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ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS

WITH SLOWLY VARYING DERIVATIVES OF ESSENTIALLY
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

OF THE SECOND ORDER



Abstract. Differential equations of the second order with nonlinearities of rather general type that
are in some sense near to the power ones are considered. For some class of solutions with derivatives
of the first order that are slowly varying functions as the argument tends to the critical point, the
conditions of the existence and asymptotic representations are found.
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Let us consider the differential equation

y" = aop(t)eo(y)e1(y') exp (R(|In |yy/|])), (1)

where ag € {=1,1}, p : [a,w][—=]0,+0] (—0 < a < w < +00), @; : Ay, —]0,+00[ are continuous
functions, R :]0; +00[ —]0; +00[ is a continuously differentiable function, that is, regularly varying at
infinity of order u, 0 < p < 1, and has a monotone derivative. Here, Y; € {0, +00}, Ay, is either the
interval [y?; Y;[1, or the interval ]Y;; 9] (i = 0,1). Moreover, it is supposed that every function ¢;
(1 = 0,1) is regularly varying of order o; [4, Chapter 1, § 1.1, p. 9] as the argument tends to Y; and
op+ o1 # 1.

The solution y of equation (1) defined on the interval [tg,w[ C [a,w] is called P, (Yo, Y1, Ao)-solution
(=00 < Ag < 400) if the conditions

limyO(8) =V (= 0,1), lim - O

tw tITrS y" (t)y(t) =0 )

are satisfied.

Let the function ¢ : Ay —]0, +00[ be regularly varying of order 0 as z = Y (2 € Ay, Y € {0, 00},
Ay is a one-sided neighborhood of Y'). We say that the function ¢ satisfies the condition S if for any
slowly varying as z — Y (z € Ay) function L : Ay, —]0;4o0[ such that

LI
im 2EG) g

za L)

the equality
O(zL(2)) =0(2)(1+0(1)) as z =Y (2 € Ay)

takes place, where O(z) = p(2)]z]7°.

Some classes of P, (Yp, Y1, Ag)-solutions of equation (1) were investigated earlier (see, e.g., [3]). The
sufficiently important class of P, (Yo, Y1, £00)-solutions of equations like (1) has been considered only
for the cases R(z) = 0 and ¢o(z)|z|~7° satisfies the condition S. Later, it has turned out to extend the
results on more general cases (see, e.g., [1]). But the functions that do not satisfy the condition S, but
contain in the left-hand side the derivative of an unknown function as in a general case of equation
(1), have not been considered before. Notice that the derivative of every P, (Yp, Y1, 00)-solution is a
slowly varying function as ¢t T w. It makes a lot of difficulties when conducting investigations.

We need the following auxiliary notation

Tw(t) =

{t WETT 0e) = @il (i=0,1)

t—w as w < 400,

and in case 1tle |7 (t)| signyd = Yo,
N(t) = aop(t) | ()| 70T 00 (|mu (t)| signy)) as t € [b,w],

To(t) = ag / D7) |7 (7)[70 00 (| ()] sigm o) dr,

AY
b as /p(T)|7rw(7')|"°@o(|7rw(T)| signy]) dr = +o0,
AD = ’

w as /p(T)|7rw(T)|‘7°®0(|7rw(T)|signyg) dr < 400.
b

Here, we choose b € [a,w[ in such a way that |m,(¢)|signy) € Ag as t € [b,w].

Mf Y; = +oo (Y; = —o0), we respectively suppose that y? >0 (y? < 0).
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Theorem 1. The conditions

+ —
Y, = { o0 a8 w=-oo, 7o (O)y0y) >0 as t € [a;w] (3)

0 as w < 400,

are necessary for the existence of P,,(Yo, Y1, £00)-solutions of equation (1). If the function g satisfies
the condition S and ,
R (0D
thw 7w (0) I} (¢)

=0, (4)

then the conditions
Wio(t)(1 — 09 —01) >0 as t € [a,w],

1 7o ()15 (%)
limy?|Io(t)|=oo—=1 =Yy, lim ———-0
tTw yl‘ O( )| ! tTw Io(t)

together with conditions (3) are necessary and sufficient for the existence of the above-mentioned
solutions of equation (1). Moreover, for each P, (Yy, Y1, +00)-solution of equation (1) the asymptotic
representations

iy 5)

y@Oly' )]~
p1(y' (1) exp(R(| In[y(t)y' (1)]]))
y'(@) _ 1
y(t)  mo(t)

= (1 =09 —o1)Io(t)[L + o(1)],

[1+0(1)]

take place ast T w.

If condition (4) is not valid, there takes place the next theorem with another condition (7). Note
that if the limit of the left-hand side of equality (4) is equal to infinity, then condition (7) takes place
in most cases.

Theorem 2. Let the function p in equation (1) be continuously differentiable in its domain. If the
function @q satisfies the condition S and

TN
A R ([ m (O DN )

=0, (7)

then the conditions
a0y’ (1 — o9 —o1)In |7, (t)| >0 as t € [a,w],

L R(mir))) =i

— 0o — 01

(8)

lim 10 (
o P 7

together with conditions (3) are necessary and sufficient for the existence of P, (Yo, Y1, £00)-solutions
of equation (1). Moreover, for every such solution the asymptotic representations

y' Oy ()]~ (I =09 —01)N(t) 0
WO exp ROy @)~ R(lmon o .
v _ 1 [1+40(1)]
y(t)  mu(t)

take place as t T w.

Proof of Theorem 1. The necessity. Let the function y : [tg,w] — Ay, be a B, (Yp, Y1, £00)-solution
of equation (1). By virtue of (2), the equality

- () ()

implies that
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From this, in view of (2), we have the following asymptotic representations:

y'(t)
T (1)

From the first formula we get the first one of representations (6) and condition (3). It also follows
from (10) that there exists a slowly varying continuously differentiable function L : Ay, —]0, +o0|
such that y(t) = 7, (t)L(7,(t)). By the condition S, we obtain Q¢ (y(t)) = O¢(|m.(t)|signyd)[1+ o(1)]
ast T w.

Moreover, from the first formula of (10), using the properties of logarithmic functions and the
function R, we find that the asymptotic representations

R(IIn[y(t)y' 0Il) = R(|In|mu (D) [1+o(1)],  R([Infy@)y'®)]]) = B (I |z ()] [1 +o0(1)] (11)

take place as t T w.
Let us rewrite (1) in the form

y"(1)
e1(y'()ly' ()]0

Suppose now that condition (4) holds and denote

y(t) = mu(Oy (O + 0], y'() = o) as t1w. (10)

= Ig(t) exp (R(|In]y()y' (t)[]))[1 + o(1)] as ¢ T w. (12)

lim [, = Jo.
dmho® = o

Let us show that the function exp(R(|In|y(Iy " (2))y (I *(2))]])) is slowly varying as z — Jy. Here,
Iy " is the function, inverse to Iy. By conditions (4), (11) and (10), we have

z(exp(R(|In |y(I5 " (2))y (Iol(Z))II)))
== exp (R(|In |y (15 (2)y' (1o (2))]])
iy ZOPR(In (7o (2))y ( HDID)R (1 |y (5 (2))y' (g ' ())]]) (y’(fo_l(Z)) LY >
2= Jo Iy(I5 " (2)) exp (R(In [y (Ig ' (2))y' (I (2))]])) yIo'(2)) ¥ (I3 (2)
i PRIy () (g () o' (U (=) (1+ y”(I_l(Z))y(I(?l(Z))) —0
2o (15" (2) y(lo ' (2) (' (Ig ' (2)))?

Therefore, using (12), we get
y' @ly' ()~
p1(y' (1)) exp(R(| In [y @)y ($)]]))

Thus representation (6) is valid. Taking into account the sign of the function y’(t), we obtain the first
and the second of conditions (5). Using the second of relations (10), by (13) and (12), we have

o T OI(01 (4 (1)

ttw |y (t)[* 7o

=(1—-o09—0o1)lo()[l+0(1)] as t T w. (13)

=0.

The third of conditions (5) follows from the latter relation, and thus the necessity is proved.

The sufficiency. Suppose that the function ¢, satisfies the condition S and conditions (3)—(5) of
the theorem hold. We denote g(vg,v1) = exp(R(|1n|vgvy||))L1(v1), where Ly : Ay, —]0,400[ is a
slowly varying function as z — Y7 (z € Ay,) such that

L/
Li(z) =01(2)[1+0(1)] as z—= Y7 (€ Ay,), lim 0 (2) =0. (14)
z—Y; Ll(Z)
ZEAYI
According to the properties of the function R and (14), we get
0 9% (vg, v1) o
lim ——*——— =0 uniformly by v; € Ay,, j#1i, i,j=0,1. (15)

vljlezy g(vo,vl)
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So, we can take ﬁyi C Ay, (i =0,1) in a form such that

vi 2 (vo, v1)

g(’Uo,’Ul)

<( (Z =0, 1) as (’U(),’Ul) S &yo X Ayl. (16)
Here, 0 < ¢ < |170+01\7 ¢ is sufficiently small and

- W, Vil if Ay, = [0, Yi[, o) <yl <Vi,
Y; = ~ _ 1=0,1.
Yo, 50l if Ay, =Y, Yi> g0 >,

Consider now the function

|51|1—00—01
F(s0,81) = 9(s0, 51)
) s
S0
on the set Ay, x Ay,. Using (15), we have
a1 (e ).
Sliil%/ lsf’lﬁs_f’;jl_)al *L =1 — 09 — o1 uniformly by sg € Ay, (17)
1 1 L
s1€Ay, g(s0,51)
so(gray )
Slii%/ lsf’lﬁi‘);zl_)al 20 = —R'(|In|sps1]|) sign(sp) = 0 uniformly by s; € Ay,.
0 0 =t
S S ey

Therefore, we get

170'070‘1
. 51 . X
lim L =T uniformly by so € Ay,
s1—Y1 g(So, 81)
S1€EAY,

Let us show that F' establishes the one-to-one correspondence between the set Eyo X Eyl and the

set ~111 11
—0p—01 e —0p—01
|:y0(|,\,0,\,1) N T) X AO as |y0(|,\,0,v1) < T,
F(EYO « zYl) _ 9o s Yo 9o s Yo (18)
‘§1|170'070'1 |g1|170'070'1
(T (),\,()7,\,1} X AO as O,\,Oi,vl > T
9(¥5,Y0) 9(¥5Y0)
Here,
o Yo
[g—OO;YOO) as Mg <0, ﬂoo <Yy,
Ao ° - (19)
(YOO; T%} as Mg <0, %{00 > Yy,
Yo Yo
0 as Yp =0,
Yooz —00 as Yp =0, w<+o0o,

400 as Yp =0, w=4o0.

l—og—0o
Let us consider the behavior of the function % on the straight lines

So = k‘Sl, ke R\ {O} (20)
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On every such a line we have
|81|1—0'0—O'1 B ‘81|1—O'0—0'1

9(s0,51)  g(ksi,s1)
Moreover, we get

81|1_"°_‘”>’ sy ! 70— ( s1L4(s1) ) 211y e 5 )
B — =—(1—-09g—01 — ———% —2ks1 R (| In|ks sign(In |ks .
(g<k51,51> T (R o LR (|1n k2] sign(in ks3]

Taking into account (16), from the latter equality we obtain
A i Y
sign (m)81 = sign(y; (1 — o9 — 01)).
ls1 177077

g(ks1,51)
correspondence F' is not of one-to-one type. Then

Therefore, the function is strongly monotone on every line of type (20). Suppose that the

3(po,p1); (90, @) € Ay, x Ayy, po,p1) # (@0, 1) 0 F(po,p1) = F(qo, q1)-

Taking into account the definitions of the sets EYO, Eyl, the latter equality implies that

|1—0’0—O’1 |1—O’0—0’1

|P1 |<J1 Po q0
= , 2=2—cecR\{0}. 21
9(po, 1) 9(q0, q1) Po@ \ {0} (21)

Thus, the points (pg,p1) and (qo, ¢1) lie on a line of type (20). But in this case equalities (21) fail to

‘81‘1_00_”1
— g(siyesn) . Y
the inverse function F~! : F(Ay, x Ay,) — Ay, x Ay,. Taking into account the character of the
function F', we have

take place, because the function is strongly monotone on the line. Therefore there exists

Ffl(wovwl)

_ Fﬁl(wo wy)
F 1(w07w1)—( 1_ ) = 1
FO 1(11)0,101) 7F1_1(w0,w1)
wo
Since by (16) the Jakobian of the function F is different from zero as (sg, $1) € ﬁyo X EYI, the function
F~1 is continuously differentiable on F(Ay, x Ay,).

Taking
ly (O] = (1— 00— o1)To(t) sign(y)[1 + 21 (2)]
e1(y") exp(R(|In [y (t)y' (t)]])) ’ (22)
y't) 1 ol
y0) (L)
where

2= Binlru(t), 8= {1 as w = —+00,

-1 as w < oo,

we can reduce equation (1) to the system

\Pl(xa 21, ZQ)Lll(\Ill(xwzla ZQ)))
Li(Vy(, 21, 22))

Ki(x, 21, 22) R (|In|m,(t)|]) Ki(z, 21, 22)Go(x)
[+ allt + 22l G T RR) ) e

r Go($)K1(IIﬁ721,22) _
22—5[1+22]<(1_00_01)[1+21] [+ 2570 2>7

21 = BGo(z)[1 + 2] ((1 — 09— 01 —

— Ks(x,21,22)




8 M. A. Belozerova, G. A. Gerzhanovskaya

where
\Ifo(l' 21722 ( 1—00 — 01 Io( (X))[1+Z1($)],m [1+22(1‘)]>,

(2,20, 2) = B ( 1= 00— o) a(t(@)l1 + 5 ()], s +z2<:c>1),

Go(z) = t(x( (Im); )),
_ O0(Yo(t(x), 21,22))
Ki(x,21,22) = (1 — 00 — 01)O0 ([ (t(x))| signy?)
Ky(x,21,22) = R (|In[¥o(t(x), 21, 22) ¥ 1(t(|x)721a22)|> :

R/ (| In [ (#(2))1])
By (3), it is clear that

lim —— =Y.
o 7w (t) !

Moreover, it follows from the first and the second of conditions (5) that

hm(l — 0o — Ul)Io(t) =7.

ttw
Therefore, we can choose ty € [a,w[ in a form such that

((1 — 0o I 0’1)[0(75)[1 + Zl(!E)]
0 1+ z2(x)]

Then we consider the system of differential equations (23) on the set

l\JM—\

) € F(Ay, x Ay,) as t € [to,w], |z <

O = [xg, +oo[ xD, where xg = S1n|m,(to)l,
1
D= {(2172’2) al <5, 0= 1,2}.
Rewrite the system in the form

Zi = Go(x)(AHZl + Aoz + Rl(ﬂf, 21, 2’2) + RQ(ZQ)),
2y = Ap121 + Agezo + R3(x, 21, 22) + Ry(22),

where

Al = A = -8B, A = —Boo, Aoy = 0,
_ R (| In | (t(2))]]) Ki (2, 21, 22)Go(z)
Ri(z,21,22) = =B[1 + 2] <K2(35721722) Go(@) (1 + (1+21)(1 + 22)00—1>
Ky(z, 21, 22) ‘1’1(90,21,22)171(‘1’1(30’21722)))
(14 21)|1 + 2|00 Li(¥i (2, 21, 22))
|Ki (2, 21,22)|(1 =09 —01) — 1
+ ﬁ |1 + 22|oo

Ra(22) = B(|1 + 22| 77° + 0022),

[1+ 20)Go(x)K1(z, 21, 22)
(1 — 00 — 0'1)[1 + 2’1] [1 + 22]‘70

)

R3(w,21,22) = B . Ry(z0) = —B23.

For (wo,w1) € F(Ay, x Ay,), we have the equality

|F{ ™ (wo, wy ) |10~

Q(Fo_l(wovw1)7F1_1(w0,w1))

= wq.
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Since (16), (3) and the second of conditions (4) are filfilled, it follows from this equality that
lim U;(t(x), 2z1,22) = Y; uniformly by (z1,22) € [—11} X [—11}
proo 8 sy <1y <2) — L4 y by 1, <2 2°9 2°9

as ¢ = 0,1. Therefore, by (14), we have

hIn \I’l(t(l‘), 21, Zg)L’l(\I’l(t(I), 21, ZQ))
T—00 Ll(\Ifl(t(x),Zl,ZQ))

11 11
= 0 uniformly by (21, 22) € [— 5,5} X [— 3 5} (25)
Moreover, it follows from the properties of the function F and conditions (3)—(5) that the function
Wy (t, 21, 22) is slowly varying as ¢ 1 w uniformly by (z1,20) € [-3 ;3] x [-2; 3]. Since

T () U1 (2, 21, 22)

U (t =
0( 721722) 1+22
and the function ¢ together with the logarithmic function satisfy the condition S, we have
1 11 11
wh_)noloKl(x,Zl,ZQ) = Fp— uniformly by (z1,22) € [— 3 5] X {— 3 5}7 (26)
lim K ( ) =1 uniformly by (21,2) € | 11}x[ 11} (27)
im x,z1,22) = 1 uniform 21,2 — == ==
Yoo 2\by <1y <2 y by 1, <2 29 279
Since the function R is regularly varying at infinity of order u, 0 < p < 1, we obtain
lim R (| In |7, (¢ =0. 28
lim /(|1 | (0)]]) (28)
Third of conditions (5) implies
lim Go(x) = 0. (29)
Tr—r00
By (4) and (25)—(29), we get the limit relations

Rz’ (ZQ)

im ———— =0 uniformly by z: x €]xg, +o0
|1 |+z2] =0 [21] + |22 Y fro. ol

as i = 2,4 and

lirf R;(x, 21, 22) = 0 uniformly by 21,29 : (21,22) € D
Tr—r+00

as1=1,3.

oo
By the definition of the function Gy it is clear that [ Go(z)dx = .
xo
So, for the system of differential equations (24) all conditions of Theorem 2.8 from [2] are fulfilled.
According to this theorem, system (24) has at least one solution {2;}7_; : [z1, +0o[— R? (21 > )
tending to zero as x — +o00. By (22) and (23), this solution corresponds to such solution y of equation
(1) that admits asymptotic representations (6) as ¢t T w. By our representations and (1), it is clear
that the obtained solution is indeed the P, (Yp, Y1, £00)-solution. O

Proof of Theorem 2. The necessity. Let the function y : [tg,w[— R be a P, (Y, Y1, £00)-solution of
equation (1). We obtain (10) and (12) just as in the proof of Theorem 1. The second of representations
(9) follows from these relations. Let us rewrite (12) by using the first of asymptotic representations
(10) in the form

"(t N(t R(|1 t)y (¢ "1 1
YO NOepR(w Oy 0D Ol o] 50
e1(y' (0)ly' (£)|7 y(t)
Suppose that conditions (7) are valid. By the properties of the function R, there exists a twice
continuously differentiable function R :]0; 4+00[ — ]0; +-00[ such that

B2 = RO +o()], F()=REL+o)]. lim_ i/éfgj)(j) - ey
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By conditions (2), (11), (31), (7) and the first of asymptotic representations (10), from the equality

<N<t> exp(R(| In y(t)y'mn)))’ _ V@) exp(R( I ly@y 01Dy ()
R (| ()] y(0) B
y(t) Nm(t) _B(wlm@l) B(hmoDY |, vbue
X<m<t>y’<t> <N(t)R’(|1H|m(t)ll) @ (|1n ()] R'<|1n|7rw<t>||>)+ T )
we have the following representation
(N(t) exp(R( 1ny<t>y’<t>|>))’ _ N@es(A( 0y ©ID)
7 ([Infru (1)) R (| (1))

+o(1)]

as i = 1,3. So, using the properties of the function ¢; and (30), we get

v NOepBEIn O OD) (L) s e,

o1 (y'(t)]y (t)]°0 R'(|In|my(t)]])

The first of representations (9) follows from this relations by using (31). Taking into account the sign
of the function y'(t), we obtain conditions (8). The necessity is proved.

The sufficiency. Suppose that the function ¢ satisfies the condition S and there take place
conditions (3), (7), (8). Consider the twice continuously differentiable function R :]0;+oo[ — ]0; +00[
that satisfies (31), just as in the proof of Theorem 1. We use the same function F' with the same
properties as in the proof of Theorem 1.

Taking | N
1-— g — 01 N(t
- 1+ 21 ()
F(y'(t),y(t)) = R/(|In|m, ()]])
— L+ =a(e)]
where

v = Bln |my(t)], 5{1 a8 W= oo,

-1 as w=4o0,
we can reduce equation (1) to the system

K1($,21,2’2)|1 + ZQ|UO
(1 — 00 — 0'1)

\1/1(1'7 21, ZQ)Lll(\Ill(x7zlv ZZ)))
Ly (Y1 (z, 21, 22))
Ky (x,21,22)Go(x)|1 + Z2|U°>

‘1—00—01|

(170’07(717

4 = 6Goa)|

—G1($)[1 + 2:1] — KQ(JZ, 21, 2’2)(1 + 21 +

R(|In|m,(0)[]) )
Ky (z, z1,22)Go(x)|1 + 22|7° _ ]
[1— 09— o1][1+ 2] 7

4=l +2] |

where

)

Gola) = B (I frott@)l), Gr(a) = DD

_ B( e (t())I ) R(| o [ (t(2)) 1)
(R/(|In |7 (t())]1))?

a0 eIN @) 1
Yotz z) = 1y < Ry et 2]>’

2)

(1= 0 — o )N(t(x)

\I/l T, 21,22 :Fl = 1 Z1], 1 Z2] |,
(21,22) ( Rt [+ ]>

Ga(z)

)

o
o (t(z))



Asymptotic Representations of Solutions with Slowly Varying Derivatives 11

O (Vo (t(), 21, 22))

Ki(z, 21, 22) = ,
1(z, 21, 22) Oo(|mu (t@))])
R (|1n | (t U, (t
Ko, 20) = LU V0(t@): 21,2001 (a). 21, 2)ID)
R ([T |y, (¢(2))]])
We get

i ~ 1 uni 11 11
leI&Ki($;Zlaz2) = 1 uniformly by (z1,22) € [_ 5,5} « [_ 575}, (33)

as in the proof of Theorem 1.
By (3), it is clear that

1
lim —— = Y.
to mo(t) O
Moreover, it follows from (7) and (8) that
lim |1: o0 — 0'1|N(t)
e R(|In[m, (2)]])

Therefore, we can choose ty € [a,w[ such that

(1~7 oo — Ul)N(t)
R ([T |y, (4)]])

Lta@)) 1
) € F(Ay, x Ay,) as t € [to,w], |zz\§§ (i=1,2).
m[l + 22()]
Further, we consider system (32) on the set
Q = [xg,+oo[ xD, where xg = S1n|to],
D:{@ngmg%@:Lm}

and rewrite system (32) in the form

21 = Go(x) [Anzl + Aio21 + Ry(x, 21, 22) + RQ(ZQ)],
zy = Ag121 + Agaza + Ra(x, 21, 22) + Ra(22),

where
Apn = Agp = =B, Ao = Pog, Aa =0,

Rl(x,zl,zg) = ﬁ((Kl(.%‘,Zl,Zg) — l)ll + ZQlUO — (Kg(l‘,Zl,ZQ) — 1) — Gl(x)[l + 21]

n Ga(z)  Ki(w,21,20) Vi(w, 21, 20) LY (W (, 21, 22))
R(|In|m, (@)1 + 22]  [1 =00 — 0] Ly (W1(x, 21, 22))
B Go(x)Kz(x,zth)Kl(%Zhz2)|1+z2|(,0>7
|]. — 0o — O'1|
RQ(ZQ) = (|]_ + 22|00 — 0pk2 — 1),
Go(i)Kl (SC, 21, 22) ‘1 + 22|00+1
R =
3(1:7217Z2) |1—0’0—O’1| 1+Zl ’
R4(2’2) = —623
It follows from (3) and (7) that
w—1

lim Gi(z) =0 (:=0,1), lim Ga(z)=—.

Tr—r00 T—00 /J
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By the character of the function Gy, it is clear that

oo

/%@M:w

zo
So, using (33), we have

R.
im ﬂ =0 uniformly by x : = €]zg, +00]
|21 ]+ 22 =0 [21] + [22]

asi=2,4 and

lim R;(z,z21,22) =0 uniformly by 21,22 : (21,22) € D
r—r+00
asi1=1,3.

Thus, for the system of differential equations (32) all conditions of Theorem 2.8 from [2] are
fulfilled. According to this theorem, system (32) has at least one solution {z;}72_; : [z1,+o0o[ — R?
(z1 > x0) that tends to zero as x — +oo. This solution corresponds to such solution y of equation (1)
that admits asymptotic representations (9) as t T w. By our representations and (1), it is clear that
the obtained solution is indeed the P, (Yy, Y7, £00)-solution. O
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1 Introduction

In this work we are essentially interested in studding the existence of positive periodic solutions
for certain classes of fourth-order nonlinear differential equations which are ubiquitous in different
scientific disciplines and arise especially in the beam theory, viscoelastic and inelastic flows and electric
circuits.

There is a vast literature related to this topic, for instance, in the middle of the past century,
the existence and uniqueness of solutions for higher-order differential equations have been extensively
studied by many researches (see, e.g., [1-7]). During the last two decades, there has been increasing
activity in the study of periodic problems of higher-order nonlinear differential equations (see [12] and
the references therein).

Some mathematicians used transformation in order to reduce the equation to a more simple one, or
to a system of equations, or used synthetic division, others gave the solution in a form of series which
converges to the exact solution and some of them dealt with the fourth-order differential equations by
using numerical techniques such as the Ritz, finite difference, finite element, cubic spline and multi
derivative methods. In this paper, these usual methods may seem inefficient to establish the existence
of positive periodic solutions for the fourth-order nonlinear differential equations. For this, inspired
by the method presented in [9], we convert the ordinary differential equation to an integral equation
in which the kernel is a Green’s function, before using the fixed point theorem in cones.

The paper is organized as follows.

The main goal of the next section is to give the Green’s functions of the fourth-order constant-
coeflicient linear differential equation

u"" + au + bu” + cu’ + du = h(t), (1.1)

where a,b,¢,d € R and h € C(R, (0, +00)) is a w-periodic function with the period w > 0.
The associated homogeneous equation of (1.1) is

u" +au" + bu" + cu’ + du = 0, (1.2)
where its characteristic equation is
M4 aX A% 4 ed+d=0. (1.3)

In this work we assume that d # 0 and we will study only the situation when the roots A1, A2, A3, A4
are real numbers. These roots satisfy one of the following five cases:

A1 # A2 #F A3 # Ay
A1 = A2 # A3 # Ay

(1)
(2)
(3) M =X # A3 = A
(4)
(5)

2
4) A =X = A3 # Mg
5) A1 =X = A3 = )\4.

In the third section, some useful properties of the obtained Green’s functions are established.
Finally, in the last part, by using the fixed point theorem in cones, we establish the existence of
positive periodic solutions of the fourth-order nonlinear differential equation

W+ au” + bu + eu! +du = f(t,u(t)), (1.4)

where f € C(Rx[0,+00),[0,400)) and f(¢,u) > 0, for u > 0.
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2 Green’s functions

Theorem 2.1. If \y # Ao # A3 # A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = / Gr(t, 5)h(s) ds,

where s € [t,t + w] and

ez\l(w—i-t—s) e)\g(w+t—s)
Gl (t, S) = Y + by
(I —e® ) (A1 = A2) (A1 = A3) (A1 — Ag) (1 —e*2) (A2 — A1) (A2 — Az) (A2 — Ag)
e)\g(w+tfs) e/\4(w+tfs)
+ + .
(1 — 6“’)‘3)()\3 — )\1)()\3 - )\2)()\3 — )\4) (1 - 6“’)‘4)()\4 - /\1)()\4 — )\2)()\4 — )\3)

Proof. For A1 # Ay # A3 # Ay, it is easy to see that the general solution of the homogeneous equation

(1.2) is

At Aot Azt Ayt

u(t) = cre™’ 4 coe™?" + c3e™?t + cqe™

and that u(¢) = 0 is its unique solution. Applying the method of variation of parameters, we obtain
eft)\l 67t)\2

(A1 = A2) (A1 — Az) (A1 — Ag) &) = -hlt) (A1 = A2) (A2 — A3) (A2 — Aa)
eft)\g e*t>\4

YR svsw v v R IOl Oh s vy W vy wIs W WE

c1(t) = h(t)

cy(t) = h(t)

whence
t+w A
e M
t+ = t) + h d ’
ci(t +w) = ci(t) t/ (s) (A1 — A2) (A1 — A3) (A1 — \g) i
t+w A
e 572
ca(t+w) =cot) — h(s ds,
2(t +w) = ea(t) t/ () (A = A2)(A2 = Az) (A2 — Aa)
t+w A
e %3
t+w) = colt) + / h as,
03( U}) 63( ) J (S) ()\1 _ )\3)()\2 — )\3)()\3 - )\4) i
t+w A
e M
t+w)=ca(t)— [ h s
ca(t+w) = ex(t) / ) e )0 )
Since we are looking for w-periodic solutions of (1.1), we have
t+’wh e(w—s)Al d
t =
c1(t) t/ (5) (1 —ewrM)(A1 = A2) (A1 — A3) (A1 — Aa) >
G 7wh( ) i d
co(t) = — s %
2 J (1_610)\2)()\1 —)\2)(/\2—)\3)()\2_)\4)
t+wh e(w—s)A3 d
t =
C3( ) J (8) (1 _ e“’>‘3)(>\1 — )\3)()\2 — )\3)()\3 - >\4) >
t+wh e(w—s)/\4 d
t) = — ’
04( ) (8) (1 _ 611))\4)()\1 — A4)(>\2 — )\4)(A3 — )\4) S

~
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Therefore,

t+w t+w

u(t+w) = /Gl(t+w,9—|—w)h(9+w)d9: /Gl(t,s)h(s)ds:u(t),

which proves the periodicity of w.

Assume that u; and ug are two w-periodic solutions of (1.1), then v(t) = uy(t) — ua(t) is a
w-periodic solution of (1.2), i.e., v(t) = 0, hence the uniqueness of the w-periodic solution for (1.1) is
guaranteed. O

Theorem 2.2. If \y = Ay # A3 # A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = /Gg(t,s)h(s)ds,

where s € [t,t + w] and

eltHw=sIh (A — A3) (A — A1) — (" — 1) (A3 — 2X1 + A — s(A1 — A3) (A1 — Aa)))

Ga(t,s) = ™ — 1200 — A3)2(0 — )2
e(terfs))\l e(t+wfs)/\3
+1 A 2 + As 2
(1 —e¥ 1)()\1 —AMA3 — A+ /\3/\4) (1 —ev 3)()\1 — /\3) (/\3 — )\4)
e(t+wfs))\4

(1 — ew>‘4)()\1 — )\4)2(/\3 — )\4) '
Proof. For A\ = Ay # A3 # Ay, it is easy to see that the general solution of the homogeneous equation
(1.2) is
u(t) = cre™Mt + coteMt + c3eM3t 4 cqeMt.
Applying the method of variation of parameters, we obtain

e*t)\l

Cll(t) = h(t) ()\1 _ )\3)2()\1 _ /\4)2 (
h(t)etA &t) = h(t)e s 4t = — h(t)e A
A=) =) 2 (=) —A) T (= A)2(As— M)

Az — 201 + A — (A1 — A3) (A — )\4)),

cy(t) =

Since u(t), u'(t), v’ (t) and u"(t) are supposed to be continuous functions, we get

cl(t) _ 7wh(s) eAl(w_s) (w()\l—)\3)()\1—)\4)—(ew’\1 —1)(>\3—2)\1 +)\4—S()\1—)\3)()\1—>\4)))

(ewd —1)2(A1 — X3)2 (A1 — A\y)?

ds,

t
t+w

h(s)e(w_s)kl
t) = d
c2(t) / (1 — e M)A = A3 — Mg + Agha) %

t
t+w

h(s e(wfs))\g
c3(t) = ls)

(1 —e®A3)(A1 — A3)% (A3 — Aa)

ds,

t+w
e(w—s))\4

C4(t) = — / h(S) (1 _ GW)‘4)(>\1 — )\4)2()\3 — )\4) ds.

Therefore,

t+w
u(t) = er(t)eMt 4+ co(t)te™! + ca(t)et + cu(t)et = / Go(t, s)h(s) ds.
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In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and periodicity of the
solution. 0

Theorem 2.3. If \y = Ay # A3 = A4, then equation (1.1) has a unique w-periodic solution of the

form
t+w

u(t) = / G (t, $)h(s) ds,

where s € [t,t + w] and

e(WHt=s)A1 (1 — W M) (sAy — sAy +2) + WAy — wAy) elwtt=s)
Gg(t, S) = — E +
e — D20 — AP (= e )00 — )
e(wHt=s)Xa ((ewh — 1)(sAy — sA1 +2) + WAy — wA1) N e(wtt=s)xa
@ 170 AP (ErE N,

Proof. For A\; = Ao # A3 = A4, (1.2) has the general solution
u(t) = creMt 4 cpte™t 4 czeMt 4 cytett

Applying the method of variation of parameters, we obtain

e—th et
i (t) = —h(t) CRESWI (th1 —tha +2), c5(t) = h(t) YR

e—tA4 e_t’\“
cs(t) = h(t) PRESWE (tAa —tA1 +2),  cy(t) = h(t) ISR

Since u(t), u'(t), v’ (t) and «'”(t) are continuous, we have

T - (sfw)( wA
e~ M (1 — €M) (sA1 — sAg + 2) + why — why)
t) = —h d
c1(t) / (s) (e® M — 1)2(A; — Ag)3 5
t+wh e(w7s))\1 ]
CQ(t) - / (5) (1 . ew)\l)()\l _ )\4)2 S,
t
f = e hs) e~ MW ((eWA — 1)(sAg — sA1 +2) + why — wq) P
03( t S (6w>\4 — 1)2(/\1 — )\4)3 S,
t+w

e(wfs))\‘;
ca(t) = / h(s) (PO IS WE ds.

Therefore,

t+w
u(t) = c1(£)eM 4 co(t)te™? + ez (t)et + cy(t)tet = / Gs(t, s)h(s) ds.
t

The uniqueness and periodicity of the solution can again be shown in the same way as in the proof
of Theorem 2.1. O

Theorem 2.4. If \y = Ay = A3 # A4, then equation (1.1) has a unique w-periodic solution of the
form
t+w

u(t) = / Galt, s)h(s) ds,
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where s € [t,t + w] and

Jrrnmon =€) = D(((s = O = M)+ 12 +1)) el
2(ewA — 1)3 (A — A\y)3 (ewrs —1)(A1 — A\y)?
e(t+w—s)\1 ((1 _ ew)\l)(w()\l — M) (2(s — )M — M) + 2)))
2(€w)‘1 — 1)‘3()\1 — )\4)3
w2e(t+wfs)/\1 (ew)\l 4 1)()\1 _ )\4)2
2(ewr — 1)3 (A — N\y)3

Proof. For A\; = Ay = A3 # A4, (1.2) has the general solution

G4 (t, 8) =

+

u(t) = Cle)qt + Cgte)\lt + C3t2€/\1t + C4t6)\4t,
The application of the method of variation of parameters gives

e (t2A2 — 242N Ny +12AT 4+ 2tN — 2t0y + 2)

c1(t) = ()

2(A1 — M\1)3 ’
e (N — thy ) e—th ) et

Since u(t), u'(t), v’ (t) and «'”(¢t) are continuous functions, we have

ds

B (WM (5202 — 252 X1 Ny + 5207 + 250 — 250y + 2)
Cl(t) = h(S) 2(1 — €w>‘1)()\1 — /\4)3

t+w
1 e(w=s)h ((e —1)(s(A\1 — A1) + 1) +w(A — Ay))
Tw (1 — ewh) / h(s) (1= e )2(A — Ay)2 ds
.1 Iy
T sy | M s R e
T A (@ - 1) (s(A — Ag) £ 1) +w(Ar — Ag))
ca(t) = t/ h(s) (1— ew/\1)2()\1 — )2 ds,
b w e(w—s))\l
o) = [ o) 5=y 2
e e(w—s)As
ca(t) = / h(s) @ T — ) ds.

t
Therefore,
t+w
u(t) = c1(£)eM + co(t)teMt + cz()t2eMt + cy(t)tet! = / G4(t,s)h(s)ds.
t
In the same way as in the proof of Theorem 2.1 we can prove the uniqueness and periodicity of the

solution. 0

Theorem 2.5. If \y = Ay = A3 = A4, then equation (1.1) has a unique w-periodic solution of the
form
t+w

u(t) = / Gs(t, 5)h(s) ds,
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where s € [t,t + w] and

p(tHw—s)A1 (s —t)3(e®™ —1)3 + 3w(s — t)2(e™ — 1)?
6(ewM —1)4
(tHw—s) 3w?(s —t)(e?WM — 1) + w3 (e2(WA) 4 gewhr 1)
6(6“))‘1 _ 1)4 .

G5 (t, 8) =

+

Proof. For A\; = Ay = A3 = Ay, (1.2) has the general solution
u(t) = 016/\1t + Cgt(i)\lt + 63t2e/\1t + C4t36>‘1t,

By the method of variation of parameters, we arrive at

1 1 1 1
() = 5 htde=M dh(t) = 3 ht?e™™ dh(t) = -5 hte= ¢ (t) = G he ™A,

Since u(t), u'(t), v’ (t) and «”(t) are continuous functions, we get

t+w
536(7075))\1
Cl(t) = 7h(s) 76(1 — QUI)\l) dS
t
t+w
. / hs) wew=s)M (3262(“’)‘1) —252eWM 452 4 25weW M — 25w + wreWM —|—w2) d
° 2(1 — ew™)(ewh — 1) §
t
t+w
w2 e(w=8)A1 (w—s+ sew’\l)
- s ds
(1 _ eu;)\l) 2(1 _ ew)\l)Q
t
w3 t+wh e(wfs))\l J
tazeny ) M gy 48
t
t+w
e(wfs))\l (8262(w)\1) _ 2s2ew/\1 4 82 + 2swew>‘1 — 95w + w2ew)\1 + ’LU2)
ea(t) = / h(s) ds,
S(ewh —1)3
t
t+w
(wfs))\l( _ + wAl)
e w S Se
Cg(t) = / h(s) 2(1 — ew)\l)Q dS,
t
b w e(wfs)kl
t

Therefore,
t+w
u(t) = 1 ()M + ca(t)tet + ez (t)t2eM! + cz(t)tPeMt = / Gs(t,s)h(s) ds.
t

In the same way as in the proof of Theorem 2.1, we can prove the uniqueness and the periodicity of
the solution. O

3 Properties of the Green’s functions

We denote

CH={ueCR,(0,+0)): ut+w)=u(t)},
Cp = {ueC(R,(-00,0)) : u(t+w)=u(t)}.
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Case 1. If \; # Ay # A3 # A\y. For ease of exposition, we use the following abbreviations:

e(’erth)/\l
gra(t,s) = (1 —ePw) (A — A2) (A1 — Ag) (A1 — Ag)
e(w+t75)>\2
g12(t,8) = (1 —eP2)w)( Ay — A1) (A2 — A3) (A2 — A\g)
e(w+t75))\3
g1,3(t,s) = (1 —ePaw)( A3 — A1) (A3 — Xa) (Mg — A\g)
€(w+t—s)>\4
gr,4(t,s) = (1 —ePDw)( Xy —A)(Ag — Xo)(Ag — A3)
ew)\l ew)\g
A= A T M = MO~ Aa) (@ — D0 — A0 — A — A
1 1
RIS V[P VD 5 W W 1§ VR W R IOV } [ VR W D W [ PR WA
. €w>\2
Aig = T e D — A — A3) (O — ) + (ewr2 —1)(A1 — A2) (A2 — Az) (A2 — Aa)
ew)\g 1
_ (e — 1)(M — A3)(hz — A3) (A3 — Aa) + (e M — 1) (A1 — M) (A2 — M)Az — Ag) 7
By =-— 1 - 1
U e — (A — M)A — As) (A — A1) (€9 —1)(A1 — As) (A2 — A3)(As — Ag)
ewkz 6w)\4
+ €2 — 1)(A — ) (ha — A3)(hz — Aa) + (e — 1)(A1 — Ag) (A2 = Ag)(As — Ag)
ew/\1 1
B172 = - <€w,\1 _ 1)()\1 _ )\2)()\1 — )\3)()\1 - )\4) + (ewx\z — 1)()\1 - )\2)()\2 - )\3)(/\2 - )\4)
! ew)\4
T @ — D — Aa)Oe — A3 — M) + (ewA — 1)(A1 — Ag)(A2 — A1) (A3 — \a) ;
ew)\l ew)\g
[ P VR 35 WS VO T 5 VS VAT W W S 72 VR 15 VNS WO T VS W TG W W I
1 1
M2 TR T 00— A) (= A = A) (@ — D0 — Aa)(z — Ag)(hg — Ad)
ew)\4
- (ew>\4 _ 1)()\1 — /\4)()\2 — /\4)(/\3 - )\4) ’
ewkl ew)\g
ni3 = +(6W1 — DA = M)A = A3) (A — Ag) + (ew*s —1)(A1 — A3) (A2 — A3)(Az — A\4)
1
B (ewr —1)(A1 — M) (A2 — M) (A3 — M)’
) ew)\e,
T e 0 )0~ A — ) | (e = D0 — )0 — %) 0 — )
1 1
niys = +(e“’/\1 —1) (A — A2) (AL — As) (A — Ag) + (ewrs —1)(A1 — A3)(A2 — A3) (A3 — Aa)
PLL = Gone Z 1) 0n = )0 — M) 0a — ) T (@ — 10 = 2a) e — ) O — )
8wA2
P12 = (ewr2 — 1) (A1 — A2) (A2 — A3) (A2 — A\g)’
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1
PL3 = (o Z 100 — o) (e — Ag)(ha — M)
ew/\Q 1
D14 = WA + wA ’
(ew22 = 1)(A1 = A2)(A2 = Ag)(Az — Ag)  (e"M = 1)(A1 — Aa) (A2 — Aa)(Az — Ag)
e’LUAQ €w>\4
P15 =

(% — 1) —22) 0z —2a)0z — M) | (@M — D = A (e = A) (s = Ag)

Theorem 3.1. For allt € [0,w] and s € [t,t + w|, we have

t+w 1
/ Gi(t,s)ds = o
t
Proof. We have
t+w
(t,s)ds !
/ LN A (AL = A2) (A1 = A3) (A1 — M)
t+w
(t,5)d !
,5)as = )
t 2 Mo = A2) (s — Ag) (P — Aa)
t+w
(t,5)d .
,8)as = — )
/o s — A3) e — Aa) (s — M)
t+w
(t,s)ds = !
/ LAk Aa(A1 = Aa) (A2 = A) (A3 — Ag)
and
t+w t+w t+w
/ Gi(t,s)ds = / g1.1(t,s)ds + / g1.2(t,s)ds
t t t
t+w t+w 1
+ t,s der/ t,s)ds = ————— . O
t/ sty [t e = 1o

We have four different roots satisfying one of the five cases:
- All roots are positive.

- Three roots are positive and one root is negative.

- Three roots are negative and one root is positive.

- Two roots are positive and two roots are negative.

- All roots are negative.

If all roots are positive, we suppose that Ay > Ay > A3 > Ay > 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.2. prl,l >niia and A1 > Ag > A3 > Ay > 0, then

0< A1 <Gi(t,s) < By
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Proof. If Ay > Ay > A3 > Mg > 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s, gives
% g1.1(t,s) >0, % g1.2(t,s) <0, % g1.3(t,s) > 0 and % g1,4(t,s) < 0. This implies that

g11(t,t) + g1 2(t, t +w) + g1,3(t,t) + g1,4(t,t + w)
< Gi(t,s) S gira(t,t+w)+ gi2(tt) + g3t t +w) + g1,4(t, ).

From the above double inequality and the assumption p; 1 > n1,1, we obtain 0 < A3 1 < G1(t,s) <
Bl,l- ]

Corollary 3.1. If h € C} and p11 > ni1 and Ay > Ay > A3 > Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = / Gr(t, 5)h(s) ds.

Example 3.1. Consider the equation
u”” —0.56u” +0.0311u" — 5.56 x 10~ 4/ + 3 x 10754 = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A —0.5)(A — 0.03)(A —
0.02)(A — 0.01) = 0 has four roots A\; = 0.5, Ay = 0.03, A3 = 0.02, \y = 0.01.
Since p;1 = 2.0864 x 10% > ny,1 = 1.764 3 x 10%, the equation has a unique 27-periodic solution
t+w t+w
u(t) = [ Gi(t,s)h(s)ds, with [ Gi(t,s)ds =3.3333 x 10° and 0 < 32210 < Gy (¢, s) < 73894.
t t
If three roots are positive and one root is negative, we suppose that Ay > Ao > A3 >0 and Ay <0
(the other situations can be proved by using the same method), and we have

Theorem 3.3. Ifp1o <ni2, A1 > Ay > A3 >0 and Ay <0, then
A1 < Gi(t,s) < Bii <0.

Proof. If Ay > Ay > A3 > 0 and A4 < 0, the study of the derivatives of g; ;, ¢ = 1,4, with respect to s
gives % g11(t,s) >0, % g1.2(t,s) <0, % g1,3(t,s) > 0 and % g1.4(t,s) < 0. Similarly, as in the proof
of Theorem 3.2, we obtain A; 1 < G1(¢,s) < By1 <0. O

Corollary 3.2. If h € C, p12 < N2, A1 > A2 > A3 > 0 and Ay < 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /Gl(t,s)h(s)ds.

Example 3.2. We consider the equation
" —0.59u"" 4+ 0.104u” — 0.0049u” — 0.00006u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A —0.3)(A — 0.2)(A —
0.1)(A 4+ 0.01) = 0 has the roots Ay = 0.3, Ao = 0.2, A3 = 0.1, Ay, = —0.01.

Since p12 = 665.64 < n1o = 2702.1, the equation has a unique 27-periodic solution u(t) =
t+w t+w
[ Gi(t,s)h(s)ds, with [ Gi(t,s)ds = —16667 and —3268.1 < G1(t, s) < —2036.5 < 0.
t

t

If three roots are negative and one root is positive, we suppose that Ay < Ao < A3 <0 and Ay >0
(the other situations can be proved by using the same method), and we have

Theorem 3.4. Ifp13 <ni3z, A < Ay < A3 <0 and Ay > 0, then

By < Gi(t,s) <Ay <0.
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Proof. If \j < Ay < A3 < 0 and A\g > 0, the study of the derivatives of g; ;, i = 1,4, with respect to s
gives % g11(t,s) <0, % g1.2(t,s) >0, % g13(t,s) < 0and % g1.4(t,s) > 0. Similarly, as in the proof
of Theorem 3.2, we obtain By < G1(t,s) < A11 <0<0. O

Corollary 3.3. If h € C,, p13 < nig, M < A2 < A3 < 0 and Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /Gl(t,s)h(s)ds.

Example 3.3. Consider the equation
""" +0.59u”" + 0.104u” + 0.0049u” — 0.00006u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A + 0.3)(A 4+ 0.2)(A +
0.1)(A — 0.01) = 0 has the roots A\; = —0.3, A2 = —0.2, A3 = —0.1, Ay = 0.01.

Since p13 = 665.64 < n13 = 2702.1, the equation has a unique 2m-periodic solution u(t) =
t+w t+w
J Gi(t,s)h(s)ds with [ Gi(t,s)ds = —16667 and —3268.1 < G1(t,s) < —2036.5 < 0.
t t

If two roots are negative and two roots are positive, we suppose that A\ < Ay <0 and A3 > Ay >0
(the other situations can be proved by using the same method) and have

Theorem 3.5. pr1,4 > N4, A < XA <0 and /\3 > Ay > 0, then
0< ALQ < Gl(t,S) < BLQ.

Proof. If Ay < Ay < 0 and A3 > A4 > 0, the study of the derivatives of g; ;, ¢ = 1,4, with respect to s
gives % g11(t,s) <0, 8% g1.2(t,s) >0, % g1,3(t,s) > 0 and % g1.4(t,s) < 0. Similarly, as in the proof
of Theorem 3.2, we obtain 0 < A; » < Gy(t,s) < By 2. O

Corollary 3.4. If h € C}, p1a > n1a, M1 < A2 < 0 and X3 > Ay > 0, then equation (1.1) has a

unique positive periodic solution
t+w

u(t) = /G1(t,s)h(s)ds.

Example 3.4. Consider the equation
u”" —0.054u" — 4.9304 x 10732’ + 0.0004u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A + 0.2)(A 4+ 0.1)(A —
0.2)(A — 0.1) = 0 has the roots A\; = —0.2, A2 = —=0.1, A3 = 0.2, Ay, =0.1.
Since p14 = 381.19 > ny4 = 232.97, the equation has a unique 27-periodic solution u(t) =
t+w t+w
J Gi(t,s)h(s)ds with [ Gi(t,s)ds = 2500 and 0 < 148.22 < G4 (t,s) < 648.22.
t

t

If all roots are negative, we suppose that A\; < Ay < A3 < Ay < 0 (the other situations can be
proved by using the same method), and we have

Theorem 3.6. Ifp1 s >ni5 and A\ < A2 < A3 < Ay <0, then
0< Bi1 <Gi(t,s) <A
Proof. It A1 < A2 < A3 < Ay < 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s gives

%gm(t?s) <0, %gm(t,s) > 0, %91,3(75, s) < 0 and %91,4(1%, s) > 0. Similarly, as in the proof of
Theorem 3.2, we obtain 0 < By 1 < G1(t,s) < Ay 1. O
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Corollary 3.5. If h € C, p15s > ni5 and A\ < Aa < A3 < Ay < 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = / Gr(t, 5)h(s) ds.

Example 3.5. Consider the equation
u”” +0.56u” + 0.0311u” + 5.56 x 10~/ 4 3.0 x 10754 = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A +0.5)(A 4+ 0.03)(A +
0.02)(A + 0.01) = 0 has the roots A\; = —0.5, Ay = —0.03, A3 = —0.02, Ay = —0.01. Since
p1s = 2.0864 x 10° > ny 5 = 1.7643 x 10°, the equation has a unique 27-periodic solution u(t) =

t+w t+w
[ Gi(t,s)h(s)ds, with [ Gi(t,s)ds = 3.333 x 105 and 0 < 32210 < G4 (t, s) < 73894.
¢ t

Case 2. If A\ = Ag # A3 # Mg, A1, A3, Ay € R. We use the following abbreviations:
etHw=sA (1p( A —A3) (A1 —Aa) — (e¥M —1) (A3 —2X 1+ As—s(A1 = A3) (A1 — 1))

g2a(t;s) = (e = 1)2(A1 — Ag)2(A1 — Aa)? ’
(t+w—s)A1
ggwg(t, S) =1 B 26 )
(1 —ewM)(AT = A1A3 — A1 Ay + Az Ay)
e(t+w75))\3
t,s == 9
92009 = e (270 — )
e(t+w—s))\4

92,4(t75) == (1 _ ew/\4)()\1 — )\4)2()\3 - )‘4) ;

(A2 = Xad) (€M — 1) +wAi (M — Az) (A1 — Ag)) et (E=stw)

ha1(s,t) = Ar(ewM —1)2( A — A3)2( A — Ag)? ’
sAy + 1)eM (t—s+w)
ha2(s,t) = /\1(6“’)(‘1 _1 1)()?1 —A3) (A1 — \g) :
Asy = we (A — A3) (A — Ag) — (€M —1)(Ag — 201 4 \g)
, (ew M —1)2(A1 — A3)2(A\1 — \g)2
e eWAs
v (e =)A= A3)(Ar = Aa) (e — 1)\ — A3)2(As — Aa)
+ : ,
(ewrs — 1) (A1 — A1) (A3 — A\g)
Ay = 1 (A2 = A3A0) (€W — 1) + wAr (A1 — Ag) (A1 — Ag))e™™
TN (ewrr —1)2(A1 — A3)2 (M1 — \g)?
L1 2wA; + 1 B wet
A (e = 1)(Ar = A3) (A1 = Ag) (e = 1)(Ad1 — A3) (A1 — Ag)
1 et .
T e D0 208 A @ = D0~ AP0 - Ag)
By = (we“»‘l ()\1 - /\3)(/\1 - )\4) - (ewM B 1)0‘3 -2\ + >‘4))61U)\1
, (ewr —1)2(A1 — A3)2(A1 — Ag)?
1 et
T D0 —2aP0s — ) (@ 10 = A)P0s — A
By s = (A2 = AsAg) (e — 1) + whi (M — As) (A1 — M)

7 Ar(ed —1)2(A1 — A3)2(A1 — A\y)?
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1 e
(@™ — 1) — M)20h — M) (@ — D) = Aa) Ot — )

e’w)\g

T (@ D = )2 — )

_|_

ew)\l ew)\S
Ng 1 =W + ,
o (ew M = 1)(A1 = A3)(A1 = Ag) (% = 1)(A1 — A3)2(A3 — Ag)
S 1 B WA
227 (% — (A — A3)2(As — Ag) (e —1)(A; — Ag)2(As — Ag)
N e'w)\g 1
No3 = — ,
2,3 (e — 1)\ — A3)2(As — A1) (€92 — 1)(Ar — Ma)2(A3 — Ag)
1 1 2w
ng4 =

(@5 =D =27 a = Aa) M (@M =D = A — A

wew/\l ()\1 — )\3)(A1 — )\4) — (6w)\1 — 1)()\3 — 2)\1 + )\4)

P21 = (6“’)‘1 — 1)2()\1 — )\3)2()\1 — )\4)2
1
+ wA 2 ’
(ewr —1)(A1 — Ag)?(A3 — Ag)
6’u))\1
T e TR0 AP~ A
x (we™ (= Ag) (A1 = M) = (€7 = 1)(As = 241 + A) )
_ i ((/\1)()\1) — /\3)\4) (e“’)‘l — 1) + w/\l(/\l - )\3)()\1 — )\4)
P23 = (€M — 1)2(A; — Ag)2(A1 — As)?2
ew)\l
+ 5y s
)\1(6“’ 1 — 1)()\1 — /\3)()\1 — /\4)
- WM (()\% — /\3)\4)(611)/\1 — 1) + ’U)/\l(/\l — )\3)()\1 — )\4))
P2 = A (e — 12001 — A3)2(A; — Ag)2
n 1
)\1(GW)‘1 — 1)()\1 — )\3)()\1 — )\4)
e’UJ>\4 e'UJ)\l
4

—w .
(e —1)(A1 — A0)2(As — Ag) (e = 1)(A1 — A3) (A1 — Ag)
Theorem 3.7. For allt € [0,w] and s € [t,t + w|, we have

t+w

1
Galt,
/ 2(t:9) DYV

Proof. We have

t+w

/ g2.1(t, 8) ds 3)‘2 — 20103 — 2210 + A3y + AT — A3 A3 — tAI, + t)\l)\3>\4
o >‘ (>\1 /\3) ()\1 )\4)

t
t+w

t
g2.2(t,s)ds = —

A(AL = A3) (A1 — Ag)

t
t+w

1
/ g23(t,s)ds = —

A3(A1 = A3)2(A3 — Ag)
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t+w 1
t,s)ds = ,
¢ gaaltss) Aa(A1 = A)2(As — Aa)
and
t+w t+w t+w
/Gg(us)ds: /gg’l(tﬂs)ds—I— /gg’g(t,s)ds
t t t
t+w t+w 1
t,s)d t,s)ds = ———. O
+ /92,3(,5) 5+/92,4(75) s SV
t t

We have three different roots satisfying one of the following four cases:
- All roots are positive.

- Two roots are positive and one root is negative.

- Two roots are negative and one root is positive.

- All roots are negative.

If all roots are positive, we suppose that A\; > A3 > Ay > 0 (the other situations can be proved by
using the same method), and we have

Theorem 3.8. Ifps1 > no 1 and Ay > Az > Ay > 0, then
0< Az <Gs(t,s) < Baj.
Proof. If Ay > A3 > Ay > 0, the study of the derivatives of g1 ;, i = 1,4, with respect to s gives
% g2.1(s,t) <0, % g2.2(s,t) >0, % g2.3(s,t) > 0 and % g2.4(s,t) < 0. This implies that
g2,1(tt +w) + go2(t,t) + g23(t,t) + goa(t, t +w)
< Ga(t,s) < go,1(tt) + g2.2(t, t +w) + g2,3(t, t +w) + g2,4(2,1).

It is easy to check that

we (A = A3) (A1 = Ag) = (e"M = 1)(Az — 201 + )
<
(6w>‘1 _ 1)2()\1 _ )\3)2()\1 — /\4)2 = 92,1(t,t +w)»
(we 1 (A1 — A3)(A1 — Aa) — (€M — 1) (A3 — 2A1 + Ag))e™
(e = 1)2(Ad1 — Ag)* (A1 — Aa)? ’

0<

0<g21(t,t) <

e’w>\1

_ < t,t) <0 t,t <0.
w (6“’)‘1 _1)(}\1 _)\3)()\1 _)\4) —9272( , )_ , 92,2( , +w) >

By using the last double inequality together with the assumption ps 1 > ng 1, we arrive at 0 < Ag; <
Gl(t78) S Bg’l. O

Corollary 3.6. If h € C, P21 > n21 and Ay > Ag > Ay > 0, then equation (1.1) has a unique
positive periodic solution
t+w

u(t) = /Gg(t,s)h(s)ds.

Example 3.6. Consider the equation

""" —0.51u"" + 0.085u” — 0.0048u” + 0.00004u = h(t),
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here h is a given 27-periodic continuous function. The characteristic equation (A —0.2)%(A — 0.1)(\ —
0.01) = 0 has the roots Ay = 0.2, A3 = 0.1, Ay, = 0.01. Since ps1 = 5249.8 > no; = 2844, the

t+w ttw

equation has a unique 27-periodic solution u(t) = [ Ga(t, s)h(s)ds with [ Ga(t,s)ds = 25000 and
t t

0 < 2405.8 < Ga(t, s) < 5552.5.

If two roots are positive and one root is negative, we suppose that Ay > A3 > 0 and Ay < 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.9. Ifps o <ng2, A1 > A3 >0 and Ay <0, then
A1 < Ga(t,s) < By <0.

Proof. If Ay > A3 > 0 and A4 < 0, the study of the derivatives of ¢ ;, i = 1,4, with respect to s gives
%92,1(8715) < 0, %9272(8,75) > 0, %gg,g(s,t) > 0 and %g2,4(s,t) < 0. Similarly, as in the proof of
Theorem 3.8, we obtain Ay 1 < Ga(t,s) < Byq < 0. O

Corollary 3.7. If h € C,,, p22 < nag2, A1 > A3 > 0 and Ay < 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = /Gg(t,s)h(s)ds.

Example 3.7. Consider the equation
u"" —0.49u"" + 0.075u” — 0.0032u” — 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A —0.2)2(A —0.1)(\ +

0.01) = 0 has the roots Ay = 0.2, A3 = 0.1, Ay = —0.01. Since pa 2 = 1567.2 < ng o = 4218.5, the
t+w t+w
equation has a unique 2m-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = —25000

t t
and —5305.9 < Ga(t, s) < —2651.3 < 0.

If two roots are negative and one root is positive, we suppose that Ay < A3 < 0 and Ay > 0 (the
other situations can be proved by using the same method), and we have

Theorem 3.10. If p23 <no3, A1 < A3 <0 and Ay > 0, then
Ao < Ga(t,s) < Bya <0.
Proof. We have ga.1(s,t) = ha1(s,t) + ha2(s,t). If Ay < A3 < 0 and Ay > 0, the study of the

derivatives with respect to s gives 2 ho1(s,t) > 0, 2 hoo(s,t) <0, & goa(s,t) >0, & ga3(s,t) <0
and 2 go.4(s,t) > 0. This implies that

ha1(t,t) + hoo(t,t +w) 4 ga2(t,t) + g2,3(t, T + w) + g2,4(t, 1)
< Gg(t, 8) < h2,1(t, t+ w) + hg,g(t, t) + 9272(25, t+ w) + 92,3(t, t) + 9274(1‘,,75 + w)

It is easy to check that

e (why + 1) e
<h t,t) < )
(e —1)(A — A3) A — M) — 22(t:1) A (e = 1)(A1 — A3)(A1 — \a)
2wA; + 1 w1 + 1

e S0 = el n =) S et ) S e R T e = )

The above double inequality and the assumption py 3 > ng g lead to 0 < Az 2 < Ga(t, s) < Baa. O

Corollary 3.8. If h € C;), p23 < n23, A1 < A3 < 0 and Ay > 0, then equation (1.1) has a unique

positive periodic solution
t+w

u(t) = / Golt, 5)h(s) ds.
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Example 3.8. Consider the equation
" 4 0.49u"" 4+ 0.075u” + 0.0032u’ — 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A + 0.2)2(A+0.1)(A —

0.01) = 0 has the roots Ay = —0.2, A3 = —0.1, Ay = 0.01. Since pe 3 = 1329.1 < ng 3 = 4218.5, the
t+w t+w

equation has a unique 27-periodic solution u(t) = [ Ga(t, s)h(s)ds with [ Ga(t,s) ds = —25000,
t i

—5367.0 < Ga(t,s) < —2889.4 < 0.

If all roots are negative, we suppose that A; < A3 < 0 < Ay < 0 (the other situations can be proved
by using the same method), and we have

Theorem 3.11. Ifps 4 > noyg and Ay < Az < My <0, then
0< Az < Gsa(t,s) < Baso.

Proof. The study of the derivatives with respect to s gives %thl(S,t) > 0, %hg;(s,t) < 0,

%gg,g(s,t) > 0, %gz;;(S,t) < 0 and %g274(5,t) > 0. Similarly, as in the proof of Theorem 3.8,

we obtain 0 < A272 < Gg(t, S) < BQ’Q. O

Corollary 3.9. If h € C}, paa > noa and Ay < X3 < Ay < 0, then equation (1.1) has a unique
positive periodic solution

u(t) = / Ga(t,s)h(s)ds.

Example 3.9. Consider the equation
""" +0.51u"" + 0.085u” + 0.0048u” + 0.00004u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A +0.2)2(A+0.1)(\ +
0.01) = 0 has the roots A\ = —0.2, A3 = —0.1, Ay = —0.01. Since ps 4 = 5644.5 > ng 4 = 3306.3, the

t+w t+w
equation has a unique 27-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = 25000 and
t t
0 < 2338.3 < Ga(t, 5) < 5289.4.

Case 3. If \; = Ay # A3 = \y. We use the following abbreviations:

((1 - 6“’)‘1)(5/\1 S Y 2) _ w(>\1 _ /\4))6(w+t75)>\1 e(wtt—s)X1
93,1(t’s) = w1 _ 1)2 _ 3 +1 _ pWAy _ 27
(ewA —1)2(A; — A\y) (1 —ewr)(A1 — A\g)
((6w>\4 o 1)(5/\4 —sA + 2) _ w(>\1 _ )\4))€(w+t75)>\4 e(w+tfs))\4
93,2(t,s) = - WAy 2 _ 3 +1 _ pwg _ 2 )
(6 4 1) ()\1 /\4) (1 e )(/\1 )\4)
eMmstw) (N (s — t) (€™M — 1) + "M + why — 1)
h31(s,t) = Y 2 2 '
)\4(6 4 — 1) ()\1 — )\4)
e)\4(t—s+w)()\1 + )\4)
h3,2(37t) = _>\4(6u»‘4 — 1)()\1 — A4)3 )
haats) — L EX =D EN = DA Fwd (A = (€ — D) (ha=2A))
3,30, )\1 (ew)\l _ 1)2()\1 _ )\4)3 )
1 6)\1(t75+w)
h34(t,s) = — A
3’4( ’S) A1 4 (ew>\1 — 1)()\1 - /\4)3 ’
Ag(t—s+w) 1— _ _
hoatos) - € (1= (s =D~ A0)

@R =D =M
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e>\4(t75+w) A
haolt o) = - (ewds —1)2(\; — \y)3 (€™ —wAi +why — 1),
L (t ) - 6A1(t7$+w) (w)\l()\l — )\4) + (/\1 + )\4)((2“))‘1 — 1))
3,7 ,8) = )\l(ew)\l — 1)2(/\1 — )\4)3 )
has(ts) = T sk~ +1)
PEDIT N (e — 1) (A = Ag)?
e)\4(t—s+w)
h3o(t,s) =w (ewr —1)2(A; — Ag)? )
b NEEIE (s 0y - \))
3,10( 75) - (€w>‘4 _ 1)()\1 — )\4)3 )
- 2eWM e A — whgeWr — 2 e (A + \y)
31— (6“”\1 — 1)2()\1 — )\4)3 )\4(6“’/\4 — 1)()\1 — )\4)3
(e“’)“L + whge?M — 1)
)\4((3“})‘4 — 1)2(/\1 — )\4)2 ’
Ay — A — 201 + 2)\16“1)‘1 — )\46w/\1 + w)\%ew’\l — w)\1>\4€w)‘1
52 A (e —1)2(A — \g)?
. e 3 (wAg —wAy + 1)
)\1(61”)‘1 — 1)()\1 — A4)3 (GW)‘4 — 1)()\1 — A4)3
(€M —wA; +wly — 1)e?
(e = 1)2(Ar = Ag)? 7
An o — (()\1 + /\4)(6w/\1 — 1) + U})\l()\l — A4))€w>\l i wew”\“
58 A (e M —1)2(A) — Ag)? (e —1)2(A; — A\y)2
1 wA; +1 1
il - Ay — WA 2);
+ )\1 (e'LU)\l — 1)<>\1 — )\4)2 (ew/\4 — 1)()\1 _ )\4)3 (w 4 WAL + )7
v 1 A1+ A\
Bs, = 2e“M 4w —whg —2) — —
3,1 (€w>‘1 — 1)2(}\1 — )\4)3 ( (& —+ w 1 WA4 ) A4 (ewA4 _ 1)(}\1 _ A4)3
i 1 €w>\4 ( wAy 4w 1)
il e WAy —
A (e —1)2(A — Ag)2 LT
Bao— i ewM (/\4 — 2\ + w)\% + 2/\1671))\1 — )\46“»\1 — ’LU/\1/\4)
227N (ew™ —1)2(A; — \g)?
N i )\4 ew)\4
A (ewd — 1A — Ag)3 (ewr —1)(A — Ay)?3
1 w)\4
— — WA A—1
(ew)\471)2()\17)\4)3 (e WAL + WAy )7
1
Bas = —3raom Ty —agp A T AT = et = haet wdady)
1 ew>\1 w ew/\4

BV P T T VR Wy A P Y I YR Wy Al (T P D YR VY

6w>‘4()\1 + )\4)
n3,1 = wh 30
)\4(6 4 — 1)(A1 — )\4)

ey — /\467&})‘1 _ w(/\1 — )\4)

P27 N (e — DA = M) (€M —1)(A — Ag)3

1 w

33 = A4 — WA 2) — ;

n3;3 (ew)\4 _ 1)()\1 _ )\4)3 (’U} 4 WAL + ) (6“’)‘1 — 1)(A1 — )\4)2 )
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2eWM 4 e — wheWM — 2 WM et — 1
P T o D200 — A (e — 120 — M)
Ay — 201 + 2he®A — NP w/\fe“”‘l — WA Age?M
Pa2= A (e — 1)2(A; — Ag)3
1 (€M —w; + why — 1)e?™
TR D0 AP @ D20y A
(A (e = 1)+ whi (Mg — Ag)) e 1
Pas = (e 1200 — Ma)? N S0y = M2

e11)/\4

e PO A2

Theorem 3.12. For allt € [0,w] and s € [t,t + w], we have

t+w 1
/ G3 t S )\2)\2.
Proof. We have
e e s A — 3 A — 3 1
Gs(t, s)ds = t,s)d t,s)ds = ———o 271 Lo . O
ot [t ans [anateo) s i
t t t

We have two different roots satisfying one of the following three cases:
- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that Ay > Ay > 0 (the situation when Ay > A; > 0 can be
proved by using the same method), and we have

Theorem 3.13. If p31 > n3 1 and Ay > A2 > 0, then
0< A3,1 < Gg(t,S) < B371.

Proof. We write g3 2(t,s) = hs1(t, s) + hao(t,s). If A\ > Ay > 0, the study of the derivatives with
respect to s gives (ri g3.1(t,s) <0, 2 5z ha(t,s) <0 and - haat, s) > 0. This implies that

g3t t+w)+ hy(t,t +w)+ hsa(t,t) < Gs(t,s) < gsi(t,t) + hga1(t,t) + haa(t, t +w).
This double inequality together with the assumption p3 1 > ng 1 leadto 0 < As; < Gs(t,s) < Bzp. O

Corollary 3.10. If h € C}, ps1 > ns1 and Ay > \a > 0, then equation (1.1) has a unique positive
periodic solution
t+w

(t) = /G3(t,s)h(s)ds

Example 3.10. Consider the equation

I/I/

—0.06 v 4 0.0013u” — 1.2 x 107%u’ + 4.0 x 10~8u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation is (A—0.02)%(A—0.01)? =

0 has two roots A\; = 0.02 and Ay = 0.01. Since p3; = 5.0241 x 107 > nz1 = 4.9262 x 107, the
t+w t+w

equation has a unique 27-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 2.5 x 107
t

t
and 0 < 9.7887 x 10° < Gs(t, s) < 6.9789 x 106,
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If one root is positive and one root is negative, we suppose that A; > 0 and Ay < 0 (the situation
when A\; < 0 and A4 > 0 can be proved by using the same method), and we have

Theorem 3.14. If p3 2 > n32, A1 > 0 and Ay <0, then
0< A3,2 < Gg(t, S) < B372.

Proof. We write g31(s,t) = hs3(s,t) + hsa(s,t) and gs2(s,t) = hzs(s,t) + hse(s,t). If Ay > 0
and Ay < 0, the study of the derivatives with respect to s gives % hss(t,s) < 0, % hs.a(t,s) > 0,
% hs5(s,t) < 0and % hs.6(s,t) > 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < Az 5 <
Gs(t,s) < Bz . O

Corollary 3.11. Ifh € Cf}, p32 > n32, A1 > 0 and \y < 0, then equation (1.1) has a unique positive

periodic solution
t+w

u(t) = / Gs(t,s)h(s)ds.

Example 3.11. Consider the equation
u”"" = 0.02u” + 0.0001u = h(t),
here h is a given 2m-periodic continuous function. The characteristic equation
(A=0.1)2(A+0.1)*>=0
has two roots A\ = 0.1 and Ay = —0.1. Since p3 2 = 1609.8 > n3» = 604.66, the equation has a unique
2m-periodic solution u(t) = t}ng (t,s)h(s) ds with t}ng(L s)ds = 10000, 1005.2 < Gs(t,s) <
t t
2178.6.

If all roots are negative, we suppose that A\; < Ay < 0 (the situation when Ay < A; < 0 can be
proved by using the same method), and we have

Theorem 3.15. If p33 > n3 3 and \; < Ay <0, then
0< A373 < Gg(t, 8) < Bg’g.

Proof. We write g3.1(s,t) = hs7(s,t)+hss(s,t), g32(s,t) = h3o(s,t)+h310(s,t). If A1 < A4 <0, the
study of the derivatives with respect to s gives % hs7(t,s) <0, % hss(t,s) <0, % hso(t,s) >0 and
% hs.10(t,s) < 0. Similarly, as in the proof of Theorem 3.13, we obtain 0 < Az 3 < G3(t,s) < Bz3. O

Corollary 3.12. If h € Cf}, ps3 > ns3, A\ < A < 0, then equation (1.1) has a unique positive
periodic solution

u(t) = / Gs(t,s)h(s)ds.

Example 3.12. Consider the equation
o +0.220"" + 0.0141u” + 0.00022u’ + 1.0 x 10~%u = h(t),
here h is a given 2m-periodic continuous function. The characteristic equation
(A+0.1)2(A+0.01)>=0

has two roots A\; = —0.1 and Ay = —0.01. Since 2.027 x 10° > ng 3 = 59450, the equation has a unique

t+w t+w
2m-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 1000000 and 1.4325 x 10° <
t t

G3(t,s) < 1.7506 x 10°.
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Case 4. If \; = Ay = A3 # \y. We use the following abbreviations:
(trw—sn, L= (e = D(((s =t)(M = M) +1)* +1))

gai(t,s)=e (e — 1300 — Aa)?
n €(t+wis)>\l (1 — e“’)‘l) (w(/\1 — )\4)(2(3 — t)(/\l — )\4) + 2))
e — 17O — A
B w2e(t+wfs))\1 (ew)\l + 1)()\1 _ )\4)2
Q(Gw/\l — 1)3()\1 — )\4)3 ’
e(t+wfs))\4
gaza(t,s) = (ewra — 1)(A; — \g)3’
(s —t)(ewM — 1)eMt=stw) N N
hgq(t,s) = — A(s —t)(e®M — 1)+ 2(e"™M A —1
41(t:9) NI ("M — 1)3(A; — Ag) (M- te )+ 2N+ wh - )
e)q(t—s-i-w) 2y2/ wA wA wA
e 1 — ) (w AT (M + 1) + 2(e" — 1) (eV™M +wA; — 1))7
1 e)\l(t—s+w) N
== — ) — ("M — DAy —2
h4,2(t,5) )\% /\4 (6“’)‘1 — 1)2(>\1 — )\4)3 (’LU)\l ()\1 )\4) (6 )()\4 )\1))
_ Ly entstw) s 1
M e (evM —1)(Ap — Ag)?
ha(t,s) (2wAr (€™M — 1) (A1 = Ag) + WX (€M + 1) (A1 = Ag)?)eMr 7t
yS) = —
3 222(ew M — 1)3(A; — Ay)3
_ eAl(tistw) ()\1(8 — t) (QU))\I — 1)2()\1 — )\4)2(S>\1 — t)\l + 2))
222 (ewM —1)3(A; — A\yg)3
B 6)‘1(t—‘9+w)(2(6w)‘1 — 1)2()\% — A+ )\Z))
2)\%(6“’/\1 — 1)3()\1 — )\4)3 ’
1 e)\l(tfs+w) ) iy
haa(t,s) = )\7% (ew M — 1)2(A\; — M\y)2 (sA\1 —tA1 + 1) (Mg — wA] — Mge + WAL Ag);
Ayq = —e¥™ 2(e"M —1)% +w?(eM + 1) (M — Ag)? + 2w(e*M —1)(\ — Ay
’ 2(611))\1 _ 1)3(A1 _ /\4)3
1
T D0 A7
o 1 ewM (wQ)\%(e"’)‘l +1) +2(e¥M —1)2 4 2w (e¥M — 1))
B2 (evd 1) (A — Ag)? 222 (e ™ — 1)3(A — Ay)
>\4 wAp WAL
- R T T (wAse™ (= Aa) = (™ = (A = 2\0) ),
1
Asz=— A= A1)? (WA (€M + 1) +wAy (wAr +2) (¥ — 1)
R V(ST L CTs W W (A=A (@ N 1) b (whi+2) (N -1)2) )
_ 1 wA1 _ wh1_ 1\2()\2_ 2
e T (Qw)\l)\4(e 1A —Aa)+2(e¥M —1)2()2 )\1)\4—1—)\4))
1 GW)\I 2 ’LU)\l
+ E (8w>\1 _ 1)2()\1 — )\4)2 ()\4 - wAl — )\46 + W)\1A4)
e’UJ}\4
+

(X =10 — A
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2we M (e — 1)( A — Ag) + w?e® M (e¥M 4+ 1) (A — M\g)? + 2(e?? — 1)2

By, = —
o 2(e™ — 1)3(\ — Ag)?
N ew)\4
(e = 1)(A = Ag)?
ew)\4
B =
4,2 (ew™ —1)(A; — Ag)?
B wz)\%ew‘l(ew‘l +1)+ 2(@“’)‘1 —-1)2+ 2w)\1€W‘1(eW‘1 -1
2207 (ew —1)3(A1 — \g)
1 )\4€w>‘1 A
- = MM — M) — (¥ —1) (g — 2
3 T = 10 e (WA A = (=10 = 20),
et () w1 212/ wA; 2
Bas = ~gxaramm gy —agp (UMM D0 A+t e +1) 0 -A)?)
_ 6>\1(w> (2(610/\1 o 1)2(}\2 — M+ )\2))
222(ew M —1)3(A — \y)3 LA
n (WAL +1)(Ag—wA2 = Age® 1 +wi \y) B 2eM —wA e M fwhe M — 2
)\%(eﬂﬁq — 1)2()\1—)\4)2 (e"’)“l — 1)2()\1—)\4)3 ’
ny 1 — WM 2(e"M — 1)2 + w?(e¥™ + 1)(A\1 — Ag)? + 2w(e™  —1)(A; — Ay)
s 2(e™ — 1)3( Ay — Ag)? ’
ewk4
Ngo = —

(ew>‘4 — 1)()\1 — /\4)3
N w2 (WM 4 1) + 2(eWM — 1)2 4+ 2wA ev M (ev M — 1)
2)\%(6“’)‘1 — 1)3(>\1 — )\4) ’

_ (2wA1A4(eW1—1)(A1—A4)+w2A§(e“’*1+1)(A1—A4)2)

1
TS T NI (M —1)3 (A —\g)
2(e® M — 1)2(A2 — A Ay + A2 wA(wA) (e — 12N — \y)?
(e 1P —A)® T 22 (e 1P - A
1 ew)q
N e e

A — wAT — Ay FwA\y);

1
Pa1 = e — 1)\ — A
B e (w/\l(/\l — ) — (e¥M —1)(\y — 2)\1))
b= N (e =120\ = M) ’
Pas = e (WA @)™ 1200 — A0)?)
X2 (A — 1)3 (A — \y)3
wAg

(w2 = 1)(Ar = Ag)?

+

Theorem 3.16. For allt € [0,w] and s € [t,t + w], we have

t+w

/ Gy(t,s)ds = !

XAy
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Proof. We have

t+w t+w
3X3 — B + A3 1 1
t)d t)ds = —=~% : = : O
/ gaa(s,t)ds + / A [ VS W D WS WS W AR © W

We have two different roots satisfying one of the three cases:
- Two positive roots.

- One positive root and one negative root.

- Two negative roots.

If all roots are positive, we suppose that Ay > Ay > 0 (the situation when Ay > A\ > 0 can be
proved by using the same method), and we have

Theorem 3.17. If ps1 > na1 and Ay > Xy > 0, then
0< Ay < Gy(t,s) < Bys.

Proof. If Ay > Ay > 0, the study of the derivatives with respect to s gives %9471(3,15) > 0 and
%g4,2(s,t) < 0. So g471(t,t) + g472(t,t —+ w) S g471(t, S) S g471(t7t + ’UJ) + g47g(t,t). This double
inequality together with the assumption ps1 > n41 give 0 < Ay < Gu(t,s) < By. O

Corollary 3.13. If h € C, ps1 > naq and Ay > Ay > 0, then equation (1.1) has a unique positive
periodic solution
t+w

u(t) = /G4(t,s)h(s)ds.

Example 3.13. Consider the equation
" —0.61u"" + 0.126u” — 0.0092u” + 0.00008u = h(t),

here h is a given 2m-periodic continuous function. The characteristic equation (A—0.2)3(A—0.01) = 0
has the roots Ay = 0.2 and Ay = 0.01. We compute ps; = 2248.2 > ny; = 404.33, and hence the

t+w t+w

equation has a unique 27-periodic solution u(t) = [ Gu(t,s)h(s)ds with [ Ga(t,s)ds = 2.5 x 10°
t t

and 0 < 1843.9 < G4(t, s) < 2135.5.

If one root is positive and one root is negative, we suppose that Ay > 0 and Ay < 0 (the situation
when A\; < 0 and A4 > 0 can be proved by using the same method), and we have

Theorem 3.18. Ifpso < nag, A1 >0 and Ay <0 then
Ay < Gy(t,s) < Byo <0.

Proof. We have g4,1(t,s)r: ha(t,s) + h47g(t, s). If Ay > 0 and Aq < 0, the study of the derivatives
with respect to s gives % ha (s, t) > 0, %h4,2(s,t) < 0 and %94,2(5715) < 0. Similarly, as in the
proof of Theorem 3.17, we obtain Ay 2 < G4(t,5) < By 2 < 0. O

Corollary 3.14. Ifh € C,;, pa2 < M2, A1 > 0 and Ay <0, then equation (1.1) has a unique positive
periodic solution
t+w

u(t) = / Galt, s)h(s) ds.
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Example 3.14. Consider the equation
" —0.29u"" 4 0.027u” — 0.0007u" — 0.00001u = h(t),

here h is the given continuous and 27-periodic function. The characteristic equation (A — 0.1)3(\ +
0.01) = 0 has the roots Ay = 0.1 and Ay = —0.01. Since py 2 = 465.49 < ny o = 15472, the equation

t+w t+w
has a unique 27-periodic solution u(t) = [ Ga(t,s)h(s)ds with [ Ga(t,s)ds = 10° and —16824 <
¢ t
Gu(t,s) < —15006 < 0.

If all roots are negative, we suppose that A\ < Ay < 0 (the situation when Ay < A\; < 0 can be
proved by using the same method), and we have

Theorem 3.19. Ifps3 > na3z and Ay < Ay <0, then
0< A473 < G4(t, 8) < B4’3.

Proof. We have g4.1(t,8) = has(t,s) + haa(t,s). If A1 < Ay < 0, the study of the derivatives with
respect to s gives % hys(s,t) <0, % hy,a(s,t) > 0 and % ga2(s,t) > 0. Similarly, as in the proof of
Theorem 3.17, we obtain 0 < Ay 3 < G4(t,s) < Bag. O

Corollary 3.15. If h € C}}', pa3 > nas and A\ < Ay < 0, then equation (1.1) has a unique positive

periodic solution
t+w

u(t) = / Galt, s)h(s) ds.

Example 3.15. Consider the equation
a4+ 0.601u" 4 0.1206u” 4 0.00812u" + 8.0 x 10~ %u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A+0.2)%(A+0.001) = 0
has the roots A\; = —0.2, Ay = —0.001. Since ps 3 = 20353 > ny 3 = 748.34, the equation has a unique

t+w ttw

2m-periodic solution u(t) = [ Gu(t,s)h(s)ds with [ Ga(t,s)ds =2.5x107, 0 < 20134 < Ga(t,s) <
t t

3.9784 x 109.

Case 5. If \; = Ay = A3 = \y. We use the following abbreviations:

1 WA WA 2 333 wA 2(wA wA
Ao = ey (B0Ae™ (€ = )7 4w X (@) 40 1 1)
L w w w
+ e T (BN @ 1)+ (e - 1))
— L (2(611;)\1 _ 1)(ew>\1 +wh — 1) +w2)\2(€w>\1 + 1))
223 (ev™ — 1)3 1 ,
As o =w? P + et 44 wieWM e2(WA)  gewt 4 .
) 6(ew)\1 _ 1)3 6(67”)‘1 _ 1)4 )
1 WA WA 2 2y2 wA 2(wA
B = gyt (00Mem™ @ = 1 4 3uaer (@00 - 1))
1 333 wA 2(wA wA wA WA 3
+W(w AWt (2(WA1) | gewht 1) 4 g (e — 1) )
3 2(ew>\1 _ 1)(610)\1 ('Z,U)\l + 1) _ 1) + wZ)\%ew)\l (ew)\l 4 1)
2)\?(6“'))\1 _ 1)3 )
2 2(wA1) _ pwAr 2
Bso = ut= c e

: 3(evd — 1)t
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v (Q(ew)‘l —1)(e® M 4 wA; — 1) + w3 (eWM + 1))

o1 = 2N (cwhi — 1)3 ’
3 e?(w)\l) + ew)\l 14

Ngo = —W ;

5,2 6(6“1)\1 — 1)3 3

1 A1 A1 2 3y3 wA1 (,2(wA1) A1
D51 = X3 — 1) (6w)\16w (e"M —1)% + woATe™M (2 4 4N 4 1))
1 242 w1 (,2(wA1) A1 3
+W(3w )\1€w (6 w —1>+6(€w —1) ),

P52 = wie?M e2w2) + de M +1 .

5 Glcon —1)E

o (s.1) — 20T DAEN fwdy 2 1) IG5~ )7)
s,t) = —
S 21 (€W —1)2 6A3 — 6ATewh
bttty SM it L (z(ew*l —1)% 4 2wAi (€M = 1) + wAT (e + 1))
2X3 (ewh — 1)3 !
w3e)\1(t—s+w)(82(11))\1) +4ew)\1 + 1)
6(cor — 1) ’
eh(imstw) A 2712 2
— WAL
h572(8,t) = —m ((6 — ].) (/\1(5 - t) + 2(}\1(8 — t) + 1)))
e/\l(tfs+w)

- WAL . 242/ why
P (C—E (2w)\1(e (s — 1) + 1) + w2r2(e +1)),

_ A(t—stw) s—1t 2/, wA _ 1)\2 2/ _w
hs3(s,t) = e e =18 (65 = %™ =17+ 3™ 4 1)),
ehilimstw) 2/ wA 2 2( 2(wA1) wA
h574(5,t) = wm <3(S — t) (6 11— 1) + w (6 1 + 46 1 + ].))

Theorem 3.20. For allt € [0,w] and s € [t,t + w], we have

t+w 1
/ Gs(t,s)ds = YR
t

Proof. We have

t+w t+w t+w

/G5(t,s)d8: /h,g,’l(t,S)dS—i- / hso(t, s) ds.
t t t
So
t+w

/ G (t S) ds — 311)2)\%(@“&1 +1)+ w3)\51”(ew/\1 +2) — 6<ew)\1 _ 1)2
5(2, =

GA I (evdr — 1)2

w3k (e +2)  Bw?(e”M +1) 1 O
6A7(ewr —1)2 7 6AZ(ewr —1)2 A}

Theorem 3.21. If Ay > 0 and ps1 > ns1, then

0< A5,1 < G5($,t) < B571.

Proof. We have Gs(s,t) = hs1(t,s) + hs2(t,s). If Ax > 0, the study of the derivatives gives
%hg,,l(t, 8) < 0 and % h512(t, 8) > 0, so h5’1(t,t+’U)) + h5’2(t, t) < G5(S,t) < h571(t,t) + h5,2(t,t+w).
If we use this double inequality together with the assumption ps 1 > ns 1, we arrive at 0 < As; <
G5(S,t) S B571. O
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Corollary 3.16. Ifh € C}, A1 > 0 and ps1 > ns.1, then equation (1.1) has a unique positive periodic

solution
t+w

u(t) = /G5(t,s)h(s)ds.

Example 3.16. Consider the equation
""" —0.4u"" + +0.06u” — 0.004u" + 0.0001u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A — 0.1)* = 0 has the

root Ay = 0.1. Since p5; = 5866.2 > n5; = 5274.3, the equation has a unique 27-periodic solution
t+w t+w
u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds =10° and 0 < 591.86 < G5(t,s) < 2591.9.
t

t

Theorem 3.22. If \y <0 and ps 2 > ns2, then
0 < As2 <G5(s,t) < Bs .

Proof. We have Gs(s,t) = hss(t,s) + hsa(t,s). If A&y < 0, the study of the derivatives gives
%h&g(t,s) < 0 and %h5}4(t,s) > 0. Similarly, as in the proof of Theorem 3.21, we obtain
0< A572 < G5(S,t) < B5,2. O

Corollary 3.17. Ifh € C}, A1 < 0 and ps 2 > ns 2, then equation (1.1) has a unique positive periodic

solution
t+w

u(t) = / Gs(t, 5)h(s) ds.

Example 3.17. Consider the equation
o +0.04u”" + 0.0006u” + 4.0 x 107%' + 1.0 x 107 3u = h(t),

here h is a given 27-periodic continuous function. The characteristic equation (A + 0.01)* = 0 has

the root Ay = —0.01. Since ps o = 1.5915 x 107 > n5 o = 1.0655 x 10°, the equation has a unique
t+w t+w

2m-periodic solution u(t) = [ Gs(t,s)h(s)ds with [ Gs(t,s)ds = 10% and 0 < 1.4850 x 107 <
t t

Gs(t,s) < 1.6981 x 107.

4 Positive periodic solutions

Lemma 4.1 ([10,11]). Let X be a Banach space and let K C X be a cone. Assume that 21 and Qs
are bounded open subsets of X with 0 € Q, Q1 C Qa, and let

T:KN(Q\ Q) — K
be a completely continuous operator such that either
() | Tul| < |lu|| for we KN OQ, and | Tul| > |ul| for u e K N oN,,
or
(ii) 1Tu|l > |Ju|| for v e KNoQy, and ||Tu| < ||u| for u € K NoQs.
Then T has a fized point in K N (Q2\ Q1).
Denote

t t
fo= lim sup ) and fo, = lim inf ft,) .
u—=0% te[0,w] U u—00 t€[0,w] U
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Theorem 4.1. If \y > Ao > A3 > Ay > 0, then equation (1.4) has at least one positive periodic
solution in the cases

(i) fo=0 and fo = oo,
or
(i) fo=00 and fo = 0.

Proof. To apply the Guo—Krasnosel’skii’s theorem, let
X ={ueCRR): ult+w)=u(t), tcR}

with the norm |jul]| = sup |u(t)]. Then (X, || - ||) is a Banach space and we define the cone K by
te[0,w]

A
K= {u e X: u(t) > ﬁ lu|| for all ¢ e [O,w]}.

For u € K, we define
t+w

Tu(t) = /Gl(t,s)f(s,u(s))ds.

In view of Theorem 3.2, we have

t4w t+w

0 < Tu(t) = / G (t, ) f (s, u(s)) ds < Bya / F(s,u(s)) ds.

t+w
So [|[Tul| < B11 [ f(s,u(s))ds. Also, we have
t

t+w t+w
_ A1
Tu(t) = / Ga(t,3) (s, () ds > Avy [ fs.u)ds > G2 Tl

t

which shows that T(K) C K. Moreover, T : K — K is a completely continuous operator and the
fixed point of T is a solution of (1.4).
(i) If fo =0 and fo = 0.

Since fo = 0, we may choose 0 < r; < 1 such that f(¢t,u) < eu, for 0 < u < ry and t € [0, w],
where ¢ > 0 satisfies weB1 1 < 1.

Thus, if u € K and ||u|| = 1, we have

t+w t+w

Tu(t) = / Gi(t,s)f(s,u(s))ds < By / f(s,u(s))ds < weByq|lul < ry. (4.1)

t

Now, if we set Q1 = {u € X : |lul]| < 1}, then (4.1) shows that || Tu|| < ||u|| for u € K N O;.
Since foo = 00, there exists r > ry such that f(¢,u) > nu for u > r and ¢ € [0, w], where n > 0, so

A%,lwﬁ
Bl > 1.
Let
(. 22}
ro = max < 2r
2 1, A171 )
and Qy = {u € X : |Ju|| < rg}, then u € K and |u|| = ro imply that
A A
u(t) = Fo flul = Z=rs =,

B B

) )
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and hence

t+w t+w

Tu(t) = / Gi(t,s)f(s,u(s))ds > A1 1 / f(s,u(s))ds >

t

(A?,lwn)

ull > ||ull. 4.2
Bl >l (42

Thus (4.2) shows that ||Tu|| > ||u|| for u € K N0Qs. -
It follows from Lemma 4.1 that T has a fixed point u* € KN (Q2\ ;). Consequently, the equation
has a positive w-periodic solution 0 < r1 < u(t) < ro.
(ii) If fo = 0o and fo = 0.
2
We choose r3 > 0 such that f(u) > Au for 0 < u < rg, where A > 0 satisfies /\2,1% > 1. Then for
u € K and ||u|]| = r3, we have

t+w t+w
Tu(t) = / Gi(t,s)f(s,u(s))ds > A1 1 / f(s,u(s))ds >

t t

AAT Jw
By

)

[l = ffee]]- (4.3)

If we put Q3 = {u € X : |ul| <rs}, (4.3) shows that |Tu| > |u| for u € K NINs.
Since foo = 0, there exists M > 0 such that f(t,u) < &u for u > M and & > 0 satisfies {B; jw < 1.
We choose

Bl’lM}

r4 = max {27“3,
A

then w € K and ||u|| = ry4, this implies that u(t) > gi’i |lu|]| > M, and so

t+w t+w

M@:/G%ﬂmﬂwﬁﬁﬁg/ﬂw@wms

t ¢
t+w
< Buaé [ uls)ds < Buywgul < fu. (44)
t
We set Q4 = {u € X : ||ul]| < r4}, then for u € K N OQy we have ||[Tul| < [jull.
In view of Lemma 4.1, equation (1.4) has at least one positive solution 0 < r3 < u(t) < r4. O
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1 Introduction

Consider the differential equation
/1

y" = aop(t)p(y), (1.1)

where ag € {—1,1}, p : [a,w][—]0,+00[ is a continuous function, —0o < a < w < 400, ¢ : Ay, —
10, +00[ is a twice continuously differentiable function such that

. or 0 )¢ (y)
! 0 as y€ Ay, lim = ’ lim =1, 1.2
¥ (y) 7é Yy Yo Y Yo Sp(y) or +oo, Yo @/Q(y) ( )
yGAyO yGAYO

Yy is equal either to zero or to o0, Ay, is some one-sided neighborhood of the point Yj.
From the identity
")y

©
" (y)e(y) o))
= +1 as y € Ay,
2 @' (y)\2 0
©2(y) (£
and conditions (1.2) it follows that
¢'(y) ¢y oy (y)
~ — Y cA d 1 = to00. 1.3
o) " Py YT (W€ dy) a Y oY) > (13)

YyEAY,

Hence, in the equation under consideration, the function ¢ and its first-order derivative are (see [10,
Chapter 3, Section 3.4, Lemmas 3.2, 3.3, pp. 91-92]) rapidly varying as y — Yb.

The asymptotic properties of solutions of binomial second-order differential equations with non-
linearities satisfying condition (1.2) were studied in the works of M. Mari¢ [10], V. M. Evtukhov and
his students: N. G. Drik, V. M. Kharkov, A. G. Chernikova [4-6]. Moreover, in the monograph by
M. Marié¢ [10, Chapter 3, Section 3.4, pp. 90-99] in the particular case, where oy = 1, w = +00,
Yy = 0 and p is a properly varying function as t — 400, the asymptotic representations of solutions
that tend to zero as ¢ — +o0o were obtained.

In the paper by V. M. Evtukhov and N. G. Drik [5], a special case, where p(y) = €, o # 0, was
considered.

In [6], V. M. Evtukhov and V. M. Kharkov investigated a class of solutions, which is determined
by using the function ¢(y).

In the paper by V. M. Evtukhov and A. G. Chernikova [4], for the second-order differential equation
(1.1) in case ¢ is a rapidly varying function as ¢ — +o0o, the asymptotic properties of the so-called
P, (Yo, Ag)-solutions were completely investigated. It seems natural to try to extend these results to
the third-order differential equations.

It should be noted that the results obtained by V. M. Evtukhov and V. N. Shinkarenko [9] on the
asymptotic behavior of such solutions of differential equations of higher than the second order in the
case, where (y) = e?Y, o # 0, are known.

Definition 1.1. A solution y of the differential equation (1.1) is called a P,,(Yo, Ag)-solution, where
—00 < Ag < 400, if it is defined on the interval [tg,w[C [a,w] and satisfies the conditions

y(t) € Ay, as t € [to,w], 1tley(t) =Y,

112 t
imy® @ =" O ko1 LDy
ttw or oo, ttw Y (t)y' ()

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
P,,(Yy, Ao)-solutions of equation (1.1) in a non-particular case, where Ao € R\ {0,1,1}, as well as
asymptotic, as t T w, representations of such solutions and their derivatives of order up to two.
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2 Functions from the I', I'y,(Z;) classes and their asymptotic
properties

Without loss of generality, we will further assume that

(2.1)

A {[yo, Yo[, if Ay, is a left neighborhood of the point Y,
Yo =

1Yo,90], if Ay, is a right neighborhood of the point Yy,

where gy € R such that |yg] < 1as Yo =0and yo > 1 (yo < —1) as Yy = +o0 (as Yy = —0).
The function f : Ay, — R\ {0} satisfying condition (1.2), as Yy = o0, and liril f(y) = 400,
y——+o00

belongs to the class T" introduced by L. Khan (see [1, Chapter 3, p. 3.10, p. 175]).

Definition 2.1. The class I' consists of measurable nondecreasing and right continuous functions
f  [yo, +oo[—]0, 400, for each of which there is a measurable function g : [yo, +oo[—]0, +o0l,
which complements the function f, such that

i LWt ug(y))

=e" for any v e R.
yotoo  f(y)

In [9], the asymptotic properties of functions from this class were investigated in sufficient detail.

Using the change of variables, the class I in the paper by of V. M. Evtukhov and A. G. Chernikova
[4] was extended to the class I'y, (Zp) of functions f : Ay, —]0, +oo[, where Yy is equal either to zero
or to oo, and Ay, is a one-sided neighborhood of the point Yy, for which

y—Yo or —4oo
YEAY,

. or 0,
lim f(y):ZOZ{
Definition 2.2. We say that the function f : Ay, —]0,+o00[ belongs to the class of functions
FYO (Zo), if:

(1) the function fy . as Yy = 400 and Z, = 0;

(y)’

@A
I
\
<
2
=
[l
|
2
[V
B
o,
N
Il
_|_
3

2) the function fy

the function fo(y) = f

— 1
ey

)
(2)
3)
(4) the function fo(y , as Yp = 0, where Ay, is a right neighborhood of zero, and Z, = 0;

(5) the function fo(y) = f(f%), as Yp = 0, where Ay, is a left neighborhood of zero, and Z, = +oc;

(6) the function fo(y) = ﬁ, as Yp = 0, where Ay, is a left neighborhood of zero, and Z; = 0;

(7) the function fo(y) = f(y), as Yo = 400 and Zy = +oo belongs to the class T'.

Using these two definitions, we conclude that for the function f € I'y,(Zy) the limit relation

lim Jly+ug) =e" forany v eR (2.2)
v=Yo  f(y)
yEAY,

holds, in which the function g, that is complementary for f, in each of the cases 1) - 7) can be expressed
through the function go, that is complementary for fy, in the following way (respectively):

(1) 9(y) = —g0(v);
(2) 9(y) = —go(—v);
(3) 9(y) = —¥290(;);
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4) 9(y) = y°g0(3);

(5) 9(y) = ¥*g0(—3);

Using the properties of the class ' (see the monograph by Bingham [1]) the following statements
were obtained in [4].

Lemma 2.1.

1. If f € Ty, (Zy) with the complementary function g, then 1in}1/ % =0.
Yy—Yo -
YEAY,

2. If f € Ty, (Zo) with the complementary function g, then for any function u : Ay, — R, satisfying
the conditions

lim wu(y) =wo €R, lim f(y+u(y)g(y)) = Zo,

y—Yo y—Yo
yEAy, YyEAY,

the limit relation

i L0 0000)

Y,
yyezyoo f(y)

holds.

If f € I'y,(Zy) with the complementary function g and, moreover, is continuous and strictly
monotone, then there exists a continuous strictly monotone inverse function f=1 : Az, — Ay,, where

or |zo, 2|, .
Az, = { P z0=f(y), Zo= lim f(y).
or |Zo, 2], y—Yo
YEAY,

By virtue of Theorems 3.10.4, 3.1.16 from the monograph [1, Chapter 3, p. 3.10, p. 176 and p. 3.1,
p. 139] and Definition 2.2, this inverse function has the following properties.

Lemma 2.2. If f € T'y,(Zy) with the complementary function g and is a continuous strictly monotone
function on the interval Ay,, then the inverse function f=1: Az, — Ay, is slowly varying as z — Zg
and satisfies the limit relation

i {2~ ()
=7 g(f~(2))

z€Az,

=lInA for any A > 0.

Moreover, for any A > 1 this limit relation holds uniformly with respect to \ € [%, Al.

We present some of the important properties of the class of twice continuously differentiable func-
tions f : Ay, — R\ {0}, where Yj is equal either to zero or to too, and Ay, is some one-sided
neighborhood of the point Yy, each of which satisfies the conditions

fly) #0 as y € Ay,, lim f(y) =

y—Yo
YEAY,

LT I
or +oo, y=Yo [2(y)
YyEAY,

{or 0, L SO W

the proof of which is given in the work of V. M. Evtukhov and A. G. Chernikova [4].



48 Vyacheslav M. Evtukhov, Natalia V. Sharay

Lemma 2.3. If a twice continuously differentiable function f : Ay, —]0,4o00[ satisfies conditions
(2.1), then it belongs to the class Ty, (Zy) with the complementary function g : Ay, — R, which is
uniquely determined up to the equivalent, as y — Yy, functions, which can, for example, be one of the
following functions:

y ot y
ivf(lf(u) du) dt N Jﬂx)dm LB ) —
]’yf(x) I f(y) fly) 1y ’
Y
where
vo, or lim f(y) = +oo,
Yy — yeAyo
Yy, or ylgr}l/(J fly) =0.
yeAyo

Remark 2.1. The given Lemmas 2.1 and 2.2 refer to the case, where f : Ay, — 10, +o0[ (i.e., it takes
positive values). In the case of the function f : Ay, — ] — 00, 0[ we will say that it belongs to the class
Iy, (Zo), if (—f) € T'y;(—Zp). Then it is not difficult to verify that Lemmas 2.1 and 2.2 also remain
valid.

3 The main results

Let us introduce the necessary auxiliary notation. We assume that the domain of the function ¢ in
equation (1.1) is determined by formula (2.2). Next, we set

1, if Ay, = [yo, Yo[,

. / .
Mo = SI1gn @ (y), Vo = 81gn Yo, Vi1 = .
{]-a if AYO :]Y07y0]7

and introduce the following functions:

‘]<t):/t7ri(7)p(r)d7, @(y):/y ds
A B

p(s)’
where
t if w=
=40 L eTTe (3.1)
t—w, if w<4oo,
w Yo
if / 2(r)p(r)d t Yo, if / ds = const
1 = s _ = ,
w, 7o (T)p(T) dT = const, 0 2(5)
A= a, B = onO
a it [ mrp(r)dr = 20, wo i [
J ¢(s)
Yo

Taking into account the definition of P, (Yp, Ag)-solutions of the differential equation (1.1), we note
that the numbers vy, v1 determine the signs of any P, (Y, Ag)-solution, its first derivative (respectively)
in some left neighborhood of w. It is clear that the condition

vor1 < 0 if}/ozo, vovy > 0 if Yy = o0,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function ®. It retains a sign on the interval
Ay,, tends either to zero or to +oo, as y — Yy, and is increasing on Ay, since on this interval
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D' (y) = ﬁ > 0. Therefore, there is an inverse function @~ : Az — Ay,, where due to the second

of conditions (1.2) and the monotone increase of ®~1,

0 i ]l’ I 9 - ’ KSZ — [ 05 0[7 if AYO [y0)10[7
o 2: ]f — ))- 32
yEA ( ) { ’ 0 {] 0720]’ . A)/O ] O7y ]7 2 (P(y ) ( )
Y Yo = i/ 0

By virtue of the L’Hospital rule in the form of Stolz and the last of conditions (1.2), we get

1

@ —— /2
i P =y Sy 0
—Yy —— —Yo _ —
;JGA;)O ?'(y) gj/eA;)O @2 (y) nyA)% vy
Hence,
1 .
D(y) ~ oW as y — Yy and sign®(y) = —pp as y € Ay,. (3.3)

From the first of these relations it also follows that

1 )]
V) _ e ¢ YWy _ —ee®W o

d(y)  D(y) ely)”  22(y) o)

v (y

~

Therefore, according to Lemma 2.3, ® € T'y,(Zp) with a complementary function, which can be
selected as one of the equivalent functions

Ply) W) eW) oy (3.4)

(y) ¥y ©'(y)

In addition to the above notation, as A\g € R\ {0; 1; %}, we introduce the auxiliary functions

o 2ol - 1273 ()p(1) (2 (a0 25 (N — 1)J(1))
R M@ (g 2 7 (1)) |

- Ao—1)? - Ao—1)2
&1 (g Lot T (1)) (@ (o Lo T (1))
_ Xo—1)2
(B (oI (1)
In addition to the above properties of the twice continuously differentiable functions f : Ay, —
R\ {0} satisfying conditions (2.1), we will need one more auxiliary statement about a priori asymptotic

properties of P, (Y, \g)-solutions of the differential equation (1.1) which follows from Corollary 10.1
of [8].

Lemma 3.1. If \g € R\ {0;1; 1}, then for each P,,(Yy, Xo)-solution of differential equation (1.1) the
asymptotic relations

) 21 ) A
W) gt el =T =T

as t T w hold, where 7, (t) is defined by (3.1).

H(t) =

)

r(0)y"() _ 1+ o(1)
y"(t) X —1

[1+o(1)],

(3.5)

For equation (1.1), the following assertions hold.

Theorem 3.1. Let \g € R\{0;1; 3}. Then for the existence of P,,(Yy, Ao)-solutions of the differential
equation (1.1), it is necessary that the conditions

0401/1)\0 > 0, (36)
vov1 (200 — 1) (Mg — D)y, (8) > 0 as t € (a,w), (3.7)
apporoJ(t) <0 as t € (a,w), (3.8)

o .. B _mu(t)J'(t) . 201
no e = A0 BTGy e 0= 3 (39
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hold. Moreover, each solution of that kind admits the asymptotic representations

1) 0

yt) =o' (ao%ﬂt)) [1 + H((lt))} as t 1w, (3.10)
o (2x — 1) @7 (ag Qo ()

y'(t) = Oo 1) 0 [1+0(1)] as t 1T w, (3.11)
1 _ )‘0(2>‘0 — 1) (I)_l(ao (Ao)zjl)z J(t))

y'(t) = Do — 172 ) [14+0()] as t 1 w. (3.12)

Theorem 3.2. Let Ao € R\ {0;1; 3}, conditions (3.6)~(3.9) hold, there exist a limit

2A0 —1 2
li — H = 1
lim [0 —g()] ()] = 0 (3.13)
and a finite or equal to oo limit
' (y)
' () \2 ' '
56_2:% ( ®(y) ) oY)

Then the differential equation (1.1) has at least one P,,(Yo, Ao)-solution admitting the asymptotic, as
t 1 w, representations

y(t) = &1 (ao%m)) {1 + Z[((lt))}, (3.15)
Lo 220—1 i (Ag—1)? >
YO= 5 (a0 T J®) [+ o()H 3], (3.16)
V(1) = m @ (ag % J0)[1+o(1)HH) (3.17)

Moreover, there exist one-parameter family of such solutions in case poiov1 < 0, and two-parameter
family, when pgAov1 > 0.

Proof of Theorem 3.1. Let y : [to,w[— R be an arbitrary P,, (Yo, Ag)-solution of the differential equa-
tion (1.1). Then, according to Lemma 3.1, the asymptotic relations (3.5) hold. By virtue of these
relations and (1.1), this solution and its derivatives of the first, second and third order retain the
signs on a certain interval [t1,w[C [to,w[, and for these signs the asymptotic relations (3.5) hold,
from which follow condition (3.6) and inequality (3.7). In addition, from (1.1), taking into account
the second of the asymptotic relations (3.4), it follows that

w@(/;(?)) = a0 P2 1 4 o1)] s 11 (8.18)

Ao
Integrating this relation from ¢y to t, we get

y(t)

S —1)2 :
/ @is) - O‘O(AO)\O & /Wi(T)p(T)[l +o(1)]dr as t 1 w.
y(to) to

Since, according to the definition of P, (Yp, Ag)-solution, y(t) — Yo as t T w, it follows that the
improper integrals
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converge or diverge simultaneously. In view of this fact and the rule for choosing the integration limits
A and B in the functions J and ®, introduced at the beginning of this section, the aforementioned
relation can be written as

(Ao — 1)

B(y(t)) = a0~

J[1+0(1)] as t 1 w. (3.19)

From here, taking into account (3.2) and (3.3), it follows that inequality (3.8) and the first of conditions
(3.9) are true. By virtue of the first of conditions (3.3), it follows from (3.18) and (3.19) that

y' "W (#) _ Ao ()p(t)
p(y(t)) (Ao —1)J ()

and, therefore, taking into account the first and second of the asymptotic relations (3.4) and the
asymptotic relations (3.5),

[1+0(1)] as tTw,

V(O W®) __Go=DmOpl)

P
e(y(t)) (20 = 1)J(?)
From this relation, by virtue of (1.3) and the definition of the P,, (Y, \g)-solution, it directly follows
that the second of the limit conditions (3.9) holds.
Now, from (3.19) we find that

Ao — 1)2
y(t) = o (ao % JO[1 + 0(1)]) as t 1 w. (3.20)
0
The function ®, as is stated earlier, belongs to the class I'y,(Zy), where Z; = hn}} d(y), and
—
yehy,
the function ¢(y) = —j,(é/)) can be chosen as its complementary function. Then, according to the

conditions ¢ ltlTrUIJl J(t) = Zp and ag % J(t) € Ag, ast € [to,w[, which follow from (3.8) and the

first condition of (3.1), according to Lemma 2.2, we have

- Ao—1)° - Ao—1)?
@ ag Lo T (1)[1 4+ 0(1)]) — @7 (a Lo (1)) .
lim 5 = lim
ttw (@1 (a0 Q012 5(1))) 2 Zo _ ol
_ o) > ZEAZO LP,(Z)
¢ (271 (a0 222 5(1))

whence it follows that
—1 ()\0 - 1)2
2~ (g R WRRELVILES o(1)))
p( (oot (1))

' (D (g Lo (1))

(Ao —1)?
Ao

- qu(ao J(t)) + o(1) as t 1 w.

By virtue of this relation, from (3.20) we obtain the asymptotic representation (3.10). If we consider
that

@ (a0 25 (1) ¢/ (2 (a0 A5 (1) ve'(v)
lim g G 1) g = lim = $o0,
the (D1 (oo Po (1)) aox e(y)
then (3.9) can be written as
(Mo — 1)

y(t) = qu(ao J(t)>[1+o(1)] as t 1w

Ao

and, therefore, according to the first of the asymptotic relations (3.4), the asymptotic representations
(3.11) and (3.12) hold.
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It remains to establish the validity of the third of conditions (3.1). According to (3.10), from (3.1)
we have

(o Qo 5 (2))
@' (a0 Lo (1))

Since ¢ € 'y, (Zp), where Zy = lim ¢(y), which according to the second conditions of (1.2) is equal

76) = cunttro (27 (a0 22 i) +

0(1)) as t 1T w. (3.21)

y—Yo
YyEAY,
either to zero or to +o0, and the function g(y) = j,((z)) can be chosen as its complementary function,

on the basis of Lemma 2.1, taking into account the conditions gm <I>_1(a0 % J(t)) =Y, and
w

P! (ap % J(t)) € Ay, as t € [to,w[, we obtain

ao Qo= ()
-1 (Ao—1)* t W( O X0 1 )
o o BT T0) + St oy o)

lim = lim =1.
the (@ (a0 Pt (1)) g el)

—1 « ()\0 — 1)2 (,O(OZO ()\Og)l)z J(t)) ) = -1 o ()\0 B 1)2 as w
o7 (00 o) + £ T ) ) =(#7 oo P g0 s 1

and the asymptotic relation (3.21) can be written as

(Ao —1)°

" J(t)))[l—i—o(l)] as 1 w.

y"(t) = aop(t)go(@_l ag
By virtue of this representation and (3.12),

T (t)y" ()  co(Ao — 1?73 (t)p(t) e (2 (a0 (/\0;01)2 J(t)))
y'(t) Ao(220 — 1)@~ (ag QoD (1))

[140(1)] as t T w.

According to the third of the asymptotic relations (3.5), we obtain the validity of the third of conditions
(3.9). O

Proof of Theorem 3.2. Suppose that there exists a limit (3.13) that is finite or equal to oo and
for some Ag € R\ {0,1,1} conditions (3.7), (3.8) and one of the conditions either (3.14) or (3.16)
and (3.17) hold. Under these conditions, we establish the existence of B, (Yp, Ag)-solutions of the
differential equation (1.1) that admit asymptotic representations (3.9), (3.10), (3.11) and find the
number of such solutions.

First, taking into account the existence of limit (3.13) that is finite or equal to +o00, we show that
this limit can only be zero. Assume the opposite. Then the relation
w’(y))/

( »(y)
(v)

_ 2(y)

’ 4 2
(5 y))3 y°

holds, where the function z : Ay, — R is continuous and such that

S

= t
lim 2(y) = {Or ¢ = const £, (3.22)
y—Yo or =oo.
yEAy,

Integrating this relation on the interval from g4 to y, we obtain

—3(“2((5)))_é = co+ / ZS(S) ds, (3.23)

2
3
Yo
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where ¢y is some constant.

Yo
It [ 2(8) g5 = +o00, then after dividing by y3, we have
3

yo °

) ) } 23 s
—3(3/‘/’ (y)) Tl I40(1)] as y— Yo
e(y) Y
Here, the expression on the left, by virtue of (1.3), tends to zero as y — Yp, and that of on the
right, by virtue of condition (3.22), tends either to a nonzero constant or to +oo, as according to the
L’Hospital rule in the form of Stolz

Wil

ol

z(s

[ =)
[ 22 ds
s3
lim & ——— =3 lim 2(y),
y—Yo E y—Yo
YyEAY, YyEAY,

which is impossible.

Yo
It [ (3) ds converges, which is possible only in the case Yy = 0, then we rewrite (3.23) in the form
Yo 83

_3M0<¢'<y>)f% I / ) 4,

e(y) 53
0
0
where ¢ = ¢o + [ 28) ds. Let us prove that ¢; = 0. Indeed, if ¢; # 0, then from this relation it
Yo 83
follows that ) o7
Py
=——=+0o0(1) as y — 0.
o(y) cf W

Hence, as a result of integration on the interval from yg to y, we get

In|p(y)| = const +o(1) as y — 0,
which contradicts the second of conditions (1.2). Hence, ¢; = 0 and, therefore, we have

‘3@((5)))3 = 0/ () ds.

Dividing both sides of this equality by 43, we note that, by virtue of conditions (1.3), the left-hand side
of the resulting relation tends to zero as y — 0, and the right-hand side, by virtue of the L’Hospital
rule and (3.22), tends either to a nonzero constant or to oo.

The contradictions obtained in each of the two possible cases lead to the conclusion that

#' ()
i Lo (W/(y))z —0. (3.24)
e (£55)2 VL el)

Now, applying the transformation to equation (1.1),

y(t) = ! (ao W J(t)) [1 + A }

_ _ 2
() = ot @7 o G021 50) 1 + 120 (3.25)

V(0 = s @7 (a0 P )1+ o),
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we obtain a system of differential equations

/7H(t) _2)\071 22 — 1
= o | 5O a0+ i+ 5 .
;1 (/20— 1 _ B Ao
,_ 1T 2q(t)(ho - 1) q(t) - o(t)
Ys = |2 T Ty 1Yt @ ey + 55— Rty
where
(80/((!/)))/
_ oy
h(t) = q(®) (W(y))z e )
gp(y) y=q>*1(a0 L% J(t))

so(<1> (o0 5 J(t)HW(@—l(QO%J(m) .

P (@1 (g L (1))

We consider this system of equations on the set

—1—y1.

R(t’ yl) =

Q= [to,w[ XD1 X DQ X Dg, where Dl = {y7 : |y7| < 1} (Z = 1,2,3),

and the number ¢y € [a,w][ is chosen, by taking into account conditions (3.2), (3.3), (3.8), the first two
conditions (3.9) and (1.3), so that
(Ao —1)°
Ao
— Ao—1)°
(o — 1)2 Jo) + P( (ap P (1))
Ao @ (01 (ap P22 (1))

Qg J(t) € Az, as t € [to,w],

‘I)_I(Oéo v1 € Ay, as t € [to,w[, and |v1| < 1.
On this set, the right-hand sides of the system of differential equations (3.26) are continuous and

the function R has on the set [tg,w[ x Dy continuous partial derivatives up to the second order inclusive
with respect to the variable v;. At the same time, we have

o (2" (a0 QO 51)) )
1

(H—1 (Ao—1)?
4 ((I) (a0 o J(t)) + o (‘12'*1(040 (AOA—Ol)Q J(t)))

Rl (t,y1) = —1.
yiiw _ Ao—1)2
1 QD/((I) 1(a0 ( 0}\0 ) J(t)))
Here ¢’ € Iy, (Zy) with the complementary function g(y) = ;f,(g;)) . Therefore,
2
_ (Mo—1)? w(<1>’1(ao (2ol J(t)))
¢’ (‘I’ 1(0!0 v J(t)) + Ve 1) / o(y)
H(®-1(ap LoD gt o'y +v1505)
lim (;@(1)2 (o0 COT T@)) T/ lim T AW
o o (2 (a0 P2 (1)) y W)

If, for any fixed ¢ € [tp,w], the function R is expanded according to the Maclaurin formula with
the residual Lagrange term to the second-order terms, then we obtain

1 (@ (e P (1))
00 =3 o (@1 o O3 J(a)

(07 (a0 Qo )+ R0 ) )it
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where |¢] < |y1|. Here, by virtue of the last of conditions (1.2),

i (gt (0 o= 1) @ (@ (a0 Pl (1))
¢ (<I> (a0 2= 7)) + @ e P ) f)
e (a0 P2 51)) )

2 (I)_l M,}t
) o ( (a0 =555 T (1) + o' (@1 (a0 Lo J(1)) (1471t 51)]

“1(a M](t)))
D1 (g Gl ) 4 2007 o0 25
90( (ao Y J( ))+¢,(¢,71(aowj(t)))

where %tle r1(t,y1) = 0 uniformly with respect to y; € D;. Therefore, considering that the functions
w

©(y)

oy 0 e have

0, ¢ € Ty, (Zp) with the complementary function g(y) =

o(®(ag <Ao;01>2j(t))) 5)
@ (@1 (g Lt (1))
P2 (8 (ap oo (1))

= 3 e [1+rat, )],
(21 (g Lot (1)) [ raltoan)]

@ (@—1(aO(AO —1)J(t) +

where %m r2(t,y1) = 0 uniformly with respect to y; € D;. Therefore, (3.23) can be written as
w

1
R(t,y1) = 3 e [1+ri(t,y)] [1+ ra(t,yn)]yi.
It is clear from the above that for any & > 0 there are § > 0 and ¢; € [to, w[ such that
|R(t,y1)| < (0.5 +¢)|y1|* as t € [t1,w] and y; € Dys5 = {yl sy < 5}. (3.27)

Choosing arbitrarily the number € > 0, we select for it, taking into account the aforementioned about
the properties of the function R, the numbers § > 0 and ¢; € [tp,w| such that inequality (3.27) holds,
and consider system (3.30) on the set

Q= {(t,zl,zQ,zg) eR*: te [t1,w[, 21 € [-6,0], 22 €[-1,1], z3 € [—1,1]}.

In addition, in the system of equations (3.26), due to conditions (3.6) — (3.8), (3.13), (1.2) and
(1.3),

limh(t) =0, £1Tm H(t) = 0. (3.28)

To establish the existence of P, (Yp, Ag)-solutions of equation (1.1) admitting asymptotic repre-
sentations (3.10)—(3.12), it is necessary, according to transformation (3.25), to prove the existence of
solutions that tend to zero, as ¢t 1T w, of the system of differential equations (3.26). In order to use the
well-known results on the existence of solutions of quasilinear systems of differential equations that
disappear at a singular point, we reduce system (3.26) to the form that allows us to use such results.

Applying to system (3.26) an additional transformation

v =z, Vo = H_%(t)ZQ, V3 = H_%(t)Z;J,, (329)
we get a system of differential equations of the form
Hs(t
Zi = - ((t)) [fl (t) + Cll(t)Zl + 012(t)2’2 + Clg(t)2’3],
Hs(t
zy = - ((t)) [f2(t) 4 ca1(t)z1 + can(t)z2 + cos(t) 23], (3.30)
Hs(t t
Zé = ﬂ-w((t)) [fd(t) + Cg1(t)Z1 + ng(t)Zz + 033(t)23 + 2)\(10(7_)1 V(t, 21) ,
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where
f) = [ @], 0 = B2 —aw] i, g =2- 200U,
2 200 — 1 A
cii(t) = h(t)H3 (1), c12(t) = ﬁ, ca3(t) =0, c(t) =0, co3(t) = )\0731’
() = HH (1= 300+ 3aOMOHD). en) = 510 et =0,
exs(t) = H30)(2 - 2 a(t) + 3 aORWH(), V(t20) = A"O(t_) CR(1, 7).

Choosing arbitrarily the number € > 0, we select for it, taking into account the aforementioned
about the properties of the function R, the numbers 6 > 0 and t; € [to,w] such that inequality (3.27)
holds, and consider system (3.30) on the set

Ql = {(t,Zl,ZQ,Zg) S R4 o te [tl,W[, zZ1 € [—5,5}, 2o € [—1,1], z3 € [—171]}

By virtue of (3.28), the replacement of y; by z; and the first of conditions (3.28),

lim L(t’;l)

= 0 uniformly with respect to t € [t1,w].
z1 —0 Zl

In addition, according to conditions (3.28), (3.24) and the notation introduced at the beginning of
this section, we have sign H(t)m,(t) = povom,(t) as t € (a,w) and

A0 =0, tmen(® =0, e = G,
i ez (t) = ﬁ’ Him cas(t) = %
meg(t) = =7 lmess(®) =0,

LGP

ty1

This, in particular, implies that the limit matrix of coefficients, standing at vy, v and v3 in square
brackets of system (3.30), has the form

0 0
A —1 \
c=| o 0 0
. Ao — 1
0 0
Ao — 1
and its characteristic equation is that of the form
s Ao(2M—1)
3 0(2A0
- =0. 3.31

If Ao(2M0—1)(Aog—1) > 0, then in this case the algebraic equation (3.31) has two complex-conjugate
roots with negative real part and one positive real root.

If Ao(2X0 — 1)(Ao — 1) < 0, then equation (3.31) has two complex-conjugate roots with a positive
real part and one negative real root.
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Suppose further that conditions (3.13) are satisfied. It follows that for the system of differential
equations (3.30) all the conditions of Theorem 2.2 from [7] are satisfied. According to this theorem,
we find that when poryAg > 0, the system of differential equations (3.29) has a two-parameter family
of solutions (z1,22,23) : [te,w[— R® (t. € [t1,w]) that disappear at t 1 w. To each of them, due
to substitutions (3.25) and (3.29), there corresponds a solution y : [t.,w[— R admitting asymptotic
representations (3.10)—(3.12) and (3.15)—(3.17).

If por1A<0, the system of differential equations (3.30) has a one-parameter family of solutions
(21, 22,23) @ [ts,w] = R3 (t, € [t1,w[) that disappear at t T w. To each of them, due to substitutions
(3.25) and (3.29), there corresponds a solution y : [t.,w[— R admitting asymptotic representations
(3.10)~(3.12) and (3.15)—(3.17). m
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Abstract. In this paper, we apply the monotone iteration method to establish the existence of a
positive solution for the fractional differential equation

Dy u(t) +q(t)f(t,u(t) =0, 0<t <1,

together with the boundary conditions (BCs)
1
u(0) = /(0) =+ = " 2(0) =0, Du(l) = [ hls.ul(s) dA(s),
0

where n > 2, n—1 < a <n, g€ [l,a—1], D§ and Dng are the standard Riemann—Liouville
fractional derivatives of order a and 3, respectively, and f, h : [0,1] x [0,00) — [0, 00) are continuous
functions. The sufficient condition provided in this paper is new, interesting and easy to verify. Our
conditions do not require the sublinearity or superlinearity on the nonlinear functions f and h at 0 or
00. The paper is supplemented with examples illustrating the applicability of our result.
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1 Introduction

The aim of the present paper is to demonstrate the applications of the monotone iteration method for
studying the existence of at least one positive solution of the nonlinear fractional differential equation

Dy, u(t) +q(t) f(t,u(t) =0, 0<t <1, (1.1)
together with the boundary conditions (BCs)

w(0) =/ (0) = --- =u™2(0) =0, DJ u(l)= /h(s,u(s))dA(s), (1.2)
0

where n — 1 < a<n,n>2 f¢€ll,a—1]is fixed, ¢ : (0,1) = [0,00) is a continuous function,
1

ik (0,1) x [0,00) — [0,00) are continuous functions, [ h(s,u(s))dA(s) is a Riemann-Stieltjes
0

integral with A being nondecreasing and of bounded variation, and Df,, Dg . are the standard
Riemann—Liouville fractional derivatives of order o and 3, respectively.

We define the fractional derivative and fractional integral for a function F of order v, v € [0, 00)
as follows.

Definition 1.1. The (left-sided) fractional integral of order v > 0 of a function F : (0,00) — R is
given by
¢

(I, F)(t) = ﬁ /(t — )7 R (s)ds, t >0,
0

provided that the right-hand side is pointwise defined on (0, 00), where I'(v) is the Euler Gamma

function, defined by I'(y) = [ ¢~ le~tdt, v > 0.

0
Definition 1.2. The Riemann-Liouville fractional derivative of order v > 0 of a function F :
(0,00)— R is given by

280 = () 05570 = sy ()| =
0

for ¢ > 0, where n = [y] + 1 ([y] is the largest integer, not greater than +), provided that the
right-hand side is pointwise defined on (0, c0).

Definition 1.3. By a positive solution of (1.1),(1.2) we mean a function v € C]0,1] satisfying
(1.1), (1.2) with u(¢) > 0 for all ¢ € (0, 1].

The fixed point theorems have been playing a crucial role in establishing the solutions of fractional
differential equations. For instance, one may refer to [4-6,8,12,15-20] on the use of a fixed point in-
dex property, Krasnoselskii’s, Avery—Peterson’s, Schauder’s fixed point theorems, the Leray—Schauder
alternative, and Guo—Krasnoselskii’s fixed point theorem to study the existence of at least one, two
or three positive solutions of fractional differential equations of form (1.1) with nonlinear BCs of form
(1.2). For a system of fractional differential equations with integral boundary conditions of coupled
or uncoupled type, one may refer to [1,9-11,13,14].

In their recent work [16], Padhi et al. have used Schauder’s fixed point theorem and the Leray—
Schauder’s alternative along with the Krasnoselskii’s fixed point theorem to study the existence and
uniqueness of positive solutions of (1.1),(1.2). Using the Avery—Peterson’s fixed point theorem, the
authors established the existence of at least three positive solutions of (1.1), (1.2).

n [16], Padhi et al. have shown that the boundary value problem (1.1),(1.2) is equivalent to the
integral equation

1 1
utt) = [ G st as+ S0 et st aa),
0 0
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where G(t, s) is the Green’s function given by

1 ta—l(l _ S)OK—B—I _ (t _ 5)0‘_17 0<s S t S 1
tafl(l _ S)afﬁ*17 0<t¢ S s<1.

Further, it is proved in [16] that the Green’s function G(t, s) satisfies the inequality

t*1G(1, s) =t max G(t,s) <G(t,s) < Jmax G(t,s) = G(1,s), (1.3)
where
G(1,s) = ﬁ (1—s)* P71 —(1-9)"]. (1.4)

To establish our results, we assume that the following conditions are satisfied:
(A1) f,h € C([0,1] X [0,00),[0,00));
(A2) g € C((0,1),]0,00)), and ¢ does not vanish identically on any subinterval of (0, 1];

(A3) for any positive numbers r; and rp with r; < rg, there exist continuous functions py and
ph = (0,1) — [0,00) such that

1

f(tu) Spf(t)v h(t,u) < pn(t) for 0 <t <1, 22(a—1)

<u<rg,
and

/G(l,s)q(s)pf(s) ds + F(?(;)B) /ph(s) dA(s) < oo,
0 0

where G(1,s) is given in (1.4).

In this paper, we apply the monotone iterative method to obtain sufficient conditions on the
existence of one positive solution and an iterative scheme for approximating the solutions. The
following theorem states the main result of this paper.

Theorem 1.1. Assume that there exist constants v and R with 0 < 2r < R such that the following
conditions are satisfied:

J G(,s)q(s)ds 2 [G(1,s)q(s)ds
0 0
for ,u27°§u§v§R and %gtﬁl
and
(A5) h(t,u) < h(t,v) < F(a)lf for W’r<u<v<R and % <t<l1.
20— B) [ dA(s)
0

Then problem (1.1), (1.2) has at least one positive solution.
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2 Preliminaries

In this section, we provide some basic concepts on the cones in a Banach space and the monotone
iteration method.

Definition 2.1. Let X be a real Banach space. A nonempty convex closed set P C X is said to be
a cone provided that

(i) ku € P for all w € P and all k > 0;
(ii) u,—u € P implies u = 0.

In order to prove Theorem 1.1, we use the following well known monotone iteration method im-
ported from [2,3,7] or Theorem 7.A in [21].

Theorem 2.1. Let X be a real Banach space and K be a cone in X. Assume that there exist constants
v and wy with vg < wo and [ve, wo] C X such that

(1) T : [vo, wo] = X is completely continuous;

(ii) T is a monotonic increasing operator on [vg, wol;

(iii) vo is a lower solution of T', that is, vo < Ty;

(iv) wo is an upper solution of T, that is, Two < wyp.

Then T has a fized point and the iterative sequences vpy1 = Tv, and wp41 = Tw,, n=1,2,3,...,

with
Vo SV S < S S S wy Swpo1 S Swp Swg

converges to v and w, respectively, which are the greatest and smallest fized points of T in [vg, wp).

In this paper, we let X = C[0,1] to be the Banach space endowed with the norm

= t)|.
Jull = max fu(t)

Define a cone K on X as K = {u € C[0,1] : u(t) >0, t € [0,1]} and an operator T : K — X as

Tu(t) = /G(t,s)q(s)f(s,u(s)) ds—l—l—‘(?(;)ﬂ)tal/h(s,u(s)) dA(s). (2.1)
0 0

Then it is easy to verify that w(¢) is a positive solution of problem (1.1),(1.2) if and only if u(¢) is a
fixed point of the operator T on the cone K.

1
Let g(s) = G(1,s) with [ g(s)ds > 0 and ¢(t) = t*~!. Then (1.3) can be rewritten as
1/2

c(t)g(s) < G(t,s) < g(s) for 0 <t,s<1. (2.2)
Since it is useful to work on a smaller cone than K, we consider a cone K of the type

K, = {u € X : u(t) >0and H%ir%)]u(t) > ca,b||u\|},
tela,

where [a, b] is some subinterval of [0, 1] and ¢, > 0. Condition (2.2) ensures that for [a,b] C [0, 1], if
Cap = min{c(t) : ¢ € [a,b]} > 0, then T maps K into K. Since (2.2) is valid for any ¢ € [0, 1], we can
work on the subinterval [1/2,1] C [0,1] for which the inequality

uG(1,8) < G(t,s) < G(1,s)
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replaces (1.3) or (2.2), where

et

1
W= = min c¢(t) = min
201 tef1/2,1) te[1/2,1]

In this case, the operator T', defined in (2.1), maps the cone K into the subcone P, where
pP= { C0,1: min u(t)> } 2.3
ue Cl0,1] teI[Ill}IQIJ]U( ) = pl|ul] (2.3)

Also, u(t) is a positive solution of problem (1.1), (1.2) if and only if u(¢) is a fixed point of the operator
T on the subcone P.

3 Proof of Theorem 1.1

To prove our theorem, we consider the cone P, defined in (2.3). Let u € P. Then

I7ul < [ GLs)al) (s.u()ds + F(;“(;)B) [ #ls.utsaacs)
0 0

and
F 1
uin Tu(t) > win 0 1)[ 0/ G(1,8)a(s) (s, u(s) ds+”§‘(;f) 0/ h(s u<s)>d,4(s)}
— | / G, $)4(5) (s uls)) ds + 5 =) / Ao () dA()|
> | Tu|

implies that T': P — P. Also, T is well defined.
Set vo = p?r and wy = R; then vg < wg. We now prove that T : [vg,wg] — P is completely
continuous. Let {u,} € [vg, wo] and u € [vg, wg| be such that lim u, = u. Then p?r < u, < R and
n— oo
pu?r <u < Rforte[0,1]. Since f is continuous on [0,1] x [u?r, R], for € > 0 there exists §; > 0 with
|up — ug| < &1 for ui,us € [u?r, R], and we have

() — f(tuz)] < —— L telo,1).

QOfG(l,s)q(s) ds

Similarly, from the continuity of h on [0, 1] x [u?r, R], we get
I'a)e

|h(t,u1) — h(t, uz)| < S
2N« — B)OfdA(s)

, te[0,1],

for ¢ > 0 and dy > 0 with |u; — ua| < 82, uy,us € [u?r, R]. Set § = min{d,d2}; then it follows
from lim,,_,~ u, = u that there exists a positive number N such that for every n > N, we have
|un (t) —u(t)] < 8, t € [0,1]. Then the inequality

1 Tun () — Tu(t)| < /G(178)4(5)|f(57un(8)) = f(s,u(s))| ds
0
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shows that T : [vg, wg] — P is continuous.
Setting

* = t, d h* = h(t, u),
I = N, gy S (B0) an B FRLLICE)

we have
* / *F(OL—B) / s
Tu(t) < f / Gl s)g(s) s + " ) / 4A(s)

Thus, T is uniformly bounded on P.

Since G(t, s) is continuous on [0, 1] x [0, 1], it is uniformly continuous there. Similarly, the function
t>~1 is uniformly continuous on [0, 1], because it is continuous there. So, for every € > 0, there exists
§ > 0 such that |G(t1,s) — G(ta,8)] < e and |t§ 1 — 57| < ¢ for |ty — to| < 6, (t1,5),(t2,8) €
[0,1] x [0,1]. Consequently, for any u € [u?r, R] := [vo,wo] and t1,ts € [0,1] with |[t; — 2] < J, we
have

Tu(ty) - Tu(ts)| / (t1, 5) = Gltz, 5)la(s) (s, u(s)) ds

1

0

0

Hence the family {Tz : x € [vg, wp]} is equicontinuous on [0,1], and so T is relatively compact. By
the Arzela—Ascoli theorem, T : [vg, wo] — P is completely continuous.
Let u,v € [vg, wp] be such that u < v. Then vy < u < v < wy. By (A4) and (A5), we have

1 1

Tu(t) = [ Glt,s)a(o) (s, o) ds + M E e
0

1

< /G(t,s)q(s)f(s,v(s))ds +
0
= To(t).

h(s,u(s))dA(s)

F(O‘i;ﬁ)ta—l h(s,v(s)) dA(s)

3
o O~

Thus, T is monotonic increasing in [vg, wp).
Now we prove that vy = p?r is a lower solution of T, that is, vg < Tvg. Indeed, for vy € P, we
have Tvy € P and so

T t) > T > T
vo(t) > pl|Two ()] “teﬁl}gu o (t)

1

ol iy [ G ds + L 0/h<,o<>>dA<>)

te[1/2,1]
0

1

u/ min G(t s))q(s)f(s,vo(s))ds > NQO/G(l,s)q(s)f(s cu(s))ds > p?r = vy(t).

te[1/2,1]
0

Finally, we show that wy = R is an upper solution of 7', that is, Twg < wg. Clearly,

Tun(®) < [ Gl un(s) ds + S8 10 s wn(e) dAGs) < R = wa(t),
0 0

so wg = R is an upper solution of T'.



66 Seshadev Padhi, B. S. R. V. Prasad, Satyam Narayan Srivastava, Shasanka Dev Bhuyan

If we construct the sequences {v,}22; and {w,}52 as
U =Tvp_1, wp=Tw,_1, n=1,2,...,
then it follows that
Vo SV SV S S0y S S Wy S Wy S0 S Wy S W,

and {v,}22; and {w,}52, converge, respectively, to v and w, which are the greatest and smallest
fixed points of T' in [vg, wp]. Since v < w, Theorem 2.1 guarantees that w is the positive solution of
problem (1.1),(1.2). This completes the proof of the theorem. O

Remark. One may observe from the assumptions (A4) and (A5) that we do not require any superlin-
earity or sublinearity on f and h either at 0 or co. The only assumption we require on f and g is that
they must be monotonically nondecreasing in the subinterval [1/2, 1], which shows that the functions
f and h may be decreasing or nonincreasing and also may be identically zero or zero at some points
in [0,1/2). This fact is evident from Examples 4.1 and 4.2.

4 An Illustration

In this section, we provide two examples illustrating Theorem 1.1.

Example 4.1. Consider the fractional differential equation
5 2o —
Dut) +1(3)[1= (1= "] ftut) =0, 0<t <1, (4.1)

with the multipoint BCs

1
w(0) = o/ (0) =0, D?u(l) = / h(s, u(s)) dA(s), (4.2)
0
where
4 5 8
toifte|0.g)Ulgg)
4 4 5
A =<2 = - Z 4.3
(=145 ifte|5): (43)
8 . 8
5 if te |:§,1:|,
1 1
Z(35+e ) if u> 32,
Fltu) =4 2
’ 35 .
— if u <32,
2
and

Wt u) 28—|—e_ﬁ if u> 2,
u) =
’ 28 if u<2.

Here o = 3, 8 =2 and q(t) =T'(3)[1 — (1 — t)*?]~L. Clearly,

1
')

G(1,t) = [1-1-1%%, 0<t<1,

N Ot

implies that ¢(¢)G(1,t) =1, hence
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Also,
1 1 1

e W

For u < v, we have e~ wmm < efﬁlﬂ, which implies that f(¢,u) < f(¢,v) for u <v. In a similar way,
we can prove that h(t,u) < h(t,v) for u < v.
Set r = 16 and R = 40; then

35
f(t,u)25=17.5>16:r
and X 1 1 ;
Fltu) < 5 (35 4e 7m) < S (354 TE) < S (3546 F) S18<20 =3
imply that
R r 1
r< ftu) < f(tv) < 5 for g<u<v<Roand S <t<1,

that is, condition (A4) is satisfied. Similarly, h(t,u) < 29 < 135 /7 implies that condition (A5) is

satisfied. Thus, by Theorem 1.1, problem (4.1), (4.2) has at least two positive solutions.

Example 4.2. Consider the fractional differential equation (4.1) together with the BCs (4.2) and
A(t) in (4.3) with f(t,u(t)) = & +tsin% and h(t,u) =t + 3 + 0.88sinu. Set r = § and R = 3.
Since sinu is an increasing function for 1z < u < 1, then f(t,u) and h(t,u) satisfy the properties
f(t,u) < f(t,v) and h(t,u) < h(t,v) foru <wv, 3 <t <1and & = p?r <u < v < R=3. Further,

since sinwu > 0 for %6 < u < 3, we have

N o
2| 3

1
+tsin% = f(tw) < 5 +sinl <
and
1 .
h(t,u) <1+ 3 +0.88sinu

1
<15+ (0.88)(0.8415)
< 2.24049

< 2.243216

217
Y

R,

that is, conditions (A4) and (A5) are satisfied. Hence, by Theorem 1.1, problem (4.1), (4.2), with the
considered f(¢,u(t)) and h(t,u), has at least two positive solutions.

5 Discussion and Conclusions

The fixed point theorems are playing a vital role in studying, analysing the systems of fractional
differential equations and also in establishing positive solutions. These fixed point theorems are also
helpful in examining the existence/non-existence conditions for various coexistence equilibria in many
dynamical systems with applications to natural, biological and epidemiological sciences. Many of the
existing fixed point theorems require the superlinearity and sublinearity conditions.

In [16], Padhi et al. applied Schauder’s fixed point theorem (see [16, Theorems 4.2 and 4.4]) to
prove the existence of a positive solution of (1.1),(1.2), where the function f is assumed to be either
superlinear or sublinear at 0 or co. In another attempt, Theorem 4.5 in [16] requires the existence of
two reals r1 and ro with 0 < r1 < ry such that either one of the following conditions is required to
prove the existence of a positive solution of (1.1),(1.2):
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(A6)
1 . 1
ry < /G(l,S)Q(S).ﬁ(S,Tl)dS + (?(;)6) 0 hi(s, 1) dA(s) < oo,
1 . 1
0/ G(1, 8)4(s) fo(s,72) ds + (g‘(;f) / ho(s.r) dA(s) < 1o,
(A7)
1 Pla—5) [
O/G(lvs)Q(S)f2(3arl)d3+ W O/hQ(S,’I“l)dA(S) < 00,
1 Pla—p) [
re < O/G(l,s)q(s)fl(s,rg) ds + o) O/hl(s,rg)dA(s) < 0,
where
fl(t,r):min{f(t,u): to‘_lrgugr}, 0<t<1,
folt,r) =max{f(t,u): t* 'r<u<r}, 0<t<l,
hi(t,r) =min {h(t,u): t*'r<u<r}, 0<t<l,
ho(t,r) =max {h(t,u): t* 'r<u<r}, 0<t<l

The present work proposes the fixed point theorem with the use of the monotone iterative method
for establishing the existence of one positive solution and also the method for approximating the solu-
tion. In this process, the obtained sufficient conditions require no superlinearity and/or sublinearity
on the functions under consideration at 0 or oco. Thus, Theorem 1.1 cannot be comparable with Theo-
rems 4.2 and 4.4 in [16]. Instead, the conditions in Theorem 1.1 require the only monotonic increase of
the functions in the subinterval [1/2, 1] and they may decrease or nonincrease or identically be zero in
the other half of the interval [0,1/2). This shows that assumptions (A4) and (A5) are not comparable
with (A6) and (A7). We strongly feel that Theorem 1.1 simplifies the calculations in establishing the
existence of positive solutions of the boundary value fractional differential equations.
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are represented by a multiple Fourier series with slowly varying coefficients, the conditions are obtained
under which there exists the transformation with the coefficients of similar structure leading this
system to a system with slowly varying right-hand sides.
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1 Introduction

In the nonlinear mechanics, the problem of reducing a multi-frequency system of differential equations

de

— = 0 1.1

@ —wt 1), (1)
where § € R™, w € R™, f(0) € R™ is a 2w-periodic vector-function, by the transformation of kind

b=+ ule), (1.2)

where w(yp) is also a 2w-periodic vector-function, to the form

dp _

= 1.
a0 (1.3)

v is a constant vector, is well known.

This problem is the subject of numerous studies (see, e.g., [1,3,4]). As is known, the main difficulty
here is the problem of small denominators: the scalar product (k,w) (k = colon(ky, ..., kn), k; € Z)
may be arbitrarily small and it turns out to be in the denominators of the expressions representing
the solution in terms of some series or iterative processes. Therefore, the vector w is imposed the
condition

c
|(k,w)| = Wa (1.4)
C' is a positive constant, ||k|| = |k1| + -+ + |km|. The use of this condition in turn generates “large

numerators” that can lead to the divergence of these series and processes. This difficulty is overcome
by the method of accelerated convergence [1].
In this paper we consider the system of kind

W AW+ Ao, D -

dt
in which ¢ belongs to a finite, but arbitrarily large interval, A(t) is a diagonal matrix, and the elements
of a small matrix A(t,6) and a small vector b(t,0) are represented by an absolutely and uniformly
convergent multiple Fourier-series with respect to 8, with slowly varying coefficients, and the variable
vector w(t) is not subject to the condition of kind (1.4). For system (1.5), under certain conditions
we have proved the existence of the transformation of kind

w(t) + b(t, 0), (1.5)

z=(E+W(t o)y, 0=9p+uwty), (1.6)

where the elements of the matrix W (t, ) and vector w(t,0) are of similar structure leading system
(1.5) to the form

W A+ D % =ity o), (17)
where the elements of the diagonal matrix D(t) and vector v(t) are slowly varying and do not depend
on ¢. The properties of W (t, ) and w(t, ) are investigated depending on the properties of A(t,#)
and b(t, 0). However, the ideas of the method of accelerated convergence are still used, because instead
of the small denominators, due to the vector w(t), here arise small denominators generated by another
circumstances.

2 Basic notation and definitions

Let £ € (0,1], 7 = et € [0, L] (L € (0, +0)), G = [0, L] x (0, 1].

Definition 2.1. We say that a scalar function p(r, £), generally complex-valued, belongs to the class
S, if it continuous with respect to 7 € [0, L] and bounded with respect to € € (0, 1].
Thus, sup |p(T, )| < +o0.
G

Slowly variability of the function is understood here in the sense of its belonging to the class S.
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Definition 2.2. We say that a vector-function h(r,e) = colon(hi(7,€),...,hn(7,€)) belongs to the
class Sy, if hj(r,e) € S (j=1,...,m).
Under the norm of a vector h(7,¢) € S; is understood

|h(T,€)]lo = max sup |h;(T,€)l.
1<GEN repo,L]

This norm may depend on ¢.

Definition 2.3. We say that a scalar real function f(7,¢,0) belongs to the class F(M;«;0), if

f(r,e,0) = Z fn(1,€) exp(i(k,0)),
kEZm
Zp = {k = colon(k, ..., kn), k; € Z}, 8 = colon(bs,...,0,,) is the real vector, (k,0) = k161 +--- +
kmOm, fk(Ta 5) € S, and

«
sup [fu(7.€)| < Mexp (— 2 lkl))
T€[0,L] €

In)l = k1| + - - + |km|; M € (0,400), @ € (0,1) is a constant not depending on «.
Definition 2.4. We say that a real vector-function h(7,e,0) = colon(hi(7,€,0),..., hn(7,€,0)) be-

longs to the class Fy(M;a,0), if h;(1,6,0) € F(M;;0) (j=1,...,m).
For the vector-function h(r,¢,0) € Fy(M;a;0) and vector k € Z,, we denote

2 27
1 ,
Ti[h(r,e,0)] = e / . '/h(T, £,0)e %D qg, ...,
0 0

h(t,e,0) =g[h(7,¢,0)], h(r,e,0) = h(,€,0) — h(r,¢,0),
where 0 is a null-vector of dimension m.

Definition 2.5. We say that a real matrix-function A(r,¢,0) = (a;i(7,€,6));1=1
class Fo(M;,0), if aji(7,€,0) € F(M;;0) (j,k=1,...,n).
For the matrix A(7,¢,0) € Fo(M;a;0) and vector h(r,€) € S; we denote

..,n belongs to the

5o

0A " A
(%JL) = 679jhj(T’E)'
j=1

3 Statement of the problem

Consider the following system of differential equations:

d do
== (A(ne) +Ame e, = =w(re)+b(re0), (3.1)
where 7,e € G, x € R", 8§ € R™, A(7,¢) = diag(A1(7,¢€),...,A\n(T,€)), the real functions \;(r,¢)
belong to the class S, A(7,¢€,0) € Fo(M;;0), w(r,e) € R™, w(r,e) € S1, b(1,¢,0) € Fi(M;a;0)
(M € (0,1)).

We study the problem on the existence, construction and properties of the transformation of kind

T = (Eﬂ + W(T,E, (P)):% 0=p+ w(7—75’ 90)7 (3'2)

where y € R", ¢ € R™, E, is a unit (n x n)-matrix, w(r,&,p) € Fi(M{;a*5¢), W(r,e,¢) €
Fo(M3,a*, ) (M, M3, a* are to be defined), whicht leads system (3.1) to the form

d d

= () + D(re)y, =~ =w(r.e) +Alr2), (3.3)

where D(7,¢) = diag(di(7,€),...,dn(7,€)), dj(1,6) € S (j =1,...,n), A(r,¢) € 5.
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4 Auxiliary results
Lemma 4.1. Let the functions p(7;¢€), q(7,€) belong to the class S, ¢ = const. Then the functions
ep(t,e), p(rye) £ q(r,¢), p(r,e)q(r, €) belong to the class S, as well.

Lemma 4.2. Let 0 < My < Ms, 0 < oy < aa < 1. Then F(My;;0) C F(Ms;050), F(M;a,6) D
F(M;az;0).

Lemma 4.3. Let fj(1,e;0) € F(Mj;;0) (j=1,...,p), ¢1,...,¢p be the constants. Then
p
chfjreﬂ (Z\cj\Mj;a;O).
Jj=1

Lemma 4.4. Let p(r,e) € S, f(1,¢,0) € F(M;«;0), and sup |p(1,¢)| < P. Then
G

p(r,e)f(1.¢e,0) € F(PM;c;0).
The validity of Lemmas 4.1-4.4 is obvious.
Lemma 4.5. Let f(1,e,0) € F(My;050), g(7,,0) € F(Ma;a;0). Then

f(1,6,0)g9(1,¢,0) € F (% — 5 9)

(Sm
where § € (0,a).
Proof. We have

(re,0) = Y fulr,0)e' ™D, g(re,0) = gi(r,e)e'™?,

k€ Zom kE€Zp,
and
sup |fr(1,e)] < Myiem s I sup |gy(r, )| < Mye™ = IFIL,
T€[0,1] T€[0,L]
Hence |
f(r,e,0)g(r,€,0) Z(kangngg))ez(kﬂ)’
k€Zm 1EZm
where [ = colon(ly,...,ly,), k—1=colon(ky —l1,..., km — ln).
We have
«
> sup Ifialne)l sup filr o)l < Midda 3 exp (= 2 (k= + )
16z, T€l.L] rel0,L] 5 e
o0 o0 a
= M, M, (—— ey — L]+ ]+t R — L zm)
! zlz ZZ exp (= 2 (ky =l 4 fla] + -+ [+ It
1=—00 m==—00
=M 30 e (=S 0k b)) (30 e (= Z Gkl £ 10D))
1==° m=—00
We denote .
«
Alkg) = Y7 exp (== (k= sl + |s]))-
1. Let k; = 0. We have
A(0) = i ex (*2£|5|)*1+2iex (—2—a5)
78:700 p € a s=1 p €
27 1 1 12 2
=1+ € — =1+ — <1+E:1+E<1+—:a+ c2.2
1—e % e —1 = o o ! a 6
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2. Let k; > 0. Then

—1 kj
Alk) = D7 exp (= S (k= sl +1sD) + D exp (= S (1k; — 5| +1s)

s§=—00 s=0

00 -1
+ Y e (=Sl sl sh) = X exp (= Sk —s—s)
s=k;j+1 s=—00
kj o0
+S_Oexp(—j(kj —5+5)) +S_§+lexp(—j(s—kj +5))

[e’e} 00 —%k,- N
:e—%njze—%&s“kﬁl)e—%ki+e%kj 3 plms _ 2e7 T (k4 De2h,
s=1 s=k;+1 e= —1

3. Let k; < 0. Similarly to the previous arguments, we show that

<k N
Alky) = 5 + (1 —kj)es b,
e’e 1
Thus, in case k; # 0,
26_%‘kj‘ a g,
A(kj) = m o T (1+ [ky|)e = IRl

Hence .
—2 |kl

A(k‘]) < =

€

We choose a constant M, from the condition

a 1 a
(L ke 200 = (G 4+ 1+ [yl JemE .
g
(E 14 ‘k”)e_%w < Mye 5" Ikil,
!
where § € (0, ). We estimate

max (E +1+ |kj\)e*g lksl,
Ik 1>1 \av

For the case x > 1, let us investigate the function

u(z) = (2 +1 +x)e_g‘"’3.

We have 5 5 s
u(l) = (E + 2)672, u' () (1 777777 x) —ew
@ a € €
The critical point is g = —1 4 ¢/0 — ¢/a. It is easy to establish that this is the maximum point of

the function u(z). In case zg < 1, i.e., ea/(2a +¢) < § < a, we get

€ 3
= 1 = — 2 T,
[lrgraoi)u(x) u(1) (a + ) e

In case g > 1, i.e., 0 < 0 < e/ (20 + €), we obtain

- _Ce-E-Y
max u(\r) = ul\rog) = <€ o el
max u(r) = ulzwo) = 3

Anyway,

max u(xr) <
e, wle)

b

| W

therefore we can state that My = 3/0.
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Thus, if k; # 0, then

3 _a-
Aky) < 5o = Ihsl, (4.1)
By virtue of the estimation for A(0), we find that estimation (4.1) is true for all k; € Z.
We now obtain
37 etk
sup |fe—i(m,e)| sup |gi(7,e)| < My My S ,
162, TEM0.L] T€[0,L]

and thus Lemma 4.5 is proved. O

Lemma 4.6. Let f(1,¢,0) € F(My;050), g(7,¢,0) € F(Ma; e — 650), 6 € (0,). Then
41’7’L
f(r,e,0)g(r,c,0) € F(a—m M Mysa = 6:6).
The proof is analogous to that of Lemma 4.5.
Corollary of Lemmas 4.5 and 4.6. Let f;(1,e,0) € F(Mj;a;0) (j = 1,...,p, p > 2). Then
fi(r,e,0)--- fp(1,€,0) € F(Vp; a0 — 6;0), where
4m(p—1)
b= oD M, - M,

Lemma 4.7. Let '
f(re,0)= > fulr,e)e’™? € F(M;a;0).
kEZm
Then

063 007" - - - 005
where s =81+ -+ 8, > 1,0 € (0,q).
Proof. We have

0% f(1,¢e,0) 0°f(r,e,0) GF( 58

= 6S€SM;oz—5;9),

Ofre) | "
s ags — (Zkl)Sl '.'(ka)smfk‘(T,a)el( , ),
007" - - - 003 ot

(Ikl1=1)
S kT k] sup (fi(re) <MD |[E[|Fem 2 1M
kEZpm T€[0,L] KeZo
(IIxl1>1) Ikl >1)

It is easy to show that if x > 1, s > 1, then

S S S
e <7 < 555
Hence
e SS a—96
M|klle= Ikl « 2 ppe—"= lIFIl
dses ’
and Lemma 4.7 is proved. O

Lemma 4.8. Let the vector-function w(r,e,0) = colon(wi(7,¢,0),...,wn(7,e,0)) € Fi(Mi;«;6),
and the vector-function v(t,e,0) = colon(vy(7,€,0),...,0m(7,8,0)) € F1(Ma; e — §;0), where 0 < 6 <
a. If § € (0,/2) and
m - 4™ 1
H=smst M, < 50
then the vector-function w(t, e, + v(1,e,¢9)) — w(r, &, ), where ¢ = colon(py,...,pm), belongs to
the class

(4.2)

2 m

m* -4
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Proof. We expand the scalar functions

wj(T7€,¢+v(7_35790))
:wj(’ngv(pl+v1(7-3€7<)013"'7<)0m)""7§0m+Um(7—a57§017"'1§0m)) (.7: 1)7N)

with respect to v1,...,v,, in the Taylor series
1
w;i (6,0 +v(1,8,0)) —w;(1,6,0) = dw;(7,6,0) + > g Cwilre9), (4.3)
s=2 "
where
" Qw; (T, €,
dwj(T7 g, QD) = Z M UI(T7 g, (P>7
= 9w
s 8Sw'(7-7€730 s
d W (Ta & 90) = Z ](975) (U(Tv g, (,0)) ’
_ 4
SitFsm=s
(0<s,<s)
and
8Swj(7_357 90) o aswj(T,sa SD)
dp* Pyt - O’
(U(T,{;‘, QD))S = (’01(7’78, 50))81 e (’Um(’/",{-:, @))Sma s = 23 37 sy ] = 13 ceey M

By virtue of Lemma 4.7,

Ow; (T, €, ¢) M,
2002 8) ¢ p(M o). v=1.om.
&p,, S 5o o © v m

Due to Lemma 4.5,

3VM M,

ow;(T,e,p
MUV(T,E,QD) GF(W,af%;cp), v=1,...,m,

Oy

if 6 € (0,v/2). Therefore
m3™ My M.
dw;(t,e,¢) € F(igmﬂle 2o — 26; ga).

By virtue of Lemma 4.7,

Fw;i(T, e, ) s5 M,
F AP
0y’ < ( goes 6’@)’

if s>2,6¢€(0,a).
By virtue of Corollary of Lemmas 4.5 and 4.6, if s > 2, § € (0,«/2), we have

s 4m(s—1) s
(v(r,e,9))" € F(mMzﬂl - 25;@)-

Then by Lemma 4.6,

ms oS

8811)3‘(7'75’('0) s S 5. .
T (’U(T,<€7 QO)) € F(W M1M2,O[ - 26, SD)
Hence
d*w;(7,e,¢) € F(Ws;a — 205¢),
where o g go
W, = 2 % M3
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We consider the expression

0o W, 0o [15s°
Z S :Mlz sles
s=2 s=2

where p is defined by formula (4.2). By virtue of the Stirling’s formula [2, p. 371], we have
s° 1

Tes S e
sles 21s

hence
<M 8
Y < e
Due to inequality (4.2), this series is convergent, and we obtain
e Ws ]\41 /”'2 m242m )
Y =< < My M2,
| _ 2m+2 2
—st 2yml-p 0
Hence
m242m
Z .dwj(Te:c,o)EF((;2 - My MZ; 26;90).

s=2

Now, by virtue of (4.3), we obtain

m m242m

m3
wi(T, 6,0 +v(T,€,9)) —w;(7,€,¢) €F<Ml(5m+1€M + = otz Mz) —26;4,0)7

and Lemma 4.8 is proved. O
Corollary. If, in addition to the conditions of Lemma 4.8, the condition My < 1 is satisfied, then

2m242m
w;(7, 8,0 + (7,6, 0)) —w;(T,€, ) € F(w M,y My; o — 25;%)-

Lemma 4.9. Let the matriz-function A(1,e,0) = (ajr(7,€,0))jk=1,..m € Fo(M;;8). Suppose that
the conditions

-4m 1
0<6<a, M= M<z (4.4)
om 2
hold. Then
(Em + A(1,¢,0))7! € F2(2; — 6;60).
Proof. Let AP = (a(’,?)j k=1,. =2,3,.... Then

m

Jk - Za]saska jak - 1
By virtue of Lemmas 4.3 and 4.5,

o2 e p( 64m M%a-50), 0<d<a.

Further,
m
2 .
= Zag's)aslm Jk=1...,m
s=1

By virtue of Lemmas 4.3 and 4.6,

242m

a(fr,? S F(m

3. .
§ S MYa—86), 0<d<a.
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By the method of mathematical induction, we obtain

mp—14m(p-1)

(p) meeaT s )

@je EF( Sm—1) MP;a—6;6), 0<6<a,
hence

» mp—1qm(p—1) .

A EF2(WM ,a—5,9>, 0<d<a.

Consider the numerical series
mp—14m(P—1)

1+Z sy MP—1+MZ(m 4mM)p_1.

By virtue of (4.4), this series is convergent, and its sum is less than 14 2M. Since 2M < 1 (this also
follows from (4.4)), thus we obtain what was required. O

5 The basic result

Theorem. Let system (3.1) satisfy the following conditions:

1)

N(Te) = M(re) 2 T >0, js=1...on, j#s
2)

H{M
r= 12 <1,
q
where Smts
H :35’m+52 2 444m+1 L2 L 1 :< « )
! nwm (L*+L+1), o+ 2

Then there exists the transformation of kind (3.2) in which

W(Tsap)éFg(MQ,—,go) (ngp)eFl(Ml,—,cp>

where

M= Qe (22 Q). M5 =@(n 7).

Q(r,q) is the sum of the numerical series
'] 2J
r

= ¢

)

convergent if r,q € (0,1), which leads system (3.1) to kind (3.3), in which

sup |d;(7,e)| < Q(r,1),  sup [[A(7,¢e)llo < Q(r,1).
G €€(0,1]

Proof. We denote

Obviously,

1 > o
5m+5 _ k _
o = s 4 E ﬁk—§7

k=1

and

«
Sca-pB——B<a

VseN: 0<51+---+55<%, .
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Following the method described in [1], we represent the process of reducing system (3.1) to form
(3.3) as a sequence of steps. At the first step we make in system (3.1) the following substitution:

T = (E'n, + U(l)(T,E, (‘0(1)>)y(1)7 0 = np(l) + U(l)(T, e, (p(l)), (5.1)

where y() € R”, o) € R™, vector U(l)(T,E,(p(l)) is defined from the vector partial differential

equation
811(1) —

v
b(r,e, ), (5.2)

a(p(l)

(w(r,e) + AW (1,8)) + ¢
where
AW (7,e) = b(r,e,pM).

It is obvious that AM(7,&) € R™ and belongs to the class S;.
The matrix UM (1, ¢, (1)) is defined from the matrix partial differential equation

ou™ UM
v 1) v
(&p(l) yw(T,e) + AV (7, 5)) +e€ o
= (A(r,e) + DY (1, e))UD — UD (A(r, ) + DY (r,¢)) + CO(r,e,0M), (5.3)
where

DW(r,¢) = diag (an(r,s, oW, apn (T, €, cp(l))),
CO(r,e,0W) = A(r,¢,0M) — DD (7,¢).

As a result of substitution (5.1), system (3.1) is reduced to the form

dy™
= (M) + DY (1) + AV (e, 00) )y, o
5.4
do™
o =w(ne) + A0 (1 o) + 0 (1 e, V),
where the vector b (7, e, 0(1)) is defined from the equation
vV
(Em + 8:;(1) )b(l) = b(T,E, 30(1) + U(l)(T,E, go(l))) —b(r, e, gp(l))7 (5.5)

and the matrix AM (7, e, ™M) is defined from the equation

oUu M
(En+UD(r,8,0M))AD = — (W’ b (7, e, wu))) 4+ CO(r, e, oMNUTD (1, ¢, o)

+[A(rzo® 400 (1,2, 60) — Alre. o) (Ba + U (7,2,6M)). (5.6)
Taking into account (5.2), we set

v (o) = 3 ol (7,6) expli(k, 1)), (5.7)
kE€EZ
(II&]I>0)

where

RS

11,(61)(7'7 €)= éexp ( — / (k,w(f,s) + A(l)(f,s)) d§>
0

T z

x / RS / (ko(€se) + AV 2)) de ) di i) = Tublae oL (58)
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Thus v,gl)(T,e) € S1, and

1 LM a
o ()l < === exp (= Z1kI), 1%l > 0.

We define the constant My by the condition

Lm0l < e 1M1 ) > 0
e

Ve € (0,1], where 61 € (0, ) and does not depend on . Obviously, if x > 1, then

le_a?lx < 16_671
€ €
Since
91
lim —e” = =0,
e—+0 €
and Ve € (0,1]
1 & < 1 < 1
et <« =
€ ~ e 01
is valid, we can state that My = 1/61. Thus, if € € (0,1] and ||k|| > 1, we obtain

LM o
o (r, )0 < = == A,

1

It follows that .
v(l)(T,&goO)) c FI(EM;O[ _ 51;%7(1)).

By virtue of Lemma 4.7,

HvM)
FEQl

if 01 € (0,¢/2). In view of Lemma 4.9, we can conclude that if § € (0,/3) and

L
€ Fg((s—2 M;oa — 251;<p(1)),
1

md™L 1
then the matrix (FE,, + dv(") /dp())~1 exists and belongs to the class Fy(2; — 381; (1),

From inequality (5.9), it follows that Lm/d; < 1, therefore, by virtue of Corollary from Lemma 4.8,
we can conclude that

2m?242m [,

1 1 1
b(T,E,QO( )+U( )(T7€a<p( ))) € Fl( 6%m+3

M?: o — 251;<p(1)).

Now, by virtue of Lemma 4.6 and equation (5.5),
m343m+1L
bi(r,e, ‘P(l)) € (W M? o — fi; 90(1)>-

We now construct the matrix UM (7, e, (1)) = (uﬁ) (1,¢, 80(1)))3',5:1,--.,11. We write equation (5.3)
componentwise,

" duj,) M Ouj)
> iy w(re) + A (7,0)) +e 52
1= 09 T

= (Aj(7,8) = As(mye) +d (7,6) = dD(r,2))ull) + D (r,e,0D), jis=1,...,n. (5.10)
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Consider first the case j = s. We set

u (reeW) = 3 ui(re) explitk, o)), (5.11)
k€EZ
(I1Kl1>0)

where

u§;?k(7-, 6) = éexp < — é/ (k:,w(ﬁ,s) + A(l)(&c‘:)) dg)
0

T z

)
X /cgg?k(z,s) exp (6 / (k,w(&e)+ A(l)(g,s)) d£) dz, (5.12)
0 0
2 2m
(0) __1 © ) -
k(28 = gy |7 | i (220 dipy - +dipm, j=1,...,m, k€ Zm.
) T m

0 0
Hence

L
i) € B(E A ase), S= 1
1

where 47 € (0, «) and does not depend on e.
Let now j # s. We choose M insomuch small that

-0
Y — (5.13)
Then, by virtue of condition 1) of the theorem, we have
M(r8) = () + dr,e) —aD (o) 2 2 - EU g (5.14)
J\T € s\T, € 5 (7,¢ s (T,€ = T T . ]

Here in turn, we consider two cases.

Case 1. Let /\j('ra €) — As(1,e) < —a/L < 0. Then
5
X (78) = A(re) + diV (r.6) = d{ (r,e) < =2 <.

We define the elements uﬁ,) of matrix UM by the formulas

ul) (e, o) = 37wl () explilh, o)),
keZ,

where

Whtre) = Lexp (2 [O6.0) = Al + aP(€.9) — a6, ) — il w(e.e) + AV(E ) e
0

T 1 Z
X/Cﬁik(z,a)exp(‘5/(%(@5)‘**5”’
0 0

+d§1)<§,s>dFﬁ(&s)i(k,w(s,s)+A<1><§,s>))df) dz, jys=1,...,n, k€ Zp. (515)
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We estimate

uetral < 2 [l (2 [06e) - a6 +ae) - a2 e )
0 z
f 5
< éMexp(—§||k||)/exp(—L—1€(T—z))dz
0

L (1o~ ) < B e (0 ),

€

e (— L)

h

Hence LM
uly (re,0M) € F(T Ja— 51;90(1))-
1

Case 2. Let \j(1,6) —As(T,€) > a/L > 0. Then \;(7,€) — As (T,E)+d§1)(7,s)—dgl)(T,a)251/L>0.

(1)

We define the elements u; /" of matrix UM by the formulas

( ) (1,¢, go(l) Z u]9 L(T,€) exp(i (l@cp(l))),
kE€EZy,

where

1
u;s),k <T7 5)

oo
= ——exp
€

M | =

[ (6.9 = ne.2) 4 6.2 — e 2) — ifhwe.2) + AV (6 ) e
0

z

L
< [daen (-1 [ (vea-aiee)
. 0

+dV(€,e) — dV (€ e) —i(k,w(E, ) + A“)(g,s))) d§) dz, j,s=1,....,n, k€ Z,. (5.16)
As in the first case, we show that
LM
“ﬁ)(ﬂ& e e F<T o — 013 80(1))-

Thus M
UD(r,¢,oM) € Fg(d— ja— 03 go(l)).
1

By virtue of Corollary from Lemma 4.8, we can conclude that under condition (5.9),

2m242™m [,
A(T, g, So(l) + U(l) (T7 g, @(1))) - A<T7 g, 90(1)> € F2 (W Mz, o — 2(51, @(1)) .
From (5.9) we have LM /é; < 1, hence
En+ UM (r,6,06M) € (250 — 61;0M),

and, by virtue of Lemma 4.6,

(A e, + 00 (7,2,01)) = A, 6, W) (B + U (1,2, 1))

243m+1
€ }72(77;))7717_~_3 M?‘;oz—Z(Sl;ap(l)>7 (5.17)
1
nd™L
C(re, 90(1)>U(1)(7'757 %0(1)) € F2<W M?: o — 6y gp(l)). (5.18)
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Due to Lemma 4.7,

oum L
W S FQ(E M;O[— 251,@(1)),

4p4m+172
k=1 ‘99% 0y

By virtue of Lemma 4.9 and condition (5.9), we can conclude that
(B, + U (e, cp(l)))_l € Fy(2; 0 — 2615 M),

Hence, (5.6), (5.17) and (5.18) yield

2n2m445m+1

AW(r.e,0M) € Fz(w
1

(L* + L+1)M*a —fisp )
Thus, under conditions (5.9) and (5.13), we have

U(l)(T7€7@(1)) EFl(sL 517@ )

U (r,e,0W) € F2(6£ jo— 51;@(1)>,
1

2n2m445m+1

bV (1, e, D) € Fl(w (L2+ L+ 1)M%:a—Bisp )
1
2 2 445m+1
AW (7., 00 FQ(n;;T (L2 + L+ )M 0 fi; oW
1

This completes the first step of the process.
At the step with number [ — 1 of the process, we obtain the system

(-1
W —— = (A(r, ) + DD (re) + -+ DIV (1) + AT (2, 007) )y,
; (lt_l) (5.19)
(pdt =w(t,e) + AW (r,e) 4+ - + ALV (7, 6) + bV (7, ¢, D),
where DM ..., DU=1 are the diagonal (n x mn)-matrices with elements from the class S, the vec-
tors AW ...  AU=1D belong to the class Sy, b~V ¢ (K150 — 01—+ — ,Bl_l;go(l_l)), A= ¢
Fy(Ki—psa— B — -+ = B 97D),
K = 21 M2 - m2mA 4P (L2 + L+ 1).
TG G
At the step with number [, we make in system (5.19) the following substitution:
Y = (Bn + UV (r,6,01))y®, oD =00 400(7,6,60), (5.20)

where y@ € R, o € R™. The vector U(l)(T, £, <p(1)) is defined from the vector partial differential
equation
av(l) —

M)
o (w(T,s)+A(1)(T,€)+~~~+A(l)(7',s))+6 5 = b0 (re, ), (5.21)

9,0

where
A (r,e) = b0-D(r,e,00).

Obviously, A()(7,¢) € R™ and belongs to the class S;.
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The matrix U® (7, ¢, 01) is defined from the matrix partial differential equation

oUW oUW
(a¢<z> w(re) o

= (A(T,E) +DW (1) +--- + DO, 5))U(l)

+AD () -+ AD(r,e)) +

—Um@@@+Dm@a+m+pw@aymﬂﬂw@¢%,wﬂ)

where

CUY(r,e,0M) = ALY (7 ¢, M) — DO(1,¢).

Taking into account (5.21), we set

vO(re,0W) = 37 o (7,2) explilh, o)), (5.23)
keZ,,
([E]I>0)
where
1 7
ire) = Lo (- 1 / bwle.9) + AV(E ) 4+ Ve, ) de
0

o (5.24)
/b (z,€) exp (s 0/ (k w(&e) + A(l)(f,g) W +A(l)(§’€)) df) dz

bV (z,e) = rk[b“*U(z, & o).
Taking into account (5.22), we set

UO(r,e,0W) = (Wl (1,€,0D))j5=1,...m,

uld(re, o0y = 37wl (r,e) exp(i(h, 1)),

k€EZm
(Ilx11>0)

where

uu(re) = T o (‘ L[ (R e) + a0+ + AV <) d5>
0

T z

<[ 5>exp<a [ (b0 + A0 E ) 4+ AV ) dé) 4,
0 0

27 27
- 1 _ )
c;ljvkl) (Z7E> - (27‘[‘)m / . /C§3 1)(2757 @)6_1(k790)d301 T dsoma .7 = 1u sy Ty ke Zm
0 0

If j # s, then we set

(l) (1,¢, go(l Z ujé o (T,€) exp(i (k,cp(l))),
kEZm
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where in case \;(7,e) — A\s(7,¢) < —a/L <0,

ufl(r,) = L exp (1 / (M(60) = A&, 0) + V(g ) = dD(E,0) + -+ dP(€,0) — dP (€, )
0

—i(kw(&e) + AN (E )+ + AU)(g,g))) dg)

x / o) (z.2) exp ( - % / (M(&2) = Aslge) + AV (g ) = d(g ) + o+ d (6 2) — a6, )
0

0

- i(k,w(f,e) + A(l)(f’e’;‘) +ee A(l)(§7€))) df) dZ, j7 s=1,...,n, ke Zma
and in case \j(7,e) — As(7,€) > a/L >0,

1 T
ugl y(re) = = exp (1 / (M2 =260 +dV(E0) = dD(E ) + -+ d () — V(&)
0

il ) + AV (EE) 4+ AV 2)) )

L
< [ e ( 2 [ (e - Mg + a0 - dDg) + o+ a0 - o)

0

—ﬂhM@d+Am@¢%P~+Am@dDdod%jﬁzlwum,keZm

Here we suppose M insomuch small that

61— 9
2KF1<J—%—l, (5.25)
nd™ L 1
757”_'_2 K1 < 5 (526)
l
Then
1)
IAj(re) = Aslr,e) +dP(r,e) —dV(rye) + -+ dP(r,e) — dD(r,e)| 2 Zl .
We have
55m+5(65m+5)2”.(65m+5)2l71 _ 1 l 1 ( 171)2.” 1 ( 2)21—2
l -1 1 = Zmts 4 (35m+5)2 q (35m+5)21—2 q
_ 1 I4+2(1—1)4---42.21 7242171 1 2+l _j—2
o (35m+5)1+2+~--+2l*1 B (35m+5)2171 q )

where ¢ is defined in the statement of the theorem. Therefore

2t—1
Hy MQZ
q21+1—l—2 ’

K =

where Hy = 2n2m*35m+545m+1([2 4 [, 4+ 1). Hence K; < 2, where r = % M.

o0
The condition r < 1 guarantees the convergence of the series > K. It is easy to verify that this
=1
condition ensures that inequalities (5.25), (5.26) hold.
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As a result of substitution (5.20), system (5.19) is reduced to the form

d%) = (A(T, e)+ DU (r &)+ -+ DU (r,e) + A(l)(T’g’w(l—l)»y(l)’ o)
dzil) =w(r,e) + AV (1) + -+ AD(1,6) + 8O (7, ¢, o). |
Carrying out the arguments analogous to those of the first step, we show that
vO(re,00) € F1(Kél L= == B — 51;90([))’
U0 (2 00) € (St ia = B == i — di ),
b (r, ¢, o 6F1(K a—p1— —ﬂz;w(l)>,
AO (7 6,00y € Fy(Kyja— By — - —ﬁmp(”).
Hence, the iterative process
x=(E,+ UM (7, (p(l)))y(l)’ 0 =M oW (r e M), (5.28)

y(lil) = (En + U(l)(T,S, Sﬁ(l)))y(l)» Qo(lil) - So(l) + U(l)(Tagv So(l))a l= 27 37 SR

in case it is convergent, leads system (3.1) to kind (3.3) in which

e)=Y DU(re), Are)=) AV(re)
=1 =1

where
AD(re) e 81, [AD(re)llo < Kioa, DU (r,e) = diag () (r,2), ..., dY (7,2)),
dg»l)(T,E) €S, stép |d§l)(7, <Ky (j=1,...,n).

We prove the convergence of process (5.28). Towards this end, we represent process (5.28) in the
form

= (B, + WO(r,6,6M))yV, 0 =00+ w0 (re,00), 1=1,2,..., (5.29)
where
W(l)(T,s,go(l)) - U(l)(ﬂ&(p(l)), w(l)(7,57¢(1)) - v(l)(T,s,ga(l)),
W(l)(T, e, (p(l)) — (En + W(l—l)(ﬂ& go(l) + U(l)(ﬂg,gp(l))))(](l)(ﬂ5’ (p(l))
+ W(lfl)(T’ g, o1 + U(l)(ﬂ €, (p(l)))’ (5.30)
wW(r,e,00) = v (1,e,0W) + WD (7,e,00 + 0O (7,6,0D)), 1=2,3,.... (5.31)
Then

w(l)(Ta €, gp(l)) € Fl(r; o — ﬁlv 90(1)% W(l)(Ta g, 410(1)) S FQ(T; o — Bla Sp(l))
By virtue of Corollary from Lemma 4.8, we successively obtain
H
w®(r,e,0”) € Fy (7“2 + 7“(1 + 7217“2);@ — B — Ba; so@)),
w(l)(T7E7@l)) € Fl(w77 « _Bl - _Bh@(l))a l= 3745"' ;

where

w?=r2l71+r2l72<1+%r2“1)+r2173<1+i,1 2 )(14—% 2 1)—1—---

H H Hy 5
+r(1+—21r2>(1+—31r4>~-~<1+—1r2l 1).
q q q'
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Consider
w T (1,e,0) —w(r,e,0) = v (1,6, 0) + W (16,0 + vV (7,2,0)) —wV(1,e, ).

By virtue of Corollary from Lemma 4.8, we have

H 5
wh(r,e,0+ 0t (r,6,0)) —wW(r,e,9) € Fy (qlTll P wiia = B = B = 2014159).
Hence,
! H N
w(l“)(ﬂa, ) — w(l)(T,a, p) € Fy (7"2 (1 + ql—_:l wl>;a —B1— = B <p). (5.32)

We estimate

w] < ( TQJ) (1 + +11 7‘2])
7=0 Jj=1 !
-1 y - H -1 » -1 L
—(jzor )exp [ln]:[<1+q]+1r )]—(jzor )exp [leln(1+ ~ )}
-1 =1 ; -1 o, =L
<(Zr2)exp(z ] 2)<(Z7“2)exp(—zq—]) (5.33)
7=0 Jj=1 =0 7=0

The numerical series

under the condition r, ¢ € (0,1) is convergent, we denote its sum by Q(r,q). Then, by virtue of (5.33),
we obtain

w] < Q(r,1)exp (% Q(r, q)) (5.34)
Hence,
r? (1 + qlqull wl*) <r? (1 + q[l{T11 Q(r,1) exp (% Q(r, q))),
from the latter inequality and (5.32) it follows that

w ) (1,6,0) —w(r,e,0) € Fl(cz(l)mé =B == Br19), (5.35)

where cl(l) is the element of a convergent positive sign numerical series.
Next, we consider the process defined by (5.30). Suppose that

WO(r,e,00) € B(Wia—p1— - — B o).
Then
(Bn + WD (16,00 + 0O (1,6, 0N UD (7, £, 1)
e B(r® L+ Wi (1412 ia— By = = B ).
Hence,

W (r,e,0)
e B A+ W (T ) W (L4 = A== B, 1=2,3,. . (5.36)
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This implies
Wi <o LWL (L)) W (47
2l—1 * 2l—t * * 2l—1 * *
<r (1+2Wl_1)+7' VVl—l+Wl—1 =T (1+3Wl—1)+Wl—l7

whence, taking into account that r < 1, we succesively obtain

Wi =r,
Wy <r?*(1+3r)+r<r+r2+3r <r+4r2
Wi <t (1+3(r +4r%) + 7 + 472 <r 4 4r% 4 160%.

Further, by the method of mathematical induction, we obtain
Wi <r+4r?+-- 4+ 41_17“2171,
from which we get

Wy < Q(r, i) (5.37)

Consider

WD (1,e,0) =W (r,e,0) = (B + WO (7,6, + v (7,6,0)) U (1,e, )
+ W(l)(T, g, o+ v(H'l)(T, g,0)) — W(l)(T, g, ). (5.38)

By virtue of Corollary from Lemma 4.8, we have

WO (r,e,0 + v (1,6,0)) = W (1,¢, p)

2m242m N K
¢ i Zamer Q) g = B = = i),
st 4/ 6141 *
hence,
1
W(l)(T1€7 2 + v(l+1)(7—787 90)) - W(l)(7-7€7 90) S F2 (Q(’I’, Z)le;a - Bl - = Bl - 26l+1; 90) .
Next, taking into account (5.37),
(Bn+ WO(r,e,0 + 0D (1,6, 0))) U (1,2, )
I 1
€ F2<7“2 <1+2Q(7“7 Z))§OZ—B1 - "'—Bl+1;@>~
Hence, by virtue of (5.38),
WD (re,0) = W(r,e.0) € Paes0 = fi = - = Brias o), (5.39)

where 01(2) = rzl(l +3Q(r,1/4)) is the element of the convergent positive sign numerical series.

From formulas (5.35), (5.39) follows the convergence of process (5.29). From formulas (5.34) and
(5.37) it follows that w(r, e, ) € Fi(M{;a/2; ), W(T,e,0) € Fo(M5;a/2;¢), where

M = Qe exp (FQna). M5 =@(rg): 0
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THE BOUNDARY VALUE PROBLEMS
FOR THE BI-LAPLACE-BELTRAMI EQUATION



Abstract. The purpose of the present paper is to investigate the boundary value problems for the
bi-Laplace-Beltrami equation AZ ¢ = f on a smooth hypersurface ¢ with the boundary I' = 9¢". The
unique solvability of the BVP is proved on the basis of Green’s formula and Lax—Milgram Lemma.

We also prove the invertibility of the perturbed operator in the Bessel potential spaces A?g + 1 :
H;” (&) — H;_2(5’ ) for a smooth closed hypersurface . without boundary for arbitrary 1 < p < oo
and —oo < s < 00, provided J# is a smooth function, has non-negative real part Re .2 (t) > 0 for all
t € . and non-trivial support messupp Re 77 # 0.
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Key words and phrases. Bi-Laplace-Beltrami equation, Giinter’s tangential derivatives, boundary
value problems, mixed boundary condition, Bessel potential spaces.

gbogdg.  LEsGoob dobobos godmgoggmomm Lalbobegdm sdmEsbs do—msimsli—dgmE®msdol
AZ o = [ 3obdmmgdologol, GmameG hgggmad®ogo, sbggg gdgamo LobsbEg®m Jommdgdon
293 E 303g0bgps300vg, Omdols Lodbwgs®os I' = 0F. dmgdygmo sdmEsbols sdmblibopmds ©s
5dmbsblibols gPmsEgMmmds ©s3E303gdgmos 3Mobol gm@dgmols s @ol—doma®sdols @gdols
Lodygomgdoo.

5309mgg ©5330Gdgmos AZ + AT H;+2(<7) — H;fz(y) Vg BRmngdgmo m3g@sGmaols
Ygodgbgdopmds dgligemols 3m@gbiosmms Log®3ggddo Bogg@omo aemyggo dodg®mbgpsdo@olmgols
S bobpgdols aoM9Tg, 1 <p < oo o —00 < 8 < 00 30M53gBMgd0bmgol. sliggg 3@ 303907000,
O3 A ool amaz0 g16d30s, oJal s@egsdmymgomo Re H(t) > 0 bsdwgogmo bofogmo yggems
t € S-bogol s messupp Re s # 0.
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1 Introduction
Let € C . be a smooth subsurface of a closed hypersurface . in the Euclidean space R" (see
Section 2 for details) and I' = 0% # @ be its smooth boundary. Let &, := 0; —v;0,, j =1,...,n, be
Giinter’s tangential derivatives, and A? := > @f 27 be the bi-Laplace-Beltrami operator restricted
J,k=1
to the surface %.
The purpose of the present paper is to investigate the boundary value problems (BVPs) for the

bi-Laplace—Beltrami equation
AZu(t) = f(t),  te,

(Bou)*(s) = g(s), onT, (L.1)
(Biu)*(s) = h(s), onT,

where the boundary operators can be chosen as follows:

By=1 and By =0,., or By = A,

(1.2)
B() = 8VF and B1 = A<g, or B1 = 8,,FA<5.
The BVP
AZu(t) = f(t), tev,
ut (1) =0, (Byru)t(r)=0, 7T€T,
is called a clamped surface equation and is considered in the weak classical setting
ueHX(%), feH%(%).
The BVP
AZu(t) = £(1), e,
ut(r) =g(1), (Agu)t +ad,.u)™(7)=h(r), 7e€Tl,
with Steklov Boundary Conditions is considered in the weak classical setting
ue (%), feHr3(%), geHY*), heH?I).
Here a is a real-valued constant.
The BVP
AZu(t) = f(1), tev,
ut(r) =g(1), (Agu)t =h(r), 7€l
with Navier Boundary Conditions is considered in the weak classical setting
uwe (%), feHp2(¢), geHY*(), heH Y2(D).
First we consider in detail the case
A?u(t) = f(1), te?,
(Ouru)(s) = g(s), onT, (1.3)
(OurAgu)t(s) =h(s), onT,
in the weak classical setting
uweHX(%), feHp?¢), ge HYXI), heH ¥2(I), (1.4)

where

Hr2(@) = {f e B2Q)| (f,9)a@ =0, 9 CR@)}. (15)
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Remark 1.1. Let us comment on the condition f € HqIEQ(‘K) in (1.4).

As is shown in [13, p. 196], the condition f € ﬁ_g(‘ﬁ) does not ensure the uniqueness of a solution
to the BVP (1.3). The right-hand side f needs additional constraint that it belongs to the subspace
]HI (Q) C H~2(2) which is the orthogonal complement to the subspace ]ﬁl{ 2(Q2) of those distributions
from H~2(Q) which are supported only on the boundary I' = 9 of the domain (see (1.5)).

Another cases in (1.2) are considered analogously.

We will prove the unique solvability of the BVP (1.3) in the classical setting (1.4) by applying the
Lax—Milgram Lemma.

We also consider the following BVP with the mixed boundary conditions: Let ¥ C . be a smooth
subsurface of a closed hypersurface . in the Euclidean space R™ (see Section 2 for details) and its
smooth boundary 04 =T =T1'; UTl's # @ be decomposed into two non-intersecting connected parts.
Consider the mixed BVP for the bi-Laplase-Beltrami equation

Au(t) = f(t), ted,
(W) (s) = g1(s), on I'y,
(Ouru)*(s) = g2(s), on Iy, (1.6)
(Agu)*(s) = hi(s), on I'y,
(OurAgu)t(s) = ha(s), on Ty,

in the weak classical setting
ueHX(%), feHr%(%), g1 € HY?(I1), go € HY2(Ty), hy e H-Y2(Iy), hy € H32(Iy). (1.7)

The following are the main theorems of the present paper. The proofs are exposed in Sections 3
and 4, below.

Prior formulating the theorems let us introduce the Hilbert spaces with detached constants
HZ () = H*() \ {const}. Another description of the space HZ () is that it consists of all

functions ¢ € H?(”), which have the zero mean value, (¢,1).» = 0.

Theorem 1.1. The boundary value problem (1.3) in the weak classical setting (1.4) has a unique
solution in the space H(%).

Theorem 1.2. The mized type boundary value problem (1.6) in the weak classical setting (1.7) has a
unique solution in the space H2 2(6).

The Bi-Laplace-Beltrami operator A2 = A x A is a model of a fourth-order operator. The BVPs
on hypersurfaces arise in a variety of situations and have many practical applications. They appear
in various problems of linear elasticity, for example, when looking for small displacements of a plate,
whereas the Laplacian describes the behavior of a membrane.

A hypersurface . in R™ has the natural structure of an (n — 1)-dimensional Riemannian mani-
fold and the aforementioned partial differential equations (PDEs) are not the immediate analogues
of the ones corresponding to the flat, Euclidean case, since they have to take into consideration geo-
metric characteristics of . such as curvature. Inherently, these PDEs are originally written in local
coordinates, intrinsic to the manifold structure of .%.

Another problem we encounter in considering BVPs (1.1) is the existence of a fundamental solution
for the bi-Laplace-Beltrami operator. An essential difference between the differential operators on
hypersurfaces and the Euclidean space R™ lies in the existence of the fundamental solution: In R™,
a fundamental solution exists for all partial differential operators with constant coefficients if it is
not trivially zero. On a hypersurface, the bi-Laplace-Beltrami operator has no fundamental solution
because it has a non-trivial kernel, constants, in all Bessel potential spaces. Therefore we consider the
bi-Laplace-Beltrami operator in the Hilbert spaces with detached constants A% : HZ, (-7) — H™?(%)
and prove that it is an invertible operator. The established invertibility implies the existence of a
certain fundamental solution, which can be used to define the volume (Newtonian), single layer and
double layer potentials.
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2 Auxiliary material

We commence with the definition of a hypersurface. There exist other equivalent definitions, but they

are most convenient for us. Equivalence of these definitions and some other properties of hypersurfaces

are discussed, e.g., in [7,8].

Definition 2.1. A subset . C R" of the Euclidean space is said to be a hypersurface if it has a
M

covering . = ; and coordinate mappings
Jj=1

0, w; — L =0;(wj) CR", w; CR"™ j=1,..., M, (2.1)
such that the corresponding differentials
DOj(p) := matr [81@j ()., 0n-16; (p)]
have the full rank
rank DO;(p) =n—1, VpeY;, k=1,...,n, j=1,..., M,

i.e., all points of w; are regular for ©; for all j =1,..., M.
Such a mapping is called an immersion as well.

Here and in what follows, matr[zy,..., x| refers to the matrix with the listed vectors x1, ...,z
as columns.

A hypersurface is called smooth if the corresponding coordinate diffeomorphisms ©; in (2.1) are
smooth (C°°-smooth). Similarly is defined a p-smooth hypersurface.

The next definition of a hypersurface is called implicit.

Definition 2.2. Let & > 1 and w C R™ be a compact domain. An implicit C*-smooth hypersurface
in R™ is defined as the set
S ={2cw: Vy(z)=0},

where ¥ o : w — R is a C*-mapping, which has the non-vanishing gradient ¥V ¥(2') # 0.

The most important role in the calculus of tangential differential operators that we are going to
apply belongs to the unit normal vector field v(y), ¢ € €. The unit normal vector field to the
surface €, known also as the Gaufl mapping, is defined by the vector product of the covariant basis

LGN Ag, (X))
V(J_‘f) .—i|gl(%)A...Agn_1(%)‘ ’

VA S

The system of tangential vectors {g,}}_] to € is, by the definition, linearly independent and is
known as the covariant basis. There exists the unique system {gk}Z;ll biorthogonal to it, i.e., the
contravariant basis

<gj7gk> = Ojk, j?k = 1a"'7n_ 1.
The contravariant basis is defined by the formula

k

g N NGe a ANVAGa Ao NGy, B=1,...,n—1,

T detG, N
where
Go(2)=[(9s(2),9(2))], _1un_1» PES,

is the Gram matrix.
Giinter’s derivatives are the simplest examples of tangential differential operators

.@j = 6]' - I/jay = 8]‘ —Vj Zukék.

k=1
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The surface divergence div &~ and the surface gradient V & are defined as follows:

divyU=> 0k, Vop:=(Z1¢,....%¢n)", U:=(U,....Up)",
k=1

and the surface Laplace-Beltrami operator A & is their superposition

Agt=dive V=Y 7. (2.2)

Jj=1

In contrast to the classical differential geometry, the surface gradient, the surface divergence
and the surface Laplace—Beltrami operator A are defined by Giinter’s derivatives much simpler,
with the help of only normal vector field v, while definitions in the classical differential geometry are

based on the Christoffel symbols I'} . the covariant and the contravariant G~1 := [¢/*] Riemann

metric tensors and are rather complicated.
It is well known that div  is the negative dual to the surface gradient

(dive V., f) == —(V,Vaf), YV e ¥ (), VfeC ().

Let .# be a non-trivial, mes .# # @, smooth closed hypersurface, s € R and 1 < p < oo. For the
definitions of Bessel’s potential H(.#) and Sobolev-Slobodeckii W3 (.#) spaces for a closed smooth
manifold .# we refer to [22] (see also [6,12,13]). For p = 2, the Sobolev—Slobodetski W*(.#) :=
W5 () and the Bessel potential H*(.#) := H$(.#) spaces coincide (i.e., the norms are equivalent).

Let ¢ be a subsurface of a smooth closed surface .#, ¢ C .#, with the smooth boundary
[' := 0¢. The space H} (%) is defined as the subspace of those functions ¢ € H(.#), which are
supported in the closure of the subsurface, supp ¢ C &, whereas H;,(%) denotes the quotient space
H (%) = HZ(//)/@; (€°) and €° := .4 \ € is the complementary subsurface to 4. The space H (%)
can be identified with the space of distributions ¢ on 4 which have an extension to a distribution
b € H (). Therefore roHS (#) = H; (%), where r4 denotes the restriction operator of functions
(distributions) from the surface .# to the subsurface €.

The spaces Wz(%) and W5 (%) are defined similarly (see [22] and also [6,12,13]).

By X5(%’) we denote one of the spaces: H (%) or W5 (%), and by X;(%) one of the spaces: ﬁ;(%)

and W;(‘K) (if € is open).
The bi-Laplace-Beltrami operator has the finite dimensional kernel dim Ker A¢ < oo, and its
kernel consists only of constants. Hence the space X*(%") decomposes into the direct sum

X5 (€) =X}, 4(€) + {const},

where
X5 4(€) = {0 €X5(%) : (p,1) =0} (2.3)

is the space without constants.

Lemma 2.1. The bi-Laplace-Beltrami operator A% = (divyVg)2p : HX() — H () is
elliptic, self-adjoint (A%)* = A2, non-negative

2
(A%, 0) = (Arp, Avp) = |[AzpLa(L)]|” =0, ¢ € H(S)
and the homogenous equation has only a constant solution
(A% p, ) =0, only for ¢ = const. (2.4)

Proof. A%, is elliptic and self-adjoint since A is elliptic and self-adjoint (see [7]).
Due to (2.2) and (2.4), we get

0= (A%, ¢) = (Arp, Arp) = |Azp|La()

which gives A »¢ = 0 and, consequently, ¢ = const (see [7]).

I
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Corollary 2.1. The space X*(€) decomposes into the direct sum
X*(€) = X (€) + {const},

where Xs#(%) is the space with detached constants and the operator AQy is invertible between the spaces
with detached constants (see (2.3))

A% XGP(S) — X2(S). (2.5)

Therefore AQy; has the fundamental solution in the setting (2.5).

Proof. The boundedness in (2.5) follows from that of the operator
Ay : XU — X5 1)

proved in [10].
Since A%, has the trivial kernel in the setting (2.5) and is self-adjoint (see the foregoing Lemma 2.1),
it has the trivial co-kernel as well and is invertible. O

Corollary 2.2. For the bi-Laplace-Beltrami operator AZ, on the open hypersurface € the following
I and IT Green’s formulae are valid:

(Agg<ﬂa¢)<€ - (ACK§07 A%’w)ﬁf = _((8UFA‘€¢)+7w+)F + ((A%”SD)J'_? (al/r¢)+)rv (26)
(A% 0, ) + ((Bur Aw )T, 91 )0 = (Awp) ™, (Bur®) )r
= (907 Az‘(a”w)% + (<P+’ (aVFA%w)Jr)F - ((6VF<)0)+’ (A%w)Jr)F

for arbitrary ¢, € X2(%) (see [4]).

Lemma 2.2 (see [14] (Lax—Milgram)). Let B be a Banach space, A(p, ) be a continuous, bilinear
form

A(-,): B xB —R
and positive definite
Ap,¢) > Cle|B|*, Yo eB, C>0.

Let L(-) : B — R be a continuous linear functional.
A linear equation

Alp, ) = L(¢)

has a unique solution ¢ € B for an arbitrary b € B.

3 The solvability of BVPs for the bi-Laplace—Beltrami
equation

Let again ¥ C .’ be a smooth subsurface of a closed hypersurface . and I' = 0% # @ be its smooth
boundary.

To prove the forthcoming theorem about the unique solvability we will need more properties of
the trace operators (called retractions) and their inverses, called co-retractions (see [22, § 2.7]).

To keep the exposition simpler we recall a very particular case of Lemma 4.8 from [6], which we
apply to the present investigation.

Lemma 3.1. Let s > 0, s € N, p = 2, B(D) be a normal differential operator of the third order
defined in the vicinity of the boundary T' = 0% and A(D) be a normal differential operator of the
fourth order defined on the surface €. Then there exists a continuous linear operator

2B o B (1) @ B (D) @ B () — B 3 (%)
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such that
(B®)" =0, (B1(D)BD)t =1, (B2(D)B)" = s,

(Bs(D)#®)t = 3, A(D)B® c H*T3(%)

for an arbitrary quadruple of the functions ® = (o, @1, 02, 03) ", where po € H ('), 1 € H~Y(T),
2 € H*72(T) and o3 € H*73(T).

Corollary 3.1. Let u be a solution of the equation A2u = f. Then it has the traces u* € H%,
(Bypu)T € H2, (Agu)T € H™2, (8, . Agu)t € HS.

Proof. The existence of the traces u™ € H%, (Opru)T € H? is a direct consequence of the general trace
theorem (see [22] for details). Let us prove the existence of the rest traces. Concerning the existence
of the trace (O,.A%p)T in (1.3) for a solution u € H?(%) is not guaranteed by the general trace
theorem, but, according to Lemma 3.1, there exists a function ¢ € H?(%) such that (9,.1)" = 0.
Then the first Green’s formula (2.6) ensures the existence of the trace. Indeed, by setting ¢ = u and
inserting the data AZ¢ = f(¢) into the first Green’s formula (2.6), we get

—((Bur Agu) )0 = (f, )6 — (Agu, Agd)e. (3.1)

The scalar product (Agu, Ag) in the right-hand side of equality (3.1) is correctly defined and defines
correct duality in the left-hand side of the equality. Since ¢+ € H3/?(I") is arbitrary, by the duality
argument this implies that (9,.A«u)t should be in the dual space, i.e., in H—3/2(I).

Let us now prove the existence of the trace (A¢p)*. Taking an arbitrary 1 € H?(%) and rewriting
the first Green’s formula (2.6) in the form

(Agu)™, (Dur ) )0 = (f,¥) e — (Agu, Agh)e + ((Bur Agu)t, ), (3.2)

we note that the right-hand side of equality (3.2) is correctly determined and defines correct duality
in the left-hand side. Since (9,.1)* € HY2(T') is arbitrary, by the duality argument this implies that
(Agu)t should be in the dual space, i.e., in H~/2(T). O

Proof of Theorem 1.1. We commence with the reduction of the BVP (1.3) to an equivalent one with
the homogeneous condition and apply Lemma 3.1: there exists a function ® € H?*(%) such that

(B ®)T(t) = g(t) for t € T and AZ® € Hy%(%).
For a new unknown function v := u— ® we have the following equivalent reformulation of the BVP
(1.3):
AZv(t) = fol(t), te?,
(Opv)T(s) =0, onT, (3.3)
(Oup Agv)t(s)) = ho(s), onT,

where
foi=f+ALD € Hy%(6), ho:=h+ (8, Ae®)t e H32(T), ot e HY?(I).

By inserting the data from the reformulated boundary value problem (3.3) into the first Green’s
identity (2.6), where ¢ = 1 = v, we get

(Agv, Agv)g = (A%, v)¢ + (O Aev) T, v7)r = (Ag) ¥, (Durv) e = (fo,v)% + (ho,vF)r. (3.4)
In the left-hand side of equality (3.4) we have a symmetric bilinear form, which is positive definite:
2
(Arp,Azp) = [|[Azp | Lo(S)|" 20, ¢ € HL(S).

(ho,v")r and (fo,v)« from equality (3.4) are the correctly defined continuous functionals, since hq €
H-3/2(T"), fo € H%(%), while their counterparts in the functional belong to the dual spaces v+ €
H3/2(T) and v € H2(I', %) C H2(%).

The Lax—Milgram Lemma 2.2 accomplishes the proof. O
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4 The solvability of mixed BVPs for the bi-Laplace—Beltrami
equation

Proof of Theorem 1.2. We commence with the reduction of the BVP (1.6) to an equivalent one with
the homogeneous conditions. Towards this end, we extend the boundary data g; € H3/2(I'y), go €

HY/2(Ty) and hy € H-Y/2(';) up to some functions g; € H3/2(T), gz € HY?(T') and hy € H~/2(T") on
the entire boundary I' and apply Lemma 3.1: there exists a function ® € H?(¢) such that

Ot = g1, (0, 0)" =G, (Ag®)" =hy, and AZ® e H;2(7).

For a new unknown function v := u — ® we have the following equivalent reformulation of the
BVP (1.6):
A2%0(t) = fo(t), teéd,
(v)*(s) =0, onI'y,
(aurv)+(8) = Oa on FZ; (41)
(ACKU)JF(S) = 07 on Fla
(Our Agv)*(s) = ho(s), on Ty,

where B
fo:=f+ A28 c Hy%(€), ho:=hy+ (8, Ae®)T € H™3/2(Iy),

. ~ - 4.2
vt e HY2(D,), (9,.0)F e HY2(I), (Agv)T e HV2(Dy) (4.2)

To justify the last inclusion v € H32(T';), (d,,v)" € HY2(Iy) and (Agv)t € HY/2(Ty),
note that, due to our construction, the traces of a solution vanish: v+ |p,= 0, (9p.v)" |r,= 0 and
(Agv)™ |p,= 0. By inserting the data from the reformulated boundary value problem (4.1) into the
first Green’s identity (2.6), where ¢ = ¢ = v, we get

(Agv, Agv)e = (A%, v)¢ + (Our Agv) T, v)r, + (8 Agv) T, v ),
— ((Ag0)™, (Burv) ), = ((Ag0) ™, (Burv))r, = (fo,v)% + (ho, v ),  (4.3)

In the left-hand side of equality (4.3) we have a symmetric bilinear form, which is positive definite:
(Arp. Azg) = [|Azp | Lo(S)|* 20, ¢ € HL(S),

(ho,v")r, and (fo,v)¢ from equality (4.3) are the correctly defined continuous functionals, since
ho € H™3/2(T'y), fo € ﬁ_Q(%), while their counterparts in the functional belong to the dual spaces
vt € H3/2(Iy) and v € HX(T', %) C H2(%).

The Lax—Milgram Lemma 2.2 accomplishes the proof. O
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ON THE WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR SYSTEMS OF
LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

Abstract. The modified criterion of the Opial type condition is given for the well-posedness of
the Cauchy problem for the systems of linear generalized ordinary differential equations. Moreover,
there are established the sufficient conditions guaranteeing the nearness of the left and right limits
of the solutions of the perturbed problems to the left and right limits of the solution of the limit
problem, respectively.
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Let Ag € BVioo(I;R™ ™), fo € BVjoo([;R™) and tg € I, where I C R is an arbitrary interval,
non-degenerated at the point. Consider the system

dr = dAo(t) -« +dfo(t) for tel (1)

under the Cauchy condition
x(to) = Cop, (2)
where ¢p € R™ is an arbitrary constant vector.

Let zo be a unique solution of problem (1), (2).
Along with the Cauchy problem (1), (2), consider the sequence of the Cauchy problems

dx = dAg(t) -« + df(t), (1x)
z(ty) = ck (2)

(k=1,2,...), where Ay € BV oe([; R ™), fr € BVioe(I;R™), t, € I and ¢, € R™ (k=1,2,...).
Without loss of generality, we assume that either (a) tx < to (k = 1,2,...), or (b) tx > to
(k=1,2,...),0r (c) tx, =ty (k=1,2,...).

In the paper we establish:
1. the sufficient conditions for the Cauchy problem (1), (2x) to have a unique solution xj, for any

sufficiently large k and

lim  sup [le(t) — zo(t)] = 0 (3)
k=400 ter, t£ty,
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in the case, where

lim cx; = co; if 7 € {1,2} is such that (—1)7(tp —to) >0 (k=0,1,...), (35)

k—-+o0

where

cpr = ax(te—) = cp — (diAr(ty) - o, + difu(tr)), G=1,2 k=0,1,...); (4)
ke = T(tet) = cx + (doAr(tr) - cr + dafr(tr))

2. the sufficient conditions for the Cauchy problem (1;), (2x) to have a unique solution zj, for any
sufficiently large k and

lim su Tr(t) — xo(t) — 2o (t)|| =0 5
Jim supes(t) —o(t) — a0, 1) (5)

in the case, where

im e =c.; if j € {1,2} is such that (—1)7(ty —to) >0 (k=0,1,...), (55)
— 400

where ¢i; (j =1,2; k =1,2,...) are defined by (4), c.; € R" (j = 1,2) are arbitrary vectors,
differing from ¢y; (j = 1,2), in general; the function x¢; is a solution of the homogeneous system

on the set {t € I : ¢t <t} under the condition
zo1(to—) = cx1 — o (to—),

and the function g2 is a solution of the homogeneous system (1p) on the set {t € I : ¢t > tp}
under the condition
xo2(to+) = cv2 — xo(to+)-

We note that the condition
det (I, + (—1)7djAg(t)) # 0 for t €I, (1) (t—ty) <0 (j=1,2)

guarantees the unique solvability of the Cauchy problem (1),(2) for every fo € BVi,.(I;R™) and
co € R™. Therefore, the vector functions xg; and zgy defined above exist and are uniquely defined.

In earlier works (see [3-5]) there are investigated the analogous question for the convergence in a
general case, i.e., without any restrictions on the sequence t; (k=1,2,...), when

lim z(t) = x0(t) uniformly on I, (6)
k— 400
under the condition
lim ¢, = co, (7)
k—+oco

and some condition guaranteeing the equalities

S diA(te) = djAo(to),  Mm d;fi(te) = djfo(to) (G =1,2). (75)

Note that if j € {1,2} is such that (7;) holds, then condition (3;) follows from (4) and (7)

In the present paper we assume that (7) holds, but the fulfilment of conditions (7;) (j = 1,2) is
not required.

Analogous and some related questions for the initial and general linear boundary value problems
are investigated e.g. in [1,2,9,10,12,14] (see also the references therein) for systems of ordinary
differential equations, in [3,4,8,11,13] for systems of generalized ordinary differential equations, and
in [6] for systems of linear impulsive differential equations.
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To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate linear ordinary differen-
tial, impulsive and difference equations from a unified point of view; in particular, these different type
equations (linear) can be rewritten in form (1). Moreover, the convergence conditions for difference
schemes corresponding to systems of ordinary differential and impulsive equations can be obtained
from the results on the well-posedness of the corresponding problems for systems of generalized ordi-
nary differential equations (see [5,14,15] and the references therein).

In the paper the use will be made of the following notation and definitions.

R =] — o0, +00[, [a,b] and ]a, b[ (a,b € R) are, respectively, closed and open intervals.

I is an arbitrary finite or infinite interval from R. We say that some property is valid in I if it is
valid on every closed interval from I.

R™ ™ is the space of all real n x m matrices X = (z;;)

n,m

i j=1 with the norm

n
IX]| = max > |ayl.
Jj=1,....m*%
i=1

Opnxm (or O) is the zero n x m matrix. We designate the zero n vector by 0, as well.
R"™ = R™*! is the space of all real column n-vectors = = (z;)1;; R? = R7*1.

If X € R™*", then det(X) is the determinant of X.

I,, is the identity n x n-matrix.

b a b
V() is the total variation of the function x : [a,b] — R; \/(z) = — \/(2).
a b a
b
If x : I — R, then \/(z) is the total variation of = on I, i.e. \/(z) = lim V(x), where
T I a—a+,b=p— 4
a=infl and 8 =supI.
b
V/(X) is the sum of the total variations of the components z;; (i =1,...,m; j =1,...,m) of the
matrix-function X : [a,b] — R™>*™.
a b b
VX)=-VX),VX)= lim V(X), where a = infTand 8 =sup I, \/ (X)=- V (X).
b a I a—a+,b=p— 4 (b,a) (b,a)
If X : I — R™™ is a matrix-function, then \/(X) is the sum of total variations on I of its

I
components z;; (1 =1,...,m;j=1,...,m).

X (t—) and X (t+) are, respectively, the left and the right limits of X at the point ¢ (X (a—) = X («)
ifaelTand X(6+) = X(B)if 5 € I;if a or B do not belong to I, then X (¢) is defined by the continuity
outside of I).

i X(t)=X(t) — X(t—), d2 X (t) = X (t+) — X (2).

BV(Z;R™ ™) is the set of all bounded variation matrix-functions X : I — R™*™ (i.e. such that

V(X) < o0).
I

BV(I; D), where D C R™*™_ is the set of all bounded variation matrix-functions X : I — D.

BVioc(I; D) is the set of all X : I — D for which the restriction on [a, b] belong to BV([a, b]; D)
for every closed interval [a, b] from I.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
We introduce the operators. Let a € I be a fixed point, and X € BVj,.(I[,R*") and Y €
BVioe(I; R™™ ™). Then we put

B(X,Y)(t) = X()Y(t) — X(a)Y(a) — / dX(7)-Y(7) for tel,

a
t

I(X,Y)(t) = /d(X(T)—}—B(X,Y)(T)) - X7Hr) for tel,

a
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DB(Yl,Xl;Y27X2)(t) = B(Xl,yl)(t) — B(X27Y2)(t) for t € I,
DI(H,Xl;Y%XQ)(t) = I(Xl,Yl)(t) 7I(X2,}/2)(t) for t e 1.

Definition 1. We say that the sequence (Ag, fr;tx) (K = 1,2,...) belongs to the set S(Ao, fo;t0)
if for every ¢y € R™ and a sequence ¢, € R™ (k = 1,2,...) satisfying condition (7), the problem
(1x), (2) has a unique solution zj, for any sufficiently large k& and condition (6) holds.

In [4,7], the necessary and sufficient (effectively sufficient) conditions are established that guarantee
the inclusion

((Ak, fist)) 5 € S(Ao, foi to). 8)

Analogous results are established for the general linear boundary value problems in [3,4].

Definition 2. We say that the sequence (Ag, fx;tx) (k= 1,2,...) belongs to the set S;oc(Ao, fo;to—)
if tp <to (k=1,2,...) and for every ¢g € R™ and the sequence ¢, € R™ (k = 1,2,...) satisfying
condition (31), the problem (1;), (2x) has a unique solution z, for any sufficiently large & and condition
(3) holds.

Definition 3. We say that the sequence (Ayg, fx;tr) (k= 1,2,...) belongs to the set S;oc(Ao, fo; to+)
if tp >ty (k=1,2,...) and for every ¢y € R™ and the sequence ¢, € R™ (k = 1,2,...) satisfying
condition (3z), the problem (1;), (2) has a unique solution z, for any sufficiently large & and condition
(3) holds.

Definition 4. We say that the sequence (Ag, fx;tx) (k= 1,2,...) belongs to the set S;pc(Ao, fo; tot)
if tp =to (k=1,2,...) and for every ¢y € R", the sequence ¢, € R" (k =1,2,...) and j € {1,2}
satisfying condition (3;), the problem (1), (2x) has a unique solution x; for any sufficiently large k&
and condition (3) holds.

Definition 5. We say that the sequence (Ag, fx;tx) (k =1,2,...) belongs to the set S} (Ao, fo;to—)
if tp <to (k=1,2,...) and for every c,; € R™ and the sequence ¢, € R" (k = 1,2,...) satisfying
condition (51), the problem (1), (2) has a unique solution z, for any sufficiently large & and condition
(31) holds.

Definition 6. We say that the sequence (Ag, fx;tx) (k =1,2,...) belongs to the set S} (Ao, fo;to+)
if tp > to (k=1,2,...) and for every c.o € R™ and the sequence ¢, € R" (k = 1,2,...) satisfying
condition (52), the problem (1), (2x) has a unique solution xy, for any sufficiently large k and condition
(32) holds.

Definition 7. We say that the sequence (Ag, fx;tr) (k =1,2,...) belongs to the set S; (Ao, fo;tot)
ifty, =to (k=1,2,...) and for every c,; € R" (j = 1,2) and the sequences ¢, € R" (k =1,2,...)
satisfying conditions (5;) (j = 1,2), the problem (1), (2x) has a unique solution x, for any sufficiently
large k and conditions (3;) (j = 1,2) hold.

(A) The results concerning the sets S(Ao, fo;t0); Sioc(Ao, fo;to—)y Sioc(Ao, fo;to+) and
Stoc(Ao, fo; tot)

Theorem 1. Let Ay € BV([;R™*™), fo € BV(I;R"™), ty € I, and the sequence of points t, € I
(k=1,2,...) be such that

det (I, + (=1)7d;Ag(t)) # 0 for t €1, (=1)7(t —ty) <0 and for t =t
if 5€{1,2} s such that (—1)7(t) —to) >0 for every k€ {1,2,...} (9)

and
kEIJ,I-loo tk = to. (10)
Then inclusion (8) holds if and only if there exists a sequence of matriz-functions Hy, € BV(I;R™*")
(k=0,1,...) such that
inf {|det(Ho(t))|: t €I} >0, (11)



On Well-Possed of the Cauchy Problem for Systems of Generalized Ordinary Differential Equations 109

and the conditions

lim Hy(t) = Ho(t), (12)

k—+oco

k——+oo

lim {HDI (A, Hy; Ao, Ho) (7 ‘ | (1+‘\/ (D AkaHk;AmHO))D} =0

and

I HD Hy: fo. Ho)(P)|!
k_gr_loo{ B8(fx, Hi; fo, 0)(7')|tk

‘ (1 + ‘ \t/ (DI(AkaHk;AO,HO))D} —0

hold uniformly on I.

The last two conditions are analogy to the Opial conditions concerning to the well-posed question
for the ordinary differential case (see [14]). Note that, the Opial condition has only the sufficient
character for the last case.

We offer another form of criterion for inclusion (8), differing from Theorem 1.

Theorem 1'. Let Ay € BV(I;R™™™), fo € BV([;R"), ty € I, and the sequence of points ty, € I
(k=1,2,...) be such that conditions (9) and (10) hold. Then inclusion (8) holds if and only if there
exists a sequence of matriz-functions Hy € BVioe(I;R™™™) (k = 0,1,...) such that conditions (11)
and

limsup\/(H/z€ + B(Hg, Ag)) < +oo
k——+o0 I

hold, and conditions (12),

lim (B(Hy, A)(t) — B(Hy, A)(tx)) = B(Ho, Ao)(t) — B(Ho, Ao)(to)

k—+o00

and

lim (B(Hy, fix)(t) — B(Hg, fr)(tx)) = B(Ho, fo)(t) — B(Ho, fo)(to)

k——+o00

hold uniformly on I.

Remark 1. Without loss of generality, we can assume that Hy(t) = I, in Theorems 1 and 1. So

B(I,,Y)(t) — B(I,,Y)(s) =Y (t) = Y(s) and
I(L,Y)#) = Z(I,,Y)(s) =Y (t) = Y(s) for Y € BV,.([;R™™™).
Theorem 2. Let Ay € BV(I;R™*"), fo € BV(I;R"™), to € I, and the sequence of points t € T
(k=1,2,...) be such that conditions (9) and (10) hold. Let, moreover, the sequences of matriz— and

vector-functions Ay € BV (I;R™™) (K =1,2,...) and fi, € BVjoo(I;R") (k=1,2,...) be such that
the conditions

i sup {HAM(t) — Ao (0(1+| i/(Ak - A0>D} =0 (13)
and
i sup {ufkj(t) — o ON(1+ |V (ax - A@\)} =0 (14)

hold if j € {1,2} is such that (—1)7(ty, —to) > 0 for every k € {1,2,...}, where

Apj(t)
fk] (t)

(—1)7 (Ar(t) — Ap(tn)) — djAr(tr) (j=1,2; k=0,1,...), (15)
(1) (fe(®) = fulte)) — djfu(te) (Gi=1,2; k=0,1,...). (16)

Then

((Aks fri te)) 125 € Sioe(Ao, foito—) if 7 =1,
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(A, fr; te)) 125 € Sioc(Ao, fosto+) if 7="2
and

((Ag, fi; te))i25 € Stoc(Ao, fostot) if j € {1,2}.

Remark 2. In Theorem 2, the sequence z(t) (k = 1,2,...) converges to zg uniformly on the set
{tel t<tolifty, >ty (k=12,..),and ontheset {t € I, t > to} if t) < to (k =1,2,...); as
for the case, where t;, = to (k=1,2,...), the sequence z(t) (k=1,2,...) converges to xg uniformly
in both intervals {t € I : t < to} and {t € I : ¢t > to}. Moreover, if conditions (13) and (14) hold
uniformly on the set I, then these conditions are equivalent to the conditions

kETEOO{H(Ak(t) — Ap(te)) = (Ao(t) — Ao(to))| (1 + ‘ \t/(Ak - AO)D} =0 (17)
and .
kll)ffoo {H(fk(t) — fi(te)) = (fo(t) — fo(to))]| (1 + ‘ \/(Ak - AO)D} =0 (18)

uniformly on I, respectively, since (17) and (18) imply that

lim dek(t) :deo(t) and kliT djfk(t) :djfo(t)
— 400

k—+o00

uniformly on I for every j € {1,2}. In addition, equalities (7;) (j = 1,2) hold and,therefore, as above,
conditions (3;) (j = 1,2) hold, as well. Thus, in the case under consideration, condition (3) holds
uniformly on I, i.e., condition (6) holds, as well.

Theorem 3. Let A € BV(I;R"*"), f& € BV(I;R"), ¢ € R"™, ¢ty € I, and the sequence of points
tr €I (k=1,2,...) be such that condition (10) holds,

det (I, + (=1)7d; A5(t)) # 0 for t €I, (=1)7(t—to) <0 and for t =t
if j€{1,2} is such that (=1)7(tx —to) >0 for every k€ {1,2,...},
and the Cauchy problem

do = dAL(L) - + dfi (1),

z(to) = 5

has a unique solution xj. Let, moreover, the sequences of matriz— and vector-functions Ay, Hy, €
BVie (R ™) (K = 1,2,...) and fr,hxy € BViee(I;R") (k = 1,2,...) and of constant vectors
c; €R" (k=1,2,...) be such that the conditions

inf {|det(Hy(t)|: t €I, t #tx} >0 for every sufficiently large k,

. * * . * *
lim ¢ =cg, lim ¢ = cp;, (19)

k—+4o00 k— 400
)} =0

lim  sup {||Azj(t) — Ag; @) (1 + ’ V(i - 45)
tr
t
lm  sup {nf,:j(t)—faj|(1+\\/<AZ‘A3)>}:O

k=400 ter, t£ty,
and
k—+4oc0 tel, t#£ty,

hold for some j € {1,2}, where

ki (1) = (1) (AL(1) — AL(t)) — d; AL (L),
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Fis(®) = (SO (Fe () = fi(te)) = di fi(te) for t €1 (j=1,23k=0,1,...);
Aj(t) = T(Hp, Ar) (),

f;(t)zhk(t)—hk(fk)+B(Hk7fk)(t)—B(Hk,fk)(tk)—/dAZ(S)'hk(s) for tel (k=1,2,...);

CZ = Hk(tk)ck + hk(tk) (k =1,2,... ),

oy =i+ (1) (dj Af(tr)cr + difi(ty)) (G=1,2; k=0,1,...).

Then problem (1i), (2) has a unique solution xy, for any sufficiently large k and

khm sup HHk w(t) + hi(t) — xS(t)H =0.
=400 ¢, t£t),

Remark 3. In Theorem 3, the vector-function z(t) = Hy(t) 1 (t) + h(t) is a solution of the problem

do = dAL(t) -« + dfi (1),
2(tk) = ¢

for every sufficiently large k.

Corollary 1. Let Ay € BV(I;R"*"), fo € BV(I ,R”), cog € R™, tg € I, and the sequences Ay €
BV(L;R*™™™) (k = 1,2,...), fr € BV(;R") (k= 1,2,...), ¢ € R*" (k= 1,2,...) and t, € 1
(k=1,2,...) be such that conditions (9), (10), (11),

kggloo(% — ¢k(tk)) = coj,

lim  sup ||Hi(t) — Ho(t)]| =0,
k—+o0 e, t£ty,

t
lim  sup {HDI(Ak,Hk;AoyHO)(T)

k=00 te1 t£t), t

(1 + ’ \t/(DI(Ak7Hk§ Ao, Ho))’)} =0

and

t

m sup {Hpguk—gok,ﬂk;foﬂo)(r)
k=00 ter, t£ty,

tr

+ / AL (Hy, Ay)(7) - oi(7)

tr

(1 + ‘ \/ Dz( Ak;HkaAmHO))D} 0

hold for some j € {1,2}, where Hy, € BV oo([;R™*™) (k=0,1,...), pr € BVio.(I;R") (k=1,2,...)
and cg; (k=0,1,...) are defined by (4). Then problem (1i), (2k) has a unique solution i, for any
sufficiently large k and

lim  sup ||lzx(t) — pr(t) — x0(t)]| = 0.
k=400t t£t),

(B) The results concerning the sets S (Ao, fo;to—), S5 (Ao, fo; to+) and S (Ao, fo;tot)

For the goal, we will use the following easy lemma.

Lemma 1. Let j € {1,2} be such that condition (5;) hold, where c,; € R™, and the vectors c;(k =
1,2,...) are defined by (4). Then the vector-function x.1(t) = xo(t) + xo1(t) will be a solution of
system (1) under the condition x(tg—) = c.«1, and the vector-function x.o(t) = xo(t) + xo2(t) will be a
solution of system (1) under the condition x(tg+) = cyo.
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Theorem 2*. Let Ag € BV(I;R"*™), fy € BV(I;R"), ty € I, and the sequence of points ty, € T
(k=1,2,...) be such that conditions (9) and (10) hold. Let, moreover, the sequences of matriz— and
vector-functions Ax, € BVioo(I;R™ ™) (k=1,2,...) and fr € BVoo(I;R™) (k=1,2,...) be such that
conditions (13) and (14) hold if j € {1,2} is such that (=1)7(tx —to) > 0 for every k € {1,2,...},
where Ap;(t) (j =1,2; k=0,1,...) and fi;(t) (j =1,2; k=0,1,...) are defined by (15) and (16),
respectively. Then

((Akafk;tk))-]:g_ € SZ*OC(A07fO;t0_) Zf .] = 17
((Aks fe; )25 € Spoe(Ao, foitot) if 5 =2

and
(A, fri te)) 25 € Siho(Ao, fostot) if 7€ {1,2}.

Theorem 3*. Let the conditions of Theorem 3 be fulfilled, with the exclusion of (19), instead of which
the condition

k—y-il:loo Chj Cj5 ( 0)

holds, where the vectors CZj eR™ (k=1,2,...) are defined as in Theorem 3, and c; € R™ is a vector
differing from cj;, in general. Then problem (1x), (2x) has a unique solution xy for any sufficiently
large k and
lim  sup |[Hg(t)zk(t) + hi(t) — 25(t) — 25 (t)|| =0,
k=400t t£ty,

where the function x] is a solution of the homogeneous system
dx = dAS(t) - x
on the set {t € I : t < to} under the condition
zy(to—) = ¢ — ag(to—),

and the function x3 is a solution of the homogeneous system on the set {t € I : t > to} under the
condition

x;(to-f—) = C; — xa(to-f—).

Corollary 1*. Let the conditions of Corollary 1 be fulfilled with the exclusion of (20), instead of
which the condition

L (g — on(te)) = ey

holds for some j € {1,2}, where the vectors cr; ER" (k=1,2,...) are defined as in Theorem 3, and

c; € R™ is a vector differing from c;, in general. Then problem (1), (2x) has a unique solution xy

for any sufficiently large k and

kgr}rloote?}ltgétk [[2x(t) = k() — zo(t) — zo;]| =0,

where the vector-function xo; is defined as above.
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