣∣∣ ∂U
∂xi

∣∣∣2dx dτ) ∂2U

∂x2i
= f(x, t), (x, t) ∈ Q, (5.2.1)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (5.2.2)
U(x, 0) = 0, x ∈ Ω, (5.2.3)
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Figure 5.5. The differences between the exact and numerical solutions for t = 0.2.

where T is a fixed positive constant, f is a given function of its arguments.
Since problem (5.2.1)–(5.2.3) is similar to that considered in [32], where unique solvability and

asymptotic behavior of (5.2.1) type models are discussed, we can follow the same procedure used there
(see also Chapters 1, 3, 4). Using the modified version of Galerkin’s method and the compactness
arguments (Chapter 4 and [54,71]), we can prove the following statement.

Theorem 5.2.1. If
f ∈W 1

2 (Q), f(x, 0) = 0,

then there exists the unique solution U of problem (5.2.1)–(5.2.3) satisfying the properties

U ∈ L4(0, T ;
◦
W 1

4(Ω)) ∩ L2(0, T ;W
2
2 (Ω)),

∂U

∂t
∈ L2(Q),

√
T − t

∂2U

∂t∂xi
∈ L2(Q), i = 1, 2, . . . , n.

Using the scheme of investigation as in Chapters 3 and 4, it is not difficult to get the exponential
stability of solution as t→ ∞ for equation (5.2.1) with f(x, t) ≡ 0 and homogeneous boundary (5.2.2)
and nonhomogeneous initial (5.2.3) type conditions.

For problem (5.2.1)–(5.2.3), let us construct the following additive averaged Rothe-type scheme:

ηi
uj+1
i − uj

τ
=

(
1 + τ

j+1∑
k=1

∫
Ω

∣∣∣∂uki
∂xi

∣∣∣2 dx) ∂2uj+1
i

∂x2i
+ f j+1

i ,

u0i = u0 = 0, i = 1, . . . , n; j = 0, 1, . . . , J − 1,

(5.2.4)

with the homogeneous boundary conditions, where uji (x), j = 1, 2, . . . , N , is the solution of problem
(5.2.4), and the following notations are introduced:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,

n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where uj denotes approximation of the exact solution U of problem (5.2.1)–(5.2.3) for tj . We use
usual norm ∥ · ∥ of the space L2(Ω).
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Figure 5.6. The differences between the exact and numerical solutions for t = 1.0.

Theorem 5.2.2. If problem (5.2.1)–(5.2.3) has a sufficiently smooth solution, then the solution of
problem (5.2.4) converges to that of problem (5.2.1)–(5.2.3), and the following estimate is true:

∥U j − uj∥ = O(τ
1
2 ), j = 1, 2, . . . , N.

It is very important to construct and investigate the above-studied type of models for more general
type of nonlinearities as well.
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