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Abstract. The sufficient conditions are given ensuring the existence and the controllability of mild
solutions for a semi-linear fractional differential equation with state-dependent delay in Fréchet space.
We use in the study a generalization of Darboux’s fixed point theorem combined with measures of
non-compactness.
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ÒÄÆÉÖÌÄ. ÌÏÝÄÌÖËÉÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó ÓÖÓÔÉ ÀÌÏÍÀáÓÍÄÁÉÓ
ÀÒÓÄÁÏÁÀÓ ÃÀ ÌÀÒÈÅÀÓ ×ÒÄÛÄÓ ÓÉÅÒÝÄÛÉ ÍÀáÄÅÒÀÃßÒ×ÉÅÉ ×ÒÀØÝÉÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÛÉÍÀÂÀÍ ÌÃÂÏÌÀÒÄÏÁÀÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ. ÊÅËÄÅÀÛÉ ÂÀÌÏÚÄÍÄ-
ÁÖËÉÀ ÃÀÒÁÖÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÉÓ ÂÀÍÆÏÂÀÃÄÁÉÓ ÊÏÌÁÉÍÀÝÉÀ ÀÒÀÊÏÌÐÀØÔÖÒÏÁÉÓ
ÆÏÌÄÁÈÀÍ.
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1 Introduction

This paper deals with the existence and controllability of mild solutions for a semi-linear fractional
differential equation with state-dependent delay in Fréchet spaces. In Section 3, we examine semilinear
fractional differential equations with state-dependent delay given by

cDαy(t) = Ay(t) + f(t, y(t− ρ(y(t))), a.e. t ∈ J = [0,+∞), 0 < α < 1, (1.1)
y(t) = ϕ(t), t ∈ [−r, 0], (1.2)

and, in Section 4, we investigate the controllability of semi-linear fractional differential equation with
state-dependent delay

cDαy(t) = Ay(t) + f(t, y(t− ρ(y(t))) +Bu(t), a.e. t ∈ J = [0,+∞), 0 < α < 1, (1.3)
y(t) = ϕ(t), t ∈ [−r, 0], (1.4)

where cDα is the standard Caputo fractional derivative, f : J × E → E is a given function, A :
D(A) ⊂ E → E is an almost sectorial operator, that is, A ∈ Θγ

ω(E) (−1 < γ < 0, 0 < ω < Π
2 ),

Θγ
ω(E) is a space of almost sectorial operator to be specified later, the control function u is given in

L2(J, U), a Banach space of admissible control functions, B is a bounded linear operator from U into
E, ϕ : [−r, 0] → E is a given continuous function and (E, ∥ · ∥) is a Banach space, ρ is a positive
bounded continuous function on C([−r, 0], E), r is the maximal delay defined by

r = sup
y∈C

|ρ(y)| <∞.

Recently, fractional calculus takes a great interest, in cause, in part to both the intensive development
of the theory of fractional calculus itself and the applications of such constructions to different sciences
such as physics, mechanics, chemistry, engineering, etc. (for details, see the monographs [17, 21, 23]
and the references therein). Newly, several works have been published on the existence and uniqueness
of mild solutions for various types of fractional differential equations using different approaches and
techniques such as fixed point theorems, probability density functions, lower and upper solutions
method, coincidence degree theory, etc. (see, e.g., [2, 3, 12,15,28]).

Moreover, the existence of solutions on the half-line of the integer order differential equations has
been investigated in [1, 5, 6, 8, 16, 22]. Quite recently, in [25], Su considered the existence of solutions
to the boundary value problems of fractional differential equations on unbounded domains by using
the Darboux fixed point theorem. The attractiveness of fractional evolution equations with almost
sectorial operators has been proved by Zhou [29].

The problem of controllability for linear and nonlinear systems shown by ODEs in a finite-
dimensional space has been extensively examined. Certain authors have enlarged the controllability
concept to the infinite-dimensional systems in Banach space with unbounded operators (for more de-
tails see [11,20]). N. Carmichael and M. D. Quinn [24] proved that the controllability problem can be
translated into a fixed point problem. Interesting controllability results of various classes of fractional
differential equations defined on a bounded and unbounded intervals are given in many papers (see
e.g., [4, 7, 10,19]).

Our investigations are considered in the Fréchet spaces by using a generalization of the classical
Darboux fixed point theorem with the concept of a family of measures of noncompactness.

The paper is organized as follows. In Section 2, we recall briefly some basic definitions and pre-
liminary facts that will be used throughout the paper. In Section 3, we discuss the existence of
mild solutions for problem (1.1), (1.2). In Section 4, we testify the controllability of mild solutions
for problem (1.3), (1.4). The investigation on semilinear fractional differential equations with almost
sectorial operators have not been shown yet in the Fréchet spaces, so the present results make a
valuable contribution to this study.
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2 Preliminaries
Let J = [0, b], b > 0, be a compact interval in R, C(J,E) be the Banach space of all continuous
functions from J to E with the norm

∥y∥∞ = sup
t∈J

∥y(t)∥.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥ is Lebesgue integrable.
Let L1(J,E) denote the Banach space of measurable functions y : J → E which are Bochner

integrable normed by

∥y∥L1 =

b∫
0

∥y(t)∥ dt.

Definition 2.1. A function f : J × E → E is said to be Carathéodory if

(i) for each t ∈ J the function f(t, · ) : E → E is continuous;

(ii) for each y ∈ E the function f( · , y) : J → E is measurable.

Definition 2.2 ([17]). The fractional primitive of order α > 0 of a function f : R+ → E of order
α ∈ R+ is defined by

Iα0 h(t) =

t∫
0

(t− s)α−1

Γ(α)
f(s) ds.

Definition 2.3 ([17]). The Riemann–Liouville derivative of order α > 0 with the lower limit t0 for a
function f : R+ → E is given by

Dα(f)(t) =
1

Γ(n− α)

dn

dtn

t∫
t0

(t− s)n−α−1f(s) ds, t > t0, n− 1 < α < n.

Definition 2.4 ([17]). The Caputo fractional derivative of order α > 0 with the lower limit t0 for a
function f : R+ → E is given by

cDα(f)(t) =
1

Γ(n− α)

t∫
t0

(t− s)n−α−1f (n)(s) ds.

We denote by D(A) the domain of A, by σ(A) its spectrum, while ρ(A) = C\σ(A) is the resolvent
set of A, and denote by R(z,A) = (zI−A)−1, z ∈ ρ(A), the family of bounded linear operators which
are the resolvents of A.

Definition 2.5. Let −1 < γ < 0 and 0 < ω < Π
2 . By Θγ

ω(E) we denote the family of all linear closed
operators A : D(A) ⊂ E → E which satisfy the following conditions:

(a) σ(A) ⊂ Sω = {z ∈ C \ {0}; | arg z| ≤ ω} ∪ {0};

(b) for every ω < µ < Π, there exists a constant Cµ such that

∥R(z;A)∥ ≤ Cµ|z|γ for all z ∈ C \ Sµ.

A linear operator A is said to be an almost sectorial operator on E if A ∈ Θγ
ω(E).
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Let A be an operator in the class Θγ
ω(E) and −1 < γ < 0, 0 < ω < Π

2 . Define the operator families
{Sα(t)}t∈S0

Π
2

−ω

, {Pα(t)}t∈S0
Π
2

−ω

by

Sα(t) = Eα(−ztα)(A) =
1

2Πi

∫
Γθ

Eα(−ztα)R(z,A) dz,

Pα(t) = eα(−ztα)(A) =
1

2Πi

∫
Γθ

eα(−ztα)R(z,A) dz,

where the integral contour Γθ = {R+e
iθ} ∪ {R+e

−iθ} is oriented counter-clockwise and ω < θ < µ <
Π
2 − | arg t|. Now, we present the following important results about the operators Sα and Pα.

Theorem 2.6 ([27]). For each fixed t ∈ S0
Π
2 −ω

, Sα(t) and Pα(t) are the bounded linear operators
on E. Moreover, there exist the constants Cs = C(α, γ) > 0, Cp = C(α, γ) > 0 such that for all t > 0,

∥Sα(t)∥ ≤ Cst
−α(1+γ), ∥Pα(t)∥ ≤ Cpt

−α(1+γ).

Also,

Sα(t)x =

∞∫
0

Ψα(s)T (st
α)x ds, t ∈ S0

Π
2 −ω

, x ∈ E,

and

Pα(t)x =

∞∫
0

αsΨα(s)T (st
α)x ds, t ∈ S0

Π
2 −ω

, x ∈ E,

where T ( · ) is a semigroup associated with A.

Theorem 2.7 ([27]). For t > 0, Sα(t) and Pα(t) are continuous in the uniform operator topology.

Consider the problem
cDαy(t)−Ay(t) = f(t), t ∈ (0, b], (2.1)

y(0) = y0, (2.2)

where cDα, 0 < α < 1, is the Caputo fractional derivative, f ∈ L1(J,E) and y0 ∈ E.

Definition 2.8 ([27]). A function y ∈ C([0, b], E) is called a mild solution of Problem (2.1), (2.2) if

y(t) = Sα(t)y0 +

t∫
0

(t− s)α−1Pα(t− s)f(s) ds, t ∈ [0, b].

Let C(R+) be the Fréchet space of all continuous functions ν from R+ into E, equipped with the
family semi-norms

∥ν∥n = sup
t∈[0,n]

∥ν(t)∥, n ∈ N,

and the distance
d(u, v) =

∞∑
n=1

2−n ∥u− v∥n
1 + ∥u− v∥n

, u, v ∈ C(R+).

(For more details about measures of noncompactness see [13,14].)

Definition 2.9. Let MX be the family of all nonempty and bounded subsets of a Fréchet space X.
A family of functions {µn}n∈N, where µn : MX → [0,∞) is said to be a family of measures of
noncompactness in the real Fréchet space X if for all B,B1, B2 ∈ MX it satisfies the following
conditions:
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(a) {µn}n∈N is full, that is, µn(B) = 0 for n ∈ N if and only if B is precompact;

(b) µn(B1) < µn(B2) for B1 ⊂ B2 and n ∈ N;

(c) µ(ConvB) = µ(B) for n ∈ N;

(d) if {B} is a sequence of closed sets from MX such that Bi+1⊂Bi, i=1, . . . , and if lim
i→∞

µn(Bi)= 0,

for each n ∈ N, then the intersection set B∞ =
∞∩
i=1

Bi is nonempty.

Definition 2.10. A nonempty subset B ⊂ X is said to be bounded if for n ∈ N, there exists Mn > 0
such that

∥y∥n ≤Mn, for each y ∈ B.

Lemma 2.11 ([9]). If Y is a bounded subset of the Banach space X, then for each ε > 0, there is a
sequence {yk}∞k=1 ⊂ Y such that

µ(Y ) ≤ 2µ
(
{yk}∞k=1

)
+ ε.

Lemma 2.12 ([18]). If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then µ({uk}∞k=1) is measurable for
n ∈ N and

µ

({ t∫
0

uk(s) ds

}∞

k=1

)
≤ 2

t∫
0

µ
(
{uk(s)}∞k=1

)
ds

for each t ∈ [0, n].

Definition 2.13. Let Ω be a nonempty subset of a Fréchet spaceX, and letA : Ω → X be a continuous
operator which transforms bounded subsets onto the bounded ones. One says that A satisfies the
Darboux condition with constants (kn)n∈N with respect to a family of measures of noncompactness
(µn)n∈N if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N. If kn < 1, n ∈ N, then A is called a contraction with respect
to {µn}n∈N.

In the sequel, we will make use of the following generalization of the classical Darboux fixed point
theorem for the Fréchet spaces.

Theorem 2.14 ([13,14]). Let Ω be a nonempty, bounded, closed and convex subset of a Fréchet space
F and let V : Ω → Ω be a continuous mapping. Suppose that V is a contraction with respect to a
family of measures of noncompactness {µn}n∈N. Then V has at least one fixed point in the set Ω.

3 The main result
Influenced by [27] with ϕ(0) ∈ D(Aβ), β > 1 + γ, we define a mild solution of problem (1.1), (1.2) by
the following

Definition 3.1. We say that a continuous function y : R → E is a mild solution of problem (1.1), (1.2)
if y(t) = ϕ(t) for all t ∈ [−r, 0] and y satisfies the integral equation

y(t) = Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds for each t ∈ J.

Let us include the hypotheses.

(H1) The function f : J × E → E is Carathéodory.
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(H2) There exist a function p ∈ L1
loc(J,R+) and a continuous nondecreasing function ψ : J → [0,+∞)

such that
∥f(t, u)∥ ≤ p(t)ψ(∥u∥) for a.e. t ∈ J and each u ∈ E.

(H3) There exists a function l ∈ L1
loc(J,R+) such that for any bounded set B ⊂ E, and for each t ∈ J ,

we have
α((f,B)) ≤ l(t)α(B).

(H4) There exists rn > 0 such that

Csn
−α(1+γ)|ϕ(0)|+ Cpψ(rn) sup

t∈[0,n]

{ t∫
0

(t− s)−(1+αγ)p(s) ds

}
≤ rn.

For n ∈ N, we define on C([−r,+∞), E) the family of measures of noncompactness by

µn(V ) = ωn
0 (V ) + sup

t∈[0,n]

e−Ltµ(V (t)),

where V (t) = {v(t) ∈ E : v ∈ V )}, t ∈ [0, n], and L > 0 is a constant chosen so that

ln = 4Cp sup
t∈[0,n]

t∫
0

e−L(t−s)(t− s)−(1+αγ)l(s) ds < 1.

Remark 3.2. Notice that if the set V is equicontinuous, then ωn
0 (V ) = 0.

Theorem 3.3. Assume (H1)–(H4) are satisfied. Then problem (1.1), (1.2) admits at least one mild
solution.

Proof. Consider the operator N : C([−r,+∞), E) → C([−r,+∞), E) given by

(Ny)(t) =


ϕ(t) if t ∈ [−r, 0];

Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds if t ∈ J.

We shall check that the operator N satisfies all conditions of Theorem 2.14. The proof is given in
several steps.

Let
Brn =

{
u ∈ C([−r,+∞), E) : ∥u∥n ≤ rn

}
,

where rn is the constant given by (H4). It is obvious that the subset Brn is closed, bounded and
convex.
Step 1. N(Brn) ⊂ Brn .

For any n ∈ N and for each y ∈ Brn and t ∈ [0, n], we have

∥(Ny)(t)∥ ≤ ∥Sα(t)∥ |ϕ(0)|+
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥f(s, y(s− ρ(y(s)))

)∥∥ ds
≤ Cst

−α(1+γ)|ϕ(0)|+
t∫

0

(t− s)−(1+αγ)Cpp(s)ψ(∥y(s)∥) ds

≤ Csn
−α(1+γ)|ϕ(0)|+ Cpψ(rn) sup

t∈[0,n]

{ t∫
0

(t− s)−(1+αγ)p(s) ds

}
≤ rn.
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Thus
∥N(y)∥n ≤ rn.

Step 2. N is continuous on Brn .
Let yn be a sequence such that yn −→ y in Brn . Then for each t ∈ [0, n], we have∥∥(Nyn)(t)− (Ny)(t)

∥∥
≤

t∫
0

(t− s)α−1∥Pα(t− s)∥
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds
≤ Cp

t∫
0

(t− s)−(1+αγ)
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds.
Since f is a Carathéodory function for t ∈ [0, n], from the continuity of ρ, the Lebesgue dominated
convergence theorem implies that

∥N(yn)−N(y)∥n −→ 0 as n→ ∞.

Step 3. N(Brn) is bounded which is clear.

Step 4. For each bounded equicontinuous subset V of Brn , µn(N(V )) ≤ knµn(V ).

From Lemmas 2.11 and 2.12, for any V ⊂ Brn and any ϵ > 0, there exists a sequence {yk}∞k=0 ⊂ V
such that for all t ∈ [0, n],

µ((NV )(t)) = µ

({
Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds, v ∈ V

})

≤ 2µ

({ t∫
0

(t− s)α−1Pα(t− s)f
(
t, yk(s− ρ(yk(s)))

)
ds

}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)µ
({
f
(
t, yk(s− ρ(yk(s)))

)}∞

k=1

)
ds+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{(yk(s))}∞k=1

)
ds+ ϵ

≤ 4Cp

t∫
0

eLs(t− s)−(1+αγ)e−Lsl(s)µ
(
{(yk(s))}∞k=1

)
ds+ ϵ.

Since ϵ > 0 is arbitrary, we have

µ(N(V )) ≤ 4Cp

t∫
0

e−L(t−s)(t− s)−(1+αγ)l(s)µn(V ) ds.

Thus
µn(N(V )) ≤ lnµn(V ).

As a conclusion, N has at least one fixed point in Brn .
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4 Controllability of semilinear fractional differential equations
with state-dependent delay

In this section, we prove a controllability result for system (1.3), (1.4).

Definition 4.1. System (1.3), (1.4) is said to be controllable if for any continuous function ϕ ∈ [−r, 0],
any y1 ∈ E and for each n ∈ N there exists a control u ∈ L2([0, n], E) such that the mild solution
y( · ) of (1.3), (1.4) satisfies y(n) = y1.

Let us introduce the following hypotheses:

(H4′) There exists r′n > 0 such that

Csn
−α(1+γ)|ϕ(0)|

[
1 +

n−αγ

−αγ

]
+ |y1|CpM1M2

n−αγ

−αγ

+ Cpψ(r
′
n)

n∫
0

(t− s)−(1+αγ)p(s) ds ·
[
1 +

n−αγ

−αγ
CpM1M2

]
≤ r′n.

(H5) For each n > 0, the linear operator W : L2([0, n], U) → E is defined by

Wu =

n∫
0

(t− s)α−1Pα(n− s)(Bu(s)) ds,

and

(i) the operator W has a pseudo-invertible operator W−1 which takes values in L2([0, n], U)/KerW
and there exist positive constants M1, M2 such that

∥B∥ ≤M1 and ∥W−1∥ ≤M2,

(ii) there exist ηW (t) ∈ L∞(J,R+), CB ≥ 0, for any bounded sets V1 ⊂ E, V2 ⊂ U ,

µ((W−1V1)(t)) ≤ ηW (t)µ(V1(t)), µ((BV2)) ≤ CBµU (V2).

Theorem 4.2. Suppose that hypotheses (H1)–(H3) and (H4′)–(H5) hold. Further, assume that the
inequality

ln

(
1 + 2CpCB∥ηW ∥L∞

n−αγ

αγ

)
< 1

holds, then problem (1.3), (1.4) is controllable.

Proof. We define in C((−∞, r], E) the family of measures of noncompactness by

µn(V ) = ωn
0 (V ) + sup

t∈[0,n]

e−Ltµ(V (t)),

where V (t) = {v(t) ∈ E : v ∈ V }.
Consider the operator N1 : C((−∞, r], E) → C((−∞, r], E) defined by

(N1y)(t) =



ϕ(t) if t ∈ [−r, 0];

Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds

+

t∫
0

(t− s)α−1Pα(t− s)Buy(s) ds if t ∈ J.
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Using assumption (H5), for an arbitrary function y( · ), we define the control

uy(t) =W−1

[
y1 − Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)f
(
s, y(s− ρ(y(s)))

)
ds

]
(t).

Noting that

∥uy(t)∥ ≤ ∥W−1∥
[
|y1|+ ∥Sα(t)ϕ(0)∥+

n∫
0

(n− τ)α−1Pα(n− τ)f
(
τ, y(τ − ρ(y(τ)))

)
dτ

]
,

by (H2) we get

∥uy(t)∥ ≤M2

[
|y1|+ Cst

−α(1+γ)|ϕ(0)|+
n∫

0

Cp(n− τ)−(1+αγ)p(τ)∥y(τ)∥ dτ
]
. (4.1)

Next, for any n ∈ N,

Br′n
= B(0, r′n) =

{
w ∈ C([−r,∞), E) : ∥w∥n ≤ r′n

}
,

where r′n > 0 is the constant defined in (H4′). Obviously, the subset Br′n is closed, bounded and
convex.

Step 1. N1(Brn) ⊂ Brn .
For any n ∈ N, and each y ∈ Br′n , by (4.1) we have

∥(N1y)(t)∥ ≤ ∥Sα(t)∥ |ϕ(0)|+
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥f(s, y(s− ρ(y(s)))

)∥∥ ds
+

t∫
0

(t− s)α−1∥Pα(t− s)∥∥Buy(s)∥ ds

≤ Csn
−α(1+γ)|ϕ(0)|+ Cpψ(r

′
n)

t∫
0

(t− s)−(1+αγ)p(s) ds

+ CpM1M2

t∫
0

(t− s)−(1+αγ)

[
|y1|+ Csn

−α(1+γ)|ϕ(0)|

+ Cpψ(r
′
n)

n∫
0

(n− τ)−(1+αγ)p(τ) dτ

]
ds

≤ Csn
−α(1+γ)|ϕ(0)|

[
1 +

n−αγ

−αγ

]
+ |y1|CpM1M2

n−αγ

−αγ

+ Cpψ(r
′
n)

n∫
0

(t− s)−(1+αγ)p(s) ds ·
[
1 +

n−αγ

−αγ
CpM1M2

]
≤ r′n.

Step 2. N1 is continuous on Br′n
.
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Let yn be a sequence such that yn −→ y in Br′n
. Then for each t ∈ [0, n], and by the Lebesgue

dominated convergence theorem, we obtain

∥(N1yn)(t)− (N1y)(t)∥

≤
t∫

0

(t− s)α−1∥Pα(t− s)∥
∥∥∥f(s, yn(s− ρ(yn(s)))

)
− f

(
s, y(s− ρ(y(s)))

)∥∥∥ ds
+

t∫
0

(t− s)α−1∥Pα(t− s)∥
∥∥Buyn

(s)−Buy(s)
∥∥ ds −→ 0 as n→ ∞.

Thus N1 is continuous.
Step 3. Since N1(Brn) ⊂ Br′n

and Br′n
is bounded, we find that N1(Br′n

) is bounded.
Step 4. For each bounded subset V of Br′n

, µn(N1(V )) ≤ knµn(V ).

From Lemmas 2.11 and 2.12, for any V ⊂ Br′n
and any ϵ > 0, there exists a sequence {yk}∞k=0 ⊂ V

such that for all t ∈ [0, n], we have

µ((N1V )(t)) = µ

({
Sα(t)ϕ(0) +

t∫
0

(t− s)α−1Pα(t− s)
[
f(s, y(s− ρ(y(s)))) +Buy(s)

]
ds, v ∈ V

})

≤ 2µ

({ t∫
0

(t− s)α−1Pα(t− s)
[
f
(
s, yk(s− ρ(yk(s)))

)
+Buyk

(s)
]
ds

}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)µ
({
f
(
s, yk(s− ρ(yk(s)))

)
+Buyk

(s)
}∞

k=1

)
+ ϵ

≤ 4Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{yk(s)}∞k=1

)
+ ϵ

+ 4Cp

t∫
0

(t− s)−(1+αγ)CBµ
(
{uyk

(s)}∞k=1

)
ds.

Now, let us calculate µ({uyk
(s))}∞k=1).

By (H5) we have

µ
(
{uyk

(t)}∞k=1

)
≤ 2ηW (t)Cp

t∫
0

(t− s)−(1+αγ)l(s)µ
(
{(yk(s))}∞k=1

)
ds

≤ 1

2
ηW (t)Cp4

t∫
0

(t− s)−(1+αγ)eLse−Lsl(s)µ
(
v{(yk(s))v}∞k=1v) ds.

Then
µn(u(V )) ≤ 1

2
lnηW (t)µn(V ). (4.2)

Since ϵ > 0 is arbitrary, by (4.2) we obtain

µ(N1(V )) ≤ lnµn(V ) + 2lnCpCB
t−αγ

αγ
∥ηW ∥L∞µn(V ).

Thus
µn(N1(V )) ≤ ln

(
1 + 2CpCB∥ηW ∥L∞

n−αγ

αγ

)
µn(V ).

As a conclusion, we have achieved that N1 has at least one fixed point in Br′n
.
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5 An example
We consider the fractional differential equation with state-dependent delay of the form

c
0∂

α
t u(t, x) = ∂2xu(t, x) +Q(t)|u(t− τ(u(t, x)), x)|, x ∈ [0, π], t ∈ [0,∞),

u(t, x) = u0(t, x), x ∈ [0, π], −τmax ≤ t ≤ 0,

u(t, 0) = u(t, π) = 0, t ∈ [0,∞),

(5.1)

where u0 ∈ C2([−τmax, 0]× [0, π],R) Q is a continuous function from [0,+∞) to R, the delay function
τ is the bounded positive continuous function in Rn, and τmax is the maximal delay which is defined by

τmax = sup
x∈R

τ(x).

Consider the space of Hölder continuous functions E = Cl([0, π],R) (0 < l < 1), and let c
0∂

α be the
regularized Caputo fractional partial derivative of order 0 < α < 1 with respect to t defined by

(c0∂
αu)(t, x) =

1

Γ(1− α)

(
∂

∂t

t∫
0

(t− s)−αu(t, x) ds− t−αu(0, x)

)
.

Next, we introduce the operator

A = −∂2x, D(A) =
{
u ∈ C2+l([0, π]) : u(t, 0) = u(t, π) = 0

}
in the space Cl([0, π],R). It follows from [26] that ν exists, ϵ > 0 such that A+ ν ∈ Θ

l
2−1
π
2 −ϵ(X). Set

y(t)(x) = u(t, x), t ∈ (−∞, 0], x ∈ [0, π],

ϕ(t)(x) = u0(t, x), t ∈ [−τmax, 0], x ∈ [0, π],

f(t, φ)(x) = Q(t)
∣∣u(t− τ(u(t, x)), x)

∣∣, φ ∈ E, t ∈ [0,+∞), −∞ < θ ≤ 0, x ∈ [0, π].

Then system (5.1) can be written in the abstract form as (1.1), (1.2). As a consequence of Theo-
rem 2.14, system (5.1) has a mild solution.
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ON SOME FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS
WITH ERDÉLYI–KOBER FRACTIONAL INTEGRAL
BOUNDARY CONDITIONS



Abstract. We study two classes of fractional integro-differential inclusions with Erdélyi–Kober frac-
tional integral boundary conditions and we obtain existence results in the case of the set-valued map
has nonconvex values.
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ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÜÀÒÈÅÄÁÉÓ ÏÒÉ ÊËÀÓÉ ÄÒ-
ÃÄË-ÊÏÁÄÒÉÓ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ ÃÀ ÌÉÙÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓ
ÛÄÃÄÂÄÁÉ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ ÌÒÀÅÀËÌÍÉÛÅÍÄËÏÅÀÍÉ ÀÓÀáÅÀ ÙÄÁÖËÏÁÓ ÀÒÀÀÌÏÆÍÄØÉË
ÌÍÉÛÅÍÄËÏÁÄÁÓ.
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1 Introduction
In recent years, the systems defined by fractional order derivatives have attracted increasing interest
mainly due to their applications in different fields of science and engineering. The main reason
is that a lot of phenomena in nature can be better explained using fractional-order systems (see,
e.g., [5, 10,13,15,16], etc.).

The present paper is concerned with the following boundary value problems. First, we consider a
fractional integro-differential inclusion defined by the Caputo fractional derivative

Dq
cx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]) (1.1)

with the boundary conditions of the form

x(0) = α
1

Γ(p)

ζ∫
0

(ζ − s)p−1x(s) ds = αJpx(ζ),

x(T ) = β
ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
x(s) ds = βIγ,δη x(ξ),

(1.2)

where q ∈ (1, 2], Dq
c is the Caputo fractional derivative of order q, 0 < ζ, ξ < T , α, β, γ ∈ R,

p, δ, η > 0, Jp is the Riemann–Liouville fractional integral of order p, Iγ,δη is the Erdélyi–Kober
fractional integral of order δ > 0 with η > 0 and γ ∈ R, F : [0, T ] × R × R → P(R) is a set-
valued map and V : C([0, T ],R) → C([0, T ],R) is a nonlinear Volterra integral operator defined by

V (x)(t) =
t∫
0

k(t, s, x(s)) ds with k( · , · , · ) : [0, T ] × R × R → R a given function. We note that

the fractional derivative introduced by Caputo in [6] and afterwards adopted in the theory of linear
visco-elasticity allows to use Cauchy conditions with physical meanings.

Next, we consider the problem

Dqx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]) (1.3)

with the boundary conditions of the form

x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi

x(ξi), (1.4)

where Dq is the Riemann–Liouville fractional derivative of order q ∈ (1, 2], 0 < ξi < T , α, βi, γi ∈ R,
δi, ηi > 0, i = 1, 2, . . . ,m, F and V are as above.

Our aim is to obtain the existence of solutions for problems (1.1), (1.2) and (1.3), (1.4) in case
where the set-valued map F has nonconvex values, but is assumed to be Lipschitz in the second and
third variable. Our results use Filippov’s techniques (see [12]); namely, the existence of solutions
is obtained by starting from a given “quasi” solution. In addition, the result provides an estimate
between the “quasi” solution and the solution obtained.

Note that in the case when F does not depend on the last variable and is single-valued, the existence
results for problem (1.1), (1.2) may be found in [2], and in the situation when F does not depend on
the last variable, the existence results for problem (1.3), (1.4) are given in [1]. All the results in [1, 2]
are proved by using several suitable theorems from fixed point theory.

Our results improve some existence theorems in [1] and, respectively, in [2] in the case where
the right-hand side is Lipschitz in the second variable. Moreover, these results may be regarded as
generalizations to the case where the right-hand side contains a nonlinear Volterra integral operator.
It should be also mentioned that the method used in our approach is known in the theory of differential
inclusions; similar results for other classes of fractional differential inclusions have been obtained in
our previous papers (see [7–9], etc.). However, the exposition of this method in the framework of
problems (1.1), (1.2) and (1.3), (1.4) is new.

The paper is organized as follows. In Section 2, we recall some preliminary results that we need
in the sequel and in Section 3, we prove our main results.
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2 Preliminaries
Let (X, d) be a metric space. Recall that the Pompeiu–Hausdorff distance of the closed subsets
A,B ⊂ X is defined by

dH(A,B) = max
{
d∗(A,B), d∗(B,A)

}
, d∗(A,B) = sup

{
d(a,B); a ∈ A

}
,

where d(x,B) = inf
y∈B

d(x, y).
Let I = [0, T ], we denote by C(I,R) the Banach space of all continuous functions from I to R

with the norm ∥x( · )∥C = supt∈I |x(t)|, and L1(I,R) is the Banach space of integrable functions

u( · ) : I → R endowed with the norm ∥u( · )∥1 =
T∫
0

|u(t)| dt.

The fractional integral of order α > 0 of a Lebesgue integrable function f : (0,∞) → R is defined by

Jαf(t) =

t∫
0

(t− s)α−1

Γ(α)
f(s) ds,

provided the right-hand side is defined pointwise on (0,∞), and Γ( · ) is the (Euler’s) Gamma function
defined by Γ(α) =

∞∫
0

tα−1e−t dt.

The Riemann–Liouville fractional derivative of order α > 0 of a Lebesgue integrable function
f : (0,∞) → R is defined by

Dαf(t) =
1

Γ(n− α)

dn

dtn

t∫
0

(t− s)−α+n−1f(s) ds,

where n = [α] + 1, provided the right-hand side is defined pointwise on (0,∞).
The Caputo fractional derivative of order α > 0 of a function f : [0,∞) → R is defined by

Dα
c f(t) =

1

Γ(n− α)

t∫
0

(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable whose n-th derivative is
absolutely continuous.

The Erdélyi–Kober fractional integral of order δ > 0 with η > 0 and γ ∈ R of a continuous function
f : (0,∞) → R is defined by

Iγ,δη f(t) =
ηt−η(δ+γ)

Γ(δ)

t∫
0

sηγ+η−1

(tη − sη)1−δ
f(s) ds,

provided the right-hand side is defined pointwise on (0,∞).
We recall that for η = 1,

Iγ,δ1 f(t) =
t−(δ+γ)

Γ(δ)

t∫
0

sγ

(t− s)1−δ
f(s) ds

is the Kober operator introduced by Kober in [14]. If γ = 0, the Kober operator reduces to the
Riemann–Liouville fractional integral with a power weight

I0,δ1 f(t) =
t−δ

Γ(δ)

t∫
0

f(s)

(t− s)1−δ
ds.
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Lemma 2.1 ([2]). Let δ, η > 0 and γ, q ∈ R. Then

Iγ,δη (tq) =
tqΓ(γ + q

η + 1)

Γ(γ + q
η + δ + 1)

.

By definition, a function x( · ) ∈ C2(I,R) is called a solution of problem (1.1), (1.2) if there exists
f( · ) ∈ L1(I,R) such that f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), Dq

cx(t) = f(t) a.e. (I) and conditions
(1.2) are satisfied.
Lemma 2.2 ([2]). For f( · ) ∈ AC(I,R), x( · ) ∈ C2(I,R) is a solution of the problem

Dq
cx(t) = f(t) a.e. (I),

with the boundary conditions (1.2) if and only if

x(t) = Jqf(t) +
α

Λ
(v4 − tv3)J

p+qf(ζ) +
1

Λ
(v2 + tv1)

(
βIγ,δη Jqf(ξ)− Jqf(T )

)
,

where

Λ = v1v4 + v2v3 ̸= 0, v1 = 1− α
ζp

Γ(p+ 1)
, v2 = α

ζp+1

Γ(p+ 2)
,

v3 = 1− β
Γ(γ + 1)

Γ(γ + δ + 1)
, v4 = T − βζ

Γ(γ + 1
η + 1)

Γ(γ + 1
η + δ + 1)

.

Remark 2.3. The solution x( · ) in Lemma 2.2 can be written as

x(t) =

t∫
0

(t− s)q−1

Γ(q)
f(s) ds+

α

Λ

(v4 − tv3)

Γ(q)

ζ∫
0

(ζ − s)p+q−1f(s) ds

+
β(v2 + tv1)

Λ

ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
(

1

Γ(q)

s∫
0

(s− u)q−1f(u) du) ds

− 1

Λ
(v2 + tv1)

T∫
0

(T − s)q−1

Γ(q)
f(s) ds

=
1

Γ(q)

t∫
0

(t− s)q−1f(s) ds+
α

Λ

(v4 − tv3)

Γ(q)

ζ∫
0

(ζ − s)p+q−1f(s) ds

+
β(v2 + tv1)

ΛΓ(q)

ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

( ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 ds

)
f(u) du

− 1

Λ
(v2 + tv1)

T∫
0

(T − s)q−1

Γ(q)
f(s) ds

=

T∫
0

G1(t, s)f(s) ds,

where

G1(t, u) =
(t− u)q−1

Γ(q)
χ

[0,t]
(u) +

α

Λ

(v4 − tv3)

Γ(q)
(ζ − u)p+q−1χ

[0,ζ]
(u)

+
β(v2 + tv1)

ΛΓ(q)

ηξ−η(δ+γ)

Γ(δ)

ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 dsχ

[0,ξ]
(u)− v2 + tv1

ΛΓ(q)
(T − u)q−1,
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χ
S
( · ) denotes the characteristic function of the set S.
Using the fact that q > 1 and taking into account Lemma 2.1, one has

ηξ−η(δ+γ)

Γ(δ)

ξ∫
u

sηγ+η−1

(ξη − sη)1−δ
(s− u)q−1 ds

≤ ηξ−η(δ+γ)

Γ(δ)

ξ∫
0

sηγ+η−1

(ξη − sη)1−δ
sq−1 ds =

ξq−1Γ(γ + q−1
η + 1)

Γ(γ + q−1
η + δ + 1)

.

Therefore, for any t, u ∈ I,

|G1(t, u)| ≤
T q−1

Γ(q)
+

|α|(|v4|+ T |v3|)ζp+q−1

|Λ|Γ(q)

+
|β|(|v2|+ T |v1|)

|Λ|Γ(q)
ξq−1Γ(γ + q−1

η + 1)

Γ(γ + q−1
η + δ + 1)

+
(|v2|+ T |v1|)T q−1

|Λ|Γ(q)
=: K1.

By definition, a function x( · ) ∈ C2(I,R) is called a solution of problem (1.3), (1.4) if there exists
f( · ) ∈ L1(I,R) such that f(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), Dq

cx(t) = f(t) a.e. (I) and conditions
(1.4) are satisfied.

Lemma 2.4 ([1]). For f( · ) ∈ AC(I,R), x( · ) ∈ C2(I,R) is a solution of the problem

Dcx(t) = f(t) a.e. (I),

with the boundary conditions (1.4) if and only if

x(t) = Jqf(t)− tq−1

Λ

(
αJqf(t)−

m∑
i=1

βiI
γi,δi
ηi

Jqf(ξi)
)
,

where

Λ = αT q−1 −
m∑
i=1

β1ξ
q−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)
̸= 0.

Remark 2.5. The solution x( · ) in Lemma 2.4 can be written as x(t) =
T∫
0

G2(t, s)f(s) ds, where

G2(t, u) =
(t− u)q−1

Γ(q)
χ

[0,t]
(u)− αtq−1

ΛΓ(q)
(t− u)q−1χ

[0,t]
(u)

+

m∑
i=1

βit
q−1

ΛΓ(q)

ηiξ
−ηi(δi+γi)
i

Γ(δi)

ξi∫
u

sηiγi+ηi−1

(ξηi

i − sηi)1−δi
(s− u)q−1 dsχ

[0,ξi]
(u).

As in Remark 2.3, for i = 1, 2, . . . ,m, one has

ηiξ
−ηi(δi+γi)
i

Γ(δi)

ξi∫
u

sηiγi+ηi−1

(ξηi

i − sηi)1−δi
(s− u)q−1 ds ≤

ξq−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)

and thus, for any t, u ∈ I,

|G2(t, u)| ≤
T q−1

Γ(q)
+

T q−1

|Λ|Γ(q)

[
|α|T q−1 +

m∑
i=1

|βi|ξq−1
i Γ(γi +

q−1
ηi

+ 1)

Γ(γi +
q−1
ηi

+ δi + 1)

]
=: K2.
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3 The main results
First, we recall a selection result (see [4]) which is a version of the celebrated Kuratowski and Ryll–
Nardzewski selection theorem.

Lemma 3.1. Suppose X is a separable Banach space, B is the closed unit ball in X, H : I → P(X) is
a set-valued map with nonempty closed values and g : I → X, L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e. (I),

then the set-valued map t → H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In order to prove our results, we need the following hypotheses.

Hypothesis 3.2.

(i) F ( · , · ) : I × R× R → P(R) has nonempty closed values and is L(I)⊗ B(R× R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, · , · ) is L(t)-Lipschitz in
the sense that

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ L(t)

(
|x1 − x2|+ |y1 − y2|

)
∀x1, x2, y1, y2 ∈ R.

(iii) k( · , · , · ) : I × R× R → R is a function such that ∀x ∈ R, (t, s) → k(t, s, x) is measurable.

(iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

Next, we use the notation

M(t) := L(t)(1 +

t∫
0

L(u) du), t ∈ I, K0 =

T∫
0

M(t) dt.

Theorem 3.3. Assume that Hypothesis 3.2 is satisfied and K1K0 < 1. Let y( · ) ∈ C2(I,R) be such
that y(0) = αJpy(ζ), y(T ) = βIγ,δη y(ξ) and there exist p( · ) ∈ L1(I,R+) with

d
(
Dq

cy(t), F (t, y(t), V (y)(t))
)
≤ p(t) a.e. (I).

Then there exists a solution x( · ) : I → R of problem (1.1), (1.2) satisfying for all t ∈ I the inequality

|x(t)− y(t)| ≤ K1

1−K1K0
∥p( · )∥1.

Proof. The set-valued map t → F (t, y(t), V (y)(t)) is measurable with closed values and

F (t, y(t), V (y)(t)) ∩
{
Dq

cy(t) + p(t)[−1, 1]
}
̸= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈ F (t, y(t), V (y)(t)) a.e.
(I) such that

|f1(t)−Dq
cy(t)| ≤ p(t) a.e. (I). (3.1)

Define x1(t) =
T∫
0

G1(t, s)f1(s) ds. One has

|x1(t)− y(t)| ≤ M1

T∫
0

p(t) dt.
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We construct two sequences xn( · ) ∈ C(I,R), fn( · ) ∈ L1(I,R), n ≥ 1, with the following proper-
ties:

xn(t) =

T∫
0

G1(t, s)fn(s) ds, t ∈ I, (3.2)

fn(t) ∈ F
(
t, xn−1(t), V (xn−1)(t)

)
a.e. (I), (3.3)

|fn+1(t)− fn(t)| ≤ L(t)

(
|xn(t)− xn−1(t)|+

t∫
0

L(s)|xn(s)− xn−1(s)| ds
)

a.e. (I). (3.4)

If this is done, then from (3.1)–(3.4) for almost all t ∈ I we have

|xn+1(t)− xn(t)| ≤ K1(K1K0)
n

T∫
0

p(t) dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and we prove it for n. One has

|xn+1(t)− xn(t)| ≤
T∫

0

|G1(t, t1)| |fn+1(t1)− fn(t1)| dt1

≤ K1

T∫
0

L(t1)

[
|xn(t1)− xn−1(t1)|+

t1∫
0

L(s)|xn(s)− xn−1(s)| ds
]
dt1

≤ K1

T∫
0

L(t1)

(
1 +

t1∫
0

L(s) ds

)
dt1 ·Kn

1 K
n−1
0

T∫
0

p(t) dt

= K1(K1K0)
n

T∫
0

p(t) dt.

Therefore, {xn( · )} is a Cauchy sequence in the Banach space C(I,R) converging uniformly to
some x( · ) ∈ C(I,R). Hence, by (3.4), for almost all t ∈ I, the sequence {fn(t)} is Cauchy sequence
in R. Let f( · ) be the pointwise limit of fn( · ).

At the same time, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ M1

T∫
0

p(t) dt+

n−1∑
i=1

(
K1

T∫
0

p(t) dt

)
(K1K0)

i =

K1

T∫
0

p(t) dt

1−K1K0
. (3.5)

On the other hand, from (3.1), (3.4) and (3.5) for almost all t ∈ I we obtain

|fn(t)−Dq
cy(t)| ≤

n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)−Dq
cy(t)| ≤ L(t)

K1

T∫
0

p(t) dt

1−K1K0
+ p(t).

Hence the sequence fn( · ) is integrably bounded and therefore f( · ) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.2), (3.3), we deduce

that x( · ) is a solution of (1.1), (1.2). Finally, passing to the limit in (3.5), we obtain the desired
estimate on x( · ).
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It remains to construct the sequences xn( · ), fn( · ) with the properties in (3.2)–(3.4). The con-
struction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we have already constructed
xn( · ) ∈ C(I,R) and fn( · ) ∈ L1(I,R), n = 1, 2, . . . , N , satisfying (3.2), (3.4) for n = 1, 2, . . . , N and
(3.3) for n = 1, 2, . . . , N − 1. The set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover,
the map

t −→ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)

is measurable. By the lipschitzianity of F (t, · ) for almost all t ∈ I we have

F
(
t, xN (t), V (xN )(t)

)
∩
{
fN (t)+L(t)

(
|xN (t)−xN−1(t)|+

t∫
0

L(s)|xN (s)−xN−1(s)| ds
)
[−1, 1]

}
̸= ∅.

Lemma 3.1 yields that there exists a measurable selection fN+1( · ) of F ( · , xN ( · ), V (xN )( · )) such
that for almost all t ∈ I,

|fN+1(t)− fN (t)| ≤ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)
.

We define xN+1( · ) as in (3.2) with n = N + 1. Thus fN+1( · ) satisfies (3.3) and (3.4) and the proof
is complete.

The assumption in Theorem 3.3 is satisfied, in particular, for y( · ) = 0 and therefore with p( · ) =
L( · ). We obtain the following consequence of Theorem 3.3.

Corollary 3.4. Assume that Hypothesis 3.2 is satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e. (I) and K1K0 < 1.
Then there exists a solution x( · ) of problem (1.1), (1.2) satisfying for all t ∈ I, the inequality

|x(t)| ≤ K1

1−K1K0
∥L( · )∥1.

Example 3.5. Consider

q =
3

2
, T = 1, α =

6

13
, p =

1

2
, ζ =

1

4
,

β =

√
7

9
, γ =

3

4
, δ =

√
7

5
, η =

1

6
, ξ =

3

4
.

Denote by K0
1 the corresponding estimate of G1( · , · ) in Remark 2.3 and take a ∈

(
0,−1+

√
1 + 2

K0
1

)
.

Define F ( · , · ) : I × R× R → P(R) by

F (t, x, y) =
[
− a

|x|
1 + |x|

, 0
]
∪
[
0, a

|y|
1 + |y|

]
and k( · , · , · ) : I × R× R → R by k(t, s, x) = ax.

Since

sup
{
|u| : u ∈ F (t, x, y)

}
≤ a ∀ t ∈ [0, 1], x, y ∈ R,

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ a|x1 − x2|+ a|y1 − y2| ∀x1, x2, y1, y2 ∈ R,

in this case p(t) ≡ L(t) ≡ a, M(t) = a(1 + at) and K0 = a+ a2

2 .
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According to the choice of a, we are able to apply Corollary 3.4 in order to deduce the existence
of a solution of the problem

D
3
2
c x(t) ∈

[
− a

|x(t)|
1 + |x(t)|

, 0
]
∪
[
0, a2

∣∣ ∫ t

0
x(s) ds

∣∣
1 + a

∣∣ ∫ t

0
x(s) ds

∣∣
]
,

x(0) =
6

13
J

1
2x

(1
4

)
, x(1) =

√
7

9
I

3
4 ,

√
7

5
1
6

x
(3
4

)
that satisfies

|x(t)| ≤ K0
1a

1− (a+ a2

2 )K0
1

∀ t ∈ [0, 1].

If F does not depend on the last variable, Hypothesis 3.2 becames

Hypothesis 3.6.

(i) F ( · , · ) : I × R → P(R) has nonempty closed values and is L(I)⊗ B(R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, · ) is L(t)-Lipschitz in the
sense that

dH
(
F (t, x1), F (t, x2)

)
≤ L(t)|x1 − x2| ∀x1, x2 ∈ R.

Denote L0 =
T∫
0

L(t) dt.

Corollary 3.7. Assume that Hypothesis 3.6 is satisfied, d(0, F (t, 0) ≤ L(t) a.e. (I) and K1L0 < 1.
Then there exists a solution x( · ) of the fractional differential inclusion

Dq
cx(t) ∈ F (t, x(t)) a.e. (I),

with the boundary conditions (1.2) satisfying for all t ∈ I

|x(t)| ≤ K1L0

1−K1L0
. (3.6)

Remark 3.8. If F ( · , · ) is a single-valued map, the fractional differential inclusion reduces to the
fractional differential equation

Dq
cx(t) = f(t, x(t)) a.e. (I).

In this case, a similar result to the one in Corollary 3.7 may be found in [2], namely, Theorem 3.1.
It is assumed that the Lipschitz constant of f(t, · ) does not depend on t and its proof is done by
using the Banach fixed point theorem. Therefore, our Corollary 3.7 extends Theorem 3.1 in [2] to
the situation when the Lipschitz constant of f(t, · ) depends on t and to the set-valued framework.
Moreover, Corollary 3.7 provides a priori bounds for the solution, as in (3.6).

The proof of the next theorem is similar to that of Theorem 3.3.

Theorem 3.9. Assume that Hypothesis 3.2 is satisfied and K2K0 < 1. Let y( · ) ∈ C2(I,R) be such
that y(0) = 0, αy(T ) =

m∑
i=1

βiI
γi,δi
ηi

y(ξi) and let there exist p( · ) ∈ L1(I,R) with

d
(
Dqy(t), F (t, y(t, V (y)(t)))

)
≤ p(t) a.e. (I).

Then there exists a solution x( · ) : I → R of problem (1.3), (1.4) satisfying for all t ∈ I

|x(t)− y(t)| ≤ K2

1−K2K0
∥p( · )∥1.
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Example 3.10. Consider

q =
3

2
, T = 5, m = 3, α =

2

3
, β1 =

e

2
, β2 =

π

3
, β3 =

√
π

6
,

η1 =

√
3

5
, η2 =

√
2

5
, η3 =

e

3
, γ1 =

5

3
, γ2 =

2

9
, γ3 =

√
e

2
,

δ1 =
3

7
, δ2 =

√
3

8
, δ3 =

e2

4
, ξ1 =

4

3
, ξ2 =

3

2
, ξ3 =

2

7
.

Denote by K0
2 the corresponding estimate of G2( · , · ) in Remark 2.5 and take a ∈

(
0, 1

5 (−1 +√
1 + 2

K0
2
)
)
.

Define F ( · , · ) : I × R× R → P(R) by

F (t, x, y) =
[
− a

|x|
1 + |x|

, 0
]
∪
[
0, a

|y|
1 + |y|

]
and k( · , · , · ) : I × R× R → R by k(t, s, x) = ax.

As above,

sup
{
|u| : u ∈ F (t, x, y)

}
≤ a ∀ t ∈ [0, 1], x, y ∈ R,

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ a|x1 − x2|+ a|y1 − y2| ∀x1, x2, y1, y2 ∈ R,

and, therefore, p(t) ≡ L(t) ≡ a, M(t) = a(1 + at) and K0 = 5a+ 25a2

2 .
Taking into account the choice of a, we can apply Theorem 3.9 with y( · ) = 0 and deduce the

existence of a solution of the problem

D
3
2x(t) ∈

[
− a

|x(t)|
1 + |x(t)|

, 0
]
∪
[
0, a2

∣∣ ∫ t

0
x(s) ds

∣∣
1 + a

∣∣ ∫ t

0
x(s) ds

∣∣
]
,

x(0) = 0,
2

3
x(5) =

e

2
I

5
3 ,

3
7√

3
5

x
(4
3

)
+

π

3
I

2
9 ,

√
3

8√
2

5

x
(3
2

)
+

√
π

6
I

√
e

2 , e
2

4
e
3

x
(2
7

)
that satisfies

|x(t)| ≤ 5K0
2a

1− (5a+ 25a2

2 )K0
2

∀ t ∈ [0, 5].

Remark 3.11. If F ( · , · , · ) does not depend on the last variable and y( · ) = 0, similar results to
the one in Theorem 3.9 can be found in [1], namely, Theorem 3.1 and Theorem 4.2. Even if our
hypothesis concerning the set-valued map is weaker than in [1] (in Theorem 3.1 of [1] it is assumed
that F has the approximate end point property and in Theorem 4.2 of [1] it is assumed that F is a
generalized contraction), our approach does not require for the values of F to be compact as in [1]
and also provides a priori bounds for solutions.
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Abstract. In the paper, is consider a three-dimensional model of fluid-solid acoustic interaction when
an electro-magneto-elastic body occupying a bounded region Ω+ is embedded in an unbounded fluid
domain Ω− = R3 \ Ω+. In this case in the domain Ω+ is a five-dimensional electro-magneto-elastic
field (the displacement vector with three components, electric potential and magnetic potential), while
in the unbounded domain Ω− is a scalar acoustic pressure field. The physical kinematic and dynamic
relations mathematically are described by appropriate boundary and transmission conditions. In the
paper, less restrictions are considered on matrix differential operator of electro-magneto-elasticity and
asymptotic classes are introduced. In particular, corresponding characteristic polynomial of the matrix
differential operator can have multiple real zeros. With the help of the potential method and theory
of pseudodifferential equations, for above mentioned fluid-solid acoustic interaction mathematical
problems the uniqueness and existence theorems are proved in Sobolev–Slobodetskii spaces.

2010 Mathematics Subject Classification. 35J47, 74F15, 31B10, 34L2540.

Key words and phrases. Boundary-transmission problems, fluid-solid interaction, potential method,
pseudodifferential equations, Helmholtz equation, steady state oscillations, Jones modes, Jones eigen-
frequencies.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÓÉÈáÉÓÀ ÃÀ ÓáÄÖËÉÓ ÀÊÖÓÔÉÊÖÒÉ ÖÒÈÉÄÒÈØÌÄÃÄÁÉÓ ÓÀÌ-
ÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÌÏÃÄËÉ, ÒÏÃÄÓÀÝ ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ-ÃÒÄÊÀÃÉ ÓáÄÖËÓ ÖÊÀÅÉÀ Ω+ ÛÄÌÏÓÀ-
ÆÙÅÒÖËÉ ÀÒÄ, ÒÏÌÄËÉÝ ÜÀÃÂÌÖËÉÀ Ω− = R3 \ Ω+ ÛÄÌÏÖÓÀÆÙÅÒÄË ÀÒÄÛÉ. ÀÌ ÛÄÌÈáÅÄÅÀÛÉ
ÛÄÌÏÓÀÆÙÅÒÖË Ω+ ÀÒÄÛÉ ÀÒÉÓ áÖÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ-ÃÒÄÊÀÃÉ ÅÄËÉ (ÂÀÃÀ-
ÀÃÂÉËÄÁÉÓ ÅÄØÔÏÒÉÓ ÓÀÌÉ ÊÏÌÐÏÍÄÍÔÉ, ÄËÄØÔÒÖËÉ ÐÏÔÄÍÝÉÀËÉ ÃÀ ÌÀÂÍÉÔÖÒÉ ÐÏÔÄÍÝÉÀ-
ËÉ), áÏËÏ Ω− ÛÄÌÏÖÓÀÆÙÅÒÄË ÀÒÄÛÉ - ÀÊÖÓÔÉÊÖÒÉ ßÍÄÅÉÓ ÓÊÀËÀÒÖËÉ ÅÄËÉ. ×ÉÆÉÊÖÒÉ
ÊÉÍÄÌÀÔÉÊÖÒÉ ÃÀ ÃÉÍÀÌÉÊÖÒÉ ÖÒÈÉÄÒÈØÌÄÃÄÁÄÁÉ ÌÀÈÄÌÀÔÉÊÖÒÀÃ ÀÙßÄÒÉËÉÀ ÛÄÓÀÁÀÌÉÓÉ
ÓÀÓÀÆÙÅÒÏ ÃÀ ÔÒÀÍÓÌÉÓÉÉÓ ÐÉÒÏÁÄÁÉÈ. ÍÀÛÒÏÌÛÉ ÌÏÈáÏÅÍÉËÉÀ ÍÀÊËÄÁÉ ÛÄÆÙÖÃÅÄÁÉ
ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ-ÃÒÄÊÀÃÏÁÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÏÐÄÒÀÔÏÒÆÄ ÃÀ ÛÄÌÏÙÄÁÖËÉÀ ÛÄÓÀÁÀÌÉÓÉ
ÀÓÉÌÐÔÏÔÖÒÉ ÊËÀÓÄÁÉ. ÊÄÒÞÏÃ, ÌÀÔÒÉÝÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÏÐÄÒÀÔÏÒÉÓ ÛÄÓÀÁÀÌÉÓ
ÌÀáÀÓÉÀÈÄÁÄË ÐÏËÉÍÏÌÓ ÛÄÉÞËÄÁÀ ÂÀÀÜÍÃÄÓ ãÄÒÀÃÉ ÍÀÌÃÅÉËÉ ÍÖËÄÁÉ. ÐÏÔÄÍÝÉÀËÈÀ
ÌÄÈÏÃÉÓÀ ÃÀ ×ÓÄÅÃÏÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÌÔÊÉÝÄÁÖËÉÀ
ÆÄÌÏÈ ÀÙÍÉÛÍÖËÉ ÓÉÈáÉÓÀ ÃÀ ÓáÄÖËÉÓ ÀÊÖÓÔÉÊÖÒÉ ÖÒÈÉÄÒÈØÌÄÃÄÁÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÀÌÏ-
ÝÀÍÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓÀ ÃÀ ÀÒÓÄÁÏÁÉÓ ÈÄÏÒÄÌÄÁÉ ÓÏÁÏËÄÅ-ÓËÏÁÏÃÄÝÊÉÓ
ÓÉÅÒÝÄÄÁÛÉ.
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1 Formulation of the problems

1.1 Introduction

Interaction problems of different dimensional fields of this type appear in mathematical models of
electro-magneto transducers. Further examples of similar models are related to phased array micro-
phones, ultrasound equipment, inkjet droplet actuators, sonar transducers, bioimaging, immunochem-
istry, and acousto-biotherapeutics (see [38,39]).

Due to the rapidly increasing use of composite materials in modern industrial and technological
processes on the one hand, and in biology and medicine on the other hand, mathematical modeling
related to complex composite structures and their mathematical analysis became very important from
the theoretical and practical points of view in recent years.

The Dirichlet, Neumann and mixed type interaction problems of acoustic waves and piezoelectric
structures are studied in [9, 11,12].

Similar interaction problems for the classical model of elasticity has been investigated by a number
of authors. An exhaustive information concerning theoretical and numerical results, for the case
when the both interacting media are isotropic, can be found in [1–4, 15, 17–19, 26, 27, 31]. The cases
when the elastic body is homogeneous and anisotropic, and the fluid is isotropic, has been considered
in [25,35,36]. In this case, one has a three-dimensional elastic field, the displacement vector with three
components in the bounded domain Ω+, and a scalar pressure field in the unbounded domain Ω−.

In our case, in the domain Ω+ we have an additional electric and magnetic fields which essentially
complicate the investigation of the transmission problems in question. In contrast to the classical
elasticity, the differential operator of electro-magneto-elasticity is not self-adjoint and is not positive-
definite.

We consider less restrictions on the matrix differential operator of electro-magneto-elasticity by in-
troducing asymptotic classes Mm1,m2,m3

(P), where P is determinant of the electro-magneto-elasticity
matrix operator, in particular, we allow for the corresponding characteristic polynomial of the matrix
differential operator to have multiple real zeros. This class is generalization of the Sommerfeld-
Kupradze class.

We investigate the above problems with the use of the boundary integral equations method and the
theory of pseudodifferential equations on manifolds and prove the existence and uniqueness theorems
in Sobolev–Slobodetskii spaces.

1.2 Piezoelectric field

Let Ω+ be a bounded three-dimensional domain in R3 with a compact C∞-smooth boundary S = ∂Ω+

and let Ω− := R3 \ Ω+. Assume that the domain Ω+ is filled with an anisotropic homogeneous
piezoelectro-magnetic material.

The basic equations of steady state oscillations of piezoelectro-magneticity for anisotropic homo-
geneous media are written as follows:

cijkl∂i∂luk + ρ1ω
2δjkuk + elij∂l∂iφ+ qlij∂i∂lψ + Fj = 0, j = 1, 2, 3,

−eikl∂i∂luk + εil∂i∂lφ+ ail∂i∂lψ + F4 = 0,

−qikl∂i∂luk + ail∂i∂lφ+ µil∂i∂lψ + F5 = 0,

or in the matrix form

A(∂, ω)U + F = 0 in Ω+,

where U = (u, φ, ψ)⊤, u = (u1, u2, u3)
⊤ is the displacement vector, φ = u4 is the electric potential,

ψ = u5 is the magnetic potential and F = (F1, F2, F3, F4, F5)
⊤ is a given vector-function. The three-

dimensional vector (F1, F2, F3) is the mass force density, while −F4 is the electric charge density, −F5
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is the electric current density, and A(∂, ω) is the matrix differential operator,

A(∂, ω) = [Ajk(∂, ω)]5×5, (1.1)
Ajk(∂, ω) = cijkl∂i∂l + ρ1ω

2δjk, Aj4(∂, ω) = elij∂l∂i, Aj5(∂, ω) = qlij∂l∂i,

A4k(∂, ω) = −eikl∂i∂l, A44(∂, ω) = εil∂i∂l, A45(∂, ω) = ail∂i∂l,

A5k(∂, ω) = −qikl∂i∂l, A54(∂, ω) = ail∂i∂l, A55(∂, ω) = µil∂i∂l,

j, k = 1, 2, 3, where ω ∈ R is a frequency parameter, ρ1 is the density of the piezoelectro-magnetic
material, cijlk, eikl, qikl, εil, µil, ail are elastic, piezoelectric, piezomagnetic, dielectric, magnetic
permeability and electromagnetic coupling constants, respectively, δjk is the Kronecker symbol and
summation over repeated indices is meant from 1 to 3, if not stated otherwise. These constants satisfy
the standard symmetry conditions

cijkl = cjikl = cklij , eijk = eikj , qijk = qikj , εij = εji, µjk = µkj , ajk = akj , i, j, k, l = 1, 2, 3.

Moreover, from physical considerations related to positiveness of the internal energy, it follows that
the quadratic forms cijklξijξkl and εijηiηj are positive definite:

cijklξijξkl ≥ c0ξijξij ∀ ξij = ξji ∈ R, (1.2)
εijηiηj ≥ c2|η|2, qijηiηj ≥ c3|η|2, µijηiηj ≥ c1|η|2 ∀ η = (η1, η2, η3) ∈ R3, (1.3)

where c0, c1, c2 and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy insures that the

matrix

Λ :=

(
[εkj ]3×3 [akj ]3×3

[akj ]3×3 [µkj ]3×3

)
6×6

is positive definite, i.e.,

εkjζ
′
kζ

′
j + akj

(
ζ ′kζ

′′
j + ζ ′kζ

′′
j

)
+ µkjζ

′′
k ζ

′′
j ≥ c4

(
|ζ ′|2 + |ζ ′′|2

)
∀ ζ ′, ζ ′′ ∈ C3, (1.4)

where c4 some positive constant.
The principal homogeneous symbol matrix of the operator A(∂, ω) has the following form:

A(0)(ξ) =

[−cijlkξiξl]3×3 [−elijξlξi]3×1 [−qlijξlξi]3×1

[eiklξiξl]1×3 −εilξiξl −ailξiξl
[qiklξiξl]1×3 −ailξiξl −µilξiξl


5×5

.

With the help of inequalities (1.2) and (1.3) it can be easily shown that

−ReA(0)(ξ)ζ · ζ ≥ c|ζ|2|ξ|2 ∀ ζ ∈ C4, ∀ ξ ∈ R3, c = const > 0,

implying that A(∂, ω) is a strongly elliptic, formally nonselfadjoint differential operator.

Here and in the sequel, a · b denotes the scalar product of two vectors a, b ∈ CN , a · b :=
N∑

k=1

akbk.

In the theory of electro-magneto-elasticity, the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (n1, n2, n3) have the form

σijni := cijlkni∂luk + elijni∂lφ+ qlijni∂lψ, j = 1, 2, 3,

while the normal component of the electric displacement vector D = (D1, D2, D3)
⊤ and the normal

component of the magnetic induction vector B = (B1, B2, B3)
⊤ read as

−Dini = −eiklni∂luk + εilni∂lφ+ ailni∂lψ,

−Bini = −qiklni∂luk + ailni∂lφ+ µilni∂lψ.
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Let us introduce the boundary matrix differential operator

T (∂, n) = [Tjk(∂, n)]5×5,

Tjk(∂, n) = cijlkni∂l, Tj4(∂, n) = elijni∂l, Tj5(∂, n) = qlijni∂l,

T4k(∂, n) = −eiklni∂l, T44(∂, n) = εilni∂l, T45(∂, n) = ailni∂l,

T5k(∂, n) = −qiklni∂l, T54(∂, n) = ailni∂l, T55(∂, n) = µilni∂l,

j, k = 1, 2, 3. For a vector U = (u, φ, ψ)⊤, we have

T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj ,−Dini, −Bini)
⊤. (1.5)

The components of the vector TU given by (1.5) have the following physical sense: the first three
components correspond to the mechanical stress vector in the theory of electro-magneto-elasticity,
while the fourth one is the normal component of the electric displacement vector and the fifth one is
the normal component of the magnetic induction vector.

In Green’s formulae, one also has the following boundary operator associated with the adjoint
differential operator A∗(∂, ω) = A⊤(−∂, ω) = A⊤(∂, ω),

T̃ (∂, n) = [T̃jk(∂, n)]5×5,

where

T̃jk(∂, n) = Tjk(∂, n), T̃j4(∂, n) = −Tj4(∂, n), T̃j5(∂, n) = −Tj5(∂, n),

T̃4k(∂, n) = −T4k(∂, n), T̃44(∂, n) = T44(∂, n), T̃45(∂, n) = T45(∂, n),

T̃5k(∂, n) = −T5k(∂, n), T̃54(∂, n) = T54(∂, n), T̃55(∂, n) = T55(∂, n),

j, k = 1, 2, 3.

1.3 Green’s formulae for electro-magneto-elastic vector fields
For arbitrary vector-functions U = (u1, u2, u3, u4, u5)

⊤ ∈ [C2(Ω+)]5 and V = (v1, v2, v3, v4, v5)
⊤ ∈

[C2(Ω+)]5, we have the following Green’s formulae (see [6]):∫
Ω+

[
A(∂, ω)U · V + E(U, V )

]
dx =

∫
S

{TU}+ · {V }+ dS,

∫
Ω+

[
A(∂, ω)U · V − U ·A∗(∂, ω)V

]
dx =

∫
S

[
{TU}+ · {V }+ − {U}+ · {T̃ V }+

]
dS,

where

E(U, V ) = cijlk∂iuj∂lvk − ρ1ω
2u · v + elij(∂lu4∂ivj − ∂iuj∂lv4)

+ qlij(∂lu5∂ivj − ∂iuj∂lv5) + εjl∂ju4∂lv4 + ajl(∂lu4∂jv5 − ∂ju5∂lv4) + µjl∂ju5∂lv5

with u = (u1, u2, u3)
⊤ and v = (v1, v2, v3)

⊤. The symbol { · }+ denotes the one-sided limits (the trace
operator) on S from Ω+. Note that by the standard limiting procedure, the above Green’s formulae can
be generalized to the vector-functions U ∈ [H1(Ω+)]5 and V ∈ [H1(Ω+)]5 with A(∂, ω)U ∈ [L2(Ω

+)]5

and A∗(∂, ω)V ∈ [L2(Ω
+)]5.

With the help of these Green’s formulae, we can define a generalized trace vector {T (∂, n)U}+ ∈
[H−1/2(S)]5 for a function U ∈ [H1(Ω+)]5 with A(∂, ω)U ∈ [L2(Ω

+)]5:⟨
{T (∂, n)U}+, {V }+

⟩
S
:=

∫
Ω+

[
A(∂, ω)U · V + E(U, V )

]
dx,

where V ∈ [H1(Ω+)]5 is an arbitrary vector-function.
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Here and in what follows, the symbol ⟨ · , · ⟩S denotes the duality between the mutually adjoint
function spaces [H−1/2(S)]N and [H1/2(S)]N , which extends the usual L2 scalar product

⟨f, g⟩S =

∫
S

N∑
j=1

fjgj dS for f, g ∈ [L2(S)]
N .

1.4 Scalar acoustic pressure field and Green’s formulae
We assume that the exterior domain Ω− is filled with a homogeneous isotropic inviscid fluid medium
with the constant density ρ2. Further, let the propagation of acoustic wave in Ω− be described by
a complex-valued scalar function (scalar field) w, being a solution of the homogeneous Helmholtz
equation

∆w + ρ2ω
2w = 0 in Ω−, (1.6)

where ∆ =
3∑

j=1

∂2

∂x2
j

is the Laplace operator and ω > 0. The function w(x) = P sc(x) is the pressure of

a scattered acoustic wave.
We say that a solution w to the Helmholtz equation (1.6) belongs to the class Somp(Ω

−), p = 1, 2,
if w satisfies the classical Sommerfeld radiation condition

∂w(x)

∂|x|
+ i(−1)p

√
ρ2 ωw(x) = O(|x|−2) as |x| → ∞. (1.7)

Note that if a solution w of the Helmholtz equation (1.6) in Ω− satisfies the Sommerfeld radiation
condition (1.7), then (see [43])

w(x) = O(|x|−1) as |x| → ∞.

Let Ω be a domain in R3 with a compact simply connected boundary ∂Ω ∈ C∞.
We denote by Hs(Ω) (Hs

loc(Ω)) and Hs(∂Ω) s ∈ R, the L2 based Sobolev–Slobodetskii (Bessel
potential) spaces in Ω and on the closed manifold ∂Ω.

Respectively, we denote by Hs
comp(Ω) the subspace of Hs(Ω) (Hs

loc(Ω)) consisting of functions with
compact supports.

If M is a smooth proper submanifold of a manifold ∂Ω, then we denote by H̃s(M) the following
subspace of Hs(∂Ω):

H̃s(M) :=
{
g : g ∈ Hs(∂Ω), supp g ⊂M

}
,

while Hs(M) denotes the space of restrictions to M of functions from Hs(∂Ω),

Hs(M) :=
{
rMf : f ∈ Hs(∂Ω)

}
,

where rM is the restriction operator to M .
Let w1 ∈ H1

loc(Ω
−)∩Somp(Ω

−), p = 1, 2,, ∆w1 ∈ L2,loc(Ω
−), w2 ∈ H1

comp(Ω
−), then the following

Green’s first formula holds:∫
Ω−

(∆ + k2)w1w2 dx+

∫
Ω−

∇w1∇w2 dx− k2
∫
Ω−

w1w2 dx = −
⟨
{∂nw1}−, {w2}−

⟩
S
, (1.8)

where n = (n1, n2, n3) is the exterior unit normal vector to S directed outward with respect to the
domain Ω+, and ∂n = ∂

∂n denotes the normal derivative.

1.5 Formulation of the Dirichlet and Neumann type
interaction problems for steady state oscillation equations

Now we formulate the fluid-solid interaction problems. We assume that S = ∂Ω+ = ∂Ω− ∈ C∞.
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Dirichlet type problem (Dω): Find a vector-function U = (u, u4, u5)
⊤ = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 and

a scalar function w ∈ H1
loc(Ω

−) ∩ Som1(Ω
−) satisfying the differential equations

A(∂, ω)U = 0 in Ω+, (1.9)
∆w + ρ2ω

2w = 0in Ω−, (1.10)

the transmission conditions

{u · n}+ = b1{∂nw}− + f0 on S, (1.11){
[T (∂, n)U ]j

}+
= b2{w}−nj + fj on S, j = 1, 2, 3, (1.12)

and the Dirichlet boundary conditions

{φ}+ = f
(D)
1 on S, (1.13)

{ψ}+ = f
(D)
2 on S, (1.14)

where b1 and b2 are the given complex constants satisfying the conditions

b1b2 ̸= 0 and Im[b1b2] = 0, (1.15)

and f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3, f (D)
1 ∈ H1/2(S), f (D)

2 ∈ H1/2(S).
Neumann type problem (Nω): Find a vector-function U = (u, u4, u5) = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 and
a scalar function w ∈ H1

loc(Ω
−) ∩ Som1(Ω

−) satisfying the differential equations (1.9), (1.10), the
transmission conditions (1.11), (1.12) and the Neumann boundary conditions{

[T (∂, n)U ]4
}+

= f
(N)
1 on S, (1.16){

[T (∂, n)U ]5
}+

= f
(N)
2 on S, (1.17)

where b1 and b2 are the given complex constants satisfying conditions (1.15), and f0 ∈ H−1/2(S),
fj ∈ H−1/2(S), j = 1, 2, 3, f (N)

1 ∈ H−1/2(S), f (N)
2 ∈ H−1/2(S).

The transmission conditions (1.11), (1.12) are called the kinematic and dynamic conditions. For
an interaction problem of fluid and electro-magneto-elastic body

b1 = [ρ2ω
2]−1, b2 = −1, f0(x) ≡ f inc0 (x) = [ρ2ω

2]−1∂nP
inc(x),

fj = −P inc(x)nj(x), j = 1, 2, 3,
(1.18)

where P inc is an incident plane wave,

P inc(x) = eid·x, d = ω
√
ρ2η, η ∈ R3, |η| = 1.

2 The uniqueness of solutions of the problems (Dω) and (Nω)

2.1 Jones modes and Jones eigenfrequencies
We denote by JD(Ω+) the set of values of the frequency parameter ω > 0 for which the following
boundary value problem

A(∂, ω)U = 0 in Ω+, (2.1)
{u · n}+ = 0 on S, (2.2){

[T (∂, n)U ]j
}+

= 0 on S, j = 1, 2, 3, (2.3)
{φ}+ = 0 on S, (2.4)
{ψ}+ = 0 on S, (2.5)
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has a nontrivial solution U = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 (cf. [25]).
We denote by JN (Ω+) the set of values of the frequency parameter ω > 0 for which the following

boundary value problem

A(∂, ω)U = 0 in Ω+, (2.6)
{u · n}+ = 0 on S, (2.7){

[T (∂, n)U ]
}+

= 0 on S, (2.8)

has a nontrivial solution U = (u, φ, ψ)⊤ ∈ [H1(Ω+)]5 (cf. [25]).
Nontrivial solutions of problems (2.1)–(2.5) and (2.6)–(2.8) will be referred as Jones modes, while

the corresponding values of ω are called Jones eigenfrequencies, as they were first discussed by
D. S. Jones [25] in a related context (a thin layer of ideal fluid between an elastic body and a sur-
rounding elastic exterior). For example, Jones eigenfrequencies exist for any axisymmetric body, such
bodies can sustain torsional oscillations in which only the azimuthal component of displacement is
nonzero. However, we do not expect Jones eigenfrequencies to exist for an arbitrary body. The spaces
of Jones modes corresponding to ω we denote by XD,ω(Ω

+) and XN,ω(Ω
+), respectively.

Let J∗
D(Ω+) be the set of values of the frequency parameter ω > 0 for which the following boundary

value problem

A∗(∂, ω)V = 0 in Ω+, (2.9)
{v · n}+ = 0 on S, (2.10){

[T̃ (∂, n)V ]j
}+

= 0 on S, j = 1, 2, 3, (2.11)
{v4}+ = 0 on S, (2.12)
{v5}+ = 0 on S (2.13)

has a nontrivial solution V = (v, v4, v5)
⊤ ∈ [H1(Ω+)]5.

Let J∗
N (Ω+) be the set of values of the frequency parameter ω > 0 for which the following boundary

value problem

A∗(∂, ω)V = 0 in Ω+, (2.14)
{v · n}+ = 0 on S, (2.15){

[T̃ (∂, n)V ]
}+

= 0 on S (2.16)

has a nontrivial solution V = (v, v4, v5)
⊤ ∈ [H1(Ω+)]5.

The spaces of Jones modes corresponding to ω for the differential operator A∗(∂, ω) we denote by
X∗

D,ω(Ω
+), and X∗

N,ω(Ω
+), respectively.

It can be shown that JD(Ω+) is at most countable, while JN (Ω+) ≡ R, since for an arbitrary non-
zero constants c1 and c2, the vector (0, 0, 0, c1, c2)⊤ is a Jones eigenvector: (0, 0, 0, c1, c2)⊤ ∈ XN,ω(Ω

+)
for arbitrary ω. The same is true for J∗

D(Ω+) and J∗
N (Ω+). Note that for each ω the corresponding

spaces of Jones modes XD,ω(Ω
+), XN,ω(Ω

+), X∗
D,ω(Ω

+) and X∗
N,ω(Ω

+) are of a finite dimension.

2.2 The uniqueness theorems for the problems (Dω) and (Nω)

Theorem 2.1. Let a pair (U,w) be a solution of the homogeneous problem (Dω) and ω > 0. Then
w = 0 in Ω− and either U = 0 in Ω+ if ω ̸∈ JD(Ω+) or U ∈ XD,ω(Ω

+) if ω ∈ JD(Ω+).
Proof. Let us write Green’s formula for the Helmholtz equation in the domain ΩR := Ω− ∩ B(0, R),
where Ω+ ⊂ B(0, R) with B(0, R) being the ball of radius R and centered at the origin,∫

ΩR

[
(∆ + ρ2ω

2)ww − w(∆ + ρ2ω
2)w
]
dx

=

∫
S(0,R)

∂nww dS −
∫

S(0,R)

∂nw w dS −
⟨
{∂nw}−, {w}−

⟩
S
+
⟨
{∂nw}−, {w}−

⟩
S
, (2.17)
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where S(0, R) = ∂B(0, R) is the boundary of the ball B(0, R).
We have also the following Green’s formula for the operator A(∂, ω) in the domain Ω+:∫

Ω+

[
[A(∂, ω)U ]juj + [A(∂, ω)U ]4u4 + [A(∂, ω)U ]5u5 + E(U,U)

]
dx

=
⟨
{TU}+j , {uj}

+
⟩
S
+
⟨
{TU}+4 , {u4}+

⟩
S
+ ⟨{TU}+5 , {u5}+

⟩
S
, (2.18)

where E(U,U) = cijlk∂iuj∂luk − ρ1ω
2|u|2 + εil∂iu4∂lu4 + µjl∂ju5∂lu5. Clearly, Im E(U,U) = 0 for an

arbitrary vector-function U .
With the help of (1.9), (1.10), (1.13), and (1.14), we obtain from (2.17) and (2.18) the following

equalities:∫
S(0,R)

∂nww dS −
∫

S(0,R)

∂nww dS −
⟨
{∂nw}−, {w}−

⟩
S
+
⟨
{∂nw}−, {w}−

⟩
S
= 0, (2.19)

Im
⟨
{[TU ]j}+, {uj}+

⟩
S
= 0. (2.20)

The homogeneous transmission conditions yield⟨
{[TU ]j}+, {uj}+

⟩
S
=
⟨
b2{w}− nj , {uj}+

⟩
S
= b2b1

{
∂nw}−, {w}−

⟩
S
. (2.21)

Since Im[b1b2] = 0, from (2.20) and (2.21) it follows that

Im
⟨
{∂nw}−, {w}−

⟩
S
= 0,

and from (2.19) we derive that
Im

∫
S(0,R)

∂nww dS = 0. (2.22)

Taking into account the Sommerfeld radiation condition, from (2.22) we conclude that

lim
R→∞

∫
S(0,R)

|w|2 dS = 0.

Using the Rellich-Vekua lemma, we find that w = 0 in the domain Ω− (see [13, 43]). Then from the
homogeneous boundary conditions it follows that the vector-function U = (u, φ, ψ)⊤ solves problem
(2.1)–(2.4), i.e., either U = 0 in Ω+ if ω ̸∈ JD(Ω+) or U ∈ XD,ω(Ω

+) if ω ∈ JD(Ω+), which completes
the proof.

The following assertions can be proved quite analogously.

Theorem 2.2. Let a pair (U,w) be a solution of the homogeneous problem (Nω). Then U ∈ XN,ω(Ω
+)

and w = 0 in Ω−.

Remark 2.3. Let a pair (V,w) ∈ [H1(Ω+)]5 × [H1
loc(Ω

−) ∩ Som2(Ω
−)] be a solution of the homoge-

neous problem

A∗(∂, ω)V = 0 in Ω+,

(∆ + ρ2ω
2)w = 0 in Ω−,

{v · n}+ + b
−1

2 {∂nw}− = 0 on S,{
[T̃ (∂, n)V ]j

}+
+ b

−1

1 {w}−nj = 0 on S, j = 1, 2, 3,

{v4}+ = 0 on S,

{v5}+ = 0 on S,

where b1 and b2 are the given complex constants satisfying the conditions (1.15).
Then w = 0 in Ω− and either V = 0 in Ω+ if ω ̸∈ J∗

D(Ω+) or V ∈ X∗
D,ω(Ω

+) if ω ∈ J∗
D(Ω+).
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Remark 2.4. Let a pair (V,w) ∈ [H1(Ω+)]5 × [H1
loc(Ω

−) ∩ Som2(Ω
−)] be a solution of the homoge-

neous problem

A∗(∂, ω)V = 0 in Ω+,

(∆ + ρ2ω
2)w = 0 in Ω−,

{v · n}+ + b
−1

2 {∂nw}− = 0 on S,{
[T̃ (∂, n)V ]j

}+
+ b

−1

1 {w}−nj = 0 on S, j = 1, 2, 3,{
[T̃ (∂, n)V ]4

}+
= 0 on S,{

[T̃ (∂, n)V ]5
}+

= 0 on S,

where b1 and b2 are the given complex constants satisfying conditions (1.15).
Then V ∈ X∗

N,ω(Ω
+) and w = 0 in Ω−.

3 Layer potentials
3.1 Potentials associated with the Helmholtz equation
Let us introduce the single and double layer potentials,

Vω(g)(x) :=

∫
S

γ(x− y, ω)g(y) dyS, x ̸∈ S,

Wω(f)(x) :=

∫
S

∂n(y)γ(x− y, ω)f(y) dyS, x ̸∈ S,

where
γ(x, ω) := −

exp(i√ρ
2
ω|x|)

4π|x|
is the fundamental solution of the Helmholtz equation (1.6). These potentials satisfy the Sommerfeld
radiation condition, i.e., belong to the class Som1(Ω

−).
For these potentials the following theorems are valid (see [13,37]).

Theorem 3.1. Let g ∈ H−1/2(S), f ∈ H1/2(S). Then on the manifold S the following jump relations
hold:

{Vω(g)}± = Hω(g), {Wω(f)}± = ±2−1f +K∗
ω(f),

{∂nVω(g)}± = ∓2−1g +Kω(g), {∂nWω(f)}+ = {∂nWω(f)}− =: Lω(f),

where Hω, K∗
ω and Kω are integral operators with the weakly singular kernels,

Hω(g)(z) :=

∫
S

γ(z − y, ω)g(y) dyS, z ∈ S,

K∗
ω(f)(z) :=

∫
S

∂n(y)γ(z − y, ω)f(y) dyS, z ∈ S,

Kω(g)(z) :=

∫
S

∂n(z)γ(z − y, ω)g(y) dyS, z ∈ S,

while Lω is a singular integro-differential operator (pseudodifferential operator) of order 1.
Theorem 3.2. The operators

N := −2−1I1 +K∗
ω + µHω : H1/2(S) → H1/2(S), (3.1)

M := Lω + µ
(
2−1I1 +Kω

)
: H1/2(S) → H−1/2(S), (3.2)

are invertible provided that Imµ ̸= 0. Here I1 is the scalar identity operator.
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The mapping properties of the above potentials and the boundary integral operators are described
in Appendix.

3.2 Fundamental solution and potentials of the steady state
oscillation equations of electro-magneto-elasticity

Let us consider the equation

ΦA(ξ, ω) := detA(iξ, ω) = det

[cijlkξiξl − ρ1ω
2δjk]3×3 [elijξlξi]3×1 [qlijξlξi]3×1

[−eiklξiξl]1×3 εilξiξl ailξiξl

[−qiklξiξl]1×3 ailξiξl µilξiξl


5×5

= 0, (3.3)

ξ ∈ R3 \ {0}, ω ∈ R, i, j, k, l = 1, 2, 3,

where ΦA(ξ, ω) is the characteristic polynomial of the operator A(∂, ω). The origin is an isolated zero
of (3.3).

We are interested in the real zeros of the function ΦA(ξ, ω), ξ ∈ R3 \ {0}.
Denote

λ :=
ρ1ω

2

|ξ|2
, ξ̂ :=

ξ

|ξ|
for |ξ| ̸= 0,

B(λ, ξ̂) :=

[cijklξ̂iξ̂l − λδjk]3×3 [Aj4(ξ̂)]3×1 [Aj5(ξ̂)]3×1

[−Aj4(ξ̂)]1×3 εilξ̂iξ̂l ailξ̂iξ̂l

[−Aj5(ξ̂)]1×3 ailξ̂iξ̂l µilξ̂iξ̂l


5×5

.

Then (3.3) can be rewritten as
Ψ(λ, ξ̂) := detB(λ, ξ̂) = 0. (3.4)

This is a cubic equation in λ with real coefficients.
Theorem 3.3. Equation (3.4) possesses three real positive roots λ1(ξ̂), λ2(ξ̂), λ3(ξ̂).

Proof. Let ξ̂ ∈ Σ1 := {x ∈ R3 : |x| = 1} and Ψ(λ, ξ̂) = 0. Then there is a non-trivial vector
η ∈ C5 \ {0} such that B(λ, ξ̂) η = 0, i.e.,

(cijklξ̂iξ̂l − λδjk)ηk + elij ξ̂lξ̂iη4 + qlij ξ̂lξ̂iη5 = 0, j = 1, 2, 3, (3.5)
−eiklξ̂iξ̂lηk + εilξ̂iξ̂lη4 + ailξ̂iξ̂lη5 = 0, (3.6)
−qiklξ̂iξ̂lηk + ailξ̂iξ̂lη4 + µilξ̂iξ̂lη5 = 0, (3.7)

Multiply the first three equations by ηj , the complex conjugate of the fourth equation by η4, the
complex conjugate of the fifth equation by η5 and sum them to obtain

cijklξ̂iξ̂lηkηj − λ|η′|2 + elij ξ̂lξ̂iη4ηj + qlij ξ̂lξ̂iη5ηj

− eijlξ̂iξ̂lηjη4 + εilξ̂iξ̂l|η4|2 + ailξ̂iξ̂lη5η4 − qijlξ̂iξ̂lηjη5 + ailξ̂iξ̂lη4η5 + µilξ̂iξ̂l|η5|2 = 0, (3.8)

where η′ = (η1, η2, η3).
Due to the symmetry property of the coefficients elij and qlij ,

elij ξ̂lξ̂iη4ηj = eijlξ̂iξ̂lηjη4, qlij ξ̂lξ̂iη5ηj = qijlξ̂iξ̂lηjη5.

Therefore, we derive from (3.8) that

cijklξ̂iξ̂lηkηj − λ|η′|2 + εilξ̂iξ̂l|η4|2 + µilξ̂iξ̂l|η5|2 + 2Re ailξ̂iξ̂lη5η4 = 0. (3.9)

Next, we note that cijklξ̂iξ̂lηkηj = cijklκijκkl ≥ δ0κklκkl ≥ 0 with κ
kl

= 2−1(ξ̂lηk + ξ̂kηl).
Moreover, due to the strict inequalities εilξ̂iξ̂l ≥ δ1 > 0, µilξ̂iξ̂l ≥ δ2 > 0, and (1.4), it follows that

|η′| ̸= 0, since otherwise from (3.9) we get η4 = 0, which contradicts the inclusion η = (η′, η4, η5) ∈
C5 \ {0}. Therefore, from (3.9) we finally conclude that λ > 0.
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Denote the roots of equation (3.4) by λ1, λ2, λ3. Clearly, the equation of the surface Sω,j ,
j = 1, 2, 3, in the spherical coordinates reads as

r = rj(θ, φ) =

√
ρ1ω√
λj(ξ̂)

,

where ξ1 = r cosφ sin θ, ξ2 = r sinφ sin θ, ξ3 = r cos θ with 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, r = |ξ|.
We also have the following identity:

ΦA(ξ, ω) = detA(iξ, ω) = ΦA(ξ̂, 0) r
4

3∏
j=1

(
r2 − r2j (ξ̂)

)
= ΦA(ξ̂, 0) r

4
3∏

j=1

Pj(ξ).

It can easily be shown that the vector

n(ξ) = (−1)j |∇ΦA(ξ, ω)|−1∇ΦA(ξ, ω), ξ ∈ Sω,j ,

is an external unit normal vector to Sω,j at the point ξ.
Further, we assume that the following conditions are fulfilled (cf. [10, 33,41,42]):

(i) if ΦA(ξ, ω) = ΦA(ξ̂, 0) r
4P1(ξ)P2(ξ)P3(ξ), then ∇ξ(P1(ξ)P2(ξ)P3(ξ)) ̸= 0 at real zeros ξ ∈ R3 \

{0} of the polynomial (3.3), or
if ΦA(ξ, ω) = ΦA(ξ̂, 0) r

4P 2
1 (ξ)P2(ξ), then ∇ξ(P1(ξ)P2(ξ)) ̸= 0 at real zeros ξ ∈ R3 \ {0} of the

polynomial (3.3), or
if ΦA(ξ, ω) = ΦA(ξ̂, 0) r

4P 3
1 (ξ), then ∇ξP1(ξ) ̸= 0 at real zeros ξ ∈ R3 \ {0} of the polynomial

(3.3);

(ii) the Gaussian curvature of the surface, defined by the real zeros of the polynomial ΦA(ξ, ω),
ξ ∈ R3 \ {0}, does not vanish anywhere.

It follows from the above conditions (i) and (ii) that the real zeros ξ ∈ R3 \ {0} of the polynomial
ΦA(ξ, ω) form non-self-intersecting, closed, convex two-dimensional surfaces Sω,1, Sω,2, Sω,3, enclosing
the origin. For an arbitrary unit vector η = x/|x| with x ∈ R3 \ {0}, there exists only one point on
each Sω,j , namely, ξj = (ξj1, ξ

j
2, ξ

j
3) ∈ Sω,j such that the outward unit normal vector n(ξj) to Sω,j

at the point ξj has the same direction as η, i.e., n(ξj) = η. In this case, we say that the points ξj ,
j = 1, 2, 3, correspond to the vector η.

From (i), we see that the surfaces Sω,j j = 1, 2, 3, might have multiplicities.
We say that a vector-function U = (u1, u2, u3, u4, u5)

⊤ belongs to the class Mm1,m2,m3
(P) if

U ∈ [C∞(Ω−)]5 and the relation

U(x) =

5∑
p=1

up(x)

holds, where up has the following uniform asymptotic expansion as r = |x| → ∞:

up ∼
3∑

j=1

e−irξj
{
d p
0,mj

(η)rmj−2 +

∞∑
q=1

dpq,mj
(η)rmj−2−q

}
, p = 1, 2, 3, (3.10)

u4(x) = O(r−1), ∂ku
4(x) = O(r−2), u5(x) = O(r−1), ∂ku

5(x) = O(r−2), k = 1, 2, 3,

here P = detA(i∂x, ω) and d p
q,mj

∈ C∞, j = 1, 2, 3 (see [10]).
These conditions are generalization of Sommerfeld–Kupradze type radiation conditions in the an-

isotropic elasticity (cf. [28, 33]).
From condition (i) it follows that our class Mm1,m2,m3

(P) is M1,1,1(P) (when there is no multi-
plicity, i.e., surfaces do not coincide) or M2,1(P) (when two surfaces coincide) or M3(P) (when all
three surfaces coincide).

The class M1,1,1(P) is a subset of the generalized Sommerfeld–Kupradze class.
We can show the following uniqueness theorems.
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Theorem 3.4. The homogeneous exterior Dirichlet boundary value problem

A(∂, ω)U = 0 in Ω−, {U}− = 0 on S,

has only the trivial solution in the class [H1
loc(Ω

−)]5 ∩Mm1,m2,m3(P).

Theorem 3.5. The homogeneous exterior Dirichlet boundary value problem

A∗(∂, ω)V = 0 in Ω−, {V }− = 0 on S,

has only the trivial solution in the class [H1
loc(Ω

−)]5 ∩Mm1,m2,m3(P∗), where P∗ = detA∗(∂, ω).

If surfaces Sω,j j = 1, 2, 3, have no multiplicity, Theorems 3.4 and 3.5 are valid in generalized the
Sommerfeld–Kupradze class (cf. [28]).

Denote by Γ(x, ω) the fundamental matrix of the operator A(∂, ω). By means of the Fourier
transform method and the limiting absorption principle, we can construct this matrix explicitly (see
Ch. 1, Section 1, also see [42])

Γ(x, ω) = lim
ε→0+

F−1
ξ→x

[
A−1(iξ, ω + iε)

]
, (3.11)

where F−1 is the inverse Fourier transform. The columns of the matrix Γ(x, ω) are infinitely differ-
entiable in R3 \ {0} and belong to the class Mm1,m2,m3

(P).
Further, we introduce the single and double layer potentials associated with the differential operator

A(∂, ω),

Vω(g)(x) =

∫
S

Γ(x− y, ω)g(y) dyS, x ∈ Ω±,

Wω(f)(x) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(x− y, ω)
]⊤
f(y) dyS, x ∈ Ω±,

where g = (g1, . . . , g4)
⊤ and f = (f1, . . . , f4)

⊤ are density vector-functions.
For a solution U ∈ [H1(Ω+)]5 to the homogeneous equation (1.9) in Ω+ we have the integral

representation
U = Wω({U}+)− Vω({TU}+) in Ω+.

For these potentials the following theorem holds (see [6, 7]).

Theorem 3.6. Let g ∈ [H−1+s(S)]4 and f ∈ [Hs(S)]4, s > 0. Then

{Vω(g)(z)}± = Hω(g)(z), z ∈ S,

{Wω(f)(z)}± = ±2−1f(z) + K̃ω(f)(z), z ∈ S,{
T (∂y, n(y))Vω(g)(z)

}±
= ∓2−1g(z) + Kω(g)(z), z ∈ S,{

T (∂z, n(z))Wω(f)(z)
}+

=
{
T (∂z, n(z))Wω(f)(z)

}−
:= Lω(f)(z), z ∈ S,

where Hω is a weakly singular integral operator, K̃ω and Kω are singular integral operators, while Lω

is a pseudodifferential operator of order 1,

Hω(g)(z) :=

∫
S

Γ(z − y, ω)g(y) dyS, z ∈ S,

K̃ω(f)(z) :=

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, ω)
]⊤
f(y) dyS, z ∈ S,

Kω(g)(z) :=

∫
S

T (∂z, n(z))Γ(z − y, ω)g(y) dyS, z ∈ S.

The mapping properties of these potentials and boundary integral operators are described in
Appendix.
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4 The Dirichlet and Neumann type interaction problems
for pseudo-oscillation equations

In this section, we consider the Dirichlet and Neumann type interaction problems for the so-called
pseudo-oscillation equations. These problems are intermediate auxiliary problems for investigation of
interaction problems for the steady state oscillation equations.

4.1 Formulation of the problems
The matrix differential operator corresponding to the basic pseudo-oscillation equations of the electro-
magneto-elasticity for anisotropic homogeneous media is written as follows:

A(∂, τ) = [Ajk(∂, τ)]5×5,

Ajk(∂, τ) = cijkl∂i∂l + ρ1τ
2δjk, Aj4(∂, τ) = elij∂l∂i, Aj5(∂, τ) = qlij∂l∂i,

A4k(∂, τ) = −eikl∂i∂l, A44(∂, τ) = εil∂i∂l, A45(∂, τ) = ail∂i∂l,

A5k(∂, τ) = −qikl∂i∂l, A54(∂, τ) = ail∂i∂l, A55(∂, τ) = µil∂i∂l,

j, k = 1, 2, 3, where τ is a purely imaginary complex parameter: τ = iσ, σ ̸= 0, σ ∈ R.
Dirichlet type problem (Dτ ): Find a vector-function U = (u, u4, u5)

⊤ ∈ [H1(Ω+)]5 and a scalar
function w ∈ H1

loc(Ω
−) ∩ Som1(Ω

−) satisfying the differential equations

A(∂, τ)U = 0 in Ω+, (4.1)
∆w + ρ2ω

2w = 0 in Ω−, (4.2)

the transmission conditions

{u · n}+ = b1{∂nw}− + f0 on S, (4.3)
{[TU ]j}+ = b2{w}−nj + fj on S, j = 1, 2, 3, (4.4)

and the Dirichlet boundary conditions

{u4}+ = f
(D)
1 on S, (4.5)

{u5}+ = f
(D)
2 on S, (4.6)

where b1 and b2 are the given complex constants satisfying conditions (1.15), f0 ∈ H−1/2(S), fj ∈
H−1/2(S), j = 1, 2, 3, f (D)

1 ∈ H1/2(S), f (D)
2 ∈ H1/2(S).

Neumann type problem (Nτ ): Find a vector-function U = (u, u4, u5)
⊤ ∈ [H1(Ω+)]5 and a scalar

function w ∈ H1
loc(Ω

−) ∩ Som1(Ω
−) satisfying the differential equations (4.1) and (4.2), respectively,

transmission conditions (4.3), (4.4), and the Neumann boundary conditions

{[TU ]4}+ = f
(N)
1 on S with f

(N)
1 ∈ H−1/2(S), (4.7)

{[TU ]5}+ = f
(N)
2 on S with f

(N)
2 ∈ H−1/2(S). (4.8)

4.2 Uniqueness theorems for problems (Dτ ) and (Nτ )

Theorem 4.1. Let τ = iσ, σ ̸= 0, σ ∈ R. The homogeneous problem (Dτ ) has only the trivial
solution, while the general solution of the homogeneous problem (Nτ ) is the vector (0, 0, 0, c1, c2),
where c1 and c2 are an arbitrary complex scalar constants.

Proof. Let (U,w) be a solution of the homogeneous problem (Dτ ).
Let us write Green’s formula for the Helmholtz equation (4.2) in the domain ΩR := Ω− ∩B(0, R),

where Ω+ ⊂ B(0, R),
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∫
ΩR

[
(∆ + ρ2ω

2)ww − w(∆ + ρ2ω
2)w
]
dx

=

∫
S(0,R)

∂nww dS −
∫

S(0,R)

∂nww dS −
⟨
{∂nw}−, {w}−

⟩
S
+
⟨
{∂nw}−, {w}−

⟩
S
. (4.9)

Now write Green’s formula for the operator A(∂, τ) in the domain Ω+,∫
Ω+

[
[A(∂, τ)U ]juj + [A(∂, τ)U ]4u4 + [A(∂, τ)U ]5u5 + E(U,U)

]
dx

=
⟨
{TU}+j , {uj}

+
⟩
S
+
⟨
{TU}+4 , {u4}+

⟩
S
+
⟨
{TU}+5 , {u5}+

⟩
S
, (4.10)

where E(U,U) = cijlk∂iuj∂luk + ρ1σ
2|u|2 + εil∂iu4∂lu4 + µjl∂ju5∂lu5. Using (4.1), (4.2), and (4.5),

from (4.9) and (4.10) we obtain the following equalities:∫
S(0,R)

∂nww dS −
∫

S(0,R)

∂nww dS −
⟨
{∂nw}−, {w}−

⟩
S
+
⟨
{∂nw}−, {w}−

⟩
S
= 0, (4.11)

Im
⟨
{[TU ]j}+, {uj}+

⟩
S
= 0, j = 1, 2, 3. (4.12)

In view of the homogeneous transmission conditions, we get⟨
{[TU ]j}+, {uj}+

⟩
S
=
⟨
b2{w}−nj , {uj}+

⟩
S
= b2b1

⟨
{∂nw}−, {w}−

⟩
S
. (4.13)

Since Im[b1b2] = 0, from (4.12) and (4.13) we get

Im
⟨
{∂nw}−, {w}−

⟩
S
= 0,

and from (4.11) we derive that
Im

∫
S(0,R)

∂nww dS = 0. (4.14)

By the Sommerfeld radiation condition, from (4.14) we conclude that

lim
R→∞

∫
S(0,R)

|w|2 dS = 0.

Using the Rellich–Vekua lemma, we find that w = 0 in the domain Ω−.
Then from Green’s formula (4.10) it follows that∫

Ω+

E(U,U) dx = 0. (4.15)

Using (1.2) and (1.3), it is easy to see that for a complex vector u = (u1, u2, u3)
⊤ and a complex

functions u4, u5,
cijlk∂iuj∂luk ≥ 0, εjl∂lu4∂ju4 ≥ 0, µjl∂lu5∂ju5 ≥ 0. (4.16)

Taking into account (4.16), from (4.15) we obtain∫
Ω+

[
cijlk∂iuj∂luk + ρ1σ

2|u|2 + εjl∂lu4∂ju4 + µjl∂lu5∂ju5

]
dx = 0, (4.17)

implying that u = 0 in Ω+ and u4 = c1, u5 = c2 in Ω+, where c1, c2 are arbitrary constants. Since
{u4}+ = {u5}+ = 0 on S, we deduce that u4 = u5 = 0 in the domain Ω+.

Applying the same arguments, we can show that the general solution of the homogeneous problem
(Nτ ) is a vector (0, 0, 0, c1, c2)

⊤, where c1 and c2 are arbitrary complex scalar constants.
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4.3 Fundamental solution and potentials for the pseudo-oscillation
equations of piezoelectro-magneto-elasticity

The full symbol of the pseudo-oscillation operator A(∂, τ) is elliptic provided τ = iσ, σ ̸= 0, σ ∈ R, i.e.,

detA(−iξ, τ) ̸= 0 ∀ξ ∈ R3 \ {0}.

Moreover, the entries of the inverse matrix A−1(−iξ, τ) are locally integrable functions decaying at
infinity as O(|ξ|−2). Therefore, we can construct the fundamental matrix Γ(x, τ) = [Γkj(x, τ)]5×5 of
the operator A(∂, τ) by the Fourier transform technique,

Γ(x, τ) = F−1
ξ→x[A

−1(−iξ, τ)]. (4.18)

Note that in a neighbourhood of the origin the following estimates hold (0 < |x| < 1):∣∣Γjk(x, τ)− Γjk(x, ω)
∣∣ ≤ c(τ, ω), (4.19)∣∣∂l[Γjk(x, τ)− Γjk(x, ω)
]∣∣ ≤ c(τ, ω) ln |x|−1, (4.20)∣∣∂α[Γjk(x, τ)− Γjk(x, ω)
]∣∣ ≤ c(τ, ω)|x|1−|α|, j, k = 1, 5, (4.21)

where α = (α1, α2, α3) is a multi-index with |α| = α1+α2+α3 ≥ 2, while c(τ, ω) is a positive constant
depending on τ = iσ and ω with σ, ω ∈ R \ {0} ( cf. [33]).

Let us introduce the single and double layer pseudo-oscillation potentials

Vτ (h) =

∫
S

Γ(x− y, τ)h(y) dyS,

Wτ (h) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(x− y, τ)
]⊤
h(y) dyS,

where h = (h1, h2, h3, h4, h5)
⊤ is a density vector-function.

These pseudo-oscillation potentials have the following jump properties (see [6]).

Theorem 4.2. Let h(1) ∈ [H−1+s(S)]5, h(2) ∈ [Hs(S)]5, s > 0. Then the following jump relations
hold on S: {

Vτ (h
(1))(z)

}±
=

∫
S

Γ(z − y, τ)h(1)(y) dyS,

{
Wτ (h

(2))(z)
}±

= ±2−1h(2)(z) +

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, τ)
]⊤
h(2)(y) dyS,

{
TVτ (h

(1))(z)
}±

= ∓2−1h(1)(z) +

∫
S

T (∂z, n(z))Γ(z − y, τ)h(1)(y) dyS,

{
TWτ (h

(2))(z)
}+

=
{
TWτ (h

(2))(z)
}−
.

Further, we introduce the boundary operators

Hτ (h)(z) =

∫
S

Γ(z − y, τ)h(y) dyS,

Kτ (h)(z) =

∫
S

T (∂z, n(z))Γ(z − y, τ)h(y) dyS,

K̃τ (h)(z) =

∫
S

[
T̃ (∂y, n(y))Γ

⊤(z − y, τ)
]⊤
h(y) dyS,

Lτ (h)(z) =
{
TWτ (h)(z)

}+
=
{
TWτ (h)(z)

}−
.
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Note that Hτ is a weakly singular integral operator (pseudodifferential operator of order −1), Kτ and
K̃τ are singular integral operators (pseudodifferential operator of order 0), and Lτ is a pseudodiffer-
ential operator of order 1.

The mapping properties of these potentials are described in Appendix.

4.4 Existence of solutions of problem (Dτ )

By Theorem 6.4 (see Appendix) the operator Hτ : [Hs(S)]5 → [Hs+1(S)]5 is invertible for all s ∈ R
and we can look for a solution of problem (Dτ ) in the following form

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−, µ ∈ C, Imµ ̸= 0,

where g = (g̃, g4, g5)
⊤ ∈ [H1/2(S)]5, g̃ = (g1, g2, g3)

⊤, h ∈ H1/2(S) are unknown densities. From
Theorems 6.1, 6.3 and 6.4 (see Appendix) it follows that U ∈ [H1(Ω+)]5 and w ∈ H1

loc(Ω
−).

Transmission conditions (4.3), (4.4) and the Dirichlet type conditions (4.5), (4.6) lead to the
following system of pseudodifferential equations with respect to the unknowns g̃, g4, g5 and h:

g̃ · n− b1M(h) = f0 on S, (4.22)[
(−2−1I5 + Kτ )H−1

τ g
]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (4.23)

g4 = f
(D)
1 on S, (4.24)

g5 = f
(D)
2 on S, (4.25)

where N = −2−1I1 +K∗
ω + µHω, M = Lω + µ(2−1I1 +Kω).

Here and in what follows, Im stands for the m×m unit matrix.
The matrix operator generated by the left-hand side expressions in system (4.22)–(4.25) reads as

Pτ,D :=


[n]1×3 0 0 −b1M

[Ajk
τ ]3×3 [Aj4

τ ]3×1 [Aj5
τ ]3×1 [−b2njN ]3×1

[0]1×3 I1 0 0

[0]1×3 0 I1 0


6×6

, j, k = 1, 2, 3,

where
Aτ :=

(
− 2−1I5 + Kτ

)
H−1

τ = [Ajk
τ ]5×5, j, k = 1, 5, (4.26)

is the Steklov–Poincaré type operator on S. This operator is a strongly elliptic pseudodifferential
operator of order 1 (see [6] for details).

By Theorems 6.2 and 6.4 (see Appendix), the operator Pτ,D possesses the following mapping
property:

Pτ,D : [H1/2(S)]6 → [H−1/2(S)]5 ×H1/2(S). (4.27)

In view of (4.24) and (4.25), equations (4.22) and (4.23) can be rewritten in the following equivalent
form as a system with respect to g̃ and h:

g̃ · n− b1M(h) = f0 on S, (4.28)
[Aτ (g̃, 0, 0)

⊤]j − b2njN (h) = Fj on S, j = 1, 2, 3, (4.29)

where Fj := fj −Aj4
τ f

(D)
1 −Aj5

τ f
(D)
2 , j = 1, 2, 3.

Denote by Rτ,D the operator corresponding to system (4.28), (4.29)

Rτ,D :=

(
[n]1×3 −b1M
Ãτ [−b2nkN ]3×1

)
4×4

,

where Ãτ := [Ajk
τ ]3×3, j, k = 1, 2, 3.
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Clearly, the operator
Rτ,D : [H1/2(S)]4 → [H−1/2(S)]4 (4.30)

is bounded.
Let us represent the operator Rτ,D as the sum of two operators

Rτ,D = R(1)
τ,D +R(2)

τ,D,

where

R(1)
τ,D =

(
[0]1×3 −b1M
Ãτ [0]3×1

)
4×4

, R(2)
τ,D =

(
[n]1×3 0

[0]3×3 [−b2nkN ]3×1

)
4×4

.

It is easy to see that the operator N : H1/2(S) → H−1/2(S) is compact due to Theorem 3.2 and
Rellich compact embedding theorem. Therefore, the operator R(2)

τ,D : [H1/2(S)]4 → [H−1/2(S)]4 is
compact. Further, we show that the operator Ãτ is Fredholm. Indeed,

Aτ : [H1/2(S)]5 → [H−1/2(S)]5

is strongly elliptic pseudodifferential operator of order 1 (see [6]), i.e.,

ReS(Aτ ;x, ξ)ζ · ζ ≥ c|ξ| |ζ|2,

where c is a positive constant and S(Aτ ;x, ξ) with x ∈ S, ξ ∈ R2 \ {0}, is the principal homogeneous
symbol of the operator Aτ in some local coordinate system. Therefore, ∀ ξ ∈ R2 \ {0}, ∀ ζ ′ ∈ C3 the
following estimate holds:

ReS(Ãτ ;x, ξ)ζ
′ · ζ ′ = ReS(Aτ ;x, ξ)(ζ

′, 0)⊤ · (ζ ′, 0)⊤ ≥ c|ξ||ζ ′|2.

Thus Ãτ is a strongly elliptic pseudodifferential operator of order 1. Therefore, by virtue of the general
theory of elliptic pseudodifferential operators on a compact manifold without boundary (see [16,
Ch. 19], [14, Ch. 5]), we conclude that

Ãτ : [H1/2(S)]3 → [H−1/2(S)]3

is a Fredholm operator. From the strong ellipticity property it also follows that the index of the
operator Ãτ is zero (see [16, Ch. 6], [14, Ch. 2]). Taking into account Theorem 3.2, we find that the
operator R(1)

τ,D is Fredholm with index zero. Therefore, operators (4.30) and, consequently, (4.27) are
Fredholm with index zero.

Now we show that the operator Rτ,D is injective. Let (g̃, h)⊤ with g̃ ∈ [H1/2(S)]3 and h ∈ H1/2(S)
be some solution of the homogeneous system

Rτ,D(g̃, h)⊤ = 0,

and set
Ũ = (ũ, ũ4, ũ5)

⊤ = VτH−1
τ (g̃, 0, 0), w̃ = (Wω + µVω)h, Imµ ̸= 0.

Evidently, Ũ and w̃ solve the homogeneous problem (Dτ ).
It follows from the uniqueness result for problem (Dτ ) (see Theorem 4.1) that Ũ = 0 in Ω+ and

w̃ = 0 in Ω−. Then {Ũ}+ = (g̃, 0, 0)⊤ = 0 on S. Since {w̃}− = N (h) = 0 and N is invertible operator,
we obtain h = 0 on S. Consequently, the operators

Rτ,D : [H1/2(S)]4 → [H−1/2(S)]4,

Pτ,D : [H1/2(S)]6 → [H−1/2(S)]5 ×H1/2(S)

are invertible.
Therefore, system (4.22)–(4.25) is uniquely solvable. Thus the following assertion holds.
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Theorem 4.3. Let τ = iσ, σ ̸= 0, σ ∈ R, and let f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3, and
f (D) ∈ H1/2(S). Then problem (Dτ ) has a unique solution (U,w), U ∈ [H1(Ω+)]5, w ∈ H1

loc(Ω
−) ∩

Som1(Ω
−), which can be represented as

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−,

where the densities g ∈ [H1/2(S)]5 and h ∈ H1/2(S) are defined from the uniquely solvable system
(4.22)–(4.25).

4.5 Existence of solutions of problem (Nτ )

As in the previous subsection, we can look for a solution of problem (Nτ ) in the following form:

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−, µ ∈ C, Imµ ̸= 0,

where g = (g̃, g4, g5)
⊤ ∈ [H1/2(S)]5 and h ∈ H1/2(S) are unknown densities. From Theorems 6.1, 6.3

and 6.4 of Appendix it follows that U ∈ [H1(Ω+)]5 and w ∈ H1
loc(Ω

−).
Transmission conditions (4.3), (4.4), and the Neumann type condition (4.7) lead to the following

system of pseudodifferential equations with respect to the unknowns g and h:

g̃ · n− b1M(h) = f0 on S, (4.31)
[Aτg]j − b2njN (h) = fj on S, j = 1, 2, 3, (4.32)

[Aτg]4 = f
(N)
1 on S, (4.33)

[Aτg]5 = f
(N)
2 on S, (4.34)

where N and M are defined in (3.1) and (3.2), while Aτ is defined in (4.26).
The operator generated by the left-hand side of the system (4.31)–(4.33) reads as

Pτ,N :=


[(n, 0, 0)]1×5 −b1M
[Ajk

τ ]3×5 [−b2njN ]3×1

[A4j
τ ]1×4 [0]1×2

[A5j
τ ]1×4 [0]1×2


6×6

, j = 1, 2, 3, k = 1, 5.

The operator Pτ,N possesses the following mapping property:

Pτ,N : [H1/2(S)]6 → [H−1/2(S)]6.

From equation (4.31), we define h,

h = b−1
1 M−1(g̃ · n)− b−1

1 M−1f0,

and substitute this into equation (4.32). We obtain the system

[Aτg]j − b2b
−1
1 njNM−1(g̃ · n) = Fj on S, j = 1, 2, 3, (4.35)

[Aτg]4 = f
(N)
1 on S, (4.36)

[Aτg]5 = f
(N)
2 on S, (4.37)

where Fj = fj − b−1
1 b2njNM−1f0.

Denote by Rτ,N the operator generated by the left-hand side of system (4.35)–(4.37),

Rτ,N =

 [Cτ ]3×3 [Aj4
τ ]3×1 [Aj5

τ ]3×1

[A4j
τ ]1×3 A44

τ A45
τ

[A5j
τ ]1×3 A54

τ A55
τ


5×5

,
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where
[Cτ ]3×3 = [Ajk

τ ]3×3 − b2b
−1
1 [njN ]3×1[M−1nk]1×3, j, k = 1, 2, 3.

Note that the difference Aτ −Rτ,N : [H1/2(S)]5 → [H−1/2(S)]5 is a compact operator.
Since the Steklov–Poincaré type operator Aτ is strongly elliptic pseudodifferential operator of order

1, it follows that the operator Aτ : [H1/2(S)]5 → [H−1/2(S)]5 is Fredholm with index zero. Hence the
operators

Rτ,N : [H1/2(S)]5 → [H−1/2(S)]5, Pτ,N : [H1/2(S)]6 → [H−1/2(S)]6

are Fredholm with index zero.
Now let us investigate the null space of the operator Pτ,N . Let g ∈ [H1/2(S)]5 and h ∈ H1/2(S)

be solutions of the homogeneous system (4.31)–(4.33)

Pτ,N (g, h)⊤ = 0,

and put
Ũ = (ũ, ũ4, ũ5)

⊤ = VτH−1
τ g, w̃ = (Wω + µVω)h.

Evidently, Ũ and w̃ solve the homogeneous problem (Nτ ).
From the structure of a solution to the homogeneous problem (Nτ ) (see Theorem 4.1) we have

Ũ = (0, 0, 0, c1, c2)
⊤ in Ω+, w̃ = 0 in Ω−,

where c1 and c2 are arbitrary constants. Then {Ũ}+ = (0, 0, 0, c1, c2)
⊤ = g on S, i.e. g1 = g2 = g3 = 0,

g4 = c1 and g5 = c2. Since {w}− = Nh = 0 on S, the invertibility of the operator N yields that h = 0
on S. Whence we obtain that if Pτ,N (g, h)⊤ = 0, then g = (0, 0, 0, c1, c2)

⊤ and h = 0.
Therefore, the dimension of the null space of the operator Pτ,N equals to 2, dim KerPτ,N = 2.

Thus dim KerP∗
τ,N = 2, where P∗

τ,N : [H1/2(S)]6 → [H−1/2(S)]6 is the operator adjoint to Pτ,N :

[H1/2(S)]6 → [H−1/2(S)]6.
Now we can formulate the following existence theorem.

Theorem 4.4. Let τ = iσ, σ ̸= 0, σ ∈ R, and let f0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3, and
f
(N)
1 ∈ H−1/2(S), f (N)

2 ∈ H−1/2(S). Then problem (Nτ ) is solvable if and only if the condition

⟨f0, ϕ1⟩S +

3∑
j=1

⟨fj , ϕj+1⟩S + ⟨f (N)
1 , ϕ5⟩S + ⟨f (N)

2 , ϕ6⟩S = 0 (4.38)

is fulfilled, where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6)
⊤ is a nontrivial solution of the homogeneous equation

P∗
τ,Nϕ = 0. If condition (4.38) holds, then solutions of problem (Nτ ) are represented by the potentials

U = VτH−1
τ g in Ω+, w = (Wω + µVω)h in Ω−,

where the densities g ∈ [H1/2(S)]5 and h ∈ H1/2(S) are defined from system (4.31)–(4.35), and they
are defined modulo the addend vector (0, 0, 0, c1, c2)

⊤ with arbitrary complex constants c1 and c2.

5 Existence results for the steady state oscillation
problems (Dω) and (Nω)

5.1 Existence of solution of the Dirichlet type problem (Dω)

We look for a solution of problem (Dω) in the form

U = Vωg in Ω+, w = (Wω + µVω)h in Ω−, µ ∈ C, Imµ ̸= 0,

where g ∈ [H−1/2(S)]5 and h ∈ H1/2(S) are unknown densities, and ω ∈ R \ {0}. From Theorems 6.1
and 6.3 of Appendix it follows that U ∈ [H1(Ω+)]5 and w ∈ H1

loc(Ω
−).
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Transmission conditions (1.11), (1.12) and the Dirichlet boundary conditions (1.13), (1.14) lead to
the following system of pseudodifferential equations with respect to the unknowns g and h:

[Hωg]lnl − b1M(h) = f0 on S, (5.1)[
(−2−1I4 + Kω)g

]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (5.2)

[Hωg]4 = f
(D)
1 on S, (5.3)

[Hωg]5 = f
(D)
2 on S. (5.4)

The operator generated by the left-hand side of system (5.1)–(5.4) reads as

Qω,D =


[nlHlk

ω ]1×5 −b1M[
(−2−1I5 + Kω)

jk
]
3×5

[−b2njN ]3×1

[H4k
ω ]1×5 0

[H5k
ω ]1×5 0


6×6

, j = 1, 3, k = 1, 5.

By Theorem 6.5, the operator

Qω,D : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]4 × [H1/2(S)]2

is bounded.
In view of estimates (4.19)-(4.21) it follows that the main parts of the operators Hω and Hτ (as

well as the main parts of the operators Kω and Kτ ) are the same, implying that the operators

Hω − Hτ : [H−1/2(S)]5 → [H1/2(S)]5, (5.5)
Kω − Kτ : [H−1/2(S)]5 → [H−1/2(S)]5 (5.6)

are compact. Hence the operator

Qω,D −Qτ,D : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]4 × [H1/2(S)]2

is compact, where Qτ,D := Pτ,DTτ with

Tτ :=

(
Hτ [0]4×1

[0]1×4 I1

)
5×5

. (5.7)

Therefore, from the invertibility of the operators Pτ,D : [H1/2(S)]6 → [H−1/2(S)]5 × H1/2(S) and
Tτ : [H−1/2(S)]5 × H1/2(S) → [H1/2(S)]6 (see Section 4) the invertibility of the operator Qτ,D :
[H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]5 ×H1/2(S) follows. In turn, this implies that the operator

Qω,D : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]4 × [H1/2(S)]2 (5.8)

is Fredholm with index zero.
Let us show that for ω ̸∈ JD(Ω+) the operator Qω,D is injective. Indeed, let g ∈ [H−1/2(S)]5 and

h ∈ H1/2(S) be solutions of the homogeneous system

Qω,D(g, h)⊤ = 0 on S.

Construct a vector-function U = Vωg and a scalar function w = (Wω + µVω)h with µ ∈ C, Imµ ̸= 0;
Clearly, the pair (U,w) solves the homogeneous problem (Dω). Since ω ̸∈ JD(Ω+), from Theorem 2.1
we have that

U = Vωg = 0 in Ω+, w = (Wω + µVω)h = 0 in Ω−.

In view of the equation {w}− = N (h) = 0 on S and the invertibility of the operator N we deduce
that h = 0 on S. From continuity of a single layer potential we have {U}+ = {U}− = 0 on S.
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Thus U = Vωg solves the exterior homogeneous Dirichlet problem

A(∂, ω)U = 0 on Ω−, {U}− = 0 on S. (5.9)

U = Vωg ∈ Mm1,m2,m3
(P) and, by Theorem 3.4, U = Vωg ≡ 0 in Ω−. Using the jump formula

{TU}− − {TU}+ = g on S, we get g = 0 on S. Thus the null space of the Fredholm operator (5.8) is
trivial and since the index equals to zero we conclude that (5.8) is invertible.

These results imply the following assertion.

Theorem 5.1. If ω ̸∈ JD(Ω+), then problem (Dω) is uniquely solvable.

Now let us consider the case where ω is Jones’s frequency, ω ∈ JD(Ω+).
The operator adjoint to Qω,D has the following form:

Q∗
ω,D =

(
[H∗kl

ω nl]5×1

[
(−2−1I4 + K∗

ω)
kj
]
5×3

[H∗k4
ω ]5×1 [H∗k5

ω ]5×1

−b1M∗ [−b2N ∗nj ]1×3 0 0

)
6×6

, j = 1, 3, k = 1, 5,

where

H∗
ω(g)(z) =

∫
S

[Γ(y − z, ω)]⊤g(y) dyS, z ∈ S,

K∗
ω(g)(z) =

∫
S

[
T (∂y, n(y) Γ(y − z, ω))

]⊤
g(y)dyS, z ∈ S,

N ∗(h)(z) =
(
− 2−1I1 +Kω

)
(h)(z) + µH∗

ω(h)(z), z ∈ S,

M∗(h)(z) = L∗
ω(h)(z) + µ

(
2−1I1 +K∗

ω

)
(h)(z), z ∈ S,

while

Kω(h)(z) =

∫
S

∂n(z)γ(z − y, ω)h(y) dyS, z ∈ S,

K∗
ω(h)(z) =

∫
S

∂n(y)γ(z − y, ω)h(y) dyS, z ∈ S,

H∗
ω(h)(z) =

∫
S

γ(z − y, ω)h(y) dyS, z ∈ S,

L∗
ω(h)(z) =

{
∂n(z)W̃ω(h)(z)

}±
, z ∈ S,

W̃ω(h)(x) =

∫
S

∂n(y)γ(x− y, ω)h(y) dyS, x ̸∈ S,

Ṽω(h)(x) =

∫
S

γ(x− y, ω)h(y) dyS, x ̸∈ S.

The adjoint operator possesses the following mapping property:

Q∗
ω,D : [H1/2(S)]4 × [H−1/2(S)]2 → [H1/2(S)]5 ×H−1/2(S).

Let Ψ := (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6)
⊤ ∈ [H1/2(S)]4×[H−1/2(S)]2 be a solution of the homogeneous adjoint

system
Q∗

ω,DΨ = 0. (5.10)
Construct the potentials

Ũ = ṼωΨ
(1) + W̃ωΨ

(2) + ṼωΨ
(3) in Ω−, (5.11)

w̃ = −b1W̃ωψ1 − b2Ṽω[Ψ
′ · n] in Ω+, (5.12)
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where

Ψ(1) := (nψ1, 0)
⊤, Ψ(2) := (Ψ′, 0)⊤, Ψ(3) := (0, 0, 0, ψ5, ψ6)

⊤, Ψ′ = (ψ2, ψ3, ψ4)
⊤,

Ṽω(g)(x) :=

∫
S

[Γ(y − x, ω)]⊤g(y) dyS, x ∈ Ω+,

W̃ω(g)(x) :=

∫
S

[
T (∂y, n(y))Γ(y − x, ω)

]⊤
g(y) dyS, x ∈ Ω+.

The vectors Ṽω(g) and W̃ω(g) are the single and double layer potentials associated with the operator
A∗(∂, ω).

From (5.10) it follows that

{Ũ}− = 0 and {∂nw̃ + µw̃}+ = 0 on S,

where µ = µ1 + iµ2, µ2 ̸= 0.
Since the vector Ũ ∈ [H1

loc(Ω
−)]5 ∩Mm1,m2,m3

(P∗) and solves the homogeneous Dirichlet problem

A∗(∂, ω)Ũ = 0 in Ω−, {Ũ}− = 0 on S,

the uniqueness Theorem 3.5 implies that Ũ = 0 in Ω−.
On the other hand, the function w̃ ∈ H1(Ω+) solves the homogeneous Robin type problem

(∆ + ρ2ω
2)w̃ = 0 in Ω+, (5.13)

{∂nw̃ + µw̃}+ = 0 on S. (5.14)

This problem possesses only the trivial solution. Indeed, the following Green’s first formula holds:∫
Ω+

(∆ + ρ2ω
2)w̃w̃ dx+

∫
Ω+

|∇w̃| dx− ρ2ω
2

∫
Ω+

|w̃| dx =
⟨
{∂nw̃}+, {w̃}+

⟩
S
, (5.15)

Taking into account equation (5.13) and the boundary condition (5.14), from (5.15) we get∫
Ω+

|∇w̃| dx− ρ2ω
2

∫
Ω+

|w̃| dx = −µ1

∫
S

∣∣{w̃}+
∣∣2 dS + iµ2

∫
S

∣∣{w̃}+
∣∣2 dS.

Therefore, {w̃}+ = 0. For a solution w̃ ∈ H1(Ω+) to the homogeneous equation (5.13) we have the
following integral representation:

w̃ =Wω

(
{w̃}+

)
− Vω

(
{∂nw̃}+

)
in Ω+. (5.16)

Since {w̃}+ = 0 and {∂nw̃}+ = 0, from the representation formula (5.16) we find that w̃ = 0 in Ω+.
Using the jump formulae for potentials (5.11) and (5.12), we derive that on the surface S the

following relations hold:

{w̃}− = b1ψ1,

{∂nw̃}− = −b2 Ψ′ · n,

{[T̃ Ũ ]j}+ = −njψ1, j = 1, 2, 3,

{[T̃ Ũ ]4}+ = −ψ5,

{[T̃ Ũ ]5}+ = −ψ6,

{Ũ}+ = (Ψ′, 0)⊤,

{Ũ4}+ = 0,

{Ũ5}+ = 0.
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Hence we deduce that Ũ = (Ũ1, Ũ2, Ũ3, Ũ4, Ũ5)
⊤ = (Ũ ′, Ũ4, Ũ5)

⊤ with Ũ ′ = (Ũ1, Ũ2, Ũ3, )
⊤ and w̃ solve

the following homogeneous transmission problem:

A∗(∂, ω)Ũ = 0 in Ω+,

(∆ + ρ2ω
2)w̃ = 0 in Ω−,

{Ũ ′ · n}+ + b
−1

2 {∂nw̃}− = 0 on S,{
[T̃ (∂, n)Ũ ]j

}+
+ b

−1

1 {w̃}−nj = 0 on S, j = 1, 2, 3,

{Ũ4}+ = 0 on S,

{Ũ5}+ = 0 on S,

From the uniqueness result (see Remark 2.3) it follows that w̃ = 0 in Ω− and Ũ ∈ X∗
D,ω(Ω

+), i.e., Ũ
belongs to the space of Jones modes X∗

D,ω(Ω
+). Then we obtain

ψ1 = 0, ψj+1 = {Ũj}+ j = 1, 2, 3, ψ5 = −
{
[T̃ Ũ ]4

}+
, ψ6 = −

{
[T̃ Ũ ]5

}+
.

Vice versa, if Ũ ∈ X∗
D,ω(Ω

+), then from the representation formula

Ũ = W̃ω{Ũ}+ − Ṽω{T̃ Ũ}+ in Ω+ (5.17)

it is easy to show that the vector-function Ψ̃ := (0, {Ũ1}+, {Ũ2}+, {Ũ3}+,−{[T̃ Ũ ]4}+,−{[T̃ Ũ ]5}+)⊤
is a solution of the adjoint homogeneous system (5.10). Indeed, let us substitute Ψ̃ in system (5.10).
Therefore, we obtain the equalities[

(−2−1I4 + K∗
ω)

kj
]
5×3

{Ũ ′}+ − [H∗k4
ω ]5×1

{
[T̃ Ũ ]4

}+ − [H∗k5
ω ]5×1

{
[T̃ Ũ ]5

}+
= 0, (5.18)

j = 1, 3, k = 1, 5,

−b2N ∗({Ũ ′}+ · n
)
= 0, (5.19)

where Ũ ′ = (Ũ1, Ũ2, Ũ3)
⊤.

By taking a trace of the representation formula (5.17), we get

{Ũ}+ = 2−1{Ũ}+ + K∗
ω{Ũ}+ − H∗

ω{T̃ Ũ}+ on S,

i.e., we have
(−2−1I + K∗

ω){Ũ}+ − H∗
ω{T̃ Ũ}+ = 0 on S. (5.20)

Since Ũ ∈ X∗
D,ω(Ω

+), we have

{Ũ4}+ = 0, {Ũ5}+ = 0,
{
[T̃ Ũ ]j

}+
= 0, j = 1, 2, 3, (5.21)

{Ũ ′}+ · n = 0. (5.22)

Therefore, taking into account (5.21) in equality (5.20), we find that (5.18) is true, and it follows from
(5.22) that (5.19) is true.

Therefore,
dim kerQω,D = dim kerQ∗

ω,D = dimX∗
D,ω(Ω

+).

Thus the orthogonality condition

3∑
j=1

⟨
fj , {Ũj}+

⟩
S
−
⟨{

[T̃ Ũ ]4
}+
, f

(D)

1

⟩
S
−
⟨{

[T̃ Ũ ]5
}+
, f

(D)

2

⟩
S
= 0 ∀ Ũ ∈ X∗

D,ω(Ω
+), (5.23)

is necessary and sufficient for the system of pseudodifferential equations (5.1)–(5.4) to be solvable.
We can now formulate the following existence theorem.
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Theorem 5.2. If ω ∈ JD(Ω+), then the Dirichlet type problem (Dω) is solvable if and only if the
orthogonality condition (5.23) holds, and a solution is defined modulo Jones modes XD,ω(Ω

+).

Remark 5.3. Let (f1, f2, f3) = nψ, where ψ is a scalar function and n is the unit normal vector to
S (see (1.18)). Then the necessary and sufficient condition (5.23) reads as⟨{

[T̃ Ũ ]4
}+
, f

(D)
1

⟩
S
+
⟨{

[T̃ Ũ ]5
}+
, f

(D)
2

⟩
S
= 0 ∀ Ũ ∈ X∗

D,ω(Ω
+).

Clearly, if the Dirichlet datum for the electric potential and magnetic potential are constant, or
ω ̸∈ J∗

D(Ω+), then problem (Dω) is always solvable.

5.2 Existence of solution to the Neumann type problem (Nω)

We look for a solution of the Neumann type problem (Nω) in the form of the following potentials:

U = Vωg in Ω+, w = (Wω + µVω)h in Ω−,

where g ∈ [H−1/2(S)]5 and h ∈ H1/2(S) are unknown densities. From Theorems 6.1 and 6.3 of
Appendix it follows that U ∈ [H1(Ω+)]5 and w ∈ H1

loc(Ω
−).

Transmission conditions (1.11), (1.12) and the Neumann boundary conditions (1.16), (1.17) lead
to the following system of pseudodifferential equations with respect to the unknowns g and h:

[Hωg]lnl − b1M(h) = f0 on S, (5.24)[
(−2−1I5 + Kω)g

]
j
− b2njN (h) = fj on S, j = 1, 2, 3, (5.25)[

(−2−1I5 + Kω)g
]
4
= f

(N)
1 on S, (5.26)[(

− 2−1I5 + Kω

)
g
]
5
= f

(N)
2 on S. (5.27)

The operator generated by the left-hand side of system (5.24)–(5.27) reads as

Qω,N =


[nlHlk

ω ]1×5 −b1M[
(−2−1I5 + Kω)

jk
]
3×5

[−b2njN ]3×1[
(−2−1I5 + Kω)

4k
]
1×5

0[
(−2−1I5 + Kω)

5k
]
1×5

0


6×6

, j = 1, 3, k = 1, 5.

Due to Theorem 6.5 (see Appendix), it is evident that the operator

Qω,N : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]6

is bounded.
It follows from (5.5) and (5.6) that the operator

Qω,N −Qτ,N : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]6

is compact, where Qτ,N := Pτ,NTτ with the operator Tτ defined in (5.7). Since the operator Qτ,N is
Fredholm with index zero (see Section 4), we have that the operator

Qω,N : [H−1/2(S)]5 ×H1/2(S) → [H−1/2(S)]6

is Fredholm with index zero.
Recall that JN (Ω+) = R, due to Theorem 2.2 (see the end of Subsection 2.1).
The operator adjoint to Qω,N has the form

Q∗
ω,N =

(
[H∗kl

ω nl]5×1

[
(−2−1I5+K∗

ω)
kj
]
5×3

[(−2−1I5+K∗
ω)

k4]5×1

[
(−2−1I5+K∗

ω)
k5
]
5×1

−b1M∗ [
− b2N ∗nj

]
1×3

0 0

)
6×6

,

j = 1, 3, k = 1, 5,
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and
Q∗

ω,N : [H1/2(S)]6 → [H1/2(S)]5 ×H−1/2(S)

is bounded.
Let Φ := (φ1, φ2, φ3, φ4, φ5, φ6)

⊤ ∈ [H1/2(S)]6 be a solution of the homogeneous adjoint system

Q∗
ω,NΦ = 0. (5.28)

Construct the potentials

Ũ = ṼωΦ
(1) + W̃ωΦ

(2) in Ω−, (5.29)
w̃ = −b1W̃ωφ1 − b2Ṽω[Φ

′ · n] in Ω+, (5.30)

where Φ(1) := (nφ1, 0)
⊤, Φ(2) := (Φ′, φ5, φ6)

⊤, Φ′ := (φ2, φ3, φ4)
⊤.

From (5.28) we have

{Ũ}− = 0 on S,{
∂nw̃ + µw̃

}+
= 0 on S,

where Ũ ∈ [H1
loc(Ω

−)]5 ∩Mm1,m2,m3
(P∗) and w̃ ∈ H1(Ω+).

Therefore, from the uniqueness results for the exterior Dirichlet problem (see Theorem 3.5) and
interior Robin type problem, we conclude that Ũ = 0 in Ω− and w̃ = 0 in Ω+.

From jump formulae for potentials (5.29) and (5.30) we find that on the surface S the following
relations hold:

{w̃}− = b1φ1, (5.31)
{∂nw̃}− = −b2Φ′ · n, (5.32)

{Ũ}+ = (Φ′, φ5, φ6)
⊤, (5.33){

[T̃ Ũ ]j
}+

= −njφ1, j = 1, 2, 3, (5.34){
[T̃ Ũ ]4

}+
= 0, (5.35){

[T̃ Ũ ]5
}+

= 0. (5.36)

Hence we obtain that Ũ = (Ũ1, Ũ2, Ũ3, Ũ4, Ũ5)
⊤ = (Ũ ′, Ũ4, Ũ5)

⊤ with Ũ ′ = (Ũ1, Ũ2, Ũ3)
⊤ and w̃ solve

the following homogeneous problem:

A∗(∂, ω)Ũ = 0 in Ω+,

(∆ + ρ2ω
2)w̃ = 0 in Ω−,

{Ũ ′ · n}+ + b
−1

2 {∂nw̃}− = 0 on S,{
[T̃ (∂, n)Ũ ]j

}+
+ b

−1

1 {w̃}−nj = 0 on S, j = 1, 2, 3,{
[T̃ Ũ ]4

}+
= 0 on S,{

[T̃ Ũ ]5
}+

= 0 on S.

From uniqueness result (see Remark 2.4) we have w̃ = 0 in Ω− and Ũ ∈ X∗
N,ω(Ω

+), i.e., Ũ belongs
to the space of Jones modes X∗

N,ω(Ω
+).

From (5.31) and (5.33) we get

φ1 = 0, φj+1 = {Ũj}+, j = 1, 5.

On the other hand, if Ũ ∈ X∗
N,ω(Ω

+), then using the representation formula (5.17) it is easy to
show that the vector-function Φ̃ := (0, {Ũ1}+, {Ũ2}+, {Ũ3}+, {Ũ4}+, {Ũ5}+)⊤ is a solution of the
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homogeneous adjoint system (5.28). Indeed, let us substitute Φ̃ in system (5.28). Therefore, we
obtain the equalities [

(−2−1I5 + K∗
ω)
]
{Ũ}+ = 0, (5.37)

−b2N ∗({Ũ ′}+ · n
)
= 0. (5.38)

Taking the trace of the representation formula (5.17), we get

(−2−1I + K∗
ω){Ũ}+ − H∗

ω{T̃ Ũ}+ = 0 on S. (5.39)

Since Ũ ∈ X∗
N,ω(Ω

+), we have

{T̃ Ũ}+ = 0, (5.40)
{Ũ ′}+ · n = 0. (5.41)

Therefore, taking into account (5.40) in equality (5.39), we obtain that (5.37) is true, and it follows
from (5.41) that (5.38) is true.

Therefore,
dim kerQω,N = dim kerQ∗

ω,N = dimX∗
N,ω(Ω

+).

Thus the orthogonality condition
3∑

j=1

⟨
fj , {Ũj}+

⟩
S
+
⟨
f
(N)
1 , {Ũ4}+

⟩
S
+
⟨
f
(N)
2 , {Ũ5}+

⟩
S
= 0 ∀ Ũ ∈ X∗

N,ω(Ω
+) (5.42)

is necessary and sufficient for the system of pseudodifferential equations (5.24)-(5.27) to be solvable.
The following existence theorem follows directly.

Theorem 5.4. The Neumann type problem (Nω) is solvable if and only if the orthogonality condition
(5.42) holds, and a solution is defined modulo Jones modes XN,ω(Ω

+).

Remark 5.5. If (f1, f2, f3) = nψ, where ψ is a scalar function and n is the unit normal vector to S
(see (1.18)), then the necessary and sufficient condition (5.42) can be written in the form⟨

f
(N)
1 , {Ũ4}+

⟩
S
+
⟨
f
(N)
2 , {Ũ5}+

⟩
S
= 0 ∀ Ũ ∈ X∗

N,ω(Ω
+).

Clearly, if f (N)
1 = f

(N)
2 = 0, then problem (Nω) is always solvable.

6 Appendix
For the readers convenience, we collect here some results describing properties of the layer potentials.
Here, we preserve the notation from the main text of the paper. For the potentials associated with
the Helmholtz equation, the following theorems hold (see [13,20,32,37]).

Theorem 6.1. Let s ∈ R, 1 < p < ∞, S ∈ C∞. Then the single and double layer scalar potentials
can be extended to the following continuous operators:

Vω : Hs(S) → Hs+3/2(Ω+), Vω : Hs(S) → H
s+3/2
loc (Ω−),

Wω : Hs(S) → Hs+1/2(Ω+), Wω : Hs(S) → H
s+1/2
loc (Ω−).

Theorem 6.2. Let s ∈ R, 1 < p <∞, S ∈ C∞. Then the operators

Hω : Hs(S) → Hs+1(S),

Kω,K∗
ω : Hs(S) → Hs+1(S),

Lω : Hs(S) → Hs−1(S)

are continuous.
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For the potentials of steady state oscillation and pseudo-oscillation equations, the following theo-
rems hold (see [5–8,12]).

Theorem 6.3. Let s ∈ R, 1 < p < ∞, S ∈ C∞. Then the vector potentials Vω, Wω, Vτ and Wτ

are continuous in the following spaces:

Vω,Vτ : [Hs(S)]5 → [Hs+3/2(Ω+)]5
(
[Hs(S)]5 → [H

s+3/2
loc (Ω−)]5

)
,

Wω,Wτ : [Hs(S)]5 → [Hs+1/2
p (Ω+)]5

(
[Hs(S)]5 → [H

s+1/2
loc (Ω−)]5

)
.

Theorem 6.4. Let s ∈ R, 1 < p <∞, S ∈ C∞. Then the operators

Hτ : [Hs(S)]5 → [Hs+1(S)]5,

Kτ , K̃τ : [Hs(S)]5 → [Hs(S)]5,

Lτ : [Hs(S)]5 → [Hs−1(S)]5

are bounded.
The operators Hτ and Lτ are strongly elliptic pseudodifferential operators of order −1, and 1

respectively, while the operators ±2−1I5+Kτ and ±2−1I5+K̃τ are elliptic pseudodifferential operators
of order 0.

Moreover, the operators Hτ , 2−1I5 + K̃τ and 2−1I5 +Kτ are invertible, whereas the operators Lτ ,
−2−1I5 + K̃τ and −2−1I5 + Kτ are Fredholm operators with index zero.

Theorem 6.5. Let s ∈ R, 1 < p <∞, S ∈ C∞. Then the operators

Hω : [Hs(S)]5 → [Hs+1(S)]5,

±2−1I5 + Kω : [Hs(S)]5 → [Hs(S)]5,

±2−1I5 + K̃ω : [Hs(S)]5 → [Hs(S)]5,

Lω : [Hs(S)]5 → [Hs−1(S)]5

are bounded Fredholm operators with index zero.
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presented to illustrate the applications of the obtained results.
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ÒÄÆÉÖÌÄ. ÛÄÃÀÒÄÁÉÓ ÈÄÏÒÄÌÉÓ, ÆÄÃÀ ÃÀ ØÅÄÃÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÌÄÈÏÃÉÓÀ ÃÀ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ
ÈÄÏÒÄÌÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÒÀÌÃÄÍÉÌÄ ÛÄÃÄÂÉ ×ÒÀØÝÉÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍ-
ÔÏËÄÁÉÓÈÅÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÛÄÓÀáÄÁ, ÒÏÃÄÓÀÝ ÀÒÀßÒ×ÉÅÏÁÀ
ÀÊÌÀÚÏ×ÉËÄÁÓ ÆÒÃÉÓ ÐÉÒÏÁÄÁÓ ÓÀÓÒÖË ÉÍÔÄÒÅÀËÆÄ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÓÀ-
ÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional calculus has played a significant role in engineering, science, economy, and other fields. Most
of papers and books on fractional calculus are devoted to the solvability of linear initial fractional
differential equations in terms of special functions. Recently, there appeared some papers dealing
with the existence of solutions (or positive solutions) of nonlinear initial value problems of fractional
differential equation using the techniques of nonlinear analysis (see [2, 9] and the references therein).

In the literature, cDα
0+u(t) + f(t, u(t)) = 0 is known as a single-term equation. This kind of frac-

tional differential equation has many applications and has been studied widely. Equations containing
more than one fractional differential terms are called multi-term fractional differential equations; they
have some concrete applications in many fields. Due to the complexity of such a kind of equations,
it seems that there has been no result for a general multi-term fractional differential equation. Only
some special cases have been investigated. A classical example is the so-called Bagley–Torvik equation
(B-T equation for short) [12],

Au′′(t) +BcD
3
2
0+u(t) + Cu(t) = f(t),

where A, B and C are certain constants, cDα
0+ is the Caputo fractional derivative and f is a given

function. This equation arises from the mathematical model of the motion of a thin plate in a
Newtonian fluid. The B-T equation, as well as various generalizations, have wide applications in fluid
dynamics and hence attracted much attention. The analytic solution and the numerical solution for
the B-T equation were studied in [4] and [5], respectively.

J. Cermak et al. [3] investigated the two-term fractional differential equation

u′′(t) +BcDβ
0+u(t) + bu(t) = 0

with coefficients a, b ∈ R and positive real orders 0 < β < 2. It contains the important case such as
the B-T equation for β = 3

2 . Qualitative properties of the true and numerical solutions were described
and numerical stability regions for the classical and fractional models were compared.

In [14], S. Zhang discussed the following boundary-value problems for two-point nonlinear fractional
differential equation:{

Dα
0+u(t) + q(t)f

(
u(t), u′(t), u′′(t), . . . , u(n−2)(t)

)
= 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,

where α is a positive number, Dα
0+ is the Riemann–Liouville’s fractional derivative, q may be singular

at t = 0 and f(x0, x1, . . . , xn−2) may be singular at x0 = 0, x1 = 0, x2 = 0, . . . , x(n−2) = 0. The
existence of positive solutions to the problem is obtained by the fixed point theorem for the mixed
monotone operator.

In [7], the authors have investigated the existence of solutions for two-point boundary value prob-
lems 

Dα
0+u(t) + f

(
t, u(t), Dα−2

0+ u(t)
)
= 0, t ∈ (0, 1),

u(k)(0) = 0, k = 0, 1, . . . , n− 3, n = [α] + 1,

Dα−2
0+ u(1) = Dα−1

0+ u(0) = 0,

for fractional differential equations of arbitrary order α > 2, by applying upper and lower solutions
method together with Schauder’s fixed point theorem. First, they transformed the posed problem to
an ordinary first order initial value problem that they modified to prove the existence of solutions
for the problem. Moreover, they gave the explicit expression of the upper and lower solutions of the
problem.

Recently, in [13], the authors considered the existence of solutions of the boundary-value problem
for two-term three-point nonlinear fractional differential equation:{

λDα
0+u(t) +Dβ

0+u(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = 0, µDγ1

0+u(T ) +Dγ2

0+u(η) = γ3,
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where 1 < α ≤ 2, 1 ≤ β < α, 0 < λ ≤ 1, 0 ≤ µ ≤ 1, 0 ≤ γ1 ≤ α − β, γ2 ≥ 0, 0 < η < T are
the constants, Dα

0+, Dβ
0+ are the Riemann–Liouville fractional derivative, and f : [0, T ] × R → R is

continuous. By means of the fixed point theorems and Gronwall type inequality, some results on the
existence of solutions and the Hyers–Ulam stability are obtained. (For more results see [1, 6, 10, 11]
and the references therein.)

Motivated by the above results, in this paper we deal with the boundary value problem of the
two-term fractional differential equation:{

D2+α
0+ u(t) + f

(
t, u(t), Dα

0+u(t)
)
= 0, t ∈ (0, 1),

u(0) = 0, Dα
0+u(t)

∣∣
t=0

= Dα
0+u(t)

∣∣
t=1

= 0,
(1.1)

where 0 < α ≤ 1 is a real number and Dα
0+ is the standard Riemann–Liouville fractional derivative,

f : [0, 1] × R2 → R is continuous. We prove a new comparison theorem, and then establish the
existence of solutions for the above-given problem using the comparison theorem, fixed point theory
and the method of upper and lower solutions. By these methods, we can obtain the iterative scheme
for this problem, which implies that the solutions are computable.

The paper is organized as follows. In Section 2, a new comparison theorem is proved. The existence
results for problem (1.1) are established in Section 3. In the same section, we give the proof of the
main result. An example is presented in the last section to illustrate the application of our results.

2 Preliminaries and comparison theorem
In this section, we first recall some standard definitions and notation.

Let α > 0 be a constant.

Definition 2.1 ([8]). The Riemann–Liouville fractional integral Iαa+f of order α is defined by

Iαa+f(t) =
1

Γ(α)

t∫
a

f(x)

(t− x)1−α
dx, t > a,

provided that the right-hand side is defined point-wisely, where Γ is the Gamma function.

Definition 2.2 ([8]). The Riemann–Liouville fractional derivatives Dα
a+f of order α are defined by

Dα
a+f(t) =

( d

dx

)n

(In−α
a+ f)(t) =

( d

dx

)n 1

Γ(n− α)

t∫
a

f(x)

(t− x)α−n+1
dx, n = [α] + 1, t > a,

provided that the right-hand side is defined point-wisely, where [α] denotes the integer part of α.

Lemma 2.3 ([8]). Let m ∈ N+ and D = d/dt. If the fractional derivatives (Dα
a+f)(t) and (Dα+m

a+ f)(t)
exist, then

(DmDα
a+f)(t) = (Dα+m

a+ f)(t).

Remark 2.4.

(1) The Riemann–Liouville fractional integral satisfies the equality

Iα0+t
β =

Γ(β + 1)

Γ(β + α+ 1)
tβ+α, α > 0, β > −1, t > 0.

(2) The equality Dα
0+I

α
0+u(t) = u(t) holds for u ∈ L(0, 1).

(3) If α ∈ (0, 1], then for u ∈ L(0, 1), Dα
a+u ∈ L(0, 1) and arbitrary c ∈ R, the equality

Iα0+D
α
0+u(t) = u(t) + ctα−1

holds.
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The following comparison theorem is crucial in this paper.

Lemma 2.5. Let λ1, λ2 be two nonnegative numbers, r > 0 be a constant. If m(t) ∈ C2[0, 1] satisfies

m′′(t) ≥ λ1

Γ(r)

t∫
0

(t− s)
r−1

m(s) ds+ λ2m(t), 0 < t < 1, m(0) ≤ 0, m(1) ≤ 0,

then m(t) ≤ 0, ∀ t ∈ [0, 1], provided that 0 ≤ λ1 + λ2Γ(r + 1) ≤ 2Γ(r + 1).

Proof. We will verify the assertion in the following cases.

Case 1. If λ1 = λ2 = 0, then we have m′′(t) ≥ 0, which implies that m(t) is a convex function on
[0, 1]. Hence, we have m(t) ≤ min{m(0),m(1)} ≤ 0, t ∈ [0, 1].

Case 2. Let λ1 = 0, 0 < λ2 < 2.
Conversely, suppose there exists t0 ∈ (0, 1) such that m0 = m(t0) = maxm(t) > 0, then m′(t0) = 0,

m′′(t0) ≤ 0. But m′′(t0) ≥ λ2m(t0) implies m′′(t0) > 0, which is a contradiction.

Case 3. Let λ1 > 0, λ2 ≥ 0 and 0 < λ1 + λ2Γ(r + 1) ≤ 2Γ(r + 1).
Assume that there exists t0 ∈ (0, 1) such that m0 = m(t0) = max

0≤t≤1
m(t) > 0, then m′(t0) = 0,

m′′(t0) ≤ 0. Hence, by

0 ≥ m′′(t0) ≥
λ1

Γ(r)

t0∫
0

(t0 − s)r−1m(s) ds+ λ2m(t0),

we have
t0∫
0

(t0 − s)
r−1

m(s) ds < 0.

This implies that there is t1 ∈ [0, t0) such that m1 = m(t1) = min
t∈[0,t0]

m(t) < 0. According to

Taylor’s formula, there is λ ∈ (t1, t0) such that

m1 = m(t1) = m(t0) +m′(t0)(t1 − t0) +
m′′(λ)

2
(t1 − t0)

2
.

Since m1 < 0, we have
m′′(λ) =

2(m1 −m0)

(t1 − t0)
2 <

2m1

(t1 − t0)
2 .

Hence

2m1 > m′′(λ) ≥ λ1

Γ(r)

λ∫
0

(λ− s)r−1m(s) ds+ λ2m(λ) ≥ λ1

Γ(r)

λ∫
0

(λ− s)
r−1

m1 ds+ λ2m1

=
λ1

Γ(r + 1)
λrm1 + λ2m1 >

λ1

Γ(r + 1)
m1 + λ2m1.

This implies that λ1+λ2Γ(r+1) > 2Γ(r+1), which contradicts the assumption that 0 ≤ λ1+λ2Γ(r+
1) ≤ 2Γ(r + 1).

This ends the proof.

Corollary 2.6. Let λ1, λ2 be two nonnegative numbers, 0 < α ≤ 1 be a constant. If h(t) ∈ C3[0, 1]
satisfies {

D2+α
0+ h(t) ≥ λ1h(t) + λ2D

α
0+h(t), 0 < t < 1,

h(0) = 0, Dα
0+h(t)

∣∣
t=0

≤ 0, Dα
0+h(t)

∣∣
t=1

≤ 0,

then h(t) ≤ 0, ∀ t ∈ [0, 1] provided that 0 ≤ λ1 + λ2Γ(α+ 1) ≤ 2Γ(α+ 1).
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Proof. Let m(t) = Dα
0+h(t). Since h(0) = 0, we have

h(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds, m′′(t) = D2+α
0+ h(t)

and

m′′(t) ≥ λ1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds+ λ2m(t), 0 < t < 1, m(0) ≤ 0, m(1) ≤ 0.

Due to Lemma 2.5, we have m(t) ≤ 0, ∀ t ∈ [0, 1]. Hence

h(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds ≤ 0, ∀ t ∈ [0, 1].

This ends the proof.

3 The existence criteria
Throughout this section, we assume that f : [0, 1]×R2 → R is continuous and there exist non-negative
numbers λ1, λ2 such that

(H1) for t ∈ [0, 1], z ∈ R, x1 ≥ x2, y1 ≥ y2

f(t, x1, y1)− f(t, x2, y2) ≥ −λ1(x1 − x2)− λ2(y1 − y2).

(H2) 0 ≤ λ1 + λ2Γ(α+ 1) ≤ 2Γ(α+ 1).

Definition 3.1. A function u ∈ C[0, 1] is called a solution of problem (1.1) if Dα
0+u ∈ C[0, 1], and u

satisfies the equation in (1.1) for t ∈ [0, 1] and the boundary condition in (1.1).

Lemma 3.2. If u ∈ C[0, 1] is a solution of the following boundary value problem{
(Dα

0+u(t))
′′ + f

(
t, u(t), Dα

0+u(t)
)
= 0, t ∈ (0, 1),

u(0) = 0, Dα
0+u(t)

∣∣
t=0

= Dα
0+u(t)

∣∣
t=1

= 0,
(3.1)

then u is a solution of (1.1).

Proof. According to Lemma 2.3, we have

(D2Dα
a+u)(t) = (Dα+2

a+ u)(t),

i.e.,
(Dα

0+u)
′′(t) = (Dα+2

0+ u)(t).

So, if u ∈ C[0, 1] is a solution of (3.1), it is a solution of (1.1).

The main result reads as follows.

Theorem 3.3. If min
0≤t≤1

f(t, 0, 0) ≥ 0 and there exists c > 0 such that

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)
(
1 + α

2
)
1+α]

×
[
0,

c

4

]}
≤ 2c,

then (1.1) has a solution u∗ satisfying

0 ≤ u∗(t) ≤ c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.
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Proof. Let X = C[0, 1], the norm on X be ∥ · ∥ : ∥x∥ = max
0≤t≤1

|x(t)| for x ∈ X. Let K = {x ∈

X | x(t) ≥ 0, 0 ≤ t ≤ 1} and the partial order “≤” on X be induced by K: for x, y ∈ X,
y ≤ x ⇐⇒ x− y ∈ K, then (X,K) is an ordered Banach space.

Having in mind (3.1) (with Dα
0+u replaced by h), we discuss the problem{

−h′′(t) = f
(
t, Iα0+h(t), h(t)

)
,

h(0) = h(1) = 0,
(3.2)

Let D = {h ∈ X | h′′ ∈ X, h(0) = h(1) = 0}. Define L : D ⊂ X → X and N : X → X as follows:

Lh = −h′′(t) + λ1I
α
0+h(t) + λ2h(t),

Nh = f
(
t, Iα0+h(t), h(t)

)
+ λ1I

α
0+h(t) + λ2h(t).

By the definition of L and N , (3.2) can be rewritten as

Lh = Nh. (3.3)

Step 1. L : D ⊂ X → X is a reversible mapping.
Given η ∈ X, we consider the following boundary value problem:{

−h′′(t) + λ1I
α
0+h(t) + λ2h(t) = η(t),

h(0) = h(1) = 0.

It is known that h is the solution of the above problem if and only if h is the fixed point of the
operator Aη : X → X, where

Aηh(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+h(s)− λ2h(s)

]
ds

and

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Since max
t∈[0,1]

1∫
0

G(t, s) ds = 1
8 , we have

|Aηx(t)−Aηy(t)| =
1∫

0

G(t, s)
[
λ1I

α
0+(y(s)− x(s)) + λ2(y(s)− x(s))

]
ds

≤
1∫

0

G(t, s)
[
λ1I

α
0+∥x− y∥+ λ2∥x− y∥

]
ds ≤ 1

8

[ λ1

Γ(α+ 1)
+ λ2

]
∥x− y∥ ≤ 1

4
∥x− y∥

for all t ∈ [0, 1], x, y ∈ X, which implies that Aη : X → X is contractive.
By the completeness of X and an application of the Banach contraction principle, there exists a

unique h ∈ X such that Aηh = h, i.e., Lh = η. In fact, h ∈ D. Hence L : D ⊂ X → X is reversible.
Step 2. L−1 : X → D is continuous.

Let η ∈ X, {ηn} ⊂ X, ηn → η, L−1η = x, L−1ηn = xn, then

xn(t) =

1∫
0

G(t, s)
[
ηn(s)− λ1I

α
0+xn(s)− λ2xn(s)

]
ds,

x(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds.
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As a result,

|xn(t)− x(t)| =
∣∣∣∣

1∫
0

G(t, s)
[
ηn(s)− η(s) + λ1I

α
0+(x− xn)(s) + λ2(x(s)− xn(s))

]
ds

∣∣∣∣
≤

1∫
0

G(t, s)
[
|ηn(s)− η(s)|+ λ1I

α
0+|x− xn|(s) + λ2|x(s)− xn(s)|

]
ds

≤ 1

8

[
∥ηn − η∥+

( λ1

Γ(α+ 1)
+ λ2

)
∥x− xn∥

]
≤ 1

8
∥ηn − η∥+ 1

4
∥x− xn∥.

We have
∥xn − x∥ ≤ 1

6
∥ηn − η∥.

Consequently, xn → x, when ηn → η. Therefore, L−1 : X → D is continuous.
Step 3. L−1 : X → D is compact.

Let S ⊂ X be a bounded subset, i.e., there exists a constant M > 0 such that ∥η∥ ≤ M for any
η ∈ S.

Let η ∈ S,L−1η = x, then

x(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds.

As a result,
∥x∥ ≤ 1

8
∥η∥+ 1

8

( λ1

Γ(α+ 1)
+ λ2

)
∥x∥ ≤ 1

8
∥η∥+ 1

4
∥x∥,

hence
∥x∥ ≤ 1

6
∥η∥ ≤ 1

6
M,

which implies that L−1(S) is bounded.
Furthermore, let t1, t2 ∈ [0, 1], t1 < t2, then for any x ∈ L−1(S), there exists η ∈ D such that

L−1η = x and

|x(t1)− x(t2)| = |Aηx(t1)−Aηx(t2)|

=

∣∣∣∣
1∫

0

(G(t1, s)−G(t2, s))
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds

∣∣∣∣
≤

1∫
0

|G(t1, s)−G(t2, s)| |η(s)− λ1I
α
0+x(s)− λ2x(s)| ds

≤
1∫

0

|G(t1, s)−G(t2, s)| ds
[
∥η∥+

( λ1

Γ(α+ 1)
+ λ2

)
∥x∥

]

≤ 4M

3

1∫
0

|G(t1, s)−G(t2, s)| ds.

Due to the uniform continuity of G(t, s) on [0, 1]× [0, 1], for ∀ ε > 0, there exists σ > 0 such that
|t2 − t1| < σ implies

|G(t1, s)−G(t2, s)| <
3

4M
ε.
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At the same time, we have

|x(t1)− x(t2)| ≤
4M

3

1∫
0

|G(t1, s)−G(t2, s)| ds <
4M

3

3

4M
ε = ε.

Hence L−1(S) is equi-continuous.
Since L−1(S) is bounded and equi-continuous, L−1 : X → D is compact.

Step 4. L−1N : X → D is continuous and increasing.
Since f is continuous, by the definition of N and Step 3, N : X → X and L−1N : X → D are

continuous.
Moreover, for arbitrary η1, η2 ∈ X, η1 ≤ η2, (H1) implies Nη1 ≤ Nη2. Let v1 = L−1Nη1,

v2 = L−1Nη2, then Lv1 = Nη1 ≤ Nη2 = Lv2. Hence we have L(v1 − v2) ≤ 0, i.e.,

−(v1 − v2)
′′(t) +

λ1

Γ(r)

t∫
0

(t− s)r−1(v1(s)− v2(s)) ds+ λ2(v1(t)− v2(t)), 0 < t < 1,

(v1 − v2)(0) = (v1 − v2)(1) = 0.

By Lemma 2.5, we obtain (v1 − v2)(t) ≤ 0 for t ∈ [0, 1], i.e., v1 ≤ v2. Hence L−1N : X → D is
increasing.

Step 5. There exist x, y ∈ D, x ≤ y such that Lx ≤ Nx and Ly ≥ Ny.
Let v(t) = 0. Since

min
0≤t≤1

f(t, 0, 0) ≥ 0,

we have {
D2+α

0+ v(t) + f(t, v(t), Dα
0+v(t)) ≥ 0, t ∈ (0, 1)

v(0) = 0, Dα
0+v(t)

∣∣
t=0

≤ 0, Dα
0+v(t)

∣∣
t=1

≤ 0.

Let
w(t) = c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Noting that for t ∈ [0, 1],

D2+α
0+ w(t) = 2c, w(t) ∈

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
, Dα

0+w(t) ∈
[
0,

c

4

]
and

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×
[
0,

c

4

]}
≤ 2c,

we get {
D2+α

0+ w(t) + f
(
t, w(t), Dα

0+w(t)
)
≤ 0, t ∈ (0, 1),

w(0) = 0, Dα
0+w(t)

∣∣
t=0

≥ 0, Dα
0+w(t)

∣∣
t=1

≥ 0.

By Step 1, there exist x, y ∈ D such that

Lx = N(Dα
0+v(t)), Ly = N(Dα

0+w(t)).

Next, we assert that

(1) x ≤ y;

(2) Dα
0+v(t) ≤ x and Lx ≤ Nx;

(3) y ≤ Dα
0+w(t) and Ly ≥ Ny.
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Since N is nondecreasing, we have N(Dα
0+v(t)) ≤ N(Dα

0+w(t)), hence Lx ≤ Ly. Lemma 2.5
implies x ≤ y. Assertion (1) is verified.

Next, we verify assertion (2).
In fact, by the definition of x, we have{

−x′′(t) + λ1I
α
0+x(t) + λ2x(t) = f

(
t, v(t), Dα

0+v(t)
)
+ λ1v(t) + λ2D

α
0+v(t),

x(0) = x(1) = 0.
(3.4)

Let ϕ(t) = Dα
0+v(t). Then{
−ϕ′′(t) + λ1I

α
0+ϕ(t) + λ2ϕ(t) ≤ f

(
t, v(t), Dα

0+v(t)
)
+ λ1v(t) + λ2D

α
0+v(t),

ϕ(0) ≤ 0, ϕ(1) ≤ 0.
(3.5)

(3.4), (3.5) together with the assumption (H2) lead to{
−(x(t)− ϕ(t))′′ + λ1I

α
0+(x− ϕ)(t) + λ2(x(t)− ϕ(t)) ≥ 0,

(x(0)− ϕ(0)) ≥ 0, (x(1)− ϕ(1)) ≥ 0.

By virtue of Lemma 2.5, we have x(t) − ϕ(t) ≥ 0 i.e., x(t) ≥ ϕ(t). The nondecreasing of N gives
Nx ≥ Nϕ, hence Lx = Nϕ ≤ Nx.

y ≤ Dα
0+w(t), Ny ≤ Ly can be verified similarly.

Step 6. Problem (1.1) has a solution u∗(t) satisfying v(t) ≤ u∗(t) ≤ w(t).
Step 4 and Step 5 implies that the operator L−1N maps [x, y]∩D into [x, y]∩D. Since [x, y]∩D

is convex, closed and bounded and L−1N is completely continuous, an application of Schauder’s fixed
point theorem implies that Lh = Nh has a solution h∗ in [x, y]. Let

u∗(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

h∗(s) ds,

then u∗(t) is a solution of problem (1.1) satisfying v(t) ≤ u∗(t) ≤ w(t).

Theorem 3.4. If max
0≤t≤1

f(t, 0, 0) ≤ 0 and there exists c > 0 such that

min
{
f(t, x, y) | (t, u, v) ∈ [0, 1]×

[
− c

Γ(3 + α)

(1 + α

2

)1+α

, 0
]
×

[
− c

4
, 0
]}

≥ −2c,

then (1.1) has a solution u∗ satisfying

0 ≥ u∗(t) ≥ −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Proof. In Step 5 of the proof of Theorem 3.3, let

v(t) = −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
, w(t) ≡ 0.

Then the conclusion of Theorem 3.4 can be verified in a similar way.

Theorem 3.5. If there exists c > 0 such that

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×
[
0,

c

4

]}
≤ 2c,

min
{
f(t, x, y) | (t, u, v) ∈ [0, 1]×

[
− c

Γ(3 + α)

(1 + α

2

)1+α

, 0
]
×

[
− c

4
, 0
]}

≥ −2c,

then (1.1) has a solution u∗ satisfying

−c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
≤ u∗(t) ≤ c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.
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Proof. In Step 5 of the proof of Theorem 3.3, let

v(t) = −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
, w(t) = c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Then the conclusion of Theorem 3.5 can be verified in a similar way.

4 Example and remark
Example 4.1. Consider the following boundary value problem for the fractional differential equation:D

5
2
0+u(t) + cosu(t) + arctan(D

1
2
0+u(t)) = 0,

u(0) = 0, D
1
2
0+u(t)

∣∣
t=0

= D
1
2
0+u(t)

∣∣
t=1

= 0.

Let
f(t, x, y) = cosx+ arctan y.

Then f(t, 0, 0) > 0 and f satisfies (H1 −H2) with λ1 = 1, λ2 = 0, α = 1
2 .

Furthermore, let c = 4, we have

max
{
f(x, y) | (x, y) ∈

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×

[
0,

c

4

]}
= 1 +

π

4
≤ 2c.

Then Theorem 3.3 assures the above problem has a solution between 0 and

8t
1
2

√
π

(
1− 8t2

15

)
.

Remark 4.2. By the proof of Theorem 3.3, we know that the solution of problem (3.3) can be
obtained by iterative sequence {xn} or {yn}, where

Lxn+1 = N(xn), x0 = x, n = 0, 1, 2, . . . ;

Lyn+1 = N(yn), y0 = y, n = 0, 1, 2, . . . .

This implies that the solution of problem (1.1) is computable.
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Abstract. The paper deals with the three-dimensional boundary-contact problems of couple-stress
viscoelasticity for inhomogeneous anisotropic bodies with friction. The uniqueness theorem is proved
by using the corresponding Green’s formulas and positive definiteness of the potential energy. To
analyze the existence of solutions, the problem under consideration is reduced equivalently to a spatial
variational inequality. A special parameter-dependent regularization of this variational inequality is
considered, which is equivalent to the relevant regularized variational equation depending on a real
parameter, and its solvability is studied by the Faedo–Galerkin method. Some a priori estimates for
solutions of the regularized variational equation are established and with the help of an appropriate
limiting procedure the existence theorem for the original contact problem with friction is proved.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÁËÀÍÔÉ ÃÒÄÊÀÃÏÁÉÓ ÌÏÌÄÍÔÖÒÉ ÈÄÏÒÉÉÓ ÃÉÍÀÌÉÊÉÓ ÓÀÌ-
ÂÀÍÆÏÌËÄÁÉÀÍÉ ÓÀÓÀÆÙÅÒÏ-ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÀ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍÉ, ÀÍÉÆÏÔÒÏÐÖËÉ ÓáÄÖ-
ËÉÓÈÅÉÓ áÀáÖÍÉÓ Ä×ÄØÔÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÉÈ. ÛÄÓßÀÅËÉËÉÀ ÀÌÏÝÀÍÉÓ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ
ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÓÀÊÉÈáÉ. ÀÌÏÍÀáÓÍÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÃÀÃÂÄÍÀ Ä×ÖÞÍÄÁÀ
ÂÒÉÍÉÓ ×ÏÒÌÖËÄÁÓ ÃÀ ÐÏÔÄÍÝÉÀËÖÒÉ ÄÍÄÒÂÉÉÓ ÃÀÃÄÁÉÈÀÃ ÂÀÍÓÀÆÙÅÒÖËÏÁÀÓ. ÀÌÏÍÀáÓÍÉÓ
ÀÒÓÄÁÏÁÉÓ ÛÄÓßÀÅËÉÓÈÅÉÓ ÓÀÓÀÆÙÅÒÏ-ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÀ ÄÊÅÉÅÀËÄÍÔÖÒÀÃ ÃÀÉÚÅÀÍÄÁÀ
ÓÉÅÒÝÉÈ ÅÀÒÉÀÝÉÖË ÖÔÏËÏÁÀÆÄ, ÒÏÌÄËÉÝ, ÈÀÅÉÓ ÌáÒÉÅ, ÄÊÅÉÅÀËÄÍÔÖÒÉÀ ÌÝÉÒÄ ÐÀÒÀÌÄÔÒ-
ÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÒÄÂÖËÀÒÉÆÄÁÖËÉ ÂÀÍÔÏËÄÁÉÓ. ÀÌ ÂÀÍÔÏËÄÁÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ
ÛÄÓßÀÅËÉËÉÀ ×ÀÄÃÏ-ÂÀËÉÏÒÊÉÍÉÓ ÌÄÈÏÃÉÓ ÌÄÛÅÄÏÁÉÈ ÃÀ ÌÉÙÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÂÀÒÊÅÄ-
ÖËÉ ÀÐÒÉÏÒÖËÉ ÛÄ×ÀÓÄÁÄÁÉ. ÄÓ ÛÄ×ÀÓÄÁÄÁÉ ÉÞËÄÅÀ ÆÙÅÀÒÆÄ ÂÀÃÀÓÅËÉÓ ÓÀÛÖÀËÄÁÀÓ
ãÄÒ ÂÀÍÆÏÌÉËÄÁÉÓ, áÏËÏ ÛÄÌÃÄÂ ÌÝÉÒÄ ÐÀÒÀÌÄÔÒÉÓ ÌÉÌÀÒÈ. ÃÀ ÁÏËÏÓ, ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ
ÆÙÅÀÒÉÈÉ ×ÖÍØÝÉÀ ßÀÒÌÏÀÃÂÄÍÓ ÃÀÓÌÖËÉ ÓÀÓÀÆÙÅÒÏ-ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÓ.
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1 Introduction
The general and widespread use of the linear theory of viscoelasticity has been observed since the
early seventies of the past century. Activity in this area is associated with a wide application of
polymeric materials with properties that can obviously be described neither by elastic nor by viscous
models, but combine the features of both models. Mathematical strictly grounded theory of linear
viscoelasticity with numerous practical applications is contained in the monographs of D. R. Bland
and R. M. Christensen (see [1, 2] and the references therein).

Viscoelastic materials are those supplied with the “memory” in the sense that the state at time
t depends on all the deformations that the material undergoes. A particularly important class of
“viscoelastic equations of state” is associated with materials for which there is a linear relationship
between the time derivatives of the stress and strain tensors. We will consider viscoelastic materials
with short-term memory, i.e., when the stress of the moment at time t depends only on the defor-
mations, the moment at time t and the nearest previous moments of time. In the considered model
of the theory of elasticity, as distinct from the classical theory, every elementary medium particle
undergoes both displacement and rotation. In this case, all mechanical values are expressed in terms
of the displacement and rotation vectors. In their work [4], E. Cosserat and F. Cosserat created and
presented the model of a solid medium in which every material point has six degrees of freedom,
three of which are defined by the displacement components and the other three by the components
of rotation (for the history of the model of elasticity see [6, 24, 27, 31] and the references therein).
The main equations of that model are interrelated and generate a matrix second order differential
operator of dimension 6× 6. The basic boundary value problems and also the transmission problems
of the hemitropic theory of elasticity for smooth and non-smooth Lipschitz domains were studied
in [28]. The one-sided contact problems of statics of the hemitropic theory of elasticity, free from
friction, were investigated in [11,12,16,18,21], and the contact problems of statics and dynamics with
a friction were considered in [9,10,13–15,17,19,20]. Analogous, one-sided problems of classical linear
theory of elasticity have been considered in many works and monographs (see [5, 7, 8, 22, 23] and the
references therein). Particular problems of the viscoelasticity theory are considered in [1, 2]. As for
the dynamical and quasistatical boundary-contact problems of viscoelasticity with friction, we have
considered them in [5].

The paper is organized as follows. First, we present general field equations of the linear theory of
couple-stress viscoelasticity and formulate the boundary-contact problem of dynamics with regard to
the friction. We prove the uniqueness theorem by using Green’s formulas and positive definiteness of
the potential energy. Afterwards, the contact problem is equivalently reduced to a spacial variational
inequality. The latter is in its turn replaced by the relevant regularized equation depending on a
real positive parameter ε, and its solvability is studied by the Faedo–Galerkin method in appropriate
approximate function spaces of dimension m. Furthermore, some a priori estimates are established,
which allow us to pass to the limit with respect to dimension m as m → ∞ and to parameter ε as
ε→ 0. As a result, we prove that the limiting function is a solution of the variational inequality and,
consequently, the limiting function solves the original contact problem.

2 Field equations and Green’s formulas
2.1 Basic equations
Let Ω ⊂ R3 be a bounded, simply connected domain with C∞ smooth boundary S := ∂Ω, Ω = Ω∪S.
Throughout the paper, n(x) = (n1(x), n2(x), n3(x)) denotes the outward unit normal vector at a point
x ∈ S.

The basic equilibrium equations of dynamics of couple-stress viscoelasticity for inhomogeneous
anisotropic bodies read as

∂iσij(x, t) + ϱFj(x, t) = ϱ
∂2uj(x, t)

∂t2
,

∂iµij(x, t) + εikjσik(x, t) + ϱGj(x, t) = J ∂2ωj(x, t)

∂t2
,

(2.1)
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where t is the time variable, ∂ = (∂1, ∂2, ∂3) with ∂i = ∂
∂xi

, ϱ is the mass density of the elastic material,
J is the moment of inertia per unit volume, F = (F1, F2, F3)

⊤ andG = (G1, G2, G3)
⊤ are, respectively,

the body force and body couple vectors per unit mass, u = (u1, u2, u3)
⊤ is the displacement vector,

ω = (ω1, ω2, ω3)
⊤ is the micro-rotation vector, εikj is the permutation (Levi–Civita) symbol;

Here and in what follows, the symbol ( · )⊤ denotes transposition and the repetition of the index
means summation over this index from 1 to 3. For the force stress tensor {σij} and the couple-stress
tensor {µij}, we have

σij(x, t) := σij(U(t))

= a
(0)
ijlk(x)ζlk(U(t)) + b

(0)
ijlk(x)ηlk(U(t)) + a

(1)
ijlk(x)∂tζlk(U(t)) + b

(1)
ijlk(x)∂tηlk(U(t)),

µij(x, t) := µij(U(t))

= b
(0)
ijlk(x)ζlk(U(t)) + c

(0)
ijlk(x)ηlk(U(t)) + b

(1)
ijlk(x)∂tζlk(U(t)) + c

(1)
ijlk(x)∂tηlk(U(t)),

where U(t) := U(x, t) = (u(x, t), ω(x, t))⊤, ζlk(U(t)) = ∂luk(x, t) − εlkmωm(x, t) and ηlk(U(t)) =

∂lωk(x, t) are the so-called strain and torsion (curvature) tensors; the real-valued functions a(0)ijlk, b(0)ijlk,
c
(0)
ijlk (respectively, a(1)ijlk, b(1)ijlk, c(1)ijlk), called the elastic constants (respectively, viscosity constants),

satisfy certain smoothness and symmetry conditions

(i) a
(q)
ijlk, b

(q)
ijlk, c

(q)
ijlk ∈ C1(Ω),

(ii) a
(q)
ijlk = a

(q)
lkij , c

(q)
ijlk = c

(q)
lkij ,

(iii) there exists α0 > 0 such that ∀x ∈ Ω and ∀ ξij , ηij ∈ R:

a
(q)
ijlk(x)ξijξlk + 2b

(q)
ijlk(x)ξijηlk + c

(q)
ijlk(x)ηijηlk ≥ α0(ξijξij + ηijηij) (q = 0, 1).

We introduce a matrix differential operator corresponding to the left-hand side of system (2.1):

M(x, ∂) =

[
M(1)(x, ∂) M(2)(x, ∂)

M(3)(x, ∂) M(4)(x, ∂)

]
6×6

, M(p)(x, ∂) =
[
M(p)

jk (x, ∂)
]
3×3

, p = 1, 4,

where

M(1)
jk (x, ∂) = ∂i

([
a
(0)
ijlk(x) + a

(1)
ijlk(x)∂t

]
∂l
)
,

M(2)
jk (x, ∂) = ∂i

([
b
(0)
ijlk(x) + b

(1)
ijlk(x)∂t

]
∂l
)
− εlrk∂i

[
a
(0)
ijlr(x) + a

(1)
ijlr(x)∂t

]
;

M(3)
jk (x, ∂) = ∂i

([
b
(0)
lkij(x) + b

(1)
lkij(x)∂t

]
∂l
)
+ εirj

[
a
(0)
irlk(x) + a

(1)
irlk(x)∂t

]
∂l;

M(4)
jk (x, ∂) = ∂i

([
c
(0)
ijlk(x) + c

(1)
ijlk(x)∂t

]
∂l
)
− εlrk∂i

[
b
(0)
lrij(x) + b

(1)
lrij(x)∂t

]
+ εirj

[
b
(0)
irlk(x) + b

(1)
irlk(x)∂t

]
∂l − εipjεlrk

[
a
(0)
iplr(x) + a

(1)
iplr(x)∂t

]
.

Denote by N (∂, n) the generalized 6× 6 matrix differential stress operator

N (∂, n) =

[
N (1)(∂, n) N (2)(∂, n)

N (3)(∂, n) N (4)(∂, n)

]
6×6

, N (p)(∂, n) =
[
N (p)

jk (∂, n)
]
3×3

, p = 1, 4,

where
N (1)

jk (∂, n) =
[
a
(0)
ijlk + a

(1)
ijlk∂t

]
ni∂l;

N (2)
jk (∂, n) =

[
b
(0)
ijlk + b

(1)
ijlk∂t

]
ni∂l − εlrk

[
a
(0)
ijlr + a

(1)
ijlr∂t

]
ni;

N (3)
jk (∂, n) =

[
b
(0)
lkij + b

(1)
lkij∂t

]
ni∂l;

N (4)
jk (∂, n) =

[
c
(0)
ijlk + c

(1)
ijlk∂t

]
ni∂l − εlrk

[
b
(0)
lrij + b

(1)
lrij∂t

]
ni.

(2.2)
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Here ∂n = ∂/∂n denotes the directional derivative along the vector n (normal derivative). In the
sequel, for the force stress and couple-stress vectors we use the following notation:

T U = N (1)u+N (2)ω, MU = N (3)u+N (4)ω,

where N (p), p = 1, 2, 3, 4, is defined by formula (2.2).
The system of equations (2.1) can be rewritten in the matrix form

M(x, ∂)U(x, t) + G(x, t) = P
∂2U(x, t)

∂t2
, x ∈ Ω, 0 < t < T, (2.3)

where T is an arbitrary positive number, U = (u, ω)⊤, G = (ϱF, ϱG)⊤, P = [pij ]6×6, pii = ϱ, when
i = 1, 2, 3, pii = J , when i = 4, 5, 6, and pij = 0, when i ̸= j.

Throughout the paper, Lp(Ω) (1 ≤ p ≤ ∞), L2(Ω) = H0(Ω) and Hs(Ω) = Hs
2(Ω), s ∈ R, denote

the Lebesgue and Bessel potential spaces (see, e.g., [25, 32]). We denote the corresponding norms by
the symbols ∥ · ∥Lp(Ω) and ∥ · ∥Hs(Ω), respectively. Denote by D(Ω) the class of C∞(Ω) functions with
a support in the domain Ω. If M is an open proper part of the manifold ∂Ω, i.e., M ⊂ ∂Ω, M ̸= ∂Ω:
then we denote by Hs(M) the restriction of the space Hs(∂Ω) on M ,

Hs(M) :=
{
r
M
φ : φ ∈ Hs(∂Ω)

}
,

where r
M

stands for the restriction operator on the set M . Further, let

H̃s(M) :=
{
φ ∈ Hs(∂Ω) : suppφ ⊂M

}
.

The total strain energy of the respective media has the form

B(q)(U, V ) =

∫
Ω

{
a
(q)
ijlk(x)ζij(U)ζlk(V ) + b

(q)
ijlk(x)ζij(U)ηlk(V )

+ b
(q)
ijlk(x)ζij(V )ηlk(U) + c

(q)
ijlk(x)ηij(U)ηlk(V )

}
dx,

where q = 1, 2, U = (u, ω)⊤, V = (v, w)⊤ and ζij(U) = ∂iuj − εijrωr, ηij(U) = ∂iωj .
From properties (ii) and (iii), it is clear that B(q)(U, V ) = B(q)(V,U) and B(q)(U,U) ≥ 0. Moreover,

there exist positive constants C1 and C2, depending only on the material parameters, such that Korn’s
type inequality (cf., [8, Part I, § 12], [3, § 6.3])

B(q)(U,U) ≥ C1∥U∥2[H1(Ω)]6 − C2∥U∥2[L2(Ω)]6 , q = 1, 2, (2.4)

holds for an arbitrary real-valued vector function U ∈ [H1(Ω)]6.

Remark 2.1. If U ∈ [H1(Ω)]6 and on some open part S∗ ⊂ ∂Ω the trace {U}+ vanishes, i.e.,
r
S∗{U}+ = 0, then we have the strict Korn’s inequality

B(q)(U,U) ≥ c∥U∥2[H1(Ω)]6

with some positive constant c > 0 which does not depend on the vector U . This follows from (2.4)
and the fact that in this case B(q)(U,U) > 0 for U ̸= 0 (see [29], [26, Ch. 2, Exercise 2.17]).

2.2 Green’s formulas
For the real-valued vector functions U(t) = (u(t), ω(t))⊤ and Ũ(t) = (ũ(t), ω̃(t))⊤ of the class [C2(Ω)]6

and for an arbitrary t ∈ [0;T ], the following Green’s formula (see [13])∫
Ω

M(x, ∂)U(t) · Ũ(t) dx

=

∫
S

{
N (∂, n)U(t)

}+ · {Ũ(t)}+ dS −
{
B(0)(U(t), Ũ(t)) + ∂tB(1)(U(t), Ũ(t))

}
(2.5)
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holds, where { · }+ denotes the trace operator on S from Ω.
By the standard limiting arguments, Green’s formula (2.5) can be extended to the Lipschitz do-

mains and to vector functions U, Ũ ∈ [H1(Ω)]6 with M(x, ∂)U(t) ∈ [L2(Ω)]
6 (see [25,29]),∫

Ω

M(x, ∂)U(t) · Ũ(t) dx =
⟨{

N (∂, n)U(t)
}+ · {Ũ(t)}+

⟩
s
dS

−
{
B(0)(U(t), Ũ(t)) + ∂tB(1)(U(t), Ũ(t))

}
, t ∈ (0;T ), (2.6)

where ⟨ · , · ⟩S denotes the duality between the spaces [H−1/2(S)]6 and [H1/2(S)]6, which generalizes
the usual inner product in the space [L2(∂Ω)]

6. By this relation, the generalized trace of the stress
operator {N (∂, n)U}+ ∈ [H−1/2(S)]6 is well defined.

The following assertion describes the null space of the energy quadratic form B(q)(U(t), U(t))
(see [13]).

Lemma 2.2. Let for an arbitrary t ∈ (0;T ), U(t) = (u(t), ω(t))⊤ ∈ [C1(Ω)]6 and B(q)(U(t), U(t)) = 0
in Ω. Then

u(t) = [a(q) × x] + b(q), ω(t) = a(q), x ∈ Ω,

where a(q) and b(q) are arbitrary three-dimensional constant vectors and the symbol [ · × · ] denotes the
cross product of two vectors.

The vectors of type ([a(q)×x]+b(q), a(q)) are called generalized rigid displacement vectors. Observe
that a generalized rigid displacement vector vanishes, i.e., a(q) = b(q) = 0, if it is zero at a single point.

3 Contact problems with friction
3.1 Coulomb’s law
Let the boundary S of the domain Ω be divided into two open, connected and non-overlapping parts S1

and S2 of positive measure, S = S1 ∪ S2, S1 ∩ S2 = ∅. Assume that the viscoelastic body occupying
the domain Ω is in a contact with another rigid body along the subsurface S2. Denote by F (x, t)
the force stress vector by which the hemitropic body acts upon the rigid body at the point x ∈ S2.
Throughout the paper, Fn and Fs stand for the normal and tangential components of the vector F ,
respectively: Fn = F · n and Fs = F − (F · n)n. Further, let F(x) be the friction coefficient at the
point x ∈ S2. It is a nonnegative scalar function which depends on the geometry of the contacting
surfaces and also on the physical properties of the interacting materials.

Coulomb’s law describing the contact interaction of materials with friction reads as follows (for
details see [5]):

If the contact of two bodies is described by the force vector F , then

|Fs(x, t)| ≤ F(x)|Fn(x, t)| .

Moreover, if
|Fs(x, t)| < F(x)|Fn(x, t)|,

then
∂us(x, t)

∂t
= 0,

and if
|Fs(x, t)| = F(x)|Fn(x, t)|,

then there exist nonnegative functions λ1 and λ2 not vanish simultaneously such that

λ1(x, t)
∂us(x, t)

∂t
= −λ2(x, t)Fs(x, t).
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3.2 Pointwise and variational formulation of the contact problem
Let X be a Banach space with the norm ∥ · ∥X . We denote by Lp(0, T ;X) (1 ≤ p ≤ ∞) the space of
measurable functions t 7→ f(t) defined on the interval (0;T ) with values in the space X such that

∥f∥Lp(0,T ;X) :=

{ T∫
0

∥f(t)∥pX dt

}1/p

<∞ for 1 ≤ p <∞

and
∥f∥L∞(0,T ;X) := ess sup

t∈(0;T )

{
∥f(t)∥X

}
<∞ for p = ∞.

Definition 3.1. The vector-function U : (0;T ) → [H1(Ω)]6 is said to be a weak solution of equation
(2.3) for G : (0;T ) → [L2(Ω)]

6 if

U(t), U ′(t) ∈ L∞(0, T ; [H1(Ω)]6), U ′′(t) ∈ L∞(0, T ; [L2(Ω)]
6),

and for every Φ ∈ [D(Ω)]6,

(PU ′′(t),Φ) + B(0)(U(t),Φ) + B(1)(U ′(t),Φ) = (G(t),Φ).

Here and in what follows, the symbol ( · , · ) denotes the scalar product in the space L2(Ω).
Further, let

G : (0, T ) → [L2(Ω)]
6, φ : (0;T ) → [H−1/2(S2)]

3, f : (0;T ) → L∞(S2),

and set
g := F|f | ≥ 0. (3.1)

Consider the following contact problem of dynamics with friction.
Problem (A0). Find a weak solution U : (0;T ) → [H1(Ω)]6 of the equation

M(x, ∂)U(x, t) + G(x, t) = P
∂2U(x, t)

∂t2
, x ∈ Ω, t ∈ (0;T ), (3.2)

satisfying the inclusion r
S2
{(T U)s}+ ∈ [L∞(S2 × (0;T ))]3, the initial conditions

U(x, 0) = 0, x ∈ Ω, (3.3)
U ′(x, 0) = 0, x ∈ Ω, (3.4)

and the boundary contact conditions

r
S1
{U}+ = 0 on S1 × (0;T ), (3.5)

r
S2
{(T U)n}+ = f on S2 × (0;T ), (3.6)
r
S2
{MU}+ = φ on S2 × (0;T ), (3.7)

r
S2

{∂us
∂t

}+

= 0 if
∣∣r

S2
{(T U)s}+

∣∣ < g on S2 × (0;T ), (3.8)

and if |r
S2
{(T U)s}+| = g, then there exist nonnegative functions λ1 and λ2 do not vanishing simultane-

ously, such that
λ1(x, t)rS2

{∂us
∂t

}+

= −λ2(x, t) rS2
{(T U)s}+ on S2 × (0;T ). (3.9)

This problem can be reformulated in terms of a variational inequality. To this end, on the space
[H1(Ω)]6 we introduce the continuous convex functional

j(V ) =

∫
S2

g|{vs}+| dS, V = (v, w)⊤ : (0;T ) → [H1(Ω)]6 (3.10)
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and the closed convex sets K and K0:

K :=
{
V | V (t), V ′(t) ∈ L∞(0, T ; [H1(Ω)]6),

V ′′(t) ∈ L∞(0, T ; [L2(Ω)]
6), r

S1
{V }+ = 0, V (0) = V ′(0) = 0

}
;

K0 :=
{
V | V ∈ [H1(Ω)]6, r

S1
{V }+ = 0

}
.

Consider the following variational inequality: Find a (u, ω)⊤ ∈ K such that the variational inequality

(PU ′′(t), V − U ′(t)) + B(0)(U(t), V − U ′(t)) + B(1)(U ′(t), V − U ′(t)) + j(V )− j(U ′(t))

≥ (G(t), V − U ′(t)) +

∫
S2

f(t){vn − u′n(t)}+ dS +
⟨
φ(t), r

S2
{w − ω′(t)}+

⟩
S2

(3.11)

holds for all V = (v, w)⊤ ∈ K0.

Here and in what follows, the symbol ⟨ · , · ⟩ denotes the duality relation between the corresponding
dual pairs X∗(M) and X(M). In particular, ⟨ · , · ⟩S2

in (3.11) denotes the duality relation between
the spaces [H−1/2(S2)]

3 and [H̃1/2(S2)]
3.

4 Equivalence theorem
Here we prove the following equivalence result.

Theorem 4.1. If U : (0;T ) → [H1(Ω)]6 is a solution of problem (A0), then U is a solution of the
variational inequality (3.11), and vice versa.

Proof. Let U = (u, ω)⊤ : (0;T ) → [H1(Ω)]6 be a solution of problem (A0), and V = (v, w)⊤ ∈ K0. By
virtue of the interior regularity theorems (see [8]), we have U(t) ∈ [H2(Ω′)]6 for every domain Ω′ ⊂ Ω.
Hence the equation

M(x, ∂)U(x, t) + G(x, t) = P
∂2U(x, t)

∂t2
, x ∈ Ω, t ∈ (0;T )

holds almost everywhere in the domain Ω. By virtue of Green’s formula (2.6), we get

(PU ′′(t), V − U ′(t))−
⟨
{T U}+, {v − u′(t)}+

⟩
S
−
⟨
{MU}+, {w − ω′(t)}+

⟩
S

+ B(0)(U(t), V − U ′(t)) + B(1)(U ′(t), V − U ′(t)) = (G(t), V − U ′(t)). (4.1)

Taking into account the boundary conditions (3.5), (3.6), (3.7) and the form of the functional (3.10),
we deduce that for all V = (v, w)⊤ ∈ K0 from (4.1), we have

(PU ′′(t), V − U ′(t)) + B(0)(U(t), V − U ′(t)) + B(1)(U ′(t), V − U ′(t)) + j(V )− j(U ′(t))

= (G(t), V − U ′(t)) +

∫
S2

f(t){vn − u′n(t)}+ dS +
⟨
φ(t), r

S2
{w − ω′(t)}+

⟩
S2

+

∫
S2

[
{(T U)s}+ · {vs − u′s(t)}+ + g

(
|{vs}+| − |{u′s(t)}+|

)]
dS.

It is easy to see that if conditions (3.8) and (3.9) hold, then

r
S2
{(T U)s}+ · r

S2
{vs − u′s(t)}+ + g

(
|r

S2
{vs}+| − |r

S2
{u′s(t)}+|

)
≥ 0.
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Hence we have

(PU ′′(t), V − U ′(t)) + B(0)(U(t), V − U ′(t)) + B(1)(U ′(t), V − U ′(t)) + j(V )− j(U ′(t))

≥ (G(t), V − U ′(t)) +

∫
S2

f(t){vn − u′n(t)}+ dS +
⟨
φ(t), r

S2
{w − ω′(t)}+

⟩
S2

for all V = (v, w)⊤ ∈ K0. Thus U = (u, ω)⊤ : (0;T ) → [H1(Ω)]6 is a solution of the variational
inequality (3.11).

Let now U = (u, ω)⊤ ∈ K be a solution of the variational inequality (3.11). Substituting U ′(t)±Φ
instead of V in (3.11) with an arbitrary Φ ∈ [D(Ω)]6, we obtain

(PU ′′(t),Φ) + B(0)(U(t),Φ) + B(1)(U ′(t),Φ) = (G(t),Φ) ∀Φ ∈ [D(Ω)]6,

which implies that U is a weak solution of equation (3.2). Again, by virtue of the interior regularity
theorem (see [8]), equation (3.2) is satisfied almost everywhere in the domain Ω. Thus, taking into
account the fact that r

S1
{V − U ′(t)}+ = 0 for all V = (v, w)⊤ ∈ K0, Green’s formula (2.6) yields

(PU ′′(t), V − U ′(t)) + B(0)(U(t), V − U ′(t)) + B(1)(U ′(t), V − U ′(t))

= (G(t), V − U ′(t)) +
⟨
r
S2
{(T U)n}+, rS2

{vn − u′n(t)}+
⟩
S2

+
⟨
r
S2
{(T U)s}+, rS2

{vs − u′s(t)}+
⟩
S2

+
⟨
r
S2
{MU}+, r

S2
{w − ω′(t)}+

⟩
S2

∀V ∈ K0.

Subtracting the above equality from (3.11), we obtain

⟨
r
S2
{(T U)s}+, rS2

{vs − u′s(t)}+
⟩
S2

+

∫
S2

g
(
|{vs}+| − |{u′s(t)}+|

)
dS

+
⟨
r
S2
{(T U)n}+ − f(t), r

S2
{vn − u′n(t)}+

⟩
S2

+
⟨
r
S2
{MU}+ − φ(t), r

S2
{w − ω′(t)}+

⟩
S2

≥ 0 (4.2)

for all V = (v, w)⊤ ∈ K0. For an arbitrary t from the interval (0;T ), we choose V = (v, w)⊤ ∈ K0

such that r
S2
{w}+ = r

S2
{ω′(t)}+, r

S2
{vs}+ = r

S2
{u′s(t)}+, and r

S2
{vn}+ = r

S2
[{u′n(t)}+±ψ], where

ψ ∈ H̃1/2(S2) is an arbitrary scalar function. Then from (4.2) we infer

r
S2
{(T U)n}+ = f(t), (4.3)

i.e., condition (3.6) is fulfilled. Taking into account (4.3), from (4.2) we find that

⟨
r
S2
{(T U)s}+, rS2

{vs − u′s(t)}+
⟩
S2

+

∫
S2

g
(
|{vs}+| − |{u′s(t)}+|

)
dS

+
⟨
r
S2
{MU}+ − φ(t), r

S2
{w − ω′(t)}+

⟩
S2

≥ 0 ∀V = (v, w)⊤ ∈ K0. (4.4)

Let now the vector-function V = (v, w)⊤ ∈ K0 be such that r
S2
{vs}+ = r

S2
{u′s(t)}+ and r

S2
{w}+ =

r
S2
[{ω′(t)}+ ± ψ], where ψ ∈ [H̃1/2(S2)]

3 is an arbitrary vector-function. Then (4.4) yields

r
S2
{MU}+ = φ(t) . (4.5)

Consequently, condition (3.7) is satisfied. Note that conditions (3.5), (3.3) and (3.4) are automatically
fulfilled, since U = (u, ω)⊤ ∈ K. Taking into account condition (4.5), from (4.4) we obtain⟨
r
S2
{(T U)s}+, rS2

{vs − u′s(t)}+
⟩
S2

+

∫
S2

g
(
|{vs}+| − |{u′s(t)}+|

)
dS ≥ 0 ∀V = (v, w)⊤ ∈ K0, (4.6)
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whence⟨
r
S2
{(T U)s}+, rS2

{vs − u′s(t)}+
⟩
S2

+

∫
S2

g
∣∣{vs}+ − {u′s(t)}+

∣∣ dS ≥ 0 ∀V = (v, w)⊤ ∈ K0. (4.7)

Further, let us choose the vector-function V = (v, w)⊤ ∈ K0 such that r
S2
{w}+ = r

S2
{ω′(t)}+,

r
S2
{vn}+ = r

S2
{u′n(t)}+, and r

S2
{vs}+ = r

S2
{u′s(t)}+± r

S2
ψs, where ψ ∈ [H̃1/2(S2)]

3 is an arbitrary
vector-function. Then from (4.7) we obtain

±
⟨
r
S2
{(T U)s}+, rS2

ψs

⟩
S2

+

∫
S2

g|ψs| dS ≥ 0. (4.8)

For an arbitrary ψ ∈ [H̃1/2(S2)]
3, we have |r

S2
ψs| ≤ |r

S2
ψ| and⟨

r
S2
{(T U)s}+, rS2

ψs

⟩
S2

=
⟨
r
S2
{(T U)s}+, rS2

ψ
⟩
S2
.

Therefore, from (4.8) we derive∣∣∣⟨rS2
{(T U)s}+, rS2

ψ
⟩
S2

∣∣∣ ≤ ∫
S2

g|ψ| dS ∀ψ ∈ [H̃1/2(S2)]
3. (4.9)

Let t ∈ (0;T ) and consider in the space [H̃1/2(S2)]
3 the linear functional

Φt(ψ) =
⟨
r
S2
{(T U)s}+, rS2

ψ
⟩
S2
, ψ ∈ [H̃1/2(S2)]

3.

Due to inequality (4.9), this functional is continuous on the space [H̃1/2(S2)]
3 with respect to the

topology induced by the space [L1(S2)]
3. Since the space [H̃1/2(S2)]

3 is dense in [L1(S2)]
3, the

functional Φt can be continuously extended to the whole space [L1(S2)]
3 preserving the norm. Since

the dual of [L1(S2)]
3 is isomorphic to [L∞(S2)]

3, there exists a function Φ∗
t ∈ [L∞(S2)]

3 such that

Φt(ψ) =

∫
S2

Φ∗
t · ψ dS ∀ψ ∈ [L1(S2)]

3.

Hence
r
S2
{(T U)s}+ = Φ∗

t ∈ [L∞(S2)]
3.

Using again inequality (4.9) we derive∫
S2

[
± {(T U)s}+ · ψ − g|ψ|

]
dS ≤ 0 ∀ψ ∈ [H̃1/2(S2)]

3, (4.10)

whence the inequality ∣∣r
S2
{(T U)s}+

∣∣ ≤ g almost everywhere on S2 × (0;T )

follows. Indeed, it is well known that for an arbitrary essentially bounded function ψ̃ ∈ L∞(S2) there
is a sequence φ̃l ∈ C∞(S2) with supports in S2 for which (see [30, Lemma 1.4.2])

lim
l→∞

φ̃l(x) = ψ̃(x) for almost all x ∈ S2 and |φ̃l(x)| ≤ ess sup
y∈S2

|ψ̃(y)|

for almost all x ∈ S2. Therefore, from inequality (4.10), by the Lebesque dominated convergence
theorem, it follows that∫

S2

[
± {(T U)s}+ · ψ − g|ψ|

]
dS ≤ 0 ∀ψ ∈ [L∞(S2)]

3,
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whence we get
±r

S2
{(T U)s}+ · ψ − g|ψ| ≤ 0

on S2 for every ψ ∈ [L∞(S2)]
3. Substituting ψ = r

S2
{(T U)s}+ in the above inequality, we finally get

the inequality ∣∣r
S2
{(T U)s}+

∣∣ ≤ g. (4.11)

Now let us set
ϑs := r

S2
{vs}+, ϑ0s := r

S2
{u′s(t)}+. (4.12)

Clearly, ϑs, ϑ0s ∈ [H1/2(S2)]
3. Due to the inclusion

r
S2
{(T U)s}+ ∈

[
L2(S2 × (0;T ))

]3
,

from (4.6) we get

⟨
r
S2
{(T U)s}+, ϑs

⟩
S2

+

∫
S2

g|ϑs| dS −
⟨
r
S2
{(T U)s}+, ϑ0s

⟩
S2

−
∫
S2

g|ϑ0s| dS ≥ 0. (4.13)

Let ψ ∈ [H1/2(S2)]
3 be an arbitrary vector-function. Substitute in (4.13) ϑs = qψ for a nonnegative

number q ≥ 0, and take into consideration that |ψs| ≤ |ψ| and r
S2
{(T U)s}+ · ψs = r

S2
{(T U)s}+ · ψ

to obtain
q

∫
S2

[
{(T U)s}+ · ψ + g|ψ|

]
dS −

∫
S2

[
{(T U)s}+ · ϑ0s + g|ϑ0s|

]
dS ≥ 0.

Sending q to 0, we arrive at the inequality∫
S2

[
{(T U)s}+ · ϑ0s + g|ϑ0s|

]
dS ≤ 0,

whence by (4.11) and (4.12) we arrive at the equation

r
S2
{(T U)s}+ · r

S2
{u′s(t)}+ + g

∣∣r
S2
{u′s(t)}+

∣∣ = 0. (4.14)

Clearly, if |r
S2
{(T U)s}+|<g, then it follows from (4.14) that r

S2
{u′s(t)}+ = 0. But if |r

S2
{(T U)s}+| =

g, then (4.14) can be rewritten in the form

g
∣∣r

S2
{u′s(t)}+

∣∣(cosα+ 1) = 0 on S2 × (0;T ),

where α is the angle lying between the vectors r
S2
{u′s(t)}+ and r

S2
{(T U)s}+ at the point x ∈ S2.

Consequently, there exist the functions λ1 and λ2 such that λ1(x, t) + λ2(x, t) > 0 and

λ1(x, t) rS2
{u′s(t)}+ = −λ2(x, t)rS2

{(T U)s}+ on S2 × (0;T ).

Moreover, we may assume that λ1 belongs to the same class as {(T U)s}+, while λ2 belongs to the
same class as {u′s(t)}+. This completes the proof.

5 The uniqueness theorem
We start the investigation of the variational inequality (3.11) with the following uniqueness result.

Theorem 5.1. The variational inequality (3.11) and hence Problem (A0) have at most one weak
solution.
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Proof. Let U = (u, ω)⊤ ∈ K and Ũ = (ũ, ω̃)⊤ ∈ K be two solutions of inequality (3.11). Substituting
in (3.11) Ũ ′(t) instead of V , we obtain(

PU ′′(t), Ũ ′(t)−U ′(t)
)
+B(0)

(
U(t), Ũ ′(t)−U ′(t)

)
+B(1)

(
U ′(t), Ũ ′(t)−U ′(t)

)
+j(Ũ ′(t))−j(U ′(t))

≥ (G(t), Ũ ′(t)− U ′(t)) +

∫
S2

f(t)
{
ũ′n(t)− u′n(t)

}+
dS +

⟨
φ(t), r

S2
{ω̃′(t)− ω′(t)}+

⟩
S2
. (5.1)

Analogously, substituting U(t) = Ũ(t) and V = U ′(t) in (3.11), we get(
PŨ ′′(t), U ′(t)−Ũ ′(t)

)
+B(0)

(
Ũ(t), U ′(t)−Ũ ′(t)

)
+B(1)

(
Ũ ′(t), U ′(t)−Ũ ′(t)

)
+j(U ′(t))−j(Ũ ′(t))

≥ (G(t), U ′(t)− Ũ ′(t)) +

∫
S2

f(t)
{
u′n(t)− ũ′n(t)

}+
dS +

⟨
φ(t), r

S2
{ω′(t)− ω̃′(t)}+

⟩
S2
. (5.2)

Combining (5.1) and (5.2) and denoting the difference U(t)− Ũ(t) by W (t), we obtain

− (PW ′′(t),W ′(t))− B(0)(W (t),W ′(t))− B(1)(W ′(t),W ′(t)) ≥ 0, (5.3)

Note that

(PW ′′(t),W ′(t)) =
1

2

d

dt

(√
P W ′(t),

√
P W ′(t)

)
=

1

2

d

dt

[∥∥√P W ′(t)
∥∥2
[L2(Ω)]6

]
and

B(0)(W (t),W ′(t)) =
1

2

d

dt
B(0)(W (t),W (t)),

where
√
P = [

√
pij ]6×6 with √

pii =
√
ϱ for i = 1, 2, 3, √pii =

√
J for i = 4, 5, 6, and pij = 0 if i ̸= j.

Then, from (5.3) we get

1

2

d

dt

{∥∥√P W ′(t)
∥∥2
[L2(Ω)]6

+ B(0)(W (t),W (t))
}
+ B(1)(W ′(t),W ′(t)) ≤ 0. (5.4)

Since B(1)(W ′(t),W ′(t)) is nonnegative, (5.4) can be rewritten as

1

2

d

dt

{∥∥√P W ′(t)
∥∥2
[L2(Ω)]6

+ B(0)(W (t),W (t))
}
≤ 0. (5.5)

On the basis of (5.5), we can conclude that the scalar function∥∥√P W ′(t)
∥∥2
[L2(Ω)]6

+ B(0)(W (t),W (t))

decreases on the interval (0;T ). Since B(0)(W (t),W (t)) ≥ 0 ∀ t ∈ (0;T ) and W (0) = W ′(0) = 0, we
see that B(0)(W (t),W (t)) = 0. Hence, by virtue of Lemma 2.2, we conclude that W (t) = 0, which
completes the proof.

6 The existence results
The existence of a solution to the variational inequality (3.11) is obtained by the following scheme.
First, we reduce the variational inequality (3.11) to an equivalent regularized variational equation
depending on a small parameter ε whose solvability is studied by the Faedo–Galerkin approximation
method. Then we establish some a priori estimates which allow us to pass to the limit with respect
to the dimension m of the approximation space of test functions as m → +∞ and with respect to
the parameter as ε → 0. We will show that the limiting function solves the variational inequality
(3.11) and, consequently, by virtue of Theorem 4.1, it will be a solution of problem (A0), as well. The
assumptions which are to be satisfied by the data of problem (A0) will be given below in the course
of discussions and, finally, we will formulate the basic existence theorem.
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6.1 Reduction to regularized variational equation
To reduce the variational inequality (3.11) to the regularized variational equation, we consider on the
space K0 the convex differentiable functional

jε(V ) =

∫
S2

g(x)φε(|{vs}+|) dS, V = (v, w)⊤ ∈ K0, (6.1)

where ε is an arbitrary positive number, φε : R → (0;∞) is defined by

φε(λ) =
√
λ2 + ε2 ,

g is defined by (3.1) and, in what follows, we assume that it does not depend on the time variable t.
Denote by K′

0 the dual space to K0 and by j′ε the Gâteaux derivative of the functional (6.1). It is easy
to show that for almost all t from the interval (0;T ),

j′ε : K0 → K′
0

is given by⟨
j′ε(V ), U

⟩
S2

=

∫
S2

g(x)
{vs}+ · {us}+√
|{vs}+|2 + ε2

dS ∀V = (v, w)⊤ ∈ K0, ∀U = (u, ω)⊤ ∈ K0. (6.2)

Consider the following regularized variational equation: Find Uε ∈ K satisfying for almost all t from
the interval (0;T ), the equation

(PU ′′
ε (t), V ) + B(0)(Uε(t), V ) + B(1)(U ′

ε(t), V ) +
⟨
j′ε(U

′
ε(t)), V

⟩
S2

= ⟨Ψ(t), V ⟩K0
, (6.3)

where V = (v, w)⊤ ∈ K0 and the linear functional Ψ(t) is defined as

⟨Ψ(t), V ⟩K0
:= (G(t), V ) +

∫
S2

f(t){vn}+ dS +
⟨
φ(t), r

S2
{w}+

⟩
S2

(6.4)

with G, f , and φ involved in the formulation of Problem (A0).
It can be easily shown that the variational inequality (3.11), in which U and j are replaced,

respectively, by Uε and jε, is equivalent to the regularized variational equation (6.3). Therefore, we
investigate the regularized variational equation (6.3).

Since the space K0 is separable, there exists a countable basis W1,W2, . . . ,Wm, . . . in the sense
that for every m the system of vectors W1,W2, . . . ,Wm is linearly independent and the space of all
finite linear combinations is dense in K0. We denote by Wm := [W1,W2, . . . ,Wm] the linear span of
elements W1,W2, . . . ,Wm.

Consider the auxiliary problem: Find a vector-function Uεm : (0;T ) → Wm such that Uεm, U
′
εm,

U ′′
εm ∈ L∞(0, T ;Wm) and the variational equation

(PU ′′
εm(t), V ) + B(0)(Uεm(t), V ) + B(1)(U ′

εm(t), V ) +
⟨
j′ε(U

′
εm(t)), V

⟩
S2

= ⟨Ψ(t), V ⟩K0
(6.5)

and the initial conditions

Uεm(0) = 0, (6.6)
U ′
εm(0) = 0 (6.7)

are satisfied for almost all t from the interval (0;T ) and ∀V ∈ Wm.
Let us look for a solution of the above problem in the form of a linear combination with unknown

coefficients Cjεm(t):

Uεm(t) =

m∑
j=1

Cjεm(t)Wj . (6.8)
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Replace in (6.5) the test vector-function V by Wk and instead of Uεm substitute the above linear
combination to obtain

m∑
j=1

(PWj ,Wk)C
′′
jεm(t) +

m∑
j=1

B(0)(Wj ,Wk)Cjεm(t) +

m∑
j=1

B(1)(Wj ,Wk)C
′
jεm(t)

+
⟨
j′ε

( m∑
j=1

C ′
jεm(t)Wj

)
,Wk

⟩
S2

= ⟨Ψ(t),Wk⟩K0
, k = 1, 2, . . . ,m. (6.9)

Introduce the notation:

Φk(C
′
1εm, . . . , C

′
mεm) :=

⟨
j′ε

( m∑
j=1

C ′
jεm(t)Wj

)
,Wk

⟩
S2

, Φ := (Φ1, . . . ,Φm)⊤,

Pk(t) :=
⟨
Ψ(t),Wk

⟩
K0
, k = 1,m, P := (P1,P2, . . . ,Pm)⊤,

B :=
[
(PWj ,Wk)

]
m×m

, D(0) :=
[
B(0)(Wj ,Wk)

]
m×m

,

D(1) :=
[
B(1)(Wj ,Wk)

]
m×m

, Cεm(t) :=
(
C1εm(t), C2εm(t), . . . , Cmεm(t)

)⊤
.

System (6.9) can be then rewritten as

BC ′′
εm(t) +D(1) C ′

εm(t) +D(0) Cεm(t) + Φ(C ′
εm(t)) = P(t). (6.10)

The initial conditions (6.6) and (6.7) result in

Cεm(0) = C ′
εm(0) = 0. (6.11)

Note that detB ̸= 0, since the system of vectors W1,W2, . . . ,Wm is linearly independent, and hence
from (6.10) we get

C ′′
εm(t) + B−1D(1)C ′

εm(t) + B−1D(0) Cεm(t) + B−1Φ(C ′
εm(t)) = B−1P(t). (6.12)

To reduce system (6.12) to the normal type, we introduce the notation

Sεm(t) := C ′
εm(t), Yεm(t) :=

(
Sεm(t), Cεm(t)

)⊤
and

L(t, Yεm) :=

[
B−1P(t)− B−1Φ(Sεm)− B−1D(1)C ′

εm − B−1D(0)Cεm

Sεm

]
2m×1

.

Then equation (6.12) and the initial conditions (6.11) take the form

Y ′
εm(t) = L(t, Yεm), Yεm(0) =

 0
...
0


2m×1

. (6.13)

Let us show that the matrix function L is continuous with respect to the first argument t. To this
end, we estimate the difference∣∣Pk(t+∆t)− Pk(t)

∣∣ = ∣∣⟨Ψ(t+∆t)−Ψ(t),Wk

⟩
K0

∣∣
=

∣∣∣∣(G(t+∆t)−G(t),Wk

)
+

∫
S2

(
f(t+∆t)−f(t)

)
{(ξk)n}+ dS+

⟨
φ(t+∆t)−φ(t), r

S2
{ηk}+

⟩
S2

∣∣∣∣
≤

(∥∥G(t+∆t)− G(t)
∥∥
[L2(Ω)]6

+
∥∥f(t+∆t)− f(t)

∥∥
L2(S2)

+
∥∥φ(t+∆t)− φ(t)

∥∥
[H−1/2(S2)]3

)
∥Wk∥[H1(Ω)]6 ,



Dynamical Contact Problems with Regard to Friction of Couple-Stress Viscoelasticity 83

where Wk = (ξk, ηk)
⊤ ∈ K0.

In what follows, we assume that

G,G′,G′′ ∈ L2(0, T ; [L2(Ω)]
6), f ∈ L∞(S2), φ, φ′, φ′′ ∈ L2(0, T ; [H

−1/2(S2)]
3). (6.14)

Note that the further analysis of the problem shows that g cannot be dependent on t, and hence f
also cannot be dependent on t. Assumptions G, f , and φ are continuously differentiable with respect
to t almost everywhere in the interval (0;T ), and hence |Pk(t+∆t)−Pk(t)| → 0 as ∆t→ 0, implying
that the function L is continuous with respect to the first argument.

To prove the continuity of the function L with respect to Yεm, it suffices to consider only the term
Φ(Sεm). By formula (6.2), we have

Φk(Sεm) =
⟨
j′ε

( m∑
j=1

SjεmWj

)
,Wk

⟩
S2

=

∫
S2

g(x)

( m∑
j=1

Sjεm{(ξj)s}+
)
· {(ξk)s}+√∣∣∣ m∑

j=1

Sjεm{(ξj)s}+
∣∣∣2 + ε2

dS.

It is easily seen that Φk is continuous and continuously differentiable with respect to the variables
Sjεm. Moreover, Φk and its derivatives with respect to Sjεm are bounded by an absolute constant
depending on ε. Therefore, the function L satisfies the Lipschitz condition in the second argument.
Consequently, system (6.13) possesses at most one solution.

Any vector function Yεm that is a solution to problem (6.13) possesses second order continuous
derivatives with respect to t. The same is valid for Uεm(t) defined by formula (6.8) with Cjεm(t),
being a solution of problem (6.13). It can be shown that Uεm(t) possesses actually continuous third
order derivatives with respect to t and solves problem (6.5)–(6.7).

In the next subsections we derive some a priori estimates which we need to perform the limiting
procedure with respect to the dimension m.

6.2 A priori estimates I
Insert the solution of system (6.13) in (6.8) and then substitute U ′

εm(t) instead of V into (6.5) to
obtain

(PU ′′
εm(t), U ′

εm(t)) + B(0)(Uεm(t), U ′
εm(t))

+ B(1)(U ′
εm(t), U ′

εm(t)) +
⟨
j′ε(U

′
εm(t)), U ′

εm(t)
⟩
S2

=
⟨
Ψ(t), U ′

εm(t)
⟩
K0
.

Since ⟨
j′ε(U

′
εm(t)), U ′

εm(t)
⟩
S2

=

∫
S2

g(x)
|{(u′εm(t))s}+|2√

|{(u′εm(t))s}+|2 + ε2
dS ≥ 0

and B(1)(U ′
εm(t), U ′

εm(t)) ≥ 0, from the preceding equality we have

d

dt

{∥∥√P U ′
εm(t)

∥∥2
[L2(Ω)]6

+B(0)(Uεm(t), Uεm(t))
}
≤ 2

⟨
Ψ(t), U ′

εm(t)
⟩
K0
.

Consequently, due to the homogeneous initial conditions, we arrive at the inequality

∥∥√P U ′
εm(t)

∥∥2
[L2(Ω)]6

+ B(0)(Uεm(t), Uεm(t)) ≤ 2

t∫
0

⟨
Ψ(σ), U ′

εm(σ)
⟩
K0
dσ.

By virtue of (2.4), we get

∥∥√P U ′
εm(t)

∥∥2
[L2(Ω)]6

+ C1∥Uεm(t)∥2[H1(Ω)]6 ≤ C2∥Uεm(t)∥2[L2(Ω)]6 + 2

t∫
0

⟨
Ψ(σ), U ′

εm(σ)
⟩
K0
dσ (6.15)
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with C1 and C2 from (2.4). Since Uεm(0) = 0, we can write

Uεm(t) =

t∫
0

U ′
εm(σ) dσ,

whence

∥Uεm(t)∥2[L2(Ω)]6 ≤
t∫

0

∥U ′
εm(σ)∥2[L2(Ω)]6 dσ. (6.16)

For the last term in (6.15) we have

2

t∫
0

⟨
Ψ(σ), U ′

εm(σ)
⟩
K0
dσ = 2

⟨
Ψ(t), Uεm(t)

⟩
K0

− 2

t∫
0

⟨
Ψ′(σ), Uεm(σ)

⟩
K0
dσ

≤ 1

δ
∥Ψ(t)∥2K′

0
+ δ∥Uεm(t)∥2[H1(Ω)]6 +

t∫
0

(
∥Ψ′(σ)∥2K′

0
+ ∥Uεm(σ)∥2[H1(Ω)]6

)
dσ

≤ C3 + δ∥Uεm(t)∥2[H1(Ω)]6 +

t∫
0

∥Uεm(σ)∥2[H1(Ω)]6 dσ. (6.17)

Taking into account estimates (6.16) and (6.17) and choosing δ in inequality (6.17) smaller than C1

from (6.15), we finally get

∥U ′
εm(t)∥2[L2(Ω)]6 + ∥Uεm(t)∥2[H1(Ω)]6 ≤ C4

t∫
0

(
∥U ′

εm(σ)∥2[L2(Ω)]6 + ∥Uεm(σ)∥2[H1(Ω)]6

)
dσ + C5

with some constants C4 and C5 independent of m and ε. Now, by using Gronwall’s lemma, we obtain

∥U ′
εm(t)∥2[L2(Ω)]6 + ∥Uεm(t)∥2[H1(Ω)]6 ≤ C (6.18)

with the constant C independent of m and ε.

6.3 A priori estimates II
Differentiating (6.5) with respect to t and replacing V with the vector-function U ′′

εm(t), we obtain

(PU ′′′
εm(t), U ′′

εm(t)) + B(0)(U ′
εm(t), U ′′

εm(t))

+ B(1)(U ′′
εm(t), U ′′

εm(t)) +
⟨ d
dt
j′ε(U

′
εm(t)), U ′′

εm(t)
⟩
S2

=
⟨
Ψ′(t), U ′′

εm(t)
⟩
K0
. (6.19)

Due to formula (6.2), for every W = (ξ, η)⊤ ∈ K0 and V = (v, w)⊤ ∈ K0, we have⟨
j′ε(W (t)), V⟩S2 =

∫
S2

g(x)Qε(ξs(t)) · {vs}+ dS, (6.20)

where
Qε

(
ξs(t)

)
:=

r
S2
{ξs(t)}+√

|r
S2
{ξs(t)}+|2 + ε2

.

Equality (6.20) yields⟨ d
dt
j′ε(W (t)), V

⟩
S2

=

∫
S2

g(x) lim
h→0

1

h

[
Qε(ξs(t+ h))−Qε(ξs(t))

]
· {vs}+ dS.
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Replace here V by the vector-function W ′(t), then⟨ d
dt
j′ε(W (t)),W ′(t)

⟩
S2

=

∫
S2

g(x) lim
h→0

1

h

[
Qε(ξs(t+ h))−Qε(ξs(t))

]
· 1
h

{
ξs(t+ h)− ξs(t)

}+
dS.

Since jε is a convex differentiable functional on K0, the operator j′ε : K0 → K′
0 is monotone and we

have

0 ≤
⟨
j′ε(W (t+ h))− j′ε(W (t)),W (t+ h)−W (t)

⟩
S2

=

∫
S2

g(x)Qε(ξs(t+ h)) · {ξs(t+ h)− ξs(t)}+ dS +

∫
S2

g(x)Qε(ξs(t)) ·
{
ξs(t)− ξs(t+ h)

}+
dS

=

∫
S2

g(x)
[
Qε(ξs(t+ h))−Qε(ξs(t))

]
·
{
ξs(t+ h)− ξs(t)

}+
dS.

Thus we obtain ⟨ d
dt
j′ε(W (t)),W ′(t)

⟩
S2

≥ 0. (6.21)

Taking into account (6.21), it follows from (6.19) that

(PU ′′′
εm(t), U ′′

εm(t)) + B(0)(U ′
εm(t), U ′′

εm(t)) + B(1)(U ′′
εm(t), U ′′

εm(t)) ≤
⟨
Ψ′(t), U ′′

εm(t)
⟩
K0
,

whence, since B(1)(U ′′
εm(t), U ′′

εm(t)) is nonnegative, we have

1

2

d

dt

{∥∥√P U ′′
εm(t)

∥∥2
[L2(Ω)]6

+B(0)(U ′
εm(t), U ′

εm(t))
}
≤

⟨
Ψ′(t), U ′′

εm(t)
⟩
K0
.

Using (2.4) and the homogeneous initial condition (6.7), by the integration of the foregoing formula
we get∥∥√P U ′′

εm(t)
∥∥2
[L2(Ω)]6

+ C1∥U ′
εm(t)∥2[H1(Ω)]6

≤ C2∥U ′
εm(t)∥2[L2(Ω)]6 +

∥∥√P U ′′
εm(0)

∥∥2
[L2(Ω)]6

+ 2

t∫
0

⟨
Ψ′(σ), U ′′

εm(σ)
⟩
K0
dσ (6.22)

with C1 and C2 from (2.4). Since
t∫

0

⟨
Ψ′(σ), U ′′

εm(σ)
⟩
K0
dσ =

⟨
Ψ′(t), U ′

εm(t)
⟩
K0

−
t∫

0

⟨
Ψ′′(σ), U ′

εm(σ)
⟩
K0
dσ, (6.23)

using the inclusions (6.14), we infer that Ψ′′ ∈ L2(0, T ;K′
0), and hence for an arbitrary positive δ it

follows from (6.23) that

t∫
0

⟨Ψ′(σ), U ′′
εm(σ)

⟩
K0
dσ ≤ 1

2δ
∥Ψ′(t)∥2K′

0
+
δ

2
∥U ′

εm(t)∥2[H1(Ω)]6

+ C3

t∫
0

∥Ψ′′(σ)∥2K′
0
dσ + C4

t∫
0

∥U ′
εm(σ)∥2[H1(Ω)]6 dσ. (6.24)

Taking now into account the inequality

∥Ψ′(t)∥2K′
0
≤ 2

t∫
0

∥Ψ′′(σ)∥2K′
0
dσ + 2∥Ψ′(0)∥2K′

0
≤ C5,
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from (6.24) we get

t∫
0

⟨
Ψ′(σ), U ′′

εm(σ)
⟩
K0
dσ ≤ C6 +

δ

2
∥U ′

εm(t)∥2[H1(Ω)]6 + C4

t∫
0

∥U ′
εm(σ)∥2[H1(Ω)]6 dσ. (6.25)

Choosing δ sufficiently small and taking into account estimates (6.25) and

∥U ′
εm(t)∥2[L2(Ω)]6 ≤

t∫
0

∥U ′′
εm(σ)∥2[L2(Ω)]6 dσ,

from (6.22) we derive

∥∥√P U ′′
εm(t)

∥∥2
[L2(Ω)]6

+ ∥U ′
εm(t)∥2[H1(Ω)]6

≤ C7

∥∥√P U ′′
εm(0)

∥∥2
[L2(Ω)]6

+ C8

t∫
0

[∥∥√P U ′′
εm(σ)

∥∥2
[L2(Ω)]6

+ ∥U ′
εm(σ)∥2[H1(Ω)]6

]
dσ + C9. (6.26)

Let us now estimate ∥
√
PU ′′

εm(0)∥[L2(Ω)]6 . Substituting t = 0 in (6.5), we obtain

(PU ′′
εm(0), V ) =

⟨
Ψ(0), V

⟩
K0

∀V ∈ Wm, (6.27)

where, in view of (6.4),

⟨
Ψ(0), V

⟩
K0

= (G(0), V ) +

∫
S2

f(0){vn}+ dS +
⟨
φ(0), rS2

{w}+
⟩
S2
.

Here we formulate one more restriction on the data of the problem: we assume that there exists a
vector-function U0 ∈ [L2(Ω)]

6 such that⟨
Ψ(0), V

⟩
K0

= (U0, V ) ∀V ∈ K0. (6.28)

Note that if φ ∈ L2(0, T ; [L2(S2)]
3), then (6.28) holds.

Since U ′′
εm(0) ∈ Wm, we can take U ′′

εm(0) instead of V in (6.27) and, using (6.28), we arrive at the
inequality ∥∥√P U ′′

εm(0)
∥∥2
[L2(Ω)]6

= (U0, U
′′
εm(0)) ≤ ∥U0∥[L2(Ω)]6∥U ′′

εm(0)∥[L2(Ω)]6 ,

whence ∥∥√P U ′′
εm(0)

∥∥2
[L2(Ω)]6

≤ C10

with C10 independent of ε and m. Therefore (6.26) takes the form

∥∥√P U ′′
εm(t)

∥∥2
[L2(Ω)]6

+ ∥U ′
εm(t)∥2[H1(Ω)]6

≤ C11 + C12

t∫
0

[∥∥√P U ′′
εm(σ)

∥∥2
[L2(Ω)]6

+ ∥U ′
εm(σ)∥2[H1(Ω)]6

]
dσ.

Using again Gronwall’s lemma, we find

∥U ′′
εm(t)∥2[L2(Ω)]6 + ∥U ′

εm(t)∥2[H1(Ω)]6 ≤ C, (6.29)

where C does not depend on ε and m.
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6.4 The basic existence theorem
First, we pass to the limit with respect to the dimension m. The estimates (6.18) and (6.29) show that
Uεm and U ′

εm (respectively, U ′′
εm) are bounded by the constants independent of ε and m in the space

L∞(0, T ;K0) (respectively, in the space L∞(0, T ; [L2(Ω)]
6). Thus we can choose from the sequence

Uεm a subsequence, which we again denote by Uεm, such that

Uεm → Uε ∗-weakly in L∞(0, T ;K0) as m→ ∞,

U ′
εm → U ′

ε ∗-weakly in L∞(0, T ;K0) as m→ ∞,

U ′′
εm → U ′′

ε ∗-weakly in L∞(0, T ; [L2(Ω)]
6) as m→ ∞.

(6.30)

Let us show that the limiting function Uε satisfies the regularized variational equation (6.3) with the
homogeneous initial conditions for t = 0. We proceed as follows. Let ϑj ∈ C1([0;T ]), ϑj(T ) = 0,
j = 1,∞, be smooth scalar functions and consider the vector-function Φ(t) =

m0∑
j=1

ϑj(t)Wj with

a natural number m0. It is easy to see that Φ ∈ Wm for every m ≥ m0 and ∀ t ∈ [0;T ] and,
consequently, from (6.5) we have

(PU ′′
εm(t),Φ(t)) + B(0)(Uεm(t),Φ(t))

+ B(1)(U ′
εm(t),Φ(t)) +

⟨
j′ε(U

′
εm(t)),Φ(t)

⟩
S2

=
⟨
Ψ(t),Φ(t)

⟩
K0
. (6.31)

Integrate (6.31) with respect to t from 0 to T ,

T∫
0

[
(PU ′′

εm(t),Φ(t)) + B(0)(Uεm(t),Φ(t))

+ B(1)(U ′
εm(t),Φ(t)) +

⟨
j′ε(U

′
εm(t)),Φ(t)

⟩
S2

]
dt =

T∫
0

⟨
Ψ(t),Φ(t)

⟩
K0
dt.

Taking now into account (6.30) and passing to the limit in the last equality as m→ ∞, we get

T∫
0

[
(PU ′′

ε (t),Φ(t)) + B(0)(Uε(t),Φ(t))

+ B(1)(U ′
ε(t),Φ(t)) +

⟨
j′ε(U

′
ε(t)),Φ(t)

⟩
S2

]
dt =

T∫
0

⟨
Ψ(t),Φ(t)

⟩
K0
dt. (6.32)

Since the finite linear combinations
∑
j

ϑj(t)Wj are dense in K0 for every t ∈ [0;T ], equality (6.32)

allows us to conclude that

T∫
0

[
(PU ′′

ε (t), V ) + B(0)(Uε(t), V )

+ B(1)(U ′
ε(t), V ) +

⟨
j′ε(U

′
ε(t)), V

⟩
S2

−
⟨
Ψ(t),Φ(t)

⟩
K0

]
dt = 0 ∀V ∈ K0. (6.33)

To obtain equality (6.3), it remains to derive a pointwise equation from the integral equality (6.33).
To this end, we take an arbitrary fixed number τ ∈ (0;T ) and an arbitrary vector-function W ∈ K0.
Consider the family of neighborhoods of the point τ ,

Γk =
(
τ − 1

k
, τ +

1

k

)
,
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and define the function V (t) as follows:

V (t) =

{
0, if t ̸∈ Γk,

W, if t ∈ Γk.

Denoting the measure of Γk by |Γk|, from (6.33) we find that(
1

|Γk|

∫
Γk

PU ′′
ε (t) dt,W

)
+ B(0)

(
1

|Γk|

∫
Γk

Uε(t) dt,W

)
+ B(1)

(
1

|Γk|

∫
Γk

U ′
ε(t) dt,W

)

+

⟨
j′ε

(
1

|Γk|

∫
Γk

U ′
ε(t) dt

)
,W

⟩
S2

− 1

|Γk|

∫
Γk

⟨
Ψ(t),W

⟩
K0
dt = 0. (6.34)

According to the Lebesgue theorem, since

1

|Γk|

∫
Γk

ψ(t) dt −→ ψ(τ) as k → ∞

for almost all τ , it follows from (6.34) that

(PU ′′
ε (τ),W ) + B(0)(Uε(τ),W ) + B(1)(U ′

ε(τ),W ) +
⟨
j′ε(U

′
ε(τ)),W

⟩
S2

=
⟨
Ψ(τ),W

⟩
K0

∀W ∈ K0,

that is, the limiting function Uε satisfies the regularized variational equation (6.3). As for the initial
conditions for t = 0, we notice that the conditions (6.30) allow us to conclude that Uε(t) and U ′

ε(t)
are the continuous mappings of the interval [0;T ] onto K0. Thus Uε(0) and U ′

ε(0) are well defined
and, in view of (6.30), we see that Uεm(0) and U ′

εm(0) converge weakly in K0 to Uε(0) and U ′
ε(0),

respectively. Since Uεm(0) = 0 and U ′
εm(0) = 0, we can show that Uε(0) = 0 and U ′

ε(0) = 0, i.e., the
initial conditions are fulfilled.

It remains to pass to the limit in equality (6.3) with respect to the parameter ε. Repeating the
arguments applied above, we can derive the estimate

∥Uε(t)∥[H1(Ω)]6 + ∥U ′
ε(t)∥[H1(Ω)]6 + ∥U ′′

ε (t)∥[L2(Ω)]6 ≤ C

with the constant C independent of ε. Thus from the sequence {Uε(t)} we can choose a subsequence,
which we denote again by {Uε}, such that

Uε → U ∗-weakly in L∞(0, T ;K0) as ε→ 0,

U ′
ε → U ′ ∗-weakly in L∞(0, T ;K0) as ε→ 0,

U ′′
ε → U ′′ ∗-weakly in L∞(0, T ; [L2(Ω)]

6) as ε→ 0.

Let us show that the limiting function U satisfies the variational inequality (3.11). Replacing in (6.3)
V by the vector-function W − U ′

ε(t), where W ∈ K0 is arbitrary, we have

(PU ′′
ε (t),W − U ′

ε(t)) + B(0)(Uε(t),W − U ′
ε(t))

+ B(1)(U ′
ε(t),W − U ′

ε(t)) + jε(W )− jε(U
′
ε(t))−

⟨
Ψ(t),W − U ′

ε(t)
⟩
K0

= jε(W )− jε(U
′
ε(t))−

⟨
j′ε(U

′
ε(t)),W − U ′

ε(t)
⟩
S2

∀W ∈ K0. (6.35)

The right-hand side of the above inequality is non-negative. Indeed, since the functional jε is convex,
we find that

jε(W )− jε(U
′
ε(t))−

⟨
j′ε(U

′
ε(t)),W − U ′

ε(t)
⟩
S2

= jε(W )− jε(U
′
ε(t))− lim

h→0

1

h

[
jε(hW + (1− h)U ′

ε(t))− jε(U
′
ε(t))

]
≥ 0.
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Taking into account the last inequality, from (6.35) we have

T∫
0

[
(PU ′′

ε (t),W ) + B(0)(Uε(t),W ) + B(1)(U ′
ε(t),W ) + jε(W )−

⟨
Ψ(t),W − U ′

ε(t)
⟩
K0

]
dt

≥
T∫

0

[
(PU ′′

ε (t), U
′
ε(t)) + B(0)(Uε(t), U

′
ε(t)) + B(1)(U ′

ε(t), U
′
ε(t)) + jε(U

′
ε(t))

]
dt.

On the other hand, the equality

T∫
0

[
(PU ′′

ε (t), U
′
ε(t)) + B(0)(Uε(t), U

′
ε(t)) + B(1)(U ′

ε(t), U
′
ε(t)) + jε(U

′
ε(t))

]
dt

=
1

2

[ ∥∥√P U ′
ε(T )

∥∥2
[L2(Ω)]6

+ B(0)(Uε(T ), Uε(T ))
]
+

T∫
0

[
B(1)(U ′

ε(t), U
′
ε(t)) + jε(U

′
ε(t))

]
dt

with the help of the inequality

lim inf
ε→0

B(0)(Uε(T ), Uε(T )) ≥ B(0)(U(T ), U(T ))

leads to the inequality

T∫
0

[
(PU ′′(t),W − U ′(t)) + B(0)(U(t),W − U ′(t)) + B(1)(U ′(t),W − U ′(t))

+ j(W )− j(U ′(t))−
⟨
Ψ(t),W − U ′(t)

⟩
K0

]
dt ≥ 0 ∀W ∈ K0. (6.36)

From the integral relation (6.36) we can derive as above the pointwise inequality

(PU ′′(t),W − U ′(t)) + B(0)(U(t),W − U ′(t))

+ B(1)(U ′(t),W − U ′(t)) + j(W )− j(U ′(t))−
⟨
Ψ(t),W − U ′(t)

⟩
K0

≥ 0 ∀W ∈ K0,

and by an analogous reasoning we conclude that the homogeneous initial conditions are fulfilled. Thus
we have proved the following existence theorem.

Theorem 6.1. Let conditions (6.14) be fulfilled, g be independent of t, and let there exist a vector-
function U0 ∈ [L2(Ω)]

6 such that

(U0, V ) =
(
G(0), V

)
+

∫
S2

f(0) {vn}+ dS +
⟨
φ(0), r

S2
{w}+

⟩
S2

∀V = (v, w)⊤ ∈ K0.

Then there exists one and only one function U ∈ K which is a solution of the variational inequality
(3.11) and, according to Theorem 4.1, it is a solution of problem (A0), as well.
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MATHEMATICAL STUDY
TO A REGULARIZED 3D-BOUSSINESQ SYSTEM



Abstract. We prove existence of weak solution to a regularized Boussinesq system in Sobolev spaces
under the minimal regularity to the initial data. Continuous dependence on initial data (and then
uniqueness) is proved provided that the initial fluid velocity is mean free. If the temperature is also
mean free, we prove that the solution decays exponentially fast, as time goes to infinity. Moreover,
we show that the unique solution converges to a Leray–Hopf solution of the three-dimensional Boussi-
nesq system, as the regularizing parameter alpha vanishes. The mean free technical condition appears
because the nonlinear part of the fluid equation is subject to regularization. The main tools are the en-
ergy methods, the compactness method, the Poincaré inequality and some Grönwall type inequalities.
To handle the long time behaviour, a time dependent change of function is used.
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35B45.

Key words and phrases. Three-dimensional periodic Boussinesq system, weak solution, regula-
rization, existence, uniqueness, convergence, asymptotic behavior, long time behavior, mean free.

ÒÄÆÉÖÌÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÒÄÂÖËÀÒÉÆÄÁÖËÉ ÁÖÓÉÍÄÓÊÉÓ ÓÉÓÔÄÌÉÓ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄ-
ÁÏÁÀ ÓÏÁÏËÄÅÉÓ ÓÉÅÒÝÄÄÁÛÉ ÓÀßÚÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÌÉÍÉÌÀËÖÒÉ ÒÄÂÖËÀÒÏÁÉÓ ÐÉÒÏÁÄÁÛÉ.
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÖßÚÅÄÔÉ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ ÓÀßÚÉÓ ÌÏÍÀÝÄÌÄÁÆÄ (áÏËÏ ÛÄÌÃÄÂ
ÄÒÈÀÃÄÒÈÏÁÀ), ÈÖ ÓÉÈáÉÓ ÓÀßÚÉÓÉ ÓÉÜØÀÒÄ ÓÀÛÖÀËÏÃ ÈÀÅÉÓÖ×ÀËÉÀ. ÈÖ ÔÄÌÐÄÒÀÔÖ-
ÒÀÝ ÓÀÛÖÀËÏÃ ÈÀÅÉÓÖ×ÀËÉÀ, ÌÀÛÉÍ ÜÅÄÍ ÅÀÌÔÊÉÝÄÁÈ, ÒÏÌ ÀÌÏÍÀáÓÍÉ ÄØÓÐÏÍÄÍÝÉÀËÖÒÀÃ
ÓßÒÀ×ÀÃ ØÒÄÁÀ, ÒÏÝÀ ÃÒÏ ÖÓÀÓÒÖËÏÁÉÓÊÄÍ ÌÉÉÓßÒÀ×ÉÓ. ÂÀÒÃÀ ÀÌÉÓÀ, ÃÀÌÔÊÉÝÄÁÖËÉÀ,
ÒÏÌ ÄÒÈÀÃÄÒÈÉ ÀÌÏÍÀáÓÍÉ ÊÒÄÁÀÃÉÀ ÓÀÌÂÀÍÆÏËÄÁÉÀÍÉ ÁÖÓÉÍÄÓÊÉÓ ÓÉÓÔÄÌÉÓ ËÄÒÄÉ-äÏ×ÉÓ
ÀÌÏÍÀáÓÍÉÓÊÄÍ, ÒÏÝÀ ÌÀÒÄÂÖËÉÒÄÁÄËÉ ÀË×À ÐÀÒÀÌÄÔÒÉ ÍÖËÉÓÊÄÍ ÌÉÉÓßÒÀ×ÉÓ. ÓÀÛÖÀËÏ
ÈÀÅÉÓÖ×ËÄÁÉÓ ÔÄØÍÉÊÖÒÉ ÐÉÒÏÁÀ ÂÀÌÏÜÍÃÄÁÀ ÉÌÉÔÏÌ, ÒÏÌ áÃÄÁÀ ÓÉÈáÉÓ ÂÀÍÔÏËÄÁÉÓ
ÀÒÀßÒ×ÉÅÉ ÍÀßÉËÉÓ ÒÄÂÖËÀÒÉÆÀÝÉÀ. ÊÅËÄÅÉÓ ÌÈÀÅÀÒÉ ÉÍÓÔÒÖÌÄÍÔÄÁÉÀ ÄÍÄÒÂÄÔÉÊÖËÉ
ÌÄÈÏÃÄÁÉ, ÊÏÌÐÀØÔÖÒÏÁÉÓ ÌÄÈÏÃÉ, ÐÖÀÍÊÀÒÄÓ ÖÔÏËÏÁÀ ÃÀ ÂÒÏÍÅÄËÉÓ ÔÉÐÉÓ ÖÔÏËÏÁÄÁÉ.
ÉÌÉÓÀÈÅÉÓ, ÒÏÌ ÛÄÅÉÓßÀÅËÏÈ ÚÏ×ÀØÝÄÅÀ áÀÍÂÒÞËÉÅÉ ÃÒÏÉÓ ÂÀÍÌÀÅËÏÁÀÛÉ, ÂÀÌÏÚÄÍÄÁÖËÉÀ
×ÖÍØÝÉÉÓ ÝÅÀËÄÁÀÃÏÁÉÓ ÃÒÏÆÄ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ.
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1 Introduction
We consider the following system denoted by (Bqα):

∂tθ −∆θ + (u · ∇)θ = 0, (t, x) ∈ R+ × T3,

∂tv −∆v + (v · ∇)u = −∇p+ θe3, (t, x) ∈ R+ × T3,

v = u− α2∆u, (t, x) ∈ R+ × T3,

divu = div v = 0, (t, x) ∈ R+ × T3,

(u, θ)
∣∣
t=0

= (u0, θ0), x ∈ T3,

where the unknown vector field u, the scalars p and θ denote, respectively, the velocity, the pressure
and the temperature of the fluid at the point (t, x) ∈ R+×T3. Here, T3 is the three-dimensional torus
and α > 0 is a real parameter that has to go to zero. The data θ0 and u0 are initial temperature and
initial divergence free velocity. In [7], the author explained motivations behind considering regularized
systems such as (Bqα), and he gave a wide review of related literature. Here, we just recall that alpha-
regularization consists in replacing the velocity u in some of its occurrences by the most regular field
v = u−α2∆u. So, contrarily to the non-regularized fluid mechanic equation, we have the existence of a
unique three-dimensional solution that depends continuously on initial data. Moreover, as explained in
[2], these models can be implemented in a relatively simple way in numerical computation of the three-
dimensional fluid equations. Thus, they are to be known as regularization stimulated by numerical
motivations. In the framework of computational fluid dynamics, for zero valued temperature, it
was proved in [4] that the model we are actually considering, provides a computationally sound
analytical subgrid scale model for large eddy simulation of turbulence. More important is that when
the regularizing parameter α tends to zero, the solution of (Bqα) coincides with the solution of
Boussinesq system (Bqα=0). Furthermore, as time tends to infinity, the system (Bqα>0) behaves like
(Bqα=0).

In this paper, we will investigate the weak solution to the modified Leray-alpha model for the
Boussinesq system. More than the linear part, the nonlinear part of the fluid equation is to be
regularized as well. This is one of the main differences between systems we considered in [7] and [3],
where we regularized only the linear part and studied, respectively, the weak and the strong solutions.

Our first result is the existence of the weak solution to the system (Bqα) in the context of the
minimal regularity to the initial data.

Theorem 1.1. Let θ0 ∈ L2(T3) and let u0 ∈ H1(T3) be a divergence-free vector field. Then there
exists a unique weak solution (uα, θα) of system (Bqα) such that uα belongs to C(R+,H

1(T3)) ∩
L2(R+,H

2(T3)) and θα belongs to C(R+, L
2(T3))∩L2(R+,H

1(T3)). Moreover, this solution satisfies
the energy estimate

∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2 + 2

t∫
0

∥∇θα∥2L2(T3) dτ

+ 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + σα(t), (1.1)

where
σα(t) = (e2t − 1)

(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2

)
.

If the initial velocity is mean free, the solution is continuously dependent on the initial data on any
bounded interval [0, T ]. In particular, it is unique.

The proof is done in the frequency space and uses the compactness method. To close the energy
estimates, the buoyancy force presents some difficulties that we have overcome by Grönwall’ s lemma,
without useless sharpness. More than the uniqueness, we have continuous dependence of the weak
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solution on the initial data. This is the main advantage provided by alpha regularization, since such
dependence plays an important role in numerical schemes.

To prove continuous dependence with respect to the initial data, we consider the system satisfied
by the difference of two solutions and apply energy methods. The Young product inequalities and
suitable Sobolev products allow to estimate the nonlinear terms. Grönwall’s type differential inequality
finishes the proof. In particular, we infer the uniqueness of solution. Compared to [7] and [3], the
mean free condition is compulsory, since we are regularizing the nonlinear term and thus the Poincaré
inequality turns to be a necessary tool to run the argument of the continuous dependence to initial
data.

Our next result asserts that for long time, the regularized temperature and the regularized velocity
fields vanish exponentially fast as time tends to infinity. This convergence is uniform with respect to
α. One recovers, for α > 0, a similar property of the long time behavior to the Leray–Hopf solution
of the non-regularized system.
Theorem 1.2. Let a ∈ (0, 1). Let θα and uα be the family of solutions from Theorem 1.1. If θ0 and
u0 are both mean free and satisfy the inequality

∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 ≤ 1− a,

then θα and uα decay exponentially fast to zero as time tends to infinity as soon as the initial data
(hence the solution) are mean free:

∥θα(t)∥L2 + ∥uα(t)∥H1 ≤ (1− a)e−at ∀ t ≥ 0.

To prove this result, we use a change of the function that depends explicitly on time. This
leads to an energy estimate that is sharper than the one of the existence result. For zero-mean
valued temperature and velocity, this estimation allows to derive the vanishing limit and the rate of
convergence, as time tends to infinity.

Our last result describes the weak and strong convergence, as α → 0, of the unique weak solution
of the regularized system (Bqα) to the Leray–Hopf solution of the system (Bq0). This convergence
asserts that as smaller is alpha, as better we describe reality.
Theorem 1.3. Let T > 0, (uα, θα) be the unique solution of system (Bqα). Then there exist the
subsequences uαk

, vαk
and θαk

, a scalar function θ, and a divergence-free vector field u, both belonging
to L∞([0, T ], L2(T3)) ∩ L2([0, T ],H1(T3)), such that as αk → 0+, we have:

1. The sequence uαk
converges to u and θαk

converges to θ weakly in L2([0, T ],H1(T3)) and strongly
in L2([0, T ], L2(T3)).

2. The sequence vαk
converges to u weakly in L2([0, T ], L2(T3)) and strongly in L2([0, T ],H−1(T3)).

3. The sequence uαk
converges to u and θαk

converges to θ weakly in L2(T3) and uniformly over
[0, T ]. Furthermore, (u, θ) is the weak solution of the Boussinesq system (Bq0) on [0, T ] associated
with the initial data (u0, θ0) satisfying for all t ∈ [0, T ] the energy inequality

∥θ∥2L2 + ∥u∥2L2 +
t∫
0

∥∇θ∥2L2 + ∥∇u∥2L2 dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + σ0(t). (1.2)

Here, (Bq0) and σ0 denote, respectively, (Bqα) and σα for α = 0.
The purpose of the proof is to extract subsequences that converge to the solution of (Bq) as

α → 0+. First, we derive a uniform bound independent of the parameter α. This gives the weak
convergence. Then, following the lines of the existence proof, we establish strong convergence of such
subsequences in suitable spaces. This strong convergence allows to take the limit in the quadratic
terms, and hence a weak convergence of the unique weak solution of (Bq) to a weak solution of (Bq)
is proved and the associated energy estimate is derived.

The remainder of the paper is organized as follows. We start with recalling some useful background.
Section 3 is devoted to the proof of the existence result and the continuous dependence of the weak
solution on the initial data, in particular, uniqueness. In Section 4, we investigate the long time
behaviour of the regularized temperature and the regularized velocity. Section 5 is devoted to proving
several convergence results, as the regularizing parameter α vanishes.
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2 Preliminary results
For n ∈ N , let Pn denote the projection into the Fourier modes of order up to n, that is,

Pn

( ∑
k∈Z3

ûke
ik·x

)
=

∑
|k|≤n

ûke
ik·x.

We define for s ≥ 0 the operator Λs acting on Hs(T3) by

Λsu(x) =
∑
k∈Z3

|k|sûke
ik·x ∈ L2(T3).

Moreover, we denote by ∥ · ∥Ḣs the seminorm ∥ · ∥L2 . This is, of course, compatible with the definition
of the Sobolev norm that ∥ · ∥Hs is equivalent to ∥ · ∥L2 + ∥ · ∥Ḣs . We will also make use of the fact
that ∥u∥Ḣs ≤ ∥u∥Ḣt if 0 < s ≤ t and Λ2 = −∆. Moreover, if divu = 0, we have (v · ∇u, u)L2(T3) = 0
and (u ·∇θ, θ)L2(T3) = 0. Finally, we recall the version of the Aubin–Lions Theorem that will be used.

Lemma 2.1. Let X0, X and X1 be three Banach spaces with X0 ⊂ X ⊂ X1. Suppose that X0 is
compactly embedded in X and X is continuously embedded in X1. For 1 ≤ p, q ≤ ∞, let

W =
{
u ∈ Lp([0, T ], X0) :

du

dt
∈ Lq([0, T ], X1)

}
.

• If p < +∞, then the embedding of W into Lp([0, T ];X) is compact.

• If p = +∞ and q > 1, then the embedding of W into C([0, T ];X) is compact.

Also, we need the following inequalities:

∥ϑ∥L3 ≤ ∥ϑ∥1/2L2 ∥∇ϑ∥1/2L2 , (2.1)

∥ϑ∥L∞ ≤ ∥ϑ∥1/2
Ḣ1

∥ϑ∥1/2
Ḣ2

, (2.2)
∥ϑ∥L6 ≤ ∥∇ϑ∥L2 . (2.3)

3 Existence and uniqueness results
Let un = Pnu. One approximates the continuous problem (Bqα) by the following problem denoted
by (Bqα)n:

∂tθn −∆θn + Pn div(θnun) = 0, (3.1)

∂tvn −∆vn + Pn div(vnun)− θne3 = Pn∇∆−1
( 3∑

i,j=1

∂i∂j(v
i
nu

j
n)− ∂3θn

)
, (3.2)

vn = un − α2∆un, (3.3)
divun = div vn = 0, (3.4)

(un, θn)t=0 = (u0
n, θ

0
n) = (Pnu

0, Pnθ
0). (3.5)

The ordinary differential equation theory implies that there exists some maximal T ∗
n > 0 and a unique

local solution un ∈ C∞([0, T ∗
n) × T3) to (Bqα)n. Taking the inner product of (3.1) by θn and (3.2)

by un, applying the Cauchy–Schwarz inequality to the forcing term < θne3, un >L2 and dropping the
viscous term, we obtain

d

dt

(
∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2

)
≤ 2

(
∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2

)
.

Let
ϕ(t) = ∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2 ,
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then the above equation reads ϕ′(t) ≤ 2ϕ(t). Applying Grönwall’ s inequality and integrating over
[0, t], we obtain ϕ(t) ≤ ϕ(0)e2t. Thus,

∥θn(t)∥2L2 + ∥un(t)∥2L2 + α2∥∇un(t)∥2L2 ≤ (∥θ0n∥2L2 + ∥u0
n∥2L2 + α2∥∇u0

n∥2L2)e2t.

This implies that

∥θn(t)∥2L2 + ∥un(t)∥2L2 + α2∥∇un(t)∥2L2 + 2

t∫
0

∥∇θn(τ)∥2L2(T3) dτ

+ 2

t∫
0

(∥∇un(τ)∥2L2 + α2∥∆un(τ)∥2L2) dτ ≤ ∥θ0n∥2L2 + ∥u0
n∥2L2 + α2∥∇u0

n∥2L2 + σα(t),

where
σα(t) = (e2t − 1)

(
∥θ0n∥2L2 + ∥u0

n∥2L2 + α2∥∇u0
n∥2L2

)
.

So, the maximal solution to problem (3.1)–(3.5) is global and T ∗
n = +∞.

Using the product laws and interpolation inequality, we obtain

∥div(vn ⊗ un)∥Ḣ−2 ≤ ∥vn∥L2∥un∥1/2L2 ∥un∥1/2Ḣ1
.

Hence, d
dt vn ∈ L2([0, T ], Ḣ−2). We denote by W the set of functions defined by

W =
{
un : un ∈ L2([0, T ], Ḣ2(T3)),

dun

dt
∈ L2([0, T ], L2(T3))

}
.

By the Aubin–Lions Theorem, we conclude that there is a subsequence un′ such that un′ ⇀ uα

weakly in L2([0, T ], Ḣ2(T3)), and un′ → uα strongly in L2([0, T ], Ḣ1(T3)), moreover, un′ → uα in
C([0, T ], L2(T3)). Likewise, if we denote

W ′ =
{
θn : θn ∈ L2([0, T ], Ḣ1(T3)),

dθn
dt

∈ L2([0, T ], Ḣ−1(T3))
}
,

then there exists θα such that θn′ ⇀ θα weakly in L2([0, T ], Ḣ1(T3)), and θn′ → θα strongly in
L2([0, T ], L2(T3)), moreover, θn′ → θα in C([0, T ], Ḣ−1(T3)). Further, we relabel un′ , vn′ and θn′

by un, vn and θn and note that the strong convergence is compulsory when taking the limit in the
nonlinear term. Let us begin with proving that

lim
n→+∞

Pn[(un∇)θn] = [(uα∇)θα]

in D′(R∗
+ × T3). Let Ψ ∈ Ḣ2 be a vector divergence-free test function, Φ ∈ Ḣ1 be a scalar test

function, and ∀t ∈ R+,

I1n =

t∫
0

⟨
Pn

[
(un − uα)∇θn

]
,Φ

⟩
L2 dτ,

I2n =

t∫
0

⟨
Pn

[
(uα)∇(θn − θα)

]
,Φ

⟩
L2 dτ,

I3n =

t∫
0

⟨
(Pn − I)(uα∇)θα,Φ

⟩
L2 dτ.

Using, respectively, the Cauchy–Schwarz inequality and Sobolev product laws, we obtain

|I1n| ≤ ∥un − uα∥L2([0,T ],Ḣ1)∥θn∥L2([0,T ],Ḣ1)∥Φ∥Ḣ1 ,

|I2n| ≤ ∥uα∥L2([0,T ],Ḣ2)∥θn − θα∥L2([0,T ],L2)∥Φ∥Ḣ1 .
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As for I3n, first, we estimate the term

⟨
(Pn − I)(uα∇)θα,Φ

⟩
L2 =

∫
T3

∑
|k|>n

̂(uα,k∇)θα,ke
ik·xΦ dx

≤
∫
T3

∑
|k|>n

|k|
n

̂(uα,k∇)θα,ke
ik·xΦ dx ≤ 1

n

∫
T3

Λ(div(uαθα))Φ dx.

Then, by inequality (2.2) and Hölder’s inequality, we obtain

|I3n| ≤
1

n

t∫
0

∥∥Λ(div(uαθα))
∥∥
Ḣ−1∥Φ∥Ḣ1 dτ ≤ 1

n
∥uα∥L2([0,T ],Ḣ2)∥θα∥L2([0,T ],Ḣ1)∥Φ∥Ḣ1 .

Now, let us prove that
lim

n→+∞
Pn(vn · ∇)un = (vα · ∇)uα

in D′(R∗
+ × T3). Let

J1
n =

t∫
0

⟨
Pn(vn − vα) · ∇un,Ψ

⟩
L2 dτ,

J2
n =

t∫
0

⟨
Pnvα · ∇(un − uα),Ψ

⟩
L2 dτ,

J3
n =

t∫
0

⟨
(Pn − I)(vα · ∇)uα,Ψ

⟩
L2 dτ.

As for J1
n, we have

|J1
n| ≤

t∫
0

∥∥(vn − vα) · ∇un

∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ

≤ c

t∫
0

∥vn − vα∥Ḣ−1∥∇un∥Ḣ1/2∥Ψ∥Ḣ2 dτ ≤ c∥vn − vα∥L2([0,T ],Ḣ−1)∥un∥L2([0,T ],Ḣ2)∥Ψ∥Ḣ2 .

Since un is bounded in L2([0, T ], Ḣ2) and vn → vα in L2([0, T ], Ḣ−1), we get lim
n→+∞

J1
n = 0. Applying

the Cauchy–Schwarz inequality and Sobolev product laws, we have

|J2
n| ≤

t∫
0

∥∥vα · ∇(un − uα)
∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ

≤
t∫

0

∥vα∥Ḣ−1/2

∥∥∇(un − uα)
∥∥
L2∥Ψ∥Ḣ2 dτ ≤ ∥vα∥L2([0,T ],L2)∥un − uα∥L2([0,T ],Ḣ1)∥Ψ∥Ḣ2 .

Since vα is bounded in L2([0, T ], L2) and un → uα strongly in L2([0, T ], Ḣ1), we get lim
n→+∞

J2
n = 0.

As for J3
n, at a first step, we estimate the term⟨
(Pn − I)(vα · ∇)uα,Ψ

⟩
L2 =

∫
T3

(Pn − I)(vα · ∇)uαΨ dx ≤ 1

n

∫
T3

Λ(div(vα ⊗ uα))Ψ dx,
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where we have used the divergence-free condition and a standard calculation. Then, by the Cauchy–
Schwarz inequality and Sobolev product laws, we get

|J3
n| ≤

1

n

t∫
0

⟨
Λ(div(vα ⊗ uα)),Ψ

⟩
L2 dτ

≤ 1

n

t∫
0

∥∥Λ(div(vα ⊗ uα))
∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ ≤ 1

n
∥vα∥L2([0,T ],L2)∥uα∥L2([0,T ],Ḣ2)∥Ψ∥Ḣ2 .

To prove the continuity of the solution, it suffices to prove at a first step that for all t0 ∈ R+,

∥θα(t)− θα(t0)∥L2(T3) → 0 as t → t0.

Towards this end, we have to prove that the function t 7−→ ∥θα(t)∥L2 is continuous and the func-
tion t 7−→ θα(t) is weakly continuous with value in L2(T3). We have θα ∈ L∞(R+, L

2(T3)) ∩
L2(R+, Ḣ

1(T3)), so, d
dt∥θα(t)∥

2
L2 belongs to L1([0, T ]). Hence, ∥θα(t)∥2L2 belongs to C([0, T ]). Since

θα ∈ L2(R+, Ḣ
1(T3)) and Φ ∈ Ḣ1, we find that as t tends to t0, the inequality∣∣∣∣

t∫
t0

⟨
∇θα,∇Φ

⟩
L2 dτ

∣∣∣∣ ≤ ( t∫
t0

∥∇θα(τ)∥2L2 dτ

)1/2( t∫
t0

∥∇Φ(τ)∥2L2 dτ

)1/2

tends to zero. Using inequality (2.2) and the Cauchy–Schwarz and Hölder inequalities, we find that∣∣∣∣
t∫

t0

⟨
div(θαuα),Φ >L2 dτ

∣∣∣∣ ≤ ( t∫
t0

∥θα∥2L2 dτ

)1/2( t∫
t0

∥uα∥2Ḣ2 dτ

)1/2

∥Φ∥Ḣ1

tends to zero as t tends to t0. Therefore langleθα(t),Φ⟩L2 → ⟨θ(t0),Φ⟩L2 as t → t0 for every Φ ∈ Ḣ1.
In particular, θα(t) ∈ L2 and Φ ∈ Ḣ1 ⊂ L2. Since the Sobolev space Ḣ1 is dense in L2, we have for
t ∈ [0, T ], ⟨θα(t),Φ⟩L2 → ⟨θ(t0),Φ⟩L2 as t → t0 for every Φ ∈ L2. Hence, θα ∈ C([0, T ), L2). Similarly,
we obtain ∥∇uα(t)−∇uα(t0)∥2L2 → 0 as t → t0.

To prove continuous dependence of solutions on initial data, we assumer that (u, θ) and (u, θ) are
any two solutions of the system (Bqα) on the interval [0, T ], with initial values (u0, θ0) and (u 0, θ

0
),

respectively. Let us denote v = u− α2∆u, v = u− α2∆u, δu = u− u, δv = v − v, δθ = θ − θ, and by
δp = p− p. Then

∂tδθ −∆δθ + (δu · ∇)θ + (u · ∇)δθ = 0,

∂tδv −∆δv + (δv · ∇)u+ (v · ∇)δu = −∇δp+ δθe3,

δv = δu− α2∆δu,

div δu = div δv = 0,

(δu, δθ)t=0 = (u0 − u 0, θ0 − θ
0
).

We have d
dt δθ ∈ L2([0, T ], Ḣ−1) and δθ ∈ L2([0, T ], Ḣ1). Moreover, d

dt δv belongs to L2([0, T ], Ḣ−2)

and δu ∈ L2([0, T ], Ḣ2). By appropriate duality action, for almost every time t in [0, T ] we have⟨ d

dt
δθ, δθ

⟩
Ḣ−1

+ ∥∇δθ∥2L2 + ⟨δu · ∇θ, δθ
⟩
Ḣ−1

= 0,⟨ d

dt
δv, δu

⟩
Ḣ−2

+
(
∥∇δu∥2L2 + α2∥∆δu∥2L2

)
+ ⟨δv · ∇u, δu⟩Ḣ−2 = ⟨δθ, δu⟩Ḣ−1 .

Using the fact that (see, e.g., [8, Chapter 3, p. 169])⟨ d

dt
δθ, δθ

⟩
Ḣ−1(T3)

=
1

2

d

dt
∥δθ∥2L2(T3),⟨ d

dt
δv, δu

⟩
Ḣ−2(T3)

=
1

2

d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3)

)
,



Mathematical Study to a Regularized 3D-Boussinesq System 101

and summing up, we obtain
1

2

d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
+
(
∥∇δu∥2L2(T3) + α2∥∆δu∥2L2(T3)

)
+ ∥∇δθ∥2L2(T3)

= ⟨δθ, δu⟩Ḣ−1(T3) −⟨δv · ∇u, δu⟩Ḣ−2(T3)︸ ︷︷ ︸
I2

−⟨δu · ∇θ, δθ⟩Ḣ−1(T3)︸ ︷︷ ︸
I3

.

Using, respectively, the Cauchy–Schwarz and Young’s inequalities, we obtain∣∣⟨δθ, δu⟩Ḣ−1(T3)

∣∣ ≤ 1

2

(
∥δu∥2L2 + ∥δθ∥2L2

)
. (3.6)

For I2, we note that∣∣⟨δv · ∇u, δu⟩Ḣ−2(T3)

∣∣ = ∣∣⟨δv · ∇u, δu⟩L2(T3)

∣∣ ≤ ∥δu∥L∞(T 3)∥∇u∥L2(T 3)∥δv∥L2(T 3).

Using inequality (2.2), we obtain

|I2| ≤ C∥δv∥L2(T 3)∥∇u∥L2(T 3)∥δu∥
1/2

Ḣ1(T 3)
∥δu∥1/2

Ḣ2(T 3)
.

The velocity has zero average for positive times, thus we have

∥δv∥L2(T 3) ≤ (c+ α2)∥∆δu∥L2(T 3), (3.7)

using (3.7) and Young’s inequality, we obtain

|I2| ≤ C(c+ α2)∥∇u∥L2(T 3)∥δu∥
1/2

Ḣ1(T 3)
∥δu∥3/2

Ḣ2(T 3)

≤ C

α6
(c+ α2)4∥∇u∥4L2(T 3)∥∇δu∥2L2(T 3) +

α2

2
∥∆δu∥2L2(T 3). (3.8)

To estimate I3, we use the Cauchy–Schwarz inequality twice to obtain∣∣⟨δu · ∇θ, δθ⟩Ḣ−1(T3)

∣∣ ≤ ∥δu∥L3∥∇θ∥L2∥δθ∥L6 .

Next, inequalities (2.1), (2.3) and Sobolev’s norm definition imply that∣∣⟨δu · ∇θ, δθ⟩Ḣ−1(T3)

∣∣ ≤ ∥δu∥1/2L2 ∥δu∥1/2
Ḣ1

∥∇θ∥L2∥δθ∥Ḣ1 ≤ ∥δu∥1/2L2 ∥∇δu∥1/2L2 ∥∇θ∥L2∥∇δθ∥L2 .

Using twice the Young product inequality, we obtain

|I3| ≤
1

4α

(
∥δu∥2L2 + α2∥∇δu∥2L2

)
∥∇θ∥2L2 +

1

2
∥∇δθ∥2L2 . (3.9)

Summing up estimates (3.6), (3.8) and (3.9), we infer that

d

dt

(
∥δu∥2L2 + α2∥∇δu∥2L2 + ∥δθ∥2L2

)
+
(
∥∇δu∥2L2 + α2∥∆δu∥2L2

)
+ ∥∇δθ∥2L2

≤ g(t)
(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
,

where
g(t) =

(
1 + C

( 1

α8
+ 1

)
∥∇u∥4L2 +

1

2α
∥∇θ∥2L2

)
.

Dropping the dissipative positive term from the left-hand side, we obtain
d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
≤ g(t)

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
.

Since θ∈L2([0, T ], Ḣ1) and u∈L∞([0, T ], Ḣ1), Grönwall’s lemma (cf. [5, Appendix A, p. 377]) leads to

(
∥δu∥2L2(T3)+ α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
≤
(
∥δu0∥2L2(T3)+ α2∥∇δu0∥2L2(T3)+ ∥δθ0∥2L2(T3)

)
e

t∫
0

g(s) ds
.

This implies the continuous dependence of the weak solution on the initial data in any bounded
interval of time [0, T ]. In particular, the solution is unique.
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4 Decay results
Following [1], we introduce the change of functions φn := F−1(eat|k|θ̂n) and wn := F−1(eat|k|ûn).
Applying Fourier transform to (3.1) and to (3.2), we obtain

∂tφ̂n + |k|(|k| − a)φ̂n + eat|k|F(Pn(un · ∇θn)) = 0, (4.1)
(1 + α2|k|2)

(
∂tŵn + |k|(|k| − a)ŵn

)
− φ̂ne3 + eat|k|F(Pn(vn · ∇θn)) = 0. (4.2)

We note that under the divergence free condition, the pressure term vanishes. The Plancherel identity
implies that the trilinear expressions vanish as (v · ∇u, u)L2 = 0 and (u · ∇θ, θ)L2 = 0. Taking the
combinations (4.1)φ̂n +(4.1)φ̂n and (4.2)ŵn +(4.2)ŵn, using the Cauchy–Schwarz inequality and the
fact that

(1− a)|k|2 ≤ |k|(|k| − a) ∀ k ∈ Z3,

one obtains
∂t|φ̂n|2 + 2(1− a)|k|2|φ̂n|2 = 0 (4.3)

and
(1 + α2|k|2)∂t|ŵn|2 + 2(1− a)|k|2(1 + α2|k|2)|ŵn|2 ≤ |φ̂n| |ŵn|. (4.4)

Integrating (4.3) with respect to time and summing up over k ∈ Z3, we obtain

∥φ(t, · )∥2L2 + (1− a)

t∫
0

∥∇φ(τ)∥2L2 dτ ≤ ∥θ0∥2L2 . (4.5)

Integrating (4.4) with respect to time and summing up over k ∈ Z3, we obtain

∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇w(s)∥2L2 + α2∥∆w(s)∥2L2 ds

≤ ∥u0∥2L2 + α2∥∇u0∥2L2 + ∥θ0∥L2

t∫
0

∥w(τ)∥L2 dτ.

Since ∂t|ŵn|2 ≤ |φ̂n∥ŵn|, we can deduce that

∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇w(s)∥2L2 + α2∥∆w(s)∥2L2 ds

≤
(
∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
. (4.6)

Summing up estimates (4.5) and (4.6), one obtains

∥φ(t)∥2L2 + ∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇φ(t)∥2L2 + ∥∇w(t)∥2L2 + α2∥∆w(t)∥2L2

≤
(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
.

As for the existence result, this energy estimate allows to run a standard compactness argument and to
obtain the existence of (φ,w) such that φ ∈ C(R+, L2)∩L2(R+,H1) and w ∈ C(R+,H1)∩L2(R+,H2).
In particular,∑

k∈Z3

e2at|k|
(
|θ(t, k)|2 + (1 + α2|k|2)|u(t, k)|2

)
≤

(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
. (4.7)

For zero-mean valued (θ, u), multiplying by exp(−2at), we deduce that θ and u vanish, respectively,
in the L2 and H1 norm as time tends to infinity. Note that estimation (4.7) does not allow to deduce
the decay result, so a sharper estimation is needed.
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5 Convergence results
As α is destined to vanish, we can suppose that there exists a fixed α0 such that 0 < α ≤ α0. It
follows that

∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2 + 2

t∫
0

∥∇θα∥2L2(T3) dτ

+ 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + α2

0∥∇u0∥2L2 + σα0
(t). (5.1)

This implies that θα and uα are uniformly bounded in L2([0, T ], Ḣ1(T3)) and vα is uniformly bounded
in L2([0, T ], L2(T3)), then the Banach–Alaoglu theorem [6] allows to extract subsequences (uα),
(vα), and (θα) such that (θα, uα) ⇀ (θ, u) weakly in L2([0, T ], Ḣ1(T3)) and vα ⇀ u weakly in
L2([0, T ], L2(T3)) as α → 0. Using the energy estimate, we infer that (uα, θα) converges to (u, θ)
weakly in L2(T3) and uniformly over [0, T ]. At this step, we have proved the two first results of
statements 1 and 2 and the third statement of Theorem 1.3.

About time derivatives, since θα is uniformly bounded independently on α in the space
L2([0, T ], Ḣ1(T3)), we find that ∆θα belongs to L2([0, T ], Ḣ−1(T3)). Furthermore, the energy es-
timate (5.1) implies that

T∫
0

∥div θαuα∥2Ḣ−3/2 ≤ ∥θα∥2L∞([0,T ],L2)∥uα∥2L2([0,T ],Ḣ1)

≤ 1

2

(
∥θ0∥2L2 + ∥u0∥2L2 + α2

0∥∇u0∥2L2 + σα0(t)
)2
.

Then we obtain ∥∥∥ d

dt
θα

∥∥∥
L2([0,T ],Ḣ−3/2)

≤ K1,

where K1 is a real positive constant. To handle the velocity derivatives, we apply the operator
(I − α2∆)−1 to the equation (3.2) and obtain

d

dt
uα = ∆uα − (I − α2∆)−1(vα · ∇)uα + (I − α2∆)−1∇pα + (I − α2∆)−1θαe3. (5.2)

We have that uα is uniformly bounded independently of α in L2([0, T ], Ḣ1(T3)), and it follows that
∆uα belongs to L2([0, T ], Ḣ−1(T3)). First, we note that∥∥ |(I − α2∆)−1|

∥∥ ≤ 1.

Then we use the Sobolev norms definition and product laws to get

T∫
0

∥∥(I − α2∆)−1 div(vα ⊗ uα)
∥∥2
Ḣ−5/2 ≤

T∫
0

∥∥div(vα ⊗ uα)
∥∥2
Ḣ−5/2

≤
T∫

0

∥vα∥2L2∥uα∥2L2 ≤ ∥uα∥2L∞([0,T ],L2)∥vα∥
2
L2([0,T ],L2).

Thus, estimate (5.1) allows to bound the convective term. The linear terms are not problematic.
Equation (5.2) implies that ∥ d

dt uαk
∥L2([0,T ],Ḣ−5/2(T3)) ≤ K, where K is a real positive constant, and

so on for d
dtvαk

in the space L2([0, T ], Ḣ−9/2(T3)).
At this step, using Aubin’s compactness theorem, we can extract subsequences of θα, uα that con-

verge strongly in L2([0, T ], L2(T3)) and subsequence of vα converging strongly in L2([0, T ], Ḣ−1(T3)).
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Thus, as in the existence section, using Aubin’s compactness theorem, we can take the weak limit
in the variational formulation associated to the system (Bqα). For t ∈ [0;T ] one obtains

(θ(t),Φ)− (θ(0),Φ)−
t∫

0

(θ,∆Φ) dτ +

t∫
0

((u∇)θ,Φ) dτ = 0,

(u(t),Ψ)− (u(0),Ψ)−
t∫

0

(u,∆Ψ) dτ +

t∫
0

((u∇)u,Ψ) dτ −
t∫

0

(θe3,Ψ) dτ = 0

for all Φ and Ψ belonging to the space of infinitely differentiable functions with a compact support
D(T3 × [0, T )).

On the other hand, θα converges weakly to θ and uα converges weakly to u in L2([0, T ], L2(T3))∩
L2([0, T ], Ḣ1(T3)), which are Hilbert spaces. So, for all non-negative time t, we have

∥θ∥2L2 + ∥u∥2L2 ≤ lim inf
α→0

(
∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2

)
,

and

2

t∫
0

∥∇θ∥2L2(T3) dτ + 2

t∫
0

∥∇u∥2L2 dτ

≤ lim inf
α→0

2

t∫
0

∥∇θα∥2L2(T3) dτ + 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ.

Taking the lower limit as α tends to zero in the energy inequality (1.1), we obtain (1.2).
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Zurab Vashakidze

AN APPLICATION OF THE LEGENDRE
POLYNOMIALS FOR THE NUMERICAL
SOLUTION OF THE NONLINEAR DYNAMICAL
KIRCHHOFF STRING EQUATION



Abstract. In the present work, the classical nonlinear Kirchhoff string equation is considered.
A three-layer symmetrical semi-discrete scheme with respect to the temporal variable is applied for
finding an approximate solution to the initial-boundary value problem for this equation, in which the
value of the gradient of a non-linear term is taken at the middle point. This approach is essential
because the inversion of the linear operator is sufficient for computations of approximate solutions
for each temporal step. The variation method is applied to the spatial variable. Differences of the
Legendre polynomials are used as coordinate functions. This choice of Legendre polynomials is also
important for numerical realization. This way makes it possible to get a system whose structure
does not essentially differ from the corresponding system of difference equations allowing us to use
the methods developed for solving a system of difference equations. An application of the suggested
variational-difference scheme for the numerical treatment of the stated nonlinear problem gives us
an opportunity to solve the system of linear equations instead of a nonlinear one. It is proved that
a matrix of the system of Galerkin’s linear equations is positively defined and the stability of the
factorization method is established.

The program of the numerical implementation with the corresponding interface is created based
on the suggested algorithm, and numerical computations are carried out for the model problems.

2010 Mathematics Subject Classification. 65F05, 65F50, 65M06, 65M60, 65N12, 65N22, 65Q30.

Key words and phrases. Non-linear Kirchhoff string equation, Cauchy problem, three-layer semi-
discrete scheme, Galerkin method, Cholesky decomposition.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÊÉÒáäÏ×ÉÓ ÀÒÀßÒ×ÉÅÉ ÊËÀÓÉÊÖÒÉ ÓÉÌÉÓ ÂÀÍÔÏËÄÁÀ.
ÀÌ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÃÀÓÌÖËÉ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏáÓÍÉÓÀÈÅÉÓ
ÂÀÌÏÚÄÍÄÁÖËÉÀ ÓÀÌÛÒÉÀÍÉ, ÓÉÌÄÔÒÉÖËÉ, ÍÀáÄÅÒÀÃÃÉÓÊÒÄÔÖËÉ ÓØÄÌÀ ÃÒÏÉÈÉ ÝÅËÀÃÉÓ
ÌÉáÄÃÅÉÈ, ÓÀÃÀÝ ÂÒÀÃÉÄÍÔÉÓ ÌÍÉÛÅÍÄËÏÁÀ ÀÒÀßÒ×ÉÅ ßÄÅÒÛÉ ÀÙÄÁÖËÉÀ ÛÖÀ ßÄÒÔÉËÛÉ. ÄÓ
ÌÉÃÂÏÌÀ ÌÍÉÛÅÍÄËÏÅÀÍÉÀ, ÒÀÃÂÀÍ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÚÏÅÄË ÃÒÏÉÈ ÁÉãÆÄ ÂÀÌÏÈÅËÉ-
ÓÀÈÅÉÓ ÓÀÊÌÀÒÉÓÉÀ ßÒ×ÉÅÉ ÏÐÄÒÀÔÏÒÉÓ ÛÄÁÒÖÍÄÁÀ. ÓÉÅÒÝÉÈÉ ÝÅËÀÃÄÁÉÓ ÌÉáÄÃÅÉÈ ÂÀÌÏÚÄ-
ÍÄÁÖËÉÀ ÅÀÒÉÀÝÉÖËÉ ÌÄÈÏÃÉ. ÓÀÊÏÏÒÃÉÍÀÔÏ ×ÖÍØÝÉÄÁÀÃ ÀÙÄÁÖËÉÀ ËÄÑÀÍÃÒÉÓ ÐÏËÉÍÏÌÄ-
ÁÉÓ ÓáÅÀÏÁÀ. ÓÀÁÀÆÉÓÏ ×ÖÍØÝÉÄÁÀÃ ËÄÑÀÍÃÒÉÓ ÐÏËÉÍÏÌÄÁÉÓ ÓáÅÀÏÁÉÓ ÀÙÄÁÀ ÌÍÉÛÅÍÄËÏÅÀ-
ÍÉÀ ÒÉÝáÅÉÈÉ ÒÄÀËÉÆÀÝÉÉÓ ÈÅÀËÓÀÆÒÉÓÉÈ. ÀÌ ÂÆÉÈ ÌÉÉÙÄÁÀ ÉÓÄÈÉ ÓÉÓÔÄÌÀ, ÒÏÌËÉÓ
ÓÔÒÖØÔÖÒÀ ÀÒÓÄÁÉÈÀÃ ÀÒ ÂÀÍÓáÅÀÅÃÄÁÀ ÛÄÓÀÁÀÌÉÓ ÓáÅÀÏÁÉÀÍ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓÂÀÍ,
ÒÀÝ ÂÅÀÞËÄÅÓ ÓÀÛÖÀËÄÁÀÓ ÂÀÌÏÚÄÍÄÁÖË ÉØÍÀÓ ÓáÅÀÏÁÉÀÍÉ ÓÉÓÔÄÌÉÓ ÀÌÏáÓÍÉÓÈÅÉÓ ÃÀÌÖÛÀÅÄ-
ÁÖËÉ ÌÄÈÏÃÄÁÉ. ÃÀÓÌÖËÉ ÀÒÀßÒ×ÉÅÉ ÀÌÏÝÀÍÉÓ ÒÉÝáÅÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÓÀÐÏÅÍÄËÀÃ ÛÄÌÏÈÀ-
ÅÀÆÄÁÖËÉ ÅÀÒÉÀÝÉÖË-ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÉÓ ÂÀÌÏÚÄÍÄÁÀ ÓÀÛÖÀËÄÁÀÓ ÂÅÀÞËÄÅÓ ÀÌÏÉáÓÍÀÓ ßÒ×É-
ÅÉ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÀ ÍÀÝÅËÀÃ ÀÒÀßÒ×ÉÅÉÓÀ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÂÀËÉÏÒÊÉÍÉÓ ßÒ×ÉÅ
ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÌÀÔÒÉÝÉÓ ÃÀÃÄÁÉÈÀÃ ÂÀÍÓÀÆÙÅÒÖËÏÁÀ ÃÀ ÃÀÃÂÄÍÉËÉÀ ×ÀØÔÏÒÉÆÀ-
ÝÉÉÓ ÌÄÈÏÃÉÓ ÌÃÂÒÀÃÏÁÀ.

ÛÄÌÏÈÀÅÀÆÄÁÖËÉ ÀËÂÏÒÉÈÌÉÓ ÓÀ×ÖÞÅÄËÆÄ ÛÄÉØÌÍÀ ÒÉÝáÅÉÈÉ ÒÄÀËÉÆÀÝÉÉÓ ÐÒÏÂÒÀÌÀ
ÛÄÓÀÁÀÌÉÓÉ ÉÍÔÄÒ×ÄÉÓÉÈ, ÜÀÔÀÒÃÀ ÒÉÝáÅÉÈÉ ÂÀÌÏÈÅËÄÁÉ ÌÏÃÄËÖÒÉ ÀÌÏÝÀÍÄÁÉÓÀÈÅÉÓ.
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1 Introduction
For the first time, G. Kirchhoff generalized D’Alembert’s classical linear model with the addition of a
nonlinear term (see [14]). The issues on the existence and uniqueness of local and global solutions of
initial-boundary value problems for the Kirchhoff string equation were first studied by S. Bernstein in
1940 (see [4]). The issues of the solvability of the classical and generalized Kirchhoff equations were
later considered by many authors: Arosio, Panizzi [1], Arosio and Spagnolo [2], Berselli, Manfrin [5],
D’Ancona, Spagnolo [7,8], Manfrin [17], Medeiros [19], Liu, Rincon [15], Matos [18] and Nishihara [20].
To the approximate solutions of initial-boundary value problems for classical equations the following
works are devoted: Christie, Sanz-Serna [6], Peradze [3, 21, 22] and Temimi et al. [28]. Construction
of algorithms of finding approximate solutions and their investigations for initial-boundary value
problems of some classes integro-differential equations are considered in the monograph of Jangveladze,
Kiguradze and Neta [13]. As far as we know, issues on the approximate solution in terms of a part of
numerical realization to the Kirchhoff string equation are less studied.

We consider the nonlinear dynamical Kirchhoff string equation and look for an approximate solu-
tion to a Cauchy problem for this equation using the symmetric three-layer semi-discrete scheme with
respect to the temporal variable. The value of the gradient in the nonlinear term of the equation is
taken at the middle point. This type of semi-discrete schemes for a generalized Kirchhoff equation
have been studied by Rogava and Tsiklauri [24–26]. Inversion of the liner operator makes it possible
to find an approximate solution at each temporal step. The variation method is applied to a spatial
variable. The differences of the Legendre polynomials are used as coordinate functions. An application
of the Legendre polynomials to boundary value problems of equations of the theory of elasticity are
considered in the monograph of Vashakmadze [30]. The Gauss-Legendre quadrature (see [16, 27]) is
applied for numerical integration, where [−1, 1] is the domain.

The results of the numerical computations of test problems are presented at the end of the para-
graph. According to the numerical experiments, the order of convergence of the scheme is practically
stated and it is shown that the constructed scheme describes well the behavior of an oscillating solu-
tion.

2 Statement of the problem and discretization
for a temporal variable

Let us consider the equation

∂2u(x, t)

∂t2
−
(
α+ β

1∫
−1

[∂u(x, t)
∂x

]2
dx

)
∂2u(x, t)

∂x2
= f(x, t), (x, t) ∈ ]− 1, 1[× ]0, T ], (2.1)

where α > 0 and β > 0; f(x, t) is a continuous function; u(x, t) is an unknown function.
For equation (2.1), the following initial-boundary conditions

u(x, 0) = ψ0(x), u′t(x, 0) = ψ1(x), (2.2)
u(−1, t) = 0, u(1, t) = 0 (2.3)

hold, where ψ0(x) and ψ1(x) are continuous functions, and, in addition, the compatibility condition
ψ0(−1) = 0, ψ0(1) = 0 is fulfilled.

The segment [0, 1] is divided into equal parts with uniform meshes τ , i.e.,

0 = t0 < t1 < · · · < tM = T,

where
tk = kτ (k = 0, 1, . . . ,M), τ =

T

M
.
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We would like to find an approximate solution of problem (2.1)–(2.3) by using the following semi-
discrete scheme:

uk+1(x)− 2uk(x) + uk−1(x)

τ2
− 1

2
qk

(d2uk+1(x)

dx2
+
d2uk−1(x)

dx2

)
= fk(x), k = 1, 2, . . . ,M − 1, (2.4)

where fk(x) = f(x, tk),

qk = α+ β

1∫
−1

(duk(x)
dx

)2

dx.

As an approximate solution of u(x, t) of problem (2.1)–(2.3) at the point tk = kτ, we declare uk(x),
u(x, tk) ≈ uk(x).

From equation (2.4) we obtain(
2I − τ2qk

d2

dx2

)
uk+1(x) = gk(x), (2.5)

where
gk(x) = 2τ2fk(x) + 4uk(x) + τ2qk

d2uk−1(x)

dx2
− 2uk−1(x).

The values of the unknown functions on the zeroth and first layers are described by the initial
conditions (2.2) and equation (2.1),

u0(x) = ψ0(x), (2.6)

u1(x) = ψ0(x) + τψ1(x) +
1

2
τ2
(
q0
d2ψ0(x)

dx2
+ f0(x)

)
. (2.7)

Let us rewrite the boundary conditions (2.3) in the following form:

uk(−1) = 0, uk(1) = 0. (2.8)

3 A solution of the system of equations with
the Galerkin method using the Legendre polynomials
as coordinate functions

To find approximate solutions of problem (2.1)–(2.3) per temporal step we apply the following linear
combination:

ũk(x) =

N∑
m=1

ckmφm(x), (3.1)

where the coordinate functions φm(x) represent differences of the Legendre polynomials, i.e.,

φm(x) =

√
2m+ 1

2

x∫
−1

Pm(s) ds = Am

(
Pm+1(x)− Pm−1(x)

)
, Am =

1√
2(2m+ 1)

. (3.2)

For any (k+1)-th layers, the coefficients ck+1
m (k = 1, 2, . . . ,M−1) can be found from the following

equation: ((
2I − τ2qk

d2

dx2

)
uk+1(x)− gk(x), φm(x)

)
= 0. (3.3)

Putting (3.1) into equation (3.3), we finally get( N∑
i=1

ck+1
i

(
2I − τ2qk

d2

dx2

)
φi(x), φm(x)

)
=

(
gk(x), φm(x)

)
. (3.4)
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The key property of the Legendre polynomials is given (see [9, 12]) in the form

1∫
−1

Pi(x)Pn(x) dx =
2√

(2i+ 1)(2n+ 1)
δin, (3.5)

where δin is the Kronecker symbol.
We introduce the notation

P̃i(x) =

√
2i+ 1

2
Pi(x).

It is easy to see that
φ′

m(x) = P̃m(x). (3.6)
If we apply the integration by parts with the boundary conditions (2.8), we get

1∫
−1

(duk(x)
dx

)2

dx = −
1∫

−1

d2uk(x)

dx2
uk(x) dx. (3.7)

The usage of the integration by parts, due to (3.5) and (3.6), yields

1∫
−1

d2φi(x)

dx2
φm(x) dx = −δim. (3.8)

Now, let us rewrite equality (3.5) in terms of Ai and Am:

1∫
−1

Pi(x)Pm(x) dx = 4AiAmδim. (3.9)

According to (3.9), we get

1∫
−1

φi(x)φm(x) dx = 4AiAm

(
Ai+1Am+1δi+1,m+1

−Ai+1Am−1δi+1,m−1 −Ai−1Am+1δi−1,m+1 +Ai−1Am−1δi−1,m−1

)
. (3.10)

If we take equalities (3.7) and (3.8) into account, we obtain

qk = α+ β

N∑
m=1

(ckm)
2
. (3.11)

From (3.10) we get

(
uk+1(x), φm(x)

)
=

N∑
i=1

ck+1
i

1∫
−1

φi(x)φm(x) dx

= 4
(
−Am−2A

2
m−1Amc

k+1
m−2 +A2

m(A2
m−1 +A2

m+1)c
k+1
m −AmA

2
m+1Am+2c

k+1
m+2

)
,

Let us introduce the following notation:

Bm = 4Am−1A
2
mAm+1, Bm =

1

(2m+ 1)
√
(2m− 1)(2m+ 3)

, (3.12)

Cm = 4A2
m(A2

m−1 +A2
m+1) = 8A2

m−1A
2
m+1, Cm =

2

(2m− 1)(2m+ 3)
. (3.13)
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According to (3.12) and (3.13), the inner product of (uk+1(x), φm(x)) can be rewritten in the following
form: (

uk+1(x), φm(x)
)
= −Bm−1c

k+1
m−2 + Cmc

k+1
m −Bm+1c

k+1
m+2. (3.14)

From (3.8) we conclude that (d2uk+1(x)

dx2
, φm(x)

)
= −ck+1

m . (3.15)

Finally, if we use (3.14) and (3.15), for the calculation of inner product of the left-hand side of equation
(3.4), we get the equality( N∑

i=1

ck+1
i (2I − τ2qk

d2

dx2
)φi(x), φm(x)

)
= −2Bm−1c

k+1
m−2 + (2Cm + τ2qk)c

k+1
m − 2Bm+1c

k+1
m+2. (3.16)

For the right-hand side of equation (3.4), we have(
gk(x), φm(x)

)
= −2Bm−1(2c

k
m−2 − ck−1

m−2)

+ 2Cm(2ckm − ck−1
m )− τ2(qkc

k−1
m − 2Ikm)− 2Bm+1(2c

k
m+2 − ck−1

m+2). (3.17)

For every k = 1, 2, . . . ,M − 1, we obtain the following system of linear equations:

− 2Bm−1c
k+1
m−2 + (2Cm + τ2qk)c

k+1
m − 2Bm+1c

k+1
m+2

= −2Bm−1(2c
k
m−2 − ck−1

m−2) + 2Cm(2ckm − ck−1
m )

− τ2(qkc
k−1
m − 2Ikm)− 2Bm+1(2c

k
m+2 − ck−1

m+2). (3.18)

To find coefficients ck+1
m (k = 1, 2, . . . ,M − 1), we have first to find c0m and c1m. To this end, we

calculate the inner products (u0(x), φm(x)) and (u1(x), φm(x)):

−Bm−1c
0
m−2 + Cmc

0
m −Bm+1c

0
m+2 = Ĩ 0

m, (3.19)

−Bm−1c
1
m−2 + Cmc

1
m −Bm+1c

1
m+2 = Ĩ 0

m + τ Ĩ1m − 1

2
τ2(q0c

0
m − I0m). (3.20)

The values of summands with negative indices in (3.18), (3.19) and (3.20) we set equal to zeros.
The notation of Ikm, Ĩ0m and Ĩ1m denote the inner products (fk(x), φm(x)), (u0(x), φm(x)) and

(u1(x), φm(x)), respectively. We calculate approximately the already-mentioned inner products using
the Gauss–Legendre quadrature rule (see [16,27]), which is exact for polynomials of degree 2N − 1 or
less.

We rewrite the system of linear equations (3.18) in a matrix form. Let us introduce the following
notation:

Dk
m =2Cm + τ2qk,

F k
m =− 2Bm−1(2c

k
m−2 − ck−1

m−2) + 2Cm(2ckm − ck−1
m )

− τ2(qkc
k−1
m − 2Ikm)− 2Bm+1(2c

k
m+2 − ck−1

m+2).

According to the above-mentioned notation, the system of linear equations has the form

Dk
1 0 −2B2 0 · · · 0

0 Dk
2 0 −2B3

. . . ...

−2B2 0 Dk
3 0

. . . 0

0 −2B3 0
. . . . . . −2Bm−1

... . . . . . . . . . Dk
m−1 0

0 · · · 0 −2Bm−1 0 Dk
m





ck+1
1

ck+1
2

ck+1
3

ck+1
4

...
ck+1
m


=



F k
1

F k
2

F k
3

F k
4

...
F k
m


. (3.21)

The following statement takes place.
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Theorem 3.1. The matrix of the system of Galerkin’s linear equations (3.21) is positively defined.

This theorem is a result of the following

Lemma 3.1. Let us consider a general operator equation in a Hilbert space H,

Au = f, f ∈ H,

where the operator A is symmetric and satisfies the condition

(Au, u) ≥ α(Bu, u) + ν∥u∥2, ∀u ∈ D(A) ⊂ D(B), (3.22)

B is also a symmetric operator, besides D(A) ⊂ D(B) ; α and ν are the positive constants.
The matrix of the system of linear equations (3.21) is positively defined when the basis functions

{φk}∞k=1 are B-orthogonal, which means that

(Bφk, φi) = δki. (3.23)

Proof. We denote the Galerkin system of equations by SN . Let us introduce the vector

vN = (c1, c2, . . . , cN )
⊤
.

We can straightforwardly show that

SNvN =
(
(AuN , φ1), (AuN , φ2), . . . , (AuN , φN )

)T
,

where

uN =

N∑
k=1

ckφk. (3.24)

Indeed,

(AuN , φi) =
( N∑

k=1

ckAφk, φi

)
=

N∑
k=1

(Aφk, φi)ck (i = 1, 2, . . . , N). (3.25)

Due to (3.25), we have

(SNvN , vN ) = c1(AuN , φ1) + c2(AuN , φ2) + · · ·+ cN (AuN , φN )

= (AuN , c1φ1) + (AuN , c2φ2) + · · ·+ (AuN , cNφN ) =
(
AuN ,

N∑
k=1

ckφk

)
= (AuN , uN ),

and obtain
(SNvN , vN ) = (AuN , uN ). (3.26)

From (3.22) and (3.26) it follows that

(SNvN , vN ) ≥ α(BuN , uN ) + ν∥uN∥2. (3.27)

Inserting (3.24) into inequality (3.27) and also taking into account the B-orthogonality (3.23), we get

(SNvN , vN ) ≥ α
( N∑

k=1

ckBφk,

N∑
i=1

ciBφi

)
+ ν∥uN∥2

≥ α

N∑
k=1

N∑
i=1

ckci(Bφk, φi) = α

N∑
k=1

c2k = α∥vN∥2.

Remark 3.1. Obviously, for equation (2.5) we have

(Au, u) = 2∥u∥2 + τ2qk(Bu, u),

where A = 2I + τ2qkB and B = − d2

dx2 , D(A) = D(B) = {u(x) ∈ C2([−1, 1]) | u(−1) = u(1) = 0}. It
is well-known that the operator B is positive (see [23]).
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Remark 3.2. The matrix of system (3.21) is diagonally dominant of order O( 1
m3 ) and the following

inequality holds:

Cm +
m+ 4

(2m− 1)(2m+ 3)(m− 1)(m+ 1)
> Bm−1 +Bm+1 (m = 3, 4, . . . , N − 2).

Proof. We note that for the coefficient Bm (m = 2, 3, . . . , N − 1) in (3.12) the following double
inequality holds:

(2m)
2
< (2m− 1)(2m+ 3) < (2m+ 1)

2 (3.28)

Due to (3.28), for Bm−1 and Bm+1, the inequalities

4(m− 1)
2
< (2m− 3)(2m+ 1) < (2m− 1)

2 (3.29)

and
4(m+ 1)

2
< (2m+ 1)(2m+ 5) < (2m+ 3)

2 (3.30)

are fulfilled, respectively.
Let us evaluate the expression Bm−1 + Bm+1 − Cm (m = 3, 4, . . . , N − 2). Taking into account

(3.29) and (3.30) we get

16

(2m− 1)
2
(2m+ 3)

2 < Bm−1 +Bm+1 − Cm <
m+ 4

(2m− 1)(2m+ 3)(m− 1)(m+ 1)
.

For the first two and the last two rows of the matrix of system (3.21), we have the following estimations:

7

20
< C1 −B2 <

9

25
,

1

14
< C2 −B3 <

11

147
,

2N − 9

2(2N − 3)(2N + 1)(N − 2)
< CN−1 −BN−2 <

2N − 7

(2N − 3)
2
(2N + 1)

,

2N − 7

2(2N − 1)(2N + 3)(N − 1)
< CN −BN−1 <

2N − 5

(2N − 1)
2
(2N + 3)

.

For the solution of system (3.21) we consider the so-called Cholesky decomposition (see [10,11,27,
29])

A = LDL⊤ (3.31)

of a symmetric, positively defined matrix A = (ai,j)N×N , where L is a lower triangular matrix having
identities of the main diagonal, L⊤ is the transposed matrix of L and D is a diagonal matrix. Applying
the decomposition similar to (3.31), the system of linear equations

Ax = b

can be split into the following sub-systems:
Lz = b,

Dy = z,

L⊤x = y.

For the system of equations on the layers k = 0 and k = 1, we get

Ac(n) = b(n), n = 0, 1, (3.32)



An Application of the Legendre Polynomials. . . 115

a solution of system (3.32) has the following form (n = 0, 1):

z
(n)
m = b

(n)
m , m ∈ {1, 2};

z(n)m = b(n)m +
Bm−1

dm−2
z
(n)
m−2, m ∈ {3, 4, . . . , N};

y(n)m =
z
(n)
m

dm
, m ∈ {1, 2, . . . , N};

c
(n)
m = y

(n)
m , m ∈ {N,N − 1};

c(n)m = y(n)m +
Bm+1

dm
c
(n)
m+2, m ∈ {N − 2, N − 3, . . . , 1},

where 
dm = Cm, m ∈ {1, 2};

dm = Cm −
B2

m−1

dm−2
, m ∈ {3, 4, . . . , N}.

Any (k + 1)-th layers, a solution of linear algebraic system of equations A(k)c(k+1) = F (k), where
k = 1, 2, . . . ,M − 1, has the following form:

z
(k+1)
m = F

(k)
m , m ∈ {1, 2};

z(k+1)
m = F (k)

m +
2Bm−1

d
(k)
m−2

z
(k+1)
m−2 , m ∈ {3, 4, . . . , N};

y(k+1)
m =

z
(k+1)
m

d
(k)
m

, m ∈ {1, 2, . . . , N};

c
(k+1)
m = y

(k+1)
m , m ∈ {N,N − 1};

c(k+1)
m = y(k+1)

m +
2Bm+1

d
(k)
m

c
(k+1)
m+2 , m ∈ {N − 2, N − 3, . . . , 1},

where 
d
(k)
m = 2Cm + τ2qk, m ∈ {1, 2};

d(k)m = (2Cm + τ2qk)−
4B2

m−1

d
(k)
m−2

, m ∈ {3, 4, . . . , N}.

4 Analysis of the numerical results
Let us consider the initial-boundary value problem (2.1)–(2.3) with the constants α = β = 1 and
t ∈ [0, 1]. For this problem we take two cases of tests, which are also considered in [25].

Test 1:

ψ0(x) = 0, ψ1(x) = mπ sin(πx),
f(x, t) = π2

(
−m2 + (α+ βπ2sin2(mπt))

)
sin(mπt) sin(πx).

Test 2:

ψ0(x) = sin(mπx), ψ1(x) = π sin(mπx),
f(x, t) = π2

(
1 +m2(α+ βm2π2e2πt)

)
eπt sin(mπx).

The solutions of Test 1 and Test 2 are u(x, t) = sin(mπt) sin(πx) and u(x, t) = eπt sin(mπx),
respectively.
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Figure 1: Dependence of logarithm of relative error on logarithm of the temporal step.

In Figure 1, there is a dependence of the logarithm of relative error of the approximated solution of
Test 1 on the logarithm of the temporal step. On the horizontal axis there is the logarithm of temporal
step, and on the vertical axis there is the logarithm of a relative error of the approximated solution. In
all the four pictures, starting from the certain time step, the curve approaches the line, whose angular
coefficient is −2, which confirms that the approximate solution obtained by the considered scheme is
of the second order accuracy. For this case, eleven (N = 11) coordinate functions are taken and the
errors of each temporal step are calculated with a maximum norm.

In Figure 2, there are approximate and exact solutions of Test 2 at the point t = 0.5. The
approximate and exact solutions are shown as dashed and continuous curves, respectively. The errors
between the exact and approximate solutions are calculated by a maximum norm and in each cases
they represent the following values:

∥u(x, 0.5)− ũ(x, 0.5)∥∞ ≈ 1.00× 100,

∥u(x, 0.5)− ũ(x, 0.5)∥∞ ≈ 4.44× 10−5,

∥u(x, 0.5)− ũ(x, 0.5)∥∞ ≈ 3.43× 10−1,

∥u(x, 0.5)− ũ(x, 0.5)∥∞ ≈ 3.31× 10−5

with respect to the cases (a), (b), (c) and (d). In Figure 2, (a) and (b) represent the case m = 3,
and (c) and (d) represent the case m = 7. In figures (a) and (b), the value of τ is the same, but
the amount of the coordinate functions is different. Analogously, figures (c) and (d) have the same
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(b) m = 3, τ = 1/1024, N = 20.
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(c) m = 7, τ = 1/4096, N = 30.
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(d) m = 7, τ = 1/4096, N = 35.

Figure 2: Exact and approximate solutions at the point of 0.5 with respect to the temporal variable,
which are represented by solid and dashed lines, respectively.

mesh length, however, the number of the coordinate functions is not equal to each others. As the
tests show, increasing of only temporal layers is not enough to reach high order accuracy, we need
to rise the amount of the coordinate functions. Nevertheless, there exists some relationship between
numbers of layers and the coordinate functions.
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