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Abstract. Differential equations of the second order with nonlinearities of rather general type that
are in some sense near to the power ones are considered. For some class of solutions with derivatives
of the first order that are slowly varying functions as the argument tends to the critical point, the
conditions of the existence and asymptotic representations are found.
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÓÀÊÌÀÒÉÓÀÃ ÆÏÂÀÃÉ ÔÉÐÉÓ ÌÄÏÒÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄ-
ÁÄÁÉ, ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÀáËÏÓ ÀÒÉÀÍ áÀÒÉÓáÏÅÀÍ ÂÀÍÔÏËÄÁÄÁÈÀÍ. ÀÌÏÍÀáÓÍÈÀ
ÂÀÒÊÅÄÖËÉ ÊËÀÓÉÓÈÅÉÓ, ÒÏÌÄËÈÀ ÐÉÒÅÄËÉ ßÀÒÌÏÄÁÖËÄÁÉ ÍÄËÀÃ ÝÅÀËÄÁÀÃÉ ×ÖÍØÝÉÄÁÉÀ,
ÒÏÝÀ ÀÒÂÖÌÄÍÔÉ ÊÒÉÔÉÊÖËÉ ßÄÒÔÉËÉÓÊÄÍ ÌÉÉÓßÒÀ×ÉÓ, ÃÀÃÂÄÍÉËÉÀ ÀÌÏáÓÍÀÃÏÁÉÓ ÐÉÒÏÁÄÁÉ
ÃÀ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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Let us consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′) exp

(
R(| ln |yy′||)

)
, (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ are continuous
functions, R : ]0; +∞[→ ]0;+∞[ is a continuously differentiable function, that is, regularly varying at
infinity of order µ, 0 < µ < 1, and has a monotone derivative. Here, Yi ∈ {0,±∞}, ∆Yi

is either the
interval [y0i ;Yi[

1, or the interval ]Yi; y
0
i ] (i = 0, 1). Moreover, it is supposed that every function φi

(i = 0, 1) is regularly varying of order σi [4, Chapter 1, § 1.1, p. 9] as the argument tends to Yi and
σ0 + σ1 ̸= 1.

The solution y of equation (1) defined on the interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-solution
(−∞ ≤ λ0 ≤ +∞) if the conditions

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0 (2)

are satisfied.
Let the function φ : ∆Y → ]0,+∞[ be regularly varying of order σ as z → Y (z ∈ ∆Y , Y ∈ {0,∞},

∆Y is a one-sided neighborhood of Y ). We say that the function φ satisfies the condition S if for any
slowly varying as z → Y (z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ such that

lim
z→Y
z∈∆Y

zL′(z)

L(z)
= 0,

the equality
Θ(zL(z)) = Θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y )

takes place, where Θ(z) = φ(z)|z|−σ.
Some classes of Pω(Y0, Y1, λ0)-solutions of equation (1) were investigated earlier (see, e.g., [3]). The

sufficiently important class of Pω(Y0, Y1,±∞)-solutions of equations like (1) has been considered only
for the cases R(z) ≡ 0 and φ0(z)|z|−σ0 satisfies the condition S. Later, it has turned out to extend the
results on more general cases (see, e.g., [1]). But the functions that do not satisfy the condition S, but
contain in the left-hand side the derivative of an unknown function as in a general case of equation
(1), have not been considered before. Notice that the derivative of every Pω(Y0, Y1,±∞)-solution is a
slowly varying function as t ↑ ω. It makes a lot of difficulties when conducting investigations.

We need the following auxiliary notation

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
Θi(z) = φi(z)|z|−σi (i = 0, 1)

and in case lim
t↑ω

|πω(t)| sign y00 = Y0,

N(t) = α0p(t)|πω(t)|σ0+1Θ0

(
|πω(t)| sign y00

)
as t ∈ [b, ω[ ,

I0(t) = α0

t∫
A0

ω

p(τ)|πω(τ)|σ0Θ0

(
|πω(τ)| sign y00

)
dτ,

A0
ω =


b as

ω∫
b

p(τ)|πω(τ)|σ0Θ0

(
|πω(τ)| sign y00

)
dτ = +∞,

ω as
ω∫

b

p(τ)|πω(τ)|σ0Θ0

(
|πω(τ)| sign y00

)
dτ < +∞.

Here, we choose b ∈ [a, ω[ in such a way that |πω(t)| sign y00 ∈ ∆0 as t ∈ [b, ω[ .
1If Yi = +∞ (Yi = −∞), we respectively suppose that y0i > 0 (y0i < 0).
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Theorem 1. The conditions

Y0 =

{
±∞ as ω = +∞,

0 as ω < +∞,
πω(t)y

0
0y

0
1 > 0 as t ∈ [a;ω[ (3)

are necessary for the existence of Pω(Y0, Y1,±∞)-solutions of equation (1). If the function φ0 satisfies
the condition S and

lim
t↑ω

R′(| ln |πω(t)||)I0(t)
πω(t)I ′0(t)

= 0, (4)

then the conditions
y01I0(t)(1− σ0 − σ1) > 0 as t ∈ [a, ω[ ,

lim
t↑ω

y01 |I0(t)|
1

1−σ0−σ1 = Y1, lim
t↑ω

πω(t)I
′
0(t)

I0(t)
= 0

(5)

together with conditions (3) are necessary and sufficient for the existence of the above-mentioned
solutions of equation (1). Moreover, for each Pω(Y0, Y1,±∞)-solution of equation (1) the asymptotic
representations

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)y′(t)||))
= (1− σ0 − σ1)I0(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)]

(6)

take place as t ↑ ω.

If condition (4) is not valid, there takes place the next theorem with another condition (7). Note
that if the limit of the left-hand side of equality (4) is equal to infinity, then condition (7) takes place
in most cases.

Theorem 2. Let the function p in equation (1) be continuously differentiable in its domain. If the
function φ0 satisfies the condition S and

lim
t↑ω

πω(t)N
′(t)

R′(| ln |πω(t)||)N(t)
= 0, (7)

then the conditions
α0y

0
1(1− σ0 − σ1) ln |πω(t)| > 0 as t ∈ [a, ω[ ,

lim
t↑ω

y01 exp
( 1

1− σ0 − σ1
R
(
| ln |πω(t)||

))
= Y1

(8)

together with conditions (3) are necessary and sufficient for the existence of Pω(Y0, Y1,±∞)-solutions
of equation (1). Moreover, for every such solution the asymptotic representations

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)y′(t)||))
=

(1− σ0 − σ1)N(t)

R′(| ln |πω(t)||)
[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)]

(9)

take place as t ↑ ω.

Proof of Theorem 1. The necessity. Let the function y : [t0, ω[→ ∆Y0 be a Pω(Y0, Y1,±∞)-solution
of equation (1). By virtue of (2), the equality

y′′(t)y(t)

(y′(t))2
=

(y′(t)
y(t)

)′
·
(y′(t)
y(t)

)−2

+ 1

implies that (y′(t)
y(t)

)′
·
(y′(t)
y(t)

)−2

= −1 + o(1) as t ↑ ω.
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From this, in view of (2), we have the following asymptotic representations:

y(t) = πω(t)y
′(t)[1 + 0(1)], y′′(t) = o

( y′(t)

πω(t)

)
as t ↑ ω. (10)

From the first formula we get the first one of representations (6) and condition (3). It also follows
from (10) that there exists a slowly varying continuously differentiable function L : ∆Y0

→ ]0,+∞[
such that y(t) = πω(t)L(πω(t)). By the condition S, we obtain Θ0(y(t)) = Θ0(|πω(t)| sign y00)[1+o(1)]
as t ↑ ω.

Moreover, from the first formula of (10), using the properties of logarithmic functions and the
function R, we find that the asymptotic representations

R
(
| ln |y(t)y′(t)||

)
= R

(
| ln |πω(t)||

)
[1 + o(1)], R′(| ln |y(t)y′(t)||

)
= R′(| ln |πω(t)||

)
[1 + o(1)] (11)

take place as t ↑ ω.
Let us rewrite (1) in the form

y′′(t)

φ1(y′(t))|y′(t)|σ0
= I ′0(t) exp

(
R(| ln |y(t)y′(t)||)

)
[1 + o(1)] as t ↑ ω. (12)

Suppose now that condition (4) holds and denote

lim
t↑ω

I0(t) = J0.

Let us show that the function exp(R(| ln |y(I−1
0 (z))y′(I−1

0 (z))||)) is slowly varying as z → J0. Here,
I−1
0 is the function, inverse to I0. By conditions (4), (11) and (10), we have

lim
z→J0

z
(

exp(R(| ln |y(I−1
0 (z))y′(I−1

0 (z))||))
)′

exp
(
R(| ln |y(I−1

0 (z))y′(I−1
0 (z))||)

)
= lim

z→J0

z exp(R
(
| ln |y(I−1

0 (z))y′(I−1
0 (z))||)

)
R′(| ln |y(I−1

0 (z))y′(I−1
0 (z))||

)
I ′0(I

−1
0 (z)) exp

(
R(| ln |y(I−1

0 (z))y′(I−1
0 (z))||)

) (
y′(I−1

0 (z))

y(I−1
0 (z))

+
y′′(I−1

0 (z))

y′(I−1
0 (z))

)
= lim

z→J0

zR′(| ln |y(I−1
0 (z))y′(I−1

0 (z))||
)

I ′0(I
−1
0 (z))

y′(I−1
0 (z))

y(I−1
0 (z))

(
1 +

y′′(I−1
0 (z))y(I−1

0 (z))

(y′(I−1
0 (z)))2

)
= 0.

Therefore, using (12), we get

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)y′(t)||))
= (1− σ0 − σ1)I0(t)[1 + o(1)] as t ↑ ω. (13)

Thus representation (6) is valid. Taking into account the sign of the function y′(t), we obtain the first
and the second of conditions (5). Using the second of relations (10), by (13) and (12), we have

lim
t↑ω

πω(t)I
′
0(t)φ1(y

′(t))

|y′(t)|1−σ0
= 0.

The third of conditions (5) follows from the latter relation, and thus the necessity is proved.
The sufficiency. Suppose that the function φ1 satisfies the condition S and conditions (3)–(5) of

the theorem hold. We denote g(v0, v1) = exp(R(| ln |v0v1||))L1(v1), where L1 : ∆Y1
→ ]0,+∞[ is a

slowly varying function as z → Y1 (z ∈ ∆Y1) such that

L1(z) = Θ1(z)[1 + o(1)] as z → Y1 (z ∈ ∆Y1
), lim

z→Yi
z∈∆Y1

zL′
1(z)

L1(z)
= 0. (14)

According to the properties of the function R and (14), we get

lim
vi→Yi
vi∈∆Yi

vi
∂g
∂vi

(v0, v1)

g(v0, v1)
= 0 uniformly by vj ∈ ∆Yj

, j ̸= i, i, j = 0, 1. (15)
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So, we can take ∆̃Yi ⊂ ∆Yi (i = 0, 1) in a form such that∣∣∣∣vi ∂g
∂vi

(v0, v1)

g(v0, v1)

∣∣∣∣ < ζ (i = 0, 1) as (v0, v1) ∈ ∆̃Y0 × ∆̃Y1 . (16)

Here, 0 < ζ < |1−σ0−σ1|
8 , ζ is sufficiently small and

∆̃Yi
=

[ỹ 0
i , Yi[ , if ∆Yi

= [y0i , Yi[ , y0i ≤ ỹ 0
i < Yi,

]Yi, ỹ
0
i ], if ∆Yi

= ]Yi, y
0
i ], Yi > ỹ 0

i ≥ y0i ,
i = 0, 1.

Consider now the function

F (s0, s1) =


|s1|1−σ0−σ1

g(s0, s1)
s1
s0


on the set ∆̃Y0

× ∆̃Y1
. Using (15), we have

lim
s1→Y1

s1∈∆̃Y1

s1
( |s1|1−σ0−σ1

g(s0,s1)

)′
s1

|s1|1−σ0−σ1

g(s0,s1)

= 1− σ0 − σ1 uniformly by s0 ∈ ∆̃Y0 , (17)

lim
s0→Y0

s0∈∆̃Y0

s0
( |s1|1−σ0−σ1

g(s0,s1)

)′
s0

|s1|1−σ0−σ1

g(s0,s1)

= −R′(| ln |s0s1||) sign(s0) = 0 uniformly by s1 ∈ ∆̃Y1
.

Therefore, we get

lim
s1→Y1

s1∈∆̃Y1

|s1|1−σ0−σ1

g(s0, s1)
= Υ uniformly by s0 ∈ ∆̃Y0 ,

Υ =

{
+∞, if Y1 = ∞, 1− σ0 − σ1 > 0, or Y1 = 0, 1− σ0 − σ1 < 0,

0, if Y1 = ∞, 1− σ0 − σ1 < 0, or Y0 = 0, 1− σ0 − σ1 > 0.

Let us show that F establishes the one-to-one correspondence between the set ∆̃Y0
× ∆̃Y1

and the
set

F (∆̃Y0
× ∆̃Y1

) =


[ |ỹ 1

0 |1−σ0−σ1

g(ỹ 0
0 , ỹ

1
0 )

;Υ
)
×∆0 as |ỹ 1

0 |1−σ0−σ1

g(ỹ 0
0 , ỹ

1
0 )

< Υ,

(
Υ;

|ỹ 1
0 |1−σ0−σ1

g(ỹ 0
0 , ỹ

1
0 )

]
×∆0 as |ỹ 1

0 |1−σ0−σ1

g(ỹ 0
0 , ỹ

1
0 )

> Υ.

(18)

Here,

∆0 =


[ ỹ 1

0

ỹ 0
0

;Y 0
0

)
as λ0 < 0,

ỹ 1
0

ỹ 0
0

< Y 0
0 ,(

Y 0
0 ;

ỹ 1
0

ỹ 0
0

]
as λ0 < 0,

ỹ 1
0

ỹ 0
0

> Y 0
0 ,

(19)

Y 0
0 =


0 as Y0 = 0,

−∞ as Y0 = 0, ω < +∞,

+∞ as Y0 = 0, ω = +∞.

Let us consider the behavior of the function |s1|1−σ0−σ1

g(s0,s1)
on the straight lines

s0 = ks1, k ∈ R \ {0}. (20)
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On every such a line we have
|s1|1−σ0−σ1

g(s0, s1)
=

|s1|1−σ0−σ1

g(ks1, s1)
.

Moreover, we get(
|s1|1−σ0−σ1

g(ks1, s1)

)′

s1

=
|s1|1−σ0−σ1

s1g(ks1, s1

(
1− σ0 − σ1 −

s1L
′
1(s1)

L(s1)
− 2ks1R

′(| ln |ks21||) sign(ln |ks21|)
)
.

Taking into account (16), from the latter equality we obtain

sign
(
|s1|1−σ0−σ1

g(ks1, s1)

)′

s1

= sign(y01(1− σ0 − σ1)).

Therefore, the function |s1|1−σ0−σ1

g(ks1,s1)
is strongly monotone on every line of type (20). Suppose that the

correspondence F is not of one-to-one type. Then

∃ (p0, p1), (q0, q1) ∈ ∆̃Y0 × ∆̃Y1 , p0, p1) ̸= (q0, q1) : F (p0, p1) = F (q0, q1).

Taking into account the definitions of the sets ∆̃Y0 , ∆̃Y1 , the latter equality implies that

|p1|1−σ0−σ1

g(p0, p1)
=

|q1|1−σ0−σ1

g(q0, q1)
,

p0
p1

=
q0
q1

= c ∈ R \ {0}. (21)

Thus, the points (p0, p1) and (q0, q1) lie on a line of type (20). But in this case equalities (21) fail to
take place, because the function |s1|1−σ0−σ1

g(s1,cs1)
is strongly monotone on the line. Therefore there exists

the inverse function F−1 : F (∆̃Y0 × ∆̃Y1) → ∆̃Y0 × ∆̃Y1 . Taking into account the character of the
function F , we have

F−1(w0, w1) =

(
F−1
1 (w0, w1)

F−1
0 (w0, w1)

)
=

 F−1
1 (w0, w1)

1

w0
F−1
1 (w0, w1)

 .

Since by (16) the Jakobian of the function F is different from zero as (s0, s1) ∈ ∆̃Y0×∆̃Y1 , the function
F−1 is continuously differentiable on F (∆̃Y0

× ∆̃Y1
).

Taking 
|y′(t)|1−σ0

φ1(y′) exp(R(| ln |y(t)y′(t)||))
= (1− σ0 − σ1)I0(t) sign(y′)[1 + z1(x)],

y′(t)

y(t)
=

1

πω(t)
[1 + z2(x)],

(22)

where

x = β ln |πω(t)|, β =

{
1 as ω = +∞,

−1 as ω < ∞,

we can reduce equation (1) to the system

z′1 = βG0(x)[1 + z1]

((
1− σ0 − σ1 −

Ψ1(x, z1, z2)L
′
1(Ψ1(x, z1, z2))

L1(Ψ1(x, z1, z2))

)
× K1(x, z1, z2)

[1 + z1]|1 + z2|σ0
−K2(x, z1, z2)

R′(| ln |πω(t)||)
G0(x)

(
1 +

K1(x, z1, z2)G0(x)

[1 + z1][1 + z2]σ0−1

)
− 1

)
,

z′2 = β[1 + z2]

(
G0(x)K1(x, z1, z2)

(1− σ0 − σ1)[1 + z1] [1 + z2]σ0
− z2

)
,

(23)
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where

Ψ0(x, z1, z2) = F−1
0

(
(1− σ0 − σ1)I0(t(X))[1 + z1(x)],

1

πω(t(x))
[1 + z2(x)]

)
,

Ψ1(x, z1, z2) = F−1
1

(
(1− σ0 − σ1)I0(t(x))[1 + z1(x)],

1

πω(t(x))
[1 + z2(x)]

)
,

G0(x) =
πω(t(x))I

′
0(t(x))

I0(t(x))
,

K1(x, z1, z2) =
Θ0(Ψ0(t(x), z1, z2))

(1− σ0 − σ1)Θ0(|πω(t(x))| sign y00)
,

K2(x, z1, z2) =
R′(| ln |Ψ0(t(x), z1, z2)Ψ1(t(x), z1, z2)||

)
R′(| ln |πω(t(x))||)

.

By (3), it is clear that
lim
t↑ω

1

πω(t)
= Y1.

Moreover, it follows from the first and the second of conditions (5) that

lim
t↑ω

(1− σ0 − σ1)I0(t) = Υ.

Therefore, we can choose t0 ∈ [a, ω[ in a form such that(1− σ0 − σ1)I0(t)[1 + z1(x)]
1

πω(t)
[1 + z2(x)]

 ∈ F (∆̃Y0 × ∆̃Y1) as t ∈ [t0, ω [, |zi| ≤
1

2
, i = 1, 2.

Then we consider the system of differential equations (23) on the set

Ω = [x0,+∞[×D, where x0 = β ln |πω(t0)|,

D =
{
(z1, z2) : |zi| ≤

1

2
, i = 1, 2

}
.

Rewrite the system in the form{
z′1 = G0(x)(A11z1 +A12z2 +R1(x, z1, z2) +R2(z2)),

z′2 = A21z1 +A22z2 +R3(x, z1, z2) +R4(z2),
(24)

where

A11 = A22 = −β, A12 = −βσ0, A21 = 0,

R1(x, z1, z2) = −β[1 + z1]

(
K2(x, z1, z2)

R′(| ln |πω(t(x))||)
G0(x)

(
1 +

K1(x, z1, z2)G0(x)

(1 + z1)(1 + z2)σ0−1

)
+

K1(x, z1, z2)

(1 + z1)|1 + z2|σ0

Ψ1(x, z1, z2)L
′
1(Ψ1(x, z1, z2))

L1(Ψ1(x, z1, z2))

)
+ β

|K1(x, z1, z2)|(1− σ0 − σ1)− 1

|1 + z2|σ0
,

R2(z2) = β
(
|1 + z2|−σ0 + σ0z2

)
,

R3(x, z1, z2) = β
[1 + z2]G0(x)K1(x, z1, z2)

(1− σ0 − σ1)[1 + z1] [1 + z2]σ0
, R4(z2) = −βz22 .

For (w0, w1) ∈ F (∆̃Y0 × ∆̃Y1), we have the equality

|F−1
1 (w0, w1)|1−σ0−σ1

g(F−1
0 (w0, w1), F

−1
1 (w0, w1))

= w1.
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Since (16), (3) and the second of conditions (4) are filfilled, it follows from this equality that

lim
x→∞

Ψi(t(x), z1, z2) = Yi uniformly by (z1, z2) ∈
[
− 1

2
;
1

2

]
×

[
− 1

2
;
1

2

]
as i = 0, 1. Therefore, by (14), we have

lim
x→∞

Ψ1(t(x), z1, z2)L
′
1(Ψ1(t(x), z1, z2))

L1(Ψ1(t(x), z1, z2))
= 0 uniformly by (z1, z2) ∈

[
− 1

2
;
1

2

]
×

[
− 1

2
;
1

2

]
. (25)

Moreover, it follows from the properties of the function F and conditions (3)–(5) that the function
Ψ1(t, z1, z2) is slowly varying as t ↑ ω uniformly by (z1, z2) ∈ [− 1

2 ;
1
2 ]× [− 1

2 ;
1
2 ]. Since

Ψ0(t, z1, z2) =
πω(t)Ψ1(t, z1, z2)

1 + z2
,

and the function φ0 together with the logarithmic function satisfy the condition S, we have

lim
x→∞

K1(x, z1, z2) =
1

1− σ0 − σ1
uniformly by (z1, z2) ∈

[
− 1

2
;
1

2

]
×
[
− 1

2
;
1

2

]
, (26)

lim
x→∞

K2(x, z1, z2) = 1 uniformly by (z1, z2) ∈
[
− 1

2
;
1

2

]
×

[
− 1

2
;
1

2

]
. (27)

Since the function R is regularly varying at infinity of order µ, 0 < µ < 1, we obtain

lim
t↑ω

R′(| ln |πω(t)||
)
= 0. (28)

Third of conditions (5) implies
lim
x→∞

G0(x) = 0. (29)

By (4) and (25)–(29), we get the limit relations

lim
|z1|+|z2|→0

Ri(z2)

|z1|+ |z2|
= 0 uniformly by x : x ∈ ]x0,+∞[

as i = 2, 4 and

lim
x→+∞

Ri(x, z1, z2) = 0 uniformly by z1, z2 : (z1, z2) ∈ D

as i = 1, 3.
By the definition of the function G0 it is clear that

∞∫
x0

G0(x) dx = ∞.

So, for the system of differential equations (24) all conditions of Theorem 2.8 from [2] are fulfilled.
According to this theorem, system (24) has at least one solution {zi}2i=1 : [x1,+∞[→ R2 (x1 ≥ x0)
tending to zero as x → +∞. By (22) and (23), this solution corresponds to such solution y of equation
(1) that admits asymptotic representations (6) as t ↑ ω. By our representations and (1), it is clear
that the obtained solution is indeed the Pω(Y0, Y1,±∞)-solution.

Proof of Theorem 2. The necessity. Let the function y : [t0, ω[→ R be a Pω(Y0, Y1,±∞)-solution of
equation (1). We obtain (10) and (12) just as in the proof of Theorem 1. The second of representations
(9) follows from these relations. Let us rewrite (12) by using the first of asymptotic representations
(10) in the form

y′′(t)

φ1(y′(t))|y′(t)|σ0
=

N(t) exp(R(| ln |y(t)y′(t)||))y′(t)[1 + o(1)]

y(t)
as t ↑ ω. (30)

Suppose that conditions (7) are valid. By the properties of the function R, there exists a twice
continuously differentiable function R̃ : ]0; +∞[→ ]0;+∞[ such that

R̃(z) = R(z)[1 + o(1)], R̃′(z) = R′(z)[1 + o(1)], lim
z→+∞

R̃′′(z)R(z)

(R̃′(z))2
=

µ

µ− 1
. (31)
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By conditions (2), (11), (31), (7) and the first of asymptotic representations (10), from the equality(
N(t) exp(R(| ln |y(t)y′(t)||))

R̃′(| ln |πω(t)||)

)′

=
N(t) exp(R(| ln |y(t)y′(t)||))y′(t)

y(t)

×
(

y(t)

πω(t)y′(t)

(
N ′(t)πω(t)

N(t)R̃′(| ln |πω(t)||)
− R̃(| ln |πω(t)||)

(R̃′(| ln |πω(t)||))2
R̃′′(| ln |πω(t)||)
R̃′(| ln |πω(t)||)

)
+ 1 +

y(t)y′′(t)

(y′(t))2

)
we have the following representation(

N(t) exp(R(| ln |y(t)y′(t)||))
R̃′(| ln |πω(t)||)

)′

=
N(t) exp(R(| ln |y(t)y′(t)||))

R̃′(| ln |πω(t)||)
[1 + o(1)]

as i = 1, 3. So, using the properties of the function φ1 and (30), we get

y′(t)

φ1(y′(t))|y′(t)|σ0
=

N(t) exp(R(| ln |y(t)y′(t)||))
R̃′(| ln |πω(t)||)

(1− σ0 − σ1)[1 + o(1)] as t ↑ ω.

The first of representations (9) follows from this relations by using (31). Taking into account the sign
of the function y′(t), we obtain conditions (8). The necessity is proved.

The sufficiency. Suppose that the function φ1 satisfies the condition S and there take place
conditions (3), (7), (8). Consider the twice continuously differentiable function R̃ : ]0; +∞[→ ]0;+∞[
that satisfies (31), just as in the proof of Theorem 1. We use the same function F with the same
properties as in the proof of Theorem 1.

Taking

F (y′(t), y(t)) =


|1− σ0 − σ1|N(t)

R̃′(| ln |πω(t)||)
[1 + z1(x)]

1

πω(t)
[1 + z2(x)]

 ,

where

x = β ln |πω(t)|, β =

{
1 as ω = +∞,

−1 as ω = +∞,

we can reduce equation (1) to the system

z′1 = βG0(x)

[
K1(x, z1, z2)|1 + z2|σ0

(1− σ0 − σ1)

(
1− σ0 − σ1 −

Ψ1(x, z1, z2)L
′
1(Ψ1(x, z1, z2))

L1(Ψ1(x, z1, z2))

)
−G1(x)[1 + z1]−K2(x, z1, z2)

(
1 + z1 +

K1(x, z1, z2)G0(x)|1 + z2|σ0

|1− σ0 − σ1|

)
+

G2(x)[1 + z1]

R(| ln |πω(t)||)

]
,

z′2 = β[1 + z2]

[
K1(x, z1, z2)G0(x)|1 + z2|σ0

|1− σ0 − σ1|[1 + z1]
− z2

]
,

(32)

where

G0(x) = R̃′(| ln |πω(t(x))||
)
, G1(x) =

πω(t(x))N
′(t(x))

R̃′(| ln |πω(t(x))||)N(t(x))
,

G2(x) =
R̃′′(| ln |πω(t(x))||

)
R̃(| ln |πω(t(x))||)

(R̃′(| ln |πω(t(x))||))2
,

Ψ0(x, z1, z2) = F−1
0

(
(1− σ0 − σ1)N(t(x))

R̃′(| ln |πω(t(x))||)
[1 + z1],

1

πω(t(x))
[1 + z2]

)
,

Ψ1(x, z1, z2) = F−1
1

(
(1− σ0 − σ1)N(t(x))

R̃′(| ln |πω(t(x))||)
[1 + z1],

1

πω(t(x))
[1 + z2]

)
,



Asymptotic Representations of Solutions with Slowly Varying Derivatives 11

K1(x, z1, z2) =
Θ0(Ψ0(t(x), z1, z2))

Θ0(|πω(t(x))|)
,

K2(x, z1, z2) =
R̃′(| ln |Ψ0(t(x), z1, z2)Ψ1(t(x), z1, z2)||)

R̃′(| ln |πω(t(x))||)
.

We get
lim
k→∞

Ki(x, z1, z2) = 1 uniformly by (z1, z2) ∈
[
− 1

2
;
1

2

]
×

[
− 1

2
;
1

2

]
, (33)

as in the proof of Theorem 1.
By (3), it is clear that

lim
t↑ω

1

πω(t)
= Y 0

0 .

Moreover, it follows from (7) and (8) that

lim
t↑ω

|1− σ0 − σ1|N(t)

R̃′(| ln |πω(t)||)
= Υ.

Therefore, we can choose t0 ∈ [a, ω[ such that
(1− σ0 − σ1)N(t)

R̃′(| ln |πω(t)||)
[1 + z1(x)]

1

πω(t)
[1 + z2(x)]

 ∈ F (∆̃Y0
× ∆̃Y1

) as t ∈ [t0, ω[ , |zi| ≤
1

2
(i = 1, 2).

Further, we consider system (32) on the set

Ω = [x0,+∞[×D, where x0 = β ln |t0|,

D =
{
(z1, z2) : |zi| ≤

1

2
(i = 1, 2)

}
and rewrite system (32) in the form{

z′1 = G0(x)
[
A11z1 +A12z1 +R1(x, z1, z2) +R2(z2)

]
,

z′2 = A21z1 +A22z2 +R3(x, z1, z2) +R4(z2),

where

A11 = A22 = −β, A12 = βσ0, A21 = 0,

R1(x, z1, z2) = β

(
(K1(x, z1, z2)− 1)|1 + z2|σ0 − (K2(x, z1, z2)− 1)−G1(x)[1 + z1]

+
G2(x)

R(| ln |πω(x)||)[1 + z2]
− K1(x, z1, z2)

|1− σ0 − σ1|
Ψ1(x, z1, z2)L

′
1(Ψ1(x, z1, z2))

L1(Ψ1(x, z1, z2))

− G0(x)K2(x, z1, z2)K1(x, z1, z2)

|1− σ0 − σ1|
|1 + z2|σ0

)
,

R2(z2) =
(
|1 + z2|σ0 − σ0z2 − 1

)
,

R3(x, z1, z2) = β
G0(x)K1(x, z1, z2)

|1− σ0 − σ1|
|1 + z2|σ0+1

1 + z1
,

R4(z2) = −βz22 .

It follows from (3) and (7) that

lim
x→∞

Gi(x) = 0 (i = 0, 1), lim
x→∞

G2(x) =
µ− 1

µ
.
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By the character of the function G0, it is clear that
∞∫

x0

G0(x) dx = ∞.

So, using (33), we have

lim
|z1|+|z2|→0

Ri(z2)

|z1|+ |z2|
= 0 uniformly by x : x ∈ ]x0,+∞[

as i = 2, 4 and

lim
x→+∞

Ri(x, z1, z2) = 0 uniformly by z1, z2 : (z1, z2) ∈ D

as i = 1, 3.
Thus, for the system of differential equations (32) all conditions of Theorem 2.8 from [2] are

fulfilled. According to this theorem, system (32) has at least one solution {zi}2i=1 : [x1,+∞[→ R2

(x1 ≥ x0) that tends to zero as x → +∞. This solution corresponds to such solution y of equation (1)
that admits asymptotic representations (9) as t ↑ ω. By our representations and (1), it is clear that
the obtained solution is indeed the Pω(Y0, Y1,±∞)-solution.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÉÓ ÌÉÆÀÍÉÀ ÌÄÏÈáÄ ÒÉÂÉÓ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÃÀÓ-
ÌÖËÉ ÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÉÓ ÂÒÉÍÉÓ ×ÖÍØÝÉÉÓ ÆÏÂÉÄÒÈÉ ÌÍÉÛÅÍÄËÏÅÀÍÉ ÈÅÉÓÄÁÉÓ ÛÄÓ-
ßÀÅËÀ. ÛÄÓßÀÅËÉËÉ ÈÅÉÓÄÁÄÁÉ ÂÖÏ−ÊÒÀÓÍÏÓÄËÓÊÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÐÒÉÍÝÉÐÈÀÍ ÄÒÈÀÃ
ÓÀÛÖÀËÄÁÀÓ ÂÅÀÞËÄÅÓ ÃÀÅÀÃÂÉÍÏÈ ÃÀÃÄÁÉÈÉ ÐÄÒÉÏÃÖËÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ
ÌÄÏÈáÄ ÒÉÂÉÓ ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ.
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1 Introduction
In this work we are essentially interested in studding the existence of positive periodic solutions
for certain classes of fourth-order nonlinear differential equations which are ubiquitous in different
scientific disciplines and arise especially in the beam theory, viscoelastic and inelastic flows and electric
circuits.

There is a vast literature related to this topic, for instance, in the middle of the past century,
the existence and uniqueness of solutions for higher-order differential equations have been extensively
studied by many researches (see, e.g., [1–7]). During the last two decades, there has been increasing
activity in the study of periodic problems of higher-order nonlinear differential equations (see [12] and
the references therein).

Some mathematicians used transformation in order to reduce the equation to a more simple one, or
to a system of equations, or used synthetic division, others gave the solution in a form of series which
converges to the exact solution and some of them dealt with the fourth-order differential equations by
using numerical techniques such as the Ritz, finite difference, finite element, cubic spline and multi
derivative methods. In this paper, these usual methods may seem inefficient to establish the existence
of positive periodic solutions for the fourth-order nonlinear differential equations. For this, inspired
by the method presented in [9], we convert the ordinary differential equation to an integral equation
in which the kernel is a Green’s function, before using the fixed point theorem in cones.

The paper is organized as follows.
The main goal of the next section is to give the Green’s functions of the fourth-order constant-

coefficient linear differential equation

u′′′′ + au′′′ + bu′′ + cu′ + du = h(t), (1.1)

where a, b, c, d ∈ R and h ∈ C(R, (0,+∞)) is a w-periodic function with the period w > 0.
The associated homogeneous equation of (1.1) is

u′′′′ + au′′′ + bu′′ + cu′ + du = 0, (1.2)

where its characteristic equation is

λ4 + aλ3 + bλ2 + cλ+ d = 0. (1.3)

In this work we assume that d ̸= 0 and we will study only the situation when the roots λ1, λ2, λ3, λ4

are real numbers. These roots satisfy one of the following five cases:

(1) λ1 ̸= λ2 ̸= λ3 ̸= λ4;

(2) λ1 = λ2 ̸= λ3 ̸= λ4;

(3) λ1 = λ2 ̸= λ3 = λ4;

(4) λ1 = λ2 = λ3 ̸= λ4;

(5) λ1 = λ2 = λ3 = λ4.

In the third section, some useful properties of the obtained Green’s functions are established.
Finally, in the last part, by using the fixed point theorem in cones, we establish the existence of
positive periodic solutions of the fourth-order nonlinear differential equation

u′′′′ + au′′′ + bu′′ + cu′ + du = f(t, u(t)), (1.4)

where f ∈ C(R×[0,+∞), [0,+∞)) and f(t, u) > 0, for u > 0.
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2 Green’s functions
Theorem 2.1. If λ1 ̸= λ2 ̸= λ3 ̸= λ4, then equation (1.1) has a unique w-periodic solution of the
form

u(t) =

t+w∫
t

G1(t, s)h(s) ds,

where s ∈ [t, t+ w] and

G1(t, s) =
eλ1(w+t−s)

(1− ewλ1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

eλ2(w+t−s)

(1− ewλ2)(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
eλ3(w+t−s)

(1− ewλ3)(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
+

eλ4(w+t−s)

(1− ewλ4)(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
.

Proof. For λ1 ̸= λ2 ̸= λ3 ̸= λ4, it is easy to see that the general solution of the homogeneous equation
(1.2) is

u(t) = c1e
λ1t + c2e

λ2t + c3e
λ3t + c4e

λ4t,

and that u(t) ≡ 0 is its unique solution. Applying the method of variation of parameters, we obtain

c′1(t) = h(t)
e−tλ1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
, c′2(t) = −h(t)

e−tλ2

(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
,

c′3(t) = h(t)
e−tλ3

(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
, c′4(t) = −h(t)

e−tλ4

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

whence

c1(t+ w) = c1(t) +

t+w∫
t

h(s)
e−sλ1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
ds,

c2(t+ w) = c2(t)−
t+w∫
t

h(s)
e−sλ2

(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
ds,

c3(t+ w) = c3(t) +

t+w∫
t

h(s)
e−sλ3

(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
ds,

c4(t+ w) = c4(t)−
t+w∫
t

h(s)
e−sλ4

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
ds.

Since we are looking for w-periodic solutions of (1.1), we have

c1(t) =

t+w∫
t

h(s)
e(w−s)λ1

(1− ewλ1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
ds,

c2(t) = −
t+w∫
t

h(s)
e(w−s)λ2

(1− ewλ2)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
ds,

c3(t) =

t+w∫
t

h(s)
e(w−s)λ3

(1− ewλ3)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
ds,

c4(t) = −
t+w∫
t

h(s)
e(w−s)λ4

(1− ewλ4)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
ds.
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Therefore,

u(t+ w) =

t+w∫
t

G1(t+ w, θ + w)h(θ + w) dθ =

t+w∫
t

G1(t, s)h(s) ds = u(t),

which proves the periodicity of u.
Assume that u1 and u2 are two w-periodic solutions of (1.1), then v(t) = u1(t) − u2(t) is a

w-periodic solution of (1.2), i.e., v(t) = 0, hence the uniqueness of the w-periodic solution for (1.1) is
guaranteed.

Theorem 2.2. If λ1 = λ2 ̸= λ3 ̸= λ4, then equation (1.1) has a unique w-periodic solution of the
form

u(t) =

t+w∫
t

G2(t, s)h(s) ds,

where s ∈ [t, t+ w] and

G2(t, s) =
e(t+w−s)λ1

(
w(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)

(
λ3 − 2λ1 + λ4 − s(λ1 − λ3)(λ1 − λ4)

))
(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

+ t
e(t+w−s)λ1

(1− ewλ1)(λ2
1 − λ1λ3 − λ1λ4 + λ3λ4)

+
e(t+w−s)λ3

(1− ewλ3)(λ1 − λ3)2(λ3 − λ4)

− e(t+w−s)λ4

(1− ewλ4)(λ1 − λ4)2(λ3 − λ4)
.

Proof. For λ1 = λ2 ̸= λ3 ̸= λ4, it is easy to see that the general solution of the homogeneous equation
(1.2) is

u(t) = c1e
λ1t + c2te

λ1t + c3e
λ3t + c4e

λ4t.

Applying the method of variation of parameters, we obtain

c′1(t) = h(t)
e−tλ1

(λ1 − λ3)2(λ1 − λ4)2
(
λ3 − 2λ1 + λ4 − t(λ1 − λ3)(λ1 − λ4)

)
,

c′2(t) =
h(t)e−tλ1

(λ1 − λ3)(λ1 − λ4)
, c′3(t) =

h(t)e−tλ3

(λ1 − λ3)2(λ3 − λ4)
, c′4(t) = − h(t)e−tλ4

(λ1 − λ4)2(λ3 − λ4)
.

Since u(t), u′(t), u′′(t) and u′′′(t) are supposed to be continuous functions, we get

c1(t) =

t+w∫
t

h(s)
eλ1(w−s)

(
w(λ1−λ3)(λ1−λ4)−(ewλ1−1)

(
λ3−2λ1+λ4−s(λ1−λ3)(λ1−λ4)

))
(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

ds,

c2(t) =

t+w∫
t

h(s)e(w−s)λ1

(1− ewλ1)(λ2
1 − λ1λ3 − λ1λ4 + λ3λ4)

ds,

c3(t) =

t+w∫
t

h(s)e(w−s)λ3

(1− ewλ3)(λ1 − λ3)2(λ3 − λ4)
ds,

c4(t) = −
t+w∫
t

h(s)
e(w−s)λ4

(1− ewλ4)(λ1 − λ4)2(λ3 − λ4)
ds.

Therefore,

u(t) = c1(t)e
λ1t + c2(t)te

λ1t + c3(t)e
λ3t + c4(t)e

λ4t =

t+w∫
t

G2(t, s)h(s) ds.
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In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and periodicity of the
solution.

Theorem 2.3. If λ1 = λ2 ̸= λ3 = λ4, then equation (1.1) has a unique w-periodic solution of the
form

u(t) =

t+w∫
t

G3(t, s)h(s) ds,

where s ∈ [t, t+ w] and

G3(t, s) =−
e(w+t−s)λ1

(
(1− ewλ1)(sλ1 − sλ4 + 2) + wλ4 − wλ1

)
(ewλ1 − 1)2(λ1 − λ4)3

+ t
e(w+t−s)λ1

(1− ewλ1)(λ1 − λ4)2

−
e(w+t−s)λ4

(
(ewλ4 − 1)(sλ4 − sλ1 + 2) + wλ4 − wλ1

)
(ewλ4 − 1)2(λ1 − λ4)3

+ t
e(w+t−s)λ4

(1− ewλ4)(λ1 − λ4)2
.

Proof. For λ1 = λ2 ̸= λ3 = λ4, (1.2) has the general solution

u(t) = c1e
λ1t + c2te

λ1t + c3e
λ4t + c4te

λ4t.

Applying the method of variation of parameters, we obtain

c′1(t) = −h(t)
e−tλ1

(λ1 − λ4)3
(tλ1 − tλ4 + 2), c′2(t) = h(t)

e−tλ1

(λ1 − λ4)2
,

c′3(t) = h(t)
e−tλ4

(λ1 − λ4)3
(tλ4 − tλ1 + 2), c′4(t) = h(t)

e−tλ4

(λ1 − λ4)2
.

Since u(t), u′(t), u′′(t) and u′′′(t) are continuous, we have

c1(t) =

t+w∫
t

−h(s)
e−λ1(s−w)

(
(1− ewλ1)(sλ1 − sλ4 + 2) + wλ4 − wλ1

)
(ewλ1 − 1)2(λ1 − λ4)3

ds,

c2(t) =

t+w∫
t

h(s)
e(w−s)λ1

(1− ewλ1)(λ1 − λ4)2
ds,

c3(t) =

t+w∫
t

−h(s)
e−λ4(s−w)

(
(ewλ4 − 1)(sλ4 − sλ1 + 2) + wλ4 − wλ1

)
(ewλ4 − 1)2(λ1 − λ4)3

ds,

c4(t) =

t+w∫
t

h(s)
e(w−s)λ4

(1− ewλ4)(λ1 − λ4)2
ds.

Therefore,

u(t) = c1(t)e
λ1t + c2(t)te

λ1t + c3(t)e
λ4t + c4(t)te

λ4t =

t+w∫
t

G3(t, s)h(s) ds.

The uniqueness and periodicity of the solution can again be shown in the same way as in the proof
of Theorem 2.1.

Theorem 2.4. If λ1 = λ2 = λ3 ̸= λ4, then equation (1.1) has a unique w-periodic solution of the
form

u(t) =

t+w∫
t

G4(t, s)h(s) ds,
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where s ∈ [t, t+ w] and

G4(t, s) = e(t+w−s)λ1
(1− ewλ1)

(
(ewλ1 − 1)

(
((s− t)(λ1 − λ4) + 1)2 + 1

))
2(ewλ1 − 1)3(λ1 − λ4)3

+
e(t+w−s)λ4

(ewλ4 − 1)(λ1 − λ4)3

+
e(t+w−s)λ1

(
(1− ewλ1)

(
w(λ1 − λ4)(2(s− t)(λ1 − λ4) + 2)

))
2(ewλ1 − 1)3(λ1 − λ4)3

− w2e(t+w−s)λ1(ewλ1 + 1)(λ1 − λ4)
2

2(ewλ1 − 1)3(λ1 − λ4)3
.

Proof. For λ1 = λ2 = λ3 ̸= λ4, (1.2) has the general solution

u(t) = c1e
λ1t + c2te

λ1t + c3t
2eλ1t + c4te

λ4t.

The application of the method of variation of parameters gives

c′1(t) = h(t)
e−tλ1(t2λ2

1 − 2t2λ1λ4 + t2λ2
4 + 2tλ1 − 2tλ4 + 2)

2(λ1 − λ4)3
,

c′2(t) = −h(t)
e−tλ1(tλ1 − tλ4 + 1)

(λ1 − λ4)2
, c′3(t) = h(t)

e−tλ1

2(λ1 − λ4)
, c′4(t) = −h(t)

e−tλ4

(λ1 − λ4)3
.

Since u(t), u′(t), u′′(t) and u′′′(t) are continuous functions, we have

c1(t) =

t+w∫
t

h(s)
e(w−s)λ1(s2λ2

1 − 2s2λ1λ4 + s2λ2
4 + 2sλ1 − 2sλ4 + 2)

2(1− ewλ1)(λ1 − λ4)3
ds

+ w
1

(1− ewλ1)

t+w∫
t

h(s)
e(w−s)λ1

(
(ewλ1 − 1)(s(λ1 − λ4) + 1) + w(λ1 − λ4)

)
(1− ewλ1)2(λ1 − λ4)2

ds

− w2 1

(1− ewλ1)

t+w∫
t

h(s)
e(w−s)λ1

2(λ1 − λ4)(1− ewλ1)
ds,

c2(t) =

t+w∫
t

h(s)
e(w−s)λ1

(
(ewλ1 − 1)(s(λ1 − λ4) + 1) + w(λ1 − λ4)

)
(1− ewλ1)2(λ1 − λ4)2

ds,

c3(t) =

t+w∫
t

h(s)
e(w−s)λ1

2(λ1 − λ4)(1− ewλ1)
ds,

c4(t) =

t+w∫
t

h(s)
e(w−s)λ4

(ewλ4 − 1)(λ1 − λ4)3
ds.

Therefore,

u(t) = c1(t)e
λ1t + c2(t)te

λ1t + c3(t)t
2eλ1t + c4(t)te

λ4t =

t+w∫
t

G4(t, s)h(s) ds.

In the same way as in the proof of Theorem 2.1 we can prove the uniqueness and periodicity of the
solution.

Theorem 2.5. If λ1 = λ2 = λ3 = λ4, then equation (1.1) has a unique w-periodic solution of the
form

u(t) =

t+w∫
t

G5(t, s)h(s) ds,
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where s ∈ [t, t+ w] and

G5(t, s) = e(t+w−s)λ1
(s− t)3(ewλ1 − 1)3 + 3w(s− t)2(ewλ1 − 1)2

6(ewλ1 − 1)4

+ e(t+w−s)λ1
3w2(s− t)(e2wλ1 − 1) + w3(e2(wλ1) + 4ewλ1 + 1)

6(ewλ1 − 1)4
.

Proof. For λ1 = λ2 = λ3 = λ4, (1.2) has the general solution

u(t) = c1e
λ1t + c2te

λ1t + c3t
2eλ1t + c4t

3eλ1t.

By the method of variation of parameters, we arrive at

c′1(t) = −1

6
ht3e−tλ1 , c′2(t) =

1

2
ht2e−tλ1 , c′3(t) = −1

2
hte−tλ1 , c′4(t) =

1

6
he−tλ1 .

Since u(t), u′(t), u′′(t) and u′′′(t) are continuous functions, we get

c1(t) =

t+w∫
t

−h(s)
s3e(w−s)λ1

6(1− ewλ1)
ds

+

t+w∫
t

−h(s)
we(w−s)λ1

(
s2e2(wλ1)−2s2ewλ1+s2+2swewλ1−2sw + w2ewλ1+w2

)
2(1− ewλ1)(ewλ1 − 1)3

ds

− w2

(1− ewλ1)

t+w∫
t

h(s)
e(w−s)λ1(w − s+ sewλ1)

2(1− ewλ1)2
ds

+
w3

(1− ewλ1)

t+w∫
t

h(s)
e(w−s)λ1

6(1− ewλ1)
ds,

c2(t) =

t+w∫
t

−h(s)
e(w−s)λ1

(
s2e2(wλ1) − 2s2ewλ1 + s2 + 2swewλ1 − 2sw + w2ewλ1 + w2

)
2(ewλ1 − 1)3

ds,

c3(t) =

t+w∫
t

h(s)
e(w−s)λ1(w − s+ sewλ1)

2(1− ewλ1)2
ds,

c4(t) =

t+w∫
t

h(s)
e(w−s)λ1

6(1− ewλ1)
ds.

Therefore,

u(t) = c1(t)e
λ1t + c2(t)te

λ1t + c3(t)t
2eλ1t + c3(t)t

3eλ1t =

t+w∫
t

G5(t, s)h(s) ds.

In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and the periodicity of
the solution.

3 Properties of the Green’s functions
We denote

C+
w =

{
u ∈ C(R, (0,+∞)) : u(t+ w) = u(t)

}
,

C−
w =

{
u ∈ C(R, (−∞, 0)) : u(t+ w) = u(t)

}
.
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Case 1. If λ1 ̸= λ2 ̸= λ3 ̸= λ4. For ease of exposition, we use the following abbreviations:

g1,1(t, s) =
e(w+t−s)λ1

(1− e(λ1)w)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
,

g1,2(t, s) =
e(w+t−s)λ2

(1− e(λ2)w)(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)
,

g1,3(t, s) =
e(w+t−s)λ3

(1− e(λ3)w)(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
,

g1,4(t, s) =
e(w+t−s)λ4

(1− e(λ4)w)(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
;

A1,1 = − ewλ1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
− ewλ3

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)

+
1

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
+

1

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

A1,2 = − 1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

ewλ2

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)

− ewλ3

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
+

1

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
;

B1,1 = − 1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
− 1

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)

+
ewλ2

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
+

ewλ4

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

B1,2 = − ewλ1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

1

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)

− 1

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
+

ewλ4

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
;

n1,1 =
ewλ1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

ewλ3

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
,

n1,2 = +
1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

1

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)

− ewλ4

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

n1,3 = +
ewλ1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

ewλ3

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)

− 1

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

n1,4 =
1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

ewλ3

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
,

n1,5 = +
1

(ewλ1 − 1)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

1

(ewλ3 − 1)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
;

p1,1 =
1

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
+

1

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

p1,2 =
ewλ2

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
,
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p1,3 =
1

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
,

p1,4 =
ewλ2

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
+

1

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

p1,5 =
ewλ2

(ewλ2 − 1)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
+

ewλ4

(ewλ4 − 1)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
.

Theorem 3.1. For all t ∈ [0, w] and s ∈ [t, t+ w], we have

t+w∫
t

G1(t, s) ds =
1

λ1λ2λ3λ4
.

Proof. We have

t+w∫
t

g1,1(t, s) ds = − 1

λ1(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
,

t+w∫
t

g1,2(t, s) ds =
1

λ2(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
,

t+w∫
t

g1,3(t, s) ds = − 1

λ3(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
,

t+w∫
t

g1,4(t, s) ds =
1

λ4(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
,

and
t+w∫
t

G1(t, s) ds =

t+w∫
t

g1,1(t, s) ds+

t+w∫
t

g1,2(t, s) ds

+

t+w∫
t

g1,3(t, s) ds+

t+w∫
t

g1,4(t, s) ds =
1

λ1λ2λ3λ4
.

We have four different roots satisfying one of the five cases:

- All roots are positive.

- Three roots are positive and one root is negative.

- Three roots are negative and one root is positive.

- Two roots are positive and two roots are negative.

- All roots are negative.

If all roots are positive, we suppose that λ1 > λ2 > λ3 > λ4 > 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.2. If p1,1 > n1,1 and λ1 > λ2 > λ3 > λ4 > 0, then

0 < A1,1 ≤ G1(t, s) ≤ B1,1.
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Proof. If λ1 > λ2 > λ3 > λ4 > 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s, gives
∂
∂s g1,1(t, s) > 0, ∂

∂s g1,2(t, s) < 0, ∂
∂s g1,3(t, s) > 0 and ∂

∂s g1,4(t, s) < 0. This implies that

g1,1(t, t) + g1,2(t, t+ w) + g1,3(t, t) + g1,4(t, t+ w)

≤ G1(t, s) ≤ g1,1(t, t+ w) + g1,2(t, t) + g1,3(t, t+ w) + g1,4(t, t).

From the above double inequality and the assumption p1,1 > n1,1, we obtain 0 < A1,1 ≤ G1(t, s) ≤
B1,1.

Corollary 3.1. If h ∈ C+
w and p1,1 > n1,1 and λ1 > λ2 > λ3 > λ4 > 0, then equation (1.1) has a

unique positive periodic solution

u(t) =

t+w∫
t

G1(t, s)h(s) ds.

Example 3.1. Consider the equation

u′′′′ − 0.56u′′′ + 0.0311u′′ − 5.56× 10−4u′ + 3× 10−6u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ− 0.5)(λ− 0.03)(λ−
0.02)(λ− 0.01) = 0 has four roots λ1 = 0.5, λ2 = 0.03, λ3 = 0.02, λ4 = 0.01.

Since p1,1 = 2.086 4 × 105 > n1,1 = 1.764 3 × 105, the equation has a unique 2π-periodic solution

u(t) =
t+w∫
t

G1(t, s)h(s) ds, with
t+w∫
t

G1(t, s) ds = 3.3333× 105 and 0 < 32210 < G1(t, s) < 73894.

If three roots are positive and one root is negative, we suppose that λ1 > λ2 > λ3 > 0 and λ4 < 0
(the other situations can be proved by using the same method), and we have

Theorem 3.3. If p1,2 < n1,2, λ1 > λ2 > λ3 > 0 and λ4 < 0, then

A1,1 ≤ G1(t, s) ≤ B1,1 < 0.

Proof. If λ1 > λ2 > λ3 > 0 and λ4 < 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s
gives ∂

∂s g1,1(t, s) > 0, ∂
∂s g1,2(t, s) < 0, ∂

∂s g1,3(t, s) > 0 and ∂
∂s g1,4(t, s) < 0. Similarly, as in the proof

of Theorem 3.2, we obtain A1,1 ≤ G1(t, s) ≤ B1,1 < 0.

Corollary 3.2. If h ∈ C−
w , p1,2 < n1,2, λ1 > λ2 > λ3 > 0 and λ4 < 0, then equation (1.1) has a

unique positive periodic solution

u(t) =

t+w∫
t

G1(t, s)h(s) ds.

Example 3.2. We consider the equation

u′′′′ − 0.59u′′′ + 0.104u′′ − 0.0049u′ − 0.00006u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ− 0.3)(λ− 0.2)(λ−
0.1)(λ+ 0.01) = 0 has the roots λ1 = 0.3, λ2 = 0.2, λ3 = 0.1, λ4 = −0.01.

Since p1,2 = 665.64 < n1,2 = 2702.1, the equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G1(t, s)h(s) ds, with
t+w∫
t

G1(t, s) ds = −16667 and −3268.1 < G1(t, s) < −2036.5 < 0.

If three roots are negative and one root is positive, we suppose that λ1 < λ2 < λ3 < 0 and λ4 > 0
(the other situations can be proved by using the same method), and we have

Theorem 3.4. If p1,3 < n1,3, λ1 < λ2 < λ3 < 0 and λ4 > 0, then

B1,1 ≤ G1(t, s) ≤ A1,1 < 0.
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Proof. If λ1 < λ2 < λ3 < 0 and λ4 > 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s
gives ∂

∂s g1,1(t, s) < 0, ∂
∂s g1,2(t, s) > 0, ∂

∂s g1,3(t, s) < 0 and ∂
∂s g1,4(t, s) > 0. Similarly, as in the proof

of Theorem 3.2, we obtain B1,1 ≤ G1(t, s) ≤ A1,1 < 0 < 0.

Corollary 3.3. If h ∈ C−
w , p1,3 < n1,3, λ1 < λ2 < λ3 < 0 and λ4 > 0, then equation (1.1) has a

unique positive periodic solution

u(t) =

t+w∫
t

G1(t, s)h(s) ds.

Example 3.3. Consider the equation

u′′′′ + 0.59u′′′ + 0.104u′′ + 0.0049u′ − 0.00006u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+ 0.3)(λ+ 0.2)(λ+
0.1)(λ− 0.01) = 0 has the roots λ1 = −0.3, λ2 = −0.2, λ3 = −0.1, λ4 = 0.01.

Since p1,3 = 665.64 < n1,3 = 2702.1, the equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G1(t, s)h(s) ds with
t+w∫
t

G1(t, s) ds = −16667 and −3268.1 < G1(t, s) < −2036.5 < 0.

If two roots are negative and two roots are positive, we suppose that λ1 < λ2 < 0 and λ3 > λ4 > 0
(the other situations can be proved by using the same method) and have

Theorem 3.5. If p1,4 > n1,4, λ1 < λ2 < 0 and λ3 > λ4 > 0, then

0 < A1,2 ≤ G1(t, s) ≤ B1,2.

Proof. If λ1 < λ2 < 0 and λ3 > λ4 > 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s
gives ∂

∂s g1,1(t, s) < 0, ∂
∂s g1,2(t, s) > 0, ∂

∂s g1,3(t, s) > 0 and ∂
∂s g1,4(t, s) < 0. Similarly, as in the proof

of Theorem 3.2, we obtain 0 < A1,2 ≤ G1(t, s) ≤ B1,2.

Corollary 3.4. If h ∈ C+
w , p1,4 > n1,4, λ1 < λ2 < 0 and λ3 > λ4 > 0, then equation (1.1) has a

unique positive periodic solution

u(t) =

t+w∫
t

G1(t, s)h(s) ds.

Example 3.4. Consider the equation

u′′′′ − 0.054u′′ − 4.9304× 10−32u′ + 0.0004u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+ 0.2)(λ+ 0.1)(λ−
0.2)(λ− 0.1) = 0 has the roots λ1 = −0.2, λ2 = −0.1, λ3 = 0.2, λ4 = 0.1.

Since p1,4 = 381.19 > n1,4 = 232.97, the equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G1(t, s)h(s) ds with
t+w∫
t

G1(t, s) ds = 2500 and 0 < 148.22 < G1(t, s) < 648.22.

If all roots are negative, we suppose that λ1 < λ2 < λ3 < λ4 < 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.6. If p1,5 > n1,5 and λ1 < λ2 < λ3 < λ4 < 0, then

0 < B1,1 ≤ G1(t, s) ≤ A1,1.

Proof. If λ1 < λ2 < λ3 < λ4 < 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s gives
∂
∂s g1,1(t, s) < 0, ∂

∂s g1,2(t, s) > 0, ∂
∂s g1,3(t, s) < 0 and ∂

∂s g1,4(t, s) > 0. Similarly, as in the proof of
Theorem 3.2, we obtain 0 < B1,1 ≤ G1(t, s) ≤ A1,1.
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Corollary 3.5. If h ∈ C+
w , p1,5 > n1,5 and λ1 < λ2 < λ3 < λ4 < 0, then equation (1.1) has a unique

positive periodic solution

u(t) =

t+w∫
t

G1(t, s)h(s) ds.

Example 3.5. Consider the equation

u′′′′ + 0.56u′′′ + 0.0311u′′ + 5.56× 10−4u′ + 3.0× 10−6u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+0.5)(λ+0.03)(λ+
0.02)(λ + 0.01) = 0 has the roots λ1 = −0.5, λ2 = −0.03, λ3 = −0.02, λ4 = −0.01. Since
p1,5 = 2.086 4 × 105 > n1,5 = 1.764 3 × 105, the equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G1(t, s)h(s) ds, with
t+w∫
t

G1(t, s) ds = 3.333× 105 and 0 < 32210 < G1(t, s) < 73894.

Case 2. If λ1 = λ2 ̸= λ3 ̸= λ4, λ1, λ3, λ4 ∈ R. We use the following abbreviations:

g2,1(t, s) =
e(t+w−s)λ1

(
w(λ1−λ3)(λ1−λ4)−(ewλ1−1)

(
λ3−2λ1+λ4−s(λ1−λ3)(λ1−λ4)

))
(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

,

g2,2(t, s) = t
e(t+w−s)λ1

(1− ewλ1)(λ2
1 − λ1λ3 − λ1λ4 + λ3λ4)

,

g2,3(t, s) =
e(t+w−s)λ3

(1− ewλ3)(λ1 − λ3)2(λ3 − λ4)
,

g2,4(t, s) = − e(t+w−s)λ4

(1− ewλ4)(λ1 − λ4)2(λ3 − λ4)
;

h2,1(s, t) =

(
(λ2

1 − λ3λ4)(e
wλ1 − 1) + wλ1(λ1 − λ3)(λ1 − λ4)

)
eλ1(t−s+w)

λ1(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2
,

h2,2(s, t) =
(sλ1 + 1)eλ1(t−s+w)

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
;

A2,1 =
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

− w
ewλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
− ewλ3

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)

+
1

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
,

A2,2 =
1

λ1

(
(λ2

1 − λ3λ4)(e
wλ1 − 1) + wλ1(λ1 − λ3)(λ1 − λ4)

)
ewλ1

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

+
1

λ1

2wλ1 + 1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
− wewλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)

− 1

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
+

ewλ4

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
;

B2,1 =

(
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

)
ewλ1

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

− 1

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
+

ewλ4

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
,

B2,2 =
(λ2

1 − λ3λ4)(e
wλ1 − 1) + wλ1(λ1 − λ3)(λ1 − λ4)

λ1(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2
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+
1

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
+

ewλ1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)

− ewλ3

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
;

n2,1 = w
ewλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
+

ewλ3

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
,

n2,2 =
1

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
− ewλ4

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
,

n2,3 = +
ewλ3

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
− 1

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
,

n2,4 =
1

(ewλ3 − 1)(λ1 − λ3)2(λ3 − λ4)
− 1

λ1

2wλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
;

p2,1 =
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

+
1

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
,

p2,2 =
ewλ1

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

×
(
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

)
,

p2,3 =
1

λ1

(
(λ1)(λ1)− λ3λ4

)
(ewλ1 − 1) + wλ1(λ1 − λ3)(λ1 − λ4)

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

+
ewλ1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
,

p2,4 =
ewλ1

(
(λ2

1 − λ3λ4)(e
wλ1 − 1) + wλ1(λ1 − λ3)(λ1 − λ4)

)
λ1(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2

+
1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)

+
ewλ4

(ewλ4 − 1)(λ1 − λ4)2(λ3 − λ4)
− w

ewλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
.

Theorem 3.7. For all t ∈ [0, w] and s ∈ [t, t+ w], we have

t+w∫
t

G2(t, s) ds =
1

λ2
1λ3λ4

.

Proof. We have

t+w∫
t

g2,1(t, s) ds =
3λ2

1 − 2λ1λ3 − 2λ1λ4 + λ3λ4 + tλ3
1 − tλ2

1λ3 − tλ2
1λ4 + tλ1λ3λ4

λ2
1(λ1 − λ3)2(λ1 − λ4)2

,

t+w∫
t

g2,2(t, s) ds = − t

λ1(λ1 − λ3)(λ1 − λ4)
,

t+w∫
t

g2,3(t, s) ds = − 1

λ3(λ1 − λ3)2(λ3 − λ4)
,
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t+w∫
t

g2,4(t, s) ds =
1

λ4(λ1 − λ4)2(λ3 − λ4)
,

and
t+w∫
t

G2(t, s) ds =

t+w∫
t

g2,1(t, s) ds+

t+w∫
t

g2,2(t, s) ds

+

t+w∫
t

g2,3(t, s) ds+

t+w∫
t

g2,4(t, s) ds =
1

λ2
1λ3λ4

.

We have three different roots satisfying one of the following four cases:

- All roots are positive.

- Two roots are positive and one root is negative.

- Two roots are negative and one root is positive.

- All roots are negative.

If all roots are positive, we suppose that λ1 > λ3 > λ4 > 0 (the other situations can be proved by
using the same method), and we have

Theorem 3.8. If p2,1 > n2,1 and λ1 > λ3 > λ4 > 0, then

0 < A2,1 ≤ G2(t, s) ≤ B2,1.

Proof. If λ1 > λ3 > λ4 > 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s gives
∂
∂s g2,1(s, t) < 0, ∂

∂s g2,2(s, t) > 0, ∂
∂s g2,3(s, t) > 0 and ∂

∂s g2,4(s, t) < 0. This implies that

g2,1(t, t+ w) + g2,2(t, t) + g2,3(t, t) + g2,4(t, t+ w)

≤ G2(t, s) ≤ g2,1(t, t) + g2,2(t, t+ w) + g2,3(t, t+ w) + g2,4(t, t).

It is easy to check that

0 <
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2
≤ g2,1(t, t+ w),

0 < g2,1(t, t) ≤
(
wewλ1(λ1 − λ3)(λ1 − λ4)− (ewλ1 − 1)(λ3 − 2λ1 + λ4)

)
ewλ1

(ewλ1 − 1)2(λ1 − λ3)2(λ1 − λ4)2
,

−w
ewλ1

(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
≤ g2,2(t, t) ≤ 0, g2,2(t, t+ w) ≤ 0.

By using the last double inequality together with the assumption p2,1 > n2,1, we arrive at 0 < A2,1 ≤
G1(t, s) ≤ B2,1.

Corollary 3.6. If h ∈ C+
w , p2,1 > n2,1 and λ1 > λ3 > λ4 > 0, then equation (1.1) has a unique

positive periodic solution

u(t) =

t+w∫
t

G2(t, s)h(s) ds.

Example 3.6. Consider the equation

u′′′′ − 0.51u′′′ + 0.085u′′ − 0.0048u′ + 0.00004u = h(t),
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here h is a given 2π-periodic continuous function. The characteristic equation (λ− 0.2)2(λ− 0.1)(λ−
0.01) = 0 has the roots λ1 = 0.2, λ3 = 0.1, λ4 = 0.01. Since p2,1 = 5249.8 > n2,1 = 2844, the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G2(t, s)h(s) ds with
t+w∫
t

G2(t, s) ds = 25000 and

0 < 2405.8 < G2(t, s) < 5552.5 .

If two roots are positive and one root is negative, we suppose that λ1 > λ3 > 0 and λ4 < 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.9. If p2,2 < n2,2, λ1 > λ3 > 0 and λ4 < 0, then

A2,1 ≤ G2(t, s) ≤ B2,1 < 0.

Proof. If λ1 > λ3 > 0 and λ4 < 0, the study of the derivatives of g1,i, i = 1, 4, with respect to s gives
∂
∂s g2,1(s, t) < 0, ∂

∂s g2,2(s, t) > 0, ∂
∂s g2,3(s, t) > 0 and ∂

∂s g2,4(s, t) < 0. Similarly, as in the proof of
Theorem 3.8, we obtain A2,1 ≤ G2(t, s) ≤ B2,1 < 0.

Corollary 3.7. If h ∈ C−
w , p2,2 < n2,2, λ1 > λ3 > 0 and λ4 < 0, then equation (1.1) has a unique

positive periodic solution

u(t) =

t+w∫
t

G2(t, s)h(s) ds.

Example 3.7. Consider the equation

u′′′′ − 0.49u′′′ + 0.075u′′ − 0.0032u′ − 0.00004u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ− 0.2)2(λ− 0.1)(λ+
0.01) = 0 has the roots λ1 = 0.2, λ3 = 0.1, λ4 = −0.01. Since p2,2 = 1567.2 < n2,2 = 4218.5, the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G2(t, s)h(s) ds with
t+w∫
t

G2(t, s) ds = −25000

and −5305.9 < G2(t, s) < −2651.3 < 0.

If two roots are negative and one root is positive, we suppose that λ1 < λ3 < 0 and λ4 > 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.10. If p2,3 < n2,3, λ1 < λ3 < 0 and λ4 > 0, then

A2,2 ≤ G2(t, s) ≤ B2,2 < 0.

Proof. We have g2,1(s, t) = h2,1(s, t) + h2,2(s, t). If λ1 < λ3 < 0 and λ4 > 0, the study of the
derivatives with respect to s gives ∂

∂s h2,1(s, t) > 0, ∂
∂s h2,2(s, t) < 0, ∂

∂s g2,2(s, t) > 0, ∂
∂s g2,3(s, t) < 0

and ∂
∂s g2,4(s, t) > 0. This implies that

h2,1(t, t) + h2,2(t, t+ w) + g2,2(t, t) + g2,3(t, t+ w) + g2,4(t, t)

≤ G2(t, s) ≤ h2,1(t, t+ w) + h2,2(t, t) + g2,2(t, t+ w) + g2,3(t, t) + g2,4(t, t+ w).

It is easy to check that

ewλ1(wλ1 + 1)

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
≤ h2,2(t, t) ≤

ewλ1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
,

2wλ1 + 1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
≤ h2,2(t, t+ w) ≤ wλ1 + 1

λ1(ewλ1 − 1)(λ1 − λ3)(λ1 − λ4)
.

The above double inequality and the assumption p2,3 > n2,3 lead to 0 < A2,2 ≤ G2(t, s) ≤ B2,2.

Corollary 3.8. If h ∈ C−
w , p2,3 < n2,3, λ1 < λ3 < 0 and λ4 > 0, then equation (1.1) has a unique

positive periodic solution

u(t) =

t+w∫
t

G2(t, s)h(s) ds.
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Example 3.8. Consider the equation

u′′′′ + 0.49u′′′ + 0.075u′′ + 0.0032u′ − 0.00004u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+0.2)2(λ+0.1)(λ−
0.01) = 0 has the roots λ1 = −0.2, λ3 = −0.1, λ4 = 0.01. Since p2,3 = 1329.1 < n2,3 = 4218.5, the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G2(t, s)h(s) ds with
t+w∫
t

G2(t, s) ds = −25000,

−5367.0 < G2(t, s) < −2889.4 < 0.

If all roots are negative, we suppose that λ1 < λ3 < 0 < λ4 < 0 (the other situations can be proved
by using the same method), and we have

Theorem 3.11. If p2,4 > n2,4 and λ1 < λ3 < λ4 < 0, then

0 < A2,2 ≤ G2(t, s) ≤ B2,2.

Proof. The study of the derivatives with respect to s gives ∂
∂s h2,1(s, t) > 0, ∂

∂s h2,2(s, t) < 0,
∂
∂s g2,2(s, t) > 0, ∂

∂s g2,3(s, t) < 0 and ∂
∂s g2,4(s, t) > 0. Similarly, as in the proof of Theorem 3.8,

we obtain 0 < A2,2 ≤ G2(t, s) ≤ B2,2.

Corollary 3.9. If h ∈ C+
w , p2,4 > n2,4 and λ1 < λ3 < λ4 < 0, then equation (1.1) has a unique

positive periodic solution

u(t) =

t+w∫
t

G2(t, s)h(s) ds.

Example 3.9. Consider the equation

u′′′′ + 0.51u′′′ + 0.085u′′ + 0.0048u′ + 0.00004u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+0.2)2(λ+0.1)(λ+
0.01) = 0 has the roots λ1 = −0.2, λ3 = −0.1, λ4 = −0.01. Since p2,4 = 5644.5 > n2,4 = 3306.3, the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G2(t, s)h(s) ds with
t+w∫
t

G2(t, s) ds = 25000 and

0 < 2338.3 < G2(t, s) < 5289.4 .

Case 3. If λ1 = λ2 ̸= λ3 = λ4. We use the following abbreviations:

g3,1(t, s) = −
(
(1− ewλ1)(sλ1 − sλ4 + 2)− w(λ1 − λ4)

)
e(w+t−s)λ1

(ewλ1 − 1)2(λ1 − λ4)3
+ t

e(w+t−s)λ1

(1− ewλ1)(λ1 − λ4)2
,

g3,2(t, s) = −
(
(ewλ4 − 1)(sλ4 − sλ1 + 2)− w(λ1 − λ4)

)
e(w+t−s)λ4

(ewλ4 − 1)2(λ1 − λ4)3
+ t

e(w+t−s)λ4

(1− ewλ4)(λ1 − λ4)2
;

h3,1(s, t) =
eλ4(t−s+w)

(
λ4(s− t)(ewλ4 − 1) + ewλ4 + wλ4 − 1

)
λ4(ewλ4 − 1)2(λ1 − λ4)2

,

h3,2(s, t) = − eλ4(t−s+w)(λ1 + λ4)

λ4(ewλ4 − 1)(λ1 − λ4)3
,

h3,3(t, s) =
1

λ1

eλ1(t−s+w)
(
λ1(s−t)(ewλ1−1)(λ1−λ4)+wλ1(λ1−λ4)−(ewλ1−1)(λ4−2λ1)

)
(ewλ1 − 1)2(λ1 − λ4)3

,

h3,4(t, s) =
1

λ1
λ4

eλ1(t−s+w)

(ewλ1 − 1)(λ1 − λ4)3
,

h3,5(t, s) = −eλ4(t−s+w)(1− (s− t)(λ1 − λ4))

(ewλ4 − 1)(λ1 − λ4)3
,
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h3,6(t, s) = − eλ4(t−s+w)

(ewλ4 − 1)2(λ1 − λ4)3
(ewλ4 − wλ1 + wλ4 − 1),

h3,7(t, s) =
eλ1(t−s+w)

(
wλ1(λ1 − λ4) + (λ1 + λ4)(e

wλ1 − 1)
)

λ1(ewλ1 − 1)2(λ1 − λ4)3
,

h3,8(t, s) =
eλ1(t−s+w)(sλ1 − tλ1 + 1)

λ1(ewλ1 − 1)(λ1 − λ4)2
,

h3,9(t, s) = w
eλ4(t−s+w)

(ewλ4 − 1)2(λ1 − λ4)2
,

h3,10(t, s) = −eλ4(t−s+w)(2− (s− t)(λ1 − λ4))

(ewλ4 − 1)(λ1 − λ4)3
;

A3,1 =
2ewλ1 + wλ1e

wλ1 − wλ4e
wλ1 − 2

(ewλ1 − 1)2(λ1 − λ4)3
− ewλ4(λ1 + λ4)

λ4(ewλ4 − 1)(λ1 − λ4)3

+
(ewλ4 + wλ4e

wλ4 − 1)

λ4(ewλ4 − 1)2(λ1 − λ4)2
,

A3,2 =
λ4 − 2λ1 + 2λ1e

wλ1 − λ4e
wλ1 + wλ2

1e
wλ1 − wλ1λ4e

wλ1

λ1(ewλ1 − 1)2(λ1 − λ4)3

+
λ4e

wλ1

λ1(ewλ1 − 1)(λ1 − λ4)3
− (wλ4 − wλ1 + 1)

(ewλ4 − 1)(λ1 − λ4)3

− (ewλ4 − wλ1 + wλ4 − 1)ewλ4

(ewλ4 − 1)2(λ1 − λ4)3
,

A3,3 =

(
(λ1 + λ4)(e

wλ1 − 1) + wλ1(λ1 − λ4)
)
ewλ1

λ1(ewλ1 − 1)2(λ1 − λ4)3
+

wewλ4

(ewλ4 − 1)2(λ1 − λ4)2

+
1

λ1

wλ1 + 1

(ewλ1 − 1)(λ1 − λ4)2
− 1

(ewλ4 − 1)(λ1 − λ4)3
(wλ4 − wλ1 + 2);

B3,1 =
ewλ1

(ewλ1 − 1)2(λ1 − λ4)3
(2ewλ1 + wλ1 − wλ4 − 2)− 1

λ4

λ1 + λ4

(ewλ4 − 1)(λ1 − λ4)3

+
1

λ4

ewλ4

(ewλ4 − 1)2(λ1 − λ4)2
(ewλ4 + wλ4 − 1),

B3,2 =
1

λ1

ewλ1(λ4 − 2λ1 + wλ2
1 + 2λ1e

wλ1 − λ4e
wλ1 − wλ1λ4)

(ewλ1 − 1)2(λ1 − λ4)3

+
1

λ1

λ4

(ewλ1 − 1)(λ1 − λ4)3
− ewλ4

(ewλ4 − 1)(λ1 − λ4)3

− 1

(ewλ4 − 1)2(λ1 − λ4)3
(ewλ4 − wλ1 + wλ4 − 1),

B3,3 = − 1

λ1(ewλ1 − 1)2(λ1 − λ4)3
(λ1 + λ4 − wλ2

1 − λ1e
wλ1 − λ4e

wλ1 + wλ1λ4)

+
1

λ1

ewλ1

(ewλ1 − 1)(λ1 − λ4)2
+

w

(ewλ4 − 1)2(λ1 − λ4)2
− 2

ewλ4

(ewλ4 − 1)(λ1 − λ4)3
;

n3,1 =
ewλ4(λ1 + λ4)

λ4(ewλ4 − 1)(λ1 − λ4)3
,

n3,2 = − λ4e
wλ1

λ1(ewλ1 − 1)(λ1 − λ4)3
− w(λ1 − λ4)

(ewλ4 − 1)(λ1 − λ4)3
,

n3,3 =
1

(ewλ4 − 1)(λ1 − λ4)3
(wλ4 − wλ1 + 2)− w

(ewλ1 − 1)(λ1 − λ4)2
;
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p3,1 =
2ewλ1 + wλ1e

wλ1 − wλ4e
wλ1 − 2

(ewλ1 − 1)2(λ1 − λ4)3
+

ewλ4 + wλ4e
wλ4 − 1

λ4(ewλ4 − 1)2(λ1 − λ4)2
,

p3,2 =
λ4 − 2λ1 + 2λ1e

wλ1 − λ4e
wλ1 + wλ2

1e
wλ1 − wλ1λ4e

wλ1

λ1(ewλ1 − 1)2(λ1 − λ4)3

− 1

(ewλ4 − 1)(λ1 − λ4)3
− (ewλ4 − wλ1 + wλ4 − 1)ewλ4

(ewλ4 − 1)2(λ1 − λ4)3
,

p3,3 =

(
(λ1 + λ4)(e

wλ1 − 1) + wλ1(λ1 − λ4)
)
ewλ1

λ1(ewλ1 − 1)2(λ1 − λ4)3
+

1

λ1(ewλ1 − 1)(λ1 − λ4)2

+ w
ewλ4

(ewλ4 − 1)2(λ1 − λ4)2
.

Theorem 3.12. For all t ∈ [0, w] and s ∈ [t, t+ w], we have
t+w∫
t

G3(t, s) ds =
1

λ2
1λ

2
4

.

Proof. We have
t+w∫
t

G3(t, s) ds =

t+w∫
t

g3,1(t, s) ds+

t+w∫
t

g3,2(t, s) ds = − λ4 − 3λ1

λ2
1(λ1 − λ4)3

+
λ1 − 3λ4

λ2
4(λ1 − λ4)3

=
1

λ2
1λ

2
4

.

We have two different roots satisfying one of the following three cases:

- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that λ1 > λ4 > 0 (the situation when λ4 > λ1 > 0 can be
proved by using the same method), and we have

Theorem 3.13. If p3,1 > n3,1 and λ1 > λ2 > 0, then

0 < A3,1 ≤ G3(t, s) ≤ B3,1.

Proof. We write g3,2(t, s) = h3,1(t, s) + h3,2(t, s). If λ1 > λ2 > 0, the study of the derivatives with
respect to s gives ∂

∂s g3,1(t, s) < 0, ∂
∂s h3,1(t, s) < 0 and ∂

∂s h3,2(t, s) > 0. This implies that

g3,1(t, t+ w) + h3,1(t, t+ w) + h3,2(t, t) ≤ G3(t, s) ≤ g3,1(t, t) + h3,1(t, t) + h3,2(t, t+ w).

This double inequality together with the assumption p3,1 > n3,1 lead to 0 < A3,1 ≤ G3(t, s) ≤ B3,1.

Corollary 3.10. If h ∈ C+
w , p3,1 > n3,1 and λ1 > λ2 > 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G3(t, s)h(s) ds.

Example 3.10. Consider the equation

u′′′′ − 0.06 u′′′ + 0.0013u′′ − 1.2× 10−5u′ + 4.0× 10−8u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation is (λ−0.02)2(λ−0.01)2 =
0 has two roots λ1 = 0.02 and λ4 = 0.01. Since p3,1 = 5.024 1 × 107 > n3,1 = 4.926 2 × 107, the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G3(t, s)h(s) ds with
t+w∫
t

G3(t, s) ds = 2.5× 107

and 0 < 9.788 7× 105 < G3(t, s) < 6.978 9× 106.
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If one root is positive and one root is negative, we suppose that λ1 > 0 and λ4 < 0 (the situation
when λ1 < 0 and λ4 > 0 can be proved by using the same method), and we have

Theorem 3.14. If p3,2 > n3,2, λ1 > 0 and λ4 < 0, then

0 < A3,2 ≤ G3(t, s) ≤ B3,2.

Proof. We write g3,1(s, t) = h3,3(s, t) + h3,4(s, t) and g3,2(s, t) = h3,5(s, t) + h3,6(s, t). If λ1 > 0
and λ4 < 0, the study of the derivatives with respect to s gives ∂

∂s h3,3(t, s) < 0, ∂
∂s h3,4(t, s) > 0,

∂
∂s h3,5(s, t) < 0 and ∂

∂s h3,6(s, t) > 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < A3,2 ≤
G3(t, s) ≤ B3,2.

Corollary 3.11. If h ∈ C+
w , p3,2 > n3,2, λ1 > 0 and λ4 < 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G3(t, s)h(s) ds.

Example 3.11. Consider the equation

u′′′′ − 0.02u′′ + 0.0001u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation

(λ− 0.1)2(λ+ 0.1)2 = 0

has two roots λ1 = 0.1 and λ4 = −0.1 . Since p3,2 = 1609.8 > n3,2 = 604.66, the equation has a unique

2π-periodic solution u(t) =
t+w∫
t

G3(t, s)h(s) ds with
t+w∫
t

G3(t, s) ds = 10000, 1005.2 < G3(t, s) <

2178.6 .

If all roots are negative, we suppose that λ1 < λ4 < 0 (the situation when λ4 < λ1 < 0 can be
proved by using the same method), and we have

Theorem 3.15. If p3,3 > n3,3 and λ1 < λ4 < 0, then

0 < A3,3 ≤ G3(t, s) ≤ B3,3.

Proof. We write g3,1(s, t) = h3,7(s, t)+h3,8(s, t), g3,2(s, t) = h3,9(s, t)+h3,10(s, t). If λ1 < λ4 < 0, the
study of the derivatives with respect to s gives ∂

∂s h3,7(t, s) < 0, ∂
∂s h3,8(t, s) < 0, ∂

∂s h3,9(t, s) > 0 and
∂
∂s h3,10(t, s) < 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < A3,3 ≤ G3(t, s) ≤ B3,3.

Corollary 3.12. If h ∈ C+
w , p3,3 > n3,3, λ1 < λ4 < 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G3(t, s)h(s) ds.

Example 3.12. Consider the equation

u′′′′ + 0.22u′′′ + 0.0141u′′ + 0.00022u′ + 1.0× 10−6u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation

(λ+ 0.1)2(λ+ 0.01)2 = 0

has two roots λ1 = −0.1 and λ4 = −0.01. Since 2.027×105 > n3,3 = 59450, the equation has a unique

2π-periodic solution u(t) =
t+w∫
t

G3(t, s)h(s) ds with
t+w∫
t

G3(t, s) ds = 1000000 and 1.4325 × 105 <

G3(t, s) < 1.7506× 105.
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Case 4. If λ1 = λ2 = λ3 ̸= λ4. We use the following abbreviations:

g4,1(t, s) = e(t+w−s)λ1
(1− ewλ1)

(
(ewλ1 − 1)(((s− t)(λ1 − λ4) + 1)2 + 1)

)
2(ewλ1 − 1)3(λ1 − λ4)3

+
e(t+w−s)λ1(1− ewλ1)

(
w(λ1 − λ4)(2(s− t)(λ1 − λ4) + 2)

)
2(ewλ1 − 1)3(λ1 − λ4)3

− w2e(t+w−s)λ1(ewλ1 + 1)(λ1 − λ4)
2

2(ewλ1 − 1)3(λ1 − λ4)3
,

g4,2(t, s) =
e(t+w−s)λ4

(ewλ4 − 1)(λ1 − λ4)3
;

h4,1(t, s) = −λ1(s− t)(ewλ1 − 1)eλ1(t−s+w)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)

(
λ1(s− t)(ewλ1 − 1) + 2(ewλ1 + wλ1 − 1)

)
− eλ1(t−s+w)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)

(
w2λ2

1(e
wλ1 + 1) + 2(ewλ1 − 1)(ewλ1 + wλ1 − 1)

)
,

h4,2(t, s) = − 1

λ2
1

λ4
eλ1(t−s+w)

(ewλ1 − 1)2(λ1 − λ4)3

(
wλ1(λ1 − λ4)− (ewλ1 − 1)(λ4 − 2λ1)

)
− 1

λ1
λ4e

λ1(t−s+w) s− t

(ewλ1 − 1)(λ1 − λ4)2
,

h4,3(t, s) = −
(
2wλ1λ4(e

wλ1 − 1)(λ1 − λ4) + w2λ2
1(e

wλ1 + 1)(λ1 − λ4)
2
)
eλ1(t−s+w)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3

−
eλ1(t−s+w)

(
λ1(s− t)(ewλ1 − 1)2(λ1 − λ4)

2(sλ1 − tλ1 + 2)
)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3

−
eλ1(t−s+w)

(
2(ewλ1 − 1)2(λ2

1 − λ1λ4 + λ2
4)
)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3
,

h4,4(t, s) =
1

λ2
1

eλ1(t−s+w)

(ewλ1 − 1)2(λ1 − λ4)2
(sλ1 − tλ1 + 1)(λ4 − wλ2

1 − λ4e
wλ1 + wλ1λ4);

A4,1 = −ewλ1
2(ewλ1 − 1)2 + w2(ewλ1 + 1)(λ1 − λ4)

2 + 2w(ewλ1 − 1)(λ1 − λ4)

2(ewλ1 − 1)3(λ1 − λ4)3

+
1

(ewλ4 − 1)(λ1 − λ4)3
,

A4,2 =
1

(ewλ4 − 1)(λ1 − λ4)3
−

ewλ1
(
w2λ2

1(e
wλ1 + 1) + 2(ewλ1 − 1)2 + 2wλ1(e

wλ1 − 1)
)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)

− λ4

λ2
1(e

wλ1 − 1)2(λ1 − λ4)3

(
wλ1e

wλ1(λ1 − λ4)− (ewλ1 − 1)(λ4 − 2λ1)
)
,

A4,3 = − 1

2λ2
1(e

wλ1−1)3(λ1−λ4)3

(
(λ1−λ4)

2
(
w2λ2

1(e
wλ1+1)+wλ1(wλ1+2)(ewλ1−1)2

))
− 1

2λ2
1(e

wλ1−1)3(λ1−λ4)3

(
2wλ1λ4(e

wλ1−1)(λ1−λ4)+2(ewλ1−1)2(λ2
1−λ1λ4+λ2

4)
)

+
1

λ2
1

ewλ1

(ewλ1 − 1)2(λ1 − λ4)2
(λ4 − wλ2

1 − λ4e
wλ1 + wλ1λ4)

+
ewλ4

(ewλ4 − 1)(λ1 − λ4)3
;
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B4,1 = −2wewλ1(ewλ1 − 1)(λ1 − λ4) + w2ewλ1(ewλ1 + 1)(λ1 − λ4)
2 + 2(ewλ1 − 1)2

2(ewλ1 − 1)3(λ1 − λ4)3

+
ewλ4

(ewλ4 − 1)(λ1 − λ4)3
,

B4,2 =
ewλ4

(ewλ4 − 1)(λ1 − λ4)3

− w2λ2
1e

wλ1(ewλ1 + 1) + 2(ewλ1 − 1)2 + 2wλ1e
wλ1(ewλ1 − 1)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)

− 1

λ2
1

λ4e
wλ1

(ewλ1 − 1)2(λ1 − λ4)3
(
wλ1(λ1 − λ4)− (ewλ1 − 1)(λ4 − 2λ1)

)
,

B4,3 = − eλ1(w)

2λ2
1(e

wλ1−1)3(λ1−λ4)3

(
2wλ1λ4(e

wλ1−1)(λ1−λ4)+w2λ2
1(e

wλ1+1)(λ1−λ4)
2
)

− eλ1(w)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3

(
2(ewλ1 − 1)2(λ2

1 − λ1λ4 + λ2
4)
)

+
(wλ1+1)(λ4−wλ2

1−λ4e
wλ1+wλ1λ4)

λ2
1(e

wλ1 − 1)2(λ1−λ4)2
− 2ewλ4−wλ1e

wλ4+wλ4e
wλ4 − 2

(ewλ4 − 1)2(λ1−λ4)3
;

n4,1 = ewλ1
2(ewλ1 − 1)2 + w2(ewλ1 + 1)(λ1 − λ4)

2 + 2w(ewλ1 − 1)(λ1 − λ4)

2(ewλ1 − 1)3(λ1 − λ4)3
,

n4,2 = − ewλ4

(ewλ4 − 1)(λ1 − λ4)3

+
w2λ2

1e
wλ1(ewλ1 + 1) + 2(ewλ1 − 1)2 + 2wλ1e

wλ1(ewλ1 − 1)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)
,

n4,3 =
1

2λ2
1(e

wλ1−1)3(λ1−λ4)3

(
2wλ1λ4(e

wλ1−1)(λ1−λ4)+w2λ2
1(e

wλ1+1)(λ1−λ4)
2
)

+
2(ewλ1 − 1)2(λ2

1 − λ1λ4 + λ2
4)

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3
+

wλ1(wλ1)(e
wλ1 − 1)2(λ1 − λ4)

2

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3

− 1

λ2
1

ewλ1

(ewλ1 − 1)2(λ1 − λ4)2
(λ4 − wλ2

1 − λ4e
wλ1 + wλ1λ4);

p4,1 =
1

(ewλ4 − 1)(λ1 − λ4)3
,

p4,2 = −
λ4e

wλ1
(
wλ1(λ1 − λ4)− (ewλ1 − 1)(λ4 − 2λ1)

)
λ2
1(e

wλ1 − 1)2(λ1 − λ4)3
,

p4,3 = − 1

2λ2
1(e

wλ1 − 1)3(λ1 − λ4)3

(
wλ1(2)(e

wλ1 − 1)2(λ1 − λ4)
2
)

+
ewλ4

(ewλ4 − 1)(λ1 − λ4)3
.

Theorem 3.16. For all t ∈ [0, w] and s ∈ [t, t+ w], we have

t+w∫
t

G4(t, s) ds =
1

λ3
1λ4

.
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Proof. We have

t+w∫
t

g4,1(s, t) ds+

t+w∫
t

g4,2(s, t) ds = −3λ2
1 − 3λ1λ4 + λ2

4

λ3
1(λ1 − λ4)3

+
1

λ4(λ1 − λ4)3
=

1

λ3
1λ4

.

We have two different roots satisfying one of the three cases:

- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that λ1 > λ4 > 0 (the situation when λ4 > λ1 > 0 can be
proved by using the same method), and we have

Theorem 3.17. If p4,1 > n4,1 and λ1 > λ4 > 0, then

0 < A4,1 ≤ G4(t, s) ≤ B4,1.

Proof. If λ1 > λ4 > 0, the study of the derivatives with respect to s gives ∂
∂sg4,1(s, t) > 0 and

∂
∂s g4,2(s, t) < 0. So g4,1(t, t) + g4,2(t, t + w) ≤ g4,1(t, s) ≤ g4,1(t, t + w) + g4,2(t, t). This double
inequality together with the assumption p4,1 > n4,1 give 0 < A4,1 ≤ G4(t, s) ≤ B4,1.

Corollary 3.13. If h ∈ C+
w , p4,1 > n4,1 and λ1 > λ4 > 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G4(t, s)h(s) ds.

Example 3.13. Consider the equation

u′′′′ − 0.61u′′′ + 0.126u′′ − 0.0092u′ + 0.00008u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ−0.2)3(λ−0.01) = 0
has the roots λ1 = 0.2 and λ4 = 0.01. We compute p4,1 = 2248.2 > n4,1 = 404.33, and hence the

equation has a unique 2π-periodic solution u(t) =
t+w∫
t

G4(t, s)h(s) ds with
t+w∫
t

G4(t, s) ds = 2.5× 105

and 0 < 1843.9 < G4(t, s) < 2135.5 .

If one root is positive and one root is negative, we suppose that λ1 > 0 and λ4 < 0 (the situation
when λ1 < 0 and λ4 > 0 can be proved by using the same method), and we have

Theorem 3.18. If p4,2 < n4,2, λ1 > 0 and λ4 < 0 then

A4,2 ≤ G4(t, s) ≤ B4,2 < 0.

Proof. We have g4,1(t, s) = h4,1(t, s) + h4,2(t, s). If λ1 > 0 and λ4 < 0, the study of the derivatives
with respect to s gives ∂

∂s h4,1(s, t) > 0, ∂
∂s h4,2(s, t) < 0 and ∂

∂s g4,2(s, t) < 0. Similarly, as in the
proof of Theorem 3.17, we obtain A4,2 ≤ G4(t, s) ≤ B4,2 < 0.

Corollary 3.14. If h ∈ C−
w , p4,2 < n4,2, λ1 > 0 and λ4 < 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G4(t, s)h(s) ds.
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Example 3.14. Consider the equation

u′′′′ − 0.29u′′′ + 0.027u′′ − 0.0007u′ − 0.00001u = h(t),

here h is the given continuous and 2π-periodic function. The characteristic equation (λ − 0.1)3(λ +
0.01) = 0 has the roots λ1 = 0.1 and λ4 = −0.01. Since p4,2 = 465.49 < n4,2 = 15472, the equation

has a unique 2π-periodic solution u(t) =
t+w∫
t

G4(t, s)h(s) ds with
t+w∫
t

G4(t, s) ds = 106 and −16824 <

G4(t, s) < −15006 < 0.

If all roots are negative, we suppose that λ1 < λ4 < 0 (the situation when λ4 < λ1 < 0 can be
proved by using the same method), and we have

Theorem 3.19. If p4,3 > n4,3 and λ1 < λ4 < 0, then

0 < A4,3 ≤ G4(t, s) ≤ B4,3.

Proof. We have g4,1(t, s) = h4,3(t, s) + h4,4(t, s). If λ1 < λ4 < 0, the study of the derivatives with
respect to s gives ∂

∂s h4,3(s, t) < 0, ∂
∂s h4,4(s, t) > 0 and ∂

∂s g4,2(s, t) > 0. Similarly, as in the proof of
Theorem 3.17, we obtain 0 < A4,3 ≤ G4(t, s) ≤ B4,3.

Corollary 3.15. If h ∈ C+
w , p4,3 > n4,3 and λ1 < λ4 < 0, then equation (1.1) has a unique positive

periodic solution

u(t) =

t+w∫
t

G4(t, s)h(s) ds.

Example 3.15. Consider the equation

u′′′′ + 0.601u′′′ + 0.1206u′′ + 0.00812u′ + 8.0× 10−6u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ+0.2)3(λ+0.001) = 0
has the roots λ1 = −0.2, λ4 = −0.001. Since p4,3 = 20353 > n4,3 = 748.34, the equation has a unique

2π-periodic solution u(t) =
t+w∫
t

G4(t, s)h(s) ds with
t+w∫
t

G4(t, s) ds = 2.5×107, 0 < 20134 < G4(t, s) <

3.9784× 106.

Case 5. If λ1 = λ2 = λ3 = λ4. We use the following abbreviations:

A5,1 =
1

6λ3
1(e

wλ1 − 1)4

(
6wλ1e

wλ1(ewλ1 − 1)2 + w3λ3
1e

wλ1(e2(wλ1) + 4ewλ1 + 1)
)

+
1

6λ3
1(e

wλ1 − 1)4

(
3w2λ2

1e
wλ1(e2(wλ1) − 1) + 6(ewλ1 − 1)3

)
− ewλ1

2λ3
1(e

wλ1 − 1)3

(
2(ewλ1 − 1)(ewλ1 + wλ1 − 1) + w2λ2

1(e
wλ1 + 1)

)
,

A5,2 = w3 e2(wλ1) + ewλ1 + 4

6(ewλ1 − 1)3
+ w3ewλ1

e2(wλ1) + 4ewλ1 + 1

6(ewλ1 − 1)4
;

B5,1 =
1

6λ3
1(e

wλ1 − 1)4

(
6wλ1e

wλ1(ewλ1 − 1)2 + 3w2λ2
1e

wλ1(e2(wλ1) − 1)
)

+
1

6λ3
1(e

wλ1 − 1)4

(
w3λ3

1e
wλ1(e2(wλ1) + 4ewλ1 + 1) + 6ewλ1(ewλ1 − 1)3

)
− 2(ewλ1 − 1)(ewλ1(wλ1 + 1)− 1) + w2λ2

1e
wλ1(ewλ1 + 1)

2λ3
1(e

wλ1 − 1)3
,

B5,2 = w3 2e
2(wλ1) − ewλ1 + 2

3(ewλ1 − 1)4
;
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n5,1 =
ewλ1

(
2(ewλ1 − 1)(ewλ1 + wλ1 − 1) + w2λ2

1(e
wλ1 + 1)

)
2λ3

1(e
wλ1 − 1)3

,

n5,2 = −w3 e2(wλ1) + ewλ1 + 4

6(ewλ1 − 1)3
;

p5,1 =
1

6λ3
1(e

wλ1 − 1)4

(
6wλ1e

wλ1(ewλ1 − 1)2 + w3λ3
1e

wλ1
(
e2(wλ1) + 4ewλ1 + 1

))
+

1

6λ3
1(e

wλ1 − 1)4

(
3w2λ2

1e
wλ1(e2(wλ1) − 1) + 6(ewλ1 − 1)3

)
,

p5,2 = w3ewλ1
e2(wλ1) + 4ewλ1 + 1

6(ewλ1 − 1)4
;

h5,1(s, t) =
eλ1(t−s+w)(s− t)2(ewλ1 + wλ1 − 1)

2λ1(ewλ1 − 1)2
− eλ1(t−s+w)(λ3

1(s− t)3)

6λ3
1 − 6λ3

1e
wλ1

+ eλ1(t−s+w) sλ1 − tλ1 + 1

2λ3
1(e

wλ1 − 1)3

(
2(ewλ1 − 1)2 + 2wλ1(e

wλ1 − 1) + w2λ2
1(e

wλ1 + 1)
)

+
w3eλ1(t−s+w)(e2(wλ1) + 4ewλ1 + 1)

6(ewλ1 − 1)4
,

h5,2(s, t) = − eλ1(t−s+w)

2λ3
1(e

wλ1 − 1)3

(
(ewλ1 − 1)2(λ2

1(s− t)2 + 2(λ1(s− t) + 1))
)

− eλ1(t−s+w)

2λ3
1(e

wλ1 − 1)3

(
2wλ1(e

wλ1 − 1)(λ1(s− t) + 1) + w2λ2
1(e

wλ1 + 1)
)
,

h5,3(s, t) = eλ1(t−s+w) s− t

6(ewλ1 − 1)3

(
(s− t)2(ewλ1 − 1)2 + 3w2(ewλ1 + 1)

)
,

h5,4(s, t) = w
eλ1(t−s+w)

6(ewλ1 − 1)4

(
3(s− t)2(ewλ1 − 1)2 + w2

(
e2(wλ1) + 4ewλ1 + 1

))
.

Theorem 3.20. For all t ∈ [0, w] and s ∈ [t, t+ w], we have
t+w∫
t

G5(t, s) ds =
1

λ4
1

.

Proof. We have
t+w∫
t

G5(t, s) ds =

t+w∫
t

h5,1(t, s) ds+

t+w∫
t

h5,2(t, s) ds.

So
t+w∫
t

G5(t, s) ds = −3w2λ2
1(e

wλ1 + 1) + w3λ3
1(e

wλ1 + 2)− 6(ewλ1 − 1)2

6λ4
1(e

wλ1 − 1)2

+
w3λ1(e

wλ1 + 2)

6λ2
1(e

wλ1 − 1)2
+

3w2(ewλ1 + 1)

6λ2
1(e

wλ1 − 1)2
=

1

λ4
1

.

Theorem 3.21. If λ1 > 0 and p5,1 > n5,1, then

0 < A5,1 ≤ G5(s, t) ≤ B5,1.

Proof. We have G5(s, t) = h5,1(t, s) + h5,2(t, s). If λ1 > 0, the study of the derivatives gives
∂
∂sh5,1(t, s) < 0 and ∂

∂s h5,2(t, s) > 0, so h5,1(t, t+w)+ h5,2(t, t) ≤ G5(s, t) ≤ h5,1(t, t)+ h5,2(t, t+w).
If we use this double inequality together with the assumption p5,1 > n5,1, we arrive at 0 < A5,1 ≤
G5(s, t) ≤ B5,1.
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Corollary 3.16. If h ∈ C+
w , λ1 > 0 and p5,1 > n5,1, then equation (1.1) has a unique positive periodic

solution

u(t) =

t+w∫
t

G5(t, s)h(s) ds.

Example 3.16. Consider the equation

u′′′′ − 0.4u′′′ ++0.06u′′ − 0.004u′ + 0.0001u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ− 0.1)4 = 0 has the
root λ1 = 0.1. Since p5,1 = 5866.2 > n5,1 = 5274.3, the equation has a unique 2π-periodic solution

u(t) =
t+w∫
t

G5(t, s)h(s) ds with
t+w∫
t

G5(t, s) ds = 105 and 0 < 591.86 < G5(t, s) < 2591.9 .

Theorem 3.22. If λ1 < 0 and p5,2 > n5,2, then

0 < A5,2 ≤ G5(s, t) ≤ B5,2.

Proof. We have G5(s, t) = h5,3(t, s) + h5,4(t, s). If λ1 < 0, the study of the derivatives gives
∂
∂s h5,3(t, s) < 0 and ∂

∂s h5,4(t, s) > 0. Similarly, as in the proof of Theorem 3.21, we obtain
0 < A5,2 ≤ G5(s, t) ≤ B5,2.

Corollary 3.17. If h ∈ C+
w , λ1 < 0 and p5,2 > n5,2, then equation (1.1) has a unique positive periodic

solution

u(t) =

t+w∫
t

G5(t, s)h(s) ds.

Example 3.17. Consider the equation

u′′′′ + 0.04u′′′ + 0.0006u′′ + 4.0× 10−6u′ + 1.0× 10−8u = h(t),

here h is a given 2π-periodic continuous function. The characteristic equation (λ + 0.01)4 = 0 has
the root λ1 = −0.01. Since p5,2 = 1.5915 × 107 > n5,2 = 1.0655 × 106, the equation has a unique

2π-periodic solution u(t) =
t+w∫
t

G5(t, s)h(s) ds with
t+w∫
t

G5(t, s) ds = 108 and 0 < 1.4850 × 107 <

G5(t, s) < 1.6981× 107.

4 Positive periodic solutions
Lemma 4.1 ([10, 11]). Let X be a Banach space and let K ⊂ X be a cone. Assume that Ω1 and Ω2

are bounded open subsets of X with 0 ∈ Ω, Ω1 ⊂ Ω2, and let

T : K ∩ (Ω2 \ Ω1) −→ K

be a completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2,

or

(ii) ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

Denote
f0 = lim

u→0+
sup

t∈[0,w]

f(t, u)

u
and f∞ = lim

u→∞
inf

t∈[0,w]

f(t, u)

u
.
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Theorem 4.1. If λ1 > λ2 > λ3 > λ4 > 0, then equation (1.4) has at least one positive periodic
solution in the cases

(i) f0 = 0 and f∞ = ∞,

or

(ii) f0 = ∞ and f∞ = 0.

Proof. To apply the Guo–Krasnosel’skiǐ’s theorem, let

X =
{
u ∈ C(R,R) : u(t+ w) = u(t), t ∈ R

}
with the norm ∥u∥ = sup

t∈[0,w]

|u(t)|. Then (X, ∥ · ∥) is a Banach space and we define the cone K by

K =
{
u ∈ X : u(t) ≥ A1,1

B1,1
∥u∥ for all t ∈ [0, w]

}
.

For u ∈ K, we define

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds.

In view of Theorem 3.2, we have

0 < Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≤ B1,1

t+w∫
t

f(s, u(s)) ds.

So ∥Tu∥ ≤ B1,1

t+w∫
t

f(s, u(s)) ds. Also, we have

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≥ A1,1

t+w∫
t

f(s, u(s)) ds ≥ A1,1

B1,1
∥Tu∥,

which shows that T (K) ⊂ K. Moreover, T : K → K is a completely continuous operator and the
fixed point of T is a solution of (1.4).

(i) If f0 = 0 and f∞ = ∞.
Since f0 = 0, we may choose 0 < r1 < 1 such that f(t, u) ≤ εu, for 0 ≤ u ≤ r1 and t ∈ [0, w],

where ε > 0 satisfies wεB1.1 ≤ 1.
Thus, if u ∈ K and ∥u∥ = r1, we have

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≤ B1,1

t+w∫
t

f(s, u(s)) ds ≤ wεB1.1∥u∥ ≤ r1. (4.1)

Now, if we set Ω1 = {u ∈ X : ∥u∥ < r1}, then (4.1) shows that ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1.
Since f∞ = ∞, there exists r > r1 such that f(t, u) ≥ ηu for u ≥ r and t ∈ [0, w], where η > 0, so

A2
1,1wη

B1,1
≥ 1.

Let
r2 = max

{
2r1,

B1,1r

A1,1

}
,

and Ω2 = {u ∈ X : ∥u∥ < r2}, then u ∈ K and ∥u∥ = r2 imply that

u(t) ≥ A1,1

B1,1
∥u∥ =

A1,1

B1,1
r2 ≥ r,
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and hence

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≥ A1.1

t+w∫
t

f(s, u(s)) ds ≥
(A2

1,1wη)

B1.1
∥u∥ ≥ ∥u∥. (4.2)

Thus (4.2) shows that ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2.
It follows from Lemma 4.1 that T has a fixed point u∗ ∈ K∩(Ω2 \Ω1). Consequently, the equation

has a positive w-periodic solution 0 < r1 < u(t) < r2.

(ii) If f0 = ∞ and f∞ = 0.
We choose r3 > 0 such that f(u) ≥ λu for 0 ≤ u ≤ r3, where λ > 0 satisfies λA2

1,1w

B1,1
≥ 1. Then for

u ∈ K and ∥u∥ = r3, we have

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≥ A1,1

t+w∫
t

f(s, u(s)) ds ≥
λA2

1,1w

B1,1
∥u∥ ≥ ∥u∥. (4.3)

If we put Ω3 = {u ∈ X : ∥u∥ < r3}, (4.3) shows that ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω3.
Since f∞ = 0, there exists M > 0 such that f(t, u) ≤ ξu for u ≥ M and ξ > 0 satisfies ξB1,1w < 1.

We choose
r4 = max

{
2r3,

B1,1M

A1,1

}
,

then u ∈ K and ∥u∥ = r4, this implies that u(t) ≥ A1,1

B1,1
∥u∥ ≥ M , and so

Tu(t) =

t+w∫
t

G1(t, s)f(s, u(s)) ds ≤ B1,1

t+w∫
t

f(s, u(s))rmds

≤ B1,1ξ

t+w∫
t

u(s) ds ≤ B1,1wξ∥u∥ ≤ ∥u∥. (4.4)

We set Ω4 = {u ∈ X : ∥u∥ < r4}, then for u ∈ K ∩ ∂Ω4 we have ∥Tu∥ ≤ ∥u∥.
In view of Lemma 4.1, equation (1.4) has at least one positive solution 0 < r3 < u(t) < r4.
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ÒÄÆÉÖÌÄ. ÌÄÓÀÌÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÓßÒÀ×ÀÃ ÝÅÀËÄÁÀÃÉ ÀÒÀßÒ×ÉÅÏ-
ÁÉÈ ÌÉÙÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ ÃÀ ÀÓÉÌÐÔÏÔÉÊÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ ÁÉÍÏÌÉÀËÖÒÉ ÀÒÀÀÅ-
ÔÏÍÏÌÉÖÒÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÄÒÈÉ ÊËÀÓÉÓÈÅÉÓ ÃÀ ÌÀÈÉ ÐÉÒÅÄËÉ ÃÀ ÌÄÏÒÄ ÒÉÂÉÓ ßÀÒÌÏÄÁÖËÄ-
ÁÉÓÈÅÉÓ.
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1 Introduction
Consider the differential equation

y′′′ = α0p(t)φ(y), (1.1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a twice continuously differentiable function such that

φ′(y) ̸= 0 as y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
or 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (1.2)

Y0 is equal either to zero or to ±∞, ∆Y0
is some one-sided neighborhood of the point Y0.

From the identity

φ′′(y)φ(y)

φ′2(y)
=

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2
+ 1 as y ∈ ∆Y0

and conditions (1.2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
as y → Y0 (y ∈ ∆Y0

) and lim
y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞. (1.3)

Hence, in the equation under consideration, the function φ and its first-order derivative are (see [10,
Chapter 3, Section 3.4, Lemmas 3.2, 3.3, pp. 91–92]) rapidly varying as y → Y0.

The asymptotic properties of solutions of binomial second-order differential equations with non-
linearities satisfying condition (1.2) were studied in the works of M. Marić [10], V. M. Evtukhov and
his students: N. G. Drik, V. M. Kharkov, A. G. Chernikova [4–6]. Moreover, in the monograph by
M. Marić [10, Chapter 3, Section 3.4, pp. 90–99] in the particular case, where α0 = 1, ω = +∞,
Y0 = 0 and p is a properly varying function as t → +∞, the asymptotic representations of solutions
that tend to zero as t → +∞ were obtained.

In the paper by V. M. Evtukhov and N. G. Drik [5], a special case, where φ(y) = eσy, σ ̸= 0, was
considered.

In [6], V. M. Evtukhov and V. M. Kharkov investigated a class of solutions, which is determined
by using the function φ(y).

In the paper by V. M. Evtukhov and A. G. Chernikova [4], for the second-order differential equation
(1.1) in case φ is a rapidly varying function as t → +∞, the asymptotic properties of the so-called
Pω(Y0, λ0)-solutions were completely investigated. It seems natural to try to extend these results to
the third-order differential equations.

It should be noted that the results obtained by V. M. Evtukhov and V. N. Shinkarenko [9] on the
asymptotic behavior of such solutions of differential equations of higher than the second order in the
case, where φ(y) = eσy, σ ̸= 0, are known.

Definition 1.1. A solution y of the differential equation (1.1) is called a Pω(Y0, λ0)-solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the conditions

y(t) ∈ ∆Y0
as t ∈ [t0, ω[ , lim

t↑ω
y(t) = Y0,

lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
k = 1, 2, lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pω(Y0, λ0)-solutions of equation (1.1) in a non-particular case, where λ0 ∈ R \ {0, 1, 1

2}, as well as
asymptotic, as t ↑ ω, representations of such solutions and their derivatives of order up to two.
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2 Functions from the Γ, ΓY0
(Z0) classes and their asymptotic

properties
Without loss of generality, we will further assume that

∆Y0 =

{
[y0, Y0[ , if ∆Y0

is a left neighborhood of the point Y0,

]Y0, y0], if ∆Y0
is a right neighborhood of the point Y0,

(2.1)

where y0 ∈ R such that |y0| < 1 as Y0 = 0 and y0 > 1 (y0 < −1) as Y0 = +∞ (as Y0 = −∞).
The function f : ∆Y0

→ R \ {0} satisfying condition (1.2), as Y0 = ±∞, and lim
y→+∞

f(y) = +∞,
belongs to the class Γ introduced by L. Khan (see [1, Chapter 3, p. 3.10, p. 175]).

Definition 2.1. The class Γ consists of measurable nondecreasing and right continuous functions
f : [y0,+∞[→ ]0,+∞[ , for each of which there is a measurable function g : [y0,+∞[→ ]0,+∞[ ,
which complements the function f , such that

lim
y→+∞

f(y + ug(y))

f(y)
= eu for any u ∈ R.

In [9], the asymptotic properties of functions from this class were investigated in sufficient detail.
Using the change of variables, the class Γ in the paper by of V. M. Evtukhov and A. G. Chernikova

[4] was extended to the class ΓY0(Z0) of functions f : ∆Y0 → ]0,+∞[ , where Y0 is equal either to zero
or to ±∞, and ∆Y0

is a one-sided neighborhood of the point Y0, for which

lim
y→Y0
y∈∆Y0

f(y) = Z0 =

{
or 0,

or +∞

Definition 2.2. We say that the function f : ∆Y0
→ ]0,+∞[ belongs to the class of functions

ΓY0
(Z0), if:

(1) the function f0(y) =
1

f(y) , as Y0 = +∞ and Z0 = 0;

(2) the function f0(y) = f(−y), as Y0 = −∞ and Z0 = +∞;

(3) the function f0(y) = f( 1y ), as Y0 = 0, where ∆Y0
is a right neighborhood of zero, and Z0 = +∞;

(4) the function f0(y) =
1

f( 1
y )

, as Y0 = 0, where ∆Y0 is a right neighborhood of zero, and Z0 = 0;

(5) the function f0(y) = f(− 1
y ), as Y0 = 0, where ∆Y0

is a left neighborhood of zero, and Z0 = +∞;

(6) the function f0(y) =
1

f(− 1
y )

, as Y0 = 0, where ∆Y0
is a left neighborhood of zero, and Z0 = 0;

(7) the function f0(y) ≡ f(y), as Y0 = +∞ and Z0 = +∞ belongs to the class Γ.

Using these two definitions, we conclude that for the function f ∈ ΓY0
(Z0) the limit relation

lim
y→Y0
y∈∆Y0

f(y + ug(y))

f(y)
= eu for any u ∈ R (2.2)

holds, in which the function g, that is complementary for f , in each of the cases 1) - 7) can be expressed
through the function g0, that is complementary for f0, in the following way (respectively):

(1) g(y) = −g0(y);

(2) g(y) = −g0(−y);

(3) g(y) = −y2g0(
1
y );
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(4) g(y) = y2g0(
1
y );

(5) g(y) = y2g0(− 1
y );

(6) g(y) = −y2g0(− 1
y );

(7) g(y) = g0(y).

Using the properties of the class Γ (see the monograph by Bingham [1]) the following statements
were obtained in [4].

Lemma 2.1.

1. If f ∈ ΓY0(Z0) with the complementary function g, then lim
y→Y0
y∈∆Y0

g(y)
y = 0.

2. If f ∈ ΓY0
(Z0) with the complementary function g, then for any function u : ∆Y0

→ R, satisfying
the conditions

lim
y→Y0
y∈∆Y0

u(y) = u0 ∈ R, lim
y→Y0
y∈∆Y0

f(y + u(y)g(y)) = Z0,

the limit relation
lim
y→Y0
y∈∆Y0

f(y + u(y)g(y))

f(y)
= eu0

holds.

If f ∈ ΓY0(Z0) with the complementary function g and, moreover, is continuous and strictly
monotone, then there exists a continuous strictly monotone inverse function f−1 : ∆Z0

→ ∆Y0
, where

∆Z0
=

{
or [z0, Z0[ ,

or ]Z0, z0],
z0 = f(y0), Z0 = lim

y→Y0
y∈∆Y0

f(y).

By virtue of Theorems 3.10.4, 3.1.16 from the monograph [1, Chapter 3, p. 3.10, p. 176 and p. 3.1,
p. 139] and Definition 2.2, this inverse function has the following properties.

Lemma 2.2. If f ∈ ΓY0
(Z0) with the complementary function g and is a continuous strictly monotone

function on the interval ∆Y0
, then the inverse function f−1 : ∆Z0

→ ∆Y0
is slowly varying as z → Z0

and satisfies the limit relation

lim
z→Z0
z∈∆Z0

f−1(λz)− f(z)

g(f−1(z))
= lnλ for any λ > 0.

Moreover, for any Λ > 1 this limit relation holds uniformly with respect to λ ∈ [ 1Λ ,Λ].

We present some of the important properties of the class of twice continuously differentiable func-
tions f : ∆Y0

→ R \ {0}, where Y0 is equal either to zero or to ±∞, and ∆Y0
is some one-sided

neighborhood of the point Y0, each of which satisfies the conditions

f ′(y) ̸= 0 as y ∈ ∆Y0
, lim

y→Y0
y∈∆Y0

f(y) =

{
or 0,

or ±∞,
lim
y→Y0
y∈∆Y0

f(y)f ′′(y)

f ′2(y)
= 1,

the proof of which is given in the work of V. M. Evtukhov and A. G. Chernikova [4].
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Lemma 2.3. If a twice continuously differentiable function f : ∆Y0 → ]0,+∞[ satisfies conditions
(2.1), then it belongs to the class ΓY0

(Z0) with the complementary function g : ∆Y0
→ R, which is

uniquely determined up to the equivalent, as y → Y0, functions, which can, for example, be one of the
following functions:

y∫
Y

( t∫
Y

f(u) du
)
dt

y∫
Y

f(x) dx

∼

y∫
Y

f(x) dx

f(y)
∼ f(y)

f ′(y)
∼ f ′(y)

f ′′(y)
as y → Y0,

where

Y =


y0, or lim

y→Y0
y∈∆Y0

f(y) = +∞,

Y0, or lim
y→Y0
y∈∆Y0

f(y) = 0.

Remark 2.1. The given Lemmas 2.1 and 2.2 refer to the case, where f : ∆Y0 → ]0,+∞[ (i.e., it takes
positive values). In the case of the function f : ∆Y0 → ]−∞, 0[ we will say that it belongs to the class
ΓY0

(Z0), if (−f) ∈ ΓY0
(−Z0). Then it is not difficult to verify that Lemmas 2.1 and 2.2 also remain

valid.

3 The main results
Let us introduce the necessary auxiliary notation. We assume that the domain of the function φ in
equation (1.1) is determined by formula (2.2). Next, we set

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1, if ∆Y0

= [y0, Y0[ ,

−1, if ∆Y0
=]Y0, y0],

and introduce the following functions:

J(t) =

t∫
A

π2
ω(τ)p(τ) dτ, Φ(y) =

y∫
B

ds

φ(s)
,

where

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
(3.1)

A =


ω, if

ω∫
a

π2
ω(τ)p(τ) dτ = const,

a, if
ω∫

a

π2
ω(τ)p(τ) dτ = ±∞,

B =


Y0, if

Y0∫
y0

ds

φ(s)
= const,

y0, if
Y0∫

y0

ds

φ(s)
= ±∞.

Taking into account the definition of Pω(Y0, λ0)-solutions of the differential equation (1.1), we note
that the numbers ν0, ν1 determine the signs of any Pω(Y0, λ0)-solution, its first derivative (respectively)
in some left neighborhood of ω. It is clear that the condition

ν0ν1 < 0 if Y0 = 0, ν0ν1 > 0 if Y0 = ±∞,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function Φ. It retains a sign on the interval

∆Y0 , tends either to zero or to ±∞, as y → Y0, and is increasing on ∆Y0 , since on this interval
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Φ′(y) = 1
φ(y) > 0. Therefore, there is an inverse function Φ−1 : ∆Z0 → ∆Y0 , where due to the second

of conditions (1.2) and the monotone increase of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
or 0,

or +∞,
∆Z0

=

{
[z0, Z0[ , if ∆Y0

= [y0, Y0[ ,

]Z0, z0], if ∆Y0 =]Y0, y0],
z0 = φ(y0). (3.2)

By virtue of the L’Hospital rule in the form of Stolz and the last of conditions (1.2), we get

lim
y→Y0
y∈∆Y0

Φ(y)
1

φ′(y)

= lim
y→Y0
y∈∆Y0

1
φ(y)

− φ′′(y)
φ′2(y)

= − lim
y→Y0
y∈∆Y0

φ′2(y)

φ′′(y)φ(y)
= −1.

Hence,
Φ(y) ∼ − 1

φ′(y)
as y → Y0 and signΦ(y) = −µ0 as y ∈ ∆Y0 . (3.3)

From the first of these relations it also follows that

Φ′(y)

Φ(y)
=

1
φ(y)

Φ(y)
∼ −φ′(y)

φ(y)
,

Φ′′(y)Φ(y)

Φ′2(y)
=

− φ′(y)
φ2(y)Φ(y)

1
φ2(y)

∼ 1 as y → Y0.

Therefore, according to Lemma 2.3, Φ ∈ ΓY0
(Z0) with a complementary function, which can be

selected as one of the equivalent functions

Φ′(y)

Φ′′(y)
∼ Φ(y)

Φ′(y)
∼ − φ(y)

φ′(y)
as y → Y0. (3.4)

In addition to the above notation, as λ0 ∈ R \ {0; 1; 1
2}, we introduce the auxiliary functions

q(t) =
α0(λ0 − 1)2π3

ω(t)p(t)φ
(
Φ−1(α0

(λ0−1)2

λ0
(λ0 − 1)J(t))

)
λ0Φ−1(α0

(λ0−1)2

λ0
J(t))

,

H(t) =
Φ−1(α0

(λ0−1)2

λ0
J(t))φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ,

In addition to the above properties of the twice continuously differentiable functions f : ∆Y0
→

R\{0} satisfying conditions (2.1), we will need one more auxiliary statement about a priori asymptotic
properties of Pω(Y0, λ0)-solutions of the differential equation (1.1) which follows from Corollary 10.1
of [8].

Lemma 3.1. If λ0 ∈ R \ {0; 1; 1
2}, then for each Pω(Y0, λ0)-solution of differential equation (1.1) the

asymptotic relations

πω(t)y
′(t)

y(t)
=

2λ0 − 1

λ0 − 1
[1 + o(1)],

πω(t)y
′′(t)

y′(t)
=

λo

λ0 − 1
[1 + o(1)],

πω(t)y
′′′(t)

y′′(t)
=

1 + o(1)

λ0 − 1
(3.5)

as t ↑ ω hold, where πω(t) is defined by (3.1).

For equation (1.1), the following assertions hold.

Theorem 3.1. Let λ0 ∈ R\{0; 1; 1
2}. Then for the existence of Pω(Y0, λ0)-solutions of the differential

equation (1.1), it is necessary that the conditions

α0ν1λ0 > 0, (3.6)
ν0ν1(2λ0 − 1)(λ0 − 1)πω(t) > 0 as t ∈ (a, ω), (3.7)

α0µ0λ0J(t) < 0 as t ∈ (a, ω), (3.8)
α0

λ0
lim
t↑ω

J(t) = Z0, lim
t↑ω

πω(t)J
′(t)

J(t)
= ±∞, lim

t↑ω
q(t) =

2λ0 − 1

λ0 − 1
(3.9)
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hold. Moreover, each solution of that kind admits the asymptotic representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
as t ↑ ω, (3.10)

y′(t) =
(2λ0 − 1)

(λ0 − 1)

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
πω(t)

[1 + o(1)] as t ↑ ω, (3.11)

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
π2
ω(t)

[1 + o(1)] as t ↑ ω. (3.12)

Theorem 3.2. Let λ0 ∈ R \ {0; 1; 1
2}, conditions (3.6)–(3.9) hold, there exist a limit

lim
t↑ω

[2λ0 − 1

λ0 − 1
− q(t)

]
|H(t)| 23 = 0 (3.13)

and a finite or equal to ±∞ limit

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

3

√(yφ′(y)

φ(y)

)2

. (3.14)

Then the differential equation (1.1) has at least one Pω(Y0, λ0)-solution admitting the asymptotic, as
t ↑ ω, representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
, (3.15)

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 2

3 ], (3.16)

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)H− 1

3 ]. (3.17)

Moreover, there exist one-parameter family of such solutions in case µ0λ0ν1 < 0, and two-parameter
family, when µ0λ0ν1 > 0.

Proof of Theorem 3.1. Let y : [t0, ω[→ R be an arbitrary Pω(Y0, λ0)-solution of the differential equa-
tion (1.1). Then, according to Lemma 3.1, the asymptotic relations (3.5) hold. By virtue of these
relations and (1.1), this solution and its derivatives of the first, second and third order retain the
signs on a certain interval [t1, ω[⊂ [t0, ω[ , and for these signs the asymptotic relations (3.5) hold,
from which follow condition (3.6) and inequality (3.7). In addition, from (1.1), taking into account
the second of the asymptotic relations (3.4), it follows that

y′(t)

φ(y(t))
= α0

(λ0 − 1)2

λ0
π2
ω(t)p(t)[1 + o(1)] as t ↑ ω. (3.18)

Integrating this relation from t0 to t, we get

y(t)∫
y(t0)

ds

φ(s)
= α0

(λ0 − 1)2

λ0

t∫
t0

π2
ω(τ)p(τ)[1 + o(1)] dτ as t ↑ ω.

Since, according to the definition of Pω(Y0, λ0)-solution, y(t) → Y0 as t ↑ ω, it follows that the
improper integrals

Y0∫
y(t0)

ds

φ(s)
and

ω∫
t0

π2
ω(τ)p(τ) dτ
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converge or diverge simultaneously. In view of this fact and the rule for choosing the integration limits
A and B in the functions J and Φ, introduced at the beginning of this section, the aforementioned
relation can be written as

Φ(y(t)) = α0
(λ0 − 1)2

λ0
J(t)[1 + o(1)] as t ↑ ω. (3.19)

From here, taking into account (3.2) and (3.3), it follows that inequality (3.8) and the first of conditions
(3.9) are true. By virtue of the first of conditions (3.3), it follows from (3.18) and (3.19) that

y′′(t)φ′(y′(t))

φ(y(t))
= − λ0πω(t)p(t)

(λ0 − 1)J(t)
[1 + o(1)] as t ↑ ω,

and, therefore, taking into account the first and second of the asymptotic relations (3.4) and the
asymptotic relations (3.5),

y(t)φ′(y(t))

φ(y(t))
= − (λ0 − 1)π3

ω(t)p(t)

(2λ0 − 1)J(t)
as t ↑ ω.

From this relation, by virtue of (1.3) and the definition of the Pω(Y0, λ0)-solution, it directly follows
that the second of the limit conditions (3.9) holds.

Now, from (3.19) we find that

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)[1 + o(1)]

)
as t ↑ ω. (3.20)

The function Φ, as is stated earlier, belongs to the class ΓY0
(Z0), where Z0 = lim

y→Y0
y∈∆Y0

Φ(y), and

the function g(y) = − φ(y)
φ′(y) can be chosen as its complementary function. Then, according to the

conditions α0

λ0
lim
t↑ω

J(t) = Z0 and α0
(λ0−1)2

λ0
J(t) ∈ ∆Z0 as t ∈ [t0, ω[ , which follow from (3.8) and the

first condition of (3.1), according to Lemma 2.2, we have

lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)[1 + o(1)]

)
− Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
−

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
z→Z0
z∈∆Z0

Φ−1(z(1 + o(1)))− Φ−1(z)

− φ(z)
φ′(z)

= 0,

whence it follows that

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)[1 + o(1)]

)
= Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) o(1) as t ↑ ω.

By virtue of this relation, from (3.20) we obtain the asymptotic representation (3.10). If we consider
that

lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞,

then (3.9) can be written as

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + o(1)] as t ↑ ω

and, therefore, according to the first of the asymptotic relations (3.4), the asymptotic representations
(3.11) and (3.12) hold.
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It remains to establish the validity of the third of conditions (3.1). According to (3.10), from (3.1)
we have

y′′′(t) = α0p(t)φ

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1)) as t ↑ ω. (3.21)

Since φ ∈ ΓY0(Z0), where Z0 = lim
y→Y0
y∈∆Y0

φ(y), which according to the second conditions of (1.2) is equal

either to zero or to +∞, and the function g(y) = φ(y)
φ′(y) can be chosen as its complementary function,

on the basis of Lemma 2.1, taking into account the conditions lim
t↑ω

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
= Y0 and

Φ−1
(
α0

(λ0−1)2

λ0
J(t)

)
∈ ∆Y0

as t ∈ [t0, ω[ , we obtain

lim
t↑ω

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1))
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

φ
(
y + φ(y)

φ′(y) o(1)
)

φ(y)
= 1.

Hence,

φ

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
α0

(λ0−1)2

λ0
J(t)

)
φ′
(
α0

(λ0−1)2

λ0
J(t)

) o(1)) = φ
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

))
as t ↑ ω

and the asymptotic relation (3.21) can be written as

y′′′(t) = α0p(t)φ
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

))
[1 + o(1)] as t ↑ ω.

By virtue of this representation and (3.12),

πω(t)y
′′′(t)

y′′(t)
=

α0(λ0 − 1)2π3
ω(t)p(t)φ

(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
λ0(2λ0 − 1)Φ−1

(
α0

(λ0−1)2

λ0
J(t)

) [1 + o(1)] as t ↑ ω.

According to the third of the asymptotic relations (3.5), we obtain the validity of the third of conditions
(3.9).

Proof of Theorem 3.2. Suppose that there exists a limit (3.13) that is finite or equal to ±∞ and
for some λ0 ∈ R \ {0, 1, 1

2} conditions (3.7), (3.8) and one of the conditions either (3.14) or (3.16)
and (3.17) hold. Under these conditions, we establish the existence of Pω(Y0, λ0)-solutions of the
differential equation (1.1) that admit asymptotic representations (3.9), (3.10), (3.11) and find the
number of such solutions.

First, taking into account the existence of limit (3.13) that is finite or equal to ±∞, we show that
this limit can only be zero. Assume the opposite. Then the relation

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
4
3

=
z(y)

y
2
3

holds, where the function z : ∆Y0
→ R is continuous and such that

lim
y→Y0
y∈∆Y0

z(y) =

{
or c = const ̸= 0,

or ±∞.
(3.22)

Integrating this relation on the interval from y0 to y, we obtain

−3
(φ′(y)

φ(y)

)− 1
3

= c0 +

y∫
y0

z(s)

s
2
3

ds, (3.23)
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where c0 is some constant.

If
Y0∫
y0

z(s)

s
2
3
ds = ±∞, then after dividing by y

1
3 , we have

−3
(yφ′(y)

φ(y)

)− 1
3

=

y∫
y0

z(s)

s
2
3
ds

y
1
3

[1 + o(1)] as y → Y0.

Here, the expression on the left, by virtue of (1.3), tends to zero as y → Y0, and that of on the
right, by virtue of condition (3.22), tends either to a nonzero constant or to ±∞, as according to the
L’Hospital rule in the form of Stolz

lim
y→Y0
y∈∆Y0

y∫
y0

z(s)

s
2
3
ds

y
1
3

= 3 lim
y→Y0
y∈∆Y0

z(y),

which is impossible.

If
Y0∫
y0

z(s)

s
2
3
ds converges, which is possible only in the case Y0 = 0, then we rewrite (3.23) in the form

−3µ0

(φ′(y)

φ(y)

)− 1
3

= c1 +

y∫
0

z(s)

s
2
3

ds,

where c1 = c0 +
0∫

y0

z(s)

s
2
3
ds. Let us prove that c1 = 0. Indeed, if c1 ̸= 0, then from this relation it

follows that
φ′(y)

φ(y)
= −27

c31
+ o(1) as y → 0.

Hence, as a result of integration on the interval from y0 to y, we get

ln |φ(y)| = const+ o(1) as y → 0,

which contradicts the second of conditions (1.2). Hence, c1 = 0 and, therefore, we have

−3
(φ′(y)

φ(y)

)− 1
3

=

y∫
0

z(s)

s
2
3

ds.

Dividing both sides of this equality by y
1
3 , we note that, by virtue of conditions (1.3), the left-hand side

of the resulting relation tends to zero as y → 0, and the right-hand side, by virtue of the L’Hospital
rule and (3.22), tends either to a nonzero constant or to ±∞.

The contradictions obtained in each of the two possible cases lead to the conclusion that

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

3

√(yφ′(y)

φ(y)

)2

= 0. (3.24)

Now, applying the transformation to equation (1.1),

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

y1
H(t)

]
,

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + y2(t)],

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
[1 + y3(t)],

(3.25)



54 Vyacheslav M. Evtukhov, Natalia V. Sharay

we obtain a system of differential equations

y′1 =
H(t)

πω(t)

[
2λ0 − 1

λ0 − 1
− q(t) + h(t)y1 +

2λ0 − 1

λ0 − 1
y2

]
,

y′2 =
1

πω(t)

[(2λ0 − 1

λ0 − 1
− q(t)

)
+ (1− q(t))y2 +

λ0

λ0 − 1
y3

]
,

y′3 =
1

πω(t)

[
2− 2q(t)(λ0 − 1)

2λ0 − 1
+

q(t)

2λ0 − 1
y1 + (2− q(t))y3 +

q(t)

2λ0 − 1
R(t, y1)

]
,

(3.26)

where

h(t) = q(t)
(φ

′(y)
φ(y) )

′

(φ
′(y)

φ(y) )
2

∣∣∣∣∣
y=Φ−1

(
α0

(λ0−1)2

λ0
J(t)

),

R(t, y1) =

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) − 1− y1.

We consider this system of equations on the set

Ω = [t0, ω[×D1 ×D2 ×D3, where Di = {yi : |yi| ≤ 1} (i = 1, 2, 3),

and the number t0 ∈ [a, ω[ is chosen, by taking into account conditions (3.2), (3.3), (3.8), the first two
conditions (3.9) and (1.3), so that

α0
(λ0 − 1)2

λ0
J(t) ∈ ∆Z0

as t ∈ [t0, ω[ ,

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) v1 ∈ ∆Y0
as t ∈ [t0, ω[ , and |v1| ≤ 1.

On this set, the right-hand sides of the system of differential equations (3.26) are continuous and
the function R has on the set [t0, ω[×D1 continuous partial derivatives up to the second order inclusive
with respect to the variable v1. At the same time, we have

R′
y1
(t, y1) =

φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) − 1.

Here φ′ ∈ ΓY0
(Z0) with the complementary function g(y) = φ(y)

φ′(y) . Therefore,

lim
t↑ω

φ′
(
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) y1)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) = lim
y→Y0
y∈∆Y0

φ′(y + y1
φ(y)
φ′(y) )

φ′(y)
= ey1 .

If, for any fixed t ∈ [t0, ω[ , the function R is expanded according to the Maclaurin formula with
the residual Lagrange term to the second-order terms, then we obtain

R(t, v1) =
1

2

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′2

(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
× φ′′

(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)y21 ,
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where |ξ| < |y1|. Here, by virtue of the last of conditions (1.2),

φ′′
(
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)

=

φ′2
(
Φ−1

(
α0

(λ0−1)2

λ0
J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t)) +

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)
[
1 + r1(t, y1)

]
,

where lim
t↑ω

r1(t, y1) = 0 uniformly with respect to y1 ∈ D1. Therefore, considering that the functions

φ,φ′ ∈ ΓY0
(Z0) with the complementary function g(y) = φ(y)

φ′(y) , we have

φ′′
(
Φ−1

(
α0(λ0 − 1)J(t)

)
+

φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ′
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) ξ)

=
φ′2(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ
(
Φ−1(α0

(λ0−1)2

λ0
J(t))

) eξ
[
1 + r2(t, y1)

]
,

where lim
t↑ω

r2(t, y1) = 0 uniformly with respect to y1 ∈ D1. Therefore, (3.23) can be written as

R(t, y1) =
1

2
eξ
[
1 + r1(t, y1)

][
1 + r2(t, y1)

]
y21 .

It is clear from the above that for any ε > 0 there are δ > 0 and t1 ∈ [t0, ω[ such that

|R(t, y1)| ≤ (0.5 + ε)|y1|2 as t ∈ [t1, ω[ and y1 ∈ D1δ =
{
y1 : |y1| ≤ δ

}
. (3.27)

Choosing arbitrarily the number ε > 0, we select for it, taking into account the aforementioned about
the properties of the function R, the numbers δ > 0 and t1 ∈ [t0, ω[ such that inequality (3.27) holds,
and consider system (3.30) on the set

Ω1 =
{
(t, z1, z2, z3) ∈ R4 : t ∈ [t1, ω[ , z1 ∈ [−δ, δ], z2 ∈ [−1, 1], z3 ∈ [−1, 1]

}
.

In addition, in the system of equations (3.26), due to conditions (3.6) − (3.8), (3.13), (1.2) and
(1.3),

lim
t↑ω

q(t) =
2λ0 − 1

λ0 − 1
, lim

t↑ω
h(t) = 0, lim

t↑ω
H(t) = ±∞. (3.28)

To establish the existence of Pω(Y0, λ0)-solutions of equation (1.1) admitting asymptotic repre-
sentations (3.10)–(3.12), it is necessary, according to transformation (3.25), to prove the existence of
solutions that tend to zero, as t ↑ ω, of the system of differential equations (3.26). In order to use the
well-known results on the existence of solutions of quasilinear systems of differential equations that
disappear at a singular point, we reduce system (3.26) to the form that allows us to use such results.

Applying to system (3.26) an additional transformation

v1 = z1, v2 = H− 2
3 (t)z2, v3 = H− 1

3 (t)z3, (3.29)

we get a system of differential equations of the form

z′1 =
H

1
3 (t)

πω(t)

[
f1(t) + c11(t)z1 + c12(t)z2 + c13(t)z3

]
,

z′2 =
H

1
3 (t)

πω(t)

[
f2(t) + c21(t)z1 + c22(t)z2 + c23(t)z3

]
,

z′3 =
H

1
3 (t)

πω(t)

[
f3(t) + c31(t)z1 + c32(t)z2 + c33(t)z3 +

q(t)

2λ0 − 1
V (t, z1)

]
,

(3.30)
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where

f1(t) =
[2λ0 − 1

λ0 − 1
− q(t)

]
H

2
3 (t), f2(t) =

[2λ0 − 1

λ0 − 1
− q(t)

]
H

1
3 (t), f3(t) = 2− 2q(t)(λ0 − 1)

2λ0 − 1
,

c11(t) = h(t)H
2
3 (t), c12(t) =

2λ0 − 1

λ0 − 1
, c13(t) = 0, c21(t) = 0, c23(t) =

λ0

λ0 − 1
,

c22(t) = H− 2
3 (t)

(
1− 1

3
q(t) +

2

3
q(t)h(t)H(t)

)
, c31(t) =

q(t)

2λ0 − 1
, c32(t) = 0,

c33(t) = H− 2
3 (t)

(
2− 2

3
q(t) +

1

3
q(t)h(t)H(t)

)
, V (t, z1) =

q(t)

2λ0 − 1
R(t, z1).

Choosing arbitrarily the number ε > 0, we select for it, taking into account the aforementioned
about the properties of the function R, the numbers δ > 0 and t1 ∈ [t0, ω[ such that inequality (3.27)
holds, and consider system (3.30) on the set

Ω1 =
{
(t, z1, z2, z3) ∈ R4 : t ∈ [t1, ω[ , z1 ∈ [−δ, δ], z2 ∈ [−1, 1], z3 ∈ [−1, 1]

}
.

By virtue of (3.28), the replacement of y1 by z1 and the first of conditions (3.28),

lim
z1→0

V (t, z1)

z21
= 0 uniformly with respect to t ∈ [t1, ω[ .

In addition, according to conditions (3.28), (3.24) and the notation introduced at the beginning of
this section, we have signH(t)πω(t) = µ0ν0πω(t) as t ∈ (a, ω) and

lim
t↑ω

f1(t) = 0, lim
t↑ω

f2(t) = 0,

lim
t↑ω

f3(t) = 0, lim
t↑ω

c11(t) = 0, lim
t↑ω

c12(t) =
(2λ0 − 1)

λ0 − 1
,

lim
t↑ω

c22(t) =
1

λ0 − 1
, lim

t↑ω
c23(t) =

λ0

λ0 − 1
,

lim
t↑ω

c31(t) =
1

λ0 − 1
, lim

t↑ω
c33(t) = 0,

ω∫
t1

|H(τ)| 13
πω(τ)

dτ = ±∞.

This, in particular, implies that the limit matrix of coefficients, standing at v1, v2 and v3 in square
brackets of system (3.30), has the form

C =


0

(2λ0 − 1)

λ0 − 1
0

0 0
λ0

λ0 − 1
1

λ0 − 1
0 0


and its characteristic equation is that of the form

ρ3 − λ0(2λ0 − 1)

(λ0 − 1)3
= 0. (3.31)

If λ0(2λ0−1)(λ0−1) > 0, then in this case the algebraic equation (3.31) has two complex-conjugate
roots with negative real part and one positive real root.

If λ0(2λ0 − 1)(λ0 − 1) < 0, then equation (3.31) has two complex-conjugate roots with a positive
real part and one negative real root.
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Suppose further that conditions (3.13) are satisfied. It follows that for the system of differential
equations (3.30) all the conditions of Theorem 2.2 from [7] are satisfied. According to this theorem,
we find that when µ0ν1λ0 > 0, the system of differential equations (3.29) has a two-parameter family
of solutions (z1, z2, z3) : [t∗, ω[→ R3 (t∗ ∈ [t1, ω[) that disappear at t ↑ ω. To each of them, due
to substitutions (3.25) and (3.29), there corresponds a solution y : [t∗, ω[→ R admitting asymptotic
representations (3.10)–(3.12) and (3.15)–(3.17).

If µ0ν1λ<0, the system of differential equations (3.30) has a one-parameter family of solutions
(z1, z2, z3) : [t∗, ω[→ R3 (t∗ ∈ [t1, ω[) that disappear at t ↑ ω. To each of them, due to substitutions
(3.25) and (3.29), there corresponds a solution y : [t∗, ω[→ R admitting asymptotic representations
(3.10)–(3.12) and (3.15)–(3.17).
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OF FRACTIONAL DIFFERENTIAL EQUATIONS



Abstract. In this paper, we apply the monotone iteration method to establish the existence of a
positive solution for the fractional differential equation

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1,

together with the boundary conditions (BCs)

u(0) = u′(0) = · · · = un−2(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s),

where n > 2, n − 1 < α ≤ n, β ∈ [1, α − 1], Dα
0+ and Dβ

0+ are the standard Riemann–Liouville
fractional derivatives of order α and β, respectively, and f, h : [0, 1]× [0,∞) → [0,∞) are continuous
functions. The sufficient condition provided in this paper is new, interesting and easy to verify. Our
conditions do not require the sublinearity or superlinearity on the nonlinear functions f and h at 0 or
∞. The paper is supplemented with examples illustrating the applicability of our result.

2010 Mathematics Subject Classification. 34B08, 34B10, 34B15, 34B18.

Key words and phrases. Fractional differential equations, Riemann–Liouville derivative, boundary
value problems, positive solutions, monotone iteration method.

ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÌÏÍÏÔÏÍÖÒÉ ÉÔÄÒÀÝÉÉÓ ÌÄÈÏÃÉ, ÒÀÈÀ ÃÀÅÀÃÂÉÍÏÈ
ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ßÉËÀÃÖÒÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1,

ÂÀÍÔÏËÄÁÉÓÈÅÉÓ

u(0) = u′(0) = · · · = un−2(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s)

ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ, ÓÀÃÀÝ n > 2, n− 1 < α ≤ n, β ∈ [1, α− 1], Dα
0+ ÃÀ Dβ

0+, ÛÄÓÀÁÀÌÉÓÀÃ,
α ÃÀ β ÒÉÂÉÓ ÓÔÀÍÃÀÒÔÖËÉ ÒÉÌÀÍ-ËÉÖÅÉËÉÓ ßÉËÀÃÖÒÉ ßÀÒÌÏÄÁÖËÄÁÉÀ ÃÀ f, h : [0, 1] ×
[0,∞) → [0,∞) ÖßÚÅÄÔÉ ×ÖÍØÝÉÄÁÉÀ. ÀÌ ÓÔÀÔÉÀÛÉ ßÀÒÌÏÃÂÄÍÉËÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÀ ÀáÀËÉ,
ÓÀÉÍÔÄÒÄÓÏ ÃÀ ÌÀÒÔÉÅÀÃ ÛÄÓÀÌÏßÌÄÁÄËÉÀ. ÜÅÄÍÉ ÐÉÒÏÁÄÁÉ ÀÒ ÌÏÉÈáÏÅÓ ÀÒÀßÒ×ÉÅÉ f ÃÀ h
×ÖÍØÝÉÄÁÉÓ ØÅÄßÒ×ÉÅÏÁÀÓ ÀÍ ÆÄßÒ×ÉÅÏÁÀÓ 0-ÛÉ ÀÍ ∞-ÛÉ. ÓÔÀÔÉÀÛÉ ÀÂÒÄÈÅÄ ÌÏÚÅÀÍÉËÉÀ
ÌÀÂÀËÉÈÄÁÉ ÜÅÄÍÉ ÛÄÃÄÂÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ.



Monotone Iterative Method for Solutions of Fractional Differential Equations 61

1 Introduction
The aim of the present paper is to demonstrate the applications of the monotone iteration method for
studying the existence of at least one positive solution of the nonlinear fractional differential equation

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1, (1.1)

together with the boundary conditions (BCs)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+u(1) =

1∫
0

h(s, u(s)) dA(s), (1.2)

where n − 1 < α ≤ n, n > 2, β ∈ [1, α − 1] is fixed, q : (0, 1) → [0,∞) is a continuous function,

f, h : (0, 1) × [0,∞) → [0,∞) are continuous functions,
1∫
0

h(s, u(s)) dA(s) is a Riemann–Stieltjes

integral with A being nondecreasing and of bounded variation, and Dα
0+, Dβ

0+ are the standard
Riemann–Liouville fractional derivatives of order α and β, respectively.

We define the fractional derivative and fractional integral for a function F of order γ, γ ∈ [0,∞)
as follows.
Definition 1.1. The (left-sided) fractional integral of order γ > 0 of a function F : (0,∞) → R is
given by

(Iγ0+F )(t) =
1

Γ(γ)

t∫
0

(t− s)γ−1F (s) ds, t > 0,

provided that the right-hand side is pointwise defined on (0,∞), where Γ(γ) is the Euler Gamma
function, defined by Γ(γ) =

∞∫
0

tγ−1e−t dt, γ > 0.

Definition 1.2. The Riemann–Liouville fractional derivative of order γ > 0 of a function F :
(0,∞)→ R is given by

(Dγ
0+F )(t) =

( d

dt

)n

(In−γ
0+ F )(t) =

1

Γ(n− γ)

( d

dt

)n
t∫

0

F (s)

(t− s)γ−n+1
ds

for t > 0, where n = [[γ]] + 1 ([[γ]] is the largest integer, not greater than γ), provided that the
right-hand side is pointwise defined on (0,∞).
Definition 1.3. By a positive solution of (1.1), (1.2) we mean a function u ∈ C[0, 1] satisfying
(1.1), (1.2) with u(t) > 0 for all t ∈ (0, 1].

The fixed point theorems have been playing a crucial role in establishing the solutions of fractional
differential equations. For instance, one may refer to [4–6, 8, 12, 15–20] on the use of a fixed point in-
dex property, Krasnoselskii’s, Avery–Peterson’s, Schauder’s fixed point theorems, the Leray–Schauder
alternative, and Guo–Krasnoselskii’s fixed point theorem to study the existence of at least one, two
or three positive solutions of fractional differential equations of form (1.1) with nonlinear BCs of form
(1.2). For a system of fractional differential equations with integral boundary conditions of coupled
or uncoupled type, one may refer to [1, 9–11,13,14].

In their recent work [16], Padhi et al. have used Schauder’s fixed point theorem and the Leray–
Schauder’s alternative along with the Krasnoselskii’s fixed point theorem to study the existence and
uniqueness of positive solutions of (1.1), (1.2). Using the Avery–Peterson’s fixed point theorem, the
authors established the existence of at least three positive solutions of (1.1), (1.2).

In [16], Padhi et al. have shown that the boundary value problem (1.1), (1.2) is equivalent to the
integral equation

u(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s),
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where G(t, s) is the Green’s function given by

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.

Further, it is proved in [16] that the Green’s function G(t, s) satisfies the inequality

tα−1G(1, s) = tα−1 max
0≤t≤1

G(t, s) ≤ G(t, s) ≤ max
0≤t≤1

G(t, s) = G(1, s), (1.3)

where

G(1, s) =
1

Γ(α)
(1− s)α−β−1

[
1− (1− s)β

]
. (1.4)

To establish our results, we assume that the following conditions are satisfied:

(A1) f, h ∈ C([0, 1]× [0,∞), [0,∞));

(A2) q ∈ C((0, 1), [0,∞)), and q does not vanish identically on any subinterval of (0, 1];

(A3) for any positive numbers r1 and r2 with r1 < r2, there exist continuous functions pf and
ph : (0, 1) → [0,∞) such that

f(t, u) ≤ pf (t), h(t, u) ≤ ph(t) for 0 ≤ t ≤ 1,
r1

22(α−1)
≤ u ≤ r2,

and
1∫

0

G(1, s)q(s)pf (s) ds+
Γ(α− β)

Γ(α)

1∫
0

ph(s) dA(s) < ∞,

where G(1, s) is given in (1.4).

In this paper, we apply the monotone iterative method to obtain sufficient conditions on the
existence of one positive solution and an iterative scheme for approximating the solutions. The
following theorem states the main result of this paper.

Theorem 1.1. Assume that there exist constants r and R with 0 < 2r < R such that the following
conditions are satisfied:

(A4) r
1∫
0

G(1, s)q(s) ds

≤ f(t, u) ≤ f(t, v) ≤ R

2
1∫
0

G(1, s)q(s) ds

for µ2r ≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1

and

(A5) h(t, u) ≤ h(t, v) ≤ Γ(α)R

2Γ(α− β)
1∫
0

dA(s)

for µ2r ≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1.

Then problem (1.1), (1.2) has at least one positive solution.
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2 Preliminaries
In this section, we provide some basic concepts on the cones in a Banach space and the monotone
iteration method.

Definition 2.1. Let X be a real Banach space. A nonempty convex closed set P ⊂ X is said to be
a cone provided that

(i) ku ∈ P for all u ∈ P and all k ≥ 0;

(ii) u,−u ∈ P implies u = 0.

In order to prove Theorem 1.1, we use the following well known monotone iteration method im-
ported from [2,3, 7] or Theorem 7.A in [21].

Theorem 2.1. Let X be a real Banach space and K be a cone in X. Assume that there exist constants
v0 and w0 with v0 ≤ w0 and [v0, w0] ⊂ X such that

(i) T : [v0, w0] → X is completely continuous;

(ii) T is a monotonic increasing operator on [v0, w0];

(iii) v0 is a lower solution of T , that is, v0 ≤ Tv0;

(iv) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then T has a fixed point and the iterative sequences vn+1 = Tvn and wn+1 = Twn, n = 1, 2, 3, . . . ,
with

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0

converges to v and w, respectively, which are the greatest and smallest fixed points of T in [v0, w0].

In this paper, we let X = C[0, 1] to be the Banach space endowed with the norm

∥u∥ = max
0≤t≤1

|u(t)|.

Define a cone K on X as K = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]} and an operator T : K → X as

Tu(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s). (2.1)

Then it is easy to verify that u(t) is a positive solution of problem (1.1), (1.2) if and only if u(t) is a
fixed point of the operator T on the cone K.

Let g(s) = G(1, s) with
1∫

1/2

g(s) ds > 0 and c(t) = tα−1. Then (1.3) can be rewritten as

c(t)g(s) ≤ G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. (2.2)

Since it is useful to work on a smaller cone than K, we consider a cone K1 of the type

K1 =
{
u ∈ X : u(t) ≥ 0 and min

t∈[a,b]
u(t) ≥ ca,b∥u∥

}
,

where [a, b] is some subinterval of [0, 1] and ca,b > 0. Condition (2.2) ensures that for [a, b] ⊂ [0, 1], if
ca,b = min{c(t) : t ∈ [a, b]} > 0, then T maps K into K1. Since (2.2) is valid for any t ∈ [0, 1], we can
work on the subinterval [1/2, 1] ⊂ [0,1] for which the inequality

µG(1, s) ≤ G(t, s) ≤ G(1, s)



64 Seshadev Padhi, B. S. R. V. Prasad, Satyam Narayan Srivastava, Shasanka Dev Bhuyan

replaces (1.3) or (2.2), where

µ =
1

2α−1
= min

t∈[1/2,1]
c(t) = min

t∈[1/2,1]
tα−1.

In this case, the operator T , defined in (2.1), maps the cone K into the subcone P , where

P =
{
u ∈ C[0, 1] : min

t∈[1/2,1]
u(t) ≥ µ∥u∥

}
. (2.3)

Also, u(t) is a positive solution of problem (1.1), (1.2) if and only if u(t) is a fixed point of the operator
T on the subcone P .

3 Proof of Theorem 1.1
To prove our theorem, we consider the cone P , defined in (2.3). Let u ∈ P . Then

∥Tu∥ ≤
1∫

0

G(1, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

and

min
t∈[1/2,1]

Tu(t) ≥
(

min
t∈[1/2,1]

tα−1
)[ 1∫

0

G(1, s)q(s)f(s, u(s) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

]

= µ

[ 1∫
0

G(1, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)

1∫
0

h(s, u(s)) dA(s)

]
≥ µ∥Tu∥

implies that T : P → P . Also, T is well defined.
Set v0 = µ2r and w0 = R; then v0 < w0. We now prove that T : [v0, w0] → P is completely

continuous. Let {un} ∈ [v0, w0] and u ∈ [v0, w0] be such that lim
n→∞

un = u. Then µ2r ≤ un ≤ R and
µ2r ≤ u ≤ R for t ∈ [0, 1]. Since f is continuous on [0, 1]× [µ2r,R], for ε > 0 there exists δ1 > 0 with
|u1 − u2| < δ1 for u1, u2 ∈ [µ2r,R], and we have

|f(t, u1)− f(t, u2)| <
ε

2
1∫
0

G(1, s)q(s) ds

, t ∈ [0, 1].

Similarly, from the continuity of h on [0, 1]× [µ2r,R], we get

|h(t, u1)− h(t, u2)| <
Γ(α)ε

2Γ(α− β)
1∫
0

dA(s)

, t ∈ [0, 1],

for ε > 0 and δ2 > 0 with |u1 − u2| < δ2, u1, u2 ∈ [µ2r,R]. Set δ = min{δ1, δ2}; then it follows
from limn→∞ un = u that there exists a positive number N such that for every n ≥ N , we have
|un(t)− u(t)| < δ, t ∈ [0, 1]. Then the inequality

|Tun(t)− Tu(t)| ≤
1∫

0

G(1, s)q(s)
∣∣f(s, un(s))− f(s, u(s))

∣∣ ds
+

Γ(α− β)

Γ(α)

1∫
0

∣∣h(s, un(s))− h(s, u(s))
∣∣ dA(s) < ε
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shows that T : [v0, w0] → P is continuous.
Setting

f∗ = max
t∈[0,1],u∈[µ2r,R]

f(t, u) and h∗ = max
t∈[0,1], u∈[µ2r,R]

h(t, u),

we have

|Tu(t)| ≤ f∗
1∫

0

G(1, s)q(s) ds+ h∗ Γ(α− β)

Γ(α)

1∫
0

dA(s).

Thus, T is uniformly bounded on P .
Since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous there. Similarly, the function

tα−1 is uniformly continuous on [0, 1], because it is continuous there. So, for every ε > 0, there exists
δ > 0 such that |G(t1, s) − G(t2, s)| < ε and |tα−1

1 − tα−1
2 | < ε for |t1 − t2| < δ, (t1, s), (t2, s) ∈

[0, 1] × [0, 1]. Consequently, for any u ∈ [µ2r,R] := [v0, w0] and t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we
have

|Tu(t1)− Tu(t2)| ≤
1∫

0

|G(t1, s)−G(t2, s)|q(s)f(s, u(s)) ds

+
Γ(α− β)

Γ(α)
|tα−1
1 − tα−1

2 |
1∫

0

h(s, u(s)) dA(s) < ε

[ 1∫
0

q(s)pf (s) ds+
Γ(α− β)

Γ(α)

1∫
0

ph(s) dA(s)

]
.

Hence the family {Tx : x ∈ [v0, w0]} is equicontinuous on [0, 1], and so T is relatively compact. By
the Arzela–Ascoli theorem, T : [v0, w0] → P is completely continuous.

Let u, v ∈ [v0, w0] be such that u ≤ v. Then v0 ≤ u ≤ v ≤ w0. By (A4) and (A5), we have

Tu(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, u(s)) dA(s)

≤
1∫

0

G(t, s)q(s)f(s, v(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, v(s)) dA(s)

= Tv(t).

Thus, T is monotonic increasing in [v0, w0].
Now we prove that v0 = µ2r is a lower solution of T , that is, v0 ≤ Tv0. Indeed, for v0 ∈ P , we

have Tv0 ∈ P and so

Tv0(t) ≥ µ∥Tv0(t)∥ ≥ µ min
t∈[1/2,1]

Tv0(t)

= µ

(
min

t∈[1/2,1]

1∫
0

G(t, s)q(s)f(s, v0(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, v0(s)) dA(s)

)

≥ µ

1∫
0

(
min

t∈[1/2,1]
G(t, s)

)
q(s)f(s, v0(s)) ds ≥ µ2

1∫
0

G(1, s)q(s)f(s, u(s)) ds ≥ µ2r = v0(t).

Finally, we show that w0 = R is an upper solution of T , that is, Tw0 ≤ w0. Clearly,

Tw0(t) ≤
1∫

0

G(1, s)q(s)f(s, w0(s)) ds+
Γ(α− β)

Γ(α)
tα−1

1∫
0

h(s, w0(s)) dA(s) ≤ R = w0(t),

so w0 = R is an upper solution of T .
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If we construct the sequences {vn}∞n=1 and {wn}∞n=1 as

vn = Tvn−1, wn = Twn−1, n = 1, 2, . . . ,

then it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0,

and {vn}∞n=1 and {wn}∞n=1 converge, respectively, to v and w, which are the greatest and smallest
fixed points of T in [v0, w0]. Since v ≤ w, Theorem 2.1 guarantees that w is the positive solution of
problem (1.1), (1.2). This completes the proof of the theorem.

Remark. One may observe from the assumptions (A4) and (A5) that we do not require any superlin-
earity or sublinearity on f and h either at 0 or ∞. The only assumption we require on f and g is that
they must be monotonically nondecreasing in the subinterval [1/2, 1], which shows that the functions
f and h may be decreasing or nonincreasing and also may be identically zero or zero at some points
in [0, 1/2). This fact is evident from Examples 4.1 and 4.2.

4 An Illustration
In this section, we provide two examples illustrating Theorem 1.1.

Example 4.1. Consider the fractional differential equation

D
5/2
0+ u(t) + Γ

(5
2

)[
1− (1− t)3/2

]−1
f(t, u(t)) = 0, 0 < t < 1, (4.1)

with the multipoint BCs

u(0) = u′(0) = 0, D
3/2
0+ u(1) =

1∫
0

h(s, u(s)) dA(s), (4.2)

where

A(t) =



t if t ∈
[
0,

4

9

)
∪
[5
9
,
8

9

)
,

4

9
if t ∈

[4
9
,
5

9

)
,

8

9
if t ∈

[8
9
, 1
]
,

(4.3)

f(t, u) =


1

2
(35 + e−

1
u−32 ) if u > 32,

35

2
if u ≤ 32,

and

h(t, u) =

{
28 + e−

1
u−2 if u > 2,

28 if u ≤ 2.

Here α = 5
2 , β = 3

2 and q(t) = Γ( 52 )[1− (1− t)3/2]−1. Clearly,

G(1, t) =
1

Γ( 52 )

[
1− (1− t)3/2

]
, 0 < t ≤ 1,

implies that q(t)G(1, t) ≡ 1, hence
1∫

0

G(1, t)q(t) dt ≡ 1.
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Also,
µ =

1

2α−1
=

1

23/2
=

1

2
√
2
.

For u ≤ v, we have e−
1

u−32 ≤ e−
1

v−32 , which implies that f(t, u) ≤ f(t, v) for u ≤ v. In a similar way,
we can prove that h(t, u) ≤ h(t, v) for u ≤ v.

Set r = 16 and R = 40; then

f(t, u) ≥ 35

2
= 17.5 > 16 = r

and
f(t, u) ≤ 1

2
(35 + e−

1
u−32 ) ≤ 1

2
(35 + e−

1
40−32 ) ≤ 1

2
(35 + e−

1
8 ) ≤ 18 < 20 =

R

2

imply that
r ≤ f(t, u) ≤ f(t, v) ≤ R

2
for r

8
≤ u ≤ v ≤ R and 1

2
≤ t ≤ 1,

that is, condition (A4) is satisfied. Similarly, h(t, u) ≤ 29 < 135
8

√
π implies that condition (A5) is

satisfied. Thus, by Theorem 1.1, problem (4.1), (4.2) has at least two positive solutions.

Example 4.2. Consider the fractional differential equation (4.1) together with the BCs (4.2) and
A(t) in (4.3) with f(t, u(t)) = 1

2 + t sin u
3 and h(t, u) = t + 1

2 + 0.88 sinu. Set r = 1
2 and R = 3.

Since sinu is an increasing function for 1
16 ≤ u ≤ 1, then f(t, u) and h(t, u) satisfy the properties

f(t, u) ≤ f(t, v) and h(t, u) ≤ h(t, v) for u ≤ v, 1
2 ≤ t ≤ 1 and 1

16 = µ2r ≤ u ≤ v ≤ R = 3. Further,
since sinu > 0 for 1

16 ≤ u ≤ 3, we have

r ≤ 1

2
≤ 1

2
+ t sin u

3
= f(t, u) ≤ 1

2
+ sin 1 ≤ 3

2
=

R

2

and

h(t, u) ≤ 1 +
1

2
+ 0.88 sinu

≤ 1 +
1

2
+ (0.88)(0.8415)

≤ 2.24049

≤ 2.243216

=
27

√
π

64
R,

that is, conditions (A4) and (A5) are satisfied. Hence, by Theorem 1.1, problem (4.1), (4.2), with the
considered f(t, u(t)) and h(t, u), has at least two positive solutions.

5 Discussion and Conclusions
The fixed point theorems are playing a vital role in studying, analysing the systems of fractional
differential equations and also in establishing positive solutions. These fixed point theorems are also
helpful in examining the existence/non-existence conditions for various coexistence equilibria in many
dynamical systems with applications to natural, biological and epidemiological sciences. Many of the
existing fixed point theorems require the superlinearity and sublinearity conditions.

In [16], Padhi et al. applied Schauder’s fixed point theorem (see [16, Theorems 4.2 and 4.4]) to
prove the existence of a positive solution of (1.1), (1.2), where the function f is assumed to be either
superlinear or sublinear at 0 or ∞. In another attempt, Theorem 4.5 in [16] requires the existence of
two reals r1 and r2 with 0 < r1 < r2 such that either one of the following conditions is required to
prove the existence of a positive solution of (1.1), (1.2):
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(A6)

r1 ≤
1∫

0

G(1, s)q(s)f1(s, r1) ds+
Γ(α− β)

Γ(α)

1∫
0

h1(s, r1) dA(s) < ∞,

1∫
0

G(1, s)q(s)f2(s, r2) ds+
Γ(α− β)

Γ(α)

1∫
0

h2(s, r2) dA(s) ≤ r2,

(A7)

1∫
0

G(1, s)q(s)f2(s, r1) ds+
Γ(α− β)

Γ(α)

1∫
0

h2(s, r1) dA(s) < ∞,

r2 ≤
1∫

0

G(1, s)q(s)f1(s, r2) ds+
Γ(α− β)

Γ(α)

1∫
0

h1(s, r2) dA(s) < ∞,

where

f1(t, r) =min
{
f(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

f2(t, r) =max
{
f(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

h1(t, r) =min
{
h(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1,

h2(t, r) =max
{
h(t, u) : tα−1r ≤ u ≤ r

}
, 0 < t < 1.

The present work proposes the fixed point theorem with the use of the monotone iterative method
for establishing the existence of one positive solution and also the method for approximating the solu-
tion. In this process, the obtained sufficient conditions require no superlinearity and/or sublinearity
on the functions under consideration at 0 or ∞. Thus, Theorem 1.1 cannot be comparable with Theo-
rems 4.2 and 4.4 in [16]. Instead, the conditions in Theorem 1.1 require the only monotonic increase of
the functions in the subinterval [1/2, 1] and they may decrease or nonincrease or identically be zero in
the other half of the interval [0, 1/2). This shows that assumptions (A4) and (A5) are not comparable
with (A6) and (A7). We strongly feel that Theorem 1.1 simplifies the calculations in establishing the
existence of positive solutions of the boundary value fractional differential equations.
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ON THE REDUCTION
OF THE DIFFERENTIAL MULTI-FREQUENCY SYSTEM
WITH SLOWLY VARYING PARAMETERS TO A SPECIAL KIND



Abstract. For the multi-frequency system of the differential equations the right-hand sides of which
are represented by a multiple Fourier series with slowly varying coefficients, the conditions are obtained
under which there exists the transformation with the coefficients of similar structure leading this
system to a system with slowly varying right-hand sides.
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ÒÄÆÉÖÌÄ. ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÌÒÀÅÀËÓÉáÛÉÒÉÀÍÉ ÓÉÓÔÄÌÉÓÈÅÉÓ, ÒÏÝÀ ÌÀÒãÅÄÍÀ
ÌáÀÒÄÄÁÉ ßÀÒÌÏÉÃÂÉÍÄÁÀ ×ÖÒÉÄÓ ãÄÒÀÃÉ ÌßÊÒÉÅÄÁÉÈ ÍÄËÀÃ ÝÅÀËÄÁÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ,
ÌÉÙÄÁÖËÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÃÄÓÀÝ ÀÒÓÄÁÏÁÓ ÂÀÒÃÀØÌÍÀ ÀÍÀËÏÂÉÖÒÉ ÓÔÒÖØÔÖÒÉÓ ÌØÏÍÄ ÊÏÄ×É-
ÝÉÄÍÔÄÁÉÈ, ÒÏÌÄËÓÀÝ ÄÓ ÓÉÓÔÄÌÀ ÌÉäÚÀÅÓ ÓÉÓÔÄÌÀÌÃÄ ÍÄËÀÃ ÝÅÀËÄÁÀÃÉ ÌÀÒãÅÄÍÀ ÌáÀÒÄÄ-
ÁÉÈ.
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1 Introduction
In the nonlinear mechanics, the problem of reducing a multi-frequency system of differential equations

dθ

dt
= ω + f(θ), (1.1)

where θ ∈ Rm, ω ∈ Rm, f(θ) ∈ Rm is a 2π-periodic vector-function, by the transformation of kind

θ = φ+ w(φ), (1.2)

where w(φ) is also a 2π-periodic vector-function, to the form

dφ

dt
= ν, (1.3)

ν is a constant vector, is well known.
This problem is the subject of numerous studies (see, e.g., [1,3,4]). As is known, the main difficulty

here is the problem of small denominators: the scalar product (k, ω) (k = colon(k1, . . . , km), kj ∈ Z)
may be arbitrarily small and it turns out to be in the denominators of the expressions representing
the solution in terms of some series or iterative processes. Therefore, the vector ω is imposed the
condition

|(k, ω)| ≥ C

∥k∥m+1
, (1.4)

C is a positive constant, ∥k∥ = |k1| + · · · + |km|. The use of this condition in turn generates “large
numerators” that can lead to the divergence of these series and processes. This difficulty is overcome
by the method of accelerated convergence [1].

In this paper we consider the system of kind

dx

dt
= (Λ(t) +A(t, θ))x,

dθ

dt
= ω(t) + b(t, θ), (1.5)

in which t belongs to a finite, but arbitrarily large interval, Λ(t) is a diagonal matrix, and the elements
of a small matrix A(t, θ) and a small vector b(t, θ) are represented by an absolutely and uniformly
convergent multiple Fourier-series with respect to θ, with slowly varying coefficients, and the variable
vector ω(t) is not subject to the condition of kind (1.4). For system (1.5), under certain conditions
we have proved the existence of the transformation of kind

x = (E +W (t, φ))y, θ = φ+ w(t, φ), (1.6)

where the elements of the matrix W (t, θ) and vector w(t, θ) are of similar structure leading system
(1.5) to the form

dy

dt
= (Λ(t) +D(t))y,

dφ

dt
= ω(t) + ν(t), (1.7)

where the elements of the diagonal matrix D(t) and vector ν(t) are slowly varying and do not depend
on φ. The properties of W (t, φ) and w(t, φ) are investigated depending on the properties of A(t, θ)
and b(t, θ). However, the ideas of the method of accelerated convergence are still used, because instead
of the small denominators, due to the vector ω(t), here arise small denominators generated by another
circumstances.

2 Basic notation and definitions
Let ε ∈ (0, 1], τ = εt ∈ [0, L] (L ∈ (0,+∞)), G = [0, L]× (0, 1].

Definition 2.1. We say that a scalar function p(τ, ε), generally complex-valued, belongs to the class
S, if it continuous with respect to τ ∈ [0, L] and bounded with respect to ε ∈ (0, 1].

Thus, sup
G

|p(τ, ε)| < +∞.
Slowly variability of the function is understood here in the sense of its belonging to the class S.
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Definition 2.2. We say that a vector-function h(τ, ε) = colon(h1(τ, ε), . . . , hm(τ, ε)) belongs to the
class S1, if hj(τ, ε) ∈ S (j = 1, . . . ,m).

Under the norm of a vector h(τ, ε) ∈ S1 is understood

∥h(τ, ε)∥0 = max
1≤j≤N

sup
τ∈[0,L]

|hj(τ, ε)|.

This norm may depend on ε.

Definition 2.3. We say that a scalar real function f(τ, ε, θ) belongs to the class F (M ;α; θ), if

f(τ, ε, θ) =
∑

k∈Zm

fn(τ, ε) exp(i(k, θ)),

Zm = {k = colon(k1, . . . , km), kj ∈ Z}, θ = colon(θ1, . . . , θm) is the real vector, (k, θ) = k1θ1 + · · · +
kmθm, fk(τ, ε) ∈ S, and

sup
τ∈[0,L]

|fk(τ, ε)| ≤ M exp
(
− α

ε
∥k∥

)
,

∥n∥ = |k1|+ · · ·+ |km|; M ∈ (0,+∞), α ∈ (0, 1) is a constant not depending on ε.

Definition 2.4. We say that a real vector-function h(τ, ε, θ) = colon(h1(τ, ε, θ), . . . , hm(τ, ε, θ)) be-
longs to the class F1(M ;α, θ), if hj(τ, ε, θ) ∈ F (M ;α; θ) (j = 1, . . . ,m).

For the vector-function h(τ, ε, θ) ∈ F1(M ;α; θ) and vector k ∈ Zm we denote

Γk[h(τ, ε, θ)] =
1

(2π)m

2π∫
0

· · ·
2π∫
0

h(τ, ε, θ)e−i(k,θ) dθ1 · · · θm,

h(τ, ε, θ) = Γ0⃗[h(τ, ε, θ)],
˜h(τ, ε, θ) = h(τ, ε, θ)− h(τ, ε, θ),

where 0⃗ is a null-vector of dimension m.

Definition 2.5. We say that a real matrix-function A(τ, ε, θ) = (ajk(τ, ε, θ))j,k=1,...,n belongs to the
class F2(M ;α, θ), if ajk(τ, ε, θ) ∈ F (M ;α; θ) (j, k = 1, . . . , n).

For the matrix A(τ, ε, θ) ∈ F2(M ;α; θ) and vector h(τ, ε) ∈ S1 we denote(∂A
∂θ

, h
)
=

m∑
j=1

∂A

∂θj
hj(τ, ε).

3 Statement of the problem
Consider the following system of differential equations:

dx

dt
= (Λ(τ, ε) +A(τ, ε, θ))x,

dθ

dt
= ω(τ, ε) + b(τ, ε, θ), (3.1)

where τ, ε ∈ G, x ∈ Rn, θ ∈ Rm, Λ(τ, ε) = diag(λ1(τ, ε), . . . , λn(τ, ε)), the real functions λj(τ, ε)
belong to the class S, A(τ, ε, θ) ∈ F2(M ;α; θ), ω(τ, ε) ∈ Rm, ω(τ, ε) ∈ S1, b(τ, ε, θ) ∈ F1(M ;α; θ)
(M ∈ (0, 1)).

We study the problem on the existence, construction and properties of the transformation of kind

x = (En +W (τ, ε, φ))y, θ = φ+ w(τ, ε, φ), (3.2)

where y ∈ Rn, φ ∈ Rm, En is a unit (n × n)-matrix, w(τ, ε, φ) ∈ F1(M
∗
1 ;α

∗;φ), W (τ, ε, φ) ∈
F2(M

∗
2 , α

∗, φ) (M∗
1 ,M

∗
2 , α

∗ are to be defined), whicht leads system (3.1) to the form

dy

dt
= (Λ(τ, ε) +D(τ, ε))y,

dφ

dt
= ω(τ, ε) + ∆(τ, ε), (3.3)

where D(τ, ε) = diag(d1(τ, ε), . . . , dn(τ, ε)), dj(τ, ε) ∈ S (j = 1, . . . , n), ∆(τ, ε) ∈ S1.
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4 Auxiliary results
Lemma 4.1. Let the functions p(τ ; ε), q(τ, ε) belong to the class S, c = const. Then the functions
cp(τ, ε), p(τ, ε)± q(τ, ε), p(τ, ε)q(τ, ε) belong to the class S, as well.

Lemma 4.2. Let 0 < M1 < M2, 0 < α1 < α2 < 1. Then F (M1;α; θ) ⊂ F (M2;α; θ), F (M ;α1, θ) ⊃
F (M ;α2; θ).

Lemma 4.3. Let fj(τ, ε; θ) ∈ F (Mj ;α; θ) (j = 1, . . . , p), c1, . . . , cp be the constants. Then
p∑

j=1

cjfj(τ, ε, θ) ∈ F
( p∑

j=1

|cj |Mj ;α; θ
)
.

Lemma 4.4. Let p(τ, ε) ∈ S, f(τ, ε, θ) ∈ F (M ;α; θ), and sup
G

|p(τ, ε)| ≤ P . Then

p(τ, ε)f(τ, ε, θ) ∈ F (PM ;α; θ).

The validity of Lemmas 4.1–4.4 is obvious.

Lemma 4.5. Let f(τ, ε, θ) ∈ F (M1;α; θ), g(τ, ε, θ) ∈ F (M2;α; θ). Then

f(τ, ε, θ)g(τ, ε, θ) ∈ F
(3mM1M2

δm
;α− δ; θ

)
,

where δ ∈ (0, α).

Proof. We have

f(τ, ε, θ) =
∑

k∈Zm

fk(τ, ε)e
i(k,θ), g(τ, ε, θ) =

∑
k∈Zm

gk(τ, ε)e
i(k,θ),

and
sup

τ∈[0,L]

|fk(τ, ε)| ≤ M1e
−α

ε ∥k∥, sup
τ∈[0,L]

|gk(τ, ε)| ≤ M2e
−α

ε ∥k∥.

Hence
f(τ, ε, θ)g(τ, ε, θ) =

∑
k∈Zm

( ∑
l∈Zm

fk−l(τ, ε)gl(τ, ε)
)
ei(k,θ),

where l = colon(l1, . . . , lm), k − l = colon(k1 − l1, . . . , km − lm).
We have∑
l∈Zm

sup
τ∈[0,L]

|fk−l(τ, ε)| sup
τ∈[0,L]

|gl(τ, ε)| ≤ M1M2

∑
l∈Zm

exp
(
− α

ε
(∥k − l∥+ ∥l∥)

)
= M1M2

∞∑
l1=−∞

· · ·
∞∑

lm=−∞

exp
(
− α

ε

(
|k1 − l1|+ |l1|+ · · ·+ |km − lm|+ |lm|

))
= M1M2

( ∞∑
l1=−∞

exp
(
− α

ε
(|k1 − l1|+ |l1|)

))
· · ·

( ∞∑
lm=−∞

exp
(
− α

ε
(|km − lm|+ |lm|)

))
.

We denote

A(kj) =

∞∑
s=−∞

exp
(
− α

ε
(|kj − s|+ |s|)

)
.

1. Let kj = 0. We have

A(0) =

∞∑
s=−∞

exp
(
− 2α

ε
|s|

)
= 1 + 2

∞∑
s=1

exp
(
− 2α

ε
s
)

= 1 +
2e−

2α
ε

1− e−
2α
ε

= 1 +
2

e
2α
ε − 1

< 1 +
1
α
ε

= 1 +
ε

α
< 1 +

1

α
=

α+ 1

α
<

2

α
<

2

δ
.
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2. Let kj > 0. Then

A(kj) =

−1∑
s=−∞

exp
(
− α

ε
(|kj − s|+ |s|)

)
+

kj∑
s=0

exp
(
− α

ε
(|kj − s|+ |s|)

)
+

∞∑
s=kj+1

exp
(
− α

ε
(|kj − s|+ |s|)

)
=

−1∑
s=−∞

exp
(
− α

ε
(kj − s− s)

)

+

kj∑
s=0

exp
(
− α

ε
(kj − s+ s)

)
+

∞∑
s=kj+1

exp
(
− α

ε
(s− kj + s)

)
= e−

α
ε nj

∞∑
s=1

e−
2α
ε s + (kj + 1)e−

α
ε kj + e

α
ε kj

∞∑
s=kj+1

e−
2α
ε s =

2e−
α
ε kj

e
2α
ε − 1

+ (kj + 1)e−
α
ε kj .

3. Let kj < 0. Similarly to the previous arguments, we show that

A(kj) =
2e

α
ε kj

e
2α
ε − 1

+ (1− kj)e
α
ε kj .

Thus, in case kj ̸= 0,

A(kj) =
2e−

α
ε |kj |

e
2α
ε − 1

+ (1 + |kj |)e−
α
ε |kj |.

Hence
A(kj) <

e−
α
ε |kj |

α
ε

+ (1 + |kj |)e−
α
ε |kj | =

( 1
α
ε

+ 1 + |kj |
)
e−

α
ε |kj |.

We choose a constant M0 from the condition( ε

α
+ 1 + |kj |

)
e−

α
ε |kj | ≤ M0e

−α−δ
ε |kj |,

where δ ∈ (0, α). We estimate
max
|kj |≥1

( ε

α
+ 1 + |kj |

)
e−

δ
ε |kj |.

For the case x ≥ 1, let us investigate the function

u(x) =
( ε

α
+ 1 + x

)
e−

δ
ε x.

We have
u(1) =

( ε

α
+ 2

)
e−

δ
ε , u′(x) =

(
1− δ

α
− δ

ε
− δ

ε
x
)
e−

δ
ε x.

The critical point is x0 = −1 + ε/δ − ε/α. It is easy to establish that this is the maximum point of
the function u(x). In case x0 ≤ 1, i.e., εα/(2α+ ε) ≤ δ < α, we get

max
[1,+∞)

u(x) = u(1) =
( ε

α
+ 2

)
e−

δ
ε .

In case x0 > 1, i.e., 0 < δ < εα/(2α+ ε), we obtain

max
[1,+∞)

u(x) = u(x0) =
ε

δ
e−(1− δ

α− δ
ε ).

Anyway,
max

[1,+∞)
u(x) <

3

δ
,

therefore we can state that M0 = 3/δ.
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Thus, if kj ̸= 0, then
A(kj) <

3

δ
e−

α−δ
ε |kj |. (4.1)

By virtue of the estimation for A(0), we find that estimation (4.1) is true for all kj ∈ Z.
We now obtain ∑

l∈Zm

sup
τ∈[0,L]

|fk−l(τ, ε)| sup
τ∈[0,L]

|gl(τ, ε)| ≤ M1M2
3m

δm
e−

α−δ
ε ∥k∥,

and thus Lemma 4.5 is proved.

Lemma 4.6. Let f(τ, ε, θ) ∈ F (M1;α; θ), g(τ, ε, θ) ∈ F (M2;α− δ; θ), δ ∈ (0, α). Then

f(τ, ε, θ)g(τ, ε, θ) ∈ F
(4m
δm

M1M2;α− δ; θ
)
.

The proof is analogous to that of Lemma 4.5.
Corollary of Lemmas 4.5 and 4.6. Let fj(τ, ε, θ) ∈ F (Mj ;α; θ) (j = 1, . . . , p, p ≥ 2). Then
f1(τ, ε, θ) · · · fp(τ, ε, θ) ∈ F (Vp;α− δ; θ), where

Vp =
4m(p−1)

δm(p−1)
M1 · · ·Mp.

Lemma 4.7. Let
f(τ, ε, θ) =

∑
k∈Zm

fk(τ, ε)e
i(k,θ) ∈ F (M ;α; θ).

Then
∂sf(τ, ε, θ)

∂θs
=

∂sf(τ, ε, θ)

∂θs11 · · · ∂θsmm
∈ F

( ss

δses
M ;α− δ; θ

)
,

where s = s1 + · · ·+ sm ≥ 1, δ ∈ (0, α).

Proof. We have

∂sf(τ, ε, θ)

∂θs11 · · · ∂θsmm
=

∑
k∈Zm

(∥k∥≥1)

(ik1)
s1 · · · (ikm)smfk(τ, ε)e

i(k,θ),

∑
k∈Zm

(∥k∥≥1)

|k1|s1 · · · |km|sm sup
τ∈[0,L]

|fk(τ, ε)| ≤ M
∑

k∈Zm

(∥k∥≥1)

∥k∥se−α
ε ∥k∥.

It is easy to show that if x ≥ 1, s ≥ 1, then

xse−
δ
ε x <

ss

δses
.

Hence
M∥k∥e−α

ε ∥k∥ <
ss

δses
Me−

α−δ
ε ∥k∥,

and Lemma 4.7 is proved.

Lemma 4.8. Let the vector-function w(τ, ε, θ) = colon(w1(τ, ε, θ), . . . , wm(τ, ε, θ)) ∈ F1(M1;α; θ),
and the vector-function v(τ, ε, θ) = colon(v1(τ, ε, θ), . . . , vm(τ, ε, θ)) ∈ F1(M2;α− δ; θ), where 0 < δ <
α. If δ ∈ (0, α/2) and

µ =
m · 4m

δm+1
M2 <

1

2
, (4.2)

then the vector-function w(τ, ε, φ + v(τ, ε, φ)) − w(τ, ε, φ), where φ = colon(φ1, . . . , φm), belongs to
the class

F1

(m2 · 4m

δ2m+2
M1(M2 +M2

2 );α− 2δ;φ
)
.
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Proof. We expand the scalar functions

wj(τ, ε, φ+ v(τ, ε, φ))

= wj

(
τ, ε, φ1 + v1(τ, ε, φ1, . . . , φm), . . . , φm + vm(τ, ε, φ1, . . . , φm)

)
(j = 1, . . . , N)

with respect to v1, . . . , vm in the Taylor series

wj(τ, ε, φ+ v(τ, ε, φ))− wj(τ, ε, φ) = dwj(τ, ε, φ) +

∞∑
s=2

1

s!
dswj(τ, ε, φ), (4.3)

where

dwj(τ, ε, φ) =

m∑
l=1

∂wj(τ, ε, φ)

∂φl
vl(τ, ε, φ),

dswj(τ, ε, φ) =
∑

s1+···+sm=s
(0≤sν≤s)

∂swj(τ, ε, φ)

∂φs
(v(τ, ε, φ))s,

and

∂swj(τ, ε, φ)

∂φs
=

∂swj(τ, ε, φ)

∂φs1
1 · · · ∂φsm

m
,

(v(τ, ε, φ))s = (v1(τ, ε, φ))
s1 · · · (vm(τ, ε, φ))sm , s = 2, 3, . . . ; j = 1, . . . ,m.

By virtue of Lemma 4.7,

∂wj(τ, ε, φ)

∂φν
∈ F

(M1

δe
;α− δ;φ

)
, ν = 1, . . . ,m.

Due to Lemma 4.5,

∂wj(τ, ε, φ)

∂φν
vν(τ, ε, φ) ∈ F

(3NM1M2

δN+1e
;α− 2δ;φ

)
, ν = 1, . . . ,m,

if δ ∈ (0, α/2). Therefore
dwj(τ, ε, φ) ∈ F

(m3mM1M2

δm+1e
;α− 2δ;φ

)
.

By virtue of Lemma 4.7,
∂swj(τ, ε, φ)

∂φs
∈ F

(ssM1

δses
;α− δ;φ

)
,

if s ≥ 2, δ ∈ (0, α).
By virtue of Corollary of Lemmas 4.5 and 4.6, if s ≥ 2, δ ∈ (0, α/2), we have

(v(τ, ε, φ))s ∈ F
(4m(s−1)

δm(s−1)
Ms

2 ;α− 2δ;φ
)
.

Then by Lemma 4.6,

∂swj(τ, ε, φ)

∂φs
(v(τ, ε, φ))s ∈ F

( 4msss

δ(m+1)ses
M1M

s
2 ;α− 2δ;φ

)
.

Hence
dswj(τ, ε, φ) ∈ F (Ws;α− 2δ;φ),

where
Ws =

ms4msss

δ(m+1)ses
M1M

s
2 .
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We consider the expression
∞∑
s=2

Ws

s!
= M1

∞∑
s=2

µsss

s! es
,

where µ is defined by formula (4.2). By virtue of the Stirling’s formula [2, p. 371], we have

ss

s! es
<

1√
2πs

,

hence
∞∑
s=2

Ws

s!
< M1

∞∑
s=2

µs

√
2π ·

√
s
<

M1

2
√
π

∞∑
s=2

µs.

Due to inequality (4.2), this series is convergent, and we obtain
∞∑
s=2

Ws

s!
<

M1

2
√
π

µ2

1− µ
<

m242m

δ2m+2
M1M

2
2 .

Hence
∞∑
s=2

1

s!
dswj(τ, ε, φ) ∈ F

(m242m

δ2m+2
M1M

2
2 ;α− 2δ;φ

)
.

Now, by virtue of (4.3), we obtain

wj(τ, ε, φ+ v(τ, ε, φ))− wj(τ, ε, φ) ∈ F

(
M1

( m3m

δm+1e
M2 +

m242m

δ2m+2
M2

2

)
;α− 2δ;φ

)
,

and Lemma 4.8 is proved.

Corollary. If, in addition to the conditions of Lemma 4.8, the condition M2 < 1 is satisfied, then

wj(τ, ε, φ+ v(τ, ε, φ))− wj(τ, ε, φ) ∈ F
(2m242m

δ2m+2
M1M2;α− 2δ;φ

)
.

Lemma 4.9. Let the matrix-function A(τ, ε, θ) ≡ (ajk(τ, ε, θ))j,k=1,...,m ∈ F2(M ;α; θ). Suppose that
the conditions

0 < δ < α,
m · 4m

δm
M <

1

2
(4.4)

hold. Then
(Em +A(τ, ε, θ))−1 ∈ F2(2;α− δ; θ).

Proof. Let Ap = (a
(p)
jk )j,k=1,...,m, p = 2, 3, . . . . Then

a
(2)
jk =

m∑
s=1

ajsask, j, k = 1, . . . ,m.

By virtue of Lemmas 4.3 and 4.5,

a
(2)
jk ∈ F

(m4m

δm
M2;α− δ; θ

)
, 0 < δ < α.

Further,

a
(3)
jk =

m∑
s=1

a
(2)
js ask, j, k = 1, . . . ,m.

By virtue of Lemmas 4.3 and 4.6,

a
(3)
jk ∈ F

(m242m

δ2m
M3;α− δ; θ

)
, 0 < δ < α.
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By the method of mathematical induction, we obtain

a
(p)
jk ∈ F

(mp−14m(p−1)

δm(p−1)
Mp;α− δ; θ

)
, 0 < δ < α,

hence
Ap ∈ F2

(mp−14m(p−1)

δm(p−1)
Mp;α− δ; θ

)
, 0 < δ < α.

Consider the numerical series

1 +

∞∑
p=1

mp−14m(p−1)

δm(p−1)
Mp = 1 +M

∞∑
p=1

(m · 4m

δm
M

)p−1

.

By virtue of (4.4), this series is convergent, and its sum is less than 1 + 2M . Since 2M < 1 (this also
follows from (4.4)), thus we obtain what was required.

5 The basic result
Theorem. Let system (3.1) satisfy the following conditions:

1)
|λj(τ, ε)− λs(τ, ε)| ≥

α

L
> 0, j, s = 1, . . . , n, j ̸= s;

2)
r =

H1M

q2
< 1,

where
H1 = 35m+52n2m444m+1(L2 + L+ 1), q =

( α

α+ 2

)5m+5

.

Then there exists the transformation of kind (3.2) in which

W (τ, ε, φ) ∈ F2

(
M∗

2 ;
α

2
;φ

)
, w(τ, ε, φ) ∈ F1

(
M∗

1 ;
α

2
;φ

)
,

where
M∗

1 = Q(r, 1) exp
(H1

q
Q(r, q)

)
, M∗

2 = Q
(
r,
1

4

)
,

Q(r, q) is the sum of the numerical series
∞∑
j=0

r2
j

qj
,

convergent if r, q ∈ (0, 1), which leads system (3.1) to kind (3.3), in which

sup
G

|dj(τ, ε)| ≤ Q(r, 1), sup
ε∈(0,1]

∥∆(τ, ε)∥0 ≤ Q(r, 1).

Proof. We denote
βk =

( α

α+ 2

)k

, δk =
βk

3
, k = 1, 2, . . . .

Obviously,

δ5m+5
k =

1

35m+5
qk,

∞∑
k=1

βk =
α

2
,

and
∀ s ∈ N : 0 < β1 + · · ·+ βs <

α

2
,

α

2
< α− β1 − · · · − βs < α.
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Following the method described in [1], we represent the process of reducing system (3.1) to form
(3.3) as a sequence of steps. At the first step we make in system (3.1) the following substitution:

x =
(
En + U (1)(τ, ε, φ(1))

)
y(1), θ = φ(1) + v(1)(τ, ε, φ(1)), (5.1)

where y(1) ∈ Rn, φ(1) ∈ Rm, vector v(1)(τ, ε, φ(1)) is defined from the vector partial differential
equation

∂v(1)

∂φ(1)

(
ω(τ, ε) + ∆(1)(τ, ε)

)
+ ε

∂v(1)

∂τ
= ˜b(τ, ε, φ(1)), (5.2)

where
∆(1)(τ, ε) = b(τ, ε, φ(1)).

It is obvious that ∆(1)(τ, ε) ∈ Rm and belongs to the class S1.
The matrix U (1)(τ, ε, φ(1)) is defined from the matrix partial differential equation

(∂U (1)

∂φ(1)
, ω(τ, ε) + ∆(1)(τ, ε)

)
+ ε

∂U (1)

∂τ

=
(
Λ(τ, ε) +D(1)(τ, ε)

)
U (1) − U (1)

(
Λ(τ, ε) +D(1)(τ, ε)

)
+ C(0)(τ, ε, φ(1)), (5.3)

where

D(1)(τ, ε) = diag
(
a11(τ, ε, φ(1)), . . . , ann(τ, ε, φ(1))

)
,

C(0)(τ, ε, φ(1)) = A(τ, ε, φ(1))−D(1)(τ, ε).

As a result of substitution (5.1), system (3.1) is reduced to the form

dy(1)

dt
=

(
Λ(τ, ε) +D(1)(τ, ε) +A(1)(τ, ε, φ(1))

)
y(1),

dφ(1)

dt
= ω(τ, ε) + ∆(1)(τ, ε) + b(1)(τ, ε, φ(1)),

(5.4)

where the vector b(1)(τ, ε, φ(1)) is defined from the equation(
Em +

∂v(1)

∂φ(1)

)
b(1) = b

(
τ, ε, φ(1) + v(1)(τ, ε, φ(1))

)
− b(τ, ε, φ(1)), (5.5)

and the matrix A(1)(τ, ε, φ(1)) is defined from the equation

(
En + U (1)(τ, ε, φ(1))

)
A(1) = −

(∂U (1)

∂φ(1)
, b(1)(τ, ε, φ(1))

)
+ C(0)(τ, ε, φ(1))U (1)(τ, ε, φ(1))

+
[
A
(
τ, ε, φ(1) + v(1)(τ, ε, φ(1))

)
−A(τ, ε, φ(1))

](
En + U (1)(τ, ε, φ(1))

)
. (5.6)

Taking into account (5.2), we set

v(1)(τ, ε, φ(1)) =
∑

k∈Zm

(∥k∥>0)

v
(1)
k (τ, ε) exp(i(k, φ(1))), (5.7)

where

v
(1)
k (τ, ε) =

1

ε
exp

(
− i

ε

τ∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

)
dξ

)

×
τ∫

0

bk(z, ε) exp
(
i

ε

z∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

)
dξ

)
dz, bk(z, ε) = Γk[b(z, ε, φ

(1))]. (5.8)
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Thus v
(1)
k (τ, ε) ∈ S1, and

∥v(1)k (τ, ε)∥0 ≤ LM

ε
exp

(
− α

ε
∥k∥

)
, ∥k∥ > 0.

We define the constant M0 by the condition

1

ε
e−

α
ε ∥k∥ ≤ M0e

−α−δ1
ε ∥k∥, ∥k∥ > 0

∀ ε ∈ (0, 1], where δ1 ∈ (0, α) and does not depend on ε. Obviously, if x ≥ 1, then

1

ε
e−

δ1
ε x ≤ 1

ε
e−

δ1
ε .

Since
lim

ε→+0

1

ε
e−

δ1
ε = 0,

and ∀ ε ∈ (0, 1]
1

ε
e−

δ1
ε ≤ 1

δ1e
<

1

δ1

is valid, we can state that M0 = 1/δ1. Thus, if ε ∈ (0, 1] and ∥k∥ ≥ 1, we obtain

∥v(1)k (τ, ε)∥0 ≤ LM

δ1
e−

α−δ1
ε ∥k∥.

It follows that
v(1)(τ, ε, φ(1)) ∈ F1

( L

δ1
M ;α− δ1;φ

(1)
)
.

By virtue of Lemma 4.7,
∂v(1)

∂φ(1)
∈ F2

( L

δ21
M ;α− 2δ1;φ

(1)
)
,

if δ1 ∈ (0, α/2). In view of Lemma 4.9, we can conclude that if δ ∈ (0, α/3) and

m4mL

δm+2
1

M <
1

2
, (5.9)

then the matrix (Em + ∂v(1)/∂φ(1))−1 exists and belongs to the class F2(2;α− 3δ1;φ
(1)).

From inequality (5.9), it follows that Lm/δ1 < 1, therefore, by virtue of Corollary from Lemma 4.8,
we can conclude that

b
(
τ, ε, φ(1) + v(1)(τ, ε, φ(1))

)
∈ F1

(2m242mL

δ2m+3
1

M2;α− 2δ1;φ
(1)

)
.

Now, by virtue of Lemma 4.6 and equation (5.5),

b1(τ, ε, φ
(1)) ∈ F1

(m343m+1L

δ3m+3
1

M2;α− β1;φ
(1)

)
.

We now construct the matrix U (1)(τ, ε, φ(1)) = (u
(1)
js (τ, ε, φ

(1)))j,s=1,...,n. We write equation (5.3)
componentwise,

n∑
l=1

∂u
(1)
js

∂φ
(1)
l

(ω(τ, ε) + ∆
(1)
l (τ, ε)) + ε

∂u
(1)
js

∂τ

=
(
λj(τ, ε)− λs(τ, ε) + d

(1)
j (τ, ε)− d(1)s (τ, ε)

)
u
(1)
js + c

(0)
js (τ, ε, φ

(1)), j, s = 1, . . . , n. (5.10)
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Consider first the case j = s. We set

u
(1)
jj (τ, ε, φ

(1)) =
∑

k∈Zm

(∥k∥>0)

u
(1)
jj,k(τ, ε) exp(i(k, φ(1))), (5.11)

where

u
(1)
jj,k(τ, ε) =

1

ε
exp

(
− i

ε

τ∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

)
dξ

)

×
τ∫

0

c
(0)
jj,k(z, ε) exp

(
i

ε

z∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

)
dξ

)
dz,

c
(0)
jj,k(z, ε) =

1

(2π)m

2π∫
0

· · ·
2π∫
0

c
(0)
jj (z, ε, φ)e

−i(k,φ) dφ1 · · · dφm, j = 1, . . . , n, k ∈ Zm.

(5.12)

Hence

u
(1)
jj (τ, ε, φ

(1)) ∈ F
( L

δ1
M ;α− δ1;φ

(1)
)
, j = 1, . . . , n,

where δ1 ∈ (0, α) and does not depend on ε.
Let now j ̸= s. We choose M insomuch small that

2M <
α− δ1

L
. (5.13)

Then, by virtue of condition 1) of the theorem, we have

∣∣λj(τ, ε)− λs(τ, ε) + d
(1)
j (τ, ε)− d(1)s (τ, ε)

∣∣ ≥ α

L
− α− δ1

L
=

δ1
L

> 0. (5.14)

Here in turn, we consider two cases.
Case 1. Let λj(τ, ε)− λs(τ, ε) ≤ −α/L < 0. Then

λj(τ, ε)− λs(τ, ε) + d
(1)
j (τ, ε)− d(1)s (τ, ε) ≤ −δ1

L
< 0.

We define the elements u
(1)
js of matrix U (1) by the formulas

u
(1)
js (τ, ε, φ

(1)) =
∑

k∈Zm

u
(1)
js,k(τ, ε) exp(i(k, φ(1))),

where

u
(1)
js,k(τ, ε) =

1

ε
exp

(
1

ε

τ∫
0

(λj(ξ, ε)− λs(ξ, ε) + d
(1)
j (ξ, ε)− d(1)s (ξ, ε)− i

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

)
dξ

)

×
τ∫

0

c
(0)
js,k(z, ε) exp

(
− 1

ε

z∫
0

(
λj(ξ, ε)− λs(ξ, ε)

+ d
(1)
j (ξ, ε)− d(1)s (ξ, ε)− i

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

))
dξ

)
dz, j, s = 1, . . . , n, k ∈ Zm. (5.15)
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We estimate

|u(1)
js,k(τ, ε)| ≤

1

ε

τ∫
0

|c(0)js,k(z, ε)| exp
(
1

ε

τ∫
z

(λj(ξ, ε)− λs(ξ, ε) + d
(1)
j (ξ, ε)− d(1)s (ξ, ε)) dξ

)
dz

≤ 1

ε
M exp

(
− α

ε
∥k∥

) τ∫
0

exp
(
− δ1

Lε
(τ − z)

)
dz

=
1

ε
M exp

(
− α

ε
∥k∥

) 1
δ1
Lε

(
1− exp

(
− δ1

Lε
τ
))

≤ LM

δ1
exp

(
− α− δ1

ε
∥k∥

)
.

Hence
u
(1)
js (τ, ε, φ

(1)) ∈ F
(LM

δ1
;α− δ1;φ

(1)
)
.

Case 2. Let λj(τ, ε)−λs(τ, ε) ≥ α/L > 0. Then λj(τ, ε)−λs(τ, ε)+d
(1)
j (τ, ε)−d

(1)
s (τ, ε) ≥ δ1/L > 0.

We define the elements u
(1)
js of matrix U (1) by the formulas

u
(1)
js (τ, ε, φ

(1)) =
∑

k∈Zm

u
(1)
js,k(τ, ε) exp(i(k, φ(1))),

where

u
(1)
js,k(τ, ε)

= −1

ε
exp

(
1

ε

τ∫
0

(
λj(ξ, ε)− λs(ξ, ε) + d

(1)
j (ξ, ε)− d(1)s (ξ, ε)− i

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

))
dξ

)

×
L∫

τ

c
(0)
js,k(z, ε) exp

(
− 1

ε

z∫
0

(
λj(ξ, ε)− λs(ξ, ε)

+ d
(1)
j (ξ, ε)− d(1)s (ξ, ε)− i

(
k, ω(ξ, ε) + ∆(1)(ξ, ε)

))
dξ

)
dz, j, s = 1, . . . , n, k ∈ Zm. (5.16)

As in the first case, we show that

u
(1)
js (τ, ε, φ

(1)) ∈ F
(LM

δ1
;α− δ1;φ

(1)
)
.

Thus
U (1)(τ, ε, φ(1)) ∈ F2

(LM
δ1

;α− δ1;φ
(1)

)
.

By virtue of Corollary from Lemma 4.8, we can conclude that under condition (5.9),

A(τ, ε, φ(1) + v(1)(τ, ε, φ(1)))−A(τ, ε, φ(1)) ∈ F2

(2m242mL

δ2m+3
1

M2;α− 2δ1;φ
(1)

)
.

From (5.9) we have LM/δ1 < 1, hence

En + U (1)(τ, ε, φ(1)) ∈ F2(2;α− δ1;φ
(1)),

and, by virtue of Lemma 4.6,(
A(τ, ε, φ(1) + v(1)(τ, ε, φ(1)))−A(τ, ε, φ(1))

)
(En + U (1)(τ, ε, φ(1)))

∈ F2

(nm243m+1

δ3m+3
1

M2;α− 2δ1;φ
(1)

)
, (5.17)

C(τ, ε, φ(1))U (1)(τ, ε, φ(1)) ∈ F2

(n4mL

δm+1
1

M2;α− δ1;φ
(1)

)
. (5.18)
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Due to Lemma 4.7,

∂U (1)

∂φ(1)
∈ F2

( L

δ21
M ;α− 2δ1;φ

(1)
)
,

m∑
k=1

∂U (1)

∂φ
(1)
k

b
(1)
k ∈ F2

(m444m+1L2

δ4m+5
1

M3;α− 2δ1;φ
(1)

)
.

By virtue of Lemma 4.9 and condition (5.9), we can conclude that(
En + U (1)(τ, ε, φ(1))

)−1 ∈ F2(2;α− 2δ1;φ
(1)).

Hence, (5.6), (5.17) and (5.18) yield

A(1)(τ, ε, φ(1)) ∈ F2

(2n2m445m+1

δ5m+5
1

(L2 + L+ 1)M2;α− β1;φ
(1)

)
.

Thus, under conditions (5.9) and (5.13), we have

v(1)(τ, ε, φ(1)) ∈ F1

( L

δ1
;α− δ1;φ

(1)
)
,

U (1)(τ, ε, φ(1)) ∈ F2

( L

δ1
;α− δ1;φ

(1)
)
,

b(1)(τ, ε, φ(1)) ∈ F1

(2n2m445m+1

δ5m+5
1

(L2 + L+ 1)M2;α− β1;φ
(1)

)
,

A(1)(τ, ε, φ(1)) ∈ F2

(2n2m445m+1

δ5m+5
1

(L2 + L+ 1)M2;α− β1;φ
(1)

)
.

This completes the first step of the process.
At the step with number l − 1 of the process, we obtain the system

dy(l−1)

dt
=

(
Λ(τ, ε) +D(1)(τ, ε) + · · ·+D(l−1)(τ, ε) +A(l−1)(τ, ε, φ(l−1))

)
y(l−1),

dφ(l−1)

dt
= ω(τ, ε) + ∆(1)(τ, ε) + · · ·+∆(l−1)(τ, ε) + b(l−1)(τ, ε, φ(l−1)),

(5.19)

where D(1), . . . , D(l−1) are the diagonal (n × n)-matrices with elements from the class S, the vec-
tors ∆(1), . . . ,∆(l−1) belong to the class S1, b(l−1) ∈ F1(Kl−1;α − β1 − · · · − βl−1;φ

(l−1)), A(l−1) ∈
F2(Kl−1;α− β1 − · · · − βl−1;φ

(l−1)),

Kl =
H2l−1

δ5m+5
l (δ5m+5

l−1 )2 · · · (δ5m+5
1 )2l−1

M2l , H = 2n2m445m+1(L2 + L+ 1).

At the step with number l, we make in system (5.19) the following substitution:

y(l−1) =
(
En + U (l)(τ, ε, φ(l))

)
y(l), φ(l−1) = φ(l) + v(l)(τ, ε, φ(l)), (5.20)

where y(l) ∈ Rn, φ(l) ∈ Rm. The vector v(1)(τ, ε, φ(1)) is defined from the vector partial differential
equation

∂v(l)

∂φ(l)

(
ω(τ, ε) + ∆(1)(τ, ε) + · · ·+∆(l)(τ, ε)

)
+ ε

∂v(l)

∂τ
= ˜b(l−1)(τ, ε, φ(1)), (5.21)

where
∆(l)(τ, ε) = b(l−1)(τ, ε, φ(l)).

Obviously, ∆(l)(τ, ε) ∈ Rm and belongs to the class S1.
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The matrix U (l)(τ, ε, φ(l)) is defined from the matrix partial differential equation

(∂U (l)

∂φ(l)
, ω(τ, ε) + ∆(1)(τ, ε) + · · ·+∆(l)(τ, ε)

)
+ ε

∂U (l)

∂τ

=
(
Λ(τ, ε) +D(1)(τ, ε) + · · ·+D(l)(τ, ε)

)
U (l)

− U (l)
(
Λ(τ, ε) +D(1)(τ, ε) + · · ·+D(l)(τ, ε)

)
+ C(l−1)(τ, ε, φ(l)), (5.22)

where

D(l)(τ, ε) = diag
(
a
(l−1)
11 (τ, ε, φ(l)), . . . , a

(l−1)
nn (τ, ε, φ(l))

)
,

C(l−1)(τ, ε, φ(1)) = A(l−1)(τ, ε, φ(1))−D(l)(τ, ε).

Taking into account (5.21), we set

v(l)(τ, ε, φ(1)) =
∑

k∈Zm

(∥k∥>0)

v
(l)
k (τ, ε) exp(i(k, φ(l))), (5.23)

where

v
(l)
k (τ, ε) =

1

ε
exp

(
− i

ε

τ∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

)
dξ

)

×
τ∫

0

b
(l−1)
k (z, ε) exp

(
i

ε

z∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

)
dξ

)
dz,

b
(l−1)
k (z, ε) = Γk[b

(l−1)(z, ε, φ(l))].

(5.24)

Taking into account (5.22), we set

U (l)(τ, ε, φ(1)) = (u
(l)
js (τ, ε, φ

(l)))j,s=1,...,n,

u
(l)
jj (τ, ε, φ

(l)) =
∑

k∈Zm
(∥k∥>0)

u
(l)
jj,k(τ, ε) exp(i(k, φ(1))),

where

u
(l)
jj,k(τ, ε) =

1

ε
exp

(
− i

ε

τ∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

)
dξ

)

×
τ∫

0

c
(l−1)
jj,k (z, ε) exp

(
i

ε

z∫
0

(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

)
dξ

)
dz,

c
(l−1)
jj,k (z, ε) =

1

(2π)m

2π∫
0

· · ·
2π∫
0

c
(l−1)
jj (z, ε, φ)e−i(k,φ)dφ1 · · · dφm, j = 1, . . . , n, k ∈ Zm.

If j ̸= s, then we set

u
(l)
js (τ, ε, φ

(l)) =
∑

k∈Zm

u
(l)
js,k(τ, ε) exp(i(k, φ(l))),
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where in case λj(τ, ε)− λs(τ, ε) ≤ −α/L < 0,

u
(l)
js,k(τ, ε) =

1

ε
exp

(
1

ε

τ∫
0

(
λj(ξ, ε)− λs(ξ, ε) + d

(1)
j (ξ, ε)− d(1)s (ξ, ε) + · · ·+ d

(l)
j (ξ, ε)− d(l)s (ξ, ε)

− i
(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

))
dξ

)

×
τ∫

0

c
(l−1)
js,k (z, ε) exp

(
− 1

ε

z∫
0

(
λj(ξ, ε)− λs(ξ, ε) + d

(1)
j (ξ, ε)− d(1)s (ξ, ε) + · · ·+ d

(l)
j (ξ, ε)− d(l)s (ξ, ε)

− i
(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε))

)
dξ

)
dz, j, s = 1, . . . , n, k ∈ Zm,

and in case λj(τ, ε)− λs(τ, ε) ≥ α/L > 0,

u
(l)
js,k(τ, ε) = −1

ε
exp

(
1

ε

τ∫
0

(
λj(ξ, ε)− λs(ξ, ε) + d

(1)
j (ξ, ε)− d(1)s (ξ, ε) + · · ·+ d

(l)
j (ξ, ε)− d(l)s (ξ, ε)

− i
(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

))
dξ

)

×
L∫

τ

c
(l−1)
js,k (z, ε) exp

(
− 1

ε

z∫
0

(
λj(ξ, ε)− λs(ξ, ε) + d

(1)
j (ξ, ε)− d(1)s (ξ, ε) + · · ·+ d

(l)
j (ξ, ε)− d(l)s (ξ, ε)

− i
(
k, ω(ξ, ε) + ∆(1)(ξ, ε) + · · ·+∆(l)(ξ, ε)

))
dξ

)
dz, j, s = 1, . . . , n, k ∈ Zm.

Here we suppose M insomuch small that

2Kl−1 <
δl−1 − δl

L
, (5.25)

n4mL

δm+2
l

Kl−1 <
1

2
. (5.26)

Then ∣∣λj(τ, ε)− λs(τ, ε) + d
(1)
j (τ, ε)− d(1)s (τ, ε) + · · ·+ d

(l)
j (τ, ε)− d(l)s (τ, ε)

∣∣ ≥ δl
L

.

We have

δ5m+5
l (δ5m+5

l−1 )2 · · · (δ5m+5
1 )2

l−1 =
1

35m+5
ql

1

(35m+5)2
(ql−1)2 · · · 1

(35m+5)2l−2
(q2)2

l−2

=
1

(35m+5)1+2+···+2l−1 ql+2(l−1)+···+2·2l−2+2l−1

=
1

(35m+5)2l−1
q2

l+1−l−2,

where q is defined in the statement of the theorem. Therefore

Kl =
H2l−1

1

q2l+1−l−2
M2l ,

where H1 = 2n2m435m+545m+1(L2 + L+ 1). Hence Kl < r2
l , where r = H1

q2 M .

The condition r < 1 guarantees the convergence of the series
∞∑
l=1

Kl. It is easy to verify that this

condition ensures that inequalities (5.25), (5.26) hold.
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As a result of substitution (5.20), system (5.19) is reduced to the form

dy(l)

dt
=

(
Λ(τ, ε) +D(1)(τ, ε) + · · ·+D(l)(τ, ε) +A(l)(τ, ε, φ(l−1))

)
y(l),

dφ(l)

dt
= ω(τ, ε) + ∆(1)(τ, ε) + · · ·+∆(l)(τ, ε) + b(l)(τ, ε, φ(l)).

(5.27)

Carrying out the arguments analogous to those of the first step, we show that

v(l)(τ, ε, φ(l)) ∈ F1

(Kl−1

δl
;α− β1 − · · · − βl−1 − δl;φ

(l)
)
,

U (l)(τ, ε, φ(l)) ∈ F2

(Kl−1

δl
;α− β1 − · · · − βl−1 − δl;φ

(l)
)
,

b(l)(τ, ε, φ(l)) ∈ F1

(
Kl;α− β1 − · · · − βl;φ

(l)
)
,

A(l)(τ, ε, φ(l)) ∈ F2

(
Kl;α− β1 − · · · − βl;φ

(l)
)
.

Hence, the iterative process

x =
(
En + U (1)(τ, ε, φ(1))

)
y(1), θ = φ(1) + v(1)(τ, ε, φ(1)),

y(l−1) =
(
En + U (l)(τ, ε, φ(l))

)
y(l), φ(l−1) = φ(l) + v(l)(τ, ε, φ(l)), l = 2, 3, . . . ,

(5.28)

in case it is convergent, leads system (3.1) to kind (3.3) in which

D(τ, ε) =

∞∑
l=1

D(l)(τ, ε), ∆(τ, ε) =

∞∑
l=1

∆(l)(τ, ε),

where

∆(l)(τ, ε) ∈ S1, ∥∆(l)(τ, ε)∥0 ≤ Kl−1, D(l)(τ, ε) = diag
(
d
(l)
1 (τ, ε), . . . , d(l)n (τ, ε)

)
,

d
(l)
j (τ, ε) ∈ S, sup

G
|d(l)j (τ, ε)| ≤ Kl−1 (j = 1, . . . , n).

We prove the convergence of process (5.28). Towards this end, we represent process (5.28) in the
form

x =
(
En +W (l)(τ, ε, φ(l))

)
y(l), θ = φ(l) + w(l)(τ, ε, φ(l)), l = 1, 2, . . . , (5.29)

where

W (1)(τ, ε, φ(1)) = U (1)(τ, ε, φ(1)), w(1)(τ, ε, φ(1)) = v(1)(τ, ε, φ(1)),

W (l)(τ, ε, φ(l)) =
(
En +W (l−1)(τ, ε, φ(l) + v(l)(τ, ε, φ(l)))

)
U (l)(τ, ε, φ(l))

+W (l−1)(τ, ε, φ(l) + v(l)(τ, ε, φ(l))), (5.30)
w(l)(τ, ε, φ(l)) = v(l)(τ, ε, φ(l)) + w(l−1)(τ, ε, φ(l) + v(l)(τ, ε, φ(l))), l = 2, 3, . . . . (5.31)

Then
w(1)(τ, ε, φ(1)) ∈ F1(r;α− β1, φ

(1)), W (1)(τ, ε, φ(1)) ∈ F2(r;α− β1, φ
(1)).

By virtue of Corollary from Lemma 4.8, we successively obtain

w(2)(τ, ε, φ2)) ∈ F1

(
r2 + r

(
1 +

H1

q2
r2
)
;α− β1 − β2;φ

(2)
)
,

w(l)(τ, ε, φl)) ∈ F1

(
w∗

l ; α− β1 − · · · − βl;φ
(l)
)
, l = 3, 4, . . . ,

where

w∗
l = r2

l−1

+ r2
l−2

(
1 +

H1

ql
r2

l−1
)
+ r2

l−3
(
1 +

H1

ql−1
r2

l−2
)(

1 +
H1

ql
r2

l−1
)
+ · · ·

+ r
(
1 +

H1

q2
r2
)(

1 +
H1

q3
r4
)
· · ·

(
1 +

H1

ql
r2

l−1
)
.
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Consider

w(l+1)(τ, ε, φ)− w(l)(τ, ε, φ) = v(l+1)(τ, ε, φ) + w(l)(τ, ε, φ+ v(l+1)(τ, ε, φ))− w(l)(τ, ε, φ).

By virtue of Corollary from Lemma 4.8, we have

w(l)(τ, ε, φ+ v(l+1)(τ, ε, φ))− w(l)(τ, ε, φ) ∈ F1

( H1

ql+1
r2

l

w∗
l ;α− β1 − · · · − βl − 2δl+1;φ

)
.

Hence,
w(l+1)(τ, ε, φ)− w(l)(τ, ε, φ) ∈ F1

(
r2

l
(
1 +

H1

ql+1
w∗

l

)
;α− β1 − · · · − βl+1;φ

)
. (5.32)

We estimate

w∗
l ≤

( l−1∑
j=0

r2
j
) l−1∏

j=1

(
1 +

H1

qj+1
r2

j
)

=
( l−1∑

j=0

r2
j
)

exp
[

ln
l−1∏
j=1

(
1 +

H1

qj+1
r2

j
)]

=
( l−1∑

j=0

r2
j
)

exp
[ l−1∑

j=1

ln
(
1 +

H1

qj+1
r2

j
)]

<
( l−1∑

j=0

r2
j
)

exp
( l−1∑

j=1

H1

qj+1
r2

j
)
<

( l−1∑
j=0

r2
j
)

exp
(H1

q

l−1∑
j=0

r2
j

qj

)
. (5.33)

The numerical series
∞∑
j=0

r2
j

qj

under the condition r, q ∈ (0, 1) is convergent, we denote its sum by Q(r, q). Then, by virtue of (5.33),
we obtain

w∗
l < Q(r, 1) exp

(H1

q
Q(r, q)

)
. (5.34)

Hence,
r2

l
(
1 +

H1

ql+1
w∗

l

)
< r2

l
(
1 +

H1

ql+1
Q(r, 1) exp

(H1

q
Q(r, q)

))
,

from the latter inequality and (5.32) it follows that

w(l+1)(τ, ε, φ)− w(l)(τ, ε, φ) ∈ F1(c
(1)
l ;α− β1 − · · · − βl+1;φ), (5.35)

where c
(1)
l is the element of a convergent positive sign numerical series.

Next, we consider the process defined by (5.30). Suppose that

W (l)(τ, ε, φ(l)) ∈ F2(W
∗
l ;α− β1 − · · · − βl;φ

(l)).

Then(
En +W (l−1)(τ, ε, φ(l) + v(l)(τ, ε, φ(l)))

)
U (l)(τ, ε, φ(l))

∈ F2

(
r2

l−1

(1 +W ∗
l−1(1 + r2

l−1

));α− β1 − · · · − βl;φ
(l)
)
.

Hence,

W (l)(τ, ε, φ(l))

∈ F2

(
r2

l−1

(1 +W ∗
l−1(1 + r2

l−1

)) +W ∗
l−1(1 + r2

l−1

);α− β1 − · · · − βl;φ
(l)
)
, l = 2, 3, . . . . (5.36)
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This implies

W ∗
l ≤ r2

l−1

(1 +W ∗
l−1(1 + r2

l−1

)) +W ∗
l−1(1 + r2

l−1

)

< r2
l−1

(1 + 2W ∗
l−1) + r2

l−1

W ∗
l−1 +W ∗

l−1 = r2
l−1

(1 + 3W ∗
l−1) +W ∗

l−1,

whence, taking into account that r < 1, we succesively obtain

W ∗
1 = r,

W ∗
2 < r2(1 + 3r) + r < r + r2 + 3r3 < r + 4r2,

W ∗
3 < r4(1 + 3(r + 4r2)) + r + 4r2 < r + 4r2 + 16r4.

Further, by the method of mathematical induction, we obtain

W ∗
l < r + 4r2 + · · ·+ 4l−1r2

l−1

,

from which we get

W ∗
l < Q

(
r,
1

4

)
. (5.37)

Consider

W (l+1)(τ, ε, φ)−W (l)(τ, ε, φ) =
(
En +W (l)(τ, ε, φ+ v(l+1)(τ, ε, φ))

)
U (l+1)(τ, ε, φ)

+W (l)(τ, ε, φ+ v(l+1)(τ, ε, φ))−W (l)(τ, ε, φ). (5.38)

By virtue of Corollary from Lemma 4.8, we have

W (l)(τ, ε, φ+ v(l+1)(τ, ε, φ))−W (l)(τ, ε, φ)

∈ F2

(
2m242m

δ2m+2
l+1

Q
(
r,
1

4

) Kl

δl+1
;α− β1 − · · · − βl − 2δl+1;φ

)
,

hence,

W (l)(τ, ε, φ+ v(l+1)(τ, ε, φ))−W (l)(τ, ε, φ) ∈ F2

(
Q
(
r,
1

4

)
f2l ;α− β1 − · · · − βl − 2δl+1;φ

)
.

Next, taking into account (5.37),

(En +W (l)(τ, ε, φ+ v(l+1)(τ, ε, φ)))U (l+1)(τ, ε, φ)

∈ F2

(
r2

l
(
1 + 2Q

(
r,
1

4

))
;α− β1 − · · · − βl+1;φ

)
.

Hence, by virtue of (5.38),

W (l+1)(τ, ε, φ)−W (l)(τ, ε, φ) ∈ F2(c
(2)
l ;α− β1 − · · · − βl+1;φ), (5.39)

where c
(2)
l = r2

l

(1 + 3Q(r, 1/4)) is the element of the convergent positive sign numerical series.
From formulas (5.35), (5.39) follows the convergence of process (5.29). From formulas (5.34) and

(5.37) it follows that w(τ, ε, φ) ∈ F1(M
∗
1 ;α/2;φ), W (τ, ε, φ) ∈ F2(M

∗
2 ;α/2;φ), where

M∗
1 = Q(r, 1) exp

(H1

q
Q(r, q)

)
, M∗

2 = Q
(
r,
1

4

)
.
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THE BOUNDARY VALUE PROBLEMS
FOR THE BI-LAPLACE–BELTRAMI EQUATION



Abstract. The purpose of the present paper is to investigate the boundary value problems for the
bi-Laplace–Beltrami equation ∆2

Cφ = f on a smooth hypersurface C with the boundary Γ = ∂C . The
unique solvability of the BVP is proved on the basis of Green’s formula and Lax–Milgram Lemma.

We also prove the invertibility of the perturbed operator in the Bessel potential spaces ∆2
C +H I :

Hs+2
p (S ) → Hs−2

p (S ) for a smooth closed hypersurface S without boundary for arbitrary 1 < p <∞
and −∞ < s <∞, provided H is a smooth function, has non-negative real part Re H (t) > 0 for all
t ∈ S and non-trivial support mes supp Re H ̸= 0.

2010 Mathematics Subject Classification. 35J40, 35M12.

Key words and phrases. Bi-Laplace–Beltrami equation, Günter’s tangential derivatives, boundary
value problems, mixed boundary condition, Bessel potential spaces.

ÒÄÆÉÖÌÄ. ÓÔÀÔÉÉÓ ÌÉÆÀÍÉÀ ÂÀÌÏÅÉÊÅËÉÏÈ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ ÁÉ−ËÀÐËÀÓ−ÁÄËÔÒÀÌÉÓ
∆2

Cφ = f ÂÀÍÔÏËÄÁÉÓÈÅÉÓ, ÒÏÂÏÒÝ ÜÅÄÖËÄÁÒÉÅÉ, ÀÓÄÅÄ ÛÄÒÄÖËÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ
ÂËÖÅ C äÉÐÄÒÆÄÃÀÐÉÒÆÄ, ÒÏÌËÉÓ ÓÀÆÙÅÀÒÉÀ Γ = ∂C . ÌÏÝÄÌÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÀ ÃÀ
ÀÌÏÍÀáÓÍÉÓ ÄÒÈÀÃÄÒÈÏÁÀ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÂÒÉÍÉÓ ×ÏÒÌÖËÉÓÀ ÃÀ ËÀØÓ−ÌÉËÂÒÀÌÉÓ ËÄÌÉÓ
ÓÀÛÖÀËÄÁÉÈ.

ÀÂÒÄÈÅÄ ÃÀÌÔÊÉÝÄÁÖËÉÀ ∆2
C + H I : Hs+2

p (S ) → Hs−2
p (S ) ÛÄÛ×ÏÈÄÁÖËÉ ÏÐÄÒÀÔÏÒÉÓ

ÛÄÁÒÖÍÄÁÀÃÏÁÀ ÁÄÓÄËÉÓ ÐÏÔÄÍÝÉÀËÈÀ ÓÉÅÒÝÄÄÁÛÉ ÜÀÊÄÔÉËÉ ÂËÖÅÉ äÉÐÄÒÆÄÃÀÐÉÒÉÓÈÅÉÓ
S ÓÀÆÙÅÒÉÓ ÂÀÒÄÛÄ, 1 < p <∞ ÃÀ −∞ < s <∞ ÐÀÒÀÌÄÔÒÄÁÉÓÈÅÉÓ. ÀÓÄÅÄ ÃÀÌÔÊÉÝÄÁÖËÉÀ,
ÒÏÌ H ÀÒÉÓ ÂËÖÅÉ ×ÖÍØÝÉÀ, ÀØÅÓ ÀÒÀÖÀÒÚÏ×ÉÈÉ Re H (t) > 0 ÍÀÌÃÅÉËÉ ÍÀßÉËÉ ÚÅÄËÀ
t ∈ S -ÓÈÅÉÓ ÃÀ mes supp Re H ̸= 0.
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1 Introduction
Let C ⊂ S be a smooth subsurface of a closed hypersurface S in the Euclidean space Rn (see
Section 2 for details) and Γ = ∂C ̸= ∅ be its smooth boundary. Let Dj := ∂j − νj∂ν , j = 1, . . . , n, be
Günter’s tangential derivatives, and ∆2 :=

n∑
j,k=1

D2
j D2

k be the bi-Laplace–Beltrami operator restricted

to the surface C .
The purpose of the present paper is to investigate the boundary value problems (BVPs) for the

bi-Laplace–Beltrami equation 
∆2

Cu(t) = f(t), t ∈ C ,

(B0u)
+(s) = g(s), on Γ,

(B1u)
+(s) = h(s), on Γ,

(1.1)

where the boundary operators can be chosen as follows:

B0 = I and B1 = ∂νΓ
, or B1 = ∆C ,

B0 = ∂νΓ
and B1 = ∆C , or B1 = ∂νΓ

∆C .
(1.2)

The BVP {
∆2

Cu(t) = f(t), t ∈ C ,

u+(τ) = 0, (∂νΓ
u)+(τ) = 0, τ ∈ Γ,

is called a clamped surface equation and is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ).

The BVP {
∆2

Cu(t) = f(t), t ∈ C ,

u+(τ) = g(τ), (∆Cu)
+ + a∂νΓu)

+(τ) = h(τ), τ ∈ Γ,

with Steklov Boundary Conditions is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g ∈ H3/2(Γ), h ∈ H−3/2(Γ).

Here a is a real-valued constant.
The BVP {

∆2
Cu(t) = f(t), t ∈ C ,

u+(τ) = g(τ), (∆Cu)
+ = h(τ), τ ∈ Γ

with Navier Boundary Conditions is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g ∈ H3/2(Γ), h ∈ H−1/2(Γ).

First we consider in detail the case
∆2u(t) = f(t), t ∈ C ,

(∂νΓ
u)+(s) = g(s), on Γ,

(∂νΓ
∆Cu)

+(s) = h(s), on Γ,

(1.3)

in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ C ), g ∈ H1/2(Γ), h ∈ H−3/2(Γ), (1.4)

where
H̃−2

Γ (Ω) :=
{
f ∈ H̃−2(Ω) | (f, φ)L2(Ω) = 0, φ ∈ C∞

0 (Ω)
}
. (1.5)
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Remark 1.1. Let us comment on the condition f ∈ H̃−2
Γ (C ) in (1.4).

As is shown in [13, p. 196], the condition f ∈ H̃−2(C ) does not ensure the uniqueness of a solution
to the BVP (1.3). The right-hand side f needs additional constraint that it belongs to the subspace
H̃−2

0 (Ω) ⊂ H̃−2(Ω) which is the orthogonal complement to the subspace H̃−2
Γ (Ω) of those distributions

from H̃−2(Ω) which are supported only on the boundary Γ = ∂Ω of the domain (see (1.5)).

Another cases in (1.2) are considered analogously.
We will prove the unique solvability of the BVP (1.3) in the classical setting (1.4) by applying the

Lax–Milgram Lemma.
We also consider the following BVP with the mixed boundary conditions: Let C ⊂ S be a smooth

subsurface of a closed hypersurface S in the Euclidean space Rn (see Section 2 for details) and its
smooth boundary ∂C = Γ = Γ1 ∪ Γ2 ̸= ∅ be decomposed into two non-intersecting connected parts.
Consider the mixed BVP for the bi-Laplase-Beltrami equation

∆2u(t) = f(t), t ∈ C ,

(u)+(s) = g1(s), on Γ1,

(∂νΓu)
+(s) = g2(s), on Γ2,

(∆Cu)
+(s) = h1(s), on Γ1,

(∂νΓ∆Cu)
+(s) = h2(s), on Γ2,

(1.6)

in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g1 ∈ H3/2(Γ1), g2 ∈ H1/2(Γ2), h1 ∈ H−1/2(Γ1), h2 ∈ H−3/2(Γ2). (1.7)

The following are the main theorems of the present paper. The proofs are exposed in Sections 3
and 4, below.

Prior formulating the theorems let us introduce the Hilbert spaces with detached constants
H2

#(S ) := H2(S ) \ {const}. Another description of the space H2
#(S ) is that it consists of all

functions φ ∈ H2(S ), which have the zero mean value, (φ, 1)S = 0.

Theorem 1.1. The boundary value problem (1.3) in the weak classical setting (1.4) has a unique
solution in the space H2

#(C ).

Theorem 1.2. The mixed type boundary value problem (1.6) in the weak classical setting (1.7) has a
unique solution in the space H2

#(C ).

The Bi-Laplace–Beltrami operator ∆2 = ∆×∆ is a model of a fourth-order operator. The BVPs
on hypersurfaces arise in a variety of situations and have many practical applications. They appear
in various problems of linear elasticity, for example, when looking for small displacements of a plate,
whereas the Laplacian describes the behavior of a membrane.

A hypersurface S in Rn has the natural structure of an (n − 1)-dimensional Riemannian mani-
fold and the aforementioned partial differential equations (PDEs) are not the immediate analogues
of the ones corresponding to the flat, Euclidean case, since they have to take into consideration geo-
metric characteristics of S such as curvature. Inherently, these PDEs are originally written in local
coordinates, intrinsic to the manifold structure of S .

Another problem we encounter in considering BVPs (1.1) is the existence of a fundamental solution
for the bi-Laplace–Beltrami operator. An essential difference between the differential operators on
hypersurfaces and the Euclidean space Rn lies in the existence of the fundamental solution: In Rn,
a fundamental solution exists for all partial differential operators with constant coefficients if it is
not trivially zero. On a hypersurface, the bi-Laplace–Beltrami operator has no fundamental solution
because it has a non-trivial kernel, constants, in all Bessel potential spaces. Therefore we consider the
bi-Laplace–Beltrami operator in the Hilbert spaces with detached constants ∆2

C : H2
#(S ) → H−2(S )

and prove that it is an invertible operator. The established invertibility implies the existence of a
certain fundamental solution, which can be used to define the volume (Newtonian), single layer and
double layer potentials.
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2 Auxiliary material
We commence with the definition of a hypersurface. There exist other equivalent definitions, but they
are most convenient for us. Equivalence of these definitions and some other properties of hypersurfaces
are discussed, e.g., in [7, 8].

Definition 2.1. A subset S ⊂ Rn of the Euclidean space is said to be a hypersurface if it has a

covering S =
M∪
j=1

Sj and coordinate mappings

Θj : ωj −→ Sj := Θj(ωj) ⊂ Rn, ωj ⊂ Rn−1, j = 1, . . . ,M, (2.1)

such that the corresponding differentials

DΘj(p) := matr
[
∂1Θj(p), . . . , ∂n−1Θj(p)

]
have the full rank

rankDΘj(p) = n− 1, ∀ p ∈ Yj , k = 1, . . . , n, j = 1, . . . ,M,

i.e., all points of ωj are regular for Θj for all j = 1, . . . ,M .
Such a mapping is called an immersion as well.

Here and in what follows, matr[x1, . . . , xk] refers to the matrix with the listed vectors x1, . . . , xk
as columns.

A hypersurface is called smooth if the corresponding coordinate diffeomorphisms Θj in (2.1) are
smooth (C∞-smooth). Similarly is defined a µ-smooth hypersurface.

The next definition of a hypersurface is called implicit.

Definition 2.2. Let k > 1 and ω ⊂ Rn be a compact domain. An implicit Ck-smooth hypersurface
in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
,

where ΨS : ω → R is a Ck-mapping, which has the non-vanishing gradient ∇Ψ(X ) ̸= 0.

The most important role in the calculus of tangential differential operators that we are going to
apply belongs to the unit normal vector field ν(y), t ∈ C . The unit normal vector field to the
surface C , known also as the Gauß mapping, is defined by the vector product of the covariant basis

ν(X ) := ±
g1(X ) ∧ · · · ∧ gn−1(X )

|g1(X ) ∧ · · · ∧ gn−1(X )|
, X ∈ C .

The system of tangential vectors {gk}n−1
k=1 to C is, by the definition, linearly independent and is

known as the covariant basis. There exists the unique system {gk}n−1
k=1 biorthogonal to it, i.e., the

contravariant basis
⟨gj , g

k⟩ = δjk, j, k = 1, . . . , n− 1.

The contravariant basis is defined by the formula

gk =
1

detGS
g1 ∧ · · · ∧ gk−1 ∧ ν ∧ gk+1 ∧ · · · ∧ gn−1, k = 1, . . . , n− 1,

where
GS (X ) :=

[⟨
gk(X ), gm(X )

⟩]
n−1×n−1

, p ∈ S ,

is the Gram matrix.
Günter’s derivatives are the simplest examples of tangential differential operators

Dj := ∂j − νj∂ν = ∂j − νj

n∑
k=1

νk∂k.



98 Medea Tsaava

The surface divergence divS and the surface gradient ∇S are defined as follows:

divS U =

n∑
k=1

∂kUk, ∇Sφ := (D1φ, . . . ,Dnφn)
⊤, U := (U1, . . . , Un)

⊤,

and the surface Laplace–Beltrami operator ∆S is their superposition

∆Sψ = divS∇S ψ =

n∑
j=1

Djψ. (2.2)

In contrast to the classical differential geometry, the surface gradient, the surface divergence
and the surface Laplace–Beltrami operator ∆S are defined by Günter’s derivatives much simpler,
with the help of only normal vector field ν, while definitions in the classical differential geometry are
based on the Christoffel symbols Γj

km, the covariant and the contravariant G−1 := [gjk] Riemann
metric tensors and are rather complicated.

It is well known that divS is the negative dual to the surface gradient

⟨divSV , f⟩ := −⟨V ,∇S f⟩, ∀V ∈ V (S ), ∀ f ∈ C1(S ).

Let M be a non-trivial, mes M ̸= ∅, smooth closed hypersurface, s ∈ R and 1 < p < ∞. For the
definitions of Bessel’s potential Hs

p(M ) and Sobolev–Slobodeckii Ws
p(M ) spaces for a closed smooth

manifold M we refer to [22] (see also [6, 12, 13]). For p = 2, the Sobolev–Slobodetski Ws(M ) :=
Ws

2(M ) and the Bessel potential Hs(M ) := Hs
2(M ) spaces coincide (i.e., the norms are equivalent).

Let C be a subsurface of a smooth closed surface M , C ⊂ M , with the smooth boundary
Γ := ∂C . The space H̃s

p(C ) is defined as the subspace of those functions φ ∈ Hs
p(M ), which are

supported in the closure of the subsurface, suppφ ⊂ C , whereas Hs
p(C ) denotes the quotient space

Hs
p(C ) = Hs

p(M )/H̃s
p(C

c) and C c := M \C is the complementary subsurface to C . The space Hs
p(C )

can be identified with the space of distributions φ on C which have an extension to a distribution
ℓφ ∈ Hs

p(M ). Therefore rCHs
p(M ) = Hs

p(C ), where rC denotes the restriction operator of functions
(distributions) from the surface M to the subsurface C .

The spaces W̃s
p(C ) and Ws

p(C ) are defined similarly (see [22] and also [6, 12,13]).
By Xs

p(C ) we denote one of the spaces: Hs
p(C ) or Ws

p(C ), and by X̃s
p(C ) one of the spaces: H̃s

p(C )

and W̃s
p(C ) (if C is open).

The bi-Laplace–Beltrami operator has the finite dimensional kernel dim Ker∆C ≤ ∞, and its
kernel consists only of constants. Hence the space Xs(C ) decomposes into the direct sum

Xs
p(C ) = Xs

p,#(C ) + {const},

where
Xs

p,#(C ) :=
{
φ ∈ Xs

2(C ) : (φ, 1) = 0
}

(2.3)
is the space without constants.

Lemma 2.1. The bi-Laplace–Beltrami operator ∆2
Sφ := (divS∇S )2φ : H2(S ) → H−2(S ) is

elliptic, self-adjoint (∆2
S )∗ = ∆2

S , non-negative

(∆2
Sφ,φ) = (∆Sφ,∆Sφ) =

∥∥∆Sφ
∣∣L2(S )

∥∥2 ≥ 0, φ ∈ H2(S )

and the homogenous equation has only a constant solution

(∆2
Sφ,φ) = 0, only for φ = const. (2.4)

Proof. ∆2
S is elliptic and self-adjoint since ∆S is elliptic and self-adjoint (see [7]).

Due to (2.2) and (2.4), we get

0 = (∆2
Sφ,φ) = (∆Sφ,∆Sφ) =

∥∥∆Sφ
∣∣L2(S )

∥∥2
which gives ∆Sφ = 0 and, consequently, φ = const (see [7]).
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Corollary 2.1. The space Xs(C ) decomposes into the direct sum

Xs(C ) = Xs
#(C ) + {const},

where Xs
#(C ) is the space with detached constants and the operator ∆2

S is invertible between the spaces
with detached constants (see (2.3))

∆2
S : Xs+2

# (S ) −→ Xs−2
# (S ). (2.5)

Therefore ∆2
S has the fundamental solution in the setting (2.5).

Proof. The boundedness in (2.5) follows from that of the operator

∆S : Xs+1
# (S ) −→ Xs−1

# (S )

proved in [10].
Since ∆2

S has the trivial kernel in the setting (2.5) and is self-adjoint (see the foregoing Lemma 2.1),
it has the trivial co-kernel as well and is invertible.

Corollary 2.2. For the bi-Laplace–Beltrami operator ∆2
C on the open hypersurface C the following

I and II Green’s formulae are valid:

(∆2
Cφ,ψ)C − (∆Cφ,∆Cψ)C = −((∂νΓ

∆Cφ)
+, ψ+)Γ + ((∆Cφ)

+, (∂νΓ
ψ)+)Γ, (2.6)

(∆2
Cφ,ψ)C + ((∂νΓ∆Cφ)

+, ψ+)Γ − ((∆Cφ)
+, (∂νΓψ)

+)Γ

= (φ,∆2
Cψ)C + (φ+, (∂νΓ

∆Cψ)
+)Γ − ((∂νΓ

φ)+, (∆Cψ)
+)Γ

for arbitrary φ,ψ ∈ X2(C ) (see [4]).

Lemma 2.2 (see [14] (Lax–Milgram)). Let B be a Banach space, A(φ,ψ) be a continuous, bilinear
form

A( · , · ) : B×B −→ R

and positive definite
A(φ,φ) ≥ C

∥∥φ∣∣B∥∥2, ∀φ ∈ B, C > 0.

Let L( · ) : B → R be a continuous linear functional.
A linear equation

A(φ,ψ) = L(ψ)

has a unique solution φ ∈ B for an arbitrary ψ ∈ B.

3 The solvability of BVPs for the bi-Laplace–Beltrami
equation

Let again C ⊂ S be a smooth subsurface of a closed hypersurface S and Γ = ∂C ̸= ∅ be its smooth
boundary.

To prove the forthcoming theorem about the unique solvability we will need more properties of
the trace operators (called retractions) and their inverses, called co-retractions (see [22, § 2.7]).

To keep the exposition simpler we recall a very particular case of Lemma 4.8 from [6], which we
apply to the present investigation.

Lemma 3.1. Let s > 0, s ̸∈ N, p = 2, B(D) be a normal differential operator of the third order
defined in the vicinity of the boundary Γ = ∂C and A(D) be a normal differential operator of the
fourth order defined on the surface C . Then there exists a continuous linear operator

B : Hs(Γ)⊗Hs−1(Γ)⊗Hs−2(Γ)⊗Hs−3(Γ) −→ Hs+ 1
2 (C )
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such that
(BΦ)+ = φ0, (B1(D)BΦ)+ = φ1, (B2(D)BΦ)+ = φ2,

(B3(D)BΦ)+ = φ3, A(D)BΦ ∈ H̃s−4+ 1
2 (C )

for an arbitrary quadruple of the functions Φ = (φ0, φ1, φ2, φ3)
⊤, where φ0 ∈ Hs(Γ), φ1 ∈ Hs−1(Γ),

φ2 ∈ Hs−2(Γ) and φ3 ∈ Hs−3(Γ).

Corollary 3.1. Let u be a solution of the equation ∆2
Cu = f . Then it has the traces u+ ∈ H 3

2 ,
(∂νΓu)

+ ∈ H 1
2 , (∆Cu)

+ ∈ H− 1
2 , (∂νΓ∆Cu)

+ ∈ H− 3
2 .

Proof. The existence of the traces u+ ∈ H 3
2 , (∂νΓ

u)+ ∈ H 1
2 is a direct consequence of the general trace

theorem (see [22] for details). Let us prove the existence of the rest traces. Concerning the existence
of the trace (∂νΓ

∆Cφ)
+ in (1.3) for a solution u ∈ H2(C ) is not guaranteed by the general trace

theorem, but, according to Lemma 3.1, there exists a function ψ ∈ H2(C ) such that (∂νΓψ)
+ = 0.

Then the first Green’s formula (2.6) ensures the existence of the trace. Indeed, by setting φ = u and
inserting the data ∆2

Cφ = f(t) into the first Green’s formula (2.6), we get

−((∂νΓ
∆Cu)

+, ψ+)Γ = (f, ψ)C − (∆Cu,∆Cψ)C . (3.1)

The scalar product (∆Cu,∆Cψ) in the right-hand side of equality (3.1) is correctly defined and defines
correct duality in the left-hand side of the equality. Since ψ+ ∈ H3/2(Γ) is arbitrary, by the duality
argument this implies that (∂νΓ

∆Cu)
+ should be in the dual space, i.e., in H−3/2(Γ).

Let us now prove the existence of the trace (∆Cφ)
+. Taking an arbitrary ψ ∈ H2(C ) and rewriting

the first Green’s formula (2.6) in the form

((∆Cu)
+, (∂νΓ

ψ)+)Γ = (f, ψ)C − (∆Cu,∆Cψ)C + ((∂νΓ
∆Cu)

+, ψ+)Γ, (3.2)

we note that the right-hand side of equality (3.2) is correctly determined and defines correct duality
in the left-hand side. Since (∂νΓψ)

+ ∈ H1/2(Γ) is arbitrary, by the duality argument this implies that
(∆Cu)

+ should be in the dual space, i.e., in H−1/2(Γ).

Proof of Theorem 1.1. We commence with the reduction of the BVP (1.3) to an equivalent one with
the homogeneous condition and apply Lemma 3.1: there exists a function Φ ∈ H2(C ) such that
(∂νΓ

Φ)+(t) = g(t) for t ∈ Γ and ∆2
CΦ ∈ H̃−2

0 (C ).
For a new unknown function v := u−Φ we have the following equivalent reformulation of the BVP

(1.3): 
∆2

C v(t) = f0(t), t ∈ C ,

(∂νΓv)
+(s) = 0, on Γ,

(∂νΓ∆C v)
+(s)⟩ = h0(s), on Γ,

(3.3)

where

f0 := f +∆2
CΦ ∈ H̃−2

0 (C ), h0 := h+ (∂νΓ∆CΦ)+ ∈ H−3/2(Γ), v+ ∈ H̃3/2(Γ).

By inserting the data from the reformulated boundary value problem (3.3) into the first Green’s
identity (2.6), where φ = ψ = v, we get

(∆C v,∆C v)C = (∆2
C v, v)C +((∂νΓ

∆C v)
+, v+)Γ − ((∆C v)

+, (∂νΓ
v)+)Γ = (f0, v)C +(h0, v

+)Γ. (3.4)

In the left-hand side of equality (3.4) we have a symmetric bilinear form, which is positive definite:

(∆Sφ,∆Sφ) =
∥∥∆Sφ | L2(S )

∥∥2 ≥ 0, φ ∈ H2
#(S ).

(h0, v
+)Γ and (f0, v)C from equality (3.4) are the correctly defined continuous functionals, since h0 ∈

H−3/2(Γ), f0 ∈ H̃−2(C ), while their counterparts in the functional belong to the dual spaces v+ ∈
H̃3/2(Γ) and v ∈ H̃2(Γ,C ) ⊂ H2(C ).

The Lax–Milgram Lemma 2.2 accomplishes the proof.
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4 The solvability of mixed BVPs for the bi-Laplace–Beltrami
equation

Proof of Theorem 1.2. We commence with the reduction of the BVP (1.6) to an equivalent one with
the homogeneous conditions. Towards this end, we extend the boundary data g1 ∈ H3/2(Γ1), g2 ∈
H1/2(Γ2) and h1 ∈ H−1/2(Γ1) up to some functions g̃1 ∈ H3/2(Γ), g̃2 ∈ H1/2(Γ) and h̃1 ∈ H−1/2(Γ) on
the entire boundary Γ and apply Lemma 3.1: there exists a function Φ ∈ H2(C ) such that

Φ+ = g̃1, (∂νΓ
Φ)+ = g̃2, (∆CΦ)+ = h1, and ∆2

CΦ ∈ H̃−2
0 (C ).

For a new unknown function v := u − Φ we have the following equivalent reformulation of the
BVP (1.6): 

∆2v(t) = f0(t), t ∈ C ,

(v)+(s) = 0, on Γ1,

(∂νΓ
v)+(s) = 0, on Γ2,

(∆C v)
+(s) = 0, on Γ1,

(∂νΓ∆C v)
+(s) = h0(s), on Γ2,

(4.1)

where
f0 := f +∆2

CΦ ∈ H̃−2
0 (C ), h0 := h2 + (∂νΓ

∆CΦ)+ ∈ H−3/2(Γ2),

v+ ∈ H̃3/2(Γ2), (∂νΓ
v)+ ∈ H̃1/2(Γ1), (∆C v)

+ ∈ H̃−1/2(Γ2)
(4.2)

To justify the last inclusion v+ ∈ H̃3/2(Γ2), (∂νΓv)
+ ∈ H̃1/2(Γ1) and (∆C v)

+ ∈ H̃−1/2(Γ2),
note that, due to our construction, the traces of a solution vanish: v+ |Γ1= 0, (∂νΓv)

+ |Γ2= 0 and
(∆C v)

+ |Γ1
= 0. By inserting the data from the reformulated boundary value problem (4.1) into the

first Green’s identity (2.6), where φ = ψ = v, we get

(∆C v,∆C v)C = (∆2
C v, v)C + ((∂νΓ∆C v)

+, v+)Γ1 + ((∂νΓ∆C v)
+, v+)Γ2

− ((∆C v)
+, (∂νΓ

v)+)Γ1
− ((∆C v)

+, (∂νΓ
v)+)Γ2

= (f0, v)C + (h0, v
+)Γ2

(4.3)

In the left-hand side of equality (4.3) we have a symmetric bilinear form, which is positive definite:

(∆Sφ,∆Sφ) = ∥∆Sφ | L2(S )∥2 ≥ 0, φ ∈ H2
#(S ),

(h0, v
+)Γ2

and (f0, v)C from equality (4.3) are the correctly defined continuous functionals, since
h0 ∈ H−3/2(Γ2), f0 ∈ H̃−2(C ), while their counterparts in the functional belong to the dual spaces
v+ ∈ H̃3/2(Γ2) and v ∈ H̃2(Γ,C ) ⊂ H2(C ).

The Lax–Milgram Lemma 2.2 accomplishes the proof.
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ON THE WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR SYSTEMS OF
LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

Abstract. The modified criterion of the Opial type condition is given for the well-posedness of
the Cauchy problem for the systems of linear generalized ordinary differential equations. Moreover,
there are established the sufficient conditions guaranteeing the nearness of the left and right limits
of the solutions of the perturbed problems to the left and right limits of the solution of the limit
problem, respectively.

ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ÜÅÄÖËÄÁÒÉÅ ßÒ×ÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓ-
ÈÅÉÓ ÌÏÝÄÌÖËÉÀ ÊÏÛÉÓ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓ ÏÐÉÀËÉÓ ÔÉÐÉÓ ÐÉÒÏÁÉÓ ÌÏÃÉ×ÉÝÉÒÄÁÖËÉ
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×ÏÈÄÁÖËÉ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÌÀÒãÅÄÍÀ ÃÀ ÌÀÒÝáÄÍÀ ÆÙÅÒÄÁÉÓ ÓÉÀáËÏÅÄÓ ÆÙÅÒÖËÉ
ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÌÀÒãÅÄÍÀ ÃÀ ÌÀÒÝáÄÍÀ ÆÙÅÒÄÁÈÀÍ, ÛÄÓÀÁÀÌÉÓÀÃ.
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Key words and phrases: Well-posedness, Cauchy problem, linear generalized differential systems,
Opial type condition.

Let A0 ∈ BVloc(I;Rn×n), f0 ∈ BVloc(I;Rn) and t0 ∈ I, where I ⊂ R is an arbitrary interval,
non-degenerated at the point. Consider the system

dx = dA0(t) · x+ df0(t) for t ∈ I (1)

under the Cauchy condition
x(t0) = c0, (2)

where c0 ∈ Rn is an arbitrary constant vector.
Let x0 be a unique solution of problem (1), (2).
Along with the Cauchy problem (1), (2), consider the sequence of the Cauchy problems

dx = dAk(t) · x+ dfk(t), (1k)
x(tk) = ck (2k)

(k = 1, 2, . . . ), where Ak ∈ BVloc(I;Rn×n), fk ∈ BVloc(I;Rn), tk ∈ I and ck ∈ Rn (k = 1, 2, . . . ).
Without loss of generality, we assume that either (a) tk < t0 (k = 1, 2, . . . ), or (b) tk > t0

(k = 1, 2, . . . ), or (c) tk = t0 (k = 1, 2, . . . ).
In the paper we establish:

1. the sufficient conditions for the Cauchy problem (1k), (2k) to have a unique solution xk for any
sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥xk(t)− x0(t)∥ = 0 (3)
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in the case, where

lim
k→+∞

ckj = c0j if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 (k = 0, 1, . . . ), (3j)

where

ck1 = xk(tk−) = ck −
(
d1Ak(tk) · ck + d1fk(tk)

)
,

ck2 = xk(tk+) = ck +
(
d2Ak(tk) · ck + d2fk(tk)

) (j = 1, 2; k = 0, 1, . . . ); (4)

2. the sufficient conditions for the Cauchy problem (1k), (2k) to have a unique solution xk for any
sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥∥xk(t)− x0(t)− x0j(t)
∥∥ = 0 (5)

in the case, where

lim
k→+∞

ckj = c∗j if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 (k = 0, 1, . . . ), (5j)

where ckj (j = 1, 2; k = 1, 2, . . . ) are defined by (4), c∗j ∈ Rn (j = 1, 2) are arbitrary vectors,
differing from c0j (j = 1, 2), in general; the function x01 is a solution of the homogeneous system

dx = dA0(t) · x (10)

on the set {t ∈ I : t < t0} under the condition

x01(t0−) = c∗1 − x0(t0−),

and the function x02 is a solution of the homogeneous system (10) on the set {t ∈ I : t > t0}
under the condition

x02(t0+) = c∗2 − x0(t0+).

We note that the condition

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 (j = 1, 2)

guarantees the unique solvability of the Cauchy problem (1), (2) for every f0 ∈ BVloc(I;Rn) and
c0 ∈ Rn. Therefore, the vector functions x01 and x02 defined above exist and are uniquely defined.

In earlier works (see [3–5]) there are investigated the analogous question for the convergence in a
general case, i.e., without any restrictions on the sequence tk (k = 1, 2, . . . ), when

lim
k→+∞

xk(t) = x0(t) uniformly on I, (6)

under the condition
lim

k→+∞
ck = c0, (7)

and some condition guaranteeing the equalities

lim
k→+∞

djAk(tk) = djA0(t0), lim
k→+∞

djfk(tk) = djf0(t0) (j = 1, 2). (7j)

Note that if j ∈ {1, 2} is such that (7j) holds, then condition (3j) follows from (4) and (7)
In the present paper we assume that (7) holds, but the fulfilment of conditions (7j) (j = 1, 2) is

not required.
Analogous and some related questions for the initial and general linear boundary value problems

are investigated e.g. in [1, 2, 9, 10, 12, 14] (see also the references therein) for systems of ordinary
differential equations, in [3, 4, 8, 11, 13] for systems of generalized ordinary differential equations, and
in [6] for systems of linear impulsive differential equations.
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To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate linear ordinary differen-
tial, impulsive and difference equations from a unified point of view; in particular, these different type
equations (linear) can be rewritten in form (1). Moreover, the convergence conditions for difference
schemes corresponding to systems of ordinary differential and impulsive equations can be obtained
from the results on the well-posedness of the corresponding problems for systems of generalized ordi-
nary differential equations (see [5, 14,15] and the references therein).

In the paper the use will be made of the following notation and definitions.
R = ]−∞,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open intervals.
I is an arbitrary finite or infinite interval from R. We say that some property is valid in I if it is

valid on every closed interval from I.
Rn×m is the space of all real n×m matrices X = (xij)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

On×m (or O) is the zero n×m matrix. We designate the zero n vector by 0, as well.
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then det(X) is the determinant of X.
In is the identity n× n-matrix.
b∨
a
(x) is the total variation of the function x : [a, b] → R;

a∨
b

(x) = −
b∨
a
(x).

If x : I → R, then
∨
I

(x) is the total variation of x on I, i.e.
∨
I

(x) = lim
a→α+, b→β−

b∨
a
(x), where

α = inf I and β = sup I.
b∨
a
(X) is the sum of the total variations of the components xij (i = 1, . . . ,m; j = 1, . . . ,m) of the

matrix-function X : [a, b] → Rn×m.
a∨
b

(X) = −
b∨
a
(X),

∨
I

(X) = lim
a→α+, b→β−

b∨
a
(X), where α = inf I and β = sup I,

∨
(b,a)

(X) = −
∨

(b,a)

(X).

If X : I → Rn×m is a matrix-function, then
∨
I

(X) is the sum of total variations on I of its

components xij (i = 1, . . . ,m; j = 1, . . . ,m).
X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t (X(α−) = X(α)

if α ∈ I and X(β+) = X(β) if β ∈ I; if α or β do not belong to I, then X(t) is defined by the continuity
outside of I).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV(I;Rn×m) is the set of all bounded variation matrix-functions X : I → Rn×m (i.e. such that∨

I

(X) < ∞).

BV(I;D), where D ⊂ Rn×m, is the set of all bounded variation matrix-functions X : I → D.
BVloc(I;D) is the set of all X : I → D for which the restriction on [a, b] belong to BV([a, b];D)

for every closed interval [a, b] from I.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
We introduce the operators. Let a ∈ I be a fixed point, and X ∈ BVloc(I,Rl×n) and Y ∈

BVloc(I;Rn×m). Then we put

B(X,Y )(t) = X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ) for t ∈ I,

I(X,Y )(t) =

t∫
a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ) for t ∈ I,
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DB(Y1, X1;Y2, X2)(t) = B(X1, Y1)(t)− B(X2, Y2)(t) for t ∈ I,

DI(Y1, X1;Y2, X2)(t) = I(X1, Y1)(t)− I(X2, Y2)(t) for t ∈ I.

Definition 1. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying condition (7), the problem
(1k), (2k) has a unique solution xk for any sufficiently large k and condition (6) holds.

In [4,7], the necessary and sufficient (effectively sufficient) conditions are established that guarantee
the inclusion (

(Ak, fk; tk)
)+∞
k=1

∈ S(A0, f0; t0). (8)

Analogous results are established for the general linear boundary value problems in [3, 4].

Definition 2. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set Sloc(A0, f0; t0−)
if tk < t0 (k = 1, 2, . . . ) and for every c0 ∈ Rn and the sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying
condition (31), the problem (1k), (2k) has a unique solution xk for any sufficiently large k and condition
(3) holds.

Definition 3. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set Sloc(A0, f0; t0+)
if tk > t0 (k = 1, 2, . . . ) and for every c0 ∈ Rn and the sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying
condition (32), the problem (1k), (2k) has a unique solution xk for any sufficiently large k and condition
(3) holds.

Definition 4. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set Sloc(A0, f0; t0±)
if tk = t0 (k = 1, 2, . . . ) and for every c0 ∈ Rn, the sequence ck ∈ Rn (k = 1, 2, . . . ) and j ∈ {1, 2}
satisfying condition (3j), the problem (1k), (2k) has a unique solution xk for any sufficiently large k
and condition (3) holds.

Definition 5. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S∗
loc(A0, f0; t0−)

if tk < t0 (k = 1, 2, . . . ) and for every c∗1 ∈ Rn and the sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying
condition (51), the problem (1k), (2k) has a unique solution xk for any sufficiently large k and condition
(31) holds.

Definition 6. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S∗
loc(A0, f0; t0+)

if tk > t0 (k = 1, 2, . . . ) and for every c∗2 ∈ Rn and the sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying
condition (52), the problem (1k), (2k) has a unique solution xk for any sufficiently large k and condition
(32) holds.

Definition 7. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S∗
loc(A0, f0; t0±)

if tk = t0 (k = 1, 2, . . . ) and for every c∗j ∈ Rn (j = 1, 2) and the sequences ck ∈ Rn (k = 1, 2, . . . )
satisfying conditions (5j) (j = 1, 2), the problem (1k), (2k) has a unique solution xk for any sufficiently
large k and conditions (3j) (j = 1, 2) hold.

(A) The results concerning the sets S(A0, f0; t0), Sloc(A0, f0; t0−), Sloc(A0, f0; t0+) and
Sloc(A0, f0; t0±)

Theorem 1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), t0 ∈ I, and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 and for t = t0

if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . } (9)

and
lim

k→+∞
tk = t0. (10)

Then inclusion (8) holds if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n)
(k = 0, 1, . . . ) such that

inf
{
|det(H0(t))| : t ∈ I

}
> 0, (11)
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and the conditions

lim
k→+∞

Hk(t) = H0(t), (12)

lim
k→+∞

{∥∥∥DI(Ak,Hk;A0,H0)(τ)
∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Ak,Hk;A0,H0)

)∣∣∣)} = 0

and

lim
k→+∞

{∥∥∥DB(fk,Hk; f0,H0)(τ)
∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(
DI(Ak,Hk;A0,H0)

)∣∣∣)} = 0

hold uniformly on I.

The last two conditions are analogy to the Opial conditions concerning to the well-posed question
for the ordinary differential case (see [14]). Note that, the Opial condition has only the sufficient
character for the last case.

We offer another form of criterion for inclusion (8), differing from Theorem 1.
Theorem 1′. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), t0 ∈ I, and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (9) and (10) hold. Then inclusion (8) holds if and only if there
exists a sequence of matrix-functions Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ) such that conditions (11)
and

lim sup
k→+∞

∨
I

(Hk + B(Hk, Ak)) < +∞

hold, and conditions (12),

lim
k→+∞

(B(Hk, Ak)(t)− B(Hk, Ak)(tk)) = B(H0, A0)(t)− B(H0, A0)(t0)

and
lim

k→+∞
(B(Hk, fk)(t)− B(Hk, fk)(tk)) = B(H0, f0)(t)− B(H0, f0)(t0)

hold uniformly on I.

Remark 1. Without loss of generality, we can assume that H0(t) ≡ In in Theorems 1 and 1′. So

B(In, Y )(t)− B(In, Y )(s) = Y (t)− Y (s) and
I(In, Y )(t)− I(In, Y )(s) = Y (t)− Y (s) for Y ∈ BVloc(I;Rn×m).

Theorem 2. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), t0 ∈ I, and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (9) and (10) hold. Let, moreover, the sequences of matrix– and
vector-functions Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) be such that
the conditions

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥Akj(t)−A0j(t)∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0 (13)

and

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥fkj(t)− f0j(t)∥

(
1 +

∣∣∣ t∨
tk

(Ak −A0)
∣∣∣)} = 0 (14)

hold if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . }, where

Akj(t) ≡ (−1)j(Ak(t)−Ak(tk))− djAk(tk) (j = 1, 2; k = 0, 1, . . . ), (15)
fkj(t) ≡ (−1)j(fk(t)− fk(tk))− djfk(tk) (j = 1, 2; k = 0, 1, . . . ). (16)

Then

((Ak, fk; tk))
+∞
k=1 ∈ Sloc(A0, f0; t0−) if j = 1,
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((Ak, fk; tk))
+∞
k=1 ∈ Sloc(A0, f0; t0+) if j = 2

and

((Ak, fk; tk))
+∞
k=1 ∈ Sloc(A0, f0; t0±) if j ∈ {1, 2}.

Remark 2. In Theorem 2, the sequence xk(t) (k = 1, 2, . . . ) converges to x0 uniformly on the set
{t ∈ I, t ≤ t0} if tk > t0 (k = 1, 2, . . . ), and on the set {t ∈ I, t ≥ t0} if tk < t0 (k = 1, 2, . . . ); as
for the case, where tk = t0 (k = 1, 2, . . . ), the sequence xk(t) (k = 1, 2, . . . ) converges to x0 uniformly
in both intervals {t ∈ I : t < t0} and {t ∈ I : t > t0}. Moreover, if conditions (13) and (14) hold
uniformly on the set I, then these conditions are equivalent to the conditions

lim
k→+∞

{∥∥(Ak(t)−Ak(tk))− (A0(t)−A0(t0))
∥∥(1 + ∣∣∣ t∨

tk

(Ak −A0)
∣∣∣)} = 0 (17)

and

lim
k→+∞

{∥∥(fk(t)− fk(tk))− (f0(t)− f0(t0))
∥∥(1 + ∣∣∣ t∨

tk

(Ak −A0)
∣∣∣)} = 0 (18)

uniformly on I, respectively, since (17) and (18) imply that

lim
k→+∞

djAk(t) = djA0(t) and lim
k→+∞

djfk(t) = djf0(t)

uniformly on I for every j ∈ {1, 2}. In addition, equalities (7j) (j = 1, 2) hold and,therefore, as above,
conditions (3j) (j = 1, 2) hold, as well. Thus, in the case under consideration, condition (3) holds
uniformly on I, i.e., condition (6) holds, as well.

Theorem 3. Let A∗
0 ∈ BV(I;Rn×n), f∗

0 ∈ BV (I;Rn), c∗0 ∈ Rn, t0 ∈ I, and the sequence of points
tk ∈ I (k = 1, 2, . . . ) be such that condition (10) holds,

det
(
In + (−1)jdjA

∗
0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 and for t = t0

if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 for every k ∈ {1, 2, . . . },

and the Cauchy problem

dx = dA∗
0(t) · x+ df∗

0 (t),

x(t0) = c∗0

has a unique solution x∗
0. Let, moreover, the sequences of matrix– and vector-functions Ak,Hk ∈

BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk, hk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) and of constant vectors
c∗k ∈ Rn (k = 1, 2, . . . ) be such that the conditions

inf
{
|det(Hk(t)| : t ∈ I, t ̸= tk

}
> 0 for every sufficiently large k,

lim
k→+∞

c∗k = c∗0, lim
k→+∞

c∗kj = c∗0j , (19)

lim
k→+∞

sup
t∈I, t ̸=tk

{
∥A∗

kj(t)−A∗
0j(t)∥

(
1 +

∣∣∣ t∨
tk

(A∗
k −A∗

0)
∣∣∣)} = 0

and

lim
k→+∞

sup
t∈I, t≠tk

{
∥f∗

kj(t)− f∗
0j∥

(
1 +

∣∣∣ t∨
tk

(A∗
k −A∗

0)
∣∣∣)} = 0

hold for some j ∈ {1, 2}, where

A∗
kj(t) = (−1)j(A∗

k(t)−A∗
k(tk))− djA

∗
k(tk),
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f∗
kj(t) = (−1)j(f∗

k (t)− f∗
k (tk))− djf

∗
k (tk) for t ∈ I (j = 1, 2; k = 0, 1, . . . );

A∗
k(t) = I(Hk, Ak)(t),

f∗
k (t)=hk(t)−hk(tk)+B(Hk, fk)(t)−B(Hk, fk)(tk)−

t∫
tk

dA∗
k(s) · hk(s) for t∈I (k=1, 2, . . . );

c∗k = Hk(tk)ck + hk(tk) (k = 1, 2, . . . ),

c∗kj = c∗k + (−1)j
(
djA

∗
k(tk)c

∗
k + djf

∗
k (tk)

)
(j = 1, 2; k = 0, 1, . . . ).

Then problem (1k), (2k) has a unique solution xk for any sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥∥Hk(t)xk(t) + hk(t)− x∗
0(t)

∥∥ = 0.

Remark 3. In Theorem 3, the vector-function x∗
k(t) ≡ Hk(t)xk(t)+hk(t) is a solution of the problem

dx = dA∗
k(t) · x+ df∗

k (t),

x(tk) = c∗k

for every sufficiently large k.

Corollary 1. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), c0 ∈ Rn, t0 ∈ I, and the sequences Ak ∈
BV(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BV (I;Rn) (k = 1, 2, . . . ), ck ∈ Rn (k = 1, 2, . . . ) and tk ∈ I
(k = 1, 2, . . . ) be such that conditions (9), (10), (11),

lim
k→+∞

(ckj − φk(tk)) = c0j ,

lim
k→+∞

sup
t∈I, t ̸=tk

∥Hk(t)−H0(t)∥ = 0,

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥DI(Ak,Hk;A0,H0)(τ)
∣∣∣t
tk

∥∥∥(1 + ∣∣∣ t∨
tk

(DI(Ak,Hk;A0,H0))
∣∣∣)} = 0

and

lim
k→+∞

sup
t∈I, t ̸=tk

{∥∥∥∥DB(fk − φk,Hk; f0,H0)(τ)
∣∣∣t
tk

+

t∫
tk

dI(Hk, Ak)(τ) · φk(τ)

∥∥∥∥(1 + ∣∣∣ t∨
tk

(DI(Ak,Hk;A0,H0))
∣∣∣)} = 0

hold for some j ∈ {1, 2}, where Hk ∈ BVloc(I;Rn×n) (k = 0, 1, . . . ), φk ∈ BVloc(I;Rn) (k = 1, 2, . . . )
and ckj (k = 0, 1, . . . ) are defined by (4). Then problem (1k), (2k) has a unique solution xk for any
sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥xk(t)− φk(t)− x0(t)∥ = 0.

(B) The results concerning the sets S∗
loc(A0, f0; t0−), S∗

loc(A0, f0; t0+) and S∗
loc(A0, f0; t0±)

For the goal, we will use the following easy lemma.

Lemma 1. Let j ∈ {1, 2} be such that condition (5j) hold, where c∗j ∈ Rn, and the vectors ckj(k =
1, 2, . . . ) are defined by (4). Then the vector-function x∗1(t) ≡ x0(t) + x01(t) will be a solution of
system (1) under the condition x(t0−) = c∗1, and the vector-function x∗2(t) ≡ x0(t) + x02(t) will be a
solution of system (1) under the condition x(t0+) = c∗2.
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Theorem 2∗. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV (I;Rn), t0 ∈ I, and the sequence of points tk ∈ I
(k = 1, 2, . . . ) be such that conditions (9) and (10) hold. Let, moreover, the sequences of matrix– and
vector-functions Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ) and fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ) be such that
conditions (13) and (14) hold if j ∈ {1, 2} is such that (−1)j(tk − t0) ≥ 0 for every k ∈ {1, 2, . . . },
where Akj(t) (j = 1, 2; k = 0, 1, . . . ) and fkj(t) (j = 1, 2; k = 0, 1, . . . ) are defined by (15) and (16),
respectively. Then

((Ak, fk; tk))
+∞
k=1 ∈ S∗

loc(A0, f0; t0−) if j = 1,

((Ak, fk; tk))
+∞
k=1 ∈ S∗

loc(A0, f0; t0+) if j = 2

and

((Ak, fk; tk))
+∞
k=1 ∈ S∗

loc(A0, f0; t0±) if j ∈ {1, 2}.

Theorem 3∗. Let the conditions of Theorem 3 be fulfilled, with the exclusion of (19), instead of which
the condition

lim
k→+∞

c∗kj = c∗j , (20)

holds, where the vectors c∗kj ∈ Rn (k = 1, 2, . . . ) are defined as in Theorem 3, and c∗j ∈ Rn is a vector
differing from c∗0j, in general. Then problem (1k), (2k) has a unique solution xk for any sufficiently
large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥∥Hk(t)xk(t) + hk(t)− x∗
0(t)− x∗

j (t)
∥∥ = 0,

where the function x∗
1 is a solution of the homogeneous system

dx = dA∗
0(t) · x

on the set {t ∈ I : t < t0} under the condition

x∗
1(t0−) = c∗1 − x∗

0(t0−),

and the function x∗
2 is a solution of the homogeneous system on the set {t ∈ I : t > t0} under the

condition
x∗
2(t0+) = c∗2 − x∗

0(t0+).

Corollary 1∗. Let the conditions of Corollary 1 be fulfilled with the exclusion of (20), instead of
which the condition

lim
k→+∞

(ckj − φk(tk)) = c∗j

holds for some j ∈ {1, 2}, where the vectors c∗kj ∈ Rn (k = 1, 2, . . . ) are defined as in Theorem 3, and
c∗j ∈ Rn is a vector differing from c∗0j, in general. Then problem (1k), (2k) has a unique solution xk

for any sufficiently large k and

lim
k→+∞

sup
t∈I, t ̸=tk

∥∥xk(t)− φk(t)− x0(t)− x0j

∥∥ = 0,

where the vector-function x0j is defined as above.
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